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Introduction

This thesis is constituted of three chapters that represent individual papers in the area of

asset pricing and behavioral finance. Its overall goal is to study the impacts of releasing

simplifying unrealistic assumptions frequently made in asset pricing models. Specifically,

while agents are often assumed to be identical (which eases their aggregation into one rep-

resentative agent) and returns to be normally distributed (which has many computational

advantages), I focus on agent heterogeneity and on non-normal asset return distributions.

The first chapter—published in Economic Theory in April 2021—is entitled Live fast, die

young: equilibrium and survival in large economies and is jointly written with Elyès Jouini.

The second one is named Disagreeing forever: a testable model with non-vanishing belief

heterogeneity and is my job market paper. Lastly, the article presented in Chapter 3 is a

joint work with Paul Karehnke and is called Two skewed risks.

The first two chapters deal with agent heterogeneity and consider models that incorporate

a continuum of heterogeneous agents who agree to disagree. They echo recent works showing

that heterogeneity has large impacts on the market characteristics and should therefore be

taken into account.

More precisely, Chapter 1 is a theoretical paper where Elyès Jouini and I study a

continuous-time economy populated by agents who have heterogeneous beliefs about what

the future holds and heterogeneous time preferences. One of our contributions is to further

allow for some correlation between these two types of heterogeneity. Empirical evidence in-

deed shows that they are negatively correlated: the most optimistic agents are also the most
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patient ones. We therefore study the theoretical impacts of such correlated heterogeneities on

the behavior of financial markets. We fully characterize the risk-free rate which is procyclical

and the market price of risk which is countercyclical, and we show that a negative correlation

between the two types of heterogeneity reduces the former and enhances the latter. In ad-

dition, we assume that an asset, whose dividend process is given by the total endowment of

the economy, is available for trading. Importantly, we derive that a higher belief dispersion

increases the overall trading volume, and that the case where the most optimistic investors

are also the most patient ones induces some excess volatility in the market. In the last

part of the paper, assuming that the two types of heterogeneity are uncorrelated, we finally

study the characteristics of some specific agents, namely the surviving agent, the ex-post

utility-maximizing agent, and the ex-ante utility-maximizing agent. We thereby contribute

to the literature by showing that a shorter life might be more rewarding than a longer one,

as the surviving agent of the economy is not necessarily the one who maximizes her utility

over her lifetime.

The second chapter Disagreeing forever: a testable model with non-vanishing belief het-

erogeneity similarly deals with a continuum of heterogeneous investors but focuses only on

the belief heterogeneity. Another difference with Chapter 1 is that I study more general

utility functions as I assume that the investors are endowed with constant relative risk aver-

sion utility functions rather than logarithmic ones. Furthermore, the paper contains both

a theoretical and an empirical part. In fact, my main contribution is to derive a tractable

overlapping heterogeneous generations model where the belief heterogeneity does not vanish

as time goes by, and I thus obtain a stationary model that I can test empirically over long

periods. In the theoretical part, I first compute the model equilibrium and determine the

planned actions of the successive generations of investors, who keep the same belief from

a generation to another and maximize the utility they derive from either consumption or

bequest. Considering a similar stock as the one in Chapter 1, I further look at the impli-

cations of belief heterogeneity on the characteristics of this stock. In particular, I find that

2



ASSET PRICING WITH HETEROGENEOUS AGENTS AND NON-NORMAL
RETURN DISTRIBUTIONS

the stock mean return and volatility both increase when the belief dispersion increases, and

I derive non-vanishing belief dispersion effects, meaning that these positive relations should

remain no matter the horizon considered. Thus, I specify four hypotheses that are tested

in the empirical part of the paper. More precisely, using the Institutional Brokers Estimate

System Unadjusted Summary database to construct the market belief dispersion variables,

the empirical analysis shows that the positive relation between the market returns and the

market belief dispersion is verified in the data for all horizons, and empirical evidence further

points more towards the approval of the positive model-implied relation between the market

volatility and the market belief dispersion than towards its rejection.

Finally, Chapter 3 departs from the assumption that asset returns are normally dis-

tributed (implying that they have a null skewness). Defining and using a skewed distribu-

tion in a simple two-asset framework, Paul Karehnke and I analyze how skewness and its

interaction with correlation affect portfolio choice, asset prices, and popular risk metrics.

More precisely, we assume that returns follow the split bivariate normal distribution,

which is a mixture of four scaled bivariate normal distributions. Skewness is thereby intro-

duced by allowing the standard deviation parameters to differ in each of the four quad-

rants. Bivariate Kolmogorov-Smirnov tests and a comparison of implied and empirical

co-skewnesses show that this distribution provides a good empirical fit, and is therefore

well-suited for our study. Importantly, our focus is on simplicity and intuition due to the

similarities of the split bivariate normal with the bivariate normal distribution. In a pure

exchange economy, we find that capital asset pricing model alphas are non-zero when the

assets have different levels of skewness. Additionally, one of our contributions is to show

theoretically that the asset that underperforms also has high systematic skewness, high id-

iosyncratic skewness, and high maximum returns, as empirical studies suggest. Moreover,

the main result of our portfolio choice analysis is to show that underdiversification becomes

optimal when the correlation is high and skewnesses differ. Therefore, we highlight the role of

correlation in the diversification-skewness trade-off, and we thus extend Mitton and Vorkink

3
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(2007) who consider only one skewed asset. Lastly, we provide simple expressions for some

bivariate risk metrics, namely ∆CoVaR (defined in Adrian and Brunnermeier, 2016) and the

conditional expected shortfall (Acharya et al., 2017), when risks follow the split bivariate

normal distribution, and thereby show that skewness has a large quantitative impact on

them.

4



Chapter 1

Live fast, die young: equilibrium and

survival in large economies

Joint work with Elyès Jouini.

Published in Economic Theory, Volume 71, Issue 3, April 2021.

Note that the version presented in the thesis slightly differs from the one published because

it takes into account some minor comments of the committee members.
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Abstract

We model a continuous-time economy with a continuum of investors who differ both

in belief and time preference rate, and analyze the impacts of these heterogeneities on the

behavior of financial markets. In particular, we allow the two types of heterogeneity to be

correlated: a negative correlation means that the most optimistic agents are also the most

patient ones. We fully characterize the risk-free rate, which is procyclical, and the market

price of risk, which is countercyclical. When the two types of heterogeneity are negatively

correlated, the former is lower and the latter higher compared to the standard case. A

negative correlation also leads to a higher market volatility. Moreover, we find that the

trading volume increases with the variance of the belief heterogeneity distribution. Finally,

the surviving agent of this economy is not necessarily the one who maximizes her utility over

her lifetime: a shorter life might be more rewarding than a longer one.

Keywords: Heterogeneous beliefs, Heterogeneous time preference rates, Continuum of

agents, Asset pricing, Market elimination, Surviving agent

JEL classification: D53 - D90 - G02 - G11 - G12
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ECONOMIES

1.1 Introduction

A common assumption made in asset pricing models is that all investors have a rational

belief. Most models also rely on the assumption that all investors have the same time

preferences. Although these assumptions are useful as they permit to aggregate all the

agents into one representative agent, empirical evidence indicates that some investors are

more optimistic than others and some more patient than others, questioning the pertinence

of such hypotheses.

In spite of this evidence, there have been several arguments to support the first assump-

tion. Following Friedman (1953), it has been argued that, although some investors might

have a biased belief towards optimism or pessimism, they should not be of interest as this

should lead them to make wrong choices and to go extinct (see, e.g., Sandroni, 2000). How-

ever, as Kogan et al. (2006) point out, survival and market impact are different concepts

and they need to be studied separately. In particular, Yan (2008) shows that the elimination

process takes a long time and that biased investors should therefore not be neglected. A re-

cent study by Bottazzi et al. (2018) also states that heterogeneous agents are not necessarily

eliminated in the long run and that the non-optimality of an agent’s portfolio can correct

for the inaccuracy of her belief, leading to her survival. A second important argument in

favor of the belief homogeneity assumption argues that, as there is no reason for an average

bias to exist in the economy, agents should be rational on average and the effects induced

by biased investors should cancel out. Jouini and Napp (2011) find that this is not the case

and that unbiased disagreement can not be considered as agreement. Finally, similarly to

the pragmatic beliefs concept of Hvide (2002), there is an argument supporting the belief

homogeneity assumption which states that irrational agents, observing that rational agents

are being more successful, should adopt the same belief as the most successful ones. Ques-

tioning this third argument, Jouini and Napp (2016) show that irrational agents might do

better than rational ones.

The time preference rate homogeneity assumption has also been examined. Following

8
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the seminal work of Samuelson (1937), it has been widely accepted that a unique discount

rate can be used to condense intertemporal choices. However, empirical studies (see, e.g.,

Frederick et al., 2002) show that this assumption does not hold in the real world and that

there exists a great variety of time preference rates across investors. At a country level, Wang

et al. (2016) highlight this heterogeneity and show that, in addition to economic factors, it

can also be explained by cultural ones.

This suggests that these two assumptions might be unreasonable and that heterogeneous

agents, both in belief and time preference rate, could have an impact on financial markets.

Empirical works support this rationale and show how important are the belief and time

preferences heterogeneities on various markets (see, e.g., Buraschi and Jiltsov, 2006 (option

markets), Beber et al., 2010 (currency markets), Buraschi et al., 2014 (credit markets)).

Investors’ heterogeneity also explains, at least partly, empirical facts, as the implied risk

aversion smile (Ziegler, 2007).

In this paper, we further investigate these impacts.1 More precisely, we study their

joint impact and allow the two types of heterogeneity to be correlated. To the best of our

knowledge, we are the first to theoretically consider such a correlation, which seems to exist

empirically. In fact, survey evidence suggests that we can assume a negative correlation,

or, stated differently, that the most optimistic agents are also the most patient ones.2 We

therefore consider a continuous-time equilibrium model with a continuum of heterogeneous

agents who do not share the same belief about the future nor the same time preference rate,

and we allow some correlation to exist between the characteristics of each agent. Hence, our

economy is characterized by the presence of optimistic and pessimistic agents and, for an

identical belief, patient and impatient ones. Unlike other studies (see, e.g., Li, 2007, Berrada

et al., 2018), we assume that the agents do not learn. We make this assumption because

1We choose to focus on belief and time preference rate heterogeneity for modeling convenience. Those
are also two of the most popular types of heterogeneity considered in the literature. We leave the study of
other types of heterogeneity, e.g., the heterogeneity in risk aversions, for future work—note however that
such a type of heterogeneity leads to less tractable results (see, e.g., Cvitanic et al., 2012).

2We thank Luc Arrondel who checked this fact on the PATER survey and obtained a negative correlation
in a qualitative regression framework. The result is significant at a 5% level.

9
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we want to focus on market elimination of given beliefs rather than on their elimination

through possible learning. Moreover, it allows us to be consistent with the view that the

agents’ heterogeneity comes from psychological biases. If this is the case, heterogeneity

can be explained by behavioral distortions and there is therefore no added value to assume

learning. The fact that we find that some agents with a wrong belief might be better off than

some rational agents further adds to the debate initiated by Grossman and Stiglitz (1980)

on the economic rationale for learning which suggests that agents might have no incentive

to learn.

We first compute the equilibrium of our model. We then study the impact investors’

heterogeneity has on some equilibrium characteristics and, in particular, we determine how

the correlation between the two types of heterogeneity affects them. Focusing on an economy

with uncorrelated heterogeneities, we also determine which agent survives in the long run

and which agent maximizes her expected utility (ex-post and ex-ante).

Belief and time preference rate heterogeneities impact the risk-free rate and the market

price of risk (see, e.g., David, 2008). In fact, in our economy, we observe countercyclical

market prices of risk and procyclical risk-free rates. These results, obtained considering a

continuum of heterogeneous agents, are in line with, and complement, previous studies, such

as Jouini and Napp (2011) or Bhamra and Uppal (2014), who consider models with only two

groups of investors. They are also consistent with empirical observations that “equity risk

premia seem to be higher at business cycles troughs than they are at peaks” (Campbell and

Cochrane, 1999) and that the short term rate is a procyclical indicator of economic activity

(see, e.g., Friedman, 1986). These effects are amplified when there is an average optimistic

bias in the economy and lowered when investors are pessimistic on average. Moreover, unlike

previous studies, we find that the higher the variance of the belief distribution, the higher

these effects. We also find that the asymptotic market price of risk equals the one obtained in

a homogeneous framework, whereas the asymptotic risk-free rate is smaller than the standard

one. This is due to the fact that only the most patient investors, characterized by an almost
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null time preference rate, survive in the long run. The study of the correlation between the

two types of heterogeneity leads to an additional conclusion: a negative correlation between

beliefs and time preference rates reduces the risk-free rate and enhances the market price of

risk. This new result is interesting in light of the risk premium and the risk-free rate puzzles.

We further consider an asset whose dividend process is given by the total endowment of the

economy and study the volatility of the stochastic differential equation satisfied by this asset,

namely the market volatility. Unlike the case where the beliefs and the time preferences are

uncorrelated, we find that the two types of heterogeneity do impact the market volatility

when they are correlated. In particular, if we assume a negative correlation between them,

we observe some excess market volatility. The more impatient the agents are on average, the

less important this effect is. Considering the time preference rate heterogeneity and allowing

some correlation between beliefs and time preferences, we therefore complement Atmaz and

Basak (2018), who derive a similar result of excess volatility in presence of a continuum of

agents who are only heterogeneous in beliefs. In their settings, the main driver of the excess

volatility is the belief dispersion whereas it does not play a role in our analysis. This is due

to the fact that we consider agents endowed with logarithmic utility functions, which are

known to mitigate the belief dispersion effect. The effect we establish is then an additional

effect due to the correlation between the two types of heterogeneity. In a finite time economy,

populated by a patient and an impatient agent, Li (2007) derives a similar result: he finds

that the market volatility is higher than the aggregate endowment volatility if the patient

agent is more optimistic than the impatient one. Hence, our result extends his finding to the

case of a continuum of agents, which allows us to study in more depth the role of correlation.

The last market characteristic that we study is the trading volume. Unlike the homogeneous

agents case, where no one trades as all investors act identically, we observe some trading

in the economy. At the investor level, we see that the more patient an agent is, the more

she trades. This result is due to a wealth effect and is strengthened when the correlation is

higher in absolute value. Looking at the impact of beliefs on the trading volume for agents

11
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sharing the same time preference rate, we see that there is no clear relation between trading

volume and belief bias. At the global level, as some agents are progressively driven out of the

market, we find that the trading volume decreases with time in the uncorrelated case. This

overall trading volume also depends positively on the variance parameter of the distribution

of beliefs. In fact, more heterogeneous agents imply more trading possibilities.

Finally, in the last part of the paper, we study some characteristics of the agents. Con-

sistent with Yan (2008), we find that the surviving agent of the economy is the most patient

of the unbiased agents. Similarly, forming groups of investors sharing the same time pref-

erence rate, we show that the surviving agent of each group is the unbiased one. However,

we show that this agent does not necessarily have the highest ex-post or ex-ante utility of

her group. In particular, if there is an average optimistic bias in the economy, the ex-post

utility-maximizing agent is an optimistic agent whose bias is between the rational one and

the average one. This result is in line with Jouini and Napp (2016) who show that “even

if they are eliminated in the long run, irrational agents might rationally stay irrational,” in

the sense that, for given time preferences, having a biased belief might allow an agent (thus

defined as an irrational one) to have a higher level of utility over her whole life than the

utility level of an unbiased (rational) agent sharing the same time preferences. In terms of

utility, such an agent therefore does not have any incentive to change her belief to become

a rational agent. Stated differently, this is consistent with the fact that, under certain cir-

cumstances, a shorter life (i.e., associated with a low survival rate) might be more rewarding

than a longer one. Our result complements Jouini and Napp (2016)’s findings as we deal

with a continuum of agents who are therefore price takers. Indeed, in their two-agent model,

each agent has an impact on the equilibrium price, and it is therefore natural that the devi-

ation from rationality of an agent could benefit her through the impact this distortion has

on the price. We find that this result still holds in an economy populated by an infinity of

investors where the price impact of each agent is null. Our result also echoes De Castro and

Yannelis (2013) who, looking at investors with asymmetric information, show that it might

12
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be beneficial for investors to manipulate the information they process in order to maximize

their utility. Hence, they find that being biased and deviating from rationality might be

rewarding in terms of utility. Lastly, similarly to Detemple and Murthy (1994), our economy

is characterized by waves of optimism and pessimism, as we observe that the aggregate con-

sumption share of optimistic (resp. pessimistic) agents increases in good (resp. bad) states

of the world.

Related litterature A growing number of papers has been interested in the study of the

different types of heterogeneity. More specifically, an important stream of the literature

focuses on belief heterogeneity. Most of these papers consider a model populated by two or a

finite number of investors who differ only in their belief and analyze the equilibrium properties

of such economies (see, e.g., Basak, 2005, Jouini and Napp, 2007, Won et al., 2008). The time

preference rate heterogeneity has received less attention. Becker and Mulligan (1997) explain

how one investor’s time preferences are endogenously determined. Gollier and Zeckhauser

(2005) study an economy whose consumers have different constant discount rates and derive

implications considering optimal allocations. They show that the representative agent of this

economy has a decreasing discount rate. Finally, other papers study simultaneously several

types of heterogeneity without considering a potential correlation between them (see, e.g.,

Cvitanic et al., 2012, Bhamra and Uppal, 2014).

Our paper adds to this literature. While most models deal with a finite number of agents,

we consider a continuum of investors. This allows us to consider all possible beliefs and time

preference rates. On the technical side, this also allows us to use statistical distributions to

describe heterogeneity and, therefore, to characterize it with a limited number of parameters.

This methodology derives from Cvitanic et al. (2012) and is similar to the one of Atmaz and

Basak (2018), who are the closest to our work.3 They consider a continuum of heterogeneous

investors, who differ only in belief, and express the main characteristics of the economy

3For other studies looking at a continuum of agents see, e.g., Chan and Kogan (2002) and Xiouros and
Zapatero (2010) who look at economies with a continuum of agents with heterogeneous risk aversions.
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using the parameters of the agents’ distribution. We differ in three main ways. First,

our model has intermediate consumption, which allows us to address interest rates issues.

Second, we consider an economy with two types of potentially correlated heterogeneities.

The distribution we use to characterize the continuum of investors is therefore a bivariate

one, and we are able to study the combined effects of these two heterogeneities. Third, we

choose to use logarithmic utility functions, as we know that this type of utility function

enables to separate the role of time preference rate heterogeneity and of belief heterogeneity

as long as they are independent.

The paper is organized as follows. Section 1.2 presents the model. We determine the

equilibrium of our economy and the characteristics of the representative agent in Section 1.3.

Section 1.4 presents some market characteristics. Section 1.5 reviews the survival and utility-

maximizing issues and Section 1.6 concludes. All proofs are reported in Appendix 1.A and

Appendix 1.B contains useful computations and some additional results.

1.2 The model

In a continuous-time framework, we consider a pure exchange Arrow-Debreu economy with

a single non-storable consumption good—which we use as numeraire—and a continuum of

risk-averse agents who maximize their expected utility for future consumption.

Uncertainty is modeled as usual by a filtered probability space (Ω, F, (Ft) , P ), where Ω

is the set of states of nature, F is the σ-algebra of observable events, (Ft) describes how

information is revealed through time, and P is the (objective) probability measure giving

the likelihood of occurrence of the different events in F .

The aggregate endowment process in the economy is denoted by e∗, and we assume that

it follows the following stochastic differential equation

de∗t = µe∗tdt+ σe∗tdWt,
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where W is a standard unidimensional ((Ft) , P )-Brownian motion and (µ, σ) ∈ R× R+ are

given constants. Stated differently, we make the assumption that e∗ is a geometric Brownian

motion with a drift coefficient µ and a volatility σ.

We consider infinitely-lived agents who consume at each date and who all have the same

logarithmic instantaneous utility function u, such that u(x) = ln(x). However, we make the

assumption that each agent is characterized by both a subjective belief Qδ—associated to

δ—and a time preference rate ρ.4 We call Agent (δ, ρ) the agent endowed with the subjective

belief Qδ, which is assumed to be equivalent to P and which gives the subjective likelihood

of occurrence of the different events perceived by this agent, and the time preference rate

ρ.5 We call Group (δ, .) the group of agents who share the same belief Qδ but differ in their

time preference rates and, similarly, we call Group (., ρ) the group of agents who share the

same time preference rate ρ but differ in their beliefs.

There are therefore two types of heterogeneity in the economy we study.

First, as all probabilities are equivalent, the agents agree on the volatility of the aggregate

endowment (for a study of such type of disagreement see, e.g., Duchin and Levy, 2010) but

disagree on their estimation of its drift.6 All the agents of Group (δ, .) believe that the

aggregate endowment growth rate is given by µδ = µ+ σδ, and their bias towards optimism

or pessimism is thus given by σδ. Hence, if δ > 0, we have µδ > µ, and they are therefore

considered as optimistic agents. Conversely, if δ < 0, they are considered as pessimistic ones.

In the case where δ = 0, we consider them as rational agents. We denote by Mδ the density

of Qδ with respect to P , i.e.,
dQδ

dP
= Mδ. From their point of view, the aggregate endowment

4In the remainder of the analysis, we interchangeably use Qδ or δ to refer to the belief of a given agent.
5If several agents have the same belief about the future and the same time preference rate, it is easy

to check that their aggregate behavior is the same as the behavior of a single agent who has the same
characteristics and whose initial endowment is equal to their aggregate endowment. We may then consider
them just as one agent.

6The equivalence of all probabilities is a necessary condition for the existence of equilibrium. Otherwise,
agents who do not believe in the possibility of a given state would want to sell an infinite quantity of the
Arrow-Debreu asset associated to that state if its price is positive, and agents who do believe in the possibility
of that state would want to buy an infinite quantity of that asset if its price is zero. This is in line with the
result of Merton (1980) that the expected return is harder to estimate than the variance.
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process follows the following stochastic differential equation

de∗t = (µ+ σδ) e∗tdt+ σe∗tdWδ,t,

whereWδ is a standard unidimensional ((Ft) , Qδ)-Brownian motion, such thatWδ,t = Wt−δt,

and, by Girsanov, we have dMδ,t = δMδ,tdWt.

Second, we allow some agents to be more patient than others: the higher her time

preference rate ρ is, the more impatient is the agent. Indeed, for a high ρ, an agent discounts

more her future consumption and is therefore more willing to consume quickly. Conversely,

for a small ρ, she is more willing to save for future consumption as she does not discount it

much.

Hence, Agent (δ, ρ) aims at maximizing her von Neumann Morgenstern utility for future

consumption of the form

EQδ
[ ∫ ∞

0

exp (−ρt) ln
(
c∗δ,ρ,t

)
dt

]
= E

[∫ ∞
0

exp (−ρt)Mδ,tln
(
c∗δ,ρ,t

)
dt

]
,

where c∗δ,ρ is her consumption stream.

Finally, as we consider a continuum of agents, we use a probability density function to

describe their initial wealth share distribution.7 This distribution—given exogenously at

t = 0—depends on a parameter k ∈ R that allows the two types of heterogeneity to be

correlated. For instance, if we assume a negative correlation between them, we have that

the most optimistic agents are also the most patient ones. We define νδ,ρ,k as the share of

total initial endowment owned by Agent (δ, ρ) at t = 0. Formally, we assume

νδ,ρ,k =
1√
2πω

exp

(
−(δ + kρ− δ0)2

2ω2

)
ϑl

Γ (l)
ρl−1 exp (−ρϑ) .

7As already underlined, we may aggregate the agents who have the same characteristics (δ, ρ). Therefore,
the distribution of the individuals across the different belief and time preference characteristics is not relevant
by itself, and the relevant information is rather the distribution of initial endowment among the set of
individual characteristics.
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For a given time preference rate, the beliefs are distributed according to a Gaussian

distribution. This is as in Atmaz and Basak (2018). Moreover, even though we take the

heterogeneity in beliefs as given ex-ante and assume no learning, this Gaussian assumption is

consistent with models where investors have different private information coming from white

noises (see, e.g., Kyle, 1985). Similarly, for a given belief, we use a Gamma distribution

to describe the heterogeneity in time preference rates. Weitzman (2001) uses a similar

distribution and provides empirical evidence that supports this choice.

For computational reasons, we assume throughout the paper that l equals two. The other

parameters are chosen exogenously at time t = 0 before equilibrium is reached.

When k = 0, there is no correlation between the two types of heterogeneity, and the

density can therefore be decomposed into two independent components: a Gaussian density

with a mean δ0 and a standard deviation ω, that describes the initial belief heterogeneity,

and a Gamma density with a shape parameter l = 2 and a rate parameter ϑ, that describes

the initial heterogeneity in time preference rate. In this situation, the initial average bias

towards optimism or pessimism of the agents is given by σδ0 and, if δ0 > 0, we say that the

economy has an (exogenous initial) optimistic bias.8 The belief dispersion is given by the

standard deviation ω, the average time preference rate is given by
2

ϑ
, and the dispersion of

the rates of the agents is given by the standard deviation

√
2

ϑ
.

In the general case, the correlation between the belief and the time preference rate is

given by a function of k. In particular, at t = 0, the correlation function is given by

−
√

2k√
ω2ϑ2 + 2k2

.

In order to express this function and the main results of our model as functions of

the central (co)moments of δ and ρ at each date, we define the following time-dependent

8Note that not imposing δ0 = 0 implies that we do not necessarily require that the agents are symmetric
around rationality (ex-ante).
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stochastic density function

ν̃δ,ρ,k,t =
νδ,ρ,kexp (−ρt)Mδ,t∫
νδ,ρ,kexp (−ρt)Mδ,t dδdρ

,

and we denote by Et(.) the time-dependent mean with weights given by ν̃δ,ρ,k,t. Using some

algebra, we derive that the correlation function is an inverted S-shaped function such that

the correlation is null when k equals zero and such that, for all time t, its sign is opposite to

the sign of k.9

Finally, let us introduce the following notations that will be useful in the next. We denote

respectively by ϕ and Φ the density and cumulative distribution functions of the standard

normal distribution, i.e., ϕ(x) =
1√
2π

exp

(
−x

2

2

)
and Φ(x) =

∫ x

−∞
ϕ(s)ds. We denote by

sgn the sign function, i.e., sgn(x) = 1 if x > 0, sgn(x) = −1 if x < 0, and sgn(0) = 0.

1.3 Representative agent and equilibrium

In this section, we study the Arrow-Debreu equilibrium of this economy and the character-

istics of the representative agent.

In such a model, an Arrow-Debreu equilibrium is defined by a positive density price p∗

and a continuum of consumption plans
(
c∗δ,ρ
)
δ∈R,ρ∈R∗+

, each one maximizing the von Neumann

Morgenstern utility for future consumption of the corresponding agent under her budget

constraint and such that the market clears.

The representative agent of this economy is a fictitious agent who, if endowed with the

total wealth of the economy, would have a marginal utility equal to the equilibrium price.

This agent is therefore obtained by construction from the economy characteristics. In the

proof of Proposition 1.1, we construct such an agent, and we denote by Q̄ her belief—

associated to δ̄t—, by M̄ the density of Q̄ with respect to P , and by ρ̄t her time preference

9Explicit computations of the correlation function and of the other central (co)moments are reported in
Appendix 1.B.1.
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rate. Let emphasize that, unlike common investors in the economy, the representative agent’s

characteristics δ̄t and ρ̄t can be time- and state-dependent. This is because, by construction,

the representative agent results from the aggregation of common investors and because it

appears that her characteristics are given by consumption-weighted averages of the individual

agents’ characteristics (with time- and state-dependent consumptions). This result is also

supported by prior works (see, e.g., Gollier and Zeckhauser, 2005).

Proposition 1.1. 1. At the equilibrium, the state price density and the consumption

plans are given by

p∗t = (e∗t )
−1

∫
λδ,ρ,kexp (−ρt)Mδ,t dδdρ,

c∗δ,ρ,t = (p∗t )
−1 λδ,ρ,kexp (−ρt)Mδ,t,

where λδ,ρ,k is defined such that λδ,ρ,k = ρνδ,ρ,k

(∫
λδ,ρ,k
ρ

dδdρ

)
.

2. The representative agent’s time preference rate is a time-dependent consumption-weighted

average of the individual time preference rates and is given by ρ̄t =
Et (ρ2)

Et (ρ)
, and the

associated variance is given by σρ̄ =
Et (ρ3)

Et (ρ)
− ρ̄2

t .

3. The representative agent’s belief is a time-dependent consumption-weighted average of

the individual beliefs and is given by δ̄t =
Et (δρ)

Et (ρ)
, and the associated variance is given

by σδ̄ =
Et (δ2ρ)

Et (ρ)
− δ̄2

t .

When k 6= 0, explicit computations of ρ̄t and δ̄t lead to

ρ̄t =

√
1 + ω2

|k|
√
t

Ψ (Xt) , δ̄t =
δ0 + ω2Wt

1 + tω2 − sgn (k)
√
t
√

1 + tω2
Ψ (Xt) ,

with

Xt =

√
1 + tω2

|k|
√
t

(
t+ ϑ+ k

Wt − δ0t

1 + tω2

)
, (1.1)
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and

Ψ (x) =
2 + x2 − 1−Φ(x)

ϕ(x)
(3x+ x3)

−x+ 1−Φ(x)
ϕ(x)

(1 + x2)
.

We easily get that Ψ (Xt) is non-negative and converges to zero when t goes to infinity.

Hence, we see that the belief of the representative agent is more optimistic when the corre-

lation is positive and more pessimistic when the correlation is negative. In other words, if

the most optimistic agents are also the most impatient (resp. patient) ones, the represen-

tative agent is more optimistic (resp. pessimistic). Looking at the asymptotic behavior of

her belief, we also derive that this agent tends to be the rational one. Similarly, we have

that, unlike the other agents, the time preference rate of the representative agent is not a

constant and goes to zero asymptotically. Hence, in the long run, the representative agent

of the economy is rational and more patient than all the agents, which is consistent with the

survival implications derived in Section 1.5.

In the uncorrelated case, the characteristics of the representative agent are given by

ρ̄t =
l + 1

ϑ+ t
and δ̄t =

δ0 + ω2Wt

1 + tω2 , with the associated variances respectively given by σρ̄ =

l + 1

(ϑ+ t)2 and σδ̄ =
ω2

1 + tω2 . In this case, while
l

ϑ
and δ0

(
resp.

l

ϑ2
and ω2

)
measure the

time preference rate and belief averages (resp. variances) with weights given by the agents’

initial total endowment, ρ̄t and δ̄t (resp. σρ̄ and σδ̄) measure their averages (resp. variances)

with weights given by agents’ current consumption. Consistent with Gollier and Zeckhauser

(2005), who study an economy where agents differ only in time preferences, we derive that the

time preference rate of the representative agent decreases with time. Moreover, we observe

that, for a given t, both variances are non-negative constants and do not depend on W .

As underlined by Atmaz and Basak (2018), this is due to the assumption of an unbounded

investor type space. Indeed, in the case of bounded beliefs, they argue that the wealth

transfer accumulates to one type of investor and that the belief dispersion therefore goes to

zero in extreme states. This is not the case in the presence of a continuum of heterogeneous

investors. Adding heterogeneity in time preference rates, we see that a similar reasoning

holds for σρ̄.
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1.4 Market characteristics

In this section, we derive several characteristics of the market and study how the correlated

heterogeneities impact them.

1.4.1 Risk-free rate and market price of risk

Let first recall that, in the standard homogeneous case, the risk-free rate and the market

price of risk are both time- and state-independent and given by

rf (stdd) = µ− σ2 + ρ̂,

MPR(stdd) = σ,

where ρ̂ > 0 stands for the homogeneous time preference rate that all the agents agree on.

We have the following result.

Proposition 1.2. In our economy, the risk-free rate and the market price of risk are given

by

rft = µ− σ2 + ρ̄t + σδ̄t,

MPRt = σ − δ̄t.

As already shown in the literature (see, e.g., Bhamra and Uppal, 2014), we observe that,

unlike the standard case, they are not time- and state-independent. We complement the

previous literature by extending the result to the case of a continuum of agents, which allows

us to express the risk-free rate and the market price of risk as functions of the moments of the

heterogeneity distribution. Moreover, we are able to consider the impact of the correlation

on such quantities.
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Let first study the uncorrelated case. We have

rft = µ− σ2 +
l + 1

ϑ+ t
+ σ

δ0 + ω2Wt

1 + tω2 ,

MPRt = σ − δ0 + ω2Wt

1 + tω2 .

First, we notice that the belief heterogeneity affects both market characteristics. If on

average the agents have a pessimistic bias (δ0 < 0), the risk-free rate is lower and the market

price of risk is higher. This echoes the result of Bhamra and Uppal (2014), who show, in an

economy populated by two agents, that the former (resp. latter) depends positively (resp.

negatively) on the weighted arithmetic mean of the beliefs of individuals agents. This is

intuitive as a pessimistic economy on average rewards agents who take risks more than an

economy where the agents are optimistic on average and therefore willing to take more risks.

Second, we see that the time preference rate heterogeneity only impacts the risk-free rate:

the higher is the average time preference rate, or, stated differently, the more impatient the

agents are on average, the higher the risk-free rate of the economy is.

Concerning the state dependency, we see that, for a given t, as rf is a linear increas-

ing function of W and MPR a linear decreasing one, the risk-free rate is procyclical and

the market price of risk countercyclical. This latter result is consistent with the empirical

observation of Campbell and Cochrane (1999), who say that the equity premium seems to

be smaller when the economy is doing well, and with the theoretical implications of Jouini

and Napp (2011). We complement these findings as we observe that the higher the vari-

ance of the belief distribution, the higher the procyclical effect on the risk-free rate and the

countercyclical effect on the market price of risk.

In the general case, we notice that, as t tends to infinity, the median risk-free rate tends

to µ − σ2. Hence, asymptotically, the risk-free rate of the economy tends to the one of

an economy populated by homogeneous investors having a zero time preference rate. This

result is consistent with the survival implications of the model that are presented in the next
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section: when time goes to infinity, as the agents who survive are the most patient ones, the

share of patient agents in the economy becomes larger. As those agents are characterized

by almost null time preference rates, it leads to a lower risk-free rate. Similarly, we observe

that MPR tends to σ. We derive that asymptotically the effects of the belief heterogeneity

on the market price of risk vanish.

Finally, we study the additional impact of the correlation between beliefs and time pref-

erence rates on the risk-free rate and the market price of risk, and we see that this impact

depends on the sign of the correlation between the two types of heterogeneity. In particular,

a negative correlation (k > 0) leads to a lower risk-free rate and a higher market price of

risk. Thereby, this novel effect, induced by the correlated heterogeneities, helps to solve, at

least partly, the risk-free rate and the market price of risk puzzles.

Insert Figure 1.1 here.

We illustrate this correlation effect for the median risk-free rate in Figure 1.1 in which we

plot its time evolution, using standard parameters to define the initial wealth distribution

of the investors and the economy process. Formally, we set µ = 14.23%, σ = 8.25%, δ0 = 0,

ω = 3.39%, l = 2, and ϑ = 50.10 The parameters of the economy process and of the belief

heterogeneity distribution are the same as in Atmaz and Basak (2018). In particular, we

assume that there is no aggregate belief bias. In the uncorrelated case, the parameters

of the time preferences distribution implies an initial average time preference rate of 4%

and a standard deviation of 2.83%. These are similar values to those used in Weitzman

(2001).11 We also set k to match given levels of median correlation at t = 1. We study

five economies: a strongly negatively correlated one (with a median correlation of −0.75 at

t = 1), a negatively correlated one (−0.25), an uncorrelated one, a positively correlated one

(0.25), and a strongly positively correlated one (0.75). We observe that, for all t, the higher

10We use the same set of parameters throughout the paper.
11Asking 2160 economists about the right time preference rate to use in practice, he concludes that the

average time preference rate is 4% with a standard deviation of 3%.
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the heterogeneity correlation is, the higher is the median risk-free rate, and that this effect

decreases with time.

1.4.2 Market volatility

We now consider the asset S, whose dividend process is given by the total endowment of the

economy. The value of S is known and given by

St =

Et
[∫ ∞

t

p∗se
∗
sds

]
p∗t

= e∗t

∫
νδ,ρ,kexp (−ρt)Mδ,tdδdρ∫
ρ νδ,ρ,kexp (−ρt)Mδ,tdδdρ

.

Using Ito’s Lemma, we identify the volatility parameter σS of the stochastic differential

equation followed by S, which corresponds to the market volatility.

Proposition 1.3. In our economy, the market volatility is given by

σS,t = σ − covt (δ, ρ)

Et (ρ)
= σ +

sgn (k)
√
t
√

1 + tω2
Υ (Xt) ,

with Xt given in Equation (1.1) and

Υ (x) =
2− 31−Φ(x)

ϕ(x)
x+

(
1−Φ(x)
ϕ(x)

)2

(−1 + x2)

−x+ 1−Φ(x)
ϕ(x)

(1 + 2x2)−
(

1−Φ(x)
ϕ(x)

)2

(x+ x3)
.

A first important point to notice is that, for k = 0, we obtain σS,t = σ. Hence, we derive

that when the two types of heterogeneity are uncorrelated, there is no heterogeneity impact

on the market volatility.

When we allow some correlation to exist between the belief heterogeneity and the time

preference one, we observe that the market volatility becomes time- and state-dependent.

The initial impact of the two correlated types of heterogeneity is easy to derive and given
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by

σS,0 = σ +
k

ϑ
.

For general t, as the mean of the time preference rates is positive, there is some excess

volatility induced by the two correlated heterogeneities when the covariance between them

is negative. Concretely, we derive that, when the most optimistic agents are also the most

patient ones, the market volatility increases. Conversely, when the covariance is positive,

the presence of heterogeneous investors decreases the market volatility. This is consistent

with Li (2007), who derives a similar result in an economy populated by a patient and an

impatient agent. More precisely, he finds that σS > σ (resp. <, =) when the patient agent

is more (resp. less, as) optimistic than the impatient agent. We therefore complement this

result by showing that it still holds when there is an infinite number of agents, and we relate

this effect to the parameters of the statistical distribution of the agents’ characteristics.

Insert Figure 1.2 here.

Figure 1.2 shows the evolution of the median market volatility over time and illustrates

this volatility effect. We notice that this effect is stronger when the absolute value of the

correlation between the two types of heterogeneity is higher.

