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1
Introduction

1.1 The search for new worlds

1.1.1 History and methods of exoplanet detection

Among the many scienti�c problems humanity is exploring today, the question as to whether there is life
elsewhere in the universe has been on our minds for centuries. Initially treated mostly under theological
and philosophical aspects, the existence of planets around stars other than our own Sun was contemplated
by ancient thinkers like Plato and Epicurus (2=3 - 5Cℎ century BC). It was not until the late 19Cℎ and early
20Cℎ century though that the �rst scienti�cally founded theories about these so-called “exoplanets” were
formed and published in peer-reviewed literature. While the �rst exoplanet detections were falsely claimed
in the early 1940s, the research �eld of observational exoplanetology found its beginnings with the initial
discovery of an exoplanet in orbit around a solar-type star in 1995 (Mayor & Queloz 1995), the planet 51
Pegasi b. The signi�cance of this discovery was underlined in 2019, when Michel Mayor and Didier Queloz
won the Nobel prize in physics, implicitly showing recognition to the entire �eld of exoplanets, having
clearly grown out of its infant days of a niche subject in the past three decades.

The deep scienti�c interest in exoworlds, and the question about the existence of other life forms than
our own is confronted with a high complexity in the instrumental methods that let us observe distant
bodies. Astronomical instrumentation for exoplanet detection is a multi-faceted �eld covering an long list
of optical systems and techniques, all aiming to capture signs of a potentially habitable planet. Among
them, a distinction can be made between indirect and direct exoplanet detection methods, depending on
whether we observe a signal that lets us only infer the existence of a planet, or whether we can capture
and analyze the photons from a planet directly. With the ultimate goal to �nd exoplanets that can actually
harbor life, developing these methods to the point where they are sensitive enough to signals from planets
that resemble our own Earth, so-called “exoEarths”, is the broad scienti�c context in which this thesis is
placed. After brie�y highlighting the most important detection methods used in the exoplanet community,
I will take a deeper dive into the only direct detection technique, around which the core of this thesis
revolves: direct imaging.

The radial velocity (RV) observation technique exploits the fact that a planet in orbit around a star
forces both bodies into a Keplerian motion around the system’s barycenter. This means that the star itself
will exert relative motions that are indicative of a secondary body around it. The line-of-sight motion
of the star for example, its radial velocity, can be observed with spectroscopic measurements that detect
the Doppler-shifted absorption lines in the stellar spectrum. This observable can hence be exploited to
determine the presence of an orbiting companion. The amplitude of the radial velocity curve is a function
of planet mass and orbital inclination, commonly expressed as"? sin(8), with"? the planet mass and 8 the
inclination. An important characteristic of RV is that it is biased toward planets in edge-on orbits because
they maximize the observed amplitudes. Additionally, this method is degenerate with respect to mass and
inclination of a system and can therefore provide only a lower bound to the exoplanet mass. Considering
these two points, we need to use other techniques to better constrain the planet properties.

While the line-of-sight motion of a star can be detected by the change in wavelength in the stellar
spectrum, the star’s motion in the plane of the sky can be determined through astrometry. This technique
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measures the star’s exact position in the sky with respect to a spatial reference frame. Since it visually
follows the location of the star, we can measure the system’s orbital inclination, which eliminates the
unknown we encounter with the RV method. The major constraint of both of these methods is that they
yield a planet mass, but not a radius, which makes them insu�cient for any conclusions about the planet’s
density, from which we could determine its rough composition.

A method that relies on a di�erent physical phenomenon for exoplanet detection and characterization
is planetary transit photometry. During such an event, the planet passes in front of its host star, and the
disk of the planet covers a part of the stellar surface, dimming the light we observe with photometric
measurements. The result is a distinct “dip” in the observed light curve that allows for the determination
of the planet’s radius. The �rst con�rmed transiting planet was observed in 1999 (Henry et al. 1999, 2000;
Charbonneau et al. 2000), and a plethora of them followed with dedicated transit surveys like conducted
with the Kepler Space Telescope. One limitation of this method is that the alignment of the exoplanetary
orbit needs to have an inclination such that we actually see the planet travel across the stellar surface,
which requires almost perfect edge-on orientations as seen from the Earth. Since a part of the stellar light
will be �ltered by the atmospheric layers of the planet while it is in transit, we can make spectroscopic
measurements of its absorption lines for the purpose of atmospheric characterizations. Similar data can
be acquired during a secondary eclipse when the planet is passing behind the star.

Of the∼4800 con�rmed exoplanets today1, roughly 1000 have been detected by radial velocity measure-
ments, and ∼3400 by transits. A much smaller subset of detections have been made with other methods,
for example gravitational microlensing, where we can infer the presence of a planet by the de�ection it
in�icts on the light of a background source. Noticeably, each observation method can �ll a di�erent part
of the parameter space for exoplanet characterizations, which is why follow-ups with a method di�erent
than the one that was used for detection are needed in order to get a fuller picture of an observed body.

One thing that all the aforementioned detection methods have in common is that they all rely on
measurements of the light from the host star, or a di�erent background source, rather than capturing
photons emitted from the planet alone. The capability of imaging an exoplanet as an unresolved point
source is commonly referred to as direct imaging. The planet light captured in this way can either come
from its own thermal emission, or as re�ected light from its host star. Accessing the light from these
extra-solar systems directly enables a generalized spectral study of the planetary atmosphere’s chemical
composition and search for the presence of biomarkers, our current best guess for indicators of life.

1.1.2 The challenges of direct imaging

To achieve the ambitious goal of direct imaging of Earth-like exoplanets, two fundamental obstacles need
to be overcome, the �rst being the need to resolve the planet as a point source at very small angular sepa-
rations from its host star. The fundamental di�raction limit sets the smallest attainable angular resolution
element \ in an aberration-free system by:

\ =
_

�
, (1.1)

where \ is the angular resolution in radians, _ the observing wavelength and � the diameter of the tele-
scope. If we assume an exoplanet at 1 au from its host star at a distance of 10 pc from Earth, the required
resolution of 0.1 arcsec lies within the capabilities of existing telescopes, for example the 8 m primary mir-
rors of the Very Large Telescope (VLT) on the ground or the 2.5 m primary of the Hubble Space Telescope
(HST) in space when observed at a wavelength of 700 nm. However, the angular resolution requirement
alone, as it turns out, is not the main issue. The second obstacle in direct imaging is the large planet-to-star
�ux ratio, which is more challenging to overcome the closer the planet is to the star, as projected in the sky.
Figure 1.1 compares the �ux ratios of various planets at di�erent wavelengths in the optical and infrared
(IR) range of a solar system analogue at a distance of 10 pc, in units of contrast. Not only do the planets
become more luminous at longer wavelengths where they are self-luminous, but the sun itself has less �ux
in that part of the spectrum, which alleviates the contrast requirement for direct imaging. In the optical
range around 700 nm, the planet �ux consists mostly of re�ected starlight, and the brightness contrast

1on 20 September 2021, as published by exoplanet.eu

exoplanet.eu
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Figure 1.1: Flux ratios for various planetary bodies compared to our Sun, a G-type main sequence star. Displayed
are the rocky planets Mars and Earth, the gas-giant Jupiter, and the hot Jupiter exoplanet V Pictoris b. The
dashed vertical line at 2 `m indicates the observation wavelength for current instruments, for example
GPI, where the �ux ratio for the hot Jupiter is about four decades. The vertical at 700 nm indicates HCI
observations of future space instruments (RST and LUVOIR), where the �ux ratio is signi�cantly larger,
on the order of 10−10 for Earth-like planets. Adapted from Mazoyer (2014).

between an Earth-like planet and a solar-type star is on the order of 10−10. Direct imaging techniques that
aim to overcome these brightness ratios fall under the term called high-contrast imaging (HCI).

The need to overcome a large �ux ratio is not unique to the detection of exoplanets and had been
recognized as one of the main obstacles in observing other faint astronomical sources, for example the solar
corona, which is a million times fainter than the surface of the Sun. Until the early 1930s, observing this
faint outer component of the Sun has only been possible during solar eclipses when the disk of the moon
would move in front of the Sun, suppressing the bright light radiating from its surface, which revealed the
�ne coronal structures. There were several attempts to image the solar corona outside of solar eclipses in
the late 18Cℎ and early 19Cℎ century, but the �rst successful observation was done by the French astronomer
Bernard Lyot from the Observatory of the Pic du Midi in the southwest of France in 1930. He mounted
an occulting disk over the image of the star in the focal plane of the telescope and identi�ed the need for
an undersized diaphragm in the reimaged entrance pupil to cut o� the light di�racted by the focal-plane
mask (Lyot 1939). Thus, the �rst coronagraph (fr.: “coronographe”, Lyot (1932)) was conceived, the Lyot
coronagraph, which builds the basis for a whole family of coronagraphs today.

This concept was used in the following decades for observations of the solar corona, to image the outer
solar system planets and their rings and satellites, and eventually it was adapted to search circumstellar
environments for protoplanetary disks (Vilas & Smith 1987). Using a Lyot coronagraph fabricated by the
planetary imaging group at University of Arizona, the �rst directly imaged circumstellar disk was observed
by Smith & Terrile in 1984 (Smith & Terrile 1984) around the 4Cℎ magnitude star V Pictoris, visible from the
southern hemisphere. It was not until the mid-2000s that coronagraphy was able to reveal the �rst directly
imaged exoplanets (Chauvin et al. 2004), almost a decade after the very �rst exoplanet discovery in 1995.

High-contrast observations at small angular separations remain a challenging task to this day. Coron-
agraph designs are advancing to provide a better performance in terms of on-axis light attenuation, while
trying to limit the degradation of the planet throughput, all the while moving the lower limit on observable
star-to-planet distance closer and closer to the star. As the science goals become more demanding, aiming
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to capture the light of very faint, close-in exoplanets, the modern-day high-contrast imaging instrument
has evolved into more than just a set of static optical masks for on-sky starlight attenuation. Today, a HCI
instrument materializes as an integrated system that combines three main components: static starlight
attenuation with a coronagraph, active correction of the incoming light with a wavefront sensing and
control system (WFS&C), and the application of advanced post-processing algorithms. While we have a
whole collection of coronagraph architectures at our disposal, they are all united by their high sensitivity
to wavefront errors (WFEs) due to in�uences external and internal to the telescope. A WFS&C system
has the ability to sense the aberrations of the electric �eld and apply corrections with active components
like deformable mirrors (DMs) in order to eliminate aberrations, and to improve the contrast in the �nal
images. In addition to these static and dynamic systems during data collection, the use of advanced post-
processing algorithms completes a high-contrast imaging (HCI) instrument with which exoplanet hunters
set out to �nd faraway worlds. A look on the past and current science and HCI capabilities from the
ground and from space will describe the technology gap we need to �ll in the future if we want to reach
the ultimate goal of getting a direct image of an Earth-like exoplanet.

1.1.3 State of the �eld of high-contrast imaging science

High-contrast imaging aims to reveal the faintest objects as visible both from the ground as well as from
space. This usually encompasses faint point sources like exoplanets and brown dwarfs, as well as extended
objects with low surface brightness, like protoplanetary or debris disks in circumstellar environments.
Ground-based and space-based telescopes complement each other in these observations: ground-based
telescopes have a rich history in the development of HCI instruments, with many di�erent coronagraphs
being used routinely at facilities around the world. However, atmospheric absorption limits our access
to the sky to only certain wavelength windows, which is mitigated by space-based observatories that
avoid the atmosphere altogether. Space telescopes have enabled a plethora of new exoplanet discoveries
through transit detections, many of which were followed up successfully with through RV from the ground,
but only a few direct imaging detections of exoplanets have been made from space. The only satellite
currently carrying instruments with su�cient HCI capability is the Hubble Space Telescope, and even
there, pertinent observations were possible only with the continuous optimization of the data reduction
and post-processing techniques used.

Results from direct imaging observations and surveys

A very fruitful research �eld for space-based HCI are circumstellar disks (Schneider et al. 2014): deep
visible light images like those attainable with satellites above the atmosphere are able to reveal sub-micron
dust grains of a stellar system halo. This is much less accessible with ground-based instruments that are
more optimized for the near-infrared wavelength regime, which limits observations to micron-size grains
in the main planetesimal belt (Schneider et al. 2018). Circumstellar disks thus pose a prime example of
complementary research being performed by combining observations from space and from the ground -
some examples are displayed in Fig. 1.2. A high degree of attention has of course been given to observations
of individual directly imaged exoplanets. Among the most prominent examples, Fig. 1.3 shows images of
the stars HR 8799, V Pictoris and 51 Eridani and their imaged exoplanet companions.

For more than a decade after its discovery by Marois et al. (2008), HR 8799 was the home to the only
directly imaged multiple-planet system, until the discovery of two giant planets on wide orbits in 2020
(Bohn et al. 2020). The initial discovery of the planets b, c and d was followed by the �nding of the
closer-in planet e (Marois et al. 2010b). The four companions travel on nearly face-on orbits at distances
of 10-70 au, and are embedded between a warm inner, and a cold outer debris disk (Matthews et al. 2013;
Su et al. 2009). This resembles an upscaled model of our own solar system with the Asteroid belt on the
inside of the giant gas planets, and the Kupier belt beyond. Due to its uniqueness, the system has been
extensively studied over the past decade, with a high interest in the study of the planets‘ orbital motions.
Improving data reduction and post-processing techniques proved crucial for this goal: Lafrenière et al.
(2009) went back to HST data from 1998 and were able to recover the planet HR 8799 b by deploying the
locally optimized combination of images (LOCI) algorithm (Lafrenière et al. 2007) to construct optimized
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AU Microscopii

Formalhaut AB Aurigae

Figure 1.2: HCI observations of circumstellar environments reveal structures that let us study the properties of
stellar systems. Top: Edge-on debris disk around AU Microscopii imaged with the IRDIS subsystem on
VLT/SPHERE (Boccaletti et al. 2015b). Bottom left: Debris disk around Fomalhaut, imaged with the STIS
instrument on HST (Kalas et al. 2013). The circle marks the position of the star and the diamond marks
the geometrical center of the dust belt. Bottom right: The young star AB Aurigae and the spirals of its
protoplanetary disk, imaged in polarized light with VLT/SPHERE (Boccaletti et al. 2020b).

HR 8799 𝜷 Pictoris 51 Eridani

Figure 1.3: Directly imaged exoplanets in their stellar systems. Left: HR 8799 with four co-orbiting planets b, c, d
and e, imaged with Keck (Marois et al. 2010b). Middle: V Pictoris with the hot Jupiter V Pic b, observed
with the VLT (Lagrange et al. 2010). Right: 51 Eridani with a young, Jupiter-like companion, detected
with GPI (Macintosh et al. 2015).
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Figure 1.4: Orbital �tting of the four planets in the HR 8799 system with di�erent dynamical constraints. The
black dots show measured astrometry of the exoplanets circling their host star, indicated with the black
star in the middle of each plot. 200 orbits are plotted for each of the three cases: unconstrained �tting
of Keplerian orbits (left), 1:2:4:8 near-coplanar orbits with low eccentricity (middle), and exclusively
dynamically stable coplanar orbits (right). Source: Wang et al. (2018).

reference images. Soummer et al. (2011) optimized the process with LOCI even further by using improved
calibration �les and recovered not only planet b, but also c and d in the HR 8799 system from archival data.
Being able to retrieve orbital measurements from epochs more than a decade apart is essential to perform
dynamical studies of these very long-period planets (50-500 yr), and to constrain their masses (Wang et al.
2018). Figure 1.4 displays several results of orbital �tting on astrometry with milliarcsecond precision
of the HR 8799 system from data taken by the ground-based Gemini Planet Imager (GPI), showing how
di�erent dynamical constraints in orbit �ts in�uence the mass estimates of the planets. In this case, more
constrained orbits favor lower planet masses, ∼8 Jupiter masses ("� D? ) for planets c, d and e, and ∼6 "� D?

for planet b.
V Pictoris is a young (∼20 Myr, Mamajek & Bell (2014); Y Navascués et al. (1999)), 4Cℎ magnitude star in

the southern hemisphere. It started gathering attention after it had been identi�ed as the �rst star hosting
an edge-on circumstellar disk (Smith & Terrile 1984). Closer inspection of the disk showed a deformation
in it (Lagage & Pantin 1994) and among the possible explanations was the hypothesis this warp might be
caused by the gravitational in�uence of an exoplanet (Mouillet et al. 1997; Roques et al. 1994). In 2009,
Lagrange et al. (2009) reported a point-like signal in observations with the NaCo instrument on the VLT
dating back to 2003, which was later con�rmed to be the planet V Pic b (Lagrange et al. 2010). After it was
seen that V Pic b has an edge-on orbit, one of the main points of attraction toward this 11"� D? planet was
the possibility of seeing the �rst directly imaged planet in transit. This hypothesis was ruled out for the
planet itself (Wang et al. 2016), as it was predicted to miss the star in the end, but its Hill sphere would still
travel across the star, providing the opportunity to probe circumplanetary material during a Hill sphere
transit (Kenworthy et al. 2021).

The star 51 Eridani has very similar properties to V Pictoris as they are both members of the same
moving group. The 2–10 "� D? planet 51 Eri b is thus a similarly young, giant planet, and it was the �rst
planet discovered by GPI (Macintosh et al. 2015). As opposed to V Pic b it is rather cold and seems to be
cloudy (Rajan et al. 2017; Samland et al. 2017). Observations of the planet with integral �eld spectrographs
on GPI and Keck shown in Fig. 1.5, left, show distinct spectral features in various wavelength bands, which
show decent accordance with a modeled spectrum that assumes a cloudy atmosphere �lled with iron and
silicates. Modeling these features with varying parameters for �tted spectra lets us infer the luminosity
of the planet, which in turn lets us make conclusions about the probable formation process the planet ran
through. The two competing models in planet formation theory are gravitational instability (GI; Boss 1997)
and core accretion (CA; Lissauer 1987). With GI, clumps of matter start forming in the outer regions of a
protoplanetary disk that then contracts to become a giant planet, accreting the gas around it until its orbit
is cleared out. In the CA theory, small particles of dust collide and start sticking to each other, accreting
more and more material like this over time to form a planet. Evaluating a companion’s luminosity as a
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Figure 1.5: Left: 51 Eri b spectral data (grey points) taken with integral �eld spectrographs on GPI (up to 2.5 `m)
and Keck (two bands indicated with green lines). The red line represents a best �t spectral energy
distribution for an atmospheric model with iron and silicate clouds. Observations with JWST will provide
complementary data in the 2–20 `m wavelength regime, stretching out to the far right of this plot and
beyond. Right: Bolometric luminosity from spectra like the one to the left as an indicator of formation
theory. Dotted lines are evolutionary tracks assuming a GI start, the solid lines assume CA. The data
from 51 Eri b is consistent with both formation models, and dynamical mass estimates with for example
the methods shown in Fig. 1.4 could help to explicitize the more likely formation theory for this young,
Jupiter-like planet. Source: Rajan et al. (2017).

function of its age like in Fig. 1.5, right, provides a way to discern between such di�erent pathways to
planet formation. The plot shows a number of di�erent sub-stellar companions, including the planets of
HR 8799, and 51 Eri b, superimposed on evolutionary tracks assuming di�erent masses, and di�erentiating
between formation through GI (dotted lines), and CA (solid lines). We can see how 51 Eri b, based on the
�tted iron-silicate atmosphere spectrum, is compatible with either planet formation process. Constraining
the planet mass further, for example with dynamical orbit modeling like shown in Fig. 1.4, could improve
our understanding of the body’s formation process.

Contrary to the numerous disk detections with HCI instruments, the examples of directly imaged
exoplanets like the ones shown above amount to only a handful of the ∼4800 con�rmed planets. This gives
us a fairly small sample to conduct statistical studies on, which can provide insight into the frequency of
sub-stellar companions in the proximity of the solar system and shed light on their physical nature. Over
the past two decades, dedicated direct imaging surveys from the ground have targeted large samples of
nearby stars to conduct comprehensive searches of the solar neighborhood, aiming to address some of these
topics. The two largest ongoing surveys are the SpHere INfrared survey for Exoplanets (SHINE; Desidera
et al. 2021; Langlois et al. 2021) on the SPHERE instrument of the Very Large Telescope (VLT) in Chile,
and the Gemini Planet Imager Exoplanet Survey (GPIES; Nielsen et al. 2019), conducted with the Gemini
Planet Imager (GPI) at the Gemini South telescope, also in Chile. They are both surveying the closest stars
in a sphere of an average radius of 10 parsec around the Sun, to look for planets at separations of 10-100 au
from their respective host star, probe the atmospheres of giant planets and brown dwarfs, determine the
orbital properties of substellar companions and investigate their formation and evolution history (Vigan,
A. et al. 2021). Shown in Fig. 1.6, we can see a comparison of companion detections around sun-like stars (F,
G and K stars) from the SHINE survey with two numerical models for planet formation via GI and CA. We
can see that these two pathways to planet formation produce fundamentally di�erent planet populations:
GI, marked with shaded blue dots in the plot (the shade strength indicating the density of companions)
tends to form massive planets at larger separations, while CA, marked with red and yellow dots, produces
the opposite. The black contour lines mark the “depth of search” of the SHINE survey, meaning how many
stars SPHERE is sensitive to as a function of mass and semi-major axis, and the grey points with error bars
are data points from �ve companion detections around F, G and K in this context.

The extended blue area marking the GI population in this parameter space overlaps with the high
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Figure 1.6: Comparing SPHERE detection limits in the SHINE survey to two numerical models of planet formation,
GI and CA. The GI simulation results are plotted with blue, the CA results with red dots, in the space
of companion mass (in "� D? ) vs. semi-major axis (in au). The �ve grey points with error bars indicate
companion detections around F, G and K stars. The black contours show SPHERE detection limits,
with an indication of the number of stars to which the survey is sensitive to sub-stellar companions. A
potential exoEarth with a mass of ∼ 10−3 "� D? at 1 au remains far away from these detection limits.
Source: Vigan, A. et al. (2021).

sensitivity regions of SPHERE in this plot, and yet, not very many sub-stellar companions were detected
with the SHINE survey. This suggests that the GI formation does not seem to be the prevalent planet
formation process. Results like this are major information that helps us constrain what we know about
the mechanisms of planet formation, a �eld in which many questions remain unanswered (Wagner et al.
2019). Additionally, the data in Fig. 1.6 demonstrates point-blank how Earth-like exoplanets are very much
out of reach of current HCI instruments. An Earth-analogue with a mass of 10−3 "� D? and a semi-major
axis of 1 au drops o� the plot entirely, placing itself far away from any sensible detection limits today’s
HCI instruments can claim.

Expanding HCI performance to �nd exoEarths

It is here where it becomes obvious that even if there are planets out there that are similar to our own,
we currently do not possess the technical capabilities to �nd them. At this point, it is worth taking a
step back and remind ourselves of what exactly it is that we de�ne as an “exoEarth”, what observational
capabilities we need to be able to detect and characterize such bodies, and how this compares to our current
instrumental limitations.

The only life forms we know of are completely encapsulated on a single planet, the Earth. While
there might well be living beings elsewhere in the universe, we do not, in fact, have any idea about what
they are like, and what conditions they require for survival. In making an educated guess, astronomers
thus decided to extrapolate from what we know about the Earth and conditions here in order to de�ne
potentially habitable extrasolar planets - exoEarths. Concretely, the search for habitable planets means
that we are targeting small, rocky planets in what is called the habitable zone (Kopparapu 2018), the area
around a star that allows for moderate enough temperatures such that water would exist in its liquid form,
like we have it on Earth where it forms the basis of all life. Not only liquid water (�2$), but various
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Figure 1.7: Our goal: observe an exoEarth with con�rmed biomarkers. Left: Simulated image of a solar system
analogue at a distance of 12.5 pc as seen with the 15 m diameter LUVOIR A space telescope, using
an apodized pupil Lyot coronagraph (APLC). After a realistic application of starlight suppression with
a coronagraph, WFE in�uence, noise and post-processing, the planets become clearly visible, among
them an Earth-twin. Right: Simulated spectrum of an exoEarth with ECLIPS, the coronagraphic imaging
instrument on LUVOIR, modeled after the Earth as we know it today. Data like these will allow us to
measure abundances of molecules in the atmospheres of planets, with the goal to identify habitable
conditions. Shaded regions mark 20% bandpasses in the near-UV (blue) and optical (green), and 10%
bandpasses in the near-IR, with the vertical lines in the bandpass centers. Source: The LUVOIR Team
(2019).

atmospheric biomarkers such as molecular oxygen ($2) or ozone ($3) are also considered as indicators for
possible life. The extent and position of the habitable zone depends on the stellar type and distance to
the host star, so we search for companions around solar-type stars, on orbits of 1 au. All of this brings us
back to the challenges of direct imaging discussed in Sec. 1.1.2, and aptly displayed in Fig. 1.1, showing
the famous �ux ratio of 10−10 for an exoEarth in the visible wavelength range. Since a 1 au planet will
have a shorter apparent separation in the sky the farther away its whole stellar system is located from
our own solar system, it is easier to achieve the optical performance for such detections on stars in the
solar neighborhood, at around 10 pc, where the apparent distance remains comparatively large, about
1 arcsec. The scienti�c motivation could not be simpler - take our own world and look for an equivalent
one in our direct vicinity - but the technical implications pose signi�cant instrumental challenges on our
observatories. By overcoming these challenges, what we hope for is to one day detect an image like shown
in Fig. 1.7, left, and to obtain spectra allowing us to detect biomarker molecules and potentially habitable
conditions.

A direct instinct is to build larger telescopes, and design more performant HCI instruments, with
coronagraphs that achieve better contrast at smaller inner working angles (IWA), WFS&C systems that
can accurately null the light in the DH, and post-processing techniques that squeeze out the last bit of
information from our observations. The extremely large telescopes (ELTs) on the ground, planned to see
�rst light in the next decades pursue exactly this goal. With primary mirrors of 30–40 m, they will get
close to being able to detect Earth-like planets, but will be limited to the nearest M-type (cool) host starts,
which are less massive and less luminous than the Sun (Guyon et al. 2012). The biggest obstacle for HCI
observations from the ground is the protective envelope of our own planet: the atmosphere. Once the
light from a faraway object in space reaches the Earth, it has to pass through the relatively thin layer
of several dozens of kilometers of air before we can capture it with our detectors. During its passage,
gradients in pressure and temperature, combined with moving air layers at di�erent speeds in di�erent
directions cause the wavefront (WF) to get dynamically distorted, massively impeding on the quality of
an image formed through a telescope. While the theoretically attainable resolution, the di�raction limit, is
still given by Eq. 1.1, the real performance of the imaging instrument is now highly degraded. An adaptive
optics (AO) system (Roddier 1999) corrects these aberrations in real time to a certain degree, at typical rates
of 1–2 kHz for high-contrast observations. It uses a wavefront sensor to sense the distortions, computes
the appropriate correction shape for a deformable mirror (DM) in the optical path of the instrument and
applies them to the system. Since this correction will never be perfect, the �nal imaging performance
will be constrained by the �uctuation of AO residuals. In terms of contrast for ground-based instruments,
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even with “extreme Adaptive Optics” (xAO), state of the art coronagraphs and advanced post-processing
techniques, we are limited to brightness ratios of typically 10−5-10−7, with the lower limit being reached
extremely rarely, and exclusively under excellent observing conditions. Ultimately, the residual AO halo
coming from uncorrected speckles will limit how well we can extinguish the light from the star. Since this
halo is stronger closer to the central point source, high contrast on ground-based instruments is achievable
only at larger angular separations around ∼ 0.3 arcsec or more, which corresponds to a physical star-to-
planet distance of around several au for nearby stars.

Ultimately, to reach the ambitious goal of detecting a habitable exoplanet around a Sun-like star, we
need to put new class of telescopes into space. These will have to be large in order to provide the required
angular resolution as well as gather the very few photons emitted by faint planets, and they will need to
carry a suite of instruments with better coronagraphs and integrated wavefront control systems that will
make them the most advanced high-contrast instruments we have used so far. While the development of
such systems has been conducted with a separate focus on the individual components for a long time, it has
become clear that the di�erent parts of a high-contrast instrument need to be developed and optimized
together, in order to reach the ultimate performance we need. This means that coronagraphs, usually
devised as a suite of static masks and optical components, and wavefront sensing and control systems
have to be created and operated as a unit. The raw contrast levels achieved with such a system will then
be improved upon with post-processing methods that will �nally be able to reveal planets at contrast levels
of 10−10.

Such large space telescopes need to have diameters on the order of 8-15 m, which poses challenges for
the construction and launch of the observatory. To be able to use light-weight materials and to allow the
telescope to fold into the launch vehicle, the primary mirrors will be segmented, with the most common
designs being made of rings of hexagons, taking advantage of their geometrical packing factor. It was
shown that the size of the telescope primary mirror has a direct in�uence on the expected yield of exoEarth
candidates (Stark et al. 2019), which is one of the main drivers to push toward larger and larger primary
mirror diameters. The mirror segmentation of course introduces optical complexity into the system, not
only because the segment gaps will cause di�raction e�ects that need to be taken into account, but also
because a su�ciently accurate co-phasing of the segments needs to be achieved in order to support the
optical performance of the high-contrast instrument. Two contestants for the role of the next �agship
mission are LUVOIR and HabEx. They are two powerful observatory concepts that di�er in their respective
implementation philosophy, but they share the capability to �nd habitable worlds with high performance
high-contrast imaging.

The goal is clear: we need a new generation of telescopes in space, escaping the disruptive atmosphere.
These observatories need to have large apertures creating photon collecting areas that provide a high sen-
sitivity, which is best achievable with segmented primary mirrors. And we need advanced star attenuation
systems yielding a contrast of 10−10 at angular separations as small as 0.1 arcsec in order to reach the part
in the parameter space that contains potentially habitable exoEarths. The solutions catering to these needs
will have to be integrated HCI instruments with state of the art coronagraphs, WFS&C systems, control
architectures, observation strategies and post-processing methods, all designed and optimized as a unit to
allow us to eventually �nd other life in the universe.

1.2 Current and future landscape of high-contrast imaging facilities

The angular resolution of an imaging instrument, and hence its capability to detect faint, close-in exo-
planets depends directly on the primary diameter of the telescope. This is why, starting from telescope
lenses less than half a dozen centimeters wide at the time of Galileo, the zoo of astronomical observatories
has not only grown massively in numbers, but also in primary mirror diameters. Big telescopes not only
improve our imaging resolution, but they also have larger collecting areas, which provide an increased
sensitivity to faint signals.

Coronagraphs installed on instruments provide high-contrast capabilities on a telescope. A corona-
graph is usually designed and built as part of a science instrument installed on a telescope, which can also
include other analysis devices, for example spectrographs. A single telescope usually hosts more than one
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science instrument, with each of them branching o� part of the light that hits the telescope primary mirror
into its own optical path and detector. Depending on the design and operation of the instruments, there
are often several coronagraphic observing modes available on a given observatory. Is is known from �rst
principles that the geometry of the telescope entrance pupil largely impacts the image formation process
and coronagraph performance. So, while each instrument has its own optical setup, control components
and science objective, each of them will be equally in�uenced by the primary mirror geometry, its central
obstruction and support struts.

Most ground-based instruments in operation today have been installed on their telescopes a long time
after the observatories have been initially designed and constructed, or they have been signi�cantly up-
graded form their initial form. This means that many coronagraphs on these instruments were built under
practical constraints, like accessibility of focal and pupil planes, possible alignment precision of optical
masks, or the feasibility to integrate a focal-plane wavefront sensing system. However, to truly exploit
the full range of high-contrast applications, whose limits are set by basic optical principles rather than
engineering constraints, future telescopes need to be built from the ground up with an HCI system as part
of the design. Looking ahead, high-contrast instruments are being designed as a unity (Mawet et al. 2012):
the telescope structure, the static coronagraph components and active WFS&C, as well as post-processing
techniques are regarded together in order to build instruments capable of reaching the lofty goal of exo-
Earth detection and characterization. This is why the future large missions with high-contrast instruments
we are preparing today, both on the ground as well as in space, will be opening the door to new depths in
high-contrast imaging science.

1.2.1 Ground-based observatories

Telescopes on the ground have seen a long history of new technology being used to create more powerful
observatories over time. The big advantage of ground-based telescopes is the access to their respective
science instruments. They can be easily maintained and �xed, and after their life cycle comes to an end,
they are freely replaced with or upgraded to newer generation devices. This provides a great �exibility
in terms of exploring new hardware solutions, and the �rst-generation high-contrast imagers provided
us with a leap in the imaging performance of faint objects. The �rst directly imaged exoplanet in 2004
(Chauvin et al. 2004) was observed with instruments on the Very Large Telescope (VLT), operated by the
European Southern Observatory (ESO) in Chile. The VLT consists of four equal unit telescopes (UT),
each with a 8.2 m circular primary mirror, who all saw �rst-light between 1998 and 2000. The NACO
instrument on UT4, consisting of the Nasmyth Adaptive Optics System (NAOS) and the Near-Infrared
Imager and Spectrograph (CONICA; Lenzen et al. 2003; Rousset et al. 2003), equipped with a classical
Lyot coronagraph (CLC), provided the data for the 2004 detection. After moving NACO to UT1 in 2014, it
was decommissioned in 2019 and is no longer in use. A direct sibling to VLT is the Gemini Observatory,
consisting of two 8.1 m twin mirrors, one located in Chile (Gemini South), and one on the mountain top
of Mauna Kea in Hawai‘i (Gemini North). Its instruments Near-Infrared Coronagraphic Imager (NICI,
decommissioned; Chun et al. 2008) on the South telescope and Near-InfraRed Imager (NIRI) in the North
(Hodapp et al. 2003) both used various FPM designs for coronagraphic imaging with a CLC.

The �rst coronagraphs to be used on ground-based systems were classical Lyot coronagraphs with
adaptations of the focal-plane mask and Lyot stop to optimize them for any given observatory, telescope
structure and shape, instrument, and science case. Over time, many more types of coronagraphs were
deployed, especially in second-generation ground-based imagers, and today we are looking at a variation
of di�erent types and �avours of coronagraphs on many di�erent systems. I describe those, together with
the most prevalent WFS&C algorithms, in Sec. 1.3.

Current state of the art facilities

One of the most fruitfully operating high-contrast imagers today is the Spectro-Polarimetric High-contrast
Exoplanet REsearch (SPHERE) instrument on UT3 of the VLT (Beuzit et al. 2019). It consists of three sub-
sytems, the Infrared dual imaging spectrograph (IRDIS; Langlois et al. 2014, 2013), the Integral Field Spec-
trograph (IFS; Claudi et al. 2008) and the Zurich imaging polarimeter (ZIMPOL; Thalmann et al. 2008).
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Available to both of the two near-infrared instruments IRDIS and IFS, SPHERE is equipped with a whole
set of masks for half-wave four-quadrant phase mask (FQPM) coronagraphs and apodized pupil Lyot coro-
nagraphs (APLCs) (Guerri et al. 2011; Carbillet et al. 2011), while ZMIPOL has various masks available for
CLCs and FQPM coronagraphs (Schmid et al. 2018). Focal plane WFS has been tested on an internal source
for coronagraphic phase estimation with COFFEE (Paul et al. 2014b), and an implementation of a DH algo-
rithm with pair-wise (PW) sensing and electric �eld conjugation (EFC) has been demonstrated successfully,
also on the internal source (Potier et al. 2020b). After seeing �rst-light in 2015, an upgrade to SPHERE is
being designed in order to push for even smaller inner working angles and higher spectral resolutions
(Boccaletti et al. 2020a).

The dedicated exoplanet hunter on Gemini is the Gemini planet imager (GPI; Macintosh et al. 2018,
2014), which saw �rst-light in 2013. It is equipped with an APLC and is also ramping up for an upgrade to
GPI 2.0 (Chilcote et al. 2020), which will include new APLC designs with smaller inner working angles and
higher robustness to low-order aberrations. The refurbished GPI instrument will be moved from Gemini
South to Gemini North to make place for other science instruments not dedicated to high-contrast imaging.

Rather than performing large surveys in the solar neighborhood, the Subaru Coronagraphic Extreme
AO (SCExAO) system (Ahn et al. 2021; Jovanovic et al. 2016; Guyon et al. 2010b) on the 8.2 m diameter,
circular Subaru Telescope on Mauna Kea is working to push the limits on inner working angles with
various coronagraphs and WFS&C implementations. It is designed as a laboratory testbed with a modular
setup to test out new technologies, with easy switching to on-sky validations and observations (Guyon
et al. 2020; Lozi et al. 2018).

A similar concept can be found on one of the two Magellan telescopes at the Las Campanas Observatory
in Chile (Shectman & Johns 2003). Installed on the 6.5 m Magellan Clay telescope, MagAO-X is an extreme
AO system targeting the visible wavelengths (0.5–1 `m), which addresses an observation window parallel
to the near-IR of GPI and SPHERE (1-2.5 `m) (Males et al. 2020, 2018). The instrument follows a general
Lyot architecture with exchangeable pupil- and focal-plane masks, with a vector apodizing phase plate
(vAPP) coronagraph and a phase-induced amplitude apodization complex mask coronagraph (PIAACMC)
used as a baseline.

All the above ∼8 m-class telescopes have in common that they have monolithic primary mirrors. Man-
ufacturing, coating and successfully polishing monolithic primaries that are larger than this has proven to
be challenging to impossible. One possible solution to gain in angular resolution is interferometry in the
visible and IR, where the combination of signals of spatially separated mirrors is combined to produce high
resolution images. The four units of the VLT have this capability, which is referred to as the VLT interfer-
ometer (VLTI; Richichi & Percheron 2005; Glindemann et al. 2003). Especially the recently commissioned
GRAVITY instrument on the VLTI performs at an extremely high angular resolution at the equivalent of
a 130 m telescope (GRAVITY Collaboration et al. 2017). Similar work is being conducted with the two
twin-mirrors on the Large Binocular Telescope (LBT) for the LBT interferometer (LBTI; Hinz et al. 2016;
Defrère et al. 2015; Hinz et al. 2014).

