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1 Résumé en français

Nous avons décidé d’écrire cette thèse en anglais, car tous les membres du jury
ne sont pas francophones, mais aussi par soucis d’accessibilité au plus grand nombre.
Ce choix est rendu possible par le règlement de l’école doctorale 397, sous réserve
qu’un “résumé substantiel ∼ 10 pages” soit écrit en français. C’est ce résumé qui
est présenté dans les pages suivantes, en suivant la structure du texte principal en
anglais.

We choosed to write this thesis in english as some of the jury’s members are not
francophone, and to make it accessible to a greater number. This choice is possible in
accordance to the doctoral school 397, if a substantial french summary of ∼ 10 pages
is furnished. This summary is presented in the following, keeping the same structure
as the main text in english.

1.1 Introduction

Si nous regardions les transformations de la matière condensée à une échelle
atomique, une grande variété de mécanismes se déploierait sous nos yeux. Étudier les
processus sous-jacents à ces transformations est un des plus vieux problèmes de la
communauté qui étudie la matière condensée. À cause de la nature évanescente des
états de transitions, les observations expérimentales sont difficiles à mener et souvent
limitées dans leurs résultats. C’est pourquoi les études numériques ont joué un rôle
majeur dans notre compréhension des processus de transformations dans la matière.

Curieusement, l’eau est à la fois un des matériaux le plus omniprésent et le plus
bizarre sur Terre. Ses nombreuses anomalies comparées à d’autres liquides, notam-
ment celles aux basses températures, font parties des problèmes les plus mal compris
et les plus débattus dans les dernières décennies [1]. Même le problème fondamental
de la nucléation de la glace, c’est-à-dire comment l’eau liquide se transforme en glace,
n’est toujours pas bien compris, avec de nombreux travaux qui l’étudient encore [2].

D’un point de vue général, un système peut accéder à différents états physiques,
pour un jeu de température et de pression donné. Par exemple pour des conditions
ambiantes de température et de pression, l’eau peut se trouver sous des formes li-
quides, gazeuses, ou solides. Pour décrire la stabilité de ces états, historiquement,
les physiciens ont introduit la notion d’énergie libre. Un état dont l’énergie libre est
minimale est dit stable, ou métastable si l’énergie est minimale localement. Chaque
minimum est séparé par une barrière d’énergie libre, qui empêche le système de tran-
siter librement entre les différents états. Chaque minimum de l’énergie libre piège le
système pour un temps long (de quelques microsecondes à quelques millions d’années),
en comparaison du temps typique de vibration moléculaire (quelques femtosecondes).
Rarement, le système va sauter par-dessus la barrière et transiter d’un état à un
autre.

Pour simuler la matière, dans cette thèse nous nous sommes limités à une ap-
proche classique de dynamique moléculaire. Dans cette approche, toutes les molécules
sont décrites par des modèles de champs de forces, pour lesquels les équations du
mouvement sont résolues numériquement afin de calculer la vitesse et la position de
chaque molécule à chaque pas de temps. En pratique, les simulations de dynamique
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moléculaire classiques sont limitées par la puissance de calcul dont nous disposons,
qui souvent se limite à l’ordre de quelques centaines de nanosecondes. Soit au mini-
mum 6 ordres de grandeurs en dessous de l’échelle de temps typique d’une transition
dans la matière condensée.

Pour pallier ce problème, une approche consiste à coupler la dynamique molé-
culaire avec des méthodes d’échantillonnage amélioré, qui permettent de réduire le
temps nécessaire pour échantillonner une transition. Cette approche nécessite de dé-
finir des coordonnées de réactions, qui sont censées décrire une transition donnée.
En pratique ce n’est pas trivial du tout de trouver des coordonnées de réactions
optimales, qui souvent nécessitent des connaissances très précises du système et de
la transition étudiée. Il y a un réel besoin de développer des méthodes générales et
fiables pour automatiser ce processus, en réduisant les connaissances nécessaires au
préalable pour étudier une transformation.

Nous avons donc deux problèmes : d’un côté le développement de méthodes
générales pour étudier les transformations de la matière, et de l’autre l’étude de
deux problèmes compliqués de l’eau. L’objectif de cette thèse est de montrer qu’il est
possible de développer des métriques générales pour étudier les transformations, en
les appliquant sur le très controversé problème de la transition liquide-liquide et sur
le problème complexe de la nucléation homogène de la glace pour l’eau.

1.2 Simuler la matière condensée

Comme dit précédemment, pour simuler la matière condensée nous allons utiliser
une approche classique, basée sur des modèles de champs de forces. Pour l’eau, il existe
plusieurs dizaines de modèles différents, avec leurs forces et leurs faiblesses. Ici, nous
allons parler plus spécifiquement de quatre modèles.

Le premier est le modèle mW [3]. Basé sur l’observation que l’eau et le silicium
possèdent des propriétés structurelles similaires de par leur tendance à former des
structures tétraédriques, il est une modification d’un modèle utilisé pour décrire le
silicium. Concrètement, il modélise une molécule d’eau comme une boule avec un cer-
tain rayon, et dont l’arrangement en structure tétraédrique est créé artificiellement
par l’ajout d’un terme quadratique qui favorise la formation d’un angle θ0 = 109.47◦

entre triplets de molécules. Comme il ne contient que des termes à courte portée, il
offre de très bonnes performances de calcul et décrit très correctement le diagramme
de phase de l’eau et ses propriétés à des pressions atmosphériques, sauf la cinétique.
Mais comme vous pouvez vous en douter, dès qu’on sort des gammes de pression
atmosphérique, où la structure de l’eau n’est plus forcément tétraédrique, ses prédic-
tions diffèrent largement des observations expérimentales en trouvant une phase qui
n’existe pas.

Le deuxième est le modèle ST2 [4]. Ici l’eau est décrite comme une molécule H2O,
mais pour laquelle la charge négative serait localisée à la position de deux particules
fictives, arrangées de manière à former un tétraèdre avec les atomes d’hydrogène,
l’atome d’oxygène ne possédant pas de charge. Cette façon de décrire la molécule d’eau
mène à sur-structurer l’eau, et donne de mauvaises prédictions pour son diagramme
de phase et ses propriétés en dehors des basses pressions atmosphériques.

Les deux derniers modèles font partie d’une même famille, mais sont paramétrés
différemment. Ils se basent sur la géométrie TIP4P, où la molécule d’eau est décrite
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comme une molécule H2O, mais pour laquelle la charge négative serait localisée à la
position d’une particule fictive entre les deux atomes d’hydrogène, dans le plan formé
par le trièdre H-O-H. Ce qui est différent est la façon dont ils ont été paramétrés.
Le modèle TIP4P/2005 a été paramétré pour reproduire les données expérimentales
de la courbe de densité maximale de l’eau [5]. Le modèle TIP4P/Ice a été paramétré
pour reproduire la température de solidification de l’eau liquide à T = 0◦ C, et
les différentes densités des phases cristallines [6]. Ces deux modèles décrivent très
correctement le diagramme de phase de l’eau, en trouvant correctement toutes ses
phases, mais ils sont légèrement décalés par rapport aux données expérimentales. De
plus leur cinétique est beaucoup plus réaliste que celle décrite par le modèle mW.

1.3 Décrire un système avec des variables collectives

Pour étudier les transformations de la matière, il nous faut des outils pour pouvoir
distinguer les différents états qu’elle peut atteindre. L’eau par exemple a plus de 10
phases solides : comment pourrait-on les distinguer ? Avec la dynamique moléculaire,
nous avons accès aux positions de chaque particule, mais ça représente vite un volume
de données beaucoup trop important. L’idée des variables collectives est de calculer
des données spécifiques pour un système particulier à partir de la position de ses
particules. Par exemple, cette variable peut être le nombre de voisins d’une particule.

Quand une variable collective s(x), x ∈ R3N est utilisée pour décrire une tran-
sition entre deux états ou plus, on parle de paramètre d’ordre et de coordonnée de
réaction. En général le premier terme fait référence à une variable capable de dis-
tinguer les états localement stables, tandis que le second fait référence à la meilleure
variable collective possible, qui décrit non seulement les états localement stables, mais
aussi les détails du mécanisme de transition.

Concrètement, utiliser une variable collective s(x) revient à projeter l’espace des
configurations sur cette variable, en réduisant sa dimensionnalité. Une opération qui
n’est pas triviale, mais qui rend les profils d’énergie libre plus simple à analyser. De
plus, souvent cette projection donne un nouveau point de vue sur la transformation
étudiée, avec son lot d’information sur la physique sous-jacente.

Deux grands types de variable collective existent : celles qui sont locales et nous
renseignent sur l’état de chaque particule ; et celles qui sont globales et nous ren-
seignent sur l’état du système dans son entier.

Parmi la multitude de variables collectives utilisées, une classe de variables basées
sur un vecteur particulier a servi de fondation pour tout le travail effectué pendant
cette thèse : c’est le Vecteur Invariant par Permutation (Permutation Invariant Vector
ou PIV). L’idée de ce vecteur est de stocker l’information topologique d’une structure
donnée, de sorte qu’il suffit de calculer la distance entre deux vecteurs pour avoir la
distance entre deux structures [7, 8]. L’avantage de cette variable est qu’elle est très
flexible et demande peu de connaissances préalables pour pouvoir étudier des trans-
formations dans un système donné, tout en fournissant des coordonnées de réaction
de très bonne qualité, comme cela a été mesuré quantitativement pendant notre étude
de la nucléation.

Pour étudier la nucléation, nous avons aussi utilisé l’algorithme Chill+ [9], qui
permet de distinguer les différents polymorphes de la glace I en se basant sur les
symétries de chaque molécule. Cet algorithme permet de déterminer si une molécule
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est dans un état liquide, de glace hexagonale, cubique ou interfaciale. Cette variable
collective locale, couplée à des algorithmes de regroupement (clustering), va aussi
nous permettre de calculer la taille du plus grand noyau pendant le processus de
nucléation NCHI . En comptant le nombre de molécules à symétrie hexagonale NH et
celles à symétrie cubique NC dans le plus grand noyau, on pourra aussi calculer sa
cubicité C = NC/(NC +NH), qui mesure simplement le ratio de molécules cubiques
et nous informe sur la structure interne du plus grand noyau.

Une dernière variable mérite notre attention. C’est la fonction de réalisation
(committor). Si nous avons deux états A et B et un système de N particules dans
une configuration x ∈ R3N , la fonction de réalisation ϕB(x) va mesurer la probabilité
du système d’atteindre l’état B avant l’état A. Pour ϕB(x) = 0 nous sommes donc
dans l’état A et dans l’état B pour ϕB(x) = 1, et la fonction varie continûment entre 0
et 1 pour des configurations intermédiaires [10, 11]. Concrètement cette fonction nous
informe sur la cinétique de la transformation, vu qu’elle nous donne la probabilité de
réaliser une transition dans l’état B en partant d’une configuration donnée.

En projetant la fonction de réalisation sur une variable collective quelconque,
nous allons pouvoir mesurer sa qualité. Une bonne variable collective déforme de
manière minimale le profil de ϕB. La méthode d’optimisation du maximum de vrai-
semblance (maximum likelihood optimization [12, 13]) utilise ce résultat pour mesurer
de manière quantitative la qualité d’une variable collective.

1.4 Méthodes d’échantillonnage amélioré

Comme dit précédemment, quand une large barrière d’énergie libre sépare deux
états métastables, la dynamique moléculaire n’est pas suffisante pour pouvoir échan-
tillonner les propriétés thermodynamiques ou cinétiques d’un système, et on doit la
coupler à des méthodes d’échantillonnage amélioré (enhanced sampling).

Dans cette thèse, pour obtenir nos résultats finaux nous avons principalement
utilisé la méthode d’échantillonnage parabolique (umbrella sampling [14]), et deux
méthodes d’échantillonnage des chemins de transitions (transition path sampling [15]).

L’idée de l’échantillonnage parabolique est de séparer le paysage d’énergie libre en
fenêtres qui vont être échantillonnées séparément, pour calculer précisément l’énergie
libre. Pour chaque fenêtre, on va ajouter à notre système un potentiel artificiel para-
bolique, pour contraindre le système à rester dans la zone décrite par la fenêtre. La
force de cette méthode est qu’elle est intrinsèquement parallèle, chaque fenêtre étant
échantillonnée indépendamment, et qu’elle permet de diminuer énormément le temps
d’échantillonnage, pour peu que les fenêtres soit petites et le potentiel suffisamment
fort. Nous utiliserons cette méthode dans l’étude de la transition liquide-liquide.

Pour l’échantillonnage des chemins de transition on ne va pas ajouter de biais
artificiels, mais on va chercher à construire une chaîne de Markov où chaque pas
consistera à générer de manière itérative de courtes trajectoires, que l’on gardera si
elles correspondent à une transition entre les deux états étudiés. En itérant suffisam-
ment longtemps, on pourra ainsi générer l’ensemble des trajectoires de transitions.
Parmi ses nombreuses variantes, une classe de méthodes consiste à se placer en haut
de la barrière d’énergie libre, sur un état de transition, et à tirer des trajectoires
depuis cette position pour voir comment elles se détendent. Ce sont deux méthodes
issues de cette classe que nous allons utiliser pour étudier la nucléation homogène de
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la glace.

1.5 Étude de la transition liquide-liquide

La transition liquide-liquide de l’eau a été initialement postulée pour expliquer
la présence de plusieurs formes de glace amorphe à basse température, le polyamor-
phisme, et certaines anomalies de l’eau, comme sa courbe de densité maximale. Il
existe trois formes amorphes : une basse-densité (low density amorhous, LDA) [16],
une haute-densité (high density amorhous, HDA) [17] et une très haute-densité (very
high density amorphous, VHDA) [18]. Il a été établi expérimentalement que la tran-
sition LDA-HDA est de premier ordre [19].

Pour expliquer ce polyamorphisme, l’existence d’une transition liquide-liquide de
premier ordre, avec un second point critique dans le domaine sur-refroidi de l’eau,
entre un liquide basse-densité (low density liquid, LDL) et un liquide haute-densité
(high density liquid, HDL) a été formulé à partir d’évidences numériques [20]. La
vérification expérimentale de cette hypothèse est très difficile, car le point critique
serait situé dans le no man’s land, une région où la nucléation homogène de la glace
se fait spontanément, prévenant toute observation de ses états liquides métastables.

Néanmoins, de nombreuses études expérimentales ont tenté de sonder les pro-
priétés du no man’s land. En général les expériences essayent de limiter la nucléation
en utilisant des solutions aqueuses ou des système confinés de taille microscopiques.
Des expériences récentes menées sur l’eau salée jettent de forts doutes sur l’existence
d’une transition liquide-liquide de premier ordre [21], malgré la mise en évidence
d’une transition de premier ordre entre les phases amorphes correspondantes [22], ce
qui montre qu’il n’y a pas forcément de lien direct entre les deux.

Depuis la formulation de cette hypothèse de très nombreuses études numériques
ont cherché à prouver la présence ou l’absence d’un tel point critique. Les résultats
dépendent du modèle utilisé pour décrire l’eau. Pour le modèle ST2, avec tous ses
défauts présentés précédemment, la présence d’un point critique a été démontrée
sans ambiguïté [23]. Pour le plus réaliste modèle TIP4P/2005, seulement des études
indirectes ont été menées, en étudiant les fluctuations de la densité. En utilisant deux
théories différentes, mais toujours en se basant sur les fluctuations de la densité et
en extrapolant depuis des températures plus élevées, un point critique a été proposé
à 182 K et 1.7 kbar [24, 25], puis un autre à 172 K et 1.9 kbar [26].

Toutes ces études sont indirectes, dans le sens où elles ne font pas de calcul
d’énergie libre, et ne permettent pas de trancher clairement la question de l’existence
ou non d’un point critique pour la transition liquide-liquide du modèle TIP4P/2005.
Un des objectifs de cette thèse était de justement calculer rigoureusement les profils
d’énergie libre pour trancher cette question.

C’est précisément ce qui a été réalisé dans cette thèse, en utilisant une variable
collective S basée sur la PIV pour décrire la transition, couplée avec des calculs pous-
sés d’échantillonnage parabolique. Dans ce cas précis, S est quasiment linéaire à la
densité. Nous avons calculé plusieurs points dans l’espace des pressions et tempéra-
tures P, T , sans jamais trouver de barrière d’énergie libre, tous nos profils présentent
un seul minimum. De manière remarquable, nous avons pu suivre une ligne de condi-
tions de pressions et de températures où les profils d’énergie libre sont pratiquement
plats, ce qui indique que le système peut librement fluctuer dans un large domaine
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de densité.
Pour conclure sur la convergence de nos échantillonnages paraboliques, nous

avons calculé la fonction d’auto-corrélation de notre variable S dans chaque fenêtre
d’échantillonnage. A chaque fois ces fonctions d’auto-corrélation s’annulent sur une
durée bien plus courte que celle de nos échantillonnages, ce qui montre leur bonne
convergence. De plus, en effectuant une analyse par moyennage de blocs, nous avons
estimé nos incertitudes statistiques, en trouvant systématiquement des erreurs infé-
rieures à 1 kBT .

Par ailleurs, à la fois pour confirmer nos profils d’énergie libre et pour obtenir
des informations sur la cinétique de notre système, nous avons laissé plusieurs tra-
jectoires se détendre librement, sans biais, d’un état basse ou haute-densité, pour
différentes conditions de pression et de température. A chaque fois, les configurations
se détendent dans la zone d’énergie libre minimale à plus ou moins 2 kBT , comme
attendu. De plus, en reconstruisant les distributions de densité à la fois depuis nos
données d’échantillonnage parabolique et depuis les trajectoires libres sans biais ajou-
tés, nous trouvons des résultats cohérents.

Comme dernière analyse, pour montrer l’absence de barrière d’énergie libre entre
les deux états à basse et haute-densité, nous avons étudié le coût de formation d’une
interface. En analysant comment les groupes de LDL et de HDL se structurent dans
notre système, nous avons pu établir que les deux formes se mélangent de manière
quasi-aléatoire, sans chercher à minimiser leur interface.

Nos résultats montrent qu’une métrique basée sur la PIV résout correctement
toute la gamme de structures d’eau sur-refroidi pour le vaste domaine P, T exploré.
Entre 155 et 182 K et entre 1 et 3 kbar, nous n’avons trouvé aucune preuve d’une
séparation entre deux phases liquides, avec la barrière d’énergie libre correspondante.

En particulier, pour des conditions P, T proches de la localisation d’un second
point critique (182 K, 1.7 kbar et 180 K, 2 kbar pour comparer avec la Réf. [24], et
170 K, 2 kbar pour comparer avec la Réf. [26]), nous avons toujours trouvé un seul
large minimum d’énergie libre, sans barrière. Ce résultat diffère fondamentalement de
ce que l’on peut trouver avec le modèle ST2, où une barrière de 4kBT a été observée.

Tous nos résultats montrent donc de façon cohérente l’absence d’un second point
critique pour la transition liquide-liquide. Sans diminuer l’importance de tels modèles,
qui permettent d’approfondir notre compréhension de phénomènes complexes, cette
conclusion montre les limites que peuvent avoir des extrapolations faites à partir
d’observation dans d’autre régions du diagramme des phases en utilisant les-dits
modèles.

Finalement, il reste à élucider comment le profil d’énergie libre évolue en re-
froidissant sous la barre des 140 K, où la transition LDL/HDL devient la transi-
tion LDA/HDA de premier ordre entre deux formes amorphes. Des calculs rigoureux
d’énergie libre seraient encore plus coûteux que pour l’eau sur-refroidie, mais de
nos jours ils deviennent accessibles. Il semblerait que la grande bizarrerie et richesse
phénoménologique de l’eau, rende inévitable l’utilisation de simulations atomiques
détaillées et d’expériences réalisées directement aux conditions de pressions et de
températures que l’on veut sonder.
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1.6 Étude de la nucléation homogène de la glace

Parmi les nombreux états solides dans lesquels l’eau peut être, les formes poly-
morphes de la glace I (hexagonale, cubique et en empilement désordonné (stacking
disordered)) sont les plus intéressants pour nous en tant qu’humain, car ce sont celles
que l’on trouve dans les conditions atmosphériques de pression et de température
terrestres. C’est pourquoi, malgré le fait que l’eau liquide peut nucléer sous cinq
formes de glaces différentes, quand on parle de nucléation de la glace, cela fait géné-
ralement référence à la nucléation de la glace I. Ici nous allons principalement nous
intéresser à la nucléation homogène de la glace, c’est-à-dire avec de l’eau pure sans
aucune impureté ou interfaces qui pourraient servir de site de nucléation et accélérer
le processus.

Pour comprendre la nucléation, il est important de bien connaître les poly-
morphes de la glace I. Elle a deux états bien définis, la glace hexagonale (Ih), qui
est la phase stable, et la glace cubique (Ic), qui est métastable. Jusqu’à récemment,
aucune observation directe d’un échantillon pure de Ic n’avait été réalisé, et ce n’était
même pas clair si elle pouvait être observé dans la nature [27, 28]. Avant ces deux
études, la phase observée naturellement était un empilement désordonné métastable,
où des couches de glace hexagonale et cubique s’empilent les unes sur les autres, d’où
son nom [29, 30, 31]. Comme une caractérisation précise de ce désordre et de son mé-
canisme de formation est difficile à mener expérimentalement, les études numériques
sont de première importance pour comprendre précisément ce phénomène.

Du point de vue de leur symétries cristallines, la glace Ih réside dans le groupe de
symétrie hexagonale, la glace Ic dans le groupe de symétrie cubique (d’où leur nom)
et la glace Isd dans le groupe de symétrie trigonal. La différence de symétrie entre les
glaces cubiques et hexagonales a d’importantes conséquences sur leur empilement.
Les quatre faces (111) de la glace Ic peuvent s’empiler sans apparition de défauts
cristallin avec la glace Ih , alors que pour cette dernière seulement les deux faces
basales (001) peuvent s’empiler avec la glace Ic sans apparition de défauts [31].

Une des théories les plus utilisées pour décrire la nucléation est la théorie de
la nucléation classique (classical nucleation theory, CNT). Dans cette théorie, les re-
groupements cristallins de particules (des molécules H2O dans le cas de l’eau) de
n’importe quelle taille sont considérés comme de larges structures cristallines homo-
gènes, avec une fine interface avec le liquide environnant. Dans ce point de vue, où on
néglige complètement la structure interne et la forme de ces regroupements cristallins
– que l’on va appeler noyau par la suite –, le processus de nucléation peut entière-
ment être décrit par la différence entre le gain énergétique à former un noyau et le
coût énergétique lié à son interface avec la phase liquide. Une fois atteinte une taille
critique où les deux coûts s’équilibrent, l’extension du noyau permet au système de
réduire son énergie et donc la phase cristalline va s’étendre à tout le système. Ce qui
rend la nucléation très compliquée à étudier numériquement, c’est que la formation
initiale d’un noyau de taille critique est un événement rare qui nécessiterait en théorie
des simulations de l’ordre de la milliseconde – ce qui est inatteignable de nos jours.

L’enjeu de l’étude de la nucléation homogène de la glace est justement de mesurer
précisément la taille et la structure interne optimale des noyaux critiques. Les études
numériques qui se sont attaquées à ce problème ont principalement utilisé les modèles
mW, TIP4P/2005 et TIP4P/Ice. Pour étudier la taille du noyau critique en fonction
de la température, plusieurs études ont utilisé la méthode du germe (seeding) [32, 33,
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34, 35, 36], où on va artificiellement introduire un germe cristallin dans un système
liquide, puis générer un grand nombre de trajectoires en comptant celles où il grandit
et celles où il rétrécit. Cela permet d’estimer la taille du noyau critique, où on doit
avoir à peu près la moitié des germes qui grandissent et l’autre moitié qui rétrécissent.
Même si la méthode du germe ne permet pas de faire des estimations très précises,
ces études sont très utiles comme point de départ pour étudier la nucléation avec des
méthodes plus coûteuses.

En utilisant l’échantillonnage des flux causaux (forward flux sampling, FFS) pour
reconstruire l’ensemble des chemins de transitions, une étude a pu estimer avec pré-
cision la taille du noyau critique Nc = 474± 12 et sa cubicité C = 0.59± 0.07 à 230
K pour le modèle TIP4P/Ice [37]. Une seconde étude qui utilise la méthode de tir
sans objectifs (aimless shooting), a reconstruit l’ensemble des chemins de transition,
ce qui lui a permis d’estimer la taille du noyau critique Nc = 450± 35 et sa cubicité
C = 0.63 ± 0.05, à 230 K avec le modèle mW [38]. Une dernière étude a utilisé la
métadynamique (metadynamics [39]) pour calculer le profil d’énergie libre de la tran-
sition, trouvant une barrière d’énergie libre ∆Gc = 52± 6 kBT , et estimer la taille du
noyau critique et sa cubicité, à 230 K pour le modèle TIP4P/Ice [40]. Cette dernière
trouve une taille critique plus faible que les deux études précédentes Nc = 314± 20,
mais une cubicité similaire C = 0.7± 0.1.

L’objectif de notre travail est de produire un ensemble des chemins de transi-
tion fiable et de bonne qualité, avec le modèle réaliste TIP4P/Ice, dans la continuité
de l’étude réalisée à partir du modèle mW de la Réf. [38]. Cela va nous permettre
d’estimer précisément la taille du noyau critique et sa cubicité, avec une analyse
quantitative du mécanisme d’empilement désordonné. Mais aussi de mesurer quanti-
tativement la qualité d’une variable collective basé sur la PIV.

C’est précisément ce que nous avons fait à 237 K pour le modèle TIP4P/Ice, en
utilisant une méthode rigoureuse d’échantillonnage des chemins de transition. Cette
méthode très coûteuse nécessite de générer des milliers de trajectoires de transitions.
Deux facteurs rendent ces simulations onéreuses : d’un côté le besoin d’avoir une
boîte suffisamment grande pour accueillir un noyau de taille critique (jusqu’à ∼ 700
molécules à 237 K, notre boîte étant de 4096 molécules), et de l’autre la longueur
minimale des chemins de transitions, ∼ 100ns à 237 K.

Pour remplir cet objectif, nous nous sommes appuyés sur deux outils : le premier
est une variante de la méthode utilisée dans la Réf [38] : le tir sans objectifs depuis une
région donnée (“aimless shooting within a range” [41]). Le second est bien évidemment
l’utilisation de la PIV pour définir nos variables collectives. Ici nous avons utilisé la
distance avec une structure cristalline hexagonale DIh , qui nous a permis de suivre
précisément l’évolution de la structure des noyaux critiques, grâce à une excellente
corrélation avec la fonction de réalisation, c’est-à-dire la meilleure coordonnée de
réaction.

Ce résultat nous a permis d’offrir une vue détaillée du mécanisme de nucléation,
en quantifiant les sources d’apparition d’empilement désordonné. Nos résultats sont
cohérents avec les résultats précédemment obtenus sur d’autre potentiels [38] ou avec
d’autres méthodes d’échantillonnages [34, 42, 40], et contribuent à clarifier notre
compréhension de la nucléation homogène de la glace.

En particulier, nous avons directement observé à la fois l’évolution spontanée
d’un germe hexagonal et celle d’un germe cubique, en tirant des conclusions fiables
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basées sur la répétition de chaque type de simulation dans 15 répétitions indépen-
dantes. Notamment, nous avons pu observer que l’agrégation de nouvelles molécules
à symétrie hexagonale sur le noyau critique était un processus en deux étapes, alors
qu’il ne nécessitait qu’une étape pour les molécules à symétrie cubiques. Clairement,
nos résultats montrent que la théorie classique de la nucléation est trop simpliste
pour pouvoir décrire correctement la nucléation de l’eau.

Un autre résultat de notre étude est de fournir une première mesure quantitative
de la qualité de la PIV pour définir des variables collectives, grâce à l’utilisation
rigoureuse de la technique d’optimisation du maximum de vraisemblance [12]. En
utilisant des données de réalisations massives de la Réf. [38], nous avons trouvé que
notre variable DIh était la meilleure parmi un jeu de 26 variables collectives, qui était
un ensemble très varié, contenant la taille du plus grand noyau, sa forme ou encore
l’énergie du système. Il est important de noter que la définition de notre variable est
très générale et s’appuie sur très peu de connaissances, puisqu’elle ne nécessite que de
définir un état final et initial (ici la glace hexagonale et l’eau liquide). Elle pourrait
donc très bien s’appliquer sur d’autre matériaux et à d’autres transformations de la
matière condensée.

Pour conclure, le large ensemble de chemins de transitions obtenus avec cette
étude va servir de base pour un nouveau projet de recherche. Celui-ci visera à calculer
précisément le taux de nucléation, grâce à la reconstruction bayésienne d’un modèle
markovien diffusif, comme décrit dans la Réf. [43]. Cette approche s’occupera de
ce qui est certainement la question la plus importante dans le large champ de la
nucléation homogène : comment calculer directement et avec une bonne fiabilité le
taux de nucléation, sans s’appuyer sur les nombreuses approximations de la théorie
classique de la nucléation.

1.7 Conclusion

En conclusion, au cours de cette thèse deux problèmes majeurs pour l’eau ont
été étudiés : la transition liquide-liquide et la nucléation homogène de la glace.

En utilisant des nouvelles méthodes d’échantillonnage amélioré, couplé avec la
nouvelle variable PIV, nous avons pu montrer rigoureusement l’absence de barrière
d’énergie libre et de second point critique pour la transition liquide-liquide avec le
modèle TIP4P/2005.

