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Introduction

This thesis is constituted of three chapters that represent individual papers in the area of
asset pricing and behavioral finance. Its overall goal is to study the impacts of releasing
simplifying unrealistic assumptions frequently made in asset pricing models. Specifically,
while agents are often assumed to be identical (which eases their aggregation into one rep-
resentative agent) and returns to be normally distributed (which has many computational
advantages), I focus on agent heterogeneity and on non-normal asset return distributions.
The first chapter—published in Economic Theory in April 2021—is entitled Live fast, die
young: equilibrium and survival in large economies and is jointly written with Elyes Jouini.
The second one is named Disagreeing forever: a testable model with non-vanishing belief
heterogeneity and is my job market paper. Lastly, the article presented in Chapter [3|is a

joint work with Paul Karehnke and is called Two skewed risks.

The first two chapters deal with agent heterogeneity and consider models that incorporate
a continuum of heterogeneous agents who agree to disagree. They echo recent works showing
that heterogeneity has large impacts on the market characteristics and should therefore be

taken into account.

More precisely, Chapter (1| is a theoretical paper where Elyes Jouini and I study a
continuous-time economy populated by agents who have heterogeneous beliefs about what
the future holds and heterogeneous time preferences. One of our contributions is to further
allow for some correlation between these two types of heterogeneity. Empirical evidence in-

deed shows that they are negatively correlated: the most optimistic agents are also the most



INTRODUCTION

patient ones. We therefore study the theoretical impacts of such correlated heterogeneities on
the behavior of financial markets. We fully characterize the risk-free rate which is procyclical
and the market price of risk which is countercyclical, and we show that a negative correlation
between the two types of heterogeneity reduces the former and enhances the latter. In ad-
dition, we assume that an asset, whose dividend process is given by the total endowment of
the economy, is available for trading. Importantly, we derive that a higher belief dispersion
increases the overall trading volume, and that the case where the most optimistic investors
are also the most patient ones induces some excess volatility in the market. In the last
part of the paper, assuming that the two types of heterogeneity are uncorrelated, we finally
study the characteristics of some specific agents, namely the surviving agent, the ex-post
utility-maximizing agent, and the ex-ante utility-maximizing agent. We thereby contribute
to the literature by showing that a shorter life might be more rewarding than a longer one,
as the surviving agent of the economy is not necessarily the one who maximizes her utility

over her lifetime.

The second chapter Disagreeing forever: a testable model with non-vanishing belief het-
erogeneity similarly deals with a continuum of heterogeneous investors but focuses only on
the belief heterogeneity. Another difference with Chapter (1] is that I study more general
utility functions as I assume that the investors are endowed with constant relative risk aver-
sion utility functions rather than logarithmic ones. Furthermore, the paper contains both
a theoretical and an empirical part. In fact, my main contribution is to derive a tractable
overlapping heterogeneous generations model where the belief heterogeneity does not vanish
as time goes by, and I thus obtain a stationary model that I can test empirically over long
periods. In the theoretical part, I first compute the model equilibrium and determine the
planned actions of the successive generations of investors, who keep the same belief from
a generation to another and maximize the utility they derive from either consumption or
bequest. Considering a similar stock as the one in Chapter [I], I further look at the impli-

cations of belief heterogeneity on the characteristics of this stock. In particular, I find that
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the stock mean return and volatility both increase when the belief dispersion increases, and
I derive non-vanishing belief dispersion effects, meaning that these positive relations should
remain no matter the horizon considered. Thus, I specify four hypotheses that are tested
in the empirical part of the paper. More precisely, using the Institutional Brokers Estimate
System Unadjusted Summary database to construct the market belief dispersion variables,
the empirical analysis shows that the positive relation between the market returns and the
market belief dispersion is verified in the data for all horizons, and empirical evidence further
points more towards the approval of the positive model-implied relation between the market

volatility and the market belief dispersion than towards its rejection.

Finally, Chapter [3| departs from the assumption that asset returns are normally dis-
tributed (implying that they have a null skewness). Defining and using a skewed distribu-
tion in a simple two-asset framework, Paul Karehnke and I analyze how skewness and its

interaction with correlation affect portfolio choice, asset prices, and popular risk metrics.

More precisely, we assume that returns follow the split bivariate normal distribution,
which is a mixture of four scaled bivariate normal distributions. Skewness is thereby intro-
duced by allowing the standard deviation parameters to differ in each of the four quad-
rants. Bivariate Kolmogorov-Smirnov tests and a comparison of implied and empirical
co-skewnesses show that this distribution provides a good empirical fit, and is therefore
well-suited for our study. Importantly, our focus is on simplicity and intuition due to the
similarities of the split bivariate normal with the bivariate normal distribution. In a pure
exchange economy, we find that capital asset pricing model alphas are non-zero when the
assets have different levels of skewness. Additionally, one of our contributions is to show
theoretically that the asset that underperforms also has high systematic skewness, high id-
iosyncratic skewness, and high maximum returns, as empirical studies suggest. Moreover,
the main result of our portfolio choice analysis is to show that underdiversification becomes
optimal when the correlation is high and skewnesses differ. Therefore, we highlight the role of

correlation in the diversification-skewness trade-off, and we thus extend Mitton and Vorkink
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(2007) who consider only one skewed asset. Lastly, we provide simple expressions for some
bivariate risk metrics, namely ACoVaR (defined in |Adrian and Brunnermeier} [2016]) and the
conditional expected shortfall (Acharya et al 2017), when risks follow the split bivariate
normal distribution, and thereby show that skewness has a large quantitative impact on

them.



Chapter 1

Live fast, die young: equilibrium and

survival in large economies

Joint work with Elyes Jouini.

Published in Economic Theory, Volume 71, Issue 3, April 2021.

Note that the version presented in the thesis slightly differs from the one published because

it takes into account some minor comments of the committee members.
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Abstract

We model a continuous-time economy with a continuum of investors who differ both
in belief and time preference rate, and analyze the impacts of these heterogeneities on the
behavior of financial markets. In particular, we allow the two types of heterogeneity to be
correlated: a negative correlation means that the most optimistic agents are also the most
patient ones. We fully characterize the risk-free rate, which is procyclical, and the market
price of risk, which is countercyclical. When the two types of heterogeneity are negatively
correlated, the former is lower and the latter higher compared to the standard case. A
negative correlation also leads to a higher market volatility. Moreover, we find that the
trading volume increases with the variance of the belief heterogeneity distribution. Finally,
the surviving agent of this economy is not necessarily the one who maximizes her utility over

her lifetime: a shorter life might be more rewarding than a longer one.

Keywords: Heterogeneous beliefs, Heterogeneous time preference rates, Continuum of
agents, Asset pricing, Market elimination, Surviving agent

JEL classification: D53 - D90 - G02 - G11 - G12



CHAPTER 1. LIVE FAST, DIE YOUNG: EQUILIBRIUM AND SURVIVAL IN LARGE
ECONOMIES

1.1 Introduction

A common assumption made in asset pricing models is that all investors have a rational
belief. Most models also rely on the assumption that all investors have the same time
preferences. Although these assumptions are useful as they permit to aggregate all the
agents into one representative agent, empirical evidence indicates that some investors are
more optimistic than others and some more patient than others, questioning the pertinence
of such hypotheses.

In spite of this evidence, there have been several arguments to support the first assump-
tion. Following Friedman| (1953), it has been argued that, although some investors might
have a biased belief towards optimism or pessimism, they should not be of interest as this
should lead them to make wrong choices and to go extinct (see, e.g., Sandroni, 2000)). How-
ever, as Kogan et al.| (2006) point out, survival and market impact are different concepts
and they need to be studied separately. In particular, [Yan (2008)) shows that the elimination
process takes a long time and that biased investors should therefore not be neglected. A re-
cent study by |[Bottazzi et al. (2018) also states that heterogeneous agents are not necessarily
eliminated in the long run and that the non-optimality of an agent’s portfolio can correct
for the inaccuracy of her belief, leading to her survival. A second important argument in
favor of the belief homogeneity assumption argues that, as there is no reason for an average
bias to exist in the economy, agents should be rational on average and the effects induced
by biased investors should cancel out. |Jouini and Napp| (2011]) find that this is not the case
and that unbiased disagreement can not be considered as agreement. Finally, similarly to
the pragmatic beliefs concept of |[Hvide| (2002), there is an argument supporting the belief
homogeneity assumption which states that irrational agents, observing that rational agents
are being more successful, should adopt the same belief as the most successful ones. Ques-
tioning this third argument, |Jouini and Napp) (2016 show that irrational agents might do
better than rational ones.

The time preference rate homogeneity assumption has also been examined. Following
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the seminal work of Samuelson (1937)), it has been widely accepted that a unique discount
rate can be used to condense intertemporal choices. However, empirical studies (see, e.g.,
Frederick et al., 2002) show that this assumption does not hold in the real world and that
there exists a great variety of time preference rates across investors. At a country level, Wang
et al. (2016) highlight this heterogeneity and show that, in addition to economic factors, it
can also be explained by cultural ones.

This suggests that these two assumptions might be unreasonable and that heterogeneous
agents, both in belief and time preference rate, could have an impact on financial markets.
Empirical works support this rationale and show how important are the belief and time
preferences heterogeneities on various markets (see, e.g., Buraschi and Jiltsov, 2006 (option
markets), [Beber et al. 2010, (currency markets), Buraschi et al., [2014| (credit markets)).
Investors’ heterogeneity also explains, at least partly, empirical facts, as the implied risk
aversion smile (Ziegler, |2007).

In this paper, we further investigate these impactsE] More precisely, we study their
joint impact and allow the two types of heterogeneity to be correlated. To the best of our
knowledge, we are the first to theoretically consider such a correlation, which seems to exist
empirically. In fact, survey evidence suggests that we can assume a negative correlation,
or, stated differently, that the most optimistic agents are also the most patient onesEI We
therefore consider a continuous-time equilibrium model with a continuum of heterogeneous
agents who do not share the same belief about the future nor the same time preference rate,
and we allow some correlation to exist between the characteristics of each agent. Hence, our
economy is characterized by the presence of optimistic and pessimistic agents and, for an
identical belief, patient and impatient ones. Unlike other studies (see, e.g., |Li, 2007, Berrada

et al) 2018), we assume that the agents do not learn. We make this assumption because

'We choose to focus on belief and time preference rate heterogeneity for modeling convenience. Those
are also two of the most popular types of heterogeneity considered in the literature. We leave the study of
other types of heterogeneity, e.g., the heterogeneity in risk aversions, for future work—mnote however that
such a type of heterogeneity leads to less tractable results (see, e.g., |Cvitanic et al., [2012)).

2We thank Luc Arrondel who checked this fact on the PATER survey and obtained a negative correlation
in a qualitative regression framework. The result is significant at a 5% level.
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we want to focus on market elimination of given beliefs rather than on their elimination
through possible learning. Moreover, it allows us to be consistent with the view that the
agents’ heterogeneity comes from psychological biases. If this is the case, heterogeneity
can be explained by behavioral distortions and there is therefore no added value to assume
learning. The fact that we find that some agents with a wrong belief might be better off than
some rational agents further adds to the debate initiated by Grossman and Stiglitz (1980)
on the economic rationale for learning which suggests that agents might have no incentive

to learn.

We first compute the equilibrium of our model. We then study the impact investors’
heterogeneity has on some equilibrium characteristics and, in particular, we determine how
the correlation between the two types of heterogeneity affects them. Focusing on an economy
with uncorrelated heterogeneities, we also determine which agent survives in the long run

and which agent maximizes her expected utility (ex-post and ex-ante).

Belief and time preference rate heterogeneities impact the risk-free rate and the market
price of risk (see, e.g., David, [2008)). In fact, in our economy, we observe countercyclical
market prices of risk and procyclical risk-free rates. These results, obtained considering a
continuum of heterogeneous agents, are in line with, and complement, previous studies, such
as | Jouini and Napp (2011)) or[Bhamra and Uppal| (2014), who consider models with only two
groups of investors. They are also consistent with empirical observations that “equity risk
premia seem to be higher at business cycles troughs than they are at peaks” (Campbell and
Cochrane, [1999)) and that the short term rate is a procyclical indicator of economic activity
(see, e.g., Friedman)| [1986)). These effects are amplified when there is an average optimistic
bias in the economy and lowered when investors are pessimistic on average. Moreover, unlike
previous studies, we find that the higher the variance of the belief distribution, the higher
these effects. We also find that the asymptotic market price of risk equals the one obtained in
a homogeneous framework, whereas the asymptotic risk-free rate is smaller than the standard

one. This is due to the fact that only the most patient investors, characterized by an almost

10
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null time preference rate, survive in the long run. The study of the correlation between the
two types of heterogeneity leads to an additional conclusion: a negative correlation between
beliefs and time preference rates reduces the risk-free rate and enhances the market price of
risk. This new result is interesting in light of the risk premium and the risk-free rate puzzles.
We further consider an asset whose dividend process is given by the total endowment of the
economy and study the volatility of the stochastic differential equation satisfied by this asset,
namely the market volatility. Unlike the case where the beliefs and the time preferences are
uncorrelated, we find that the two types of heterogeneity do impact the market volatility
when they are correlated. In particular, if we assume a negative correlation between them,
we observe some excess market volatility. The more impatient the agents are on average, the
less important this effect is. Considering the time preference rate heterogeneity and allowing
some correlation between beliefs and time preferences, we therefore complement |[Atmaz and
Basak! (2018), who derive a similar result of excess volatility in presence of a continuum of
agents who are only heterogeneous in beliefs. In their settings, the main driver of the excess
volatility is the belief dispersion whereas it does not play a role in our analysis. This is due
to the fact that we consider agents endowed with logarithmic utility functions, which are
known to mitigate the belief dispersion effect. The effect we establish is then an additional
effect due to the correlation between the two types of heterogeneity. In a finite time economy,
populated by a patient and an impatient agent, [Li (2007) derives a similar result: he finds
that the market volatility is higher than the aggregate endowment volatility if the patient
agent is more optimistic than the impatient one. Hence, our result extends his finding to the
case of a continuum of agents, which allows us to study in more depth the role of correlation.
The last market characteristic that we study is the trading volume. Unlike the homogeneous
agents case, where no one trades as all investors act identically, we observe some trading
in the economy. At the investor level, we see that the more patient an agent is, the more
she trades. This result is due to a wealth effect and is strengthened when the correlation is

higher in absolute value. Looking at the impact of beliefs on the trading volume for agents

11
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sharing the same time preference rate, we see that there is no clear relation between trading
volume and belief bias. At the global level, as some agents are progressively driven out of the
market, we find that the trading volume decreases with time in the uncorrelated case. This
overall trading volume also depends positively on the variance parameter of the distribution

of beliefs. In fact, more heterogeneous agents imply more trading possibilities.

Finally, in the last part of the paper, we study some characteristics of the agents. Con-
sistent with [Yan| (2008), we find that the surviving agent of the economy is the most patient
of the unbiased agents. Similarly, forming groups of investors sharing the same time pref-
erence rate, we show that the surviving agent of each group is the unbiased one. However,
we show that this agent does not necessarily have the highest ex-post or ex-ante utility of
her group. In particular, if there is an average optimistic bias in the economy, the ex-post
utility-maximizing agent is an optimistic agent whose bias is between the rational one and
the average one. This result is in line with |Jouini and Napp| (2016) who show that “even
if they are eliminated in the long run, irrational agents might rationally stay irrational,” in
the sense that, for given time preferences, having a biased belief might allow an agent (thus
defined as an irrational one) to have a higher level of utility over her whole life than the
utility level of an unbiased (rational) agent sharing the same time preferences. In terms of
utility, such an agent therefore does not have any incentive to change her belief to become
a rational agent. Stated differently, this is consistent with the fact that, under certain cir-
cumstances, a shorter life (i.e., associated with a low survival rate) might be more rewarding
than a longer one. Our result complements [Jouini and Napp| (2016)’s findings as we deal
with a continuum of agents who are therefore price takers. Indeed, in their two-agent model,
each agent has an impact on the equilibrium price, and it is therefore natural that the devi-
ation from rationality of an agent could benefit her through the impact this distortion has
on the price. We find that this result still holds in an economy populated by an infinity of
investors where the price impact of each agent is null. Our result also echoes |De Castro and

Yannelis| (2013) who, looking at investors with asymmetric information, show that it might

12
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be beneficial for investors to manipulate the information they process in order to maximize
their utility. Hence, they find that being biased and deviating from rationality might be
rewarding in terms of utility. Lastly, similarly to Detemple and Murthy| (1994), our economy
is characterized by waves of optimism and pessimism, as we observe that the aggregate con-
sumption share of optimistic (resp. pessimistic) agents increases in good (resp. bad) states

of the world.

Related litterature A growing number of papers has been interested in the study of the
different types of heterogeneity. More specifically, an important stream of the literature
focuses on belief heterogeneity. Most of these papers consider a model populated by two or a
finite number of investors who differ only in their belief and analyze the equilibrium properties
of such economies (see, e.g.,|Basak, [2005| Jouini and Napp, 2007, [Won et al.| 2008). The time
preference rate heterogeneity has received less attention. Becker and Mulligan| (1997)) explain
how one investor’s time preferences are endogenously determined. |Gollier and Zeckhauser
(2005)) study an economy whose consumers have different constant discount rates and derive
implications considering optimal allocations. They show that the representative agent of this
economy has a decreasing discount rate. Finally, other papers study simultaneously several
types of heterogeneity without considering a potential correlation between them (see, e.g.,
Cvitanic et al., 2012, Bhamra and Uppal, |2014).

Our paper adds to this literature. While most models deal with a finite number of agents,
we consider a continuum of investors. This allows us to consider all possible beliefs and time
preference rates. On the technical side, this also allows us to use statistical distributions to
describe heterogeneity and, therefore, to characterize it with a limited number of parameters.
This methodology derives from |Cvitanic et al.| (2012) and is similar to the one of |Atmaz and
Basak| (2018), who are the closest to our WOI"kE| They consider a continuum of heterogeneous

investors, who differ only in belief, and express the main characteristics of the economy

3For other studies looking at a continuum of agents see, e.g., Chan and Kogan (2002) and Xiouros and
Zapatero| (2010) who look at economies with a continuum of agents with heterogeneous risk aversions.
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using the parameters of the agents’ distribution. We differ in three main ways. First,
our model has intermediate consumption, which allows us to address interest rates issues.
Second, we consider an economy with two types of potentially correlated heterogeneities.
The distribution we use to characterize the continuum of investors is therefore a bivariate
one, and we are able to study the combined effects of these two heterogeneities. Third, we
choose to use logarithmic utility functions, as we know that this type of utility function
enables to separate the role of time preference rate heterogeneity and of belief heterogeneity

as long as they are independent.

The paper is organized as follows. Section [1.2| presents the model. We determine the
equilibrium of our economy and the characteristics of the representative agent in Section [1.3|
Section [1.4] presents some market characteristics. Section|l.5(reviews the survival and utility-
maximizing issues and Section [1.6] concludes. All proofs are reported in Appendix and

Appendix contains useful computations and some additional results.

1.2 The model

In a continuous-time framework, we consider a pure exchange Arrow-Debreu economy with
a single non-storable consumption good—which we use as numeraire—and a continuum of
risk-averse agents who maximize their expected utility for future consumption.

Uncertainty is modeled as usual by a filtered probability space (2, F, (F}), P), where Q
is the set of states of nature, F' is the o-algebra of observable events, (F;) describes how
information is revealed through time, and P is the (objective) probability measure giving

the likelihood of occurrence of the different events in F'.

The aggregate endowment process in the economy is denoted by e*, and we assume that

it follows the following stochastic differential equation

de; = pe;dt + oe;dW,,
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where W is a standard unidimensional ((F}), P)-Brownian motion and (i, 0) € R x R, are
given constants. Stated differently, we make the assumption that e is a geometric Brownian

motion with a drift coefficient p and a volatility o.

We consider infinitely-lived agents who consume at each date and who all have the same
logarithmic instantaneous utility function u, such that u(z) = In(x). However, we make the
assumption that each agent is characterized by both a subjective belief ()s—associated to
0—and a time preference rate p.ﬁ We call Agent (9, p) the agent endowed with the subjective
belief Q)5, which is assumed to be equivalent to P and which gives the subjective likelihood
of occurrence of the different events perceived by this agent, and the time preference rate
,0E| We call Group (0, .) the group of agents who share the same belief Q)5 but differ in their
time preference rates and, similarly, we call Group (., p) the group of agents who share the

same time preference rate p but differ in their beliefs.
There are therefore two types of heterogeneity in the economy we study.

First, as all probabilities are equivalent, the agents agree on the volatility of the aggregate
endowment (for a study of such type of disagreement see, e.g., Duchin and Levy, 2010) but
disagree on their estimation of its drift.lﬂ All the agents of Group (0,.) believe that the
aggregate endowment growth rate is given by pus = pu+ 09, and their bias towards optimism
or pessimism is thus given by ¢d. Hence, if § > 0, we have pus > p, and they are therefore
considered as optimistic agents. Conversely, if § < 0, they are considered as pessimistic ones.
In the case where § = 0, we consider them as rational agents. We denote by M;s the density

dQs

of Q)5 with respect to P, i.e., ap = Ms. From their point of view, the aggregate endowment

4In the remainder of the analysis, we interchangeably use Qs or § to refer to the belief of a given agent.

°If several agents have the same belief about the future and the same time preference rate, it is easy
to check that their aggregate behavior is the same as the behavior of a single agent who has the same
characteristics and whose initial endowment is equal to their aggregate endowment. We may then consider
them just as one agent.

6The equivalence of all probabilities is a necessary condition for the existence of equilibrium. Otherwise,
agents who do not believe in the possibility of a given state would want to sell an infinite quantity of the
Arrow-Debreu asset associated to that state if its price is positive, and agents who do believe in the possibility
of that state would want to buy an infinite quantity of that asset if its price is zero. This is in line with the
result of [Merton| (1980) that the expected return is harder to estimate than the variance.
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process follows the following stochastic differential equation
de; = (u+ 0d) ejdt + oe;dWs;,

where Wj is a standard unidimensional ((F;) , Qs)-Brownian motion, such that Wy, = W,—dt,
and, by Girsanov, we have dMs; = dMs,dW;.

Second, we allow some agents to be more patient than others: the higher her time
preference rate p is, the more impatient is the agent. Indeed, for a high p, an agent discounts
more her future consumption and is therefore more willing to consume quickly. Conversely,
for a small p, she is more willing to save for future consumption as she does not discount it
much.

Hence, Agent (9, p) aims at maximizing her von Neumann Morgenstern utility for future

consumption of the form

EQs [ / exp (—pt) In (c:;’p’t) dt} =F [/ exp (—pt) MsIn (cgp’t) dt|,
0 0

where cj , is her consumption stream.

Finally, as we consider a continuum of agents, we use a probability density function to
describe their initial wealth share distributionﬂ This distribution—given exogenously at
t = 0—depends on a parameter £k € R that allows the two types of heterogeneity to be
correlated. For instance, if we assume a negative correlation between them, we have that
the most optimistic agents are also the most patient ones. We define v;5,, as the share of

total initial endowment owned by Agent (d, p) at ¢ = 0. Formally, we assume

1 (6+kp—00)°\ 9 .,
1/57,0,]9 - \/%wexp <_ 252 F (l)p eXp (—p?}) :

" As already underlined, we may aggregate the agents who have the same characteristics (J, p). Therefore,
the distribution of the individuals across the different belief and time preference characteristics is not relevant
by itself, and the relevant information is rather the distribution of initial endowment among the set of
individual characteristics.
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For a given time preference rate, the beliefs are distributed according to a Gaussian
distribution. This is as in Atmaz and Basak (2018). Moreover, even though we take the
heterogeneity in beliefs as given ex-ante and assume no learning, this Gaussian assumption is
consistent with models where investors have different private information coming from white
noises (see, e.g., |[Kyle, [1985). Similarly, for a given belief, we use a Gamma distribution
to describe the heterogeneity in time preference rates. |Weitzman| (2001) uses a similar

distribution and provides empirical evidence that supports this choice.

For computational reasons, we assume throughout the paper that [ equals two. The other

parameters are chosen exogenously at time ¢ = 0 before equilibrium is reached.

When k£ = 0, there is no correlation between the two types of heterogeneity, and the
density can therefore be decomposed into two independent components: a Gaussian density
with a mean dy and a standard deviation w, that describes the initial belief heterogeneity,
and a Gamma density with a shape parameter [ = 2 and a rate parameter ¢, that describes
the initial heterogeneity in time preference rate. In this situation, the initial average bias
towards optimism or pessimism of the agents is given by odg and, if o5 > 0, we say that the
economy has an (exogenous initial) optimistic biasﬁ The belief dispersion is given by the

2
standard deviation @, the average time preference rate is given by 5 and the dispersion of

2
the rates of the agents is given by the standard deviation 5

In the general case, the correlation between the belief and the time preference rate is

given by a function of k. In particular, at ¢ = 0, the correlation function is given by

—\/§k

In order to express this function and the main results of our model as functions of

the central (co)moments of § and p at each date, we define the following time-dependent

8Note that not imposing 6y = 0 implies that we do not necessarily require that the agents are symmetric
around rationality (ex-ante).
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stochastic density function

o Uspuexp (—pt) M,
y69p7k7t - )
[ vsaaesp (=pt) My dsdp

and we denote by E;(.) the time-dependent mean with weights given by 75,5 ¢. Using some
algebra, we derive that the correlation function is an inverted S-shaped function such that
the correlation is null when k equals zero and such that, for all time ¢, its sign is opposite to
the sign of k[

Finally, let us introduce the following notations that will be useful in the next. We denote

respectively by ¢ and ® the density and cumulative distribution functions of the standard

1 2 T
normal distribution, i.e., p(z) = exp ) and O(z) = / ©(s)ds. We denote by
V2 2

sgn the sign function, i.e., sgn(z) =1if x > 0, sgn(z) = —1 if 2 < 0, and sgn(0) = 0.

—00

1.3 Representative agent and equilibrium

In this section, we study the Arrow-Debreu equilibrium of this economy and the character-
istics of the representative agent.
In such a model, an Arrow-Debreu equilibrium is defined by a positive density price p*

and a continuum of consumption plans (c}‘ p) each one maximizing the von Neumann

JER,pER?Y ’
Morgenstern utility for future consumption of the corresponding agent under her budget
constraint and such that the market clears.

The representative agent of this economy is a fictitious agent who, if endowed with the
total wealth of the economy, would have a marginal utility equal to the equilibrium price.
This agent is therefore obtained by construction from the economy characteristics. In the

proof of Proposition we construct such an agent, and we denote by @ her belief—

associated to &,—, by M the density of @ with respect to P, and by p, her time preference

9Explicit computations of the correlation function and of the other central (co)moments are reported in

Appendix [[.B.]]
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rate. Let emphasize that, unlike common investors in the economy, the representative agent’s
characteristics 0, and p, can be time- and state-dependent. This is because, by construction,
the representative agent results from the aggregation of common investors and because it
appears that her characteristics are given by consumption-weighted averages of the individual
agents’ characteristics (with time- and state-dependent consumptions). This result is also

supported by prior works (see, e.g., Gollier and Zeckhauser] 2005)).

Proposition 1.1. 1. At the equilibrium, the state price density and the consumption

plans are given by

;= (ef)” / As pexp (—pt) Ms, dsdp,

Cz,p,t = (p:)il As,p,k €T (—pt) Ms,,

A
where Xs 1 ts defined such that X5, = pvs (/ Ok d5dp>.
p

2. The representative agent’s time preference rate is a time-dependent consumption-weighted

E 2
average of the indiwidual time preference rates and is given by p; = Et<(p )), and the
t \P
. L E (p®)
associated variance is given by o; = — ;.
K (p) &
3. The representative agent’s belief is a time-dependent consumption-weighted average of
- E, (0
the individual beliefs and is given by 6; = ﬁ, and the associated variance is given
t \P
E; (6
b 5 t( 10) - 6,52
E: (p)

When k # 0, explicit computations of g, and J; lead to

) —2
b= Iy (xy g = 0@ W son() gy
|Vt 1+ tw VIV + 12
with
V1 + 2 _
Xt:Ltw t_|_19+]{;m—igt , (1‘1)
|k| V1 1 +tw
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and
2+ 2% — 1_((1;(? (3x + 2?)
U (z) = 1—2(95) S

We easily get that W (X;) is non-negative and converges to zero when ¢ goes to infinity.
Hence, we see that the belief of the representative agent is more optimistic when the corre-
lation is positive and more pessimistic when the correlation is negative. In other words, if
the most optimistic agents are also the most impatient (resp. patient) ones, the represen-
tative agent is more optimistic (resp. pessimistic). Looking at the asymptotic behavior of
her belief, we also derive that this agent tends to be the rational one. Similarly, we have
that, unlike the other agents, the time preference rate of the representative agent is not a
constant and goes to zero asymptotically. Hence, in the long run, the representative agent
of the economy is rational and more patient than all the agents, which is consistent with the
survival implications derived in Section [1.5]

In the uncorrelated case, the characteristics of the representative agent are given by

[+1 - b+ W,
= 191 ; and §; = %, with the associated variances respectively given by o, =
w
I+1 w?

m and o5 = o2 In this case, while é and dg (resp. % and wz) measure the
time preference rate and belief averages (resp. variances) with weights given by the agents’
initial total endowment, p; and &; (resp. o, and o5) measure their averages (resp. variances)
with weights given by agents’ current consumption. Consistent with |Gollier and Zeckhauser
(2005)), who study an economy where agents differ only in time preferences, we derive that the
time preference rate of the representative agent decreases with time. Moreover, we observe
that, for a given ¢, both variances are non-negative constants and do not depend on W.
As underlined by Atmaz and Basak (2018), this is due to the assumption of an unbounded
investor type space. Indeed, in the case of bounded beliefs, they argue that the wealth
transfer accumulates to one type of investor and that the belief dispersion therefore goes to
zero in extreme states. This is not the case in the presence of a continuum of heterogeneous

investors. Adding heterogeneity in time preference rates, we see that a similar reasoning

holds for o;.
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1.4 Market characteristics

In this section, we derive several characteristics of the market and study how the correlated

heterogeneities impact them.

1.4.1 Risk-free rate and market price of risk

Let first recall that, in the standard homogeneous case, the risk-free rate and the market

price of risk are both time- and state-independent and given by

rf(stdd) = p — o + p,

MPR(stdd) = o,

where p > 0 stands for the homogeneous time preference rate that all the agents agree on.

We have the following result.

Proposition 1.2. In our economy, the risk-free rate and the market price of risk are given

by

T{:M—U2+ﬁt—l—o‘é_},

MPRt:U—gt.

As already shown in the literature (see, e.g.,|Bhamra and Uppal, 2014)), we observe that,
unlike the standard case, they are not time- and state-independent. We complement the
previous literature by extending the result to the case of a continuum of agents, which allows
us to express the risk-free rate and the market price of risk as functions of the moments of the
heterogeneity distribution. Moreover, we are able to consider the impact of the correlation

on such quantities.
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Let first study the uncorrelated case. We have

I+1 So + W*W,

f_, 2
= H U+ﬁ+t TR
Sy + W,
MPR, =g~ 2790
1+tw

First, we notice that the belief heterogeneity affects both market characteristics. If on
average the agents have a pessimistic bias (dp < 0), the risk-free rate is lower and the market
price of risk is higher. This echoes the result of Bhamra and Uppal| (2014), who show, in an
economy populated by two agents, that the former (resp. latter) depends positively (resp.
negatively) on the weighted arithmetic mean of the beliefs of individuals agents. This is
intuitive as a pessimistic economy on average rewards agents who take risks more than an
economy where the agents are optimistic on average and therefore willing to take more risks.
Second, we see that the time preference rate heterogeneity only impacts the risk-free rate:
the higher is the average time preference rate, or, stated differently, the more impatient the

agents are on average, the higher the risk-free rate of the economy is.

Concerning the state dependency, we see that, for a given ¢, as r/ is a linear increas-
ing function of W and M PR a linear decreasing one, the risk-free rate is procyclical and
the market price of risk countercyclical. This latter result is consistent with the empirical
observation of (Campbell and Cochrane| (1999), who say that the equity premium seems to
be smaller when the economy is doing well, and with the theoretical implications of |Jouini
and Napp| (2011). We complement these findings as we observe that the higher the vari-
ance of the belief distribution, the higher the procyclical effect on the risk-free rate and the

countercyclical effect on the market price of risk.

In the general case, we notice that, as ¢ tends to infinity, the median risk-free rate tends
to u — 0. Hence, asymptotically, the risk-free rate of the economy tends to the one of
an economy populated by homogeneous investors having a zero time preference rate. This

result is consistent with the survival implications of the model that are presented in the next
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section: when time goes to infinity, as the agents who survive are the most patient ones, the
share of patient agents in the economy becomes larger. As those agents are characterized
by almost null time preference rates, it leads to a lower risk-free rate. Similarly, we observe
that M PR tends to 0. We derive that asymptotically the effects of the belief heterogeneity
on the market price of risk vanish.

Finally, we study the additional impact of the correlation between beliefs and time pref-
erence rates on the risk-free rate and the market price of risk, and we see that this impact
depends on the sign of the correlation between the two types of heterogeneity. In particular,
a negative correlation (k > 0) leads to a lower risk-free rate and a higher market price of
risk. Thereby, this novel effect, induced by the correlated heterogeneities, helps to solve, at

least partly, the risk-free rate and the market price of risk puzzles.
Insert Figure[1.1] here.

We illustrate this correlation effect for the median risk-free rate in Figure[l.1]in which we
plot its time evolution, using standard parameters to define the initial wealth distribution
of the investors and the economy process. Formally, we set p = 14.23%, o = 8.25%, 0y = 0,
w=33%%, =2, and ¥ = SO.H The parameters of the economy process and of the belief
heterogeneity distribution are the same as in |Atmaz and Basak| (2018). In particular, we
assume that there is no aggregate belief bias. In the uncorrelated case, the parameters
of the time preferences distribution implies an initial average time preference rate of 4%
and a standard deviation of 2.83%. These are similar values to those used in [Weitzman
(2001)B We also set k to match given levels of median correlation at t = 1. We study
five economies: a strongly negatively correlated one (with a median correlation of —0.75 at
t = 1), a negatively correlated one (—0.25), an uncorrelated one, a positively correlated one

(0.25), and a strongly positively correlated one (0.75). We observe that, for all ¢, the higher

10We use the same set of parameters throughout the paper.
1 Asking 2160 economists about the right time preference rate to use in practice, he concludes that the
average time preference rate is 4% with a standard deviation of 3%.
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the heterogeneity correlation is, the higher is the median risk-free rate, and that this effect

decreases with time.

1.4.2 Market volatility

We now consider the asset S, whose dividend process is given by the total endowment of the

economy. The value of S is known and given by

E, {/ p:e:ds]
t

%
* =6

P / P Vs,peexp (—pt) Msdddp

/V5,p,kexp (—pt) M dodp

St:

Using Ito’s Lemma, we identify the volatility parameter og of the stochastic differential

equation followed by S, which corresponds to the market volatility.

Proposition 1.3. In our economy, the market volatility is given by

covy (8,p) ” sgn (k)
E() T witer O

05t =0 —

with X, given in Equation (1.1) and

2
9 _ 31—<I>(x)x i (1-@(1«)) (_1 . xg)
T(x) _ w(z) w(z)

S .
—o(x —o(x
—z+ 2 (14 227) — (1Tx())> ( + 23)

A first important point to notice is that, for k = 0, we obtain 0g, = 0. Hence, we derive
that when the two types of heterogeneity are uncorrelated, there is no heterogeneity impact
on the market volatility.

When we allow some correlation to exist between the belief heterogeneity and the time
preference one, we observe that the market volatility becomes time- and state-dependent.

