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We have seen that computer programming is an art,
because it applies accumulated knowledge to the world,

because it requires skill and ingenuity, and especially
because it produces objects of beauty.

— Donald E. Knuth [145]
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I N T R O D U C T I O N

1 C O N T E X T

A century ago, 80 percent of airplane crash accidents were caused by the
machine, and 20 percent, by human error. Today the statistic has reversed,
with approximately 80 percent of aviation crashes due to human error and
20 percent, due to machine failures [1, 305]. Hawkins depicted human
factors as “the Last Frontier of the airline safety problem" [116]. Modern
aircrafts are so complex today that they can disorient even the most exper-
imented pilots. To palliate this issue, flight simulators have been developed
in order to train aircrews to crisis situations. In particular, immersive tech-
nologies such as Virtual Reality (VR) are largely employed for training pur-
poses in reason of their reduced cost compared to true-scale simulators.

In this training context, Mental Workload (MW) has long been a topic
of interest for research [77, 114, 195, 205, 304, 312]. While there is no
universal consensus over its definition, MW can be described as “the re-
lation between the (quantitative) demand for resources imposed by a task
and the ability to supply those resources by the operator" [303]. Its metrics
remains popular today as systems have become more and more complex.
This is not restricted to the aviation industry as a number of reports sug-
gests that the incidence of human error has risen dramatically in recent
years in a range of industries [121, 218]. Smartphones, media, and work
tools are overflowed with information, and software and machines para-
meters options are increasing overtime. Multitasking is also prevalent as
much in our working environment as in our daily lives. These situations
can draw humans to be overloaded and to make mistakes. Different solu-
tions were considered to answer this problem; among them: (1) training
users to make them used to these ever-increasing cognitive demands, and
(2) automatizing systems to make them adapted to users’ skills and psy-
chological states.

To test these solutions and improve them, VR technologies are particu-
larly versatile. On the one hand, VR allows to design training scenarios in
order to improve operators’ skills and reactions in complex situations. In-
deed, VR systems have the ability to simulate complex environments while
immersing users into engaging experiences in a safe and controlled way. A
wealth of research already demonstrated that immersive devices like Head-
Mounted Displays (HMDs) and Cave-like systems were beneficial compared
to more traditional supports to train users, for example, in the medical
field [4, 112, 157, 265], in the educational field [99, 119, 194], and in
the industrial field [24, 109, 159, 296]. On the other hand, VR technolo-
gies can be used to evaluate users’ behaviour, performances, and psycholo-
gical states before systems manufacturing. Indeed, individuals are known
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to react differently depending on factors such as their skills, knowledge,
current mood, culture, and on the situation. Disregarding these factors in
the design of systems can make the latter unfitted to the users and lead to
human errors.

Nevertheless, the intersection between VR training and systems which
are aware of users’ MWs remains little explored. Current VR training scen-
arios mostly are predefined by sequences of events, interaction feedback,
and performance measures. In this context, MW is more used as an off-
line metric at the end of a chain to evaluate the user experience, than
in the heart of an algorithm which adapts VR to users’ mental workloads
dynamically. We call “adaptation of VR to users’ mental workloads" the dy-
namic process that fits VR parameters or content based on acquired in-
formation about users’ MW. In computer science, such adaptive processes
usually aim to maximize users’ performances or users’ pleasures [94, 204].
The overall objective is to provide a pleasant environment for the user
by processing information about their psychological states, ideally in real-
time [204]. Among the different benefits, considering MW assessment in
the design of training applications could make the training more tailored
to the individuals’ available cognitive resources, engage users to the long-
term, and enhance the learning and performance outcomes. If users are
overloaded by the tasks they have to perform, the tasks difficulties can
be decreased, and the other way around. Such a process can be general-
ized outside the training field for other psychological states [93, 106, 227].
For example, in an entertainment context, the stimuli could be intensified
based on users’ affective states to enhance users’ emotional experiences.
In the therapeutical field, progressive stimuli could be used to treat the pa-
tients’ disorders. Overall, going toward adaptive systems based on users’
psychological states could benefit user experience and improve systems
robustness and adaptability.

2 R E S E A R C H C H A L L E N G E S

In this PhD, we propose to decompose the “adaptation of VR based on
users’ MWs" into 3 research axes represented in Figure 1:

• The induction of MW: VR stimuli are presented to users, which trig-
gers responses that can be assessed using different metrics relevant
to users’ MWs (e.g., self-reports, tasks performances, physiological
measures, behavioural measures).

• The recognition of MW: The recognition model is feed with the pre-
viously collected metrics and predicts users’ MW levels in real-time.
Usually, the model is rule-based or trained using Machine Learn-
ing (ML) algorithms.

• The exploitation of MW: This step focuses on the feedback logic. A
set of constraints and rules are defined to choose which VR stimuli
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Figure 1: The adaption of VR based on user’s MW. The adaptation is mainly com-
posed of 3 blocks: the induction block, the recognition block, and the
exploitation block.

are going to be presented based on the predicted MW level to induce
a targeted MW level.

These 3 categories each have their lots of challenges which are detailed
hereafter.

2.1 Induction of MW in VR

Immersive Virtual Environments (IVEs) contain numerous information and
parameters. This complexity makes it particularly difficult to identify which
factors influence users’ MWs in VR. Especially, the usage of VR devices
implies a number of constraints (e.g., specific VR interaction, cybersick-
ness) which can interact with the users’ psychological state responses. VR
paradigms such as redirected walking and the control of a self-avatar were
already found to influence cognitive demands and users’ behaviours [47,
277]. The influence of VR devices on users’ MWs was, however, very little
explored.

Another issue is the choice of stimuli. Those will mostly depend on the
context of the application. To generalize the design of VR scenarios, the
literature has presented different VR taxonomies and frameworks. One of
their main challenges is to reach a balance between genericity and effi-
ciency of the scenarios to meet the constraints and objectives of the ap-
plications. Most of these taxonomies proposed to design VR scenarios in
a predefined way. Sequences of events are structured and fixed. They are
triggered by users’ choices and actions to meet narrative and interaction
requirements. Currently, there are very few approaches that consider users’
psychological states as a criterion to design VR scenarios while there are
more and more applications that try to adopt a user-centred perspective.
Some VR scenarios adapted the task difficulty level based on users’ per-
formances, but this was mostly done in a single task context or “by hand”,
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through subjective estimations. Identifying which stimuli can affect users’
MWs in complex IVEs and how these stimuli interact with each other de-
pending on the nature of the tasks could give more insight on how to
structure complex IVEs in order to modulate users’ MWs.

2.2 Recognition of MW in VR

The second research axis consists in achieving au automatic recognition of
users’ MWs. Recent breakthroughs in ML and deep learning made this the-
oretically possible [94, 227]. Especially, a wide range of research outside
VR has focused on the recognition of users’ psychological states based on
physiological signals [204]. In the physiological computing field, physiolo-
gical activities and changes are direct reflections of processes in the Auto-
nomic Nervous System (ANS) and in the Central Nervous System (CNS) [93].
Since physiological responses are issued from psychological processes, it
was hypothesized that it was possible to translate them to psychological
states via the extraction of some specific features [228]. Many research in
this field are showing promising results, even if the ability to make the re-
cognition models generic to all users is still an issue [65, 182, 204]. Indeed,
inferring users’ subjective MW levels is intrinsically more complex than
measuring the effect of parameters on MW. As a consequence, developing
a recognition model necessitates to build large-sized datasets compared
to usual user studies testing the effect of independent variables. There is
also currently no consensus over which ML algorithms, sensors, and meth-
odology in the signal treatment to adopt. Moreover, while the recognition
of users’ psychological states is an essential step to make VR applications
more adapted to users, current setups are hardly adequate for daily usages.
Monitoring users’ physiological states usually requires a tedious process
involving hardware setup, software initialization, signals monitoring, and
constrained movements. These setups can be unadapted to the VR context
where interactions can introduce motion artefacts to the signals. This can
impede the signal treatment processing for MW recognition, especially if
the objective is to perform the recognition in real-time.

2.3 Exploitation of MW in VR

The third research axis consists in the exploitation of MW in VR, or feed-
back logic using MW metrics. Different frameworks were proposed to provi-
de feedbacks in Virtual Environments (VEs) based on users’ physiological
signals [29, 141] and affective states [33, 164]. However, aside from the
clinical field [313], there are very little propositions of exploitation use
cases supported by user studies in the VR literature, in particular, based
on MW metrics. This can be explained by the challenges of the previous
research axe: the recognition of users’ MWs. For now, user studies mainly
exploited users’ psychological states measures in VR based on heuristic
methods or by directly displaying the physiological signals changes in the
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VE [2, 57, 78–80, 123]. The relation between psychological states and
physiological signals is, however, quite complex as several physiological
variables can be associated with several psychological or behavioural ele-
ments [93]. Therefore, using heuristic methods or directly physiological
signals to recognize users’ states can cause diagnosticity issues if the ob-
jective is to modulate users’ psychological states and if the targeted psycho-
logical states can not be represented as a one-dimensional continuum [93].
On the other hand, current recognition models trained using ML algorithms
allow to interpret complex physiological signals features changes but still
lack of accuracy or are context-dependent, which limits the usage of the
recognition outcomes to validate the proposed exploitation frameworks.
Thus, there are very few studies which presented a logic of adaptation of
VR stimuli and parameters based on users’ MWs to draw them toward a
targeted MW level. The impact of guiding users toward a targeted MW
level or MW levels evolutions overtime is still little understood, as well
as the effect of the modulation of the parameters used in the exploitation
(e.g., changes timing).

3 A P P R O A C H A N D C O N T R I B U T I O N S

The main objective of this thesis is to study the exploitation of the user’s
mental workload in Virtual Reality systems, in particular, for VR training.
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Figure 2: Mapping the chapters of this thesis to the different research axes they
targeted.

Figure 2 presents the different contributions (presented in the chapters)
mapped to the 3 research axes we proposed. Among the different chal-
lenges, for the induction, we chose to first control minimal effects. The
effect of wearing a VR HMD on users’ mental efforts was studied, as they
are the most wide-spread fully-immersive VR systems [130]. In addition,
the potential impacts of simple interactions like walking in IVEs and the
effect of accommodation to VR were also investigated. Second, the induc-
tion and exploitation of MW parts were targeted. We focused on how to
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introduce MW assessment in the design of VR training applications. The
induction was tackled as the effect of different task difficulties and tasks
interactions in a complex IVE was studied. For the exploitation, the VR
training scenarios were designed based on a desired evolution of users’
MWs overtime through the introduction of MW measures (see Fig. 2). Fi-
nally, the recognition of users’ MWs in VR was explored. We proposed an
all-in-one solution to recognize users’ MWs in real-time using physiolo-
gical sensors directly integrated into a VR HMD. Moreover, insights about
the impact of sensors setups, type of measures, and signal normalization
methods on the MW recognition accuracy were also investigated.

▼ Chapter 1 
Review of the Literature 

Definitions, models, measurement methods, and overview of works  
on cognitive and affective states in VR.  

 
▼ Chapter 2 

A feasibility study to 
analyse the impact of 
IVEs on users’ mental 

workload.  

 ▼ Chapter 3 
A methodological 

approach to 
introduce mental 

workload assessment 
in VR Training 

scenarios.  

 ▼ Chapter 4 
A technological  

all-in-one solution  
to recognize users’ 
mental workload in 

real-time in IVEs.  
 

 
▼ Chapter 5 

Conclusion 

Contributions, limitations, and future work 

Figure 3: Illustration of the roadmap of this thesis.

Figure 3 presents a schematic representation of the roadmap of this
thesis.

Chapter 1 presents a comprehensive state of the art of past works study-
ing users’ Cognitive and Affective States (CAS) in IVEs. MW is a concept
which was given many definitions over the past years [312]. It is also
strongly related to other psychological states such as emotional arousal,
anxiety, and other concepts like stress, performances, and flow [69, 73,
196, 311]. MW should therefore be considered among them. Research
studies associating VR and CAS often share the same scheme and common
objectives. Therefore, we first propose a categorization of works studying
CAS in VR and a definition of “Affective and Cognitive VR”. Then, the defini-
tions and models of the main CAS and psychological concepts studied in VR
are clarified. Thereafter, the methods to measure them are presented, with
a particular focus on their advantages and drawbacks in VR. We present an
overview of past research studying CAS in IVEs in a non-clinical context.
Finally, we focus more particularly on MW studies in VR training.

In Chapter 2, we study the impact of VR HMDs on users’ mental effort.
Because VR users feel “there, in the virtual world" [270], numerous studies
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hypothesized that their responses in the IVEs were similar than in the real
world. As such, it was shown that skills acquired in VR could be transferred
in the real world [55, 246, 265, 300]. At the same time, users often con-
tinue to perceive and think that this world they visualize is not real. Such
biased perception and the relative constraints of VR context (e.g., amount
of interaction, cumbersomeness of VR equipment, lack of visual feedback
of the real world, cybersickness) could require additional information pro-
cessing from the users, which in turn might increase their MWs. Two user
experiments were conducted to study the influence of wearing a VR HMD
on users’ mental efforts using an auditory cognitive task. Different metrics
were assessed to study users’ subjective mental efforts, task performances,
behaviours, and physiological responses in VR (using an HMD) compared
to in the real-word. In addition, the effect of natural walking (first exper-
iment) and time during short exposures (second experiment) were also
explored in both environments (i.e., virtual environment vs. real-world).

Chapter 3 proposes a methodological approach to introduce users’ MWs
measures in the design of VR training scenarios. Few VR applications were
structured in order to modulate users’ psychological states. Most VR scen-
arios are predefined or structured in order to trigger events based on users’
choices and actions for narrative and interaction requirements. However,
the same scenario and stimuli will induce different users’ reactions based
on, for example, their cognitive resources and their learning abilities. There-
fore, these scenarios will not necessarily produce the expected outcomes
and the best user experience depending on the users’ profiles and states.
In complex IVEs where there are multiple tasks and natures of stimuli, it
can be particularly difficult to predict what effect a specific set of tasks
will have on users. We proposed an approach to structure complex IVEs
using a state machine based on tasks configurations. MW assessment is in-
troduced in the state machine. Then, this information is used to design VR
training scenarios which control MW modulation overtime. The proposed
approach is illustrated by two user studies in a VR flight simulator.

Chapter 4 proposes an all-in-one aproach to recognize users’ MWs in
real-time in VR. VR implies specific constraints and sensors setups adapta-
tion. Few tools currently allow the monitoring of users’ states in real-time
in VR using ML algorithms. There is also currently no consensus over which
ML algorithms, sensors, and methodology in the signal treatment to adopt.
We proposed an all-in-one approach to recognize users’ MWs in real-time
in VR using physiological sensors directly integrated into the HMD. The ap-
proach presented in Chapter 3 was used to establish a data acquisition pro-
tocol to train MW recognition models using ML algorithms. The hardware
setup is detailed, as well as the physiological signals processing pipeline
to recognize users’ MW levels in real-time. Sensors integrated into the VR
HMD are compared to commercial-grade sensors in regards to the MW re-
cognition accuracy. Different insights are also given about the effect of the
different measures, sensors, and signals normalization treatments on the
MW recognition performances.
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Finally, Chapter 5 summarizes our contributions, discuss the limits of
our results and studies, and presents perspectives for future works.



1
R E L A T E D W O R K O N C O G N I T I V E A N D A F F E C T I V E
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S U M M A RY This chapter aims to provide a state of the art of works study-
ing Cognitive and Affective States (CAS) in VR. First, we propose a
categorization of works studying CAS in VR, as well as a definition
of “Affective and Cognitive VR”. Then, the definitions and models of
some of the most studied CAS in VR are depicted. We present the dif-
ferent measurement methods to assess CAS, along with their advant-
ages and drawbacks in VR. The main findings of research studying
CAS in Immersive Virtual Environments (IVEs) in a non-clinical con-
text are presented, as well as the different challenges and perspect-
ives. Finally, we focus more particularly on related work on Mental
Workload (MW) in VR training.
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I N T R O D U C T I O N

The objective of this chapter is to provide a state of the art of works exploit-
ing MW measures in VR. While MW concept seems intuitive, it remains
surprisingly difficult to define [49, 312]. Past works have shown that it
is strongly related to other psychological states, responses, and concepts
such as emotions, anxiety, stress, task engagement, and flow [69, 73, 196,
311]. Similarly, it was often associated to other states or notions like cognit-
ive load, mental effort, and cognitive performances. We can separate these
notions into two categories: Cognitive States (CS), which influence or are
consequences of how information is processed (e.g., reasoning, delibera-
tion, planning) [28] such as MW or cognitive performances, and Affective
States (AS), which refer to states like emotions, mood, feelings, and per-
sonality traits [258]. While there are some distinctions in their definitions
and models, CS and AS have various similarities as multicomponent con-
structs [160, 215, 258] and in the methods to measure them [204].

There is a wealth of studies dealing with MW in training and ergonomics
research [49, 312]. However, there are way fewer works studying MW in
VR compared to works dealing with states such as emotions and anxiety in
VR. CS and AS are studied in a very similar way in VR, which is why they
will first be treated together in this chapter to reach a better understanding
of how psychological states are processed in VR.

1 “A F F E C T I V E A N D C O G N I T I V E V R "

The interest in associating CAS and computers was raised early. In 1995,
Picard et al. defined “Affective Computing" as a type of computing which
“relates to, arises from, or influences emotions" [228]. She highlighted the
fact that emotions can act as powerful motivators, influence perception,
cognition, coping, and have an important role in creativity [228]. In that
sense, giving computers the ability to recognize, express and have emo-
tions could contribute to a richer quality of interactions, which is essential
in VR. Similarly, taking into account users’ cognitive abilities and limited
cognitive resources [304] could make VR experiences more fitted to users.
For these reasons, many researchers have shown their interest in associat-
ing VR and CAS by inducing, recognizing, and exploiting CAS in VR. The
main ideas behind these studies were to understand human psychology
and to go toward experiences which place users in the centre of the applic-
ations by customizing and adapting the content to each individual.

The adaptation of VR by taking into account users’ CAS can be done
following these steps (see Fig. 4): a stimulus induces a CS or an AS to a
user. The CS or AS responses are measured via different metrics. These
metrics can then be used to recognize the user’s CS or AS using rule-based
algorithms or models trained using ML algorithms. Finally, the recognized
CS or AS can be exploited to modulate the VR content and parameters to
conduct users toward a targeted CS or AS. Such a process is not new as sim-
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Induction  
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Figure 4: Loop depicting an adaptation of VR content based on users’ CAS (Gen-
eralization of Figure 1). The 3 blocks represent the proposed categoriz-
ation of “Affective and Cognitive VR ”studies. VR stimuli first induce a
CS or an AS to users. Then, measures are assessed from users, which
are used to recognize users’ CS or AS. Finally, the predicted CS or AS is
exploited to adapt VR stimuli to drive users toward a targeted CS or AS.

ilar frameworks applied to emotions and games specifically [29, 164], out-
side VR [33, 141, 228], already exist. However, few studies went through
the whole adaptation process in VR.

Following this scheme (see Fig. 4), we propose to categorize CAS VR
studies following these 3 categories:

• The induction of CAS corresponds to the study, design, or
development of content, parameters, or methods which can
influence or induce changes in the users’ CAS.

• The recognition of CAS corresponds to the study, design, or
development of recognition models or methods to identify
users’ CAS.

• The exploitation of CAS corresponds to the study, design,
or development of feedback or adaptation methods, logics,
and parameters based on users’ CAS measures.

Based on this categorization, we can define “Affective and Cognitive VR"
to relate to works associating CAS and VR.

Definition:

Affective and Cognitive Virtual Reality is the study of virtual real-
ity systems and applications that induce, recognize, or exploit af-
fective and cognitive states.

In this definition, AS and CS are grouped because of the similarities
they share in the way they are processed in VR studies. However, this can
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be discussed as they can be differentiated in their concepts. In that case,
works can speak of “Cognitive VR" when they relate to the study of CS, and
“Affective VR" when they relate to the study of AS.

2 C O G N I T I V E A N D A F F E C T I V E S TAT E S : D E F I N I T I O N S A N D M O D E L S

In this section, the focus is set on MW, cognitive load, emotions, and anxi-
ety as they are the main CAS studied in the VR community. There is no
real consensus over the definitions of psychological states, and CS and AS
can overlap in their definitions and in the methods to measure them [204].
The definition of a CS or an AS is mainly chosen depending on the field,
the context, and on the aim of the study [143, 312]. Nevertheless, the se-
lection of an appropriate psychological model is crucial for the choice of
the measurement method, and for all the other steps in a research dealing
with CAS [204].

In this section, definitions and models of MW and cognitive load will first
be addressed, followed by those of emotions and anxiety. Finally, comple-
mentary psychological notions related to Affective and Cognitive VR will
be introduced.

2.1 Cognitive States

MW and cognitive load often designate the same concept in VR studies [235,
293, 317], while not necessarily referring to the same one in the psycho-
logical field [102]. They can sometimes be considered as even or distinct,
and can especially be confounded with their components or other concepts
such as mental load, mental effort, performance, or cognitive workload.

On the one hand, Mental Workload (MW) is a subcomponent of work-
load, which can be defined as the sum of the demands a task imposes on
an individual. More precisely, Hart and Staveland [115] stated that work-
load “emerges from the interaction between the requirements of a task, the
circumstances under which it is performed, and the skills, behaviors, and per-
ceptions of the operator". Among the numerous proposed definition, papers
usually agree to determine MW as a multidimensional construct determ-
ined by characteristics of the task(s) (e.g., demands) and of the operator
(e.g., skills) [195, 304, 312]. As such, Wickens described MW as “the re-
lation between the (quantitative) demand for resources imposed by a task
and the ability to supply those resources by the operator” [304]. Similarly,
De Waard defined MW as “the ratio of demand to allocated resources" [72]
in his paper on driver’s MW. Another way to consider MW is to describe
it according to its different components. For example, Reid and Nygren
described MW as a construct explained by 3 component factors: time load,
mental effort load, and psychological stress load [240].

One theory is often associated with MW: Wickens [304]’s multiple re-
sources theory. It proposes that human resources do not have only one
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information processing, but multiple resources which can be exploited sim-
ultaneously or sequentially depending on their type. It is based on the
multiple resource model (see Fig. 5), which is composed of 4 dimensions
(i.e., sensory modality: auditory vs. visual, types of memory code: visual vs.
spatial, stages of information processing: perceptual/cognitive vs. response,
and channels of visual information: focal vs ambient). The theory also in-
cludes 3 components related to demands, resource overlap and allocation
policy. It allows system designers to predict when certain tasks can be per-
formed concurrently, when some tasks will interfere with each other, and
what effect increasing the difficulty of a task will have on another task. For
example, according to this theory, dual-task performance is more likely to
be hampered by performing similar tasks than dissimilar tasks.

Figure 5: The 4-D multiple resource model [304].

On the other hand, Paas and Van Merriënboer described cognitive load
as “a multidimensional construct representing the load that performing a par-
ticular task imposes on the learner’s cognitive system" [214] (note the sin-
gular “a particular task” and the employed verb “imposes"). They defined
the cognitive load concept by taking into account the assessment factors
AND the causal factors (see Fig. 6). The measurement dimensions of cog-
nitive load are mental load, mental effort, and performance [214]. Mental
load occurs before performing the task, to estimate the cognitive load at
the current moment, mental effort can be measured while participants
are working on a task, after the actual load has been allocated at a given
time, and performance, while users are working on a task or thereafter,
as a result of user’s cognitive capacity for the task [214] (see Fig. 6). The
causal factors refer to characteristics of the task or of the environment (i.e.,
task complexity, time pressure, pacing of instruction, noises), of the learner
(i.e., stable characteristics like cognitive capabilities, age, preferences, and
prior knowledge), and of the interactions between both.

Based on this concept, the cognitive load theory "is concerned with
the development of instructional methods that efficiently use people’s lim-
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ited cognitive processing capacity to stimulate their ability to apply acquired
knowledge and skills to new situations (i.e., transfer)" [215]. The theory
distinguishes 3 types of cognitive load (see Fig. 7 [215]): intrinsic load,
extraneous load, and germane load. The intrinsic load corresponds to the
task complexity and is relative to the learner’s knowledge. It can not be in-
fluenced by the instructional designer. The extraneous load is constituted
of instructional features that are not beneficial for learning (e.g., unneces-
sary instructional design). The germane load is constituted of instructional
features that are beneficial for learning (e.g., cognitive diagrams, patterns).
To simplify, a good instruction should reduce extraneous cognitive load,
and can increase germane cognitive load when intrinsic cognitive load is
too low. The sum of the 3 cognitive loads should not exceed the learner’s
working memory limits.

Figure 6: Schematic representation of the cognitive load construct [214].

 

Intrinsic cognitive load Extraneous cognitive load Germane cognitive load 

Figure 7: The 3 types of cognitive load from the cognitive load theory [215].

MW and cognitive load are very close concepts. However, their per-
spective approach is different. MW particularly focuses on the interaction
between the nature of the task and the type of users’ cognitive resources
(modalities, demand, resources allocations), and cognitive load focuses
more on the interaction between the instructional design (task intrinsic
load and presentation) and users’ cognitive process architecture. As a con-
sequence, their measurement tools and induction methods also tend to
differ. Indeed, MW is a notion which was mainly explored in aeronautics
and ergonomics and target operators, while cognitive load was primarily
explored in the educational field and target learners. These distinctions can
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be interesting to understand to avoid confusion when transferring know-
ledge into VR studies.

2.2 Affective States

AS can be distinguished in terms of time (duration), intention (event fo-
cus), cause, and impacts on the behaviour and physiological responses
among other criteria [22, 76, 258]. For example, Desmet explained how he
distinguished emotions, mood, sentiments and, personality traits in terms
of time and intention [76]. Emotions and moods are acute, meaning rel-
atively short in duration, while sentiments and personality traits display
themselves over longer periods of time. Emotions and sentiments are dir-
ected at something, while moods and personality traits are not directed at
anything in particular. In VR, the most studied affects are emotions and
anxiety, which is why we are going to focus more particularly on them.

A well-accepted definition of emotion is given by Scherer: “an episode of
interrelated, synchronized changes in the states of all or most of the five organ-
ismic subsystems in response to the evaluation of an external or internal stim-
ulus event as relevant to major concerns of the organism" [256, 257]. In his
definition, the five organismic subsystems correspond to a categorization
of the physiological responses. As for the emotional models, Kołakowska
et al. [146] proposed to classify them into 3 categories following different
perspectives:

(a) Inside-out characters [92]

6 

Happiness Sadness 

Fear Anger 

Disgust Surprise 

(b) The Big Six [89]

Figure 8: Examples of representations of emotions from a discrete perspective.

• From a discrete perspective, each emotion is studied independ-
ently, as if all emotions were distinct (see Fig. 8a). The most pop-
ular discrete category of emotions is the Facial Action Coding Sys-
tem (FACS) [89] one for expressions recognition: the Big Six (Happi-
ness, Sadness, Fear, Anger, Disgust and Surprise, see Fig. 8b). These
fundamental emotions are considered as innate, basic, and determ-
ined in both psychological and biological sense from this perspect-
ive. To this basic set, some added the Neutral expression [124] or
extended it with other emotions such as Amusement, Guilt, Pride
and Shame, which have a more complex behavioural manifestation.
Other sets of basic emotions are proposed and reviewed in [134,
211].
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• Emotions, from a dimensional perspective are considered as con-
tinuous phenomena that can be represented in N -dimensional space,
usually within 2 or 3 fundamental dimensions. Among the multiple
models, Mehrabian and Russell [192] proposed a 3D environmental
emotional scale of “nearly independent bipolar dimensions". It is ab-
breviated as PAD for Pleasure, also referred as valence (from negative
to positive), Arousal, which corresponds to the excitation, mental ac-
tivation or level of alertness, and Dominance, which is the degree of
feeling of having control over a specific situation. Another popular
model is the Russel’s circomplex model of affect [248], which defines
emotions based on 2 dimensions: the emotional Valence on the x-axis
and the emotional Arousal, on the y-axis (see Fig. 9a). Besides the
arousal, valence and dominance dimensions, Mendl, Burman and
Paul included approach-avoidance motivations [193], which repres-
ent the tendencies to approach stimuli (reward acquisition) or to
avoid them (punishment avoidance), and reflects behaviour activit-
ies of the affected person.

• Emotions can also be defined from a hybrid perspective, combining
discrete and dimensional viewpoints. A good example is Plutchik’s
model [230] which hierarchically arranges emotions (see Fig. 9b).
In this model, complex emotions are combinations of pairs of more
basic emotions, called dyads.

(a) Russell’s circomplex model [248]

(b) Plutchik’s model [230]

Figure 9: Examples of representations of emotions: (a) from a dimensional per-
spective; (b) from a hybrid perspective.

Studying emotions from a discrete perspective is at first very simple and
intuitive. However, it describes emotions without any inter-relationship,
which makes the recognition of non-basic affective states more difficult.
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On the other hand, the dimensional perspective offers the possibility to
study emotions as a function of 2 or 3 continuous and nearly independ-
ent variables. However, this model tends to be not expressive. The hybrid
perspective combines both models advantages, but can be tedious to ma-
nipulate because of its large panel of emotions.

As for other AS, anxiety has been of particular interest in the VR com-
munity, even more in VR exposure therapy. Spielberger defined anxiety as
“a complex emotional reaction or state that varies in intensity and fluctuates
over time as a function of the intrapsychic or situational stresses that impinge
upon an individual" [273]. He made a distinction between state and trait
anxiety [273], and also between state and trait anger [274]. Upon his
model, anxiety and anger can manifest themselves as personality traits,
but also as emotions for shorter times. As such, state-anxiety corresponds
to an emotional state that “consists of feelings of tension and apprehension
and heightened autonomic nervous system activity", and trait-anxiety corres-
ponds to a personality trait that refers to “individual differences in anxiety-
proneness" [273].

2.3 Complementary Notions

Global theories, definitions and models about the main CAS studied in
IVEs were presented. VR technologies also involve several other affective
and cognitive phenomena. Further notions have to be introduced to under-
stand how some research treated in this survey undertook their studies.

2.3.1 Stress

The concept of stress was introduced by Selye et al. [263] in 1936. As
such, it is “an organism’s response to an environmental situation or stimulus
perceived negatively" (i.e., “stressor"), “which can be real or imagined" [128].
Depending on the type, level, and frequency of stress, it can have differ-
ent impacts on individuals’ capacities as well as their mental and physical
well-being. For example, people with chronic stress can be over-aroused,
anxious and irritable.

Indeed, stress has a close relationship with MW, cognitive load, emo-
tional arousal, and anxiety. It has similarities with them in its physiological
responses. Some studies stated arousal was indicative of stress or mental
illness and used arousal and valence stimuli to classify distress (which they
defined as negative stress) versus calm conditions [314]. Moreover, some
studies used stressors to induce high arousal or negative affect (e.g., in
this state of the art [220, 262, 309]).

Dickerson and Kemeny [83] made the distinction between 3 different
kinds of stress: physical stress, psychological stress and psychosocial stress.
Physical stress can be induced by a lack of sleep or extreme temperat-
ure for example. Psychological stress is associated with difficult cognitive
tasks, uncontrollability or negative emotions [83], and psychosocial stress



18 R E L A T E D W O R K O N C O G N I T I V E A N D A F F E C T I V E S TAT E S I N V R

Figure 10: Csikszentmihalyi’s Flow model [68]: mental state in terms of challenge
level and skill level.

is triggered by a social evaluation threat (i.e., when a person’s own estim-
ated social value is likely to be degraded). These two last categories of
stress are those which are the most studied in IVEs, mainly in the context
of a cognitive challenge and of public speaking situations.

