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Abstract

Formerly considered as part of general enterprise costs, industrial maintenance has become
critical for business continuity and a real source of data. Despite the heavy investments made
by companies in smart manufacturing, traditional maintenance practices still dominate the
industrial landscape. In this Ph.D., we investigate maintenance knowledge sharing as a
potential solution that can invert the trend and enhance the maintenance activity to comply
with the Industry 4.0 spirit. We specifically consider the knowledge graphs as an enabler
to share the maintenance knowledge among the different industry players. In the first
contribution of this thesis, we conducted a field study through a campaign of interviews with
different experts with different profiles and from different industry domains. This allowed us
to test the hypothesis of improving the maintenance activity via knowledge sharing which
is quite a novel concept in many industries. The results of this activity clearly show a real
interest in our approach and reveal the different requirements and challenges that need to
be addressed.

The second contribution is the concept, design, and prototype of "SemKoRe" which is
a vendor-agnostic solution relying on Semantic Web technologies to share the maintenance
knowledge. It gathers all machine failure-related data in the knowledge graph and shares it
among all connected customers to easily solve future failures of the same type. A flexible
architecture was proposed to cover the varied needs of the different customers. SemKoRe
received approval of several Schneider clients located in several countries and from various
segments.

In the third contribution, we designed and implemented a novel solution for the auto-
matic detection of sensitive data in maintenance reports. In fact, maintenance reports may
contain some confidential data that can compromise or negatively impact the company’s
activity if revealed. This feature came up as the make or break point for SemKoRe for
the interviewed domain experts. It allows avoiding sensitive data disclosure during the
knowledge-sharing activity. In this contribution, we relied on semantic web and natural
language processing techniques to develop custom models for sensitive data detection. The
construction and training of such models require a considerable amount of data. There-
fore, we implemented several services for collaborative data collection, text annotation, and
corpus construction. Also, an architecture and a simplified workflow were proposed for
the generation and deployment of customizable sensitive data detection models on edge
gateways.

In addition to these contributions, we worked on different peripheral features with a
strong value for the SemKoRe project, and that has resulted in different patents. For
instance, one of the short-term evolutions planned for the SemKoRe is to enable predictive
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maintenance features. Such features rely heavily on the analysis of time-series data. Thus,
we developed and patented a novel method to query time series data using semantic criteria.
It combines the use of ontologies and time-series databases to offer a useful set of querying
capabilities, and the evaluation shows a good efficiency even on resource-constrained edge
gateways.

In another hand, SemKoRe proposes an ontology-centric approach for the maintenance
of knowledge sharing. Hence, the development and industrialization of SemKoRe’s services
require a good understanding of semantic web technologies. However, in our entity, most
IoT solutions’ developers have little or even no knowledge of semantic web technologies.
Therefore, we designed and implemented an easy-to-use solution to help users and developers
to instantiate and query OWL-based ontologies without any knowledge of semantic web
technologies. This solution has been patented and turns out to be useful for other ontology-
based projects.

Finally, we continue working on other innovative features in other to enrich the SemKoRe
ecosystem and to offer a better experience to SemKoRe’s stakeholders including developers,
domain experts, and customers.

Keywords

Industry 4.0, Industrial Internet of Things, Machine Maintenance, Knowledge Graphs,
Knowledge Sharing, Privacy Preservation, Semantic Web.



Résumé

Autrefois considérée comme faisant partie des coûts généraux de l’entreprise, la maintenance
industrielle est devenue critique pour la continuité de l’activité et une véritable source de
données. Malgré les sommes importantes investies par les entreprises dans la fabrication
intelligente, les pratiques traditionnelles en maintenance dominent toujours le paysage in-
dustriel. Dans cette thèse, nous étudions le partage des connaissances de la maintenance
comme une solution potentielle qui peut inverser la tendance et améliorer l’activité de main-
tenance pour se conformer à l’esprit de l’industrie 4.0. Nous considérons spécifiquement les
graphes de connaissances comme un outil permettant de partager les connaissances de main-
tenance entre les différents acteurs de l’industrie. Dans la première contribution de cette
thèse, nous avons mené une étude de terrain à travers une campagne d’entretiens avec dif-
férents experts aux profils différents et issus de domaines industriels différents. Cela nous
a permis de tester l’hypothèse d’une amélioration de l’activité de maintenance via le par-
tage des connaissances, qui est un concept assez nouveau dans de nombreuses industries.
Les résultats de cette activité montrent clairement un réel intérêt pour notre démarche et
révèlent les différents besoins et défis à relever.

La deuxième contribution est la conception et le prototype de "SemKoRe" ; une solution
s’appuyant sur les technologies du Web sémantique pour partager les connaissances de
maintenance. Il collecte toutes les données liées aux défaillances de machine, les structure
dans un graphe de connaissances et les partage entre tous les clients connectés pour résoudre
facilement les futures défaillances du même type. Une architecture flexible a été proposée
pour couvrir les besoins variés des différents clients. SemKoRe a reçu l’agrément de plusieurs
clients Schneider implantés dans plusieurs pays et de différents segments.

Dans la troisième contribution, nous avons conçu et mis en oeuvre une nouvelle solution
pour la détection automatique des données sensibles dans les rapports de maintenance. En
effet, les rapports de maintenance peuvent contenir des données confidentielles susceptibles
de compromettre ou d’avoir un impact négatif sur l’activité de l’entreprise si elles sont ré-
vélées. Cette fonctionnalité est perçue, par les experts du domaine interrogés, comme un
point essentiel et critique pour SemKoRe. Elle permet d’éviter la divulgation de données
sensibles lors de l’activité de partage des connaissances. Dans cette contribution, nous nous
sommes appuyés sur le web sémantique et le traitement du langage naturel pour dévelop-
per des modèles personnalisés pour la détection de données sensibles. La construction et
l’apprentissage de tels modèles nécessitent une quantité considérable de données. Par consé-
quent, nous avons mis en place plusieurs services pour la collecte collaborative de données,
l’annotation de texte et la construction de corpus. Aussi, une architecture et un workflow
simplifié ont été proposés pour la génération et le déploiement de modèles de détection de
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données sensibles personnalisables sur les passerelles de périphérie.
En plus de ces contributions, nous avons travaillé sur différentes fonctionnalités connexes

à forte valeur ajoutée pour le projet SemKoRe, et qui ont abouti à différents brevets.
Par exemple, l’une des évolutions à court terme prévues pour SemKoRe est de fournir
des fonctionnalités de maintenance prédictive. De telles fonctionnalités reposent fortement
sur l’analyse de données de séries chronologiques. Ainsi, nous avons développé et breveté
une nouvelle méthode pour interagir avec les données de séries chronologiques à l’aide de
critères sémantiques. Elle combine l’utilisation d’ontologies et de bases de données de séries
chronologiques pour offrir un ensemble utile de requêtes, et l’évaluation montre une efficacité
même sur des passerelles périphériques aux ressources limitées.

D’autre part, SemKoRe propose une approche centrée sur l’ontologie pour le partage
des connaissances de maintenance. Ainsi, le développement et l’industrialisation des services
de SemKoRe nécessitent une bonne maîtrise des technologies du web sémantique. Cepen-
dant, dans notre entité, la plupart des développeurs de solutions IoT ont peu voire aucune
connaissance du web sémantique. Par conséquent, nous avons conçu et mis en oeuvre une
solution facile à utiliser pour aider les utilisateurs et les développeurs à instancier et à in-
terroger des graphes de connaissances sans aucune connaissance des technologies du Web
sémantique. Cette solution a été brevetée et s’avère utile pour d’autres projets basés sur
des ontologies.

Enfin, nous continuons à travailler sur d’autres fonctionnalités innovantes pour enrichir
l’écosystème SemKoRe et offrir une meilleure expérience aux parties prenantes de SemKoRe,
notamment les développeurs, les experts du domaine et les clients.

Mots-clés

Industrie 4.0, Internet des objets industriel, Maintenance industrielle, Graphes de connais-
sances, Partage de connaissances, Protection de de données sensibles, Web Sémantique.
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During the past decade, Internet of Things (IoT) has emerged as a major paradigm shift
in the technology world. With its promise to bridge the connection between digital and
physical worlds, IoT has seen tremendous interests and growth from all sectors. Advances
in cloud computing, Big Data, cheaper & ubiquitous connectivity, sensor technologies, and
availability of different platforms have catapulted the IoT as a viable means for improved
performance, efficiency, and better user experience in multiple segments of society. We have
seen several estimates for IoT deployment and benefits like from CISCO [1] and Forbes [2].

The IoT movement entered into the industrial world as the Industrial Internet of Things
(IIoT) amid the same promises of improved performance, efficiency, and better user expe-
rience. As an enabling technology for seamless connectivity, intelligent automation, data
processing to gain insights and optimize the end-to-end processes to reduce costs, IIoT
has become one of the key strategic items of Digital Transformation initiatives of many
industries around the world [3].

Factories and industrial plants are key parts of the industries involved in manufacturing
processes. Their impact on the modern world and its functioning is massive not just because
of the goods that come out of them but also as a source of jobs and income to millions of
people. Like other parts, factories and plants have also benefited from the IIoT revolution
and are a major targets for digital transformation initiatives. Recent events like COVID-
19 [4] have not only accelerated these initiatives but also has given us good visibility on
the gains we can get on the productivity, efficiency, lower costs and safety by using the
appropriate technology [5, 6].

Due to this, many industries are making heavy investments in smart manufacturing and
production systems [7]. In return, they expect optimal and sustainable production with
minimum maintenance efforts. This makes maintenance a real source of benefits rather
than an enterprise cost, and one of the most important industrial activities.

Systems such as Computerized Maintenance Management System (CMMS), Manufac-
turing Execution System (MES), and Enterprise Resource Planning (ERP) are used to
perform maintenance activities in several industries [8]. These systems provide many im-
portant features to do the routine maintenance activity or when failures occur. However,
these systems are used to schedule, perform and optimize the maintenance process at a given
location (within a factory or a site). There is no easy way, using these systems, to allow two
different factories (or sites) to share the maintenance knowledge and details of a specific
machine’s maintenance operations without a human expert in the loop. This leads to some
factories or sites being better equipped to deal with the failures thanks to the experienced
workforce while others have to deal with longer downtime periods understanding how to
solve the failures. Therefore, the ability to share maintenance knowledge in an open and
standard manner is key for overall improvements and efficiency in the maintenance process.
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Figure 1.1: Machine Maintenance steps after a failure occurrence

Another aspect is that today when a new machine is installed in a factory, there is no
existing knowledge of its failures unless there is a human expert who has dealt with similar
machines before. In any given factory, each failure is only discovered at its first occurrence
and requires usually a long and costly curative maintenance operation. If several sites have
the same machine (which is not uncommon) then chances are that each failure will be dealt
with in isolation without taking benefit of the previous maintenance experiences performed
on the same machine elsewhere. The time taken to determine the cause of the failure and
find the right solution has a direct impact on the production capacity of the factory therefore
sharing maintenance knowledge can bring huge benefits.

The maintenance process includes, as shown in Figure 1.1, diagnostics to determine the
reasons for a failure, its impact, and to define and apply the correct repair procedures.

Considering the possibilities brought by IIoT and associated technologies, we can use
this maintenance knowledge to provide improved services, predict failures and design better
machines after learning their failures.

The work in this thesis aims to propose improvements in the maintenance activity by
sharing the maintenance knowledge among multiple actors. We propose an open solution
using Semantic Web and Knowledge Graphs to share the maintenance knowledge and ex-
periences between the factories that own and operate the same types of machines. Our goal
is to democratize the maintenance knowledge sharing approach for all industries from vari-
ous domains and of various sizes. Additionally, we also addressed concerns of our internal
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stakeholders on the data sensitivity topic and the ease of use of Semantic Web technologies
for a typical developer when using the proposed solutions.

Concretely, the thesis makes five contributions. The first contribution is a field study
through a campaign of interviews with domain experts from different domains to understand
their needs and the challenges of sharing maintenance knowledge on a large scale. The
second contribution is the concept, design, and prototype of the knowledge repository called
"SemKoRe" which is a vendor-agnostic solution relying on the Semantic Web technologies
to collect and share the maintenance knowledge. In the third contribution, we designed a
novel solution for automatic detection of sensitive data in maintenance reports which we
had to address as a priority topic based on the early feedback. The fourth contribution
is a novel method to query time series data using semantic criteria and that supports
distributed queries execution. A fifth contribution is an ontology tool to easily manipulate
and instantiate ontologies without any knowledge of semantic web technologies.

1.1 Motivation and Research Problems

In the last decades, knowledge sharing in the technology world has become more democra-
tized and more prevalent for individuals and professionals. It is a go-to approach in many
domains like in computer software development through open-source software and tools,
open datasets, crowd-sourcing, and the collective universal encyclopedia (like Wikipedia).
Tools like GitHub and GitLab have demonstrated that Knowledge sharing is an effective
medium for the exchange of ideas, validation of concepts, innovation, and collaboration on
large scale.

Knowledge sharing has been adopted by several organizations to increase operational
efficiency and staff productivity [9]. It also makes the expertise of specialists accessible to a
large community which helps for individual growth and development. However, this trend
has not gained traction in the industry yet, where despite the existence of digital solutions
for maintenance knowledge management (e.g. CMMS, MES, ERP), traditional practices
are still in force, such as paper-based maintenance reports or maintenance reports that are
never reused. Also, human factors as well as lack of established policies make it hard to
share the maintenance knowledge with other stakeholders.

Multiple standards and international consortia have promoted the sharing of industrial
maintenance knowledge [21–27]. These initiatives have proven that sharing maintenance
knowledge between multiple stakeholders can significantly optimize maintenance activity
and improve overall efficiency. In practice, the shared knowledge could be used by the ma-
chine operators as a guide to reduce the diagnostic and repair times, target the failures’ root
cause(s), and improve the machines’ efficiency. Another important effect of maintenance
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knowledge sharing is that it will facilitate the transfer of maintenance expertise between
experts and novices. This will lead to much faster handling of machine failures, training
of new staff, and reducing the dependency on external maintenance companies. Even more
importantly, it will reduce the number of accidents related to maintenance activities. How-
ever, to the best of our knowledge, there is still no solution to facilitate the maintenance
knowledge sharing among multiple stakeholders.

The starting point of this thesis was an internal project at Schneider-Electric led by
the Machine Solution Line of Business (MSol LoB) to provide new services and solutions
to its customers like Original Equipment Manufacturer (OEM) machine builders. These
OEM machine builders provide machines to some of the largest companies in the world.
As part of their digital transformation journey, these companies want to avoid downtime as
much as possible as well as the reduction in maintenance costs and better visibility about
the performance of their machine during their operation. For OEMs these needs translated
into benefits like new services to offer by gathering data from different life cycle phases of
the machines like design, engineering, commissioning, operation, maintenance, and disposal
or recycling. Another benefit is that OEMs can use the insights from the operation and
maintenance phases to improve their own machine design process and identify why some
parts of the machine fail more often than others under certain conditions. Schneider Electric,
being the service provider itself, saw the business opportunities to provide these new services
as well as predictive analytics to the OEMs and the companies who have service contracts
with it.

These concrete business needs have fuelled our activity during this thesis and our ap-
proach of using Knowledge Graphs for maintenance knowledge sharing proved suitable for
the MSol LoB needs. In fact, our work received the approval of several important clients
located in USA, UK, France, Germany, Italy, and China, working in various domains such
as Pharmaceutical, Automotive, Heating, Ventilation, and Air Conditioning (HVAC) and
Food & Beverage.

With this motivation, used as basis, this thesis addresses the following questions:

• Q1- What is the current state of the art dealing with the sharing of maintenance
knowledge? What is the taxonomy and research works? What are the challenges and
roadblocks of the knowledge sharing approach? Do industrial maintenance experts
adhere to this approach? What are the benefits of the adoption of such an approach?

• Q2- How maintenance knowledge can be shared between different stakeholders? What
will be an efficient architectural solution to accomplish this? Especially, how to manage
the maintenance knowledge collection and sharing on the three IoT layers: Edge, Fog,
and Cloud since not everyone is connected to Cloud? What features or services should
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be part of the proposed solution?

• Q3- How to design an open and extensible solution that is applicable to multiple do-
mains and works across silos? Particularly, how to capture and share the maintenance
knowledge independent of any domain constraints?

• Q4- What is the nature of sensitive data in maintenance reports? How to avoid sen-
sitive data disclosure during the sharing of maintenance knowledge? What techniques
could be applied for the privacy-preserving needs and how?

• Q5- How Semantic Web technologies can be used to enrich and to pull out insights from
IIoT historical data? More particularly, how to deal with the diversity of data sources
in IIoT? How to have an efficient mechanism for querying historical data stored on
multiple IIoT low-end gateways?

• Q6- How can Knowledge Graphs (KG) consuming and manipulation by application
developers be facilitated? How to guarantee the consistency of the manipulated KGs?
How can ontology engineers be involved to enhance the developers’ experience?

1.2 Research Methodology

In this thesis, the following research methodology is used to solve the identified research
questions.

The first step of our work was to understand the current practices and issues with respect
to the maintenance activity and data. We conducted a field study through an interview
campaign with the domain experts from multinational companies working in different seg-
ments. These interviews helped us to understand the challenges faced by the maintenance
teams and how technology solutions can help resolve their challenges. In parallel, we also
conducted a literature study to analyze the existing solutions around industrial maintenance
data sharing, and to identify their limitations and their applicability for general purpose
usage.

The second step consisted of proposing the technical solution for maintenance knowledge
sharing. During this step, we were working with the MSol LoB team to identify and satisfy
the various needs and requirements of their customers. We proposed architectural solutions
for different IoT layers: Edge, Fog, and Cloud. We also proposed a base data model, based
on Semantic Web technologies, to capture the different aspects of machines and machines
failures.

The proposed architectures and data models are implemented and evaluated using a
proof-of-concept in which we implemented the identified services for the different IoT layers.
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The technical solutions were well received but MSol LoB customers raised the issue of
potentially sharing the confidential data during maintenance knowledge sharing. To the
best of our knowledge, we did not find any existing solution for data anonymization for the
maintenance data. Therefore, in the third step, we worked on a novel solution for sensitive
data detection in maintenance reports. We also developed custom tools for sensitive data
detection that can be easily adapted to cover the various needs of each customer.

In this thesis, we propose an ontology-based approach for maintenance knowledge shar-
ing. Hence, the industrialization and extension of our solution require skilled IoT solutions
developers with a good understanding of the Semantic Web technologies. However, in MSol
Team, the majority of developers have little to no understanding of these technologies,
therefore we implemented and patented a couple of novel services that aim to help the
developers easily create their applications using our proposed solution.

1.3 Contributions of the Thesis

This thesis makes five contributions in total which are described here briefly and linked to
the original research papers addressing them. The detailed contribution of each original
research paper is presented in subsequent chapters. However, to avoid invention disclosure,
we will include only the URLs of the patents that are publicly available.

In the first contribution of this thesis, to set the basis, we conducted a field study through
a campaign of interviews with domain experts from multinational companies working in dif-
ferent segments. This survey is described in the background section and in the papers "Data
Anonymization for Maintenance Knowledge Sharing" and "Privacy-preserving Sharing of
Industrial Maintenance Reports in Industry 4.0". The survey was limited to manufacturing
industries for which equipment maintenance is a major activity. On one hand, the survey
highlighted several issues faced by these experts in their daily routine. We found a real
interest in a maintenance knowledge sharing solution and these actors believed that it will
be beneficial in the short term as well as in the long term. On the other hand, the survey
allowed us to identify the various challenges that could impede the development of generic
maintenance knowledge sharing solutions.

The second contribution of the thesis is "SemKoRe", a technical solution for maintenance
knowledge sharing. We addressed most of the challenges identified through the interviews
campaign. The overall concept of SemKoRe was presented in the paper "SemKoRe: Im-
proving Machine Maintenance in Industrial IoT with Semantic Knowledge Graphs", along
with possible research avenues. In this contribution, we present the architectural choices
and the adequate data models to efficiently capture and share the machine failures. We
also provide details of the services running in the Cloud, Fog, and Edge layers for sharing



26 1.4. OVERVIEW OF MY PUBLICATIONS

the maintenance knowledge. During this work, we were worked with the MSol LoB team
to identify and satisfy the various needs and requirements of their customers.

In the third contribution, we designed and implemented a novel solution for the auto-
matic detection of sensitive data in maintenance reports. This contribution is described in
detail in the paper "Privacy-preserving Sharing of Industrial Maintenance Reports in Indus-
try 4.0" and is subject of the Patent "Data Sanitization Method for Industrial Maintenance
Reports". In this work, we analyze the structures and the nature of sensitive data in main-
tenance reports and present the methodology to construct the needed data corpus in order
to compensate for the lack of real maintenance reports. We also define a semantic-based
approach combined with Natural Language Processing and Rule-Based techniques to build
custom sensitive data detection tools that fit the needs of different stakeholders.

In the fourth contribution, we designed and implemented a semantic engine for dis-
tributed time-series data. This work is the subject of the Patent "Semantic Search Method
for a Distributed Data System with Numerical Time Series Data". It simplifies the inter-
action with the time-series database in the Semantic-based SemKoRe’s ecosystem. In this
work, we defined a simple data querying language for non-experts to allow them to use se-
mantic concepts and time-series data to get the needed information. The evaluation shows
good efficiency even on resource-constrained edge gateways.

The final and fifth contribution is a REST API for consistent ontology instantiation.
In this work, we address the needs of typical software developers who want to build new
applications and services over the Semantic Web stack without deep expertise in it. The
API allows to manipulate Knowledge Graphs with respect to the defined ontology models’
constraints and to guarantee the consistency of the Knowledge Graphs without needing
extra ontology tools like a reasoner. This work is the subject of the Patent "Runtime API
for Consistent Ontology Instantiation", and turns out to be useful for other ontology-based
projects at Schneider Electric.

1.4 Overview of my publications

Paper I is "SemKoRe: Improving Machine Maintenance in Industrial IoT with Seman-
tic Knowledge Graphs". It presents the proposed approach for industrial maintenance
knowledge sharing along with implementation details. This paper is available on: https:

//www.mdpi.com/2076-3417/10/18/6325.
Paper II is "Data Anonymization for Maintenance Knowledge Sharing". It provides

the background and motivations of the need to avoid sensitive data disclosure during the
maintenance knowledge sharing activity. It also describes the state-of-the-art techniques for
data anonymization that can be applied for sensitive data detection purposes. This paper

https://www.mdpi.com/2076-3417/10/18/6325
https://www.mdpi.com/2076-3417/10/18/6325
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is available on: https://ieeexplore.ieee.org/document/9568260.
Paper III is "Privacy-preserving Sharing of Industrial Maintenance Reports in Industry

4.0". It presents a practical approach for sensitive data detection in maintenance reports.
Details of the prototype and performance evaluations are also presented. This paper is
accepted and presented at the AIKE1 (Artificial Intelligence & Knowledge Engineering
2021) conference.

Patent I is "Semantic Search Method for a Distributed Data System with Numerical
Time Series Data", Patent Number WO/2019/104077. It introduces a new method to
query times series data using semantic criteria. It is described in Chapter 5 of this thesis.
This patent is available publicly on the URL: https://patentscope.wipo.int/search/
en/detail.jsf?docId=WO2019104077.

Patent II is "Runtime API for Consistent Ontology Instantiation",Patent US Filing
Reference Number 17/360,923. It proposes a tool for manipulating Knowledge Graphs in
a consistent manner for the users having little or no knowledge about the Semantic Web
technologies. This patent is not publicly available.

Patent III is "Data Sanitization Method for Industrial Maintenance Reports", Patent
filed on 07-10-2021, Reference Number 63/251,362.. This patent covers the same idea as
paper III.

The author is the lead contributor in all the papers and patents and has led the im-
plementation, prototyping, compilation of results, and writing of the papers. During the
preparation of the papers and patents, the author discussed the progress in the meetings
and incorporated the suggestions/inputs given by other co-authors and supervisors.

1.5 Thesis organization

The following chapters summarize the main contribution of the thesis and provide dis-
cussions and ideas for future work. Chapter 2 discusses the background, motivation, and
summary of the state-of-the-art, and includes the global conclusions learned from the in-
terviews campaign. Chapter 3 describes the SemKoRe approach for industrial maintenance
sharing, it includes the design and implementation details and performance evaluation re-
sults. This chapter is the summary of paper I. Chapter 4 presents our approach for sensitive
data detection in maintenance reports. It summarizes the contributions in Papers II and III
and the main idea of patent III. Chapter 5 is devoted to the semantic engine for distributed
time-series data. It is the summary of the Patent I. Chapter 6 describes the design and
implementation of the REST API for consistent ontology instantiation work. It summarizes
the contribution in Patent II. Chapter 7 presents the items for future work and a summary

1https://www.ieee-aike.org/

https://ieeexplore.ieee.org/document/9568260
https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2019104077
https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2019104077
https://www.ieee-aike.org/
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of the thesis. Finally, the research papers are attached with this thesis in the following or-
der. Paper I is in annex A, paper II in annex B, and paper III in annex C. The patents files
are not included in this thesis, we include only the internet URLs of the patents publicly
available.
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2.1 Introduction

This chapter discusses the background, motivation, and state-of-the-art in the area of main-
tenance knowledge sharing. It addresses the following research questions:

What is the current state of the art dealing with knowledge sharing for industrial main-
tenance data? What are the challenges and roadblocks of the knowledge-sharing approach?
Do industrial maintenance experts adhere to this approach? What are the current practices
in terms of: maintenance knowledge collection, reusing and sharing?

At the beginning of this thesis work, it was observed that there is a lack of studies
about the maintenance knowledge sharing on a large scale. Most of the works are focused
on optimizing the maintenance operations or knowledge management and reuse for specific
machines or for specific organizations or domains. And to the best of our knowledge, there
is no existing study or research work that proposes a generic solution for the maintenance
data sharing, and that can be adopted by industries from any domain and of any size.

In order to address this, we start with the normative definition of the the industrial
maintenance. Then, we present some key motivating scenarios, with practical examples to
help us envision the core idea of the problem domain. After, we present the details of the in-
terview campaign we conducted to identify the needs and pain points of the domain experts
and to discover the roadblocks that hinder maintenance knowledge sharing in the real-world.
We also present a state-of-the-art study about the existing solutions that already adopted
the maintenance knowledge sharing approach along with their application limitations, and
the the different facets of maintenance knowledge sharing, such as the current practices in
industry, the maintenance knowledge collection, reuse or capitalization and sharing.

2.2 Industrial Maintenance - Normative definition

To understand the context of this thesis, let’s first start with the definition of maintenance.
The French standard NFX 60-010 [10] defines the maintenance as "all the actions needed
to maintain or restore an asset in a specified state or able to provide a specific service".
This standard was replaced by the European standard NF EN 13306 [11] that extends the
definition of maintenance to: "All the technical, administrative and management actions
during the life cycle of an asset, intended to maintain or restore it in a state in which it can
perform the required function." According to the NF EN 13306 standard, as shown in Figure
2.1, industrial maintenance is divided in two main categories: corrective maintenance and
preventive maintenance. On the one hand, the corrective maintenance is performed after
a breakdown or a failure occurrence. It can be performed immediately or deferred in time
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Figure 2.1: Normative Maintenance Types - NF EN 13306.

depending on the function of the asset or on the severity of its failure. On the other
hand, the preventive maintenance is performed at predetermined intervals (i.e. Scheduled
maintenance) or according to a prescribed criteria (i.e. Condition-based Maintenance) to
reduce the probability of failures or degradation of the functioning of an asset [13].

NF X60-000 Standard [13] defines five levels of maintenance tasks. Level 1 consists of the
simplest maintenance tasks that can be usually done by a machine operator whereas level
5 corresponds to the complex maintenance tasks that require significant resources usually
related to the machine builder. The maintenance tasks of levels 2, 3 and 4 have increasing
complexity and are done by maintenance technician or by external maintenance companies.

For each of these maintenance task, the machine operator or the maintenance technician
prepares a maintenance report in which he describes the context and the details of the
performed actions. The maintenance report can be on paper or digital such as a maintenance
data management system, as expected from Industry 4.0 [14].

2.3 Motivating Scenario

The following scenario is based on our interactions with real customers who want to improve
their existing maintenance process. Let us consider three actors: Bob the machine operator,
Alice the maintenance technician, and Joe the OEM machine builder. On a given day, Bob
is working on the factory floor operating several machines when suddenly one machine stops
working. Bob spends some time fixing the issue himself but is unable to do so since Bob’s
main job is to operate the machine. He might be able to fix small issues due to his experience
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but he is supposed to call a qualified technician for anything major. He then calls Alice to
come to the factory floor to check on the machine. When Alice checks the machine she finds
that she is also not able to solve the issue so she calls the OEM or Schneider Electric service
bureau, where a machine expert guides her through the repair process. Finally, Alice is able
to fix the issue and the machine starts working.

The whole process took a long time and while Bob is now able to operate his machine, if
the same issue occurs in a similar type of machine located in a different city the same process
would likely be repeated because only Alice knows how to quickly solve this particular issue.
However, if Alice can describe what she learned from the service bureau and share her
experience with the technicians in other sites by using some appropriate mechanism, they
could all benefit from this common knowledge.

Another beneficiary of this common knowledge is Joe. Today, when Joe gets reports
about the issues with his machines from different customers, he has no easy way to get
the finer details that can only come from the technicians like Alice. These details could be
useful and help him to understand why some of his machines are facing particular issues.
This can help him to improve the design and engineering process of his machines, especially
in the case of hundreds or thousands of machines being used worldwide, the scale of the
problem and timely action in resolving the issue becomes hugely difficult. Another benefit
is that using the insights from customer A, Joe can help customer B to quickly respond to
machine issues while respecting privacy and the sensitive nature of the information, if both
customers have the same type of machines.

2.4 Interviews for Maintenance Knowledge Sharing

2.4.1 Setup

To understand the perspectives of different actors involved in industrial maintenance opera-
tions, we conducted a survey through a set of direct interviews. We interviewed personas like
plant managers, production manager, machine operators, maintenance technicians, mainte-
nance engineers, service bureau managers, and innovation VP. The MSol LoB team identi-
fied 30 companies from various domains (Engineering, pharmaceuticals, automotive, HVAC,
and Food & Beverage) and from 6 countries (UK, Spain, France, Switzerland, China, and
the US). The survey was limited to manufacturing industries for which equipment mainte-
nance is a considerable activity.

The author of the thesis has personally led the interviews with 9 domain experts lasting
between 60 to 120 minutes. Each interview was recorded and transcribed.

Through this investigation, we tried to understand various aspects of industrial main-
tenance such as:
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• The end-to-end story from the occurrence of a failure until the problem resolution.

• The life cycle of maintenance reports and the different actors generating or consuming
them.

• The current practices in terms of reusing or sharing the available knowledge.

• The sensitivity of the maintenance knowledge.

The main questions that were asked during these interviews are presented in Annex A.
These do not include the business analysis and the impromptu questions asked during the
interviews.

The interviews allowed us to discover the added value of the research topic directly
from domain experts and potential customers, and to learn about the various facets of
maintenance activity. On the one hand, the survey brought forward several issues that are
faced by these actors in their daily routine. We found a real interest in a maintenance
knowledge sharing solution and these actors believed that it will be beneficial in the short
term as well as in the long term. On the other hand, the survey allowed us to identify the
various challenges that could impede the development of generic maintenance knowledge
sharing solutions. Hereafter, we summarize the answers of the different domain experts to
the most meaningful questions for the background analysis.

2.4.2 Results

2.4.2.1 End-to-end story for corrective maintenance

When a machine failure occurs, it is signaled, either by the system, in case of automatic
surveillance of critical components or by the machine operator. The machine is then repaired
by the machine operator in case of simple problems, or by the maintenance technician or
external companies in case of complex problems. Large groups invest in service bureau
entities, with qualified maintenance technicians and engineers, to manage the maintenance
activity and to reduce the dependency on external companies.

In large companies, the service bureau provides the maintenance procedures to repair
the known problems and defines the different parameters to measure before and after the in-
tervention. In case of unknown failures, the service bureau remotely assists the maintenance
technician using a digital camera. This approach is typical in most of the other companies.
Usually, the machine operator or the maintenance technician improvises or, when available,
follows the machine builder’s instructions which are not necessarily applicable in all situa-
tions. When an external company intervenes, the solving procedure is almost never shared
with the customer.
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Once a machine gets repaired, a maintenance report is written describing the problem,
the context, and the repairing procedure. The report is later extended by the maintenance
manager or the technician with additional details such as the maintenance cost and the
appropriate KPIs of the machine.

2.4.2.2 Life-cycle of maintenance reports

The maintenance report is most of the time written on paper by the maintenance technician
before being transcribed later on CMMS or equivalent tools by the maintenance manager
or the service bureau. However, according to the domain experts, several industries keep
maintenance reports on paper or use document scanning as a digitization approach without
any ability to track the maintenance tasks.