The initial impact of the two correlated types of heterogeneity is easy to derive and given
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k
0s0 =0+ —.

v

For general ¢, as the mean of the time preference rates is positive, there is some excess
volatility induced by the two correlated heterogeneities when the covariance between them
is negative. Concretely, we derive that, when the most optimistic agents are also the most
patient ones, the market volatility increases. Conversely, when the covariance is positive,
the presence of heterogeneous investors decreases the market volatility. This is consistent
with |Li (2007)), who derives a similar result in an economy populated by a patient and an
impatient agent. More precisely, he finds that og > ¢ (resp. <, =) when the patient agent
is more (resp. less, as) optimistic than the impatient agent. We therefore complement this
result by showing that it still holds when there is an infinite number of agents, and we relate

this effect to the parameters of the statistical distribution of the agents’ characteristics.
Insert Figure[1.3 here.

Figure shows the evolution of the median market volatility over time and illustrates
this volatility effect. We notice that this effect is stronger when the absolute value of the
correlation between the two types of heterogeneity is higher.

Looking at the asymptotic behavior of T, we find that the function converges to zero,
and we thus derive that the market volatility tends to its standard value when time goes to
infinity. Hence, we conclude that the volatility effect tends to vanish. However, we note that
it takes a substantial amount of time for this effect to disappear, as we see that, even after

100 years, there is still a large effect for the most correlated economies considered.

1.4.3 Trading volume

We now analyze how the trading volume is impacted by the presence of heterogeneous
investors. Note that, in a standard homogeneous economy, the agents make their decisions

based on the same belief and the same time preference rate. Hence, they all act identically
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and there is no trading as they can not find other agents who are willing to trade with them.
This is not the case when there is some heterogeneity among the agents.

To compute the trading volume of Agent (6, p), we first compute explicitly her total

E, [/ p:cj;,p,sds]
t

*

Yz

wealth, given by

V;S,/Lt =

Using Ito’s Lemma, we then derive the stochastic differential equation this total wealth

follows. We find dV;,; = mmw,p,tdt +ovs,., Vs ptdWy, with

1, =t —p+08+p— (04 06)8 + 67,

OVspe =0 +0— 0.

We also know that the total wealth of Agent (,p) can be decomposed into three com-
ponents: the number of shares a she invests in the risky asset S described in the previous
subsection, the number of shares [ she invests in the risk-free asset B whose drift is given
by the risk-free rate, and what she consumes.

Hence, we have

AV pr = 5p1dS; + Bs p1d By — C:;,p,tdt

= (Oéé,p,tMS,tSt + /6§,p,t7{Bt - 03,,),t> dt + a5 p 0505 AW,

By identification, we derive the number of shares Agent (6, p) should optimally invest in

the risky asset and in the risk-free asset. In particular, we obtain that the optimal number
‘/zi,p,t O-Vé,p,t

of shares Agent (0, p) should invest in the risky asset is given by g, = 5 .
t OSg

Using a similar approach as in recent studies in continuous time (see, e.g., Xiong and
Yan, 2010, |Longstaff and Wang, [2012)), we define the trading volume of Agent (4, p) as the

absolute value of the volatility in the stochastic differential equation satisfied by «; .
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Proposition 1.4. The trading volume of Agent (8, p) at time t in state of the world Wy is

given by
Vspt 1 - 1 [ covu (6%,p)  cov (6, p) (Ei (6) + b¢) )
S ose <(U+5_5t) (5_Et(5)+%< Ec(p) E: (p) >>_05> '

We see that the trading volume of Agent (4, p) is time- and state-dependent. It also de-
pends on the belief and the time preference rate of the agent being considered. In unreported
graphs, looking at the trading volumes of some agents sharing the median time preference
rate but having different beliefs, we do not find any clear link between the trading volume
and the belief bias. However, we observe a negative relation between the time preference

rate of an investor and her trading volume, and we illustrate this result in Figure [1.3]
Insert Figure[1.3 here.

We plot the evolution over time of the median trading volume of three unbiased investors
with different time preferences. The different time preference rates are chosen to partition
the Gamma distribution used to describe the initial time preferences heterogeneity when
there is no correlation between the two types of heterogeneity. The time preference rate
of the first (resp. second, third) investor is the 10" (resp. 50™, 90™) percentile of this
distribution. In other words, this agent is more patient than 90% (resp. 50%, 10%) of the
population and is therefore called the patient (resp. neutral, impatient) agent. Panel A
shows the uncorrelated case, while Panel B (resp. Panel C) shows the evolution of their
trading volume in an economy where the median correlation at ¢t = 1 is —0.75 (resp. 0.75).

We observe the same pattern in all panels: the more patient an agent is, the more she
trades. Observing that the trading volume of the patient agent is higher in Panel B and
Panel C than in Panel A, we deduce that a higher absolute value of the correlation between
beliefs and time preference rates seems to strengthen this effect. Similarly, we observe that
the trading volume of the impatient agent is low in the uncorrelated economy and almost

equals zero in the correlated ones. Even if trades implying this agent may occur, we derive
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that, being impatient, she wants to sell her shares independently of the state of the world.
Hence, as her trading volume is defined as the volatility of her optimal portfolio, it decreases
quickly.

To get a deeper insight of the mechanism behind this result linking trading volume and
time preference rate, let us focus on the uncorrelated case. When £ = 0, the formula of

Proposition [1.4] simplifies to

Vil (0 +8—01) (6 —0;) — a3

| O-aé,p,t ’ - St o

Hence, we derive that more patient agents trade more due to a wealth effect. As suggested
by the survival implications of the model—derived in the next section—, it takes more time
for more patient agents to be driven out of the market, and they therefore benefit more from
the economy growth, which allows them to trade more. Consistent with this intuition, we
observe that the trading volume is procyclical.

The overall trading volume of the economy can further be obtained by summing over the
agents’ trading volumes and dividing this quantity by two to prevent double summation of

the shares traded across investors. Formally, we have

1
Vol, = 5/]0%p’t|d5dp.

After some algebra, we derive that, when there is no correlation between the belief and

the time preferences heterogeneities, it is given by the following formula.

Proposition 1.5. In the uncorrelated economy, the trading volume at time t in state of the

world Wy is given by

Vo5 5 - —0 + /0% + 4o}
Voly = o <0+ o —1—405)90 Ner

- (<)

o5
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The trading volume is state-independent and, because some agents are progressively
driven out of the market, decreases with time. This result extends|Atmaz and Basak| (2018) to
heterogeneous time preference rates. In fact, as explained in Section [I.3] the unboundedness
of the investor type space implies that oz is constant with respect to W and, therefore,
trades occur independently of the state of the world. As in|Atmaz and Basak| (2018, we also
observe that, for ¢ being fixed, the trading volume increases with the variance associated to
the belief bias of the representative agent and, consequently, with the dispersion coefficient
of the belief heterogeneity distribution. This is because a higher belief dispersion in the
economy means that the investors are more heterogeneous and that there is therefore more

agents willing to trade.

1.5 Consumption shares and utility-maximizing agents

In this section, we only consider the case where the two types of heterogeneity are uncor-
related. Looking at the consumption shares, we characterize the agents who survive in the
long run and those who dominate the market depending on the state of the world. We then

look at the agents who maximize their ex-post utility and their ex-ante oneF_ZI

1.5.1 Surviving and market-dominating agents

In this subsection, we focus on the consumption shares of the agents. Letting 75, denote the

consumption share of Agent (, p), we have

*
_ Gpt A6,0,08XP (—pt) M
7—67p7t - *

e} - J Aspoexp (—pt) My, dodp

First, characterizing the surviving agent, we study the survival properties of our economy.

12Ty Appendix we briefly discuss the impact of correlation on the characteristics of the surviving
agent and on the belief of the ex-post utility-maximizing agent. In particular, we find that it does not affect
the survival implications of the model and that, in case of a negative correlation, the heterogeneity effect on
the ex-post utility-maximizing agent is mitigated.

29



CHAPTER 1. LIVE FAST, DIE YOUNG: EQUILIBRIUM AND SURVIVAL IN LARGE
ECONOMIES

Formally, we say that an agent survives if her consumption share does not approach zero
almost surely when time goes to infinity. We define the survival index of Agent (4, p) as in
Yan (2008)@ Similarly to his finding, we obtain the following result that is stated only for

the sake of analysis completeness.

Proposition 1.6 (Yan). In the long run, the only surviving agent is the one with the smallest

survival index.

We notice that the survival index depends positively on p. Hence, we derive that having a
high time preference rate is a disadvantage for survival. Stated differently, the more impatient
an agent is, the less likely she is to survive in the long run. This result is intuitive as an
impatient agent, discounting her future utility more, prefers to consume today than to save
for future consumption. Conversely, by saving more for future consumption, a more patient
agent enhances her chances to survive. Equivalently, observing that the survival index is an
increasing function of the absolute value of §, we obtain that the lower the belief bias of an
agent is, the better it is for her survival. Finally, as Agent (d, p) and Agent (-4, p) have the
same survival index, having a bias towards optimism or pessimism is equally disadvantageous
regarding survival issues.

Let us also study how fast an agent disappears from the market. To do so, we compute
the average half-life of several agents and compare them. We define the half-life of an agent as
the time taken for her current endowment to fall to half of her initial endowment. Formally,
the half-life tpr of Agent (0, p) is given by tpr = {inf ¢ such that 75, = %}.

Insert Table here.

We notice that the half-life is stochastic. Hence, we report the average half-lives in

Table [1.1| and consider three different time preference rates and five different beliefs that

62
B3Formally, it is given by p + —. We do not include the third component of [Yan (2008)’s survival

index relative to the risk aversion coefficient heterogeneity as we assume that all the agents have the same
logarithmic utility function.
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partition the initial wealth share distribution of the continuum of agents. The time preference
rates are defined as in Section [1.4.3|and we therefore compare patient, neutral and impatient
agents. The first (resp. second, third, fourth, and fifth) belief bias is such that 10% (resp.
25%, 50%, 75%, and 90%) of the agents are more pessimistic than the agents endowed with
this belief bias. Using the same set of parameters as in the previous section, we therefore
compute the average half-life of 15 specific agents and see that, without being the smallest,
the smaller the survival index of an agent, the longer she survivesE

Finally, aggregating the agents into groups of agents sharing the same belief, we define
formally the surviving group of this economy and its associated belief. To do so, we integrate
the consumption shares of the agents who share the same belief with respect to the time
preference rate and study their evolution. Formally, we compare for different d the consump-
tion shares of the Groups (0, .)—that we denote 7;—and study their limit when time goes
to infinity. Easy computations give us that Vo € R*,tEerong,t = 0. This result means that
the only group of agents who survive is Group (0, .), or, in other words, that the surviving
group is the rational one, and that the surviving agent of the economy is the most patient
agent in this group.

We now turn to the study of the market-dominating agents. More precisely, for a given
t, we now analyze how the consumption shares of the agents evolve given the states of the
world and study, for very good and very bad ones, which category of agents dominates the

market, in the sense that their aggregate consumption share approaches one.

Proposition 1.7. The aggregate consumption share of the optimistic (resp. pessimistic)

agents Topt (T€SP. Tpes) are given by

g _
Topt,t = 1-9 (_ - > y Tpesit — P <_ 5t ) ;
V5 Vs

“Note that the average half-lives are relatively long. Hence, we derive that the asymptotic results of the
paper are true asymptotic results and not only approximations of a stationary state. Note also that these
relatively long half-lives imply that non-surviving agents can potentially have a significant impact on the
market over time.
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and the optimistic (resp. pessimistic) agents dominate the market (resp. become extinct) for
very good states of the world, i.e., when Wy — 400, and become extinct (resp. dominate the

market) for very bad ones, i.e., when W; — —oc.

Notice that 7,, is a monotonically increasing function of W and 7,.; a monotonically
decreasing one. Hence, as in |Jouini and Napp| (2011)), we derive that our economy is char-
acterized by waves of optimism and waves of pessimism, in the sense that the consumption
shares are biased in favor of the optimistic agents in the good states of the world and in favor
of the pessimistic agents in the bad states of the world. Note that these waves of optimism
and pessimism also depend on the initial average economy bias. For instance, when the
agents are optimistic on average (6o > 0), the bias towards the consumption shares of the
optimistic agents is even more important in good states of the world. Conversely, this wave

of optimism is smaller if, on average, the agents are pessimistic (dp < 0).
Insert Figure[1.]] here.

Another way of showing the existence of such waves of optimism and pessimism is to
show how the aggregate consumption share of all the optimistic agents evolves over time
depending on the state of the economy (or, equivalently, how the aggregate consumption
share of all the pessimistic agents evolves, as their sum adds to one). To do so, we consider
three different trajectories and study the time evolution of 7,, in each of them in Figure .
The first trajectory is characterized by a series of positive events. Formally, we assume that
W, = V't at each date. Similarly, we study a trajectory where bad events happen consistently
(W, = —/t at each date) and one where neutral events happen consistently (W; = 0 at each
date). We see that, in the good trajectory, the proportion of optimistic investors tends to
one when time goes to infinity. Similarly, in the bad trajectory, the economy tends to be
populated by pessimistic investors only. We conclude that consistent good events result in
an economy populated by investors who think that a good event is more likely to happen
and vice versa. As the agents considered do not learn, this does not result from learning but

from market elimination.

32



ASSET PRICING WITH HETEROGENEOUS AGENTS AND NON-NORMAL
RETURN DISTRIBUTIONS

1.5.2 Utility-maximizing agents

We now look at the characteristics of the utility-maximizing agents of the economy. More
precisely, for a given Group (., p), we determine the belief an agent should have in order to
have the highest ex-post (and ex-ante) utility level (with respect to the other agents).

Note that, ex-post, an agent knows which states of the worlds occurred. Hence, since the
objective probability P governs the states of the world the agents face during their life, the

ex-post utility of Agent (, p) is given on average by

U;’;'pOSt (cgp) =E {/0 exp (—pt) u (Cg,p,t) dt| .

Conversely, Agent (6, p) does not know ex-ante which states will be realized in the future.
She therefore uses the subjective probability (Js to compute her ex-ante utility, given on

average by

Ug’;ame (c}wo) =E [/o exp (—pt) Msu (C:;,p,t) dt| .

We derive the following result.

Proposition 1.8. 1. Agent (5”'7)05’5 (p) ,p), the ex-post utility-maximizing agent of Group
do

S

(.,p), is characterized by 5“7 (p) = =
P

2. Agent (6™ (p), p), the ex-ante utility-mazimizing agent of Group (., p), has a more

optimistic (or less pessimistic) belief than the average agent.

3. In particular, when 6y > 0, Agent (5”"“”“(

) ,p) has a more optimistic belief than the
rational agent. When 6y < 0, she has a more optimistic belief than the rational agent

when o is high.

4. Unless when 6y < 0 and o is high, there exists biased agents in Group (.,p) whose

ex-post and ex-ante utilities are higher than the one of the rational agent of this group.
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5. In particular, when 69 > 0, Agent ((5”‘”“ (p) ,p) has a higher ezx-post and ez-ante

utility than Agent (0, p).

From the first point of Proposition , we have that 6P (p) = 0 when §y = 0. Hence,
looking at a given group of agents having the same time preference rate, we derive that,
if the economy has no aggregate belief bias, the ex-post utility-maximizing agent and the
rational one (i.e., the surviving agent of the group) share the same belief and are therefore
identical. However, if there exists a bias towards optimism or pessimism in the economy;,
the two beliefs differ and the agent who maximizes her ex-post utility is not the one who
survives in the long run. Hence, as in |[Jouini and Napp| (2016), ex-post, a shorter life might
be more rewarding than a longer one. We also notice that the belief bias of the ex-post
utility-maximizing agent tends to zero when @? tends to infinity. As it denotes the variance
of the initial belief distribution, we conclude that the more heterogeneity in belief there is,
the more the agent who maximizes her ex-post utility in her group tends to be the one
who survives in this group. The intuition behind this result is that the wider the beliefs
are spread, the more extremely optimistic or pessimistic agents there are in the economy
and, therefore, the quicker the extremely biased decisions these agents take lead them to go
extinct. In other words, the more the variance of the belief distribution increases, the less
the trade-off between having a more rewarding life based on biased decisions and having a
longer life by being rational becomes favorable. We also notice that the initial aggregate
belief bias of the economy does not impact §*P" (p) when @? goes to infinity. Finally, as
1+ %2 > 1, we know that §*P*" (p) is smaller than dy in absolute value and that both have
the same sign. We derive that the agent who maximizes her ex-post utility in her group
has the same type of bias towards optimism or pessimism as the economy, but she is more
rational than the average: in a euphoric economy (g > 0), the ex-post utility-maximizing
agent of each group is a less euphoric, yet optimistic, one and she is a less depressed, yet

pessimistic, agent in a depressed economy (dy < 0).

Our setting, that also considers heterogeneous time preference rates, allows us to derive
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another new result from this first point. We see that as p increases, the ex-post utility-
maximizing belief goes from zero to dy. In fact, looking at patient groups of agents, we have
that the ex-post utility-maximizing agent of the group tends to be the rational agent and

that, for more impatient groups of agents, she tends to be the one endowed with the average

belief.

From the second point, we derive that, when there is no aggregate belief bias in the
economy, Agent ((56’"amte (p), p) is more optimistic than the rational agent, who is the one
who both survives and maximizes her ex-post utility. The intuition behind this result is that,
ex-ante, an agent does not know that her bias will lead her to take wrong decisions. Hence,
idealizing the reality by being optimistic allows her to have a higher ex-ante utility. However,
ex-post, the wrong decisions she will take leads her life to be shorter and her ex-post utility
to be smaller. For similar reasons, when the aggregate economy has a positive belief bias, we
have that the ex-ante utility-maximizing agent of a given group of agents is more optimistic
than both the surviving one and the ex-post utility-maximizing one of the group. Finally,
when the agents are pessimistic on average, the situation is slightly different. Even if she is
less pessimistic than the average of the agents, we do not know if Agent ((5"“mte (p) ,p) is
pessimistic or optimistic. Hence, we study the sign of the derivative of the ex-ante utility
function with respect to ¢ at the point 6 = 0. We find that, for a given time preference rate,
the sign of this derivative depends on the volatility of the economy. The more the economy
is volatile, the more the ex-ante utility-maximizing agent tends to be an optimistic one.
This result is intuitive as a more volatile economy allows an agent to dream bigger, and it
therefore leads her to be more optimistic ex-ante. Similarly, for a given volatility, we observe
that the sign of the derivative depends on the group of agents we study. For instance, for
the most patient groups of agents, i.e., looking at the groups Group (., p) for p going to zero,
we see that this derivative is positive and that the ex-ante utility-maximizing agents of these
groups are therefore optimistic. Conversely, when we consider the most impatient groups of

agents, the derivative is negative and the ex-ante utility-maximizing agents of these groups
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are therefore more optimistic than the average of the agents but are still pessimistic.

From the fourth point of the proposition, we derive that, as in [Jouini and Napp (2016),
it is possible to have an economy where the threat of elimination is not sufficient to push
some agents towards rationality, and that such an economy is characterized by agents who
should rationally stay irrational (if their goal is to maximize their level of utility). Note that
Jouini and Napp (2016)’s finding is obtained in a two-agent setting where each of the two
agents considered takes profit from her impact on equilibrium prices. Hence, we complement
this result as we deal with a continuum of agents whose individual price impact is null. In
fact, the mechanism at play is quite simple: in a positive growth economy and whatever
the asset price is, an optimistic agent extracts more utility from the market portfolio than
the rational agent does. Furthermore, when there is a dose of optimism in the economy,
an agent whose belief is between the current market (aggregate) belief and rationality is
closer to the market belief than the rational agent, and her current decisions are closer
to the market portfolioE] However, agents’ beliefs are constant while the market’s belief
converges to rationality. Hence, no one can remain indefinitely between the market’s belief
and rationality, and the time spent within this range is obviously larger when the agent is
closer to rationality. We therefore show that there is an optimal position where the advantage

obtained while being between these two limits exceeds the subsequent disadvantage.

1.6 Conclusion

Using a correlated statistical distribution to describe their belief and time preference rate
heterogeneities, we develop a model with a continuum of heterogeneous investors and derive
the implications these different types of heterogeneity have on the behavior of financial
markets. We first define the representative agent and determine the equilibrium of this

economy. We then look at some market properties (risk-free rate, market price of risk, market

15Tn Jouini and Napp (2016), a dose of optimism is obtained assuming that one agent is rational and the
other one is optimistic. In the present model, it results from the condition dg > 0.
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volatility, trading volume) and notice that the two types of heterogeneity affect them. More
specifically, we find that the risk-free rate is procyclical and that the market price of risk
is countercyclical. The economy trading volume is also impacted: we find that it increases
with the variance of the belief heterogeneity distribution. Moreover, we show that a negative
correlation between the two types of heterogeneity increases the volatility of the asset whose
dividend process is given by the total endowment of the economy. The higher the correlation
in absolute value is, the stronger this excess volatility effect is. A negative correlation between
beliefs and time preference rates also decreases the risk-free rate and increases the market
price of risk. Additionally, looking at the consumption shares of the agents, we derive that
the economy is characterized by waves of optimism and pessimism. Lastly, we study the
characteristics of some specific agents and find that the utility-maximizing agents (both ex-
post and ex-ante) are different from the surviving one as long as there is an aggregate belief
bias in the economy. When agents are optimistic on average, being an optimist reduces the
lifetime but increases the utility compared to a rational agent. As in|Jouini and Napp| (2016]),
we therefore find that having a shorter life might be more rewarding than a longer one.

To the best of our knowledge, we are the first to consider a continuum of investors with
two types of heterogeneity and to introduce some correlation between them. This allows us
to derive new implications on the joint impacts of heterogeneities on the behavior of financial
markets. Interesting extensions could be to add some risk aversion heterogeneity among the
agents and to endogenize the aggregate endowment process in the economy. We leave this

for future research.
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1.A Proofs

Proof of Proposition

1. To find the equilibrium of this economy, we need to solve the following program

*k * *
Csp = C5,P<p , M, 65,/})7

i = [ cipedodn

where e , = v;, 1€ is the initial endowment of Agent (4, p) and

csp(p, M, e) = argmax E {/ exp (—pt) Myu (csp) dit| .
0

E [/ pe (cspt — €1) dt} <0
0

The first order conditions give immediately

plt = (€:>_1 / )\J,p,kexp (_pt) MS,t d(Sdp,

Gt = (1) Aspexp (—pt) Msy,

where (A5, k) seR,peRy, ATC the inverse of the Lagrange multipliers, which satisfy As,; =

)\/ ’
PVe.p,k (/ % d5/d,0/)-

Note that the equation giving the consumption of Agent (J,p) helps to see how the
representative agent—whose characteristics are derived in the remainder of the proof—

is constructed. More formally
Co.pt = (0)) " Nspwexp (—pt) Ms, < e; = (p}) ™ /Aé,p,kexp (—pt) Ms dodp.

The right hand-side of this equivalence can be interpreted as the equilibrium equation

of a representative agent whose total consumption is e* and whose characteristics are
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such that exp (—p;) M; = /Ag,p’kexp (—pt) My, dddp.

)\5/7P’,k
/
P

E {/ pfc(’;’p’tdt]
Vs pk = OOO .
/]E [/ p;‘c}’p,’tdt} dé'dp’
0

This last equality follows from the budget constraint of Agent (d,p) which states

Note also that we must have s, = ps i ( / do’ dp/) to ensure that

that the value of the agent’s consumption (i.e., E { / D, p7tdt}) should (at most)
0
equal the value of her endowment (given by the value of the fraction of the pro-

e}
duction process that she is endowed with, ie., v5,; x E [ / pfeidt] = Uspk X
0

/E [/ p;‘cg,,p,’tdt} dé'dp).
0

Additionally, using Ito’s lemma, we easily derive

dpt = (—M to?o I?Eft((p:)) - a%t((‘ig)) prdt + <—0 4 o (5P)> prdW,

= [Py dt + opp; dW,,

with E;(.) the time-dependent mean with weights given by 75 , 1.+ defined in Section .
. Let us denote by @ the belief of the representative agent—associated to d;—and by p;
her time preference rate. Let us also denote by M the density of ) with respect to P.

Recall that the representative agent of this economy is an agent who, if endowed with
the total wealth of the economy, would have a marginal utility equal to the equilibrium

price. Hence, we have M; = exp (pit) prer.

We derive

dM; = (pr + pp-(t) + pex () + 0pe (£)oex (t)) Mydt + (0 (t) + 0 (1)) MdW,
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: o _ E(p?) E, (6p)
Direct computations give uy;(t) = py — and oy (t) = .
By definition, p;;(t) = 0. The representative agent’s time preference rate is therefore
given by p; = B, ('02>, and the associated variance is given by o; = E: (p") — P2
E: (p) E: (p)
. s . . . B s o Et ((Sp)
The representative agent’s belief is given by o;;. Hence, we have §; = o = E,(p)
t P
E, (62
and the associated variance is given by o5 = Il:'l(( §) — o (b2
t \P

By definition, finding the characteristics such that we have M; = exp (p:t) pie; ensures

the existence of the representative agent.

When k # 0, we use the computations of Appendix to obtain the explicit com-

putations of p; and 6.

kvt E,(p?)
V1 + tw? Et()

Knowing that the time preference rates are non-negative, we derive that ¥ (X;) > 0
1

. : . . 3+O(n
Using Taylor expansions, we also easily derive that ¥ (z) ~ + % ( : )
=400 p — =2 =

we conclude that ¥ (X;) converges to zero when t goes to infinity.

Let briefly study the function ¥. We have ¥ (X;) =

In the uncorrelated case (k = 0), the computations simplify to

[e’e] 191 B
/ p* exp (—pt) —l)pl "exp (—pv) dp
— 0

; I+1
t: p—
o0 9! v+t
pexp (—pt) ==p" ! exp (—pv) dp
/0 I' (1)
~ 3 19[ -1
—pt) ——pt~ —p¥) d
0_/0 p”exp ( p)r(l)p exp (—pV) p_72_ 41
P l pt (19+t)27

/0 N pexp (—pt) F—(Z)pl’l exp (—p?) dp

1 (6 — &)
5M, exp | ———2 | dé
5 /]R RV ( 25? b+ @W,

— —,
(5 50) 1+ tw
M, —_—
[y oo ()
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1 (6 — &)
§2M. SEASALYAN BF
/R o o P ( e >

o5 = — o (t)?

1 (6 — do)° .
M, —— N0
/R RN ( 207 ) do

Proof of Proposition Let consider an asset which does not pay dividends and let us

denote by Z its price process. We have that p*Z is a martingale. Hence, piz+ 1t +0z0,- = 0.

In the case of a riskless asset, we have that py is the risk-free rate and that oy = 0. We

obtain r{ = — - ().
_pf
r
In the case of a risky asset, we therefore have ju; —r/ + 070, = 0, which leads to Hz =
Oz

—o,+. Note that it does not depend on Z and that we therefore have M PR, = —o,+(1).

Using Ito’s Lemma on p* we straightforwardly find the result (cf Proof of Proposition [1.1)).

/ Vs pk€Xp (—pt) Ms,dodp
Proof of Proposition [1.3] We have S, = e;

/ P Vs.pxexp (—pt) Ms,dddp

Using Ito’s Lemma we get

/6 Vs p1€XD (—pt) Msdddp /5p Vs pk€XD (—pt) Msdddp

05t =0 +
/ Vs,pk€XP (—pt) My dddp /p Vs,pk€XP (—pt) My dddp

_ covy (4,p)
Ei(p)

Using the computations of Appendix [I.B.1] we obtain

sgn (k)

Vi1 +thT(Xt)’

Ot =0+
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2
2 - 35200 4 (20) (<1 4 22)

o( e(z)
x)

9
w2 - () )

with T (z) =

N
T+ o)

We can rewrite T (z) as

2
9 _ 31—<I>(;r)x + (1—<I>(a:)> (_1 —I—l‘2) 1— l—é(x)x

(z) o(z) p(z)
T (x) = ? 5 :
_ 19 —r 4 220 (] 4 g2
(1 7@ ""”) Fom )

Moreover, as V; (p) > 0 and E; (p) > 0, we derive that

1— (X)) 1—&(X)\> - R,
23— U X, + (—t) (-14 X}) > 0and 17;((;(;) > (. Hence,
@ (Xi) @ (Xi) —Xi+ 5y (1+ X?)

we obtain that Y (X;) > 0.

1 1
= +0 (=
Finally, using Taylor expansions, we easily get T (x) ~ "”—(mf), and we conclude

z=+o0 1 4+ O (12)
that T (X;) converges to zero when ¢ goes to infinity.

/ Asp,o€XP (—ps) Msyds
t

Proof of Proposition [1.4) We have Vj,, = e;

[ Psseso (~pt) Msudsdp

Using Ito’s Lemma and rearranging the terms we find

AV, = (,u —p+od+p— (0 +9) S + 5?) Vs pedt + (0 +6— &) Vs,ptdWy

= MV pt Vst + OVs,pot Vs ptdWr.

As reported in Section |1.4.3] the optimal number of shares Agent (4, p) should invest in the
‘/(S,p,t O—Vé,p,t
Sy o St
equation satisfied by as,, tedious computations lead to

risky asset is given by as s = . Isolating the volatility of the stochastic differential

Ja&p,t =

Vopt 1 ((0+5_5t) (5—Et (6) + RN <COVt (62, p) _cove (4, p) (E: (9) +(5t)>> —05) .

Sy 054 OSt E: (p) E; (p)
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Taking the absolute value of 0,;, and knowing that Vj,, S, and og are non-negative, we
derive the result of Proposition [1.4]

In the uncorrelated case, we have og; = o, cov; (52, p) =0, and cov; (4, p) = 0. Moreover

5 _ E, (6p) _ covy (0,p) +E, (0)E; (p)
! E: (p) E; (p)

—E, ().

Hence, in this case, the trading volume of Agent (4, p) is given by

_ Vopel (040 —-36) (6= &) — o4

| O-ad,p,t | - St o

1
Proof of Proposition [1.5( We have Vol; = 3 / O, |dodp.

To compute this integral, we need to know the sign of the term in absolute value. We have

Oag,s >0 (04+0—108)(6—0,) —05>0

<:>(52+(0—25,5)(5+5t2—5t0—05>0.

Solving this equation, we get 04, ,, > 0 < 0 € |—00, o[ U ]6;, +-00[ with
—0 +20; + /02 + 4o —0 4 20; — \/0% + 4o
0 = and dy = )

2 2
1 0o 02 0o 01 0o 00
Hence, we have Vol, = — (/ / Oug,,d0dp — / / Oug,,d0dp +/ / aaaptdédp)
2\Jo Joeo " 0o Jo w 0o Ja o

0o 00 00 o1
Moreover, as / / Ous,,d0dp = 0, we have Vol, = —/ / Ous,,d0dp.
0 —00 0 62

Tedious computations lead to
o= _ 21 4o~
Volt:ﬂ <0+ a2+405)<p 0T VO A%
20 2,/05

(o= ) o (T2 )
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Proof of Proposition Explicit computations of the consumption share of Agent (9, p)

lead to
= U ) ey (G U i DR 5 S O S
T omm T+ 1) 2) W o 205 |

52
Defining the survival index of Agent (0, p) by p + 5 and studying the limit of 75, when ¢

goes to infinity, we derive the result straightforwardly.

Proof of Proposition The aggregate consumption share of the optimistic (resp. pes-

simistic) agents T,y (resp. Tpes) 1s given by

o) fe'e) 00 0
Toptt = / / 5,5, AOdp (resp. Tpest = / / T(;’pvtdédp> )
0 0 0 —0

Direct computations give us

W, + 2 5 W, + 2% 5
Toprg =1 — @ | -2 =1—<1><——t),7pes,t=<1> Mt e :(p(_ t>‘

Vit 2 Vs \/t+ = Vs

We easily see that lim 7,,; = 1 and lim 7ps; = 0. Similarly lim 7,,; = 0 and
Wi—~4o0 Wi——~+o0 Wi——o0

hm Topt7t =1.

Wtﬁfoo
[ |
Proof of Proposition [1.8
1. We have
ko= 1+tw%19+t)1+1dexp - +5—2 t—5—2+i55—i(§2— ) e;
St o D+ 1) PT5 902 T as ot ggst T PY )G

44



ASSET PRICING WITH HETEROGENEOUS AGENTS AND NON-NORMAL
RETURN DISTRIBUTIONS

Some algebra leads to

Ug’;’pOSt (cgp) =FE [/0 exp (—ps) In (cgw) ds

:/Oooexp(_ps) <M+(l+l)ln(s+ﬂ)_ 58 _ S ))ds

2 2(sw'+ @) 2(s+ %
IIn(p)—In(vV2rL(I+1)) =1 25,6 —6> 2 252
L)~ (V2T (4 1) ~1 20008 2ut0 -

— v
p 2% p 2p?
auUgPost — (1 + %f) d + do
Deriving this expression with respect to d, we get é—pé (cz’ p) = =, .
aUex—post (5
Hence, we have - (c§ p) = () & §expost _ _072
00 ’ ) 14+«
J=4ex-post P
82U§X_p0St _ (]_ + %ﬁ)
Note that 8—;2 (cz p) = ———% < 0, which ensures that this is a maximum
b w p

. Direct computations give

U:Se’);—ante (Cg,p) — EW@s [/0 exp (—ps) In (631)75) dS:| =K [/0 exp (—PS) Mé,tln (C§7p,s) d8:|

o] ni{s }2
=/ exp (—ps) (1(;“’>+(l+1)1n(s+19)
0

B 5% B dp0s B s B 5252 s
2 (swt+w?) 14 sw? 2<S+%) 2(8+§)

lln(p) — In (\/27TF I+ 1)) -1 N 2500 — 6 N 2u + (o + 5)2
5 .

— 9+
p 2% p 2p

Deriving this expression with respect to §, we get

ex-ante
oug

« OO (508 (5@282 60 -0 0+o
T(%,p) —/0 exp (—ps) <_1+sw2 - 1+sw2)d8+ 5 + .
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We also have

82 Ug};—ante wQ 2 1

o s 1
Z 0P () = — — ds — — + — < 0.
002 (05”0) /0 exp (=ps) 1+ sw? ° w2p * p?

We derive that the derivative of the ex-ante utility function is a monotonic decreasing
function. Hence, if this derivative evaluated at a given point is positive, the maximum
of the ex-ante utility function is reached for a more optimistic belief (as a positive sign

for the derivative means that the utility function is increasing).
In particular, for the average agent, simple computations give

8Uex—ante o] k) 5 —2 .2 5
: :/ exp (—ps) <— 08_2 Bl 8_2) ds + Otaz%>0.
5=6 0 1+ st 1+ sw p p

(;a—p(; (Cg,p)

8U§>;-ante .
3. When 6y > 0, we have a5 (c&p)

> 0, as this derivative is a monotonic
5=0

decreasing function which is positive for § = dy.

When 9y < 0, the sign of the derivative for § = 0 depends on . We have

ex-ante
ougs

T (C:ip) (508 (50

/Oo (= ps) ds + =0 4 2
= i exp (—ps 1+8528 7, T 2

0=0

— < 1, we obtain

Using basic algebra and the fact that, for all s, we have n
Sw

St?

o st? >
/ exp (—ps) pds < / exp (—ps) pds = 1
0 1+ 0
which leads to
do

o 508
- - d <0.
/0 exp ( ps)l_l_sw2 8+w2p <

Hence, we derive that when o is sufficiently high, the derivative of the ex-ante utility

function evaluated at § = 0 is positive.
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4. 5. By definition Agent (6ex'p°St (p), p) has a higher ex-post utility than the rational agent.
Moreover, when & > 0, we have 0 < §™P%" (p) < §,. Using a similar argument as for

the proof of point 3. we derive that she also has a higher ex-ante utility.