While interferometers allow for really large baselines since the individual mirrors can be placed very
far apart, the sensitivity of such telescopes still scales with the rather sparse collecting surface. Instead,
a true single-dish, large telescope can be built by stacking together individual, hexagon-shaped mirror
segments to form one big mirror. One example of these segmented observatories on the ground is the
Keck telescope pair, Keck I and Keck II, situated together on Mauna Kea in Hawai’i. They consist of 36
hexagonal segments each, built to a total primary mirror diameter of 10 m. Keck II features an AO system
adapted to the segmented primary (Wizinowich et al. 2000) and now hosts the Keck Planet Imager and
Characterizer (KPIC; Jovanovic et al. 2019; Mawet et al. 2016). This instrument incorporates new wavefront
sensors and high-dispersion coronagraphy, and will substantially inform more advanced HCI concepts for
large segmented telescopes in the future.

Future extremely large telescopes

In the next decade, we are looking at a leap in available ground-based telescope diameters and collecting
areas, together with new observing technologies, introduced by the era of extremely large telescopes. The
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players of this new generation of Earth-bound observatories are the Extremely Large Telescope (ELT2) by
ESO, the Thirty Meter Telescope (TMT3), and the Giant Magellan Telescope (GMT4), both US-lead e�orts.

With its 798 hexagonally shaped segments, composed to a 39.3 m diameter primary mirror, the ELT
will be located in the southern hemisphere in Chile (Ramsay et al. 2020). With MICADO (Davies et al.
2021, 2018), HARMONI (Thatte et al. 2021) and METIS (Brandl et al. 2021), and the dedicated AO system
MAORY (Ciliegi et al. 2021), it will host a whole family of �rst-light instruments including high perfor-
mance coronagraphs for the detection and characterization of exoplanets (Houllé et al. 2021; Carlomagno
et al. 2020; Baudoz et al. 2014). Further, a dedicated exoplanet hunting instrument is being planned for
the second-generation of ELT instruments, the Planetary Camera and Spectrograph (PCS; Kasper et al.
2021), with an ambitious goal to look for biosignatures in the atmospheres of sub-Neptunes in the solar
neighborhood.

The TMT will be composed of 492 hexagonal segments, which create a mirror of 30 m in diameter in
Hawai’i (Simard et al. 2016), with the Planet Formation Imager (PFI; Kraus et al. 2016) being the equivalent
to PCS. Breaking with the honeycomb-like hexagons used as segments, the GMT will be formed out of
seven 8.4 m circular mirrors, arranged in a �ower-like arrangement that will yield a maximum diameter
of 24.5 m. Thrown into the mix of future high performance HCI instruments, the high-contrast imager
TIGER (Hinz et al. 2012) will be serving its duty on this observatory in Chile.

While building our observatories on Earth enables us to support big telescopes structures like in the
case of these extremely large telescopes, their optics will inevitably be impacted by the e�ects of our
planet’s atmosphere. Putting these observatories on mountain tops at high altitude, paired with xAO
systems, is the best we can do to lessen its in�uence. However, the only solution to open the window ef-
fectively for observations of Earth-like planets is to leave the atmosphere behind entirely and put ourselves
into space.

1.2.2 Space-based observatories

The �rst ultraviolet/optical/infrared (UVOIR) space telescope in space, revolutionizing astronomy was the
Hubble Space Telescope (HST). It was launched and put into low-Earth orbit by a Space Shuttle in 1990,
where its 2.4 m circular, monolithic primary mirror has been collecting light for its science ever since.
It has been serviced by 5 shuttle missions between 1993 and 2009, during which some instruments were
�xed, upgraded or swapped out for newer ones. High-contrast capabilities were provided by several of the
HST instruments, like Wide Field Camera 3 (WFC3; Rajan et al. 2015), the Advanced Camera for Surveys
(ACS; Krist et al. 2003), but the only currently available coronagraph in space, a simple CLC with various
available masks, is installed on the Space Telescope Imaging Spectrograph (STIS; Debes et al. 2019; Grady
et al. 2003). Having contributed majorly to our collective experience of putting observatories into space,
and having provided the �rst high-contrast observations beyond the atmosphere, HST provided important
learning grounds for future space missions (Krist 2004). Speci�cally, the next two space missions that will
bene�t from the lessons learned with HST will be the James Webb Space Telescope (JWST) and the Roman
Space Telescope (RST).

JWST5 (Lightsey et al. 2012) will be the largest, and �rst segmented telescope that ever �ew in space: its
18 hexagonal segments will form a deployable primary mirror with a diameter of 6.5 m, a mighty successor
to HST. Covering IR wavelengths, JWST will have a collecting area that is six times larger, a �eld of view
about 15 times wider, and a signi�cantly increased spatial resolution. After launch, it will be on its way
to the Lagrange 2 (L2) point between the Earth and Sun, a point in space 1.5 million km away from us,
orbiting synchronously with the Earth around the Sun. Shooting a segmented mirror into space poses
completely new challenges, addressed in Chapter 1.3.2. Two of its four instruments, the Near Infrared
Camera (NIRCam) and the Mid-Infrared Instrument (MIRI), will include coronagraphs that will be used for
the characterization of exoplanets (Perrin et al. 2018; Boccaletti et al. 2015a). While this unique observatory
will address a wide range of new and exciting science, it will also be an indispensable learning opportunity

2https://elt.eso.org/
3https://www.tmt.org/
4https://www.gmto.org/
5https://www.jwst.nasa.gov/

https://elt.eso.org/
https://www.tmt.org/
https://www.gmto.org/
https://www.jwst.nasa.gov/
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for even larger space telescopes in the future. The design process, project management, assembly and
testing alone already provided valuable lessons learned for future projects, and the same is true for the
coronagraphs, both on HST and JWST (Debes et al. 2015).

Hubble has been �ying for 30 years in 2020, and Webb will �nish its 6-month commissioning phase in
2022, working with unprecedented high-contrast observation modes from space. However, none of these
missions to date use active WFS&C within their instruments, meaning there is not a single deformable mir-
ror dedicated to high-contrast imaging in space as of yet. This and the inherent limitations of the JWST
coronagraphs prevent us from getting to a discovery space that includes close-in, rocky exoplanets. The
only solution is to venture even further in the future, and conceive space telescope designs that are even
larger and more complex. To this end, the NASA Astro2020 Decadal Survey evaluated several ambitious
observatory designs and their recommendation was a 6 m class UVOIR telescope with high-contrast imag-
ing capability to launch in the 2040s. This endorsement was based on the results from two design studies
that de�ned exoEarth detection and characterization as one of their main science goals: the Habitable Ex-
oplanet Observatory (HabEx6; Gaudi et al. 2019), and the Large UV Optical InfraRed Surveyor (LUVOIR7;
The LUVOIR Team 2019).

These two observatories show di�erent approaches to realize space telescopes that are capable of exo-
Earth detection and characterization. HabEx is a 4 m monolithic telescope with an unobscured primary
mirror since it is designed as an o�-axis optical con�guration. Its size is limited by the available launchers
it would �t in to bring it to an L2 orbit around the sun. The o�-axis design was chosen in favor of the
vortex coronagraph (VC) in the HabEx Coronagraph (HCG; Krist et al. 2019; Riggs et al. 2018; Ruane et al.
2018a). This instrument, together with the Starshade Instrument (SSI), is the dedicated device for direct
imaging of exoplanets on HabEx. HCG was conceived with two almost-identical coronagraph channels
that both contain an in-pupil and an out-of pupil DM each, as well as an out-of-band Zernike WFS. A
polarization beam splitter always sends vertically polarized light to channel A and horizontally polarized
light to channel B. Depending on the observing strategy, the channels provide several arrangements of
visible and IR cameras, and integral �eld spectrographs.

LUVOIR features two distinct varieties for a wide range in design space, LUVOIR A and LUVOIR B.
Both are segmented with a folded launch position, and designed as a serviceable spacecraft that will be
sent to L2. While LUVOIR A has an on-axis, 15 m primary with 120 segments, LUVOIR B is a 55-segment
o�-axis construct, both of which are larger than JWST’s mirror and signi�cantly larger than HST’s, as
displayed in Fig. 1.8. The instrument on LUVOIR holding promise to reveal exoEarths is the Extreme
Coronagraph for Living Planetary Systems (ECLIPS; Pueyo et al. 2019; Juanola-Parramon et al. 2019b). It
has the same design for both LUVOIR A and B, barring some minor fold mirror adjustments in the more
compact LUVOIR B layout. ECLIPS is split into three di�erent channels; near-UV, visible, and near-IR.
Similarly to HabEx, each of them contains one in-pupil and one out-of-pupil DM, available pupil and focal
planes for coronagraphic masks and stops, and an out-of-band Zernike WFS to monitor slow, low- and mid-
order WFE for the DM correction. For LUVOIR-A, there are three separate APLC masks with di�erent IWA,
OWA and instantaneous bandwidth, each with its own FPM. The narrow-angle APLC is typically used for
spectroscopic characterization in the longer wavelengths associated with molecular oxygen and water
(0.76 `m and 0.94 `m). Planet detection can be performed at shorter wavelengths though, in which case
we can easily tell from the basic relation of wavelength to angular resolution in Eq. 1.1 that a given angular
separation between planet and star corresponds to a larger IWA in resolution units of _/� . Having a larger
IWA means using a larger FPM, and this in turn relaxes the amount of concealed area in the apodizer,
increasing the coronagraph throughput signi�cantly. In this way, the three APLC designs apply to di�erent
use-cases. In the LUVOIR A setup, ECLIPS includes a vortex coronagraph: it has a better throughput at
small IWA but performs poorly on resolved stars and when there is a central obscuration, which is why
it will only be used for the most distant, unresolved target stars. The LUVOIR B coronagraph is a DM-
assisted vortex coronagraph (DMVC) and has a higher core throughput by a factor of two compared to
the APLCs; it also has a secondary coronagraph option with an APLC. Each channel has a set of di�erent
spectral �lters, apodizers, focal-plane masks and Lyot stops to enable di�erently optimized dark holes in

6https://www.jpl.nasa.gov/habex/
7https://www.luvoirtelescope.org/

https://www.jpl.nasa.gov/habex/
https://www.luvoirtelescope.org/
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Passive coronagraphs
without wavefront control

Active coronagraphs with 
integrated wavefront control

Figure 1.8: Primary mirror comparison of monolithic and segmented space telescopes. While HST and JWST rely
heavily on passive stabilization, future observatories like LUVOIR will �y full-�edged AO systems for
integrated wavefront control. Adapted from The LUVOIR Team (2019).

the focal plane. All of these coronagraphs are designed to reach a raw contrast of 10−10.
Considering the fundamentally di�erent observatory designs between HabEx and LUVOIR, we notice

that the general blueprint of their coronagraphy instruments is fairly similar. Both will reach the magical
10−10 limit in contrast, and both will certainly do so assisted by active WFS&C techniques using multiple
DMs, on an observatory that will deploy various strategies in order to keep its wavefront ultra-stable
over the course of an observation. However, the di�erence between the two telescope concepts becomes
more obvious if we look at their scienti�c return. One metric in particular is exoplanet yield, the predicted
number of detected exoplanets as a function of relevant observational, instrumental and astrophysical
parameters (e.g., mission life time, coronagraph IWA, OWA, resolution and throughput, target star list,
exoplanet occurrence rates, habitable zone boundaries, etc.). It turns out that the single most in�uential
parameter on exoplanet yield is the inscribed parameter of the primary mirror, which in turn depends on
the telescope geometry (Stark et al. 2019). The relation between yield and inscribed telescope diameter is
shown in Fig. 1.9: The green curves depict HabEx-like o�-axis, monolithic telescopes with charge 6 VCs.
The red curves describe o�-axis, segmented LUVOIR B-like architectures with DMVCs, and the blue curve
expresses LUVOIR A-like on-axis (obscured) segmented designs with APLCs. The spread between equally
colored curves pertains to di�erent observing scenarios of the same telescope, and the curves stop at their
assumed largest feasible size for that telescope design.

The conclusions from this plot are weighty: The constant o�set of the green and red curves with respect
to the blue ones indicate that coronagraphs generally perform better with unobscured telescopes, while
the almost seamless connection of the green and red curves means that there is almost no penalty intro-
duced by segmentation. The big advantage of on-axis designs seems to be plainly the technical feasibility
of building them much larger than their o�-axis counterparts. While high-performance coronagraphs can
indeed be designed for such large, on-axis observatories, there remains a debt due to their central obscu-
ration, marked with the blue striped area. All three of the observatories discussed above are marked in
this plot: HabEx, LUVOIR B and LUVOIR A. The conclusion about yield seems simple: the larger your
telescope, the more planets you will �nd. What is not factored into this is the fact that larger and more
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HabEx

Figure 1.9: ExoEarth candidate yield as a function of telescope inscribed diameter. Even if we pay a price for on-axis
apertures compared to o�-axis designs in terms of yield, the ability to build such structures to overall
larger mirrors will result in more exoEarth candidates. The three black dots indicate the HabEx and two
LUVOIR architectures. Adapted from The LUVOIR Team (2019).

complex structures, for example those with segmentation, also require more complex solutions in terms
of launch con�guration, commissioning activities, active WFS&C, WFE stability and others. This requires
a careful analysis of the impact of structure complexity on science yield and mission feasibility, and we
need to develop design and mitigation strategies for such projects.

It will be essential for the realization of a �agship mission like HabEx or LUVOIR to mature the required
technologies. On the way to do that, it will be crucial to develop high-�delity models of the coronagraph
and WFS&C performance that are expected. To this end, we need to develop demonstrations of these
technologies both in laboratory settings as well as in-orbit to further their technology readiness levels.
While testbeds provide the venues to undertake laboratory work, the Nancy Grace Roman Space Telescope
will be an indispensable path�nder for the next generation of HCI instruments in space.

RST is a 2.4 m monolithic telescope, much like HST. The main science goal of RST is cosmology and
therefore it is a wide-�eld infrared observatory. Unfortunately, it holds a much more unfriendly aperture
geometry than HST due to the very large central obscuration, held in place by a whole array of thick
support struts. On board, it will carry the Coronagraph Instrument (CGI) that features a hybrid Lyot
coronagraph (HLC) as its baseline coronagraph with supported modes for shaped pupil coronagraphs
(SPC; Riggs et al. 2021). CGI’s requirement is to demonstrate 10−7 contrast in space, with the goal to reach
10−9 (Kasdin et al. 2020; Mennesson et al. 2018). Shown in Fig. 1.10 is a comparison between the required
and predicted CGI performance with some of the instruments mentioned above, together with the real or
predicted �ux ratio of some known planets. It becomes clear from this �gure that RST will be a major step
in advancing high-contrast imaging with active WFS&C en route to the envisioned 10−10 observatories.

1.2.3 The role of high-contrast imaging testbeds

Moving toward the large and powerful observatories of the future that will be able to reach 10−10 con-
trast supported by active WFS&C with several DMs in space necessitates the development of the required
technologies. While Roman Space Telescope CGI will constitute a major milestone in getting ready for a
10−10 mission, the roadmap to reach that goal is marked by the need for laboratory demonstrations. The
last decade has seen an immense advancement of various coronagraph models and wavefront correction
techniques which are all, on a component-level, quali�ed to make a high-contrast instrument on one of the
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Figure 1.10: HCI performance of CGI compared to existing instruments. The lines are color-coded by bandpass
center wavelength and assume an integration time of ∼1 hr unless indicated otherwise. The di�erent
CGI observing modes are bold faced. While Roman CGI is predicted to signi�cantly push our observing
limits to deeper contrast at smaller angular separation, detection of an Earth-like exoplanet analogue
around a star at a distance of 10 pc (turquoise marker) will have to wait for the next generation of large
space telescopes. Adapted from Kasdin et al. (2020); Bailey et al. (2018).

�agship missions. It is now crucial to examine system-level solutions that bring the individual elements
together to form a complete structure, and gauge the advantages the various systems have to o�er. In
order to mature and test such solutions, the community harbors several e�orts in the form of HCI testbeds
for laboratory research and validations of space-based coronagraphy. A recent overview of space-related
testbed facilities is given in Mazoyer et al. (2019).

Overall, there are several aspects these testbeds are exploring, and conditions under which they do so:

Segmented vs. monolithic apertures: While segmentation allows for larger absolute diameters and
collecting areas, such telescopes introduce complexity to the optical system. This concerns in par-
ticular the coronagraph optimization which needs to mitigate the aperture’s non-circular geometry,
and the WFE stability issue. It is thus important to test HCI solutions both on segmented and mono-
lithic apertures to investigate the tradeo� between the two approaches to mirror design.

On-axis vs. o�-axis telescope geometries: Coronagraph performance is signi�cantly degraded by the
presence of a central obscuration in the optical system. While certain telescope designs allow for
an o�-axis mirror, this becomes unfeasible for primaries beyond 10 m, and a more stable on-axis
con�guration is typically chosen. Current designs for future �agship missions include both obscured
(on-axis) as well as unobscured (o�-axis) telescope designs, on which di�erent coronagraph types
perform di�erently well.

Coronagraph design: Between raw contrast, inner and outer working angle, robustness to aberrations,
o�-axis throughput, spectral bandwidth and architecture complexity, various coronagraph designs
will have distinct advantages over others, especially when paired with di�erent telescope geometries
and WFS&C architectures.

WFS&C strategies: The correction of static, and in particular, dynamic wavefront errors requires sens-
ing and control methods with DMs. The next generation of large space telescopes will all include
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multiple control loops on a whole range of spatial and temporal frequencies. As a result, there will be
multiple sensor sub-systems for which there needs to be appropriate communications and o�oad-
ing between them. A number of WFS&C strategies exist that are viable options for active control
on a large space-based telescope, and a major point in lab testing is to compare them to each other,
integrate them into a multi-level sensing and control system, and understand their relationship with
the other parts of an HCI instrument.

Wavelength coverage: The spectral characterization of exoplanets requires a high contrast over a large
band of wavelengths. This means that the electric �eld in the image plane needs to be estimated
and controlled in broadband light with a bandwidth of 10–20%. While coronagraphs and WFS&C
techniques can be optimized fairly easily for monochromatic light in a band of only 1–3%, which
is suitable for observations in very narrow wavelength �lters, it is necessary to demonstrate high-
contrast imaging methods over a broad wavelength range to be representative of on-sky observa-
tions. Moreover, while it is common for ground-based instruments to be coupled with a spectroscopy
component like an integral �eld spectrograph (IFS), this yet has to be demonstrated in the context
of extremely high contrast of future space-based instruments.

Environmental conditions and target contrast: Stability in the WFE demands high thermal and me-
chanical stability of the laboratory environment in which the testbeds are operated. Ambient-air
environments bear inherent restrictions to the ultimate contrast level they can achieve, at which
point only vacuum testbeds can go beyond.

There are currently a number of testbed projects in the US and Europe investigating solutions for active
coronagraphy from space, all working with their own combination of the points listed above depending
on their respective goals.

The �rst experimental demonstrations of 10−10 contrast levels were achieved in the High-Contrast
Imaging Testbed (HCIT) facility at JPL in Pasadena, California (USA) (Trauger & Traub 2007). In a vacuum,
and in bandwidths from 2%–20%, the speckle nulling technique was used to create a one-sided (180◦) DH on
a band-limited Lyot coronagraph, proving that these starlight attenuation levels can be achieved (Trauger
et al. 2012). Currently, the HCIT facility is home to its three main testbeds, all operating in a vacuum:
the Occulting Mask Coronagraph (OMC) testbed, the General Purpose Coronagraph Testbed (GPCT) and
the Decadal Survey Testbed (DST). The DST (Patterson et al. 2019; Seo et al. 2019) has the declared goal
of running through all currently competing setups and techniques for future space-based coronagraphy
missions (Ruane et al. 2019). Starting with a monolithic o�-axis aperture like in the HabEx case, their team
demonstrated a contrast of 4×10−10 with a classical Lyot coronagraph. The plan is to move to a segmented
o�-axis aperture, working on circular (360◦) DHs and in a 10% bandwidth throughout, before including
a Zernike WFS, and then expand the parameter space with on-axis apertures, larger bandwidths, various
WFS&C techniques and faster, more stable corrections. The GPCT is used independently from the DST
timeline to test novel coronagraphs, for example PIAACMCs and VCs, with segmented on-axis apertures,
and for aggressive inner working angles. The OMC testbed is used to demonstrate the capabilities of the
RST/CGI coronagraphs and WFS&C loops. Both main coronagraph designs for CGI, the HLC and the SPC,
have been used to reach a contrast on the order of 10−9 with the obscured RST pupil (Cady et al. 2017; Seo
et al. 2017). With its operations, it is preparing crucial for features space-based high-contrast missions,
like two-DM control and stable WFS&C.

Another testbed aiming to demonstrate and assess HCI methods for RST/CGI is the “Trés Haute Dy-
namique 2” (THD2) testbed in Paris, France (Baudoz et al. 2018a,b). It has been testing various phase-mask
coronagraphs at large bandwidths (Galicher et al. 2020; Patru et al. 2018; Delorme et al. 2016) and reached
the deepest in-air contrast to date with 3× 10−9. While most other testbeds all use the pair-wise estimator
to sense the electric �eld in the focal plane, and EFC as a controller, one of the declared goals of THD2 is to
compare various WFS&C techniques against each other (Potier et al. 2020a; Herscovici-Schiller et al. 2018;
Paul et al. 2014b; Mazoyer et al. 2013). The THD2 testbed is working with unsegmented on-axis apertures,
with recent adaptations being made to the entrance pupil and DMs in order to make it a truthful RST
demonstrator.
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Two testbeds that are dedicating their work speci�cally to segmented aperture telescopes are the
High-Contrast Spectroscopy Testbed for Segmented Telescopes (HCST; Llop-Sayson et al. 2020) at Caltech in
Pasadena, California (USA), and the High-contrast imager for Complex Aperture Telescopes (HiCAT) testbed
(Soummer et al. 2018) at STScI in Baltimore, Maryland (USA). The HCST is testing apodized vortex coro-
nagraphs (AVC) on o�-axis telescope designs like LUVOIR B, and they are preparing a single mode �ber
spectrograph for high-dispersion coronagraphy (Llop-Sayson et al. 2019). HiCAT is a system-level demon-
strator for on-axis segmented telescopes like LUVOIR A. Implementing two-DM control, they use an addi-
tional segmented deformable mirror with 37 segments to simulate a segmented telescope pupil, working
with APLCs. Appendix B is dedicated to this testbed as work on it constituted a signi�cant part of this
thesis.

Some additional noteworthy HCI testbeds are the Ames Coronagraph Experiment (ACE) located at
NASA Ames in California (Belikov et al. 2012), the Santa Cruz Extreme AO Lab (SEAL) in Santa Cruz,
California (Jensen-Clem et al. 2021), and the Segmented Pupil Experiment for Exoplanet Detection (SPEED)
in Nice, France (Beaulieu et al. 2020). ACE is putting a focus on high contrast particularly at small angles,
using PIAACMC coronagraphs on clear apertures, and the development of novel WFS&C techniques. The
SEAL testbed supports ground-based AO and HCI activities on segmented telescopes, like Keck or the ELT.
SPEED is a segmented testbed with dedicated experiments for ground-based telescopes.

1.3 High-contrast imaging in theory and implementation

Capturing photons to create images of faint objects in the sky for scienti�c analysis is an involved process
that includes various signi�cant components. First, for the purpose of high-contrast imaging, the optical
system will be equipped with a coronagraph, providing the best possible static solution for starlight sup-
pression. In an ideal case without aberrations and noise, theoretical designs are well capable of reaching
contrast levels beyond the required 10−10 for exoEarth detection and characterization, both in monochro-
matic as well as in 10%–15% broadband light. This means that all the light residuals due to di�raction are in
theory cancelled out at a satisfactory level. In practice though, the initially aberration-free �at wavefront
will be exposed to aberration sources that introduce perturbations to the light that will be transmitted
by the coronagraph, resulting in a sea of speckles around the optical axis. Wavefront aberration sources
can be both internal and external to the instrument itself. Manufacturing defects, polishing errors on op-
tical surfaces as well as alignment errors contribute to the dynamic deterioration of wavefront quality,
as thermal expansion and contraction will make errors introduced by mechanical components vary over
time, usually on the order of minutes to hours. On top of this, ground-based instruments are heavily im-
pacted by the Earth’s atmosphere, which causes very fast-evolving wavefront errors (on the millisecond
timescale) due to a changing index of refraction in di�erent atmospheric layers, caused by temperature
�uctuations. This requires active wavefront sensing and control (WFS&C) as a second major component
in a high-contrast instrument, where active optical components like deformable mirrors (DMs) are used to
control the wavefront as prescribed by algorithms that are informed by sensing loops. Not only can such
WFS&C systems reduce the degrading impact caused by aberrations, but they can also support the static
coronagraph in creating even better contrast levels with so called DH algorithms. Such methods usually
work in a loop of consecutive focal-plane sensing and DM correction steps that correct for aberrations and
drive down the image-plane contrast. Third, the focal plane images captured by the science camera can be
enhanced with various post-processing techniques, further correcting for errors and noise from various
components in our optical system.

This thesis puts a focus on the �rst and second components of this list, static coronagraphy and active
wavefront sensing and control, and further investigates the question of wavefront stability on large space
telescopes. Even after careful deployment of active wavefront control, there will be drifts occurring in the
system, degrading the contrast performance of the coronagraph. These residual errors stem from thermal
instabilities and mechanical warping. These can be limited by building observatories that perform at a
certain stability level in terms of mechanical and thermal drifts throughout its entire structure. Deriving
requirements for this drift stability is a critical aspect in the design process of large segmented telescopes.
In this section, I present the basic principles of image formation, coronagraphy, WFS&C and wavefront
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stability requirements, and introduce the formalism used throughout this thesis.

1.3.1 Image formation and coronagraphy

Direct image formation

Images are created by the propagation of light through a medium and optical components like lenses and
masks that will modify it depending on their properties. Light can in general be described as a complex-
valued electric �eld (E-�eld), � (r), built from a complex-valued pupil function �(r), a phase aberration
term q (r), and an amplitude aberration term U (r), where r is the 2D vector coordinate in the pupil plane:

� (r) = �(r)4U (r)+8q (r) . (1.2)

The light emitted from an observed object is captured by a �nite-size telescope mirror that injects it into
an imaging instrument, where it gets focused onto a science detector. Describing the telescope pupil with
the transmission-only function % (r), which will be zero outside of the aperture, the image formation from
the telescope pupil plane to the science focal plane can be formally expressed by the far-�eld Fraunhofer
propagation operator F , which can be approximated with a Fourier transform:

� (s) = F {% (r)4U (r)+8q (r) }, (1.3)

with s being the image plane coordinate. We can detect the intensity � (s) produced by this electric �eld in
the image plane with a camera, as expressed by a modulus squared:

� (s) = |F {� (r)}|2 = |F {% (r)4U (r)+8q (r) }|2. (1.4)

Assuming a completely �at wavefront coming from a point source at in�nity, for example an unresolved
star, entering an aberration-free imaging system, the response of the optical system to this signal will
be described by the system’s point spread function (PSF). Without any aberrations present in the system
(U (r) = 0 and q (r) = 0), the PSF of an imager will be purely de�ned by the di�raction from the hard edge
of the entrance pupil % (r), which in the case of a perfectly circular aperture results in an Airy pattern,
including a bright central core and concentric Airy rings. Changing the shape of the pupil means changing
the di�raction e�ect we see in the focal plane. In the case of a segmented telescope, the segment gaps and
non-circular outer edge of the aperture will create a distinct PSF depending on the geometry of the aperture
(Itoh et al. 2019; Troy & Chanan 2003; Yaitskova et al. 2003; Lightsey & Chrisp 2003). Any additional pupil
features, like a central obscuration and support spiders, will introduce additional di�raction e�ects in the
focal plane. Some examples of di�erent aperture shapes of increasing complexity and their PSFs are shown
in Fig. 1.11. A planet located next to a star will create the exact same focal plane response, but o�set to
an o�-axis position away from the on-axis star. However, as we have seen above, the immense �ux ratio
between an exoplanet and a star will make the planet disappear in the di�racted light of the star. Especially
with more complicated apertures like those including segments, central obscuration and spiders, the planet
light will be lost in a sea of so-called speckles, blobs of light created by the on-axis star.

The classical Lyot coronagraph

The idea behind coronagraphy is to suppress the di�raction e�ects of the star in order to let the planet
shine through and render it detectable with a su�cient signal-to-noise ratio (SNR). The classical Lyot
coronagraph (CLC), �rst used by Bernard Lyot in 1930, does this by adding an opaque mask in the focal
plane, forcing the bulk of the stellar light concentrated in the PSF core to di�ract around the edges of this
focal-plane mask (FPM). It ends up concentrated in a ring of light in the consecutive pupil plane, were
another pupil mask, called the Lyot stop (LS) after its inventor, is installed in order to block a large part of
the stellar light. Since the planet is located o�-axis and thus enters the optical system at an angle, it misses
the FPM and avoids being di�racted to the outside of the clear pupil. A schematic of a CLC can be seen in
Fig. 1.12 with the geometrical rays for an on-axis star indicated in orange and those for an o�-axis planet
shown in blue.
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Figure 1.11: Di�erent aperture shapes and their PSFs in a perfect optical system. Left: A circular aperture results
in a perfect Airy pattern. Middle and right: Any additional structures like segment gaps, a central
obscuration and spiders will cause the on-axis light to be di�racted across the focal plane.

Each of the four planes in the classical Lyot coronagraph, denoted by �, �, � and � is described by a
complex electric �eld ��, �� , �� and �� , whose form will be de�ned by all upstream masks and optical
components. The intensity distributions in these planes are given by ��, �� , �� and �� , respectively. While
we de�ne a propagation from a pupil plane to a focal plane with the Fourier transform F , the propagation
from a focal plane to a pupil plane is then denoted with the inverse Fourier transform, F −1, to account
for the correct change of variables and change of sign through a set of successive focal and pupil planes,
like in a coronagraph. For a perfect optical system without aberrations and a monochromatic plane wave
entering the instrument, there will be no phase term in the �rst plane�, and the electric �eld �� is de�ned
purely by the pupil function % (r):

�� (r) = % (r). (1.5)

This electric �eld gets propagated to plane �, where the FPM is located. At that focal plane, the new electric
�eld before the FPM, �−

�
, is described as the Fourier transform of the electric �eld in the previous plane, as

in Eq. 1.3:

�−� (s) = F {�� (r)}
= F {% (r)}.

(1.6)

The intensity that is formed in this plane is a direct image formed by the di�raction of the entrance pupil
geometry, as described above. The �rst step in the starlight suppression of the CLC is to insert an FPM
that is adapted to the telescope PSF, causing the light to be di�racted around the mask. The CLC uses an
opaque hard-edge FPM, which is in the simplest case a straightforward circular disk. Its shape is described
by " ′(s), with 0 inside the opaque mask (blocking the light) and 1 elsewhere (transmitting the light).
We can use Babinet’s principle to rewrite the applied mask as " ′(s) = 1 − " (s), with " (s) being 1
inside the mask and 0 elsewhere, since the di�raction pattern from an opaque body and its transparent
complement are equal. This means that the electric �eld in the focal plane after applying the FPM, �+

�
, is
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the multiplication of �−
�

with the coronagraphic mask:

�+� (s) = �−� (r) ·" ′(s)
= F {% (r)} · (1 −" (s))
= F {% (r)} − F {% (r)} ·" (s).

(1.7)

The FPM causes the on-axis stellar light to be di�racted around its edges and to interfere with the reimaged
pupil in plane � , while the o�-axis planet light remains almost una�ected. Before inserting the Lyot stop
in plane � , the electric �eld �−

�
can be written as:

�−� (r) = F −1{�+� (s)}
= % (r) − % (r) ∗ F −1{" (s)}

(1.8)

E�ectively, plane � sees a subtraction of the di�racted wave caused by the FPM from the entrance pupil
wavefront, interfering destructively. Most of the stellar light is di�racted into a ring around the edges of
the pupil, which is removed by the application of a Lyot stop !(r) in plane � , generating the electric �eld
�+
�

:
�+� (r) = �−� (r) · !(r)

= (% (r) − % (r) ∗ F −1{" (s)}) · !(r) .
(1.9)

Finally, the coronagraphic electric �eld �� (s) is created by one last Fourier transform from the Lyot plane
� to the image plane � :

�� (s) = F {�+� (r)} (1.10)

The entire coronagraph propagation from the entrance pupil in plane � to the coronagraphic plane � can
be summarized with the linear operator C:

�� (s) = C{�� (r)}. (1.11)

A good coronagraph will minimize the energy in the Lyot plane (plane�), corresponding to an e�ective
suppression of the starlight. The best solutions can be found by optimizing the FPM and Lyot Stop shapes
and sizes for the given instrument. But even so, the CLC usually manages to suppress the starlight only
by a factor of 10–100. Over time, the CLC has been adapted to improve its performance in various ways,
giving way to a whole family of di�erent coronagraph designs, each one presenting di�erent advantages
and disadvantages in their performance.

The Apodized Pupil Lyot Coronagraph

In the ideal case, a total extinction of starlight with a Lyot coronagraph can be achieved by rendering the
two terms in Eq. 1.8 equal to each other. However, this is fundamentally impossible with the CLC because
the di�racted wave from the FPM is always smooth, while the wave in the pupil is always �at, if we assume
no aberrations. One solution to overcome this problem is to smoothen the pupil such that its amplitude
matches better the di�racted term. This adaptation introduces the Apodized Pupil Lyot Coronagraph
(APLC) where the pupil function in Eq. 1.5 gets adapted to include an apodization term Φ(r):

�� (r) = % (r) Φ(r). (1.12)

While this pupil plane apodization minimizes the residual energy in the Lyot plane greatly compared
to a CLC, the extinction of starlight is not total. Such a total extinction can be achieved by apodizing
other Lyot-style coronagraphs, for example the Roddier & Roddier (R&R) coronagraph that uses a phase-
mask occulter instead of an opaque FPM (Roddier & Roddier 1997). While there are no perfect theoretical
solutions for it, the APLC remains powerful due to its practical properties: numerically optimized apodizers
can be designed with a high robustness against low-order aberrations and they work particularly well on
apertures with central obscurations.

An APLC is realized with the same instrument setup like that shown in Fig. 1.12 but with an additional
grey-scale or binary mask located in plane�, introducing the pupil apodization Φ(r), as shown in Fig. 1.13.
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The �rst analytical solutions have been derived for rectangular (Aime et al. 2002) and spherical telescope
pupils (Soummer et al. 2003a), and they have later been generalized to arbitrary telescope geometries
including a central obscuration, spiders and primary pupil segmentation (Soummer 2004). Eventually,
a numerical optimization process was introduced that enables the creation of apodizers for segmented
apertures that can provide contrast levels of 10−10, which is su�cient for exoEarth detection and char-
acterization around nearby stars (N’Diaye et al. 2015b, 2016). This type of optimization has been used
to create APLC designs for various ground-based observatories like Gemini/GPI (Sivaramakrishnan et al.
2010) and VLT/SPHERE (Guerri et al. 2011), as well as the future space-based Large UltraViolet Optical
InfraRed Surveyor (LUVOIR) telescope (The LUVOIR Team 2019).

A versatile zoo of coronagraph designs

Adding a component for pupil apodization to the CLC to create an APLC was one of many paths in the
evolution of coronagraph designs, and today we are looking at a large number of coronagraph types, each
presenting di�erences in a range of performance metrics (Ruane et al. 2018b; Guyon et al. 2006). For an
excellent review of existing coronagraph designs, see Por (2020a, Chap. 1.3.1). While the work in this thesis
focuses in particular on the APLC, a brief overview of the most common coronagraph types is given below.

Lyot-style coronagraphs like the APLC, based on the CLC, all feature a focal-plane occulter. Based on
this simple setup, we can identify various design approaches that try to optimize either the pupil plane,
or the focal plane components of the coronagraph, all the while playing with trade-o�s in the corona-
graph design parameter space, between contrast performance, �eld of view, IWA and OWA, throughput,
sensitivity to aberrations and design complexity. While a pupil plane apodizer like that used in an APLC
described above can improve the contrast performance of a coronagraph, it also brings the drawback of
reduced throughput, as the apodization acts on the stellar and planet light equally. A similar result with a
much lesser throughput loss can be achieved by using two free-form mirrors, dubbed the phase-induced
amplitude apodization (PIAA) coronagraph (Guyon 2003). This type of coronagraph, especially in its evo-
lution as a PIAA complex mask coronagraph (PIAACMC) by adding a complex FPM, enables HCI with
high throughput at small IWA (Guyon et al. 2010a; Belikov et al. 2018). An implementation with similarly
good throughput uses a single phase mask installed in the pupil plane to form a phase-apodized pupil
Lyot coronagraph (PAPLC), and especially when paired with a knife-edge FPM, it performs at very high
contrasts below 2 _/� (Por 2020b).

The realization of the FPM can also be optimized toward di�erent coronagraph solutions. Roddier &
Roddier (1997) replaced the opaque FPM in a CLC with a c-phase mask which induces a phase shift on the
on-axis light, which enables smaller IWA, and which was made achromatic by adding an additional phase
ring (Soummer et al. 2003b) around the original dot of this Roddier&Roddier (R&R) coronagraph. FPMs
that use both amplitude and phase are known as hybrid Lyot coronagraphs (Moody & Trauger 2007), and
this design is included in the coronagraph suite of Roman CGI. There is a separate type of coronagraphs
with phase mask occulters that extend out to in�nity. The �rst of these designs was a four-quadrant
phase mask (FQPM) coronagraph (Rouan et al. 2000) that is made of four equally sized, radially extending
regions alternating between a phase of 0 and c . While these coronagraphs have excellent throughput due
to phase-only apodization, the discontinuities between the phase regions cause the light to scatter when
hitting these edges. This problem was solved by using a continuous azimuthal phase ramp instead of
individual regions, which created the vortex coronagraph (VC; Foo et al. 2005; Mawet et al. 2005).

There are also coronagraphs that have no FPM and no LS at all and attenuate the light exclusively with
pupil plane apodizers, making their layout very di�erent from Lyot-style coronagraphs. Pure amplitude
apodizers were initially designed fully analytically (Kasdin et al. 2003), while global optimization methods
improved them signi�cantly (Carlotti et al. 2011). Pure phase masks for pupil plane apodizers have been
designed for the apodizing phase plate (APP) coronagraphs (Otten et al. 2017; Snik et al. 2012; Codona et al.
2006).