In the best-case scenarios, the service bureau takes care of structuring the details men-
tioned in the report and defining the step-by-step procedures that might be reused to solve
future problems of a similar nature. However, in many factories, only a few details can
be stored in the CMMS-like tools. For example, the tools used in two Schneider-Electric
plants provide text fields limited to 40 characters only to capture the details. This forces the
maintenance person to provide details in Word or Excel documents as an option. However,
the overall process is designed in such a manner that only maintenance experts, working in
the same plant or factory, are able to consume the details and reuse them in the future.

For legal reasons, the maintenance reports are stored for a specific duration, e.g. at
least two years in Europe.

2.4.2.3 The current practices in terms of reusing or sharing the available main-
tenance knowledge

Most of the interviewed customers admitted that they have a lot of stored maintenance
reports but do not know how to follow, analyze and capitalize on them. There are several
limitations to this. The first limitation is that such reports are often indexed by the date,
making a search of similar failures or frequent root causes of failures extremely tedious.

The second limitation is that none of the operators or maintenance technicians have
access to the recorded maintenance reports. This is mainly due to the access limitations,
restricted only to a service bureau or plant managers. Another aspect is that even with the
right access, the complexity of using the maintenance tools is a major issue for people not
proficient with the IT tools.

The third limitation is that due to the conciseness of the maintenance reports they
either have incomplete details or no details at all about the repairing procedures. This
conciseness is not only due to software limitations. But more to the lack of awareness about
the importance of the quality of the maintenance report. Two important facts came into
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the limelight during our interviews. First, the maintenance reports are never reviewed by
anyone in the company, so spending an effort to prepare detailed reports seems unjustifiable
to the maintenance technicians. Second, the maintenance technicians that are not trained
nor motivated to provide detailed maintenance reports, prefer to keep their knowledge
private as a guarantee of job stability.

For all these reasons, maintenance reports are almost never reused to solve similar
problems.

It happens sometimes that the repairing procedures of some machine failures are only
known to a particular maintenance technician in the company. And when that failure occurs,
the production stops until the maintenance technician fixes the problem. This makes the
company extremely dependent on individuals, and the high turnover rate becomes harmful
for businesses.

2.4.3 Maintenance Knowledge Sharing Challenges

Hereafter, we compiled a list of the most important challenges of maintenance knowledge
sharing according to the interviewed experts:

1. Business culture: Sharing knowledge is not a common activity in most organiza-
tions. It has been demonstrated that individuals are rewarded mostly for what they
know, and not what they share [18]. The competitive environment that encourages
individual instead of collective productivity has taught employees to consider their
knowledge as their own property, and that to deepen and defend their knowledge is
the main way to keep their jobs within the organization. This can be translated as
a lack of trust between the employers and the employees, which is a mandatory in-
gredient for successful knowledge sharing in organizations [19]. Also, today, when a
maintenance operation is done by an external company, the produced maintenance
report is usually not reusable. In fact, most of the time the maintenance details are
missing or encoded depending on the rules of the external company. This lack of
clarity is, most of the time, intentional to avoid transferring useful knowledge and to
maintain the dependability of the customers on the external company’s services.

2. Maintenance data collection: The collection of good quality maintenance data1 is
a mandatory step before extracting and sharing useful maintenance knowledge2 from
it. It is a long-term activity that requires competent and well-trained personnel to

1Maintenance data refers to maintenance reports created to document a maintenance operation. These
may contain data about the machine’s components, description of the failure, and details of the maintenance
procedure.

2By maintenance knowledge we refer to the result of an aggregation of maintenance data collected by
many entities that is all relative to the same machine type.
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guarantee the quality and usefulness of the collected data. However, this is usually
seen as a marginal and costly process instead of being considered a solid investment
for the future [20].

3. Human factors: Many people may be reluctant to write a detailed report when they
are not confident in their own expertise and want to avoid being judged. Also, when
failure frequency is high, many maintenance operators believe there is no time to write
a detailed report and thus may produce minimal reports with little or no transferable
knowledge.

4. Common maintenance taxonomy: Collecting good quality maintenance data is
not enough to make it shareable. Entities exchanging their maintenance data must
have the same understanding of the shared data and hence, use the same vocabulary or
taxonomy. For instance, it is common that one maintenance task might be described
differently by two (or more) maintenance technicians even within the same factory.
In fact, due to the employee turnover and age structure, technicians usually use the
vocabulary with acronyms or abbreviations learned through previous experiences in
different manufacturing domains, and often there is a lot of heterogeneity is involved.

5. Legal aspects: Every maintenance report is a potential legal liability. In fact, the en-
tity producing the maintenance report is legally responsible for the material damages
that may be caused by the application of the report’s instructions. The responsibility
could be penal in the case of human damages. Due to this issue of responsibility, some
large companies destroy their maintenance reports beyond a certain legal period (e.g.,
2 years in Europe) to avoid any future problems associated with their reports.

6. Sensitive data disclosure: Maintenance data may contain sensitive information
that could compromise or negatively impact a company’s activity. Thus, companies
often choose to keep all their data secret to ensure business stability. Therefore, judg-
ing a piece of information to be sensitive remains a totally subjective decision based
on the interviewed experts. Some believe that their maintenance data are not sensi-
tive as they are using standard machines that can be found in several factories around
the world. Others believe that even on standard machines, the machine configuration
can be sensitive and be part of the competitive know-how of the company. However,
most of the interviewed experts agree on the need to preserve data privacy during the
maintenance knowledge sharing activity.

It is important to note that in this thesis, we only focus on challenges 4, 5, and 6. We
determined that challenges 1, 2, and 3 are more relative to the business culture and are out
of the scope of our research work.
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2.5 Existing Maintenance Knowledge Standards and Initia-
tives

There are many international standards and consortium agreements that promote and adopt
the maintenance knowledge sharing approach. Some of the most well-known ones are:

• The OREDA project [21]: Offshore and Onshore Reliability Data for oil and gas
industries, which led to the ISO 14224 international standard [22]. It is a project
organization with 7 to 11 oil and gas companies as members, managing data of 292
installations and 18000 equipment units. Running for more than 35 years, OREDA
has led to significant cost savings in the development and operation of platforms 3,
and has helped the participating oil companies to save $70M.4.

• SPARTA [23]: System Performance, Availability and Reliability Trend Analysis adopted
by 9 wind energy companies in the UK. It manages and exchanges data of 19 wind
farms and 1256 turbines in 2020. It covers more than 60% of all offshore wind power
generation in the UK. Thanks to SPARTA, the average number of crew transfers per
turbine in the UK fell by 50% between 2014 and 2018, to around six trips per year 5.

• WInDPool [24]: stands for Windenergy-InformationData-Pool, for wind energy in-
dustries in Germany. Adopted by 7 members to exchange the maintenance data for a
fleet of 640 wind turbines onshore and 297 wind turbines offshore with an expectation
of more than 1M euros of costs savings on the maintenance activity 6.

• The Configuration Data Exchange [25]: launched by General Electric Aviation for
the world-wide aviation industry. $4 billion savings are anticipated across the sector
thanks to the configuration data exchange solution 7.

• OPDE [26]: The International Pipe Failure Data Exchange project; and

• ISO 6527 [27]: A Reliability Data Sharing standard for nuclear energy producers.

Through these standards and initiatives, the maintenance knowledge sharing concept
has proven its efficiency in the improvement of equipment reliability, in the enhancement

3http://www.datsi.fi.upm.es/~rail/new/WP2/OREDA-history.htm (accessed 17 Feb, 2021)
4https://www.oreda.com/join-us (accessed 17 Feb, 2021)
5https://ore.catapult.org.uk/wp-content/uploads/2018/11/SPARTA-Portfolio-Review-201718-

1.pdf (accessed 17 Feb, 2021)
6https://wind-pool.iee.fraunhofer.de/opencms/export/sites/WInD-Pool/img/WInD-Pool-

Business-Case_ENG.pdf (accessed 17 Feb, 2021)
7https://www.businesswire.com/news/home/20161115005705/en/GE-Aviation-Launches-

Configuration-Data-Exchange-Reduce (accessed 17 Feb, 2021)

http://www.datsi.fi.upm.es/~rail/new/WP2/OREDA-history.htm
https://www.oreda.com/join-us
https://ore.catapult.org.uk/wp-content/uploads/2018/11/SPARTA-Portfolio-Review-201718-1.pdf
https://ore.catapult.org.uk/wp-content/uploads/2018/11/SPARTA-Portfolio-Review-201718-1.pdf
https://wind-pool.iee.fraunhofer.de/opencms/export/sites/WInD-Pool/img/WInD-Pool-Business-Case_ENG.pdf
https://wind-pool.iee.fraunhofer.de/opencms/export/sites/WInD-Pool/img/WInD-Pool-Business-Case_ENG.pdf
https://www.businesswire.com/news/home/20161115005705/en/GE-Aviation-Launches-Configuration-Data-Exchange-Reduce
https://www.businesswire.com/news/home/20161115005705/en/GE-Aviation-Launches-Configuration-Data-Exchange-Reduce


38 2.6. MAINTENANCE KNOWLEDGE SHARING REQUIREMENTS

of maintenance processes, and in the reduction of production costs, leading to savings over
a machine’s life cycle. However, each of these application cases targets a specific domain
and has been adopted by only a handful of participants who exchange their data under
multilateral agreements.

2.5.1 Existing Standards and Initiatives Limitations

All these standards and initiatives try to address aspects of the challenges presented above.
The existence of international standards that rule the data sharing activity may, itself, has
a positive impact on challenges 1,2, and 3, since the existing successful experiences are
sufficient to influence the business culture and processes and indirectly reduce the human
factors risk. They recommend the training of all the personnel involved in the data collection
or reporting activities. They also encourage to propose incentives to the personnel as a way
to improve the quality of the collected or reported data.

Challenge 4 is explicitly handled by the definition of standard exhaustive taxonomies
that describe the equipment components, failure details, and the maintenance procedures
of the maintenance key performance indicators (KPIs). This is already possible where the
standards are defined for specific industry fields (e.g., oil & gas) with well-known types of
equipment. However, this solution cannot be adopted to cover all industries. Consortia
agreements are a solution for the legal aspect (challenge 5), as data is contractually agreed
to be shared by declining all responsibility relative to its use. Nevertheless, this approach
is not scalable and not efficient when targeting a large set of companies.

Finally, the sixth challenge is being addressed by the cited standards by their recom-
mendations to apply data anonymization. This process aims to remove all sensitive data
from the maintenance knowledge before it is shared. In practice, the anonymization of
maintenance data is usually done manually, as no automated approach has been adopted
or promoted by the standards and initiatives.

2.6 Maintenance Knowledge Sharing Requirements

Based on the motivating scenario described above, and with respect to the interviews cam-
paign results, we now present the following set of requirements.

The first requirement is that the proposed solution should make it easy to capture and
share knowledge among various actors.

The second requirement is that the proposed solution should be usable both on the
cloud (public or private) and on-premise systems. Indeed many customers are willing to
connect their machines and factories to the cloud, while others choose to fully isolate their
factories in order to protect their industrial property and to keep their private data locally.
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The third requirement is that the solution should have a built-in mechanism to protect
sensitive information about the processes and the business. During our interactions with
customers, this requirement came up as the make or break point for them.

The fourth requirement is that the solution should support root cause analysis and make
it easy to identify the component(s) that cause the failures.

The fifth requirement is that the solution should be platform-independent and thus
should not depend on any particular hardware or software platform.

The sixth and last requirement is that the proposed solution should be open and exten-
sible to cover the current as well as future needs. In fact, the interviewed customers are
expecting a wide-opened solution that is opened to third-party equipment.

2.7 Industrial Maintenance Knowledge Management & Shar-
ing - State-of-The-Art

In this section, we present the state-of-the-art of maintenance knowledge sharing. We first
distinguish the different types of maintenance knowledge, and we highlight the importance
of maintenance knowledge management. Then, we present the most commonly used tech-
nologies for maintenance knowledge management, and we detail the current practices in
industries for maintenance knowledge management based on field investigations. After-
ward, we describe the main approaches used to capture and capitalize the maintenance
knowledge. Last, we describe the used approaches for the maintenance knowledge sharing
in industrial contexts.

2.7.1 Importance of knowledge collection and management for industrial
maintenance

In the literature, maintenance knowledge is defined as the combination of two comple-
mentary types of knowledge: tacit knowledge and explicit knowledge. This classification
of knowledge is based on the degree whether knowledge could be easily shared with oth-
ers [30]. Tacit knowledge refers to the knowledge that is difficult to express or extract.
Polanyi stated tacit knowledge, that "we can know more than we can tell" [31]. In contrast,
explicit knowledge could be easily expressed by words or documents.

Several studies like [28,29] agree on the importance of knowledge management in main-
tenance activity to make the most of explicit and particularly tacit maintenance knowledge.
More and more organizations try to use their internal knowledge more efficiently [33], al-
lowing them to collect a great mass of data every day [32].

Nevertheless, the authors of [37] conducted a survey in order to obtain the perception
of the maintenance technicians regarding maintenance knowledge management. It was
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estimated that only 50% of the maintenance knowledge is actually recorded (explicit) in the
company, while the remaining 50% is maintenance knowledge that maintenance technicians
have. This significant gap between the tacit and explicit maintenance knowledge can affect
the companies, as part of the strategic knowledge is lost when a maintenance technician
leaves the company.

The reason for this knowledge retention is not necessarily linked to the tacit knowledge
nature, as being difficult to explain, but more to the lack of means and adequate resources
to help the maintenance technicians to express easily their tacit knowledge.

Also, it was proven that maintenance knowledge contributes to the safety and reliabil-
ity of industrial plants [34]. the authors of [35] studied the human maintenance errors in
power generation plants, they found that many of human errors factors are directly or indi-
rectly linked to the lack of efficient maintenance knowledge. Also, Faulty procedures, poor
training and work practices are usually the result of inefficient or nonexistent maintenance
knowledge management strategy. Which generates significant costs and important losses to
the manufacturing companies [36].

2.7.2 Maintenance Data Management Systems

Maintenance data management became critical with the advent of Industry 4.0, and several
software editors propose various solutions to manage maintenance data. These solutions
can be classified into three main categories:

1. Computerized Maintenance Management System or CMMS : is a software dedicated
to tracking and maintaining assets and resources in an organization’s maintenance
unit. It allows to collect maintenance details and keeps a history of all maintenance
operations for every managed asset [15].

2. Manufacturing Execution System or MES : is a software that collects in real-time the
production data of a factory or a workshop, including quality control, production
monitoring, scheduling, and preventive and curative maintenance.

3. Enterprise Resource Planning or ERP : is a software package composed of several
modules and applications that manage every aspect of an organization’s business pro-
cesses (e.g. financials, manufacturing, inventory, procurement, project management,
and so on). Maintenance modules are proposed as extensions and offer usually the
same features as a CMMS.

These systems provide features such as predictive and preventive maintenance, mainte-
nance planning, scheduling, execution, monitoring, and traceability. However, these systems
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have three inherent drawbacks. First, they are intended to optimize the maintenance pro-
cess at given location (a factory or a site). This means that two different factories (or sites)
cannot share the details of a specific machine’s maintenance operations without a human
expert in the loop.

The second drawback of these systems is that they are not interoperable at the seman-
tic level [16, 17]. For instance, Schneider Electric works with several Original Equipment
Manufacturers (OEMs) who design, build, and ship machines for their customers around
the world. In practice, there is no easy way to align the data coming out of these mainte-
nance systems and to thereby get a uniform understanding. This issue is complicated by
the heterogeneity of these systems and the associated silos since each business segment and
customer is unique and operates under different regulatory and geographic constraints.

The third drawback is that these systems and are difficult to use by the maintenance
technicians [38]. This was also confirmed during our interview campaign by the testimonies
of a maintenance technician and two service bureau managers. In fact, these tools support
several advanced features but are far from being intuitive for field operators and technicians.

2.7.3 Current practices in industrial maintenance knowledge manage-
ment

Despite the existence of several tools and resources for efficient management of maintenance
knowledge. The current practices in many industries are far to be compliant with the
Industry 4.0 spirit.

As an example, the authors of [38] conducted a field study on two Swedish companies,
they came up to the conclusion that the maintenance information collection and sharing
practices are to date at a pre-industry 4.0 maturity stage. Despite the implementation of
digitization capabilities and resources such as ERP systems, word of mouth, papers, and
emails remain the main communication channels in the shop floors. The authors highlight
the necessity to create a supportive organizational structure and culture and to continue
to develop capabilities of information systems in order to enhance knowledge sharing in
industry 4.0.

In another example, the authors of [39] conducted a survey about maintenance practices
on industrial companies in Manaus in Brazil. They found that most companies have a
basic level of maintenance management and they spend much effort and time to attack the
consequences instead of focusing on causes. They strongly believe that the main reason
for this situation is the poor maintenance knowledge management, and they consider that
solutions such as CMMS might be adequate for maintenance knowledge management.

The authors of [40] also found in their investigations that the maintenance knowledge is
usually stored in an inconsistent format and that every maintenance operator uses different
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methods to describe their experiences and tacit knowledge. Also, the different actors in
industries, including managers, supervisors, and operators consider that the lack of knowl-
edge on the plant, equipment, and process is the main limitation for implementing effective
maintenance procedures.

2.7.4 Maintenance knowledge capturing and capitalization

Several knowledge-based systems, usually based on expert knowledge, have been developed
to support maintenance decisions, with objectives including design of strategies, scheduling
of tasks, or diagnosis of machines [30].

Computerized Maintenance Management Systems (CMMS) are generalized in large com-
panies to manage large amounts of information provided by technicians after each mainte-
nance intervention [41]. However, most of these enterprises do not use such data properly
so as to transform them into knowledge to be employed in their own activities [42]. Thus
various solutions are proposed in the literature to enhance the maintenance knowledge cap-
turing and capitalization.

in [29], the authors propose a framework allowing to manage and generate knowledge
from information on past experiences in order to improve the decisions related to the main-
tenance activity. Historical data is selected from the existing CMMS and structured using
conceptual graphs. Then, association rules are defined in order to infer additional knowl-
edge from past experiences. The inferred knowledge is then validated by the domain expert
and shared back with the CMMS tools. However, this data mining approach requires the
involvement of a human expert in the different phases of knowledge extraction, formaliza-
tion, and inference, which means that every solution is specific to the context of use and
cannot be applicable for large-scale cases.

It is important to note that a large pool of work on industrial maintenance and main-
tenance knowledge capturing and capitalization use ontologies as a way to structure and
formalize the maintenance knowledge. Ontologies are becoming a trend in various do-
mains [43], research communities commonly assume that they are the appropriate modeling
structure for representing knowledge [44]. In this thesis, we focus on ontology-based ap-
proaches to capture maintenance knowledge because we believe that other approaches will
not fit the heterogeneity and diversity of the domains and segments of Schneider customers.

For instance, the authors of [45] created a taxonomy of the Prognostics and Health Man-
agement in manufacturing. They propose a formal ontology for failure prognostics based on
industrial ISO standards for failure mode analysis, failure diagnostics, and prognostics (e.g.,
ISO 13372, ISO 13379, ISO 13381, and others). Failure knowledge is described in ontologies
from ISO standards. Semantic Web Rule Language (SWRL) [46] is used to define rules in
order to generate warning messages in case of abnormal states. However, no approach is
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described to share the acquired failure knowledge among different users.
In [47], authors used ontologies for fault diagnosis for industrial control applications.

They utilized reasoning capability to check the model consistency over time and to raise
early alarms for critical failures.

[48] propose ontology-based support for fault diagnosis for aircraft maintenance oper-
ations. An aircraft maintenance ontology is modeled and fed by the (manual) alignment of
several existing ontologies related to the avionics domain to discover the relations between
the causes and failure symptoms, explain the failures and any unscheduled maintenance
requirements as well as the possible procedures that can be applied to each situation.

An ontology-based approach is adopted [49] for the fault diagnostics of conveyors. The
knowledge about fault symptoms, fault causes, and fault solutions was modeled with mul-
tiple ontologies. The resulting ontologies were mapped together based on a mathematical
formulation of conveyor fault diagnostics. Some reasoning rules were defined in order to
infer additional relations between faults, symptoms, and potential causes. In [50], R. Chen
et al. used ontologies to model the knowledge of fault diagnosis for rotating machines.
Their proposed ontology model describes fault diagnosis knowledge considering the vibra-
tion characteristics as the main fault factor. The model’s reasoning capability is considered
by defining some SWRL rules for fault diagnostics.

[51] also relied on ontologies to design a loader fault diagnosis system. It aims to
help users find the fault causes, locations, and fault maintenance measures of loaders in a
reasonable amount of time. Ontology is used to model the loader information and describe
the relative failures. This work uses the Condition Based Reasoning (CBR) method to
diagnose loader faults by finding similar corresponding situations in the past. When no
corresponding case is found, CBR fails and the (SWRL-based) Rule-Based Reasoning (RBR)
approach is proposed for fault diagnosis.

All the works mentioned above use ontologies to model machine data models and failure
knowledge. However, none of these works satisfy all of the requirements that we identified
from our motivating scenario. These works developed various ontology models and some ex-
haustively described potential failures and their characteristics. However, to the best of our
knowledge, no machine failure ontology is available for reuse or for extension. Furthermore,
neither of our two major requirements, i.e., knowledge sharing and data confidentiality have
been considered.

2.7.5 Maintenance knowledge sharing

efficient Knowledge communication between the different manufacturing actors is a key
element for successful maintenance [52]. Maintenance knowledge collection and modeling
and capitalization have been intensively investigated in the literature. However, very few
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papers explored the maintenance knowledge sharing field.
In fact, most of the works either do not consider the maintenance knowledge sharing

aspect such as [53], or admit that the existing CMMSs, or other maintenance information
systems, are sufficient for that purpose. As an example, the authors of [42] proposed a
conceptual framework for sustainable performance in maintenance, they adopted a three-
phases approach, consisting of 1) structuring the maintenance knowledge through knowledge
graphs, 2) creation of rules to capitalize the structured knowledge, and then share the
collected knowledge using CMSS-like tools. similar approaches are adopted in other works
like [29].

On the other hand, the authors of [28] studied the communication practices in the
industry and defined a model for gathering and sharing knowledge in maintenance work.
Their model considers the maintenance technician as the central entity in the knowledge
collection and sharing flows. Thus, in addition to adequate software tools and resources,
the training and encouragement of maintenance operators are success keys for efficient
knowledge collection and sharing.

Based on the principle: "the transfer of know-how requires a process of show-how" [54],
various works propose mainly three technologies to support communication and mainte-
nance knowledge sharing: 1) augmented reality guidance [55–57], 2) remote assistance
[59–61], 3) data collection and reporting with the wearable devices [62,63]. However, despite
the efficiency of such technologies, they remain, for the moment, expensive and too much
sophisticated to be adopted in all industries especially the small and medium ones.

In [64] and [65], S. Wan et al. developed a Collaborative Maintenance System Planning
that allows many stakeholders to collaborate to ensure maintenance process quality. An
ontology-based approach is adopted to model a large field of knowledge: the machine do-
main model, failure knowledge, and stakeholders knowledge are modeled together to ensure
the interoperability between their systems, the maintenance planning, and Resources and
Constraints knowledge. However, this centralized solution focuses mainly on preventive
maintenance planning. In addition, the managed failure knowledge is relatively basic and
does not consider root causes or symptoms.

2.8 Lessons learned

Conducting this study helped us to learn several lessons. The first lesson is that there are
several cultural and technical challenges to sharing the maintenance knowledge. Much of
this has to do with the prevailing practices and the human nature to solve the issue at hand
first with our own ideas than to find what has been done previously by others.

In terms of technical challenges, the use of semantic web technologies to solve complex
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industrial problems seems promising, however, it is still not adopted in mature maintenance
knowledge management solutions. Capturing the maintenance knowledge within a given
context (domain, machine, segment) is not trivial. The tools have to be user-friendly as
well as simple to use.

Furthermore, capitalization or reuse of maintenance knowledge seems exclusive to a
few large groups, while most companies handle machines failures, as they come, without
benefiting from previous experiences. Case-Based Reasoning (CBR) turns out to be an
efficient approach for maintenance knowledge reuse as it aims, by definition, to solve new
problems based on the solutions of similar past problems.

Maintenance knowledge sharing reveals to be the adequate solution to enhance the
maintenance activity however, we felt that it will take time to be used on a large scale.
Adopting the right culture and using the right incentives can speed up the adoption of
maintenance knowledge sharing.

2.9 Summary

This chapter provides a comprehensive background about maintenance knowledge collection
and sharing in industrial companies. The results of the interviews campaign with Schnei-
der customers and domain experts were detailed showing the various challenges impeding
the development of maintenance knowledge sharing. Existing standards and initiatives of
maintenance knowledge sharing have been detailed and critically reviewed. And the existing
state-of-the-art works about the different aspects of maintenance knowledge management
were reviewed.
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3.1 Introduction

This chapter describes the design and proof-of-concept prototype of the SemKoRe, our pro-
posed solution for maintenance knowledge sharing. It discusses the architectural choices
and the ontology design to capture efficiently the different aspects of maintenance opera-
tions, along with early performance measurements. It is based on Paper I and addresses
the following questions:

• Q2- How maintenance knowledge can be shared between different stakeholders? What
will be an efficient architectural solution to accomplish this? Especially, how to manage
the maintenance knowledge collection and sharing on the three IoT layers: Edge, Fog,
and Cloud since not everyone is connected to Cloud? What features or services should
be part of the proposed solution?

• Q3- How to design an open and extensible solution that is applicable to multiple do-
mains and works across silos? Particularly, how to capture and share the maintenance
knowledge independent of any domain constraints?

In the following, we describe the ontology data model design along with the key ques-
tions used to gather the various maintenance tasks details. In order to share the collected
knowledge between different industry actors around the world, only one choice is available;
using the cloud as a central bridge to transfer knowledge from one actor to the others. How-
ever, the interviews campaign showed that industrial companies adopt different policies in
terms of connectivity to the cloud. So, we proposed a flexible architecture in order to fit
the various needs and configurations of Schneider’s customers. Collecting and sharing the
maintenance knowledge are the first steps of our journey. The final step is the maintenance
knowledge reuse and capitalization. So, we adopted a Case-Based Reasoning (CBR) [66]
approach for efficient reuse of maintenance knowledge.

We implemented a proof-of-concept to show the validity of our approach for maintenance
knowledge sharing. The technical details and the implemented services are briefly described
along with performance evaluation.

3.2 Ontology data models for maintenance knowledge captur-
ing

The first task of our approach is to capture information about the different maintenance
experience aspects, and especially the machine failures characteristics. in fact, we consider
machine failure as a central concept in our data model, and we need to describe the failure
symptoms, impact, root causes, in addition to the repairing or prevention procedures. We
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need also to identify the machine components that are impacted by the failure or that need
to be repaired or changed.

For this purpose, we defined our data model using Semantic Web standards because of
the schema-less nature of RDF (Resource Description Framework), RDFS (RDF Schema),
OWL (Web Ontology Language), and the explicit formalism supported by these languages.
This choice allowed us to propose a generic and extensible data model that can fit different
use cases and situations.

We adopted the Seven-step method, developed by the Medical Information Center of
Stanford University [69] for the development of our ontology models. Also, for a sake of
genericity, we divided the data model into two parts: a machine domain ontology and a
machine failure ontology.

3.2.1 Machine Failure Ontology Model

To capture the different details of a machine failure, the designed data model should be
able to answer the following competency questions:

• What are the failure symptoms? Symptoms reflect the perceptible aspects of failures
whether they are visual, sonic, odor, or heat-related.

• What is the impact of the failure? This may or may not be detected easily. Each
failure impact is relative to a machine or to one of its components.

• What are the root causes of a particular failure? This question is difficult to an-
swer since it assumes prior knowledge about the cause-effect relations specific to each
machine type. Answering this question requires the knowledge of a machine domain
expert.

• After knowing the failure type, how can we repair the machine?

• After knowing the root causes of a specific failure, is there a preventive maintenance
procedure that can help us to avoid that failure?

To answer all of these questions, we adopted the following steps in regards to the Seven-
steps method for the development of the machine failure ontology:

1. Determine domain and scope: This work focuses on industrial machine failures.

2. Consider reusing existing ontologies: No existing machine domain or machine
failure ontology was found for reuse, therefore we developed both for this work. Re-
garding upper-level ontologies, the discussion in the section 3.2.3 clarifies our point of
view.
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3. List important terms in the ontology: After interactions with the machine do-
main experts, the following important terms were identified Failure, Symptom, Im-
pact, Root cause, Solving Procedure, among others.

4. Define classes and class hierarchy: Several classes were created including the
important terms listed above. However, since no specialization concept will be in-
troduced, the ontology is flat. Only the classes relative to types (e.g., Failure Type,
Symptom Type) are grouped as sub-classes of the Types class.

5. Define object properties of classes: We defined a set of object properties that
link all the defined classes together. For example, the property hasSymptoms links a
Symptom to a specific Failure. The complete list is illustrated in Figure 3.2b

6. Define data properties of classes: We also defined several of the data properties
of classes as shown in Figure 3.2c.

7. Create instances and check exceptions: Instances of SemKoRe ontology are
divided into two parts. The first part, defined by experts during the design time,
concerns the generic concepts that will be used for most industrial use cases, such as
Severity level (Catastrophic, Critical, Moderate, Low). The second type of instance
concerns the data provided by the users during the runtime of the SemKoRe. Users’
instances include details about the failures and symptoms. To check for exceptions,
we used the Pellet reasoner [68] to verify the correctness of our ontology model.

The defined machine failure ontology is presented in Figure 3.1. The list of defined
classes, object properties, and data properties are shown respectively in Table 3.1, Table
3.2 and Table 3.3. This ontology model is created by interacting with the MSol LoB
Team and by using the initial set of requirements described in Section 2.6. It acts as a
common data model and will be enriched with new concepts by domain experts over time.
Progressively, Schneider-Electric’s design, engineering, configuration, and maintenance tools
will use this ontology to create knowledge about the failures and allow to develop different
services over it.

3.2.2 Machine Domain Ontology Model

For each recorded failure, we need to identify the machine components that are impacted by
the failure or that need to be repaired or changed. So, we require the definition of a machine
ontology that describes the machine or equipment, its components with their hierarchical
structure. As such ontology is unique for each machine type, in our approach we consider
that it should be defined by the machine builders. This ontology must describe all the
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Table 3.1: Failure ontology classes description
Class Name Super Class Description Example of Instances
Failure This class allows describing machine failures with all

their characteristics such as symptoms, root causes,
solution or avoidance procedures, etc.

Inappropriate sealing quality,
Defective manufactured
products

Failure
Occurrence

Failure This class describes an event of a failure occurrence
with the observed characteristics such as symptoms,
impacts, root causes, etc.

Same as Failure

Failure Severity
Level

Defines a severity level for the failure Medium, Critical, Fatal

Failure Asset This class is used to link a failure to an asset such as
a machine component, machine part, or even the
machine itself. Each asset has a "Function ID"
attribute that allows differentiating similar assets in
the same machine.

Robot, Servo drive,
Component XYZ

Failure Symptom Describes the symptom observed on an asset after a
failure occurrence

Fire smoke, noisy servo drive,
unstable belt

Failure Impact Describes the Impact of a machine failure on a
specific asset

Robot hand damaged,
uncalibrated component

Failure Root
Cause

Describes the assets that probably cause a machine
failure

High servo drive’s rotation
speed, Incorrect configuration

Failure Analytics Allows to reference data analytics services capable of
automatically detecting one or more machine failures
types

Schneider PrediAxe for servo
drives failures detection

Failure Analytics
Detection

Describes an automatic machine failure detection
notified by a Failure Analytics service

Servo drive failure detected
on 12/11/2021 at 18:53

Failure Analytics
Model

This class allows referencing versioned ML models
that are used by the Failure analytics services for
automatic detection of machine failures

Model XYZ v1.0.0

Failure
Mitigation
Procedure

Defines an ordered list of maintenance actions that
can be applied on a machine asset,

Failure Avoidance
Procedure

Failure
Mitigation
Procedure

Defines a mitigation procedure that can be used to
avoid the occurrence of a specific machine failure

Failure Solution
Procedure

Failure
Mitigation
Procedure

Defines a mitigation procedure that can be used to
repair the machine after a specific failure occurrence

Failure
Mitigation Step

Defines a maintenance action that is part of a
mitigation procedure

Change the servo drive,
Calibrate the component
XYZ

Failure
Occurrence
Status

Allows to specify the status of a machine failure
occurrence

Types This class encompasses the "Types" classes of the
ontology that allow defining the types of the various
machine failure characteristics/attributes.
Categorizing instances using the "Types" classes
instead of simply using "rdf:class" is voluntary,
because the "Types" are provided by the SemKoRe
users and are not standardized concepts. Thus, the
"types" are managed as individuals and not classes.

