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Abstract

The Solar Wind (SW) is a turbulent plasma emitted by the Sun that is in constant interac-
tion with our planet's magnetic �eld. It stands as a colossal natural laboratory that boasts
extremely rich physics, most of it still remaining to be fully understood. The sole study of
the turbulent phenomena at work at the multiple scales of the SW represents a full-�edged
challenge, and a great opportunity to hone our understanding of plasma turbulence in general.
Numerous satellite missions were sent throughout the years to make in situ measurements
directly within the SW or its incursions in Earth's magnetosphere, and a vast array of theoret-
ical and computational methods was developed to allow for the analysis of the resulting data.
Speci�cally, the questions surrounding turbulence energy dissipation in the SW constitute a
key �eld of study that is still today an open area of investigation.

In this thesis, we present a step by step approach of the study of SW turbulence, from the
early theoretical work that makes the foundations of future applied studies to their application
to Direct Numerical Simulation (DNS) data, and the �nal analysis of in situ satellite data.
The theoretical work, which is focused on the mathematical derivation of so-called exact laws
pertaining to Hall Magnetohydrodynamics (MHD) plasma models, yields new, improved tools
for estimating the turbulence cascade rate at MHD and sub-ion scales and investigating both
incompressible and compressible plasma turbulence. The applied calculations are made with
a parallelized Python code adaptable to the computation of a wide range of exact law models
in 3D periodic datasets.

The theoretical and numerical methods developed as the �rst part of this thesis are then
used to compute the energy cascade rates for a large array of DNSs of di�erent �uid models
and presenting varied physics. For part of these DNSs, the study of the cascade rates provides
us with a detailed understanding of how our theoretical models intrinsically work, in order
to contextualize the results obtained in subsequent investigations of DNS or satellite data. It
notably shows that the di�erent exact laws for a given plasma model provide matching values
of the cascade rate, even if the turbulence is not perfectly stationary.

The other part of these DNSs aims at shedding light on some physical e�ects governing
speci�c turbulent media, such as the SW. Through these, it is shown that the energy cascade
rate, albeit being derived from a �uid plasma description, is able to quantitatively represent
the heating due to kinetic Landau damping. This conclusion would now have to be extended
to a wider array of kinetic dissipative processes in the quest of truly legitimating the study
of SW energy dissipation through the �uid energy cascade rate. On another note we also
present, through the analysis of massive compressible hydrodynamic supersonic DNSs of the
Interstellar Medium (ISM), new evidences of the existence of two turbulent regimes in super-
sonic media, whose interplay may have an important role in the stabilization of star-forming
interstellar �laments in dense regions of the ISM.

The insights brought by the study of these turbulent DNS datasets is �nally put to contri-
bution in the analysis of real data measured by the Magnetospheric Multiscale mission (MMS)
in the magnetosheath. Using exact laws for compressible Hall MHD turbulence, we study the
behavior of the turbulence energy cascade at large and small scales, and investigate the com-
putational methods usually used for calculating 3D vector �elds derivatives on a tetrahedral
satellite formation, generalized from the curlometer technique. Through these studies we �nd
that the approximate calculations made with the curlometer lead to potentially important
errors, a conclusion that is further evidenced by the use of a virtual spacecraft in DNS data
that allows us to test this method in a controlled environment. These limitations call for the
development of new data treatment methods or better ways to compute 3D derivatives on
spacecraft data, which may help designing future multi-spacecraft missions.
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Résumé

Le vent solaire est un plasma turbulent émis par le Soleil et en interaction constante avec le
champ magnétique de notre planète. Il s'apparente à un colossal laboratoire naturel, pourvu
d'une incroyable richesse physique, et dont toutes les subtilités ne sont pas encore comprises.
La seule étude des phénomènes turbulents à l'÷uvre à toutes les échelles du vent solaire
représente un dé� à part entière, ainsi qu'une belle occasion d'a�ner notre compréhension
générale des plasmas turbulents. Au �l des années, quantité de satellites furent envoyés
prendre des mesures directement dans le vent solaire ou la magnétosphère terrestre, et une
large gamme de méthodes théoriques et numériques fut mise en place pour permettre l'analyse
des données ainsi obtenues. Plus spéci�quement, les questions qui entourent la dissipation
d'énergie turbulente dans le vent solaire forment une problématique importante qui est encore,
de nos jours, un domaine d'étude ouvert.

Dans cette thèse, nous présentons une approche complète de l'étude de la turbulence
dans le vent solaire, allant des travaux théoriques initiaux visant à poser les fondations de
futures études à l'application de ces outils à des données de simulation numériques directes
et des données satellites. L'étude théorique, qui se concentre sur le calcul de lois exactes
en magnétohydrodynamique (MHD) Hall, aboutit à l'obtention de nouveaux outils perfor-
mants permettant d'estimer le taux de cascade d'énergie aux échelles MHD et sub-ioniques et
d'étudier la turbulence dans des plasmas incompressibles comme compressibles. En pratique,
le calcul des lois est e�ectué sur des cubes de données 3D périodiques au moyen d'un code
Python parallélisé, adaptable à des lois obtenues pour une grande variété de modèles.

Les outils théoriques et numériques ainsi développés sont ensuite utilisés pour calculer les
taux de cascade d'énergie dans d'une vaste gamme de simulations numériques directes, e�ec-
tuées pour di�érents modèles �uides et incluant des e�ets physiques variés. Une partie de ces
simulations permet d'éto�er notre compréhension du fonctionnement intrinsèque des modèles
théoriques obtenus plus tôt, et ainsi de mieux comprendre leurs résultats lorsque appliqués à
l'étude d'autres ensembles de données. Nous montrons notamment que les di�érentes lois ex-
actes, pour un modèle donné, donnent des résultats équivalents même si la turbulence étudiée
n'est pas parfaitement stationnaire.

Les autres simulations visent à identi�er certains comportements et phénomènes physiques
à l'÷uvre dans des milieux turbulents spéci�ques, tels que le vent solaire. Leur étude montre
que le taux de cascade d'énergie, bien qu'il soit obtenu dans le cadre d'un modèle �uide,
parvient à rendre compte quantitativement du chau�age dû à l'amortissement Landau. Cette
conclusion, qui devra par la suite être étendue à di�érents processus de dissipation cinétiques,
est un premier pas vers la légitimation de l'emploi du taux de cascade dans l'étude de la dis-
sipation d'énergie dans le vent solaire. Dans un autre contexte, nous étudions également des
données issues d'une gigantesque simulation hydrodynamique supersonique du milieu inter-
stellaire (MIS). Cette étude révèle de nouvelles preuves de l'existence d'une turbulence à deux
régimes dans les milieux fortement supersoniques, et qui pourrait contribuer à la formation
de �laments interstellaires, structures denses du MIS dans lesquelles se forment des étoiles.

Les connaissances acquises dans l'analyse de ces données de simulation sont �nalement
mises à contribution pour étudier des données satellites mesurées dans la magnétogaine par
la mission Magnetospheric MultiScale (MMS). Grâce aux lois exactes pour la MHD Hall
compressible, nous étudions le comportement du taux de cascade d'énergie à grande et petite
échelle, et initions une étude poussée du fonctionnement du � curlometer �, une méthode
numérique permettant de calculer des dérivées 3D de champs de vecteurs sur la base d'une
formation de satellites tétraédrique. Ces études montrent que les calculs approchés e�ectués
avec des méthodes dérivées du curlometer présentent des erreurs parfois importantes, une
conclusion appuyée par des tests additionnels e�ectués sur des données de simulations via
l'emploi de satellites virtuels. Les problèmes ainsi mis à jour soulignent le besoin de concevoir
de nouvelles méthodes de calcul des dérivées 3D sur de telles données. Ces considérations
pourraient aider à concevoir et préparer de futures missions multi-satellites.
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Chapter 1

Introduction

1.1 Theory of collisionless plasmas

1.1.1 What is a plasma ?

For most people, the matter that forms our universe is categorized in three classical states:
solids, liquids and gas. Yet, these states of matter that are the stage of our whole lives, the
ground we walk on and the air we breathe, only represent a tiny 0.01% of the entire visible
universe. The remaining 99.9%, from lightning strikes to the most distant stars and nebulae,
exist in a fourth state of matter: they are plasmas.

Figure 1.1: Classi�cation of natural and laboratory plasmas in a logarithmic diagram charges den-
sity/temperature (credits: Laboratoire de Physique des Plasmas).

A plasma is a form of partially ionized gas that is usually obtained by either heating a
neutral gas or putting it in a strong electromagnetic �eld, so that ions and electrons can
detach from neutral particles and roam in the gas. This allows the medium to become an
electric conductor, whereas a neutral gas would have remained an insulator. Macroscopically,
a plasma does not di�er much from a neutral gas as it tends to retain a global neutrality of
charges: it usually contains as many positive charges as negative ones. However, microscopic
portions of the plasma can show large di�erences in charges densities, leading to a variety
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of e�ects that make plasmas behave very di�erently from neutral gas. This particularity is
referred to as quasi-neutrality.

Plasmas can be classi�ed under di�erent archetypes depending on their degree of ionization
and the interactions between the particles they are made of. One can distinguish, among
other types, collisional plasmas from non-collisional ones. For the �rst category the motion
of charged particles is dictated by the macroscopic electromagnetic �eld, but also by its
interaction with neighboring particles through the Coulomb forces. In this situation their
movements will be correlated to some extent and representative of the global behavior of the
plasma. Non-collisional plasmas, on the other hand, are diluted plasmas in which charged
particles have little to no interaction between each-others. Due to this, each particle will have
its own behavior, that can be totally di�erent from the global movement of the plasma. It is
this category of plasmas that we will be studying in the entirety of this work.

As the behavior of a non-collisional plasma changes depending on whether we look at
the whole medium or at individual particles, several models exist to describe and study such
a plasma. Of course following the individual movement of each of the numerous charged
particles is out of the question, so we usually take a semi-global or a global approach. The
kinetic approach consists in looking at an ensemble of particles, whose velocities are distributed
according to their distribution function f , and studying the evolution of this distribution
function over time. The �uid approach discards the individuality of particles to study the
macroscopic behavior of the plasma by considering the di�erent moments of the distribution
function f . The lowest order (simplest) of such �uid description is called MHD. It provides
less information a priori than the kinetic approach on the inner behavior of the plasma,
such as energy whereabouts of charged particles, but is usually easier to manipulate. In
particular, the �uid description provides relatively simple means to handle other complex
physical phenomena such as plasma turbulence, of which we will speak in more details in the
last section of this chapter.

1.1.2 Kinetic and �uid description of a plasma

In the kinetic description of a plasma we study the time evolution of the distribution functions
fs(r,v, t), which represents the amount of particles of species "s" (electrons or any kind of
ions) contained within an in�nitesimal six-dimensional volume drdv in phase space at position
(r,v). The time evolution of this distribution function is given in the collisionless limit by the
Vlasov equation:

∂

∂t
fs + v ·∇fs +

qs
ms

(E+ v×B) · ∂
∂v
fs = 0, (1.1)

where qs and ms are the particles' charge and mass, E and B are the electric and magnetic
�elds, and ∇ denotes the 3D vectorial derivative operator (∂x,∂y,∂z). Note that considering
particle collisions would lead to add a non-zero collisions term (∂tf)coll to the right-hand side
of (1.1): the resulting equation is known as the Boltzmann equation. To solve this equation
one needs to get the expressions of E and B, which is made possible thanks to Maxwell
equations:

Maxwell-Gauss: ∇ ·E =
ρe
ε0
, (1.2)

Maxwell-Gauss for B: ∇ ·B = 0, (1.3)

Maxwell-Faraday: ∇×E = −∂B
∂t
, (1.4)

Maxwell-Ampère: ∇×B = µ0J+ µ0ε0
∂E

∂t
, (1.5)

where ρe is the charge density, J the current density, ε0 the vacuum dielectric permittivity
and µ0 the vacuum magnetic permeability. In practice the second term of the right-hand
side of Ampère equation is often neglected in the non-relativistic and quasi-neutrality limits
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(Sahraoui et al., 2003), so only equations (1.3) to (1.5) are necessary to close the system with
Vlasov equation, provided one has an expression for the current J. It can be obtained by
averaging the in�nitesimal current given by the distribution function over particle velocities:

J =
∑

s

˚
qsfsvdv. (1.6)

This kind of relation is akin to what are called moments equations.
Aside from the kinetic representation detailed above, plasmas can also be described

through a global, �uid representation. This description is in fact obtained by an integra-
tion of the kinetic model using what we call the moments of Vlasov equation. From the
distribution function f one can obtain various physical quantities, the so-called moments, by
an integration over particles velocities, just as we did to derive the current density in the
kinetic model (1.6). The zeroth and �rst order moments give the particle density ns and the
mean velocity us:

ns =

˚
fsdv, (1.7)

us =
1

ns

˚
fsvdv. (1.8)

The mean velocity allows for the calculation of further moments, typically the pressure tensor
Ps and the heat �uxes tensor Qs, which are respectively the second and third order moments:

Ps =ms

˚
(v− us)2fsmsdv, (1.9)

Qs =
1

2
ms

˚
(v− us)3fsvdv. (1.10)

To obtain the equations describing the evolution of these moments, and that form the MHD
model (as well as any other, more complete �uid representation of plasmas) we multiply Vlasov
equation (1.1) by the corresponding order of particle velocity and proceed to the integration.
At order zero (i.e. we only integrate on speed) we have, recalling that in phase space r and v
are independent:

∂

∂t

˚
fsdv+ ∇ ·

˚
vfsdv+

qs
ms

˚
(E+ v×B) · ∂

∂v
fsdv = 0

⇔ ∂

∂t
(msns) + ∇ · (msnsus)

+ qs

˚
∂

∂v
(Efs)dv+

˚
∂

∂v
· (fsv×B)dv−

˚
fs

∂

∂v
· (v×B)dv = 0. (1.11)

One can then show that all three terms of the bottom line are equal to zero. Indeed, using
Ostrogradski theorem we have:

˚
∂

∂v
(Efs)dv = lim

R→∞

‹
SR
fsE · dS, (1.12)

where SR denotes a sphere of radius R. As the surface element dS scales as R2 and fs as
something that tends to zero "quicker" than R2 tends to in�nity (typically, a Maxwellian that
behaves like e−R

2
), then the limit will tend to zero, which means that the 3D integral is equal

to zero. A similar reasoning shows that the second term is also equal to zero. Finally, for the
third one, a simple cartesian decomposition of ∂

∂v · (v ×B) is enough to see right away that
the term is null. Consequently, we are left with the equation:

∂

∂t
(msns) + ∇ · (msnsus) = 0, (1.13)
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which is akin to the well known continuity equation of hydrodynamics, albeit for a single
species s.

Similarly, an equation for the �rst order moment can be obtained by multiplying (1.1) by
v and taking the 3D integral. In this case, the calculation leads to the following equation:

nsms

(
∂

∂t
us + us ·∇us

)
= −∇ ·Ps + nsqs(E+ us ×B), (1.14)

which corresponds to Navier-Stokes equation for a single species in presence of electromag-
netic forces. Note that the right-hand-side of this equation will change to re�ect the forces
truly acting on the plasma: if one were to take collisions into account, and thus use the Boltz-
mann equation instead of Vlasov equation, an additional term would be added to re�ect the
contribution of viscous forces. This is what will be done below to derive the MHD equations.

Other equations can also be derived for higher order moments and, just as we can already
observe for the two equations derived above, they depend on moments of inferior and imme-
diately superior orders too. Consequently, the resulting system of equation, no matter the
maximum order we choose to calculate the moments at, cannot be solved as each equation
added to the system introduces a new variable. Closing the system thus requires �xing a
desired order, and using a closure equation to connect the maximum order variable to the
lower order ones. For example the MHD equations that we derive below, and that consists of
only the zeroth and �rst order moments equations, need to be closed with an equation on the
pressure tensor P. The most classical closures for this model are the isothermal one P = c2

sρ
(with c2

s the speed of sound), which is the closure we will consider in all the theoretical calcu-
lations led in this thesis, and the polytropic one P = Kργ for a constant K and a polytropic
index γ. Both assume a scalar pressure. Other closures exist such as the Chew, Goldenberg,
Low (CGL) closure, that considers an axi-symmetric pressure tensor (Chew et al., 1956), or
closures making use of heat �uxes or higher order moments such as the normal closure (see
for instance the review in Hunana et al. (2019)).

Note that, although the �uid plasma description is unable to describe kinetic e�ects, it is
still possible to emulate some of them through the choice of a speci�c closure. This is notably
the case of the Landau �uid (LF) closures, closed either at third or fourth order moments
(Hammett and Perkins, 1990; Snyder et al., 1997; Passot and Sulem, 2007), that lead to �uid
models able to transcribe the e�ects of kinetic Landau damping. The nature of this closure,
along with the CGL one, will be explained in more details in chapter 4.

1.1.3 The equations of MHD

The equations of MHD, that describe the movement of a conductive �uid in an electromagnetic
�eld, can be obtained by the combination of equations (1.13), (1.14) and Maxwell equations.
These �rst two equations only stand for an individual species of electrons or ions, but one
can obtain a more general version by considering a mono-�uid model (i.e. all species behave
as a single �uid). We consider the most simplistic model of a �uid formed of only H+ ions
and electrons, labeled as species "i" and "e" respectively, which will be the type of plasma
considered in most of this work. De�ning the mass density ρ = mini + mene, the charge
density ρc = qini + qene and the �uid velocity u = (miniui + meneue)/ρ, and summing
equations (1.13) for both species, we get:

∂

∂t
ρ+ ∇ · (ρu) = 0. (1.15)

Similarly, summing equations (1.14) for both species yields:

ρ

(
∂

∂t
u+ u ·∇u

)
= −∇ ·P+ ρc(E+ u×B). (1.16)
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The property of quasi neutrality mentioned earlier can be put into equations in the following
way: the charges are distributed so that ρc ∼ 0, while still allowing for a current to exist as
ρcu ∼ J = en(ui − ue). If we introduce viscosity forces with a viscosity coe�cient ν in the
system and consider a simple scalar pressure, (1.16) becomes:

ρ

(
∂

∂t
u+ u ·∇u

)
= −∇P + J×B+ ν(∆u+

1

3
∇(∇ · u)). (1.17)

Now we need to add to this system an equation describing the time evolution of the
magnetic �eld. Maxwell-Faraday equation (1.4) already proposes a dynamical equation for B
as a function of E. One can get rid of the electric �eld by using Ohm's law. In its simplest form,
inside a solid conductor, this law connects the current density to the electric �eld through the
conductivity σ as:

J = σE. (1.18)

Here we are in presence of a conductive �uid whose movement in the global magnetic �eld
will contribute to current density through induction. This contribution will be re�ected in
Ohm's law by the addition of a term u×B, which leads to models of resistive MHD. Various
more speci�c e�ects can be taken into account to further re�ne this law. In this work we
will essentially make use of the Hall e�ect : in presence of a magnetic �eld perpendicular to
the current density, Lorentz forces create a local asymmetry of charge distribution, creating
a feedback loop that in�uences the current density. This e�ect is especially important as it
allows the �nal model to describe (at least partially) the small scales of the plasma, typically
around and below the ion characteristic scale. Other e�ects such as electron pressure and
electron inertia can be considered. The generalized Ohm's law can thus be written as:

J = σ

(
E+ u×B− 1

nqe
J×B+

1

nqe
∇Pe +

me

nq2
e

∂J

∂t

)
, (1.19)

where terms appearing in the right-hand-side respectively represent the aforementioned e�ects.
In this section, and the vast majority of our studies, we will stop at the Hall e�ect which is
enough to describe the �rst order (ion) small scale behavior of the plasma. This leads to the
following expression for the electric �eld:

E =
1

σ
J− u×B+

1

nqe
J×B. (1.20)

The limit σ →∞ (i.e. 1/σ ' 0) if often considered for the generalized Ohm's law, which leads
to non-resistive models called Ideal MHD and Hall MHD (depending on whether we keep the
Hall term or not). Note that, in section 4.4, the LF model also takes into account electron
pressure. Other more speci�c models exist, such as the Electron Magnetohydrodynamics
(EMHD) model in which electrons are assumed to move in almost immobile ions and that is
suitable to describe high frequency �uctuations, and that will be studied in chapter 4.

Now that we have an equation linking E to the other variables of the system, we can make
use of Ampère and Faraday equations to derive the induction equation and get rid of the
electric �eld E:

∂B

∂t
=−∇×E = − 1

σµ0
∇× (∇×B) + ∇× (u×B)−∇× (

J

nqe
×B)

=∇× (u×B)−∇× (
J

nqe
×B) + η∆B, (1.21)

where η = 1/(σµ0) is the coe�cient of electric resistivity. Putting all equations together, we
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�nally obtain the equations of Hall MHD for a compressible plasma:

∂

∂t
ρ+ ∇ · (ρu) = 0, (1.22)

ρ

(
∂

∂t
u+ u ·∇u

)
= −∇P + J×B+ ν(∆u+

1

3
∇(∇ · u)), (1.23)

∂B

∂t
= ∇× (u×B)−∇× (

J

nqe
×B) + η∆B, (1.24)

∇ ·B = 0. (1.25)

Another version of this set of equations can be obtained for an incompressible plasma by
considering the limit of a constant density ρ = ρ0, usually taken equal to unity for the
sake of simplicity. The corresponding equations can be found in chapter 2, where both the
compressible and incompressible models will be used extensively to derive equations pertaining
to turbulent movements of the plasma.

1.2 From space to astrophysical plasmas

1.2.1 The Solar Wind: a turbulence laboratory

As we mentioned in the previous section, plasmas are omnipresent in the universe, appearing
under a variety of conditions, with each their own properties and speci�c behavior. Here we
will focus on two astrophysical media that will be studied in more details in the subsequent
chapters: the SW and the ISM.

Figure 1.2: Artist representation of the interaction between the SW and Earth's magnetic �eld.
Speci�c regions of the Sun-Earth couple are labeled, and MMS and Parker Solar Probe (PSP) are
sketched in their respective target regions. Credits: ESA

The SW is a �ow of charged particles, mainly constituted of electrons, protons (H+

ions) and α particles (4He2+ ions), which is identi�ed as a non-collisional plasma. Two
categories of SW are usually identi�ed: the slow SW, produced by magnetic loops around
the Sun's equator and crossing the solar system at average speeds of ∼ 300km/s, and the
fast SW, which mostly originates from open �eld lines around magnetic poles of the sun and
is usually accelerated towards ∼ 700km/s (Rouillard et al., 2009; Pinto, R. F. et al., 2016).
More occasional events such as coronal mass ejections, blobs of matter ejected during solar
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�ares following the break of large magnetic loops on the surface of the solar corona, are also
part of the Sun-Earth ecosystem. This plasma boasts incredibly rich physics and has the
major advantage of being very close to our planet (at least on an astronomical scale). It is
thus accessible to in-situ measurements, and has been the target of several satellite missions
aiming at gathering data directly from inside the SW and neighboring regions such as the
Earth's magnetosphere. Missions targeting speci�cally the sun and the SW date back to
the old Pioneer missions in the 1960s, followed in the 1970s by National Aeronautics and
Space Administration (NASA)'s Helios and Voyager missions, then in the 1990s by the joint
NASA/European Space Agency (ESA) Ulysses and NASA's Wind and Advanced Composition
Explorer (ACE). These have been complemented in the 21st century by missions like Solar
Terrestrial Relations Observatory (STEREO) or the more recent NASA's PSP mission and
ESA's Solar Orbiter.

Due to the intricate interactions between the SW and Earth's magnetic �eld the zone
of contact between these two media, known as the magnetosheath, has also been the target
of several speci�caly designed missions aiming at investigating the interaction between the
SW and the magnetosphere along with fundamental processes such as magnetic reconnection,
particle acceleration and turbulence. Magnetosheath turbulence is thus often studied jointly
to the SW, as these missions bring valuable data through instruments optimized for near-
Earth regions. Magnetospheric research includes missions such as the joint mission Cluster
II or NASA's MMS that have the particularity of being constituted of four satellites �ying
in a tetrahedral formation, which is a valuable asset for studying the physics governing the
magnetosheath and the SW as it allows for a local 3D mapping of the structures and spatial
gradients. This notably allows for the calculation of 3D spatial derivatives on the data,
for instance to estimate the electric current through the curl of B using a method called
curlometer technique (Dunlop et al., 1988, 2002). This method, along with associated ones
allowing for the calculation of spatial gradients or divergences, will be investigated in chapter
5.

Beyond the scienti�c curiosity for the massive near-Earth laboratory that is the SW, more
grounded reasons have also motivated the study of this neighboring plasma along the past
decades. Indeed, the speed and energy of the particles that form the SW, especially the ones
emitted during powerful solar events (such as some coronal mass ejections, as we mentioned
earlier) can pose a threat to the multiple satellites that orbit our planet or to astronauts sent
on space vessels. The Earth itself is mostly protected by its magnetic �eld which acts as a
shield against the charged particles of the SW yet, in rare cases, exceptional solar events can
damage even ground installations. The Carrington solar �are of 1859 for instance, which was
the most powerful geomagnetic storm ever registered, provoked massive damages in the tele-
graph systems, even throwing sparks from pylons and shocking some operators, and formed
bright northern auroras at latitudes as low as Cuba. Should an event of this magnitude
happen again today, it could cause extended blackouts and damage satellites and electrical
systems all around the world. Considering these potential threats, understanding the physics
governing solar activity and cycles, the SW, and its interactions with Earth's magnetic �eld
may help predicting dangerous solar events and protecting sensitive equipments. These con-
siderations are encompassed in a �eld of study called Space Weather, whose importance has
grown signi�cantly with our extended modern usage of satellites and communications.

Through the years, the numerous missions sent gathering data in the SW raised lots of
questions. An historical problem that stemmed from such observations involves the way the
SW cools down as it travels through the solar system. Adiabatic cooling models for the SW
predicted the temperature to decrease as a power law with the radial distance to the Sun,
with a scaling neighboring -4/3. However, anomalies were found in the temperature pro�le
(Marsch et al., 1982; Gazis et al., 1994) until, in 1995, Richardson et al. (1995) showed that the
temperature pro�le of the SW as registered by Voyager 2 could not match an adiabatic cooling
at all (see �gure 1.3). Various explanations were proposed to understand this anomalous

7



cooling, mainly revolving around heating processes inside the SW that would be able to slow
down its cooling. One major candidate is the in�uence of pickup ions Matthaeus et al. (1999);
Isenberg et al. (2003): neutral ions of the ISM that wander the heliosphere and can be ionized
through their interaction with the SW, leading to a heating of the medium. Another key
explanation lies in the turbulent nature of the SW: the dissipation of turbulent energy inside
the SW would lead to the heating of the particles (Verma et al., 1995; Matthaeus et al., 1999;
Vasquez et al., 2007; Sahraoui et al., 2009; He et al., 2015; Woodham et al., 2018) (see also
reviews from Bruno and Carbone (2013)). The heating problem has been investigated using
various approaches, notably that of exact laws that will be further developed in this thesis
(Podesta et al., 2007; Sorriso-Valvo et al., 2007; MacBride et al., 2008; Marino et al., 2008;
Carbone et al., 2009; Smith et al., 2009; Stawarz et al., 2009; Osman et al., 2011; Coburn et al.,
2015; Banerjee et al., 2016; Hadid et al., 2017) including, most recently, the ones presented
in chapter 5 of this thesis through the analysis of data gathered by MMS around the Earth's
magnetosphere.

Now, one should note that we are faced with a perplexing contradiction. Historically, SW
turbulence has been extensively studied through the use of �uid plasma models that are easier
to handle (we will describe the corresponding theory in next section, and then chapter 2). In
the meantime, we mentioned the non-collisional nature of the SW, which means that energy
dissipation can be driven only through kinetic processes. And as we explained in the previous
section, �uid models are not able to describe the kinetic mechanisms at work in the plasma,
a priori. This paradox is at the heart of one of the major studies presented in chapter 4, and
of the key results presented there in an attempt to reconcile the kinetic and �uid descriptions
of a non-collisional plasma.

Figure 1.3: As presented in Richardson et al. (1995), Log of the 50-day running average of the plasma
temperature from Voyager 2 versus radial distance. The red curve was added to provide an element
of comparison with a possible adiabatic cooling.

1.2.2 The Interstellar Medium and star-forming regions

The various media that occupy the interior of a galaxy can be roughly separated in three
categories: stars and all that is related to them (pulsars, winds, supernovae...), planets, and
everything else that is not a planet nor a star. This "everything else" is usually known as
the ISM. It is a blend of cosmic dusts and various types of gas (atomic or molecular, ionized
or neutral), with usually a ratio of around 1% dust for 99% gas. The gas share a similar
constitution with the SW, with a majority of hydrogen and helium atoms, albeit not always
in ion form. Depending on the region of space and the celestial bodies neighboring the ISM,
it can take the form of hot diluted plasmas or of colder, denser molecular clouds (Hennebelle
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and Falgarone, 2012).
The ISM plays a major role in the stellar life cycle, as the densest clouds of the ISM are

known to be the seat of star formation, such as the Orion complex or the massive Cygnus
X region (see �gure 1.4). Although the precise details of star formation are not fully under-
stood yet, the general consensus is that within dense molecular clouds form elongated, tubular
structures known as interstellar �laments that are believed to be a keystone of star formation
(Balsara et al., 2001): the accretion along �laments, and especially around �laments crossings
(Myers, 2011), would bring enough matter to pre-stellar cores to make them gravitationally
unstable and force their collapse and eventual ignition. The main reason behind the formation
and properties of these interstellar �laments is thought to be a strongly compressible turbu-
lent activity. It is still unclear to what extent the presence of a magnetic �eld in�uences the
behavior of turbulence in star-forming regions (McKee and Ostriker, 2007; Federrath, 2016),
yet Hydrodynamics (HD) turbulence is often used to try to understand the creation of �la-
ments (Mac Low and Klessen, 2004; Federrath et al., 2010), which proves to be a challenging
task due to the usually strongly supersonic nature of these regions of the ISM.

The study on ISM simulations led in chapter 4 of this thesis only considers a Compressible
Hydrodynamic (CHD) model, disregarding the in�uence of a magnetic �eld, which is not di-
rectly in line with the plasma thematic of my PhD. However, it represents a great opportunity
to apply the tools developed in this thesis to a massive supersonic 100483 dataset and see
how it can help us better understand supersonic CHD turbulence. This study allowed us to
obtain interesting results and shed more light on the relation between interstellar �laments
and supersonic turbulence.

Figure 1.4: Images of the star forming region Cygnus X located in Cygnus constellation, 1.4kpc away
from our solar system, taken by the Infrared Array Camera on board of Spitzer space telescope.
Credits: NASA/JPL-Caltech/Harvard-Smithsonia CfA.
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1.3 Theory of turbulence

1.3.1 Basics of turbulence

In previous section, we mentioned several times the turbulent nature of both the SW and the
ISM. For those who already traveled on board of a plane, the word may sound familiar. For
all the others, probably the simplest way to picture a turbulent �ow is to look at a �owing
river: as long as the path of water is void of obstacles and the river bed even, the water �ows
smoothly and keeps a clear surface. But should the water travel through a section where rocks
emerge from the surface or with a shallower, uneven bed, the �ow will be disturbed past the
obstacle by the creation of small whirlpools that will eventually vanish as the water keeps
moving forward. These whirlpools are an expression of turbulence.

(a) Photo of turbulent motions in a river. (b) GHOST simulated plasma turbulence.

Figure 1.5: Examples of turbulent �ows observed in a �owing river and in a simulated plasma. Note
the di�erences on the surface of the water before and after crossing the rock lines in the photo.
The simulated picture is extracted from the compressible plasma datasets analyzed in chapter 4 and
obtained with the GHOST suite.

More generally speaking, turbulence in �uid mechanics is a non-linear phenomenon that
is characterized by the creation of vortices in �uids with a low enough viscosity. This phe-
nomenon is present in a wide variety of natural media such as water bodies, air masses or,
as we already mentioned them, astrophysical �ows and plasmas, but also in arti�cial plasmas
such as the ones generated in fusion reactors. Despite turbulent phenomena being so widely
observed, understanding the dynamics of turbulent �ows remains one of the most challenging
problems of classical physics. The main obstacle is that turbulence is a chaotic physical pro-
cess, which means that the slightest change in the initial conditions of a turbulent system is
enough to render it totally unpredictable.

Due to its chaotic nature, turbulence is often studied through statistical methods that help
regaining a certain degree of predictability. We will also consider in the entirety of this thesis
that all studied turbulent �ows obey two important assumptions : statistical homogeneity, i.e.
invariance of the statistics of the turbulent �ow through a translation in space, and statistical
stationarity, i.e. invariance of the statistics of the turbulent �ow through a translation in time.
The �rst hypothesis is generally assumed to be veri�ed in astrophysical plasmas (due to their
large size we usually never reach the "edge" of the plasma), as long as we do not cross speci�c
localized structures such as shocks and discontinuities. The second one is usually guaranteed
by a balance between the energy injected and dissipated for a fully developed turbulence,
which puts the system in a stationary state. Instead of considering and studying a physical
variable X, we will usually work with its ensemble average 〈X〉 instead. The ensemble average
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is a tool originating from statistical physics that represents the average of the variable over
a large number of realizations. However, under the aforementioned hypothesis of statistical
homogeneity the ensemble average can be identi�ed to a classical space average based on the
ergodic theorem. This identi�cation will be made in all the studies presented here.

1.3.2 The zeroth law of turbulence

We mentioned earlier that turbulence forms in �uids of low viscosity. It is thus interesting to
de�ne the quantity known as the Reynolds number : it is a dimensionless quantity inversely
proportional to the viscosity and that quanti�es the turbulent nature of the system. It is
de�ned as:

Re =
UL

ν
, (1.26)

where U and L are respectively the characteristic velocity and scale of the turbulent system.
A �ow with a low Reynolds number (and thus a high viscosity or a small L) will behave as
what is called a laminar �ow, with sheets of water �owing parallel to one another, whereas
a �ow with a high Reynolds number (and consequently a low viscosity or a large L, more
pertinent in an astrophysical context) will behave as a turbulent �ow and lead to the creation
of vortices. In the case of a plasma a similar quantity, the magnetic Reynolds number, can
be de�ned for magnetic di�usivity:

Rm =
UL

η
. (1.27)

These considerations on viscosity and Reynolds number lead us to mention one of the
most important properties of a turbulent medium. In the simplest case of a freely decaying
incompressible HD turbulence, it can be shown that the energy evolves as:

∂ 〈E〉
∂t

=
1

2

∂
〈
u2
〉

∂t
= ν 〈u ·∆u〉 = −ν

〈
(∇× u)2

〉
. (1.28)

A derivation of this relation is shown in chapter 2 for the Incompressible Hall Magnetohydro-
dynamic (IHMHD) model, and leads to the similar equation (2.20). The natural consequence
of equation (1.28) is that in the limit of an in�nite Reynolds number, so when viscosity tends
to zero, the energy dissipation rate is expected to tend to zero as well. And yet, it does
not: when the viscosity goes to zero, the mean dissipation rate reaches a constant value ε,
independent of the viscosity:

lim
ν→0

∂ 〈E〉
∂t

= −ε < 0. (1.29)

This property is often called the zeroth law of turbulence, and is at the basis of the concept
of turbulent energy cascade. It can be observed in �gure 1.6a that shows the time evolution
of the energy dissipation rate depending on the Reynolds number: one can see that for large
values of RE , the energy dissipation rate tends to a non-zero limit.

Looking back at equation (1.28), the only possible way to have a non-zero limit for the
energy dissipation rate is that the square vorticity (∇× u)2 increases towards in�nity at the
same speed as ν tends to zero. Physically speaking, this means that smaller and smaller
vortices are created in the turbulent medium as the viscosity decreases. Thus in practice,
for a very high Reynolds number, the energy contained in vortices of a given scale will be
transfered to vortices of smaller scale, without loss due to the absence of viscous e�ects on
any large enough vortex, and the process will repeat until the resulting vortices are small
enough for viscous dissipation to �nally kick in. This process of turbulent energy cascading
towards small scales is known as an inertial cascade, and the scales that bear the cascade are
called the inertial range. The turbulent energy cascades from a scale to another at a rate
ε that is usually called the energy cascade rate, and that remains constant throughout the
entire inertial range. A depiction of this phenomenon is shown in �gure 1.6b.
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(a) Time evolution of ε for di�erent Reynolds numbers (b) Representation of the inertial range

Figure 1.6: Illustration of the zeroth law of turbulence and of the concept of turbulent cascade. Note
that simulations whose results are shown in the left panel are in free decay, hence the behavior of ε: it
rises to a maximum corresponding to a fully developed turbulence, then decay as the energy is slowly
dissipated.

The energy cascade rate ε can be estimated through equations involving the structure
functions of physical variables and that are known as exact laws. It was Kolmogorov (1941)
who paved the way with his 4/5th exact law for incompressible HD:

− 4

5
ε` =

〈
[u(r+ `)− u(r)]3

〉
(1.30)

Subsequently, di�erent exact laws have been derived through the years for a variety of �uid
models such as CHD (Galtier and Banerjee, 2011; Banerjee and Galtier, 2014), (in)compressible
MHD (Politano and Pouquet, 1998; Banerjee and Galtier, 2013; Andrés and Sahraoui, 2017)
and �nally (in)compressible Hall MHD (Galtier, 2008; Banerjee and Galtier, 2017; Hellinger
et al., 2018; Andrés et al., 2018), for which we derived the evolution equations at the begin-
ning of this chapter. These laws are computed by averaging over the entire studied domain
; similar versions holding for just a local averaging in spacetime were also obtained thanks
to the theory of distributions (Duchon and Robert, 2000; Eyink, 2002), but these laws are
outside of the scope of this thesis. A vast majority of the work presented in this thesis consists
in calculating and applying exact laws to a variety of �uid and plasma simulations in order
to unravel fundamental properties of turbulence.

1.3.3 Spectral approach of turbulence

Thus far, we primarily gave an introduction to turbulence in real space. However, turbulence
is also often studied in Fourier space through the analysis of kinetic and magnetic energy
spectra. Thus, we de�ne in Fourier space the spectral energy density as:

E(k) =
1

2

〈
|û(k)|2

〉
, (1.31)

where û is the Fourier transform of the velocity �eld u and k is the wave vector correspond-
ing to the spatial scale `. This quantity represents the amount of energy contained in an
in�nitesimal volume dk at position k in Fourier space. A similar quantity can be de�ned for
the magnetic �eld:

Em(k) =
1

2

〈
|B̂(k)|2

〉
. (1.32)
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In practice, the energy density is usually integrated, assuming isotropy, for a constant value
of ||k|| = k (note that we use spherical coordinates here):

E(k) =

¨
1

2
|û(k)|2dS =

ˆ 2π

φ=0

ˆ π

θ=0

1

2
|û(k)|2k2sin(θ)dθdφ = 2πk2|û(k)|2, (1.33)

where k = 2π/`. E(k) now represents the amount of energy contained in the spectral band
[k, k + dk] and is the energy spectrum that is usually studied in turbulence.

Figure 1.7: Compensated energy spectra from a 2D DNS of EMHD turbulence, as presented in
Biskamp et al. (1996): (a) k5/3Ek for de = 0.3; (b) k7/3Ek for de = 0.01, where de is the electron
inertial length.

One of the main reasons energy spectra are widely used in turbulence is that they tend
to be easier to compute than exact laws while following precise behaviors in presence of
turbulent motions. This is easily seen when considering Kolmogorov's law (1.30) with a
simple dimensional analysis: indeed the law states that, in presence of a constant energy
cascade rate ε (i.e. in the inertial range), u3 ∝ `. In Fourier space this becomes u3 ∝ k−1 and
so:

E(k) ∝ u2

k
∝ k−5/3. (1.34)

A kinetic energy spectrum scaling as k−5/3 is probably the most widely used marker of a
Kolmogorov turbulent cascade. Note that this spectrum only stands for simple MHD: turbu-
lence driven by Hall MHD will have, at small (sub-ion) scales, a theoretical scaling of k−7/3.
Figures 1.7 and 1.8 summarize these turbulent scalings over a broad range of frequencies in
DNS and real in situ data respectively. Note that time scales and frequencies are usually used
for spacecraft data analysis instead of spatial scales and wave numbers. More explanations
about this are given in the dedicated chapter 5.

In this thesis, we will rarely make use of energy spectra and will instead mainly work in
real space. However, we will make use of spectra on two occasions. In chapter 4, energy
spectra will be used to identify deviations from Kolmogorov turbulence in supersonic CHD
simulations and characterize speci�c turbulent regimes. In chapter 5, energy spectra will be
used as a key marker of the presence of a turbulent cascade to select which MMS burstmode
events to study.
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Figure 1.8: As presented in Sahraoui et al. (2009): parallel (black) and perpendicular (red) magnetic
spectra of Cluster's FGM data (f < 33 Hz) and STAFF-SC data (respectively, light line; green online
and dark line; blue online); 1:5 < f < 225 Hz). The STAFF-SC noise level as measured in the
laboratory and in-�ight are plotted as dashed and dotted lines, respectively. The straight black lines
are power law �ts to the spectra.

1.4 Overview of the thesis

This thesis aims at studying in details plasma turbulence through the use of exact laws derived
for both the incompressible and compressible Hall MHD models. To this end, I provide a
detailed derivation of the two corresponding exact laws in chapter 2, along with a discussion
of the relation of these new exact laws to already existing ones. In order to apply these exact
laws to DNS data, I conceived the general structure of a numerical code whose details and
are explained in chapter 3. In this chapter I discuss the strengths, limitations and constraints
of the code and provide a mathematical overview of the models used. Chapter 4 is then
dedicated to all the studies led on the various simulated datasets at our disposal, and include:

� An EMHD study aiming at understanding the way IHMHD exact laws relate to each
other, and gain a better understanding on how they react to the presence of a background
magnetic �eld.

� A Compressible Hall Magnetohydrodynamic (CHMHD) study focused on the detailed
analysis to the compressible exact law derived in chapter 2, and that provides more
information on the behavior of its scale-dependent components and on the validity of
the hypotheses leading to its derivation.

� A CHMHD, LF focused study in which we tackle the fundamental problem of bridging
together the �uid and kinetic plasma descriptions, and show that predictions on the
kinetic mechanisms at work in the plasma can be retrieved through the analysis of the
�uid energy cascade.

� A CHD study led on a massive 100483 supersonic simulation that provides important
insights into a two-regime turbulence at work in the ISM, with possible ties to the
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existence of interstellar �laments.

Finally, I propose in chapter 5 a last study that makes use of the same exact laws applied,
this time, to in situ data gathered by MMS in the Earth's magnetosphere. Thanks to the
tetrahedral formation of the four satellites, one can compute all the �elds divergences required
for the calculation of the compressible law by making use of gradients estimation techniques.
In the meantime, I investigate the performances and limitations of this method thanks to
arti�cial multi-spacecraft �y-by performed in our simulation data, commonly referred to as
virtual spacecraft data.
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Chapter 2

Exact laws in Hall MHD turbulence

2.1 Introduction

As stated in the previous chapter, exact laws are a statistical tool used to evaluate the turbu-
lent energy cascading within the inertial range as a function of second or third-order structure
functions of the turbulent �uctuations. The true strength of these laws, and the reason for
their "exact" appellation is that no mathematical approximations such as asymptotic devel-
opments are required to obtain them. They only require a few classical assumptions on the
nature of the system to be derived, typically statistical homogeneity, time stationarity and a
high Reynolds number, and oftentimes assumptions pertaining to the spatial symmetries of
the system such as isotropy or axi-symmetry (usually around the direction of the background
magnetic �eld, if any).

The complexity of exact laws and the variables they depend on vary with the model used to
describe the medium. The �rst one was obtained by Kolmogorov (1941) for an incompressible
HD turbulence and is usually known as the 4/5th law (see equation (1.30)). It was obtained
through tensorial calculation thanks to previous results from von Kármán and Howarth (1938)
who obtained a dynamical equation for second-order correlation tensors, however this is not a
widely represented method in recent derivations and is not the one used here. Instead we will
use a direct calculation similar to the one �rst proposed by Yaglom (1949) and later re�ned
by Antonia et al. (1997) that led, for the same model, to the slightly di�erent 4/3rd law. This
method aims at deriving the dynamic equation of a well-chosen correlator for the energy of
the system which allows one, under the aforementioned assumptions, to obtain the desired
exact law. I will develop in this chapter the theoretical derivation and properties of two exact
laws, pertaining to the two models of three-dimensional, isothermal IHMHD and CHMHD.

Prior to presenting the theory of exact laws we introduce some notations and relations that
all derivations have in common. These calculations rely on the key hypothesis of statistical
homogeneity, which means that the system is supposed to be statistically invariant under a
spatial translation. As a consequence, any correlation function between two points of the
system r and r′ will only depend on the relative distance between these points. Thus, we
introduce the spatial increment ` = r′−r. To ease the calculations we de�ne for any variable,
e.g. the velocity �eld u, the notations u ≡ u(r) and u′ ≡ u(r′) (see Figure 2.1 for a visual
representation). We also use the notations δu ≡ u′ − u and δ̄u ≡ 1

2(u′ + u).
The assumption of statistical homogeneity has important consequences on the relative

derivative operator ∇`, which represents derivation along the ` variable. Let α and Y be
arbitrary scalar and vector �elds, we have the following relations:

〈∇ · (αY′)〉 =−∇` ·
〈
(αY′)

〉
, (2.1)〈∇′ · (αY′)〉 =∇` ·

〈
(αY′)

〉
, (2.2)

∇` ·
〈
(αY′)

〉
=−∇` ·

〈
(α′Y)

〉
(2.3)

where ∇ and ∇′ are respectively the derivative operators for the r and r′ variables, and 〈〉 is
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the spatial average introduced in chapter 1 for the study of turbulence. Note that ∇ and ∇′
only apply to �elds depending on r and r′ respectively, which means that

〈∇ ·Y′〉 = 0 and
〈∇′ ·Y〉 = 0. An immediate consequence of this is that ∇` · 〈(αY)〉 = −∇` ·

〈
(α′Y′)

〉
= 0.

Figure 2.1: Visual representation of the relation between position vectors r and r′, connected by the
increment `. A reminder of the main notations is also given.

2.2 Exact law in the incompressible Hall MHD model

2.2.1 Description of the model

Now that these fundamental relations have been introduced we can start working on the
derivation of the laws, starting from the simplest one, which is obtained for IHMHD. We
(re)introduce the following notations: we note u the velocity �eld, B the magnetic �eld and
J = ∇×B/µ0 the electric current; the mass density ρ0 is taken constant and equal to unity.
We use the Alfvén units for the magnetic �eld and the electric current, i.e. b = B/

√
µ0ρ0 and

j = ∇× b. In the incompressible case we get the following velocity and induction equations,

∂tu =− (u ·∇)u+ (b ·∇)b−∇P + dν + f , (2.4)

∂tb =− (u ·∇)b+ (b ·∇)u

+ di(j ·∇)b− di(b ·∇)j+ dη , (2.5)

∇ · b =0 , (2.6)

∇ · u =0 , (2.7)

where P = p + b2/2 is the total pressure and f a stationary homogeneous external force
acting only at large scales. di ≡ c/ωpi, where c is the speed of light and ωpi =

√
niq2

e/miε0
the plasma ionic pulsation, is the ion inertial length, i.e. the scale at which the Hall term
becomes e�ective in the generalized Ohm's law. The dissipation terms are

dν =ν∆u , (2.8)

dη =η∆b , (2.9)

where ν is the kinematic viscosity and η the magnetic di�usivity. Note that using the relation
〈X ·∆X〉 = −

〈
(∇×X)2

〉
, which is valid for any incompressible vector �eld X, we have:

〈u · dν〉+ 〈b · dη〉 = −ν
〈
ω2
〉
− η

〈
j2
〉
, (2.10)
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with ω = ∇ × u the vorticity, which gives the expression of the mean rate of total energy
dissipation.

2.2.2 Calculation of the dynamical equation

In order to retrieve the exact law from equations (2.4)-(2.7) we need to search for a dynamical
equation for a well-chosen structure function or correlation function. Three di�erent laws
already exist in IHMHD (Galtier, 2008; Banerjee and Galtier, 2017; Hellinger et al., 2018),
stemming from the analysis of di�erent functions, yet relying on the same underlying assump-
tions. On the one hand, the laws obtained by Galtier (2008) (hereafter G08) and Banerjee
and Galtier (2017) (hereafter BG17) are derived from the dynamical analysis of the two-points
correlator,

〈RE〉 =

〈
u · u′ + b · b′

2

〉
. (2.11)

On the other hand, the law derived by Hellinger et al. (2018), as well as the one derived here
(Ferrand et al., 2019), stem from the evolution equation of the second order structure function

〈S〉 =〈|u′ − u|2 + |b′ − b|2〉 , (2.12)

which is linked to expression (2.11) through the relation

〈S/4〉 =
〈
Etot

〉
− 〈RE〉 , (2.13)

where the total energy is de�ned as Etot = u2/2 + b2/2. Using equations (2.4)-(2.7) we can
calculate the various components of ∂t 〈S〉. Taking ∂t(u · u′) as an example we get:

∂t(u · u′) = u · [−(u′ ·∇′)u′ + (b′ ·∇′)b′ −∇′P ′] + u′ · [−(u ·∇)u+ (b ·∇)b−∇P ]

+ u′ · dν + u · d′ν + u′ · f + u · f ′
=−∇′ · [(u · u′)u′ − (u · b′)b′ + P ′u]−∇ · [(u · u′)u− (u′ · b)b+ Pu′]

+ u′ · dν + u · d′ν + u′ · f + u · f ′ . (2.14)

Similarly we obtain for all other components:

∂t(b · b′) =−∇′ · [(b · b′)u′ − (b · u′)b′ − di(b · b′)j′ + di(b · j′)b′]
−∇ · [(b′ · b)u− (b′ · u)b− di(b′ · b)j+ di(b

′ · j)b]

+ b′ · dη + b · d′η , (2.15)

∂tu
2 =−∇ · [(u · u)u] + 2u · (b ·∇)b− 2u ·∇P + 2u · dν + 2u · f , (2.16)

∂tb
2 =−∇ · [(b · b)u] + 2b · (b ·∇)u

+ di∇ · [(b · b)j]− 2dib · (b ·∇)j+ 2b · dη . (2.17)

Expressions for ∂tu′2 and ∂tb′2 are obtained by taking all variables in Eqs. (2.16)�(2.17) at
point r instead of r′, which comes down to replacing them by their primed notations. Taking
spatial averages and using relations (2.1)�(2.2) along with the incompressibility equation (2.7)
the contribution of the pressure terms cancels out:

〈u ·∇P 〉 = 〈∇ · (Pu)〉 = −
〈∇′ · (Pu)

〉
= 0 ,〈∇′ · (P ′u)

〉
= −

〈∇ · (P ′u)
〉

= 0 .

By remarking that,

〈u · (b ·∇)b〉 =− 〈b · (b ·∇)u〉 ,
〈b · (b ·∇)j〉 =− 〈j · (b ·∇)b〉 ,
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a combination of Eq. (2.14) to (2.17) leads to,

∂t 〈S〉 =2∇` ·
〈
(u · u′)δu+ (b · b′)δu− (u · b′)δb− (b · u′)δb

〉

+ 2di∇` ·
〈
−(b · b′)δj+ (b · j′)b′ − (b′ · j)b

〉

+ 2di
〈
j · (b ·∇)b+ j′ · (b′ ·∇′)b′〉

+ 4 〈u · dν〉 − 2
〈
u · d′ν

〉
− 2

〈
u′ · dν

〉
+ 4 〈b · dη〉 − 2

〈
b · d′η

〉
− 2

〈
b′ · dη

〉

+ 4〈u · f〉 − 2〈u · f ′〉 − 2〈u′ · f〉 . (2.18)

Using relations (2.16)�(2.17) one can derive the equation of energy conservation (Galtier,
2016). Indeed, using relations (2.1)�(2.3) along with vectorial relations ∇ × (X × Y) =
X(∇ ·Y)−Y(∇ ·X) + (Y ·∇)X− (X ·∇)Y and ∇ · (X×Y) = Y ·∇×X−X ·∇×Y,
we show that:

〈b · (b ·∇)j〉 = 〈b · [(j ·∇)b+ ∇× (j× b)]〉

= −1

2
∇` · 〈(b · b)j〉 −∇` · 〈(j× b)× b〉+ 〈(j× b) · j〉

= 0 (2.19)

and we then immediately have:

∂t〈Etot〉 = 〈u · dν〉+ 〈b · dη〉+ 〈u · f〉. (2.20)

With equalities ∇ · [(b · j′)b] = j′ · (b ·∇)b and ∇′ · [(b′ · j)b′] = j · (b′ ·∇′)b′ and equation
(2.20) we can further simplify (2.18) to:

∂t 〈S〉 =4∂t〈Etot〉 −∇` · 〈(δu · δu+ δb · δb)δu− 2(δu · δb)δb〉
− di∇` · 〈−(δb · δb)δj+ 2(δb · δj)δb〉+ 2di 〈δj · δ[(b ·∇)b]〉
− 2

〈
u · d′ν

〉
− 2

〈
u′ · dν

〉
− 2

〈
b · d′η

〉
− 2

〈
b′ · dη

〉
− 2〈u · f ′〉 − 2〈u′ · f〉 . (2.21)

Bringing another simpli�cation to (2.21) will require a fair amount of calculation on the Hall
terms. We adopt the same notation as Hellinger et al. (2018):

A = di 〈δj · δ[(b ·∇)b]〉 , (2.22)

and making use of the vectorial relation ∇(X ·X) = 2X× (∇×X) + 2(X ·∇)X we rewrite
it as:

A = di

〈
δj · δ[1

2
∇(b · b) + j× b]

〉
. (2.23)

Using relations (2.1)�(2.3) along with the fact that ∇ · j = 0, one can show that:

〈j ·∇(b · b)〉 = −∇` · 〈(b · b)j〉 − 〈(b · b)∇ · j〉 = 0, (2.24)〈
j′ ·∇(b · b)

〉
= −∇` ·

〈
(b · b)j′

〉
= −

〈
(b · b)∇′ · j′〉 = 0, (2.25)

and reduce A to

A = di 〈δj · δ(j× b)〉 . (2.26)

Now, with the relation ∇ · (X×Y) = Y · (∇×X)−X · (∇×Y) we show that:
〈
(j× b) · j′

〉
=
〈
(j× b) · (∇′ × b′)〉

= −
〈∇′ · [(j× b)× b′]

〉

= −∇` ·
〈
(j× b)× b′

〉
, (2.27)〈

(j′ × b′) · j
〉

= ∇` ·
〈
(j′ × b′)× b

〉
, (2.28)〈

(j′ × b′) · j′
〉

= 〈(j× b) · j〉 = 0, (2.29)
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which leads to

A = di∇` ·
〈
(j× b)× b′ − (j′ × b′)× b

〉
. (2.30)

With identities on double cross products Eq. (2.30) can be cast as,

A = di∇` ·
〈
(b′ · j)b− (b′ · b)j+ (b · j′)b′ − (b · b′)j′

〉

=
1

2
di∇` · 〈2(δb · δj)δb− (δb · δb)δj〉 − di∇` ·

〈
(b · j′)b− (b′ · j)b′

〉
(2.31)

=
1

2
di∇` · 〈2(δb · δj)δb− (δb · δb)δj〉+ di

〈
j′ · [(b ·∇)b] + j · [(b′ ·∇′)b′]〉

=
1

2
di∇` · 〈2(δb · δj)δb− (δb · δb)δj〉 −A, (2.32)

to �nally obtain

2A =
1

2
di∇` · 〈2(δb · δj)δb− (δb · δb)δj〉 . (2.33)

Thanks to (2.33) we can bring equation (2.21) to its simplest form:

∂t 〈S〉 =4∂t〈Etot〉 −∇` · 〈(δu · δu+ δb · δb)δu− 2(δu · δb)δb〉

− 1

2
di∇` · 〈−(δb · δb)δj+ 2(δb · δj)δb〉

− 2
〈
u · d′ν

〉
− 2

〈
u′ · dν

〉
− 2

〈
b · d′η

〉
− 2

〈
b′ · dη

〉
− 2〈u · f ′〉 − 2〈u′ · f〉 . (2.34)

2.2.3 From the dynamical equation to the exact law

The �nal expression of the exact law for 3D IHMHD, valid in the inertial range, is obtained
by using the stationarity assumption and the limit of a wide inertial range (i.e. limit large
kinetic/magnetic Reynolds numbers). We de�ne the mean rate of total energy injection as
ε = 〈u · f〉. Note that with equation (2.20), we can conclude that in the stationary regime the
following relation for dissipation holds:

〈u · dν + b · dη〉 = −ε. (2.35)

In the inertial range, far away from both the forcing and dissipation scales, some approxima-
tions can be made. On the one hand the forcing is assumed to act on large scales only, thus its
spatial variations should remain small and cross-terms such as 〈u · f ′〉 are expected to behave
like 〈u · f〉 = ε. On the other hand dissipation acts at small scales only, thus cross-terms like
〈u · d′ν〉 or

〈
B · d′η

〉
will be uncorrelated and of null statistical mean. Then, using equation

(2.35), the following simpli�cations arise:

〈
u · d′ν

〉
'
〈
u′ · dν

〉
'
〈
b · d′η

〉
'
〈
b′ · dη

〉
' 0 , (2.36)

〈
u · f ′

〉
'
〈
u′ · f

〉
' ε . (2.37)

We thus �nd the �nal expression:

−4ε =∇` ·
〈

(δu · δu+ δb · δb)δu− 2(δu · δb)δb+ di(δb · δj)δb−
1

2
di(δb · δb)δj

〉
, (2.38)

which can be written in a compact form as,

−4ε = ∇` · (Y+
1

2
H) , (2.39)
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where

Y = 〈(δu · δu+ δb · δb)δu− 2(δu · δb)δb〉 , (2.40)

H = di 〈2(δb · δj)δb− (δb · δb)δj〉 . (2.41)

Assuming isotropy, and due to the fact that ε is supposed to remain constant in the inertial
range, we can also integrate expression (2.39) which leads to:

−4

3
ε` = Y` +

1

2
H` , (2.42)

where Y` and H` are the projections along the displacement direction `.
Exact law (2.39), which will be referred to as F19, is the main result of this section and

is closely related to the one proposed in Hellinger et al. (2018) except for the Hall term A
which has been corrected and expressed as a function of H. It has the double advantage of
depending only on the product of increments of the physical �elds (unlike the G08 model)
and of being expressed only as �ux terms like a typical Yaglom-like equation, much like the
laws of Antonia et al. (1997) and Politano and Pouquet (1998). Note that, in the limit of
ideal MHD (di/L→ 0 where L is the characteristic scale of turbulence) we recover the classic
MHD law of Politano and Pouquet (1998).