When §y < 0 and o is low, the ex-ante utility-maximizing agent of Group (., p) has
a less optimistic belief than the rational agent (see proof of point 3.). We have §p <
5 () < 0 (see proof of point 2.). Using the fact that the utility functions are
monotonic decreasing functions once they have reached their maximum, we conclude
that Agent (6P (p),p) (resp. Agent (6°°* (p),p)) has also a higher ex-ante (ex-
post) utility than the rational agent if §* (p) < §*P (p) < 0 (resp. §P* (p) <

5ex—ante (p) S 0)
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1.B Useful computations and additional results

1.B.1 Moments with respect to the density s,

We define
V1 02 —
X, = Y1+T (t b9 Ve ot f‘;t)
|k| V1 1+ tw

Tedious computations give

/ 0Vs,ppexp (—pt) Msy dodp

E; () = /555%“ dodp =
[ vsaaex (~ot) M dodp

% LT, B sgn(k) — X, + = t(I>(X)t) (1+ X7)
Et ((52) = /52775,p,k,t d(Sdp

—P(X¢
w? (50 +52Wt>2 2+ X7 — 1@(}(@) (3X: + X7)

T 1+’ 1+ tw? t(1+ tw?)
—d(X
Ly sgn (k) —Xt“‘lw(—)((t)t)(l"‘Xf)éo + w*W,
VIV + t? 1— —1;‘(1’)((X)f)xt 1+t
t
_ V1Ft? =X + ())(1+X2)
Et (p) = PVs,p,k t dddp 1-®(Xy) )
k|t 1 — 28X,
1-0(Xy) 3
14 tw? 2+ X7 — (X) (3X: + X7)
2 2~
B () :/ P Vg A0 =~ | 1K) ’

w( t)
E; (dp) = / O pUs p 1t dOdp

S+ W, Xt (L4 XD) 124 X7 - R (3K + XP)

RV R 1 - 2R kt 1 - =Xy,

(Xt) ©(Xt)
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We derive

Vi () = By (6%) — B¢ (6)?

2
@ 2- X (5, + X7P) + (1;‘(1’)%”) (=14 6X2 +2X})
L i t(1+ tw?) (1 _ 1;‘(%“&)2
B 3
() (3x3 + x7)
PR
t(1+ tw?) (1 - 1;‘(1’)(5?)&)

2
1 @Xt 1-® Xt
14223 @(;(ct))XtJf( go()(ct))) (-1+X7)

Vi (p) =By (p°) — i (p)* =

k2t 1-9(X) v )2 ’
(1 - )
1-B(X¢) 1-®(X¢) 2
12-3 (X¢) X+ (X¢) (—1+Xt)
covt (3, p) = B¢ (3p) — Bt (0) Ex (p) = — 1+ z 1_((3(2) )2
(1 - Srax)
4
Finally, we have corry (6, p) = cou (9, p) :
\Z (5) Vt( )
As Vi (p) > 0, Weknowthat2—3 < ) (=14 X7) > 0. Hence,
we conclude that sgn (corry (9, p)) = sgn (covt (0,p)) = —sgn )

1.B.2 Consumption shares and utility-maximizing agents in the

correlated case

In unreported computations that are available upon request, we find that the correlation
between the two types of heterogeneity does not affect the survival implications of the model.
As in the uncorrelated economy, the surviving agent is the most patient of the rational agents.

However, the correlation has an impact on the utility-maximizing agents of the economy. The

do — k
ex-post utility-maximizing agent of Group (., p) is characterized by §™P°* (p) = 10 72'0 We
+ “

notice that this ex-post utility-maximizing agent shares similarities with the ex-post utllity—

maximizing agent of the uncorrelated economy. In particular, we observe that this agent

is biased and that she therefore differs from the surviving one. In fact, the only group of
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agents for which the surviving agent is also the one maximizing her ex-post utility is the
one characterized by p = %. We also observe that the correlation between the two types
of heterogeneity impacts the characteristics of such an agent. We see that the parameter k
impacts negatively d°P*"(p), meaning that a positive k, or, stated differently, a negative
correlation between the belief and the time preference rate, reduces the optimistic optimal
bias an agent should have to be the ex-post utility-maximizing one. In other words, if we
assume that the more optimistic agents are also the most patient ones, the heterogeneity

effect on the ex-post utility-maximizing agent is mitigated.
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Figure 1.1: Time evolution of the median risk-free rate depending on the correlation
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The figure presents the evolution over time of the median risk-free rate for different levels of
correlation between the two types of heterogeneity. The dotted (resp. dash-dot, thin, dashed,
solid) line corresponds to a median correlation at time ¢t = 1 of —0.75 (resp. —0.25, 0, 0.25,
0.75). The baseline parameter values are: p = 14.23%, 0 = 8.25%, 6y = 0, w = 3.39%, | = 2,

and 9 = 50.
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Figure 1.2: Time evolution of the median market volatility depending on the correlation
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The figure presents the evolution over time of the median market volatility for different
levels of correlation between the two types of heterogeneity. The dotted (resp. dash-dot,
thin, dashed, solid) line corresponds to a median correlation at time t = 1 of —0.75 (resp.
—0.25, 0, 0.25, 0.75). We use the same baseline parameter values as in Figure

52



ASSET PRICING WITH HETEROGENEOUS AGENTS AND NON-NORMAL
RETURN DISTRIBUTIONS

Figure 1.3: Time evolution of the median trading volume depending on the time preferences
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The figure presents the evolution over time of the median trading volume of three rational
agents having different time preference rates. The figure shows the uncorrelated case (Panel
A), the strongly negatively correlated case (Panel B), and the strongly positively correlated
case (Panel C). The dotted (resp. solid, dashed) line corresponds to the patient (resp.
neutral, impatient) agent whose time preference rate is given by the 107 (resp. 50", 90"
percentile of the Gamma distribution used to describe the time preference rate heterogeneity.
We use the same baseline parameter values as in Figure .
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Figure 1.4: Time evolution of the aggregate consumption share of the optimistic agents
depending on the trajectory
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The figure presents the evolution over time of the aggregate consumption share of the op-
timistic agents with three different trajectories. The dotted (resp. solid, dashed) line cor-
responds to the good (resp. neutral, bad) trajectory defined by W, = v/t (resp. W; = 0,
W, = —V/1) at each date. We use the same baseline parameter values as in Figure .
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Table 1.1: Average half-lives of some specific agents

O10%  O25%  O50%  O75%  O90%
pro%  999.1 562.3 731.1 562.3 399.1
pson  84.8  110.2 133.1 110.2 84.8
poov, 19.5 224 246 224 19.5

The table contains the average half-life of 15 specific agents. The characteristics of the agents
are such that they partition the initial wealth share distribution of the continuum of agents:
di% and pju are such that Agent (0,4, pj%) is more optimistic than i% of the agents and
more impatient than j% of the agents. We use the same baseline parameter values as in

Figure
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Abstract

I develop an overlapping generations model where each generation is constituted of a
continuum of agents with heterogeneous beliefs. This belief heterogeneity persists across
successive generations, and I thus obtain stationary results. The model can equivalently be
described as an economy with a sliding horizon where infinitely-lived investors continuously
revise their consumption plans, which eases the construction of the intertemporal represen-
tative agent. I further derive that the equilibrium stock mean return and volatility increase
with belief dispersion. Using analyst forecasts from the IBES database, I show suggestive
evidence that these positive relations are empirically verified and hold with data sampled at

various frequencies when considering the market.

Keywords: Heterogeneous beliefs, Overlapping generations, Continuum of agents, Asset

pricing

JEL classification: D53 - D90 - G12 - G40

29
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2.1 Introduction

It is well-established that there is a great belief heterogeneity among stock market par-
ticipants. Using a recent survey administered to a panel of retail investors, |Giglio et al.
(2020) for instance show that beliefs are characterized by a large and persistent individual
heterogeneity, and that investors are likely to exhibit a willingness to “agree to disagree.”
While early studies argued that traders with biased beliefs could be neglected, the recent
literature has shown these views to be wrong, and has studied, both from empirical and
theoretical perspectives, the implications of such belief dispersion. In particular, Jouini and
Napp (2011) show theoretically that heterogeneity is important per se, as an economy with
biased investors who are rational on average differs markedly from an economy with rational
investors only. Moreover, surveys suggest that investors do not agree more on future stock
market returns nowadays than they did in the past. Heterogeneous belief models should
thus incorporate this disagreement persistence, which is unfortunately not often the case
(see, e.g., Atmaz and Basak, 2018|). Not only is this feature important for the sake of empir-
ical relevance, but also because vanishing belief dispersion prevents the belief heterogeneity
implications to be tested relevantly over long periods.

In this paper, I develop and empirically test a tractable model in which belief hetero-
geneity does not progressively vanish. More precisely, in a dynamic general equilibrium
framework, I develop an overlapping heterogeneous generations model evolving in contin-
uous time, where each generation is constituted of a continuum of constant relative risk
aversion (CRRA) investors who agree to disagree. As time goes by, each member of a
given generation gives birth to an investor of the next generation, who is endowed with the
same beliefs. At the end of their life, the agents then consume part of their wealth and be-
queath the remaining part to the next generation. The combination of the intra-family belief
transmission assumption and of a dynamic family budget constraint ensures that the belief
dispersion remains persistent across generations, as empirically observed. My main theoret-

ical contribution is thus to derive stationary results with non-vanishing belief heterogeneity
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that confirm part of the existing results found in models where the agents unrealistically
tend towards rationality. It also allows me to study if the model implications are verified
empirically, and if the belief heterogeneity impacts persist over long horizons. Moreover, the
model incorporates continuous effective consumption, which differs from Atmaz and Basak

(2018)) where there is a single consumption date when uncertainty is resolved.

An important feature of the model is that it considers a large number of agents, which has
two main advantages. First, it allows me to consider an unbounded investor type space, or,
stated differently, to take into account every possible existing belief. In a model with bounded
belief biases, the most biased agents (towards optimism or pessimism) would eventually
control almost all of the wealth in the economy in the most extreme states (i.e., the very
good or very bad ones), and belief heterogeneity would disappear. The choice of a continuum
thus guarantees that belief heterogeneity persists not only for all dates but also in all states of
the world. The second advantage of considering an infinite number of investors is that I can
use a statistical distribution to describe their wealth shares. Similarly to, e.g., |Cvitanic and
Malamud (2011), I assume that the initial distribution is a Gaussian one with exogenously
determined parameters, and I show that the normality of the wealth share distribution
remains as time goes by. Thus, I only need to estimate two parameters, namely the average
belief bias and the belief dispersion, in order to describe the agents’ beliefs, which eases the
model empirical assessment. It also allows me to easily disentangle between the impacts of
the first and second moments. This is interesting because, as underlined by Brandon and

Wang (2020), most models focus on the effects of the latter.

Before discussing its theoretical implications, let me briefly talk about a dual approach of
the model. It is based on an alternative model populated by a continuum of infinitely-lived
CRRA investors, who continuously revise their consumption plans and, as they are assumed
to keep a constant prevision horizon of length T, continuously shift their consumption date,
leading to a model with a sliding horizon (and no effective consumption). Roughly speaking,

in this framework, each of the agents corresponds to an entire family in the overlapping
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heterogeneous generations model, and the successive plan revisions coincide with the different
plans made by the successive generations. In fact, this alternative approach echoes the
seminal work of |[Lindahl (1939), who observes that “the plans of the economic subjects at
any given point of time are neither fully consistent with one another nor with the external
conditions, and therefore they must be successively revised.”[] This is also in line with the
more general temporary general equilibrium theory of |(Grandmont| (1977, 2008). Importantly,
this continuous plan revision feature ensures that the belief heterogeneity is persistent as
these revisions prevent every investor to go extinct. This dual approach, which is fully
equivalent to the main model, further helps to construct an intertemporal representative
agent, defined as the fictitious agent who, if endowed with the total wealth of the economy,
would have a marginal utility equal to the equilibrium price.

I now turn to the implications of the model, and see how they relate to the existing
literature. Note that most of the theoretical results are similar to those in |Atmaz and Basak
(2018) evaluated at t = 0, i.e., when the heterogeneity has not started to vanish. Again, one
of the theoretical contributions of my study is to show that simple mechanisms can prevent
such belief dispersion vanishing to happen.

Looking at the stock price, I infer that it depends positively on the average belief bias,
which is in line with the studies of |Jouini and Napp| (2007)) and Kurz and Motolese| (2011)). I
further derive that the belief dispersion impact is positive for sufficiently good states of the
world and negative for sufficiently bad ones. Note that the sign of this impact only depends

on t through the current state of the world W}, and not through the remaining time before

'Erik Lindahl, Studies in the theory of money and capital, 1939: p.38. Lindahl also indicates a general
procedure to construct a solution consistent with such successive plan revisions:

Starting from the plans and the external conditions valid at the initial point of time, we have
first to deduce the development that will be the result of these data for a certain period forward
during which no relevant changes in the plans are assumed to occur. Next we have to investigate
how far the development during this first period—involving as it must various surprising for the
economic subjects—will force them to revise their plans of action for the future, the principles
for such a revision being assumed to be included in the data of the problem. And since on this
basis the development during the second period is determined in the same manner as before,
fresh deductions must be made concerning the plans for the third period, and so on.
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the economy ending date as this is the case in a finite horizon setting. Finally, similarly to
Atmaz and Basak| (2018), I find a convex relation between the stock price and the cashflow
news. This price convexity implies that the stock price reacts more to good news than to
bad news, and that the stock price reaction to any type of news is stronger in relatively good
states. Basu (1997) and Nagel (2005) provide empirical evidence for the first prediction,
and, consistent with the second one, (Conrad et al.| (2002) show that the market responds
more strongly to bad news in good times than in bad times. Other theoretical studies derive
this convex relation in a model with incomplete common information (Veronesi, |1999)), or
assuming short-sale constraints (Xuj, 2007)).

I also study the relation between belief heterogeneity and the stock mean return, and
observe that the higher the heterogeneity is, the higher the expected returns are. Thus, I
contribute to the literature on this topic which derives conflicting results. More precisely,
the positive relation that I document is in line with the conjecture of Williams) (1977)) that
more dispersion of opinion represents more risk, and therefore that agents should be more
compensated for holding a riskier asset. |Banerjee and Kremer| (2010) confirm this predicted
positive relation in a dynamic model in which investors disagree on the interpretation of pub-
lic information, and Buraschi and Jiltsov| (2006) derive a similar result linking heterogeneity
in beliefs to option open interest. Conversely, another strand of the literature, based on the
seminal work of |[Miller| (1977), documents a negative linkE] This negative relation critically
depends on the presence of market frictions. For example, Chen et al. (2002) obtain this
result by developing a model with differences of opinion and short-sales constraints. Alter-
natively, Atmaz and Basak (2018) theoretically derive that higher dispersion leads to higher
returns when the view on the stock is sufficiently pessimistic, and to lower returns when the
view is sufficiently optimistic. Coming back to my model’s implications, I further obtain

that the stock mean return unconditionally decreases with risk aversion. This is because,

’In a model with short-sale constraints and differences of opinion, Miller (1977) argues that the stock
is overpriced as it reflects the view of the optimistic agents. In fact, because of the short-sale constraints,
pessimistic agents stay out of the market. The higher the differences of opinion, the higher this effect, and
therefore the higher the stock overpricing, resulting in lower subsequent returns.
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in a heterogeneous economy, more risk averse investors speculate less aggressively, and thus

earn lower returns.

Looking at the heterogeneity impacts on the stock volatility, I additionally derive that
it monotonically increases with belief dispersion, and that it is higher than the production
process volatility. As stated in|Atmaz and Basak| (2018]), this is because higher fluctuations in
the average belief bias translate to additional stock price fluctuations, and therefore increase
the stock volatility. This monotonic positive relation between belief dispersion and stock
volatility is well-documented in the theoretical literature (see, e.g., [Shalen, 1993/ in a two-
period rational expectations model, Scheinkman and Xiong), 2003 in a model with short sale
constraints, Buraschi and Jiltsov, 2006 in a model with rational agents with incomplete and
heterogeneous information, [Andrei et al., 2019 in a model with disagreement on the length
of business cycles). I complement these findings by deriving a stationary formula where the

heterogeneity effects on volatility remain persistent over time.

Because the formulas are stationary, I then translate the main theoretical implications
of the model into testable hypotheses, and, turning to the empirical part of the paper, see if
they are verified using real data and running ordinary least squares (OLS) regressions. Note
that I focus on market-wide implications because there is only one risky stock available in
the model. More precisely, I study if a higher market belief dispersion empirically predicts
higher market returns and a higher market volatility. While most studies in this literature
focus on monthly data, I also ask whether these relations hold for data computed over longer
horizons. These additional hypotheses are thereby directly supported by the non-vanishing
belief heterogeneity feature of my model. Lastly, rolling window regressions with quarterly
data complete the analysis and allow a more careful study of the time evolution of the belief

dispersion predictive ability.

I use analyst monthly forecasts of the earnings-per-share (EPS) long-term growth rate
(LTG) of individual stocks from the Institutional Brokers Estimate System (IBES) Unad-

justed Summary database from January 1982 to December 2019 as a proxy for investors’
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beliefs. Building on [Yu| (2011), I then obtain a monthly market belief dispersion variable,
which is defined as the cross-sectional average of individual stock disagreements. I consider
both a value- and an equally-weighted variable, and, as a robustness check, I also construct
an alternative monthly belief dispersion variable defined as the standard deviation of in-
dividual stock disagreements. The variables for longer horizons (from one quarter to two
years) are then obtained by averaging the monthly values over the period of interest. I
further use data on individual stock prices from the Center for Research in Security Prices
(CRSP) database to construct two market indices (I create a value- and an equally-weighted
index), and I compute their simple returns—referred to as the market returns—for various
holding periods. Importantly, my empirical analysis differs from other existing ones because
I specifically study the returns of indices constituted of the individual stocks used in the con-
struction of the market belief dispersion variables. This allows me to more directly capture
the link between the market characteristics and the investor beliefs. Similarly, I construct

market volatility data from the daily returns of these market indices.

The empirical tests confirm the predicted positive relation between market disagreement
and market returns for most specifications and horizons considered. Thus, considering a
model-grounded non-vanishing belief dispersion framework and using more tightly linked
data, I show new results on the long-run impacts. They contribute to a large empirical
debate, already discussed above from the theoretical point of view. Diether et al. (2002) for
instance report that high dispersion stocks earn lower returns. Interestingly, [Doukas et al.
(2006) replicate their results, and find that the relation becomes positive when controlling
for uncertainty in analysts’ earnings forecasts. An empirical positive link is also found in,
e.g., |Anderson et al.| (2005) or Banerjee| (2011)). Other studies derive mixed results or no
relation. In particular, Buraschi et al.|(2014)) find that the relation is ambiguous and leverage-
dependent: it is positive and significant for high leverage firms, but can turn negative and
non-significant for moderately leveraged firms. Finally, Avramov et al.| (2009) find that

financial distress drives the negative dispersion effect, and show that it is a facet of non-
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investment grade firms which account for less than 5% of the total market capitalization,

and that the effect is virtually non-existent otherwise.

Lastly, the results regarding the impacts on the market volatility are more mixed. In
fact, while T mostly derive positive coefficients (controlling for lagged volatility), they are
not statistically significant. The rolling window regressions further show that the sign and
intensity of the belief dispersion impact varies through time, which might explain the weak-
ness of the results. Empirical evidence nevertheless points more towards the approval of the
positive model-implied relation than towards its rejection. Note that other empirical works
study this link either in the cross-section or using shorter time periods and confirm that it
is positive (see, e.g., |Ajinkya and Gift} [1985 using data over a 10-month period, |Anderson
et all [2005 using monthly data over a 7-year period, [Banerjee, 2011 in a cross-sectional

analysis).

The paper is organized as follows. Section presents the theoretical analysis and
translates the main theoretical implications into testable hypotheses. Using empirical data,
I then provide a test of these hypotheses in Section [2.3] Section concludes. All proofs

are reported in Appendix [2.A] and Appendix contains additional empirical results.

2.2 Theoretical part

This section presents the overlapping heterogeneous generations model and derives its equi-
librium. It also describes a dual approach based on a model with a sliding horizon, which
allows the construction of an intertemporal representative agent. Lastly, it further contains
the theoretical results relative to the stock price, its mean return, and its volatility, and

formulates testable hypotheses.
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2.2.1 An overlapping heterogeneous generations model

Consider a pure-exchange security market economy evolving in continuous time with an
infinite horizon. The economy is populated by overlapping generations of heterogeneous
investors who maximize their expected utility from future endowment. They consume part

of their wealth and bequeath the remaining part to the subsequent generation.

Uncertainty is modeled by a filtered probability space (Q, F, (F};),P), where € is the set
of states of nature, F' is the o-algebra of observable events, (F;) describes how information
is revealed through time, and P is the true probability measure giving the likelihood of
occurrence of the different events in F. 1 assume that there is a single source of risk,

modeled by a ((F}),P)-Brownian motion W.

Let y denote the production process in the economy, and assume that, under the proba-

bility measure P, it follows a geometric Brownian motion with drift p and volatility O'.EI

Each generation of investors is constituted of a large number of heterogeneous agents.
More precisely, I assume that each generation is composed of a continuum of agents, endowed
with a fraction of the production process and having heterogeneous beliefs, who are born
at the same date, and who all have a life of length T'. These agents have standard CRRA

1—y

x

preferences, characterized by u () = 1 with v > 0 the coefficient of relative risk aversion,
-7

and both consume and bequeath their wealth according to some given proportions (common
to all investors). Moreover, they disagree on the dynamic of the production process and
are characterized by their own subjective beliefs, which give the subjective likelihood of
occurrence of the different events in the economy. Formally, these subjective beliefs are
indexed by § € R, and, for a given ¢, the subjective beliefs are defined by the subjective
probability measure Q°, which is assumed to be equivalent to the true probability measure
P. T call Agent-0 of a given generation the agent characterized by these beliefs. Concretely,

in all generations, all agents agree on the volatility of the production process o but disagree

3Note that this drift ; takes into account that part of the production process is consumed at each date
as explained further. This is shown formally in the proof of Lemma
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on its driftﬁ Instead of considering that it equals u, Agent-0 believes that the drift of the
production process is given by p+ 9. Thus, § represents her belief bias, and she is relatively
optimistic (resp. pessimistic) compared to an agent with true beliefs if her bias is positive

(resp. negative). In fact, Agent-0 believes that the production process is given by
dyt = (,U + 5) ytdt + UytdW&b

where Wj is a standard unidimensional ((]—"t) ,Q‘S)—Brownian motion, such that W5, = W, —
ot

o

As each generation is populated by a continuum of agents, I use probability density
functions to describe their wealth share distribution, similarly to, e.g., Beddock and Jouini
(2021). At time t = 0, I assume that the wealth share distribution of the investors of
Generation-0 is given by a Gaussian distribution with parameters 6 and @, which are given
exogenously. I further show in Proposition that, at any time ¢ and in any state of the
world W;, the wealth share distribution of Generation-t—denoted by vsw,—is still given
by a normal probability density function with parameters &,Wt and @y v,, whose expressions

are endogenously determinedﬁ
Let now more precisely describe the timeline of a given generation in the model.

At time ¢, the investors of Generation-t are born and forecast that the production process
will deliver a payoff y;.r at time ¢ + 7. Because their common lifespan is 7', they thus make
their consumption and bequest plans to consume and bequeath at the end of their life.
More formally, at time ¢, Agent-d of Generation-¢ plans to consume an amount c;;4p of her

endowment ys .7 at time ¢t + 7" and to bequeath the remaining part bssi v = Ysrr — Co 41

4This assumption is in line with the literature which shows that the expected return is harder to estimate
than the variance (see, e.g., Williams| (1977, Merton, |1980)).

"Because she inherits later in her life, the time-t wealth share of a given agent of Generation-t more
precisely describes this agent’s expected share of total endowment at time ¢ + T seen from date ¢.
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to the next generation. Her expected utility is given by

Ey (Ms 7 (au (csirr) + u (bseir))) (2.1)

where M; 7 is the Radon-Nikodym derivative of her subjective probability measure Q° with
respect to P and a is an exogenously given non-negative coefficient, common to all agents
and all generations, that allows determining the proportions of consumed and bequeathed
wealth, as shown in Proposition[2.1} Setting a = 1 signifies that the agents equally weight the
utility they derive from consumption and bequest, and thus allocate half of their wealth to
each. For higher (resp. lower) values, it means that they prefer to consume (resp. bequeath),

which reflects some selfishness (resp. altruism).

Next, at time ¢t + dt, Agent-0 of Generation-t gives birth to Agent-6 of Generation-
t 4+ dt. These two agents are therefore part of Family-0. Note that this intra-family belief
transmission assumption, which implies that all members of the same family keep the same

beliefs, is key because it allows belief heterogeneity to persist as time goes by.

Finally, at time ¢ + 7', Agent-6 of Generation-t consumes cs,.7, bequeaths bs; 7 to

Agent-§ of Generation-t + dt, and dies.

The Generation-t temporary equilibrium—defined by a continuum of consumption and
bequest plans, denoted by (cs¢+7)scp and (bs47) scp TeSPectively, and a positive density price
prrr—is obtained when each agent of Generation-t maximizes her expected utility according
to her beliefs such that both her static budget constraint and the market clearing condition
are satisfied. Additionally, the sum of the consumption and the bequest of a given agent

must not exceed her endowment.

It is worth mentioning how this temporary equilibrium evolves from a generation to
another. In fact, at time t 4 dt, agents of Generation-t + dt plan to consume at time
t+dt+T apart of the bequeathed wealth of Generation-t that they will inherit later in their

lives and to bequeath the remaining part to the subsequent generation. Thus, it leads to the
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Generation-t + dt temporary equilibrium, characterized by (s tai+7)sers (06, +dt+1) ey and
Prrarer- Applying the same reasoning to all subsequent generations results in a continuum of
consumption and bequest plans made by all successive generations. Because each generation
is born at a different time and in a different state of the world, the successive plans of the
members of a given family can differ markedly even if they share the same beliefs.

The intra-family belief transmission assumption further implies an additional dynamic
family budget constraint. More precisely, seen by Agent-6 of Generation-t, Family-d’s ex-
pected endowment should remain unchanged between t+T" and t 4+ dt 4T, which means that
the expected value of the Family-6 time-t + dt + T" endowment should equal the expected
value of its adjusted time-t + T" endowment evaluated at date ¢t and at the time-t + dt + T

price.ﬁ Formally, for each time ¢ and each Family-é, this implies that

Yt+dt+T
E, (Pt+dt+Ty6,t+dt+T) =L, <pt+dt+Ty6,t+T t; s ) . (2-2)
t+T

Equation (2.2]) simply states that the budget of each family evolves according to the
evolution of the total production. Solving this equation together with the Generation-t
temporary equilibrium equations delivers explicit solutions for the Generation-t wealth share
distribution parameters 5t,Wt and @y w,. They are given in Proposition , where I also report

the equilibrium features.

Proposition 2.1 (Equilibrium and wealth share distribution).

In equilibrium, at time t and in state of the world W;:

1. The Generation-t investors’ consumption and bequest plans for time t +T" are given by

1 a
Cop+T = — T Y5147 and bé,t+T = 1 Yst+T>
l+a 7~ I4a >

Yt+dt+T

6Family-0’s adjusted time-t + 7T endowment is given by Ys,t+T and takes into account the growth

of the production process between ¢t + T and ¢t 4+ dt + T
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with
1 -1 1
YstrT = Ye4T ( / (As..w, Ms i)™ d5> (Aot Ms i) 7
) 142 . . .
where Msiir = exp | — (Wypr — W) — 5—2T is the Generation-t Radon-Nikodym
o o

derivative of the subjective probability measure Q° with respect to P, and

1 \/0'2 + T (@vf?,wty

Astw, =
NV o @)y Vo

exp (_ (5 — gt,Wt + (1 - 'Y) Ty (@t2,Wt))2>

1s the inverse of the Generation-t Lagrange multiplier with
2 2\ 2 2
_r_109 r_n9 o
2@ =597 +\/<2 QT) T

2. The state price density is given by

) 2!
P = Y (/ (Nstw, Msei7) d(S) )

3. The Generation-t wealth share distribution is given by a normal probability density

function with a standard deviation and a mean given respectively by

_ 22 W,
(Dt,Wt = (D, cmd 5t,Wt = 5 —+ %,

where 0 and @ are exogenously given constants describing the Generation-0 wealth share

distribution.

A first point to notice is that the higher a is, i.e., the more selfish each generation of
investors is, the larger is the share of wealth they consume before they die, and the smaller

is the one they bequeath to the subsequent generation. On the other extreme, setting
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a = 0 means that the investors do not consume and bequeath all their wealth to the next
generation.

Additionally, from the third item, I observe that the Generation-t wealth share distri-
bution’s standard deviation is constant and does not vanish as time goes by, which ensures
that the agents differ persistently in their beliefs. This feature is in sharp contrast with
Atmaz and Basak! (2018) and other finite-horizon models with one terminal production (and
consumption) date, where belief dispersion consistently decreases with time. Such a result is
of great empirical importance as surveys show that beliefs are mostly characterized by large
and persistent individual heterogeneity (see, e.g., Meeuwis et al.; 2019, |Giglio et al., 2020],
Das et al., [2020). Moreover, as the mean of the wealth share distribution depends positively
on W, the average belief bias fluctuates around the initial value 6. On average, a generation

of investors is more optimistic when it is born in a good state of the world, and vice versa/[

2.2.2 A dual approach of the model

Alternatively, one can study an equivalent model, which leads to a similar equilibrium and
analogous implications, and whose main feature is to consider a continuum of infinitely-lived
agents who continuously revise their plans in a sliding horizon framework. While it results in
a model without effective consumption—as explained below the investors maximize utility
derived from planned consumption but continuously postpone the consumption date, and
they thus never consume—, the main advantage of this approach is to permit a natural
construction of an intertemporal representative agent. In addition, the interpretation and
the novelty of further derived results are easier to explain under this alternative view. In
this section, I therefore briefly describe the settings of this model which builds on [Lindahl
(1939)’s theory, before constructing the intertemporal representative agent.

This dual model shares most of its characteristics with the overlapping heterogeneous

generations model presented above. Indeed, I still consider a pure-exchange economy, based

"More precisely, I say that a generation of investors is more optimistic if a larger share of the expected
future total endowment is held by more optimistic agents.
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on an expected production process similar to the process y, and evolving in continuous time.
Moreover, there is also a continuum of heterogeneous CRRA agents who maximize their
expected utility from future (expected) consumption, and I use a normal probability density
function with an exogenously given mean § and standard deviation @ to characterize their
initial wealth share distribution. A major difference, however, is that there is now a single
generation of infinitely-lived agents who continuously shift their (expected) consumption
date and revise their plans as time goes by. Roughly speaking, in this framework, a given
Agent-0, whose beliefs are defined as in Section [2.2.1], corresponds to the entire Family-d,
and her successive plan revisions coincide with the different plans made by the successive

generations of this family.

The mechanism behind the successive plan revisions is the following. At time t and in
state of the world W;, the investors forecast that the expected production process will deliver
a payoff at time ¢t + 7', and they thus plan to consume at this date. The parameter T" can
therefore be associated to the agents’ prevision horizon or, more generally, to the agents’
investment horizon. At time t 4 dt, the market reopens and new information W, comes
in. Assuming that their prevision horizon is fixed, the agents now forecast that the expected
production process will deliver a payoff at time t 4+ dt 4+ T'. They therefore shift the date of
their expected consumption, and update their plans because of the new information W, 4.
The same mechanism applies to all successive dates and, as time goes by, this leads to a
continuum of temporary equilibria—defined by a continuum of expected consumption plans
and a state price density—with a sliding horizon, where consumption plans are continuously
revised, and where effective consumption never occurs as it is continuously postponed. It
should be noted that assuming that the agents continuously forecast that the (expected)
production process will deliver a payoff after a duration 7" is a key ingredient of this model.
In fact, it ensures to maintain a persistent belief heterogeneity. More precisely, the investors
keep their beliefs and consider a similar maximization program at each date, but in a different

state of the world, where they plan to consume after a period of length 7" (under an additional
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dynamic budget constraint similar to the one defined by (2.2))).

Let now properly state the equivalence of the two approaches in the following lemma.

Lemma 2.1. The sliding horizon model is equivalent to the overlapping heterogeneous gen-
erations model under the assumption that the successive generations only bequeath and do
not consume (i.e., a = 0). In case effective consumption is allowed, the two models still yield
analogous implications up to a small adjustment in the drift of the underlying production

processes.

As stated before, the main interest of considering this alternative equivalent approach
is that it allows a natural definition and construction of the intertemporal representative
agent. Such an agent is constructed as the fictitious (infinitely-lived) agent who, if endowed
with the total wealth of the economy, would have a marginal utility equal to the equilibrium
price. She has the same utility function as the other investors and is characterized by the
Radon-Nykodym derivative of her subjective probability measure with respect to the true

probability measure.

Proposition 2.2 (Representative agent). The intertemporal representative agent of the econ-
omy 1is the fictitious investor whose time-t +T' Radon-Nikodym derivative of the subjective

probability measure Q° with respect to P seen from date t is given by

1 8l
MRA,H—T - (/ (>‘5,t,WtM5,t+T); d(;) ,

where Msyr and Asyw, are defined as in Proposition [2.1]

On the technical side, this result, combined with the equivalence of the two models, is
important because it allows the complete characterization of the inverse of the Lagrange

multipliers and thus the full determination of the models’ equilibrium.
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2.2.3 The stock price and its dynamics

I now derive the stock price and its dynamics in the presence of belief heterogeneity. As
stated in the previous section, the results are derived under the view of the alternative model
with a sliding horizon, which eases the interpretation and the comparison with the existing
literature. For the sake of clarity, and because both models are equivalent, I nevertheless
use the notations defined in Section 2.2.1]

I assume that a risky stock S is available for trading. The stock is in positive net supply
of one unit and, at time ¢, is a claim to the payoff y;.r expected to be paid at time ¢t + 7.

Studying its properties leads to the following proposition.

Proposition 2.3 (Equilibrium stock price, mean return, and volatility).

In equilibrium, at time t and in state of the world W;:

1. The stock price is given by

—2\ 2
Sy = §t€$]) (gt,WtT - %) )

2. The mean stock return is given by

o 081w, 1 (3w, .\
ust—wra(awt T)+§(8Wt T) ;

3. The stock volatility is given by

00w,
0g, =0+ ———

T
! ow,

where S; = y,exp ((u — 702) T), =, and o = o are the equivalent quantities obtained in

a stmilar standard economy without belief heterogeneity.

The formulas share similarities with those in Atmaz and Basak| (2018)). However, the

two models differ along one important dimension: unlike them, I design an economy where
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the effective consumption date is continuously postponed so that the time-t remaining time
before consumption always equals T instead of 7' — t. As the time-t heterogeneity impacts
depend on the remaining time before consumption, I thus obtain a stationary model where
the heterogeneity effects are not smoothed as time goes by. In particular, as implied by their
framework, their time-T stock price formula reduces to S42 = yp. The heterogeneity effects
that they observe thus completely vanish when approaching date 7', and their model is not
stationary. Conversely, my time-7" stock price is still fully impacted by the time-T" investors

heterogeneity, characterized by 07, and @.

The results stationarity and persistence are of first interest as they more accurately
reflect the heterogeneous market participants reality. These features also allow me to test
the model empirically over a long period and to use data sampled at various frequencies.
Before doing so in Section I now discuss the properties of the market characteristics

derived in Proposition [2.3] I first focus on the equilibrium mean stock return pg.

As stated before, one of the consequences of the sliding horizon methodology is that
the time-t remaining time before expected consumption does not depend on ¢t. Thus, the
derivative of the stock price with respect to ¢ differs markedly from the one obtained in

Atmaz and Basak (2018), leading to different mean returns.