Failure Analytics
Type

Types Defines the type of a failure analytics service Failure detection analytics,
Failure prediction analytics

Failure Impact
Type

Types Defines the impact’s type of a failure Damaged part, Out of
service, Calibration problem

Failure
Mitigation Action
Type

Types Defines the type of a mitigation action Component Repair/change,
Configuration change,

Failure Root
Cause Type

Types Defines the type of a failure root cause Asset, Chemical
phenomenon, Configuration,
Failure Cascade

Failure Symptom
Type

Types Defines the type of a failure symptom Abnormal Mechanical
Behaviors, Abnormal smell,
Abnormal noise, Component
stopped working

Failure Type Types Defines the type of a failure Electrical Failure, Erroneous
manipulation, Mechanical
Failure, Control failure

Failure Update
Type

Types Defines the type of a failure update Creation, Modification,
Validation, Closed
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Table 3.2: Failure ontology object properties description
Object Property Parent Domain Range Description
Analytics Model Failure Failure Analytics Defines a Failure Analytics Service as suitable

to detect a specific Failure
Avoidance
Procedure

Failure Failure Solution
Procedure

Links a mitigation procedure as an avoidance
ptocedure for a specific failure

Failure Type hasType Failure Failure Type Specifies the type of a machine failure
Has Impact Failure Failure Impact Defines the impacts of a specific failure
Root Causes Failure Failure Root

Cause
Defines the possible root causes of a specific
failure

Severity Failure Failure Severity
Level

Defines a severity level for a failure

Solving
Procedure

Failure Failure Solution
Procedure

Specifies a solving procedure for the failure

Symptoms Failure Failure Symptom Defines the symptoms of a failure
has Failure Asset Failure Failure Asset Specifies the machine on which the failure has

occurred
Analytics Type hasType Failure Analytics Failure Analytics

Type
Defines the type of the Analytics service, e.g.:
Predictive, Detection.

Analytics Asset hasAsset Failure Analytics Failure Asset Associates the analytics service to a specific
asset

Detected Failure Failure Analytics
Detection

Failure Describes the failure detected by an analytics
service

detectedByModel Failure Analytics
Detection

Failure Analytics
Model

Specifies the model used for a failure detection

Real Failure Failure Analytics
Detection

Failure Specifies the real failure that has occurred, it is
provided by a human user

Asset Component Failure Asset MachineModel:
Component

References a component from the Machine
ontology as an Asset for the failure ontology

Machine Type Failure Asset MachineModel:
Machine

Specifies the machine type of a given asset

Impacted Asset hasAsset Failure Impact Failure Asset Specifies the asset impacted by the failure
Impact Type hasType Failure Impact Failure Impact

Type
Specifies the type of a failure impact

Mitigation type hasType Failure
Mitigation
Procedure

Failure
Mitigation Type

Specifies the type of a mitigation procedure

Mitigation Action
Steps

Failure
Mitigation
Procedure

Failure
Mitigation Step

Specifies the type of a mitigation action step

Action Asset hasAsset Failure
Mitigation Step

Failure Asset Specifies the asset on which the mitigation
action will be applied

Action Type hasType Failure
Mitigation Step

Failure
Mitigation Action
Type

Specifies the type of a mitigation action

Failure Detected
By Analytics

Failure
Occurrence

Failure Analytics
Detection

Shows the analytics detection service that
automatically detected the failure

Status Failure
Occurrence

Failure
Occurrence

Defines the status of the failure occurrence.
The failure occurrence remains modifiable until
it is validated and closed

Update
Operation

Failure
Occurrence

Failure Update
Operation

Specifies the updates that have been made on a
failure occurrence

Root Cause Asset hasAsset Failure Root
Cause

Failure Asset Defines the asset involved as a root cause of a
failure

Root Cause Type hasType Failure Root
Cause

Failure Root
Cause Type

Defines the type of a failure root cause

Symptom Asset hasAsset Failure Symptom Failure Asset Defines the asset involved as a symptom of a
failure

Symptom Type hasType Failure Symptom Failure Symptom
Type

Defines the type of a failure symptom

Operator Failure Update
Operation

owl:Thing Keeps track of the User that made updates on
a failure occurrence

Update Type Failure Update
Operation

Failure Update
Type

Defines the type of update done on a failure
occurrence

hasAsset Owl:Thing Failure Asset Used to as parent class of the hasAsset
properties

hasType Owl:Thing Types Used to as parent class of the hasType
properties



CHAPTER 3. INDUSTRIAL MAINTENANCE KNOWLEDGE SHARING WITH
SEMANTIC KNOWLEDGE GRAPHS 53

Table 3.3: Failure ontology data properties description
Data Property Domain Range Description
Description owl:Thing xsd:string This property is used to provide a

description for individuals
Algorithm Name Failure Analytics xsd:string Specifies the name of the

algorithms used by a Failure
Analytics service

Data Sources Failure Analytics xsd:string Specifies the data sources that are
analyzed by an analytics service for
automatic failure detection

Detection Time Failure Analytics
Detection

xsd:dateTime Specifies the time of automatic
detection of a failure

Analytics Data
Chunk

Failure Analytics
Detection

xsd:string Specifies the analyzed data chunk
that allowed to detect a failure

Is False Positive Failure Analytics
Detection

xsd:boolean Provided by the user, it specifies if
the automatic detection was correct
or just a false positive

Analytics Model
File

Failure Analytics
Model

xsd:string Defines the model file’s name used
for automatic failure detection

Analytics Model
Format

Failure Analytics
Model

xsd:string Defines the format of the analytics
model file

Analytics Model
Version

Failure Analytics
Model

xsd:string Defines the version of the analytics
model file

Analytics
Training Data

Failure Analytics
Model

xsd:string Defines the data that was used to
train/build the analytics model file

Generation Time Failure Analytics
Model

xsd:dateTime Specifies the time needed to
(automatically) generate the
analytics model file

Asset Function
ID

Failure Asset xsd:string Defines a unique function ID for
each machine asset

Order Number Failure
Mitigation Step

xsd:int Defines the order number of an
action in a mitigation procedure

Occurrence Time Failure
Occurrence

xsd:dateTime Specifies the time of failure
occurrence

Severity Level Failure Severity
Level

xsd:int Specifies the degree of criticality of
a failure

State of the Asset Failure Symptom xsd:string Specifies the state of an asset being
identified as a failure symptom

Update Time Failure Update
Operation

xsd:dateTime Specifies the time of aupdate made
by a user
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Figure 3.1: Failure ontology.
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vocabulary relative to a machine, and thus, can be used as a common machine taxonomy
by all the owners of the same machine type.

This divide-and-conquer approach allows handling the fourth challenge identified in
section 2.4.3. In fact, instead of trying to propose an exhaustive taxonomy for all types of
equipment, machines, or failures for a specific industry field, supporting the definition of
individual taxonomies for each machine type turns out to be more scalable.

Figure 3.2a shows an example of machine ontology that we created to validate our
approach. Once a machine ontology model is defined, it must be integrated into the failure
ontology. For this purpose, we created the OWL Class FailureAsset, to associate failures to
the corresponding components in the machine domain ontology.

(a) Machine Model Ontology (b) SemKoRe object properties (c) SemKoRe data properties

Figure 3.2: SemKoRe ontology design.

However, an issue can be encountered when trying to identify the exact machine com-
ponent that caused or that is impacted by the failure. For example, consider a machine
composed of two Servo Drives of the same type. These Servo Drives are described in the
machine domain ontology as two instances (SDA and SDB) of the "ServoDrive" class and
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Figure 3.3: Ontology modeling approach

are associated with the instance of the machine. When a failure occurs in SDA, we should
be able to identify it through ontology. Such detailed identification is especially useful when
the failure knowledge is shared with the other sites using the same machine type, as it will
help them to recognize the exact component responsible or impacted by the failure.

To address this issue, we require that each component in the machine domain ontology
has a unique number "FunctionID", used to distinguish its role in the machine compared
to other components of the same type.

3.2.3 Upper-ontologies adoption

It is important to mention that our main focus in this work has been on the validation of
the idea to the OEMs, that formalized knowledge about machines and their failures can
be useful for quick resolution of failures and to improve Overall Equipment Effectiveness
(OEE). Hence, the defined ontologies, in their current PoC form, do not rely on any upper-
level ontology. The main reason is that there was a separate work in Schneider-Electric
to decide on the right ontology to provide maximum data integration for the future. For
example, the discussion revolved around using BFO 1 or SKOS 2 as upper-level ontology, as
shown in the pyramid in figure 3.3. Some customers may also be interested in using domain
ontologies like SSN 3. Our view on this point is that once a decision is made, our current
ontologies can be easily refactored.

1https://basic-formal-ontology.org/
2https://www.w3.org/TR/2008/WD-skos-reference-20080829/skos.html
3https://www.w3.org/2005/Incubator/ssn/ssnx/ssn
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Figure 1. SemKoRe Architectures; IoT gateway connected to a real machine: Local server
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Figure 3.4: SemKoRe’s flexible architecture’s configurations

3.3 Proposed Architecture

3.3.1 High-Level Architecture

As mentioned before, our customers require different deployment options, so we divided
them into three categories and developed a flexible architecture that fits all three categories.
In the first category, customers prefer to not connect their machines to the cloud and some
even do not want to connect to the Internet due to the sensitive nature of their business and
to protect their data. The architecture proposed for this category is shown in Figure 3.4a.
The second category of customers opted for an entirely connected architecture, in which the
machines/gateways in their factories are directly connected to the cloud. For this category,
we proposed the architecture shown in Figure 3.4b. The third architecture targets the
customers who refuse to connect their machines to the cloud but are ready to deploy (or
already have) a local on-premise server between the cloud and their machines. For this use
case, we proposed a hybrid architecture Figure 3.4c, where most of the collected data stays
in the local server, and only an anonymized part of the data is transmitted to the cloud.

In all these cases, each machine is connected to an industrial IoT gateway to collect the
run-time data of the machine and the information provided by maintenance technicians or
machine operators. Each gateway is connected to a central entity (either a local server or
cloud server) which collects the data from all the gateways and then aggregates and shares
with the gateways connected to the same type of machine.

In this thesis, we focus on cloud-based architecture because it covers all the constraints
and features of the other architecture configurations. This architecture is also implemented
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Figure 3.5: SemKoRe detailed architecture.

in a proof-of-concept to demonstrate the feasibility (see Section 3.5).

3.3.2 Detailed Architecture

Figure 3.5 shows the detailed architecture of the SemKoRe. The SemKoRe consists of three
entities:

1. A SemKoRe Agent: Runs on industrial IoT gateways connected to the machines. It
collects data when failures occur in the connected machines. According to the chosen
architecture, the collected data are then shared with either the SemKoRe Server or
Local SemKoRe. The SemKoRe Agent is designed to fit in all architectures (Fig. 3.4).

2. A SemKoRe Server: Running on the cloud, it manages several failure data producers,
i.e., Local SemKoRes or SemKoRe Agents. The collected failure data are validated
by an expert and aggregated and afterward shared with the SemKoRe Agents and/or
Local SemKoRes.

3. Local SemKoRe: Lightweight instance of the SemKoRe Server deployed on a local
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Figure 3.6: SemKoRe Workflow.

server to manage the machines located in a site or factory. It collects data produced
by the SemKoRe Server and the SemKoRe Agents on local gateways. The data
aggregation is done locally, and only aggregated data is shared with the SemKoRe
Server. The cloud then merges its aggregations with the Local SemKoRe aggregation
and pushes back the updates to the corresponding entities.

3.4 SemKoRe Workflow & Process

SemKoRe is provided with many services (Figure 3.5) running on the different IoT layers.
These services collaborate in order to achieve various SemKoRe purposes such as data col-
lection, data aggregation, data anonymization, and data sharing. Figure 3.6 shows the main
SemKoRe workflow and how maintenance data is transformed from row data to maintenance
knowledge. In fact, we define the maintenance knowledge to be the result of aggregation
and anonymization applied to the maintenance row data.

Figure 3.7 shows the SemKoRe process of failure data collection and sharing. The
process is distributed on two layers: on the edge with the SemKoRe Agent, and on the
cloud with the SemKoRe Server.

The failure data collection starts when a machine failure occurs. The failure information
collection service generates the Human Machine Interface (HMI) for the user (Bob or Alice)
to offer the details of the failure. Through the survey, we first try to know if the failure
has really occurred or it was only a false positive case triggered by some failure detection
service. Then the user is asked to provide details about the symptoms of the failure by
selecting known symptoms or by creating new ones, when necessary.

The user checks if the identified failure is already known by the SemKoRe before pro-
viding additional details. If the failure already exists, the user follows the instructions to
repair the machine. Otherwise, the failure will be documented by Alice or by machine
domain experts as shown in Figure 3.7. This process is a typical application of Case-Based
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Figure 3.7: SemKoRe process.

Reasoning (CBR) [66], which consists of solving new problems based on the solutions of
similar past problems. Sometimes, the impacts of a failure may differ from one machine
to another. So, existing repair procedures might be adapted or new procedures need to be
created to repair the machine. This process ends, at the edge level, by sharing the collected
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data with the SemKoRe Server in the cloud.
When the SemKoRe Server receives failure data from a SemKoRe Agent instance, the

data must be validated by a machine domain expert before it is integrated into the SemKoRe
Knowledge Graph. After the validation process, data is anonymized to protect the data
and customer privacy and business’ sensitive information of the customers. The anonymized
data is then aggregated in order to get insights about the occurrence frequency of failures,
their impacts and the most adapted/used repairing procedures.

Finally, the aggregated data is shared with the SemKoRe Agents instances connected
to the same machine type. On the other side, each SemKoRe Agent instance integrates the
data it receives from the cloud into the local triplestores (Graph databases).

3.4.1 Case-Based Reasoning formalization

Case-Based Reasoning is a method that helps to solve new problems by reusing the knowl-
edge and solutions of similar past problems. The foundation principle of CBR is the fact
that "Similar problems have similar solutions" [67]. The figure 3.8 shows the different CBR
steps followed for machine failure solving: Case Description, Retrieve, Reuse, Revise and
Retain. Each of these steps is described below.

Figure 3.8: CBR steps for machine failure solving

3.4.1.1 Case description

The formal description of each case consists of using basically several distinguishing pa-
rameters that describe the problems and that allow identifying similar cases based on the
similarity of parameters. In our approach, we consider the machine failures as cases, and
we use the failure symptoms as distinguishing parameters to describe the cases. For each
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failure, we define the symptoms vector:

S = {S1, ..., Sn}

where n is the number of known symptoms in our knowledge graph, and for i ∈ {1, ..., n},
Si = 1 if the ith symptom is observed for that failure, and Si = 0 otherwise. We define also
the symptoms frequency vector, that is created from the aggregated values of the failure
data:

FS = {FS1, ..., FSn}

where for i ∈ {1, ..., n}, FSi = if the frequency of observation of the ith symptom for the
considered failure.

Thus, we define each case as a combination of both vectors as follows:

Case = {S, FS}

Finally, we assume that we already collected details about N failures in our KG, thus,
the historical cases are defined as:

HC = {HC1, ...,HCN}

3.4.1.2 Case retrieval

When a machine failure occurs, the maintenance technician starts by identifying the failure
symptoms. Thus, the current case CC is defined as:

CC = {Sc1, ..., Scn}

where Sci are (1 or 0) values reflecting the observed symptoms for the current failure.
Now, to identify the similar previous situations, we evaluate the similarity between the

current case (CC) vector and each of the historical cases (HCi) as follows:

Similarity(CC,HCi) = abs(CC −HCS
i )×HCFS

i

where abs is the absolute value and HCS
i and HCFS

i are respectively the symptoms and the
frequencies vectors of the historical case (HCi). The multiplication with (HCFS

i ) instead of
simply using the standard distance evaluation (|CC−HCS

i |) is used to weight the symptoms
by giving more importance to the most frequent ones.

Finally, the retrieved historical cases (failures) are the ones showing the minimal Similarity

values with the current case, and we ask the maintenance operator to select the correct fail-
ure (HCi). If none of the historical cases match, the maintenance technician creates a new
Failure entry (new case), that will be documented and saved in the KG.
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3.4.1.3 Case reuse

As shown in the section 3.5.2, every aggregated failure has a list of solving procedures
associated with frequencies of successful use. In our approach, we let the maintenance
technician choose the correct maintenance procedure to be applied for his case.

3.4.1.4 Case revise

Sometimes, it happens that an existing procedure is not completely fitting to the current
problem and needs to be adapted to the situation. Thus, we propose to the maintenance
technician to adjust the proposed procedure or to create a new procedure in case of major
changes.

3.4.1.5 Case retain

Finally, the current maintenance operation is stored (retained) in the KG either as a new
case for newly discovered failures or to adjust the existing (cases) failures and update the
aggregated frequencies of the failure symptoms and the maintenance procedures.

3.5 Proof-of-Concept Prototype

In this section, we describe the implementation details for the proof-of-concept prototype.
As stated previously, we only focus on the architecture where gateways are directly con-
nected to the cloud (see Figure 3.4).

3.5.1 Implemented services

The SemKoRe approach requires several services running on the different IoT layers, Edge,
Fog, and Cloud. Hereafter, we describe the implemented services for our prototype.

3.5.1.1 Startup Commissioning

Knowing that our Failure ontology and the collected knowledge will evolve, this service
allows the SemKoRe agents to get the latest failure knowledge corresponding to the type
of the connected machine. It is only deployed on the SemKoRe Server. On-premise, the
startup commissioning service retrieves two types of information from the SemKoRe Server:

• The machine failure T-Box, containing the concepts defined in the failure ontology

• A-Box data, containing the instances of the T-Box concepts. Knowing that the
SemKoRe Server manages data relative to several types of machines, the A-Box re-
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trieved by a gateway contains only the information relative to the machine to which
it is connected.

The startup commissioning service sends a request to the SemKoRe Server with the
identity and the type of the connected machines. The SemKoRe Server runs then a Con-
struct SPARQL query to create a sub-graph containing all the data (T-Box and the A-Box)
related to the provided machine type. The resulting sub-graph is sent back to the gateway.
Listing 3.1 shows a simplified version of the construct query executed on the SemKoRe
server side.

PREFIX ns: <http://www.schneider-electric.com/KnowledgeRepository#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

construct { ?s ?p ?o}

where {

?failure rdf:type ns:Failure.

?failure ns:hasAsset ?asset.

BIND(<Machine_URI> as ?machine) .

?asset ns:MachineType ?machine .

?failure (ns:|!ns:)* ?s .

?s ?p ?o .

}

Listing 3.1: Simplified startup commissioning query using <Machine_URI> as parameter

3.5.1.2 Failure Data Collection

This service runs exclusively in the SemKoRe Agent and is used during or after the main-
tenance phase. It proposes intuitive and easy-to-use interfaces to collect maintenance data
and store them in the local triple store. The thesis author has implemented the back-end
part of this service, while the UI design team implemented the front-end interfaces following
Schneider’s unified UX design rules. Two types of UIs are offered by SemKoRe. The first
type is a survey interface guiding the user through a set of predefined questions to simplify
the reporting of new failure occurrences. The second type of interface, called model-driven
UIs, is generated automatically from the ontology data model and allows the addition of
extra details to the reported failures occurrences. All these UIs rely on the annotations
defined in the ontology such as @rdfs:label and @rdfs:comment. The former is used as a
human-readable label of the input fields shown to the user, while the latter is displayed to
explain the nature of the field and the expected input. We defined additional annotations
such as @semkore:hidden to hide a field on the UI in case it should be defined automatically
or exclusively by an expert. On the back-end side, we mainly use the API described in
Chapter 6 for all the interactions of the UI with the SemKoRe Knowledge Graph.



CHAPTER 3. INDUSTRIAL MAINTENANCE KNOWLEDGE SHARING WITH
SEMANTIC KNOWLEDGE GRAPHS 65

3.5.1.3 Anonymization Service

Privacy protection is a very important concern for Schneider’s customers. They do not
want to share any machine and process-related data in a way that could potentially expose
sensitive business information. To address this concern, we implemented a sensitive data
detection service (details in Chapter 4), that helps domain experts avoid sensitive data
disclosure during maintenance knowledge sharing.

When a failure occurs, the gateway creates an instance of “Failure Occurrence Class”,
containing information about the failure, e.g., symptoms, impact, root causes if known, and
the failure context, which includes the machine ID, its location, and the failure occurrence
timestamp. The whole process consists of three steps:

1. The anonymization service removes the structured data considered, by default, as
sensitive such as machine ID, location, and owner-related information. It also analyzes
automatically all textual details in order to detect potentially sensitive data.

2. A human expert reviews and validates all of the failure information before integrating
it into the SemKoRe Knowledge Graph.

3. Finally, all the validated failure information is aggregated before being shared with
the connected gateways. The aggregation increases the abstraction level on the data
and reduces the risk of deducing the origin of the data, the failure location or the
ownership details.

3.5.2 Failure Data Aggregation

Hosted in SemKoRe Server, this service aggregates the failure data collected from different
gateways in order to produce deep insights of the machine failures and their characteristics
including symptoms, impacts, and root causes. We have defined a list of simple aggregations
that are applied to the failure data:

1. For each machine type, get the list of all failures and their frequency;

2. For each failure, compute the list of all possible symptoms with the frequency of each
symptom;

3. For each failure, compute the list of all possible impacts with the frequency of each
impact;

4. For each failure, compute the list of all possible root causes with the frequency of each
root cause; and
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5. For each failure, get the list of solutions with the number of times each solution was
successfully used to repair that failure.

A simplified query used for data aggregation is shown in Listing 3.2.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX ns: <http://www.schneider-electric.com/KnowledgeRepository#>

Select distinct ?Failure ?aggregated_type ?label (COUNT(?ID) as ?times)

where{

?Failure rdf:type ns:Failure.

?Occurrence rdf:type ns:FailureOccurrence.

?Occurrence ns:hasFailure ?Failure

?ID rdfs:label ?label .

{ # Get the list of impacts

BIND("Impact" AS ?aggregated_type)

?Occurrence ns:hasImpact ?ID}

UNION{

BIND("Symptom" AS ?aggregated_type)

?Occurrence ns:hasSymptoms ?ID}

UNION{

BIND("RootCauses" AS ?aggregated_type)

?Occurrence ns:hasRootCauses ?ID}

UNION{

BIND("solvingProcedure" AS ?aggregated_type)

?Occurrence ns:hasSolvingProcedure ?ID}

}

group by ?Failure ?aggregated_type ?ID ?label

Listing 3.2: Simplified data aggregation query

3.5.2.1 Failure Data Sharing

Hosted in SemKoRe server, this service shares periodically the newly collected maintenance
knowledge with the connected SemKoRe Agents. All the data sharing process is done
through the SemKoRe Server’s message broker. Every SemKoRe agent receives only the
updates relative to the machine to which it is connected by subscribing to the message
broker topic ".../failure_updates/{machine_type}", where {machine_type} is the type of
machine to which the gateway is connected.

3.5.3 Implementation Details

Various technologies were used to develop our prototype. To demonstrate the feasibility of
the SemKoRe approach, we developed a proof-of-concept (Figure 3.9) using the following
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Figure 3.9: SemKoRe implementation setup. Simulated virtual edge gateways with
SemKoRe Agents managed by a SemKoRe server instance hosted on the Microsoft Azure
cloud.

technologies:

• GraphDB: We used GraphDB [70] as triplestore in the cloud and in the gateway. It
provides high performance and scalability in addition to reasoning capabilities.

• Node-Red: Node-Red was used to develop all above-mentioned services for the SemKoRe
Server and the SemKoRe Agent. Node-Red is a flow-based development tool for visual
programming originally developed by IBM for wiring together hardware devices, APIs
(Application Programming Interfaces), and online services as part of the Internet of
Things [71]. Node-Red is gaining popularity for rapid application development in
Schneider’s Industrial Automation business.

• Microsoft Azure: The SemKoRe Server services are hosted on Microsoft Azure, which
provides high-performance cloud services. The server uses Azure IoT Hub [72] to
connect the IoT devices to the cloud using several communication protocols, including
the MQTT (Message Queuing Telemetry Transport) messaging protocol [73], which
we used to simplify the data flow transmission between our SemKoRe agent and server
services. For the edge, the Azure IoT Edge service was used to easily connect the edge
gateways to the cloud via Azure IoT Hub as shown in Figure 3.9.

• Docker: This is a popular container-based virtualization [74] tool. Docker supports



68 3.5. PROOF-OF-CONCEPT PROTOTYPE

many operating systems and hardware architectures, and allows self contained appli-
cations to be packaged and executed with a high level of portability and reproducible
results [72]. We used Docker to package all of the services of SemKoRe Server and
SemKoRe Agent. In reality, SemKoRe agent will reside with many other components.
Docker allows us to have the flexibility of deploying different components easily and
managing/extending them without impacting others.

3.5.4 Evaluation setup

As we are still in the early stage, we were not able to implement the SemKoRe in real con-
ditions with SemKoRe Agent running on Industrial Gateways connected to real machines.
The main obstacle was that the current hardware available for this work had ARM archi-
tecture and so it would require a significant effort to port the triplestore and other software
components. That effort was beyond the scope of our work. However, after the successful
PoC, the business team decided to use an industrial PC as a gateway with enough RAM
(8GB), processing (Intel Atom), and storage (64GB) capability. The next iteration of this
work will use this industrial PC when it is ready for commercialization. In the meantime,
we evaluated our implementation by simulating many virtual SemKoRe Agent instances on
a PC equipped with an Intel(R) Core(TM) i7-7820HQ processor, and 16Gb of RAM. We
used a single GraphDB server to manage separate triplestores for all the SemKoRe Agent
instances. We randomly defined a set of three machine types {Packaging Machine, Palletiz-
ing Machine, Pasteurization Machine} that we associated with the active SemKoRe Agents.
Each machine type was associated with at least two SemKoRe Agent instances which were
then connected to the cloud SemKoRe Server. Our current implementation choices will
facilitate an easy transition to industrial PCs in the future.

We generated random machine failure data by defining a set of potential failures for each
machine type. Each failure was then associated with a set of characteristics: symptoms,
impacts, root causes, and solving procedures.

We were able to demonstrate that the failure data was collected by each SemKoRe Agent
and successfully shared with the SemKoRe Server. The data was aggregated and shared
back with the SemKoRe Agent instances connected to the same machine type.

3.5.5 Performance measurements

To assess the performance of the SemKoRe prototype, we evaluated the execution time of
various processes provided by the SemKoRe agent and the SemKoRe server.

In the first case, we measured the performances of two processes of SemKoRe agent:
the creation of new failure instances, and the querying of failures details. Figure 3.10 shows
the evaluation results as a function of the number of failures stored in the triplestore. We
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Figure 3.10: Execution time evaluation for the creation and querying of Failure instances

can remark that the data querying time is dependant on the number of failure instances
stored in the triplestore. The trend change observed after the x-axis coordinate 840 reflects
the activation of the indexing and cache mechanisms of the GraphDB triplestore, which
stabilizes the querying time at around 300ms to query the details of 1000 failures.

Regarding the creation of new failure instances, we distinguish two modes: with and
without consistency checking. In fact, all SemKoRe services use the REST API described in
Chapter 6 for the interactions with the GraphDB triplestore, and that offers the consistency
checking feature. When the consistency checking is disabled, we can see that the instances
creation’s time is stable and is on average less than 100ms. However, the creation of
instances with enabled consistency checking requires on average 300ms to 700ms. This extra
time can be explained by the need to execute a SPARQL query to check the consistency of
the failure details before creating an instance in the triplestore.

In the second case, we evaluated two processes primarily executed on the SemKoRe
server: the startup commissioning and the failure data aggregation. The evaluation is done
by varying the number of failure instances (in the range [50, 2000]) stored in the triplestore.
The box plot in Figure 3.11 shows the results of the evaluation. SemKoRe server needs on
average 60ms to 110ms to generate the commissioning data for a specific machine, and the
data aggregation takes around 20ms. For both processes, we didn’t detect any influence of
the number of failure instances on the execution time.
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Figure 3.11: Failure ontology.

3.6 Learned Lessons

Conducting this study helped us to learn several lessons. The first lesson is that technolo-
gies such as triplestore are not easily adoptable to typical industrial use cases. Almost all
triplestores are focused on big data and huge numbers of triples but, as our work demon-
strates, there are several use cases where an efficient solution is needed for typical industrial
gateways. Industrial PCs are an option but they are expensive and can only be used by large
companies whereas small devices have a very large user base. While machine failures are a
reality, they do not occur every minute, and so there is no need to use a complex solution
that supports billions of triples. Outside the vendor space, the open-source community has
some options like RedStore [76] but most are not in active development.

The second lesson is that the development of industrial-grade ontologies is still a her-
culean task and the existing toolset continues to act as a barrier to entry. In our experience,
experts want to formalize their domain knowledge but they have no motivation to learn
complex tools such as Protege that do not support collaborative ontology development.
WebProtege is a possibility but lacks query, visualization, and documentation capabilities.
New efforts such as Modom.io [77] and Zazuko [78] take a more simplified approach for
non-experts to create ontologies but they are still works in progress.

Regarding ontology governance, there is no standard framework that can be applied to
design and develop modular ontologies on an industrial scale. The evolution of ontologies
is another area where no clear recommendations and no industrial tools are available to
manage the required documentation, evaluation, release, and versioning. While some aca-
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demic works such as [79] exist, they are not mature and often not easy to deploy and use in
industrial settings. The Semantic Web community as a whole needs to address these points
and improve the developer experience in order to mainstream these useful technologies.

3.7 Summary

In this chapter, we presented the design and prototyping of the SemKoRe approach. First,
we detailed the definition of the ontology data models used to collect and structure the
maintenance knowledge. Additionally, we presented our flexible architecture, which fits in
three scenarios to cover the various configurations of Schneider’s customers. We described
the proof-of-concept implementation along with the performance evaluation.

Based on this early work, our customers showed an interest in using the SemKoRe
approach to enhance their industrial maintenance processes. Furthermore, by using the
SemKoRe approach, the overall machine building process can be optimized. The machine
design phase can benefit from the maintenance feedback to identify any weaknesses of
a machine and can improve its design. Furthermore, the collected statistics will allow the
performance comparison of a particular machine working in different locations and contexts.
Thus, additional services and recommendations can be proposed to the customers in order
to optimize their manufacturing process.
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This chapter presents a new approach to provide a remedy for sensitive data disclosure
problems during the knowledge sharing activity, along with performance measurements.
The chapter is based on papers II and III and is the subject of Patent III. It addresses the
following research question:

What is the nature of sensitive data in maintenance reports? How to avoid sensitive
data disclosure during the sharing of maintenance knowledge? What techniques could be
applied for the privacy-preserving needs and how?

The interviews campaign results were unequivocal; sharing maintenance knowledge be-
tween manufacturers would have a positive impact on the optimization of maintenance
routines and on manufacturing productivity. However, a major problem that would prevent
such solutions from becoming a reality, is the presence of sensitive information in main-
tenance reports. It is therefore essential to guarantee data privacy-preserving and avoid
sensitive data disclosure during the sharing of maintenance data. And to the best of our
knowledge, there exists no work in the literature about sensitive data detection in mainte-
nance reports and this is the first time such a topic is studied.

For this purpose, a new approach is proposed to avoid sensitive data disclosure during
maintenance knowledge sharing through the SemKoRe solution. It relies on Semantic Web
ontologies combined with different techniques, usually used for data anonymization [80],
such as Natural Language Processing (NLP) and rule-based sensitive data detection.

We tackled a couple of challenges during the work on this contribution. The first chal-
lenge is the lack of datasets with a reasonable number of real maintenance reports containing
sensitive data. Fortunately, the interview campaign allowed us to understand the nature of
sensitive data in maintenance reports and some ways to recognize it. The second challenge is
that sensitive data detection techniques, especially the NLP-based ones, require annotated
data corpus with a considerable number of samples, while we have very few reports with
industrial maintenance vocabulary. So, for the proof-of-concept needs, we implemented a
generic solution that we used to collect, annotate and construct, in a collaborative manner,
our own data corpus.

First, the collected data corpus was used to train and evaluate three different NLP
models for Named Entity Recognition (NER). NER remains one of the most used NLP
techniques for sensitive data detection. It consists of identifying, within a text, the entities
(words or group of words) that are relative to real-world objects with associated names.
Secondly, all the trained models are deployed and used on an Edge gateway. The results are
promising, they show that our approach can be used for on-premise detection of potentially
sensitive data in maintenance reports. Several areas or improvements are identified to make
our solution usable in real use cases.
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4.1 Sensitive Data in Maintenance Reports

During several investigation months that coincide with the COVID-19 context, we were
unable to collect more than five maintenance reports containing sensitive data. So, the
interviews campaign was our main source of information about sensitive data in maintenance
reports. In fact, there exist mainly three types of sensitive data in maintenance reports:

• Personal data: all information relative to a specific person within the company. E.g.:
Personally Identifiable Information (PII) like employee’s name or number, role, ad-
dresses, phone number. However, this type of data is almost impossible to find in the
content of a maintenance report.