Looking at the asymptotic behavior of Υ, we find that the function converges to zero,

and we thus derive that the market volatility tends to its standard value when time goes to

infinity. Hence, we conclude that the volatility effect tends to vanish. However, we note that

it takes a substantial amount of time for this effect to disappear, as we see that, even after

100 years, there is still a large effect for the most correlated economies considered.

1.4.3 Trading volume

We now analyze how the trading volume is impacted by the presence of heterogeneous

investors. Note that, in a standard homogeneous economy, the agents make their decisions

based on the same belief and the same time preference rate. Hence, they all act identically
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and there is no trading as they can not find other agents who are willing to trade with them.

This is not the case when there is some heterogeneity among the agents.

To compute the trading volume of Agent (δ, ρ), we first compute explicitly her total

wealth, given by

Vδ,ρ,t =

Et
[∫ ∞

t

p∗sc
∗
δ,ρ,sds

]
p∗t

.

Using Ito’s Lemma, we then derive the stochastic differential equation this total wealth

follows. We find dVδ,ρ,t = µVδ,ρ,tVδ,ρ,tdt+ σVδ,ρ,tVδ,ρ,tdWt, with

µVδ,ρ,t = µ− ρ+ σδ + ρ̄t − (σ + δ) δ̄t + δ̄2
t ,

σVδ,ρ,t = σ + δ − δ̄t.

We also know that the total wealth of Agent (δ, ρ) can be decomposed into three com-

ponents: the number of shares α she invests in the risky asset S described in the previous

subsection, the number of shares β she invests in the risk-free asset B whose drift is given

by the risk-free rate, and what she consumes.

Hence, we have

dVδ,ρ,t = αδ,ρ,tdSt + βδ,ρ,tdBt − c∗δ,ρ,tdt

=
(
αδ,ρ,tµS,tSt + βδ,ρ,tr

f
t Bt − c∗δ,ρ,t

)
dt+ αδ,ρ,tσS,tStdWt.

By identification, we derive the number of shares Agent (δ, ρ) should optimally invest in

the risky asset and in the risk-free asset. In particular, we obtain that the optimal number

of shares Agent (δ, ρ) should invest in the risky asset is given by αδ,ρ,t =
Vδ,ρ,t
St

σVδ,ρ,t
σS,t

.

Using a similar approach as in recent studies in continuous time (see, e.g., Xiong and

Yan, 2010, Longstaff and Wang, 2012), we define the trading volume of Agent (δ, ρ) as the

absolute value of the volatility in the stochastic differential equation satisfied by αδ,ρ.
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Proposition 1.4. The trading volume of Agent (δ, ρ) at time t in state of the world Wt is

given by

Vδ,ρ,t
St

1

σS,t

∣∣∣∣∣
((
σ + δ − δ̄t

)(
δ − Et (δ) +

1

σS,t

(
covt

(
δ2, ρ

)
Et (ρ)

−
covt (δ, ρ)

(
Et (δ) + δ̄t

)
Et (ρ)

))
− σδ̄

)∣∣∣∣∣ .
We see that the trading volume of Agent (δ, ρ) is time- and state-dependent. It also de-

pends on the belief and the time preference rate of the agent being considered. In unreported

graphs, looking at the trading volumes of some agents sharing the median time preference

rate but having different beliefs, we do not find any clear link between the trading volume

and the belief bias. However, we observe a negative relation between the time preference

rate of an investor and her trading volume, and we illustrate this result in Figure 1.3.

Insert Figure 1.3 here.

We plot the evolution over time of the median trading volume of three unbiased investors

with different time preferences. The different time preference rates are chosen to partition

the Gamma distribution used to describe the initial time preferences heterogeneity when

there is no correlation between the two types of heterogeneity. The time preference rate

of the first (resp. second, third) investor is the 10th (resp. 50th, 90th) percentile of this

distribution. In other words, this agent is more patient than 90% (resp. 50%, 10%) of the

population and is therefore called the patient (resp. neutral, impatient) agent. Panel A

shows the uncorrelated case, while Panel B (resp. Panel C) shows the evolution of their

trading volume in an economy where the median correlation at t = 1 is −0.75 (resp. 0.75).

We observe the same pattern in all panels: the more patient an agent is, the more she

trades. Observing that the trading volume of the patient agent is higher in Panel B and

Panel C than in Panel A, we deduce that a higher absolute value of the correlation between

beliefs and time preference rates seems to strengthen this effect. Similarly, we observe that

the trading volume of the impatient agent is low in the uncorrelated economy and almost

equals zero in the correlated ones. Even if trades implying this agent may occur, we derive
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that, being impatient, she wants to sell her shares independently of the state of the world.

Hence, as her trading volume is defined as the volatility of her optimal portfolio, it decreases

quickly.

To get a deeper insight of the mechanism behind this result linking trading volume and

time preference rate, let us focus on the uncorrelated case. When k = 0, the formula of

Proposition 1.4 simplifies to

|σαδ,ρ,t| =
Vδ,ρ,t
St

|
(
σ + δ − δ̄t

) (
δ − δ̄t

)
− σδ̄|

σ
.

Hence, we derive that more patient agents trade more due to a wealth effect. As suggested

by the survival implications of the model—derived in the next section—, it takes more time

for more patient agents to be driven out of the market, and they therefore benefit more from

the economy growth, which allows them to trade more. Consistent with this intuition, we

observe that the trading volume is procyclical.

The overall trading volume of the economy can further be obtained by summing over the

agents’ trading volumes and dividing this quantity by two to prevent double summation of

the shares traded across investors. Formally, we have

V olt =
1

2

∫
|σαδ,ρ,t|dδdρ.

After some algebra, we derive that, when there is no correlation between the belief and

the time preferences heterogeneities, it is given by the following formula.

Proposition 1.5. In the uncorrelated economy, the trading volume at time t in state of the

world Wt is given by

V olt =

√
σδ̄

2σ

((
σ +

√
σ2 + 4σδ̄

)
ϕ

(
−σ +

√
σ2 + 4σδ̄

2
√
σδ̄

)

−
(
σ −

√
σ2 + 4σδ̄

)
ϕ

(
−σ −

√
σ2 + 4σδ̄

2
√
σδ̄

))
.
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The trading volume is state-independent and, because some agents are progressively

driven out of the market, decreases with time. This result extends Atmaz and Basak (2018) to

heterogeneous time preference rates. In fact, as explained in Section 1.3, the unboundedness

of the investor type space implies that σδ̄ is constant with respect to W and, therefore,

trades occur independently of the state of the world. As in Atmaz and Basak (2018), we also

observe that, for t being fixed, the trading volume increases with the variance associated to

the belief bias of the representative agent and, consequently, with the dispersion coefficient

of the belief heterogeneity distribution. This is because a higher belief dispersion in the

economy means that the investors are more heterogeneous and that there is therefore more

agents willing to trade.

1.5 Consumption shares and utility-maximizing agents

In this section, we only consider the case where the two types of heterogeneity are uncor-

related. Looking at the consumption shares, we characterize the agents who survive in the

long run and those who dominate the market depending on the state of the world. We then

look at the agents who maximize their ex-post utility and their ex-ante one.12

1.5.1 Surviving and market-dominating agents

In this subsection, we focus on the consumption shares of the agents. Letting τδ,ρ denote the

consumption share of Agent (δ, ρ), we have

τδ,ρ,t =
c∗δ,ρ,t
e∗t

=
λδ,ρ,0exp (−ρt)Mδ,t∫

λδ,ρ,0exp (−ρt)Mδ,t dδdρ
.

First, characterizing the surviving agent, we study the survival properties of our economy.

12In Appendix 1.B.2, we briefly discuss the impact of correlation on the characteristics of the surviving
agent and on the belief of the ex-post utility-maximizing agent. In particular, we find that it does not affect
the survival implications of the model and that, in case of a negative correlation, the heterogeneity effect on
the ex-post utility-maximizing agent is mitigated.
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Formally, we say that an agent survives if her consumption share does not approach zero

almost surely when time goes to infinity. We define the survival index of Agent (δ, ρ) as in

Yan (2008).13 Similarly to his finding, we obtain the following result that is stated only for

the sake of analysis completeness.

Proposition 1.6 (Yan). In the long run, the only surviving agent is the one with the smallest

survival index.

We notice that the survival index depends positively on ρ. Hence, we derive that having a

high time preference rate is a disadvantage for survival. Stated differently, the more impatient

an agent is, the less likely she is to survive in the long run. This result is intuitive as an

impatient agent, discounting her future utility more, prefers to consume today than to save

for future consumption. Conversely, by saving more for future consumption, a more patient

agent enhances her chances to survive. Equivalently, observing that the survival index is an

increasing function of the absolute value of δ, we obtain that the lower the belief bias of an

agent is, the better it is for her survival. Finally, as Agent (δ, ρ) and Agent (−δ, ρ) have the

same survival index, having a bias towards optimism or pessimism is equally disadvantageous

regarding survival issues.

Let us also study how fast an agent disappears from the market. To do so, we compute

the average half-life of several agents and compare them. We define the half-life of an agent as

the time taken for her current endowment to fall to half of her initial endowment. Formally,

the half-life tHLδ,ρ of Agent (δ, ρ) is given by tHLδ,ρ = {inf t such that τδ,ρ,t =
τδ,ρ,0

2
}.

Insert Table 1.1 here.

We notice that the half-life is stochastic. Hence, we report the average half-lives in

Table 1.1 and consider three different time preference rates and five different beliefs that

13Formally, it is given by ρ +
δ2

2
. We do not include the third component of Yan (2008)’s survival

index relative to the risk aversion coefficient heterogeneity as we assume that all the agents have the same
logarithmic utility function.
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partition the initial wealth share distribution of the continuum of agents. The time preference

rates are defined as in Section 1.4.3 and we therefore compare patient, neutral and impatient

agents. The first (resp. second, third, fourth, and fifth) belief bias is such that 10% (resp.

25%, 50%, 75%, and 90%) of the agents are more pessimistic than the agents endowed with

this belief bias. Using the same set of parameters as in the previous section, we therefore

compute the average half-life of 15 specific agents and see that, without being the smallest,

the smaller the survival index of an agent, the longer she survives.14

Finally, aggregating the agents into groups of agents sharing the same belief, we define

formally the surviving group of this economy and its associated belief. To do so, we integrate

the consumption shares of the agents who share the same belief with respect to the time

preference rate and study their evolution. Formally, we compare for different δ the consump-

tion shares of the Groups (δ, .)—that we denote τδ—and study their limit when time goes

to infinity. Easy computations give us that ∀δ ∈ R∗, lim
t→+∞

τδ,t = 0. This result means that

the only group of agents who survive is Group (0, .), or, in other words, that the surviving

group is the rational one, and that the surviving agent of the economy is the most patient

agent in this group.

We now turn to the study of the market-dominating agents. More precisely, for a given

t, we now analyze how the consumption shares of the agents evolve given the states of the

world and study, for very good and very bad ones, which category of agents dominates the

market, in the sense that their aggregate consumption share approaches one.

Proposition 1.7. The aggregate consumption share of the optimistic (resp. pessimistic)

agents τopt (resp. τpes) are given by

τopt,t = 1− Φ

(
− δ̄t√

σδ̄

)
, τpes,t = Φ

(
− δ̄t√

σδ̄

)
,

14Note that the average half-lives are relatively long. Hence, we derive that the asymptotic results of the
paper are true asymptotic results and not only approximations of a stationary state. Note also that these
relatively long half-lives imply that non-surviving agents can potentially have a significant impact on the
market over time.
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and the optimistic (resp. pessimistic) agents dominate the market (resp. become extinct) for

very good states of the world, i.e., when Wt → +∞, and become extinct (resp. dominate the

market) for very bad ones, i.e., when Wt → −∞.

Notice that τopt is a monotonically increasing function of W and τpes a monotonically

decreasing one. Hence, as in Jouini and Napp (2011), we derive that our economy is char-

acterized by waves of optimism and waves of pessimism, in the sense that the consumption

shares are biased in favor of the optimistic agents in the good states of the world and in favor

of the pessimistic agents in the bad states of the world. Note that these waves of optimism

and pessimism also depend on the initial average economy bias. For instance, when the

agents are optimistic on average (δ0 > 0), the bias towards the consumption shares of the

optimistic agents is even more important in good states of the world. Conversely, this wave

of optimism is smaller if, on average, the agents are pessimistic (δ0 < 0).

Insert Figure 1.4 here.

Another way of showing the existence of such waves of optimism and pessimism is to

show how the aggregate consumption share of all the optimistic agents evolves over time

depending on the state of the economy (or, equivalently, how the aggregate consumption

share of all the pessimistic agents evolves, as their sum adds to one). To do so, we consider

three different trajectories and study the time evolution of τopt in each of them in Figure 1.4.

The first trajectory is characterized by a series of positive events. Formally, we assume that

Wt =
√
t at each date. Similarly, we study a trajectory where bad events happen consistently

(Wt = −
√
t at each date) and one where neutral events happen consistently (Wt = 0 at each

date). We see that, in the good trajectory, the proportion of optimistic investors tends to

one when time goes to infinity. Similarly, in the bad trajectory, the economy tends to be

populated by pessimistic investors only. We conclude that consistent good events result in

an economy populated by investors who think that a good event is more likely to happen

and vice versa. As the agents considered do not learn, this does not result from learning but

from market elimination.
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1.5.2 Utility-maximizing agents

We now look at the characteristics of the utility-maximizing agents of the economy. More

precisely, for a given Group (., ρ), we determine the belief an agent should have in order to

have the highest ex-post (and ex-ante) utility level (with respect to the other agents).

Note that, ex-post, an agent knows which states of the worlds occurred. Hence, since the

objective probability P governs the states of the world the agents face during their life, the

ex-post utility of Agent (δ, ρ) is given on average by

U ex-post
δ,ρ

(
c∗δ,ρ
)

= E
[∫ ∞

0

exp (−ρt)u
(
c∗δ,ρ,t

)
dt

]
.

Conversely, Agent (δ, ρ) does not know ex-ante which states will be realized in the future.

She therefore uses the subjective probability Qδ to compute her ex-ante utility, given on

average by

U ex-ante
δ,ρ

(
c∗δ,ρ
)

= E
[∫ ∞

0

exp (−ρt)Mδ,tu
(
c∗δ,ρ,t

)
dt

]
.

We derive the following result.

Proposition 1.8. 1. Agent
(
δex-post (ρ) , ρ

)
, the ex-post utility-maximizing agent of Group

(., ρ), is characterized by δex-post (ρ) =
δ0

1 + ω2

ρ

.

2. Agent
(
δex-ante (ρ) , ρ

)
, the ex-ante utility-maximizing agent of Group (., ρ), has a more

optimistic (or less pessimistic) belief than the average agent.

3. In particular, when δ0 ≥ 0, Agent
(
δex-ante (ρ) , ρ

)
has a more optimistic belief than the

rational agent. When δ0 < 0, she has a more optimistic belief than the rational agent

when σ is high.

4. Unless when δ0 < 0 and σ is high, there exists biased agents in Group (., ρ) whose

ex-post and ex-ante utilities are higher than the one of the rational agent of this group.
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5. In particular, when δ0 ≥ 0, Agent
(
δex-post (ρ) , ρ

)
has a higher ex-post and ex-ante

utility than Agent (0, ρ).

From the first point of Proposition 1.8, we have that δex-post (ρ) = 0 when δ0 = 0. Hence,

looking at a given group of agents having the same time preference rate, we derive that,

if the economy has no aggregate belief bias, the ex-post utility-maximizing agent and the

rational one (i.e., the surviving agent of the group) share the same belief and are therefore

identical. However, if there exists a bias towards optimism or pessimism in the economy,

the two beliefs differ and the agent who maximizes her ex-post utility is not the one who

survives in the long run. Hence, as in Jouini and Napp (2016), ex-post, a shorter life might

be more rewarding than a longer one. We also notice that the belief bias of the ex-post

utility-maximizing agent tends to zero when ω2 tends to infinity. As it denotes the variance

of the initial belief distribution, we conclude that the more heterogeneity in belief there is,

the more the agent who maximizes her ex-post utility in her group tends to be the one

who survives in this group. The intuition behind this result is that the wider the beliefs

are spread, the more extremely optimistic or pessimistic agents there are in the economy

and, therefore, the quicker the extremely biased decisions these agents take lead them to go

extinct. In other words, the more the variance of the belief distribution increases, the less

the trade-off between having a more rewarding life based on biased decisions and having a

longer life by being rational becomes favorable. We also notice that the initial aggregate

belief bias of the economy does not impact δex-post (ρ) when ω2 goes to infinity. Finally, as

1 +
ω2

ρ
> 1, we know that δex-post (ρ) is smaller than δ0 in absolute value and that both have

the same sign. We derive that the agent who maximizes her ex-post utility in her group

has the same type of bias towards optimism or pessimism as the economy, but she is more

rational than the average: in a euphoric economy (δ0 > 0), the ex-post utility-maximizing

agent of each group is a less euphoric, yet optimistic, one and she is a less depressed, yet

pessimistic, agent in a depressed economy (δ0 < 0).

Our setting, that also considers heterogeneous time preference rates, allows us to derive
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another new result from this first point. We see that as ρ increases, the ex-post utility-

maximizing belief goes from zero to δ0. In fact, looking at patient groups of agents, we have

that the ex-post utility-maximizing agent of the group tends to be the rational agent and

that, for more impatient groups of agents, she tends to be the one endowed with the average

belief.

From the second point, we derive that, when there is no aggregate belief bias in the

economy, Agent
(
δex-ante (ρ) , ρ

)
is more optimistic than the rational agent, who is the one

who both survives and maximizes her ex-post utility. The intuition behind this result is that,

ex-ante, an agent does not know that her bias will lead her to take wrong decisions. Hence,

idealizing the reality by being optimistic allows her to have a higher ex-ante utility. However,

ex-post, the wrong decisions she will take leads her life to be shorter and her ex-post utility

to be smaller. For similar reasons, when the aggregate economy has a positive belief bias, we

have that the ex-ante utility-maximizing agent of a given group of agents is more optimistic

than both the surviving one and the ex-post utility-maximizing one of the group. Finally,

when the agents are pessimistic on average, the situation is slightly different. Even if she is

less pessimistic than the average of the agents, we do not know if Agent
(
δex-ante (ρ) , ρ

)
is

pessimistic or optimistic. Hence, we study the sign of the derivative of the ex-ante utility

function with respect to δ at the point δ = 0. We find that, for a given time preference rate,

the sign of this derivative depends on the volatility of the economy. The more the economy

is volatile, the more the ex-ante utility-maximizing agent tends to be an optimistic one.

This result is intuitive as a more volatile economy allows an agent to dream bigger, and it

therefore leads her to be more optimistic ex-ante. Similarly, for a given volatility, we observe

that the sign of the derivative depends on the group of agents we study. For instance, for

the most patient groups of agents, i.e., looking at the groups Group (., ρ) for ρ going to zero,

we see that this derivative is positive and that the ex-ante utility-maximizing agents of these

groups are therefore optimistic. Conversely, when we consider the most impatient groups of

agents, the derivative is negative and the ex-ante utility-maximizing agents of these groups
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are therefore more optimistic than the average of the agents but are still pessimistic.

From the fourth point of the proposition, we derive that, as in Jouini and Napp (2016),

it is possible to have an economy where the threat of elimination is not sufficient to push

some agents towards rationality, and that such an economy is characterized by agents who

should rationally stay irrational (if their goal is to maximize their level of utility). Note that

Jouini and Napp (2016)’s finding is obtained in a two-agent setting where each of the two

agents considered takes profit from her impact on equilibrium prices. Hence, we complement

this result as we deal with a continuum of agents whose individual price impact is null. In

fact, the mechanism at play is quite simple: in a positive growth economy and whatever

the asset price is, an optimistic agent extracts more utility from the market portfolio than

the rational agent does. Furthermore, when there is a dose of optimism in the economy,

an agent whose belief is between the current market (aggregate) belief and rationality is

closer to the market belief than the rational agent, and her current decisions are closer

to the market portfolio.15 However, agents’ beliefs are constant while the market’s belief

converges to rationality. Hence, no one can remain indefinitely between the market’s belief

and rationality, and the time spent within this range is obviously larger when the agent is

closer to rationality. We therefore show that there is an optimal position where the advantage

obtained while being between these two limits exceeds the subsequent disadvantage.

1.6 Conclusion

Using a correlated statistical distribution to describe their belief and time preference rate

heterogeneities, we develop a model with a continuum of heterogeneous investors and derive

the implications these different types of heterogeneity have on the behavior of financial

markets. We first define the representative agent and determine the equilibrium of this

economy. We then look at some market properties (risk-free rate, market price of risk, market

15In Jouini and Napp (2016), a dose of optimism is obtained assuming that one agent is rational and the
other one is optimistic. In the present model, it results from the condition δ0 > 0.
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volatility, trading volume) and notice that the two types of heterogeneity affect them. More

specifically, we find that the risk-free rate is procyclical and that the market price of risk

is countercyclical. The economy trading volume is also impacted: we find that it increases

with the variance of the belief heterogeneity distribution. Moreover, we show that a negative

correlation between the two types of heterogeneity increases the volatility of the asset whose

dividend process is given by the total endowment of the economy. The higher the correlation

in absolute value is, the stronger this excess volatility effect is. A negative correlation between

beliefs and time preference rates also decreases the risk-free rate and increases the market

price of risk. Additionally, looking at the consumption shares of the agents, we derive that

the economy is characterized by waves of optimism and pessimism. Lastly, we study the

characteristics of some specific agents and find that the utility-maximizing agents (both ex-

post and ex-ante) are different from the surviving one as long as there is an aggregate belief

bias in the economy. When agents are optimistic on average, being an optimist reduces the

lifetime but increases the utility compared to a rational agent. As in Jouini and Napp (2016),

we therefore find that having a shorter life might be more rewarding than a longer one.

To the best of our knowledge, we are the first to consider a continuum of investors with

two types of heterogeneity and to introduce some correlation between them. This allows us

to derive new implications on the joint impacts of heterogeneities on the behavior of financial

markets. Interesting extensions could be to add some risk aversion heterogeneity among the

agents and to endogenize the aggregate endowment process in the economy. We leave this

for future research.
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1.A Proofs

Proof of Proposition 1.1

1. To find the equilibrium of this economy, we need to solve the following program

c∗δ,ρ = cδ,ρ(p
∗,Mδ, e

∗
δ,ρ),

e∗t =

∫
c∗δ,ρ,t dδdρ,

where e∗δ,ρ = νδ,ρ,ke
∗ is the initial endowment of Agent (δ, ρ) and

cδ,ρ(p,M, e) ≡ argmax

E

∫ ∞
0

pt (cδ,ρ,t − et) dt
≤0

E
[∫ ∞

0

exp (−ρt)Mtu (cδ,ρ,t) dt

]
.

The first order conditions give immediately

p∗t = (e∗t )
−1

∫
λδ,ρ,kexp (−ρt)Mδ,t dδdρ,

c∗δ,ρ,t = (p∗t )
−1 λδ,ρ,kexp (−ρt)Mδ,t,

where (λδ,ρ,k)δ∈R,ρ∈R∗+
are the inverse of the Lagrange multipliers, which satisfy λδ,ρ,k =

ρνδ,ρ,k

(∫
λδ′,ρ′,k
ρ′

dδ′dρ′
)

.

Note that the equation giving the consumption of Agent (δ, ρ) helps to see how the

representative agent—whose characteristics are derived in the remainder of the proof—

is constructed. More formally

c∗δ,ρ,t = (p∗t )
−1 λδ,ρ,kexp (−ρt)Mδ,t ⇔ e∗t = (p∗t )

−1

∫
λδ,ρ,kexp (−ρt)Mδ,t dδdρ.

The right hand-side of this equivalence can be interpreted as the equilibrium equation

of a representative agent whose total consumption is e∗ and whose characteristics are
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such that exp (−ρ̄t) M̄t =

∫
λδ,ρ,kexp (−ρt)Mδ,t dδdρ.

Note also that we must have λδ,ρ,k = ρνδ,ρ,k

(∫
λδ′,ρ′,k
ρ′

dδ′dρ′
)

to ensure that

νδ,ρ,k =

E
[∫ ∞

0

p∗t c
∗
δ,ρ,tdt

]
∫

E
[∫ ∞

0

p∗t c
∗
δ′,ρ′,tdt

]
dδ′dρ′

.

This last equality follows from the budget constraint of Agent (δ, ρ) which states

that the value of the agent’s consumption (i.e., E
[∫ ∞

0

p∗t c
∗
δ,ρ,tdt

]
) should (at most)

equal the value of her endowment (given by the value of the fraction of the pro-

duction process that she is endowed with, i.e., νδ,ρ,k × E
[∫ ∞

0

p∗t e
∗
tdt

]
= νδ,ρ,k ×∫

E
[∫ ∞

0

p∗t c
∗
δ′,ρ′,tdt

]
dδ′dρ′).

Additionally, using Ito’s lemma, we easily derive

dp∗t =

(
−µ+ σ2 − Et (ρ2)

Et (ρ)
− σEt (δρ)

Et (ρ)

)
p∗tdt+

(
−σ +

Et (δρ)

Et (ρ)

)
p∗tdWt

= µp∗p
∗
tdt+ σp∗p

∗
tdWt,

with Et(.) the time-dependent mean with weights given by ν̃δ,ρ,k,t defined in Section 1.2.

2. 3. Let us denote by Q̄ the belief of the representative agent—associated to δ̄t—and by ρ̄t

her time preference rate. Let us also denote by M̄ the density of Q̄ with respect to P .

Recall that the representative agent of this economy is an agent who, if endowed with

the total wealth of the economy, would have a marginal utility equal to the equilibrium

price. Hence, we have M̄t = exp (ρ̄tt) p
∗
t e
∗
t .

We derive

dM̄t = (ρ̄t + µp∗(t) + µe∗(t) + σp∗(t)σe∗(t)) M̄tdt+ (σp∗(t) + σe∗(t)) M̄tdWt
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= µM̄(t)M̄tdt+ σM̄(t)M̄tdWt.

Direct computations give µM̄(t) = ρ̄t −
Et (ρ2)

Et (ρ)
and σM̄(t) =

Et (δρ)

Et (ρ)
.

By definition, µM̄(t) = 0. The representative agent’s time preference rate is therefore

given by ρ̄t =
Et (ρ2)

Et (ρ)
, and the associated variance is given by σρ̄ =

Et (ρ3)

Et (ρ)
− ρ̄2

t .

The representative agent’s belief is given by σM̄ . Hence, we have δ̄t = σM̄ =
Et (δρ)

Et (ρ)
,

and the associated variance is given by σδ̄ =
Et (δ2ρ)

Et (ρ)
− σM̄(t)2.

By definition, finding the characteristics such that we have M̄t = exp (ρ̄tt) p
∗
t e
∗
t ensures

the existence of the representative agent.

When k 6= 0, we use the computations of Appendix 1.B.1 to obtain the explicit com-

putations of ρ̄t and δ̄t.

Let briefly study the function Ψ. We have Ψ (Xt) =
|k|
√
t√

1 + tω2

Et (ρ2)

Et (ρ)
.

Knowing that the time preference rates are non-negative, we derive that Ψ (Xt) ≥ 0.

Using Taylor expansions, we also easily derive that Ψ (x) ∼
x→+∞

3 +O
(

1
x2

)
x− 6

x
+O

(
1
x3

) , and

we conclude that Ψ (Xt) converges to zero when t goes to infinity.

In the uncorrelated case (k = 0), the computations simplify to

ρ̄t =

∫ ∞
0

ρ2 exp (−ρt) ϑl

Γ (l)
ρl−1 exp (−ρϑ) dρ∫ ∞

0

ρ exp (−ρt) ϑl

Γ (l)
ρl−1 exp (−ρϑ) dρ

=
l + 1

ϑ+ t
,

σρ̄ =

∫ ∞
0

ρ3 exp (−ρt) ϑl

Γ (l)
ρl−1 exp (−ρϑ) dρ∫ ∞

0

ρ exp (−ρt) ϑl

Γ (l)
ρl−1 exp (−ρϑ) dρ

− ρ̄2
t =

l + 1

(ϑ+ t)2 ,

δ̄t =

∫
R
δMδ,t

1√
2πω

exp

(
−(δ − δ0)2

2ω2

)
dδ

∫
R
Mδ,t

1√
2πω

exp

(
−(δ − δ0)2

2ω2

)
dδ

=
δ0 + ω2Wt

1 + tω2 ,
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σδ̄ =

∫
R
δ2Mδ,t

1√
2πω

exp

(
−(δ − δ0)2

2ω2

)
dδ

∫
R
Mδ,t

1√
2πω

exp

(
−(δ − δ0)2

2ω2

)
dδ

− σM̄(t)2 =
ω2

1 + tω2 .

�

Proof of Proposition 1.2 Let consider an asset which does not pay dividends and let us

denote by Z its price process. We have that p∗Z is a martingale. Hence, µZ+µp∗+σZσp∗ = 0.

In the case of a riskless asset, we have that µZ is the risk-free rate and that σZ = 0. We

obtain rft = −µp∗(t).

In the case of a risky asset, we therefore have µZ−rf +σZσp∗ = 0, which leads to
µZ − rf

σZ
=

−σp∗ . Note that it does not depend on Z and that we therefore have MPRt = −σp∗(t).

Using Ito’s Lemma on p∗ we straightforwardly find the result (cf Proof of Proposition 1.1).

�

Proof of Proposition 1.3 We have St = e∗t

∫
νδ,ρ,kexp (−ρt)Mδ,tdδdρ∫
ρ νδ,ρ,kexp (−ρt)Mδ,tdδdρ

.

Using Ito’s Lemma we get

σS,t = σ +

∫
δ νδ,ρ,kexp (−ρt)Mδ,tdδdρ∫
νδ,ρ,kexp (−ρt)Mδ,tdδdρ

−

∫
δρ νδ,ρ,kexp (−ρt)Mδ,tdδdρ∫
ρ νδ,ρ,kexp (−ρt)Mδ,tdδdρ

= σ − covt (δ, ρ)

Et (ρ)
.

Using the computations of Appendix 1.B.1, we obtain

σS,t = σ +
sgn (k)

√
t
√

1 + tω2
Υ (Xt) ,
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with Υ (x) =
2− 31−Φ(x)

ϕ(x)
x+

(
1−Φ(x)
ϕ(x)

)2

(−1 + x2)

−x+ 1−Φ(x)
ϕ(x)

(1 + 2x2)−
(

1−Φ(x)
ϕ(x)

)2

(x+ x3)
.

We can rewrite Υ (x) as

Υ (x) =
2− 31−Φ(x)

ϕ(x)
x+

(
1−Φ(x)
ϕ(x)

)2

(−1 + x2)(
1− 1−Φ(x)

ϕ(x)
x
)2

1− 1−Φ(x)
ϕ(x)

x

−x+ 1−Φ(x)
ϕ(x)

(1 + x2)
.

Moreover, as Vt (ρ) > 0 and Et (ρ) > 0, we derive that

2−3
1− Φ (Xt)

ϕ (Xt)
Xt+

(
1− Φ (Xt)

ϕ (Xt)

)2 (
−1 +X2

t

)
> 0 and

1− 1−Φ(Xt)
ϕ(Xt)

Xt

−Xt + 1−Φ(Xt)
ϕ(Xt)

(1 +X2
t )
> 0. Hence,

we obtain that Υ (Xt) ≥ 0.

Finally, using Taylor expansions, we easily get Υ (x) ∼
x→+∞

1
x

+O
(

1
x3

)
1 +O

(
1
x2

) , and we conclude

that Υ (Xt) converges to zero when t goes to infinity.

�

Proof of Proposition 1.4 We have Vδ,ρ,t = e∗t

∫ ∞
t

λδ,ρ,kexp (−ρs)Mδ,tds∫
λδ,ρ,kexp (−ρt)Mδ,tdδdρ

.

Using Ito’s Lemma and rearranging the terms we find

dVδ,ρ,t =
(
µ− ρ+ σδ + ρ̄t − (σ + δ) δ̄t + δ̄2

t

)
Vδ,ρ,tdt+

(
σ + δ − δ̄t

)
Vδ,ρ,tdWt

= µVδ,ρ,tVδ,ρ,tdt+ σVδ,ρ,tVδ,ρ,tdWt.

As reported in Section 1.4.3, the optimal number of shares Agent (δ, ρ) should invest in the

risky asset is given by αδ,ρ,t =
Vδ,ρ,t
St

σVδ,ρ,t
σS,t

. Isolating the volatility of the stochastic differential

equation satisfied by αδ,ρ, tedious computations lead to

σαδ,ρ,t =

Vδ,ρ,t
St

1

σS,t

((
σ + δ − δ̄t

)(
δ − Et (δ) +

1

σS,t

(
covt

(
δ2, ρ

)
Et (ρ)

−
covt (δ, ρ)

(
Et (δ) + δ̄t

)
Et (ρ)

))
− σδ̄

)
.
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Taking the absolute value of σαδ,ρ and knowing that Vδ,ρ, S, and σS are non-negative, we

derive the result of Proposition 1.4.

In the uncorrelated case, we have σS,t = σ, covt
(
δ2, ρ

)
= 0, and covt (δ, ρ) = 0. Moreover

δ̄t =
Et (δρ)

Et (ρ)
=

covt (δ, ρ) + Et (δ)Et (ρ)

Et (ρ)
= Et (δ) .

Hence, in this case, the trading volume of Agent (δ, ρ) is given by

|σαδ,ρ,t| =
Vδ,ρ,t
St

|
(
σ + δ − δ̄t

) (
δ − δ̄t

)
− σδ̄|

σ
.

�

Proof of Proposition 1.5 We have V olt =
1

2

∫
|σαδ,ρ,t|dδdρ.

To compute this integral, we need to know the sign of the term in absolute value. We have

σαδ,ρ,t > 0⇔
(
σ + δ − δ̄t

) (
δ − δ̄t

)
− σδ̄ > 0

⇔ δ2 +
(
σ − 2δ̄t

)
δ + δ̄2

t − δ̄tσ − σδ̄ > 0.

Solving this equation, we get σαδ,ρ,t > 0⇔ δ ∈ ]−∞, δ2[ ∪ ]δ1,+∞[ with

δ1 =
−σ + 2δ̄t +

√
σ2 + 4σδ̄

2
and δ2 =

−σ + 2δ̄t −
√
σ2 + 4σδ̄

2
.

Hence, we have V olt =
1

2

(∫ ∞
0

∫ δ2

−∞
σαδ,ρ,tdδdρ−

∫ ∞
0

∫ δ1

δ2

σαδ,ρ,tdδdρ+

∫ ∞
0

∫ ∞
δ1

σαδ,ρ,tdδdρ

)
.

Moreover, as

∫ ∞
0

∫ ∞
−∞

σαδ,ρ,tdδdρ = 0, we have V olt = −
∫ ∞

0

∫ δ1

δ2

σαδ,ρ,tdδdρ.

Tedious computations lead to

V olt =

√
σδ̄

2σ

((
σ +

√
σ2 + 4σδ̄

)
ϕ

(
−σ +

√
σ2 + 4σδ̄

2
√
σδ̄

)

−
(
σ −

√
σ2 + 4σδ̄

)
ϕ

(
−σ −

√
σ2 + 4σδ̄

2
√
σδ̄

))
.

�
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Proof of Proposition 1.6 Explicit computations of the consumption share of Agent (δ, ρ)

lead to

τδ,ρ,t =

√
1 + tω2

√
2πω

(ϑ+ t)l+1 ρl

Γ (l + 1)
exp

(
−
(
ρ+

δ2

2

)
t− δ2

2ω2 +
1

σδ̄
δδ̄t −

1

2σδ̄
δ̄2
t − ρϑ

)
.

Defining the survival index of Agent (δ, ρ) by ρ +
δ2

2
and studying the limit of τδ,ρ when t

goes to infinity, we derive the result straightforwardly.

�

Proof of Proposition 1.7 The aggregate consumption share of the optimistic (resp. pes-

simistic) agents τopt (resp. τpes) is given by

τopt,t =

∫ ∞
0

∫ ∞
0

τδ,ρ,tdδdρ

(
resp. τpes,t =

∫ ∞
0

∫ 0

−∞
τδ,ρ,tdδdρ

)
.

Direct computations give us

τopt,t = 1− Φ

−Wt + δ0
ω2√

t+ 1
ω2

 = 1− Φ

(
− δ̄t√

σδ̄

)
, τpes,t = Φ

−Wt + δ0
ω2√

t+ 1
ω2

 = Φ

(
− δ̄t√

σδ̄

)
.

We easily see that lim
Wt→+∞

τopt,t = 1 and lim
Wt→+∞

τpes,t = 0. Similarly lim
Wt→−∞

τopt,t = 0 and

lim
Wt→−∞

τopt,t = 1.

�

Proof of Proposition 1.8

1. We have

c∗δ,ρ,t =

√
1 + tω2

√
2πω

(ϑ+ t)l+1 ρl

Γ (l + 1)
exp

(
−
(
ρ+

δ2

2

)
t− δ2

2ω2 +
1

σδ̄
δδ̄t −

1

2σδ̄
δ̄2
t − ρϑ

)
e∗t .
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Some algebra leads to

U ex-post
δ,ρ

(
c∗δ,ρ
)

= E
[∫ ∞

0

exp (−ρs) ln
(
c∗δ,ρ,s

)
ds

]
=

∫ ∞
0

exp (−ρs)

(
ln
(
s+ 1

ω2

)
2

+ (l + 1) ln (s+ ϑ)− δ2
0

2 (sω4 + ω2)
− s

2
(
s+ 1

ω2

)) ds
− ϑ+

lln (ρ)− ln
(√

2πΓ (l + 1)
)
− 1

ρ
+

2δ0δ − δ2

2ω2ρ
+

2µ+ σ2 − δ2

2ρ2
.

Deriving this expression with respect to δ, we get
∂U ex-post

δ,ρ

∂δ

(
c∗δ,ρ
)

=
−
(

1 + ω2

ρ

)
δ + δ0

ω2ρ
.

Hence, we have
∂U ex-post

δ,ρ

∂δ

(
c∗δ,ρ
)∣∣∣∣∣
δ=δex-post

= 0⇔ δex-post =
δ0

1 + ω2

ρ

.

Note that
∂2U ex-post

δ,ρ

∂δ2

(
c∗δ,ρ
)

=
−
(

1 + ω2

ρ

)
ω2ρ

< 0, which ensures that this is a maximum.