Nous avons aussi pu étudier précisément le mécanisme de nucléation homogène
de l’eau avec le modèle TIP4P/Ice, montrant que la structure optimale des noyaux
critiques est un empilement désordonné, les noyaux purement cubique ou hexagonaux
évoluant spontanément vers cette structure. De plus, nous avons pu montrer que la
glace hexagonale s’agrégeait majoritairement en deux étapes, là où la glace cubique
s’agrégeait en une étape.

Finalement nous avons démontré rigoureusement qu’une variable collective basée
sur la PIV permettait de décrire de manière optimale la nucléation.
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2 Introduction

2.1 Context

If we look at transformations of condensed matter on the atomic scale, a large
number of mechanisms unfold before our eyes. The study of the underlying processes
is a long standing problem in the condensed matter community. Due to the evanescent
nature of transition states, experimental studies are difficult to carry out and limited
in their results. Hence, numerical methods play a major role in our understanding of
transformation processes in matter.

Among the many materials that exist on earth, curiously water is at the same
time the most ubiquitous and one of the most unusual and challenging to study.
Its numerous anomalies at low temperature have been some of the most puzzling to
understand in the last decades [1]. Even the fundamental problem of ice nucleation,
that is how liquid turn into ice, is not well understood and it still sees a large amount
of work being carried out [2].

And yet it is of prime importance to understand transformations and properties
of water, as it plays a major role in countless essential domains, ranging from the
study of life to climate change (and even in a not so essential domain like aviation).
Understanding ice nucleation of water and how it is hampered or favoured by the
various substances present in the atmosphere is crucial to understand how clouds
form, as they are mainly composed of ice. Hence, it is also a key component to make
reliable models about climate change or for meteorology. For biology, many works rely
on proper study of proteins folding and unfolding when solvated in water. It is thus
of prime importance to have cheap and reliable models to describe water numerically,
which in turn imply fine understanding of water and subsequent validation of the
models by comparing it with experimental results.

From a more fundamental point of view, the study of water properties has revea-
led to be an extremely fertile soil for the development of new theories and techniques,
whether experimental, analytical or numerical. For instance, the will to understand
the supposed liquid-liquid transition of water has led to developing many new expe-
rimental techniques for high pressure, ultra-fast x-ray diffraction, confinement, and
many ones to study negative pressures [44]. It has also led to development of the
theory of thermodynamics of fluid polyamorphism [45].

To put it simply, understanding finely the properties of water, and how to model
it, is necessary in basically all of the disciplines of natural science and engineering.
Systematic study of the supercooled water properties with general methods is the
object of this thesis.

2.2 Thermodynamics and phase transitions

Generally speaking, physical systems have several possible states that they can
reach for a given pressure and temperature. For instance, at ambient pressure and
summer temperature, water can be liquid, solid or gaseous, but if we take a piece of
ice, it will melt into liquid. We say that the liquid state is stable, while the ice state
is metastable, and that our piece of ice has performed a phase transition.

To describes this, historically physicists introduced the concept of free energy.
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It is a function of thermodynamic quantities, like pressure P and temperature T ,
and of some order parameter. Without entering too much into the details, an order
parameter is a function that describe in which state our system is, telling us for
instance if it is liquid or solid. At fixed temperature and pressure, we speak about the
Gibbs free energy and will note it G. Metastable states correspond to local minima
of G, while the stable state is the absolute minimum of G ; different locally stable
states are separated by free energy barriers.

In general phase transitions can be put into two group, depending on the conti-
nuous properties of G. We speak about first order phase transition when first deriva-
tives of G are discontinuous, like latent heat or density. We speak about second order
transition when second derivatives of G are discontinuous, like heat capacity. Despite
this relatively abstract definition, one important consequence of the discontinuous
nature of first order transitions is that during transition, the system will have some
of its parts that have completed the transition and others that haven’t, forming an
interface between the two that the system will tend to minimize due to its energetic
cost. Like for instance when water boils and bubbles of vapor form in it.

The ensemble of equilibrium stability information is generally grouped in a phase
diagram, where we show the preferred physical states of matter at different thermo-
dynamic variables. In this diagram we have open spaces where a single state is stable,
separated by lines where phase transition will occur, that we call phase boundaries.
In other terms, the open space corresponds to free energy with one single global mi-
nimum,whereas along the lines we have two or three global minima with the same
stability. The most common phase diagram uses pressure and temperature as ther-
modynamic variables.

If the free energy information contained in a phase diagram is sufficient to des-
cribe stability of the states available by a system and the nature of the transition bet-
ween two states, it has some limitations. As it is an equilibrium quantity, it does not
inform us about the out of equilibrium dynamics, like transition pathways and their
kinetics. When studying kinetics, one generally wants to reduce the complex high-
dimensional phase space dynamics of the system described by the Liouville equation
to a more handy and human readable description. This can be done by coarse grai-
ning into a few relevant order parameters (or into a discrete set of microstates) and
using stochastic equations that represent the average behavior of exact trajectories,
to represent how the system passes from one state to another. In this scheme, each
minimum of G will effectively trap the system for a time long (from microseconds to
millions years) in comparison to typical bond vibrations (few femtoseconds). Rarely,
a state will rapidly jump over the barrier into another metastable state.

Studying the kinetics is a more subtle and complex problem than the study of free
energy, but a complete reconstruction of kinetics contains more information and is
essential to understand the experimental world, where very often the physical systems
do not have the time to reach the equilibrium state. A feature that is exploited by
organisms to maintain their living state, and also by humans for the synthesis of
complex materials for technological applications. In this thesis, we will address both
the thermodynamics and kinetics of transformation processes in water.
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2.3 Numerical study of transformations of matter

As briefly stated previously, transformation processes are hard to grasp expe-
rimentally, due to the small time and length scale involved. In theory, molecular
dynamics simulations would be ideal to study such phenomena at microscopic scale,
since long trajectories of the system would sample fluctuations within metastable
states and all their transitions among them. In practice however, there are two main
limitations.

The first one is linked to the way we describe our material numerically. A quan-
tum approach is a priori more precise as it relies on first principles quantum mecha-
nics, but it drastically limits the length scale accessible during a simulation due to
computational cost. Thus it is in general of limited interest when we study phase
transitions, as if size effect are important for the transition (and they generally are),
the limited size of the system under study would spoil the meaning of the extracted
data. Thus classical approaches are generally used when studying transformations of
matter, as they give access to length scales thousands of times larger than in quantum
simulation. The problem is that now we need to represent our material with some
predefined force fields, generally tuned to reproduce at best properties found with
either quantum simulation or experimental data. As you may guess, this approach
can only give approximate results, even if some models reproduce quite well selected
properties of the material under study.

The second limitation come from the current time scale available by compu-
tation, as it is orders of magnitude smaller than what we would need for proper
sampling of transitions in condensed matter. Quantum simulations are limited to
the sub-nanosecond time scale, and classical atomistic simulations are limited to the
sub-milliseconds time scale. (For instance ice nucleation might require from millise-
cond to millions years depending on conditions). This limits drastically the range of
transformations that one can study. To solve this problem and also to get insight not
automatically provided by a simple long trajectory, several methods were developed
in the last decades, called enhanced sampling methods [46].

2.3.1 Enhanced sampling methods

Despite being grouped under one terminology, enhanced sampling methods tend
to solve two different problems : accelerated exploration of the available metastable
states and/or precise sampling of the thermodynamic and kinetic properties. The
latter consists in large accumulation of samples in relevant regions of the configuration
space, to construct an estimate of equilibrium probability distributions (and possibly
kinetic properties). In the present thesis, we used enhanced sampling methods that
exploited the two following ideas :

1. add artificial, external biasing force to the natural forces of the system, in a
way that enhances population of barrier regions, compared to its negligible
equilibrium value.

2. generate several trajectories starting from specific configurations, only kee-
ping those that fulfill some clever requirements.

Even if the methods are general and do not restrain themselves to the study of
a specific material, what limits their use is the need to define some variables that
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will allow us to track the transformations studied. Such variables are generally called
structural descriptors, collective variables, order parameters, or reaction coordinates
by different scientific communities. We will talk about reaction coordinates or order
parameters when their aim is to describe a specific reaction mechanism.

2.3.2 Reaction coordinates

Defining a reaction coordinate is not a difficult task, but it can be extremely chal-
lenging to define a good reaction coordinate. Often this relies on specific knowledge
about the system under study and tedious trial-and-error iterative process. Postpo-
ning the discussion about methods to quantitatively assess the quality of a variable,
it is important to note that efficiency of enhanced sampling methods is directly lin-
ked to the quality of the reaction coordinates. Moreover, finding optimal reaction
coordinates can lead to deeper understanding of the transformation processes.

A recently developed approach to define good reaction coordinates, regardless of
the system under study, starts by describing transformations of matter as changes in
a matrix that contains the inter-atomic bond network information [47, 7, 8]. One aim
of this thesis is to apply, improve and further validate this approach by applying it
to the study of water in the low temperature regime.

2.4 Complexity of water

Despite its molecular simplicity, water reveals to be very complex from the view-
point of physico-chemical properties. These include numerous triple points, at least
one critical point, more than 10 stable solid phases, no less than 3 metastable amor-
phous phases and several theoretical liquid states [48], without speaking of its 74
anomalies compared to other liquids ! Among them, one of the most famous is that
water expands upon freezing, increasing its volume by 9% under atmospheric pressure,
implying that ice floats on water. Another one is its high density, with a maximum
at 4◦, meaning that upon cooling or heating liquid water its density will decrease.
This is why for instance the bottom of fresh water lakes keeps the same temperature
regardless of the external temperature variation, as water at 4◦ will sink due to its
higher density. This temperature-driven shift in density is also the origin of ocean
currents such as the gulf’s stream, which have huge impact on land climate.

Just to have a glimpse of its complexity, figure 2.4.1 presents the stable phase
diagram of water [48]. Every solid line represents a phase boundary. Along them, two
phases will stably coexist in any relative proportions. When three such lines join, we
have a triple point with three stably coexisting phases. As already mentioned, it is
important to note that such diagram indicates the equilibrium properties of water,
and does not tell us about how the phases are kinetically connected, or by which
microscopic mechanisms water transforms from one phase to another when crossing
a line.

The complexity of collective behavior of water is linked to its polarized molecule
H2O. This polarization is due to the difference in electronegativity between oxygen
and hydrogen nucleus, which leads to the hydrogen’s electron being more attracted
by the oxygen atom, resulting in a slightly negatively charged oxygen atom, while
hydrogen is slightly positively charged. As a result water molecules will form hydrogen
bonds, where one of the hydrogen atom is linked to the oxygen atom of another
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Figure 2.4.1 – Stable phase diagram of water

molecule. Compared to other types of chemical bonds, the hydrogen bond is neither
strong nor weak, meaning that it can be easily broken but will generally survive to
thermal fluctuations [49].

At moderate pressures, each water molecule can form 4 hydrogen bonds, 2 in-
volving its oxygen atom and 2 involving its hydrogen atoms. This 5 water molecules
bonded together will optimally arrange themselves in tetrahedral shapes as shown
in figure 2.4.2. In solid phases this local tetrahedral arrangement will extend to the
whole system and produce crystalline structures. In liquid phases thermal energy will
break, stretch or bend the hydrogen bonds, leading to only local clusters of tetrahe-
dral structure, even if large chains of hydrogen-bonded molecules are present. At high
pressure this tetrahedral structure will be enriched by supplementary water molecules
and the soft hydrogen bond will evolved toward a strong shared proton due to nuclear
quantum effect [50].

Properly describing water with classical force fields is not an easy task. As a
result, until quite recently they was no model able to reproduce correctly water phy-
sical properties, with the correct phase diagram and the correct structural properties
of each phase [5].

Here, we will restrict ourselves to the study of water at low temperature, from 140
to 237 K, and moderate pressure, from 1 to 5000 atmospheres (0.1 MPa to 0.5 GPa).
In this region, two transformations are of main interest : the supposed liquid-liquid
transition of water and the homogeneous ice nucleation of water.

2.4.1 The “liquid-liquid transition”

If we look at water at very low temperature (less than 140 K), we see that
water possesses at least three amorphous metastable phases : a low density amor-
phous (LDA), a high density amorphous (HDA) and a very high density amorphous
(VHDA). This property of a solid to exist under different amorphous form is called
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Figure 2.4.2 – Schematic representation of a tetrahedral hydrogen-bonded water
pentamer

polyamorphism. Evidence of these three forms cames from experiments [17, 16, 18].
The low and high density amorphous phases are connected by a reversible first-order
transition [19].

To explain the existence of these states and some of the water anomalies, several
theories were formulated in the last three decades. Among them, one postulates the
existence of two structurally different liquid, with a first order transition between
them [20]. This hypothesis is hard to be verified experimentally in pure water. Indeed,
its supposed location is right in an area, the so called no man’s land, where liquid
water spontaneously transforms into ice, preventing any experimental measure on the
underlying metastable liquid states. Its numerical study is also not trivial to pursue,
as one needs to distinguish two similar liquid structures and to perform simulation
at low temperature with slow dynamics, that renders very costly the statistically
meaningful sampling of the corresponding states.

In fact, an uninterrupted series of experimental works have tried to probe the
existence or absence of this transition, using salty water or confined systems to prevent
freezing [51, 52, 53, 54, 55]. Results show that in salty water, despite existence of a
LDA-HDA first order transition, a liquid-liquid transition does not exist [22, 21]. But
for pure water the nature of the no man’s land remains unobserved.

In parallel, the computational scientific community has not been at rest, with
an ongoing debate about the very existence of the liquid-liquid transition. Most of
the debate crystallized around the sampling methods and the model used to describe
water during the simulation. After long controversies, a study based on a sub-optimal
model of water found clear and indubitable evidence of a first order liquid-liquid
transition [23]. Whilst other studies found indirect evidence that this transition might
not exist using a more recent and precise model of water [56, 57].

Most likely the debate in the scientific community will continue until experiments
bring it to an end. Still, one of the aims of this thesis is to clarify the situation with
robust evidence of the existence or absence of the transition with the use of a state-
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of-the-art water model and of enhanced sampling methods.

2.4.2 Homogeneous ice nucleation

Everyone knows that water freezes when it comes down to 273,15 K (0◦ C),
but few know that in pure water the kinetic barrier is so large that freezing would
require more than the age of the universe [36]. In practical situations, the freezing
is accelerated by the presence of impurities or interfaces, that favor the apparition
of small nuclei of ice subsequently growing until filling the whole system once they
have attained some critical size. In the case of perfectly pure water we speak about
homogeneous ice nucleation, otherwise we speak about heterogeneous ice nucleation.
To study the mechanism of homogeneous ice nucleation, experiments are limited by
the difficulty to prepare pure water samples and by the short time and length scale
involved in the microscopic nucleation processes. One may ask what are the structural
properties of the initial nucleus of ice, but for instance at 230 K, its size is only of a
few nanometers and its growth can take place in few hundreds of nanoseconds. Note
that if the growth of the nucleus is fast, its apparition is a rare event, so one may
need to wait milliseconds or seconds to see one appear and propagate to the whole
system.

We want to stress that despite the experimental difficulties in realizing homoge-
neous nucleation of ice, the process remains of fundamental interest to understand
crystallization and to address the more complex case of heterogeneous ice nucleation.
The latter is more readily observed in real life, however it has additional difficulties
related to the precise experimental characterization of the nucleation sites (defects,
impurities, etc.). Also from a numerical viewpoint, further complications arise from
the definition of interactions between different molecular or atomic species. It is a
very challenging domain, where theoretical predictions are still scarce and often in
strong disagreement with experiments. This is also linked to the limitation of the
simplified models used, like classical nucleation theory.

If the time and length scales of detailed nucleation mechanisms are too small
for experiments, they are on the reverse too big for simple numerical study. In fact,
increasing the number of molecules increases rapidly the cost of the simulation, so
either we can use less precise simulations or we can resort to smaller number of
molecules. But even by limiting the number of molecules, milliseconds or seconds are
just too much for nowadays supercomputer. So we need to use enhanced sampling
methods, with all the complications around the definition of a reaction coordinate
implied.

One of the aims of this thesis is to study nucleation with state-of-the-art molecu-
lar models and enhanced sampling methods, coupled with the recent general approach
to compute reaction coordinates based on the adjacency matrix.

2.5 Open challenges

As discussed above, on the one hand we need to develop general tools and me-
thods to study transformations of matter. On the other hand water is a material that
despite its molecular simplicity gives rise to highly complex behaviors, and requires
special care to be investigated, especially in the supercooled region.
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Can we successfully develop general methods to study transformations of matter ?
And can we apply them to the difficult study of both the liquid-liquid transition and
homogeneous ice nucleation of water ?

For the liquid-liquid transition, we need to study water at several low temperature
conditions, to see how the stability of the hypothesized high and low density liquid
states evolves and in which way they are mixing or coexisting together. In particular,
a recurring question in the community concerns the reconstruction of free energy
landscapes using accurate inter-atomic potentials, which is one of the aims of our
work.

For homogeneous ice nucleation, we need to study the critical nuclei and whe-
ther and how they spontaneously evolve from a “pure” crystalline state with unique
symmetry to a disordered stack of hexagonal and cubic ice layers. We remark that
the mechanism is believed to be far from trivial, with a complex interplay of different
crystalline phases, and to defy classical nucleation theory.

To achieve these targets, we realised massive classical molecular dynamics si-
mulations (more than 10 millions of cpu hours) coupled with a range of different
enhanced sampling methods, to systematically reconstruct the mechanisms, the free
energy landscapes and the kinetics of several transformation processes in water.

We anticipate that for the first time we reconstructed accurate free energy land-
scapes in no man’s land to study the liquid-liquid transition with the TIP4P/2005
potential, observing the lack of free energy barriers and of a discontinuous transition,
similarly to mW and contrary to the ST2 potential. We also provide robust evidence
of the nucleation mechanism, starting from hexagonal or cubic nuclei that sponta-
neously evolve toward stacking disordered nuclei, and eventually ice, applying for the
first time rigorous aimless shooting techniques to the accurate TIP4P/ice potential.
Our results provide also a solid background and database for further investigations
of nucleation free energy landscapes and kinetic rates.

This thesis is structured in two parts. The first one presents the various methods
and numerical tools we used, with their underlying physical and mathematical prin-
ciples. The second one presents results obtained during the study of the liquid-liquid
transition, or of the homogeneous nucleation of ice.
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Première partie

Methods
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3 Simulations of Condensed Matter

The study of the transformation processes at an atomic scales is a long standing
problem in material science. The short time and length scale of these transformations
makes them difficult to study experimentally. This is why numerical simulation if of
prime importance to get knowledge over these phenomena, as it gives us access to a
whole new set of time and length scale, that are often better fitted to the problem we
want to solve. Of the various general methods available, molecular dynamics simula-
tions are well suited to study thermodynamic and kinetic properties for a given set of
temperature and pressure. One can play with either classical, based on force fields, or
ab inito, based on density functional and quantum mechanics, molecular dynamics.
In this thesis we will only use classical molecular dynamics and refer to it simply as
molecular dynamics or MD when lazy.

It is interesting to think about molecular dynamics simulations as experiments
where we have full access to microscopic data of the system. However, we should
never though that they are experiments, as we are always limited by the precision
of the force fields used to describe our material and to the available time scale for
nowadays computers.

3.1 Classical molecular dynamics

3.1.1 Short introduction to statistical principle

To better understand the idea behind molecular dynamics, its necessary to do a
brief recap of the underlying statistical principles.

Phase space

When we study the dynamic of a system compound of particles using classical
mechanics, to reconstruct a particle’s trajectory we need its position r(t) and mo-
mentum p(t) at each time. For a time t and one particle, the state of a 3 dimensional
system are thus defined by the set of all coordinates x(t), y(t), z(t), px(t), py(t) and
pz(t). This form an abstract 6 dimensional space that we call the phase space of the
system.

If we take a larger number of particles, say N particles, we get a 6N dimensional
space. The dynamic of the system is then described by a trajectory in this abstract
space. Each point of the phase space describe a microscopical state of the system.
The macroscopic equilibrium state result of an average over the microscopical states
accessible by the system, governed by a statistical law.

Ergodicity

To describe a macroscopic state, we can either take a large number of system
with the same initial conditions and measure their states, or take one system and
measure its states over a long period of time.

Let’s say that we want to measure a physical quantity A. If we are doing a large
amount of measure over time, we could compute its temporal average

⟨A⟩ =
∑

Akpk (3.1.1)
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where pk is the probability to be in a microscopic state Ak over time.
But if we are doing a large amount of measure over equivalent system, we could

compute the ensemble average

A =
1

N

∑
k

AkNk (3.1.2)

where Nk is the number of time we have measured the microscopical state Ak. When
N become very large we have

lim
N→+∞

Nk

N
= pk (3.1.3)

Which in return implies that the two average become equals

⟨A⟩ = A (3.1.4)

And reciprocally, this means that average over a long period of time is equal to
ensemble average. This is the ergodicity principle.

It is of first importance, as it means that by simulating long enough trajectory, we
will be able to reconstruct macroscopic properties of any system. And this is precisely
the idea of molecular dynamics : to compute time evolution of a set of particles to
sample their phase space over a long period of time and thus to reconstruct the
particles macroscopic properties.

3.1.2 Time evolution

Time evolution of a system is governed by the simple principle of action mini-
mization, that allow us to compute equation of motion for any system. Even though
we are generally not able to solve them analytically and need to use approximate
numerical methods.

The NV E ensemble

If we consider an isolated system of N particles of mass m in a box of volume
V , we have a Lagrangian composed of two terms

L =
N∑
i=1

1

2
miv

2
i − U(ri) (3.1.5)

the first one represent the kinetic energy of our system and the second term represent
the potential energy due to interaction between the particles. In this set-up, N , V
and the total energy E of the system are constants (as the system is isolated). This
is why we call this the NV E ensemble.

We can go from Lagrangian to Hamiltonian formulation using a Legendre trans-
formation L(r,v, t) −→ H(r,p, t), defining the momentum as pk = ∂vk

L and the
Hamiltonian H as

H =
N∑
i=1

pi

(
∂L
∂vi

)
− L (3.1.6)
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From the Lagrangian, using the least action principle, we can deduce the Euler-
Lagrange equation

d

dt

(
∂L
∂vi

)
= −∂L

∂ri
(3.1.7)

from which we can compute the equation of motion

mi
dvi

dt
= −∂U

∂ri
and − ∂U

∂ri
= Fi (3.1.8)

Fi is the force that act on the particle i. Except for very simple form of potential, it
is not possible to solve analytically this set of differential equations. Thus we should
use numerical methods to resolve these equation of motion.

To do that, we will discretize time using a time step ∆t. It should be small enough
so that the force could be considered as constant between two time steps. At each
iteration we compute the force, then using equation of motion we update velocities
and positions.

Verlet and leap-frop algorithm

The two most common algorithm used to integrate equation of motion in mole-
cular dynamics are the verlet and leap-frog one. They are both equivalent, and have
the right properties for integrator : they conserve the phase space volume, the energy
and total momentum, and they are time reversible. The first properties is necessary
to achieve ergodicity [58].

The two algorithm rely on a second order Taylor expansion of the position (in
the following we will omit to specify that they act on the i-th particles for simplicity)

r(t+∆t) = r(t) +
dr(t)

dt
∆t+

1

2

d2r(t)

dt2
∆t2 +O(∆t3) (3.1.9)

If the take the same expansion for r(t−∆t) and sum the two, we obtain

r(t+∆t) = 2r(t)− r(t−∆t) +
d2r(t)

dt2
∆t2 +O(∆t3) (3.1.10)

Now we have two ways to define the velocity, that will either lend us the verlet
or leap-frog scheme

v(t) =
r(t+∆t)− r(t−∆t)

2∆t
+O(∆t2) (verlet) (3.1.11)

v

(
t− 1

2
∆t

)
=

r(t)− r(t−∆t)

∆t
+O(∆t2) (leap− frog) (3.1.12)

Using the leap-frog scheme and the equation of motion (3.1.8), we obtain the following
relations

v

(
t+

1

2
∆t

)
= v

(
t− 1

2
∆t

)
+

1

m
F(t)∆t+O(∆t2) (3.1.13)

r (t+∆t) = r(t) + v

(
t+

1

2
∆t

)
∆t+O(∆t2) (3.1.14)

The position of the particle i is computed at time t + ∆t from its velocity at time
t+1/2∆t, just like two frog leaping over each other back (with a bit of imagination..).
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3.1.3 Temperature coupling

As its fine to compute things in the NV E ensemble, it doesn’t allow us to
control precisely the temperature and pressure. To compare the simulation result
with experiments hence become a bit tricky, as they are generally done at fixed
pressure and temperature condition.

To fix temperature, we couple our system with a thermostat of constant tem-
perature T. In this configuration, the number of particles N and volume V are still
fixed, but now the energy can freely evolve and its the temperature that is constant.
So we call this one the NV T ensemble.

Generally speaking, the temperature of a system is fixed by its kinetic energy,
such that, for a system of N particles, with masses mi and velocities vi

Ek =
1

2

N∑
i=1

miv
2
i (3.1.15)

1

2
NdfkBT = Ek (3.1.16)

where kB is the Boltzmann constant and Ndf is the number of degrees of freedom. It
can be computed from the number of constraints Nc imposed on the system and the
number of translational and rotational degree of freedom accessible by the center-of-
mass Ncom :

Ndf = 3N −Nc −Ncom (3.1.17)

To fix the temperature they are now three main methods that can be used.

Nosé-Hoover thermostat

The first one was introduced by Nosé [59] and then enhanced by Hoover [60]. In
this scheme, we add new terms to our Lagrangian to represent a thermal reservoir and
a friction force. This force is proportional to the product of each particle’s velocity
and a heat bath parameter η which posses its own velocity vη and “mass” Q.

The equation of motion of the particles gain a new “thermic” term :

dvi

dt
=

Fi

mi

−Qvηvi (3.1.18)

where the equation of motion of the heat bath parameter is dependent of the fixed
temperature T0 and the current temperature T :

dvη
dt

= (T − T0) (3.1.19)

However this simple thermostat can exhibit non-ergodic behavior for low dimensiona-
lity system. This can be corrected by introducing chain of thermostats that improve
its ergodicity. Even if it is still not perfect [61], it yields a correct NVT ensemble [62].
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Berendsen thermostat

The principle of the Berendsen algorithm is to suppress the fluctuation of the
kinetic energy. This yield an improper NV T ensemble and so technically the sampling
is not correct. But the error scales like 1/N , so its not necessarily a big deal for very
large systems. Except for the distribution of kinetic energy and fluctuation properties
that are obviously not correct [63].

The velocities of each particle are scaled every step with a time dependent factor
λ such that the kinetic energy is scaled at each step by

∆Ek = (λ− 1)Ek (3.1.20)

And the λ factor itself is given by

λ =

[
1 +

∆t

τT

(
T0

T (t− 1/2∆t)
− 1

)]1/2
(3.1.21)

where the parameter τT is not exactly equal to the time constant τ of the temperature
coupling

τ = 2Cv
τT

NdfkB
(3.1.22)

with Cv the total heat capacity of the system, kB the Boltzmann’s constant and
Ndf the total number of degree of freedom. The reason of this inequality between
τT and τ is that when we rescale the velocity, the energy difference is distributed
between kinetic and potential energy. Hence a smaller scaling in temperature than in
energy [64].

With this scheme, the deviation of the system temperature T from the thermostat
temperature T0 is slowly corrected according to

dT

dt
=

T0 − T

τ
. (3.1.23)

This means that the temperature deviation decay exponentially with a time constant
τ . So we can fix freely the strength of the coupling and its influence on the conservative
dynamics, by taking short coupling time (like 0.05 ps) or long coupling time (like 2
ps).

Velocity-rescale thermostat

The velocity-rescale thermostat is basically the same as the Berendsen thermo-
stat, but with an additional random term [65]. This term ensures a correct energy
distribution by modifying it according to

dEk = (E0
k − Ek)

dt

τT
+ 2

(
EkE

0
k

Ndf

)1/2
dW
√
τT

(3.1.24)

with dW a Wiener process, Ndf the number of degree of freedom, Ek the kinetic energy
and E0

k the thermostat kinetic energy. A Wiener process is a random process which
is continuous, with gaussian distribution and no memory. This scheme produces a
correct NV T ensemble [62] and has all the advantages of the Berendsen thermostat :
first order decay of temperature deviations and no oscillations in the decay. Plus the
finely tune-able coupling time.
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3.1.4 Pressure coupling

In the same spirit as for the temperature, to fix the pressure we will couple our
system with a barostat of constant pressure P in addition to our thermostat. In this
configuration, the number of particles N is still fixed, but now the volume and energy
can freely evolve and its the temperature and pressure that are constant. We call this
one the NPT ensemble.

The pressure of a system is fixed by the difference in energy between the kinetic
energy and the internal pair potential (the virial)

P =
2

3V
(Ek − Ξ) (3.1.25)

with V the volume and Ξ the virial of the system, define as such

Ξ = −1

2

∑
i<j

Fij(ri − rj) (3.1.26)

where Fij is the force on particles i due to the particle j.

Berendsen barostat

Following the definition of the pressure (3.1.25), one way to change the pressure is
to modify the virial. The Berendsen algorithm does just that, by scaling interparticles
distances every steps [66].

In general the scaling will be anisotropic and give rise to a scaling matrix µ such
that

µij =

[
δij −

∆t

3τp
βij

(
P 0
ij − Pij(t)

)]1/3
(3.1.27)

where β is the isothermal compressibility of the system and P0 the fixed pressure
of the barostat. As the equation of motion are modified by pressure coupling, the
conserved energy also needs to be corrected by the work the barostats applies to the
system. This way of fixing the pressure can lead to large oscillations of pressure and
volume.