• Business data: every information about the company or its activity. This includes the
manufacturer’s name, products, location, customers, or subcontracting companies.

• Manufacturing data: especially information about the manufacturing process that
may leak details about the manufactured products or the trade secrets, e.g. secret
recipe of Coca-Cola. Also, some industries believe that the machine configuration is
sensitive since it is part of the competitive know-how and the company’s industrial
property.

Business data differ from one company to another but have a common form. They are
mostly a set of proper nouns and well-known entities such as employees’ names, products,
customers, companies, etc...

Concerning the manufacturing data, there is a common pattern of the machine config-
uration and manufacturing process in the majority of maintenance reports. Actually, for
every machine failure, the maintenance technician usually describes how a machine compo-
nent has been used or has behaved, or what configuration it had when the failure occurred.
Such information is most of the time relative to machine components since they are the
most representative landmarks in a machine to describe a failure or a maintenance action.
This hypothesis was approved by the domain experts to be the most representative of the
manufacturing data commonly found in the maintenance reports. Nevertheless, they do not
exclude other rare forms not covered in this thesis, and for which the proposed approach
can provide a solution.

Finally, it is important to note that for standard machines, most of the machine con-
figurations or manufacturing processes are provided by the OEM or the machine builder,
therefore, they are not sensitive nor confidential. The exceptions are more relative to the
customization applied on the standard machines such as adding new components or using
a secret configuration that requires high engineering expertise. In both cases, only the
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manufacturing engineer or responsible can evaluate the sensitivity of each manufacturing
data.

4.2 Sensitive Data Detection Approach in Maintenance Re-
ports

4.2.1 Overview

To detect sensitive data in maintenance reports, we adopted a hybrid approach relying on
rule-based techniques and Named Entity Recognition (NER). In addition to these tech-
niques, we used Semantic Web ontologies to guarantee the customizability, portability, and
usability by different stakeholders for different machine types.

For the detection of business data such as the manufacturer name, products names,
customers, and subcontracting companies; we use a dictionary lookup technique. We ask
the stakeholders to provide a list of all typically used proper names (products, people,
companies, ...etc) in the company. This list can be updated whenever new entities are
introduced in the company.

As presented above, the machine components are the most common form of machine
configuration or manufacturing process leaks. For that purpose, we use Named Entity
Recognition techniques for the identification of the machine components in the text.

Finally, as discussed previously, recognizing the sensitive nature of a piece of data can
only be done (for the moment) by a human expert. Therefore, to provide a highly cus-
tomizable solution, we propose an ontology-based approach to allow the domain experts to
specify the machine components that they judge as being potentially sensitive.

Figure 4.1 shows a detailed overview of our approach. It requires four different inputs:

1. A machine components taxonomy bringing together the components’ names, their
synonyms, and abbreviations.

2. An annotated text corpus that will be used for the training of the NER module. This
corpus should be composed of numerous text entries with tagged machine compo-
nents. As a requirement, all tagged machine components must be part of the machine
taxonomy.

3. A machine ontology that describes a physical machine and all its components. This
ontology must be restricted to the components defined in the machine taxonomy. In
this way, we guarantee the synchronization between the components identified by the
NER model and the components referenced in the machine ontology.

4. A data anonymization rules ontology that defines the different ways used to identify
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Figure 4.1: Detailed overview of sensitive data detection in maintenance reports

the various types of sensitive data. It is imported in the machine ontology to allow
domain experts to specify the sensitivity rules or flags for each machine component,
i.e. flag a component as potentially sensitive or not sensitive. This ontology also
references the rule-based resources (e.g. dictionaries) that are used during the sensitive
data search phase.

Note that the outcome of our approach is a custom tool for the detection of (potentially)
sensitive data in the maintenance reports of a specific target machine. Although, with
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Figure 4.2: Sensitive data detection flow for maintenance data sharing

adequate inputs, our approach is applicable to a variety of machines from different domains.
Once all the inputs are provided, the training dataset filter uses the specific machine

ontology to filter the annotated corpus. It also ignores all tagged machine components that
are not part of the target machine. As a result, we get a filtered annotated corpus that
contains samples tagged only with the components of the target machine. The reason for
this choice is that we consider the annotated corpus of general-purpose and that might
reference several thousands of machine components, while only a few dozens of components
are part of the target machine.

The filtered annotated corpus is then used to train a NER model for the machine com-
ponents detection. It is known that reducing the training datasets helps in accelerating the
training phase. Also, this allows the NER models to focus on efficiently recognizing a lim-
ited number of entities instead of trying to recognize all existing machine components. This
step provides a custom NER model trained to detect only the components of the machine
for which the maintenance reports are drawn up.

Finally, we deploy the trained NER model on the industrial gateway connected to the
target machine. Then, the Sensitive data detector service will use on-premise: 1) the trained
NER model, 2) the data sensitivity rules, and 3) the rule-based resources during the analysis
of the maintenance technician’s inputs for the identification of (potentially) sensitive data.

4.2.2 Sensitive data detection flow in maintenance reports

Figure 4.2 describes the flow of sensitive data detection in maintenance reports, it consists
of three main steps:

1. The first step consists of automatically analyzing the content of the maintenance
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report and identifying all machine components in it.

2. The list of identified machine components is then filtered in order to keep only the
items judged potentially sensitive. When sensitive components are detected, the main-
tenance report is flagged as containing potentially sensitive data and requires human
checking.

3. Finally, the domain expert decides if the report can be judged sensitive or not. All
reports identified as non-sensitive are tagged as ready for sharing with the maintenance
knowledge sharing service.

4.3 Data corpus collection & preparation

The major challenge that we had to face in this contribution was to find the needed datasets
with industrial maintenance vocabulary. Traditional sources such as internal documents or
open datasets were not helpful for our needs. Therefore, we decided to collect and construct
the required data corpus ourselves. We defined two steps to build our datasets:

1. Collect structured data and texts about machine components from the internet. The
structured data will be used to construct the machine components’ taxonomy, and
the texts will be used to build the data corpus.

2. Annotate the collected texts using the machine components taxonomy. This step is
divided into two sub-tasks:

(a) Automatic annotation: It consists of using tools to annotate automatically the
collected texts and to optimize the annotation effort.

(b) Manual annotation: In this task, the user must annotate and correct the entities
not detected or incorrectly annotated by the automatic annotation tools.

For this purpose, we implemented the IMDP (Industrial Machine Data Pool), which is a
collaborative solution with the necessary services for data collection and automatic and
manual annotations.

4.3.1 IMDP - Industrial Machine Data Pool

Several tools are proposed in the internet for web scraping and corpus construction, e.g.:
Data Scrapper from Data Miner 1 , OpenLink Structured Data Sniffer 2, or Web Scraper

1https://dataminer.io/
2https://osds.openlinksw.com/
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Figure 4.3: Example of Wikipedia page with highlighted links

from OpenLink Software 3. These tools are more designed to automate the collection of
structured data, however, the manual effort needed to collect unstructured text data makes
them useless. Thus, we decided to develop our own tool to accelerate the data collection
task. We designed an extension4 that can be integrated into internet browsers. This allows
the user to interact with the data collection tool directly from the visited web pages and
collect adequate content. Indeed, the data collection interface is accessible directly from
the browser’s contextual (right-click) menu. In addition, several users can simultaneously
use the extension and participate in the data collection effort. Each instance of the browser
extension manages a local database permanently synchronized with a central cloud database
that is common to all users (see Figure 4.4). In order to avoid duplicate entries, all the
links of the pages that are already collected are highlighted on every visited web page as
shown in Figure 4.3.

IMDP server offers also a web service that can be used similarly to the internet extension,
but without integration in the visited web pages.

3https://webscraper.io/
4The developed extension is hosted in https://github.com/hicham0100/Taxonomy-Collector-Extension

https://github.com/hicham0100/Taxonomy-Collector-Extension


CHAPTER 4. PRIVACY-PRESERVING SHARING OF INDUSTRIAL
MAINTENANCE REPORTS 81

Figure 4.4: IMDP’s architecture

4.3.2 Data Sources and Data Structure

We configured IMDP to collect data about machine components, and we choose Wikipedia
as a starting point because of the availability of a large number of pages describing the
industrial machines and components. Also, the unified structure of Wikipedia’s articles
makes it possible to automate the data extraction. From each web page, we gather the
following details:

• Entry type: differentiating three sub-types of machine component: structural, me-
chanical, and control element.

• Name: usual English name of the entity

• Synonyms: the different names and abbreviations used to describe the same entity

• Description: short description of the entity

• Category or parent entity if the entity is a derivation or sub-type of another entity

• URLs (preferably from Wikipedia): list of web pages describing the entity, we found
that many different links may be redirected to one single page in Wikipedia. So, we
keep track of all found links relative to each entity.

• Relative texts that will be used to construct our data corpus.
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Figure 4.5: Screenshot of the data collection Popup

Many of these details are automatically gathered from Wikipedia pages. For example,
to collect data about "Engine" as a mechanical element, we just need to open the Wikipedia
page https://en.wikipedia.org/wiki/Engine, right-click to get the contextual menu, and
click on the option "New entry from this page". Then, a modal form/popup (Figure 4.5)
appears with some pre-filled input fields (name, Description, Wikipedia URL and relative
texts). The name, image and description information are gathered from the Wikipedia’s
Rest API5, while the relative texts are extracted from the content of the current page by
excluding non textual elements such as: images, tables and references. On the other hand,
the remaining fields (Entry type, Synonyms and parent entity) need to be filled by the user.

The collected data can be then extended, updated or deleted by clicking on the exten-
sion’s button as shown in the Figure 4.6.

In addition to the machine components data, other categories were collected such as
(Machine Failure, Maintenance Process, Manufacturing Process, and Materials). These
categories are not considered in this thesis but are potentially useful for future works about

5https://en.wikipedia.org/api/rest_v1/

https://en.wikipedia.org/wiki/Engine
https://en.wikipedia.org/api/rest_v1/
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Figure 4.6: Screenshot of the MDPI’s collected taxonomy view

maintenance reports analysis and information extraction.
Afterward, the collected texts must be manually cleaned and annotated. We split all

collected texts into paragraphs with less than 800 characters. The goal is to simplify the
text annotation and to attract more colleagues for a collaborative text annotation effort.

4.3.3 Texts Annotation

4.3.3.1 Automatic Annotation

To accelerate the text annotation task, we implemented an automatic annotation tool that
identifies and automatically tags machine components in the text. Three different tech-
niques are used for automatic annotation:

• Exact keywords lookup from the collected machine taxonomy. We also include the
plural form of every entity by applying the English grammar’s plural rules.

• Use of Wikipedia annotations: in Wikipedia articles, the annotations appear in the
form of links to other Wikipedia pages. When we find a link with a known URL
related to a collected entity, we consider the link’s text as a reference to that entity.
Even if it is not exhaustive, this source of annotations is very accurate since it is done
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manually by Wikipedia’s contributors. However, it helps to improve the annotations
and to find synonyms of the existing entities.

• Use of Tagme annotations: Tagme6 is a service that performs on-the-fly semantic
annotation of short text using Wikipedia as a knowledge base. It proposes a REST
interface that can be used to automatically annotate texts; every entity detected by
Tagme service is tagged with a corresponding Wikipedia URL. Then, in practice, we
follow the same steps as for Wikipedia’s annotations, but with a lower confidence de-
gree. In fact, Tagme allows the detection of many machine components in the texts,
but it generates a non-negligible rate of false-positive annotations. Even by vary-
ing the sensitivity parameters, it tends to identify too many entities using semantic
equivalence, e.g. the verb ‘sense’ is identified as the entity ‘sensor’. Also, many multi-
words entities are broken like in the example: with the sentence "Conical rotor brake
motors are used to power micro speed drives.", Tagme identifies 6 entities {"Conical",
"rotor", "brake", "motors", "speed", "drives"} instead of 2 entities {"Conical rotor
brake motors", "speed drives"}.

Using the automatic annotation approach, all the collected texts are automatically an-
notated before being proposed to the users for manual annotation.

4.3.3.2 Manual Annotation

During the manual annotation task, the user needs to check the correctness of automatic
annotations and annotate the missed entities. Figure 4.7 shows the interface used for
manual annotation. When a new entity is identified by the user, it is added to the machine
taxonomy either as a synonym of an existing entity or as a new entity for which the user
is asked to provide the different details required by the IMDP. This allows to keep track of
all entities in the texts and to know to which entity every annotation refers.

For the collaborative texts annotation, 10 documents (paragraphs) were selected and
proposed without annotations to all the annotators. After, we analyze the annotation
provided by each annotator in order to evaluate the inter-annotator agreement. This method
is used in the literature [81] to estimate the relevance of annotations of each annotator.
However, this aspect was not evaluated due to a lack of volunteers.

4.3.4 Summary

At the time of writing these lines, we built a dataset composed of 193 taxonomy entries
with 283 synonyms and abbreviations, 188 articles’ texts, 3523 cleaned paragraphs, and 333
fully annotated paragraphs containing 1591 sentences.

6https://tagme.d4science.org/



CHAPTER 4. PRIVACY-PRESERVING SHARING OF INDUSTRIAL
MAINTENANCE REPORTS 85

Figure 4.7: MDPI’s Annotation interface

Figure 4.8: Machine ontology design

4.4 Machine ontology definition

In Chapter 3, we have seen that the SemKore approach requires the definition of an ontology
that describes the physical machine and the different machine components. That ontology
is usually defined by a domain expert (e.g. machine designer) with the help of an ontology
expert to fulfill the requirements defined in section 3.2.2.

Now, we have extended the set of requirements of machine ontology in order to support
the sensitive data detection approach (see Fig. 4.8). We defined a T-Box for the Machine
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Figure 4.9: T-Box & Machine ontology specifications

Ontology Model (see Fig. 4.9a) that must be used to create an instance of the physical
machine. The T-Box ontology describes the components of the machine and defines the
characteristics of each component such as its attributes or its configuration (Figure 4.9b).

Every machine is described as a hierarchical assembly of the different physical elements
(Unit, Sub-unit, Part, and Component) as shown in the Pyramid in Figure 4.9c. One of
the requirements of the Machine T-Box is that all machine components must be referenced
in the Machine taxonomy ontology that was generated previously by IMDP.

A Data Anonymization Rules ontology is also created to define, at this stage, the sen-
sitivity flags relative to each machine component. In other words, it classifies a machine
component as "sensitive" or "not sensitive". The sensitivity flag can also be defined for the
other machine elements (Unit, Sub-unit, and Part). This ontology will be extended in the
future to cover more data anonymization aspects such as managing multiple sensitive data
detection services (e.g. dashed concepts in Figure 4.9.b) or supporting the sensitive data
masking or replacement rules.

The tables 4.1, 4.2 and 4.3 describe in detail the classes, object, and data properties of
the ontologies: Anonymization rules, Machine model, and Machine taxonomy ontologies.

4.5 Proof-of-Concept Prototype

4.5.1 Training Named Entity Recognition models for machine compo-
nents detection

The goal of this task is to train Name Entity Recognition models in order to detect machine
components and mechanical equipments in maintenance reports’ textual content. Three
different NER models were trained:

1. Custom Spacy NER model: Spacy [82] is a very known open-source framework for
NLP. It offers several features including a sophisticated deep CNN-based NER system
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Table 4.1: Classes description of the Anonymization rules, Machine model, and Machine
taxonomy ontologies.

Ontology Class
Name

Super
Class

Description Example of
Instances

Anonymiza-
tion Rules

Sensitivity Defines the sensitivity flags for each
machine element.

True, False

Attribute Defines an attribute of a machine
element, attributes are immutable

SerialNumber,
Manufacturer

Configuration Defines a configuration of a
machine element along with default
configuration values

IP Address,
Rotation speed

Machine Defines a physical machine as a set
of machine elements

Tray Sealer machine
XYZ

Machine
Element

Defines the components, parts units
and sub-units of machines

Machine
Model

Unit Machine
Element

Defines the machine as a
composition of one or more
machine Units

Soldering Unit

Sub-unit Machine
Element

Defines the machine Units as a
composition of one or more
Sub-units

Robot XYZ

Part Machine
Element

Defines the machines Sub-Units as
composition of one or more Parts

Servomotor

Component Machine
Element

Defines the machine Parts as
composition of one or more
machine components

Variable Speed drive

Measurement Describes a values measured by/on
a machine element

Temperature,
Pressure, Speed

Machine
Taxonomy

Machine
Component

Defines a machine component in
the machine taxonomy

Belt, Gear,
Servodrive

Machine
Component
Type

Defines the type of the machine
component

Control, Motion,
Structure

achieving state-of-the-art performances. It also offers the possibility to train custom
NER models based on its NER system.

2. NER model with CRF (Conditional Random Fields): CRF is a class of statistical
methods designed for the analysis of sequential data (such as text, images, DNA) [83].
They’re often used in pattern recognition and machine learning. One reason for their
good performances in the NER task is that they consider the input’s context by taking
into account the neighboring or surrounding samples.

3. BERT-based NER model: BERT (for Bidirectional Encoder Representations for Trans-
formers) is a deep learning model that has given state-of-the-art results on a wide va-
riety of natural language processing tasks. It has been pre-trained on Wikipedia and
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Table 4.2: Object properties description of the Anonymization rules, Machine model, and
Machine taxonomy ontologies.

Ontology Object
Property

Parent Domain Range Description

Anonymization
Rules

has
Anonymiza-
tion Rules

Machine
Element

Sensitivity Associates a machine element
to a sensitivity flag. It will
evolve in the future to cover
more complex anonymization
rules.

Machine
Model

Has Attributes Machine
Element

Attribute Defines an attribute for a
machine element

Has
Configuration

Machine
Element

Configuration Defines a configuration for a
machine element

Has Elements Machine
Element

Machine
Element

Specifies all the elements of a
specific machine

has Machine
Element
Parent

Machine
Element

Machine
Element

Defines a hierarchy between
machine elements by specifying
a parent element

has
Measurement

Machine
Element

Measurement Associates a measurmenent to
a machine element

has Unit Has
Elements

Machine Unit Defines a machine as a
composition of machine units

has Sub-Unit Has
Elements

Unit Sub-unit Defines a machine unit as a
composition of machine
sub-units

has Part Has
Elements

Sub-unit Part Defines a machine sub-units as
a composition of parts

has
Component

Has
Elements

Part Component Defines a part as a composition
of machine components.

Machine
Taxonomy

has
Component
Type

Machine
Element

Machine
Component
Type

Defines the type of a specific
machine component in the
machine taxonomy

BooksCorpus [84], and requires task-specific fine-tuning [85]. In our case, we applied
BERT to build our NER model for machine components detection.

4.5.1.1 Data input

To train the NER models, we used the dataset collected via the IMDP tool. The size of
the dataset is shown in the table 4.4. As presented previously, many tags are used for
the data annotations and the number of instances of each class is shown in the table 4.5.
In this task, we consider only the classes: MACHINE COMPONENT and MECHANI-
CAL EQUIPMENT as they represent more than 95% of the tagged entities and are more
meaningful for our evaluation.
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Table 4.3: Data properties description of the Anonymization rules, Machine model, and
Machine taxonomy ontologies.

Ontology Data
Property

Domain Range Description

Anonymization
Rules

has Sensitivity
Flag

Sensitivity xsd:boolean Defines a sensitivity flag (True
or False) for a machine element

Machine
Model

Measurement
Timeseries ID

Measurement xsd:string Defines the identifier used to
store the measurements in the
time series database

Measurement
Timestamp

Measurement xsd:dateTime
Stamp

Defines the timestamp of the
last measured value

Measurement
Value

Measurement rdfs:Literal Defines the last value measured
by/on a machine element

Attribute
Value

Attribute xsd:string Sepcifies the attribute value of
a machine element

Attribute
Name

Attribute xsd:string Specifies the attribute name of
a machine element

Attribute Type Attribute xsd:string Specifies the attribute type of a
machine element

Description owl:Thing xsd:string Provides a description for an
individual

Config Name Configuration xsd:string Specifies the configuration
name of a machine element

Config Type Configuration xsd:string Specifies the configuration type
of a machine element

Config Value Configuration xsd:string Specifies the configuration
value of a machine element

Default Values Configuration xsd:string Specifies the configuration’
default values for a machine
element

Machine
Taxonomy

Component
Name

Machine
Component

xsd:string Defines the usual component
name in the machine taxonomy

Has
Abbreviation

Machine
Component

xsd:string Defines the abbreviations
frequently used for a machine
component

has Synonym Machine
Component

xsd:string Defines the synonyms of a
machine component

Machine
Components
Type Name

Machine
Component
Type

xsd:string Defines the name of the
machine component’s type

Table 4.4: The dataset volumes used for the training of the NER models
Paragraphs Sentences Tokens

Volume 333 1591 37244



90 4.5. PROOF-OF-CONCEPT PROTOTYPE

Table 4.5: Number of instances of each class used in the dataset
Class Number of instances
MACHINE COMPONENT 1736
MECHANICAL EQUIPMENT 802
MATERIAL 85
MANUFACTURING PROCESS 24
MACHINE FAILURE 9
MAINTENANCE PROCESS 0

4.5.1.2 Data output

The expected result from this task is to detect "Machine components" and "Mechanical
Equipments" entities in the input text. For example, let’s consider the following text: "A
dead axle, also called a lazy axle, is not part of the drivetrain, but is instead free-rotating.
The rear axle of a front-wheel drive car is usually a dead axle."

The expected result from the analysis of this text with the NER models is shown in the
figure 4.10 bellow.

Figure 4.10: Example of automatic detection of Machine Components and Mechanical
Equipments in the text.

4.5.1.3 Data preprocessing

Data preprocessing for Spacy To train the Spacy model, the annotated data needs
to be encoded according to the BILUO [86] scheme. This format consists of tagging each
token in the data as follows:

• B-<class>: the first token of a multi-token entity belonging to <class>.

• I-<class>: an inner token of a multi-token entity belonging to <class>.

• L-<class>: the last of a multi-token entity belonging to <class>.

• U-<class>: a single-token entity belonging to <class>.

• O: a non-entity token.

Data preprocessing for CRF The CRF requires extracting features from the texts
before the training step. For that purpose, we first tokenize the input texts, then we extract
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Table 4.6: Training parameters for Spacy, CRF, and BERT
SPACY CRF BERT

Parameter Value Parameter Value Parameter Value
Base model Empty model L1 penalty 0.44 Base model uncased BERT base

model
Batch size compounding

(4, 32, 1.001)
L2 penalty 1e-4 Batch size 16

Iterations
number

15 Max
iterations

60 Epochs 3

a vector of 11 features from each token, such as the lower case format, suffixes characters,
various flags (uppercase, capital, alphanumeric, stop word), and part of speech (PoS) Tags.
Afterward, each token’s vector is concatenated with the vectors of the previous 5 tokens
and the vectors of the next 5 tokens. This allows covering the long multi-token machine
components like “glass-ceramic-to-metal seal” that is composed of 8 tokens (5 words and 3
hyphens).

Data preprocessing for BERT BERT uses a built-in tokenizer that allows prepro-
cessing data before the training step. For instance the sentence "agitators come in many
sizes and varieties." is tokenized into [’ag’, ’##ita’, ’##tors’, ’come’, ’in’, ’many’, ’sizes’,
’and’, ’varieties’, ’.’]. This creates flexibility, as the tokenizer can always create tokens for
a given sequence, regardless if the word has been seen previously by the model. This is
especially useful for NER as some names may be very unusual and not occur in the training
dataset [87].

4.5.1.4 Training setup

For the training phase, we used different parameters for our NER models as shown in the
table 4.6. For Spacy’s base model, we can use either an empty model that will be trained
from scratch to detect the machine components entities or reuse the Spacy’s trained NER
model to make it able to detect as well the already supported entities (Person, Organization,
Addresses, ...etc) and the machine components entities. We chose to use an empty model to
have an accurate evaluation of the trained model for our specific task. Regarding the BERT’s
base model, several possibilities are proposed such as uncased BERT base model, uncased
BERT large model, cased BERT base model, or Cased Multilingual with 104 languages. We
chose an uncased BERT model since we have no need to preserve the upper case format for
the detection of machine components. Also, we used the smaller model as it requires less
expensive computer hardware for training.
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4.5.1.5 Evaluation setup

We adopted the cross-validation or k-folding approach for the evaluation of the trained NER
models. This, we divided our dataset into n=5 splits and trained the models in 5 iterations.
For each iteration i, we trained each of the NER models by considering the ith data split
as testing data, and the remaining data splits as training data. We also adopted also the
F1-score as an evaluation metric. It is defined as follows:

F1 = 2 ∗ precision ∗ recall
precision+ recall

Where the precision is the percentage of named entities found by the NER model that are
correct, and the recall is the percentage of named entities present in the corpus that are
found by the model.

4.5.2 Implementation details

Multiple technologies are used to implement this proof-of-concept. For IMDP we used:

• Google Chrome as a target for the browser extension as it is quite a popular browser
worldwide.

• HTML+CSS and Javascript to implement the web UI, and the different chrome ex-
tension services, such as data collection, cleaning, annotation, and data export.

• PouchDB, as a storage database on both, local storage and on the cloud storage.
PouchDB is a no-SQL database with native data synchronization features between
the local and cloud databases.

The creation of the different T-Box ontologies (Machine Taxonomy, Data Anonymization
Rules, Machine Model) was mainly done with the Protégé tool, which is widely used for the
creation of semantic web ontologies.

We used the Python programming language to implement the "Training dataset filer"
service, and for the NER training module. Specific python libraries were used for the
implementation and training of the different NER models:

• Spacy library for the custom spacy NER model.

• pyCRFsuite for the NER model with CRF.

• PyTorch library for NER model with BERT.

For the training of the different NER models, we used a capable laptop setup running
Ms. Windows 10, with 32Gb of RAM, an octa-core i7 processor, and a CUDA-enabled
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GPU (NVIDIA QUADRO M2020) with 12Gb of memory. As an industrial gateway, we
used RaspBerry Pi 4, with 4Gb of RAM, ARM-Cortex-A72, and running Linux Ubuntu
5.4. Docker was used as a containerization technology for the different Edge services such
as the Sensitive data detector service.

Finally, we used Microsoft Azure to host the IMDP server containing the master PouchDB.
Currently, the training dataset filter and NER training module services were implemented
and tested on a laptop, and there is a plan to deploy them on a dedicated Ms. Azure server.
On the Raspberry Pi, we deployed the trained NER models and the sensitive data detector
service.

4.5.3 Evaluation

To evaluate our approach, we defined a sample machine ontology containing all the compo-
nents of our machine components taxonomy, and we used the complete annotated dataset,
generated by IMDP, to train the NER models. We also defined a dictionary of some names,
found in the annotated texts for the rule-based part. We can deduce that the performances
of our approach are equal to the performances of the NER models since the rule-based
resources are defined to achieve (biasedly in our PoC) an accuracy of 100%. However, in
order to fully evaluate this approach, we need to have much more data than we currently
use.

The evaluation results of the trained NER models are shown in the table 4.7. The
iteration number is relative to the 5-steps adopted cross-validation approach as explained
in section 4.5.1.5. The Precision, Recall, and F1 score are computed for each model for
each of the 5 iterations, and the average row shows the global performances of the trained
models. We can see that even with a relatively small dataset we can achieve good F1 scores.
The NER model with BERT achieves an F1 score around 0.79, and CRF gets an F1 score
of 0.89. While the best results were achieved by Spacy’s NER model getting close to 0.93
for the F1 score. The standard deviation measured for all metrics was between 0.001 and
0.03 meaning that the models’ performances are relatively stable even with the change of
the training data sets.

We also evaluated the execution times of the different NER models, since our main
execution target is an embedded industrial gateway. We found that the time needed to
analyze a text and extract the sensitive entities is perfectly linear with the number of words
in the text. Table 2 shows the time needed to analyze a sample of 1000 words. BERT
showed exceptional performances with the ability to analyze a sample in less than 0.2ms on
the laptop. However, it takes more than 9 seconds for the same task on Raspberry PI which
makes it not suitable for our case. CRF’s model was also fast with 8ms on the laptop and
14ms on the RPI, while Spacy’s NER model takes more execution time (than CRF) on both,
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Table 4.7: Cross-validation evaluation of Spacy, CRF, and BERT NER models (P: Precision,
R: Recall, F1: F1 score)

Iteration SPACY NER NER with CRF NER with BERT
P R F1 P R F1 P R F1

1 0,932 0,914 0,923 0,937 0,852 0,891 0,814 0,783 0,798
2 0,931 0,934 0,932 0,945 0,866 0,902 0,79 0,815 0,803
3 0,926 0,934 0,930 0,919 0,874 0,896 0,782 0,834 0,807
4 0,923 0,943 0,933 0,936 0,901 0,918 0,749 0,816 0,781
5 0,928 0,917 0,922 0,881 0,817 0,846 0,74 0,781 0,76

Average 0,928 0,928 0,928 0,924 0,862 0,890 0,775 0,8058 0,7898

Table 4.8: Execution time of the NER models on laptop and Raspberry pi (ms/sample of
1000 words)

Model Time on Laptop Time on Raspberry Pi
SPACY NER 41 183
NER with CRF 8 14
NER with BERT 0.17 9239

the Raspberry Pi with 183ms and the laptop with 41ms, which also remains reasonable for
an on-the-fly text analysis feature. Finally, once a machine component is detected, looking
in the ontology if it is sensitive or not takes a negligible time (< 10−4ms).

4.6 Limitations and Improvement Areas

It is important to note that this contribution is the first step towards a fully automated
maintenance data anonymization. Actually, data anonymization consists of two basic steps:
sensitive data detection, and sensitive data masking or replacement. Paper II is providing
a detailed analysis of data anonymization of maintenance reports.

With current PoC implementation, we conducted some tests on a limited set of mainte-
nance reports, for which we created a simple machine ontology and found promising results.
However, several limitations and areas of improvement are identified:

The first area of improvement is that we used a restrictive hypothesis as a basis of our
approach. In fact, not all sensitive data are relative to machine components. As an exam-
ple, the maintenance operator could describe a manufacturing step instead of the machine
component, e.g. "The packets sealing has small holes". Also, the machine components
might be sometimes described by their use such as using "the milk container" instead of the
"liquid tank or reservoir". This can be improved by adopting digital tools to prepare main-
tenance reports like a UI based on a set of ontologies for taking input from the operators
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by suggesting standard terms.
The second challenge is the nature of the language used for real maintenance reports,

and that makes the automatic analysis awkward. In fact, maintenance operators do not
provide literature texts, they usually use short informal texts, or even use street slang or
urban vocabulary with frequent typos and missing punctuation. Similarly, the operator’s
vocabulary understanding may not be coherent with the normative definition, which often
results in the use of non-standard abbreviations. Here again, the use of digital tools can be
helpful to facilitate the operator to provide details as per normative definitions. Also, using
real maintenance reports to train the NLP models could help in capturing the specificities
of the maintenance reports’ language.

Another area of improvement is the simplification of the data annotation process by
decoupling the data annotation and the machine taxonomy. Some works like [88] showed
that it is possible, for some NLP tasks, to train models on a corpus annotated with a
taxonomy different from the one it is designed to output annotations for.

Finally, to have an accurate evaluation of our approach, we need, obviously, datasets with
a considerable number of real maintenance reports containing sensitive data. Otherwise,
the evaluation results make sense only for the used datasets.

4.7 Conclusion

In this chapter, we propose a new approach to avoid sensitive data disclosure during the
maintenance data sharing activity. We showed the sensitive data types and nature in main-
tenance reports based on the interviews campaign, and that judging -with certitude- a piece
of data to be sensitive or not, remains the role of a human expert such as a manufacturing
engineer. In this approach, we aim to simplify the work of the human expert by identifying
the potentially sensitive data in maintenance reports’ content. For this purpose, we extend
the SemKoRe ontology models to allow users to specify the items that can be considered
as potentially sensitive. The evaluation of three NER models, shown promising results for
on-premise sensitive data detection. We also identified some limitations and improvement
areas to continue working on this topic.