2. Direct computations give

U ex-ante
δ,ρ

(
c∗δ,ρ
)

= EQδ
[∫ ∞

0
exp (−ρs) ln

(
c∗δ,ρ,s

)
ds

]
= E

[∫ ∞
0

exp (−ρs)Mδ,tln
(
c∗δ,ρ,s

)
ds

]

=

∫ ∞
0

exp (−ρs)

 ln
(
s+ 1

ω2

)
2

+ (l + 1) ln (s+ ϑ)

− δ2
0

2
(
sω4 + ω2

) − δ0δs

1 + sω2 −
s

2
(
s+ 1

ω2

) − δ2s2

2
(
s+ 1

ω2

)
 ds

− ϑ+
lln (ρ)− ln

(√
2πΓ (l + 1)

)
− 1

ρ
+

2δ0δ − δ2

2ω2ρ
+

2µ+ (σ + δ)2

2ρ2
.

Deriving this expression with respect to δ, we get

∂U ex-ante
δ,ρ

∂δ

(
c∗δ,ρ
)

=

∫ ∞
0

exp (−ρs)
(
− δ0s

1 + sω2 −
δω2s2

1 + sω2

)
ds+

δ0 − δ
ω2ρ

+
δ + σ

ρ2
.
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We also have

∂2U ex-ante
δ,ρ

∂δ2

(
c∗δ,ρ
)

= −
∫ ∞

0

exp (−ρs) ω2s2

1 + sω2ds−
1

ω2ρ
+

1

ρ2
< 0.

We derive that the derivative of the ex-ante utility function is a monotonic decreasing

function. Hence, if this derivative evaluated at a given point is positive, the maximum

of the ex-ante utility function is reached for a more optimistic belief (as a positive sign

for the derivative means that the utility function is increasing).

In particular, for the average agent, simple computations give

∂U ex-ante
δ,ρ

∂δ

(
c∗δ,ρ
)∣∣∣∣
δ=δ0

=

∫ ∞
0

exp (−ρs)
(
− δ0s

1 + sω2 −
δ0ω

2s2

1 + sω2

)
ds+

δ0 + σ

ρ2
=

σ

ρ2
> 0.

3. When δ0 > 0, we have
∂U ex-ante

δ,ρ

∂δ

(
c∗δ,ρ
)∣∣∣∣
δ=0

> 0, as this derivative is a monotonic

decreasing function which is positive for δ = δ0.

When δ0 < 0, the sign of the derivative for δ = 0 depends on σ. We have

∂U ex-ante
δ,ρ

∂δ

(
c∗δ,ρ
)∣∣∣∣
δ=0

= −
∫ ∞

0

exp (−ρs) δ0s

1 + sω2ds+
δ0

ω2ρ
+
σ

ρ2
.

Using basic algebra and the fact that, for all s, we have
sω2

1 + sω2 ≤ 1, we obtain

∫ ∞
0

exp (−ρs) sω2

1 + sω2ρds ≤
∫ ∞

0

exp (−ρs) ρds = 1

which leads to

−
∫ ∞

0

exp (−ρs) δ0s

1 + sω2ds+
δ0

ω2ρ
≤ 0.

Hence, we derive that when σ is sufficiently high, the derivative of the ex-ante utility

function evaluated at δ = 0 is positive.
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4. 5. By definition Agent
(
δex-post (ρ) , ρ

)
has a higher ex-post utility than the rational agent.

Moreover, when δ0 ≥ 0, we have 0 ≤ δex-post (ρ) ≤ δ0. Using a similar argument as for

the proof of point 3. we derive that she also has a higher ex-ante utility.

When δ0 < 0 and σ is low, the ex-ante utility-maximizing agent of Group (., ρ) has

a less optimistic belief than the rational agent (see proof of point 3.). We have δ0 ≤

δex-ante (ρ) ≤ 0 (see proof of point 2.). Using the fact that the utility functions are

monotonic decreasing functions once they have reached their maximum, we conclude

that Agent
(
δex-post (ρ) , ρ

)
(resp. Agent

(
δex-ante (ρ) , ρ

)
) has also a higher ex-ante (ex-

post) utility than the rational agent if δex-ante (ρ) ≤ δex-post (ρ) ≤ 0 (resp. δex-post (ρ) ≤

δex-ante (ρ) ≤ 0).

�
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1.B Useful computations and additional results

1.B.1 Moments with respect to the density ν̃δ,ρ,k,t

We define

Xt =

√
1 + tω2

|k|
√
t

(
t+ ϑ+ k

Wt − δ0t

1 + tω2

)
.

Tedious computations give

Et (δ) =

∫
δν̃δ,ρ,k,t dδdρ =

∫
δνδ,ρ,kexp (−ρt)Mδ,t dδdρ∫
νδ,ρ,kexp (−ρt)Mδ,t dδdρ

=
δ0 + ω2Wt

1 + tω2 − sgn (k)
√
t
√

1 + tω2

−Xt + 1−Φ(Xt)
ϕ(Xt)

(1 +X2
t )

1− 1−Φ(Xt)
ϕ(Xt)

Xt

,

Et
(
δ2
)

=

∫
δ2ν̃δ,ρ,k,t dδdρ

=
ω2

1 + tω2 +

(
δ0 + ω2Wt

1 + tω2

)2

+
2 +X2

t −
1−Φ(Xt)
ϕ(Xt)

(3Xt +X3
t )

t (1 + tω2)

− 2
sgn (k)

√
t
√

1 + tω2

−Xt + 1−Φ(Xt)
ϕ(Xt)

(1 +X2
t )

1− 1−Φ(Xt)
ϕ(Xt)

Xt

δ0 + ω2Wt

1 + tω2 ,

Et (ρ) =

∫
ρν̃δ,ρ,k,t dδdρ =

√
1 + tω2

|k|
√
t

−Xt + 1−Φ(Xt)
ϕ(Xt)

(1 +X2
t )

1− 1−Φ(Xt)
ϕ(Xt)

Xt

,

Et
(
ρ2
)

=

∫
ρ2ν̃δ,ρ,k,t dδdρ =

1 + tω2

k2t

2 +X2
t −

1−Φ(Xt)
ϕ(Xt)

(3Xt +X3
t )

1− 1−Φ(Xt)
ϕ(Xt)

Xt

,

Et (δρ) =

∫
δρν̃δ,ρ,k,t dδdρ

=
δ0 + ω2Wt

|k|
√
t
√

1 + tω2

−Xt + 1−Φ(Xt)
ϕ(Xt)

(1 +X2
t )

1− 1−Φ(Xt)
ϕ(Xt)

Xt

− 1

kt

2 +X2
t −

1−Φ(Xt)
ϕ(Xt)

(3Xt +X3
t )

1− 1−Φ(Xt)
ϕ(Xt)

Xt

.
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We derive

Vt (δ) = Et
(
δ2
)
− Et (δ)2

=
ω2

1 + tω2 +
2− 1−Φ(Xt)

ϕ(Xt)

(
5Xt +X3

t

)
+
(

1−Φ(Xt)
ϕ(Xt)

)2 (
−1 + 6X2

t + 2X4
t

)
t
(
1 + tω2

) (
1− 1−Φ(Xt)

ϕ(Xt)
Xt

)2

−

(
1−Φ(Xt)
ϕ(Xt)

)3 (
3X3

t +X5
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t
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)2 ,

Vt (ρ) = Et
(
ρ2
)
− Et (ρ)2 =

1 + tω2

k2t

2− 31−Φ(Xt)
ϕ(Xt)

Xt +
(

1−Φ(Xt)
ϕ(Xt)

)2 (
−1 +X2

t

)
(

1− 1−Φ(Xt)
ϕ(Xt)

Xt

)2 ,

covt (δ, ρ) = Et (δρ)− Et (δ)Et (ρ) = − 1

kt

2− 31−Φ(Xt)
ϕ(Xt)

Xt +
(

1−Φ(Xt)
ϕ(Xt)

)2 (
−1 +X2

t

)
(

1− 1−Φ(Xt)
ϕ(Xt)

Xt

)2 .

Finally, we have corrt (δ, ρ) =
covt (δ, ρ)√
Vt (δ)Vt (ρ)

.

As Vt (ρ) > 0, we know that 2 − 3
1− Φ (Xt)

ϕ (Xt)
Xt +

(
1− Φ (Xt)

ϕ (Xt)

)2 (
−1 +X2

t

)
> 0. Hence,

we conclude that sgn (corrt (δ, ρ)) = sgn (covt (δ, ρ)) = −sgn (k) .

1.B.2 Consumption shares and utility-maximizing agents in the

correlated case

In unreported computations that are available upon request, we find that the correlation

between the two types of heterogeneity does not affect the survival implications of the model.

As in the uncorrelated economy, the surviving agent is the most patient of the rational agents.

However, the correlation has an impact on the utility-maximizing agents of the economy. The

ex-post utility-maximizing agent of Group (., ρ) is characterized by δex-post (ρ) =
δ0 − kρ
1 + ω2

ρ

. We

notice that this ex-post utility-maximizing agent shares similarities with the ex-post utility-

maximizing agent of the uncorrelated economy. In particular, we observe that this agent

is biased and that she therefore differs from the surviving one. In fact, the only group of
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agents for which the surviving agent is also the one maximizing her ex-post utility is the

one characterized by ρ =
δ0

k
. We also observe that the correlation between the two types

of heterogeneity impacts the characteristics of such an agent. We see that the parameter k

impacts negatively δex-post (ρ), meaning that a positive k, or, stated differently, a negative

correlation between the belief and the time preference rate, reduces the optimistic optimal

bias an agent should have to be the ex-post utility-maximizing one. In other words, if we

assume that the more optimistic agents are also the most patient ones, the heterogeneity

effect on the ex-post utility-maximizing agent is mitigated.
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Figure 1.1: Time evolution of the median risk-free rate depending on the correlation

The figure presents the evolution over time of the median risk-free rate for different levels of
correlation between the two types of heterogeneity. The dotted (resp. dash-dot, thin, dashed,
solid) line corresponds to a median correlation at time t = 1 of −0.75 (resp. −0.25, 0, 0.25,
0.75). The baseline parameter values are: µ = 14.23%, σ = 8.25%, δ0 = 0, ω = 3.39%, l = 2,
and ϑ = 50.
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Figure 1.2: Time evolution of the median market volatility depending on the correlation

The figure presents the evolution over time of the median market volatility for different
levels of correlation between the two types of heterogeneity. The dotted (resp. dash-dot,
thin, dashed, solid) line corresponds to a median correlation at time t = 1 of −0.75 (resp.
−0.25, 0, 0.25, 0.75). We use the same baseline parameter values as in Figure 1.1.
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Figure 1.3: Time evolution of the median trading volume depending on the time preferences

Panel A: No correlation

Panel B: Negative correlation

Panel C: Positive correlation

The figure presents the evolution over time of the median trading volume of three rational
agents having different time preference rates. The figure shows the uncorrelated case (Panel
A), the strongly negatively correlated case (Panel B), and the strongly positively correlated
case (Panel C). The dotted (resp. solid, dashed) line corresponds to the patient (resp.
neutral, impatient) agent whose time preference rate is given by the 10th (resp. 50th, 90th)
percentile of the Gamma distribution used to describe the time preference rate heterogeneity.
We use the same baseline parameter values as in Figure 1.1.
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Figure 1.4: Time evolution of the aggregate consumption share of the optimistic agents
depending on the trajectory

The figure presents the evolution over time of the aggregate consumption share of the op-
timistic agents with three different trajectories. The dotted (resp. solid, dashed) line cor-
responds to the good (resp. neutral, bad) trajectory defined by Wt =

√
t (resp. Wt = 0,

Wt = −
√
t) at each date. We use the same baseline parameter values as in Figure 1.1.
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Table 1.1: Average half-lives of some specific agents

δ10% δ25% δ50% δ75% δ90%

ρ10% 399.1 562.3 731.1 562.3 399.1
ρ50% 84.8 110.2 133.1 110.2 84.8
ρ90% 19.5 22.4 24.6 22.4 19.5

The table contains the average half-life of 15 specific agents. The characteristics of the agents
are such that they partition the initial wealth share distribution of the continuum of agents:
δi% and ρj% are such that Agent (δi%, ρj%) is more optimistic than i% of the agents and
more impatient than j% of the agents. We use the same baseline parameter values as in
Figure 1.1.
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Abstract

I develop an overlapping generations model where each generation is constituted of a

continuum of agents with heterogeneous beliefs. This belief heterogeneity persists across

successive generations, and I thus obtain stationary results. The model can equivalently be

described as an economy with a sliding horizon where infinitely-lived investors continuously

revise their consumption plans, which eases the construction of the intertemporal represen-

tative agent. I further derive that the equilibrium stock mean return and volatility increase

with belief dispersion. Using analyst forecasts from the IBES database, I show suggestive

evidence that these positive relations are empirically verified and hold with data sampled at

various frequencies when considering the market.

Keywords: Heterogeneous beliefs, Overlapping generations, Continuum of agents, Asset

pricing

JEL classification: D53 - D90 - G12 - G40
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2.1 Introduction

It is well-established that there is a great belief heterogeneity among stock market par-

ticipants. Using a recent survey administered to a panel of retail investors, Giglio et al.

(2020) for instance show that beliefs are characterized by a large and persistent individual

heterogeneity, and that investors are likely to exhibit a willingness to “agree to disagree.”

While early studies argued that traders with biased beliefs could be neglected, the recent

literature has shown these views to be wrong, and has studied, both from empirical and

theoretical perspectives, the implications of such belief dispersion. In particular, Jouini and

Napp (2011) show theoretically that heterogeneity is important per se, as an economy with

biased investors who are rational on average differs markedly from an economy with rational

investors only. Moreover, surveys suggest that investors do not agree more on future stock

market returns nowadays than they did in the past. Heterogeneous belief models should

thus incorporate this disagreement persistence, which is unfortunately not often the case

(see, e.g., Atmaz and Basak, 2018). Not only is this feature important for the sake of empir-

ical relevance, but also because vanishing belief dispersion prevents the belief heterogeneity

implications to be tested relevantly over long periods.

In this paper, I develop and empirically test a tractable model in which belief hetero-

geneity does not progressively vanish. More precisely, in a dynamic general equilibrium

framework, I develop an overlapping heterogeneous generations model evolving in contin-

uous time, where each generation is constituted of a continuum of constant relative risk

aversion (CRRA) investors who agree to disagree. As time goes by, each member of a

given generation gives birth to an investor of the next generation, who is endowed with the

same beliefs. At the end of their life, the agents then consume part of their wealth and be-

queath the remaining part to the next generation. The combination of the intra-family belief

transmission assumption and of a dynamic family budget constraint ensures that the belief

dispersion remains persistent across generations, as empirically observed. My main theoret-

ical contribution is thus to derive stationary results with non-vanishing belief heterogeneity
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that confirm part of the existing results found in models where the agents unrealistically

tend towards rationality. It also allows me to study if the model implications are verified

empirically, and if the belief heterogeneity impacts persist over long horizons. Moreover, the

model incorporates continuous effective consumption, which differs from Atmaz and Basak

(2018) where there is a single consumption date when uncertainty is resolved.

An important feature of the model is that it considers a large number of agents, which has

two main advantages. First, it allows me to consider an unbounded investor type space, or,

stated differently, to take into account every possible existing belief. In a model with bounded

belief biases, the most biased agents (towards optimism or pessimism) would eventually

control almost all of the wealth in the economy in the most extreme states (i.e., the very

good or very bad ones), and belief heterogeneity would disappear. The choice of a continuum

thus guarantees that belief heterogeneity persists not only for all dates but also in all states of

the world. The second advantage of considering an infinite number of investors is that I can

use a statistical distribution to describe their wealth shares. Similarly to, e.g., Cvitanic and

Malamud (2011), I assume that the initial distribution is a Gaussian one with exogenously

determined parameters, and I show that the normality of the wealth share distribution

remains as time goes by. Thus, I only need to estimate two parameters, namely the average

belief bias and the belief dispersion, in order to describe the agents’ beliefs, which eases the

model empirical assessment. It also allows me to easily disentangle between the impacts of

the first and second moments. This is interesting because, as underlined by Brandon and

Wang (2020), most models focus on the effects of the latter.

Before discussing its theoretical implications, let me briefly talk about a dual approach of

the model. It is based on an alternative model populated by a continuum of infinitely-lived

CRRA investors, who continuously revise their consumption plans and, as they are assumed

to keep a constant prevision horizon of length T , continuously shift their consumption date,

leading to a model with a sliding horizon (and no effective consumption). Roughly speaking,

in this framework, each of the agents corresponds to an entire family in the overlapping
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heterogeneous generations model, and the successive plan revisions coincide with the different

plans made by the successive generations. In fact, this alternative approach echoes the

seminal work of Lindahl (1939), who observes that “the plans of the economic subjects at

any given point of time are neither fully consistent with one another nor with the external

conditions, and therefore they must be successively revised.”1 This is also in line with the

more general temporary general equilibrium theory of Grandmont (1977, 2008). Importantly,

this continuous plan revision feature ensures that the belief heterogeneity is persistent as

these revisions prevent every investor to go extinct. This dual approach, which is fully

equivalent to the main model, further helps to construct an intertemporal representative

agent, defined as the fictitious agent who, if endowed with the total wealth of the economy,

would have a marginal utility equal to the equilibrium price.

I now turn to the implications of the model, and see how they relate to the existing

literature. Note that most of the theoretical results are similar to those in Atmaz and Basak

(2018) evaluated at t = 0, i.e., when the heterogeneity has not started to vanish. Again, one

of the theoretical contributions of my study is to show that simple mechanisms can prevent

such belief dispersion vanishing to happen.

Looking at the stock price, I infer that it depends positively on the average belief bias,

which is in line with the studies of Jouini and Napp (2007) and Kurz and Motolese (2011). I

further derive that the belief dispersion impact is positive for sufficiently good states of the

world and negative for sufficiently bad ones. Note that the sign of this impact only depends

on t through the current state of the world Wt, and not through the remaining time before

1Erik Lindahl, Studies in the theory of money and capital, 1939: p.38. Lindahl also indicates a general
procedure to construct a solution consistent with such successive plan revisions:

Starting from the plans and the external conditions valid at the initial point of time, we have
first to deduce the development that will be the result of these data for a certain period forward
during which no relevant changes in the plans are assumed to occur. Next we have to investigate
how far the development during this first period—involving as it must various surprising for the
economic subjects—will force them to revise their plans of action for the future, the principles
for such a revision being assumed to be included in the data of the problem. And since on this
basis the development during the second period is determined in the same manner as before,
fresh deductions must be made concerning the plans for the third period, and so on.
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the economy ending date as this is the case in a finite horizon setting. Finally, similarly to

Atmaz and Basak (2018), I find a convex relation between the stock price and the cashflow

news. This price convexity implies that the stock price reacts more to good news than to

bad news, and that the stock price reaction to any type of news is stronger in relatively good

states. Basu (1997) and Nagel (2005) provide empirical evidence for the first prediction,

and, consistent with the second one, Conrad et al. (2002) show that the market responds

more strongly to bad news in good times than in bad times. Other theoretical studies derive

this convex relation in a model with incomplete common information (Veronesi, 1999), or

assuming short-sale constraints (Xu, 2007).

I also study the relation between belief heterogeneity and the stock mean return, and

observe that the higher the heterogeneity is, the higher the expected returns are. Thus, I

contribute to the literature on this topic which derives conflicting results. More precisely,

the positive relation that I document is in line with the conjecture of Williams (1977) that

more dispersion of opinion represents more risk, and therefore that agents should be more

compensated for holding a riskier asset. Banerjee and Kremer (2010) confirm this predicted

positive relation in a dynamic model in which investors disagree on the interpretation of pub-

lic information, and Buraschi and Jiltsov (2006) derive a similar result linking heterogeneity

in beliefs to option open interest. Conversely, another strand of the literature, based on the

seminal work of Miller (1977), documents a negative link.2 This negative relation critically

depends on the presence of market frictions. For example, Chen et al. (2002) obtain this

result by developing a model with differences of opinion and short-sales constraints. Alter-

natively, Atmaz and Basak (2018) theoretically derive that higher dispersion leads to higher

returns when the view on the stock is sufficiently pessimistic, and to lower returns when the

view is sufficiently optimistic. Coming back to my model’s implications, I further obtain

that the stock mean return unconditionally decreases with risk aversion. This is because,

2In a model with short-sale constraints and differences of opinion, Miller (1977) argues that the stock
is overpriced as it reflects the view of the optimistic agents. In fact, because of the short-sale constraints,
pessimistic agents stay out of the market. The higher the differences of opinion, the higher this effect, and
therefore the higher the stock overpricing, resulting in lower subsequent returns.
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in a heterogeneous economy, more risk averse investors speculate less aggressively, and thus

earn lower returns.

Looking at the heterogeneity impacts on the stock volatility, I additionally derive that

it monotonically increases with belief dispersion, and that it is higher than the production

process volatility. As stated in Atmaz and Basak (2018), this is because higher fluctuations in

the average belief bias translate to additional stock price fluctuations, and therefore increase

the stock volatility. This monotonic positive relation between belief dispersion and stock

volatility is well-documented in the theoretical literature (see, e.g., Shalen, 1993 in a two-

period rational expectations model, Scheinkman and Xiong, 2003 in a model with short sale

constraints, Buraschi and Jiltsov, 2006 in a model with rational agents with incomplete and

heterogeneous information, Andrei et al., 2019 in a model with disagreement on the length

of business cycles). I complement these findings by deriving a stationary formula where the

heterogeneity effects on volatility remain persistent over time.

Because the formulas are stationary, I then translate the main theoretical implications

of the model into testable hypotheses, and, turning to the empirical part of the paper, see if

they are verified using real data and running ordinary least squares (OLS) regressions. Note

that I focus on market-wide implications because there is only one risky stock available in

the model. More precisely, I study if a higher market belief dispersion empirically predicts

higher market returns and a higher market volatility. While most studies in this literature

focus on monthly data, I also ask whether these relations hold for data computed over longer

horizons. These additional hypotheses are thereby directly supported by the non-vanishing

belief heterogeneity feature of my model. Lastly, rolling window regressions with quarterly

data complete the analysis and allow a more careful study of the time evolution of the belief

dispersion predictive ability.

I use analyst monthly forecasts of the earnings-per-share (EPS) long-term growth rate

(LTG) of individual stocks from the Institutional Brokers Estimate System (IBES) Unad-

justed Summary database from January 1982 to December 2019 as a proxy for investors’
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beliefs. Building on Yu (2011), I then obtain a monthly market belief dispersion variable,

which is defined as the cross-sectional average of individual stock disagreements. I consider

both a value- and an equally-weighted variable, and, as a robustness check, I also construct

an alternative monthly belief dispersion variable defined as the standard deviation of in-

dividual stock disagreements. The variables for longer horizons (from one quarter to two

years) are then obtained by averaging the monthly values over the period of interest. I

further use data on individual stock prices from the Center for Research in Security Prices

(CRSP) database to construct two market indices (I create a value- and an equally-weighted

index), and I compute their simple returns—referred to as the market returns—for various

holding periods. Importantly, my empirical analysis differs from other existing ones because

I specifically study the returns of indices constituted of the individual stocks used in the con-

struction of the market belief dispersion variables. This allows me to more directly capture

the link between the market characteristics and the investor beliefs. Similarly, I construct

market volatility data from the daily returns of these market indices.

The empirical tests confirm the predicted positive relation between market disagreement

and market returns for most specifications and horizons considered. Thus, considering a

model-grounded non-vanishing belief dispersion framework and using more tightly linked

data, I show new results on the long-run impacts. They contribute to a large empirical

debate, already discussed above from the theoretical point of view. Diether et al. (2002) for

instance report that high dispersion stocks earn lower returns. Interestingly, Doukas et al.

(2006) replicate their results, and find that the relation becomes positive when controlling

for uncertainty in analysts’ earnings forecasts. An empirical positive link is also found in,

e.g., Anderson et al. (2005) or Banerjee (2011). Other studies derive mixed results or no

relation. In particular, Buraschi et al. (2014) find that the relation is ambiguous and leverage-

dependent: it is positive and significant for high leverage firms, but can turn negative and

non-significant for moderately leveraged firms. Finally, Avramov et al. (2009) find that

financial distress drives the negative dispersion effect, and show that it is a facet of non-
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investment grade firms which account for less than 5% of the total market capitalization,

and that the effect is virtually non-existent otherwise.

Lastly, the results regarding the impacts on the market volatility are more mixed. In

fact, while I mostly derive positive coefficients (controlling for lagged volatility), they are

not statistically significant. The rolling window regressions further show that the sign and

intensity of the belief dispersion impact varies through time, which might explain the weak-

ness of the results. Empirical evidence nevertheless points more towards the approval of the

positive model-implied relation than towards its rejection. Note that other empirical works

study this link either in the cross-section or using shorter time periods and confirm that it

is positive (see, e.g., Ajinkya and Gift, 1985 using data over a 10-month period, Anderson

et al., 2005 using monthly data over a 7-year period, Banerjee, 2011 in a cross-sectional

analysis).

The paper is organized as follows. Section 2.2 presents the theoretical analysis and

translates the main theoretical implications into testable hypotheses. Using empirical data,

I then provide a test of these hypotheses in Section 2.3. Section 2.4 concludes. All proofs

are reported in Appendix 2.A, and Appendix 2.B contains additional empirical results.

2.2 Theoretical part

This section presents the overlapping heterogeneous generations model and derives its equi-

librium. It also describes a dual approach based on a model with a sliding horizon, which

allows the construction of an intertemporal representative agent. Lastly, it further contains

the theoretical results relative to the stock price, its mean return, and its volatility, and

formulates testable hypotheses.
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2.2.1 An overlapping heterogeneous generations model

Consider a pure-exchange security market economy evolving in continuous time with an

infinite horizon. The economy is populated by overlapping generations of heterogeneous

investors who maximize their expected utility from future endowment. They consume part

of their wealth and bequeath the remaining part to the subsequent generation.

Uncertainty is modeled by a filtered probability space (Ω, F, (Ft) ,P), where Ω is the set

of states of nature, F is the σ-algebra of observable events, (Ft) describes how information

is revealed through time, and P is the true probability measure giving the likelihood of

occurrence of the different events in F . I assume that there is a single source of risk,

modeled by a ((Ft) ,P)-Brownian motion W .

Let y denote the production process in the economy, and assume that, under the proba-

bility measure P, it follows a geometric Brownian motion with drift µ and volatility σ.3

Each generation of investors is constituted of a large number of heterogeneous agents.

More precisely, I assume that each generation is composed of a continuum of agents, endowed

with a fraction of the production process and having heterogeneous beliefs, who are born

at the same date, and who all have a life of length T . These agents have standard CRRA

preferences, characterized by u (x) =
x1−γ

1− γ
with γ > 0 the coefficient of relative risk aversion,

and both consume and bequeath their wealth according to some given proportions (common

to all investors). Moreover, they disagree on the dynamic of the production process and

are characterized by their own subjective beliefs, which give the subjective likelihood of

occurrence of the different events in the economy. Formally, these subjective beliefs are

indexed by δ ∈ R, and, for a given δ, the subjective beliefs are defined by the subjective

probability measure Qδ, which is assumed to be equivalent to the true probability measure

P. I call Agent-δ of a given generation the agent characterized by these beliefs. Concretely,

in all generations, all agents agree on the volatility of the production process σ but disagree

3Note that this drift µ takes into account that part of the production process is consumed at each date
as explained further. This is shown formally in the proof of Lemma 2.1.

67



CHAPTER 2. DISAGREEING FOREVER: A TESTABLE MODEL WITH
NON-VANISHING BELIEF HETEROGENEITY

on its drift.4 Instead of considering that it equals µ, Agent-δ believes that the drift of the

production process is given by µ+ δ. Thus, δ represents her belief bias, and she is relatively

optimistic (resp. pessimistic) compared to an agent with true beliefs if her bias is positive

(resp. negative). In fact, Agent-δ believes that the production process is given by

dyt = (µ+ δ) ytdt+ σytdWδ,t,

where Wδ is a standard unidimensional
(
(Ft) ,Qδ

)
-Brownian motion, such that Wδ,t = Wt−

δt

σ
.

As each generation is populated by a continuum of agents, I use probability density

functions to describe their wealth share distribution, similarly to, e.g., Beddock and Jouini

(2021). At time t = 0, I assume that the wealth share distribution of the investors of

Generation-0 is given by a Gaussian distribution with parameters δ̄ and ω̄, which are given

exogenously. I further show in Proposition 2.1 that, at any time t and in any state of the

world Wt, the wealth share distribution of Generation-t—denoted by νδ,t,Wt—is still given

by a normal probability density function with parameters δ̄t,Wt and ω̄t,Wt , whose expressions

are endogenously determined.5

Let now more precisely describe the timeline of a given generation in the model.

At time t, the investors of Generation-t are born and forecast that the production process

will deliver a payoff yt+T at time t+T . Because their common lifespan is T , they thus make

their consumption and bequest plans to consume and bequeath at the end of their life.

More formally, at time t, Agent-δ of Generation-t plans to consume an amount cδ,t+T of her

endowment yδ,t+T at time t + T and to bequeath the remaining part bδ,t+T = yδ,t+T − cδ,t+T

4This assumption is in line with the literature which shows that the expected return is harder to estimate
than the variance (see, e.g., Williams, 1977, Merton, 1980).

5Because she inherits later in her life, the time-t wealth share of a given agent of Generation-t more
precisely describes this agent’s expected share of total endowment at time t+ T seen from date t.
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to the next generation. Her expected utility is given by

Et (Mδ,t+T (au (cδ,t+T ) + u (bδ,t+T ))) , (2.1)

where Mδ,t+T is the Radon-Nikodym derivative of her subjective probability measure Qδ with

respect to P and a is an exogenously given non-negative coefficient, common to all agents

and all generations, that allows determining the proportions of consumed and bequeathed

wealth, as shown in Proposition 2.1. Setting a = 1 signifies that the agents equally weight the

utility they derive from consumption and bequest, and thus allocate half of their wealth to

each. For higher (resp. lower) values, it means that they prefer to consume (resp. bequeath),

which reflects some selfishness (resp. altruism).

Next, at time t + dt, Agent-δ of Generation-t gives birth to Agent-δ of Generation-

t + dt. These two agents are therefore part of Family-δ. Note that this intra-family belief

transmission assumption, which implies that all members of the same family keep the same

beliefs, is key because it allows belief heterogeneity to persist as time goes by.

Finally, at time t + T , Agent-δ of Generation-t consumes cδ,t+T , bequeaths bδ,t+T to

Agent-δ of Generation-t+ dt, and dies.

The Generation-t temporary equilibrium—defined by a continuum of consumption and

bequest plans, denoted by (cδ,t+T )δ∈R and (bδ,t+T )δ∈R respectively, and a positive density price

pt+T—is obtained when each agent of Generation-t maximizes her expected utility according

to her beliefs such that both her static budget constraint and the market clearing condition

are satisfied. Additionally, the sum of the consumption and the bequest of a given agent

must not exceed her endowment.

It is worth mentioning how this temporary equilibrium evolves from a generation to

another. In fact, at time t + dt, agents of Generation-t + dt plan to consume at time

t+dt+T a part of the bequeathed wealth of Generation-t that they will inherit later in their

lives and to bequeath the remaining part to the subsequent generation. Thus, it leads to the
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Generation-t+ dt temporary equilibrium, characterized by (cδ,t+dt+T )δ∈R, (bδ,t+dt+T )δ∈R, and

pt+dt+T . Applying the same reasoning to all subsequent generations results in a continuum of

consumption and bequest plans made by all successive generations. Because each generation

is born at a different time and in a different state of the world, the successive plans of the

members of a given family can differ markedly even if they share the same beliefs.

The intra-family belief transmission assumption further implies an additional dynamic

family budget constraint. More precisely, seen by Agent-δ of Generation-t, Family-δ’s ex-

pected endowment should remain unchanged between t+T and t+dt+T , which means that

the expected value of the Family-δ time-t + dt + T endowment should equal the expected

value of its adjusted time-t + T endowment evaluated at date t and at the time-t + dt + T

price.6 Formally, for each time t and each Family-δ, this implies that

Et (pt+dt+Tyδ,t+dt+T ) = Et
(
pt+dt+Tyδ,t+T

yt+dt+T
yt+T

)
. (2.2)

Equation (2.2) simply states that the budget of each family evolves according to the

evolution of the total production. Solving this equation together with the Generation-t

temporary equilibrium equations delivers explicit solutions for the Generation-t wealth share

distribution parameters δ̄t,Wt and ω̄t,Wt . They are given in Proposition 2.1, where I also report

the equilibrium features.

Proposition 2.1 (Equilibrium and wealth share distribution).

In equilibrium, at time t and in state of the world Wt:

1. The Generation-t investors’ consumption and bequest plans for time t+T are given by

cδ,t+T =
1

1 + a−
1
γ

yδ,t+T , and bδ,t+T =
a−

1
γ

1 + a−
1
γ

yδ,t+T ,

6Family-δ’s adjusted time-t+T endowment is given by yδ,t+T
yt+dt+T
yt+T

and takes into account the growth

of the production process between t+ T and t+ dt+ T .
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with

yδ,t+T = yt+T

(∫
(λδ,t,WtMδ,t+T )

1
γ dδ

)−1

(λδ,t,WtMδ,t+T )
1
γ ,

where Mδ,t+T = exp

(
δ

σ
(Wt+T −Wt)−

1

2

δ2

σ2
T

)
is the Generation-t Radon-Nikodym

derivative of the subjective probability measure Qδ with respect to P, and

λδ,t,Wt =
1√
2π

γ

√
σ2 + Tϕ

(
ω̄2
t,Wt

)γ−1

√
ϕ
(
ω̄2
t,Wt

)
γ
γ√

σ2
γ−1

exp

(
−
(
δ − δ̄t,Wt + (1− γ)Tϕ

(
ω̄2
t,Wt

))2

2ϕ
(
ω̄2
t,Wt

) )

is the inverse of the Generation-t Lagrange multiplier with

ϕ (x) =
x

2
− γσ2

2T
+

√(
x

2
− γσ2

2T

)2

+
σ2x

T
.

2. The state price density is given by

pt+T = y−γt+T

(∫
(λδ,t,WtMδ,t+T )

1
γ dδ

)γ
.

3. The Generation-t wealth share distribution is given by a normal probability density

function with a standard deviation and a mean given respectively by

ω̄t,Wt = ω̄, and δ̄t,Wt = δ̄ +
ϕ (ω̄2)Wt

σ
,

where δ̄ and ω̄ are exogenously given constants describing the Generation-0 wealth share

distribution.

A first point to notice is that the higher a is, i.e., the more selfish each generation of

investors is, the larger is the share of wealth they consume before they die, and the smaller

is the one they bequeath to the subsequent generation. On the other extreme, setting
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a = 0 means that the investors do not consume and bequeath all their wealth to the next

generation.

Additionally, from the third item, I observe that the Generation-t wealth share distri-

bution’s standard deviation is constant and does not vanish as time goes by, which ensures

that the agents differ persistently in their beliefs. This feature is in sharp contrast with

Atmaz and Basak (2018) and other finite-horizon models with one terminal production (and

consumption) date, where belief dispersion consistently decreases with time. Such a result is

of great empirical importance as surveys show that beliefs are mostly characterized by large

and persistent individual heterogeneity (see, e.g., Meeuwis et al., 2019, Giglio et al., 2020,

Das et al., 2020). Moreover, as the mean of the wealth share distribution depends positively

on Wt, the average belief bias fluctuates around the initial value δ̄. On average, a generation

of investors is more optimistic when it is born in a good state of the world, and vice versa.7

2.2.2 A dual approach of the model

Alternatively, one can study an equivalent model, which leads to a similar equilibrium and

analogous implications, and whose main feature is to consider a continuum of infinitely-lived

agents who continuously revise their plans in a sliding horizon framework. While it results in

a model without effective consumption—as explained below the investors maximize utility

derived from planned consumption but continuously postpone the consumption date, and

they thus never consume—, the main advantage of this approach is to permit a natural

construction of an intertemporal representative agent. In addition, the interpretation and

the novelty of further derived results are easier to explain under this alternative view. In

this section, I therefore briefly describe the settings of this model which builds on Lindahl

(1939)’s theory, before constructing the intertemporal representative agent.

This dual model shares most of its characteristics with the overlapping heterogeneous

generations model presented above. Indeed, I still consider a pure-exchange economy, based

7More precisely, I say that a generation of investors is more optimistic if a larger share of the expected
future total endowment is held by more optimistic agents.
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on an expected production process similar to the process y, and evolving in continuous time.

Moreover, there is also a continuum of heterogeneous CRRA agents who maximize their

expected utility from future (expected) consumption, and I use a normal probability density

function with an exogenously given mean δ̄ and standard deviation ω̄ to characterize their

initial wealth share distribution. A major difference, however, is that there is now a single

generation of infinitely-lived agents who continuously shift their (expected) consumption

date and revise their plans as time goes by. Roughly speaking, in this framework, a given

Agent-δ, whose beliefs are defined as in Section 2.2.1, corresponds to the entire Family-δ,

and her successive plan revisions coincide with the different plans made by the successive

generations of this family.

The mechanism behind the successive plan revisions is the following. At time t and in

state of the world Wt, the investors forecast that the expected production process will deliver

a payoff at time t + T , and they thus plan to consume at this date. The parameter T can

therefore be associated to the agents’ prevision horizon or, more generally, to the agents’

investment horizon. At time t + dt, the market reopens and new information Wt+dt comes

in. Assuming that their prevision horizon is fixed, the agents now forecast that the expected

production process will deliver a payoff at time t+ dt+ T . They therefore shift the date of

their expected consumption, and update their plans because of the new information Wt+dt.

The same mechanism applies to all successive dates and, as time goes by, this leads to a

continuum of temporary equilibria—defined by a continuum of expected consumption plans

and a state price density—with a sliding horizon, where consumption plans are continuously

revised, and where effective consumption never occurs as it is continuously postponed. It

should be noted that assuming that the agents continuously forecast that the (expected)

production process will deliver a payoff after a duration T is a key ingredient of this model.

In fact, it ensures to maintain a persistent belief heterogeneity. More precisely, the investors

keep their beliefs and consider a similar maximization program at each date, but in a different

state of the world, where they plan to consume after a period of length T (under an additional
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dynamic budget constraint similar to the one defined by (2.2)).

Let now properly state the equivalence of the two approaches in the following lemma.

Lemma 2.1. The sliding horizon model is equivalent to the overlapping heterogeneous gen-

erations model under the assumption that the successive generations only bequeath and do

not consume (i.e., a = 0). In case effective consumption is allowed, the two models still yield

analogous implications up to a small adjustment in the drift of the underlying production

processes.