This scheme has the same effect of a first order relaxation of the pressure towards
the given reference pressure P0, according to

dP

dt
=

P0 −P

τp
(3.1.28)

and so it has the same flexibility as the Berendsen algorithm for thermal coupling,
as one can choose short or long time of relaxation.

Its important to note that by construction, as we are rescaling positions and not
adding term to the hamiltonian, this barostat does not yield a true NPT ensemble.
Even if the average pressure will be rightly fixed, other physical quantities like volume
or enthalpy may be totally off in comparison to a true NPT ensemble. So it is required
to use more accurate barostat when this quantities need to be precisely evaluated,
like the Parinello-Rahman one presented just below [62].
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Parinello-Rahman barostat

A more precise and correct scheme to fix the temperature is the Parinello-
Rahman barostat, which is similar to the Nosé-Hoover temperature coupling presen-
ted above. This give rise to a new hamiltonian and a correct NPT ensemble [67] [68]

H =
N∑
i=1

p2
i

2mi

+ U(ri) +
∑
i

PiiV +
1

2

∑
ij

Wij

(
dbij
dt

)2

(3.1.29)

with the following equation of motion

d2ri
dt2

=
Fi

mi

−M
dri
dt

(3.1.30)

M = b−1

(
b
db′

dt
+

db

dt
b′
)
b′−1 (3.1.31)

where W is a matrix parameter that determines the strength of the coupling, b is
the box vector represented as a matrix and V the volume of the box.

The box vector b obey the following equation of motion

d2b

dt2
= VW−1b′−1 (

P−P0
)

(3.1.32)

So contrary to the Berendsen barostat, this one will exhibit oscillation during re-
laxation toward the reference pressure. If the system current pressure is far from the
equilibrium pressure, this will result in large box oscillation that may crash the simu-
lation. This is why, despite its better precision and correctness, it is often necessary
to use Berendsen pressure coupling for a first equilibration before resorting to this
one.

3.1.5 Periodic boundary conditions

Simulations are performed on system with finite size, which we call simulations
box. In classical simulations, their sizes are generally on the scale of nanometer,
containing hundreds or thousands of particles. To have an order of magnitude in
head, a 1 cm3 piece of matter contains roughly ∼ 1023 particles. And if we look at the
ratio of surface over volume, it would be 1 millions time higher for a simulated cubic
box of 10 nm than for a real sized system of 1 cm. This means that all computed
properties would be spoiled by appearance of unwanted surface interactions.

To circumvents these limitations, it is necessary to introduce periodic boundary
conditions. In this scheme, the simulation box is replicated in all directions, in the
same way one would build pavement on the ground, but in three dimensions. If
we have a cubic box of size L = (Lx, Ly, Lz), an atom located on r = (x, y, z)
would have a fictitious “image” atom in r = (x + nxLx, y + nyLy, z + nzLz), where
n = (nx, ny, nz) ∈ N3.

In fact, this scheme take care of the unwanted artifact due to edge effect, but
as you may guess it introduces its on set of artifacts. In crystalline system, periodic
boundary conditions are desired and doesn’t cause much harms. But in non-periodic
system like liquids, the periodicity will causes errors due to the un-physical nature of
the replication. Those are less severe that edge effect, and will be reduced as the box
size is increased.
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Long and short-range summation

As already mentioned, particles interaction are encoded in a potential energy
terms, which is a function of all the atoms positions U(r). Theoretically, this potential
can be decomposed into terms that implies interaction of pairs, triplet, up to n-uplets
of particles. In practice however, potential is often modeled with terms that implies
only pair and triplet terms. These pair and triplet terms can be further divided in two
categories : the short and long-range interactions. We will classify those that decrease
faster than 1/r3 as short-range, and all others as long-range.

For short-range terms, one can define a cutoff radius over which the interaction is
equal to zero and so no computations are requested when two particles are separated
by more than this radius, allowing huge performance gain. Also the minimum image
convention is used : only nearest particles will be considered, either it being image
or real. This implies that the cut-off radius used to truncate short-range interactions
may not exceed half of the shortest box vector, or otherwise there would be more
than one image within the cut-off distance of the potential.

Long-range terms cannot be cut in this way and should be taken in their enti-
rety. The most used technique to achieve this is the Ewald summation scheme [69].
For long-range interaction we have an infinite sum composed of one term with slow
convergence. The idea is to decomposed this sum into two terms with quick conver-
gences and a constant term

Elong−range =
∑
n

N∑
i,j

ϕ(rij,(n)) = Edir + Erec + E0 (3.1.33)

where ϕ is some long-range term, Edir is a sum in real space which contains screened
short range interactions, and Erec is a sum in reciprocal space which contains the long
range interactions. Real and reciprocal space are connected by Fourier transform. This
decomposition allow one to use small cut-off in direct space, of the order of less than
1 nm for the direct part.

The reciprocal sum is still a problem in term of performance, as it scale as the
square of the number of particles N2, making it not fit for large system. Fortunately,
the particle-mesh Ewald method was invented to improve performance of the reci-
procal term [70]. In this scheme, the charge are assigned to a grid. The grid is then
Fourier transformed and the reciprocal energy term is obtained by a single sum over
the grid. The potential at the grid points is then calculated by inverse transformation
to retrieve the forces on each atom. This algorithm scales as N log(N), making it
more fit to large system than the simple Ewald summation technique.

3.2 Force fields

We spoke about all the complex ways to deals with short and long-range inter-
actions in molecular dynamics, but we have not yet spoken about how we define the
inter-atomic interactions. To do that one will use models, or force fields, specifically
defined to describe the molecules under study.

Force fields are generally separated into two descriptive part. One that describes
the molecule’s geometry with distances and angles between particles. And one that
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describes how the molecules will interact on short and long-range with others mo-
lecules, using an interaction potential. In general this potential is a combination of
electrostatic interaction with a Lennard-Jones potential, as for ST2 and TIP4P-like
model. The Lennard-Jones potential has a strong repulsive behavior on short-range
and a weak attractive behavior on long-range. Thus it effectively encode in a simpli-
fied way the repulsion due to overlapping of electron orbitals and small forces linked
to small polarization of molecules. But some model can also be composed of purely
short-range terms, as for the mW model for instance.

Models aim to achieve the best fit between right estimations of the molecules
properties and computational efficiency of the model. Depending on the context,
some prefer to sacrifice a bit of computational speed, while other prefer to sacrifice
physical precision. They are often constructed in two step :

— first a specific potential energy choice is made to describes the molecule, with
a set of parameters {λ1, . . . , λn} that can be adjusted to change shape and
behaviors of the potential

— second the set {λ1, . . . , λn} is fitted to reproduce a specific physical properties
or a set of physical properties. It can also be adjusted to fit energies estimated
with simulation based on quantum principle.

After that the model quality is evaluated by how it reproduces non-fitted physical
properties.

Here we will present some of the dozens of models that exist to describe wa-
ter, with their physical and computational limitations. Among them, we only used
TIP4P/Ice and TIP4P/2005 during our simulations, but we often compared results
obtained with ST2 and mW, so it’s good to have a small overview of them.

3.2.1 The mW model

Contrary to most models of water, the monoatomic water model mW is a coarse
grained one, meaning that water will be represented by a sole particle. Despite this
simplified pictures, which grants the models great computational performances, mW
reproduce quite well various properties of liquid water, like density, and its ice I
structures [3].

Its success is based on a clever observation. Silicon and water, despite their
lack of chemical similarities, behave in the same way when we look at their physical
properties. The only feats they have in common is that both form tetrahedrally
coordinated structures. Hence mW was defined upon a silicon’s model, by tuning
some coefficients to further favors tetrahedral structures.

Precisely, the potential energy of the model is a function of the inter-atomic pair
distances and the angles formed by triplet of atoms, defined as

EmW =
∑
i,j>i

ϕ2(rij) +
∑

i,j ̸=i,k>j

ϕ3(rij, rik, θijk) (3.2.1)

ϕ2(r) = ABϵ
(σ
r

)4
eγσ/(r−aσ) (3.2.2)

ϕ3(r1, r2, θ) = λϵ (cos θ − cos θ0)
2 eγσ/(r1−aσ)eγσ/(r2−aσ) (3.2.3)

where A = 7.049556277, B = 0.6022245584 and γ = 1.2 give the shape and scale
of the potential. The cutoff a = 1.8 ensures that all terms in the potential go to
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Figure 3.2.1 – Schematic representation of the ST2 (left) and TIP4P (right) models,
with their geometric parameters and charge location. The blue shell indicates the
Lennard-Jones σ parameter.

zero at a distance aσ. Quadratic cosinus term with θ0 = 109.47◦ favors tetrahedral
angles. λ = 23.15 scales the repulsive three-body interaction term and determines
strength of the tetrahedral interaction. ϵ = 6.189 is the strength of pair interaction
and σ = 2.3925 is the particle diameter [3].

The short-range nature of this model render it at least on hundred time faster to
compute that all other models evoked here, making it a great tools for quick studies
of water properties.

3.2.2 The ST2 model

The ST2 model was one of the first model used to describe water, it was designed
to reproduce correctly the radial density function obtained with x-ray scattering
experiments [4].

Its geometry consist of a four charge model that agreement the water molecule by
two charged lone points, while the oxygen is considered chargeless. The two lone points
and the two hydrogen are arranged in a tetrahedral ways, as shown in figure 3.2.1.

The potential energy of the model is the sum of two pair interaction, a Lennard-
Jones term and an electrostatic term modulated by a switching function S that goes
smoothly from 0 at small distance to 1 at large distance

EST2 =
∑
i,j>i

VLJ(r
OO
ij ) +

∑
i,j>i

S(rij)Ve(i, j) (3.2.4)

VLJ(r) = 4ϵ

((σ
r

)12
−
(σ
r

)6)
(3.2.5)

Ve(i, j) =
e2

4πϵ0

∑
a∈{i}, b∈{j}

qaqb
rab

(3.2.6)

S(r) =
(r −RL)

2(3RU −RL − 2r)

(RU −RL)2
H(r −RL)H(RU − r) +H(r −RU) (3.2.7)
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where ϵ is the strength of the Lennard-Jones interaction and σ is the molecules size.
rOO
ij are the inter-oxygen distances of the molecules i and j. e is the proton charge and
ϵ0 is the void permitivity. a and b represent the charged particles of the molecules i
and j respectively, with qa, qb their charge and rab their distances. H(x) = 0 if x < 0
and H(x) = 1 if x ≥ 0. All the parameter values are given in table 3.2.1.

ϵ/kB (K) σ (Å) q1( e) q2( e) l1 (Å) l2 (Å) θ (◦) ϕ (◦)

3.10000 0.31694 0.24357 -0.24357 1.0000 0.80 109.47 109.47

Table 3.2.1 – Parameter values of the ST2 models, using same notation as in fi-
gure 3.2.1

The ST2 model of water is known to lend an over-structured water, due to its
geometry that enforce tetrahedral arrangements. It gives poor prediction about the
phase diagram of water, omitting whole phases [71], as shown in figure 3.2.2. Thus
results obtained with this potential should be examined with caution.

Figure 3.2.2 – Comparison of the phase diagram of ST2 (green) and TIP4P/2005
(red) with experiments (black cross), adapted from [5, 71]. The thick lines are phase
boundaries that enclose stable phase, their name being indicated by the color cor-
responding to the model. TIP4P/2005 yield a “correct” phase diagram with all the
phases in place, even if largely shifted compared to the experiments. ST2 find that ice
VII is the most stable one when going into the high pressure domain, in discrepancy
with experiments. Note however that for ST2 only a small part of the (P, T ) space
was explored, indicated by the green dashed lines.

3.2.3 The TIP4P family

The TIP4P family is a series of models based on the same geometry, but where
the potential parameters are fitted to reproduce specific physical properties. Its geo-
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metry consists of a three-charges model, where a middle point charge is added in the
water molecule plan to effectively represent its small polarization, while the oxygen
is chargeless, as shown in figure 3.2.1.

The potential energy of the model has the same functional form as for ST2,
except that the electrostatic term is not modulated by a smooth switching function

ETIP4P =
∑
i,j>i

VLJ(r
OO
ij ) +

∑
i,j>i

Ve(i, j) (3.2.8)

where Ve and VLJ are the same as in equations (3.2.5) and (3.2.6). The parameters
of the two variants TIP4P/2005 and TIP4P/Ice, employed in this thesis, are given
in table 3.2.2. Both models share the same value for the H-O-H angle and the OH
distance. Also they both have their negative middle point charge placed along the
H-O-H angle bisector so that 2ϕ = θ and the value of the charge is q2 = −2q1.

Model ϵ/kB (K) σ (Å) q1( e) q2( e) l1 (Å) l2 (Å) θ (◦) ϕ (◦)

TIP4P/2005 93.2 3.1589 0.5564 -1.1228 0.9572 0.1546 104.52 52.26

TIP4P/Ice 106.1 3.1668 0.5897 -1.1794 0.9572 0.1577 104.52 52.26

Table 3.2.2 – Parameters of the TIP4P/2005 and TIP4P/Ice models, using same
notation as in figure 3.2.1

TIP4P/2005

The TIP4P/2005 model was developed to reproduce the maximum density of
water at T = 4◦ C and densities of its solid phases. Contrary to most water models,
extensive simulations were used to fit its parameters [5].

This model reproduces with a high quality the anomalies of water and the dif-
ferent phases of water [72, 73, 74, 75], even if the phase diagram is distorted compared
to the experimental one, see figure 3.2.2. The mains defects are a poor prediction of
the dielectric constant, and a diffusion coefficient that is slightly underestimated com-
pared to experiments, even if it has the correct trends [72].

Due to the correct reproduction of the phase diagram and to the high precision
in describing the anomalies of water, we will use this model to study the liquid-liquid
transition in supercooled water as described in chapter 6.

TIP4P/Ice

The TIP4P/Ice model was developed to reproduce the freezing temperature of
water at T = 0◦ C, and the various densities of its solid phases with the best accuracy,
in the same way as TIP4P/2005 [6]. While this model is quite accurate for low-density
ices, it struggles to describe accurately very dense ices and their stability domains
for pressure higher than 10 kbar [6]. It is not a problem in our case as we will use it
to study the homogeneous nucleation of ice, and so we are mainly interested in how
the model describes Ice I and its metastable polymorphs – for which TIP4P/Ice is in
excellent agreement with experiments – as will be described in chapter 7.
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3.3 About the choice of water model

When discussing the mW water model, we mentioned that it is one hundred
times faster to compute than more complex models like ST2 or those of the TIP4P
family, so one may wonder why we did not pick this model instead of TIP4P/Ice
or TIP4P/2005. There are several reasons for this. The first one is that extensive
studies have already been conducted on both the liquid-liquid transition [76] and ice
nucleation [38] for this model, and it is important to assess if those results are coherent
with more realistic models. The second one is that the coarse-grained mW model was
designed to reproduce correctly ambient liquid water densities and ice I properties.
When computing properties outside of this comfort zone, the model diverges quickly
from the properties observed experimentally. For instance, its stable phase diagram
is totally off for pressures higher than 1 kbar, producing a new ice phase sc16 instead
of the natural ices II, III, V and VI [77]. Furthermore, for all conditions its diffusion
coefficient is far higher than in real water [3]. Despite this, its nucleation rate is
slower than those found in experiments [78]. So it seems that the mW model is not
able to properly describe the kinetic properties of water, even in conditions of pressure
and temperature where it gives coherent results for its structural or thermodynamic
properties. As one of the goals of this thesis is to generate a set of data from which
one could reconstruct the kinetics of water, mW is certainly not appropriate.
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4 Describing our systems with collective variables

In order to study phase transformations of matter, the first thing we need is a
way to sort the various structural states that matter can reach. For instance, water
has more than ten solid phases and it not necessarily trivial to distinguish them. As
previously stated, performing classical molecular dynamics give access to the system
phase space and so to the positions x ∈ R3N of all particles in the system. In theory,
from these coordinates we could compute all structural properties of the system. In
practice, however, the Cartesian coordinates of all particles are difficult to manage and
do not offer directly suitable information to compare two structural states. We need
to compute more specific properties from these coordinates, in the form of convenient
functions that are called collective variables or structural descriptors, depending if you
came from the enhanced sampling or neural network communities. In the following
we will mainly use the collective variables terminology to avoid confusion, but the
two terms are equivalent.

When we use a collective variable s(x) to describe a transition between two
or more states, we speak about order parameter and reaction coordinate : usually,
the first term refers to a variable (relatively easy to identify in practice) able to
distinguish between the locally stable states at the beginning and at the end of the
transformation, while the second term refers to the best possible collective variable,
capturing not only the difference between locally stable states but also the detailed
transition mechanism (related to the committor, see later).

In this conceptual framework, the free energy (for fixed P, T ) will be computed
as a function of s, by means of marginal equilibrium probabilities, effectively reducing
the dimensionality of the physical problem

G(s) = −kBT logP (s) = −kBT log

(∫
dxP (x)δ(s− s(x))

)
(4.0.1)

Clearly, such a free energy landscape is much easier to analyse than the potential
energy landscape, and it also gives valuable physical insight about the transforma-
tion. But as shown in the previous equation, these advantages come at the cost of an
integration over phase space, which is not a trivial operation to perform in complex
systems like models of materials including thousands of atoms. Both the shape of
G(s) and our ability to compute it are strongly dependent of the choice of s. In rea-
lity, finding the optimal collective variable is an utterly complex problem, equivalent
to gaining a perfect understanding of the transformation process itself, as will be
discussed in (4.3).

In principle, one can distinguish two kinds of collective variables, even if the two
classes are not always well separated :

— local ones, that describe the states of a single particle. For example, its number
of neighbors, if it is solid- or liquid-like, if it is in a cubic or hexagonal ice
cell, etc.

— global ones, that describe the system as a whole and generally tell in which
states it is. For example if it is solid or liquid, if it is amorphous or ice, etc.

In the rest of this chapter, we will present briefly the various collective variables used
in this thesis, starting with the local and then going to the global ones. Each time
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we will present in which physical context we used the variables. Among them, the
Permutation Invariant Vector (PIV) described in section (4.2.3) is a general approach
to define collective variables, which requires very limited or even no knowledge about
the system under study. All our enhanced sampling methods described in (5) will use
variables based on PIV. The other variables will mainly be used as post-processing
analysis tools. We will then present different methods to assess the quality of a reac-
tion coordinate and find optimal ones. Finally we will present how the PIV has been
implemented in plumed, a widespread plugin for free-energy calculations and analysis
of trajectories, compatible with several MD engines [79].

To compute collective variables, we used plumed or ovito [80] : both are freely
available, the first one being open source and community-developed, and can compute
a wide range of collective variables, among other features.

4.1 Local collective variables

4.1.1 Coordination number

One of the simplest collective variables that we can compute for a particle, is
its number of neighbors in a given range. If one chooses the right physical parameter
for the range, this number of neighbors can be thought of as the number of contact
between an atom and its surrounding atoms, hence the name coordination number.

If we have an atom i and a group of atoms A, we can compute the coordination
number of this i-th atom as :

Ci =
∑
j∈A

σ(rij) (4.1.1)

where rij is the Euclidean distance between the atoms i and j and σ is a switching
function that evaluates as 1 if there is a contact and 0 if there are none, so that we
effectively count the number of contacts.

We used this collective variable in the study of the liquid-liquid transition of water
(see chapter 6). Here all we need to know is that under some specific temperature
and pressure condition, water can be in a metastable liquid state. This liquid state is
supposed to be composed by two types of liquid : a high density and a low density
liquid. We can distinguish them by computing coordination numbers for the oxygen
atoms with other oxygens that are within a .34 nm shell. We say that an oxygen with
coordination number greater than 4.5 is in high density state and in low density state
otherwise [81]. Computation was performed with plumed [79].

4.1.2 The Steinhardt parameters

The Steinhardt parameters are a series of collective variables to measure the
degree of ordering of the first shell around an atom (within 0.35 nm). They can be
computed for the i-th atom as the norm of a complex vector qlm [82] :

Ql(i) =

√√√√ l∑
m=−l

qlm(i)
∗qlm(i) (4.1.2)

37



Figure 4.1.1 – Visual representation of Y3m, Y4m and Y6m. Light grey area are
positive and dark grey area are negative.

where the components of the complex vector qlm are computed as in the following :

qlm(i) =
1

σ(rij)

∑
j

σ(rij)Ylm(rij) (4.1.3)

here σ is a switching function that evaluates to 1 if atom j is in the first shell of
the atom i and to 0 otherwise, and Ylm is the l-th order spherical harmonic (that
is the l-th mode of vibration of a wave in 3 dimensions on a spherical surface). The
mathematical definition of spherical harmonics is not particularly enlightening, so
instead we provide a visual representation of Y6m, Y4m, and Y3m in Fig. 4.1.1.

In the study of water nucleation only Q3, Q4 and Q6 are used. The Q6 collective
variable is used to tell if oxygen atoms of water molecules are in a crystalline state
or not. If Q6 is less than 0.55 the oxygen is in the liquid state, and it is in a solid
state otherwise [83]. It is a ‘simple’ first approach to monitor the number of solid-like
molecules. And by computing the average ⟨Q6⟩ over all the water particles, one can
tell if the whole system is in a solid or liquid state. Computation was performed with
plumed [79].

4.1.3 The Chill+ algorithm

If we want more insight about the nucleus structure, we can use the Chill+
algorithm [9]. This algorithm classifies oxygen particles by looking at their local sur-
roundings. In solid phases, water molecules have 4 bonded neighbors. If we take two
bonded oxygen particles i and j, that is distant by less than 0.35 nm, we can compute
the correlation of the projection of the third-order Steinhardt parameter q3m between
them :

c(i, j) =

3∑
m=−3

q3m(j)
∗q3m(i)√∑3

m=−3 q3m(i)
∗q3m(i)

√∑3
m=−3 q3m(j)

∗q3m(j)
(4.1.4)

if this correlation is less than −0.8, we say that the bond is staggered, and if it is
within the range [−0.05,−0.2], we say that the bond is eclipsed.

Having distinguished this two types of solid bonds, we can identify liquid, inter-
facial ice, cubic ice and hexagonal ice by simply counting their number of eclipsed or
staggered bonds
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structure eclipsed bonds staggered bonds neighbors
liquid N/A N/A any
cubic ice 0 4 4
hexagonal ice 1 3 4
interfacial ice any 2 4

Hence, this algorithm gives us knowledge about both the number of solid-like mo-
lecules and their structure. This is of prime importance to study in a detailed way
homogeneous nucleation trajectories, as will be discussed in chapter 7. Computation
was performed using ovito [80].

4.2 Global collective variable

4.2.1 The largest nucleus size

When we study ice nucleation, it is not enough to have the number of solid like
molecules, we also want to know if these molecules form clusters, more commonly
named nuclei in the study of nucleation, and the size of the largest nuclei.

Clusters are just sets of connected particles, i.e., if we take two particles, they
are in the same cluster if we can follow a continuous path of bonds between them.
Once we have identified which water molecules are solid-like with Chill+, we identify
clusters with the simple criterion that solid-like molecules less than 0.35 nm apart are
bonded. Then we count the number of molecules in every cluster and sort the latter
by size to get the largest one.

In fact, once we have the largest cluster, we can compute the largest nucleus size
in two different ways. We could only take into account the “strongest” part of the
nucleus, not counting the interfacial ice, which is simply the sum of the number of
hexagonal NH or cubic ice molecules NC in the largest cluster

NCH = NC +NH (4.2.1)

Or we could sum the number of all types of ice, including the number of interfacial
ice molecules NI

NCHI = NC +NH +NI (4.2.2)
The largest nucleus size will be used to study homogeneous nucleation as will be

discussed in chapter 7. Computation was performed using ovito [80].

4.2.2 Cubicity

Once we have identified the largest nucleus, we want a simple measure of its
disordering. One simple way to do it is to compute the cubicity C, defined as (keeping
the same notation as in the previous section for the number of ice molecules in the
largest cluster)

C =
NC

NC +NH

(4.2.3)

This number is simply the fraction of molecules that are in cubic ice state, telling us
if we are in a purely cubic state (C = 1), hexagonal state (C = 0), or mixture of the
two (C ∈]0, 1[).

Cubicity will be used to study homogeneous nucleation as will be discussed in
chapter 7. Computation was performed using ovito [80].
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4.2.3 Permutation Invariant Vector (PIV) and PIV distance

Until now, we have presented collective variables that are specifically designed
to solve a given problem. But what if we have little or no knowledge about a system
and still want to distinguish the various structures and phases it can reach ? The
Permutation Invariant Vector (PIV) is a very general collective variable that aims to
solve this question for any atomic system [7].

In general, a collective variable needs to be invariant if we rotate or translate
our simulation box, or else it would have no physical meanings, as the states of our
system do not change under such symmetries. In addition, it should be invariant under
permutation of any pair of identical atoms, as otherwise it would distinguish identical
structures that have a different arbitrary labelling of the atoms. For example, in liquid
water at ambient pressure and temperature, molecules can freely diffuse and hence
permute with each other, even though the states remain the same. Another way of
saying this is that we are interested in the topology and not by the topography of
our system.

To build the PIV, we start by representing our system by a complete graph
weighted by the inter-atomic distances. Then we compute the “adjacency” matrix of
this graph, that is a matrix A with element defined as

Aij = σ(rij) (4.2.4)

where rij is the Euclidean distance between atoms i and j and σ is a switching function
that goes smoothly from 0 to 1. So contrary to a true adjacency matrix, we have no
discontinuity, which will turn out to be important for enhanced sampling methods
in chapter 5. This switching function also allows us to set the range of interactions
that we consider. Often one will restrict itself to first or second neighbor shells, but
if longer range interactions are important they can be easily included.

By construction, this matrix is symmetric and contains all the structural infor-
mation about the system under study. To build our vector, we first separates it into
sub-matrices B for each pair b of atoms type {α, β, . . .} that we are interested in

Bb
ij = σ(rbij) (4.2.5)

For instance with water, we would have α = O, β = H, with one sub-matrix block
for oxygen-oxygen, one for the hydrogen-hydrogen and one for the hydrogen-oxygen
interatomic distances, labeled respectively with b = 1, 2 and 3. In general if we have
Nt type of particles, we will have Nb = Nt(Nt − 1)/2 blocks, with Nt of them that
contain interatomic distances for same particles types and Nt((Nt − 1)/2− 1) blocks
that will contains interatomic distances for different particles types.

Then we sort the elements inside each block and put them in a vector, that will
be invariant under permutation by construction due to the sort operation. Finally we
concatenate all these vectors into a single one, to obtain the Permutation Invariant
Vector, using the concatenate symbol ⊕ :

vb = sort
(
Bb

ij

)
(4.2.6)

V =
⊕
b

vb (4.2.7)
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Figure 4.2.1 – Construction procedure of the PIV for two molecules of water

These operations are summarized in figure 4.2.1. It is important to note that the
sorting of the vector, required for permutation invariance, makes us loose part of the
structural information.

If we want to compare configurations with large variations in the volume, we can
refine this definition by normalizing the distances with a factor (V/V0)

1/3, where V
is the box volume and V0 is a reference, for instance the average volume of the two
states we want to compare. We can also include different weights wb for the different
atom pairs, if we think that some pairs are more relevant than others :

vb = sort

(
σ

((
V

V0

)1/3

rbij

))
(4.2.8)

V =
⊕
b

wb vb (4.2.9)

The PIV in itself has a high dimension : if we have N particles its size will be
N(N − 1), so it is not really practical to use it as it is. But from the PIV we can
define a very simple metric to distinguish states, that we will call the PIV distance.
Let A and B be two structures of interest, and VA and VB their related PIV. Then
the PIV distance is just the squared Euclidian distance between the two PIV

DAB = |VA −VB|2 (4.2.10)

PIV distances will be our main tools in the rest of this thesis to study structural
transformations. As discussed in Ref. [84], they are suitable for water and they have
the useful property of assuming small values when comparing independent realiza-
tions of a same form of water (e.g., two configurations extracted from an equilibrium
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trajectory of the liquid), while being large when comparing two configurations belon-
ging to physically different forms (e.g., liquid and crystal or liquid and amorphous).
We will use PIV distances to define path collective variables (see next section) within
the study of the liquid-liquid transition of water (6). And we will use them both
directly and to define path collective variables within the study of homogeneous ice
nucleation (7). Computation was performed using plumed [79].

4.2.4 Path collective variables

Path collective variables were specially devised as reaction coordinates for a
generic transition between states A and B, provided a suitable metric D is available
to compute distances between any states. The basic idea is to start from a sequence
of n reference configurations, that go from A to B with some intermediate states,
representing a path that connects A and B [85]. Then, two collective coordinates are
defined as

S =

∑n
k=1 k e−λD(X(t),Xk)∑n
k=1 e

−λD(X(t),Xk)
(4.2.11)

Z = −1

λ
log

(
n∑

k=1

e−λD(X(t),Xk)

)
(4.2.12)

where X(t) represent the current atomic configuration and Xk are the n reference
configurations, with X1 = A and Xn = B.

S represents the progress along the reference pathway : when assuming the value
1 it indicates that the current configuration is in state A, while for the value n it
is in state B. Z measures the cumulative distance from the reference pathway, large
values of Z meaning that the system does not follow the reference path, that can be
arbitrary, and follows, typically, a more physical one. So the choice of the reference
path is not really crucial, even in combination with biasing potentials, as Z prevents
the system from being dragged along unphysical mechanisms. λ is a parameter that
controls the shape of the collective variable space, enlarging or shrinking the width of
free energy barrier along S when studying a transition process. In practice, a common
rules of thumb is to choose it such that λD(Xk, Xk+1) ≈ 2.3, with D(X1, X2) ≃ · · · ≃
D(Xn−1, Xn).