The vast parameter space for an extensive list of di�erent coronagraph architectures provides a lot of
design freedom in the de�nition of a HCI instrument for any given telescope. Understanding the implica-
tions of each individual design is crucial in the optimization of the imaging instrument as a unit, where
the coronagraph works in close interaction with an active WFS&C system.
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1.3.2 Wavefront sensing and control

Coronagraphs are highly sensitive to wavefront aberrations, so they require a careful calibration of the
optical system. Wavefront sensing and control serves the purpose to modulate the electric �eld in an optical
instrument, usually with deformable mirrors, in order to improve its performance. We can distinguish
between two principal intentions of such systems: measurement and correction of the wavefront to reduce
WFE, and removing speckles in the focal plane to improve contrast. An AO system aims to do the �rst,
while the latter is usually performed with methods referred to as “DH algorithms”. They are not strictly
equivalent, as nulling the wavefront does not always lead to the best possible contrast solution on a real
coronagraph.

Conceptually and operationally, the WFS&C process can be split into an estimation or sensing step and
a controller that are usually looped up into a number of consecutive iterations. A wavefront sensor (WFS)
detects the wavefront currently propagating through the optical system and identi�es phase aberrations.
The wavefront controller (WFC) then applies the opposite of these aberrations in order to correct them.
The process for DH algorithms is the same, except that the full electric �eld needs to be sensed in order to
derive the optimal control step that follows to improve the coronagraph performance.

WFS&C relies on the use of deformable mirrors, which are made either segmented or with continuous
control surfaces. The DM consists of a certain number of actuators that are used to deform its surface,
thus actively controlling the wavefront. Since the number of these actuators on any given DM is �nite
within its pupil, the actuator packing determines a maximum spatial frequency in the image plane that
can be controlled. A WFS can be realized with a hardware implementations set up in a separate beam
path on the instrument, for example using a Shack-Hartmann WFS (Hartmann 1900a,b; Shack et al. 1971),
a pyramid wavefront sensor (Ragazzoni 1996) or a Zernike wavefront sensor (Zernike & Stratton 1934).
The advantage of these sensors for sensing the atmosphere is that their response is almost linear to the
phase and can be quickly processed to compensate for atmospheric aberrations. The disadvantage of such
setups is that they are used in a separate optical path, and any aberrations between the pickup for the
sensor and the actual science focal plane are not sensed, which introduces so-called non-common path
aberrations (NCPA). This means that the controller does not obtain any information on how to correct
them, and the instrument performance will be limited. In particular, the greatest limitations comes from
what is called quasi-static speckles (Bloemhof et al. 2001; Racine et al. 1999). As their name indicates, they
stand in opposition to static and fast evolving speckles. Static speckles remain stable over an observation
and can be subtracted with reference images, and fast varying speckles average out over the course of an
observation, resulting in the AO halo. Quasi-static speckles do evolve, thus rendering them unsuitable for
reference subtraction, but they are too slowly to average out.

A solution to the problem of NCPA and quasi-static speckles is focal plane wavefront sensing which
performs estimations of the electric �eld directly in the �nal focal plane (Gonsalves 1982). A variety of
di�erent methods has been developed over the years (Jovanovic et al. 2018; Gro� et al. 2016). This reduces
NCPAs to a minimum, allowing more of the WFE to be removed. It is also a very e�ective method to
obtain an estimate of the electric �eld in order to optimize the contrast in the coronagraphic focal plane.
Moreover, these sensing techniques require an adaption of the science observing strategy, since some of
the time will need to be allocated to WFS&C that is being performed on the same detector like the data
acquisition.

In the following sections, I focus on focal plane wavefront sensing, and control, for the purpose of high-
contrast imaging. Malbet et al. (1995) �rst mention a “dark hole” as a region in the focal plane that can be
controlled and corrected by deformable mirrors, recognizing that the outer extent of this region, the outer
working angle (OWA), is set by the available actuators on the DM. Building on this, a number of WFS&C
algorithms have been developed that iterate between estimating the electric �eld and decreasing the focal
plane intensity with a set of calculated DM commands, derived from the estimation (Borde & Traub 2006).
Focal plane sensing can be done vie spatial modulation of the E-�eld like with the self-coherent camera
(SCC; Galicher et al. 2008). An alternative is temporal modulation of the E-�eld like with COronagraphic
Focal-plane wave-Front Estimation for Exoplanet detection (COFFEE; Sauvage et al. 2012; Paul et al. 2013,
2014a) or the pair-wise estimator (PW; Give’on et al. 2011). While COFFEE relies on classic phase diversity
to sense the phase through a coronagraph, PW measures the focal-plane response of well-de�ned DM
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commands in order to break the sign degeneracy of the phase in the focal-plane E-�eld. On the controller
side, the best established methods used today are electric �eld conjugation (EFC; Give’on et al. 2007) and
stroke minimization (SM; Pueyo et al. 2009). While both of them aim to improve the DH contrast in each
iteration step, the scalar cost function for EFC calculates the necessary DM commands by minimizing the
overall energy in the DH, while SM also imposes the objective to minimize the overall stroke on the DMs
in the optical system. Both the EFC and SM controllers, as well as the PW estimator are model-based,
which means that their implementation requires an accurate representation of the optical model with a
Jacobian matrix. The Jacobian de�nes the in�uence between all DM actuators and each image plane pixel,
and the performance of said algorithms relies heavily on the exactness of the model used. Recent work
has lead to control algorithms that use gradient-based optimization to iteratively minimize the WF control
cost function (Will et al. 2021a), which eliminates the need for a Jacobian matrix.

The work in this thesis relies on the WFS&C implementation of the PW estimator and SM controller,
both of which are introduced formally in the following sections.

Electric �eld forward model

Before presenting the formalism of one particular estimator-controller combination, we need to establish
a formal de�nition of the electric �eld in the optical system. The notation here follows the one in Gro�
et al. (2016). We distinguish the electric �eld in the pupil plane, �?D?,: (r), at the WFS&C iteration : , and
the electric �eld in the image plane, �8<,: (s). We �rst establish our forward model by de�ning the di�erent
electric �eld contributions. The transmissive pupil function is designated with�(r), and its amplitude and
phase aberrations with 6(r) = U + 8V . The phase introduced by the DM, q: (r), consists of its phase from
the previous iteration (: − 1) plus a small change in the current iteration : :

q: (r) = q:−1(r) + Xq: (r) . (1.13)

After performing a �rst order approximation both for the pupil aberrations 6(r) as well as for the DM
control step Xq: (r), we can write the electric �eld in the pupil as:

�?D?,: (r) = �(r) 46 (r)+8q: (r)

= �(r) 48q:−1 (r) [1 + 6(r) + 8Xq: (r)],
(1.14)

after discarding the second order term. Now if we isolate speci�cally the part that comes from the :Cℎ
control step with the DM, we obtain:

�?D?,: (r) = �(r) 48q:−1 (r) [1 + 6(r)] + 8�(r) 48q:−1 (r) Xq: (r). (1.15)

This equation describes the electric �eld in the initial pupil plane of a coronagraph containing both the
pupil plane aberrations as well as the phase introduced by the DM.

To �nd an expression for the image plane electric �eld at iteration : , �8<,: (s), propagated from the
pupil plane, we use the linear coronagraph operator from Eq. 1.11:

�8<,: (s) = C{�?D?,: (r)}
= C{�(r) 48q:−1 (r) [1 + 6(r)]} + 8C{�(r) 48q:−1 (r) Xq: (r)}.

(1.16)

We will call the �rst of the two terms the aberrated �eld in the image plane, �01,: (s), and the second term
describes the contribution to the image electric �eld by the applied DM command:

�8<,: (s) = �01,: (s) + 8C{�(r) 48q:−1 (r) Xq: (r)}. (1.17)

With a continuous face-sheet DM, its phase will be de�ned by the in�uence functions 5@ (r) of all actuators
#02C indexed by @, with an amplitude of 0@ in units of WFE. This gives us an expression for the DM phase
as:

q (r) = 2c
_

#02C∑
@=1

0@ 5@ (r). (1.18)
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The 0@ are the linear actuator amplitudes at step : , so we can write each amplitude 0@ at step : as the
amplitude from the previous step plus a small amplitude change:

0@,: = 0@,:−1 + X0@,: . (1.19)

Equivalently, we can write the di�erential phase on the DM as:

Xq =
2c
_

#02C∑
@=1

X0@ 5@ (r). (1.20)

The full image electric �eld �8<,: (s) can then be expressed by substituting Eq. 1.20 into Eq. 1.17:

�8<,: (s) = �01,: (s) +
2c8
_

#02C∑
@=1

X0@C{�(r) 48q:−1 (r) 5@ (r)}. (1.21)

This equation represents the electric �eld in the image plane in the form of continuous functions for
the �elds, phases and actuator in�uences. Since the E-�eld will be detected on a camera with #?8G discrete
pixels, indexed by ? , we can put Eq. 1.21 into matrix form:

e8<,: = e01,: +�: u: (1.22)

where e8<,: is the discrete E-�eld vector in the image plane, e01,: is the E-�eld contribution from aberra-
tions, both with dimensions [? × 1]. The matrix�: is the control matrix of the form [? ×@] and the vector
of actuator pokes u: has dimensions [1 × @]. The vector u: contains all actuator pokes from 1 to #02C :
u: = [X01, X02, ..., X0@, ..., X0#02C ]) . �: is the control e�ect matrix/interaction matrix for the propagation
of each in�uence function in the matrix f = [51, 52, ..., 5@, ..., 5#02C ], this means it tells us how the E-�eld
changes in the image plane if we poke one single actuator in the pupil plane:

�: =
2c8
_
C{�(r) 48q:−1 (r) f} (1.23)

All we can measure directly in order to perform focal-plane WFS is the image plane intensity �8<,: (s) =
|�8<,: (s) |2, in vectorial form expressed as i8<,: = |e8<,: |2, with each vector component being a detector
pixel. The total number of pixels #?8G will be contained to the high-contrast area of interest, the dark hole
(DH).

Pair-wise estimation

The pair-wise estimator aims to sense the E-�eld from multiple discrete and noisy focal plane intensity
measurements 88< . The estimation result is then fed to the controller to compute the optimal DM command
to get a darker DH in the following iteration step of the WFS&C loop. Since one single intensity measure-
ment is not enough to distinguish between a positive and negative phase of the corresponding E-�eld, we
need several modulated measurements in order to obtain a clean estimate. In practice, the PW estimator
modulates the electric �eld with well-de�ned DM commands in the pupil plane, so-called probes. The
response in the focal plane to pairs of such probes, as modeled with Eq. 1.22, is then measured in order to
estimate the electric �eld in the image plane (Give’on et al. 2011).

For PW estimation, we chose to sequentially apply probe commands ±Ψ9 (r) to the DM, where the
positive and negative amplitude lead to one intensity measurement each. We call the sequential application
of a positive and a negative probe a probe pair, where 9 indicates the number of the pair (not the individual
probe). A probe can be expressed as a per-actuator DM command vector 7 9 . Within a pair, probes di�er
only by their sign:

7±9 = ±7 9 , (1.24)

where 7+9 = 7 9 and 7−9 = −7 9 . For each probe pair, we record one intensity image per probe, i+
8<,:

and
i−
8<,:

, which we can express with Eq. 1.22:

i±
8<,:,9

= |e±
8<,:,9
|2 = |e01,: +�:7±9 |2. (1.25)
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We can show separately for the positive and negative probe in each pair:

i+
8<,:,9

= |e+
8<,:,9
|2 = |e01,: +�:7+9 |2

= |e01,: +�:7 9 |2

= |e01,: |2 + |�:7 9 |2 + 2<{e∗01,: ◦�:7 9 }
i−
8<,:,9

= |e−
8<,:,9
|2 = |e01,: +�:7−9 |2

= |e01,: −�:7 9 |2

= |e01,: |2 + |�:7 9 |2 − 2<{e∗01,: ◦�:7 9 },

(1.26)

where ◦ signi�es element-wise multiplication. We can see the intensity from the positive and the negative
probe within a pair only di�er by the sign in front of the mixed term. If we de�ne the di�erence Δi:,9 =
i+
:,9
− i−

:,9
, only twice the mixed term remains:

Δi:,9 = i+
:,9
− i−

:,9
= 4<{e∗

01,:
◦�:7 9 }. (1.27)

Using the identity<{�∗�} = <{�}<{�} + ={�}={�}, we obtain:

Δi:,9 = 4[<{e01,: }<{�:7 9 } + ={e01,: }={�:7 9 }] . (1.28)

Since the real and imaginary parts of the two terms are completely separated, we can write Eq. 1.28 in
vector format:

Δi:,9 = 4
(
<{�:7 9 } ={�:7 9 }

) (
<{e01,: }
={e01,: }

)
. (1.29)

We now want to solve this equation for the electric �eld vector, e01,: , on the right hand side in order to
obtain our estimation result for the aberrated E-�eld. To do that, we need to invert the matrix that holds
the coronagraph propagation of the DM phase, called the observation matrix. Since we have used only a
single probe pair, this is only a [1× 2] matrix though, and an inversion cannot be done. If we increase the
number of pairs to at least 2, this matrix becomes invertible. For exactly #?08AB = 2 ( 9 = 1, 2), Eq. 1.29 is
written as: (

Δi:,1
Δi:,2

)
= 4

(
<{�:71} ={�:71}
<{�:72} ={�:72}

) (
<{e01,: }
={e01,: }

)
. (1.30)

This system of equations can be extended to an arbitrary number of probe pairs #?08AB ≥ 2. By calling the
vector of di�erential intensity measurements z: = [Δi:,1,Δi:,1]) , the vector of electric �eld components
x: = [<{e01,: },={e01,: }]) and the observation matrix �: , we can rewrite Eq. 1.30 as:

z: = �: x: . (1.31)

Finally, to obtain an estimate of the aberrated E-�eld, denoted by x̂: , we need to take the pseudo-inverse
of �: :

x̂: = (�)
:
�: )−1�): z: . (1.32)

Given that all high-performance HCI instruments will carry a set of DMs for control, electric �eld
estimation with PW probing is a straightforward way to perform wavefront sensing. Some limitations
apply in its e�ciency, which are mostly given by the choice of probes used. The probe shapes in the
pupil plane need to maximize the signal in the image plane and provide a well-conditioned observation
matrix, which means that they need to modulate the intended control area, the DH. Traditionally, simple
analytical functions in the focal plane have been used, for example rectangular regions, since their Fourier
transforms are known and can easily be used to de�ne the DM commands of the probes. Another option is
to back-propagate the designated DH area in the focal plane into the DM pupil plane by using the Jacobian
matrix � . In this way, it is ensured that the DH region is always fully modulated. Another in�uencing
factor on the estimate accuracy is the probe brightness. While brighter probes reduce the variance of the
electric �eld estimate, they cannot be too large, otherwise the higher order terms discarded in the Taylor
expansion of the forward model become the dominant error.
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Control with stroke minimization

Once we have an electric �eld estimate for a given iteration in our WFS&C loop, we want to use this
information to calculate and apply a correction command with the DM in order to obtain a better average
contrast in the DH. Knowing the forward model for the electric �eld vector e8<,: given in Eq. 1.22, with
e01,: coming from the estimator, we can calculate the intensity vector in the image plane by taking the
scalar product of e8<,: with itself:

i8<,: = 〈e8<,: , e8<,:〉
= u)

:
�∗
:
�:u: + 2 u):={�

∗
:
e01,: } + e∗01,:e01,: .

(1.33)

Concretely, the matrix �∗
:
�: designates the additive contribution of the DM to the image plane intensity,

at iteration : . The vector �∗
:
e01,: represents the interaction of the electric �elds from the DM with the

aberrated �eld, and the vector e∗
01,:

e01,: indicates the intensity contribution from the aberrated �eld e01,: .
Since the general goal of the WFS&C loop is to improve the contrast in the DH, we need to de�ne

a control strategy to lower the image plane intensity after the coronagraph. The stroke minimization
controller (Pueyo et al. 2009) de�nes a strategy to minimize the total stroke on the DM while subjecting
the average contrast in the DH to the condition to become lower than a target contrast value chosen for
that particular iteration:

argmin
u:

u)
:
u:

subject to ���,: ≤ 2C0A64C,: .
(1.34)

To be able to create a cost function from this strategy, we treat the contrast condition as an equality:

���,: − 2C0A64C,: = 0, (1.35)

which allows us to de�ne the quadratic cost function �: using a Lagrange multiplier `:

�: = u)
:
u: + `:

(
���,: − 2C0A64C,:

)
. (1.36)

To �nd the minimum of this cost function, we take its partial derivative m�:/mu): and solve for the control
command u: after setting the derivative to zero:

u: = −
(
1
`:
I +�∗

:
�:

)−1
={�∗

:
e01,: }, (1.37)

where I is the identity matrix.
The controller uses this DM command solution and with initial Lagrange multiplier `0

:
to calculate the

predicted DH intensity resulting from it. If the resulting ���,: lies below the target contrast 2C0A64C,: we
demanded in this iteration, then a line search on `: is performed with a step size U until a solution is found
that indeed brings the image plane intensity to or below the target contrast value:

`=
:
= U`=−1

:
. (1.38)

Since the measured average contrast in the DH decreases with each iteration of the WFS&C loop, the
requested target contrast is usually de�ned relative to the current measured contrast value. In early itera-
tions, when the residual WFE is still larger and the speckles brighter, a larger relative step size will make
the contrast loop converge faster, while smaller steps later on will keep the loop stable.

1.3.3 Post-processing

The coronagraph and active WFS&C on a telescope aim to optically separate the starlight from the planet
light before its registration on the detector. The resulting contrast performance, commonly referred to
as the raw contrast, is highly limited by the slowly evolving quasi-static speckles, which are easily mis-
taken for an astronomical point source especially since they appear on the same angular scale. While an
optimization of the starlight suppression instrument, including static masks and the WFS&C strategy, is
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contrast

Figure 1.14: Coronagraphs are extremely sensistive to WFE, as shown here with a simulation of a segmented CLC
on HiCAT. On the left, we can see the PSF from a noise-less, aberration-free coronagraphic image. On
the right, the same setup now also contains a WFE of 15 nm rms composed of equal parts of astigmatism,
coma, trefoil and a random phase screen with a power spectral density with a slope of 3. Both images
are shown on the same scale.

needed to minimize speckles and reduce the detection noise, some improvement can be brought about
with the use of post-processing algorithms.

To be able to deploy methods for the separation of the star signal from that of a planet or a disk, we
exploit the fact that the stellar light exhibits di�erent properties from the light of the source of interest.
In this context, “reference subtraction” has a long history, with and without coronagraphs, where the goal
is to identify the instrumental PSF in the science camera image so that it can be subtracted o� the star to
leave the planet’s signal. These methods improved signi�cantly with the exploitation of speci�c diversities
between the star and planet light, for example with Angular Di�erential Imaging (ADI; Marois et al. 2006)
where the planet seemingly moves around the star from the perspective of the telescope as the sky rotates.
This technique was advanced by using a maximum likelihood estimation to discriminate planet signals
from speckles, dubbed ANDROMEDA (Cantalloube et al. 2015; Mugnier et al. 2009). There is a range of
approaches to diversity imaging: Spectral Di�erential Imaging (SDI; Smith 1987; Sauvage et al. 2006) uses
spectral di�erences between the star and planet, and Polarization Di�erential Imaging (PDI; Kuhn et al.
2001) their di�erent polarization state, which is mostly used on disks. Coherent Di�erential Imaging (CDI;
Guyon 2004) leverages interference between the starlight and the stellar core, which is not possible for
the planet, and Orbital Di�erential Imaging (ODI; Males et al. 2015) uses the actual orbital motion of the
planet around the star to extract its signal.

Making use of several diversities can be combined to enhance results (e.g., Rameau et al. 2015; Marois
et al. 2010a), and the algorithms can be expanded to optimize entire libraries of reference images for optimal
subtraction (Amara & Quanz 2012; Soummer et al. 2012; Pueyo et al. 2012).

1.4 Application of HCI to the case of large segmented telescopes

The PSF in Fig. 1.11, middle, illustrates the di�raction e�ect of a segmented aperture, producing a well
de�ned intensity distribution in the image plane. This example, however, assumes a perfectly aligned
system without any wavefront errors, which is an idealized scenario. In a real optical system, aberrations
will lead to a degradation of image quality. Coronagraphs are particularly sensitive to WFE in the optical
system, as they will contaminate the focal-plane image as illustrated on simulations of a segmented CLC
on HiCAT in Fig. 1.14. On a telescope, there are many sources of WFE, but a big component on segmented
telescopes are misalignments between the segments, a problem that monolithic telescopes do not have.
Before we can even concern ourselves with their �ne alignment and focal plane wavefront sensing as
described in the previous section, the �rst stepping stone toward using a segmented telescope is to get the
segments phased well enough with respect to each other. This will produce a PSF whose residual WFE is



32

1

1.4. APPLICATION OF HCI TO THE CASE OF LARGE SEGMENTED TELESCOPES

contrast

contrast
x10-7

O
PD

 (m
)

-5.0

-2.5

0.0

2.5

5.0

Figure 1.15: Segmented apertures require careful phasing of the individual segments in order to go from an un-
phased state like that shown on the left to a well-aligned telescope like that shown on the right. The
WFE maps shown here indicate the segmented DM command used to produce the displayed PSFs,
which still contain residual WFE. I acquired this data on the JOST testbed in the very beginnings of my
PhD while investigating alignment procedures for segmented aperture telescopes (see Appendix A for
more details).

within the capture range of more sensitive �ne-phasing and focal plane WFS&C algorithms that optimize
the coronagraphic performance.

Even after the initial telescope coarse and �ne alignment is done, it is not a perfectly static structure
that will be able to maintain its imaging performance. In particular the coronagraph contrast will depend
on continuously executed WFS&C activities. In the following section, I brie�y introduce the concepts of
segment cophasing, and the signi�cance of closed-loop WFS&C on large, segmented observatories.

1.4.1 Wavefront errors and cophasing of segments

When segmented telescopes see �rst light with a primary alignment, the individual segments are not
cophased very well. Instead, they show inter-segment misalignments that can amount to surface errors
several times the operating wavelength. The �rst goal during the commissioning of a segmented obser-
vatory is thus the cophasing of the segments to get as close as possible to the di�raction limit. The two
states of the segmented aperture in Fig. 1.15 illustrate this: starting from completely unphased segments
that produce separate “sub-PSFs”, one from each segment as shown on the left, a stacking and phasing
process aims to produce a PSF with minimal residual errors, as shown on the right. There is a signi�cant
legacy for this from the Keck telescopes in Hawai’i, where decades of work on segment phasing and seg-
mented WFS&C strategies have been investigated and used, while continuing to look for alternatives and
higher-performance methods (Chanan et al. 2000). While the segment coarse alignment is done initially
and can usually be repeated as needed after a couple of months or years, WFS&C maintenance activi-
ties for �ne-alignment are repeated on timescales from hours to days, depending on the telescope and its
instruments.

On JWST for example, the �rst segmented space telescope, and the �rst space-based observatory to
use active control components for alignment and WFS&C (Knight et al. 2012b), the surface misalignments
between segments after launch and deployment are expected to be on the order of several mm, which
corresponds to very large WFE at a wavelength of 2 `m. During the �rst months of commissioning (Perrin
et al. 2016b), an extended procedure of complex steps is taken to achieve the required WFE (Acton et al.
2012). After an initial focus-sweep with the secondary mirror in order to bring the telescope to a reasonable
focus, the segments need to be stacked and coarsely phased before moving on to the �ne-phasing stage.
Since the segments are expected to be so signi�cantly misaligned that their light does not even overlap
into a single point on the detectors (see Fig. 1.15, left), the next step will be to identify which of the “sub-
PSFs” belong to which of the segments in the telescope pupil (“segment ID”). The process continues with
eliminating segment-level wavefront errors before stacking them all up into a single point in the center
of the �eld. Large piston errors between the segments are reduced with dispersed fringe sensing (Shi
et al. 2004), and �eld-dependent errors are corrected by adjustments with the secondary mirror. Finally,
the �ne phasing of the telescope is performed with a phase retrieval algorithm (Dean et al. 2006), with
�eld-dependent errors across the science instruments being addressed with a multi-instrument multi-�eld
algorithm (Acton & Knight 2012). The expectation after completion of this lengthy process on JWST is a
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�ne-aligned PSF with a residual WFE on the order of 80 nm rms, similar to Fig. 1.15, right.
A bulk of the JWST commissioning process has been demonstrated on the one-meter Testbed Telescope

(TBT) at Ball Aerospace (Acton et al. 2007). Such testing and validation in a laboratory environment
is a crucial aspect in the development and demonstration of new algorithms. While each observatory
will usually have a dedicated high-�delity facility for simulation and experimentation, like the TBT for
Webb, there are numerous non-mission-critical facilities that o�er themselves for the investigation of novel
methods and algorithms in WFS&C. One such testbed is the JWST Optical Simulation Testbed (JOST) at
the Space Telescope Science Institute (STScI) in Baltimore, Maryland (USA) which is being used to test
new WFS&C techniques for segmented telescope co-phasing (Perrin et al. 2014b; Choquet et al. 2014).
Designed as a refractive analogue to a three-mirror-anastigmat, it contains a segmented DM with segments
controllable in piston, tip and tilt and an adjustable lens that acts as a secondary mirror surrogate in order
to investigate WFS&C techniques on a wide �eld of view. It currently runs a linearized algorithm for phase
diversity (LAPD; Mocœur et al. 2009) that was used to align the optical components on the testbed (Egron
et al. 2016, 2017a,b). Investigations about LAPD with a segmented DM on a fully aligned JOST testbed,
and on a wide �eld of view, build Appendix A of this thesis.

Even the best practically achievable optical alignment and WFS&C strategy will leave residual errors
in the imaging system that stem from drifts in various observatory components. Thermal instabilities
in the telescope can cause misalignments of the secondary mirror with respect to the optical alignment
which introduces global aberration modes in the pupil. Warping of the backplane structure can lead to co-
phasing errors of the primary segments, adding WFE terms that degrade the performance of the imaging
instrument. To be able to reach and keep the contrast levels required for exoEarth observations over the
timescales of an observation, telescopes need to be designed from the beginning in a way that ensures suf-
�cient WFE stability. In the following section, I introduce the framework and goals of designing extremely
stable space telescopes.

1.4.2 Ultra-stable telescopes

Like any other mechanical structure, especially one that is exposed to the harsh environment of space, an
observatory is not a perfectly stable assembly. Thermal structure deformation, mechanical vibrations and
rigid-body misalignments, among others, will be constantly adding to changes in the construction that
translate directly into WFEs in the optical system, on top of any static aberrations coming from surface
�gure errors for example. The resulting small errors can imprint features on the �nal image that look
indistinguishable from faint exoEarth candidates. In order to minimize the number of spurious detections
associated with these features, their variations need to be smaller than the challenging 10−10 contrast
requirement. This in turn implies minimizing wavefront variations over time. Regardless of aperture
(monolithic or segmented), the key challenge of any exoEarth characterization telescope will thus be to
eliminate or control systematic errors across the telescope’s pupil to enable reliable imaging of faint ob-
jects at contrasts variations of 10−10–10−11. Recent advances in coronagraphic design and adaptive optical
control of systematic errors has made this a tractable engineering problem, even if controlling a large,
segmented 15 m structure might seem daunting. A signi�cant number of these innovations have already
been applied to 8 m class ground-based telescopes, albeit at more modest contrasts.

Considering that even 1 pm of WFE is enough to create planet-like artifacts in the image plane, space
telescopes that aim to reach exoEarth detection levels will need to be held “ultra” stable compared to the
easier to do, relatively speaking, nanometer-level controlled observatories astronomers use today. There is
the option to make a telescope passively stable enough so that this drift does not exceed the needed contrast
level, as is done for Hubble, and even for JWST, considering its WFS&C activities are performed in open-loop
control from the ground. However, bearing in mind that a LUVOIR-like observatory would be signi�cantly
larger than its predecessors, as we can see in Fig. 1.16, the problem seems to become exceedingly hard to
solve. Indeed, a multi-meter scaled-up structure of a static, rigid telescope would require picometer-level
stability over a very large aperture, and that over the course of hours, which seems discouraging.

To solve this issue, a general rethinking of the way we build and control such telescopes needs to take
place. Recent mission concepts have identi�ed “on-the-�y” WFS&C as a key aspect of the coronagraph
instrument and mention the need for wavefront sensors within the exoplanet imaging instrument to op-
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Figure 1.16: Comparison of observatory sizes between the Hubble Space Telescope (left), James Webb Space Tele-
scope (middle) and LUVOIR A (right). The monolithic Hubble and segmented Webb use passive control,
while LUVOIR will require active control strategies to minimize WFE drifts, and hence contrast drift.
Source: The LUVOIR Team (2019).

erate in closed-loop. The telescope mirror cannot be considered apart or distinct from the overall optical
control system of the telescope when assessing whether or not it meets science requirements: in a tele-
scope system with wavefront-controlled adaptive optics, the static and dynamic behavior of the individual
telescope components, including the mirror, all reside within the control loop. In the future, space-based
telescopes will need to implement full-�edged adaptive optics systems like they have been used on the
ground for decades. While those are mostly concerned with correcting aberrations caused by Earth’s at-
mosphere, they also correct for distortions coming from within the telescope itself. High spatial frequency
distortions from the mirror support structures, and in particular dynamic misalignment of the primary
segments in the case of Keck (Lamb et al. 2021), are examples of wavefront deformations arising within
the telescope that their respective AO system successfully corrects for, which is crucial for coronagraphic
HCI observations.

While AO control loops are fully embraced by the ground-based community, and technologists and
researchers focusing on high-contrast instrument development have started adopting this more sophisti-
cated view of controlling optical alignment (Potier et al. 2021), these methods are only slowly �nding their
place in the operations of space telescopes (Pueyo et al. 2021). Apart from the fact that AO relaxes the
stability requirements by an order of magnitude, recent studies, notably the ones presented in this thesis,
have also shown that not all segments on a segmented telescope need to be constrained equally, which
o�ers additional relief for WFE tolerancing. Fully harnessing and applying these powerful techniques to
space-based observatories will allow us to develop missions with su�cient aperture size for a signi�cant
scienti�c yield.

1.5 This thesis

A major part of this thesis is concerned with the de�nition of a general, theoretical framework for the
analytical treatment of the mid-spatial-frequency WFE components associated with primary mirror seg-
ments in the stability analysis of a large, segmented telescope. It is explored how to make a di�erential
allocation of WFE across a segmented pupil rather than following a purely global approach, supported by
testbed experiments. This work is then folded into the larger picture of the treatment of ultra-stable space
telescopes, and how to prepare for full adaptive optics systems in space.

Chapter 2: Analytical wavefront error tolerancing on a large segmented telescope

Chapter 2 introduces the theory of segmented telescope WFE tolerancing, based on the PASTIS analytical
propagation and tolerancing model initially published by Leboulleux et al. (2018b). After extending the
analytical forward propagation model to use a semi-analytic propagation matrix, I formulate the statistical
interpretation of the inverted PASTIS equation. Using this statistical framework, I show how to derive
segment-level WFE requirements for a chosen target contrast, and demonstrate that not all segments in
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the telescope pupil need to be held equally stable.

Chapter 3: Numerical tools and simulated tolerancing results

Chapter 3 �rst presents the software package I developed for my work on segmented mirror tolerancing. It
contains a set of optical simulators for telescopes with the capability to impose various aberration modes,
including a segmented deformable mirror that can be paired with coronagraphs. The package also includes
all necessary functions for the analytical tolerancing analysis.

After that, simulated results of a tolerancing analysis on JWST are shown, with a classical Lyot coron-
agraph on the NIRCam instrument. I draw a rough comparison to the real WFE expectations of JWST. The
last part of this chapter presents tolerancing results for the segmented mirror on HiCAT, as performed on
the HiCAT simulator. As it acts as a proper testbed emulator, I used this work to prepare the experimental
validations that followed after.

Chapter 4: Experimental validations of segmented WFE tolerances on HiCAT

Chapter 4 shows PASTIS tolerancing experiments performed on the HiCAT testbed. Since the segmented
deformable mirror is not the only source of WFE drifts in a laboratory environment, I provide a reformu-
lation of the formalism from Chap. 2 to isolate the contrast contribution from the segmented DM alone. I
successfully measure an experimental contrast sensitivity matrix that is used for the further tolerancing
analysis. Through the model inversion, I calculate individual segment tolerances for a target contrast that
is appropriate for the current contrast level on HiCAT, and validate them with Monte Carlo experiments. I
then proceed to measure the coronagraphic sensitivity to all segments under a range of misalignments of
the Lyot stop, and predict WFE requirements for the segmented DM for contrast levels beyond the current
performance limit of the testbed.

Chapter 5: Analytical WFE tolerancing in dynamic studies for ultra-stable telescopes

Chapter 5 dives into applications of the PASTIS tolerancing framework that answer issues about picometer-
level stability for future segmented telescopes. Swapping segment-level Zernikes for modes obtained from
thermal modeling, I show how to apply the method to physical tolerancing applications. More globally, I
show how this tolerancing approach folds into a larger paradigm of tackling WFE stability across a range
of spatial and temporal frequencies. In this chapter, I compare the various relevant timescales for dynamic
contrast stability and show how continuous WFS&C relaxes WFE requirements by at least an order of
magnitude compared to static telescope control. Addressing the temporal aspect of WFE stability with the
PASTIS model at its core, I draw connections to other studies going on in parallel with my PhD that treat
dynamical WFE tolerancing.

Appendix A: Wavefront sensing and control on a segmented mirror telescope testbed

Appendix A describes my work on the JWST Optical Simulation Testbed (JOST), on which I was test-
ing wide-�eld WFS&C. In particular, this chapter shows results from the �ne-phasing of the segmented
deformable mirror on several �eld points, performed with the LAPD algorithm.

Appendix B: System-level demonstrations of high contrast on the HiCAT segmented-aperture

testbed

Appendix B presents the background and motivation of the HiCAT testbed and some of the work I con-
tributed to reach a contrast of 10−8. This chapter contains information about the overall testbed design,
the di�erent testbed modes it deploys, and a timeline overview over the various WFS&C techniques that
were implemented during my time with the team.
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2
A method for analytical tolerancing of
segmented telescopes

The central question of my thesis is how to design, build and control segmented telescopes in
combination with coronagraphy with the goal to image Earth-like extrasolar planets. The team at the
Makidon laboratory �rst phrased this task in terms of a forward problem: make some assumptions about
the telescope, add aberrations to its segments and model what kind of results that gives us in terms of
coronagraphic performance and contrast. Reformulating this forward modeling process was the stepping
stone for the analytical tolerancing model presented in this chapter, and it is only after we started
inverting this new forward model that the applications for sensitivity studies became obvious.

The PASTIS forward model was originally developed by Lucie Leboulleux during her PhD (Leboulleux
2018), graduating in December 2018. She presented the problem inversion in the context of the
eigenmodes of the optical system in Leboulleux et al. (2018b), which was the starting point of my own
work on this topic. My �rst contribution to the subject was an improvement of the way we build the
optical matrix that represents the contrast sensitivity of the segments. I presented this as a conference
talk at SPIE Optics & Photonics in San Diego, California (USA) in August of 2019. The conference
proceedings I wrote on that occasion (Laginja et al. 2019) served as a �rst draft for the peer-reviewed
journal paper in this chapter.

The core question we are trying to answer in this paper is: If we set a mean contrast we want to observe
in our dark hole, what are the wavefront error limits that we can tolerate on the telescope? This question
is traditionally answered with WFE requirements expressed globally, over the entire telescope pupil. As a
novel contribution, I introduce a statistical level into this problem that now allows us to analytically
obtain independent segment WFE tolerancing limits. Based on an idea by Laurent Pueyo, the result turns
out to con�rm basic intuition in which certain segments have more in�uence on the coronagraphic
contrast than others, and this paper quanti�es it with a simple matrix inversion. Applying this analysis
to the APLC coronagraphs of LUVOIR A, I show how the WFE requirements on certain segments in the
pupil can be signi�cantly relaxed, which directly informs the mechanical design process of large,
segmented telescopes.

This chapter describes a general, theoretical framework to analytically calculate statistical WFE
tolerances. We originally thought of segment-level tolerancing as the main result of the paper, but over
time we identi�ed more applications for coronagraph sensitivity analyses which have already been
tackled during the course of my PhD. I directly contributed to these works that are based on the theory
developed in this chapter, and I present some of them in Chap. 5.
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Abstract

This paper introduces an analytical method to calculate segment-level wavefront error tolerances
in order to enable the detection of faint extra-solar planets using segmented-aperture telescopes in
space. This study provides a full treatment of the case of spatially uncorrelated segment phasing
errors for segmented telescope coronagraphy, which has so far only been approached using ad hoc
Monte-Carlo simulations. Instead of describing the wavefront tolerance globally for all segments,
our method produces spatially dependent requirement maps. We relate the statistical mean contrast
in the coronagraph dark hole to the standard deviation of the wavefront error of each individual
segment on the primary mirror. This statistical framework for segment-level tolerancing extends
the Pair-based Analytical model for Segmented Telescope Imaging from Space (PASTIS), which is
based uniquely on a matrix multiplication for the optical propagation. We con�rm our analytical
results with Monte-Carlo simulations of end-to-end optical propagations through a coronagraph.
Comparing our results for the Apodized Pupil Lyot Coronagraph designs for the Large UltraViolet
Optical InfraRed (LUVOIR) telescope to previous studies, we show general agreement but we provide
a relaxation of the requirements for a signi�cant subset of segments in the pupil. These requirement
maps are unique to any given telescope geometry and coronagraph design. The spatially uncorrelated
segment tolerances we calculate are a key element of a complete error budget that will also need to
include allocations for correlated segment contributions. We discuss how the PASTIS formalism can
be extended to the spatially correlated case by deriving the statistical mean contrast and its variance
for a non-diagonal aberration covariance matrix. The PASTIS tolerancing framework therefore brings
a new capability that is necessary for the global tolerancing of future segmented space observatories.
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2.1 Introduction

Imaging Earth-like exoplanets and searching for biomarkers is one of the key science objectives in space
astronomy for the next decade. The close proximity of such planets to their host star, as well as a �ux
ratio on the order of 10−10 at visible wavelengths makes this a challenging task. These two goals can be
achieved by using large-aperture telescopes for large light collecting areas and high angular resolution, in
combination with static and dynamic starlight suppression techniques with coronagraphs and wavefront
sensing and control (WFS&C) methods.