As stated before, the main interest of considering this alternative equivalent approach

is that it allows a natural definition and construction of the intertemporal representative

agent. Such an agent is constructed as the fictitious (infinitely-lived) agent who, if endowed

with the total wealth of the economy, would have a marginal utility equal to the equilibrium

price. She has the same utility function as the other investors and is characterized by the

Radon-Nykodym derivative of her subjective probability measure with respect to the true

probability measure.

Proposition 2.2 (Representative agent). The intertemporal representative agent of the econ-

omy is the fictitious investor whose time-t + T Radon-Nikodym derivative of the subjective

probability measure Qδ with respect to P seen from date t is given by

MRA,t+T =

(∫
(λδ,t,WtMδ,t+T )

1
γ dδ

)γ
,

where Mδ,t+T and λδ,t,Wt are defined as in Proposition 2.1.

On the technical side, this result, combined with the equivalence of the two models, is

important because it allows the complete characterization of the inverse of the Lagrange

multipliers and thus the full determination of the models’ equilibrium.
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2.2.3 The stock price and its dynamics

I now derive the stock price and its dynamics in the presence of belief heterogeneity. As

stated in the previous section, the results are derived under the view of the alternative model

with a sliding horizon, which eases the interpretation and the comparison with the existing

literature. For the sake of clarity, and because both models are equivalent, I nevertheless

use the notations defined in Section 2.2.1

I assume that a risky stock S is available for trading. The stock is in positive net supply

of one unit and, at time t, is a claim to the payoff yt+T expected to be paid at time t + T .

Studying its properties leads to the following proposition.

Proposition 2.3 (Equilibrium stock price, mean return, and volatility).

In equilibrium, at time t and in state of the world Wt:

1. The stock price is given by

St = Stexp

(
δ̄t,WtT −

ϕ (ω̄2)T 2

2

)
,

2. The mean stock return is given by

µSt = µ+ σ

(
∂δ̄t,Wt

∂Wt

T

)
+

1

2

(
∂δ̄t,Wt

∂Wt

T

)2

,

3. The stock volatility is given by

σSt = σ +
∂δ̄t,Wt

∂Wt

T,

where St = ytexp
((
µ− γσ2

)
T
)
, µ = µ, and σ = σ are the equivalent quantities obtained in

a similar standard economy without belief heterogeneity.

The formulas share similarities with those in Atmaz and Basak (2018). However, the

two models differ along one important dimension: unlike them, I design an economy where
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the effective consumption date is continuously postponed so that the time-t remaining time

before consumption always equals T instead of T − t. As the time-t heterogeneity impacts

depend on the remaining time before consumption, I thus obtain a stationary model where

the heterogeneity effects are not smoothed as time goes by. In particular, as implied by their

framework, their time-T stock price formula reduces to SABT = yT . The heterogeneity effects

that they observe thus completely vanish when approaching date T , and their model is not

stationary. Conversely, my time-T stock price is still fully impacted by the time-T investors

heterogeneity, characterized by δ̄T,WT
and ω̄.

The results stationarity and persistence are of first interest as they more accurately

reflect the heterogeneous market participants reality. These features also allow me to test

the model empirically over a long period and to use data sampled at various frequencies.

Before doing so in Section 2.3, I now discuss the properties of the market characteristics

derived in Proposition 2.3. I first focus on the equilibrium mean stock return µS.

As stated before, one of the consequences of the sliding horizon methodology is that

the time-t remaining time before expected consumption does not depend on t. Thus, the

derivative of the stock price with respect to t differs markedly from the one obtained in

Atmaz and Basak (2018), leading to different mean returns.

I find that a higher belief dispersion leads to a higher equilibrium mean stock return.

More precisely, the belief dispersion has an impact on the sensitivity of the average belief

bias to news: the higher the belief dispersion, the higher this sensitivity, and thus the higher

the mean return. This is consistent with the recent work of Brandon and Wang (2020), who

find that the average return on stocks with high sensitivity to earning belief shocks is 7.14%

per year higher than that in stocks with low sensitivity. Conversely, Atmaz and Basak

(2018) derive that the sign of the relation is state-dependent, and that higher dispersion

leads to lower returns when the view is sufficiently optimistic. They further show that the

relation between the mean return and the relative risk aversion coefficient depends on the

level of optimism, while I derive an unambiguous negative relation. The intuition behind
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this result is simple: in an economy populated by heterogeneous agents, more risk averse

agents speculate less aggressively, and thus earn lower returns. Lastly, I observe that the

mean equilibrium stock return increases as the investment horizon T increases.

For the sake of completeness, I now briefly report the properties of the first and third

items of Proposition 2.3, which are mostly similar to those in Atmaz and Basak (2018) except

that the heterogeneity effects remain persistent. I refer the reader to their paper for more

detailed explanations of the underlying mechanisms behind these results.

Specifically, for a given time t, I find analogous impacts of the belief distribution parame-

ters on the stock price. First, the stock price depends positively on the time-t average belief

bias δ̄t,Wt . Second, the sign of the belief dispersion impact is state-dependent: the impact

is positive for sufficiently good states of the world and negative for sufficiently bad ones.8 I

also similarly derive that the stock price is convex in the time-t expected production level

yt. Finally, unlike the standard case, the impact of the coefficient of relative risk aversion γ

is not always negative, but can be positive for sufficiently bad states of the world.9

The third item considers the stock volatility σS. Several observations are in order. First,

in a heterogeneous economy, it is higher than the production process volatility σ, in line

with empirical observations (see, e.g., Ajinkya and Gift, 1985, Anderson et al., 2005, and

Banerjee, 2011). Recall that an important difference with Atmaz and Basak (2018) is that,

although both formulas have the same shape, this excess volatility effect does not decrease as

time goes by. This is because the investors’ heterogeneity remains persistent. Second, all else

equal, the higher the belief dispersion, the higher the state-sensitivity of the average belief

8Two effects are at play. On the one hand, as the function ϕ is increasing in belief dispersion, there is
a direct negative effect. On the other hand, there is an indirect effect of the belief dispersion through the
average belief bias. For bad states, this indirect effect is negative and reinforces the first effect. For good ones,
this is the opposite, and the overall effect can even be positive in case of sufficiently good states. Formally,
as the average belief bias is state-dependent, I derive that the stock price increases in belief dispersion when

δ̄t,Wt > δ̄ +
ϕ
(
ω̄2
)
T

2
.

9Formally, the stock price increases in risk aversion when the following condition holds

δ̄t,Wt
< δ̄ +

ϕ
(
ω̄2
)
T

2
−
√

(γσ2 − T ω̄2)
2

+ 4Tσ2ω̄2.
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bias, and thus the higher the excess volatility. In fact, a higher fluctuation in the average

belief bias translates to additional stock price fluctuations, and therefore increases the stock

volatility. Additionally, the coefficient of relative risk aversion has a negative impact on σS.

Finally, a higher investment horizon T leads to a higher stock volatility.

Overall, a rich set of predictions can be derived from Proposition 2.3. In particular, it

allows considering the impacts of belief heterogeneity on the mean stock return and on the

stock volatility. Moreover, as observed above, the impact of the belief bias on the model

characteristics is indirect and depends on the belief dispersion, which therefore appears to

be the relevant predictor to consider. The persistence of belief dispersion that I obtain—

which is not a feature of other existing models—also allows me to use data sampled at

various frequencies, leading to new testable implications. In sum, these theoretical results

can be converted into testable hypotheses stated below that are empirically tested in the

next section.

Hypothesis. The main testable implications of the model are the following:

H1. A higher belief dispersion predicts higher mean stock returns.

H2. The ability of belief dispersion to predict mean stock returns remains over long horizons.

H3. A higher belief dispersion predicts a higher stock volatility.

H4. The ability of belief dispersion to predict the stock volatility remains over long horizons.

2.3 Empirical test of the model

This section provides an empirical test of the hypotheses H1-H4. As the model considers an

economy where there is only one risky stock available for trading, it is more relevant to use

an index—referred to as the market index and whose definition is given below—rather than

individual stocks. I thus focus on studying the empirical ability of market belief dispersion
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to predict future market index returns and volatility over time, using variables sampled at

various frequencies (from one month to two years) from January 1982 to December 2019.

2.3.1 Market belief dispersion data

Let me first explain how the data on market belief dispersion, expressed in percentages, is

constructed. I use analyst monthly forecasts of individual stocks as a proxy for investors’

beliefs, and I aggregate them using different methodologies (described below) to obtain

market belief dispersion variables. As underlined by Yu (2011), this bottom-up approach

has the advantage of taking into account hundreds of forecasts at any given time, and thus

likely has a good signal-to-noise ratio. The large number of forecasts also echoes the choice

of considering a continuum of agents in the theoretical model. Additionally, using forecasts

of individual stocks allows defining and studying the returns and volatility of a market index

based on these stocks, which ensures a direct link between beliefs and market characteristics.

The data comes from two databases: I use the analyst monthly forecasts of the EPS LTG

of individual stocks from the IBES database,10 and the CRSP database to obtain monthly

market capitalizations. The IBES data is winsorized at the 1% and 99% levels to account for

potential outliers or data errors. I also winsorize the prices at the 99% level. Furthermore, I

exclude stocks whose price is below five dollars at portfolio formation to avoid that extreme

returns on penny stocks drive the results and stocks for which less than two analysts provide

EPS LTG forecasts during the month to focus on stocks that exhibit some forecast dispersion.

The data is available from January 1982 to December 2019. Throughout the sample, the

average number of stocks used to compute the variable is 965, and each stock at any given

time is followed on average by five to six analysts.11 This large number of stocks alleviates

10I thus use earnings data to measure cashflows rather than dividends data. This choice is motivated
by Da (2009), who argues that potential problems of working with dividends could arise because of the
dividend payout policy of some firms. Campbell (2000) further highlights other empirical difficulties. On the
theoretical side, using the accounting clean surplus identity, Vuolteenaho (1999) shows that if one looks at the
infinite horizon, cash flow and earnings contain the same information. Thus, earnings are both theoretically
equivalent and empirically better-behaved than dividends.

11The average number of analysts who provide an EPS LTG forecast for any given stock at any given
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the possibility that idiosyncratic firm disagreement drives the variations of the market belief

dispersion.

For each common stock i listed on the NYSE/Amex/Nasdaq in each month t that meets

the above-mentioned requirements, I obtain the standard deviation of the analyst forecasts—

that I refer to as the stock disagreement and that I denote ω̃i,t—from the IBES Unadjusted

Summary database.12 Additionally, I obtain the market capitalization of each of these stocks

at the end of each month—that I denote MKTCAPi,t—using the closing price and the

number of shares outstanding of the stock considered from the CRSP database.

With this data in hand, I construct my first value-weighted measure of monthly market

belief dispersion, ω̄VWmean,1M , which is similar to the one defined in Yu (2011). For a given

month t, it is defined as the cross-sectional (value-weighted) average of individual stock

disagreements

ω̄VWmean,1M,t =

∑
iMKTCAPi,t × ω̃i,t∑

iMKTCAPi,t
.

To further rule out the possibility that the market belief dispersion is driven by idiosyn-

cratic firm disagreement, I also consider an alternative value-weighted monthly measure: the

cross-sectional value-weighted standard deviation of individual stock disagreements, ω̄VWstd,1M .

A larger dispersion of individual stock disagreements indeed likely reflects a higher mar-

ket disagreement among investors. Letting Nt denote the number of stocks that meet the

requirements in month t, it is obtained with the following formula

ω̄VWstd,1M,t =

∑
iMKTCAPi,t ×

(
ω̃i,t − ω̄VWmean,1M,t

)2

Nt−1
Nt

∑
iMKTCAPi,t

.

Lastly, for the sake of robustness, I construct similar market belief dispersion variables,

denoted by ω̄EWmean,1M and ω̄EWstd,1M respectively, whose only difference with ω̄VWmean,1M and ω̄VWstd,1M

is to use equal-weighting rather than value-weighting.

time is 5.33.
12Similarly to Buraschi et al. (2014), I use unadjusted data to circumvent the problem of using stock-split

adjusted data.
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The variables for longer horizons (one quarter (3M), six months (6M), one year (12M),

and two years (24M)) are then obtained by averaging the monthly values over the period

of interest. In the remainder of the analysis, I therefore use those market belief dispersion

variables defined over various horizons as the predictors, and examine different specifica-

tions depending on the horizon considered and the type of weighting used in the dependent

variable.

Insert Figure 2.1 here.

To give an example of how the market belief dispersion variables vary as time goes by,

Figure 2.1 shows the time series of the quarterly variables. I also report their summary

statistics over the full sample in Table 2.1.

Insert Table 2.1 here.

2.3.2 Predicting market returns

To begin with, I test the hypotheses H1-H2. Formally, I therefore use empirical data to

see if a higher market belief dispersion leads to higher market returns, and if this positive

model-implied relation holds for data sampled at long frequencies.

Let first properly define the value-weighted market index whose returns are used in the

analysis. Each month, it is constituted of all individual stocks, weighted by their market

capitalization, whose price is above five dollars and for which at least two monthly EPS

LTG forecasts are provided in the IBES database. In other words, the assets that constitute

this market index are those used to construct the market belief dispersion variables, which

allows me to more precisely capture the link between the investor beliefs and the market

characteristics. In addition, I construct a similar market index using equal weights. I then

compute the (raw) simple returns for various holding periods of both indices, and report their

summary statistics, expressed in percentages, in Table 2.2, where the subscript indicates the

holding period considered and the superscript the type of weighting.
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Insert Table 2.2 here.

I can now test the model-implied hypotheses H1-H2. More specifically, H1 implies that a

higher market belief dispersion in a given period should result in higher market returns in the

subsequent period. If H2 is verified, this positive relation should hold no matter the different

horizon considered (from one month to two years). In order to check these hypotheses, I

thus run the following standard OLS regression

RET ki,t = γkj,i + θkj,iω̄
k
j,i,t−1 + ξkj,i,t, (2.3)

where t refers to the period t, i = {1M, 3M, 6M, 12M, 24M}, j = {mean, std}, and k =

{VW,EW}. Inference is based on autocorrelation- and heteroskedasticity-robust standard

errors (Newey and West, 1987), and all variables are standardized prior to estimation. More-

over, I consider non-overlapping returns for horizons longer than a month to avoid economet-

ric issues. This leads to a total of 20 specifications, whose results are reported in Table 2.3.

Insert Table 2.3 here.

Several observations are in order. First, all coefficients are positive. More interestingly,

most of them are statistically different from zero.13 Thus, H1 seems to be verified in the

data. This complements the mixed results regarding the impact of belief dispersion on

returns found in the literature. While some studies also derive a positive relation (see, e.g.,

Doukas et al., 2006), others find that a higher belief dispersion predicts lower returns (see,

e.g., Diether et al., 2002). The novelty in my empirical study is that I focus on the returns

of two indices (value- and equally-weighted) that only contain stocks for which there is some

belief dispersion, and that are thus used in the construction of the market belief dispersion

data.

13Note that, because the model implies a positive relation, I consider one-sided tests where the alternative
hypothesis is that the coefficient is positive.
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Second, I observe that the model-implied positive relation holds for all horizons, meaning

that the effects of belief dispersion do not vanish over long periods. In other words, the

hypothesis H2 is verified, and the belief dispersion persistence that I document in my model

is an important feature to be taken into account.

Lastly, note that since the model abstracts from interest rate issues (both under the

overlapping generations view or the sliding horizon one), and thus does not allow an accurate

definition of the risk premium, it is mostly suitable to study the ability of market belief

dispersion to predict the market index raw returns. Although the link is less direct, I

nevertheless run a similar analysis using market index excess returns in Appendix 2.B.1,

which confirms the previous results.

2.3.3 Predicting market volatility

I now focus on the hypotheses H3-H4 and study if they are verified empirically. Hence, I test

if market belief dispersion positively predicts future market volatility, and if this relation

holds for various horizons.

As commonly done in the literature (see, e.g., French et al., 1987, Schwert, 1989), I

exploit daily stock returns—taken from the CRSP database—to obtain my market volatility

data. More precisely, to obtain value- and equally-weighted variables for a given horizon, I

consider the two market indices defined in Section 2.3.2, compute the sum of their squared

daily returns over the period of interest (discounted by the average daily market index returns

of the period), and thereby obtain the value- and equally-weighted market variances for this

horizon. I then easily convert them into the annualized market volatilities, that I denote

V OLVW and V OLEW respectively. As in the previous part, I further add subscripts to these

variables to indicate the horizon considered.

Computing their descriptive statistics shows that they are highly positively skewed and

leptokurtic.14 Similarly to Paye (2012), I thus define annualized market log volatility vari-

14For instance, skewness
(
V OLVW3M

)
= 2.89, and kurtosis

(
V OLVW3M

)
= 15.43.
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ables, LV OLVW and LV OLEW , as the natural logarithms of V OLVW and V OLEW respec-

tively, whose distribution are approximately Gaussian (Andersen et al., 2001). Because the

empirical analysis relies on linear models estimated by OLS regressions, this latter prop-

erty is of first importance, and I therefore use LV OLVW and LV OLEW as the independent

variables in the subsequent empirical analysis. I report their summary statistics in Table 2.4.

Insert Table 2.4 here.

Volatility processes are known to exhibit a high degree of persistence when the data is

sampled over short periods of time. To take this persistence into account, and to ensure

that a potential predictor contains valuable information, it is thus important to control for

past (log) volatility when trying to predict future (log) volatility. Paye (2012) for instance

includes six lagged values of (log) volatility in his monthly specification and two lagged

values in his quarterly one. I thus adopt a similar approach when testing if a higher market

belief dispersion in a given period predicts a higher market (log) volatility in the subsequent

one. More precisely, I use six lags when dealing with monthly data, two lags when dealing

with quarterly data, and one lag when dealing with data sampled every six months. For

the longest horizons considered (one and two years), I do not control for past (log) volatility

because the data is sampled over relatively long periods of time and is not strongly persistent.

Formally, for, e.g., the quarterly specifications, I therefore consider the following regression

for market (log) volatility

LV OLk3M,t = αk0,j,3M + αk1,j,3MLV OL
k
3M,t−1 + αk2,j,3MLV OL

k
3M,t−2 + βkj,3M ω̄

k
j,3M,t−1 + εkj,3M,t,

(2.4)

where t refers to quarter t, j = {mean, std}, and k = {VW,EW}.

The main interest of (2.4) and of other similar OLS regressions studying other horizons is

to test the hypothesis H0 : β = 0 against the alternative H1 : β > 0: rejecting the null indeed

implies that, when controlling for past (log) volatility, belief dispersion positively predicts

future market (log) volatility. Similarly to the previous part, I consider one-sided tests
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because the predicted sign of the coefficient is supported by the theoretical implications

of the model. Again, inference is based on autocorrelation- and heteroskedasticity-robust

standard errors, and all variables are standardized prior to estimation. The results are

reported in Table 2.5.

Insert Table 2.5 here.

While most coefficients are positive, only those related to the equally-weighted specifica-

tion for variables sampled at a yearly frequency are statistically significant. Thus, over the

full sample, neither H3 nor H4 seem to be strongly validated by the data.

One of the potential explanations for this lack of statistical significance could be that the

sign of the relation varies through the sample period considered. To further investigate this

issue, I run rolling window regressions of Equation (2.4) using subsamples of 15 years.15 For

the sake of concision, I focus on data sampled at the quarterly frequency, which leads to a

total of 91 regressions for each specification.16 I therefore obtain time series of the estimated

values of βVWmean,3M , βVWstd,3M , βEWmean,3M , and βEWstd,3M , and report them in Figure 2.2. In each

panel, the horizontal axis shows the end date of the subsamples, and thicker rounds (resp.

crosses) indicate statistically significant positive (resp. negative) values at the 10% level.

Insert Figure 2.2 here.

As reported in Panel A of Table 2.6, between 52 and 83 of the 91 estimated β’s are positive

depending on the market belief dispersion variable considered. More interestingly, around

a third of these estimated values are statistically significant at the 10% level. Moreover,

none of the negative coefficients obtained from the value-weighted variables is significantly

different from zero. The evidence therefore points towards the approval of the model-implied

15Conrad and Glas (2018) provide a similar analysis to test if macroeconomic variables predict volatility
in the cross-section of industry portfolios. Note that, for the sake of completeness, I also provide in Ap-
pendix 2.B.2 an analogous rolling window analysis concerning the market index quarterly raw returns to see
how the ability of market belief dispersion to predict them evolves over time.

16Because I need to have the market (log) volatility data of the two previous quarters, my first subsample
starts in the third quarter of 1982 and ends in the second quarter of 1997.
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positive effect of belief dispersion on the market volatility, and, while most of the significantly

positive β’s are obtained for subsamples ending between 2000 and 2010, the weak results

found in Table 2.5 likely result from the fact that negative coefficients are obtained from the

most recent subsamples.

Insert Table 2.6 here.

As robustness checks, Panel B and Panel C of Table 2.6 further show results of alternative

specifications that use rolling windows of 10 and 20 years respectively. Overall, they confirm

the results found in the main specification.

2.4 Conclusion

In this paper, I define an infinite horizon economy populated by overlapping generations of

investors who differ in their beliefs. For any generation, the wealth share distribution of its

heterogeneous members can be described by a Gaussian distribution with a state-dependent

mean and a constant standard deviation, implying a persistent belief heterogeneity over time.

I compute the model equilibrium, and, using a fully equivalent approach based on continuous

plan revisions of infinitely-lived agents and a sliding horizon, construct an intertemporal

representative agent. I then study the implications of the belief heterogeneity on various

quantities of interest, namely the stock price, its mean return, and its volatility. In particular,

I derive that both the stock mean return and volatility monotonically increase with belief

dispersion. Importantly, the theoretical framework that I use leads to stationary results

with non-vanishing heterogeneity. The contribution of such a modeling is twofold. First,

the heterogeneity persistence is empirically observed, and, consequently, the model results

are more in line with reality (see, e.g., Giglio et al., 2020). Second, it allows me to test

the model empirically over long periods. Using analyst forecasts from the IBES database, I

show that the documented positive relation between the returns and the belief dispersion is

verified in the data when considering a market index. This is true for data sampled at various
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frequencies (from one month to two years), and the persistence of belief dispersion that I

document in my model is thus an important feature to be taken into account. Additionally,

empirical evidence points more towards the approval of the positive model-implied relation

between the market volatility and the market belief dispersion than towards its rejection.

Lastly, note that the model only considers a single stock in the economy. It would thus be

interesting to extend it to the case of a multi-stocks economy to derive testable cross-sectional

relations. I leave this for future research.
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2.A Proofs

It is more convenient to formally compute the model equilibrium and the representative

agent under the dual approach based on the model presented in Section 2.2.2. Thus, in

this appendix, I first prove Lemma 2.1, which states the equivalence of the two models. I

then state and prove Theorem 2.1 (which is mostly an analogous version of Proposition 2.1

in the context of the sliding horizon model). Proposition 2.1 and Proposition 2.2 are then

corollaries of this theorem. Lastly, I provide a proof of Proposition 2.3.

Proof of Lemma 2.1 The equivalence of the two models comes from the fact that they

share similar settings, an analogous maximization program, and the same constraints. To

see this, let formally present Agent-δ’s maximization program in the context of both models

at time t and in state of the world Wt.

Let start with the overlapping heterogeneous generations model. Using (2.1), the maxi-

mization program of Agent-δ at time t and in state of the world Wt is given by

max
cδ,t+T ,bδ,t+T

Et (Mδ,t+T (au (cδ,t+T ) + u (bδ,t+T ))) , (2.5)

where a is a given non-negative coefficient, common to all agents and all generations, that

represents the agents’ degree of selfishness, and Mδ,t+T is the Radon-Nikodym derivative of

her subjective probability measure Qδ with respect to P, such that

Mδ,t+T = exp

(
δ

σ
(Wt+T −Wt)−

1

2

δ2

σ2
T

)
. (2.6)

Denoting by yδ,t+T the endowment (at time t+T ) of Agent-δ of Generation-t, solving (2.5)

under the condition that the sum of her consumption and her bequest equals her endowment

(cδ,t+T + bδ,t+T = yδ,t+T ) leads to

cδ,t+T =
1

1 + a−
1
γ

yδ,t+T , and bδ,t+T =
a−

1
γ

1 + a−
1
γ

yδ,t+T . (2.7)
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Because au (cδ,t+T ) + u (bδ,t+T ) = a
(

1 + a−
1
γ

)γ
u (yδ,t+T ), maximizing (2.5) is therefore

equivalent to solving

max
yδ,t+T

Et (Mδ,t+Tu (yδ,t+T )) , (2.8)

under the same market clearing condition and budget constraint, before dividing it into

consumption and bequest according to the above-mentioned proportions.

The market clearing condition and the budget constraint that both (2.5) and (2.8) need

to satisfy are respectively given by

yt+T =

∫
yδ,t+Tdδ, (2.9)

and

(νδ,t,Wtyt+T − yδ,t+T ) pt+T ≥ 0. (2.10)

Additionally, (2.2) needs to be verified for all families.

Let now more formally present the model with a sliding horizon. I denote by ỹ the

expected production process of this model. It follows a geometric Brownian motion with

the same volatility σ as the process y and a drift denoted by µ̃. I also define ν̃δ,t,Wt which

stands for the time-t wealth share distribution of the infinity lived agents. Recall that the

initial investors’ wealth share distributions are the same in the two models. Recall also that,

as stated in Section 2.2.2, the way heterogeneous beliefs are defined are identical in both

models: in the sliding horizon model, Mδ,t+T is defined as in (2.6).

At time t and in state of the world Wt, Agent-δ’s maximization program is given by

max
ỹδ,t+T

Et (Mδ,t+Tu (ỹδ,t+T )) , (2.11)

89



CHAPTER 2. DISAGREEING FOREVER: A TESTABLE MODEL WITH
NON-VANISHING BELIEF HETEROGENEITY

under the following constraints:

� the market clearing condition: ỹt+T =

∫
ỹδ,t+Tdδ.

� the time-t static budget constraint: (ν̃δ,t,Wt ỹt+T − ỹδ,t+T ) p̃t+T ≥ 0, where p̃t+T is the

time-t+ T equilibrium state price density.

� the time-t dynamic budget constraint: seen from date t, and before trading and con-

sumption reallocation, Agent-δ’s expected consumption share should remain unchanged

between t+ T and t+ T + dt because the endowment of each agent is fixed. Formally,

it implies that Et (p̃t+T+dtỹδ,t+T+dt) = Et
(
p̃t+T+dtỹδ,t+T

ỹt+T+dt

ỹt+T

)
.

It is then clear that (2.8) and (2.11) are similar. Moreover, the three above-mentioned

constraints are similar to (2.9), (2.10), and (2.2) respectively. This thus leads to equivalent

implications for the two models. Note, however, that the alternative model with a sliding

horizon does not allow effective consumption. A small adjustment thus needs to be made in

the drift of the production process ỹ to obtain a full equivalence.

Let come back to the overlapping heterogeneous generations model. At time t+ dt+ T ,

the total endowment of the economy is given by
a−

1
γ

1 + a−
1
γ

yt+dt+T (because all the agents of

Generation-t have consumed a fraction
1

1 + a−
1
γ

of their individual time-t+ T endowments,

given that a is common to all investors and all generations). Denoting by µ̂ the drift of the

production process in this model if there was no consumption, and defining
1

1 + a−
1
γ

= αdt,

the overall endowment process of the model is therefore given by dyt = (µ̂− α) ytdt+σytdWt.

As stated in footnote 3, I thus define µ = µ̂− α to take this consumption into account.

From there, it is clear that setting µ̃ = µ̂−α allows a full equivalence of the two models.

Finally, note that the case a = 0 (meaning that agents only bequeath) implies α = 0, and

thus µ̃ = µ = µ̂. �

Theorem 2.1 (Equilibrium and representative agent in the model with a sliding horizon).

In equilibrium, at time t and in state of the world Wt:

90



ASSET PRICING WITH HETEROGENEOUS AGENTS AND NON-NORMAL
RETURN DISTRIBUTIONS

1. The investors’ consumption plans and the state price density are given by

ỹδ,t+T = ỹt+T

(∫
(λδ,t,WtMδ,t+T )

1
γ dδ

)−1

(λδ,t,WtMδ,t+T )
1
γ ,

p̃t+T = ỹ−γt+T

(∫
(λδ,t,WtMδ,t+T )

1
γ dδ

)γ
,

where Mδ,t+T = exp

(
δ

σ
(Wt+T −Wt)−

1

2

δ2

σ2
T

)
is the time-t + T Radon-Nikodym

derivative of the subjective probability measure Qδ with respect to P (seen from date t),

and

λδ,t,Wt =
1√
2π

γ

√
σ2 + Tϕ

(
ω̄2
t,Wt

)γ−1

√
ϕ
(
ω̄2
t,Wt

)
γ
γ√

σ2
γ−1

exp

(
−
(
δ − δ̄t,Wt + (1− γ)Tϕ

(
ω̄2
t,Wt

))2

2ϕ
(
ω̄2
t,Wt

) )

is the inverse of the time-t Lagrange multiplier with

ϕ (x) =
x

2
− γσ2

2T
+

√(
x

2
− γσ2

2T

)2

+
σ2x

T
.

2. The intertemporal representative agent of the economy is the fictitious investor whose

time-t + T Radon-Nikodym derivative of the subjective probability measure Qδ with

respect to P (seen from date t) is given by

MRA,t+T =

(∫
(λδ,t,WtMδ,t+T )

1
γ dδ

)γ
.

3. The wealth share distribution of the continuum of investors is given by a normal prob-

ability density function with a standard deviation and a mean given respectively by

ω̄t,Wt = ω̄, and δ̄t,Wt = δ̄ +
ϕ (ω̄2)Wt

σ
,

where δ̄ and ω̄ are given constants describing the time-0 wealth share distribution.
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Proof of Theorem 2.1 The three items of the proposition are solved altogether in the

following proof.

The maximization program of Agent-δ at time t and in state of the world t is given by

(2.11) in the proof of Lemma 2.1, which also explicitly states the constraints that must be

satisfied.

The first order conditions directly give


ỹδ,t+T = ỹt+T

(∫
(λδ,t,WtMδ,t+T )

1
γ dδ

)−1

(λδ,t,WtMδ,t+T )
1
γ ,

p̃t+T = ỹ−γt+T

(∫
(λδ,t,WtMδ,t+T )

1
γ dδ

)γ
,

where λδ,t,Wt is the inverse of the time-t Lagrange multipliers of the form

λδ,t,Wt = Kt,Wtexp

(
− 1

2a2
t,Wt

δ2 − bt,Wtδ

)
. (2.12)

To further identify at,Wt and bt,Wt , notice that the budget constraint of the maximization

program can be equivalently formulated as

ν̃δ,t,Wt =
Et (p̃t+T ỹδ,t+T )

Et (p̃t+T ỹt+T )
. (2.13)

Let then look for a solution of the form ν̃δ,t,Wt =
1√

2πω̄t,Wt

exp

(
−
(
δ − δ̄t,Wt

)2

2ω̄2
t,Wt

)
, and see

if it verifies (2.13).

Explicit computations show that it is indeed the case, which thus proves that the time-t

wealth share distribution is given by a normal probability density function. Formally, by

identification, simple algebra leads to


a2
t,Wt

=
ω̄2
t,Wt

2
− γσ2

2T
+

√(
ω̄2
t,Wt

2
− γσ2

2T

)2

+
σ2ω̄2

t,Wt

T
,

bt,Wt = (1− γ)T − δ̄t,Wt

a2
t,Wt

.
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Note also that using a reasoning similar to the one in the proof of Theorem 4 in Bianchi

et al. (2021), based on the homogeneity property of the CRRA utility function, one can show

the uniqueness of this solution (see also Dana, 1995).

To complete the identification of λδ,t,Wt , let determine Kt,Wt , which is obtained via the

construction of the intertemporal representative agent.

By construction, this agent is the fictitious investor who, if endowed with the total wealth

of the economy, would have a marginal utility equal to the equilibrium price. Formally,

because her utility function is given by u (x) =
x1−γ

1− γ
, it translates into p̃t+T = ỹ−γt+TMAR,t+T ,

which directly leads to

MAR,t+T =

(∫
(λδ,t,WtMδ,t+T )

1
γ dδ

)γ
.

Moreover, for the intertemporal representative agent beliefs to be well-defined, one needs

to ensure that Et (MAR,t+T ) = 1. Easy computations then result in

Kt,Wt =
1√
2π

γ

√
σ2 + Ta2

t,Wt

γ−1

√
a2
t,Wt

γ
γ√

σ2
γ−1

exp

(
−
a2
t,Wt

b2
t,Wt

2

)
.

Defining the function ϕ as given in Theorem 2.1 and plugging the expressions of at,Wt ,

bt,Wt , and Kt,Wt into (2.12), before rearranging the terms, yield the results.

Lastly, I need to ensure that the time-t dynamic budget constraint is verified. To do so,

let define µp̃t+T and σp̃t+T (that depend on δ̄t,Wt and ω̄t,Wt) such that dp̃t+T = µp̃t+T p̃t+Tdt+

σp̃t+T p̃t+TdWt. I further define µỹδ,t+T and σỹδ,t+T (that also depend on the parameters of the

Generation-t wealth share distribution) similarly.

Using Ito’s lemma, this budget constraint leads to

Et
(
µỹδ,t+T + σp̃t+Tσỹδ,t+T − µ̃− σσp̃t+T

)
= 0. (2.14)
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Direct computations allow me to rewrite the left hand-side of (2.14) as a polynomial

function of δ of degree two. As (2.14) must be verified for all agents, each coefficient of the

polynomial form must equal zero. By identification, this leads to the expressions of δ̄t,Wt and

ω̄t,Wt derived in the theorem. �

Proof of Proposition 2.1 The proof of Proposition 2.1 directly follows from the equiva-

lence of the two models given in Lemma 2.1 and from the proof of the first and third items

in Theorem 2.1. One simply needs to replace ỹt+T by yt+T , ỹδ,t+T by yδ,t+T , p̃t+T by pt+T ,

and ν̃δ,t,Wt by νδ,t,Wt . Moreover, at time t, the agents of the sliding horizon model correspond

to the Generation-t of the overlapping generations model.

Finally, note that the proportions of consumed and bequeathed wealth are explicitly

given by (2.7) in the proof of Lemma 2.1. �

Proof of Proposition 2.2 The proof of Proposition 2.2 directly follows from the proof of

the second item in Theorem 2.1. �

Proof of Proposition 2.3

1. By no arbitrage, the time-t stock price is given by

St =
Et (pt+Tyt+T )

Et (pt+T )
.

Computing the numerator and the denominator, and rearranging the terms lead to the

formula in Proposition 2.3.

To determine the benchmark economy stock price St, I set δ̄ and ω̄ to zero, and

substitute them into the stock price formula.

2. 3. Applying Ito’s lemma to the time-t stock price formula yields the results.
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Similarly to the first item, µ and σ are defined by setting δ̄ and ω̄ to zero into the

formulas.

�
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2.B Additional empirical results

2.B.1 Predicting market excess returns

In this appendix, I run a similar analysis as the one presented in Section 2.3.2. The only

difference is that the dependent variable (either value- or equally-weighted) is now given by

the excess returns of the market index instead of its raw returns. The results are reported in

Table 2.7. They further confirm the model-implied positive relation: the coefficients are all

positive and statistically significant. These results thus provide additional support for the

validation of H1-H2.

Insert Table 2.7 here.

2.B.2 Rolling window analysis of the raw simple market index

returns at the quarterly horizon

In order to gain deeper insights of the predicted positive relation between market belief

dispersion and market index raw returns, I run rolling window regressions of Equation (2.3)

using quarterly data and subsamples of 15 years, i.e., with 60 quarterly observations. This is

the same methodology as the one in Section 2.3.3, and the results are reported in Figure 2.3.

Insert Figure 2.3 here.

The framework leads to a total of 92 regressions for each specification, and I therefore

obtain time series of the estimated values of θ.17 The horizontal axis shows the end date

of the subsamples, while the vertical axis gives the estimated value. Thicker rounds (resp.

crosses) indicate statistically significant positive (resp. negative) values at the 10% level.

The graphs show that most of the subsamples ending between 2011 and 2019 yield positive

estimated values, while subsamples ending during the previous decade lead to negative ones.

17The first subsample starts in the second quarter of 1982 and ends in the first quarter of 1997.
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Additionally, Table 2.8 reports the number of positive estimated coefficients for all specifi-

cations, along with the number of significantly positive (second column) and negative (third

column) ones. Panel A presents the results for rolling windows of 60 quarterly observa-

tions, and Panels B and C use different window lengths of 40 and 80 quarterly observations

respectively.

Insert Table 2.8 here.