In this thesis, following Ref. [8], we mainly used path collective variable with PIV
distance D as the metric, and only with the initial and final states of the transition
we want to study as references (n = 2), in order to avoid making any guess about
the path of the transformation. In this scheme, S and Z take the simpler form

S =
1 e−λDX(t)A + 2 e−λDX(t)B

e−λDX(t)A + e−λDX(t)B
(4.2.13)

Z = −1

λ
log
(
e−λDX(t)A + e−λDX(t)B

)
(4.2.14)

where are A and B will be a low density liquid and high density liquid state during
the study of the liquid-liquid transition (chapter 6), and will be a liquid and purely
hexagonal ice state during the study of homogeneous ice nucleation (chapter 7).
Computation was performed with plumed [79].

42



4.2.5 Commitment probability

The commitment probability, more commonly named committor, is a special kind
of reactive coordinate able to measure the progress of a transformation. Consider a
system of N particles, that can reach two states A and B, being in the configuration
x ∈ R3N . The committor ϕB(x) is defined as the probability of the system to reach
first B instead of A for a set of many trajectories initiated at x with an equilibrium
distribution of initial velocities. ϕB(x) varies smoothly between 0 and 1 [10, 11]. Thus
ϕB(x) = 0 means that the system is in state A and so it will never reach B first. On
the contrary ϕB(x) = 1 means that the system is in state B and so it will ever reach
B first. Symmetrically, we can define ϕA = 1− ϕB. When ϕa(x) ≈ ϕB(x) ≈ 0.5, x is
a transition state [86].

Here is an important point that we want to stress : in condensed matter we often
study systems where the two states will be separated by high free energy barriers. The
higher the barrier, the lower the probability per unit time of observing a spontaneous
transition where the system crosses the barrier. This effectively means that except
close to the top of the barrier, the committor will evaluate to values very close to 0
or 1.

What makes the committor so special is that it contains rich information about
the kinetics of the transformation, telling us directly what is the likely fate of a confi-
guration. But contrary to all the other variables defined until here, the committor
cannot be computed directly as an explicit mathematical function of the atomic coor-
dinates. One way to estimate it for a configuration is to propagate several molecular
dynamics trajectories with different velocities, and count how many of them reach
B before A, to effectively sample the probability [86]. Obviously, it would be utterly
expensive to estimates precisely the committor for all possible atomic configurations
x in a system formed by more than a few particles. This is due to two reasons :
on one side, the immense number of possible configurations in a system of hundreds
of atoms, and on the other side the large number of trajectories that are needed to
estimate ϕB(x) far from the transition state region. For instance, with ϕB(x) ∼ 10−6

we would need to generate more than 106 trajectories. As a result, the committor
remains an important conceptual tool, while it can be estimated in practice only for
a limited number of configurations close to the transition state, by generating few
dozens of trajectories for each trial configuration.

4.3 Quality of reaction coordinates

As said, an important use of collective variables is to describe transition processes.
Given a reaction coordinate s that is an explicit function of configurations x ∈ R3N of
our system, we can project the free energy onto it. In practice, one will estimate the
equilibrium distribution P (s), either from brute force molecular dynamics or using
some enhanced sampling methods, and from there compute the free energy

G(s) = −kBT log(P (s)) (4.3.1)

The question is, can we assess that this projection will preserve the important features
of the transition (correct number of local minima and barriers, as well as their relative
elevation) ? And can we find an optimal reaction coordinate that describes “perfectly”
the transition ?
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Figure 4.3.1 – A fictitious 2D free energy landscape and its 1D projections. Here y
is certainly a bad reaction coordinates as it is not able to distinguish states A and B.
On the contrary x seems to grasp the important features of G, and may be a good
candidate.

If we study a transition between states A and B, a basic requirement is that the
reaction coordinate must be able to distinguish A and B. For instance ⟨Q6⟩ cannot
distinguish low-density liquid and high-density liquid [23], but is very competent to
distinguish liquid and ice [83]. Thus it is clear that it cannot be used to study the
liquid-liquid transition, but it is not clear if it can be used to describe properly the
nucleation of water in all its relevant details.

It is always possible to project the free energy on any coordinate, but in un-
favorable cases the resulting landscape can suggest misleading physical insight [86].
In figure 4.3.1, we have illustrated how this projection could result in a misleading
free energy landscape. It is important to note, moreover, that in real world cases we
are reducing the dimensionality way more dramatically, as we often go from a 3N
dimensional space with N of the order of hundreds or more, to a 2 or 1 dimensional
space.

This is of prime importance when we consider enhanced sampling methods, as
despite their differences, they all are likely to be effective if a good reaction coordinate
is known. Conversely, a poor definition of reaction coordinate can seriously hamper
all of those algorithms, leading to non-optimal transition mechanisms and preventing
free energy landscapes to converge [46].

The main idea employed to assess the quality of a reaction coordinates s is
to analyze the projection of the committor onto it : ϕB(s). In fact, ϕB is widely
considered the optimal reaction coordinate for every reaction, hence if s is a good
reaction coordinate it should map properly to ϕB and in its space the transition state
should display a committor distribution peaked around 0.5. Otherwise this means
that s is a poor estimate of the ideal reaction coordinate [15, 11, 87, 88, 89]. As
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already mentioned, this means that, usually, the quality of a coordinate can only be
assessed a posteriori, once we have collected enough data about the transition under
study to estimate its committor.

4.3.1 Maximum likelihood optimization

Besides the validation of reaction coordinates, the committor can also be used to
optimize reaction coordinates. The maximum likelihood optimization approach was
developed with this aim [12, 13, 88, 89]. In this scheme, a large ensemble of points
on top of the barrier is sampled through the use of aimless shooting algorithm (see
section 5.2), which works independently of the choice of reaction coordinates (as long
as they distinguish correctly the metastable states A and B). From this ensemble of
shooting points, we only keep information about in which state the endpoints of the
generated trajectory are, and so if it is a reactive one. For instance, a trajectory that
starts in A and ends in B is reactive, but one that starts and ends in B is not.

After harvesting all this information, one can specify a set of collective variables
s = s1, . . . , sm to be tested. There are no requirements on the si, so they can have
different units and scale. All the candidate variables are evaluated at each previously
collected shooting point. As both the fates of the trajectories and the value of si
at the shooting points are known, we can evaluate the transition path distribution
projected on each variable and compute its likelihood with a model based on the
committor

L(si) =
Nr∏
k=1

ϕB(si(xk))
Nnr∏
k=1

(1− ϕB(si(xk))) (4.3.2)

where Nr is the number of reactive trajectories, Nnr is the number of non-reactive
trajectories and xk is the configuration of the k-th shooting point. This likelihood
effectively tells us how well the committor projected on the candidate variable fits the
ideal committor distribution. By taking l(si) = −lnL(si) and sorting it in increasing
order, the lowest value will give us the best reaction coordinate among the candidates
one. In this thesis we only used this scheme to measure the quality of our variables,
but the approach was also devised to optimize the likelihood of a variable constructed
as a flexible combination of the trial variables si, hence the name.

Finally, one should appreciate that finding the optimal reaction coordinate is
more than a technical issue : it often leads to a deeper understanding of the nature and
driving forces of a transformation process, hence it is desirable even when enhanced
sampling is not needed.

4.4 Development of PIV in plumed

The first version of the code to compute the PIV with plumed was written by
Silvio Pipolo, and it was designed to take several reference structures as input and
to compute the distance of the current state from these references as output. It
successfully accomplished this task, allowing its use in several cases [8, 90]. But it
suffered from a tedious user interface, linked to how plumed manages its collective
variables with several outputs. In practice this means that the input file size one
needs to provide grew linearly with the number of references and was affected by
bugs beyond 3.
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During this thesis the code was upgraded with different objectives : the first one
was to enhance performances, second one was to allow and ease the use of more than 2
reference structures, the third one was to simplify the format of the input to diminish
the risk of user mistakes, and last one was to clean-up the code to facilitate further
development in the future. Here we will present how the code works, broadly, and how
it was upgraded, assuming little familiarity with c++. We will mainly present its most
tricky parts, which are how we sort the PIV and how we compute its derivatives.

4.4.1 User interface

The first version of PIV implementation used several tricks to circumvent use of
collective variables with several components in plumed. The main idea is that if the
user wants N references, the code will need to create N PIV objects with different
structure references but who share common data through the use of static keyword.
This means that the user needs to repeat N times the same PIV command in its
plumed.dat input file, as shown in table 4.4.1. It also implies that the code could
misbehaved in unexpected and uncontrolled way when used with several parallel
threads, as static variables may be updated concurrently and thus are not thread
safe.

Upgrading the interface implied a deep modification of the code to handle mul-
tiple components with only one object. The current implementation counts how many
references are given in the input and adds a plumed component for each one by calling
void addComponentWithDerivatives (const std::string&), instead of using a single call
to void addValueWithDerivatives (). This simple change implies several modification
of the code, as all the internal variables used to store data about structure references
need to become arrays. Notably, it implies to change how derivatives are computed,
having an array of double for each structure references instead of one by PIV object.
Globally it renders the code more complex, even if more robust and with less sources
of error as we get rid of all static variables, but externally this simplifies a lot the
input format, as shown in table 4.4.2.

In fact if you compare the two inputs, you may see that there are also several
keywords that disappear. For PIVATOMS this is because we can compute it directly from
the ATOMTYPES entry. For SORT now by default all block are sorted, so it only needs to be
specified if you do not want to sort any block (beware that we loose the permutation
invariance in this case). PRECISION has now a default value of 1000, which is a good
compromise between precision and performance for most practical cases. The NLIST
keyword was removed as the current implementation only works with neighbor lists.
For the VOLUME keyword, we made the choice to use the average volume of the reference
structures instead of one provided by the user, as it should be appropriate in all cases.
For NL_CUTOFF, NL_STRIDE and NL_SKIN we made the choice to use a unique value for all
blocks instead of one for each, as we did not meet a practical case where the various
blocks required different length scales and behaviors for the neighbor lists. Also it
simplify the input and the code, reducing potential sources of errors.

1 PIV ...
2 LABEL=d1
3 REF_FILE=liquid.pdb
4 ATOMTYPES=OW1 ,HW
5 PIVATOMS =2
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6 SFACTOR =1.0 ,0.2 ,0.2
7 SWITCH1 ={ RATIONAL R_0 =0.7 MM=12 NN=4}
8 SWITCH2 ={ RATIONAL R_0 =0.7 MM=12 NN=4}
9 SWITCH3 ={ RATIONAL R_0 =0.7 MM=12 NN=4}

10 SORT=1,1,1
11 PRECISION =1000
12 NLIST
13 VOLUME =24.34874
14 NL_CUTOFF =1.2 ,1.2 ,1.2
15 NL_STRIDE =10 ,10 ,10
16 NL_SKIN =0.1 ,0.1 ,0.1
17 ... PIV
18 PIV ...
19 LABEL=d2
20 REF_FILE=ice.pdb
21 ATOMTYPES=OW1 ,HW
22 PIVATOMS =2
23 SFACTOR =1.0 ,0.2 ,0.2
24 SWITCH1 ={ RATIONAL R_0 =0.7 MM=12 NN=4}
25 SWITCH2 ={ RATIONAL R_0 =0.7 MM=12 NN=4}
26 SWITCH3 ={ RATIONAL R_0 =0.7 MM=12 NN=4}
27 SORT=1,1,1
28 PRECISION =1000
29 NLIST
30 VOLUME =24.34874
31 NL_CUTOFF =1.2 ,1.2 ,1.2
32 NL_STRIDE =10 ,10 ,10
33 NL_SKIN =0.1 ,0.1 ,0.1
34 ... PIV
35 PRINT ARG=d1,d2 STRIDE =1 FILE=cv_piv.dat FMT =%15.6f

Table 4.4.1 – Example of a minimal .dat file required to compute the PIV distance
from two references at every time step with the old interface.

1 PIV ...
2 LABEL=piv
3 REF_FILE1=liquid.pdb
4 REF_FILE2=Ih.pdb
5 VOLUME
6 ATOMTYPES=OW1 ,HW
7 SFACTOR =1.0 ,0.2 ,0.2
8 SWITCH1 ={ RATIONAL R_0 =0.7 MM=12 NN=4}
9 SWITCH2 ={ RATIONAL R_0 =0.7 MM=12 NN=4}

10 SWITCH3 ={ RATIONAL R_0 =0.7 MM=12 NN=4}
11 NL_CUTOFF =1.2
12 NL_STRIDE =10
13 NL_SKIN =0.1
14 ... PIV
15 PRINT ARG=piv.d1,piv.d2 STRIDE =1 FILE=cv_piv.dat FMT =%15.6f

Table 4.4.2 – Example of a minimal .dat file required to compute the PIV distance
from two references at every time step with the new interface.
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4.4.2 Counting sort algorithm

The construction of the PIV is done by blocks of pairs of atom types, each of
these blocks being computed separately. The construction of a block and its sorting
is parallelized with MPI, using the counting sort algorithm. This works as follow :
each thread computes an histogram with NPRECISION bins of the atom pair distances
normalized by the user-defined switching function. This histogram will effectively
count how many times a specific normalized distance occurs, being by construction
sorted. To reconstruct the full PIV from it, we gather all the histograms computed
in parallel into one and we expand it, omitting the first bin that contains numerous
zeroes to gain computation time. Table 4.4.3 shows a simplified serial version of the
algorithm as implemented in the code.

1 // cache each PIV block separately
2 auto currentPIV = std:: vector <std:: vector <double >> (mBlockCount);
3 for (unsigned bloc = 0; bloc < mBlockCount; bloc ++) {
4 // count occupancies
5 auto orderVec = std::vector <int > (mPrecision , 0);
6 for (unsigned atm = 0; atm < mBlockAtoms[bloc]->size(); atm += 1)

{
7 // compute pair distance
8 auto atomPair = mBlockAtoms[bloc]->getClosePairAtomNumber (atm);
9 auto position0 = atomPosition (atomPair.first.index ());

10 auto position1 = atomPosition (atomPair.second.index ());
11 auto pairDist = distanceAB (position0 , position1);
12 // transform distance with Switching function and then into int
13 auto df = double (0.);
14 auto vecInt = static_cast <int > (
15 mSwitchFunc[bloc]. calculate (pairDist.modulo () * mVolumeFactor

, df)
16 * static_cast <double > (mPrecision - 1) + 0.5
17 );
18 // keep distance count
19 orderVec[vecInt] += 1;
20 }
21 // reconstruct the full PIV
22 for (unsigned i = 1; i < mPrecision; i++) {
23 for (unsigned m = 0; m < orderVec[i]; m++) {
24 currentPIV[bloc]. push_back ( double(i) / double(mPrecision -

1) );
25 }
26 }
27 }

Table 4.4.3 – Simplified serial version of the construction of PIV using counting
sort algorithm. mBlockAtoms type is std::vector< std::unique_ptr <NeighborList>>, it
contains the list of atoms for each PIV block. NeighborList is a part of the plumed
core, and contains atoms positions. mSwitchFunc type is std::vector<SwitchingFunction
>, with SwitchingFunction a part of the plumed core, it contains the user defined
switching function.
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4.4.3 Computing the derivatives

To allow use of PIV with enhanced sampling methods that add biases, we need
to compute its derivatives. In practice if V is the current structure PIV and Vr is
the reference structure PIV, the distance is computed as

D =

Nb,Mb∑
b,a

wb(Vba − V r
ba)

2 (4.4.1)

where Nb is the number of blocks, Mb the size of the block b and wb the weight of the
block b. Its derivative with respect to the i-th atomic position xi is

∂xi
D =

∑
b,a

2wb(Vba − V r
ba)∂xi

Vba (4.4.2)

and

∂xi
Vba = ∂xi

[
sort

(
σ

((
V

V0

)1/3

rb

))
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]
(4.4.3)

= ∂xi

((
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V0

)1/3√
(xb

k − xb
l ) · (xb

k − xb
l )

)
∂rσ(r) (4.4.4)

=

(
V

V0

)1/3

(xb
k − xb

l ) (δik − δil) ∂rσ(r) (4.4.5)

where k and l are the indices of the a-th element of the PIV block Vb after sorting.
∂rσ(r) is the derivative of the switching function and depend of it specific form (in
practice it is managed by plumed itself, so we do not really care). δij is the Kronecker’s
symbol, that evaluates to 1 if i = j and to 0 otherwise.

As it can be seen, this implementation implies a lot of bookkeeping, because we
need to track down the indices of all atoms when we compute the PIV. To do this,
we construct with the same counting sort algorithm two supplementary vectors atmI0
and atmI1. They are defined such that if we have inserted the normalized distance rij
between atoms i and j into the PIV, i will be stored in atmI0 and j in atmI1. On this
part of the code, a series of small optimizations were made, such that in the end the
overall code is at least 4 time faster.
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5 Enhanced sampling methods

As mentioned previously, pure molecular dynamics gives access to a wealth of
microscopic information. Apart from the accuracy of the force fields used to describe
the given material, its main limitation comes from the typical time scale that one can
reach with nowadays computers. To evaluate equilibrium properties of a specific state
this is often not a problem. But when we want to explore the available metastable
states or study their relative stability and intereconversion kinetics, this is not enough.

To describe the states stability of a system in the NPT ensemble, we use the Gibbs
free energy G. G is an equilibrium quantity, in which each minimum represents a
metastable state (the global minimum being the stable one) and minima are separated
by free energy barriers, which effectively trap the system in each state. With a small
probability, the system can spontaneously cross the barrier over a short period of
time and fall in another metastable state. This crossing probability is exponentially
decreasing with the height of the barrier. Figure 5.0.1 presents roughly the typical
time scale reachable by molecular dynamics, and the typical time scale needed to
see the occurrence of a rare transition event. As you can see, to study transitions in
material, basic molecular dynamics is of relative use.

Figure 5.0.1 – Theoretical time scale needed to overcome a fixed free energy bar-
rier. Typical time scale reachable by quantum based (DFT) and classical molecular
dynamics simulation.

To overcome this major problem many methods were and are still developed to
enhance the sampling of the transition area. There are three distinct features that
can be achieved by enhanced sampling methods, in increasing order of complexity

— exploration of the relevant structures on the free energy landscape, to obtain
the available metastable states

— quantitative reconstruction of the free energy landscape, to get the equili-
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brium probability of metastable states
— precise reconstruction of the characteristic transition times between metas-

table states of the system, i.e. the kinetic properties.
For the first two features there are a wide arrays of methods available, that may yield
quantitative and qualitative results if used properly. The ones we used are presented in
(5.1). For the last one however there are far fewer methods developed and tested, due
to its higher complexity. The methods we used are presented in (5.2). The enhanced
sampling methods that we adopted can be separated in two classes : adding bias
cleverly along the reaction path or shooting a large number of trajectories from the
top of the barrier.

Adding biases

For this class of method, we reduce the dimensionality of G by projecting it
onto some collective variable s(x), x ∈ R3N , that is supposed to be a good reaction
coordinates, as described in (4.3). Now by adding a bias VB(s, t) to G(s), we can
change in a favorable way the dynamics of the system. An edge case is if we have
∀s, VB(s, t)+G(s) ≈ 0, in which case the transition are not hampered by any barrier
and the system can freely diffuse from one state to another.

In practice we do not know G(s) in advance, so the aim is to build VB(s, t) in
such a way that it will either reconstruct directly the free energy after some time,
or it will allow to accumulate enough statistics to reconstruct a proper estimate of
P (s). Metadynamic is of the first type and umbrella sampling of the second.

It’s important to note that for this types of methods s need to be a good reaction
coordinates and to be continuous. As to compute the bias forces exerted on every
particles we will need to derive the bias potential. For the particles i we will have

Fi = −∂xi
s(x)∂sVB(s) (5.0.1)

This is why in the definition of PIV, we use a smooth continuous switching function
and not a sharp discontinuous one.

Shooting from the top

For this class of methods, we will propagate (or shoot) several molecular dyna-
mics simulation starting from a specific configurations, typically on the top of the
free energy barrier that separates the two states (hence the name). Then we will
couple these shootings with some algorithm that only keep the relevant propagated
trajectories, in such a way that we can sample precisely the free energy barrier and
its kinetic.

All these methods rely on the ability to tell in which metastable state we are and
if we are in a transition state, through the use of a collective variable. If the ability to
distinguish two state is not a specifically harsh requirement, the ability to describes
properly transition states is one, as discussed in (4.3). In fact for transition path
sampling the efficiency of the algorithms is directly related to the choice of variable.
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5.1 Free energy exploration and reconstruction

In this thesis we used two methods to explore or reconstruct the free energy
landscape. Umbrella sampling was used for precise reconstruction of the free energy.
Metadynamic was used for exploration and rough estimation of the free energy. Here
we will present the general theory, as the contextual utilization settings will be de-
tailed in chapter 6 or 7.

5.1.1 Umbrella sampling

Figure 5.1.1 – Schematic representation of the umbrella sampling method, where we
add strong quadratic potential (umbrella) to restrain trajectories into small windows
sampled separately. In real use the quadratic bias will be sharper and more numerous.

Umbrella sampling is a method that allow one to finely reconstruct the free
energy landscape. The principle is to launch several simulation for which we added a
constant quadratic bias potential, often called umbrella due to their shape, along a
reactive path defined by a collective variable s [14]. The i-th bias is defined as

Vi(s) =
k

2
(s− si)

2 (5.1.1)

If we tune k to have strong enough bias, the trajectory will be forced to sample
precisely a small region centered around si that we will call a window. In the i-th
window we will sample a distribution

Pi(s) =
P (s) e−Vi(s)/kBT∫
ds′P (s′) e−Vi(s′)/kBT

(5.1.2)

We can then combine all the sampled distribution Pi to reconstruct an estimate of the
underlying total distribution P , and thus of G. The general principle of the umbrella
sampling method is illustrated in figure 5.1.1.

To reconstruct the total distribution P from the sampled distribution Pi we
use the weighted histogram analysis method (WHAM) and its bayesian version the
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multistate Bennet acceptance ratio estimator (MBAR) [91, 92]. The idea of this two
methods is to build an estimator of the free energy, based on the sampled Pi, that
we will solve in an self-consistent way. In practice we have an equation Gi = f(Gi),
where f is some function, that we solve by iteration using the last set {Gn

i } to
produce a new estimated set {Gn+1

i }. The difference between the two resides in the
use of a discretized, using histograms, or continuous density of state. In the limit
that histograms bin width go to zero, the WHAM method became equivalent to the
MBAR method [92].

The fact that each windows are sampled separately make this method intrinsi-
cally parallel, a major advantage on current architectures of supercomputers. It also
means that its easy to add statistics to a specific windows if its convergence is not op-
timal. Combined with its rigorous mathematical foundation, this imply that umbrella
sampling is a very powerful general technique to estimate the free energy. Its main
limitations consist in the necessity to have an initial continuous pathway to initialize
the various windows, and in the necessity to carefully monitor the dynamics in the
different windows, to avoid the exploration of disconnected regions in configuration
space [93]. In practice this method will be used in tandem with another enhance
sampling technique able to generate such trajectories, like seeding or metadynamics.

Also umbrella sampling is a double-edged blade that should be used with some
special caution, as its convergence is not trivial to assess. Contrary to other methods
like metadynamics where convergence issues appear more clearly, the use of WHAM
or MBAR to estimate free energy from umbrella sampling simulations will always
deceivingly converge from a numerical viewpoint, as long as the collective variables
distributions overlap, even if the underlying simulations are totally un-physical.

There are three main sources of failure for umbrella sampling : k in equation 5.1.1
is too small ; each windows are not sampled for long enough ; the continuous pathway
used to launch umbrella sampling is shitty. The first one is easy to verify, as we
just need to check overlap of the distributions Pi. The second one can be verified by
computing auto-correlation time of the collective variable s in every windows, defined
as

τsi =

∫ tmax

t0

dt
⟨δsi(0)δsi(t)⟩

⟨δs2i ⟩
with δs(t) = s(t)− ⟨s⟩ (5.1.3)

for tmax ≫ τsi (typically 1 or 2 order of magnitude), we can “safely” say that the
umbrella are converged. For the last one, it is often linked to a bad choice of reactive
coordinates. How to assess the quality of the coordinate chosen is discussed in section
(4.3).

5.1.2 Metadynamics

Metadynamic is a method devised to both reconstruct the free energy landscapes
and explore it. Contrary to umbrella sampling where we added constant biases, here
we will generate dynamically a time-dependent bias, which will be specific to the
simulation. Let say we have a collective variable s and a deposit time step τ . Every
τ times step, we we will add a small potential of gaussian shape to our system, at
its current location s(t = nτ). In this way we will progressively construct a potential
V that will have the opposite shape of the free energy G, allowing both to overcome
large free energy barrier and to reconstruct G [39]. After n gaussian deposit, the
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potential will be

V (s, t) = w

n∑
k=1

exp

(
−(s− s(kτ))2

2(σs)2

)
(5.1.4)

where w and σs are the height and width of gaussian potential. The general principle
of this method is illustrated in figure 5.1.2.

Figure 5.1.2 – Schematic representation of the metadynamic method, where we add
small gaussian potential at the current system position to fill-up free energy minima
and allow the system to overcome large free energy barrier of height H. Here gaussian
are very large and high to ease the illustration.

When we always add the same constant gaussiann potential, we speak about
ordinary metadynamic. In this case, if the chosen collective variables are able to
distinguish the transition state as discussed in (4.3), the time dependent potential
will converge toward the inverse of the free energy within numerical uncertainty when
t → ∞. But if the collective variable is not, it will lead to a biased free energy
estimation [94]. To circumvent this issue, one can use well-tempered metadynamic, a
variant in which the gaussian deposit size is decreased in a specific way over the course
of the simulation [95]. In this case, the time dependent potential will converge toward
the inverse of the free energy, regardless of the capacity of the collective variable to
describe the transition state [96]. However its important to note that in cases where
the collective variables are particularly badly chosen, ordinary metadynamics may still
explore a large part of the configuration space, whereas well-tempered metadynamics
may be trapped in a delusive free energy minima that is artificially created by the
dimensionnal reduction.

As you may guess, in practice convergence may not be reachable. This is in part
due to the limited time scale available by molecular dynamics simulation. But it is
also due to the overgrowing complexity to compute forces with such time-dependent
potential, as every τ time step we add a new potential and its set of derivatives. Also
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one need to not add too frequently the gaussian biases, in a way that the system can
relax between two deposits. In an extreme case, if we add the bias with the same
time step as the one of the simulation, the system will not be able to move at all and
we will just pill-up gaussian on top of each other, breaking the simulation due to the
added energy.

Linked to this convergence problem, it may be difficult to determine when to
end a metadynamics run. It is especially true for ordinary metadynamic, as in the
long-time limit the recovered free energy surface fluctuates around the actual free
energy, and the magnitude of the fluctuations is controlled by the rate at which
the small gaussian functions are added to the potential energy [94, 97, 98]. If the
system has a slow diffusion over the collective variable, this can typically lead to
artificial hysteresis, where the system oscillate between its metastable states as if
they were a barrier, even though it has been exceeded long ago. Using well-tempered
metadynamics may solve this issue, as the height of the gaussian is rescaled every time
step by a bias factor, ensuring more smooth and guaranteed convergence in a finite
time [95]. In both cases, the main way to control the convergence and to compute
error of the free energy estimation, is to use block averaging techniques. The idea is
to split the simulation into blocks of the same size, then by looking at the variation
of the average bias potential in each blocks, one can estimate the error [96].

For ordinary metadynamic the three parameter of the simulations (deposit time,
width and height of the gaussians) should be chosen with care to have smooth ex-
ploration or convergence within the time limit of the simulation. The choice of the
width is an easy one, as we generally have information about the available range of
the reaction coordinate used to study the transition. For the height and the deposit
time, it is a trade-off between precision and speed of exploration, as high gaussian will
allow one to explore the configuration space quickly, but with poor estimate of the
underlying free energy landscape. For well-tempered metadynamic the reduction of
the gaussian height is further controlled by a bias factor, which should be chosen such
that the system can cross the free energy barrier in the time scale of the simulation.

Since its invention, ordinary metadynamic and its variants have been successfully
applied to study many problems. It can be used to directly compute free energy
profile, or as a purely explorative method. In the latter case, it can be either to
explore the available configurations of a system and find its metastable states, or to
generate initial reactive trajectories, a non-trivial task in many problems in complex
system, before resorting to other enhance samplings methods like umbrella sampling
or transition path sampling [99].

Following the second path, in this thesis we will mainly use ordinary metady-
namic to generate reactive trajectories before use of a more predictable and parallel
method, umbrella sampling, so we will not worry too much about its convergence.
In all of the rest of this thesis we will simply refer to the ordinary metadynamic as
metadynamic.

5.2 Transition path sampling

In the previous section we presented a series of methods that allow one to over-
come large free energy barrier and to reconstruct the whole free energy landscape
of any transformation, given that we have the right collective variables to describe
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it. Free energy give us a lot of information about stability or metastability, but it
doesn’t inform us about the dynamic properties of our system, as the bias introdu-
ced to sample it spoils all kinetic information. And these are most valuable, like the
transition rate at which our system transform from one state to another.

So to get information about the kinetic, we need to resort to unbiased methods
that are still able to sample transition. In the last decades, a whole zoology of such
methods were developed by the scientific community, with their drawback and ad-
vantages. Among them we mainly used transition path sampling methods.