2.2.4 Equivalence of IHMHD exact laws

If we exclude the exact law from Hellinger et al. (2018) which is closely related to F19 we
have a total of three archetypes of exact law for the IHMHD model. Thus, it is important to
verify whether all three of these are equivalent or not, and if they should provide the same
values of ε. For the ideal MHD part of the law (2.40) the Y term is exactly the same as the
one from Galtier (2008). BG17 MHD term reads:

2εMHD
BG17 = 〈δ(u× ω) · δu〉+ 〈δ(j× b) · δu〉+ 〈δ(u× b) · δj〉 . (2.43)

Each of all three terms of the left-hand side can be rewritten to �t in Y. Indeed, we have:

〈
(u× ω) · u′ + (u′ × ω′) · u

〉
=

1

2

〈
[∇(u · u)− (u ·∇)u] · u′ + [∇′(u′ · u′)− (u′ ·∇′)u′] · u〉

=
1

2
∇` ·

〈
−(u · u)u′ + 2(u · u′)u+ (u′ · u′)u− 2(u · u′)u′

〉

=
1

2
∇` ·

〈
+2(u · u′)u− 2(u · u′)u′

〉

=
1

2
∇` · 〈(δu · δu)δu〉 , (2.44)

〈
(j× b) · u′ + (j′ × b′) · u

〉
=

1

2
∇` ·

〈
−2(b · u′)b+ 2(b′ · u)b′

〉
, (2.45)

〈
(u× b) · j′ + (u′ × b′) · j

〉
=
〈
(b× j′) · u+ (b′ × j) · u′

〉

=
1

2
∇` ·

〈
2(b′ · b)u− 2(b′ · u)b′ − 2(b · b′)u′ + 2(b · u′)b

〉

=
1

2
∇` ·

〈
(δb · δb)δu+ 2(b · u′)b′ − 2(b′ · u)b

〉
, (2.46)

and all other terms are either null or canceling each other. Putting relations (2.44)�(2.46)
together we obtain:

2εMHD
BG17 = −1

2
∇` ·

〈
(δu · δu)δu+ (δb · δb)δu− 2(b · u′)b+ 2(b′ · u)b′ + 2(b · u′)b′ − 2(b′ · u)b

〉

= −1

2
∇` · 〈(δu · δu)δu+ (δb · δb)δu− 2(δu · δb)δb〉

= −1

2
∇` ·Y = 2εMHD

F19 , (2.47)
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which proves that the MHD components of laws BG17 and F19 are equivalent.
Obtaining similar relations for the Hall components is easier, as less terms are involved

and most of the work has already been done in the previous subsection. Indeed, in G08, the
law reads with our notation,

−4εHallG08 = 4di∇` · 〈(j× b)× δb〉 . (2.48)

We already showed with (2.33) that 1
2∇` ·H = 2A. With Eq. (2.30) and the assumption of

statistical homogeneity we have,
1

2
∇` ·H = 2di∇` ·

〈
(j× b)× b′ − (j′ × b′)× b

〉

= 4di∇` ·
〈
(j× b)× b′

〉
, (2.49)

which is su�cient to show that,

−4εHallF19 =
1

2
∇` ·H = 4di∇` · 〈(j× b)× δb〉 = −4εHallG08 , (2.50)

proving the compatibility between G08 and F19.
Finally, the Hall term of BG17 is written:

2εHallBG17 = −di 〈δ(j× b) · δj〉 . (2.51)

Using Eqs. (2.26) and (2.33) we immediately obtain:

−4εHallF19 =
1

2
∇` ·H = 2di 〈δ(j× b) · δj〉 = −4εHallBG17. (2.52)

This achieves the proof of the mathematical equivalence of G08, BG17 and F19 under the
hypotheses of the calculation. Note that this equivalence holds in a situation of perfect
statistical homogeneity, thus it is necessary to test how it behaves in practice when studying
real data, where this hypothesis may not be perfectly met. Such a test will be done on DNS
data in chapter 4.

This diversity of exact laws gives more freedom to compute the energy cascade rate of
IHMHD turbulence as it is possible to adapt the computation method to the data available.
Indeed, BG17 is expected to converge quicker due to it being a function of second-order incre-
ments, is computationally cheaper to calculate due to not involving derivatives with respect
to the increment, and should be free of any constraints of directionality with respect to the
increment vector. However, it depends on the vorticity which can be problematic for studying
in situ data, as the calculation of 3D spatial derivatives requires a multi-spacecraft mission.
In this sense, F19 will prove to be better to compute the energy cascade rate from single
satellite data (provided the current is available through particles velocity measurements).

It is interesting to observe that the introduction of a uniform magnetic �eld B0 (i.e.
replacing b by b + b0, with b0 = B0/

√
µ0ρ0) into the previous laws does not change their

expression. This property is obvious for F19 which only depends on increments and for BG17
in which the b0 in�uence translates as 〈δj · ((δj)× b0)〉 = 0. For G08 we have,

εHallG08 = 2∇` ·
〈
(j× b0)× b′ − (j′ × b0)× b

〉

= −2
〈
(j× b0) · j′ + (j′ × b0) · j

〉

= 0 . (2.53)

Consequently, a modi�cation of the background magnetic �eld (and a fortiori not considering
it in the calculation) should not change directly the value of the energy cascade rate. However,
even in the absence of an explicit dependence in B0, it is still expected to have an indirect
impact on the energy cascade by the way it shapes the non-linear dynamics (Wan et al.,
2012; Meyrand and Galtier, 2013). Note also that an explicit dependence in B0 appears
when considering incompressible fourth-order correlation functions (as opposed to the third-
order ones presented here) (Oughton et al., 2013). As we will see below the introduction of
compressibility in the model lead to a di�erent behavior, as the corresponding exact relations
depend explicitly on B0.
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2.3 Exact law in compressible models

2.3.1 Description of the compressible Hall MHD model

In the previous section I presented for IHMHD the derivation of a new exact law with a typical
Yaglom-like expression thanks to the use of a second-order structure function, di�erent from
the correlator used for past laws, to initiate the calculation. The same can be done for all
other compressible models, however deriving an exact law while taking compressibility into
account is a much more time-consuming and tedious operation than for an incompressible
model, be it an HD or MHD one. Thus, I will only present the derivation of the law for
the most complete model of (isothermal) CHMHD and use it as a basis to infer the laws in
Compressible Magnetohydrodynamics (CMHD) and CHD (see Simon and Sahraoui (2021)
for a more general derivation for isentropic �ows that encompasses polytropic and isothermal
closures, and for the related discussion about the thermodynamics behind exact laws).

To describe this model we consider the three-dimensional isothermal CHMHD equations
(Galtier, 2016) that were presented in chapter 1, and that we slightly rewrite as:

∂tρ+ ∇ · (ρu) = 0 , (2.54)

ρ(∂tu+ u ·∇u) =−∇P + J×B+ dν + f , (2.55)

∂tB =∇× (u×B)− λ∇× (Jc ×B) + dη , (2.56)

∇ ·B = 0 . (2.57)

We use the same notations as before, with the addition of the no-longer-constant mass density
ρ, the normalized current Jc = J/ρ, and λ = mi/qe withmi the ion mass and qe the magnitude
of the electron charge. This new term is connected to the previously used ion skin depth di
through the relation di = λ/

√
µ0ρ0. The dissipation terms this time are:

dν = ν∆u+
ν

3
∇θ , (2.58)

dη = η∆B , (2.59)

with θ = ∇ · u the dilatation. We use the isothermal closure P = c2
sρ with cs the constant

speed of sound. For this system, the equation of energy conservation reads:

∂t〈Etot〉 = 〈u · dν〉+
1

µ0
〈B · dη〉+ 〈u · f〉 , (2.60)

where Etot = ρu2/2 +B2/(2µ0) +ρe is the total energy and e the work component of internal
energy (per unit mass). e can be expressed as a function of the density by assuming that
the work reads W = −PdV , and by considering the usual de�nition of density ρ = m/V (for
units of mass m and volume V ) which gives the relation:

dV = −m
ρ2
dρ. (2.61)

Thus, the expression of the work becomes:

W = −mc
2
s

ρ
dρ, (2.62)

and by integrating and de�ning e ≡W/m we get the relation:

e = c2
s ln(

ρ

ρ0
) (2.63)

This de�nition limits the variations of the internal energy to the work done by the pressure
force, the heat component due to entropy variation being neglected (note that in incompress-
ible turbulence the whole internal energy is conserved, see Simon and Sahraoui (2021) for a
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detailed explanation). We de�ne again the mean rate of total energy injection as ε = 〈u · f〉.
By using this quantity, equation (2.60) reduces in the stationary regime to:

〈u · dν +
1

µ0
B · dη〉 = −ε. (2.64)

We can also obtain a relation similar to (2.10):

〈u · dν〉+
1

µ0
〈B · dη〉 = −ν

〈
ω2 +

4

3
θ2

〉
− µ0η

〈
J2
〉
, (2.65)

which once again gives the expression of the mean rate of total energy dissipation.

2.3.2 Calculation of a compressible dynamical equation

The previous CHMHD law derivation from Andrés et al. (2018) (hereafter A18) made use of
a correlator for total energy as their starting point, namely:

〈RE〉 =
〈ρ

2
(u · u′ + vA · v′A) + ρe′

〉
, (2.66)

where vA = B/
√
µ0ρ is the Alfvén speed, this time normalized by the non-constant density.

Following the idea of section 2.2 we choose to work with a mixed structure function for total
�uctuating energy (i.e. changes of the energy between points r and r′) instead:

〈S〉 =

〈
1

2
δ̄ρ|δu|2 +

1

2µ0
|δB|2 +

1

2
δρδe

〉
. (2.67)

First of all, we note that for homogeneous turbulence we have the expressions:

〈δ̄ρ |δu|2〉 = 〈ρu2〉 − 2〈δ̄ρu · u′〉+
1

2
〈ρu′2 + ρ′u2〉, (2.68)

〈δρ δe〉 = 2〈ρe〉 − 〈ρe′ + ρ′e〉 , (2.69)

〈|δB|2〉 = 2〈B2〉 − 2〈B ·B′〉 , (2.70)

that lead to the relation:

〈S〉 =
〈
Etot

〉
−
〈
δ̄ρu · u′ +B ·B′ + ρe′ + ρ′e

〉
+

1

4
〈ρu′2 + ρ′u2 +B2 +B′2〉. (2.71)

This relation is analogous to (2.13) in the IHMHD case: the second term of the right-hand
side is a modi�ed version of (2.66) using the magnetic �eld instead of the Alfvén speed, and
an additional term featuring both the squared velocity and magnetic �elds appears. In the
incompressible limit (ρ→ ρ0 = 1) (2.71) becomes:

1

2
〈|δu|2 + |δb|2〉 =

〈
Etot

〉
−
〈
u · u′ + b · b′

〉
+

1

2
〈u2 + b2〉.

= 2
〈
Etot

〉
−
〈
u · u′ + b · b′

〉
, (2.72)

and we retrieve relation (2.13).
Using relations (2.1)�(2.3) we can once again compute ∂t 〈S〉, starting with the following

expressions:

∂t〈ρu · u′〉 =

〈
ρu ·

(
−u′ ·∇′u′ − 1

ρ′
∇′P ′ + J′c ×B′

)〉

+ 〈u′ · (−∇ · (ρuu)−∇P + J×B)〉+

〈
u′ · dν + u′ · f +

ρ

ρ′
u · (d′ν + f ′)

〉

=∇` · 〈−ρ(u · u′)δu+ Pu′ − ρe′u〉+ 〈ρθ′(u · u′)〉
+ 〈ρu · (J′c ×B′) + u′ · (J×B)〉

+

〈
u′ · dν + u′ · f +

ρ

ρ′
u · (d′ν + f ′)

〉
, (2.73)
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∂t〈B ·B′〉 =〈B · (B′ ·∇′u′ − u′ ·∇′B′ −B′θ′)〉+ 〈B′ · (B ·∇u− u ·∇B−Bθ)〉
− λ〈B′ · (∇× (Jc ×B)) +B · (∇′ × (J′c ×B′))〉+ 〈B′ · dη +B · d′η〉

=〈∇′ · ((B · u′)B′)−∇′ · ((B ·B′)u′) + ∇ · ((B′ · u)B)−∇ · ((B ·B′)u)〉
− λ〈∇ · ((Jc ·B′)B)− (Jc ·∇)(B ·B′)− (B ·B′)∇ · Jc〉
− λ〈∇′ · ((J′c ·B)B′)− (J′c ·∇′)(B ·B′)− (B ·B′)∇′ · J′c〉
+ 〈B′ · dη +B · d′η〉

=∇` · 〈−(B ·B′)δu+ (B · u′)B′ − (B′ · u)B〉
− λ∇` · 〈−(B ·B′)δJc + (J′c ·B)B′ − (Jc ·B′)B〉
+ 〈B′ · dη +B · d′η〉 , (2.74)

∂t〈ρu′2〉 = 〈2ρu′ · ∂tu′ + u′2∂tρ〉

=

〈
−u′ ·∇′(ρu′2)− 2

ρ

ρ′
u′ ·∇′P ′ + 2

ρ

ρ′
u′ · (J′ ×B′)

〉

+ ∇` · 〈ρu′2u〉+

〈
2
ρ

ρ′
u′ · (d′ν + f ′)

〉

=∇` · 〈−ρu′2u′ + ρu′2u〉+

〈
ρu′2θ′ − 2

ρ

ρ′
u′ ·∇′P ′ + 2

ρ

ρ′
u′ · (J′ ×B′)

〉

+

〈
2
ρ

ρ′
u′ · (d′ν + f ′)

〉
, (2.75)

∂t〈ρe′〉 =∇` · 〈−ρe′δu− Pu′〉+ 〈ρe′θ′〉 , (2.76)

which, after being put together, give:

∂t〈S〉 = ∂t〈Etot〉+ ∂t〈
B2

2µ0
〉

− 1

2
∇` ·

〈
−2δ̄ρ(u · u′)δu− ρe′u′ + ρ′eu+

1

2
ρu′2u′ − 1

2
ρu′2u− 1

2
ρ′u2u+

1

2
ρ′u2u′

〉

− 1

2
〈ρu · (J′c ×B′) + ρ′u′ · (Jc ×B) + u′ · (J×B) + u · (J′ ×B′)〉

+
1

4

〈
ρu′2θ′ + ρ′u2θ − 2

ρ

ρ′
u′ ·∇′P ′ − 2

ρ′

ρ
u ·∇P + 2

ρ

ρ′
u′ · (J′ ×B′) + 2

ρ′

ρ
u · (J×B)

〉

− 1

2
〈(ρθ′ + ρ′θ)(u · u′)〉 − 1

2
〈ρe′θ′ + ρ′eθ〉

− 1

µ0
∇` · 〈−(B ·B′)δu+ (B · u′)B′ − (B′ · u)B〉

− λ

µ0
∇` · 〈(B ·B′)δJc − λ(J′c ·B)B′ + λ(Jc ·B′)B〉

− 1

2

〈(
1 +

ρ′

ρ

)
u′ · (dν + f) +

(
1 +

ρ

ρ′

)
u · (d′ν + f ′)

〉

+
1

2

〈
ρ

ρ′
u′ · (d′ν + f ′) +

ρ′

ρ
u · (dν + f)

〉
− 1

µ0
〈B′ · dη +B · d′η〉 . (2.77)

We can simplify the previous expression by remarking that:

∇` · 〈δ̄ρ|δu|2δu〉 =∇` ·
〈
−2δ̄ρu · u′δu+

1

2
ρu′2u′ − 1

2
ρu′2u+

1

2
ρ′u2u′ − 1

2
ρ′u2u

〉

+

〈
1

2
ρu2θ′ +

1

2
ρ′u′2θ

〉
, (2.78)
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〈
ρ

ρ′
u′ ·∇′P ′

〉
+

〈
ρ′

ρ
u · ∇P

〉
=〈ρu′ ·∇′e′ + ρ′u ·∇e〉

=∇` · 〈ρe′u′ − ρ′eu〉 − 〈ρe′θ′ + ρ′eθ〉 , (2.79)

∇` · 〈(δu · δB)δB〉 =∇` · 〈−(u′ ·B)B′ + (u ·B′)B− (u ·B′)B′ + (u′ ·B)B〉 , (2.80)

∇` · 〈|δB|2δu〉 =∇` · 〈−2(B ·B′)δu+B2u′ −B′2u〉 , (2.81)

〈(ρθ′ + ρ′θ)|δu|2〉 =〈−2(ρθ′ + ρ′θ)(u · u′) + ρθ′u′2 + ρθ′u2 + ρ′θu′2 + ρ′θu2〉 , (2.82)

〈|δB|2δJc〉 =〈B′2δJc +B2δJc − 2(B ·B′)δJc〉 , (2.83)

∇` · 〈(δB · δJc)δB〉 =∇` · 〈−(B′ · Jc)B′ + (B′ · Jc)B− (B · J′c)B′ + (B · J′c)B〉 . (2.84)

Introducing the previous expressions into (2.77) gives:

∂t〈S〉 = ∂t〈Etot〉+ ∂t〈
B2

2µ0
〉 − 1

2
∇` ·

〈
δ̄ρ|δu|2δu

〉
+

1

4
〈(ρθ′ + ρ′θ)|δu|2〉

− 1

2
〈ρu · (J′c ×B′) + ρ′u′ · (Jc ×B)− ρu′ · (J′c ×B′)− ρ′u · (Jc ×B)〉

− 1

2
〈u′ · (J×B) + u · (J′ ×B′)〉

− 1

2µ0
∇` ·

〈
|δB|2δu− 2(δu · δB)δB−B2u′ +B′2u− 2(u ·B′)B′ + 2(u′ ·B)B

〉

+
λ

2µ0
∇` · 〈|δB|2δJc −B′2δJc −B2δJc − 2(δB · δJc)δB− 2(B′ · Jc)B′ + 2(B · J′c)B〉

− 1

2

〈(
1 +

ρ′

ρ

)
u′ · (dν + f) +

(
1 +

ρ

ρ′

)
u · (d′ν + f ′)

〉

+
1

2

〈
ρ

ρ′
u′ · (d′ν + f ′) +

ρ′

ρ
u · (dν + f)

〉
− 1

µ0
〈B′ · dη +B · d′η〉 . (2.85)

Using again the relation ∇(X · X) = 2X × (∇ × X) + 2(X · ∇)X, we �nd the following
expressions:

〈u′ · (J×B) + u · (J′ ×B′)〉 =
1

µ0
〈u′ · ((∇×B)×B) + u · ((∇′ ×B′)×B′)〉

=∇` ·
〈
B2

2
u′ − (B · u′)B− B′2

2
u+ (B′ · u)B′

〉
, (2.86)

∇` · 〈(B · J′c)B〉 =− 〈J′c · ((B ·∇)B)〉 = ∇` ·
〈
B2

2
J′c

〉
+ µ0〈J′c · (B× J)〉 , (2.87)

∇` · 〈(B′ · Jc)B′〉 =〈Jc · ((B′ ·∇′)B′)〉 = ∇` ·
〈
B′2

2
Jc

〉
− µ0〈Jc · (B′ × J′)〉 . (2.88)

The term ∂t〈B2/2µ0〉 can be dealt with easily by remarking that it is no other than the
time derivative of magnetic energy ∂t〈Eb〉. Using Faraday equation (1.4) one can show that

∂t〈Eb〉 =
〈
−∇ · (E× B

µ0
)− J ·E

〉
(note that E is the electric �eld and should not be confused

with the energy). Then the Ohm's law (1.20) and relation ∆X = ∇(∇ ·X) −∇ ×∇ ×X
lead to:

∂t〈Eb〉 =−
〈
∇ ·

[(
ηµ0J− u×B+

1

ne
J×B

)
× B

µ0

]
+ J ·

(
ηµ0J− u×B+

1

ne
J×B

)〉

=η 〈∇ · (J×B)〉 − ηµ0 〈J · J〉 − 〈u · (J×B)〉

=
1

µ0
〈B · dη〉 − 〈u · (J×B)〉 . (2.89)
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Thanks to these relations we �nd:

∂t〈S〉 = ∂t〈Etot〉 −
1

2
∇` ·

〈
δ̄ρ|δu|2δu

〉
+

1

4
〈(ρθ′ + ρ′θ)|δu|2〉

− 1

2
〈ρu · (J′c ×B′) + ρ′u′ · (Jc ×B)− ρu′ · (J′c ×B′)− ρ′u · (Jc ×B) + 2u · (J×B)〉

− 1

2µ0
∇` ·

〈
|δB|2δu− 2(δu · δB)δB− B2

2
u′ +

B′2

2
u− (u ·B′)B′ + (u′ ·B)B

〉

− λ

2µ0
∇` · 〈−|δB|2δJc + 2(δB · δJc)δB〉+ λ〈Jc · (B′ × J′) + J′c · (B× J)〉

− 1

2

〈(
1 +

ρ′

ρ

)
u′ · (dν + f) +

(
1 +

ρ

ρ′

)
u · (d′ν + f ′)

〉

+
1

2

〈
ρ

ρ′
u′ · (d′ν + f ′) +

ρ′

ρ
u · (dν + f)

〉
− 1

µ0
〈B′ · dη +B · d′η −B · dη〉 . (2.90)

Finally, we introduce the relations:

〈2δρ δu · δ̄(Jc ×B)〉 =〈ρ′u′ · (Jc ×B) + ρ′u′ · (J′c ×B′)− ρ′u · (Jc ×B)

− ρ′u · (J′c ×B′)− ρu′ · (Jc ×B)

− ρu′ · (J′c ×B′) + ρu · (Jc ×B) + ρu · (J′c ×B′)〉 , (2.91)

〈δ(J×B) · δJc〉 =〈Jc · (B′ × J′) + J′c · (B× J)〉 , (2.92)

to get:

∂t〈S〉 =∂t〈Etot〉 −
1

2
∇` ·

〈
δ̄ρ|δu|2δu

〉
+

1

4
〈(ρθ′ + ρ′θ)|δu|2〉 − 〈δρ δu · δ̄(Jc ×B)〉

− 1

2µ0
∇` ·

〈
|δB|2δu− 2(δu · δB)δB− λ|δB|2δJc + 2λ(δB · δJc)δB

〉

+ λ〈δ(J×B) · δJc〉

− 1

2

〈(
1 +

ρ′

ρ

)
u′ · (dν + f) +

(
1 +

ρ

ρ′

)
u · (d′ν + f ′)

〉

+
1

2

〈
ρ

ρ′
u′ · (d′ν + f ′) +

ρ′

ρ
u · (dν + f)

〉
− 1

µ0
〈B′ · dη +B · d′η −B · dη〉 . (2.93)

2.3.3 From the dynamical equation to the exact law

Similarly to what has been done in section 2.2 we can approximate the forcing and dissipa-
tive terms by considering the energy cascade in the inertial range and in a stationary state.
Considering the forcing to act at large scales, the dissipation at small ones and using equation
(2.64), the following simpli�cations arise:

1

µ0
〈B′ · dη +B · d′η〉 ' 0 , (2.94)

−1

2

〈(
1 +

ρ′

ρ

)
u′ · dν +

(
1 +

ρ

ρ′

)
u · d′ν

〉
' 0 , (2.95)

−1

2

〈(
1 +

ρ′

ρ

)
u′ · f +

(
1 +

ρ

ρ′

)
u · f ′

〉
' −2ε , (2.96)

1

2

〈
ρ

ρ′
u′ · f ′ + ρ′

ρ
u · f

〉
' ε , (2.97)

1

2

〈
ρ

ρ′
u′ · d′ν +

ρ′

ρ
u · dν

〉
+

1

µ0
〈B · dη〉 ' −ε. (2.98)
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This ultimately leads to the exact law for CHMHD turbulence :

−4ε =∇` ·
〈
δ̄ρ|δu|2δu+

1

µ0
|δB|2δu− 2

µ0
(δu · δB)δB

〉

+
λ

µ0
∇` ·

〈
2(δB · δJc)δB− |δB|2δJc

〉

− 1

2
〈(ρθ′ + ρ′θ)|δu|2〉+ 2〈δρ δu · δ̄(Jc ×B)〉 − 2λ〈δ(J×B) · δJc〉 , (2.99)

that we can rewrite in a compact form as:

−4ε = ∇` · (FMHD + λFHall) + SMHD + λSHall, (2.100)

where by de�nition:

FMHD =

〈
δ̄ρ|δu|2δu+

1

µ0
|δB|2δu− 2

µ0
(δu · δB)δB

〉
, (2.101)

FHall =
1

µ0

〈
2(δB · δJc)δB− |δB|2δJc

〉
, (2.102)

SMHD = −1

2
〈(ρθ′ + ρ′θ)|δu|2〉+ 2〈δρ δu · δ̄(Jc ×B)〉, (2.103)

SHall = −2〈δ(J×B) · δJc〉. (2.104)

Equation (2.100), which will be referred to as F21, contains two Yaglom-like �ux terms
covering both MHD and Hall scales (FMHD and FHall, respectively) with an overall shape
strongly reminiscent of the incompressible law F19 derived in section 2.2, a similarity not
observed with A18 due to the di�erent forms of the correlators used in the two derivations.
Additionally, two non-�ux terms SMHD and SHall complement the equation: SMHD appears
to be a mix of a pure source/sink component function of the dilatation θ and of a local mean
component, whereas SHall consists of a single non-�ux component. Although these last two
components are not stricto sensu "source" terms (as they do not depend on the divergence of
a �eld) we will usually designate them as such to separate them from the Yaglom-like �uxes.
Note that, interestingly, the Hall source term is reminiscent of the Hall term from BG17
instead of the one from F19, which is another evidence of the close connections between these
two incompressible laws.

The fact that only SMHD depends on the divergence of a �eld (through the dilatation) is an
important improvement over A18, in which all source terms are functions of such divergences.
The precise evaluation of the divergence of a �eld is di�cult when dealing with space plasmas
data because it requires a three-dimensional mapping of the system to be computed, which
in turn calls for multi-spacecraft data (we will return to this matter in chapter 5). Thus,
F21 represents an advance for the analysis of space plasma turbulence as the Hall part of the
law, which is the most important one when studying compressible plasma turbulence at small
scales, can here be fully calculated.

Just like F19, F21 is Galilean invariant: changes on the mean velocity �eld will not have
any impact on the value of the energy cascade rate. However, unlike its incompressible coun-
terpart, the compressible law shows an explicit dependence on a mean background magnetic
�eld B0 if it is initially present. When replacing B by B + B0 a new term appears in the
right-hand side of (2.100) which reads:

SB0 =2B0 · 〈δρ(δu× δ̄Jc)〉 − 2λB0 · 〈δJc × δJ〉. (2.105)

We see that these new terms goes to zero in the incompressible limit, so we retrieve the
behavior already observed for F19. The background magnetic �eld is thus expected to reshape
the overall dynamics with more in�uence than for a purely incompressible turbulent plasma.
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2.3.4 Limit cases and alternative compressible laws

From F21 one can retrieve other equations for various simpler models. We mentioned earlier
strong similitudes between F21 and the incompressible laws. It is possible to retrieve F19
by taking the incompressible limit ρ → ρ0 and renormalizing (2.100) by the density, which
leads to considering the normalized variables ε̄ = ε/ρ0, b = B/

√
µ0ρ0 and the ion skin depth

di = λ/
√
µ0ρ0. It is immediate to see that, under this limit, FMHD → Y and SMHD → 0

(as θ → 0). The case of the two Hall terms is less straightforward as neither tends to zero.
However, we do �nd that the sum of the �ux and source is:

∇` · FHall + SHall = ∇` ·H− 2A =
1

2
∇` ·H, (2.106)

as was demonstrated in section 2.2. With this we indeed retrieve equation (2.39):

−4ε̄ = ∇` · (Y +
1

2
H). (2.107)

While the previous limit merely serves as a validation of F21 with regard to F19, new
results can also be obtained by considering other limits. Indeed, one can consider the CMHD
limit of equation (2.100) by taking di/L → 0. This is simply akin to removing the Hall
components of the law, which yields:

−4εCMHD =∇` ·
〈
δ̄ρ|δu|2δu+

1

µ0
|δB|2δu− 2

µ0
(δu · δB)δB

〉

− 1

2
〈(ρθ′ + ρ′θ)|δu|2〉+ 2〈δρ δu · δ̄(Jc ×B)〉. (2.108)

In a similar fashion, the limit of CHD can be obtained by taking B→ 0 (and λ→ 0, although
this limit is implicitly included in the other). One immediately �nds the relation:

−4εCHD = ∇` ·
〈
δ̄ρ|δu|2δu

〉
− 1

2
〈(ρθ′ + ρ′θ)|δu|2〉 = ∇` · F + S. (2.109)

This compact exact law allows for an e�cient analysis of highly compressible turbulent �ow
where magnetic forces are absent or negligible. The simplicity of both the �ux and the source
makes it easier to interpret the results and understand the physical processes at work in such a
medium. In particular we will make use of it in chapter 4 to study the behavior of supersonic
turbulence in the ISM.

2.4 Conclusion

In this chapter I explained in more detail what exact laws are: equations that allow one
to estimate the energy cascade rate of a turbulent cascade with minimal approximations of
statistical homogeneity, time stationarity and large Reynolds number. I detailed the frame-
work and the general method for deriving exact laws for a given �uid or plasma model, and
introduced important notations and properties pertaining to the use of increment vectors.

I provided the complete, step-by-step derivation of a new exact law in IHMHD, obtained
through the manipulation of a dynamical equation for a well-chosen second-order structure
function (2.12), which was already proposed by Hellinger et al. (2018). This derivation led
to a simple, Yaglom-like expression for the energy cascade rate (2.39), a formulation quite
di�erent from the already existing laws G08 (Galtier, 2008) and BG17 (Banerjee and Galtier,
2017). Nevertheless I proved that these 3 laws, despite stemming from di�erent premises and
taking di�erent forms, are mathematically equivalent under the aforementioned assumptions.
This allows one to choose which law to use depending on the data and the objective: BG17 is
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expected to converge quicker and lift some constraints of directionality in the system, whereas
F19 will be more e�cient to study data from single-spacecraft missions.

I also proposed a lengthy derivation for the more complex model of CHMHD, although
with a bit less details in some intermediate calculations. This allowed us to obtain a much
simpler exact law (2.100) than the one already derived by Andrés et al. (2018), featuring only
9 separate terms instead of the previous 35. Furthermore this new law has a lesser emphasis
on source terms and divergences of vector �elds (with only two of these terms), which greatly
simplify its computation, especially on single satellite data since it does not require computing
many vector �elds derivatives. Taking the limits of CMHD and CHD yielded two simpli�ed
laws, removing the need for a speci�c calculation in each of these models.

These two laws are also theorized to behave di�erently in presence of a background mag-
netic �eld. In the case of IHMHD the mean �eld has no direct impact on the computed energy
cascade rate, aside from its underlying e�ect on the turbulence dynamics. Results will not
change if it is not included in the calculation and one can remove it safely beforehand if nec-
essary. However, both source terms of F21 show a direct dependence on the mean magnetic
�eld, which is thus expected to have a greater impact on the shape and amplitude of these
terms. These assumptions will be veri�ed on DNS data in chapter 4.

All these exact laws, and more speci�cally the ones for IHMHD, CHD and CHMHD
models, will be put to the test and used in chapter 4 to analyze DNS data obtained from
various codes and physical models. We will see on this occasion that the compactness of these
laws is an important asset for simplifying the physical interpretation of the results.

All the results presented in this chapter are published in two papers: Ferrand, Galtier,
Sahraoui, Meyrand, Andrés, and Banerjee (2019) [Astrophysical Journal 881] for the deriva-
tion of the IHMHD law F19, and Ferrand, Galtier, and Sahraoui (2021a) [Journal of Plasma
Physics 87] for the CHMHD exact law F21. The former also contains numerical results
presented in chapter 4 of this thesis.
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Chapter 3

Methodology: laws computation and

numerical implementation

3.1 Introduction

Now that most of the theoretical work has been done, and that new laws have been derived
in chapter 2, we need a way to apply these equations to either real data or DNS data. When
computing exact laws on one dimensional data measured by satellites, the time average on
increment values (equivalent to a spatial average under the Taylor hypothesis, on which we
will come back at the beginning of chapter 5) can only be done directly on the single line of
data used, so the method of calculation in itself is rather straightforward. The case of 3D
DNS data analysis is much more complicated however, as it o�ers the possibility to compute
the laws with a much better accuracy than in in situ data. Computing an exact law on such
a dataset requires having strong enough statistics for a given increment vector `, by taking
an average over as many pairs of points as possible, but also considering enough di�erent
sizes and directions for said vector to obtain a broad and accurate representation of the
turbulent cascade. This "double average" is a very costly process which requires using parallel
computing to reduce the execution to a reasonable execution time. The numerical code also
needs to be optimized in memory usage to prepare for future works on larger datasets.

In light of these remarks, this chapter will aim at explaining in details the methods cho-
sen to compute the exact laws in a generic 3D DNS dataset. I will provide a mathematical
description of these methods for the di�erent models studied and explain the numerical im-
plementation and parallelization. Once this protocol has been established, its limitations and
potential ways to improve the overall performances in the future will be discussed. A note of
warning: this chapter is a purely technical one and features no discussion on physics whatso-
ever. Yet, the topics presented here need to be discussed to understand some di�culties and
a very few of the results presented in chapter 4. Readers that would prefer to avoid this kind
of discussion are advised to jump directly to the next chapter, and would understand almost
all the physical results presented there.

3.2 Numerical calculation of exact laws

3.2.1 Generic framework

The numerical code I designed to compute the energy cascade rate in DNS data was written
in Python for convenience and to easily adjust it on the �y. It requires all three components of
the velocity and the magnetic �eld (or the potential vector if the magnetic �eld is not readily
available), and for compressible models the density scalar �eld, to compute the energy cascade
rate. These data must be laid on a 3D regular grid and be periodic in all three directions of
space. This allows one to use the maximum amount of pairs of points to average on even for
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large modulus of the increment vector.
As was stated before, the calculation of the exact law requires averaging over as much

pairs of points as possible in the physical space, connected by a broad variety of increment
vectors probing all directions of space, to obtain the most accurate estimate of the energy
cascade rate. Various methods exist, such as randomly generating pairs of points (r,r′) and
binning afterwards on the corresponding increments ` = r′ − r, or selecting increments of
evenly spaced directions and sizes and de�ning r′ from r and `. The problem of the �rst
method is that it gives little to no control on the direction and size of the increments used in
the study, whereas the second method requires a 3D interpolation of all vector �elds (a costly
and lengthy process) as, for most increment vectors, position r′ = r+ ` will not lie on a grid
point.

The method I chose for my code is an alternative to the second option, and is inspired
by the work of Taylor et al. (2003). Instead of selecting increments of regularly sampled
directions and interpolating when the pair of points do not lie on grid points, I speci�cally
choose the increment vectors so that they always lead from a grid point to another one. To
do so I de�ne a "base vector", for instance ` = (1, 0, 1) in units of the grid resolution. For
any position r = (x, y, z) of a grid point, the corresponding r′ = (x + 1, y + 0, z + 1) will
obviously lie on a grid point too, so the correlations for all pairs of points de�ned this way
can be readily calculated without any interpolation. I then take all possible multiples of this
base vector: ` = (n, 0, n) for any positive integer n. This de�nes a direction for the increment
in which I will have all the required information to compute the scale-dependent exact law
(see �gure 3.1 for a visual representation).

Figure 3.1: 2D representation of the selection method for increment vectors. Vectors obtained by
taking an increment vector ((1,0) in black, (1,2) in blue, (3,1) in red) and its multiples always fall on
grid points. An arbitrary increment vector not landing on a grid point (example in green) will require
an interpolation.

By carefully selecting the base vectors we can obtain a set of well distributed directions,
and along each direction (de�ned by a given base vector) compute the exact law at discrete
scales equal to the norm of the various multiples of the corresponding base vector. For a
given increment, all the spatial averages are obtained by summing over the whole simulation
domain, so that the spatial average of any function ξ(r, `) is given by:

〈ξ〉 (`) =
∑

r

ξ(r, `)

NXNYNZ
, (3.1)

where (NX , NY , NZ) are the dimensions of the numerical grid. This average is su�cient to
compute all source terms of the laws, however for �ux terms of the form ∇` · 〈F〉 the average
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〈F〉 will have to be evaluated in several directions in order to compute the derivative. Thus,
in a given direction, only 〈F〉 will be computed and the derivative will be applied a posteriori.
Note that this process only gives the value of the exact law at discrete scales that depend on
the direction, so a 1D interpolation is required to retrieve the values at any given scale and
average the law over multiple directions. The ensemble of chosen base vectors depends on the
data we want to study, the underlying plasma model, and the hypotheses we make on the
symmetries of the system.

3.2.2 Isotropy hypothesis: 3D increments

In HD models, or MHD simulations when there is no background magnetic �eld, it is appropri-
ate to consider the system to be isotropic, as no privileged direction appears. In this situation
we naturally adopt a spherical coordinates system, in which ` is de�ned as ` = (`, φ, θ).
Thanks to the isotropy hypothesis the derivative operator ∇` appearing in the calculation of
�ux terms reduces to ∇` · 〈F〉 = 1

`2
∂`[`

2 〈F`〉φ,θ (`)], where 〈F`〉φ,θ represents the non-weighted
average of 〈F`〉 (in the space of increments) over φ and θ. Thus, we only have to compute the
projection of the vectorial �ux F on the direction of `, which writes:

〈F`〉 (`, φ, θ) = 〈cos(φ)sin(θ)Fx + sin(φ)sin(θ)Fy + cos(θ)Fz〉 . (3.2)

These projections are then averaged at �xed `:

〈F`〉φ,θ (`) =
∑

φ,θ

〈F`〉 (`, φ, θ)
ndir

, (3.3)

where ndir is the number of di�erent directions taken for `, equivalent to the number of
di�erent base vectors retained.

In this situation the chosen increment vectors need to probe all directions of space as
evenly as possible, while maintaining a good resolution on the calculation. This means that
we need to take as many base vectors as possible while limiting their norm. Indeed, in a
direction de�ned by a base vector ` the minimum scale at which we can make use of the
interpolation is ||`|| = `: taking large base vectors brings no information at the smallest
scales of the turbulence which, in the case of Hall MHD, is where most of the Hall-driven
physics is expected to occur. For the case of a 3D Isotropic computation I thus chose the
same set described by Taylor et al. (2003): I took vectors (1,0,0), (1,1,0), (1,1,1), (2,1,0),
(2,1,1), (2,2,1), (3,1,0), and (3,1,1), all vectors de�ned by permutations of the sign and index
of their coordinates, and removed all opposed vectors. This yields the following set:

`base ∈{(1, 0, 0), (1, 1, 0), (1, 1, 1), (2, 1, 0), (2, 1, 1), (2, 2, 1), (3, 1, 0), (3, 1, 1), (0, 1, 0), (0, 0, 1),

(0, 1, 1), (1, 0, 1), (−1, 1, 0), (−1, 1, 1), (1, 1,−1), (1, 2, 0), (0, 2, 1), (0, 1, 2), (2, 0, 1),

(1, 0, 2), (−2, 1, 0), (−1, 2, 0), (1, 2, 1), (1, 1, 2), (−2, 1, 1), (2, 1,−1), (−1, 2, 1), (1, 2,−1),

(−1, 1, 2), (1, 1,−2), (1, 2, 2), (2, 1, 2), (−2, 2, 1), (2, 2,−1), (−1, 2, 2), (1, 2,−2),

(−2, 1, 2), (2, 1,−2), (1, 3, 0), (0, 3, 1), (0, 1, 3), (3, 0, 1), (1, 0, 3), (−3, 1, 0), (−1, 3, 0),

(1, 3, 1), (1, 1, 3), (−3, 1, 1), (3, 1,−1), (−1, 3, 1), (1, 3,−1), (−1, 1, 3), (1, 1,−3),

(0, 1,−1), (1, 0,−1), (−1, 1,−1), (0, 2,−1), (0, 1,−2), (2, 0,−1), (1, 0,−2), (−2, 1,−1),

(−1, 2,−1), (−1, 1,−2), (−2, 2,−1), (−1, 2,−2), (−2, 1,−2), (0, 3,−1), (0, 1,−3),

(3, 0,−1), (1, 0,−3), (−3, 1,−1), (−1, 3,−1), (−1, 1,−3)}, (3.4)

which is constituted of ndir = 73 vectors of norms at most
√

11 (i.e. slightly more than three
times the grid resolution) probing half of the space. The reason the other 73 opposed vectors
are removed is because all exact laws are invariant under the transformation ` → −`, so
considering these additional vectors would only provide redundant information. This set has
been successfully used before (Taylor et al., 2003; Andrés et al., 2018) and was shown to be
well-enough distributed spatially to give a reliable representation of the 3D energy cascade.
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3.2.3 Axisymmetry hypothesis: 3D increments

(a) Axi-symmetric coordinate system. (b) Example of increment vectors.

Figure 3.2: Representation of the coordinate system used to describe increments in the axi-symmetric
case, and examples of increment vectors (projected on a 2D plane for a simpli�ed representation).
Note that several increment vectors can share the same orthogonal component and still di�er by their
parallel component: exact laws computed for such increments are averaged, and their contributions
are attributed to the common orthogonal component `⊥. Be aware that, even if two increment vectors
share the same orthogonal component, the respective �ux contributions are not identical a priori !

For simulations where a strong enough background magnetic �eld is present the cas-
cading modes are expected to be located predominantly in the plane orthogonal to B0.
Consequently, we will usually prefer to the isotropy assumption a symmetry of revolution
around B0 (usually chosen to be the z-axis). In this case we adopt cylindrical coordi-
nates: the increment vector is de�ned as ` = (`⊥, φ, `z) and the derivative operator becomes
∇` · 〈F〉 = 1

`⊥
∂`⊥ [`⊥ 〈F`⊥〉φ (`⊥, `z)]+∂`z 〈F`z〉φ (`⊥, `z). However, the discrete choice of direc-

tions adopted here makes it impossible to e�ectively compute ∂`z 〈F`z〉φ (`⊥, `z) at arbitrary
values of (`⊥, `z) without resorting to multi-dimensional interpolation on irregular grids, bring-
ing lots of additional calculations and more imprecision to the results. Consequently, we will
only study transfers in transverse directions by considering the �ux averaged in the z direction,
i.e. the average of the �uxes calculated for increments with a �xed `⊥ and a variable `z (see
�gure 3.2). The derivative operator is thus reduced to: ∇` · 〈F〉 = 1

`⊥
∂`⊥ [`⊥ 〈F`⊥〉φ,`z (`⊥)].

We compute the projection of F on the direction of `⊥ as:

〈F`⊥〉 (`⊥, φ, `z) = 〈cos(φ)Fx + sin(φ)Fy〉 , (3.5)

and take the average over all directions:

〈F`⊥〉φ,`z (`⊥) =
∑

φ,`z

〈F`⊥〉 (`⊥, φ, `z)
ndir

. (3.6)

The selection of the set of vectors is a bit trickier for this model due to data periodicity.
Indeed, we need to choose the base vectors so that their multiples will reach values of `⊥ large
enough to gather information at all pertinent scales. Typically, as the datasets are periodic,
the maximum useful scale is of half the simulation domain. Any larger increments would in
fact correspond to smaller ones, and thus any calculation done at such large scales would be
ill de�ned (see �gure 3.3). Thus, the parallel coordinate `z should never be taken larger than
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half the simulation domain either as it would give a contribution corresponding to a di�erent,
smaller increment and alter the calculation of the exact law. In summary, for a dataset of
size L, we need to use only increment vectors whose component `⊥ spans the entire interval
[0, L/2], and so that `z ≤ L/2. Due to these limitations, we only keep base vectors that verify
the property `⊥ ≥ `z, which will ensure that these conditions are veri�ed. Following this
remark, I chose to take the same set of vectors (3.4) as in the isotropic case and removed all
vectors not verifying this property, which gives a set of ndir = 57 directions:

`base ∈{(1, 0, 0), (1, 1, 0), (1, 1, 1), (2, 1, 0), (2, 1, 1), (2, 2, 1), (3, 1, 0), (3, 1, 1), (0, 1, 0), (0, 1, 1),

(1, 0, 1), (−1, 1, 0), (−1, 1, 1), (1, 1,−1), (1, 2, 0), (0, 2, 1), (2, 0, 1), (−2, 1, 0), (−1, 2, 0),

(1, 2, 1), (−2, 1, 1), (2, 1,−1), (−1, 2, 1), (1, 2,−1), (1, 2, 2), (2, 1, 2), (−2, 2, 1), (2, 2,−1),

(−1, 2, 2), (1, 2,−2), (−2, 1, 2), (2, 1,−2), (1, 3, 0), (0, 3, 1), (0, 1, 3), (3, 0, 1), (−3, 1, 0),

(−1, 3, 0), (1, 3, 1), (−3, 1, 1), (3, 1,−1), (−1, 3, 1), (1, 3,−1), (0, 1,−1), (1, 0,−1),

(−1, 1,−1), (0, 2,−1), (2, 0,−1), (−2, 1,−1), (−1, 2,−1), (−2, 2,−1), (−1, 2,−2),

(−2, 1,−2), (0, 3,−1), (3, 0,−1), (−3, 1,−1), (−1, 3,−1)}. (3.7)

Note that, by disregarding parallel �uxes, axi-symmetric models may miss a small portion of
the cascade. Due to this limitation the isotropic decomposition may sometimes yield slightly
better results even in presence of background magnetic �eld, as we will see in chapter 4.

Figure 3.3: Due to the periodicity of the data, the two points r and r′ can be connected by the green
increment `1, the blue one `2 or the red one `3 (among others), but the green one is the only one that
has a norm inferior to half the size of the simulation domain. The values of the exact laws calculated
with either increment will be the same, as points r and r

′ are left unchanged. Consequently, using
increments whose size exceeds half the size of the simulation domain will yield results that should be
attributed to a totally di�erent, smaller increment vector, and as such the related calculations are ill
de�ned.

3.2.4 Axisymmetry hypothesis: 2D increments

The case of an axisymmetric dataset can also be treated through a simpler 2D selection of
increment vectors by only considering vectors in the plane orthogonal to B0. This basically
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means that we only consider increments for which `z = 0. Here again the derivative operator
will read ∇` · 〈F〉 = 1

`⊥
∂`⊥ [`⊥ 〈F`⊥〉φ (`⊥)] and the expressions for 〈F`⊥〉φ remain unchanged.

The set of base vectors in this case is chosen similarly to the one used by Imazio and Mininni
(2017) and Andrés et al. (2018), which is a reduction of (3.4) where all vectors with `z 6= 0
are removed. It consists of the 12 base vectors:

`base ∈{(1, 0, 0), (1, 1, 0), (2, 1, 0), (3, 1, 0), (0, 1, 0), (−1, 1, 0), (1, 2, 0),

(−2, 1, 0), (−1, 2, 0), (1, 3, 0), (−3, 1, 0), (−1, 3, 0)}. (3.8)

This set naturally gives less precise results due to the weaker statistics provided by these 12
directions, but the overall trends observed in the exact laws should not be radically di�erent
between this model and the 3D one. This method has the advantage of being way faster
to run on simulation data, as the bi-directionality of the study allows for a more e�cient
parallelization of the numerical code (we will give more details on this topic in the following
section). It was used for the tests on IHMHD exact laws, which required less precision to yield
meaningful results, and for most early tests led on various simulations data in order to gather
�rst insights and prepare for the more detailed (and costly) calculation that came after.

3.3 Implementation of the numerical methods

3.3.1 Main steps of the calculation

Whatever the model chosen to make the calculation of the exact laws, the structure of the
code remains the same. The program is written in Python and makes a notable use of the
libraries Numpy for array manipulation, Numexpr for realizing e�cient array operations and
scipy for data interpolation. Additional libraries were used to open the data (h5py) and allow
for the parallelization of the code (mpi4py).

The program �rst loads all the necessary data (at most all three components of the ve-
locity and magnetic �elds and the density) and computes all the other �elds required to the
calculation. This goes from just computing the current from the magnetic �eld in the IHMHD
case, to computing all �elds divergences, the pressure, the internal energy etc. for CHMHD.
The end goal is that all individual vectorial and scalar �elds appearing in the computation are
readily available and can be put together to calculate the various structure functions forming
the laws. The derivative of any scalar �eld is obtained by applying a 5-point stencil central
di�erences method to every point of the �eld in the desired direction:

f ′(x) ≈ −f(x+ 2h) + 8f(x+ h)− 8f(x− h) + f(x− 2h)

12h
, (3.9)

taking advantage of the periodicity to avoid boundary e�ects.
Once all variables have been calculated at all points of the grid, the exact laws are com-

puted through two nested loops: one on the base vectors, and another on the multiples of the
currently used base vector. The end point of this second loop is determined by the number
of multiples of the base vector it is necessary to take to obtain an increment of half the size
of the simulation domain. Variables evaluated at point r are stored in the base array, and
data evaluated at point r′ = ` + r are obtained by shifting the array in all three directions
according to the Cartesian coordinates of `. For each iteration the terms of the exact laws are
computed at all points through array calculation with the Numexpr module, which allows for
a very fast evaluation of array expressions thanks to cache optimization and reduced memory
access. These calculations give the scale-dependent variations of all terms of the laws in all
speci�ed directions.

Finally, once all mono-directional structure functions have been computed, we proceed
for each of those to a 1D interpolation using cubic splines, a piecewise cubic polynomial
which is twice continuously di�erentiable, in order to obtain the values of the functions for
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scales between the ones they were �rst evaluated at. Results from all directions are then
averaged according to the chosen model. This program thus provides the twice averaged
scale-dependent values of each separate term of the exact laws, and can be easily modi�ed to
compute other kinds of structure functions or consider di�erent sets of vectors.

3.3.2 Parallelization paradigm

The �rst implementations of the program required around an hour to compute the CMHD
exact law components on a small 2563 dataset with only the 2D increments. Considering
CHMHD would take even more time due to the presence of more terms to compute and that
larger data cubes would have to be studied after, the need to optimize the code to reduce the
execution time rapidly arose. The �rst attempts at a "naive" parallelization, consisting on
parallelizing the directions loop (and so computing the terms for several directions simultane-
ously) only managed to cut the execution time in half at best, and so did not yield satisfying
results.

The method I �nally chose to implement consists in a Message Passing Interface (MPI)
parallelization that divides the data itself and distributes it evenly between all processors.
The idea is to write the code as a function of the rank of the processors (i.e. its ID number)
so that each processor interprets the instructions di�erently and only executes a part of the
total work. However, when working with MPI, each processor possesses its own memory, that
is not shared with the others. This requires sending the relevant data to each processor so
they can proceed with the calculations, and regrouping the �nal results at the end of the
execution. Of course, one cannot simply send all the data used to each processor as the
memory usage will be multiplied by the total number of processors (which will most certainly
trigger a memory error). Thus, a bit of memory management is required to do things right.

First, a single processor opens the base data and computes all the additional arrays. For
each of these arrays, the base processor sends only a slice of the data (usually cut along the
mean magnetic �eld axis, by default the z-axis) to every other processor (see �gure 3.4). This
ensures that, at any given time, the memory allocated to store n variables corresponds to
at most (n+1) data cubes (n cubes for the variables and an additional empty one scattered
between processors destined to receive the data sent). The initial data cubes are ultimately
deleted so that the base processor too only keeps the slice it needs.

Figure 3.4: Visual representation of the data distribution between processors. All data, initially held
by the base processor 0, is cut along the z-axis then distributed to other processors, which will work
individually on its own part.

Once the data transfer is done, each processor will compute the scale-dependent structure
functions for its own part of the data. Here the method di�ers slightly depending on the
vector set adopted: if we use the 2D set, all increment vectors lie in the (xy) plane. As the
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data slices are cut along the z-axis, all pair of points will be contained in a given slice, so
each processor is self-su�cient and can make all the calculations without communicating with
the others. However, in the case of a 3D vector set, all increment vectors with a non-zero
`z component will lead outside of the slice from some positions r, so the processor will need
to communicate with the other ones to retrieve the data at the shifted positions r′. This
unfortunately introduces an additional communication cost that slows down the execution of
the program.

After all the calculations have been done, the results from all processors are reduced and
summed in the base processor which will complete the execution by itself by computing the
cubic splines and averaging over directions. With this method of parallelization I was able to
cut the computation time by a signi�cant amount, as shown in �gure 3.5. This benchmarking
was led on a small 2563 CHMHD dataset. It compares the execution speed of the program
for 1, 2, 4, 8, 16 and 32 processors on two decompositions, the 2D one and an adapted
3D one reduced to 12 vectors so that both compute the same number of directions. With
no parallelization (i.e. one processor) both models show similar execution times, which is
coherent as they proceed to roughly the same amount of calculations. For two processors
or more however the 2D model shows more improvements than the 3D one, especially when
using a large number of processors, going from ∼ 4000s to ∼ 100s whereas the 3D models only
improves towards ∼ 400s and shows even worse results for 32 processors. This clearly shows
the limitation imposed by the constant communications between processors imposed by the
3D models: parallelization is less e�cient and using too many processors ultimately makes the
communication cost overshadow the improvements on the calculations. This behavior tends
to become less noticeable as the size of the datasets increases: for 5123 it is still worth to go
as far as using 64 processors to lead a full 3D computation.
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(a) Benchmark for a 2D base vectors set.
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(b) Benchmark for a 3D base vectors set.

Figure 3.5: Benchmark on the e�ciency of the parallelization of the program for both 2D and 3D base
vectors sets led on a 2563 CHMHD simulation. The 2D set is the 12 vectors one depicted in section
3.2.4, and the 3D one is a 12 vectors set obtained from the one depicted in section 3.2.3 by keeping
only vectors whose coordinates are 0 or ±1.