Overall, apart from those obtained with the variable θVWstd,3M , the results mostly confirm

that the model implication seems to be verified empirically.
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Figure 2.1: Time series of the quarterly market belief dispersion variables

Panel A: cross-sectional average of individual stock disagreements

ω̄VWmean,3M ω̄EWmean,3M

Panel B: cross-sectional standard deviation of individual stock disagreements

ω̄VWstd,3M ω̄EWstd,3M

The figure presents the time evolution of the quarterly market belief dispersion variables, expressed in
percentages. Panel A (resp. Panel B) shows the variables computed as the cross-sectional average (resp.
standard deviation) of individual stock disagreements. The left column shows the value-weighted variables
and the right column the equally-weighted ones. The sample goes from the first quarter of 1982 to the fourth
quarter of 2019.
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Figure 2.2: Time series of rolling window estimates of β

Panel A: Value-weighted specifications

β̂VWmean,3M β̂VWstd,3M

Panel B: Equally-weighted specifications

β̂EWmean,3M β̂EWstd,3M

The figure presents the estimated values of βVWmean,3M , βVWstd,3M , βEWmean,3M , and βEWstd,3M obtained from rolling
window regressions with 60 quarterly observations. The horizontal axis shows the end date of the subsamples
(the first one ends in the second quarter of 1997). Thicker rounds (resp. crosses) indicate statistically
significant positive (resp. negative) values at the 10% level (using one-sided tests).
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Figure 2.3: Time series of rolling window estimates of θ

Panel A: Value-weighted specifications

θ̂VWmean,3M θ̂VWstd,3M

Panel B: Equally-weighted specifications

θ̂EWmean,3M θ̂EWstd,3M

The figure presents the estimated values of θVWmean,3M , θVWstd,3M , θEWmean,3M , and θEWstd,3M obtained from rolling
window regressions with 60 quarterly observations. The horizontal axis shows the end date of the subsamples
(the first one ends in the first quarter of 1997). Thicker rounds (resp. crosses) indicate statistically significant
positive (resp. negative) values at the 10% level (using one-sided tests).
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Table 2.1: Summary statistics of the quarterly market belief dispersion variables

Mean St. Dev. Skewness Kurtosis ρ1 ρ2

Panel A: value-weighted specification

ω̄VWmean,3M 3.26 0.43 0.84 3.28 0.89 0.77
ω̄VWstd,3M 2.80 0.74 0.39 2.01 0.94 0.85

Panel B: equally-weighted specification

ω̄EWmean,3M 3.78 0.37 0.53 2.63 0.88 0.74
ω̄EWstd,3M 3.48 0.61 0.34 1.87 0.94 0.84

The table contains descriptive statistics of the quarterly belief dispersion variables, expressed in
percentages. The mean, standard deviation, skewness, and kurtosis are reported for each variable,
as well as the first- and second-order sample autocorrelations (ρ1 and ρ2). The sample goes from
the first quarter of 1982 to the fourth quarter of 2019.
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Table 2.2: Summary statistics of the market index returns for various holding periods

Mean St. Dev. Skewness Kurtosis
Panel A: value-weighted specification

RET VW1M 0.29 3.79 -0.55 5.26
RET VW3M 0.86 6.23 -0.25 4.47
RET VW6M 1.74 9.36 0.23 5.29
RET VW12M 3.25 12.71 -0.20 2.39
RET VW24M 6.30 14.94 -0.48 2.80

Panel B: equally-weighted specification

RETEW1M 0.35 4.07 -0.87 7.00
RETEW3M 1.04 7.01 -0.53 4.49
RETEW6M 2.03 9.85 -0.03 4.47
RETEW12M 3.92 13.66 0.03 2.95
RETEW24M 7.39 16.58 0.80 3.07

The table contains descriptive statistics of the raw market index simple returns for various holding
periods, expressed in percentages. The mean, standard deviation, skewness, and kurtosis are re-
ported for each variable. The subscript indicates the holding period considered and the superscript
the type of weighting. The sample goes from January 1982 to December 2019.
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Table 2.3: Market belief dispersion and market index raw returns

1M 3M 6M 12M 24M
Panel A: value-weighted specification

θVWmean,. 0.03 0.09* 0.14* 0.10 0.28**
(0.81) (1.39) (1.60) (0.75) (2.03)

θVWstd,. 0.05 0.10* 0.14* 0.13 0.31**
(1.18) (1.41) (1.47) (1.15) (1.92)

Panel B: equally-weighted specification

θEWmean,. 0.08** 0.13** 0.20*** 0.25* 0.42***
(1.78) (1.98) (2.42) (1.67) (2.58)

θEWstd,.. 0.07* 0.10* 0.17** 0.25** 0.48***
(1.62) (1.58) (2.01) (1.84) (3.01)

The table contains the results of regression (2.3). Inference is based on autocorrelation- and
heteroskedasticity-robust standard errors (Newey and West, 1987), and all variables are standard-
ized prior to estimation. For frequencies longer than a month, I use non-overlapping returns. I
consider one-sided tests where the null is H0 : θ = 0 against the alternative H1 : θ > 0. The sample
goes from January 1982 to December 2019.
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Table 2.4: Summary statistics of the annualized market (log) volatility for various horizons

Mean St. Dev. Skewness Kurtosis
Panel A: value-weighted specification

LV OLVW1M -2.06 0.46 0.62 3.91
LV OLVW3M -2.00 0.41 0.81 4.12
LV OLVW6M -1.97 0.39 0.75 3.85
LV OLVW12M -1.93 0.38 0.39 2.97
LV OLVW24M -1.90 0.34 0.46 2.65

Panel B: equally-weighted specification

LV OLEW1M -2.09 0.49 0.70 3.95
LV OLEW3M -2.01 0.43 0.92 4.29
LV OLEW6M -1.98 0.41 0.94 4.28
LV OLEW12M -1.94 0.39 0.73 3.31
LV OLEW24M -1.91 0.37 0.80 3.56

The table contains descriptive statistics of the annualized market log volatility variables for various
horizons. The mean, standard deviation, skewness, and kurtosis are reported for each variable. The
subscript indicates the horizon considered and the superscript the type of weighting. The sample
goes from January 1982 to December 2019.

104



ASSET PRICING WITH HETEROGENEOUS AGENTS AND NON-NORMAL
RETURN DISTRIBUTIONS

Table 2.5: Market belief dispersion and annualized market (log) volatility

1M 3M 6M 12M 24M
Panel A: value-weighted specification

βVWmean,. 0.02 0.04 0.04 0.12 0.01
(0.60) (0.78) (0.52) (0.70) (0.04)

βVWstd,. -0.00 0.01 0.03 0.07 -0.07
(-0.09) (0.26) (0.43) (0.37) (-0.29)

Panel B: equally-weighted specification

βEWmean,. 0.01 0.01 0.09 0.26* 0.18
(0.18) (0.15) (0.71) (1.56) (0.86)

βEWstd,.. 0.01 0.04 0.10 0.26* 0.11
(0.34) (0.55) (0.95) (1.41) (0.69)

The table contains the results of regression (2.4) and other similar regressions that use (log) volatil-
ity as the dependent variable and market belief dispersion as the predictor (controlling for past (log)
volatility). Inference is based on autocorrelation- and heteroskedasticity-robust standard errors
(Newey and West, 1987), and all variables are standardized prior to estimation. For frequencies
longer than a month, I use non-overlapping data. I consider one-sided tests where the null is
H0 : β = 0 against the alternative H1 : β > 0. The sample goes from January 1982 to December
2019.
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Table 2.6: Statistics of rolling window estimates of β

#β̂ > 0 #β̂∗ > 0 #β̂∗ < 0
Panel A: 15 year rolling window (91 samples)

β̂VWmean,3M 83 24 0

β̂VWstd,3M 58 25 0

β̂EWmean,3M 52 27 7

β̂EWstd,3M 59 32 14

Panel B: 10 year rolling window (111 samples)

β̂VWmean,3M 92 36 0

β̂VWstd,3M 73 22 10

β̂EWmean,3M 60 29 10

β̂EWstd,3M 59 31 22

Panel C: 20 year rolling window (71 samples)

β̂VWmean,3M 53 24 0

β̂VWstd,3M 49 27 4

β̂EWmean,3M 52 18 4

β̂EWstd,3M 50 40 10

The table contains some statistics on the estimated values of βkj,3M (j = {mean, std} and
k = {VW,EW}) obtained from rolling window regressions for several settings. Panel A refers
to the specification defined by Equation (2.4) and uses 15 year rolling windows (60 quarterly data).
Panel B and C show results with 10 year rolling windows (40 quarterly data) and 20 year rolling
windows (80 quarterly data) respectively. The first column reports the number of positive coef-
ficients obtained from these regressions. The second (resp. third) column report the number of
significantly positive (resp. negative) coefficients at the 10% level obtained from these regressions
(using one-sided tests). The overall sample goes from the first quarter of 1982 to the fourth quarter
of 2019.

106



ASSET PRICING WITH HETEROGENEOUS AGENTS AND NON-NORMAL
RETURN DISTRIBUTIONS

Table 2.7: Market belief dispersion and market index excess returns

1M 3M 6M 12M 24M
Panel A: value-weighted specification

θVWmean,. 0.06* 0.14** 0.20*** 0.19* 0.43***
(1.45) (2.16) (2.45) (1.41) (2.67)

θVWstd,. 0.07** 0.15** 0.20*** 0.23** 0.46**
(1.92) (2.33) (2.42) (1.92) (2.29)

Panel B: equally-weighted specification

θEWmean,. 0.10** 0.17*** 0.25*** 0.32** 0.50***
(2.27) (2.53) (2.99) (2.02) (2.62)

θEWstd,.. 0.09** 0.14** 0.23*** 0.33** 0.56***
(2.20) (2.25) (2.61) (2.23) (2.95)

The table contains the results of regression (2.3) when the dependent variable is given by the
market index excess returns. Inference is based on autocorrelation- and heteroskedasticity-robust
standard errors (Newey and West, 1987), and all variables are standardized prior to estimation. For
frequencies longer than a month, I use non-overlapping returns. I consider one-sided tests where
the null is H0 : θ = 0 against the alternative H1 : θ > 0. The sample goes from January 1982 to
December 2019.
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Table 2.8: Statistics of rolling window estimates of θ

#θ̂ > 0 #θ̂∗ > 0 #θ̂∗ < 0
Panel A: 15 year rolling window (92 samples)

θ̂VWmean,3M 44 25 27

θ̂VWstd,3M 43 3 37

θ̂EWmean,3M 60 23 0

θ̂EWstd,3M 55 8 6

Panel B: 10 year rolling window (112 samples)

θ̂VWmean,3M 55 8 24

θ̂VWstd,3M 61 16 36

θ̂EWmean,3M 75 34 2

θ̂EWstd,3M 64 24 18

Panel C: 20 year rolling window (72 samples)

θ̂VWmean,3M 40 13 12

θ̂VWstd,3M 22 8 19

θ̂EWmean,3M 59 22 0

θ̂EWstd,3M 40 2 2

The table contains some statistics on the estimated values of θkj,3M (j = {mean, std} and k =
{VW,EW}) obtained from rolling window regressions defined similarly as Equation (2.3). Panel
A uses 15 year rolling windows (60 quarterly data). Panel B and C show results with 10 year
rolling windows (40 quarterly data) and 20 year rolling windows (80 quarterly data) respectively.
The first column reports the number of positive coefficients obtained from these regressions. The
second (resp. third) column report the number of significantly positive (resp. negative) coefficients
at the 10% level obtained from these regressions (using one-sided tests). The overall sample goes
from the first quarter of 1982 to the fourth quarter of 2019.
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Abstract

We analyze the joint effects of skewness and correlation in a simple two-asset framework.

Returns follow the split bivariate normal distribution, which combines bivariate normal dis-

tributions with different standard deviations and provides a good empirical fit. We show

that equilibrium risk premia deviate from the CAPM if assets differ in skewness. Moreover,

if the more positively skewed asset is more volatile, it underperforms and its beta, maximum

return, idiosyncratic and systematic skewnesses are all higher—consistent with empirical ev-

idence. We also derive formulas and analyze the role of skewness for portfolio choice and

recently proposed conditional risk metrics.

Keywords: Skewness, Co-skewness, Conditional expected shortfall, Conditional value-at-

risk, Portfolio choice, Asset pricing

JEL classification: G11 - G12 - G32
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3.1 Introduction

Many settings relevant for investors and in risk management can be described in terms of

two risks. Examples include the decision to add a risky asset to a risky portfolio, a default

probability conditional on a market downturn, or a bank’s contribution to the risk of the

financial system. The role of the first two (co-)moments of asset returns in these settings is

well understood. Less is known, however, about the impact of the next (co-)moment. At the

same time, there is mounting evidence that the third moment is of key interest to investors

and that most assets have skewed returns.1

This paper aims at filling this gap and studies in a two-asset framework how skewness

and its interaction with correlation affect portfolio choice, asset prices, and popular risk

metrics. Our focus is on simplicity and intuition and our tool is the split bivariate normal

(SBN) distribution. This distribution generalizes the bivariate normal (BN) distribution and

introduces skewness by allowing the standard deviation parameters to differ above and below

the mode. It is particularly appealing for finance applications because it takes into account

that means and variances of stock returns are related empirically (Duffee, 1995). Moreover,

it allows for many explicit computations due to its similarities with the BN distribution. We

use the SBN distribution to demonstrate that low levels of asymmetry suffice to modify many

standard predictions in an economically important way and reconcile them with empirical

evidence.

In a pure exchange economy, we show that capital asset pricing model (CAPM) alphas are

non-zero when the assets have different levels of skewness. Empirically, deviations from the

CAPM have been related to systematic skewness (Harvey and Siddique, 2000), idiosyncratic

1Recent evidence of skewness preference comes from, e.g., experiments (Ebert and Wiesen, 2011), cap-
ital budgeting decisions (Schneider and Spalt, 2016), and option-based decompositions of the market risk
premium (Schneider, 2019). In addition, survey evidence from financial professionals finds that skewness
systematically affects risk perceptions, while variance and kurtosis do not (Holzmeister et al., 2020). There
is also evidence that, e.g., stock returns should theoretically be and empirically are skewed. For example,
Albuquerque (2012) documents and reconciles positive skewness in individual stocks and negative skewness
in aggregate stock returns and Del Viva et al. (2017) show that real options explain the skewness in individual
stock returns.
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skewness (Boyer et al., 2010), and maximum returns (Bali et al., 2011). Consistent with this

empirical evidence, our contribution is to show theoretically that the asset that underper-

forms also has high systematic skewness, high idiosyncratic skewness, and high maximum

returns. Acknowledging that more positively skewed stocks are also more volatile (see, e.g.,

Kumar, 2009), the framework can accommodate the high beta low return anomaly (Frazzini

and Pedersen, 2014; Bali et al., 2017). The differences in maximum returns thereby directly

arise from the underlying skewed return distribution, and the differences in idiosyncratic and

systematic skewnesses result from the market equilibrium conditions. The representative in-

vestor’s skewness preference then leads to asset prices that deviate from the CAPM. The

framework thereby shows that high max asset is both a lottery (Bali et al., 2011) and insur-

ance (Barinov, 2018). More specifically, while the asset’s underperformance relates to high

maximum returns and high idiosyncratic skewness, it is mainly driven by high systematic

skewness. This is supported empirically by Barinov (2018) and Langlois (2020).

As far as portfolio choice is concerned, we show that the utility gains of considering skew-

ness usually decrease with correlation when skewnesses are equal. When skewnesses differ,

however, the relation becomes U-shaped and the gains are greater for highly correlated than

for moderately correlated assets. In addition, underdiversification then becomes optimal,

especially for high levels of correlation. Our portfolio choice analysis therefore highlights

the role of correlation in the diversification-skewness trade-off and thus extends Mitton and

Vorkink (2007) who consider only one skewed asset.

Recent research argues that expected utility (EU) preferences assign a low importance

to skewness, while many popular behavioral theories like Tversky and Kahneman’s (1992)

cumulative prospect theory (CPT) assign a higher—first-order importance—to skewness (see

Ebert and Karehnke, 2020). Hence, we study portfolio choice not only for EU preferences

but also for CPT. We show that these preferences magnify the importance of skewness for

portfolio weights, certainty equivalents, and deviations from the CAPM.

Because the SBN distribution shares similarities with the BN distribution, it also allows
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for a simple generalization of conditional risk metric formulas to skewed returns. In partic-

ular, Adrian and Brunnermeier (2016) propose a measure called ∆CoVaR, which is defined

as the difference between the value-at-risk (VaR) of a given asset when a conditioning risk is

under distress and this VaR when the conditioning risk is in its median state. In addition,

Acharya et al. (2017) propose a risk measure—here referred to as the conditional expected

shortfall (CoES)—that is defined as the expected value of a risky asset conditional on another

risk being in the left tail of its distribution. We provide simple expressions for both ∆CoVaR

and CoES when risks follow the SBN distribution. Using these expressions, we show that

for positively correlated risks, both metrics are larger in absolute value when the main asset

of interest is negatively skewed. Our contribution is to demonstrate that skewness thereby

has a large quantitative impact. For, e.g., a correlation of 0.6, a 5% probability, a symmetric

conditioning risk, and a skewness of −0.6 rather than zero, ∆CoVaR is about 30% higher in

absolute value. Our analysis also shows that the skewness of the conditioning risk only has a

limited impact on both risk measures. This corroborates Adrian and Brunnermeier’s (2016)

empirical finding that ∆CoVaR is weakly correlated with the VaR of the conditioning risk.

Throughout the paper, our analysis of the joint effects of skewness and correlation in a

two-asset framework relies on the SBN. The distribution is a bivariate extension of Fechner’s

(1897) split normal distribution, which is a special case of the more widely used skewed

t distribution of Hansen (1994). Arguing that symmetry is the exception rather than the

rule, Fechner introduced the distribution to describe empirical regularities observed in many

different fields. The univariate distribution has since then been known under several names in

the literature (see Wallis, 2014, for a detailed survey) and has been used in finance to model

inflation risk (Britton et al., 1998), downside risk (Feunou et al., 2013), and in one-risky-asset

portfolio choice, asset pricing, and risk management applications (De Roon and Karehnke,

2017). The bivariate version that we use is very similar to the more general developments

in Geweke (1989), Bauwens and Laurent (2005), and Villani and Larsson (2006), and it

coincides with these distributions when the two risks are independent.
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Figure 3.1 illustrates the construction of the SBN distribution. The left-hand side figure

shows in each quadrant the probability density function (pdf) of BN distributions with

different standard deviations. These pdfs are scaled in the right-hand side figure to obtain

a continuous skewed distribution. The main advantage of the distribution is its simplicity

that it inherits from the BN distribution and its ability to be skewed. Compared to more

sophisticated distributions (see, e.g., Babić et al., 2019, for a recent overview), it allows us

to focus on relatively small deviations from the standard, symmetric framework.

Insert Figure 3.1 here.

While the central contribution of the paper is to derive economic insights on the effects

of skewness within a simple and intuitive bivariate framework, it is important to show that

the distribution is empirically relevant and to check whether it provides a reasonable de-

scription of asset returns. We thereby analyze index excess returns of different asset classes

(large stocks, small stocks, bonds, commodities, and emerging markets stocks) and also con-

sider related distributions: the BN distribution, Azzalini and Dalla-Valle’s (1996) bivariate

skew-normal (BSN) distribution, and a bivariate version of Hansen’s (1994) skewed t (BST)

distribution constructed with a Gaussian copula.2 The parameter values are chosen such

that the correlation and the first three moments (four moments for the BST) coincide with

the empirical distribution. Bivariate Kolmogorov-Smirnov tests and a comparison of implied

and empirical co-skewnesses show that the SBN distribution fits the data considerably bet-

ter than the BN distribution. This fit is also good when compared to the other two skewed

distributions. For the co-skewness comparison, we derive the standard error of the coefficient

of co-skewness for normally distributed returns, which to our knowledge has usually been

computed with simulations (as in, e.g., Harvey and Siddique, 2000). We further compare

the theoretical and empirical CoES levels and show that the SBN distribution has the lowest

sum of squared differences which indicates that its fit is especially good in the left tail. This

2Note that Hansen’s (1994) skewed t distribution is a particular case of the skewed generalized t distri-
bution defined in Theodossiou (1998) and can be reparametrized as the skewed Student-t defined in Zhu and
Galbraith (2010).
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is of primary importance when dealing with risk, and the SBN distribution is therefore a

useful tool to conduct our analysis.

Our paper contributes to the growing literature on non-normally distributed financial

returns (see Jondeau et al., 2007, for a review). More precisely, it adds to the stream

of literature interested in understanding the role of skewness. For example, Kraus and

Litzenberger (1976), Kane (1982), Mitton and Vorkink (2007), and Chabi-Yo et al. (2014)

study the role of skewness in portfolio choice and asset pricing by assuming investors with

skewness preference and skewed returns without further specifying the return generating

process. Such an approach is easily motivated with Taylor-series approximations to expected

utility. We show that these approximations correctly assess deviations from CAPM pricing

but fare less well in terms of predicting the magnitude of risk premia. Other studies have

used skewed distributions in which returns are linear in the skewness parameters and thus

obtain mutual fund separation theorems and a skewness factor that drives expected returns

(see, e.g., Simaan, 1993; Langlois, 2013; Dahlquist et al., 2016). Return asymmetry is thereby

generated by a common skewed factor. Thus, for a given correlation structure, the range of

possible asset skewnesses is more limited, which makes it hard to simultaneously reproduce

the stylized facts about skewness discussed above.

The paper is organized as follows. Section 3.2 presents the SBN distribution and its

empirical fit to index excess returns. Readers more interested in the applications and results

may skip that section and directly read Sections 3.3 and 3.4. These sections study the

effects of skewness in portfolio choice and asset pricing and in risk management, respectively.

Section 3.5 concludes. Appendix 3.A gathers technical details on the distribution, Appendix

3.B contains the proofs, and Appendix 3.C contains additional results such as the derivation

of the standard error of co-skewness.
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3.2 A simple skewed bivariate distribution

To conduct our analysis and derive our main results, our tool is the SBN distribution. We

define it in Section 3.2.1 and provide evidence for its empirical relevance in Section 3.2.2.

3.2.1 Definition of the SBN distribution

We first recall the case in which X and Y follow the BN distribution that has means µX and

µY , standard deviations σX and σY , and a correlation ρ. The corresponding pdf is

f(x, y;µX , µY , σX , σY , ρ)

=
1

2πσXσY
√

1− ρ2
exp

[
− 1

2(1− ρ2)

((
x− µX
σX

)2

+

(
y − µY
σY

)2

− 2ρ

(
x− µX
σX

)(
y − µY
σY

))]
.

The SBN distribution is constructed with four BN distributions that all have the same

mean vector (mX ,mY ) and correlation parameter c and differ in their standard deviation

parameters. Let sX,1 denote the standard deviation parameter for X when X is below or

equal to mX , and let sX,2 denote the standard deviation parameter when X is above mX .

The corresponding parameters for Y , sY,1 and sY,2, are defined similarly. Thus, the standard

deviation parameters in increasing order from the first to the last quadrant of (X − mX ,

Y −mY ) are (sX,2, sY,2), (sX,1, sY,2), (sX,1, sY,1), and (sX,2, sY,1).

Recall that any pdf needs to integrate to one and be non-negative. In addition, we require

the pdf to be continuous—as in the univariate case. Therefore, each BN pdf is scaled with

a positive weight λi,j for i = 1, 2 and j = 1, 2. Direct computations give

Definition. The pdf of the SBN distribution for X and Y is

g(x, y; Ω) =



λ1,1f(x, y;mX ,mY , sX,1, sY,1, c), if x ≤ mX and y ≤ mY ,

λ1,2f(x, y;mX ,mY , sX,1, sY,2, c), if x ≤ mX and y > mY ,

λ2,1f(x, y;mX ,mY , sX,2, sY,1, c), if x > mX and y ≤ mY ,

λ2,2f(x, y;mX ,mY , sX,2, sY,2, c), if x > mX and y > mY ,
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where Ω = {mX ,mY , sX,1, sX,2, sY,1, sY,2, c} is the set of parameters, λ1,1, λ1,2, λ2,1, and λ2,2

are reported in Appendix 3.A.1, and f is the pdf of the BN distribution.

We report the contour plot of the distribution in Panel A of Figure 3.2. The parameters

are chosen such that X and Y have zero means, unit variances, and correlation of 0.4 and

that the (standardized) skewness of X, γX , is zero, and the (standardized) skewness of Y ,

γY , is −0.6. For comparison, we report the contour plots of other bivariate distributions

that also have these moments for X and Y . Panels B-D show the BN distribution, the BSN

distribution, and the BST distribution constructed with a Gaussian copula. Comparing

Panel A with Panel B illustrates that a moderate skewness of −0.6 modifies the appearance

of the contour plot significantly: the lines are tighter when the negatively skewed variable

Y takes positive values and wider otherwise. The distribution used in this paper also differs

markedly from Azzalini and Dalla-Valle’s (1996) BSN distribution. In particular, the contour

lines change appearance more abruptly when moving from one quadrant to the other. This

feature might be useful to fit return distributions for which means and standard deviations

are related empirically (Duffee, 1995). Finally, the distribution is most similar to the BST.

This is perhaps unsurprising because these two distributions are identical in the limit in the

univariate case and the kurtosises of the BST are chosen to fit the kurtosises of the SBN.

Nevertheless, there are some slight differences between the two that are most evident at the

borders of the quadrants. Here, the contour lines change more abruptly for the SBN.

Insert Figure 3.2 here.

In Appendix 3.A.2, we derive the moment generating function of the SBN and report

closed-form formulas for the moments and co-moments of the distribution as functions of the

parameters. Several observations about these formulas are in order. First, if sX,1 = sX,2 and

sY,1 = sY,2, the skewnesses are zero and it is easy to check that we obtain the moments of the

BN distribution. When skewnesses are non-zero, the distribution has the desirable feature

that its modes, which correspond to the location parameters mX and mY , differ from the
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means. Second, only the ratios of the standard deviations matter when studying the skew-

nesses and the co-skewnesses of the distribution, not the standard deviations themselves.

These ratios, e.g., sX,2/sX,1, are also easy to interpret as they correspond to the probability

that a split normally distributed variable takes values above its mode relative to the prob-

ability that it takes values below its mode. Thus, a split normal distribution arises from a

return generating process with a volatility that takes values sX,2 and sX,1 above and below its

mode and has on average sX,2/sX,1-times as many observations above its mode than below.

Third, if c = 0, we recover the expressions of the univariate split normal moments given

in, e.g., De Roon and Karehnke (2017). Fourth, although this problem does not arise in

our empirical section, some skewnesses of X and Y cannot be matched by the distribution.

Indeed, the skewnesses of X and Y are bounded and the range of admissible skewnesses

depends on the parameters. However, there is no simple expression for this range.3 Finally,

because the distribution has seven parameters, we can choose values for µX , µY , σX , σY ,

σX,Y , γX , and γY and solve for the matching parameters mX , mY , sX,1, sX,2, sY,1, sY,2, and

c. Because the number of parameters is limited, we cannot match co-skewness.4 Neverthe-

less, the co-skewnesses can help, e.g., to assess whether the distribution can fit additional

moments of empirical data.

In the remainder of the paper, we use the expressions for the moments and co-moments

in Appendix 3.A.2 to link symmetric and skewed distributions and study how skewness and

its interaction with correlation affect financial decisions.5

3Unlike the univariate case in which the skewness of X only depends on the ratio of standard deviation
parameters, zX ≡ sX,2/sX,1, and setting sX,1 (sX,2) close to 0 gives the highest possible positive (negative)
skewness, this skewness also depends on zY (defined analogously to zX) and c in the bivariate case. Depending
on the values of c ∈]− 1, 1[ and zY ∈]0,+∞[, the impact of zX differs. For example, setting sX,1 close to 0
does not lead to the largest possible skewness of X for certain values of zY and c.

4However, we could solve for the parameters that match the co-skewnesses instead of the skewnesses.
We do not consider this alternative approach in this paper and leave it for future research.

5It might be noteworthy that any linear combination of two variables that follow the SBN distribution
does not follow such a distribution, even if the two variables are independently distributed. Thus, the
SBN is not a stable distribution. Multivariate stable distributions that allow for skewness, however, cannot
have finite variances (Bauwens and Laurent, 2005). It is therefore impossible to construct a skewed stable
distribution with a closed form pdf and finite moments.
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3.2.2 Empirical fit

While the main objective of the paper is to study the impact of skewness on financial decisions

with correlated risks, we first study the empirical fit of the SBN distribution to ensure that

our theoretical analysis is based on a reasonable distribution. In this subsection, we study

the overall fit with bivariate Kolmogorov-Smirnov tests and the fit in terms of co-skewness

(which is not a free parameter in the distribution) by comparing empirical and implied

ones. We further study the implied CoESs, i.e., the fit in the conditional left tail of the

distribution, in Section 3.4.2. We conduct this analysis not only for the SBN, but also

for the BN distribution, the BSN distribution, and the BST distribution constructed with

a Gaussian copula. We emphasize that the advantage of the SBN lies in its simple and

intuitive construction inherited from the BN distribution and its ability to be skewed.

We use monthly excess returns over the risk-free rate in the period from January 1989

to June 2018 on five indices from different asset classes: large stocks (S&P 500 TR Index),

small stocks (Russell 2000 TR Index), bonds (Barclays US Aggregate Bond TR Index),

commodities (GSCI TR), and emerging markets stocks (MSCI Emerging Market TR Index).

The proxy for the risk-free rate is the return on the 30-day t-bill from CRSP and the index

data is from Datastream.

Insert Table 3.1 here.

The descriptive statistics in Table 3.1 show that the index excess returns are all negatively

skewed and exhibit excess kurtosis. Except for bonds and commodities, all skewnesses are

statistically significant under the null hypothesis of normally distributed returns. While

a split normal distribution can reproduce exactly the skewness in the data, it has also

excess kurtosis but the level is usually too low to fit the kurtosis in the data (De Roon

and Karehnke, 2017). Nevertheless, as we show below and in Section 3.4.2 respectively,

the distribution can still fit the overall shape and the conditional left tail of the empirical

distributions reasonably well. The correlations range from negative but close to zero (-0.05
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for bonds and commodities) to large and positive (0.81 for large and small stocks). The

index pairs that include bonds thereby consistently have the lowest correlations.

To illustrate the dependence structure of small stocks, bonds, commodities, and emerging

markets stocks with large stocks, we further report in Figure 3.3 contour plots of empirical

pdfs of the monthly excess returns on these index pairs calculated with a kernel density

estimator (dashed lines) and compare them to the contour plots of the SBN distribution

with parameters set to match the empirical moments (solid lines).

Insert Figure 3.3 here.

We formally assess the overall fit of the distributions with the bivariate Kolmogorov-

Smirnov test proposed by Peacock (1983). Table 3.2 reports the p-values of this test under

the null hypothesis that realized excess returns are drawn from the SBN, BN, BSN, or BST.6

At the 5% significance level, we reject the null for SBN in three out of ten cases, whereas

we reject the null in seven (resp. four) cases for BN (resp. BSN). Thus, in addition to its

analytical convenience, the SBN distribution seems to provide a reasonable fit compared

to its close competitors. Compared to its close cousin the BST distribution that has two

additional parameters to match the empirical kurtosises, the fit is less good. Here, the null

is rejected at the 5% significance level for none of the ten pairs.

Insert Table 3.2 here.

The four distributions we study can only match the correlation of index pairs. Thus,

by comparing the implied and empirical co-skewnesses, we obtain another assessment of the

empirical fit. More formally, we test whether the empirical co-skewnesses are significantly

different from the co-skewnesses obtained under the null that the index excess returns are

drawn from a given skewed distribution. For the test with the BN distribution, we can derive

6We use the Matlab function msn moment fit (available at http://azzalini.stat.unipd.it/SN/sn-
download.html) to find the parameters of the BSN distribution that match the empirical moments of the
index pairs. This function indicates that the empirical moments of two index pairs yield parameters outside
of the admissible range. Thus, we exclude these index pairs for the BSN distribution.
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the sample variance of co-skewness under the null. It is

var (γY,X) = var (γX,Y ) =
2 + 4ρ2

n
, (3.1)

where ρ is the correlation between the two indices and n is the number of observations. The

expression avoids having to approximate the sample variance of co-skewness with random

draws from the BN distribution as in, e.g., Harvey and Siddique (2000). We are not aware of

a reference for this formula and we therefore report its derivation in Appendix 3.C.2. From

the formula in (3.1), the widely used sample variance of skewness of 6/n is obtained for

ρ = 1.

Insert Table 3.3 here.

Table 3.3 reports the empirical co-skewnesses and the p-values computed under the dif-

ferent null hypotheses. All twenty co-skewnesses are negative. The two largest co-skewnesses

in absolute value are between large and small stocks with a magnitude of about −0.6. These

two co-skewnesses are highly significant under the null of a normal distribution, which im-

plies a zero co-skewness, while they are insignificant under the null of each of the skewed

distributions. Thus, although the distributions do not have parameters to match the third

co-moments, they can generate sizable co-skewnesses. This happens because, as shown in

Table 3.1, small and large stocks are highly correlated and have large negative skewness.

More generally, at the 5% significance level, 14 out of 20 co-skewnesses are significant under

the normal null. For the split normal, this number is reduced to 11 and the p-values in the

SBN column are generally higher than those in the BN column. For co-skewness, the other

two skewed distributions seem to provide a better fit and the null is rejected in three cases

for BSN (out of 16 co-skewnesses instead of 20) and seven cases for BST.

Overall, the SBN has a good empirical fit and is more parsimonious than the BST.

Moreover, we show in Section 3.4.2 that the SBN has the best fit among the four distribution

studied in the conditional left tail. The main advantage over the BST and BSN, however,
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is the simplicity of the SBN that we exploit next to derive the joint impact of skewness and

correlation on portfolio choice, asset pricing, and in risk management.

3.3 Portfolio choice and asset pricing

We study the effects of skewness on portfolio choice in Section 3.3.1 and asset pricing in

Section 3.3.2. For each setting, we consider EU preferences and Tversky and Kahneman’s

(1992) CPT preferences.

3.3.1 Optimal choice

The investor can invest in two risky assets that have excess returns of RX and RY and a

risk-free asset that has a gross return of 1 + rf . The two risky assets can represent, e.g.,

returns on two stocks or the return on a portfolio of many stocks and the return on one

additional stock. Let ωX (resp. ωY ) denote the investment in the risky asset X (resp. Y ).

Thus, the overall portfolio return is 1 + rf + ωXRX + ωYRY . We normalize initial wealth to

one and assume that the investor derives utility from terminal wealth. We first consider an

EU investor with exponential utility that maximizes u(x) = −exp (−θx), where θ > 0 is the

coefficient of absolute risk aversion. This utility function implies a preference for skewness

and allows for simple expressions for portfolio weights and risk premia when excess returns

follow the SBN distribution.7

Let us assume that RX and RY follow the SBN distribution. Direct computations that

exploit the properties of the SBN distribution and exponential utility functions yield the

following proposition.

Proposition 3.1 (Portfolio weights with the SBN distribution). Assume that RX and RY

follow the SBN distribution and that the investor maximizes EU with exponential utility. The

7For our analysis it is not important that the exponential utility function lacks wealth effects because
(a) we do not study the comparative statics of wealth and (b) De Roon and Karehnke (2017) show that the
effects of skewness in asset pricing and portfolio choice are magnified with constant relative risk aversion
utility functions, which allow for wealth effects by construction.
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optimal portfolio weights ωX and ωY are then implicitly given by

ωX =
µ̃X σ̃

2
Y − µ̃Y σ̃X,Y

θσ̃2
X σ̃

2
Y

(
1− σ̃2

X,Y

σ̃2
X σ̃

2
Y

) and ωY =
µ̃Y σ̃

2
X − µ̃X σ̃X,Y

θσ̃2
X σ̃

2
Y

(
1− σ̃2

X,Y

σ̃2
X σ̃

2
Y

) , (3.2)

where µ̃X , µ̃Y , σ̃2
X , σ̃2

Y , and σ̃X,Y are modified first and second co-moments that depend on

the portfolio weights and are reported in the proposition’s proof in Appendix 3.B.

The portfolio weights for the SBN distribution have a form similar to those obtained with

a BN distribution. In particular, when the assets are not skewed, µ̃X , µ̃Y , σ̃2
X , σ̃2

Y , and σ̃X,Y

simplify to the means, variances, and covariance of RX and RY . Thus, we recover the normal

case. Moreover, when correlation is zero (implying σ̃X,Y = 0), the two portfolio weights are

independent from each other and simplify to the one-asset portfolio weights reported in

De Roon and Karehnke (2017). Finally, the ratio of the portfolio weights does not depend

on θ.8 In other words, two-fund separation holds, which is expected with a risk-free asset

and exponential utility regardless of the distributional assumptions (see, e.g., Ingersoll, 1987,

Chapter 6.4).

With (3.2) in hand, we conduct a detailed analysis of the effects of correlation and

skewness on different portfolio choice and asset pricing metrics. Table 3.4 analyzes portfolio

choice with two assets whose excess returns both have a mean of 12%, a standard deviation

of 15%, and a correlation that varies through columns from −0.2 to 0.8.9 The skewnesses

are equal in the top panels of the table (benchmark case and Panels A-B) and differ in the

bottom panels (Panels C-E). The table reports optimal weights, certainty equivalent returns

of the optimal portfolio CER (ωSBN) and of a portfolio with normal weights CER (ωBN),

and skewnesses of the optimal portfolio γωSBN and of a portfolio with normal weights γωBN .

Insert Table 3.4 here.

8In fact, although the modified moments are functions of weights, it suffices to solve the implicit functions
for θ = 1 and scale those weight by the inverse of θ.

9We focus on moderately negative to positive correlations because this case is more relevant empirically
as shown in Section 3.2.2. The results for very negative correlations are available upon request.
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Let us first consider the top panels of the table in which the skewnesses of X and Y

are equal.10 As a consequence, the same amount is invested in each asset, and we obtain

the familiar mean-variance result that weights decrease with correlation. Correlation also

impacts portfolio skewness. For example, in Panel A, where both assets have a skewness of

0.6, the portfolio skewness increases from 0.4 (for ρ = −0.2) to 0.6 (for ρ = 0.8).

Comparing the certainty equivalent returns for different levels of skewness, we observe a

trade-off between holding highly correlated assets with high levels of skewness and holding

less correlated assets with lower levels of skewness. For instance, the certainty equivalent

return is 9.6% for ρ = 0.6 in Panel A, while it is 9.4% for ρ = 0.2 in Panel B. The intuition

behind this result lies in the definition of skewness itself: large positive events are more likely

to occur for positive skewnesses. Hence, even if the correlation between the assets is high,

the higher likelihood of very high returns makes the investor better off than holding less

correlated assets that are more likely to experience crashes.

As discussed in De Roon and Karehnke (2017), the total effect of skewness on certainty

equivalent returns can be decomposed in a change due to the distribution and a change

due to the weights. The first effect is a utility gain (resp. loss) due to more positive (resp.

negative) skewness in asset returns. For instance, for ρ = 0.4, the certainty equivalent return

changes from 9.1% in the benchmark case to 10.4% in Panel A. The second effect is a utility

gain due to the portfolio adjustment the investor makes to hold the optimal weights. This

utility gain tends to decrease with correlation and ranges from 1.3% to 0.4% in Panels A

and B.

In Panels C-E the skewnesses of X and Y differ, and it therefore becomes optimal to

underdiversify. To measure the degree of underdiversification, these panels contain the ratio

of the portfolio weights. As shown in Appendix 3.C.1, a ratio of one maximizes the Sharpe

ratio in our setting, and deviations from one measure deviations from mean-variance effi-

ciency. To facilitate the interpretation, the skewnesses are chosen such that γX > γY and

10In the remainder of Section 3.3, we refer to the skewness of asset X’s excess return simply as the
skewness of asset X and similarly for asset Y .
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thus ωX,SBN/ωY,SBN > 1. The table shows that this ratio increases with correlation and

skewness difference reaching 10.5 for ρ = 0.8 in Panel C in which γX = 0.6 and γY = −0.6.

This sacrifice in terms of mean-variance efficiency enables the investor to obtain a portfolio

skewness of 0.5 versus 0 for the portfolio computed with the normal distribution. Moreover,

weights invested in the more positively skewed asset can now increase with correlation. This

happens when the skewness difference and the correlation are sufficiently large. For instance,

in Panel C, the weight in X increases from 1.08 for ρ = 0.6 to 1.27 for ρ = 0.8. Finally, the

relation between the utility gains of considering skewness and correlation is now U-shaped:

the gains are greater for large positive correlations than for moderate ones.