Figure 5.2.1 – Schematic illustration of the transition path shooting general algo-
rithm.

Before entering into the details, just a bit of terminology. Reactive trajectory
or transition path is used when molecular dynamics trajectory connect two different
states. For instance when we study crystallisation of water, a reactive trajectory/-
transition path is one that goes from liquid to ice, or the reverse. Propagating the
system just means running a molecular dynamics simulation with fixed time length.
Shooting point are the initial structure from which trajectory will be propagated, i.e.
a specific set of cartesian coordinates of our system. Markov processes are random
models that describe a sequence of possible events and for which the probability of
an event is only dependent of the previous event state.

Transition path sampling is a series of methods that tries to overcome disparity
in time scales through importance sampling in trajectory space. This means that the
objectives of these methods is to sample distribution of transition path through the
use of short trajectories. Instead of running infinitely long molecular dynamics simu-
lations to sample the transition path distribution, we will generate in an iterative
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way short trajectories. This iterative procedure will be a random markovian process
that only depend on the previously generated trajectory. If the procedure is carried
for long enough, it will reach a stationary state that is exactly the transition path
distribution [15]. Clearly in practical situations it can be far from trivial to assess
whether such stationary converged behavior is reached or not. The stopping criterion
is choosed case by case and is generally not independent to the computer time limi-
tations. It is important to remark that a similar concern and difficulty in providing
clear convergence indicators and – related to this – reliable statistical error bars, is
common to all sampling techniques based on molecular dynamics or Monte-Carlo
methods.

Among the different sampling strategies, transition path shooting emerged as
particularly efficient. The general algorithm work as follow : a shooting point along
an existing reactive trajectory is chosen at random, its velocities are perturbed, and
then from this point trajectories are propagated forward and backward in time [41].
Practically this means that one is launched with inverted velocities to achieve inver-
sion of time. If the two segments end up in different states, the new path is accepted,
otherwise it is rejected. To sample all the transition path we repeat this procedure
iteratively, as illustrated in figure 5.2.1.

About the efficiency

In theory all the transition path shooting algorithm are based on rigorous ma-
thematical equation and should sample an exact path ensemble. In practice however,
there are two main limitations to achieve this sampling in a reasonable amount of
time and machine power. The first one is linked to the typical duration of the relaxa-
tion from the shooting point. As an extreme example, if the system requires several
microseconds to relax toward one of the two states, it would take years and dozens
of millions of cpu hours to have a proper sample. The second one is linked to the de-
correlation of the sampled transition path. Again as an extreme example, if it takes
millions of steps to have two decorrelated path, that is to sample two truly distinct
pathways, if would render the sampling impossible to carry.

So to have efficient transition path shooting, we need that typical generated
path are short and that they decorrelate after a few iterations of the algorithm. This
requires that the trials path are accepted with a reasonably high ratio, that we will
call the acceptance rate in the following. This also requires that every part of the path
ensemble is reachable by the iterative sampling procedure. Sadly the first conditions
is rarely met in real case uses, especially in material science. The probability to create
a transition path TP starting from a phase point q = (x, v) is

p(TP |q) = ϕA(q)ϕB(q) + ϕB(q)ϕA(q) (5.2.1)

where ϕB and ϕA are the committor functions and q = (x,−v). As discussed in
(4.2.5), for typical free energy barrier met in condensed matter, the committor will
be close to 0 or 1 everywhere, except in a small transition region. Therefore product
of the two ϕAϕB will be near zero everywhere, except on the transition region, that
is the top of the free energy barrier [100, 101, 41].

Thus it should be no surprise that we can address this issue by building markovian
processes that pick shooting point only in the transition state domain. This is exactly
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what the aimless shooting and its derivative the aimless shooting within a range
algorithm are doing. Before detailing them and their differences, we will briefly present
the seeding method used to generate the initial reactive trajectories.

5.2.1 Seeding

Seeding is a method that allows one to easily generate initial reactive trajecto-
ries, and to compute various thermodynamic and kinetic properties when applied to
nucleation. It is not a true transition path sampling method, as it is mostly an empi-
rical method based on clever tricks, without any rigorous mathematical background
to back-it up.

It was specifically developed to tackle the discrepancy in time scale when studying
ice nucleation. We will present it more in detail later in chapter 7, but nucleation
processes have two different time scale : the first one is linked to the probability to see
appearance of a sufficiently large initial nucleus and is generally very long (seconds or
microseconds at best). The second one is linked to the growth speed of ice, which can
be very fast (few hundreds of nanoseconds). Hence if one wanted to study for instance
the critical nuclei size, the size from which nucleus will “certainly” expand themselves
to the whole system, it would requires molecular dynamics simulations of thousands
of microseconds or seconds to get relevant statistics, which is unimaginable nowadays,
even though the interesting events themselves would have really short duration.

Seeding solves this issue with a simple procedure
— generate from its unit cell a perfectly crystalline box of the ice phase under

study ;
— extract from this box an initial nucleus with a specific shape, usually a sphere

or a slab ;
— solvate this nucleus with liquid species and equilibrate the interface ;
— from this initial seed, generate several molecular dynamics simulation, each

with random new momenta drawn from the Boltzmann distribution at the
relevant temperature.

As said, contrary to the apparition of a sufficiently large nucleus, the nucleus grows
in a small time scale, of the order of the nanoseconds, that is perfectly reachable for
today simulations. By repeating this procedure, one can evaluate for various sizes
the committor functions and so get an estimation of the critical nuclei size, where
ϕA ≈ ϕB. Using classical nucleation theory, that will be presented in section (7.1.1),
one can estimate the free energy barrier and the nucleation rate from knowledge of
the critical nucleus size, the attachment rate and the free-energy difference between
liquid and solid bulk phases [102, 33, 35].

So it seems that seeding is the perfect technique to study nucleation : it’s cheap,
easy to implement and may be used in combination with other techniques to give ac-
cess to the most relevant information about thermodynamic (free energy) and kinetic
(nucleation rate) properties of the system. However in practice this methods have two
flaws. First one is that it relies heavily on classical nucleation theory, which is too
simplistic for some materials. Second one is that this methods is heavily dependent
on the initial choice of the nucleus structure, and so on the nucleation pathway,
which can be far off from the real processes that happen in nature. Hence it generally
give rough estimates of the previously mentioned quantities, working best with large
critical nuclei size [34].
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These limitations in head, in this thesis we will mainly use seeding to generate
initial reactive trajectories, before using more advanced and rigorous enhanced sam-
pling technique presented here. We will present the precise procedure to produce the
initial seed in (7.2.2).

We want to stress that despite its flaws, seeding has been applied to extract a
large amount of important informations with realistic potential for water, including
critical nucleus size, speed of growth or melting of the nucleus, free energy barrier
and nucleation rate, as discussed in section (7.1.4). Furthermore, these investigations
opened the path for a large amount of studies based on more rigorous methods, since
they allow to choose sufficient simulation box sizes, simulation duration, and optimal
temperature. In our study, indeed, we followed this path.

Figure 5.2.2 – Difference between the aimless shooting and aimless shooting within a
range. Green point represent the last accepted shooting point, purple points represent
the potential new trial point. For aimless shooting on the left, only two new point
can be picked in the direct vicinity of the last accepted point. For aimless shooting
within a range, all points that fall within a predefined range, here represented by
dashed lines, can be chosen, including the last accepted point.

5.2.2 Aimless shooting algorithm

The first transition path shooting procedure that we used is aimless shooting [12,
13]. The strength of this algorithm is that it is able to concentrate shooting point
attempts without the use of an order parameter to describe the transition region. In
fact it still requires an order parameter to distinguish the two states and to define their
basins, which in practice is relatively easy to find and a less stringent requirement.

Aimless shooting achieve this feats in a simple and clever way, by only drawing
trial shooting point in the nearest vicinity of the last accepted one. This however
is also its major drawback, as it will produce sequence of transition path that tend
to pass through a narrow region and share a common point. Which means that it
will typically take a large amount of step to achieve decorrelation of the sampled
transition path.

Starting from an initial reactive trajectory with a maximum duration T , aimless
shooting consists of iteration of these steps :

1. discretize last accepted trajectory in a series of candidate shooting points
with a time step ∆t ≪ T ;
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2. if the last shooting point was at frame i, select randomly with equal proba-
bility the frame i+∆t or i−∆t as the new shooting point ;

3. draw new momenta from the Boltzmann distribution and propagate the sys-
tem backward and forward in time, until the trajectories reach one of the two
states or reach maximum duration ;

4. accept the new trajectory if it connects the states A and B.
Due to its way of randomly choosing the new trial shooting point, the acceptance

rate of the algorithm is correlated to the choice of the time step ∆t chosen to discretize
the trajectory. But this time step is also linked to the decorrelation of two consecutive
transition path. When ∆t → 0, the acceptance rate r will tend toward 100%, but in
the same time two consecutive transition path sampled will be highly correlated. On
the reverse, if ∆t becomes similar to T , r → 0 but we will have high decorrelation
between two consecutive transition path sampled. Generally one will chooses 10% <
r < 25% to have a good trade off between the two factors.

As a general remark for this type of methods, it can be non trivial to identify a
criterion for optimal choice of parameters. Notwithstanding the importance to have a
non-null acceptance rate, practical ways to assess the efficient evolution from an un-
likely transition state region to the optimal one, and the decorrelation speed between
different transition paths should be identified. For instance in nucleation, to have a
relatively high acceptance rate is not sufficient to have quick evolution of the critical
nucleus structure, see section (7.4.3).

Due to its theoretical simplicity and relative ease of implementation, aimless
shooting has been employed to study several systems and it has been especially useful
in the study of nucleation [103, 104, 38, 105].

5.2.3 Shooting range algorithm

The second transition path shooting procedure that we used is shooting
range [41]. The algorithm was specifically devised to fix the decorrelation issue of
the aimless shooting algorithm, while still achieving high acceptance rate.

Its main drawback compared to aimless shooting is that this algorithm requires a
reaction coordinates able to describes correctly the transition region. In fact its main
difference with aimless shooting is that instead of drawing trial shooting points near
the last accepted one, we will draw them in a whole shooting range that span the
transition region.

Explicitly the algorithm is as follow :
1. discretize last accepted trajectory in a series of candidate shooting point with

a time step ∆t ≪ T

2. select randomly with equiprobability the new shooting point from the ones
that are within the predefined shooting range ;

3. draw new momenta from the Boltzmann distribution and propagate the sys-
tem backward and forward in time, until the trajectories reach one of the two
states or reach maximum duration ;

4. accept the new trajectory if the trajectory connect liquid and ice and with
the following acceptance probability pacc = min(1, n/n′). Where n and n′ are
the number of points of the trajectory that are within the shooting range, for
old and new trajectory respectively.
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Obviously the efficiency of the algorithm is dependent of the shooting range. It is
possible to use a systematic procedure to optimize this choice [41], but it requires a
significant amount of “spoiled” steps. So here we will resort to more empirical methods
to choose the shooting range, based on knowledge acquired with seeding, as will be
described in section (7.4.2). The difference between the two way of picking randomly
new shooting points is summarized in figure 5.2.2.

We want to stress that this algorithm is relatively new, and so far it has only
been applied to a few systems [106]. We applied it for the first time to the challenging
problem of homogeneous ice nucleation of water, finding that if one has access to a
good reaction coordinates and with a correct choice of shooting range, for system
where the transition region span a wide range of possible states it is extremely ef-
ficient. Notably this algorithm is incredibly faster than aimless shooting to achieve
decorrelation of transition path sampled, allowing fast study of the evolution of cri-
tical nuclei structures, where two different symmetry are in competition, see section
(7.4.3) and (7.4.4).
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Deuxième partie
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6 Study of the Liquid-Liquid Phase Transition

6.1 Introduction

Among the many peculiarities and anomalies of water, several experiments have
disclosed connections between stable crystalline phases and metastable amorphous
phases [107]. The first found was between the stable crystalline ice at ambient pressure
(Ice I), and the low-density amorphous (LDA) and high-density amorphous (HDA)
ices : by compressing Ice I up to 10 kbar at ≈ 80K, one obtains the high-density
amorphous ice instead of the stable Ice VI [17]. This high-density amorhous can be
transformed into low-density amorphous by decompression at 130 K [16]. Finally one
can recover Ice I by heating up this low-density amorphous [108]. Similar connection
can be found between crystalline and amorphous ices in the high-pressure region of
the water phase diagram, where connection between a very-high-density amorphous
(VHDA) ice [18], plastic ice and the stable Ice VII have been observed or predic-
ted [109, 110].

This properties of water to possess several amorphous phases at low temperature,
namely LDA, HDA and VHDA, is called polyamorphim. It has clearly been one of
the most puzzling anomalies of water in the last decade, as apparently reversible
first-order transitions among some of them [19], seems in fact at odds with the very
thermodynamic notion of metastable glassy forms.

Several scenarios have been formulated to explain these phenomena, the most
famous, and somehow controversial, being the occurrence of a first-order liquid-liquid
transition in supercooled water, extending at lower temperatures in the amorphous
region, and terminating with a second critical point at higher temperatures. This
hypothesis was formulated on the basis of a computational molecular dynamics study,
using the ST2 model of water [20]. Precisely, it used small box of 216 ST2 water
molecules to compute the density at several conditions of pressure and temperature,
using similarities with the LDA-HDA transformation to hypothesized a liquid-liquid
transition.

It is however extremely challenging to verify this hypothesis with experiments
in pure bulk water. Indeed, its supposed location would lie below the kinetic limit of
homogeneous ice formation, in the so called no man’s land [44, 110, 111, 1]. That is,
a region in which spontaneous nucleation in the stable Ice I phase occurs, regardless
of if we cool down liquid or heat up amorphous ice, preventing any observation of the
underlying metastable liquid phase that may exist in it.

6.1.1 The two-states model

Important theoretical efforts have since been made, in order to improve our
understanding of polyamorphism, notably in the liquid phase. For example, the de-
finition of a two-states model provides a unitary description of the thermodynamics
for most polymorphic fluids [45]. In this view, water is considered as a “mixture”
of two interconvertible local structures : a high-density, high-entropy liquid and a
low-density, low-entropy liquid [112, 113, 114, 115]. The model predict four scenarios,
discriminated through the density extrema loci [45] :

— a singularity-free scenario, with interconversion between two states but no
phase separation ;
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— a liquid-liquid critical point scenario, with interconversion and phase separa-
tion ;

— a degenerate case where the critical point coincides with the vapor-liquid
spinodal ;

— a critical-point-free scenario, with a virtual critical point located below the
vapor-liquid spinodal.

This model is elegant, and its predictions intriguing, but critically dependent on the
detailed choice of the thermodynamic parameters.

6.1.2 Experimental studies of the liquid-liquid transition

From the experimental point of view, a huge battery of diverse set-ups have been
deployed, over the years, using for example aqueous solutions, or confined/micro-sized
systems, in order to overcome the thermodynamic frontiers of the no man’s land, while
avoiding the inevitable crystallization of supercooled water into ice [44]. Some of those
experiments have been able to firmly establish that the transition between the low
and high density amorphous ices is a first order one [19, 116, 117, 53, 118, 119]. Some
experiments were able to give hints on the presence of two competing liquid forms in
the supercooled region [51, 52, 53, 54, 55]. For bulk water, recent experiments carried
out at negative pressures suggest that the right scenarios are either the singularity
free or the liquid-liquid critical point [120]. Other experiments conducted on salty
water, give instead strong arguments against a first order liquid-liquid transition in
the supercooled region [21], even if a first order transition were observed for the
corresponding amorphous phases [22], hence showing that no direct link necessarily
exists between polyamorphism and a liquid-liquid transition.

6.1.3 Numerical studies of the liquid-liquid transition

From the computational point of view, the second critical point scenario has
been a long source of debate since its very first proposition [20], mostly because that
work was based on the “ST2 model” of water [4], which is known to be significantly
overstructured, and thus to “enhance” certain anomalies of water. After several free-
energy studies found contradicting results with this model, either demonstrating the
LDL-HDL transition and coexistence [81, 121, 122], in systems containing up to 600
ST2 water molecules [23], or supporting a no-transition scenario with up to 512
molecules [123, 124]. A consensus emerged on the former hypothesis, thus validating
phase coexistence and reconciling the two independent free energy calculations [125,
1]. However, this result seems limited to this specific model, nowadays known for its
drawbacks, and widely considered as not particularly representative of real water, see
section (3.2.2).

Other studies pointed out in fact that the thermodynamics of the putative LDL-
HDL transition in supercooled water was heavily model-dependent [126, 127, 76]. In
the last few years, the so-called TIP4P/2005 force field [5] has emerged as one of
the most accurate models, as it reproduces quite accurately the phase diagram and
anomalies of water [73, 72, 74, 75], as discussed in section (3.2.3). Several numerical
studies were performed with TIP4P/2005 to assess the existence of a liquid-liquid
transition, although none with a thorough and extensive free-energy approach. A
critical point for TIP4P/2005 water was first proposed at 1.35 kbar, 193 K and
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1012 kg. m−3, based on the analysis of density and concentration fluctuations in the
supercooled region in 500-molecules models for durations of 500 ns [128]. A subsequent
analysis failed to reproduce this result with larger boxes and longer simulations (1,000
to 32,000 molecules and 500 ns to 5 µs) and showed that size effects are important,
together with the long relaxation time of the system [56], as it was confirmed later
on [129, 130]. Another study looked at density fluctuations concluding that they
constitute the signature of a liquid-liquid transition [131], but once again a subsequent
analysis with larger simulation boxes argued that their origin is the appearance of
ice-like structure [57]. With the coupled use of longer simulations and a two-state
thermodynamic analysis, a new critical point was proposed at 182 K and 1.70 kbar
[24, 25], consistently with previous numerical [56] and experimental studies [120].

More recently another study was published, based on the analysis of density
fluctuations [26]. The authors combined extensive unbiased simulations of tens of
µs for 300, 500 and 1000 molecules, at T ≥ 177 K for TIP4P/2005 and ≥ 188 K
for TIP4P/ice, i.e., above the postulated second critical point of the two models
(see below), with an histogram reweighting technique to extrapolate order parameter
distributions at lower temperature, closer to the supposed critical regime. By fitting
the extrapolated distributions, together with static scattering functions computed on
larger boxes at T > 180 K, to a 3D Ising model, an estimation of the liquid-liquid
critical point conditions is obtained at Tc = 172 ± 1 K and Pc = 1861 ± 9 bar for
TIP4P/2005. This elegant work still is not a proof of the liquid-liquid phase transition
(LLPT), as the authors themselves write “Rigorous proof of the existence of a LLPT
requires performing free energy calculations at subcritical temperatures.”.

The present work aims precisely at this much-needed rigorous proof, by overco-
ming several issues emerged from the large corpus of computational studies carried
out over the last 30 years, and at providing a robust answer to this long-going ques-
tion. To this end, we adopt a strategy based on several methodological strengths.
First, we employ a versatile topological metric to describe structural transformations
in water, already proved to be very effective in discriminating the known crystalline,
amorphous, and liquid forms of water [84], and that we successfully used to study
several phase transitions throughout the phase diagram of water, including the ex-
tremely challenging spontaneous nucleation of crystalline ice from the bulk liquid [8].
Second, we exploit a synergistic free-energy calculation approach, combining meta-
dynamics to explore the configuration space, umbrella-sampling to collect extensive
statistics along the transformation paths, and unbiased MD trajectories probing the
spontaneous evolution from different phase-space regions to validate free energies
and extract valuable dynamic information. Third, we use the TIP4P/2005 force field,
which is nowadays considered the most reliable and accurate to describe real water.
We fully describe our approach in the Materials and Methods section.

Anticipating our results, the combination of these advanced techniques and de-
manding calculations allows us to establish the relative "flatness" of the free-energy
landscapes throughout the no man’s land, and thus to suggest that no LDL-HDL
first-order transition exists in the supercooled regime, differently from what is expe-
rimentally observed in the amorphous region.
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6.2 Simulation methods

6.2.1 Molecular dynamics parameters

We performed molecular dynamics simulations employing the TIP4P/2005 [5]
inter-atomic potential, for all the reasons presented in (3.2.3), with periodically-
repeated triclinic boxes containing N = 800 water molecules. Over the course of
the simulation the size and shape of the box will vary slightly, the average box vector
are represented in table 6.2.1.

P, T ⟨A⟩ (Å) ⟨B⟩ (Å) ⟨C⟩ (Å) ⟨α⟩ ⟨β⟩ ⟨γ⟩

160 K, 2.5 kbar 24.7± 0.1 23.2± 0.1 42.3± 0.2 100 79 110
170 K, 2 kbar 24.6± 0.1 23.2± 0.1 43.0± 0.2 100 79 109
180 K, 2 kbar 22.8± 0.1 28.1± 0.1 38.0± 0.1 96 83 101

P, T ⟨A⟩ (Å) ⟨B⟩ (Å) ⟨C⟩ (Å) ⟨α⟩ ⟨β⟩ ⟨γ⟩

160 K, 2.5 kbar 24.0± 0.1 23.6± 0.1 38.9± 0.1 96 87 106
170 K, 2 kbar 24.7± 0.1 23.8± 0.1 39.5± 0.1 95 83 107
180 K, 2 kbar 22.3± 0.1 28.6± 0.1 36.4± 0.1 89 95 109

Table 6.2.1 – Average simulation box parameters for selected P, T conditions com-
puted from unbiased shooting trajectories. The first half of the trajectory is discarded
as equilibration. The two columns present average values from trajectories starting
from low (S = 1.02, top) or high-density (S = 1.98, bottom) states.

All simulation were done under NPT conditions between 140 − 182 K and 1 −
5 kbar, employing the gromacs 5.1.4 simulation package [132]. We adopted a 2 fs
timestep. Short-range interactions were truncated at 0.85 nm, and the particle mesh
Ewald method was used to compute electrostatic interactions. Bond constraints were
maintained using the LINCS algorithm with a fourth order expansion [133].

To control the temperature we used the stochastic velocity rescaling thermostat
with a relaxation time of 0.5 ps [65]. At first for the pressure we used an isotro-
pic Berendsen barostat with a relaxation time of 0.5 ps [66]. But as discussed in
(3.1.4), this barostat does not yield the correct NPT ensemble, leading to potential
un-physical density fluctuations. Thus we switched to the correct Parrinello-Rahman
barostat [67], as will be discussed in section (6.3.1) and (6.3.2).

6.2.2 States preparation

To study the properties of the no man’s land region, we first needed to prepare a
series of sample states at various condition of pressure and temperature. To do that
we first generated with gromacs a liquid box of 800 molecules. Then we equilibrated
it first in NVT ensemble at 180 K for 5 ns, and then in NPT ensemble at 0 bar for 5
ns.

From this initial state at 180 K and 0 bar, we generated a series of states ran-
ging from 170 to 140 K by cooling down our system by steps of 10 K, doing short
equilibration of 5 ns each time. That is we first goes down to 170 K, equilibrate for
5 ns, then switch to 160 K, equilibrate for 5 ns... and repeat until reaching 140 K.
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Figure 6.2.1 – Radial distribution functions g of the low and high-density reference
states (P = 0 or 5 kbar respectively) at different temperatures, with the switching
function F = 2σ used to define PIV, multiplied by 2 to ease the visualization.

Then for each temperature, we performed a compression cycle. We increased the
pressure by step of 0.5 kbar, each time equilibrating for 5 ns, until reaching 5 kbar.
Here we are not performing a perfect structural equilibration at each pressure, but is
is enough to initialize the metadynamic simulations that we will use to explore the
configuration space available. Also this compression cycle furnish us with correct low
and high-density liquid at 0 and 5 kbar respectively.

6.2.3 Order parameter definition

As already said one of the aim of this thesis was to assess the quality and use-
fulness of PIV with various system. Thus it should be no surprise that we will use it
to define an order parameter able to distinguish low and high-density liquid configu-
rations.

Here we coupled the PIV distance with the path collective variable, see (4.2.3)
and (4.2.4) for their respective definition. Here to define the PIV we only used direct
pair of atoms, with Oxygen-Oxygen and Hydrogen-Hydrogen distances, which lead
to two PIV block

V 1
ij = w1σ

((
V

V0

)1/3

rOO
ij

)
(6.2.1)

V 2
ij = w2σ

((
V

V0

)1/3

rHH
ij

)
(6.2.2)

where rααij is the distance between atom i and j of type α ∈ O,H. The reference
volume is V0 = 0.024 nm3. The PIV blocks were weighted with w1 = 1 and w2 = 0.2.
The switching function used is a rational one with the following formula

σ(r) =
1− (r/r0)

4

1− (r/r0)10
(6.2.3)
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with r0 = 0.5 nm. This specific choice of switching function was made to have maxi-
mum variation between the first and second coordination shell, including their g(r)
peaks as shown in figure 6.2.1.

Figure 6.2.2 – Average density as a function of the S path coordinate for every
umbrella sampling window for various P, T conditions. An almost linear correlation
can be observed. The bars indicate the standard deviation of the density.

To define the path collective variables, we used the previously equilibrated struc-
ture at 0 and 5 kbar for each temperature as our two references. That is if we perform
a simulation at 170 K, we will use the liquid equilibrated at 170 K and 0 or 5 kbar.
Noting H and L these high and low-density structure and using the PIV distance as
our metric, we can define S and Z simply

S(X) =
1× e−λDLX + 2× e−λDHX

e−λDLX + e−λDHX
(6.2.4)

Z(X) = −1

λ
log
(
e−λDLX + e−λDHX

)
(6.2.5)

where DLX is the PIV distance between low-density structure and a configuration X,
and DHX is the same for high-density structure. Note that we are speaking about
structure and not liquid, as at 140 K we are entering in the amorphous domain. We
chose λ = 0.3, following the common rule of thumbs that λ times DLH should be
equal to 2.3.

We want to stress again that this way of defining an order parameter S using
PIV is very general, as it can be applied to transitions between ordered or disordered
structures in different materials [8]. Also as you may see it requires In the specific
case of the liquid-liquid transition S is highly correlated with the density of the
system, as shown in figure 6.2.2, which is known to be a good order parameter for
this transition [123, 124, 23].

6.2.4 Free energy calculations

With our order parameter defined, we were ready to start computation of free
energy profile at selected P, T conditions. For each point we performed enhanced-
sampling simulations aimed at reconstructing the free-energy landscape for the su-
percooled liquid, using the open-source, community-developed PLUMED library ver-
sion 2.6 [79]. The procedure was in two steps : first, we exploited metadynamics to
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Figure 6.2.3 – Bias surface reconstructed from metadynamics at 170 K and 1, 2
and 3 kbar as a function of the PIV-based path coordinates S and Z. The color scale
is in kT units. No significant feature can be observed along the Z direction.

obtain transition pathways as well as a preliminary estimate of the free energy land-
scapes [39]. Then, we reconstructed statistically converged free energy profiles with
more expensive umbrella sampling simulations [14].

For metadynamic, we have done simulations of 25 ns to 50 ns, placing gaussian
hills of width σS = 0.015, σZ = 0.15 and height of 0.239 kcal/mol every ns. During
this simulations the system easily pass from one liquid state to another several times.
As shown in figure 6.2.3 for three set of pressure at 170 K, the estimated free energy
profile have no specific features along the Z coordinates. A property that is the same
in every (P, T) conditions analyzed in this work.

Figure 6.2.4 – Comparison of two techniques used to compute free energy profiles
from umbrella sampling simulations : in red the Multistate Bennett Acceptance Ratio
(MBAR) or binless Weighted Histogram Analysis Method (binless-WHAM) from
Ref. [92, 134], and in black the WHAM from Ref. [91, 135]. The first quarter of each
trajectory was discarded as equilibration.
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Using the result of metadynamics, we could resort to more efficient and control-
lable umbrella sampling simulations. We only sampled the S coordinates as no impor-
tant information of G(S,Z) were along Z. Starting from configurations explored with
metadynamics, we used 48 windows spaced by ∆S = 0.02, ranging from S = 1.02
to S = 1.98. The harmonic bias potential defined in equation 5.1.1 had a spring
constant κ = 2826.5 kcal/mol. The length of the simulations are dependent of the
P, T conditions and will be precised in section (6.3.3).

Finally, the data accumulated in the different windows were combined together to
compute the free energy profile by means of the binless weighted histogram analysis
method (called also multistate Bennett acceptance ratio) [92], using open source
code from Joshua Goings (https ://github.com/jjgoings/wham). For comparison, we
also reconstructed free-energy profiles using Alan Grossfield’s implentation [135] of
the traditional method in Ref. [91]. Anticipating a bit, figure 6.2.4 shows that there
are at most 1 kBT of difference between the two methods. Convergence and error
estimation will be discussed deeply in section (6.3.3).

6.3 Exploration of the (P, T) diagram

With the initial states previously equilibrated and the free energy calculation
methods described previously, we can now freely start to sample the free energy at
various pressure and temperature conditions, to see what the phase diagram look like
and if there is or not a first order transition.

6.3.1 First exploration using Berendsen barostat

To do that we followed an iterative process, where we computed free energy
landscape G of one point in (P, T) space, and then from the knowledge acquired we
moved onto another to explore the no man’s land in a significant but not too costly
way, using short duration of 15 ns for umbrella sampling.

The first point computed was at 180 K and 2 kbar, where we found that G has
one minima not localized around a clear low or high density liquid, with a broad
range of value within few kBT . As we wanted to assess the effect of temperature on
the stability of the two state, so we kept the same pressure and computed point from
170 K down to 140 K by step of 10 Kelvin. Figure 6.3.1.a shows that for 170 K at 2
kbar, G was mostly flat with a minima localized around the low density liquid state.
For all the other G was clearly leaned in favor of the low density liquid.