I find that a higher belief dispersion leads to a higher equilibrium mean stock return.
More precisely, the belief dispersion has an impact on the sensitivity of the average belief
bias to news: the higher the belief dispersion, the higher this sensitivity, and thus the higher
the mean return. This is consistent with the recent work of Brandon and Wang| (2020)), who
find that the average return on stocks with high sensitivity to earning belief shocks is 7.14%
per year higher than that in stocks with low sensitivity. Conversely, Atmaz and Basak
(2018) derive that the sign of the relation is state-dependent, and that higher dispersion
leads to lower returns when the view is sufficiently optimistic. They further show that the
relation between the mean return and the relative risk aversion coefficient depends on the

level of optimism, while I derive an unambiguous negative relation. The intuition behind
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this result is simple: in an economy populated by heterogeneous agents, more risk averse
agents speculate less aggressively, and thus earn lower returns. Lastly, I observe that the
mean equilibrium stock return increases as the investment horizon 7" increases.

For the sake of completeness, I now briefly report the properties of the first and third
items of Proposition , which are mostly similar to those in|Atmaz and Basak| (2018) except
that the heterogeneity effects remain persistent. I refer the reader to their paper for more
detailed explanations of the underlying mechanisms behind these results.

Specifically, for a given time ¢, I find analogous impacts of the belief distribution parame-
ters on the stock price. First, the stock price depends positively on the time-t average belief
bias d;w,. Second, the sign of the belief dispersion impact is state-dependent: the impact
is positive for sufficiently good states of the world and negative for sufficiently bad ones.ﬂ I
also similarly derive that the stock price is convex in the time-t expected production level
y;. Finally, unlike the standard case, the impact of the coefficient of relative risk aversion =
is not always negative, but can be positive for sufficiently bad states of the Worldﬂ

The third item considers the stock volatility og. Several observations are in order. First,
in a heterogeneous economy, it is higher than the production process volatility o, in line
with empirical observations (see, e.g., |Ajinkya and Gift}, |1985, |/Anderson et al., 2005, and
Banerjee, 2011)). Recall that an important difference with Atmaz and Basak! (2018) is that,
although both formulas have the same shape, this excess volatility effect does not decrease as
time goes by. This is because the investors’ heterogeneity remains persistent. Second, all else

equal, the higher the belief dispersion, the higher the state-sensitivity of the average belief

8Two effects are at play. On the one hand, as the function ¢ is increasing in belief dispersion, there is
a direct negative effect. On the other hand, there is an indirect effect of the belief dispersion through the
average belief bias. For bad states, this indirect effect is negative and reinforces the first effect. For good ones,
this is the opposite, and the overall effect can even be positive in case of sufficiently good states. Formally,
as the average belief bias is state-dependent, I derive that the stock price increases in belief dispersion when

_ _ 02T
5t,Wt >0+ M

9Formally, the stock price increases in risk aversion when the following condition holds

< - w?) T
6t,Wt <0 + % - \/(’}/0'2 — TJJQ)Z + 4TO'2(7J2.
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bias, and thus the higher the excess volatility. In fact, a higher fluctuation in the average
belief bias translates to additional stock price fluctuations, and therefore increases the stock
volatility. Additionally, the coefficient of relative risk aversion has a negative impact on og.
Finally, a higher investment horizon 7' leads to a higher stock volatility.

Overall, a rich set of predictions can be derived from Proposition 2.3] In particular, it
allows considering the impacts of belief heterogeneity on the mean stock return and on the
stock volatility. Moreover, as observed above, the impact of the belief bias on the model
characteristics is indirect and depends on the belief dispersion, which therefore appears to
be the relevant predictor to consider. The persistence of belief dispersion that I obtain—
which is not a feature of other existing models—also allows me to use data sampled at
various frequencies, leading to new testable implications. In sum, these theoretical results
can be converted into testable hypotheses stated below that are empirically tested in the

next section.

Hypothesis. The main testable implications of the model are the following:
H1. A higher belief dispersion predicts higher mean stock returns.
H2. The ability of belief dispersion to predict mean stock returns remains over long horizons.
H3. A higher belief dispersion predicts a higher stock volatility.

Hj. The ability of belief dispersion to predict the stock volatility remains over long horizons.

2.3 Empirical test of the model

This section provides an empirical test of the hypotheses H1-H/. As the model considers an
economy where there is only one risky stock available for trading, it is more relevant to use
an index—referred to as the market index and whose definition is given below—rather than

individual stocks. I thus focus on studying the empirical ability of market belief dispersion
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to predict future market index returns and volatility over time, using variables sampled at

various frequencies (from one month to two years) from January 1982 to December 2019.

2.3.1 Market belief dispersion data

Let me first explain how the data on market belief dispersion, expressed in percentages, is
constructed. I use analyst monthly forecasts of individual stocks as a proxy for investors’
beliefs, and I aggregate them using different methodologies (described below) to obtain
market belief dispersion variables. As underlined by |Yul (2011)), this bottom-up approach
has the advantage of taking into account hundreds of forecasts at any given time, and thus
likely has a good signal-to-noise ratio. The large number of forecasts also echoes the choice
of considering a continuum of agents in the theoretical model. Additionally, using forecasts
of individual stocks allows defining and studying the returns and volatility of a market index
based on these stocks, which ensures a direct link between beliefs and market characteristics.

The data comes from two databases: I use the analyst monthly forecasts of the EPS LTG
of individual stocks from the IBES database[l’| and the CRSP database to obtain monthly
market capitalizations. The IBES data is winsorized at the 1% and 99% levels to account for
potential outliers or data errors. I also winsorize the prices at the 99% level. Furthermore, I
exclude stocks whose price is below five dollars at portfolio formation to avoid that extreme
returns on penny stocks drive the results and stocks for which less than two analysts provide
EPS LTG forecasts during the month to focus on stocks that exhibit some forecast dispersion.
The data is available from January 1982 to December 2019. Throughout the sample, the
average number of stocks used to compute the variable is 965, and each stock at any given

time is followed on average by five to six analysts.ﬂ This large number of stocks alleviates

107 thus use earnings data to measure cashflows rather than dividends data. This choice is motivated
by Daj (2009), who argues that potential problems of working with dividends could arise because of the
dividend payout policy of some firms. |Campbell (2000) further highlights other empirical difficulties. On the
theoretical side, using the accounting clean surplus identity, |Vuolteenaho| (1999) shows that if one looks at the
infinite horizon, cash flow and earnings contain the same information. Thus, earnings are both theoretically
equivalent and empirically better-behaved than dividends.

"The average number of analysts who provide an EPS LTG forecast for any given stock at any given
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the possibility that idiosyncratic firm disagreement drives the variations of the market belief
dispersion.

For each common stock i listed on the NYSE/Amex/Nasdaq in each month ¢ that meets
the above-mentioned requirements, I obtain the standard deviation of the analyst forecasts—
that I refer to as the stock disagreement and that I denote @, ;—from the IBES Unadjusted
Summary database.lﬂ Additionally, I obtain the market capitalization of each of these stocks
at the end of each month—that I denote M KT CAP,;,—using the closing price and the

number of shares outstanding of the stock considered from the CRSP database.

With this data in hand, I construct my first value-weighted measure of monthly market

belief dispersion, @, . 1)/, which is similar to the one defined in [Yu (2011). For a given

month ¢, it is defined as the cross-sectional (value-weighted) average of individual stock

disagreements

o _ Y MKTCAP,, x @i,t_
mean,1 Mt Zz MKTCAB,t

To further rule out the possibility that the market belief dispersion is driven by idiosyn-
cratic firm disagreement, I also consider an alternative value-weighted monthly measure: the
cross-sectional value-weighted standard deviation of individual stock disagreements, @;;gfll M-
A larger dispersion of individual stock disagreements indeed likely reflects a higher mar-
ket disagreement among investors. Letting NV, denote the number of stocks that meet the

requirements in month ¢, it is obtained with the following formula

~ _ 2
@‘églet _ Zz MEKTCAP;; x (wi7t - w?Y’LZZn,lM,t)
sia, ) Ne—1
N Zl MKTCAP,,

Lastly, for the sake of robustness, I construct similar market belief dispersion variables,

—EW —EW : : S VW - VW
denoted by W, cqn 12 and Wy 15, Tespectively, whose only difference with w0, 1 and Wg'1 57

is to use equal-weighting rather than value-weighting.

time is 5.33.
12Gimilarly to Buraschi et al.| (2014)), T use unadjusted data to circumvent the problem of using stock-split
adjusted data.
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The variables for longer horizons (one quarter (3M), six months (6M), one year (12M),
and two years (24M)) are then obtained by averaging the monthly values over the period
of interest. In the remainder of the analysis, I therefore use those market belief dispersion
variables defined over various horizons as the predictors, and examine different specifica-
tions depending on the horizon considered and the type of weighting used in the dependent

variable.
Insert Figure here.

To give an example of how the market belief dispersion variables vary as time goes by,
Figure shows the time series of the quarterly variables. 1 also report their summary

statistics over the full sample in Table

Insert Table [2.1) here.

2.3.2 Predicting market returns

To begin with, I test the hypotheses H1-H2. Formally, I therefore use empirical data to
see if a higher market belief dispersion leads to higher market returns, and if this positive
model-implied relation holds for data sampled at long frequencies.

Let first properly define the value-weighted market index whose returns are used in the
analysis. Each month, it is constituted of all individual stocks, weighted by their market
capitalization, whose price is above five dollars and for which at least two monthly EPS
LTG forecasts are provided in the IBES database. In other words, the assets that constitute
this market index are those used to construct the market belief dispersion variables, which
allows me to more precisely capture the link between the investor beliefs and the market
characteristics. In addition, I construct a similar market index using equal weights. I then
compute the (raw) simple returns for various holding periods of both indices, and report their
summary statistics, expressed in percentages, in Table 2.2 where the subscript indicates the

holding period considered and the superscript the type of weighting.
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Insert Table[2.3 here.

I can now test the model-implied hypotheses H1-H2. More specifically, HI implies that a
higher market belief dispersion in a given period should result in higher market returns in the
subsequent period. If H2is verified, this positive relation should hold no matter the different
horizon considered (from one month to two years). In order to check these hypotheses, I

thus run the following standard OLS regression
RETz‘],Ct = %kz + eﬁi@ii,tq + gf,z‘,m (2.3)

where ¢ refers to the period ¢, i = {1M,3M,6M,12M,24M}, j = {mean, std}, and k =
{VW, EW}. Inference is based on autocorrelation- and heteroskedasticity-robust standard
errors (Newey and West|, [1987), and all variables are standardized prior to estimation. More-
over, I consider non-overlapping returns for horizons longer than a month to avoid economet-

ric issues. This leads to a total of 20 specifications, whose results are reported in Table [2.3]
Insert Table[2.3 here.

Several observations are in order. First, all coefficients are positive. More interestingly,
most of them are statistically different from zero[™| Thus, H1 seems to be verified in the
data. This complements the mixed results regarding the impact of belief dispersion on
returns found in the literature. While some studies also derive a positive relation (see, e.g.,
Doukas et al., 2006)), others find that a higher belief dispersion predicts lower returns (see,
e.g., Diether et al., [2002). The novelty in my empirical study is that I focus on the returns
of two indices (value- and equally-weighted) that only contain stocks for which there is some
belief dispersion, and that are thus used in the construction of the market belief dispersion

data.

13Note that, because the model implies a positive relation, I consider one-sided tests where the alternative
hypothesis is that the coefficient is positive.
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Second, I observe that the model-implied positive relation holds for all horizons, meaning
that the effects of belief dispersion do not vanish over long periods. In other words, the
hypothesis H2 is verified, and the belief dispersion persistence that I document in my model
is an important feature to be taken into account.

Lastly, note that since the model abstracts from interest rate issues (both under the
overlapping generations view or the sliding horizon one), and thus does not allow an accurate
definition of the risk premium, it is mostly suitable to study the ability of market belief
dispersion to predict the market index raw returns. Although the link is less direct, I
nevertheless run a similar analysis using market index excess returns in Appendix [2.B.1],

which confirms the previous results.

2.3.3 Predicting market volatility

I now focus on the hypotheses H3-H4 and study if they are verified empirically. Hence, I test
if market belief dispersion positively predicts future market volatility, and if this relation
holds for various horizons.

As commonly done in the literature (see, e.g., French et al., 1987, Schwert, 1989), I
exploit daily stock returns—taken from the CRSP database—to obtain my market volatility
data. More precisely, to obtain value- and equally-weighted variables for a given horizon, I
consider the two market indices defined in Section [2.3.2] compute the sum of their squared
daily returns over the period of interest (discounted by the average daily market index returns
of the period), and thereby obtain the value- and equally-weighted market variances for this
horizon. I then easily convert them into the annualized market volatilities, that I denote
VOL"W and VOLFY respectively. As in the previous part, I further add subscripts to these
variables to indicate the horizon considered.

Computing their descriptive statistics shows that they are highly positively skewed and

leptokurtic.lﬂ Similarly to [Paye (2012)), I thus define annualized market log volatility vari-

“For instance, skewness (VOL;)/]&V) = 2.89, and kurtosis (VOL}{]&V) = 15.43.
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ables, LVOL"" and LVOLE"Y | as the natural logarithms of VOLY" and VOLF" respec-
tively, whose distribution are approximately Gaussian (Andersen et al., 2001). Because the
empirical analysis relies on linear models estimated by OLS regressions, this latter prop-
erty is of first importance, and I therefore use LVOLYW and LVOL®Y as the independent

variables in the subsequent empirical analysis. I report their summary statistics in Table [2.4]
Insert Table[2.4 here.

Volatility processes are known to exhibit a high degree of persistence when the data is
sampled over short periods of time. To take this persistence into account, and to ensure
that a potential predictor contains valuable information, it is thus important to control for
past (log) volatility when trying to predict future (log) volatility. |Paye| (2012) for instance
includes six lagged values of (log) volatility in his monthly specification and two lagged
values in his quarterly one. I thus adopt a similar approach when testing if a higher market
belief dispersion in a given period predicts a higher market (log) volatility in the subsequent
one. More precisely, I use six lags when dealing with monthly data, two lags when dealing
with quarterly data, and one lag when dealing with data sampled every six months. For
the longest horizons considered (one and two years), I do not control for past (log) volatility
because the data is sampled over relatively long periods of time and is not strongly persistent.
Formally, for, e.g., the quarterly specifications, I therefore consider the following regression

for market (log) volatility

LVOLI;M,t = O/S,j,Z&M + alf,j,SMLVOLIPjM,t—l + ag,j,3MLVOL§M,t—2 + 5?,3M@;'€,3M,t—1 + 6;?,3M,t7
(2.4)
where t refers to quarter ¢, j = {mean, std}, and k = {VW, EW}.
The main interest of and of other similar OLS regressions studying other horizons is
to test the hypothesis Hy : § = 0 against the alternative H; : § > 0: rejecting the null indeed
implies that, when controlling for past (log) volatility, belief dispersion positively predicts

future market (log) volatility. Similarly to the previous part, I consider one-sided tests
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because the predicted sign of the coefficient is supported by the theoretical implications
of the model. Again, inference is based on autocorrelation- and heteroskedasticity-robust
standard errors, and all variables are standardized prior to estimation. The results are

reported in Table 2.5
Insert Table here.

While most coefficients are positive, only those related to the equally-weighted specifica-
tion for variables sampled at a yearly frequency are statistically significant. Thus, over the
full sample, neither H3 nor H4 seem to be strongly validated by the data.

One of the potential explanations for this lack of statistical significance could be that the
sign of the relation varies through the sample period considered. To further investigate this
issue, I run rolling window regressions of Equation using subsamples of 15 years.ﬁ For
the sake of concision, I focus on data sampled at the quarterly frequency, which leads to a
total of 91 regressions for each specification[| T therefore obtain time series of the estimated
values of %Zn,Z%M? ;;%M, flggn,w, and 552/31\@ and report them in Figure . In each

panel, the horizontal axis shows the end date of the subsamples, and thicker rounds (resp.

crosses) indicate statistically significant positive (resp. negative) values at the 10% level.
Insert Figure here.

As reported in Panel A of Table[2.6] between 52 and 83 of the 91 estimated 3’s are positive
depending on the market belief dispersion variable considered. More interestingly, around
a third of these estimated values are statistically significant at the 10% level. Moreover,
none of the negative coefficients obtained from the value-weighted variables is significantly

different from zero. The evidence therefore points towards the approval of the model-implied

9Conrad and Glas (2018) provide a similar analysis to test if macroeconomic variables predict volatility
in the cross-section of industry portfolios. Note that, for the sake of completeness, I also provide in Ap-
pendix [2.B-2] an analogous rolling window analysis concerning the market index quarterly raw returns to see
how the ability of market belief dispersion to predict them evolves over time.

16Because I need to have the market (log) volatility data of the two previous quarters, my first subsample
starts in the third quarter of 1982 and ends in the second quarter of 1997.
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positive effect of belief dispersion on the market volatility, and, while most of the significantly
positive §’s are obtained for subsamples ending between 2000 and 2010, the weak results
found in Table [2.5]likely result from the fact that negative coefficients are obtained from the

most recent subsamples.
Insert Table here.

As robustness checks, Panel B and Panel C of Table [2.6| further show results of alternative
specifications that use rolling windows of 10 and 20 years respectively. Overall, they confirm

the results found in the main specification.

2.4 Conclusion

In this paper, I define an infinite horizon economy populated by overlapping generations of
investors who differ in their beliefs. For any generation, the wealth share distribution of its
heterogeneous members can be described by a Gaussian distribution with a state-dependent
mean and a constant standard deviation, implying a persistent belief heterogeneity over time.
I compute the model equilibrium, and, using a fully equivalent approach based on continuous
plan revisions of infinitely-lived agents and a sliding horizon, construct an intertemporal
representative agent. I then study the implications of the belief heterogeneity on various
quantities of interest, namely the stock price, its mean return, and its volatility. In particular,
I derive that both the stock mean return and volatility monotonically increase with belief
dispersion. Importantly, the theoretical framework that I use leads to stationary results
with non-vanishing heterogeneity. The contribution of such a modeling is twofold. First,
the heterogeneity persistence is empirically observed, and, consequently, the model results
are more in line with reality (see, e.g., |Giglio et al., 2020). Second, it allows me to test
the model empirically over long periods. Using analyst forecasts from the IBES database, I
show that the documented positive relation between the returns and the belief dispersion is

verified in the data when considering a market index. This is true for data sampled at various
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frequencies (from one month to two years), and the persistence of belief dispersion that I
document in my model is thus an important feature to be taken into account. Additionally,
empirical evidence points more towards the approval of the positive model-implied relation
between the market volatility and the market belief dispersion than towards its rejection.
Lastly, note that the model only considers a single stock in the economy. It would thus be
interesting to extend it to the case of a multi-stocks economy to derive testable cross-sectional

relations. I leave this for future research.
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2.A Proofs

It is more convenient to formally compute the model equilibrium and the representative
agent under the dual approach based on the model presented in Section [2.2.2, Thus, in
this appendix, I first prove Lemma [2.1] which states the equivalence of the two models. I
then state and prove Theorem (which is mostly an analogous version of Proposition
in the context of the sliding horizon model). Proposition and Proposition are then

corollaries of this theorem. Lastly, I provide a proof of Proposition [2.3]

Proof of Lemma (2.1 The equivalence of the two models comes from the fact that they
share similar settings, an analogous maximization program, and the same constraints. To
see this, let formally present Agent-d’s maximization program in the context of both models
at time t and in state of the world W,.

Let start with the overlapping heterogeneous generations model. Using , the maxi-

mization program of Agent-d at time ¢ and in state of the world W, is given by

max Et (Mg’t+T (CLU (C(;’tJrT) +u (b57t+T))) s (25)

cs,t+T:bs ¢+ T

where a is a given non-negative coefficient, common to all agents and all generations, that
represents the agents’ degree of selfishness, and M;,;r is the Radon-Nikodym derivative of
her subjective probability measure Q° with respect to P, such that

J 162
M(S,t—i—T = exXp g (Wt+T - Wt> - §§T . (26)

Denoting by ys 17 the endowment (at time ¢t+7") of Agent-§ of Generation-t, solving (2.5))
under the condition that the sum of her consumption and her bequest equals her endowment
(Csp41 + bspar = Ysu4r) leads to

1 a "

CorT = ——T Y5447 and bstrT = ———TYst+T- (2.7)
1+a ~ 1+a ~
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1

N
Because au (¢siyr) + u (bstr) = a (1 + afv) u (Yse+7), maximizing (2.5)) is therefore

equivalent to solving

max By (Ms;ru (Ysiir)) (2.8)

Yst+T
under the same market clearing condition and budget constraint, before dividing it into

consumption and bequest according to the above-mentioned proportions.

The market clearing condition and the budget constraint that both (2.5) and (2.8)) need

to satisfy are respectively given by

YiyT = / Ys,t+1do, (2.9)

and

(Vé,t,Wtyt—f—T - yd,t+T) DPeyr = 0. (2-10)

Additionally, (2.2]) needs to be verified for all families.

Let now more formally present the model with a sliding horizon. I denote by # the
expected production process of this model. It follows a geometric Brownian motion with
the same volatility o as the process y and a drift denoted by fi. I also define 754y, which
stands for the time-t wealth share distribution of the infinity lived agents. Recall that the
initial investors’ wealth share distributions are the same in the two models. Recall also that,
as stated in Section the way heterogeneous beliefs are defined are identical in both

models: in the sliding horizon model, Ms ;1 is defined as in ([2.6]).

At time t and in state of the world W;, Agent-d’s maximization program is given by

max ]Et (M§7t+TU (gé,t«FT)) y (211)

U6, t+T
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under the following constraints:
e the market clearing condition: ¢, r = / Us.+7d0.

e the time-t static budget constraint: (Zs:w,Yt+r — Ust+7) Derr > 0, where pyp is the

time-t + 7' equilibrium state price density.

e the time-t dynamic budget constraint: seen from date t, and before trading and con-
sumption reallocation, Agent-d’s expected consumption share should remain unchanged

between ¢t + T and t + T + dt because the endowment of each agent is fixed. Formally,

o . - - ~ - Yt+T+d
it implies that [, (pt+T+dty6,t+T+dt) =E; (pt+T+dt?J§,t+T tg < t) .
t+T

It is then clear that and are similar. Moreover, the three above-mentioned
constraints are similar to , , and respectively. This thus leads to equivalent
implications for the two models. Note, however, that the alternative model with a sliding
horizon does not allow effective consumption. A small adjustment thus needs to be made in
the drift of the production process i to obtain a full equivalence.

Let come back to the overlapping heterogeneous ge?erations model. At time ¢t + dt + T,

a 7
the total endowment of the economy is given by ————¥;ar+r (because all the agents of

l+a~
Generation-t have consumed a fraction ———— of their individual time-t +T" endowments,
given that a is common to all investors ;rj(_i aallw generations). Denoting by fi the drift of the
production process in this model if there was no consumption, and defining ;_; = adt,
the overall endowment process of the model is therefore given by dy, = (i — 03 ;;d?f —ij oy dW;.
As stated in footnote [3] T thus define 1 = i — « to take this consumption into account.
From there, it is clear that setting i = 1 — « allows a full equivalence of the two models.

Finally, note that the case @ = 0 (meaning that agents only bequeath) implies a = 0, and

thus i1 = pu = L. [

Theorem 2.1 (Equilibrium and representative agent in the model with a sliding horizon).

In equilibrium, at time t and in state of the world W;:
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1. The investors’ consumption plans and the state price density are given by

Q\H

-1
gé,t-i—T = gt—f—T (/ ()\6,t,WtM5,t+T); d5) ()\JtWtMé t+T)

.
- . 1
Peyr = ytﬁT (/ (Nsewy Mspqm)™ d5> )
) 142 ‘ . .
where Mspr = exp | — (Wipr — Wy) — §—QT is the time-t + T Radon-Nikodym
o o
derivative of the subjective probability measure Q° with respect to P (seen from date t),

and

y_l
Wuw(w) (<a—st,wt+<1—7>Tso<wzwt>>2>
Tewp | —
2

s, -
e v \/ P wt Wt Vo - ¥ (wZWt)

is the inverse of the time-t Lagrange multiplier with

2. The intertemporal representative agent of the economy is the fictitious investor whose
time-t + T Radon-Nikodym derivative of the subjective probability measure Q° with

respect to P (seen from date t) is given by

v
1
Mpatyr = (/ (Nstw, Mseir)” d5> ~

3. The wealth share distribution of the continuum of investors is given by a normal prob-

ability density function with a standard deviation and a mean given respectively by

_ _ 52) W,
(Dt,Wt = (Z), CLTLd 5t,Wt = 5 —+ &,
o

where & and @ are given constants describing the time-0 wealth share distribution.
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Proof of Theorem The three items of the proposition are solved altogether in the

following proof.

The maximization program of Agent-0 at time ¢ and in state of the world ¢ is given by
(2.11)) in the proof of Lemma which also explicitly states the constraints that must be

satisfied.

The first order conditions directly give

2=

-1
ﬂé,t+T = ?]t+T (/ (Aé,t,WtM(S,t—i-T); dé) (Aé,t,WtMé,t—i—T)

.
_ 1
Py = ?thJT (/ (Mo Msp1)” d5) )

where \s; v, is the inverse of the time-¢ Lagrange multipliers of the form

1
Asew, = Kiw,exp <_2 07 — bt,Wt5> : (2.12)
t

a 7Wt

To further identify a;w, and b, ,, notice that the budget constraint of the maximization

program can be equivalently formulated as

E¢ (PerrYsi+1)
E¢ (De+re+r)

ﬂé,t,Wt - (213)

Let then look for a solution of the form s, w, =

if it verifies ([2.13)).

Explicit computations show that it is indeed the case, which thus proves that the time-¢

= 2
Vv 27T(Dt,Wt 2(Dt2,Wt ’

wealth share distribution is given by a normal probability density function. Formally, by

identification, simple algebra leads to

_ _ 2 _
CL2 _ wZWt o ’70-2 + th:Wt B ’70-2 + UthZ,Wt
L 2 2T 2 2T T
0w,
bt,Wt :(1_7>T_ l; :
at,Wt
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Note also that using a reasoning similar to the one in the proof of Theorem 4 in |Bianchi
et al. (2021)), based on the homogeneity property of the CRRA utility function, one can show

the uniqueness of this solution (see also Danal, [1995).

To complete the identification of As;w,, let determine K yy,, which is obtained via the

construction of the intertemporal representative agent.

By construction, this agent is the fictitious investor who, if endowed with the total wealth

of the economy, would have a marginal utility equal to the equilibrium price. Formally,
1—y
x _
because her utility function is given by u (x) = 1 , it translates into pryr = 9§, r Mag e,
-7

which directly leads to
N g
MAR,t+T - (/ (A(S,t,WtM(S,t—&-T)’Y d5> .

Moreover, for the intertemporal representative agent beliefs to be well-defined, one needs

to ensure that E; (Mag+7r) = 1. Easy computations then result in

Defining the function ¢ as given in Theorem and plugging the expressions of a;y,,

bew,, and Ky w, into (2.12), before rearranging the terms, yield the results.

Lastly, I need to ensure that the time-t dynamic budget constraint is verified. To do so,
let define fi5,,, and op,,, (that depend on d;w, and @y w,) such that dpyr = pp,, ,Prerdt +
0p, o PerrdWy. T further define pg, ., and oy, . (that also depend on the parameters of the

Generation-t wealth share distribution) similarly.

Using Ito’s lemma, this budget constraint leads to

Et (/’l’gé,t+T + OprrOfseqr — ﬂ - UUﬁt+T) =0. (214>
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Direct computations allow me to rewrite the left hand-side of (2.14]) as a polynomial
function of § of degree two. As ([2.14)) must be verified for all agents, each coefficient of the
polynomial form must equal zero. By identification, this leads to the expressions of &, y, and

wWe,w, derived in the theorem. [ |

Proof of Proposition [2.1] The proof of Proposition directly follows from the equiva-

lence of the two models given in Lemma [2.1] and from the proof of the first and third items

in Theorem - One simply needs to replace g1 by yirr, Userr bY Yserr, Pevr bY Divr,
and Usyw, by vsew,. Moreover, at time ¢, the agents of the sliding horizon model correspond

to the Generation-t of the overlapping generations model.

Finally, note that the proportions of consumed and bequeathed wealth are explicitly

given by (2.7) in the proof of Lemma [2.1] [

Proof of Proposition The proof of Proposition [2.2] directly follows from the proof of

the second item in Theorem 2.1] [ ]

Proof of Proposition (2.3

1. By no arbitrage, the time-t stock price is given by

g — E; (perryesr)
e ——
E¢ (pe+r)

Computing the numerator and the denominator, and rearranging the terms lead to the

formula in Proposition [2.3]

To determine the benchmark economy stock price Sy, I set § and @ to zero, and

substitute them into the stock price formula.

2. 3. Applying Ito’s lemma to the time-t stock price formula yields the results.
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Similarly to the first item, 7z and @ are defined by setting 6 and @ to zero into the

formulas.
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2.B Additional empirical results

2.B.1 Predicting market excess returns

In this appendix, I run a similar analysis as the one presented in Section [2.3.2 The only
difference is that the dependent variable (either value- or equally-weighted) is now given by
the excess returns of the market index instead of its raw returns. The results are reported in
Table They further confirm the model-implied positive relation: the coefficients are all
positive and statistically significant. These results thus provide additional support for the

validation of H1-H2.

Insert Table here.

2.B.2 Rolling window analysis of the raw simple market index

returns at the quarterly horizon

In order to gain deeper insights of the predicted positive relation between market belief
dispersion and market index raw returns, I run rolling window regressions of Equation (|2.3))
using quarterly data and subsamples of 15 years, i.e., with 60 quarterly observations. This is

the same methodology as the one in Section [2.3.3] and the results are reported in Figure 2.3
Insert Figure here.

The framework leads to a total of 92 regressions for each specification, and I therefore
obtain time series of the estimated values of 7] The horizontal axis shows the end date
of the subsamples, while the vertical axis gives the estimated value. Thicker rounds (resp.
crosses) indicate statistically significant positive (resp. negative) values at the 10% level.
The graphs show that most of the subsamples ending between 2011 and 2019 yield positive

estimated values, while subsamples ending during the previous decade lead to negative ones.

1"The first subsample starts in the second quarter of 1982 and ends in the first quarter of 1997.
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Additionally, Table reports the number of positive estimated coefficients for all specifi-
cations, along with the number of significantly positive (second column) and negative (third
column) ones. Panel A presents the results for rolling windows of 60 quarterly observa-
tions, and Panels B and C use different window lengths of 40 and 80 quarterly observations

respectively.
Insert Table here.