2.3.2 Flow

Particularly studied in the entertainment field, the flow is a concept de-
veloped by Csikszentmihalyi [69] and can sometimes be referred as zone [58]
or stretch zone [122]. The latter associates the absorption and the engage-
ment of the user, as well as positive and pleasurable feelings. The flow is
defined by 8 components which are described in [68]. It corresponds to
a balance between the “inherent challenge of the activity" and the “player’s
ability" required for the execution (see Fig. 10). Not respecting this balance
is supposed to elicit worry, anxiety, and arousal, if the challenge surpasses
the player’s ability. On the contrary, if the challenge is too low compared
to the player’s ability, the user can feel control, relaxation, a lack of en-
gagement, apathy, or boredom [68]. The flow concept is closely linked
to happiness and the feeling of enjoyment [68]. It is also related to MW,
cognitive load, and stress as seen in Lackey et al.’s study [154].

2.3.3 Presence and Cognitive and Affective States

VR technologies and IVEs were found to be efficient to induce and assess
CAS, notably because they engage participants [244]. Users in VR are not
just passive observers watching images on a screen, but active participants
in a VE. From that aspect arises the sense of presence, an essential compon-
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ent of VR defined by Slater, Usoh and Steed as the sense of “being there",
inside a virtual world [270]. It has also two other aspects: “the extent to
which the VE becomes the dominant one", and “the extent to which parti-
cipants, after the VE experience, remember it as having visited a ’place’ rather
than just having seen images generated by a computer" [267]. Indeed, pres-
ence in VR is important to evaluate the quality of immersion experienced
by users, and it can be treated as a neuropsychological phenomenon [243].
It should, therefore, be taken into account as it can interfere and play a
great role when studying other CAS.

The link between presence and CAS has been widely studied in previ-
ous research. Riva et al. found a circular interaction between presence
and emotions [244]. On one side, the feeling of presence is greater in
“emotional" environments, and on the other side, the emotional state is
influenced by the level of presence.

Indeed, most studies agree to say presence is influenced by the intensity
of emotions [8, 9, 18, 74, 111, 180, 244, 282] and cognitive load [166].
Emotional content [18, 19] and stories which are emotionally powerful
and richly narrated [282] could contribute more to presence than techno-
logical factors (i.e., the degree of immersion [282] and stereoscopy [18]).
Furthermore, the nature of emotions could have an effect on presence [15,
209], even if some results do not support this statement [96]. Valence and
arousal were found to have a positive relationship with presence [15, 209],
and relaxation, a negative relationship with presence [209]. Some studies
also found that presence is influenced by cognitive abilities [8, 74] and
personality traits such as trait anxiety [8].

On the other hand, fewer results found an influence of presence on emo-
tions. Studies usually agree to say this link exists but is more complex [18,
19, 95, 96, 111, 244]. For example, Gromer et al. found that presence due
to the quality of the VE did not influence fear, but that presence due to
individual variabilities predicted later fear responses [111]. As such, Fel-
nhofer et al. suggested that presence was a precondition for emotions to
be felt, but that it did not influence the intensity of emotions [95].

In summary, presence, which is an important factor widely studied in
IVEs, was found to have a circular relationship with CAS. On the one hand,
the intensity of emotions and cognitive abilities influence presence. On the
other hand, the effect of presence on CAS is more complex. In particular,
it was suggested presence was a precondition for emotions to be felt in
IVEs.

3 M E A S U R I N G C O G N I T I V E A N D A F F E C T I V E S TAT E S

Various methods for measuring CAS have been proposed in the last dec-
ades. O’Donnell and Eggemeier classified the methods to measure MW in 3
groups [206]: subjective (or self-reports), physiological, and task perform-
ance measures. Similarly, Kaplan, Dalal and Luchman exposed 3 groups
of strategies to measure emotions [132]: self-reports, observational meth-
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ods, and psychophysiological measurements. We propose to merge their
propositions as they have many common aspects by dividing the methods
to measure CAS in 4 categories: self-reports, observational methods, task
performances, and psychophysiological measures. Self-report methods are
subjective. On the other hand, observational, performance, and psycho-
physiological methods are most of the time objective. We will expose each
4 measurement categories, present some of the most used methods, and
discuss their advantages and drawbacks in an IVE context.

3.1 Self-Report Measures

Self-reports measures correspond to the methods in which individuals are
asked to describe the CAS they experienced previously or at a given time. It
usually involves the use of surveys or questionnaires, which can be paper-
and-pencil, online or oral. It can also take other forms (e.g., interviews,
self-confrontation).

In the following subsections, the standardized main tools used to meas-
ure CAS are going to be depicted. However, custom scales were also often
used in the literature to measure CAS and their manifestations. Those usu-
ally takes the form of Likert-Scales (LSs), a symmetric agree-disagree scale
in which users have to specify their level of agreement or disagreement
for a series of statements (see Fig. 11a), or Visual Analogue Scales (VASs),
which measure a characteristic or an attitude that is believed to range
across a continuum of values and cannot easily be directly measured (see
Fig. 21b).

 

This tool is easy to use.  

Strongly 

disagree 
Disagree Agree Neutral 

Strongly  
agree 

(a) Example of 5-points LS.

 

No Pain Extreme Pain 

(b) Example of VAS.

Figure 11: Some classical tools used for custom scales and questionnaires.

3.1.1 Mental Workload Self-Report Measures

Among CS, we are going to focus on Mental Workload (MW) as it is the
cognitive concept which was the most developed in terms of measurement
methods. Cain provided several recommendations to measure MW in his
review [49]. The subjective methods can be divided into 2 categories: mul-
tidimensional and unidimensional scales.

The most popular scales are multidimensional ones: the NASA Task
Load Index (NASA-TLX) [115], the Subjective Workload Assessment Tech-
nique (SWAT) [240], and the Workload Profile (WP) [294]. The NASA-TLX
consists of 6 scales regarding workload: the mental demand, the physical
demand, the temporal demand, the performance demand, the effort and
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the frustration. Each of them is rated individually on a 0-100 scale. Then,
they are weighted and aggregated for a global Workload Score. On the
other hand, the SWAT considers the MW as composed of three compon-
ents: the time load, the mental effort and the psychological stress load. It
makes use of a method to take into account interval properties. Also, the
WP is based on the assumption that MW can be defined by the dimensions
outlined in Wickens’s multiple resources theory [304]. Among unidimen-
sional scales, the Rating Scale of Mental Effort (RSME) [318] evaluates
the mental effort on a continuous vertical axis from 0 to 150, and the ISA

evaluates MW using 5 different ratings [287] (see Fig. 12). The latter has
been especially used during flight training [287]. Unidimensional scales
are quicker to respond but they can have a smaller diagnosticity.

Figure 12: Example of self-reporting method in an IVE. Instanteous Self-
Assessment (ISA, measure of the user’s MW using 5 different rat-
ings [287]) in a VR Flight Simulator [172].

3.1.2 Affective States Self-Report Measures

For the measure of emotions from a dimensional perspective, Brad-
ley and Lang developed the SAM [39], which depicts the three Pleasure,
Arousal, Dominance (PAD) dimensions of emotions by representing each of
them by five graphic characters along a nine-point scale (see Fig. 13). This
method was successfully used for the assessment of players’ emotions, es-
pecially the valence and the arousal dimensions. For the emotional valence
dimension, the Positive and Negative Affect Schedule (PANAS) is a very pop-
ular method proposed by Watson, Clark and Tellegen [302]. This method
consists of 2 scales to measure positive affect and negative affect using ten
psychometric items each. A shorter form of the PANAS, the I-PANAS-SF,
was also validated with international reliability concerning cross-cultural
issues [290].
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Figure 13: The Self-Assessment Manikin (SAM) [39]. The first line of characters
corresponds to the valence range, the second, to the arousal, and the
third, to the dominance dimension.

Self-reports is also often used to measure affective states from a dis-
crete perspective. Among standardized questionnaires, the State-Trait Anxi-
ety Inventory (STAI) is a popular form often used to measure anxiety [276].
This test is composed of two scales of 20 propositions each: the STAI-S
(state), also referred as STAI form Y-A or Y1, and the STAI-T (trait), also re-
ferred as STAI form Y-B or Y2. The STAI-T is usually used at the beginning of
a protocol to evaluate clinical anxiety (trait), allowing to recognize gener-
ally anxious people (who have higher scores). On the other side, the STAI-S
score increases in a stressful situation. It is a good indicator of short-term
anxiety, and it can be used after each condition of a protocol. Spielberger
et al. also created a similar multi-scales for anger [275]: the State-Trait
Anger Expression Inventory (STAXI), which evaluates trait anger and state
anger.

Self-report methods are considered as cheap and convenient. It is a well-
accepted measure of CAS thanks to their self-referential nature and high
face validity [132]. One of the main issues concerns the ability of individu-
als to reveal their CAS and their interpretation of the latter. Results are
restricted by human language and can be biased based on what individu-
als believed they felt, or on which CAS they wanted to report to be more
socially desirable [169, 261]. Moreover, since real-time is an important as-
pect of VR, it is difficult to get a high-frequency measure of the CAS using
self-reports. Depending on the way they are done, self-report measures can
also break immersion in IVEs [268] and have an impact on the user’s sub-
jective impression, which adds difficulty in the care brought in the design
of experimental protocols.
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Figure 14: Recognition of emotions based on facial expression recognition using
photoreflective sensors on the VR HMD [283].

3.2 Observational Measures

Unlike self-reports, observational methods are based on an exterior point
of view and evaluation of body or facial behaviours. Those behaviours
are usually associated to body language and include nonverbal indicators
such as facial expressions, body postures (e.g., positions of hands and legs,
style of sitting, walking, standing, or lying), gestures and eyes movements
(e.g., gaze direction), touch and the use of personal space [249]. One can
identify patterns of behaviour, as well as their frequency of appearance
and correlates them to CAS [202].

For the recognition of emotions, facial expressions recognition is from
far the most popular observational method outside VR. Ekman, Sorenson
and Friesen developed recognition methods for facial expressions of 6
primary universal emotions (i.e., the Big Six) [89]: the FACS. Based on
this study, a detailed FACS [88] was elaborated as a taxonomy system
presenting movements of human facial muscles by action units. It has
proven to be a good standard for categorization and measurement of emo-
tional expression but has some limitations in recognizing some expres-
sions across different cultures due to facial deformations, and skin col-
our [125]. Moreover, it can be more challenging to do facial recognition
in VR as parts of the face are most of the time occluded by the HMDs.
Multiple research paths were explored to try answering this problem us-
ing Electromyography (EMG) [27, 185], photoreflective sensors [133, 283]
(see Fig. 14), proximity sensors [163], strain gauges to measure foam
deformation on the HMD [162], and RGB-D camera on the mouth re-
gion [162, 210].
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Emotion Associated body language

Fear Noticeably high heart beat-rate (visible on the neck). Legs and arms crossing and moving.
Muscle tension: Hands or arms clenched, elbows dragged inward, bouncy movements,
legs wrapped around objects. Breath held. Conservative body posture. Hyper-arousal body
language.

Anger Body spread. Hands on hips or waist. Closed hands or clenched fists. Palm-down posture.
Lift the right or left hand up. Finger point with right or left hand. Finger or hand shaky.
Arms crossing.

Sadness Body dropped. Shrunk body. Bowed shoulders. Body shifted. Trunk leaning forward. The
face covered with two hands. Self-touch (disbelief), body parts covered or arms around
the body or shoulders. Body extended and hands over the head. Hands kept lower than
their normal positions, hands closed or moving slowly. Two hands touching the head and
moving slowly. One hand touching the neck. Hands closed together. Head bent.

Surprise Abrupt backward movement. One hand or both of them moving toward the head. Moving
one hand up. Both of the hands touching the head. One of the hands or both touching the
face or mouth. Both of the hands over the head. One hand touching the face. Self-touch
or both of the hands covering the cheeks or mouth. Head shaking. Body shift or backing.

Happiness Arms open. Arms move. Legs open. Legs parallel. Legs may be stretched apart. Feet pointing
something or someone of interest. Looking around. Eye contact relaxed and lengthened.

Disgust Backing. Hands covering the neck. One hand on the mouth. One hand up. Hands close to
the body. Body shifted. Orientation changed or moving to a side. Hands covering the head.

Table 1: The general movement protocols for the Big Six emotions recapitulated
in Noroozi et al.’s survey [202].

On the other hand, VR often implies body engagement, which makes
body gesture recognition particularly interesting to study CAS. As such,
Noroozi et al. provided a survey on the emotional body gesture recogni-
tion, as well as a table with general movement protocols associated to the
Big Six [202] (see Tab. 1). Eye-related measures has also shown a growing
interest in recent years in VR studies [54, 56], with eye-tracking devices be-
ing easier and easier to equip if not directly integrated into the VR HMDs.
Different observational measures can be extracted from them: gaze distri-
bution, blink, fixation, and eyes saccades (i.e., the “”quick and simultaneous
movement of both eyes between two or more phases of fixation in the same
direction" [52]) related measures are among the most popular ones [66].
Other methods such as voice treatment have been less explored in VR but
could be interesting to research given the growing number of multi-user
VR applications and its implication on oral interactions.

Interaction is one of the main components of VR [279], which makes
users’ behaviours particularly interesting to study in this context. In that
sense, observational measures provide rich data, and can be useful for ex-
amining CAS in real-time [132]. However, there are some limitations. For
instance, the behaviours of individuals greatly depend on factors such as
their personalities, cultures and genders [184]. People can intentionally
express, suppress or hide their psychological states during an observation.
Their behaviours can be modulated by the environment (e.g., real or vir-
tual) and the situation (e.g., experimental or entertainment). Moreover,
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VR equipment can be cumbersome and sometimes make the behaviours
in IVEs less natural. It is also worthwhile noting that most observational
measures greatly depend on the context of the application and on the tasks
users have to perform.

3.3 Task Performance Measures

Task performance measures have mainly been explored in works study-
ing CS. O’Donnell distinguished 2 major types of performance-based meas-
ures [205]: primary task measures, which specify the adequacy of the oper-
ator to perform the principal task or system function of interest (e.g., “the
number of errors made by a pilot while flying an aircraft”), and secondary
task measures, which provide an index of primary task workload based on
the operator’s ability to perform an additional task (e.g., “respond to a ra-
dio communications signal”) concurrently with the primary task of interest
(e.g., “flying an aircraft”) [205].

Primary task measures attempt to directly assess the user’s performance
on the task of interest. Typical measures of task performances include ac-
curacy, reaction or response times, and error rates. They can be insensitive
to users’ MW if the variability in task demands are insufficient to result
in observable changes as they do not give information on the remaining
cognitive capacities of users.

On the contrary, secondary task measures provide an index of the re-
maining operator capacity while performing the primary tasks. There are
two methodologies for secondary tasks: auxiliary task and loading task [49].
In auxiliary task methods, users are instructed to maintain consistent per-
formances on the primary task regardless of the difficulty of the overall
task. Therefore, the secondary task performances are an indirect indicator
of the user’s reserve capacity. In the loading task approach, the secondary
task deliberately causes degradation of the primary task, which require
consistent performances on the secondary task. The primary task perform-
ance measures are, in that case, more sensitive to the users’ MW vari-
ations. Common secondary tasks include monitoring, tracking, memory
tasks, mental arithmetics, or time estimation paradigms [207].

Task performance measures have great advantages as they are often easy
to assess and can be continuous. However, similarly to observational meas-
ures, they are task and context-dependent. These measures often differ
from one application to another and can hardly serve as a reference to
compare different studies. While task performances were shown to have
great correlations with MW, it should be noted that they can be modulated
by users’ engagements which can make them inaccurate for the measure
of CAS [78, 294]. Many authors alerted that similar task performances
should not be interpreted as an indication that the user’s MW levels are
equivalent [205, 294].
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3.4 Psychophysiological Measures

The term psychophysiology refers to the physiological responding to psy-
chological phenomenons. In physiological computing [93], physiological
activities and changes are direct reflections of processes in the Autonomic
Nervous System (ANS) and in the Central Nervous System (CNS). The ANS
is a system that acts unconsciously and regulates bodily functions such
as heart rate and pupillary responses. The CNS comprises the brain and
spinal cord. Since physiological responses are issued from psychological
processes, it was hypothesized that it is possible to translate them to psy-
chological states via the extraction of some specific features [228].

3.4.1 Measure of the ANS

The ANS changes are uncontrolled consequences of the CNS activity on
physical processes. The two components of the ANS are the sympathetic
division, which is associated with the “fight-or-flight response”, and the
parasympathetic division, which is referred by the epithet of “rest and
digest” [187]. The balance between these two systems is crucial for the
homeostasis [187]. Kreibig provided a detailed review of the ANS activity
when experiencing emotions [151]. Although there are still debates about
the relation between ANS measures and psychological activities [184], the
use of these measures to assess negative arousal is uncontested [132]. The
most popular measures of the ANS activity for CAS include cardiovascular
activity, electrodermal activity, and pupilometry indicators.

(a) (b)

Figure 15: (a) Typical ECG waveform (image from [90]).
(b) Typical PPG waveform (image from [222]).

Cardiovascular activity can be measured by means of Electrocardiogra-
phy (ECG) and Photoplethysmography (PPG). On the one hand, ECG detects
electrical changes that are the consequence of ventricles contracting and
expelling blood. It has 3 main components: the P wave, which represents
the depolarization of the atria, the QRS complex, which represents the
depolarization of the ventricles, and the T wave, which represents the re-
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polarization of the ventricles [190] (see Fig. 15a). ECG signal analysis are
mainly based on RR interval, which is the time between successive R-peaks.
For example, it can be used to extract the subject’s Heart Rate (HR) and
Heart Rate Variability (HRV), a recurrent cardiac measure that corresponds
to the adaptation changes in the time intervals between two consecutive
heartbeats [188]. On the other hand, PPG uses a small optical sensor in
conjunction with a light source to measure changes in the skin light ab-
sorption as blood perfuses through the skin after each heartbeat. PPG sig-
nals depict pulse waves that exhibit systolic and diastolic peaks [189] (see
Fig. 15b). Similarly to ECG, its signal analysis mainly relies on Interbeat
Interval (IBI), also called beat-beat intervals. The main PPG features are
Blood Volume Pulse (BVP), which represents the percentage of blood ves-
sel pressure, HR, and HRV. It should be noted that if a person if strongly
emotionally aroused, it will take more time for the BVP to return to its
normal level [224]. PPG sensors are usually less obtrusive, but also less
accurate than ECG methods.

Figure 16: EDA signal decomposition into tonic and phasic components (image
from [232]).

Electrodermal Activity (EDA), often referred to as Galvanic Skin Re-
sponse (GSR), is the term used to define autonomic changes in the elec-
trical properties of the skin [264]. The activity of the sympathetic nervous
system is directly linked to the activity of the sweat glands, which is in turn
related to the activity of the skin epidermis [36]. The EDA can be represen-
ted by its 2 main components: the tonic skin conductance and the phasic
skin conductance (see Fig. 16). The tonic skin conductance corresponds
to the normal conductance of an individual in the absence of any stimulus
of discrete changes in the experimental environment and is related to the
Skin Conductance Level (SCL). The phasic skin conductance happens in
accordance to an affective event [168] and is related to the Skin Conduct-
ance Responses (SCRs). The EDA has proven strong content validity and is
widely used to measure users’ affective and cognitive changes [93].
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Figure 17: Constriction and dilation of the pupil (image from [234]).

Pupillometry measures can be assessed using eye-tracking devices. Chan-
ges in pupil size are caused by 2 antagonistic muscles: the dilator pupil-
lae, which is located in the outer parts of the iris and dilates the pupil,
and the sphincter pupillae, located in the central parts and constricting
it [87] (see Fig. 17). The constricting sphincter muscle receives input from
brain systems involved in the pupillary light reflex, and both muscles re-
ceive inputs from brain systems involved in cognitive and autonomic func-
tions [87]. More precisely, the pupil dilatation is provoked by activity in
the sympathetic pathway (fight-or-flight), and the constriction by activity
in the parasympathetic division (rest-and-digest) [87]. Pupil dilation data
was shown to be influenced by cognitive efforts [66, 87]. As a result, most
popular pupil-related physiological features derive from pupil diameter,
pupil dilatation, and pupil constriction (e.g., mean, max, min, standard-
deviation).

Aside from theses physiological measures, Respiration (Resp), Skin Tem-
perature (Temp), EMG, and Electrooculography (EOG) measures can also
be affected by CAS [93]. However, they will not be treated in-depth in this
dissertation.

Good practices suggest placing ANS sensors at specific places [315]. In
VR studies, ECG electrodes usually are placed on the user’s torso (e.g., via
a belt or using a set of electrodes), PPG sensors on the earlobes or on
the wrist, and EDA sensors, on the fingers, wrist, or directly on the face
via the headset. Eye-trackers systems are usually directly embedded inside
the HMDs.

3.4.2 Measure of the CNS

Unlike the ANS methods, Electroencephalography (EEG) and other neuro-
imaging methods measure directly the activity caused by the functioning
of the CNS. Methods to measure the CNS are mostly known under the term
Brain-Computer Interfaces (BCI). Among the differents components of the
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CNS, the cortex is the largest part of the human brain. It can be divided
into the temporal, parietal, occipital, and frontal lobes (see Fig. 18) [5].
The temporal lobe is responsible for the senses of smell, sounds, and the
processing of complex stimuli such as faces and scenes. The parietal lobe
is responsible for integrating sensory information from various senses, as
well as the manipulation of objects. The occipital lobe is responsible for
the sense of sight Finally, the frontal lobe is responsible for the conscious
thought, which makes it the most impacted by CAS [5].

Figure 18: The cortex subdivided into the frontal, temporal, parietal, and occipital
lobes (image from [5]).

Electroencephalography (EEG) measures the electrical activity gener-
ated by the brain cortex using electrodes placed on the scalp [201]. EEG
signals can be measured using between 1 and 256 electrodes. Those are
generally attached using an elastic cap, and the contact between the elec-
trodes and the skins can be enhanced using a conductive gel or paste [201].
Their locations often follow standardized schemes, the most popular one
being the international 10/20 system [127]. Because of weak amplitudes,
EEG signals usually have to be amplified. Those are composed of different
oscillations, namely “rhythms" or “waves”, that have distinct properties in
terms of spatial and spectral localization. There are 6 classical rhythms [201]:
δ (1-4 Hz), θ (4-7Hz), α (8-12Hz) (“idling" rhythm, default mode brain
activity), µ (8-13Hz) (“sensorimotor" rhythm), β (13-30 Hz), and γ (30-
100 Hz) rhythms. θ , α, and β waves have been found to be impacted by
cognitive performance and mental effort (i.e., increasing working memory
elicits increased activity in θ activity at frontal sites, suppression of α activ-
ity, and increased β) [94, 144, 239]. As for AS, Alarcao and Fonseca pro-
posed a survey on emotions recognition using EEG signal [5]. Overall, the
literature has corroborated that positive affects were shown to be associ-
ated with the frontal left hemisphere of the brain, and negative affects
with the frontal right hemisphere of the brain [5, 129]. Compared to other
neuroimaging methods, EEG is known to have a high temporal resolution
but a low spatial resolution [71].

Another popular and affordable neuroimaging methods is the functional
Near-Infrared Spectroscopy (fNIRS), a multi-wavelength optical spectro-
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Figure 19: Illustration of the path (in red) followed by the near-infrared photons
from the light source to the detector through the different layers of
the head using fNIRS systems. The penetration depth of the light is
proportional to the source-detecter distance (d1: deeper channel, d2:
superficial channel) (image from [229]).

scopy technique which measures hemodynamic brain responses in the cor-
tex resulting from intentional sensory, motor, or cognitive activities [14,
97]. Similarly to PPGs, NIRS systems use skin tissue’s particular absorp-
tion properties in the near-infrared range to measure and localize changes
in oxygenated (i.e., HbO2) and deoxygenated (i.e., HbR) hemoglobin con-
centration following neural activation [97]. Most fNIRS measure light at-
tenuation due to tissue scattering at specific wavelengths based on the
ratio of light intensity between the injected light (source/emitter) and
output light (detector) (see Fig. 19). The difference in light attenuation
between subsequent measures is used to derive the changes in concentra-
tion of HbO2 and HbR. Each source-detecter separation represents a meas-
uring channel providing topographical representation of the distribution
of the changes in concentration of HbO2 and HbR over the cortical sur-
face (see Fig. 19). Different commercial fNIRS systems are available and
reviewed in [260]. There are many ways to analyse fNIRS data [229]. Most
of these methods rely on a-priori knowledge of the timeline of the stimuli
presentation [229], which makes it particularly challenging to use fNIRS in
real-time outside laboratory conditions. Similarly to EEGs, fNIRS measures
were shown to be impacted by individuals’ CAS [229]. Overall, increasing
task difficulty was found to increase HbO2 and decrease HbR [229, 260].
AS results corroborate EEG findings on the fact positive and negative emo-
tional valence respectively elicit of the left and right frontal cortex [16].
Compared to EEGs, fNIRS offer a less accurate temporal assessment of the
brain activity (because of the intrinsically slow processes of hemodynamic
changes) but a better spatial resolution. They are also less sensitive to
movements [229], but can take time to prepare and install because of the
emitters/detectors positioning.

Other technologies such as magnetoencephalography (MEG), func-
tional Magnetic Resonance Imaging (fMRI) and Positron Emission To-
mography (PET) offer a more precise assessment of brain activity location
and a good temporal resolution. However, they are more expensive and
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can hardly be used with VR devices outside a clinical context as they are
not mobile.

There is a rich literature demonstrating the efficiency of CNS measures
to assess and classify CAS [5, 10, 13, 152, 165, 259], especially in the
clinical field. However, the use of BCI can be particularly complex outside
highly controlled laboratory environments. They can be obtrusive, sensit-
ive to motions [101], have knowledge constraints for data-analysis [229],
and thus be complex to use with a VR headset or in real-time.

Overall, psychophysiological measures have been widely studied in and
outside VR. The measures of the ANS and CNS are both interesting since
they provide high frequency and objective measures of the physiological
activity influenced by the users’ psychological state. One downside is that
the sensors can be cumbersome, thus reduce immersion in VEs. For that
reason, many laboratories and companies focused on introducing physiolo-
gical sensors directly on VR headsets in recent years. Indeed, eye-trackers
are more and more systematically embedded into the HMDs (e.g., FOVE,
HTC Vive Pro Eye, Varjo VR-1, HP reverb G2 Omnicept) and add-on mod-
ules can be employed in other headsets to assess eye-related measures
(e.g., Pupil Labs module). PhysioHMD introduces EEG, EMG, EOG, and
EDA directly on the headset [27] (see Fig. 20), EmotionalBeasts study
introduced EDA and PPG on the HMD [26], and LooxidVR [170] and
Neurable [126], EEG on the HMD. Still, one matter of concerns is that
physiological sensors are often sensitive to movements, which makes inter-
actions and locomotion in VR sources of artefacts in the signals. Addition-
ally, they can be greatly influenced by within and between-individual vari-
abilities [288] and by cybersickness [75, 138]. Thus, physiological changes
can be hard to interpret. Most studies use a baseline to take into account
individual variability, to observe changes, and to normalize the obtained
signals [204]. Usually, users are asked to relax or to be in a neutral state
during this phase.

Figure 20: PhysioHMD [27]. Example of a module which integrates physiological
sensors directly on the headset.
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This section provides an overview of research in Affective and Cognitive VR
in IVEs in a non-clinical context. This state of the art only considers HMDs
and CAVE-like systems as IVEs [130]. It deals with MW, cognitive load,
cognitive performances (i.e., CS); emotions, moods, personality traits (i.e.,
AS); and physiological responses to CAS stimuli. We focused on research
which undertook experiments on healthy users. As such, we will not ad-
dress VR studies which conducted experiments on pathological phobia. For
reviews and meta-analysis interested readers can refer to [34, 221].

Combining CAS and VR has many advantages in several application
fields. Among the 61 studies retained in this state of the art, most focused
on global VR applications to understand how users felt in a VR context
and how to enhance VR application using users’ mental state (i.e., 36 stud-
ies) [8, 15, 17–20, 25, 26, 37, 47, 54, 56, 57, 78–80, 84, 95, 96, 105,
111, 147, 161, 166, 178–181, 191, 209, 212, 217, 225, 244, 269, 277].
10 focused on Artificial Intelligence (AI) applications by training CAS re-
cognition models in a VR context [3, 27, 31, 182, 183, 186, 198, 235,
245, 293]. 5 were done in a gaming context [2, 123, 164, 213, 216], 3
in a military context [219, 220, 309], 2 in a sport context [11, 280], 2
were applied in an educational context [65, 74], 1 was done to improve
immersive training [61], 1 targeted an aerospace application [9], and 1
focused on the benefits of immersion for journalism applications [282].

We decided to treat the 63 studies following the 3 steps of adaptation
of VR based on users’ CAS (see Tab. 2 and Fig. 4). The first group of stud-
ies explored methods to induce CAS, as well as the influence of specific
IVEs parameters on users’ CAS (see Tab. 4.2). The second group deals with
studies which developed models to recognize CAS using physiological sig-
nals and ML algorithms in IVEs (see Tab. 4). Finally, the last identified
group target the exploitation of CAS to modulate IVEs content and para-
meters based on CAS measures to drive users toward a targeted CS or AS
(see Tab. 5.1). Some studies were therefore classified in several of these
categories.

4.1 Induction of Cognitive and Affective States in VR

One of the main advantages of VR in the study of CAS is its ability to create
complex and controllable VEs. When designing an experimental protocol
to study CAS, one of the first hypotheses is often that the stimuli will have
an influence on a CS or an AS. The aim of this section is to depict the res-
ults of studies which found an influence of IVEs variables on users’ CS or
AS. Only user studies which measured users’ CAS in IVEs in a non-clinical
context were considered here. A summary regrouping the induction meth-
ods along with the measurement methods is given in Tab. 4.2). The studies
can be divided in 2 sections depending on their purposes in regards to the
induction of CS or AS: studies which aimed to induce a variety of different
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Induction Recognition Exploitation

CS [17, 25, 47, 65, 78, 84, 181, 217,
235, 277, 293]

[65, 235, 293] [65, 78, 105]

CAS [61, 74, 178, 219, 309] [309] [220]

AS [3, 8, 9, 11, 15, 18–20, 31, 37,
54, 56, 57, 79, 80, 95, 96, 111,
123, 147, 161, 164, 166, 179,
180, 182, 183, 186, 191, 209,
212, 213, 216, 225, 244, 245,
269, 280, 282]

[3, 182, 183,
186]

[2, 26, 27, 57,
79, 80, 123,
164, 198]

Table 2: Summary of the 63 studies treated in the state of the art in the 3 proposed
categories. In the “Induction of CAS" category, the works focused on the
influence of variables on CAS. In “Recognition of CAS", studies tried to
passively recognize CAS. In the “Exploitation of CAS" category, works
focused on the adaptation of VR content and parameters based on CAS
measures.

CAS or different levels of CAS, and studies which objectivs was to study
the influence of specific parameters on a CS or an AS.

4.1.1 Induction of Several Cognitive and Affective States

Studies which intended to induce different CAS or different levels of CAS
have mainly used cognitive tasks, emotional videos, emotional VEs, or emo-
tional scenario in IVEs.

