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Cédric Richard Professeur des Universités, Université Côte d’Azur
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Chapter 1

General introduction

1.1 Multimodal data fusion

1.1.1 Principles

In the past decades, due to the emergence of new acquisition devices, the amount of information

collected daily has been steadily increasing. One of the aims of signal processing is to utilize

these pieces of raw data (or signals), to extract, analyze and interpret physical phenomena. It

is now commonly accepted in the data fusion community that various, sometimes very different

signals, may provide information about the same phenomenon. However, it often occurs that a

single dataset only contains partial information about the process of interest. As a result, the

separate processing of a single dataset may only allow for extraction of a portion of the desired

output.

Multimodal data fusion was recently proposed to overcome this issue. It is defined as joint

processing of various datasets acquired from different modalities. The aim of data fusion is to

enhance the capabilities of each modality to express specific information that it provides about

the phenomenon of interest; it is also expected from data fusion that it brings out additional

information that would be ignored with separate processing of the signals. It has proved its

interest in a variety of applications, such as audio-visual multimodality [9, 141, 147], medical

imaging [12,67,79,110], cosmology [11,94,129] or remote sensing [10], to name a few.

However, data fusion cannot be seen as a simple addition of the contributions from the

different sources, due to complex interactions between multiple modalities [92, 117, 147, 163,

164]. Improper fusion can even lead to incorrect interpretation [113]. For instance in audio-

visual applications, the McGurk effect illustrates such a situation: this experiment shows that

presenting discrepant speech and lip movements can cause humans to perceive incorrect syllables,

that neither correspond to the audio or visual signals. In order to avoid such unexpected results,

data fusion has two distinct tasks: i) allowing each modality to fully express their specific content;
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1.1. Multimodal data fusion

ii) proposing new coupled observation models that exploit shared information between modalities.

It comes from the previous paragraph that designing a data fusion model is a task that

requires special care. In the following subsection, we address some of the most common issues

that need to be taken into account when performing data fusion.

1.1.2 Challenges of data fusion

This subsection is a summary from the content in [99] regarding the different challenges that

need to be accounted for in data fusion. Please refer to [99] for a thorough discussion on this

topic.

Several data-related difficulties naturally arise in the design of fusion models. Indeed, the ob-

served signals may have different, non-commensurable physical units [164] that do not commute.

Incompatibilities in size [175] or resolution [156] are also likely to occur, due to the different spa-

tial, temporal of frequency sensitivities of the considered modalities. Registration (or alignment)

problems can also emerge from the acquisition process [99]. For instance, in biomedical imaging

applications, this challenge results from the patient moving through time. Other uncertainties

such as calibration errors, poor device precision, quantization or illumination variations may be

referred to under the generic term of noise. Each modality possesses a different noise contamina-

tion, that can be incorporated via additive models [63,84,175]. Missing values are also common

to a lot of problems (and are not specific to data fusion). In some cases, samples are locally

missing within one specific dataset, or discarded due to faults during the acquisition sequence.

In some other cases, missing values may result from interactions between the datasets i.e., when

a given modality can only acquire a portion of the system. Examples of data fusion approaches

with missing values can be found in [3, 50, 155].

Another question that emerges is how to perform actual fusion. In fact, different strategies

can be used; they depend on the way the modalities interact with each other. The first strategy

is called data integration. It consists in separate processing of the multiple datasets, followed

by a decision step. This approach is frequently use to dealing with heterogeneous datasets and

large discrepancies in resolution, size or units [42, 99]. The second strategy is called sequential

processing. It consists in using one or more modalities to restrict the number of degrees of

freedom in further processing of other datasets. Sequential processing can be preferred when one

modality possesses some higher resolution with respect to one another, for instance for audio-

visual applications [147]. The third strategy is referred to as “true fusion” [22,35,92] and proposes

to assign symmetric roles to each modality. This way, datasets are expected to fully interact

with each other. The fusion approaches introduced in the remaining of this thesis fall under the

class of true fusion.

The relationships between datasets must be properly defined as well. We can distinguish two
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scenarios whether i) there are no shared parameters between the datasets or ii) some parameters

are explicitly shared amongst the modalities. In the first case, the parameters are linked through

statistical relationships [169]. This corresponds to a soft coupling scenario. In the second case,

the parameters are explicitly shared trough (possibly non–)linear deterministic relationships: this

will be further denoted as hard coupling. We restricted the scope of our study to hard coupling

scenarios1.

1.1.3 Advantages and limitations of matrix low-rank models

In this subsection, we introduce a basic matrix low-rank factorization model. This model has been

thriving thanks to widely-studied and powerful mathematical tools relying on linear algebra. It

also usually provides good model match and good interpretability of the solution, provided that it

is unique. It has been used to analyze signals in factor analysis [69] or blind-source separation [23]

applications, whose aim is to represent the observations as the product of low-rank interpretable

factors.

Matrix low-rank factorization model

A matrix low-rank factorization model decomposes observations X P RIˆJ into two rank-R

matrices A P RIˆR and B P RJˆR such that

X “ ABT. (1.1)

In (1.1), the matrices A and B can be referred to as latent factors. In fact, model (1.1) can be

rewritten element-wise as

Xi,j “

R
ÿ

r“1

Ai,rBj,r, (1.2)

and can be interpreted as follows: Xi,j is the j-th observation sample acquired by the i-th

modality. It is the linear combination of R signals Bj,1, . . . , Bj,R weighted by Ai,1, . . . , Ai,R. As

a result, we can see that model (1.2) provides I linear combinations of the columns of B and

J linear combinations of the columns of A. In [148], those are referred to as I-fold and J-fold

diversities, respectively.

Unfortunately, I-fold and J-fold diversities only are not enough to guarantee the uniqueness

of model (1.1). Indeed, we can see that for any invertible transformation matrix ∆ P RRˆR and

R ą 1, the following equality always holds:

X “ ABT “

´

A∆´T
¯

pB∆qT . (1.3)

1In Chapter 5, we consider a particular case where the parameters are linked through deterministic relationships

involving an additional random parameter. While this scenario does not fall under the scope of soft coupling per

se, it corresponds to an intermediate configuration between hard and soft couplings.
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Thus in all models of the form (1.1), the matrices A and B cannot be recovered uniquely.

To circumvent this lack of uniqueness, many constraints on the observations or the latent

factors can be imposed.

Examples of matrix low-rank factorizations

In this paragraph, we give two examples of the matrix low-rank model. We explain how unique-

ness is guaranteed in these examples, using different types of constraints on the data.

First, in independent component analysis (ICA), it is assumed that the columns of B in

model (1.1) are samples from R statistically independent random processes, also called sources.

Numerous works were devoted to studying the uniqueness of model (1.1) in the framework of

ICA [4, 24, 30], showing that the sources can be uniquely recovered provided that they are non-

white, non-stationary or non-Gaussian. Thus ICA is an example for which several diversities can

be used to establish uniqueness. The I-fold diversity is provided by the J sources in B. Non-

stationarity or non-whiteness can be seen as spectral diversity [24]. Conversely, non-Gaussian

sources characterize diversity in higher-order statistics. These diversities are powerful tools to

build up necessary and sufficient uniqueness guarantees.

Non-negative matrix factorization (NMF) [126] is another example of a model whose identi-

fiability can rely on additional diversities. The goal of NMF is to factorize a positive observation

matrix X into positive factors A and B according to (1.1). Numerous works regarding identifia-

bility of the NMF model have been conducted. The works of [45,81,102] showed that the NMF

model is unique provided that the factors A and B have some zeros entries. In the case where

the latent factors are strictly positive (and hence have only non-zero entries), other identifiability

results were established, based on separability or minimum volume constraints [55].

Extending the observational dimension

Although it can allow for good model match and interpretability, the matrix model suffers from

two main limitations.

First, some additional diversities used to establish uniqueness may lack physical interpretabil-

ity. For instance, in NMF applications, only enforcing non-negativity of the factors is not

enough [55] to guarantee an interpretable solution, hence other types of diversities must be

envisioned, as described in the previous subsection. This is a scenario in which exploiting only

“natural” diversities does not ensure uniqueness.

Second, it may happen that the observed signals are higher-dimensional arrays. For instance,

RGB images possess three channels, each one containing the pixels of the image in a particular

color (red, green, blue). In such cases, reformatting the observations into matrices leads to a

loss of structural information and artificially reduces the naturally available diversity in high-

6



1.2. Hyperspectral super-resolution

dimensional arrays.

As a result, in such cases, there exists a real gain in considering higher-dimensional models

rather than matrix-based models. Increasing the observational dimension allows to fully exploit

the diversity in high-dimensional data, and enjoys powerful uniqueness conditions, as it will be

discussed in Section 1.3.

1.2 Hyperspectral super-resolution

In this section, we introduce the practical illustration of this work. It is a remote sensing

application called hyperspectral super-resolution. Let us start by reminding the principles of

spectral imaging.

1.2.1 Spectral imaging

Studying the surface of the Earth is a task of prime interest in remote sensing. Optical devices

mounted on orbital satellites were developed to periodically acquire images of a portion of soil.

Early sensors acquired panchromatic (greyscale) and color (red, green, blue) images. In addition,

longwave infrared imaging systems measured the thermal emission of the materials in a scene to

create an image.

Later, new optical devices proposed to span the electromagnetic spectrum through a much

larger bandwidth (going from visible to near-infrared wavelengths), resulting in so-called spectral

images that possess a large number of spectral bands – often up to a few hundred. This imaging

technique relies on the property of chemical molecules to absorb and reflect electromagnetic

radiation. When measured by a sensor through a sufficient range of wavelengths, this radiation

allows for characterization of the molecular composition of the materials at hand [146].

In remote sensing, spectral images are acquired using a spatial scanning scheme, which con-

sists in the acquisition of the whole spectral information contained in a slice of a scene. At each

time unit, the sensor acquires a full spatial band of the image, with a given spatial resolution

represented by the number of pixels. This number varies from a few meters up to several kilo-

meters and is controlled mainly by the sensor aperture and altitude. The resulting images can

be seen as three-dimensional data cubes. The first two dimensions are usually referred to as

the spatial dimensions. They are sampled along the number of pixels in each scan line of the

scene. The third dimension, or spectral dimension, contains the spectral signature associated

with the materials available in each pixel. The spectrum is sampled by the number of spectral

bands considered by the sensor. The acquisition process of a spectral image is summarized in

Figure 1.1 [146].
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lend itself to simple visual assessment. Sophisticated
processing of the imagery is required to extract all of
the relevant information contained in the multitude
of spectral bands.

In this issue of the Lincoln Laboratory Journal we
focus attention on spectral measurements in the solar-
reflectance region extending from 0.4 to 2.5 µm, en-
compassing the visible, NIR, and SWIR bands. These
three bands are collectively referred to as the VNIR/
SWIR. The measurement, analysis, and interpreta-
tion of electro-optical spectra is known as spectroscopy.
Combining spectroscopy with methods to acquire
spectral information over large areas is known as im-
aging spectroscopy. Figure 1 illustrates the concept of
imaging spectroscopy in the case of satellite remote
sensing.

Fundamentals of Spectral Imaging

Throughout this special issue of the Journal we refer
to the illumination conditions in a scene as well as the
reflectance properties of materials and surfaces in that
scene. Irradiance refers to the light energy per unit
time (power) impinging on a surface, normalized by
the surface area, and is typically specified in watts per
square meter (W/m2). Reflectance is a unitless number
between 0 and 1 that characterizes the fraction of in-
cident light reflected by a surface. Reflectance may be
further qualified by parameters such as the wave-
length of reflected light, the angle of incidence, and
the angle of reflection. Radiance is an important re-
lated concept that does not distinguish between the
light illuminating a surface or the light reflected from
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FIGURE 1. The concept of imaging spectroscopy. An airborne or spaceborne imaging sensor simul-
taneously samples multiple spectral wavebands over a large area in a ground-based scene. After ap-
propriate processing, each pixel in the resulting image contains a sampled spectral measurement of
reflectance, which can be interpreted to identify the material present in the scene. The graphs in the
figure illustrate the spectral variation in reflectance for soil, water, and vegetation. A visual represen-
tation of the scene at varying wavelengths can be constructed from this spectral information.

Figure 1.1: Summary of the acquisition of a spectral image (Taken from [146]).

1.2.2 Natural tradeoff in resolutions

Increasing the spatial resolution of an image seems like an appealing proposition. However, this

process is costly, since corresponding sensors need to have a large aperture. It also increases the

amount of data that needs to be collected. Thus, in practice, high spatial resolution in spectral

images comes at the cost of low spectral resolution. Conversely, if the spectral resolution is high,

the number of spatial pixels needs to be reduced in order to preserve size, processing and storage

complexity with respect to e.g., a panchromatic or a color image.

On the one hand, hyperspectral images (HSI) sample the electromagnetic spectrum into hun-

dred of contiguous spectral bands from the visible (400-800nm) to the near-infrared wavelengths

(„2500nm). For instance, the hyperspectral Hyperion sensor possesses a spatial resolution of

thirty meters, which produces an HSI with large pixels and low spatial resolution [128].

On the other hand, multispectral images (MSI) rely mostly on spatial rather than spectral

information. This means that while the spatial resolution of MSIs is higher than that of HSIs,

their spectral resolution is lower: multispectral sensors usually generate images containing up to

twenty spectral bands, with larger bandwidths than those in HSIs. In Figure 1.2, we illustrate

the difference in resolution of the HSI and MSI.

1.2.3 Hyperspectral unmixing

Theoretically, each pixel in an HSI can be viewed a spectral signature (also called endmember)

relative to a unique material, as visible on the right of Figure 1.1. In practice, due to the physical
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MSI HSI

Figure 1.2: HSI and MSI of a same scene above Lake Tahoe, Nevada.

properties of the Earth at the surface of a scene and limited spatial resolution of the hyperspectral

sensors, it often happens that a single pixel contains several materials. Hence these pixels are

characterized by a spectral signature that corresponds to the mixture of several endmembers.

Hyperspectral unmixing (HU) aims at separating the materials in a scene in such a case.

This process decomposes an HSI into a set of pure endmembers and corresponding abundance

maps that indicate the quantity of each material in a given pixel. This representation is known

as the linear mixing model (LMM) [176]. Many hyperspectral unmixing approaches have been

proposed (see [13,125,127,138] and references therein) using this model.

Although unmixing is not at the core of this thesis, it motivates the steady use of hyperspectral

images in remote sensing and the need for high-resolution images, in order to obtain precise

endmembers and abundance maps.

1.2.4 Hyperspectral super-resolution

Problem statement

In some applications such as unmixing, it is desirable to acquire super-resolution images (SRI),

that possess both high spatial and spectral resolutions. However, the simultaneous need for

large aperture and high spectral sensitivity of super-resolution sensors make the practical acqui-

sition of SRIs a difficult task. To circumvent the physical limitations of the hyperspectral and

multispectral sensors, the hyperspectral super-resolution (HSR) problem [176] was proposed. It

consists of recovering an SRI from co-registered HSI and MSI of a same scene. This problem is

related to the pansharpening problem, whose aim is to perform fusion between a panchromatic

image and an HSI [109,170]. The principle of the HSR task is summarized in Figure 1.3.

Most existing approaches solve the HSR problem by considering the HSI and MSI as degraded

versions of the SRI, in the spatial and spectral dimensions, respectively. Thus, the spatial and

spectral information of the underlying SRI is shared through the low-resolution images. The

HSR problem illustrates some of the fundamentals of data fusion.
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HSI

MSI

SRI

Figure 1.3: Illustration of the principle of HSR.

Existing matrix approaches and their limitations

In the recent years, numerous matrix-based approaches were proposed to solve the HSR task,

most of them being actually derived from existing pansharpening approaches [172]. Matrix-based

methods for the HSR task perform a coupled low-rank factorization of the matricized HSI and

MSI. Early methods based on component substitution were proposed [25, 98]. They are often

referred to under the term Gram-Schmidt-adaptive [7]. This algorithm can be viewed as a number

of pansharpening problems applied to a spectral portion of the low-resolution images [176], and

was successfully used in [98] for solving the HSR problem.

Multiresolution analysis methods are also available [6, 107]. They are based on computing

the difference between the target image and its spatially-degraded version. In the case of HSR,

the SRI is obtained by linear regression on the spectral bands of the MSI.

Unmixing algorithms decompose the matricized HSI and MSI into physically-interpretable

factors based on the LMM. For instance, Coupled Non-negative Matrix Factorization (CNMF)

[177] estimates the underlying spectra and abundance maps by separate NMF [103] of the HSI

and MSI. Estimation of the spectral signatures then is performed by vertex component analysis

(VCA) [121]. Similarly, Lanaras method [100] provides an algorithm that is similar to CNMF. At

each iteration of the algorithm, the underlying factors are updated by projected gradient descent.

The FUMI algorithm [173] proposes to solve the HSR problem using unsupervised unmixing of

the HSI and MSI. The interest of unmixing algorithms lies in the fact that they are able to

perform joint recovery and unmixing of the SRI tensor only from the low-resolution HSI and

MSI. However, for these methods, identifiability of the mixing model can only be obtained under

10



1.3. Tensor algebra preliminaries

additional constraints on the low-rank factors [45,102].

Bayesian approaches perform fusion via a subspace spanned by the spectral signatures under-

lying the SRI. A popular Bayesian approach for HSR is HySure [149], which uses total variation

regularization [5] on the abundance maps. The FUSE algorithm [174] is another Bayesian algo-

rithm that is based on solving a Sylvester equation.

The above approaches showed their performance and usefulness for the HSR task. However,

related algorithms may suffer from high computational complexity. Moreover, uniqueness of the

estimated SRI in the noiseless case can only be obtained under additional assumptions on the

data or low-rank factors, such as non-negativity and minimum volume constraint or sparsity [55],

see e.g., [105] that imposes sparsity on the low-rank factors. In the absence of such hypotheses,

only a bound on the recovery error can be obtained [106]. Finally, considering the matricized

HSI and MSI leads to loss of structural information: indeed, the spectral images often have

dependencies along the three dimensions.

As a result, it reasonable sensible to consider tensor models for solving the HSR problem.

However, we must first go through some tensor algebra preliminaries, which will be defined in

the following section.

1.3 Tensor algebra preliminaries

1.3.1 Matrix operations

We start this section by defining some useful matrix operations that we will utilize throughout

this manuscript. In the following definitions, for a matrix A P RIˆJ we will denote by A:,1:j

(j P t1, . . . , Ju) the submatrix formed from a subset of the columns of A. The notation A:,j

stands for the j-th column of A.

Definition 1.3.1. Matrix vectorization – For a matrix A P RIˆJ , its column-major vector-

ization consists in stacking the J columns of A in the natural order. This operation produces a

column vector of size IJ , defined such that

vectAuT “
”

AT
:,1 . . . AT

:,J

ı

.

Definition 1.3.2. Kronecker product – For two matrices A P RIˆJ and B P RKˆL, their

Kronecker product is a matrix of size pIJq ˆ pKLq denoted A b B. The resulting matrix is

11



1.3. Tensor algebra preliminaries

defined by

A b B “

»

—

—

–

A1,1B . . . A1,JB
...

...

AI,1B . . . AI,JB

fi

ffi

ffi

fl

“ rA:,1 b B:,1 . . . A:,1 b B:,L A:,2 b B:,1 . . . A:,J b B:,Ls .

Property 1. Kronecker product and vectorization – For three matrices A, B, X, the

following equality holds:

vectAXBu “ pBT b Aq vectXu.

Definition 1.3.3. Khatri-Rao product – Given two matrices A P RIˆL and B P RJˆL, their

Khatri-Rao product (also known as column-wise Kronecker product) is a matrix of size pIJq ˆL

denoted AdB. This matrix can be obtained as

AdB “ rA:,1 b B:,1 . . . A:,2 b B:,2 . . . A:,L b B:,Ls .

For two vectors a and b, their Kronecker and Khatri-Rao products are identical, i.e., ab b “

ad b.

Let us now define partitioned matrices A P RIˆPK and B P RJˆQK such that A “

rA1 . . . AKs and B “ rB1 . . . BKs. For k P t1, . . . ,Ku, the subblocks of A and B are the

matrices Ak P RIˆP and Bk P RJˆQ, respectively.

Definition 1.3.4. Partition-wise Khatri-Rao product – The partition-wise Khatri-Rao

product between two partitioned matrices A and B defined as above can be expressed as

Adp B “ rA1 b B1 . . . AK b BKs P RIJˆPQK .

1.3.2 General definitions

Definition 1.3.5. Tensor – A tensor is a multidimensional array defined in P dimensions. A

P -dimensional tensor is also referred to as P -way tensor, or P -th dimensional array.

In this dissertation, we restrict the scope of our study to three-dimensional tensors (P “ 3).

For example, a tensor with dimensions pI, J,Kq is denoted X P RIˆJˆK . Its elements are

accessed as Xi,j,k. Similarly to matrices, the dimensions of X produce I-fold, J-fold and K-fold

diversities. In this section, we use real-valued tensors, but the following definitions are similar

for complex-valued tensors.

Analogously to the rows and columns of matrices, we define tensor fibers as vectors obtained

by fixing every-but-one index. Fibers can be defined in all the dimensions of a tensor. As a result,

12



1.3. Tensor algebra preliminaries

for a tensor X P RIˆJˆK a column X :,j,k is a first-mode fiber, a row X i,:,k is a second-mode

fiber, while a tube X i,j,: is a third-mode fiber (for i P t1, . . . , Iu, j P t1, . . . , Ju, k P t1, . . . ,Ku).

We also define two-dimensional sections of tensors, denoted to as slabs and accessed by fixing

every-but-two indices. A tensor X P RIˆJˆK can be sectioned into horizontal slabs X i,:,:, vertical

slabs X :,j,: and frontal slabs X :,:,k.

Definition 1.3.6. Tensor vectorization – As with matrices, a tensor can be transformed into

a vector through the vectorization operation. It consists in stacking the vectorizations of the

frontal slabs of the tensor in the column-major order so that they form a column vector. For a

tensor X P RIˆJˆK , we have

vectX uT “
”

vectX :,:,1u
T . . . vectX :,:,Ku

T
ı

.

Definition 1.3.7. Tensor matricization – A tensor can be transformed into a matrix through

the matricization (or unfolding) operation. It consists in stacking the fibers of a tensor along

one specific mode in such a way that they form the rows of a matrix. The fibers are selected

in their column-major order (for instance, from 1 to I in the first dimension). For a tensor

X P RIˆJˆK , its p-th mode matricization is denoted by Xppq. The matricizations of X are

expressed as Xp1q P RJKˆI , Xp2q P RIKˆJ and Xp3q P RIJˆK , respectively.

Remark 1.3.8. In the literature, matricization is often defined in another manner, where the

fibers form the columns of the resulting matrix. In such cases, the matricizations are transposes

of the matrices Xp1q, Xp2q and Xp3q defined above. Throughout this manuscript, we rather adopt

Definition 1.3.7 for tensor matricizations.

Definition 1.3.9. Mode product – A tensor can be multiplied by a matrix along mode p,

in an operation called the mode-p product. For instance, the mode-1 product between a tensor

X P RIˆJˆK and a matrix U P RLˆI is denoted to as Y “ X ‚1 U P RLˆJˆK . The elements of

Y are defined as

Y`,j,k “
I
ÿ

i“1

Xi,j,kU`,i.

Moreover, for any matrix U with appropriate dimensions, the following equivalence holds:

Y “ X ‚
p
U ô Yppq “ XppqUT.

1.3.3 Low-rank tensor decompositions

Tensor rank

Similarly to matrices, a tensor can be decomposed into low-rank factors. However, it is important

to notice that the definition of the rank of a tensor differs from that of a matrix. In fact, several
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1.3. Tensor algebra preliminaries

definitions are possible, depending on the considered decomposition. Before further explanation,

let us define rank-one tensors, for which all rank definitions coincide.

Definition 1.3.10. Rank-one tensor – A third-order tensor X P RIˆJˆK has rank 1 if it can

be expressed as the tensor product of three vectors a P RI , b P RJ and c P RK . That is, we can

write X as

X “ ab bb c,

where the operator b denotes the tensor (or outer) product. The elements of X are defined as

Xi,j,k “ aibjck @ i P t1, . . . , Iu, j P t1, . . . , Ju, k P t1, . . . ,Ku.

Canonical polyadic decomposition

The polyadic decomposition [76, 77] represents a tensor as a finite sum of rank-one tensors. For

a tensor X P RIˆJˆK , we can express its polyadic decomposition as

X “

N
ÿ

n“1

an b bn b cn, (1.4)

where an P RI , bn P RJ and cn, P RK for n P t1, . . . , Nu. As a result, we define the tensor rank

of X as the smallest number of rank-one tensors whose sum generate X [76,96]. When minimal,

the integer N denotes the tensor rank of X , and (1.4) is known as the canonical polyadic (CP)

decomposition (CPD). We will also refer to (1.4) as the CP model (where N is not necessarily

minimal).

We can compactly express the CP model (1.4) by using the following notation:

X “ rrA,B,Css, (1.5)

where A P RIˆN , B P RJˆN and C P RKˆN are called the CP factors of the model. These

matrices are constructed as A “ ra1, . . . ,aN s, and likewise for B and C.

We can express the unfoldings of a tensor X admitting a CP model as follows:

Xp1q “ pCdBqAT, (1.6)

Xp2q “ pCdAqBT, (1.7)

Xp3q “ pBdAqCT. (1.8)

Contrary to the low-rank matrix decomposition in (1.1), the CPD is known to be unique

under rather mild conditions. In fact, this decomposition possesses trivial permutation and

scaling ambiguities [31]. The permutation ambiguity means that the rank-one factors can be

reordered arbitrarily by any non-singular permutation matrix Π P RNˆN , that is

X “ rrA,B,Css “ rrAΠ,BΠ,CΠss. (1.9)
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1.3. Tensor algebra preliminaries

The scaling ambiguity means that the individual factors can be rescaled by factors αn, βn, γn
such that αnβnγn “ 1 for n P t1, . . . , Nu:

X “

N
ÿ

n“1

αnan b βnbn b γncn. (1.10)

There exist several ways to fix the scaling ambiguities, when it is possible. For instance, the

entries of the first rows of the A and B factors can be set to ones, which boils down to considering

αn “
1

a1,n
, βn “ 1

b1,n
and γn “ αnβn in (1.10). If, up to scaling and permutation ambiguities,

there exists no other decomposition, then the CPD is called unique.

One of the most general and well-known sufficient conditions on uniqueness of the CPD is

due to Kruskal [96,97] and reads as follows:

κpAq ` κpBq ` κpCq ě 2N ` 2,

where for a matrix M, κpMq is the Kruskal rank, defined as the maximum value k such that any

k columns of M are linearly independent [68,96].

Stronger results are available for generic uniqueness, i.e., uniqueness of a random tensor of

rank N . We say that the CPD (1.5) is generically unique if, for random matrices A, B, C

distributed according to an absolutely continuous probability distribution, the CPD is unique.

Equivalently, the set of A, B, C not leading to unique decomposition has measure zero. In this

case, the Kruskal condition implies that the CPD is generically unique provided

minpI,Nq `minpJ,Nq `minpK,Nq ě 2N ` 2. (1.11)

In [27], another much stronger sufficient condition for generic uniqueness was proved:

N ď 2tlog2pJqu`tlog2pKqu´2. (1.12)

However, it should be mentioned that (1.11) and (1.12) are only sufficient conditions ensuring

generic uniqueness.

The best known bounds on generic uniqueness are given in [28, Theorem 1]. In particular,

it is shown that generic uniqueness takes place for all N such N ă r IJK
I`J`K´2 s (i.e., all ranks

smaller than the so-called generic rank) except few special cases and so-called unbalanced tensors,

see [28] for more details. In fact, [28, Theorem 1] was proved for complex-valued tensors, but

also holds for real-valued tensors, see [137].

Tucker decomposition

The Tucker (or multilinear) decomposition was originally proposed in [162] and decomposes a

tensor into a core tensor multiplied along each mode by factor matrices with ranks pR1, R2, R3q.
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For a tensor X P RIˆJˆK , one can express its multilinear decomposition as

X “ G ‚
1
U ‚

2
V ‚

3
W “

R1
ÿ

r1“1

R2
ÿ

r2“1

R3
ÿ

r3“1

Gr1,r2,r3 Ui,r1Vj,r2Wk,r3 , (1.13)

where G P RR1ˆR2ˆR3 is called the core tensor of the decomposition. The factor matrices along

each mode are U P RIˆR1 , V P RJˆR2 and W P RKˆR3 . Contrary to the CPD, the ranks

pR1, R2, R3q are allowed to be different from each other. The multilinear decomposition can be

compactly written as

X “ rrG; U,V,Wss. (1.14)

If, in addition, pR1, R2, R3q are the smallest possible, that is,

R1 “ ranktXp1qu, R2 “ ranktXp2qu, R3 “ ranktXp3qu,

then the multilinear decomposition is called Tucker decomposition ofX and the triple pR1, R2, R3q

is called the multilinear rank.

The unfoldings of a tensor X admitting a Tucker decomposition can be expressed as

Xp1q “ pW b VqGp1qUT, (1.15)

Xp2q “ pW b UqGp2qVT, (1.16)

Xp3q “ pV b UqGp3qWT. (1.17)

Moreover, the following equality holds for tensor vectorization:

vectX u “ pW b V b Uq vectGu. (1.18)

The Tucker decomposition in (1.14) is however non-unique. Indeed, let us consider non-

singular transformation matrices ∆U P RR1ˆR1 , ∆V P RR2ˆR2 , ∆W P RR3ˆR3 . It holds that

rrG; U,V,Wss “ rrG ‚
1
∆U ‚

2
∆V ‚

3
∆W ; U∆´1

U ,V∆´1
V ,W∆´1

W ss.

This means that the core tensor can be modified without changing the decomposition, as long

as the inverse modification is applied to the factor matrices. Various authors proposed to enforce

additional constraints in order to obtain uniqueness, see e.g., [93] that enforces orthogonality of

the factor matrices.

One particular Tucker decomposition is the higher-order singular value decomposition (HOSVD)

[40], which is an orthogonal Tucker decomposition, and can be viewed as the extension of the

singular value decomposition for higher-order arrays. In the HOSVD of the form (1.14), the

factor matrices U, V and W are the right singular vectors of the first (resp. second and third)

unfoldings, and the core tensor is such that

G “ X ‚
1
UT ‚

2
VT ‚

3
WT.

The HOSVD gives a natural way to obtain Tucker approximations, by truncating the factor

matrices and core tensor to the required size using the truncated SVD.
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Block-term decomposition with ranks pL,L, 1q

The general block-term decomposition (BTD) expresses a tensor into a sum of multilinear de-

compositions as

X “

R
ÿ

r“1

Gr ‚
1
Ar ‚

2
Br ‚

3
Cr, (1.19)

where Gr P RR1,rˆR2,rˆR3,r , Ar P RIˆR1,r , Br P RJˆR2,r and Cr P RIˆR3,r are the BTD terms of

the decomposition for r P t1, . . . , Ru.

The block-term decomposition with ranks pL,L, 1q (LL1-BTD) [39] is a special case of (1.19)

where Gr “ I, R3,r “ 1 and R1,r “ R2,r “ L for r P t1, . . . , Ru. It decomposes a tensor

X P RIˆJˆK as

X “

R
ÿ

r“1

Er b cr, (1.20)

where for r P t1, . . . , Ru the matrices Er P RIˆJ has low rank L and cr P RK .

The Er terms can be factorized into matrices Ar P RIˆL and Br P RJˆL such that Er “

ArB
T
r . Thus we can rewrite (1.20) as

X “

R
ÿ

r“1

´

ArB
T
r

¯

b cr. (1.21)

Define the partitioned LL1 factors A “ rA1, . . . ,ARs P RIˆLR, B “ rB1, . . . ,BRs P RJˆLR and

C “ rc1, . . . , cRs P RKˆR; we say that X admits an LL1-BTD with factors A, B, C.

The unfoldings of a tensor X admitting a LL1-BTD can be expressed as

Xp1q “ pCdp BqAT, (1.22)

Xp2q “ pCdp AqBT, (1.23)

Xp3q “ rpA1 dB1q 1L, . . . , pAR dBRq 1LsC
T. (1.24)

As for the CPD, the LL1-BTD is usually identifiable up to permutation and scaling ambi-

guities of the low-rank factors. Moreover, due to the non-uniqueness of the matrix low-rank

decomposition, for any non-singular transformation matrices ∆r P RLˆL, we have

X “

R
ÿ

r“1

´

ArB
T
r

¯

b cr “
R
ÿ

r“1

´´

Ar∆
T
r

¯

`

Br∆
´1
r

˘T
¯

b cr. (1.25)

When it is possible, the ambiguities in the LL1-BTD can be corrected by e.g., setting the first

entries of the cr factors to be equal to ones, and by setting the first pL ˆ Lq blocks of the Ar

factors to the identity matrix IL, which corresponds to ∆T
r “ pArq

´1
1:L,1:L in (1.25).
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1.4. Tensor-based hyperspectral super-resolution

We say that the LL1-BTD (1.21) is generically unique if, for random matrices A, B, C dis-

tributed according to an absolutely continuous probability distribution, the LL1-BTD is unique.

Then, the following sufficient condition [39, Theorem 4.7] holds:
$

&

%

IJ ě RL2 and

min
`X

I
L

\

, R
˘

`min
`X

J
L

\

, R
˘

`minpK,Rq ě 2R` 2.
(1.26)

Property 2. Equivalence between LL1-BTD and polyadic decomposition – The LL1-

BTD can be recast into a sum of LR rank-1 terms as

X “

R
ÿ

r“1

L
ÿ

`“1

pArq:,` b pBrq:,` b cr, (1.27)

which can be seen as a polyadic decomposition with rank LR.

In fact, the LL1-BTD is an example of a non-unique CPD. However, one striking difference

between equivalent CPD and LL1-BTD is the number of unknowns that need to be estimated

for one to recover the tensor X . Indeed, after correcting scaling and order ambiguities, using the

LL1-BTD amounts to estimating ppI ` JqL `KqR ´ RpL2 ` 1q entries. For the CPD, scaling

ambiguities can be resolved as in [132]: the equivalent CPD contains pI`J`K´2qLR unknown

entries (please refer to [34, Sec. 3.2], [159], [52, Def. 3.5] and Chapter 4 for more details), which

is a higher number of entries than for the LL1-BTD if K ě L` 1.

1.4 Tensor-based hyperspectral super-resolution

We are now ready to introduce the principles of tensor-based HSR. First, we describe the basic

observation model that will serve as a starting point for our work.

1.4.1 Basic observational model and optimization problem

In order to overcome the drawbacks of matrix-based approaches, tensor-based methods were

recently proposed for solving the HSR problem: see e.g., [44, 86, 135] that respectively consider

the CP, Tucker and LL1 decompositions.

In these approaches, we consider a co-registered HSI tensor YH P RIHˆJHˆK and a MSI

tensor YM P RIˆJˆKM of the same scene. While the spatial resolution of the HSI is lower than

that of the MSI (that is, IH ! I and JH ! J), its spectral resolution is higher, which means that

KM ! K. We consider that the HSI and MSI are degraded versions of the same SRI Y P RIˆJˆK

with both high spatial and high spectral resolutions. Thus, the HSR task consists in recovering

Y from YH and YM .
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1.4. Tensor-based hyperspectral super-resolution

The basic degradation model considered in this dissertation can be expressed as contraction

of the SRI with degradation matrices:
$

&

%

YH “ Y ‚1 P1 ‚2 P2 ` EH ,

YM “ Y ‚3 P3 ` EM ,
(1.28)

where the tensors EH and EM represent noise terms. The matrices P1 P RIHˆI and P2 P

RJHˆJ are referred to as spatial degradation matrices. We consider for simplicity that the

spatial degradation is separable. For example, the commonly accepted Wald’s protocol [171] uses

separable Gaussian blurring and downsampling in both spatial dimensions, see Appendix B for

more details. The matrix P3 is a selection and averaging matrix, also called spectral degradation

matrix. It contains the spectral response functions (SRF) of the multispectral sensor. Model

(1.28) in the noiseless case is illustrated in Figure 1.4.

Figure 1.4: Noiseless tensor degradation model (1.28).

In order to overcome the ill-posedness of (1.28), we assume that the SRI tensor can be

modeled by a low-rank tensor decomposition such as CP, Tucker or LL1 decomposition. From

this hypothesis, model (1.28) can be rewritten as a coupled low-rank decomposition model, in

which the HSI and MSI both admit low-rank decompositions.

Thus, for all decompositions it is possible to reformulate model (1.28) as the basic optimiza-

tion problem of the form

minimize
low-rank pY

}YH ´ pYH}
2
F ` λ}YM ´ pYM}

2
F , (1.29)

where λ is a balance parameter that controls the respective weights of the HSI and MSI in

the cost function. Solving (1.29) aims at recovering the low-rank approximation pY of the SRI
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1.4. Tensor-based hyperspectral super-resolution

using the decomposition factors. The tensors pYH “ pY ‚1 P1 ‚2 P2 and pYM “ pY ‚3 P3 are low-

rank approximations of YH and YM , respectively. Thanks to sufficient uniqueness conditions

for tensor decompositions2, noiseless unique recovery of the SRI under this framework can be

established for various decompositions.

1.4.2 Comparison of different matrix and tensor decompositions

The aim of HSR is to recover the IJK entries of the SRI from the pIHJHK`IJKM q observations

of the HSI and MSI. Fortunately, low-rank tensor decompositions enjoy useful properties that

can be utilized to solve this problem, which will be described in the following paragraph.

First, low-rank tensor decompositions usually offer interesting uniqueness conditions. That is,

in a lot of cases, I-fold, J-fold and K-fold diversities provided by the third-order tensors allow for

uniqueness of the model. For instance, the low-rank factors in the CPD are generically unique up

to scaling and permutation ambiguities, under rather mild conditions on the tensor dimensions.

This is a striking difference with the uniqueness conditions of matrix factorization models, which

often require additional constraints on the low-rank factors, as explained in Section 1.1.3. These

conditions can be utilized to build up conditions for unique recovery of the SRI.

The second main advantage of using tensor decompositions is that the number of parameters

that need to be estimated is often lower than that of matrix-based models. We summarize in

Table 1.1 the number of unknowns in the HSR problem for each aforementioned decomposition.

We can see that low-rank approximations drastically reduce the number of unknowns that need to

Table 1.1: Number of unknowns for various decompositions
Matrix CPD Tucker decomposition LL1-BTD

pIJ `K ´RqR pI ` J `K ´ 2qN IR1 ` JR2 `KR3 `
3
ś

i“1

Ri ´
3
ř

i“1

R2
i ppI ` J ´ LqL` pK ´ 1qqR

be estimated in order to recover the SRI. Moreover, tensor decompositions generally decompose

the SRI in a smaller number of parameters than matrix decompositions do, even if the ranks are

large.

To illustrate this point, let us consider an SRI with dimensions I “ J “ K “ 100. The

dimensions of the low-resolution images are IH “ JH “ 50 for the HSI, and KM “ 10 for the

MSI. We consider the following ranks: N “ LR for the CP decomposition, and R1 “ R2 “ LR,

R3 “ R for the Tucker decomposition. In order to illustrate the dependency on R, we calculate

the number of unknown parameters for each decomposition and R P t5, 10, 15u, L P t1, . . . , 20u

according to Table 1.1. In Figure 1.5, we plot the results as functions of L for fixed R.
2Although the Tucker decomposition is generally non-unique, we show in Chapter 2 that the correct SRI can

still be recovered using the Tucker decomposition.
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Figure 1.5: Number of unknowns as functions of L.

We can see that among tensor decompositions, the Tucker decomposition usually contains the

largest number of unknown parameters for large L. It can however be smaller than for the CPD

if the ranks are not too large. Tensor decompositions usually require to estimate less parameters

than the matrix low-rank decomposition; this complexity gain is particularly visible for large

R. However, for such R, the possible choice of ranks in the tensor decompositions is restricted

by the generic uniqueness conditions: for instance, for R “ 15, the value of L in the Tucker

decomposition may not exceed 3 (which corresponds to R1 “ R2 ď 45).

Interpretability also plays a key role in the choice of a tensor decomposition. While the Tucker

decomposition has more flexibility due to the different pR1, R2, R3q, its non-uniqueness prevents

from attaching interpretability to the Tucker factors. Although unique, the CPD does not allow

for a clear interpretation of the low-rank factors either. The LL1-BTD however can be linked

to the linear mixing model under some additional constraints on the factors. Indeed, in (1.21)

the ArB
T
r and cr factors can be viewed as abundance map and spectral signature for the r-th

material in the image, provided that they are entry-wise non-negative. This interesting property

attracted our interest for LL1-based super-resolution, which will be addressed in Chapter 3.

1.4.3 Variations of the basic observational model

In fact, (1.28) is a basic model from which more specific observation scenarios can be derived. It

describes a fully-coupled scenario where all degradation matrices are known, and the acquisition

conditions of the HSI and MSI are supposed to be the same.

In some cases, the spatial degradation matrices P1 and P2 are unknown, thus the observed

tensors are only partially coupled through the third dimension. This scenario is referred to as

“blind” in the spatial dimension, therefore blind approaches must be envisioned to solve the blind

HSR problem. Noiseless unique recovery of the SRI in the blind case can also be established,

although the conditions are usually more restrictive than in the non-blind case.