Overall, apart from those obtained with the variable 0;2?173 s the results mostly confirm

that the model implication seems to be verified empirically.
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Figure 2.1: Time series of the quarterly market belief dispersion variables

Panel A: cross-sectional average of individual stock disagreements
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Panel B: cross-sectional standard deviation of individual stock disagreements
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The figure presents the time evolution of the quarterly market belief dispersion variables, expressed in
percentages. Panel A (resp. Panel B) shows the variables computed as the cross-sectional average (resp.
standard deviation) of individual stock disagreements. The left column shows the value-weighted variables
and the right column the equally-weighted ones. The sample goes from the first quarter of 1982 to the fourth
quarter of 2019.
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Figure 2.2: Time series of rolling window estimates of

Panel A: Value-weighted specifications
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The figure presents the estimated values of B,Zggn,g) M ;Qfg Mo ﬁgn?) > and B;Etyg) a Obtained from rolling

window regressions with 60 quarterly observations. The horizontal axis shows the end date of the subsamples
(the first one ends in the second quarter of 1997). Thicker rounds (resp. crosses) indicate statistically
significant positive (resp. negative) values at the 10% level (using one-sided tests).
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Figure 2.3: Time series of rolling window estimates of 6

Panel A: Value-weighted specifications
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The figure presents the estimated values of HXTSZTL)?) Mo 9;2/3 s OEW

mean,3M >

2005 2010 2015 2020

éEW
std,3M

and 952% a Obtained from rolling

window regressions with 60 quarterly observations. The horizontal axis shows the end date of the subsamples
(the first one ends in the first quarter of 1997). Thicker rounds (resp. crosses) indicate statistically significant

positive (resp. negative) values at the 10% level (using one-sided tests).
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Table 2.1: Summary statistics of the quarterly market belief dispersion variables

Mean St. Dev. Skewness Kurtosis p; P2
Panel A: value-weighted specification

Wy sy 3-26 0.43 0.84 328 089 0.77
wher 280 0.74 0.39 2.01 094 0.85
Panel B: equally-weighted specification
W 378 0.37 0.53 2.63  0.88 0.74
whsy ~ 3.48 0.61 0.34 1.87  0.94 0.84

The table contains descriptive statistics of the quarterly belief dispersion variables, expressed in
percentages. The mean, standard deviation, skewness, and kurtosis are reported for each variable,
as well as the first- and second-order sample autocorrelations (p; and p2). The sample goes from
the first quarter of 1982 to the fourth quarter of 2019.
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Table 2.2: Summary statistics of the market index returns for various holding periods

Mean St. Dev. Skewness Kurtosis
Panel A: value-weighted specification

RETHY  0.29 3.79 -0.55 5.26
RETyY  0.86 6.23 -0.25 4.47
RETYY 174 9.36 0.23 5.29
RETYY, 325 1271 -0.20 2.39
RET)Y, 630  14.94 -0.48 2.80
Panel B: equally-weighted specification
RETEY 035 4.07 -0.87 7.00
RETEHY  1.04 7.01 -0.53 4.49
RETEY  2.03 9.85 -0.03 4.47
RETEY, 392 13.66 0.03 2.95
RETEY, 739  16.58 0.80 3.07

The table contains descriptive statistics of the raw market index simple returns for various holding
periods, expressed in percentages. The mean, standard deviation, skewness, and kurtosis are re-
ported for each variable. The subscript indicates the holding period considered and the superscript
the type of weighting. The sample goes from January 1982 to December 2019.
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Table 2.3: Market belief dispersion and market index raw returns

1M 3M 6M 12M 24M

Panel A: value-weighted specification
Oy, 0.03  0.09%F  0.14% 010  0.28*
(0.81) (1.39) (1.60) (0.75) (2.03)
O 005 0.10% 0.14* 013  0.31%*
(1.18) (1.41) (1.47) (1.15) (1.92)

Panel B: equally-weighted specification
Orir,. 0.08%F 0.13%F 0.20%%FF 0.25% (.42%F*
(1.78) (1.98) (2.42) (1.67) (2.58)
0L0.  0.07% 0.10% 017 0.25%F (.48%**
(1.62) (1.58) (2.01) (1.84) (3.01)

The table contains the results of regression . Inference is based on autocorrelation- and
heteroskedasticity-robust standard errors (Newey and West,, [1987), and all variables are standard-
ized prior to estimation. For frequencies longer than a month, I use non-overlapping returns. I
consider one-sided tests where the null is Hy : § = 0 against the alternative Hy : 6 > 0. The sample
goes from January 1982 to December 2019.
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Table 2.4: Summary statistics of the annualized market (log) volatility for various horizons

Mean St. Dev. Skewness Kurtosis
Panel A: value-weighted specification

LVOLYY -2.06  0.46 0.62 3.91
LVOLYY — -2.00  0.41 0.81 4.12
LVOLLY -1.97  0.39 0.75 3.85
LVOLYY, -1.93  0.38 0.39 2.97
LVOLYY, -1.90  0.34 0.46 2.65
Panel B: equally-weighted specification
LVOLEY -2.09 049 0.70 3.95
LVOLEY -2.01 043 0.92 4.29
LVOLEY -1.98 041 0.94 4.28
LVOLEY, -1.94  0.39 0.73 3.31
LVOLYY, -1.91 037 0.80 3.56

The table contains descriptive statistics of the annualized market log volatility variables for various
horizons. The mean, standard deviation, skewness, and kurtosis are reported for each variable. The
subscript indicates the horizon considered and the superscript the type of weighting. The sample
goes from January 1982 to December 2019.
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Table 2.5: Market belief dispersion and annualized market (log) volatility

IM  3M  6M 12M  24M
Panel A: value-weighted specification
e, 002004 004 012 0.01

(0.60) (0.78) (0.52) (0.70) (0.04)
Ve, 000 001 003 007 -0.07
(-0.09) (0.26) (0.43) (0.37) (-0.29)
Panel B: equally-weighted specification
., 001 0.0 0.09 0.26% 0.18
(0.18)  (0.15) (0.71) (1.56) (0.86)
Lo, 001 004 010 0.26* 011
(0.34) (0.55) (0.95) (1.41) (0.69)

The table contains the results of regression and other similar regressions that use (log) volatil-
ity as the dependent variable and market belief dispersion as the predictor (controlling for past (log)
volatility). Inference is based on autocorrelation- and heteroskedasticity-robust standard errors
(Newey and West, 1987)), and all variables are standardized prior to estimation. For frequencies
longer than a month, I use non-overlapping data. I consider one-sided tests where the null is
Hy : f = 0 against the alternative Hy : § > 0. The sample goes from January 1982 to December
2019.
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Table 2.6: Statistics of rolling window estimates of 3

#5 >0 #5* >0 #5* <0
Panel A: 15 year rolling window (91 samples)
ean,3M 83 24 0
3y 58 25 0
3E s 52 27 7
3 59 32 14
Panel B: 10 year rolling window (111 samples)
B AT 92 36 0
3y 73 22 10
3 60 29 10
3EW 59 31 22
Panel C: 20 year rolling window (71 samples)
rean.3M 53 24 0
e 49 27 4
3N s 52 18 4
3 50 40 10
The table contains some statistics on the estimated values of 5]’?73]\/[ (j = {mean,std} and

k = {VW,EW}) obtained from rolling window regressions for several settings. Panel A refers
to the specification defined by Equation and uses 15 year rolling windows (60 quarterly data).
Panel B and C show results with 10 year rolling windows (40 quarterly data) and 20 year rolling
windows (80 quarterly data) respectively. The first column reports the number of positive coef-
ficients obtained from these regressions. The second (resp. third) column report the number of
significantly positive (resp. negative) coefficients at the 10% level obtained from these regressions
(using one-sided tests). The overall sample goes from the first quarter of 1982 to the fourth quarter

of 2019.
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Table 2.7: Market belief dispersion and market index excess returns

1M 3M 60 12M  24M

Panel A: value-weighted specification
O, 0.06%  0.14%F  0.20%%F  0.19% 0.43%%
(1.45)  (2.16)  (2.45) (1.41) (2.67)
g, 0.07%F  0.15%F  0.20%%F 0.23%F  0.46**
(1.92)  (2.33)  (242) (1.92) (2.29)

Panel B: equally-weighted specification
Or v, 0.10%F  0.17FFF  0.25%FF  (.32%F  (.50%+
(2.27)  (2.53)  (2.99) (2.02) (2.62)
0L 0.09%F  0.14%F  0.23%**  (0.33%*F  (.56%F*
(2.20) (225)  (2.61) (2.23) (2.95)

The table contains the results of regression when the dependent variable is given by the
market index excess returns. Inference is based on autocorrelation- and heteroskedasticity-robust
standard errors (Newey and West, |1987)), and all variables are standardized prior to estimation. For
frequencies longer than a month, I use non-overlapping returns. I consider one-sided tests where
the null is Hy : 8 = 0 against the alternative Hj : § > 0. The sample goes from January 1982 to
December 2019.
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Table 2.8: Statistics of rolling window estimates of

#60 >0 #0* >0 #0" <0
Panel A: 15 year rolling window (92 samples)
Oy e 301 44 25 27
0 43 3 37
Oreem ant 60 23 0
0 s 55 8 6
Panel B: 10 year rolling window (112 samples)
o s 55 8 24
0V 61 16 36
Orreonsar 75 34 2
iy 64 24 18
Panel C: 20 year rolling window (72 samples)
Oy oo 30 40 13 12
0 22 8 19
Ormean 301 59 22 0
Uiy 40 2 2

The table contains some statistics on the estimated values of 0}“73M (j = {mean,std} and k =
{VW, EW}) obtained from rolling window regressions defined similarly as Equation (2.3). Panel
A wuses 15 year rolling windows (60 quarterly data). Panel B and C show results with 10 year
rolling windows (40 quarterly data) and 20 year rolling windows (80 quarterly data) respectively.
The first column reports the number of positive coefficients obtained from these regressions. The
second (resp. third) column report the number of significantly positive (resp. negative) coefficients
at the 10% level obtained from these regressions (using one-sided tests). The overall sample goes
from the first quarter of 1982 to the fourth quarter of 2019.
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Abstract

We analyze the joint effects of skewness and correlation in a simple two-asset framework.
Returns follow the split bivariate normal distribution, which combines bivariate normal dis-
tributions with different standard deviations and provides a good empirical fit. We show
that equilibrium risk premia deviate from the CAPM if assets differ in skewness. Moreover,
if the more positively skewed asset is more volatile, it underperforms and its beta, maximum
return, idiosyncratic and systematic skewnesses are all higher—consistent with empirical ev-
idence. We also derive formulas and analyze the role of skewness for portfolio choice and

recently proposed conditional risk metrics.

Keywords: Skewness, Co-skewness, Conditional expected shortfall, Conditional value-at-
risk, Portfolio choice, Asset pricing

JEL classification: G11 - G12 - G32
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3.1 Introduction

Many settings relevant for investors and in risk management can be described in terms of
two risks. Examples include the decision to add a risky asset to a risky portfolio, a default
probability conditional on a market downturn, or a bank’s contribution to the risk of the
financial system. The role of the first two (co-)moments of asset returns in these settings is
well understood. Less is known, however, about the impact of the next (co-)moment. At the
same time, there is mounting evidence that the third moment is of key interest to investors

and that most assets have skewed returns/J

This paper aims at filling this gap and studies in a two-asset framework how skewness
and its interaction with correlation affect portfolio choice, asset prices, and popular risk
metrics. Our focus is on simplicity and intuition and our tool is the split bivariate normal
(SBN) distribution. This distribution generalizes the bivariate normal (BN) distribution and
introduces skewness by allowing the standard deviation parameters to differ above and below
the mode. It is particularly appealing for finance applications because it takes into account
that means and variances of stock returns are related empirically (Duffee, |1995)). Moreover,
it allows for many explicit computations due to its similarities with the BN distribution. We
use the SBN distribution to demonstrate that low levels of asymmetry suffice to modify many
standard predictions in an economically important way and reconcile them with empirical
evidence.

In a pure exchange economy, we show that capital asset pricing model (CAPM) alphas are
non-zero when the assets have different levels of skewness. Empirically, deviations from the

CAPM have been related to systematic skewness (Harvey and Siddique, [2000)), idiosyncratic

1Recent evidence of skewness preference comes from, e.g., experiments (Ebert and Wiesen), 2011), cap-
ital budgeting decisions (Schneider and Spalt, 2016)), and option-based decompositions of the market risk
premium (Schneider} 2019)). In addition, survey evidence from financial professionals finds that skewness
systematically affects risk perceptions, while variance and kurtosis do not (Holzmeister et al., [2020]). There
is also evidence that, e.g., stock returns should theoretically be and empirically are skewed. For example,
Albuquerque (2012)) documents and reconciles positive skewness in individual stocks and negative skewness
in aggregate stock returns and|Del Viva et al.| (2017)) show that real options explain the skewness in individual
stock returns.
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skewness (Boyer et al., 2010)), and maximum returns (Bali et al., 2011). Consistent with this
empirical evidence, our contribution is to show theoretically that the asset that underper-
forms also has high systematic skewness, high idiosyncratic skewness, and high maximum
returns. Acknowledging that more positively skewed stocks are also more volatile (see, e.g.,
Kumar|, 2009), the framework can accommodate the high beta low return anomaly (Frazzini
and Pedersen, |2014; Bali et al., 2017). The differences in maximum returns thereby directly
arise from the underlying skewed return distribution, and the differences in idiosyncratic and
systematic skewnesses result from the market equilibrium conditions. The representative in-
vestor’s skewness preference then leads to asset prices that deviate from the CAPM. The
framework thereby shows that high max asset is both a lottery (Bali et al.; 2011]) and insur-
ance (Barinov} 2018). More specifically, while the asset’s underperformance relates to high
maximum returns and high idiosyncratic skewness, it is mainly driven by high systematic

skewness. This is supported empirically by Barinov| (2018) and |Langlois| (2020).

As far as portfolio choice is concerned, we show that the utility gains of considering skew-
ness usually decrease with correlation when skewnesses are equal. When skewnesses differ,
however, the relation becomes U-shaped and the gains are greater for highly correlated than
for moderately correlated assets. In addition, underdiversification then becomes optimal,
especially for high levels of correlation. Our portfolio choice analysis therefore highlights
the role of correlation in the diversification-skewness trade-off and thus extends Mitton and

Vorkink| (2007) who consider only one skewed asset.

Recent research argues that expected utility (EU) preferences assign a low importance
to skewness, while many popular behavioral theories like [Tversky and Kahneman/s (1992)
cumulative prospect theory (CPT) assign a higher—first-order importance—to skewness (see
Ebert and Karehnke, 2020). Hence, we study portfolio choice not only for EU preferences
but also for CPT. We show that these preferences magnify the importance of skewness for

portfolio weights, certainty equivalents, and deviations from the CAPM.

Because the SBN distribution shares similarities with the BN distribution, it also allows
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for a simple generalization of conditional risk metric formulas to skewed returns. In partic-
ular, |Adrian and Brunnermeier| (2016) propose a measure called ACoVaR, which is defined
as the difference between the value-at-risk (VaR) of a given asset when a conditioning risk is
under distress and this VaR when the conditioning risk is in its median state. In addition,
Acharya et al.| (2017) propose a risk measure—here referred to as the conditional expected
shortfall (CoES)—that is defined as the expected value of a risky asset conditional on another
risk being in the left tail of its distribution. We provide simple expressions for both ACoVaR
and CoES when risks follow the SBN distribution. Using these expressions, we show that
for positively correlated risks, both metrics are larger in absolute value when the main asset
of interest is negatively skewed. Our contribution is to demonstrate that skewness thereby
has a large quantitative impact. For, e.g., a correlation of 0.6, a 5% probability, a symmetric
conditioning risk, and a skewness of —0.6 rather than zero, ACoVaR is about 30% higher in
absolute value. Our analysis also shows that the skewness of the conditioning risk only has a
limited impact on both risk measures. This corroborates |Adrian and Brunnermeier|s (2016))

empirical finding that ACoVaR is weakly correlated with the VaR of the conditioning risk.

Throughout the paper, our analysis of the joint effects of skewness and correlation in a
two-asset framework relies on the SBN. The distribution is a bivariate extension of [Fechnerfs
(1897) split normal distribution, which is a special case of the more widely used skewed
t distribution of Hansen| (1994). Arguing that symmetry is the exception rather than the
rule, |Fechner|introduced the distribution to describe empirical regularities observed in many
different fields. The univariate distribution has since then been known under several names in
the literature (see Wallis, 2014, for a detailed survey) and has been used in finance to model
inflation risk (Britton et al., 1998), downside risk (Feunou et al.,[2013)), and in one-risky-asset
portfolio choice, asset pricing, and risk management applications (De Roon and Karehnke)
2017)). The bivariate version that we use is very similar to the more general developments
in (Geweke| (1989), Bauwens and Laurent| (2005), and |Villani and Larsson (2006), and it

coincides with these distributions when the two risks are independent.
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Figure illustrates the construction of the SBN distribution. The left-hand side figure
shows in each quadrant the probability density function (pdf) of BN distributions with
different standard deviations. These pdfs are scaled in the right-hand side figure to obtain
a continuous skewed distribution. The main advantage of the distribution is its simplicity
that it inherits from the BN distribution and its ability to be skewed. Compared to more
sophisticated distributions (see, e.g., Babi¢ et al. 2019, for a recent overview), it allows us

to focus on relatively small deviations from the standard, symmetric framework.
Insert Figure[3.1] here.

While the central contribution of the paper is to derive economic insights on the effects
of skewness within a simple and intuitive bivariate framework, it is important to show that
the distribution is empirically relevant and to check whether it provides a reasonable de-
scription of asset returns. We thereby analyze index excess returns of different asset classes
(large stocks, small stocks, bonds, commodities, and emerging markets stocks) and also con-
sider related distributions: the BN distribution, |Azzalini and Dalla-Valle's (1996) bivariate
skew-normal (BSN) distribution, and a bivariate version of [Hansen/s (1994) skewed ¢ (BST)
distribution constructed with a Gaussian CopulaE] The parameter values are chosen such
that the correlation and the first three moments (four moments for the BST) coincide with
the empirical distribution. Bivariate Kolmogorov-Smirnov tests and a comparison of implied
and empirical co-skewnesses show that the SBN distribution fits the data considerably bet-
ter than the BN distribution. This fit is also good when compared to the other two skewed
distributions. For the co-skewness comparison, we derive the standard error of the coefficient
of co-skewness for normally distributed returns, which to our knowledge has usually been
computed with simulations (as in, e.g., [Harvey and Siddique, 2000). We further compare
the theoretical and empirical CoES levels and show that the SBN distribution has the lowest

sum of squared differences which indicates that its fit is especially good in the left tail. This

ZNote that [Hansen(s (1994) skewed t distribution is a particular case of the skewed generalized ¢ distri-
bution defined in Theodossiou (1998) and can be reparametrized as the skewed Student-¢ defined in|Zhu and
Galbraithl (2010).
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is of primary importance when dealing with risk, and the SBN distribution is therefore a

useful tool to conduct our analysis.

Our paper contributes to the growing literature on non-normally distributed financial
returns (see |Jondeau et al., 2007, for a review). More precisely, it adds to the stream
of literature interested in understanding the role of skewness. For example, [Kraus and
Litzenberger| (1976), Kane| (1982)), Mitton and Vorkink| (2007)), and |Chabi-Yo et al.| (2014))
study the role of skewness in portfolio choice and asset pricing by assuming investors with
skewness preference and skewed returns without further specifying the return generating
process. Such an approach is easily motivated with Taylor-series approximations to expected
utility. We show that these approximations correctly assess deviations from CAPM pricing
but fare less well in terms of predicting the magnitude of risk premia. Other studies have
used skewed distributions in which returns are linear in the skewness parameters and thus
obtain mutual fund separation theorems and a skewness factor that drives expected returns
(see, e.g., Simaan|, 1993} Langlois, 2013; Dahlquist et al.|2016)). Return asymmetry is thereby
generated by a common skewed factor. Thus, for a given correlation structure, the range of
possible asset skewnesses is more limited, which makes it hard to simultaneously reproduce

the stylized facts about skewness discussed above.

The paper is organized as follows. Section |3.2| presents the SBN distribution and its
empirical fit to index excess returns. Readers more interested in the applications and results
may skip that section and directly read Sections and [3.4] These sections study the
effects of skewness in portfolio choice and asset pricing and in risk management, respectively.
Section [3.5| concludes. Appendix gathers technical details on the distribution, Appendix
contains the proofs, and Appendix contains additional results such as the derivation

of the standard error of co-skewness.
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3.2 A simple skewed bivariate distribution

To conduct our analysis and derive our main results, our tool is the SBN distribution. We

define it in Section and provide evidence for its empirical relevance in Section [3.2.2]

3.2.1 Definition of the SBN distribution

We first recall the case in which X and Y follow the BN distribution that has means px and

1y, standard deviations ox and oy, and a correlation p. The corresponding pdf is

f<x>y§NX7NY70X70'Y7P)

- 1 1 r—pux\? (y—ur)’ x—ux\ (v— by

= exp |— 5 + —2p .
2roxoy+/1 — p? 2(1—p?) ox oy ox oy

The SBN distribution is constructed with four BN distributions that all have the same

mean vector (mx,my) and correlation parameter ¢ and differ in their standard deviation
parameters. Let sx; denote the standard deviation parameter for X when X is below or
equal to mx, and let sy o denote the standard deviation parameter when X is above mx.
The corresponding parameters for Y, sy; and sy, are defined similarly. Thus, the standard
deviation parameters in increasing order from the first to the last quadrant of (X — my,
Y —my) are (Sx2,Sv2), (Sx1,5v2), (Sx1,5v1), and (Sxa2, Sy1).

Recall that any pdf needs to integrate to one and be non-negative. In addition, we require
the pdf to be continuous—as in the univariate case. Therefore, each BN pdf is scaled with

a positive weight A; ; for i = 1,2 and j = 1,2. Direct computations give

Definition. The pdf of the SBN distribution for X andY is

Aaf(z,y;mx, my,sx1,sv1,¢), ifz<mx andy < my,

g(w,y; Q) =
M f(z,y;mx, my,sx2,5v1,¢), ifx>mx andy < my,

( c)
Maf(x,y;mx, my, Sx 1, Sy2.¢), ifv <mx andy > my,

( )

( )

Xoof(x,y;mx, my, sx2,5v2,¢), if x>mx andy > my,
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where Q@ = {mx,my, Sx1,Sx2,Sy.1, Syz2, c} is the set of parameters, A1 1, A2, Aa1, and Aa2

are reported in Appendix[3.A. 1], and f is the pdf of the BN distribution.

We report the contour plot of the distribution in Panel A of Figure 3.2, The parameters
are chosen such that X and Y have zero means, unit variances, and correlation of 0.4 and
that the (standardized) skewness of X, vy, is zero, and the (standardized) skewness of Y,
vy, is —0.6. For comparison, we report the contour plots of other bivariate distributions
that also have these moments for X and Y. Panels B-D show the BN distribution, the BSN
distribution, and the BST distribution constructed with a Gaussian copula. Comparing
Panel A with Panel B illustrates that a moderate skewness of —0.6 modifies the appearance
of the contour plot significantly: the lines are tighter when the negatively skewed variable
Y takes positive values and wider otherwise. The distribution used in this paper also differs
markedly from Azzalini and Dalla-Valles (1996) BSN distribution. In particular, the contour
lines change appearance more abruptly when moving from one quadrant to the other. This
feature might be useful to fit return distributions for which means and standard deviations
are related empirically (Duffee, |1995). Finally, the distribution is most similar to the BST.
This is perhaps unsurprising because these two distributions are identical in the limit in the
univariate case and the kurtosises of the BST are chosen to fit the kurtosises of the SBN.
Nevertheless, there are some slight differences between the two that are most evident at the

borders of the quadrants. Here, the contour lines change more abruptly for the SBN.
Insert Figure here.

In Appendix we derive the moment generating function of the SBN and report
closed-form formulas for the moments and co-moments of the distribution as functions of the
parameters. Several observations about these formulas are in order. First, if sx; = sy and
Sy = Sy, the skewnesses are zero and it is easy to check that we obtain the moments of the
BN distribution. When skewnesses are non-zero, the distribution has the desirable feature

that its modes, which correspond to the location parameters my and my, differ from the
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means. Second, only the ratios of the standard deviations matter when studying the skew-
nesses and the co-skewnesses of the distribution, not the standard deviations themselves.
These ratios, e.g., sx2/$x.1, are also easy to interpret as they correspond to the probability
that a split normally distributed variable takes values above its mode relative to the prob-
ability that it takes values below its mode. Thus, a split normal distribution arises from a
return generating process with a volatility that takes values sx 2 and sx ; above and below its
mode and has on average sx /sy 1-times as many observations above its mode than below.
Third, if ¢ = 0, we recover the expressions of the univariate split normal moments given
in, e.g., De Roon and Karehnke| (2017). Fourth, although this problem does not arise in
our empirical section, some skewnesses of X and Y cannot be matched by the distribution.
Indeed, the skewnesses of X and Y are bounded and the range of admissible skewnesses
depends on the parameters. However, there is no simple expression for this range.ﬂ Finally,
because the distribution has seven parameters, we can choose values for uyx, uy, ox, oy,
oxy, Vx, and 7y and solve for the matching parameters mx, my, Sx 1, Sx2, Sy,1, Sy,2, and
c. Because the number of parameters is limited, we cannot match co-skewness[] Neverthe-
less, the co-skewnesses can help, e.g., to assess whether the distribution can fit additional

moments of empirical data.

In the remainder of the paper, we use the expressions for the moments and co-moments
in Appendix to link symmetric and skewed distributions and study how skewness and

its interaction with correlation affect financial decisions’l

3Unlike the univariate case in which the skewness of X only depends on the ratio of standard deviation
parameters, zx = Sx 2/Sx,1, and setting sx 1 (sx2) close to 0 gives the highest possible positive (negative)
skewness, this skewness also depends on 2y (defined analogously to zx) and ¢ in the bivariate case. Depending
on the values of ¢ €] — 1,1 and zy €]0, +0o0], the impact of zx differs. For example, setting sx 1 close to 0
does not lead to the largest possible skewness of X for certain values of zy and c.

4However, we could solve for the parameters that match the co-skewnesses instead of the skewnesses.
We do not consider this alternative approach in this paper and leave it for future research.

°Tt might be noteworthy that any linear combination of two variables that follow the SBN distribution
does not follow such a distribution, even if the two variables are independently distributed. Thus, the
SBN is not a stable distribution. Multivariate stable distributions that allow for skewness, however, cannot
have finite variances (Bauwens and Laurent| 2005). It is therefore impossible to construct a skewed stable
distribution with a closed form pdf and finite moments.
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3.2.2 Empirical fit

While the main objective of the paper is to study the impact of skewness on financial decisions
with correlated risks, we first study the empirical fit of the SBN distribution to ensure that
our theoretical analysis is based on a reasonable distribution. In this subsection, we study
the overall fit with bivariate Kolmogorov-Smirnov tests and the fit in terms of co-skewness
(which is not a free parameter in the distribution) by comparing empirical and implied
ones. We further study the implied CoESs, i.e., the fit in the conditional left tail of the
distribution, in Section We conduct this analysis not only for the SBN, but also
for the BN distribution, the BSN distribution, and the BST distribution constructed with
a Gaussian copula. We emphasize that the advantage of the SBN lies in its simple and
intuitive construction inherited from the BN distribution and its ability to be skewed.

We use monthly excess returns over the risk-free rate in the period from January 1989
to June 2018 on five indices from different asset classes: large stocks (S&P 500 TR Index),
small stocks (Russell 2000 TR Index), bonds (Barclays US Aggregate Bond TR Index),
commodities (GSCI TR), and emerging markets stocks (MSCI Emerging Market TR Index).
The proxy for the risk-free rate is the return on the 30-day t-bill from CRSP and the index

data is from Datastream.

Insert Table [31) here.

The descriptive statistics in Table[3.1{show that the index excess returns are all negatively
skewed and exhibit excess kurtosis. Except for bonds and commodities, all skewnesses are
statistically significant under the null hypothesis of normally distributed returns. While
a split normal distribution can reproduce exactly the skewness in the data, it has also
excess kurtosis but the level is usually too low to fit the kurtosis in the data (De Roon
and Karehnke, 2017). Nevertheless, as we show below and in Section respectively,
the distribution can still fit the overall shape and the conditional left tail of the empirical

distributions reasonably well. The correlations range from negative but close to zero (-0.05
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for bonds and commodities) to large and positive (0.81 for large and small stocks). The
index pairs that include bonds thereby consistently have the lowest correlations.

To illustrate the dependence structure of small stocks, bonds, commodities, and emerging
markets stocks with large stocks, we further report in Figure contour plots of empirical
pdfs of the monthly excess returns on these index pairs calculated with a kernel density
estimator (dashed lines) and compare them to the contour plots of the SBN distribution

with parameters set to match the empirical moments (solid lines).
Insert Figure[3.3 here.

We formally assess the overall fit of the distributions with the bivariate Kolmogorov-
Smirnov test proposed by [Peacock! (1983). Table reports the p-values of this test under
the null hypothesis that realized excess returns are drawn from the SBN, BN, BSN, or BSTH
At the 5% significance level, we reject the null for SBN in three out of ten cases, whereas
we reject the null in seven (resp. four) cases for BN (resp. BSN). Thus, in addition to its
analytical convenience, the SBN distribution seems to provide a reasonable fit compared
to its close competitors. Compared to its close cousin the BST distribution that has two
additional parameters to match the empirical kurtosises, the fit is less good. Here, the null

is rejected at the 5% significance level for none of the ten pairs.
Insert Table here.

The four distributions we study can only match the correlation of index pairs. Thus,
by comparing the implied and empirical co-skewnesses, we obtain another assessment of the
empirical fit. More formally, we test whether the empirical co-skewnesses are significantly
different from the co-skewnesses obtained under the null that the index excess returns are

drawn from a given skewed distribution. For the test with the BN distribution, we can derive

®We wuse the Matlab function msn moment fit (available at http://azzalini.stat.unipd.it/SN/sn-
download.html) to find the parameters of the BSN distribution that match the empirical moments of the
index pairs. This function indicates that the empirical moments of two index pairs yield parameters outside
of the admissible range. Thus, we exclude these index pairs for the BSN distribution.
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the sample variance of co-skewness under the null. It is

2+ 4p°
var (yy,x) = var (yx,y) = - P ; (3.1)

where p is the correlation between the two indices and n is the number of observations. The
expression avoids having to approximate the sample variance of co-skewness with random
draws from the BN distribution as in, e.g., Harvey and Siddique| (2000). We are not aware of
a reference for this formula and we therefore report its derivation in Appendix [3.C.2l From

the formula in (3.1]), the widely used sample variance of skewness of 6/n is obtained for

p=1
Insert Table here.

Table [3.3] reports the empirical co-skewnesses and the p-values computed under the dif-
ferent null hypotheses. All twenty co-skewnesses are negative. The two largest co-skewnesses
in absolute value are between large and small stocks with a magnitude of about —0.6. These
two co-skewnesses are highly significant under the null of a normal distribution, which im-
plies a zero co-skewness, while they are insignificant under the null of each of the skewed
distributions. Thus, although the distributions do not have parameters to match the third
co-moments, they can generate sizable co-skewnesses. This happens because, as shown in
Table small and large stocks are highly correlated and have large negative skewness.
More generally, at the 5% significance level, 14 out of 20 co-skewnesses are significant under
the normal null. For the split normal, this number is reduced to 11 and the p-values in the
SBN column are generally higher than those in the BN column. For co-skewness, the other
two skewed distributions seem to provide a better fit and the null is rejected in three cases
for BSN (out of 16 co-skewnesses instead of 20) and seven cases for BST.

Overall, the SBN has a good empirical fit and is more parsimonious than the BST.
Moreover, we show in Section [3.4.2) that the SBN has the best fit among the four distribution

studied in the conditional left tail. The main advantage over the BST and BSN, however,
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is the simplicity of the SBN that we exploit next to derive the joint impact of skewness and

correlation on portfolio choice, asset pricing, and in risk management.

3.3 Portfolio choice and asset pricing

We study the effects of skewness on portfolio choice in Section [3.3.1] and asset pricing in
Section |3.3.2] For each setting, we consider EU preferences and [T'versky and Kahneman's
(1992) CPT preferences.

3.3.1 Optimal choice

The investor can invest in two risky assets that have excess returns of Ry and Ry and a
risk-free asset that has a gross return of 1 + ry. The two risky assets can represent, e.g.,
returns on two stocks or the return on a portfolio of many stocks and the return on one
additional stock. Let wy (resp. wy) denote the investment in the risky asset X (resp. Y).
Thus, the overall portfolio return is 1 + 7 + wx Rx + wy Ry. We normalize initial wealth to
one and assume that the investor derives utility from terminal wealth. We first consider an
EU investor with exponential utility that maximizes u(z) = —exp (—6x), where 6 > 0 is the
coefficient of absolute risk aversion. This utility function implies a preference for skewness
and allows for simple expressions for portfolio weights and risk premia when excess returns
follow the SBN distribution[]

Let us assume that Rx and Ry follow the SBN distribution. Direct computations that
exploit the properties of the SBN distribution and exponential utility functions yield the

following proposition.

Proposition 3.1 (Portfolio weights with the SBN distribution). Assume that Rx and Ry

follow the SBN distribution and that the investor maximizes EU with exponential utility. The

"For our analysis it is not important that the exponential utility function lacks wealth effects because
(a) we do not study the comparative statics of wealth and (b) |De Roon and Karehnke| (2017)) show that the
effects of skewness in asset pricing and portfolio choice are magnified with constant relative risk aversion
utility functions, which allow for wealth effects by construction.
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optimal portfolio weights wx and wy are then implicitly given by
fix0% — fiyOxy fiy 0% — ix0x,y
wWx =

~2
~9 ~2 ’X.y
0o 0y (1 53(&%)

and wy = (3.2)

- ~2 )
06262 (1 — Zxx
XYY 5%53

where fix, fiy, 6%, &32/, and oxy are modified first and second co-moments that depend on

the portfolio weights and are reported in the proposition’s proof in Appendiz[3.B

The portfolio weights for the SBN distribution have a form similar to those obtained with
a BN distribution. In particular, when the assets are not skewed, jix, fiy, 6%, 6+, and oxy
simplify to the means, variances, and covariance of Rx and Ry . Thus, we recover the normal
case. Moreover, when correlation is zero (implying dxy = 0), the two portfolio weights are
independent from each other and simplify to the one-asset portfolio weights reported in
De Roon and Karehnke| (2017). Finally, the ratio of the portfolio weights does not depend
on HH In other words, two-fund separation holds, which is expected with a risk-free asset
and exponential utility regardless of the distributional assumptions (see, e.g., Ingersoll, |1987,
Chapter 6.4).

With in hand, we conduct a detailed analysis of the effects of correlation and
skewness on different portfolio choice and asset pricing metrics. Table analyzes portfolio
choice with two assets whose excess returns both have a mean of 12%, a standard deviation
of 15%, and a correlation that varies through columns from —0.2 to 0.8E| The skewnesses
are equal in the top panels of the table (benchmark case and Panels A-B) and differ in the
bottom panels (Panels C-E). The table reports optimal weights, certainty equivalent returns
of the optimal portfolio CER (wspn) and of a portfolio with normal weights CER (wpn),

and skewnesses of the optimal portfolio 7,,, and of a portfolio with normal weights ~,,,, .

Insert Table here.

8In fact, although the modified moments are functions of weights, it suffices to solve the implicit functions
for # = 1 and scale those weight by the inverse of 6.

9We focus on moderately negative to positive correlations because this case is more relevant empirically
as shown in Section m The results for very negative correlations are available upon request.
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Let us first consider the top panels of the table in which the skewnesses of X and Y
are equalr_gl As a consequence, the same amount is invested in each asset, and we obtain
the familiar mean-variance result that weights decrease with correlation. Correlation also
impacts portfolio skewness. For example, in Panel A, where both assets have a skewness of
0.6, the portfolio skewness increases from 0.4 (for p = —0.2) to 0.6 (for p = 0.8).

Comparing the certainty equivalent returns for different levels of skewness, we observe a
trade-off between holding highly correlated assets with high levels of skewness and holding
less correlated assets with lower levels of skewness. For instance, the certainty equivalent
return is 9.6% for p = 0.6 in Panel A, while it is 9.4% for p = 0.2 in Panel B. The intuition
behind this result lies in the definition of skewness itself: large positive events are more likely
to occur for positive skewnesses. Hence, even if the correlation between the assets is high,
the higher likelihood of very high returns makes the investor better off than holding less
correlated assets that are more likely to experience crashes.

As discussed in De Roon and Karehnke (2017)), the total effect of skewness on certainty
equivalent returns can be decomposed in a change due to the distribution and a change
due to the weights. The first effect is a utility gain (resp. loss) due to more positive (resp.
negative) skewness in asset returns. For instance, for p = 0.4, the certainty equivalent return
changes from 9.1% in the benchmark case to 10.4% in Panel A. The second effect is a utility
gain due to the portfolio adjustment the investor makes to hold the optimal weights. This
utility gain tends to decrease with correlation and ranges from 1.3% to 0.4% in Panels A
and B.

In Panels C-E the skewnesses of X and Y differ, and it therefore becomes optimal to
underdiversify. To measure the degree of underdiversification, these panels contain the ratio
of the portfolio weights. As shown in Appendix [3.C.1] a ratio of one maximizes the Sharpe
ratio in our setting, and deviations from one measure deviations from mean-variance effi-

ciency. To facilitate the interpretation, the skewnesses are chosen such that vx > vy and

In the remainder of Section we refer to the skewness of asset X’s excess return simply as the
skewness of asset X and similarly for asset Y.
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thus wx spn/wyspy > 1. The table shows that this ratio increases with correlation and
skewness difference reaching 10.5 for p = 0.8 in Panel C in which vx = 0.6 and vy = —0.6.
This sacrifice in terms of mean-variance efficiency enables the investor to obtain a portfolio
skewness of 0.5 versus 0 for the portfolio computed with the normal distribution. Moreover,
weights invested in the more positively skewed asset can now increase with correlation. This
happens when the skewness difference and the correlation are sufficiently large. For instance,
in Panel C, the weight in X increases from 1.08 for p = 0.6 to 1.27 for p = 0.8. Finally, the
relation between the utility gains of considering skewness and correlation is now U-shaped:

the gains are greater for large positive correlations than for moderate ones.

Comparing Panels C-E shows that a portfolio weight is not only sensitive to the asset’s
own skewness, but also to the other asset’s skewness. For instance, when vx = 0.6 and
p = 0.4, the weight in X decreases from 1.11 for vy = —0.6 (Panel C) to 1.00 for vy = 0.6
(Panel A). More generally, an increase in the other asset’s skewness decreases the amount
invested when the two assets are positively correlated. In fact, when the correlation between
X and Y is positive, the assets are (imperfect) substitutes. Hence, when the skewness of YV
improves and the investor optimally demands more of Y, he also decreases his demand of X.
In the knife-edge case of no correlation and because the utility function is of the exponential

type, demands for X and Y are independent of each other.

The comparative statics extend the analysis of the utility gains of considering skewness of
De Roon and Karehnke (2017) to two assets and confirm previous results of portfolio choice
and skewness. In particular, Mitton and Vorkink (2007) show theoretically that skewness
preference induces investors to hold underdiversified portfolios. They further show empiri-
cally that retail investors hold underdiversified portfolios and that the loss of mean-variance
efficiency of their portfolios is largely explained by a gain in skewness. We obtain similar
results within the standard EU framework. In addition, by looking at two skewed assets, our
analysis highlights the role of changes in skewness as a motive for trading. Recent research

documents that subjective beliefs of important economic variables are skewed and that this
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subjective skewness is time-varying (Ghosh and Roussellet, 2020). Therefore, changes in
skewness combined with heterogeneous skewness preferences are a plausible explanation for
trading and can contribute to reduce the puzzle of why investors trade so muchErI

Next, we consider an investor with Tversky and Kahneman’s (1992) CPT preferences.
The CPT investor uses decision weights that transform cumulative objective probabilities
with a probability weighting function and evaluates outcomes with an S-shaped value func-
tion. Asshown in, e.g., [Ebert and Strack| (2015]), the probability weighting function generates
a strong preference for skewness. However, it complicates the calculations substantially and

we therefore solve the CPT portfolio choice maximization problem numerically. The caption

of Table [3.5] provides the details.
Insert Table here.

Table reports the results of the portfolio choice analysis with CPT and has the same
structure as Table 3.4] A few results stand out. Portfolio weights in CPT are much more
sensitive to correlation. This is due to loss aversion, and the table shows that, e.g., in the
symmetric case it is optimal not to invest in the risky assets when the correlation is high
enough. Skewness also has a stronger impact on portfolio weights in CPT. First, it is optimal
not to invest in the risky assets for, e.g., p = 0.6 when the return distribution is symmetric,
but when skewnesses are 0.6 in Panel A, the weight in each asset is 3.08. Second, the gain of
taking skewness into account is now larger. Third, when assets differ in their skewness and
when correlation is sufficiently high, it can now be optimal to short the asset with the lower
skewness to obtain a higher portfolio skewness. This is illustrated in Panel C for p = 0.8,
where the overall portfolio skewness is 0.75.