Cognitive tasks are the most employed methods to study CS. As such,
the N-back task is a standardized cognitive task targeting working memory
which can be declined in different difficulty levels and has been used ex-
tensively in VR to induce different levels of MW. It can be auditory [173]
or visual, and the stimuli can take different forms such as color balls [235,
293], letters (for verbal task) or oriented symbols (for spatial task) [47].
Steed et al. also used a letter recall task, which targets users’ working
memory, to test the influence of independent variables on cognitive task
performances [217, 277]. For similar objectives, Bergström, Kilteni and
Slater used a counting backward task [25], which target executive func-
tioning. In the same line, Banakou, Kishore and Slater used a post-experi-
ment Tower Of London task [17], which especially targets planning and
problem-solving skills. On the mental rotation side, Collins et al. [65] used
a spatial rotation task to induce different levels of cognitive load. Spatial
rotation tasks were also used as distractors in [217, 277]. Dey, Chatourn
and Billinghurst [78] and Gerry et al. [105]made use of a visual searching
task, where users had to find a target shape among several coloured visual
distractors, to generate different task load levels. Recall of objects ques-
tionnaires are also often used to assess spatial awareness in VEs [84, 178,
181]. Cognitive tasks can also be used to induce arousal, such as arithmetic
tasks (e.g., [9]), or the Virtual Reality Stroop Task used in [219, 309], ad-
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apted from the paper and pencil Stroop Test. Most of these tasks where
used as single standardized tasks to induce different levels of CS using dif-
ferent difficulty levels. Parsons and Courtney also explored multitasking
to modulate arousal level [219].

(a) N-back task [173] (b) Spatial manipulation
task [65]

(c) Stroop test [309]

Figure 21: Examples of cognitive tasks performed in VR.

Emotional videos designate panoramic 360°videos displayed in a VR
device. There is no 3D object nor interaction and users can only navigate
in a limited space and/or move their head. As such, Li et al. developed a
library of 73 immersive VR clips which were labelled using arousal and
valence responses [161]. This was done similarly to previous works which
developed databases of affective stimuli based on pictures (e.g., the Inter-
national Affective Picture System (IAPS) [156]) or audio sources (e.g., the
International Affective Digital Sounds (IADS) [40]) in VR. In another study,
Mavridou et al. presented 20 non-panoramic emotional videos from an af-
fective film library [251] along with 20 neutral videos in a VR cinema en-
vironment. The 20 emotional videos managed to induce balanced classes
of emotions (i.e., 2 levels of arousal × 2 levels of valence, 5 videos per
class). In the same line, Marín-Morales et al. presented 4 architectural
360° panorama environments which succeeded to elicit 2 levels of arousal
× 2 levels of valence by varying colours and geometries [183] (see Fig. 22).
On the other hand, Macedonio et al. presented 10 anger-provoking scenes
via panoramic videos to users [179], which induced anger responses to
users (see Table. 4.2). In the journalism field, Sundar, Kang and Oprean
presented 2 stories in a VR HMD: a sad one about refugees, and a more
positive one about dolphins [282]. Those induced the expected valence. It
is also the case for Anderson et al.’s study, which presented a neutral 360°
classroom class scene, and 2 natural panoramic views [9].

As for emotional VEs, those imply 3D objects but no other interactions
than navigating in the VEs and moving the head. The Empathic Computing
Lab developed 5 VE based on a jungle safari to induce happiness, anxiety,
fear, disgust, and sadness [56, 57, 79]. Users are on a car which moves
through the safari, and they are exposed to audio-visual stimuli. A pilot
study was conducted to make sure the environments triggered the appro-
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Figure 22: Induction of 2 levels of arousal and 2 levels of valence using 4 archi-
tectural 360° panorama environments in a VR HMD [183]. Left: neg-
ative valence; right: positive valence; bottom: low arousal; top: high
arousal.

priate emotions [57, 79]. In the EMMA Project [6], a procedure was de-
veloped to induce different moods/emotions using a virtual park scene.
The user explores a park, in which light and other audio-visual stimuli
change depending on the targeted mood. The latter was shown to induce
sadness, joy, anxiety, relaxation, and neutral states [18–20, 244]. In the
same line, Felnhofer et al. developed 5 virtual parks which induced joy, sad-
ness (no effect), boredom, anger, and anxiety by varying weather, sounds,
light, and animated contents [96]. Robitaille and McGuffin also developed
a virtual forest which could change from calm to stressful conditions by
varying similar parameters [245]. Other studies made use of distinct VEs
to elicit different emotions [54, 164, 209]. On the stressful and anxiety
side, a famous study in VR consists in the virtual pit, which exposes a user
to a fear of height situation [191] (see Fig. 24a). This was found to success-
ful induce presence and changes in physiological responses to users [111,
180, 191].

Furthermore, emotional scenarios are emotional VEs in which users
can interact with virtual entities. Those can be horror games [80, 123,
216], games which are supposed to elicit sadness [213], joy [31, 80], neut-
ral games [15], or serious games [61, 74]. VR games and scenarios are
usually very engaging and were shown to influence emotions [61, 74, 80,
123, 213, 216], CS [61, 74], and flow [31]. Moreover, one large field of in-
terest in VR concerns virtual public speaking situations [95, 147, 166, 225,
269]. Those were found to greatly influence anxiety, which can also be
modulated by the virtual audience type [225, 269] and its reaction [147].
More particularly, some studies focused on the effect of threatening [219,
309] or emergency situations [3] on physiological signals and tasks per-
formances. Others used everyday anxiety-provoking situations (e.g., a test
day [8]), and VR sport to validate anxiety stimuli such as the crowd, and



36 R E L A T E D W O R K O N C O G N I T I V E A N D A F F E C T I V E S TAT E S I N V R

Figure 23: Induction of anxiety in a competitive sports VR context (CAVE-like sys-
tem) with animated virtual characters [11].

(a) (b)

Figure 24: (a) The virtual pit experience developed by [191].
(b) Influence of avatars on cognitive performances and age-base dis-
crimination (Einstein vs. gender-matched body) [17].

the presence and reaction of characters in a competitive situation [11, 280]
(see Fig. 23).

4.1.2 Other Factors Influencing Cognitive and Affective States

In a more isolated way, factors such as the type of display, immersion levels,
avatars, and user profiles were found to impact users’ CAS.

The relation between the display types, immersion levels and users’
CAS can be complex as some studies found an effect of IVEs on CAS [178,
182, 216], and others did not [147]. For example, Pallavicini et al. found
no effect of VR vs. non-immersive console on anxiety. However, they found
that VR provoked more happiness than non-IVEs [216]. These results go
in the same line as other studies’ findings [178, 182]. A supposition is that
the novelty of VR could elicit this difference in emotional responses [182,
216]. Moreover, immersive display can induce more intense AS [61, 282],
improve spatial awareness [178], and learning retention [61] compared to
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non-immersive methods and display. Furthermore, simulation fidelity was
found to influence sport anxiety [280] and memory of objects [181]. On
the other hand, stereoscopy did not show an influence on emotions [18,
166].

Avatars were also found to influence CAS. For example, Osimo et al. pro-
posed a self-therapy where the user is describing a problem and answer-
ing to themselves by embodying first the patient, and then the counsellor
body [212]. The experiment, and the body ownership illusion were found
to improve mood and emotions, especially when the user was embodied in
Freud’s body as the counsellor. Furthermore, embodying a virtual body as-
sociated with high cognitive abilities such as Einstein was found to result in
better cognitive performances and a decrease of age-base discrimination
in [17] (see Fig. 24b). Self-avatar with hand gestures allowance [277],
as well as avatar types (full-body, real-body, hands-only, no body) [217]
were also found to have significant effects on cognitive task performances.
In the same line, being embodied in an uncomfortable posture resulted in
changes in physiological signals and more mistakes in a cognitive task [25].
Bourdin et al. also discovered that a virtual out of body experience resulted
in a lower fear of death [37].

Aside from avatars, personality traits such as trait anxiety can influ-
ence emotions [8, 95, 225]. Other paradigms like redirected walking
were also found to impact cognitive task performances and walking be-
haviour [47]. On the interactions side, body participation and voice con-
trol improved emotions and enjoyment compared to more classical inter-
actions [15, 213]. In another study, Dinh et al. found that multi-sensory
feedbacks such as tactile, olfactory and auditory ones resulted in a greater
memory for objects in the VEs [84]. In the same line, Chen et al. discovered
HR feedbacks in emotional VEs were more enjoyable than no HR feed-
back, especially audio-haptic HR feedbacks [57]. They also found that al-
tering the HR feedbacks could change participants’ emotions but not their
physiological signals themselves [79]. However, there was no effect of shar-
ing HR to another player in a collaborative game on the observer’s emotion
and empathy [80]. In a horror game, Houzangbe et al. found that users
who tried to influence their HR (biofeedback to control fear stimuli and
stressors) experienced more fear than those who did not [123].

In conclusion, studies which intended to induce different CAS or differ-
ent levels of CS or AS in IVEs have mainly used cognitive tasks, emotional
videos, VEs, scenarios. Furthermore, the type of display and immersion
level, avatars variables, user profiles, and other paradigms such as redirec-
ted walking and multi-sensory feedback were found to have an effect on
CAS.
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4.2 Recognition of Cognitive and Affective States in VR

Recent studies tried to passively measure users’ CAS in IVE by developing
models of classification. This enables to assess users’ psychological state
without having to disrupt the immersive experience by asking users to re-
port their state. However, classification models typically require the use
of objective measures to be continuous. In IVE, studies mainly relied on
physiological signals (see Tab. 4) as other observational and performance
measures tend to be context and tasks dependent, which limits the gen-
ericity of the classification models. Due to the complexity of physiological
data, Machine Learning methods are typically required in order to extract
the users’ CAS. These algorithms aim to infer the function between the in-
put (e.g., physiological data) and the output data (e.g., the subjective CS
or AS measure) using supervised techniques [148]. A challenge remains
the training of ML models as they require the gathering of labelled data
and specific induction protocols to ensure that different classes of CAS are
generated. A summary of the different works which focused on developing
a recognition model of users’ CAS in an IVE is given in Table 4.

4.2.1 Classifiers

There are no consensus over which ML algorithm to use depending on
the targeted CS or AS and the used sensors. While deep learning is mak-
ing ground-breaking progress in several fields [131, 167, 301], supervised
learning is by far the methods which was the most explored for CAS recog-
nition [5, 316]. Support Vector Machines (SVM) and Linear Discriminant
Analysis (LDA) are popular methods which have been used for years in
the ML community. However, the Random Forest (RF) algorithm also has
shown great results in recent years [65, 91]. For example, Collins et al.
used Principal Component Analysis (PCA) and SVM with linear basis func-
tion, MultiLayer Perception, K-nearest neighbours (K=1), J48 Decision
Tree, and RF (100 trees) to classify 3 cognitive load levels and 2 moments
of insight [65]. They found RF to perform the best among the different clas-
sifiers. As for the model evaluation, it should be noted that most studies
used a user-dependent approach (by using K-fold cross-validation, or by
performing a leave-N out participant after having pooled all participants
data together), meaning that these models require to be trained using the
user’s data to reach similar classification performances.

Model training using supervised learning methods requires to label the
dataset for the classification of the users’ CS or AS. Mavridou et al. [185]
and Marín-Morales et al. [182, 183] used self-report measures to label
their physiological dataset. However, the users’ psychological state was
sometimes inferred in other studies. For example, task difficulty levels
were used to label the physiological dataset for cognitive load or MW re-
cognition. It should be noted that this is more akin to measure the task
intrinsic load rather than cognitive changes experienced by users (see Sec-
tion 2.1). Tremmel et al. and Putze et al. both used the difficulty levels of
the N-back task to label their dataset [235, 293]. In a similar way, Collins et
al. extracted 3 difficulty levels of a spatial rotation task based on the users’
overall performances. Using another approach, users’ arousal level was
identified based on users’ performances (response time) and the Yerkes-
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Dodson Law [311], which is an empirical law between the users’ cognitive
performances and their arousal level in Wu et al.’s work [309].

4.2.2 Physiological input

Concerning the sensors used in the classification of AS, cardiac activity
sensors [182, 183, 185, 309], EDA sensors [309], RESP sensors [309] and
EEG signals [182, 183, 309] have proved to contribute to the classifica-
tion of arousal and valence. Wu et al. classified 3 arousal levels using EDA,
RESP, EEG, ECG measures and SVM [309]. They ordered the physiological
signals in terms of their importance in the classification performance. EDA
and RESP features were found to be the most important, EEG features were
moderately important (especially theta waves), followed by ECG features
(IBI, then HR). Using EEG and ECG features, Marín-Morales et al. found
that EEG features were more important than ECG features for both the
classification of arousal and valence [183]. Their results are in agreement
with Wu et al. [309]’s ones as they found that EEG theta waves played
essentially a great role in the classification of emotions [183]. In another
study (N<60), Marín-Morales et al. also compared the classification of
the 2 emotional dimensions in a virtual vs. in a physical museum environ-
ment and found out the classifier for the virtual environment needed less
features than the classifier for the physical environment [182]. They also
tested the classification of emotional valence and arousal using a “baseline"
which induced a range of the emotions they targeted, using the IAPS, and
the 4 emotional VEs used in the previous study [183] (see Fig. 22). By
concatenating these baseline features to the tested condition features (i.e.,
features map), they improved the classification in both the physical (using
the IAPS features) and virtual (using the 4 emotional VEs features) setups.

For CS, EEG [293], fNIRS [235], HR [65] and EDA [65] have been ex-
plored to classify different cognitive load levels in IVEs. In contrast to the
recognition of emotions for which EEG θ waves were especially import-
ant [183, 309], Tremmel et al. found that the most consistent EEG features
signals across participants to discriminate the cognitive load levels were
the frontal β and γ signals [293]. Using the sensors separately, Collins et
al. results showed greater cognitive load classification performances using
HR than EDA features [65] (i.e., 91.71% vs. 50.83% in the best classifica-
tion setup). Their classification of 2 moments of insight however reached
a high accuracy using EDA features (i.e., 83.65% in the best setup).

To conclude, previous results in these studies are encouraging for the
use of physiological computing in VR. However, most of them were presen-
ted using a user-dependent approach, which depicts a true challenge for
the generalization of the classification of CAS using physiological signals
between users. No consensus exists regarding which sensors to use for the
classification of CAS, and on which classifier to use. The studies also used
a variety of methods to label their dataset, from the users’ CAS subjective
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Ref. CAS Classification of: Input Algorithm Subj. Labeled
Data

Model Evalu-
ation

Accuracy

[293] CS 3 cognitive load levels
(task levels)

EEG Regularized
LDA

15 3420 4-fold cross-
validation

63.90%

[235] CS 3 cognitive load levels
(task levels)

fNIRS Shrinkage
LDA

10 220 10-fold cross-
validation

42%

[65] CS
3 cognitive load levels
(task levels)

EDA RF (best one) 24 345 10-fold cross-
validation

50.83%

3 cognitive load levels HR RF 24 345 10-fold cross-
validation

91.71%

2 moments of insight EDA RF 13 43 10-fold cross-
validation

83.65%

[309] AS 3 arousal levels
EDA, RESP,
EEG, ECG SVM 18 2700

5-fold cross-
validation

96.90%

leave-1 out parti-
cipant

36.90%

[183] AS
2 arousal levels EEG, ECG SVM 38 152 leave-5 out parti-

cipants
75%

2 valence levels EEG, ECG SVM 38 152 leave-5 out parti-
cipants

71.21%

[182] AS
2 arousal levels EEG, ECG SVM < 30 - leave-1 out parti-

cipant
75%

2 valence levels EEG, ECG SVM < 30 - leave-1 out parti-
cipant

71.08%

[186] AS 2 arousal levels PPG; ECG SVM 11 10560 Bradley’s test -

Table 4: Summary of works studying the classification of Cognitive and Affective
States (CAS) in IVEs.

measures to the task difficulty levels for CS. Few studies went further by
exploiting their recognition model in real-time in IVEs.

4.3 Exploitation of Cognitive and Affective States in VR

The exploitation of CAS refers to the modulation of IVEs content based on
users’ CAS measure or recognition (see Fig. 1). Table 5.1 details studies
exploiting CAS in real-time. Among the 13 studies which dealt with the
exploitation of CAS in IVE (see Table 2), 2 studies presented a framework
of adaptation of IVE based on users’ CAS but did not give an example
of possible adaptation [65, 164], which is why they are not presented in
Table 5.1.

The methods to exploit CAS measures in real-time can be divided in 2
categories:

• Explicit exploitation: the users CAS measures are used to control
virtual entities or parameters in the IVE, to raise awareness by the
users of their own CAS.

• Implicit exploitation: the users CAS is measured and used inde-
pendently from the users’ knowledge to adapt features in the IVE.
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Figure 25: Example of implicit exploitation of users’ emotions [27]. The particles
size, density, brightness, and colour are adjusted to make avatars more
emotionally expressive.

Explicit and implicit exploitations have several corresponding denom-
inations in the literature. For example, Nacke et al. respectively used the
terms “direct" and “indirect physiological control" in the game field [199].

Among explicit exploitations, a famous category of exploitation is bio-
feedback. In experiments relying on this type of feedback, users are given
indications of their physiological states in the VE or via multi-sensory stim-
uli and they are encouraged to self-regulate their physiological states thro-
ugh these feedbacks. This is a type of exploitation which was particularly
explored in VR therapy (e.g., [32]) and in 2 studies retained in this survey
(i.e., [123, 198]). Another subcategory of explicit exploitations is physiolo-
gical feedback. It corresponds to the direct display of users’ physiological
states to themselves in the IVE interface or to a third party. In this category,
users are not particularly encouraged to control their physiological state
and the feedback is mostly informative [57, 79, 80].

The target of the adaptation can take various forms, depending on the
targeted CAS and the study objective. As such, task difficulty was often
adapted to control cognitive load [78, 220], improve game experience [2],
or to invite users to control their physiological signals in a horror game
(i.e., a biofeedback case) [123]. Another classical category of feedback
consists of audio-visual stimuli such as stressors (e.g., explosive device
blasts [220], insects spawning [27], music box activation frequency [123],
scene occlusion [27, 123]) to control users’ arousal level and fear level.
In Muñoz et al.’s study, they used auditory feedback to indicate the cat’s
location in a rescuing cat game in terms of the users’ physiological signals
to encourage users to control their physiological states [198]. The change
of avatars appearances [26] and the direct display of the physiological
signals [57, 79, 80] was also explored to communicate users’ states to
themselves or to a third party. Other types of feedback such as olfactory
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ones or haptic ones were also used to enhance arousal stimuli [220] or as
informative indications of the users’ physiological state [57, 79].

As for the events which trigger changes in the IVEs features and con-
tent, CAS recognition was often set as a target method in previous frame-
works [29, 33, 65, 164]. However, as seen in Table 5.1, only two pro-
tocols [2, 26] were proposed to adapt VR parameters based on the re-
cognition of CAS using physiological signals and ML methods. Nonethe-
less, it was not validated through an experimental protocol in the case of
Bernal and Maes [26]’s study, and the classification of emotions was not
presented in the paper. Abdessalem, Boukadida and Frasson [2]’s used
the excitement and frustration indexes from the Emotiv EEG device as a
reference to trigger changes in the game difficulty. However, there is no
published information about the algorithm used to extract these indexes.
This lack of studies doing an adaptation based on CAS recognition can
be explained by the difficulty to recognize users’ CAS based on physiolo-
gical signals, as underlined in Section. 4.2. To palliate this firsthand issue,
other studies focused on determining thresholds based on physiological
signals measured during the baseline [78, 123, 198], compared to a norm-
ative database [220], or in a custom way per participant [27] to trigger
changes in the IVEs. On the other hand, some studies directly projected
the users’ physiological signals to them [57, 79] or to a collaborator in a
VR game [80] in an explicit way. Bernal et al. also directly used users’ EDA
responses in real-time to continuously control the scene occlusion in a hor-
ror video [27].

To summarize, some studies adapted IVEs content based on CAS meas-
ures knowingly (i.e., explicit exploitation) or unknowingly to users (i.e.,
implicit exploitation). These adaptations take various forms depending on
the targeted changes in users’ CAS, from tasks difficulty, to haptic and ol-
factory stimuli. However, few of these studies used CAS recognition as a
reference to perform the adaptation, while proposed in many frameworks
[29, 33, 65, 164]. Most triggered changes in the IVEs based on physiolo-
gical signals using rules-based methods (i.e., thresholds) or directly in real-
time.

5 M E N TA L W O R K L O A D I N V R T R A I N I N G

In this section, we are going to focus more especially on how MW is studied
in VR training, in and outside the clinical field. First, the methods, frame-
works, and models used to design and structure VR training scenarios are
going to be depicted. Then, we are going to focus how on MW measures
are exploited in training scenarios.
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5.1 Designing Training Scenarios in VR

VR training often implies complex environments with several humanoid
agents and interactable objects which each have a limited number of func-
tions. For that reason, the approaches and models used to design VR scen-
arios often aim to simplify or to structure the creation of virtual scenarios.
Those mostly are based on narrative or interaction requirements [104],
and can be divided into two classes: predefined scenario models and emer-
ging scenario models [64].

Predefined scenario models focus on the sequencing of the events.
They orchestrate the events based on the users’ actions and on the charac-
teristics or attributes of the virtual objects. The models rely on diverse rep-
resentations and are mostly based on automata. Among the different types
of representation used in the models of scenarios in VEs, state machines
are widely used (e.g., Story Nets [292], Hierarchical Concurrent State
Machines (HCSM) [67] and Hierarchical Parallel Transition Systems++
(HPTS++) [155]). The events are defined in the states and triggered de-
pending on different changes. For example, Story Nets will trigger changes
in reactions and behaviours of virtual humans depending on the user’s
choices and actions [292]. On the other hand, HCSM and HPTS++ both
represent the global virtual environment behaviour. They represent the
different possible arrangements of events by structuring virtual object be-
haviours using hierarchical parallel automata. HPTS++ integrates in ad-
dition internal resources management. A change in the resources will trig-
ger a respecification of the sub-scenarios. There are also other types of
models which rely, for example, on Petri nets representation such as IVE
[45] and #SEVEN [64] (see Fig. 26), graphcet-like representations such
as LORA++ [104], or activity diagrams like HAVE [59]. These last mod-
els also consider collaborative interactions between users in the scenarios
on top of arranging objects behaviours using parallel hierarchical auto-
mata. LORA++ and HAVE trigger sequences of predefined actions based
on changes in the environments, and IVE, based on users’ actions.

Emerging scenario models do not define precisely what events should
occur and in which order. The scenario "emerge" during the simulation [63].
The simulations are driven based on a set of rules that constrains the beha-
viour of the VE and virtual agents. For example, IDTension [285] is based
on a set of rules which define the actions that can be undertaken depend-
ing on the states of the virtual agents (e.g., “wish to realize an objective”,
“know an information", “can fulfil a task"). The agents’ behaviour is driven
by their personality (e.g., ’non-violent=0.8’), and the actions they are al-
lowed to perform given the context and their objectives. Users are not
constrained by sequences of actions, but they are not guided either in the
VE. Similarly, EmoEmma [53] is based on a set of actions associated to
each virtual agent. These actions are constrained by the state of the envir-
onment and by the states of the agents. Each action updates the state of
the environment and the actions available to the agents. Another model,
SELDON [50], was thought to adapt dynamically a scenario based on the
user’s actions. The user can interact freely and the application tries to re-
orient the scenario toward a specific path by launching events depending
on a set of predefined constraints linked to pedagogical and narrative re-
quirements.
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Figure 26: A Petri net enhanced with the event model, as used in #SEVEN [64].

The choice of a model depends on criteria such as the complexity of
the application, the objective of the training, the flexibility of the scen-
ario, and the collaborative aspect. In VR training, most studies focused
on predefined scenario models as the objectives of the application often
are defined in advance. On the one hand, predefined scenarios offer more
control over the arrangement of the actions and can be represented graph-
ically. However, they often lack of adaptability. On the other hand, emer-
gent scenarios proposes a more natural approach as they let users interact
freely, but they lack of guidance.

5.2 Using Mental Workload in VR Training Scenarios

There are mainly two usages of MW measures in VR training scenarios.
On the one hand, MW is majorly used as an offline metric in VR studies

(see Section 4.1). Users are exposed to a VR training scenario once or
multiple times, and their performances and MWs are being assessed [43,
159]. The purpose can be to show VR training can be as efficient or more
efficient than more traditional methods [21, 38, 112, 200, 300] or to study
the impact of other independent variables on users’ MW [159]. Usually, the
training scenarios are designed specifically for the study objective and can
not be easily re-adapted without further coding and research.

On the other hand, MW can be implicitly modulated by task difficulty
and assessed through task performances. For example, Parsons and Reine-
bold proposed a framework, which adapted the complexity of a Humvee
follow task by varying the vehicle’s acceleration and deceleration based on
the distance between the user’s vehicle and the following vehicle [220]. In
the clinical field, adaptive VR training mainly targeted the rehabilitation
of patients. For example, Grimm, Naros and Gharabaghi [110] adapted
the level of difficulty of a reach-to-grasp task based on the performances
of chronic stroke patients by adapting the distance between the object to
grab in VR and the target where the patient had to release it (see Fig. 27).
Kizony, Katz and Weiss developed 4 different clinical applications in VR,
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each featuring one task which difficulty could be adapted based on the
user’s performance [142]. In the same line, Ma et al. developed adaptive
VR games to encourage stroke patients with upper limb motor disorders to
practice physical exercices [177]. One study adapted a visual search task
difficulty depending on the EEG α band power [78] (see Fig. 25). The later
was shown to be influenced by the task difficulty, and thus, the intrinsic
cognitive load of the task [78]. They adapted the task difficulty based on
the EEG alpha power value computed during a calibration phase before
the experiment to adapt the experiment to each user.

MW was used either as an offline metric or through performance and
EEG measures to adapt VR task difficulty. However, all studies which adap-
ted task difficulty did it in a single task context. A training context generally
implies complex environments with multiple tasks to perform, sometimes
in parallel. In this case, the process of adaptation would be more difficult
as an increase or a decrease in performances of one task might be due to
the drop-out or the prioritization of another task.

Figure 27: Example of task difficulty adaptation. The distance of the object to
grab (ball) in VR and the target (basket) was adapted based on users’
performances [110]. The reach-to-grasp movements were supported
by an exoskeleton because of the severity of the patients’ impairments
to provide passive gravity compensation.
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In summary, numerous models and approaches were proposed to design
and control complex training scenarios. Nevertheless, as depicted, the use
of cognitive states has been very little explored as a criterion to design VR
training scenarios in those models. Some studies explored the adaptation
of VR tasks difficulty based on task performances or EEG measures in a
single-task context. While it is true performance is related to the user’s
MW [115], it is not a pure indicator of the user’s cognitive state. For ex-
ample, Tsang and Vidulich listed some conditions in which there was a
dissociation between the performance measures and the subjective MW
measures [295]. Users might show good results while getting bored or
overloaded overtime, which can disengage them. In a context where most
systems have interests in improving user experience and designing user-
centred applications, considering users’ perceived or experienced changes
in CS is essential. Moreover, all of the presented studies which modulated
task difficulty did it in a single task context. Combining the design of com-
plex training scenarios while considering users’ subjective psychological
states to make VR training applications more aware of users’ MWs is yet
to be done.

6 C O N C L U S I O N

In conclusion, this chapter provides theoretical background on CAS no-
tions and measurement methods as well as an overview of related works
on CAS in VR.

First, we proposed a categorization of works studying CAS in VR fol-
lowing: the induction, recognition, or exploitation of CAS in VR. We also
proposed a definition of “Affective and Cognitive VR” to relate to works
studying CAS in VR.

Then, psychological definitions and models of the most commonly stud-
ied CAS in VR were clarified, as well as their interaction with the notion
of presence in VR.

The different methods to measure CAS were depicted along with their
advantages and drawbacks in VR. To summarize, self-report assessment of-
fers a high-face validity measure of users’ subjective CAS but are invasive
and non-continuous. Observational methods are particularly interesting in
IVEs as interaction is an important component of VR. However, users’ ob-
servational measures can be modulated by their personalities. Thus, they
can be insensitive to users’ CAS and unnatural in a VR context compared to
in the real-world. Task performance measures offer easy-to-access continu-
ous measures, but they are task and context-dependent and can be insens-
itive to CAS changes. Users’ CAS can be measured through psychophysiolo-
gical responses. Many of these physiological measures can be assessed at
a high frequency and have shown to be correlated to users’ CAS. As for
the drawbacks, they necessitate sensors installation, calibration, complex
signal processing methods, and can be hard to interpret.
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Then, we presented an overview of Affective and Cognitive VR in IVEs
in a non-clinical context following the 3 proposed categories: the induc-
tion, recognition, and exploitation of CAS in VR. Most studies focused on
the induction of CAS in VR, with the objective to either present methods
to induce specific or a wide range of CAS, or to study the influence of
parameters and variables on users’ CS or AS. Several stimuli were shown
to impact users’ CAS, but few standardized methods and ecological multi-
tasking environments were employed to induce CAS. As for the recognition
of CAS, studies used ML algorithms and physiological signals to passively
identify users’ CAS. Results are encouraging but the generalization of these
algorithms to other users and other contexts than the ones in which they
were trained is still an issue. Moreover, no work presented a real-time ap-
plication and there is no consensus over the algorithms and sensors to ad-
opt depending on the targeted CS or AS. Finally, the exploitation of CAS
can be categorized in two groups, explicit and implicit exploitations, which
occur respectively in the attentional foreground and background [93] (i.e.,
the changes are consciously registered by the users or not). Despite the pro-
position of many adaptation frameworks, few works presented an exploit-
ation of IVEs based on users’ CAS recognition supported by a user study,
mainly because of the difficulty to recognize users’ CAS in real-time.

In the last section, we focused more specifically on MW in VR training.
Many frameworks and approaches were proposed to structure complex
VEs for the design of VR applications. However, few of them considered
MW as a criterion or parameter. Some works adapted the task difficulty
based on users’ task performances or EEG measures, but this was always
done in a single-task context.
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R E A L E N V I R O N M E N T S

S U M M A RY Is there an effect of Virtual Reality (VR) Head-Mounted Dis-
plays (HMDs) on the user’s mental effort? In this chapter, we com-
pared the mental effort in VR versus in real environments. A first
experiment (N = 27) was conducted to assess the effect of being
immersed in a virtual environment (VE) using an HMD on the user’s
mental effort while performing a standardized cognitive task (the
well-known N-back task, with three levels of difficulty, N ∈ {1, 2,3}).
In addition to test the effect of the environment (i.e., virtual versus
real), we also explored the impact of performing a dual-task (i.e.,
sitting versus walking) in both environments on mental effort. The
mental effort was assessed through self-report, task performance, be-
havioural and physiological measures. A second experiment (N =

25) was conducted to study a potential accommodation to VR ex-
posure effect on users’ mental efforts.
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Figure 28: Illustration of the first user study. The effect of wearing a VR HMD on
users’ mental efforts was measured using different metrics.

This first experiment aimed to assess the effect of wearing a VR HMD
on users’ mental efforts using an auditory cognitive task with different
levels of difficulty. In addition, the effect of a natural walking task on users’
mental efforts was also explored.

1.1 Apparatus

The experiment was conducted a room of 4.5m x 5m. The room was mod-
elled in 3D using realistic textures, as illustrated in Figure 29. Special
attention was given to the design of the virtual environment to make it
correspond as much as possible to the real one. The light in the room
was controlled using curtains and similar lights layout, intensity and col-
ours. Small objects such as wires were not modelled. Otherwise, physical
furniture and markers placed on the floor had their virtual counterparts
in the virtual environment, which were mapped correspondingly. The or-
ange rectangle drawn on the floor provided a visual indication to the user
regarding the zone where he could walk freely without encountering any
obstacle.