The invention of the coronagraph (Lyot 1939) synthesized with early ideas for the direct imaging of
planets (Roman 1959) have led to several space mission concepts being developed toward this goal today.
The Habitable Exoplanet Observatory (Gaudi et al. 2019) (HabEx) and the Large UV Optical InfraRed Sur-
veyor (The LUVOIR Team 2019; Bolcar 2019) (LUVOIR) are two space-based concepts recently studied by
NASA as possible future �agship missions. Their primary science objective is the direct detection and
spectral characterization of habitable Earth-like planets (Roberge et al. 2019) and the search for life; they
require primary mirror diameters of 4–15 meters. Meanwhile, the ground-based community is preparing
for the era of extremely large telescopes (ELTs) where 30–40 meter class telescopes like the Thirty Meter
Telescope (Simard et al. 2016) (TMT), the Giant Magellan Telescope (Fanson et al. 2018) (GMT) and the
European Extremely Large Telescope (Ramsay et al. 2020) (E-ELT) will be equipped with coronagraphs
and extreme adaptive optics systems to search for and characterize exoplanets (Guyon et al. 2012).

What unites all of these observatories is that they have signi�cantly larger primary mirrors than their
respective space-based and ground-based predecessors. This poses a number of problems that need to be
solved, including considerations about overall mass, cost, and plausible launch vehicles for space-based
missions. The logical consequence to this is that most of these observatories will have segmented primary
mirrors, much like the Keck telescope (Mast et al. 1982) or the James Webb Space Telescope (JWST) (Acton
et al. 2012; Perrin et al. 2018). This will allow for lighter-weight backplanes and foldable structures for
launch purposes, or even in-situ space assembly (Polidan et al. 2018; Bowman et al. 2018).

Telescope segmentation introduces additional di�raction e�ects in the focal plane (Lightsey & Chrisp
2003; Yaitskova et al. 2003; Troy & Chanan 2003; Itoh et al. 2019), as well as sources for wavefront errors
(WFE) due to segment misalignments and lighter mirror structure deformation in the form of localized
segment-level aberration modes. All wavefront errors degrade the imaging performance in a high-contrast
system (Cross�eld & Troy 2007; Yaitskova & Troy 2011) as they generate light residuals all over the focal
plane. Such WFE will directly impact the performance of the coronagraph instrument. There are a num-
ber of coronagraph designs that were developed speci�cally to maximize performance on telescopes with
arbitrary apertures, which includes secondary obscurations, spiders and segmentation gaps (Sivaramakr-
ishnan & Yaitskova 2005; Martinez et al. 2008; Soummer et al. 2009; Guyon et al. 2014; Zimmerman et al.
2016; Ruane et al. 2017).

All high-contrast instruments that aim at very high-contrast such as what is necessary to detect Earth-
like planets will deploy strategies that combine static coronagraph masks in pupil and focal planes with
active control of the electric �eld (Borde & Traub 2006; Pueyo et al. 2009; Mazoyer et al. 2018a,b) in order
to create a zone of deep contrast in the �nal image plane, the dark hole (DH). To enable such wavefront
control techniques, several methods for focal plane wavefront sensing have been developed (Gro� et al.
2016; Jovanovic et al. 2018) to feed into a whole system of sensors and control loops that constitute the
high-contrast instrument.

Even after careful cophasing of the segmented aperture and implementation of WFS&C techniques
that reach the required star attenuation level, there will always be some residual errors due to drifts in
the system (e.g., from thermal instabilities). These changes to the mechanical structure and in the optical
train will have a direct e�ect on the observability of a faint point source, as a su�cient signal-to-noise
ratio is needed for detection within con�dence limits (Lyon & Clampin 2012). As a consequence, these
high-contrast goals with segmented apertures impose severe requirements not only on static wavefront
quality, but also stability requirements on the WFE as well as the overall mechanical structures of the
telescope. There are various works that have tried to quantify these wavefront stability requirements for
high-contrast imaging, both with and without segmented apertures in mind. The Nancy Grace Roman
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Space Telescope (formerly known as the Wide-Field Infra-Red Survey Telescope, WFIRST) is a 2.4 meter
monolithic space telescope with a large central obscuration and six thick, non-radial support struts (Krist
et al. 2015) that render high-contrast imaging particularly challenging (Nemati et al. 2017a). Bound to
launch in 2025, it will provide technology demonstrations for stellar coronagraphy at 10−9 contrast levels
(Savransky & Garrett 2015) with the Roman Space Telescope Coronagraphic Instrument (CGI). Going to
a segmented telescope introduces an increased number of degrees of freedom that will in�uence the �nal
contrast. While there are solutions that aim to maintain a good contrast in the dark hole across integration
times by means of continuous WFS&C (Pogorelyuk & Kasdin 2019), the problem must also be approached
from an overall engineering perspective (Feinberg et al. 2017; Stahl 2017; East et al. 2018). In particular, the
direct e�ects of segmentation on the �nal coronagraphic contrast (Yaitskova & Dohlen 2002; Stahl et al.
2015) are of interest in the context of high-contrast imaging, and there is an ongoing e�ort to character-
ize and quantify the requirements for such ultra-stable telescopes (Coyle et al. 2018, 2019b; Pueyo et al.
2019; Hallibert et al. 2019). Studies performing Monte-Carlo (MC) end-to-end (E2E) simulations (Moore &
Redding 2018; Juanola-Parramon et al. 2019b) have con�rmed the strict WFE requirements of a couple of
tens of picometers over tens of minutes to enable the search for faint extra-solar planets, and analytical
methods for the derivation of coronagraphic performance speci�cations have been proposed (Nemati et al.
2017b, 2020).

One thing that all of these studies have in common is that they de�ne global WFE tolerances over
the entire telescope pupil, where the segments have a random contribution to the overall aberrations. In
this paper, we focus on analytically de�ning requirements on a segment-to-segment basis instead, using
the Pair-based Analytical model for Segmented Telescope Imaging from Space (PASTIS), (Leboulleux et al.
2017b, 2018a,b) which models the dark hole average contrast of a coronagraph on a segmented telescope as
a function of the segment aberrations. We �rst introduce a new semi-analytical (SA) calculation method for
the PASTIS matrix (Laginja et al. 2019). Then we show how to compute the statistical mean of the contrast
using the PASTIS modes and extend the model inversion to calculate segment-level WFE requirements for
a given target contrast.

A full error budget that aims at maintaining a particular DH contrast will contain WFE contributions
both from spatially correlated as well as uncorrelated segments in the telescope pupil. The impact of aber-
rations made of correlated segments on coronagraph contrast has been studied in various cases, for exam-
ple low-order Zernike modes as well as high-frequency checkerboard-like patterns in the pupil (N’Diaye
et al. 2016; Moore & Redding 2018; Douglas et al. 2018). Aberrations made of spatially uncorrelated seg-
ments on the other hand have so far mostly been addressed in end-to-end simulations where the segments’
amplitudes had equal standard deviations (Juanola-Parramon et al. 2019b; Stahl et al. 2015; Nemati et al.
2017b). In this paper we tackle the uncorrelated contribution, and establish analytically how to allocate
WFE contributions to all segments individually. This addresses an essential component in the overall error
budget, which had not been formally established yet. We then use the PASTIS approach to also generalize
this to the correlated case.

In Sec. 2.2 we recall the development of the analytical propagation model and how the underlying
PASTIS matrix was initially built through an analytical calculation. We then generalize the matrix calcu-
lation to all coronagraphs as well as segmented apertures with an extension to the semi-analytical matrix
calculation, which eliminates the post-calibration step that used to be performed on a perfect coronagraph
model. We show that the average contrast is always a quadratic function of the aberrations and drop
the requirement of having a symmetrical dark hole. In Sec. 2.3 we perform the model inversion and vali-
date the semi-analytical matrix. Further, we show that the PASTIS modes can be used to de�ne a statistical
framework for the analysis, additionally to their deterministic relation to the dark hole contrast. In Sec. 2.4
we derive the statistical mean contrast and its variance from two separate components that describe the
imaging properties of the coronagraphic instrument on the one hand, and the thermo-mechanical segment
statistical correlations on the other hand. We proceed with the calculation of independent segment-based
WFE requirements and how to validate them in a statistical sense, and we show how to apply this to
correlated segments. All simulations in Sec. 2.2-2.4 are done with a narrow-angle Apodized Pupil Lyot
Coronagraph (APLC) on the primary pupil of LUVOIR-A (see Fig. 2.1 and Sec. 2.5) at a wavelength of
500 nm, however, these methods can be applied to any combination of coronagraph and segmented tele-
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Figure 2.1: Left: LUVOIR-A design aperture with a diameter of 15 m. Middle: Narrow-angle apodizer for the
LUVOIR-A APLC, intended for exoplanet characterization. It uses a focal plane mask (FPM) with a
radius of 3.5 _/� (with _ the wavelength and � the telescope diameter). Right: Resulting coronagraphic
image, with a dark hole from 3.4 to 12 _/� and an average normalized intensity of 4.3 × 10−11, which is
the coronagraph �oor in the absence of optical aberrations.

scope. A full demonstration of the PASTIS analysis is given in Sec. 2.5, where we calculate these segment
tolerances for the case of three di�erent APLC designs for LUVOIR-A and highlight some consequences
of this approach. In Sec. 2.6 we discuss our results and compare them to previously derived requirements
and how they can be used in observatory error-budgets, and in Sec. 2.7 we report our conclusions.

Note that the main metric of the PASTIS model is the spatial average raw contrast in the dark hole
(normalized coronagraphic intensity to peak of direct image), which is what we refer to as “contrast”
throughout this paper, as opposed to a spatially dependent quantity. We also want to point out how we
di�erentiate between this spatially averaged dark hole intensity, the “average DH contrast” on the one
side, and a statistical mean (expectation value) of this averaged contrast over many optical propagations
on the other side, the statistical “mean contrast”.

2.2 PASTISmodel of telescope segment-level aberrations inhigh-contrast

coronagraphy

The PASTIS model was initially established for a perfect coronagraph using an analytical propagation
model for aberrated pairs of segments (Leboulleux et al. 2018b); the application to real coronagraphs re-
quired a second-step numerical calibration. Here, we generalize the model to any coronagraph on any seg-
mented aperture geometry by using a semi-analytical derivation of the PASTIS matrix. We also show that
the validity of the PASTIS results is not limited to symmetrical dark holes, but extends to non-symmetrical
ones as well. Independently of the way the PASTIS matrix is calculated (analytically or semi-analytically),
the derivations and conclusions that we build on the PASTIS approach retain their analytical power and
potential.

2.2.1 Matrix formalism to calculate the average dark hole contrast

The goal of PASTIS is to model coronagraphic images in the presence of optical aberrations on a segmented
primary mirror, which can be represented for example by using localized Zernike polynomials. This basis
is an obvious possible choice since segment-level piston, tip/tilt, focus and astigmatism are naturally oc-
curring aberrations from segment misalignments, for example in three-mirror anastigmat (TMA) designs
such as JWST (Acton et al. 2004, 2012) or LUVOIR (The LUVOIR Team 2019; Juanola-Parramon et al. 2019b).
Although beyond the scope of this paper, the PASTIS approach can also be applied directly to any other
function basis, for example to represent mirror wavefront errors induced by thermo-mechanical e�ects
(mounting, backplane deformations, etc.) (Coyle et al. 2019a; East et al. 2019; Wells & East 2019). In this
paper, we simply expand the phase aberration in the segmented pupil qB as a sum of local (segment-level)
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Figure 2.2: Piston pair aberrations on a segmented pupil (top) and the resulting image plane intensity distribu-
tions in the dark hole (bottom), using the narrow-angle APLC for LUVOIR-A in an E2E propagation
model. The left three panels show di�erent interference pairs with corresponding Young-like interfer-
ence fringes, while the right panel shows a random distribution of local piston on all segments of the
pupil and the resulting image plane intensity. All plots appear on the same scale.

Zernike polynomials (Leboulleux et al. 2018b, Eq. 9):

qB (r) =
(=B46,=I4A )∑
(:,;)=(1,0)

0:,; /; (r − rk), (2.1)

where r is the pupil plane coordinate, qB the phase from the segmented primary and =B46 is the total
number of segments, indexed by : . The 0:,; are the Zernike coe�cients with Noll index (Noll 1976) ; up to
the maximum Zernike =I4A , and /; is the ;Cℎ Zernike. In this paper, we limit the study to a single Zernike
mode (piston; index ; = 0) as illustrated in Fig. 2.2. Hence we drop the ; index in all consecutive equations,
but the PASTIS methodology is applicable to any Zernike mode, combination thereof, or other types of
segment-level modes.

In high-contrast coronagraphy the best contrast is not typically obtained for the perfect aperture with-
out any aberration, but more commonly in the presence of a wavefront control solution using deformable
mirrors (Pueyo et al. 2019; Mazoyer et al. 2018a). Therefore, we are studying the response of the coron-
agraphic system to a perturbation around that solution. De�ning q�� as the phase solution for best DH
contrast and qB as the segmented perturbation, the phase can be divided into

q = q�� + qB . (2.2)

High-contrast coronagraphy requires exquisite wavefront quality around the dark hole solution, and there-
fore we assume the small aberration regime for qB , where the electric �eld � (r) is well approximated as
an a�ne function of the phase: � (r) = % (r) 48q (r) ' % ′(r) + 8 qB (r). The phase qB (r) is zero where the
pupil aperture % (r) is zero, and % ′(r) is a complex pupil that includes the wavefront solution to produce
the static dark hole (with both phase and amplitude contributions, and including static errors). Note that
the phase q�� is not necessarily small (Mazoyer et al. 2018a,b).

Using Fourier optics for a scalar description of the electric �eld and of its propagation, the coronagraph
propagation can be represented by a linear operator C. This is a valid assumption for Lyot-style corona-
graphs, for example an APLC (Soummer et al. 2003a; N’Diaye et al. 2015b, 2016) such as the one illustrated
in Fig. 2.1 for the LUVOIR-A coronagraph design, or a vortex coronagraph (Foo et al. 2005; Mawet et al.
2013). High-order vortex designs would need a special treatment for the speci�c low-order modes (e.g.,
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defocus) they reject perfectly (Ruane et al. 2017), but the tolerancing of such global modes is not the main
purpose of PASTIS anyway. We can hence express the intensity distribution in the �nal image plane as

� (s, q) = |C{% ′}(s) + 8 C{qB }(s) |2, (2.3)

with s the image plane coordinate. This intensity is therefore the sum of three terms (Leboulleux et al.
2018b, Eq. 16):

� (s) = |C{% ′}|2 + 2<{C{% ′}C{qB }∗} + |C{qB }|2. (2.4)

In most cases of interest, we will be working in a symmetrical DH. It can be shown that the spatial average
of the linear cross-term in Eq. 2.4 over a symmetrical DH is zero (Leboulleux et al. 2018b, Appendix A).
This simpli�es Eq. 2.4 to a quadratic function of the phase:

〈� (s)〉�� = 〈|C{% ′}|2〉�� + 〈|C{qB }|2〉�� . (2.5)

The main metric used in this paper is the spatial average contrast over the extent of the dark hole,
〈. . . 〉�� , so by using 2 ′0 = 〈|C{% ′}|2〉�� , we can express the average dark hole intensity as:

〈� (s)〉�� = 2 ′0 + 〈|C{qB }|2〉�� . (2.6)

Using the expression for the phase decomposition from Eq. 2.1 in Eq. 2.6, we can derive the intensity as a
function of all aberrated segment pair combinations:

〈� (s)〉�� = 2 ′0 + 〈|C
{ =B46∑

:

0:/ (r − r: )
}
|2〉�� , (2.7)

and therefore:

〈� (s)〉�� = 2 ′0+
=B46∑
8

=B46∑
9

080 9 〈C{/ (r − r8)}C{/ (r − r9 )}∗〉�� . (2.8)

This double sum combines all pairs of segments where segment 8 has an aberration amplitude 08 of the
localized phase aberration / (r − r8). These cross-terms from each aberrated pair of segments are very
similar to Young interference fringes, and this forms the basic idea behind the PASTIS model (Leboulleux
et al. 2018b). The orientation and periodicity of these fringes depend on the separation and orientation of
the according aberrated pair, as displayed in Fig. 2.2.

It is important to note that the pair-wise model is not an ad-hoc idea to build the model by pairs. It
derives from the fact that we expand the primary mirror phase on a discrete number of segments. Since
we build a propagation model for the intensity, the “pairs” simply appear in Eq. 2.8 from all the cross-terms
when calculating the square modulus of the electric �eld in Eq. 2.7.

Eq. 2.8 can be readily re-written as a matrix multiplication:

2 = 2 ′0 + a)"a, (2.9)

where 2 is the average contrast in the dark hole, 2 ′0 the coronagraph �oor (i.e., the average contrast in the
dark hole at best contrast with q�� , in the absence of phase perturbations), " is the PASTIS matrix with
elements<8 9 , a is the aberration vector of the local Zernike coe�cients on all discrete =B46 segments and
a) its transpose. The elements of the PASTIS matrix " in Eq. 2.9 therefore directly identify as:

<8 9 = 〈C{/ (r − r8)}C{/ (r − r9 )}∗〉�� . (2.10)

While this derivation is always true in the most common case of a symmetrical DH, there are corona-
graph designs that produce half-sided dark holes (Por 2020b). We can show that the quadratic dependency
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of the contrast on the phase perturbations remains true in this most general case. We rewrite Eq. 2.4 in a
similar matrix form as Eq. 2.9, but preserving the linear term:

2 = 2 ′0 + v) a + a)"a, (2.11)

where v is a vector that does not need to be expressed explicitly here. If we take the derivative of this
equation and solve for the aberration vector a0 that provides the minimum contrast 20, we can identify
a0 = −"−1v/2 and 20 = 2 ′0 − 1/4v)"−1v, and therefore eliminate the linear term by performing a simple
change of variable:

2 = 20 + (a − a0))" (a − a0) . (2.12)

This quadratic expression is similar to Eq. 2.9, but with a segmented mirror perturbation solution a0 ≠ 0
that improves contrast compared to the case without aberrations. As discussed above, we also assume a
wavefront control solution with deformable mirrors to be included in the term % ′(r) (and hence 20), with
both amplitude and phase contributions. Therefore this guarantees that the best contrast in the presence
of that wavefront control solution and DH is obtained for a0 = 0, which in turn means that any arbitrary
segment aberration vector a will always degrade the contrast. Note that this does not preclude to have a
non-zero static segmented correction included as part of the term q�� . This is equally true in broadband
light: When summing over wavelengths, the quadratic nature of Eq. 2.12 remains true, albeit with di�erent
coe�cients 20, 00 and " .

We have shown that the average dark hole contrast is always a quadratic function of a segmented phase
perturbation qB , which can be discretized into a per-segment aberration amplitude vector a, coe�cients
on a modal basis. We can calculate this average dark hole contrast for any aberration vector directly,
using the PASTIS matrix expression (Eq. 2.9). This is particularly interesting and e�cient since it does
not require end-to-end optical simulations, and only involves simple linear algebra. Furthermore, this
analytical expression can be inverted to establish a segment-level wavefront error budget that meets a
given level of contrast. This will be detailed in Sec. 2.4.

2.2.2 Semi-analytical calculation of the PASTIS matrix

The PASTIS matrix " can be calculated using the original analytical approach for a perfect coronagraph,
then calibrated numerically for a real coronagraph and to include pupil features (e.g., support structures)
(Leboulleux et al. 2018b, Eq. 20). This approach was validated against an end-to-end model for the 36-
segment ATLAST telescope pupil with an APLC (Leboulleux et al. 2018b, Fig. 7) to within an error of
3%.

Here, we introduce another way to calculate the PASTIS matrix using an end-to-end simulation (Lag-
inja 2020) of the average dark hole contrast for all individually aberrated segment pairs, from which we
can identify semi-analytically the matrix elements in Eq. 2.10. This presents the advantage of enabling a
direct calculation of the matrix for any telescope geometry, any coronagraph, and any choice of segment-
level aberrations (including fully numerical ones such as segment �gures induced by thermo-mechanical
e�ects).

The phase for each segment pair is expressed as a Zernike aberration:

q8 9 (r) = 08/ (r − r8) + 0 9/ (r − r9 ) . (2.13)

We denote by 28 9 =
〈
�8 9 (s)

〉
��

the average dark hole contrast, on the pair of segments 8, 9 , q8 9 (r), that can
be calculated numerically for a small wavefront aberration and compared to the quadratic expression of
Eq. 2.6 under the linear expansion of this phase term:

28 9 = 20 + 〈|08C{/ (r − r8)} + 0 9C{/ (r − r9 )}|2〉��
= 20 + 028 〈|C{/ (r − r8)}|2〉�� + 029 〈|C{/ (r − r9 )}|2〉��
+ 080 92〈C{/ (r − r8)}C{/ (r − r9 )}∗〉�� .

(2.14)

The elements<8 9 of the PASTIS matrix " (Eq. 2.10) can then be identi�ed directly in Eq. 2.14 as:

28 9 = 20 + 028<88 + 029< 9 9 + 2080 9 <8 9 , (2.15)
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where the diagonal terms of the PASTIS matrix are

<88 =
288 − 20
02
8

, (2.16)

and the o�-diagonal elements:
<8 9 =

28 9 + 20 − 288 − 2 9 9
2080 9

. (2.17)

For simplicity, we choose the same calibration aberration amplitude 02 = 08 = 0 9 for both segments.
Throughout our analytical development above, 08 is in units of radians, as q is a phase. Since the PASTIS
matrix can be normalized to any units though, the units of the aberration amplitude 02 can be chosen
freely in the computation of Eqs. 2.16 and 2.17. The units of the PASTIS matrix are therefore in “contrast
per square of units of 02” (contrast having no physical dimension), which is consistent with Eq. 2.9. Note
that in the presented case in Fig. 2.3, the units of the aberration amplitude 02 is waves. The aberration
amplitude 02 has to be chosen such that the global pupil aberration it results in yields an average DH
contrast higher than the contrast �oor, but small enough to remain in the small phase aberrations linear
regime. This will be discussed further in Sec. 2.2.3. The matrix is symmetric by de�nition since 28 9 = 2 98 .
O�-diagonal elements <8 9 of the PASTIS matrix (Eq. 2.17) can be negative, which is not an issue since
the only constraint for the matrix is to be positive semi-de�nite to ensure positive eigenvalues, since they
correspond to each mode’s contrast. This will be discussed in detail in Sec. 2.3.

We could potentially calculate the matrix elements<8 9 (Eq. 2.10) directly by calculating those complex
electric �eld quantities. Usually though, full end-to-end simulators that calculate the image plane intensity
are readily available and necessary for multiple other reasons. This means that choosing to calculate the
PASTIS matrix through image plane intensities makes it more �exible and portable to other simulators.
More importantly, working with intensities allows us to measure an empirical PASTIS matrix without the
estimation errors and computational overheads of using an electric �eld estimator, allowing this theory to
be experimentally tested.

In summary, the PASTIS matrix is constructed in two steps: (1) Calculate aberrated images �8 9 and
their corresponding dark hole average contrast 28 9 for each pair of aberrated segments 8, 9 , and (2) use
these contrast values to identify analytically the elements of the PASTIS matrix " based on Eqs. 2.16 and
2.17. Here, the numerical calculation of these aberrated images for pairs of segments using an end-to-end
simulator (see Chap. 3.1) replaces the analytical expression of Young fringes between pairs of segments
(Leboulleux et al. 2018b). This approach provides more accuracy, �exibility and generality for use with any
coronagraph and telescope geometry, since the analytical approach has to be calibrated using a numerical
simulation anyway.

2.2.3 Validating the semi-analytical PASTIS matrix

The semi-analytical PASTIS matrix for the narrow-angle LUVOIR APLC is calculated following Sec. 2.2.2
and shown in Fig. 2.3.

The PASTIS matrix shows how some segments have a higher impact on the �nal contrast than others.
This is visible along the diagonal, which records the contrast contribution from each individual segment
alone. For example, segments 65-120 have a lower contrast contribution, as they correspond to the darker
areas of the apodizer on the outer two rings of the aperture (see Fig. 2.3, right panel). This e�ect is also
visible on the innermost ring of hexagons. We can also notice streaks of negative values in the matrix in
the o�-axis areas, as discussed in Sec. 2.2.2.

We validate the semi-analytical PASTIS matrix by comparing the PASTIS contrast obtained with the
matrix formalism of Eq. 2.9 to the contrast from an E2E simulator using the same inputs. We show the
comparison in Fig. 2.4. The coronagraph �oor for this particular APLC design in the absence of aberrations
is 4.3×10−11. The PASTIS model starts to diverge from the E2E calculation at large WFE root-mean-square
(RMS) where the linear approximation of the phase breaks down. Note that the choice of 02 = 1/500 of the
wavelength (used in the presented example, and is on the order of 1 nm in visible) on a single segment yields
a global pupil WFE RMS of 1.67× 10−5 waves, which translates into an average DH contrast just above the
coronagraph �oor, but keeps it in the small aberration regime. Here, the accuracy of the semi-analytical
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Figure 2.3: Semi-analytical PASTIS matrix of the 120 segment LUVOIR-A design with the narrow-angle APLC
(left). The matrix is symmetric by construction and the dark streaks correspond to negative values. The
diagonal elements show which segments have more impact on the contrast than others. The outermost
segments (65–120) have lower matrix values because of the darker apodization for these segments. This
is clearly visible in the superimposed image of the apodizer on the segments (right).

matrix approach is signi�cantly higher than that of the fully analytical matrix because the construction of
the PASTIS matrix is based on the actual E2E simulation as opposed to a post-calibrated analytical fringe
model.

2.3 Model inversion and statistical mean contrast derivation

Once the PASTIS matrix has been calculated, Eq. 2.9 gives a fully analytical expression of the dark hole
average contrast for any random segment-level aberration a. This makes PASTIS particularly well suited
for error budgeting analyses, compared to otherwise computation-intensive Monte-Carlo analyses. More
interestingly, this analytical model can be inverted to determine the pupil plane aberration vector a that
meets a speci�c average contrast target 2C , using an eigendecomposition of the PASTIS matrix. We also
show that the model inversion to obtain the target contrast as a function of eigenmodes is achieved both
in a deterministic and statistical sense.

2.3.1 Eigendecomposition of the PASTIS model and mode-segment relationship

The PASTIS matrix" is square and symmetric by construction, and therefore diagonalizable. We perform
the eigendecomposition:

" = *�*) , (2.18)

where U is unitary, hence invertible and * −1 = *) . The columns of * are the eigenmodes of the PASTIS
matrix " , which can be written as column vectors u? of* =

(
u1, u2, . . . , u? , . . . , u=<>34B

)
and =<>34B is the

total number of eigenmodes (which is equal to the total number of segments =B46), indexed by ? . � is a
diagonal matrix whose diagonal elements are the eigenvalues _? of the matrix " ; it is the diagonalized
PASTIS matrix � . The analysis of the eigenmodes u? provides information about the critical modes of
the system that can be used to place tolerances on segment cophasing and stability. The full set of modes
of the LUVOIR-A primary with the narrow-angle APLC is shown in Fig. 2.5, and a selection of modes in
Figs. 2.7, 2.8, and 2.9. The eigenvalues _? shown in Fig. 2.6 indicate how much each mode contributes to the
�nal image contrast if applied to the pupil in their natural normalization, without any imposed weighting.
This �gure shows that the high-spatial frequency modes (to the left) have a much higher impact than the
lower-spatial frequency modes (to the right).
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Figure 2.4: Average dark hole contrast as a function of wavefront error using both an end-to-end simulator (dashed
red) and the PASTIS matrix propagation (solid blue). In a hockey stick graph behavior, the contrast is
limited by the coronagraph itself at low wavefront errors corresponding to the �attened out curve to
the left (at 20). From about 10−4 waves to 10−1 waves of WFE RMS, the contrast is limited by segment
phasing aberrations. In this range the estimation error of PASTIS is 0.06% compared to the reference
E2E model. A calibration aberration per segment 02 of 1/500 wave, on a 120 segment pupil, translates to
a global WFE of 1.67× 10−5 waves when calibrating the PASTIS matrix diagonal, or 2.36× 10−5 with two
simultaneously aberrated segments, which is in the small aberration regime of the model, just above
the coronagraph �oor. The curves shown are obtained as the mean of the same 20 random realizations
for each RMS value, both for the E2E simulator and the PASTIS propagation. At large wavefront errors
(close to 0.1 waves RMS) the linear approximation breaks down and the two curves no longer match
perfectly.

The PASTIS modes u? form an orthonormal basis set that allows us to express any arbitrary, segment-
based pupil plane aberration a as a linear combination of the modes u? with mode weighting factors 1? :

a =

=<>34B∑
?=1

u?1? . (2.19)

This can also be written as:
a = * · b, (2.20)

indicating a basis transformation between the mode basis and the segment basis. The inverse basis trans-
formation is thus given by b = * −1a. This relationship demonstrates the physical equivalence of working
in the mode-basis or in the segment basis, as we can transform any expression in one space into an ex-
pression of equivalent meaning in the other space. We further explore the physical meaning of the PASTIS
modes in Sec. 2.3.2 and 2.3.3.

2.3.2 Contrast as a function of the eigenmodes

The mode weights b will depend on how much each individual mode contributes to the �nal contrast, and
their associated eigenvalue. Inserting Eq. 2.20 into Eq. 2.9 allows us to de�ne this relationship:

2 − 20 = (* b))" (* b)
= b)*)"* b

= b)�b,
(2.21)
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Figure 2.5: All PASTIS modes for the LUVOIR-A narrow-angle APLC, for local piston aberrations, sorted from high-

est to lowest eigenvalue. The modes are unitless, showcasing the relative scaling of the segments to each
other, and between all modes. They gain physical meaning when multiplied by a mode aberration am-
plitude 1? in units of wavefront error or phase. Their respective eigenvalues and hence relative impact
on �nal contrast is displayed in Fig. 2.6.
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Figure 2.6: Eigenvalues, or sensitivity of contrast to mode index ? , for the piston PASTIS modes of the LUVOIR-
A telescope with the small FPM coronagraph design, shown in Fig. 2.5. Note how the PASTIS matrix
and modes do not depend on the target contrast, but they do on the choice of telescope geometry and
coronagraph, making them the proper modes of the optical system.

and �nally:

2 − 20 =
=<>34B∑
?

12?_? . (2.22)

The �nal contrast is therefore the sum of all squared mode weights, multiplied by their respective eigen-
value. Since the modes contribute independently to the �nal contrast (they are orthonormal by construc-
tion), we can de�ne a per-mode contrast as:

2? = 12?_? , (2.23)

and obtain that the total contrast is the sum of all individual contrast contributions:

2 = 20 +
=<>34B∑
?=1

2? . (2.24)

We can then �nd the p-th mode weight that gives the allocated contrast contribution 2? as:

1? =

√
2?

_?
. (2.25)

Eq. 2.25 gives the weighting factor for each PASTIS mode when it has a particular contrast contribution 2? .
We can illustrate this expression by calculating the mode weights corresponding speci�cally to a uniform
contrast contribution of the overall target contrast 2C over all modes, 2? = (2C − 20)/=<>34B . Then we
calculate them as

1̃? =

√
2C − 20

=<>34B · _?
, (2.26)

where the 1̃? is the particular set of mode weights in the case of a uniform contrast allocation across all
modes. The resulting mode weights b̃ for a total contrast allocation of 2C = 10−10 are shown in Fig. 2.10.

In Fig. 2.11 we con�rm the validity of the mode weights 1̃? by showing the average dark hole contrast
from an end-to-end propagation of the cumulative wavefront error for all modes. The linearity of the plot,
as well as the end value at the target contrast 2C validates the uniform contrast allocation to each PASTIS
mode from Eq. 2.26.
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Figure 2.7: Low-impact modes with high tolerances for the narrow-angle APLC on the LUVOIR-A telescope, for
local piston aberrations. These modes have little impact on the �nal contrast - they are similar, but not
equal, to discretized Zernike modes and the coronagraph rejects them very well by design.

Figure 2.8: Mid-impact modes with medium tolerances for the narrow-angle APLC on the LUVOIR-A telescope, for
local piston aberrations. These modes have medium impact on the �nal contrast, relatively speaking.
These modes show mostly low spatial frequency features except for high spatial frequency components
in the parts of the pupil where the apodizer covers most of the segments.

Figure 2.9: High-impact modes with low tolerances for the narrow-angle APLC on the LUVOIR-A telescope, for
local piston aberrations. These modes have the highest impact on the �nal contrast. They consist entirely
of high spatial frequency components in the parts of the pupil where the apodizer (and other pupil plane
optics) are the most transmissive.
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Figure 2.10: PASTIS mode weights for the uniform contrast allocation across all modes. The low-index modes to
the left, which correspond to high spatial frequencies, have a lower WFE tolerance than the low spatial
frequency modes with high index to the right. These mode amplitudes are inversely proportional to
the eigenvalues associated with each mode (Eq. 2.26), and they scale the modes such that each of them
contributes the same contrast 2? to the overall target contrast. The cumulative contrast response of the
modes multiplied by these weights is shown in Fig. 2.11.
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Figure 2.11: Cumulative contrast from all PASTIS modes when allocating the total contrast uniformly across all
modes (see Sec. 2.3.2). For instance, the measured contrast corresponding to the �rst 60 accumulated
weighted modes is about 0.7 × 10−10. We multiply all modes by their respective mode amplitude 1̃?
and propagate them cumulatively to the image plane, both with the E2E simulator (dashed red) and
the PASTIS propagation (solid blue). Without any of the modes applied, we get the contrast �oor
from the coronagraph 20, while application of all modes together yields the requested target contrast,
here 2C = 10−10. Each mode is allocated an equal contrast contribution 2? to the �nal contrast, which
results in a linear cumulative contrast curve. Note how neither line starts at the coronagraph �oor
because the lowest-index mode already adds a contrast contribution on top of the baseline contrast.
The corresponding PASTIS mode weights to obtain this uniform allocation of contrast per mode, is
shown in Fig.2.10.
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Figure 2.12: Validation of the uniform contrast allocation across PASTIS modes with an E2E Monte-Carlo simu-
lation, drawing random sets of mode weights from a normal distribution with standard deviations 2
(Eq. 2.28), corresponding to an equal contrast allocation per mode (Eq. 2.26) with weights b̃. The over-
all WFE of one realization is the sum of all weighted modes for each set, and is propagated in an E2E
simulation. The histogram represents 100,000 realizations of the average dark hole contrast for a target
contrast of 10−10.

2.3.3 Statistical mean of the contrast from mode amplitudes

In this section, we analyze the properties of the model in the statistical sense to prepare a framework
for the segment-level error budget in Sec. 2.4. We extend the formalism from purely deterministic mode
weights b to random variables. We obtain the statistical mean contrast by substituting Eq. 2.23 into Eq. 2.24
and taking the mean:

〈2〉 − 20 =
=<>34B∑
?

〈12?〉_? . (2.27)

Assuming zero-mean normal distributions of the PASTIS modes, we can readily identify their variance as

f2? = 〈12?〉. (2.28)

We verify this for the uniform contrast allocation per mode (Eq. 2.26) in an E2E Monte-Carlo simulation
where we draw random samples of the PASTIS mode coe�cients b̃, following zero-mean normal distribu-
tions N with standard deviations f? , according to the uniform contrast allocation from Eq. 2.26:

b = (N (0, f1), N(0, f2), . . . , N(0, f?)). (2.29)

Fig. 2.12 shows the result of such a Monte-Carlo simulation where we sum each randomly weighted, in-
dividual set of modes to a unique wavefront map, propagate it to the image plane with the E2E simulator
and measure the spatial average contrast in the dark hole. We validate that the statistical mean of all these
contrast values is the target contrast 2C for which we calculated the vector of mode standard deviations 2
in the �rst place, in this case 10−10.

In summary, PASTIS provides an analytical model to go from a set of segment aberrations to the DH
average contrast in the coronagraphic image. The calculation of the PASTIS matrix eigenmodes allows
to invert this model: we can set a target contrast and allocate WFE amplitudes to each of the system’s
eigenmodes to reach that target contrast. Since they form an orthonormal set of modes, their individual
contrast contributions add independently, each with its own sensitivity, as a fraction of the average con-
trast in Sec. 2.3.2, on top of their statistical description in Sec. 2.3.3. These optical modes contain the full
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information of the image formation system, including the apodizer, coronagraph, primary geometry and
other optical components in the system, and are distinct from and unaware of the mechanical behavior of
the telescope. By this nature, we can use them to understand the fundamental limitations for high contrast
imaging with a segmented aperture, which will in sequence be further constrained by thermo-mechanical
properties of the telescope as we describe in Sec. 2.4.

2.4 Segment-level tolerance statistics

Sec. 2.3 details how we can construct mode-based requirements that satisfy a target on the spatial average
contrast in the image plane. This relationship is not only valid in a deterministic sense (relating a mode
amplitude directly to its contrast contribution), but also in the statistical sense (relating the standard devi-
ation of random modes to the overall dark hole contrast). The PASTIS modes form an orthonormal basis
where each mode contributes independently to the dark hole average contrast: the contrast of a sum of
weighted modes is equal to the sum of the contrast contributions for all weighted modes. The PASTIS
matrix " and its eigenmodes fully describe the optical propagation through the system in terms of WFE
e�ects from a segmented aperture on the average contrast in the DH with a coronagraph. However, they
do not contain any information about thermal or mechanical e�ects necessary to describe the �nal per-
formance of a given segmented observatory. A sound framework to develop error budgets on segmented
apertures therefore requires the combination of both the optical response of the telescope and corona-
graph (encapsulated in the PASTIS modes), and the thermo-mechanical response of the telescope and the
observatory (encapsulated in the segment aberration covariance matrix).

The goal of this section is to combine the information about the imaging formation through the coro-
nagraph on a segmented mirror with the thermo-mechanical properties of the observatory, in order to
establish requirements to reach a target DH contrast.