In practice, there exist very few optical satellites that carry both hyperspectral and multi-

spectral sensors [46,89]. Thus, combining an HSI and MSI acquired onboard of different missions
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has become a task of prime interest [49,75]. Since the HSI and MSI are acquired at different time

instants, they can differ by, e.g., illumination, atmospheric or seasonal changes [16], which can

cause variations in the underlying spectra of the acquired images, and may impact negatively

the fusion algorithms.

In [15], a super-resolution method was proposed, combining the HSI and MSI accounting

for seasonal spectral variability. Using a low-rank matrix formulation, the spectral signatures

underlying the HSI and MSI are allowed to be different from each other, with variations intro-

duced by a set of multiplicative scaling factors [16]. This algorithm led to significant performance

improvements when the HSI and MSI are subject to spatially uniform seasonal or acquisition

variations. However, the algorithm in [15] presents high computation times and does not offer

any theoretical guarantees.

Therefore (1.28) must also be adapted to address tensor-based HSR accounting for variability.

As in [17], we consider two different SRIs Y P RIˆJˆK and rY P RIˆJˆK , underlying the HSI

and MSI, respectively. The SRIs Y and rY contain possibly different spectral signatures and can

be linked as

rY “ Y `Ψ, (1.30)

where Ψ P RIˆJˆK is a tensor of variability. This leads to the following extension of model

(1.28):
$

&

%

YH “ Y ‚1 P1 ‚2 P2 ` EH ,

YM “ rY ‚3 P3 ` EM .
(1.31)

In this framework, the HSR problem consists in recovering Y P RIˆJˆK and Ψ P RIˆJˆK

under the assumption of the observational model (1.30)–(1.31).

However, even in the noiseless case (i.e., EH ,EM “ 0) this problem is severely ill-posed.

Indeed, the presence of the variability tensor Ψ makes the HSR problem ambiguous [17], as one

cannot separate easily Y and Ψ from rY . Let us recall the following theorem [17]:

Theorem 1.4.1. [17, Theorem 1.a)] Suppose that the HSI and MSI are generated according to

(1.31) and that the observation noise is zero (i.e. EH ,EM “ 0). If either P1, P2 or P3 have

non-trivial nullspace, then pY ,Ψq cannot be uniquely recovered from YH and YM .

Thus, without any prior information to the structure of Y and Ψ, the target images cannot

be recovered uniquely. However, a wisely chosen low-rank decomposition might allow for unique

recovery of portions of the tensors, as it will be seen in Chapter 3.

1.4.4 Overview and timeline of tensor-based HSR

Recent works were extensively devoted to applying the optimization problem (1.29) to a wide

range of HSR scenarios, by e.g., considering the blind HSR problem, additional non-negativity
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or smoothness constraints on the low-rank factors, variable acquisition conditions between the

HSI and MSI, or hybrid matrix-tensor approaches for solving the HSR task. In Table 1.2, we

summarize some references addressing tensor-based HSR and their features.

Table 1.2: Summary of the characteristics of existing tensor-based approaches
CPD Tucker BTD

Fully-coupled HSR [86, 87] Chap. 2 ( [135]), [17] [44, 178], Chap. 3 ( [130])

Blind scenario [86] Chap. 2 ( [135]) [44]

Non-negativity constraints [44, 178], Chap. 3 ( [130])

Variability scenario [17] Chap. 3 ( [130])

Performance analysis Chap. 4 ( [132]) Chap. 5 ( [133])

The work of [86] was the first one to formulate HSR as a coupled tensor decomposition

problem, and assumed that the SRI admits a CP decomposition. An alternating least squares

(ALS) algorithm called Super-resolution TEnsor REconstruction (STEREO) is proposed, proving

competitive performance for the HSR task. A proof of the exact recovery of the SRI by STEREO

is given provided the CPD of the MSI is unique. This approach was also successfully used for

a super-resolution problem in medical imaging [70] and reconstruction of accelerated functional

magnetic resonance imaging (fMRI) data in [85]. In some cases, the spatial degradation operator

is unknown, therefore blind algorithms are needed. A blind version of STEREO (Blind-STEREO)

was proposed in [86] that also uses an ALS algorithm for a coupled CP model. In [87], a simple

Super-resolution CUBe Algorithm (SCUBA) based on a single CPD of the MSI tensor and a

truncated SVD of the unfolding of the HSI is introduced. A key idea proposed in [87] is to use

local approximations by splitting the data cubes into separate blocks. This algorithm outperforms

Blind-STEREO and other state-of-the-art algorithms. It also does not require separability of the

spatial degradation operator.

Motivated by the promising results of [86], other decompositions were envisioned. The works

of [134,135] considered the Tucker decomposition and proposed two closed-form algorithms. The

first one is named Super-resolution based on COupled Tucker Tensor approximation (SCOTT)

while the second, B-SCOTT, adresses the blind HSR problem. Following [86,135], in [44,178] the

authors proposed to utilize the LL1-BTD. These works introduced priors on the LL1 factors, such

as non-negativity, a relaxed low-rank constraint, or spatial smoothness. Several algorithms were

also proposed, using either ALS [178] or inexact alternating accelerating projected gradient [44].

Most recently, the problem of HSR with variable acquisition conditions between the two

observations was considered. The Tucker decomposition was used in [17] to address a general

variability phenomena represented by spectrally and spatially localized-changes. Two algorithms

were proposed: one purely algebraic and one based on an optimization procedure. The re-

coverability analysis for this approach was built upon the general block-term decomposition.
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Unfortunately, due to the non-uniqueness of the Tucker decomposition, the factors were not

interpretable.

The LL1-BTD was also considered together with non-negativity constraints. In [130], a

simpler case of spectral variability representing different acquisition conditions was considered.

The approach of [130] aims at recovering uniquely an SRI and its interpretable low-rank factors,

in such a way that they can be incorporated in a physically-informed mixing model, in a similar

spirit as for the unmixing-based matrix approaches. Thus the approach of [130] proposes a

unified method to solve the fusion-and-unmixing problem, which aims at recovering the low-rank

approximation of the SRI, which factors can be viewed as spectral signatures and abundance

maps of a mixing model.

Theoretical performance analysis for some of the above approaches was recently addressed.

In [132], constrained Cramér-Rao bounds for the reconstruction problem formulated as a coupled

tensor CP model were derived. The performance of STEREO and Blind-STEREO was evalu-

ated, showing that these algorithms are asymptotically efficient for reconstruction of the SRI.

The performance of the LL1-based coupled model accounting for spectral variability was also

considered. A new Cramér-Rao bound was introduced in [133] to consider the presence of the

random variability phenomenon. This work is further developed in Chapter 5.

Considering the fact that the topic of tensor-based HSR has recently attracted much interest

the signal processing community, and that the above methods arose in a very short-time period,

the above list should not be considered exhaustive, nor should it be considered as chronologically

exact.

1.5 Manuscript outline and contributions

Part I of this dissertation is devoted to the design of tensor-based algorithms for hyperspectral

super-resolution.

In Chapter 2, we propose to formulate the HSR problem as a coupled Tucker (multilinear)

approximation. We introduce two simple but fast algorithms for the HSR and Blind-HSR, that

are based on the higher-order singular value decomposition (HOSVD) of the observed HSI and

MSI. We also show that, in spite of the Tucker decomposition being generally non-unique, the

proposed approach allows for the exact noiseless reconstruction of the SRI tensor for a variety

of multilinear ranks. While the proposed exact recoverability conditions are in general more

restrictive than those of the CP-based approach [86], they can be specialized in situations for

which nothing can be concluded from [86]. Our experiments on a number of simulated and semi-

real examples show that the proposed algorithms have a performance approaching those of [86]

and [87], but the computational cost is much lower. Also, the proposed approach is applicable

to hyperspectral pansharpening [72] (unlike [86], which requires the MSI to have at least two
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spectral bands).

In Chapter 3, we consider a flexible observation model that admits inter-image variability. We

propose to formulate the HSR problem as a coupled LL1-BTD of the HSI and MSI, accounting for

spectral variability between the endmembers. We additionally enforce non-negativity constraints

on the low-rank factors, in such a way that they can be incorporated into a physically-informed

mixing model. Thus the proposed approach provides a unified solution to the problem of joint

fusion and unmixing of the underlying SRI. Inspired by the work of [44, 178], we propose some

guarantees for noiseless unique recovery of the SRI and its interpretable latent factors based on

the LMM. In particular, our noiseless recovery conditions do not require additional constraints

on the low-rank factors, contrary to matrix-based models. We also propose two algorithms. The

first one is unconstrained and aims at recovering only the underlying SRI. The second one en-

forces non-negativity constraints and additionally estimates interpretable low-rank factors. Our

experiments on a set of synthetic and semi-real datasets prove competitive performance of the

proposed approach for the fusion and unmixing parts of the problem at hand.

In Part II, we address performance of coupled tensor models from a theoretical point of view,

by considering Cramér-Rao bounds (CRB) and performance analysis of algorithms. The aim of

this study is two-fold: i) illustrate the theoretical gain of coupled models over uncoupled models

and ii) assess the efficiency of some existing algorithms and estimators proposed in Part I, that

are based on low-rank tensor approximations. As a by-product, we also develop new algorithms

that are efficient in some particular cases, for instance high signal-to-noise ratio and/or large

tensor rank.

In Chapter 4, we consider constrained Cramér-Rao (CCRB) lower bounds for coupled CP

tensor models. We first recall classic results on constrained performance bounds. Then, we

adapt those results to derive bounds for coupled CP models based on (1.28). In particular, we

provide a closed-form expression for the Fisher information matrix in two scenarios, whether

i) we only consider the fully-coupled HSR problem or ii) if we are interested in comparing

the theoretical performance of fully-coupled, blind and uncoupled approaches. We assess the

performance of the coupled CP-based algorithms STEREO and Blind-STEREO [86] and show

that these algorithms are asymptotically efficient, meaning that they reach the CCRB. Moreover,

we show that theoretical performance bounds can be used as a guideline to design efficient

algorithms in cases where the CPD of the HSI is not identifiable, which may result in non-

converging cases. Regarding the HSR problem specifically, we use the CCRB to study the

impact of the hyperspectral acquisition system design on the best theoretical performance that

can be expected.

In Chapter 5, we consider a non-standard estimation problem where the constraints on the

deterministic model parameters involve an additional random parameter. We show that, in the
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presence of random constraints, the deterministic CCRB fails at predicting the performance

of strictly locally-unbiased estimators. This results in the deterministic CCRB being a non-

informative bound. As a result, we introduce a new constrained Cramér-Rao bound with con-

straints involving a random parameter. The usefulness of the randomly constrained Cramér-Rao

bound (RCCRB) is illustrated a coupled LL1 model, accounting for random uncertainties between

the observations. We use the RCCRB to assess the efficiency of the unconstrained LL1-based

spectrally blind algorithm proposed in Chapter 3.

Finally, we conclude this manuscript with a summary and perspectives of the proposed work.

1.6 List of publications

Journal publications:

• [135] C. Prévost, K. Usevich, P. Comon & D. Brie. Hyperspectral Super-Resolution with

Coupled Tucker Approximation: Identifiability and SVD-based algorithms. IEEE Transac-

tions on Signal Processing, vol. 68, pages 931–946, 2020;

• [17] R. Borsoi, C. Prévost, K. Usevich, D. Brie, J. Bermudez & C. Richard. Coupled

Tensor Decomposition for Hyperspectral and Multispectral Image Fusion with Inter-image

Variability. IEEE Journal of Selected Topics in Signal Processing, vol. 15(3), pages 702–

717, 2021;

Submitted preprints:

• [132] C. Prévost, K. Usevich, M. Haardt, P. Comon, & D. Brie. Constrained Cramér-

Rao lower bounds for CP-based hyperspectral super-resolution. Submitted to Elsevier Signal

Processing, 2021.

• [130]C. Prévost, R. Borsoi, K. Usevich, D. Brie, J. Bermudez & C. Richard. Hyperspectral

super-resolution accounting for spectral variability: LL1-based recovery and blind unmixing.

Submitted to SIAM Journal on Imaging Sciences, 2021. First revision in progress (June

2021).

Conference proceedings:

• [134] C. Prévost, K. Usevich, P. Comon & D. Brie. Coupled Tensor Low-rank Multilinear

Approximation for Hyperspectral Super-resolution. In Proc. IEEE ICASSP, 2019;

• [136] C. Prévost, K. Usevich, M. Haardt, P. Comon & D. Brie. Performance bounds

for coupled CP model in the framework of hyperspectral super-resolution. In Proc. IEEE

CAMSAP, 2019;

26



1.7. Code

• [133] C. Prévost, E. Chaumette, K. Usevich, D. Brie & P. Comon. On Cramér-Rao

Lower Bounds with Random Equality Constraints. In Proc. IEEE ICASSP, pages 5355–

5359, 2020.

National conference proceedings:

• [131] C. Prévost, K. Usevich, P. Comon & D. Brie. Approches tensorielles couplées

pour la fusion aveugles d’images hyperspectrale et multispectrale. In XXVIIème Colloque

francophone de traitement du signal et des images, GRETSI, 2019.

1.7 Code

All simulations in this thesis were run on a MacBook Pro with 2.3 GHz Intel Core i5 and 16GB

RAM. The code is implemented in MATLAB. For basic tensor operations we used TensorLab

3.0 [168]. The results are reproducible and the codes are available online at the following links.

• Chapter 2: https://github.com/cprevost4/HSR_Software;

• Chapter 3: https://github.com/cprevost4/LL1_HSR_HU;

• Chapter 4: https://github.com/cprevost4/CCRB_Software.
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Part I

Algorithms for hyperspectral

super-resolution

In this part, we adopt a practical point of view by considering design of the algorithms and

their application to hyperspectral super-resolution. We design several fusion algorithms that

exploit the diversities induced by tensor low-rank decompositions and assign symmetric roles to

the observations. Hence they fall under the category of true fusion methods. We also establish

conditions for noiseless unique recovery of the tensor Y , that often solely rely on the ranks

and dimensions of the observations. We show that the incorporation of priors can enhance the

interpretability of the low-rank factors, by means of a wisely chosen decomposition.

Through the application of hyperspectral super-resolution, we illustrate the interest of tensor

approaches regarding the reduced number of parameters they require to estimate. This advantage

is reflected both in terms of numerical performance and computation time. Through specifically-

designed synthetic datasets, we also highlight cases where traditional matrix approaches might

fail, while the enhanced flexibility and mild recovery conditions of tensor methods allow to solve

efficiently the problem at hand.
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Chapter 2

Hyperspectral super-resolution with

coupled Tucker approximation:

recoverability and SVD-based

algorithms
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2.1. Introduction

2.6 Conclusion of Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . 59

2.1 Introduction

This chapter summarizes the content of [134,135]. A short version of this work [134] appears in

ICASSP 2019, presenting the main SCOTT algorithm and part of the simulations. The journal

paper [135] additionally includes the blind algorithm BSCOTT, detailed analysis of the model

and the algorithms, proof of the theorems for recoverability, and simulations on synthetic and

semi-real datasets, including recovery of spectral signatures.

In this chapter, we propose to use the multilinear (or Tucker) factorization to solve the HSR

problem. By assuming that the SRI has approximately low multilinear rank, we reformulate

the HSR problem as a coupled Tucker approximation. In [43], another method based on Tucker

approximation and non-local sparse tensor factorization was proposed. This method consists in

the estimation of a sparse core tensor and dictionaries (i.e., factor matrices) for the HSI and

MSI. However, no recoverability conditions were provided for that method.

First, we propose two closed-form SVD-based algorithms: the first one, named Super-resolution

based on COupled Tucker Tensor approximation (SCOTT), is inspired by the HOSVD [40] and

the second (blind) is inspired by [87]. Second, we prove that, although the Tucker decomposition

is not unique, the SRI can be uniquely recovered for a wide range of multilinear ranks. While

the proposed exact recovery conditions are in general more restrictive than those of the CP ap-

proach [86], they can be specialized in situations for which nothing can be concluded from [86].

Our experiments on a number of simulated and semi-real examples show that the proposed al-

gorithms have a performance approaching those of [86] and [87], but the computational cost is

much lower. Also, the proposed approach is applicable to hyperspectral pansharpening [72] (un-

like [86], which requires the MSI to have at least two spectral bands). Finally, the algorithms can

accurately reconstruct spectral signatures, which may be of great interest for further processing

of the SRI.

This chapter is organized as follows. In Section 2.2, we recall the CP-based model, the

STEREO algorithm proposed in [86] and the hybrid SCUBA algorithm [87]. Section 2.3 contains

our proposed coupled Tucker model and SVD-based algorithms (SCOTT and BSCOTT) for

tensor approximation. In Section 2.4 we prove our main recoverability result for the coupled

Tucker model. Finally, Section 2.5 contains the numerical experiments.
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2.2 CP-based HSR

In [86], the HSR problem was expressed as a coupled rank-N CP approximation. Under this

assumption, the general model (1.28) becomes
$

&

%

YH “ rrP1A,P2B,Css ` EH ,

YM “ rrA,B,P3Css ` EM .
(2.1)

The matrices A P RIˆN , B P RJˆN , C P RKˆN are the factor matrices of the CPD. With this

notation, the SRI admits a CPD

Y “ rrA,B,Css. (2.2)

2.2.1 The case of known spatial degradation

If the degradation matrices P1, P2 and P3 are known, then (2.1) can be recast into the following

optimization problem:

minimize
pA,pB,pC

fCPppA, pB, pCq, (2.3)

where fCPppA, pB, pCq “ }YH ´ rrP1
pA,P2

pB, pCss}2F ` λ}YM ´ rrpA, pB,P3
pCss}2F ,

and λ is a balance parameter3 that controls the respective weights of the HSI and MSI in the

above coupled CP approximation problem. Problem (2.3) is a special case of (1.29).

In the noiseless case (EH ,EM “ 0), the coupled CP model (2.1) is generically identifiable if

N ď mint2tlog2pKMJqu´2, IHJHu. (2.4)

In the proof for [86, Theorem 3], it is specified that condition (2.4) only requires the CPD of the

MSI to be unique.

An alternating least squares (ALS) algorithm called Super-resolution TEnsor REconstruction

(STEREO) is proposed for solving (2.3). It is summarized in Algorithm 1.

The updates of the factor matrices in Algorithm 1 can be computed by using efficient solvers

for the (generalized) Sylvester equation [8], [61]. For example, the total cost of one iteration

(updating pAk, pBk, pCk) in Algorithm 1 becomes:

• OpIJKMN ` IHJHKNq flops for computing the right hand sides in the least-squares

subproblems;

• OpI3`J3`K3`N3q flops for solving Sylvester equations.

For more details on solving Sylvester equations for STEREO, see4 [86, Appendix E].
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Algorithm 1: STEREO
input : YH , YM , P1, P2, P3; N , A0 P RIˆN , B0 P RJˆN , C0 P RKˆN

output: pY P RIˆJˆK

1 for k “ 1, . . . , n do

2 pAk Ð argmin
A

fCPpA, pBk´1, pCk´1q,

3 pBk Ð argmin
B

fCPppAk,B, pCk´1q,

4 pCk Ð argmin
C

fCPppAk, pBk,Cq,

5 end

6 pY Ð rrpAn, pBn, pCnss.

Algorithm 2: TenRec
input : YH , YM , P1, P2; N

output: A0 P RIˆN , B0 P RJˆN , C0 P RKˆN

1 rrA0,B0,C0ss “ CPDN pYM q,

2 CT
0 “ pP2B0 dP1A0q

:Y
p3q
H .

In [86], the initial values in Algorithm 1 are obtained by Algorithm 2.

In Algorithm 2, CPDN pYM q stands for a rank-N CP approximation of YM . Please note

that low tensor rank approximation does not always exist in general, but is guaranteed to exist

if all CP factors are imposed to be entry-wise nonnegative [137]. The matrix C0 is obtained by

solving a least-squares problem. Algorithm 2 can also be used as an algebraic method for solving

the HSR problem.

2.2.2 The case of unknown spatial degradation

In some cases however, the spatial degradation operators are unknown, therefore blind algorithms

are needed. A first solution called Blind-STEREO was also proposed in [86]. It adresses the

following coupled CP model:
$

&

%

YH “ rrrA, rB,Css ` EH ,

YM “ rrA,B,P3Css ` EM .
(2.5)

The matrices rA P RIHˆN and rB P RJHˆN are degraded versions of the CP factors A P RIˆN

and B P RJˆN by unknown spatial degradation matrices. Model (2.5) can also be reformulated
3In [86], λ “ 1 so that both images have the same weight in the cost function.
4Note that in [86, Appendix E] the cost of solving the Sylvester equation is stated as OpI3q and not OpI3`N3

q

as in [8].
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as

minimize
rA,rB,
pA,pB,pC

}YH ´ rrrA, rB, pCss}
2
F ` λ}YM ´ rrpA, pB,P3

pCss}2F . (2.6)

Conditions on exact noiseless recovery of the SRI by Blind-STEREO were provided in [86] and

require both the CPD of the HSI and MSI to be unique.

In [87], an alternative approach was proposed. It is based on a single CPD of YM together

with a SVD of Y
p3q
H , and a least squares problem. This approach, that does not necessary need

separability of the spatial degradation operation, is summarized in in Algorithm 3.

Algorithm 3: Hybrid algorithm [87]
input : YH , YM , P3; R3, N

output: pY P RIˆJˆK

1 Compute CP approximation: rrpA, pB, rCss “ CPDN pYM q,

2 Z Ð tSVDR3

´

Y
p3q
H

¯

,

3 pC Ð ZpP3Zq
:
rC,

4 pY Ð rrpA, pB, pCss.

As noted in [87], the true SRI Y “ rrA,B,Css can be uniquely recovered only if ranktCu “ R3

does not exceed the numberKM of spectral bands in the MSI. To overcome this limitation, in [87]

it was proposed to apply Algorithm 3 to corresponding non-overlapping subblocks of the MSI

and HSI (based on the hypothesis that only a small number of materials are active in a smaller

block). This procedure is summarized in Algorithm 4, called Super-resolution CUBe Algorithm

(SCUBA).

Algorithm 4: SCUBA
input : YH , YM , P3; R3, N

output: pY P RIˆJˆK

1 Split YH , YM in L blocks along spatial dimensions.

2 for k “ 1, . . . , L do

3 Apply Algorithm 3 to each pair of blocks in YH , YM , and store the result in the

corresponding subblock of pY .
4 end

It was shown in [87] that such Algorithm 4 outperforms Blind-STEREO, and other state-of-

the-art algorithms for the blind HSR problem.
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2.3 HSR problem as a coupled multilinear approximation

2.3.1 Coupled multilinear model and approximation problem

Let the SRI admit a Tucker decomposition with multilinear ranks R “ pR1, R2, R3q as

Y “ rrG; U,V,Wss, (2.7)

where G P RR1ˆR2ˆR3 is the core tensor and U P RIˆR1 , V P RJˆR2 and W P RKˆR3 are the

factor matrices. Under this assumption, the degradation model (1.28) can be expressed as
$

&

%

YH “ rrG; P1U,P2V,Wss ` EH ,

YM “ rrG; U,V,P3Wss ` EM ,
(2.8)

thus the HSR task can be performed by estimating the factor matrices U, V, W and the core

tensor G in (2.7). However, it should be emphasized that our goal here is not to recover the

low-rank factors themselves, but rather the whole SRI tensor.

Thus, the following reformulation of the HSR task as an optimization problem is only one

possible option. In a similar spirit as in [86], we consider the following optimization problem:

minimize
pG, pU, pV,xW

fTppG, pU, pV,xWq, where (2.9)

fTppG, pU, pV,xWq “}YH ´ rrpG; P1
pU,P2

pV,xWss}2F ` λ}YM ´ rrpG; pU, pV,P3
xWss}2F ,

which is also a special case of the basic optimization problem (1.29) introduced in Section 1.4.1.

Rather than finding a (local) minimum of (2.9), we propose in the following subsection two

semi-algebraic, closed-form solutions that are suboptimal, but are fast and easy to calculate.

2.3.2 Proposed algorithms

An SVD-based algorithm with known spatial degradation

In this paragraph, we introduce a two-stage approach inspired by the HOSVD [40]. It consists

in:

• using the truncated SVD of MSI and HSI to obtain the factor matrices pU, pV, xW in (2.8);

• performing data fusion by minimizing the objective (2.9) only with respect to the core

tensor G.

This method, called SCOTT, is given in Algorithm 5.

Under conditions provided in Section 2.4, Algorithm 5 gives a solution to the algebraic de-

composition problem (2.8) in the noiseless case (EH , EM “ 0).
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2.3. HSR problem as a coupled multilinear approximation

Algorithm 5: SCOTT
input : YH , YM , P1, P2, P3; pR1, R2, R3q.

output: pY P RIˆJˆK

1 1. pU Ð tSVDR1

´

Y
p1q
M

¯

, pV Ð tSVDR2

´

Y
p2q
M

¯

, xW Ð tSVDR3

´

Y
p3q
H

¯

,

2 2. pG Ð argmin
G

fT

´

G, pU, pV,xW
¯

,

3 3. pY “ rrpG; pU, pV,xWss.

Step 2 of Algorithm 5 is the least squares problem
«

xW b P2
pV b P1U

?
λP3

xW b pV b pU

ff

loooooooooooomoooooooooooon

X

vect pGu «

«

vectYHu
?
λ vectYMu

ff

loooooooomoooooooon

z

that can be solved through normal equations of the form
´

XTX
¯

vect pGu “ XTz. (2.10)

The matrix on the left-hand side of (2.10) can be written as

XTX “ IR3 b

´

pVTPT
2 P2

pV
¯

b

´

pUTPT
1 P1

pU
¯

` λ
´

xWTPT
3 P3

xW
¯

b IR1R2 , (2.11)

and the vector on the right-hand side is

XTz “ vectrrYH ; pUTPT
1 ,

pVTPT
2 ,

xWTssu ` λ vectrrYM ; pUT, pVT,xWTPT
3 ssu. (2.12)

The normal equations can be viewed as a (generalized) Sylvester equation and (as in STEREO)

efficient solvers can be used (see Appendix A for more details).

Thus the total cost of SCOTT algorithm becomes:

• OpminpR1, R2qIJKM `R3IHJHKq flops for computing the truncated SVDs and XTz;

• OpminpR3
3 ` pR1R2q

3, R3
1 ` pR2R3q

3qq flops for solving the Sylvester equation.

It is easy to see that the computational complexity of SCOTT is comparable to that of one

iteration of STEREO and can be smaller if the multilinear ranks are small.

A blind algorithm for unknown spatial degradation

It is also possible to design a blind SVD-based algorithm, in the same spirit as Algorithm 4. The

algorithm does not require the knowledge of P1, P2 and is based on the HOSVD of the MSI

tensor.
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2.4. Recoverability of the Tucker model

Algorithm 6: Blind version of SCOTT
input : YH , YM , P3; pR1, R2, R3q

output: pY P RIˆJˆK

1 1. Compute the pR1, R2, R3q HOSVD of YM :

rrpG; pU, pV,ĂWss
HOSVD
« YM ,

2 2. Z Ð tSVDR3

´

Y
p3q
H

¯

,

3 3. xW Ð ZpP3Zq
:
ĂW,

4 4. pY “ rrpG; pU, pV,xWss.

The total computational complexity of Algorithm 6 is

O pminpR1, R2qIJKM `R3IHJHKq flops,

and is dominated by the cost of the truncated SVD, because Step 3 is very cheap. However, a

specific drawback of Algorithm 6, similarly to Algorithm 3, is that R3 should not exceed KM ,

since the multilinear rank is employed in the HOSVD of subblocks of YM .

Finally, similarly to SCUBA, we can use a block version of Algorithm 6, which we call

BSCOTT (which stands for “Blind SCOTT”). There is no confusion, as Algorithm 6 is a special

case of Algorithm 7 where the degraded image cubes are not split into blocks.

Algorithm 7: BSCOTT (block version of Algorithm 6)
input : YH , YM , P3; pR1, R2, R3q

output: pY P RIˆJˆK

1 Split YH , YM in L blocks along spatial dimensions.

2 for k “ 1, . . . , L do

3 Apply Algorithm 6 to each pair of corresponding blocks in YH , YM , and store the

result in the corresponding subblock of pY .
4 end

2.4 Recoverability of the Tucker model

In this section, we establish conditions for exact recovery of the SRI tensor in the coupled Tucker

model (2.8). The proof of such conditions for the CP model in [86] relied on the uniqueness

(identifiability) property of the CPD of the MSI. We show that, although the Tucker decompo-

sition is not unique, the exact recovery is still possible. Moreover, we prove that in some cases

where the CPD in [86] is not unique, the SRI tensor is still uniquely recovered using the CP
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2.4. Recoverability of the Tucker model

model. We prefer to use the term “recoverability of the SRI” rather than “identifiability of the

SRI” used in [86], in order to avoid confusion with identifiability of the low-rank model.

2.4.1 Deterministic exact recovery conditions

We begin with a deterministic result on recoverability.

Theorem 2.4.1. Let a Tucker decomposition of Y be

Y “ rrG; U,V,Wss, (2.13)

where G P RR1ˆR2ˆR3, and U P RIˆR1, V P RJˆR2, W P RKˆR3 have full column rank. We also

assume that EH “ 0 and EM “ 0 in (1.28).

1. If

ranktY
p1q
M u “ R1, ranktY

p2q
M u “ R2, ranktY

p3q
H u “ R3, (2.14)

and one of the following conditions holds true:

a) either ranktP1Uu “ R1 and ranktP2Vu “ R2;

b) or ranktP3Wu “ R3,

Then there exists only one pY with multilinear rank at most pR1, R2, R3q such that pY ‚1 P1 ‚2 P2 “

YH and pY ‚3 P3 “ YM .

2. If none of the conditions a) and b) are satisfied, then there exist infinitely many pY of the

form

pY “ rrpG; pU, pV,xWss,

pU P RIˆR1 , pV P RJˆR2 ,xW P RKˆR3 ,

such that pY ‚1 P1 ‚2 P2 “ YH and pY ‚3 P3 “ YM ; in fact, }pY ´Y} can be arbitrary large

for such pY.

Proof. First of all, we note that by [101, Theorem 13.16], the singular values of the matrix

XTX “ IR3 b M1 `M2 b IR1R2 in (2.11) are all sums of the pairs of eigenvalues of
´

pVTPT
2 P2

pV
¯

b

´

pUTPT
1 P1

pU
¯

looooooooooooooooooomooooooooooooooooooon

M1

, λxWTPT
3 P3

xW
looooooomooooooon

M2

. (2.15)

We also assume without loss of generality that U, V, W have orthonormal columns.
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2.4. Recoverability of the Tucker model

• Proof of 2) Assume that ranktP1Uu ranktP2Uu ă R1R2 and ranktP3Wu ă R3. If we set
pU “ U, pV “ V, xW “ W, then ranktM1u ă R1R2, ranktM2u ă R3 and ranktXTXu ă

R1R2R3. Therefore the system (2.10) is underdetermined, and there is an infinite number

of solutions pG P RR1ˆR2ˆR3 . Note that if we define pY “ rrpG; U,V,Wss, then it is an

admissible solution, i.e., pY ‚1 P1 ‚2 P2 “ YH and pY ‚3 P3 “ YM . On the other hand, due

to orthogonality of the bases, }pY ´ Y}F “ }pG ´ G}F , which can be made arbitrary large

due to non-uniqueness of the solution to (2.10).

• Proof of 1) Let us choose pU P RIˆR1 , pV P RJˆR2 , and xW P RKˆR3 to be orthogonal

bases of the row spaces of Y
p1q
M , Y

p2q
M and Y

p3q
H respectively. First, by (2.14), the rank of

unfoldings does not drop after degradation, hence

pU “ UQU , pV “ VQV , xW “ WQW ,

where QU , QV , QW are some rotation matrices. Next, due to conditions on the ranks

of P1U, P2U and P3W, we get that ranktXTXu “ R1R2R3 because of (2.15). Hence

the solution pG of (2.10) is unique. Finally, we note that the reconstructed tensor can be

expressed as

vectpYu “ pxW b pV b pUqpXTXq´1XTz,

where the right-hand side does not depend on the rotation matrices QU , QV , and QW due

to the definition of X. Hence, the reconstructed tensor pY is unique.

Corollary 2.4.2. If the conditions of Theorem 2.4.1 (item 1.) hold, then any minimizer of (2.9)

recovers Y, i.e.

Y “ rrpG; pU, pV,xWss.

In addition, Algorithm 5 recovers Y for all cases of recoverability in Theorem 2.4.1.

The recoverability results derived in Theorem 2.4.1 are valid if a Tucker decomposition is

used, and if its core tensor is dense. But they still remain valid if the core tensor is diagonal or

block diagonal. For this reason, they also apply to CPD or BTD if the tensor rank is smaller

than dimensions. In particular, recoverability can be ensured under mild conditions when the

CPD is not unique, e.g., in the presence of collinear factors, as shown in the following corollary.

Corollary 2.4.3 (Recoverability for CPD model with partial uniqueness). Assume that the SRI

has a CPD Y “ rrA,B,Css of rank N ď minpIH , JHq, such that

ranktAu “ ranktP1Au “ ranktBu “ ranktP2Bu “ N,

and P3C does not have zero columns. We also assume that EH ,EM “ 0 in (1.28). Then any

minimizer of (2.3) recovers Y.
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2.4. Recoverability of the Tucker model

Proof. Since the original factors pA,B,Cq yield zero error in (2.3), hence any global minimizer

ppA, pB, pCq of (2.3) satisfies

rrP1
pA,P2

pB, pCss “ YH and rrpA, pB,P3
pCss “ YM .

Due to the conditions of the corollary, rrP1A,P2B,Css and rrA,B,P3Css satisfy partial unique-

ness conditions in [65, Theorem 2.2]. Hence (after permutations and rescaling of factors), we

have pC “ C and

ranktCu “ ranktpCu “ ranktY
p3q
H u “ R3.

Moreover, since

Y
p1q
M “ pP3CdBqAT, Y

p2q
M “ pP3CdAqBT,

and P3C does not have zero columns, we have that

ranktAu “ ranktpAu “ ranktY
p1q
M u “ R1 “ N,

ranktBu “ ranktpBu “ ranktY
p2q
M u “ R2 “ N.

Therefore, both pA,B,Cq and ppA, pB, pCq are particular solutions of Problem (2.9) with an addi-

tional constraint that the tensor rank of G is at most N . Since, by Theorem 2.4.1, any solution

of (2.9) recovers Y uniquely, the proof is complete.

Note that the conditions of Corollary 2.4.3 are quite restrictive for real applications. However,

they probably can be relaxed by using Kruskal ranks and a more general formulation in [65,

Theorem 2.1] (see also [39]).

2.4.2 Exact recoverability for generic tensors

From the deterministic recovery conditions, we can establish the generic recoverability results.

Theorem 2.4.4. Assume that P1 P RIHˆI , P2 P RJHˆJ , and P3 P RKMˆK are fixed full row-rank

matrices. Let Y have decomposition (2.13), where R1 ď I, R2 ď J , R3 ď K, and G P RR1ˆR2ˆR3,

U P RIˆR1, V P RJˆR2, W P RKˆR3 are random tensors and matrices, distributed according to

an absolutely continuous probability distribution. We also assume that EH “ 0 and EM “ 0 in

(1.28).

1. If R3 ď KM or pR1, R2q ď pIH , JHq and
$

’

’

’

&

’

’

’

%

R1 ď minpR3,KM qR2,

R2 ď minpR3,KM qR1,

R3 ď minpR1, IHqminpR2, JHq,

(2.16)

then with probability 1 there exists a unique tensor pY with multilinear rank at most pR1, R2, R3q

such that pY ‚1 P1 ‚2 P2 “ YH and pY ‚3 P3 “ YM .
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2.4. Recoverability of the Tucker model

2. If R3 ą KM and (R1 ą IH or R2 ą JH), then with probability 1 the reconstruction is

non-unique, i.e. there exist infinitely many pY of the form

pY “ rrpG; pU, pV,xWss,

pU P RIˆR1 , pV P RJˆR2 , xW P RKˆR3 ,

such that pY ‚1 P1 ‚2 P2 “ YH and pY ‚3 P3 “ YM ; in fact, }pY ´Y} can be arbitrary large

for such pY.

Proof. • Proof of 2) follows from Theorem 2.4.1 (item 2.)

• Proof of 1) First, without loss of generality, we can replace P1, P2, P3 with the following

matrices of same size:

rP1 “

«

IIH

0

ffT

, rP2 “

«

IJH

0

ffT

, rP3 “

«

IKM

0

ffT

. (2.17)

Indeed, let us explain why it is so, for example for P1 P RIHˆI . There exists a nonsingular

matrix T such that

P1T “

”

IIH 0
ı

,

for example, T “ rP:1 Fs, where F P RIˆpI´IHq,P1F “ 0. If we take rU “ T´1U then

P1U “ rP1
rU. Note that a nonsingular transformation preserves absolute continuity of the

distribution; hence U has an absolutely continuous distribution if and only if rU has one.

Therefore, under the assumptions on distribution of U, V, W the following implications

hold with probability 1:

R1 ď IH ñ ranktU1:IH ,:u “ R1,

R2 ď JH ñ ranktV1:JH ,:u “ R2,

R3 ď KM ñ ranktW1:KM ,:u “ R3.

Next, we are going to show how the other set of conditions imply (2.14). We will prove it

only for the first condition (the others are analogous).

Note that the first unfolding can be written as

Y
p1q
M “ pW1:KM ,: b VqGp1qUT.

Due to the dimensions of the terms in the product, this matrix is at most rank R1. Due to

semicontinuity of the rank function, Y
p1q
M will be generically of rank R1 if we can provide

just a single example of U, V, W, G, achieving the condition ranktY
p1q
M u “ R1. Indeed, if

R1 ď minpR3,KM qR2, such an example is given by

U “

«

IR1

0

ff

, V “

«

IR2

0

ff

, W “

«

IR3

0

ff

, Gp1q “

«

IR1

0

ff

,

which completes the proof.
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2.4. Recoverability of the Tucker model

We illustrate the statement of Theorem 2.4.4 for the case I “ J , IH “ JH and R1 “ R2. In

Figure 2.1 we show that the space of parameters pR1, R3q is split into two regions: recoverable

and non-recoverable. The hatched area corresponds to the parameters where the condition (2.16)

is not satisfied.

Recoverable

Non-recoverable

(a)

(b)

Figure 2.1: Recoverability region depending on R1 “ R2 and R3.

Remark 2.4.5. In the proof of Theorem 2.4.4, it was shown that we can assume that the degra-

dation operators are given in (2.17). In that case, the degraded tensors YH and YM are just the

subtensors i.e.

YH “ pYq1:IH ,1:JH ,:, YM “ pYq:,:,1:KM .

Hence the recoverability of Tucker super-resolution model is equivalent to uniqueness of tensor

completion [95], that is the recovery of Y from known subtensors pYq:,:,1:KM and pYq1:IH ,1:JH ,:,

shown in Figure 2.2.

2.4.3 Recoverability in the blind case

Similarly to Theorem 2.4.1, we can prove exact recovery for Algorithm 6 under relaxed degra-

dation model. We assume that the MSI is degraded as before, and HSI is degraded slicewise by

an unknown linear operator Ps : RIˆJ Ñ RIHˆJH .
$

&

%

pYHq:,:,k “ PspY :,:,kq,

YM “ Y ‚3 P3,
(2.18)

Then it is easy to prove the following analogue of Theorem 2.4.1.

Proposition 2.4.6. Let Y have a Tucker decomposition

Y “ rrG; U,V,Wss,
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2.5. Numerical experiments

Figure 2.2: Recovery of Y from subtensors pYq:,:,1:KM (blue), pYq1:IH ,1:JH ,: (red).

where G P RR1ˆR2ˆR3, and U P RIˆR1, V P RJˆR2, W P RKˆR3 are full column rank.

If ranktY
p3q
H u “ R3 and ranktP3Wu “ R3, then Algorithm 6 recovers Y correctly.

Proof. Indeed, YM “ rrG; U,V,P3Wss. Therefore, since ranktP3Wu “ R3, the multilinear

rank of YM is equal to the one of Y and

Y “ YM ‚
3
pWpP3Wq:q.

Finally, due to the condition ranktY
p3q
H u “ R3, step 2 of Algorithm 6 recovers W up to a change

of basis, i.e., Z “ WO, where O P RR3ˆR3 is an orthogonal matrix. Due to the properties of the

pseudoinverse, we have

pWOpP3WOq:q “ WpP3Wq:,

which completes the proof.

2.5 Numerical experiments

The results are reproducible and the codes are available online at https://github.com/cprevost4/

HSR_Software.

2.5.1 Experimental setup

Experiments are conducted on a set of semi-real and synthetic examples, in which the groundtruth

SRI is artificially degraded to YH and YM by the degradation matrices P1, P2 and P3 according

to model (1.28).

For spatial degradation, we follow the commonly usedWald’s protocol [171]. The matrices P1,

P2 are computed with a separable Gaussian blurring kernel of size q “ 9. Then, downsampling
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2.5. Numerical experiments

is performed along each spatial dimension with a ratio d “ 4 between pI, Jq and pIH , JHq, as

in [86].