In the VR conditions, participants wore an HTC Vive HMD, which provides
a resolution of 1200x1080 pixels per eye with a refresh rate of 90Hz. In the
real conditions, all users wore the SMI eye-tracking glasses. Audio instruc-
tions were provided using a Sennheiser USB micro-headset. Some visual
instructions, such as the announcement of the difficulty and a reminder of
the task principle for each difficulty (see Fig. 32), were given on the TV
screen. This was provided in the same way on the modelled TV in the VR
conditions as on the real screen in the Real conditions.

The wires of the HTC Vive, the SMI glasses and the micro-headset were
passed through a ring suspended from the ceiling. The length of the wires
was adjusted each time before the walking conditions to match the user
height. The cables were maintained in the user’s back with a belt so they
would not interfere with the user movement. A Vive Tracker was also at-
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Figure 29: (top) Photo of the room in which the experiment took place. (bottom)
Screenshot of the virtual environment representing the same room
modelled in 3D for the VR conditions.

tached to the belt to track user’s movements during the walking conditions
(see Fig. 30). Only the trigger button of the Vive controller was used to in-
teract with the support application throughout the experiment. In addition,
the pressure exerted on the controller trigger button was recorded using
a 1.8-cm diameter Force Sensitive Resistance (FSR) glued on the trigger
button. A wireless module was placed on the Vive controller to allow the
streaming of the FSR data on the computer (see Fig. 30). The total weight
of the module was around 150g.

Two eye-tracking devices were used: the Pupil Labs Add-On which was
integrated to the HMD (for the VR conditions), and the SMI eye-tracking
glasses (for the real conditions). The participants’ physiological responses
were assessed using the Shimmer3 GSR+ [48]. In particular, BVP (using PPG

signal) and EDA signals were recorded. The Shimmer module was placed
on the forearm of the non-dominant hand (see Fig. 30). The EDA sensors
of the Shimmer were placed on the middle phalanx of the non-dominant
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hand two first fingers, and the BVP sensor, on the earlobe using the Shim-
mer ear clip. All data was recorded at 120Hz.

The support application was developed in Unity 3D, and run on a desktop
computer equipped with an Intel Xeon CPU E5-1620 v4 processor, one
Nvidia GeForce GTX 1080 graphic card, and 16Go Random-Access Memory.
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 4  3 
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 2 

Figure 30: Photos of the experimental set-ups in the sitting condition (on the left)
and in the walking condition (on the right). (1) HTC Vive HMD (VR)
or SMI glasses (Real), (2) Micro-Headset, (3) Vive Controller with a
Force Sensitive Resistance sensor on the trigger button, (4) Shimmer3
GSR+, (5) Vive tracker.

1.2 Participants

29 healthy participants from the b<>com research institute volunteered
to take part in this study. One subject was excluded from the study due
to technical issues, and another one, because of omissions in responses,
resulting in a final sample of 27 participants (10 females, 17 males; ages
20-59, M=32.8). Two participants wore glasses, 6 participants wore con-
tact lenses, and 1 participant reported a slight red-green weakness. One of
the participants was left-handed, and all the others, right-handed. Three
participants were at least regular users of HMD, and all others had no
experience or a slight experience with HMD in the past. All participants
were fluent in French and were naive to the experiment conditions and
purpose. They all completed and signed an informed consent form before
the start of the experiment. The total time per participant, including pre-
questionnaires, instructions, training, experiment, breaks, post-question-
naire, and debriefing, ranged between 55 min and 1h 20 min. They wore
the HMD for about 20 min and were allowed to take breaks at any time.
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1.3 Experimental Design

As discussed above, exerting cognitive tasks in an immersive VE while
wearing an HMD might require more cognitive resources than in the real
world. The reported mental effort during natural walking in VR and in the
real world might as well differ due to the cumbersomeness of the devices,
the differences in perception between the real and the virtual environ-
ments, the lack of a virtual body [136] and other VR-related cognitive
or perceptive phenomena.

The experiment followed a 3-factor within-subject design. The factors
were the difficulty of the auditory cognitive task (3 levels), the environ-
ment (VR vs. Real), and the secondary task (Sitting vs. Walking). Each
condition was repeated twice, resulting in a 3 × 2 × 2 × 2 within-subject
experimental design (see Table 6). To minimize the learning effect, the or-
der of the environment and task conditions were counterbalanced using a
Latin square design, and the difficulty of the cognitive task conditions was
randomized in each repetition (see Fig. 31).

Independent Variables

Participants 27 (random variable)

Environment 2 Virtual, Real

Secondary task 2 Sitting, Walking

Cognitive task 3
1-back Task
2-back Task
3-back Task

Repetition 2 1, 2

Dependent Variables

Self-reports Rating Scale of Mental Effort [318]

Task performance Accuracy

Behavioural measure
Response time
Pressure exerted on the trigger button
Walking trajectory and velocity

Physiological measure
Heart Rate (HR)
Skin Conductance Level (SCL)

Table 6: Experiment 1: independent and dependent variables.

1.3.1 Independent Variables

In this experiment, three independent variables were considered: Difficulty
of the Cognitive Task, Environment, and Secondary Task.
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Figure 31: Experiment1: Process of the experiment for one subject (excluding pre-
, post-questionnaire, instructions, set-up, and calibrations).

Cognitive Task (1- vs. 2- vs. 3-back Task)
An auditory N-back letter task was chosen to induce different levels of

mental workload [12]. For each sequence of letters, the participants were
instructed to press down the trigger button of the Vive controller, if (and
only if) the current letter was the same as the N-th previous one and before
the next letter presentation. The value of N determined the number of
letters the participants had to remember, thus, the difficulty of the task
[12]. Three values of N were chosen: 1, 2, and 3 as they are the most
common difficulty levels in experiments relying on the N-back working
memory paradigm [12]. We chose the 3-back task over the 0-back task
since the latter mostly is used as a control condition [12], and may not
elicit enough difference in mental workload with the 1-back task.

The sequences of letters were made of 3 distinct letters: "A", "B", and
"C", which were spoken in French by a male synthetic voice 1. Each se-
quence of letters was 25+N letters long. A letter could not appear more
than N+ 2 consecutive times as it would have resulted in a fluctuation of
the difficulty. Out of the 25 letters which were relevant (the first N were
irrelevant as there is no N-th previous one to compare to), 12 letters were
the same as the N-th previous one. Consecutive letters were spaced in time
by a constant interval of 2.0s (as in [118]), which resulted in a total dur-
ation ranged from 52s to 56s for each sequence of letters (depending on
the difficulty).

1 Text To Speech. http://www.fromtexttospeech.com/. Accessed: 2020-11-25

http://www.fromtexttospeech.com/
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Environment (Virtual Reality vs. Real World)
The participants performed the cognitive tasks in both the Immersive

VE (VR), wearing the Vive HMD, and in the real world (Real). A virtual
representation of the room in which the experiment took place was given
in the VR conditions (see Fig. 29). All visual stimuli were presented on the
TV (real or virtual), and the sizes and positions of the virtual furniture and
markers matched the real ones. In the sitting conditions, the participants
were positioned in front of the TV at a distance of 1.5m.

Secondary Task (Sitting vs. Walking)
In order to see if a basic task had an impact on the reported mental effort

in both environments, participants were asked to perform the N-back tasks
while sitting and while walking.

In the sitting conditions, participants could blink, look down, fixate a
point, but they were asked not to keep their eyes closed all trial long. Aside
from this, they were not given any other specific instruction.

In the walking conditions, participants were asked to stay inside the
orange rectangle drawn on the floor and to avoid walking on the markers.
The participants were asked to start all trials (difficulty) behind the orange
line, and to start walking forth in circles around the orange cross at the
start of the cognitive task (when they heard the beep) until the end of the
task. It was mentioned they could walk at the pace they felt natural and in
the direction they wanted for the first difficulty of the condition (Walking-
Real, Walking-VR). After having reported their mental effort, they were
asked to alternate the direction in which they were walking between each
trial to avoid ordering effects.

1.3.2 Collected Data

The dependent variables considered were: self-reports, which refer to the
subjective mental effort reported by the participants, cognitive task per-
formance, behavioural, and physiological measures.

Self-Reports: As this experiment includes many conditions, we decided
to orient our choices toward a unidimensional scale: the Rating Scale of
Mental Effort (RSME) [318], which is particularly sensitive over short peri-
ods of time [70, 298]. The latter evaluates the mental effort invested in a
task on a continuous vertical axis from 0 to 150 units (see Fig. 32). Along
the vertical axis, some landmarks are labelled with a verbal descriptor of
effort, ranging from "absolutely no effort" to "extreme effort" (see Fig. 32).

Performance and Behavioural Measures: Since the primary task was
the N-back task, performance indicators of the success of the cognitive
task were recorded. We chose to focus on the accuracy value, which cor-
responds to the number of true responses (true positive and true negative),
divided by the total number of responses (true and false values, here, 25).
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For each trial, the participants should have pressed the trigger button 12
times, and not answered 13 times.

Aside from the performance linked to the cognitive task, we recorded
the participants’ click behaviour during the trials via the response time.
The exerted pressure on the trigger button was also assessed, as it has
been shown to be influenced by the arousal (which corresponds to the
excitation, mental activation or level of alertness [192]) [255] and as MW
and mental effort are related to the arousal [197].

Other behavioural measures were recorded during the walking condi-
tions, such as the position and the velocity of the participants.

Physiological Measures: For all conditions, BVP and EDA data were
recorded and specific physiological features were extracted. From the BVP
signal, the Heart Rate (HR) was computed based on heartbeat detection.
From the EDA signal, the Skin Conductance Level (SCL) was estimated
using a low-pass filter (cutoff frequency = 0.05Hz, order = 3).

Since this study intends to compare VR and real conditions, we assumed
that the use of two separated eye-tracking devices for each of these condi-
tions would bias the analysis. Thus, eye-tracking data was not considered
in this paper.

1.3.3 Experimental Procedure

The experiment had a total duration of around 1h10 and was subdivided
into the following steps:

Written Consent and Instructions: The informed consent form was
given in an email sent to recruit the participants. They had the possibility
to read it prior to the experiment, and to bring it completed and signed
at the start of the experiment. Otherwise, they were asked to read it, to
complete it and to sign it. They were then instructed with the nature of the
experiment, the equipment used, the data recorded (which was anonym-
ized), the VR setup, the cognitive task instructions, and the proceedings of
the experiment. Participants were also asked to fill a questionnaire (exper-
ience with VR, level of alertness, state of vision, demographic information)
to gather information about their background.

Training: Users were then equipped with a Vive Controller and a mi-
crophone-headset. The RSME was displayed on the TV screen, and parti-
cipants were asked to try to use the Vive controller to evaluate their level of
mental effort. They were asked if they well understood the instruction and
terms used on the scale. Once participants took control of the interaction,
they could perform once every difficulty of the N-back task (1-, 2-, 3-back)
to make sure they fully understood the instructions of the cognitive task.
The training was performed in a Sitting configuration in the Real-World.
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Equipment Set-Up and Baseline: At the end of the training, participants
were equipped with physiological sensors, aside from the eye-tracking de-
vices. They were then asked to remain seated and to relax while the TV
screen was black for 1 minute, to record their physiological signals in a
relaxed state.

Experiment: The experiment was divided in two parts: the Sitting con-
dition and the Walking condition. Each of these two secondary task con-
ditions (absence or presence of a secondary task) was associated with the
environment conditions (Real or VR). The order of these conditions was
counterbalanced using a Latin square design. Prior to the Walking group
of conditions, the users were instructed with the Walking instructions (see
1.3.1). Each condition lasted around 8 minutes and was preceded by a
2 min calibration of the eye-tracking device (SMI glasses or Pupil Labs
Add-on). Next, the participants performed the N-back task in two sets of
randomized difficulties (6 trials per condition, see Fig. 31). They had the
possibility to make a break at anytime and they were proposed to do it
before each new condition. The participants were asked to do their best
throughout the experiment.

A trial consisted of the following elements (see Fig. 32). It started with
visual instructions on the TV screen, informing the participants which diffi-
culty (1-, 2-, or 3-back) was about to start. After the user pressed the trigger
button, an audio announcement of the difficulty was sent to the user, the
sequence of letters was initialized, and a visual and animated reminder
of the instructions for the current difficulty was displayed. Once the user
pressed the trigger button again the task started with a beep followed after
1s by the stream of letters. By the end of the sequence the user was asked
to answer the RSME by using the Vive controller. A pointer indicated the
direction in which the Vive controller was pointing at on the TV, and the
user could move a cursor on the vertical axis by dragging and dropping
it. The "+" and "-" buttons could also be used to readjust the value of the
reported mental effort. A click on the "Next" button marked the end of the
trial, and the beginning of a new trial or the end of the current condition
(Sitting-Real, Sitting-VR, Walking-Real, Walking-VR).

Debriefing: At the end of the experiment all sensors were removed from
the participants. They were asked to fill a post-questionnaire regarding
their subjective impressions. They were finally debriefed and invited to
ask all questions they may have had.

1.3.4 Hypotheses

This study aims to evaluate the interaction between cognitive task, basic
secondary task, and VR.

Our main hypothesis concerns the effect of the environment on mental
effort. We hypothesize that being immersed in a VE through an HMD will
impact mental effort [H1]. Moreover, since users are rarely static in VR the
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Figure 32: Progress of one trial: (a) Visual display of the task difficulty on the
(real or virtual) TV screen ; (b) Auditory announcement of the diffi-
culty, animated GIF reminding the instruction for the difficulty, and
initialization of the task (here, for the 1-back task) ; (c) Start of the
task with a beep, followed by the sequence of audio letters (N+25 let-
ters) ; (d) Rating Scale of Mental Effort (RSME) [318]. Steps (b) and
(c) are triggered by the trigger button, and step (d) appears at the end
of the task (step (c)).

effect of basic and natural tasks such as walking may have an influence on
the user’s mental effort difference between the virtual and the real envir-
onments. This potential effect has to be investigated. It is supposed that
doing a cognitive task while walking will significantly increase the repor-
ted mental effort compared to doing a cognitive task in a sitting condition
[H2]. For both hypotheses it is supposed the results will be supported by
the analysis of all the measured indicators of mental effort considered in
this study. To summarize, our hypotheses are:

• H1: Users experience more mental effort in a VE while wearing a VR
HMD than in the real world.

• H2: Users experience more mental effort while walking than while
sitting.
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1.4 Results

Generalized linear mixed model (GLMM) analysis was considered for all
dependent variables (all parametric). For each variable, the user was con-
sidered as a random factor and all the independent variables as within-
subject factors. When the equal variances assumption was violated, the
degrees of freedom were correction using the Greenhouse-Geisser method.
When needed, pairwise post-hoc tests (Bonferroni with adjustment) were
performed, only significant differences (p < 0.05) are discussed. Order
effects were also tested but there are only discussed if significant. The stat-
istical analysis was performed using the R statistical software.

Figure 33 presents the results concerning the self-reported mental effort
and the task performance, and Figure 34 presents part of the results on the
behavioural and physiological data analysis.

1.4.1 Self-reports

RMSE: The GLMM showed a main effect of the Secondary Task F1,26 =

20.81, p<0.001, η2
p = 0.44 and Difficulty F1.76,45.70 = 127.50, p<0.001, η2

p =

0.83, but there was no effect of the Environment F1,26 = 1.09, p= 0.31, η2
p =

0.04. Post-hoc tests showed that as the level of difficulty increased, parti-
cipants perceived the task as more mentally demanding. Moreover, parti-
cipants perceived the Walking condition to be more mentally demanding
(all p < 0.05). This results partially support [H2], but do not support [H1].

1.4.2 Task Performance

Accuracy: The GLMM showed a main effect of the Secondary Task F1,26 =

7.14, p< 0.01, η2
p = 0.22 and Difficulty F1.80,46.84 = 208.14, p<0.001, η2

p =

0.89, in contrast there was no effect of the Environment F1,26 = 1.26, p=
0.27, η2

p = 0.05. The analysis did not show any significant interaction effect.
Similarly as the RSME, post-hoc tests (all p < 0.05) showed that as the
level of difficulty increased, the accuracy of participants significantly de-
creased. The analysis of the main effect on Secondary Task showed that the
accuracy of participants was higher for the Sitting condition, yet a deeper
analysis seems to suggest that this was mainly the case for the highest Dif-
ficulty (N = 3). This results partially support [H2], but do not support
[H1].

1.4.3 Behavioural Measures

Response time: The GLMM analysis showed a main effect of the Difficulty
F1.75,45.41 = 94.83, p<0.001, η2

p = 0.78, a marginal effect of the Secondary
Task F1,26 = 3.93, p= 0.058, η2

p = 0.13 and no effect of the Environment
F1,26 = 0.19, p= 0.66, η2

p = 0.01. Post-hoc tests showed that the response
time significantly increased as the difficulty increases (all p < 0.05). This
results partially support [H2], but do not support [H1].
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Figure 33: Mean mental effort reported with the RSME and mean accuracy con-
sidering all independent variables.

Exerted Pressure: Due to some measuring errors, only the data of 21
users could be analyzed. The GLMM analysis showed a main effect of the
Secondary Task F1,20 = 19.10, p<0.001,η2

p = 0.49 and Difficulty F1.67,33.38 =

18.72, p< 0.001, η2
p = 0.48, but no effect of the Environment F1,20 = 0.48,

p= 0.5, η2
p = 0.02. Post-hoc tests showed that the exerted pressure was

higher for the Walking condition, and that for the lowest Difficulty (N = 1)
participants exerted the lowest force compared to the others (N = 2 and
N = 3). This results partially support [H2], but do not support [H1].

Walking measures: No significant effect was found on the velocity and
position data for any of the independent variables.

1.4.4 Physiological Measures

Heart Rate (HR): Due to some recording errors, the analysis was based on
the data of 21 participants. The GLMM showed a main effect of the Second-
ary Task F1,21 = 70.03, p<0.0001, η2

p = 0.77 and Difficulty F1.75,36.67 = 11.67,
p= 0.0002, η2

p = 0.36. In contrast there was no effect of the Environment
F1,21 = 0.08, p= 0.77, η2

p = 0.004. The analysis also revealed a significant
interaction effect between Secondary Task and Difficulty F1.56,32.72 = 5.40,
p= 0.01, η2

p = 0.20. Post-hoc tests (all p < 0.05) showed that the HR of
participants significantly increased between the levels 1 and 2, but there
was no significant difference between the levels 2 and 3. The analysis of
the main effect of the Secondary Task showed that the HR of participants
was higher for the Walking condition. The analysis of the interaction effect
between Secondary Task and Difficulty showed a significant difference on
HR between the Difficulty level in Sitting condition (all p < 0.05), but not
in the Walking condition. This results partially support [H2], but do not
support [H1].
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Figure 34: Mean indicators of mental effort (response time, exerted pressure on
the button, HR) in terms of the secondary task and difficulty. As the
environment did not influence significantly these measures, only the
effect of the task is displayed.

Skin Conductance Level (SCL): The GLMM showed a main effect of the
Secondary Task F1,25 = 5.06, p= 0.03, η2

p = 0.17 (MSit t ing = 4.40, SDSit t ing =

3.39 ; MWalking = 5.37, SDWalking = 3.15), and no effect of Difficulty F1.98,49.51 =

0.13, p= 0.88, η2
p = 0.005 or Environment F1,25 = 0.28, p= 0.60, η2

p = 0.01.
The analysis did not show any significant interaction effect. This results
partially support [H2], but do not support [H1].

1.5 Discussion

Results showed that being immersed in a VE while wearing a VR HMD did
not differ from the Real World in terms of mental effort in this experiment.
Other parameters such as the difficulty of the cognitive task and the pres-
ence or not of a basic secondary task were also tested to assess potential
interaction effects. While the N-back task showed to be efficient to elicit
different levels of mental effort (see Fig. 33), there was no significant dif-
ference in the responses reported by the participants in the real world and
in the corresponding virtual environment. Moreover, we hypothesized that
walking would amplify the potential difference in mental effort reported
by the participants. However, in this experiment, no significant effect of
the environment was found considering this variable, despite the absence
of a virtual body. These results may be explained by the method used to in-
duce mental effort. In this experiment, the auditory task was well suited as
it could be done while walking. However, given the primarily visual nature
of VR, it may not have been able to elicit enough difference in mental ef-
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fort between VR and the Real World. As a consequence, the task difficulties
and the sitting conditions did not differ much between the VR and the real
conditions as users did not need to process visual information to answer
the cognitive task. These conditions (tasks difficulties and sitting) are rel-
evant as a first step to purely assess the effect of wearing a VR HMD on
mental effort, without interactions linked to the nature of the interactions
or factors such as realism. However, these conditions did not make full
use of the immersion and interactions possibilities allowed by VR. Further
work could help studying if stimuli necessitating more visual information
processing could provoke different mental effort responses between the
real world and the corresponding IVE.

In contrast, the results showed that the walking task had an effect on the
mental effort and on the cognitive task accuracy. The effect of the walking
condition was especially noticeable for the difficulty (N = 3), as seen in
Fig. 33. The task was designed to be as natural as possible, considering the
technical limitations. It was supposed not to require additional cognitive
resources from the same pools than the ones affected by the mental effort
elicited by the N-back task. However, it should be noted that the path con-
straint may have still influenced the latter. The fact that a simple walking
task had an effect on the mental effort means the amount of interaction
may need to be quantified in studies assessing similar cognitive states.

Further discussion about the metrics used to assess mental effort are
given in the general discussion (see Section 3).

2 E X P E R I M E N T 2: A C C O M M O D AT I O N T O V R E F F E C T

This second experiment aimed to assess the effect of time in VR on users’
mental efforts during short VR exposures. More specifically, we wanted to
study if what is commonly called the “awe” or “wow" effect [46, 120] or
if the “adaptation/accommodation to VR” impacted users’ mental efforts.
In addition, this study was conducted to confront the first experiment res-
ults. We decreased the number of conditions that might have absorbed
the potential effect of wearing a VR HMD on users’ mental efforts. Only
one difficulty of the auditory cognitive task (i.e., the 2-back task) and one
secondary task condition (i.e., walking) were considered here.

2.1 Apparatus

The second experiment was conducted in the same conditions as in the first
experiment (see Section 1.1), although physiological sensors (i.e., sensors
from Shimmer bracelet) were not used.

2.2 Participants

25 participants (6 females, 19 males; ages 21-51, M=31.3) from the b<>com
research institute, who did not take part in the first experiment, volun-
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teered to participate in this experiment. 3 participants wore glasses, 4 parti-
cipants wore contact lenses, and 2 participants reported a slight red-green
weakness. 2 of the participants were left-handed, and all the others, right-
handed. 2 participants were regular users of HMD, and all others had no
experience or a slight experience with HMDs in the past. 2 subjects played
games very frequently, 9 were regular players (once or twice a week), and
all others played games occasionally. As in the first experiment, all parti-
cipants were fluent in French and were naive to the experiment conditions
and purpose. They all completed and signed an informed consent form be-
fore the start of the experiment.

2.3 Experimental Design

The purpose of this second experiment was to study the effect of “accom-
modation to VR” on the users’ mental efforts and performances.

Contrarily to the first experiment, only one difficulty (the 2-back task)
and the walking condition were considered. The instructions for the tasks
were similar, but the sequences of letters were made shorters (i.e., 15+ 2
here vs. 25+N letters long in the first experiment).

This experiment followed a mixed design with 1 between-subject factor
and 2 within-subject factors. The between-subject factor was the order of
exposure to the environments (Real-VR vs. VR-Real) (see Fig. 35). The
within-subject factors were the environment (VR vs. Real) and the trial
number (i.e. representing the time: users had to do the 2-back task 3 times
each time they were exposed to an environment). Each condition (Real-VR
or VR-real) was repeated 3 times, resulting in a 2 × 2 × 3 × 3 mixed exper-
imental design (see Table 7). The order of exposure to each environment
was counterbalanced using a Latin square design.

Independent Variables

Participants 25 (random variable)

Order of exposure 2 Virtual-Real, Real-Virtual (between-subject)

Environment 2 Virtual, Real

Trial number (= time) 3 1, 2, 3

Repetition (= block) 3 1, 2, 3

Dependent Variables

Self-reports Rating Scale of Mental Effort [318]

Task performance Accuracy

Behavioural measure
Response time
Pressure exerted on the trigger button
Walking trajectory and velocity

Table 7: Experiment 2: independent and dependent variables.
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2.3.1 Independent Variables

In this experiment, three independent variables were manipulated: the
Order of Exposure to the Environments, the Environment, and the Trial
Number (i.e., time).

Order of Exposure to the Environments (Real-VR vs. VR-Real)
The experiment was divided in 3 identical blocks (see Fig. 35). In each

block, users started either with the real environment followed by the vir-
tual environment (Real-VR), or they started with the virtual environment
followed by the real environment (VR-Real).

Environment (Virtual Reality vs. Real World)
The participants performed the cognitive tasks in both the IVE using

the Vive HMD (VR) and in the real world (Real) wearing SMI glasses (see
Fig. 29).

Trial Number
The Trial number was tested as an indicator of time. All participant did

the cognitive task 3 times in each environment in each of the 3 blocks (i.e.,
they did the 2-back task 9 times in total in each environment).

2.3.2 Collected Data

In this experiment, physiological measures were not considered. Self-re-
ports (RSME), task performance (accuracy), and behavioural measures
(pressure exerted on the button, response time, and locomotion data) were
collected.
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Figure 35: Experiment 2: Process of the experiment for one participant (excluding
pre, post-questionnaire, instructions, set-up, and calibrations. The or-
der of the exposure to each environment was counterbalanced (either
Real-VR or VR-Real).
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2.3.3 Experimental Procedure

The second experiment progress for one participant is given in Fig. 35. The
procedure was very similar to the first experiment one (see Section. 2.5.3),
except users only had to perform the 2-back task during the training. The
total duration of this second experiment was around 45min.

2.3.4 Hypotheses

This study aims to study if there is an effect of acclimatization to IVEs on
the users’ mental effort responses.

The first hypothesis is the same as in the first experiment. Contrarily to
in the first experiment which studied the effect of wearing a VR HMD on
users’ mental effort using different task difficulties and different second-
ary task conditions, we only considered the 2-back task difficulty and the
walking condition. The results of the first experiment concerning the effect
of VR were discussed as the different conditions (different auditory task
difficulties and sitting condition) might not have sufficiently exploited the
visual interactions allowed by VR technologies. Walking require the use of
visual markers to move in the virtual or real environment, which is why
we hypothesized again that there would be an effect of wearing a VR HMD
on users’ mental efforts [H1] (same H1 hypothesis than in the first exper-
iment).

Our second hypothesis concerns the effect of wearing an HMD over-time
on the mental effort. We hypothesize that users will experience an "adapta-
tion effect" or a "wow effect" when exposed to the IVEs. Their mental effort
in VR will be greater compared to in the real world at the beginning after
having put on the headset and it will stabilize over-time. Therefore, we
expect an interaction effect between the Trial Number (= time) and the
Environment variables [H3].

As in the first experiment, it is supposed that the results will be suppor-
ted by the analysis of the other indicators of the mental effort. To summa-
rize, our hypotheses are:

• H1: Users experience more mental effort in a VE while wearing a VR
HMD than in the real world.

• H3: Users will experience more mental effort during the first trial(s)
compared to during the last trial(s) while wearing a VR HMD than
in the real world.

2.4 Results

As in Section 1.4, GLMM analysis was considered for all dependent vari-
ables (all parametric). For each variable, the user was considered as a ran-
dom factor. The order of exposure to each environment was considered
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a between-subject factor and all other independent variables as within-
subject factors (see Table 7). The statistical analysis was performed using
the R statistical software.

Figure 36 presents the results concerning the self-reported mental effort
and the response time.

2.4.1 Self-reports

RMSE: The GLMM showed a main effect of the Environment F1,24 = 34.48,
p< 0.001, η2

p = 0.59, but no significant effect of the Trial Number and no
interaction effect between the Trial Number and the Environment. These
results support [H1] but do not support [H3].

2.4.2 Task Performance

Accuracy: The GLMM showed no significant effect of the Environment and
of the Trial Number. The analysis did not show any significant interaction
effect. These results do not support [H1] and [H3].

2.4.3 Behavioural Measures

Response time: Due to measuring errors, only the data of 22 users could
be analyzed. The GLMM analysis showed a significant effect of the Environ-
ment F1,22 = 10.00, p<0.01, η2

p = 0.31 and of the Trial Number F1.88,41.29 =

9.66, p< 0.001, η2
p = 0.31. The analysis did not show any significant inter-

action effect. Post-hoc tests show that the difference in mental effort is
significant between the first and the third trials, and between the second
and the third trials in a block. Users answered faster during the third trial

Figure 36: Mean indicators of mental effort (RSME, response time) depending on
the Trial Number (= time) and environment (i.e., VR vs. Real).
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compared to in the first and second ones. These results support [H1] and
do not support [H3].

Exerted Pressure and Walking Measures: No significant effect was
found on the pressure exerted on the button, and on the velocity and posi-
tion data for any of the independent variables. These results do not support
[H1] and [H3].

2.5 Discussion

In this experiment, we found a significant effect of the Environment on the
subjective mental effort (RSME) and on the response time. This result was
not supported by other behavioural measures and task accuracy. There-
fore, the first hypothesis is partially supported. The effects on response
time should be considered cautiously as the differences between the dif-
ferent conditions are relatively small (around 50 ms). In this experiment,
users were walking in all conditions and did not control an avatar in the
virtual environment. The absence of visual feedback of their feet and body
movements might be at the origin of the effect of VR on the users’ mental
efforts. This result goes in the same line as previous studies that demon-
strated that the control and type of self-avatar could impact users’ cognitive
performances [217, 277]. Another result can be highlighted. While there
is a significant effect of the environment on the RSME, there is no effect of
the environment on the accuracy (see Fig. 36). Participants would perceive
the task as more mentally demanding in the VE than in the real environ-
ment while demonstrating similar levels of performance. This result could
reflect the fact that there is indeed a difference between the demands im-
posed on users’ cognitive resources and the tasks performances, or it could
reflect a perceptual bias linked to the exposure to IVEs.

As for the adaptation effect, there is no effect of time (i.e., trial number)
on users’ mental effort responses, except for the response time. No interac-
tion effect was found between time and environment on the users’ mental
effort responses. The outcomes considering the participants’ profiles (VR
and gaming experience) and first repetition (i.e., first block) only were
also explored and demonstrated similar results. Therefore, the third hypo-
thesis was not validated by this experiment. Users did not experience more
mental effort during the first trial compared to during the second and third
trials of each block in VR compared to in the real world. This result can
be discussed. The literature shows that users can easily be impressed by
the immersion allowed by VR technologies [60]. While this “wow effect” or
“adaptation to IVEs effect" did not show an effect on users’ mental efforts in
this experiment, it could impact other psychological processes. Moreover,
we tested only 3 time conditions every 34s (duration of a 2-back task trial)
during each exposure. The conditions might not have been correctly scaled
in time to catch the “wow effect.” The learning effect should also be taken
into consideration as it is a major phenomenon studied in the training and
education fields. Parting the effects linked to the improvement of the skills



72 S T U D Y I N G T H E M E N TA L E F F O RT I N V I RT UA L V S . R E A L E N V I R O N M E N T

after repetitions of the task from the effects linked to the accommodation
to IVEs can be complex. Further works could help to determine at which
time scale they intervene. Nevertheless, the fact no effect of time during
short exposures to VR on mental effort was found is encouraging as it sup-
ports the fact that mental effort in VR might quickly stabilize and is not
impacted by the accommodation to VR effect.