2.4.1 Statistical mean contrast and its variance in segmented coronagraphy

We can calculate the statistical mean contrast of the DH spatial average directly from Eq. 2.9, exploiting
the fact that the trace of a scalar is the scalar itself, and that tr(��) = tr(��):

〈2〉 = 20 + 〈a)"a〉 = 20 + 〈tr(a)"a)〉
= 20 + 〈tr("aa) )〉 = 20 + tr(" 〈aa) 〉),

(2.30)

and �nally:
〈2〉 = 20 + tr("�0), (2.31)

where �0 is the =B46 × =B46 segment covariance matrix, containing the as-built thermo-mechanical corre-
lations between segments. Eq. 2.31 allows us to calculate the statistical mean of the average DH contrast
directly from the knowledge of the segment covariance matrix, no matter if there is correlation between
the segments or not, combining the imaging properties of the high contrast imaging system, contained in
" , with the thermo-mechanical behavior of the instrument contained in �0 .

Similarly, we can derive an analytical expression for the variance Var (2) of the DH contrast. Assuming
that a follows a zero-mean Gaussian distribution, the variance for Eq. 2.9 takes the very simple form
(Rencher & Schaalje 2008, Theorem 5.2c):

Var (2) = 2 tr[("�0)2] . (2.32)

These two equations provide an unambiguous closed form derivation of the mean contrast and its
variance from the optical model of the imaging system (encapsulated in the matrix "), and from the
thermo-mechanical properties of the telescope (captured by the matrix �0). The PASTIS matrix " knows
nothing of the thermo-mechanical e�ects of the observatory and is obtained by di�ractive modeling of
the coronagraph, while the segment covariance matrix comes from thermal and mechanical modeling
of the observatory and is completely detached from the image formation system of the telescope. The
two matrices together (" and �0) fully describe the statistical response of the coronagraph system to a
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particular WFE allocation on segments and therefore allow to establish a set of top-level requirements on
segment tolerances for an observatory.

The enabling aspect of Eqs. 2.31 and 2.32 for segment-level tolerancing is that the trace is invariant
under a basis transformation. It follows that if either one of the two matrices, the PASTIS matrix or the
thermo-mechanical covariance matrix, is expressed in its diagonal basis, the expressions for the contrast
mean and variance simplify greatly, as we show in the following sections. The segment tolerancing can
thus be achieved either by diagonalizing M, or by doing so with�0 . We have treated the case of diagonaliz-
ing the PASTIS matrix" in Sec. 2.3, where we describe the analytical framework for segmented telescope
tolerancing in the diagonal basis that most naturally describes the optical sensitivity of the system to the
DH contrast. In the following two sections, we turn to a basis that diagonalizes the segment covariance
matrix instead, permitting us to perform the tolerancing on appropriate system modes.

2.4.2 Uncorrelated segment-level requirements

In �nding a diagonal basis for the thermo-mechanical matrix, the easiest case is when �0 is already di-
agonal, which physically corresponds to independent segments on the primary mirror. In this case, the
diagonal elements of �0 , namely the segment variances 〈02

:
〉, fully describe the e�ect of the primary mir-

ror segments on the DH contrast, and the statistical mean of the contrast in Eq. 2.31, 〈2〉, �nds a simple
expression similar to Eq. 2.27:

〈2〉 = 20 +
=B46∑
:

<:: 〈02:〉. (2.33)

Similarly to the mode-based error budget presented in Sec. 2.3, we now want to �nd a segment-based error
budget to formulate the WFE limits on each segment that reach a speci�c statistical mean target contrast
2C = 〈2〉. Turning to a statistical mean contrast allows us to de�ne a similar allocation of contrast contri-
butions to all segments as we did statistically (and deterministically) in the PASTIS mode basis (Eq. 2.24).
The most straightforward way of doing this is to allocate the target contrast equally to all segments:

〈02
:
〉<:: =

〈2〉 − 20
=B46

. (2.34)

If we de�ne `: as the standard deviation of the WFE on the :-th segment, comparably to Eq. 2.28:

`2
:
= 〈02

:
〉, (2.35)

then by combining the three previous equations we obtain the per-segment WFE requirement for this
particular contrast allocation:

`2
:
=
〈2〉 − 20
=B46<::

. (2.36)

The expression in Eq. 2.36 lets us calculate a per-segment requirement for all individual segments in
the pupil of a coronagraphic instrument, given a statistical mean target contrast. The main assumption
for this is that the segments are independent from each other, and that we have access to the statistical
mean value of the contrast. While the mean contrast is easily measurable on images through averaging,
this might not be the case for an ultra-stable facility like LUVOIR. However, the statistical mean contrast
is an important quantity to perform segment-level WFE tolerancing, especially with regards to mirror
manufacturing.

In a more physical sense, we know that the intensity or contrast is proportional to the variance of the
WFE. Therefore, the total �nal contrast over the full pupil is proportional to the sum of the segment vari-
ances, which is also proportional to the sum of the contrast for all segments, conforming with Parseval’s
theorem. We validate this independent segment-level error budget for three di�erent LUVOIR corona-
graphs in Sec. 2.5.
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2.4.3 Case of correlated segments

While the assumption of statistically independent segments brings insights into WFE tolerances of seg-
mented mirrors for coronagraphic imaging, it is not general enough to encompass all possible modes for
such telescopes where large-scale thermo-mechanical drifts occur (for example, backplane “�apping” mode
around the folding motion of the primary mirror). Here we discuss extensions of the PASTIS approach to
the case of correlated segments.

In the case of independent segments, the covariance matrix�0 of the aberration vector a is a simple di-
agonal matrix holding the segment variances `2

:
. However, the covariance matrix�0 is no longer diagonal

for correlated segments, because of mechanical coupling for example due to large-scale backplane defor-
mations. In this case, the statistical mean contrast and its variance remain analytically computable with
Eqs. 2.31 and 2.32. The tolerancing can be done by performing an eigendecomposition on �0 , which will
diagonalize it and provide an orthonormal set of of eigenmodes that describe the mechanical perturbations
of the telescope system, which is also known as the Karhunen-Loève basis. By writing �0 = +�Cℎ+

) , we
obtain the PASTIS matrix in this new basis, " ′, through the transformation matrix+ , where " = +" ′+)

(<′
::
∈ " ′) still describes the optical properties of the system. In this basis, Eq. 2.31 takes the form :

〈2〉 = 20 + tr(" ′�Cℎ) . (2.37)

Since the thermo-mechanical covariance matrix �Cℎ is diagonal, we identify its diagonal elements as the
thermo-mechanical mode variances B2

:
. Like for Eqs. 2.27 and 2.33, this simpli�es Eq. 2.37 yet again to:

〈2〉 = 20 +
=Cℎ∑
:

<′
::
B2
:
, (2.38)

which allows us to make a reasonable allocation of contrast contributions across all=Cℎ thermo-mechanical
eigenmodes. In the same way like Eq. 2.36 calculates a per-segment variance in the basis of independent
segments, we can use Eq. 2.38 to tolerance the per-mode variances B2

:
to any given target contrast, albeit

this time for individual mechanical eigenmodes. Similarly, a transformed expression can be found for the
contrast variance in Eq. 2.32:

Var (2) = 2 tr[(" ′�Cℎ)2] . (2.39)
In this most general case of correlated segments, the knowledge of the segment-level covariance matrix�0
and its diagonal eigenbasis�Cℎ supersedes the simpler description in terms of segment-level variances that
is only possible in the uncorrelated case (Sec. 2.4.2). It allows us to express the mean contrast explicitly as
a function of variances of thermo-mechanical modes that can be toleranced in a similar fashion to what
was done in Sec. 2.3.

We have presented a quantitative, fully analytical method to calculate segment-level tolerances for
a high-contrast instrument on a segmented aperture telescope. These follow directly from the PASTIS
matrix for which we provided a new, semi-analytical way for its calculation that exploits a numerical
simulator to compute the e�ects of the segments on the intensity in the image plane. We encode the
optical and thermo-mechanical properties of the observatory separately, with the PASTIS matrix " and
the segment covariance matrix �0 , which when put together allow for the analytical calculation of the
expected mean contrast and its variance. These equations are invariant under a basis transformation,
which permits us to �nd an appropriate diagonalized basis in order to derive individual WFE tolerances.
This can either be done by diagonalizing " , as we showed in Sec. 2.3, or by �nding a diagonal basis for
�0 . A special case is given if �0 is naturally diagonal due to independent segments on the segmented
mirror; in this case, we derive a per-segment requirement map by following the analytical framework set
forth in Sec. 2.3. In the more general case of correlations between the segments, due to thermo-mechanical
properties of the telescope, we diagonalize�0 and use the same analysis principles in the Karhunen-Loève
basis of �0 , which allows us to calculate per-mode WFE tolerances. While the deformation matrix�0 will
be acquired through thermo-mechanical modeling and can include thermal, vibrational or gravitational
perturbations, the PASTIS matrix " and the PASTIS modes give insight into the purely optical properties
of the observatory, and the sensitivity of the optical system to contrast.

In the next section, we validate the segment-level error budget in the case of independent segments
(Sec. 2.4.2) for three di�erent APLC designs for LUVOIR.
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2.5 Application to LUVOIR WFE tolerancing

The LUVOIR study (The LUVOIR Team 2019) has two point-design cases (LUVOIR-A and LUVOIR-B),
respectively 15 m and 8 m in diameters, each designed as a TMA and containing a suite of scienti�c instru-
ments that include coronagraphs. The LUVOIR-A coronagraphic instrument (Pueyo et al. 2017) includes
a suite of three numerically optimized APLC coronagraphs (Por et al. 2020) with focal plane mask diam-
eters that maximize the exo-Earth yield in both detection and characterization (Stark et al. 2015, 2019).
The optical train of an APLC (Leboulleux et al. 2018b, Fig. 5) contains an apodizer in the pupil plane that
modulates the optical beam in amplitude, a focal plane mask occulting the on-axis point-spread-function
(PSF) core, and a Lyot stop in the subsequent pupil plane that blocks the light di�racted at the focal plane
mask (FPM) (Soummer et al. 2003a; N’Diaye et al. 2015b, 2016). Of the three LUVOIR APLCs, we used the
smallest FPM coronagraph, or narrow-angle coronagraph, for theory validation in the previous sections.
It is typically used for spectroscopic characterization in the wavelength band where molecular oxygen
and water can be detected (0.76 `< and 0.94 `<). Planet detection can however be performed at shorter
wavelengths (e.g., around 0.5 `<) where a given angular size corresponds to a larger inner working angle
in di�raction resolution units (_/�). This larger inner working angle corresponds to a larger FPM, and
a larger FPM allows for apodizer designs with a higher throughput and a more robust coronagraph de-
sign, which is where the trade-o� between the three designs (narrow-, medium- and wide-angle) is made.
The three LUVOIR-A APLC designs are shown in the top row of Fig. 2.13. The corresponding FPM have
radii of 3.50, 6.82 and 13.38 _/� respectively, followed by a hard edge annular Lyot stop, whose inner and
outer diameters are 12.0% and 98.2% of the circumscribed diameter of the apodizers. The resulting coron-
agraphic dark hole sizes are 3.4–12, 6.7–23.7 and 13.3–46.9 _/� respectively, with a coronagraph �oor 20
of 4.3 × 10−11, 3.9 × 10−11 and 3.9 × 10−11 for the three designs.

In this section, we present a full analysis to obtain segment requirements for these three LUVOIR
APLCs, and validate the results by performing Monte-Carlo simulations with an E2E simulator. We also
take a deeper look into the narrow-angle APLC by analyzing the PASTIS mode-based decomposition of
the individual-segment requirements. This monochromatic analysis was performed at a wavelength of
500 nm, which is the lower limit wavelength for the LUVOIR coronagraphs and where we expect to detect
planets.

2.5.1 Segment requirements and Monte-Carlo simulations for three APLC designs

We �rst calculate the PASTIS matrix for each of these three APLC designs, according to the methodology
described in Sec. 2.2.2. We can then establish a segment-level error budget in the assumption of uncorre-
lated segments, according to Eq. 2.36. In Fig. 2.13, we show the resulting segment requirement maps for a
target contrast of 2C = 10−10 and for all three APLC designs.

It is important to note that these requirement maps do not represent the WFE over the segmented
pupil, but instead show the standard deviations on the tolerable WFE for each segment in order to retrieve,
statistically, the desired mean target contrast. In this sense, the maps in Fig. 2.13 are a prescription for the
drawing of random segment WFE realizations like the examples shown in Fig. 2.14. These random maps
are then propagated with the E2E simulator and their average contrast values build the MC histograms in
Fig. 2.15. One big takeaway point from Fig. 2.13 is that the segment requirements are not uniform across
the pupil, but clearly follow the apodization of the coronagraph mask. The PASTIS matrix holds knowledge
of the optical e�ect of not only the segments but also the coronagraph instrument on the �nal contrast,
so by including that knowledge into the derivation of the segment constraints we obtain a requirement
map optimized for that particular instrument. Moreover, we can observe a direct trade-o� between the
coronagraph apodization and the per-segment requirements - the more aggressive the apodization and the
lower the throughput, the more we can relax the requirements on the more concealed segments within
one coronagraph. However, more aggressive apodization usually comes with smaller FPM coronagraphs
that �lter low-order modes less, which will lead to more stringent overall requirements. This leads to a
direct trade-o� between FPM size, throughput and WFE requirements (see also Sec. 2.6).

These requirement maps can be calculated for any target contrast in the range of validity of the PASTIS
model, which we discussed in Sec. 2.2.3. We can verify Eq. 2.36 by running MC simulations with the E2E
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pm pm pm

Figure 2.13: Top: The three baseline apodizer designs for LUVOIR-A, a narrow-angle (left), medium-angle (middle)
and wide-angle (right) mask (details see Sec. 2.5). Bottom: Segment tolerance maps for narrow-angle
(left), medium-angle (middle) and wide-angle (right) APLC designs on LUVOIR-A for a target contrast
of 2C = 10−10, at a wavelength of 500 nm. All three tolerance maps are shown on the same scale. Note
how each segment value denotes the standard deviation of a zero-mean normal distribution from which
the segment aberrations in WFE RMS are drawn. The minimum and maximum values of these maps
are, from left to right: 7 and 116 pm, 25 and 93 pm, and 92 and 181 pm.

pm

Figure 2.14: Four random segment-based WFE maps drawn from a zero-mean normal distribution and the per-
segment standard deviations from the left prescription map in Fig. 2.13, for the narrow-angle APLC
design and a target contrast of 10−10. After each random map is created, we propagate it through the
end-to-end simulator and record its average contrast to build the left MC simulation in Fig. 2.15.
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Figure 2.15: Validation of the independent segment tolerancing with E2E Monte-Carlo simulations, for di�erent
target contrasts, using the narrow-angle APLC design. Each segment : in one of the 100,000 WFE
realizations is drawn from a zero-mean normal distribution with standard deviation `: . The dashed-
dotted lines mark the target contrast of each case, which are successfully recovered by the mean values
of the histograms, in accordance with their analytical calculation in Eq. 2.31. The dotted lines mark the
1-sigma con�dence limits of this contrast distribution, which are 8.3×10−12, 1.4×10−10 and 1.5×10−9
for the three target contrasts 10−10, 10−9 and 10−8 respectively, and they accord with the numbers
calculated by Eq. 2.32.

simulator across a grid of di�erent coronagraph instruments and target contrasts. Using a range of target
contrasts 2C = 10−10, 10−9, and 10−8 on the narrow-angle baseline LUVOIR APLC design, we �rst calculate
the segment constraints (the requirement maps for 10−9 and 10−8 are not shown here, but they show
the same spatial distribution over the segments as in Fig. 2.13, only di�erent by a proportionality factor).
We draw the WFE amplitude for each individual segment from a zero-mean normal distribution and its
standard deviation `: :

a = (N (0, `1), N(0, `2), . . . , N(0, `: )) . (2.40)

We use these random aberration amplitudes on all segments to compose a WFE map on the segmented
pupil and then propagate this WFE map through the E2E simulator to measure the resulting spatial average
contrast in the dark hole. Doing this 100,000 times for each target contrast case, we obtain the histograms
shown in Fig. 2.15. The mean of the resulting MC simulations clearly recovers the target contrast for which
the segment requirements have been calculated, which is indicated by the dashed-dotted line. Both these
mean values, as well as the standard deviations, indicated with the dotted lines in Fig. 2.15, agree with the
theoretical values calculated analytically from the segment covariance matrix (Eq. 2.31 and Eq. 2.32). Also,
we have veri�ed the correct recovery of the same range of target contrasts by means of MC simulations
for the other two APLC designs shown in Fig. 2.13 (resulting histograms not shown in this paper).

2.5.2 Modal analysis of the segment-based requirements

The segment requirement maps were obtained assuming a uniform contrast allocation across all segments
(Eq. 2.34). We also assumed statistically independent segments, so that their correlation matrix �0 was
diagonal. Here, we further explore this uniform error budget in the segment basis by analyzing the corre-
sponding distribution of proper system modes of the optical system, the PASTIS modes. Using the transfor-
mation matrix* from the eigendecomposition of the PASTIS matrix" , we can calculate the corresponding
covariance matrix in the PASTIS mode basis with �1 = *)�0* . Given this linear transformation, if the
covariance matrix is diagonal in one space, we do not expect it to be diagonal in the other space. The ma-
trix�1 , obtained from the diagonal segment covariance matrix�0 assembled from the requirement map, is
illustrated on the left hand side in Fig. 2.16. This �gure also compares the extracted standard deviations for
PASTIS modes along the diagonal of �1 , with the PASTIS mode weights previously calculated in Sec. 2.3,
on the right hand side. Although �1 is not diagonal, this is a legitimate comparison. The PASTIS matrix
" is always diagonal in its own eigenbasis, expressed as matrix � in Sec. 2.3.1. This is why the average
contrast expression from the statistical mode weights in Eq. 2.27 only requires the diagonal elements of
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Figure 2.16: Left: Covariance matrix�1 , calculated from the diagonal covariance matrix in segment-space,�0 , with
�1 = *)�0* . Although there are clearly some correlations present between the high-index PASTIS
modes in the top right corner (low spatial frequencies), this does not matter as long as we are in the
PASTIS segment basis, where the PASTIS matrix is diagonal. When this is the case, the mean contrast
only depends on the diagonal elements of�1 (Eq. 2.27). Right: PASTIS mode amplitudes for the case of
independent segments in WFE RMS (solid red). They are extracted from the mode covariance matrix
�1 , after constructing an error budget assuming independent segments that contribute equally to the
total contrast, at 500 nm. Overlapping (dashed grey), we can see the mode weights from the uniform
contrast allocation to all PASTIS modes from Fig. 2.10. We can clearly see how compared to that �at
allocation, the independent-segment error budget increases the tolerances of low-index modes (left)
that have less segment correlation, and dampens the tolerances of high-index modes (right) that are
highly correlated, low-spatial frequency modes.

the covariance matrix �1 , no matter whether it is diagonal or not, i.e. whether the mode weights show
some correlations or not. The di�erence with respect to the mode weights 1̃? (Eq. 2.26) obtained under the
assumption of a uniform contrast allocation per mode (Fig. 2.10) is notable: the mode weights of low mode
index have increased tolerances, which is very interesting from a system design point of view, while large
index modes (above ∼90) are strongly attenuated in the PASTIS mode basis error budget for independent
segments. This is also clearly visible in Fig. 2.17 where the contrast contribution per mode is relatively
�at at a low mode index, but drops to negligible contributions at high-index modes. For the case of the
�at contrast allocation across modes, this �gure shows a �at line at (2C − 20)/=B46 for comparison (dashed
line). This e�ect can be well understood by looking back at Fig. 2.5, where high-index modes appear to be
very similar to low-order Zernike modes, therefore having highly correlated segments, and the low-index
modes appear as high-spatial frequencies, i.e. with more uncorrelated segments. Therefore, the construc-
tion of a segment-level error budget for uncorrelated segments creates a modal distribution with extremely
low weights on the PASTIS modes that have highly correlated segments (high-index modes), as seen in
Fig. 2.16. Also, since the mode contrast contribution is directly related to the mode weight (Eq. 2.25), the
same e�ect is visible in the allocated contrast per mode (Fig. 2.17).

To illustrate this further, we calculate a cumulative contrast plot similar to Fig. 2.11, which was initially
obtained for a uniform contrast allocation per mode. The new result is shown in Fig. 2.18, where we can
see that it is no longer linear, i.e. the modes no longer contribute equally to the total mean contrast. The
slope of the blue curve is indicative of the allocated tolerances for each mode: the low-spatial frequency
PASTIS modes on the right hand side now contribute signi�cantly less to the �nal contrast, while the �rst
∼ 80 modes contribute more, while still resulting in the exact cumulative target contrast. This is consistent
with the behavior discussed in Figs. 2.16 and 2.17.

2.6 Discussion

The results we obtain for the three LUVOIR APLC designs in Sec. 2.5, under the assumption of statistically
independent segments, span more than one order of magnitude from the most constrained segment on
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Figure 2.17: Contrast per individual PASTIS mode when derived from the error budget in which all segments
contribute independently and equally to the �nal contrast (solid blue). High-index modes to the right,
which correspond to low-spatial frequencies and therefore highly correlated segments (see Fig. 2.5), are
highly attenuated and contribute negligible amounts to the contrast. The uniform contrast allocation
across all modes at (2C − 20)/=B46 is indicated with the dashed grey line (the contrast �oor has been
removed in both curves).
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Figure 2.18: Cumulative contrast of the PASTIS modes for the error budget in which all segments contribute in-
dependently and equally to the �nal contrast (solid blue), compared to the case in Fig. 2.11 where all
modes contribute the same contrast (dashed grey). The high-index modes have negligible contrast im-
pact (see also Fig. 2.17) as they correspond to low-spatial frequency, highly correlated segments. This
plot also con�rms the assumption that the mode covariance matrix �1 is nearly diagonal.
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the small APLC to the most relaxed segment on the large APLC (7 pm to 181 pm). These results show
not only a dependency on the coronagraph design, but also a wide range of segment requirements within
the pupil for one single coronagraph. The segment with the most stringent requirement can tolerate a
standard deviation of 7 pm local piston error on the narrow-angle APLC for a target contrast of 10−10,
at a wavelength of 500 nm, which is comparable to previous results for segment-based piston errors on
LUVOIR-A (10 pm at a wavelength of 575 nm (Juanola-Parramon et al. 2019b)), while studies on other
apertures and with other segment numbers quote similar numbers (Stahl et al. 2015; Nemati et al. 2017b).
However, we show that segments in other parts of the pupil have a much higher local piston tolerance,
a standard deviation up to 116 pm on the small APLC design, which suggests that not all segments need
to be held to the same tolerance level. Instead, we can relax the segment-level requirements on those
segments that do not in�uence the average DH contrast as much, while still obtaining the same statistical
mean contrast. Local relaxation of the wavefront error limits on certain parts of the pupil can be exploited
for example for the backplane mechanical design and observatory-level control strategy.

In particular, the tolerances will also depend on the total number of segments in the pupil. While this
has not been studied systematically in this paper, PASTIS can enable such work. For example, with fewer
segments in the aperture, the spatial frequencies corresponding to segment misalignments will be lower.
Therefore, WFE from these misalignments will be more �ltered by the coronagraph, which might lead
to increased tolerances. Inversely, with more segments in the pupil, the highest spatial frequencies from
segment misalignments will not be �ltered by the FPM and might thus result in lower tolerances, as is
already the case for the most sensitive PASTIS modes. Wavefront aberrations from a mirror with fewer
segments will be typically more �ltered by the coronagraph. However, more and smaller segments will
introduce high spatial frequencies that will di�ract light into the image beyond the outer working angle,
decreasing the impact of each segment misalignment on the DH. Overall, the number of segments in the
pupil will raise competing e�ects that will in�uence the overall tolerances, and will be highly in�uenced
by the type of coronagraph (Laginja et al. 2020).

In Sec. 2.5.1, we brie�y mentioned the observed trade-o� between coronagraph throughput, FPM size
and per-segment requirements. For a given coronagraph design, we observe relaxed requirements for those
segments in the pupil that are more concealed by the apodizer (i.e., more black in the apodizer image).
The overall tolerance over the entire pupil also increases with the size of the FPM. The larger the FPM, the
higher the rejection in particular of low-order spatial modes, which correspond to high mode indices where
the modes are similar to low-order, Zernike-like global modes. This results in higher mode weights, which
becomes obvious in Fig. 2.10, where these high-index modes on the right side show higher WFE tolerances.
When moving to the independent-segment error budget in Fig. 2.16, this e�ect becomes less obvious as the
low-order mode tolerances get dampened due to our assumption of uncorrelated segments contributing
equally to the mean contrast. The projection of these uncorrelated segments onto the mode basis favors
high-spatial frequency modes. This leaves the low-order modes statistically weak, as they would otherwise
contribute to inter-segment correlation. However, this is only true for these fully uncorrelated segment-
level WFE contributions. This uncorrelated error budget is over-constraining the low-order (high-index)
modes (see Fig. 2.16), therefore not taking advantage of the coronagraphic rejection of these spatially
correlated modes. A complete error budget will need to allocate contrast contributions separately between
the correlated and the uncorrelated components of the WFE. The �nal result will therefore have a modal
weight distribution in-between the solid (fully uncorrelated) and dashed lines (uniform contrast across
modes) in Fig. 2.16.

Additionally, large-FPM APLCs have higher throughput apodizers. This means that their larger coron-
agraphic rejection (associated with the larger FPM) contributes more to the WFE tolerance relaxation than
the apodizer throughput itself. Therefore, a true optimization of the WFE tolerances will be a trade-o� be-
tween the FPM size and the fraction of apodization in the pupil. Further, this tolerancing work introduces
new design considerations for high-contrast instruments, which is the optimization of the coronagraphic
component with respect to segment phasing tolerances. Such an optimization will aim to release the seg-
ment tolerances while keeping a reasonable contrast goal, with the ultimate goal to maximize exoplanet
yield, which should be explored in future work.

In a realistic telescope of course, the segments are typically correlated due to the deformations of
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the backplane structure. The development of technologies that support increased wavefront stability of
segmented telescopes is actively being worked on today (Coyle et al. 2019b). This includes precise methods
for thermo-mechanical modeling, and measuring of such deformation e�ects on the segmented primary
mirror. The underlying segment correlations can be provided either as a segment covariance matrix, or
in the form of thermo-mechanical system eigenmodes, in which case we can directly use Eq. 2.37 for a
tolerancing analysis, after expressing the PASTIS matrix in this new basis.

While local piston errors have been shown to have the largest impact on the contrast (Nemati et al.
2017b; Juanola-Parramon et al. 2019b), we can generate a PASTIS matrix for other local Zernike modes
as well (e.g., tip/tilt, focus, astigmatism). The feasibility of this has already been shown in the analytical
approach (Leboulleux et al. 2018b) and should hence be regarded as a mere functional addition. Moreover,
if we have knowledge of telescope-design and hardware dependent local aberration modes (e.g., from ef-
fects such as adhesive shrinkage, bulk temperature, coatings, or gravity), these can be used as well to build
the PASTIS matrix and derive their corresponding segment-level requirements. Instead of evaluating the
tolerance levels mode by mode, we can also calculate a multi-mode PASTIS matrix that incorporates com-
binations of local modes (e.g., piston–tip–tilt, or combinations of custom modes) in order to derive segment
tolerances that will take into account that more than one distinct local aberration mode is contributing to
the overall WFE.

Another application of extended PASTIS matrices is the generalization to high-spatial frequency e�ects
(e.g., from polishing). Instead of building a PASTIS matrix with pair-wise Zernike aberrations of segments,
we can use sine waves locally on the segments in lieu of Zernikes. Each spatial frequency and orientation
would then be a new local mode, and we can use many of them to make a multi-mode PASTIS matrix
in the same way as with any other local modes. While a generalization to a continuous distribution of
frequencies to build tolerances in terms of a Power Spectral Density (PSD) might be possible, it is beyond
the scope of the present discussion1. Nevertheless, the generalization to a few sine-wave frequencies (e.g
with their corresponding speckles localized at the inner and outer working angle, or in the middle of the
DH) is a direct and straightforward extension of the present illustration and would provide meaningful
input for tolerancing purposes of polishing errors.

The presented tolerancing model provides WFE limits on the segments, but it does not de�ne how
these limits are to be maintained. Relying purely on the mechanical stability of the telescope will not be
enough to stay within these requirements and therefore an active optics system will be needed to measure
WFE deviations and compensate for the residuals. Such an active optics system will include WFS&C as well
as signal-to-noise considerations, as the wavefront sensor needs enough photons to provide an accurate
wavefront estimate and correction (Pueyo et al. 2019).

Finally, the application of PASTIS to ground-based observatories is possible, but will have to take addi-
tional e�ects in account. While future large segmented telescopes (TMT, E-ELT, GMT) will reach contrast
levels of 10−7 to 10−8 within the next decade (Kasper et al. 2008), which is su�cient to enter the high-
contrast regime that the PASTIS model can be applied to, future work will have to include the e�ects of
residual turbulence in order to truthfully represent coronagraphic observations on those observatories. As
a �rst common approximation for this purpose, the coronagraphic PSF can be expressed as the sum of a
static and a dynamic contribution (Ygouf et al. 2013), so the PASTIS analysis can be used for a characteri-
zation of the static part.

2.7 Conclusions

The goal of PASTIS, as established by Leboulleux et al. (Leboulleux et al. 2018b), is an analytical prop-
agation model to calculate the average dark hole contrast in a coronagraphic system, in the presence of
segment-level aberrations. This is achieved with a closed-form expression in Eq. 2.9 that depends exclu-
sively on the PASTIS matrix " , acting on the aberration amplitudes on all segments. In this paper, we
extended the calculation of the matrix " to a semi-analytical approach, where the optical propagation
of segment aberrations is performed numerically before assembling the " matrix analytically (Eqs. 2.16

1We show some preliminary results of PASTIS with more general aberrations of a continuous DM, obtained after the publi-
cation of this paper, in Appendix 2.A.



64

2

2.A. MODAL SENSITIVITY ANALYSIS ON CONTINUOUS DMS

and 2.17). This makes the model more accurate as it includes all details of the optical system as provided
with the end-to-end simulator. We also show that the model holds even for a non-symmetrical DH. The
semi-analytical PASTIS approach is therefore a �exible tolerancing tool that can be adapted readily to any
telescope geometry or coronagraph, as shown in Sec. 2.5. It can be used to study trade-o�s between coro-
nagraph designs that will provide certain tolerance distributions over the segments on the primary mirror,
and telescope-level engineering constraints implemented in other parts of the observatory.

We used the model to derive analytical expressions for the statistical mean and variance of the average
DH contrast (Eqs. 2.31 and 2.32). This opens the possibility for WFE tolerancing of a segmented obser-
vatory. In addition to the optical properties modeled by the PASTIS matrix " , these expressions involve
the segment-level covariance matrix�0 that describes the thermo-mechanical properties of the telescope.
Indeed, deformations of the backplane structure typically lead to correlated segment poses (e.g., backplane
�apping modes around the folding motion of the primary mirror). It is this combination of the optical with
the thermo-mechanical characteristics that lays the foundation to a complete and analytical method for
the tolerancing of segmented aberrations.

The key to calculate WFE requirements with this framework is to �nd the diagonal basis of either of
the two matrices, " or �0 . The PASTIS matrix " can easily be diagonalized by means of an eigende-
composition, in which case the tolerancing can be performed on the PASTIS eigenmodes. They form an
orthonormal set of modes, representing the proper optical system modes of the given observatory and
coronagraphic instrument, and allow to analyze its fundamental limitations in terms of WFE propagation
in segmented aperture coronagraphy. These eigenmodes contribute additively to the image plane average
contrast according to their mode-level tolerances, which correspond to the standard deviations per mode
f? , associated with the statistical mean of the average DH contrast.

Additionally, if we have information on the thermo-mechanical behavior of the instrument or of the
whole observatory embodied in the segment aberration covariance matrix (e.g., though �nite-element
simulations), we can choose to work in the eigenbasis of these thermo-mechanical perturbations, a.k.a.
the Karhunen-Loève basis, to perform the tolerancing.

This allows us to put requirements on structural deformations that impact the segmented primary mir-
ror (e.g., backplane and mirror support structures) and can be modeled as rigid-body motions at the seg-
ment level. A better approximation of these thermo-mechanical modes will be obtained with a multi-mode
PASTIS matrix by combining multiple local Zernikes and/or ad-hoc local aberration modes, as described
in Sec. 2.6.

In the simpli�ed case of independent segments, the covariance matrix �0 contains only diagonal ele-
ments, representing the individual segment WFE variances `2

:
. We have built a segment-based error budget

by allocating equal contribution to contrast from all segments. This allowed us to calculate WFE require-
ments for all segments individually, building segment requirement maps as we showed in Sec. 2.5 for the
three APLC designs of the LUVOIR-A telescope. The advantage of this method is two-fold: Firstly, rather
than calculating WFE tolerances globally over the entire pupil, we can obtain a WFE standard deviation
per segment, which can locally lead to a relaxation in requirements. Secondly, we do not need to perform
full Monte-Carlo simulations that evaluate di�erent realizations of wavefront error maps for that purpose,
instead, we can calculate these requirements analytically in one single step.

The analysis presented in this paper is statistical but static, i.e. without temporal evolution; the exten-
sion to dynamical drift rates depends on the observing scenario and wavefront control strategy, which will
put the PASTIS propagation model on di�erent time scales (Coyle et al. 2019b; Pueyo et al. 2019). Future
work will address such dynamic analysis methods for continuous wavefront sensing and control cases on
ultra-stable telescopes.

Appendix

2.A Modal sensitivity analysis on continuous DMs

As discussed in Sec. 2.6, there are parts of the optical system other than the segmented mirror that can
bene�t from a careful sensitivity analysis performed with PASTIS. Of particular interest here are the con-



CHAPTER 2

2

65

tinuous DMs in the optical path that constitute the high-order WFS&C system. Finding the natural contrast
modes on these DMs could help to optimize the WFS&C strategy deployed on a high-contrast instrument.
In this appendix, we look into the �rst explorative stages of using the PASTIS tolerancing methodology
for the optimization of WFS&C techniques with continuous DMs. This was beyond the scope of the pub-
lished paper but expanding PASTIS this way presents interesting possibilities for further optimizations of
WFS&C, which is why we highlight some preliminary simulation results from the HiCAT testbed, and CGI
on Roman. While I prepared this preliminary study on HiCAT, the intern who I supervised during my �nal
PhD months, David Bourgeois, was investigating how to do the same thing for RST. The details about the
simulators used in this section will be discussed in Chap. 3.

Below, in Sec. 2.A.1 I show how to generalize the formalism to the case of continuous DMs. Following
in Sec. 2.A.2, I present the calculation of the continuous PASTIS matrix and its eigenmodes for two con-
crete HCI instruments. The goal here is to investigate the potential of this analysis method for a better
understanding of the sensitivities and tolerances in an coronagraphic system, and to explore its prospect
for modal control.

2.A.1 Formalism for continuous DMs

The mathematical formalism for the PASTIS tolerancing model has been presented in detail in Chap. 2.2. In
the case in which we probe the contrast sensitivity of a continuous DM, the residual WFE on the segmented
mirror are part of the phase solution for best contrast, q�� . Instead of an additional segmented term qB
like in Eq. 2.2, we will have a phase q2 (r) which is the continuous DM phase perturbation on top of q�� :

q = q�� + q2 . (2.41)

We have seen in Chap. 1.3.2 how the phase on a continuous DM can be described as a sum over all actuator
in�uence functions 5@ (r) (Eq. 1.18). Assuming the coe�cients 0@ to be in the appropriate units, we can
express the continuous DM phase q2 analogously to the segmented DM phase qB in Eq. 2.1 by replacing
the localized Zernikes with continuous DM in�uence functions:

q2 (r) =
#02C∑
@=1

0@ 5@ (r). (2.42)

With a continuous face-sheet DM, the contribution of any actuator will be highly localized but will still
in�uence the entire DM surface. This means that the contribution of an actuator can be seen as a charac-
teristic 2D phase map over the entire DM surface with unit amplitude, which are the in�uence functions
5@ (r). This in�uence function will be di�erent for all the di�erent actuators, especially when comparing
actuators at the edge with actuators far away from the DM edge. In numerical simulations though, all ac-
tuators are often modeled with the same in�uence function, which can be approximated with a Gaussian,
as is the case for the simulated DMs on HiCAT, and the pupil-plane DM used in the optical simulations of
CGI on RST, examples of both of which are shown in Sec. 2.A.2.

Developing the DM phase q2 in the small aberration regime allows us to follow the same development
of the PASTIS forward model like shown in Eqs. 2.3 – 2.8, leading to the PASTIS formula to evaluate the
contrast as a function of pupil-plane aberrations in Eq. 2.9. The di�erence in this case is that a represents
the aberration vector of all the coe�cients 0@ for the continuous DM in�uence functions in Eq. 2.42. The
PASTIS matrix " now describes the di�erential contrast sensitivity per unit aberration of each pair of
continuous DM actuators, and it needs to be calibrated with measurements of the contrast response of
actuator motions, analogously to the segmented case described in Chap. 2.2.2. In the presence of a best-
contrast DH solution q�� , the matrix elements<8 9 that are explicitly shown in Eq. 4.5 for the segmented
case, now take the form of:

<8 9 = 〈C{% (r) 48q�� (r) 58 (r − ri)}C{% (r) 48q�� (r) 59 (r − rj)}∗〉�� . (2.43)

As laid out in Chap. 2.2.2, the PASTIS matrix can thus be calculated from individual average DH contrast
values from intensity images, obtained by aberrating all pairs of segments, or in this case actuators, one
by one.
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Figure 2.19: Final DM surface commands for a baseline contrast 20 = 6 × 10−8 obtained with iterative pair-wise
estimation and stroke minimization on a non-segmented CLC simulation of the HiCAT testbed without
any WFE. The DM surfaces are the main contributor to the phase term q�� in Eq. 2.43, describing the
elements of the PASTIS matrix. The pair-aberrations are applied on top of these surface commands
when the PASTIS matrix is built and the resulting average contrast is measured in the circular DH with
an extent of 6–11 _/�!( .