3.3.3 Memory constraints

Due to the size of the data cubes used in the calculations, memory usage can quickly become a
limiting factor. This is especially true for the data used in the CHD study of ISM simulations
that will be detailed in chapter 4, as the cubes on which the calculations were made are
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of resolution 25123. This means that for single precision �oats, only the 4 initial cubes
representing the density and the velocity �eld already take 254 Gb of memory, which is
unrealistic in the scope of simple data analysis. This kind of problem called for an improvement
of the program in order to keep instantaneous memory usage at a reasonable level.

The method I used in most of my studies simply consists in analyzing only a part of the
data at once, by loading and working on a slice of the total dataset, again cut along the z-axis.
To compute the derivatives I also had to load two small additional slices above and below
the main studied slice, and which will be discarded once the derivatives calculation is done.
Of course this method only works for the 2D base vectors decomposition, as using increment
vectors with a non-zero `z component would create pairs of points for which r′ lies outside of
the loaded data. Nevertheless it was su�cient to lead the study of the largest datasets, for
which the computation time was a determining limiting factor anyways.

Other options were thought of to reduce memory usage, notably saving all the derivatives
and other additional arrays as hdf5 datasets (exactly like the base arrays) and having all
processors open their own instance of the �les. Each processor would then store two arrays of
coordinates for r and r′ instead of the data arrays, and use them to load on the �y the part of
the data required for the calculation. Theoretically, this could both reduce the memory usage,
as portions of the large data arrays are only loaded punctually, and improve the execution
time when using 3D base vectors decompositions, as processors would have access to any part
of the data and would not have to communicate between one another anymore. However,
opening a �le several times in several processors simultaneously proved to be more di�cult
than expected, and as the program worked �ne as is I did not take more time to investigate
such possibilities.

3.4 Conclusion

In this chapter, I present the general theory adopted to compute the exact laws in a 3D
periodic dataset. In order to avoid costly 3D interpolations, I adopt the angle averaging
technique described by Taylor et al. (2003), that express all the increment vectors the laws
are averaged on as multiples of pre-selected base vectors. Two main sets of base vectors are
discussed, one to be used on axi-symmetric simulations (i.e. mostly simulations featuring a
non-zero background magnetic �eld) and another one more suited for the analysis of isotropic
datasets. The �rst one however has the drawback of discarding �uxes in the direction of the
mean magnetic �eld, which could give slightly incomplete results.

The program is parallelized using MPI to make each processor work on an individual
slice of the data, cut along the direction of the background magnetic �eld (or by default
the z-direction). This parallelization allowed for vast improvements, cutting the execution
time by a factor of hundreds when analyzing a 2563 dataset with only transverse increment
vectors. When also using non-transverse increments however, the overhead cost induced by the
communications between processors can exceed the bene�ts of parallelization when working
with too many processors. Note however that this situation is not encountered for datasets
of resolution 5123, as they are usually analyzed using a maximum of 64 processors, which is
not enough in this case to induce prohibitive communication costs.

Currently the program is lacking an e�cient way to save memory for the study of large
datasets, as the method proposed in this chapter only works when working with transverse
increments only. To continue using this program in the future it may be useful to �nd another
way to economize memory, for instance by storing all relevant data cubes on hard drive
memory and letting each processor access a speci�c part of the �les, provided the continuous
data reading would not increase the computation time too much.
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Chapter 4

Understanding plasma turbulence

through DNS data analysis

4.1 Introduction

In previous chapters I presented the derivation of exact laws for a variety of �ow and plasma
models, and the elaboration of a method and a numerical program to apply them to either DNS
or in-situ data. In this chapter, these tools will be used to study the behavior of turbulence
in di�erent models and physical contexts through the analysis of various DNS datasets. A
total of four studies are presented which are summarized below:

� In the �rst of these studies, I applied the protocol developed in chapter 3 to compute
the incompressible exact laws G08, BG17 and F19 on an EMHD dataset simulated
by Romain Meyrand (Meyrand and Galtier, 2013). This study aims at con�rming
numerically the equivalence between the three laws, understanding the potential limits
of this equivalence, and investigating the in�uence of a background magnetic �eld on
the turbulence.

� The second of these studies started with a similar goal as the �rst one: investigating
the relationship between the two compressible laws A18 and F21, and along the way
getting a better understanding of how the di�erent components of F21 relate to one
another, similarly to what was done in Andrés et al. (2018) for law A18. To this end I
used the Geophysical High-Order Suite for Turbulence (GHOST) code to simulate three
CHMHD runs with varied parameters, and calculated the exact laws on them. Other
problematics arose during the study concerning the decaying nature of turbulence of
these runs, which led me to compute and analyze generalized versions of the exact laws
valid without the stationarity hypothesis.

� The third study is more physics-oriented than the previous two, and aims at tackling a
fundamental problem of space plasma turbulence analysis: is the �uid turbulent cascade
rate estimated with exact laws in simulations and spacecraft observations representative
of the actual kinetic dissipation in media such as the SW ? This question is all but
trivial, as a �uid plasma model does not take into account any kinetic e�ect, which
are supposed to be the main energy dissipation channels in non-collisional plasmas.
This question is tackled through a collaborative work with Dimitri Laveder, Thierry
Passot and Pierre-Louis Sulem who, following inputs that we provided, ran an ensemble
of eight simulations of CHMHD turbulence with CGL and LF closures, featuring the
presence (or absence) of various intensities of Landau damping. I then analyzed those
simulation data and computed the energy cascade rates on these datasets with exact
law F19, compared their behaviors between the simulations, and attempted to estimate
separately the energy dissipation to understand to what extent the �uid cascade rate
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would be able to feel Landau dissipation. The direct estimation of the dissipation due
to Landau damping brought the �nal evidence needed to quantitatively correlate the
energy cascade to the kinetic dissipation.

� The fourth and �nal study presented in this chapter focuses onto a di�erent medium
than the SW that is at the heart of most of this thesis. In this study I make use of
the CHD limit of the CHMHD law F21 to study a DNS dataset for supersonic CHD
turbulence of an unparalleled resolution of 10, 0483 grid points (Federrath et al., 2016;
Federrath et al., 2021), simulated by Christoph Federrath. The in-depth analysis I led
by studying the turbulent cascade within high-density, localized structures formed in
these datasets is a way to see how turbulence exact laws can provide us with useful
information susceptible to explain the general behavior of supersonic media such as the
ISM, where the turbulent sonic Mach numberMS can reach very high values (MS > 10).

Below we develop four sections, each dedicated to one of these studies, in which we provide
more details on the context and draw the conclusions speci�cally related to each one of
them. Note that, in all visual representations of the scale-dependent energy cascade rates
the following formalism is systematically adopted: plain lines represent positive values, and
dashed lines represent negative values.

4.2 Numerical test of IHMHD exact laws

The objective of this �rst study is twofold: on the one hand, it is the occasion to use the
code developed in chapter 3 to compute the exact laws, to learn to handle it properly, and to
check how the two base vectors decompositions introduced in chapter 3 in�uence the results
obtained. On the other hand, it also aims at verifying how the three incompressible laws
relate to one another, and how they react to the presence of a background magnetic �eld, two
topics that were already mentioned and investigated theoretically in chapter 2.

4.2.1 Convergence of exact laws and model choice

Thanks to the program detailed in the previous chapter I make the �rst round of tests on the
various exact laws derived in chapter 2. For IHMHD laws most of the new materials (compared
to existing laws) concern the Hall part of the exact law, so the study will only focus on this
part. To this end I use a 3D DNS of incompressible EMHD turbulence (which corresponds
to equation (2.6) with u = 0). This dataset was obtained by using a modi�ed version of
the Solver for TURbulent �ows with periodic BOundary conditions (TURBO) code (Teaca
et al., 2009) in which the Hall e�ect has been implemented to solve the EMHD equations in a
triply periodic box. A pseudo-spectral algorithm is used to perform the spatial discretization
on a grid with a resolution of 5123 collocation points (see Meyrand and Galtier (2013) for
further details). A mean guide �eld B0 of magnitude unity is introduced along the z-axis,
and a large-scale forcing is applied which enforces a constant rate of energy injection with
no helicity. The system is evolved until a stationary state is reached such that Brms ∼ B0.
We removed the amount of ideal invariants that is injected into the system by the forcing
mechanism by means of magnetic hyperdi�usivity η3∆3 with η3 = 10e−11, which replaces the
standard di�usivity dν normally present in (2.6). The �nal data consists of three periodic
cubes giving the three components of the magnetic �eld in each grid point.

As stated before two numerical schemes are available to lead the data analysis, both
bearing their own advantages and disadvantages. When studying a dataset with no mean
magnetic �eld (supposed to be isotropic) the 3D isotropic model is a candidate of choice,
however for datasets with a non-zero mean �eld the choice is way less obvious. The axi-
symmetric decomposition will �t to the real symmetries of the system, but as we neglected
the contribution from �uxes parallel to the mean �eld (the F`z component) we will lack
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some information which could prove to be non-negligible. On the other hand the isotropic
decomposition does not neglect any �ux contribution, thus it is interesting to see if it yields
good results even if the dataset is not isotropic. This last goal is particularly relevant to SW in
situ data analysis since an isotropic model is often used despite the presence of a background
mean �eld and the axi-symmetric nature of SW turbulence (Wicks et al., 2012). All in all,
which decomposition to choose may depend on the dataset and needs to be tested beforehand.

Among the three incompressible laws available, BG17 has an important feature the other
two do not have: it is fully expressed as non-�ux terms whose calculation does not depend on
the numerical scheme used. This non-directionality makes BG17 a good reference for testing
which model is best suited for analyzing a dataset: as all three laws are mathematically
equivalent, di�erences between them should only arise from numerical limitations on either
the dataset itself (if hypotheses such as statistical homogeneity are not truly met) or the
method used to analyze it. Thus, the method that shows the least discrepancies between the
IHMHD laws would be deemed most suited for the study.
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(a) Computation with the axisymmetric method.
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(b) Computation with the isotropic method.

Figure 4.1: Hall components of the IHMHD exact laws calculated with the 3D isotropic base vector
decomposition and the 3D axisymmetric one. In the right panel all lines overlap for ` & 10−1

We apply the two 3D methods to the EMHD dataset and summarize the results in Fig.
4.1. We notice right away a di�erence between the two models for both G08 and F19, however
for BG17 the di�erences are, as expected, much more subtle. This corroborates the previous
assumption that BG17 is a good reference for the energy cascade rate as it depends less on
the symmetries of the system. Here, despite the mean magnetic �eld being non-zero the
equivalence seems to really hold only for the isotropic method, in which the three laws �t
remarkably well. This indicates that the isotropic method is the more pertinent one to study
this dataset, and thus that parallel �uxes (that are neglected by the axi-symmetric model)
are important and must be taken into account. Consequently, only this method will be used
to analyze the EMHD data. From Fig. 4.1 we can also roughly estimate the scales of the
inertial range to go from 0.05 to 0.3.

Note that the laws still separate at the smallest scales of the system (` ≤ 0.1). This could
be due to imprecisions from the discrete derivative operator used to compute G08 and F19,
or to the increasing in�uence of dissipation as we reach the dissipative scales. This may also
be the consequence of a lack of statistics to have a full convergence on the third order laws
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G08 and F19 (whereas BG17 is second order), but such theory is di�cult to verify as it would
require analyzing (and thus simulating) larger datasets.

4.2.2 In�uence of the mean magnetic �eld

In chapter 2 we mentioned that IHMHD exact laws were not directly dependent on the
presence of the mean magnetic �eld. For BG17 and F19 this result is immediate and is a
direct consequence of vectorial calculus. For G08 however it requires a few manipulations
that make use of the hypothesis of statistical homogeneity. Due to this it is necessary to test
this property numerically, as we did for the laws equivalence, to ensure that it holds in a
practical situation.

To this end I computed the energy cascade rate of all three laws on the EMHD dataset
after removing the mean magnetic �eld and keeping only the �uctuations. This was done
by averaging the magnetic �eld component along the guide �eld axis (here the z axis) and
subtracting this value from that component (the other components both bear negligible mean
�elds). In Fig. 4.2 I represent the ratio of the cascade rate calculated without mean �eld over
the one calculated with the full mean �eld. One can see that computing the energy cascade
rate with or without the mean guide �eld leads to the same result for both BG17 and F19,
as expected. For G08 however the two cascade rates show some di�erences, even though the
contribution of B0 reduces to zero theoretically. The di�erence is, however, relatively small
in the inertial range (less than 0.5%). The sudden increase of the ratio at large and small
scale is due to the presence of the dissipation and the forcing respectively: in these regions
the hypotheses of the laws derivation are no longer met.
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Figure 4.2: Ratios of εHall computed from the data cubes where the guide �eld b0 = 1 is removed
and from the data cubes where it is not. The values obtained with F19 and BG17 overlap.

This behavior is most probably a consequence of a non perfect homogeneity of the system,
which is expected to be the case of all datasets to some extent. This test shows the limitations
we must be aware of when analyzing data, be it DNS data or in-situ data, as the hypotheses
used to derive tools such as exact laws may not always be met in practice. In our case it may
be safer to remove the mean �eld beforehand when using incompressible laws in order to avoid
possible errors. This is especially true when studying in-situ data in which the hypotheses
are expected to be much more loosely met than in controlled DNS data.
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4.2.3 Summary of the study on the IHMHD laws

Through the study led in this section, we showed that the equivalence between the three
incompressible exact laws that was demonstrated in chapter 2 still holds in practice when
computing the energy cascade rates with the protocol described in chapter 3. This already
supposes that we choose the most suited base vector decomposition, which is not as straight-
forward as one could think in the �rst place. Indeed, despite the axi-symmetric nature of the
EMHD datasets presented here, the isotropic decomposition was found to provide the best
results, suggesting that the parallel �uxes that are discarded in the axi-symmetric decompo-
sitions may bear non-negligible contributions. Choosing the right decomposition can be done
by looking at which one yields a better matching between exact laws, a method that will be
used again in next section.

Through this study, it was also possible to show that the presence of a background mag-
netic �eld does not in�uence directly the values obtained for the exact laws, except for G08
that shows a slight sensitivity to this parameter. This may be due to a non-perfect statistical
homogeneity of the datasets, with the consequence that the terms of G08 depending on B0

will not cancel each other out correctly.

4.3 In-depth study with generalized CHMHD exact laws

4.3.1 Context of the study

Incompressible exact laws have been used extensively in past years to analyze turbulence from
in situ data (Sorriso-Valvo et al., 2007; MacBride et al., 2008; Stawarz et al., 2009; Osman
et al., 2011). Thus, the recent derivation of exact laws for CHMHD comes as a natural
and �tting extension to these studies. However, compressible exact laws such as the ones
derived in section 2 often take the form of intricate combinations of varied mathematical
expressions. The di�erent terms they are made of require access to various physical variables,
some of which cannot be computed in certain situations: for example one cannot compute
the so-called source terms (i.e. terms depending on 3D �eld derivatives such as ∇ · u) from
single-spacecraft in situ data, as a minimum of four spacecraft is required to obtain a 3D
mapping of the vector �elds. This is the main reason why some recent compressible studies
on satellite data neglect the unobtainable compressible terms (Banerjee et al., 2016; Hadid
et al., 2018).

Considering these limitations it is important to determine whether the terms being omitted
are signi�cant or not. Thankfully, the application of CHMHD law A18 to DNS data simulated
with the GHOST code has shown that purely compressible terms (the so-called source terms)
have no meaningful in�uence on the overall dynamics (Andrés et al., 2018), justifying these
components being neglected in other studies. Such speci�c numerical analysis of exact laws
are important, as they allow for testing the behavior and boundaries of these equations within
a fully controllable environment, and thus to pinpoint important, speci�c details susceptible
to ease subsequent studies on more complex datasets, such as SW real data analysis.

Similarly to previous section, this section will be dedicated to extensive testing of the
CHMHD law F21 and its comparison with law A18. We aim at verifying to what extent the
two laws provide matching results and how the various components of F21 behave individually.
We also test how the exact laws react when used to analyze non-forced (and so non-stationary)
simulations, which will require considering more general versions of the exact laws. Note that
the work presented in this section was still ongoing during the writing of this manuscript.
Thus, the paper summarizing this study and that can be found at the end of appendix B
contains additional comments and �ndings.
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4.3.2 Presentation of the data

To obtain the datasets used in this study, I used the pseudo-spectral code GHOST (Gómez
et al., 2005; Mininni et al., 2011) along with a module for numerically solving the CHMHD
equations (2.54)-(2.57). I ran three simulations for almost two years on the supercomputer
Occigen based in France, each parallelized on 360 CPUs through MPI. The three simulations
were ran in a cubic periodic box of spatial resolution of N = 1024 grid points in all three
directions, and all simulations use dimensionless viscosity and magnetic di�usivity of ν = η =
3.0×10−4. The speci�city of these simulations is that they do not feature any forcing: instead,
they are set to an initial state and the �ow is left to evolve and decay. The setup of the initial
state is provided by the GHOST library: it is built from a superposition of harmonic modes
with random phases whose energy in Fourier space is put between two spheres of radius kdown
and kup, following the idea of Pouquet and Patterson (1978). The presence of a background
magnetic �eld B0 and the value of the Mach number MS vary between simulations, which
allows us to evaluate the in�uence of these parameters on the dynamics of the system. All
aforementioned parameters are reported in Table 4.1.

Run |B0| Resolution ν = η di/L0 MS kdown kup
I 2 10243 3.0× 10−4 0.02 0.25 1 3
II 0 10243 3.0× 10−4 0.02 0.25 1 3
III 0 10243 3.0× 10−4 0.02 0.5 1 3

Table 4.1: List of CHMHD runs and their relevant parameters. L0 = 2π denotes the side length of
the simulation box.
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Figure 4.3: Incompressible dissipation and �uctuations of the kinetic and magnetic energies as a
function of time for run II. The vertical dotted lines represent the 5 times selected to compute the
exact laws. A linear �t is made on these 5 times and gives the average energy dissipation rate around
these moments.

Due to the runs being in free decay, instead of looking for a stationary regime we must wait
for the simulations to reach a maximum of dissipation, indicating that turbulence has had
enough time to fully develop, and lead our study on times selected around this moment (see
Figure 4.3). Around the selected times the sum of the kinetic and magnetic energies of the
system, Ek +Em = ρu2/2 +B2/(2µ0) is expected to be decreasing steadily, which is observed
here in the case of run II. I thus used 5 snapshots at turnover times [5.3,5.35,5.4,5.45,5.5] to
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lead this study. Note that, as the energy is steadily decreasing, one can estimate the energy
dissipation rate thanks to a simple linear �t. Thus for run II the dissipation rate should
amount to roughly −0.087. Run III has time series (not shown) that are very similar to run
II: again 5 times were retained for the analysis, for turnover times [5.6,5.65,5.7,5.75,5.8], and
the energy dissipation rate is also estimated at −0.087.
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Figure 4.4: Incompressible dissipation and �uctuations of the kinetic, magnetic and internal energies
as a function of time for run I. The vertical dotted lines represent the 11 times selected to compute
the exact laws. The orange line represent a linear �t made on the 11 selected times for kinetic and
magnetic energies, and the red line a similar �t for total energy.

The case of run I, presented in �gure 4.4, is a bit more complicated as energy is a lot more
�uctuating. These oscillations match the �uctuations of internal energy and are thus thought
to be a consequence of exchanges between the kinetic plus magnetic energy and internal
energy, as was recently reported by Yang et al. (2021). For this run, it was necessary to select
more snapshots over a larger period of time, and to average all the resulting calculations in
time to obtain exploitable results despite the oscillations. For this run, the study is thus led
on 11 snapshots turnover times [8,8.1,8.2,8.3,8.4,8.5,8.6,8.7,8.8,8.9,9]. We can again estimate
the energy dissipation rate through a linear �t on the times studied: this leads to a dissipation
rate of around −0.083 when considering only Ek+Em, and −0.047 when considering the total
energy. The latter should be more representative of the dissipation in the system, as it is not
in�uenced by the reversible exchanges between Ek + Em and Eint. To con�rm this, I used
another method to estimate this dissipation rate: similarly to equation (1.28) we can write:

∂t
〈
Etot

〉
= −ν

〈
ω2
〉
− η

〈
J2
〉
. (4.1)

Using the mean value taken by the dissipation displayed in �gure 4.4a, at the times considered
for run I, we obtain an estimate for the energy dissipation rate of −0.05 which matches the
estimate obtained with the linear �t on total energy.

Aside from the �uctuations observed in the evolution of energy in run I, the presence
of a mean magnetic �eld in this simulation also has an in�uence on the general shape of
turbulence, as stated earlier. Contrary to runs with no mean �eld, which do not have an
obvious privileged direction, current sheets and turbulent structures will be oriented by this
background magnetic �eld in run I. This e�ect is readily visible in the 2D plots of the current
density shown in �gures 4.5 and 4.6: for run I current sheets oriented along the z-axis are
visible, while no privileged direction appears in plane (xy). For run II, this phenomenon is
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not observed in any direction. The current cuts for run III are not shown here but present
the same behavior as run II. Like in previous section, the asymmetry presented by run I will
in�uence the choice of the numerical method when calculating exact laws, as will be discussed
hereafter.
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Figure 4.5: (xy)-cut and (xz)-cut of the current density for run I, taken respectively at positions
z = 512 and y = 512.
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Figure 4.6: Same as �gure 4.5 for run II.

4.3.3 Calculation of law F21

First of all, we study the general behavior of exact law F21 and how it relates to the other
compressible law A18. To compute the laws I used the numerical schemes described in chapter
3. For runs II and III it is straightforward to use the 3D isotropic base vector set, however
the case of run I is subject to caution: in previous section it appeared that using the isotropic
version yielded better results, despite the simulation not being isotropic. Here I present a
test similar to the one shown in �gure 4.1: I computed both exact laws with the 3D isotropic
and axi-symmetric vector sets to see for which vector set the two laws match better. The two
computations are shown in �gure 4.7. The MHD components of the laws match equally for
both methods, however the Hall components show a better matching for the isotropic vector
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Figure 4.7: Energy cascade rate calculated with laws A18 and F21 for run I, using either the 3D
axi-symmetric base vectors set or the isotropic one. The blue, cyan, red and orange lines overlap at
most scales.

set than for the axi-symmetric one, similarly to the EMHD run analyzed in previous section.
Consequently, I also used the isotropic decomposition to study all datasets from run I.

Figure 4.8 shows the same comparisons between the two laws for runs II and III, also
computed with the isotropic vector set. We see a very good matching between the two laws
for both runs. These results con�rm that the two compressible exact laws indeed represent
the same energy cascade rate. Note that the matching on the Hall term is not as good as it
was for the EMHD dataset that made use of incompressible laws. This is a consequence of the
fact that these compressible laws require having large statistics and probing the turbulence in
a lot of directions to yield the same results: earlier calculations that were made using reduced
base vector sets (isotropic sets of 13 vectors with components equal to −1, 0 or 1) led to worse
matchings for the Hall component, as seen in �gure 4.9. This highlights the needs for strong
statistics to e�ciently study the turbulence cascade rate, an important point to which we will
return when studying MMS data in chapter 5.

Following the comparison of the exact laws, we focus our study on the detailed analysis of
law F21. We use the notations introduced in chapter 2, with equations (2.101)�(2.104), and
split the term SMHD into two (recall here that θ = ∇ · u):

SθMHD = −1

2
〈(ρθ′ + ρ′θ)|δu|2〉, (4.2)

SBMHD = 2〈δρ δu · δ̄(Jc ×B)〉. (4.3)

In �gure 4.10 we display the scale-dependent energy cascade rate and its individual compo-
nents, computed with the isotropic base vector set for the three runs. For the MHD part of
the law, a clear dominance of the �ux term FMHD can be seen at all scales. The two source
components both remain negligible in comparison to the �ux one at MHD and near ion scales,
similarly to what was observed for law A18 (Andrés et al., 2018). As we will see below, the
amplitude of these source terms is smaller than the error supposedly induced by the non-
stationarity of the runs, and as such their changes in behavior from one run to another can
probably be attributed to statistical e�ects.
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Figure 4.8: Energy cascade rate calculated with laws A18 and F21 for runs II and III, using 3D
isotropic base vectors set. The blue, cyan, red and orange lines overlap at most scales.
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Figure 4.9: Same as �gure 4.8a with a reduced isotropic vector set of 13 vectors, used during early
tests to speed up the calculations.
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The behavior of the Hall components is more constant between the three runs. In every
case, the Hall �ux term FHall is roughly equal to −2SHall, a particularity that is inherited
by their likeness to the incompressible terms H and −2A respectively, and that were shown
in chapter 2 to be related as 1

2∇ · H = 2A. Thus the relation between FHall and SHall is
to be expected for weakly compressible runs, and it appears that this behavior persists in
more compressible cases such as run III. Aside from this observation, the Hall part of the
law does not dominate even at the smallest scales of the simulation domain, in contrast to
what we will see in the next study about LF simulations. The main reason for this is the low
value of di that was selected to run these simulations: in order to increase the resolution to
10243, it appeared necessary to reduce this parameter so that the simulation would compute
successfully. The high resolution and large statistics obtained at the cost of a less developed
Hall dynamics make these runs more suited to a theoretical investigation of the exact laws
than to a physical interpretation of the Hall e�ect in turbulence, which will again be more
addressed in next study.

If we look at the total energy cascade rate resulting from these calculations we observe
that it does not vary much over a decade, yet it cannot be quali�ed of constant, as we would
expect for an inertial cascade. The most probable reason to this is the weak Hall e�ect
mentioned above, which makes it so that dissipation starts acting before the Hall e�ect can
start driving the cascade on its own. We will not see this behavior in the following DNS
studies as they make use of hyperdissipation, contrary to the data presented here: instead of
dissipating energy through the second derivatives presented in equations (2.58) and (2.59),
hyperdissipation terms of higher derivation order are used (e.g. dν = ν∆4u). These terms
push the dissipation back to even smaller scales, allowing for the turbulence cascade to develop
over a broader range of scales. I tried to implement hyperdissipation in the GHOST code,
but once the change was done I could not �nd a set of parameters that would allow the code
to run successfully, and values always ended up over�owing. It would probably have required
a more thorough modi�cation of the code to work properly, so I ultimately had to put this
idea aside.

A last remark can be done, regarding the estimates for the energy dissipation rate proposed
in �gures 4.3 and 4.4. Using a linear �t on the energy evolution, I estimated this dissipation
rate to be around −0.087 for both run II and run III. The energy cascade rate indeed reaches
similar values at intermediate, MHD scales, suggesting that this cascade rate is representative
of the energy dissipated in the system. This matching does not extend to small scales due to
dissipation starting to take energy away from the turbulent cascade. For run I I obtained two
estimates for the energy dissipation rate: one around −0.083 obtained through a linear �t
similar to runs II and III and that matches the local variation of energy, and one around −0.05
obtained from the mean value of −ν

〈
ω2
〉
− η

〈
J2
〉
and that is best suited to follow the global

evolution of energy, disregarding the oscillations. In �gure 4.10 the energy cascade rate for
run I lies around 0.05 at intermediate scales, which would suggest that the energy cascade rate
is able to transcribe the global dynamics of the system, disregarding the reversible exchanges
with the internal energy. Note that the reduction of the cascade rate in presence of a mean
magnetic �eld has already been observed before (Andrés et al., 2018).

4.3.4 Non-stationary CHMHD laws

Switching from a forced turbulence model to a free decay model, like the one used to compute
the simulations presented in this section, invalidates the stationarity hypothesis used to derive
the �nal expression of the compressible exact laws. Indeed, this assumption is tied to the
forcing and allowed us to remove the time-derivatives of the structure functions from the
equations, and to approximate both the forcing and the dissipation to the energy cascade
rate. In a free decay model, the stationarity assumption (and its implications) does not stand
anymore, and one could then wonder if the exact laws are still valid. Thus it is advisable to
return to a more general expression of the exact laws, prior to applying the simpli�cations
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stemming from the stationarity and the presence of the forcing.
For F21 we will simply use equation (2.93) that we rewrite under the compact form:

2εF21 + ∂t
〈
Etot

〉
− ∂t 〈S〉+DF21 +DlocF21 + FF21 + F locF21 = 0, (4.4)

where we de�ne the disipative terms:

DF21 ≡−
1

2

〈(
1 +

ρ′

ρ

)
u′ · dν +

(
1 +

ρ

ρ′

)
u · d′ν

〉
− 1

µ0

〈
B′ · dη +B · d′η

〉
, (4.5)

DlocF21 ≡
1

2

〈
ρ

ρ′
u′ · d′ν +

ρ′

ρ
u · dν

〉
+

1

2µ0

〈
B · dη +B′ · d′η

〉
, (4.6)

and the forcing terms:

FF21 ≡ −
1

2

〈(
1 +

ρ′

ρ

)
u′ · f +

(
1 +

ρ

ρ′

)
u · f ′

〉
, (4.7)

F locF21 ≡
1

2

〈
ρ

ρ′
u′ · f ′ + ρ′

ρ
u · f

〉
, (4.8)

and where εF21 is the cascade rate whose expression is given by equation (2.99). The super-
script loc for the forcing and dissipation is used to designate terms that are computed locally,
with variables taken in a single point r or r′ (excluding the density ratios, that would remain
close to 1 in weakly compressible turbulence). For the datasets presented here the forcing
terms FF21 and F locF21 will be equal to zero.

For exact law A18 we need to provide more details as the law was not derived in this
thesis. It can be obtained through the same overall method as F21, but the three-dimensional
CHMHD equations make use of the Alfvén speed vA ≡ B/

√
µ0ρ instead of the magnetic �eld:

∂tρ =−∇ · (ρu), (4.9)

∂tu =− u ·∇u+ vA ·∇vA −
1

ρ
∇(P + PM )− vA · (∇ · vA) + dν + f, (4.10)

∂tvA =− (u− λJc) ·∇vA + vA ·∇(u− λJc)−
vA

2
(∇ · v− λ∇ · Jc) +

dη√
ρ
, (4.11)

vA ·∇ρ =− 2ρ(∇ · vA), (4.12)

Jc ·∇ρ =− ρ(∇ · Jc), (4.13)

where PM ≡ ρv2
A
/2 is the magnetic pressure. This system is also closed with an isother-

mal closure. The calculation of the dynamical equation ∂t 〈R′E +RE〉 ultimately leads, after
calculations similar to the ones presented in section 2.3, to the exact law:

−2εA18 =
1

2
∇` · (FMHD + diF

HMHD) + (SMHD + diS
HMHD) + SMHD

H +MMHD
β (4.14)

where the MHD terms read:

FMHD =
〈
[(δ(ρu) · δu+ δ(ρvA) · δvA + 2δeδρ

]
δu− [δ(ρu) · δvA + δu · δ(ρvA)]δvA

〉
(4.15)

SMHD =

〈
[R′E −

1

2
(R′B +RB)](∇ · v) + [RE −

1

2
(RB +R′B)](∇′ · v′)

〉

+
〈
[(RH −R′H)− ρ̄(u′ · vA)](∇ · vA) + [(R′H −RH)− ρ̄(u · v′A)](∇′ · v′A)

〉
(4.16)

SMHD
H =

〈
[
P ′M − P ′

2
− Etot′ ](∇ · v) + [

PM − P
2

− Etot](∇′ · v′)
〉

+
〈
H ′(∇ · vA) +H(∇′ · v′A)

〉

+
1

2

〈(
e′ +

vA
2

′2)[∇ · (ρu)
]

+
(
e+

vA
2

2)[∇′ · (ρ′u′)]
〉

(4.17)

MMHD
β =

1

2

〈
β−1′∇′ · (e′ρu) + β−1∇ · (eρ′u′)

〉
(4.18)
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and the Hall terms:

FHMHD =2[(ρJc × vA)× δvA − δ(Jc × vA)× ρvA]
〉

(4.19)

SHMHD =

〈
δρ
Jc · v′A

2
(∇ · vA)− δρJ

′
c · vA

2
](∇′ · v′A)

〉

+

〈
RB −R′B

2
(∇ · Jc) +

R′B −RB
2

(∇′ · J′c)
〉

(4.20)

with the cross helicity H ≡ ρ(u · vA), its two-points correlator RH ≡ ρ(u · v′
A

+ vA · u′)/2,
the correlator for magnetic energy RB ≡ ρvA · v′A/2 and β−1 ≡ v2

A
/2c2

s. Just like equation
(2.99), this law is obtained under the assumptions of statistical homogeneity, time stationarity
and in�nite Reynolds number. An expression similar to (2.93) that does not make use of the
stationarity assumption is also reported in Andrés et al. (2018), and can here again be written
under a compact form:

2εA18 + ∂t
〈
RE +R′E

〉
+DA18 + FA18 = 0. (4.21)

The dissipative term DA18 is not explicitly given in Andrés et al. (2018) but is easy to cal-
culate. Just like DF21 it is made of a dissipation component given by terms like ∂t 〈ρu · u′〉 and
Navier-Stokes equation, and a di�usion component given by terms of the form ∂t 〈ρvA · v′A〉
and the induction equation. The component stemming from the velocity �eld and Navier-
Stokes equation is the same as in (4.5), as both originate from the same time derivative and
the dissipative term of Navier-Stokes is the same in the two models. The component originat-
ing from the magnetic �eld and induction equation is di�erent however, and takes the form
of:

∂t

〈
1

2
(ρ+ ρ′)vA · v′A

〉
→1

2

〈
ρvA ·

d′η√
ρ′

+ ρv′A ·
dη√
ρ

+ ρ′vA ·
d′η√
ρ′

+ ρ′v′A ·
dη√
ρ

〉
,

→1

2

〈
(

√
ρ√
ρ′

+

√
ρ′√
ρ

)(B · d′η +B′ · dη)
〉
, (4.22)

which ultimately leads to

DA18 = − 1

2

〈(
1 +

ρ′

ρ

)
u′ · dν +

(
1 +

ρ

ρ′

)
u · d′ν

〉

− 1

2

〈
(

√
ρ√
ρ′

+

√
ρ′√
ρ

)(B · d′η +B′ · dη)
〉
. (4.23)

Note that the non approximated version of A18 does not have any equivalent to DlocF21. Indeed,
the structure function of F21, 〈S〉, can be developed into cross terms such as

〈
B ·B′

〉
and

same-point terms like 〈B ·B〉. Local terms originate from the latter, that have no equivalent
in the correlator used to derive A18. Similarly, the forcing term FA18 is the same as the one
for law F21:

FA18 = − 1

2

〈(
1 +

ρ′

ρ

)
u′ · f +

(
1 +

ρ

ρ′

)
u · f ′

〉
. (4.24)

This term is also equal to zero for the datasets studied here.
Using the same code skeleton and integration method used to compute the terms of the

exact laws, I calculated the new terms 〈S〉, 〈RE +R′E〉, 〈Etot〉, DF21, DlocF21 and DA18 for all
snapshots of the three runs. Time derivatives were all calculated over �ve snapshots with
the same �ve-points stencil (3.9) used to compute the spatial derivatives in the datasets. For
runs II and III, the derivatives make use of the 5 snapshots retained and all other terms are
calculated on the middle one, respectively at times 5.4 and 5.7. Averaging these terms over
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the �ve snapshots was found to bring no change to the results. For run I, I calculated all
possible time derivatives using the 11 snapshots, for a total of 7 (one using times 8 to 8.4, one
using times 8.1 to 8.5 etc.), and computed their time average. For all other terms I computed
the time average over all 11 snapshots. Figure 4.11 and 4.12 present all individual terms of
laws A18 and F21 respectively obtained for the three runs, along with the sum of these terms
which is displayed in black.

We start by looking at results obtained with A18, displayed in �gure 4.11. Both run II
and run III show very similar behaviors. The term ∂t 〈RE +R′E〉 reaches at intermediate
and small scales an almost constant value corresponding to twice the energy dissipation rate
reported earlier, which is consistent with the fact that at small enough scales ∂t 〈RE +R′E〉 →
∂t 〈2Etot〉. We can observe that 2εA18 follows the same trend as ∂t 〈RE +R′E〉, albeit with
an opposed sign, at all scales except the smallest ones where dissipation is not negligible
anymore. Yet, the full sum of all terms (theoretically equal to zero) remains low even at these
small scales, which suggests that the rise of the dissipation amounts for twice the decrease of
the energy cascade rate. At dissipative scales, expression (4.23) can be approximated to:

DA18 ' −
1

2

〈(
1 +

ρ

ρ

)
u · dν +

(
1 +

ρ

ρ

)
u · dν + (

√
ρ
√
ρ

+

√
ρ
√
ρ

)(B · dη +B · dη)
〉
.

= − 1

2
〈2u · dν + 2u · dν + 2B · dη + 2B · dη〉 = 2εA18, (4.25)

which is indeed what is observed here for runs II and III, corroborating the correlation between
energy dissipation and energy cascade. In the scope of the non-stationary exact law, the term
∂t 〈RE +R′E〉 can be interpreted as a scale-dependent reservoir of energy, taking the role of the
forcing absent from these free decay runs. At a given scale, it represents the energy available
to be either transfered by the cascade, or dissipated at small scales. The terms 2εA18 and
DA18 thus describe the balance between cascade and dissipation in the whereabouts of this
reservoir of energy.

For run I the relations between the terms remain pretty consistent with what is observed
for runs II and III, except for a notable gap between the amplitude of ∂t 〈RE +R′E〉 and the
amplitude of the sum 2εA18 + DA18: these quantities are not compensating each other as
they are supposed to, but instead ∂t 〈RE +R′E〉 is overall higher. Yet, the di�erence between
them remains constant, as indicated by the black curve. The energy cascade rate for this run,
as stated before, matches the estimate obtained for the dissipation rate at −0.05, whereas
∂t 〈RE +R′E〉 appears to be closer to (twice) the linear �t estimate of −0.083. This is further
evidenced by the di�erence curve, that has an amplitude of ∼ −0.06 to ∼ −0.07 corresponding
to twice the di�erence between the two estimates (remember that the di�erence is calculated
between terms that supposedly amount for 2εA18). Thus, we can argue that the energy
cascade rate is able to transcribe the general dynamics of the system and of energy evolution,
bypassing the oscillations, whereas ∂t 〈RE +R′E〉 is perturbed by the �uctuations of energy at
the considered times. With this interpretation, the sum of all terms is not equal to zero, but
rather represents the error induced in the calculations of time derivatives by the �uctuations
of energy.

We now look at the results obtained with F21, displayed in �gure 4.12. Again the behaviors
of runs II and III are pretty similar, and di�er from the one of run I. Here there are more
terms that need to be analyzed. First, we notice that both the energy cascade rate and the
dissipative term DF21 are the same as for law A18. This was already observed before for
the energy cascade rate, and the likeness of DA18 and DF21 can be seen in their respective
expressions, that only di�er by the addition of factors

√
ρ/
√
ρ′ and

√
ρ′/
√
ρ on the magnetic

dissipation. This result suggests that, even for the more compressible run III, these factors
remain close to unity.

One can note that DlocF21 remains constant in ` for all simulations despite containing the
scale dependent terms ρ/ρ′ and ρ′/ρ, even for run III. This can be explained by the fact that
ρ′/ρ remains close to unity, as already stated, but also by a domination of the magnetic,
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Figure 4.11: Terms of the general equation (4.21) along with their sum (black) for the three GHOST
runs.
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Figure 4.12: Terms of the general equation (4.4) along with their sum (black) for the three GHOST
runs.
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non-scale dependent part of the dissipation, a phenomenon that is also observed in the LF
runs studied in next section. In runs II and III, DlocF21 and ∂t 〈Etot〉 are almost equal, which
is explained by the fact that DlocF21 ∼ −εF21 in the limit of ρ ∼ ρ′ (or of dominant magnetic
dissipation), which is indeed veri�ed by comparing this term to the energy cascade rate. The
small gap between DlocF21 and ∂t 〈Etot〉 can be attributed to the fact that the latter also takes
internal energy into account (no �uctuations of energy are observed on these runs that could
explain the gap otherwise).

For run I however we observe a large di�erence between these terms with DlocF21 lying
closer to εF21, and ∂t 〈Etot〉 being similar to its values in other runs and of the same order as
the local estimate of dissipation obtained previously with a linear �t on the energy (around
−0.083). Here we witness the same discrepancy observed for A18 between quantities related
to instantaneous turbulence and time derivatives for the energy or correlation functions. The
former do not feel the oscillations and show the global behavior of the system, and the latter
are in�uenced by the time �uctuations of the system. Similarly to what was obtained for A18,
the error for F21 is representative of the di�erence between the estimates of the dissipation
rate, this time by taking an almost constant value of ∼ −0.03 at small and intermediate scales,
which is consistent with the fact that the error at these scales stems only from ∂t 〈Etot〉 that
should amount to one time the dissipation rate.

Interpreting the balance between the terms of the non-stationary F21 law is more subtle
than for A18. Recall that, from equation (2.71), we can write a relation connecting 〈S〉,
∂t 〈Etot〉 and a modi�ed correlation function

〈
R̃E

〉
=
〈
0.5ρu · u′ +B ·B′ + ρe′

〉
. If ρ and ρ′

are similar enough, said relation can be derived in time and written as:

∂t〈S〉 =∂t
〈
Etot

〉
− ∂t

〈
R̃E + R̃′E

〉
+ ∂t〈Ek + Em〉, (4.26)

with the kinetic and magnetic energies Ek = 0.5|ρu|2 and Em = 0.5|B|2 respectively. The
third term of the right-hand side corresponds to local kinetic and magnetic energy dissipations,
which are akin to term DlocF21. Consequently, the ensemble of terms −∂t〈S〉+∂t

〈
Etot

〉
+DlocF21

can be interpreted as a reservoir of energy similar to ∂t 〈RE +R′E〉 for law A18. Again, the
shapes of 2εF21 and DF21 will dictate whether this energy cascades or is dissipated at a given
scale.

4.3.5 Summary of the GHOST study

In this section we present an in-depth study of exact laws A18 and F21 on simulations in a
state of free energy decay. These simulations allowed us to con�rm that the two laws provide
the same results for both the MHD and the Hall components of the energy cascade rate.
The energy cascade rates obtained match the energy dissipation rates estimated on the basis
of the time evolution of the energy or the average dissipation, suggesting that the energy
transfered by the cascade corresponds to the energy dissipated at small scales. The speci�c
analysis of F21 showed that the MHD source term, similarly to A18, remains negligible at
all scales in comparison to the �ux one. However, this behavior is not reproduced by the
Hall part of the law: the Hall �ux term is roughly equal to minus two times the source one,
showing a trend similar to their incompressible counterparts. The terms of the law seem to
be weakly in�uenced by compression, as they show few di�erences betweens run II and run
III of respective Mach numbers 0.25 and 0.5. The presence of a background magnetic �eld in
run I reduces the overall amplitude of the cascade.

The exact laws are then rewritten and studied without the usual assumption of time
stationarity, that requires a large scale forcing to balance out the dissipation. Through this
in-depth study we see that the full exact laws remain valid in the absence of an external forcing,
albeit with a change in the interpretation. Indeed, instead of a constant �ow of energy fueling
the turbulence from the large scales, the turbulent cascade seems to draw from a local pool
of energy destined to either continue cascading or be dissipated. In the special case of run I,
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�uctuations appear on the time evolution of energy, probably due to the introduction of waves
in the system due to B0. Because of these �uctuations a discrepancy is observed between
the time derivatives and the remaining terms: the former seem sensitive to the �uctuations,
whereas the latter only depict the global trend of the evolution of the system. The error
induced by this discrepancy is, for both laws, tied to the di�erence between estimates of the
dissipation rates obtained by taking into account these �uctuations or not. These di�erences
are very likely to have appeared due to insu�cient time statistics when studying run I. If the
run were pushed further in time and more snapshots were taken to cover several periods of
the time �uctuations, this error should ultimately be reduced. However, this would require
spending much more time than is currently a�ordable on this particular aspect of the thesis.

In any case, the study led here brings several information and results that will be useful
for subsequent studies. Knowing the individual behaviors of the terms forming F21 is an
important asset to analyze and physically interpret results obtained from more speci�c studies
on DNS or in situ data, such as those of MMS that will be worked on in chapter 5. This
work also shows the correlation between the turbulence energy cascade rate and the energy
dissipation, and as such is a �rst step towards the more complete study presented in the next
section, which aims at connecting again cascade and dissipation in presence of kinetic e�ects,
namely Landau damping.

4.4 Application to Landau-�uid simulations

4.4.1 Context of the study

As we explained in chapter 1, turbulence is known to play an important role in some physical
processes at work within the SW, notably with its non-adiabatic expansion (Richardson et al.,
1995). This turbulence has been extensively studied with exact laws (Smith et al., 2006;
Podesta et al., 2007; MacBride et al., 2008; Marino et al., 2008; Smith et al., 2009; Stawarz
et al., 2009; Osman et al., 2011; Coburn et al., 2015; Hadid et al., 2017): the estimated
cascade rate was interpreted as the turbulence energy dissipation rate, and hence used to
quantify the amount of plasma heating due to turbulence (Sorriso-Valvo et al., 2007; Carbone
et al., 2009; Banerjee et al., 2016). However, the weakly collisional nature of the SW makes it
so that, in such plasmas, classical viscous and/or resistive e�ects are absent, and dissipation is
expected to occur via kinetic e�ects (e.g., Landau and cyclotron resonances) (Leamon et al.,
1998; Sahraoui et al., 2009; Sahraoui et al., 2010; He et al., 2015; Woodham et al., 2018;
Chen et al., 2019) that are not described by the typical �uid models under which all exact
laws are derived. Hence the fundamental question already stated earlier: is it possible for the
�uid turbulence energy cascade rate to provide an estimate of the actual kinetic dissipation
in non-collisional (astrophysical) plasmas ?

To investigate this question, we take advantage of the weak compressibility of the runs and
use the IHMHD exact law F19 derived in chapter 2 to investigate the fundamental question of
the correlation between the (�uid) turbulent cascade rate and the kinetic dissipation occurring
in a given medium. This question directly impacts the use of �uid models to interpret part of
in-situ spacecraft observations in the near-Earth space and the theoretical (�uid vs. kinetic)
modeling of weakly collisional plasmas. Previous studies based on 2D hybrid particle-in-
cell simulations already investigated the behavior of exact laws in presence of kinetic e�ects
(Hellinger et al., 2018; Bandyopadhyay et al., 2020; Vásconez et al., 2021), but none was
able to quantitatively prove the existence of a relation between the cascade rate and kinetic
dissipation. The 3D LF models used in this section give the possibility to isolate the in�uence
of electron and ion Landau damping, neglecting all the other kinetic e�ects and allowing for
an in-depth, quantitative analysis of the possible correlations between the energy cascade and
Landau damping.
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4.4.2 Theory of CGL and LF models

In this study we make use of simulations obtained with two models: the CGL model and
the LF model, based on the same general CMHD model presented in chapter 1 but using
di�erent closures. The CGL model refers to a closure with anisotropic ion pressure whose
axi-symmetric components parallel and perpendicular to the local magnetic �eld obey the
following nonlinear dynamical equations, where the heat �uxes are neglected:

d

dt

(
p‖|B|2
ρ3

)
= 0 ;

d

dt

(
p⊥
ρ|B|

)
= 0. (4.27)

Here p⊥ and p‖ are the components of the pressure tensor P = p⊥I + (p‖ − p⊥)b̂b̂, I is
the unit tensor and b̂ = B/|B| the unit vector aligned with the magnetic �eld. The time
derivative operator reads d/dt = ∂/∂t + u ·∇. This closure is also known as the bi-adiabatic
approximation and was introduced by Chew, Goldenberg and Low (Chew et al., 1956) (hence
the acronym). Note that in our case this closure only applies to the ions: the electrons are
still assumed isothermal. This model does not contains built-in kinetic dissipation, thus in
our CGL simulations all energy dissipation occurs through arti�cial hyperdissipation (see the
description of the code in next subsection).

Di�erently, the LF model retains the nonlinear dynamics of the parallel and perpendicular
pressures and heat �uxes for both the ions and the electrons through equations:

d

dt
ln

(
p‖|B|2
ρ3

)
= − 2c

|B| b̂ ·∇×E − 1

p‖

(
−2q⊥∇ · b̂+ ∇ · (q‖b̂)

)
(4.28)

d

dt
ln

(
p⊥
ρ|B|

)
=

c

|B| b̂ ·∇×E − 1

p⊥

(
q⊥∇ · b̂+ ∇ · (q⊥b̂)

)
. (4.29)

Here, E is the electric �eld as we already de�ned it through Ohm's law (1.20) in Hall MHD,
but also takes into account the term for electron pressure that was neglected before. q‖
and q⊥ are the longitudinal and transverse heat �uxes obtained from the integration of the
model closed at the level of the fourth-order moments, with a closure consistent with the
low-frequency linear kinetic theory (Snyder et al., 1997). The main assumption for modeling
Landau damping (and thus closing the �uid hierarchy) is that, up to the distortion of the
magnetic �eld lines, Landau damping keeps the same form as in the linear regime. This allows
for building the appropriate closure based on the linear expression of Landau damping, which
is easier to determine. In this model, as we will show below, the heat �uxes are essentially
driven by Landau damping, and only a small fraction of dissipation originates from the heat
�uxes present in the quasi-normal closure (i.e., a �uid closure at the fourth order that would
not include Landau damping, see Hunana et al. (2019)). Thus, the comparison of this model
and the CGL one, which contains no heat �uxes, should help highlighting the in�uence of
kinetic dissipation (and more speci�cally Landau damping) on the energy cascade.

4.4.3 Description of the numerical code

The simulations were ran using a numerical code that solves all �uid equations for density,
velocity, magnetic �eld, pressures and heat �uxes (when applicable) in Fourier space. The
simulations are run in triply periodic boxes of various resolutions and are performed using
a desaliased spectral code (at 2/3 of the maximum wavenumber) with a third-order Runge-
Kutta scheme for time stepping. The speci�c modeling of Landau damping involves a Hilbert
transform along the distorted magnetic �eld lines which leads to Landau dissipation, and
whose approximation in the numerical code is discussed in Passot et al. (2014). In both CGL
and LF models, �nite ion and electron Larmor radius corrections are neglected, thus reducing
the kinetic e�ects to the sole Landau damping. The Ohm's law includes the Hall term and
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the electron pressure contribution. In all the simulations, βi = 1 and the ion and electron
pressures are taken isotropic and equal initially.

Turbulence is forced with counter-propagating Kinetic Alfvèn Waves (KAWs) making an
angle θ with the ambient magnetic �eld, at transverse wavenumbers k⊥,f corresponding to the
largest scales of the simulation domain. Note that the simulation domains are elongated in the
longitudinal direction (along the mean magnetic �eld direction): the ratio of the longitudinal
to transverse box sizes is given by tan(θ). The amplitudes of the forcing waves obey a Langevin
equation, with an oscillation frequency given by the KAW linear dispersion relation (TenBarge
et al., 2014). We also introduce two thresholds in order to constrain the sum of perpendicular
kinetic and magnetic energies to stay within a certain range: above the maximum threshold
the forcing stops and energy is left to decay, and below the minimum threshold the forcing
resumes. Aside from Landau damping, small-scale dissipation is ensured by hyperviscosity and
hyperdi�usivity terms in the velocity and induction equations that replace the terms dν and dη
introduced in chapter 2. These are of the form dν = ν(∆⊥+α∂2

z )4u and dη = η(∆⊥+α∂2
z )4b,

with α being an anisotropy coe�cient.

Run k⊥,fdi Resolution θ ν = η α

CGL1 0.045 5123 83◦ 7.35× 10−8 80
CGL2 0.045 5123 75◦ 7.35× 10−8 10
CGL3 0.5 5122 × 1024 75◦ 10−14 2.5
CGL4 0.011 10243 75◦ 3× 10−3 5
LF1 0.045 5123 83◦ 7.35× 10−8 1
LF2 0.045 5123 75◦ 7.35× 10−8 1
LF3 0.5 4323 75◦ 7× 10−14 1.5
LF4 0.011 5123 75◦ 3× 10−3 2

Table 4.2: List of runs and their relevant parameters, where CGLx and LFx refer to HMHD-CGL
and LF simulations, respectively. tan(θ) corresponds to the ratio of the longitudinal to transverse box
sizes.

A total of eight runs are performed: four with the CGL model, and the other four with the
LF model. All of their relevant parameters are summarized in Table 4.2. These runs feature
various forcing wavenumbers which allow us to draw a broad picture of the turbulence across
about 3 decades in scale. Two di�erent propagation angles for the driving KAWs of each LF
simulation were chosen to re�ect di�erent levels of Landau damping (Kobayashi et al., 2017).
Indeed one can see in Fig. 4.13, which compares the linear dispersion relation and damping
rate of the KAWs, that the propagation angle has an in�uence on the magnitude of Landau
damping: the higher the angle, the lower the damping rate at a given scale (Sahraoui et al.,
2012).

Finally, we proceed to an energy balance check to verify that energy is conserved in our
simulations. Let Etot(t) = ρu2/2 + ρb2/2 + ρe be the total energy of the system at time t,
It(t) the injection rate due to the external forcing on the perpendicular velocity components,
and Dh(t) the total dissipation rate due to the hyperviscous and hyperdi�usive terms. Since
Landau damping only transfers turbulent energy to internal energy through heating, it does
not a�ect the total energy balance and thus total energy conservation reads:

d

dt
Etot(t) = It(t)−Dh(t). (4.30)

Denoting by Eint and E‖ the parts of the total energy associated with the pressure components
(internal energy) and the parallel velocity and magnetic �eld components entering the kinetic
and magnetic parts, we can write

d

dt
Etot(t)−

d

dt
Eint(t)−

d

dt
E‖(t) ≡

d

dt
E⊥(t) ≈ 0, (4.31)
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Figure 4.13: Linear dispersion relation (ω) and damping rate (γ) of KAWs for the LF model at the
two propagation angles θ = 83◦ and 75◦ used in driving the simulations (βi = 1, Ti = Te, di denotes
the ion Larmor radius and ωci the ion gyrofrequency).

where E⊥ is the sum of the perpendicular kinetic and magnetic energies, a quantity bound to
remain nearly constant by the forcing procedure described above.

(a) CGL3-LR run. (b) LF3-LR run.

Figure 4.14: Low resolution runs of CGL3 and LF3: Time evolution of the total energy injected in
the system

´ t
0
Itdt (solid red line), total energy Etot (solid blue), internal energy Eint (solid green),

perpendicular energy E⊥ (solid magenta, roughly constant) and the time integrated hyperdissipation´ t
0
Dhdt (dashed red). The piece of dashed green curve (right) starting at t = 250, whose vertical

position is arbitrary, displays the heating due to heat �uxes, which is consistent with the increase of
internal energy.

Because of computational constraints the time evolution of the di�erent energy compo-
nents is computed for low resolution (LR) simulations analog of runs CGL3 and LF3 (injection
and dissipation rates needed to perform this extra study were not output at a high-enough
frequency in the simulations presented in this section). From the results displayed in Figure
4.14 it is obvious that the time evolution of total energy (blue), injection (red) and hyperdis-
sipation (dashed red), whose slopes are reported in the plots, is consistent with the energy
conservation equation (4.30). Moreover, one can see the driving procedure at play in keeping
the perpendicular energy E⊥ roughly constant. Its time stationarity is in practice reached
when the hyperdissipation rate has reached a constant value. When comparing CGL3-LR
with LF3-LR, one notices that run LF3-LR requires a larger injection rate to maintain the
same level of turbulence on the magnetic and perpendicular velocity than in run CGL3-LR,
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since Landau damping e�ciently converts a part of the injected energy into internal energy.
This is evidenced by the dashed green curve in Fig. 4.14b, which shows that the increase of
the internal energy is consistent with the heating by heat �uxes. Moreover, the hyperdissi-
pation rate is lower on run LF3-LR, suggesting that part of the cascading energy is taken by
Landau damping.

4.4.4 Evaluation of the exact law and dissipations
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Figure 4.15: Comparison of the IHMHD model F19 and the CHMHD model F21 for runs LF1 and
LF3. The top panels show a visual comparison of the total cascade rate and its two components for
F19 and F21 (in dark and bright lines respectively). The bottom panels show the relative di�erence
between the two models as |εF21 − εF19|/|εF19|. Note that the Hall component is absent from the
bottom panel for run LF1: this is because it is negligible in the inertial range and more sensitive to
errors due to its low amplitude. Thus, it brings no information on the discrepancy between the two
models.