96 4.7. CONCLUSION



Chapter 5
Embedded Semantic Querying
Tool for Distributed Time Series
Data

Contents
5.1 Proposed Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.1.2 Past Event Detection Features . . . . . . . . . . . . . . . . . . . . 100

5.2 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . 101
5.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.2.2 DTSE Abstract layers . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.2.3 DTSE Query Language . . . . . . . . . . . . . . . . . . . . . . . . 102
5.2.4 DTSE query decoding . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.2.5 Distributed Times Series Engine’s query processing . . . . . . . . . 105

5.3 Proof-of-concept Prototype & Evaluation . . . . . . . . . . . . . 106
5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

97



98

This chapter presents the embedded tool for distributed times series data using semantic
criteria. It describes the contribution on Patent I and presents implementation details and
performance measurements. It addresses the following research questions:

How Semantic Web technologies can be used to enrich and to pull out insights from IIoT
historical data? More particularly, how to deal with the diversity of data sources in IIoT?
How to have an efficient mechanism for querying historical data stored on multiple IIoT
low-end gateways?

Today, several industrial IoT (IIoT) applications designed to monitor, benchmark, and
discover trends reveals being very useful to gather valuable insights and to facilitate im-
provements in productivity and efficiency as well as other economic benefits [89]. Such
applications, usually Cloud-based, rely on deployed gateways or systems to collect data
from various sources such as sensors, actuators, or industrial machines. With advances in
hardware technology coupled with low costs, gateways with storage capabilities are now
quite common. Hence, easy-to-use solutions located closer to the devices are preferred but
issues like device and protocol heterogeneity, multi-vendor solutions, and variety of data
models make it a challenging task.

In our case, one of the short-term evolutions planned for the SemKoRe is to enable
automatic failures detection and predictive maintenance features. Such features rely heav-
ily on the analysis of time-series data. The project team adopted classical approaches for
the management of time-series data, such as using relational databases with simple data
structures like (id, timestamp, value). Such an approach is not efficient for data query-
ing and was not considering the context of the measurements. However, it satisfies the
technical requirements of the project team, such as simplicity, backward compatibility, and
compatibility with the numerous existing IoT time-series databases.

With this context, we implemented a generic solution "DTSE" for IIot gateways, to
support new services by using locally stored time series data. It is important to note
that our goal is not to disrupt and change the current IoT solutions, but rather aim to
offer new services that can be easily integrated into the existing ecosystems. To tackle the
heterogeneity issues, we need to decouple the problem space from the solutions space with
the right level of abstraction. Hence, we rely on semantic web technologies to provide a
high level of abstraction without focusing on protocols or communication mechanisms.

We believe that the existing works on RDF stream like [90,91] and temporal RDF [92–94]
offer better support of semantics for time-series data querying and analysis. However,
despite the disruption of the existing IoT ecosystems, these solutions are intended to be
used on powerful platforms with triple stores capable of ingesting important streams of data,
which is not practically adapted to platforms like IoT gateways with limited resources.

This contribution is an extension of the work described in [95], that was made by the
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Figure 5.1: Overview of the Semantic Time Series Engine deployed on a gateway

author a couple of months before starting the Ph.D.

5.1 Proposed Solution

5.1.1 Overview

The proposed solution, called DTSE (for Distributed Time Series Engine), is shown in Figure
5.1. DTSE is a software module deployed in an edge gateway exposing annotated data of the
connected devices. The semantic annotation process, described in [96], consists of linking
concepts from Schneider-Electric’s common ontologies (e.g Protocols, Units, Usage) with
the actual topology nodes exposing data by the gateway. Such annotations are useful and
allow to identify the context of the collected data without a need to use the identifiers of
the data sources. For example, the annotations : usage:Temperature, protocol:Modbus, and
location:Floor1, describe the nature of the collected data as a temperature measurement,
along with the used communication protocol and the location where data has been collected.

We consider that the collected data is stored in a local database on the gateway. The
choice of the data storage is out of the scope of this work, our solution is designed to be
flexible and to interact with any data storage used by the gateway.

DTSE offers a Restful interface that can be used by any application running locally
on the gateway or externally. The Restful interface can mainly be used to execute time-
series queries or to configure the different modules of the application: such as managing the
common ontologies or configuring the slave DTSE instances. As shown in Figure 5.2, we can
define a hierarchical structure between various DTSE instances through the specification of
Master and Slave relationships.
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Figure 5.2: Distributed times series engines configuration

5.1.2 Past Event Detection Features

In addition to the time-series querying capability, DTSE proposes the following features:

• Distributed queries execution: A query can be executed on multiple DTSE instances
running on different edge gateways. This feature is detailed in the next section.

• Past event detection: A past event is a set of predefined time and value conditions
associated with the data collected by one device. DTSE allows to detect the time
ranges during which an event has occurred and during which all the event’s conditions
are met. We can also filter the detected events by specifying the minimum occurrence
duration without interruption, e.g.: ”High temperature for more than 1 hour during
the weekends”.

• Independent events detection: It is also possible to detect multiple independent events
occurring on one or several devices using one single query, e.g. "Machine1 is working
for more than 8 hours, Machine2 is working for more than 12 hours". This type of
query can be useful to monitor several assets with one single query.

• Parallel events detection: DTSE proposes also a mechanism to detect events occurring
simultaneously on multiple devices, e.g. "Machine1 is working while the temperature
is high (>30degree) during more than 15 minutes.".
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Figure 5.3: Components view of the DTSE module and interactions with other services

5.2 Implementation details

5.2.1 Overview

Figure 5.3 shows the component’s view of the DTSE module, and how it interacts with the
other components running on the IoT gateway. In fact, it needs to interact with the services
that are usually deployed in IoT solutions, such as:

• The IoT data model service: This service manages the topology of all IoT nodes
(devices, sensors, actuators) controlled or managed by the gateway. Several techniques
are used by the IoT software developers to implement this service, such as using
databases, ontologies, configuration files, ...etc.

• The time-series data storage: we assume that a gateway dealing with time-series data
may probably have its own data store, and probably with already available data.

• Inference ontology: This optional module is only required when the inference feature
is enabled on DTSE. Providing a SPARQL Endpoint, it allows DTSE to execute some
predefined SPARQL queries in order to infer additional knowledge about the topology
nodes’ annotations.
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5.2.2 DTSE Abstract layers

For the sake of genericity, we designed DTSE to be independent of any of the IoT data
model services or data storage modules, and we impose almost no requirements on the
implementation of these services. Instead, we provide two simple interfaces that need to be
customized by the integrator: Data Model Interface, and Time Series Interface. DTSE uses
these interfaces as abstraction layers to interact with the required modules without being
intrusive.

5.2.2.1 Data Model Interface

The data model interface is proposed to allow DTSE to get the details and meta-data
of the topology nodes. On one hand, we require a limited set of details for each node,
such as the identifier, node’s nature (Device, sensor, actuator), time series ID if exists,
name, and the parent node to have the hierarchical view of the topology. On the other
hand, the meta-data are the nodes annotations using the concepts from ontologies (e.g.
Schneider Common ontologies in our case). Note that we have no requirements on the
ontologies used for the nodes annotations, all that DTSE needs are pairs of "Key:Value" that
describe the context of the topology nodes, e.g. "usage:Temperature", "location:Floor1".
The source code of this interface is implemented in C language and is hosted in https:

//github.com/hicham0100/DTSE/blob/main/dmapi.h. The integrator must implement all
the defined functions and produce input in the expected data structures.

5.2.2.2 Time Series Interface

This interface allows DTSE to interact with the time-series data storage without being too
intrusive. It defines various functions that need to be implemented by the integrator to:

• Query the data of existing time-series data by providing the corresponding ID.

• Add new entries (if allowed by the integrator) to a time-series data.

• Make searches on time-series data based on simple value and time conditions.

The source code of this interface is implemented in C language and is available at
https://github.com/hicham0100/DTSE/blob/main/TS_api.h.

5.2.3 DTSE Query Language

The DTSE’ queries rely on Schneider’s domain-specific query language1 and extend the
basic query language used in [97] to support time-series data. It takes into account a

1https://github.com/hicham0100/DTSE/blob/main/Query Grammar

https://github.com/hicham0100/DTSE/blob/main/dmapi.h
https://github.com/hicham0100/DTSE/blob/main/dmapi.h
https://github.com/hicham0100/DTSE/blob/main/TS_api.h
https://github.com/hicham0100/DTSE/blob/main/Query Grammar
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Search Times TAGS_FILTER
[with ATTRIBUTES_FILTER]
[where VALUE_FILTER]
[during DURATION_FILTER]
[when TIME_FILTER]
[TIME_RANGE_FILTER]
[union NESTED_TIMES_QUERY]
[run on SLAVE_DTSE_LIST]

(a) DTSE time ranges queries structure

COMMAND Values TAGS_FILTER
[with ATTRIBUTES_FILTER]
[where VALUE_FILTER]
[when TIME_FILTER]
[TIME_RANGE_FILTER]
[group by GROUP_BY_FIELD]
[run on SLAVE_DTSE_LIST]

(b) DTSE values queries structure

Figure 5.4: Structures of the DTSE queries

combination of tags and expressions to filter and aggregate data using several dimensions
such as: semantic context, static attributes, measurements values, time components and
time ranges as shown in Table 5.1 and Figure 5.4. Two major types of queries are supported
by DTSE:

Table 5.1: Description of the DTSE queries fields
Field Description Example
COMMAND Specifies the search command or

the aggregation function that will
be applied on the result

search, min, max, sum, avg

TAGS_FILTER Filters the topology nodes based on
semantic tags conditions

usage:Temperature or
protocol:Modbus

VALUE FILTER Filters the topology nodes based on
static attributes such as: unit,
name, id

with id=="sensor123" or
name != "Humidity"

TIME FILTER Filters the timeseries data of the
previously selected nodes based on
time conditions

when hours >= 8 and hours
<= 18 and wday == 1

DURATION
FILTER

filters the time ranges by the
uninterrupted duration of
occurrence of the query conditions.

during time >= 00:10:00
and time <= 00:20:00

TIME RANGE
FILTER

Restricts the analyzed timeseries
data to specific time ranges

from 2021-12-01 00:00:00 to
2021-12-02 00:00:00

GROUP BY
FIELD

Defines the dimension for the
aggregation of data

group by hours

SLAVE DTSE
LIST

Specifies the list of DTSE slave on
which the query will be executed in
parallel

run on DTSE_5, DTSE_7

• Values Queries: Figure 5.4b shows the Values Queries structure. This is the basic
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An e

Figure 5.5: Example highlighting the differences between the Values Queries and the Time
ranges queries

feature provided by most time-series databases. It allows searching and aggregating
the historical values of a sensor node. Many filtering options are available such as
Semantic Tags, nodes attributes, value, time components, and also time ranges.

• Time Ranges Queries: The structure of these queries is depicted by Figure 5.4a. These
queries are intended to search the time ranges within which the list of query conditions
is met. For every returned time range, we are sure that all conditions are met without
interruption. Despite its important usage, to our knowledge, no existing embedded
TSDBMS is supporting such a feature. The Figure 5.5 highlights the differences
between the values queries and the time ranges queries.

5.2.4 DTSE query decoding

For the query decoding, we rely on the ANTLR (ANother Tool for Language Recognition)
framework2. ANTLR allows to parse the input query and to generate an Abstract Syntax
Tree (AST) according to the defined query grammar. Figure 5.6 shows an example of AST
generated for the query "search times usage:Temperature where value < 25 and value >=
20 during time > 00:10:00". The resulting AST allows to distinguish mainly 3 parts in the

2https://www.antlr3.org/
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Figure 5.6: Example of Abstract Syntax Tree (AST) generated for a query example

query:

• The topology nodes conditions that allow filtering the topology nodes based on the
provided criteria,

• The time series conditions that provide the criteria to search and filter the time series
data.

• The last part serves to know if the query will be executed only locally or will be
distributed and executed in parallel on the designated slave DTSE gateways.

5.2.5 Distributed Times Series Engine’s query processing

The Figure 5.7 depicts the DTSE query processing diagram. The queries are first parsed
and decoded to identify the different query parts, described above, to:

1. Filter the topology nodes using the semantic criteria defined in the query Fig. 5.7(1).
These criteria are composed of one or more semantic annotations, e.g.: (usage:Temperature
or usage:Humidity) and Location:Room123. The semantic criteria can be enriched
by enabling the inference feature using the "@" decoration symbol, e.g. @Loca-
tion:Grenoble returns all nodes located in Grenoble or any sub-location of Grenoble.
The inference mechanism provides a higher level of abstraction and relies on the used
ontologies (e.g. Location) to identify the inferred annotations.

2. Analyze the historical data collected by the nodes found during the first step Fig.
5.7(2). Various criteria are supported such as:
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• Data values conditions: used to filter data by values e.g. "value >38 and value
<40"

• Time conditions: including conditions on the timestamps and time components
such as year, month, day, weekday, hours, minutes (e.g. "month == 3 and day
== 10 and (hours >= 8 and hours < 18 ")

• Duration criteria: specifying the conditions on the duration of the events during
which the values and time conditions are met (e.g. "during time > 00:05:00 and
time <= 01:00:00").

• The time ranges conditions: limiting the scope of the data analysis to specific
time periods (e.g. "from 2021-12-03 00:00:00 to 2021-12-31 23:59:59

3. Check the distributed execution criteria Fig.5.7(3), two possible scenarios are sup-
ported:

• Scenario 1 - local query: the query is executed locally and the results are imme-
diately returned.

• Scenario 2 - distributed query: the query is executed locally and is in parallel
transferred (without distribution criteria) to the specified slave DTSEs. Each
slave DTSE executes the received query locally on its own topology and time-
series data, then returns back the results to the requesting DTSE. On the other
side, we collect the results from all designated slave DTSEs, merge them with
the local results before being returned as final results.

5.3 Proof-of-concept Prototype & Evaluation

We implemented a prototype of DTSE in C and we interfaced it with SQLite as it is a
popular data storage for low-end devices.

To evaluate our implementation, we used a Raspberry Pi 2 board. We simulated two
temperature and humidity sensors and generated a data set of 20 million records (10 million
per sensor). The generated data spread over three years starting from 2014-06-01.

Four benchmark queries were used to analyze the generated data sets (Table 5.2). They
allow to analyze one time series against the other and to mainly detect parallel events. And
to compare DTSE performances to another existing solution, we contacted the Machbase3

team, which provides the embedded Machbase DBMS dedicated to time series, and provided
them our evaluation queries. Since Machbase is SQL-based, no single query was able to

3https://www.machbase.com/
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Table 5.2: DSTE evaluation queries
No Query

Q1 Get time ranges when humidity > 65 and temperature > 25
Q2 Get temperature when humidity > 65 for more than 10 minutes
Q3 Get temperature when humidity > 50 during the weekends
Q4 Get the maximum humidity during June when temperature ≥ 30

handle alone our benchmark queries. The Machbase team took care of creating an optimized
combination of queries and software to achieve the same goals.

The chart in Figure 5.8 shows the queries execution times using DTSE and Machbase.
DSTE requires on average less than 7 seconds to execute each of the benchmark queries.
While Machbase takes between 9 seconds to more than 6 minutes depending on the com-
plexity of queries.

The evaluation of distributed query execution showed similar performances for local
executions on each DTSE instance. Afterward, the Master DTSE needed additional time
to receive and process the results returned by the slave DTSE instances. This extra time,
estimated in our case between 1 to 2 seconds per slave DTSE instance, depends on the
size of returned data, the latency of the HTTP protocol, and the communication channel
bandwidth.

5.4 Conclusion

This chapter presented the work on the embedded distributed time series solution. It uses
semantic annotations and relies on ontologies to provide a high level of abstraction. Features
such as past event detection, missing in existing time series solutions, revealed a high
potential for IIoT monitoring or benchmark solutions. The prototype showed reasonable
performances on low-end gateways, making it a potential candidate for data analysis in the
SemKoRe ecosystem.
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Figure 5.7: Distributed Times Series Engine’s query processing diagram
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Figure 5.8: Execution time comparison of DTSE and Machbase
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This chapter presents the Knowledge Graphs manipulation tool destined to software
developers in order to simplify the development of Semantic Applications. This contribution
is the subject of Patent II. It addresses the following research question:

How can Knowledge Graphs (KG) consuming and manipulation by application developers
be facilitated? How to guarantee the consistency of the manipulated KGs? How can ontology
engineers be involved to enhance the developers’ experience?

During the last decade, Knowledge Graphs have proved their effectiveness for structuring
data and knowledge in various domains. They became the most important denominator in
large IT companies such as Google, Microsoft, Facebook, and Amazon. These successful
experiences pushed several companies, including Schneider-Electric, to adopt the Knowledge
Graphs as an efficient way for data integration, unification, analytics, and sharing.

However, software developers find it difficult to manipulate Knowledge Graphs and
to develop ontology-based applications. This complexity can be explained by two main
reasons. The first reason is that most software developers lack awareness and knowledge of
Semantic technologies. The second reason is the complexity of the ontology models that are
usually defined to cover a large domain or activity. In fact, many W3C recommendations
and well-known ontologies have complex mechanisms to describe data.

Since 2008, several works in the literature propose various tools and APIs to simplify the
interactions with Knowledge Graphs. A recent survey [98] presents comprehensive state-
of-the-art of KG read-only tools like Pubby [99], Puelia [100], ELDA [101], LODI [102]
and the recent Walder [103], and read-write tools like Open Semantic Framework [104],
Trellis [105], BASIL [106], RAMOSE [107]. Their analysis confirms our observations that
these tools require developers to be familiar with the ontology to design and configure APIs.
They also need proficiency in SPARQL and GraphQL.

In this work, we address the needs of typical software developers who want to build new
applications and services using Knowledge Graphs without deep knowledge of semantic web
technologies. We propose a Restful API, that requires minimal configurations and allows to
manipulate KG. It allows also to guarantee the consistency of the models without needing
extra ontology tools like a reasoner. Our first goal from this contribution is to simplify and
accelerate the development of SemKoRe services. Thus, the proposed solution is designed
to be used on the different IoT layers: Edge, Fog, and Cloud.

6.1 Runtime API for consistent Ontology Instantiation

6.1.1 Overview

Figure 6.1 presents an overview of our API for KG manipulation. It allows manipulating
Knowledge Graphs through a Rest interface and by using JSON requests. As a unique
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Figure 6.1: Runtime API for Consistent KG Manipulation

prerequisite, the Knowledge Graphs must be stored in an RDF triple store exposing a
SPARQL Endpoint. Also, the only required configuration for the API is the URL of the
SPARQL Endpoint.

The proposed API can be used by software developers or by applications such as web-
sites, embedded software, or any application type. This solution is designed to be used on
various platforms: Cloud, laptop, and low-end edge gateways. We use the term "Runtime"
since the API can connect to any RDF triple store and immediately adapt to the stored KG,
without needing to add configurations or to generate custom APIs. The term "Consistent"
is used because the API guarantees the consistency of the KG after each modification or
update.

It is important to note that, in this approach, we consider that the ontology description
is exhaustive and that it covers all the needs and expected usages. Hence, we clearly
restrict the KGs manipulation to the definition of the ontology, and we ignore the "open-
world" assumption in which the absence of a particular statement doesn’t mean it is false
or impossible.

Also, this API is a simple proof of concept and is, in its current form, not compliant
with the Linked Data Platform standard (LDP) [108], as recommended by W3C, for two
reasons:

1. The user/consumer of LDP services needs to be familiar with Semantic Web tech-
nologies, especially for the update operations that require a good understanding of
ontology concepts, JSON-LD/Turtle or SPARQL.

2. LDP allows the user to freely manipulate the managed KG, without being restricted
to the defined ontology models, which is an undesired scenario in our case.

Finally, the choice of JSON format is made for simplicity in our PoC, and other formats
could as well be used such as SPARQL-JSON or JSON-LD.
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6.1.2 Data Manipulation Features

The Figure 6.2 shows the flow of KG manipulation through the proposed API. Three types
of queries are supported for data manipulation: data querying, data update, and parame-
terized SPARQL Queries. For all query types, a SPARQL query is generated and executed
over the KG in the triple store. The SPARQL query results are then converted into JSON
format before being returned as a result to the caller.

6.1.2.1 Data Querying Feature

Regarding the data querying feature, 4 possible queries are proposed:

• Get the list of classes

• Get the structure of a specific class

• Get all the instances/individuals of a specific class

• Get the details of a specific instance

These simple queries showed to be sufficient to query most of the data in a KG. They also
remind the structure of relational databases. Which makes them easily assimilated by the
developers used to use RDBMS.

6.1.2.2 Data Update Feature

The data update feature offers 3 querying possibilities:

• Create a new instance of a specific class.

• Update the details of a specific instance.

• Delete an instance and all its details.

During the data update, the validity of the received data is checked against the ontology
model definition before applying any change in the RDF triple store. The next section
describes the model consistency checking process in detail.

6.1.2.3 Parametrized SPARQL Queries

To bypass the limitations of the data querying and data update features, the API supports
the use of configurable queries or what we call Parametrized SPARQL Queries (PSQ). The
PSQs are templates of queries using ad-hoc decorators of which values may be injected. This
feature requires prior configuration and allows KG consumers to run complex (pre-defined)
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Figure 6.2: KG Manipulation Flow

Figure 6.3: Parametrized SPARQL Query flowchart

queries without any knowledge of SPARQL. As shown in Figure 6.3, a domain expert defines
and configures the PSQ judged necessary for a specific use or project. Then, the application
developer can execute the configured PSQs by providing the necessary parameters.

6.2 Technical details

The prototype of the runtime API for consistent ontology instantiation is implemented using
Node-Red. This section provides the implementation details of the supported features by
our API.
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6.2.1 Data Querying interfaces

Figure 6.4: Node-Red flow implementation for the data querying feature
The Figure 6.4 shows the Node-Red flow for the data querying interfaces. The same

processing steps are repeated for each interface:

1. The received request is forwarded to a dedicated node that checks request’s format
and extracts the request parameters. These parameters will be used to generate the
corresponding SPARQL query.

2. The generated SPARQL query is then executed on the pre-configured triple store
through a SPARQL endpoint.

3. The SPARQL query results are then parsed and converted to JSON before being
returned to the caller.

6.2.1.1 Get the list of classes

This interface retrieves the list of classes defined in an ontology. Each class is described by
three attributes:

• The class’s identifier, which is the class’s URI

• The class’s label (if defined)

• The identifier of the class’s parent (if exists), allows having a view on the classes’
hierarchy in the ontology.

We can also restrict the classes to a specific "namespace" in case of the use of multiple
ontologies in the same triple store.

6.2.1.2 Get the structure of a class

This interface allows the extraction of information about a class’s structure. We adopted
an object-oriented view, and we consider the class description as a template or prototype
from which the class’s instances or objects are created.
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Figure 6.5: Example of a class description

As an example, the description of the class "Person" shown in the Figure 6.5 is translated
by the API as Every instance of the class "Person" has exactly three attributes:

• Age: with exactly one positive integer value.

• Name: with exactly one string value.

• hasParent: links the current instance to at most 2 existing "Person" instances as
parents.

As discussed previously, we restrict the manipulation of the KGs to the ontology defi-
nitions and, thus, we ignore the open-world assumption.

We also consider the hierarchy between classes in such a way every subclass inherits
the definition (attributes) of its superclasses. For example, the class "Man" as a subclass
of "Person", has the attributes defined in the class "Man" itself, as well as the attributes
defined in the class "Person".

The returned results of this interface contain the list of all attributes (direct and inher-
ited), the label and value type of each attribute, and the "arity" which is the number of
supported values for each attribute. When an attribute is defined as the relation between
two instances via an object property (e.g. Person:hasParent), it is possible to include, in the
result, all the possible values of that attribute, e.g. all the instances of the class "Person"
from the example above.

6.2.1.3 Get the instances of a class

This interface simply returns the list of instances of a class given as a parameter. The
returned result contains the identifier (URI) and the labels of each instance. The inter-
face "getInstancesTable" provides the same result but includes the details of all returned
instances.
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6.2.1.4 Get the details of an instance

This interface gathers the details/attributes of each instance in the ontology. The returned
result contains a list of attributes names, their values, and the labels of their values (if
applied). Note that only the attributes defined in the description of the instance’s class (as
described in section 6.2.1.2) are considered.

6.2.2 Data update interface

Figure 6.6: Node-Red flow implementation for the data update features
The figure 6.6 shows the flow for the data update feature. Three types of requests are

supported:

• Create a new instance of a specific class: this requires providing the values of all
expected attributes as defined in the Section 6.2.1.2.

• Update the details of a specific instance: this operation deletes the previous instance
and creates a new one with the same URI.

• Delete an instance and all its details. A cascade deletion mechanism is adopted when
the deleted instance is referenced by other individuals in the KG.

Before creating new instances, the API checks the conformity of the provided param-
eters based on the expected structure (Section 6.2.1.2). This step is called "Consistency
checking", and it is described in detail in the next section.

6.2.3 Consistent KG manipulation

One of the major challenges encountered when a KG is manipulated by non-expert users
is to guarantee the consistency of the KG and compliance with the ontology definition. In
fact, by nature, it is possible to extend a KG in an RDF triple store with new axioms
without necessarily respecting the description of the ontology behind it. Usually, some
additional tools such as reasoners, are necessary to check the consistency of ontologies and
KG after changes are applied. There exist several ontology reasoners supported by various
RDF triple stores. Unfortunately, all these reasoners are designed to be used on high-end
platforms and are too complex to be used on embedded systems.

To tackle this issue, the proposed API provides a built-in mechanism to guarantee
consistency during the manipulation of KG. This mechanism is solicited only for update
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Figure 6.7: Diagram flow of consistent creation of new class instances

queries. It consists of checking the compliance of the new axioms/data with the ontology
definition before applying any change in the RDF triple store. Figure 6.7 shows the diagram
flow of the consistency checking process during the creation of a new class instance.

When a new class instance request is received, the consistency checking mechanism
checks the compliance for three main aspects: Class description, Value restrictions, and
Cardinality restrictions.

6.2.3.1 Class Description Compliance

To create a new class instance using the proposed API, a JSON object with key-value pairs
is needed. Each key-value pair reflects a property (object or data) with the corresponding
value. It is possible to get the list of properties needed by a specific class through the Get
Class Structure query.

For each received update request, all the provided attributes are checked to be part of
the class description in the ontology as described in the section 6.2.1.2. If a non-expected
attribute is provided, the request is rejected. Otherwise, the consistency checking process
continues.

6.2.3.2 Value Restrictions Checking

In the W3C OWL reference [109], a value restriction is used to enforce restrictions on the
range of a property when applied to a particular class description. Value restrictions can
be applied to data properties, for which the value is literal, and object properties, for which
the value is an individual. We handle each type of property differently:

• Data properties: we make sure that the data type of the provided value is correct as
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per the defined restrictions; and

• Object properties: The provided value is checked to correspond to the URI (ID) of
an existing individual, and that it is an instance of the expected class.

Note that the existential quantifier owl:someValuesFrom is ignored by our API. In fact,
it defines a restriction that is applied to at least one value, which means that the property
could have other values types without any restrictions.

6.2.3.3 Cardinality Restrictions Checking

In the W3C OWL reference [109], a cardinality restriction restricts the (min, max, or extact)
number of values a data or object property can have. To validate the cardinality restrictions,
the number of values provided for each property is verified.

6.2.4 Consistency Checking Alternative

It is important to mention that adopting the closed-world assumption pushes us to inter-
pret the classes, data, and object properties’ definitions as validation schema for the KG
manipulation, while they are only inference schemas. An alternative, that is recommended
by W3C, is to use the Shapes Constraint Language (SHACL) [110] as a validation schema,
it allows to define explicitly a large set of conditions to restrict the manipulation of the
KGs. We didn’t adopt SHACL in our work because it was not supported, at that time,
by our main triple store (GraphDB), but we strongly recommend adopting it for the KG
consistency checking.

6.3 Conclusion

This chapter presents the Rest API solution proposed to simplify the instantiation of ontolo-
gies and manipulation of Knowledge Graphs by software developers. The API is destined to
be used on the different IoT layers: Cloud, Fog, and Edge, and it proposes various ways to
consume and extend the Knowledge Graphs in an RDF triple store. A focus is made on the
consistency preserving of the ontology model during the manipulation of the KG. Finally,
the proposed API was primarily destined for the development of new SemKoRe services but
reveals being useful for several other semantic-based projects.
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This chapter provides a summary of the thesis along with some work items for the future
potential that will aid in extending the work done in this thesis.

7.1 Summary

Since its birth with the first industrial revolution (18th century), industrial maintenance
was considered a marginal activity for more than two centuries. Now, With the advent of
Industry 4.0, organizations realize its impact on their efficiency and bottom line, making
it a backbone of business operations. Whereas traditional practices still persist in the
industrial landscape. Maintenance knowledge sharing between industries is proving to be
a potential solution to significantly optimize the maintenance activity and improve the
processes’ efficiency.

This thesis proposes a knowledge graph-based approach for maintenance knowledge
sharing. It aims to enhance the maintenance process for the customers of Machine Builder
OEMs. The idea consists of collecting and sharing, among the OEM customers, the mainte-
nance data generated for different machines owned by many customers in different locations
and in different business segments. The proposed approach helps reduce maintenance costs
by sharing experiences and by promoting the best maintenance practices between OEM
customers. Based on this early work, many customers of Schneider-Electric showed an in-
terest in using our approach to enhance their industrial maintenance processes. In total five
contributions were made in this thesis.

The first contribution is a field study through an interview campaign with domain
experts from various industrial segments. This survey allowed us to discover the current
practices in terms of industrial maintenance, as well as the problems confronted by these
experts in their daily routine. It also showed a real interest in our approach for maintenance
knowledge sharing and helped to identify the challenges that need to be tackled in order to
achieve our goals.

The second contribution is "SemKoRe", a technical solution for maintenance knowl-
edge sharing. Relying on Knowledge Graphs, SemKoRe allows to easily capture various
maintenance aspects relative to machine failures. The collected knowledge is then shared
with several stakeholders thanks to a flexible IoT architecture that adapts to the varied
customers’ requirements. For the proof-of-concept prototype, several services have been de-
veloped for the different IoT layers: Cloud, Fog, and Edge. It was successfully demonstrated
to the MSol LoB team and has proved the feasibility of the proposed approach.

The third contribution is a novel approach for sensitive data detection in maintenance
reports. It was considered by the experts as the make or break point for the SemKoRe
solution. Our approach relies on Natural Language Processing techniques, combined with
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semantic web technologies in order to meet the varied customers’ needs and maintenance
reports’ specificities. A proof-of-concept prototype was implemented considering Edge gate-
ways as the main platform target. However, the lack of maintenance reports datasets was
the major roadblock towards the evaluation of our approach. Hence, we implemented and
used a custom tool for collaborative data corpus construction, and that supports the data
collection, structuring, and annotation.

In the fourth contribution, we designed a distributed semantic engine for time series data
for low-end edge gateways. It shows that the use of semantic concepts provides a high level of
abstraction and simplifies the interaction with time-series databases. Also, the distributed
queries execution enhances the user experience with the possibility to simultaneously query
several times series databases in several edge gateways. The performance evaluations were
conclusive, and show good efficiency compared to the existing solutions.

In the fifth contribution, we propose a REST API for consistent ontology instantiation.
The proposed API provides an easy way for the manipulation of knowledge graphs data
without requiring any Semantic Web background. Our main target is the software develop-
ers having no knowledge about the Semantic Web, and that want to develop Semantic-based
applications (e.g. SemKoRe services). Also, the API constrains the possible interactions
with Knowledge Graphs in order to guarantee the permanent consistency of the manipulated
models.

7.2 Future Work

We have identified several avenues as the future potential to continue the work of this thesis.
Currently, in the SemKoRe approach, only one triplestore is used in the cloud to collect

the data of all customers. However, this could become an issue for scalability and data pri-
vacy. A potential solution may be to have separate triplestores tenants for each customer
and then use a common triplestore instance to collect and aggregate data from the other
customers’ instances. Managing these tenants and synchronizing them will be a big chal-
lenge. This configuration does not only impact the cloud services. It has also an important
impact on the knowledge synchronization between the SemKoRe Server and the SemKoRe
agent. Since not all customers are keen to have a cloud connection or can have an always-on
connection. Therefore, it is necessary to redesign the SemKoRe synchronization services to
ensure that there is no inconsistent knowledge.

In this work, we target a large set of customers from various domains and with different
needs. Schneider-Electric is not expected to create or modify ontology for each and every
customer. Therefore, an important future work item is to develop a framework along with
a tool suite and set of services for non-experts to allow them to create and extend their
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ontology models. We will also need to address more advanced topics like ontology matching,
alignment, and conflict resolution to ensure consistency.

Another future potential would be to work on lightweight triplestores for small industrial
devices. Many triplestores for embedded/small platforms exist. Most of them are based on
the Redland RDF Libraries [111] and are using SQLite as backend storage (e.g., RedStore
[112]). However, all these solutions lack reasoning engines and do not support SWRL rules.