As a general guide to interpret the S-space, low-density water features S ≲ 1.5,
and the opposite for high-density water. Next, we wanted to see see how G evolved
with the pressure, we fixed the temperature at 170 K and then computed point from
1 up to 5 kbar by step of 1 kbar (obviously skipping the already compute 2 kbar
point). Figure 6.3.1.b shows that for low pressure low density liquid is more stable,
and that for pressure higher than 2 kbar its the high density liquid.

After this first exploration, we took several P, T with intermediate conditions
compared to those that favor low or high density states. Figure 6.3.1.c shows that it
give us a line of relatively flat free energy profile, where both low and high density
state are mostly equiprobable.

Even if all these calculation give us valuable knowledge, they were all performed
with the Berendsen barostat, which does not yield a correct NPT ensemble and may

70



Figure 6.3.1 – Free-energy profiles for the low-density/high-density water transfor-
mation with incorrect use of the ensemble inconsistent Berendsen barostat. S ≈ 1.1
correspond to low density and S ≈ 1.9 to high density. (a) Temperature ranging from
140 to 180 K along a 2 kbar isobar. (b) Pressure ranging from 1 to 5 kbar along a
170 K isotherm. (c) Conditions intermediate between those favoring low density and
high density ; note the relatively flat free-energy profiles (see the zoomed inset).

lead to unphysical fluctuation of volume or density in a non-trivial way, see section
(3.1.4). To test this, we computed G for 182 K and 1.7 kbar for both barostat. As
we found less than 1 kT of difference between the two, we thought that despite its
flaws the Berendsen barostat worked in a correct way for this specific problem. But
a reviewer pointed out to us that even if ensemble inconsistent sampling may give
correct results for some specific conditions of pressure and temperature, they still may
fail in unpredictable ways for others, mentioning the controversy around the presence
of a free energy barrier in the ST2 model.

6.3.2 Proper exploration with ensemble consistent barostat

This is why we switched to the Parinnello-Rahman barostat, which yield a correct
NPT ensemble [62]. First we recomputed points along the 2 kbar isobar or the 170 K
isotherm, to see how the phase stability evolved under the change of barostat. This
time we avoided the high density (> 3 kbar) and the low temperature (< 160 K), as
we knew from previous calculation that these points displayed no specific features.

Figure 6.3.2.a shows that the change of barostat does not incur a profound change
of the physical property of the supercooled liquid, as we have still monotonous free
energy profile. For both barostat, by following the 170 K isotherm, or the 2 kbar
isobar, the free-energy profiles always exhibit a single minimum along the transfor-
mation path. This free energy minimum move from low to high S values along the
isotherms when we increase the pressure, which correspond to a continuous switch of
stability between the low and high-density liquid.

In fact, it seems that the main effect of the correct ensemble sampling is to
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Figure 6.3.2 – Free-energy profiles for the low-density/high-density liquid transfor-
mation with . S ≈ 1.1 correspond to low density and S ≈ 1.9 to high density. (a)
Pressures and temperature around 170 K and 2 kbar. (b) Conditions intermediate
between those favoring low density and high density ; note the relatively flat free-
energy profiles (see the zoomed inset).

augment the stability region of the high density liquid, by reducing the required
pressure to make it stable, as can be seen by the flattening of the free energy profile
at 160, 170 K and 180 K at 2 kbar. As for the Berendsen barostat, a natural question
arises : what is the precise shape of the free-energy landscape at conditions where
low and high-density water forms are equiprobable ?

Remarkably, for these (P, T) conditions that are intermediate with respect to
those favoring low or high density, we still observe relatively flat free energy profiles
(within a few kBT units), without any sizable barrier separating low and high-density
liquid, as shown in figure 6.3.2.b. Such flat profiles indicate that the system populates
a relatively broad range of different densities and coordination numbers, as can indeed
be observed in figure 6.3.6.b, and 6.3.7a.
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6.3.3 Convergence assessment and error estimation

Contrary to the first exploration with Berendsen barostat which used short du-
ration of 15 ns for the umbrella sampling, this time we used much longer sampling
duration. Precisely, the length of the simulation is dependent of the P, T conditions :
for 160, 180 K at 2 kbar and 182 K at 1.7 kbar the simulations were 25 ns long. For
170 K at 1 and 3 kbar, the simulations were 50 ns long. For 170 K at 2 kbar the
simulation was 60 ns long. For all other simulations, they were 100 ns long.

Figure 6.3.3 – Normalized self-correlation function Ci(S(t)) of the PIV-based path
coordinate S in umbrella sampling simulations. Each line corresponds to an umbrella
sampling window, with S < 1.4 in blue, 1.4 < S < 1.6 in green, and S > 1.6 in red.
The first fourth of each trajectory is not employed to compute the correlation, and
the total length of each trajectory is four times the duration plotted.

As a first indication of the convergence of umbrella sampling, we have computed
the auto-correlation function of the S-path coordinate in each umbrella sampling
windows :

Ci(s(t)) =
⟨δsi(0)δsi(t)⟩

⟨δs2i ⟩
with δs(t) = s(t)− ⟨s⟩ (6.3.1)

discarding the first quarter of each trajectory as equilibration. Figure 6.3.3 reports
these auto-correlation functions, and we also report for comparison the correspon-
ding functions for the density ρ and the sixth-order Steinhardt parameter ⟨Q6⟩ in
figure 6.3.4 and 6.3.5, respectively. The important thing here is that they are all
significantly shorter than the duration of their related umbrella sampling windows.

As a second indication, we estimated statistical uncertainties on free-energy pro-
files using block averages, taking the largest value of the standard error of the mean.
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Figure 6.3.4 – Normalized self-correlation function Ci(ρ(t)) of the density in um-
brella sampling simulations. Each line corresponds to an umbrella sampling window,
with S < 1.4 in blue, 1.4 < S < 1.6 in green, and S > 1.6 in red. The first fourth of
each trajectory is not employed to compute the correlation, and the total length of
each trajectory is four times the duration plotted.

Discarding the first half, we cut our trajectory into 2 to 10 blocks and computed
the free-energy for each block. We used this to estimate the standard error for each
block sub-division, and took the largest error among the different numbers of blocks.
Those are represented as error bar on figure 6.3.2, with a typical size inferior to 1kBT .
Concretely, their small size show that the free energy profile does not change much
over the last half of the sampling time, which further assess the umbrella sampling
convergence. Note that this is typically not true if you take first half of the trajectory,
as free energy estimation can vary drastically during the relaxation of the S variable.

6.3.4 Schematic no man’s land phase diagram

Figure 6.3.6.a summarizes these results in a schematic phase diagram that we
reconstruct in no man’s land, based on the structural and dynamical features of the
low-free-energy part of configuration space, within 2 kBT units from the minimum.

Average water densities and relative fluctuations at each P, T point are reported
in figure 6.3.6.b and in figure 6.3.7a.

To distinguish liquid and amorphous phases, we followed a previous study on
TIP4P/2005 water [136], based on self-diffusion coefficient D values and their de-
creasing trend. When entering the amorphous domain near 140 K, a one order of ma-
gnitude drop is expected for the diffusion, with D ∼ 10−14 cm2/s [53]. Figure 6.3.7b
shows the self-diffusion coefficient of each umbrella sampling windows, which decrease
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Figure 6.3.5 – Normalized self-correlation function Ci(⟨Q6(t)⟩) of sixth-order Stein-
hardt parameter computed for a shell radius of 0.35 nm and averaged over all water
molecules in umbrella sampling simulations [82]. Each line corresponds to an umbrella
sampling window, with S < 1.4 in blue, 1.4 < S < 1.6 in green, and S > 1.6 in red.
The first fourth of each trajectory is not employed to compute the correlation, and
the total length of each trajectory is four times the duration plotted.

with the temperature and drop of one magnitude over 20 K, while still being way
above the low value of amorphous phases. Note that in the case of liquid transforming
into amorphous, the magnitude drop will occurs on the same temperature. The two
decreasing cause (thermal cooling or phase transformation) should not be confused.
Also note that precise estimate of the relative phase stability and where the transition
occurs would require computation of free energy profile.

6.4 Kinetic properties of the explored (P, T) conditions

At this point, the natural question becomes : do the large density fluctuations in
the white band of Fig. 6.3.6 correspond to coexistence of two distinct water forms, low-
density and high-density, and hence two metastable states ? To address this relevant
issue we generated tens of long free and unbiased molecular dynamics trajectories.
Starting from selected umbrella sampling configurations of type low-density and high-
density liquid, to observe the spontaneous relaxation of the system and the coherence
with respect to umbrella sampling free-energy landscapes. We generated the following
trajectories, with a cumulative duration of more than 145 microseconds : 15×5,000
ns at 160 K, 2.5 kbar ; 7×4,000 ns at 160 K, 2.25 kbar ; 10×500 ns at 170 K, 1 kbar ;
10×2,000 ns at 170 K, 2 kbar ; 10×500 ns at 170 K, 3 kbar ; 10×1,500 ns at 180 K,
2 kbar.
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Figure 6.3.6 – (a) Schematic phase diagram of TIP4P/2005 water in the P, T region
considered in this work. The solid gray lines indicates the stable phases [74]. Dots
represent the conditions of MD simulations. Blue and red dots correspond to LDL
and HDL, respectively. Dots half-red and half-blue indicate a nearly flat free-energy
profile spanning low- to high-density water. The same color scheme is adopted to
indicate areas where each of the two forms is expected to prevail. In the white areas
the system is neither clearly LDL nor HDL. Low- and high-density amorphous forms
are indicated in light- and dark-green colors, respectively. (b) Density as a function
of temperature for the same phase diagram. The average density and its standard
deviation (height of the ellipsoids) are computed by re-weighting the density values
in umbrella sampling simulations with the equilibrium population e−G(S)/kBT , as a
functon of the S path coordinate.

Figure 6.4.1 shows unbiased trajectories at 170 K initiated from the end-point of
low or high-density umbrella sampling simulations. Comparison with Figure 6.3.2.a
demonstrates that MD trajectories behave as expected from the computed free-energy
profiles, relaxing from high- towards low free-energy regions according to the slope
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(a)

(b)

Figure 6.3.7 – (a) Average oxygen-oxygen coordination number COO (see sec-
tion 6.5.1) as a function of the average density ρ for the various (P, T ) condition
explored in this study, computed from the weighted contribution of every umbrella
sampling window with the Boltzmann factor e−G(S)/kBT to obtain equilibrium distribu-
tion. The respective fluctuations are shown as horizontal and vertical bars (standard
deviation of the distributions). The horizontal dashed line indicate the criterion used
to separate low and high density liquid, according to coordination number [81]. The
two vertical dashed lines indicate the extreme values of the density at S = 1.5 as
shown in SI Fig. 2, as a criterion to separate LDL and HDL regions. (b) Diffusion
coefficients of oxygen atoms for several P, T conditions, computed from the mean
square displacement with gromacs on the biased umbrella sampling trajectories for
each windows. The first half of the trajectory is discarded as equilibration. The error
bar represent the standard deviation.

of the profile (i.e., the mean force), until showing stationary free diffusion in the
region of the minimum. The latter is well-localized at low density at 1 kbar, it has a
broad shape at 2 kbar, and is well-localized at high density at 3 kbar, as discussed
above. As a further quantitative benchmark, the density distributions reconstructed
from unbiased trajectories are in good agreement with those reconstructed from the
equilibrium free energy profiles obtained by umbrella sampling (see Fig. 6.4.2).

Hence, unbiased MD is consistent with enhanced sampling simulations and it
represents an independent robust validation of the reconstructed free-energy land-
scapes. Once again, we never observe local kinetic trapping of the system in two
distinct states : at all P, T conditions and irrespective of the starting density the sys-
tem steadily relaxes towards a single precise region in configuration space, without
evident bottlenecks.

Note however that for low temperature (< 165K) our statistics became relatively
limited, and that it would be desirable to lengthen the unbiased trajectories. More
specifically, in Fig. 6.4.1.e and f, diffusion within the 2kBT free-energy minimal area
are really sluggish, so that we don’t observe large oscillation of the trajectories in the
limited duration of our simulation (contrary to what could be observed in Fig. 6.4.1.c
and d). Furthermore, its important to start from well equilibrated low or high-density
state, as one could argue that only a truly well equilibrated states is metastable. This
come back to assess the convergence of our umbrella samplings, as we take their
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Figure 6.4.1 – Independent unbiased MD trajectories initiated from LDL (blue) or
HDL (red) umbrella sampling end-point configurations, at 170 K and three different
pressures (note the different horizontal scales). The intervals delimited by black lines
correspond to free-energy values within 2 kBT from the minimum as reconstructed
from umbrella sampling (figure 6.3.2.a), where all unbiased trajectories converge,
regardless of their initial configurations. (a, b) for well defined minimum, configuration
relaxes within ≈ 100 ns. (c, d, e, f) for flat free energy profile with broad minimum,
relaxaiton depend on the temperature. For 180 K at 2 kbar, relaxaion occurs within
100 ns. For 170 K at 2 kbar, it occurs within 2µs. For 160 K at 2.25 or 2.5 kbar, it
occurs on the µs scale.

end-states for the initial configurations of our unbiased trajectories. Even if we are
confident in it as discussed in section (6.3.3), it would not hurt to lengthen them for
T < 165K.

6.5 Structural properties

6.5.1 Coordination number

We computed the oxygen-oxygen coordination number COO as the number of
neighbors within a cutoff of 0.34 nm, using PLUMED with the following switching
function : c(r) = (1−(r/0.34)32)/(1−(r/0.34)64). Next, we time-averaged the coordi-
nation number for each atom over time intervals of 20 ps along the umbrella sampling
trajectory and computed the probability distribution. We tested several time interval
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Figure 6.4.2 – Distribution of density ρ for various (P, T ) condition explored in this
study. (a) Computed as described for the COO distribution from umbrella sampling in
section (6.5.1), except that we do not perform any time average here. (b) Estimated
from unbiased simulations presented in figure 6.4.1. The first half of the trajectories
is discarded as equilibration. The distributions are consistent with those computed
in (a).

Figure 6.5.1 – Coordination number probability at 170 K and 2 kbar from umbrella
sampling simulations averaging COO of each oxygen atom over four different time
intervals.

as reported in figure 6.5.1, which shows that even if the moment of the distribution
are not affected by this averaging, it shape is, with disappearance of the slightly bimo-
dal nature of the distribution. In this way we built one histogram for each umbrella
sampling window, which was smoothed to reduce irrelevant noise, averaging over
the adjacent bins. To obtain equilibrium populations, we summed the re-weighted
contribution of each umbrella sampling window according to the Boltzmann factor
Z−1e−G(S)/kBT .

Figure 6.5.2 presents the resulting distribution of COO for all the P, T conditions
explored in this study. For those that have a well localized free energy minimum,
see Fig. 6.3.2.a, distributions have one well defined peak when low-density liquid is
favored, and a broad almost flat distribution when high density is favored. Whereas
those that present relatively flat free energy profile, see Fig. 6.3.2.b, distributions are
broad and slightly bimodal, presenting features of both low and high-density liquid.
Its important to note that one of the initial argument to claim the existence of a
first-order liquid-liquid transition were based on such bimodality [81]. Here we see
that slight bimodality does not necessarily imply the existence of an underlying free
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Figure 6.5.2 – Distributions of oxygen-oxygen coordination numbers COO (a) Pres-
sures and temperature around 170 K and 2 kbar. (b) Conditions intermediate between
those favoring low density and high density.

energy barrier.

6.5.2 Cluster analysis

In Figure 6.5.3 and 6.5.4 we traced the number of bulk molecules in a spherical
drop of LDL or HDL water by counting, in the reference structures at 170 K and 0
or 5 kbar, how many molecules belonging to a sphere (mathematically defined within
a bulk periodic configuration) are in contact only with molecules of the sphere itself
and not with external molecules. Contact is defined using the same switching function
c(r) discussed above. On the opposite side, as a reference limit for the case of random
mixing between LDL and HDL molecules we generated random bond networks with
the same distribution of coordination numbers as obtained from MD simulations,
starting from a random initial adjacency matrix and adding/removing random bonds
(105 Metropolis Monte Carlo steps) until a deviation∫

dCOO|PMD(COO)− PRN(COO)| = 0.058± 0.007 (6.5.1)

between the probability distributions of coordination numbers from MD and from
the random network.

As a final benchmark, we analyzed the structure of instantaneous atomic confi-
gurations, with particular attention to P, T conditions maximizing density fluctua-
tions, to understand whether low- and high-coordinated water molecules are randomly
mixed or they group together in order to minimize the LDL/HDL interface. Clearly,
the hypothesis of a coexistence of two distinct liquid forms requires the existence of
a well-defined geometrical interface characterized by unfavorable molecular interac-
tions, hence of minimal extension (spherical or planar). Under such hypothesis, as in
classical nucleation theory, the interface provides an unfavorable free-energy contri-
bution to the total budget of the system, creating a barrier that grows with system
size as N2/3 (as observed in ST2 water in Ref. [23]).

Visual inspection both of unbiased MD trajectories and of umbrella sampling
trajectories does not reveal a clear tendency towards separation of large and convex
LDL or HDL regions : the respective clusters of hydrogen-bonded molecules display
a complex, interpenetrating interface whose extension appears far from minimal (see
Fig. 6.5.5). A quantitative assessment is presented in Figure 6.5.3 and 6.5.4 : molecules
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Figure 6.5.3 – Number of LDL-like and HDL-like molecules (assigned on the basis of
COO < 4.5 or > 4.5, respectively) that are surrounded by molecules of the same type,
i.e. not at the interface LDL/HDL, extracted from umbrella sampling trajectories. For
comparison, continuous curves indicates the number of bulk molecules in a spherical
droplet containing only LDL or HDL, and the squares correspond to random networks
of molecules with the same bond distribution as LDL or HDL in MD configurations
(see section Materials and Methods for details). The 3D structure (balls and surfaces
enclosing them) illustrate a typical configuration at 170 K and 2 kbar.

are identified as LDL-like or HDL-like based on COO < 4.5 or > 4.5, respectively, and
for each type the number of bulk molecules (i.e., in contact only with alike molecules,
thus not at the interface) is plotted against the total number. In principle, the fraction
of bulk molecules is maximized when all molecules of one type form a single spherical
drop (or a flat periodic slab), and it is minimized when molecules are randomly mixed.
These two limits are also represented in Figure 6.5.3 and 6.5.4, allowing to appreciate
how MD configurations at putative coexistence conditions (i.e., with similar LDL and
HDL fraction) are in reality much closer to a randomly intermixed system than to one
exhibiting phase-separation. We find similar results at all P, T conditions explored,
both for umbrella sampling and unbiased trajectories, whenever both LDL and HDL
are present in significant amount. Previous studies addressed the number and size of
LDL/HDL clusters in TIP4P/2005 water, albeit at T ≥ 190 K and without discussing
the interface shape [139]. In summary, our structural analysis is once again consistent
with the absence of liquid-liquid phase separation.

6.6 Discussion

We performed enhanced sampling and unbiased MD simulations in a range of
P, T conditions between 155 and 182 K and between 1 and 3 kbar, and in all cases
we could not find any compelling evidence of liquid-liquid phase separation and of a
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Figure 6.5.4 – Number of LDL-like or HDL-like molecules (assigned on the basis
of COO < 4.5 or > 4.5, respectively) that are surrounded by molecules of the same
type, i.e. not at the interface LDL/HDL, within umbrella sampling trajectories. For
comparison, continuous curves indicates the number of bulk molecules in a spheri-
cal droplet containing only alike molecules, and the squares correspond to random
networks of LDL-like or HDL-like molecules with the same bond distribution as MD
configurations (see Materials and Methods for details).

corresponding free-energy barrier. We reach this conclusion employing three different
and complementary methods : 1) enhanced sampling simulations to reconstruct free-
energy landscapes for the low- to high-density transition, 2) long unbiased MD simu-
lations to probe the putative local stability of LDL and HDL phases and to confirm
free-energy landscapes, and 3) in-depth structural analysis of clusters formed by low-
and high-density water to assess the geometric properties of the LDL/HDL interface,
a crucial indicator of phase separation.

In particular, at P, T conditions close to the most recently predicted locations of
the liquid-liquid critical point (182 K, 1.7 kbar and 180 K, 2 kbar to compare with
Ref. [24], and 170 K, 2 kbar to compare with Ref. [26]), we found no free-energy
barrier and a single broad minimum (Fig. 6.3.2.c), characterized by significant fluc-
tuations in density and coordination number (Fig. 6.3.6.b, 6.3.2.d), without evidence
of phase separation between LDL and HDL. These qualitative features, however, are
not unique of a single point in P, T -space, since we could follow a line of points with
similar behavior – in particular without free-energy barrier – from 182 K down to at
least 155 K, close to the frontier with amorphous water.

In the recent study Ref. [26], MD simulations with the TIP4P/2005 and
TIP4P/ice potentials are performed at supposed supercritical conditions (above 177K
for TIP4P/2005) to infer the existence of critical behavior and of a critical point at
lower temperature (about 172K and 1.9 kbar), by temperature extrapolation with an
a-posteriori reweighting procedure and by comparison with an idealized model (3D
Ising). The scope of the latter work is quite different from ours, where we directly
probe (without extrapolation) the low-temperature behavior of water, down to 155 K,
by means of both unbiased MD and enhanced sampling, drawing factual observations
about our results without making hypotheses based on a model. Even if the conclu-
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Figure 6.5.5 – Example of 3D structures from unbiased MD at 160 K, 2.25 kbar.
LDL-like molecules (with COO < 4.5) are indicated as blue balls, HDL-like ones
(with COO > 4.5) as red balls ; surfaces are drawn with the "QuickSurf" tool of
vmd (isosurfaces extracted from a volumetric Gaussian density maps on a uniformly-
spaced 3-D lattice) [137, 138].

sions of the Authors of Ref. [26] (existence of a critical point and of a liquid-liquid
phase transition) are different from our own observations (lack of free-energy barrier),
still the physical quantities directly computed in both works display good agreement :
this is the case for instance if we compare the equilibrium distribution of densities at
178K, 1.7 kbar and 2 kbar in Fig. S1 of Ref. [26] with those at 182K, 1.7 kbar and at
180K, 2 kbar in Fig. 6.4.2 of our work. Instead, the bimodal distributions in Fig. 1B
and 2A in Ref. [26], at lower temperature down to 171 K, are extrapolated based on a
reweighting technique. The distributions are still compatible with our results : despite
a visually clear bimodal shape, the probability minimum between the two peaks is
not deep, so that conversion to free energy profiles as F (ρ) = −kBT log(P (ρ)) imply
barriers smaller than 1.2 kBT (what can be hardly defined as a barrier at all). This is
coherent with the approximately flat free energy profile and its error bars presented
in our Fig. 6.3.2 for 170 K at 2 kbar, within about 1 kBT . We also note that the
density fluctuations displayed in Fig. 1 of Ref. [26] are obtained with a box size of
only 300 molecules. Clearly, if the latter point in the phase diagram was close to
a critical point, a barrier of increasing height should be observed for decreasing T ,
however our simulations down to 155 K do not show any sizable barrier.

The situation is different for the ST2 model : in Ref. [23] a 4 kBT free-energy bar-
rier separating LDL from HDL could be measured at 229 K and 2.4 kbar for a system
size of 192 molecules, based on extensive and careful enhanced sampling simulations ;
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the barrier was confirmed by unbiased Monte Carlo simulations reversibly sampling
the LDL-HDL transition, and it was shown to scale like N2/3 for 198 ≤ N ≤ 600,
as expected for a first-order phase transition. We remark that we could not find any
barrier with the more accurate TIP4P/2005 force field despite a system size of 800
molecules, larger than the largest one considered in Ref. [23].

From the viewpoint of the physics of supercooled water, the most important
lesson delivered by freely relaxing trajectories is that there is no P, T point (within
the broad range we explored) where LDL and HDL are both kinetically trapped in
their respective forms for a measurable time (Fig. 6.4.1). We must conclude that it
is impossible to observe LDL and HDL as distinct and persistent forms at the same
thermodynamic conditions. In other words, coexistence of the two phases is impos-
sible, so that LDL and HDL are not two distinct phases in the thermodynamic sense.
We remark that while the existence of a mechanically stable LDL/HDL interface has
been demonstrated for the ST2 model up to large system sizes [131, 140], such a
demonstration is lacking for the more reliable and accurate TIP4P force fields family
[1].

On the contrary, we conclude that it is possible to change the form of water from
lower-density and lower-coordination values to higher ones in a continuous way, for
instance by increasing pressure from ≈1.5 to ≈3 kbar at any temperature between
155 K and 182 K (Fig. 6.3.2), without encountering a bottleneck in phase space,
i.e., a barrier. Of course the timescale necessary for the system to relax from an
initial out-of-equilibrium density slows down when lowering T , from ≈500 ns at 170
K and 1 − 3 kbar to ≈2 µs at 160 K and 2.25 − 2.5 kbar (see Fig. 6.4.1), however
such a slow evolution appears the result of continuous diffusion in density space with
a weak diffusion coefficient, rather than of Poisson-distributed rare jumps across a
barrier. This factual observation of the behavior of unbiased MD trajectories is fully
consistent with our enhanced sampling simulations, where no free-energy barrier could
be measured, and also with our analysis of the three-dimensional structure of low-
and high-density water clusters, that revealed no strong tendency to minimize the
interface area and a situation closer to random intermixing of LDL-like and HDL-like
molecules than to phase separation (Fig. 6.5.3 and 6.5.4).

6.7 Conclusions and outlook

Our results show that the metric based on permutation invariant vectors [7, 8]
resolves well the range of supercooled water structures and densities throughout the
vast P, T region explored. This result extends the analyses in Ref. [84], where the
same metric was demonstrated able to resolve and clusterize structures belonging to
liquid, amorphous and crystalline water. In combination with path coordinates, the
metric allowed here also to reconstruct free energy landscapes extending the approach
of Ref. [8], applied also to heterogeneous ice nucleation in Ref. [90], to transitions
between supercooled liquid forms. While several other order parameters have been
applied to specific investigations on water [111, 76, 40], due to its generality our com-
putational approach allowed a comprehensive and unitary study of water structure,
dynamics and thermodynamics encompassing liquid polymorphs, solid polyamorphs
and crystals.

We do not observe the kinetic trapping (hence metastability) of the LDL and
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HDL forms at the same thermodynamic conditions, hence coexistence of two phases.
This observation is not compatible – at least for the system size we considered –
with hypotheses evoked in the literature on the existence of an unfavorable interfa-
cial free energy preventing the formation of two liquid phases in finite-sized systems,
or on phase-separation dynamics much slower than simulation times of the order of
hundreds of nanoseconds [131, 57, 24]. All our results indicate the lack of a first-
order liquid-liquid phase transition and of the related critical point for the accurate
TIP4P/2005 water force field, thus leading to discard the multiple scenarios that in-
clude such features and that have been hypothesized in the last 40 years to explain
water anomalies [111, 1]. Notwithstanding the unquestionable importance of simpli-
fied theoretical models to help us understanding complex phenomena, this conclusion
underlines the difficulty in extrapolating observations from other regions of the phase
diagram deep into no man’s land.

However, future studies could take advantage of the growing computing power
to accumulate more extensive numerical data on supercooled water and improve the
overall statistics. Even if all our analyses (correlation functions, block averaging,
comparison with unbiased trajectories) indicate that the free energy landscapes we
report are converged, it would be interesting to extend the duration of umbrella
sampling windows to the microsecond time scale, especially in the deeply supercooled
region (T ≤ 160K), where relaxation of the system became really sluggish. Similarly,
longer unbiased trajectories would display more clearly the diffusion properties of the
order parameter in the latter thermodynamic region. We also remark that our study
addressed only one – albeit relatively large – system size (800 molecules), due to the
need to explore an extended P, T region in no man’s land, while in future studies it
would be interesting to extend similar simulations to larger sizes.

Finally, an important aspect that remains to be elucidated is the evolution of
the free-energy landscape upon cooling below 140 K, where the LDL/HDL transition
becomes the LDA/HDA transition between amorphous forms, with previous experi-
ments and simulations indicating first-order character and the existence of a barrier.
Rigorous free-energy calculations would be even more computationally demanding
than for supercooled liquid water, but today they are becoming accessible. It appears
that due to the rich and peculiar phenomenology of water physics and chemistry,
the inescapable primary sources of information remain today experiments and atom-
detailed computer simulations that directly probe the P, T conditions of interest.
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7 Study of the Homogeneous Ice Nucleation

7.1 Introduction

Among the many stable and metastable solid states in which water can be, the ice
I polymorphs (hexagonal, cubic and stacking disordered) are those of most interest
for us, as they are the one that occurs in atmospheric temperature and pressure
conditions on earth. So even if water can nucleate into several ice forms as shown in
figure 7.1.1, when one speaks about ice nucleation it generally means the nucleation
of ice I. Here we are mainly interested to the homogeneous ice nucleation problem,
that is with only pure water, free from any kind of impurities or interfaces which
could serve as nucleation site to speed up the process.

Figure 7.1.1 – Partial stable phase diagram of water, where we have represented in
orange the crystalline ice in which liquid water can nucleate.

The most widespread theory that exist to describe nucleation is the classical
nucleation theory (CNT), so even if we did not make a direct use of it, we will
present it briefly as it sheds light on the general processes occurring in nucleation.
Then we will present the ice I polymorphs and their crystalline properties, as this
knowledge is required to properly understand the homogeneous nucleation process in
water.