In this chapter, we consider two spectral responses for the spectral degradation matrix P3. In

all the semi-real examples5, the bands corresponding to water absorption are first removed as in

[86]. The LANDSAT sensor spans the spectrum from 400nm to 2500nm for the HSI and produces

a 6-band MSI corresponding to wavelengths 450–520nm (blue), 520–600nm (green), 630–690nm

(red), 760–900nm (near-IR), 1550-1750nm (shortwave-IR) and 2050–2350nm (shortwave-IR2).

The second response corresponds to a QuickBird sensor, which spans the spectrum from 430nm

to 860nm for the HSI and produces a 4-band MSI which bands correspond to wavelengths 430–

545nm (blue), 466–620nm (green), 590–710nm (red) and 715–918nm (near-IR). The spectral

degradation matrix P3 is a selection-averaging matrix that selects the common spectral bands

of the SRI and MSI.

We compare the groundtruth SRI with the recovered SRI obtained by the algorithms. The

main performance metric used in comparisons is reconstruction Signal-to-Noise ratio (R-SNR)

used in [170]. In addition to R-SNR, we also consider different metrics from [170]. Please refer

to Appendix C that contains the definitions of the metrics used for comparison. We also show

the computational time for each algorithm, given by the tic and toc functions of MATLAB.

The two best results of each column are shown in bold.

2.5.2 Semi-real data: comparison with other methods

In this part, we showcase the capabilities of SCOTT and BSCOTT and compare them with

state-of-the-art methods.

Comparison for non-blind algorithms

First, we compare the performance of non-blind algorithms (i.e, STEREO and its initialization

algorithm TenRec, and SCOTT). We test various ranks for both algorithms. For STEREO

and TenRec, we use the implementation6 of [86]. For CNMF [177], the groundtruth number of

materials is chosen as the number of endmembers R as in [86]. We also consider a case where

the number of endmembers is underestimated, that is, we take R “ 4. We then run HySure [149]

in a non-blind fashion, meaning that the spatial and spectral degradation operators are not

estimated7 but obtained from P1, P2 and P3. The same model is applied to the FUSE [174]

and GLP-HS [6] algorithms. As a comparison, we also show the performance of BSCOTT when

no splitting is performed.
5available online at http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes.
6available online at https://github.com/marhar19/HSRviatensordecomposition.
7In fact, HySure has a different, convolutional degradation model, that is not necessarily separable.
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2.5. Numerical experiments

The first dataset we consider is Indian Pines, where Y P R144ˆ144ˆ200 is degraded by a

LANDSAT sensor for the MSI and a downsampling ratio d “ 4 for the HSI. The results are

displayed in Tables 2.1 and 2.2, and Figure 2.3.

Table 2.1: Indian Pines (non-blind algorithms), no noise.
Algorithm R-SNR CC SAM ERGAS Time (sec)

STEREO, N “ 50 26.8905 0.88456 2.2586 1.0359 2.1733

STEREO, N “ 100 28.4569 0.90681 2.0297 0.89401 3.3088

TenRec, N “ 50 26.8151 0.88340 2.27004 1.0480 0.84299

TenRec, N “ 100 28.3375 0.90337 2.0513 0.90457 2.1038

SCOTT, R “ p40, 40, 6q 26.3907 0.88745 2.3240 1.0587 0.18136

SCOTT, R “ p30, 30, 16q 25.1500 0.87235 2.4982 1.1844 0.37773

SCOTT, R “ p70, 70, 6q 27.6230 0.90422 2.1882 0.95382 0.33128

SCOTT, R “ p24, 24, 25q 25.0617 0.87524 2.4459 1.1784 0.16274

BSCOTT, R “ p40, 40, 6q 25.1204 0.86879 2.7589 1.2546 0.10718

FUSE 21.9454 0.80946 3.9068 1.9054 0.33318

GLP-HS 28.6072 0.94919 1.8832 0.81479 16.132

CNMF, R “ 16 29.7816 0.92585 1.7699 0.75379 6.1386

CNMF, R “ 4 28.1284 0.87643 2.1249 0.98248 2.5099

HySure, R “ 16 26.4317 0.87137 2.4963 1.1033 15.177
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Figure 2.3: Spectral slice no.120 of the SRI, Indian Pines.

In the noiseless case (see Table 2.1), we can see that for multilinear ranks chosen in the recov-

erability region (see Figure 2.1), SCOTT yields similar performance to the one of STEREO with

lower computation time. We found out that tensor rank N “ 100 yields better performance. We

also see that matrix-based algorithms CNMF and GLP-HS perform as well as STEREO; however,

we notice that underestimating the number of endmembers slightly degrades the performance of
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Table 2.2: Indian Pines (non-blind algorithms), with noise.
Algorithm R-SNR CC SAM ERGAS Time (sec)

STEREO, N “ 50 25.8662 0.823205 2.5222 1.2619 1.3350

STEREO, N “ 100 24.7346 0.74452 2.9987 1.7396 3.2052

TenRec, N “ 50 25.7003 0.81547 2.5510 1.2924 0.79575

TenRec, N “ 100 25.0435 0.75779 2.8588 1.6335 2.2445

SCOTT, R “ p40, 40, 6q 23.8318 0.81056 3.1223 1.5395 0.16653

SCOTT, R “ p30, 30, 16q 24.1814 0.798607 2.9023 1.4736 0.34746

SCOTT, R “ p70, 70, 6q 17.1411 0.67003 6.5783 3.6028 0.32068

SCOTT, R “ p24, 24, 25q 24.3351 0.79427 2.7778 1.4508 0.16026

BSCOTT, R “ p40, 40, 6q 20.2986 0.73826 4.6809 2.4265 0.06127

FUSE 12.2062 0.62032 11.1661 5.6554 0.35185

GLP-HS 23.0761 0.74048 3.4404 1.9802 13.6248

CNMF, R “ 16 23.3036 0.74707 3.3919 1.9513 5.2135

CNMF, R “ 4 24.3487 0.77619 2.9105 1.6278 2.1524

HySure, R “ 16 18.2407 0.57796 6.1834 3.9992 13.3145

CNMF.

In Table 2.2, white Gaussian noise is added to YH and YM with an input SNR of 25dB. In

this case, as in [86], tensor rank N “ 50 yields better performance. For N “ 100, TenRec gives

slightly better performance than STEREO. Compared with the noiseless case, the performance

of STEREO and TenRec deteriorate slightly, while we observe a bigger loss of performance for

other methods, including SCOTT and BSCOTT.

The other dataset is the Salinas-A scene, where Y P R80ˆ84ˆ204 is degraded with QuickBird

specifications and d “ 4 for the HSI. For HySure, we utilize R “ 6 as the number of endmem-

bers. For CNMF, we consider R “ 6, as well as R “ 3. The results are presented in Table 2.3

and Figure 2.4.

In [86], CP-rank N “ 100 is used for STEREO. However, we found out that N “ 50

yields better reconstruction. In Figure 2.4, we can see that STEREO and SCOTT can recover

accurately the SRI. As for the previous dataset, we notice that HySure and CNMF with R “ 6

show similar performance to that of STEREO and SCOTT. As before, underestimating R yields

lower performance in CNMF.

45



2.5. Numerical experiments

Table 2.3: Salinas-A (non-blind algorithms).
Algorithm R-SNR CC SAM ERGAS Time (sec)

STEREO, N “ 50 33.9368 0.97211 0.86659 2.88208 1.0556

STEREO, N “ 100 24.8911 0.91253 0.67377 4.1583 1.27004

TenRec, N “ 50 33.4116 0.970106 0.91205 2.8975 0.69846

TenRec, N “ 100 32.7065 0.94477 0.63384 5.6061 0.90033

SCOTT, R “ p40, 40, 6q 31.2708 0.94171 0.67071 5.3997 0.10085

SCOTT, R “ p50, 50, 6q 31.8948 0.94295 0.55846 5.3832 0.14075

SCOTT, R “ p70, 70, 6q 32.3434 0.94391 0.45887 5.3753 0.27765

BSCOTT, R “ p40, 40, 6q 31.0957 0.94093 0.70392 5.3962 0.37992

FUSE 20.6141 0.87891 1.9064 5.8919 0.11896

GLP-HS 27.2543 0.94344 1.0126 5.1996 5.3376

CNMF, R “ 6 31.6256 0.93071 0.66208 5.7113 1.6339

CNMF, R “ 3 29.8962 0.91839 1.3195 5.8291 0.85603

HySure, R “ 6 31.3981 0.94302 0.62018 5.3878 1.2561

Comparison for blind algorithms

We now consider the case where the spatial degradation matrices P1, P2 are unknown and

compare the performance of BSCOTT with Blind-STEREO [86], SCUBA [87], and HySure. We

also consider Blind-TenRec, the algebraic initialization of Blind-STEREO. White Gaussian noise

is added to the HSI and MSI, with a SNR of 15dB and 25dB, respectively. We consider two

other datasets; the first one is a portion of the Pavia University dataset, where Y P R608ˆ366ˆ103

is degraded with QuickBird specifications for the MSI and d “ 4 for the HSI. We use R “ 9

for HySure. We demonstrate the results in Table 2.4 and Figure 2.5 for visual reconstruction.

For BSCOTT, in the case where R “ p152, 84, 3q, no compression is performed. In the following
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Figure 2.4: Spectral slice no.120 of the SRI, Salinas-A.
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tables, the numbers between parentheses after the algorithm names represent the number of

corresponding blocks in which the HSI and MSI are splitted.

Table 2.4: Pavia University (blind algorithms).
Algorithm R-SNR CC SAM ERGAS Time (sec)

Blind-STEREO, N “ 300 23.1085 0.98472 3.9720 2.4641 82.8624

Blind-TenRec, N “ 300 22.5163 0.982809 4.0564 2.6489 29.5103

SCUBA p4, 4q, N “ 120, R3 “ 3 25.6679 0.99056 3.2436 1.9654 18.9734

SCUBA p8, 8q, N “ 120, R3 “ 3 26.4943 0.99188 2.9252 1.8117 50.1502

BSCOTT p4, 4q, R “ p60, 60, 3q 23.4060 0.98589 3.8314 2.3734 0.43925

BSCOTT p4, 4q, R “ p152, 84, 3q 26.4176 0.99176 2.9726 1.83007 0.57452

BSCOTT p4, 4q, R “ p120, 60, 4q 25.6270 0.99102 3.0141 1.8116 0.460906

BSCOTT p8, 8q, R “ p70, 40, 3q 26.51609 0.991904 2.9210 1.8138 0.56709

HySure, R “ 9 26.2686 0.99202 2.8266 1.7373 115.3863
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Figure 2.5: Spectral slice no.44 of the SRI, Pavia University.

In the second case, we consider the Cuprite dataset, where Y P R512ˆ614ˆ224 is degraded with

LANDSAT specifications and d “ 4. The results are presented in Table 2.5 and Figure 2.6.

Table 2.5: Cuprite (blind algorithms).
Algorithm R-SNR CC SAM ERGAS Time (sec)

Blind-STEREO, N “ 150 29.8745 0.96671 1.370901 7.34777 56.4204

Blind-TenRec, N “ 150 30.7042 0.96762 1.21193 6.476201 12.6689

SCUBA p4, 4q, N “ 45, R3 “ 3 31.7062 0.97319 1.11923 6.567004 12.5766

SCUBA p8, 8q, N “ 45, R3 “ 3 34.6563 0.98535 0.91567 6.16538 33.7934

BSCOTT p4, 4q, R “ p45, 45, 3q 31.9125 0.97437 1.08392 6.57322 0.891088

BSCOTT p4, 4q, R “ p60, 60, 3q 33.0241 0.97947 1.02938 6.57532 1.19396

BSCOTT p8, 8q, R “ p45, 45, 3q 34.6998 0.98555 0.90547 6.19109 1.25159

HySure, R “ 10 34.6231 0.98614 0.94212 6.82798 201.4047
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Figure 2.6: Spectral slice no.44 of the SRI, Cuprite.

These two previous examples show that, for different splittings, and ranks taken from [87],

BSCOTT yields the best performance. For certain multilinear ranks, it even outperforms SCUBA

and HySure with lower computation time. Moreover, it outperforms Blind-STEREO and Blind-

TenRec. It also usually provides the best SAM, which means that the spectral dimension is

well-reconstructed. In terms of visual reconstruction, our algorithm can recover accurately the

details of the groundtruth SRI, even though the spatial degradation matrices are unknown.

Performance for the pansharpening task

Next, we address the pansharpening problem, which consists in fusion of a hyperspectral image

and a panchromatic image (PAN) YP P RIˆJˆ1. In this case, the spectral degradation matrix

is obtained by averaging over the full spectral range of the SRI, so that P3 P R1ˆK . CP-based

algorithms are not applicable, since their initialization is based on the CPD of the MSI (which is

a matrix in the case of PAN images). In Table 2.6, the metrics are shown for different multilinear

ranks for the Indian Pines dataset. We also compare our results to those of HySure.

Table 2.6: Indian Pines (pansharpening).
Algorithm R-SNR CC SAM ERGAS Time (sec)

SCOTT, R “ p24, 24, 25q 20.4722 0.774777 4.40757 1.95365 0.218684

SCOTT, R “ p30, 30, 16q 18.0432 0.692784 5.67889 2.58745 0.427783

SCOTT, R “ p35, 35, 6q 14.60801 0.543066 7.83724 3.88505 0.887116

BSCOTT p4, 4q, R “ p24, 24, 1q 19.7835 0.716704 5.068709 2.19354 0.276674

BSCOTT p4, 4q, R “ p35, 35, 1q 19.7851 0.716795 5.068709 2.19337 0.120544

HySure, R “ 16 20.6665 0.755082 4.23702 1.98791 14.3937

We can see that even though the only possible value of R3 is 1 for BSCOTT, the algorithm

still manages to yield a good recovery of the SRI. On the other hand, SCOTT can also recover

the SRI accurately, but is more sensitive to the choice of the multilinear rank.
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2.5.3 Synthetic examples

In most cases, generic recoverability conditions proposed in [86] are less restrictive than that of

the Tucker approach. The tensor rank N can be larger than the dimensions of the SRI, while the

multilinear rank is bounded by its dimensions. This gives the CP-based model better modeling

power than the Tucker-based model, as shown for real data: regardless of the computation time,

STEREO gives better performance than SCOTT. However, there may exist deterministic cases in

which the Tucker recoverability conditions are satisfied while nothing can be concluded from the

results of [86]. The goal of this subsection is to provide synthetic examples for such situations in

the noiseless and noisy cases. While these examples do not necessarily look like realistic spectral

images, they do help to better understand the recoverability conditions of the SRI and to evaluate

their impact on the reconstruction performance.

Generating synthetic SRI

First, we explain how the synthetic SRI Y P RIˆJˆK are generated. We consider R spectral

signatures ts1, . . . , sRu obtained from the Indian Pines groundtruth data. The SRI is split into

M2 equal blocks along the spatial dimensions. In each I
M ˆ

J
M block, at most one material is

active, indicated by a number in the corresponding cell of a parcel map (see Table 2.7 for an

example).

Table 2.7: Example of parcel map with R “ 2 materials.
1 2

2

Formally, the SRI is computed as

Y “

R
ÿ

r“1

Ar b sr, (2.19)

where the abundance maps Ar (r P t1, . . . , Ru) are block matrices with Gaussians of fixed size

present on the blocks corresponding to the r-th material in the parcel map. For instance, we

consider the case presented in Table 2.7; the two abundance maps are

A1 “

«

H 0

0 0

ff

, A2 “

«

0 H

H 0

ff

,

where H is a 60ˆ 60 Gaussian with unit mean and standard deviation σ “ 20. To illustrate this

example, we show in Figure 2.7 two spectral bands of Y .
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Figure 2.7: Spectral bands of the synthetic SRI with R “ 2 materials.

Non-existing low-rank approximations

Let us consider the example introduced in Table 2.7. Due to separability of the Gaussians, Y
has the following multilinear decomposition:

Y “ rrG; U,V,Sss,

where G:,:,1 “

«

1 0

0 0

ff

, G:,:,2 “

«

0 1

1 0

ff

, U “ V “

«

H 0

0 H

ff

and S “ rs1 s2s.

The multilinear rank of Y is R “ p2, 2, 2q, while the tensor rank of Y is equal to the tensor rank

of G, which is known to be equal to N “ 3 [32, Ex. 2], [33, Ex. 6.6]. This is a well-known case

where the best rank-2 CP approximation does not exist [20, 31], thus we can expect problems

with the CP-based approach.

We generate YH with a downsampling ratio of d “ 4 and YM with LANDSAT specifications.

No noise is added to the MSI and HSI. We run STEREO and TenRec for N P t1, . . . , 40u and

SCOTT for R1 “ R2 P t1, . . . , 40u and R3 P t1, . . . , 10u under recoverability conditions. For

each algorithm, we compute the R-SNR as a function of the rank; the results are provided on

Figure 2.8. As a comparison, on the same plot as STEREO and TenRec, we plot the results of

SCOTT for R3 “ R and R1 “ R2 “ N .

For SCOTT, the best reconstruction error (given by R-SNR) is obtained for R3 “ R and

is rather insensitive to the choice of R1 “ R2. The value R3 can also be chosen larger than R

without significant loss of performance. For STEREO, only rank N “ 3 allows for an accurate

reconstruction of the SRI. For other tensor ranks, either the algorithm breaks (when no point is

plotted, see e.g., N “ 32) or leads to inaccurate recovery. TenRec however achieves the exact

recovery for a wide range of tensor ranks. We can see that in this case, performing iterations

of STEREO after TenRec leads to a loss of performance. We believe that this is due to the

presence of collinear factors in the CP approximation, causing ill-conditioning of ALS iterations.

However, for noisy or real examples, this phenomenon is not likely to occur.
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Figure 2.8: R-SNR as a function of the ranks: for STEREO, TenRec and SCOTT with R3 “ R

(left); for SCOTT only (right).

Higher rank and noisy example

We also consider a slightly more realistic scenario. The following example is made of R “ 7

materials, generated similarly to the previous example, as illustrated in Table 2.8 and Figure 2.9.

The abundance maps are arranged along an anti-diagonal pattern, in a similar fashion as for the

Salinas-A dataset.

Table 2.8: Parcel map for R “ 7 materials.
1 2 3 4

2 3 4 5

3 4 5 6

4 5 6 7

In this example, Y P R80ˆ80ˆ200 is degraded with QuickBird specifications for the MSI and

d “ 4 for the HSI. White Gaussian noise is added to the degraded images with an input SNR

of 35dB. The multilinear rank of the SRI is R “ p4, 4, 7q while we do not know the tensor rank.

Similarly, we run both algorithms with the same setup as in the previous example, including a

comparison of STEREO and TenRec, and SCOTT for R3 “ R and an overestimated R3 “ 15.

Our results are presented in Figure 2.10.

For SCOTT, the best R-SNR is obtained for R “ p4, 4, 7q, which is the multilinear rank of

the noiseless tensor. Moreover, the best reconstruction error is obtained for R3 “ R: in this

case, the performance of SCOTT is better than that of CP-based approaches. SCOTT is also

robust to an overestimation of R3 or R1 “ R2. TenRec and STEREO have almost the same

performance, which is lower than that of SCOTT in this example.

51



2.5. Numerical experiments

Spectral band no.44

20 40 60 80

10

20

30

40

50

60

70

80

10

20

30

40

50

60

70

Spectral band no.160

20 40 60 80

10

20

30

40

50

60

70

80

2

4

6

8

10

12

14

Figure 2.9: Spectral bands of the synthetic SRI with R “ 7 materials.
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Figure 2.10: R-SNR as a function of the ranks.

Synthetic example following a block-term decomposition

Now, we provide an example in which the CPD of the MSI is not unique but the CP approach

still achieves the exact recovery of the SRI. This dataset is made of R “ 6 materials with spatial

degradation ratio of d “ 4 for the HSI and Quickbird specifications for the MSI so that KM ă R.

Each abundance map is made of two 10ˆ 10 Gaussians of width σ “ 4, as in Table 2.9.

Table 2.9: Parcel map for block tensor with R “ 6 materials.

1

1
. . .

R

R
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In this example, the tensor rank of Y is N “ 12 while the multilinear rank is R “ p12, 12, 6q.

The CP decompositions of both MSI and HSI are not unique, but the recoverability conditions

given in Corollary 2.4.3 are satisfied. This is an example of a tensor admitting a block-term

decomposition, where the abundance maps in (2.19) corresponding to different materials are not

rank-one. While this is not a realistic example due to small ranks of abundance maps, it is

inspired by the standard linear mixing model [176] with few materials.
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Figure 2.11: R-SNR as a function of the CP-rank in the noiseless case (left) and with 35dB input

SNR (right).

In Figure 2.11, we show the R-SNR as a function of the rank for STEREO and SCOTT

for the noiseless and noisy cases. In the noiseless case, under recoverability conditions, our

Tucker-based approach provides good reconstruction for a variety of ranks and R3 ě R. For

STEREO and TenRec, we can see that even though the CP model is not identifiable, N “ 12

allows correct reconstruction of the SRI with almost the same performance as that of SCOTT

for R “ p12, 12, 6q (up to machine precision).

This example corroborates Corollary 2.4.3 and shows that identifiability of the CP model (as

it is formulated in [86]) is not necessary to reconstruct Y accurately, and partial uniqueness may

be sufficient.

In the noisy case, the three algorithms have almost the same performance for R1 “ R2 “

N “ 12. However, for N ě 21, TenRec gives better performance than SCOTT, and for N ě 26,

STEREO overcomes our approach. Note that the SRI tensor in this example admits a block-term

decomposition with ranks p2, 2, 1q, which is better suited to the LL1-based algorithm developed

in Chapter 3.
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2.5.4 Choice of multilinear ranks in the presence of noise

In Section 2.4, we provided a theorem for recoverability of the SRI. In this subsection, we show

that the conditions of Theorem 2.4.1 also give hints on choosing the multilinear ranks for HSR

in “signal+noise” and semi-real scenarios.

Singular values of the unfoldings

Motivated by Step 1 of Algorithm 5, where the factor matrices U, V, W are computed by

HOSVD of the HSI and MSI, and by the first set of conditions in Theorem 2.4.1, we look at the

singular values of Y
p1q
M , Y

p2q
M and Y

p3q
H .

We first consider the synthetic data from Figure 2.7 with R “ 2 materials, and add white

Gaussian noise to YH and YM with different SNR: 20dB, 35dB, 60dB and 8 (no noise). In

Figure 2.12, we plot the 15 first singular values of the unfoldings on a semi-log scale.
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Figure 2.12: First 15 singular values of Y
p1q
M , Y

p2q
M and Y

p3q
H .

We can see that for all the considered noise levels, the singular values are well separable. The

corners of the curves at singular values p2, 2, 2q are coherent with the theoretical multilinear rank

of the synthetic SRI.

We now consider the semi-real datasets Indian Pines and Salinas-A and plot the singular

values of the unfoldings on a semi-log scale on Figures 2.13 and 2.14.
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Figure 2.13: Singular values of the unfoldings, Indian Pines.
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Figure 2.14: Singular values of the unfoldings, Salinas-A.

In the semi-real cases, a clear corner in the singular value curves cannot be found, because

these examples do not correspond to a “low-rank signal`noise” scenario, contrary to the case

of synthetic data. Moreover, the HSI and MSI are not necessarily low-rank: hence, the Tucker

approach only performs a low-rank approximation of the data. The SVD of the unfolding does

not provide as much information as for the synthetic case, in which the groundtruth data were

explicitly designed to be low-rank.

Influence on the reconstruction error

Next, we consider the R-SNR and cost function fT as functions of the multilinear rank. We run

SCOTT for the ranks R1 “ R2 P t10, . . . , 50u and R3 P t2, . . . , 25u for which the recoverability

condition holds (see Section 2.4), and two semi-real datasets: Indian Pines and Salinas-A scene.

The results are shown in Figures 2.15 and 2.16, respectively.
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Figure 2.15: R-SNR (left) and fT (right) as functions of R1 “ R2 and R3, Indian Pines.

While the cost function decreases as R1 and R3 increase, the best reconstruction error (given

by R-SNR) is achieved in one of the two recoverability subregions in Figure 2.1: (a) (R3 ě KM

and R1 ď IH) and (b) (R3 ď KM and R1 ě IH). For subregion (b), the best performance is
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Figure 2.16: R-SNR (left) and fT (right) as functions of R1 and R3, Salinas-A.

achieved when R3 “ KM and R1 as large as possible, while for subregion (a), we notice a sharp

drop of the R-SNR near R1 “ IH .

The drop of the performance in subregion (a) can be explained by looking at the condition

number of the matrix XTX that is used to compute the core tensor pG. For the subregion (a),

due to properties of Kronecker products [101, Theorems 13.12 and 13.16], we have that

condtXTXu :“
σmaxpX

TXq

σminpXTXq
“
λσ2

maxpP3
xWq ` σ2

maxpP1
pUqσ2

maxpP2
pVq

σ2
minpP1

pUqσ2
minpP2

pVq
.

Note that σmaxpP3
xWq does not decrease when we increase R3 and R3 ď KM . Hence we can get

a lower bound on condtXTXu by setting R3 “ KM .
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Figure 2.17: logpcondtXTXuq as a function of R1 “ R2 with R3 “ KM (left); σ1pP3
xWq (right),

Indian Pines.

In Figure 2.17, for the Indian Pines dataset we plot on a semi-log scale the lower bound

condtXTXu as functions of R1 “ R2, for R3 “ 6 as well as σmaxpP3
xWq; since the latter almost

does not change, the lower bound is tight. In Figure 2.17, we see that there is a highest relative

increase of the condition number around R1 “ R2 “ 32, which coincides with the point of the
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performance drop in Figure 2.15. Similar behaviour can be observed for the Salinas dataset on

Figure 2.18.
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Figure 2.18: logpcondtXTXuq as a function of R1 “ R2 with R3 “ KM (left); σ1pP3
xWq (right),

Salinas-A.

Based on the above examples, we can conclude that if we are in subregion (b), the R3 should

be taken as large as possible (R3 “ KM ), while in the subregion (a) R1, R2 should be taken as

large as possible while maintaining the condition number to a reasonable value.

2.5.5 Recovery of underlying spectra

Since exact recovery of underlying spectra is an important matter in further processing of spectral

images, we would like see whether SCOTT is able to do that. We consider the Indian Pines

dataset, for which groundtruth repartition of the materials (see Figure 2.19) is available, splitting

the image into 16 regions corresponding to distinct materials.
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Figure 2.19: Groundtruth image for Indian Pines dataset. Materials 4,7,9,14 are marked in red.

We will consider three representative multilinear ranks: p40, 40, 6q, p30, 30, 16q, and p24, 24, 25q,
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and compare the performance of SCOTT to that of STEREO (N “ 100).

In this subsection, we do not perform a proper unmixing of the SRI8. Instead, we aim at

recovering the mixed spectra underlying each pixel of the SRI. We compute the spectral signa-

tures by averaging across the regions in Figure 2.19. We selected four representative signatures

corresponding to materials 4 (corn), 7 (grass pasture, mowed), 9 (oats) and 14 (woods), which

are plotted in Figure 2.5.5.
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Figure 2.20: Original spectral signatures for materials 4, 7, 9 and 14.

Note that materials 7 and 9 are scarce in the groundtruth SRI (resp. 28 and 20 pixels),

whereas materials 4 and 14 are more abundant (resp. 237 and 1265 pixels).

In Figure 2.21 we plot relative errors of the reconstruction of spectra by different methods.
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Figure 2.21: Residual errors for the three considered ranks and four materials.

As expected, for materials 7 and 9, the discrepancy between the original spectra and the

spectra obtained from estimated SRI is bigger than for materials 4 and 14. This can be explained

by the scarcity of sources 7 and 9 compared to sources 4 and 14.

In Figure 2.22, we have a closer look at the spectra at spectral bins 80 to 100.
8See Chapter 3 for a proper unmixing algorithm.
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Figure 2.22: Spectral signatures at spectral bins no.80 to 100.

We can see that for abundant materials (4 and 14), all the algorithms estimate well the

spectra. For the scarce materials it is important to choose the rank large enough, in particular

R3 “ 16 and R3 “ 25 yield better reconstruction than R3 “ 6, and also than STEREO, even

with N “ 100.

2.6 Conclusion of Chapter 2

In this chapter, we proposed two simple and fast algorithms based on the HOSVD. We proved

that, although the Tucker decomposition is not identifiable in general, the target SRI can be

uniquely recovered using the multilinear approximation. We also showed that similar conclu-

sions can be drawn for the CP-based HSR problem. Our numerical experiments highlighted the

capabilities of the proposed algorithms for solving the HSR and pansharpening problems, at a

low computational complexity. Our simulations on synthetic examples highlighted specific cases

where the recoverability conditions proposed in Section 2.4 hold, while nothing can be concluded

for the CP-based approach.

However, the multilinear approach proposed in this chapter, as well as the CP approach, suffer

from two main drawbacks. First, the considered tensor degradation model lacks flexibility. As a

result, it might only depict rather specific acquisition scenarios, that do not allow for variations

in the acquisition conditions or uncertainties related to the sensors.

Second, the latent factors of the CP and Tucker models do not generally have a physical

meaning, and the decomposition can be non-unique. Although we showed that these are not

restrictive obstacles for unique recovery of the target SRI, in some cases it might be desirable to

recover unique, interpretable factors (e.g., by means of priors) that can be exploited in further

processing of the SRI.

In the next chapter, we will consider a more flexible degradation model, that is able to depict

a wide class of possible variations occurring between the HSI and MSI. We will propose to use

another low-rank approximation for the SRI that motivates incorporation of prior knowledge to

the model, in order to obtain interpretable and identifiable low-rank factors.
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Chapter 3

Hyperspectral super-resolution

accounting for spectral variability:

LL1-based recovery and blind unmixing
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3.1. Introduction

3.7 Conclusion of Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . 88

3.1 Introduction

In this chapter, we present the results of [130] and propose to formulate the HSR problem as a

coupled BTD of the HSI and MSI, accounting for inter-image spectral variability between the

endmembers.

Inspired by the work of [44, 178], we propose some guarantees for noiseless unique recovery

of the SRI and its latent factors based on the LMM. In particular, our noiseless recovery con-

ditions do not required additional constraints on the low-rank factors, contrary to matrix-based

models. We also propose a unified procedure that aims at recovering the SRI and estimating its

latent factors. Our experiments on a set of synthetic and semi-real datasets prove competitive

performance of the proposed approach for the joint reconstruction and unmixing of the unknown

SRI, compared to traditional unmixing algorithms that usually require knowledge of the SRI.

This chapter is organized as follows. Section 3.2 introduces the tensor degradation model,

as well as the coupled low-rank model accounting for spectral variability. Section 3.3 addresses

recoverability analysis for the joint fusion-and-unmixing task. Section 3.4 describes the proposed

algorithms and their computational complexity. Finally, Sections 3.5 and 3.6 contain numerical

experiments for the fusion and blind unmixing tasks, respectively.

3.2 Proposed model

3.2.1 Degradation model and indeterminacies

Most previous works [44,86,135] considered the degradation model (1.28) for the HSR problem.

However, this model implies that the acquisition conditions of YH and YM are the same, and

thus ignores any variability phenomenon. In this chapter, we adopt the different model (1.31) to

address the HSR problem. In what follows, we introduce a low-rank tensor model to circumvent

the fundamental ambiguities of the proposed degradation model (1.31). Indeed, while Theorem

1.4.1 indicates conditions under which pY ,Ψq cannot be recovered uniquely, a wisely chosen

low-rank decomposition might allow for unique recovery of portions of the tensors.

In [17], approaches based on model (1.31) were proposed, using a coupled Tucker approx-

imation. However, due to the Tucker decomposition being generally non-unique, the latent

multilinear factors were not interpretable as a mixing model. In this paper we propose to use

the LL1-BTD, whose factors are suitable for physical interpretation under non-negativity con-

straints. Different from [17] (where both spatial and spectral variabilities were considered, hence

representing localized changes), we consider that variability only impacts the spectral dimension
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of the SRI. This assumption is reasonable, since spectral variability can occur even with short

acquisition time differences. Moreover, this model is more suited to represent variations in il-

lumination and acquisition conditions. Addressing spectral variability only allows to visualize

which wavelengths are more impacted by different acquisition conditions for each specific mate-

rial. This hypothesis also allows for design of simple algorithms, with sometimes less restrictive

noiseless recoverability guarantees9 than the ones from [17].

3.2.2 LL1-BTD mixing model for the underlying SRIs

Each pixel (or mode-3 fiber) of Y (and therefore, of YH) can be represented as a sum of a small

number R of pure spectral signatures [91]. This property can be incorporated in a physically-

informed model, allowing to perform both image fusion and unmixing of the unknown SRI at

the same time. Thus, as in [178], we can model the third-mode unfolding of Y using the LMM

as:

Yp3q “ SCT P RIJˆK , (3.1)

where C “ rc1, . . . , cRs P RKˆR is a matrix containing the spectral signatures of the R endmem-

bers underlying the SRI. The matrix

S “ rvectS1u, . . . , vectSRus P RIJˆR (3.2)

contains the vectorized abundance maps of each material. In the LMM, C and S are assumed

to be entry-wise non-negative.

In some traditional unmixing methods (see e.g. [125]), the sum-to-one constrained abundance

matrices is also enforced. However, spatial illumination changes frequently introduce scaling

variations in each pixel. Moreover, non-negativity constraints can be transformed equivalently

to generalized sum-to-one constraint, as specified in [82]. As a result, we do not consider this

additional constraint in this work.

We assume as in [178] that the abundance maps admit low rank L. The hypothesis of low-

rank abundance matrices is reasonable, since the two spatial dimensions are often correlated

along the rows and columns, respectively. Thus we have

Sr « ArB
T
r P RIˆJ ,

where Ar P RIˆL and Br P RJˆL admit rank L.

Reshaping Yp3q into tensor format yields the following:

Y “

R
ÿ

r“1

pArB
T
r q b cr. (3.3)

9In [17], recovery of the full variability tensor using a Tucker approximation often results in restrictive multi-

linear ranks.
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The above model can be seen as an LL1-BTD of the tensor Y with factors A “ rA1, . . . ,Ars,

B “ rB1, . . . ,Brs and C “ rc1, . . . , crs. Traditional unmixing algorithms aim at recovering

tSr “ ArB
T
r u

R
r“1 and C from the mixed pixels in Y . Here, since only YH is observed with high

spectral resolution, traditional unmixing methods are only able to recover spatially degraded

versions of the abundance maps [44]

P1SrP
T
2 P RIHˆJH for r P t1, . . . , Ru. (3.4)

Differently from those works, fusion of an HSI with an MSI with high spatial resolution allows

to seek for abundance maps at a higher spatial resolution. Since the true SRIs Y and rY are

unknown, we utilize the fusion framework to decompose the HSI and MSI into interpretable

mixing factors. While high-resolution spectra can be obtained from the HSI, high-resolution

abundance maps can only be obtained from the MSI. Once the mixing factors have been retrieved,

the estimated SRI pY can be approximated using the LL1-BTD.

However, the spectral variability between the HSI and MSI has to be modeled first.

3.2.3 Modeling spectral variability

In traditional unmixing applications, which only deal with a single SRI, spectral variability

defines the fact that the spectrum of a material (e.g., grass or soil) changes from pixel to pixel.

This sort of spectral variability is widely considered in the literature; see e.g., [154] and references

therein. However in our framework, two different images are considered. Hence the variability of

the spectra between them can be more significant, since their acquisition conditions may be very

different. In this chapter, we adopt a simple model for spectral variability, which characterizes

which wavelengths are more impacted by different acquisition conditions for each material in the

images. Although not describing pixel-by-pixel spectral variability, this model is appropriate to

describe inter-image variations due to different acquisition conditions and will allow us to obtain

recovery guarantees. In [15], the generalized linear mixing model was proposed to model the

spectra underlying the MSI as

rC “ ψmulti d C, (3.5)

where ψmulti P RKˆR is a matrix of positive scaling factors. In this paper, we propose to use an

equivalent additive model due to its better mathematical tractability:

rC “ ψ `C, (3.6)

where ψ P RKˆR is different from ψmulti. The choice of the additive variability model (3.6) allows

to keep the spectral variability explicit in ψ. Moreover, both models (3.5) and (3.6) are able to

represent arbitrary endmember variations.
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Since we allow only the spectral variability to be present, the variability tensor Ψ also admits

an LL1-BTD with the same factors A and B as for the SRI Y , but with spectral factor ψ P RKˆR

representing spectral variability. This allows us to write rY as

rY “

R
ÿ

r“1

pArB
T
r q b cr

looooooooomooooooooon

Y

`

R
ÿ

r“1

pArB
T
r q b ψr

looooooooomooooooooon

Ψ

“

R
ÿ

r“1

pArB
T
r q b rcr, (3.7)

where rcr “ ψr ` cr is the r-th column of rC. This representation (3.7) makes model (1.31)

fundamentally more ambiguous than model (1.28), as the factors in the SRI Y cannot be easily

distinguished from those of the variability tensor Ψ.

From the above formulations, we can finally express (1.31) as a coupled LL1-BTD:
$

&

%

YH “
řR
r“1pP1ArpP2Brq

Tq b cr ` EH ,

YM “
řR
r“1pArB

T
r q bP3rcr ` EM .

(3.8)

Thus the joint hyperspectral super-resolution and unmixing (HSRU) problem consists in finding

the LL1 factors tAr,Bru
R
r“1,C,

rC under the assumption of (3.8), subject to the constraints

tArB
T
r u

R
r“1 ě 0,C ě 0, rC ě 0, (3.9)

where for a matrix X, the notation X ě 0 means that X is entry-wise non-negative. The HSRU

problem is different from that addressed in [44], which also used the LL1-BTD but did not

consider variability and did not address the unmixing problem.

3.3 Recoverability analysis

In fact, the HSRU problem aims at recovering an SRI Y and a variability tensor Ψ underlying

the HSI in MSI, admitting a coupled LL1-BTD as in (3.8), under the constraints (3.9) on the

low-rank factors. Regarding the unmixing task, the latent factors underlying the images must

also be recovered uniquely. In this section, we provide a noiseless recoverability analysis for the

SRI Y and variability tensor Ψ. We show that our results hold for both image recovery and

estimation of the latent factors based on the LMM.

Theorem 3.3.1. Assume that the SRIs Y and rY admit BTDs as in (3.3) (resp. (3.7)),

that the HSI and MSI follow the coupled model (3.8), and that EH ,EM “ 0. Suppose that

tAr,Bru
R
r“1,C,

rC are drawn from any absolutely continuous joint distributions and that P1, P2

and P3 are full row rank. Let tA˚
r ,B

˚
r u
R
r“1,C

˚, rC˚ denote any solution to the HSRU problem

under the constraints (3.9). Then with probability one, the true SRI Y and degraded SRI with
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variability rY ‚3 P3 are uniquely recovered by
$

&

%

Y “
řR
r“1pA

˚
r pB

˚
r q

Tq b c˚r ,

rY ‚3 P3 “
řR
r“1pA

˚
r pB

˚
r q

Tq bP3rc
˚
r ,

(3.10)

if IHJH ě LR, IJ ě L2R and

min

ˆZ

I

L

^

, R

˙

`min

ˆZ

J

L

^

, R

˙

`minpKM , Rq ě 2R` 2.

Moreover, the abundance maps and spectral signatures represented by the LL1 factors S, C, P3
rC

are recovered uniquely up to permutation and scaling ambiguities.

Let us first recall the following lemma:

Lemma 3.3.2. [86, Lemma 1] Let us denote rA “ PA P RI
1ˆL, where P P RI

1ˆI is full row

rank and A P RIˆL is drawn from any absolutely continuous joint distribution. Then rA follows

an absolutely continuous joint distribution.

We can now derive the proof for Theorem 3.3.1.

Proof. Let tAr,Bru
R
r“1,C,

rC denote the groundtruth factors of the SRI tensors and let tA˚
r ,B

˚
r u
R
r“1,

C˚, rC˚ denote a solution to the HSRU problem under constraints (3.9). Moreover, let tSruRr“1

denote the groundtruth abundance maps and tS˚r uRr“1 “ tA
˚
r pB

˚
r q

TuRr“1 and by S and S˚, the

corresponding matrices defined as in (3.2). Then for EH ,EM “ 0, it holds that

YH “

R
ÿ

r“1

pP1ArpP2Brq
Tq b cr “

R
ÿ

r“1

pP1A
˚
r pP2B

˚
r q

Tq b c˚r , (3.11)

YM “

R
ÿ

r“1

Sr bP3rcr “
R
ÿ

r“1

S˚r bP3rc
˚
r . (3.12)

Since by assumption, tAr,Bru
R
r“1,C,

rC are drawn from absolutely continuous joint distribu-

tions and P1, P2 and P3 are full row rank, it follows from Lemma 3.3.2 that tP1Ar,P2Bru
R
r“1,P3

rC

follow certain absolutely continuous joint distributions.

Therefore, by (1.26), the LL1-BTD of YM is essentially unique almost surely if IJ ě L2R

and

min

ˆZ

I

L

^

, R

˙

`min

ˆZ

J

L

^

, R

˙

`minpKM , Rq ě 2R` 2.