Comparing Panels C-E shows that a portfolio weight is not only sensitive to the asset’s

own skewness, but also to the other asset’s skewness. For instance, when γX = 0.6 and

ρ = 0.4, the weight in X decreases from 1.11 for γY = −0.6 (Panel C) to 1.00 for γY = 0.6

(Panel A). More generally, an increase in the other asset’s skewness decreases the amount

invested when the two assets are positively correlated. In fact, when the correlation between

X and Y is positive, the assets are (imperfect) substitutes. Hence, when the skewness of Y

improves and the investor optimally demands more of Y , he also decreases his demand of X.

In the knife-edge case of no correlation and because the utility function is of the exponential

type, demands for X and Y are independent of each other.

The comparative statics extend the analysis of the utility gains of considering skewness of

De Roon and Karehnke (2017) to two assets and confirm previous results of portfolio choice

and skewness. In particular, Mitton and Vorkink (2007) show theoretically that skewness

preference induces investors to hold underdiversified portfolios. They further show empiri-

cally that retail investors hold underdiversified portfolios and that the loss of mean-variance

efficiency of their portfolios is largely explained by a gain in skewness. We obtain similar

results within the standard EU framework. In addition, by looking at two skewed assets, our

analysis highlights the role of changes in skewness as a motive for trading. Recent research

documents that subjective beliefs of important economic variables are skewed and that this
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subjective skewness is time-varying (Ghosh and Roussellet, 2020). Therefore, changes in

skewness combined with heterogeneous skewness preferences are a plausible explanation for

trading and can contribute to reduce the puzzle of why investors trade so much.11

Next, we consider an investor with Tversky and Kahneman’s (1992) CPT preferences.

The CPT investor uses decision weights that transform cumulative objective probabilities

with a probability weighting function and evaluates outcomes with an S-shaped value func-

tion. As shown in, e.g., Ebert and Strack (2015), the probability weighting function generates

a strong preference for skewness. However, it complicates the calculations substantially and

we therefore solve the CPT portfolio choice maximization problem numerically. The caption

of Table 3.5 provides the details.

Insert Table 3.5 here.

Table 3.5 reports the results of the portfolio choice analysis with CPT and has the same

structure as Table 3.4. A few results stand out. Portfolio weights in CPT are much more

sensitive to correlation. This is due to loss aversion, and the table shows that, e.g., in the

symmetric case it is optimal not to invest in the risky assets when the correlation is high

enough. Skewness also has a stronger impact on portfolio weights in CPT. First, it is optimal

not to invest in the risky assets for, e.g., ρ = 0.6 when the return distribution is symmetric,

but when skewnesses are 0.6 in Panel A, the weight in each asset is 3.08. Second, the gain of

taking skewness into account is now larger. Third, when assets differ in their skewness and

when correlation is sufficiently high, it can now be optimal to short the asset with the lower

skewness to obtain a higher portfolio skewness. This is illustrated in Panel C for ρ = 0.8,

where the overall portfolio skewness is 0.75.

In sum, the comparative statics show that CPT magnifies the effects of changes in corre-

lation and skewness compared to EU. Ebert and Karehnke (2020) show that CPT induces a

first-order preference for skewness, while this preference is only third-order in EU. Tables 3.4

11This literature has focused on differences in information and overconfidence as motives for trading
(Odean, 1999; Kelley and Tetlock, 2013).
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and 3.5 illustrate that this skewness preference order governs the magnitude of the utility

gains of considering skewness. For example, in Panel A when both assets have a skewness

of 0.6 and ρ = 0.4, this certainty equivalent return gain exceeds 4% for CPT in Table 3.5,

while it is only about 0.5% in the corresponding EU case.

3.3.2 Equilibrium returns

We compute equilibrium returns in an exchange economy with a representative investor using

the expressions for portfolio weights in (3.2). In particular, we solve for the expected excess

returns such that the investor optimally holds the exogenous supply of each asset denoted

by the scalars ω̄X and ω̄Y , respectively. The following proposition characterizes the resulting

equilibrium with respect to a market portfolio that invests ω̄X in asset X and ω̄Y in asset Y .

Proposition 3.2 (Equilibrium returns with the SBN distribution). Assume that RX and RY

follow the SBN distribution, that the representative investor maximizes EU with exponential

utility, and that markets clear. The expected equilibrium excess returns over the risk-free rate

are

µX = β̄X µ̄Mξ + ζX and µY = β̄Y µ̄Mξ + ζY , (3.3)

where µ̄M = θσ̄2
M is the modified market risk premium, β̄X and β̄Y are the modified betas,

ζX , ζY , and ξ are scalars, and σ̄2
M is the modified market variance. The expressions for all

these variables are given in the proposition’s proof in Appendix 3.B.

The equilibrium excess returns have a similar form than in the normal case. However,

additional scalars, ξ and ζk (for k = X, Y ), appear to obtain expressions for the risk premium

µk instead of the modified risk premium µ̄k given by Equation (3.26) in Appendix 3.B. These

scalars vanish, i.e., ξ = 1 and ζk = 0, when both assets have symmetric returns. In that

case, we also have µ̄M = µM and β̄k = βk and thus recover the normal case.

128



ASSET PRICING WITH HETEROGENEOUS AGENTS AND NON-NORMAL
RETURN DISTRIBUTIONS

We use the proposition to analyze the asset pricing implications of skewness, with a focus

on deviations from the standard mean-variance framework and CAPM. We study the case

in which asset X has a skewness of 0.6 and asset Y has a skewness of −0.6. Indeed, if the

two assets have the same skewnesses, the market portfolio is still mean-variance efficient

(although risk premia have different magnitudes than predicted by a mean-variance frame-

work). We consider an economy with a representative EU investor as in Proposition 3.2 and

an economy with a representative CPT investor. In the latter case, expected excess returns

are solved numerically using a similar procedure as in Table 3.5.

Insert Table 3.6 here.

In Panel A, ω̄X = ω̄Y = 0.5 and a volatility of 15%. These assumptions imply that the

assets have a beta of one.12 The table shows that the more positively skewed asset X has

a negative CAPM alpha and the alpha is lower with CPT than with EU (αCPTX = −2.3%

vs. αEUX = −0.5% for ρ = 0.4). Asset Y instead has a positive alpha that equals the alpha

of X in absolute value due to equilibrium accounting. The bottom part of the table reports

the expected market excess return. Notice that the expected market excess returns µM are

approximately the same in the EU and CPT economies for ρ = 0.4. This happens because

market skewness is zero in Panel A and because we choose the coefficient of absolute risk

aversion for the EU investor in each panel such that the equilibrium market excess return

with EU is the same than with CPT when returns are normally distributed and ρ = 0.4.13

The last two rows of the table assess the accuracy of the widely used Taylor approxima-

tion approach to study skewness effects. It reports the alpha of asset X and the market risk

premium that are obtained in an equilibrium in which the marginal utility of the represen-

tative investor is approximated with a second-order Taylor expansion around the expected

12An asset’s beta is defined as usual as the covariance of an asset’s return with the market return divided
by market variance, where the market portfolio is a supply-weighted portfolio of asset X and Y . Similarly,
an asset’s CAPM alpha is the difference between an asset’s risk premium and the product of its beta and
the market risk premium.

13Panel A highlights an important difference between our approach and those in which asset return
skewness is generated from a common skewed factor as in, e.g., Simaan (1993) and Dahlquist et al. (2016).
It is clear that the latter approach is incapable of generating asset skewness when market skewness is zero
and ω̄X = ω̄Y = 0.5.
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market return. These quantities can be compared to those obtained using the formulas in

Proposition 3.2 reported in the rows αEUX and µEUM . The table shows that the Taylor approx-

imation correctly assesses the sign of alpha. However, it underestimates the magnitude of

risk premia and deviations from mean-variance efficiency. This underestimation is economi-

cally significant for the market risk premium (up to 1% in absolute value) and increases with

correlation.

Empirically, more positively skewed stocks are also more volatile (Kumar, 2009). Thus,

we set the volatility of assets X and Y to 20% and 10% in Panel B. A byproduct of different

volatilities is that asset X now has a beta greater than one, while the beta of asset Y is

below one. The table shows that asset X still has a negative alpha. This is interesting in

the context of the well documented low performance of high beta stocks. Indeed, asset X

is not attractive because of its high beta, but because of its high skewness. Schneider et al.

(2020) obtain the same conclusion with simulated economies populated with Merton-type

firms in which skewness arises endogenously due to leverage and stochastic volatility, and

they provide consistent empirical evidence. In addition, Bali et al. (2017) demonstrate that

investor’s demand for lottery-like stocks is an important driver of the beta anomaly and

that the beta anomaly disappears once regressions control for lottery demand. Bali et al.

(2017) measure lottery demand with the maximum return—a proxy for the right tail of a

distribution. To relate our analysis to their evidence, the table reports the return expectation

in the 1% tails. As expected, the more positively skewed and more volatile asset X has a

larger right tail (63% vs. 21%). Panel B also shows that asset X has a more extreme left tail

(41% vs. 32%). This happens despite the higher skewness because asset X is more volatile.

Thus, skewness preference provides a rationale for the well documented underperformance

of stocks with high maximum returns and the mixed evidence for the underperformance of

stocks with low minimum returns (Bali et al., 2011).

The results in the table can also be related to the recent study of Barinov (2018) on

whether stocks with high maximum returns are lotteries or insurance. Barinov demon-
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strates that stocks with high maximum returns covary positively with changes in market

volatility—i.e., offer high returns when market volatility increases. In our static frame-

work, co-skewness—the covariance between an asset’s return and the squared market excess

return—measures this ability to provide insurance. The table shows that asset X indeed

has positive co-skewness—i.e., provides insurance—while asset Y has negative co-skewness.

Thus, the max asset provides both a lottery and insurance.14

While Panel B is able to reproduce many features of the data, the market excess return is

positively skewed, but it is negatively skewed empirically (Albuquerque, 2012). In addition,

the idiosyncratic volatility of both assets is the same, and the underperformance of the

more positively skewed asset can thus not be related to the idiosyncratic volatility puzzle

(Ang et al., 2006). Therefore, we consider in Panel C an economy in which—consistent with

empirically observed market capitalizations (Kumar, 2009)—the supply of the high volatility,

high skewness asset X is lower than the supply of asset Y (ω̄X = 0.1 vs. ω̄Y = 0.9). As a

result, the market excess return is negatively skewed and asset X has a higher idiosyncratic

volatility than asset Y . Panel C is still able to reproduce the same takeaways as Panel B for

ρ ≥ 0.4.15

Skewness preference offers rich predictions to explain deviations from the CAPM—

consistent with empirically documented deviations. Overall, the evidence in the table con-

firms the literature for which the relevant pricing metric is the co-skewness of the residual

of the CAPM regression with the market (Harvey and Siddique, 2000; Back et al., 2018;

Karehnke and de Roon, 2020). Indeed, this residual co-skewness—which is also referred

to as systematic skewness—is reported in the table and it always has the opposite sign of

alpha. Related theoretical studies have shown that more skewed assets underperform when

investors optimally form their expectations (Brunnermeier et al., 2007), have CPT prefer-

14This is true generally because lotteries and insurance contracts offer positively skewed payoffs—a mod-
erate cost and the possibility to receive a high payoff with a low probability.

15The co-skewness of X with the market is here negative for high correlations. However, the co-skewness of
the residual of a CAPM regression with the market is positive. Because residual co-skewness is approximately
proportional to the slope on the squared market excess return controlling for the market excess return, the
evidence in Panel C still suggests that asset X provides insurance (controlling for the market excess return).

131



CHAPTER 3. TWO SKEWED RISKS

ences (Barberis and Huang, 2008), or have heterogeneous skewness preferences (Mitton and

Vorkink, 2007). Empirically, Boyer et al. (2010) show that stocks with higher idiosyncratic

skewness underperform relative to the CAPM. The table reports idiosyncratic skewness (in

the form of the skewness of the residual from a CAPM regression). Asset X indeed has posi-

tive idiosyncratic skewness, while asset Y has negative idiosyncratic skewness. The evidence

thus also points to a negative relation between idiosyncratic skewness and alphas, although

the link is less perfect. In Panel C both assets’ alphas have the opposite sign of idiosyncratic

skewness. However, they are increasing in idiosyncratic skewness—partly contradicting a

preference for idiosyncratic skewness. At the same time, these alphas have the opposite sign

and are decreasing in residual skewness—in line with a preference for residual skewness. This

is supported empirically by Langlois (2020) who shows that systematic/residual co-skewness

is more robustly priced than idiosyncratic skewness.

3.4 Conditional risk measures

There has been a growing interest in bivariate risk measures—for example in the systemic

risk literature (see Benoit et al., 2017, for a review). A two-risk focus is thereby attractive

as it provides a good trade-off between tractability and relevance. Unlike the univariate case

that focuses on a risk in isolation, the two risks can be correlated and potentially result from

an aggregation of many individual risks.

This section uses the SBN distribution to analyze two of the most popular measures:

∆CoVaR (see Adrian and Brunnermeier, 2016) and CoES (see Acharya et al., 2017). So-

phisticated econometric approaches have already been proposed to estimate these measures

in practice. Thus, we rather focus on the comparative statics and ask how they vary as a

function of the skewness and correlation of the underlying risks—assuming that these risks

follow an SBN distribution. We provide support for this approach at the end of the section

by showing that theoretical CoESs calculated with the SBN distribution are close to realized
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CoESs.

3.4.1 ∆CoVaR

Adrian and Brunnermeier (2016) propose a measure of systemic risk, ∆CoVaR, which is

defined as the difference between the VaR of the financial system conditional on an institution

being under distress and this VaR conditional on the same institution being in its median

state. Hence, ∆CoVaR measures the tail-dependency between two random variables X

and Y . Below, we derive its formula for the SBN distribution and evaluate its sensitivity

to skewness and correlation. For the ease of exposition, we assume in the derivation and

illustration that X and Y both have zero mean and unit variance. ∆CoVaR at the q%

probability is defined as

∆CoVaRY |X
q = CoVaR

Y |X=VaRXq
q − CoVaRY |X=VaRX50

q ,

where VaRX
q is the VaR of X at the q% probability and CoVaRY |C(X)

q is the VaR of Y at

the q% probability conditional on some event C(X) of X.16

To compute ∆CoVaR, we first determine the parameters mX , mY , sX,1, sX,2, sY,1, sY,2,

and c such that X and Y have zero means, unit variances, the target skewnesses, and the

target correlation. Second, we compute numerically the two required VaRs of X.17 Third,

we compute the conditional VaRs of Y using the distribution of Y conditional on X reported

in Appendix 3.A.4. In this third step, four cases arise depending on whether the VaR of X

is below or above mX and whether the conditional VaR of Y is below or above mY . The

next proposition characterizes CoVaR
Y |X=VaRXq
q in all four cases.

16Formally, VaRX
q is defined by P(X ≤ VaRX

q ) = q% and CoVaRY |C(X)
q by P

(
Y |C(X) ≤ CoVaRY |C(X)

q

)
= q%.

17We obtain VaRX
q and VaRX

50 numerically by solving

∫ VaRX
z

−∞
gX (x; Ω) dx = z% for z = q, 50, where gX

is the marginal distribution of X reported in Appendix 3.A.3.
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Proposition 3.3 (CoVaR for the SBN distribution). Assume that X and Y follow the SBN

distribution. Let Mq,1 =
VaRX

q −mX

sX,1
and Mq,2 =

VaRX
q −mX

sX,2
. In addition, let d1,1, d1,2,

d2,1, and d2,2 denote the scaling functions whose expressions are in Appendix 3.A.4, and let

Φ−1 denote the inverse of the standard normal cumulative distribution function (cdf).

1. If VaRX
q ≤ mX and CoVaR

Y |X=VaRXq
q ≤ mY , then

CoVaR
Y |X=VaRXq
q = mY + csY,1Mq,1 +

√
1− c2sY,1Φ−1

(
q%

d1,1

(
VaRX

q

)) . (3.4)

2. If VaRX
q ≤ mX and CoVaR

Y |X=VaRXq
q > mY , then

CoVaR
Y |X=VaRXq
q = mY + csY,2Mq,1 +

√
1− c2sY,2Φ−1

(
q%

d1,2

(
VaRX

q

) +

(
1−

d1,1

(
VaRX

q

)
d1,2

(
VaRX

q

))Φ

(
− cMq,1√

1− c2

))
.

(3.5)

3. If VaRX
q > mX and CoVaR

Y |X=VaRXq
q ≤ mY , then

CoVaR
Y |X=VaRXq
q = mY + csY,1Mq,2 +

√
1− c2sY,1Φ−1

(
q%

d2,1

(
VaRX

q

)) . (3.6)

4. If VaRX
q > mX and CoVaR

Y |X=VaRXq
q > mY , then

CoVaR
Y |X=VaRXq
q = mY + csY,2Mq,2 +

√
1− c2sY,2Φ−1

(
q%

d2,2

(
VaRX

q

) +

(
1−

d2,1

(
VaRX

q

)
d2,2

(
VaRX

q

))Φ

(
− cMq,2√

1− c2

))
.

(3.7)

Equations (3.4) to (3.7) can be used to compute ∆CoVaR. In the most common and

relevant case, ∆CoVaR is calculated for a low q and for left-skewed risks. It is thus likely

that the two VaRs of X are not above mX and the two conditional VaRs of Y are not above

mY . The ∆CoVaR for this case is stated in the next corollary. The other cases can easily

be constructed with Proposition 3.3 and are omitted to save space.
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Corollary 3.1. Assume that the skewness of X is negative or zero and that q is sufficiently

small such that CoVaR
Y |X=VaRXq
q and CoVaRY |X=VaRX50

q are below or equal to mY . Then

∆CoVaRY |X
q = csY,1

VaRX
q − VaRX

50

sX,1
+
√

1− c2sY,1

[
Φ−1

(
q%

d1,1

(
VaRX

q

))− Φ−1

(
q%

d1,1

(
VaRX

50

))] . (3.8)

When the two assets are uncorrelated, i.e., c = 0, d1,1 is a constant function, leading

to ∆CoVaR equals zero as both terms in (3.8) vanish. When the two assets are corre-

lated and have zero skewnesses, d1,1 is also a constant function. Hence, the second term in

(3.8) vanishes, and (3.8) simplifies to the formula given by Equation (II.6) in Adrian and

Brunnermeier (2016).

Table 3.7 reports ∆CoVaR at the 5% probability in the case of Corollary 3.1 and other

possible cases. Each panel considers a different level of skewness forX and Y . The correlation

varies across columns from weakly negative (ρ = −0.2) to strongly positive (ρ = 0.8).

Insert Table 3.7 here.

The table shows that the relation between ∆CoVaR and correlation obtained for the

BN distribution generalizes to the case with skewness. First, when the two assets are un-

correlated, ∆CoVaR is zero. This is because the conditional VaR of Y then corresponds

to the unconditional one.18 Second, ∆CoVaR is decreasing in and has the opposite sign of

correlation. The intuition is that, ceteris paribus, e.g., for positive correlations, X and Y

tend to move together lowering CoVaR
Y |X=VaRXq
q and increasing CoVaRY |X=VaRX50

q and thus

leading to a negative ∆CoVaR.

Comparing the values across panels, we see on the one hand that the higher the skew-

ness of Y , the lower ∆CoVaR is in absolute value. This happens for positive correlations

because when the skewness of Y increases, high positive realizations of Y become more likely

increasing both CoVaR
Y |X=VaRXq
q and, to a lower extent, CoVaRY |X=VaRX50

q and thus reducing

their difference. On the other hand, the skewness of X has only a limited impact. Indeed,

18Formally, this case leads to VaRY
q = CoVaR

Y |X=VaRX
q

q = CoVaRY |X=VaRX
50

q .
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∆CoVaRY |X
q assesses the risk of Y conditional on X, but it is not a risk measure of X. The

fact that the assets are only partially correlated also mitigates this impact. When, e.g., the

correlation is 0.4 and the skewness of X worsens from 0 to −0.6, ∆CoVaR even increases

slightly from −0.66 in the symmetric case to −0.63 in Panel E. These comparative statics

corroborate Adrian and Brunnermeier’s (2016) empirical finding that there is only a weak

correlation between an institution’s VaRX
q and the ∆CoVaRY |X

q of the financial system. In

fact, our analysis shows that the financial system’s ∆CoVaRY |X
q depends primarily on its

own skewness Y . This skewness has a large quantitative impact. For, e.g., ρ = 0.4, ∆CoVaR

increases by over 25% in absolute value when the skewness of Y worsens from 0 to −0.6 in

Panel E’ (∆CoVaR = −0.83).

3.4.2 CoES

Acharya et al. (2017) propose a measure of systemic expected shortfall and show theoretically

and empirically that it is suitable to measure systemic risk. Formally, this metric—that we

denote CoES—is defined as the expected value of Y given that X is in distress

CoESq (Y ) = E
(
Y |X ≤ VaRX

q

)
,

where we use the same notation as in Section 3.4.1. The next proposition provides the

explicit expression for the CoES.

Proposition 3.4 (CoES for the SBN distribution). Assume that X and Y follow the SBN

distribution, and let φ and Φ denote the standard normal pdf and cdf, respectively. We have

1. If VaRX
q ≤ mX , then

CoESq (Y ) =
1

q%

[
mY

[
(λ1,1 − λ1,2)L

(
0,Mq,1

)
+ λ1,2Φ (Mq,1)

]
+
λ1,2sY,2 − λ1,1sY,1√

2π
Φ

(
Mq,1√
1− c2

)
+ cφ (Mq,1)

[
(λ1,2sY,2 − λ1,1sY,1) Φ

(
− cMq,1√

1− c2

)
− λ1,2sY,2

]]
. (3.9)
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2. If VaRX
q > mX , then

CoESq (Y ) =
1

q%

[
mY

(
λ1,1

(
1

4
+

sin−1 (c)

2π

)
+ λ1,2

cos−1 (c)

2π
+ (λ2,1 − λ2,2)

(
L
(
0,Mq,2

)
−
(

1

4
+

sin−1 (c)

2π

))
+ λ2,2

(
Φ (Mq,2)− 1

2

))
+

(1− c) (λ1,2 − λ2,2) sY,2 − (1 + c) (λ1,1 − λ2,1) sY,1

2
√

2π

+
λ2,2sY,2 − λ2,1sY,1√

2π
Φ

(
Mq,2√
1− c2

)
+ cφ (Mq,2)

[
(λ2,2sY,2 − λ2,1sY,1) Φ

(
− cMq,2√

1− c2

)
− λ2,2sY,2

]]
.

Both expressions use L (x, y) ≡ L (h1, h2, k1, k2), where h1 = k1 = −∞, h2 = x, k2 = y, and

L is as in Ang and Chen (2002) given by

L (h1, h2, k1, k2) =

∫ h2

h1

∫ k2

k1

1

2π
√

1− c2
exp

(
−x

2 − 2cxy + y2

2(1− c2)

)
dxdy.

Note that in the symmetric case assuming that VaRX
q is below its mode, λ1,1 = λ1,2 = 1

and sY,1 = sY,2 ≡ sY . Thus, (3.9) simplifies to CoESq (Y ) = mY −
1

q%
csY φ (Mq) .

Table 3.8 reports CoES at the 5% probability and is constructed in a similar fashion

than the previous table. It shows that CoES is zero when the correlation is zero. This is

expected because the expectation of Y is zero. In addition, CoES decreases with correlation:

the higher the correlation, the lower the mean of Y conditional on a negative tail event of

X.

Insert Table 3.8 here.

Comparing the values across panels, CoES increases with the skewness of Y . As the

skewness increases, high values of Y are more likely to occur; hence, the conditional mean of

Y increases. For positive correlations, a higher skewness of X instead tends to lower CoES.

In fact, a higher skewness of X means that very low negative realizations of X occur less

often. Hence, ceteris paribus, more negative realizations of Y have to occur for given tail

events of X, leading to a lower CoES.19 This effect can be large. For example, increasing

19This effect is mitigated when the skewness of Y is low. In such cases, many negative realizations of Y
already happen when X has tail events, and there is no big change induced by the higher skewness of X.
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the skewness of X from zero to 0.6 lowers the CoES by almost 15% for ρ = 0.4 (Benchmark

case vs. Panel D).

Finally, we compute empirical CoESs and compare them to those implied by the distribu-

tions studied in Section 3.2.2.20 Exploiting the same data, we use large stocks’ excess returns

as the conditioning variable X and the excess returns on small stocks, bonds, commodities,

and emerging markets stocks as the variable of interest Y . We first standardize X and Y to

focus on the effects of higher-order moments and facilitate comparisons. We then compute

for each of these pairs the empirical CoES and the theoretical CoESs under one of the four

distributions at the 5%, 10%, and 25% probabilities. Table 3.9 reports the results along with

the sum of squared differences between theoretical and empirical CoESs for each probability

and distribution.

Insert Table 3.9 here.

SBN has the lowest sum of squared differences among the four distributions for all prob-

abilities and thus seems to provide a good fit on average despite its simplicity. At the 25%

level, SBN and BST still have a lower sum of squared differences than BN but the difference

is tiny (0.005 and 0.006 vs. 0.009). At lower probabilities (5% and 10%), however, the

magnitudes of sum of squared differences are considerably lower for the skewed distributions

than for BN. We conclude that skewness is important for empirical CoES levels, especially

at low probabilities.

3.5 Conclusion

This paper uses a two-asset framework to study the joint effects of skewness and correlation.

Our tool is the SBN distribution that is based on scaled BN distributions with different stan-

dard deviations and that allows for many explicit calculations. Using index excess returns,

20The choice of computing CoES rather than ∆CoVaR is motivated by the fact that CoES is easier to
compute. More importantly, the CoES provides a clearer and more direct test of the fit of the underlying
distributions.
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we show that this distribution provides a good empirical fit and that its fit is best in the

conditional left tail compared to its competitors. This corroborates its usefulness as a tool

for studying and modeling risk. More importantly, our theoretical framework is sufficiently

rich to examine, e.g., the utility gains of considering skewness in portfolio choice, equilibrium

deviations from the standard CAPM, and the sensitivity of recently proposed conditional

risk metrics to skewness. For instance, we show that skewness preference provides a unified

explanation for well known empirical features of risk premia such as the underperformance

of stocks with high beta, high maximum returns, and high idiosyncratic skewness.

We focus on a simple framework and consider only one deviation from the bivariate

normal framework—skewness. For future research, it would be interesting to examine other

deviations such as asymmetric correlations in returns. Such an extension might provide

additional asset pricing and portfolio implications and provide more intuition on the sources

of co-skewness in returns.
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3.A Details on the distribution

3.A.1 Calculating the scaling factors

The SBN distribution is a combination of scaled BN distributions. Formally, the pdf g is

g(x, y; Ω) =



λ1,1f(x, y;mX ,mY , sX,1, sY,1, c) ≡ λ1,1f1,1(x, y), if x ≤ mX and y ≤ mY ,

λ1,2f(x, y;mX ,mY , sX,1, sY,2, c) ≡ λ1,2f1,2(x, y), if x ≤ mX , and y > mY ,

λ2,1f(x, y;mX ,mY , sX,2, sY,1, c) ≡ λ2,1f2,1(x, y), if x > mX and y ≤ mY ,

λ2,2f(x, y;mX ,mY , sX,2, sY,2, c) ≡ λ2,2f2,2(x, y), if x > mX and y > mY ,

where λ1,1, λ1,2, λ2,1, and λ2,2 are designed such that g is continuous (1), integrates to one

(2), and is non-negative (3).

We first look at Property (1). Because the pdf of a BN distribution is continuous, we

only need to ensure that g is continuous at the limit points. Formally, the left-hand side of

the following equivalences must be satisfied21

λ1,1f1,1(x,mY ) = λ1,2f1,2(x,mY ), ∀x ∈]−∞,mX ] ⇔ λ1,1

λ1,2

=
sY,1
sY,2

, (3.10)

λ2,1f2,1(x,mY ) = λ2,2f2,2(x,mY ), ∀x ∈]mX ,+∞[ ⇔ λ2,1

λ2,2

=
sY,1
sY,2

, (3.11)

λ1,1f1,1(mX , y) = λ2,1f2,1(mX , y), ∀y ∈]−∞,mY ] ⇔ λ1,1

λ2,1

=
sX,1
sX,2

, (3.12)

λ1,2f1,2(mX , y) = λ2,2f2,2(mX , y), ∀y ∈]mY ,+∞[ ⇔ λ1,2

λ2,2

=
sX,1
sX,2

, (3.13)

21We also need that λ1,1f1,1(mX ,mY ) = λ1,2f1,2(mX ,mY ) = λ2,1f2,1(mX ,mY ) = λ2,2f2,2(mX ,mY ).
This fifth condition is automatically verified when the four others are.
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where the equivalences are obtained by exploiting the properties of f·,·.

We now turn to Property (2): g needs to integrate to one. Replacing g by its expression

and rewriting it in terms of a probability, we have

λ1,1P(X1 ≤ mX , Y1 ≤ mY ) + λ2,1P(X3 > mX , Y3 ≤ mY )

+ λ1,2P(X2 ≤ mX , Y2 > mY ) + λ2,2P(X4 > mX , Y4 > mY ) = 1,

where (X1, Y1), (X2, Y2), (X3, Y3), and (X4, Y4) follow the four different BN distributions that

we combine. The probabilities in this equation are quadrant probabilities of BN distributions.

Thus, we obtain (see, e.g., Johnson and Kotz, 1972)

(λ1,1 + λ2,2)

(
1

4
+

sin−1 (c)

2π

)
+ (λ1,2 + λ2,1)

cos−1 (c)

2π
= 1. (3.14)

Combining Equations (3.10) to (3.14) and solving the system, we obtain

λ1,1 = ∆sX,1sY,1, λ1,2 = ∆sX,1sY,2, λ2,1 = ∆sX,2sY,1, and λ2,2 = ∆sX,2sY,2, with

∆ =
4π

(sX,1sY,1 + sX,2sY,2)
(
π + 2sin−1 (c)

)
+ 2 (sX,1sY,2 + sX,2sY,1) cos−1 (c)

.

Finally, λ1,1, λ1,2, λ2,1, and λ2,2 are non-negative and thus Property (3) is satisfied.

3.A.2 Moments of the distribution

We express the moments and co-moments of the distribution, i.e., the means µX and µY ,

the variances σ2
X and σ2

Y , the covariance σX,Y , the (standardized) skewnesses γX and γY ,

and the (standardized) co-skewnesses γY,X and γX,Y of X and Y as functions of mX , mY ,

sX,1, sX,2, sY,1, sY,2, and c.22 To do so, we first compute the moment generating function

22Recall that the (standardized) co-skewnesses are given by γY,X =

E
[
(Y − E [Y ]) (X − E [X])

2
]
/
(
σY σ

2
X

)
and γX,Y = E

[
(X − E [X]) (Y − E [Y ])

2
]
/
(
σXσ

2
Y

)
.
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MGFSBN of the distribution. By definition, it is given by

MGFSBN (t1, t2) = E (exp (t1X + t2Y )) =

∫ +∞

−∞

∫ +∞

−∞
exp (t1x+ t2y) g(x, y; Ω) dxdy

= λ1,1

∫ mY

−∞

∫ mX

−∞
exp (t1x+ t2y) f1,1(x, y) dxdy + λ1,2

∫ +∞

mY

∫ mX

−∞
exp (t1x+ t2y) f1,2(x, y) dxdy

+ λ2,1

∫ mY

−∞

∫ +∞

mX

exp (t1x+ t2y) f2,1(x, y) dxdy + λ2,2

∫ +∞

mY

∫ +∞

mX

exp (t1x+ t2y) f2,2(x, y) dxdy.

Making the changes of variable u =
x−mX

sX,1
− (t1sX,1 + t2sY,1c) and v =

y −mY

sY,1
−

(t2sY,1 + t1sX,1c) and rearranging the terms, we obtain that the first quadrant integral equals

exp (t1mX + t2mY )×

L (−∞,− (t2sY,1 + t1sX,1c) ,−∞,− (t1sX,1 + t2sY,1c)) exp

(
1

2

[
t21s

2
X,1 + t22s

2
Y,1 + 2t1t2sX,1sY,1c

])
,

where L is given as in Ang and Chen (2002) by

L (h1, h2, k1, k2) =

∫ h2

h1

∫ k2

k1

1

2π
√

1− c2
exp

(
−x

2 − 2cxy + y2

2(1− c2)

)
dxdy.

The other quadrant integrals are obtained analogously. Hence, the moment generating

function is

MGFSBN (t1, t2) =

exp (t1mX + t2mY )×

(
2∑
i=1

2∑
j=1

λi,jLi,j (−t1,−t2) exp

(
1

2

[
t21s

2
X,i + t22s

2
Y,j + 2t1t2sX,isY,jc

]))
,

where

L1,1 (t1, t2) = L (−∞, t2sY,1 + t1sX,1c,−∞, t1sX,1 + t2sY,1c),

L1,2 (t1, t2) = L (t2sY,2 + t1sX,1c,+∞,−∞, t1sX,1 + t2sY,2c),

L2,1 (t1, t2) = L (−∞, t2sY,1 + t1sX,2c, t1sX,2 + t2sY,1c,+∞), and

L2,2 (t1, t2) = L (t2sY,2 + t1sX,2c,+∞, t1sX,2 + t2sY,2c,+∞).
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We then obtain the moments using the derivatives of MGFSBN computed at (t1, t2) =

(0, 0). The moments for X are (expressions for Y are similar)

µX = mX +
λ1,1sX,1AX

2
√

2π
, (3.15)

σ2
X = λ1,1s

2
X,1

(
BX −

λ1,1A
2
X

8π

)
, (3.16)

γX =
CX +

λ21,1A
3
X

4π
− 3λ1,1AXBX

2
√

2π
√
λ1,1

(
BX −

λ1,1A2
X

8π

)3/2
, (3.17)

where

AX =
(
1 + z2

X

)
(−1 + zY ) c+

(
−1 + z2

X

)
(1 + zY ) ,

BX =
(
1 + z3

XzY
)(1

4
+

sin−1 (c)

2π
+
c
√

1− c2

2π

)
+
(
z3
X + zY

)(cos−1 (c)

2π
− c
√

1− c2

2π

)
,

CX =
(
1 + z4

X

)
(1− zY )

(
c3 − 3c

)
+ 2

(
−1 + z4

X

)
(1 + zY ) ,

and zX =
sX,2
sX,1

, and AY , BY , CY , and zY are defined similarly. The co-moments are

σX,Y = λ1,1sX,1sY,1

(
BX,Y −

λ1,1AXAY
8π

)
, (3.18)

γY,X =
CX,Y +

λ21,1A
2
XAY

4π
− 2λ1,1AXBX,Y − λ1,1AYBX

2
√

2π
√
λ1,1

(
BX −

λ1,1A2
X

8π

)√
BY −

λ1,1A2
Y

8π

, (3.19)

γX,Y =
CY,X +

λ21,1A
2
Y AX

4π
− 2λ1,1AYBX,Y − λ1,1AXBY

2
√

2π
√
λ1,1

(
BY −

λ1,1A2
Y

8π

)√
BX −

λ1,1A2
X

8π

, (3.20)

where

BX,Y =
(
1 + z2

Xz
2
Y

)(
c

(
1

4
+

sin−1 (c)

2π

)
+

√
1− c2

2π

)
+
(
z2
X + z2

Y

)(
c
cos−1 (c)

2π
−
√

1− c2

2π

)
,

CX,Y =
(
1 + z3

X

) (
−1 + z2

Y

) (
1 + c2

)
+ 2

(
−1 + z3

X

) (
1 + z2

Y

)
c, and

CY,X =
(
1 + z3

Y

) (
−1 + z2

X

) (
1 + c2

)
+ 2

(
−1 + z3

Y

) (
1 + z2

X

)
c.
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3.A.3 Marginal distribution

We derive the pdf gX of the marginal distribution of X. We have

gX (x; Ω) =

∫
R
g (x, y; Ω) dy

=


λ1,1

∫ mY

−∞
f1,1 (x, y; Ω) dy + λ1,2

∫ +∞

mY

f1,2 (x, y; Ω) dy, if x ≤ mX ,

λ2,1

∫ mY

−∞
f2,1 (x, y; Ω) dy + λ2,2

∫ +∞

mY

f2,2 (x, y; Ω) dy, if x > mX .

We compute the four integrals. To compute the integral with f1,1, we use the change of

variable z =

y−mY
sY,1
− cx−mX

sX,1√
1− c2

and obtain

∫ mY

−∞
f1,1 (x, y; Ω) dy = Φ

(
− c (x−mX)√

1− c2sX,1

)
fX (x;mX , sX,1) ,

where Φ is the standard normal cdf and fX (.;µ, σ) is the pdf of a normal distribution with

mean µ and standard deviation σ. Using similar changes of variables, we obtain

gX (x; Ω) =


(
λ1,2 + (λ1,1 − λ1,2) Φ

(
− c (x−mX)√

1− c2sX,1

))
fX (x;mX , sX,1) , if x ≤ mX ,(

λ2,2 + (λ2,1 − λ2,2) Φ

(
− c (x−mX)√

1− c2sX,2

))
fX (x;mX , sX,2) , if x > mX .

In the specific case of two uncorrelated variables (i.e., c = 0), we have

gX (x; Ω) =


2sX,1

sX,1 + sX,2
fX (x;mX , sX,1) , if x ≤ mX ,

2sX,2
sX,1 + sX,2

fX (x;mX , sX,2) , if x > mX .

This corresponds to the pdf of the (univariate) split normal distribution (Wallis, 2014) with

the parameterization of De Roon and Karehnke (2017). Thus, when c = 0, the pdf of the

SBN distribution with parameters (mX ,mY , sX,1, sX,2, sY,1, sY,2, 0) is given by the product of

two split normal pdfs with parameters (mX , sX,1, sX,2) and (mY , sY,1, sY,2), respectively.
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3.A.4 Conditional distribution

We derive the pdf gY |X=x of the conditional distribution of Y (i.e., the distribution of Y

conditional on X). By definition, we have gY |X=x (y; Ω) =
g(x, y; Ω)

gX (x; Ω)
.