7.1.1 Classical nucleation theory

Classical nucleation theory, even if partially, is referred to in almost every com-
puter simulation. Here we are just going to sketch the broad lines, while a thorough
description of this theory has been made elsewhere for the willing reader [141, 142].

This theory was first created to describe the condensation of supersaturated
vapors into liquid, but its concepts can be applied to nucleation of crystals from
supercooled liquids. Following classical nucleation theory, clusters of crystalline par-
ticles (either atoms or molecules) of any size are treated as large homogeneous pieces
of crystalline phase, with a thin interface with the surrounding liquid. This hypo-
thesis is known as the capillarity approximation and it concretely means that we
are neglecting any effect due to the detailed atomic structure of the cluster, inclu-
ding crystal lattice structure, as well as the possible role of different polymorphs
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or structural defects, particularly in the interface region. Hence under this strong
assumption, the nucleation process can be fully described by the interplay between
interfacial free energy σ estimated in the approximation of an infinite planar inter-
face and the free energy difference between the liquid and crystalline phase per unit
volume ∆gv. When nucleation occurs in three dimension, the free energy cost ∆G to
form a spherical crystalline nucleus of radius r is therefore the sum of a surface and
a volume term

∆G = 4πr2σ︸ ︷︷ ︸
surface

− 4πr3

3
∆gv︸ ︷︷ ︸

volume

(7.1.1)

where the volume of the crystalline nucleus V is by definition equal to the number of
crystalline particles N divided by the solid density ρs, V = (4/3)πr3 = N/ρs. This
function has a maximum at the critical nucleus size Nc

Nc =
32πρs
3

(
σ

∆gv

)3

(7.1.2)

Nc is the number of particles that a crystalline cluster must include to overcome the
cost due to the formation of a solid-liquid interface. Before complete crystallization
of the system, small crystalline clusters will occur due to infrequent spontaneous
fluctuations. Eventually a sufficiently large cluster will form, overcoming the free
energy barrier for nucleation, that we can compute by inserting the expression of Nc

into the definition of ∆G

∆Gc =
16π

3

(
σ3

∆g2v

)
. (7.1.3)

One of the assumptions of this theory is that once a crystalline nucleus has reached
this critical size, it will extend itself to the whole system.

To describe the kinetics of nucleation, classical nucleation theory further assumes
that no correlation exists between successive growing or shrinking events of a nucleus.
Concretely, this means that the evolution of the nucleus is considered as a Marko-
vian process, where particles attach or detach themselves from the crystalline cluster
independently. This also suppose that the crystal does not undergo important struc-
tural change during the typical duration that a nucleus take to extend itself to the
whole system. Furthermore it requires that thermal history of the system plays no
significant role in the nucleation process, which solely depends on the temperature
and pressure [143, 144]. Under all of these assumptions, we can compute the homo-
geneous nucleation rate per unit volume, that is the probability by unit volume to
form a critical nucleus, with the following expression

J = ρlAZ exp

(
−∆Gc

kBT

)
(7.1.4)

where ρl is the liquid phase density, which effectively represent the number of possible
nucleation sites per unit volume. A is the attachment rate at which particles attach
to the growing nucleus and is related to the time τλ required for a molecule to diffuse
over a given length λ

A =
4N

2/3
c

τλ
(7.1.5)
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where we can compute τλ from the self-diffusion coefficient D as τλ = λ2/6D [33, 35].
Z is the Zeldovich factor, which is there to account for the fact that a post-critical
nucleus (with size N > Nc) might still shrink without growing into crystalline phase.
It is related to the curvature of the free energy barrier

Z =

√
|∆gv|

(6πkBTNc)
(7.1.6)

Classical nucleation theory allow us to link and calculate the two thermodynamic
and kinetic quantities of highest interest, namely the free energy barrier ∆Gc and the
nucleation rate J . For the evaluation of ∆Gc, one can use rigorous direct free energy
calculation like umbrella sampling or metadynamics, or use indirect approach like
seeding. In the latter case, results rely heavily on the correctness of equation 7.1.2
and 7.1.3. The idea is as follows : we evaluate critical nuclei size as described in section
(5.2.1), then we use thermodynamic integration to compute ∆gv. From there we can
compute the interfacial free energy σ with 7.1.2, as ρs is easily evaluated with short
simulation in NPT ensemble. Then all the pieces are put together to compute the free
energy barrier using equation 7.1.3. Once the free energy barrier is estimated, all the
other quantities required to compute the nucleation rate according to equation 7.1.4
can be easily evaluated with short simulations [33, 34, 36]. It is important to note
that all these quantities, Nc, ∆gv, ρl, ρs, A are dependent of the temperature.

We want to stress again that all the assumptions made for classical nucleation
theory break in a numerous number of systems [144]. As we will discuss the properties
of Ice I and how homogeneous nucleation occurs in nature for water in the next
sections, it will become clear that this theory is not the most well fitted to study
nucleation of water, as most of its assumptions fail for this specific material.

7.1.2 The ice I polymorphs

Ice I has two well defined states : stable hexagonal ice (Ih) and metastable cubic
ice (Ic). Until quite recently, observations of pure Ic has not been achieved and it was
not clear if it could be observed in nature [28, 27]. Prior to this two studies, what
was found in nature was a metastable stacking disordered phase, where hexagonal
and cubic ice stack on of each other randomly. As this phase was first believed to
be cubic ice until experiments proved that it was made of disordered stacks, it is
sometimes called “ice Ic” (with the quotes), but nowadays it is more commonly called
stacking disordered ice Isd [29, 30, 31]. Precise characterization of the disorder and its
formation mechanism are hard to achieve experimentally, thus numerical studies are
of prime importance to understand this phenomenon, and it is the aim of this work.

Both ice Ih and Ic are made up of identical layers of puckered six-membered rings
of oxygen atoms connected with hydrogen bonds. It is the way these layers stack that
distinguishes the two. As shown in figure 7.1.2, in ice Ih each successive layer is the
mirror image of the preceding one. In ice Ic each layer is identical to the precedent, but
shifted by one-half of the diameter of a hexagonal ring. The ice Isd is a superposition
of hexagonal and cubic layers. All cubic faces are equivalent, but only the basal face
of hexagonal ice can stack seamlessly with the cubic ice. These differences in stacking
results in different crystalline materials [31].
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Figure 7.1.2 – Representation of the
stacking of layers in ice I polymorphs.
Spheres represent oxygen atoms and they
are connected by hydrogen bonds. For
clarity hydrogen atoms are omitted. (a)
Crystal structures of hexagonal ice ; (b)
crystal structure of cubic ice ; (c) a layer
of ice ; (d) a possible arrangement of sta-
cking disordered ice : hexagonal layers
are colored in blue and cubic layers in
yellow. Adapted from [31].

Figure 7.1.3 – Possible macroscopic
crystal shapes for the ice I polymorphs
depending on which faces grow the fas-
test. (a-c) are hexagonal, (d-f) are cubic
and (g-i) are stacking disordered. Some
of the Miller indices have been indicated.
Adapted from [145].

7.1.3 A bit of crystallography

A crystalline material is characterized by its symmetries. On a microscopical
scale, these symmetries are encoded in a crystalline space group. Ice Ih space group
is P63/mmc, meaning that it has a primitive unit cell (P ), with a six-fold screw
axis (a rotation around an axis coupled with a translation along the axis, noted
63), two mirror planes (a simple reflection along a plane, noted m) and one glide
plane (a translation followed by a reflection along a plane, noted c). If we stripe off
the translation, that is by converting screw axis into rotational axis and glide plane
into mirror plane, we will obtain its point group 6/mmm, which characterize the
symmetry of a macroscopic crystal, and thus its shape. Ice Ic space group is Fd3̄m,
meaning that it has a face centered unit cell (F ), with a glide plane (d), a three-fold
rotoinversion axis (a rotation followed by a reflection along a plane perpendicular
to the axis, noted 3̄) and a mirror plane (m). Its point group is m3̄m. Ice Isd space
group is P3m1 and its point group is 3m1 [145]. This information is summarized in
table 7.1.1.

Ice Space group Point group Crystal system
Ih P63/mmc 6/mmm hexagonal
Ic Fd3̄m m3̄m cubic
Isd P3m1 3m1 trigonal

Table 7.1.1 – Crystallographic properties of the Ice I polymorphs
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In fact the pure states are named following their crystalline symmetry, as Ih lies
in the hexagonal symmetry group and Ic lies in the cubic symmetry group. Isd lies
in the trigonal symmetry group, but we prefer to name it to emphasize its stacking
disordered nature. The possible corresponding macroscopic structure of these sym-
metry group are presented in figure 7.1.3 [145]. The exact shape of the crystal is
dictated by its internal symmetry and by the rates of growth of each of its crystal
faces. To distinguish the various faces, we use Miller indices, that consists of three
number (hkl). Faces with high Miller indices are less energetically favorable and thus
crystals tend to prefer shape in which faces with lower Miller indices are exposed.
For Ih and Isd the faces with lowest Miller indices are the basal ones : {(001), (001̄)},
and the prismatic ones : {(100), (1̄00), (010), (01̄0), (001), (001̄)}. The cubic nature
of Ic renders all planes in the same class equivalent, meaning that all directions are
equivalent.

7.1.4 Numerical study of nucleation of ice I

In nature homogeneous ice nucleation mainly occurs at supercooled conditions,
and it is thought as a two step process : first water freezes into metastable stacking
disordered ice Isd and then the crystal will anneal at warmer temperature into the
stable hexagonal ice Ih state, through rearrangement of the crystal lattice [146, 31].
This annealing is quicker with warmer supercooled temperature [147, 148]. The ini-
tial relative proportion of Ic and Ih, i.e., the cubicity, in Isd is correlated with the
temperature, lower temperature meaning higher cubicity [149]. Thus to understand
homogeneous ice nucleation of water we need to understand the mechanisms that
render Isd easier to form than Ih, despite being metastable. As this involves time and
space resolutions far beyond those of experiments, numerical simulation seems better
prepared to tackle this task. In this regard it is important to recall that results of
numerical simulations are highly dependent of the choice of water model, as discussed
in (3.2). Hence it is important to distinguish studies made with mW and those made
with TIP4P/2005 or TIP4P/Ice, even though the models give coherent results.

In the last decades, due to the development of new enhanced sampling methods
and of the mW model, which is at least 100 times faster than TIP4P-like models from
a computational point of view, many works addressed homogeneous ice nucleation.

A first set of studies used brute force methods to estimate the free energy barrier
and nucleation rate with mW models [150, 151]. In parallel, a large amount of work as
been devoted to systematically study nucleation of water at different temperatures for
several models (mW, TIP4P/2005, TIP4P/Ice, etc.), using the seeding technique to
compute the free energy barrier, nucleation rate and the time to crystallize a complete
system [32, 33, 34, 35, 36]. Even if TIP4P/Ice and mW give similar results for some
thermodynamic quantities, they differ largely when looking at their kinetic properties.
The growth rate is three orders of magnitude larger for mW than for TIP4P/Ice, and
their nucleation rate differs by almost 10 orders of magnitudes, those of TIP4P/Ice
being much closer to the experimental results [152, 36]. In practice all the works cited
in this paragraph provide valuable knowledge for further studies, as they estimated
the critical nuclei size and nucleation rate for a wide range of temperatures, allowing
one to easily choose the right conditions of temperature and simulation box size to
simulate nucleation.

Following the latter series of works, a series of studies based on more rigorous
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enhanced sampling methods than seeding were published. Extensive forward flux
sampling simulations were used to compute the nucleation rate and to study the
prevalence of Isd at 230 K for TIP4P/Ice, showing that presence of cubic ice leads to
more compact crystallites. These are more likely to grow into bulk crystal system ,
compared to less compact and more hexagonal nuclei, and the critical cubicity was
estimated to be C = 0.59 ± 0.07. Even though, in principle, forward flux sampling
should give a more correct estimation of the rate than brute force or seeding methods,
as it doesn’t rely on classical nucleation theory and can be directly computed from
the sampled data using general mathematical properties of the stochastic process
subjacent to forward flux sampling, the computed nucleation rate was off by more
than 8 order of magnitude compared to experiments [153, 42]. Authors pointed out
that it may be due to underestimation of the chemical potential difference between
the liquid and hexagonal ice by TIP4P/Ice. Reproduction of this work with another
variant of forward flux sampling revised this rate with 4 order of magnitude [37]. In
fact despite their solid mathematical background, all forward flux sampling methods
accuracy are dependent on their specific implementation and variants [154].

Using extensive aimless shooting path sampling simulations, it was shown that
for small system size – up to 100,000 molecules – at 230 K stacking disordered ice is
more stable for the mW model, with purely hexagonal nuclei evolving toward disor-
dered ones during relaxation of the transition state ensemble. The critical cubicity
was estimated to be C = 0.63 ± 0.05, in agreement with forward flux sampling
results on TIP4P/Ice [151, 38]. More recently, metadynamics combined with inte-
grated tempering sampling was employed to estimate the free energy barrier and
the nucleation rate of TIP4P/Ice at 230 K [40]. To achieve this, they used a new
long-range collective variables SX based on the specific features of X-ray diffraction
pattern of ice and liquid to distinguish the two phases, coupled with pair entropy
SS [155]. The first one measure the ice formation, while the second one allow the
system to explore the ice polymorphs. The resulting estimate of the nucleation rate
was lower than the experimental one, albeit within its statistical error, and its global
trend with respect to temperature was also in good agreement with experimental
estimates. As for the previous studies on mW and TIP4P/Ice, the estimated critical
cubicity is coherent even if with slightly higher fluctuation C = 0.7 ± 0.1. However
the critical nuclei size Nc = 314± 20 is much lower than for the two previous studies
(Nc = 474±12 in Ref. [42], and Nc = 450±35 in Ref. [38]), with a free energy barrier
∆Gc = 52 ± 6 kBT . This discrepancy may be due to the different choices of order
parameter in the different works, as Ref. [38] showed that for the same configuration
different order parameters yield a wide range of nucleus sizes.

The present work aims to produce reliable, high-quality transition path ensemble
results, comparable to those in Ref. [38] based on the mW model, employing the more
accurate TIP4P/Ice model. This will allow us to estimate rigorously critical cubicity
and nucleus size, along with a quantitative analysis of the stacking disorder mecha-
nism. It will also set the ground for more advanced methods of kinetics reconstruction
based on Langevin or master equation models, the idea of these methods being to
estimate the free energy landscape and the diffusion coefficient from a set of short
shooting trajectories [43]. To this end, we used aimless shooting, both in the original
version and with a modified shooting range approach, coupled with the PIV distance
as order parameter to describe the nucleation reaction. As already discussed in the

91



chapter on the liquid-liquid transition, the PIV metric has been applied to a variety
of systems, showing its strength and versatility. Here we will further assess its quality
by comparing it with other order parameters using the rigorous maximum likelihood
optimization scheme.

7.2 Generation of initial reactive trajectories

As discussed in section (5.2), to perform transition path sampling of ice nuclea-
tion we need an initial set of reactive trajectories connecting the liquid and the solid,
and as said, several methods exist for this. We initially aimed to use metadynamics to
generate such trajectories, extending the approach of Ref. [8], but after facing tech-
nical difficulties we switched to the simple and efficient seeding technique, exploiting
the knowledge acquired with metadynamics simulations.

7.2.1 Freezing and melting with metadynamics

Guided by the results of the study made employing forward flux sampling in
Ref. [42], we adopted a simulation box of N = 4096 water molecules described by the
TIP4P/Ice inter-atomic potential. All the metadynamics simulations were performed
under NPT condition at 230 K and 1 bar.

Order parameter

As for the liquid-liquid transition in the previous chapter, we used permutation
invariant vectors (PIV) to define our order parameter able to distinguish liquid and
ice. Here we coupled the PIV distance with the path collective variable, see (4.2.3)
and (4.2.4) for their respective definitions. Here to define the PIV we only used
Oxygen-Oxygen and Hydrogen-Hydrogen distances, which leads to two PIV blocks

V 1
ij = w1σ

((
V

V0

)1/3

rOO
ij

)
(7.2.1)

V 2
ij = w2σ

((
V

V0

)1/3

rHH
ij

)
(7.2.2)

where rααij is the distance between atoms i and j of type α ∈ O,H. The PIV blocks
were weighted with w1 = 1 and w2 = 0.2. The switching function used is a rational
one with the following formula

σ(r) =
1− (r/r0)

4

1− (r/r0)12
(7.2.3)

with r0 = 0.7 nm, and is the same as in Ref. [8], where it was chosen to maximize
the PIV distance between Ih and liquid.

To define the path collective variables, we used a liquid box L and a crystalline
box of hexagonal ice Ih, both equilibrated at 230 K and 1 bar, so that S and Z are

S(X) =
1× e−λDLX + 2× e−λDIhX

e−λDLX + e−λDIhX
(7.2.4)

Z(X) = −1

λ
log
(
e−λDLX + e−λDIhX

)
(7.2.5)
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where DLX is the squared Euclidean PIV distance between liquid water and a confi-
guration X, and DIhX is the same for hexagonal ice. We chose λ = 0.05 following the
common rule of thumbs that λDLIh ≈ 2.3.

Simulation settings

For all our simulations (metadynamics, seeding and transition path shooting)
we employed the GROMACS 2018.3 simulation package [132]. We adopted a 2 fs
timestep, short-range interactions were truncated at 0.90 nm and the particle mesh
Ewald method was used to compute electrostatic interactions [69]. Bond constraints
were maintained using the LINCS algorithm with a fourth order expansion [133].

To control the temperature we used the stochastic velocity rescaling thermostat
with a relaxation time of 0.5 ps [65], while to control pressure we used an isotropic
Parinello-Rahman barostat with a relaxation time of 2 ps [67].

In metadynamics simulations we deposited Gaussian hills of width σS = 0.04,
σZ = 0.4 and height of 0.478 kcal/mol every ns in the space of path collective va-
riables.

Attempts to freeze the liquid

The first issue we stepped on, was that if the calculation speed of the PIV at each
timestep of the trajectory was acceptable for a small system of N = 800 molecules, it
was not so for the larger system under study of N = 4096 molecules, as performance
was divided by ∼ 30. This is due to the O(N2) complexity of computing PIV and its
derivatives in its plumed implementation. Even if base performance was multiplied
by 4 after enhancement of the code, still on a typical super computer node it was
hard to get more than 4 ns of simulation by day. It is important to remark than with
the Q6 collective variable the performance is almost one order of magnitude slower.

As a consequence, the poor computer performances limited the range of our
simulations and the amount of trial-and-error cycles we could make. After simulations
of more than 150 ns, no crystallization was in sight, despite a significant bias added
to the liquid part of the free energy landscape. Probably this is due, at least in part,
to the specific definition of the path collective variable S. Put it simply, our way of
defining S based only on two reference states, the bulk liquid and the bulk crystal,
roughly measures the proportion of crystalline structure in the system. Even if this
was perfectly fine for the 800-molecules system of Ref. [8], as a small amount of
crystalline structure translated in a significant proportion of the whole system, in a
much larger system the collective variable cannot clearly resolve the early nucleation
stage.

In fact, the PIV has difficulties in distinguishing a purely liquid state from a state
with less than ∼ 50 crystalline molecules arranged in a cluster for a box of N = 4096
molecules, as can be seen in figure 7.2.1. Unfortunately, this is specifically what
would be required for the external bias to enhance the apparition of small clusters
and for them to grow into larger one. It is possible that a definition of collective
variables including intermediate ice cluster sizes, between the reference liquid and
the reference bulk crystal, or replacing the bulk crystal with a supercritical nucleus
as second reference structure, might allow to tackle the nucleation in large simulation
boxes. This topic will be the subject of future investigations in our research group.
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Figure 7.2.1 – Correlation between DIh and NCHI , see sections (7.3.1) and (4.2.1) for
their definition, from trajectories generated with hexagonal seed (see section (7.2.2)),
colored according to log(P (NCHI , DIh)). For NCHI < 50 we lose the linear correlation
between the two variables.

Melting a crystalline state

(a) (b)

Figure 7.2.2 – a) Time evolution of the PIV-based path collective variable S as
defined in equation 7.2.4 during metadynamics simulation of melting. At S ∼ 1.9
the system is a bulk crystal and at S ∼ 1.1 a bulk liquid. b) Associated bias profile,
an overestimation of the free energy profile, as a function of S for a fixed value of
Z = −2.1, as in this case the Z coordinate did not resolve any specific features.

However, the current two-state definition of PIV-based path collective variables
can properly describes the melting, as we were able to perform the transition in the
reverse direction, starting from a bulk crystalline Ih state and ending in a liquid one.
In this case, only 50 ns are required to melt our system, with the bias profile yielding a
very rough (over)estimate of the free energy profile (since we did not observe reversible
transitions). Figure 7.2.2 shows the generated reactive trajectory with the associated
bias profile.

To summarize, it is effectively possible to generate some reactive trajectories
by using metadynamics and PIV-based coordinates, albeit with a large wall-clock
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time due to the burden of computing the PIV at each simulation timestep. As a
consequence, few reactive trajectories can be generated in a limited time span. As
it is always the case with enhanced sampling techniques based on bias potentials or
forces, the transition states explored in this way need to be validated and possibly
improved by means of committor analysis and path sampling techniques. As an effec-
tive alternative to metadynamics, in the following we generated reactive trajectories
adopting the seeding technique, simple to implement and of small computational cost,
since it lacks the need to compute the PIV at each timestep.

7.2.2 Exploration of the transition state with seeding

Choice of the optimal temperature

Following the path of our previous study with metadynamics, we first performed
a seeding analysis at 230 K. On one hand, this temperature gives a critical nucleus
size of ∼ 400 − 500 as discussed in (7.1.4), which is small enough to prevent any
perturbation due to the periodic boundary conditions in our box of 4096 molecules ;
on the other hand, the resulting dynamics is very slow. The transition path time,
i.e., the typical time required in a reactive trajectory to connect liquid from ice, or
the reverse, at this temperature is larger than 200 ns. As we will need to generate
thousands of these trajectories to sample the transition path ensemble, it is of major
importance to reduce the latter duration. This is why, based on previous seeding
study that estimated the critical nuclei size for several temperature [36], we switched
to 237 K. At this temperature the typical transition path time is of ∼ 100 ns, while
the critical nuclei of ∼ 600 are still small enough to prevent periodic boundary effects
due to the small size of our simulation box.

Figure 7.2.3 – Evolution of the largest nucleus size NCHI , defined in section (4.2.1),
for several shootings made from (a) a hexagonal and (b) a cubic nucleus seed at 237
K and 1 bar. Note the difference in vertical scale between the two. The light green
area indicate roughly the transition region in which the system appears to diffuse
rather freely on an almost flat free-energy landscape.
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Seeding procedure

The main difficulty of seeding resides in the generation of the initial configura-
tions. Cutting out a cluster of crystalline molecules from a bulk crystal and surroun-
ding it with liquid molecules cut out from a bulk liquid is an easy task, but subsequent
equilibration of the liquid-crystalline interface without spoiling the cluster seed can
be non-trivial. Here we used the following procedure :

— extract a spherical nucleus of hexagonal or cubic ice from perfect crystalline
ice boxes relaxed with the TIP4P/Ice potential at 237 K and 1 bar ;

— solvate the nucleus in a cubic box of liquid water (using gromacs tools) to get
a total of 4096 molecules ;

— equilibrate the interface for 5 ns by restraining the positions of icy molecules
only, using a strong harmonic bias with a spring constant of 400’000 kJ/mol
to maintain RMSD distance close to zero with respect to the initial nucleus
structure ;

— equilibrate the final seed state for 2 ns without any restraints.
This last relaxation step let the nucleus adjust to the surrounding liquid, and it leads
to slight changes in the exterior shell of the nucleus. For instance for Ic , during this
equilibration a small Ih “shell” spontaneously forms around a part of the initial seed.

From each hexagonal or cubic seed configuration we shot a series of 40 unbiased
trajectories, their initial momenta being drawn from the Boltzmann distribution at
237 K. By counting the ratio of shootings that end in a liquid state and of those that
end in crystalline state, we can estimate approximately the committor value ϕ of the
seed configuration. In our case we consider to have a transition state if ϕ = 0.5± 0.2,
that is if we have a similar probability to evolve towards the liquid or crystalline
state.

Spontaneous exploration of the transition region

By repeating the above procedure for several initial nuclei size, ranging from
400 to 900, we found the critical sizes Nc ≈ 590 starting from Ih nucleus and that
Nc ≈ 670 starting from Ic nucleus. Besides allowing to estimate the critical size,
this kind of trajectories provide important insight into the nucleation process and
its detailed mechanism. Figure 7.2.3 shows that, remarkably, regardless of the initial
nucleus structure being Ih or Ic , a part of the trajectories explore for a long duration
the transition region, extending to the whole shooting duration of 120 ns in some
cases. During this exploration, the nucleus spontaneously changes its structure, often
evolving toward a slightly stacking disordered structure. Furthermore, during the
growth of the nucleus, regardless of the initial structure, layers of cubic and hexagonal
ice will spontaneously stack in a random way.

Figure 7.2.4 shows the end state of some shootings for which the largest nucleus
size does not evolve much during the relaxation, but instead undergoes important
structural change. Seeding from hexagonal ice results in the addition of layers of
cubic ice, and reversely seeding from cubic ice results in added layers of hexagonal
ice, in a disordered way. These observations provided the key to strongly enhance the
efficiency of the transition path sampling protocol, as discussed in section (7.4).
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(a) (b)

Figure 7.2.4 – Selected final nuclei after 120 ns of relaxation from (a) hexagonal
or (b) cubic nucleus seeds, in the case where the final and initial nucleus sizes are
similar ±100 molecules. Here we only represent the oxygen atoms in the largest
cluster, omitting the liquid part and hydrogen for clarity. Using Chill+ to distinguish
the type of the atoms (see section (4.1.3)), we use the following color code : blue
represent hexagonal ice, yellow cubic ice and purple interfacial ice.

7.3 Order parameter quality

Figure 7.3.1 – Evolution of several collective variables for shootings made from a
hexagonal nucleus seed. The color code indicate the corresponding largest nuclei size,
dark blue being NCHI = 0 and red NCHI = 1800. a) DIh, b) DL, c) Dc, d) Dsup, e)
Sc, f) S.
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7.3.1 Choice of the order parameter

The information contained in seeding trajectories allowed us to compare different
possible definitions of PIV-based collective variables to choose the most promising one
for further work. The first thing we observed was that considering only the oxygen
atoms, i.e., neglecting the information about hydrogen positions, only changed the
PIV distance by a constant factor and substracted no important information,so all
of the subsequent analysis are made with PIV that consist of one Oxygen-Oxygen
block

VX = sort

{
σ

(
3

√
V

V0

rOO
ij

)}
(7.3.1)

with the same switching function as defined in equation 7.2.3. Based on this definition
of the PIV, we considered several possible collective variables :

DL = |VX −VL|2

DIh = |VX −VIh |2

Dc = |VX −Vc|2 Dsub = |VX −Vsub|2 Dsup = |VX −Vsup|2

S = (e−λDIh + 2e−λDL)/(e−λDIh + e−λDL)

Sc = (e−λDsub + 2e−λDc + 3e−λDsup)/(e−λDsub + e−λDc + e−λDsup)

where the Ih subscript means that we use a hexagonal reference structure, c a critical
one and L a liquid one. sub and sup indicate specifically chosen states which are
equidistant to the critical reference structure and verify that |Vc − Vsub|2 ≃ |Vc −
Vsup|2. Physically they correspond to sub-critical and super-critical state, that is a
box where the largest nuclei size is below or above the critical one.

Figure 7.3.1 show the trajectories projected on all of the previous collective va-
riables. From inspection of the graphs it appears that only three definitions offer a
proper separation of the two phases, Dsup, S, Sc and DIh. Among them DIh seems
to yield the best result, as it distinguishes neatly the transition state and offers a so-
mewhat symmetric space with respect to the liquid and to ice. This rather qualitative
observation will be quantitatively assessed later on when we will use the maximum
likelihood optimization scheme in section (7.3.3).

As already discussed in section (5.2), it’s important to note that the two transi-
tion path sampling methods that we will use have not the same requirement on the
collective variable. If for aimless shooting we only need a collective variable able to
distinguish the two end states, here liquid and crystalline, for aimless shooting within
a range we also need the variable to be able to identify quite precisely the transition
state region, as we will need to define a shooting range in collective variable space
matching such region in order to obtain an efficient sampling.

As a first indication, figure 7.3.2 shows the almost-linear correlation between
DIh and the more traditional and widespread definition of largest nucleus size NCHI ,
which is the sum of the number of cubic, hexagonal and interfacial ice molecules
in the largest cluster, where the molecules are identified using Chill+ algorithm [9,
38], see section (4.1.3) and (4.2.1). Those are computed from the path ensemble
sampled by shooting range aimless shooting. Please note that here we present this
extensive set of configurations in the interest of having optimal statistics, but that
the same analysis was performed beforehand with the more restricted dataset of
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Figure 7.3.2 – Correlation between DIh and NCHI from accepted trajectories gene-
rated with the shooting range algorithm seeded with hexagonal ice, colored according
to log(P (NCHI , DIh)). The black line is a simple linear regression. Blue lines indicate
DIh thresholds to assign the future evolution of the system to liquid or ice, and gray
lines delimit the region with highest acceptance rate for the shooting range algorithm.

seeding trajectories (the same remark holds for the following paragraph). Regarding
the correlation between the two collective variables, an important point to be aware
of is that a given value for the largest cluster size can lead to a large variety of
nucleus structures : some may be very compact and spherical, some more elongated,
some may have more interfacial ice than cubic or hexagonal ice, and some may be
composed of almost disconnected blocks. This variability explains the breadth of the
distribution in figure 7.3.2, notwithstanding the good degree of linear correlation.