This means that

S˚ “ SΠΛ, P3
rC˚ “ P3

rCΠΛ´1, (3.13)

where Π is a permutation matrix and Λ is a non-singular diagonal scaling matrix.
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Next, let us define rS “ pP2 b P1qS. We can see that

rS˚ “ rSΠΛ, (3.14)

where rS˚ “ pP2 b P1qS
˚. From [38, Lemma 3.3] and the proof of [44, Theorem II], rS has full

column rank almost surely if IHJH ě LR.

Let us continue by considering Y
p3q
H . From (3.11), we have

Y
p3q
H “ rSCT “ rS˚pC˚qT “ rSΠΛpC˚qT. (3.15)

Since rS has full column rank, we thus have C˚ “ CΠΛ´1.

Following (3.13) and (3.14), the LL1 factors S,C,P3
rC are recovered uniquely up to per-

mutation and scaling ambiguities by S˚,C˚ and P3
rC˚, respectively. Therefore, by combining

(3.13)–(3.15), we can express the third unfolding of the SRI Y and degraded rY ‚3 P3 as
$

&

%

Yp3q “ S˚pC˚qT,

prY ‚3 P3q
p3q “ S˚pP3

rC˚qT,

which are the the third-mode unfolding of the tensors in (3.10).

Remark 3.3.3. In the proof for Theorem 3.3.1, we can see that the low-rank factors C and

P3
rC, as well as the vectorized abundance maps S, can be uniquely identified up to permutation

and scaling ambiguities. This means that our recoverability results also hold for the unmixing

task of the HSRU problem, as it allows for noiseless unique recovery of the underlying abundance

maps and spectra in Y and rY ‚3 P3. Thus Theorem 3.3.1 proposed unique recovery conditions

for the joint HSRU problem.

Remark 3.3.4. We can see that knowledge of the spectral degradation matrix P3 is not needed10

to establish uniqueness of the SRI Y. As a result, the proposed approach can be considered as

blind in the spectral dimension. In fact, applying Theorem 3.3.1 to the MSI YM indicates that

we can only recover P3
rC uniquely, up to permutation and scaling ambiguities.

Following (3.6), the variability matrix ψ can only be recovered from the MSI up to the spectral

degradation P3 as

P3ψ “ P3prC´Cq.

Thus the proposed model only allows to recover uniquely a spectrally-degraded version of the

variability tensor, that is, Ψ ‚3 P3.
10Contrary to that of P1 and P2.
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3.4 Algorithms

In this section, we propose two spectrally-blind algorithms based on the LL1-BTD. The first

one is unconstrained and solves the reconstruction problem only. The second one enforced non-

negativity constraints on the factors of the mixing model and proposes a solution to the HSRU

problem.

3.4.1 Unconstrained optimization

When only interested in the super-resolution problem, we only aim at recovering the SRI Y and

variability tensor Ψ. In this framework, the latent LL1 factors do not need to be interpretable.

Thus, we can consider unconstrained optimization. In the remaining of this paper, for simplicity,

we denote
rCM “ rrcM,1, . . . ,rcM,Rs “ P3

rC.

As in [86], one possible approach for solving the HSR problem is to consider the following

optimization problem:

minimize
A,B,C,rCM

J pA,B,C, rCM q, where (3.16)

J pA,B,C, rCM q “ }YH ´

R
ÿ

r“1

pP1ArpP2Brq
Tq b cr}

2
F ` λ}YM ´

R
ÿ

r“1

pArB
T
r q b rcM,r}

2
F ,

which is a non-convex cost function, and λ is a balance parameter that controls the respective

weights on the HSI and MSI11. Since (3.16) is a non-convex cost function, we adopt a block

coordinate descent scheme: the latent factors are updated sequentially by solving unconstrained

convex quadratic programs.

Below, we provide the general framework of the corresponding algorithm, denoted hereafter

as BTD-Var.

The normalization step for the C and rCM factors is meant to avoid underflow and overflow

[41]. The updates for A and B can be seen as generalized Sylvester equations and solved by

efficient solvers, for instance, Hessenberg-Schur or Bartels-Stewart algorithms; see [150] for a

full overview. The updates for C and rCM are solved using normal equations. Please refer to

Appendix D for a full derivation.

The computational cost per iteration of BTD-Var can be decomposed as follows:

‚ OpI3 ` J3 ` L3R3q for solving the Sylvester equations;

‚ OpIJKMR ` IHJHKRq for computing the right-hand sides in the least squares subprob-

lems.
11As in previous works [86]– [44], we further consider that λ “ 1 in our experiments.
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Algorithm 8: BTD-Var

input : YH , YM , B, C, rCM , P1, P2; R, L, iter

output: Y P RIˆJˆK , Ψ ‚3 P3 P RIˆJˆKM

1 for m “ 1, . . . , iter do

2 A Ð arg min
A

}Y
p1q
H ´ pCdp P2BqA

TPT
1 }

2
F ` λ}Y

p1q
M ´

´

rCM dp B
¯

AT}2F ,

3 B Ð arg min
B

}Y
p2q
H ´ pCdp P1AqB

TPT
2 }

2
F ` λ}Y

p2q
M ´

´

rCM dp A
¯

BT}2F ,

4 Sr Ð vectArB
T
r u for r P t1, . . . , Ru,

5 C Ð arg min
C

}Y
p3q
H ´ pP2 b P1qSCT}2F ,

6 rCM Ð arg min
rCM

λ}Y
p3q
H ´ SrCT

M}
2
F .

7 for r P t1, . . . , Ru do

8 cr Ð cr{}cr},

9 rcM,r Ð rcM,r{}rcM,r}.

10 end

11 Yp3q Ð SCT, pΨ ‚3 P3q
p3q
Ð SprCM ´P3Cq

T.

12 end

3.4.2 Constrained optimization

Although BTD-Var allows for reconstruction of Y and Ψ, it is not guaranteed that its result

can be used for unmixing of the SRI. To that end, non-negativity constraints must be imposed

on factors C and rCM to provide them with physical meaning. Moreover, contrary to [178], we

also impose non-negativity on tSruRr“1, rather than on the individual factors Ar and Br. This

way, cr and rcM,r (resp. Sr) can be seen as spectral signatures (resp. abundance maps) of the

underlying SRI Y and MSI YM .

The resulting constrained optimization problem is:

minimize
A,B,tSruRr“1,C,

rCM

J pA,B,C, rCM q (3.17)

subject to tSr “ ArB
T
r u

R
r“1 ě 0,C ě 0, rCM ě 0. (3.18)

While the updates for A and B are the same as in BTD-Var, the other updates are con-

strained quadratic programs. The non-negativity constraints can be handled by using alternat-

ing direction method of multipliers (ADMM) [19, 80]. As in [80], a non-negativity constraint is

represented by the regularization term ι`p¨q. Algorithm 9 presents the optimization framework

for (3.17)–(3.18).

The computational cost per-iteration of CNN-BTD-Var is:

‚ OpI3 ` J3 ` L3R3q for solving A and B;
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Algorithm 9: CNN-BTD-Var

input : YH , YM , B, C, rCM , P1, P2; R, L, iter

output: S P RIJˆR, C P RKˆR, rCM P RKMˆR, Y P RIˆJˆK , Ψ ‚3 P3 P RIˆJˆKM

1 for m “ 1, . . . , iter do

2 A Ð arg min
A

}Y
p1q
H ´ pCdp P2BqA

TPT
1 }

2
F ` λ}Y

p1q
M ´

´

rCM dp B
¯

AT}2F ,

3 B Ð arg min
B

}Y
p2q
H ´ pCdp P1AqB

TPT
2 }

2
F ` λ}Y

p2q
M ´

´

rCM dp A
¯

BT}2F ,

4 Sr Ð }ArB
T
r ´ Sr}

2
F ` ι`pSrq,

5 C Ð }Y
p3q
H ´ pP2 b P1qSCT}2F ` ι`pCq,

6 rCM Ð λ}Y
p3q
M ´ SrCT

M}
2
F ` ι`p

rCM q.

7 for r P t1, . . . , Ru do

8 cr “ cr{}cr},

9 rcM,r “ rcM,r{}rcM,r}.

10 end

11 Yp3q “ SCT, pΨ ‚3 P3q
p3q
“ SprCM ´P3Cq

T.

12 end

‚ OpIJKMR ` IHJHKRq for computing the right-hand sides in the least squares subprob-

lems.

3.4.3 Initialization

Many options are available to initialize the LL1 factors. Here, as suggested in [39, Theorem

4.1], we initialize the A and B factors by generalized eigenvalue decomposition of the matrix

pencil
`

pYM q
T
:,:,1, pYM q

T
:,:,2

˘

(see [18, 47]), using the ll1_gevd function of TensorLab [168]. The

C and rCM factors are recovered by solving least-squares problems. We combine these steps in an

algebraic algorithm called BTDRec (Algorithm 10), echoing the initialization algorithm 2 (called

TenRec):

Algorithm 10: BTDRec
input : YH , YM , P1, P2; R, L

output: A P RIˆRL, B P RJˆRL, C P RKˆR, rCM P RKMˆR

1 1. Find LL1 approximation YM «
R
ř

r“1
ArB

T
r b cr;

2 2. Sr “ ArB
T
r for r P t1, . . . , Ru;

3 3. CT “ ppP2 b P1qSq
:Y

p3q
H ;

4 4. rCT
M “ S:Y

p3q
M .
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3.5 Experiments for image recovery

The code is implemented in MATLAB and available online at https://github.com/cprevost4/

LL1_HSR_HU. We compared the groundtruth SRI Y with the estimated SRI pY using the recon-

struction metrics in Appendix C. We considered the computational time for each algorithm,

given by the tic and toc functions of MATLAB.

3.5.1 Degradation model

The HSI was obtained by spatial degradation of Y by P1 and P2, i.e., the SRI Y and the

MSI YM represent images of the same scene acquired on board of different missions by different

instruments, and rY is unknown. The spectral bands of Y and YM were normalized such that

the 0.999 intensity quantile corresponded to a value of 1. Afterwards, the SRI Y was denoised

(as described in [143]) to yield the high-SNR reference image [176].

We also conducted experiments in a “no-variability” scenario, i.e. we consider that the HSI

and MSI were obtained by spatial (resp. spectral) degradation of the same SRI Y .

For spatial degradation, we followed the commonly used Wald’s protocol [171]. The matrices

P1, P2 were computed with a separable Gaussian blurring kernel of size q “ 9. Downsampling

was performed along each spatial dimension with a ratio d “ 4 between pI, Jq and pIH , JHq, as

in previous works. Refer to Appendix B for more details on the construction of P1, P2. White

Gaussian noise with 30dB SNR was added to the HSI and MSI.

For the spectral degradation matrix P3, we used the SRF of two multispectral instruments12.

For images with spectral variability, the Sentinel-2 sensors span the electromagnetic spectrum

from 412nm to 2022nm and produce a 10-band MSI corresponding to the wavelengths 433–453nm

(atmospheric correction), 458–522nm (soil, vegetation), 543–577nm (green peak), 650–680nm

(maximum chlorophyll absorption), 698–712nm (red edge), 733–747nm (red edge), 773–793nm

(leaf area index, edge of NIR), 785–900nm (leaf area index), 855–875nm (NIR plateau), 935–

955nm (water vapour absorption). The LANDSAT sensor spans the spectrum from 400nm

to 2500nm for the HSI and produces a 6-band MSI corresponding to wavelengths 450–520nm

(blue), 520–600nm (green), 630–690nm (red), 760–900nm (near-IR), 1550–1750nm (shortwave-

IR) and 2050–2350nm (shortwave-IR2). This spectral response is used for semi-real images

without spectral variability. The spectral degradation matrix P3 is a selection-weighting matrix

that selects the common spectral bands of the SRI rY and the MSI.
12available for download at [2] and [1].
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3.5.2 Recovery of the SRI and variability tensor

In this subsection, we assess the performances of Algorithm 8 (BTD-Var) and Algorithm 9

(CNN-BTD-Var) for reconstruction of the SRI Y and degraded variability tensor Ψ ‚3 P3. We

ran our algorithms with 20 outer iterations at most and 5 ADMM iterations for CNN-BTD-

Var. For initialization, out of 20 trials of BTDRec we picked the one that provided the best

reconstruction of the HSI and MSI.

For the SRI Y , we compared our results to matrix-based approaches, including HySure [149],

CNMF [177] and GLP-HS [6]. We also considered tensor factorization methods, namely STEREO

[86] for CP decomposition, SCOTT [135] for Tucker and CNN-BTD [178], which is a coupled LL1-

based algorithm that does not account for spectral variability. Finally, we compared our approach

to matrix and tensor methods accounting for variability, namely FuVar [15] (a matrix-based

algorithm based on the GLMM), CT-STAR and CB-STAR [17], which are tensor approaches

based on multilinear decomposition accounting for both spatial and spectral variability. It must

be noticed that except for CNMF, the baseline algorithms are unable to perform the unmixing

task. For Hysure, CNMF, GLP-HS and FuVar, we chose the ranks and regularization parameters

according to the original works [15,149,177].

For reconstruction of Ψ ‚3 P3, we compared the results of our algorithms with those of CT-

STAR and CB-STAR. We assessed the performance by computing R-SNR, CC, ERGAS and

SAM for each algorithm.

Lake Tahoe

The first dataset we considered was Lake Tahoe with Y P R100ˆ80ˆ173. The SRI Y and MSI YM

were respectively acquired on 2014-10-04 and 2017-10-24 by the Sentinel-2A sensor, resulting in

high variability in the crops and lake areas. A true color representation of the HSI and MSI for

this example can be seen in Figure 3.1.

Figure 3.1: True color representation of the HSI and MSI, Lake Tahoe.

We ran STEREO with F “ 30 and 10 iterations, and SCOTT with R “ p40, 40, 7q as in [17].
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We ran CT-STAR with ranks p18, 15, 10q,p3, 3, 1q, and CB-STAR with ranks p20, 20, 9q,p20, 20, 4q.

For our algorithms, as well as for CNN-BTD, we chose R “ 3, L “ 20 and λ “ 1.

Tables 3.1 and 3.2 display the reconstruction metrics and computation time for Y and Ψ ‚3 P3

and all considered algorithms. The two best results of each column are shown in bold.

Table 3.1: Reconstruction of Y , Lake Tahoe.
Algorithm R-SNR CC SAM ERGAS Time (sec)

BTD-Var 15.0674 0.93829 9.6873 5.2145 1.4818

CNN-BTD-Var 15.1093 0.93574 8.0109 5.1817 0.9025

STEREO 5.8368 0.75957 30.7346 15.2801 1.2148

SCOTT 1.918 0.50379 47.1781 23.3815 0.14701

CNN-BTD 6.0332 0.80003 27.7993 14.9491 1.2826

CNMF 12.1314 0.87494 9.2422 7.2804 1.7442

GLP-HS 11.7862 0.87408 11.6106 7.6011 4.507

HySure 9.2687 0.81256 12.8228 10.1511 7.2761

FuVar 14.54 0.92498 6.7013 5.528 761.3932

CT-STAR 11.7676 0.87843 13.3433 7.6236 0.20849

CB-STAR 19.2413 0.97539 6.4649 3.2231 8.3597

Table 3.2: Reconstruction of Ψ ‚3 P3, Lake Tahoe.
Algorithm R-SNR CC SAM ERGAS

BTD-Var 13.7482 0.85583 14.8728 12.121

CNN-BTD-Var 13.7643 0.88335 18.9519 10.7103

CT-STAR 11.4131 0.84542 17.7857 12.8223

CB-STAR 16.6599 0.94161 10.4442 7.8569

We can see that algorithms accounting for variability provided the best reconstruction met-

rics: in particular, the high performance of CB-STAR resulted from the fact that the algorithm

takes into account both spatial and spectral variabilities. BTD-Var and CNN-BTD-Var pro-

vided metrics comparable to those of FuVar, but with lower computation time. The fact that

the proposed algorithms usually provide good CC and SAM prove their capabilities for both

image reconstruction and endmembers estimation. Among the matrix-based approaches, CNMF

showed the best reconstruction performance. Finally, state-of-the art tensor-based approaches,

although fast, yielded worse reconstruction metrics than the aforementioned methods. This was

due to the fact that they do not consider any kind of variability.

CB-STAR also provided the best metrics for reconstruction of Ψ ‚3 P3. However, its computa-

tion time was large. The proposed algorithms BTD-Var and CNN-BTD-Var showed competitive
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metrics and even slightly outperformed baseline methods in terms of CC, but with slightly higher

computation time.

In addition, we plot in Figure 3.2 the 40th spectral band of the reference SRI, as well as the

estimated SRI for our algorithms. The proposed approaches recovered the SRI spectral band

accurately.

Reference

0.2

0.4

0.6

0.8

1

BTD-Var

0.2

0.4

0.6

0.8

1

CNN-BTD-Var

0.2

0.4

0.6

0.8

1

CNN-BTD

0.2

0.4

0.6

0.8

1

CT-STAR

0.2

0.4

0.6

0.8

1

CB-STAR

0.2

0.4

0.6

0.8

1

Figure 3.2: Spectral band no.40 of the SRI, Lake Tahoe.

Ivanpah Playa

We also considered the Ivanpah Playa dataset with Y P R80ˆ128ˆ173 and large acquisition time

difference: the SRI and MSI were acquired on 2015-10-26 and 2017-12-17 respectively, by the

Sentinel-2 sensor. A true color representation of the HSI and MSI for this example can be seen

in Figure 3.3.

Figure 3.3: True color representation of the HSI and MSI, Ivanpah Playa.

We ran STEREO with F “ 100 and 10 iterations and SCOTT with R “ p30, 30, 10q. We

ran CT-STAR with ranks p10, 15, 8q,p3, 3, 2q, and CB-STAR with ranks p40, 40, 4q,p40, 40, 5q. For

our algorithms, as well as for CNN-BTD, we chose R “ 4 and L “ 18.

Tables 3.3 and 3.4 show the reconstruction metrics and computation time for various algo-

rithms.

The best metrics were provided by CB-STAR, then CNN-BTD-Var. BTD-Var had a perfor-

mance comparable to that of GLP-HS for reconstruction of Y . Its performance was comparable

to that of CT-STAR for Ψ ‚3 P3. For this dataset as well, the proposed algorithms were faster

than some other algorithms, including CNMF, CB-STAR, and FuVar. Other matrix-based ap-

73



3.5. Experiments for image recovery

Table 3.3: Reconstruction of Y , Ivanpah Playa.
Algorithm R-SNR CC SAM ERGAS Time (sec)

BTD-Var 19.4098 0.86314 2.4404 2.6771 2.1568

CNN-BTD-Var 22.7305 0.92074 2.6247 1.8919 1.386

STEREO 6.0987 0.76283 29.0278 12.6747 0.93975

SCOTT 2.4445 0.34257 47.9598 19.372 0.2645

CNN-BTD 5.7515 0.33492 28.7006 13.1899 11.8775

CNMF 21.6059 0.90114 1.3019 2.1138 2.6656

GLP-HS 19.433 0.86261 3.3413 2.697 5.9218

HySure 18.4551 0.85218 3.3249 3.0653 10.4606

FuVar 22.0332 0.90354 1.5062 2.0189 526.1659

CT-STAR 21.1186 0.88849 1.9424 2.2386 0.15373

CB-STAR 25.7174 0.96003 1.3269 1.3228 8.2923

Table 3.4: Reconstruction of Ψ ‚3 P3, Ivanpah Playa.
Algorithm R-SNR CC SAM ERGAS

BTD-Var 19.0156 0.68664 3.3129 43.8732

CNN-BTD-Var 21.75 0.80652 2.0192 25.1069

CT-STAR 19.3597 0.73396 2.1977 33.853

CB-STAR 23.4888 0.90832 1.1567 16.9815

proaches also gave satisfying reconstruction. However, STEREO, SCOTT and CNN-BTD gave

the worst reconstruction metrics.

In Figure 3.4 we plot the 40th spectral band of the reference SRI, as well as the estimated

SRI for our algorithms, CNN-BTD, CNMF and CB-STAR for comparison. For this dataset,
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Figure 3.4: Spectral band no.40 of the SRI, Ivanpah Playa.

we can see that CNN-BTD-Var yielded a visually better SRI spectral band reconstruction than

BTD-Var.
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Lockwood

The third dataset we considered in this subsection is Lockwood with Y P R80ˆ100ˆ173. The

SRI Y and MSI were acquired on 2018-08-20 and on 2018-10-19, respectively. A true color

representation of the HSI and MSI for this example can be seen in Figure 3.5.

Figure 3.5: True color representation of the HSI and MSI, Lockwood.

Due to the relatively small difference between the acquisition dates of both images, the HSI

and MSI looked similar. This dataset is an example where only acquisition variations happened

(which affected the image mostly uniformly), thus this example illustrates the adequacy of the

proposed variability model. We ran STEREO with F “ 100 and 10 iterations and SCOTT with

R “ p60, 60, 5q. We ran CT-STAR with ranks p30, 30, 8q,p3, 3, 2q, and CB-STAR with ranks

p70, 70, 5q,p40, 40, 3q. For our algorithms, as well as for CNN-BTD, we chose R “ 9 and L “ 16.

The reconstruction metrics are displayed in Tables 3.5 and 3.6.

Table 3.5: Reconstruction of Y , Lockwood.
Algorithm R-SNR CC SAM ERGAS Time (sec)

BTD-Var 20.1273 0.918432 2.92921 6.35566 5.46272

CNN-BTD-Var 19.4882 0.906525 3.0299 6.29101 4.11573

STEREO 6.552 0.80196 27.3623 25.1749 1.8835

SCOTT 2.2276 0.79276 28.5771 45.9608 0.2228

CNN-BTD 6.4909 NaN 27.4245 25.436 2.3082

CNMF 18.7829 0.89063 2.9768 6.7014 4.353

GLP-HS 18.6734 0.88849 3.2079 6.9979 6.8463

HySure 14.125 0.8633 4.4044 11.6 6.9823

CT-STAR 18.4987 0.88287 4.571 8.2657 3.3013

CB-STAR 19.0751 0.89445 3.3707 7.2926 68.0282

For both Y and Ψ ‚3 P3, the best reconstruction metrics were generally provided by BTD-Var

and CNN-BTD-Var. They were followed by CT-STAR and CB-STAR. The slightly better results
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Table 3.6: Reconstruction of Ψ ‚3 P3, Lockwood.
Algorithm R-SNR CC SAM ERGAS

BTD-Var 18.8768 0.810171 2.59862 11.9253

CNN-BTD-Var 18.3523 0.818424 2.76538 11.2095

CT-STAR 17.2744 0.73293 4.1677 15.8113

CB-STAR 17.5513 0.7402 3.2858 13.3116

obtained by our algorithms illustrate the fact that the variability model considered in [17] can

represent spatially localized changes, but is not very appropriate or interpretable for acquisition

or illumination variations. In Figure 3.6 we plot the 40th spectral band of the reference and

estimated SRI.
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Figure 3.6: Spectral band no.40 of the SRI, Lockwood.

3.5.3 Recovery without variability

In this subsection, we assessed recovery performance for the SRI Y . We considered a “no-

variability” scenario, i.e. the HSI and MSI were both degraded versions of Y . The dataset we

considered was Indian Pines, where Y P R144ˆ144ˆ200 was degraded by the LANDSAT sensor for

the MSI and the downsampling ratio was d “ 4 for the HSI. We ran STEREO with F “ 50,

SCOTT with R “ p40, 40, 6q and LL1-based algorithms with R “ 6 and L “ 13. For matrix-

based algorithms, we chose R “ 30 as in original works [15,149,177]. For CT-STAR, we chose the

ranks p15, 15, 8q, p3, 3, 2q, while for CB-STAR we chose p40, 40, 4q, p40, 40, 5q. The reconstruction

metrics for the SRI are presented in Table 3.7.

The best reconstruction metrics were generally provided by STEREO and BTD-Var. CNN-

BTD-Var had performance comparable to that of SCOTT, and computation time comparable

to that of CB-STAR. The slightly lower performance of constrained algorithms accounting for

variability can be explained by the use of more flexible models. In this specific scenario, other

methods based on a more restrictive model fit the data more tightly. Nonetheless, algorithms

accounting for variability offered competitive performance in the “no-variability” case. However,

their computation time was usually higher than that of state-of-the-art tensor approaches. In

Figure 3.7 we plot the 40th spectral band of the reference and estimated SRI, which confirms

the visual quality of the recovered images by BTD-Var and CNN-BTD-Var.
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Table 3.7: Reconstruction of Y , Indian Pines.
Algorithm R-SNR CC SAM ERGAS Time (sec)

BTD-Var 28.0511 0.87064 1.9204 0.98804 8.3579

CNN-BTD-Var 26.2721 0.8327 2.2515 1.2191 3.176

STEREO 27.69 0.86669 1.9461 0.99959 1.8564

SCOTT 26.2451 0.86196 2.2694 1.1208 0.21087

CNN-BTD 25.2263 0.80949 2.5035 1.3497 24.5326

CNMF 27.2552 0.83978 1.9502 1.2056 8.2147

GLP-HS 26.2837 0.83813 2.2794 1.2918 14.2957

HySure 20.4281 0.66661 4.4916 2.5723 25.2202

CT-STAR 24.0398 0.84385 2.4839 1.3151 0.16528

CB-STAR 26.5216 0.86749 2.1265 1.0556 3.6761
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Figure 3.7: Spectral band no.40 of the SRI, Indian Pines.

3.6 Blind unmixing experiments

3.6.1 Experiments setup

In this section, we assessed the performance of CNN-BTD-Var for the unmixing task on synthetic

datasets, and semi-real examples from Section 3.5.

We compared our results with those of CNMF [177] initialized by VCA [121]. Opposed to the

unified procedures of CNN-BTD-Var and CNMF, we also considered a two-step procedure based

on two traditional unmixing algorithms: accelerated multiplicative algorithm (MU-Acc) [57] and

BMDR-ADMM [125] (enforcing minimum dispersion constraint on the spectra, and sum-to-one

on the abundance maps). We ran these algorithms on the recovered SRI pY obtained from CB-

STAR, which gave the best reconstruction metrics in the previous section. For these algorithms,

we chose the parameters according to the original works, and we used the actual number of

materials as R. Since other fusion algorithms such as FuVar, CT-STAR or STEREO are not

designed for the unmixing task, they were not directly included in this comparison.

For each dataset, we compared reference abundance maps and spectral signatures to those

obtained by the algorithms. Unmixing performance was evaluated using the SAM and RMSE

metrics, also available in Appendix C. For the two-step “reconstruction+unmixing” procedure,

the displayed computation time represents that of either MU-Acc or BMDR-ADMM and CB-
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STAR (between parentheses).

3.6.2 Unmixing of the SRI with exact LL1 model

We assessed the blind unmixing performance of our algorithm in a controlled environment with

synthetic datasets. That is, we tested our approach in the case where the SRI and variability ten-

sor admit an exact LL1-BTD. Although these datasets do not resemble real spectral images, they

allow us to measure the unmixing performance of our algorithm in a case where the uniqueness

conditions for the NMF (see [45,102]) are not fulfilled.

Generating synthetic datasets

We considered R “ 3 spectral signatures cr (r P t1, . . . , Ru) obtained from the Jasper Ridge

reference data13, corresponding to vegetation, soil and road materials. The SRI Y P RIˆJˆK

(I “ J “ 90, K “ 173) was split into LR equal blocks in the spatial dimensions, with L “ 3.

Each abundance map Sr (r P t1, . . . , Ru) was a block matrix with I
Lˆ

J
L blocks. We generated

a multiplicative variability matrix ψmulti with random real entries drawn from the standard

uniform distribution in the open interval r0.9, 1.1s. We then computed the altered spectra rC “

ψmulti d C. The variability matrix ψ that we aimed at recovering was obtained as ψ “ rC ´C

so that it had zero mean.

Formally, we computed the high-resolution tensors as

Y “

R
ÿ

r“1

Sr b cr, Ψ “

R
ÿ

r“1

Sr b ψr, rY “ Y `Ψ.

The HSI and MSI were obtained by degradation of the SRIs according to the model (1.31). For

P1 “ P2, we had q “ 9 and d “ 3 so that IH “ JH “ 30. For P3, we chose the SRF matrix of

the Sentinel-2 MS sensor, which led to KM “ 10.

Separable example

In the first example, we generated a dataset for which the pure pixel assumption is valid. Thus

in each I
L ˆ

J
L block, at most one material was active, as indicated by the numerals in the parcel

map shown in Table 3.8. Each block in the parcel map was a patch composed of entries equal to

Table 3.8: Parcel map for the first synthetic dataset.
1 2 3

3 1 2

2 3 1

13Available for download at http://lesun.weebly.com/hyperspectral-data-set.html.
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one, hence the abundance maps in this case mimic agricultural fields. In particular, this dataset

was a case for which the NMF under minimal volume constraint is unique [54, 56, 81], but the

unconstrained NMF is not unique.

We ran CNN-BTD-Var with R “ 3 and L “ 3; for other algorithms, we used R “ 3. The

spectral signatures cr and abundance maps Sr are shown in Figures 3.8 and 3.9, respectively.

The unmixing metrics and computation time are displayed in Table 3.9.
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Figure 3.8: Reference and estimated spectra, synthetic dataset 1
Ref. CNN-BTD-Var CNMF MU-Acc BMDR-ADMM

Figure 3.9: Reference and estimated abundance maps, synthetic dataset 1

We can see that all spectra and abundance maps were recovered accurately by CNN-BTD-

Var, with visual quality comparable to that of CNMF and BMDR-ADMM. The proposed algo-
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Table 3.9: Unmixing, synthetic example 1
Algorithm CNN-BTD-Var CNMF MU-Acc BMDR-ADMM

SAM 0.012349 0.300049 0.132655 0.351785

RMSE 0.102441 0.274509 0.267861 0.201845

Time (sec) 0.958311 1.43277 1.73498 (+ 8.7533) 1.23186 (+ 8.7533)

rithm gave the best unmixing metrics and computation time. We also see some artifacts in the

abundance maps recovered by CNMF. Moreover, MU-Acc did not estimate all abundance maps

correctly for this example.

Synthetic example with non-identifiable NMF

In this second example, the separability (or pure pixel) condition [45, 102] was not fulfilled,

resulting in the traditional NMF being non-identifiable. This is in fact a highly mixed situation for

which all existing approaches will fail. Thus, we expect the traditional unmixing algorithms to fail

at performing the blind unmixing task on this dataset. However, the conditions in Theorem 3.3.1

were satisfied, thus the LL1 factors were unique up to permutation and scaling ambiguities. The

abundance maps Sr were designed as follows:

S1 “
1

12

»

—

—

–

5 7 6

7 3 5

3 0 0

fi

ffi

ffi

fl

b H, S2 “
1

12

»

—

—

–

7 5 3

0 6 0

3 5 7

fi

ffi

ffi

fl

b H, S3 “
1

12

»

—

—

–

0 0 3

5 3 7

6 7 5

fi

ffi

ffi

fl

b H,

with H a Gaussian of size 30 ˆ 30 with standard deviation σ “ 5. From the above abundance

maps, we can see that the pure pixel assumption was not satisfied.

We ran CNN-BTD-Var with R “ 3 and L “ 3; for other algorithms, we used R “ 3. The

spectral signatures cr and abundance maps Sr are shown in Figures 3.10 and 3.11, respectively.

The unmixing metrics are shown in Table 3.10.

Table 3.10: Unmixing, synthetic example 2
Algorithm CNN-BTD-Var CNMF MU-Acc BMDR-ADMM

SAM 0.160109 0.386413 0.355248 0.464474

RMSE 0.210952 0.333595 0.253813 0.339372

Time (sec) 0.972156 1.77138 1.57192 (+ 8.7302) 1.20186 (+ 8.7302)

We can see that the spectral signatures were best reconstructed by CNN-BTD-Var, although

CNMF reconstructed only the first spectrum correcly. Moreover, only CNN-BTD-Var provided

reasonable estimates of the abundance maps, while other algorithms failed. Numerically, CNN-

BTD-Var yielded the best unmixing metrics and computation time.
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Figure 3.10: Reference and estimated spectra, synthetic example 2
Ref. CNN-BTD-Var CNMF MU-Acc BMDR-ADMM

Figure 3.11: Reference and estimated abundance maps, synthetic example 2

3.6.3 Unmixing for semi-real datasets

In this subsection, we assessed the unmixing performance of CNN-BTD-Var for semi-real datasets

Lake Tahoe and Ivanpah Playa. For the two considered datasets, we followed the same degra-

dation model as in Section 3.5. For these experiments, the endmembers and abundance maps

underlying Y are unknown: as a result, we chose as reference the spectra and abundance maps

selected manually from the SRI Y . The obtained abundance maps had very close correspondence

with visual features in the image. The columns of the spectra and abundance maps were rescaled

with unit norm for comparison.
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3.6. Blind unmixing experiments

Lake Tahoe

We considered the Lake Tahoe dataset with Y P R100ˆ80ˆ173. This dataset was mainly composed

of R “ 3 materials: water (lake), soil and vegetation (under the form of crop circles). As a result,

we chose R “ 3 and L “ 18 as in the previous subsection. We compared our algorithm CNN-

BTD-Var with CNMF, MU-Acc and BMDR-ADMM with R “ 3. On Figures 3.12 and 3.13, we

plot the estimated spectra and abundance maps.
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Figure 3.12: Reference and estimated spectra, Lake Tahoe dataset
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Figure 3.13: Reference and estimated abundance maps, Lake Tahoe dataset

We notice that the proposed approach estimated the spectra accurately. However, CNMF

failed at recovering the water spectrum. The abundance maps displayed in Figure 3.13 allowed

for identification of the areas corresponding to different materials, although with lower resolution

than other methods. Additionally, the abundance maps recovered by CNN-BTD-Var look visually

low-rank. We can see that CNMF and MU-Acc did not recover the water abundance map

correctly. In Table 3.11, we showed the unmixing and computation time for the considered

algorithms. CNN-BTD-Var provided the best SAM and computation time, and the second best

RMSE after BMDR-ADMM.

Additionally, on Figure 3.14, we plot the reference and estimated rCM and P3ψ “ rCM ´P3C

obtained from CNN-BTD-Var. We can see that the water spectrum presented high variability
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3.6. Blind unmixing experiments

Table 3.11: Unmixing, Lake Tahoe dataset
Algorithm CNN-BTD-Var CNMF MU-Acc BMDR-ADMM

SAM 0.0794406 0.302813 0.1098101 0.255009

RMSE 0.466916 0.472743 0.637745 0.356724

Time (sec) 1.229906 1.98253 2.0130503 1.71438 (+ 8.3597)
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Figure 3.14: Reference and estimated rCM and P3ψ from CNN-BTD-Var, Lake Tahoe.

for the first MSI spectral band, which corresponds to the blue region. For the vegetation and

soil spectra, the most variability was found at spectral bands corresponding to the green and

orange-red wavelengths. Moreover, CNN-BTD-Var recovered the reference rCM and P3ψ with a

small discrepancy.

Ivanpah Playa

Next, we considered the Ivanpah Playa dataset. This dataset is composed of R “ 4 materials:

solar panels, dark sand, yellow sand and road. We ran CNN-BTD-Var with R “ 4, L “ 18, and

compared the results to other baseline algorithms with R “ 4.

In Figures 3.15 and 3.16, we plot the reference and estimated spectra and abundance maps.

In Table 3.12, we show the unmixing metrics and computation time.

One difficulty that arises for the unmixing task is the important similarity between the

reference spectra (in particular, dark and yellow sand, road materials). This leads to almost

collinear columns in C, which results in CNN-BTD-Var giving the worse SAM. This issue is

particularly visible in Figure 3.17 with estimated rCM and P3ψ.

In Figure 3.17, we can see that high variability can be found for the red and near-infrared
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Figure 3.15: Reference and estimated spectra, Ivanpah Playa dataset
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Figure 3.16: Reference and estimated abundance maps, Ivanpah Playa dataset

spectral bands for all materials.

Despite this difficulty, CNN-BTD-Var yielded the best SAM and RMSE and recovered the

solar panels and road abundance maps best, while the yellow sand map was slightly better for

BMDR-ADMM. For this example, the low-rank assumption for abundance maps is reasonable:

see that corresponding to solar panels. This assumption allows for better visual reconstruction

of this abundance map. Contrary to other algorithms, all spectra are correctly recovered.

Cuprite

We also consider the Cuprite dataset with Z P R250ˆ190ˆ188 and R “ 12 materials, corresponding

to different minerals. However, no variability is available for this dataset. Therefore, the following

experiments aim at evaluating the unmixing performance of the proposed approach for a large
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3.6. Blind unmixing experiments

Table 3.12: Unmixing, Ivanpah Playa dataset
Algorithm CNN-BTD-Var CNMF MU-Acc BMDR-ADMM

SAM 0.094346 0.193547 0.134738 0.113456

RMSE 0.006693 0.007067 0.008188 0.007434

Time (sec) 1.30258 1.73402 1.56564 1.679304 (+ 8.2923)
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Figure 3.17: Reference and estimated rCM and P3ψ from CNN-BTD-Var, Ivanpah Playa dataset

number of endmembers14. Reference endmembers are available and show that some materials

possess very similar spectral signatures. The HSI is generated with a downsampling ratio d “ 5

while the MSI has KM “ 47 spectral bands obtained by downsampling each out of four spectral

bands of the SRI. We ran CNN-BTD-Var with R “ 12 and L “ 15 and CNMF with R “ 12 as

well.

The spectral signatures and abundance maps are displayed in Figures 3.18 and 3.19.

We can see that the large similarities between the reference spectra makes the unmixing

task more difficult for both algorithms. Nevertheless, CNN-BTD-Var and CNMF show similar

spectral signatures. The abundance maps are also similar, although we notice a loss of resolution

in the maps estimated by our algorithm. In spite of this loss of resolution, even the more scarce

materials can be recovered, see e.g., Montmorillonite or Buddingtonite.

3.6.4 Choice of the ranks

In real remote sensing applications, it is unlikely that the target SRI is low-rank. As a result,

our approach only performs a low-rank approximation of the data, where the rank R hopefully

corresponds to the number of underlying materials; hence there is no unique choice for R and L.
14Indeed, usually a lot of traditional unmixing methods work well under a large number of materials as well.
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Figure 3.18: Reference and estimated spectra, Cuprite dataset.

Nevertheless, there are several ways to evaluate reasonable choices for the hyperparameters.

Regarding R, intuitively one would select the real number of materials in the image. Unfortu-

nately, in real applications, reference mixing factors are unknown, thus R is unknown as well. A

first idea consists in plotting the singular values of the third unfoldings of the HSI and MSI, and

looking for an elbow in the curves. We ran this experiment on the synthetic example described

in Section 3.6.2 and on the Lake Tahoe dataset. The results were displayed in Figure 3.20.

On the left plots, we can see an elbow in the curves at R “ 3: this is reasonable since the

synthetic dataset was specifically designed to allow R “ 3 materials. However, this scenario is

unlikely to occur for real images because they do not consist in a low-rank signal corrupted by

noise (contrary to the synthetic example). The right plots for the Lake Tahoe dataset illustrated

this point. While there exists a small elbow in the singular values of the MSI, nothing can be

deduced from the singular values of the HSI.

Another idea15 is to plot the R-SNR as a function of R and L under the unique recovery

conditions provided by Theorem 3.3.1. For this simulation, we considered the same datasets

as before and additionally include the Lockwood dataset which possesses a large number of

materials (see Figure 3.5). For each dataset, we computed the R-SNR between the reference and

estimated SRI as a function of R P t1, . . . , 10u and L P t1, . . . , 20u. The results are displayed in
15Here, we use the reference SRI for comparison. However, the real SRI is unknown in practice, hence the

following experiments only provide an idea on how to choose the ranks.
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Figure 3.19: Reference and estimated abundance maps, Cuprite dataset.
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Figure 3.20: Singular values of the unfoldings, synthetic example (left) and Lake Tahoe dataset

(right).

Figure 3.21.

For the synthetic dataset, the ranks yielding the best performance were R “ L “ 3, which

corresponds to the true ranks of the data. For the Lake Tahoe dataset, which is composed of

three main endmembers, the rank R “ 3 usually led good performance for a variety of values of L.

We also noticed that high R and L yielded good performance as well. For the Lockwood dataset,

which is composed of a lot of materials, choosing high R and L yielded the best performance.

As a rule of thumb, L can be chosen to be large inside the unique recovery region defined by

Theorem 3.3.1 to ensure visual quality of the abundance maps. If R is unknown, it is preferable

to pick large R, since the approach seems to be less sensitive to an over-estimation of R than to

its under-estimation.

Regarding the unmixing task, it is desirable to choose R equal to the number of underlying

materials, if possible. The unmixing performance of our approach with real R will be evaluated

in the following section.
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Figure 3.21: Reconstruction performance as a function of R and L; synthetic dataset (left), Lake

Tahoe (middle) and Lockwood (right).

3.7 Conclusion of Chapter 3

In this chapter, used a flexible tensor degradation model for the HSR, that is able to consider

variable images. This observational model depicts more realistic acquisition scenarios, where

the HSI and MSI can be observed at different time instants, onboard of different missions. We

illustrated the usefulness of this new model by considering spectral variability occurring between

the low-resolution images. Indeed, we showed that in the presence of spectral variability, the

previous tensor model and related algorithms fail at recovering the SRI.