2.A.2 Simulated results on HiCAT and RST

The HiCAT simulation setup used for the preliminary work presented in this appendix is described in more
detail in Chap. 3.3.1, but without the segmented DM in the beam, thus operating with a non-segmented
classical Lyot coronagraph (CLC), with a simple circular pupil. The simulations include no WFE and are
run at a monochromatic wavelength of 640 nm. Similarly to the WFS&C procedure used in Chaps. 3.3.1 and
4.3.2, a pair-wise estimation and stroke minimization loop is run �rst to obtain a baseline contrast, setting
20 = 6 × 10−8, using two-DM control. The resulting coronagraphic image and the DM commands from
the �nal iteration are shown in Fig. 2.19. These DM commands are loaded each time prior to performing
a PASTIS analysis on the HiCAT simulator, and they are the dominating part of the phase term q�� .

The results presented here show the sensitivity analysis performed on the in-pupil continuous DM
made out of 952 individual actuators, although many of the actuators located at the edge of the pupil re-
main hidden by various pupil masks. Contrary to the numbering of the segments on the segmented DM,
the continuous DM actuators are numbered row by row, which needs to be kept in mind when interpreting
the results visually. Following the development in Chap. 2.2.2, we push each non-repeating actuator pair
(including hidden actuators) with a calibration aberration of 02 = 10 nm, recording =<40B = 453, 628 inten-
sity measurements, from which we construct the PASTIS matrix shown in Fig. 2.20, left. As in previous
examples, the matrix diagonal is very pronounced, describing the contrast contribution from each individ-
ual actuator alone. The disconnected nature of the diagonal comes from the choice of actuator numbering:
since the actuators are numbered from left to right and bottom to top, at the beginning and end of each
row we are poking actuators that lie outside of the illuminated HiCAT pupil, causing little to no e�ect on
the DH contrast. As this repeats periodically, this shows as interruptions of contrast in�uence as we work
our way through all actuators. The inversion of the matrix, like shown in Chap. 2.3, yields the eigenvalues
shown in Fig. 2.20, right.

The eigendecomposition of the PASTIS matrix (Eq. 2.18) results in orthonormal eigenmodes with asso-
ciated eigenvalues. We can see in the plot of eigenvalues in Fig. 2.20, right, that these relative sensitivities
span a large range of seven orders of magnitude, split in four regimes, indicated by the distinct bumps
in the �gure. A subset of modes from the �rst of these, with the highest eigenvalues, are displayed in
Fig. 2.21. As discussed in Sec. 2.3.1, the eigenvalues represent the coronagraph sensitivity to the mode,
so the modes shown in Fig. 2.21 have a high impact on the contrast, relatively speaking. They all display
highly symmetric features. This high-impact regime seems to be contained to the �rst bump in Fig. 2.20,
right, its limit being marked by the vertical dashed line. Any modes beyond this point show a high level
of noise, as can be seen in the bottom right mode in Fig. 2.21, which lies beyond the high-impact regime,
at index 338.

We compare these results to simulations from CGI on RST, which were done using the WebbPSF pack-
age (see also Chap. 3). Using a Shaped Pupil Coronagraph (SPC) and assuming a WFE-free system, the
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Figure 2.20: HiCAT PASTIS matrix (left) and eigenvalues (right) for the pupil-plane continuous DM with 952 indi-
vidual actuators. Left: The chopped-up structure in the matrix is a result of the actuator numbering on
the DM: instead of going outwards in spirals starting from the center, the actuators are numbered row
by row. Since the actuators at either end of each row are not illuminated, their in�uence on contrast is
negligible. Right: The eigenvalues span almost seven orders of magnitude and suggest that there are at
least three di�erent eigenmode regimes with di�erent relevance for the contrast. The dashed vertical
line marks the point where noise starts dominating the eigenmodes.

Figure 2.21: Pupil-plane eigenmodes for the continuous PASTIS analysis on HiCAT, with their respective mode
index corresponding to the eigenvalues in Fig. 2.20, right. Modes with an index up to ∼270, marked by
the vertical dashed line in Fig. 2.20, have a signi�cant impact on the coronagraph contrast, as quanti�ed
by the respective eigenvalue.
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Contrast

Figure 2.22: Roman CGI simulation setup with a Shaped Pupil Coronagraph (SPC), shown on the far left, as pro-
jected into the exit pupil of RST. The middle and right plots show the coronagraphic contrast without
and with a DH mask applied, respectively. Both plots are shown on the same scale. This setup provides
a baseline contrast of 20 = 5×10−9 in a symmetrical wedge-shaped DH from 3–9_/� , under the absence
of any WFE in the simulator.
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Figure 2.23: Left: PASTIS matrix for the continuous CGI analysis on RST, using the SPC pictured in Fig. 2.22,
on a highly saturated scale in order to show the faint features. Right: Eigenvalues of the PASTIS
matrix shown to the left. The dashed vertical line marks the point where noise starts dominating the
eigenmodes. Credit: David Bourgeois.

coronagraphic pupil mask and the resulting coronagraphic PSFs are shown in Fig. 2.22, yielding an av-
erage DH contrast of 20 = 5 × 10−9 at a wavelength of 770 nm. As opposed to the HiCAT simulations
further above, where the high-contrast regime is attained by deploying an iterative WFS&C algorithm, the
RST setting used here creates the DH instantaneously with the coronagraph alone. With a 48×48 actuator
continuous DM, we calculate the PASTIS matrix shown in Fig. 2.23, left, with a calibration aberration of
02 = 5 nm, and show its eigenvalues in the same �gure on the right. In the PASTIS matrix for the SPC on
Roman, we can see distinct regions of actuator pairs that have the most pronounced impact on the coro-
nagraphic contrast. These matrix regions correspond to pairs in which either one or both of the poked
actuators lie in the two more transparent areas of the shaped pupil mask as shown in Fig. 2.22, left. The
rest of the actuators is very concealed by the pupil optics and have thus less in�uence on the contrast.
In the same way like for HiCAT, the DM actuators on Roman CGI are numbered row by row over the
entire pupil, which is what causes the choppy visual representation of the PASTIS matrix. The eigenval-
ues of the RST matrix span twice as many orders of magnitude compared to HiCAT, but they also display
much more pronounced regimes. Up until eigenmode with index 80, marked by the vertical dashed line in
Fig. 2.20, right, the eigenmodes show distinct features and the coronagraph is more sensitive to them than
higher-index modes. A sample of the modes from this regime is shown in Fig. 2.24. The shown modes are
particularly pronounced in parts of the pupil that remain unconcealed.
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Figure 2.24: Pupil-plane eigenmodes for the continuous PASTIS analysis on RST with an SPC, with their respective
mode index corresponding to the eigenvalues in Fig. 2.23, right. Credit: David Bourgeois.
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3
Simulating tolerancing analyses of segmented
aperture coronagraphs

The output and results of my PhD work were enabled by the software I developed. In this chapter, made
of three sections, I outline the details on numerical simulation studies I conducted in the context of
coronagraph tolerancing, and the tools I developed for this purpose. In Sec. 3.1, I describe the software
package I wrote for optical simulations and coronagraph tolerancing, in Sec. 3.2 I present an early
tolerancing analysis of a JWST coronagraph, and in Sec. 3.3 I show the results of simulating contrast
sensitivity experiments on the HiCAT testbed.

For the initial development of the semi-analytic PASTIS matrix, I used the open-source Python package
WebbPSF to simulate the e�ect of segmented aberrations through a NIRCam coronagraph on JWST.
However, JWST coronagraphy is not designed to reach the high-contrast regime needed for exoEarth
detection (10−10). Instead, I continued my work by creating a numerical model of the LUVOIR A
telescope. The objective seemed straightforward: take a coronagraph simulation and add segmented
aberrations to it. However, this proved non-trivial in practice. The only open-source segmented DM
model available at the time in Python was within the POPPY optical propagation library, but it was
incompatible with the APLC simulations for the LUVOIR coronagraph design from the segmented
coronagraph design analysis (SCDA) study. Thus, I started developing my own segmented DM model
with special focus on compatibility with pupil plane coronagraph optics. This lead to the creation of a
custom Python package for the full process of a coronagraph sensitivity analysis, the PASTIS package,
which I talk about in the �rst part of this chapter. It has been published through Zenodo and regular
releases appear as the tool is being continuously improved (Laginja 2021).

After concluding the development of the tolerancing tool, I went back to apply it to NIRCam, the results
of which I show in the second part of this chapter. While my simulations include somewhat simpli�ed
assumptions, the order-of-magnitude accordance with the design and ground-testing results of a real
space telescope are encouraging for more in-depth work.

The third and last part of this chapter shows the simulation results I obtained while preparing for the
experimental validation of the PASTIS tolerancing model on HiCAT, which I presented as a poster and in
conference proceedings during the SPIE Astronomical Telescopes & Instrumentation conference in
December 2020, remotely during the Coronavirus pandemic (Laginja et al. 2020). Writing the code for the
experiments on the HiCAT testbed emulator meant that I was directly preparing the hardware
operations, since HiCAT has a dual-mode operation setup which uses the same scripts in simulation and
on hardware. These simulations revealed the need to �nd a way to work with a di�erential contrast
contribution, stemming from the isolated e�ect of the segmented DM, rather than the total contrast that
will be in�uenced by other WFE sources as well, such as environmental drifts. This problem was later
addressed in Chap. 4.

With the tolerancing analysis, the LUVOIR A simulator and the interfaces for the JWST and HiCAT
simulators, the PASTIS analysis package was 100% my work, from the implementation, over the
integration of unit and regression tests, to the overall software management. Laurent Pueyo then
contributed simulator models for LUVOIR B and HabEx, both with vortex coronagraphs, and many other
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improvements followed. The PASTIS package is a central piece of the work of our team’s industry
collaboration for LUVOIR tolerancing (Pueyo et al. 2021; Sahoo et al. 2021; Sahoo et al. 2022), and it has
already been used externally in published studies (Pogorelyuk et al. 2021). I intend to leverage these tools
for my work after my PhD and to continue developing them.
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Chapter 5

Chapter 3

Chapter 4

Chapter 2

Com
putation of

sensitivity m
atrix M

see Fig. 3.3

Internal simulator
LUVOIR A
LUVOIR B
HabEx

WebbPSF
JWST/NIRCam
RST/CGI

hicat-package
HiCAT CLC/APLC

see Fig. 3.2

PASTIS package

Sensitivity analysis

• Invert contrast sensitivity 
matrix M

• Define target contrast ct
• Calculate WFE tolerances
• Verify with MC simulations

Figure 3.1: High-level functionality of the PASTIS software package, which I developed from scratch during my
PhD. It performs a sensitivity analysis from a coronagraphic instrument simulator. It can either use
internally scripted telescope simulators, or interface with third-party optical propagators like WebbPSF
or hicat-package. The colored arrows indicate which simulator was used in which chapter of this thesis.

3.1 A numerical tool for statistical WFE tolerancing

From initially only providing the LUVOIR A telescope architecture with its three distinct APLC designs
that was used in Chap. 2 to demonstrate the segmented tolerancing analysis with PASTIS, the “PASTIS”
package has grown into a much larger infrastructure for end-to-end modeling of coronagraphs and the
impact of aberrations. This package enables a numerical study of coronagraphic sensitivity across various
di�erent telescope concepts and aberration sources; a schematic of it is shown in Fig. 3.1. The goal of the
PASTIS Python package is to provide tools with which one can perform a full tolerancing analysis on a
speci�c modal basis. The three main components allowing us to do that are:

1. numerical propagators that correctly integrate a telescope aperture with a coronagraph and an aber-
ration mode basis of choice (left-hand side in Fig. 3.1),

2. the capability to calculate contrast sensitivity (PASTIS) matrices for aberrations with various spatial
frequencies (center block in Fig. 3.1),

3. the calculation of statistical tolerances on aberrations for an input target contrast, together with
veri�cation methods like Monte Carlo simulations (right-hand side in Fig. 3.1).

The separation of the numerical simulators from the full analysis of PASTIS matrices enables an easy
swap-in of third-party optical simulators to create PASTIS matrices. These can be directly analyzed with
the tolerancing model, which I exploited for contrast tolerancing analyses of a JWST coronagraph, and the
segmented HiCAT coronagraph. I show some results from the tolerancing of a coronagraph on NIRCam in
Sec. 3.2. The JWST simulations I used were intentionally simpli�ed for proof-of-concept simulations. As
I was moving on to more realistic setups, I leveraged the work I invested in the optical simulator and the
control interface of HiCAT in order to predict the performance of a segmented coronagraph in a HiCAT-
like environment, shown in Sec. 3.3, before performing the experimental validations presented in Chap. 4.

The overall simulation package shown in Fig. 3.1 is a generalized simulation tool for the analysis of
coronagraphic sensitivities. It implements a streamlined interface for the computation of PASTIS matrices
and their inversion, followed by the calculation of tolerancing results as a function of target contrast,
�nalized by cross-checks and validations with Monte Carlo (MC) simulations. While the analysis procedure
can interface with any optical simulator, the PASTIS package itself contains a full numerical simulator for
some speci�c telescope designs like the segmented LUVOIR A and B, with APLCs, and the monolithic
HabEx with a DM-supported vortex coronagraph (DMVC), together with various deformable mirrors that
work with di�erent aberration mode bases (see Sec. 3.1.1). These optical simulators provide the capability
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to model various aperture–coronagraph combinations, with di�erent sets of optical aberrations. The initial
goal of the code was to simulate segment mode misalignments with pistons on the LUVOIR A telescope,
as this was the use-case in the formal development of the theoretical framework. However, the package
now supports a range of local and global modes, the latter of which are also implemented on monolithic
apertures (HabEx, RST) for extensive sensitivity studies (see also Chap. 5.2).

3.1.1 Implemented telescopes, coronagraphs and aberration modes

The optical propagation of di�erent coronagraphs, including the APLC, has been implemented by various
other simulators, as have been models of segmented mirrors. The problem that the end-to-end simulator
in the PASTIS package solves is that of proper sampling of the (aberrated) segments themselves in the
telescope pupil with respect to coronagraph optics located in a pupil plane as well. Having apodizers,
Lyot stops and DM phase maps used for example in APLCs and DM-supported VCs means that all these
pupil-plane optics have to be aligned correctly to each other, as well as to the individual segments of the
telescope pupil, otherwise the coronagraph performance will be degraded and the propagation of WFE
incorrect. For coronagraphic propagations under the absence of segmented aberrations, it su�ces to get
the pupil sampling right globally, meaning that all pupil-plane optics of a coronagraph do not exhibit lateral
misalignments or distortions. Considering that the coronagraph optics are usually designed as a unit, this
is easily achievable in practice. For propagations that include segment-level aberrations however, which
is the core topic regarded by the PASTIS model, it is also necessary to ensure the correct sampling of each
individual segment within the pupil. Each individual pixel of the segmented aberration basis has to align
with each individual pixel of the segments in the telescope aperture, as well as any of the other pupil-plane
optics (apodizer, LS, DM commands). In this way, mid-spatial frequency aberrations stemming from the
aperture segmentation propagate correctly through the coronagraph.

The PASTIS package, and its end-to-end simulators, are fully written in Python, and use the HCIPy
package (Por et al. 2018) for optical propagations (Fraunhofer and Fresnel), including the Lyot and vortex
coronagraph implementations. While other optical simulation packages exist, HCIPy was found suitable
due to its �exibility in optical and physical units (e.g., _/� units in the focal plane, SI units in the pupil
plane), rather than being tied to instrumental parameters of a full optical system (e.g., arcsec in the focal
plane, which requires a plate scale). Further, HCIPy is coded very modular, which makes it possible to use
speci�c parts of it without having to surrender to a code basis that requires the use of exclusively its own
features. Object-oriented programming (OOP) is being used in the PASTIS package to create a class struc-
ture that stays modular and compact. In particular within the optical simulator modules of the package,
this allows easy inheritance of the most important features of any given aperture and active optic (e.g.,
segmented or continuous DMs). The class inheritance diagram of the available optical simulators within
the PASTIS package is shown in Fig. 3.2. The main base class is Telescope; it sets up all global com-
ponents like the total pupil diameter, operating wavelength and image sampling. This class also contains
an aberration basis of global Zernike modes (Noll 1976), numerically implemented to operate as a DM
whose in�uence functions are global Zernikes. In the same way, this class contains a DM implementation
with global ripples (sine wave aberrations) as in�uence functions, an actual continuous DM with individ-
ual actuators with a variable actuator count covering the entire pupil, and an out-of-band Zernike WFS
(OBWFS).

All following classes inherit all attributes and methods from Telescope and adapt them to their re-
spective implementation. The class SegmentedTelescope adds attributes that de�ne the respective
segment positions, sizes and geometries, which is the basis on which it implements the two optional seg-
mented DMs. The segmented DM that is instantiated by default (“SegDMptt”) provides piston, tip and tilt
(PTT) control of each individual segment, and requires less computation time for a singe PSF calculation
than the second segmented DM (“SegDMmulti”). The user can choose to manually instantiate the SegDM-
multi option with an arbitrary number of local Zernike modes on each segment. This provides enhanced
capabilities for the segmented DM, but also turns all optical propagations much more computationally
intensive compared to usages with the PTT-only segmented DM. Similarly, the user can choose to add a
segmented DM with a custom local mode basis obtained from L3 Harris Technologies (“HarrisSegDM”, see
Chap. 5.2.3).
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3.2. CONTRAST SENSITIVITIES TO SEGMENT ABERRATIONS ON A JWST CORONAGRAPH

The implementation of concrete telescope architectures and coronagraph designs is done via inheri-
tance from these two base classes. To make implementations of APLCs easier on segmented apertures, the
package contains an abstract class SegmentedAPLC that inherits from SegmentedTelescope,
which handles an apodizer, FPM, LS, IWA, OWA and DH mask. One of the three currently implemented
telescopes is LUVOIR A with the class LuvoirA_APLC, which pipes the correct apodizer, LS �le and
coronagraph parameters through to SegmentedAPLC. It also provides the option to choose between
the three APLC designs (small, medium and large) with a single class parameter. The implementation
of LuvoirBVortex exploits the infrastructure of SegmentedTelescope to correctly implement
the segment actuations with a Vortex coronagraph. Finally, since HabEx has a monolithic pupil, the class
Habex_VVC inherits directly from Telescope to implement its DM-supported VC on a circular aper-
ture.

The source �les (aperture, apodizers, Lyot stop) of the LUVOIR A APLC suite are credited to the Seg-
mented Aperture Coronagraph Design and Analysis (SCDA1) study, while the LUVOIR B and HabEx data
were provided by Garreth Ruane, and functionally merged into the PASTIS package by Laurent Pueyo.
For each telescope instance, the simulator calculates the electric �eld at each pupil and focal plane of the
optical system and returns them to the user. Each of the DMs (global Zernike, ripple DM, continuous DM,
SegDMptt, SegDMmulti, HarrisSegDM) can be controlled separately, and they are folded into the optical
propagation process, which also has the option to be normalized to a single photon in the entrance pupil.
The generic SegmentedTelescope can also be used alone, without a coronagraph.

Some points that show potential for improvement of this simulator include creating an abstract class
SegmentedVC, analogous to SegmentedAPLC, which can serve as a base class for any segmented
telescope with a Vortex coronagraph. Further, a general refactor of the code could see an abstraction
of the telescope structure and coronagraph, making them separate. In such a case, a realistic telescope
implementation could use multiple inheritance to mix-and-match a telescope primary mirror (monolithic
or segmented) with a coronagraph type (e.g., APLC, VC, ...).

3.1.2 Statistical sensitivity analysis

For the calculation of PASTIS sensitivity matrices, a simple class inheritance structure starting with the ab-
stract classPastisMatrix allows the computation of matrices for distinct telescope simulators through
subclassing, as shown in Fig. 3.3. This allows the package to support the calculation of contrast sensitiv-
ity matrices for the LUVOIR and HabEx simulators described in Sec. 3.1.1. Furthermore, some additional
telescope/coronagraph combinations can be handled through an interface with external simulators. This
includes NIRCam coronagraphs for JWST and Roman CGI with the open-source package WebbPSF, and
the HiCAT simulator which is a private package of the Makidon Lab team. Ongoing work is aiming to
make the integration of new simulators even smoother through a more uni�ed interface between such
simulators and the matrix calculation classes.

The third and �nal part of the package concerns the statistical tolerancing analysis which is performed
with a PASTIS matrix and a target contrast as inputs. Since these calculations require only linear algebra,
no speci�c adjustments per individual telescope simulator is needed. Only the optional visualisation of the
results, and sanity checks with Monte Carlo simulations require an integration of the telescope simulator
in the analysis section as well.

In the following, some results are presented that use the code interface provided by the PASTIS package.
Sec. 3.2 shows the sensitivity analysis of a coronagraph on JWST, operating on less ambitious contrast
levels than envisioned for RST or LUVOIR. Finally, Sec. 3.3 presents simulations with the HiCAT simulator,
in preparation for the experimental validations in Chap. 4.

3.2 Contrast sensitivities to segment aberrations on a JWST coronagraph

Early simulations for the pair-aberrated contrast in�uence analysis with PASTIS were performed by gen-
erating analytical images (Leboulleux et al. 2018b). These were constructed from a combination of the

1https://exoplanets.nasa.gov/exep/technology/SCDA/

https://exoplanets.nasa.gov/exep/technology/SCDA/
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3.2. CONTRAST SENSITIVITIES TO SEGMENT ABERRATIONS ON A JWST CORONAGRAPH

single-segment intensity and the respective cross-terms arising from two segments being pushed at the
same time. This was done on a proxy aperture for future large space telescopes, a 36-segment aperture
without a center segment. To derive sensitivities for an existing telescope and coronagraph, and prepare
the tolerancing model for LUVOIR, I started an implementation of the analysis technique on JWST with
the open-source simulator WebbPSF (Perrin et al. 2014a). Since the fully analytical image models used in
Leboulleux et al. (2018b) required a calibration with an end-to-end (E2E) simulator in order to assemble
the �nal PASTIS matrix (see Leboulleux et al. 2018b, Sec. 4), I extended the model from a purely analytical
to a semi-analytical one, in which the E2E simulator is used for the image generation directly, from which
the PASTIS matrix is then calculated analytically (Laginja et al. 2019). The interest of this work does not
lie primarily in the derivation of realistic segment co-phasing tolerances for JWST, although it allows us to
make some qualitative conclusions about the sensitivity range of the NIRCam coronagraphs. Considering
its anticipated coronagraph performance and overall WFE, JWST is expected to observe at the 10−5 raw
contrast level (Perrin et al. 2018), far away from the high-contrast regime needed for exoEarth detection.
However, the considerations that went into the conception of a large segmented telescope that can sup-
port coronagraphy, and the simulation tools of such, are valuable lessons in the preparation for other, more
performant missions.

3.2.1 Coronagraphy with NIRCam

WebbPSF provides an optical model of all JWST instruments, including their coronagraphs. JWST is an
18-segment observatory without a central pupil segment, and coronagraphy is supported both for the MIRI
and NIRCam instruments. Both of the two identical NIRCam modules (A and B) contain the same set of
three round, and two bar occulters, which get paired with two separate Lyot stops per occulter type to form
a classical Lyot coronagraph (Krist et al. 2010, 2007). NIRCam coronagraphy covers a wavelength range
from 2.5-5 `m, which overlaps in the shorter wavelengths with ground-based facilities like SPHERE and
GPI. While JWST will have a much higher absolute sensitivity, these ground-based imaging instruments
will continue to have higher angular resolution and better inner working angles, which puts the science
interest with the JWST coronagraphs more on the middle and longer wavelengths available to NIRCam.
The round occulter dedicated to a wavelength of 3 microns has the most science �lters available, so we
use it to perform a contrast sensitivity analysis with respect to segment co-phasing errors on JWST. It is
used with the round-occulter Lyot stop, operated at a central wavelength of 3.35 `m, and with an inner
working angle of 6_/� , which corresponds to 0.63 arcsec on-sky.

Since the objective of this analysis is to identify the in�uence of segment actuation on the corona-
graphic image contrast on NIRCam, we eliminated any other aberration sources by taking out any science
instrument internal WFE in the simulator, and we assumed a perfectly phased starting position of the seg-
ments. In such a scenario with the CLC on NIRCam, we use the round occulter identi�ed by “MASK335R”
with the Lyot stop for these round occulters, “CIRCLYOT” (see Fig. 3.4), with a �lter centered at 3.35 `m
called “F335M” to obtain coronagraphic images. We de�ne the DH in these images, shown in Fig. 3.4, from
an IWA of 6 _/� to an arbitrarily de�ned OWA of 16 _/� (within the NIRCam �eld of view). Inside this
focal-plane region, the described setup yields an average coronagraph �oor of 20 = 2.5 × 10−7.

3.2.2 Sensitivity analysis on NIRCam with a CLC

Proceeding in the same way like described in Chap. 2, we sequentially aberrate all non-repeating segment
pairs and measure the resulting average contrast in the coronagraphic DH. We limited the analysis to
the contrast in�uence of pure local piston errors on the segments. The calibration aberration had to be
chosen above the minimal actuator move on the JWST segments, which is 5 nm, and also high enough
to create a signi�cant contrast change in the DH beyond the contrast �oor. This led to the calibration
aberration 02 being set to 100 nm of WFE per segment, which corresponds to a global WFE over the pupil
of 22.5 nm rms for a single pistoned segment, and to 33.8 nm rms for a pair of pistoned segments. After
measuring the contrast response of all aberrated pairs, we calculated the PASTIS matrix (Fig. 3.5, left) and
performed a validation by evaluating global pupil aberrations caused by segmented pistons, scaled to a
range of di�erent global rms values, which yields a hockey-stick-like curve (Fig. 3.5, right). Like the PASTIS
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Lyot stop Lyot plane intensity

Figure 3.4: Simulations of the NIRCam circular-occulter coronagraph at 3.35 `m. Left: Lyot stop with a ∼20%
geometrical transmission. Center: Di�raction in the Lyot plane. Right: Non-coronagraphic (top) and
coronagraphic (bottom) PSFs in absence of any wavefront errors. We note that they are not displayed
on the same contrast scale. The area limited by the white dashed rings indicates the DH used in the
PASTIS analysis. The average contrast over this area is 20 = 2.5 × 10−7.
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Figure 3.5: Left: PASTIS matrix for NIRCam instrument on JWST, with round occulter coronagraph “MASK335R”,
calculated with the PASTIS Python package. Right: Validation of the semi-analytic (SA) PASTIS matrix
to the left by comparing results of Eq. 2.36 with numerical propagations from WebbPSF. The resulting
hockey stick-shaped curves overlap up to a global WFE rms value of 1 × 10−1 waves.
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x10-9

Figure 3.6: Eigenmodes of the NIRCam PASTIS matrix, ordered from highest (top left) to lowest (bottom right)
in�uence on the coronagraphic contrast with a round-occulter CLC.

matrices for segmented telescopes shown previously, the NIRCam matrix features a pronounced matrix
diagonal that indicates the contrast in�uence of single aberrated segments, with the o�-axis elements
denoting the cross-terms of the intensity in�uence between two segments. Adjacent segments aberrated
at the same time in�uence the contrast less than when the segments are spatially separated, leading to the
negative blue o�-axis streaks in the matrix. The hockey stick curve shows that the contrast, calculated with
Eq. 2.9 from an arbitrary segmented aberration vector, yields the same results as measuring the contrast
after propagating the same aberration vector with the E2E simulator, for aberrations smaller than 1× 10−1
waves. The �attening of the E2E curve beyond this point is caused by the phase wrapping on individual
segments, an optical e�ect that appears in the E2E simulator, but not in the analytical PASTIS equation.

The eigendecomposition of the matrix in Fig. 3.5 results in 18 optical in�uence modes shown in Fig. 3.6,
ordered from highest to lowest in�uence on the DH contrast. The eigenmodes of the NIRCam PASTIS
matrix display very similar characteristics to the ones we observed with the LUVOIR coronagraph in
Chap. 2.3.1, in particular with respect to the segments that are fully or partially obstructed by the LS
or support struts. The modes with the least in�uence on the contrast, on the bottom of the �gure, appear
to be approximated low-order Zernikes with the more concealed segments particularly pronounced. The
most in�uential modes on top of the �gure bring forward the segments that are the least obscured by the
pupil-plane features of the telescope and coronagraph.

With the modes being orthonormal, we can demonstrate their additive contribution to the DH contrast
with Eq. 2.26. This is shown in Fig. 3.7, left, after rescaling each mode weight with the inverse of their
respective eigenvalues, which scales them in such a way that each mode contributes equally to the total
contrast. This contrast allocation is chosen arbitrarily, and other choices can be made when pursuing a
concrete error budget. Following the development in Chap. 2.5.2, instead of allocating uniform contrast
to each eigenmode, we can chose to allocate a uniform contrast across all (independent) segments, which
transfers to a non-uniform contrast allocation across the modes. However, the modes remain additive in
contrast, and a comparison between these two contrast allocation strategies, as projected into the basis of
the eigenmodes, is shown in Fig. 3.7, right.

Assuming independent segments makes it possible to calculate standard deviation limits on each seg-
ment in the pupil for a particular target contrast to be maintained as the mean over many states of the
segmented mirror. Using Eq. 2.36, we use the PASTIS matrix to calculate the per-segment tolerances for a
target contrast of 2C = 10−6 and plot the results in Fig. 3.8, left and middle. The individual segment WFE
tolerances for a total mean contrast of 10−6 range from 28 nm to 129 nm. We can see directly how there
is a di�erentiation between the segments when it comes to their respective tolerances: the most relaxed
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simulator.
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Figure 3.8: Segment requirements, expressed as standard deviations, and MC simulation histogram for JWST, as
a line plot (left) and as a map with labelled segment numbers (center). The most restricted WFE re-
quirements for a target contrast of 10−6 are 28 nm on segments 2 and 6, which have the highest LS
throughput (see Fig. 3.4). The most relaxed segments are numbers 7, 12 and 14 who have a WFE re-
quirement of ∼90–130 nm and are completely concealed by the LS, and also partially hidden behind
secondary mirror support struts. The MC simulation with 1000 independent WFE maps as prescribed
by the tolerancing analysis recovers a mean contrast of 10−6 (right).
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Figure 3.9: Direct comparison between three arbitrary required WFE maps from WebbPSF (top), and three random
WFE maps as generated for the 10−5 MC simulation (bottom), with their respective global WFE rms
values indicated in each upper right corner. The WFE maps from the tolerancing simulations presented
here (bottom row) assume that all WFE of the system lies in segment-level piston. The mean contrast
from 1000 such maps is 10−5, which means that the requirements taken from WebbPSF (top row), which
are more restrictive, are su�cient to produce that target raw contrast. We can observe on the exemplary
maps on the bottom that certain segments get away with a larger WFE, for example segments behind
support struts, or in the outer ring of the pupil.

segments are those that are both fully concealed by the Lyot stop and are additionally also covered by the
secondary support struts, segments 7, 12 and 14. The most restricted segments with a WFE requirement
of 28 nm are segments 2 and 6, which see the highest transmission through the very particularly shaped
LS, see also Fig. 3.4. Using these tolerancing limits in a Monte Carlo simulation with a set of 1000 segment
piston realizations, we plot the histogram shown in Fig. 3.8, right. Analogously to the MC experiment in
Chap. 2.5.1, we use the segment standard deviations to draw 1000 normally distributed aberration maps,
and use the E2E simulator to record the resulting average contrast in the DH. The mean value of all these
propagations is 1.01×10−6, which meets the target contrast of 2C = 10−6 to less than a 1% error, con�rming
the standard deviation tolerances of the individual segments.

While these simulations were simpli�ed by omitting any WFE sources other than from the segmented
Optical Telescope Element (OTE), they give a sense of the order of magnitude for the sensitivity range of
the NIRCam coronagraph to segment misalignments. Since WebbPSF contains model examples of WFE
maps for the OTE2, we can compare the results from the PASTIS tolerancing analysis to the real error
budget of JWST. The modeled OTE WFE in WebbPSF consist of ten instances of probabilistic maps each
for the predicted, and for the required WFE performance. The median of the total WFE rms of the ten
predicted performance maps is 70 nm rms, with the required maps having a more conservative median
WFE rms of 90 nm rms. Three arbitrary examples of the required WFE maps in WebbPSF are shown in the
top row of Fig. 3.9. We can compare this directly to some of the randomly created WFE maps from a MC
simulation like that shown in Fig. 3.8, right, drawn from the requirement map displayed in the middle of the
same �gure. The median global WFE rms value of all 1000 WFE map realizations is 52 nm rms, de�ning
the WFE requirement of our analysis. This lies below the predicted, and well below the required OTE
WFE for NIRCam, suggesting that this instrument will not be able to reach the requested raw contrast

2https://webbpsf.readthedocs.io/en/latest/jwst.html#optical-telescope-element-ote

https://webbpsf.readthedocs.io/en/latest/jwst.html#optical-telescope-element-ote
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level of 10−6. However, this performance level is distinctly better from what is expected of NIRCam at
∼ 10−5 (Perrin et al. 2018). Repeating the tolerancing analysis for 2C = 10−5 (calculate individual segment
tolerances from the PASTIS matrix in Fig. 3.5, perform MC simulation with 1000 randomly drawn maps
from these tolerances), the median of these 1000 random WFE maps now amounts to 187 nm rms, which is
above the numbers of the WebbPSF-internal WFE maps from both predicted as well as required modeling
of the OTE. Three examples of these random WFE for 2C = 10−5 are displayed in the bottom row of Fig. 3.9.
We can thus conclude that the OTE on JWST will perform better than our tolerancing analysis suggests is
needed to reach a 10−5 contrast level.

The simulations I present in this section make a simplifying assumption where we allocate the entire er-
ror budget for coronagraphy to come exclusively from piston errors on the OTE segments. In reality, there
will be static surface errors on all segments, OTE misalignments like modeled here, science instrument-
internal WFE contributions, WFS&C residuals and dynamic WFE that all contribute to the overall WFE
budget. However, we can show that even when taking such internal WFEs into account, the total WFE
requirement for 2C = 10−5 is still less stringent than the required WFE from published JWST optical per-
formance models. In this case, subtracting the WFE internal to the NIRCam A module, which is 54 nm
rms as modeled in WebbPSF, from the total requirement of 187 nm rms, we are left with a requirement of
roughly 130 nm rms. Thus we conclude that the OTE alignment will not be limiting the contrast.

An additional point of interest is the di�erential sensitivity of the individual segments. While previ-
ous work has shown that placing segments with a higher static rms surface polishing error behind the
secondary support struts optimizes the coronagraphic performance (Perrin et al. 2012), as one would intu-
itively assume, tolerancing with the PASTIS model allows us to quantify that. Since the individual JWST
segments show a factor of four in the range they span in terms of their tolerable WFE for a particular target
contrast, this shows which segment control needs to be emphasized by the alignment team. This quick
analysis con�rms that JWST will support the contrast values of the coronagraphs, but if there is ever a
drive to optimize the performance further, for example better alignments in combination with aggressive
post-processing, the tolerancing tools I developed could be used for an in-depth examination of the OTE
requirements.

Starting from the original implementation of analytical images in order to calculate the pair-aberrated
contrast in�uence (Leboulleux et al. 2018b), the simulations in this section were used to establish the semi-
analytical PASTIS matrix calculation (Laginja et al. 2019). This formal extension allows us to use existing
E2E simulators for the purpose of creating a contrast in�uence matrix, the PASTIS matrix, and perform
a statistical tolerancing analysis for a segmented, coronagraphic instrument. In addition, the work on
the NIRCam coronagraph on JWST proved that the tolerancing concept with PASTIS is portable to HCI
instruments other than the 36-segment telescope concept used by Leboulleux et al. (2018b), and that the
sensitivity results are commensurable with the budgeted WFE on the NIRCam A module, for a contrast of
10−5 or higher. The work in this section was an important milestone toward more realistic simulations of
yet another segmented coronagraph, the HiCAT testbed, presented in the following section. The ultimate
goal here is to prepare a full experimental segment-level tolerancing analysis, as presented in Chap. 4.

3.3 Contrast sensitivities to segment aberrations on the HiCAT testbed

Adapted from:

Predicting contrast sensitivity to segmented aperture misalignment modes for the HiCAT testbed

I. Laginja, R. Soummer, L. M. Mugnier, L. Pueyo, J.-F. Sauvage, L. Leboulleux, L. Coyle, J. S. Knight, M. D.
Perrin, S. D. Will, J. Noss, K. J. Brooks, J. Fowler

Proc. SPIE 11443, 114433J (2020)

With its intermediate-level contrast performance compared to envisioned missions like LUVOIR, and
with a segmented mirror permanently in the optical beam, the HiCAT testbed provides excellent testing
grounds for coronagraph sensitivity studies. Such activities are supported by the excellent software in-
frastructure surrounding the testbed, which contains a full optical simulator for optical modeling of the
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bench, and a testbed emulator that enables numerical simulation of the hardware behavior. In practice,
these are tightly linked: the top-level control software contains an interface that can either establish a link
to the hardware testbed located in the Makidon laboratory, or �re up the testbed emulator linked to the
optical simulator, which is distributed over a private GitHub repository. One of the main advantages of
such an architecture is that experiments can be prepared without needing testbed access at least to a point
at which there are no syntax errors in the software anymore.

Exploiting this setup, we use the HiCAT testbed emulator to implement experiments on the testbed’s
optical simulator. It allows us to simultaneously debug the control software for the experiments, as well
as to carry out a performance assessment of the HiCAT coronagraph with respect to segment misalign-
ments on the segmented DM included in the simulations. The intended goal is to de�ne the co-phasing
requirements of the segmented DM for any given contrast level on HiCAT, and to prepare the testbed
infrastructure for the experimental validations presented in the following chapter. We �rst give a brief
overview of the HiCAT testbed, present the testbed emulator, then describe the optical layout of the coro-
nagraph on the bench including the active components, and �nally we show the results of the simulations
conducted with the HiCAT optical simulator.