Regarding the sensitive maintenance data preserving, the current approach requires the
involvement of a human expert. This work can be enhanced by learning from the expert’s
feedback to improve the accuracy of the sensitive data detection models. It can also be
extended to provide a completely automated anonymization tool, that allows to identify
and replace the sensitive data with adequate surrogates. The replacement of sensitive data
with appropriate surrogates is still an open challenge. This process must ensure the semantic
consistency and the usefulness of the resulting data, and current approaches in the literature
are far from being efficient.

Finally, we focused, in all the contributions of this thesis, on maintenance reports writ-
ten in English. However, standard machines are used in several countries around the world,
and maintenance reports are written in multiple local languages. Thus, it would be valuable
to work on a multilingual approach to prevent the language from becoming a barrier for
maintenance knowledge sharing. This requires to take up various challenges, such as se-
mantic multilingual search to find similar problems identified in other languages, or support
multilingual sensitive data detection by using a cross-lingual transfer learning approach.
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Abstract: The recent focus on sustainability and improved efficiency requires innovative approaches1

in industrial automation. We present SemKoRe, a knowledge graph developed to improve machine2

maintenance in the industrial domain. SemKoRe is vendor-agnostic, it helps Original Equipment3

Manufacturers (OEMs) to capture, share and exploit the failure knowledge generated by their4

customers machines located around the world. Based on our interactions with actual customers,5

it usually takes several hours to days to fix a machine-related issue. During this time, production6

stops and incurs cost in terms of lost production. SemKoRe significantly enhances the maintenance7

process by reducing the failure diagnostic time, and by centralizing machine maintenance knowledge8

fed by the experts and technicians around the world. We developed flexible architecture to cover our9

customers’ varying needs, along with failure and machine domain ontologies. To demonstrate the10

feasibility of SemKoRe, a proof-of-concept is developed. SemKoRe gathers all failure related data in11

the knowledge graph, and shares it among all connected customers in order to easily solve future12

failures of the same type. SemKoRe received the approval of several substantial clients located in USA,13

UK, France, Germany, Italy and China, associated with various segments such as pharmaceutical,14

automotive, HVAC and food and beverage.15

Keywords: failure diagnostics; industry 4.0; industrial internet of things (IIoT); knowledge graph;16

machine maintenance; semantic web17

1. Introduction18

Industrial Internet of Things (IIoT) has emerged as an enabler of the rapid integration of19

advanced technologies in the industrial world [1]. Factories are becoming fully connected and20

smart, thereby allowing manufacturers to improve process efficiency, sustainability, and safety21

while decreasing costs. Many industries are making heavy investments in smart manufacturing22

and production systems. In return, they expect optimal and sustainable production with minimum23

maintenance efforts. This makes maintenance one of the most important aspects of industrial process24

activities. Formerly considered as part of general enterprise costs, it has become a real source of data25

and critical for business continuity and performance [2].26

Systems such as Computerized Maintenance Management System (CMMS), Manufacturing27

Execution System (MES) and Enterprise Resource Planning (ERP) are used to perform maintenance28

activities in several industries [3]. These systems provide features such as predictive and preventive29

maintenance, maintenance planning, scheduling, execution, monitoring and traceability. However,30

Submitted to Appl. Sci., pages 1 – 19 www.mdpi.com/journal/applsci
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these systems have two inherent drawbacks. First, they are intended to optimize the maintenance31

process at given location (a factory or a site). This means that two different factories (or sites) cannot32

share the details of a specific machine’s maintenance operations without a human expert in the loop.33

Such sharing is useful when machines share the same characteristics and perform the same operations34

regardless of their locations. While cloud-based offers are a potential remedy, several customers still35

do not want to have their data on multiple vendor cloud platforms.36

The second drawback of these systems is that they are not interoperable at the semantic level.37

Schneider Electric works with several Original Equipment Manufacturers (OEMs) who design,38

build and ship machines for their customers around the world. In our experience, there is no easy way39

to align the data coming out of these maintenance systems and to thereby get a uniform understanding.40

This issue is complicated by the heterogeneity of these systems and the associated silos since each41

business segment and customer is unique and operates under different regulatory and geographic42

constraints. Despite these challenges, our customers are increasingly demanding better visibility about43

the performance of their assets, reductions in maintenance costs and downtime, improved productivity44

and more agility in their end-to-end processes.45

In this paper, we present the early outcomes of our work, SemKoRe: how we use it to construct46

knowledge graphs of machine failures and exploit it to address various issues. SemKoRe is a vendor47

agnostic solution that uses formal, shared and explicit models to capture the details of machine48

domains, the failures of these machines and the applied repairing procedures. SemKoRe is designed49

to speed-up the maintenance process and to allow for quick recovery from failures. When a new50

machine is installed in a factory today, there is no existing knowledge of its failures. In any given51

factory, each failure is only discovered at its first occurrence. The maintenance process includes52

diagnostics to determine the reasons for a failure, its impact, and to define and apply the correct repair53

procedures. This process is repeated at different locations for the same machines having the same54

failures. In reality, failure details are usually captured manually, e.g., using spreadsheets (e.g., Excel).55

This approach is not fault proof as each person filling out the sheet cannot be expected to provide56

all the required information and even if that information is given, there will be semantic mismatch,57

e.g., one person describes issue as “abnormal rotation speed” while another person describes the same58

issue as “irregular spinning rate”. Both mean the same but use different semantics (we provide more59

details on it based on interactions with our actual customers in Section 2).60

SemKoRe helps to avoid this semantic mismatch, and captures all the machine, failure and61

maintenance data as a knowledge graph, allowing several actors to benefit (Sections 4 and 5).62

For example, Operators and Technicians can benefit from the knowledge provided by other operators at63

different sites to address their issues. This will also reduce the risk of mismanipulation of machines by64

incompetent operators, which is a considerable industrial threat in reality [4]. OEM Machine Builders65

can improve the next generations of the machines they build, thanks to the knowledge captured in66

SemKoRe that helps them to know why certain machines have higher failure rates. Analytic teams can67

improve their work, as SemKoRe will provide a global view of machine failures and the background68

of a variety of contexts.69

We implement our SemKoRe system using a triplestore called “GraphDB by Ontotext” (as70

cloud/gateway triplestore), IBM Node-Red (flow-based development tool), Microsoft Azure (for cloud71

service), Azure IoT Hub (for IoT connectivity), and Docker (to package SemKoRe services) (Section 6).72

To support the needs of different actors, SemKoRe is developed using the semantic web and ontologies73

[5]. This approach helps to accommodate future requirements and to provide a clear separation of74

concerns between the application needs and the domain knowledge which in this case is machine75

domain and failure domain knowledge. We adopted a distributed architecture in which knowledge76

collection is performed on the edge layer. The collected knowledge is shared with other actors and77

machines through a cloud-based instance.78

We elaborate the lessons learned in Section 7.1, and offer future research directions in Section 7.279

and conclude in Section 7.3.80
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2. Motivating Scenario and Requirements81

In this section, we talk about some key motivating scenarios, with practical examples, that would82

help to envision the core idea of the problem domain. Then we present the set of customers83

requirements that guided us during the elaboration of our solution.84

2.1. Motivating Scenario85

The following scenario is based on our interactions with real customers who want to improve86

their existing maintenance process. Let us consider three actors: Bob the machine operator, Alice the87

maintenance technician and Joe the OEM machine builder. On a given day, Bob is working on factory88

floor operating several machines when suddenly one machine stops working. Bob spends some time89

to fix the issue himself but is unable to do so, since Bob’s main job is to operate the machine. He might90

be able to fix small issues due to his experience but he is supposed to call a qualified technician for91

anything major. He then calls Alice to come to factory floor to check on the machine. When Alice checks92

the machine she finds that she is also not able to solve the issue so she calls the OEM or Schneider93

Electric service bureau, where a machine expert guides her through the repair process. Finally, Alice is94

able to fix the issue and the machine starts working.95

The whole process took a long time and while Bob is now able to operate his machine, if the same96

issue occurs in a similar type of machine located in a different city the same process would likely be97

repeated because only Alice knows how to quickly solve this particular issue. However, if Alice can98

describe what she learned from the service bureau and share her experience with the technicians in99

other sites by using some appropriate mechanism, they could all benefit from this common knowledge.100

Another beneficiary of this common knowledge is Joe. Today, when Joe gets reports about the101

issues with his machines from different customers, he has no easy way to get the finer details that can102

only come from the technicians like Alice. These details could be useful and help him to understand103

why some of his machines are facing particular issues. This can help him to improve the design and104

engineering process of his machines, especially in the case of hundreds or thousands of machines105

being used worldwide, the scale of problem and timely action in resolving the issue becomes hugely106

difficult. Another benefit is that using the insights from customer A, Joe can help customer B to quickly107

respond to machine issues while respecting of privacy and sensitive nature of the information, if both108

customers have the same type of machines. The importance of the quick resilience after failure aspect109

is discussed in details by Alcaraz et al. in [6].110

2.2. Requirements111

Based on the motivating scenario described above, we now present the following set of112

requirements. The first requirement is that the proposed solution should make it easy to capture and113

share knowledge among various actors. The second requirement is that the proposed solution should114

be usable both on cloud (public or private) and on-premise systems. Indeed many customers are115

willing to connect their machines and factories to the cloud, while others choose to fully isolate their116

factories in order to protect their industrial property and to keep their private data locally. The third117

requirement is that the solution should have built-in mechanism to protect the sensitive information118

about the processes and the business. During our interactions with customers, this requirement came119

up as the make or break point for them. The fourth requirement is that the solution should support120

root cause analysis and make it easy to identify the component(s) that cause the failures. The fifth121

requirement is that the solution should be platform-independent and thus should not depend on any122

particular hardware or software platform. The sixth and last requirement is that the proposed solution123

should be open and extensible to cover the current as well as future needs. These requirements are also124

thought to avoid introducing security issues or affecting the machines’ performances in the customers125

sites [7] .126
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3. Related Works127

E. Kharlamov et al. present one of the earlier works, from a major industrial company on capturing128

industrial information models using W3C standards [8]. This work proposes an application front-end129

to allow non-semantic experts to develop ontologies. The front-end is a modified Web-Protegé [9],130

that hides the complexity associated with the desktop Protegé version. The work highlights the benefits131

of involving domain experts to capture the domain knowledge and to create different services using it.132

However, the solution does not cover our main requirements.133

N. Zaini et al. [10] propose a generic online tool for building collaborative ontology without134

prior deep knowledge of the domain. An initial ontology is built, populated and enriched by135

multiple participants in a collaborated manner. The goal is to simplify the ontology based modeling136

of domain knowledge for the users without ontology expertise. However, the ontology concepts137

are not sufficiently abstracted, as these concepts are simply renamed. This means that despite138

simplification, substantial semantic expertise is needed to make the necessary modifications to the139

ontology. Another important missing element is that there are no checks to ensure consistency which140

can be an issue in a multiple user environment.141

There is a large pool of work on industrial maintenance. D. L. Nunez et al. [11] created a taxonomy142

of the Prognostics and Health Management in manufacturing. They propose a formal ontology for143

failure prognostics based on industrial ISO standards for failure mode analysis, failure diagnostics144

and prognostics (e.g., ISO 13372, ISO 13379, ISO 13381 and others). Failure knowledge is described in145

ontologies from ISO standards. Semantic Web Rule Language (SWRL) [12] is used to define rules in146

order to generate warning messages in case of abnormal states. However no approach is described to147

share the acquired failure knowledge among different users.148

In [13], M. Melik-Merkumians et al. used ontologies for fault diagnosis for industrial control149

applications. They utilized reasoning capability to check the model consistency over the time and to150

raise early-alarms for critical failures.151

L. Palacios et al. [14] propose an ontology based support for fault diagnosis for aircraft152

maintenance operations. An aircraft maintenance ontology is modeled and fed by the (manual)153

alignment of several existing ontologies related to the avionics domain to discover the relations154

between the causes and failure symptoms, explain the failures and any unscheduled maintenance155

requirements as well as the possible procedures that can be applied to each situation.156

An ontology-based approach is adopted by H. Peng et al. [15] for the fault diagnostics of conveyors.157

The knowledge about fault symptoms, fault causes and fault solutions was modeled with multiple158

ontologies. The resulted ontologies were mapped together based on a mathematical formulation of159

conveyor fault diagnostics. Some reasoning rules were defined in order to infer additional relations160

between faults, symptoms and potential causes.161

In [16], R. Chen et al. used ontologies to model the knowledge of fault diagnosis for rotating162

machines. Their proposed ontology model describes fault diagnosis knowledge considering the163

vibration characteristics as main fault factor. The model’s reasoning capability is considered by164

defining some SWRL rules for fault diagnostics.165

F. Xur et al. [17] also relied on ontologies to design a loader fault diagnosis system. It aims to166

help users find the fault causes, locations and fault maintenance measures of loaders in a reasonable167

amount of time. Ontology is used to model the loader information and describe the relative failures.168

This work uses the Condition Based Reasoning (CBR) method to diagnose loader faults by finding169

similar corresponding situations in the past. When no corresponding case is found, CBR fails and the170

(SWRL-based) Rule Based Reasoning (RBR) approach is proposed for fault diagnosis.171

In [18], S. Wan et al. developed a Collaborative Maintenance System Planning that allows many172

stakeholders to collaborate to ensure maintenance process quality. An ontology-based approach is173

adopted to model a large field of knowledge: the machine domain model, failure knowledge and174

stakeholders knowledge are modeled together to ensure the interoperability between their systems,175

the maintenance planning and Resources and Constraints knowledge. However, this centralized176
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solution focuses mainly on preventive maintenance planning. In addition, the managed failure177

knowledge is relatively basic and does not consider root causes or symptoms.178

All the works mentioned above use ontologies to model machine data models and failure179

knowledge. However, none of these works satisfy all of the requirements that we identified from180

our motivating scenario. These works developed various ontology models and some exhaustively181

described potential failures and their characteristics. However, to the best of our knowledge no182

machine failure ontology is available for reuse or for extension. Furthermore, neither of our two major183

requirements, i.e., knowledge sharing and data confidentiality have been considered.184

Furthermore, many cloud-based solutions are proposed to enhance the maintenance process185

for different domains like smart grids, shop-floors, etc. Different aspects were analyzed:186

such as remote maintenance [19], fault detection [20], machines monitoring [19,21], preventive187

maintenance scheduling [22], predictive maintenance [23], or data confidentiality [24]. However,188

none of these studies considered sharing experiences or knowledge between different actors for189

maintenance purpose.190

4. Architecture and Ontology Models191
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and/or operators. Each gateway is connected to a central entity (either a Local SemKoRe or a SemKoRe208

Server) which collects the data from all the gateways and then aggregates and shares with the gateways209

connected to the same type of machine.210

Though, the Achilles heel of our proposal remains the case of the first category of customers, i.e.,211

who do not want to connect their factories to the cloud. The unique technical solution to share the212

maintenance knowledge consists of using physical supports (e.g., USB keys, CDs, ...) with human213

intervention. However, the internal business case analysis is still in progress. We believe that once the214

business case is finalized, the technical adaptation of the SemKoRe services will be trivial and will not215

require lot of efforts.216

In this paper, we focus on the cloud-based architecture because it covers all the constraints and217

features of the other architectures. This architecture is also implemented in a proof-of-concept to218

demonstrate the feasibility (see Section 6).219

4.2. Detailed Architecture220

Figure 2 shows the detailed architecture of the SemKoRe.221

Figure 2. SemKoRe detailed architecture.

The SemKoRe consists of three entities:222

1. A SemKoRe Agent: Runs on industrial IoT gateways connected to the machines. It collects data223

when failures occur in the connected machines. According to the chosen architecture, the collected224

data are then shared with either the SemKoRe Server or Local SemKoRe. The SemKoRe Agent is225

designed to fit in all architectures (see Figure 1).226

2. A SemKoRe Server: Running on the cloud, it manages several failure data producers, i.e., Local227

SemKoRes or SemKoRe Agents. The collected failure data are validated by an expert and228

aggregated and afterwards shared with the SemKoRe Agents and/or Local SemKoRes.229

3. Local SemKoRe: Lightweight instance of the SemKoRe Server deployed on a local server to230

manage the machines located in a site or factory. It collects data produced by the SemKoRe231

Server (if available) and the SemKoRe Agents on local gateways. The data aggregation is done232

locally, and only aggregated data are shared with the SemKoRe Server. The cloud then merges233

its aggregations with the Local SemKoRe aggregation, and pushes back the updates to the234

corresponding entities.235
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We use in the cloud a message broker to connect the machine gateways to the SemKoRe Server236

for bi-directional data sharing. We also developed a REST (Representational State Transfer) interface237

on the SemKoRe Server side to directly call remote services, e.g., commissioning service.238

4.3. Machine Failure Ontology Model239

The first part of our work is collecting information on machine failures to be able to answer the240

following questions:241

• What are the failure symptoms? Symptoms reflect the perceptible aspects of failures whether they242

are visual, sonic, odor or heat related.243

• What is the impact of the failure? This may or may not be detected easily. Each failure impact is244

relative to a machine or to one of its components.245

• What are the root causes of a particular failure? This question is difficult to answer, since it assumes246

prior knowledge about the cause-effect relations specific to each machine type. Answering this247

question requires the knowledge of a machine domain expert.248

• After knowing the failure type and impact, how can we repair the machine?249

• After knowing the root causes of a specific failure, is there a preventive maintenance procedure250

that can help us to avoid that failure?251

To answer all of these questions, we defined the data model of the machine failures using252

Semantic Web standards because of the schema-less nature of RDF (Resource Description Framework),253

RDFS (RDF Schema), OWL (Web Ontology Language) and the explicit formalism supported by these254

languages. The failure ontology is created by interacting with the machine builders and by using the255

initial set of requirements described in Section 2.2. It acts as a common data model and will be enriched256

with new concepts by domain experts over time. Progressively, our design, engineering, configuration257

and maintenance tools will use this ontology to create the knowledge about the failures and allow us258

to develop different services over it. SemKoRe targets the industry automation business, in which259

the failure knowledge can be significantly different from one customer to another. The concept uses a260

flat ontology model, containing only the most common general concepts required for current needs.261

The subsequent specialization concepts will be easily and naturally added by domain experts as the262

knowledge collection progresses.263

To develop the machine failure ontology presented in Figure 3, we adopted the Seven-step method,264

developed by the Medical Information Center of Stanford University [25]. Its seven steps are as follows:265

1. Determine domain and scope: This work focuses on industrial machine failures.266

2. Consider reusing existing ontologies: No existing machine domain or machine failure ontology267

was found for reuse, therefore we developed both for this work. Regarding upper-level ontologies,268

there are several candidates like Basic Formal Ontology (BFO), ISO-15926, Gist, and Suggested269

Upper Merged Ontology (SUMO) but we still need to finalize one.270

3. List important terms in the ontology: After interactions with the machine domain experts,271

the following important terms were identified Failure, Symptom, Impact, Root cause, Solving272

Procedure, among others.273

4. Define classes and class hierarchy: Several classes were created including the important terms274

listed above. However, since no specialization concept will be introduced, the ontology is flat.275

Only the classes relative to types (e.g., Failure Type, Symptom Type) are grouped as sub-classes276

of the Types class.277

5. Define object properties of classes: We defined a set of object properties that link all the defined278

classes together. For example, the property hasSymptoms links a Symptom to a specific Failure.279

The complete list is illustrated in Figure 4b280

6. Define data properties of classes: We also defined several of the data properties of classes,281

with cardinality and type constraints, as shown in Figure 4c.282
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7. Create instances and check exceptions: Instances of SemKoRe ontology are divided into two283

parts. The first part, defined by experts during the design time, concerns the generic concepts that284

will be used for most industrial use cases, such as Severity level (Catastrophic, Critical, Moderate,285

Low). The second type of instances concern the data provided by the users during the runtime286

of the SemKoRe. Users instances include details about the failures and symptoms. To check for287

exceptions, we used Pellet reasoner [26] to verify the correctness of our ontology model.288

Figure 3. Failure ontology.

In addition to the failure ontology, we also created a machine domain ontology (Figure 4a) to289

describe the machine components to satisfy our requirement to link failures to specific machine290

components when and where they occur, as simply knowing about a failure is not useful on its291

own. We also need to identify the components that caused a failure or that show failure symptoms,292

so that they can be identified as candidates for repair or inspections. For simplification, we only293

described two types of machines in our machine domain ontology, a Tray Sealers Machine and a294

Packaging Machine. Each machine type is composed of many components (PLC, Drive, Actuator,295

Sensor, and others), connected through different communication buses. To integrate both ontologies,296

we created OWL Class FailureAsset, to associate failures to the corresponding components in the297

machine domain ontology.298

However, we faced another issue to identify the exact component of a machine that has failed or299

is impacted by the failure. For example, consider that a machine has two Servo Drives of the same type.300

These Servo Drives are described in the machine domain ontology as two instances (SDA and SDB)301

of the “ServoDrive” class and are associated with the instance of a machine. When a failure occurs302
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in SDA, we should be able to identify it through ontology. Such detailed identification is especially303

useful when the failure knowledge is shared with the other sites using the same machine type, as it304

will help them to recognize the exact component responsible or impacted by the failure.305

(a) Machine Model Ontology (b) SemKoRe object properties (c) SemKoRe data properties

Figure 4. SemKoRe ontology design.

To address this issue, each component in the machine domain ontology has a unique number306

“FunctionID”, to distinguish its role in the machine compared to other components of the same type.307

We used both desktop Protégé [27] and Web-Protégé [9] to create our ontologies. The latter308

allowed us to include machine domain experts in the ontology development process and to gather and309

organize their feedback.310

It is important to mention that our main focus in this work has been on the validation of the311

idea to the OEMs, that formalized knowledge about machines and their failures can be useful for312

quick resolution of failures and to improve Overall Equipment Effectiveness (OEE). The ontology,313

in its current form, will be extended to cover the needs of the OEMs. To guarantee the ontology314

generality, a potential extension basis could be the adoption of taxonomy of ISO standards for failure315

mode analysis (similarly to [11]). Relevant actors can be involved to extend these ontologies with new316

concepts and relationships by using appropriate tools like the ones mentioned in Section 7.1.317

5. SemKoRe Process318

Figure 5 shows the SemKoRe process of failure data collection and sharing. The process319

is distributed on two layers: on the edge with the SemKoRe Agent, and on the cloud with the320

SemKoRe Server.321

The failure data collection starts when a machine failure occurs. The failure information collection322

service generates the Human Machine Interface (HMI) for the user (Bob or Alice) to offer the details of323

the failure Figure 6. Through the survey, we first try to know if the failure has really occurred or it324

was only a false positive case triggered by some failure detection service. Then the user is asked to325
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provide details about the symptoms of the failure by selecting known symptoms or by creating new326

ones, when necessary.327

Figure 5. SemKoRe process.
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Figure 6. Screenshot of the failure survey.

The user checks if the identified failure is already known by the SemKoRe before providing328

additional details. If the failure already exists, the user follows the instructions to repair the machine.329

Otherwise, the failure will be documented by Alice or by machine domain experts as shown in Figure 5.330

Sometimes, the impacts of a failure may differ from one machine to another. So, existing repair331

procedures might be adapted or new procedures might be created to repair the machine. This process332

ends, in the edge level, by sharing the collected data with the SemKoRe Server in the cloud.333

When the SemKoRe Server receives failure data from a SemKoRe Agent instance, the data must334

be validated by a machine domain expert before it is integrated into the SemKoRe Knowledge Graph.335

After the validation process, data are anonymized to protect the data and customer privacy and336

business sensitive information of the customers (see Section 6.3). The anonymized data are then337

aggregated (see Section 6.4) in order to get insights about the occurrence frequency of failures, their338

impacts and the most adapted/used repairing procedures .339

The aggregated data are then shared with the SemKoRe Agents instances connected to the same340

machine type. On the other side, each SemKoRe Agent instance integrates the data it receives from the341

cloud into the local triplestores (Graph databases).342

6. SemKoRe Implementation343

In this section, we describe the services implemented for the SemKoRe. It must be noted that344

the services deployed on Local SemKoRes are the same as the ones deployed on a SemKoRe Server.345

As stated previously, we only focus on the architecture where gateways are directly connected to the346

cloud (since its an overarching architecture and covers all the scenarios we described in Figure 1).347

6.1. Startup Commissioning348

Knowing that our Failure ontology will evolve, it is only deployed on the SemKoRe Server.349

On-premises, the gateways must run the commissioning service in order to get the latest failure model350

corresponding to the type of the connected machine. The startup commissioning service retrieves two351

types of information from the SemKoRe Server:352
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• The machine failure T-Box, containing the concepts defined in the failure ontology; and,353

• A-Box data, containing the instances of the T-Box concepts. Knowing that the SemKoRe Server354

manages data relative to several types of machines, the A-Box retrieved by a gateway contains355

only the information relative to the machines connected to it.356

The startup commissioning service sends a request to the SemKoRe Server with the identity and357

the type of the connected machines. The SemKoRe Server runs then a Construct SPARQL query to358

create a sub-graph containing all the data (T-Box and the A-Box) related to the provided machine type.359

The resulting sub-graph is sent back to the gateway.360

6.2. Failure Data Collection361

This service runs exclusively in the SemKoRe Agent and is used during or after the maintenance362

phase. It consists of the following two parts:363

6.2.1. Failure Survey364

This part collects the failure information using an ordered set of predefined questions. It facilitates365

the collection of perceptible symptoms of the failures as well as the reporting of new symptoms and366

failures. During our interactions with machine domain experts, we found that the content of the survey367

is strongly correlated with the machine types and the kinds of failures they encounter. Our on-field368

interactions with the operators, technicians and experts highlighted the importance of an intuitive369

user interface.370

6.2.2. Failure Ontology Instantiation371

We use the Model Driven Interfaces (MDI) to dynamically generate the user interfaces using372

the Failure ontology. This procedure has two advantages: One, the UIs allow instantiation of the373

Failure ontology by non-technical users without any knowledge about the Semantic Web or ontologies;374

and Two, the UIs enforce the constraints defined in the ontology model and ensure that all the inputs are375

valid. These UIs rely on the annotations defined in the ontology such as, @rdfs:label and @rdfs:comment.376

The former is used as a human readable label of the input fields shown to the user, while the latter377

is displayed to explain the nature of the field and the expected input. We defined an additional378

annotation @semkore:hidden to hide a field on the UI in case it should be defined automatically or379

exclusively by an expert.380

The ontology model incorporates two types of constraints: value and cardinality constraints,381

as described below.382

6.2.2.1 Value Constraints383

In the W3C OWL reference [28], a value constraint is used to enforce restrictions on the range384

of a property when applied to a particular class description. Value constraints can be applied to385

data properties, for which the value is a data literal, and object properties, for which the value is an386

individual. We handle each type of property differently:387

• Data properties: Users can input a value in the text box which will be validated to make sure that388

the data type is correct as per the defined constraints; and389

• Object properties: A select box is provided with the list of all possible values. For example, for the390

object property Machine hasComponent AllValuesFrom Component, will lead to a select box with391

the list of all available Component instances. With this approach, the probability of getting an392

invalid input is eliminated altogether.393

Only the owl:someValuesFrom constraint was managed differently from the W3C standard [28]394

definition, as it defines a constraint that is applied to at least one value, which means that the property395

could have other values without any restrictions. Since our UIs are targeting non-expert users, and to396
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guarantee the consistency of our model, we considered owl:someValuesFrom as being similar to the397

owl:allValuesFrom constraint in our implementation.398

6.2.2.2 Cardinality Constraints399

In the W3C OWL reference [28], a cardinality constraint restricts the (min, max, or extact) number400

of values a data or object property can have. To satisfy the cardinality, single/multiple input fields401

are generated for each property, allowing to the user to provide the correct number of values for402

each property.403

6.3. Anonymization Service404

Privacy protection is a very important concern for our customers. They do not want to share any405

machine and process-related data in a way that could potentially expose sensitive business information.406

To address this concern, we implemented a simple service (described below), in the SemKoRe Server407

in the cloud, to anonymize the collected data before sharing it with other sites or locations.408

When a failure occurs, the gateway creates an instance of “Failure Occurrence Class”, containing409

information about the failure, e.g., symptoms, impact, root causes if known, and the failure context,410

which includes the machine ID, its location, timestamp when failure occurred, and a snapshot of the411

current parameters. The whole process consists of three steps:412

1. The SemKoRe Server removes the machine ID, location, and owner-related information and does413

not share this information.414

2. A human expert reviews and validates all of the failure information before integrating415

it into the SemKoRe Knowledge Graph. This additional check helps to protect sensitive416

business information.417

3. Finally, all the validated failure information is aggregated and then shared with the connected418

gateways. This process ensures that no one can deduce the origin of the data, the failure location419

or the ownership details.420

This service is a subject for future SemKoRe versions. The goal is to automate this process so that421

little to no human involvement is required.422

6.4. Failure Data Aggregation423

Hosted in SemKoRe Server, this service and aggregates failure data collected from different424

gateways in order to produce deep insights on the machine failures and their characteristics including425

symptoms, impacts, and root causes. Once the aggregation is done, the data are shared by the SemKoRe426

Server with the connected gateways that need it. We have defined a list of simple aggregations that are427

applied to the failure data:428

1. For each machine type, get the list of all failures and their frequency;429

2. For each failure, compute the list of all possible symptoms with the frequency of each symptom;430

3. For each failure, compute the list of all possible impacts with the frequency of each impact;431

4. For each failure, compute the list of all possible root causes with the frequency of each root432

cause; and433

5. For each failure, get the list of solutions with the number of times each solution was successfully434

used to repair that failure.435

For each of these aggregations, a dedicated SPARQL query is executed and the results are injected436

into the Knowledge Graph. The aggregation service executes after every new data collection to keep437

the Knowledge Graph up-to-date.438
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6.5. Failure Data Sharing439

The failure data sharing is done through the SemKoRe Server’s message broker. Each gateway440

subscribes to the topic “.../failure_updates/{machine_type}”, where {machine_type} is the type of machine441

to which the gateway is connected. When failure data are sent to the SemKoRe server (through the442

REST interface), it is validated, anonymized, aggregated and then published on the message topic443

corresponding to the right machine type. The gateways receiving these data will simply update the444

locally stored graph data.445

6.6. Implementation Details446

To demonstrate the feasibility of the SemKoRe approach, we developed a proof-of-concept447

(Figure 7) using the following technologies:448

• GraphDB: We used GraphDB [29] as triplestore in the cloud and in the gateway. It provides high449

performance and scalability in addition to the reasoning capabilities.450

• Node-Red : Node-Red was used to develop all above-mentioned services for the SemKoRe451

Server and the SemKoRe Agent. Node-Red is a flow-based development tool for visual452

programming originally developed by IBM for wiring together hardware devices, APIs453

(Application Programming Interfaces) and online services as part of the Internet of Things454

[30]. Node-Red is gaining popularity for rapid application development in Schneider’s Industrial455

Automation business.456

• Microsoft Azure: The SemKoRe Server services are hosted on Microsoft Azure, which provides457

high-performance cloud services. The server uses Azure IoT Hub [31] to connect the IoT458

devices to the cloud using several communication protocols, including the MQTT (Message459

Queuing Telemetry Transport) messaging protocol [32], which we used to simplify the data flow460

transmission between our SemKoRe agent and server services. For the edge, the Azure IoT Edge461

service was used to easily connect the edge gateways to the cloud via Azure IoT Hub as shown in462

Figure 7.463

• Docker: This is a popular container-based virtualization [33] tool. Docker supports many464

operating systems and hardware architectures, and allows self contained applications to be465

packaged and executed with a high level of portability and reproducible results [34]. We used466

Docker to package all of the services of SemKoRe Server and SemKoRe Agent. In reality467

SemaKoRe agent will reside with many other components. Docker allows us to have the flexibility468

of deploying different components easily and manage/extend them without impacting others.469
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Figure 7. SemKoRe implementation setup. Simulated virtual edge gateways with SemKoRe Agents
managed by a SemKoRe server instance hosted on the Microsoft Azure cloud.