3 G E N E R A L D I S C U S S I O N

3.1 Impact of Wearing an HMD on the User’s Mental Effort

In the first experiment, 3 levels of difficulty for the cognitive task and 2
secondary task conditions were considered. In the second one, only the
2-back task and the walking condition were taken into account. We found
contradictory results concerning the effect of wearing a VR HMD on the
users’ mental effort. No effect of wearing the VR HMD was found in the first
experiment as opposed to in the second experiment. This can be explained
by the fact the VR conditions were very similar to the real conditions in the
first experiment. The virtual environment was designed to be highly faith-
ful to the real one. Moreover, the interaction in the sitting condition did
not require any visual information processing and were identical in both
environments. On the contrary, there was a difference of body represent-
ation and control in the second experiment as only the walking condition
was considered. Users did not have visual feedback of their body in the VE,
contrarily to in the real world. We pushed the analysis further considering
only the walking conditions in the first experiment and indeed found a
slight effect of the Environment on the RSME (F1,26 = 4.32, p= 0.05, η2

p =

0.14), but no effect of the Environment on the response time (F1,26 = 0.42,
p= 0.52, η2

p = 0.02). Moreover, there was no interaction effect between the
Secondary Task (Sitting vs. Walking) and the Environment (VR vs. Real) on
both measures. This small difference in results might be due to the differ-
ence in statistical power between the first and second experiments for the
walking conditions. There was an inferior number of data considered for
the walking conditions in the first experiment compared to in the second
one (i.e., experiment 1: 2 repetitions × 3 difficulties vs. experiment 2: 3
repetitions × 3 trials in each environment), and the task difficulty condi-
tions might have absorbed the effect of the environment. To summarize,
these results support that wearing a VR HMD has a limited impact on users’
mental efforts compared to in the real world. The type of tasks, nature of
stimuli, and VR interactions can impact mental effort in VR compared to
in the real world. In particular, walking in VR with no avatar increased
mental effort compared to walking in the real world.

In addition, walking significantly increased mental effort in both envir-
onments compared to the sitting condition. This result was supported by
all objective indicators. Therefore, interactions need to be quantified in
studies assessing similar cognitive states.
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The accommodation to VR effect did not have a significant impact the
users’ mental efforts compared to in the real world during short environ-
ment exposures. This supports the idea that mental effort measures were
quickly stabilized following the IVE exposure.

3.2 Lessons Learned

Besides giving insights about the effect of wearing a VR HMD on users’
mental efforts, this study provides lessons on how to measure mental effort
in VR in particular about what worked and what did not.

First, the mental effort reported via the RSME was consistent with the
subject’s accuracy while performing different levels of difficulty of the N-
back task in the first experiment (see Fig. 33). RSME scores were however
almost constant in a block between two consecutive 2-back task trials in
the second experiment. Thus, RSME can be an appropriate tool in order
to measure the level of mental effort when using clearly different tasks
difficulties. However, finer effects might be more difficult to assess using
this measurement method. While this scale can be used between different
conditions rather quickly, reporting users’ mental effort using the latter
still is impracticable at a higher frequency in VR.

Second, the results showed that the level of difficulty had an effect on
the HR, the response time, and on the pressure exerted on the trigger but-
ton. Since the mental effort was found to be influenced by the difficulty of
the cognitive task (see Section 1.4.1), these findings are consistent with
the literature [72, 255]. Nevertheless, depending on the context, not all
of the indicators were efficient to measure the mental effort. On the one
hand, the response time was able to discriminate between the three levels
of difficulty in the presence and in the absence of the secondary task. On
the other hand in the sitting condition both HR and exerted pressure meas-
ures were able to differentiate the 1-back task from the 2-back task, but not
the 2-back task from the 3-back task (see Fig. 34). This can be explained
by the between-individual variability. Most people consider the 1-back task
as an easy task, and the 3-back task as a difficult task. However, the per-
ceived difficulty tend to vary concerning the 2-back task, which may cause
more subtle changes in the physiological and behavioural measures. In the
walking condition, the exerted pressure could still discriminate between
the 1-back task and the 2-back task, but the HR was unable to discrim-
inate between any of the difficulties. These outcomes are consistent with
the literature since movements tend to add noises in the physiological sig-
nals and to decrease the distinction between signal features [284]. Fine
changes in physiological responses linked to psychological processes can
be absorbed by more impactful factors such as physical movements.

Concerning other manipulated variables, the response time results were
consistent with the RSME scores. There was no effect of the Environment
on the response time in the first experiment, contrarily to in the second
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one. On the other hand, HR, SCL, accuracy, and pressure exerted on the
trigger button were not affected by the Environment. Results also showed
a clear influence of the secondary task conditions on the HR, SCL, response
time, and on the pressure exerted on the trigger button. The latter should,
however, be taken with caution since they may be explained by the way
users held controllers in the sitting condition versus in the walking con-
dition. While the effect observed on the SCL and the HR may partially
be explained by changes in mental effort, those were probably mainly af-
fected by the physical activity caused by the walking conditions, compared
to the sitting conditions [281].

Finally, while users’ body behaviour and gesture showed to be influenced
by the cognitive load in past studies, the analysis of the walking behaviour
was not successful to show an effect in these two experiments. This might
be explained by the fact the space in which the subjects could walk in VR
and in the real world was restrained. Bigger spaces and no path constraint
may have lead to different outcomes. Also, the analysis of the SCL was not
able to discriminate between the different independent variables in the
first experiment, aside from the secondary task condition. An explanation
could be that the cognitive task required the subject to be focused, and
was not emotionally arousing.

In summary, in our experiment, among behavioural and physiological
measures, the response time was the best indicator of mental effort, fol-
lowed by the exerted pressure, then, by the HR. Cautions should however
be taken when using physiological sensors and behavioural measures in
interactive environments, as their viability tend to greatly decrease with
the involvement of movements [284].

4 C O N C L U S I O N

In this chapter, we studied the impact of being immersed in a VE using
a VR HMD on the user’s mental effort. We conducted two experiments.
In the first one, participants had to perform a standardized cognitive task
with various levels of difficulty in two different environments (real vs. vir-
tual), and in the presence or not of a secondary task (sitting vs. walking).
In the second one, users had to perform a single cognitive task difficulty
while walking and were exposed multiple times to both environments (real
vs. virtual) in the same order. Their mental efforts were assessed multiple
times during each exposure. The results suggest that wearing a VR HMD
has a limited impact on the users’ mental efforts. Given similar interac-
tion and tasks conditions, there was no effect of wearing a VR HMD on
the users’ mental efforts. Moreover, the experiments did not show an ef-
fect of accommodation to VR on users’ mental effort compared to in the
real world. However, walking in VR with no avatar increased users’ mental
efforts compared to walking in the real world. In addition, walking signi-
ficantly increased mental effort and decreased task performance in both
environments compared to being seated. These findings are grounded on
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various kinds of measurement: self-report, task accuracy, mean heart-rate,
response time, and pressure exerted on the answering button, which valid-
ities are discussed in the different contexts.

Taken together, our results support the view that being immersed in a
VE while wearing an HMD has a limited impact on users’ mental efforts.
In particular, interactions and stimuli should carefully be controlled, espe-
cially if they differ between the virtual and the real environments when
VR is used to simulate the real world.
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M E N TA L W O R K L O A D A S S E S S M E N T I N T H E D E S I G N O F
V R T R A I N I N G S C E N A R I O S

S U M M A RY In this chapter, we propose to consider MW assessment for
the design of complex training scenarios involving multiple parallel
tasks in VR. The proposed approach is based on the assessment of
the MW elicited by each potential task configuration in the training
application. Following the assessment, the resulting model is then
used to create training scenarios able to modulate the users’ MWs
over time. This approach is illustrated by a VR flight training sim-
ulator based on the Multi-Attribute Task Battery II, a computer ap-
plication developed by NASA which solicits different cognitive re-
sources. A first user study (N = 38) was conducted to assess the
MW in each task configuration using self-reports and performance
measures. This assessment was then used to generate three train-
ing scenarios in order to induce different levels of MW over time. A
second user study (N = 14) confirmed that the proposed approach
was able to induce the expected MW over time for each training scen-
ario.
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Figure 37: Illustration of the methodological approach to introduce MW assess-
ment for the design of VR training scenarios.

In this section, we propose an approach to introduce MW assessment in
the design of VR training scenarios to make them more adapted to users’
cognitive states [51]. The goal is to modulate the user’s MW over time in
complex contexts involving multiple parallel tasks.

Our approach is based on the model of the states of the training ap-
plication using the different allowed task configurations. State machines
are convenient in our proposed approach as it can be used to generate
scenarios based on the arrangement of tasks configurations (i.e., nodes or
states) over time. Each state contains data about the tasks setting and the
users’ MWs, and the transitions help to constrain the sequencing of the
tasks.

This methodology is divided into the following steps. First, tasks are se-
lected based on the objective and on the context of the training study. Then,
each selected task is subdivided into different difficulty levels. These task
levels are combined to form the states of a state machine. The state ma-
chine transitions are defined to allow users to navigate from a task config-
uration (i.e., a state) to another. Following these steps, the experimenter
chooses which MW data to collect. The MW is thereafter assessed and will
determine the attributes of the states. These measures can finally be used
to design training scenarios by defining paths inside the state machine.

1.1 Tasks Identification and State Machine Generation

The objective of this first step is to design the states and the transitions of
the state machine. The states contain data about the tasks configurations
and the MWs they induce to users. The transitions (i.e., a vector with a



1 M E T H O D O L O G I C A L A P P R O A C H 79

start and an end states) determine if users can transit from one state to
another or not.

Starting with the selection of the tasks, those should be defined based
on the training context. For example, in a car manufacturing training scen-
ario, the main task can be the assembly of car pieces and in a fire safety
application, the main task can be the extinction of a fire situation. The idea
of this first step is to extract all tasks relevant to a training purpose in the
imposed context. Once the tasks are selected, those can be decomposed
into multiple discrete intrinsic levels of difficulty, including their presence
(activation) or absence (deactivation), if relevant. Each task level should
be combined to form the “states", except for the tasks levels which can not
be associated given the training environment. In any case, all tasks should
be represented in each state with a specific level of difficulty.

In the same way, the transitions should be created depending on the
constraints of the training context. By default, those can be defined so only
one task at a time can be upgraded or downgraded in its difficulty level, or
so all states are linked together. However, if one task level can only come
after another specific task level, this should be taken into account. The
condition to trigger a transition can be of multiple types (e.g., a time limit,
once all the tasks of a state have been fulfilled, after users have reported
their MW).

1.2 Data Assessment

Following the identification of the tasks levels, the trainer has to choose
which MW data to collect (see Section. 3). Then, the objective is to assess a
maximum of data to have an estimation of the MW induced by each state.

For a clean estimation and to avoid order effects, the experimenter can
make all participants traverse the states in a randomized or counterbal-
anced order so each state is explored in a balanced way. In the case the
training context would be too complex and the states too numerous, only
certain states can be used to assess data. For example, for tasks with more
than 2 levels of difficulty, the intermediary states considering a variation
of difficulty of one task can be ignored during the assessment and estim-
ated afterwards. Nevertheless, this will draw to less accuracy about the
MW induced by these states.

Once the data is measured, it can be assigned to the states as attributes.
At this point, the states should contain data about the task configuration
(i.e., “task1 difficulty level", “task2 difficulty level", ...) and about the mean
MW induced by the task configuration to users (i.e., “MW measure 1", “MW
measure 2", ...). The measured data can be used to weight the transitions
(e.g., the difference between the subjective mental workload of the end
state and of the start state) for the scenarios design purposes. Also, a con-
fidence value can be attributed based on the MW data distribution inside
a state.
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1.3 Scenario Generation

The MW measures can now be used to design scenarios by defining the
order of the task configurations (i.e., states) through time.

From this point, the keys of the design belong to the trainer. Depending
on the motive of the training, they have to define the scenario depend-
ing on the MW they want to induce to the trainee. The trainer can as
well make a list of constraints linked to the duration of the training, the
number of simultaneous changes of tasks for the transitions, and the ap-
pearance or not of a task level. The computation of the paths can be done
using the transitions weights (which can be defined as the difference of
MW data between the end and the start state). For example, if a scenario
should maintain the user’s MW at the same level all long, the path can be
computed by choosing the transitions with the cheapest costs (i.e., lowest
absolute differences of MW).

This last step should result in the design of a training scenario which
modulates the progress of MW over time, as defined by the trainer.

2 VA L I D AT I O N O F T H E A P P R O A C H : D E S I G N I N G T R A I N I N G S C E N A R I O S

B A S E D O N M E N TA L W O R K L O A D I N A V R F L I G H T S I M U L AT O R

To illustrate the proposed methodological approach, we designed a VR
application based on a flight simulator. This section is structured follow-
ing the proposed methodology in section 1. First, tasks and their difficulty
levels were defined following the context of the training. Those were com-
bined to form states, which were used to structure a state machine. Then,
the MW measures to collect were identified. Two experiments (N1 = 38,
N2 = 14) were conducted to validate the proposed approach. The ob-
jective of the first experiment was to collect MW data in the defined task
configurations. The objectives of the second experiment was to use these
measures to create scenarios based on training objectives and to compare
the MW results to the expected outcomes.
2.1 Tasks Design

The illustrative application was designed based on a VR flight simulator.
It is inspired by the second version of the Multi-Attribute Task Battery
II (MATB-II) [253], a computer-based application designed to induce and
evaluate an operator’s performance and workload developed by NASA.
This battery of tasks has been widely used to study multitasking and the
use of automation [253]. The original application comprises a monitoring
task, a tracking task, a schedule window, a communication task, and a re-
sources management task. Those were intended to be presented on a single
computer window and are analogous to tasks that aircraft crew-members
perform in flight, while being accessible to non-pilot subjects.

In the current studies, three tasks were selected and adapted to a VR
environment: the piloting task, which would be an analogy to the tracking
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task, the communication task, and the resources management task (see
Fig. 38).

 

 1 

 2 

 3 

 4 

 5 

Figure 38: Virtual cockpit view. (1) Instantaneous Self Assessment (ISA) interface.
(2) Resources management task interface (deactivated); when activ-
ated, the interface lit up (with a green outline). (3) Communication
task interface (activated); when deactivated, the interface lit off (no
green outline). (4) Informative panel which gives information about
which task is activated or not at the current time. (5) Virtual repres-
entation of the joystick used to pilot the aircraft and of the right hand.
The left hand is represented in the same way, but tracked by a Vive
Controller and animated depending on the interaction.

Piloting Task
The tracking task of the MATB-II required the user to keep a target in

the centre of a square controlled by a joystick. In the following experi-
ments, the task was adapted to fully exploit the immersion permitted by
VR. Participants were piloting an aircraft in the first-person perspective us-
ing a joystick and could see the environment being refreshed in real-time
depending on their actions. The speed of the piloting task was imposed
on the users (they could not accelerate nor decelerate). They could, how-
ever, orientate the aircraft using a joystick. Preliminary tests were done to
tweak the sensitivity and control of the interaction. Since the participants
were non-pilot subjects, only two degrees of freedom of the aircraft were
retained: the yaw (i.e., rotation upon the vertical axis) and the pitch (i.e.,
rotation to go up and down). The roll degree (i.e., rotation upon the for-
ward vector of the aircraft) was not included. The objective of this task
was to follow as closely as possible the green line which passed through
all circles centres.

Three levels of difficulty were proposed: easy piloting (0), medium pilot-
ing (1), and hard piloting (2). The task difficulty was modified by adapting
the speed of the aircraft and the number of visible circles at a time (see
Fig. 39). In the easy difficulty, users could see 3 circles at a time and the air-
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craft was advancing at a slow pace (about 20 seconds between 2 circles).
In the medium difficulty, this was changed to 2 circles and a speed which
was multiplied by about 2, and in the hard difficulty, to one circle and an
original speed which was multiplied by about 3.

Each circle was separated by a constant distance. Only the easiest task
configuration was set to have a straight alignment of circles. Otherwise,
the trajectory was randomized for each participant so the horizontal and
vertical distances between two circles could not exceed an imposed value.

 

EASY 

HARD 

MEDIUM 𝑁𝑣𝑖𝑠𝑖𝑏𝑙𝑒 = 2  𝑆𝑝𝑒𝑒𝑑 = 2 ∗ 𝑆𝑝𝑒𝑒𝑑1 

𝑁𝑣𝑖𝑠𝑖𝑏𝑙𝑒 = 1   𝑆𝑝𝑒𝑒𝑑 = 3 ∗ 𝑆𝑝𝑒𝑒𝑑1 

𝑁𝑣𝑖𝑠𝑖𝑏𝑙𝑒 = 3  𝑆𝑝𝑒𝑒𝑑 = 𝑆𝑝𝑒𝑒𝑑1 

Figure 39: The difficulty of the piloting task was modulated by changing the num-
ber of circles visible by users at a given time (i.e., Nvisible) and the
speed of the aircraft.

Communication Task
The communication task was designed similarly to the one from the

MATB-II, but without the radio channel selection. This task was designed
to have two levels: it was either disabled (0) or enabled (1). When the task
was enabled, audio messages were sent to the participant’s audio headset,
and the interface of interaction lit up (see Fig. 38).

The operators were asked to answer when the message was intended for
their aircraft. In the case of our experiment, the ID of the operator’s air-
craft was “HDG219". When the message was directed to the aircraft, the
participant was required to change the frequency of the radio in accord-
ance with the message, by pushing the “plus" and “minus" buttons, which
changed the left screen (see Fig. 38). Once users finished inputting the
frequency, they were asked to click on the validate button, which changed
the right screen so it matched the left screen (see Fig. 38). No action was
expected when the message was directed to another aircraft. In the stud-
ies, half of the calls in each state with the communication task were set to
target the user.

The target frequency was an integer number of 3 digits with no decimal
part. It was computed so the user was asked to click on the plus or minus



2 VA L I D AT I O N U S I N G A V R F L I G H T S I M U L AT O R 83

button (see Fig. 38) a random number of times between 2 and 5 included.
When the message was not directed to the user, the requested aircraft was
a random one between 4 different IDs.

Resources Management Task
This task was designed in accordance with the one from the MATB-II. It

depicts a generalized fuel management system. This task had two levels:
disabled (0) and enabled (1). When the task was enabled, the interface of
interaction of the task was lit up (see Fig. 40 and Fig. 38).

The interface displayed 8 different pumps numbered from 1 to 8, and 6
tanks labelled from A to F (see Fig. 40). When the task was enabled, the
fuel of the tanks A and B started to decrease. The objective of the user was
to keep the levels of the tanks A and B in the blue zone displayed on the
two tanks sides. Those indicated the critical levels of fuel for those tanks.
Tanks D and F had unlimited capacities. Not transferring fuel to tanks A
and B resulted in empty tanks after some time, while tanks C and D only
lost fuel if they were transferring fuel to another tank.

Users could use the 8 pumps at their disposal to maintain the two tanks
levels in the appropriate zone. There were 3 possible states for each pump
button: grey, which meant the pump was deactivated, green, which meant
the pump was activated and red, which meant the pump was failed and
could not be used. An activated pump button (green) meant fluid was cir-
culating in the direction indicated by the button arrow. Clicking on a grey
button would turn the button green, and clicking on it again would turn
the button back in grey, like a switch button. The red state was activated
at predefined moments.

Figure 40: Resources management task interface. A and B are the main tanks;
their fuel levels are indicated below the tanks. C and D are supply
tanks; their fuel levels are indicated on their right side. E and F are
supply tanks with unlimited capacities. The buttons numbered from 1
to 8 are pumps button. Pumps 4 and 6 are activated, pump 5 is failed,
and all other grey pump buttons are deactivated.
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2.2 State Machine Structure

As seen in Section 2.1, 3 tasks were considered, each of them with their
own difficulty levels. This gives us: 3 piloting task (0-easy, 1-medium, 3-
hard) × 2 radio task (0-deactivated, 1-activated) × 2 resources manage-
ment task (0-deactivated, 1-activated). All these levels were combined to
form 12 states (3× 2× 2). To ease the understanding, each state was la-
belled using 3 digits, one for each task. The first digit represents the diffi-
culty of the piloting task, the second one, the level of the communication
task, and the third one, the level of the resources management task. For
example, in the state “201", the difficulty of the piloting task is set to “2-
hard", the radio task is “0-disabled" and the resources management task is
“1-enabled". Following this labelling system, the resulting state machine is
depicted in Figure 41. For convenience purposes, we will call “consecutive
states" two states which differ in only one task of one difficulty level. All
the states could transit from one to another (i.e., there were transitions
between all states). The transitions were triggered once users passed the
last circle of the state they were in.

010
(2.35)

000
(1.50)

011
(3.20)

001
(2.83)

110
(2.92)

100
(1.99)

111
(3.64)

101
(3.12)

210
(3.39)

200
(2.85)

211
(4.13)

201
(3.67)

 

1

1.5

2

2.5

3

3.5

4

4.5

5
Mean ISA 

Figure 41: State machine of the designed VR flight simulator. Each state is la-
belled using 3 digits. The first digit refers to the level of the pilot-
ing task (0-easy, 1-medium, 2-difficult), the second one to the level
of the communication task (0-deactivated, 1-activated) and the third
one to the level of the resources management task (0-deactivated, 1-
activated). The colours of the nodes represent the mean ISA assessed
during the first user study, which are as well indicated in the brackets.
Only the transitions between consecutive states are depicted there.
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2.3 Mental Workload Measures

The dependent variables considered were: self-reports (i.e., the subjective
MW reported by the participants) and task performances.

Self-Reports: Originally, the MATB-II was designed so the MW could be
assessed using the NASA-TLX [115] after the experiment. However, the latter
is a multidimensional scale, which is not adapted to the several ratings
of the MW throughout a scenario. Therefore, the focus was set on the
ISA [287], which rates the MW using five different ratings (under-utilized,
relaxed, comfortable, high, excessive) and has been especially used during
air traffic control tasks [287]. The meaning of each rating levels of the ISA
was made explicit to each subject using the description given by Kirwan
et al. [140] before each experiment.

During the experiments, users were asked to report their MW when a
screen appeared in front of them with 5 buttons (see Fig. 38). They were
asked to push the button corresponding to their MW level and then, to
click on the validate button on the same screen to make it disappear.

Performance Measures: Concerning the piloting task, the distance to
each circle centre was recorded throughout the experiment. The parti-
cipants were given indication before the experiment of how to align the
plane with the green line optimally.

As for the communication task, performance indicators of the success
of the task were recorded: true positive and negative, accuracy, differ-
ence between the input and target frequencies, reaction and response time,
global success for each communication call compared to the expected re-
action.

Lastly, the global success time ratio of the resources management task
was recorded as well as events corresponding to a success or a fail of the
task.

2.4 Apparatus

Each participant was installed on a cockpit assembled for the experiment
(see Fig. 42). The virtual environment was modelled in 3D so the virtual
cockpit matched the real one in position and size.

As for the interactions, users piloted the aircraft using a Logitech 3M X52
PRO with the right hand, and they interacted with the virtual interfaces
using a Vive controller with the left hand. Both hands were represented by
transparent virtual hands. The right hand was placed on the virtual joystick
(see Fig. 38), which moved when the user was interacting with the real one.
The left hand was tracked with the Vive controller. As seen in Section 2.1,
all interactions linked to the tasks are buttons based. The users did not
need to use any of the buttons on the Vive Controller or on the joystick to
do the tasks. Pushing a virtual button would be processed as follows: the
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user approaches her.his left hand to the button. The interactable object
highlights and the hand animation changes to a pointing index. The user
pushes further the button as s.he would have done with her.his real finger.
This triggers a small haptic pulse on the Vive Controller, which gives a
feedback that the action has been well resolved. The environment updates
according to the button action.

The VR headset used during the experiments was an HTC Vive Pro. Au-
dio instructions were provided using the audio headset supplied with the
HMD. The support application was developed in Unity 3D, and run on
a laptop computer equipped with an Intel(R) Core(TM) i7-6820HK CPU
(2.7 GHz), one Nvidia GeForce GTX 1070 graphic card, and 16 Go Random-
Access Memory.

Figure 42: Picture of the experimental set-up. The user is wearing a Vive Pro, and
using a joystick and a Vive controller on the cockpit.

2.5 Experiment 1: Data Assessment

The objective of this first experiment was to collect data on the users’ MW
in each state (i.e., tasks levels combination) to get an overview of their
effect on the MW (see Fig. 41).

2.5.1 Participants

39 healthy participants from our research institute volunteered to take
part in this study. One subject was excluded from the study because of
motion sickness issues, resulting in a final sample of 38 participants (10
females, 28 males; ages 21-62, M=36.97). Four participants reported hav-
ing a small experience with aircraft piloting, and all others never had any
experience with it. All participants were fluent in French and were naive
to the experiment conditions and purpose. They all completed and signed
an informed consent form before the start of the experiment.
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Independent Variables

Participants 38 (random variable)

States 12 12 tasks configurations

Piloting task level 3 0-Easy, 1-Medium, 2-Difficult

Communication tasks level 2
0-Deactivated
1-Activated

Ressources management
tasks level

2
0-Deactivated
1-Activated

Dependent Variables

Self-reports ISA [287]

Piloting task performance Distance to the centres of the circles

Communication task
performance

Global success, accuracy, reaction and response time

Resources management
task performance

Success time ratio

Table 8: Data assessment experiment: independent and dependent variables.

2.5.2 Experimental Design

The goal of this experiment was to measure the users’ MW induced by each
state of the graph. Thus, each user went by all the states. Only transitions
between consecutive states were considered in this study. To minimize the
learning effect, the order of the states was randomized for each participant.
However, they always started with the state “000" (easy piloting, no com-
munication task, no resources management task).

The objective was to make sure that the designed states could induce
different levels of MW. Therefore, we hypothesized that:

• H1: Increasing the level of difficulty for each task will increase the
users’ MW.

• H2: Additional task will increase the users’ MW.

• H3: The subjective MW will have an effect on the tasks perform-
ances.

2.5.3 Experimental Procedure

The experiment had a total duration of around 1h and was subdivided into
the following steps:

Written Consent and Instructions: Users completed a consent form,
prior to the experiment. They were then instructed with the nature of
the experiment, the equipment used, the data recorded (which was an-
onymized), and the tasks instructions. Participants were also asked to fill a
questionnaire (experience with VR, video games, and piloting an aircraft,



88 I N T R O D U C I N G M W A S S E S S M E N T I N V R T R A I N I N G S C E N A R I O S

 

 

 

 

 

 

 

Piloting Task | Levels = {0-Easy, 1-Medium, 2-Hard} 
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Figure 43: Progress of the tasks and of the ISA calls within one state in the first
experiment. In this paper, 12 states were considered. The communic-
ation task and the resource management task were not always activ-
ated. The ISA is always present. Each state lasted at least 90 seconds
(depending on the user’s piloting path).

dominant hand, level of alertness, state of vision, demographic informa-
tion, simulator sickness questionnaire (SSQ) [135]) to gather information
about their background and their state before the start of the experiment.

Training: Users were then equipped with a Vive Controller and the HMD.
They were first asked to interact with the buttons of the tasks interfaces
to familiarized themselves with the interactions. Then, they travelled the
states following this path: “000−010−011−001−101−201−211” (see
Fig. 41), which gave them a good overview of each task and their levels.

The training part was followed by a 2-minutes pause where users did
not wear the HMD and were invited to ask any question they may have
had.

Experiment: In this experiment part, users travelled all the states in a
randomized order, starting with the state “000". Only consecutive states
were considered for the transitions. The states were set to last 90 seconds
with 4 communication calls and 3 ISA calls. The progress of the tasks
within a state is depicted in Fig. 43.

Debriefing: At the end of the experiment, they were asked to fill the
SSQ again, debriefed and invited to ask questions.

2.5.4 Results

Generalized linear mixed model (GLMM) analysis was considered for all
dependent variables (all parametric). For each variable, the user was con-
sidered as a random factor and all the independent variables as within-
subject factors. When the equal variances assumption was violated, the
degrees of freedom were corrected using the Greenhouse-Geisser method.
When needed, pairwise post-hoc tests (Bonferroni with adjustment) were
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Figure 44: Mean ISA in terms of tasks levels and configurations. “Radio" refers

to the communication task and “Fuel", to the resources management
task.

performed. Only significant differences (p < 0.05) are discussed. The stat-
istical analysis was performed using the R statistical software. Figure 44
presents the effect of tasks difficulty levels and secondary tasks interac-
tions on the mean ISA value reported by users, and Figure 45 depicts all
ISA values reported by users in each state.

ISA: The GLMM showed a main effect of the piloting difficulty F1.83,67.62 =

100.77, p<0.001, η2
p = 0.73, communication task F1,37 = 85.23, p<0.001,

η2
p = 0.70, and resources management task F1,37 = 154.68, p<0.001, η2

p =

0.81. It also showed an interaction effect between the communication task
and the resources management (fuel) task F1,37 = 12.81, p= 0.001, η2

p =

0.26, as well as an interaction effect between the piloting difficulty and the
fuel task F1.81,67.39 = 3.72, p< 0.05, η2

p = 0.09. Post-hoc tests showed that as
the level of difficulty increased, participants perceived the task as more
mentally demanding (see Fig. 44) (all p<0.001). The tasks were also per-
ceived as more demanding when a task was activated (see Fig. 44). The
resources management task was perceived as more difficult than the com-
munication task (p<0.01 ; all p<0.001 for other tasks combinations effects
otherwise ; see Fig. 44). These results support [H1] and [H2].

Piloting task performance: The considered variable is the distance to
circles centres. The GLMM showed a main effect of the piloting difficulty
F1.06,39.10 = 16.07, p<0.001, η2

p = 0.20, communication task F1,37 = 16.33,
p<0.001,η2

p = 0.31, and resources management task F1,37 = 19.95, p< 0.001,
η2

p = 0.35. It also showed a main effect of the mean ISA value (mean of the
3 ISA values per state) F1,447.80 = 46.30, p< 0.001, η2

p = 0.08. Post-hoc tests
showed that as the difficulty level increased, the participants tended to
go further away from the circles centres (all p<0.01 except between easy
and medium difficulties). In the same way, the activation of the commu-
nication task or of the resources management task increased the distance
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to the circles centres. Overall, the more the MW increased (ISA value), the
greater the distance to the circles centres was. These results support [H3].

Resources management task performance: The considered variable
is the success time ratio of the task. The GLMM showed a main effect of
the activation of the communication task F1,37 = 7.52, p<0.01, η2

p = 0.17,
and of the mean ISA value (mean of the 3 ISA values per state) F1,219.64 =

31.15, p< 0.001, η2
p = 0.10. Overall, the activation of the communication

task decreased the success time ratio of the resource management task.
Moreover, as the MW increased, the success time ratio of the resources
management task decreased. These results support [H3].

No significant effect was found on the communication task performance
indicators, which does not support [H3].

2.5.5 Discussion

The levels of the tasks were able to induce different levels of MW (see
Fig. 44). Figure 41 depict a global map of the mean MW assessed during
this first experiment and Figure 45 presents all ISA reported in each state.
Overall, the ISA values follow a normal distribution in each state. Increas-
ing task difficulty and additional tasks increased users’ subjective MW. Both
[H1] and [H2] were supported in our experiment. The resources manage-
ment task induced a higher MW than the communication task. Different
explanations can be provided. This effect could be explained by the fact it
stimulated similar pools of cognitive resources to the ones stimulated by
the primary piloting task (visuomotor) compared to the ones stimulated
by the communication task (mainly auditory-motor). This would also ex-
plain the interaction effect between the resources management task and
the piloting difficulty on the reported MW. These results go in the same line
than Wicken’s Multiple Resources Theory [304]). The resources manage-
ment task could also directly be considered as intrinsically more difficult
than the communication task. Users did, however, not report having per-
ceived one of these two tasks as being more difficult after the experiment.