To study these CGL and LF datasets I chose to use the IHMHD law F19 presented in
section 2.2:

ε = εMHD + εHall = −1

4
∇` ·Y−

1

8
∇` ·H. (4.32)

I chose to use an incompressible law because the datasets are weakly compressible (with a
Mach number MS = 1/

√
2) in order to simplify the analysis and accelerate the computation.

As shown in Figure 4.15, the full CHMHD exact law F21 was also used, and only a slight
change (. 10% in the inertial range) in the cascade rate was found with respect to the estimate
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from the incompressible model. This justi�es the use of an incompressible law on our datasets.
The calculation was done with the 3D anisotropic vector decomposition described in section
3.2.3 due to the axi-symmetric nature of these simulations, and this decomposition proved
to be in good agreement with the theoretical equivalence between the three IHMHD laws
demonstrated in chapter 2 (and already discussed in section 4.2), as shown in �gure 4.16. A
deviation can be observed for law G08 in run LF3 (see �gure 4.16b), that may be the result
of the lower resolution of run LF3, yet the equivalence between the two other laws holds very
well. Thus, we consider this decomposition as a valid model to study the present datasets.
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Figure 4.16: Comparison of the three IHMHD models G08, BG17 and F19 for runs LF1 and LF3.

As mentioned in previous subsection the spectral code was desaliased at 2/3 of the max-
imum wavenumber. In practice, this means that all information computed with the exact
law for scales smaller than 3/2 of the grid separation is polluted by the numerical scheme
and must not be taken into account. Usually I do not compute the value of the exact law
at grid separation as the computation method used leads to weaker statistics at this scale,
and only start the calculations at twice the separation, so the calculations lie outside the
desaliasing range. Nevertheless, to get the most complete picture possible of the turbulence,
values below the minimum calculated scale are extrapolated using a cubic spline constructed
on all available data points. This allows the calculated cascade rates to reach the desaliasing
scale and to be fully compared to the hyperdissipation (that naturally reaches this scale as it
is computed in Fourier space).

4.4.5 Methods of calculation of the hyperdissipation

In the �rst iterations of this study I calculated the hyperdissipative terms as they appear in
the �uid exact law. According to equation (2.34), the dissipative terms of the cascade (outside
of the inertial range where they would otherwise be negligible) read:

εdiss(`⊥) = −1

2

〈
u · d′⊥,ν + u′ · d⊥,ν

〉
− 1

2

〈
b · d′⊥,η + b′ · d⊥,η

〉
, (4.33)

where d⊥,ν = ν∆4
⊥u and d⊥,η = η∆4

⊥b are the transverse hyperviscosity and hyperdi�usivity.
I calculated this dissipation in the same way I usually compute all the other terms of the exact
law, through an average on both space and increment vectors. The calculation of the eighth
derivative can be done either in real space or in Fourier space, and both methods were found
to give the same results. The resulting dissipation is shown in �gure 4.17a. Aside from the
huge gap in amplitude between the dissipation and the energy cascade rate (which should be
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matching at small scales) the dissipation appears to be roughly following a scaling of ∼ `−2
⊥

around intermediate scales. This behavior is unexpected as the hyperdissipation takes the
form of an eighth derivative: this should introduce a factor of k8

⊥ in Fourier space, so one
would expect a steep scaling of around ∼ `−7

⊥ in real space instead of the observed ∼ `−2
⊥

one. We suspect this discrepancy to be the result of a saturation of the scaling, a mathematic
limitation preventing the slope from becoming steeper than ∼ `−2

⊥ .
Such a saturation was already found for structure functions, e.g. SF2(`) =

〈
|δu|2

〉
, which

can be obtained mathematically (see Cho and Lazarian (2009)). Indeed, one can show that
the second-order structure function associated to a spectrum of slope k−m will scale as:

SF2(`) ∝
{
`m−1, if m < 3

`2, if m > 3.
(4.34)

Consequently, a function that has a power-law spectrum equal to, or steeper than, k−3 has
its structure function that is ill-de�ned and should bear no physical meaning. Here a similar
problem seems to be occurring, but on the correlation function instead of the structure func-
tion. We did not manage to �nd a mathematical proof of this saturation, but it was observed
empirically by computing the correlation function

R(`) =

ˆ ∞
0

sin(k`)

k`
Ek(k)dk (4.35)

for arti�cial spectra Ek of �xed slopes. As one can see in �gure 4.17b, we observed that if the
spectrum becomes steeper than k1 then the slope of the associated correlation function reaches
an asymptotic value of `−2. In the case of our hyperdissipation the spectrum associated to
e.g. 〈u · d′⊥,ν〉 is k8

⊥|û|2, whose scaling is roughly k8
⊥k
−5/3
⊥ ∼ k6

⊥, way above k1
⊥, hence the

observed behavior.
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(a) Direct dissipation calculated on LF3.
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(b) Correlators computed from arti�cial spectra.

Figure 4.17: Left: Total energy cascade rate and dissipation directly calculated from equation (4.33).
The scaling of the dissipation results from a saturation on the slope of the associated spectrum. This
is evidenced empirically by the �gure on the right, that shows correlation functions (in real space)
calculated from arti�cial spectra, de�ned as perfect power-laws of various scalings: the correlation
functions saturate at a slope of `−2⊥ , represented by the black dashed line.

Since it is not possible to retrieve a correct scaling for dissipation in real space through
a direct calculation of the dissipative term, I searched for a way to apply this scaling in
real space after making the calculations and averages on the simulation domain. Assuming
statistical homogeneity ∆⊥ obeys the usual relations 〈∆′⊥u〉 = 〈∆⊥u′〉 = 0 and 〈∆′⊥(u · u′)〉 =
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〈∆⊥(u · u′)〉 = ∆⊥,` 〈u · u′〉. With these relations we can write:

εdiss =
1

2

〈
ν∆4
⊥|δu|2 + η∆4

⊥|δb|2
〉

=
1

2
∆4
⊥,`⊥

〈
ν|δu|2 + η|δb|2

〉
. (4.36)

Thus, one can compute the energy dissipation from hyperviscosity and hyperdi�usivity by
taking the fourth power two-dimensional Laplacian of the transverse second-order structure
functions for u and b. These structure functions can be calculated in the same way as the
energy cascade rate, and we check afterwards that their scaling is lower than 2 (see �gure 4.18
for an example on run LF3), indicating that they are not in the state of saturation described
by relation (4.34). Note that the other simulations are not a�ected by this problem either
since the corresponding energy spectra are shallower than k−3

⊥ . I then needed to �nd a way
to compute the operator ∆4

⊥, where ∆⊥ = ∂2

∂`2⊥
+ 1

`⊥
∂
∂`⊥

, with enough precision to ensure a
correct result, which was the most di�cult part of this method. I investigated two methods
to make this calculation.
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(a) Spectra for LF3.
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(b) Second-order structure functions for LF3.

Figure 4.18: Kinetic (plain lines) and magnetic (dashed-dotted lines) energy spectra and corresponding
second-order structure functions for simulation LF3, found to be the run with the steepest spectra
among all our simulations. The dashed and dotted black lines show the reference for various scalings.

The �rst attempt to obtain a numerical scheme able to compute an eighth derivative
made use of compact �nite di�erences (see Lele (1992)). Considering a 1D array representing
a function f , and whose points are labeled as [f0,...,fi,...,fN−1], the method of compact �nite
di�erences consists in using relations connecting, for a given point i, f ′i to the values and
derivatives of its neighboring points. Applying these relations to each point i leads to a
system of N equations whose variables are the derivatives at the N points of the array. Such
relations exist for the �rst and second derivatives, which would allow us to compute ∆4

⊥ by
applying the derivation scheme four times. However, one needs to be careful to the precision
of the numerical scheme: indeed, for a second-order scheme of precision O(hα), 3 subsequent
applications of the same scheme will lead to a �nal precision of O(hα−6). Consequently, if one
wants to retain a total precision of at least O(h2), both the �rst and second order schemes
must be of precision at least O(h8). Luckily, Lele (1992) provides relations that match this
requirement. For the �rst derivative, the relations read:

βf ′i−2 + αf ′i−1 + f ′i + αf ′i+1 + βf ′i+2 = a
fi+1 − fi−1

2h
+ b

fi+2 − fi−2

4h
,

α =
4

9
, β =

1

36
, a =

40

27
, b =

25

54
, (4.37)
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and for the second derivative:

βf ′′i−2 + αf ′′i−1 + f ′′i + αf ′′i+1 + βf ′′i+2

= a
fi+1 − 2fi + fi−1

h2
+ b

fi+2 − 2fi + fi−2

4h2
+ c

fi+3 − 2fi + fi−3

9h2
, (4.38)

α =
334

899
, β =

43

1798
, a =

1065

1798
, b =

1038

899
, c =

79

1798
. (4.39)

Here h denotes the constant separation between two points. Those two schemes have respec-
tive precisions of O(h8) and O(h10), and thus match our criterion.

In our case, the 1D structure functions we want to derive are not periodic. Consequently,
as the two schemes presented above establish a relation between a point and, at most, its six
neighbors (three on each side) they cannot be used on the �rst and last three points of the
array. For these points, a speci�c boundary scheme needs to be used. Such schemes are also
described by Lele (1992) but none has a high enough precision, thus I had to derive new ones.
Let us start with the �rst derivative, for which we consider the general equation:

f ′i+αf
′
i+1 + βf ′i+2 =

1

h
(afi + bfi+1 + cfi+2 + dfi+3 + efi+4 + ffi+5 + gfi+6). (4.40)

To �nd the values of the coe�cients we develop this expression as a Taylor series in point i.
The Taylor series in i of fi+k for example is given by:

∞∑

n=0

f
(n)
i

n!
(kh)n = fi +

f ′i
1!

(kh) +
f ′′i
2!

(kh)2 +
f ′′′i
3!

(kh)3 +
f

(4)
i

4!
(kh)4 + ... (4.41)

The 9 relations necessary to solve this system of 9 variables are obtained by setting the �rst
9 Taylor coe�cients of the general equation to zero. This leads to the following system:





a+ b+ c+ d+ e+ f + g = 0

−(α+ β) + b+ 2c+ 3d+ 4e+ 5f + 6g = 1

−n(α+ 2n−1β) + b+ 2nc+ 3nd+ 4ne+ 5nf + 6ng = 0, n = 2..8,

(4.42)

whose resolution leads to the coe�cients:

α = 12, β = 15, a =
−79

20
, b =

−77

5
, c =

55

4
, d =

20

3
, e =

−5

4
, f =

1

5
, g =

−1

60
. (4.43)

The �nal truncation error is given by the �rst non-zero coe�cient, which is here proportional
to h8f (9), and corresponds to a precision O(h8). For the second derivative I used the same
method: I considered the general equation

f ′′i +αf ′′i+1 + βf ′′i+2 =
1

h
(afi + bfi+1 + cfi+2 + dfi+3 + efi+4 + ffi+5 + gfi+6 + jfi+7),

(4.44)

which leads to a system of 10 equations:




a+ b+ c+ d+ e+ f + g + j = 0

b+ 2c+ 3d+ 4e+ 5f + 6g + 7j = 0

−2(α+ 2β) + b+ 22c+ 32d+ 42e+ 52f + 62g + 72j = 2

−n(n− 1)(α+ 2n−1β) + b+ 2nc+ 3nd+ 4ne+ 5nf + 6ng + 7nj = 0, n = 3..9.

(4.45)

Solving this system gives the following coe�cients

α =
18922

563
, β =

65943

563
, a =

2186893

101340
, b =

526369

5067
, c =

−3296517

11260
,

d =
1940803

10134
, e =

−583529

20268
, f =

14802

2815
, g =

−14839

20268
, h =

2659

50670
, (4.46)
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and the truncation error is again O(h8).
The second method I used to compute the eighth derivative of the structure function is

to proceed analytically: assuming that the structure functions behaves roughly as a power-
law, we can �t them point-by-point with a piecewise power-law approximation and take the
analytical derivative for each part of said approximate function. It is straightfoward to show
that, for n ≥ 1, the n−th Laplacian derivative (i.e., ∆n

⊥) of a power-law function f(`⊥) = β`α⊥
(with α and β two arbitrary constants) yields:

∆n
⊥,`⊥f(`⊥) = β`

(α−2n)
⊥

n−1∏

p=0

(α− 2p)2 (4.47)

which yields for n = 4:

∆4
⊥,`⊥f(`⊥) =β[α(α− 2)(α− 4)(α− 6)]2`α−8

⊥ (4.48)

The dissipation function εdissanalytical(`⊥) is ultimately obtained by reconnecting the eighth
derivatives of each part of the piecewise power-law approximation.

Results for both methods are displayed in �gure 4.19. Despite all my e�orts it was not
possible to obtain a fully consistent dissipation with any numerical scheme, even with the high-
precision compact �nite di�erences schemes derived above. I believe the successive use of a
second-order scheme brings a lot more errors in the calculation than what the �rst theoretical
estimations suggested. A way to circumvent this problem would have been to develop the
fourth Laplacian in a sum of �rst to eighth linear derivatives, and develop a numerical scheme
directly for each order of derivation; but it would have been far too much work (if it were
only possible to obtain) when other possibly more e�cient methods had yet to be tested. The
analytical derivative however shows both a scaling compatible with the order of derivation
and a rough matching with the cascade rate at small scales. Note however that, as a eighth
derivative, this calculation remains extremely sensitive to minor �uctuations in the slope of
the power-law approximations, and thus the dissipation given by this method has to be taken
with caution.
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Figure 4.19: Total energy cascade rate and dissipation calculated with either compact �nite di�erences
schemes (orange) or a piecewise analytical derivative (purple) for run LF3.

Ultimately, during the review process of the paper summarizing this study, it appeared
that calculating the dissipative terms through their expression from the exact law was not the
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best way to do given our objective of reconciling kinetic dissipation and �uid energy cascade.
Indeed, through this method, we calculate both the cascade rate and the dissipation within
the same �uid model. A more robust method to demonstrate the link between kinetic Landau
damping and �uid cascade rate is to calculate the hyperdissipation and the Landau damping
directly from the simulations, independently of the exact law, and check if all quantities match
together. Consequently, transverse hyperdissipation and hyperdi�usivity were computed in
Fourier space as

εdiss(`⊥) =

ˆ k⊥

0
dk′⊥

ˆ
k′8⊥(η|b(k′)|2 + ν|v(k′)|2)k′⊥dθ

′dk′z (4.49)

where we use `⊥ = π/k⊥. This direct inversion from k⊥ to `⊥ allows one to avoid the saturation
due to the steepness of the spectrum. Note that, similarly to the energy cascade rate, the
longitudinal contribution of the dissipation is not taken into account but the transverse one
is still integrated over parallel wavenumbers. The evaluation of Landau damping being much
more complicated, it will be tackled in a subsequent section.

4.4.6 Energy cascade in presence of Landau damping

Using the methods described above, we computed the MHD and Hall components of the
incompressible energy cascade rate and the hyperdissipation for all eight simulations. We
start with the study of the four simulations forced at intermediate scales: as runs CGL1 /
LF1 are forced with a propagation angle θ = 83◦ and runs CGL2 / LF2 with θ = 75◦, these
runs allow one to qualitatively evaluate the behavior of the turbulence cascade depending on
the presence and magnitude of Landau damping. Results are reported in Fig. 4.20.

First and foremost, we point out that the total energy cascade rate ε is almost constant for
more than one decade of scales, except for run LF2 that shows a drop in the cascade at small
scales, demonstrating the existence of a clear inertial range. This large inertial range contrasts
with the energy cascade rates evaluated in section 4.3 that did not show a truly constant ε.
This large inertial range, as stated in previous section, is a consequence of hyperdissipation:
as most of energy dissipation is pushed to the smallest possible scales, the cascade is allowed
to continue at scales where natural, physical dissipation would have damped it already. The
constancy of the cascade rate is a consequence of the interplay between the MHD and Hall
components, which behave similarly in all four simulations: the MHD part of the law is
constant and dominant at most scales (except large scales, a�ected by the forcing) and starts
decreasing towards small scales. The mostly negligible Hall component starts rising up at
sub-ion scales, then dominates the MHD part at about the ion inertial length.

The comparison of CGL and LF runs shows that the presence of Landau damping appears
to alter the shape of the energy cascade at all scales of the system. Indeed, for run LF1 that
only features a weak Landau damping the energy cascade varies less steeply at intermediate
to large scales. The e�ect of Landau damping is much more prominent for LF2, where the
damping is more intense, and which shows a stronger decrease in the energy cascade rate
around small scales. The overall amplitude of the LF2 cascade also seems to be lower than
its CGL2 counterpart, in contrast with runs forced at θ = 83◦ for which the amplitudes of
CGL1 and LF1 cascades are roughly the same.

To emphasize the e�ect of Landau damping on the cascade rate, we show in Fig. 4.21 a
comparison of the cascade rates calculated for the LF simulations with θ = 75◦ and θ = 83◦

normalized by the corresponding ones from the CGL simulations. We observe a stronger
decrease (by up to a factor 5) in the amplitude of the ratio at small scales for CGL2-LF2
simulations, i.e. for the strongest Landau damping (θ = 75◦), than for runs with θ = 83◦

for which the ratio εLF1/εCGL1 remains nearly constant at all scales. This result clearly
establishes a correlation between the enhancement of Landau damping at kinetic scales and the
decline of the energy cascade rate at the same scales. The fact that the estimated dissipation
rate matches the cascade rate at the smallest scale of the simulation box for runs CGL1 and
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Figure 4.20: Energy cascade rate ε and its MHD and Hall components computed for runs CGL1 (top
left), LF1 (top right), CGL2 (bottom left) and LF2 (bottom right). For runs CGL1 and LF1 the
transverse hyperdissipation is also displayed. Plain lines represent positive values and dashed lines
negative values.
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Figure 4.21: Ratios of the energy cascade rate computed for LF simulations over the one for CGL
simulations for a driving wave angle θ = 83◦ (black) and θ = 75◦ (red).
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LF1 (�gure 4.20) further indicates that the cascade rate at small scales re�ects the actual
dissipation in the simulation.

To provide a stronger evidence of the interplay between Landau damping and the energy
cascade rate at the sub-ion scales, we complement our study with the cascade rates estimated
from simulations forced at even smaller scales (LF3 and CGL3) with θ = 75◦ and reported in
Fig. 4.22. Note that run LF3 contains Landau damping on both ions and electrons whereas
runs LF1 and LF2, forced at a larger scale, only featured ion Landau damping. Unlike the
previous runs, run LF3 exhibits a strong decrease in εMHD partially compensated by a quick
rising of the Hall component, giving no clear inertial range. This contrasts with run CGL3
which still behaves similarly to previous simulations forced at intermediate scales. This e�ect
may be attributed to the fact that dissipation via Landau damping reaches high levels at
the sub-ion scales of LF3 (scales that are not reached by the previous simulations), whereas
CGL3 contains no physical process able to dissipate energy other than the hyperviscosity and
hyperdi�usivity, which are bound to act only at the smallest scales of the simulation domain.
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Figure 4.22: Energy cascade rate ε, its MHD and Hall components and transverse hyperdissipation
computed for runs CGL3 and LF3.

One can notice sudden changes of sign at large scales in some components of the estimated
cascade rates in Figs. 4.20 and 4.22: these are likely due to the proximity of the forcing. As
the form of the exact law used here is valid only in the inertial range, far enough from the
forcing, observing unphysical behavior at large scales is not unexpected. Other changes of
sign are observed at small scales for the MHD component of run CGL3, and can be attributed
to numerical errors in the calculation of εMHD given its very small magnitude at those scales.
In any case, εMHD is negligible at these scales so the overall cascade rate and the conclusions
drawn from it are not a�ected by this oddity.

To obtain a full picture as to how Landau damping a�ects the energy cascade rate, we
also performed simulations forced at large scales and for θ = 75◦, namely LF4 and CGL4,
whose cascade rates are displayed in �gure 4.23. These runs allow for extending the study
towards large scales and see how the cascade rate behaves in comparison to runs forced at
smaller scales. To this purpose, we combine all the runs CGL2-3-4 and LF2-3-4 to reconstruct
a multi-scale energy cascade rate over nearly three decades of scale. As the simulations were
run at di�erent scales, the amplitude of the forcing had to be changed to ensure that each
simulation reaches a fully turbulent state. Therefore, we renormalized the cascade rate ε
obtained from the di�erent simulations to match the one of intermediate runs CGL2 and LF2
(which were left unchanged), while taking care to discard the smallest scales of intermediate
and large scale forcing cascade rates to ensure that hyperviscosity would not be present at
intermediate scales of the reconstructed energy cascade. This simple renormalization provides
a visual overview of how Landau damping a�ects the cascade at di�erent scales. Figure 4.24
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Figure 4.23: Energy cascade rate ε and its MHD and Hall components computed for runs CGL4 and
LF4.

shows the full energy cascade rate for CGL and LF runs for the driving wave angle θ = 75◦

(the slight irregularity observed for the CGL cascade rate around the transition between
CGL2 and CGL3 is the result of an insu�cient overlap of the scales spanned by the two
simulations, which complicated the renormalization procedure). The CGL runs exhibit an
almost constant energy cascade rate over two and a half decades, whereas εLF decreases
steadily over scales and reaches its minimum value at the smallest ones. This con�rms that
the behavior already observed in �gure 4.21 remains valid over a broader range of scales:
Landau damping seems to drain energy from the turbulent cascade as we reach to the sub-ion
scales of the system. An important point is now to verify if the amount of energy handed
to internal energy through Landau damping matches the decrease of the cascade rate, which
requires additional theoretical work.
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Figure 4.24: Energy cascade rates reconstructed with CGL2-3-4 runs and LF2-3-4 runs. The ranges
spanned by each simulation are delimited by the black dotted lines.

4.4.7 Calculation of the heating due to Landau damping

From equations (4.28) and (4.29) describing the LF model, one can derive an expression for the
heating rate induced by Landau damping. To this end we de�ne the parallel, perpendicular
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and total entropies per unit mass

s‖ =
cV
3

ln(
p‖|B|2
ρ3

), s⊥ =
2cV
3

ln(
p⊥
ρ|B|), s = s‖ + s⊥ =

cV
3

ln(
p‖p

2
⊥

ρ5
), (4.50)

where cV is the speci�c heat at constant volume. Denoting by e the internal energy per
unit mass, the internal energy per unit volume reads E ≡ ρe = p⊥ + 1

2p‖ = 3
2nT where

T = 1
3(2T⊥ + T‖). From e = cV T , one gets cV = 3

2m (note that the Boltzmann constant is
already included in the de�nition of temperature). From equations (4.28) and (4.29), we can
conclude that the rates of change of the parallel and perpendicular entropies per unit mass (sp‖
and sp⊥ respectively) associated with a production (or destruction) and excluding transport or
exchanges between the parallel and perpendicular directions (see e.g. Hazeltine et al. (2013)),
are given by

d

dt
sp‖ =

1

ρT‖
q⊥∇ · b̂−

q‖

2ρT‖
(b̂ ·∇) lnT‖ (4.51)

d

dt
sp⊥ = − 1

ρT⊥
q⊥∇ · b̂−

q⊥
ρT⊥

(b̂ ·∇) lnT⊥. (4.52)

The associated rates of heat production per unit mass are related by dQ‖/dt = T‖ds
p
‖/dt and

dQ⊥/dt = T⊥ds
p
⊥/dt. We thus get, for the total heat production Q = Q‖ +Q⊥

∂t(ρQ) + ∇ · (ρQu) = −
q‖

2
(b̂ ·∇) lnT‖ − q⊥(b̂ ·∇) lnT⊥, (4.53)

and the global heating is therefore given by

H = −
ˆ (q‖

2
(b̂ ·∇) lnT‖ + q⊥(b̂ ·∇) lnT⊥

)
d3x. (4.54)

Finally, we can de�ne a spectral density for the heating rate H in the form

H(k) = −1

2

(
1

2
F{q‖}(−k)F

{
(b̂ ·∇) lnT‖

}
(k) + F{q⊥}(−k)F

{
(b̂ ·∇) lnT⊥

}
(k) + c.c.

)

(4.55)
where F denotes the Fourier transform and c.c. the complex conjugate of the expression in
the right-hand side.

An important remark can be made here: this heating rate takes into account the Landau
damping on all the waves present in the simulations, including the magnetosonic waves. At
this level, it appears di�cult to separate the contributions of the KAWs, which are the only
cascading modes described by the exact law, and to evaluate their dissipation by Landau
damping. Nevertheless these magnetosonic waves get dissipated at large scales, thus at small
enough scales the estimated heating rate mostly results from Landau damping of KAWs and it
becomes possible to compare it to the cascading energy. This particularity is also the reason
why Landau damping appears to be acting at all scales in all the results presented above,
even in simulations forced at large scales.

The fact that Landau damping is present at all scales in the simulation can be seen by
estimating the spectral density of total heating rate at a given wavenumber k⊥, DL(k⊥) =´
k⊥H(k)dkzdθ, where H(k) is the sum of the spectral densities given by equation (4.55) for

both the ions and the electrons. This spectral density is represented in �gure 4.25 along with
the densities of hyperdissipation and hyperdi�usivity. One clearly sees that the heating rate
due to the presence of heat �uxes dominates hyper-dissipation over a broad range of scales
due to the dissipation of KAWs and magnetosonic modes, the two becoming comparable only
at the smallest scales (note that the magnetic hyper-dissipation dominates at small scales over
the kinetic one).
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Figure 4.25: Spectral densities of the heating rate DL(k⊥) (red) and of the magnetic (blue) and kinetic
(green) hyper-dissipation as functions of the transverse wavenumber k⊥ for run LF3. Note that the
5.2 exponent is consistent with a −2.8 exponent for the magnetic energy spectrum (see �gure 4.18a),
considering the k8⊥ factor on hyperdissipation.

In order to derive a relation connecting the energy cascade to Landau dissipation, we write
the equation of conservation of the energy E⊥(t) of the (quasi-incompressible) KAWs:

d

dt
E⊥(t) = IC(t)−DCL (t)−DCh (t), (4.56)

where IC is the part of the injection rate that contributes to the KAWs cascade (the other
part being transferred to the magnetosonic modes which are dominantly dissipated at large
scales), while DCL and DCh are the parts of the Landau and hyperviscous (and hyperdi�usive)
dissipations that a�ect the cascading modes. Using cylindrical coordinates and assuming time
stationarity, one can write the integrated energy balance at each Fourier mode as (adopting
roman scripts for spectral densities):

ε(k⊥) =

ˆ k⊥

0

{
IC(k′⊥)−DC

L (k′⊥)−DC
h (k′⊥)

}
dk′⊥. (4.57)

Considering two wavenumbers k⊥1 and k⊥2 large enough so that the forcing (which is con-
centrated at large scales) leads to

´ k⊥1,2

0 IC(k′⊥)dk′⊥ = IC , yet small enough for hyperviscous
dissipation to be negligible, one obtains:

ε(k⊥1)− ε(k⊥2) =

ˆ k⊥2

k⊥1

DC
L (k′⊥)dk′⊥ .

ˆ k⊥2

k⊥1

DL(k′⊥)dk′⊥. (4.58)

The inequality draws closer to an equality for values of k⊥ large enough so that all magne-
tosonic modes have been dissipated.

Equation (4.58) can be used to estimate a correction to the energy cascade rate which
would take into account the energy lost due to Landau damping. We do so for run LF3:
using this equation we add to the transfer rate the cumulative Landau dissipation between an
arbitrarily chosen scale (chosen however to be not too large nor too small) and the running
(smaller) scale l⊥. Two of these resulting corrected rates εcorr are shown in Fig. 4.26. They
appear to be almost constant, and as such they behave very similarly to the transfer rate
of run CGL3 (Fig. 4.22). The slight increase of εcorr towards small scales probably re�ects
the (weak) contribution of some remaining magnetosonic waves to the calculated Landau
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Figure 4.26: Energy cascade rate ε (red) and transverse hyperdissipation (violet) for run LF3. The
orange and brown curves show the same ε corrected by Landau damping integrated between `⊥ and
a reference scale `⊥ = 0.1πdi and `⊥ = 0.2πdi respectively, following equation (4.58).

damping. This clearly demonstrates that the energy lost along the cascade due to Landau
damping is well captured by the decline of the (�uid) cascade rate at the corresponding scales.

A complementary estimate of energy dissipation can be done in Fourier space by also
taking into account hyperdissipation. Indeed, assuming stationarity, one can also derive that

ε(k⊥) = IC −DCL +

ˆ ∞
k⊥

DC
L (k′⊥)dk′⊥ −

ˆ k⊥

0
DC

h (k′⊥)dk′⊥ =

ˆ ∞
k⊥

{
DC

h (k′⊥) +DC
L (k′⊥)

}
dk′⊥.

(4.59)
Equation (4.59) indicates that, as expected, the rate of energy transfer at the wavenumber k⊥
identi�es with the sum of the rates of Landau and hyperdissipation beyond this wavenumber.
One can compare the second right-hand-side term of this equation to the energy cascade
rate ε(k⊥) obtained from the IHMHD exact law, as displayed in �gure 4.27. The di�erence
between the two curves, which is especially signi�cant at large scales, is due to the fact that the
estimation of the dissipation includes the Landau damping of magnetosonic modes, whereas
the cascade rate considers only incompressible modes. At smaller scales however, where
magnetosonic modes have already been dissipated, the dissipation and cascade rates decreases
parallel to each other: this indicates that, at scales not yet a�ected by hyperdissipation, the
decay of ε(k⊥) in a spectral interval identi�es with Landau dissipation within this interval.

4.4.8 Summary: relations between �uid and kinetic models

This study tackles a fundamental question about the ability of �uid exact laws to re�ect
the presence of kinetic (Landau) damping. By constructing multi-scale energy cascade and
dissipation rates using the HMHD model on a variety of turbulence simulations bearing dif-
ferent intensities of Landau damping, we showed that the presence of Landau damping at
small (kinetic) scales is re�ected by the steady decline of the energy cascade rate at the same
scales. This decay of the cascade rate at the sub-ion scales is consistent with 2D hybrid
PIC simulations and observational data in the magnetosheath and solar wind measured by
the Magnetospheric Multiscale (MMS) mission (Hellinger et al., 2018; Bandyopadhyay et al.,
2020).

We detail the methods of calculation for both the hyperdissipation and Landau dissipation
along with the underlying theory, while shedding light on possible problems and limitations
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Figure 4.27: Energy cascade rate ε(k⊥) (black line) together with Landau and hyper-dissipation (red
line) computed with equation (4.59) for run LF3.

of broader interest that can arise when studying spectra or structure functions, such as the
problem of structure function saturation. By calculating individually the energy cascade
rate, the hyperdissipation and the heat �uxes induced by Landau damping, we showed that
the loss of energy along the cascade towards sub-ion scales corresponds to the amount of
energy dissipated by Landau damping. The remaining energy of the cascading KAWs is
correctly caught by hyperdissipation around the smallest scale of the simulation, ensuring the
stationarity on transverse energy.

By demonstrating the ability of a �uid exact law to provide a correct estimate of kinetic
dissipation in the sub-ion range of numerical simulations, this work provides a means to eval-
uate the amount of energy that is dissipated into particle heating: the decline of the cascade
rate allows one to evaluate the kinetic dissipation as a function of scale. Although the DNSs
studied here are quite speci�c (the runs are forced with KAWs and Landau damping is ob-
tained with a linear model) the cascade rate and Landau damping are undoubtedly correlated
in the study presented here. These results should help solving (at least partially) a long-
standing problem in astrophysical plasmas about energy partition between ions and electrons
(Kawazura et al., 2019), which are generally heated at di�erent scales. It is however important
to stress that, even if the oversimpli�ed (yet fully nonlinear) �uid models of turbulence can
provide good estimates of the amount of energy that is dissipated into particle heating, they
do not specify how this dissipation occurs. Additional analyses led on DNS data featuring
di�erent kinds of dissipative e�ects may bring some answers to this problem. The analysis
of in situ data could also shed some light on this question, which is one of the objectives of
chapter 5.

4.5 Supersonic CHD turbulence

4.5.1 Context of the study

The last study presented in this chapter is an extension to highly supersonic turbulence of the
work presented in this thesis. Highly supersonic CHD turbulence only applies to a handful
of physical systems, yet understanding the physics governing them is essential to understand
large scale astrophysical processes such as star formation, in which turbulence is known to
play a key role (Heyer and Brunt, 2004; McKee and Ostriker, 2007; Federrath and Klessen,
2012; Hennebelle and Falgarone, 2012; Padoan et al., 2014; Orkisz et al., 2017). Notably, past
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numerical simulations of the ISM performed in the framework of compressible (isothermal) HD
(Vazquez-Semadeni, 1994; Passot and Vázquez-Semadeni, 1998; Kritsuk et al., 2007; Federrath
et al., 2010; Federrath, 2013) have shown the presence of �laments that resemble the structures
observed in the ISM (Arzoumanian et al., 2011; Federrath, 2016) and in which most pre-stellar
cores appear to form.

The new CHD exact law derived from F21 allows us to clearly identify the di�erent con-
tributions to the turbulent cascade and to better understand how it reacts to the compression
of the medium. It will be complemented by an in-depth analysis of the shapes formed by the
interplay between compression and classical turbulence and a spectral study. The main goal
is to understand where and how the turbulence mainly acts in a highly compressible medium,
and why its presence is able to give form to �lamentary structures that may, ultimately, be
�t for star formation.

4.5.2 Framework and presentation of the data

In this section we study an ensemble of CHD datasets for supersonic turbulence computed with
the objective of simulating ISM turbulence. While some simulations for molecular clouds and
star forming regions include a magnetic �eld in order to study MHD turbulence (Nakamura
and Li, 2008; Federrath, 2016), the choice was made here to consider only an HD model and
push the resolution and compression to very high values. This simulation was run with a
grid resolution of 10, 0483 points and an integral Mach number of 4, the Mach number being
de�ned as MS = σv/cs where σv is the velocity dispersion at the main forcing scale L/2 and
L is the simulation side length.

The simulation was performed using a modi�ed version of the FLASH code (Fryxell et al.,
2000; Dubey et al., 2008; Federrath et al., 2020), which solves the isothermal CHD equations
in a triply periodic box. Following the methods described in Federrath et al. (2010) the
simulation uses a naturally mixed driving (ζ = 0.5) with an Ornstein-Uhlenbeck process
acting on large scales. The forcing amplitude is a paraboloid spanning k = 1..3, peaking at
k = 2 and reaching zero at both k = 1 and k = 3, where the wavenumber k is in units of 2π/L.
Thus, the forcing only acts directly on scales larger than L/3 which are well above the ones we
consider in this study. The data used consists of 7 snapshots of the 10, 0483 simulation down-
sampled at a resolution of 2, 5123 of the density and the three components of the velocity �eld,
taken at 2, 3, 4, 5, 6, 7 and 8 turbulence turnover times T. The down-sampling was necessary
due to limitations on the download time, storage space, memory usage and computation times
that quickly appeared to be prohibitively large. Nevertheless it was shown by Federrath et al.
(2021) that such a down-sampling did not harm the precision of the results nor the conclusions
in the case of the calculation of the scale-dependent Mach number, whose calculation method
is close to the one of an exact law as both take the form of mean second or third order
moments. The key factor is that the simulations were run at very high resolution in the �rst
place, which allows for some e�ects unseen at lower resolutions to develop. Fig. 4.28 shows
through the root mean square (rms) Mach number and minimum and maximum densities
that statistics for both velocity and density have converged after 2 turnover times, indicating
that the simulation has reached a state of fully developed turbulence (Federrath et al., 2009),
hence the use in this study of snapshots for times t ≥ 2T .

I analyzed those datasets with the CHD exact law (2.109) derived in chapter 2. Due to
their size I faced important limitations in terms of computation time and especially memory.
To circumvent these limitations I only made the computation along the three directions x, y
and z, generated by base vectors (1,0,0), (0,1,0) and (0,0,1) respectively, instead of using one
of the base vectors set described in chapter 3. This allowed to retain an isotropic computation
while drastically reducing the total number of operations. The loss of the statistics usually
brought by the multiple directions used to analyze 5123 datasets is compensated by the much
larger sample of spatial points included in the average (25123). Moreover, computing the exact
laws only along the three axes of the simulation domain allows for saving memory through
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Figure 4.28: rms Mach number Mrms and maximum and minimum density as functions of time
(normalized to the turnover time T).

the method described in chapter 3, by partitioning the data along the z-axis (to compute the
law in directions x and y) and then along the y-axis (to compute the law in direction z)

4.5.3 Calculation of the energy cascade rate

The exact law −4ε = ∇` ·F+S, where∇` ·F = ∇` ·
〈
δ̄ρ|δu|2δu

〉
and S = −1

2〈(ρθ′+ρ′θ)|δu|2〉,
can be interpreted as if we had an e�ective cascade driven only by the �ux term −4εeff ≡∇` ·F
(such that ε eff = ε + S/4), which is the term that represents energy exchanges between
turbulent structures of di�erent sizes. It involves the usual energy cascade rate (ε) known in
incompressible theory and a new purely compressible component (the source S) that re�ects
the contraction and dilatation of the turbulent structures. The sign of S is directly given by
the sign of the dilatation: when the �ow is mainly in a phase of dilatation (θ > 0) the source is
negative, whereas in a phase of compression (θ < 0) the source is positive. Thus, if we assume
that the e�ective cascade driven by the �ux term is direct (i.e., εeff > 0) then a dilatation
(compression) will tend to oppose (sustain) the e�ective energy cascade, preventing (enforcing)
the formation of smaller structures. Furthermore, the dilatation of the structures (S < 0)
can annihilate the cascade to small scales (if ε = −S/4) or even reverse it (if ε+ S/4 < 0) in
extreme cases, leading to the formation of large-scale structures via an inverse cascade, as we
will see throughout this study.

For each snapshot I computed the two terms ∇` ·F and S of the exact law as functions of
`, and the signals obtained for all 7 di�erent turnover times are eventually averaged to obtain
the result displayed in Fig. 4.29. A �rst and immediate observation is that the energy cascade
rate ε is approximately constant over more than a decade, which shows the existence of an
inertial range. This observation indicates that the assumptions made to derive the law are
well satis�ed on these scales of the simulation. Note that this large inertial range, similarly
to the results obtained in section 4.4, contrasts with the results obtained in section 4.3 on
GHOST datasets. A large inertial range was allowed to develop in this case because the code
does not feature any physical dissipation (i.e. dissipation through viscous terms such as dν ,
as presented in chapter 2), but instead makes use of numerical dissipation that discards the
energy around the smallest scales of the simulation domain only. This allows the energy to
cascade to the very smallest scales, thus extending the scales spanned by the inertial range,
similarly to the use of hyperviscosity and hyperdi�usivity in previous section.

Second, we see that the contribution of the �ux term is signi�cantly higher than ε which
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Figure 4.29: Normalized �ux term −∇` · F/4 (blue) and normalized source −S/4 (green). The total
energy cascade rate ε (red), which corresponds to the mean rate of energy injection/dissipation, is
then deduced from the exact law (2.109). For comparison, we show the same quantity εIHD (orange)
computed from the exact four-third incompressible law F19 (2.39). Solid lines represent positive values
and dashed lines negative values. The vertical dotted line corresponds to the sonic scale `s ' 0.01235L
(i.e. the scale where the scale-dependent Mach number isMS(`s/L) = 1) measured in Federrath et al.
(2021). Increments are normalized to the side length L of the simulation domain.

means that the source brings a correction with an opposite sign, which is con�rmed by the
green dashed curve. Considering the distinction between ε and εeff introduced above, one
can see that ε < εeff with a non-negligible contribution from the source: in this case the
source appears to strengthen the e�ective cascade, so the supersonic nature of the medium
acts "in favor of" the turbulence. This behavior contrasts with the one reported from DNSs
of subsonic (compressible) MHD turbulence, where the overall contribution of the non-�ux
terms was found to be negligible with respect to the �ux term (see section 4.3 and Andrés
et al. (2018)), and which would yield ε ∼ εeff .

Note that the incompressible cascade rate εIHD, computed with law F19, lies between ε
and εeff : it does not contain the compressible �ux modi�cations that εeff has, and does not
bene�t from the compressible correction brought by the source. More importantly, it does
not behave like the characteristic constant energy �ux usually seen in less compressible (a
fortiori incompressible) �ows (Kadomtsev and Petviashvili, 1973; Passot et al., 1988). Thus,
we argue that variations of εIHD in the inertial range, as observed in this situation, may point
towards the presence of non-negligible compressible e�ects. In space plasma data, where it is
not always possible to measure precisely the source terms (Hadid et al., 2017; Andrés et al.,
2019), variations of εIMHD at MHD scales could prove to be a simple diagnostic to detect
strong compressible e�ects in the turbulence. At smaller scales, this diagnostic requires one
to be more cautious as we showed in section 4.4 that variations of εIMHD can also be the
result of energy dissipation.

Another remark can be made about the exact law: given the high resolution of the simu-
lation one would expect the energy cascade rate to form a steady plateau over more than one
decade. This small inertial range may be attributed to two possible e�ects not included in our
exact law: i) non-local e�ects due to the large-scale forcing; ii) additional local dissipation (in
the supersonic range) through shocks/discontinuities (Duchon and Robert, 2000; Saw et al.,
2016; Galtier, 2018), since our exact law assumes smoothness of the turbulent �elds. This
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shortcoming calls for a new theory of compressible HD turbulence where such singular �elds
and non local e�ects due to large scale forcing can be accounted for, and which would be very
relevant to supersonic turbulence, yet such a theory is not considered in this thesis and left
to future studies.

4.5.4 Filamentary structures and locality of turbulence

I further investigated the properties of this supersonic simulation in order to understand the
origin of the source contribution and its in�uence on turbulence. As we have seen above, the
source term is globally positive (thus inducing a negative contribution to ε), which re�ects
the dominance of compression in the medium. Therefore, we can look directly to the data to
try to identify how coherent structures form and which ones may have an important in�uence
on the source term. To this end I searched in a given snapshot for the grid point of minimal
dilatation θ (so of maximum contraction of the �uid) and selected the three slices of data
(cut along planes (xy), (yz) and (xz)) intersecting at this point. I then computed both the
density-dilatation ρθ and the modulus of the vorticity |ω| in each of these slices, normalized
to their mean value averaged on the whole slice. It is thought that the density-dilatation and
the vorticity highlight the turbulence structures better than the previously used quantities θ
and ρ (Kritsuk et al., 2007; Federrath et al., 2010), which are less relevant to investigate the
physics involved in the generalized Kolmogorov law.
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Figure 4.30: Normalized density-dilatation ρθ in (xz) and (yz) planes at 6 turnover times. The
amplitude and sign of the �elds are given by the color bars.

Figures 4.30 to 4.33 show the (xy) slices obtained for ρθ and |ω|, along with a zoom on
a speci�c turbulent structure. These cuts reveal the existence of various regions exhibiting
di�erent behaviors. Some extended blank regions show almost no density-dilatation (bright
regions of �gures 4.30 and 4.32) nor vorticity (black regions of �gures 4.31 and 4.33). Those
regions seem almost void of structures and thus are expected not to bring any signi�cant con-
tribution to the energy cascade rate. We also see turbulent �lamentary structures (elongated
dark red structures for ρθ) in which both |θ| and |ω| are up to several orders of magnitude
higher than in the rest of the plane. A zoom on one of these structures is shown in �gures
4.32 and 4.33. These structures are typically delimited by very thin boundaries of strong
contraction (dark blue lines for ρθ) in which a high turbulent activity with many vorticity
tubes is observed. The regions featuring high density-dilatation are expected to drive most of
the (average) source term.

To test these assumptions, I selected a turbulent structure and a blank region in which I
computed both terms of the exact law, represented in �gure 4.34. To do so, I cut a trapezoid
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Figure 4.31: Normalized modulus of the vorticity |ω| in (xz) and (yz) planes at 6 turnover times. The
amplitude of the �elds is given by the color bars.
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Figure 4.32: Normalized density-dilatation ρθ in a (xy) plane at 6 turnover times. The amplitude and
sign of the �elds are given by the color bars. The region enclosed in the dashed cyan box is zoomed
in and shown on the right.
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Figure 4.33: Normalized modulus of the vorticity |ω| in a (xy) plane at 6 turnover times. The
amplitude of the �elds is given by the color bars. The region enclosed in the dashed cyan box is
zoomed in and shown on the right.
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Figure 4.34: Flux and source terms computed in a single turbulent (�lamentary) structure (bright
lines) and a single blank zone (dark lines); Insets a.) and b.) show respectively the turbulent structure
and the blank zone in which the statistics are made. Both regions are extracted from the (xy) cut
shown in �gure 4.32.
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in each of those regions (see both insets of �gure 4.34) and computed the exact law along
its longest side, in order to retain enough statistics for the result to be meaningful. Because
these selected regions are not periodic anymore, the maximum scale I can calculate the law
on through this method is roughly half the trapezoid length: this is enough to reach the
sonic scale, and studying larger scales would start bringing the statistics down too much.
The resulting law components con�rm our previous hypotheses: the �ux and source terms
computed on the blank zone have similar amplitudes and are around three orders of magnitude
below the total components averaged on the entire simulation domain that are shown in �gure
4.29. On the contrary, law components computed along the turbulent structure exhibit very
strong amplitudes, with the source being an order of magnitude above the �ux. As expected,
these structures contain strong turbulent activity.
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Figure 4.35: Flux and source terms averaged over 14 �lamentary structures from di�erent snapshots.
The sonic scale is given by the vertical dotted lines.

All the blank regions I studied showed a similar behavior, displaying very weak turbulent
activity. Consequently, I decided to focus the study on the �lamentary structures by selecting
a sample of these regions in di�erent snapshots. I retained 14 structures in which the mean
density was at least 5 times higher than the average density on the whole domain, and
again computed the source and �ux term for increments along the main orientation of the
�lamentary structures. The results obtained were then averaged over the selected samples, and
are displayed in �gure 4.35. We observe a similar trend to the previous individual computation:
the source is dominant, positive and increases with the scale until it reaches approximately
the sonic scale. The �ux term does not have a constant sign but remains negligible with
respect to the source at most scales.

The energy cascade was computed in other regions that were not blank zones nor turbulent
structures, but no recurring pattern could be identi�ed for the �ux or source terms. This
leads us to believe that the �lamentary structures, which feature high amplitude cascade
components and a mostly positive source term, drive most of the turbulence in this simulation.
What is interesting here is that those �lamentary structures appear to have a limited width:
the ones showing high levels of vorticity rarely exceed a width of at most the sonic scale.
This coincides with the total energy cascade rate of �gure 4.29 that is roughly constant at
small scales, but start decreasing above the sonic scale and does not show anymore a behavior
typical of an inertial cascade. This correlation led me to investigate the possible existence of
several scale-dependent regimes for the turbulence.
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4.5.5 Insights into a two-regimes turbulence

To get a better idea of the overall scale repartition of the �ux and the source, I took
their absolute values before performing their statistical averages. Therefore, we de�ne F̃ =〈
δ̄ρ(δu)2|δu|

〉
and S̃ = 1

2

〈
|ρθ′ + ρ′θ|(δu)2

〉
and compute them on the entire simulation do-

main at a given time. These two quantities represent the total activity due to the �ux and the
source respectively, disregarding the sign of the local contributions and so the direction of the
resulting turbulent cascade (direct or inverse). Note that these results should not necessarily
comply to any theoretical prediction brought by the exact law (such as a constant cascade rate
or any form of scaling), as the terms computed here are not the ones forming the exact law per
se. Yet, the non-signed quantities have the advantage of converging faster than their signed
counterpart, and can lend some information about the mechanisms dominating on di�erent
scales. The results are reported in Fig. 4.36.
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Figure 4.36: Modi�ed �ux ∇ · F̃ and source S̃ computed in the entire simulation domain at time
corresponding to 6 turnover times. A comparison is made with the scalings `0.05 and `0.51.

We immediately distinguish two regimes on this �gure, separated by the sonic scale: a
small scale, subsonic regime dominated by the modi�ed �ux, and a large scale, supersonic
regime dominated by the modi�ed source. Note, as was stated above, that this does not
contradict the results of �gure 4.29 where the �ux term still dominates at large scales: the
modi�ed source is merely a representation of the absolute values of the source throughout the
simulation domain. In practice, the non modi�ed source is lower because most of the local
contributions actually cancel each others.

In the subsonic regime the modi�ed �ux exhibits a plateau on small scales, as expected for
a subsonic turbulent cascade mainly driven by the �ux. This means that most of the energy
transiting in either direction through these scales is transfered by a �ux-driven process. A
transition appears around the sonic scale above which the �ux starts to drop: this behavior can
be attributed to the dominance of the compressible source activity on supersonic scales, and
interpreted as a shift from a "classical" turbulent cascade to a di�erent, compression-driven
model of turbulence.

In this other large scale regime, the dominant modi�ed source follows a clear power-law
S̃ ∼ `1/2. A simple dimensional analysis yields δu ∼ `1/2 (note that we do not include
the density appearing in the expression of S as it appears as a local average and not as
a pure �uctuating quantity). This scaling is actually compatible with the one reported in
Federrath et al. (2020) on supersonic scales using the second-order structure function (which

86



is positive de�nite and therefore comparable to our calculation using absolute values), while a
classical (incompressible) scaling δu ∼ `1/3 was approximately found on subsonic scales. This
supersonic scaling is dimensionally compatible with a velocity spectrum Eu ∼ k−2, which
is often attributed to a purely compressible (Burgers), shocks-driven turbulence (Kadomtsev
and Petviashvili, 1973; Passot et al., 1988; Frisch, 1995).

To support this observation, I complemented the analysis led in real space by studying
the behavior of turbulence in the spectral domain and computed the 3D isotropic power
spectrum of u as de�ned by equation (1.33). This power spectrum, reported in Fig. 4.37,
brings additional evidence of the existence of the two regimes. It shows a break around the
sonic scale of the system, corresponding to the onset of the decline of the energy cascade
rate in the real space. The small wavenumber (large scale) regime shows a spectral slope of
around -1.97 which is compatible with the compressible Burgers prediction discussed above,
and the large wavenumber (small scale) regime a slope of around -1.54. This slope can
be interpreted as the predicted scaling −3/2 for weak acoustic turbulence (Zakharov and
Sagdeev, 1970; L'vov et al., 1997), which would suggest that this regime is indeed closer
to classical (compressible) turbulence than the supersonic one, as already suggested by the
quasi-constant modi�ed �ux. Note that, if we assume that the cascade rate computed here is
representative of (if not identical to) the energy dissipation rate in the system, the observation
that cascade/dissipation rate peaks near the sonic scale (Fig. 4.35), where turbulence appears
to transition from shock-like (k−2) to �uctuation/wave-like (k−3/2) dominated regimes, would
be an indication of strong shock dissipation around the sonic scale.
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Figure 4.37: Spectrum for the velocity �eld u and spectrum compensated by k2. Two linear �ts are
made before and after crossing the sonic wave number k`s (dotted vertical line), and are represented
by the red and green dashed lines respectively. Wavenumbers are normalized to K = 2π/L (see also
(Federrath et al., 2021).

4.5.6 Summary and link to the ISM

Using the new exact law (2.109) on a high-resolution dataset for supersonic CHD turbulence,
I found multiple evidences of a two-regime turbulence. The small, subsonic scales show all
the characteristics of a "traditional", conservative (and possibly acoustic) turbulent cascade
driven by both the �ux and source terms of the exact law. This cascade appears to be
concentrated in �lamentary structures, which is corroborated by the high levels of vorticity
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they contain and by local computations of the law, showing high amplitudes of the cascade.
At intermediate, transonic scales both the �ux and the source contributions reach a peak.
We thus suggest that the energy cascade in supersonic HD turbulence reaches its maximum
e�ciency (i.e. εeff is maximal) around the transition from the subsonic to supersonic regimes.
Then, on supersonic scales, the exact law shows a decrease in the energy cascade rate ε which
is no longer constant, whereas compressible e�ects start dominating the dynamics, leaning
towards a more shock-driven, Burgers-like compressible regime as evidenced by the k2 spectral
scaling.

This transition from a highly compressible regime at supersonic scales to a subsonic tur-
bulent conservative cascade echoes to other studies that were led on similar media. For
instance, similar conclusions were drawn by Aluie et al. (2012) who reported for subsonic and
transonic simulations that pressure-dilatation (which is equivalent to density-dilatation for an
isothermal model) acts essentially on large scales, whereas at small scales, below a transitional
�conversion� scale range localized at sub-sonic scales, a turbulent cascade appears in which
kinetic energy behaves like an invariant. This study shed a new light onto those �ndings using
a di�erent approach that helps better understand how various mechanisms shape supersonic
turbulence.

The conclusions reached in this section also allow us to gain deep insight into supersonic
ISM turbulence. The �lamentary structures observed in the ISM seem to be characterized
by a universal thickness of the order of the sonic scale (Arzoumanian et al., 2011; Federrath,
2016). Their shape is supposed to be mainly due to CHD turbulence and to be little a�ected
by other factors such as gravity or magnetic �elds (Federrath, 2016; Ntormousi et al., 2016).
These studies associated with the results presented here suggest that this universality could be
explained by the existence of the two distinct regimes reported here: i) a supersonic regime
dominated by shock-like structures where the energy cascade rate ε is not constant; ii) a
subsonic regime with a lower and mainly constant ε where vortices (and acoustic waves) are
produced and in which a classic conservative cascade is formed. In between, the transonic
scales where turbulence reaches its peak of e�ective energy transfer would correspond to the
size of the �laments. Our interpretation is thus that �laments are shaped by the smallest
scale of the supersonic regime, which is the sonic scale, while the weaker subsonic cascade
produces vorticity tubes on smaller scales.

Applications of the law to more complete simulations, featuring for instance gravitational
forces or magnetic �elds, would help re�ne this interpretation and may provide new clues
on the interplay between ISM turbulence and the problem of star formation (Mac Low and
Klessen, 2004; Hennebelle and Falgarone, 2012; Padoan et al., 2014). For example, Orkisz
et al. (2017) were able for the �rst time to observationally derive the fractions of momentum
density contained in the solenoidal and compressive modes of turbulence, in the Orion B
molecular cloud where the mean Mach number is ∼ 6. They showed that the compressive
modes are dominant in regions with a high star formation rate (as predicted in Federrath and
Klessen (2012)). According to the analysis led in this section the source term is the dominant
component of compressible turbulence inside �laments. Future work that would directly link
the formalism of exact laws (and thus the source and �ux terms) to the star formation rate
could signi�cantly advance our understanding of how turbulence controls the formation of
structures on di�erent scales in the ISM.

4.6 Conclusion

Throughout this chapter I presented an ensemble of applications of the various exact laws to
di�erent DNS datasets. These studies aim either at investigating the behavior of the exact
laws in order to better understand the relationships between their various components, or at
studying data presenting speci�c physical properties to see how these e�ects are represented
by the energy cascade rate. This kind of study allows for developing tools and gathering
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knowledge that will be useful for subsequent analyses of more complete datasets, be it simu-
lated datasets or in situ data measured by satellite missions. The knowledge acquired on the
behavior of exact laws will be put to use in next chapter to analyze MMS data, and investigate
the numerical techniques used for the treatment of the multi-spacecraft data. The physical
knowledge acquired especially on the correlation between the energy cascade rate and kinetic
dissipation will also be, at short to medium term, at the center of another study aiming at
identifying the presence of dissipation mechanisms in MMS data.

The results presented in the four sections of this chapter led to the publication or proposal
of a total of four papers:

� The EMHD study presented in section 4.2 are published in Ferrand, Galtier, Sahraoui,
Meyrand, Andrés, and Banerjee (2019) [Astrophysical Journal 881], along with the
derivation of law F19 already provided in chapter 2.

� A paper by Ferrand, Sahraoui, Galtier, Andrés, Minnini and Dmitruk is currently being
�nalized to summarize the results of the GHOST study presented in section 4.3.

� A paper by Ferrand, Sahraoui, Laveder, Passot, Sulem, and Galtier (2021b) [Astrophys-
ical Journal ] that contains the results presented in section 4.4 on the relation between
�uid cascade and kinetic dissipation was recently accepted.