As we are still in early stage, we were not able to implement the SemKoRe in real conditions with470

SemKoRe Agent running on Industrial Gateways connected to real machines. The main obstacle was471

that the current hardware available for this work had ARM architecture and so it would require a472

significant effort to port the triplestore and other software components. That effort was beyond the473

scope of our work. However, after the successful PoC, the business team decided to use an industrial474

PC as a gateway with enough RAM (8GB), processing (Intel Atom) and storage (64GB) capability.475

The next iteration of this work will use this industrial PC when it is ready for commercialization. In the476

meantime, we evaluated our implementation by simulating many virtual SemKoRe Agent instances477

on a PC equipped with an Intel(R) Core(TM) i7-7820HQ processor, and 16Gb of RAM. We used a single478

GraphDB server to manage separate triplestores for all the SemKoRe Agent instances. We randomly479

defined a set of three machine types {Packaging Machine, Palletizing Machine, Pasteurization Machine}480

that we associated to the active SemKoRe Agents. Each machine type was associated with at least481

two SemKoRe Agent instances which were then connected to the cloud SemKoRe Server. Our current482

implementation choices will facilitate an easy transition to industrial PCs in future.483

We generated random machine failure data by defining a set of potential failures for each machine484

type. Each failure was then associated to a set of potential characteristics: symptoms, impacts,485

root causes and solving procedures. For each machine failure occurrence, we randomly picked one of486

the potential failures of the machine, and then picked a random number of the failure characteristics487

from the predefined sets.488

We were able to demonstrate that the failure data were collected by each SemKoRe Agent and489

successfully shared with the SemKoRe Server. The data were aggregated and shared back with the490

SemKoRe Agent instances connected to the same machine type.491

7. Conclusions and Future Work492

7.1. Learned Lessons493

Conducting this study helped us to learn several lessons. The first lesson is that the use of494

semantic web technologies to solve complex industrial problems is still a largely unexplored area.495

Even today most of the solutions on the market focus on the enterprise and IT side than on the496

operational side of large industries. This means that there are mature solutions that use semantic web497

technologies to bridge siloed enterprise data in RDBMS (Relational Database Management System)498
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and unstructured data like documents but there is no mature solution that can do the same for data499

described in operation technology protocols, e.g., OPC-UA(Open Platform Communications - Unified500

Architecture) [35].501

The second lesson is that technologies such as triplestore are not easily adoptable to typical502

industrial use cases. Almost all triplestores are focused on big data and huge numbers of triples but,503

as our work demonstrates, there are several use cases where an efficient solution is needed for typical504

industrial gateways. Industrial PCs are an option but they are expensive and can only be used by505

large companies whereas small devices have a very large user base. While machine failures are reality,506

they do not occur every minute, and so there is no need to use a complex solution that supports billions507

of triples. Outside the vendor space, the open source community has some options like RedStore [36]508

but most are not in active development.509

The third lesson is that the development of industrial grade ontologies is still a herculean task510

and the existing tool set continues to act as a barrier to entry. In our experience, experts want to511

formalize their domain knowledge but they have no motivation to learn complex tools such as Protege512

that do not support collaborative ontology development. WebProtege is a possibility but lacks query,513

visualization and documentation capabilities. New efforts such as Modom.io [37] and Zazuko [38] take514

a more simplified approach for non-experts to create ontologies but they are still works in progress.515

Regarding ontology governance, there is no standard framework that can be applied to design and516

develop modular ontologies on an industrial scale. The evolution of ontologies is another area where517

no clear recommendations and no industrial tools are available to manage the required documentation,518

evaluation, release and versioning. While some academic works such as [39] exist, they are not mature519

and often not easy to deploy and use in industrial settings. The Semantic Web community as a whole520

needs to address these points and improve the developer experience in order to mainstream these521

useful technologies.522

7.2. Future Potential523

We have also identified several avenues as the future potential to continue this work. They are524

mentioned here without any order of priority.525

7.2.1. Machine Learning for Data Anonymization526

The first item is to explore the use of machine learning for content anonymization services.527

In this work, we used a simple approach with validation by a human expert. However, a far more528

efficient approach would be to investigate the use of artificial intelligence and machine learning to529

anonymize data based on several contexts. The state-of-the-art anonymization techniques achieve530

good precision scores (up to 98%), which will make it unnecessary to involve humans. One might531

consider to collect anonymous data from the beginning to avoid the anonymization overhead and the532

complexity. However, with this approach we will miss important data that might be useful for things533

like audit (machine id, maintenance history, configuration) and other applications.534

7.2.2. GraphDB Multi-Tenant Support535

The second item is that currently, one GraphDB tenant is used in the cloud to collect the data of all536

customers, which could become an issue for scalability and data privacy. A potential solution may be537

to have separate GraphDB tenants for each customer and then create a common GraphDB instance to538

collect anonymized and aggregated data from the other customers’ instances. Managing these tenants539

and synchronizing them will be big challenges.540

7.2.3. Lightweight Triplestores541

The third area would be to work on lightweight triplestores for small industrial devices.542

Many triplestores for embedded/small platforms exist. Most of them are based on the Redland543
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RDF Libraries [40], and are using SQlite as backend storage (e.g., RedStore [36]). However, all these544

solutions lack reasoning engines and do not support SWRL rules.545

7.2.4. Knowledge Graphs Synchronization546

Ensuring the knowledge synchronization between the SemKoRe Server and SemKoRe Agent is547

the fourth area. As mentioned before, not all customers are keen to have a cloud connection or can548

have always-on connection. Therefore, it is necessary to define a synchronization process to ensure549

that there is no inconsistent knowledge.550

7.2.5. UI Enhancement551

The fifth item of future work is that today UIs (User Interfaces) are used to report machine failures552

through manual input from persons like Bob or Alice. This process can be enhanced by using AI/ML553

algorithms that observe the symptoms and prefill the UI form with accurate details. This can be further554

extended to automatically fetch the repair instructions from a SemKoRe graph before failures occur.555

7.2.6. Ontology Extension by Non-Expert Users556

In this work, we target a large set of customers from various domains and with different needs.557

We are not expected to create or to modify ontology for each and every customer. Therefore, the sixth558

item is to develop a framework along with a tool suite and set of services for non-experts to allow559

them to create and extend their ontology models. We will also need to address more advanced topics560

like ontology matching, alignment, and conflict resolution to ensure consistency.561

7.2.7. Use of Upper-Level Ontologies562

Another future item to consider is the use of upper-level ontologies as a basis of the failure and563

the machine domain ontologies. There is a separate on-going work to decide on the right ontology564

to provide maximum data integration for the future. For example, today the discussion revolves565

around using either BFO 2 or ISO15926 3 or Gist 4 as upper-level ontology. Some customers may also566

be interested in using domain ontologies like SSN 5. Our view on this point is that once a decision is567

made, our current ontology can be easily refactored.568

7.3. Conclusions569

In this paper, we proposed a knowledge graph-based approach, SemKoRe, to enhance the570

maintenance process for the customers of Machine Builder OEMs. The idea consists of collecting571

machine failure data generated by different machines owned by many customers in different locations572

and in different business segments. The SemKoRe approach helps reduce the maintenance costs by573

sharing maintenance experiences between OEM customers. Based on this early work, our customers574

showed an interest in using the SemKoRe approach to enhance their industrial maintenance processes.575

Furthermore, by using the SemKoRe approach, the overall machine building process can be optimized.576

The machine design phase can benefit from the maintenance feedback to identify any weaknesses577

of a machine and can improve its design. Furthermore, the collected statistics will allow the578

performance comparison of a particular machine working in different locations and contexts. Thus,579

additional services and recommendations can be proposed to the customers in order to optimize580

their manufacturing process. Some customers also feel that our approach can help them to build581

2 https://basic-formal-ontology.org/
3 https://15926.org/home/
4 https://www.semanticarts.com/gist/
5 https://www.w3.org/2005/Incubator/ssn/ssnx/ssn
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Digital Twins to monitor the performance and efficiency of their machines. As mentioned in the Future582

Potential section, we plan to investigate on several work items to improve the features of SemKoRe.583
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Abstract—Formerly considered as part of general enterprise costs, industrial maintenance has
become critical for business continuity and a real source of data. Despite the heavy investments
made by companies in smart manufacturing, traditional maintenance practices still dominate the
industrial landscape. Maintenance knowledge sharing between industries can significantly
optimize the maintenance activity and improve the processes efficiency. Different international
standards and initiatives are promoting such approach. However, this trend failed to gain ground
in the manufacturing industry. In this paper, we present the results of our investigation about the
real roadblocks that obstruct the progress of the maintenance knowledge sharing approach. We
determined that the knowledge graphs and, more importantly, the automated data anonymization
techniques can facilitate the development of general-purpose solutions to share the
maintenance knowledge among concerned actors.

Index Terms: Data anonymization, industrial maintenance, knowledge sharing

INTRODUCTION Over the past few decades,
knowledge sharing has become both democra-
tized and essential for individuals and profession-
als. It is a go-to approach in many domains like in
computer software through open-source software

and tools, open data-sets, crowd-sourcing and
collective universal encyclopedia (Wikipedia is
just one example). However, this trend has not
gained traction in the manufacturing industry yet,
especially for the maintenance activity. Typically,
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industrial maintenance knowledge is inaccessible
due to industry policies and practices, with little
to no motivation to share it with others. Today,
when a new machine is installed in a factory, there
is no existing knowledge of its failures unless
there is a human expert who has dealt with sim-
ilar machines before. In any given factory, each
failure is only discovered at its first occurrence
and requires usually a long and costly curative
maintenance operation. The maintenance process
includes diagnostics to determine the reasons for
a failure, its impact, and to define and apply
the correct repair procedures. Therefore, the same
failure of a machine, installed in many factories,
could lead to high costs and big production losses
because every factory, or even every maintenance
operator deals with the failure individually, from
the diagnostics phase to the problem resolution.
A potential solution that could help improve the
situation would be to enable the sharing of main-
tenance knowledge and experiences between the
industries or factories that own and operate the
same types of machines. The shared knowledge
could be used by the machine operators as a
guide to reduce the diagnostic and repair times,
target the failures’ root cause(s), and improve
the machines’ efficiency. Another important ef-
fect of maintenance knowledge sharing is that
it will transfer maintenance expertise between
experts and novices. This will lead to much faster
handling of machine failures, training of new
staff and to reduce the dependency on external
maintenance companies. Even more importantly,
it will reduce the number of accidents related to
maintenance activities.

Existing maintenance data exchange
standards & projects

There are many international standards and
consortium agreements that promote and adopt
the maintenance knowledge sharing approach.
Some of the most well-known ones are:

• The OREDA project [1]: Offshore and On-
shore Reliability Data for oil and gas indus-
tries, which led to the ISO 14224 international
standard [2]. It is a project organization with
7 to 11 oil and gas companies as members,
managing data of 292 installations and 18000
equipment units. Running for more than 35

years, OREDA has led to significant cost
savings in the development and operation of
platforms 1, and has helped has helped the
participating oil companies to save $70M. 2.

• SPARTA [3]: System Performance, Availabil-
ity and Reliability Trend Analysis adopted by 9
wind energy companies in the UK. It manages
and exchanges data of 19 wind farms and 1256
turbines in 2020. It covers more than 60% of
all offshore wind power generation in the UK.
Thanks to SPARTA, the average number of
crew transfers per turbine in the UK fell by
50% between 2014 and 2018, to around six
trips per year 3.

• WInDPool [4]: stands for Windenergy-
InformationData-Pool, for wind energy
industries in Germany. Adopted by 7 members
to exchange the maintenance data for a fleet
of 640 wind turbines onshore and 297 wind
turbines offshore with an expectation of more
than 1Me of costs savings on the maintenance
activity 4.

• The Configuration Data Exchange [5]:
launched by General Electric Aviation for
the world-wide aviation industry. $4 billion
savings are anticipated across the sector
thanks to the configuration data exchange
solution 5.

• OPDE [6]: The International Pipe Failure Data
Exchange project; and

• ISO 6527 [7]: A Reliability Data Sharing stan-
dard for nuclear energy producers.

Through these standards and applications,
the maintenance knowledge sharing concept has
proven its efficiency in the improvement of equip-
ment reliability, in the enhancement of mainte-
nance processes and in the reduction of produc-
tion costs, leading to savings over a machine’s
life cycle. However, each of these standards or
applications targets a specific domain and has

1http://www.datsi.fi.upm.es/∼rail/new/WP2/OREDA-history.
htm (accessed 17 Feb, 2021)

2https://www.oreda.com/join-us (accessed 17 Feb, 2021)
3https://ore.catapult.org.uk/wp-content/uploads/2018/11/

SPARTA-Portfolio-Review-201718-1.pdf (accessed 17 Feb,
2021)

4https://wind-pool.iee.fraunhofer.de/opencms/export/sites/
WInD-Pool/img/WInD-Pool-Business-Case ENG.pdf (accessed
17 Feb, 2021)

5https://www.businesswire.com/news/home/20161115005705/
en/GE-Aviation-Launches-Configuration-Data-Exchange-Reduce
(accessed 17 Feb, 2021)
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been adopted by only a handful of participants
who exchange their data under multilateral agree-
ments.

Survey of maintenance
knowledge-sharing challenges

To understand the perspectives of different
actors involved in industrial maintenance oper-
ations, we conducted a survey through a set
of direct interviews. Plant manager, production
manager, machine operators, maintenance engi-
neers, and different other industrial profiles were
interviewed. We targeted 30 companies from
various domains (Engineering, pharmaceuticals,
automotive, HVAC, Food & Beverage, ...etc. ) and
from 6 countries (UK, Spain, France, Switzer-
land, China and US). The survey was limited to
manufacturing industries for which the equipment
maintenance is a major activity. On one hand,
the survey brought-forward several issues that are
faced by these actors in their daily routine. We
found real interest in a maintenance knowledge
sharing solution and these actors believed that it
will be beneficial in the short term as well as
in the long term. On the other hand, the survey
allowed us to identify the various challenges
that could impede the development of generic
maintenance knowledge sharing solutions. Some
of the most important ones are:

1) Business culture: Sharing knowledge is not
a common activity in most organizations. It
has been demonstrated that individuals are
rewarded mostly for what they know, and
not what they share [8]. The competitive
environment that encourages individual in-
stead of collective productivity has taught
employees to consider their knowledge as
their own property, and that to deepen and
defend their knowledge is the main way to
keep their jobs within the organization.

2) Maintenance data collection: The collec-
tion of good quality maintenance data6 is a
mandatory step before being able to extract
and share useful maintenance knowledge7

6Maintenance data refers to maintenance reports established
to document a maintenance operation. These may contain data
about the machine’s components, description of the failure and
details of the maintenance procedure.

7By maintenance knowledge we refer to the result of an
aggregation of maintenance data collected by many entities that
is all relative to the same machine type.

from it. It is a long-term activity, requiring
the involvement of competent and well-
trained personnel to guarantee the quality
and usefulness of the collected data. How-
ever, this is usually seen as a marginal and
costly process instead of being considered
as a solid investment for the future.

3) Human factors: Many people may be re-
luctant to write a detailed report when they
are not confident in their own expertise and
want to avoid being judged. Also, when
failure frequency is high, many mainte-
nance operators believe there is no time
to write a detailed report and thus may
produce minimal reports with little or no
transferable knowledge.

4) Common maintenance taxonomy: Col-
lecting good quality maintenance data is
not enough to make it shareable. Entities
exchanging their maintenance data must
have the same understanding of the shared
data and hence, use the same vocabulary or
taxonomy.

5) Legal aspects: Every maintenance report is
a potential legal liability. In fact, a report’s
producer is legally responsible for mate-
rial damages that may be caused by the
application of his or her instructions. The
responsibility could be penal in the case of
human damages. Due to this issue of re-
sponsibility, some large companies destroy
their maintenance reports beyond a certain
legal period (e.g., 2 years in Europe) to
avoid any future problems associated with
their reports.

6) Sensitive data disclosure: Maintenance
data may contain sensitive information that
might compromise or negatively impact a
company’s activity. Thus, companies often
choose to keep all their data secret to ensure
business stability.

All the standards and projects presented above
try to address aspects of these challenges. The
existence of international standards that rule the
data sharing activity may, itself, has a positive
impact on challenges 1,2, and 3, since the existing
successful experiences are sufficient to influence
the business culture and processes and indirectly
reduce the human factors risk. Challenge 4 is ex-
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plicitly handled by the definition of standard ex-
haustive taxonomies that describe the equipment
components, failure details, and the maintenance
procedures of the maintenance key performance
indicators (KPIs). This is already possible where
the standards are defined for specific industry
fields (e.g., oil & gas) with well-known types
of equipment. However, this solution cannot be
adopted to cover all industries. Consortium agree-
ments are a solution for the legal aspect (chal-
lenge 5), as data is contractually agreed to be
shared by declining all responsibility relative to
its use. Nevertheless, this approach in not scalable
and not efficient when targeting a large set of
companies. Finally, the sixth challenge is being
addressed by the cited standards by their rec-
ommendations to apply data anonymization. This
process aims to remove all sensitive data from
the maintenance knowledge before it is shared.
In practice, the anonymization of maintenance
data is usually done manually, as no automated
approach has been adopted or promoted by the
standards and applications.

SemKoRe for maintenance data
sharing

In our previous work we proposed
”SemKoRe” [9], a technical solution for
maintenance data sharing, with which we aimed
to tackle challenges 4, 5, and 6. SemKoRe targets
the Original Equipment Manufacturers (OEMs)
that produce and sell machines to other industries.
An OEM can offer SemKoRe as a supplementary
service, connected to a machine, that simplifies
the collection and reuse of maintenance data, and
then to share the growing body of maintenance
knowledge with customers that own the same
machines types. our customers showed an
interest in using the SemKoRe approach to
enhance their industrial maintenance processes.
Moreover, the overall machine building process
can be optimized. The machine design phase
can benefit from the maintenance feedback
to identify any weaknesses of a machine
and can improve its design. Furthermore, the
collected statistics will allow the performance
comparison of a particular machine working in
different locations and contexts. Thus, additional
services and recommendations can be proposed
to the customers in order to optimize their

manufacturing process.
Technically, instead of proposing an exhaus-

tive taxonomy for all types of equipment, ma-
chines or failures for a specific industry field,
our approach defines individual taxonomies for
each machine type. In fact, SemKoRe defines
an ontology-based taxonomy to describe the in-
variant concepts in maintenance activity. This
taxonomy is then extended by the OEMs to
build machine-specific taxonomies that describe
the exhaustive vocabulary relative to each ma-
chine. Moreover, SemKoRe proposes ontology-
based adaptive UIs to simplify the filling of fail-
ures or maintenance details with more predefined
inputs than free texts, which may help to increase
the quality of the collected data. To tackle the
challenges 5 and 6, we recommend the adoption
of an automated anonymization approach [10]. It
consists of applying automated tools to remove
the sensitive data within maintenance reports so
that they can be shared securely between dif-
ferent companies. The removal of sensitive data
also removes all information about its origin,
and thus the resulting anonymized data assures
that no legal responsibility could be engaged
against its producer (challenge 5). In the litera-
ture, existing automated anonymization solutions
for structured or text data achieve high accuracy
scores (around 98% [11]). This level is judged
to be sufficient [12] to address the 6th challenge
(sensitive data disclosure) as the remaining 2%
of non-anonymized entities cannot be statistically
distinguished from the anonymized ones. In the
next section, we describe the automated data
anonymization approach in detail. This solution
has proven to be the most important enabler of
SemKoRe for OEMs and their customers.

Automated anonymization of
maintenance data

In the digital era, big data and massive pro-
cessing capabilities allow us to explore new pos-
sibilities. They have become essential for the
optimization of our activities and resources, and
help us to discover new opportunities. However,
the ubiquity of personal information or PII (per-
sonally identifiable information) makes this task
very challenging [13]. Data anonymization origi-
nated from the need to depersonalize processed
information while guaranteeing the usefulness
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and knowledge contained in that information.
Around the world, multiple regulations require
the anonymization of data before it can be pro-
cessed, especially in the financial services or the
medical field, which is the leader in terms of
privacy preservation needs [14]. However, to the
best of our knowledge, no initiative for industrial
maintenance data anonymization has emerged to
date. Several data anonymization techniques can
be found in the literature [15], ranging from
simple dictionary searches to Deep Learning-
based techniques. The main objective of these
techniques is to detect sensitive information in
a text and classify it according to its nature.
Machine learning techniques have shown their
absolute superiority in this task. Other methods
of pattern-matching or dictionary lookups are
complementary and allow to simplify and focus
learning models in difficult cases. It is very im-
portant to consider the nature of the data to be
anonymized. Data can be classified as structured
and unstructured (i.e., text data). Structured data
is already tagged data that can be stored in a
relational database, or in a structured file such
as: JSON, XML, CSV, spreadsheets, . . . etc. Un-
structured text data might contain any type of text
information. In our case, industrial maintenance
data is usually a mix of structured data (e.g.,
dates, machine identifiers, sites, addresses, main-
tenance operator identities) and unstructured text
data (e.g., diagnostic steps, solving procedure,
and maintenance operators’ observations). Both
types of data could potentially contain sensitive
information relative to the manufacturing pro-
cess, production details, machine configuration,
or other sensitive data.

Data sensitiveness determination
An important step for data anonymization is to

determine sensitive data and decide if it needs to
be removed/replaced or kept without any change.
Maintenance reports may contain two types of
sensitive data: Personal data and Business data.
Personal data or Personally Identifiable Informa-
tion (PII) includes all data that may refer to a
person directly (their name, email address, phone
number, social insurance number, etc.), or indi-
rectly, known as quasi-identifiers (such as their
birth date, zip code, profession, or gender). Only
one direct identifier is needed to identify a person,

while a combination of two or more indirect iden-
tifiers is required for the same purpose. Business-
sensitive data is any information that poses a
risk to the company if discovered. Examples of
such data include financial data, supplier and
customer information, manufacturing secrets, etc.
Our survey showed that judging a data item as
being business-sensitive varies from one company
to another. For example, some users considered
that the configuration of their machines was not
sensitive, while others (e.g., a flavor manufac-
turing company, or a tire company) believe that
their machine configuration is a manufacturing
secret and thus a part of their industrial property,
and so it cannot be shared with others. In the
industrial context, deciding which data is sensitive
and which is not is a challenging task. Consen-
sus on business data sensitiveness among all the
actors appears to be impossible to achieve . This
situation reinforces the need for an anonymization
system with a large set of capabilities to cover all
customers’ needs, and that allows users to define
their sensitive data types as configuration.

Structured data anonymization

The purpose of structured data anonymization
methods is to prevent the re-identification of
sensitive data from an anonymized dataset by
means of matching with external data sources
[16]. These methods are classified into two cate-
gories: perturbative and non-perturbative methods
[17]. Perturbative methods alter the data set to in-
troduce uncertainty around the true values, while
non-perturbative methods reduce the details in
data by imposing generalization or by suppressing
certain values without distorting the data struc-
ture. Some of the most well-known structured
data anonymization techniques are: Local sup-
pression, Micro-aggregation, Noise-addition and
Swapping. These techniques try to satisfy some
statistical properties, such as K-Anonymity, l-
diversity or t-closeness. The validation of these
properties does not mean that the privacy is 100%
preserved, but they are a good indicator of the
quality of the anonymization process. Some ex-
amples of structured data anonymization tools are
IBM’s ARX Data Anonymization Tool, Amnesia,
the Cornell Anonymization Toolkit (CAT), and
Aircloak Insights.

May/June 2021 5



Department Head

Figure 1. Text anonymization process.

Text anonymization process overview

Figure 1 shows an overview of the process
of text anonymization. It is composed of two
main tasks. The first consists of identifying and
classifying the sensitive data within a text. Both
personal and business sensitive data are detected
during this phase. The second step determines the
appropriate surrogates with which to replace the
sensitive data detected during the previous phase,
thereby producing an anonymized document that
still contains valuable data. The next sections
present some tools and techniques that are used
for both tasks.

Identification of sensitive data process

Different approaches are used for sensitive
data detection within a text, all of which are
based on the text analysis and rely mainly on
Natural Language Processing (NLP) techniques.
As shown in Figure 2, this process follows the
standard schema of an ML Ensembling pipeline.
It begins with the pre-processing of the input data
before it is simultaneously fed to different classi-
fiers. Each classifier is responsible for detecting
a specific type of sensitive data.

This approach is adopted by the Named Entity
Recognition (NER) tools [18]. NER consists of

Figure 2. NLP-based sensitive data detection process

Table 1. Examples of sensitive data surrogates.
Sensitive data Examples of surrogates
Date In many cases, it may not be sensitive data. Otherwise, replace it by the week number or by applying

a random shift on [-15days, +15days]; this will maintain the seasonal information that may have an
implication in the failure occurrence.

Person names,
employee numbers

Replace this information by a person’s role within the company, such as: operator, , maintenance manager,
etc. When possible, adding information about a person’s expertise level could be worthwhile and will
contribute to the credibility of a report.

Location, address Replace all the addresses and locations by ”the factory”. Add the country if there are at least 10 or more
companies that own the same type of machine in that country.

Product names Replace all product names by the keyword ”the Product”, except for the names of the machine components
that are common to all customers. For example Schneider Lexium Servo Drive is a product name, but
it may be common to all the machine owners, making it non-sensitive. This means that this surrogate
could behave differently for two different machine types.

Machine
configuration(s)

The surrogate of this data type will change depending on the machine type. If the machine configuration
is sensitive, then this data will simply be dropped from the content. However, if it is not sensitive but
should not be shared as is, then all numeric values must be replaced by adding a random value, for
example in the range of [-20%,+20%]. This should give an insight on the range of acceptable values.
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identifying, within a text, the entities (words or
group of words) that are relative to real-world
objects with associated names, and classifying
them into pre-defined categories such as person
names, organizations, locations, time, quantities,
etc. There are many NER tools and APIs, with
different capabilities and variable accuracy. As
an example, the CLARIN8 (Common Language
Resources and Technology Infrastructure) website
references several NER tools, along with their
different capabilities and supported languages.
Some famous NER python libraries like NLTK9

, SpaCy10 or Flair11 are provided with built-in
NER features that support many languages and
offer state-of-the-art accuracy and performance.
Actually, the well-known NER tools are most-
commonly used for personal data identification.
Regarding the maintenance data anonymization,
additional classifiers should be developed and
trained for the detection of sensitive business
data, following the same approach in Figure 2.
Such classifiers can use different machine learn-
ing techniques like: Neural Networks, Recurrent
Neural Networks (RNN), Conditional Random
Fields (CRF), or transfer learning by using trans-
former models such as Google’s BERT [19]. In
practice, the above NLP-based techniques are of-
ten used together with the rule-based techniques,
that are efficient in the detection of entities with
well-known and usually static formats or names.
These techniques rely on two approaches: pattern
matching using regular expressions to detect en-
tities with specific formats (such as dates, phone
numbers, credit cards, social/employee numbers),
and dictionary lookups to detect entities with
well-known names, including countries, cities,
streets, organizations, and products.

Replacement of sensitive data with appropriate
surrogates

The generation of surrogates is one of the
most challenging problems in automated data
anonymization. Unlike the abundant research
about sensitive data detection techniques, little
progress has been made in surrogate generation

8https://www.clarin.eu/resource-families/
tools-named-entity-recognition (accessed 8 Jan, 2021)

9https://www.nltk.org/ (accessed 8 Jan, 2021)
10https://spacy.io/ (accessed 8 Jan, 2021)
11https://github.com/flairNLP/flair (accessed 8 Jan, 2021)

[20]. Only some obvious pre-defined substitutions
can be found in the literature, such as replacing
a person’s name by another random name of
the same gender, or replacing dates, ages and
street numbers by random values. Some works
remove all sensitive information and replaces it
with their category name (e.g., ”Mr. Jack” be-
comes <PERSON>) instead of using a suitable
replacement. However, the risk with such solu-
tions is the loss of vital information and they
cannot be generalized and adapted for other use
cases, as well as the introduction of confusing
lack of detail. Table 1 shows some examples of
(generally) appropriate sensitive data surrogates.
Ensuring the semantic correctness and usefulness
of the anonymized data is a key challenge of sur-
rogate generation [20]. The simplistic solutions,
removing the sensitive data or using just the data
category as a surrogate, cannot adequately satisfy
that requirement. More sophisticated approaches
are needed, with a deep dive into each sensitive
data type to determine the adequate surrogate for
each usage context.

Conclusions and perspectives
There are many standards for maintenance

data sharing. Despite their limited application
scope, their positive impact on the enhance-
ment of the maintenance activity makes the
generalization of their approach more attractive.
Given this perspective, we developed our solu-
tion, ‘SemKoRe’, to simplify the collection, reuse
and sharing of maintenance data through powerful
services relying on semantic web technologies.
Before adopting the maintenance data sharing
approach, our customers had expressed the need
for automated anonymization features to avoid
sensitive data disclosure. This requirement came
up as the make or break point. However, we’ve
found that the application of data anonymiza-
tion for manufacturing industries is still a chal-
lenging task. On one hand, a consensus about
the sensitiveness of data seems unreachable for
the different industrial actors, since each data
fragment could be considered as sensitive for
some and non-sensitive for others, which makes
a one-solution-fits-all approach impossible. On
the other hand, the replacement of sensitive data
with appropriate surrogates is still an open chal-
lenge. Tackling these challenges is our cur-
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rent priority for the SemKoRe project. We are
working on a novel solution, combining the ef-
ficiency of the ML techniques and the semantic
web technologies to reconcile the data protection
and context-awareness. Furthermore, collecting
diversified maintenance data is another issue that
needs to be considered, since a single source of
data (e.g. Schneider-Electric) is not representative
enough to cover all the needs and specificities of
the various industrial domains.
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Télécom, Télécom SudParis jointly with UPMC Paris
VI, France, M.S. degree from M.A. Jinnah University,
Pakistan and B.S. degree from COMSATS Institute of
IT, Pakistan. During his Ph.D., he worked as collab-
orating researcher at Concordia University, Montreal,
Canada to lead a 3 year Cisco funded project. He was
also involved in several European research projects
funded by ITEA2 and H2020. During M.S., he was
member of Center of Research in Networks and Tele-
com (CoReNeT) and worked on projects funded by
French Ministry of Foreign Affairs and the Internet So-
ciety (ISOC). He has number of publications in peer
reviewed conferences & journals and patents. He has
also contributed to IETF standardization activities.
His current research interests are IoT, Knowledge
Graphs, Data & Information Management, Cloud &
Edge Computing and Intelligent Systems. For ad-
ditional details: http://www.imrankhan1984.com, (im-
ran@ieee.org).

NOEL CRESPI Prof. Noel Crespi holds Masters de-
grees from the Universities of Orsay (Paris 11) and
Kent (UK), a diplome d’ingénieur from Telecom Paris-
Tech, and a Ph.D and an Habilitation from UPMC
(Paris-Sorbonne University). From 1993 he worked at
CLIP, Bouygues Telecom and then at Orange Labs
in 1995. He took leading roles in the creation of new
services with the successful conception and launch
of Orange prepaid service, and in standardization
(from rapporteurship of the IN standard to the coor-
dination of all mobile standards activities for Orange).
In 1999, he joined Nortel Networks as telephony
program manager, architecting core network prod-
ucts for the EMEA region. He joined Institut Mines-
Telecom SudParis in 2002 and is currently Profes-
sor and Program Director at Institut Polytechnique
de Paris, leading the Service Architecture Lab. He
coordinates the standardization activities for Institut
Mines-Telecom at ITU-T and ETSI. He is also an
adjunct professor at KAIST (South Korea), an affili-
ate professor at Concordia University (Canada), and

a guest researcher at the University of Goettingen
(Germany). He is the scientific director of ILLUMINE,
a French-Korean laboratory. His current research in-
terests are in Data Analytics, the Internet of Things
and Softwarization. http://noelcrespi.wp.tem-tsp.eu/,
(noel.crespi@telecom-sudparis.eu).

May/June 2021 9



Annex C
Paper III

167



Privacy-preserving Sharing of Industrial
Maintenance Reports in Industry 4.0

Hicham Hossayni
Institut Polytechnique de Paris,

Schneider Electric,
38000 Grenoble, France
hicham.hossayni@se.com

Imran Khan
Schneider Electric,

38000 Grenoble, France
imran2.khan@se.com

Noel Crespi
Institut Polytechnique de Paris, IMT

91011 Evry Cedex, France
noel.crespi@it-sudparis.eu

Abstract—Knowledge sharing has proven its worth in many
domains as an enabler for optimized processes and improved
organizational agility. It makes problem-solving and decision-
making much faster for the stakeholders. Knowledge sharing
has also proven its effectiveness in the industrial maintenance
domain as a key vector for the improvement of maintenance
processes, that are still dominated by traditional practices.
However, sensitive data disclosure remains one of the major
roadblocks that prevent this trend from gaining ground in the
manufacturing industry. In this paper, we present a new approach
to provide remedies for sensitive data disclosure problems during
the knowledge sharing activity. Relying on the semantic web, rule-
based, and natural language processing techniques, our approach
helps to detect and identify the potentially sensitive data in
maintenance reports before being shared with other actors.

Index Terms—Industrial maintenance, Knowledge sharing, Natu-
ral Language Processing, Semantic web, Sensitive data disclosure.

I. INTRODUCTION

Knowledge sharing has become commonplace in various
domains. It is adopted by several organizations to increase
operational efficiency and staff productivity [1]. It makes the
expertise of specialists accessible to a large community which
helps for individual growth and development. Despite the
existence of many standards and international consortiums that
promote knowledge sharing for industrial maintenance, this
trend has not gained traction in the manufacturing industry
yet, where traditional practices are still in force, such as paper-
based maintenance reports or the maintenance reports that
are never reused. Also, current industry policies and practices
make the maintenance knowledge inaccessible with little nay
no motivation to share it with others.