The subjective results were supported by piloting and resources man-
agement tasks performances, which supports [H3]. However, piloting task
performances were less steady in the states compared to the self-report
measures (e.g., no effect between easy and medium piloting difficulty). No
significant effect was found for the communication task as it was mainly
used to distract users from the other tasks and to induce time load. Parti-
cipants managed to complete this task most of the time.

Overall, the designed tasks configurations were successful into inducing
different levels of MW to the users. Moreover, the subjective MW and the
states had an effect on the piloting task performance (distance to the circles
centres) and on the resources management task performance (success time
ratio). However, the ISA value was more reliable to differentiate the differ-
ent levels of mental workload in the states than the performance measures
considering the effect of the states and the data distribution. Finally, each
state was characterized by the following attributes: (piloting task level, com-
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Figure 45: All ISA values (subjective MW) obtained per state during the data assessment experiment (38
participants reported their MW 3 times per state).
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munication task level, resources management task level); (ISA value, pilot-
ing task performance, resource management task performance). As [H3]was
partially supported, we only used the ISA value among the MW measures
in the subsequent study.

2.6 Experiment 2: Scenarios Generation

The objective of this second experiment was to build scenarios based on
the states defined in Section 2.5 and to validate the proposed approach.

2.6.1 Participants

14 healthy people from our research institute, who did not participate in
the first experiment, volunteered to take part in this study (2 females, 12
males; ages 21-52, M=32.21). None of the participants had an experience
with piloting an aircraft in the past. As in the first experiment, all parti-
cipants were fluent in French and were naive to the experiment conditions
and purpose. They all completed and signed an informed consent form be-
fore the start of the experiment.

2.6.2 Experimental Design

We chose to focus on 3 different scenarios using a fixed number of 5 states.
They were all designed based on the subjective MW (ISA).

The scenario 1 induces a medium MW level all long. This scenario is a
classical use case where a trainer wants to keep the users’ MW at a medium
level during the whole training, while varying the experimental conditions.
The goal can be to train users while keeping them engaged, by not over-
loading nor underloading them, and without using repetitive tasks. This
scenario was designed by choosing the 5 states with the MW the closest to
ISA = 3. The transitions between each of these states were computed so
there was a prioritization of transitions between consecutive nodes. The
orientation of the given path was chosen randomly. The resulting path is:
200 - 101 - 001 - 011 - 110 (see Fig. 41).

The scenario 2 induces a low MW level first, and a suddenly high MW
level in the end. This scenario is a typical scenario where the reactivity of
the pilot is studied in an urgency or surprising situation. The 4 first states
were chosen as the 4 consecutive states with the lowest ISA. The first state
was chosen by prioritizing the state “000", and the orientation of the path
was chosen randomly. The last state was chosen as the one with the highest
ISA value. The resulting sequence is: 000 - 010 - 110 - 100 - 211.

The scenario 3 induces a progressively increasing MW level throughout the
experiment. It can be used to train progressively pilots to different levels
of difficulty they might experience. The scenario was defined so the first
state was the one with the lowest ISA, and the last state, the one with the
highest ISA. All paths of 5 consecutive states going from the first state to
the last one where computed, as well as the sum of the transitions weights
for each path. The final path was selected as the one the lowest sum of
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transitions weights: 000 - 100 - 110 - 210 - 211.

This experiment followed a one-factor (scenario) within-subject design.
All participants experienced all 3 scenarios. The order of the scenarios was
counterbalanced using a Latin square design, except for the 2 last parti-
cipants who did the 3 scenarios in random order.

Concerning the hypotheses, they are defined by the scenarios depicted
above. We expect no significant effect of the experiment (first and second
one) on the mean ISA of the states.

2.6.3 Experimental Procedure

The procedure is almost the same as the one defined in Section 2.5.3, ex-
cept the SSQ was not included this time. Still, all participants were asked
how they felt after the scenarios.

The experiment was divided into 3 blocks: one for each scenario. During
the scenarios, users answered the ISA twice per state. After each scenario,
users were asked to answer a set of custom questions on a 7-points Likert-
Scale (1: fully disagree, 7: fully agree) to define their perceived difficulty
during the experiment (see Table 10). The 3 questions respectively tran-
scribe the progress of the scenarios 1, 2, and 3, from MW to perceived
difficulty. They were mixed with 3 other unrelated questions linked to the
users’ absorption and sense of presence [270] to mask the objective of the
study to participants. At the end of the 3 scenarios, participants were asked
to map the descriptions of the 3 scenarios to the 3 experiences they did.

The parameters used in this experiment were set for each state to last
70 seconds, with 3 communications calls (2 which targeted the user) and
2 ISA calls.

Independent Variables

Participants 38+ 14 (random variable)

Experiment 2 Experiment 1 (N = 38), Experiment 2 (N = 14)

Scenario 1 States 5 200 - 101 - 001 - 011 - 110

Scenario 2 States 5 000 - 010 - 110 - 100 - 211

Scenario 3 States 5 000 - 100 - 110 - 210 - 211

Dependent Variables

Self-reports ISA (3 times per state) [287]

Piloting task performance Distance to the centres of the circles

Communication task
performance

Global success, accuracy, reaction and response time

Resources management
task performance

Success time ratio

Table 9: Scenarios generation: independent and dependent variables.



94 I N T R O D U C I N G M W A S S E S S M E N T I N V R T R A I N I N G S C E N A R I O S

2.6.4 Results

Evaluation of the MW overtime

ANOVAs were run to analyse the results. To
ensure the replication of the first experiment res-
ults, the outcomes between experiment 1 and 2
(between-subject factor “Experiment" with N=35
in Experiment 1 and N=14 in Experiment 2) were
compared. The results are presented in Figure 46.
For each scenario, no significant effect was found
on the ISA and tasks performances. As well, each
state in each scenario was also tested separately
considering the experiment factor, and it did not
show any significant effect on the ISA and tasks
performances.

Perception of the progression of scenarios A
Posteriori

The perceived progression of difficulty was as-
sessed after each scenario using the question-
naire presented in Table 10. Results are presen-
ted in Figure 47. For the first scenario, the mean
ratings were (Q1 : 3.36), (Q2 : 3.14), and (Q3 :
2.64). For the second scenario, the results gave
(Q1 : 2.43), (Q2 : 5.86), and (Q3 : 4.14). As
for the third scenario, the average scores were
(Q1 : 1.64), (Q2 : 3.79), and (Q3 : 5.71). For
each scenario, the related question was noted the
best among the 3 in average. The second and the
third scenario were globally successfully noted
based on the MW they were supposed to induce,
but the first scenario did not induce the right per-
ceived progression of the difficulty.

As for the mapping of the descriptions of the
scenarios to the appropriate experiments after all
3 scenarios, the results are presented in Figure 48.
A confusion was observed mainly between the
second and the third scenarios.
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Figure 46: Comparison of the users’ subjective MW
(mean ISA value) reported overtime for
all 3 scenarios between the first and the
second experiment. The first scenario was
intended to induce a MW around ISA≈ 3
all long and the second one, to induce a
low MW (ISA <= 3) followed by a high
MW at last. The last scenario objective was
to induce a progressively increasing MW.



2 VA L I D AT I O N U S I N G A V R F L I G H T S I M U L AT O R 95

Question Corresponding
Scenario

Affirmation

Q1 Scenario 1 I felt that the difficulty was approximately the same dur-
ing the scenario.

Q2 Scenario 2 I felt the difficulty suddenly increased at a given time.

Q3 Scenario 3 I felt the difficulty increased progressively.

Table 10: Custom questionnaire on users’ perceived progression of difficulty after
each scenario. These questions were mixed with 3 other unrelated ques-
tions linked to users’ absorption and sense of presence to mask the study
objective. Users were asked to answer each affirmation using 7-points
Likert-Scales.

Figure 47: Results of the questionnaire asking users about their perceived pro-
gression of difficulty after each scenario. Corresponding “questions"
and scenarios are highlighted in red.

Figure 48: Results of the mapping of scenarios descriptions to the experienced
scenarios (after all 3 scenarios). D1: The experiment induced a medium
MW level all long. D2: The experiment induced a low MW level first, and
a suddenly high MW level in the end. D3: The experiment induced a pro-
gressively increasing MW level throughout the experiment. Correspond-
ing descriptions and scenarios are highlighted in red.
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2.6.5 Discussion

The ISA scores and the task performances followed the expected results for
scenarios 1, 2, and 3, which were designed based on the first experiment
measures (see Fig. 46). The slight variations between the two experiments
can be explained by the fact there might have been a small order effect as
the travel of the states was randomized in the first experiment and not in
the second one. However, as tested, those are not significant. As well, the
subjective measures were once again supported by the piloting and the
resources management tasks performances.

The perceived difficulty was found to lack of accuracy compared to the
expected outcomes, on the contrary to the ISA values. This can be due to
the fact these questions were non-standardized and to the difference in
the rating delays [306]. Some users were found to answer in unexpected
ways compared to their ISA score, even just after having completed the
scenario. Because the tasks configurations changed through time for the
first scenario, users did not felt that the difficulty was approximately the
same during the experiment. As for the second and third scenarios, users
had issues to determine if the task difficulty suddenly or progressively in-
creased. As well, the fact there was a confusion between the mapping of
the second and the third scenario at the end of the experiment might be
explained by the fact users mainly remembered the first and the last states
of the scenarios, which appear to be the same in the two scenarios. There-
fore, subjective ratings have to be performed cautiously and delays in rat-
ing, considered carefully, as mentioned in previous studies [306]. The sub-
jective MW rating throughout the scenarios was more accurate than the
post-experiment self-report questions and the performance measures.

3 G E N E R A L D I S C U S S I O N

In this chapter, we proposed an approach to create scenarios in order to
induce different levels of MW during a VR training routine. It differs from
the literature as it focuses directly on the user’s subjective cognitive state
and targets multiple parallel tasks environments (see Section 5). The meth-
odology is divided into the following parts: the tasks levels identification
and association, the MW assessment, and the scenarios design. Two stud-
ies based on a VR flight simulator were performed to test the method. The
first study results support that the designed states (i.e., tasks configura-
tions), which are based on the combination of multiple tasks with vary-
ing levels of difficulty, were able to induce different levels of MW. This is
consistent with previous findings [55, 113, 159, 304]. They also support
that using two tasks stimulating the same pools of cognitive resources will
further increase MW compared to two tasks stimulating different pools
of cognitive resources, which goes in the same line as Wicken’s Multiple
Resources Theory [304]. Both subjective and task performance measures
were influenced by the states, but the subjective MW measures appeared
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to be more accurate, as outlined in [49, 51, 310]. From the subjective MW
measures gathered and the designed states, 3 training scenarios inducing
different progressions of MW through time were generated in a second
study. Those were able to reproduce the same MW profiles than in the first
experiment. However, some users did not perceive the entire scenario dif-
ficulty progression after the experiment as accurately as their subjective
MW was predicted over time, which can be explained by the difference of
delays in rating [306]. Overall, the approach successful designed training
scenarios which were able to induce the expected MW through time. This
supports the introduction of MW assessment in training scenarios, as ex-
pressed by other studies [51, 55, 159], and encourages the use of MW in
the design of VR training scenarios to make them more fitted to users’ cog-
nitive resources in a controlled, reproducible, and safe environment. On
a side note, in the two presented studies, most users reported having en-
joyed the training and being engaged throughout the experiment, which
encourages the use of VR in the training field and is in line with previous
studies [21, 30, 38, 55, 112, 200, 233, 300].

In the second study, the 3 scenarios were designed based on the mean
subjective MW assessed in the first experiment and considering realistic
training purposes. However, the scenarios could also have been constrained
by other criteria such as task performance measures, the presence and
the absence of one task, or the probability to induce a subjective MW rat-
ing level for example. Given the designed states with just subjective and
task performance measures, there are already numerous ways to generate
scenarios. As such, if the first scenario (ISA ≈ 3 during the whole scen-
ario) appears to be too easy or too difficult for some outliers trainees, a
similar design process can easily be replicated to generate a new scenario
which induces a higher or a lower MW all long. Also, we can fully imagine
combining our approach to other tools developed to simplify the design
of scenarios in VEs which focus more on narrative and interaction require-
ments, by introducing more complex mechanisms, labels and constraints
for example (see Section 5).

Concerning the limits of the approach, the assessment part can be time-
consuming depending on the complexity and the number of tasks, even
if it helps accelerating the design of a wide variety of training scenarios
afterward. Some simplification can be made by assessing the MW only in
strategical nodes, and by inferring the others (see Section 3). However,
this will draw to less accuracy in the prediction of MW throughout the
scenarios. Also, in the first study, the transitions were only set between
consecutive nodes, which was not the case in the second study. It did not
have an effect on the MW measures. Yet, the transition effects might have
to be taken into account in some contexts. Finally, the self-report request
(ISA, see Section 2.3) could be considered as a fourth task as users were
required to answer each time they saw the screen appearing. This prob-
ably similarly increased their MW for each state as tests did not show an
effect of the tasks levels on the ISA response time. While this approach was
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successful in inducing the expected MW progression overtime, Figure 45
clearly depict individual differences as the subjective MW data distribu-
tions follow a normal law in each state. A further step would be to extend
this methodology to the adaptation of VR training scenarios in real-time
based on users’ estimated MWs.

4 C O N C L U S I O N

This chapter proposed an approach to introduce MW assessment in the
design of complex training scenarios involving multitasking in VR. First,
tasks levels are identified and associated. Then, MW is assessed inside each
task configuration. Finally, the training scenarios can be designed based on
the MW measures. This approach allows the generation of different train-
ing scenarios based on the progression of MW over time using different
task levels combinations.

Two studies based on a VR flight simulator were performed to test the
approach. Taken together, the results support the idea that the approach
was successful into designing training scenarios which induced the expec-
ted progression of MW through time. These results pave the way to further
studies exploring how MW modulation can be used to improve VR training
applications.
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T O WA R D S R E A L -T I M E R E C O G N I T I O N O F U S E R S ’
M E N TA L W O R K L O A D S U S I N G I N T E G R AT E D
P H Y S I O L O G I C A L S E N S O R S I N T O A V R H M D

S U M M A RY This chapter describes an “all-in-one" solution for the real-time
recognition of users’ MWs in VR through the customization of a com-
mercial HMD with physiological sensors. First, we describe the hard-
ware and software solution employed to build the system. Second,
we detail the machine learning methods used for the automatic re-
cognition of the users’ MWs, which are based on the well-known Ran-
dom Forest (RF) algorithm. In order to gather data to train the sys-
tem, we conducted an extensive user study with 75 participants us-
ing a VR flight simulator to induce different levels of MW. In contrast
to previous works which label the data based on a standardized task
(e.g., N -back task) or on a pre-defined task-difficulty, participants
were asked about their perceived MW level along the experiment.
With the data collected, we were able to train the system in order
to classify four different levels of MW with an accuracy up to 65%.
In addition, we evaluated the approach using HMD sensors in com-
parison to Commercial Grade Systems (CGS) sensors and propose an
original evaluation based on classification performances. We also dis-
cuss the role of the signal normalization procedures, and compare
the contribution of the different physiological signals on the recog-
nition accuracy.
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1 O U R "A L L - I N -O N E " A P P R O A C H T O A S S E S S U S E R S ’ M E N TA L W O R K-
L O A D S I N V R I N R E A L -T I M E

In this section, we present our all-in-one solution to assess MW in VR in
real-time. First, the hardware components concerning the sensor integra-
tion in the HMD will be addressed. Next, the software components present-
ing the solution proposed for the data synchronization and the real-time
recognition pipeline will be presented.
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Figure 49: Illustration of the all-in-one approach to do MW recognition in VR in
real-time using physiological sensors integrated into a VR HMD. The
MW recognition model was trained using the HMD sensors signal fea-
tures labelled with users’ self-reported MW level as input and the ran-
dom forest algorithm.

1.1 Integrated Hardware

Several physiological dimensions relevant to MW measurement were men-
tioned in Section 3. We chose to focus on cardiac activity, EDA, and ocu-
lomotor activity as they were shown to be influenced by MW [150], are
non-intrusive, and can easily be positioned on and inside VR HMDs. The
main efforts focused on the integration of the cardiac and EDA sensors into
the VR HMD.

The cardiac activity was monitored via a PPG sensor: the Maxim MAX-
30102, which was fixed on a small clip to assess data on one of the user’s
earlobes (see Fig. 50). This location was chosen following the recommend-
ation of the literature for PPG sensors, as blood vessels are close to the
surface of the skin and light can readily be detected [286, 315].

For the EDA, pairs of electrodes were made out of a flexible printed cir-
cuit board. The latter was chosen based on previous works (e.g., [27]) and
for its various qualities. It is robust enough to weld electrical wires on it
to make the connection to the electronic card. As for the conductive ma-
terial, gold was chosen as it is stainless and biocompatible. The prefrontal
area has been found to be relevant in order to measure EDA [86, 315], so
we chose to place one pair of electrodes on the foam in contact with the
forehead part of the headset (see Fig. 50). The sizes of the electrodes were
chosen to be thin (i.e., 100 µm) to not mark the skin, and large enough
to palliate the reduced presence of sweat glands in the prefrontal area.
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Those were spaced a few inches apart to let a weak current flow through
the skin, and the EDA was given as the difference in potential between the
2 electrodes.

All these sensors were plug in a custom-made electronic card (see Fig. 50),
based on SOM Variscite i.MX8M Mini, which was powered by a 5V power
bank. The later was placed in a designed 3D printed case, which was po-
sitioned in the back of the HMD using the vertical strap of the headset
(see Fig. 50). The electronic card main features are that: (i) it can collect
physiological data from multiple sensors, (ii) it enables the aggregation
and time stamping of all samples, (iii) it has the capacity to process AI
models and algorithms (not currently considered), and (iv) it can trans-
mit the data to a computer either by a wired medium, using ethernet, or
in a wireless way, via wifi connection. Additional slots were available on
the electronic card to plug in more sensors if necessary.

As for the ocular activity assessment, several HMDs already integrate
eye-tracking solutions (e.g., HTC Vive Pro Eye, FOVE [149], HP Reverb G2
Omnicept). Pupil Labs also offers add-on solutions for virtual and augmen-
ted reality headsets. We chose to use the Vive Pro Eye HMD.

 

 

 1 

 2 

 3  4 

 4 

Figure 50: Hardware solution. The sensors are placed on a Vive Pro Eye HMD,
which has built-in eye-tracking. (1) PPG sensor, (2), electrodes to as-
sess the EDA, (3) electronic card, (4) 3D printed case.
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Figure 51: Software processing chain for the real-time recognition of users’ MW.
There are 2 main steps: the training of the recognition model and the
real-time use of the model.

1.2 Data Processing and MW Assessment

The software part of the proposed approach aims at recognizing users’ MW
levels in real-time using multiple sources of measurements. It is composed
of several steps depicted in the Figure 51 which can be divided in 2 parts:
the training phase and the real-time phase.

1.2.1 Data collection

The recording of data coming from various sensors may be challenging es-
pecially due to issues like time synchronization, or data format. Moreover,
sensors usually come with their own software, and handling all of them
to record participants’ signals can be tedious. For these reasons, a mid-
dleware, called LibSTR, has been developed for the collection of physiolo-
gical and behavioural data. It enables to collect, synchronize and distribute
the data coming from various sensors in real-time by abstracting the cap-
ture of data. It is composed of three components: hub, sensors wrappers
and listeners. The hub collects and synchronizes the data from the sensors
wrappers, and exposes them to the listeners. Developed in C and without
software dependency, it is compatible with multiple platforms.

1.2.2 Data windowing

Supervised learning model training requires labelled data [203] (i.e., the
labels correspond to the subjective measures of the user’s state and the
baseline in our case). For this purpose, a fixed-size window of the collec-
ted data (e.g., blood volume pulse (BVP), performance) are extracted be-
fore each label (see Fig. 52). Based on previous studies [272], a window
size of 30 seconds was selected as it seems to be an appropriate comprom-
ise between performance and real-time use. Thus, for each label, the 30
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Figure 52: Illustration of a data windowing in the case of a physiological signal (in
green). The time window (in red) is used to extract the physiological
features based on given labels.

seconds of data preceding the label timestamp are used to calculate the
said-label dataset features [98] (see Fig. 52).

1.2.3 Features extraction

The exploitation of physiological signals requires the extraction of specific
physiological features [7]. Based on the window of signals described above,
common features from the relevant state of the art were used. It should be
noted that performance measures depend on the context of the application
and on the tasks users have to perform. A summary of all the features
extracted using our setup can be found in Table. 1.2.3. The windowing of
data as well as the extraction of features was implemented in Python using
numpy [208], pandas [319] and scipy [299].

Cardiac activity. Six time-domain and 5 frequency-domain features re-
lated to the HRV were extracted [152]. These features are based on the
IBI. For this purpose, a bandpass filter was first applied (cutoff frequency=
[0.66;3.33] Hz, order = 3). It enables the reduction of noise (e.g., mo-
tions artefacts) [7] and the restriction of the cardiac activity assessment
between 40 and 200 beats per minute. Then, the peaks on the BVP signal
were detected using a threshold (arbitrarily set) and an estimation of local
minima/maxima [291]. This enabled the estimation of IBIs to calculate re-
lated features (see Table 1.2.3).

Electrodermal activity. The EDA signal is composed of 2 components:
the phasic part and the tonic part [35]. The phasic part (i.e., SCL) corres-
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ponds to slow changes in the EDA while the tonic part (i.e., SCR) corres-
ponds to the rapid physiological responses to a stimulus. The extraction of
those two components from the raw signal is composed of several steps.
First, a low-pass filter (cutoff frequency = 1Hz, order = 3) is applied
to reduce noise in the signal [35]. Second, a low-pass filter (cutoff fre-
quency = 0.05Hz, order = 3) is applied on previously filtered signals to
extract the tonic part of the EDA [41]. Lastly, the phasic part is obtained
by subtracting the tonic signal to the filtered signal. For the phasic part, 9
features were extracted based on the estimated EDA peaks1. For the tonic
part, 29 features were calculated (see Table 1.2.3). Inspired by research
from other domains, some are computed based on the shape of the signal
[171], others from the data-driven signal decomposition (i.e., Empirical
Mode Decomposition - EMD) [117] and finally, some are EDA components
from the frequency-domain [252, 266].

Ocular activity. 17 features were extracted from the pupil diameter, the
dynamic of pupil diameter, and the dilatation and constriction of the pupil
(see Table 1.2.3). The signal was cleaned by taking into account the data
only when the pupil was detected.

1.2.4 Normalization of physiological features

Considering the inter-individual variability is a key point in research deal-
ing with physiological data [23, 98, 204], several methods have been pro-
posed in the literature to reduce its influence on the recognition accuracy
and to make data comparable across participants. One of the most com-
mon approaches is to collect data during a rest time (i.e., the baseline)
and to subtract the mean value of the data collected during this rest time
from the whole signal [41]. This approach can be effective on non-periodic
signals such as the EDA signal, but is not compatible with periodic signals
(e.g., BVP 2). As such, the methods of normalization at feature level seem
interesting (e.g., subtraction of feature values during rest time from other
feature values) as they can be applied to all signals. However, as no de
facto normalization method exists, the most common approaches used in
the literature will be evaluated.

1.2.5 Model training using Machine Learning

Models are trained, using supervised ML algorithms, to recognize MW
based on the extracted physiological features, task performance measures,
and related subjective responses (i.e., the subjective measures of users’
state). In this way, the function between the input data (e.g., extracted

1 An EDA peak is characterized by the amplitude (the height of the peak) and the recovery
time (time to return to the level of EDA before the peak) [35, 271].

2 Contrarily to the EDA signal, the BVP signal is periodic. Therefore, subtracting the mean
value of the BVP signal collected during the baseline to the signal will only bring the BVP
signal to the same amplitude level (roughly the same mean). However, the features related
to the BVP signal are time-based, which makes such normalization not relevant.
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Target Variables

Subjective MW level 4 1, 2, 3, 4

Predictor Variables

Cardiac activity features 11

HR

Average of NN intervals

Standard deviation of NN intervals (SDNN)

Root mean square of successive differences between NN
intervals (RMSQ)

Number of interval differences of successive NN intervals
greater than 50 ms

Percentage of interval differences of successive NN intervals
greater than 50 ms

Very low frequency (0.003 to 0.004 Hz)

Low frequency (0.04 to 0.15 Hz)

High frequency (0.15 to 0.4 Hz)

Ratio of low-frequency and high-frequency

Total spectral power

Tonic EDA features 29

Max, range, inter-quartile range, root mean square error,
mean, SD, skewness and kurtosis of the signal

Mean absolute value of 1st differences and mean absolute
value of 2nd differences of the signal

Mean absolute value of the 1st differences and mean absolute
value of the 2nd differences of the standardized signal

Mean, SD, min and max of 3 Intrinsic Mode Functions

Very low frequency (0 to 0.1 Hz)

Low frequency (0.1 to 0.2 Hz)

Middle frequency (0.2 to 0.3 Hz)

High frequency (0.3 to 0.4 Hz)

Very high frequency (0.4 to 0.5 Hz)

Phasic EDA features 9

Number of peaks

Mean, SD, min and max of peak amplitude

Mean, SD, min and max of half of recovery time of peaks

Ocular activity features 17

Number of constrictions

Min, max, range, mean and SD on pupil diameter

Min, max, range, mean and SD of the pupil amplitude

Min, max, mean and SD of pupil constriction and dilation
speed

Task performance features 5 Min, max, range, mean and SD on distance to the centre of
the circle

Table 11: Target variables and extracted physiological and performance features
used for the training of the recognition models.
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physiological and performance features) and output data (i.e., subjective
responses) is automatically inferred [203]. The objective is to enable the
detection of users’ subjective MW levels using only objective measures (i.e.,
physiological responses and/or task performance) without requesting any
evaluation from the users, which could disrupt their experiences [236].
Random Forest (RF) [42] was selected as it presented the best perform-
ance in similar contexts (e.g., [65, 91]). The number of trees as well as the
number of randomly selected predictors at each cut in the tree were tuned
during the training. As the evaluation of feature selection (i.e., Principal
Component Analysis (PCA)) showed no improvement of the recognition
accuracy and as the tree-based models are generally robust against un-
helpful features, all the features per sensor were considered. All trainings
were realized using R [238] and the caret library [153].

1.2.6 Real-time recognition

The real-time pipeline adopts a similar processing chain as the training
part although it includes some adaptations.

Data buffering. As the data is progressively captured, it is necessary to
store it in a buffer. Indeed, 30 seconds windows of data are required to
calculate the features. The buffer starts empty and is progressively filled
with available data. When the 30 seconds of data are reached, the data
are fed to the rest of the processing chain. Then, whenever new data is
available, it is added to the buffer by pushing the oldest data at a 1-second
step.

Normalization. The recording of data during a baseline is required to
normalize the calculated features, regardless of the method used. The nor-
malization should be done in the same way as in the training part.

Real-time prediction. The predicted MW level and related physiological
signals are displayed in an interface (see Fig. 53). Wrappers were written
to communicate the estimated MW level output from Python to other en-
vironments, such as C# for Unity3D VR environments.

In order to have a unified processing chain, the best ML configuration
was implemented in Python using scikit-learn [223] for real-time purpose.

2 D ATA A C Q U I S I T I O N P R O T O C O L

An experiment was conducted to test the viability of our solution to classify
MW levels. The objective was to create a dataset to train the recognition
model. Three major constraints were enforced. First, a real-life task which
required the users to perform different sub-tasks. Second, the possibility to
modulate the task difficulty ensuring that a wide range of MW levels could
be induced. Third, enforce a good balance between the different levels of
MW induced in order to ensure an optimal classification model. The VR ap-
plication which was previously developed to support the methodological
approach contribution (see Chapter 3) meets these requirements. In ad-
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Figure 53: Interface for the MW recognition in real-time. It depicts on the left:
the EDA, BVP, and pupil diameter signals evolution over time in a time
window of 30 seconds; on the right: the predicted MW level (i.e., the
probability that a user is at a particular MW level) using features ex-
tracted from the 30 seconds of data. The prediction and interface are
updated every 1 second.

dition, we compared our solution to CGS sensors, in regards to the MW
classification performances.

2.1 Tasks Design

The illustrative application which was used to demonstrate our approach
to introduce MW measures in the design VR training scenario is based on
the MATB-II. The MATB-II was originally developed to study human per-
formances in a multi-task context [253]. It has been used extensively to
study MW and to train users in situations where they might be overloaded.
This makes it a very suitable tool to induce different MW levels to users. All
tasks and tasks configurations are presented in Section 2. To summarize,
three tasks of the MATB-II [253] were adapted in VR to induce different
levels of subjective MW: the tracking task (into a piloting task), the com-
munication task, and the resources management task.

More details about the tasks instructions can be found in Section 2 and
[253].
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All these tasks levels could be associated to form 12 tasks configurations
(3 piloting levels × 2 communication levels × 2 resources management
levels), which formed the states of a state machine (see Section 2.2). The
states were labelled as following. The first, second, and third digits rep-
resent respectively the piloting task difficulty level (0-easy, 1-medium, 2-
hard), the radio task level (0-deactivated, 1-activated), and the resources
management task level (0-deactivated, 1-activated). For instance, in the
state "110", the difficulty of the piloting task is set to "1-medium", the radio
task is "1-activated", and the resources management task is "0-deactivated".
Each state was set to last 110s in average.

2.2 Apparatus

The participants were installed on a cockpit, which was assembled for the
experiment (see Fig. 54). The virtual cockpit was modelled in 3D and cal-
ibrated so it matched the real one in position and size.

Users were equipped with the customized Vive Pro Eye (see Section. 1.1)
and the Shimmer3 GSR+ [48] sensors (i.e., the CGS sensors) (see Fig. 54).
The Shimmer wristband was disposed on users’ left wrist. Its EDA sensors
were placed on the middle phalanx of the users’ left ring and middle fin-
gers, and the PPG sensor ear clip, on users’ left earlobe. The data were col-
lected using our libSTR middleware (see Section 1.2.1) with homogeneous
timestamp formats at different frequencies (Vive Pro Eye-tracker: 250Hz,
HMD-PPG: 100Hz, HMD-EDA: 50Hz, Shimmer sensors: 60Hz).

Users could pilot the virtual aircraft using the Logitech 3M X52 Pro joy-
stick with their right hand. They were also equipped with a Vive Controller
with their left hand to interact with the virtual interfaces. In the VE, both
hands were represented by transparent virtual hands. The right hand was
placed on the virtual joystick (see Fig. 38), which moved when the user
was interacting with the real one, and the left hand was tracked with the
Vive Controller. The users did not need to use any of the buttons on the
Vive Controller or on the joystick to perform the tasks. The interactive vir-
tual objects were highlighted when the participants advanced their virtual
hands in their direction, and the animation turned into a pointing index
upon approaching. Haptic pulse feedbacks on the Vive controller informed
the participants that their action had been carried out. Audio instructions
were provided using the audio headset supplied with the Vive Pro Eye
Headset during the flight simulation.