In sum, the comparative statics show that CP'T magnifies the effects of changes in corre-
lation and skewness compared to EU. Ebert and Karehnke| (2020]) show that CPT induces a

first-order preference for skewness, while this preference is only third-order in EU. Tables|3.4]

"This literature has focused on differences in information and overconfidence as motives for trading
(Odean, [1999; [Kelley and Tetlockl [2013)).
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and illustrate that this skewness preference order governs the magnitude of the utility
gains of considering skewness. For example, in Panel A when both assets have a skewness
of 0.6 and p = 0.4, this certainty equivalent return gain exceeds 4% for CPT in Table |3.5|

while it is only about 0.5% in the corresponding EU case.

3.3.2 Equilibrium returns

We compute equilibrium returns in an exchange economy with a representative investor using
the expressions for portfolio weights in . In particular, we solve for the expected excess
returns such that the investor optimally holds the exogenous supply of each asset denoted
by the scalars wy and @y, respectively. The following proposition characterizes the resulting

equilibrium with respect to a market portfolio that invests wy in asset X and @y in asset Y.

Proposition 3.2 (Equilibrium returns with the SBN distribution). Assume that Rx and Ry
follow the SBN distribution, that the representative investor mazimizes EU with exponential
utility, and that markets clear. The expected equilibrium excess returns over the risk-free rate

are

px = Bximé + (x and py = By i€ + C, (3.3)

where fiy; = 005, is the modified market risk premium, Bx and Py are the modified betas,
Cx, &y, and € are scalars, and &3, is the modified market variance. The expressions for all

these variables are given in the proposition’s proof in Appendiz|3.5

The equilibrium excess returns have a similar form than in the normal case. However,
additional scalars, £ and (; (for k = X,Y"), appear to obtain expressions for the risk premium
1 instead of the modified risk premium fig given by Equation in Appendix . These
scalars vanish, i.e., £ = 1 and (;, = 0, when both assets have symmetric returns. In that

case, we also have iy = py and 8, = P and thus recover the normal case.
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We use the proposition to analyze the asset pricing implications of skewness, with a focus
on deviations from the standard mean-variance framework and CAPM. We study the case
in which asset X has a skewness of 0.6 and asset Y has a skewness of —0.6. Indeed, if the
two assets have the same skewnesses, the market portfolio is still mean-variance efficient
(although risk premia have different magnitudes than predicted by a mean-variance frame-
work). We consider an economy with a representative EU investor as in Proposition and
an economy with a representative CPT investor. In the latter case, expected excess returns

are solved numerically using a similar procedure as in Table [3.5]
Insert Table[3.4 here.

In Panel A, ©x = @y = 0.5 and a volatility of 15%. These assumptions imply that the
assets have a beta of one[?| The table shows that the more positively skewed asset X has
a negative CAPM alpha and the alpha is lower with CPT than with EU (o$f7 = —2.3%
vs. oY = —0.5% for p = 0.4). Asset Y instead has a positive alpha that equals the alpha
of X in absolute value due to equilibrium accounting. The bottom part of the table reports
the expected market excess return. Notice that the expected market excess returns p,; are
approximately the same in the EU and CPT economies for p = 0.4. This happens because
market skewness is zero in Panel A and because we choose the coefficient of absolute risk
aversion for the EU investor in each panel such that the equilibrium market excess return
with EU is the same than with CPT when returns are normally distributed and p = 0.4@

The last two rows of the table assess the accuracy of the widely used Taylor approxima-
tion approach to study skewness effects. It reports the alpha of asset X and the market risk
premium that are obtained in an equilibrium in which the marginal utility of the represen-

tative investor is approximated with a second-order Taylor expansion around the expected

12 An asset’s beta is defined as usual as the covariance of an asset’s return with the market return divided
by market variance, where the market portfolio is a supply-weighted portfolio of asset X and Y. Similarly,
an asset’s CAPM alpha is the difference between an asset’s risk premium and the product of its beta and
the market risk premium.

13Panel A highlights an important difference between our approach and those in which asset return
skewness is generated from a common skewed factor as in, e.g., [Simaan| (1993)) and Dahlquist et al.| (2016).
It is clear that the latter approach is incapable of generating asset skewness when market skewness is zero
and wx = wy = 0.5.
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market return. These quantities can be compared to those obtained using the formulas in
Proposition reported in the rows aXY and ;4. The table shows that the Taylor approx-
imation correctly assesses the sign of alpha. However, it underestimates the magnitude of
risk premia and deviations from mean-variance efficiency. This underestimation is economi-
cally significant for the market risk premium (up to 1% in absolute value) and increases with

correlation.

Empirically, more positively skewed stocks are also more volatile (Kumar], 2009). Thus,
we set the volatility of assets X and Y to 20% and 10% in Panel B. A byproduct of different
volatilities is that asset X now has a beta greater than one, while the beta of asset Y is
below one. The table shows that asset X still has a negative alpha. This is interesting in
the context of the well documented low performance of high beta stocks. Indeed, asset X
is not attractive because of its high beta, but because of its high skewness. Schneider et al.
(2020) obtain the same conclusion with simulated economies populated with Merton-type
firms in which skewness arises endogenously due to leverage and stochastic volatility, and
they provide consistent empirical evidence. In addition, [Bali et al.| (2017) demonstrate that
investor’s demand for lottery-like stocks is an important driver of the beta anomaly and
that the beta anomaly disappears once regressions control for lottery demand. Bali et al.
(2017) measure lottery demand with the maximum return—a proxy for the right tail of a
distribution. To relate our analysis to their evidence, the table reports the return expectation
in the 1% tails. As expected, the more positively skewed and more volatile asset X has a
larger right tail (63% vs. 21%). Panel B also shows that asset X has a more extreme left tail
(41% vs. 32%). This happens despite the higher skewness because asset X is more volatile.
Thus, skewness preference provides a rationale for the well documented underperformance
of stocks with high maximum returns and the mixed evidence for the underperformance of

stocks with low minimum returns (Bali et al., [2011)).

The results in the table can also be related to the recent study of Barinov| (2018) on

whether stocks with high maximum returns are lotteries or insurance. Barinov| demon-
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strates that stocks with high maximum returns covary positively with changes in market
volatility—i.e., offer high returns when market volatility increases. In our static frame-
work, co-skewness—the covariance between an asset’s return and the squared market excess
return—measures this ability to provide insurance. The table shows that asset X indeed
has positive co-skewness—i.e., provides insurance—while asset Y has negative co-skewness.
Thus, the max asset provides both a lottery and insurance.lf]

While Panel B is able to reproduce many features of the data, the market excess return is
positively skewed, but it is negatively skewed empirically (Albuquerque, 2012)). In addition,
the idiosyncratic volatility of both assets is the same, and the underperformance of the
more positively skewed asset can thus not be related to the idiosyncratic volatility puzzle
(Ang et al., [2006). Therefore, we consider in Panel C an economy in which—consistent with
empirically observed market capitalizations (Kumar| [2009)—the supply of the high volatility,
high skewness asset X is lower than the supply of asset Y (wx = 0.1 vs. @y = 0.9). As a
result, the market excess return is negatively skewed and asset X has a higher idiosyncratic
volatility than asset Y. Panel C is still able to reproduce the same takeaways as Panel B for
p > 0.4

Skewness preference offers rich predictions to explain deviations from the CAPM-—
consistent with empirically documented deviations. Overall, the evidence in the table con-
firms the literature for which the relevant pricing metric is the co-skewness of the residual
of the CAPM regression with the market (Harvey and Siddiquel 2000; Back et al., 2018}
Karehnke and de Roon| 2020)). Indeed, this residual co-skewness—which is also referred
to as systematic skewness—is reported in the table and it always has the opposite sign of
alpha. Related theoretical studies have shown that more skewed assets underperform when

investors optimally form their expectations (Brunnermeier et al., [2007), have CPT prefer-

YThis is true generally because lotteries and insurance contracts offer positively skewed payoffs—a mod-
erate cost and the possibility to receive a high payoff with a low probability.

5The co-skewness of X with the market is here negative for high correlations. However, the co-skewness of
the residual of a CAPM regression with the market is positive. Because residual co-skewness is approximately
proportional to the slope on the squared market excess return controlling for the market excess return, the
evidence in Panel C still suggests that asset X provides insurance (controlling for the market excess return).
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ences (Barberis and Huang, 2008)), or have heterogeneous skewness preferences (Mitton and
Vorkink| 2007)). Empirically, Boyer et al. (2010) show that stocks with higher idiosyncratic
skewness underperform relative to the CAPM. The table reports idiosyncratic skewness (in
the form of the skewness of the residual from a CAPM regression). Asset X indeed has posi-
tive idiosyncratic skewness, while asset Y has negative idiosyncratic skewness. The evidence
thus also points to a negative relation between idiosyncratic skewness and alphas, although
the link is less perfect. In Panel C both assets’ alphas have the opposite sign of idiosyncratic
skewness. However, they are increasing in idiosyncratic skewness—partly contradicting a
preference for idiosyncratic skewness. At the same time, these alphas have the opposite sign
and are decreasing in residual skewness—in line with a preference for residual skewness. This
is supported empirically by Langlois (2020) who shows that systematic/residual co-skewness

is more robustly priced than idiosyncratic skewness.

3.4 Conditional risk measures

There has been a growing interest in bivariate risk measures—for example in the systemic
risk literature (see Benoit et al., [2017, for a review). A two-risk focus is thereby attractive
as it provides a good trade-off between tractability and relevance. Unlike the univariate case
that focuses on a risk in isolation, the two risks can be correlated and potentially result from

an aggregation of many individual risks.

This section uses the SBN distribution to analyze two of the most popular measures:
ACoVaR (see Adrian and Brunnermeier, 2016) and CoES (see |Acharya et al., 2017). So-
phisticated econometric approaches have already been proposed to estimate these measures
in practice. Thus, we rather focus on the comparative statics and ask how they vary as a
function of the skewness and correlation of the underlying risks—assuming that these risks
follow an SBN distribution. We provide support for this approach at the end of the section

by showing that theoretical CoESs calculated with the SBN distribution are close to realized
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CoESs.

3.4.1 ACoVaR

Adrian and Brunnermeier| (2016) propose a measure of systemic risk, ACoVaR, which is
defined as the difference between the VaR of the financial system conditional on an institution
being under distress and this VaR conditional on the same institution being in its median
state. Hence, ACoVaR measures the tail-dependency between two random variables X
and Y. Below, we derive its formula for the SBN distribution and evaluate its sensitivity
to skewness and correlation. For the ease of exposition, we assume in the derivation and
illustration that X and Y both have zero mean and unit variance. ACoVaR at the ¢%

probability is defined as

ACoVaR;/‘X —C OVaR;ﬂX:VaR;‘ _ COVaR;/\X:VaRg%7

where VaRé( is the VaR of X at the ¢% probability and CoVaR};lC(X ) is the VaR of Y at
the ¢% probability conditional on some event C'(X) of X EG]

To compute ACoVaR, we first determine the parameters my, my, sx1, Sx.2, Sy1, Sy2,
and ¢ such that X and Y have zero means, unit variances, the target skewnesses, and the
target correlation. Second, we compute numerically the two required VaRs of X E] Third,
we compute the conditional VaRs of Y using the distribution of Y conditional on X reported
in Appendix [3.A.4] In this third step, four cases arise depending on whether the VaR of X
is below or above myx and whether the conditional VaR of Y is below or above my. The

o . Y|X=VaRY .
next proposition characterizes CoVaR4 in all four cases.

“SFormally, VaR;' is defined by P(X < VaR{) = g% and CoVaR} “) by P (Y|C(X) < CoVaR} ™))
VaRf
1"We obtain VaRé( and VaRz, numerically by solving / g9x (x; Q) dx = 2% for z = ¢, 50, where gx

o0

is the marginal distribution of X reported in Appendix
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Proposition 3.3 (CoVaR for the SBN distribution). Assume that X andY follow the SBN
VaR} — VaR} —
0 TN g My, = e T

Sx.1 SX,2
day, and dyy denote the scaling functions whose expressions are in Appendiz|[3.A.4], and let

distribution. Let My, = . In addition, let dy 1, di 2,

®~! denote the inverse of the standard normal cumulative distribution function (cdf).

Y| X=VaRX

1. ]fVaRf < my and CoVaR, < my, then
CoVaR K=V o Moy + VT = syt | — 0 (3.4)
! e ’ dip (VaR)) | '
2. 1If VaRé( < mx and CoVaR?'XZV&R;{ > my, then

—Va 9 diy (VaRY M,
CoVaRpX VaRy _ my + csyaMy1 + V1 — sy, < a% + (1 11 (VaR, )> ® <— ol ) )

dy 5 (VaRY) "y, (VaRY) Vi—e
(3.5)
3. If VaRf >myx and CoVaRZlezvaRé( < my, then
CoVaRy ¥~V — +csy1Mya + V1 — sy @7! _ak (3.6)
q Y Y,14iV1q2 Y,1 d271 (VaRg() . .
=Va X
4. If VaRff > mx and CoVaR};lX_V e S my, then

Y| X=VaRX 1 q% da (VaRf) ( Mgz )
CoVaR T =my + csyaMyo + V1 — sy, ® + 11— P — : )
q Y v,24Mg,2 Y,2 <d2,2 (VaR;() ( dys (VaRf) Vi=¢

(3.7)

Equations to can be used to compute ACoVaR. In the most common and
relevant case, ACoVaR is calculated for a low ¢ and for left-skewed risks. It is thus likely
that the two VaRs of X are not above myx and the two conditional VaRs of Y are not above
my. The ACoVaR for this case is stated in the next corollary. The other cases can easily

be constructed with Proposition [3.3| and are omitted to save space.
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Corollary 3.1. Assume that the skewness of X is negative or zero and that q is sufficiently

=Va X —
small such that CoVaR;/‘X_V " and CoVaR?'X_VaRg% are below or equal to my. Then

VaRX — VaRZY
ot e SIS o (o ) e ()]
1,1

5x.1 di (VaR)) (VaRz,)

When the two assets are uncorrelated, i.e., ¢ = 0, dy; is a constant function, leading
to ACoVaR equals zero as both terms in (3.8) vanish. When the two assets are corre-
lated and have zero skewnesses, d; ; is also a constant function. Hence, the second term in
(3.8) vanishes, and (3.8)) simplifies to the formula given by Equation (II.6) in |Adrian and
Brunnermeier| (2016).

Table reports ACoVaR at the 5% probability in the case of Corollary and other
possible cases. Each panel considers a different level of skewness for X and Y. The correlation

varies across columns from weakly negative (p = —0.2) to strongly positive (p = 0.8).
Insert Table here.

The table shows that the relation between ACoVaR and correlation obtained for the
BN distribution generalizes to the case with skewness. First, when the two assets are un-
correlated, ACoVaR is zero. This is because the conditional VaR of Y then corresponds
to the unconditional one.ﬁ Second, ACoVaR is decreasing in and has the opposite sign of
correlation. The intuition is that, ceteris paribus, e.g., for positive correlations, X and Y
tend to move together lowering CoVaR?lX:V&Ré{ and increasing CoVaR;/‘X:V“‘R% and thus
leading to a negative ACoVaR.

Comparing the values across panels, we see on the one hand that the higher the skew-
ness of Y, the lower ACoVaR is in absolute value. This happens for positive correlations
because when the skewness of Y increases, high positive realizations of Y become more likely

Y|X=VaRY

increasing both CoVaR, and, to a lower extent, CoVaR?'X =VaRsh and thus reducing

their difference. On the other hand, the skewness of X has only a limited impact. Indeed,

Y|X=VaR} -
18Formally, this case leads to VaR;/ = CoVaRy | e = CoVaRqY‘X =VaRg,
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ACoVaR;/'X assesses the risk of Y conditional on X, but it is not a risk measure of X. The
fact that the assets are only partially correlated also mitigates this impact. When, e.g., the
correlation is 0.4 and the skewness of X worsens from 0 to —0.6, ACoVaR even increases
slightly from —0.66 in the symmetric case to —0.63 in Panel E. These comparative statics
corroborate |Adrian and Brunnermeier/s (2016) empirical finding that there is only a weak
correlation between an institution’s VaRf and the ACoVaR;/'X of the financial system. In
fact, our analysis shows that the financial system’s ACoVaR;/‘X depends primarily on its
own skewness Y. This skewness has a large quantitative impact. For, e.g., p = 0.4, ACoVaR

increases by over 25% in absolute value when the skewness of Y worsens from 0 to —0.6 in

Panel E’ (ACoVaR = —0.83).

3.4.2 CoES

Acharya et al.|(2017)) propose a measure of systemic expected shortfall and show theoretically
and empirically that it is suitable to measure systemic risk. Formally, this metric—that we

denote CoES—is defined as the expected value of Y given that X is in distress
CoES, (Y) =E (Y|X < VaR;),

where we use the same notation as in Section |3.4.1. The next proposition provides the

explicit expression for the CoES.

Proposition 3.4 (CoES for the SBN distribution). Assume that X and Y follow the SBN

distribution, and let ¢ and ® denote the standard normal pdf and cdf, respectively. We have

1. IfVaRf < myx, then

1 S A - M,
COESq (Y) = — [my [()\171 — )\172) L (0, Mq,l) + )\1’2(13 (Mq,l)] + 1,25%,2 1718Y71(I) < ¢!

q% V2T V1—¢?
cM,
+ cp (Mgq1) [()\1,281/,2 —A1sy1)® (- ﬁ) - >\1,28Y,2” . (3.9)
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2. [fVaRff > myx, then

1 1 sin™!(c) cos~1(e) o 1 sin!(c)
CoES, (V) = ﬁ |:my ()q,l <4 + o ) + A2 5 + (A2,1 — Aa2) (L (Q,Mq,g) _ (4 + o ))

1 1—c) (A2 —A22) sy — (1+¢) (A1 — A21) s
+ Moo (q)(Mq’?)_z)) +( ) (A2 — Aa2) Y;\/% ) (A1 — A1) sy

A228v,2 — A2 18y ( My2 > [ ( cM, 2 > H
427 R AL 2 + cop (M X228y — Ao 15y 1)@ [ — : — A28 .
o -2 ¢( q,2) ( 2,25Y,2 2,1 Y,1) A2 2,25Y,2

Both expressions use L (T,7) = L (hy, ha, k1, k), where hy = k; = —o0, hy = x, ky =y, and
L is as in |Ang and Chen (2002) given by

% — 2cay + y?

ho ko 1
L (hi,ho, ki, k :/ / —ex (— ) dxdy.
( 1,162, M1 2) ny ” o /—1 — 2 4 2(1 _ 02) Y

Note that in the symmetric case assuming that VaRf is below its mode, A\j; = A2 =1

and sy; = sy2 = sy. Thus, simplifies to CoES, (V) = my — ﬁcswﬁ (M,) .

Table reports CoES at the 5% probability and is constructed in a similar fashion
than the previous table. It shows that CoES is zero when the correlation is zero. This is
expected because the expectation of Y is zero. In addition, CoES decreases with correlation:

the higher the correlation, the lower the mean of Y conditional on a negative tail event of

X.
Insert Table here.

Comparing the values across panels, CoES increases with the skewness of Y. As the
skewness increases, high values of Y are more likely to occur; hence, the conditional mean of
Y increases. For positive correlations, a higher skewness of X instead tends to lower CoES.
In fact, a higher skewness of X means that very low negative realizations of X occur less
often. Hence, ceteris paribus, more negative realizations of Y have to occur for given tail

events of X, leading to a lower COES.H This effect can be large. For example, increasing

This effect is mitigated when the skewness of Y is low. In such cases, many negative realizations of Y
already happen when X has tail events, and there is no big change induced by the higher skewness of X.
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the skewness of X from zero to 0.6 lowers the CoES by almost 15% for p = 0.4 (Benchmark
case vs. Panel D).

Finally, we compute empirical CoESs and compare them to those implied by the distribu-
tions studied in Section @ Exploiting the same data, we use large stocks’ excess returns
as the conditioning variable X and the excess returns on small stocks, bonds, commodities,
and emerging markets stocks as the variable of interest Y. We first standardize X and Y to
focus on the effects of higher-order moments and facilitate comparisons. We then compute
for each of these pairs the empirical CoES and the theoretical CoESs under one of the four
distributions at the 5%, 10%, and 25% probabilities. Table reports the results along with
the sum of squared differences between theoretical and empirical CoESs for each probability

and distribution.
Insert Table here.

SBN has the lowest sum of squared differences among the four distributions for all prob-
abilities and thus seems to provide a good fit on average despite its simplicity. At the 25%
level, SBN and BST still have a lower sum of squared differences than BN but the difference
is tiny (0.005 and 0.006 vs. 0.009). At lower probabilities (5% and 10%), however, the
magnitudes of sum of squared differences are considerably lower for the skewed distributions
than for BN. We conclude that skewness is important for empirical CoES levels, especially

at low probabilities.

3.5 Conclusion

This paper uses a two-asset framework to study the joint effects of skewness and correlation.
Our tool is the SBN distribution that is based on scaled BN distributions with different stan-

dard deviations and that allows for many explicit calculations. Using index excess returns,

20The choice of computing CoES rather than ACoVaR is motivated by the fact that CoES is easier to
compute. More importantly, the CoES provides a clearer and more direct test of the fit of the underlying
distributions.
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we show that this distribution provides a good empirical fit and that its fit is best in the
conditional left tail compared to its competitors. This corroborates its usefulness as a tool
for studying and modeling risk. More importantly, our theoretical framework is sufficiently
rich to examine, e.g., the utility gains of considering skewness in portfolio choice, equilibrium
deviations from the standard CAPM, and the sensitivity of recently proposed conditional
risk metrics to skewness. For instance, we show that skewness preference provides a unified
explanation for well known empirical features of risk premia such as the underperformance
of stocks with high beta, high maximum returns, and high idiosyncratic skewness.

We focus on a simple framework and consider only one deviation from the bivariate
normal framework—skewness. For future research, it would be interesting to examine other
deviations such as asymmetric correlations in returns. Such an extension might provide
additional asset pricing and portfolio implications and provide more intuition on the sources

of co-skewness in returns.
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3.A Details on the distribution

3.A.1 Calculating the scaling factors

The SBN distribution is a combination of scaled BN distributions. Formally, the pdf g is

g(z,y; Q) =

)‘1 1f T,Yy,mx,My,Sx,1,S5v,1,C) = )\1,1f1,1 z,Y),

X f(z,y;mx, my, sx2,8v1,¢) = Aa1fa1(x,y

)

( c) (z,y)
Maf(,y;mx, my, sx.1, Sv2, ¢) = Mafia(@,y),
( ) (z,y)
( c) (z,y)

A2 2f T,y;mx,My,Sx.2,5y2,C) = >\2,2f2,2 z,Y),

if t <mx and y < my,
if x <my, and y > my,
if x >my and y < my,

if x >myx and y > my,

where A1 1, A12, Mg, and Ay o are designed such that g is continuous (1), integrates to one

(2), and is non-negative (3).

We first look at Property (1).

Because the pdf of a BN distribution is continuous, we

only need to ensure that ¢ is continuous at the limit points. Formally, the left-hand side of

the following equivalences must be satisfied?]]

Mafii(@,my) = Mafia(r,my), Vo €] —oo,mx] <
Aoafai(z,my) = Aapfoa(x,my), Vo €lmx,+oo &
Mafii(mx,y) = Ao for(mx,y), Vy €] — oo, my] <
Mafiz(mx,y) = Aaafoo(mx,y), Yy €]my, +oo] &

Ezﬂ (3.10)

ﬁ:% (3.11)

E:% (3.12)

)\2,1 SXQ,
Al2 SX,1
e 3.13
A2.2 Sx,2 ( )

*'We also need that Ai1fi1(mx,my) = Aiafiz2(mx,my) = Ap1for(mx,my) = Ap2foo(mx,my).
This fifth condition is automatically verified when the four others are.
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where the equivalences are obtained by exploiting the properties of f. ..

We now turn to Property (2): g needs to integrate to one. Replacing g by its expression

and rewriting it in terms of a probability, we have

AaP(Xy <mx, Y <my) + Ao P(Xs > mx, Ys <my)

+ A oP(Xy <mx, Yo > my) + A oP(Xy > mx, Yy > my) =1,

where (X1,Y7), (X2, Y2), (X3,Y3), and (X4, Y)) follow the four different BN distributions that
we combine. The probabilities in this equation are quadrant probabilities of BN distributions.

Thus, we obtain (see, e.g., Johnson and Kotz, |1972))

sin™! (¢)

1 cos ! (¢
<)\1,1 + )\2,2) (_ + —> + ()\1,2 -+ )\271) ( )

= 1. 3.14
o (3.14)

4 2T

Combining Equations (3.10]) to (3.14]) and solving the system, we obtain

)\1,1 = A(‘3)(,15’1/,1, /\1,2 = A3X,15Y,2, )\2,1 = ASX,QSY,b and )\2,2 = ASX,QSY,% with

47

A = . )
(sx.1Sy1 + Sx25v2) (7T + 2sin! (c)) +2(sx15y2 + Sx25v.1) cos™! (c)

Finally, A1 1, A12, A21, and A9 o are non-negative and thus Property (3) is satisfied.

3.A.2 Moments of the distribution

We express the moments and co-moments of the distribution, i.e., the means px and py,
the variances 0% and o}, the covariance oy y, the (standardized) skewnesses yx and 7y,
and the (standardized) co-skewnesses 7y x and vyxy of X and Y as functions of myx, my,

Sx1, X2, Sy.1, Syz2, and c.ﬁ To do so, we first compute the moment generating function

*Recall that the (standardized) co-skewnesses are given by Vv, X =
E[(Y —E[Y)) (X ~E[X]?] / (0v0%) and yx,y =E [(X ~E[X]) (¥ ~E[Y]}*] / (ox0%).
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MG Fgpy of the distribution. By definition, it is given by

oo oo
MGFsoy (tt2) = E(exp (6X +12)) = [ [ " exp (taa +tan) g(o.5:9) dady
my mx mx
=11 / / exp (tiz + to2y) fi1(z,y) dedy + M\ 2/ / exp (tiz + tay) fi2(z,y) dedy

my
+ 21 / / exp (tiz + tay) fo1(x,y) dedy + Aa2 / / exp (tiz + tay) foo(x,y) dady.

rT—m —-m
Making the changes of variable u = ToTX (tisxa +tasyac) and v = y=mv _
SX,1 Syl

(tasy1 + ti1sx1c) and rearranging the terms, we obtain that the first quadrant integral equals

exp (tlmX + tgmy) X

1
L (—o0,— (tasy1 +tisx,1¢) , —00, — (t15x,1 + t2sy,1¢)) exp <2 [t%s%m + t%s%l + 27517528)(7183/’10]) ,

where £ is given as in |Ang and Chen| (2002)) by

ha ke 1 22 — 2cay + 2
L (hy, ho, k1, ko) = ———— — dxdy.
( 1, N2, k1 2) /hl /k1 or /—1_02€XP< 2(1_02) ) ray

The other quadrant integrals are obtained analogously. Hence, the moment generating

function is

MGFspy (t1,t2) =

2
exp (tymy + tomy) (Z

=1 j=

2
1
)\”L,] —t1, — )exp (2 [ 5X1+t28Y] +2t1t23X15yjc])> ,
1

—00,t28y;1 +118x,1¢, —00, t1Sx.1 + L2Sy,1C),

—00,t28y1 + tiSx2¢, tisx 2 + tasyc, +00), and

/\/\/-\/\

)
oSy + t15x1¢, +00, —00, 115 x1 + taSyacC),
)
)-

tQSYQ +t18XQC +OO t15X2 +t28y20 +00
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We then obtain the moments using the derivatives of MG Fspy computed at (tq,t2) =

(0,0). The moments for X are (expressions for Y are similar)

A A
lx = mx + 1,15X,1 X) (3.15)
A A
0% = M15%, ( Ll ) , (3.16)
X = (3.17)

J— )\11A2 /27
2\/27T\/)\11<BX— )

where

Ay = (1+2%) (14 2zy)c+ (-1+2%) (14 2v),

1 sin~'(c V1 —¢c? cos™! (¢ cv1—c?
BX—(1+Z§(zy)(Z+ 2w()+ 5 >+(Z§(+Zy)( 2() )

T 2T

C = (14 4) (1= 2) (¢4 = 30) +2 (=1 + 2%) (14 ).

S$X,2 ..
and zy = —=, and Ay, By, Cy, and zy are defined similarly. The co-moments are

SX,1
A1 Ax A
Oxy = A,1SXx,15v 1 (BX,Y — 11—”) , (3.18)
8w

Cxy + M —2M1AxBxy — M1 Ay Bx

WX = o — (3.19)
2\/27T\/>\11<BX 11 > By—%
A2 A2 Ay

CYX + 11— —2A , AyBX’Y - A , AxBy

oy = 1,1 1,1 (3.20)

2V2r /O (By = 225 ) /By - 2tk

where

L), m> #(a) (2 m) ,

Bxy = (1 + zizg/) (c (Z + o o 5 -
Cxy=(142%) (-1427) (1+) +2(-1+2%) (14 27) ¢, and
Cyx=(1423) (-142%) (1+) +2(-1+2}) (1+2%)c
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3.A.3 Marginal distribution

We derive the pdf gx of the marginal distribution of X. We have

gx (7;9) Z/Rg(a:,y;ﬂ) dy

my 400
A1 Jia (2, y;9) d?/+)\1,2/ fiz(z,y;Q) dy, if < my,
- _T?’Loy m o
A1 Joa (z,y5Q) dy + Ao foo (x,y;Q) dy, if z>mx.
—o0 my

We compute the four integrals. To compute the integral with f;;, we use the change of
y—my _ . x—mx
Sy,1 SX,1

and obtain

variable z =
1—¢2

my c(x—my)

,y;Q) dy=¢ ( ——= Tymx, S ,
. fl,l( Yy ) Yy ( \/1—7625)(71)]0)(( X X,l)

where ® is the standard normal cdf and fx (.; u, o) is the pdf of a normal distribution with

mean p and standard deviation o. Using similar changes of variables, we obtain

c(x—my)

Mo+ (N1 —A2)® | ———
(1,2 (1,1 1,2) ( me,l

c(zx —my)

Ao+ (Ag1 — Ago) @ | ——=
(2,2 (A2 2,2) ( \/1—7028)(,2

)) fx (z;mx,sx1), if x<mxy,

gx (z; Q) =
)) Ix (xymx,sx2), if x>mx.

In the specific case of two uncorrelated variables (i.e., ¢ = 0), we have

2sx.1 )
—7fX ($§mX73X,1)> it =< mx,
(2;Q) = Sx,1 1+ Sx2
gx \T, 2SX2 )
————fx (x;mx,sx2), if z>mx.
Sx,1 1+ Sx2

This corresponds to the pdf of the (univariate) split normal distribution (Wallis, |2014) with
the parameterization of De Roon and Karehnke| (2017). Thus, when ¢ = 0, the pdf of the
SBN distribution with parameters (mx,my, Sx 1, Sx,2, Sy.1, Sy,2, 0) is given by the product of

two split normal pdfs with parameters (mx, sx1,sx2) and (my, Sy, sy2), respectively.
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3.A.4 Conditional distribution

We derive the pdf gy|x—, of the conditional distribution of Y (i.e., the distribution of Y

10
conditional on X). By definition, we have gy x—, (y;Q) = —g(:L', Y )
9x (z;92)
Defining
A1l
dl’l (x) - c(x—m
A2+ (A1 —Ai2) @ 108);1
dLQ (x) B c(x—m
Ao+ )\11—>\12<I> lcs);(l

A2 + )\21—)\22 o cz_mx)

V1i-¢c2 CSXQ

d272 (ZE) =

c(z—mx)

)0 (5)
< )
B < sy
) (~52p)

Ao + )\21—>\22 o

1 CSXQ

we easily obtain

f(xay;mXamY7SX,17SY,l)c>
fX (Jf;mX7SX,1)

f($ay§mXamY>5X,1>5K27c)
fX (ﬁ;mxﬁx,l)

f($ay;mX7mY,SX,2,$x1>C)
fX (w;mX7$X,2)

d272 (ZE) f(l'a ysmx, My, Sx,2,Sy,2, C)

\ Ix (z;mx, 5x2)

d171 (Q?)

, ifx <myx and y < my,

dia(x) , ifx <myx and y > my,

gyix=s (¥ Q) = (3.21)

do () , ifx>myx and y < my,

, ifx>myx and y > my.

145



CHAPTER 3. TWO SKEWED RISKS

3.B Proofs

Proof of Proposition Using the moment generating function of the SBN derived in
Appendix the EU of the investor is

E (u (1 + Tf + CL)XRX + a)yRy))

= —exp (=0 (1 + 7y +wxmx +wymy))

2

2 2
0
X <Z Z NijLij (Bwx, Owy ) exp <? [ 3(53“ + w%s% + QwaysXJsY,jc})) )

i=1 j=1

Because the problem is concave, we can determine the optimal portfolio weights from the
OL;; (Qwx,0 , .