We proposed two algorithms: an unconstrained one, and another one enforcing non-negativity

constraints, for solving the HSR problem accounting for spectral variability. Using the LL1-BTD,

we showed that the proposed approach provides a unique solution to the joint super-resolution

and unmixing problems in the noiseless case.

Our algorithms recover accurately the SRI as well as the degraded variability tensor for

the considered datasets. An appropriate choice of ranks also allows our algorithms to estimate

underlying spectra and abundance maps of the SRI, with performance comparable to those

of traditional unmixing algorithms working on the SRI directly. Non-negativity priors render

the low-rank factors of our model interpretable without having a high negative impact on the

computation time. Moreover, we showed that the proposed LL1-BTD approach is able to perform

unmixing of the unknown SRI in some specific scenarios where the traditional NMF is not

identifiable. These results are illustrated by means of synthetic datasets.
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Conclusion of Part I

In this part, we explored practical considerations regarding the design of data fusion algorithms,

under the scope of the hyperspectral super-resolution problem.

We proposed to use two different low-rank decompositions: Tucker and pL,L, 1q block-term

decompositions, to solve the problem at hand. For each model, we provided conditions for

unique noiseless recovery of the target image, that rely solely on the ranks and dimensions of the

observations.

Based on these models, we designed several algorithms that aim at solving the HSR problem.

In Chapter 2, we proposed closed-form unconstrained algorithms based on the HOSVD. Our

experiments show that it is possible to seek for simple and fast fusion algorithms that provide

competitive performance on semi-real data. In Chapter 3, we designed constrained iterative

algorithms. By enforcing non-negativity constraints, we showed that it is possible to attach

interpretability to the low-rank factors. This additional diversity allows the approaches proposed

in Chapter 3 to provide a unique solution to the HSRU problem.

There exist multiple advantages to tensor-based HSR approaches. First, the unique recovery

conditions for such approaches are usually less restrictive than those of matrix approaches, in

the sense that they are directly obtained by the dimensions of the data, and the ranks of the

chosen decomposition. They do not rely on the incorporation of priors (e.g., non-negativity or

sum-to-one) nor additional constraints (such as minimum volume constraints). This allows the

proposed approaches to solve the problem at hand in specific cases where traditional matrix-based

approaches might fail: this matter is highlighted by our experiments on synthetic datasets. The

low number of unknowns in matrix-based models often result in reduced computation time for

our implementation, but with competitive reconstruction performance with respect to state-of-

the-art algorithms. Finally, identifiability of the low-rank CP and Tucker models is not required

to obtain unique recovery of the target image. It is thus reasonable to exploit the modeling

power and flexibility of these models for solving the HSR problem efficiently. On the other hand,

incorporations of priors on the low-rank factors allows to seek for interpretable decompositions

that will exploit the electromagnetic properties of spectral images, without impacting negatively

the computational cost of recoverability conditions of the target SRI.
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Appendix A

Solving normal equations as generalized

Sylvester equations

Equation (2.10) can be seen as a generalized Sylvester equation of the form

A pGB`C pGD “ E, (A.1)

where pG is an unfolding of pG.
We propose two options for converting (2.10) into (A.1). In the first case, pG “ Ĝp3q P

RR1R2ˆR3 ,

A “

´

UTPT
1 P1U

¯

b

´

VTPT
2 P2V

¯

, B “ IR3 , C “ IR1R2 , D “ λ
´

WTPT
MPMW

¯

,

and E P RR1R2ˆR3 is a matricization of XTz.

In the second case, pG “

´

Ĝp1q
¯T
P RR1ˆR2R3 ,

A “ UTPT
1 P1U, B “ IR3 b

´

VTPT
2 P2V

¯

, C “ IR1 , D “ λ
´

WTPT
MPMW

¯

b IR2 ,

and E P RR1ˆR2R3 is a matricization of XTz.

The two options are equivalent and the fastest one is chosen according to the multilinear

rank. As a rule of thumb, we decide to choose the first option in subregion paq of Figure 2.1

and the second option in subregion pbq. The complexity for solving the generalized Sylvester

equation (A.1) is thus Opm3 ` n3q flops for pG P Rmˆn if fast solvers, such as Hessenberg-Schur

or Bartels-Stewart methods [8, 61,150], are used.
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Appendix B

Constructing the degradation matrices

As in [86], P1 is constructed16 as P1 “ S1T1, where T1 is a blurring matrix and S1 is a

downsampling matrix. The blurring matrix T1 is constructed from a Gaussian blurring kernel

φ P Rq with standard deviation σ. For m P t1, . . . , qu and m1 “ m´
P

q
2

T

, we have

φpmq “
1

?
2πσ2

exp

ˆ

´m12

2σ2

˙

.

Thus, T1 P RIˆI can be seen as

T1 “

»

—

—

—

—

—

—

—

—

–

φpr q2 sq ... φpqq 0 ... 0

...
. . . . . . . . .

...
φp1q

. . . . . . 0

0
. . . . . . φpqq

...
. . . . . . . . .

...
0 ... 0 φp1q ... φpr q2 sq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

The downsampling matrix S1 P RIHˆI , with downsampling ratio d, is made of IH independent

rows such that for i P t1, . . . , IHu, pS1qi,2`pi´1qd “ 1 and the other coefficients are zeros.

The spectral degradation matrix P3 contains the SRF of the multispectral sensor. It describes

the sensitivity of the sensor to radiations emitted from different wavelengths. In other words, P3

contains the peak response wavelengths and bandwidth of each spectral band of the MSI [119].

In practice, the spectral degradation matrix selects and averages the common spectral bands of

the SRI and MSI.

16In this paragraph, we consider that P1 “ P2.
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Appendix C

Comparison metrics for HSR and

unmixing performance

In this appendix, we give the expression for the metrics we use to assess the HSR and unmixing

performance in Chapters 2 and 3.

R-SNR “ 10log10

˜

}Y}2F
}pY ´Y}2F

¸

. (C.1)

This metric is the reconstruction signal-to-noise ratio (in dB) between the estimated and original

image and should be as large as possible.

CC “
1

IJK

˜

K
ÿ

k“1

ρ
´

Y :,:,k, pY :,:,k

¯

¸

, (C.2)

where ρp¨, ¨q is the Pearson correlation coefficient between the estimated and original spectral

slices. Cross-correlation is a value between zero and one, and is close to one when the recon-

struction is good;

ERGAS “
100

d

g

f

f

e

1

IJK

K
ÿ

k“1

} pY :,:,k ´Y :,:,k}
2
F

µ2
k

, (C.3)

where µ2
k is the mean value of pY :,:,k. ERGAS represents the relative dimensionless global error

between the SRI and the estimate, which is the root mean-square error averaged by the size of

the SRI and should be small.

We also used Spectral Angle Mapper (SAM):

SAM “
180

π

1

IJ

IJ
ÿ

n“1

arccos

¨

˝

Y
p3q
n,:

T
Ŷ
p3q
n,:

}Y
p3q
n,: }2}Ŷ

p3q
n,: }2

˛

‚, (C.4)
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which computes the spectral angle distance between original and estimated third-mode fibers, and

can be used to assess unmixing performance as well. Indeed, (C.4) can be rewritten equivalently

as a function of the reference and estimated spectral signatures as

SAM “
1

R

R
ÿ

r“1

arccos

ˆ

cTr pcr
}cr}2}pcr}2

˙

. (C.5)

The SAM should be small.

Performance for recovery of the abundance maps was assessed using the root mean-squared

error between reference S and estimate pS:

RMSE “
1

R

R
ÿ

r“1

g

f

f

e

1

IJ

IJ
ÿ

d“1

´

pSrqd ´ ppSrqdq
¯2
. (C.6)
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Appendix D

Updates in Algorithms 8 and 9

In this appendix, we detail the updates in Algorithms 8 and 9.

We start with unconstrained updates in Algorithm 8. The unconstrained least squares pro-

gram for A can be seen as a generalized Sylvester equation of the form X1AX2`X3AX4 “ X5,

with

X1 “ PT
1 P1, X2 “ pCdp P2Bq

TpCdp P2Bq, X3 “ λII , X4 “ prCM dp BqTprCM dp Bq,

X5 “ PT
1 pY

p1q
H q

TpCdp P2Bq ` λpY
p1q
M q

TprCM dp Bq,

and can be solved with efficient solvers. The update for B can be solved similarly.

The pseudo-solution for C is expressed as vectCu “ pXTXq:XTz, with

X “ STpPT
2 P2 b PT

1 P1qS b IK , z “ vectpY
p3q
H q

TpP2 b P1qSu.

Similarly, for rCM , we have

X “
?
λpSTS b IKM q and z “

?
λ vectpY

p3q
M q

TSu.

Algorithm 9 uses an ADMM framework for solving Sr, C and rCM . At each iteration of the

ADMM scheme, we aim at solving the following equations:

p1` ρqSr “ ArB
T
r ` ρpZ`Uq, (D.1)

CpSTpPT
2 P2 b PT

1 P1qS` ρIRq “ pY
p3q
H q

TpP2 b P1qS` ρpZ`Uq, (D.2)

rCM pS
TS` ρIRq “ pY

p3q
M q

TS` ρpZ`Uq. (D.3)

For each equation, Z is the projection of the considered variable onto the space of non-negative

matrices, and U denotes the dual variable for each subproblem [19]. The scalar ρ controls the

convergence speed of the algorithm and is chosen according to [80].
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Below, we present the ADMM framework for solving (D.2), where the operator r¨s` zeroes

out the negative values of the operand. The updates for S and rCM can be handled in a similar

fashion.

Algorithm 11: ADMM update for (D.2)
input : YH , YM , S, P1, P2; ρ, R, iter

output: Z P RKˆR`

1 initialization: Z “ U “ 0KˆM ;

2 for m “ 1, . . . iter do

3 C Ð Solve (D.2) using normal equations;

4 Z Ð rC´Us`;

5 U Ð U` Z´C.

6 end
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Part II

Performance analysis for coupled tensor

models

In a data fusion framework, the observed datasets are often complementary, meaning that

information from a dataset with a given low resolution can be enriched from high resolutions of

other datasets, and vice-versa.

However, the potential benefits of data fusion are not obvious, as they can not be seen as a

summation of contributions from different observations. Hence a methodological question behind

the design of data fusion models is to answer how and to what extent do these models provide

a better estimation power than separate processing of each dataset individually. An answer to

this question can be found by investigating the Cramér-Rao bounds (CRB) for coupled models.

In this part, we consider two different tensor low-rank decompositions: canonical polyadic

decomposition and block-term decomposition with ranks (L,L, 1). We assess the theoretical

performance of coupled tensor models and compare it to that of uncoupled models for resolution

of the reconstruction problem at hand. We use the CRB as a tool to assess the efficiency of

existing algorithms based on these decompositions, including some of those introduced in Part I.

In this part of the thesis, we use slightly different notations from those in Part I. This change

of notation mostly concerns tensor notations and their dimensions, degradation matrices and

low-rank decomposition factors in the observation models. This deliberate choice is motivated

by the will to simplify notations and enhance readability when deriving theoretical performance

bounds. This different choice of notation also allows to consider more general models, that are

not specific to the HSR problem. To remove any ambiguity, these specific notations are also

summarized in the List of Notations.
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Chapter 4

Constrained Cramér-Rao bounds for

reconstruction problems formulated as

coupled canonical polyadic

decompositions
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4.1 Introduction

In this chapter, we consider a class of reconstruction problems, whose aim is to recover a high-

resolution tensor from tensor observations with some lower resolutions. We assume that each

observations possesses high-resolution in at least one dimension. Examples of such reconstruction

problems can be found in the fields of hyperspectral super-resolution [86], biomedical imaging

[85, 122], chemistry [60], or learning over graphs [88]. We study the theoretical performance

analysis the coupled CP-based models introduced in Chapter 2, Section 2.2. We consider the

fully-coupled and blind (partially-coupled) cases.

This chapter summarizes the content of [132, 136] and considers the general reconstruction

problem with general degradation matrices. A preliminary work [136] treated a special case of

degradation matrices, which can be viewed as an extension of [140].

Cramér-Rao bounds (CRB) are a classic tool to assess the performance of the estimators

[36, 53, 139]. For coupled models, where the model parameters are subject (in part or totally)
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4.2. Observation model and estimation

to deterministic constraints, the constrained Cramér-Rao bound (CCRB) can be used, whose

versatility was shown by numerous works [111, 114, 115, 118, 157, 158]. Cramér-Rao bounds for

tensor CP models have been studied in a general context. In [14, 108,144], performance bounds

for uncoupled CP models have been provided. In [21], a Bayesian framework was proposed

for flexible coupling models and hybrid CRB were derived. Constrained Cramér-Rao bounds for

partially coupled complex tensors admitting a CP decomposition and a single coupling constraint

were explored in [140]. The expression of the bound was based on the work in [62], which considers

a specific case where the Fisher information matrix (FIM) for the parameters is invertible. A

single equality constraint between two shared CP factors was considered. In the reconstruction

problems however, all the modes are coupled and the analysis of [140] is not applicable.

Unlike the case of a single coupling constraint, a fully-coupled model requires nonlinear

constraints in some estimation scenarios. We derive the CCRB both for the model parameters and

for mean-squared error of the reconstructed tensor, for two probabilistic scenarios; in particular,

our results do not require identifiability of the individual tensors. We show that the maximum

likelihood estimators reach the bounds, but their initialization should be carefully chosen since

conventional initializations might lead to poor results. In particular, we propose an algorithm

that is gradually changing the regularization (balance) parameter between the two tensors.

This chapter is organized as follows. In Section 4.2, we recall the coupled CP models and

related maximum likelihood estimators introduced in Section 2.2. We also provide a link between

uniqueness of the coupled CP model and calculation of Cramér-Rao bounds. Section 4.3 recalls

important formulas on calculation of uncoupled and constrained CRBs for coupled models in

a general context. In Section 4.4, we explore two different estimation scenarios and related

parameterizations. The closed-form expressions for the Fisher information matrices in each

scenario are provided in Section 4.5. Section 4.6 contains our numerical simulations regarding the

efficiency of the existing algorithms STEREO and Blind-STEREO. Finally, Section 4.7 addresses

the specific context of hyperspectral super-resolution. In particular, we study the impact of the

design of the hyperspectral measurements system on the CCRB, i.e., on the best performance

that can theoretically be achieved.

4.2 Observation model and estimation

4.2.1 Observation tensor model for the reconstruction problem

We consider two tensors Y1 P RIdˆJdˆK and Y2 P RIˆJˆKd . We assume17 that Y1 has high

resolution in the third mode (K ą Kd), while Y2 possesses high resolutions in the first and

second modes (I ą Id, J ą Jd). Under the same acquisition conditions, Y1 and Y2 usually
17The subscripts d in the dimensions stand for “degraded”.
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4.2. Observation model and estimation

represent the same target, hence they are viewed as two degraded versions of a single tensor

X P RIˆJˆK , that is of high resolution in all three modes. We adopt the following degradation

model that can be compactly written as
$

&

%

Y1 “ X ‚1 P ‚2 Q` E1,

Y2 “ X ‚3 R` E2,
(4.1)

where P P RIdˆI , Q P RJdˆJ , and R P RKdˆK have full row rank. We assume that the degrada-

tion in the first and second modes is separable. The entries of the noise terms E1 „ N p0,Σ1q,

E2 „ N p0,Σ2q are independent and identically distributed (i.i.d.) real Gaussian tensors18 with

zero mean and variances Σ1 “ σ2
1I and Σ2 “ σ2

2I. Model (4.1) represents an ill-posed inverse

problem, whose aim is to recover the tensor X from the observations Y1 and Y2.

Model (4.1) was used to tackle several reconstruction problems. For instance, in medical

imaging [85], the degradation matrices select sub-Nyquist samples (either fiber or slabs) of the

target tensor in a given mode. In hyperspectral super-resolution [86], the matrices P and Q

are blurring and downsampling matrices, while R contains the spectral response functions of

the sensor used for acquiring Y2. In this case, model (4.1) corresponds in fact to the basic

observation (1.28) introduced in Chapter 1. The tensors X , Y1 and Y2 correspond to Y , YH

and YM , respectively, and the noise tensors E1 and E2 correspond to EH , EM . The degradation

matrices P1, P2, P3 are denoted P, Q, R in this part.

4.2.2 Reformulation as a coupled CP model

As in [86] and Chapter 2, we reformulate (4.1) as a coupled CP approximation with tensor rank

N . Under this assumption, model (4.1) becomes
$

&

%

Y1 “ rrA1,B1,C1ss ` E1,

Y2 “ rrA2,B2,C2ss ` E2,
(4.2)

where A1 “ PA2, B1 “ QB2, C2 “ RC1, (4.3)

and the matrices A1 P RIdˆN , B1 P RJdˆN , C1 P RKˆN ; A2 P RIˆN , B2 P RJˆN , C2 P RKdˆN

are the factor matrices of the CPD. Here, we denote the CP factors differently from model (2.1)

(e.g., A1, B1, C2) and the degradation is encoded as the coupling constraints (4.3).

While (4.2) only is an uncoupled model, the addition of constraints on the factor matrices

leads (4.2)–(4.3) to be denoted to as fully-coupled model. With this notation, X admits a CPD
18In fact, the assumption of a known covariance matrix is rather strong and may not be realistic for some

applications, such as hyperspectral data fusion. Nevertheless, it allow he bounds to be computed in a simple way,

and the results obtained using these bounds may still apply in more general cases where these assumptions are

not satisfied, see e.g., Section 4.7.

100



4.2. Observation model and estimation

as

X “ rrA2,B2,C1ss. (4.4)

In some cases, the degradation operators P and Q are unknown. This partially coupled

model will be further denoted to as “blind”. It adresses the following coupled CP model:
$

&

%

Y1 “ rrA1,B1,C1ss ` E1,

Y2 “ rrA2,B2,C2ss ` E2,
(4.5)

where C2 “ RC1, (4.6)

where A1, B1 are degraded versions of the CPD factors A2, B2 by unknown degradation ma-

trices. Model (4.5)–(4.6) corresponds in fact to model (2.5) in Chapter 2 with the spectral

degradation encoded as the constraint (4.6).

4.2.3 Estimation

In the uncoupled case, estimation of the CP factors can be performed by applying the uncoupled

ALS algorithm [152] to Y1 and Y2 separately. Thus identifiability of both CPDs is required.

For instance, for Y1, ALS minimizes the following cost function:

min
A1,B1,C1

1

σ2
1

}Y1 ´ rrA1,B1,C1ss}
2
F ,

which corresponds to the Maximum Likelihood (ML) Estimator (MLE) for A1,B1,C1, under

the Gaussianity assumption on the residuals.

The fully-coupled problem (4.2)–(4.3) can be solved by the algorithm STEREO proposed

in [86]. It is a coupled ALS algorithm that minimizes the criterion

min
A2,B2,C1

}Y1 ´ rrPA2,QB2,C1ss}
2
F ` λ}Y2 ´ rrA2,B2,RC1ss}

2
F . (4.7)

Note that assuming independent Gaussian noise and λ “ σ2
1

σ2
2
, STEREO corresponds to the MLE

for fully-coupled Y1 and Y2. In the noiseless case (E1,E2 “ 0), the coupled CP model (4.2)–(4.3)

is (generically) identifiable (2.4) if

N ď mint2tlog2pKdJqu´2, IdJdu. (4.8)

In the proof for [86, Theorem 3], it is specified that condition (4.8) only requires the CPD of Y2

to be unique.

In the partially-coupled (blind) case, we estimate the CP factors using Blind-STEREO [86].

It is a coupled ALS algorithm that only accounts for the degradation matrix R, while P and Q

are unknown. The criterion minimized by Blind-STEREO is

min
A1,B1,

A2,B2,C1

}Y1 ´ rrA1,B1,C1ss}
2
F ` λ}Y2 ´ rrA2,B2,RC1ss}

2
F . (4.9)
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4.2. Observation model and estimation

which is the ML criterion for the blind problem if λ “ σ2
1

σ2
2
. Conditions on exact noiseless recovery

of X by Blind-STEREO were provided in [86, Theorem 4]; contrary to the fully-coupled case

(4.2)–(4.3), they require both the CPD of Y1 and Y2 to be unique, as specified in Section 2.2.2.

The criteria (4.7) and (4.9) are linked to the corresponding optimization problems (2.3) and

(2.6) in Section 2.2, respectively.

4.2.4 Link between uniqueness and identifiability

We now explain how uniqueness of the coupled CP model (4.2)–(4.3) in the noiseless case is

related to the calculation of the CRB. In estimation theory, the notion of identifiability lacks a

unified definition. In the literature, it is also called “observability” [83,153]. We choose to define

it as the uniqueness of the proposed model.

Let us consider the probability density function (PDF) fY;ω of the random real dataset

Y P Υ Ď Rn parameterized by the unknown real deterministic parameter ω P Ω Ď Rm. We

assume that Y is a random real Gaussian dataset parameterized by its mean, that is,

Y „N pµpωq,Σq, (4.10)

with Σ a known19, non-singular covariance matrix.

We say that the statistical model F “ tfY;ω : ω P Ωu is identifiable if the mapping ω ÞÑ fY;ω

is injective [104], i.e., any distribution fY;ω corresponds to a single parameter ω. For the case of

our Gaussian dataset, the following holds true:

fY;ω1 “ fY;ω2 ô µpω1q “ µpω2q. (4.11)

Thus, identifiability of the distributions is equivalent to identifiability of the means, i.e., identi-

fiability in the noiseless case.

Definition 4.2.1. Identifiability at a point – The noiseless model Y “ µpωq is identifiable

at the point ω0 if

pω ‰ ω0q ñ pµpωq ‰ µpω0qq @ω P Rm. (4.12)

Definition 4.2.2. Local identifiability – The noiseless model Y “ µpωq is locally identifiable

at ω0 if there exists an open subset Ω0 Ď Rm containing ω0 such that

pω ‰ ω0q ñ pµpωq ‰ µpω0qq @ω P Ω0. (4.13)

In model (4.10), the Fisher information matrix (FIM) for ω is obtained via the Slepian-Bangs

formula [151]:

Fpωq “
”

Bµpωq
BωT

ıT
Σ´1

”

Bµpωq
BωT

ı

P Rmˆm, (4.14)

19Please refer to footnote 18 for comments on this assumption.
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where Bµpωq
BωT is the Jacobian of µpωq. If the FIM in (4.14) is non-singular, then µpωq is locally

identifiable in the noiseless case [83, Theorem 5], [114, §III.C.1, §VI].

A question that arises from the previous paragraph is whether local identifiability implies non-

singularity of the FIM. For the case of tensor decompositions, the answer is positive. Let us

consider that Y is a vectorized tensor of subgeneric rank admitting a CPD as in (1.5), and that

ω “

»

—

—

–

vectAu

vectBu

vectCu

fi

ffi

ffi

fl

, µpωq “ vectrrA,B,Cssu.

Generic uniqueness of the CPD of Y implies that the rank of the Jacobian of µpωq in the generic

case is equal to

rank
ˆ

Bµpωq

BωT

˙

“ pI ` J `K ´ 2qN

generically20 (i.e., except for a set of parameters ω of measure zero), see [34, Sec. 3.2], [159],

and [52, Def. 3.5]. Thus, the Jacobian is full rank once the scaling ambiguities in (1.10) are

corrected; see Section 4.4.2 for more details on scaling ambiguities for coupled cases. Finally,

from (4.14) it follows that full rank in the Jacobian implies that the FIM is invertible (and thus

the CPD is locally identifiable in the noiseless case).

4.3 Cramér-Rao lower bounds for coupled models

4.3.1 Background on standard CRBs

As introduced in [165, p53], a model of the general deterministic estimation problem has the

following four components: 1) a parameter space Θd Ă RP , 2) an observation space X Ă RM ,

3) a probabilistic mapping from parameter vector space Θd to observation space X , that is

the probability law p px;θq that governs the effect of a parameter vector value θ P Θd on the

observation x P X and, 4) an estimation rule, that is the mapping of the observation space X
into vector parameter estimates pθ

def
“ pθ pxq. If a closed-form expression of p px;θq is available,

the estimation problem at hand is so-called a “standard” deterministic estimation problem [90].

In this setting, minimal performance bounds on the mean square error (MSE) matrix of pθ allow

for calculation of the best performance that can be achieved.

In standard deterministic estimation problems [90], the MSE matrix of pθ is a Gram matrix

(general form of the square of a norm) [114] defined on the vector space of square integrable

functions and, therefore, all known standard lower bounds on the MSE can be formulated as the
20This results is well-known for complex tensors, but it is also valid for real tensors, see [137].
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4.3. Cramér-Rao lower bounds for coupled models

solution of a norm minimization problem under linear constraints [26, 51, 59]. This formulation

of lower bounds not only provides a straightforward understanding of the hypotheses associated

with the different lower bounds [26, 51, 59], but also allows us to obtain a unique formulation of

each bound in terms of a unique set of linear constraints.

When this bound is the CRB, the set of linear constraints involved reduces to a set of deriva-

tive constraints [114]. Indeed, the CRB is the lowest bound on the MSE of unbiased estimators,

since it is derived from the weakest formulation of unbiasedness, i.e. local unbiasedness,

Eθ`dθ

”

pθ
ı

“ θ ` dθ ` o p}dθ}q , (4.15a)

where o p.q denotes the small oh notation. It means that, up to the first order and in the

neighborhood of θ, pθ remains an unbiased estimator of θ independently of a small variation of

the parameters.

Interestingly, (4.15a) can be rewritten in terms of Taylor expansion of each side. The unique-

ness of Taylor expansion imposes that the following linear constraints

Ey;θ

”

pθ ´ θ
ı

“ 0, Ey;θ

«

´

pθ ´ θ
¯

B ln p py;θq

Bθ

T
ff

“ I, (4.15b)

must be statisfied by any locally unbiased estimator. Then, the CRB is easily obtained by using

the following well known lemma on the minimization of a Gram matrix (with respect to the

Löwner ordering [78, §7.7]) under linear constraints.

Lemma 4.3.1. Let U be a Hilbert vector space on the field of real numbers R which has a scalar

product x | y. Let c
r1,Ks

“ pc1, . . . , cKq be a family of K linearly independent vectors of U and

u
r1,P s

“ pu1, . . . ,uP q a family of P vectors of U. Then

VTG
´

c
r1,Ks

¯´1
V “min

u
r1,P s

!

G
´

u
r1,P s

¯)

under xup | cky “ Vk,p, (4.16)

where G
´

w
r1,Ns

¯

denotes the Gram matrix associated to the family of N vectors w
r1,Ns

defined

as Gn,n1
´

w
r1,Ns

¯

“ xwn1 | wny, 1 ď n, n1 ď N .

Indeed by defining

u
r1,Ns

“ pθ ´ θ, c
r1,Ks

“

˜

1,
B ln p py;θq

Bθ

T
¸

,

and by considering the scalar product xf pyq | g pyqy “ Ey;θ rf pyq g pyqs, lemma (4.16) can be

applied for V “ r0 Is (4.15b) and leads to

Ey;θ

„

´

pθ ´ θ
¯´

pθ ´ θ
¯T



ě CRB pθq “ F pθq´1 , (4.17a)

F pθq “ Ey;θ

„

B ln p py;θq

Bθ

B ln p py;θq

BθT



, (4.17b)
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where F pθq is the Fisher information matrix (FIM).

Last, it has been shown in [114] that the CRB (4.17a) is also obtained if (4.15b) is reduced

to

Ey;θ

«

´

pθ ´ θ
¯

B ln p py;θq

Bθ

T
ff

“ I. (4.18)

4.3.2 Coupled model with constraints

Let fY1;ω and fY2;ω be the PDFs of the random real datasets Y1 P Rn1 and Y2 P Rn2 , parame-

terized by an unknown deterministic real parameter vector ω P Ω.

A general coupled model with constraints is expressed as:
$

&

%

Y1 „ fY1;ω and Y2 „ fY2;ω,

gpωq “ 0,
(4.19)

with g a non-redundant deterministic vector function differentiable @ω P Ω. Non-redundancy

means that the system of equations gipωq “ 0 is not reducible [140].

We assume that:

(i) the PDFs fY1;ω and fY2;ω are non-redundant functions differentiable w.r.t. ω, and that

their supports do not depend on ω;

(ii) the variables Y1 and Y2 are statistically independent.

In some cases, as studied in [114], the model parameter ω P Ω corresponds to the stacking of

two parameters ψ P Ψ Ď Rm1 and ξ P Ξ Ď Rm2 (m “ m1 `m2) such that

ω “

«

ψ

ξ

ff

,

where ξ can be expressed as a function of ψ, i.e., ξ “ hpψq. The function h is a non-redundant,

differentiable function for all ψ P Ψ. This results in the constraint

gpωq “ ξ ´ hpψq P Rm2 , (4.20)

which can also be directly inserted in ω, leading to the following reparameterization

ωpψq “

«

ψ

hpψq

ff

. (4.21)

The model (4.19) can thus be reformulated as the following unconstrained coupled model

Y1 „ fY1;ψ and Y2 „ fY2;ψ. (4.22)

Here, the PDFs are solely parameterized by the unknown deterministic real parameter vector

ψ P Ψ, under the same assumptions (i) and (ii) on the PDFs as in model (4.19).
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4.3.3 Uncoupled CRB

We consider that Y1 and Y2 are random real Gaussian distributed datasets parameterized by

their mean, i.e., Y1 „ N pµ1pωq,Σ1q and Y2 „ N pµ2pωq,Σ2q where Σ1 and Σ2 are known

covariance matrices. The parameter ω is unknown real and assumed to be deterministic. The

uncoupled FIM for ω is obtained by using the Slepian-Bangs formula (4.14):

Fpωq “

«

Bµ1pωq
BωT

Bµ2pωq
BωT

ffT

DiagtΣ1,Σ2u
´1

«

Bµ1pωq
BωT

Bµ2pωq
BωT

ff

. (4.23)

If the FIM is non-singular, then the uncoupled CRB for ω (namely CRBpωq) is obtained as

CRBpωq “ F´1pωq. From Section 4.2.4, we see that invertibility of the FIM implies local

identifiability of the whole parameter ω.

In some cases, however, the FIM can be singular (and thus, non-invertible): common practice

is to resort to the Moore-Penrose pseudo-inverse of the FIM for the computation of the CRB

[139, 157]. In such cases, any estimator of ω must have infinite variance [157]: in this paper,

we choose to not compute the CRB when the FIM is singular. For uncoupled estimation, the

constraint gpωq “ 0 is ignored.

4.3.4 Expression for CCRB

The vector constraint gpωq “ 0 leads to the definition of the constrained FIM and the CCRB.

In the seminal paper [62], the CCRB for ω is expressed as

CCRBpωq “ F´1 ´ F´1GT
”

GF´1GT
ı´1

GF´1 ľ 0, (4.24)

where F
def
“ Fpωq and G “

”

Bgpωq
BωT

ı

P Rm2ˆm is a full row-rank matrix, which is equivalent to

requiring that the constraints are non-redundant. We can express G as

G “

”

Bgpωq

BψT
Bgpωq

BξT

ı

“

”

´
Bhpψq

BψT Im2

ı

. (4.25)

It is easy to see from (4.24) that the CCRB is lower than the CRB. However, this formulation

explicitly requires the FIM to be non-singular, and inversion of the FIM can be costly for large

datasets.

In [114,158], an alternative expression for the CCRB is

CCRBpωq “ U
”

UTFU
ı´1

UT, (4.26)

where U
def
“ Upωq P Rmˆm1 is a basis of kerpGq. The matrix UTFU is called the constrained

FIM for the parameter ω.

Contrary to (4.24), (4.26) does not require invertibility of F. The above expression does not

depend on the choice of U either [114]. It is also noticeable that if F is invertible, then the

expressions in (4.24) and (4.26) are equivalent [158, Corollary 1].
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4.3.5 Reparameterized CRB

Let us now consider a reparameterization of the PDFs fY1;ω and fY2;ω for the unknown parameter

ψ P Ψ Ď Rm1 where ω “ ωpψq. We consider the particular case where ψ is a subset of parameters

in ω; then, arbitrarily we can rearrange the components of ω as in (4.21).

In [104, p.125], an expression for the reparameterized FIM for ψ (namely Fcpψq) is given:

Fcpψq “

„

Bωpψq

BψT

T

Fpωpψqq

„

Bωpψq

BψT



. (4.27)

Contrary to the uncoupled case, we notice that uniqueness of model (4.21) only requires identi-

fiability of the sub-parameter ψ. Additionally, we can express the reparameterized CRB for the

parameter ξ “ hpψq (namely CRBcpξq) as

CRBcphpψqq “

„

Bhpψq

BψT

T

Fc
´1pψq

„

Bhpψq

BψT



.

In [114], it is shown that for the parameter ψ, (4.26) and (4.27) lead to the same bound.

Indeed, expressing the parameter ω as in (4.21) is equivalent to introducing the set of constraints

in (4.20). We can check that

Bωpψq

BψT
“

»

–

Im1

Bhpψq

BψT

fi

fl P Rmˆm1 ,
Bgpωq

BωT
“

”

Bgpωq

BψT
Bgpωq

BξT

ı

“

”

´
Bhpψq

BψT Im2

ı

P Rm2ˆm.

Therefore, U
def
“

Bωpψq

BψT is a basis of ker
´

Bgpωq
BωT

¯

, which shows that the constrained FIMs in (4.26)

and (4.27) are equivalent21.

4.3.6 Lehmann-unbiased CCRB

In [123] it was shown that when the constraints gpωq on the model parameters are nonlinear,

the CCRB is not a lower bound for constrained parameter estimation. As a result, the MSE

of estimators locally-unbiased in the Lehmann sense may be lower than the standard CCRB.

Therefore it was proposed to define the Lehmann-unbiased CCRB (LU-CCRB) as

LU-CCRBpωq “ vectIm1u
TΓ:Upωq vectIm1u, (4.28)

where for pi, jq P t1, . . . ,m1u, the pi, jq-th block of ΓU is such that

Γ
pi,jq
U pωq

def
“ UTFU`UTVT

i PKUVj , (4.29)

with PKU “ Im ´UU: and Vi
def
“

BpU:,iq

BωT (under the assumption that the m1 columns of U are

differentiable w.r.t. ω).
21As a result, invertibility of the constrained FIM in (4.26) also implies that ψ is identifiable
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The work of [123] proved i) equivalence between the trace of the CCRB matrix (4.26) and

LU-CCRB (4.28) for linear constraints [123, Proposition 4], and ii) that the LU-CCRB is lower

than or equal to the CCRB in the general case [123, Proposition 5]. It was also shown that for

non-linear constraints on the model parameters, the LU-CCRB is a lower bound for constrained

parameter estimation.

4.4 Different parameterizations and estimation scenarios

To derive performance bounds, it is necessary to embed the problem (4.1) in an appropriate

probabilistic framework, requiring to properly define the probabilistic model, the parameters of

interest and possible associated constraints, and to fix the ambiguities resulting from the coupled

CP model.

4.4.1 Model parameters

We first define the model parameters22 that describe the CP model (4.2).

Since the spatial and spectral degradations are considered to be separable, and never occur

simultaneously in model (4.2)–(4.3), we separate the CP factors into distinct parameters θ1 P

RKN , θ2 P RKdN , φ1 P RpId`JdqN and φ2 P RpI`JqN as

θ1 “ vectC1u, θ2 “ vectC2u, φ1 “

«

vectA1u

vectB1u

ff

, φ2 “

«

vectA2u

vectB2u

ff

. (4.30)

The above vectors can be stacked into one global parameter ω P Rm (m “ pI ` J `K ` Id `

Jd `KdqN) defined by

ω “

»

—

—

—

—

—

–

φ1

θ1

φ2

θ2

fi

ffi

ffi

ffi

ffi

ffi

fl

.

From (4.3), the model parameters can be linked together through non-redundant functions

as

g1pθ1,θ2q “ 0, g2pφ1,φ2q “ 0,

where g1 and g2 are differentiable @pθ1, θ2) (resp. (φ1, φ2)).
22To provide a link with the notation of Section 4.3, we can define the parameters ψ P RpI`J`KqN and ξ P

RpId`Jd`KdqN such that

ψ “

«

φ2

θ1

ff

, ξ “

«

φ1

θ2

ff

.
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4.4.2 General framework for the fusion problem

For the fully-coupled CP model, we wish to estimate the parameters φ2 and θ1, i.e., the factor

matrices underlying the target tensor X . In order to illustrate the advantage of data fusion

over uncoupled estimation, we are also interested in the performance of the uncoupled and blind

models: these cases require the calculation of performance bounds for the parameters φ1 and

θ2 as well. As a result, we can distinguish two probabilistic scenarios, regarding whether i) we

are only interested in performance bounds and an analysis for the fully-coupled CP model, or ii)

we want to compare the performance of the coupled CP approach to that of the uncoupled and

blind approaches. Case i) allows for a bound calculation for the fully-coupled problem only and

will be referred to as scenario 1, while ii) can also encompass uncoupled and blind problems and

will be referred to as scenario 2.

We consider that the low-resolution tensors Y1 P RIdˆJdˆK and Y2 P RIˆJˆKd are random

real Gaussian datasets. For all models and scenarios, Y1 and Y2 are distributed as in (4.19).

Here, from the relationships between the model parameters, we can express (4.20) as

gpωq “
”

g1pθ1,θ2q g2pφ1,φ2q

ı

. (4.31)

For each scenario and estimation framework (uncoupled, blind or fully-coupled models), the

expression of g1pθ1,θ2q and g2pφ1,φ2q might change, resulting in different sets of constraints

between the parameters. As in Section 4.3, the PDFs might only be parameterized by a subset of

ω; in the following subsections, the expressions of these PDFs will be provided for each scenario.

Calculation of CRBs often requires inversion of a FIM, as explained in Section 4.3. For

the FIM to be full rank, scaling ambiguities in the CPDs need to be solved [144] regarding the

parameters we wish to estimate: indeed the manifold of rank-N tensors in RIˆJˆK has dimension

minppI ` J `K ´ 2qN, IJKq. Throughout this chapter, we choose the option to rescale (1.10)

with αn “ 1
A1,n

, βn “ 1
B1,n

and γn “ 1
αnβn

. For each aforementioned scenario, we will provide

different scaling options, allowing for the calculation of the performance bounds. We will also

introduce different parameterizations and distributions for the observed datasets.

4.4.3 Scenario 1 – Assessing performance for the fully-coupled model

In this first scenario, we are only interested in the performance analysis for the fully-coupled

problem. This case boils down to a performance analysis for φ2 and θ1 only. Thus, in this

scenario, we only need uniqueness of the CPD of Y2 tensor to calculate the bounds. We set

pA2q1,: “ pB2q1,: “ 1 to fix the correct the scaling ambiguities in φ2.

As a result, we define the reduced parameter

rφ2 “

«

vectpA2q2:I,:u

vectpB2q2:J,:u

ff

P RpI`J´2qN ,
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that is only composed of the unknown entries of φ2. The full and reduced parameters can be

linked through the relationship rφ2 “ M2φ2. Here, the matrix M2 P RpI`J´2qNˆpI`JqN is a

selection matrix constructed from IpI`JqN by removing the 2N rows corresponding to the known

entries of φ2 fixed to 1.

In that case, we can directly incorporate the constraints between the factor matrices in the

coupled CP model as
$

&

%

Y1 “ rrPA2,QB2,C1ss ` E1,

Y2 “ rrA2,B2,RC1ss ` E2.
(4.32)

Since the entries of the noise terms E1 and E2 are i.i.d., Y1 and Y2 are distributed according to
$

’

’

&

’

’

%

fY1;rφ2,θ1
“

`

2πσ2
1

˘

´IdJdK

2 e

ˆ

´ 1

2σ21
}Y1´rrPA2,QB2,C1ss}

2
F

˙

,

fY2;rφ2,θ1
“

`

2πσ2
2

˘

´IJKd
2 e

ˆ

´ 1

2σ22
}Y2´rrA2,B2,RC1ss}

2
F

˙

,

(4.33)

In model (4.32), the constraints between the factor matrices are such that A1 “ PA2, B1 “ QB2

and C2 “ RC1. These equalities translate in terms of model parameters as
$

’

’

’

&

’

’

’

%

g1pθ1,θ2q “ θ2 ´ pIN b Rqθ1,

g2pφ1,
rφ2q “ φ1 ´

»

–

IN b P 0

0 IN b Q

fi

flMT
2
rφ2.

(4.34)

From (4.34), we can see that the functions g1 and g2 are linear and thus, in this scenario, we

will refer to the relationship between the model parameters as linear constraints.

4.4.4 Performance on the reconstructed tensor

Additionally to the model parameters in (4.30), in reconstruction problems we may also be

interested into the reconstruction error on the underlying tensor X . To that aim, we define

x “ vectX u P R` (` “ IJK), that represents the vectorized tensor X . Parameter x can be

linked to the model parameters through the relationship

g3px, rψq “ 0.

In order to calculate the performance bounds for x, we utilize relationships between tensor

unfoldings

x “ rpC1 dB2qb IIs
looooooooomooooooooon

S1

vectA2u (4.35)

“ Πp2,1q rpC1 dA2qb IJ s
loooooooooooooomoooooooooooooon

S2

vectB2u (4.36)

“ Πp3,1q rpB2 dA2qb IKs
loooooooooooooomoooooooooooooon

S3

vectC1u, (4.37)
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where Πp2,1q and Πp3,1q are permutation matrices that link entries of vectXp2qu (resp. vectXp3qu)

to those of vectXp1qu.