The support application was developed in Unity 3D, and run with the
recording on a computer equipped with an Intel(R) Core(TM) i9-7900X
CPU, a Nvidia Titan V graphic card, and 16 GB Random-Access Memory.
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Figure 54: Multiple views of the experimental setup. The user is wearing a Vive
Pro Eye equipped with sensors on the headset, a Shimmer3 GSR+ on
his left hand, and using a joystick and a Vive Controller on the cockpit.

2.3 Collected Data

The assessed data were: self-report (i.e., the subjective MW reported by
participants), physiological, and tasks performance measures.

2.3.1 Self-Report

As in Chapter 3, we wanted to assess users’ MWs while they were per-
forming other tasks. Therefore, the focus was set on the ISA [287], which
rates the MW level using 5 different ratings (1-underutilized, 2-relaxed,
3-comfortable, 4-high, 5-excessive) and has been especially used during
air traffic control tasks [287]. The meaning of each rating of the ISA is
described in [140] and was explained to each participant before the exper-
iment. They were asked to report the MW level they experienced during
the last 30s, when a screen appeared in front of them with the 5 buttons
corresponding to the ISA ratings (see Fig. 38). First, they were asked to
push the button corresponding to their MW level, and then, to click on the
validate button on the same screen to make it disappear.

2.3.2 Physiological Measures

Multiple types of physiological signals were assessed during the experi-
ment: ocular activity via the eye-tracking cameras present in the HMD,
and cardiac activity and EDA via our hardware solution integrating sensors
into the HMD (see Section 1.1) and via the Shimmer3 GSR+ (i.e., the
CGS sensors). The features extracted from these sensors are depicted in
Table 1.2.3.
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2.3.3 Task Performance Measures

Some performance indicators of all 3 tasks were assessed throughout the
experiment. However, among the 3 tasks used in the experiment, only one
was always present across the different states: the piloting task. Thus, only
this measure is considered as a performance measure.

Users were given indications on how to align the aircraft with the green
line optimally before the experiment, and the distance to each circle centre
when they passed it was recorded throughout the experiment.

2.4 Experimental Design

In a previous study [172] (see Section 2.5), 38 participants traversed the
12 states in a row in a randomized order and reported their subjective MW
level using the ISA scale [287], 3 times per state. Since unbalanced data-
sets can lead to poor recognition performance for minority classes [85],
the experimental protocol was designed to induce the highest number of
different subjective MW levels in the most balanced way possible.

The constraints were the following: a state could not appear more than
3 times in total, and the total duration of the experiment was set not to last
more than 25 min, conducting to the choice of a number of 10 states. Fol-
lowing these constraints and based on the ISA responses reported during
the previous study [172], the best subjective MW level distribution was
given for the following 10 states: “000− 000− 000− 100− 111− 111−
201− 211− 211− 211”. Those were selected for the new experimental
study, which results and analysis are depicted and discussed in this chapter.

2.5 Participants

77 healthy participants, who were completely naive to the experiment,
were recruited through an external cabinet. They were paid 30=C for their
participation to the study. Two of the users were excluded from the study
due to motion sickness, resulting in a final sample of 75 participants with
ages ranging from 18 to 64 (38 females, 37 males; M = 38.69, SD =

13.54).
There were some inclusion criteria: the participants had to be fluent in

french. They should not have taken any medication that could influence
their physiological responses. They were also asked not to consume coffee
and/or tea in the 2 hours preceding the experiment. Moreover, variables
such as their experience in VR, games, flight simulator, aircraft piloting,
vision state, and dominant hand were controlled. One participant reported
having a great experience in VR, 4 reported having few experiences in VR,
and all others (i.e., 70 participants), none. As for the gaming experience,
64% of the participants were novice, 20% played occasionally, and 16%
regularly. All of them reported having no experience in flight simulator
and aircraft piloting.
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In accordance with ethical principles, participants were required to com-
plete an informed consent form, advising them of their right to withdraw
at any time from the study, of the preservation of their anonymity and
about the potential side effects of VR.

2.6 Experimental Procedure

The experiment lasted around 1h and was subdivided into the following
steps:

Written Consent and Instructions: Users completed a consent form,
prior to the experiment. They were then instructed with the nature of
the experiment, the equipment used, the data recorded (which was an-
onymized), and the tasks instructions. Participants were also asked to fill a
questionnaire (experience with VR, video games, and piloting an aircraft,
dominant hand, level of alertness, state of vision, demographic informa-
tion, simulator sickness questionnaire (SSQ) [135]) to gather information
about their background and their state before the start of the experiment.

Training: Users were then equipped with the Shimmer sensors, a Vive
Controller and the Vive Pro Eye HMD with the sensors. The eye-tracker of
the Headset was first calibrated following the instructions given in the
headset. They were then immersed in the virtual cockpit environment.
Once they got used to the VE, they were asked to breath normally and
to remain still for 1 minute, to record their physiological signals in a neut-
ral state (i.e., for the physiological baseline). Users were then asked to
interact with the buttons of the tasks interfaces to familiarized themselves
with the interactions. Then, they travelled the states following this path:
“000−010−011−001−101−201−211”, which gave them a good over-
view of each task and their levels. Users were then invited to ask any ques-
tion they may have had.

Experiment: In the experiment part, users were first asked to do a 1-min
baseline again. Then, they travelled the 10 states mentioned in Section. 2.4
(i.e., “000− 000− 000− 100− 111− 111− 201− 211− 211− 211”) in a
pseudo-randomized order (two identical states could not appear twice in
a row). The states were set to last 110 seconds with 4 communication calls
and 3 ISA calls (spaced in time of 30s).

Debriefing: At the end of the experiment, they were asked to fill the
SSQ again, debriefed and invited to ask questions.

2.7 Resulting Data

3265 subjective responses were collected. As unbalanced datasets can lead
to poor recognition performance for minority classes [85], we chose to re-
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tain 4 classes of subjective MW level, using the following data distribution
(see Table. 12):

MW level 1 2 3 4

ISA value 1 2 3 4 & 5

N 624 822 1143 676

Perc. 19 % 25 % 35 % 21 %

Table 12: Contingency table of subjective responses.

The results for other data splittings (2 classes, 3 classes, and 5 classes)
based on the reported ISA levels are presented in Appendix A.

3 R E S U LT S

This section presents an overview of the classification accuracy of the pro-
posed system, considering the 4 levels of MW chosen (see Table 12). Table 13
presents the classification results using the EDA and PPG from the CGS
sensors, and Table 14 presents the classification results using the EDA
and PPG from our custom sensors integrated into the VR HMD (see Sec-
tion 1.1). Ocular and task performance measures are the same in these 2
groups. The normalization method, as well as the different combinations
of sensors using either the Shimmer sensors (i.e., CGS sensors) or our setup
(i.e., HMD sensors) are provided. In order to facilitate the interpretation
of results, the performance of a naive model was calculated (i.e., model
always predicting the most represented class in the training dataset).

Classification accuracy was computed using a 10-fold cross-validation
method [203]. To reduce the potential problems linked to random split-
ting with cross-validation, 10 independent 10-fold cross-validations were
performed for each trained model.

3.1 Normalization of Physiological Features

As previously explained, the physiological signals are subject to inter-indi-
vidual variability, which can affect recognition performance. Thus, three
types of normalization approaches have been evaluated in the context of
MW detection:

• Normalization by subtraction of features (NSF): For each par-
ticipant, subtracting the features estimated for each subjective re-
sponse with the features estimated during the baseline [62, 137,
278];

• Normalization by adding features (NAF): For each participant,
adding the features estimated during the baseline to the dataset (i.e.,
the feature space) [44, 226].
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• Normalization by Min-Max: For each participant, each feature is
normalized using the following formula:

X −min
max −min

Data about participants were looped over to find the first occurrence
of their highest ISA score and the first occurrence about their min-
imum ISA score. Their features values were respectively associated
with the max and min values in the formula.

3.2 CGS Sensors

The recognition performances based on data collected with the Shimmer
sensors are presented in Table 13. According to the results of the training,
the best accuracy using the CGS sensors is 64.2%. It is obtained with a
combination of performance and all physiological signals, using either NSF
or NAF normalization.

Taking sensors and task performance measures individually, the best
classification performance is achieved either with the ocular activity (in
the cases of no-normalization and NAF normalization) or the EDA (in the
cases of NSF and min-max normalizations), followed by the cardiac activ-
ity, and the task performance measures.

There is a mean drop in accuracy of only 1.33% when considering only
the EDA and ocular signals instead of all physiological signals and perform-
ance measure, using any normalization method. A confusion matrix using
all data and the NSF normalization is given in Fig. 55.

3.3 Sensors Integrated Into the HMD

The recognition performances based on data collected with the sensors
integrated into the HMD are presented in Table 14. Similarly to results
with CGS sensors, the best accuracy is 65%. It was obtained when all data
are considered, and with NSF normalization.

Taking sensors and task performance measures individually, the ocular
activity lead to the best classification performance, followed by the EDA,
the cardiac activity, then the task performance measure.

Similarly to results with CGS sensors, the combination of EDA and ocular
signals lead to a mean drop of only 2.1% compared to the best configura-
tion requiring more sensors.

A confusion matrix using all data and the NSF normalization is given in
Fig. 55.
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Normalization
Input

Perf Ocular
Shimmer Sensors (CGS)

Cardiac EDA Cardiac + EDA Cardiac + Ocular EDA + Ocular All physio Physio + Perf

Naive model 19.1

No Normalization 41.4 44.4 36.7 41.1 44.8 50.5 49.9 52.5 57.6

NSF 41.5 52.3 42.9 54.2 56.4 57.3 62.2 62.5 64.2

NAF 45.8 60.5 50.8 56.9 56.3 61.1 62.1 62.3 64.2

Min-Max 45.3 53.6 45.8 56.6 58.2 57.8 63.3 62.5 63.2

Table 13: MW classification accuracy results (in %) using the Shimmer sensors
(i.e., CGS sensors) in function of the normalization methods and of
the type of measure. “Perf" corresponds to the task performance. Task
performances and ocular activity are common to the CGS and HMD
sensors.

Normalization
Input

Perf Ocular
HMD Sensors

Cardiac EDA Cardiac + EDA Cardiac + Ocular EDA + Ocular All physio Physio + Perf

Naive model 19.1

No Normalization 41.4 44.4 36.5 44.1 49.7 51.0 53.6 57.7 61.2

NSF 41.5 52.3 44.9 50.7 54.5 59.1 62.0 62.8 65.0

NAF 45.8 60.5 49.9 52.9 56.3 60.3 62.6 62.1 63.8

Min-Max 45.3 53.6 45.6 51.6 54.5 56.9 61.3 61.8 63.4

Table 14: MW classification accuracy results (in %) using the sensors integrated
into the VR HMD (i.e., HMD sensors) in function of the normalization
methods and of the type of measure. “Perf" corresponds to the task per-
formance. Task performances and ocular activity are common to the
CGS and HMD sensors.
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Figure 55: Confusion matrix (expected and predicted classes) in the ”All
physio+perf” using NSF normalization setup for (a) the “CGS sensors"
and (b) the “HMD sensors".
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classification accuracy in the different measurement setups. Mean val-
ues are indicated and the error-bars correspond to the standard devi-
ations considering the different normalization methods.
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indicated and the error-bars correspond to the standard deviations con-
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3.4 Mental Workload Recognition in Real-Time

The recognition in real-time was simulated using the collected data and the
configuration offering the best performance (i.e., input: all physiological
sensors and performance, NSF normalization, HMD sensors; see Tables 13
& 14).

To simulate real-time, a sliding window of 30s with 1s step was applied
to the physiological data. Then, these windows of data were fed every
second to the recognition processing chain until the last available data
(see Fig. 50).

For illustrative purposes, the real-time was simulated on one participant
(the stages of the processing chain are identical between participants). The
predicted MW as well as the ground truth (i.e., true MW level, see Table 12)
are depicted in Fig. 58. As subjective responses are only provided punctu-
ally, the MW level was linearly interpolated between the different subject-
ive MW responses in order to have a continuous ground truth. A moving
average (on 10s) was also used to smooth the prediction and limit the ef-
fect of misclassified MW level. The prediction latency did not exceed 0.20s.
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Figure 58: Simulation of the real-time prediction of MW using the data of one
of the participants and the HMD sensors in the “All Physiosiological
signals + task performance" setup with NSF normalization. The blue
line represents the ground truth (i.e., the MW level reported by the
participant); the red line represent the predicted MW using our trained
recognition model.
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4 D I S C U S S I O N

In this chapter, the recognition of MW using physiological signals and task
performance data was explored. Based on data from 75 participants, the
trained models were able to classify 4 levels of MW with an accuracy up
to 65%. Yet, it should be noted that the misclassified levels are mostly con-
tained in the adjacent classes, as shown in Figure 55. As such, the classific-
ation accuracy reaches 95.5% using NSF normalization when considering
the classes which are adjacent to the predicted mental workload level (see
Fig. 55). This highlights the good performance of our approach. Moreover,
the recognition accuracy considering CGS sensors and sensors integrated
in the HMD were compared. The normalization method as well as each
sensor and combination of sensors were also tested in regards to the clas-
sification accuracy.

Unlike previous research exploring the recognition of MW in VR [65,
235, 293], the data were labelled using subjective responses. This approach
is novel in VR, as previous work labelled their physiological data based on
the task difficulty levels [235, 293] or based on task performances [65].
While it is true that task difficulty was shown to be correlated to users’ MW
[12], it does not take into account the users’ subjective impressions. The
same task can induce different MW levels to users because of individual dif-
ferences [297]. In the same way, while performance measures have shown
to be correlated to users’ MW in some studies [206], some users might
show similar performances while experiencing different levels of mental
workload [78, 295]. In addition, relying on task difficulty or task perform-
ance for the labelling could result in a recognition based on features linked
to the task specificities, and not linked to the users’ psychological state. La-
belling data based on users’ subjective MW levels via self-report responses
provides an efficient way to capture the actual state of the user as they
show greater face validity [203]. Furthermore, subjective measures are
task agnostic, as opposed to task performance measures and task difficulty.
This enables to use models trained using subjective measures in different
contexts than those in which they were trained.

Special attention was given to the data acquisition protocol. It differs
from previous work as it was done in a multitask context. Usual protocols,
which gather data for classification purposes, focus on a single standard-
ized task which stimulates limited pools of cognitive resources depending
on the nature of the stimuli (e.g., visual, auditory) and information pro-
cessing (e.g., perception, action) [304]. This has for consequence to influ-
ence physiological signals in a way that might prevent the generalization
of the recognition models. Knowing MW is mostly studied in complex con-
texts where users have to perform multiple tasks in parallel, we chose to
assess MW data in a VR flight simulator, with different tasks and stimuli
natures.

Although the integration of sensors in HMDs was already explored in
the literature [26, 27, 126], to the best of our knowledge, the recognition
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of MW based on ML using multiple physiological sensors integrated into
a VR HMD was yet not investigated. Figure 56 compares CGS and HMD
sensors in different configurations for MW recognition. The current results
showed overall similar recognition performances between CGS sensors
and integrated sensors in an HMD (see Fig. 56). Individually, the CGS
EDA sensor worked better than the HMD EDA sensor to recognize users’
MW. This result could be explained by the fact that sweat glands density in
the forehead is lower than on the fingers [250]. However, when combin-
ing sensors and measures, the HMD sensors worked slightly better than the
CGS sensors (see Fig. 56). In particular, the best classification performance
was achieved with the HMD sensors when using NSF normalization (i.e.,
+0.8% compared to CGS sensors with NSF). These differences are settled
but could support that sensors in the HMD, together with ocular activ-
ity measures and/or task performance measures would explain more the
users’ MW changes than CGS sensors. Given the reduced cumbersomeness
of HMD sensors compared to CGS sensors, this encourages the integration
of sensors into VR HMDs to monitor users’ psychological states in VR.

Moreover, multiple types of data were gathered to classify MW level:
cardiac, electrodermal, and ocular activities, as well as task performance
measures. The contribution of each signal was explored. When taking sen-
sors individually, ocular activity leads overall to the highest classification
accuracy (except using CGS sensors and NSF or Min-Max normalization,
where it goes second to EDA), followed by EDA, cardiac activity, and fi-
nally performance measures. Otherwise, the combination of sensors im-
proved the recognition accuracy with maximum performance when all
physiological sensors are included as well as performance data. Perform-
ance measures have been used extensively in the literature as an indic-
ator of users’ MW level [206]. While it has the disadvantage of being task-
dependent and not generic, its impact was expected to be major in the
classification accuracy. Therefore, it is encouraging to observe that taken
individually, physiological signals, which are less task-dependent, contrib-
uted more than performance features to the classification accuracy of MW
levels in our study. With a normalization, the mean gain of the "All Physio+
Perf" configuration compared to the "All physio" configuration is low (i.e.,
+1.6%) (see Tables 13 & 14), which is why we would advise not to use per-
formance measures to make the recognition model more generic to other
contexts.

From a features perspective, 71 were calculated on the cardiac, EDA
and ocular signals, ranging from conventional ones such as heart rate
or mean pupil diameter to less explored ones such as EMD ones [117]
(see Table 1.2.3). In particular, the introduction of frequency-domain EDA
measurements features [171, 252, 266] appears promising. Additional
analysis showed that they strongly contributed to the MW recognition ac-
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cording to the estimated features importance 3. Four (CGS sensors) and
two (integrated sensors) of the five EDA frequency features appeared among
the 20 most important variables.

The exploitation of physiological signals commonly lead to the well-
know problem of inter-individual variability [289]. To minimize it, 3 nor-
malization methods have been evaluated: subtraction of features calcu-
lated during baseline, adding features calculated during baseline, and min-
max normalization (see Fig. 57). Overall, normalizing the data improved
the classification accuracy compared to no normalization (i.e., with a mean
gain of +8.2%). When taking sensors or performance individually, the best
normalization method was found to be NAF with a mean gain of +11.64%
compared to the no-normalization case. As for the min-max method, the
results are inconsistent between the different sensors associations. It has
the disadvantage to require the recording of the users’ data when they are
experiencing the lowest and highest mental workload possible prior to the
training of the classification model, which makes it a bad normalization
candidate for real-time use. In the “All Physio” and “Physio + Perf” config-
urations, the approach by subtraction was found to be the most effective
(see Fig. 57). In particular, there is a mean gain of +5.2% in recognition
accuracy using the NSF normalization compared to the no-normalization
case in the “Physio+Perf" configuration (i.e., the one which had the best
results). Besides, it has the advantage to be compatible with real-time ap-
plications, to be easy to implement, and low-cost in signal processing.

A preliminary study allowed to demonstrate the ability of our processing
chain to classify MW in real-time through a simulation. It showed that the
whole pipeline using multiple sensors is compatible with real-time usages,
which is presented for the first time in the context of MW recognition in VR.
This result paves the way to new HMDs with integrated sensors facilitating
the real-time adaptation of VR environments based on detected MW levels.

As for the limits, while efforts have been made to try to balance the 4
MW level classes, our model tends to predict more often the class 3 due
to its over-representation compared to the other classes (see Table 12).
The classification performance of subject-independent models (i.e., gener-
alisation of recognition on unseen participants) was not explored in this
experiment. The current approaches (i.e., feature extraction followed by
model training) does not seem to be adapted to this rarely explored prob-
lem [103]. Recent advances in deep learning seem to provide a solution
and offer unmatched performances in various fields [158]. Nevertheless,
this promising approach usually requires particularly large datasets [108].
Thus, even if the number of participants in the current paper is similar to
comparable studies (e.g., [100, 272]), the number of labelled data is small
compared to datasets in some other areas (e.g., ImageNet for object recog-

3 The importance of features was estimated based on the impurity decrease. It corresponds
to the mean decrease in impurity averaged over all nodes where that feature was used to
split the node [237].
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nition [247]). Collecting such large physiological datasets is very complex,
in particular due to the cost of data collection.

5 C O N C L U S I O N

In this chapter, we proposed an all-in-one approach to assess users’ MW
in VR in real-time, using physiological sensors directly embedded into the
headset and the Random Forest algorithm. The hardware and software
solutions employed to build the system were depicted, and a user study
with 75 participants was conducted to train the system to recognize 4 MW
levels using physiological and performance measures. Contrarily to previ-
ous work which focused on single standardized tasks to elicit MW, users
performed different tasks on a VR flight simulator and reported their sub-
jective MW level during the experiment, which was then used to label the
dataset. Moreover, the contribution of different normalization procedures,
and of different types of measures and sensors, considering our solution
integrating sensors into the HMD and CGS, are compared with regards
to the recognition accuracy. Results showed similar recognition perform-
ances between the HMD sensors and the CGS sensors with an accuracy up
to 65%. This encourages the use of sensors integrated into HMD as they
are less cumbersome than CGS sensors in VR. Normalizing the dataset fea-
tures also greatly improved the classification performance. As for the type
of measures, ocular activity features were found to be especially important,
followed by EDA, cardiac activity, and task performance features. Prelim-
inary results demonstrate the ability of our pipeline to recognize MW in
real-time. Taken together, the results support that our all-in-one approach
is promising for real-time recognition of MW in VR.





5
C O N C L U S I O N

1 C O N T R I B U T I O N S O F T H I S T H E S I S

In this manuscript, entitled "Towards the Exploitation of the User’s Men-
tal Workload in VR", we studied the adaptation of Immersive Virtual En-
vironments (IVEs) using Mental Workload (MW). We targeted 3 research
axes: the induction, recognition, and exploitation of MW in VR. The induc-
tion focuses on the impact of VR parameters and stimuli on users’ MWs.
The recognition focuses on developing a model able to infer users’ subject-
ive MW levels using objective metrics. The exploitation focuses on guiding
users towards a targeted MW level using MW measures.

First, we focused on the induction of MW. More precisely, we studied
the impact of wearing a VR HMD on users’ mental efforts. The influence
of simple interactions like walking in IVEs and the effect of accommodation
to VR were analyzed. Then, we targeted the induction and exploitation of
MW in VR. We proposed a methodological approach to introduce MW as-
sessment in the design of VR training scenarios. The induction was tackled
as the effects of different tasks difficulties and tasks interactions in a com-
plex IVE were studied. The exploitation was dealt with as the methodology
enables to control MW modulation overtime through the introduction of
MW measures in VR training scenarios. Finally, we proposed an all-in-one
approach to recognize users’ MW levels in real-time using physiological
sensors directly embedded into a VR HMD. Insights about the impact of
the sensors setups, the type of measures and signal normalization methods
on MW recognition accuracy were also investigated.

Chapter 1 first aimed to present theroretical background and a compre-
hensive state-of-the-art of past contributions dealing with Cognitive and
Affective States (CAS) in VR. We proposed a categorization of works study-
ing CAS in VR following: the induction, recognition, or exploitation of CAS
in VR. We also proposed a definition of “Affective and Cognitive VR” to
relate to works associating CAS and VR. The definitions and models of
MW, cognitive load, and emotions were depicted, as well as the different
methods to measure them along with their advantages and drawbacks in
VR. These assessments can overall be categorized in self-report, observa-
tional, task performance, and psychophysiological methods. Then, an over-
view of “Affective and Cognitive VR” in IVEs in a non-clinical context was
presented. The main results following the induction, recognition, and ex-
ploitation of CAS in VR were summarized. Finally, a state of the art on
MW in VR training was presented with a particular focus on the method-
ology and frameworks proposed to design VR training scenarios and the
usage of MW assessment in VR training. This first chapter showed that few
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works exploited CAS in VR, mainly because of the difficulty to perform an
adaptive loop as the current recognition models tend to lack of accuracy
or are user-dependent. Studies used physiological measurements and task
performance measures as a way to provide feedback in the IVEs. How-
ever, changes in physiological signals can be difficult to interpret because
of their complex relationships with psychological states which can bring
diagnosticity issues [93]. Task performances on the other hand can be in-
sensitive to users’ CAS changes [294]. Thus, most works focused on the
impact of factors on users’ CAS and MW assessment was rarely considered
as a criterion in the design of VR training scenarios. Multitasking was also
little explored when MW modulation was targeted.

In Chapter 2, we studied the effect of wearing a VR HMD on users’ men-
tal efforts [130]. Users performed a standardized cognitive task in both
the real environment and in a realistic virtual representation of this real
environment in VR. In addition, the potential impacts of simple interac-
tions like walking in IVEs and the effect of accommodation to VR were
also investigated. The objective was to control minimal effects for the in-
duction of MW in VR. The results support that wearing a VR HMD has
a limited impact on the users’ subjective mental efforts. In similar condi-
tions (i.e., sitting), no effect was found. The accommodation to VR effect
also did not impact users’ mental efforts. However, walking in VR signi-
ficantly increased users’ mental efforts compared to walking in the real
world. Moreover, natural walking increased users’ mental efforts in both
conditions. These results were supported by various kind of measurements.
They support that secondary interactions such as walking and differences
in representations between the real and virtual world can increase users’
mental efforts and have to be controlled.

In Chapter 3, we proposed a methodological approach to introduce MW
assessment in the design of VR training applications in 3 steps. First, the dif-
ferent tasks configurations considering each task and their intrinsic levels
of difficulty are used to generate a state machine. Then, MW measures are
assessed inside each state of the state machine to build a dataset of A-priori
knowledge about the induction of each state on users’ MW levels. Finally,
the MW assessment and the state machine are used to generate VR train-
ing scenarios able to modulate users MW overtime. This contribution tar-
geted the induction and exploitation research axes (see Fig. 1). More par-
ticularly, we wanted to study tasks interactions for the induction of users’
MWs, and the approach allows to exploit MW measures to design VR train-
ing applications given a targeted progression of users’ MW overtime. An
illustrative application, inspired by the MATB-II, was developed to validate
the approach. The two experiments showed that the scenarios were able
to induce the expected MW progression through time. Besides, two tasks
stimulating similar pools of cognitive resources induced more MW than
two tasks stimulating different pools of cognitive resources. In addition,
traversing the state machine in a randomized order vs. in a predefined or-
der did not significantly impact users’ MW levels for the same tasks config-
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urations, which supports that the relative MW levels differences between
the tasks configurations were stable.

Finally, in Chapter 4, we proposed an all-in-one approach to recognize
users’ MW levels in real-time in VR using physiological sensors directly
integrated into a VR headset. Moreover, the approach integrating sensors
in an HMD was compared to the use of Commercial Grade Systems (CGS)
sensors in terms of MW recognition accuracy. Insights about the impact of
the different types of measures, sensors, and signal normalization methods
were also explored. Overall, the recognition performance reached 65% of
accuracy for 4 MW levels using the HMD sensors and by normalizing the
physiological features by subtracting the physiological features assessed
during the baseline to the dataset. These results support the integration
of sensors into VR HMDs as there were similar recognition accuracies
between the HMD sensors and the CGS sensors. Pupil measures of users
were the most important in the recognition of users’ MW levels, followed
closely by the EDA measures, then the cardiac measures, and finally, the
performance measures. The normalization of physiological signals over-
all greatly improved MW recognition accuracy. Especially, adding baseline
features to the feature map worked the best for individual sensors and sub-
tracting baseline features to the data worked well when combining sensors
and/or task performances measures.

2 L I M I TAT I O N S A N D F U T U R E W O R K

This section addresses the current limitations of the contributions that
were presented in this manuscript and proposes future works that could
be investigated in the short/middle-term.

2.1 Impact of VR on MW

• Effect of the nature of the tasks in VR: In the first contribution,
the results supported that wearing a VR HMD had a limited impact
on users’ mental efforts. In similar conditions (i.e., sitting), using
an auditory task, no effect of the environment (i.e., VR vs. Real)
was found. However, in the walking conditions, which is a task re-
quiring visual cues to navigate, an effect of the environment was
found. These preliminary results open further questions considering
the nature of the tasks. Further works could consider a primary cog-
nitive task relying on different pools of cognitive resources [304]
(i.e. spatial or motor skills) or on different kind of stimuli (i.e. num-
ber, shape, haptics) to help understanding which sensory informa-
tion and stage of information processing import the most on users’
subjective MWs in VR.

• Effect of differences in VR representation: An effect of the en-
vironment was found in the walking conditions, where users did
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not have a feedback of their body in VR, contrarily to in the real
world. This difference in representation might be the cause of this
increase in cognitive demands, as seen in previous studies modu-
lating the angle of redirected walking [47] and hand control of a
self-avatar [277]. Further works degrading the representations and
controls in VR could help determining the minimum requirements
not to trigger a difference in MW with the real world. Factors such as
the interactions control, avatar’s control and visual feedback, fram-
erate, field of view, screens resolution, scene lighting, and scene real-
ism could be manipulated with varying levels of differences with the
real-world.

• Effect of VR devices: Only the effect of wearing a VR HMD in an
IVE was tested in the first contribution. However, there are also other
VR devices allowing different degrees of immersions such as CAVE-
like systems or computers [130]. Physical workload can also impact
MW [81, 82], so other parameters linked to the ergonomy of VR
equipment such as the weight of the VR HMD, the obtrusiveness of
VR equipment (e.g., presence of wires), and screen brightness could
be tested on users’ MWs.

2.2 Introducing MW assessment in the design of VR training scenarios

• Updating A-priori knowledge: The methodological approach we
proposed in Chapter 3 requires to assess the users’ MW levels in each
state to be accurate. This process can be long and time-consuming if
many tasks and tasks levels exist in the training environment. Sug-
gestions were proposed to only measure MW in strategical nodes
(e.g., min and max difficulty levels of the tasks) and to interpolate
the induced MW in-between. A-priori knowledge of the mean MW
level distributions in each state can also be arbitrarily predefined
and updated following users’ MW assessments iteratively.

• Continuous tasks difficulty: Only discrete task difficulty levels were
considered here. Supplementary work could be done to investig-
ate the possibility to extend the approach to continuous task diffi-
culties. Interpolations could be considered depending on the relation
between MW levels and tasks difficulty levels.

• Other stimuli and collaborative aspects: The goal of the method-
ological approach we proposed targeted users’ MWs in VR training.
We focused on tasks levels and tasks interactions as they were the
most obvious factors that could impact users’ MW in a VR training en-
vironment. However, other stimuli such as stressors, virtual agents’
behaviours, IVEs visual load (e.g., amount of objects and distractors),
can also impact users’ MW and could be considered for the modula-
tion of users’ MW levels. Moreover, the approach is single-user at the
moment. Further works could be done to merge the introduction of
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MW assessment to existing frameworks which consider, for example,
collaborative context [59, 64], virtual agents [53, 285, 292], and
guidance elements [50].

2.3 Towards the real-time recognition of users’ MW in VR

• Central Nervous System (CNS) Measures: Our all-in-one solution
allows to estimate MW in real-time using physiological sensors dir-
ectly integrated into a VR HMD. Only the Autonomic Nervous Sys-
tem (ANS) and performance measures were considered and labelled
using users’ self-reported MW levels. CNS measures have demonstra-
ted impressive results to measure users’ MWs and cognitive loads in
past studies [144, 229, 239, 260]. Frontal measures were shown to
be directly implicated in the working memory process of the users [94,
144, 239]. This type of measure would be very valuable to qualify
the nature of the detected state in our approach. In particular, EEG
and fNIRS are the most popular portable methods to measure users’
CNS activity (see Section 3). However, they can impede the all-in-
one approach we proposed to recognize users’ MWs in real-time be-
cause of the complexity in the signal treatment in real-time for the
fNIRS [229], and because of the tediousness of the installation and
sensitivity to motion artefacts for the EEG [101]. In typical cases
where users would not move, measuring users’ EEG signals would
indeed be a more direct measure of users’ cognitive activity. Never-
theless, in our applications where users had visuomotor tasks to per-
form, EEG signals would have been contaminated by users’ muscle
activities, motions, and blinks. Technological improvements still are
made in the community to use CNS measures in ecological situations.
Thus, future work could focus on integrating this type of sensors in
a similar setup than the one we proposed. CNS measures could also
be compared to other sensors in terms of subjective MW recognition
accuracy.