� The study on the supersonic DNS of the ISM presented in section 4.5 led to a paper by
Ferrand, Galtier, Sahraoui, and Federrath (2020) [Astrophysical Journal 904].
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Chapter 5

Application to Virtual spacecraft and

MMS data in Earth's magnetosheath

5.1 Introduction

In the previous chapter I presented a variety of studies and results for simulated turbulence in
various models and situations. One of the main, common goals of such studies is to isolate and
understand the consequences of speci�c physical e�ects or parameters on plasma turbulence
in order to allow for a more precise subsequent analysis of real life, natural turbulent media.
Although we have limited information and no control on the physical phenomena at work in
natural plasmas, we can piece together the various individual models obtained through DNS
data analysis to try to understand which e�ects drive the behavior of these turbulent media.

As was already explained in chapter 1, the SW and the magnetosheath are valuable objects
of study due to their (relative) accessibility and the richness of their underlying physics.
Numerous satellite missions were launched to gather data in the SW and the magnetosheath,
in the hope of honing our understanding of these astrophysical plasmas. Through these
missions it was notably possible to show that these media are inherently turbulent, which
was evidenced by various reports of a k−5/3 magnetic spectrum characteristic of Alfvénic
turbulence (Matthaeus and Goldstein, 1982; Bale et al., 2005; Narita et al., 2010). This
turbulent nature, which is thought to be a major cause of the non-adiabatic cooling of the
SW (Richardson et al., 1995; Matthaeus et al., 1999; Sahraoui et al., 2009; He et al., 2015;
Woodham et al., 2018) due to turbulence energy dissipation, has been largely investigated
through the use of turbulence exact laws and the analysis of the energy cascade rate (Smith
et al., 2006; Sorriso-Valvo et al., 2007; Vasquez et al., 2007; MacBride et al., 2008; Coburn
et al., 2015; Hadid et al., 2017; Bandyopadhyay et al., 2020), a method that now �nds a new
justi�cation through the LF study presented in chapter 4. Recent multi-spacecraft missions
such as Cluster and MMS along with new developments in turbulence theory allowed for the
calculation of compressible exact laws within the magnetosheath, which is more compressible
than the SW. A �rst study was led at MHD scales using Themis and Cluster data (Hadid et al.,
2018) that showed the importance of taking compressibility into account in the magnetosheath.
This conclusion was then extended to Hall scales by computing the full compressible exact
law A18 on MMS data: in Andrés et al. (2019) we showed that the Hall energy cascade was
largely in�uenced by even low levels of compression.

The study presented in this chapter started as a direct continuation of the work that we
started in Andrés et al. (2019), with the objective of investigating further the cascade rate
calculated on MMS data and trying to understand better the relation between energy cascade
and kinetic dissipation, in light of the results regarding the ability of the cascade rate to re�ect
Landau damping that are presented in chapter 4 section 4.4. To this end I extended the set
of events initially used in Andrés et al. (2019) by selecting new time intervals and calculated
the full compressible laws, making use of a computational method called the gradiometer,
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that will be explained and studied in details below, to compute all 3D derivatives. Yet, with
the �rst results I obtained I noticed a problem in the calculation of the purely compressible
terms (the so-called source terms) of the exact laws, that appeared to be much higher than
expected. Thus, the focus �nally shifted on understanding the reasons for this anomaly
through a more thorough study of compressible exact laws on multi-spacecraft data, and an
in-depth investigation of the numerical methods used in their calculation. In the scope of
this investigation, I will present a study focused on the gradiometer, aiming at estimating the
limitations of the method in the speci�c context of exact laws calculation. To this end the
performances of the gradiometer will be tested in the more comfortable setting of DNSs by
simulating a virtual satellite �y-by in a CHMHD simulation domain.

Figure 5.1: Artist's rendition of the MMS mission in Earth's magnetosphere (image credit: NASA,
Southwest Research Institute).

5.2 Working with in situ data

5.2.1 Space-time ambiguity and Taylor hypothesis

When analyzing satellite data one has to be mindful of some speci�c aspects that di�er from
3D DNS data analysis. The most important one is the space-time ambiguity that comes
with the way satellite data are measured. Indeed, when studying DNS data as we did in the
previous chapters, we usually work at a �xed time and compute correlations on pairs of points,
which ultimately leads to a scale-dependent representation of the exact laws. If necessary one
can also make the same calculations for other times to ensure that the run is stationary: in
this case the simulation domain (i.e. the "portion of space" studied) remains the same, but
the plasma it contains has evolved with time: Alfvén waves for instance will have propagated
according to their dispersion relation ωA = k · vA.

For satellite data however things are more complicated. Usually the SW moves much faster
than the satellites (in the Geocentric Solar Ecliptic (GSE) system), so for the sake of simplicity
we will consider that MMS is immobile inside the moving SW. The satellites measure data,
in our case, every 150ms. Between two measurements the turbulence has of course evolved,
but the portion of space studied by the satellite has changed too due to the movement of the
wind. This spatio-temporal ambiguity is generally resolved by using the Taylor frozen-in-�ow
approximation: it consists in considering that the timescales of the turbulence itself are much

92



1.00.1 10.0 100.0

1

10

100

1000

kρ
i

ω
/ω

c
i

kρ
i
=1

kρ
e
=1

ω
ρi

ω
ρe

ω=
kV sw

θ
kB
=60°

θ
kB
=10°

ω
1

ω
2

Figure 5.2: As presented in Sahraoui et al. (2012): frequency signatures of the ion and electron
gyroscales for a frozen-in �ow approximation (red) and two whistler modes at two di�erent angles of
propagation (Ti = Te ), that would violate the Taylor hypothesis.

larger than the timescales of the advection of the wind, and so that the inner movements of
the medium are negligible in comparison to the global movement of the �ow.

In the speci�c case of a plasma, the Alfvén waves seen by the satellites that would normally
follow the modi�ed dispersion relation ω = ωA+k ·VSW = k ·vA+k ·VSW (where VSW is the
speed of the SW) will instead obey the simpli�ed relation ω ' k·VSW. This property is usually
veri�ed at MHD scales in the SW. At sub-ion and smaller scales however the Taylor hypothesis
may be violated by the apparition of very fast modes such as whistler modes (Howes et al.,
2014; Klein et al., 2014; Huang and Sahraoui, 2019), and may require a di�erent, speci�c
treatment (Matthaeus et al., 2016). Yet, as they usually appear as sporadic narrow-band
emissions near the electron scales (Lacombe et al., 2014; Behar et al., 2020), which are not
addressed in this study, we assume here the Taylor hypothesis to hold.

In this study, the Taylor hypothesis also allows us to convert the time lag τ separating
two measurements to a spatial lag ` = −τVSW corresponding to the distance traveled by the
wind during this time frame. This relation allows for going back to spatial increments for the
calculation of exact laws, just as we did until now for DNS data. Note that in this case we
are restricted to using 1D increments, oriented in the general direction de�ned by the �ow of
the SW.

5.2.2 Calculation of 3D divergences: the curlometer / gradiometer

To compute the divergence terms appearing in both compressible exact laws A18 (4.14) and
F21 (2.100) we make use of the tetrahedral formation of MMS and of an extension of the
curlometer technique (Dunlop et al., 1988, 2002). This method initially makes use of Stokes
theorem to calculate the current density on a given face of the tetrahedron, under the assump-
tions that this current density is constant on the considered face, meaning that the magnetic
�eld evolves linearly between the satellites delimiting it. Let us number the satellites from 1
to 4, we de�ne the position of satellite i as Ri, the magnetic �eld it measures as Bi, and the
current density on the face delimited by satellites i, j and k as Jijk. Following the method
proposed in Dunlop et al. (1988) we take satellite 1 as a reference and de�ne for an arbitrary
vectorial �eld X: ∆Xi = Xi −X1 for i ∈ {2, 3, 4}. Under the aforementioned hypotheses we
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can derive the following relations:

µ0J1ij · (∆Ri ×∆Rj) = ∆Bi ·∆Rj −∆Bj ·∆Ri, (i, j) ∈ {(2, 3), (2, 4), (3, 4)}. (5.1)

If we consider the current density to be constant and equal to J on the entire tetrahedron
volume, relations (5.1) form a system of three equations whose unknowns are the cartesian
coordinates of J. This is the core equation of the curlometer technique.

Similarly, using this time Ostrogradski theorem on the tetrahedron volume and assuming
that ∇ ·B remains constant inside it, one can derive for ∇ ·B:

∇ ·B(∆Ri ·(∆Rj×∆Rk)) = ∆Bi ·(∆Rj×∆Rk)+∆Bj ·(∆Rk×∆Ri)+∆Bk ·(∆Ri×∆Rj).
(5.2)

Here the subscripts i, j and k can be taken in any order among satellites 2, 3 and 4. This
equation was originally derived to provide means of calculating ∇ ·B as a test of the perfor-
mances of the method, as we will see later in this chapter. Note that the equations written
above are presented as they were originally derived, using the magnetic �eld and the current
density, but they remain valid for any vectorial �eld X and provide a means to estimate both
∇×X and ∇ ·X.

To these equations we add an additional one allowing for the calculation of the three spatial
gradients of a scalar �eld α, ∇α, obtained through a similar method as the divergence:

∇α(∆Ri ·(∆Rj×∆Rk)) = ∆αi(∆Rj×∆Rk)+∆αj(∆Rk×∆Ri)+∆αk(∆Ri×∆Rj). (5.3)

The projection of this equation in a cartesian basis gives three equations for the three com-
ponents of the gradient of α. The three equation sets (5.1), (5.2) and (5.3) form an ensemble
of numerical methods that will be referred to as the gradiometer, and will allow for the cal-
culation of all the spatial derivatives necessary to the computation of exact laws in MMS
data. Note that in the case of MMS we do not need to compute the curl of any vector �eld a
priori, as the current density is already provided by measurements of particles velocities and
densities from the Fast Plasma Investigation (FPI) sensors. However, as we will see below,
calculating J through the gradiometer will provide a good way to test the e�ciency of this
method by comparing the results to the ones directly measured by the instruments.

5.3 MMS data analysis

5.3.1 Context and presentation of the data

The study that is presented in this chapter makes use of data measured in the magnetosheath
(see �gure 1.2 from chapter 1) by MMS, which presents a double advantage: the magne-
tosheath is a more compressible medium than the SW, allowing for more e�ciently investi-
gating the in�uence of compression on exact laws, and the satellites o�er multi-point, high
frequency measurements that allow for a full calculation of CHMHD exact laws at sub-ionic
scales. To compute the exact laws I made use of data gathered by two instruments, the
Fluxgate Magnetometer (FGM) and the FPI, and focused on data measured in burst mode
in order to have small enough time resolutions to probe sub-ion scales. In this case, the FGM
measures the three components of the magnetic �eld with a time resolution of 10ms, whereas
the FPI ion and electron sensors provide data on the velocity distribution functions, which
allow for the calculation of particles densities, velocities, and temperatures as moments of
these distribution functions, and have respective time resolutions of 150ms and 30ms. As we
want to compute third-order moments as functions of the time lag, all the data used need to
be evenly spaced in time. Thus, all the data had to be downsampled to the resolution of the
FPI ion sensor that has the lowest resolution available of 150ms. In the context of the SW the
characteristic ion time scales associated to the ion inertial length or Larmor radius usually lie
around 1s, so this resolution indeed allows for the analysis of turbulence at sub-ion scales.
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Using MMS burst mode data comes with a drawback however: the duration of the available
time intervals will usually be quite short, with a majority being only a few minutes long, as
the burst mode is mainly used for the quick passings of MMS in the thin magnetopause. The
longest interval I worked with had a duration of a little less than one hour, and had to be cut
anyway to �t the criteria of selection (see the selection protocol below). The short duration
of these intervals make it di�cult to study the MHD inertial range of the turbulent cascade
(which is already hard to identify due to its small size) but they still allow for studying the
sub-ion scales and the transition towards the MHD ones, which are the main goals of this
study.

5.3.2 Selection of the time intervals

Prior to computing the exact laws, it was necessary to build a library of events to work
on. This library was built by �rst looking at the set of 18 time intervals that were already
selected and studied in Andrés et al. (2019) and �ltering out some edge cases. This led to a
�rst selection of 15 time intervals of duration 73s to 898s, each containing burstmode data for
all four satellites. From this point, I had to search manually the entire burst mode database of
MMS for time intervals that would match a certain number of criteria of varying importance:

� the �rst and most important criterion is the magnetic spectrum. As we looked for
events featuring fully developed turbulence, I only retained time intervals in which
the magnetic spectrum has a scaling visually close to k−5/3 in the MHD and near ion
frequencies, typically between −1.55 and −1.8. All intervals not verifying this condition
were immediately discarded (Huang et al., 2017).

� another criterion is on the angle θV B separating the velocity �eld and the magnetic
�eld. As the value of this angle de�nes the direction in which we analyze the cascade,
we ideally want to keep it roughly constant, so that the cascade is oriented in the same
general direction throughout the entire time interval. I still retained some events with
a non constant angle (as long as it is not heavily oscillating) that showed a very clear
k−5/3 energy spectrum.

� �nally I looked at the density and magnetic �eld pro�les to make sure that the time
interval did not contain radically di�erent regimes, or that the event did not correspond
to the inner magnetosphere that is not the region we are interested in.

Two examples of times intervals, one accepted as a valid case and one rejected for var-
ious reasons, are shown in �gure 5.3 for reference. For a chosen time interval in the initial
burstmode events list, we display the time series for |B|, ni, θV B and density �uctuations
(ni − 〈ni〉)/ 〈ni〉, along with the magnetic energy spectrum. The �rst three time series are
complemented with overplots of brighter color corresponding to a centered running average
performed on a window of size equal to a fourth of the total time interval. This is especially
useful to easily check if θV B follows a constant trend or shows low frequency oscillations. With
the magnetic spectrum are also plotted a reference power law k−5/3, the mean Taylor-shifted
ion inertial length on the interval fdi = 〈|VSW |/(2πdi)〉 and an automatic �t on the MHD
range (on frequencies below fdi) that serves as a quick estimate of the spectral slope. Based
on these plots, the acceptation (or rejection) of the interval was done by hand on a visual
basis.

Through this selection process I ultimately built a set of 146 burstmode events of durations
going from 73s to 1000s. For each event the times series for the position, magnetic �eld,
current density and the ion and electron densities, velocities and parallel and perpendicular
components of the temperature were saved for all four satellites. The current density was
simply evaluated as J = qe(niui−neue), which has the advantage of being a local measurement
instead of a byproduct of the magnetic �eld through the gradiometer technique, which would
likely have been a less precise estimate.
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Figure 5.3: Top: Typical spectrum and time series corresponding to a valid case. The spectrum
follows a clear k−5/3 scaling, the angle θV B remains around 30◦ to 40◦ and neither the magnetic �eld
nor the ion density show strong irregularities susceptible to be the result of shocks or of a change
in the turbulent regime. This case was already presented in Andrés et al. (2019). Bottom: Typical
spectrum and time series corresponding to a rejected case. The spectrum is too shallow, which is
already enough to not consider this case, but we also see important and repeated variations in θV B
that would also be a matter for rejection.
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5.3.3 Results

For each selected case I then computed all terms of the compressible exact laws A18 and F21.
For a given time interval, these laws are computed by averaging measured variables over the
four satellites and calculating the mean spatial derivatives over the satellite formation. The
mean values (over time) of the velocity and magnetic �eld are manually removed beforehand
so that we can make sure they do not interfere with the calculations of the two laws, that
have very di�erent dependencies to the mean �elds. Spatial averages for a separation `, that
correspond here to time averages at a given time lag τ , are calculated on all available pairs of
measures separated by a time τ . The minimum time lag corresponds to the resolution of the
data, i.e. 150ms, and the maximum time lag to the total duration of the interval. Note that,
as the data is not periodic this time, taking a bigger time lag yields fewer pairs of points to
average on, thus more �uctuations are expected to be seen for large values of τ as the statistics
decrease. Fluxes are ultimately calculated by using an isotropy assumption due to the limited
directional information available. Note that in this chapter we will disregard the sign of the
total cascade rate and only represent its absolute value in the �gures, as the poor statistics
imposed by the context of the study are not su�cient to ensure meaningful interpretations
on the direct or inverse nature of the energy cascade in the observations. This is not to be
confused with the modi�ed law we studied in section 4.5: here the exact laws we compute are
the usual ones, and are simply represented in absolute values.

As stated in the introduction, we already initiated in Andrés et al. (2019) a similar work
on the general in�uence of compressibility by making a comparison of incompressible law F19
with A18. In the work presented here, I focus on the in-depth study of both compressible
laws and their relation to the gradiometer. Thus, each law is divided into four contributions:
two MHD contributions and two Hall contributions, with in each case a part made only of
terms depending on 3D divergences such as the dilatation ∇ · u, and another part made
of the remaining terms (notably including the �ux terms). The former will be referred to
as divergence-dependent terms, the latter as non divergence-dependent terms. For F21 this
division looks like this:

−4εMHD
nodiv =∇` ·

〈
δ̄ρ|δu|2δu+

1

µ0
|δB|2δu− 2

µ0
(δu · δB)δB

〉
+ 2〈δρ δu · δ̄(Jc ×B)〉, (5.4)

−4εMHD
div =− 1

2
〈(ρ(∇′ · u′) + ρ′(∇ · u))|δu|2〉, (5.5)

−4εHallnodiv =
1

µ0
∇` ·

〈
2(δB · δJc)δB− |δB|2δJc

〉
− 2〈δ(J×B) · δJc〉, (5.6)

with no Hall term depending on any divergence. For A18, using the notations introduced in
Andrés et al. (2018), we have:

−4εMHD
nodiv =∇` · FMHD, (5.7)

−4εMHD
div =2SMHD + 2SMHD

H + 2MMHD
β , (5.8)

−4εHallnodiv =∇` · FHMHD, (5.9)

−4εHalldiv =2SHMHD. (5.10)

(5.11)

Note that for this law the divergence-dependent terms coincide with the terms usually labeled
as "source terms". This is not exactly the case for F21 as some non-�ux terms do not contain
divergences, such as 〈δ(J×B)·δJc〉. With this decomposition we distinguish the components of
the cascade that only depend on directly measured quantities, and the components depending
on 3D divergences that can only be obtained through the use of the gradiometer.

We display the results for two events that we already studied in Andrés et al. (2019), one
weakly compressible and the other more compressible, in �gures 5.4 and 5.5 respectively. An
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immediate observation can be made: on both cases divergence-dependent terms are at best
of the same order of magnitude as the other terms, and at worst orders of magnitude higher,
which is not what was observed in simulations (see chapter 4 and Andrés et al. (2018)) nor was
reported in Andrés et al. (2019). At this point an important statement has to be made: when
I recalculated the so-called source terms reported in this letter, I found out that these terms
had been mistakenly o�set by a factor 1/VSW due to an error in the conversion from spatial
to time increments. This mistake made the source terms appear of way lower amplitude than
they really are, which led them to be neglected. Note however that this does not invalidate
the study that was led afterwards on the sole �ux terms, nor the conclusions that were drawn
from it. This mistake only questions the initial decision of ignoring the source terms, and we
will show in this chapter that this decision is not invalidated due to important limitations on
the gradiometer.

10 20 30 40 50 60 70
0

10

20

30

40

50

60 |B|[nT]

0

5

10

15

20

25ni [cm 3]

10 20 30 40 50 60
Time [s]

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

(n
i

<
n i

>
)/

<
n i

>

100 101
10 17

10 15

10 13

10 11

10 9

[Jm
3 s

1 ]

| MHD
nodiv| [A18]

| Hall
nodiv| [A18]

| MHD
div | [A18]

| Hall
div | [A18]

di

i

100 101

 [s]

10 17

10 15

10 13

10 11

10 9

[Jm
3 s

1 ]

| MHD
nodiv| [F21]

| Hall
nodiv| [F21]

| MHD
div | [F21]

 
di

i

case 14 - 2015-10-16 09:24:11

Figure 5.4: Left panels: time series for the magnetic �eld (blue), ion number density (green) and
density �uctuations (orange). Right panels: contributions to the compressible cascade rates from
MHD terms with (blue) and without (turquoise) divergences, and from Hall terms with (red) and
without (orange) divergences. The dotted and dashed-dotted lines are the time lags corresponding to
the ion larmor radius and ion inertial length respectively. Note that the red line is missing from the
plot for law F21, due to the fact that this law contains no Hall term depending on a divergence. The
point at smallest τ of divergence-dependent terms is missing due to the integration scheme applied to
these terms. This event corresponds to the weakly compressible event studied in Andrés et al. (2019)
and already presented in Chen and Boldyrev (2017).

Aside from the apparent dominance of divergence-dependent terms, we can pinpoint sim-
ilarities between the two cases presented in details here. First, the values of εMHD

nodiv obtained
for the two laws appear to have similar behaviors across all time scales. This consistency is to
be expected as both non divergence-dependent MHD terms share close expressions, with the
exception of the non-�ux term appearing in (5.4). For the Hall terms εHallnodiv however these
similarities vanish: A18 shows a sub-dominant Hall term at MHD scales, but this term starts
dominating at sub-ion scales, as we already noticed in Andrés et al. (2019). For F21 the Hall
term remains close to the MHD cascade rate at all scales and does not appear as dominant
as with A18 at sub-ion scales. The di�erences observed between the Hall cascade rates of
the two laws contrast with observations made on GHOST simulations in chapter 4, where we
showed that the MHD and Hall components were matching from one law to another. The
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Figure 5.5: Same plot as �gure 5.4 for a more compressible event, already presented in �gure 5.3.
This one corresponds to the weakly compressible event studied in Andrés et al. (2019).

discrepancies observed here may result from insu�cient sample sizes or from the errors in-
duced by the gradiometer, as the matching was demonstrated for the complete laws, including
divergence-dependent terms.

These analyses are pushed further by calculating the mean ratios |εMHD
div |/|εMHD

nodiv | and
|εHalldiv |/|εHallnodiv| for the two laws (when applicable) for all available cases. The mean values for
the Hall and the MHD cascade rates are evaluated on speci�c time lag intervals taken respec-
tively below and above τdi , and that I had to select manually for each event due to the strong
discrepancies observed among all cases. These intervals were chosen far away from the transi-
tion from the MHD to Hall regimes. The results, shown in �gure 5.6, corroborate our previous
conclusions: the dominance of the divergence-dependent term is much more prominent, and
widely veri�ed, for the MHD part of A18. For its Hall part and the MHD part of F21 however
no evident domination of either divergence-dependent terms or the other terms is observed.
This can be understood by recalling that εMHD

div in A18 is made of three large amplitude terms
that usually cancel out each other (Andrés et al., 2018), whereas other divergence-dependent
terms are only made of single terms that are negligible by themselves. Consequently, we can
expect the former to reach much higher amplitudes here if its components are di�erent enough
for not canceling out.

Similar statistics can be drawn to verify whether the cascade rates evaluated by both
laws generally coincide or not. Figure 5.7 shows that, as we observed on the individual cases
presented in �gures 5.4 and 5.5, the MHD energy cascade driven by non divergence-dependent
terms is on average the same for the two laws. On the contrary, the Hall cascade appears on
average to be overestimated by A18. A much more thorough study of individual components
of the Hall terms of both laws, especially for F21 that is made of two separate �ux and non-
�ux components, would be needed to explain these di�erences. I unfortunately did not have
enough time to lead this study, but plan to investigate this matter after the end of this thesis.
Instead, I decided to focus on trying to understand why divergence-dependent terms appear
to be so strong even in presence of small density �uctuations: as this e�ect is more prominent
for A18 MHD cascade rate, that contains more divergence terms, the gradiometer is suspected
to be the main cause of this behavior.
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Figure 5.6: Statistics of the mean ratios |εMHD
div |/|εMHD

nodiv | and |εHalldiv |/|εHallnodiv| for laws A18 and F21.
Only the MHD case is shown for F21 as it does not have divergence-dependent Hall terms. The
colorbar shows the standard deviation σδn of the time series of density �uctuations (ni − 〈ni〉)/ 〈ni〉,
indicating the degree of compression of the event.
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Figure 5.7: Statistics of the mean ratios of A18 non divergence-dependent terms over the ones for
F21. The colorbar is the same as in �gure 5.6.
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5.4 Gradiometer: evaluation and limitations of the method

5.4.1 Quality factor of the gradiometer
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Figure 5.8: Time series for the magnetic �eld and ion density (top) and for the current density
(bottom) measured by the FPI (yellow) and calculated by the gradiometer (black) on the weakly
compressible case 14. All displayed variables are averaged over the four satellites.

I investigate here the performances of the gradiometer through, once again, single case
studies and statistical studies on the entire set of events. To this end we need a parameter
that would give a measure of the quality of the gradiometer's estimate. Dunlop et al. (1988)
proposed to use |∇ ·B|/|∇ ×B|. The idea behind this quantity is that |∇ ·B| is supposed
to be null, but is most probably not due to imprecisions on the gradiometer. By normalizing
it by a similar quantity, namely |∇ × B| that is also calculated through the gradiometer,
we obtain a dimensionless quality estimation of the gradiometer. However, |∇ × B| is also
subject to variations by virtue of being a derivative, and so may not be the best normalization
factor to represent to what extent |∇ ·B| is close to zero. I thus introduced in these tests an
alternative normalization by 〈|B|〉MMS / 〈∆R〉MMS where 〈|B|〉MMS is the average magnetic
�eld over the four satellites and 〈∆R〉MMS is the average separation between all four satellites.
This allows for obtaining a dimensionless quantity free from perturbations brought by the use
of additional derivatives. Finally, as we have access to a direct measurement of the current
density, comparing this measured value to the one calculated with the gradiometer may be the
best method to estimate the accuracy of this method. We will focus on this quality estimate
in the subsequent study, and use it to check the performances of the other estimates that
would be the only ones available whenever the current cannot be directly measured.

We display in �gures 5.8 and 5.9 the time series for the current density computed with the
gradiometer, and compare it to the average current density measured by the four satellites
with the FPI. The ion density and magnetic �eld are also given for reference. On both
the weakly compressible case and the more compressible one the current as calculated by
the gradiometer appears to be underestimated in comparison to its real, measured value, a
behavior that was already reported in previous studies (Perri et al., 2017). Moreover case 12,
besides showing an increased amplitude of the current �uctuations, seems to show a larger
gap between the two values of the current. However, it is not clear whether this behavior can
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Figure 5.9: Same as �gure 5.8 for the compressible case 12.

be attributed to the stronger compressibility. A statistical study reported in �gure 5.10 shows
that the error induced by the gradiometer is re�ected by all three cartesian components of the
current. No direction appears to be privileged: if the current estimate appears miscalculated,
each of its component is individually miscalculated as well. This �gure also indicates that
the current can be underestimated by up to �ve times its real value, which would indicate
important errors in the gradiometer estimates.

We also make a comparison between the quality estimate provided by the two calculations
of the current with the other two estimates proposed earlier that make use of ∇ ·B. We want
do determine which one would be more suited to evaluate the precision of the gradiometer,
taking the one for the current as a reference. In �gure 5.11, one can see that the variable
|∇ ·B|/|∇×B| originally proposed by Dunlop et al. (1988) struggles to give a proper estimate
of the quality of the gradiometer, except for its smallest values that are correctly correlated
to a good matching of the current. The other variable, 〈|B|〉MMS / 〈∆R〉MMS , spans a much
larger range of values but also seems to o�er a better correlation to the current estimate:
the lowest values correspond to matching currents, and the highest ones to stronger current
discrepancies. This estimate also gives birth to less artifacts. We thus argue that in situations
where the current cannot be measured, and so where the currents ratio estimate is not available
to measure the e�ciency of the gradiometer, 〈|B|〉MMS / 〈∆R〉MMS could be a good candidate
as a quality estimate of the method.

It is interesting to note that compressibility does not seem to play any role in the quality
of the gradiometer approximation. The stronger di�erences in the two values of the current
observed in �gure 5.9 is thus an isolated behavior and cannot a priori be correlated to the
stronger compressibility of this event. In any case, we undoubtedly see here that the estimates
provided by the gradiometer are often o�, in some cases of a signi�cant factor. In itself this
is not a major problem, but in the calculation of exact laws these estimates are multiplied to
other terms that can exacerbate these errors to signi�cant values. This is especially problem-
atic as the cascade rates we compute are of low amplitude in the �rst place. To get a better
idea of how these errors on the gradiometer translate in the calculation of the exact laws, I
tried to derive a "lower bound" for this error: I computed for law A18 the terms depending
on the divergence of the Alfvén speed by setting the density to a constant equal to its mean
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Figure 5.10: Statistical study of the ratios Jgrad/JFPI for the total current and each individual
component of the current.
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Figure 5.11: Statistical study of the ratios Jgrad/JFPI for the total current and of the two estimates
of the gradiometer quality presented above, |∇ ·B|/|∇×B| (left) and 〈|B|〉MMS / 〈∆R〉MMS (right).
The color bar still represents the degree of compressibility of each event through the standard deviation
of density �uctuations.
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value. As a consequence the terms computed this way, denoted by εfloor, should be equal to
zero as multiples of ∇ · B. Of course they most probably will not be really equal to zero,
but their amplitude will provide a lower bound on the amplitude below which we cannot
reasonably trust the compressible terms.
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Figure 5.12: MHD (left) and Hall (right) components of the energy cascade for the weakly compressible
event. The black curve represents the "�oor" of the gradiometer: the values of terms depending on
∇ · vA computed with ρ = 〈ρ〉 = cte. These terms are a lower bound of the error induced by the
gradiometer.
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Figure 5.13: Same as �gure 5.12 for the compressible event.

Figures 5.12 and 5.13 show the MHD and Hall cascade rates for our two reference cases
along with the lower bound on the error of the gradiometer. An immediate remark can be
made: these lower bounds are too high. For both cases this bound is of the same amplitude
as the non divergence-dependent terms for the MHD cascade, and is even higher than the
Hall cascade. The lower bound also has an amplitude similar to all divergence-dependent
terms, except for the MHD ones in the weakly compressible event. This not only means that
most of these source terms cannot be trusted, but that any divergence-dependent terms whose
contribution would be equivalent to or lower than the traditional �ux terms, as it is the case in
the numerical studies, could not be trusted at all either. Note also that this only represents a
lower bound on the error induced by the gradiometer: the true errors could be more important
than this. From these results, we draw the conclusion that the gradiometer technique as
currently used may not be suitable for estimating divergence-dependent components of the
turbulence energy cascade rates in the context of MMS data analysis. Similarly, extreme care
should be taken when working with similar multi-spacecraft missions that may be subject to
the same limitations. The problems encountered here call for the development of new methods
for estimating spatial divergences or at least for a better understanding of the causes of the
errors observed on the gradiometer. This second aspect will be the main focus of the following
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subsection, and of the next section of this chapter.

5.4.2 Causes of error of the gradiometer

We determined above that the gradiometer technique in its current form is too limited to
allow for a precise study of the energy cascade rate in MMS data. We also concluded that
compressibility is not responsible for bad gradiometer results. At this point, it would be
interesting to understand what may be the origin of these errors. We have several candidates
to explain the poor performance of the gradiometer: irregularities of the tetrahedral formation,
non-linear evolution of the �elds between the satellites, or a lack of statistics for the results
to be believable. The regularity of the formation can be estimated with two mathematical
parameters known as planarity and elongation of the tetrahedron. Robert (2000) de�nes these
parameters using the ellipsoid created by the positions of the four satellites. If we note a, b
and c the major, middle and minor semi-axis of the ellipsoid, then we de�ne the elongation
and planarity as:

E = 1− (b/a) ; P = 1− (c/b). (5.12)
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Figure 5.14: Statistics of the mean planarity and elongation of the selected events. The colorbar
represents the current quality estimate of the gradiometer. We recall that the closer the value of this
parameter is to 1, the better the quality of the gradiometer estimate is.

A perfectly regular tetrahedron would have E = P = 0 ans its associated ellipsoid would
be a sphere. A tetrahedron with P ∼ 1 would correspond to a �at formation, with an
associated ellipsoid described as a "pancake". On the other hand, a tetrahedron with E ∼ 1
would correspond to an elongated formation with an ellipsoid described as a "cigar". Through
these parameters it was shown by Yang et al. (2019), using Cluster data and 3D calculation
techniques speci�cally designed for the magnetic �eld (di�erent from the gradiometer), that
these parameters only really disturb the estimate of the 3D �elds for large values of E and
P , typically E & 0.8 and P & 0.8. I calculated the mean planarity and elongation for the
146 events, and results are displayed in �gure 5.14. No trend appears that would allow to
correlate the planarity and elongation of MMS formation to the quality of the gradiometer.
This may be tied to the fact that calculated values of E and P rarely exceed 0.5, far from the
values reported by Yang et al. (2019) to actually have an e�ect on their 3D �elds estimates.
Thus, these parameters do not appear to be correlated to the imprecisions of the gradiometer.
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One may note that a very few cases have large values of P or E, yet show a ratio close to
unity, but these cases are statistically poorly signi�cant so no reasonable conclusion can be
drawn from them.

When investigating the in�uence of the non-linearity of the �elds (i.e. spatial �uctuations
of the �elds between the satellites, or local perturbation a�ecting even a single spacecraft)
we are faced with a problem: measures of the �elds in-between the satellites are impossible
to obtain. Consequently, I reused the "�oor" terms presented in �gures 5.12 and 5.13 and
computed them again after smoothing the time series to attenuate the non-linearities at time
scales corresponding to the mean satellite separation (transposed in time) τsep. I again used
a running average, with a windows size that is a multiple of τsep. The results, displayed in
�gure 5.15, show that the �oor terms decrease in amplitude as the size of the average win-
dow increases. It thus seems that smoothing the time series improves the precision of the
gradiometer. This method is not applicable in practice as lowering the error signi�cantly re-
quires a strong smoothing, and we thus loose all information on the small scale energy cascade
rate, where most dissipative processes happen. Such a smoothing would only be justi�ed on
scales up to τsep anyway, below which we do not have enough information. Nevertheless, this
test tells us that the non-linearity of the �elds between the satellites may be a major reason
for the errors brought by the gradiometer technique.
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Figure 5.15: Lower bounds of the gradiometer error calculated on smoothed data from the compressible
case (left) and the weakly compressible one (right). The smoothing is performed with a running
average on a window of size 10, 100, 250 and 500 times the mean satellite separation (transposed in
time space).

5.5 Simulated MMS �y-by

5.5.1 Description of the method

Considering the limitations imposed by the MMS data, it appears di�cult to push the inves-
tigation further on this sole basis. To circumvent these limitations and better understand the
results obtained for MMS data we can turn to simulated data, namely the GHOST 10243 run
II (B0 = 0, MS = 0.25) already studied in chapter 4 (once again reduced to a resolution of
5123) to run additional tests in a more controlled environment. Using this DNS, I conceived
a program simulating a virtual MMS �y-by within the datasets: starting from the center of
the data cubes, I de�ne the positions of four "virtual spacecraft" distributed in a perfectly
regular tetrahedral formation, centered on a grid point that will serve as a reference. Then,
the spacecraft are "launched" along the x-axis at a "speed" of one grid separation per step.
This ensures that the center of the formation will remain on a grid point at each step, forming
its general traveling path. For each step, the satellites "measure" the data at their respective
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positions thanks to a 3D interpolation that was estimated beforehand on all available grid
points. The data measured are all the usual �elds ρ, u and B, but also all derivatives (such
as ∇ · u, J etc.) that are calculated the same way they were in chapter 4, using a �nite
di�erences scheme. This virtual �y-by will allow us to compare the usual derivative to the
ones calculated using the gradiometer on the virtual formation. As a result, I obtained for
each scalar and vector �eld four 1D series, one for each satellite, on which I then computed
the exact laws just like for real MMS data.
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Figure 5.16: Individual terms of exact law A18 calculated with the direct method (red), and using
the arti�cial spacecraft without gradiometer (blue). We use for the di�erent terms the same notations
as Andrés et al. (2019), reminded in equations (4.15)�(4.20) in chapter 4. Here satellite separation is
equal to zero: all satellites are on the same grid point.

In the meantime, the exact laws are computed on the data cube themselves, like in chapter
4, but only on the traveling path of the arti�cial formation. The laws obtained are thus mono-
directional and averaged on a single line of points, and will serve as a reference to test the
performances of the gradiometer in computing the laws for the arti�cial formation. Then,
the various terms of exact law A18 (the law that has the most divergence-dependent terms
to use the gradiometer on) are calculated using the data measured by the satellites with two
methods: by using the pre-computed divergences, and by computing them afterwards with the
gradiometer. The �rst method allows us to compare the results obtained by computing the
law on the grid points, and by computing it using the average values of the four interpolated
points corresponding to the satellites around said grid points. This way, we can ensure that
the interpolation and the average on the four spacecraft do not introduce important errors in
the results before even calculating the gradiometer.

In �gure 5.16 we display the results of the direct calculation and of the calculation with
arti�cial MMS data without gradiometer for a formation with a separation equal to zero. This
means that all satellites are always on a same point that corresponds to the central reference
grid point. The purpose of this test is to verify that the arti�cial �y-by behaves as intended.
As expected, both the direct calculation and the no-gradiometer one provide the same results,
which tells us that the spacecraft formation "�ies" as intended. Note that in this case the
gradiometer terms are unde�ned.
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Figure 5.17: Individual terms of exact law A18 calculated with the direct method (red), arti�cial
spacecraft without gradiometer (blue) and, when applicable, with the gradiometer (green). For each
term calculated with the gradiometer, the spatial derivatives it depends on is reminded on top of the
respective box. The satellite separation here is equal to one time the grid resolution.
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Figure 5.18: Same as �gure 5.17 with a separation of 5 times the grid resolution.
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5.5.2 General precision of the gradiometer

Now that we made sure that the arti�cial �y-by works correctly and that the reference can
be trusted, we start increasing the separation between the satellites to see how it will a�ect
the calculation of divergence-dependent terms when using the gradiometer. We display in
�gures 5.17 and 5.18 the results obtained with the three methods for a satellite separation
equal to one time and �ve times the grid resolution respectively. As expected, the blue lines
corresponding to the terms calculated with pre-computed divergences do not di�er much from
the reference, as the di�erences between the two methods only stem from the values used to
compute the terms (central grid point for the red reference, average on the four satellites for
the blue lines).
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Figure 5.19: Energy cascade rates given by the reference �ux terms (black) and the divergence-
dependent terms in MHD (left) and Hall MHD (right). Divergence-dependent terms, are here again
calculated with the direct method (red), with satellites data without gradiometer (blue) and using
the gradiometer (green). Satellite separation is equal to one time the grid resolution.

Values obtained using the gradiometer show more di�erences even for a separation of one.
For an increased separation of 5, the gradiometer ends up being an order of magnitude higher
than the reference for the source and hybrid terms. These di�erences are even higher for the
Hall source term, as it was already a low amplitude term and is thus more sensitive to errors.
The case of the beta term MMHD

β is interesting, as it shows a lesser sensitivity to satellite
separation and the gradiometer seems to give much better results overall. This probably has
to do with the fact that this terms is the only one calculated using gradient terms instead of a
real divergence, however why this version of the gradiometer seems to be more robust remains
unclear. In any case, we clearly see in those two �gures that satellite separation has a direct
in�uence on the quality of the gradiometer estimate. It is possible that the scales at which
the derivatives are calculated, which are dictated by the distance between MMS spacecraft,
are too large in in situ data analysis and thus are partly responsible for the error induced by
the gradiometer.

Besides investigating the individual terms of the exact law, we need to look at how the
sum of the non divergence and divergence-dependent behaves relatively to each other. Indeed,
nothing suggests that individual divergence-dependent terms should be negligible toward the
�ux terms, but it was proven that their sum is. Thus, again for a separation of one and
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Figure 5.20: Same as �gure 5.19 with a separation of 5 times the grid resolution.
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Figure 5.21: Same as �gure 5.19 with a null separation (gradiometer terms are unde�ned). The
reference terms in black and red were averaged on the entire simulation domain.
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�ve times the grid resolution, we compare the corresponding cascade rates to obtain �gures
similar to the ones obtained for MMS data that were presented in previous section.

The partial cascade rates are displayed in �gures 5.19 and 5.20. Overall the behaviors
observed in previous �gures 5.17 and 5.18 remain unchanged, except that the total sum of
divergence-dependent terms calculated with the gradiometer seems to be slightly less sensi-
tive to satellites separation. These plots however reveal a new problem: even for the ref-
erence calculation, that was made using the classical DNS computation method, the MHD
divergence-dependent terms are absolutely not negligible. Yet, this is not incompatible with
the results reported in Andrés et al. (2018) and chapter 4, as here the calculation is made
using a single direction, and more importantly spatial averages on a single line of points, i.e.
on 512 points instead of 5123. If we proceed to the same calculation for the reference plots
using a spatial average on the whole simulation domain instead of this single line, we obtain
the results shown in �gure 5.21: the MHD divergence-dependent cascade is indeed negligible
in comparison to the �ux term. This �ux term is also slightly higher than before.

These results have important implications regarding MMS data analysis, as they seem
to suggest that the problems a�ecting the divergence-dependent terms that we encountered
earlier may mostly be related to, in fact, an important lack of statistics. It is highly pos-
sible that the satellites just do not gather enough data to allow for a correct calculation
of the divergence-dependent terms of the turbulent cascade, independently of the quality of
gradiometer estimates.

5.5.3 Reaction of the gradiometer to non-linearity

As a �nal test, I investigated in more details the reaction of the gradiometer to non-linearities
of the �elds between the satellites. Neither MMS nor DNS data o�er enough control on the
non-linearities to quantitatively estimate their in�uence on the gradiometer. Thus, instead
of reusing a simulated dataset, I created an arti�cial dataset linear in the three directions
of space in which I can introduced a controlled noise, and proceeded to emulate a �y-by as
I did in the GHOST dataset. To this end I �rst generated 1283 3D linear components for
the velocity �eld u by assigning to the point in position [x,y,z] the value (1+x+y+z). Then,
similarly to what was done before, I simulated an arti�cial MMS �y-by in the direction of the
x-axis in the resulting dataset, and �nally compared the precomputed derivatives to the ones
obtained with the gradiometer (with a satellite separation of one time the grid resolution).
For this perfectly linear dataset, we see in �gure 5.22 that the gradiometer estimate of ∇ · u
is in excellent agreement with the derivatives computed with �nite di�erences.
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Figure 5.22: Velocity amplitude along the x-axis (left) and relative error on the calculation of ∇ · u
between the �nite di�erences and the gradiometer (right). Here the velocity �eld is perfectly linear.
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As mentioned above, I subsequently investigated the in�uence of non-linearities on this
result by introducing some noise in the linear dataset. The noise is generated at each point
of the dataset by using a continuous uniform distribution between zero and a given percent
of the value taken by that point. I thus proceeded to the same comparison of divergences on
datasets perturbed with noises generated by uniform distributions on [0,0.02|u|] and [0,0.2|u|],
that would amount to an expected value of 1% and 10% of |u| respectively. Results are
displayed respectively in �gures 5.23 and 5.24. It appears that the average error induced
by the gradiometer ends up being an order of magnitude higher than the expected value of
the noise: an expected noise of 1% gives an average error of 28%, and an expected noise of
10% an average error of around 300%. For real MMS data the amplitude of the "noise" (i.e.
of the non-linearities between satellites) is not accessible, but based on the high frequency
�uctuations observed on the density or the magnetic �eld we can roughly estimate these
non-linearities to be of the order of 10%. According to the results presented here, this could
amount to signi�cant errors on the calculation of the gradiometer, which could be further
ampli�ed in the calculation of the exact laws.

25 50 75 100x

250

300

350

400
|u|

25 50 75 100x
10−3

10−1

101

103 |∇grad · u−∇ · u|/|∇ · u|
mean: 0.28

Expected noise: 1%

Figure 5.23: Same plots as in �gure 5.22 but the velocity �eld has been perturbated with a noise
generated by an uniform distribution of expectation 1% of |u|. The mean value of the error is also
displayed on the right panel.
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Figure 5.24: Same as in �gure 5.23 for a noise generated by an uniform distribution of expectation
10% of |u|.

Similarly to what was done for real MMS data we can smooth the vector �elds measured
by the satellite formation to reduce the importance of the non-linearities. I applied again
a running average with a window size dependent on the separation between the satellites
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(here taken equal to one grid resolution). Two tests were run, with a window of size 5 and
a window of size 25. We notice that the stronger the smoothing, the more reduced are the
errors induced by the gradiometer, which falls in line with the results obtained when smoothing
MMS data. These tests suggest that, as expected, non-linearities of the �elds have an impact
on the performances of the gradiometer. Their e�ect, paired with the ones attributed to
the weak statistics of the computation, are thus likely to be responsible for the poor results
provided overall by the gradiometer in the calculation of the divergence-dependents terms of
the turbulence exact laws for in situ data.
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Figure 5.25: Same as in �gure 5.24 with a smoothing on the vector �elds measured by the virtual
satellites through a running average of window of 5 times the satellites separation.
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Figure 5.26: Same as in �gure 5.24 with a smoothing on the vector �elds measured by the virtual
satellites through a running average of window of 25 times the satellites separation.

5.6 Conclusion

In this �nal study, led on in situ data gathered by MMS, I proposed a detailed analysis of MMS
data and of the numerical gradiometer techniques. To lead this study, I used MMS burstmode
data to build an ensemble of suitable events to analyze, on which I applied the compressible
exact laws A18 and F21. All terms depending on a divergence or gradients are calculated using
values measured by the four spacecraft thanks to an extension of the curlometer technique
(Dunlop et al., 1988, 2002) referred to as the gradiometer. It was found that divergence-
dependent terms are overall non-negligible in comparison to the other terms, which di�ers
from what was reported in Andrés et al. (2019) due to an error in the calculation. Yet, the
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entire �ux-based study reported in the aforementioned letter still remains valid, as the large
amplitude of these divergence-dependent terms was found in this chapter to be originating
from limitations of the gradiometer, and as such they may not be estimated reliably.

The observed limitation on the gradiometer prompted an in-depth study of this method.
Through its detailed analysis it was possible to pinpoint two main causes for the potentially
important errors: a lack of statistics in MMS observed events (that could be solved by aver-
aging over very large time intervals), and a non-linearity of the �elds between the satellites
of MMS formation. While the lack of statistics is a problem that cannot be solved in current
data, the non-linearity problem can be attenuated by smoothing the data measured by the
satellites at the cost of loosing information at small time scales, which can be problematic
if studying turbulence energy dissipation and small scale cascade. Ultimately, introducing
divergence-dependent terms in turbulent cascade studies for currently available data proves
to be a full-�edged challenge, that would require a new form of data treatment or new methods
for derivatives calculation. Note that, considering these limitations, exact law F21 appears to
be perfectly suited to the study of sub-ion turbulence in in situ data, as its Hall components
do not feature any divergence-dependent term.

The conclusions drawn in this chapter may appear concerning, yet they bring important
information on limitations one needs to remain aware of when working on space plasma
turbulence with in situ data. More importantly, as we were able to pinpoint the possible causes
of error as essentially originating from the geometry of MMS mission, the studies developed
here bring new arguments in favor of newly designed multi-spacecraft missions such as Cross-
scale or EIDOScope previously proposed at ESA (Schwartz et al., 2009; Vaivads et al., 2012)
or, more recently, NASA's Helioswarm that should receive a �nal answer on its validation
around the end of this year and ESA's Debye (Verscharen et al., 2021). By increasing the
number of satellites and positioning them to de�ne multiple spatial scales, it is possible to
increase both the statistics of turbulent studies (by increasing the number of "lines" on which
the properties of the plasma are measured) and to improve the results of the gradiometer by
providing multiple scales at which we could compute the divergences, as well as providing
means to investigate non-linearities of the �elds between the most distant satellites.

It would be interesting to complement the work presented here by additional studies, such
as introducing perturbations on a single spacecraft to test how the gradiometer would react
to a single satellite �ying in a localized turbulent structure, or pushing further the analysis
of non divergence-dependent cascade terms on MMS events. Such ideas are postponed to a
near future.

The study presented in this �nal chapter follows initial results that were reported in
Andrés, Sahraoui, Galtier, Hadid, Ferrand, and Huang (2019) [Physical Review Letters 123].
It is currently being �nalizing and should be published in an upcoming paper.

114



Chapter 6

Conclusions and perspectives

6.1 Summary of the thesis

The detailed study of the physics governing turbulent plasmas, and even turbulent �ows in
general, is still to this day a vast and active research �eld in physics. Encompassing hard
theoretical work, numerical simulations calculation and analysis, experiments on arti�cial
turbulent �ows (in wind tunnels for example) and in situ satellite data analysis for turbulent
astrophysical plasmas, the angles through which one can approach turbulence are numerous,
and its applications are even more. The SW in itself has drawn lots of attention for many
decades, by virtue of being a naturally turbulent plasma as well as an important laboratory
for plasma data measurement, allowing for in-depth turbulence studies.

In this thesis I present a broad approach of SW plasma turbulence through a continuity
of interconnected studies. I �rst handle the theoretical derivation of exact laws for IHMHD
and CHMHD plasma models, complementing the toolbox that already existed for analyzing
turbulent energy cascades. The theoretical calculations are then transposed into a numerical
Python code, allowing for the practical study of both simulated and measured turbulent �ows.
The tools developed in the scope of this theoretical work are then applied to a variety of DNS
data, based on di�erent models and featuring various physical e�ects, with the aim of honing
our understanding of either turbulent �ows themselves, or of the exact laws used to study
them. These DNS studies, led in a controlled environment, pave the way to the challenge of
analyzing satellite data by providing important keys to interpret the results obtained on these
in situ data. Through the intertwined studies made on simulated and measured turbulent
plasmas, we can slowly unravel the physics governing complex turbulent media such as the
SW, the magnetosheath or the ISM.

In this �nal chapter, I will return on each major step of this thesis and summarize the
results obtained. It will also be the occasion to highlight both the strengths and weaknesses
of the methods presented in previous chapters, and to pinpoint potential improvements that
could be made in the future.
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6.2 Tools for turbulence analysis

6.2.1 Derivation of exact laws

The �rst chapter of this thesis is dedicated to the hard mathematics. Throughout chapter
2, I propose a detailed mathematical derivation of two turbulence exact laws for the plasma
models of IHMHD and isothermal CHMHD. Both exact laws are derived under the usual
assumptions of statistical homogeneity, statistical stationarity, and large Reynolds numbers.

For the IHMHD model the new exact law F19 comes as the third of its kind, following
exact laws G08 and BG17. Unlike the previous ones, this new law takes the form of a typical
Yaglom-like �ux of third-order moments, similarly to other laws for incompressible HD or
MHD models (Antonia et al., 1997; Politano and Pouquet, 1998). The three IHMHD laws are
proved to be mathematically equivalent under the aforementioned assumptions, allowing one
to safely choose which one to use based on the data available. Typically, F19 can be readily
calculated on satellite data provided that the current density is measured, and BG17 is free
from directionality constraints by virtue of not being a �ux term. All exact laws are also
found to be mathematically independent on an eventual background magnetic �eld B0, which
means that the amplitude of the mean �eld will not change directly the values of the energy
cascade rate, but can only in�uence it through the way it shapes the turbulent dynamics.

Exact law F21, derived for the isothermal CHMHD model, comes after the other law
A18 derived by Andrés et al. (2018). It involves less components overall, which makes it
easier to compute numerically, and its �ux and Hall components are directly reminiscent of
their IHMHD counterparts from BG17 and F19. However, contrary to the IHMHD case,
this law remains dependent on the direct value of the background magnetic �eld. Also, no
mathematical equivalence could be obtained between A18 and F21. Being derived for a
CHMHD model, this law can be degraded by considering various limit cases such as IHMHD,
MHD of CHD to obtain other laws pertaining to these respective models. One such law,
obtained in the CHD limit, is later used to study a DNS dataset in chapter 4.

With three exact laws providing various advantages and points of view, we now have
more than enough tools to lead basic studies on IHMHD turbulent cascades. For CHMHD
however a lot of work still remains to be done. First of all, it would be interesting in further
developments to try to �nd an analytical equivalence between A18 and F21 as was done for
the IHMHD laws, or to unveil possible speci�c conditions that would lead to such a relation.
Then, more generally one has to keep in mind that these laws only cover isothermal �ows.
It would be interesting to have access to similar exact laws for other models, such as ones
using a CGL or a polytropic closure. Fortunately, with recent developments on generalized
isentropic CHMHD exact laws (Simon and Sahraoui, 2021), the future of this aspect appears
to be in good hands.

6.2.2 Numerical implementation of the exact laws

Following the derivation of exact laws, chapter 3 is dedicated to the development of a Python
code able to calculate them on either DNS or satellite data. This chapter presents the general
method adopted to select the increment vectors and scan various directions in the datasets,
and discuss the technical implementation and limitations tied to the execution time and
memory constraints.

In order to compute the exact laws in 3D periodic DNS datasets, we need to average the
di�erent terms spatially over a large number of pairs of points, connected by an increment
vector `. In the code I wrote, I �rst set a vector ` and then average on all available pairs
in the datasets. The selection of the increments vector follows the angle-averaging technique
developed by Taylor et al. (2003), where all increments are multiples of an initial set of base
vectors de�ned spherically on the simulation grid. This ensures that for a point r on the
grid, the associated point r′ = r + ` also lies on the grid, avoiding the needs for 3D data
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interpolation. Once the calculation of the exact laws is done for each value of `, the results
are averaged using either an axi-symmetry (around the background magnetic �eld) or an
isotropy assumption, depending on the data studied.

This method works especially well for datasets with no background magnetic �eld, as the
isotropy hypothesis is usually well veri�ed statistically. However, it faces some limitations for
anisotropic data due to the irregular angular spacing of the increment vectors imposed by this
method. Indeed, if we choose to compute the laws with the axi-symmetry assumption, �uxes
can only be calculated along directions orthogonal to the background �eld only, averaging
on the parallel direction, or inversely along directions parallel to the �eld only, averaging on
orthogonal directions. In both cases, either the parallel or orthogonal �ux variations have to
be discarded. On the other hand, if we choose to use the isotropic decomposition we retain
the entire �ux dynamics, but the resulting average on increment vectors is ill de�ned as the
data is not, a priori, isotropic. In the end, one needs to �nd for each given case which method
gives the most plausible results.

The aforementioned limitations did not hinder too much the DNS data analyses presented
in this thesis, as it was systematically possible to �nd a �tting method to calculate the
exact laws. Nevertheless it appears important in the long term to have access to another
method of calculation that could allow for the calculation of �ux terms as a function of `⊥
and `z simultaneously. This could be done by fully interpolating the datasets in 3D and
working with increments de�ned on regular Cartesian coordinates. This would simplify the
calculation of spatial derivatives, as increment vectors would be evenly spaced in all three
Cartesian directions. Such a code would allow to see the relative importance of the transverse
and parallel �uxes depending on the direction of the increment vector.

On a more technical note, chapter 3 also presents the parallelization and memory opti-
mization techniques adopted in the numerical code. The parallelization was done by splitting
the datasets in slices cut along the direction of the mean background �eld (or the z-axis oth-
erwise), each CPU computing all terms of the laws on its own slice only. It is also possible to
only open a part of the data at once to reduce memory usage. However, these methods are
more limited when working with non-transverse increments as the overhead cost of communi-
cations between CPUs quickly add to the execution time. The code could maybe be improved
further by giving to each CPU access to an external �le containing the relevant parts of the
data.

6.3 Studying turbulent �ows through DNSs

6.3.1 In-depth analysis of exact laws

The theoretical and numerical methods developed in chapters 2 and 3 are used in chapter
4 to analyze 4 ensembles of datasets. The �rst two, simulated for models of EMHD and
CHMHD, are used to lead an in-depth study of the incompressible and compressible exact
laws respectively.

The EMHD datasets allow for a direct veri�cation of how the Hall components of the three
laws G08, BG17 and F21 relate to one another. It is found that the three laws are indeed
equivalent, with a slight deviation on BG17 probably due to its di�erent nature as a non-�ux
term. The in�uence of B0 is also investigated and laws BG17 and F21 are, as expected, found
to be totally independent on the direct value of the background �eld. G08 however shows a
slight dependence on the presence of B0. This may suggest that this law is more sensitive
to deviations from the hypotheses, especially the homogeneity one, in which case the terms
depending on B0 would not cancel out properly.