In our previous work, we proposed SemKoRe [2], a vendor-
agnostic solution that enables maintenance knowledge sharing
with Semantic Knowledge Graphs. SemKoRe gathers all fail-
ure’s related data in the knowledge graph and shares it among
all connected customers in order to easily solve future failures
of the same type. It received the approval of several important
clients of Schneider-Electric located in several countries and
from various segments.

During our work on the SemKore Project, we conducted
an interview campaign with several experts in the field of

industrial maintenance. The results were unequivocal; sharing
maintenance knowledge between manufacturers would have a
positive impact on the optimization of maintenance routines
and on manufacturing productivity. However, a major problem
that would prevent such solutions from becoming a reality, is
the presence of sensitive information in maintenance reports.
It is therefore essential to guarantee data privacy-preserving
and avoiding sensitive data disclosure before sharing any
maintenance report.

In this paper, we propose a new approach to avoid sensitive
data disclosure during maintenance knowledge sharing through
the SemKoRe solution. Our approach relies on Semantic Web
ontologies combined with different techniques, usually used
for data anonymization [3], such as: Named Entity Recognition
or rule-based sensitive data detection.

We tackled a couple of challenges in this work. The first
challenge is the lack of datasets with a reasonable number
of real maintenance reports containing confidential data. For-
tunately, the interviews campaign allowed us to understand the
nature of sensitive data in maintenance reports and some ways
to recognize it. The second challenge is that sensitive data
detection techniques, especially the NLP-based ones, require
annotated data corpus with a considerable number of samples,
while we have almost no maintenance report with sensitive
data. So, for the proof of concept needs, we implemented
a generic solution to collaboratively collect, annotate, and
construct our own data corpus.

The collected data corpus was used to train and evaluate three
different Named Entity Recognition (NER) models. Then,
we deployed and used on-premise all the trained models
on an Edge gateway. The results are promising, they show
that our approach can be used for on-premise detection of
potentially sensitive data in maintenance reports. We also
identified several areas of improvements, as future work, to
make our solution usable in real use cases.

This paper is organized as follows: the related work is pre-
sented in section II, followed by the requirements imposed by
our customers and the SemKoRe project. Section IV presents
the main contributions of the paper. Section V details the



challenges and the future works before concluding in Section
VI.

II. RELATED WORK

There are many international standards and consortium agree-
ments that promote and adopt the maintenance knowledge
sharing approach. Some of the well-known ones are:

• The OREDA project [4]: Offshore and Onshore Reliabil-
ity Data for oil and gas industries, which led to the ISO
14224 international standard [5].

• ISO 6527 [6]: A Reliability Data Sharing standard for
nuclear energy producers.

• SPARTA [7]: System Performance, Availability and Reli-
ability Trend Analysis for wind energy industries in UK.

• WInDPool [8]: stands for Windenergy-Information Data-
Pool, for wind energy industries in Germany.

• OPDE [9]: The International Pipe Failure Data Exchange.

• The Configuration Data Exchange [10]: launched by GE
Aviation for the worldwide aviation industry.

All these standards and projects recommend applying data
anonymization and removing sensitive data before sharing
maintenance reports with others. They, however, don’t propose
any solution for that purpose. And to the best of our knowl-
edge, no existing work on detecting sensitive information in
industrial maintenance reports has been published. Several
reasons justify this situation, the first one is that most industrial
users have no intention to share their maintenance data with
others as they feel that they have experienced persons who can
take care of the maintenance activities without external help.
However, the situation is rapidly changing due to the decline
in the working force in industrial countries like Germany and
Japan [11]. The second reason is that majority of the industries
are closed source in nature. They never had the concept of
collaboration or inclination to learn from the experiences of
other teams. Another reason is that no maintenance datasets
can be found on the internet or open data repositories to help
researchers and scientists explore this field.

On the other side, sensitive data detection in textual or
unstructured data has been studied in several works in the
literature. Most of them target the medical field for which data
anonymization is imposed by regulatory rules such as HIPAA
(Health Insurance Portability and Accountability Act) [12].
Various techniques are used and range from simple rule-based
techniques to more advanced natural language processing
(NLP) techniques [13].

Named Entity Recognition (NER) remains one of the most
used NLP techniques for sensitive data detection. It consists
of identifying, within a text, the entities (words or group of
words) that are relative to real-world objects with associated
names. There are also many hybrid solutions relying on both,
rule-based and NER techniques [14] that usually offer good

performances with high accuracy scores, exceeding sometimes
98% [15] which is judged to be sufficient for data privacy
purpose [16].

III. REQUIREMENTS

As discussed previously, this project is considered as a feature
that will be proposed to our SemKoRe’s customers. Thus, a
set of requirements needs to be fulfilled in order to satisfy our
customer’s needs and to make the solution easily integrable
within SemKoRe’s ecosystem.

The first requirement is that the solution must not be restricted
to specific types of machines or specific manufacturing do-
mains. Rather, it should support almost any type of machine
used in any manufacturing field. The second requirement is
that the solution should be customizable to cover the different
needs of our customers. In fact, our interviews campaigns
showed that each manufacturer has its own data sensitivity
evaluation criteria, and the needs of a customer are sometimes,
different from others even for the same standard machines.

The third requirement is that the solution needs to be de-
ployable and executable on an edge gateway. In fact, most of
SemKoRe’s services are running on an edge gateway directly
connected to the machine. The goal is to offer on-premise
services to our customers so that they can be used without
needing to be permanently connected to the cloud. (please
refer to our previous paper [2] for more details).

IV. CONTRIBUTION

A. Survey on maintenance reports and sensitive attributes

To understand the nature of sensitive data within a main-
tenance report, we reached out to several domain experts
from various industries who are involved in/related to the
maintenance activities in their organizations. Several questions
were asked during our interviews campaign. The goals were
mainly to understand the structure of maintenance reports and
to know which data or attributes can be judged as sensitive.
Hereafter, we present the list of questions and summarized
answers we received during the interviews. For more details on
these interviews like statistical validity and global conclusions
please refer to our previous work [17].
1) Q1- What is the structure of a maintenance report?:
Almost all maintenance reports are composed of two parts:
the first part is a structured section (usually heading) that
recalls the context of the maintenance operation such as the
maintenance date and time, location, maintenance operator’s
name or identifier, machine Identifier. The second part is
the content of the report, it is an unstructured text written
by the maintenance operator to describe the reasons for the
maintenance operation and the actions applied during the
maintenance or repair of the machine.
2) Q2- Which data can be considered sensitive in a main-
tenance report?: We can distinguish mainly three types of
sensitive data in a maintenance report:



• Personal data: all information relative to a specific per-
son within the company. E.g.: Personally Identifiable
Information (PII) like employee’s name or number, role,
addresses, phone number.

• Business data: every information about the company or its
activity. This includes the manufacturer’s name, products,
location, customers, or subcontracting companies.

• Manufacturing data: especially information about the
manufacturing process that may leak details about the
manufactured products or the trade secrets, e.g. secret
recipe of Coca-Cola. Also, some industries believe that
the machine configuration is sensitive since it is part
of the competitive know-how making it part of the
company’s industrial property.

3) Q3- How sensitive data appears in a maintenance report’s
content?: Personal information can only be found in the
report’s heading. it is very rare or almost impossible to find
personal data in a maintenance report’s content.

Regarding the business data, the critical data (like financial
data or strategy) are never shared with the maintenance tech-
nicians, therefore it has no chance to appear in a maintenance
report. However, the names of the manufacturer, products,
customers, or other companies might likely appear in the report
to describe the maintained machine’s context.

Finally, manufacturing data can consist of multiple details but
the two most important or common ones are:

• The machine configuration: corresponds to the settings
of the different machine components, e.g. motor rotation
speed, pressure, temperature.

• The manufacturing process: corresponds to a succession
of granular steps and actions needed to produce the
finished goods.

4) Q4- How to recognize sensitive data in maintenance
reports?: The heading of a maintenance report is usually
considered sensitive, since it contains information about the
company, the location, the maintenance operator, in addition
to different identifiers and references with internal significance
only. Discarding the maintenance report’s heading from the
shared information is a wise decision.

Also, the business data differs from one company to another.
It is mostly a set of proper nouns and well-known entities such
as the names of products, customers, companies, etc...

On the other hand, there is a common pattern of the machine
configuration and manufacturing process in the majority of
maintenance reports. Actually, for every machine failure, the
maintenance technicians usually describe how a machine com-
ponent has been used or has behaved, or what configuration it
had when the failure occurred. So, after the analysis of some
maintenance reports, we found that such information is most
of the time relative to a machine component since they are
the most representative landmarks in a machine to describe
a failure or a maintenance operation. This hypothesis was

approved by the domain experts to be the most representative
of the manufacturing data commonly found in the maintenance
reports. Nevertheless, they do not exclude other rare forms not
covered in this paper and that will be part of future works.

Finally, it is important to note that for standard machines, most
of the machine configurations or manufacturing processes are
provided by the OEM or the machine builder, and therefore
they are not sensitive nor confidential. The exceptions are
more relative to the customization applied on the standard
machines such as adding new components or using a secret
configuration that requires high engineering expertise. In both
cases, only a domain expert can evaluate the sensitivity of each
manufacturing data.

B. Our approach

1) Overview: To detect sensitive data in maintenance reports,
we adopted a hybrid approach relying on rule-based tech-
niques and Named Entity Recognition. In addition to these
techniques, we used Semantic Web ontologies to guarantee
the customizability, portability, and useability by different
customers for different machine types.

For the detection of business data such as the manufacturer
name, products names, customers, and subcontracting com-
panies; we use a dictionary lookup technique. We ask the
customer to provide a list of all proper names (e.g. products
names, people, companies) typically used in the company. This
list can be updated whenever new entities are introduced in
the company.

In this paper, we focus on the manufacturing data and within
it to the identification of the machine components in the text.
Since, as presented above, they are the most common form
of machine configuration or manufacturing process leaks. For
that purpose, we will use NER techniques.

Finally, as discussed previously, recognizing the sensitive
nature of a piece of data can only be done (for the moment) by
a human expert. Therefore, to provide a highly customizable
solution, we propose an ontology-based approach to allow the
domain experts to specify the machine components that they
judge as being potentially sensitive.

Figure 1 shows a detailed overview of our approach. It requires
four different inputs:

1) A machine components taxonomy bringing together the
components’ names, their synonyms, and abbreviations.

2) An annotated text corpus that will be used for the training
of the NER module. This corpus should be composed of
numerous text entries with tagged machine components.
As a requirement, all tagged machine components must be
part of the machine taxonomy.

3) A specific machine ontology that describes a physical
machine and all its components. This ontology must be
restricted to the components defined in the machine tax-
onomy. In this way, we guarantee the synchronization



Fig. 1. Detailed overview of sensitive data detection in maintenance reports

between the components identified by the NER model and
the components referenced in the machine ontology.

4) A data anonymization rules ontology, which specifies the
different ways used to identify the various types of sensitive
data. It is imported in the machine ontology to allow
domain experts to specify the sensitivity rules or flags
for each machine component, i.e. flag a component as
potentially sensitive or not sensitive. This ontology also
references the rule-based resources (e.g. dictionaries) that
are used during the sensitive data search phase.

Note that the outcome of this approach is a custom tool for
the detection of (potentially) sensitive data in the maintenance
reports of a specific target machine. However, our approach is
applicable to a variety of machines from different domains.

Once all the inputs are provided, the training dataset filter uses
the specific machine ontology to filter the annotated corpus. It
also ignores all tagged machine components that are not part
of the target machine. We get a filtered annotated corpus, as
a result, that only contains samples tagged with components
of the target machine. The reason for this choice is that we
consider the annotated corpus of general-purpose and that
might reference several thousands of machine components,
while only a few dozens of components are part of the target
machine.

The filtered annotated corpus is then used to train a NER
model for the machine components detection. It is known that
reducing the training datasets helps in accelerating the training
phase. Also, this allows the NER models to focus on efficiently
recognizing a limited number of entities instead of trying to
recognize all existing machine components. This step provides

Fig. 2. Sensitive data detection flow for maintenance data sharing

a custom NER model trained to detect only the components of
the machine for which the maintenance reports are drawn up.

To satisfy the last requirement, we deploy the trained NER
model on the industrial gateway connected to the target
machine. Then, the Sensitive data detector service will use
on-premise: 1) the trained NER model, 2) the data sensitivity
rules, and 3) the rule-based resources during the analysis
of the maintenance operators’ inputs for the recognition of
(potentially) sensitive data.
2) Sensitive data detection flow in maintenance reports: The
Figure 2 describes the flow of sensitive data detection in
maintenance reports, it consists of three main steps:

1) The first step consists of automatically analyzing the main-
tenance report’s text and identifying all machine compo-
nents in it.

2) Once we have a list of machine components detected by
the tool, it is filtered in order to keep only the items judged
potentially sensitive. When sensitive components are found
in the text, the maintenance report is flagged as containing
potentially sensitive data and must be verified by a domain
expert such as a maintenance engineer or service bureau.

3) Finally, the domain expert decides if the report can be
judged sensitive or not. All reports identified as non-
sensitive are tagged as ready for sharing and are transferred
to the maintenance knowledge sharing service.

In the following, we will describe the design of all these
components to provide a customizable sensitive data detection
tool for industrial maintenance reports.

C. Data corpus collection & preparation: Industrial Machine
Data Pool

The major challenge that we had to face in this project
was to find the needed datasets with industrial maintenance
vocabulary. Traditional sources such as internal documents
or open datasets were not helpful and were not satisfying
our needs. Therefore, we decided to collect and construct the
required data corpus ourselves. Two complementary steps are
needed to build our datasets:

1) Collect structured data and texts about machine compo-
nents from internet web pages. The structured data will be
used to construct our machine components’ taxonomy, and
the texts will be used to build the data corpus.



Fig. 3. IMDP’s architecture

2) Annotate the collected texts using the machine components
taxonomy. This step can be divided into two sub-tasks:
a) Automatic annotation that consists of using tools to
annotate automatically the collected texts and to optimize
the annotation effort. b) Manual annotation: In this task,
the user must annotate and correct the entities not detected
or incorrectly annotated by the automatic annotation tools.

Thus, we implemented the Industrial Machine Data Pool that
provides a collaborative solution with the necessary services
for data collection and automatic and manual annotations.
1) IMDP - Industrial Machine Data Pool: Several tools are
proposed on the internet for web scraping and corpus construc-
tion, e.g.: Data Scrapper from Data Miner 1, OpenLink Struc-
tured Data Sniffer 2, or Web Scraper from OpenLink Software
3. These tools are more designed to automate the collection of
structured data, however, the manual effort needed to collect
unstructured text data makes them useless. Thus, we decided
to develop our own tool to accelerate the data collection task.
We designed an extension that can be integrated natively into
internet browsers. This allows the user to interact with the
data collection tool directly from the visited web pages. In
fact, a simple right-click generates a popup form that the user
can fill with adequate content, (even with copy and paste) and
save it as a new entry in the IMDP. In addition, several users
can simultaneously use the extension and participate in the
data collection effort. Each instance of the browser extension
manages a local database that is permanently synchronized
with a central cloud database that is common to all users (see
Figure 3). In order to avoid duplicate entries, all the links of
the pages that are already collected are highlighted on every
visited web page. IMDP server offers also a web service that
can be used similarly to the internet extension, but without
integration in the visited web pages.
a) Data sources & data structure: We configured IMDP
to collect data about machine components, and we choose

1https://dataminer.io/
2https://osds.openlinksw.com/
3https://webscraper.io/

Wikipedia as a starting point because of the availability of
a large number of pages describing the industrial machines
and components. Also, the unified structure of Wikipedia’s
articles makes it possible to automate the data extraction.
From each web page, we gather the following details: The
component’s type (structural, mechanical, or control element),
name, synonyms and abbreviations, URLs, and relative texts.

Afterward, the collected texts must be cleaned and annotated.
We split all collected texts into paragraphs with less than 800
characters. The goal is to simplify the text annotation and
to attract more colleagues for a collaborative text annotation
effort.
b) Automatic annotation: We implemented an automatic an-
notation tool that identifies and automatically tags machine
components in the text to accelerate the annotation task. We
used three different sources for our automatic annotation:

• Exact keywords and plural forms lookup from the col-
lected machine taxonomy.

• Wikipedia annotations

• Tagme annotations: Tagme4 is a service that performs on-
the-fly semantic annotation of short text via Wikipedia as
a knowledge base.

This strategy allows detecting many machine components in
the texts, with, however, a non-negligible rate of false-positive
annotations. Which requires the involvement of experts for
manual annotation.
c) Manual annotation: During the manual annotation task, the
user needs to check the correctness of automatic annotations
and annotate the missed entities. When a new entity is identi-
fied by the user, it is added to the machine taxonomy either as
a synonym of an existing entity or as a new entity for which
the user is asked to provide the different details required by
the IMPD. This allows to keep track of all entities in the texts
and to know to which entity every annotation refers.
d) SUMMARY: At the time of writing these lines, we built
a dataset composed of: 193 taxonomy entries with 283 syn-
onyms and abbreviations, 188 articles texts, 3523 cleaned
paragraphs, and 333 fully annotated paragraphs containing
1591 sentences.

D. Machine ontology definition

As discussed previously, our approach requires the definition
of an ontology that describes the physical machine. This
ontology should be defined by a domain expert (e.g. machine
designer), and an ontology expert (see Fig. 4). For this
purpose, we defined a T-Box for the Machine Ontology Model
(see Fig. 5) that must be used to create an instance of the
physical machine. The T-Box ontology describes the compo-
nents of the machine and defines the characteristics of each
component such as its attributes or its configuration (figure
6). Every machine is described as a hierarchical assembly
of the different physical elements (Unit, Sub-unit, Part, and

4https://tagme.d4science.org/



Fig. 4. Machine ontology design

Fig. 5. T-Box & Machine ontology specifications

Component) as shown in the Pyramid in Fig.5.c. One of the
Machine T-Box requirements is that all machine components
must be referenced in the Machine taxonomy ontology that
was generated previously by IMDP.

We also created a Data Anonymization Rules ontology that
defines, at this stage, the sensitivity flags relative to each
machine component. In other words, it classifies a machine
component as “sensitive” or “not sensitive”. The sensitivity
flag can also be defined for the other machine elements. In
that case, the sensitivity flag is inherited by all the machine
components belonging to the flagged element unless a different
sensitivity has been defined. This ontology will be extended
in the future to cover more data anonymization aspects such
as managing multiple sensitive data detection services (e.g.
dashed concepts in Fig.5.b) or supporting the sensitive data
masking or replacement rules.
1) Training Named Entity Recognition models for machine
components detection: To train the Name Entity Recognition
models, we predefined two categories for entities’ classifi-
cation: 1) Machine Component and 2) Machine Equipment.
These categories represent more than 95% of the tagged
entities in the collected texts. So, other categories (Mainte-
nance process, Manufacturing process, Material, and Machine
failure) are not included in our study. We trained three different
NER models: 1) A custom Spacy NER model, 2) a NER model
with CRF (Conditional Random Fields), and 3) a BERT-based
NER model.

To train all these models, we first export the annotated texts
from IMDP in the needed formats (e.g. BIO, BILUO), then we
use the exported data to feed the NER training modules. Each
training module applies the pre-processing steps required for
the training phase. Finally, a NER model is generated and is
ready for use for machine components detection.

a) Custom Spacy NER model: Spacy [18] is a very known
open-source framework for NLP. It offers several features
including an efficient deep CNN-based NER system achieving
state-of-the-art performances. Spacy comes with a set of pre-
trained NER models for different languages to detect the most
common entities: Person, Location, Organization, Values. It
is also possible to retrain the pre-trained models to include
additional categories or even to train a new model based on
an empty NER model. In our case, we chose to train an empty
NER model to detect the desired categories only: Machine
equipment and Machine component.
b) CRF NER model: Conditional random fields are a class
of statistical methods designed for the analysis of sequential
data (such as text, images, DNA) [19]. They’re often used
in pattern recognition and machine learning. One reason for
their good performances in the NER task is that they consider
the input’s context by taking into account the neighboring or
surrounding samples. Therefore, to train a CRF-based NER
model, we need to pre-process the annotated texts in order to
apply tokenization and extract different features for each token
such as POS tags, lemma, shape, and other flag features like: is
uppercase, is capital, is a stop word, is a hyphen. The features
extraction is done within a window of 11 tokens, it includes the
features of the current token, and 5 next and 5 previous tokens
since some machine components are composed of many tokens
such as: “glass-ceramic-to-metal seal” that is composed of 8
tokens (5 words and 3 hyphens).
c) NER model with BERT: BERT (for Bidirectional Encoder
Representations for Transformers) is a deep learning model
that has given state-of-the-art results on a wide variety of
natural language processing tasks. It has been pre-trained on
Wikipedia and BooksCorpus [20]. and requires task-specific
fine-tuning [21]. In our case, we applied BERT to build our
NER model for machine components detection. To train our
NER model, we followed the same approach and implemen-
tation proposed in [22] as it matches our problem space. We
used a 12-layer BERT model with an uncased vocabulary, and
we set the target learning rate to 2*10-5 with a batch size of
16 and 7 training epochs.
2) Implementation details: We used multiple technologies to
implement our proof of concept. For IMDP we used:

• Google Chrome as a target for the browser extension as
it is quite a popular browser worldwide.

• HTML+CSS and Javascript to implement the web UI,
and the different chrome extension services, such as data
collection, cleaning, annotation, and data export.

• PouchDB, as a storage database on both, local storage and
on the cloud storage. PouchDB is a no-SQL database with
native data synchronization features between the local and
cloud databases.

The creation of the different T-Box ontologies (Machine
Taxonomy, Data Anonymization Rules, Machine Model) was
mainly done with the Protégé tool, which is widely used for
the creation of semantic web ontologies.



We used the Python programming language to implement the
“Training dataset filer” service, and for the NER training mod-
ule. Specific python libraries were used for the implementation
and training of the different NER models:

• Spacy library for the custom spacy NER model.

• pyCRFsuite for the NER model with CRF.

• PyTorch library for NER model with BERT.

For the training of the different NER models, we used a
capable laptop setup running, Ms. Windows 10, with 32Gb
of RAM and an octa-core i7 processor and a CUDA-enabled
GPU (NVIDIA QUADRO M2020) of 12Gb of memory. As
an industrial gateway, we used RaspBerry Pi 4, with 4Gb
of RAM, ARM-Cortex-A72, and running Linux Ubuntu 5.4.
Docker was used as a containerization technology for the
different Edge services such as the Sensitive data detector
service.

Finally, we used Microsoft Azure to host the IMDP server
containing the master PouchDB. Currently, the training dataset
filter and NER training module services were implemented and
tested on a laptop, but we plan to deploy them on a dedicated
Ms. Azure server. On the Raspberry Pi, we deployed the
trained NER models and the sensitive data detector service.
3) Evaluation: To evaluate our approach, we defined a sam-
ple machine ontology containing all the components of our
machine components taxonomy, and we used the complete
annotated dataset, generated by IMDP, to train the NER
models. We also defined a dictionary of some names, found
in the annotated texts for the rule-based part. We can deduce
that the accuracy of our approach is equal to the accuracy of
the NER models since the rule-based resources are defined to
achieve (biasedly in our PoC) an accuracy of 100%. However,
in order to fully evaluate this approach, we need to have much
more data than we currently use.

To evaluate the NER models, the current dataset contains 1591
annotated sentences. 70% of the dataset (i.e. 1114 sentences)
was used for the training, and 30% (477) was used for the
test. We adopted also the F1-score as an evaluation metric. It
is defined as follows:

F1 = 2 ∗ precision ∗ recall
precision+ recall

Where the precision is the percentage of named entities found
by the learning model that is correct, and the recall is the
percentage of named entities present in the corpus that are
found by the model.

Table 1 shows the recall, precision, and F1 score of the
different models. We can see that even with a relatively small
dataset we can achieve good scores exceeding 83%. CRF and
BERT-based models achieve a similar F1 score of around 0.84.
While the best results were achieved by Spacy’s NER model
getting close to 0.9 of F1 score.

TABLE I
PERFORMANCE RESULTS FOR THE DIFFERENT NER MODELS

Model Recall Precision F1 score
SPACY NER 0.884 0.908 0.896
NER with CRF 0.821 0.857 0.837
NER with BERT 0.858 0.818 0.838

TABLE II
EXECUTION TIME OF THE NER MODELS ON LAPTOP AND RASPBERRY PI

(MS/SAMPLE OF 1000 WORDS)

Model Time on Laptop Time on Raspberry Pi
SPACY NER 41 183
NER with CRF 8 14
NER with BERT 0.17 9239

We also evaluated the execution times of the different NER
models, since our main execution target is an embedded
industrial gateway. We found that the time needed to analyze a
text and extract the sensitive entities is perfectly linear with the
number of words in the text. Table 2 shows the time needed to
analyze a sample of 1000 words. BERT showed exceptional
performances with the ability to analyze a sample in less than
0.2ms on the laptop. However, it takes more than 9 seconds
for the same task on Raspberry PI which makes it not suitable
for our case. CRF’s model was also fast with 8ms on the
laptop and 14ms on the RPI, while Spacy’s NER model takes
more execution time on both, the Raspberry Pi with 183ms
and the laptop with 41ms, which also remains reasonable for
an on-the-fly text analysis feature. Finally, once a machine
component is detected, looking in the ontology if it is sensitive
or not takes a negligible time (< 10−4ms).

V. CHALLENGES AND FUTURE WORK

In this paper, we propose a new approach for sensitive data
detection in industrial maintenance reports. With the current
implementation, we conducted some tests on a limited set of
maintenance reports, for which we created a simple machine
ontology and found promising results. However, we found
several areas of improvement for the future.

The first area of improvement is that we used a restrictive
hypothesis as a basis of our approach. In fact, not all sensitive
data are relative to machine components. As an example,
the maintenance operator could describe a manufacturing step
instead of the machine component, e.g. “The packets sealing
has small holes”. Also, the machine components might be
sometimes described by their use such as using “the milk
container” instead of the “liquid tank or reservoir”. This can
be improved by adopting digital tools to prepare maintenance
reports like a UI based on a set of ontologies for taking input
from the operators by suggesting standard terms.

The second challenge is the nature of the language used for
real maintenance reports, and that makes the automatic anal-
ysis awkward. In fact, maintenance operators do not provide
literature texts, they usually use short informal texts, or even
use street slang or urban vocabulary with frequent typos and



missing punctuation. Similarly, the operator’s vocabulary un-
derstanding may not be coherent with the normative definition,
which often results in the use of non-standard abbreviations.
Here again, the use of digital tools can be helpful to facilitate
the operator to provide details as per normative definitions.
Also, using real maintenance reports to train the NLP models
could help in capturing the specificities of the maintenance
reports’ language.

The third challenge is the use of multiple local languages
to create maintenance reports. We focused so far on English
maintenance reports. This can be improved by proposing a
multi-lingual sensitive data tool. Such a tool will require NER
models trained with various maintenance data corpus and
taxonomies from each of the supported languages.

Another future work is the simplification of the data annotation
process by decoupling the data annotation and the machine
taxonomy. Some works like [23] showed that it is possible, for
some NLP tasks, to train models on a corpus annotated with
a taxonomy different from the one it is designed to output
annotations for.

VI. CONCLUSION

Several standards and international consortiums promote the
maintenance data-sharing approach and have proven its effi-
ciency even on limited application scope. However, sensitive
data disclosure remains one of the major roadblocks of knowl-
edge sharing in several domains and industrial maintenance is
not an exception. For this reason, we proposed a new approach
to avoid sensitive data disclosure during the maintenance data
sharing activity. We conducted interviews with several domain
experts to understand the needs and expectations from such a
feature. As a result, the needs differ from one user to another
even for the same machines types, and, judging -with certitude-
data to be sensitive or not, remains the role of a human expert
such as a manufacturing engineer. In our approach, we aim
to simplify the work of the human expert by identifying the
potentially sensitive data in maintenance reports’ content. This
approach relies on Semantic Web technologies to allow the
user to customize his solution and specify the items that can be
considered as potentially sensitive. In this paper, we evaluated
the use of three well-known NER models: Spacy’s pre-trained
NER model, CRF-based, and BERT-based NER models. The
evaluation results show that even with a small dataset (with
less than 1600 samples) these models have F1 scores between
0.84 and 0.90. We were able to deploy them on a Raspberry
Pi 4 and we found that Spacy’s NER model and CRF are
more suitable for on-premise execution on an edge gateway.
Several future work items have also been identified to continue
working on this topic.
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Internal 

Customer Interview questionnaire 

Name .................................................... 

Role .................................................... 

Company .................................................... 

Location .................................................... 

Experience .................................................... 

Date .................................................... 

 

1. Can you describe the end to end story from the occurrence of the failure until 

the resolution phase.?  

a. How failure is detected?  

.................................................... 

b. Who signals that failure?  

.................................................... 

c. What are the steps of resolutions of the failure?  

.................................................... 

d. Who provides the resolution method? 

.................................................... 

 

2. How the machine maintenance information is collected and managed today.?  

a. On which support?  

☐ Paper ? ☐ Digital ?  

 If digital:   ☐ Raw file?    ☐ CMMS?  .................................................... 

Other? .................................................... 

b. Maintenance report format 

☐Form with list of questions ☐Text report 

.................................................... 

☐One single form for all failures ☐Several forms for differents failures 

.................................................... 

 

c. Who fills (or files) a maintenance report? 

☐ Only one person              ☐Many  

.................................................... 



 

 

Internal 

d. What happens when the maintenance procedure is not known in 

advance? 

.................................................... 

e. What are the roles of involved people? 

.................................................... 

f. Who reports what? 

.................................................... 

g. Who is the receiving part? 

.................................................... 

h. Is there a validation/transformation phase of the data that occurs 

during all the maintenance process? 

☐Yes     ☐ No 

i. The reports are accessible for everyone within the company? 

☐ Yes     ☐ No 

j. b. Who is eligible to read such reports? 

.................................................... 

3. What kind of details are included in the report? please give some examples? 

.................................................... 

 

4. Are the maintenance reports saved and archived? 

a. How 

.................................................... 

b. During how much time ? 

.................................................... 

5. Are the old maintenance reports reused to solve similar problems? 

.................................................... 

a. How often do you reuse old reports? 

.................................................... 

b. Which kind of details are relevant in old reports? 

.................................................... 

6. In your point of view, in case of a company having many factories around the 

world, do they transfer maintenance reports from a factory to another? 

a. How ? 

.................................................... 

b. What do you think about sharing this information with other factories? 

.................................................... 



 

 

Internal 

c. What do you think about sharing this information with other companies? 

.................................................... 

d. Is there currently any maintenance information sharing between 

companies? 

.................................................... 

 

7. Are there some sensitive data within the machine maintenance reports? 

☐Yes     ☐ No .................................................... 

a. Do you keep track of who reported error? 

☐Yes     ☐ No .................................................... 

b. Details like location; which site, which machine, at what time are part of 

the report? 

☐Yes     ☐ No .................................................... 

c. Details about the process or configuration can be included in the 

report? 

☐Yes     ☐ No .................................................... 

a.  In case of multiple machines are connected, do you include details 

about other machines? 

☐Yes     ☐ No .................................................... 

a.  If you consider that there is no sensitive data in these reports, Are you 

ready to make your maintenance reports public? 

☐Yes     ☐ No .................................................... 

 

8.  Can you give some examples of the sensitive data? 

  .................................................... 

9. Do you know how data can be anonymized in order to keep the resulted data 

meaningful and useful for machine maintenance? 

  .................................................... 

 

10. Can you share with us some failure reports? It will be only for research purpose 

and of course with a non-divulgation agreement. 

  .................................................... 
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Résumé : Autrefois considérée comme faisant par-
tie des coûts généraux de l’entreprise, la mainte-
nance est devenue critique pour les industriels et
une véritable source de données. Malgré les sommes
importantes investies dans l’industrie intelligente, les
pratiques artisanales en maintenance dominent tou-
jours le paysage industriel. Dans cette thèse, nous
étudions le partage des connaissances comme so-
lution potentielle qui peut inverser la tendance et
améliorer l’activité de maintenance pour se conformer

aux principes de l’Industrie 4.0. Nous considérons les
graphes de connaissances comme un outil de collecte
et de partage des données de maintenance entre les
différents acteurs de l’industrie. Notre approche a été
validée par plusieurs experts du domaine et a séduit
de nombreux clients de Schneider-Electric. Comme
contributions, nous avons conçu et prototypé divers
services pour collecter, agréger et partager efficace-
ment les données de maintenance tout en préservant
la confidentialité des données sensibles.
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der the knowledge graphs as an enabler to share the
maintenance knowledge among the different industry
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gregate and share the maintenance knowledge while
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