Defining

d1,1 (x) =
λ1,1

λ1,2 + (λ1,1 − λ1,2) Φ
(
− c(x−mX)√

1−c2sX,1

) ,
d1,2 (x) =

λ1,2

λ1,2 + (λ1,1 − λ1,2) Φ
(
− c(x−mX)√

1−c2sX,1

) ,
d2,1 (x) =

λ2,1

λ2,2 + (λ2,1 − λ2,2) Φ
(
− c(x−mX)√

1−c2sX,2

) , and

d2,2 (x) =
λ2,2

λ2,2 + (λ2,1 − λ2,2) Φ
(
− c(x−mX)√

1−c2sX,2

) ,
we easily obtain

gY |X=x (y; Ω) =



d1,1 (x)
f(x, y;mX ,mY , sX,1, sY,1, c)

fX (x;mX , sX,1)
, if x ≤ mX and y ≤ mY ,

d1,2 (x)
f(x, y;mX ,mY , sX,1, sY,2, c)

fX (x;mX , sX,1)
, if x ≤ mX and y > mY ,

d2,1 (x)
f(x, y;mX ,mY , sX,2, sY,1, c)

fX (x;mX , sX,2)
, if x > mX and y ≤ mY ,

d2,2 (x)
f(x, y;mX ,mY , sX,2, sY,2, c)

fX (x;mX , sX,2)
, if x > mX and y > mY .

(3.21)
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3.B Proofs

Proof of Proposition 3.1. Using the moment generating function of the SBN derived in

Appendix 3.A.2, the EU of the investor is

E (u (1 + rf + ωXRX + ωYRY ))

= −exp (−θ (1 + rf + ωXmX + ωYmY ))

×

(
2∑
i=1

2∑
j=1

λi,jLi,j (θωX , θωY ) exp

(
θ2

2

[
ω2
Xs

2
X,i + ω2

Y s
2
Y,j + 2ωXωY sX,isY,jc

]))
.

Because the problem is concave, we can determine the optimal portfolio weights from the

first-order conditions. Formally, we first compute
∂Li,j (θωX , θωY )

∂ωk
(for i = 1, 2, j = 1, 2,

and k = X, Y ) using the Leibniz integral rule. For, e.g., i = j = 1 and k = X, it equals23

θsX,1

(
cφ (θ (ωY sY,1 + ωXsX,1c)) Φ

(√
1− c2θωXsX,1

)
+ φ (θ (ωXsX,1 + ωY sY,1c)) Φ

(√
1− c2θωY sY,1

))
,

where φ and Φ denote the standard normal pdf and cdf, respectively. We then define lki,j

such that lki,j (ωX , ωY ) = −1

θ

∂Li,j (θωX , θωY )

∂ωk
.24 Focusing on the optimal weight for X and

using its first order condition, we then obtain

2∑
i=1

2∑
j=1

(
mX − θ

(
ωXs

2
X,i + ωY sX,isY,jc

))
exp

(
θ2

2

[
ω2
Xs

2
X,i + ω2

Y s
2
Y,j + 2ωXωY sX,isY,jc

])
λi,jLi,j (θωX , θωY )

+

2∑
i=1

2∑
j=1

exp

(
θ2

2

[
ω2
Xs

2
X,i + ω2

Y s
2
Y,j + 2ωXωY sX,isY,jc

])
λi,j l

k
i,j (ωX , ωY ) = 0. (3.22)

23Other explicit computations are available upon request.

24When X and Y are symmetric,

2∑
i=1

2∑
j=1

lki,j (ωX , ωY ) = 0 for k = X,Y .
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Rearranging Equation (3.22) yields

ωX =
mX

(∑2
i=1

∑2
j=1 exp

(
θ2

2

[
ω2
Xs

2
X,i + ω2

Y s
2
Y,j + 2ωXωY sX,isY,jc

])
λi,jLi,j (θωX , θωY )

)
θ
(∑2

i=1

∑2
j=1 exp

(
θ2

2

[
ω2
Xs

2
X,i + ω2

Y s
2
Y,j + 2ωXωY sX,isY,jc

])
s2X,iλi,jLi,j (θωX , θωY )

)
+

∑2
i=1

∑2
j=1 exp

(
θ2

2

[
ω2
Xs

2
X,i + ω2

Y s
2
Y,j + 2ωXωY sX,isY,jc

])
λi,j l

X
i,j (ωX , ωY )

θ
(∑2

i=1

∑2
j=1 exp

(
θ2

2

[
ω2
Xs

2
X,i + ω2

Y s
2
Y,j + 2ωXωY sX,isY,jc

])
s2X,iλi,jLi,j (θωX , θωY )

)
−
cωY

(∑2
i=1

∑2
j=1 exp

(
θ2

2

[
ω2
Xs

2
X,i + ω2

Y s
2
Y,j + 2ωXωY sX,isY,jc

])
sX,isY,jλi,jLi,j (θωX , θωY )

)
∑2
i=1

∑2
j=1 exp

(
θ2

2

[
ω2
Xs

2
X,i + ω2

Y s
2
Y,j + 2ωXωY sX,isY,jc

])
s2X,iλi,jLi,j (θωX , θωY )

.

(3.23)

By symmetry, we obtain a similar expression for ωY

ωY =
mY

(∑2
i=1

∑2
j=1 exp

(
θ2

2

[
ω2
Xs

2
X,i + ω2

Y s
2
Y,j + 2ωXωY sX,isY,jc

])
λi,jLi,j (θωX , θωY )

)
θ
(∑2

i=1

∑2
j=1 exp

(
θ2

2

[
ω2
Xs

2
X,i + ω2

Y s
2
Y,j + 2ωXωY sX,isY,jc

])
s2Y,jλi,jLi,j (θωX , θωY )

)
+

∑2
i=1

∑2
j=1 exp

(
θ2

2

[
ω2
Xs

2
X,i + ω2

Y s
2
Y,j + 2ωXωY sX,isY,jc

])
λi,j l

Y
i,j (ωX , ωY )

θ
(∑2

i=1

∑2
j=1 exp

(
θ2

2

[
ω2
Xs

2
X,i + ω2

Y s
2
Y,j + 2ωXωY sX,isY,jc

])
s2Y,jλi,jLi,j (θωX , θωY )

)
−
cωX

(∑2
i=1

∑2
j=1 exp

(
θ2

2

[
ω2
Xs

2
X,i + ω2

Y s
2
Y,j + 2ωXωY sX,isY,jc

])
sX,isY,jλi,jLi,j (θωX , θωY )

)
∑2
i=1

∑2
j=1 exp

(
θ2

2

[
ω2
Xs

2
X,i + ω2

Y s
2
Y,j + 2ωXωY sX,isY,jc

])
s2Y,jλi,jLi,j (θωX , θωY )

.

(3.24)

Plugging Equation (3.24) into Equation (3.23) gives an implicit equation for ωX (and vice

versa for ωY ). Formally, we obtain that the optimal weights are solution of

ωX =
µ̃X (ωX , ωY ) σ̃2

Y (ωX , ωY )− µ̃Y (ωX , ωY ) σ̃X,Y (ωX , ωY )

θσ̃2
X (ωX , ωY ) σ̃2

Y (ωX , ωY )
(

1− σ̃2
X,Y (ωX ,ωY )

σ̃2
X(ωX ,ωY )σ̃2

Y (ωX ,ωY )

)
and

ωY =
µ̃Y (ωX , ωY ) σ̃2

X (ωX , ωY )− µ̃X (ωX , ωY ) σ̃X,Y (ωX , ωY )

θσ̃2
X (ωX , ωY ) σ̃2

Y (ωX , ωY )
(

1− σ̃2
X,Y (ωX ,ωY )

σ̃2
X(ωX ,ωY )σ̃2

Y (ωX ,ωY )

) ,
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where

µ̃X (ωX , ωY ) =
mX

(∑2
i=1

∑2
j=1 exp

(
θ2

2

[
ω2
Xs

2
X,i + ω2

Y s
2
Y,j + 2ωXωY sX,isY,jc

])
λi,jLi,j (θωX , θωY )

)
1
4

∑2
i=1

∑2
j=1 exp

(
θ2

2

[
ω2
Xs

2
X,i + ω2

Y s
2
Y,j + 2ωXωY sX,isY,jc

])
+

∑2
i=1

∑2
j=1 exp

(
θ2

2

[
ω2
Xs

2
X,i + ω2

Y s
2
Y,j + 2ωXωY sX,isY,jc

])
λi,j l

X
i,j (ωX , ωY )

1
4

∑2
i=1

∑2
j=1 exp

(
θ2

2

[
ω2
Xs

2
X,i + ω2

Y s
2
Y,j + 2ωXωY sX,isY,jc

]) ,

µ̃Y (ωX , ωY ) =
mY

(∑2
i=1

∑2
j=1 exp

(
θ2

2

[
ω2
Xs

2
X,i + ω2

Y s
2
Y,j + 2ωXωY sX,isY,jc

])
λi,jLi,j (θωX , θωY )

)
1
4

∑2
i=1

∑2
j=1 exp

(
θ2

2

[
ω2
Xs

2
X,i + ω2

Y s
2
Y,j + 2ωXωY sX,isY,jc

])
+

∑2
i=1

∑2
j=1 exp

(
θ2

2

[
ω2
Xs

2
X,i + ω2

Y s
2
Y,j + 2ωXωY sX,isY,jc

])
λi,j l

Y
i,j (ωX , ωY )

1
4

∑2
i=1

∑2
j=1 exp

(
θ2

2

[
ω2
Xs

2
X,i + ω2

Y s
2
Y,j + 2ωXωY sX,isY,jc

]) ,

σ̃2
X (ωX , ωY ) =

∑2
i=1

∑2
j=1 exp

(
θ2

2

[
ω2
Xs

2
X,i + ω2

Y s
2
Y,j + 2ωXωY sX,isY,jc

])
s2X,iλi,jLi,j (θωX , θωY )

1
4

∑2
i=1

∑2
j=1 exp

(
θ2

2

[
ω2
Xs

2
X,i + ω2

Y s
2
Y,j + 2ωXωY sX,isY,jc

]) ,

σ̃2
Y (ωX , ωY ) =

∑2
i=1

∑2
j=1 exp

(
θ2

2

[
ω2
Xs

2
X,i + ω2

Y s
2
Y,j + 2ωXωY sX,isY,jc

])
s2Y,jλi,jLi,j (θωX , θωY )

1
4

∑2
i=1

∑2
j=1 exp

(
θ2

2

[
ω2
Xs

2
X,i + ω2

Y s
2
Y,j + 2ωXωY sX,isY,jc

]) , and

σ̃X,Y (ωX , ωY ) =

∑2
i=1

∑2
j=1 exp

(
θ2

2

[
ω2
Xs

2
X,i + ω2

Y s
2
Y,j + 2ωXωY sX,isY,jc

])
sX,isY,jλi,jLi,j (θωX , θωY )

1
4

∑2
i=1

∑2
j=1 exp

(
θ2

2

[
ω2
Xs

2
X,i + ω2

Y s
2
Y,j + 2ωXωY sX,isY,jc

]) c.

Note that µ̃X , µ̃Y , σ̃2
X , σ̃2

Y , and σ̃X,Y are all scaled by

1

4

2∑
i=1

2∑
j=1

exp

(
θ2

2

[
ω2
Xs

2
X,i + ω2

Y s
2
Y,j + 2ωXωY sX,isY,jc

])
.

This ensures that we have µ̃X (ωX , ωY ) = mX , µ̃Y (ωX , ωY ) = mY , σ̃2
X (ωX , ωY ) = s2

X ,

σ̃2
Y (ωX , ωY ) = s2

Y , and σ̃X,Y (ωX , ωY ) = csXsY in the normal case (i.e., when sX = sX,1 =

sX,2 and sY = sY,1 = sY,2). We thus call these functions the modified moment functions.

�

Proof of Proposition 3.2. Let denote respectively by µ̄X , µ̄Y , σ̄2
X , σ̄2

Y , and σ̄X,Y the

modified moment functions µ̃X , µ̃Y , σ̃2
X , σ̃2

Y , and σ̃X,Y defined in the proof of Proposition

3.1 and evaluated at the portfolio weights ω̄X and ω̄Y that clear the market. For example,

µ̄X := µ̃X (ω̄X , ω̄Y ) denotes the modified risk premium of X. Using Proposition 3.1, we then
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have

µ̄X = ω̄Xθσ̄
2
X

(
1−

σ̄2
X,Y

σ̄2
X σ̄

2
Y

)
+ µ̄Y

σ̄X,Y
σ̄2
Y

and µ̄Y = ω̄Y θσ̄
2
Y

(
1−

σ̄2
X,Y

σ̄2
X σ̄

2
Y

)
+ µ̄X

σ̄X,Y
σ̄2
X

.

Combining the two expressions, we obtain

µ̄X = θ
(
ω̄X σ̄

2
X + ω̄Y σ̄X,Y

)
and µ̄Y = θ

(
ω̄Y σ̄

2
Y + ω̄X σ̄X,Y

)
. (3.25)

Let us define the modified covariance between asset X (asset Y ) and the market σ̄X,M =

ω̄X σ̄
2
X + ω̄Y σ̄X,Y (σ̄Y,M = ω̄Y σ̄

2
Y + ω̄X σ̄X,Y ), the modified market risk premium µ̄M = ω̄X µ̄X +

ω̄Y µ̄Y , and the modified market variance σ̄2
M = ω̄X σ̄X,M + ω̄Y σ̄Y,M . We have µ̄M = θσ̄2

M and

we can rewrite (3.25) as

µ̄X = β̄X µ̄M and µ̄Y = β̄Y µ̄M , (3.26)

where β̄k =
σ̄k,M
σ̄2
M

is the modified beta for k = X, Y . From Equation (3.15) in Appendix

3.A.2 we also have for k = X, Y

mk = µk −
λ1,1sk,1Ak

2
√

2π
. (3.27)

Thus, plugging (3.27) into the definition of µ̄X , we obtain for k = X, Y

µ̄k =
µk
ξ
− ζk

ξ
, (3.28)

where ξ =

1
4

∑2
i=1

∑2
j=1 exp

(
θ2

2

[
ω̄2
Xs

2
X,i + ω̄2

Y s
2
Y,j + 2ω̄X ω̄Y sX,isY,jc

])
∑2

i=1

∑2
j=1 exp

(
θ2

2

[
ω̄2
Xs

2
X,i + ω̄2

Y s
2
Y,j + 2ω̄X ω̄Y sX,isY,jc

])
λi,jLi,j (ω̄X , ω̄Y )

and

ζk =
λ1,1sk,1Ak

2
√

2π
−

∑2
i=1

∑2
j=1 exp

(
θ2

2

[
ω̄2
Xs

2
X,i + ω̄2

Y s
2
Y,j + 2ω̄X ω̄Y sX,isY,jc

])
λi,jl

k
i,j (ω̄X , ω̄Y )∑2

i=1

∑2
j=1 exp

(
θ2

2

[
ω̄2
Xs

2
X,i + ω̄2

Y s
2
Y,j + 2ω̄X ω̄Y sX,isY,jc

])
λi,jLi,j (ω̄X , ω̄Y )

.

149



CHAPTER 3. TWO SKEWED RISKS

Combining (3.26) and (3.28) leads to

µX = β̄X µ̄Mξ + ζX and µY = β̄Y µ̄Mξ + ζY .

�

Proof of Proposition 3.3. CoVaR
Y |X=VaRXq
q is defined such that

∫ CoVaR
Y |X=VaRXq
q

−∞
gY |X=VaRXq

(y; Ω) dy = q%.

Given the definition of gY |X=VaRXq
in Appendix 3.A.4, four cases need to be considered

depending on the position of VaRX
q in the marginal distribution of X and on the position of

CoVaR
Y |X=VaRXq
q in the conditional distribution of Y .

Proof of statement 1. If VaRX
q ≤ mX and CoVaR

Y |X=VaRXq
q ≤ mY , we have

∫ CoVaR
Y |X=VaRXq
q

−∞
d1,1

(
VaRX

q

) f(VaRX
q , y;mX ,mY , sX,1, sY,1, c)

fX
(
VaRX

q ;mX , sX,1
) dy = q%.

Making the change of variable z =

y−mY
sY,1
− cVaRXq −mX

sX,1√
1− c2

and doing some computations, we

obtain

CoVaR
Y |X=VaRXq
q = mY + csY,1

VaRX
q −mX

sX,1
+
√

1− c2sY,1Φ−1

(
q%

d1,1

(
VaRX

q

)) . (3.29)

Proof of statement 2. If CoVaR
Y |X=VaRXq
q is in the right part of the conditional distribution

of Y and VaRX
q is below its mode, CoVaR

Y |X=VaRXq
q is

∫ CoVaR
Y |X=VaRXq
q

mY

d1,2

(
VaRX

q

) f(VaRX
q , y;mX ,mY , sX,1, sY,2, c)

fX
(
VaRX

q ;mX , sX,1
) dy =

q%−
∫ mY

−∞
d1,1

(
VaRX

q

) f(VaRX
q , y;mX ,mY , sX,1, sY,1, c)

fX
(
VaRX

q ;mX , sX,1
) dy.
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From this expression and using similar computations, we find that CoVaR
Y |X=VaRXq
q equals

mY + csY,2
VaRX

q −mX

sX,1
+
√

1− c2sY,2Φ−1

(
q%

d1,2

(
VaRX

q

) +

(
1−

d1,1

(
VaRX

q

)
d1,2

(
VaRX

q

))Φ

(
−
c
(
VaRX

q −mX

)
√

1− c2sX,1

))
.

Proof of statements 3 and 4. The last two cases in which VaRX
q is in the right part of

the marginal distribution of X are computed in the same way. We just need to replace sX,1

by sX,2, d1,1

(
VaRX

q

)
by d2,1

(
VaRX

q

)
, and d1,2

(
VaRX

q

)
by d2,2

(
VaRX

q

)
.

Introducing Mq,1 and Mq,2, we find the expressions reported in Proposition 3.3.

�

Proof of Corollary 3.1. Taking the difference between (3.29) evaluated at X = VaRX
q

and X = VaRX
50 yields the result.

�

Proof of Proposition 3.4. CoESq (Y ) is defined as

CoESq (Y ) = E
(
Y |X ≤ VaRX

q

)
=

1

q%

∫ +∞

−∞

∫ VaRXq

−∞
yg(x, y) dxdy.

Proof of statement 1. If VaRX
q ≤ mX , we have

CoESq (Y ) =
1

q%

(
λ1,1

∫ mY

−∞

∫ VaRXq

−∞
yf1,1(x, y) dxdy + λ1,2

∫ +∞

mY

∫ VaRXq

−∞
yf1,2(x, y) dxdy

)
.

(3.30)

To compute the first integral of Equation (3.30), we make the following change of variables

u =
x−mX

sX,1
and v =

y −mY

sY,1
. The integral can therefore be rewritten as

sY,1

2π
√

1− c2

∫ 0

−∞

∫ VaRXq −mX
sX,1

−∞
v exp

(
−u

2 + v2 − 2cuv

2(1− c2)

)
dudv +mYL

(
−∞, 0,−∞,

VaRX
q −mX

sX,1

)
.

To compute the first term of this expression we make the change of variables u = u and
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z =
v − cu√
1− c2

. The first term is then given by

sY,1
√

1− c2

2π

∫ − cu√
1−c2

−∞

∫ VaRXq −mX
sX,1

−∞

(
z +

cu√
1− c2

)
exp

(
−u

2 + z2

2

)
dudz

=
sY,1
√

1− c2

2π

∫ VaRXq −mX
sX,1

−∞
exp

(
−u

2

2

)(∫ − cu√
1−c2

−∞
z exp

(
−z

2

2

)
dz

)
du

+
sY,1c

2π

∫ VaRXq −mX
sX,1

−∞
u exp

(
−u

2

2

)(∫ − cu√
1−c2

−∞
exp

(
−z

2

2

)
dz

)
du.

This sum can be rewritten to

−sY,1
√

1− c2

2π

∫ VaRXq −mX
sX,1

−∞
exp

(
− u2

2(1− c2)

)
du+

sY,1c√
2π

∫ VaRXq −mX
sX,1

−∞
u exp

(
−u

2

2

)
Φ

(
− cu√

1− c2

)
du.

We then compute the first part of this sum directly, and we integrate by parts to compute

the second part. After rearranging the terms we finally get that the first integral of Equation

(3.30) equals

− sY,1√
2π

Φ

(
VaRX

q −mX

sX,1
√

1− c2

)
− csY,1√

2π
Φ

(
−
c
(
VaRX

q −mX

)
sX,1
√

1− c2

)
exp

(
−
(
VaRX

q −mX

)2

2s2
X,1

)

+mYL

(
−∞, 0,−∞,

VaRX
q −mX

sX,1

)
.

Using a similar reasoning, we obtain that the second integral of Equation (3.30) equals

sY,2√
2π

Φ

(
VaRX

q −mX

sX,1
√

1− c2

)
−
csY,2√

2π

(
1− Φ

(
−
c
(
VaRX

q −mX

)
sX,1
√

1− c2

))
exp

(
−
(
VaRX

q −mX

)2
2s2
X,1

)

+mY L

(
0,+∞,−∞,

VaRX
q −mX

sX,1

)
.
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Hence, we obtain

CoESq (Y ) =
1

q%

[
mY

(
λ1,1L

(
−∞, 0,−∞,

VaRX
q −mX

sX,1

)
+ λ1,2L

(
0,+∞,−∞,

VaRX
q −mX

sX,1

))

+
λ1,2sY,2 − λ1,1sY,1√

2π
Φ

(
VaRX

q −mX

sX,1
√

1− c2

)
− cφ

(
VaRX

q −mX

sX,1

)
×(

λ1,1sY,1Φ

(
−
c
(
VaRX

q −mX

)
sX,1
√

1− c2

)
+ λ1,2sY,2

(
1− Φ

(
−
c
(
VaRX

q −mX

)
sX,1
√

1− c2

)))]
.

Proof of statement 2. If VaRX
q > mX , CoESq (Y ) is

CoESq (Y ) =
1

q%

(
λ1,1

∫ mY

−∞

∫ mX

−∞
yf1,1(x, y) dxdy + λ1,2

∫ +∞

mY

∫ mX

−∞
yf1,2(x, y) dxdy

λ2,1

∫ mY

−∞

∫ VaRXq

mX

yf2,1(x, y) dxdy + λ2,2

∫ +∞

mY

∫ VaRXq

mX

yf2,2(x, y) dxdy

)
.

Using similar computations we obtain

CoESq (Y ) =
1

q%

[
mY

(
λ1,1

(
1

4
+

sin−1 (c)

2π

)
+ λ1,2

cos−1 (c)

2π
+ λ2,1L

(
−∞, 0, 0,

VaRX
q −mX

sX,2

)

+ λ2,2L

(
0,+∞, 0,

VaRX
q −mX

sX,2

))
+

(1− c) (λ1,2 − λ2,2) sY,2 − (1 + c) (λ1,1 − λ2,1) sY,1

2
√

2π

+
λ2,2sY,2 − λ2,1sY,1√

2π
Φ

(
VaRX

q −mX

sX,2
√

1− c2

)
− cφ

(
VaRX

q −mX

sX,2

)
×(

λ2,1sY,1Φ

(
−
c
(
VaRX

q −mX

)
sX,2
√

1− c2

)
+ λ2,2sY,2

(
1− Φ

(
−
c
(
VaRX

q −mX

)
sX,2
√

1− c2

)))]
.

Introducing Mq,1, Mq,2, and L and slightly rearranging the terms, we find the expressions

reported in Proposition 3.4.

�
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3.C Additional results

3.C.1 Sharpe ratio in the portfolio choice setting

The Sharpe ratio of the portfolio of two risky assets is

SR(Rp) =
ωXµX + ωY µY

(ω2
Xσ

2
X + ω2

Y σ
2
Y + 2ωXωY σXσY ρ)

0.5 .

Using µX = µY ≡ µ and σX = σY ≡ σ, we obtain

SR(Rp) =
µ

σ

ωX + ωY

(ω2
X + ω2

Y + 2ωXωY ρ)
0.5

=
µ

σ

ωX + ωY(
(ωX + ωY )2 − 2 (1− ρ)ωXωY

)0.5

=
µ

σ

1− 2 (1− ρ)

ωX
ωY(

ωX
ωY

+ 1
)2


−0.5

.

Using the last expression, it is easy to check that the Sharpe ratio is increasing in ωX/ωY for

ωX/ωY < 1 and decreasing in ωX/ωY for ωX/ωY > 1. It is also continuous in ωX/ωY . Thus,

ωX/ωY = 1 maximizes the Sharpe ratio and deviations from one measure the mean-variance

inefficiency of the portfolio.

3.C.2 Sample variance of co-skewness

Below we calculate the sample variance of co-skewness for the case in which returns are

drawn from a BN distribution. Let mij = E
[
(X − E (X))i (Y − E (Y ))j

]
denote the sample

centralized co-moment of order ij of a sample of size n, and let µij denote the corresponding

population centralized co-moment. Using the formula (10.17) in Stuart and Ord (1994), the
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sample variance of co-skewness γY,X is

var (γY,X) =
m21

m20m
1/2
02

=

(
µ2

21

µ2
20µ02

)var (m21)

µ2
21

+
var

(
m20m

1/2
02

)
µ2

20µ02

− 2
cov
(
m21,m20m

1/2
02

)
µ21µ20µ

1/2
02

 .

Under the assumption that the returns are drawn from a BN distribution, we have µ21 =

0. Hence, using (10.23) in Stuart and Ord (1994), we can rewrite the previous expression to

var (γY,X) =
var (m21)

µ2
20µ02

=
1

n

µ42 − µ2
21 + 8µ20µ

2
11 + µ2

20µ02 − 4µ31µ11 − 2µ20µ22

µ2
20µ02

.

For the normal case, we have µ20 = σ2
X , µ02 = σ2

Y , µ42 = 3σ4
Xσ

2
Y

(
1 + 4ρ2

)
, µ11 = ρσXσY ,

µ31 = 3ρσ3
XσY , and µ22 = σ2

Xσ
2
Y

(
1 + 2ρ2

)
. Plugging these expressions in the expression for

var (γY,X) above, we get

var (γY,X) =
2 + 4ρ2

n
.
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Figure 3.1: Four quadrants of BN distributions

Panel A: Unscaled Panel B: Scaled

The blue (red, yellow, white) quadrant is the first (second, third, fourth) quadrant of a BN
distribution in which X and Y have zero-means, no correlation, and variances of 1.2 and 0.6
(0.6 and 0.6, 0.6 and 1.2, 1.2 and 1.2). The quadrants are unscaled in Panel A and scaled
to obtain a continuous skewed pdf in Panel B.
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Figure 3.2: Comparison of bivariate distributions

Panel A: Split normal Panel B: Normal

Panel C: Skew-normal Panel D: Skewed t

The figure presents contour plots of the SBN pdf (Panel A), the BN pdf (Panel B), the
BSN pdf (Panel C), and the BST pdf constructed with a Gaussian copula (Panel D). The
distributions are parameterized such that the two random variables X and Y have an ex-
pected value of zero, unit variance, a correlation of 0.4, and skewnesses are zero for X and
equal to −0.6 for Y (for the asymmetric distributions). The distribution in Panel D has
two additional parameters that are chosen to match the kurtosises of X and Y in Panel A.
All plots represent X on the horizontal axis and Y on the vertical axis. Straight dashed
lines highlight the mode values of the SBN distribution, and the contour plot of the SBN
distribution is included in Panels B-D to facilitate the comparison.
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Figure 3.3: The bivariate distribution of returns on the SP500 and . . .

Panel A: Russell Panel B: BarcBond

Panel C: GSCI Panel D: MSCI EM

Each contour plot presents the bivariate pdf of the monthly excess returns on the S&P 500
TR Index on the x-axis and the corresponding return of one of the four other indices on
the y-axis (the Russell 2000 TR Index (Panel A), the Barclays US Aggregate Bond TR
Index (Panel B), the GSCI TR (Panel C), and the MSCI Emerging Market TR Index (Panel
D)). The sample contains returns from January 1989 to June 2018 and each observation is
represented in the x-y plane with a dot. Each panel contains the empirical pdf estimated
with a kernel density estimator (dashed lines) and the pdf of the SBN distribution with the
sample means, standard deviations, correlation, and skewnesses (solid lines).
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Table 3.1: Descriptive statistics

SP500 Russell BarcBond GSCI MSCI EM
Panel A: moments

Mean 0.67% 0.71% 0.27% 0.15% 0.78%
St.dev. 4.07% 5.31% 1.04% 5.95% 6.58%
Skewness -0.586 -0.519 -0.239 -0.166 -0.586

0.00 0.00 0.07 0.20 0.00
Kurtosis 4.309 4.146 3.630 4.879 4.795

0.00 0.00 0.02 0.00 0.00
Panel B: correlations

Russell 0.806 - - - -
BarcBond 0.106 -0.006 - - -
GSCI 0.175 0.205 -0.051 - -
MSCI EM 0.670 0.655 0.018 0.277 -

The table contains the means, standard deviations, skewnesses, and kurtosises of the monthly
index returns in excess of the 30-day t-bill return in Panel A and their correlations in Panel
B. The indices are the S&P 500 TR Index (SP500), the Russell 2000 TR Index (Russell), the
Barclays US Aggregate Bond TR Index (BarcBond), the GSCI TR (GSCI), and the MSCI
Emerging Market TR Index (MSCI EM). The p-values for the null hypothesis that skewness
(resp. kurtosis) is zero (resp. three) are reported below the skewness (resp. kurtosis) under
the null of normally distributed returns. All statistics are monthly and for returns from
January 1989 to June 2018.
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Table 3.2: Kolmogorov-Smirnov tests

Index pair SBN BN BSN BST
SP500, Russell 0.06 0.01 0.15 0.36
SP500, BarcBond 0.24 0.05 0.03 0.81
SP500, GSCI 0.08 0.03 0.04 0.63
SP500, MSCI EM 0.02 0.01 0.03 0.28
Russell, BarcBond 0.26 0.06 NA 0.53
Russell, GSCI 0.07 0.00 0.17 0.32
Russell, MSCI EM 0.04 0.04 0.19 0.66
BarcBond, GSCI 0.49 0.24 0.26 0.99
BarcBond, MSCI EM 0.13 0.12 NA 0.99
GSCI, MSCI EM 0.01 0.03 0.04 0.28

The table contains the p-values of the bivariate Kolmogorov-Smirnov goodness-of-fit test
proposed by Peacock (1983) for the null hypothesis that the excess returns are drawn from
the distribution indicated in the column header for all the possible pairs of the five indices.
NA indicates the cases in which the parameters of the BSN distribution are outside of their
admissible range.
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CHAPTER 3. TWO SKEWED RISKS
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Table 3.7: ∆CoVaR

Correlation -0.2 0 0.2 0.4 0.6 0.8
Benchmark case: γX = 0 and γY = 0

∆CoVaR
Y |X
5 0.329 0 -0.329 -0.658 -0.987 -1.316

Panel A: γX = 0.6 and γY = 0.6

∆CoVaR
Y |X
5 0.279 0 -0.267 -0.490 -0.629 -0.729

Panel B: γX = −0.6 and γY = −0.6

∆CoVaR
Y |X
5 0.381 0 -0.408 -0.848 -1.293 -1.670

Panel C: γX = 0.6 and γY = −0.6

∆CoVaR
Y |X
5 0.471 0 -0.483 -0.956 -1.394 -1.786

Panel D: γX = 0.6 and γY = 0

∆CoVaR
Y |X
5 0.381 0 -0.380 -0.754 -1.104 -1.393

Panel E: γX = −0.6 and γY = 0

∆CoVaR
Y |X
5 0.312 0 -0.312 -0.630 -0.968 -1.344

Panel C’: γX = −0.6 and γY = 0.6

∆CoVaR
Y |X
5 0.222 0 -0.225 -0.449 -0.687 -0.960

Panel D’: γX = 0 and γY = 0.6

∆CoVaR
Y |X
5 0.235 0 -0.239 -0.473 -0.694 -0.868

Panel E’: γX = 0 and γY = −0.6

∆CoVaR
Y |X
5 0.411 0 -0.417 -0.833 -1.238 -1.624

The table contains the ∆CoVaR for the assets X and Y at the 5% probability. The SBN
distribution is calculated to match the first three moments of the distribution of X and Y
and a correlation that ranges from -0.2 to 0.8. In all panels, X and Y have zero means and
unit variances. The skewnesses of X and Y vary through panels.
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Table 3.8: CoES

Correlation -0.2 0 0.2 0.4 0.6 0.8
Benchmark case: γX = 0 and γY = 0

CoES
Y |X
5 0.413 0 -0.413 -0.825 -1.238 -1.650

Panel A: γX = 0.6 and γY = 0.6

CoES
Y |X
5 0.472 0 -0.468 -0.916 -1.294 -1.579

Panel B: γX = −0.6 and γY = −0.6

CoES
Y |X
5 0.403 0 -0.418 -0.882 -1.424 -1.962

Panel C: γX = 0.6 and γY = −0.6

CoES
Y |X
5 0.468 0 -0.472 -0.948 -1.437 -1.955

Panel D: γX = 0.6 and γY = 0

CoES
Y |X
5 0.470 0 -0.470 -0.941 -1.408 -1.846

Panel E: γX = −0.6 and γY = 0

CoES
Y |X
5 0.408 0 -0.408 -0.817 -1.236 -1.698

Panel C’: γX = −0.6 and γY = 0.6

CoES
Y |X
5 0.418 0 -0.403 -0.796 -1.162 -1.481

Panel D’: γX = 0 and γY = 0.6

CoES
Y |X
5 0.417 0 -0.411 -0.816 -1.201 -1.509

Panel E’: γX = 0 and γY = −0.6

CoES
Y |X
5 0.411 0 -0.416 -0.851 -1.330 -1.883

The table contains the CoES for the assets X and Y at the 5% probability and is constructed
in the same way as Table 3.7.
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Table 3.9: Realized vs. theoretical CoES

Russell BarcBond GSCI MSCI EM SumSq

Panel A: CoES
Y |X
5

Empirical -2.207 -0.112 -0.762 -1.873 NA
SBN -1.932 -0.216 -0.356 -1.606 0.323
BN -1.661 -0.218 -0.359 -1.380 0.715
BSN -2.045 -0.769 -0.808 -1.864 0.460
BST -1.863 -0.221 -0.365 -1.534 0.403

Panel B: CoES
Y |X
10

Empirical -1.699 -0.056 -0.348 -1.509 NA
SBN -1.586 -0.182 -0.301 -1.310 0.071
BN -1.413 -0.185 -0.306 -1.174 0.213
BSN -1.679 -0.582 -0.628 -1.514 0.356
BST -1.531 -0.186 -0.310 -1.262 0.108

Panel C: CoES
Y |X
25

Empirical -1.081 -0.181 -0.165 -0.866 NA
SBN -1.067 -0.131 -0.216 -0.877 0.005
BN -1.023 -0.134 -0.222 -0.850 0.009
BSN -1.127 -0.300 -0.355 -0.986 0.067
BST -1.053 -0.136 -0.224 -0.871 0.006

The table contains the standardized empirical CoES at the 5%, 10%, and 25% probability
and the corresponding theoretical expected shortfall that assumes index excess returns follow
the indicated distribution. Following the definition in Section 3.4.2, the S&P 500 TR Index
is the conditioning variable X and the other indices are the variable of interest Y . The last
column contains the sum of squared differences between the empirical and theoretical CoES
for the four index pairs for each distribution and each probability.
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Substantial summary in French

Les modèles d’évaluation d’actifs ont pour rôle d’attribuer une valeur aux différents actifs

financiers et de décrire leurs caractéristiques sur les marchés ; cela permet alors aux agents

d’élaborer leurs stratégies d’investissement. Afin de s’assurer de la pertinence de leurs conclu-

sions, il est donc primordial que les hypothèses sous-jacentes à ces modèles soient convena-

blement définies : elles doivent être à la fois suffisamment réalistes, pour que les résultats

théoriques en découlant reproduisent fidèlement les observations empiriques, et suffisamment

simplificatrices, pour que l’on puisse procéder à une analyse théorique précise et, notamment,

interpréter l’origine des résultats obtenus.

Dans cette thèse, constituée de trois chapitres indépendants, j’étudie la remise en question

d’hypothèses simplificatrices qui se retrouvent dans un grand nombre de modèles d’évaluation

d’actifs. Plus précisément, je cherche à analyser les impacts du relâchement de l’une ou l’autre

des hypothèses suivantes : celle d’homogénéité des agents financiers et celle de normalité des

rendements des actifs. Les deux premiers chapitres de cette thèse s’intéressent au relâchement

de la première hypothèse et le troisième chapitre s’intéresse au relâchement de la seconde.

J’étudie donc des modèles d’évaluation d’actifs plus réalistes, avec des agents hétérogènes ou

avec des actifs dont les rendements ne suivent pas une loi normale.

Agents hétérogènes

L’hypothèse d’homogénéité des agents implique que les différents acteurs des marchés fi-

nanciers sont identiques. En particulier, cette hypothèse présume que les agents (également
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appelés de manière équivalente � investisseurs � dans le reste de la thèse) sont rationnels

et ont les mêmes croyances concernant l’avenir. Ici, � rationnels � veut dire que les agents

ne sont ni optimistes, ni pessimistes, et que leurs croyances sont les bonnes : s’il existe un

processus économique de richesse ayant une tendance donnée, les investisseurs s’accorderont

tous sur la vraie valeur de cette tendance et aucun ne la surestimera (comme un optimiste

le ferait), ni ne la sous-estimera (ce qui serait le cas d’un pessimiste). L’avantage d’une telle

hypothèse est qu’il est alors aisé d’agréger tous les agents financiers en un unique agent

représentatif, facilitant ainsi la résolution des modèles sous-jacents. Différents arguments ont

longtemps été avancés afin de justifier une telle hypothèse simplificatrice.

Premièrement, dans l’esprit des travaux de Friedman (1953), il a été soutenu que, même

s’il était possible que certains investisseurs soient optimistes ou pessimistes, ils ne devaient

pas être pris en compte, car leur irrationalité les menait à faire de mauvais choix et, à plus

long terme, menait à leur disparition (voir, par exemple, Sandroni, 2000). Toutefois, comme

le soulignent Kogan et al. (2006), la survie des agents et leur impact sur le marché sont deux

concepts différents qui doivent être étudiés séparément. Yan (2008) montre par exemple

que l’élimination de ces agents irrationnels prend beaucoup de temps (au moins plusieurs

dizaines d’années, voire plusieurs centaines) et qu’il faut donc tenir compte de leurs impacts

sur les marchés. Une étude récente de Bottazzi et al. (2018) indique également que les agents

hétérogènes ne sont pas nécessairement éliminés à long terme et que la non-optimalité du

portefeuille d’un agent peut corriger l’inexactitude de sa croyance, ce qui entrâıne sa survie.