The CHMHD datasets were simulated as part of this thesis using the GHOST code, and
consist of three decaying datasets of various background magnetic �elds and Mach numbers.
Their study reveals that the MHD and Hall terms of compressible laws A18 and F21 provide
equivalent results. The in-depth study of F21 shows that the MHD source term is negligible in
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comparison to the �ux one, and that the two Hall components di�er from a −2 multiplicative
factor, just as their incompressible counterparts. The total energy cascade rate is shown to
be reduced in the run with a non-zero background magnetic �eld, indicating that as expected
this background �eld in�uences the cascade rate through the way it alters the dynamics of
the system.

The decaying nature of the three simulations led to investigating the behavior of the
compressible laws in a more general form, disregarding the usual stationarity assumption.
The resulting equations appear as a mixture of the usual terms of the laws, instantaneous
dissipation terms and time derivatives of the energy of correlation functions. The study of
these terms shows that the equation behaves as if energy was stored at each scale of the
system and distributed between the cascade and dissipation mechanisms. An error residue,
overall constant in scale, was observed when calculating this equation and corresponds to the
error on the calculation of time derivatives. This error is ampli�ed for the run with B0 6= 0
for which the energy shows important �uctuations: the error residue corresponds to the local
�uctuation at the times considered.

Note that due to the small value of the ion inertial length di used in these simulations, the
Hall e�ect remains low at all scales in the three runs. Thus, these datasets do not allow us to
investigate in details the relations between the MHD and Hall cascade as we would have liked
to. Running simulations, perhaps at a lower resolution, with an increased value of di and/or
implementing hyperdissipation in GHOST could help solving this problem and expanding this
study.

6.3.2 Relation between the �uid cascade and kinetic dissipation

The next study, presented in section 4.4, tackles the fundamental question of the relation
between the �uid energy cascade rate and kinetic dissipation. It makes use of a set of CGL
and LF simulations that feature a "toggleable" and adjustable ionic and electronic Landau
damping, allowing for an analysis of the energy cascade rate depending on the presence and
strength of kinetic damping. The datasets are forced at three di�erent scales in order to o�er
information on the cascade over the largest possible range of scales.

These datasets are studied with the incompressible law F19 due to their weakly compress-
ible nature. They reveal that Landau damping attenuates the energy cascade at all scales
of the system, but more prominently at sub-ion scales. The hyperdissipation matches the
remaining energy at dissipation scales, indicating that the energy cascade is indeed represen-
tative of the energy transitioning from the forcing range to the dissipative terms. The amount
of thermal energy transferred by Landau damping at given scales was speci�cally calculated,
and was found to match the amount of energy lost by the energy cascade over the same scales,
proving that the �uid energy cascade rate was indeed able to estimate the amplitude of kinetic
dissipation in the simulations.

This study is of high importance, as it brings new evidences legitimating the use of the
energy cascade rate and exact laws when studying dissipation mechanisms in either DNS
data or satellite data. However, this is only a �rst step, as we are still unable to separate
the contributions to the loss of the cascade rate of the various dissipation mechanisms at
work in complex media such as the SW. It would be very bene�cial to lead similar studies on
simulations featuring a larger array of kinetic mechanisms to see how each of them in�uences
the energy cascade rate, how they compare to one another, and how they depend on the
scales considered. This would hand us precious keys to better understand results obtained in
natural turbulent media and allow for the identi�cation of speci�c dissipative processes.

6.3.3 Supersonic CHD turbulence in the ISM

The last study led on DNS data, presented in section 4.5, makes use of massive 100483 CHD
simulations run with the FLASH code and aim at understanding how turbulence shape highly
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supersonic regions of the ISM, notably star forming regions. They are analyzed thanks to the
CHD reduction of law F21.

The sole calculation of the energy cascade rate shows an important interplay between
its positive �ux and negative source components, the latter not being negligible anymore in
contrast to what was found in less compressible cases for the CHMHD law for example. This
interplay leads to a constant energy cascade rate at all subsonic scales, despite neither of the
two components being constant individually. The signs and amplitude of these components
can be interpreted by considering the �ux as an e�ective cascade rate, similar to what is found
in incompressible laws, that is then ampli�ed or reduced by respectively a compression or a
dilatation of the medium.

Taking a look at vorticity and density-dilatation cuts of the data cubes reveals the existence
of elongated, �lamentary structures of very high density, compression and turbulent activity.
The application of the exact laws within these regions, and on outside regions for comparison,
shows that most of the turbulent cascade is concentrated in these turbulent structures whose
width is of the same order as the sonic scale measured in the system. These �ndings point
towards the existence of two turbulent regimes in the simulation, which is con�rmed by the
evaluation of the kinetic spectrum and of absolute laws components: a supersonic, large scale
regime driven by shocks through Burgers-like turbulence, and a small scale subsonic regime
more akin to standard (acoustic) turbulence, featuring a scale-to-scale energy cascade. The
break point lying around the sonic scale suggests that this duality of regimes play a role in
the formation and stabilization of the observed turbulent structures and, in the context of
the ISM, of interstellar �laments: dense regions of matter collapsing through the supersonic
movements of the �ow, and internally stabilized by the action compressible turbulence.

These CHD datasets already bring lots of information on the whereabouts of supersonic
turbulence in the ISM, yet one could wonder how these results would be altered by the
introduction of a magnetic �eld, and a transition towards a CMHD description of the medium.
The main advantage of the run studied in this section is its unprecedented resolution, that
would be di�cult to reproduce for a more complex, magnetized model. Nevertheless, should
the occasion to apply the laws to such datasets (even of reduced resolution) arise, it would
bring a highly valuable addition to the conclusions exposed in this study.

6.4 MMS in situ data analysis

6.4.1 Selection and exploitation of the data

The �nal study presented in chapter 5 aims at analyzing satellite data measured by MMS in
the Earth's magnetosheath, and investigating a numerical technique used for multi-spacecraft
data analysis known as the curlometer technique, that we extend under the designation of
gradiometer.

The events to be studied are selected among MMS burstmode measurements following
several criteria: the magnetic spectrum must follow a Kolmogorov scaling of −5/3 in the
MHD region, the angle between the velocity and magnetic �elds must remain as constant as
possible, and the time series for the magnetic �eld and particle density must show no clear
evidence of sudden changes of regime (such as, for instance, the entry of the formation in
the inner magnetosphere). The manual selection following these criteria led to building an
ensemble of 146 events. Note that there is still room for expanding this events set: of the
1351 burstmode time series of minimal duration of 200s that I �rst downloaded, I only looked
at the �rst 236 ones to select these 146 events, which already was a lengthy process.

Nevertheless, the application of the compressible exact laws to these 146 events already
bring lots of information through a statistical study. By comparing terms depending or not
on divergences or gradients of the vector �elds we observe that divergence-dependent terms,
calculated with the gradiometer, are either of the same order of magnitude as the other terms
of largely dominant, contrasting sharply with results obtained on di�erent DNS datasets that
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all showed divergence-dependent terms to be negligible. This behavior is a lot more prominent
for the so-called MHD source terms of law A18. The non divergence-dependent MHD terms
of both laws were also found to be statistically matching, but not the Hall ones that seem to
be underestimated by F21. An in-depth study speci�cally focused on the Hall terms would
be required to try to understand this discrepancy better.

6.4.2 Investigation of the gradiometer

The high values obtained for divergence-dependent terms are though to be originating from
errors in the calculation of divergences with the gradiometer. This is evidenced by the fact
that all components of the current density calculated with this technique are overall underes-
timated in comparison to the one measured by the FPI. The minimal error on the gradiometer
is estimated by computing terms of A18 that depend on ∇ ·vA while setting the density to a
constant value: in this case these terms should depend on ∇ ·B = 0 instead, and their ampli-
tude would provide a lower bound below which gradiometer estimates cannot be trusted. This
lower bound is found to be of the same order of magnitude as the non divergence-dependent
terms, and even of some divergence-dependent terms, indicating that these estimates should
not be trusted at all in the calculation of the cascade rates presented in chapter 5.

Then, several possible causes of the poor performances of the gradiometer are investigated.
The regularity of the tetrahedral satellite formation is shown to not be responsible for these
performances, as only extreme deformations (that are not observed in the selected events)
are expected to really have an in�uence on the gradiometer. A smoothing of the time series,
performed with a running average on a window whose size is equal to several times the
separation between satellites, is shown to improve the performances of the gradiometer by
reducing the lower bound on the error. This result suggests that the gradiometer could be
strongly a�ected by the non-linearity of the �elds between the satellites.

In order to test this hypothesis, and investigate further the gradiometer, an arti�cial MMS
�y-by is performed in one of the GHOST runs studied in section 4.3. The data measured by
this virtual spacecraft are used to calculate the terms of A18 exactly as they would be on
real MMS data, and the results are compared to the terms obtained directly with the direct
numerical calculation on the same trajectory as the virtual spacecraft. The quality of the
gradiometer is seen to be degrading as the distance between the satellites increase. More
surprisingly, the sum of all MHD divergence-dependent terms is never found to be negligible in
comparison to the �ux term, as it should normally be, even for the direct reference calculation.
This odd behavior disappears if we proceed to a spatial average over the entire simulation
domain instead of just the trajectory of the spacecraft, indicating that having strong statistics
plays a much bigger role than expected in the correct calculation of exact laws.

Finally, as an ultimate test, the virtual spacecraft is launched in a handmade dataset linear
in all directions of space, that thus meets all the prerequisites for the use of the gradiometer.
The estimate from the gradiometer is found to be perfectly matching the direct calculation
in this case. However, introducing noise in the dataset is shown to quickly degrade the
performances, indicating that the hypothesis of linearity of the �elds is important in the
application of the gradiometer. Smoothing the noisy data, as was done on MMS data, allow
for retrieving partly the good performances of the gradiometer, similarly to results obtained
on the in situ data.

All of these tests on the gradiometer point towards a similar conclusion: the gradiometer
may not be suited for the calculation of turbulence exact laws, or at least not for currently
available data. Thus, exact law F21 appears as a natural �t to study Hall turbulence from in
situ data, its Hall part being made of no divergence-dependent term. The needs for increased
spatial statistics and better linearity (or at least ways to measure the linearity) of the �elds
between the spacecraft, highlighted by the limitations on the gradiometer, are constraints
that should be taken into account in the de�nition of future multi-spacecraft SW missions to
allow for a more complete investigation of turbulence exact laws in astrophysical plasmas.
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6.5 Final words and perspectives

The complete study of plasma turbulence developed through this thesis shed a new light on
the analysis of natural turbulent plasmas from di�erent points of view. By giving access to
new theoretical exact laws, it provides new means to estimate the turbulent energy cascade
rate in various media and allow for more adaptability depending on the constraints imposed
by the available data. By delving into the sub-ion scales behavior of the turbulent cascade, it
partly reconciles the kinetic and �uid descriptions of plasmas and paves the way to a better
understanding of kinetic dissipation in the SW. By revealing and understanding the weak-
nesses of numerical methods used in multi-spacecraft data analysis, it brings new arguments
to plan the future of space plasmas investigation.

Of course much work remains to be done, either about theoretical developments and about
our generalized understanding of the complex physics governing turbulent plasmas. Exact laws
for turbulence would need to be adapted to more complete plasma descriptions, and need
to be tested on more varied and complete DNS datasets to grasp fully their particularities
and better formulate subsequent physical interpretations. The correlation found between
Landau damping and the turbulence cascade rate is merely a �rst step in constructing a more
complete picture of dissipation through the use of �uid models, that would make the in-depth
understanding of plasma turbulence truly possible. Also, now that we thoroughly investigated
what does not work in satellite data analysis, a natural follow up would be to see how we can
make it work ! For all these future applications, we believe that the results presented in this
thesis will prove to be valuable starting points or developments, that will hopefully set the
�rst stones of meaningful advances in the study of astrophysical plasmas.
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Abstract

A comparison is made between several existing exact laws in incompressible Hall magnetohydrodynamic
turbulence in order to show their equivalence, despite stemming from different mathematical derivations. Using
statistical homogeneity, we revisit the law proposed by Hellinger et al. and show that it can be written, after being
corrected by a multiplicative factor, in a more compact form implying only flux terms expressed as increments of
the turbulent fields. The Hall contribution of this law is tested and compared to other exact laws derived by Galtier
and Banerjee & Galtier using direct numerical simulations of three-dimensional electron MHD turbulence with a
moderate mean magnetic field. We show that the studied laws are equivalent in the inertial range, thereby offering
several choices on the formulation to use depending on the needs. The expressions that depend explicitly on a
mean (guide) field may lead to residual errors in estimating the energy cascade rate; however, we demonstrate that
this guide field can be removed from these laws after mathematical manipulation. Therefore, it is recommended to
use an expression independent of the mean guide field to analyze numerical or in situ spacecraft data.

Key words: magnetohydrodynamics (MHD) – plasmas – solar wind – turbulence

1. Introduction

To date, understanding the dynamics of turbulent flows
remains one of the most challenging problems of classical
physics. As these systems are inherently chaotic they are
generally studied by statistical means, thus requiring specific
tools to be dealt with (Frisch 1995). The so-called exact laws
are among the most important theoretical results of turbulence.
The derivation of these statistical laws is based on the
assumption of the existence of an inertial range where the
physics is dominated by the nonlinear transfer from one scale to
another. In a fully developed three-dimensional (3D) hydro-
dynamic turbulence of an incompressible fluid, kinetic energy
is transferred from macroscopic length scales to the scale of
molecular diffusion until it is eventually dissipated into thermal
energy by viscous effects. The mean transfer rate of kinetic
energy per unit volume, which is usually denoted by ε, is
assumed to remain constant at each scale in the inertial range
where both dissipation and forcing mechanisms are negligible.
It is also equal to the average energy dissipation rate, which is
expected to be independent of the viscosity in the limit of large
Reynolds numbers. This property, often called the zeroth law
of turbulence (Onsager 1949; Eyink 1994; Duchon &
Robert 2000; Saint-Michel et al. 2014), is actually used to
link the fluctuations of the velocity field to ε through
exact laws.

The first and the most popular exact law is the so-called
Kolmogorov’s four-fifths law, which was derived for incom-
pressible turbulence (Kolmogorov 1941). It was first derived
using tensorial calculus (Batchelor 1953), but a similar four-
thirds law was computed more directly through the dynamical
study of an appropriate two-point correlation function
(Monin 1959; Antonia et al. 1997). Using these methods (with
the generalized zeroth law of turbulence; Mininni & Pou-
quet 2009; Bandyopadhyay et al. 2018; Galtier 2018), new
laws were derived for different plasma models such as
incompressible MHD (IMHD; Politano & Pouquet 1998a) or

incompressible Hall magnetohydrodynamic (IHMHD; Gal-
tier 2008). More recently, these results were extended to
compressible (isothermal and polytropic) turbulence in hydro-
dynamics (CHD; Galtier & Banerjee 2011; Banerjee &
Galtier 2014), and then to isothermal compressible MHD
(CMHD; Banerjee & Galtier 2013; Andrés & Sahraoui 2017)
and compressible HMHD (Andrés et al. 2018a). Using an
alternative formulation (Banerjee & Galtier 2016, 2017),
compressible exact relations were also derived for self-
gravitating turbulence of both neutral and MHD fluids
(Banerjee & Kritsuk 2017, 2018). Such laws were also derived
for self-gravitating turbulence whose potential applications are
the interstellar medium and star formation.
Since ε can be used as a proxy to evaluate the amount of

energy available to be ultimately dissipated at small scales,
exact laws are often used in collisionless astrophysical plasmas,
such as the solar wind (SW), to evaluate the rate of plasma
heating. Indeed, Richardson et al. (1995) have evidenced using
Voyager data a slower decay of the (ion) temperature with the
heliocentric distance in comparison with the prediction from
the adiabatic expansion model (Matthaeus et al. 1999).
Turbulence is proposed to explain this problem because it
provides an efficient mechanism of energy dissipation through
the nonlinear process of energy cascade from the MHD scales
down to the sub-ion and electron scales, where the energy is
eventually dissipated through some kinetic effects (Sahraoui
et al. 2009, 2010; He et al. 2015). The energy cascade (or
dissipation) rate was measured in both the SW (Podesta et al.
2007; Sorriso-Valvo et al. 2007; MacBride et al. 2008; Marino
et al. 2008; Carbone et al. 2009; Smith et al. 2009; Stawarz
et al. 2009; Osman et al. 2011; Coburn et al. 2015; Banerjee
et al. 2016; Hadid et al. 2017) and the Earth’s magnetosheath
(Hadid et al. 2018), and was shown to enlighten many aspects
related to the dynamics of turbulent space plasmas.
Similarly to hydrodynamics, the case of IHMHD has driven

some attention over the past 10 years with the derivation of
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several exact laws (Galtier 2008; Banerjee & Galtier 2017;
Hellinger et al. 2018). Although the underlying assumptions
remain unchanged, these laws stem from the analysis of
different statistical quantities. On the one hand, the laws given
in Galtier (2008, hereafter G08) and Banerjee & Galtier (2017,
hereafter BG17) are derived from the dynamical analysis of the
two-point correlator:

á ñ =
¢ + ¢v v b b

R
2

, 1E
· · ( )

where áñ is the ensemble average, v and b are the local velocity
and Alfvén velocity fields, respectively, and the prime
distinguishes values taken at points x and x′, respectively (see
Section 2 for the definitions). However, the calculation was
done differently in the two models (G08 and BG17) and
yielded quite different expressions that cannot be trivially
connected to each other. On the other hand, the law from
Hellinger et al. (2018, hereafter H18) stems from the evolution
equation of the second-order structure function

á ñ = á ¢ - + ¢ - ñv v b bS , 22 2∣ ∣ ∣ ∣ ( )

which is linked to expression (1) through the relation
á ñ = á ñ - á ñS E R4 E

tot with = +v bE 2tot 2 2( ) the total
energy. It is thus important to check whether or not these
different laws are consistent with each other by providing the
same energy cascade rate. Note that in the definition (2), á ñS is
independent of the (constant) mean fields v0 and b0. We will
return to this point in Section 5.

This paper aims at studying analytically and numerically the
IHMHD exact laws and checking if they are mathematically
equivalent despite stemming from a different logic of
derivation. Following this goal, we expose in Section 2 a
rigorous derivation of H18 and find a slight difference with the
original paper. Furthermore, we provide a new, more compact
form of that law that depends only on flux terms (hereafter
F19). In Section 4 we give mathematical proof of the
equivalence of the three laws F19, G08, and BG17. This
equivalence is eventually tested in Section 5 with 3D direct
numerical simulations (DNSs) of electron MHD (EMHD)
turbulence. We also discuss the possible influence of a mean
magnetic field on the exact laws and on the methods used to
evaluate the energy cascade rate. The results are summarized
and discussed in Section 6.

2. Derivation of H18

In this section we propose a step-by-step derivation of
the H18 law based on the same premises as in the original
paper, where the details were not given. Let B represent the
magnetic field and m= ´J B 0 represent the electric
current; the mass density r0 is taken constant and equal to
unity. We use the Alfvén units for the magnetic field and the
electric current, i.e., m r=b B 0 0 and = ´j b. In the
incompressible case (i.e.,  =v 0· ) we get the following
velocity and induction equations:

  
 

¶ =- + - + +
¶ =- +

nv v v b b d f
b v b b v

P ,
3

t

t

( · ) ( · )
( · ) ( · ) ( )

 + - + hj b b j dd d , 4i i( · ) ( · ) ( )

 =b 0, 5· ( )

where = +P p b 22 is the total pressure, di the ion inertial
length, and f a stationary homogeneous external force acting at
large scales. The dissipation terms are

n= Dnd v, 6( )

h= Dhd b, 7( )

where ν is the kinematic viscosity and η the magnetic
diffusivity. For this system the equation of total energy
conservation writes (Galtier 2016)

¶ á ñ = á ñ + á ñ + á ñn hv d b d v fE , 8t
tot · · · ( )

where áñ is an ensemble average, which is equivalent to a
spatial average in homogeneous turbulence. We define the
mean rate of total energy injection as e = á ñv f· . With this, we
can conclude that in the stationary regime the following
relation holds: eá + ñ = -n hv d b d· · . Note that using the
relation á D ñ = -á ´ ñX X X 2· ( ) , which is valid for any
incompressible vector field X, we also have

n há ñ + á ñ = - á ñ - á ñn hv d b d w j , 92 2· · ( )

with =  ´w v the vorticity, which gives the expression of
the mean rate of total energy dissipation.
Next, we consider a spatial increment ℓ connecting two

points in space x and x′, as ¢ = +x x ℓ, and we define ºv v x( )
and ¢ º ¢v v x( ); the same notation is used for other variables.
We also define the velocity increment d º ¢ -v v v. We recall
that under this formalism, we have for any entity A:
¶ ¢ = ¶ =¢A A 0x x . We then search for a dynamical equation
for expression (2), under the hypothesis of statistical homo-
geneity, which means that we have to calculate ¶ á ñSt . Using
Equations (3)–(5) and the incompressibility of the flow we
obtain

 


¶ =- +
- + +n

v v v v v b b
v v d v fP

2
2 2 2 , 10

t
2 · [( · ) ] · ( · )

· · · ( )

 
 

¶ =- +
+ - + h

b b b v b b v
b b j b b j b dd d

2
2 2 , 11

t

i i

2 · [( · ) ] · ( · )
· [( · ) ] ( · ) · ( )




¶ ¢ =- ¢ ¢ ¢ - ¢ ¢ + ¢
- ¢ - ¢ + ¢
+ ¢ + ¢ + ¢ + ¢n n

v v v v v v b b v
v v v v b b v

v d v d v f v f

P
P

, 12

t( · ) · [( · ) ( · ) ]
· [( · ) ( · ) ]

· · · · ( )




¶ ¢ =
- ¢ ¢ ¢ - ¢ ¢ - ¢ ¢
+ ¢ ¢ - ¢ - ¢
- ¢ + ¢ + ¢ + ¢h h

b b
b b v b v b b b j

b j b b b v b v b
b b j b j b b d b d

d

d

d d ,

13

t

i

i

i i

( · )
· [( · ) ( · ) ( · )

( · ) ] · [( · ) ( · )
( · ) ( · ) ] · ·

( )

and similar equations as Equations (10)–(11) for the primed
expressions. Below we will consider the ensemble average of
the previous equations. We can use the relation
  á ¢ ñ = -á ñ = áñℓ· · · , where ℓ denotes the derivative
operator along the increment ℓ , to suppress the pressure terms
in Equations (10) and (12):

  
 
á ñ = á ñ = -á ¢ ñ =
á ¢ ¢ ñ = -á ¢ ñ =
v v v

v v

P P P

P P

0,

0.

· · ( ) · ( )
· ( ) · ( )

2
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By remarking that

 
 

á ñ = -á ñ
á ñ = -á ñ
v b b b b v

b b j j b b

,

,

· ( · ) · ( · )
· ( · ) · ( · )

a combination of Equations (10)–(13) leads to

d d
d d

d




 

¶ á ñ=
á ¢ + ¢

- ¢ - ¢ ñ
+ á- ¢ + ¢ ¢ - ¢ ñ
+ á + ¢ ¢ ¢ ¢ñ
+ á ñ - á ¢ ñ - á ¢ ñ + á ñ

- á ¢ ñ - á ¢ ñ + á ñ

- á ¢ñ - á ¢ ñ

n n n h

h h

v v v b b v

v b b b v b

b b j b j b b j b

j b b j b b

v d v d v d b d

b d b d v f

v f v f

S

d

d

2

2

2

4 2 2 4

2 2 4

2 2 .
14

t

ℓ

i ℓ

i

· ( · ) ( · )
( · ) ( · )

· ( · ) ( · ) ( · )
· ( · ) · ( · )

· · · ·
· · ·
· ·

( )

To further simplify expression (14) we can use the equalities
 ¢ = ¢b j b j b b· [( · ) ] · ( · ) and
 ¢ ¢ ¢ = ¢ ¢ ¢b j b j b b· [( · ) ] · ( · ) and relation (8). We then
obtain

d d d d d d d d
d d d d d d
d d





¶ á ñ=- á + -
- + ñ
+ á ñ
+ ¶ á ñ - á ¢ ñ - á ¢ ñ
- á ¢ ñ - á ¢ ñ - á ¢ñ - á ¢ ñ

n n

h h

v v b b v v b b

b b j b j b

j b b

v d v d

b d b d v f v f

S

d d

d

E

2

2

2

4 2 2

2 2 2 2 .

15

t ℓ

i i

i

t
tot

· ( · · ) ( · )
( · ) ( · )

· [( · ) ]
· ·

· · · ·
( )

It is interesting to note at this level that expression (15) is fully
compatible with the limit ℓ 0 since in this case each term of
the first line tends to 0, and in the second line we have an exact
compensation between the first term and the others by means of
Equation (8)

The final expression of the exact law for 3D IHMHD, valid
in the inertial range, is obtained by using the stationarity
assumption and the limit of a wide inertial range (i.e., large
kinetic/magnetic Reynolds numbers limit) for which

á ¢ ñ á ¢ ñ á ¢ ñ á ¢ ñn n h hv d v d b d b d 0, 16· · · · ( )   

and also (with the properties of the external force)

eá ¢ñ á ¢ ñv f v f . 17· · ( ) 

We find the expression

e d d d d d d d d
d d d d d d
d d





- = á + -
- + ñ
- á ñ

v v b b v v b b

b b j b j b

j b b

d d

d

4 2

2

2 . 18

ℓ

i i

i

· ( · · ) ( · )
( · ) ( · )

· [( · ) ] ( )

This law can be written in a compact form as

e - = + -Y H A4 2 , 19ℓ · ( ) ( )

where

d d d d d d d d= á + - ñY v v b b v v b b2 , 20( · · ) ( · ) ( )
d d d d d d= á - ñH b j b b b jd 2 , 21i ( · ) ( · ) ( )

d d = á ñj b bA d . 22i · [( · ) ] ( )

Here the contribution of the Hall effect is split into a flux H and
a corrective term A. In the limit d 0i we recover the classic

MHD law of Politano & Pouquet (1998a). Note that
Equation (19) is the same as the one proposed in Hellinger
et al. (2018), except for the corrective term A, which is
multiplied here by a −2 factor (instead of 1). Assuming
isotropy we can integrate expression (19), which leads to

e- = + -ℓ Y H I
4

3
2 , 23ℓ ℓ A ( )

where Yℓ and Hℓ are the projections along the displacement

direction ℓ , respectively, and ò=I ℓ r Adr1A
ℓ2

0
2( ) .

Because the corrective term A can prove to be difficult to
compute in spacecraft data due to the term d b b[( · ) ], we will
see in the next section that H18 law can be improved and
written using a simpler and more compact formulation
involving only the H term.

3. Alternative Formulation of the Corrected H18

To improve the corrected H18 law we need to do some
calculations on the term A. Using the fact that
  = ´ ´ +X X X X X X2 2( · ) ( ) ( · ) and following a
logic of calculation similar to Banerjee & Kritsuk (2018), we
have

d d = + ´j b b j bA d
1

2
, 24i

⎡
⎣⎢

⎤
⎦⎥· ( · ) ( )

and, using derivative properties along with  =j 0· , this
equation reduces to

d d= á ´ ñj j bA d . 25i · ( ) ( )

Now, with the relation
  ´ = ´ - ´X Y Y X X Y· ( ) · ( ) · ( ) we can write
(following Banerjee & Galtier 2017)





á ´ ¢ñ= á ´ ¢ ´ ¢ ñ
=-á ¢ ´ ´ ¢ ñ
=- á ´ ´ ¢ñ

j b j j b b

j b b

j b b , 26ℓ

( ) · ( ) · ( )
· [( ) ]

· ( ) ( )

á ¢ ´ ¢ ñ = á ¢ ´ ¢ ´ ñj b j j b b , 27ℓ( ) · · ( ) ( )

á ¢ ´ ¢ ¢ñ = á ´ ñ =j b j j b j 0, 28( ) · ( ) · ( )

which leads to

= á ´ ´ ¢ - ¢ ´ ¢ ´ ñj b b j b bA d . 29i ℓ · ( ) ( ) ( )

Using identities for a double cross product, Equation (29) can
be cast as

d d d d d d





 



= á - ñ

- á ¢ - ¢ ¢ñ

=

+ á ¢ + ¢ ¢ ¢ ñ

= -

b j b b b j

b j b b j b

H

j b b j b b

H

A d

d

d

A

1

2
2

1

2

1

2
, 30

i ℓ

i ℓ

ℓ

i

ℓ

· ( · ) ( · )

· ( · ) ( · )

·

· [( · ) ] · [( · ) ]

· ( )

and we obtain

 =H A4 . 31ℓ · ( )
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Injecting relation (31) into expression (19) we finally obtain the
new formulation

e - = +Y H4
1

2
, 32ℓ ⎜ ⎟⎛

⎝
⎞
⎠· ( )

which can be reduced to the following expression in the
isotropic case:

e- = +ℓ Y H
4

3

1

2
. 33ℓ ℓ ( )

This new formulation, which will be referred to as F19
hereafter, is one of the main results of this paper. It has the
double advantage of depending only on the product of
increments of the physical fields (unlike the G08 model) and
of being expressed only as flux terms. This makes it easier to
apply in particular to single spacecraft data (under the
assumption of isotropy).

Below we will verify whether the law (32) derived above is
compatible with the other IHMHD laws (G08 and BG17) in the
inertial range. The testing will be focused on the Hall-induced
terms H and A, as the ideal MHD term Y is exactly the same as
the one from Politano & Pouquet (1998b) and, by extension,
the same as the ideal MHD component of G08. We will first
investigate this question at the mathematical level and then
with DNSs of EMHD.

4. Equivalence of the Exact Laws

4.1. Compatibility between F19 and G08

Here we show the equivalence of F19 and G08 by keeping
only the Hall contributions. In G08, the law reads with our
notation

e d- = á ´ ´ ñj b bd4 4 . 34i ℓHall · ( ) ( )

We already showed that  =H A4ℓ · . With Equation (29) we
have

 



= á ´ ´ ¢ - ¢ ´ ¢ ´ ñ

= á ´ ´ ¢ñ

H j b b j b b

j b b

d

d

1

2
2

4 , 35

ℓ i ℓ

i ℓ

· · ( ) ( )

· ( ) ( )

which is enough to show that

d = á ´ ´ ñH j b bd
1

2
4 , 36ℓ i ℓ· · ( ) ( )

proving the compatibility.

4.2. Compatibility between G08 and BG17

Demonstrating the equivalence between the Hall terms
of G08 and BG17 is even simpler. In the latter the Hall term is
written

e d d- = á ´ ñj b jd4 2 . 37iHall ( ) · ( )

Using Equations (25) and (31) we immediately obtain

d d = ´H j b jdi
1

2
2 , 38ℓ · ⟨ ( ) · ⟩ ( )

and thus prove the equivalence.

5. Numerical Study

5.1. The Equivalence of the Models G08, BG17, and F19

In this section we will compare the G08, BG17, and F19
laws by using 3D DNSs of incompressible EMHD turbulence
(Equations (4) with =v 0). We used a modified version of the
TURBO code (Teaca et al. 2009) in which we have
implemented the Hall effect (Meyrand & Galtier 2013). The
EMHD equations are solved in a triply periodic box. A
pseudospectral algorithm is used to perform the spatial
discretization on a grid with a resolution of 5123 collocation
points (see Meyrand & Galtier 2013 for further details). A
mean guide field b0 of magnitude unity is introduced along the
z axis. A large-scale forcing is applied that enforces a constant
rate of energy injection with no helicity. The system is evolved
until a stationary state is reached such that ~b brms 0. We
removed the amount of ideal invariants that is injected into the
system by the forcing mechanism by means of magnetic
hyperdiffusivity h D3

3 with h = -e103
11. The data consist of

three periodic cubes giving the three components of the
magnetic field in each grid point. The values of eHall are
obtained by averaging the mixed field increments of the
different exact laws over all the points of the data cubes and
spherically integrating them, using for the increment vectors ℓa
set of specific directions in space defined by 73 base vectors as
described in Taylor et al. (2003), and lengths going from a
three point distance to half the size of the cubes (see also
Andrés et al. 2018b).
First of all, we want to check numerically the new law F19

and, more precisely, the analytical relation found between Hℓ

and I4 A. In Figure 1 we represent H I4ℓ A, which shows
differences mainly at large and small scales but not at
intermediate scales where the inertial range is supposed to
be. The differences observed are probably a consequence of the
different nature of these two terms, being respectively a flux
and an integrated term. The methods involved in the calculation
being different, we can expect some minor differences. These
should not alter the estimation of the energy cascade rate that is

Figure 1. Ratio of Hℓ to 4IA of the F19 law.

4
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measured in the inertial range, i.e., for scales ℓ 0.3 (see
below).

To compare the three energy cascade rates obtained with the
different expressions we first note that the Hall term in the G08
model can be written as

d d= á ´ ´ + ¢ ´ ¢ ´ ñj b b j b bG08 2 .ℓHall · ( ) ( )

This formulation is chosen (over other possible expressions)
because it ensures a symmetry between x and x′ as in the two
other laws, F19 and BG17. One must also be careful when
computing BG17, as this law gives the energy cascade rate as a
function of a direct statistical mean and not a flux, and thus
does not require an integration a priori. However, we need to
keep in mind that ε is not, in fact, exactly constant in our data.
Consequently, when we integrate F19 and G08, we compute in

reality ò eℓ r dr1
ℓ3

0
2( ) and not ε. To remain consistent

between the three models, we need to use the nonintegrated
forms of both F19 and G08 ((32), (34)). This is what will be
done hereafter.

We computed the energy cascade rate from the three laws
and obtained the results gathered in Figure 2. All three laws fit
remarkably well with each other, however, with a slightly
different behavior of BG17 model at scales ℓ 0.1. Using the
nonintegrated forms of G08 and F19 required us to apply a
discrete derivation to our results as we only compute the inner
bracket of the flux terms, and we expect this operation to be
responsible for the differences at small scales due to a lack of
resolution in this range of scales. The inertial range induced by
the Hall effect is not easy to pinpoint precisely, but can be
roughly estimated as going from 0.05 to 0.3 in this simulation.

5.2. On the Role of b0

Finally, we tested the influence of a guide field b0 on the
estimation of eHall. Indeed, the introduction of a uniform
magnetic field b0 into the previous laws does not change their
expression. This is obvious for F19, which only depends on
increments, and for BG17, in which the b0 influence translates

as d dá ´ ñ =j j b 00· (( ) ) . For G08 we have

= á ´ ´ ¢ - ¢ ´ ´ ñ
=- á ´ ¢ + ¢ ´ ñ
=

j b b j b b

j b j j b j

G08 2

2
0. 39

ℓHall 0 0

0 0

· ( ) ( )
( ) · ( ) ·

( )

Thus, when computing ò taking b0 into account or not in the
data should not affect the result. However, for practical reasons
related to the numerical computation, b0 may have some
influence on estimating ò as we show now.
Values of eHall computed only with the fluctuating magnetic

fields were obtained by averaging the magnetic field comp-
onent along the guide field axis (here the z axis) and subtracting
this value from that component. In Figure 3 we see that
computing the energy cascade rate with or without the mean
guide field leads to the same result for all but G08, even though
the contribution of b0 reduces to zero mathematically. The
difference is, however, very small in the inertial range (less
than 0.5%).
We believe this problem to be tied to the way we handle

derivatives. F19 is formed of only increments and so does not
involves b0, unlike the models BG17 and G08 that contain a b0
contribution a priori, but whose contributions in fact reduce to
zero. However, from these contributions, only the one in G08
comes from a flux term and so is preceded by a derivative.
When we compute numerically the energy cascade rates we do
not really calculate this derivative but rather use the
approximation   ℓ1ℓ . Thus, we are making an approx-
imation in the calculation and this may be the cause of the
behavior shown in Figure 3. A similar remark was made in
Hadid et al. (2017), which led us to this conclusion. It may also
be worth mentioning that the validity of this approximation is
tied to the validity of the hypotheses of isotropy and
homogeneity, and the influence of b0 would probably be more
important when using observational data where these hypoth-
eses are harder to meet.
Based on these remarks and on the behavior of the three laws

we conclude that, as expected, b0 does not contribute explicitly
to the incompressible energy cascade rate and, in the purpose of

Figure 2. Energy cascade rates eHall computed with F19, G08, and BG17.

Figure 3. Ratios of eHall computed from the data cubes where the guide field b0

is removed and from the data cubes where it is not. The values obtained with
F19 and BG17 overlap.

5
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computing eHall, that it should be removed from the simulation
of the spacecraft data beforehand in order to minimize the
possible numerical errors that it can generate. Note that this
property does not mean that b0 has no influence on the
nonlinear dynamics (Galtier et al. 2000; Wan et al. 2012;
Oughton et al. 2013): it is actually expected that the energy
cascade rate eHall decreases with increasing b0, as shown
recently with DNSs (Bandyopadhyay et al. 2018). It is worth
mentioning that the situation is very different in compressible
law (e.g., Banerjee & Galtier 2013) where the b0 dependence is
explicit and cannot a priori be ruled out (Hadid et al. 2017).
However, recent developments suggest that its influence will
not be significant as it mostly impacts the volumic contribu-
tions to the law, which appear to be small compared to the
dominant flux terms (Andrés et al. 2018b).

6. Conclusion

The energy cascade rate ε is an essential tool for studying
turbulent flows. Despite being sometimes hard to compute it
can be theoretically calculated by several equivalent formula-
tions. We showed here that the law (19), which is obtained
using the same premises as proposed in Hellinger et al. (2018),
can be written (when corrected) in a compact form with only a
flux term (32). As shown numerically, this gives the same
energy cascade rate in the inertial range as with the G08
and BG17 laws. This diversity of exact laws gives more
freedom to compute the energy cascade rate of IHMHD
turbulence as it is possible to adapt the computation method to
the data available and their quality.

For instance, we showed that the presence of a mean guide
field should not contribute explicitly to the energy cascade rate.
This theoretical property is well verified with DNSs for BG17
and F19, but not for G08, which shows a dependence on b0 that
can be interpreted as residual errors due to the performed
computation. Although this dependence remains small in the
present paper, it is more important in spacecraft data analysis
(N. Andrés 2019, private communication). Therefore, we
advise using F19 or BG17 laws to compute the energy cascade
rate as they are free from the errors induced by the presence of
a mean guide field.
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Abstract

The role of supersonic turbulence in structuring the interstellar medium (ISM) remains an unsettled question. Here,
this problem is investigated using a new exact law of compressible isothermal hydrodynamic turbulence, which
involves two-point correlations in physical space. The new law is shown to have a compact expression that
contains a single flux term reminiscent of the incompressible case and a source term with a simple expression
whose sign is given by the divergence of the velocity. The law is then used to investigate the properties of such a
turbulence at integral Mach number 4 produced by a massive numerical simulation with a grid resolution of
10, 0483 points. The flux (resp. source) term was found to have positive (resp. negative) contribution to the total
energy cascade rate, which is interpreted as a direct cascade amplified by compression, while their sum is constant
in the inertial range. Using a local (in space) analysis it is shown that the source is mainly driven by filamentary
structures in which the flux is negligible. Taking positive defined correlations reveals the existence of different
turbulent regimes separated by the sonic scale, which determines the scale over which the nonnegligible source
modifies the scaling of the flux. Our study provides new insight into the dynamics and structures of supersonic
interstellar turbulence.

Unified Astronomy Thesaurus concepts: Interstellar medium (847); Interstellar filaments (842); Hydrodynamical
simulations (767); Hydrodynamics (1963)

1. Introduction

Understanding turbulent space and astrophysical plasmas is
an ongoing physical challenge that has drawn a lot of attention
throughout recent years. As these plasmas are present in a wide
range of astrophysical media, from the Earth’s magnetosphere
to distant star-forming clouds, being able to properly describe
them would allow us to make significant progress in under-
standing the physics controlling the shape and evolution of
these media. Among these recent findings, it has been shown
that the introduction of compressibility in magnetohydro-
dynamic (MHD) and Hall-MHD models of space plasmas leads
to a higher estimate of the mean dissipation rate of total energy
(used as a proxy for measuring plasma heating; Banerjee et al.
2016; Hadid et al. 2017; Andrés et al. 2019) compared to the
incompressible case (Sorriso-Valvo et al. 2007). For the
interstellar medium (ISM) where observations indicate that
turbulence is supersonic (Wilson et al. 1970; Elmegreen &
Scalo 2004; Heyer & Brunt 2004; Padoan et al. 2014;
Krumholz & Federrath 2019), numerical simulations performed
in the framework of compressible (isothermal) HD (Vazquez-
Semadeni 1994; Passot & Vázquez-Semadeni 1998; Kritsuk
et al. 2007; Federrath et al. 2010; Federrath 2013) have shown
the presence of filaments that resemble the structures observed
in the ISM (Arzoumanian et al. 2011; Federrath 2016). It was
found that incompressible predictions can be restored in some
cases if one considers the density-weighted fluid velocity r u1 3

instead of the simple velocity u (Kritsuk et al. 2007; Schmidt
et al. 2008), a behavior that can be understood dimensionally
with an exact law (Galtier & Banerjee 2011).

What makes this kind of study difficult is that the
mechanisms governing fluid turbulence are still not fully

understood. Due to its chaotic nature, the favored way of
studying turbulence is to resort to a statistical approach
allowing for the use of specific tools (Frisch 1995), such as
exact laws. Kolmogorov was among the pioneers in this field
with his so-called four-fifths law (Kolmogorov 1941), an exact
relation for homogeneous incompressible isotropic hydrody-
namic (HD) turbulence that paved the way to new advances in
the study of nonlinear physics. This statistical law allows one to
express the mean rate of kinetic energy transfer per unit volume
as a function of a two-point third-order longitudinal structure
function in the limit of a high Reynolds number. In the wake of
Kolmogorov’s work, several other exact laws were derived for
HD (Monin 1959; Antonia et al. 1997), quasi-geostrophic flows
(Lindborg 2007), thin elastic plates (During & Krstulo-
vic 2018), or plasmas (Politano & Pouquet 1998; Galtier 2008;
Meyrand & Galtier 2010; Yoshimatsu 2012; Ferrand et al.
2019). The influence of compressibility being important for the
description of space and astrophysical plasmas, efforts have
been made during recent years to derive exact laws for
compressible turbulence in HD (Galtier & Banerjee 2011;
Banerjee & Kritsuk 2017; Lindborg 2019) and magnetohy-
drodynamics (MHD; Banerjee & Galtier 2013; Galtier 2016;
Andrés & Sahraoui 2017; Andrés et al. 2018; Banerjee &
Kritsuk 2018).
In the quest for exact laws for compressible turbulence, the

complexity may increase significantly (Banerjee & Gal-
tier 2013; Andrés et al. 2018). It is therefore relevant to ask
whether it is possible to find a compact form of these laws that
reveals the most salient feature of turbulence. Ferrand et al.
(2019) recently showed that several different—yet equivalent
—exact laws can be derived for Hall MHD, with some being
more compact and easier to compute and interpret. Following
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the same method, it is the first main goal of this paper to
demonstrate that such a compact form—called hereafter the
generalized Kolmogorov law—exists in isothermal compres-
sible HD turbulence. In the second part, this new relation is
used to study such a turbulence, at integral Mach number 4,
using a massive numerical simulation with a grid resolution of
10, 0483 points (Federrath et al. 2016a, 2020). We proceed to a
global computation of the law on the whole system and to a
local computation along filamentary structures. Our analysis
reveals supersonic turbulence properties that can be used to
better understand ISM turbulence and star formation (Heyer &
Brunt 2004; McKee & Ostriker 2007; Arzoumanian et al. 2011;
Federrath & Klessen 2012; Padoan et al. 2014; Orkisz et al.
2017).
Section 2 contains the main steps of the derivation of the

new exact law for compressible HD turbulence, along with a
first theoretical interpretation. In Section 3 we apply this model
to our numerical simulation and expose the results obtained.
These results are discussed in Section 4 and we give an overall
conclusion in Section 5 in the context of ISM turbulence and
star formation.

2. Generalized Kolmogorov Law

Our analysis is based on the compressible HD equations

r r¶ + =u 0, 1t · ( ) ( )

r r ¶ + = - + +u uu d fP , 2t( ) · ( ) ( )

where ρ is the density, P is the pressure,
m m qº D +d u 3( ) is the dissipation, q º u· is the

dilatation, μ is the coefficient of viscosity, and f is a stationary
homogeneous external force assumed to act on large scales.
The system is closed with the isothermal equation of state

r=P cs
2 with cs being the sound speed, assumed to be constant

(in practice, we only use the density in the numerical code and
set cs=1). The energy equation takes the form

¶ á ñ = á ñ + á ñu d u fE , 3t · · ( )

with á ñ an ensemble average, r r= +E u e22 the total
energy, r r=e c lns

2
0( ) the internal energy (r r= á ñ0 is the

average density), eá ñ =u f· the mean rate of total energy
injection into the system,

and m m qá ñ = - á  ´ ñ - á ñu d u
4

3
2 2· ( ) .

We define ℓ the spatial increment connecting two pointsx
andx′ as ¢ = +x x ℓ and, for any given field ξ, x xºx( ) , and
x x¢ º ¢x( ) . We follow the same idea as Hellinger et al. (2018)
and Ferrand et al. (2019) and search for a dynamical equation
of a structure function for the fluctuating energy:

dr d drdá ñ = á + ñ u e , 42¯ ( ) ( )

where for any given field ξ, dx x xº ¢ - and dx x xº + ¢ 2¯ ( ) .
The use of this structure function represents the main difference
between this approach and the one of Galtier & Banerjee
(2011). Developing  leads to

dr r r

r r

á ñ = á ñ - á ¢ñ - á ¢ + ¢ñ

+ á ¢ + ¢ ñ

 u uE e e

u u

2 2
1

2
. 52 2

¯ ·

( )

Therefore, finding the temporal evolution of  is akin to
finding the temporal evolution of every term on the RHS of
Equation (5).
The rest of the derivation is similar to the one given in

Galtier & Banerjee (2011). Most of the terms have been
derived in Galtier & Banerjee (2011); therefore, we only give
the details for the calculation of the new term rá ¢ ñu 2 (from
which the symmetric contribution can be obtained immedi-
ately). We obtain the following expressions:

r r d
r rq

r
r

¶ á ¢ñ = á- ¢
+ ¢ - ¢ ñ + á ¢ ¢ ñ

+á ¢ + ¢ +
¢

¢ + ¢ ñ

u u u u u

u u u u

u d u f u d f

P e

, 6

ℓt · · ( · )
( · )

· · · ( ) ( )

r r d r q¶ á ¢ñ = á- ¢ - ¢ñ + á ¢ ¢ñu ue e P e , 7ℓt · ( )

r r r

r
r
r

r
r
r

r
r

r r r q
r
r

r
r

r
r

 



 

¶ á ¢ ñ = á ¢ ¶ ¢ + ¢ ¶ ñ

= - ¢ ¢ ¢ -
¢
¢ ¢ ¢

+ á ¢ ñ +
¢
¢ ¢ +

¢
¢ ¢

= á- ¢ ¢ + ¢ ñ + ¢ ¢ -
¢
¢ ¢ ¢

+
¢
¢ ¢ +

¢
¢ ¢

u u

u u

u u d u f

u u u

u d u f

u u

u P

u

u u u P

2

2

2 2

2

2 2 ,

8

ℓ

ℓ

t t t
2 2

2

2

2 2 2

·

· ( ) ·

· · ·

· ·

· ·

( )

where ℓ is the derivative along the ℓ direction. The
combination of the different contributions gives after simpli-
fication,

dr d d

rq r q d

¶ á ñ= ¶ á ñ - á ñ

+ á ¢ + ¢ ñ - -

 u u

u

E

F D

2
1

2
, 9

ℓt t
2

2

· ¯ ( )

( )( ) ( )

with, by definition,

r
r

r
r

r
r

r
r

º ¢ + ¢ +
¢

¢ +
¢
¢

-
¢

-
¢
¢ ¢

u f u f u f u f

u f u f

F

, 10

· · · ·

· · ( )

r
r

r
r

r
r

r
r

º ¢ + ¢ +
¢

¢ +
¢
¢

-
¢

-
¢
¢ ¢

u d u d u d u d

u d u d

D

. 11

· · · ·

· · ( )

The stationarity assumption leads to the cancellation of the
term on the LHS and the energy term on the RHS of
Equation (9). In this situation, all the energy injected by the
forcing must necessarily be dissipated at the same rate ε, so that
we have the relationship e = á ñ = -á ñu f u d· · . The content
of the forcing and dissipative terms F and D can then be broken
down into three parts: first, since the forcing is assumed to act
on large scales only, its variations across the simulation domain
should remain small. Thus, forcing cross-terms like ¢u f· are
expected to behave like e=u f· so we may write (see Kritsuk
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et al. 2013)

r
r

r
r

e¢ + ¢ +
¢

¢ +
¢
¢u f u f u f u f 4 . 12· · · · ( )

Second, the stationarity assumption states that mean forcing
and dissipation should balance each other with

e= - =u f u d· · , leading to

r
r

r
r

r
r

r
r

¢
+

¢
¢ ¢ +

¢
+

¢
¢ ¢u f u f u d u d 0. 13· · · · ( )

Third, as the dissipation is assumed to act on small scales only
dissipative cross-terms such as ¢u d· are expected to be
uncorrelated and of null statistical mean, hence (limit of small
μ)

r
r

r
r

¢ + ¢ +
¢

¢ +
¢
¢u d u d u d u d 0. 14· · · · ( )

With these different estimates, the generalized Kolmogorov
law for three-dimensional compressible isothermal turbulence
reads

e dr d d rq r q d- = á ñ - á ¢ + ¢ ñu u u4
1

2
. 15ℓ

2 2· ¯ ( ) ( )( ) ( )

Expression (15) is the first main result of this paper. This
compact law is valid for homogeneous—but not necessarily
isotropic—turbulence. As explained above, to derive this
expression we have assumed the existence of an inertial range
where the forcing and the dissipation are negligible
(Frisch 1995; Aluie 2011). The expression found is much
simpler than the one proposed in Galtier & Banerjee (2011)
because (i) the flux, dr d dº á ñF u u2¯ ( ) , is constructed as a
single term that resembles its incompressible version (that we
recover by taking dr r= 0

¯ , with r0 a constant mass density),
and (ii) the source is simply written as

rq r q dº - á ¢ + ¢ ñuS 1 2 2( ) ( )( ) . It is a purely compressible
term, which goes to zero when the incompressible limit is
taken; then, we recover the original form of the well-known
four-thirds law (Antonia et al. 1997). The sign of S is directly
given by the sign of the dilatation: when the flow is mainly in a
phase of dilatation (q > 0) the source is negative, whereas in a
phase of compression (q < 0) the source is positive. We can
also see that the source tends to zero on small scales along with
the du 2( ) factor, as rq r q¢ + ¢( ) remains finite as ℓ goes to zero.
This contrasts with the flux term that can still have a nontrivial
contribution because of the ℓ–derivative introducing a ℓ1
scaling. A natural scale below which the source would be
negligible is the sonic scale, i.e., the scale where the turbulence
transitions from supersonic to subsonic (Federrath et al.
2010, 2020). Finally, note that expression (15) is Galilean
invariant as the primitive Equations (1)–(2).

The generalized Kolmogorov law can be interpreted as if we
had an effective cascade driven only by the flux term

e - º F4 ℓeff · (such that e e= + S 4eff ) that involves the
usual energy injection/dissipation rate (ε) known in incom-
pressible theory and a new purely compressible component
(source) that reflects contraction and dilatation of the turbulent
structures. If we assume that the cascade driven by the flux
term is direct (i.e., e > 0eff ) then a dilatation (compression) will

tend to oppose (sustain) the energy cascade, preventing
(enforcing) the formation of smaller structures. Furthermore,
the dilatation of the structures ( <S 0) can annihilate the
cascade to small scales (if e = -S 4) or even reverse it (if
e + <S 4 0) leading to the formation of large-scale structures
via an inverse cascade. Note, however, that if S is scale
dependent then compressible turbulence is not characterized by
constant energy flux solutions as in incompressible theory
(Kadomtsev & Petviashvili 1973; Passot et al. 1988). As we
will see below, the numerical simulation will be very useful to
go further in our interpretation.

3. Numerical Simulation

In this section the exact law (15) derived above is used to
investigate supersonic turbulence produced by a massive
numerical simulation with a grid resolution of 10, 0483 points
and at Mach number 4. The Mach number is defined as

s= cv s with sv the velocity dispersion at the main forcing
scale L 2 and L the simulation side length. The simulation was
performed using a modified version of the FLASH code
(Fryxell et al. 2000; Dubey et al. 2008; Federrath et al. 2020),
solving the isothermal compressible HD equations in a triply
periodic box. Following the methods in Federrath et al. (2010)
the simulation uses a naturally mixed driving (ζ=0.5) with an
Ornstein–Uhlenbeck process acting on large scales. The forcing
amplitude is a paraboloid spanning k=1..3, peaking at k=2
and reaching zero at both k=1 and k=3, where the
wavenumber k is in units of p L2 . Thus, the forcing acts on
scales larger than L 3, which are well above the ones we study
in this paper. The data used here are seven snapshots of the
10, 0483 simulation, sampled at a resolution of 2, 5123, of the
density and the three components of the velocity field, taken at
2, 3, 4, 5, 6, 7, and 8 turbulence turnover times T
(downsampling the data eases its handling without affecting
the results reported in this paper). Figure 1 shows through rms
Mach number and minimum and maximum densities that
statistics for both velocity and density have converged after two
turnover times, indicating that the simulation has reached a
statistically stationary state (Federrath et al. 2009), hence the
use of snapshots for times t T2 .
For each snapshot the two terms of the exact law are

computed along the three main axes x, y, and z, and then
averaged spatially over the full box. The four signals obtained
for different turnover times were eventually averaged to obtain
the result displayed in Figure 2. First, we see that the mean rate
of energy injection/dissipation ε (in red) is approximately
constant over more than a decade. This observation indicates
that the assumptions made to derive the law are satisfied on
these scales of the simulation. The changes in ε observed on
larger scales will be discussed in the next section in light of
subsequent observations. Second, we see that the contribution
of the flux term (in blue) is significantly higher than ε, which
means that the source (in green) brings a correction to its
contribution with an opposite sign, which is confirmed by the
green dashed curve. For a better interpretation we can make a
distinction between ε and eeff introduced above, i.e., the energy
transferred between scales through the usual (incompressible)
turbulence cascade driven by the flux term, in which case we
have e e= eff . Here, we see that e e< eff with a nonnegligible
contribution from the source. This behavior contrasts with the
one reported from direct numerical simulations of subsonic
(compressible) MHD turbulence, where the overall
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contribution of the nonflux terms was found to be negligible
with respect to the flux term (Andres et al. 2018). Note that in
space plasma data, where it is not always possible to precisely
measure the source (Hadid et al. 2017; Andrés et al. 2019), the
variation of eIHD in the inertial range may indicate the presence
of nonnegligible compressible effects, especially in media
where density fluctuations are high (Hadid et al. 2018).

We further investigate the properties of this supersonic
simulation in order to understand the origin of the source
contribution and its influence on turbulence. As we have seen

above, the source is globally positive, which reflects the
dominance of compression. Therefore, for a given snapshot we
searched for the grid point of minimal dilatation θ (maximum
contraction of the fluid). In Figure 3 we show a slice of the data
cube containing this point in the (yz) plane (other slices along
(xy) or (xz) containing this point give a similar qualitative
behavior). More precisely, we show the density-dilatation (top)
and the modulus of the vorticity =  ´w u (bottom). These
cuts reveal the existence of turbulent filamentary structures
(elongated dark red structures for rq) in which both q∣ ∣ and w∣ ∣
are up to several orders of magnitude higher than in the rest of
the plane. A zoom on such structures is shown in Figure 4.
These structures are typically delimited by very thin boundaries
of strong contraction (dark blue lines for rq) in which a high
turbulent activity with many vorticity tubes is observed. It is
thought that the density-dilatation and the vorticity highlight
the turbulence structures better than the previously used
quantities θ and ρ (Kritsuk et al. 2007; Federrath et al. 2010),
which are less relevant to investigate the physics involved in
the generalized Kolmogorov law.

Figure 1. rms Mach number (top), maximum and minimum density (bottom)
as functions of time (normalized to the turnover time T).