5 (Owx, Boy) (for i = 1,2, j = 1,2,

&uk

and k = X,Y) using the Leibniz integral rule. For, e.g., i =j=1and k = X, it equalﬁ

first-order conditions. Formally, we first compute

QSX,l (C¢ (0 ((JJySY,l + stXJC)) (0] (\/ 1-— c29stX,1> + ¢ (9 (wxsx,l + wysch)) (0] (\/ 1— cQGuJysy,l)) s

where ¢ and ® denote the standard normal pdf and cdf, respectively. We then define lﬁ j

_58 J (aWX WY) Focusing on the optimal weight for X and
Wk

using its first order condition, we then obtain

such that I}, (wx,wy) =

2

0
(mX -0 (wxsﬁw + WYSX’Z'SY’]'C)) exp ( [wﬁ(sﬁ(’i + w%s%ﬁj + 2waYSX’iSy’jC]) AijLij (Bwx, fwy)

2
— 2

2

2

1j=1

2 2
02
+ E E exp (2 [wg(s%“ —|—w32/s§/7j + 2waySX7i8y’jC]> Ai,jlﬁj (wx,wy)=0. (3.22)
i=1j=1

B0ther explicit computations are available upon request.
2 2

2*When X and Y are symmetric, ZZlf] (wx,wy)=0for k=X,Y.
i=1 j=1
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Rearranging Equation (3.22)) yields

2
mx (ZZQ . 22 L €xp (i [wg(sg(i + w%,sQYj + 2waysX7i5y7jc]) XijLij (Bwx, 0wy))

(Zz 1 2 exp (*2 {WXSX i T wist; + 2wxwysxisy.ic D sk i Lig (wx, 9w))

wx =

2
PO Z —1 €Xp (* (Wi 5% +wist; + 2wXWst,iSY,jC]) Ai il (W, wy)

(ZZ L ZJ L exp (i {stX i+ stY] + 2wx Wy Sx,iSy,;C D 53(72.)\2-7]-1/1-7]- (Owx, 0wy)>

2
2 2 2 2
cwy (Zi:l >y exp (* (Wi sk, twisy; + QWXWst,iSY,jC]) sx.i8y,j i Lij (Bwx, Gwv))

ZZ 1ZJ 1 €Xp (— {wXSXl—l—styj—i—&uxstXﬁyj Dle)\ iLij (Qwx, Owy )
(3.23)

By symmetry, we obtain a similar expression for wy

my (El 1 Z] 1 €Xp ( [stXZ +wysyj + 2wxwy Sx ;Sy,;C D i jLi (wa,ewy))

Wy =
0 (Z?:l Zj:l exp (72 |:wXSX,i + wYSY,j + 2WXWY3X,2’3YJCD Sa,in,jLi’j (fwx, 6WY))

2
212:1 Z§=1 exp (% [wg(sgﬁ + w%si,j + QwaysXJsY,jc]) i JZZYJ (wx,wy)

2 2
0 (Zi:l > j=1€xXP (% [wggsgw + w%s%,,j + Qwaysx,iSYJCD s%’j/\i,ij (Qwx, Hwy))

cwx (Z?Zl Z?Zl exp (% [wxsxl —i—wysyj + 2wx Wy Sx,iSy,;C ]) Sx,i8v,jNi,j Li (9&)}(790.))/))

Zl 121 1 €Xp (—2 {wXSXZ+wYSYJ+2waySX1$YJ })SY])‘ LJ (GWX;QWY)

(3.24)

Plugging Equation (3.24)) into Equation ([3.23|) gives an implicit equation for wy (and vice

versa for wy). Formally, we obtain that the optimal weights are solution of

(wx,wy) 0% (wx,wy) — iy (wx,wy) oxy (wx,wy)

X
Wx = - &gg’y(wawY)
0o (WXaWY) v (wx, wy) (1 - 5g((wxywy)g,%(wxwy))
and
w iy (wx,wy) 6% (wx,wy) — fix (wx,wy) oxy (wx,wy)
v =

52 o (wx,wy) ’
05% (wx,wr) 5 (wx,wy) (1 - mroas )
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where

2 2 2
mx (Zi:l ijl exp (% [wg(sg(,i + wf,s%j + 2onJySX71'SY,jC]) XijLij (Bwx, Hwy))

fx (wx,wy) = e 5 T 2 5 -
1 D1 =1 €XP (? [WXSX,i twysy; + QWXWYSX,iSY,jCD

2
ZZ 1 Z] 1 €Xp (— [wxsxl —i—wysyj + 2wx Wy Sx,iSy,;C ]) i JILXJ (wx,wy)

Y

421 1ZJ 1 €Xp (—2 |:wXSX'L+wYSYj+2waYSX7’SY] D

2
v (Zm 551 exp (9* (Wi sk +wish, + QWXWYSXJSYJC]) AijLig (Bwx, 9wY))

Py (wx,wy) = p
1 Zz 1ZJ 1 €Xp (* |:wXSX’L +WY5YJ + 2wx Wy Sx,iSy,jC D

2
ZL 1 ZJ 1 €Xp (7 [WXSXz erYsY] + 2wxwy Sx,;8y,;C ]) i v]l’?/] (wx,wy)

3

02 2 2 2 2
1 Zz:l ZJ:1 exp (7 {WXSX,i +wy sy ; + 2"JXWYSX,iSY,jC})

2 2 2
, Dim1 D=1 €XDP (0* [wWiski +wist; + 2WXWY8X¢8YJC]) sk iNigLij (Owx, fwy)
ox (wx,wy) =

)

4ZL 12] | €Xp (—2 [wxsleersyj + 2Wx Wy Sx i Sy ;C D

2 0% 7,2 .2 2 .2 2
>ict Zj:l €xp (* (W% +wisy; + 2wxwysxisyic] ) 53N Lij (Bux, wy)
, and

~2
oy (wx,wy) =
421 12 =1 &XP (i |:wXSX1+wYSYj+2WXwYSXZSYj D

2 621 2 .2 2 .2
Zizlzjzlexp(— [stXi+stYj+2waysx,i5y7jc] $x,i8v,j i jLi j (Bwx, Owy)

oxy (wx,wy) = “

2
1 Zz 1 Zg 1 8XPp (f [WXSX it WYSY] + 2wxwy sx, zSY,JCD

Note that fix, fiy, &i, 532/, and ox y are all scaled by

2 2
1
Z Z exp ( stXZ + stY] + 2CUXWYSX’1'SY’]'C]) .

=1 j=1

This ensures that we have jix (wx,wy) = myx, fiy (Wx,wy) = my, 6% (Wx,wy) = 5%,
7y (wx,wy) = sy, and Gxy (wx,wy) = csxsy in the normal case (i.e., when sy = sx; =

sx2 and sy = Sy = Sy2). We thus call these functions the modified moment functions.

Proof of Proposition Let denote respectively by fix, fiy, 6%, 0, and oxy the
modified moment functions jix, fiy, 6%, 0+, and Gy y defined in the proof of Proposition
and evaluated at the portfolio weights wx and wy that clear the market. For example,

fx = fix (Wx,wy) denotes the modified risk premium of X. Using Proposition , we then
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have
_ 052 (1 5?{,}/ + oxy d _ 052 (1 53{,1/ + @ oxy
= wxlo - = an = wyla - = :
HXx xV0x 5252 Hy 52 Hy yUOy 5252 Hx 52
Combining the two expressions, we obtain
- ) _ - . _9 _
Ux = 0 (anX -+ CL)YO-X7Y) and ny = 0 ((UYO'Y + anXy) . (325)

Let us define the modified covariance between asset X (asset Y) and the market gx p =
WxOx +Wyoxy (Fyn = Wyds +@xx.y), the modified market risk premium jiy, = Ox fix +
Wy jty, and the modified market variance 5§4 = Wx0Ox,m + Wydy . We have [y = 05%1 and

we can rewrite (3.25)) as
fix = Bxim and iy = By i, (3.26)

where 3, = O_kéM is the modified beta for £k = X,Y. From Equation (3.15) in Appendix
Om
we also have for k = X, Y

A1k Ak
my = U — ———F——. 3.27
Thus, plugging (3.27)) into the definition of iy, we obtain for £k = X, Y
_ e Ck
& ¢
% Z?:l Z?:l exp (% [@3(3.2&1' + @52/3%/,]' + QQX@YSXJSYJCD
where £ = — and

2 2 02 -2 2 2 2 — = -
Som1 2 exp (G [0k sk, + st + 20x@y sxasyic]) AijLij (Ox,@y)

2 2 02 [-2 .2 -2 2 -~ k
A1,18%,1 4% 2im Zj:1 exp (7 [WXSX;L‘ + Wy sy,; + QWXWYSX;L‘SYU‘C] Aijli s (x, wy)

k — - — — — — — — .
2V2m 2 25:1 exp (% (0% 5% ; + @E st + 20x Wy sx,iSy,ic] ) MijLij (@x, Oy)
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Combining (3.26)) and ([3.28]) leads to

x = Bxpné + Cx and py = By i€ + Gy

[
oy Y|X=VaRX .
Proof of Proposition |3.3. CoVaR, ? is defined such that
Y|X=VaRX
CoVaR,
/ 9y |x=varx (4; ) dy = q%.

Given the definition of gy|y_v,rx in Appendix four cases need to be considered

depending on the position of VaRff in the marginal distribution of X and on the position of

=Va. X . o). . . .
Co\/aR;/‘X*V "7 in the conditional distribution of Y.
—Va X
Proof of statement 1. If VaRé( < myx and CoVaR},/lX_V a < my, we have
Covar) ¥=VeRa F(VaR¥ )
4 a yYsMmx, My, Sx1,9Y,1,C
/ dl,l (V&R;(—) 1 X dy = C]%
o fx (VaRy;mx, sx,1)
y—my VaR;(—mX
Making the change of variable z = —2* - ;X’l and doing some computations, we
—c
obtain
_ X VaRX —m (7
CoVaRqY|X VeRa _ my + csmq—x + V1 — sy, 07! LX . (3.29)
SX,l d171 (VaRq )
Y|X=VaR¥ . . . . C .
Proof of statement 2. If CoVaRy, ‘ is in the right part of the conditional distribution

—Va X
of Y and VaRff is below its mode, CoVaRé/lX_v g

Y|X=VaRX

/CoVaRq 4 (VaRX) f(VaRf,y;mx,my,sx,bsm,c) dy =
1,2 N
my " e (VaRgmy, sx)
my VaRX, iMmx, My, Sx.1,SY1,C
% _/ 0 (VaRé() f(VaR; ,y ); Y5 S8X,15 SY,1 )dy.
- fx (VaRq s M, SX,I)
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. . . . . Y| X=VaR¥
From this expression and using similar computations, we find that CoVaR, | M equals

VaRX — my % dy (VaRX) c (VaRX — mx)
Fosyg—t VT = Py | — e [ - o [ ————— ] ).
"y CSYQ SX,I ¢ SK? <d172 (VaR;() dl,g (VaRf) AV, 1-— CQSXJ

Proof of statements 3 and 4. The last two cases in which VaRg( is in the right part of
the marginal distribution of X are computed in the same way. We just need to replace sx
by sx2, di1 (VaR) ) by da1 (VaR;) ), and di 5 (VaR)) by da (VaR)).

Introducing M, ; and M, we find the expressions reported in Proposition .

[ |

Proof of Corollary . Taking the difference between (3.29) evaluated at X = VaRé(

and X = VaRg) yields the result.

[ |
Proof of Proposition [3.4, CoES, (Y) is defined as
1 +o0 VaRg{
CoES, (Y) =E (Y|X < Va,R;{) = ﬁ/ / yg(z,y) dzdy.
Proof of statement 1. If VaRg( < myx, we have
1 my VbR? +o0 VaRf
CoES, (Y) = A (Am/ / yfi1(z,y) dedy + )\1,2/ / yfi2(x,y) d:vdy) .
—oc0 J—o00 my —00
(3.30)

To compute the first integral of Equation (3.30]), we make the following change of variables

T —m -m . )
U= X and v = Y Y The integral can therefore be rewritten as
Sx,1 Sy,1
VaR ) —m
Sy,1 /O / T ( u? +v* — 20uv> dudv + moL 0 VaRé( —my
——— vexp| —————— udv +m —00,0, —00, ———— | .
amvi—2/) o) o b 201 — @) Y ) sx1

To compute the first term of this expression we make the change of variables u = u and
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vV —Cu

z = ———_ The first term is then given b
T g y

VaRxme
V-2 [“ho L 24,2
Sy 1 c / v 2/ X1 <Z+ cu )exp (_u + 2z ) duds
27T —0oQ —00

VaRé(me
SX,1

V1= 2 —_—) 2 - Ci 2
— SY12€/ exp (—u2> </ =y exp (—Z> dz) du
™ —00 [o.¢]

VaRqX —mx

/g X 2 - 2
+ SY’lc/ oy exp v / e exp —Z) 4z du
27 —00 2 —00 2

This sum can be rewritten to

VaRX —mx VaRX —mx
sy1vV1—c? / Sx1 u? du + sch/ SX1 u? o cu d
- exp| ————— U ’ uexp | —— ey .
o . P\ 20— Vo ) PL73 N

We then compute the first part of this sum directly, and we integrate by parts to compute

the second part. After rearranging the terms we finally get that the first integral of Equation
(3.30) equals

Sy o VaRf—mx B CSYJ(I) _C(VaR?—mx> exp _(VaRg{—me
V2 sx1V1—c? V2r sx,l\/l—ic2

VaRX —m
oyl (_oo,o, . _> |

SX,1

)

Using a similar reasoning, we obtain that the second integral of Equation (3.30) equals

Y2 o VaR;( —mx\  csy2 1—& c (VaRé( — mX) o [ (VaRé( — mX)2
V2 sx1V1—¢c? V2 sx1V1—¢c? P 253(71
VaRX —m
+my L <0, 400, —00, qX) .
5X,1
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Hence, we obtain

1 VaRX —m VaRX —m
CoES, (Y) = P lmy <)\1,1L <—00,07 —00, qX) + A1 2L (0, +00, —00, qX>>
q%

SX,1 S$x,1
X X
+ A128y,2 — )\1,13Y,1(I) VaRy —mx VaR, —mx y
e | St TR
V 27 5X,1m $Xx,1

¢ (VaRY — mx) ¢ (VaRX — my)
<)\1,13Y,1(I) (-m) + A1 25v,2 (1 - (—SXJ\(I/W .
Proof of statement 2. If VaRf > my, CoES, (Y) is

1 my mx +oo mx
CoES, (V) = —- (Am / / yfia(e,y) dedy + M / / yfia(z,y) dudy

my VaR VaR
)\21/ / yfo1(z,y) da:dy+/\22/ / yfoo(z,y) dxdy

Using similar computations we obtain

1 1 sin~! —1 VaR¥ —
CoES, (V) = % [mY (/\1,1 ( + S (C)> + A1 0052 (<) + X1 L <—OO70707 aqu>
0 s

4 27 SX,2

VaR>X — 1— _ 1 _
+ Mool <O,+oo,0, g X mX)) L A=)z = Ava) sy = (14 6) (Aa = Ao) sva

8$Xx,2 242w
n A2,25v,2 — A2,18v,1 > VaR;( —mx VaRf —mx
, e | e TMX
V2 sx2V1—c? 8$x,2

c(VaRX —mX) c(VaRX —mX)

A | —— L -7 A - ——2 7 .

( v ( sx2V1—c2 T Az2dvz sx2V1—c2

Introducing M, 1, M,2, and L and slightly rearranging the terms, we find the expressions
reported in Proposition
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3.C Additional results

3.C.1 Sharpe ratio in the portfolio choice setting

The Sharpe ratio of the portfolio of two risky assets is

wx px + wy fy

2 ;2 2 2 0.5°
(Wko% + wyoy + 2wxwyoxoyp)

SR(R,) =

Using pux = py = p and ox = oy = 0, we obtain

Ju! wx + wy
SR(R,) = = 5 D) 0.5
0 (Wi + wy + 2wxwyp)
_ K wx + wy
= 05
o ((wX +wy)?—2(1—p) waY)
—0.5

A l1-201—p) S
o
(55 +1)
Using the last expression, it is easy to check that the Sharpe ratio is increasing in wy /wy for
wx /wy < 1 and decreasing in wy /wy for wx/wy > 1. It is also continuous in wx /wy. Thus,
wx /wy = 1 maximizes the Sharpe ratio and deviations from one measure the mean-variance

inefficiency of the portfolio.

3.C.2 Sample variance of co-skewness

Below we calculate the sample variance of co-skewness for the case in which returns are
drawn from a BN distribution. Let m;; = E [(X — E (X)) (Y — E (Y))J] denote the sample
centralized co-moment of order ¢j of a sample of size n, and let p1;; denote the corresponding

population centralized co-moment. Using the formula (10.17) in [Stuart and Ord| (1994)), the
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sample variance of co-skewness 7y, x is

ma

var (yy.x) = — 5
M2
2 var (magmL? cov (mon monm/?
_( Ha1 ) var (may) 2077402 Ly 21, TM20Ma
[150H02 13, 11201102 i a0t

Under the assumption that the returns are drawn from a BN distribution, we have po; =

0. Hence, using (10.23) in |Stuart and Ord| (1994), we can rewrite the previous expression to

var (m
var (yyx) = —2( 21)
Ha0 o2
L gy — iy + 8paopdy + pryphtoz — dizifinn — 2fiaopas
S . ‘
n Ha0H02

For the normal case, we have oy = Jg(, Lo2 = 012,, fha = 30}2032/ (1 + 4p2), 411 = pOx Oy,
ps1 = 3paxoy, and poy = 0x 0y (1 + 2p2). Plugging these expressions in the expression for

var (7yy,x) above, we get

2+ 4p?
var (VY,X) = N
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Figure 3.1: Four quadrants of BN distributions

Panel A: Unscaled Panel B: Scaled

y + X y + X
The blue (red, yellow, white) quadrant is the first (second, third, fourth) quadrant of a BN
distribution in which X and Y have zero-means, no correlation, and variances of 1.2 and 0.6
(0.6 and 0.6, 0.6 and 1.2, 1.2 and 1.2). The quadrants are unscaled in Panel A and scaled

to obtain a continuous skewed pdf in Panel B.
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Figure 3.2: Comparison of bivariate distributions

Panel A: Split normal Panel B: Normal

Panel C: Skew-normal Panel D: Skewed ¢

The figure presents contour plots of the SBN pdf (Panel A), the BN pdf (Panel B), the
BSN pdf (Panel C), and the BST pdf constructed with a Gaussian copula (Panel D). The
distributions are parameterized such that the two random variables X and Y have an ex-
pected value of zero, unit variance, a correlation of 0.4, and skewnesses are zero for X and
equal to —0.6 for Y (for the asymmetric distributions). The distribution in Panel D has
two additional parameters that are chosen to match the kurtosises of X and Y in Panel A.
All plots represent X on the horizontal axis and Y on the vertical axis. Straight dashed
lines highlight the mode values of the SBN distribution, and the contour plot of the SBN
distribution is included in Panels B-D to facilitate the comparison.
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Figure 3.3: The bivariate distribution of returns on the SP500 and ...

Panel A: Russell Panel B: BarcBond

or oY) 1 01r

0.05 0.05

-0.05 -0.05

01+ o v E -0.1F

01 005 0 005 04 o1 005 0 005 04
Panel C: GSCI Panel D: MSCI EM
0.1 ) ) ol ™~ 0.1
005 e = 1 005+ 7
0 o) 1) of f

0,05+ \ Py / ot 1 -0.05¢

01 ) . 1 01
0.1 -0.05 0 0.05 0.1 0.1 -0.05 0 0.05 0.1

Each contour plot presents the bivariate pdf of the monthly excess returns on the S&P 500
TR Index on the x-axis and the corresponding return of one of the four other indices on
the y-axis (the Russell 2000 TR Index (Panel A), the Barclays US Aggregate Bond TR
Index (Panel B), the GSCI TR (Panel C), and the MSCI Emerging Market TR Index (Panel
D)). The sample contains returns from January 1989 to June 2018 and each observation is
represented in the x-y plane with a dot. Each panel contains the empirical pdf estimated
with a kernel density estimator (dashed lines) and the pdf of the SBN distribution with the
sample means, standard deviations, correlation, and skewnesses (solid lines).
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Table 3.1: Descriptive statistics

SP500 Russell BarcBond GSCI MSCI EM
Panel A: moments
Mean 0.67% 0.71% 0.27% 0.15% 0.78%
St.dev. 4.07% 5.31% 1.04% 5.95% 6.58%
Skewness  -0.586 -0.519 -0.239 -0.166 -0.586

0.00 0.00 0.07 0.20 0.00
Kurtosis 4.309 4.146 3.630 4.879 4.795
0.00 0.00 0.02 0.00 0.00

Panel B: correlations

Russell 0.806 -
BarcBond 0.106 -0.006 - - -
GSCI 0.175  0.205 -0.051 - -
MSCI EM 0.670  0.655 0.018 0.277 -

The table contains the means, standard deviations, skewnesses, and kurtosises of the monthly
index returns in excess of the 30-day t-bill return in Panel A and their correlations in Panel
B. The indices are the S&P 500 TR Index (SP500), the Russell 2000 TR Index (Russell), the
Barclays US Aggregate Bond TR Index (BarcBond), the GSCI TR (GSCI), and the MSCI
Emerging Market TR Index (MSCI EM). The p-values for the null hypothesis that skewness
(resp. kurtosis) is zero (resp. three) are reported below the skewness (resp. kurtosis) under
the null of normally distributed returns. All statistics are monthly and for returns from
January 1989 to June 2018.
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Table 3.2: Kolmogorov-Smirnov tests

Index pair SBN BN BSN BST
SP500, Russell 0.06 0.01 0.15> 0.36
SP500, BarcBond 0.24 0.05 0.03 0.81
SP500, GSCI 0.08 0.03 0.04 0.63

SP500, MSCI EM 0.02 0.01 0.03 0.28
Russell, BarcBond 0.26 0.06 NA 0.53

Russell, GSCI 0.07 0.00 0.17 0.32
Russell, MSCI EM 0.04 0.04 0.19 0.66
BarcBond, GSCI 0.49 0.24 0.26 0.99
BarcBond, MSCI EM  0.13 0.12 NA 0.99
GSCI, MSCI EM 0.01 0.03 0.04 0.28

The table contains the p-values of the bivariate Kolmogorov-Smirnov goodness-of-fit test
proposed by [Peacock| (1983)) for the null hypothesis that the excess returns are drawn from
the distribution indicated in the column header for all the possible pairs of the five indices.
NA indicates the cases in which the parameters of the BSN distribution are outside of their
admissible range.
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Table 3.3: Tests on co-skewness

Index pair Emp. co-skewness Test vy, x Test vxy

Ty, X VXY SBN BN BSN BST SBN BN BSN BST
SP500, Russell -0.634 -0.624 0.12 0.00 0.52 0.11 0.11 0.00 046 0.15
SP500, BarcBond -0.015 -0.200 0.82 0.84 0.00 0.73 0.02 0.01 0.20 0.04
SP500, GSCI -0.322 -0.446 0.00 0.00 0.52 0.00 0.00 0.00 0.03 0.00
SP500, MSCI EM -0.589 -0.570 0.05 0.00 0.91 0.05 0.07 0.00 0.96 0.14
Russell, BarcBond -0.082 -0.110 0.29 028 NA 0.35 0.14 0.14 NA 0.18
Russell, GSCI -0.261 -0.490 0.02 0.00 0.33 0.06 0.00 0.00 0.01 0.00
Russell, MSCI EM -0.536 -0.549 0.04 0.00 0.97 0.12 0.05 0.00 0.96 0.16
BarcBond, GSCI -0.173 -0.084 0.02 0.02 0.67 0.04 0.24 0.26 0.23 0.36
BarcBond, MSCI EM -0.134 -0.095 0.09 0.07 NA 0.13 0.26 0.21 NA 0.36
GSCI, MSCI EM -0.381 -0.274 0.00 0.00 0.15 0.01 0.03 0.00 0.26 0.13

The table contains empirical co-skewnesses of the excess returns of ten pairs of indices from different asset classes (large stocks,
small stocks, bonds, commodities, and emerging markets stocks) and the p-values of the tests for both 7y x and ~yxy that
the excess returns are drawn from the distribution indicated in the column header. For the BN distribution, we compute the
p-values using the variance of co-skewness under the null derived in Appendix [3.C.2] For the other distributions, we compute
the p-values by generating 100,000 times the statistics (using samples of 354 observations) under the null. NA indicates the

cases in which the parameters of the BSN distribution are outside of their admissible range.
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RETURN DISTRIBUTIONS

Table 3.5: Portfolio choice with CPT

Correlation -0.2 0 02 04 0.6 0.8 -0.2 0 0.2 04 06 0.8 -0.2 0 0.2 0.4 0.6 0.8
VX =Yy =7 Benchmark case: v =10 Panel A: v =0.6 Panel B: v = —0.6

WX,SBN; WY,SBN 14.04 778 3.68 0.76 0.00 0.00 13.30 877 595 418 3.08 2.27 17.62 5.14 0.00 0.00 0.00 0.00
CER (wspn) in % 21.01 866 247 0.13 0.00 0.00 31.52 18.81 11.24 6.88 4.60 2.96 13.41 0.73 0.00 0.00 0.00 0.00
CER (wpn) in % 21.01 866 2.47 0.13 0.00 0.00 31.47 18.66 9.94 253 0.00 0.00 13.07 0.55 -1.82 -0.95 0.00 0.00
Yospns YonN 0.00 0.00 0.00 0.00 NaN NalN 0.40 042 044 048 0.54 0.60 -0.40 -042 NaN NaN NaN NalN
Yx # Ty Panel C: yx = 0.6 and vy = —0.6 Panel D: vx = 0.6 and 7y =0 Panel E: vx =0 and vy = —0.6
WX,SBN 15.00 934 6.08 4.19 320 3.98 1460 949 6.39 448 349 3.90 15.77 785 2.06 0.00 0.00 0.00
WY,SBN 1035 5.15 244 1.03 0.22 -0.71 11.51 654 354 1.71 057 -0.51 13.77  6.09 1.32 0.00 0.00 0.00
wx,$BN/Wy,SBN 145 1.81 249 4.06 14.70 -5.62 1.27 145 1.80 2.62 6.18 -7.61 1.15 129 156 NaN NaN NalN
CER (wspn) in % 24.20 12.38 6.14 3.13 1.77 215 26.96 14.69 7.70 3.99 231 221 1760 5.25 041 0.00 0.00 0.00
CER (wpn) in % 21.20 8.63 228 0.08 0.00 0.00 25,79 1329 583 1.18 0.00 0.00 17.04 447 -035 -041 0.00 0.00
Yosen 0.27 034 040 047 056 0.75 030 033 038 044 0.52 0.67 -0.15 -0.14 -0.11 NaN NaN NaN
YouN 0.00 0.00 0.00 0.00 NaN NaN 0.20 0.21 0.22 0.22 NaN NaN -0.20 -0.21 -0.22 -0.22 NaN NaN

The table is constructed in the same fashion as Table E Portfolio weights maximize CPT preferences implemented with the piecewise negative
exponential specification of |Giorgi and Hens|(2006) and a parameterization that corresponds to the experiments of [Tversky and Kahneman|(1992).
The value function is

—6.52¢79%% 4 6.52, if z >0,
v(z) = )

14.7¢%2% —14.7, ifx <0,

b L 0.65 / (,0.65 0.65) 1/0-6° s

and the Tversky and Kahneman|(1992) weighting function is T'(p) = p"°°/ A@ P (1-p) v . The reference point is the wealth generated by
the risk-free return. Therefore, the CPT objective is [ v (wx spnRx + wy,spnRy)d (T o CDF'), where CDF is the cumulative distribution function
of the portfolio return. To solve the portfolio choice problem, we draw 107 return pairs from the SBN distribution and then maximize the sample
equivalent of the CPT objective. The returns are drawn from a distribution with the same parameters as in Table[3.4] except that the expected excess
returns are equal to 6.13% to obtain the same portfolio weights as in Table Eérms the return distribution is symmetric and p = 0.4.
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RETURN DISTRIBUTIONS

Table 3.7: ACoVaR

Correlation -0.2 0 0.2 0.4 0.6

0.8

Benchmark case: yx =0 and vy =0

ACoVaRy ™ 0320 0 -0.320 -0.658 -0.987

-1.316

Panel A: vx = 0.6 and 7y = 0.6

ACoVaR! ™ 0279 0  -0.267 -0.490 -0.629

-0.729

Panel B: vx = —0.6 and 7y = —0.6

ACoVaRy ™ 0381 0 -0.408 -0.848 -1.293

-1.670

Panel C: vx = 0.6 and 7y = —0.6

ACoVaR;® 0471 0 -0483 -0.956 -1.394

-1.786

Panel D: vx = 0.6 and vy =0

ACoVaR; ™ 0381 0 -0.380 -0.754 -1.104

-1.393

Panel E: vx = —0.6 and vy =0

ACoVaR! ™ 0312 0 -0.312 -0.630 -0.968

-1.344

Panel C’: vx = —0.6 and vy = 0.6

ACoVaR;® 0222 0 -0225 -0.449 -0.687

-0.960

Panel D’: vx =0 and 7y = 0.6

ACoVaR; ™ 0235 0 -0239 -0473 -0.694

-0.868

Panel E’: vx =0 and 7y = —0.6

ACoVaR;® 0411 0 -0417 -0.833 -1.238

-1.624

The table contains the ACoVaR for the assets X and Y at the 5% probability. The SBN
distribution is calculated to match the first three moments of the distribution of X and Y
and a correlation that ranges from -0.2 to 0.8. In all panels, X and Y have zero means and

unit variances. The skewnesses of X and Y vary through panels.
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Table 3.8: CoES

Correlation  -0.2 0 0.2 0.4 0.6 0.8
Benchmark case: vx =0 and 7y =0
CoES:™ 0413 0 -0413 -0.825 -1.238 -1.650
Panel A: vx = 0.6 and 7y = 0.6
CoES:™ 0472 0 -0468 -0.916 -1.294 -1.579
Panel B: vx = —0.6 and vy = —0.6
CoESY™ 0403 0 -0418 -0.882 -1.424 -1.962
Panel C: vx = 0.6 and 7y = —0.6
CoEST™ 0468 0  -0472 -0.948 -1437 -1.955
Panel D: 7x = 0.6 and 7y =0
CoES:™ 0470 0 -0470 -0.941 -1.408 -1.846
Panel E: 7vx = —0.6 and 7y =0
CoES:™ 0408 0  -0.408 -0.817 -1.236 -1.698
Panel C’: vx = —0.6 and vy = 0.6
CoESI™ 0418 0 -0403 -0.796 -1.162 -1.481
Panel D’: vx = 0 and vy = 0.6
CoES!™ 0417 0 -0411 -0.816 -1.201 -1.509
Panel E’: vx =0 and 7y = —0.6
CoES!™ 0411 0 -0416 -0.851 -1.330 -1.883
The table contains the CoES for the assets X and Y at the 5% probability and is constructed
in the same way as Table [3.7]
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ASSET PRICING WITH HETEROGENEOUS AGENTS AND NON-NORMAL
RETURN DISTRIBUTIONS

Table 3.9: Realized vs. theoretical CoES

Russell BarcBond GSCI MSCI EM H SumSq

Panel A: COES;/'X
Empirical -2.207 -0.112 -0.762 -1.873 NA
SBN -1.932 -0.216 -0.356 -1.606 0.323
BN -1.661 -0.218 -0.359 -1.380 0.715
BSN -2.045 -0.769 -0.808 -1.864 0.460
BST -1.863 -0.221 -0.365 -1.534 0.403
Panel B: COESi)'X
Empirical -1.699 -0.056 -0.348 -1.509 NA
SBN -1.586 -0.182 -0.301 -1.310 0.071
BN -1.413 -0.185 -0.306 -1.174 0.213
BSN -1.679 -0.582 -0.628 -1.514 0.356
BST -1.531 -0.186 -0.310 -1.262 0.108
Panel C: COESQYEJX
Empirical -1.081 -0.181 -0.165 -0.866 NA
SBN -1.067 -0.131 -0.216 -0.877 0.005
BN -1.023 -0.134 -0.222 -0.850 0.009
BSN -1.127 -0.300 -0.355 -0.986 0.067
BST -1.053 -0.136 -0.224 -0.871 0.006

The table contains the standardized empirical CoES at the 5%, 10%, and 25% probability
and the corresponding theoretical expected shortfall that assumes index excess returns follow
the indicated distribution. Following the definition in Section [3.4.2] the S&P 500 TR Index
is the conditioning variable X and the other indices are the variable of interest Y. The last
column contains the sum of squared differences between the empirical and theoretical CoES
for the four index pairs for each distribution and each probability.
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Substantial summary in French

Les modeles d’évaluation d’actifs ont pour role d’attribuer une valeur aux différents actifs
financiers et de décrire leurs caractéristiques sur les marchés; cela permet alors aux agents
d’élaborer leurs stratégies d’investissement. Afin de s’assurer de la pertinence de leurs conclu-
sions, il est donc primordial que les hypotheses sous-jacentes a ces modeles soient convena-
blement définies : elles doivent étre a la fois suffisamment réalistes, pour que les résultats
théoriques en découlant reproduisent fidelement les observations empiriques, et suffisamment
simplificatrices, pour que I'on puisse procéder a une analyse théorique précise et, notamment,
interpréter 1’origine des résultats obtenus.

Dans cette these, constituée de trois chapitres indépendants, j’étudie la remise en question
d’hypotheses simplificatrices qui se retrouvent dans un grand nombre de modeles d’évaluation
d’actifs. Plus précisément, je cherche a analyser les impacts du relachement de I'une ou I'autre
des hypotheses suivantes : celle d’homogénéité des agents financiers et celle de normalité des
rendements des actifs. Les deux premiers chapitres de cette these s’intéressent au relachement
de la premiere hypothese et le troisieme chapitre s’intéresse au relachement de la seconde.
J’étudie donc des modeles d’évaluation d’actifs plus réalistes, avec des agents hétérogenes ou

avec des actifs dont les rendements ne suivent pas une loi normale.

Agents hétérogenes

L’hypothese d’homogénéité des agents implique que les différents acteurs des marchés fi-

nanciers sont identiques. En particulier, cette hypothese présume que les agents (également
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appelés de maniére équivalente < investisseurs > dans le reste de la these) sont rationnels
et ont les mémes croyances concernant ’avenir. Ici, < rationnels > veut dire que les agents
ne sont ni optimistes, ni pessimistes, et que leurs croyances sont les bonnes : s’il existe un
processus économique de richesse ayant une tendance donnée, les investisseurs s’accorderont
tous sur la vraie valeur de cette tendance et aucun ne la surestimera (comme un optimiste
le ferait), ni ne la sous-estimera (ce qui serait le cas d’un pessimiste). L’avantage d’une telle
hypothese est qu’il est alors aisé d’agréger tous les agents financiers en un unique agent
représentatif, facilitant ainsi la résolution des modeles sous-jacents. Différents arguments ont

longtemps été avancés afin de justifier une telle hypothese simplificatrice.

Premierement, dans I'esprit des travaux de Friedman| (1953), il a été soutenu que, méme
s’il était possible que certains investisseurs soient optimistes ou pessimistes, ils ne devaient
pas étre pris en compte, car leur irrationalité les menait a faire de mauvais choix et, a plus
long terme, menait a leur disparition (voir, par exemple, Sandroni, 2000). Toutefois, comme
le soulignent Kogan et al. (2006), la survie des agents et leur impact sur le marché sont deux
concepts différents qui doivent étre étudiés séparément. Yan (2008) montre par exemple
que I’élimination de ces agents irrationnels prend beaucoup de temps (au moins plusieurs
dizaines d’années, voire plusieurs centaines) et qu’il faut donc tenir compte de leurs impacts
sur les marchés. Une étude récente de Bottazzi et al.|(2018) indique également que les agents
hétérogenes ne sont pas nécessairement éliminés a long terme et que la non-optimalité du

portefeuille d’'un agent peut corriger I'inexactitude de sa croyance, ce qui entraine sa survie.

Un second argument important en faveur de I'hypothese d’homogénéité des croyances
soutient que, comme il n’y a aucune raison d’avoir un biais optimiste ou pessimiste dans
I’économie, les agents devraient étre rationnels en moyenne et les effets induits par les inves-
tisseurs biaisés devraient donc s’annuler. |Jouini and Napp| (2011) montrent dans un modele
théorique que ce n’est pas le cas et qu’une situation ou des agents hétérogenes sont rationnels

en moyenne n’est pas équivalente a une situation ou tous les agents sont rationnels.
Enfin, de facon similaire au concept des croyances pragmatiques de |Hvide (2002), il
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existe un argument en faveur de I’hypothese d’homogénéité des croyances qui stipule que les
agents irrationnels (c’est-a-dire optimistes ou pessimistes), observant que les agents rationnels
prennent de meilleures décisions, devraient adopter la méme croyance afin de connaitre la
méme réussite. Remettant en cause ce troisieme argument, \Jouini and Napp| (2016) montrent
que, sous certaines conditions, des agents irrationnels peuvent faire mieux que des agents
rationnels et qu’ils n’ont donc pas de véritables raisons de les imiter.

Etant donné que chacun des arguments avancés pour justifier cette hypothese a été remis
en cause, et étant observée la grande diversité d’actions des différents acteurs des marchés fi-
nanciers, cette hypothese d’homogénéité et de rationalité des croyances apparait peu crédible.
Il est ainsi pertinent d’étudier I’hétérogénéité des croyances des investisseurs et les poten-
tiels impacts qu’elle peut avoir sur les marchés financiers ; cela fait I'objet des deux premiers

chapitres de ma these.

Premier chapitre

Dans le premier chapitre, intitulé Live fast, die young: equilibrium and survival in large
economies, paru dans la revue Fconomic Theory en avril 2021 et coécrit avec Elyes Jouini,
nous étudions cette question d'un point de vue théorique. Nous considérons une économie
peuplée par une infinité d’agents qui, en plus d’avoir des croyances différentes sur ’avenir,
ont également des taux de préférences temporelles différents. Concretement cela veut dire
que, pour un niveau d’optimisme ou de pessimisme donné, les investisseurs seront également
plus ou moins patients ou impatients, dans le sens ou ils auront un taux d’actualisation
temporelle plus ou moins important.