Un second argument important en faveur de l’hypothèse d’homogénéité des croyances

soutient que, comme il n’y a aucune raison d’avoir un biais optimiste ou pessimiste dans

l’économie, les agents devraient être rationnels en moyenne et les effets induits par les inves-

tisseurs biaisés devraient donc s’annuler. Jouini and Napp (2011) montrent dans un modèle

théorique que ce n’est pas le cas et qu’une situation où des agents hétérogènes sont rationnels

en moyenne n’est pas équivalente à une situation où tous les agents sont rationnels.

Enfin, de façon similaire au concept des croyances pragmatiques de Hvide (2002), il
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existe un argument en faveur de l’hypothèse d’homogénéité des croyances qui stipule que les

agents irrationnels (c’est-à-dire optimistes ou pessimistes), observant que les agents rationnels

prennent de meilleures décisions, devraient adopter la même croyance afin de connâıtre la

même réussite. Remettant en cause ce troisième argument, Jouini and Napp (2016) montrent

que, sous certaines conditions, des agents irrationnels peuvent faire mieux que des agents

rationnels et qu’ils n’ont donc pas de véritables raisons de les imiter.

Étant donné que chacun des arguments avancés pour justifier cette hypothèse a été remis

en cause, et étant observée la grande diversité d’actions des différents acteurs des marchés fi-

nanciers, cette hypothèse d’homogénéité et de rationalité des croyances apparâıt peu crédible.

Il est ainsi pertinent d’étudier l’hétérogénéité des croyances des investisseurs et les poten-

tiels impacts qu’elle peut avoir sur les marchés financiers ; cela fait l’objet des deux premiers

chapitres de ma thèse.

Premier chapitre

Dans le premier chapitre, intitulé Live fast, die young: equilibrium and survival in large

economies, paru dans la revue Economic Theory en avril 2021 et coécrit avec Elyès Jouini,

nous étudions cette question d’un point de vue théorique. Nous considérons une économie

peuplée par une infinité d’agents qui, en plus d’avoir des croyances différentes sur l’avenir,

ont également des taux de préférences temporelles différents. Concrètement cela veut dire

que, pour un niveau d’optimisme ou de pessimisme donné, les investisseurs seront également

plus ou moins patients ou impatients, dans le sens où ils auront un taux d’actualisation

temporelle plus ou moins important.

Bien que moins largement abordé, ce second type d’hétérogénéité a également été exa-

miné dans la littérature. À la suite des travaux fondateurs de Samuelson (1937), il a été

admis qu’un taux d’actualisation unique pouvait être utilisé pour condenser les choix in-

tertemporels. Cependant, des études empiriques (voir, entre autres, Frederick et al., 2002)

montrent que cette hypothèse n’est pas réaliste et qu’il existe en fait une grande variété de
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taux de préférences temporelles parmi les investisseurs. En étudiant plusieurs pays, Wang

et al. (2016) mettent par exemple en évidence cette hétérogénéité et montrent que des fac-

teurs économiques et culturels peuvent l’expliquer.

De plus, nous envisageons dans notre étude la possibilité que ces deux types d’hétérogénéité

soient corrélés. Plus concrètement, en supposant une corrélation négative, cela veut par

exemple dire que nous considérons le cas où les agents financiers les plus optimistes sont

également les plus patients—ce que des études empiriques semblent effectivement démontrer.

À notre connaissance, nous sommes les premiers à proposer une étude des implications d’une

corrélation entre ces deux types d’hétérogénéité, et cela constitue donc l’une des contributions

principales de notre papier.

Une autre hypothèse importante sur laquelle repose le modèle développé dans l’article

est l’hypothèse de la présence d’un continuum d’investisseurs sur le marché. En fait, l’intérêt

de considérer un nombre infini d’agents est triple. Tout d’abord, une telle hypothèse permet

de tenir compte de l’intégralité des croyances potentielles, ainsi que de tous les degrés de

patience possibles. De plus, cela implique qu’il existera toujours, et quelles que soient les

circonstances, une hétérogénéité parmi les investisseurs. En effet, considérer un nombre fini

d’agents implique nécessairement de définir l’agent � le plus optimiste de tous �. Dans les

états du monde les plus positifs, cet agent concentrerait toute la richesse de l’économie et

il n’y aurait alors plus d’hétérogénéité sur le marché (puisqu’il n’y aurait plus qu’un in-

vestisseur). Enfin, d’un point de vue technique, cette hypothèse nous autorise à décrire les

différentes croyances et les différentes préférences temporelles des agents à l’aide de lois sta-

tistiques. Cela permet à la fois de limiter le nombre de paramètres à utiliser (nous avons

seulement besoin d’identifier deux paramètres par loi statistique) et d’exprimer nos résultats

en fonction de ces paramètres. Comme précédemment évoqué, cette utilisation de lois statis-

tiques facilite également la possibilité d’étudier des hétérogénéités corrélées en introduisant

un coefficient de corrélation entre les deux lois décrivant les hétérogénéités.

Dans un premier temps, nous calculons l’équilibre de notre modèle. Nous étudions en-
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suite l’impact de l’hétérogénéité des investisseurs sur certaines caractéristiques d’équilibre du

marché et, en particulier, nous analysons la manière dont la corrélation entre les deux types

d’hétérogénéité les affecte. Enfin, en nous focalisant sur une économie où les hétérogénéités

ne sont pas corrélées, nous déterminons les caractéristiques de l’agent qui survit à long terme

et celles des agents qui maximisent leur utilité attendue (à la fois d’un point de vue ex-ante,

c’est-à-dire avant que tous les événements à venir se réalisent et d’un point de vue ex-post,

après leur réalisation).

L’hétérogénéité des croyances et celle des taux de préférences temporelles ont tout d’abord

un impact sur le taux sans risque et le prix de marché du risque. Plus précisément, contraire-

ment au cas homogène (c’est-à-dire celui où tous les agents sont identiques), nous obtenons

des prix de marché du risque anticycliques et des taux sans risque procycliques. Ces résultats,

obtenus en considérant un continuum d’agents hétérogènes, sont en accord et complètent de

précédentes études, comme celle de Jouini and Napp (2011) ou celle de Bhamra and Uppal

(2014), qui considèrent des modèles avec seulement deux groupes d’investisseurs. Ils sont

également conformes aux observations empiriques selon lesquelles � les primes de risque

sur les actions semblent être plus élevées au creux des cycles économiques qu’au sommet �

(Campbell and Cochrane, 1999) et que le taux à court terme est un indicateur procyclique

de l’activité économique (voir, par exemple, Friedman, 1986). Nous trouvons que ces effets

sont amplifiés lorsqu’il existe un biais optimiste moyen dans l’économie (c’est-à-dire quand la

moyenne de la loi statistique utilisée pour décrire le biais des croyances des investisseurs est

positive) et réduits lorsque les investisseurs sont en moyenne pessimistes. De plus, contraire-

ment aux études précédentes, nous constatons que plus les différentes croyances des agents

sont dispersées, plus ces effets sont importants. En étudiant la dynamique temporelle de

ces résultats, nous constatons en outre que le prix de marché du risque asymptotique est

égal à celui obtenu dans un cadre homogène, alors que le taux sans risque asymptotique

est inférieur à celui du cas standard. Cela est dû au fait que seuls les investisseurs les plus

patients, caractérisés par un faible taux de préférences temporelles, survivent à long terme.

173



SUMMARY IN FRENCH

L’étude de la corrélation entre les deux types d’hétérogénéité conduit à une conclusion

supplémentaire relative à ces deux caractéristiques du marché : dans le cas où la corrélation

est négative, et où les agents optimistes sont donc également les plus patients, le taux sans

risque est réduit et le prix de marché du risque augmenté. Ce nouveau résultat est intéressant

à la lumière des difficultés rencontrées par la littérature pour expliquer les valeurs observées

de la prime de risque et du taux sans risque.

Dans la suite de notre analyse, nous considérons un actif financier dont le processus de

dividendes est donné par la dotation totale de l’économie et étudions sa volatilité (étant

donné qu’il n’y a qu’un actif dans l’économie que nous considérons, la volatilité de cet actif

peut donc être vue comme étant la volatilité du marché). Notre principal résultat est alors de

démontrer qu’une corrélation non nulle entre les deux types d’hétérogénéité a un impact sur

la volatilité du marché. Plus précisément, si nous supposons une corrélation négative entre

elles, nous observons une volatilité excessive sur le marché. De plus, cet effet est d’autant

plus important que les agents sont en moyenne patients. Ce résultat nouveau fait écho à celui

trouvé par Atmaz and Basak (2018), qui déduisent un résultat similaire de volatilité excessive

dans le cadre d’un continuum d’agents qui ne sont hétérogènes qu’en termes de croyances.

Dans leur travail, le principal facteur explicatif de la volatilité excessive est la dispersion des

croyances, alors qu’elle ne joue aucun rôle dans notre analyse. En effet, nous considérons des

agents ayant des fonctions d’utilité logarithmiques, qui sont connues pour atténuer l’effet

de la dispersion des croyances, et c’est la corrélation entre les deux types d’hétérogénéité

qui est à l’origine de notre résultat. Dans une économie à horizon fini peuplée d’un agent

patient et d’un agent impatient, Li (2007) obtient un résultat similaire : il constate que la

volatilité du marché est supérieure à la volatilité de la dotation globale si l’agent patient est

plus optimiste que l’agent impatient. Par conséquent, notre résultat étend sa constatation

au cas d’un continuum d’investisseurs, ce qui nous permet d’étudier plus en profondeur le

rôle de la corrélation.

Une autre caractéristique de marché que nous étudions est le volume d’échange qui,

174



ASSET PRICING WITH HETEROGENEOUS AGENTS AND NON-NORMAL
RETURN DISTRIBUTIONS

contrairement au cas où les agents sont homogènes et agissent donc de manière identique

sans pouvoir trouver de contrepartie à leurs échanges, est non nul. En considérant l’économie

dans son ensemble et en supposant une absence de corrélation, nous remarquons que ce

volume diminue avec le temps du fait de la disparition progressive de certains investisseurs. Il

dépend à l’inverse positivement de la dispersion des croyances, car des agents plus hétérogènes

impliquent davantage de possibilités d’échanges. De même, à l’échelle individuelle, nous

constatons que plus un investisseur est patient, plus son volume d’échange est important. Ce

résultat est dû à un effet de richesse et se renforce lorsque la corrélation des hétérogénéités

est élevée en valeur absolue. En revanche, il n’y a pas de relation claire entre le volume des

transactions d’agents partageant le même taux de préférences temporelles et le biais de leur

croyance.

Dans la dernière partie de ce premier chapitre, nous étudions les caractéristiques de

certains agents spécifiques dans le cas où la corrélation des hétérogénéités est nulle. Plus

précisément, nous déterminons les caractéristiques de l’investisseur survivant, c’est-à-dire

celui dont la part de consommation de richesse reste non nulle asymptotiquement, et celles des

investisseurs qui ont le plus haut niveau d’utilité tout au long de leur vie. Comme Yan (2008),

nous obtenons tout d’abord que l’agent survivant de l’économie est l’agent le plus patient

des agents dont le biais de croyance est nul. De même, en formant des groupes d’investisseurs

partageant le même taux de préférences temporelles, nous constatons que l’agent rationnel de

chaque groupe est celui qui survit à long terme. Néanmoins, nous montrons également que,

pour chacun des groupes, cet agent rationnel n’est pas nécessairement celui qui a le plus haut

niveau d’utilité (à la fois ex-ante et ex-post). En particulier, si, par exemple, l’économie dans

son ensemble présente en moyenne un biais en faveur de l’optimisme, l’agent qui maximisera

son utilité ex-post sera un agent caractérisé par un biais de croyance positif non nul (mais

inférieur au biais moyen de l’économie). Ce résultat s’inscrit dans la lignée de celui trouvé

par Jouini and Napp (2016) qui montrent que � même s’ils sont éliminés à long terme, les

agents irrationnels pourraient rationnellement rester irrationnels �. En d’autres termes, cela
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correspond au fait que, dans certaines circonstances, une vie plus courte (c’est-à-dire associée

à un taux de survie plus faible) peut être plus gratifiante en termes d’utilité qu’une longue

vie. Ainsi, notre résultat vient enrichir la littérature déjà existante car nous analysons un

continuum d’agents qui sont donc preneurs de prix. En effet, dans leur étude, Jouini and

Napp (2016) considèrent un modèle à deux agents où chaque agent a donc un impact sur le

prix d’équilibre ; il est alors naturel que le biais d’un agent puisse lui profiter via son impact

sur le prix. Nous constatons que ce résultat est toujours vérifié dans une économie peuplée

d’une infinité d’investisseurs, où l’impact sur les prix de chacun d’eux est nul.

Enfin, à l’instar de Detemple and Murthy (1994), nous observons que notre économie se

caractérise par des vagues d’optimisme et de pessimisme, puisque la part de consommation

agrégée des agents optimistes augmente dans les bons états du monde et diminue, au profit

de celles des agents pessimistes, dans les mauvais états du monde.

Deuxième chapitre

Le deuxième chapitre de ma thèse, intitulé Disagreeing forever: a testable model with non-

vanishing belief heterogeneity, poursuit l’étude de la question de l’impact de l’hétérogénéité

des croyances sur les caractéristiques du marché. L’une des contributions théoriques princi-

pales de ce travail est que je considère un modèle stationnaire où l’hétérogénéité des croyances

ne disparâıt pas à mesure que le temps passe et où, en conséquence, les effets de cette

hétérogénéité sur les caractéristiques du marché sont persistants. L’avantage d’une telle pro-

priété de stationnarité, qui ne se retrouve pas dans le papier de Atmaz and Basak (2018)

qui sont les plus proches de mon travail, est double. Tout d’abord, empiriquement, il ap-

parâıt que les agents ne s’accordent pas plus sur les rendements futurs du marché de nos

jours qu’ils ne le faisaient dans le passé ; la persistance de divergence des croyances traduit

donc la réalité de façon plus pertinente. De plus, la stationnarité du modèle permet d’en

tester les principales implications à l’aide de données réelles sur une longue période. Ce cha-

pitre comporte ainsi à la fois une partie théorique et une partie empirique, qui confirme les
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résultats obtenus théoriquement. Il est également important de souligner que la stationnarité

du modèle permet d’en déduire de nouvelles implications. En effet, cette propriété implique

que les relations obtenues sont vérifiées quelque soit l’horizon considéré, ce que j’examine et

confirme empiriquement.

Dans la partie théorique de ce chapitre, je développe, dans un cadre d’équilibre général

dynamique, un modèle à générations imbriquées où chacune des générations est constituée

d’un continuum d’agents, eux-mêmes membres de différentes familles ayant des croyances

hétérogènes. De générations en générations, je fais en effet l’hypothèse que chaque investisseur

donne naissance à un investisseur ayant les mêmes croyances que lui, ce qui est l’un des

mécanismes permettant à l’hétérogénéité des croyances de persister dans le temps. Comme

dans le modèle présenté dans le chapitre 1, je me sers en outre d’une distribution statistique

pour décrire la répartition de la richesse des agents d’une génération donnée. En particulier,

la résolution du modèle mène à une distribution ayant un écart-type constant (ce qui garantit

la persistance de l’hétérogénéité des croyances) et une moyenne qui dépend positivement de

l’état du monde : dans les bons états du monde, les agents sont plus optimistes en moyenne

et dans les mauvais, plus pessimistes.

Il est également utile d’expliquer la dynamique temporelle de ce modèle. Plus précisément,

la chronologie de la vie de chacun des agents d’une génération donnée est la suivante. À leur

naissance (par exemple à la date t), ils planifient les futures actions qu’ils réaliseront à la

fin de leur vie d’une durée T afin de maximiser leur utilité (il est d’ailleurs important de

préciser que je fais l’hypothèse que tous les agents sont dotés d’une fonction d’utilité CRRA,

ce qui diffère de la fonction d’utilité logarithmique utilisée dans le chapitre 1 qui est plus

restrictive mais qui présente des avantages calculatoires pour tenir compte de la corrélation

avec l’hétérogénéité en préférences temporelles). Puis, à la date suivante (à la date t + dt),

les agents donnent naissance à la nouvelle génération d’investisseurs qui ont également une

durée de vie T . Enfin, à la fin de leur vie (à la date t + T ), ils réalisent ce qu’ils avaient

planifié. Plus particulièrement, les investisseurs consomment une partie de leur richesse et
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lèguent la partie restante à la génération suivante. Cette nouvelle génération d’agents hérite

donc de la part de richesse non consommée et peut à son tour répéter les mêmes actions :

juste après avoir hérité (c’est-à-dire à la date t + dt + T ), ils vont réaliser les actions qu’ils

avaient planifiées à leur naissance (à la date t + dt) et notamment léguer une partie de

leur héritage à leurs successeurs (nés à la date t + dt + dt), qui le consommeront à la date

suivante (à la date t + dt + dt + T ), etc. Cette dynamique résulte ainsi en une économie

avec consommation effective à chaque date, ce qui n’est pas le cas du modèle à horizon fini

proposé par Atmaz and Basak (2018) où la seule date de consommation intervient à la date

terminale du modèle (à laquelle l’hétérogénéité des croyances a totalement disparu).

Par ailleurs, dans ce chapitre, je développe également un modèle alternatif, succincte-

ment décrit dans le paragraphe suivant, menant à des résultats équivalents et facilitant la

construction d’un agent représentatif intertemporel.

Ce modèle alternatif repose sur la présence d’un continuum d’investisseurs ayant une

durée de vie infinie, qui révisent continuellement leurs plans de consommation et décalent

continuellement leur date de consommation, conduisant ainsi à un modèle à horizon glissant

(et sans consommation effective). Dans ce cadre, chacun des agents correspond approximati-

vement à une famille entière du modèle à générations hétérogènes imbriquées et les révisions

successives des plans de consommation cöıncident avec les différents plans établis par les

générations successives. Cette approche alternative fait écho au travail séminal de Lindahl

(1939) qui observe que � les plans des sujets économiques à un instant donné ne sont pas to-

talement cohérents ni entre eux ni avec les conditions extérieures et doivent donc être révisés

successivement �. Ceci est également conforme à la théorie plus générale de l’équilibre général

temporaire de Grandmont (1977, 2008).

La résolution de ces modèles permet de caractériser l’équilibre et d’en déduire les résultats

théoriques (stationnaires) de l’étude, qui sont décrits ci-dessous.

Tout d’abord, en examinant le prix de l’actif, je trouve qu’il dépend positivement du

biais moyen des croyances, ce qui est conforme aux études de Jouini and Napp (2007) et de

178



ASSET PRICING WITH HETEROGENEOUS AGENTS AND NON-NORMAL
RETURN DISTRIBUTIONS

Kurz and Motolese (2011). Je déduis également que l’impact de la dispersion des croyances

est positif pour les états du monde suffisamment bons et négatif pour les états suffisamment

mauvais. Enfin, comme d’autres études théoriques (Veronesi, 1999, Xu, 2007, Atmaz and

Basak, 2018), je trouve une relation convexe entre le prix de l’actif et la production attendue

de l’économie. Cette convexité des prix implique que le cours de l’actif réagit davantage

aux bonnes nouvelles qu’aux mauvaises, et que la réaction du cours de l’actif à tout type

de nouvelles est plus forte dans les états relativement bons. Basu (1997) et Nagel (2005)

confirment empiriquement la première prédiction et, en accord avec la seconde, Conrad et al.

(2002) montrent que le marché réagit plus fortement aux mauvaises nouvelles en période de

prospérité qu’en période de crise.

J’étudie également la relation entre l’hétérogénéité des croyances et les rendements moyens

de l’actif et observe que plus l’hétérogénéité est élevée, plus les rendements sont importants.

La relation positive que je documente contribue ainsi à la littérature portant sur ce sujet,

qui trouve des résultats contradictoires, et est conforme à la conjecture de Williams (1977)

selon laquelle une plus grande dispersion des opinions représente un plus grand risque, et en-

trâıne donc une rémunération attendue des agents plus élevée. Banerjee and Kremer (2010)

confirment cette relation positive dans un modèle dynamique dans lequel les investisseurs

sont en désaccord sur l’interprétation de l’information publique et Buraschi and Jiltsov (2006)

obtiennent un résultat similaire en liant l’hétérogénéité des croyances aux positions ouvertes

des options. À l’inverse, un autre courant de la littérature, fondé sur le travail précurseur de

Miller (1977), documente un lien négatif qui dépend de manière critique de la présence de

frictions sur le marché. De plus, je trouve que le rendement moyen de l’action diminue avec

l’aversion au risque. En effet, dans une économie avec agents hétérogènes, les investisseurs

plus averses au risque spéculent moins agressivement et obtiennent donc des rendements plus

faibles.

Pour finir, j’observe que la volatilité de l’actif augmente de manière monotone avec la

dispersion des croyances et qu’elle est toujours supérieure à la volatilité du processus de
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production. Comme l’indiquent Atmaz and Basak (2018), cela s’explique par le fait que des

fluctuations plus importantes du biais moyen des croyances se traduisent par des fluctuations

supplémentaires du prix de l’actif et augmentent donc sa volatilité. Cette relation positive

monotone est bien documentée sur le plan théorique (voir, par exemple, Shalen, 1993, dans

un modèle à anticipations rationnelles à deux périodes, Scheinkman and Xiong, 2003, dans

un modèle avec des contraintes de vente à découvert, Buraschi and Jiltsov, 2006, dans un

modèle avec des agents rationnels ayant des informations incomplètes et hétérogènes, Andrei

et al., 2019, dans un modèle avec désaccord sur la durée des cycles économiques). Ici, ma

contribution est d’obtenir une formule stationnaire où les effets de l’hétérogénéité sur la

volatilité restent persistants dans le temps.

Puisque les formules sont stationnaires, je peux alors traduire les principales implica-

tions théoriques du modèle en hypothèses testables et, dans la partie empirique du chapitre,

examiner si ces hypothèses sont effectivement validées en utilisant des données de marché

réelles et en effectuant des régressions par moindres carrés ordinaires. Plus précisément, je

vérifie si une plus grande dispersion des croyances à l’échelle du marché prédit des rende-

ments de marché plus élevés et une plus grande volatilité du marché. Alors que la plupart des

études empiriques dans cette littérature se concentrent sur des données mensuelles, j’étudie

également la validité de ces relations pour des données calculées sur des horizons plus longs.

Pour construire mes données de dispersion des croyances, j’utilise les prévisions men-

suelles des analystes sur le taux de croissance à long terme du bénéfice par action d’actions

individuelles de la base de données IBES Unadjusted Summary de janvier 1982 à décembre

2019. En adoptant une méthodologie similaire à celle de Yu (2011), je les agrège dans le

temps (pour des horizons allant d’un mois à deux ans) et sur l’ensemble des actifs pour ob-

tenir des données relatives au marché dans son ensemble. J’utilise en outre des données de la

base CRSP pour construire mes variables de rendements de marché à différents horizons. En

particulier, il est important de noter que mon analyse empirique diffère de celles existantes

car j’étudie spécifiquement les rendements d’un indice de marché qui est construit à partir
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de tous les actifs utilisés dans la construction de la variable de dispersion des croyances.

Cela me permet de capturer plus directement le lien entre les caractéristiques du marché et

les croyances des investisseurs. De même, je construis les données de volatilité du marché à

partir des rendements quotidiens de cet indice de marché.

Les tests empiriques confirment la relation positive prédite entre la dispersion des croyances

et les rendements du marché pour la plupart des horizons étudiés. Ainsi, en considérant

un cadre avec une dispersion des croyances persistante et en utilisant des données plus

étroitement liées, je montre de nouveaux résultats sur les impacts à long terme. Enfin, les

résultats concernant l’impact sur la volatilité du marché sont plus mitigés. En effet, bien que

je trouve une majorité de coefficients positifs (en contrôlant la volatilité passée), ils ne sont

pas statistiquement significatifs. Des régressions à fenêtre glissante montrent en outre que

le signe et l’intensité de l’impact de la dispersion des croyances varient dans le temps, ce

qui pourrait expliquer la faiblesse des résultats. D’autres travaux empiriques étudient cette

relation et confirment la relation positive prédite par le modèle (voir, par exemple, Ajinkya

and Gift, 1985 qui utilisent des données sur une période de dix mois, Anderson et al., 2005

qui utilisent des données mensuelles sur une période de sept ans, Banerjee, 2011 dans un

cadre d’analyse en coupe transversale).

Rendements non normaux

L’hypothèse de normalité des rendements est également une hypothèse courante dans les

modèles théoriques d’évaluation d’actifs. S’appuyer sur les propriétés de la loi normale permet

en effet de grandement faciliter la résolution de nombreux calculs et d’exprimer les résultats

de manière simple. De plus, il arrive que les distributions empiriques des rendements d’actifs

se rapprochent d’une distribution normale. De prime abord, une telle hypothèse apparâıt

donc appropriée, ce qui explique qu’elle soit largement utilisée.

La loi normale présente néanmoins un défaut fondamental : étant donné qu’il s’agit d’une
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distribution symétrique, son coefficient d’asymétrie (également appelé de manière équivalente

� skewness � dans le reste de la thèse) est nul. Autrement dit, à moyenne et variance

données, faire l’hypothèse que les rendements d’un actif suivent une loi normale revient à

supposer que les réalisations positives des rendements de cet actif ont autant de chances de

survenir que celles négatives. Or, de nombreuses études montrent que ce n’est pas le cas.

En considérant le marché des actions américaines dans son ensemble, Albuquerque (2012)

montre par exemple qu’un krach est plus susceptible de survenir qu’un boom, ce qui revient

à supposer que la distribution de ces rendements a un skewness négatif. Ainsi, l’utilisation

de la loi normale ne permet pas de tenir compte des effets (potentiellement importants) du

skewness des rendements des actifs et n’est donc pas adaptée pour décrire leur distribution.

À l’inverse, bien que moins intuitives, l’usage de distributions asymétriques permet une étude

plus complète.

Dans le troisième chapitre de cette thèse, intitulé Two skewed risks et coécrit avec Paul

Karehnke, nous définissons et utilisons une distribution asymétrique afin d’étudier, dans un

cadre bivarié, les impacts du skewness sur différentes métriques. Plus précisément, nous nous

intéressons aux questions de l’impact de l’asymétrie des rendements sur les caractéristiques

des actifs, mais aussi sur les choix de portefeuille et sur certaines mesures utilisées en gestion

des risques. La principale contribution de ce chapitre est donc de déduire des enseignements

économiques sur les effets de l’asymétrie dans un cadre bivarié simple et intuitif. L’utilisation

d’un tel cadre complète l’étude de De Roon and Karehnke (2017) qui s’intéressent à un cadre

univarié, et permet également de mieux cerner les interactions entre skewness et corrélation.

En outre, comme chacun des deux actifs étudiés (ou, dans la partie relative à la gestion

des risques, des deux risques) peut lui-même être considéré comme issu de l’agrégation de

plusieurs actifs (ou risques), notre étude permet de proposer un cadre d’analyse général.

Là encore, le choix d’un cadre bivarié et d’une distribution spécifique pour les rendements

répond à l’impératif de trouver un juste milieu entre traçabilité et simplification d’une part,

et réalisme et pertinence de l’autre.

182



ASSET PRICING WITH HETEROGENEOUS AGENTS AND NON-NORMAL
RETURN DISTRIBUTIONS

Revenons tout d’abord sur la construction de la distribution que nous utilisons pour

notre analyse. Cette distribution, que nous appelons la distribution normale fractionnée

bivariée (“split bivariate normal distribution”), est une extension bivariée de la distribution

normale fractionnée (“split normal distribution”) de Fechner (1897), qui est elle-même un

cas particulier de la distribution t biaisée (“skewed t distribution”) de Hansen (1994), plus

largement utilisée. Notre version bivariée est en outre très similaire aux développements plus

généraux de Geweke (1989), Bauwens and Laurent (2005), et Villani and Larsson (2006), et

elle cöıncide avec ces distributions lorsque les deux risques sont indépendants.

Les principaux avantages de notre distribution sont sa simplicité et son intuition qu’elle

hérite de la loi normale usuelle, ce qui permet de nombreux calculs explicites, tout en ayant la

capacité d’avoir un skewness non nul. La distribution normale fractionnée bivariée généralise

en effet la distribution normale bivariée et introduit de l’asymétrie en permettant aux pa-

ramètres d’écart-type de chacune des variables considérées de différer au-dessus et en dessous

du mode. Ainsi, elle est particulièrement intéressante pour les applications financières, car

elle tient compte du fait que les moyennes et les variances des rendements des actifs sont

liées empiriquement (Duffee, 1995). Nous nous assurons en outre de la continuité de notre

distribution en utilisant des facteurs d’ajustement pour chacun de ses quadrants. Enfin,

une évaluation de la pertinence empirique de la distribution normale fractionnée bivariée

nous permet de confirmer qu’elle fournit une description raisonnable des rendements des

actifs. Plus précisément, nous analysons les rendements excédentaires d’indices de plusieurs

catégories d’actifs et proposons différents tests de notre distribution ainsi que de trois lois

connexes : la distribution normale bivariée, la distribution bivariée skew-normale (“bivariate

skew-normal distribution”) d’Azzalini and Dalla-Valle (1996), et une version bivariée de la

distribution t biaisée construite avec une copule normale. Les tests de Kolmogorov-Smirnov

bivariés, une comparaison des co-skewness implicites et empiriques et une comparaison des

niveaux théoriques et empiriques du déficit attendu conditionnel (que nous définirons plus

en détail par la suite) montrent notamment la supériorité de la distribution normale frac-
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tionnée bivariée sur la loi normale bivariée usuelle. Notre distribution offre également une

meilleure description des données dans les queues de distributions que les deux autres lois

asymétriques considérées, ce qui est particulièrement utile dans une optique de l’étude de la

gestion des risques. La distribution normale fractionnée bivariée apparâıt donc comme une

loi pertinente pour analyser théoriquement l’impact du skewness dans un cadre bivarié.

Dans un premier temps, nous utilisons cet outil pour étudier les choix de portefeuille.

Pour ce faire, nous considérons deux actifs dont les rendements suivent la distribution et

étudions les poids optimaux à investir dans chacun d’eux en fonction des caractéristiques

de leurs rendements. La moyenne et la variance de ces rendements sont fixes et nous faisons

varier leur niveau d’asymétrie ainsi que leur corrélation afin d’étudier les implications de

telles variations. En nous intéressant aux rendements certains équivalents, nous montrons

que les gains d’utilité liés à la prise en compte de l’asymétrie ont tendance à diminuer avec

la corrélation lorsque les asymétries sont égales. En revanche, lorsque le niveau de skewness

des rendements de chacun des actifs diffère, la relation prend une forme de U : les gains sont

plus importants pour les actifs fortement corrélés que pour les actifs modérément corrélés. En

outre, l’étude des poids d’investissement optimaux souligne qu’il devient alors optimal de ne

pas diversifier autant que le cadre moyenne-variance classique le suggérerait, en particulier

pour les niveaux élevés de corrélation. Cette sous-diversification va de pair avec une hausse

du skewness des portefeuilles associés. Notre analyse des choix de portefeuille souligne donc

le rôle de la corrélation dans l’arbitrage entre diversification et asymétrie et complète ainsi

le travail de Mitton and Vorkink (2007) qui ne considèrent qu’un seul actif asymétrique.

Nous étudions également l’impact du skewness des rendements dans un modèle d’évaluation

d’actifs où les deux actifs constituent l’intégralité du marché. Dans une économie d’échanges

pure, nous montrons que les alphas du modèle d’évaluation des actifs financiers (MEDAF)

sont non nuls lorsque les actifs présentent des niveaux d’asymétrie différents, et qu’il y a donc

un écart avec les résultats induits par le MEDAF. La littérature empirique s’est intéressée à

cet écart et différentes explications potentielles ont été apportées : l’écart a été relié au skew-
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ness systématique (Harvey and Siddique, 2000), au skewness idiosyncratique (Boyer et al.,

2010) et aux rendements maximaux (Bali et al., 2011). Notre analyse théorique permet de

justifier de tels résultats empiriques. En effet, nous montrons que l’actif qui sous-performe

(celui dont l’alpha du MEDAF est négatif) présente également un skewness systématique, un

skewness idiosyncratique et des rendements maximaux plus élevés que ceux de l’autre actif.

Si l’on fait en outre l’hypothèse que l’actif ayant une asymétrie plus positive est également

plus volatile (Kumar, 2009 montre que cette hypothèse est vérifiée empiriquement), notre

cadre d’analyse permet de rendre compte de l’anomalie liée aux faibles rendements des actifs

ayant des bêtas importants (Frazzini and Pedersen, 2014, Bali et al., 2017). Il est important

de préciser l’intuition derrière de tels résultats. Ici, les différences de rendements maximaux

découlent directement de la distribution asymétrique sous-jacente des rendements, et les

différences de skewness idiosyncrasiques et systématiques résultent des conditions d’équilibre

du marché. La préférence de l’investisseur représentatif en matière d’asymétrie conduit alors

à des prix d’actifs qui s’écartent du MEDAF. En outre, notre analyse montre que l’actif à

haut rendement maximal est à la fois une loterie (Bali et al., 2011) et une assurance (Barinov,

2018). Plus précisément, si la sous-performance de l’actif est liée à des rendements maximaux

élevés et à un fort skewness idiosyncratique, elle est principalement due à un fort skewness

systématique. Ceci est empiriquement confirmé par Barinov (2018) et Langlois (2020).

Afin de compléter notre étude, nous nous intéressons en outre à une seconde théorie

comportementale qui accorde une importance plus élevée à l’asymétrie : la théorie cumula-

tive des perspectives aléatoires (“cumulative prospect theory”) de Tversky and Kahneman

(1992). Les résultats relatifs au choix de portefeuille et à l’évaluation d’actifs décrits jusqu’à

maintenant sont en effet obtenus en supposant que l’agent représentatif effectue ses choix en

suivant la théorie de l’utilité attendue. Cette approche présente l’avantage de permettre la

résolution explicite d’un grand nombre de calculs mais, comme montré récemment par Ebert

and Karehnke (2020), n’accorde qu’une faible importance—de troisième ordre—au skewness.

À l’inverse, la théorie cumulative des perspectives aléatoires lui accorde une importance de
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premier ordre, bien qu’il ne soit pas possible d’obtenir les résultats directement par le calcul

et que nous soyons obligés de procéder à des simulations numériques. Comme attendu, nous

montrons que ces préférences alternatives amplifient l’importance de l’asymétrie pour les

poids de portefeuille, les équivalents certains et les écarts par rapport au MEDAF.

Enfin, nous nous intéressons également à l’impact joint du skewness et de la corrélation

dans le cadre de la gestion des risques. En effet, comme la distribution normale fractionnée bi-

variée présente des similitudes avec la loi normale bivariée usuelle, elle permet une généralisation

simple des formules de certaines mesures de risque conditionnel au cas des rendements

asymétriques. Plus précisément, Adrian and Brunnermeier (2016) proposent une mesure

appelée ∆CoVaR, définie comme la différence entre la valeur à risque (“value-at-risk”) d’un

actif donné lorsqu’un risque conditionnel connâıt un événement très négatif et cette valeur

à risque lorsque le risque conditionnel est dans son état médian. Acharya et al. (2017) pro-

posent également une mesure de risque conditionnel, ici nommée déficit attendu conditionnel

(“conditional expected shortfall”), qui est définie comme la valeur attendue d’un actif risqué

conditionnellement à un autre risque se trouvant dans la queue gauche de sa distribution.

Nous fournissons des expressions simples pour chacune de ces mesures sous l’hypothèse que

les risques concernés suivent la distribution normale fractionnée bivariée. Ainsi, lorsque la

corrélation entre les deux risques considérés est positive, les deux mesures sont plus impor-

tantes en valeur absolue lorsque le risque principal a un skewness négatif. Enfin, nous mon-

trons que l’impact quantitatif du skewness est important : pour, par exemple, une corrélation

de 0, 6, une probabilité de 5%, un risque conditionnel symétrique et une asymétrie de −0, 6

au lieu de zéro pour le risque principal, ∆CoVaR est environ 30% plus élevée en valeur abso-

lue. L’impact de l’asymétrie du risque conditionnel sur chacune des mesures est en revanche

très limité, ce qui corrobore la conclusion empirique de Adrian and Brunnermeier (2016) que

∆CoVaR est faiblement corrélée avec la valeur à risque du risque conditionnel.
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ABSTRACT 

 

This thesis consists of three chapters and studies the consequences of releasing 

simplifying unrealistic assumptions often made in asset pricing models. Specifically, the 

first two chapters focus on agent heterogeneity and deal with models populated by a 

continuum of investors who agree to disagree. The first chapter highlights the impacts of 

correlated heterogeneities. In particular there is some excess market volatility when the 

most optimistic agents are also the most patient ones. The second chapter considers a 

stationary model with non-vanishing belief heterogeneity and allows for an empirical test of 

the model-implied positive effect of belief dispersion on returns and volatility. Lastly, the 

third chapter is interested in the non-normality of asset return distributions. Defining and 

using the split bivariate normal distribution, it analyzes in a simple two-asset framework 

how skewness and its interaction with correlation affect portfolio choice, asset prices, and 

risk metrics. 

MOTS CLÉS 

 

Evaluation d’Actifs, Croyance, Hétérogénéité, Asymétrie, Corrélation 

RÉSUMÉ 

 

Cette thèse examine les effets du relâchement d'hypothèses simplificatrices souvent 

formulées dans les modèles d'évaluation. Considérant un nombre infini d'investisseurs, les 

deux premiers chapitres étudient l'hétérogénéité des agents. Plus précisément, le premier 

explore les impacts de la corrélation des hétérogénéités. Il y a par exemple un excès de 

volatilité de marché quand les agents les plus optimistes sont aussi les plus patients. Le 

deuxième chapitre développe un modèle stationnaire où l'hétérogénéité des croyances 

persiste. Cela permet de tester empiriquement l'effet positif de la dispersion des croyances 

sur les rendements et la volatilité. Enfin, le troisième chapitre s'intéresse à la non-normalité 

des rendements : définissant une distribution bivariée asymétrique intuitive, le chapitre 

analyse, dans un cadre simple à deux actifs, comment le skewness et son interaction avec 

la corrélation affectent les choix de portefeuille, les prix des actifs et les mesures de risque. 

KEYWORDS 

 

Asset Pricing, Belief, Heterogeneity, Skewness, Correlation 
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