3.3.1 The HiCAT project and experiment emulation setup

The HiCAT testbed (High-contrast imager for Complex Aperture Telescopes; N’Diaye et al. 2013, 2014,
2015a; Leboulleux et al. 2017a, 2016; Moriarty et al. 2018; Soummer et al. 2018) is a demonstrator for coro-
nagraphy with segmented apertures and integrated WFS&C systems (see Chap. 1.2.3). Aiming to investi-
gate and improve technologies for LUVOIR-type space telescopes of the future, it works in a mid-contrast
(10−6–10−8) regime in ambient air. The workhorse coronagraph con�guration for HiCAT is an Apodized
Pupil Lyot Coronagraph (APLC; N’Diaye et al. 2015b, 2016; Zimmerman et al. 2016). Since the apodizers on
HiCAT are mounted on easily interchangable bonding cells, it is easy to perform fast changes between dif-
ferent designs, or mount a high-quality �at mirror in the apodizer pupil plane to work as a classical Lyot
coronagraph (CLC). For active WFS&C, HiCAT contains two 952-actuator Boston Micromachines DMs
(Cornelissen et al. 2010), one located in-pupil, and one out-of-pupil, together with an IrisAO segmented
DM (Helmbrecht et al. 2013). HiCAT is therefore truly segmented with the ability to add real co-phasing
wavefront errors and introduce temporal drifts for dynamical studies.

HiCAT testbed emulator and controls

The high-level testbed control system of HiCAT is unique due to its dual-mode operation setup. Coded
purely in Python, the same code base is used to control either the actual testbed hardware or to use the
optical simulator for HiCAT, emulating the physical behavior of the testbed. The latter includes a full sim-
ulation of the hardware control interfaces, which makes it a complete “synthetic testbed”. In practice, this
means that the exact scripts that are used to run testbed simulations can also be run on the actual testbed,
allowing us to �rst test experiments on the simulator, and then work right out of the box on the hardware.
This works with identical commands to the motor controllers, DMs, and all hardware components, using
the same pipeline for data processing and producing the same output data products. It is this “emulated
testbed” that we use to produce the results presented in this section.

The overall control system and software architecture is object-oriented and modular, and is hosted on
GitHub, while also deploying automatic testing and continuous integration. The hardware controls have
been abstracted in the public CATKit Python package (Noss et al. 2021a), which provides the interface to
all our hardware components, for example from Boston Micromachines, IrisAO, Thorlabs, Newport and
others. The HiCAT optical simulator uses the POPPY Python Fourier optics toolkit (Perrin et al. 2016a,
2012), mixing Fraunhofer and Fresnel models, including a fast semi-analytic coronagraph propagation
at high resolution. The simulator was originally constructed from the theoretical testbed optical design
and later re�ned with experimental calibrations and measured optical alignments. It enables model-based
control algorithms with a Jacobian calculated on the simulator, for example for pair-wise probing (Gro�
et al. 2016) and stroke minimization (Mazoyer et al. 2018a,b; Pueyo et al. 2009).
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Figure 3.10: Overlapping pupils in the HiCAT segmented CLC con�guration used for the PASTIS numerical experi-
ments, produced by the optical simulator. The entrance pupil mask (light green) traces the outline of the
IrisAO, preventing the illumination of areas outside of the controllable segments. The Lyot stop (yellow
circle) is sized such that its edges stay within the controllable outline of the IrisAO (light green). The
entrance pupil diameter �?D? is de�ned as the circumscribed circle around the IrisAO (dashed white).

HiCAT optical con�guration for numerical validation of PASTIS

While the HiCAT APLC is designed to provide a superior performance on a segmented aperture compared
to the simpler CLC, the pupil plane apodization of this coronagraph causes a lot of the aperture segments
to be highly concealed (see Soummer et al. 2018, Fig. 7). This has a direct impact on the segment-level
tolerancing as described by the PASTIS model (Laginja et al. 2021, Sec. 6). Moreover, the pupil apodization
and the FPM �ltering display competing e�ects in the tolerancing. From a practical stand point, setting up
HiCAT in a full segmented APLC operation mode requires to achieve an accurate alignment of the various
pupil planes, especially the apodizer optic with respect to the segments of the IrisAO DM. To allow for an
initial characterization of the coronagraph performance in the simpler CLC mode, the testbed will have no
apodizer installed for a while, which is why we choose to perform and prepare the experimental validation
of PASTIS on a CLC con�guration of HiCAT. Having the IrisAO installed puts HiCAT into a “segmented
CLC mode”, whose di�erent pupils in simulation are plotted in Fig. 3.10. This includes a non-circular pupil
mask that traces the segmented IrisAO outline (light green area), and its circumscribed circle is what we
refer to as the pupil diameter �?D? (dashed white circle). HiCAT hosts one in-pupil and one out-of-pupil
1k Boston continuous DM, an FPM with a radius of 8.52 _/�?D? and a circular, unobscured Lyot stop.
Its diameter �!( (dashed black line) is equivalent to the inscribed circle of the IrisAO (projected in the
Lyot plane), keeping its edges within the controllable area of the segmented mirror (and the hexagonally
outlined pupil mask), which puts its size at 81% of �?D? . With the WFS&C strategy on HiCAT, using
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DM1 DM2 FPM LSSegmented DM
Entrance pupil

Science camera

Figure 3.11: HiCAT optical con�guration used for PASTIS experiments, here shown with transmissive optics for
simplicity. The entrance pupil is a custom-shaped mask tracing the outline of the segmented DM in
a consecutive pupil plane. Of the two continuous deformable mirrors, DM1 is in a pupil plane, and
DM2 is located out-of-pupil. The focal-plane mask (FPM) and Lyot stop (LS) build the classical Lyot
coronagraph setup.

pair-wise estimation and stroke minimization, the previously used unsegmented version of this CLC setup
(with a circular pupil instead of the outline mask, with diameter �?D? ) achieved a contrast of 4 × 10−8 on
hardware, in monochromatic light at 640 nm, and 2 × 10−7 in 10% broadband light, in a 360◦ DH from
6-11 _/�!( (where the outer working angle is de�ned by the highest spatial frequency controllable by the
continuous DMs).

This optical testbed layout, used for the simulated experiments, can be seen in Fig. 3.11. The hexag-
onally outlined pupil mask lies in a conjugate pupil plane with the segmented DM, continuous DM1 and
the LS. The continuous DM2 is mounted, and in the current case simulated, 30 cm out of pupil in order to
correct for amplitude aberrations with the Talbot e�ect. Both the FPM and the science detector are located
in focal planes. The segments of the IrisAO are each controllable in piston, tip and tilt, with a maximum
stroke of 5 `<. Using a 14-bit controller, we assume close to perfect linear actuators (Helmbrecht & Juneau
2007), resulting in a smallest control step per actuator of 0.3 nm, excluding any noise. This control step
will drive the contrast level we tolerance the segmented WFE limits to in Sec. 3.3.2.

With this segmented CLC setup on the HiCAT emulator, without any WFS&C and with a �at segmented
DM, the simulated average contrast in the DH area from 6-11 _/�!( is 1 × 10−5. In order to place the
coronagraph �oor of the testbed into a higher contrast regime, we deploy an iterative WFS&C loop that
uses pair-wise sensing to estimate the E-�eld in each iteration, followed by a control step with both DMs
as calculated by the stroke minimization algorithm. The IrisAO is kept at its best �at position throughout.
We choose to stop this control loop after 10 iterations, which is when we reach an average DH contrast
of 5.7 × 10−8, comparable to the best contrast HiCAT can reach on the real testbed in an unsegmented
CLC con�guration3, and in monochromatic light. The DM solutions and focal plane image from this
simulated experiment are displayed in Fig. 3.12. The WFS&C solution shown in Fig. 3.12 is included in
the static coronagraph contribution of the PASTIS model (Laginja et al. 2021, Eq. 12), which allows us to
work around an improved best contrast solution compared to the coronagraph without deploying a DH
algorithm. This sets our coronagraph �oor that we use in the emulated PASTIS experiments on HiCAT in
Sec. 3.3.2 to an initial 20 = 5.7 × 10−8.

3.3.2 Results on the HiCAT emulator

Simulating sensitivity experiments on HiCAT with the PASTIS tolerancing model allows us to estimate
the segmented DM WFE requirements for decided target contrast levels, and to prepare the experiment
software. We are using the “synthetic testbed” mode of the hardware controls to write the experiment
code, and the results from the optical simulator will allow us to draw conclusions about the sensitivity
of the HiCAT CLC to IrisAO misalignments. These numerical experiments include all preparation steps
needed for the anticipated hardware runs and they are expected to run “out of the box” on the testbed

3The segmented CLC con�guration later reached a best contrast of 2.5 × 10−8 on hardware, see also Chap. 4.
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Figure 3.12: DM surface commands applied to continuous DM1 (in-pupil, left) and DM2 (out-of-pupil, center) to
obtain the 360◦ DH solution from 6-11 _/�!( on the HiCAT emulator (right), calculated by 10 iterations
of pair-wise sensing and stroke minimization, which yields an average contrast of 5.7 × 10−8. The
segmented DM in this setup is kept at its best �at position throughout. We include these DM solutions
in the de�nition of our coronagraph when working with PASTIS.

hardware. In this section, we present the results of these emulated validation experiments. We use the
testbed con�guration described in Sec. 3.3.1, using a monochromatic light source at 640 nm. Before running
an experiment, we apply the DM solutions for the DH shown in Fig. 3.12 in order to use the DH contrast
from that stroke minimization solution as the coronagraph �oor, initially 20 = 5.7 × 10−8.

In the following, we present the results of three numerical experiments for the validations of the
PASTIS tolerancing model: (1) measuring a simulated “experimental” PASTIS matrix and validating the
PASTIS forward model (Eq. 2.9) with a “hockey stick curve” experiment (see Laginja et al. 2021, Fig. 4), (2)
measuring the cumulative contrast of the modes obtained from the emulated PASTIS matrix by tolerancing
all modes to a uniform contrast contribution, and (3) performing a simulated Monte Carlo experiment for
the validation of the calculated segment requirements, where we propagate random WFE maps drawn from
the tolerancing prescription for independent segments calculated with PASTIS to measure the resulting
DH average contrasts.

The �rst simulated experiment is the measurement of a PASTIS matrix, which will be used to calcu-
late the mode and segment requirements for a given target contrast. As described in Sec. 3.3.1, the least
signi�cant bit (LSB) of the IrisAO controller allows for a minimal movement of 0.3 nm of a single IrisAO
segment, barring any noise. In order to minimize limitations by the LSB, we choose here a conservative
target contrast of 2C = 10−6, which results in a standard deviation for the segment requirements larger than
4 nm. Since these tolerances are drawn from a zero-mean distribution, some random WFE realizations will
still be truncated to zero due to the LSB limit, especially when taking into account additional controller
noise, but with larger standard deviations we are increasing the fraction of realizations above that limit,
and the e�ect becomes negligible.

PASTIS matrix measurement and validation

The PASTIS matrix is a pair-aberrated in�uence matrix, linking segment aberrations to the average contrast
in the coronagraphic DH. Having the scalar quantity of the average DH contrast as its objective, it has the
advantage that no prior knowledge of the electric �eld is required in order to construct it. This means
that measuring an experimental PASTIS matrix is much simpler than measuring an empirical electric �eld
Jacobian, since its calculation does not introduce overheads or estimation errors that usually come with E-
�eld estimation methods (e.g., measuring probe images in the pair-wise estimator). One aspect to consider
is that the measurement time for the PASTIS matrix scales roughly with the square of the number of
segments (=B46) divided by two, rather than linearly with the number of segments:

=<40B =
=2B46 + =B46

2
, (3.1)

where =<40B is the total number of measurements required for the construction of the PASTIS matrix. We
divide by 2 because the matrix is symmetrical, and include the matrix diagonal by adding =B46. On the
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Figure 3.13: Left: PASTIS matrix for HiCAT as measured in an emulated experiment. Each entry represents the dif-
ferential contrast contribution of each aberrated segment pair, normalized to the aberration amplitude.
The matrix is symmetric, and its diagonal shows the impact on contrast by the individual segments,
which is used in the independent segment tolerancing. Right: Geometry of the IrisAO segmented DM
on HiCAT and the segment numbering used in this paper. The 37 segments are numbered starting at 0
for the center segment, to 36 in the outer ring.

37-segment HiCAT pupil, this requires only =<40B = 703 measured images.
In the presented numerical experiment, we obtain the PASTIS matrix with the HiCAT emulator. We

constrain ourselves to a local piston mode with an amplitude of 10 nm rms WFE for the calibration aberra-
tion of the PASTIS matrix. Other modes are possible, for example tip/tilt, or a combination of local segment
aberrations, but they are not considered in this paper. Following the semi-analytical approach, we �rst cal-
culate the contrast matrix by aberrating pairs of segments and record the resulting DH average contrast.
We then use Eqs. 2.16 and 2.17 to calculate the PASTIS matrix shown in Fig. 3.13, left. The PASTIS matrix is
symmetric, with its diagonal describing the impact on contrast by the individual segments, which is used
in the independent segment tolerancing. There are some blue, negative streaks in the matrix with a very
low change of contrast for particular segment pairs, which correspond to adjacent segments in the pupil.

To validate the PASTIS forward model using the PASTIS matrix in Eq. 2.9, we generate random and
indepentend segment phase aberrations over the entire segmented DM, represented by the vector a, scale
them to a global rms WFE and propagate them with the PASTIS matrix. In parallel, we also apply this
aberration to the HiCAT segmented DM in simulation and measure the resulting DH contrast. Since one
particular rms WFE over the total pupil can be realized with many di�erent individual segment con�gu-
rations, we average over the contrast values from 10 di�erent realizations at each global rms WFE value.
The result of this simulation is shown in Fig. 3.14. We observe that the two propagators show very good
accordance, and more so in the small aberration regime up to ∼2 nm rms, just above the coronagraph �oor,
even if the error between them grows only marginally beyond that. We can clearly see the curve �atten
out toward the left, where they are limited by the coronagraph �oor, and the two solutions start diverg-
ing from each other at a global WFE value of around 100 nm rms, which lies way beyond the small-WFE
approximation regime on all segments.

We proceed with an eigendecomposition of the PASTIS matrix (see Chap. 2.3) and calculate its eigen-
modes, shown as the PASTIS modes in Fig. 3.15. The modes are ordered from highest to lowest eigenvalue,
indicating their comparative impact on the DH average contrast in their natural normalization. In a sim-
ilar fashion to the eigenmodes in Chap. 2.3, the respective contrast impact is re�ected in the spatial fre-
quency content of each mode. The highest-in�uence eigenmodes in the �rst two rows of Fig. 3.15 all show
checkerboard-like patters in the unconcealed areas of the pupil, while the low-impact modes approximate
low-order Zernikes, which the coronagraph is inherently less sensitive to. In the following section, we
scale all modes to a uniform contrast contribution between them.
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Figure 3.14: Validation of the PASTIS matrix by propagating the same segmented WFE maps both with the semi-
analytical PASTIS matrix from Fig. 3.13 (solid blue) and with the emulated HiCAT testbed (dashed
orange). The curve �attens out to the left, at the coronagraph �oor 20, and shows linear behavior at
larger WFE, giving it its hockey stick-like shape. The two propagators show very good accordance in
the small aberration regime right above the contrast �oor, between ∼0.6 and 4 nm rms over the entire
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Figure 3.15: All simulated PASTIS modes for HiCAT with a classical Lyot coronagraph, for local piston aberrations,
sorted from highest to lowest eigenvalue. The modes are unitless, showcasing the relative scaling of
the segments to each other, and between all modes. They gain physical meaning when multiplied by
a mode aberration amplitude 1? in units of wavefront error or phase. Their relative impact on �nal
contrast is given by their eigenvalues.
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Figure 3.16: Left: Mode requirements as calculated with Eq. 2.26 for a uniform contrast contribution per mode to
a target contrast of 10−6. Right: Cumulative contrast plot for the uniform mode requirements shown
left, calculated both with the PASTIS model equation (solid blue) as well as measured with the HiCAT
emulator (dashed orange). The emulator result shows a better accordance with the PASTIS model at
lower mode index. Note how neither line starts at the coronagraph �oor because the mode with index
0 already adds a contrast contribution on top of the baseline contrast.

Validation of mode tolerances

The PASTIS modes in Fig. 3.15 form an orthonormal mode basis - each of them contributes to the overall
contrast additively, without in�uence from the other modes. This can be used to de�ne error budgets based
purely on these optical modes (see Chap. 2.3.2). In the present example, we choose that the PASTIS modes
should contribute uniformly to the total contrast, in which case we can calculate the mode tolerances for a
particular target contrast with Eq. 2.26. The resulting mode requirements for a target contrast of 2C = 10−6
are shown in Fig. 3.16, left. To validate the assumption of modes that are additive in contrast, we run a
simulated experiment to measure the cumulative contrast of the toleranced PASTIS modes. For this, we
multiply the modes by their respective requirement, apply them cumulatively to the IrisAO and measure
the resulting DH average contrast at each step (Fig. 3.16, right). The cumulative measurements with the
HiCAT emulator follow the general expected linear shape, although some mode contributions seem to
overshoot its predicted contrast contribution slightly. These over-contributing modes then seem to be
compensated by weighted modes that do not in�uence the contrast quite as much as intended, displaying
a periodic error pattern, and reaching a �nal contrast 5% (5 × 10−8) above the target contrast of 10−6.

Validation of independent segment tolerances

To fully validate the PASTIS tolerancing model, we calculate segment-level requirements and probe them
with the HiCAT simulator. In cases where the segments can be assumed to be independent from each
other, as is the case for an IrisAO, we can calculate individual segment requirements with Eq. 2.36 as a
function of the target contrast. While the overall level of WFE requirements will be highly in�uenced by
the Fourier �ltering of the FPM, the di�erent segments display a di�erential tolerance between them, see
Fig. 3.17, left. These individual segment requirements will be highly in�uenced by pupil features of the
optical system. Looking at their spatial distribution in the HiCAT pupil, we can see in Fig. 3.17, right, that
the segments of the outer ring have more relaxed requirements than the two inner rings and the center
segment. This is caused, in large part, by the Lyot stop, which is covering a large fraction of the segments
in the outer ring because it is undersizing the pupil, which can be seen in Fig. 3.10. The segment-level WFE
requirements displayed in Fig. 3.17 present a statistical description of the allowable segment-level WFE if
a target contrast of 10−6 is to be maintained as a statistical mean over many misalignment states of the
segmented DM. As long as the change of the segment-level WFEs on the DM follow zero-mean normal
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Figure 3.17: Independent segment requirements for HiCAT simulations as calculated with Eq. 2.36 for a target
contrast of 10−6 as a line plot (left) and as a spatial map (right). These numbers are the standard
deviation of the tolerable WFE rms on each segment if the target contrast is to be met. The requirement
range spans from 4 to 6.5 nm, with a clear jump in the outermost ring, which is highly concealed by
the Lyot stop (see Fig. 3.10). The same segment numbering is used as in Fig. 3.13, right.

distributions whose standard deviations per segment are described by the numbers in Fig. 3.17, the target
contrast will be recovered as the statistical mean over many such realizations.

In order to con�rm this assumption, we proceed by running a simulated Monte Carlo experiment,
producing 1000 di�erent WFE aberration patterns on the segmented DM and recording the propagated
average DH contrast. Taking data for 1000 realizations is doable on the hardware in a time frame of about
one hour, so we expect to retrieve a histogram with about the same accuracy when performing this ex-
periment on the testbed in the near future. The tolerances in Fig. 3.17 are the prescription as to how to
draw these random WFE realizations: each segment-level WFE on segment : , in a single random WFE
map (vector a), is drawn from its own zero-mean normal distribution with a standard deviation of `: from
Eq. 2.36. This means that one random HiCAT WFE map is composed of 37 independent normal distribu-
tions with a mean of zero, and a standard deviation of `: , which then gets applied to the IrisAO on the
HiCAT emulator and propagated through the coronagraph to measure the DH contrast. The distribution
of measured average contrast values is shown in Fig. 3.18. The resulting �gure corresponds to a Gaussian
distribution with a mean of 1.07×10−6 and a standard deviation of 2.57×10−7, marked in the plot with dark
red lines. To interpret the results in Fig. 3.18, we remember that PASTIS provides analytical expressions
to derive the expected mean contrast (Eq. 2.31) and variance (Eq. 2.32) from a distribution calculated with
a set of segment requirements. Apart from the PASTIS matrix " , what is needed to calculate these quan-
tities is the segment covariance matrix �0 , which in the case of independent segments as presented here
is a simple diagonal matrix made of the segment requirement variances, `2

:
, which we take from Fig. 3.17.

Then, Eq. 2.32 yields an analytical standard deviation of 2.35×10−7 and the mean is, as expected, the target
contrast value 10−6. These are marked with yellow lines in Fig. 3.18. We observe that both the measured
mean as well as the variance are slightly higher than the analytically calculated values from the PASTIS
matrix. This discrepancy could be attributed to a drifting coronagraph �oor from simulated jitter, noise
and WFE realizations in the emulator. These sources of WFE vary from one exposure to the next and would
bias the coronagraph �oor that is captured in each individual DH measurement. This renders the baseline
contrast 20 di�erent from what was used for the calculation of the segment tolerances. Since this e�ect
would also in�uence the measured PASTIS matrix, this error could bias the contrast measurements in the
MC experiments towards higher values. We identify this as a crucial point to address for the experimental
validations on hardware, where the baseline contrast is known to �uctuate over longer periods of time.

Overall, our numerical experiments on the HiCAT emulator present a successful implementation of
simulations of the PASTIS model for a speci�c high-contrast instrument, the HiCAT testbed. We mea-
sured a simulated PASTIS matrix and validated it by comparing its propagation results with measurements
from the synthetic testbed. We decomposed the matrix into independent optical modes that we toleranced
uniformly and cumulatively to a target contrast of 10−6. Finally, we calculated segment-level WFE re-
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Figure 3.18: Monte Carlo validation experiment on the HiCAT emulator to validate the independent segment error
budget shown in Fig. 3.17, for a target contrast 2C = 10−6. Each segmented WFE map draws from 37
zero-mean distributions with an individual standard deviation per segment, `: . The expected mean
contrast and standard deviation of this distribution, as calculated by Eqs. 2.31 and 2.32, are 〈2〉 = 10−6
(the target contrast) and 2.35 × 10−7 (dashed and dotted yellow lines). The simulated distribution has
a mean of 1.07 × 10−6 and a standard deviation of 2.57 × 10−7, both of which are slightly larger than
the predicted values. This is likely to stem from a combination of a drifting coronagraph �oor due to
simulated image jitter. A mitigation for this e�ect is presented in Chap. 4.

quirements under the assumption of independent segments and validated them with a numerical Monte
Carlo experiment, measuring the contrast from randomly drawn segmented WFE maps as prescribed by
the derived requirements.

3.4 Conclusions

The PASTIS tolerancing analysis is useful to determine the coronagraphic sensitivity on a particular tele-
scope to aberrations. In order to put such results into perspective, comparative studies between di�erent
instruments provide insight into how such sensitivities vary with di�erent telescope parameters like coro-
nagraph type, number of segments, telescope diameter, etc. To enable such studies, I created a tool that
can do the full PASTIS analysis from calculating a pair-aberrated matrix to computing the respective WFE
requirements per aberration mode or segment. This tool is a Python package called “PASTIS” that provides
a uni�ed framework for this procedure.

In order to perform such an analysis on a particular telescope or instrument, the package contains
clean interfaces to connect various numerical simulators for the purpose of generating PASTIS matrices.
In addition to this �exible interface, the package itself implements its own optical simulators for a number
of telescopes, including LUVOIR A with three APLC designs, LUVOIR B with a VC, and the monolithic
HabEx with a VC. They contain the capability to include various aberration sources that can be controlled
like a DM, with their in�uence functions being either global Zernikes, ripples, local Zernikes, or custom
local aberrations, as well as actuator-based DMs. The package uses OOP for the implementation of these
simulators as well as the calculation of the PASTIS matrices, and new releases are regularly published with
Zenodo and distributed over GitHub. The development of this package was a major contributor to later
work presented in Chap. 5.

The modular interface allows us to perform the tolerancing analysis not only on the package-internal
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telescope simulators, but also on coronagraphs based in the open-source Python package WebbPSF, that is
JWST and RST. The work that went into this enabled the development of the semi-analytic PASTIS matrix
calculation, which makes the matrix more physically accurate than the previously used fully analytical
computation. Moreover, performing the analysis on a CLC of NIRCam opened up the interface to allow
for any E2E simulator to be used, for example the HiCAT simulator.

The work presented in this chapter was necessary to prepare the experimental validations of the
PASTIS tolerancing on hardware, presented in Chap. 4. Connecting the PASTIS analysis package with the
HiCAT simulator lead to successfully performed simulated experiments. From these results, we deduct that
the segmented mirror needs to be stable to ∼4–6 nm in order to enable a mean contrast of 10−6. Our goal
is to verify these numbers on hardware. Considering the synthetic testbed nature of the HiCAT emulator,
the experiments were bound to directly work on hardware. Indeed they did, with only the �ne-tuning of
the experimental parameters left before producing the results in the following chapter. This shows the
importance of numerical simulators: they can provide fairly accurate proof-of concept results that are a
necessary step before investing into hardware demonstrations. More than just optical simulations, I want
to stress the advantages of full numerical testbed emulation. Preparing experiments on a laboratory setup
requires lots of work both on the hardware itself, as well as signi�cant time dedicated to developing the
experiment control codes and their debugging. When this is done with direct hardware access, the testbed
is blocked both for potential parallel work on the hardware, as well as any sort of data acquisition. By hav-
ing a numerical emulator that is installable on any machine, the implementation and debugging process
can be o�oaded away from the primary lab setup up to the point where there are no bugs left in the code,
and preliminary results are achieved numerically. This ensures an optimization in the usage time of the
testbed, as direct access is only needed when actual measurements are being made, or to test software in-
tegrations. In particular for the case of HiCAT, this allows for several projects being integrated and tested
at the same time on separate instances of the testbed emulator, while the time on the laboratory setup
itself is optimally exploited.

While running the simulated experiments on the HiCAT testbed emulator, we anticipated certain chal-
lenges before moving to the real hardware. The limitations imposed by the IrisAO will de�ne how well
we can control the aberration modes we introduce. While this segmented DM is known to have close to
perfect linear behavior, the modes applied to it will stem from open-loop calibrations, which might in-
clude some errors. Furthermore, the least signi�cant bit introduced by the IrisAO controller will prevent
us from aberrating a segment with an amplitude smaller than ∼1 nm when taking noise into account. This
will lead to drawing from imperfect normal distributions when creating random WFE maps with the pre-
scription of the segment requirements, truncating any small aberrations to zero, which might skew the
results of the Monte Carlo analysis. However, we expect these errors to be small if the target contrast
is chosen high enough compared to the coronagraph �oor, which is a direct motivation to improve the
overall performance of HiCAT, to which I dedicated a major part of my PhD. Another challenge will be
the stability of the DH solution that we adopt into our coronagraph, setting the contrast �oor we perform
our experiments at, as the DH contrast is directly in�uenced by �uctuating environmental parameters like
temperature and humidity. While one solution is to compensate for these �uctuations by upgrading the
WFS&C performance to run faster, another one is to account for these �uctuations in the analytical model
of PASTIS, which is addressed in Chap. 4.



94

3

3.4. CONCLUSIONS



4
Wavefront stability tolerancing in
experimental validations

With the results of the HiCAT simulations from the previous chapter being completed in early December
2020, I obtained the �rst experimental results of the tolerancing validations already a few weeks later, just
before Christmas 2020. While the initial experimental data revealed some control issues with the IrisAO
segmented deformable mirror on HiCAT, those were solved right after the holidays and I was analyzing
my initial testbed results only a couple of weeks later, in early 2021. With some additional work on
understanding the connection between di�erent experimental parameters and their interpretation, I
published the results in a peer-reviewed journal paper, which builds this chapter (Laginja, I. et al. 2022).

The fast turnaround time in going from simulations to hardware experiments is enabled by the
integrated hardware emulator described in the previous chapter, which controls the actual hardware
components when run on the testbed computer, and otherwise uses a suite of simulated testbed
components. This allowed me to use an installation of the full HiCAT testbed infrastructure on my local
machine to prepare my experiments from Europe, while a remote desktop connection into the Makidon
lab enabled me to perform the experiments myself from across the globe. The credit that needs to be
given to this operational setup cannot be emphasized enough. While there was already an interest in
these tools for 24/7 operations during full on-site work and before I moved to France for the second half
of my PhD, the Coronavirus pandemic underlined the advantage of being able to control the testbed fully
remotely, and let it run autonomously for several hours without supervision.

The experimental validations of the PASTIS tolerancing model on HiCAT gave us an opportunity to
study the coronagraphic contrast sensitivity to segmented DM misalignments in particular. Since such
perturbations are only one of many contributors to WFE variations over time which in turn in�uence the
contrast, it was necessary to investigate to what extent di�erent sources of WFE can be separated in the
analysis. The result is a slight modi�cation in the analytical model that now relates everything to a
drifting contrast di�erence rather than absolute contrast. A major goal in this was to compare analytical
tolerancing results to observations in the lab, from which I deducted a segmented DM error budget for
various contrast levels on the HiCAT testbed.
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Abstract

Context. The detection and characterization of Earth-like exoplanets (exoEarths) from space requires
exquisite wavefront stability at contrast levels of 10−10. On segmented telescopes in particular, aber-
rations induced by cophasing errors lead to a light leakage through the coronagraph, deteriorating the
imaging performance. These need to be limited in order to facilitate the direct imaging of exoEarths.
Aims. We perform a laboratory validation of an analytical tolerancing model that allows us to deter-
mine wavefront error requirements in the 10−6 − 10−8 contrast regime, for a segmented pupil with
a classical Lyot coronagraph. We intend to compare the results to simulations, and we aim to estab-
lish an error budget for the segmented mirror on the High-contrast imager for Complex Aperture
Telescopes (HiCAT) testbed.
Methods. We use the Pair-based Analytical model for Segmented Telescope Imaging from Space
(PASTIS) to measure a contrast in�uence matrix of a real high-contrast instrument, and use an an-
alytical model inversion to calculate per-segment wavefront error tolerances. We validate these tol-
erances on the HiCAT testbed by measuring the contrast response of segmented mirror states that
follow these requirements.
Results. The experimentally measured optical in�uence matrix is successfully measured on the HiCAT
testbed, and we derive individual segment tolerances from it that correctly yield the targeted contrast
levels. Further, the analytical expressions that predict a contrast mean and variance from a given
segment covariance matrix are con�rmed experimentally.
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4.1 Introduction

The search for Earth-like exoplanets (exoEarths) and potential signs of life in the form of atmospheric
biomarkers is a very exciting �eld of today’s astronomy. However, it requires a tremendous improvement
in imaging capabilities compared to what we can currently achieve, in order to capture the few photons
coming from a planet buried in the blinding light of its nearby host star. Instruments will need to reach
contrast levels (planet to star �ux ratios) of at least 10−10, at a separation of only ∼ 0.1 arcsec, or less,
from the star (The LUVOIR Team 2019). Telescopes providing these capabilities will require large collect-
ing areas, and they will most likely be realized with segmented primary mirrors, both in space and on
the ground. Currently, the favored method to achieve these extreme high-contrast levels are dedicated
instruments called coronagraphs that strongly attenuate the on-axis star light while preserving the o�-
axis planet light as much as possible (Guyon et al. 2006). These instruments are very sensitive to residual
wavefront aberrations, which generate speckles of light in the imaging focal plane that can be mistaken
for planets. This is why coronagraphy needs to be combined with wavefront sensing and active control
(WFS&C) (Mazoyer et al. 2018a,b; Gro� et al. 2016) to create a zone of deep contrast in the �nal image,
a dark hole (DH). These ambitious goals will be achieved from space by missions such as the Habitable
Exoplanet Observatory (HabEx; Gaudi et al. 2019) and the Large UV Optical InfraRed Surveyor (LUVOIR;
The LUVOIR Team 2019; Bolcar 2019) which are currently under consideration by the NASA Astro2020
Decadal Survey, with the Nancy Grace Roman Space Telescope (RST; Krist et al. 2015) working toward
shorter-term demonstrations at more moderate contrast levels (10−7 − 10−9) with a monolithic primary
mirror.

The extreme contrast levels that are needed for the detection of exoEarths require excellent stability
against wavefront errors (WFEs) over a range of temporal and spatial frequencies (Pueyo et al. 2019; Coyle
et al. 2019b; Feinberg et al. 2017). While some of these can be actively controlled with a WFS&C system, or
do not have a large impact on the contrast due to robust coronagraph designs, aberration modes to which
the instrument is very sensitive must be held to a minimal level (Nemati et al. 2020; Juanola-Parramon et al.
2019b; Nemati et al. 2017b). Typically, it is enough to control these misalignment modes on the timescales
of the WFS&C system. In this paper, we focus on the segment-related aberrations due to segment misalign-
ments, which are the main contributors to WFE in the mid-spatial-frequency regime (Douglas et al. 2019;
Juanola-Parramon et al. 2019b; Moore & Redding 2018). Various technology solutions are being developed
toward this goal (Coyle et al. 2020; Hallibert et al. 2019; Coyle et al. 2018; East et al. 2018; Stahl 2017; Stahl
et al. 2015). Multiple hardware e�orts are underway to provide laboratory demonstrations of the systems
anticipated to be installed on future large observatories. While other testbeds are tackling the problem on
monolithic apertures (Potier et al. 2020a; Patterson et al. 2019; Sidick et al. 2015), the two that have been
focusing on segmented apertures are the High-contrast imager for Complex Aperture Telescopes (HiCAT)
testbed at the Space Telescope Science Institute (Soummer et al. 2018) and the High Contrast Spectroscopy
Testbed for Segmented Telescopes (HCST) at Caltech (Llop-Sayson et al. 2020).

The tolerancing problem of segmented high-contrast instruments has been previously addressed with
the Pair-based Analytical model for Segmented Telescope Imaging from Space (PASTIS; Laginja et al. 2021,
2020, 2019; Leboulleux et al. 2018b,a, 2017b). It is an analytical model that calculates the average contrast
in the DH caused by pupil-plane segment misalignments, using a simple matrix multiplication. Central to
this model is the PASTIS matrix " , which describes the contrast contributions of an aberrated segment
pair. When we combine it with a covariance matrix,�0 , that describes the thermo-mechanical behavior of
the segments, the PASTIS model can be used to calculate the expected mean contrast and its variance for
a particular instrument, over many segmented aberration states, with analytical equations. This allows us
to fully describe the statistical response of a segmented coronagraph to segment-level cophasing errors.
Additionally, an eigendecomposition of either matrix allows us to write the contrast as a sum of separate
contributions and then to invert the problem: instead of calculating the expected mean contrast given some
aberrations, we can now statistically determine tolerances that lead to a particular mean contrast target.
This leads to a quantitative tool for instrument design that provides the means to calculate statistical limits
on the segmented aberration modes.

In this paper, we use the semi-analytical development of the PASTIS model (Laginja et al. 2021, 2019) to
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measure an experimental PASTIS matrix on the HiCAT testbed (Soummer et al. 2018; Moriarty et al. 2018;
Leboulleux et al. 2016, 2017a; N’Diaye et al. 2015a, 2014, 2013) by replacing the images usually provided
by an end-to-end simulator with laboratory measurements. We then use this experimental PASTIS matrix
for further analysis, meaning the validation of the instantaneous forward model for the calculation of the
average DH contrast and WFE tolerancing analysis, and compare the results to a simulated case. First, we
aim to provide a general experimental validation of the PASTIS model, showing that it is feasible to measure
a PASTIS matrix on hardware, and that we can calculate correct segment-level tolerances in the mid-
contrast regime (10−6 − 10−8), compatible with the HiCAT performance as of today. This is demonstrated
in Sec. 4.4 at 2.5 × 10−8, which is the contrast �oor considered in this paper. Our tolerancing process is
demonstrated for this value of contrast, situated at an intermediate point between the expectations of the
James Webb Space Telescope (JWST) and LUVOIR. In Sec. 4.4, it translates into tolerancing values of a few
nanometers, compatible with the hardware limitations of the bench (resolution of deformable mirrors and
fast �uctuations in the optical system). We eventually demonstrate the sensitivity to a contrast change
of around a few 10−7. Second, we compare the results obtained with testbed measurements to results
obtained with a purely simulated PASTIS matrix, and we analyze the sensitivity to model errors. And
third, we establish an error budget for the segmented deformable mirror (DM) on HiCAT, for various
contrast levels, and present quantitative results on the required WFE stability of the segmented mirror.

In Sec. 4.2 we recall the most important points about the PASTIS forward model and its inversion, from
which we derive the results for WFE tolerancing. We also include a simple extension for the treatment
of a drifting coronagraph �oor that is not attributed to the segmented mirror. In Sec. 4.3 we describe the
HiCAT project and the testbed con�guration used for the presented experiments. In Sec. 4.4 we show
the tolerancing results and their validations performed on the HiCAT testbed, and we compare them to
a simulated case of the PASTIS matrix on HiCAT. Finally, in Secs. 4.5 and 4.6 we discuss our results and
report our conclusions.

It should be noted that the main �gure of merit used by the PASTIS model is the spatially averaged
intensity in the DH, normalized to the peak of the direct image, which is what we refer to as “contrast”
throughout this paper; it depends on the particular state of the instrument, and notably that of the seg-
ments. We also stress that we di�erentiate between this spatially averaged DH intensity, the “average DH
contrast”, and a statistical mean (expected value) of this averaged contrast over many optical propagations,
the statistical “mean contrast”.

4.2 PASTIS tolerancing model and extension to a drifting coronagraph

�oor

While segmented aberrations have a direct impact on the focal plane response, they are not the only source
of time �uctuations in the contrast. For a laboratory validation, the environmental conditions (humidity,
temperature, vibrations) evolve with time and contribute to opto-mechanical deformations of the testbed,
eventually translating into slowly evolving optical aberrations and contrast drift. We need to take this
contrast drift, which is not due to the segmented mirror, into account to be able to isolate the e�ects
coming from the segmented mirror alone.

In the following section, we present a brief summary of the PASTIS tolerancing model (Laginja et al.
2021), and expand it to include a drifting coronagraph �oor arising from time-dependent aberrations from
sources other than the segmented mirror.