Bien que moins largement abordé, ce second type d’hétérogénéité a également été exa-
miné dans la littérature. A la suite des travaux fondateurs de [Samuelson| (1937), il a été
admis qu’un taux d’actualisation unique pouvait étre utilisé pour condenser les choix in-
tertemporels. Cependant, des études empiriques (voir, entre autres, Frederick et al., 2002)

montrent que cette hypotheése n’est pas réaliste et qu’il existe en fait une grande variété de
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taux de préférences temporelles parmi les investisseurs. En étudiant plusieurs pays, |Wang
et al. (2016) mettent par exemple en évidence cette hétérogénéité et montrent que des fac-

teurs économiques et culturels peuvent 'expliquer.

De plus, nous envisageons dans notre étude la possibilité que ces deux types d’hétérogénéité
soient corrélés. Plus concretement, en supposant une corrélation négative, cela veut par
exemple dire que nous considérons le cas ou les agents financiers les plus optimistes sont
également les plus patients—ce que des études empiriques semblent effectivement démontrer.
A notre connaissance, nous sommes les premiers a proposer une étude des implications d’une
corrélation entre ces deux types d’hétérogénéité, et cela constitue donc 1'une des contributions

principales de notre papier.

Une autre hypothese importante sur laquelle repose le modele développé dans 'article
est I’hypothese de la présence d’un continuum d’investisseurs sur le marché. En fait, I'intérét
de considérer un nombre infini d’agents est triple. Tout d’abord, une telle hypothese permet
de tenir compte de l'intégralité des croyances potentielles, ainsi que de tous les degrés de
patience possibles. De plus, cela implique qu’il existera toujours, et quelles que soient les
circonstances, une hétérogénéité parmi les investisseurs. En effet, considérer un nombre fini
d’agents implique nécessairement de définir ’agent < le plus optimiste de tous ». Dans les
états du monde les plus positifs, cet agent concentrerait toute la richesse de ’économie et
il n’y aurait alors plus d’hétérogénéité sur le marché (puisqu’il n’y aurait plus qu’un in-
vestisseur). Enfin, d’un point de vue technique, cette hypothese nous autorise a décrire les
différentes croyances et les différentes préférences temporelles des agents a 'aide de lois sta-
tistiques. Cela permet a la fois de limiter le nombre de parameétres a utiliser (nous avons
seulement besoin d’identifier deux parametres par loi statistique) et d’exprimer nos résultats
en fonction de ces parametres. Comme précédemment évoqué, cette utilisation de lois statis-
tiques facilite également la possibilité d’étudier des hétérogénéités corrélées en introduisant

un coefficient de corrélation entre les deux lois décrivant les hétérogénéités.
Dans un premier temps, nous calculons I’équilibre de notre modele. Nous étudions en-
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suite 'impact de I’hétérogénéité des investisseurs sur certaines caractéristiques d’équilibre du
marché et, en particulier, nous analysons la maniere dont la corrélation entre les deux types
d’hétérogénéité les affecte. Enfin, en nous focalisant sur une économie ou les hétérogénéités
ne sont pas corrélées, nous déterminons les caractéristiques de ’agent qui survit a long terme
et celles des agents qui maximisent leur utilité attendue (a la fois d’un point de vue ex-ante,
c’est-a-dire avant que tous les événements a venir se réalisent et d’un point de vue ex-post,

apres leur réalisation).

L’hétérogénéité des croyances et celle des taux de préférences temporelles ont tout d’abord
un impact sur le taux sans risque et le prix de marché du risque. Plus précisément, contraire-
ment au cas homogene (c’est-a-dire celui ou tous les agents sont identiques), nous obtenons
des prix de marché du risque anticycliques et des taux sans risque procycliques. Ces résultats,
obtenus en considérant un continuum d’agents hétérogenes, sont en accord et completent de
précédentes études, comme celle de [Jouini and Napp| (2011)) ou celle de Bhamra and Uppal
(2014)), qui considerent des modeles avec seulement deux groupes d’investisseurs. Ils sont
également conformes aux observations empiriques selon lesquelles < les primes de risque
sur les actions semblent etre plus élevées au creux des cycles économiques qu’au sommet >
(Campbell and Cochrane, 1999) et que le taux a court terme est un indicateur procyclique
de lactivité économique (voir, par exemple, Friedman, 1986)). Nous trouvons que ces effets
sont amplifiés lorsqu’il existe un biais optimiste moyen dans ’économie (c’est-a-dire quand la
moyenne de la loi statistique utilisée pour décrire le biais des croyances des investisseurs est
positive) et réduits lorsque les investisseurs sont en moyenne pessimistes. De plus, contraire-
ment aux études précédentes, nous constatons que plus les différentes croyances des agents
sont dispersées, plus ces effets sont importants. En étudiant la dynamique temporelle de
ces résultats, nous constatons en outre que le prix de marché du risque asymptotique est
égal a celui obtenu dans un cadre homogene, alors que le taux sans risque asymptotique
est inférieur a celui du cas standard. Cela est di au fait que seuls les investisseurs les plus

patients, caractérisés par un faible taux de préférences temporelles, survivent a long terme.
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L’étude de la corrélation entre les deux types d’hétérogénéité conduit a une conclusion
supplémentaire relative a ces deux caractéristiques du marché : dans le cas ou la corrélation
est négative, et ou les agents optimistes sont donc également les plus patients, le taux sans
risque est réduit et le prix de marché du risque augmenté. Ce nouveau résultat est intéressant
a la lumiere des difficultés rencontrées par la littérature pour expliquer les valeurs observées

de la prime de risque et du taux sans risque.

Dans la suite de notre analyse, nous considérons un actif financier dont le processus de
dividendes est donné par la dotation totale de ’économie et étudions sa volatilité (étant
donné qu’il n’y a qu’un actif dans I’économie que nous considérons, la volatilité de cet actif
peut donc étre vue comme étant la volatilité du marché). Notre principal résultat est alors de
démontrer qu'une corrélation non nulle entre les deux types d’hétérogénéité a un impact sur
la volatilité du marché. Plus précisément, si nous supposons une corrélation négative entre
elles, nous observons une volatilité excessive sur le marché. De plus, cet effet est d’autant
plus important que les agents sont en moyenne patients. Ce résultat nouveau fait écho a celui
trouvé par Atmaz and Basak (2018]), qui déduisent un résultat similaire de volatilité excessive
dans le cadre d’un continuum d’agents qui ne sont hétérogenes qu’en termes de croyances.
Dans leur travail, le principal facteur explicatif de la volatilité excessive est la dispersion des
croyances, alors qu’elle ne joue aucun role dans notre analyse. En effet, nous considérons des
agents ayant des fonctions d’utilité logarithmiques, qui sont connues pour atténuer l'effet
de la dispersion des croyances, et c’est la corrélation entre les deux types d’hétérogénéité
qui est a l'origine de notre résultat. Dans une économie a horizon fini peuplée d’'un agent
patient et d’'un agent impatient, [Li| (2007) obtient un résultat similaire : il constate que la
volatilité du marché est supérieure a la volatilité de la dotation globale si ’agent patient est
plus optimiste que I'agent impatient. Par conséquent, notre résultat étend sa constatation
au cas d’un continuum d’investisseurs, ce qui nous permet d’étudier plus en profondeur le

role de la corrélation.

Une autre caractéristique de marché que nous étudions est le volume d’échange qui,
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contrairement au cas ou les agents sont homogenes et agissent donc de maniere identique
sans pouvoir trouver de contrepartie a leurs échanges, est non nul. En considérant I’économie
dans son ensemble et en supposant une absence de corrélation, nous remarquons que ce
volume diminue avec le temps du fait de la disparition progressive de certains investisseurs. Il
dépend a 'inverse positivement de la dispersion des croyances, car des agents plus hétérogenes
impliquent davantage de possibilités d’échanges. De méme, a 1’échelle individuelle, nous
constatons que plus un investisseur est patient, plus son volume d’échange est important. Ce
résultat est du a un effet de richesse et se renforce lorsque la corrélation des hétérogénéités
est élevée en valeur absolue. En revanche, il n’y a pas de relation claire entre le volume des
transactions d’agents partageant le méme taux de préférences temporelles et le biais de leur

croyarnce.

Dans la derniere partie de ce premier chapitre, nous étudions les caractéristiques de
certains agents spécifiques dans le cas ou la corrélation des hétérogénéités est nulle. Plus
précisément, nous déterminons les caractéristiques de l'investisseur survivant, c’est-a-dire
celui dont la part de consommation de richesse reste non nulle asymptotiquement, et celles des
investisseurs qui ont le plus haut niveau d’utilité tout au long de leur vie. Comme |Yan| (2008]),
nous obtenons tout d’abord que ’agent survivant de 1’économie est 1'agent le plus patient
des agents dont le biais de croyance est nul. De méme, en formant des groupes d’investisseurs
partageant le méme taux de préférences temporelles, nous constatons que I'agent rationnel de
chaque groupe est celui qui survit a long terme. Néanmoins, nous montrons également que,
pour chacun des groupes, cet agent rationnel n’est pas nécessairement celui qui a le plus haut
niveau d’utilité (a la fois ex-ante et ex-post). En particulier, si, par exemple, I’économie dans
son ensemble présente en moyenne un biais en faveur de 'optimisme, I’agent qui maximisera
son utilité ex-post sera un agent caractérisé par un biais de croyance positif non nul (mais
inférieur au biais moyen de 1’économie). Ce résultat s’inscrit dans la lignée de celui trouvé
par Jouini and Napp| (2016) qui montrent que < méme s’ils sont éliminés a long terme, les

agents irrationnels pourraient rationnellement rester irrationnels >. En d’autres termes, cela
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correspond au fait que, dans certaines circonstances, une vie plus courte (c’est-a-dire associée
a un taux de survie plus faible) peut étre plus gratifiante en termes d’utilité qu’une longue
vie. Ainsi, notre résultat vient enrichir la littérature déja existante car nous analysons un
continuum d’agents qui sont donc preneurs de prix. En effet, dans leur étude, |Jouini and
Napp (2016) considerent un modele a deux agents ou chaque agent a donc un impact sur le
prix d’équilibre; il est alors naturel que le biais d'un agent puisse lui profiter via son impact
sur le prix. Nous constatons que ce résultat est toujours vérifié dans une économie peuplée
d’une infinité d’investisseurs, ou I'impact sur les prix de chacun d’eux est nul.

Enfin, a l'instar de [Detemple and Murthy (1994), nous observons que notre économie se
caractérise par des vagues d’optimisme et de pessimisme, puisque la part de consommation
agrégée des agents optimistes augmente dans les bons états du monde et diminue, au profit

de celles des agents pessimistes, dans les mauvais états du monde.

Deuxieme chapitre

Le deuxieme chapitre de ma these, intitulé Disagreeing forever: a testable model with non-
vanishing belief heterogeneity, poursuit I’étude de la question de 'impact de I’hétérogénéité
des croyances sur les caractéristiques du marché. L'une des contributions théoriques princi-
pales de ce travail est que je considere un modele stationnaire ot 'hétérogénéité des croyances
ne disparait pas a mesure que le temps passe et o, en conséquence, les effets de cette
hétérogénéité sur les caractéristiques du marché sont persistants. L’avantage d’une telle pro-
priété de stationnarité, qui ne se retrouve pas dans le papier de |Atmaz and Basak (2018))
qui sont les plus proches de mon travail, est double. Tout d’abord, empiriquement, il ap-
parait que les agents ne s’accordent pas plus sur les rendements futurs du marché de nos
jours qu’ils ne le faisaient dans le passé; la persistance de divergence des croyances traduit
donc la réalité de facon plus pertinente. De plus, la stationnarité du modele permet d’en
tester les principales implications a 1’aide de données réelles sur une longue période. Ce cha-

pitre comporte ainsi a la fois une partie théorique et une partie empirique, qui confirme les
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résultats obtenus théoriquement. Il est également important de souligner que la stationnarité
du modele permet d’en déduire de nouvelles implications. En effet, cette propriété implique
que les relations obtenues sont vérifiées quelque soit I’horizon considéré, ce que j’examine et

confirme empiriquement.

Dans la partie théorique de ce chapitre, je développe, dans un cadre d’équilibre général
dynamique, un modele a générations imbriquées ou chacune des générations est constituée
d’un continuum d’agents, eux-mémes membres de différentes familles ayant des croyances
hétérogenes. De générations en générations, je fais en effet I'hypothese que chaque investisseur
donne naissance a un investisseur ayant les mémes croyances que lui, ce qui est I'un des
mécanismes permettant a 'hétérogénéité des croyances de persister dans le temps. Comme
dans le modele présenté dans le chapitre [l je me sers en outre d'une distribution statistique
pour décrire la répartition de la richesse des agents d’une génération donnée. En particulier,
la résolution du modele meéne a une distribution ayant un écart-type constant (ce qui garantit
la persistance de I'hétérogénéité des croyances) et une moyenne qui dépend positivement de
I’état du monde : dans les bons états du monde, les agents sont plus optimistes en moyenne

et dans les mauvais, plus pessimistes.

Il est également utile d’expliquer la dynamique temporelle de ce modele. Plus précisément,
la chronologie de la vie de chacun des agents d'une génération donnée est la suivante. A leur
naissance (par exemple a la date t), ils planifient les futures actions qu’ils réaliseront a la
fin de leur vie d'une durée T' afin de maximiser leur utilité (il est d’ailleurs important de
préciser que je fais I'hypothése que tous les agents sont dotés d’une fonction d’utilité CRRA,
ce qui differe de la fonction d’utilité logarithmique utilisée dans le chapitre (1| qui est plus
restrictive mais qui présente des avantages calculatoires pour tenir compte de la corrélation
avec I'hétérogénéité en préférences temporelles). Puis, a la date suivante (a la date t + dt),
les agents donnent naissance a la nouvelle génération d’investisseurs qui ont également une
durée de vie T'. Enfin, a la fin de leur vie (a la date t + T), ils réalisent ce qu'’ils avaient

planifié. Plus particulierement, les investisseurs consomment une partie de leur richesse et
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leguent la partie restante a la génération suivante. Cette nouvelle génération d’agents hérite
donc de la part de richesse non consommée et peut a son tour répéter les mémes actions :
juste apres avoir hérité (c’est-a-dire a la date t + dt 4+ T'), ils vont réaliser les actions qu’ils
avaient planifiées a leur naissance (a la date t + dt) et notamment léguer une partie de
leur héritage a leurs successeurs (nés a la date ¢ + dt + dt), qui le consommeront a la date
suivante (a la date ¢t + dt + dt + T'), etc. Cette dynamique résulte ainsi en une économie
avec consommation effective a chaque date, ce qui n’est pas le cas du modele a horizon fini
proposé par Atmaz and Basak| (2018]) ou la seule date de consommation intervient a la date

terminale du modele (a laquelle I'hétérogénéité des croyances a totalement disparu).

Par ailleurs, dans ce chapitre, je développe également un modele alternatif, succincte-
ment décrit dans le paragraphe suivant, menant a des résultats équivalents et facilitant la

construction d’un agent représentatif intertemporel.

Ce modele alternatif repose sur la présence d’un continuum d’investisseurs ayant une
durée de vie infinie, qui révisent continuellement leurs plans de consommation et décalent
continuellement leur date de consommation, conduisant ainsi a un modele a horizon glissant
(et sans consommation effective). Dans ce cadre, chacun des agents correspond approximati-
vement a une famille entiere du modele a générations hétérogenes imbriquées et les révisions
successives des plans de consommation coincident avec les différents plans établis par les
générations successives. Cette approche alternative fait écho au travail séminal de Lindahl
(1939) qui observe que < les plans des sujets économiques & un instant donné ne sont pas to-
talement cohérents ni entre eux ni avec les conditions extérieures et doivent donc étre révisés
successivement ». Ceci est également conforme a la théorie plus générale de I’équilibre général

temporaire de |(Grandmont| (1977, 2008)).

La résolution de ces modeles permet de caractériser I’équilibre et d’en déduire les résultats

théoriques (stationnaires) de I’étude, qui sont décrits ci-dessous.

Tout d’abord, en examinant le prix de l'actif, je trouve qu’il dépend positivement du

biais moyen des croyances, ce qui est conforme aux études de [Jouini and Napp, (2007) et de
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Kurz and Motolese (2011). Je déduis également que I'impact de la dispersion des croyances
est positif pour les états du monde suffisamment bons et négatif pour les états suffisamment
mauvais. Enfin, comme d’autres études théoriques (Veronesi, |1999| Xu, 2007, |Atmaz and
Basak, 2018), je trouve une relation convexe entre le prix de l'actif et la production attendue
de I'économie. Cette convexité des prix implique que le cours de l'actif réagit davantage
aux bonnes nouvelles qu’aux mauvaises, et que la réaction du cours de 'actif a tout type
de nouvelles est plus forte dans les états relativement bons. Basul (1997) et Nagel (2005)
confirment empiriquement la premiere prédiction et, en accord avec la seconde, (Conrad et al.
(2002) montrent que le marché réagit plus fortement aux mauvaises nouvelles en période de

prospérité qu’en période de crise.

J’étudie également la relation entre I’hétérogénéité des croyances et les rendements moyens
de 'actif et observe que plus I’hétérogénéité est élevée, plus les rendements sont importants.
La relation positive que je documente contribue ainsi a la littérature portant sur ce sujet,
qui trouve des résultats contradictoires, et est conforme a la conjecture de |Williams (1977)
selon laquelle une plus grande dispersion des opinions représente un plus grand risque, et en-
traine donc une rémunération attendue des agents plus élevée. Banerjee and Kremer| (2010))
confirment cette relation positive dans un modele dynamique dans lequel les investisseurs
sont en désaccord sur U'interprétation de 'information publique et Buraschi and Jiltsov| (2006))
obtiennent un résultat similaire en liant I’hétérogénéité des croyances aux positions ouvertes
des options. A linverse, un autre courant de la littérature, fondé sur le travail précurseur de
Miller| (1977), documente un lien négatif qui dépend de maniere critique de la présence de
frictions sur le marché. De plus, je trouve que le rendement moyen de I'action diminue avec
I’aversion au risque. En effet, dans une économie avec agents hétérogenes, les investisseurs

plus averses au risque spéculent moins agressivement et obtiennent donc des rendements plus

faibles.

Pour finir, j'observe que la volatilité de I'actif augmente de maniere monotone avec la

dispersion des croyances et qu’elle est toujours supérieure a la volatilité du processus de
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production. Comme l'indiquent |/Atmaz and Basak| (2018), cela s’explique par le fait que des
fluctuations plus importantes du biais moyen des croyances se traduisent par des fluctuations
supplémentaires du prix de 'actif et augmentent donc sa volatilité. Cette relation positive
monotone est bien documentée sur le plan théorique (voir, par exemple, [Shalen, 1993, dans
un modele a anticipations rationnelles a deux périodes, [Scheinkman and Xiong, 2003, dans
un modele avec des contraintes de vente a découvert, [Buraschi and Jiltsov, 2006, dans un
modele avec des agents rationnels ayant des informations incompletes et hétérogenes, |Andrei
et al., 2019, dans un modele avec désaccord sur la durée des cycles économiques). Ici, ma
contribution est d’obtenir une formule stationnaire ou les effets de 1'hétérogénéité sur la

volatilité restent persistants dans le temps.

Puisque les formules sont stationnaires, je peux alors traduire les principales implica-
tions théoriques du modele en hypotheses testables et, dans la partie empirique du chapitre,
examiner si ces hypotheses sont effectivement validées en utilisant des données de marché
réelles et en effectuant des régressions par moindres carrés ordinaires. Plus précisément, je
vérifie si une plus grande dispersion des croyances a 1’échelle du marché prédit des rende-
ments de marché plus élevés et une plus grande volatilité du marché. Alors que la plupart des
études empiriques dans cette littérature se concentrent sur des données mensuelles, j’étudie

également la validité de ces relations pour des données calculées sur des horizons plus longs.

Pour construire mes données de dispersion des croyances, j'utilise les prévisions men-
suelles des analystes sur le taux de croissance a long terme du bénéfice par action d’actions
individuelles de la base de données IBES Unadjusted Summary de janvier 1982 a décembre
2019. En adoptant une méthodologie similaire & celle de [Yu (2011), je les agrege dans le
temps (pour des horizons allant d’un mois a deux ans) et sur ’ensemble des actifs pour ob-
tenir des données relatives au marché dans son ensemble. J'utilise en outre des données de la
base CRSP pour construire mes variables de rendements de marché a différents horizons. En
particulier, il est important de noter que mon analyse empirique differe de celles existantes

car j’étudie spécifiquement les rendements d’un indice de marché qui est construit a partir
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de tous les actifs utilisés dans la construction de la variable de dispersion des croyances.
Cela me permet de capturer plus directement le lien entre les caractéristiques du marché et
les croyances des investisseurs. De méme, je construis les données de volatilité du marché a

partir des rendements quotidiens de cet indice de marché.

Les tests empiriques confirment la relation positive prédite entre la dispersion des croyances
et les rendements du marché pour la plupart des horizons étudiés. Ainsi, en considérant
un cadre avec une dispersion des croyances persistante et en utilisant des données plus
étroitement liées, je montre de nouveaux résultats sur les impacts a long terme. Enfin, les
résultats concernant I'impact sur la volatilité du marché sont plus mitigés. En effet, bien que
je trouve une majorité de coefficients positifs (en contrélant la volatilité passée), ils ne sont
pas statistiquement significatifs. Des régressions a fenétre glissante montrent en outre que
le signe et l'intensité de I'impact de la dispersion des croyances varient dans le temps, ce
qui pourrait expliquer la faiblesse des résultats. D’autres travaux empiriques étudient cette
relation et confirment la relation positive prédite par le modele (voir, par exemple, |Ajinkya,
and Gift, [1985| qui utilisent des données sur une période de dix mois, Anderson et al.; 2005
qui utilisent des données mensuelles sur une période de sept ans, Banerjee, 2011 dans un

cadre d’analyse en coupe transversale).

Rendements non normaux

L’hypothese de normalité des rendements est également une hypothese courante dans les
modeles théoriques d’évaluation d’actifs. S’appuyer sur les propriétés de la loi normale permet
en effet de grandement faciliter la résolution de nombreux calculs et d’exprimer les résultats
de maniere simple. De plus, il arrive que les distributions empiriques des rendements d’actifs
se rapprochent d'une distribution normale. De prime abord, une telle hypothese apparait
donc appropriée, ce qui explique qu’elle soit largement utilisée.

La loi normale présente néanmoins un défaut fondamental : étant donné qu’il s’agit d’une
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distribution symétrique, son coefficient d’asymétrie (également appelé de maniere équivalente
< skewness > dans le reste de la these) est nul. Autrement dit, & moyenne et variance
données, faire I'hypothese que les rendements d’un actif suivent une loi normale revient a
supposer que les réalisations positives des rendements de cet actif ont autant de chances de
survenir que celles négatives. Or, de nombreuses études montrent que ce n’est pas le cas.
En considérant le marché des actions américaines dans son ensemble, |Albuquerque| (2012)
montre par exemple qu’un krach est plus susceptible de survenir qu’un boom, ce qui revient
a supposer que la distribution de ces rendements a un skewness négatif. Ainsi, I'utilisation
de la loi normale ne permet pas de tenir compte des effets (potentiellement importants) du
skewness des rendements des actifs et n’est donc pas adaptée pour décrire leur distribution.
A I'inverse, bien que moins intuitives, I'usage de distributions asymétriques permet une étude

plus complete.

Dans le troisieme chapitre de cette these, intitulé Two skewed risks et coécrit avec Paul
Karehnke, nous définissons et utilisons une distribution asymétrique afin d’étudier, dans un
cadre bivarié, les impacts du skewness sur différentes métriques. Plus précisément, nous nous
intéressons aux questions de I'impact de 'asymétrie des rendements sur les caractéristiques
des actifs, mais aussi sur les choix de portefeuille et sur certaines mesures utilisées en gestion
des risques. La principale contribution de ce chapitre est donc de déduire des enseignements
économiques sur les effets de ’asymétrie dans un cadre bivarié simple et intuitif. L utilisation
d’un tel cadre complete I’étude de|De Roon and Karehnke| (2017)) qui s’intéressent a un cadre
univarié, et permet également de mieux cerner les interactions entre skewness et corrélation.
En outre, comme chacun des deux actifs étudiés (ou, dans la partie relative a la gestion
des risques, des deux risques) peut lui-méme étre considéré comme issu de l'agrégation de
plusieurs actifs (ou risques), notre étude permet de proposer un cadre d’analyse général.
La encore, le choix d’un cadre bivarié et d’une distribution spécifique pour les rendements
répond a I'impératif de trouver un juste milieu entre tracabilité et simplification dune part,

et réalisme et pertinence de 'autre.
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Revenons tout d’abord sur la construction de la distribution que nous utilisons pour
notre analyse. Cette distribution, que nous appelons la distribution normale fractionnée
bivariée ( “split bivariate normal distribution”), est une extension bivariée de la distribution
normale fractionnée ( “split normal distribution”) de Fechner| (1897), qui est elle-méme un
cas particulier de la distribution ¢ biaisée ( “skewed t distribution”) de |Hansen (1994)), plus
largement utilisée. Notre version bivariée est en outre tres similaire aux développements plus
généraux de Geweke (1989), Bauwens and Laurent| (2005)), et |Villani and Larsson (2006), et

elle coincide avec ces distributions lorsque les deux risques sont indépendants.

Les principaux avantages de notre distribution sont sa simplicité et son intuition qu’elle
hérite de la loi normale usuelle, ce qui permet de nombreux calculs explicites, tout en ayant la
capacité d’avoir un skewness non nul. La distribution normale fractionnée bivariée généralise
en effet la distribution normale bivariée et introduit de I’asymétrie en permettant aux pa-
rametres d’écart-type de chacune des variables considérées de différer au-dessus et en dessous
du mode. Ainsi, elle est particulierement intéressante pour les applications financieres, car
elle tient compte du fait que les moyennes et les variances des rendements des actifs sont
liées empiriquement (Duffee, 1995). Nous nous assurons en outre de la continuité de notre
distribution en utilisant des facteurs d’ajustement pour chacun de ses quadrants. Enfin,
une évaluation de la pertinence empirique de la distribution normale fractionnée bivariée
nous permet de confirmer qu’elle fournit une description raisonnable des rendements des
actifs. Plus précisément, nous analysons les rendements excédentaires d’indices de plusieurs
catégories d’actifs et proposons différents tests de notre distribution ainsi que de trois lois
connexes : la distribution normale bivariée, la distribution bivariée skew-normale ( “bivariate
skew-normal distribution”) d’Azzalini and Dalla-Valle (1996), et une version bivariée de la
distribution ¢ biaisée construite avec une copule normale. Les tests de Kolmogorov-Smirnov
bivariés, une comparaison des co-skewness implicites et empiriques et une comparaison des
niveaux théoriques et empiriques du déficit attendu conditionnel (que nous définirons plus

en détail par la suite) montrent notamment la supériorité de la distribution normale frac-
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tionnée bivariée sur la loi normale bivariée usuelle. Notre distribution offre également une
meilleure description des données dans les queues de distributions que les deux autres lois
asymétriques considérées, ce qui est particulierement utile dans une optique de I’'étude de la
gestion des risques. La distribution normale fractionnée bivariée apparait donc comme une

loi pertinente pour analyser théoriquement I'impact du skewness dans un cadre bivarié.

Dans un premier temps, nous utilisons cet outil pour étudier les choix de portefeuille.
Pour ce faire, nous considérons deux actifs dont les rendements suivent la distribution et
étudions les poids optimaux a investir dans chacun d’eux en fonction des caractéristiques
de leurs rendements. La moyenne et la variance de ces rendements sont fixes et nous faisons
varier leur niveau d’asymétrie ainsi que leur corrélation afin d’étudier les implications de
telles variations. En nous intéressant aux rendements certains équivalents, nous montrons
que les gains d’utilité liés a la prise en compte de 'asymétrie ont tendance a diminuer avec
la corrélation lorsque les asymétries sont égales. En revanche, lorsque le niveau de skewness
des rendements de chacun des actifs differe, la relation prend une forme de U : les gains sont
plus importants pour les actifs fortement corrélés que pour les actifs modérément corrélés. En
outre, ’étude des poids d’investissement optimaux souligne qu’il devient alors optimal de ne
pas diversifier autant que le cadre moyenne-variance classique le suggérerait, en particulier
pour les niveaux élevés de corrélation. Cette sous-diversification va de pair avec une hausse
du skewness des portefeuilles associés. Notre analyse des choix de portefeuille souligne donc
le role de la corrélation dans ’arbitrage entre diversification et asymétrie et complete ainsi

le travail de |Mitton and Vorkink (2007) qui ne considerent qu'un seul actif asymétrique.

Nous étudions également I'impact du skewness des rendements dans un modele d’évaluation
d’actifs ou les deux actifs constituent I'intégralité du marché. Dans une économie d’échanges
pure, nous montrons que les alphas du modele d’évaluation des actifs financiers (MEDAF)
sont non nuls lorsque les actifs présentent des niveaux d’asymétrie différents, et qu’il y a donc
un écart avec les résultats induits par le MEDAF. La littérature empirique s’est intéressée a

cet écart et différentes explications potentielles ont été apportées : I’écart a été relié au skew-
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ness systématique (Harvey and Siddique, |2000)), au skewness idiosyncratique (Boyer et al.
2010) et aux rendements maximaux (Bali et al., 2011). Notre analyse théorique permet de
justifier de tels résultats empiriques. En effet, nous montrons que l'actif qui sous-performe
(celui dont I'alpha du MEDAF est négatif) présente également un skewness systématique, un
skewness idiosyncratique et des rendements maximaux plus élevés que ceux de l'autre actif.
Si I'on fait en outre I’hypothese que I'actif ayant une asymétrie plus positive est également
plus volatile (Kumar] 2009 montre que cette hypothese est vérifiée empiriquement), notre
cadre d’analyse permet de rendre compte de I’anomalie liée aux faibles rendements des actifs
ayant des bétas importants (Frazzini and Pedersen) |2014, Bali et al., 2017)). Il est important
de préciser I'intuition derriere de tels résultats. Ici, les différences de rendements maximaux
découlent directement de la distribution asymétrique sous-jacente des rendements, et les
différences de skewness idiosyncrasiques et systématiques résultent des conditions d’équilibre
du marché. La préférence de I'investisseur représentatif en matiere d’asymétrie conduit alors
a des prix d’actifs qui s’écartent du MEDAF. En outre, notre analyse montre que 'actif a
haut rendement maximal est a la fois une loterie (Bali et al.,2011)) et une assurance (Barinov),
2018)). Plus précisément, si la sous-performance de l'actif est liée a des rendements maximaux
élevés et a un fort skewness idiosyncratique, elle est principalement due a un fort skewness

systématique. Ceci est empiriquement confirmé par [Barinov| (2018)) et |Langlois (2020)).

Afin de compléter notre étude, nous nous intéressons en outre a une seconde théorie
comportementale qui accorde une importance plus élevée a I'asymétrie : la théorie cumula-
tive des perspectives aléatoires ( “cumulative prospect theory”) de Tversky and Kahneman
(1992). Les résultats relatifs au choix de portefeuille et a I’évaluation d’actifs décrits jusqu’a
maintenant sont en effet obtenus en supposant que ’agent représentatif effectue ses choix en
suivant la théorie de I'utilité attendue. Cette approche présente ’avantage de permettre la
résolution explicite d'un grand nombre de calculs mais, comme montré récemment par Ebert
and Karehnke| (2020), n’accorde qu’une faible importance—de troisieme ordre—au skewness.

A T'inverse, la théorie cumulative des perspectives aléatoires lui accorde une importance de
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premier ordre, bien qu’il ne soit pas possible d’obtenir les résultats directement par le calcul
et que nous soyons obligés de procéder a des simulations numériques. Comme attendu, nous
montrons que ces préférences alternatives amplifient I'importance de I'asymétrie pour les
poids de portefeuille, les équivalents certains et les écarts par rapport au MEDAF.

Enfin, nous nous intéressons également a l'impact joint du skewness et de la corrélation
dans le cadre de la gestion des risques. En effet, comme la distribution normale fractionnée bi-
variée présente des similitudes avec la loi normale bivariée usuelle, elle permet une généralisation
simple des formules de certaines mesures de risque conditionnel au cas des rendements
asymétriques. Plus précisément, |Adrian and Brunnermeier| (2016) proposent une mesure
appelée ACoVaR, définie comme la différence entre la valeur a risque ( “value-at-risk”) d'un
actif donné lorsqu’un risque conditionnel connait un événement tres négatif et cette valeur
a risque lorsque le risque conditionnel est dans son état médian. Acharya et al.| (2017)) pro-
posent également une mesure de risque conditionnel, ici nommée déficit attendu conditionnel
( “conditional expected shortfall”), qui est définie comme la valeur attendue d’un actif risqué
conditionnellement a un autre risque se trouvant dans la queue gauche de sa distribution.
Nous fournissons des expressions simples pour chacune de ces mesures sous ’hypothese que
les risques concernés suivent la distribution normale fractionnée bivariée. Ainsi, lorsque la
corrélation entre les deux risques considérés est positive, les deux mesures sont plus impor-
tantes en valeur absolue lorsque le risque principal a un skewness négatif. Enfin, nous mon-
trons que I'impact quantitatif du skewness est important : pour, par exemple, une corrélation
de 0,6, une probabilité de 5%, un risque conditionnel symétrique et une asymétrie de —0, 6
au lieu de zéro pour le risque principal, ACoVaR est environ 30% plus élevée en valeur abso-
lue. L'impact de 'asymétrie du risque conditionnel sur chacune des mesures est en revanche
tres limité, ce qui corrobore la conclusion empirique de |Adrian and Brunnermeier| (2016) que

ACoVaR est faiblement corrélée avec la valeur a risque du risque conditionnel.
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RESUME

Cette thése examine les effets du relachement d'hypothéses simplificatrices souvent
formulées dans les modeéles d'évaluation. Considérant un nombre infini d'investisseurs, les
deux premiers chapitres étudient I'hétérogénéité des agents. Plus précisément, le premier
explore les impacts de la corrélation des hétérogénéités. Il y a par exemple un exces de
volatilité de marché quand les agents les plus optimistes sont aussi les plus patients. Le
deuxieme chapitre développe un modele stationnaire ou I'hétérogénéité des croyances
persiste. Cela permet de tester empiriquement I'effet positif de la dispersion des croyances
sur les rendements et la volatilité. Enfin, le troisieme chapitre s'intéresse a la non-normalité
des rendements : définissant une distribution bivariée asymétrique intuitive, le chapitre
analyse, dans un cadre simple a deux actifs, comment le skewness et son interaction avec
la corrélation affectent les choix de portefeuille, les prix des actifs et les mesures de risque.

MOTS CLES

Evaluation d’Actifs, Croyance, Hétérogénéité, Asymétrie, Corrélation

ABSTRACT

This thesis consists of three chapters and studies the consequences of releasing
simplifying unrealistic assumptions often made in asset pricing models. Specifically, the
first two chapters focus on agent heterogeneity and deal with models populated by a
continuum of investors who agree to disagree. The first chapter highlights the impacts of
correlated heterogeneities. In particular there is some excess market volatility when the
most optimistic agents are also the most patient ones. The second chapter considers a
stationary model with non-vanishing belief heterogeneity and allows for an empirical test of
the model-implied positive effect of belief dispersion on returns and volatility. Lastly, the
third chapter is interested in the non-normality of asset return distributions. Defining and
using the split bivariate normal distribution, it analyzes in a simple two-asset framework
how skewness and its interaction with correlation affect portfolio choice, asset prices, and
risk metrics.

KEYWORDS

Asset Pricing, Belief, Heterogeneity, Skewness, Correlation
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