To identify trajectories committed to ice or liquid water during the execution
of the shooting range algorithm, we need to define two threshold values of the DIh

variable : the transition state region will span the enclosed interval. Figure 7.3.3 shows
the distribution of the size of the largest nucleus at different fixed values of DIh. These
distributions have approximately Gaussian shape, with negligible or no overlap even
for the smallest separation between the two thresholds. As we can see, the center
of the distribution moves linearly toward higher crystallite size when we lower the
DIh value, which is what we expect due to the linear correlation between the two
variables. Based on this plot and on the previous seeding data, we tentatively chose
the threshold values of 12 for ice state and 19 for liquid state, those are indicated by
blue line on figure 7.3.2. A compelling assessment of such thresholds clearly requires
committor analysis, as discussed in the next section.

7.3.2 committor analysis

To further test the quality of the thresholds used to distinguish trajectories com-
mitted to liquid and ice, we performed a simple committor analysis. From reactive
trajectories generated with the shooting range algotihm starting from a hexagonal
seed, we selected a set of 4 configurations at the liquid boundary, with DIh = 19 and
largest nucleus size of 300, 350, 400, 450. We evolved n = 15 independent trajectories
for 200 ns from each of these states, drawing their initial momenta from the Boltz-
mann distribution. Almost all of them evolved toward their predicted final phase,
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(a) (b)

(c)

Figure 7.3.3 – Probability distribution of the size of the largest nucleus NCHI at
given fixed values of the PIV distance from hexagonal ice DIh. a) DIh = 12 or 19,
b) DIh = 11.5 or 19.5, c) DIh = 11 or 20, using reactive trajectories sampled with
aimless shooting within a range starting from a hexagonal seed.

liquid water. Only 3 trajectories shot from NCHI = 450 evolved toward a crystalline
state.

In the same way, we selected a set of 4 configurations at the ice boundary, with
DIh = 12 and largest nucleus size of 650, 700, 750, 800. Shooting n = 15 trajecto-
ries from each of these states in the same way as for the liquid boundary, we found
again that almost all of them evolved toward a crystalline state, as expected. Only
6 trajectories shot from NCHI = 450 evolved toward a liquid state. By weighting
the probability of the initial configurations using the distributions in figure 7.3.3, we
find less than 1% of falsely attributed end-states for both boundaries. This analysis
confirms the appropriateness of DIh as collective variable definition, and it demons-
trates that DIh = 12 and 19 are valid thresholds to predict whether a trajectory will
irreversibly evolve towards ice and liquid water, respectively.

7.3.3 Maximum likelihood optimization

Finally, we quantitatively assessed the quality of our PIV distance-based collec-
tive variables by using the maximum likelihood optimization scheme [88] described
in section (4.3.1). For this we used the transition state ensemble generated with the
mW water potential in Ref. [38], kindly provided by the Authors. The ensemble was
generated with very extensive aimless shooting simulations at 230 K and 1 bar and
it includes 21523 atomic configurations of 4608 molecules. We compared the many
collective variables analyzed in Ref. [38] with all the ones we introduced in section
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(7.3.1). We are not going to present in detail all of the variables of Ref. [38], but
globally they can be grouped into three classes :

— Size variables named Nsomething, that measure the crystallite size, where
something is some criterion used to distinguish icy molecules from liquide
one.

— Energy variable named Esomething, which is the sum of all potential energy of
water molecules in the cluster, again using something to distinguish liquid
and ice.

— Structural variables, that describe internal structure or shape of the crystal-
lite. Namely, there are the cubicity C and the gyration radius Rg.

Remarkably, the collective variable that we chose to perform our path sampling
simulations based on the analyses in the previous sections, DIh, achieves the highest
score in the long list of candidate variables, as shown in table 7.3.1.

RC −lnL ∆lnL/BIC RC −lnL ∆lnL/BIC
DIh 10466 0 EI 14222 -724
NCHI−⟨Q6⟩ 11314 -163 NI 14233 -726
NCHIn4 11342 -168 NE−pp<11.5 14010 -683
NCHI−⟨Q6⟩+solv 11369 -174 NQ6>0.57 14501 -777
NCHI+solv 11376 -175 NE−pp<11.6 15841 -1035
ECH 11426 -185 n4 16411 -1145
NCH 11434 -187 NQ6>0.5 16535 -1189
ECHI 11554 -210 NH 17712 -1396
NCHI 11573 -213 EH 17714 -1397
NQ3>0.7 12279 -349 EC 18510 -1550
Rg2 12401 -373 NC 18512 -1550
NQ6>0.55 12715 -433 C 19720 -1783
NE−pp<11.3 12796 -449
NE−pp<11.4 13141 -515
Nsolv 13331 -552

Table 7.3.1 – Maximum likelihood value and score for all collective variables defined
in Ref. [38], with the addition of DIh, which scores the best. The dataset includes
21523 transition state structures explored with aimless shooting simulations using
the mW potential.

It is interesting to note that the most widespread criterion for assessing the qua-
lity of a reaction coordinate is based on information from committor analysis, as in the
technique here above. Indeed, the committor function is commonly considered “the”
ideal reaction coordinate for any transition process between metastable states, from
crystal nucleation to protein folding to chemical reactions [11, 86, 89, 88]. However,
in high-barrier transition processes like ice nucleation such information is available
only within a limited energy range (a few kBT units) close to the barrier top, due
to the numerical difficulties involved in sampling committor values very close to zero
or to one. This implies that there is ample room to develop approaches alternative
to direct committor estimation to investigate the quality of reaction coordinate at
the early stage of nucleation (close to the liquid state) and the early stage of crystal
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fusion. Future efforts in this direction are desirable, and could take advantage of the
availability of a large data set of unbiased transition pathways like those sampled in
this work.

7.4 Sampling of the transition path ensemble

Now that we have defined our collective variables the liquid and crystalline state
basins associated, we can start to sample the transition path ensemble. We stress
here that, due to the need of generating thousands of MD trajectories of hundreds
of nanoseconds of duration, such endeavor implies a massive amount of computer
resources, estimated in our case to be of more than 6 million CPU hours (partly
obtained through a PRACE European grant), which probably explains why no such
attempt has been previously reported in the literature.

In a first attempt, following the study in Ref. [38] with the mW model of water,
we adopted the standard aimless shooting approach [12, 13]. However, due to the low
sampling efficiency of this method and based on the specific features of nucleation
trajectories in the transition state region, we switched to a variant of the algorithm,
i.e., aimless shooting within a range [41], that resulted significantly faster and proved
a key tool to tackle our ambitious goal.

7.4.1 Standard aimless shooting

So the first transition path sampling procedure that we use is aimless shooting,
that we presented in section (5.2.2). For this algorithm we only need to define two
end-state basins (regions in phase space corresponding to local free-energy minima),
here liquid and ice, based on an order parameter, here DIh as discussed. We started
several independent aimless shooting simulations from a hexagonal seed containing
NCHI = 590 water molecules. As an initial reactive trajectory, we concatenated two
seeding trajectories at 237 K and 1 bar : one evolving towards the liquid (seed melting)
and the other evolving towards the crystal (seed growing).

Based on figure 7.2.3.a, we estimated that a maximal duration of 60 ns for the
backward and forward shootings would be enough to reach the liquid or crystal thre-
sholds in order parameter space – hence the corresponding basins – for the majority
of the trajectories. This choice is obviously linked to performance issues, as in a world
with infinite resources we would have avoided to introduce a maximal duration in or-
der to avoid “undecided” trajectories, not connecting two basins (possibly the same)
during the relaxation.

To achieve a better statistical description of nucleation, which is an intrinsically
stochastic process depending on the random walk (diffusion) of thousands of water
molecules, we launched 25 independent aimless shooting simulations, with a time
step for sampling potential transition states of ∆t = 0.2ns, see section (5.2.2). In this
scheme each run was able to achieve ∼ 1.2 steps per day, depending on the super
computer availability. It is important to stress that, contrary to techniques like um-
brella sampling, where tens of independent trajectories (the different windows) can
be executed concurrently (at the same time), each one of them exploiting parallelism,
aimless shooting is intrinsically sequential, since the result of each pair of forward
and backward trajectory (i.e., to which basin they are committed) needs to be known
to execute the following trajectories, each single trajectory of course exploiting pa-
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Figure 7.4.1 – Evolution of the cubicity for aimless shooting simulations starting
from hexagonal ice. Each color represents an independent simulation, concatenated
one after another for easier visualization.

rallelism. The crucial difference between the two types of simulations is therefore the
much longer wall-clock duration of aimless shooting, for a same cumulative amount of
computer resources employed. In the specific case of PIV-based collective variables,
another difference between the two classes of simulations is the need to compute the
expensive variable at each timestep in umbrella sampling (due to need to apply bia-
sing forces along the trajectory), whereas the variable can be computed infrequently
in aimless shooting (for example, every several thousands steps). In practice, even
though we ran concurrently 25 aimless shooting simulations to improve statistics,
sampling more than 6000 trajectories (out of which ∼ 12% connect liquid and ice)
took approximately 7 months.

Figure 7.4.1 shows that the initial hexagonal seed evolve slowly, with some simu-
lations displaying transition states transforming toward a slightly stacking disordered
crystallite. Even if these data seem to follow the expected trend of increasing cubi-
city [42, 38, 40], it is hard to draw any conclusion from them, due to the relatively
small amount of sampled points, having 38 accepted transition state per simulation
in average, for more than 875 in total.

These results, coupled to the analysis of seeding trajectories (section 7.2.2), led
us to adopt another transition path sampling technique. As shown in figures 7.2.4a
and 7.2.3.a, during the seeding procedure we observed that the system could sponta-
neously explore a broad portion of phase space in the transition states region, since for
a rather stable largest nucleus size NCHI the cubicity was often observed to drift from
∼ 0 to ∼ 0.2 within a single trajectory of the order of 100 ns. In stark contrast with
this spontaneous behavior, aimless shooting simulations require more than 200 Monte
Carlo moves to observe a comparable evolution in the critical nucleus structure, due
to the sub-nanosecond timestep separating potential transition state structures ran-
domly sampled from the previous trajectory at each move. As discussed in (5.2.2),
this is due to the design of the algorithm, which is best fitted to sample a narrow
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phase space region.

7.4.2 Aimless shooting within a range

So we switched to the second transition path procedure called “aimless shooting
within a range” [41], that we presented in section 5.2.3. The algorithm is basically
the same as standard aimless shooting, except that we are not limited to a constant
time step to randomly pick the next shooting point before or after the last accepted
one. Instead, new shooting points are randomly sampled from a pre-defined shooting
range in our collective variable space, allowing to explore very rapidly the top of the
free-energy barrier – very broad in the case of ice nucleation.

(a) (b)

Figure 7.4.2 – (a) Distribution of the largest crystallite size in the sampling area
of the shooting range algorithm, starting from hexagonal or cubic ice seed (blue or
yellow respectively) from accepted trajectories. The distribution was estimated from
the combined data set of all trajectories sampled with the shooting range algorithm.
(b) Distribution of the half duration of accepted trajectories, estimated with combined
data set of all trajectories obtained with shooting range algorithm starting from
hexagonal ice.

We performed two sets of simulations, both at 237 K and 1 bar, differing by
their initialization. The first set started from reactive trajectories connecting liquid
and hexagonal ice, taken randomly from the previous standard aimless shooting si-
mulations described in section (7.4.1), so that each one is initialized with a different
reactive trajectory. The second set started from a reactive trajectory obtained from
a cubic seed containing NCHI = 675 water molecules, constructed and equilibrated
with the same protocol adopted for the hexagonal seed.

For hexagonal ice we adopted the threshold values described in section (7.3.1),
i.e., a trajectory is considered committed to the liquid when DIh > 19 and to the ice
when DIh < 12. For cubic ice, values are chosen with the same procedure but they
result slightly shifted to account for the lower stability of the crystallite (DIh > 19
and DIh < 11 for liquid and ice respectively). To properly choose the shooting range
(which can be smaller than the region delimited by the committor thresholds) for
hexagonal ice, we started by taking three different ranges with 5 independent runs
each, to make a quick estimate of the acceptance ratio :

— DIh ∈ [13, 17.5] (9.9 % acceptance)
— DIh ∈ [13, 5 : 18] (7.9 % acceptance)
— DIh ∈ [13, 18.5] (8.2 % acceptance)
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and we kept the one with the highest acceptance ratio. For cubic ice we slightly
decreased the lower bound to take into account the difference in stability, so that
DIh ∈ [12, 17.5]. Figure 7.4.2a show the distribution of NCHI in these shooting ranges.

We ran 15 independent sets of simulations with a time step ∆t = 0.2 ns for hexa-
gonal or cubic initial seed. Contrary to standard aimless shooting, where acceptance
rate is directly linked to the time step, here it has less importance and should just
be not too small nor too big. Initially we kept the same 60 ns duration as for the
standard aimless shooting, but we rapidly switched to 80 ns to reduce the amount of
“undecided” trajectories, that did not connect two stable states (liquid or ice).

Figure 7.4.2b shows the distribution of the accepted trajectories length, which
allow us to properly quantify the effect of this cut-off choice. As you may see, it cuts
the tail of our distribution, which amount for less than 1% of the total set. So far,
we sampled more than 3800 trajectories that start from the hexagonal seed, of which
∼ 10% connect liquid and ice (transition paths). Starting from the cubic seed we
sampled more than 1900 trajectories, of which ∼ 11% connect liquid and ice.

7.4.3 Difference of efficiency between the two techniques

Figure 7.4.3 – Evolution of the cumulative time separation between the first and
last accepted shooting points in transition path sampling simulations for a) aimless
shooting within a range starting from Ih seed, b) aimless shooting within a range
starting from Ic seed, c) standard aimless shooting starting from Ih seed. Note the
difference in vertical scale between a), b) and c). Panel d) shows a comparison of the
two methods, with standard aimless shooting in blue and aimless shooting within a
range in red.

The reason why we passed from one transition path sampling technique to ano-
ther is simple : aimless shooting within a range is a much more efficient algorithm
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for the process under consideration, that we picture as slow diffusion on a smooth
and broad free energy barrier starting from a sub-optimal region of the separatrix
(such a picture holds in Ref. [38] from a direct estimation of the saddle region in
the two-dimensional free-energy landscape as a function of nucleus size and cubicity
with the mW model at 230 K). Figure 7.4.3 shows the cumulative temporal distance
between the first and last accepted transition states of standard aimless shooting
or its variant within a range, which provides a clear indication of the decorrelation
of transition state structures during the sampling. It is clear that standard aimless
shooting requires more than 100 steps to achieve the same time separation – hence
decorrelation – as for its variant within a range in one single step on average. A
similar conclusion can be drawn by comparing the speed of evolution of the cubicity
of critical nuclei in Figures 7.4.1 and 7.4.4 (see the discussion in the next section).

Note that this is not expected to be true for all activated processes : in the
present situation this efficiency is linked to the easy, spontaneous exploration of large
regions of configuration space in the transition state domain, as observed during
seeding. Probably, this behavior is a result of small diffusion coefficient combined with
sizable average force pointing from the bad transition states towards the best ones.
In practice, the aimless shooting within a range algorithm is able to pick successive
shooting points separated by a very large time distance, often already decorrelated.
While standard aimless shooting is forced to choose closely related shooting points,
separated by a tiny temporal and structural distance.

7.4.4 Critical nuclei evolution

Figure 7.4.4 shows that the hexagonal seed has a strong tendency to evolve
toward a stacking disordered crystallite, while for the cubic seed – notwithstanding
the smaller number of path sampling steps so far – no strong drift is evident, probably
due to the proximity between the initial cubicity and the expected optimal one (based
on previous works [42, 38, 40]).

It is too early to draw conclusions about the precise value of the optimal critical
cubicity (i.e., the one lying on the minimum free-energy path for nucleation), however
the behavior of the two sets of simulations is consistent with C ∈ [0.55, 0.8]. At the
time of writing, simulations are being completed in order to obtain a final estimate.
Comparison of Figure 7.4.4 with Figure 1 in supporting information of Ref. [38] for
(standard) aimless shooting simulations with the mW potential clearly indicates a
similar behavior, suggesting that our simulations should soon fluctuate around an
optimal critical cubicity.

Figure 7.4.5 shows the structural evolution of the critical nucleus within one run
of aimless shooting within a range, starting from either a cubic or hexagonal seed,
illustrating the evolution toward stacking disordered structures. As discussed in sec-
tion (7.1.3), due to differences in symmetry, only the two basal planes of hexagonal
ice can form coherent bonds with cubic ice, whereas all the four (111) planes of cubic
ice can form coherent bonds with hexagonal ice. This explains why cubic ice tends
to form one or two layers on the top and bottom of the hexagonal nucleus, whe-
reas hexagonal ice tends to form “shells” around the initial cubic seed, with isolated
hexagonal-like molecules disseminated on the (111) planes.

Finally, Figure 7.4.5 displays the set of all the critical nuclei obtained at the end
of aimless shooting within a range runs, starting from either a cubic or hexagonal
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Figure 7.4.4 – Evolution of the cubicity for all shooting range simulations, starting
from hexagonal ice or cubic seeds. Each colour represent an independent run, the
different runs being shown one after another for ease of visualization.

seed. In all cases, evolution towards stacking disorder features the same properties
as discussed above. Even if simulations still need to be completed to determine the
precise features of optimal critical nuclei, averaging over all the transition states we
obtained, we find an average critical size of NCHI = 507 ± 165. This wide range of
values is coherent with the study of Ref. [38] based on mW water. This is also coherent
with the value of Nc = 588 found in Ref. [36] with seeding at 238.7 K.

Stacking mechanism

One may wonder how a nucleus can pass from being purely composed of hexa-
gonal or cubic ice to a stacking disordered one with a high cubicity, despite Ih being
the real stable phase.

Here we have performed a simple analysis to understand the mechanism that
leads to the formation of disordered stacks of layers. For all of our transition paths
sampled, every 50 ps we computed the state (liquid, cubic, hexagonal or interfacial)
of oxygen atoms using Chill+. Then we counted the transition between atom states,
e.g., how many times an oxygen atom goes from the cubic ice state to the liquid state,
for instance. this procedure allows to track down the sources (previous states) of a
specific state, and their relative fraction.

Figure 7.4.7 shows the evolution of the sources of cubic or hexagonal ice included
into the largest crystalline cluster. Without ambiguity, the analysis shows that crystal-
to-crystal structural change within the nucleus is marginal, as there is almost no direct
transition between hexagonal and cubic states. This also shows that addition of new
Ih molecule to the largest nucleus is mostly a two-step process, as molecules first
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(a)

(b)

Figure 7.4.5 – Evolution of transition states sampled with aimless shooting within
a range for two independent runs, starting from (a) an hexagonal seed and (b) a
cubic seed, respectively. The representation is the same as in figure 7.2.4, i.e., we only
represent oxygen atoms in the largest cluster, identifying their structure with Chill+
algorithm. Blue atoms are hexagonal ice, yellow cubic ice and purple are interfacial
ice.

need to rearrange themselves into interfacial ice before assuming their final hexagonal
configuration. On the contrary, addition of new Ic molecule is half of the times a one-
step process, as molecules can directly go from a liquid to a cubic state.

It is interesting to note that this behavior remains valid regardless of the evo-
lution of the cubicity, i.e., regardless of the progress of the transition path sampling
simulation. It is coherent with the higher symmetry of cubic ice, see section (7.1.3),
which lead to easier formation of coherent bonds with crystalline molecule that are
already arranged in the largest nucleus. And it could be related to the higher intrin-
sic probability of liquid water molecules to adopt hydrogen bond patterns forming
dihedral angles that are similar to those of cubic ice, as recently suggested from the
analysis of TIP4P/ice simulations in Ref. [156].

7.5 Conclusions and outlook

The present study addressed an ambitious task : reconstructing for the first time
the transition path ensemble for the accurate TIP4P/Ice model of water employing
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(a) (b)

Figure 7.4.6 – Last shooting point sampled with aimless shooting within a range
for all the independent run, starting from (a) hexagonal seed or (b) cubic seed. The
representation is the same as in figure 7.2.4 and 7.4.5, i.e. we only represent oxygen
atoms in the largest cluster, identifying their structure with the Chill+ algorithm.
Blue atoms belong to hexagonal ice, yellow to cubic ice and purple to interfacial ice.
The nucleus size and cubicity are indicated below each structure, whose ordering is
coherent with Fig. 7.4.4.

a rigorous path sampling technique, i.e., aimless shooting. The latter technique was
previously applied only to a coarse-grained model of water, mW, due to the very
elevated computational cost connected to the need to generate thousands of transition
pathways. In fact, two factors render these simulations very demanding : the transition
path time often exceeds 100 ns at 237 K, while the need to accommodate the critical
nucleus (including up to about 700 water molecules at this temperature) demands a
simulation box containing thousands of molecules.

Two tools had a crucial importance in reaching our goal. The first is an impro-
ved aimless shooting algorithm that was developed recently [41] and that we adopted
based on insight from seeding simulations, yielding very efficient exploration of the
transition state ensemble for disordered ice nuclei. The second is the PIV-based to-
pological metric [7, 84, 8], that allowed to precisely track the structural evolution of
ice nuclei displaying a complex range of different structures, thanks to an excellent
correlation with the committor function, i.e., the ideal reaction coordinate (see be-
low).
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Figure 7.4.7 – Instantaneous fraction of new ice-like molecules of (a) cubic or (b)
hexagonal type that evolved in the last 50 ps from the liquid, interfacial ice, or the
opposite ice polymorph. The calculation is performed on a time span of 25 ns over the
largest nucleus, averaging over the whole set of accepted transition paths collected
from all the independent path sampling runs started from a hexagonal seed. The
colored areas represent standard deviations.

Compared to previous studies, in our work
— we did not resort to a coarse-grained model like mW [38], reproducing many

structural and energetic experimental properties but suffering from an incor-
rect description of kinetic properties ;

— we did not apply any external biasing forces [40], strongly altering the time
scale of the process and leading to transition states that depend on the quality
of the collective variables on which they act ;

— we employed a robust aimless shooting technique where full transition pa-
thways are generated in a statistically correct way, avoiding the drawbacks
of the forward flux sampling scheme where short segments of pathways are
generated in a discretized collective variable space [42], leading to possible
severe error propagation in the estimation of rate constants [37] ;

Our results provide a detailed picture of the nucleation mechanism, quantifying
and rationalizing the appearance of stacking disorder based on the different properties
of hexagonal and cubic ice. In several cases, our findings corroborate the results of pre-
vious studies, based on different potentials [38] or sampling algorithms [34, 42, 40],
and therefore contribute to enlarge and put on solid numerical bases the current
understanding of homogeneous ice nucleation mechanism. In particular, we directly
observed the spontaneous evolution both of a hexagonal and a cubic crystal seed,
and we drew statistically reliable conclusions thanks to the repetition of each type
of simulation in 15 independent runs. The insight we obtained includes a two-step
mechanism for the aggregation of new hexagonal ice molecules to the critical nucleus,
compared to a one-step process for the addition of cubic ice molecules. Clearly, our
results are in stark contrast with the idealized picture of classical nucleation theory,
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assuming a spherical nucleus with the crystalline structure of the thermodynamically
stable polymorph (hexagonal ice), and confirm the need of atomistic molecular dy-
namics simulations with accurate potentials to obtain qualitative and quantitative
information on the nucleation process.

One of the outcomes of our study consists in the first quantitative assessment and
validation of the PIV metric by means of the rigorous likelihood optimization tech-
nique of Ref. [88] : tested against extensive committor data, this coordinate outper-
forms the whole set of 26 nucleation coordinates analyzed in Ref. [38], encompassing
varied information like nucleus size, shape and energy. We remark that our definition
– differently from most other definitions found in the ice nucleation literature – is
very general, requiring only to define reference initial and end states, hence it could
find effective application beyond water, to study the nucleation of other materials
as well as a range of other transformation processes in condensed matter. Ongoing
applications in our group include salt precipitation from solutions and nanoparticle
transformations.

Finally, the large data set of transition pathways obtained in this study will
constitute the basis of a new research project, aiming at accurate nucleation rates
through a Bayesian reconstruction of a diffusive Markov model starting from path
sampling information, along the lines described in Ref. [43]. This approach will tackle
what is arguably the most important question – still open despite all recent theoretical
and numerical efforts – in the broad field of homogeneous (but also heterogeneous)
crystal nucleation : how to predict accurate nucleation rates for ice and other materials
in a direct and reliable way, avoiding the approximations (and numerical pitfalls) of
classical nucleation theory.
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8 Conclusion

In this thesis, we addressed and shed new light on several open questions about
water properties in the supercooled regime. We achieved this result by successfully
applying general computer simulation methods, that were not devised for the specific
case of water, but as general tools to study the broad domain of structural transfor-
mations of condensed matter.

Our computational strategy is based on the adoption of realistic and accurate
interatomic potentials for water (the TIP4P family) and on flexible generalized coordi-
nates to describe complex transformation processes. Such coordinates are constructed
from a simple definition of state vector, the so-called Permutation Invariant Vector
(PIV), that is able to store detailed information about the topology of the network
of interatomic connections. The latter is defined in a broad sense, extending beyond
covalent- and non-covalent bonds until a pre-defined distance range. From this view-
point, a significant structural transformation of matter (i.e., not a simple deformation
preserving the interatomic connections) corresponds to a modification of the network,
thus providing a unified framework independent from the particular nature of the ma-
terial under study. The importance of effective reaction coordinates cannot be unde-
restimated as they are the most crucial ingredient of enhanced sampling algorithms,
without which it is unfeasible to reconstruct mechanisms, free-energy landscapes and
kinetic rates of rare events like phase transitions.

We employed a rich toolbox of state-of-the-art enhanced sampling techniques,
ranging from metadynamics to umbrella sampling to transition path sampling, in
the attempt to extract for each scientific problem the most reliable and statistically
precise results at an affordable computational cost. Combined with massive compu-
ter resources, these simulation methods allowed us to obtain new insight on two of
the most challenging problems in the simulation community, at the center of many
research efforts : the liquid-liquid transition and the homogeneous nucleation mecha-
nism of supercooled water.

For the first problem, presented in chapter 6, we used extensive molecular dyna-
mics simulations with the TIP4P/2005 model to compute in a systematic way precise
free-energy profiles for several conditions of pressure and temperature, deep in the no
man’s land region. This accomplishment, frequently invoked by the community as a
way-out of decades-long controversies [110, 1, 26] but never achieved before, allows us
to conclude that there is no free-energy barrier related to a discontinuous, first-order
liquid-liquid phase transition – at least down to 155 K, for this accurate model of
water and for the system size we considered (800 molecules).

We estimate that future directions of progress in this topic include simulations
on larger system, on a longer time scale (especially at lower temperature), and in
the thermodynamic region connecting supercooled liquid water with the amorphous
forms, that have been extensively studied also from the experimental viewpoint in
the last decades. Such efforts, today at the frontier of feasibility in terms of computer
resources, could help complete the complex picture of metastable supercooled water.
Moreover, further theoretical work will – hopefully – allow to clarify how to reconcile
the multiple numerical indications of a second critical point, as put forward in the
literature, with our direct observation of barrier-less free-energy landscapes at much
lower temperature.
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For the second problem, presented in chapter 7, we reconstructed the transition
path ensemble for homogeneous ice nucleation from supercooled water using extensive
molecular dynamics simulations with the TIP4P/Ice model. For the first time we
could apply the expensive but rigorous aimless shooting technique, previously limited
to a less realistic coarse-grained model of water, to draw robust conclusions about
the structure of critical nuclei and about the mechanism of incorporation of stacking
disorder, directly simulating the evolution towards optimal transition states of purely
hexagonal and purely cubic nuclei. All these findings are in striking contrast with
the hypotheses of classical nucleation theory, and underline once again the need for
atomistic simulations to obtain correct qualitative and quantitative information about
nucleation processes.

From a methodological viewpoint, our study also allowed to demonstrate the
major gain in efficiency represented by a recently developed variant of the aimless
shooting algorithm, exploiting the peculiar diffusion properties of the order parameter
for nucleation when close to critical size. We believe that this finding will be useful
to other researchers studying nucleation of ice or other materials with transition
path sampling techniques, greatly accelerating their simulations at the price of a
minor modification of the algorithm. An obvious future direction being the study of
heterogeneous ice nucleation.

In addition to obtaining detailed information on the ice nucleation mechanism,
we performed a quantitative assessment of the quality of the PIV topological metric
as reaction coordinate for nucleation : analysis by means of a rigorous likelihood op-
timization technique based on committor information, indicates that this coordinate
outperforms a large set of previously considered coordinates, that tried to capture
nucleus size, shape and energy into their definition. This result brings quantitative
support to the qualitative observation of the effectiveness of PIV-based generalized co-
ordinates in tracking complex transformation processes in water and other materials,
and similar benchmarking is advisable in future projects and for diverse applications.

Finally, our reconstruction of a massive data set of transition pathways for ice
nucleation is but the first step towards extracting reliable free-energy landscapes and
kinetic rates of the process, what constitutes today a difficult challenge in the simu-
lation community, given the scatter of available predictions. A promising approach
in this direction, free from the approximations and pitfalls of formulas derived from
classical nucleation theory, appears to be the construction of Markov models (dis-
crete or in the form of a Langevin equation) reproducing in a statistically optimal
way the time evolution of the system phase-space point projected on a good reaction
coordinate. The transition path ensemble we obtained is the ideal source of data for
such objectives.
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