As a result, the expression of g3px, rψq is given by

g3px, rψq “ x´
”

S1 S2 S3

ı

MT
3
rψ,

where M3 “ DiagtM2, IKNu.

4.4.5 Scenario 2 – Comparing performance bounds in the uncoupled and
blind cases

Specific scaling option

In this second scenario, we want to compare performance bounds for the fully coupled problem

to those in the uncoupled and blind case. This case requires the calculation of the bounds for

the parameters φ2 and θ1, as well as for φ1 and θ2 for blind and uncoupled models. Contrary

to scenario 1, inversion of the FIM in the blind and uncoupled case require both CPDs to be

generically unique. As a result, we also need to define the reduced parameter rω P Rm´4N as

rω “

»

—

—

—

—

—

–

rφ1

θ1

rφ2

θ2

fi

ffi

ffi

ffi

ffi

ffi

fl

.

We solve scaling ambiguities in φ1 by setting pA1q1,: “ pB1q1,: “ 1. As a result, we define

the reduced parameter vector

rφ1 “

«

vectpA1q2:Id,:u

vectpB1q2:Id,:u

ff

P RpId`Jd´2qN ,

that is only composed of the unknown entries of φ1. As in the previous subsection, we can express

the reduced parameter vector through the relationship rφ1 “ M1φ1, with M1 P RpId`Jd´2qNˆpId`JdqN

constructed in a similar manner as M2.

Given (4.3), solving the scaling ambiguities for the coupled CP factors of Y1 imposes that

pPA2q1,: “ pQB2q1,: “ 1. However, in a realistic coupled framework, it is unlikely that the

degradation matrices P, Q make the above equality valid, even if pA2q1,: “ pB2q1,: “ 1. Indeed,

it would require that pPq1,: “
“

1 01ˆpI´1q

‰

and pQq1,: “
“

1 01ˆpJ´1q

‰

. The performance

analysis for this simpler case was addressed in [136].

Here, to circumvent this limitation and address the more general case, we introduce the

diagonal scaling factors

Dα “ diagtpPA2q1,:u and Dβ “ diagtpQB2q1,:u (4.38)
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such that pA1D
´1
α q1,: “ pB1D

´1
β q1,: “ 1. We also need to rescale C2 as C2 “ RC1pDαDβq

´1

so that Y1 and Y2 are degraded versions of the same tensor

X “ rrA2,B2,C1pDαDβq
´1ss.

Model and parametrization for fully-coupled CP model

The particular scaling option (4.38) leads to the following model with additive constraints be-

tween the CP factors:
$

&

%

Y1 “ rrA1,B1,C1ss ` E1,

Y2 “ rrA2,B2,C2ss ` E2,
(4.39)

subject to A1 “ PA2D
´1
α , B1 “ QB2D

´1
β , C2 “ RC1pDαDβq

´1

for the fully coupled case.

The datasets are thus distributed according to
$

’

&

’

%

fY1;rφ2,θ1
“

`

2πσ2
1

˘

´IdJdK

2 exp
´

´ 1
2σ2

1
}Y1 ´ rrPA2D

´1
α ,QB2D

´1
β ,C1ss}

2
F

¯

,

fY2;rφ2,θ1
“

`

2πσ2
2

˘

´IJKd
2 exp

´

´ 1
2σ2

2
}Y2 ´ rrA2,B2,RC1pDαDβq

´1ss}2F

¯

,
(4.40)

which is a parameterization different from (4.33). The only case where the PDFs in (4.33) and

(4.40) are equivalent is the specific case where Dα “Dβ “ IN , addressed in [136].

In (4.39), we can see that the relationships linking the CP factors involve the scaling factors

Dα and Dβ . Rewriting these relationships in terms of the model parameters gives:
$

’

’

’

&

’

’

’

%

g1pθ1,θ2q “ θ2 ´
`

pDαDβq
´1 b R

˘

θ1,

g2prφ1,
rφ2q “ rφ1 ´M1

»

–

D´1
α b P 0

0 D´1
β b Q

fi

flMT
2
rφ2.

(4.41)

Due to the definition of Dα and Dβ in (4.38), we refer to (4.41) as non-linear constraints on the

model parameters.

Parametrizations for uncoupled and blind models

In the uncoupled case, the observations follow the model (4.2). They are distributed according

to
$

’

&

’

%

fY1;rφ1,θ1
“

`

2πσ2
1

˘

´IdJdK

2 exp
´

´ 1
2σ2

1
}Y1 ´ rrA1,B1,C1ss}

2
F

¯

,

fY2;rφ2,θ2
“

`

2πσ2
2

˘

´IJKd
2 exp

´

´ 1
2σ2

2
}Y2 ´ rrA2,B2,C2ss}

2
F

¯

.
(4.42)

For the blind problem, we have the following model:
$

&

%

YH “ rrA1,B1,C1ss ` E1,

YM “ rrA2,B2,C2ss ` E2,
(4.43)
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subject to C2 “ RC1pDαDβq
´1.

In the blind case, we only consider the constraint g1pθ1,θ2q “ θ2´
`

pDαDβq
´1 b R

˘

θ1 instead

of (4.41).

The datasets are distributed according to
$

’

&

’

%

fY1;rφ1,θ1
“

`

2πσ2
1

˘

´IdJdK

2 exp
´

´ 1
2σ2

1
}Y1 ´ rrA1,B1,C1pDαDβq

´1ss}2F

¯

,

fY1;rφ2,θ1
“

`

2πσ2
2

˘

´IJKd
2 exp

´

´ 1
2σ2

2
}Y2 ´ rrA2,B2,RC1pDαDβq

´1ss}2F

¯

.
(4.44)

4.5 Deriving performance bounds based on the coupled CP model

We are now ready to derive performance bounds for the CP model in the uncoupled, blind, and

fully coupled cases. For the case of fully coupled datasets (i.e., all degradation matrices are

known), we address both scenarios described above.

4.5.1 Uncoupled case

In the uncoupled case, the CRB for the parameter rω is obtained by inverting the uncoupled

FIM. To do so, scaling ambiguities in the CPDs of Y1 and Y2 need to be solved so that the FIM

is full rank. Therefore the uncoupled CRB can only be computed in scenario 2.

In practice, the FIM for rω (namely Fprωq) is computed by applying (4.23) to the tensors Y1

and Y2:

Fprωq “

«

Bµ1prωq

BrωT

Bµ2prωq

BrωT

ffT

DiagtΣ1,Σ2u
´1

«

Bµ1prωq

BrωT

Bµ2prωq

BrωT

ff

(4.45)

“
1

σ2
1

”

BµT
1 prωq
Brω

Bµ1prωq

BrωT

ı

`
1

σ2
2

”

BµT
2 prωq
Brω

Bµ2prωq

BrωT

ı

.

Here, the expressions of µ1prωq and µ2prωq are obtained from relationships between tensor un-

foldings. The covariance matrices are defined as Σ1 “ σ2
1I and Σ2 “ σ2

2I, respectively.

As in previous related works [14, 136, 140], we consider a case where the scaling ambiguities

on Y1 and Y2 are solved, meaning that the FIM is non-singular. The CRB for rω can be obtained

by inversion of the FIM: CRBprωq “ F´1prωq. The CRB for each sub-parameter can be obtained

by applying the block inversion lemma [145] to Fprωq. The full derivation, initially proposed

in [140], is reproduced in Appendix E to keep this manuscript self-contained.

4.5.2 Partially coupled case

We now address the partially coupled (blind) case and compute the CCRB associated with model

(4.43). The Blind-CCRB can only be computed in scenario 2 due to the correction of scaling

ambiguities on A1,B1.
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We apply formula (4.26) to model (4.43), with F
def
“ Fprωq,

G “

”

Bg1

Bprφ1q
T

Bg1

BθT1

Bg1

Bprφ2q
T

Bg1

BθT2

ı

.

The derivatives of g1pθ1,θ2q are:

Bg1

Bprφ1q
T
“ 0,

Bg1

BθT1
“ ´Z1,

Bg1

Bprφ2q
T
“ ´rZ2 Z3sM

T
2 ,

Bg1

Bθ2
T
“ IKdN ,

where the matrices Z1,Z2,Z3 are given by

Z1 “ pDαDβq
´1

b R,

Z2 “ ´
`

D2
αDβq

´1 b R
˘

pIN dC1q pIN bpPq1,:q ,

Z3 “ ´
`

pDαD
2
βq
´1 b R

˘

pIN dC1q pIN bpQq1,:q ,

Hence a basis U of kerpGq is such that

U “

»

–

IpI`J`Id`Jd`KqN´4N
”

0 Z1 rZ2 Z3sM
T
2

ı

fi

fl . (4.46)

We thus obtain the Blind CCRB:

Blind-CCRBprωq “ U
”

UTFU
ı´1

UT, (4.47)

with the matrix U given in (4.46).

4.5.3 Fully-coupled case

For the fully-coupled case, we can compute the CCRB and reparameterized CRB in both sce-

narios.

Scenario 1 – linear constraints

In the first scenario, the most straightforward approach is to compute the reparameterized CRB

using the fully-coupled model (4.32).

We consider the random real Gaussian distributed dataset y such that y „ N pµprψq,Σq,
with

y “

«

vectY1u

vectY2u

ff

, Σ “ DiagtΣ1,Σ2u, µprψq “

«

IK b Q b P

R b IIJ

ff

loooooooomoooooooon

rP

vectrrA2,B2,C1ssu.

Note that the matrix rP is constant, which means that we only have to compute the derivatives

of vectrrA2,B2,C1ssu w.r.t. (rφ2,θ1). Those can be obtained from relationships between tensor

114



4.5. Deriving performance bounds based on the coupled CP model

unfoldings as in (4.35)–(4.37). As a result, we can compute the reparameterized FIM for rψ

(denoted to as Fcprψq) from the Slepian-Bangs formula as

Fcprψq “ M3

»

—

—

–

ST
1

ST
2

ST
3

fi

ffi

ffi

fl

rPTΣ´1
rP
”

S1 S2 S3

ı

MT
3 . (4.48)

The reparameterized CRB for prψq can be then computed as CRBcprψq “ Fc
´1prψq.

We can also compute the reparameterized CRB for the parameter x as

CRBcpxq “
”

Bg3

B rψT

ı

CRBcprψq
”

Bg3

B rψT

ıT
.

Equivalently, we can compute the CCRB from Fprωq with

G “

»

–

Bg2

BφT
1

Bg2

BθT1

Bg2

Bprφ2q
T

Bg2

BθT2
Bg1

BφT
1

Bg1

BθT1

Bg1

Bprφ2q
T

Bg1

BθT1

fi

fl . (4.49)

Here, due to the linear constraints, we have Bg2

BθT1
“

Bg2

Bpθ2qT
“ 0 and Bg1

BφT
1
“

Bg1

Bprφ2q
T
“ 0. For other

derivatives, we have

Bg2

Bprφ2q
T
“ ´

«

IN b P 0

0 IN b Q

ff

MT
2 ,

Bg2

BφT
1

“ IpId`JdqN ,
Bg1

BθT1
“ ´IN b R,

Bg1

BθT2
“ IKN .

Thus a basis for ker G is

U “

»

—

—

—

—

—

—

—

—

—

—

–

IN b P 0 0

0 IN b Q 0

0 0 I

I 0 0

0 I 0

0 0 IN b R

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

The CCRB can then be computed using (4.26).

Scenario 2 – non-linear constraints

In this subsection, the non-linear constraints in (4.39) yield to different bounds. In (4.49), we

now have

Bg1

BθT1
“ ´Z1,

Bg1

BθT2
“ IKN ,

Bg1

Bprφ1q
T
“ 0,

Bg1

Bprφ2q
T
“ ´M1 rZ2 Z3sM

T
2 ,

Bg2

Bprφ1q
T
“ IpId`Jd´2qN ,

Bg2

Bprφ2q
T
“ ´M1 DiagtZ4,Z5uM

T
2 .

115



4.6. Computer results

The matrices Z4 and Z5 are given by

Z4 “
`

D´1
α b P

˘

´
`

D´2
α b P

˘

pIN dA2q pIN bpPq1,:q ,

Z5 “

´

D´1
β b Q

¯

´

´

D´2
β b Q

¯

pIN dB2q pIN bpQq1,:q ,

and we have

U “

»

—

—

—

—

—

–

M1 DiagtZ4,Z5uM
T
2 0

0 I

I 0

M1 rZ2, Z3sM
T
2 Z1

fi

ffi

ffi

ffi

ffi

ffi

fl

.

The CCRB for rω is computed using (4.26).

We can also consider the reparameterized CRB. We assume that Y „N pµprψ,Σq, with

Y “

«

vectY1u

vectY2u

ff

, Σ “ DiagtΣ1,Σ2u, µprψq “

«

vectrrPA2D
´1
α ,QB2D

´1
β ,C1ssu

vectrrA2,B2,RC1pDαDβq
´1ssu

ff

.

The Jacobian of µprψq is the matrix

Bµ

BrψT
“ M1

«

X1 X2 X3

X5 X6 X4

ff

MT
2 .

The matrices Xi (i P t1, . . . , 6u) are such that

X1 “

”´

IN d pC1 dQB2D
´1
β q

¯

D´1
α b P

ı

“

IIN ´ pD
´1
α b IIqpIN dA2qpIN bpPq1,:q

‰

,

X2 “ pIN b Π
p2,1q
1 q

”

`

IN d pC1 dPA2D
´1
α q

˘

D´1
β b Q

ı ”

IJN ´ pD
´1
β b IJqpIN dB2qpIN bpQq1,:q

ı

,

X3 “ pIN b Π
p3,1q
1 q

”´

IN d pQB2D
´1
β dPA2D

´1
α q

¯

b IK

ı

,

X4 “ pIN b Π
p3,1q
2 q

“

pIN d pB2 dA2qq pDαDβq
´1 b R

‰

,

X5 “

”´

IN d pRC1D
´1
β dB2q

¯

D´1
α b II

ı

“

IIN ´ pD
´1
α b IIqpIN dA2qpIN bpPq1,:q

‰

,

X6 “ pIN b Π
p2,1q
2 q

”

`

IN d pRC1D
´1
α dA2q

˘

D´1
β b IJ

ı ”

IJN ´ pD
´1
β b IJqpIN dB2qpIN bpQq1,:q

ı

.

4.6 Computer results

All simulations were run on a MacBook Pro with 2.3 GHz Intel Core i5 and 16GB RAM. For

basic tensor operations we used TensorLab 3.0 [168]. The code is implemented in MATLAB and

available online at https://github.com/cprevost4/CCRB_Software.
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4.6.1 Simulations setup

The entries of the true CP factors A2, B2, C1 were generated once as i.i.d. real Gaussian

variables drawn from the standard normal distribution, and the first rows of A2, B2 were set to

ones. The true CP factors A1, B1, C2 were constructed according to the parameter constraints

for each scenario.

In all experiments, the spatial degradation matrices P and Q are generated following Wald’s

protocol [171] with a Gaussian filter of length q and a downsampling ratio d. For the sake of

simplicity but without loss of generality, we also assume that P “ Q. The spectral degradation

matrix R is a selection-and-averaging matrix that selects the common spectral bands of the SRI

and MSI. We refer to Appendix B for more details on the construction of these matrices.

We simulate the performance of the coupled CP model under additive Gaussian noise. The

SNR on the observed tensors in dB is defined as SNRi “ 10 log10

`

}Y i}
2
F {}E i}2F

˘

, (i “ 1, 2). We

fix SNR2 to 20dB while SNR1 varies from 5 to 60dB, unless otherwise specified. In the following

figures, we will plot our results for various values of SNR1 while SNR2 remains constant.

The model parameters are retrieved using MLE. For estimation in the uncoupled case, we

use ALS [152] with random initialization for the factor matrices. For the fully-coupled case,

STEREO, the algorithm proposed in [86] is used. For the blind case, we use Blind-STEREO [86].

For all algorithms, at most 5000 iterations are performed. To speed up the convergence of the

coupled algorithms, the CP factors obtained by uncoupled ALS are used as initialization. The

permutation ambiguities in the estimated factors are corrected by searching for the best column

permutation of C2 with fixed C1 and applying that same permutation to A2 and B2. This step

is performed by merely maximizing the correlation between the estimated and true CP factors;

but it could be performed optimally using the Hungarian algorithm [120].

In our experiments, we consider as reference the uniform MSE (UMSE) and uniform CRB

(UCRB) obtained from the MSE and CRB matrix traces, as widely considered in, e.g., [48,73,74].

The expressions for the bounds proposed in this paper allow for calculation of the reparameterized

UCRB, uniform CCRB (UCCRB) and uniform Blind-CCRB (Blind-UCCRB) by taking the trace

of these matrices. Thus in the following figures, we will assess the uniform efficiency of the

estimators23.

We evaluate the UMSE on the parameters by averaging the squared errors through 500 noise

realizations. For each realization, the best out of 10 initializations is picked. In the following

figures, we plot our results for the parameters

rψ “

«

rφ2

θ1

ff

, rξ “

«

rφ1

θ2

ff

,

which correspond respectively to the CP factors of X and the degraded factors.
23Please note that the uniform efficiency implies efficiency for each entry of the parameters.
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4.6.2 Equivalence between CCRB and reparameterized CRB

In this subsection, we illustrate the results of [104, 114] regarding the equivalence between the

CCRB (4.26) and its reparameterized version in Section 4.3.5. We first consider I “ J “ 18,

Id “ Jd “ 6, K “ 16 and Kd “ 8, and N “ 3. In Figure 4.1, we show on a semi-log scale the

UCCRB and reparameterized UCRB for the parameter rω in the fully coupled case, for scenario

1 (linear constraints). In Figure 4.2, we consider scenario 2 and additionally plot the uncoupled

UCRB, UCCRB and reparameterized UCRB for rω in the partially-coupled case.
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Figure 4.1: Scenario 1: UCCRB and its reparameterized version for rω versus SNR1 for fixed

SNR2 “ 20 dB.
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Figure 4.2: Scenario 2: Uniform lower bounds (uncoupled, partially-coupled, fully-coupled) for

rω versus SNR1 for fixed SNR2 “ 20 dB.

For both fully-coupled and blind problems, the UCCRB and its reparameterized version are

numerically equivalent. Moreover, we see the Blind-UCCRB is above the fully-coupled UCCRB.
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4.6.3 Asymptotic values for constrained FIM

We notice that the uniform bounds tend to constants for SNR1 ą SNR2. To explain why such a

horizontal asymptote occurs, it seems reasonable to seek for asymptotic values for the constrained

FIM i.e., for σ2
1 Ñ 8. For scenario 1 (linear constraints), we resort to (4.48) for the expression

of the constrained FIM. Developing (4.48) yields the following matrix:

Fcprψq “ M3

»

—

—

–

ST
1
rPS1 ST

1
rPS2 ST

1
rPS3

ST
2
rPS1 ST

2
rPS2 ST

2
rPS3

ST
3
rPS1 ST

3
rPS2 ST

3
rPS3

fi

ffi

ffi

fl

MT
3 , (4.50)

where rP “ 1
σ2
1
pIK b QTQ b PTPq ` 1

σ2
2
pRTR b IIdJdq. Thus for pi, jq P t1, . . . , 3u,

lim
σ2
1Ñ8

ST
i
rPSj “

1

σ2
2

pST
i pR

TR b IIdJdqSjq, ñ lim
σ2
1Ñ8

Fc
pi,jqprψq “ ST

i
rPSj , (4.51)

where Fc
pi,jqprψq stands for the pi, jq-th block of Fcprψq.

For scenario 2 with non-linear constraints, developing in (4.26) the term corresponding to

the constrained FIM UTFU yields

lim
σ2
1Ñ8

pUTFUq “
1

σ2
2

pST
ASA ` ST

BSB ` ZT
1 ST

CSCZ1 ` ZT
2 ST

C rSA ` SCZ2s ` ZT
3 ST

C rSB ` SCZ3s

` ST
ASCZ2 ` ST

BSCZ3q, (4.52)

where SA “ pC2dB2qb II , SB “ Π
p2,1q
2 ppC2dA2qb IJq and SC “ Π

p3,1q
2 ppB2dA2qb IKq, and

Π
p2,1q
2 and Π

p3,1q
2 are permutation matrices that link the entries of vectY

p2q
2 u (resp. vectY

p3q
2 u)

to those of vectY
p1q
1 u.

The asymptotic values for CRBcprψq (for scenario 1) and pUTFUq´1 (for scenario 2) when

σ2
1 Ñ 0 can be obtained by inversion of (4.51) and (4.52), respectively.

In Figure 4.3, we illustrate those results by plotting UCRBcprψq (for scenario 1) and TrppUTFUq´1q

(for scenario 2) for SNR2 P t15, 30, 45u dB, as well as their asymptotic values.

4.6.4 Choice of the rank

In this subsection, we investigate the influence of the tensor rank on the modelling error for x.

We suppose that we wish to recover a given tensor X admitting a CPD with rank Nth “ 3. In

real applications, the observed tensors are unlikely to be low-rank tensors. Thus the proposed

model only performs a low-rank approximation of the target tensor, and the appropriate tensor

rank is not known a priori. Nevertheless, we expect the performance for reconstruction of X to

vary along with tensor rank N .

We generate the CP model with the dimensions in Section 4.6.2 and ranks N P t3, . . . , 16u.

The first columns of A2, B2 are also set to ones. The factors A1,B1,C2 are constructed according
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Figure 4.3: UCRBcprψq (scenario 1, left); TrppUTFUq´1q (scenario 2, right) and asymptotic

values, versus SNR1 for fixed SNR2.

to model (4.32), that corresponds to the first scenario. The low-resolution tensors are constructed

from these augmented CP factors. For N P t3, . . . , 16u, the CCRB for x is averaged over 100

realizations of the factors Ai, Bi, Ci (i P t1, 2u). This bound can be seen as error bound on the

reconstruction of the true tensor X . In Figure 5.5, we plot the averaged UCCRB as a function

of SNR1 and N for fixed SNR2.

Figure 4.4: UCCRBpxq as a function of SNR1 (dB) and N .

We can see that, for all N , the UCCRB decreases when SNR1 decreases. Moreover, for all

considered SNRs, the value of the CCRB increases with R; the best theoretical performance

is obtained for N “ Nth “ 3. This figure indicates that for low SNR, the performance for
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reconstruction of the target tensor is sensitive to an overestimation of the tensor rank.

4.6.5 Assessing the efficiency of the estimators

In this subsection, we assess the efficiency of the estimators introduced in Section 4.2.3 for

reconstruction of the target tensor. We keep the same dimensions as in Section 4.6.2, and

compare the UMSE with corresponding uniform bounds. For scenario 1, we only compare the

UMSE provided by STEREO to the UCCRB obtained as in Section 4.5.3. For scenario 2, we

also compare the UMSE given by Blind-STEREO to the Blind-UCCRB. In Figures 5.1 and 4.6,

we show on a semi-log scale the bounds and UMSE for x in scenarios 1 and 2, respectively.
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Figure 4.5: Scenario 1: UCCRB and UMSE from STEREO for x, versus SNR1 for fixed SNR2.
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Figure 4.6: Scenario 2: UCCRB and Blind-UCCRB, UMSE from STEREO and Blind-STEREO

for x, versus SNR1 for fixed SNR2.
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We can see that the UMSE obtained from STEREO follows the UCCRB in both scenarios.

For the partially-coupled problem in scenario 2, the UMSE given by Blind-STEREO follows the

Blind-UCCRB for SNR1 ě 20dB. Thus, in both scenarios, the estimators asymptotically reach

their corresponding bounds. This means that the estimators are uniformly efficient, and thus

they are asymptotically efficient.

Next, we assess performance of STEREO with respect to the two estimation scenarios. For

the first scenario, we generate the model according to (4.32) that corresponds to the first scenario.

For scenario 2, we generate model (4.39) with non-linear constraints between the parameters.

For each scenario, we run STEREO according to the model. We also compute the CCRB as

in Section 4.5.3 and Section 4.5.3 for the parameter x: thus in each scenario we consider the

correct CCRB as well as the CCRB obtained from the wrong model. In Figure 4.7, we show on

a semi-log scale the UCCRB bounds and UMSE for both scenarios.
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Scenario 1

Figure 4.7: UMSE trace from STEREO, UCCRB for x, scenarios 1 (left) and 2 (right), versus

SNR1 for fixed SNR2.

We can see that, in both cases, the UMSE follows the UCCRB computed from the right

model. That is, for scenario 1, the UMSE reaches the UCCRB obtained with model (4.32), while

it reaches the bound obtained with (4.39) in scenario 2. This figure shows that STEREO is

efficient provided that the right model is employed.

4.6.6 Impact of λ on the performance and a modified STEREO scheme

In the following subsections, we study performance of STEREO in a case where generic unique-

ness of Y1 is not guaranteed, but the condition (4.8) for unique noiseless recovery by STEREO

is still satisfied. Such a case can be obtained by considering large tensor ranks. Contrary to

Section 4.6.5, where the Y1 and Y2 are generically unique, we expect to encounter cases where

the algorithm does not converge to a global minimum due to the rank being larger than (some

of) the dimensions of Y1 and Y2. Thus we consider a modified choice of the regularization
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parameter λ to circumvent these difficulties.

We first illustrate the influence of λ on the performance of STEREO with a toy example. We

generate the model as in Section 4.6.2 with fixed SNR2 “ 40dB. We consider several values for

the regularization parameter: λ “ 1 ¨ 107, λ “ 1 and λ “ 1 ¨ 10´4. They correspond to the “true”

regularization parameters for SNR1 “ 5dB, SNR1 “ SNR2 and SNR1 “ 60dB, respectively. In

Figure 4.8, we plot on a semi-log scale the UCCRB for rω and UMSE obtained with different λ.
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Figure 4.8: UCCRB for rω and UMSE for different λ.

For λ “ 1 ¨ 107, we notice that the UMSE reaches the UCCRB for SNR1 ď SNR2 even if λ

is larger than the “true” λ. For higher SNR, the UMSE is almost constant. For λ “ 1, we can

see that the UMSE is above the UCCRB for each noise level except SNR1 “ SNR2. Finally, for

λ “ 1 ¨ 10´4, while the UMSE is above the UCCRB for SNR1 ď SNR2, it does reach the bound

for higher SNR. Figure 4.8 shows that small values of λ lead to better performance for high SNR,

which is exactly what we are aiming at.

Thus we propose a modified procedure for STEREO. That is, for each noise level, we suc-

cessively run several iterations of STEREO with decreasing values of λ. The balance parameter

is initialized to λ “ 1
σ2
2
. Indeed, the value σ2

1 “ 1 corresponds to SNR1 “ 0dB; hence in our

experiments, we always have σ2
1 ă 1, which guarantees that the initial value of λ is always higher

than σ2
1

σ2
2
. We refer to this setup as “modified” and describe this new procedure in Algorithm 12.

Since identifiability of Y1 is not guaranteed, uncoupled ALS on Y1 is not guaranteed to

converge, Thus in this subsection, we initialize STEREO as in [86]:
$

&

%

A2,0,B2,0,C2,0 “ CPDN pY2q,

CT
1,0 “ pQB2,0 dPA2,0q

:Y
p3q
2 ,

(4.53)
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Algorithm 12: Modified STEREO with decreasing λ

1 Input: A2,0, B2,0, C1,0

2 Initialize λ “ 1
σ2
2
, A2 “ A2,0, B2 “ B2,0, C1 “ C1,0;

3 repeat

4 1. pA2, B2, C1q Ð STEREO with 1000 iterations;

5 2. λÐ λ
10 ;

6 3. pA2,0, B2,0, C1,0q Ð pA2, B2, C1q;

7 until λ “ σ2
1

σ2
2
;

8 Return A2, B2, C1.

where the operation CPDN returns estimated CP factors24 with rank N . In fact, (4.53) boils

down to considering λ “ 8. For this reason, we expect STEREO not to converge when σ2
1

σ2
2
is

low, that is, SNR1 ě SNR2.

To provide more intuition on how Algorithm 12 works, in Figure 4.9 we plot the UCCRB for

rω and the UMSE obtained at different steps of Algorithm 12 with decreasing values of λ. We

chose fixed SNR2 “ 20dB in our simulations.
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Figure 4.9: UCCRB for rω and UMSE at different steps of Algorithm 12.

At the initialization step with λ “ 1
σ2
2
, we see that the UMSE reaches the bound only for

SNR1 ď SNR2. After two steps, the UMSE reaches the UCCRB up until SNR1 “ 25dB and

the UMSE decreases for high SNR. After two more steps of Algorithm 12, we can see that the

UMSE reaches the bound for all values of SNR1.
24In practice, this operation is performed using TensorLab.
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4.6.7 Performance of STEREO without identifiability of Y1

To study the interest of Algorithm 12 we take Id “ Jd “ 4, I “ J “ 16, Kd “ 10 and K “ 20,

and d “ 4, q “ 3 for the degradation matrices. We consider fixed SNR2 “ 40dB while SNR1

varies between 5dB and 60dB. For these dimensions, the generic uniqueness of Y1 is proved for

N ď 9 [28, Theorem 1.1]. Condition (4.8) on unique recovery of X by STEREO in the noiseless

case gives N ď 16. We address scenario 2 only, and tensor ranks N “ 10, N “ 12, and N “ 14.

We run the traditional STEREO algorithm as well as Algorithm 12, and average the UMSE over

500 noise realizations. In Figure 4.10, we plot on a semi-log scale the UCCRB and UMSE for x

and tensor ranks N “ 10, N “ 12, N “ 14, respectively.
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Figure 4.10: UCCRB and UMSE traces for x and tensor ranks N “ 10 (left), N “ 12 (middle)

and N “ 14 (right).

First, in Figure 4.10, we can see that for SNR1 ě SNR2, STEREO with λ “
σ2
1

σ2
2
does not

converge indeed. Our guess is that the performance of the algorithm degrades when N is very

large, especially when it becomes larger than (some of) the dimensions of the tensors.

However, Algorithm 12 does not depict such behaviour: in all figures, the UMSE provided by

STEREO reaches the UCCRB in this setting. It should be mentioned that, for SNR1 ă SNR2,

the modified procedure is not needed, since the “true” lambda is very large. The initialization

(4.53) with λ “ 8 already provides a good estimation of the parameter x in that case.

4.6.8 A modified ALS algorithm accounting for non-linear constraints

In the previous subsections, it was shown that the UMSE provided by STEREO reaches the

UCCRB. However, in scenario 2, the constraints on the model parameters are non-linear: in this

case, it is known that the CCRB is not a lower bound for constrained parameter estimation.

Therefore in this subsection we consider LU-CCRB for the model parameters. We design a

modified ALS algorithm inspired by STEREO, that minimizes the following criterion:

min
A2,B2,C1

}Y1 ´ rrPA2D
´1
α ,QB2D

´1
β ,C1ss}

2
F (4.54)

` λ}Y2 ´ rrA2,B2,RC1pDαDβq
´1ss}2F .
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This framework for this new algorithm is summarized in Algorithm 13.

Algorithm 13: Coupled ALS algorithm accounting for non-linear constraints
input : Y1, Y2, B2, C1, C2, P, Q, R; N , iter, λ

output: A2 P RIˆN , B2 P RJˆN , C1 P RKˆR, C2 P RKdˆN

1 for m “ 1, . . . , iter do

2 Dα “ pPA2q1,:, Dβ “ pQB2q1,:,

3 A2 Ð arg min
A2

}Y
p1q
1 ´

´

C1 dQB2D
´1
β

¯

AT
2 PTD´T

α }2F ` λ}Y
p1q
2 ´

`

RC1pDαDβq
´1 dB2

˘

AT
2 }

2
F ,

4 B2 Ð arg min
B2

}Y
p2q
1 ´

`

C1 dPBAD
´1
α

˘

BT
2 QTD´T

β }2F ` λ}Y
p2q
2 ´

`

RC1pDαDβq
´1 dA2

˘

BT
2 }

2
F ,

5 C1 Ð arg min
C1

}Y
p3q
1 ´

´

QB2D
´1
β dPA2D

´1
α

¯

CT
1 }

2
F ` λ}Y

p3q
2 ´

pB2 dA2qR
TCT

1 pDαDβq
´T}2F ,

6 end

It is expected from Algorithm 13 that it reaches the LU-CCRB, contrary to STEREO.

We simulate the model according to scenario 2 with the same dimensions as in Section 4.6.2.

In order to depict the discrepancy between the CCRB and LU-CCRB, we consider the following

SNRs: SNR1 varies in t´25, 60udB while SNR2 is fixed to 0dB. We compute the CCRB and LU-

CCRB for the parameter rω and compare the bounds to the UMSE provided by STEREO (that

minimizes (4.7)) and the new modified algorithm minimizing (4.54). The results are plotted on

a semi-log scale in Figure 4.11.
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Figure 4.11: Scenario 2: UCCRB, LU-UCCRB and UMSE for rω; SNR1 P t´25, 60udB (left);

close-up for SNR1 ě SNR2 (right).

While the UMSE obtained from STEREO reaches the UCCRB, we can see that the UMSE
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4.7. Design of the hyperspectral measurements system

provided by Algorithm 13 is lower than the UCCRB and reaches the LU-CCRB. Our guess

is that accounting for non-linear constraints in Algorithm 13 reduces the number of unknown

parameters to estimate, hence the performance gain observed in Figure 4.11.

In Figure 4.12, we plot the same bounds and UMSE for the parameter x; contrary to Fig-

ure 4.11, we can see that the two UMSE curves are equal and reach the UCCRB.
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Figure 4.12: Scenario 2: UCCRB, LU-UCCRB and UMSE for x.

4.7 Design of the hyperspectral measurements system

In this section, we consider the specific problem of hyperspectral super-resolution. In this setting,

Y1 and Y2 represent an HSI and an MSI, respectively, see Section 1.4. The HSI and MSI are

degraded versions of the same SRIX . We study the impact of the spatial degradation matrices on

the CCRB. In practice, P and Q can be tuned by adjusting the filter size q and the downsampling

ratio d: changing these parameters result in different acquisition schemes. On the one hand, when

the downsampling ratio d varies while the filter size q is constant, the HSI possesses fixed spatial

resolution but only contains a portion of the pixels in the SRI. On the other hand, when q varies

while d is fixed, the HSI can be seen as a blurred SRI, as it contains a given spatial portion of

the SRI, but with different pixel resolutions. In this subsection, we investigate the influence of d

and q on the reconstruction of the SRI (i.e., we compute the CCRB for the parameter x).

We use the following dimensions: I “ J “ 36, Id “ Jd “ 6, K “ 16 and Kd “ 8. Since we

are only interested in the HSR problem formulated as a fully-coupled CP model, we resort to

scenario 1 for model generation and bound derivation.
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4.7. Design of the hyperspectral measurements system

4.7.1 Influence of the filter size

First, we fix the dowsampling ratio d “ 6 and compute the CCRB for the reconstruction x as a

function of q for SNR1 equal to 10dB, 30dB, and 55dB. We consider odd values of q P t1, . . . , 36u.

We recall that the expression for the Gaussian filter is available in Appendix B. We run the

simulations for tensor ranks N “ 3 and N “ 16. Our results are displayed in Figure 4.7.1.
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Figure 4.13: UCCRBpxq as a function of q for various SNR1 and N “ 3 (left), N “ 16 (right).

In both figures, UCCRB decreases when the SNR increases. For moderate to high SNR (30dB

and 55dB), the UCCRB is almost constant. However, for low SNR (10dB), we can see that the

UCCRB increases from a certain q.

For N “ 3, the filter size for which the UCCRB is lowest becomes smaller when SNR1

increases; for instance, for SNR1 “ 55dB, the optimal filter size is q “ 1. This result means

that, from a certain noise level on Y1, the presence of Gaussian blurring improves the theoretical

performance of the model, which boils down to smoothing the images spatially.

For N “ 16, we can draw the same conclusions about the evolution of the optimal filter size,

but we notice that, for q ě 13 and low SNR, the UCCRB increases much more than for N “ 3.

The optimal value of q in this case is q “ 11.

4.7.2 Influence of the downsampling ratio

We now fix the filter size q “ 3 and compute the CCRB for x as a function of d P t1, . . . , 6u

(to ensure that P and Q are full rank) and SNR1. Here, to depict the variations occurring at

low-medium noise level, we separate the results in two subplots. We run the simulations for

N “ 3 and N “ 16. The UCCRB for x is shown on Figures 4.14 and 4.15.
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Figure 4.14: UCCRBpxq as a function of d with N “ 3 and various SNR1.
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Figure 4.15: UCCRBpxq as a function of d with N “ 16 and various SNR1.

In Figure 4.14, for medium-high noise level, the value of d that gives the lowest UCCRB is

d “ q “ 3. For d ą 3, the UCCRB increases. However, we notice that when SNR1 decreases,

the UCCRB varies significantly less. For SNR1 equal to 45dB and 60dB, the lowest UCCRB is

obtained for d “ 6.

In Figure 4.15, the value d “ 5 provides the lowest bound regardless of the SNR. However,

it must be noticed that the value d ě 5 corresponds to the special case d ě Id. This means that

more observations are available from the HSI, resulting in a higher UCCRB, as illustrated in

Section 4.6.4.

4.7.3 Optimal values of q and d

Finally, we investigate the values of q and d for which the CCRB is lowest. We compute the

CCRB for d P t1, . . . , 6u and odd values of q P t1, . . . , 36u. While SNR1 varies from 5 to 60dB,

SNR2 is fixed to 20dB. We consider tensor ranks N “ 3 and N “ 16. For each SNR, we store the

pair pq, dq for which the UCCRB is the lowest: we plot our results in Figure 4.16. In Figure 4.17,
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4.7. Design of the hyperspectral measurements system

we also plot UCCRBpxq on a semi-log scale as a function of SNR1 in dB.
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Figure 4.16: Optimal values of d and q as functions of SNR1 (dB).
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Figure 4.17: Optimal UCCRBpxq as a function of SNR1 (dB).

In Figure 4.16 at low SNR, the optimal values of d are d “ 4 and d “ 5 for N “ 3, and

d “ 5 for N “ 16. This value decreases to d “ 1 then increases again to d “ 3 for SNR1 ą 50dB

and both ranks. The optimal filter size is q “ 1 at SNR1 ě 50 for both ranks. For lower SNR,

this value increases; while almost constant and equal to q “ 6 for N “ 16, it fluctuates more for

N “ 3. The large discrepancies in optimal d and q occurring at high SNR indicate that the choice

of these parameters has little impact on the UCCRB. Indeed, at high SNR, the cost function

minimized by STEREO is very flat: thus a local minimum can be reached easily regardless of d

and q.

In terms of UCCRB, we notice a first elbow in the curves of Figure 4.17 at SNR1 “ SNR2,

then a second one for SNR1 “ 45dB. This noise level corresponds to the lowest d and highest q

in Figure 4.16 for both ranks.
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4.8 Conclusion of Chapter 4

In this chapter, we provided a full derivation of the CCRB for the CP-based reconstruction

problem. An overview of constrained Cramér-Rao bounds allowed us to derive the closed-form

expression of the Fisher information matrix in two scenarios.

The first scenario is motivated by practical considerations regarding the reconstruction itself,

that is when the aim is solely to recover a low-rank CP approximation of the underlying tensor.

In this case, the model parameters are linked through linear constraints and identifiability of one

of the tensors Y1 is not required.

The second scenario illustrates the theoretical gains of the fully-coupled and blind models with

regards to uncoupled approaches. The study of constrained CRB in this scenario demonstrates

what motivates the wide consideration for fusion model. That is, the best theoretical performance

of coupled models is, in the worst case, equal to that of uncoupled models, and can only be better.

This consideration motivates the design of coupled algorithms for fusion problems.

In our simulations, we assessed the performance of the constrained MLE estimators STEREO

and Blind-STEREO. We showed that in optimal estimation conditions (i.e., when the rank

reduction allows for good estimation), the estimators are efficient, meaning that they indeed

provide better performance than uncoupled approaches. We saw that STEREO reaches the

CCRB for reconstruction of the tensor X . However, it should be noticed that for scenario 2 with

non-linear constraints, the CCRB is not a lower bound on constrained parameter estimation LU-

CCRB is inferior to or equal to the standard CCRB. As a result, when interested in estimating

the low-rank factors underlying X , it is sensible to understand precisely the behavior of the

modified ALS algorithm inspired by STEREO. This matter, which is of great interest, will be

explored in future works. Conversely, there exist some cases (e.g., large tensor rank or presence

non-linear constraints) where STEREO does not reach the CCRB. In such cases, we proposed

a modified algorithm inspired by STEREO with a gradually changing balance parameter, that

reaches the constrained lower bound.