• Robustness of the HMD sensors: In the same veins as the previ-
ous point, the robustness of physiological sensors to motion artefacts
could be tested in environments where users are required to move.
The methodology was demonstrated in a situation where users were
seated. We could further extend the work by studying the robust-
ness of integrating sensors in VR compared to CGS setup to motion
artefacts in a context requiring full-body motions. The impact of dif-
ferent interactions depending on sensors placements on signals fea-
tures and MW recognition could also be interesting to analyze for
signal treatment.

• Genericity of the recognition model: Our methodology relies on
subjective assessment, which makes it application-agnostic when not
taking into account task performance measures. A further direction



128 D I S C U S S I O N

would be to test if the recognition of MW can be shared between
different applications (e.g., training the model using a standardized
task, and using it in another application). Moreover, the results of
the second user study in Chapter 3 demonstrate that users’ perceived
progression of their own MW overtime could be twisted after each
scenario (which lasted around 10 min). Further work on self-reports
validity could be done, as well as studying the relation between per-
ceived MW and users’ brain working memory using BCI systems.
Works focusing on approaches to normalize self-report scales could
also be considered to address users’ scale perceptions and to consider
relative between-individual differences based on their data distribu-
tion and profiles.

3 L O N G -T E R M P E R S P E C T I V E S

Regarding long-term perspectives, the increasing number of autonomous
and adaptive systems comes with several questions and paths for improve-
ments [231, 254, 308].

The approaches we proposed focused on MW measures. However, sim-
ilar approaches could be imagined for other Cognitive States (CS), fatigue,
stress, or Affective States (AS) in other fields and for other use cases. For
example, scenarios could be built based on the evolution of users’ psycho-
logical or physiological states over time. Moreover, because the approach
we proposed in Chapter 3 allows to modulate MW overtime, a whole new
set of works could be dedicated to understanding the effect of MW vari-
ation overtime on users’ states, performances, and experiences (e.g., stress,
time indicators, engagement) in VR training.

As underlined in the state-of-the-art, few works explored the exploita-
tion of users’ CAS and supported their work with a user-study in VR, es-
pecially for MW. Future works could focus on studying the effect of VR
automation based on users’ CAS measures on users’ experiences and per-
formances. For example, autonomous cars and AI are not currently fully
trusted by users because of a lack of understanding of AI and because of the
feeling of not being in control [307]. Similar behaviours could be expec-
ted in VR experiences and the acceptance of such systems could be studied.
The balance between control and automation could be investigated based
on, for example, the invasiveness of the stimuli and parameters. Moreover,
we focused on CAS that are short in duration. Focusing on adapting VR
experiences based on users’ profiles or personality traits could also be rel-
evant as these characteristics tend to be more stable for each individual.
Another theory in affective games also proposed an interesting categoriza-
tion of adaptive responses based on users’ preferences [106]. Gilleade, Dix
and Allanson proposed to adapt the responses of the system to an undesir-
able user state upon three broad categories: assist me, challenge me, and
emote me [106]. These different paths could be interesting to approach
the exploitation of users’ CAS in VR.



3 L O N G -T E R M P E R S P E C T I V E S 129

As for the improvement of CAS recognition algorithms, efforts are made
in the Affective Computing and Physiological Computing fields consider-
ing the recent breakthroughs in ML [93, 204, 227, 231, 254, 308]. Still,
while many frameworks propose to aim for the dynamic adaptation of sys-
tems taking into account users’ CAS [94, 106, 204], more work remains to
perform the recognition in real-time independently from the user and the
context. Compared to other fields, the availability of labelled data is also
very poor (e.g., ImageNet, for object recognition, contains more than 14
millions labelled images [247]). Efforts have been made to build a data-
set for biomedical research with PhysioNet that contains different banks
of labelled and unlabelled physiological datasets using different sensors
setups [107]. However, these data can hardly be exploited in the absence
of the used sensors and if the labels do not fit the targeted users’ states.
Approaches such as semi-supervised learning with deep generative mod-
els could provide a way to decrease the number of labelled data needed
to recognize users’ CAS [139, 242].

Ethical issues should also be further considered as such recognition mod-
els and adaptive systems might be subverted to undesirable ends [93, 228,
241]. Fairclough [93] and Reynolds and Picard [241] adressed some of the
issues when dealing with physiological signals and proposed directions to
reduce the potential for abuses. As the goal is to propose a unique and
tailored experience for each individual, data protection and the invasion
of privacy can be of crucial concerns for the users [93, 228, 241]. Granting
the user full control over the data collection and transparency are essen-
tial to reinforce the trust of such systems, especially when the data can
emphasize medical conditions. Moreover, feedbacks which explicitly depict
the users’ states can embarrass users in presence of other individuals. Thus,
discretion should be taken into account when using adaptive applications
in public spaces, and users should be able to disable this feedbacks [93].
Adaptive systems based on users’ CAS intrinsically are designed to guide
users towards a targeted CS or AS. This can be interpreted as “manipu-
lating” the users’ psychological states [93]. For the explicit exploitation,
users have control over their CAS, as when they are listening to music, do-
ing meditation, or taking psychoactive agents (e.g., caffeine, alcohol) [93].
However, when the exploitation is implicit, users do not retain control over
the process of adaptation. In that case, Fairclough suggests that users need
to at least understand the range of manipulations they may be subjected
to [93]. While it is impossible to safeguard any new technology, we pro-
pose that systems integrating an adaptive loop based on users’ CAS always
clearly depict the goal states, objectives of the adaptation process, and en-
able users to have control over it. More work could be dedicated to char-
acterizing the ethical issues and solutions that are specific to VR adaptive
systems and affective experiences.

To conclude, we believe that making VR applications aware of the users’
states should enable the emergence of ’smart’ and more robust technolo-
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gies that could adapt to a “specific individual in a defined place at a precise
time” [93]. Especially, because users feel “there, in the virtual world" [270],
VR technologies are particularly efficient to engage participants into virtual
experiences and to provide impactful stimuli [243] through the wide spec-
trum of parameters, interactions, and sensory feedback they can provide.
In this manuscript, we proposed different research axes to build adaptive
VR systems, conducted studies and proposed approaches to go toward the
adaptation of VR applications based on MW in real-time. As such, we hope
that this thesis work is now going to inspire further research and develop-
ment of novel VR systems that could adapt based on users’ affective and
cognitive states.
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Several data splitting have been evaluated on mental workload recognition
accuracy based on the reported ISA levels (1, 2, 3, 4 and 5). Figures 59,
60, and 61 present the recognition accuracy obtained for respectively 5,
3, and 2 classes of mental workload. They were obtained using the CGS
sensors and NSF normalization in the “All physio + Perf" configuration.
The following confusion matrixes have been normalized to obtain a total
mental workload recognition accuracy of 100% per expected class.
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Figure 59: Confusion matrix (5 classes) - Accurac y = 61.78%
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Figure 60: Confusion matrix (3 classes) - Accurac y = 68.95%
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Figure 61: Confusion matrix (2 classes) - Accurac y = 82.15%
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1 C O N T E X T E

Il y a un siècle de cela, 80% des accidents d’avion étaient causés par des
machines, et 20% des accidents d’avion, par des erreurs humaines. La
tendance s’est aujourd’hui inversée. 80% des accidents d’avion sont main-
tenant dus à des erreurs humaines et 20%, à des défaillances liées aux
machines [1, 305]. Hawkins a décrit les facteurs humains comme étant
"la dernière frontière contre les problèmes de sécurité aérienne" [116]. En
effet, les avions modernes sont aujourd’hui si complexes qu’ils peuvent
désorienter les pilotes les plus expérimentés. Pour pallier ce problème, des
simulateurs de vol ont été développés afin de former les équipages aux
situations de crise. En particulier, les technologies immersives telles que la
Réalité Virtuelle (RV) sont aujourd’hui largement employées à des fins de
formation en raison de leur coût réduit par rapport aux simulateurs taille
réelle.

Dans ce contexte de formation, la Charge Mentale de Travail (CMT) est
depuis longtemps un sujet d’intérêt pour la recherche [77, 114, 195, 205,
304, 312]. Bien qu’il n’y ait pas de consensus universel sur sa définition,
la CMT peut être décrit comme "le rapport entre la demande (quantitative)
de ressources imposée par une tâche et la capacité de l’opérateur à fournir ces
ressources" [303]. La CMT est un sujet d’intérêt populaire en raison de la
complexité grandissantes des systèmes. Cela ne se limite pas à l’industrie
aéronautique. En effet, un certain nombre de rapports suggèrent que les
accidents liés aux erreurs humaines ont augmenté de façon spectaculaire
ces dernières années dans un grand nombre d’industries [121, 218]. Les
smartphones, les supports de médias et les outils de travail débordent
d’informations, et les options de paramétrage des logiciels et des machines
ne cessent d’augmenter. Faire du multitâche est également devenu répandu
partout, que ce soit dans un environnement de travail ou dans la vie quo-
tidienne. Ces situations peuvent amener les humains à être surchargés et à
faire des erreurs. Différentes solutions ont été envisagées afin de répondre
à ce problème ; parmi elles : (1) former les utilisateurs afin de les habituer
à des demandes cognitives toujours plus importantes, et (2) automatiser
les systèmes afin de les rendre plus adaptés aux compétences et aux états
psychologiques des utilisateurs.

Afin d’évaluer ces solutions et de les améliorer, la RV est particulièrement
adaptée. D’une part, la RV permet de concevoir des scénarios de formation
afin d’améliorer les compétences et les réactions des opérateurs dans des
situations difficile où ils pourraient être surchargés mentalement. En effet,
les systèmes de RV ont la capacité de simuler des environnements com-
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plexes et réalistes tout en plongeant les utilisateurs dans des expériences
engageantes de manière sûre et contrôlée. De nombreuses recherches ont
déjà démontré que les dispositifs immersifs (par ex., casques de RV, CAVEs)
étaient bénéfiques par rapport aux supports plus traditionnels afin de former
les utilisateurs, par exemple dans le domaine médical [4, 112, 157, 265],
dans le domaine éducatif [99, 119, 194], et dans le domaine industriel [24,
109, 159, 296]. D’autre part, les technologies de RV peuvent être utilisées
pour évaluer l’état mental, le comportement, et les performances des util-
isateurs lors de l’usage d’un système avant sa fabrication. En effet, on
sait que les individus réagissent différemment en fonction de leurs com-
pétences, leurs connaissances, leur humeur, leur culture, et en fonction de
la situation. Ne pas tenir compte de ces facteurs dans la conception d’un
système peut rendre ce dernier inadapté aux utilisateurs et conduire à des
erreurs humaines.

Néanmoins, l’intersection entre la formation dans la RV et les systèmes
intelligents, capables de prendre en compte l’état psychologique des util-
isateurs, reste peu explorée. Les scénarios actuels de formation en RV sont
pour la plupart prédéfinis par des séquences d’événements, et régis par
l’action des utilisateurs et des mesures de performance. Dans ce contexte,
la CMT est davantage utilisée comme une finalité, une mesure à la fin du
processe afin d’évaluer l’expérience utilisateur, qu’au cœur d’un algorithme
qui adapte la RV à la CMT des utilisateurs de manière dynamique. Nous
appelons "adaptation de la RV à la CMT des utilisateurs" le processus dy-
namique qui adapte les paramètres ou le contenu de la RV en fonction
des informations acquises sur la CMT des utilisateurs. En informatique,
de tels processus adaptatifs visent généralement à maximiser la perform-
ance des utilisateurs ou leur expérience utilisateur [94, 204]. L’objectif est
généralement de rendre l’expérience agréable à l’utilisateur en traitant des
informations sur son état psychologique, idéalement en temps réel [204].
Parmi les différents avantages d’un tel traitement, la prise en compte de
la CMT des utilisateurs dans la conception des applications de formation
pourrait rendre ces applications plus adaptées aux individus, engager les
utilisateurs sur le long terme dans la formation et améliorer l’apprentissage
de ces derniers. Si les utilisateurs sont surchargés mentalement, la diffi-
culté des tâches à effectuer peut être réduite, et inversement. Un tel pro-
cessus peut être généralisé en dehors du domaine de la formation pour
d’autres états psychologiques [93, 106, 227]. Par exemple, dans un con-
texte de divertissement, les stimuli pourraient être modulés et intensifiés
en fonction des états affectifs des utilisateurs afin d’améliorer leur expéri-
ence utilisateur. Dans le domaine thérapeutique, les stimuli pourraient être
utilisés de façon progressive afin de traiter divers troubles ressentis par les
patients. Dans l’ensemble, évoluer vers des systèmes adaptatifs basés sur
les états psychologiques des utilisateurs peut améliorer l’expérience util-
isateur ainsi que la robustesse et la flexibilité des systèmes.
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Figure 62: Adaptation de la RV en fonction de la CMT des utilisateurs.
L’adaptation est décomposée en principalement 3 blocs : l’induction,
la reconnaissance et l’exploitation.

2 V E R R O U S S C I E N T I F I Q U E S

Durant cette thèse, nous proposons de décomposer l’adaptation de la RV
basée sur la CMT des utilisateurs en 3 axes de recherche, représentés dans
la Figure 62 :

• L’ induction de la CMT : Des stimuli sont présentés aux utilisateurs
dans la RV, déclenchant des réponses qui peuvent être évaluées à
l’aide de différentes mesures pertinentes pour la CMT des utilisateurs
(par exemple, des questionnaires, des mesures de performances aux
tâches, des mesures physiologiques, des mesures comportementales).

• La reconnaissance de la CMT : Le modèle de reconnaissance utilise
les mesures collectées précédemment et prédit le niveau de CMT des
utilisateurs en temps réel. Généralement, le modèle est basé sur des
règles heuristiques ou entraîné à partir d’algorithmes de ML.

• L’exploitation de la CMT : Cette étape se concentre sur la logique
rétroactive. Un ensemble de contraintes et de règles sont définies
afin de choisir comment moduler les stimuli de RV en fonction du
niveau de CMT prédit afin d’induire un niveau de CMT visé.

Chacune de ces 3 catégories possèdent des verrous, détaillés ci-dessous.

2.1 Induction de la CMT dans la RV

Les Environnements Virtuels Immersifs (EVIs) contiennent de nombreuses
informations et paramètres. Cette complexité rend particulièrement diffi-
cile l’identification des facteurs influençant la CMT des utilisateurs dans
la RV. En particulier, l’utilisation de dispositifs de RV implique un certain
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nombre de contraintes (par exemple, des intéractions spécifiques à la RV,
l’induction de cybersickness) qui peuvent intéragir avec les réponses liées à
l’état psychologique des utilisateurs. Des études passées ont déjà constaté
que certains paradigmes spécifiques à la RV tels que la marche redirigée et
le contrôle d’un avatar influençaient la charge cognitives et le comporte-
ment des utilisateurs [47, 277]. L’influence des dispositifs de RV sur les la
CMT des utilisateurs a cependant été très peu explorée.

Un autre verrou concerne le choix des stimuli. Ceux-ci dépendent prin-
cipalement du contexte de l’application. Pour généraliser la conception
de scénarios dans la RV, la littérature a présenté différentes taxonomies
et frameworks. L’un des principaux problèmes est de trouver un équilibre
entre la généricité et l’efficacité des scénarios pour répondre aux contraintes
et aux objectifs des applications. La plupart de ces taxonomies proposent
de concevoir des scénarios de RV de façon prédéfinie. Nous entendons
par là que les séquences d’événements dans l’application de RV sont struc-
turées de manière fixe. Elles sont déclenchées dans un certain ordre par
les choix et les actions des utilisateurs pour répondre à des exigences de
narration et d’interaction et le nombre de possibilités est limité. Actuelle-
ment, très peu d’approches considèrent les états psychologiques des util-
isateurs comme références dans la conception des scénarios de RV malgré
le fait que de plus en plus d’applications essaient d’adopter une perspect-
ive centrée utilisateur. Certains scénarios de RV adaptent le niveau de dif-
ficulté des tâches en fonction de la performance des utilisateurs, mais cela
est fait le plus souvent dans un contexte uni-tâche et/ou "à la main", par
l’expérimentateur. L’identification des stimuli pouvant affecter la CMT des
utilisateurs dans des EVIs complexes, ainsi que la manière dont ces stimuli
interagissent les uns avec les autres en fonction de la nature des tâches per-
mettraient de mieux comprendre comment structurer les EVIs complexes
afin de contrôler ou moduler le niveau de CMT des utilisateurs.

2.2 Reconnaissance de la CMT dans la RV

Le deuxième axe de recherche consiste à reconnaître le niveau de CMT
des utilisateurs de façon automatique. Les récentes avancées en matière
de ML et de Deep Learning rendent cela théoriquement possible [94, 227].
En particulier, un large éventail de recherches en dehors de la RV porte
sur la reconnaissance des états psychologiques des utilisateurs à partir de
signaux physiologiques [204]. Dans le domaine de l’informatique physiolo-
gique, les activités et les changements physiologiques sont le reflet direct
de processus dans le système nerveux autonome et le système nerveux
central [93]. Puisque les réponses physiologiques sont issues de processus
psychologiques, il devrait être en théorie possible de traduire ces réponses
en états psychologiques via l’extraction de caractéristiques physiologiques
spécifiques [228]. De nombreuses recherches dans ce domaine montrent
des résultats prometteurs, même si la capacité à rendre les modèles de
reconnaissance génériques à tous les utilisateurs reste un problème ma-
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jeur [65, 182, 204]. En effet, inférer le niveau de CMT perçu par les util-
isateurs est intrinsèquement plus complexe que de mesurer l’effet d’une
variable indépendante sur la CMT des utilisateurs. Par conséquence, le
développement d’un modèle de reconnaissance nécessite de rassembler
un nombre de données généralement plus important que celui habituelle-
ment rassemblé pour des études utilisateur dans le domaine des intérac-
tions homme-machine. Il n’existe pas non plus de consensus sur les al-
gorithmes, les capteurs et les méthodologies de traitement du signal à
adopter. De plus, si la reconnaissance des états psychologiques des util-
isateurs est une étape essentielle afin de rendre les applications de RV plus
adaptées aux utilisateurs, les dispositifs actuels de reconnaissance basées
sur les signaux physiologiques sont difficlement appropriées à des usages
quotidiens. L’acquisition des signaux physiologiques des utilisateurs con-
siste généralement en un processus fastidieux impliquant l’installation du
matériel, l’initialisation du logiciel, la surveillance rigoureuse des signaux
par un expert et la contrainte de limiter les mouvements des utilisateurs.
Ces configurations peuvent être inadaptées au contexte de la RV où les
interactions peuvent introduire des artefacts de mouvement dans les sig-
naux physiologiques. Cela peut entraver le traitement du signal pour la
reconnaissance de la CMT, en particulier si l’objectif est de reconnaître le
niveau de CMT des utilisateurs en temps réel.

2.3 Exploitation de la CMT dans la RV

Le troisième axe de recherche consiste à exploiter la CMT dans la RV, c’est
à dire la logique de rétroaction qui adapte l’Environnement Virtuel (EV) à
partir des mesures de CMT. Différents frameworks ont été proposés afin de
proposer des logiques de rétroaction dans les EVs basées sur les signaux
physiologiques des utilisateurs [29, 141] et leurs états affectifs prédits [33,
164]. Cependant, en dehors du domaine clinique [313], il n’existe que très
peu d’exemples de cas d’exploitation basée sur l’état psychologique des util-
isateurs soutenus par des études utilisateurs dans la RV dans la littérature
scientifique, d’autant plus avec la CMT comme référence. Cela peut être ex-
pliqué par les verrous de l’axe de recherche précédent : la reconnaissance
de la CMT des utilisateurs. Jusqu’à présent, les études d’utilisateurs ont
principalement exploité les mesures d’états psychologiques des utilisateurs
dans la RV en se basant sur des méthodes heuristiques ou en affichant
les changements physiologiques directement dans les EVs [2, 57, 78–80,
123]. La relation entre les états psychologiques et les signaux physiolo-
giques est cependant relativement complexe, les variables physiologiques
pouvant être associées à plusieurs éléments psychologiques ou comporte-
mentaux [93]. Par conséquent, l’utilisation de méthodes heuristiques pour
directement reconnaître les états psychologiques des utilisateurs à partir
de signaux physiologiques peut poser des problèmes de diagnostique, not-
amment si les états psychologiques ciblés ne peuvent pas être représentés
dans un continuum unidimensionnel [93]. D’autre part, les modèles de
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reconnaissance actuels entrainés à l’aide d’algorithmes de ML permettent
d’interpréter des changements physiologiques complexes, mais manquent
actuellement souvent de précision ou sont dépendants du contexte, ce qui
limite leur utilisation afin de valider les frameworks d’exploitation pro-
posés. Ainsi, très peu d’études ont proposé une logique d’adaptation des
stimuli et des paramètres de RV basée sur la CMT des utilisateurs afin de
les amener vers un niveau de CMT désiré. Par conséquent, l’impact du
guidage des utilisateurs vers un niveau ou une évolution du niveau de
CMT désiré est encore peu compris, de même que l’effet de la modula-
tion des paramètres utilisés dans l’exploitation (par exemple, le moment
d’enclenchement).

3 A P P R O C H E E T C O N T R I B U T I O N S

L’objectif principal de cette thèse est d’étudier l’exploitation de la charge
mentale de l’utilisateur dans des systèmes de RV, en particulier pour la
formation en RV.
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Figure 63: Correspondance entre les chapitres de la thèse et les différents axes de
recherche ciblés.

La figure 63 présente la correspondance entre les différentes contribu-
tions (présentées dans les chapitres) et les 3 axes de recherche proposés.
Parmi les différents verrous mentionnés pour l’induction, nous avons tout
d’abord choisi de contrôler les effets externes liés à l’utilisation de la RV.
Nous avons étudié l’effet du port d’un casque de RV sur l’effort mental
des utilisateurs, notamment car il s’agit des systèmes de RV immersifs les
plus répandus sur le marché [130]. Nous avons également étudié l’impact
potentiel d’interactions simples comme la marche dans les EVIs et l’effet
d’accommodation à la RV sur l’effort mental. En second lieu, nous avons
ciblé l’induction et l’exploitation de la CMT. Nous avons proposé d’intro-
duire les mesures de CMT dans la conception d’applications de formation
en RV. L’induction de la CMT a été abordée en étudiant l’effet de tâches
de différentes natures, de leurs difficultés, et de leurs interactions sur la
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CMT des utilisateurs dans un EVI complexe. Pour l’exploitation, des scén-
arios de formation en RV ont été conçus à partir de niveaux de CMT in-
troduits dans l’EV mesurés à priori afin d’obtenir une évolution souhaitée
du niveau de CMT des utilisateurs au cours du temps (voir Fig. 2). Enfin,
nous avons exploré la reconnaissance de la CMT des utilisateurs dans la RV.
Nous avons proposé une solution tout-en-un afin de reconnaître le niveau
de CMT des utilisateurs en temps réel dans la RV en utilisant des capteurs
physiologiques directement intégrés dans un casque de RV. En outre, nous
avons étudié l’impact du dispositif de captation, du type de mesures et des
méthodes de normalisation des signaux physiologiques sur la précision de
la reconnaissance de la CMT.
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Conclusion 
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Figure 64: Illustration de la feuille de route de cette thèse.

La figure 64 présente une représentation schématique de la feuille de
route de cette thèse.

Le chapitre 1 présente un état de l’art exhaustif des travaux passés port-
ant sur l’étude des états cognitifs et affectifs dans des EVIs. La CMT est
un concept qui a reçu de nombreuses définitions au cours des dernières
années [312]. Elle est également fortement liée à d’autres états psycholo-
giques tels que l’éveil émotionnel, l’anxiété, et d’autres concepts comme
le stress, les performances cognitives et le "flow" [69, 73, 196, 311]. C’est
pourquoi la CMT doit donc être considérée parmi ces différentes notions.
Les recherches associant la RV et les états cognitifs et affectifs suivent
souvent le même schéma et des objectifs communs. Par conséquent, nous
proposons tout d’abord une catégorisation des travaux portant sur l’étude
des états cognitifs et affectifs dans la RV, ainsi qu’une définition de la "Réal-
ité Virtuelle Affective et Cognitive". Dans un second temps, nous clarifions
les définitions et les modèles des principaux d’états cognitifs et affectifs
et concepts psychologiques étudiés dans la RV. Ensuite, les méthodes pour
mesurer ces états sont présentées, ainsi que leurs avantages et inconvéni-
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ents pour la RV. Nous présentons une vue d’ensemble des recherches an-
térieures ayant étudié le états cognitifs et affectifs dans un EVI dans un
contexte non clinique. Enfin, nous nous concentrons plus particulièrement
sur les études portant sur la CMT dans le milieu de la formation en RV.

Dans le chapitre 2, nous étudions l’impact des casques de RV sur l’effort
mental des utilisateurs. Parce que les utilisateurs se sentent “là, dans le
monde virtuel" [270] dans la RV, de nombreuses études ont émis l’hypothèse
que les réponses physiologiques et comportementales des utilisateurs dans
les EVIs étaient similaires à celles dans le monde réel. Ainsi, il a été démon-
tré que les compétences acquises dans la RV pouvaient être transférées
dans le monde réel [55, 246, 265, 300]. Cependant, les utilisateurs con-
tinuent malgré tout à percevoir et à penser que le monde qu’ils visualisent
dans la RV n’est pas réel. Une telle perception biaisée et les contraintes
relatives au contexte de la RV (par exemple, les interaction en environ-
nement immersif, l’encombrement des dispositifs de RV, le manque de vis-
ibilité de ce qui entoure l’utilisateur dans le monde réel, la cybersickness)
pourraient exiger un traitement d’information supplémentaire de la part
des utilisateurs, ce qui pourrait augmenter leur CMT. Deux expériences
d’utilisateurs ont été menées afin d’étudier l’influence du port du casque
de RV sur l’effort mental des utilisateurs lors d’une tâche cognitive auditive.
Différentes mesures ont été récoltées afin d’étudier l’effort mental des util-
isateurs dans la RV (en utilisant un casque de RV) par rapport à la réalité :
des mesures de performances, comportementales, et des mesures physiolo-
giques. En outre, l’effet de la marche naturelle dans la RV (première étude
utilisateur) et la durée d’une exposition courte dans la RV (deuxième étude
utilisateur) sur l’effort mental ont également été explorés. .

Le chapitre 3 propose une approche méthodologique afin d’introduire
les mesures de CMT des utilisateurs dans la conception de scénarios de
formation en RV. Peu d’applications de RV ont été construites avec en tête
de moduler les états psychologiques des utilisateurs. La plupart des scén-
arios de RV sont prédéfinis ou structurés afin de déclencher des événe-
ments basés sur les choix et les actions des utilisateurs suivant des exi-
gences de narration et d’interaction. Cependant, un même scénario et des
mêmes stimuli induiront des réactions différentes de la part des utilisateurs
en fonction, par exemple, de leurs ressources cognitives et de leurs capa-
cités d’apprentissage. Par conséquent, ces scénarios ne produiront pas né-
cessairement les résultats attendus et la meilleure expérience utilisateur
selon le profil et l’état psychologique des utilisateurs. Dans des EVI com-
plexes où les tâches et la natures des stimuli sont multiples, il peut être
particulièrement difficile de prévoir l’effet qu’un ensemble spécifique de
tâches aura sur les utilisateurs. Nous proposons donc une approche afin
de structurer des EVIs complexes en utilisant une machine à états basée
sur les configurations de tâches. Des mesures de la CMT déterminées de
façon empirique sont introduites dans la machine à états. Ensuite, ces in-
formations sont utilisées afin de concevoir des scénarios de formation en
RV qui permettent de moduler la CMT des utilisateurs au cours du temps.
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L’approche proposée est illustrée par deux études d’utilisateurs dans un
simulateur de vol en RV.

Le chapitre 4 propose une approche tout-en-un afin de reconnaître le
niveau de CMT des utilisateurs en temps réel dans la RV. La RV implique
des contraintes spécifiques et des dispositifs de captation particuliers. Peu
de dispositifs permettent actuellement le suivi de l’état psychologique des
utilisateurs en temps réel dans la RV en utilisant des algorithmes de ML.
Il n’existe pas non plus actuellement de consensus sur quel algorithme de
ML, quels capteurs et quelle méthodologie adopter pour le traitement des
signaux physiologiques en RV. Nous proposons ici une approche tout-en-un
afin de reconnaître la CMT des utilisateurs en temps réel dans la RV en util-
isant des capteurs physiologiques directement intégrés dans un casque de
RV. L’approche présentée au chapitre 3 est utilisée ici afin d’établir un proto-
cole d’acquisition de données afin d’entraîner plusieurs modèles de recon-
naissance de CMT à l’aide d’algorithmes de ML. La configuration matérielle
est présentée, ainsi que le processus de traitement des signaux physiolo-
giques afin de reconnaître le niveau de CMT des utilisateurs en temps réel.
Les capteurs intégrés dans le casque de RV sont comparés à des capteurs
trouvables dans le commerce en termes de précision des modèles de recon-
naissance de la CMT. Différents résultats sont également détaillis vis à vis
de l’effet des différentes mesures, capteurs et traitement de normalisation
des signaux sur les performances de reconnaissance de la CMT.

Enfin, le chapitre 5 résume les contributions, discute les limites des
résultats et études délivrés au cours de cette thèse, et présente quelque
perspectives pour les travaux futurs.
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Résumé : Malgré l’émergence rapide des
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une approche méthodologique pour introduire

l’évaluation de la charge mentale de travail
dans la conception de scénarios de formation
en RV. Cette méthodologie permettra notam-
ment de moduler le niveau de charge men-
tale de travail des utilisateurs au cours du
temps. Des études utilisateurs seront menées
dans un simulateur de vol en RV afin d’éva-
luer cette approche. Finalement, nous propo-
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en temps-réel en utilisant des capteurs inté-
grés aux casques de RV. Cette configuration
sera comparée aux systèmes plus répandus
dans le commerce vis-à-vis des performances
de prédiction. Les influence du types de me-
sures, des capteurs, et des méthodes de nor-
malisation des signaux seront également ana-
lysées.

Title: Towards the Exploitation of Mental Workload in Virtual Reality Systems

Keywords: Virtual Reality, Mental Workload, Physiological Computing, Training

Abstract: Despite the rapid emergence of
autonomous systems and the development of
affective computing, little studies considered
mental workload in the design of VR training
scenarios. This thesis aims to contribute to the
development of adaptive VR systems based
on the users’ mental workload. We propose 3
research axes: induction, recognition, and ex-
ploitation of mental workload in VR, and a def-
inition of “Affective and Cognitive Virtual Real-
ity”. First, we study the impact of wearing a VR
HMD on the users’ mental efforts. In addition,
the potential influence of walking and accom-
modation to VR effect are analysed. Then, we
propose a methodological approach to intro-

duce mental workload assessment in the de-
sign of VR training scenarios in complex im-
mersive virtual environments. This methodol-
ogy enables to modulate users’ mental work-
load levels over time. User studies in a VR
flight simulator are conducted to evaluate the
approach. Finally, we propose an all-in-one
solution to recognize users mental workloads
in real-time using integrated physiological sen-
sors into a VR HMD. This setup is compared
to a commercial-grade system with regards
to the mental workload recognition accuracy.
The influences of the type of measures, sen-
sors, and signal normalization methods is also
investigated.
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