Figure 2. Normalized flux term, - F 4ℓ · (blue), and normalized source
-S 4 (green). The mean rate of energy injection/dissipation ε (red) is then
deduced from the exact law (15). For comparison, we show the same quantity
eIHD (orange) computed from the exact four-thirds incompressible law. Solid
lines represent positive values and dashed lines represent negative values. The
vertical dotted line corresponds to the sonic scale measured in Federrath et al.
(2020). Increments are normalized to the side length L of the simulation
domain.

Figure 3. Density-dilatation ρθ (top) and modulus of the vorticity w∣ ∣ (bottom)
in a (xy) plane at six turnover times. The amplitude and sign of the fields are
given by the color bars. The regions enclosed in the dashed cyan boxes are
shown in Figure 4.
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Regions with high density-dilatation are expected to drive
most of the (average) source term. We therefore selected a
sample of these regions (filaments) in which the mean density
was high, and computed the source and flux term for
increments along the main orientation of the filamentary
structure. The results obtained were then averaged over the
selected samples. In Figure 5 we show the result for a given
filamentary structure and a “blank” region of weaker activity
(top), and an average over eight filamentary structures
(bottom). For all these filaments we observe a similar trend:
the source is dominant, positive, and increases with spatial lag
of the increments until it reaches approximately the sonic scale
ℓ L0.01235s  , the scale where the scale-dependent Mach
number is = ℓ L 1s( ) (see Federrath et al. 2020 for the
original determination of ℓs in these simulations). The flux term
does not have a constant sign but remains negligible with
respect to the source on most scales. We note that, because of
the sample size effect, the interpretation of the largest scales of
the structures are subject to caution. A comparison with a blank
region gives a quite different result: the values of both the flux
and the source terms are up to five orders of magnitude lower
than their counterparts in filamentary structures. One should
note that we only evaluate here the specific contribution of
small pieces of the flow. Consequently one would not expect to
retrieve any form of theoretical scaling predicted by the exact
law, which would only apply to the full statistical average on
the whole simulation domain.

We complement our analysis by taking the absolute value of
the flux and the source before performing their statistical
averages. Therefore, we define dr d d= á ñF u u2˜ ¯ ( ) ∣ ∣ and

rq r q d= á ¢ + ¢ ñuS
1

2
2˜ ∣ ∣( ) and compute them on the entire

simulation domain at a given time. These two quantities
represent the total activity due to the flux and the source,
respectively, disregarding the sign of the local contributions
and thus the direction of the resulting turbulent cascade (direct
or inverse). Note that, again, these results do not have to
comply to any theoretical prediction brought by the exact law,
as the terms computed here are not the ones forming the exact
law per se. Yet, the nonsigned quantities have the advantage of
converging faster than their signed counterpart, and can lend
some information about the mechanisms dominating on

different scales. The results are reported in Figure 6. First, a
clear power law ~S ℓ1 2˜ emerges over two decades for the
compressible source. By dimensionally equalizing the flux term
and the source, we find d ~u ℓ1 2 (we do not include the
density that appears as a local average and not as a pure
fluctuating quantity). This scaling is actually compatible with
the one reported in Federrath et al. (2020) on supersonic scales
using the second-order structure function (which is positive
definite and therefore comparable to our calculation using
absolute values), while a classical (incompressible) scaling
d ~u ℓ1 3 was approximately found on subsonic scales. Note
that the supersonic law is dimensionally compatible with the

Figure 4. Zoom of the density-dilatation ρθ (left) and modulus of the vorticity
w∣ ∣ (right) of the regions enclosed in the dashed cyan box of Figure 3. The
amplitude and sign of the fields are given by the color bars.

Figure 5. Top: flux term and source computed in a single turbulent
(filamentary) structure and a single blank zone. Insets (a) and (b) show,
respectively, the turbulent structure and the blank zone in which the statistics
are made. Bottom: same type of plots averaged over eight filamentary
structures from different snapshots. The sonic scale is given by the vertical
dotted lines.

Figure 6. Modified flux  F· ˜ and source S̃ computed in the entire simulation
domain at time corresponding to six turnover times. A comparison is made with
the scalings ℓ0.05 and ℓ0.51.

5

The Astrophysical Journal, 904:160 (7pp), 2020 December 1 Ferrand et al.



velocity spectrum ~ -E ku 2, a scaling often attributed to a
purely compressible (Burgers) turbulence (Frisch 1995; Feder-
rath 2013). In the framework of the generalized Kolmogorov
law we see, however, that the change of slope reported
previously can find a precise origin: it marks a transition toward
a regime/scale where the absolute activity of the source
becomes nonnegligible. Second, we see that the modified flux
exhibits a plateau on small scales, as expected for a subsonic
turbulent cascade mainly driven by the flux, which means that
most of the energy transiting in either direction through these
scales is transferred by a flux-driven process. A transition
appears around the sonic scale above which the flux starts to
drop: this behavior can be attributed to the dominance of the
compressible source activity on supersonic scales.

4. Discussion

Based on a single simulation, realized, however, at an
unprecedented spatial resolution, some conclusions can be
drawn. By directly applying the new exact law derived
analytically to the data we found that the amplitude of the
source in the turbulent filamentary structures (Figure 5) is much
higher (up to two orders of magnitude) than when it is
computed on the whole simulation (Figure 2). As the overall
turbulent activity is less intense in the other regions we can
conclude that these filaments drive the global behavior of S. On
the contrary, it has been impossible to identify a recurring
behavior in specific parts of the system for the flux term as we
did for the source. At intermediate, transonic scales both the
flux and the source contributions reach a peak. Furthermore the
sign of S in both the global and local computations is positive,
leading to a value of eeff higher than ε, which is fixed externally
by the forcing. We thus suggest that the energy cascade in
supersonic HD turbulence reaches its maximum efficiency (i.e.,
eeff is maximal) around the transition from the subsonic to
supersonic regimes. This efficiency decreases with scales such
that eeff tends to be closer to ε on subsonic scales, where S
becomes subdominant. On supersonic scales, however, the
exact law shows a decrease in the energy cascade rate ε, which
is no longer constant. The law being exact under several
assumptions means that at least one of them is not verified. For
example, we cannot exclude a nonlocal effect of the forcing
that would modify the scaling law mostly on large scales. An
anomalous dissipation on supersonic scales originating from
the irregularities of the fields, which is not accounted for in our
theory, could also contribute to the energy budget (Duchon &
Robert 2000; Saw et al. 2016; Galtier 2018). On the other hand,
Figure 6 shows that the total, nonsigned activity of the
compressible source grows higher than that of the flux: this
suggests that density-dilatation acts strongly on supersonic
scales, but in such a way that local contributions of opposite
signs cancel each other out in the scope of the exact law. This
strong compressible activity, coupled to the flux activity
becoming nonconstant at supersonic scales, suggests a
transition between two regimes around the sonic scale: a
subsonic turbulent cascade driven by both the compressible
flux and the source, and a highly compressible regime at
supersonic scales that does not feature a conservative cascade.
The vorticity distribution shown in Figure 3 reinforces this
interpretation since stronger vorticity is only observed inside
the small-scale turbulent structures. Similar conclusions were
drawn by Aluie et al. (2012) who reported for subsonic and
transonic simulations that pressure-dilatation acts essentially on

large scales, whereas at small scales, below a transitional
“conversion” scale range, a conservative cascade appears. Here
we shed a new light onto those findings using a different
approach that helps better understand how various mechanisms
shape supersonic turbulence.
A spectral analysis of the velocity field u (not shown in this

paper) reveals the existence of two distinct power-law scalings,
separated roughly by the sonic scale. On supersonic scales the
scaling is close to -k 2, which is usually attributed to Burgers
turbulence (Kadomtsev & Petviashvili 1973; Passot et al. 1988;
Frisch 1995); on subsonic scales the scaling becomes close to
-k 3 2, which is compatible with a theory of weak acoustic
turbulence (Zakharov & Sagdeev 1970; L’vov et al. 1997).
This provides other evidence of the existence of two distinct
regimes at supersonic and subsonic scales: a more shock-driven
compressible regime and a (possibly acoustic) turbulent
regime. If we assume that the cascade rate computed here is
representative of (if not identical to) the energy dissipation rate
in the system, the observation that cascade/dissipation rate
peaks near the sonic scale (Figure 5), where turbulence
transitions from shock-like ( -k 2) to fluctuation/vortex-like
( -k 3 2) dominated regimes would be an indication of strong
shock dissipation at that scale.
It is interesting to note that using a model of acoustic

turbulence with weak shocks at Mach number close to unity,
Lindborg (2019) reported that a scaling relation similar to the
incompressible Kolmogorov law could be retrieved for a
modified energy cascade rate. In the framework of said model,
our scaling relation (15) still holds considering a similar
modified energy cascade rate. This remark, along with the
previous one, means that subsonic turbulence could be
composed of a mixture of weak shocks, acoustic waves, and
vortices.
A final remark can be made about the exact law: given the

high resolution of the simulation one would expect the energy
cascade rate to form a steady plateau over more than one
decade. This small inertial range may be attributed to two
possible effects not included in our exact law (15): (i) nonlocal
effects due to the large-scale forcing and (ii) additional local
dissipation (in the supersonic range) through shocks/disconti-
nuities (Duchon & Robert 2000; Saw et al. 2016; Galtier 2018),
since our exact law assumes smoothness of the turbulent fields.
This shortcoming calls for a new theory of compressible HD
turbulence where such singular fields and nonlocal effects due
to large-scale forcing can be accounted for, and which would
be very relevant to supersonic turbulence. In addition, it would
be interesting to investigate the question of intermittency in
supersonic turbulence by evaluating separately the contribu-
tions of the flux and the source. Such theories are beyond the
scope of this paper and are left to future studies.

5. Conclusion

The theory developed in this paper and applied to high-
resolution numerical simulations allows us to gain deep insight
into supersonic ISM turbulence. The filamentary structures
observed in the ISM seem to be characterized by a universal
thickness of the order of the sonic scale (Arzoumanian et al.
2011; Federrath et al. 2016b). Their shape is supposed to be
mainly due to HD turbulence and to be little affected by other
factors such as gravity or magnetic fields (Federrath et al.
2016b; Ntormousi et al. 2016). These studies associated with
our work suggest that this universality could be explained by
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the existence of the two distinct regimes reported here: (i) a
supersonic regime dominated by shock-like structures where
the energy cascade rate ε is not constant; (ii) a subsonic regime
with a lower and mainly constant ε, where vortices (and
acoustic waves) are produced and in which a classic
conservative cascade is formed. In between, the transonic
scales where turbulence reaches its peak of effective energy
transfer would correspond to the size of the filaments. Our
interpretation is thus that filaments are stuck on the smallest
scale of the supersonic regime, which is the sonic scale, while
the weaker subsonic cascade produces vorticity tubes on
smaller scales.

Applications of the law to more complete simulations,
featuring for instance gravitational forces or magnetic fields,
would help refine this interpretation and may provide new clues
on the interplay between ISM turbulence and the problem of
star formation (mac Low & Klessen 2004; Hennebelle &
Falgarone 2012; Padoan et al. 2014). For example, Orkisz et al.
(2017) were able for the first time to observationally derive the
fractions of momentum density contained in the solenoidal and
compressive modes of turbulence. It was in the Orion B
molecular cloud where the mean Mach number was ∼6. They
showed that the compressive modes are dominant in regions
with a high star formation rate (as predicted in Federrath &
Klessen 2012). According to our analysis the source term is the
dominant component of compressible turbulence inside
filaments. Future work that would directly link the formalism
of exact laws (and thus the source and flux terms) to the star
formation rate could significantly advance our understanding of
how turbulence controls the formation of structures on different
scales in the ISM.
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Using mixed second-order structure functions, a compact exact law is derived for
isothermal compressible Hall magnetohydrodynamic turbulence with the assumptions of
statistical homogeneity, time stationarity and infinite kinetic/magnetic Reynolds numbers.
The resulting law is written as the sum of a Yaglom-like flux term, with an overall
expression strongly reminiscent of the incompressible law, and a pure compressible
source. Being mainly a function of the increments, the compact law is Galilean
invariant but is dependent on the background magnetic field if one is present. Only
the magnetohydrodynamic source term requires multi-spacecraft data to be estimated
whereas the other components, which include those introduced by the Hall term, can be
fully computed with single-spacecraft data using the Taylor hypothesis. These properties
make this compact law more appropriate for analysing both numerical simulations and
in situ data gathered in space plasmas, in particular when only single-spacecraft data are
available.

Key words: plasma nonlinear phenomena, space plasma physics

1. Introduction

Although having already been studied extensively in several areas of physics, turbulent
flows are not yet fully understood because the nonlinear nature of the problem makes it
difficult to derive fundamental laws. Most of these laws take the form of exact relations,
mathematical expressions that relate the energy cascade rate to a third-order correlation
function of the fields under the assumptions of statistical homogeneity, stationarity and
high Reynolds numbers. A well-known result is the four-fifths law derived using a
tensorial method by Kolmogorov (1941) for incompressible hydrodynamic turbulence,
and the four-thirds law derived in a modern way through the use of a two-point
correlation function only (Monin 1959; Antonia et al. 1997). Following this simpler
derivation, other fundamental laws were derived for plasma models such as incompressible
magnetohydrodynamics (IMHD) (Politano & Pouquet 1998), which allowed for the study
of astrophysical turbulent plasmas such as the solar wind (Sorriso-Valvo et al. 2007;
MacBride, Smith & Forman 2008; Marino et al. 2008; Stawarz et al. 2009; Osman
et al. 2011; Galtier 2012). This plasma model was then refined by adding the Hall effect
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(IHMHD) (Galtier 2008; Banerjee & Galtier 2017; Hellinger et al. 2018; Ferrand et al.
2019) as a way of describing near and sub-ion scales, which are not described by ideal
MHD, and allow for multi-scale studies of space plasmas (Bandyopadhyay et al. 2020).

In addition to the incompressible models, exact laws have also been derived that take
compressibility into account both for non-magnetized fluids (Galtier & Banerjee 2011;
Banerjee & Galtier 2014; Banerjee & Kritsuk 2017; Ferrand et al. 2020) and magnetized
plasmas (Banerjee & Galtier 2013; Andrés & Sahraoui 2017; Andrés, Galtier & Sahraoui
2018; Banerjee & Kritsuk 2018). The use of a compressible description of astrophysical
flows is relevant for the solar wind (Banerjee et al. 2016; Hadid, Sahraoui & Galtier 2017)
but also for highly compressible media, such as the interstellar medium, where supersonic
turbulence is expected to play a key role in star-forming structures (Kritsuk et al. 2007;
Arzoumanian et al. 2011; Kritsuk, Wagner & Norman 2013; Federrath 2016). It is also
relevant to study the sub-ion scales of a subsonic turbulent plasma. Indeed, while the
influence of compressibility at MHD scales has already been demonstrated in turbulent
flows of the magnetosheath of the Earth (Hadid et al. 2018), it was recently shown that
small density fluctuations can significantly enhance the compressible cascade rate, with
respect to its incompressible estimate at sub-ion scales, even when the two cascade rates
coincide at the large (MHD) scales (Andrés et al. 2019).

For a given model, the expression of the law is not unique. This is the case with
incompressible hydrodynamics, where both the four-fifths and the four-thirds laws exist
and were derived by different methods. Likewise, there is a tensorial derivation in IMHD
that yields a four-fifths-like law (Yoshimatsu 2012) that is different from that derived by
Politano & Pouquet (1998), and four different laws have been derived in IHMHD (Ferrand
et al. 2019). In particular, it was shown in the latter study that using the appropriate
structure function allows one to derive a simplified expression of the exact law. Owing
to the size and complexity of the law already available for the compressible isothermal
Hall MHD (CHMHD) model (Andrés et al. 2018), which will hereinafter be called the
A18 law, we aim to apply a similar method to that used by Ferrand et al. (2019) (hereafter
F19) to derive a CHMHD law with an expression that is significantly simpler. Deriving
such a compact expression could ease the subsequent in situ data analysis by simplifying
the computation and obtaining a more precise estimate of the heating rate.

In § 2, we present our derivation based on the three-dimensional isothermal CHMHD
equations. We then discuss the new exact law in detail in § 3 and compare it with the
previous law and its incompressible counterpart. We finally provide the conclusion of the
study in § 4.

2. Derivation of the compact CHMHD law
2.1. Compressible Hall MHD equations

Hall MHD is a model often used in astrophysics in the context of cold and dense regions
of protoplanetary discs (Kunz & Lesur 2013), crusts of neutron stars (Gourgouliatos &
Cumming 2014), fast magnetic reconnection (Bhattacharjee 2004), high-frequency waves
and turbulence in magnetospheric physics (Belmont & Rezeau 2001; Sahraoui et al. 2003;
Sahraoui, Galtier & Belmont 2007) and in the solar wind (Galtier 2006), and laboratory
experiments such as the Madison Plasma Dynamo (Cooper et al. 2014) or the Wisconsin
Plasma Astrophysics Laboratory (Forest et al. 2015) experiments. In the context of weakly
collisional plasmas, the limits of the validity of Hall MHD have been discussed in the
literature (e.g. Howes 2009).

In this paper, we shall consider three-dimensional compressible isothermal Hall MHD,
for which the equations are (Galtier 2016)
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Exact law for compressible Hall MHD turbulence 3

∂tρ + ∇ · (ρu) = 0, (2.1)

ρ(∂tu + u · ∇u) = −∇P + J × B + dν + f , (2.2)

∂tB = ∇ × (u × B) − λ∇ × (J c × B) + dη, (2.3)

∇ · B = 0, (2.4)

where ρ is the mass density, u is the velocity, P is the pressure, B is the magnetic field, J =
(∇ × B)/μ0 is the current density, f is a stationary homogeneous external force acting at
large scales, J c = J/ρ is the normalized current, and λ = mi/qe with mi is the ion mass
and qe is the magnitude of the electron charge. The dissipation terms are

dν = νΔu + ν

3
∇θ, (2.5)

dη = ηΔB, (2.6)

with θ = ∇ · u is the dilatation, ν is the dynamic viscosity and η is the magnetic
diffusivity. We use the isothermal closure P = c2

sρ, where cs is the speed of sound
constant.

We introduce the spatial increment � connecting two points x and x′ in the physical
space as x′ = x + � and we define, for any given field ξ , ξ = ξ(x) and ξ ′ = ξ(x′). We
also define the field increment δξ = ξ ′ − ξ and the mean value δ̄ξ = (ξ + ξ ′)/2. For this
system, the equation of energy conservation reads as

∂t〈Etot〉 = 〈u · dν〉 + 1
μ0

〈B · dη〉 + 〈u · f 〉, (2.7)

where 〈〉 is an ensemble average, Etot = ρu2/2 + B2/(2μ0) + ρe is the total energy
and e = c2

s ln(ρ/ρ0) is the work component of internal energy (ρ0 = 〈ρ〉 is the average
density). Note that this definition limits the variations of the internal energy to the work
done by the pressure force, the heat component owing to entropy variation being neglected
(like in the case of incompressible turbulence). Thus, the total energy is conserved. We
define the mean rate of total energy injection as ε = 〈u · f 〉. By using this quantity, (2.7)
reduces in the stationary regime to

〈
u · dν + 1

μ0
B · dη

〉
= −ε. (2.8)

Note that we also have the relation

〈u · dν〉 + 1
μ0

〈B · dη〉 = −ν

〈
w2 + 4

3
θ 2

〉
− μ0η

〈
J 2〉 , (2.9)

where w = ∇ × u is the vorticity, which gives the expression of the mean rate of total
energy dissipation.

2.2. Two-point correlators
Next, we shall derive analytically a dynamical equation for the following mixed structure
functions

〈S〉 =
〈

1
2
δ̄ρ|δu|2 + 1

2μ0
|δB|2 + 1

2
δρδe

〉
. (2.10)
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4 R. Ferrand, S. Galtier and F. Sahraoui

First, we note that for homogeneous turbulence, we have the relations

〈δ̄ρ|δu|2〉 = 〈ρu2〉 − 2〈δ̄ρu · u′〉 + 1
2 〈ρu′2 + ρ ′u2〉, (2.11)

〈δρδe〉 = 2〈ρe〉 − 〈ρe′ + ρ ′e〉, (2.12)

〈|δB|2〉 = 2〈B2〉 − 2〈B · B′〉. (2.13)

We recall that, under our formalism, we have for any entity A the relation ∂xA′ = ∂x′A = 0.
We also have the relation 〈∇′·〉 = −〈∇·〉 = ∇� · 〈〉, where ∇� denotes the derivative
operator along the increment �. Using these relations, we obtain from (2.1)–(2.4) the
following expressions

∂t〈ρu · u′〉 =
〈
ρu ·

(
−u′ · ∇′u′ − 1

ρ ′ ∇′P′ + J ′
c × B′

)〉

+ 〈u′ · (−∇ · (ρuu) − ∇P + J × B)〉 +
〈
u′ · dν + u′ · f + ρ

ρ ′ u · (d′
ν + f ′)

〉

= ∇� · 〈−ρ(u · u′)δu + Pu′ − ρe′u〉 + 〈ρθ ′(u · u′)〉
+ 〈ρu · (J ′

c × B′) + u′ · (J × B)〉

+
〈
u′ · dν + u′ · f + ρ

ρ ′ u · (d′
ν + f ′)

〉
, (2.14)

∂t〈ρu′2〉 = 〈2ρu′ · ∂tu′ + u′2∂tρ〉

=
〈
−u′ · ∇′(ρu′2) − 2

ρ

ρ ′ u
′ · ∇′P′ + 2

ρ

ρ ′ u
′ · (J ′ × B′)

〉

+ ∇� · 〈ρu′2u〉 +
〈
2

ρ

ρ ′ u
′ · (d′

ν + f ′)
〉

= ∇� · 〈−ρu′2u′ + ρu′2u〉 +
〈
ρu′2θ ′ − 2

ρ

ρ ′ u
′ · ∇′P′ + 2

ρ

ρ ′ u
′ · (J ′ × B′)

〉

+
〈
2

ρ

ρ ′ u
′ · (d′

ν + f ′)
〉
, (2.15)

∂t〈ρe′〉 = ∇� · 〈−ρe′δu − Pu′〉 + 〈ρe′θ ′〉, (2.16)

∂t〈B · B′〉 = 〈B · (B′ · ∇′u′ − u′ · ∇′B′ − B′θ ′)〉 + 〈B′ · (B · ∇u − u · ∇B − Bθ)〉
− λ〈B′ · (∇ × (J c × B)) + B · (∇′ × (J ′

c × B′))〉 + 〈B′ · dη + B · d′
η〉

= 〈∇′ · ((B · u′)B′) − ∇′ · ((B · B′)u′) + ∇ · ((B′ · u)B) − ∇ · ((B · B′)u)〉
− λ〈∇ · ((J c · B′)B) − (J c · ∇)(B · B′) − (B · B′)∇ · J c〉
− λ〈∇′ · ((J ′

c · B)B′) − (J ′
c · ∇′)(B · B′) − (B · B′)∇′ · J ′

c〉
+ 〈B′ · dη + B · d′

η〉
= ∇� · 〈−(B · B′)δu + (B · u′)B′ − (B′ · u)B〉

− λ∇� · 〈−(B · B′)δJ c + (J ′
c · B)B′ − (J c · B′)B〉

+ 〈B′ · dη + B · d′
η〉. (2.17)
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Exact law for compressible Hall MHD turbulence 5

From these relations, we find

∂t〈S〉 = ∂t〈Etot〉 + ∂t〈Eb〉

− 1
2
∇� ·

〈
−2δ̄ρ(u · u′)δu − ρe′u′ + ρ ′eu + 1

2
ρu′2u′

−1
2
ρu′2u − 1

2
ρ ′u2u + 1

2
ρ ′u2u′

〉

− 1
2
〈ρu · (J ′

c × B′) + ρ ′u′ · (J c × B) + u′ · (J × B) + u · (J ′ × B′)〉

+ 1
4

〈
ρu′2θ ′ + ρ ′u2θ − 2

ρ

ρ ′ u
′ · ∇′P′ − 2

ρ ′

ρ
u · ∇P

+ 2
ρ

ρ ′ u
′ · (J ′ × B′) + 2

ρ ′

ρ
u · (J × B)

〉

− 1
2
〈(ρθ ′ + ρ ′θ)(u · u′)〉 − 1

2
〈ρe′θ ′ + ρ ′eθ〉

− 1
μ0

∇� · 〈−(B · B′)δu + (B · u′)B′ − (B′ · u)B〉

− λ

μ0
∇� · 〈(B · B′)δJ c − λ(J ′

c · B)B′ + λ(J c · B′)B〉

− 1
2

〈(
1 + ρ ′

ρ

)
u′ · (dν + f ) +

(
1 + ρ

ρ ′

)
u · (d′

ν + f ′)
〉

+ 1
2

〈
ρ

ρ ′ u
′ · (d′

ν + f ′) + ρ ′

ρ
u · (dν + f )

〉
− 1

μ0
〈B′ · dη + B · d′

η〉. (2.18)

We can simplify the previous expression by stating that

∇� · 〈δ̄ρ|δu|2δu〉 = ∇� · 〈−2δ̄ρu · u′δu + 1
2ρu′2u′ − 1

2ρu′2u + 1
2ρ

′u2u′ − 1
2ρ

′u2u
〉

+ 〈
1
2ρu2θ ′ + 1

2ρ
′u′2θ

〉
, (2.19)〈

ρ

ρ ′ u
′ · ∇′P′

〉
+

〈
ρ ′

ρ
u · ∇P

〉
= 〈ρu′ · ∇′e′ + ρ ′u · ∇e〉

= ∇� · 〈ρe′u′ − ρ ′eu〉 − 〈ρe′θ ′ + ρ ′eθ〉, (2.20)

∇� · 〈(δu · δB)δB〉 = ∇� · 〈−(u′ · B)B′ + (u · B′)B − (u · B′)B′ + (u′ · B)B〉, (2.21)

∇� · 〈|δB|2δu〉 = ∇� · 〈−2(B · B′)δu + B2u′ − B′2u〉, (2.22)

〈(ρθ ′ + ρ ′θ)|δu|2〉 = 〈−2(ρθ ′ + ρ ′θ)(u · u′) + ρθ ′u′2 + ρθ ′u2 + ρ ′θu′2 + ρ ′θu2〉,
(2.23)

〈|δB|2δJ c〉 = 〈B′2δJ c + B2δJ c − 2(B · B′)δJ c〉, (2.24)

∇� · 〈(δB · δJ c)δB〉 = ∇� · 〈−(B′ · J c)B′ + (B′ · J c)B − (B · J ′
c)B

′ + (B · J ′
c)B〉.

(2.25)
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6 R. Ferrand, S. Galtier and F. Sahraoui

The introduction of these expressions into (2.18) gives

∂t〈S〉 = ∂t〈Etot〉 + ∂t〈Eb〉 − 1
2
∇� · 〈

δ̄ρ|δu|2δu
〉 + 1

4
〈(ρθ ′ + ρ ′θ)|δu|2〉

− 1
2
〈ρu · (J ′

c × B′) + ρ ′u′ · (J c × B) − ρu′ · (J ′
c × B′) − ρ ′u · (J c × B)〉

− 1
2
〈u′ · (J × B) + u · (J ′ × B′)〉

− 1
2μ0

∇� · 〈|δB|2δu − 2(δu · δB)δB − B2u′ + B′2u − 2(u · B′)B′ + 2(u′ · B)B
〉

+ λ

2μ0
∇� · 〈|δB|2δJ c − B′2δJ c − B2δJ c − 2(δB · δJ c)δB

− 2(B′ · J c)B′ + 2(B · J ′
c)B〉

− 1
2

〈(
1 + ρ ′

ρ

)
u′ · (dν + f ) +

(
1 + ρ

ρ ′

)
u · (d′

ν + f ′)
〉

+ 1
2

〈
ρ

ρ ′ u
′ · (d′

ν + f ′) + ρ ′

ρ
u · (dν + f )

〉
− 1

μ0
〈B′ · dη + B · d′

η〉. (2.26)

As we have, for any vector field X , the relation ∇(X · X ) = 2X × (∇ × X ) + 2(X · ∇)X ,
we find the following expressions

〈u′ · (J × B) + u · (J ′ × B′)〉 = 1
μ0

〈u′ · ((∇ × B) × B) + u · ((∇′ × B′) × B′)〉

= ∇� ·
〈

B2

2
u′ − (B · u′)B − B′2

2
u + (B′ · u)B′

〉
, (2.27)

∇� · 〈(B · J ′
c)B〉 = −〈J ′

c · ((B · ∇)B)〉 = ∇� ·
〈

B2

2
J ′

c

〉
+ μ0〈J ′

c · (B × J )〉, (2.28)

∇� · 〈(B′ · J c)B′〉 = 〈J c · ((B′ · ∇′)B′)〉 = ∇� ·
〈

B′2

2
J c

〉
− μ0〈J c · (B′ × J ′)〉. (2.29)

By stating that

∂t〈Eb〉 = −
〈
J ·

(
ημ0J − u × B + 1

ne
J × B

)〉
= 1

μ0
〈B · dη〉 − 〈u · (J × B)〉, (2.30)

we find

∂t〈S〉 = ∂t〈Etot〉 − 1
2
∇� · 〈

δ̄ρ|δu|2δu
〉 + 1

4
〈(ρθ ′ + ρ ′θ)|δu|2〉

− 1
2
〈ρu · (J ′

c × B′)

+ ρ ′u′ · (J c × B) − ρu′ · (J ′
c × B′) − ρ ′u · (J c × B) + 2u · (J × B)〉
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Exact law for compressible Hall MHD turbulence 7

− 1
2μ0

∇� ·
〈
|δB|2δu − 2(δu · δB)δB − B2

2
u′ + B′2

2
u − (u · B′)B′ + (u′ · B)B

〉

− λ

2μ0
∇� · 〈−|δB|2δJ c + 2(δB · δJ c)δB〉 + λ〈J c · (B′ × J ′) + J ′

c · (B × J )〉

− 1
2

〈(
1 + ρ ′

ρ

)
u′ · (dν + f ) +

(
1 + ρ

ρ ′

)
u · (d′

ν + f ′)
〉

+ 1
2

〈
ρ

ρ ′ u
′ · (d′

ν + f ′) + ρ ′

ρ
u · (dν + f )

〉
− 1

μ0
〈B′ · dη + B · d′

η − B · dη〉.
(2.31)

Finally, we introduce the relations

〈2δρδu · δ̄(J c × B)〉 = 〈ρ ′u′ · (J c × B) + ρ ′u′ · (J ′
c × B′) − ρ ′u · (J c × B)

− ρ ′u · (J ′
c × B′) − ρu′ · (J c × B)

− ρu′ · (J ′
c × B′) + ρu · (J c × B) + ρu · (J ′

c × B′)〉, (2.32)

〈δ(J × B) · δJ c〉 = 〈J c · (B′ × J ′) + J ′
c · (B × J )〉, (2.33)

to obtain

∂t〈S〉 = ∂t〈Etot〉 − 1
2
∇� · 〈

δ̄ρ|δu|2δu
〉 + 1

4
〈(ρθ ′ + ρ ′θ)|δu|2〉 − 〈δρδu · δ̄(J c × B)〉

− 1
2μ0

∇� · 〈|δB|2δu − 2(δu · δB)δB − λ|δB|2δJ c + 2λ(δB · δJ c)δB
〉

+ λ〈δ(J × B) · δJ c〉

− 1
2

〈(
1 + ρ ′

ρ

)
u′ · (dν + f ) +

(
1 + ρ

ρ ′

)
u · (d′

ν + f ′)
〉

+ 1
2

〈
ρ

ρ ′ u
′ · (d′

ν + f ′) + ρ ′

ρ
u · (dν + f )

〉
− 1

μ0
〈B′ · dη + B · d′

η − B · dη〉.
(2.34)

2.3. Locality of interaction
In the inertial range and in a stationary state (the zeroth law of turbulence is used), we can
simplify the expressions for the forcing and dissipative terms. The forcing is assumed to act
on large scales only, thus its spatial variations should remain small and cross-terms such as
u · f ′ are expected to behave like u · f = ε. However, dissipation acts at small scales only,
thus cross-terms like u · d′

ν or B · d′
η will be uncorrelated and of null statistical mean.

Then, using (2.8), the following simplifications can be made

〈B′ · dη + B · d′
η〉 � 0, (2.35)

−1
2

〈(
1 + ρ ′

ρ

)
u′ · dν +

(
1 + ρ

ρ ′

)
u · d′

ν

〉
� 0, (2.36)

−1
2

〈(
1 + ρ ′

ρ

)
u′ · f +

(
1 + ρ

ρ ′

)
u · f ′

〉
� −2ε, (2.37)
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8 R. Ferrand, S. Galtier and F. Sahraoui

1
2

〈
ρ

ρ ′ u
′ · f ′ + ρ ′

ρ
u · f

〉
� ε, (2.38)

1
2

〈
ρ

ρ ′ u
′ · d′

ν + ρ ′

ρ
u · dν

〉
+ 1

μ0
〈B · dη〉 � −ε. (2.39)

Finally, the exact law for CHMHD turbulence reads as

−4ε = ∇� ·
〈
δ̄ρ|δu|2δu + 1

μ0
|δB|2δu − 2

μ0
(δu · δB)δB

〉

+ λ

μ0
∇� · 〈

2(δB · δJ c)δB − |δB|2δJ c
〉

− 1
2
〈(ρθ ′ + ρ ′θ)|δu|2〉 + 2〈δρδu · δ̄(J c × B)〉 − 2λ〈δ(J × B) · δJ c〉. (2.40)

One can remark that the stationarity assumption used here implies neglect of the time
derivatives of S and Etot in (2.34), which are related, but not identical, to their counterparts
in A18. Consequently, it might be useful to test, through direct numerical simulations, the
convergence between the two laws and how this might be impacted by the stationarity
assumption.

3. Discussion

Relation (2.40) is the main result of the paper. A comparison with the previous A18 law
shows a drastic reduction in the number of terms (from 35 to 9). The present compact law
can be written in the form

−4ε = ∇� · (F MHD + λF Hall) + SMHD + λSHall, (3.1)

where, by definition,

F MHD =
〈
δ̄ρ|δu|2δu + 1

μ0
|δB|2δu − 2

μ0
(δu · δB)δB

〉
, (3.2)

F Hall = 1
μ0

〈
2(δB · δJ c)δB − |δB|2δJ c

〉
, (3.3)

SMHD = −1
2
〈(ρθ ′ + ρ ′θ)|δu|2〉 + 2〈δρδu · δ̄(J c × B)〉, (3.4)

SHall = −2〈δ(J × B) · δJ c〉. (3.5)

The CHMHD law (2.40) contains two Yaglom-like flux terms that cover both the MHD
and Hall scales (F MHD and F Hall, respectively) with an overall shape strongly reminiscent
of the incompressible law, a situation not observed with the A18 law (Andrés et al. 2018). It
is possible to recover the incompressible law in the associated limit after a renormalization
by the mass density (and by taking ρ → ρ0). To do so, we need to use the mean rate of the
total energy dissipation per unit of mass (ε̄ = ε/ρ0) and the Alfvén units for the magnetic
field (b = B/

√
μ0ρ0). We also need to replace λ with the ion skin depth di, which has the

relation di = λ/√μ0ρ0. Similar to the flux, the two source terms cover both the MHD and
Hall scales (SMHD and SHall, respectively). In the incompressible limit, it is straightforward
to show that SMHD tends to zero, as this term is compressible by nature, so that only F MHD
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Exact law for compressible Hall MHD turbulence 9

remains at the MHD scale. At the Hall scale, a few lines of calculation are required, where
we find that the sum of the flux and source is

∇� · F Hall + SHall = 1
2∇� · F Hall = di∇� · 〈

(δb · δJ )δb − 1
2 |δb|2δJ

〉
, (3.6)

as was demonstrated by Ferrand et al. (2019), which ultimately leads to the incompressible
Hall MHD exact relation

−4ε̄ = ∇� · 〈|δu|2δu + |δb|2δu − 2(δu · δb)δb + di
[
(δb · δJ )δb − 1

2 |δb|2δJ
]〉

. (3.7)

Unlike the A18 law, the new expression (2.40) does not depend explicitly on the (work
part of the) internal energy. We also note that only the source SMHD exhibits the divergence
of a field (through the dilatation), whereas most of the source terms in the A18 law have
such a dependence. As the precise evaluation of the divergence of a field is difficult when
dealing with space plasma data because it requires a three-dimensional mapping of the
system to be computed, which in turn calls for multi-spacecraft data, we conclude that the
new law represents an important advance for the analysis of space plasma turbulence. This
comment is particularly true considering that the entire Hall part of the law, which is the
most important part when studying compressible plasma turbulence at small scales, can
here be fully calculated. As the MHD source has been shown to have little influence on the
energy cascade (Andrés et al. 2018), not being able to compute SMHD for single-spacecraft
missions should not significantly alter the estimation of the energy cascade rate. One
should note however that this statement assumes that a direct measurement of the current
is available (through ion and electron moments). If not, then multiple spacecraft are still
required to compute the current as the curl of the magnetic field.

As expected, the compact law is Galilean invariant; however, and unlike the
incompressible HMHD law (3.7), the compressible expression shows an explicit
dependence on a mean background magnetic field B0 if one is initially present. In this
case, a new term appears on the right-hand side of (3.1), which reads

SB0 = 2B0 · 〈δρ(δu × δ̄J c)〉 − 2λB0 · 〈δρ(δJ c × δ̄J c)〉
� −2B0 · 〈δρ(δue × δ̄ue)〉, (3.8)

where the second line corresponds to the small-scale limit (where the assumption J c ∝ ue
is used, where ue is the electron velocity). We see that this term goes trivially to zero in
the incompressible limit. Note that, even in the absence of an explicit dependence in B0,
this term is still expected to have an impact on the energy cascade by the way it shapes the
nonlinear dynamics (Wan et al. 2012; Meyrand & Galtier 2013; Oughton et al. 2013).

4. Conclusions

In this paper, we have detailed the derivation of a new exact law for three-dimensional
compressible isothermal Hall MHD turbulence. This law stems from the analysis of mixed
second-order structure functions for energy increments under the assumptions of statistical
homogeneity, time stationarity and infinite kinetic/magnetic Reynolds numbers. The law
is a function of the plasma velocity, the magnetic field and the plasma density. It can
depend explicitly on a uniform magnetic field but it is Galilean invariant. The strength
of this new law is its size, as it has only 9 terms instead of the 35 terms in the previous
A18 law (Andrés et al. 2018), which makes it much easier to manipulate. Furthermore,
this law has the advantage of being almost fully applicable to single-spacecraft data
(assuming the Taylor hypothesis), except for the MHD source term SMHD that requires a
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10 R. Ferrand, S. Galtier and F. Sahraoui

three-dimensional mapping of the velocity field. This property will certainly allow for
a more complete analysis of the new data from the recent NASA Parker Solar Probe
(Bandyopadhyay et al. 2020), as well as the ESA Solar Orbiter mission, which should
lead to a better understanding of the ion-scale turbulence in the solar wind turbulence.
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ABSTRACT

Using an exact law for incompressible Hall magnetohydrodynamics (HMHD) turbulence, the energy

cascade rate is computed from three-dimensional HMHD-CGL (bi-adiabatic ions and isothermal elec-

trons) and Landau fluid (LF) numerical simulations that feature different intensities of Landau damp-

ing over a broad range of wavenumbers, typically 0.05 . k⊥di . 100. Using three sets of cross-scale

simulations where turbulence is initiated at large, medium and small scales, the ability of the fluid

energy cascade to “sense” the kinetic Landau damping at different scales is tested. The cascade rate

estimated from the exact law and the dissipation calculated directly from the simulation are shown

to reflect the role of Landau damping in dissipating energy at all scales, with an emphasis on the

kinetic ones. This result provides new prospects on using exact laws for simplified fluid models to an-

alyze dissipation in kinetic simulations and spacecraft observations, and new insights into theoretical

description of collisionless magnetized plasmas.

1. INTRODUCTION

The understanding of turbulent astrophysical plasmas

remains to date a challenging problem: their chaotic na-

ture and the complexity of the mechanisms at work in

such media impose limitations to the methods one can

use to study them efficiently. Yet, enhancing our under-

standing of turbulent plasmas would provide the keys

to solve a variety of problems related to energy dissi-

pation, particle heating and acceleration. Examples of

systems where these processes are crucial include the

solar wind (SW) and planetary magnetospheres (Bruno

& Carbone 2005; Matthaeus & Velli 2011; Goldstein

et al. 1995; Sahraoui et al. 2020), accretion flows around

compact objects (Balbus & Hawley 1998; Quataert &

Gruzinov 1999) and fusion devices (Diamond et al. 2005;

Garbet 2006; Fujisawa 2021). In the SW, the heating

problem is reflected by the slow decline of ion tem-

renaud.ferrand@lpp.polytechnique.fr

perature (as function of the radial distance from the

sun) in comparison with the prediction from the adia-

batic expansion model of the wind (Richardson et al.

1995). Turbulence has long been proposed as a way to

explain this behavior (Matthaeus et al. 1999), through

scale-by-scale transfer of energy (i.e., cascade) toward

small (kinetic) scales where dissipation is more effec-

tive (Schekochihin et al. 2009). A common tool used

to estimate this energy dissipation is the formalism of

exact law for fully developed turbulence first introduced

by Kolmogorov (1941) to study incompressible neutral

fluids. In this formalism, energy is assumed to be in-

jected at large scales at a constant rate per unit volume

ε, which is assumed to be equal to the rate of cascade

to smaller scales and to the rate of dissipation at those

scales. Assuming statistical homogeneity and stationar-

ity of the turbulent fields, and the existence of an iner-

tial range in which both forcing and dissipation mech-

anisms are negligible, the cascade rate ε must remain

constant in the inertial range (Kolmogorov 1941; Monin
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1959; Antonia et al. 1997). The formalism of exact law

has been extended to (in)compressible magnetized plas-

mas within various approximations (Politano & Pouquet

1998; Galtier 2008; Banerjee & Galtier 2013; Andrés &

Sahraoui 2017; Hellinger et al. 2018; Andrés et al. 2018;

Ferrand et al. 2019).

Exact laws have been used successfully to measure

the energy cascade rate in the SW (Smith et al. 2006;

Podesta et al. 2007; Sorriso-Valvo et al. 2007; MacBride

et al. 2008; Marino et al. 2008; Carbone et al. 2009;

Smith et al. 2009; Stawarz et al. 2009; Osman et al. 2011;

Coburn et al. 2015; Banerjee et al. 2016; Hadid et al.

2017) and terrestrial magnetosheath (Hadid et al. 2018;

Andrés et al. 2019). In those studies, the estimated

cascade rate was interpreted as the turbulence energy

dissipation rate, and hence used to quantify the amount

of plasma heating due to turbulence (Sorriso-Valvo et al.

2007; Carbone et al. 2009; Banerjee et al. 2016). How-

ever, as explained above, such an equivalence between

injection, cascade and dissipation rates stems only from

the hypothesis underlying exact laws derivation and can-

not be demonstrated in spacecraft observations. Indeed,

while in numerical simulations the injection, cascade and

dissipation rates can generally be estimated separately

and compared to each other as done in this paper, es-

timating (irreversible) dissipation from spacescraft ob-

servation is a challenge and, generally, only the cascade

rate, which is directly linked to measurable quantities

through the exact law, is accessible (Sorriso-Valvo et al.

2007; Hadid et al. 2017). Thus, in spacecraft data, inter-

preting the energy cascade rate as the actual dissipation

rate is not straightforward. This is particularly true

because of the weakly collisional nature of the SW: in

such plasmas classical viscous and/or resistive effects are

absent, and dissipation is expected to occur via kinetic

effects (e.g., Landau and cyclotron resonances) (Leamon

et al. 1998; Sahraoui et al. 2009; Sahraoui et al. 2010;

He et al. 2015; Chen et al. 2019) that are not captured

by usual fluid descriptions of plasmas. A fundamental

question arises here: is the fluid turbulent cascade rate

estimated in simulations and spacecraft observations of

space plasmas representative of the actual kinetic dis-

sipation in those media? It is the main goal of this

paper to address this question, which impacts the use

of fluid models to interpret part of in-situ spacecraft ob-

servations in the near-Earth space and the theoretical

(fluid vs. kinetic) modeling of weakly collisional plas-

mas. In contrast with previous studies based on 2D

hybrid particle-in-cell simulations (Hellinger et al. 2018;

Bandyopadhyay et al. 2020), the use of 3D LF models

give the possibility to isolate the influence of electron

and ion Landau damping, neglecting all the other ki-

netic effects, and is therefore very suited to address the

question of interest here.

2. THEORETICAL MODEL

Although we are dealing with weakly compressible

regimes we chose, for the sake of simplicity, to use here

the exact law derived by Ferrand et al. (2019) for in-

compressible HMHD (see below about the use of more

general compressible models). Starting from the in-

compressible HMHD equations, and under the usual as-

sumptions of time stationarity, space homogeneity and

infinite (kinetic and magnetic) Reynolds numbers, one

can derive for the energy cascade rate in the inertial

range the expression ε = εMHD + εHall, with

εMHD =− 1

4
∇` ·

〈
(|δv|2 + |δb|2)δv− 2(δv · δb)δb

〉
,

(1)

εHall =− 1

8
di∇` ·

〈
2(δb · δj)δb− |δb|2δj

〉
, (2)

where v, b = B/
√
µ0ρ0 and j = ∇× b are the velocity,

magnetic field and electric current in Alfvén units (ρ0
is the constant mass density) and di is the ion inertial

length. Fields are taken at points x and x′ separated

by a spatial increment ` = x′ − x, and the notations

v ≡ v(x) and v′ ≡ v(x′) are adopted. We then define

the increment operator δ as δv = v′−v, and ∇` as the

derivative operator with respect to the increment `.

3. SIMULATION DATA

3.1. Presentation of the data

In this study, HMHD-CGL refers to a fluid model

with anisotropic ion pressure whose gyrotropic compo-

nents parallel and perpendicular to the local magnetic

field obey nonlinear dynamical equations where the heat

fluxes are neglected (bi-adiabatic approximation intro-

duced by Chew, Goldenberg and Low (Chew et al. 1956),

thus the acronym). The electrons are assumed isother-

mal. Differently, the LF model retains the nonlinear dy-

namics of the parallel and perpendicular pressures and

heat fluxes for both the ions and electrons, and involves a

closure at the level of the fourth-order moments, consis-

tent with the low-frequency linear kinetic theory (Snyder

et al. 1997; Passot & Sulem 2007). The main assump-

tion for modeling Landau damping consists in retain-

ing the imaginary contribution of the plasma response

function in the closure relation which expresses the last
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retained fluid moment of the hierarchy in terms of the

lower ones. In Fourier space, this procedure generates

factors of the form “i sgn(kz)” which, in physical space,

identifies with the Hilbert transform along the ambient

magnetic field (Hammett & Perkins 1990; Hunana et al.

2019). It is then possible to generalize this formulation

to take into account magnetic field line distortion, us-

ing the convolution form of the Hilbert transform (Sny-

der et al. 1997). Its approximation in the numerical

code is discussed in Passot et al. (2014). In both mod-

els, finite ion and electron Larmor radius corrections are

neglected, thus reducing the kinetic effects to Landau

damping. The Ohm’s law includes the Hall term and

the electron pressure contribution. Turbulence is forced

with counter-propagating kinetic Alfvén waves (KAWs)

making an angle θ with the ambient magnetic field, at

the largest scales of the simulation domain. This cor-

responds to transverse wavenumbers k⊥,f , whose val-

ues are summarized in Table 1. The amplitudes obey a

Langevin equation, with an oscillation frequency given

by the KAW linear dispersion relation (TenBarge et al.

2014). We also introduce two thresholds in order to con-

strain the sum of perpendicular kinetic and magnetic

energies to stay within a certain range. Small-scale dis-

sipation is ensured by the hyperviscosity and hyperdiffu-

sivity terms in the velocity and induction equations, of

the form dν = ν(∆⊥+α∂2z )4v and dη = η(∆⊥+α∂2z )4b,

with α being an anisotropy coefficient.

In all the simulations, βi = 1 and the ion and electron

pressures are taken isotropic and equal initially. The

other parameters are reported in Table 1. The simula-

tions are performed using a desaliased spectral code (at

2/3 of the maximum wavenumber) with a third-order

Runge-Kutta scheme for time stepping.

Two different propagation angles for the KAWs driven

at the largest scale of each LF simulation were chosen,

hence tuning Landau damping to two different levels

(Kobayashi et al. 2017). This can be seen in Fig. 1

which compares the linear dispersion relation and damp-

ing rate of the KAWs: the higher the propagation an-

gle, the lower the damping rate at a given scale. Note

that, while changing the angle, we do not change the

amplitude of the fluctuations at the driving scale (i.e.,

ωNL remains constant), and so the nonlinear parame-

ter χ = ωNL/ωL also varies: when the angle decreases,

k‖ increases and so does ωL, thus χ is reduced. As the

ratio γ/ωL is approximately constant for high oblique

angles θ (e.g., Fig. 7 in Sahraoui et al. (2012)), the

strength of the Landau damping relative to the cascade

Run k⊥,fdi Resolution θ ν = η α

CGL1 0.045 5123 83◦ 7.35× 10−8 80

CGL2 0.045 5123 75◦ 7.35× 10−8 10

CGL3 0.5 5122×1024 75◦ 10−14 2.5

CGL4 0.011 10243 75◦ 3× 10−3 5

LF1 0.045 5123 83◦ 7.35× 10−8 1

LF2 0.045 5123 75◦ 7.35× 10−8 1

LF3 0.5 4323 75◦ 7× 10−14 1.5

LF4 0.011 5123 75◦ 3× 10−3 2

Table 1. List of runs and their relevant parameters, where
CGLx and LFx refer to HMHD-CGL and LF simulations,
respectively. The ratio of the longitudinal to transverse box
sizes is given by tan(θ).

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
k⊥di

−0.2

0.0

0.2

0.4
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1.0
γ

,ω
/ω

ci

ω75
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Figure 1. Frequency ω and damping rate γ (normalized by
the ion gyrofrequency ωci) of KAWs versus the normalized
transverse wavenumber k⊥di (where di refers to the ion iner-
tial length) for the LF model at the two propagation angles
θ = 83◦ and 75◦ used in driving the simulations (βi = 1,
Ti = Te).

rate γ/ωNL = (1/χ)(γ/ωL) thus increases as the angle

decreases.

3.2. Energy balance and time stationarity

Let Etot(t) be the total energy of the system at time

t, It(t) the injection rate due to the external forcing

on the perpendicular velocity components, and Dh(t)

the total dissipation rate due to the hyperviscous and

hyperdiffusive terms. Since Landau damping does not

affect the total energy balance, total energy conservation

implies
d

dt
Etot(t) = It(t)−Dh(t). (3)

Denoting by Eint and E‖ the parts of the total energy as-

sociated with the pressure components (internal energy)

and the parallel velocity and magnetic field components

entering the kinetic and magnetic parts, we can write

d

dt
Etot(t)−

d

dt
Eint(t)−

d

dt
E‖(t) ≡

d

dt
E⊥(t) ≈ 0, (4)
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where E⊥ is the sum of the perpendicular kinetic and

magnetic energies, a quantity bound to remain nearly

constant by the forcing procedure.

Because of computational constraints, the time evolu-

tion of the different energy components is computed for

low resolution (LR) simulations analogs of runs CGL3

and LF3 and shown in Fig. 2 (injection and dissipation

rates needed to perform this extra study were not output

at a high-enough frequency in the large-resolution simu-

lations). From this figure it is conspicuous that the time

evolution of total energy, injection and hyperdissipation

is consistent with the energy conservation (3). More-

over, one can see the driving procedure at play in keep-

ing the perpendicular energy E⊥ roughly constant. Its

time stationarity is in practice established when the hy-

perdissipation rate has reached a constant value. When

comparing CGL3-LR with LF3-LR, one notices that run

LF3-LR requires a larger injection rate to maintain the

same level of turbulence on the magnetic and perpendic-

ular velocity than in run CGL3-LR, since Landau damp-

ing efficiently converts a part of the injected energy into

internal energy. This is evidenced by the dashed green

curve in Fig. 2 (bottom), which shows that the increase

of the internal energy is consistent with the heating by

heat fluxes. Moreover, the hyperdissipation rate is lower

on run LF3-LR, suggesting that part of the cascading en-

ergy is taken by Landau damping, as will be evidenced

in next section.

4. CALCULATION OF THE ENERGY CASCADE

RATE

Using Eqs. (1)-(2), we compute the transverse energy

cascade rate for each simulation as a function of the

perpendicular increment by averaging over all spatial

positions in the simulation box and different increment

vectors, at a time for which the simulations reached a

stationary state. Increment vectors ` = (`⊥, `‖) are se-

lected following the angle averaging method of Taylor

et al. (2003), and only the increments forming an angle

of at least 45◦ with the parallel direction are retained.

As already mentioned, the exact law used is the one

for incompressible HMHD, whereas the simulations are

weakly compressible. A comparison (not shown) with a

full compressible HMHD exact law (Andrés et al. 2018)

only showed slight change (. 10% in the inertial range)

of the cascade rate with respect to the current estimate

from the incompressible model. The transverse cascade

rate is then averaged over all increments of equal value

of `⊥. The transverse hyperdissipation is computed in

Figure 2. Low resolution runs of CGL3 (CGL3-LR, top)
and LF3 (LF3-LR, bottom): Time evolution of the total

energy injected in the system
∫ t

0
Itdt (solid red line), total

energy Etot (solid blue), internal energy Eint (solid green),
perpendicular energy E⊥ (solid magenta, roughly constant)

and the time integrated hyperdissipation
∫ t

0
Dhdt (dashed

red). The piece of dashed green curve (right) starting at t =
250, whose vertical position is arbitrary, displays the heating
due to heat fluxes, which is consistent with the increase of
internal energy.

Fourier space as

εdiss(`⊥) =

∫ k⊥

0

dk′⊥

∫
k′8⊥(η|b(k′)|2+ν|v(k′)|2)k′⊥dθ

′dk′z

(5)

where we use `⊥ = π/k⊥.

For simulations forced at intermediate scales, whose

results are reported in Fig. 3, the behavior of the MHD

and Hall contributions to the energy cascade rate are

similar, with the latter rising up at sub-ion scales, then

dominating the former at about the ion inertial length.

The total energy cascade rate is roughly constant on

more than one decade of scales in the simulations with

θ = 83◦, in particular in CGL1, which demonstrates the

existence of an inertial range. To highlight the effect

of Landau damping on the cascade rate, we compare in

Fig. 4 the cascade rates from the LF simulations with
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Figure 3. Energy cascade rate ε, its ideal MHD and Hall
components together with the transverse hyperdissipation
computed for runs CGL1 (top) and LF1 (bottom). Plain
lines represent positive values and dashed lines negative val-
ues.

θ = 75◦ and θ = 83◦, normalized to the corresponding

ones from the CGL simulations. We observe a stronger

decrease (by up to a factor 5) in the normalized cascade

rate at small scales for LF2 (θ = 75◦), i.e. for the simu-

lation with the strongest Landau damping, than for LF1

(θ = 83◦) for which the normalized cascade rate remains

nearly constant at all scales. This result clearly relates

the enhancement of Landau damping at kinetic scales

to the decline of the energy cascade rate at these scales.

We note also the consistency between the (transverse)

hyperdissipation and the cascade rate at the smallest

scale of the simulation box (Fig. 3).

We complement our study with the cascade rates es-

timated from simulations forced at even smaller scales

(LF3 and CGL3) with θ = 75◦ and reported in Fig. 5.

Simulation LF3 exhibits a strong decrease in εMHD par-

tially compensated by a quick rising of the Hall compo-

nent, giving no clear inertial range, in contrast to CGL3

which still behaves similarly to the simulations forced at

intermediate scales. As shown below, this effect may be

attributed to the fact that Landau dissipation reaches

high levels at the sub-ion scales of LF3, whereas CGL3

contains no dissipation mechanisms other than hyper

viscosity and diffusivity, which are bound to act only

at the smallest scales. Note that the sudden changes of

100 101

`⊥/di

10−1

100

101

εLF1/εCGL1 (θ = 83◦)

εLF2/εCGL2 (θ = 75◦)

Figure 4. Ratios of the energy cascade rate computed for LF
simulations over the one for CGL simulations for a driving
wave angle θ = 83◦ (black) and θ = 75◦ (red).