Finally, we illustrated the usefulness of the CCRB regarding practical considerations, that is

design of the hyperspectral measurement system. In our experiments, we used the CCRB as a

tool to predict which acquisition parameters (in terms of blurring and downsampling) are likely

to yield to the best performance for reconstruction of the target image.
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Chapter 5

Performance bounds for coupled tensor

LL1 models
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5.1. Introduction

5.6 Conclusion of Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . 153

5.1 Introduction

In estimation theory, there are two main categories of parameters. In the first case, the parame-

ters being estimated are considered to be deterministic, whereas the second category considers a

part of the parameters as random variables with a prior probability. This chapter addresses the

first category, i.e., deterministic parameters. Historically, the deterministic CRB was introduced

to investigate fundamental limits of deterministic parameters estimation or to assess the rela-

tive performance of a specific estimator (efficiency) [36, 53, 139]. It has since then become very

popular due to its simplicity of calculation for various problems (see [166, §8.4] and [167, Part

III]). Provided that one keeps in mind the CRB limitations [26, 59, 112, 161], that is, to become

overly optimistic when the observation conditions degrade (low signal-to-noise ration and/or low

number of snapshots), the CRB is still of great interest for system analysis and design in the

asymptotic region.

Moreover, in many applications, the definition, in part or totally, of the parameter space

results from deterministic equality constraints, as mentioned in [62]. Numerous works [111,114,

118,157,158] have been devoted to extend the results introduced in [62]: 1) by providing a general

reparameterization inequality and the equivalence between parameterization change and equality

constraints; 2) by studying the CRB modified by constraints either required by the model or

required to solve identifiability issues; 3) by investigating the use of parameters constraints from

a different perspective: the value of side (a priori) information on estimation performance. All

these works have shown the versatility of constrained Cramér-Rao bound (CCRB) for estimation

performance analysis and design of a measurements system, as highlighted in [115].

These works motivated the derivation of lower bounds for tensor models admitting a CP de-

composition. In [14,108,144], uncoupled CP models were considered. In [140], it was proposed to

explore the CCRB for complex tensors and partially-coupled CP decompositions with (possibly)

non-linear couplings. The work of [140] has been extended in [132, 134] for fully and partially-

coupled CP models with specific sets of constraints describing the hyperspectral super-resolution

problem. This work is described in Chapter 4 of this thesis.

However, to the best of our knowledge, derivation of CRBs for coupled tensor LL1-BTD

models has not been addressed at the writing time of this manuscript. Therefore in this chapter,

we provide a general framework for deriving performance lower bounds based on coupled LL1-

BTD models. In particular, our first contribution is the closed-form expression for the Fisher

information matrix of coupled LL1 tensor decompositions. We also provide the expression for

the deterministic CCRB for a general degradation model, that was used and adapted in several

works (see, e.g., [44, 130,179]) and Chapter 2.
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In many estimation problems [37, 116, 142, 165], the probability law that governs the effect

of a deterministic parameter vector value may depend on this additional random vector yielding

random equality constraints, a case which can not be tackled with the standard form of the

CCRB.

This chapter contains unpublished work regarding randomly-constrained Cramér-Rao bounds

and addresses the problem of parameter estimation in the case where the model parameters

are linked through deterministic relationships involving an additional random parameter. In a

preliminary version of this work [133], a randomly constrained CRB (RCCRB) was derived to

take into account random equality constraints. The capabilities of the RCCRB were illustrated by

means of a coupled CP model, where the uncertainties were represented by a random parameter

scalar, depicting variations in the acquisition conditions between the observations.

In this chapter, we illustrate the relevance of the RCCRB by means of coupled LL1 tensor

models accounting for uncertainties. Our studies motivate the design of a new partially-coupled

(blind) algorithm, that implicitly takes into account the uncertainty phenomenon. This algorithm

is in fact the unconstrained Algorithm 8 introduced in Chapter 3. The efficiency of this new

blind estimator is successfully assessed using the RCCRB. This new algorithm has superior

performance with respect to less flexible estimators, that ignore the presence of uncertainties.

This chapter is organized as follows. In Section 5.2, we derive a new randomly-constrained

Cramér-Rao bound (RCCRB), accounting for random equality constraints. In Section 5.3, we

introduce the general coupled tensor degradation model. We also provide an expression for

the Fisher information matrix and CCRB in the deterministic case (i.e., non-random constraints

between the parameters) for tensor LL1 models. In Section 5.4, we propose to use a more flexible

degradation model that allow for uncertainties between the two observations. We show that, for

such models, the deterministic CCRB becomes non-informative, and therefore the RCCRB must

be considered. Finally, in Section 5.5, we introduce a new blind estimator in order to implicitly

consider the uncertainties at hand. The efficiency is assessed by calculating a Blind-RCCRB, and

compared to those of fully-coupled estimators ignoring the presence of the random parameter

vector.

5.2 A randomly constrained Cramér-Rao bound

5.2.1 Random Equality Constraints

Actually, in many estimation problems [37, 116, 142, 165], the probabilistic mapping mentioned

above results from a two steps probabilistic mechanism involving an additional random vector

θr P Θr Ă RPr , that is i) θ Ñ θr „ p pθr;θq, ii) pθ,θrq Ñ y „ p py|θr;θq, and leading to a
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compound probability distribution:

p py,θr;θq “ p py|θr;θq p pθr;θq , (5.1a)

p py;θq “

ż

Θr

p py,θr;θq dθr, (5.1b)

where p py|θr;θq is the conditional PDF of y given θr, and p pθr;θq is the prior PDF, parame-

terized by θ.

If only an integral form of p py;θq (5.1b) is available, the estimation problem at hand is

so-called a “non-standard” estimation problem [90]. In this setting,

Ey;θ

„

´

pθ ´ θ
¯´

pθ ´ θ
¯T



“ Eθr;θ

„

Ey|θr;θ

„

´

pθ ´ θ
¯´

pθ ´ θ
¯T



, (5.2)

which allows to consider the addition of K non redundant equality constraints on the unknown

deterministic parameter vector θ depending on the random parameter vector θr, that is

gθr pθq “ 0, gθr pθq P RK , 1 ď K ď P ´ 1, (5.3)

where the matrix Bgθr pθq

BθT
P RKˆP has full row rank K, which defines K random equality con-

straints.

5.2.2 CRBs with Random Equality Constraints

Since the set of K equality constraints (5.3) Cθr Ă Θd is conditioned on the value of θr, it

seems sensible to first look for a CR-like bound conditioned on θr, taking into account both

local unbiasedness and equality constraints (5.3). Conditionally on θr, that is with respect to

p py|θr;θq, local unbiasedness regarding the parameter vector θ reads

Ey|θr;θ`dθ

”

pθ
ı

“ θ ` dθ ` oθr p}dθ}q ,

which translates as follows: conditionally on θr, the estimator pθ remains unbiased25 indepen-

dently of a small variation of the parameter θ.

and leads (similarly to (4.15a) and (4.18)) to the linear constraints

Ey|θr;θ

«

´

pθ ´ θ
¯

B ln p py|θr;θq

Bθ

T
ff

dθ “ Idθ. (5.4)

Moreover, if θ and θ`dθ are constrained to belong to Cθr , thus, with some manipulation [114],

when
a

dθTdθ Ñ 0,
#

gθr pθq “ 0
Bgθr pθq

BθT
dθ “ 0

ô

#

0 “ gθr pθq

dθ “ U
θr
pθq dλ

25Up to the first order and in the neighborhood of θ.
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where U
θr
pθq P RPˆpP´Kq is a basis of ker

´

Bgθr pθq

BθT

¯

and dλ P RP´K .

Therefore, conditionally on θr, a locally unbiased estimate of θ is now required to be locally

unbiased only on Cθr , what means that (5.4) must be satisfied only when dθ “ U
θr
pθq dλ where

?
dλTdλÑ 0, which yields the following linear constraints:

Ey|θr;θ

«

´

pθ ´ θ
¯

ˆ

UT
θr
pθq

B ln p py|θr;θq

Bθ

˙T
ff

“ U
θr
pθq . (5.5)

Additionnally, another desirable property is that

Ey|θr`dθr;θ

”

pθ
ı

“ θ ` o p}dθr}q , @θ P Cθr , (5.6a)

which means that, up to the first order and in the neighborhood of θr, pθ remains an unbiased

estimator of θ P Cθr independently on a small variation of the parameter vector θr. Once again,

(5.6a) can be rewritten in terms of the following constraints

Ey|θr;θ

«

´

pθ ´ θ
¯

ˆ

B ln p py|θr;θq

Bθr

˙T
ff

“ 0. (5.6b)

Finally, conditionally on θr, a constrained CR-like bound fitted to the problem at hand is

the lower bound associated with the linear constraints
$

’

’

&

’

’

%

Ey|θr;θ

„

´

pθ ´ θ
¯´

UT
θr
pθq B ln ppy|θr;θq

Bθ

¯T


“ U
θr
pθq ,

Ey|θr;θ

„

´

pθ ´ θ
¯´

B ln ppy|θr;θq
Bθr

¯T


“ 0.
(5.7)

That is, according to lemma (4.16),

CCRBθr pθq “ U
θr
pθq

´

UT
θr
pθqCRB´1

θr
pθqU

θr
pθq

¯´1
UT

θr
pθq , (5.8a)

CRBθr pθq “
´

Fθr pθq ´ FT
θr pθr,θqFθr pθrq

´1 Fθr pθr,θq
¯´1

, (5.8b)

Fθr pθq “ Ey|θr;θ

„

B ln p py|θr;θq

Bθ

B ln p py|θr;θq

BθT



,

Fθr pθrq “ Ey|θr;θ

„

B ln p py|θr;θq

Bθr

B ln p py|θr;θq

BθTr



,

Fθr pθr,θq “ Ey|θr;θ

„

B ln p py|θr;θq

Bθr

B ln p py|θr;θq

BθT



.

Finally, if pθ def
“ pθ pyq is, conditionally on θr, a locally unbiased estimated belonging to a

subset Cθr of the parameter space defined by K non redundant equality constraints depending

on a random parameter vector θr, then, according to (5.2), its MSE matrix is lower bounded by

the following randomly constrained CRB (RCCRB):

Ey|θ

„

´

pθ ´ θ
¯´

pθ ´ θ
¯T



ě RCCRB pθq , (5.9)

where RCCRB pθq “ Eθr;θ rCCRBθr pθqs . (5.10)
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5.2.3 Further considerations

First, if no random constraints are taken into account, then U
θr
pθq “ I and CCRBθr pθq “

CRBθr pθq which coincides with the tighter Non-Standard CRB (NSCRB pθq) introduced in

[58] and lately generalized in [90, (54)]. Moreover, (5.7) becomes equivalent to

Ey|θr`dθr;θ`dθ

”

pθ
ı

“ θ ` dθ ` o

ˆ

b

dθTdθ ` dθTr dθr

˙

,

which is the definition of a locally strict-sense unbiased estimator [124]. This is sensible, since, as

shown in [90, §IV], Non-Standard CRB are lower bounds on the “non-standard” MLEs (NSMLEs)

defined as
´

xθr, pθ
¯

“ arg max
θPΩd,θrPΩr

tp py|θr;θqu , (5.11)

where pθ is, w.r.t. p py|θr;θq and under reasonably general conditions, asymptotically uniformly

strict-sense unbiased, Gaussian distributed and efficient when the number of independent obser-

vations tends to infinity.

Therefore, it seems likely that the method of scoring with parameter constraints [118] ap-

plied to random equality constraints (5.3) where θr is replaced with its NSMLE xθr, leads

to a constrained NSMLE asymptotically efficient with respect to CCRBθr pθq and hence to

RCCRB pθq. A conjecture left for future research.

Second, in general,

CCRBθr pθq ą U
θr
pθq

´

UT
θr
pθqFθr pθqUθr

pθq
¯´1

UT
θr
pθq ,

which means that the randomly constrained CRB proposed (5.9) is, in general, tighter than the

expectation of the standard CCRB parameterized by θr (see (5.13)). However, in the case where

p py,θr;θq “ p py;θq p pθr;θq ,

then

p py|θr;θq “ p py;θq ñ CRB´1
θr
pθq “ Fθr pθq “ F pθq ,

where F pθq is the standard FIM (4.17b), leading to

RCCRB pθq “ Eθr;θ

„

U
θr
pθq

´

UT
θr
pθqF pθqU

θr
pθq

¯´1
UT

θr
pθq



, (5.13)

which reduces to the standard CCRB

CCRB pθq “ U pθq
´

UT pθqF pθqU pθq
¯´1

UT pθq , (5.14)

if the K equality constraints (5.3) are non random.
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5.3 Cramér-Rao bounds for coupled LL1 models

5.3.1 Basic observation model

We consider two tensors Y1 P RIHˆJHˆK and Y2 P RIˆJˆKM . The dimension in the third mode

of Y2 is lower than that of Y1 (Kd ! K), while its dimensions in the first and second mode are

higher (I ą IH , J ą JH). The tensors Y1 and Y2 are two degraded versions of the same tensor

Y P RIˆJˆK , that possesses high dimensions in all three modes.

We adopt the following tensor degradation model:
$

&

%

Y1 “ Y ‚1 P ‚2 Q` E1,

Y2 “ Y ‚3 R` E2,
(5.15)

where P P RIHˆI , Q P RJHˆJ , and R P RKMˆK have full row rank. We assume (for simplicity)

that the degradation in the first and second modes is separable. The entries of the noise terms

E1 „N p0,Σ1q, E2 „N p0,Σ2q are independent and identically distributed (i.i.d.) real Gaussian

tensors with zero mean and variances Σ1 “ σ2
1I and Σ2 “ σ2

2I. In fact, model (5.15) corresponds

to the observation model (1.28), but with different notation.

As in [44,178], the degradation model (5.15) can be reformulated as a coupled LL1-BTD as
$

’

’

&

’

’

%

Y1 “
R
ř

r“1

`

pA1qrpB1q
T
r

˘

b pc1qr ` E1,

Y2 “
R
ř

r“1

`

pA2qrpB2q
T
r

˘

b pc2qr ` E2,

(5.16)

where A1 “ PA2,B1 “ QB2,C2 “ RC1, (5.17)

which is a fully-coupled model. The LL1 factors in (5.16)–(5.17) are such that A1 P RIHˆLR,

B1 P RJHˆLR, C1 P RKˆR and A2 P RIˆLR, B2 P RJˆLR, C2 P RKMˆR.

Under these notations, Y admits an LL1-BTD as

Y “

R
ÿ

r“1

´

pA2qrpB2q
T
r

¯

b pc1qr. (5.18)

The LL1 model (5.18) is equivalent to model (3.3) but with different notation for the low-rank

terms pA2qr, pB2qr, pc1qr.

5.3.2 Model parameters

We then define the model parameters that describe the coupled LL1 model (5.16)–(5.17).

We consider two model parameters rω P RppI`JqL`KqR and φ P RppIH`JHqL`KM qR such that

rωT
“

”

vectA2u
T vectB2u

T vectC1u
T
ı

, (5.19)

φT “

”

vectA1u
T vectB1u

T vectC2u
T
ı

. (5.20)
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5.3. Cramér-Rao bounds for coupled LL1 models

While rω represents the LL1 factors underlying Y , φ contains the vectorized LL1 factors obtained

by degradation in (5.17). The two parameters in (5.19)–(5.20) can be stacked together into a

single parameter rθ defined such that

rθ
T
“

”

rωT φT
ı

. (5.21)

Note that for most applications, φ is of little interest, contrary to rω. Thus ambiguities in φ

can be neglected, see Chapter 4 for more details. The remaining ambiguities in rω are solved by

setting pC1q1,: “ 1 and pA2q1:L,: “ rIL . . . ILs as discussed26 in Section 1.3.3. As a result, we

must define the reduced parameter ω P RppI`J´LqL`pK´1qqR such that

ωT “

”

vectpA2qL`1:I,:u
T vectB2u

T vectpC1q2:K,:u
T
ı

, (5.22)

that only contains the unknown entries of rω. The full and reduced parameters can be linked

through the relationship ω “ Mrω. The matrix M is a selection matrix constructed from

IppI`JqL`KqR by removing the pL2`1qR rows corresponding to the known entries of rω. Therefore,

the global model parameter rθ can be reduced to θ defined such that

θT “
”

ωT φT
ı

. (5.23)

Similarly to rω and ω, the global and reduced parameters are linked through θ “ Nrθ, where

N “ DiagtM, Iu.

5.3.3 Fisher information matrix

To the best of our knowledge, derivation of Cramér-Rao bounds for tensor LL1 models has not

been addressed at the writing time of this manuscript. In this subsection, we provide a closed-

form for the Fisher information matrix related to the uncoupled model (5.16). We consider the

random real Gaussian distributed dataset x „N pµprθq,Σq, where

xT “

”

vectY1u
T vectY2u

T
ı

, Σ “ DiagtΣ1,Σ2u,

and µprθq “

«

µ1p
rθq

µ2p
rθq

ff

. (5.24)

For i P t1, 2u, the subblocks in (5.24) are such that

µip
rθq “ vec

#

R
ÿ

r“1

´

pAiqrpBiq
T
r

¯

b pciqr

+

. (5.25)

26These parameter constraints allow to make the FIM non-singular, hence the estimation problem at hand is

locally identifiable.
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The derivatives of µiprθq with respect to rθ can be obtained using relationships between tensor

unfoldings as

µip
rθq “ rpCi dp Biqb Is

looooooooomooooooooon

SAi

vectAiu, (5.26)

“ Π
p2,1q
i rpCi dp Aiqb Is

looooooooooooomooooooooooooon

SBi

vectBiu, (5.27)

“ Π
p3,1q
i pr. . . , ppAiqr d pBiqrq1L, . . .sb Iq

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

SCi

vectCiu. (5.28)

The matrices Π
p2,1q
i and Π

p3,1q
i are non-singular permutation matrices that link the entries of

vectY
p2q
i u (resp. vectY

p3q
i u) to those of vectY iu.

The Fisher information matrix (FIM) for θ is obtained by using the Slepian-Bangs formula

[151] as:

Fpθq “ NT

«

Bµprθq

BrθT

ffT

Σ´1

«

Bµprθq

BrθT

ff

N. (5.29)

Its closed-form expression can be found in Appendix F.

5.3.4 Standard constrained Cramér-Rao bound

Performance bounds for θ

The deterministic constraints (5.17) between the LL1 factors can be expressed in terms of model

parameters as

gpθq “ φ´

»

—

—

–

I b P 0 0

0 I b Q 0

0 0 I b R

fi

ffi

ffi

fl

MT

loooooooooooooooooomoooooooooooooooooon

G

ω, (5.30)

where g is a non-redundant deterministic function, derivable for all ω. Thus a basis for ker
!

Bgpθq

BθT

)

is the matrix U such that

UTpθq “
”

I GT
ı

. (5.31)

The standard CCRB for the parameter θ [114] is obtained by applying the formula (5.14)

with U defined in (5.31). Similarly to the standard FIM, CCRBpθq is a block-matrix whose

subblocks are given in closed form in Appendix F.
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5.3. Cramér-Rao bounds for coupled LL1 models

Performance bounds for the target tensor

Additionally to the model parameters in (5.19)–(5.20), we also define y “ vectYu P RIJK , that

represents the vectorized target tensor Y . Obtaining performance bounds for reconstruction error

of Y can be interesting in reconstruction problems, hence the introduction of y. The parameter

y can be linked to ω by means of a non-redundant function h, differentiable for all ω as

y “ hpωq. (5.32)

The expression of hpωq is obtained similarly to (5.26)–(5.28):

y “ rpC1 dp B2qb IIs
loooooooooomoooooooooon

Sp1q

vectA2u,

“ Πp2,1q rpC1 dp A2qb IJ s
looooooooooooooomooooooooooooooon

Sp2q

vectB2u,

“ Πp3,1q pr. . . , ppA2qr d pB2qrq1L, . . .sb IKq
looooooooooooooooooooooooooomooooooooooooooooooooooooooon

Sp3q

vectC1u.

As a result, we have

hpωq “
”

Sp1q Sp2q Sp3q
ı

MTω.

Hence we can obtain the CCRB for the parameter y using the following formula:

CCRBpyq “

„

Bhpωq

BωT



CCRBpωq

„

Bhpωq

BωT

T

, (5.33)

where CCRBpωq is the first diagonal block of CCRBpθq; its expression is available in Ap-

pendix F.

5.3.5 Performance analysis in the case of non-random constraints

In this subsection, we illustrate the performance of the LL1-ALS algorithm in the case of non-

random constraints. Using the equivalence between the LL1-BTD and CPD (see Property 2),

we also compare the performance of the LL1 model to that of the CP model for estimation of ω

and y.

Experiments setup

We consider the dimensions I “ J “ 24, IH “ JH “ 6, K “ 30 and KM “ 6. The LL1 ranks

are L “ 2 and R “ 2, and the equivalent CP rank is LR. The entries of the true factors A2, B2,

C1 were generated once as i.i.d. real standard Gaussian variables. The ambiguities in the LL1

and CP models were corrected as suggested in Section 1.3.3. The true factors A1, B1, C2 were

constructed according to (5.17).
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5.3. Cramér-Rao bounds for coupled LL1 models

The spatial degradation matrices P and Q are Gaussian blurring and downsampling matrices,

generated following Wald’s protocol [171] with a Gaussian filter of length q and a downsampling

ratio d. For the sake of simplicity but without loss of generality, we also assume that P “

Q; please refer to Appendix B for more details on the construction of these matrices. The

spectral degradation matrix R is a selection and averaging matrix constructed from the Sentinel-

2 multispectral sensor SRF27. To be more precise, we select a non-zero portion of the 3rd to 8th

spectral channels, that correspond to the wavelengths 543–577nm, 650–680nm, 698–712nm, 733–

747nm, 773–793nm and 785–900nm. This specific degradation scenario is able to describe the

hyperspectral super-resolution problem [176].

We simulate the performance of the coupled model under additive Gaussian noise. The SNR

on the observed tensors (in dB) is defined as SNRi “ 10 log10

`

}Y i}
2
F {}E i}2F

˘

, (i “ 1, 2). We fix

SNR2 to 20dB while SNR1 is a vector with values in t5, 60u dB. Therefore in our simulations,

we will consider performance analysis for various values of SNR1 and fixed SNR2.

In our experiments, we consider as a reference the uniform MSE (UMSE) and uniform CRB

(UCRB) based on the matrix traces, as widely considered in e.g., [48,73,74]. In fact, the CCRB

and RCCRB proposed in this paper allow for calculation of the uniform CCRB (UCCRB) and

uniform RCCRB (URCCRB) due to their synthetic form. Indeed, it is easy to see that if an

estimator is uniformly efficient (i.e., its UMSE reaches the corresponding UCRB), then it is also

efficient for each entry of the parameters, which is a strong result.

The model parameters are retrieved using MLE. The low-rank factors are initialized ran-

domly; for each realization, the best out of 10 initializations is picked. Estimation of the LL1

factors can be performed by a coupled alternating least squares (ALS) algorithm [41], that we

further denote to as LL1-ALS. It minimizes the following global criterion:

min
A2,B2,C1

}Y1 ´

R
ÿ

r“1

`

PpA2qrpQpB2qrq
T
˘

b pc1qr}
2
F ` λ}Y2 ´

R
ÿ

r“1

`

pA2qrpB2q
T
r

˘

bRpc1qr}
2
F .

(5.34)

Note that assuming independent Gaussian noise and λ “ σ2
1

σ2
2
, (5.34) corresponds to the maximum

likelihood (ML) criterion for coupled Y1 and Y2.

For estimation in the equivalent CP case, we use the coupled ALS algorithm STEREO [86]

introduced in Section 2.2. For both algorithms, 5000 iterations at most are performed. We

evaluate the UMSE on the parameters pω and py by averaging the squared errors through 500 noise

realizations. The permutation ambiguities in the estimated factors are corrected by searching

for the best column permutation of C2 with fixed C1 and applying that same permutation to

A2 and B2. This step is performed by merely maximizing the correlation between the estimated
27available for download at https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/

document-library/-/asset_publisher/Wk0TKajiISaR/content/sentinel-2a-spectral-responses.

142

https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/document-library/-/asset_publisher/Wk0TKajiISaR/content/sentinel-2a-spectral-responses
https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/document-library/-/asset_publisher/Wk0TKajiISaR/content/sentinel-2a-spectral-responses


5.4. Degradation model accounting for uncertainties

and true LL1 factors; but it could be performed optimally using the Hungarian algorithm [120].

Numerical results

For each coupled model, we compute the standard CCRB for the parameters ω and y. Please

refer to Section 4.5 for calculation of the CCRB based on the fully-coupled CP model.

We compare the UCCRB to the UMSE given by the coupled algorithms. In Figures 5.1

and 5.2, we plot on a semi-log scale the UCCRB and UMSE for the CP and LL1 models and

parameters ω and y, respectively. We recall that SNR2 is fixed to 20dB. Equivalence between

the LL1 and CP models allows to show the performance for y on a same scale in Figure 5.2.
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Figure 5.1: Standard UCCRB and UMSE for ω; LL1 model (left) and CP model (right).

For both parameters, the UMSE reaches the UCCRB obtained by the equivalent LL1 and CP

models. In Figure 5.2, the LL1-based UCCRB and UMSE provided by LL1-ALS are lower than

the CP-based UCCRB and UMSE from STEREO for the parameter y. This means that, for

equivalent low-rank models, using the LL1-BTD leads to better performance28 for reconstruction

of the target image Y . Hence in the remaining on this paper, we will focus on the LL1 model

solely.

5.4 Degradation model accounting for uncertainties

5.4.1 Proposed model

The tensor degradation model (5.15) however ignores any uncertainty phenomenon. In remote

sensing applications, Y1 and Y2 can be acquired at different time instants, resulting in a vari-
28In the specific context of multi-band image fusion, this result is coherent with those of [173,174] showing the

benefits of using the linear mixing model for such applications.
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Figure 5.2: Standard UCCRB and UMSE for y; comparison between LL1 and CP models.

ability phenomenon. Moreover, proper calibration of the degradation matrices is crucial in order

to account for the sensor specificities such as degradation of sensitivity over time [160], nor-

malization of each channel response, or variations in observational geometry [66]. This step

is usually performed before launching the device [64]. However, the sensor specificities might

change e.g., after launch of installation in an aircraft, due to outgassing, aging of components,

or misalignment. These uncertainties will lead to errors in the observed surface reflectance.

This uncertainty phenomenon29 motivates the need for flexible models. As a result, in this

subsection, we introduce a more general observational model accounting for uncertainties.

As in Chapter 3, we consider that Y1 and Y2 are degraded versions of two different tensors

Y P RIˆJˆK and rY P RIˆJˆK , respectively. The tensor rY also admits an LL1-BTD with the

same factors A2 and B2 as Y , but with a different factor rC1 P RKˆR:

rY “

R
ÿ

r“1

´

pA2qrpB2q
T
r

¯

b prc1qr. (5.35)

Contrary to (5.15), which assumes that rY “ Y , here we allow rY and Y to be different. Model

(5.35) is equivalent to (3.7) but with different notations. This allows for the addition of uncer-

tainties between the two underlying tensors, depicted through the LL1 factor rC1 ‰ C1.
29In this Chapter, we assume that the uncertainty phenomenon being considered encompasses a larger class of

uncertainties than simple spectral variability considered in Chapter 3.
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5.4. Degradation model accounting for uncertainties

We model these uncertainties using the following multiplicative model30 similarly to (3.5):

rC1 “ C1 d Ψ, (5.36)

where Ψ P RKˆR is a matrix of positive scaling factors.

This leads to the following extension of model (5.15):
$

&

%

Y1 “ Y ‚1 P ‚2 Q` E1,

Y2 “ rY ‚3 R` E2,
(5.37)

which corresponds to the degradation model with variability (1.31) introduced in Chapter 1.

Given (5.37), the inverse problem (5.36) accounting for uncertainties can be recast into:
$

’

’

&

’

’

%

Y1 “
R
ř

r“1

`

pA1qrpB1q
T
r

˘

b pc1qr ` E1,

Y2 “
R
ř

r“1

`

pA2qrpB2q
T
r

˘

b pc2qr ` E2,

(5.38)

where A1 “ PA2,B1 “ QB2,C2 “ RpC1 d Ψq, (5.39)

which is equivalent to the observation model (3.8) with degradation recast into the constraints

(5.39).

5.4.2 Standard CCRB

We define the random parameter vector θr “ vectΨu P RKR that characterizes uncertain-

ties. The entries of θr are i.i.d. Gaussian entries with unit mean and variance σ2
r such that

θr „ N p1, σ2
rIq. This allows θr to depict uncertainties such as variations in e.g. atmospheric,

illumination or seasonal acquisition conditions, thus lim
σ2
rÑ0

rC1 “ C1 [16, 130].

The constraints (5.39) between the LL1 factors can be expressed as

gθrpθq “ φ´

»

—

—

–

I b P 0 0

0 I b Q 0

0 0 pI b Rq diagtθru

fi

ffi

ffi

fl

MT

looooooooooooooooooooooooomooooooooooooooooooooooooon

Gθr

ω. (5.40)

Contrary to (5.30), the parameter constraints in (5.40) are deterministic constraints involving

the random parameter vector θr.
30Although an additive model was used in Chapter 3, in this chapter we deliberately chose an equivalent

multiplicative uncertainty model. There are two reasons motivating this choice. First, this model allows the

random variability parameter to appear clearly in the expression of the matrices to be inverted. Second, since

the focus of this chapter is image reconstruction rather than hyperspectral unmixing per se, it is not necessary to

keep the uncertainty phenomenon explicit in rY.
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Hence we can compute the standard CCRB conditionally on the value of θr as

CCRBθrpθq “ Uθrpθq
´

UT
θrpθqCRB´1

θr
pθqUθrpθq

¯´1
UT
θrpθq, (5.41)

where UT
θr
pθq “

“

I GT
θr

‰

.

5.4.3 Limitations of standard CCRB

In this subsection, we address the behaviour of the standard CCRB in the presence of uncertain-

ties.

We draw two specific realizations of the random parameter vector with variance σ2
r “ 0.2,

namely θp1qr and θp2qr . The entries of the true LL1 factors are generated as in Section 5.3.5, which

corresponds to a false model ignoring the uncertainty phenomenon.

For each realization of θr, we compute the deterministic CCRB for each value of the random

parameter, namely UCCRB
θ
piq
r

(i P t1, 2u). The model parameters are retrieved using LL1-ALS

in the same conditions as in Section 5.3.5.

In Figure 5.3, we plot on a semi-log scale the conditional UCCRB and UMSE for parameters

ω and y.
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Figure 5.3: Standard UCCRB
θ
piq
r
pωq (i P t1, 2u) and UMSE for ω (left) and y (right).

We can see that the two UCCRB curved are almost equal for SNR1 ď SNR2. For such

SNR1, the UMSE provided by LL1-ALS reaches the bounds. However, for SNR1 ą SNR2, the

discrepancy between the two UCCRB curves increases, and the UMSE can be found between

the two bounds.

This results highlights the limitations of the deterministic CCRB when the constraints on the

model parameters involve a random parameter. In such a case, the deterministic CCRB becomes
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5.4. Degradation model accounting for uncertainties

non-informative. Therefore we must consider a new constrained CR-type lower bound fitted to

this context. Hence the introduction of the randomly constrained CRB (RCCRB) in Section 5.2

for assessing performance of LL1-ALS in cases where the wrong model is employed.

5.4.4 Usefulness of the RCCRB for coupled LL1 models with uncertainties

We now illustrate the usefulness of the RCCRB coupled LL1 models with uncertainties. The

RCCRB, namely URCCRB, is evaluated as in (5.9) by averaging (5.13) over 500 realizations of

the random parameter vector θr with variance σ2
r “ 0.2. In Figure 5.4, we plot on a semi-log

scale the URCCRB and UMSE for ω and y.
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Figure 5.4: URCCRB and UMSE for ω (left) and y (right).

Contrary to the standard UCCRB in Figure 5.3, the UMSE reaches the URCCRB for all

considered values of SNR1 and both parameters.

We now study the evolution of the URCCRB as a function of the random parameter variance

σ2
r . We consider different values of σ2

r P t5 ¨10´5, 1 ¨10´1, 5 ¨10´2, 1 ¨10´1u. For each value of the

random parameter variance, the LL1 factors A2, B2, C1 are generated as in Section 5.3.5 while

A1, B1, C2 are generated according to (5.39). We compute the RCCRB using (5.41) and (5.9).

In Figure 5.5, we show the different URCCRB curves for the parameter y as a function of σ2
r

and SNR1 P t30, 60u dB (for fixed SNR2 “ 20 dB), and compare them to the standard UCCRB.

Figure 5.5 show that if the random parameter variance is high, the discrepancy between the

URCCRB and the standard UCCRB obtained from a wrong model in Figure 5.2 increases. This

means that for high random parameter variance σ2
r , using a wrong model leads to a larger loss

of performance.

147



5.4. Degradation model accounting for uncertainties

30 35 40 45 50 55 60

0.032

0.033

0.034

0.035

0.036

0.037

0.038

0.039

0.04

0.041

0.042

R
C

C
R

B
 T

ra
c
e

Figure 5.5: Standard UCCRB, and URCCRB for various values of σ2
r .

5.4.5 Performance loss for fully-coupled algorithm in case of constraints mis-
match

In this subsection, we investigate the performance of the fully-coupled algorithm LL1-ALS in the

case of constraints mismatch.

In the considered model, A2, B2, C1 are generated as in Section 5.3.5 while A1, B1, C2 are

generated according to (5.39) with θr „ N p1, σ2
r q and variance σ2

r “ 0.2. We additionally draw

two specific realizations of the random parameter vector with variance σ2
r “ 0.2, namely θp1qr and

θ
p2q
r . We run LL1-ALS with a constraints mismatch, that is for i “ 1, 2, LL1-ALS accounts for

a false set of constraints on the parameters

gθrpθq “ φ´

»

—

—

–

I b P 0 0

0 I b Q 0

0 0 pI b Rqdiagtθ
piq
r u

fi

ffi

ffi

fl

MTω.

We compare the UMSE provided by LL1-ALS in this scenario, to the URCCRB and UMSE

obtained by using the right set of constraints (5.40). The uniform bounds and UMSE curves are

shown in Figure 5.6.

We can see that, in the case of a constraints mismatch, the UMSE provided by LL1-ALS is

higher than the URCCRB. This means that an incorrect knowledge of the constraints leads to

a loss of performance. Thus the fully-coupled algorithm LL1-ALS is not robust to uncertainties

impacting the third mode.

In the following section, we will introduce another degradation model, which aim is to cir-

cumvent the limitations of the fully-coupled model by considering implicit (blind) equality con-

straints.
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Figure 5.6: URCCRB, UMSE from LL1-ALS and UMSE for constraints mismatch.

5.5 A new efficient blind algorithm

5.5.1 Partially-coupled LL1 model

Since the uncertainty phenomenon is unknown, it is reasonable to consider a partially-coupled

LL1 model. In Theorem 3.3.1, it was shown that the knowledge of the degradation matrix R is

not needed to guarantee unique recovery of the target tensor Y in the noiseless case. In fact,

Theorem 3.3.1 further indicates that the LL1 factor rC1 underlying rY can only be recovered up

to degradation by R.

Hence we propose to use a different model than (5.38)–(5.39), that supposes that only the

degradation matrices P and Q are known while the matrix R is unknown:
$

’

’

&

’

’

%

Y1 “
R
ř

r“1

`

pA1qrpB1q
T
r

˘

b pc1qr ` E1,

Y2 “
R
ř

r“1

`

pA2qrpB2q
T
r

˘

b pc2qr ` E2,

(5.42)

where A1 “ PA2,B1 “ QB2. (5.43)

In a fully-coupled scenario, the C2 factor is such that

C2 “ RrC1 “ RpC1 d Ψq.

In (5.42)–(5.43), C2 is a degraded version of C1 by unknown degradation matrix, subject to

some unknown uncertainties. This problem is referred to under the term “blind” in the spectral
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dimension31.

Thus the constraints on the models parameters are such that

rgpθq “ φ´

«

I b P 0

0 I b Q

ff

MT

loooooooooooomoooooooooooon

rG

ω. (5.44)

In fact, (5.44) can be viewed as a specific form for (5.40) in the case where R is unknown.

However, a deterministic lower bound for the blind problem (5.42)–(5.43) still implicitly depends

on unknown uncertainties. Therefore, we can define the Blind-CCRB for the parameter θ,

conditionally on the random parameter vector:

Blind-CCRBθrpθq “
rUpθq

´

rUTpθqFθrpθq
rUpθq

¯´1
rUTpθq, (5.45)

where rUTpθq “
”

I rGT
ı

.

In (5.45), the uncertainties are solely contained in Fθrpθq, hence the Blind-RCCRB must be

considered as well.

5.5.2 A new blind ALS algorithm for solving (5.42)–(5.43)

From Theorem 3.3.1, it is only possible to recover the pc2qr vectors from (5.42)–(5.43). Hence

the design of a blind algorithm that ignores the degradation and uncertainties relationships

between C1 and C2 envisioned. In this subsection, we introduce a new blind algorithm called

Blind-LL1-ALS, that minimizes the following criterion:

min
A2,B2,
C1,C2

}Y1 ´

R
ÿ

r“1

`

PpA2qrpQpB2qrq
T
˘

b pc1qr}
2
F ` λ}Y2 ´

R
ÿ

r“1

`

pA2qrpB2q
T
r

˘

b pc2qr}
2
F , (5.46)

which is the ML criterion for the blind problem if λ “ σ2
1

σ2
2
. This criterion corresponds to the cost

function (3.16) in Chapter 3.

Since R is supposed unknown in (5.42)–(5.43), the criterion (5.46) is partially-constrained,

since it ignores any relationship between C1 and C2. Thus degradation in the third mode, as

well a the uncertainty phenomenon, are implicit in (5.46). To be more precise, the LL1 factor

C2 is still subject to some uncertainties in the blind problem, but it is considered unknown in

(5.46). Below, we provide the general framework of Blind-LL1-ALS.

While the updates for A2 and B2 are coupled in Algorithm 14, there are two uncoupled

updates for the C1 and C2 factors. This algorithm corresponds in fact to Algorithm 8.
31This is different from the blind scenario addressed in Chapters 2 and 4, which was blind in two (spatial)

dimensions.
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5.5. A new efficient blind algorithm

Algorithm 14: Blind-LL1-ALS
input : Y1, Y2, B2, C1, C2, P, Q; R, L, iter, λ

output: A2 P RIˆLR, B2 P RJˆLR, C1 P RKˆR, C2 P RKMˆR

1 for m P t1, . . . , iteru do

2 A2 Ð arg min
A2

}Y
p1q
1 ´ pC1 dp QB2qA

T
2 PT}2F ` λ}Y

p1q
2 ´ pC2 dp B2qA

T
2 }

2
F ,

3 B2 Ð arg min
B2

}Y
p2q
1 ´ pC1 dp PA2qB

T
2 QT}2F ` λ}Y

p2q
2 ´ pC2 dp A2qB

T
2 }

2
F ,

4 C1 Ð arg min
C1

}Y
p3q
1 ´ pQ b Pq r. . . , ppA2qr d pB2qrq1L, . . .sCT

1 }
2
F ,

5 C2 Ð arg min
C2

λ}Y
p3q
2 ´ r. . . , ppA2qr d pB2qrq1L, . . .sCT

2 }
2
F .

6 end

5.5.3 Numerical performance analysis

In this subsection, we conduct a thorough experiment regarding performance analysis for LL1-

based. The aim of this experiment is to compare the theoretical performance of the blind model

compared to the fully-coupled one.

We consider a random parameter vector θr with unit mean and variance σ2
r “ 0.2. We

compare performance bounds for two different models. For the first one, the LL1 factors are gen-

erated as in Section 5.3.5. This case represents a false model where the uncertainty phenomenon

is ignored: thus we have Fθrpθq “ Fpθq. For this model, we consider the standard CCRB and

estimator LL1-ALS.

For the second model, A2, B2, C1 are generated as in Section 5.3.5 while A1, B1, C2

are generated according to (5.39). In this setting, Fθrpθq ‰ Fpθq due to the uncertainty phe-

nomenon. We compute the RCCRB (with the set of constraints (5.40)) and Blind-RCCRB (with

the constraints (5.44)), and compare the matrix traces with the MSE obtained by LL1-ALS and

Blind-LL1-ALS, respectively.

In Figure 5.7, we plot on a semi-log scale the total bounds and UMSE for the parameter y.

For SNR1 ď SNR2, the fully-coupled URCCRB and UCCRB curves are almost equal, while

the Blind-URCCRB is slightly above the two other curves. This means that in the presence

of noise, the blind model accounting for variability leads worse performance than fully-coupled

models.

For SNR1 ą SNR2, different conclusions can be drawn. The standard UCCRB computed from

the false model, corresponding UMSE, lead the worse performance. For the second “true” model

accounting for variability, the fully-coupled URCCRB and UMSE give the best performance

bounds. The Blind-URCCRB and UMSE using a partially-coupled model yield slightly worse

performance: this is reasonable since only the constraints in the first and second modes are

taken into account, and R is considered unknown. However, the performance of Blind-LL1-ALS
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remains lower than that of LL1-ALS obtained from a false model. Furthermore, we notice that

the UMSE curves reach the corresponding bounds.

This experiment shows that ignoring uncertainties (and therefore, considering a false model)

leads to a loss of performance. This limitation can be circumvented by considering a partially-

coupled model that implicitly includes the random parameter vector. From this new model, a

blind algorithm (Blind-LL1-ALS) can be derived, providing competitive asymptotic performance

without the need for knowing the uncertainty phenomenon.

More importantly, the performance of Blind-LL1-ALS allows us to measure the loss of infor-

mation induced by blind constraints. Since the discrepancy between the URCCRB and Blind-

URCCRB is small, it can be concluded from this experiment that considering R and uncertainties

to be unknown is not critical, since it does not heavily degrade the performance. Hence Blind-

LL1-ALS can be seen as a robust algorithm with regards to degradation by R and uncertainties.

5.6 Conclusion of Chapter 5

In this chapter, we considered a coupled LL1 model accounting for uncertainties. These uncer-

tainties were depicted through random equality constraints on the deterministic model parame-

ters. Hence we introduced the new randomly-constrained Cramér-Rao bound (RCCRB) that is

able to tackle such constraints. We showed that, for such model, it is reasonable to consider a

blind (i.e., partially-coupled) estimator that implicitly accounts for the variability phenomenon

at hand. Using the RCCRB, we demonstrated the efficiency of this new estimator, and showed

that it yielded better performance than less flexible algorithms that ignore the uncertainties,

without the need for a priori knowledge on the variability phenomenon. Moreover, the per-

formance of this new algorithm is only slightly degraded compared to that the fully-coupled

algorithm, in the case where the spectral degradation is considered incorrect. Therefore it is

robust to the lack of knowledge of the degradation in the third mode.
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Figure 5.7: Standard UCCRB (using a false model), RCCRB, Blind-RCCRB, and UMSE for the

parameter y and different models; close-ups for SNR1 ď SNR2 (down, left) and SNR1 ą SNR2

(down, right).
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Conclusion of Part II

In this part, we conducted a theorerical performance analysis of coupled tensor models admitting

low-rank decompositions. We utilized the simplicity of calculation and versatility of Cramér-Rao

bounds to derive appropriate performance bounds for our models. In particular, we studied two

tensor decompositions: canonical polyadic (in Chapter 4) and pL,L, 1q block-term (in Chapter 5)

decompositions.

Using the Constrained Cramér-Rao bound, we showed that in optimal observation conditions

(i.e., in the asymptotic regime or when the decomposition ranks are not too large), the existing

algorithms are efficient.

In this part, we also highlighted scenarios where the algorithms are not efficient. In Chap-

ter 4, such cases are obtained when the tensor rank is large, SNR is high, or when the model

parameters are subject to non-linear constraints. In Chapter 5, it was shown that in the pres-

ence of uncertainties, the algorithms performance may degrade due to incorrect knowledge of

the low-rank model. Thus we proposed modified algorithms, based on existing estimators, that

reach the bound in such particular cases.

For the pL,L, 1q block-term model accounting for uncertainties, we also introduced a new

randomly constrained Cramér-Rao bound that is able to tackle the problem at hand.

The efficiency of the existing and proposed algorithms in various observation scenarios thus

justifies their use for real coupled datasets in realistic applications.
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Appendix E

Closed-form expressions for deriving

CP-based CRBs

E.1 Uncoupled CRB

We first recall the results of [140] regarding the uncoupled FIM. In practice, the FIM for rω

(namely Fprωq) is computed by applying the Slepian-Bangs formula to the tensors Y1 and Y2:

Fprωq “

«

Bµ1prωq

BrωT

Bµ2prωq

BrωT

ffT

DiagtΣ1,Σ2u
´1

«

Bµ1prωq

BrωT

Bµ2prωq

BrωT

ff

“
1

σ2
1

”

BµT
1 prωq
Brω

Bµ1prωq

BrωT

ı

`
1

σ2
2

”

BµT
2 prωq
Brω

Bµ2prωq

BrωT

ı

. (E.1)

The expressions of the functions µ1 and µ2 are obtained using relationships between tensor

unfoldings. For i “ 1, 2, we have

µiprωq “ rpCi dBiqb Is
loooooooomoooooooon

SAi

vectAiu “ Π
p2,1q
i rpCi dAiqb Is

loooooooooooomoooooooooooon

SBi

vectBiu “ Π
p3,1q
i rpBi dAiqb Is

loooooooooooomoooooooooooon

SCi

vectCiu.

(E.2)

This yields Bµiprωq
BrωT “ rSAi SBi SCis.

Developing (E.1) using the above formula yields

Fprωq “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

1
σ2
1
ST
A1

SA1
1
σ2
1
ST
A1

SB1
1
σ2
1
ST
A1

SC1 0 0 0

1
σ2
1
ST
B1

SA1
1
σ2
1
ST
B1

SB1
1
σ2
1
ST
B1

SC1 0 0 0

1
σ2
1
ST
C1

SA1
1
σ2
1
ST
C1

SB1
1
σ2
1
ST
C1

SC1 0 0 0

0 0 0 1
σ2
2
ST
A2

SA2
1
σ2
2
ST
A2

SB2
1
σ2
2
ST
A2

SC2

0 0 0 1
σ2
2
ST
B2

SA2
1
σ2
2
ST
B2

SB2
1
σ2
2
ST
B2

SC2

0 0 0 1
σ2
2
ST
C2

SA2
1
σ2
2
ST
C2

SB2
1
σ2
2
ST
C2

SC2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (E.3)
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E.2. Blind-CCRB for partially-coupled models

In (E.3), Fprωq is a block-matrix of the form

Fprωq “

»

—

—

—

—

—

–

Fprφ1q Fprφ1,θ1q 0 0

Fprφ1,θ1q
T Fpθ1q 0 0

0 0 Fprφ2q Fprφ2,θ2q

0 0 Fprφ2,θ2q
T Fpθ2q

fi

ffi

ffi

ffi

ffi

ffi

fl

, (E.4)

where for i P t1, 2u, we have

Fprφiq “

»

–

1
σ2
i
ST
Ai

SAi
1
σ2
i
ST
Ai

SBi
1
σ2
i
ST
Bi

SAi
1
σ2
i
ST
Bi

SBi

fi

fl , Fprφi,θiq “

»

–

1
σ2
i
ST
Ai

SCi
1
σ2
i
ST
Bi

SCi

fi

fl , Fpθiq “
1

σ2
i

ST
CiSCi .

In most performance analyses, we are only interested in the diagonal terms of the CRB,

which are directly related to the optimal MSE. For i P t1, 2u, denote CRBprφiq and CRBpθiq

the diagonal blocks of the matrix CRBprωq “ Fprωq´1. Then from (E.4),

CRBprφiq “
´

Fprφiq ´ Fprφi,θiqFpθiq
´1Fprφi,θiq

T
¯´1

, (E.5)

CRBpθiq “
´

Fpθiq ´ Fprφi,θiq
TFprφiq

´1Fprφi,θiq
¯´1

. (E.6)

E.2 Blind-CCRB for partially-coupled models

For the partially-coupled model, we have a matrix U such that

U “

»

–

IpI`J`IH`JHqR´4R
”

0 Z1 rZ2 Z3s

ı

fi

fl .

Thus the matrix UTFU is a block matrix of the form

UTFU “

»

—

—

–

D1,1 D1,2 0

DT
1,2 D2,2 D2,3

0 DT
2,3 D3,3

fi

ffi

ffi

fl

,

which subblocks are such that

D1,1 “ Fprφ1q, D1,2 “ Fprφ1,θ1q, D1,2 “ Fpθ1q ` ZT
1 Fpθ2qZ1,

D2,3 “ ZT
1 Fprφ2q ` ZT

1 Fprφ2,θ2q rZ2 Z3s ,

D3,3 “ Fprφ2q ` Fprφ2,θ2q rZ2 Z3s ` rZ2 Z3s
T Fprφ2,θ2q

T ` rZ2 Z3s
T Fpθ2q rZ2 Z3s .

Denote rD1,1, rD1,2, rD2,2, rD2,3, rD3,3 the blocks of pUTFUq´1 obtained by the block-inversion

lemma. Then the diagonal blocks of Blind-CCRBprωq for the partially-coupled model are:

Blind-CCRBprφ1q “
rD1,1,

Blind-CCRBpθ1q “ rD2,2,

Blind-CCRBprφ2q “
rD3,3,

Blind-CCRBpθ2q “ Z1
rD2,2Z

T
1 ` Z1

rD2,3 rZ2 Z3s
T
` rZ2 Z3s rD

T
2,3Z

T
1 ` rZ2 Z3s rD3,3 rZ2 Z3s .
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E.3 Fully-coupled CCRB

E.3.1 Scenario 1 with linear constraints

Standard CCRB

For the fully-coupled model, the matrix UTFU in is a block matrix of the form

UTFU “

«

D1,1 D1,2

DT
1,2 D2,2

ff

,

which subblocks are such that

D1,1 “ DiagtI b P, I b QuTFprφ1qDiagtI b P, I b Qu ` Fprφ2q;

D1,2 “ DiagtI b P, I b QuTFprφ1,θ1q ` Fprφ2,θ2qpI b Rq,

D2,2 “ Fpθ1q ` pI b RqTFpθ2qpI b Rq.

Denote rD1,1, rD1,2, rD2,2 the blocks of pUTFUq´1 obtained by the block-inversion lemma as

rD1,1 “

´

D1,1 ´D1,2D
´1
2,2D

T
1,2

¯´1
,

rD1,2 “ ´rD1,1D1,2D
´1
2,2,

rD2,2 “

´

D2,2 ´DT
1,2D

´1
1,1D1,2

¯´1
.

Then the diagonal blocks of CCRBprωq for the fully-coupled model are:

CCRBprφ1q “ DiagtI b P, I b QurD1,1 DiagtI b P, I b QuT,

CCRBpθ1q “ rD2,2,

CCRBprφ2q “
rD1,1,

CCRBpθ2q “ pI b RqrD2,2pI b RqT.

Reparameterization change

In fact, the reparameterized FIM Fcprψq is a block-matrix of the form

Fcprψq “

»

–

F
rφ2

F
rφ2,θ1

FT
rφ2,θ1

Fθ1

fi

fl ,

with

F
rφ2
“

«

ST
1
rPS1 ST

1
rPS2

ST
2
rPS1 ST

2
rPS2

ff

, F
rφ2,θ1

“

«

ST
1
rPS3

ST
2
rPS3

ff

, Fθ1 “ ST
3
rPS3,

where rP “ 1
σ2
1
pI b QTQ b PTPq ` 1

σ2
2
pRTR b Iq.
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Denote CRBcprφ2q and CRBcpθ1q the diagonal blocks of the matrix Fcprφ2,θ1q
´1. Then we

have

CRBprφ2q “

´

F
rφ2
´ F

rφ2,θ1
F´1
θ1

FT
rφ2,θ1

¯´1
, (E.7)

CRBpθ1q “

´

Fθ1 ´ FT
rφ2,θ1

F´1
rφ2

F
rφ2,θ1

¯´1
. (E.8)

E.3.2 Scenario 2 with non-linear constraints

Standard CCRB

In this scenario, the matrix UTFU is a block matrix of the form

UTFU “

«

D1,1 D1,2

DT
1,2 D2,2

ff

,

which subblocks are such that

D1,1 “ DiagtZ4,Z5u
TFprφ1qDiagtZ4,Z5u ` Fprφ2q ` rZ2 Z3s

T Fpθ2q rZ2 Z3s

` Fprφ2,θ2q rZ2 Z3s ` rZ2 Z3s
T Fprφ2,θ2q

T,

D1,2 “ DiagtZ4,Z5u
TFprφ1,θ1q ` Fprφ2,θ2qZ1 ` rZ2 Z3s

T Fpθ2qZ1,

D2,2 “ Fpθ1q ` ZT
1 Fpθ2qZ1.

Denote rD1,1, rD1,2, rD2,2 the blocks of pUTFUq´1 obtained by the block-inversion lemma as

rD1,1 “

´

D1,1 ´D1,2D
´1
2,2D

T
1,2

¯´1
,

rD1,2 “ ´rD1,1D1,2D
´1
2,2,

rD2,2 “

´

D2,2 ´DT
1,2D

´1
1,1D1,2

¯´1
.

Then the diagonal blocks of CCRBprωq for the fully-coupled model are:

CCRBprφ1q “ DiagtZ4,Z5urD1,1 DiagtZ4,Z5u
T,

CCRBpθ1q “ rD2,2,

CCRBprφ2q “
rD1,1,

CCRBpθ2q “ rZ2 Z3s rD1,1 rZ2 Z3s
T
` Z1

rD2,2Z
T
1 ` Z1

rDT
1,2 rZ2 Z3s

T
` rZ2 Z3s rD1,2Z

T
1 .

Reparameterization change

The reparameterized FIM Fcprψq is a block-matrix of the form

Fcprψq “

»

–

F
rφ2

F
rφ2,θ1

FT
rφ2,θ1

Fθ1

fi

fl ,
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with

F
rφ2
“

»

–

1
σ2
1
XT

1 X1 `
1
σ2
2
XT

5 X5
1
σ2
1
XT

1 X2 `
1
σ2
2
XT

5 X6

1
σ2
1
XT

2 X1 `
1
σ2
2
XT

6 X5
1
σ2
1
XT

2 X2 `
1
σ2
2
XT

6 X6

fi

fl ,

F
rφ2,θ1

“

»

–

1
σ2
1
XT

1 X3 `
1
σ2
2
XT

5 X4

1
σ2
1
XT

2 X3 `
1
σ2
2
XT

6 X4

fi

fl ,

Fθ1 “
1

σ2
1

XT
3 X3 `

1

σ2
2

XT
4 X4.

Denote CRBcprφ2q and CRBcpθ1q the diagonal blocks of the matrix Fcprφ2,θ1q
´1. Then we

have

CRBprφ2q “

´

F
rφ2
´ F

rφ2,θ1
F´1
θ1

FT
rφ2,θ1

¯´1
, (E.9)

CRBpθ1q “

´

Fθ1 ´ FT
rφ2,θ1

F´1
rφ2

F
rφ2,θ1

¯´1
. (E.10)
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Appendix F

LL1-based standard FIM and CCRB

In (5.29), the Fisher information matrix for θ can be viewed as a symmetric block-matrix of the

form

Fpθq “ NT

«

D
rω,rω D

rω,φ

DT
rω,φ Dφ,φ

ff

N. (F.1)

Developing (5.29) yields

Fpθq “ NT

»

—

—

—

—

—

—

—

—

—

—

—

—

–

1
σ2
2
ST
A2

SA2
1
σ2
2
ST
A2

SB2 0 0 0 1
σ2
2
ST
A2

SC2

1
σ2
2
ST
B2

SA2
1
σ2
2
ST
B2

SB2 0 0 0 1
σ2
2
ST
B2

SC2

0 0 1
σ2
1
ST
C1

SC1
1
σ2
1
ST
C1

SA1
1
σ2
1
ST
C1

SB1 0

0 0 1
σ2
1
ST
A1

SC1
1
σ2
1
ST
A1

SA1
1
σ2
1
ST
A1

SB1 0

0 0 1
σ2
1
ST
B1

SC1
1
σ2
1
ST
B1

SA1
1
σ2
1
ST
B1

SB1 0

1
σ2
2
ST
C2

SA2
1
σ2
2
ST
C2

SB2 0 0 0 1
σ2
2
ST
C2

SC2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

N.

(F.2)

Given (??)–(E.2), the subblocks in (F.1) are such as

D
rω,rω “

»

—

—

—

–

1
σ2
2
ST
A2

SA2
1
σ2
2
ST
A2

SB2 0

1
σ2
2
ST
B2

SA2
1
σ2
2
ST
B2

SB2 0

0 0 1
σ2
1
ST
C1

SC1

fi

ffi

ffi

ffi

fl

, (F.3)

D
rω,φ “

»

—

—

—

–

0 0 1
σ2
2
ST
A2

SC2

0 0 1
σ2
2
ST
B2

SC2

1
σ2
1
ST
C1

SA1
1
σ2
1
ST
C1

SB1 0

fi

ffi

ffi

ffi

fl

, (F.4)

Dφ,φ “

»

—

—

—

–

1
σ2
1
ST
A1

SA1
1
σ2
1
ST
A1

SB1 0

1
σ2
1
ST
B1

SA1
1
σ2
1
ST
B1

SB1 0

0 0 1
σ2
2
ST
C2

SC2

fi

ffi

ffi

ffi

fl

. (F.5)
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Similarly to (F.1), the standard CCRB in (5.14) is a block-matrix of the form

CCRBpθq “

«

CCRB
rω,rω CCRB

rω,φ

CCRBT
rω,φ CCRBφ,φ.

ff

(F.6)

Denote CCRBpωq and CCRBpφq the diagonal blocks in (F.6). Developing (5.14) using

(F.1) yields

CCRBpωq “
´

UTFU
¯´1

, (F.7)

CCRBpφq “ G
´

UTFU
¯´1

GT, (F.8)

where

UTFU “ MTD
rω,rωM`GTDT

rω,φM`MTD
rω,φG`GTDφ,φG. (F.9)
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General conclusion

1 Conclusion of the manuscript

We first recall the methodological questions underlying this manuscript. The goal of this work is

to propose strategies to solve ill-posed reconstruction problems that have the form of (1.28). To

that aim, we proposed to work under a tensor data fusion point of view. There are three main

advantages to this framework.

First, increasing the observational domain can be seen as a form of diversity that enhances

the unicity and interpretability of the solution to (1.28). Thus complementary information

obtained from different datasets can be used to obtain a better picture of the target solution.

Second, the tensor framework allows us to build up unique recovery guarantees in the noiseless

case without the need for additional constraints, unlike matrix models. Third, low-rank tensor

decompositions can reduce the number of unknown parameters to estimate compared with matrix

low-rank factorization.

Hence throughout this manuscript, we considered the pL,L, 1q block-term and Tucker de-

compositions, respectively. For each decomposition, the reconstruction problem (1.28) was re-

formulated as a coupled low-rank approximation. Noiseless guarantees for unique recovery were

provided, often only relying on the observations dimensions. Several algorithms were proposed,

demonstrating their high performance and often low computation time compared to matrix-based

approaches. The powerful uniqueness conditions of some tensor decompositions motivated the

incorporation of meaningful priors to the low-rank factors, thus enhancing the interpretability

of the solution. Therefore we were able to consider different observation scenarios, such as pan-

sharpening, blind reconstruction or variable acquisition conditions. Our simulations regarding

the hyperspectral super-resolution problem confirmed the capabilities of the proposed approaches

to solve the problem (1.28).

Throughout our theoretical performance analysis, we showed that it is reasonable to ex-

pect better estimation performance from fusion models, than from uncoupled ones. We derived

constrained Cramér-Rao bounds to evaluate the performance of the low-rank tensor models for

parameter estimation and tensor reconstruction. We showed that the CP-based algorithms intro-

duced in Chapter 2 are asymptotically efficient in optimal observation conditions (i.e., when the
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tensor rank is not too large). We also considered the observation model accounting for variability

(or uncertainties) from Chapter 3. In such a case, the standard bounds being non-informative

led us to the introduction of a new bound, accounting for deterministic constraints involving an

additional random parameter. Using this new bound, we showed that the spectrally-blind un-

constrained algorithm introduced in Chapter 3 is asymptotically efficient for the reconstruction

problem with uncertainties.

2 Perspectives

The main focus of this thesis is to highlight the interest of coupled tensor models for solving ill-

posed reconstruction problems. Therefore, one should keep in mind that the methodological tools

developed in this manuscript could be applied to a larger class of problems than hyperspectral

super-resolution. In fact, observation tensor models of the form (1.28) can be found in other

applications, such as spectrum cartography or biomedical image reconstruction.

One particularity of such models is that they assume that full resolution in a given dimension

can be observed in at least one observation. Different from this assumption, it is possible to

modify model (1.28) to depict different acquisition scenarios. For instance, consider an on-line

imaging system where the target object is put on a conveyor belt. Two sensors (e.g., infrared

or hyperspectral) with overlapping spectral responses acquire a portion of the image from both

sides of the conveyor. Due to the velocity of the conveyor and position of the sensors, each

acquisition has low spatial and low spectral resolution.

The main issue in the above problem lies in the fact that both observations are spatially and

spectrally degraded. Thus data fusion in this scenario is expected to fully exploit the shared

portion of the observations. We also expect that the exact recovery conditions are more restric-

tive than those proposed in this thesis due to the multiple degradations. Nevertheless, these

conditions may rely on the dimensions of the two observations and on the size of the shared

portion between the tensors. Thus, it may be possible to extract practical information about the

imaging system, e.g., maximum speed of the conveyer, sensors spectral response and position,

that allow for exact recovery of the high-resolution image.

In Chapter 3, we saw that a wisely-chosen decomposition with physically-informed constraints

can perform different tasks than just image reconstruction, in this case blind unmixing. As a

result, factor analysis or blind source separation using (possibly coupled) tensor models can be

envisioned in a lot of applications. For instance, in distributed fiber optic sensing, the measure-

ments are backscattering indices resulting from acoustic perturbations impinging on the fiber.

These observations possess high spatial and temporal resolutions and are obtained from hun-

dreds of sensing units uniformly located along the dark fiber. It thus seems sensible to fuse the
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observations from neighboring sensing units in order to obtain a better picture of the acoustic

perturbation of interest.

Tensors can also be found in astrophysics applications, where the observed tensor are images

of giant molecular clouds, acquired through thousands of spectral channels spanning the radio-

millimetric spectrum. These datasets contain a large volume of information from which can be

extracted gas properties related to the areas where stars are likely to appear.

Nowadays, the very large volume of available information outclasses the human observation

capacities. Traditional data processing methods may not perform well on such data, especially for

tensor data which suffers from the curse of the dimensionality. Indeed, the storage and process-

ing complexity increases exponentially with the number of dimensions, which is prohibitive for

large datasets. Thus new machine learning methods can be envisioned for extracting insightful

information from such observations.

Moreover, in practice it rarely happens that any groundtruth material is available. As a

result, it may be desirable to propose confidence intervals with theoretical guarantees for such

new methods. Hence, different from the frequentist point of view developed in Part II, a bayesian

scheme can envisioned for tensor models. However, the recent interest towards random tensor

models only recently started to exploit the powerful tools and properties of tensor algebra. Hence

developing methods at the intersection of multilinear algebra (as it is used in this thesis) and

the bayesian framework seems of great interest, and is be likely to be explored in future works.
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Abstract

Due to the recent emergence of new modalities, the amount of signals collected daily has

been increasing. As a result, it frequently occurs that various signals provide information about

the same phenomenon. However, a single signal may only contain partial information about this

phenomenon. Multimodal data fusion was proposed to overcome this issue. It is defined as joint

processing of datasets acquired from different modalities. The aim of data fusion is to enhance

the capabilities of each modality to express their specific information about the phenomenon

of interest; it is also expected from data fusion that it brings out additional information that

would be ignored by separate processing. However, due to the complex interactions between the

modalities, understanding the advantages and limits of data fusion may not be straightforward.

In a lot of applications such as biomedical imaging or remote sensing, the observed signals

are three-dimensional arrays called tensors, thus tensor-based data fusion can be envisioned.

Tensor low-rank modeling preserves the multidimensional structure of the observations and enjoys

interesting uniqueness properties arising from tensor decompositions. In this work, we address

the problem of recovering a high-resolution tensor from tensor observations with some lower

resolutions. In particular, hyperspectral super-resolution (HSR) aims at reconstructing a tensor

from two degraded versions. While one is degraded in two (spatial) modes, the second is degraded

in the third (spectral) mode. Recently, tensor-based approaches were proposed for solving the

problem at hand. These works are based on the assumption that the target tensor admits a

given low-rank tensor decomposition. The first work addressing the problem of tensor-based

HSR was based on a coupled canonical polyadic (CP) decomposition of the observations. This

approach gave rise to numerous following reconstruction methods based on coupled tensor models,

including our work.

The first part of this thesis is devoted to the design of tensor-based algorithms for solving the

HSR problem. In Chapter 2, we propose to formulate the problem as a coupled Tucker decom-

position. We introduce two simple but fast algorithms based on the higher-order singular value

decomposition of the observations. Our experiments show that our algorithms have a competi-

tive performance with state-of-the-art tensor and matrix methods, with a lower computational

time. In Chapter 3, we consider spectral variability between the observations. We formulate the

reconstruction problem as a coupled block-term decomposition. We impose non-negativity of

the low-rank factors, so that they can be incorporated into a physically-informed mixing model.

Thus the proposed approach provides a solution to the joint HSR and unmixing problems.

The second part of this thesis adresses the performance analysis of the coupled tensor models.
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The aim of this part is to assess the efficiency of some algorithms introduced in the first part.

In Chapter 4, we consider constrained Cramér-Rao lower bounds (CCRB) for coupled tensor CP

models. We provide a closed-form expression for the constrained Fisher information matrix in

two scenarios, whether i) we only consider the fully-coupled reconstruction problem or ii) if we

are interested in comparing the performance of fully-coupled, partially-coupled and uncoupled

approaches. We prove that the existing CP-based algorithms are asymptotically efficient. Chap-

ter 5 addresses a non-standard estimation problem in which the constraints on the deterministic

model parameters involve a random parameter. We show that in this case, the standard CCRB

is a non-informative bound. As a result, we introduce a new randomly constrained Cramér-

Rao bound (RCCRB). The relevance of the RCCRB is illustrated using a coupled block-term

decomposition model accounting for random uncertainties.

Keywords: low-rank models, data fusion, hyperspectral super-resolution, tensor decomposi-

tions.

Résumé

Grâce au développement de nouvelles modalités, de plus en plus de signaux sont collectés chaque

jour. Ainsi, il est fréquent que différents signaux renferment des informations sur un même

phénomène physique. Cependant, un seul signal peut ne contenir que des informations partielles,

d’où l’émergence de la fusion de données multimodales pour dépasser cette limitation. La fusion

de données est définie comme le traitement conjoint de signaux issus de différentes modalités.

Son but est d’exploiter à plein les capacités de chaque modalité à extraire du savoir sur le

phénomène d’intérêt, tout en mettant en lumière des informations supplémentaires issues de la

fusion. Cependant, dû aux interactions complexes entre les différentes modalités, dresser un

tableau des avantages des modèles de fusion et de leurs limites par rapport au traitement séparé

est une tâche complexe.

Dans certains domaines tels que l’imagerie biomédicale ou la télédétection, les signaux ob-

servés sont des cubes de données appelés tenseurs ; ainsi, il est possible d’envisager des modèles

de fusion tensorielle. En effet, la modélisation tensorielle de rang faible permet de préserver

la structure des observations tout en jouissant des propriétés d’unicité des décompositions de

tenseurs. Dans cette thèse, on s’intéresse à un problème de reconstruction d’un tenseur à haute

résolution à partir d’observations tensorielles faiblement résolues. En particulier, le problème de

super-résolution hyperspectrale (HSR) vise à reconstruire un tenseur à partir de deux versions

dégradées : tandis que l’une est faiblement résolue dans deux modes spatiaux, la seconde est

faiblement résolue dans le troisième mode spectral. Des approches tensorielles ont été récem-

ment proposées, sous l’hypothèse d’une décomposition tensorielle de rang faible du tenseur à
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haute résolution. Les premiers travaux à exploiter cette hypothèse se basent sur la décompo-

sition canonique polyadique (CP) et ont donné lieu à de nombreuses méthodes tensorielles de

reconstruction, incluant ce travail.

La première partie de cette thèse est dédiée au développement d’algorithmes tensoriels pour

le problème HSR. Dans le Chapitre 2, nous proposons une reformulation sous forme d’une décom-

position de Tucker couplée, ainsi que deux algorithmes analytiques basés sur la décomposition

en valeurs singulières d’ordre supérieur. Les simulations illustrent des performances compéti-

tives au regard des méthodes de l’état de l’art, avec un temps de calcul réduit. Le Chapitre 3

utilise un modèle de variabilité spectrale. Le problème de reconstruction est reformulé grâce à

une décomposition bloc-termes. Les facteurs de la décomposition sont contraints à être positifs

afin de garantir leur interprétabilité physique dans un modèle de mélange. Ainsi, cette approche

propose une solution conjointe au problème HSR et au problème de démélange spectral.

La seconde partie de cette thèse consiste en l’étude des performances statistiques des modèles

tensoriels couplés. Cette partie vise à évaluer l’efficacité de certains algorithmes présentés à la

première partie. Dans le Chapitre 4, on considère les bornes de Cramér-Rao sous contraintes

(CCRB) pour des modèles CP couplés. L’expression de la matrice d’information de Fisher est

fournie dans deux scénarios, selon que i) l’on considère le problème de reconstruction totalement

couplé seulement, ou ii) l’on cherche à comparer les performances des modèles totalement couplé,

partiellement couplé et découplé. L’efficacité asymptotique des algorithmes CP existants est

également illustrée. Le Chapitre 5 considère un problème d’estimation non-standard dans lequel

les contraintes sur les paramètres déterministes du modèle impliquent un paramètre aléatoire.

Dans ce contexte, la CCRB standard est non-informative. De fait, on introduit une nouvelle

borne de Cramér-Rao sous contraintes aléatoires (RCCRB). Son intérêt est illustré au moyen

d’un modèle bloc-termes couplé avec incertitudes.

Mots-clés: modèles de rang faible, fusion de données, super-résolution hyperspectrale, décom-

positions tensorielles.
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Résumé

Les appareils d’acquisitions sont généralement appelés “modalités”. Ces dernières procèdent à

l’acquisition de données ou signaux, qui renferment eux-mêmes des informations précieuses sur

certains phénomènes physiques. A l’ère du développement de nouvelles modalités, la quantité et

la variété des signaux acquis chaque jour va en grandissant. Ainsi, il est fréquent que différents

signaux renferment des informations sur un même phénomène physique. Par exemple, en im-

agerie médicale, les images acquises à partir de l’IRM fonctionnelle et les données acquises par

électroencéphalogramme renferment des informations sur l’activité du cerveau. En télédétection,

les techniques d’imagerie multispectrale et hyperspectrale permettent toutes deux de caractériser

la composition d’un terrain. Il est cependant possible qu’un signal ne contienne que des infor-

mations partielles, d’où l’émergence de la fusion de données multimodales pour dépasser cette

limitation. La fusion de données est définie comme le traitement conjoint de signaux issus de dif-

férentes modalités. Son but est d’exploiter à plein les capacités de chaque modalité à extraire du

savoir sur le phénomène d’intérêt, tout en mettant en lumière des informations supplémentaires

issues de la fusion. Il est donc attendu que les résultats issus de la fusion renferment davan-

tage d’informations que ceux issus d’un traitement disjoint. Les interactions entre les différentes

modalités sont complexes et nombreuses, et doivent tenir compte par exemple des différences

d’échelle, d’unité et de contamination au bruit des observations. Il convient alors de les mod-

éliser judicieusement par des relations statistiques ou déterministes ; cette thèse s’inscrit plus

particulièrement dans le cadre d’un “couplage dur”, c’est-à-dire des relations déterministes entre

les différents jeux de données. De par ces divers enjeux, les gains potentiels des modèles de fusion

sont parfois difficiles à visualiser. Cette thèse vise à apporter des éléments de réponse à cette

question, à savoir dans quelle mesure une application donnée peut jouir des bénéfices de la fusion.

Dans certains domaines tels que l’imagerie biomédicale ou la télédétection, les signaux ob-

servés sont acquis et stockés sous la forme de tableaux multidimensionnels appelés tenseurs.

Dans cette thèse, l’on s’intéresse uniquement aux tenseurs d’ordre 3, qu’il est possible de vi-

sualiser comme des cubes de données. Ainsi, il est possible d’envisager des modèles de fusion

basés sur cette structure tensorielle particulière. Dans cette thèse, nous avons pris le parti de

modéliser la fusion par des approximations couplées de rang faible. En effet, la modélisation

tensorielle de rang faible permet de préserver la structure des observations tout en jouissant des

propriétés d’unicité intéressantes, à des conditions souvent peu restrictives. Dans cette thèse, on

s’intéresse à un problème de reconstruction particulier, issu du domaine de la télédétection ; le

problème de super-résolution hyperspectrale (HSR). Ce problème vise à reconstruire un tenseur
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à super-résolution à partir de deux observations dégradées d’une même scène : tandis que l’image

hyperspectrale est faiblement résolue dans deux modes spatiaux, l’observation multispectrale est

faiblement résolue dans le troisième mode spectral. Le tenseur à super-résolution doit posséder

de fortes résolutions à la fois dans les dimensions spatiales et spectrale. Ce problème est de vif

intérêt dans la communauté du traitement du signal, et de nombreuses méthodes basées sur des

décompositions matricielles ont été proposées pour le résoudre. Ces méthodes étaient largement

basées sur le modèle de mélange linéaire; Des approches tensorielles ont été plus récemment

proposées, sous l’hypothèse d’une décomposition tensorielle de rang faible du tenseur à haute

résolution. Les premiers travaux à exploiter cette hypothèse se basent sur la décomposition

canonique polyadique (CP) et ont donné lieu à de nombreuses méthodes tensorielles de recon-

struction, incluant ce travail.

Le premier volet de cette thèse était dédié au développement d’algorithmes tensoriels pour

résoudre le problème HSR. Pour chacune des deux approches proposées, j’ai développé des algo-

rithmes assortis de conditions de récupération exacte pour l’image d’intérêt.

J’ai tout d’abord proposé une reformulation sous forme d’une décomposition de Tucker (ou

multilinéaire) couplée. J’ai par la suite développé deux algorithmes basés sur la décomposition

en valeurs singulières d’ordre supérieur. Le premier algorithme, SCOTT, propose une solution

en trois étapes : i) l’estimation des facteurs, ii) la reconstruction du coeur de la décomposition

et iii) la reconstruction de l’image à super-résolution. Le second algorithme considère une ver-

sion aveugle (“blind”) du problème HSR et est noté BSCOTT. Cet algorithme vise à résoudre le

problème de reconstruction lorsque certains opérateurs de dégradation sont inconnus, et inclut la

résolution d’un problème de moindres carrés pour pallier la connaissance partielle de la dégrada-

tion. BSCOTT procède à des traitements parallèles des observations par blocs correspondants,

afin de pallier les restrictions sur les rangs. Les simulations sur données réelles ont illustré des

performances compétitives au regard des méthodes de l’état de l’art, avec un temps de calcul

réduit. Les algorithmes SCOTT et BSCOTT permettent également de résoudre le problème de

fusion “pansharpening”, qui consiste en la fusion d’un cube de données hyperspectral et d’une

matrice panchromatique. Les simulations sur données simulées ont permis d’illustrer l’intérêt des

garanties de reconstruction exacte dans le cas sans bruit. En particulier, l’utilisation du modèle

Tucker permet de résoudre le problème de reconstruction dans des cas où d’autres décomposi-

tions ne sont pas identifiables.

J’ai par la suite considéré un modèle d’observation plus flexible tenant compte de la vari-

abilité spectrale. En effet, en pratique les observations hyperspectrale et multispectrale sont

souvent acquises à des instants différents, donnant lieu à des variations dans leurs conditions

d’acquisition. Ces variations peuvent venir des conditions d’illumination, de la saisonnalité, des
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conditions atmosphériques ou de la dégradation des capteurs au cours du temps. Dans ce cas,

le problème de reconstruction est plus réaliste mais également plus difficile à résoudre car plus

ambigu. J’ai donc proposé une reformulation grâce à une décomposition bloc-termes. Les fac-

teurs de la décomposition étaient contraints à être positifs, ce qui a permis de garantir leur

interprétabilité. Ainsi l’utilisation de la décomposition bloc-termes pouvait s’interpréter comme

un équivalent tensoriel au modèle de mélange linéaire largement utilisé en démélange spectral :

c’est-à-dire qu’il permettait d’identifier de façon unique les signatures spectrales des matériaux

composant l’image, et de leurs abondances dans le tenseur à super-résolution. J’ai proposé deux

algorithmes basés sur ce modèle : le premier, non-contraint, visait à résoudre le problème de re-

construction à haute-résolution seulement. Le second appliquait les contraintes de positivité sur

les facteurs et proposait une solution conjointe au problème HSR et au problème de démélange de

l’image à super-résolution. J’ai mené des simulations sur données réelles et simulées, démontrant

effectivement la capacité de l’approche proposée à résoudre les deux problèmes d’intérêt. En

particulier, les résultats ont montré qu’il est possible de récupérer les signatures spectrales des

matériaux compris dans l’image à super-résolution, sans avoir à la connaître. La modélisation

de la variabilité spectrale a permis de mettre en lumière les longueurs d’ondes les plus impactées

par les variations dans les conditions d’acquisition. Des expériences menées sur données simulées

ont montré l’intérêt du modèle tensoriel en ce qu’il permet de procéder au démélange spectral

dans des cas où le modèle matriciel non-contraint n’est pas identifiable.

La seconde partie de cette thèse consistait en l’étude des performances statistiques de mod-

èles de reconstruction tensoriels couplés. Cette partie visait à évaluer l’efficacité des algorithmes

tensoriels considérés dans le premier volet de cette thèse, comprenant notamment un algorithme

basé sur la décomposition bloc-termes.

J’ai tout d’abord considéré les bornes de Cramér-Rao sous contraintes (CCRB) pour des mod-

èles tensoriels couplés admettant une décomposition CP. L’expression de la matrice d’information

de Fisher a été fournie dans deux scénarios, selon que i) l’on considère le problème de reconstruc-

tion totalement couplé seulement, ou ii) l’on cherche à comparer les performances des modèles

totalement couplé, partiellement couplé et découplé. Ces deux cas distincts ont donné lieu à la

formulation de contraintes différentes sur les paramètres d’intérêt, lesquelles sont non-linéaires

dans le cas ii). Tout au long de cette étude, je me suis attachée à fournir un lien clair entre les

conditions d’identifiabilité statistique pour chaque scénario, et les conditions de reconstruction

unique formulées dans la première partie.

Ce travail m’a permis de mettre en lumière l’efficacité relative asymptotique des algorithmes

existants basés sur la décomposition CP : STEREO et Blind-STEREO. J’ai pu également mettre
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en lumière les conditions particulières de divergence de ces algorithmes, à fort rapport signal-sur-

bruit et pour des rangs très larges. Dans ce contexte, j’ai proposé une adaptation de l’algorithme

STEREO permettant d’atteindre la borne. J’ai également utilisé la CCRB pour mettre en lu-

mière l’impact du design du système d’acquisition hyperspectral (facteur d’échantillonnage et

flou Gaussien) sur les performances du modèle considéré. Finalement, la considération de con-

traintes non-linéaires dans le scénario ii) a ouvert la voie vers l’utilisation d’une différente borne

sur l’estimation : la CCRB au sens de Lehmann. Cette borne est en effet la borne inférieure sur

l’erreur moyenne quadratique d’estimateurs asymptotiquement localement non-biaisés.

J’ai ensuite considéré un problème d’estimation non-standard dans lequel les contraintes sur

les paramètres déterministes du modèle impliquent un paramètre aléatoire. Plus particulière-

ment, j’ai considéré un modèle proche de celui utilisé au Chapitre 3, basé sur une décomposition

bloc-termes et impliquant un phénomène d’incertitudes aléatoires, pouvant s’interpréter comme

un terme de variabilité spectrale. J’ai tenu à évaluer les performances des algorithmes de l’état

de l’art récemment proposés, mais également de l’algorithme BTD-Var développé au Chapitre

3. Dans ce contexte, la CCRB standard est non-informative, d’où l’introduction une nouvelle

borne de Cramér-Rao sous contraintes aléatoires (RCCRB). L’expression de cette borne a pu être

fournie en partant de la définition stricte d’un estimateur localement sans biais, en proposant tout

d’abord l’expression d’une borne type Cramér-Rao conditionnellement à la valeur du paramètre

aléatoire. J’ai pu ainsi illustrer l’intérêt pratique de BTD-Var, montrant de meilleures perfor-

mances que les algorithmes ignorant la variabilité. Cependant, BTD-Var étant un algorithme

partiellement couplé, il n’atteint pas les meilleures performances atteignables avec le modèle con-

sidéré (i.e., la RCCRB). Ce travail ouvre donc aussi la possibilité de développer un algorithme

atteignant les meilleures performances théoriques associées au modèle, sous réserve qu’il soit en

mesure d’estimer le phénomène de variabilité.

Le but de cette thèse était de proposer des solutions méthodologiques à la résolution de prob-

lèmes inverses. Pour ce faire, j’ai travaillé sur la fusion de données tensorielles. Il est possible de

distinguer trois avantages à ce cadre de travail. En premier lieu, l’utilisation de la structure ten-

sorielle permet d’exploiter à plein la diversité des observations. Cette diversité permet également

d’établir des garanties de reconstruction exacte ne requérant pas de contraintes supplémentaires

sur les données. Finalement, des rangs judicieusement choisis pour les décompositions tensorielles

permettent de drastiquement réduire le nombre d’inconnues à estimer.

Ce travail de thèse a ouvert de nombreuses perspectives tant méthodologiques qu’applicatives.

En effet, je souhaite explorer l’utilisation des modèles tensoriels de rang faible pour des appli-

cations de séparation de sources ou de déconvolution. Ces applications nécessitent de concevoir
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des modèles interprétables. Je souhaite également adapter les modèles d’observation considérés

afin de décrire de nouvelles techniques d’acquisition industrielles ou applicatives (par exemple,

en imagerie médicale), avec des types de données challengeants. A terme, je souhaite pou-

voir m’attaquer au traitement de données réelles sans vérité terrain; en ce sens, le cadre de

l’inférence bayésienne permet d’obtenir des intervalles de confiance pour les méthodes proposées.

Des approches bayésiennes de résolution de problèmes inverses, basées sur les décompositions

tensorielles, seront très probablement au coeur de mes travaux futurs.
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