10−1 100

`⊥/di

10−6

10−5

10−4

10−3

10−2

CGL3 (θ = 75◦) εMHD

εHall
ε

εdiss

10−1 100

`⊥/di

10−6

10−5

10−4

10−3

10−2

LF3 (θ = 75◦) εMHD

εHall
ε

εdiss

Figure 5. Same as in Fig. 3 for runs CGL3 (top) and LF3
(bottom).

sign observed at large scales in some components of the

cascade rates in Figs. 3 and 5 are likely to be due to

the proximity of the forcing. Those observed at small

scales for the MHD component of run CGL3 would re-

sult from numerical errors in the calculation of εMHD

given its very small magnitude at those scales.

To obtain a full picture as to how Landau damping af-

fects the energy cascade rate, we performed simulations

forced at large scales (LF4 and CGL4). Combining the

runs CGL2-3-4 and LF2-3-4 we construct a multi-scale

energy cascade rate over nearly three decades of scales

that highlights the effect of Landau damping on it. As

the simulations were run at different scales, the ampli-

tude of the forcing was changed to ensure that each
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10−1 100 101

`⊥/di

10−7

10−6

10−5

CGL3
LF3

CGL2
LF2

CGL4
LF4

εCGL (θ = 75◦)

εLF (θ = 75◦)

Figure 6. Energy cascade rates reconstructed with CGL2-
3-4 runs and LF2-3-4 runs. The ranges spanned by each
simulation are delimited by the black dotted lines. A slight
irregularity is observed on the green curve at the transition
between CGL2 and CGL3, which is caused by an insufficient
overlap of the cascade rates at these scales.

simulation reaches a fully turbulent state. Therefore,

we renormalized the cascade rate ε obtained from the

different simulations to match the one of intermediate

runs CGL2 and LF2, while taking care to discard the

smallest scales of intermediate and large-scale forcing

cascade rates to ensure that hyperviscosity is not acting

at intermediate scales of the reconstructed energy cas-

cade. Fig. 6 shows the full energy cascade rate for CGL

and LF runs for the driving wave angle θ = 75◦. CGL

runs exhibit an almost constant energy cascade rate over

two and a half decades of scales, whereas εLF decreases

steadily over scales and reaches its minimum value at

the smallest ones, confirming that the behavior already

observed in Fig. 4 remains valid over a broader range of

scales.

5. INFLUENCE OF LANDAU DISSIPATION

5.1. Heating due to heat fluxes

In the wake of the previous results an important ques-

tion arises : can the drop in the energy cascade rate for

LF runs be directly connected to Landau damping? For

this purpose, we calculate the heating due to heat fluxes

in presence of Landau damping. For each species, the

pressure equations with the Hall term and the gyrotropic

heat fluxes read

d

dt
ln

(
p‖|B|2
ρ3

)
= − 2c

|B| b̂ ·∇×EH

− 1

p‖

(
−2q⊥∇ · b̂ + ∇ · (q‖b̂)

)
, (6)

d

dt
ln

(
p⊥
ρ|B|

)
=

c

|B| b̂ ·∇×EH

− 1

p⊥

(
q⊥∇ · b̂ + ∇ · (q⊥b̂)

)
. (7)

We define the parallel, perpendicular and total en-

tropies per unit mass

s‖ =
cV
3

ln(
p‖|B|2
ρ3

), s⊥ =
2cV

3
ln(

p⊥
ρ|B| ), (8)

s = s‖ + s⊥ =
cV
3

ln(
p‖p2⊥
ρ5

), (9)

where cV is the specific heat at constant volume. Denot-

ing by e the internal energy per unit mass, the internal

energy per unit volume reads E ≡ ρe = p⊥+ 1
2p‖ = 3

2nT

where T = 1
3 (2T⊥ + T‖). From e = cV T , one gets

cV = 3
2m (the Boltzmann constant is included in the

definition of temperature). The total entropy then obeys

∂t(ρs) + ∇ ·
(
ρsu + (

q⊥
T⊥

+
q‖

2T‖
)b̂

)
= (

1

T‖
− 1

T⊥
)q⊥∇ · b̂−

(
q⊥
T⊥

(b̂ ·∇) lnT⊥ +
q‖

2T‖
(b̂ ·∇) lnT‖

)
. (10)

From the form of the right hand side of Eqs. (6)-(7),

we can conclude that the rates of change of the parallel

and perpendicular entropies per unit mass (sp‖ and sp⊥
respectively) associated with a production (or destruc-

tion) and excluding transport or exchanges between the

parallel and perpendicular directions (see e.g. Hazeltine

et al. (2013)), are given by

d

dt
sp‖ =

1

ρT‖
q⊥∇ · b̂−

q‖
2ρT‖

(b̂ ·∇) lnT‖ (11)

d

dt
sp⊥ = − 1

ρT⊥
q⊥∇ · b̂−

q⊥
ρT⊥

(b̂ ·∇) lnT⊥. (12)

The associated rates of heat production per unit mass

are related by dQ‖/dt = T‖ds
p
‖/dt and dQ⊥/dt =

T⊥ds
p
⊥/dt. We thus get, for the total heat production
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Q = Q‖ +Q⊥

∂t(ρQ)+∇ ·(ρQu) = −q‖
2

(b̂ ·∇) lnT‖−q⊥(b̂ ·∇) lnT⊥.

(13)

The global heating is thus given by

H = −
∫ (q‖

2
(b̂ ·∇) lnT‖ + q⊥(b̂ ·∇) lnT⊥

)
d3x,

(14)

where q‖ and q⊥ are the heat fluxes obtained from the

integration of the model closed at the level of the fourth-

rank moments.

We can define a spectral density for the heating rate

H (also referred to as co-spectrum) in the form

H(k) = −1

2

(
1

2
F{q‖}(−k)F

{
(b̂ ·∇) lnT‖

}
(k) + F{q⊥}(−k)F

{
(b̂ ·∇) lnT⊥

}
(k) + c.c.

)
(15)

where F denotes the Fourier transform.

A few remarks can be made here:

1. In all the simulations we have performed, the volume

integrated heat production is observed to be positive but

its pointwise value can be negative in relatively small re-

gions of space. This contrasts with the (semi-)collisional

regime where the heat fluxes obey Fourier laws of the

form q = −κ(b̂ ·∇)T , making the heat production pos-

itive everywhere in space.

2. Inserting in Eq. (14) the quantities q⊥ and q‖ ob-

tained by the integration of the dynamical equation for

the heat fluxes results in taking into account in the

heating rate contributions originating from the heat flux

present when a quasi-normal closure is implemented (i.e.

where the fourth-rank cumulants are taken equal to zero,

thus making the Landau damping disappear). In the

present simulations, this contribution does not exceed

15% of the total heating rate. In order to only deal with

the heat flux originating from the Landau damping, it

would be necessary to define a conserved entropy for the

quasi-normal closure and evaluate its rate of change due

to the introduction of Landau damping. This is left for

future work as it is not straightforward.

3. More importantly, this heating rate takes into ac-

count the Landau damping on all the waves present

in the simulations, including the magnetosonic waves.

At this level, it appears difficult to separate the contri-

butions of the KAW and to evaluate their dissipation

by Landau damping. Nevertheless, these magnetosonic

waves get dissipated at large scales, thus at small enough

scales the estimated heating rate mostly results from

Landau damping of KAWs and it becomes possible to

compare it to the cascading energy. This particularity

is also the reason why Landau damping appears to be

acting at all scales in all the results presented above,

even in simulations forced at large scales.

Figure 7. Spectral densities of the heating rate DL(k⊥)
(red) and of the magnetic (blue) and kinetic (green) hyper-
dissipation as functions of the transverse wavenumber k⊥ for
run LF3. A straight line of slope 5.2 is supplemented, for
comparison with the scale-variation of the magnetic hyper-
dissipation.

The fact that Landau damping is present at all scales

in the simulation can be seen by estimating the spectral

density of total heating rate at a given wavenumber k⊥,

DL(k⊥) =
∫
k⊥H(k)dkzdθ, where H(k) is the sum of

the spectral densities given by equation (15) for both

the ions and the electrons. This spectral density is rep-

resented in Fig. 7 along with the densities of hyperdis-

sipation and hyperdiffusivity. One clearly sees that the

heating rate due to the presence of heat fluxes dominates

hyper-dissipation over a broad range of scales due to the

dissipation of KAWs and magnetosonic modes, the two

becoming comparable only at the smallest scales (note

that the magnetic hyper-dissipation dominates at small

scales over the kinetic one).

5.2. Dissipation due to Landau damping

The energy E⊥(t) of the (quasi-incompressible) KAWs

that cascade towards small scales, and which is the sub-
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ject of our study, obeys

d

dt
E⊥(t) = IC(t)−DCL (t)−DCh (t), (16)

where IC is the part of the injection rate that con-

tributes to the KAW cascade (the other part is trans-

ferred to magnetosonic modes which are dominantly dis-

sipated at large scales), while DCL and DCh are the parts

of the Landau and hyperviscous (and hyperdiffusive)

dissipation that affect the cascading modes. Using cylin-

drical coordinates and assuming time stationarity, one

can write the integrated energy balance at each Fourier

mode as (adopting roman scripts for spectral densities):

ε(k⊥) =

∫ k⊥

0

{
IC(k′⊥)−DC

L (k′⊥)−DC
h (k′⊥)

}
dk′⊥.

(17)

Considering two wavenumbers k⊥1 and k⊥2 large enough

so that the forcing (which is concentrated at large scales)

leads to
∫ k⊥1

0
IC(k′⊥)dk′⊥ =

∫ k⊥2

0
IC(k′⊥)dk′⊥ = IC , yet

small enough for hyperviscous dissipation to be negligi-

ble, one obtains:

ε(k⊥1)−ε(k⊥2) =

∫ k⊥2

k⊥1

DC
L (k′⊥)dk′⊥ .

∫ k⊥2

k⊥1

DL(k′⊥)dk′⊥.

(18)

The inequality draws closer to an equality for values of

k⊥ large enough so that all magnetosonic modes have

been dissipated.

Equation (18) can be used to estimate a correction to

the energy cascade rate which would take into account

the energy lost due to Landau damping. We do so for

run LF3: using this equation we add to the transfer rate

the cumulative Landau dissipation between an arbitrary

scale (chosen however to be not too large nor too small)

and the running (smaller) scale l⊥. Two of these re-

sulting corrected rates εcorr are shown in Fig. 8. They

appear to be almost constant, and as such they behave

very similarly to the transfer rate of run CGL3 (Fig. 5).

The slight increase of εcorr towards small scales proba-

bly reflects the (weak) contribution of some remaining

magnetosonic waves to the calculated Landau damping.

This clearly demonstrates that the energy lost along the

cascade due to Landau damping is well captured by the

decline of the (fluid) cascade rate at the corresponding

scales.

A complementary estimate of energy dissipation can

be done in Fourier space by also taking into account hy-

perdissipation. Indeed, assuming stationarity, one can

also derive that

ε(k⊥) = IC −DCL +

∫ ∞

k⊥

DC
L (k′⊥)dk′⊥ −

∫ k⊥

0

DC
h (k′⊥)dk′⊥ =

∫ ∞

k⊥

{
DC

h (k′⊥) +DC
L (k′⊥)

}
dk′⊥. (19)

Equation (19) indicates that, as expected, the rate of

energy transfer at the wavenumber k⊥ identifies with

the sum of the rates of Landau and hyperdissipation be-

yond this wavenumber. One can compare the second

right-hand-side term of this equation to the energy cas-

cade rate ε(k⊥) obtained from the IHMHD exact law,

as displayed in Fig. 9. The difference between the two

curves, which is especially significant at large scales, is

due to the fact that the estimation of the dissipation

includes the Landau damping of magnetosonic modes,

whereas the cascade rate considers only incompressible

modes. At smaller scales however, where magnetosonic

modes have already been dissipated, the dissipation and

cascade rates decreases parallel to each other: this indi-

cates that, at scales not yet affected by hyperdissipation,

the decay of ε(k⊥) in a spectral interval identifies with

Landau dissipation within this interval.

Figs. 8 and 9 clearly demonstrates that, through the

cascade, the energy lost due to Landau damping is well

10−1 100

`⊥/di

10−6

10−5

10−4

10−3

10−2

LF3 (θ = 75◦) εcorr0.2π

εcorr0.1π

ε

εdiss

Figure 8. Energy cascade rate ε (red) and transverse hy-
perdissipation (violet) for run LF3. The orange and brown
curves show the same ε corrected by Landau damping in-
tegrated between `⊥ and a reference scale `⊥ = 0.1πdi and
`⊥ = 0.2πdi respectively.

captured by the decline of the (fluid) cascade rate at

the corresponding scales. Note that a similar decline of

the fluid cascade rate at kinetic scales was reported in

2D hybrid PIC simulations and spacecraft observations
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Figure 9. Energy cascade rate ε(k⊥) (black line) together
with Landau and hyper-dissipation (red line) computed with
equation (19) for run LF3.

in the SW and magnetosheath (Hellinger et al. 2018;

Bandyopadhyay et al. 2020). Also, Sorriso-Valvo et al.

(2019) found a correlation between enhancement of a

proxy of the local cascade rate and the signatures of

wave-particle interactions in MMS data.

6. CONCLUSION

In this study, we tackle a fundamental question about

the ability of fluid exact laws to reflect the presence of

kinetic (Landau) damping. By constructing multi-scale

energy cascade and dissipation rates using the HMHD

model on a variety of turbulence simulations bearing

different intensities of Landau damping, we showed that

the presence of Landau damping at small (kinetic) scales

is reflected by the steady decline of the energy cascade

rate at the same scales, which was found to be compa-

rable to the effective Landau dissipation at those scales.

By demonstrating the ability of a fluid exact law to pro-

vide a correct estimate of kinetic dissipation in the sub-

ion range of numerical simulations, this work provides

a means to evaluate the amount of energy that is dissi-

pated into particle heating in spacecraft data: the de-

cline of the cascade rate allows one to evaluate the ki-

netic dissipation as a function of scale. This should help

investigating (at least partially) a longstanding problem

in astrophysical plasmas about energy partition between

ions and electrons (Kawazura et al. 2019), which are gen-

erally heated at different scales.

The study presented in this paper only makes use

of Landau damping. It would be interesting in future

works to extend these conclusions to a broad variety of

kinetic effects and to test them on more general simu-

lations of the SW, featuring a plasma turbulence driven

by other types of waves than slightly perturbed KAWs.

It is also important to stress that, even if the oversimpli-

fied (yet fully nonlinear) fluid models of turbulence can

provide good estimates of the amount of energy that is

dissipated into particle heating, they do not specify how

this dissipation occurs. The answer to this question and

those related to the fate of energy when handed to the

plasma particles requires a kinetic treatment.
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ABSTRACT

Various exact laws governing compressible magnetohydrodynamic (MHD) and Hall-MHD (CHMHD)

turbulence have been derived in recent years. Other than their fundamental theoretical interest, these

laws are generally used to estimate the energy dissipation rate from spacecraft observations in order

to address diverse problems related, e.g., to heating of the solar wind (SW) and magnetospheric

plasmas. Here we use various 10243 direct numerical simulations (DNS) data of free-decay isothermal

CHMHD turbulence obtained with the GHOST code to analyze two of the recently derived exact laws.

The simulations re�ect di�erent intensities of the initial Mach number and the background magnetic

�eld. The analysis demonstrates the equivalence of the two laws in the inertial range and relates the

strength of the Hall e�ect to the amplitude of the cascade rate at sub-ion scales. When taken in

their general form (i.e., not limited to the inertial range) some subtleties regarding the validity of the

stationarity assumption or the absence of the forcing in the simulations are discussed. We show that

the free-decay nature of the turbulence induces a shift from a large scale forcing towards the presence

of a scale-dependent reservoir of energy fueling the cascade or dissipation. The reduced form of the

exact laws (valid in the inertial range) ultimately holds even if the stationarity assumption is not fully

veri�ed.

1. INTRODUCTION

Understanding the dynamics of turbulent magnetized

�ows has been a longstanding problem in physics, and

especially in astrophysics where turbulence is thought to

play a leading role in various processes. Examples are

the interstellar medium, the SW or planetary magneto-

spheres in which turbulence controls structures forma-

tion, energy whereabouts and particle heating or accel-

eration (Matthaeus et al. 1999; Bruno & Carbone 2013;

Kritsuk et al. 2007; Arzoumanian et al. 2011; Sahraoui

et al. 2020). Due to the chaotic nature of turbulence,

such media are often studied thanks to the use of spe-

ci�c tools, which rely on statistical methods to uncover

trends in the behavior of turbulent �ows. A prime exam-

renaud.ferrand@lpp.polytechnique.fr

ple of such tools are exact laws: these equations, which

can be obtained through the sole hypothesis of statis-

tical homogeneity (and further re�ned by introducing

time stationarity and in�nite Reynolds number) express

the rate of energy �owing towards the small/dissipative

scales of a system as a function of two-point structure

functions, without requiring the use of closure models.

Initiated by the work of Kolmogorov and his four-�fths

law for hydrodynamic turbulence (Kolmogorov 1941),

the quest for exact laws has grown wider ever since with

more and more elaborate models being derived. The

�rst steps into studying plasma turbulence were taken

by Politano & Pouquet (1998), who derived a law for

incompressible MHD turbulence. This result paved the

way for more precise studies of space plasmas (Sorriso-

Valvo et al. 2007; MacBride et al. 2008; Marino et al.

2008; Stawarz et al. 2009; Osman et al. 2011; Galtier
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2012). More general exact laws have been derived sub-

sequently, by considering the in�uence of Hall physics

(Galtier 2008; Banerjee & Galtier 2017; Hellinger et al.

2018; Ferrand et al. 2019), or the compression of the

�ow (Galtier & Banerjee 2011; Banerjee & Galtier 2013;

Banerjee & Galtier 2014; Banerjee & Kritsuk 2017; An-

drés & Sahraoui 2017; Andrés et al. 2018; Banerjee &

Kritsuk 2018; Lindborg 2019; Ferrand et al. 2021a; Si-

mon & Sahraoui 2021).

Thanks to those laws, several studies of astrophysi-

cal media have been made possible, either through di-

rect numerical simulations (DNSs) (Mininni & Pouquet

2009; Kritsuk et al. 2013; Verdini et al. 2015; Ferrand

et al. 2020) or in situ data analysis (Coburn et al. 2015;

Banerjee et al. 2016; Hadid et al. 2017, 2018; Andrés

et al. 2019; Sorriso-Valvo et al. 2019; Bandyopadhyay

et al. 2020). These allowed testing the e�ciency of the

exact laws in practical situation in a variety of di�erent

systems. Studies speci�cally designed to test the valid-

ity of these exact laws were also conducted, allowing for

a more in-depth understanding of how the constituents

of these equations relate to each other (Hellinger et al.

2018; Andrés et al. 2018). This kind of work is espe-

cially important as the models are further re�ned, and

exact laws grow even more complex, such as those de-

rived for compressible Hall MHD. For this last plasma

model, where two di�erent exact laws have been derived,

such a study has yet to be made. It is thus the aim of

this paper to �ll this gap by proposing, through the

use of an ensemble of high-resolution DNSs for decay-

ing compressible Hall MHD turbulence, a term-by-term

analysis of exact laws derived by Andrés et al. (2018)

and Ferrand et al. (2021a). The objective is not only to

better comprehend the exact law by itself, but to test

their more general expressions (valid beyond the iner-

tial range and without time stationarity), which require

the bare minimum of hypotheses, and unveil the rela-

tions between the energy cascade, the dissipation, and

the dynamical variables that form these equations.

The structure of this paper is as follows: �rst we

present the two models from Andrés et al. (2018) and

Ferrand et al. (2021a), which will be referred to as A18

and F21 respectively, and provide compact and general

expressions requiring only an assumption of statistical

homogeneity to be obtained. We then describe the sim-

ulations and the numerical schemes used to compute all

the terms forming both exact laws, and then present

and discuss the results obtained. Finally, we give a con-

clusion on our work and on the behavior of the exact

laws.

2. THEORETICAL MODELS

Prior to presenting the theory of the two exact laws

we introduce some notations and relations tied to the

framework of both calculations. We introduce the spa-

tial increment `, connecting two points r and r
′ in the

physical space as r′ = r + `, and de�ne for any given

�eld ξ : ξ ≡ ξ(r) and ξ′ ≡ ξ(r′). We also de�ne the

notations δξ = ξ′ − ξ, δ̄ξ = 1
2 (ξ′ + ξ) and the di�eren-

tial operator in the direction ` as ∇`. This operator

obeys the following relation on ensemble averages 〈〉 :
〈∇′·〉 = −〈∇·〉 = ∇` · 〈〉.

2.1. F21 model

The isothermal CHMHD exact law derived by Ferrand

et al. (2021a) is obtained by considering the following

three-dimensional compressible HMHD equations:

∂tρ+ ∇ · (ρv) = 0 , (1)

ρ(∂tv+ v ·∇v) =−∇P + J×B+ dν + f , (2)

∂tB =∇× (v×B)− λ∇× (Jc ×B) + dη ,

(3)

∇ ·B = 0 , (4)

where ρ is the mass density, v the velocity, P the pres-

sure, B the magnetic �eld, J = (∇ × B)/µ0 the cur-

rent density, Jc = J/ρ the normalized current, and

λ = mi/qe with mi the ion mass and qe the magnitude

of the electron charge. The dissipation terms are:

dν = ν∆v+
ν

3
∇θ , (5)

dη = η∆B , (6)

with θ = ∇ · v the dilatation, ν the dynamic viscosity

and η the magnetic di�usivity. The isothermal closure

writes P = c2sρ with cs the constant speed of sound.

These equations are used to derive a dynamical equation

for the modi�ed second-order structure function

〈S〉 ≡
〈

1

2
δ̄ρ|δv|2 +

1

2µ0
|δB|2 +

1

2
δρδe

〉
. (7)

In the simulation code the internal energy follows the

polytropic de�nition e =
c2s

γ(γ−1) ((ρ/ρ0)γ−1 − 1) with a

polytropic index γ = 1.01 close enough to unity so that

the isothermal approximation remains valid. Note that

under this approximation entropy is assumed to be con-

stant, and thus the internal energy variation result only

from the work of the pressure force (Simon & Sahraoui

2021).
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Injecting equations (1)-(4) in the time derivative of (7) leads, after a hefty amount of calculations, to the

equation:

∂t〈S〉 =∂t〈Etot〉 −
1

2
∇` ·

〈
δ̄ρ|δv|2δv

〉
+

1

4
〈(ρθ′ + ρ′θ)|δv|2〉 − 〈δρ δv · δ̄(Jc ×B)〉+ λ〈δ(J×B) · δJc〉

− 1

2µ0
∇` ·

〈
|δB|2δv− 2(δv · δB)δB− λ|δB|2δJc + 2λ(δB · δJc)δB

〉

− 1

2

〈(
1 +

ρ′

ρ

)
v
′ · (dν + f) +

(
1 +

ρ

ρ′

)
v · (d′ν + f ′)

〉

+
1

2

〈
ρ

ρ′
v
′ · (d′ν + f ′) +

ρ′

ρ
v · (dν + f)

〉
− 1

µ0
〈B′ · dη +B · d′η −B · dη〉 , (8)

with the total energy Etot = ρu2/2 + B2/(2µ0) + ρe.

Equation (8), already reported in Ferrand et al. (2021a)

is the most general equation obtainable in this model un-

der the sole assumption of statistical homogeneity. With

additional assumptions of time stationarity, forcing lim-

ited to the largest scales and in�nite (magnetic and ki-

netic) Reynolds numbers one can then retrieve the exact

law:

−4EF21 =∇` ·
〈
δ̄ρ|δv|2δv+

1

µ0
|δB|2δv− 2

µ0
(δv · δB)δB

〉
− 1

2
〈(ρθ′ + ρ′θ)|δv|2〉+ 2〈δρ δv · δ̄(Jc ×B)〉

+
λ

µ0
∇` ·

〈
2(δB · δJc)δB− |δB|2δJc

〉
− 2λ〈δ(J×B) · δJc〉. (9)

Equation (9) (or similar ones obtained for other mod-

els) is generally the one that is used in numerical sim-

ulations and spacecraft data to infer the cascade rate

(left-hand side) from measurable quantities (right-hand

side)(Banerjee & Galtier 2016; Hadid et al. 2017, 2018;

Andrés et al. 2018; Andrés et al. 2019). However, to be

obtained, non-trivial approximations had to be made,

about time stationarity and on the forcing and dissipa-

tive terms (Ferrand et al. 2021a). While these approxi-

mation are hard (if not impossible) to test on spacecraft

data, they can a priori be veri�ed in direct numerical

simulations, which is one of the goals of the present

study. The speci�c point about time stationarity and

the absence of driving is of a particular relevance in free-

decay simulations as the ones we are using in this study.

Therefore, we will consider in the following the more

general equation (8), written in a more compact form:

2EF21+∂t
〈
Etot

〉
−∂t 〈S〉+DF21+DlocF21+FF21+F locF21 = 0

(10)

where we de�ne:

DF21 ≡−
1

2

〈(
1 +

ρ′

ρ

)
v
′ · dν +

(
1 +

ρ

ρ′

)
v · d′ν

〉
− 1

µ0

〈
B
′ · dη +B · d′η

〉
, (11)

DlocF21 ≡ +
1

2

〈
ρ

ρ′
v
′ · d′ν +

ρ′

ρ
v · dν

〉
+

1

2µ0

〈
B · dη +B

′ · d′η
〉
, (12)

FF21 ≡−
1

2

〈(
1 +

ρ′

ρ

)
v
′ · f +

(
1 +

ρ

ρ′

)
v · f ′

〉
, (13)

F locF21 ≡+
1

2

〈
ρ

ρ′
v
′ · f ′ + ρ′

ρ
v · f

〉
. (14)
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Note that in equation (10) EF21 is introduced by identi-

fying it in equation (8) to its expression given by relation

(9). It does not result from using the same assumptions

that led to relation (9), and thus equation (10) remains

very general. The superscript loc is used for the forc-

ing and dissipation terms that result from the product

of vectors taken locally (i.e., at the same position r or

r
′), assuming that ρ ∼ ρ′ for the velocity �eld terms.

This contrasts with the terms DF21 and FF21 that in-

volve (distant) two-point correlations. Assuming that

ρ ∼ ρ′ in weakly compressible simulations as those of

this study the terms DF21 and FF21 are likely to be

scale-independent, however, as we will show below they

still have signi�cant impact on the energy balance. The

same remark can be made about the term ∂t 〈Etot〉 in
Eq. 10, which is clearly a local term (unlike ∂t 〈S〉 since
S is second order structure function).

2.2. A18 model

The other exact law derived by Andrés et al. (2018)

relies on the same three-dimensional isothermal HMHD

equations, yet using the Alfvén speed vA ≡ B/
√
µ0ρ

instead of the magnetic �eld:

∂tρ =−∇ · (ρv), (15)

∂tv =− v ·∇v+ vA ·∇vA −
1

ρ
∇(P + PM )

− vA · (∇ · vA) + dν + f , (16)

∂tvA =− (v− λJc) ·∇vA + vA ·∇(v− λJc)

− vA

2
(∇ · v− λ∇ · Jc) +

dη√
ρ
, (17)

vA ·∇ρ =− 2ρ(∇ · vA), (18)

Jc ·∇ρ =− ρ(∇ · Jc), (19)

where PM ≡ ρv2A/2 is the magnetic pressure. The sys-

tem is once again closed with an isothermal closure.

These equations are used to compute the time derivative

of the two point correlator RE ≡ ρ
2 (v·v′+vA ·v′A)+ρe′,

which ultimately leads to the exact law:

−2EA18 =
1

2
∇` ·

〈
[(δ(ρv) · δv+ δ(ρvA) · δvA + 2δeδρ

]
δv− [δ(ρv) · δvA + δv · δ(ρvA)]δvA

〉

+

〈
[R′E −

1

2
(R′B +RB) +

P ′M − P ′
2

− Etot′ ](∇ · v)

〉
+

〈
[RE −

1

2
(RB +R′B) +

PM − P
2

− Etot](∇′ · v′)
〉

+

〈
[(RH −R′H)− ρ̄(v′ · vA) +H ′ + λδρ

Jc · v′A
2

](∇ · vA)

〉

+

〈
[(R′H −RH)− ρ̄(v · v′A) +H − λδρJ

′
c · vA

2
](∇′ · v′A)

〉

+
1

2

〈(
e′ +

vA
2

′2)[∇ · (ρv)
]

+
(
e+

vA
2

2)[∇′ · (ρ′v′)]
〉
− 1

2

〈
β−1

′∇′ · (e′ρv) + β−1∇ · (eρ′v′)
〉

+
1

2
∇` ·

〈
2λ[(ρJc × vA)× δvA − δ(Jc × vA)× ρvA]

〉
+ λ

〈
RB −R′B

2
(∇ · Jc) +

R′B −RB
2

(∇′ · J′c)
〉
, (20)

with the cross helicity H ≡ ρ(v ·vA), its two-points cor-

relator RH ≡ ρ(v · v′A + vA · v′)/2, the correlator for

magnetic energy RB ≡ ρvA · v′A/2 and β−1 ≡ v2A/2c
2
s.

Primed variables are obtained by inverting the positions

of the primes in the de�nitions. Just like equation (9),

this law is obtained under the assumptions of statistical

homogeneity, forcing limited to large scales, time sta-

tionarity and in�nite Reynolds number. The latter two

can be dropped by using the general expression obtained

directly from the dynamical equation of 〈RE +R′E〉:

2EA18 + ∂t 〈RE +R′E〉+DA18 + FA18 = 0. (21)

Here again the same caution as above applies regarding

the introduction of EA18, whose expression is given by

(20). The dissipative and forcing terms DA18 and FA18

are not explicitly given in Andrés et al. (2018) but are

easy to calculate. For the dissipation term, the compo-

nent stemming from the velocity �eld and Navier-Stokes

equation is the same as in (11), and the one originating

from the magnetic �eld and induction equation stems

from:

∂t

〈
1

2
(ρ+ ρ′)vA · v′A

〉
, (22)
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and reads:

1

2

〈
ρvA ·

d
′
η√
ρ′

+ ρv′A ·
dη√
ρ

+ ρ′vA ·
d
′
η√
ρ′

+ ρ′v′A ·
dη√
ρ

〉

=
1

2µ0

〈
(

√
ρ√
ρ′

+

√
ρ′√
ρ

)(B · d′η +B
′ · dη)

〉
, (23)

which ultimately leads to

DA18 = − 1

2

〈(
1 +

ρ′

ρ

)
v
′ · dν +

(
1 +

ρ

ρ′

)
v · d′ν

〉

− 1

2µ0

〈
(

√
ρ√
ρ′

+

√
ρ′√
ρ

)(B · d′η +B
′ · dη)

〉
. (24)

The forcing term is identical to the one of law F21, and

reads

FA18 = − 1

2

〈(
1 +

ρ′

ρ

)
v
′ · f +

(
1 +

ρ

ρ′

)
v · f ′

〉
.

(25)

3. NUMERICAL METHODS

3.1. Simulation data

The equations of CHMHD (1)-(4) are solved numer-

ically using the pseudo-spectral code GHOST (Gómez

et al. 2005; Mininni et al. 2011) along with a module

for solving compressible HMHD �ows with the eventual

presence of a background magnetic �eld. Three simu-

lations were run in a cubic periodic box of spatial reso-

lution of N = 1024 grid points and size L0 = 2π in all

three directions, and all simulations use dimensionless

viscosity and magnetic di�usivity of ν = η = 3.0×10−4.

The ion inertial length di is set to di = 0.02/L0 for the

three Runs. These simulations do not feature any forc-

ing: instead, they are set to an initial state built from

a superposition of harmonic modes with random phases

whose energy in Fourier space is put in a sphere between

wave vectors kdown and kup, following the idea of Pou-

quet & Patterson (1978). Then, the �ow is left to evolve

and decay. Varying the intensity of background mag-

netic �eld B0 and the initial Mach number MS allows

us to evaluate the in�uence of these parameters on the

dynamics of the system. All aforementioned parameters

are reported in Table 1.

As these simulations are free-decay, instead of looking

for a stationary regime, we wait for the simulations to

reach a maximum of dissipation, indicating that turbu-

lence has had enough time to fully develop, and lead our

study on times selected around this moment. Around

these times the sum of the kinetic and magnetic ener-

gies of the system, Ek + Em = ρu2/2 +B2/(2µ0) is ex-

pected to be decreasing steadily. Figures 1 and 2 show

these dissipation and energy for Runs I and II (Run III

exhibits an almost identical behavior to Run II). The

steady decline of the energy is indeed observed for Run

II, yet Run I shows oscillations on top of the general

behavior. These oscillations, as shown in Fig. 1, match

�uctuations of the internal energy and are thus thought

to be a consequence of exchanges between the kinetic

plus magnetic energy and internal energy, as was already

reported in Yang et al. (2021), and initiated by the pres-

ence of waves. Using a linear �t, one can estimate the

energy dissipation rate at the selected times: for Run I

it is estimated at ∼ −0.047 and for Runs II and III at

∼ −0.087. If the energy cascade rate is indeed repre-

sentative of the energy transferred to and dissipated at

small scales, its amplitude should match these estimates

for the various simulations. We will return to this point

in the next section.

3.2. Methods of calculation

To compute all terms from equations (10) and (21)

with large-enough statistics we use two di�erent numeri-

cal schemes depending on whether there is a background

magnetic �eld in the simulation or not. Both originate

from the discrete decomposition of space proposed by

Taylor et al. (2003): increment vectors ` are selected

along 73 directions de�ned by base vectors connecting

two points of the grid. Increments are taken as multi-

ples of these base vectors so that both r and r′ = r + `

lie on known grid points, allowing for a well mapping of

space without having to interpolate the 3D data, which

would be a very time-consuming process. Such a decom-

position has already been successfully used to compute

the two-point correlation functions in simulation data of

compressible MHD turbulence (Andrés et al. 2018).

All source terms (i.e. terms that do not appear as di-

vergences along the increment vector) can be computed

directly as long as the increment vector is known. We

only need to proceed to the ensemble average, which in

our case is taken on the full simulation domain:

〈ξ〉 =
∑

r

ξ(r)

N3
, (26)

where N = 1024 is the number of the grid points.

For �ux terms (i.e. terms that appear as divergences

along the increment vector, of the form ∇` ·F) we make

the assumption that our system is isotropic. In this sit-

uation we naturally use spherical coordinates, in which

` is de�ned as ` = (`, φ, θ) and the derivative operator

∇` reduces to ∇` · 〈F〉 = 1
`2 ∂`[`

2 〈F`〉 (`)]. Thus, for a

given increment vector ` we only have to compute the
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Run B0 Resolution ν = η di/L0 MS kdown kup

I 2 10243 3.0× 10−4 0.02 0.25 1 3

II 0 10243 3.0× 10−4 0.02 0.25 1 3

III 0 10243 3.0× 10−4 0.02 0.5 1 3

Table 1. List of Runs and their relevant parameters.
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Figure 1. Top: Incompressible dissipation as a function of
time for Run I. The vertical dotted lines represent the 11
times selected to compute the exact laws. Bottom: Fluctu-
ations of kinetic, magnetic and internal energies (resp. Ek,
Em and Eint) as a function of time for Run I. The total
energy (green curve) shows a continuous exchange between
kinetic plus magnetic and internal energies. The narrow or-
ange line is a linear �t of the times studied in this paper, and
its slope represents the rate of energy loss at these times.
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Figure 2. Top: Incompressible dissipation as a function of
time for Run II. The vertical dotted lines represent the 5
times selected to compute the exact laws. Bottom: Fluctu-
ations of kinetic plus magnetic energy as a function of time
for Run II. The narrow orange line is a linear �t of the times
studied in this paper, and its slope represents the rate of
energy loss at these times.

projection of the vectorial �ux F on the direction of `,
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which writes:

〈F`〉 (`, φ, θ) = 〈cos(φ)sin(θ)Fx + sin(φ)sin(θ)Fy + cos(θ)Fz〉 .
(27)

These projections are then averaged at �xed `:

〈F`〉 (`) =
∑

φ,θ

〈F`〉 (`, φ, θ)
ndir

, (28)

where ndir = 73 refers to the number of di�erent direc-

tions taken for `.

Note that, the isotropy assumption stands for Runs II

and III in which B0 = 0. A similar method based on the

assumption of a symmetry of revolution along the axis

of B0 was also used to study Run I. While this method

is a priori more suited for the study of simulations with

B0 6= 0, the isotropic method ultimately provided better

results even on Run I, and is thus the only one used in

this paper. A more detailed discussion on this point is

given in the Appendix.

3.3. Applied calculation

Using the method described above we compute the

various terms of equations (10) and (21). Note how-

ever that since the present simulations are free-decay

the forcing terms appearing in those equations are iden-

tically zero. Therefore, the latter reduce to

2EF21 + ∂t
〈
Etot

〉
− ∂t 〈S〉+DF21 +DlocF21 = 0 (29)

for the F21 model and to

2EA18 + ∂t 〈RE +R′E〉+DA18 = 0. (30)

for the A18 model.

To lead the calculations we retained a number of

snapshots for each Run: 11 snapshots for Run I

(that present �uctuations on the incompressible en-

ergy and thus require a time average) at turnover

times [8,8.1,8.2,8.3,8.4,8.5,8.6,8.7,8.8,8.9,9], and 5 snap-

shots for Runs II and III at respective turnover times

[5.3,5.35,5.4,5.45,5.5] and [5.6,5.65,5.7,5.75,5.8]. All

time derivatives are obtained by using a �ve-points �nite

di�erences method:

f ′(t) ≈ f(t− 2h)− 8f(t− h) + 8f(t+ h)− f(t+ 2h)

12h
,

(31)

where h represents the time step between two selected

snapshots. For Run I, time derivatives (e.g. ∂t 〈S〉) are
calculated on all possible subsets of 5 consecutive snap-

shots among the initial 11, for a total of 7 calculations

(one using times 8 to 8.4, one using times 8.1 to 8.5

etc.), then the resulting derivatives are averaged over

time. For all other terms (e.g. εF21) we compute the

time average over all 11 snapshots. For Runs II and

III, the derivatives are calculated on the 5 snapshots re-

tained using the same derivation method and all other

terms are calculated only on the central snapshot, re-

spectively at times 5.4 and 5.7. Averaging these terms

over the �ve snapshots was found to bring no change to

the results (not shown).

4. CALCULATION OF THE ENERGY CASCADE

RATE IN THE INERTIAL RANGE

We �rst study the energy cascade rates obtained for

laws F21 and A18 classically obtained under the full as-

sumptions of space homogeneity, time stationarity and

in�nite Reynolds number, i.e. equations (9) and (20)

respectively. For both laws, energy cascade rates are

broken down into a Hall component εHall and a MHD

component εMHD, which are made respectively of the

terms in factor of λ and of all the remaining terms from

equations (9) and (20). A comparison of the cascade

rates provided by the two exact laws is shown in Fig. 3

for Runs I and II. One can observe that the two models

yield closely similar components (MHD and Hall) of the

cascade rate nearly at all scales. This validates numeri-

cally the equivalence of the two exact laws in the inertial

range as anticipated in Ferrand et al. (2021a). Note that

in both Run I and Run II the value of the cascade rate

in the inertial range, centered around `/di ' 2, roughly

matches the energy dissipation rate estimated through

the linear �t on the energy (respectively ∼ −0.047 and

∼ −0.087, see Figs. 1 and 2), suggesting that the energy

cascade approximated in the inertial range is represen-

tative of the dissipation in the system. The di�erence

in the cascade rate values between the two runs is due

to di�erences in the initial/driving amplitude of �uctu-

ations, which is the lowest for Run I with B0 = 2.

Another question that can be addressed regarding the

cascade rate in the inertial range is its sensitivity (or

not) to the turbulent sonic Mach number. To do so we

compare in Fig. 4 the results of Runs II and III that

correspond to the initial Mach numbers MS = 0.25 and

MS = 0.5, respectively. We observe that, overall, the

cascade rate are very close to each other at all scale, and

appear to be similar among all three Runs, indicating

that the increase in the Mach number from MS = 0.25

toMS = 0.5 does not bring signi�cant changes to the to-

tal dynamics of the system. This result agrees with the

�ndings in Andrés et al. (2018) for compressible MHD

turbulence who already reported that, for Mach num-
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εMHD
A18

εHallA18

εA18

εMHD
F21

εHallF21
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Figure 3. Comparison between the di�erent components of
the cascade rate given by the two models of Ferrand et al.
(2021a) (Eq. 9) and Andrés et al. (2018) (Eq. 20) for Run
I (top) and Run II (bottom). Plain lines represent positive
values whereas dashed lines represent negative ones.

bers up to MS = 0.5, purely compressible components

of the exact law remain negligible in comparison to the

�ux terms, which only slightly deviate from their incom-

pressible counterparts. Note that such conclusions only

hold a priori for subsonic regimes: supersonic turbulent

�ows can develop a dominant compressible (source-like)

component of the energy cascade over the traditional

�ux driven one (Ferrand et al. 2020).

At this point, an important remark can be made :

all the energy cascade rates reported in Figs. 3 and 4

have a relatively low amplitude Hall component, which

never becomes dominant with regard to the MHD com-

ponent in contrast with results reported previously from

3D CGL simulations (Ferrand et al. 2021b) (i.e. sim-

ulations using a closure with an anisotropic pressure

tensor). An explanation can be given: the Hall e�ect

remains too weak in our simulations such that the dissi-

pation inhibits the energy cascade before its Hall com-

100 101

`/di

10−5

10−4

10−3

10−2

10−1

100

101 εMHD
runII

εHallrunII

εrunII

εMHD
runIII

εHallrunIII

εrunIII

Figure 4. Comparison between the cascade rate given by
model Ferrand et al. (2021a) (Eq. 9) for two di�erent Mach
numbers: MS = 0.25 (Run II) and MS = 0.5 (Run III)

ponent becomes dominant. To test this hypothesis we

ran an additional simulation (Run I-512) that is akin to

Run I but with a lower resolution N = 512, a slightly

higher dissipation ν = η = 8.0×10−4 and an ion inertial

length di = 0.05/L0. L0 and MS are kept unchanged.

Reducing the resolution while increasing the value of di
(despite the slight increase of the dissipation) allows for

increasing the size of the sub-ion range, which should

in turn increase the importance of the Hall e�ect at the

smallest scales available. A �rst measure of this can be

obtained by looking at the power spectrum of the elec-

tric �eld, de�ned by reduced Ohm's law as (omitting the

resistive term):

E = −v×B+
1

nqe
J×B, (32)

where n is the particle density. Fig. 5 shows the ratio

of the power spectrum density (PSD) of the Hall to the

ideal components of the electric �eld for Run I and the

lower resolution Run I-512. As expected, we observe

both an increase in the amplitude of the Hall electric

�eld and its extension to smaller scales for Run I-512 in

comparison with Run I.

We now look at how the increased Hall e�ect wit-

nessed in Run I-512 is re�ected on the energy cascade

rate. The results, reported in Fig. 6, show little en-

hancement in the amplitude of the Hall component, but

it still does not dominate the cascade at sub-ion scales

despite the Hall e�ect being stronger. This suggests the

need to further increase the potency of the Hall e�ect

and/or to introduce hyperviscosity and hyperdi�usivity

in the GHOST code, which would push the dissipation

to the smallest possible scales. This solution was indeed

used in CHMHD-CGL simulations where the Hall cas-
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Figure 5. Ratio of the power spectrum density of the Hall
to the ideal (v×B) components of the electric �eld for Run
I and the lower resolution Run I-512.
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Figure 6. Comparison between the cascade rate given by
model Ferrand et al. (2021a) (Eq. 9) for Run I and Run
I-512.

cade was found to dominate below the ion inertial length

(Ferrand et al. 2021b).

5. EXACT LAWS BEYOND THE INERTIAL

RANGE AND TIME STATIONARITY

As we already stated, switching from a forced turbu-

lence model to a free-decay model invalidates the sta-

tionarity hypothesis used to derive the �nal expression

of the compressible exact laws, namely equations (9)-

(20). Thus, we make use in this section of equations

(29) and (30) describing the general exact laws F21 and

A18, free from these hypotheses and of the presence of

an external forcing. All the terms in those equations

are computed for the three Runs and are displayed in

�gures 7 and 8, along with their sums that, according to

the aforementioned equations, should amount to zero.

5.1. Full equation for law A18

100 101

`/di

10−3

10−2

10−1

100

run I
2εA18

∂t < RE + R′E >

DA18

2εA18 + ∂t < RE + R′E > +DA18

100 101

`/di

10−3

10−2

10−1

100

run II
2εA18

∂t < RE + R′E >

DA18

2εA18 + ∂t < RE + R′E > +DA18

100 101

`/di

10−3

10−2

10−1

100

run III
2εA18

∂t < RE + R′E >

DA18

2εA18 + ∂t < RE + R′E > +DA18

Figure 7. Calculation of equation (30) (black line) and its
components for all three Runs.

Equation (30) gives a very similar behavior for all

three Runs. The sum of all terms, which is supposed

to be zero, lies around 1 to 1.5 orders of magnitude be-

low all other terms, which is reasonable given the sta-

tistical and discrete nature of the numerical calculations

led here. Theoretical limit cases can be easily evaluated

here: at large and intermediate scales the dissipation

term should be negligible as it represents a mean of un-



10

correlated terms, resulting in the equation:

2EA18 + ∂t 〈RE +R′E〉 = 0. (33)

This relation is overall well veri�ed by Run II and III

at large scales as re�ected by the matching between the

red and yellow curves in Fig. 7. This does not seem

to be the case in Run I however, and the black curve

rises at large scales as a result. The reason for this odd

behavior is not fully understood yet. At small scales

the dissipation is expected to kick in and take energy

away from the cascade EA18. Also, at small scales we

have x → x
′, and therefore ∂t 〈RE +R′E〉 → 2∂t 〈Etot〉,

resulting in the equation:

2EA18 + 2∂t
〈
Etot

〉
+DA18 = 0. (34)

This equation too is veri�ed in all three Runs, since the

black curve in Fig. 7 that represents a measure of any

departure from the perfect ful�llment of the equation

is at least 1 order of magnitude lower than the other

components of the equation.

The physical interpretation of Eq. (30) is rather sim-

ple and can be summed up as follows: in free-decay sim-

ulations the term ∂t 〈RE +R′E〉 in the A18 model plays

the role of a �forcing�, i.e., −∂t 〈RE +R′E〉 ≡ FF21 that

inputs energy into the system at each time step. This

reservoir of energy is then split into a cascade compo-

nent with a rate EA18 and a dissipation one with a rate

DA18. At large scale, since DA18 → 0 all the energy is

almost entirely injected in the cascade towards smaller

scales. The sum of all terms, which should be equal to

zero, can be seen as an estimation of the error induced in

the calculations of time derivatives by the �uctuations

of energy.

5.2. Full equation for law F21

Fig. 8 shows that, again, the results of equation (29)

do not change much between the three Runs. The local

terms (i.e., independent on the increment `) DlocF21 and

∂t 〈Etot〉 are almost equal, which can be intuited by the

fact that DlocF21 ∼ −εF21 in the limit of ρ ∼ ρ′. Note

that in this case the model still perfectly hold for Run

I, whereas with equation (30) the term ∂t 〈RE +R′E〉
showed an irregular increase at large scale. This may

suggest that the model depicted by equation (29) is more

robust than the previous one.

Interpreting the balance between the terms of the non-

stationary F21 law is more subtle than for A18 because

of the presence of the local terms ∂t 〈Etot〉 and DlocF21.

Here it is the scale dependent term −∂t 〈S〉 that acts

100 101

`/di

10−3

10−2

10−1

100

run I
2εF21

−∂t < S >

∂t < Etot >

DF21

Dloc
F21

2εF21 − ∂t < S > +∂t < Etot > +DF21 + Dloc
F21

100 101

`/di

10−3

10−2

10−1

100

run II
2εF21

−∂t < S >

∂t < Etot >

DF21

DlocF21

2εF21 − ∂t < S > +∂t < Etot > +DF21 +DlocF21

100 101

`/di

10−3

10−2

10−1

100

run III
2εF21

−∂t < S >

∂t < Etot >

DF21

DlocF21

2εF21 − ∂t < S > +∂t < Etot > +DF21 +DlocF21

Figure 8. Calculation of equation (29) (black line) and its
components for all three Runs.

as a �forcing� to input energy into the system, but this

energy is diminished by the local (i.e., increment ` = 0)

energy variation term ∂t 〈Etot〉 and the local dissipation

DlocF21. Then, the resulting energy balance is split, sim-

ilarly to the A18 model, between the cascading part to

small scales and the dissipation (both being scale depen-

dent quantities):

2EF21 +
[
−∂t 〈S〉+∂t

〈
Etot

〉
+DlocF21

]
+DF21 = 0. (35)
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6. CONCLUSION

Similarly to the case of IHMHD, several exact laws

exist for estimating the turbulence energy cascade rate

in CHMHD. In this paper, making use of high resolu-

tion free-decay simulations of CHMHD turbulence, we

showed that the two exact laws available for this model

provide the same value of ε, as was already proven for

IHMHD laws (Ferrand et al. 2019). In the absence of

a direct mathematical proof of the equivalence between

the two compressible laws, this paper brings evidence

that they indeed describe the same turbulent cascade.

The in�uence of the strength of Hall e�ect on the energy

cascade was also investigated. It appears that the de-

velopment of a Hall-driven energy cascade in numerical

simulations may be much more hindered by the action of

dissipation at near-ion scales than by the size of the sub-

ionic range. This underlines the potential importance of

a certain amount of hyperviscosity when running simu-

lations of CHMHD.

The question as to how the exact laws behave in ab-

sence of an external forcing led us to investigate a more

general form of compressible exact laws, dropping the

usual assumption of time stationarity and considering

otherwise neglected time derivatives. This study shows

that a shift in the interpretation of both laws occurs:

instead of the continuous (in time) large scale forcing,

the laws point toward the existence of a scale depen-

dent reservoir of energy, mainly described by the time

derivative terms, from which either the turbulent cas-

cade or the dissipation (depending on the considered

scale) draws. This reservoir overall coincides with the

energy dissipation rate, which suggests that the consid-

ered cascading energy is ultimately bound to be fully

dissipated.

These results con�rm the non-trivial assertion that

the �nal, well-known form of exact laws, obtained with

the assumption of stationarity, remain valid within the

inertial range even for decaying turbulent �ows in which

the aforementioned assumption is not veri�ed, as it is

the case in some turbulent space plasmas such as the

SW taken far away from the sun.
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APPENDIX

AXI-SYMMETRIC LAW CALCULATION

Throughout this paper, all terms of the generalized

exact laws are computed using the isotropic model de-

scribed in section 3.2. However, for simulations with

B0 6= 0 the isotropy assumption should not a priori be

used. Instead we thus propose an axi-symmetric scheme

that may prove to be more suited for the analysis of such

simulation data.

We assume a symmetry of revolution around B0,

which is here aligned with the z-axis. In this case

we adopt cylindrical coordinates: the increment vec-

tor is de�ned as ` = (`⊥, φ, `z) and the derivative op-

erator becomes ∇` · 〈F〉 = 1
`⊥
∂`⊥ [`⊥ 〈F`⊥〉 (`⊥, `z)] +

∂`z 〈F`z 〉 (`⊥, `z). However, the discrete decomposition

adopted in this paper makes it impossible to e�ectively

compute ∂`z 〈F`z 〉 (`⊥, `z) at arbitrary values of (`⊥, `z)

without resorting to multi-dimensional interpolation on

irregular grids, bringing lots of additional calculations

and more imprecision to the result. Consequently, we

only consider the perpendicular component of the �ux

that is averaged over the parallel increments `z, thus the

derivative operator : ∇` · 〈F〉 = 1
`⊥
∂`⊥ [`⊥ 〈F`⊥〉 (`⊥)].

To do so we �rst compute the projection of F on the

direction of `⊥:

〈F`⊥〉 (`⊥, φ, `z) = 〈cos(φ)Fx + sin(φ)Fy〉 , (36)

and then take the average over all directions (i.e., over

`z and φ):

〈F`⊥〉 (`⊥) =
∑

φ,`z

〈F`⊥〉 (`⊥, φ, `z)
57

. (37)

Here we only use 57 directions, corresponding to all di-

rections of the isotropic model forming an angle of 45◦

or more with the parallel direction. This is done to ob-

tain results pertaining to all values of `⊥ while avoiding

redundant calculations due to the periodicity of the data

cubes.

This method presents two inconveniences: �rst, the

statistics are weaker than the isotropic model as we

probe a smaller number of directions for the increment

vector. This may lead to less precise calculations. Sec-

ond, disregarding parallel �uxes may lead to miss a small

portion of the cascade. Due to these limitations the

isotropic decomposition may sometimes yield slightly

better results even in presence of a background magnetic

�eld. A good way to test the e�ciency of this method is

to compute the energy cascade rate of both exact laws

A18 and F21 and see if they match as one would expect.

100 101

`/di

10−5

10−4

10−3

10−2

10−1

100

101

run I

εMHD
A18

εHallA18

εA18

εMHD
F21

εHallF21

εF21

Figure 9. Energy cascade rate calculated with laws A18 and
F21 for Run I, using the axi-symmetric method.

This test was used on Run I and the results are reported

in Fig. 9. We immediately observe that the two laws,

and especially the Hall components, do not match as

well as they are with the isotropic model or for Run II

(see Fig. 3), which may be a consequence of the afore-

mentioned limitations. For this reason, we �nally chose

to keep using the isotropic model to study Run I in this

paper.

Still, note that Run I remains a weakly anisotropic

simulation, with a background magnetic �eld of only 2.

Thus, the conclusion drawn in this appendix may not

be true for simulations featuring a stronger background

�eld, i.e. stronger anisotropies. Ultimately, checking

which model is the most suited one to lead the study

should be done on a case-by-case basis.
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peut rendre compte de la dissipation d'énergie par
des mécanismes cinétiques, et une étude de simula-
tions fortement supersoniques précise le role que la
turbulence joue dans la formation de �laments in-
terstellaires.

À ces études séparées vient en�n s'ajouter
l'analyse de données satellites mesurées par MMS
dans la magnétogaine. L'utilisation des lois exactes
compressibles révèle un comportement anormal de
la méthode utilisée pour calculer les dérivées 3D des
champs de vecteurs dans la formation MMS. Une
étude plus poussée, menée sur la base de données
réelles et de simulations (via l'utilisation de satellites
virtuels), révèlent que cette méthode induit parfois
d'importantes erreurs dans le calcul des lois exactes.
Ces révélations pourraient aider à mieux préparer
de futures missions spatiales multi-points et multi-
échelles à destination du vent solaire.

Title: Multi-scale compressible turbulence in astrophysical plasmas viewed through theoretical,
numerical and observational methods

Keywords: Turbulence, Space plasmas, Exact laws, Simulations, Observations

Abstract: The Solar Wind is a turbulent plasma
whose internal physics has been extensively studied
for years through theoretical models, plasma sim-
ulations and in situ satellite observations. Under-
standing the mechanisms hidden behind turbulence
energy dissipation is a key step in unraveling the
mysteries of the solar wind.

In this thesis we �rst derive new Hall MHD
turbulence exact laws, theoretical tools that allow
for the calculation of the turbulence energy cascade
rate. We develop a program able to compute these
laws on 3D simulation datasets, and apply it to a
variety of direct numerical simulations of di�erent
plasma models. On the one hand, these studies allow
us to prove the consistency between the di�erent ex-
act laws existing for a same model and to better un-
derstand their detailed behavior. On the other hand,
they yield important physical results: the study of
Landau-�uid datasets allows us to partly reconcile

the �uid and kinetic description of plasmas, justi-
fying the analysis of solar wind energy dissipation
through �uid exact laws, and the study of strongly
supersonic datasets hints at turbulence playing a key
role on the formation of star-forming interstellar �l-
aments.

These individual studies are then complemented
by the analysis of in situ data measured by MMS
in the magnetosheath. The application of the com-
pressible exact laws to these data unveils the odd
behavior of the methods used to compute 3D �elds
derivatives using MMS four satellites. An in-depth
investigation of this method, both using MMS data
and simulation data through the use of a virtual
spacecraft, reveal important errors induced by this
method in the calculation of exact laws. These new
insights could help preparing future multipoint and
multi-scale space missions targeting solar wind tur-
bulence.
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