We model the phase q in the pupil plane of a segmented high-contrast instrument as:

q (r, C) = q�� (r) + q01 (r, C) + qB (r), (4.1)

where q�� is a static best-contrast phase solution, usually produced by a DH algorithm and applied to
a pair of DMs. The term q01 is the phase produced by time-dependent aberrations in the system, qB is
the phase caused by segment-induced aberrations, r is the pupil plane coordinate and C the time variable.
Under the assumption of the small aberration regime for qB and q01 , and assuming that q�� is static, we
discard any cross-terms between qB and q01 as they would create third and fourth order terms in contrast,
while we limit ourselves to a second order model. We can then express the electric �eld in the pupil
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with two terms: the �rst is a time-dependent term that includes the best-contrast phase solution with an
additional aberrating phase drift, and the second is independent from time and contains the segmented
perturbations:

� (r, C) = % (r) 48 q (r,C ) ' % ′(r, C) + 8 % (r) 48 q�� (r)qB (r), (4.2)

where % is the pupil function, and % ′(r, C) = % (r) exp[8 (q�� (r)+q01 (r, C))]. Applying a linear coronagraph
operator, C, that represents the propagation of the electric �eld in the high-contrast system (i.e., Fourier
transforms and mask multiplications) to the expression given in Eq. 4.2, we obtain the coronagraphic
intensity distribution in the image plane with |C{� (r, C)}|2. The average contrast is then given by averaging
over the DH area, indicated by 〈. . . 〉�� .

It was previously shown that the average DH contrast can always be expressed as a quadratic function
of a segmented phase perturbation under an appropriate change of variable (Laginja et al. 2021, Eqs. 4 and
11), which eliminates the linear cross-term, and leaves us with separate square transformations of the two
terms in Eq. 4.2. Concretely, in this paper we model the contrast �oor with a contribution from the static
DM phase, and aberrations introduced by environmental changes of the testbed, which cause a drift in the
contrast as a function of time C ,

20(C) = 〈|C{% ′(r, C)}|2〉�� = 〈|C{% (r)48 (q�� (r)+q01 (r,C )) }|2〉�� . (4.3)

Representing optical aberrations on a segmented telescope with local (per-segment) Zernike modes,
we can expand the phase aberrations on the segmented pupil qB (r) in the second term of Eq. 4.2 as a sum
of segment-level polynomials (Laginja et al. 2021, Eq. 1), with its decomposition on such a basis denoted
as a. Following the development of the original PASTIS model, we can express the average contrast in the
coronagraphic DH as a matrix multiplication (Laginja et al. 2021, Eq. 9), which makes our assumed model:

2 (C) = 20(C) + a)"a, (4.4)

where 2 (C) is the spatial average contrast in the DH, 20(C) the coronagraph �oor (i.e., the average contrast in
the DH in the presence of the best-contrast phaseq�� (r) and of the variable phase aberrationsq01 (r, C), but
in the absence of segment misalignments qB ), " is the symmetric PASTIS matrix of dimensions =B46 ×=B46
with elements<8 9 , a is the aberration vector of the local Zernike coe�cients on all discrete =B46 segments
and a) its transpose. We can see that the contrast �oor 20(C) is dominated by the DH phase solutionq�� (r),
with an additional variation introduced by the time-dependent q01 (r, C). The matrix " itself contains a
constant term added by 48 q�� (r) , and the segmented aberrations induced by qB (r). Following the pair-
wise aberrated approach explained previously (Laginja et al. 2021, Eq. 10), the matrix elements can thus
generally be expressed as:

<8 9 = 〈C{% (r) 48q�� (r)/ (r − ri)}C{% (r) 48q�� (r)/ (r − rj)}∗〉�� . (4.5)

By de�ning the di�erential contrast as our objective quantity that is independent of time C :

Δ2 = 2 (C) − 20(C), (4.6)

we render the right-hand side of Eq. 4.4 time-independent, which allows us to isolate the e�ects imposed
by segment cophasing errors, de�ned by the vector a.

Each PASTIS matrix element<8 9 represents the contrast contribution to the DH average contrast 28 9 by
each aberrated segment pair in the pupil, formed by segments 8 and 9 . Once the matrix is established, we
can calculate its eigenmodes u? and eigenvalues _? by means of an eigendecomposition. The total number
of optical (PASTIS) modes, =<>34B , is equal to the total number of segments, =B46. Since the eigenmodes are
orthonormal and diagonalize " , the DH contrast can be written as the sum of separate contributions of
each mode, and each eigenvalue is the contrast sensitivity of the corresponding mode (Laginja et al. 2021,
Eq. 22):

Δ2 =
=<>34B∑
?

12?_? , (4.7)
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where 1? is the amplitude of the ?Cℎ mode.
With the PASTIS matrix, " , representing the optical properties of the segmented coronagraph, and

Eq. 4.4 giving the instantaneous average DH contrast, 2 , for a given aberration vector a," can be combined
with any given segment covariance matrix,�0 , to calculate the statistical mean and variance of the average
DH contrast (Laginja et al. 2021, Eqs. 31 and 32):

〈Δ2〉 = tr("�0), (4.8)

where tr denotes a trace and
Var (Δ2) = 2 tr[("�0)2] . (4.9)

While Eq. 4.8 does not make any assumptions about the statistics of the vector a, Eq. 4.9 is true when a
follows a Gaussian distribution, which is an assumption used throughout this paper. The two equations
above allow us to calculate these two integral quantities directly from the optical properties of the instru-
ment, described by " , and the mechanical correlations of the segments, captured by �0 , which can be
obtained from thermo-mechanical modeling of the observatory.

For all �0 , Eq. 4.8 can be expressed as

〈Δ2〉 =
=<>34B∑
?=1

f2
1?
_? , (4.10)

where f1? are the standard deviations of the optical mode amplitudes, in the diagonalized basis of the
PASTIS matrix" . This leads to an inversion of the problem where we set a di�erential target contrast Δ2 ,
for which we want to derive WFE tolerancing limits in terms of standard deviations for the segments, or
modes. For the special case of a diagonal �0 , which means that the individual segments are statistically
independent, a similar expression to Eq. 4.10 can be deduced from Eq. 4.8 for the standard deviations of
the segment amplitudes, f0: :

〈Δ2〉 =
=B46∑
:=1

f20:<:: , (4.11)

where the<:: are the diagonal elements of the PASTIS matrix. This equation can be used to specify the
standard deviation for each segment: denoting `: = f0: , we can choose that every segment contributes
equally to the contrast, which yields a speci�cation of segment amplitude standard deviations of (Laginja
et al. 2021, Eq. 36):

`2
:
=
〈Δ2〉

=B46<::

. (4.12)

While Eqs. 4.8 and 4.9 allow us to analytically calculate the expected mean contrast of a segmented
coronagraph and its variability, for mechanical properties described by�0 , Eq. 4.12 provides a way to deter-
mine individual segment tolerances for a particular target di�erential contrast Δ2 that is to be maintained
over a set of observations.

4.3 The HiCAT project and experimental setup

The HiCAT testbed (Soummer et al. 2018; Moriarty et al. 2018; Leboulleux et al. 2016, 2017a; N’Diaye et al.
2015a, 2014, 2013) is dedicated to a LUVOIR-type coronagraphic demonstration with on-axis segmented
apertures1. The project is targeting experiments in ambient conditions that can happen before demonstra-
tions in a vacuum, for example at the Decadal Survey Testbed (DST; Patterson et al. 2019) located at the
Jet Propulsion Laboratory. The ultimate performance goal of such testbeds is to demonstrate a contrast of
10−10 in the lab. While this goal can only be achieved in an environmentally stable vacuum chamber, the
HiCAT testbed is aiming for 10−8, limited by its coronagraph performance and environmental conditions.
The work on HiCAT intends to provide a system-level analysis of a high-contrast instrument that includes
various sensors and controllers. Ultimately, the planned coronagraph for HiCAT operations is an Apodized

1https://exoplanets.nasa.gov/internal_resources/1186/

https://exoplanets.nasa.gov/internal_resources/1186/
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DM1 DM2 FPM LSSegmented DM
Entrance pupil

Science camera

PP PP PP PPFP FP

Figure 4.1: HiCAT optical con�guration used for PASTIS experiments, here shown with transmissive optics for
simplicity. The entrance pupil is a custom-shaped mask that traces the outline of the segmented DM in
a consecutive pupil plane (see also Fig. 4.2). Of the two continuous DMs, DM1 is in a pupil plane, and
DM2 is located out-of-pupil in order to control both phase and amplitude. The FPM and LS form the
CLC setup. The pupil planes (PP) and focal planes (FP) are marked.

Pupil Lyot Coronagraph (APLC; N’Diaye et al. 2016; Zimmerman et al. 2016; N’Diaye et al. 2015b) that in-
cludes apodizers manufactured using carbon nanotubes. Since the various apodizer designs are mounted
on easily interchangeable bonding cells, a high-quality �at mirror can be swapped in to use a classical
Lyot coronagraph (CLC). We use the CLC setup (Sec. 4.3.1) for the experiments in this paper, supported by
an active WFS&C loop to improve the DH contrast beyond the initial static solution caused purely by the
coronagraphic masks (Sec. 4.3.2). An IrisAO (Helmbrecht et al. 2013) segmented DM is utilized as the seg-
mented telescope simulator on the testbed to introduce segment-level WFEs for the tolerancing validation
with PASTIS.

The high-level testbed control system of HiCAT is coded in Python and uses the Numpy (Oliphant
2006; Van der Boekel et al. 2011), Matplotlib (Hunter 2007; Caswell et al. 2020), Astropy (The Astropy
Collaboration et al. 2013; The Astropy Collaboration et al. 2018; The Astropy Collaboration 2018), SciPy
(Virtanen et al. 2020), scikit-image (van der Walt et al. 2014), pandas (McKinney 2010; Reback et al. 2020),
imageio (Silvester et al. 2020), photutils (Bradley et al. 2020), HCIPy (Por et al. 2018), Poppy (Perrin et al.
2012) and CatKit (Noss et al. 2021b) packages. The software infrastructure emulates all testbed processes
including the control of all hardware components, which means that all experiments can be prepared
o�ine, without any access to the actual hardware (Laginja et al. 2020).

4.3.1 Classical Lyot coronagraph as static setup

While the HiCAT APLC is designed to provide a superior performance on a segmented aperture compared
to the simpler CLC, the pupil plane apodization of this coronagraph causes a lot of the aperture segments
to be highly concealed (Soummer et al. 2018, Fig. 7). HiCAT has been operated as a segmented CLC since
the fall of 2020, and we used this testbed con�guration to perform the experimental validations of PASTIS,
which allows us to image the entire segmented aperture (unobstructed 37 segments).

The de�ning optical elements of HiCAT with a CLC are a noncircular pupil mask, an IrisAO PTT111L
37-element hexagonally segmented DM (Helmbrecht et al. 2016, 2013), two Boston Micromachines 952-
actuator microelectro-mechanical (MEMS) “kilo-DMs” (Cornelissen et al. 2010), a focal-plane mask (FPM),
a Lyot stop (LS) and a science detector. A schematic of the optical testbed layout used for the presented
experiments can be seen in Fig. 4.1. The pupil mask traces the hexagonally segmented IrisAO outline, and
we use its circumscribed diameter as the pupil diameter, �?D? . This is slightly undersized with respect to
the diameter of the IrisAO itself to limit the beam to the controllable area of the segmented DM. The �rst
Boston continuous DM is located in a pupil plane, and the second one is out-of-pupil, at a distance of 30 cm
from the pupil plane DM, in order to control amplitude in the WFS&C process. The FPM has a diameter of
8.52 _/�?D? , with _ (no subscript) the central wavelength of the bandpass. The LS is a circular, unobscured
mask with a diameter �!( of 79% of the size of �?D? , as projected in the Lyot plane. An overlay of all
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Figure 4.2: Left: Overlapping pupils in the HiCAT segmented CLC con�guration, and their diameters, used for
the PASTIS experiments, projected in the pupil plane of DM1 (simulated image). The entrance pupil
mask (bright green, undersized polygon shape) traces the outline of the IrisAO (dark green polygon
shape) with a 97% undersizing factor, preventing the illumination of areas outside of the controllable
segments. The entrance pupil diameter �?D? (white dashed line) is de�ned as the circumscribed circle
around the undersized pupil mask. The LS (yellow ellipse) is sized such that its edges stay within the
controllable outline of the IrisAO. Since HiCAT uses re�ective optics, the resulting beam foreshortening
along the x axis results in all pupils being optically “squished” along the x direction. This is true for all
optics and is immediately visible in this �gure as the yellow LS surface is slightly elliptical with respect
to the circle denoting its nominal diameter �!( (dashed black line). Right: Measured pupil image on
hardware with a detector located in a pupil plane before the two continuous DMs and the LS, showing
the IrisAO segments and the pupil mask outlining the segmented DM. We note the slightly undersized
outline, which results in somewhat irregular hexagons at the edges, especially noticeable on the six
corner segments.

relevant pupils can be seen in Fig. 4.2.
Previously, the IrisAO had been used with the CLC for experiments on coronagraphic focal plane

wavefront sensing (WFS) on a segmented aperture (Leboulleux et al. 2020), but with di�erent mask sizes
and a fully circular entrance pupil. The installation of the IrisAO on the current CLC setup was performed
in late 2020. The segments of the IrisAO segmented DM are each controllable in piston, tip and tilt, with
a maximum stroke of 5 `m on each of the three actuators mounted on the back side of each segment. The
segmented DM initially saw an open-loop �atmap calibration (Helmbrecht et al. 2016) with a 4D Fizeau
interferometer, which yielded a calibrated surface error of 9 nm root-mean-square (rms) (Soummer et al.
2018, Fig. 3). This was improved upon after installing the IrisAO on the testbed, where a �ner, closed-
loop �at-map calibration was performed with di�erential optical transfer function (dOTF) phase retrieval
(Codona 2012; Codona & Doble 2012).

The average contrast for the currently used CLC setup, in an annular DH from 6-10 _/�!( with �at-
tened DMs is ∼1 × 10−5 in monochromatic light at 638 nm. In order to place the coronagraph �oor of
the testbed into a higher contrast regime, we deploy an iterative WFS&C loop described in the following
section.

4.3.2 Active wavefront sensing and control for an improved DH

The WFS&C strategy used on HiCAT to improve the monochromatic DH contrast in an annular DH de-
ploys an iterative approach of pair-wise probing (Gro� et al. 2016; Give’on et al. 2011) to estimate the
electric �eld, and stroke minimization (Mazoyer et al. 2018a,b; Pueyo et al. 2009) for control. The outer
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Figure 4.3: Top: 120 iterations of pair-wise sensing and stroke minimization (left), starting from a pre-modulated
coronagraphic image shown in the embedded plot. The loop converges after 70-80 iterations and yields
an average contrast of 2.5× 10−8 from 6-10 _/�!( , using a monochromatic source at 638 nm (right). The
two DH images are shown on the same scale. Bottom: DM surface commands applied to continuous
DM1 (in-pupil, left) and DM2 (out-of-pupil, right) for the best-contrast DH solution in the top right at
iteration 120. The segmented DM in this setup is statically set to its best �at position throughout the
control loop.

working angle of 10 _/�!( is de�ned by the highest spatial frequency controllable by the two continuous
DMs, and the IrisAO DM is kept at its best �at position throughout. In order to avoid a local minimum,
we �rst dig a larger DH at moderate contrast before launching the loop on a 6–10 _/�!( DH as seen in
Fig. 4.3. After 70–80 iterations, the contrast performance converges to 2.5 × 10−8, with variations on the
order of 2 × 10−8 during the WFS&C sequence. The continuous DM commands that create the �nal DH,
as well as the convergence plot and the �nal DH image, are shown in Fig. 4.3. The DM surface commands
shown in Fig. 4.3 are applied at the beginning of each experiment presented in Sec. 4.4, making them a
part of the static coronagraph contribution 20(C) as described by Eq. 4.3. This setup sets our nominal coro-
nagraph �oor that we use in the PASTIS experiments on HiCAT in Sec. 4.4 to an initial 2.5 × 10−8, and
it is drifting without active control during the experiments. The aberrations we target with the PASTIS
tolerancing model in this paper are the segmented WFEs, a, introduced by the IrisAO DM on top of this
static best-contrast solution, and independent of the contrast drift.
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4.4 Experimental validation of segmented tolerancing on the HiCAT

testbed

In the following section, we present the results of several experiments for the hardware validation of the
PASTIS tolerancing model. We measure an experimental PASTIS matrix and compare it to simulations,
and we con�rm the instantaneous PASTIS forward model in Eq. 4.4. We measure the deterministic optical
mode contrast given by Eq. 4.7 and then validate the statistical segment tolerances calculated from the
experimental PASTIS matrix with Eq. 4.12 by performing Monte Carlo experiments and comparing them
to results from Eqs. 4.8 and 4.9. We use the testbed con�guration described in Sec. 4.3, and we describe
how to correct our measurements for the drifting contrast �oor 20(C) in Sec. 4.4.1. Before running an
experiment, we apply the continuous DM solutions for the DH shown in Fig. 4.3, putting the testbed
initially at 20(C0) = 2.5× 10−8. In Sec. 4.4.1, we emphasize the need to re�ne our forward model to account
for the slow contrast drift on the testbed, as introduced in Sec. 4.2. At this level of performance, this drift is
the main limitation and has to be corrected numerically. In Sec. 4.4.3, we compute the tolerancing in terms
of segment allocations corresponding to delta contrast values of a few 10−7, as limited by the uncorrected
fast �uctuations we see in our data in Fig. 4.5.

4.4.1 PASTIS matrix measurement and deterministic forward model validation

Measurement method

The PASTIS matrix is a pair-wise in�uence matrix, linking segment aberrations to the di�erential average
contrast in the coronagraphic DH. The total number of intensity measurements needed for the construction
of an experimental PASTIS matrix is:

=<40B =
=B46 (=B46 + 1)

2
. (4.13)

Indeed, the matrix being symmetrical, we measure only the non-repeating permutations of segment pairs
including the matrix diagonal. On the 37-segment HiCAT pupil this requires =<40B = 703 measurements.

The relation between each pair-wise aberrated contrast measurement and the PASTIS matrix elements
is given by (Laginja et al. 2021, Eq. 15):

28 9 (C) = 20(C) + 028<88 + 029< 9 9 + 2080 9 <8 9 , (4.14)

where 08 is the WFE amplitude on segment 8 . We used the same calibration aberration amplitude 02 = 08 =
0 9 that is put on each individual segment in the measurement of the contrast matrix (28 9 ). The calibration
of the M matrix is thus obtained by the measurement of the contrast from pushing a pair of segments
(8 , 9 ). Since the natural testbed contrast is evolving with time, this measurement must be corrected for the
coronagraph �oor persisting at that same time, 20(C), which can be easily remeasured for each 28 9 (C). The
expression for the diagonal matrix elements then becomes:

<88 =
288 (C) − 20(C)

022
. (4.15)

This makes the PASTIS matrix diagonal entirely independent of time and the coronagraph �oor, and it
describes the contrast contribution of each individual segment to the DH. Ideally, 288 (C) and 20(C) are
measured at the same time C ; in reality, they are measured within a short time of each other, which needs
to be faster than the occurring drifts and can thus be assumed to be simultaneous. Since this corrects the
diagonal matrix elements for the coronagraph �oor at the time of their measurement, we now want to
make the o�-diagonal elements depend on the already calibrated diagonal PASTIS matrix elements <88 ,
rather than the uncalibrated diagonal measurements of the contrast 288 . We can easily solve Eq. 4.14 for
the o�-diagonal PASTIS matrix elements:

<8 9 =
28 9 (C) − 20(C)

2022
−
<88 +< 9 9

2
. (4.16)

In this way, each matrix element<8 9 gets calibrated with an appropriate, time-dependent measurement of
20(C), which makes the entire PASTIS matrix time-independent.
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Figure 4.4: Examples of pair-wise aberrated DH images. Top: Simulated WFE maps of aberrated segment pairs
on the IrisAO segmented DM. The LS cuts o� most of the segments in the outer ring of the segmented
pupil. The segment numbering is as indicated in Fig. 4.6, left. Bottom: DH images from the testbed with
resulting fringes from pair-wise aberrated segments during the PASTIS matrix measurement shown
in the top row. The DH extent is from 6-10 _/�!( , indicated with the dashed circles, and the images
are displayed in the same range as the unaberrated DH in Fig. 4.3. The pair (3|4) is made of adjacent
segments, which produces low-spatial-frequency fringes in the DH. This leads to an overall decrease in
the contrast contribution, as is con�rmed by their respective entry in the PASTIS matrix in Fig. 4.6, with
a blue entry right next to the matrix diagonal.

Matrix measurement

We use this to measure an experimental PASTIS matrix on the HiCAT testbed. We constrain ourselves
to a local piston mode with a WFE amplitude of 02 = 40 nm rms for the calibration aberration of the
PASTIS matrix. Other modes are possible, for example tip and tilt or a combination of local segment
aberrations, but they are not considered in this paper. An aberration of 40 nm rms on a single segment
of a 37-segment pupil translates to a global aberration of 6.6 nm rms, while two such aberrated segments
cause a global WFE of 9.3 nm rms. We can see in Fig. 4.7 that this puts 02 signi�cantly o� the knee around
the coronagraph �oor, which was discussed as an optimal regime for 02 in Laginja et al. (2021). This was
done in order to increase the signal-to-noise ratio (SNR) in the fringe images during the matrix calibration,
while simultaneously not increasing 02 too much along the linear aberration regime indicated in Fig. 4.7.

We sequentially aberrate pairs of segments by applying the calibration aberration 02 to each segment
to measure 28 9 (C), and then �atten the IrisAO DM and record the coronagraph �oor 20(C) for the same
iteration. Examples of pair-wise aberrated DHs causing fringe patterns are displayed in Fig. 4.4, and the
evolution of the unaberrated coronagraph �oor during the PASTIS matrix acquisition is shown in Fig. 4.5.

We then use Eqs. 4.15 and 4.16 to calculate the elements <8 9 and construct the experimental PASTIS
matrix "exp shown in Fig. 4.6, middle. The PASTIS matrix is symmetric, with its diagonal describing
the impact on the contrast by the individual segments. There are some negative streaks in the matrix,
colored blue in the �gure. Such negative matrix elements <8 9 < 0 are interference terms that reduce
the contrast loss, meaning that the sum of intensities when pushing segments 8 and 9 individually gives
a worse contrast than pushing them at the same time. This phenomenon is strongly correlated to the
spatial frequency of the fringe pattern created by the segment pair. For a high spatial frequency (distant
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Figure 4.5: Contrast 20 (C) during the PASTIS matrix acquisition. After each pair-wise aberrated DH measurement,
we �atten the IrisAO segmented DM to measure the drift in the coronagraph �oor over the course of
the experiment. We subtract this o� our data in order to perform an analysis on the di�erential contrast
Δ2 . This open-loop contrast degrades gradually over time, note the linear scale. The measured contrast
values range from 2.5× 10−8 to 8× 10−8 during the course of the experiment, but the di�erence between
adjacent measurements is initially on the order of 2× 10−8, rising to 1× 10−7 later on, which is su�cient
for our proposed calibration method. The total duration of the experiment is 45 minutes.

segments), the contrast degradation is averaged over the DH and is therefore minimized. For a low spatial
frequency (close segments), the contrast can be degraded or improved due to the spatial con�guration of
the DH with respect to the fringe pattern. We also show a simulated PASTIS matrix "sim in Fig. 4.6, right,
calculated with the same calibration aberration per segment of 02 = 40 =< WFE rms, but without any WFE
or measurement noise in the optical system. We can see that the general morphology of the simulated and
experimental matrices is the same – in particular, it is the same segment pairs that show the highest and
lowest contrast contribution in the image plane, relatively speaking. The experimental matrix is noisier
though, and it has a slightly higher overall amplitude. Here, we want to show that it is feasible to directly
measure an experimental PASTIS matrix, which will represent the real optical system more accurately, and
compare this to results obtained with the simulated matrix.

Contrast model validation

To validate the instantaneous PASTIS forward model, we compare the contrast for a segmented phase error
calculated with Eq. 4.4, against the contrast measured for the same segmented phase map applied to the
IrisAO on the testbed. For a range of rms WFE values, we generate a random segmented phase map a, and
we scale it to a given global rms WFE. Then we evaluate Eq. 4.4 both with the simulated matrix "sim and
with the experimental matrix "exp, and measure the resulting average DH contrast on the testbed. The
results are plotted in Fig. 4.7. We observe that the results from the PASTIS equation using the experimental
matrix (solid blue) show very good accordance with the testbed measurements (dashed orange), the curves
overlap at a global rms WFE beyond 2 nm. The contrast calculated with the simulated matrix (solid green)
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Figure 4.6: Left: Geometry of the IrisAO segmented DM on HiCAT and the segment numbering used in this paper,
in the entrance pupil. The 37 segments are numbered, from 0 for the center segment to 36 in the outer
ring. In the exit pupil, most of the outer ring segments are obscured by the LS (see Fig. 4.4). Middle: Ex-
perimental PASTIS matrix for HiCAT as measured on the testbed. Each entry represents the di�erential
contrast contribution of each aberrated segment pair. The matrix is symmetric, and its diagonal shows
the impact on the contrast by the individual segments. Right: Simulated PASTIS matrix for HiCAT, with-
out any WFE or noise in the optical system. This matrix shows the idealized contrast contributions from
each segment pair in a perfect system.

yields an equally accurate result compared to the hardware measurements. We can clearly see all curves
�atten out toward the left, where they are limited by the coronagraph �oor, producing a hockey stick-like
shape.

4.4.2 Validation of mode contrast allocation

We proceed with an eigendecomposition of the experimental PASTIS matrix (Laginja et al. 2021, Sec. 3)
and calculate its eigenmodes, shown as the optical PASTIS modes in Fig. 4.8. The modes are ordered
from highest to lowest eigenvalue, indicating their comparative impact on the DH average contrast in
their natural normalization. These segmented PASTIS optical modes for the HiCAT testbed with a CLC
represent the modal contrast sensitivity of the instrument with respect to segment misalignments, with
the sensitivity quanti�ed by their respective eigenvalues. As shown previously, the lowest-impact modes
(bottom of Fig. 4.8) are dominated by low-spatial-frequency components that are similar to discretized
Zernike modes. The two modes with indices 35 and 36 in particular, the lowest-sensitivity modes, represent
orthogonal tip and tilt modes over the entire pupil. High-impact modes (top of Fig. 4.8) display high-spatial-
frequency content, mostly in the central area of the pupil which is unconcealed by the LS.

The PASTIS modes in Fig. 4.8 form an orthonormal mode basis, making them independent from each
other - each of them contributes to the overall contrast without in�uence from the other modes, see Eq. 4.10.
This can be used to de�ne deterministic contrast allocations based purely on these optical modes (Laginja
et al. 2021, Sec. 3.2). In the present example, we chose that each PASTIS mode should contribute uniformly
to the total contrast, in which case we can calculate the exact mode weights for a particular target contrast:

f1? =

√
〈Δ2C 〉

=<>34B · _?
. (4.17)

In accordance to the formalism laid out in Sec. 4.2, we make the mode tolerances independent of any given
coronagraph �oor by relating them to the di�erential target contrast Δ2C , displayed for a target contrast
of Δ2C = 10−6 in Fig. 4.9. To validate the assumption of a contrast that is a simple sum of separate mode
contributions, we run an experiment to measure the cumulative contrast of the deterministically scaled
PASTIS modes. For this, we multiply the modes by their respective uniform requirement, f1? , apply them
cumulatively to the IrisAO, measure the resulting DH average contrast at each step and subtract the simul-
taneously measured coronagraph �oor 20(C) from the results (Fig. 4.10). We perform these propagations
of the experimental eigenmodes both with the analytical PASTIS model in Eq. 4.4, using the experimen-
tally measured matrix (solid blue), as well as with the HiCAT testbed (dashed orange). In Fig. 4.10, the
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Figure 4.7: Validation of the deterministic forward model in Eq. (4.4) made by computing the contrast from the
same segmented WFE maps with the experimental PASTIS matrix as in the middle panel of Fig. 4.6 (solid
blue), with the simulated PASTIS matrix from the right panel of Fig. 4.6 (solid green), and with the HiCAT
testbed (dashed orange). The curves �atten out to the left at the coronagraph �oor, 20, and show linear
behavior at increasing WFE, giving them their hockey-stick-like shape. The contrast calculation from
the PASTIS equation with both matrices shows very good accordance with the testbed measurements;
all three lines overlap at WFEs larger than 1 nm rms.
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Figure 4.8: All experimental PASTIS modes for HiCAT with a CLC, for local piston aberrations, sorted from highest
to lowest eigenvalue. The modes are unitless, showcasing the relative scaling of the segments to one
another, and between all modes. They gain physical meaning when multiplied by a mode aberration
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Figure 4.9: Mode requirements as calculated with Eq. 4.17 for a uniform contrast contribution per mode to a di�er-
ential target contrast of 10−6. These are used as modal weights in the cumulative contrast measurement
shown in Fig. 4.10.
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Figure 4.10: Cumulative contrast plot for the uniform mode requirements shown in Fig. 4.9, calculated both with the
PASTIS forward model in Eq. 4.4, with the experimental PASTIS matrix (solid blue), and measured on
the HiCAT testbed (dashed orange). The analytical PASTIS calculation shows the perfect linear curve
that the uniformly scaled modes would cause on an ideal testbed without noise or drifts. The testbed
measurements show noisy behavior around the ideal curve, which is likely caused by segmented DM
command uncertainties for small actuations and an insu�ciently well-calibrated coronagraph �oor.
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Figure 4.11: Left: Independent segment requirements as calculated with Eq. 4.12 for target contrasts ofΔ2C = 5×10−7
(top blue) and Δ2C = 3×10−7 (bottom orange). These numbers are the standard deviation of the tolerable
WFE rms on each segment, if the target contrast is to be met as a statistical mean over many realizations
of the segmented mirror. The range for the 5× 10−7 target spans from 2.5 to 6 nm. Both curves show a
clear jump in the outermost ring (starting with segment number 19), which is highly concealed by the
LS (see Fig. 4.2). Right: Tolerance map for a target contrast of Δ2C = 5× 10−7, shown in blue on the left.
The global left-right asymmetries are due to a slightly o�set LS, which does not impact the contrast
performance at this level, but is visible in the segment sensitivities. The map for Δ2 = 3 × 10−7 is a
scaled version of the one shown here.

cumulative measurements with HiCAT follow the general expected linear shape as displayed with the
analytical PASTIS forward propagation using the experimental PASTIS matrix, but with some variations.
These likely come from calibration errors in the segmented DM actuator in�uences for small displace-
ments and contrast �oor subtraction that is not accurate enough considering there will be no averaging
e�ect during the comparatively short duration of this experiment (∼5 min).

4.4.3 Statistical validation of independent segment tolerances

Experimentally calibrated segment tolerances

To fully validate the PASTIS tolerancing model for contrast stability, we calculate statistical segment-
level requirements, from the experimental PASTIS matrix, for two target contrast values and measure
their statistical contrast response with HiCAT. In this context, we use “tolerances” and “requirements”
synonymously. In cases where the segments can be assumed to be independent from each other, as is
the case for an IrisAO, we can calculate individual segment requirements (Laginja et al. 2021, Sec. 4.2)
with Eq. 4.12 as a function of the di�erential target contrast. While the overall level of WFE requirements
will be highly in�uenced by the Fourier �ltering of the FPM, the di�erent segments do not show uniform
tolerance levels, as shown in Fig. 4.11, left. These individual segment requirements are highly in�uenced
by pupil features of the optical system. Looking at their spatial distribution in the HiCAT pupil, we can see
in Fig. 4.11 (right) that the segments of the outer ring have more relaxed requirements than the two inner
rings and the center segment. This is caused, in large part, by the LS, which is covering a large fraction of
the segments in the outer ring because it is undersizing the pupil, which can be seen in Fig. 4.2, left. The
two sets of segment-level WFE requirements displayed in Fig. 4.11, left, represent a statistical description
of the allowable WFE per segment if a delta target contrast of 5 × 10−7 or 3 × 10−7 is to be maintained as
a statistical mean over many states of the segmented DM. We can observe how these two target contrast
values yield segment requirements between 2.5 and 6 nm of WFE, which we know the IrisAO can reliably
do; anything lower might lead to issues with the minimal stroke of the segmented DM and needs to be
characterized in the future. Further, these particular delta contrast values are commensurable with the
current testbed performance of HiCAT, staying just above the largest contrast �uctuations observed in
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Figure 4.12: Left: Individual segment requirements for a target contrast of Δ2C = 5 × 10−7, measured for a range of
x-axis misalignments of the LS. The legend is sorted in the same order as the lines for segment 25. The
translation values are quoted in relation to the circumscribed segment diameter �B46 = 1.4 mm, pro-
jected into the Lyot plane. The labels indicate select segments in the outer ring. Right: Numbered seg-
mented DM with overlaid LS positions. The nominal alignment is centered on the pupil (dashed-dotted
red ellipse), with the dark and bright solid ellipses showing the maximum misalignments measured to
either side. For details, see main text.

Fig. 4.5 (∼ 1 × 10−7), which are fast �uctuations that our model does not take into account.
As long as the components of the segment-level WFE on the DM follow independent zero-mean normal

distributions whose standard deviations are given by the numbers in Fig. 4.11, the target contrast will be
recovered as the statistical mean over many such realizations. The tolerance map in Fig. 4.11, right, shows a
spatial representation of the segment-level standard deviations forΔ2 = 5×10−7; the map forΔ2 = 3×10−7 is
a scaled version of the one plotted here and is not shown in this paper. The geometrical setup of the HiCAT
pupil suggests a symmetry in the segment sensitivities along two axes, meaning for example that all four
“corner” segments should display the same tolerance level. The data in Fig. 4.11 underline this principal
symmetry, but we do see a slight discrepancy between the corner segments on the left and right side. We
attribute this to a slight left-right misalignment of the LS with respect to the IrisAO. To demonstrate this,
we proceed by measuring the individual contrast sensitivities of all segments (only the PASTIS matrix
diagonal, with Eq. 4.15) for varying lateral misalignments of the LS. Starting from the nominal centered
alignment, we move the LS by a fraction of the segment size, characterized by its circumscribed diameter
of �B46 = 1.4 mm, as measured in the plane of the IrisAO. Then we run a couple of iterations of the
WFS&C algorithm in order to optimize the DH solution and recover the nominal contrast level, measure
the average contrast response in the DH to imposed (individual) segment pokes of 40 nm of WFE, and use
Eq. 4.12 to calculate the WFE requirements per segment, for a target contrast of Δ2C = 5× 10−7. Repeating
this for �ve di�erent misalignments along the x axis yields the data shown in Fig. 4.12, left. The nominal
alignment case (dashed red) has been measured on a new DM solution for a DH contrast of 20 = 3.8× 10−8
(as opposed to the previous 20 = 2.5×10−8), which is why the segment tolerances deviate slightly from the
numbers indicated by the blue line in Fig. 4.11. While the tolerances for segments on top and bottom of the
pupil (19 and 28) show no changes across the di�erent misalignments, all other segments of the outer ring
do. These results are directly connected to the exposed area of a segment in each alignment state of the
LS: the more area is exposed the more stringent is its requirement. This is most visible for the four corner
segments (22, 25, 31 and 34), as their area doubles between the farthest alignment states. The values for
the side segments (23, 24 on the right and 32, 33 on the left) change as a function of misalignment too, but
less so as their exposed area changes much less. The sensitivity analysis of single segments with respect
to the position of the LS demonstrates the interest of the PASTIS tolerancing model: while the total WFE
requirement, over the full pupil, is the same for all six LS states shown in Fig. 4.12, the segments display
di�erent individual tolerancing levels depending on where in the pupil they are located.
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In order to validate the computed per-segment tolerances, we proceed by running a Monte Carlo exper-
iment for both target cases shown in Fig. 4.11. For each experiment, we sequentially apply 1000 di�erent
WFE aberration patterns on the segmented DM and record the resulting average DH contrast values. The
tolerances in Fig. 4.11 are the prescription determining how to draw these random WFE realizations: each
segment-level WFE on segment : , in a single random WFE map a, is drawn from its own zero-mean nor-
mal distribution with a standard deviation of `: , given by Eq. 4.12. This means that one random HiCAT
WFE map is composed of 37 independent normal distributions with each a mean of zero, and a standard
deviation of `: , which then gets applied to the IrisAO on HiCAT, and a DH contrast measurement is made.
Since the tolerancing target is Δ2C , which is independent of the coronagraph �oor 20, we intersperse mea-
surements with a �at IrisAO in each iteration to capture the evolution of the contrast �oor on the testbed.
We subtract these 20(C) values from the DH measurements in the respective iteration in order to receive
our �nal results in Fig. 4.13. We plot the time series of the experimentally measured contrast responses
from the segmented WFE maps in the two left panels in Fig. 4.13. The green bottom curves depict the
evolution of the contrast �oor over time, with the IrisAO DM repeatedly being reset to its best �at. The
top blue curves show the contrast measurements with random WFE map realizations applied to the seg-
mented DM, as prescribed with the tolerances in Fig. 4.11, from which the green contrast �oor has been
subtracted. The histograms of the blue contrast curves are plotted in the two right panels in Fig. 4.13.

The resulting histograms have experimentally measured mean values of 5.12 × 10−7 and 3.04 × 10−7
(red dashed-dotted lines). These are very close to the target contrasts of 5 × 10−7 and 3 × 10−7 (orange
dashed-dotted lines). This excellent �t between the target and experimental values (∼1–3%) is clearly
su�cient to prove our concept at the required level. The di�erence is larger for the standard deviations: the
experimentally measured values of 1.3×10−7 and 7.9×10−8 (red dotted lines) are o� from their analytically
calculated values with Eq. 4.9 of 1.2 × 10−7 and 6.7 × 10−7 (orange dotted lines), by 5–7%. This is expected
because of a slower convergence of variance estimators with respect to mean estimators. We note a slight
asymmetry in the histograms, biased toward higher contrast. While the underlying assumption for the
tolerancing method used in this paper is that the segment aberrations follow Gaussian statistics (Laginja
et al. 2021, Sec. 4.1), which is reasonable for the aberrations on a segmented mirror telescope, the contrast
itself does not follow a Gaussian statistic; it is the sum of squared Gaussian variables which is also known
as a generalized j2 statistic, causing the asymmetry.

Simulated segment tolerances

Ideally, we could use a simulated model directly to be able to assess the segmented tolerancing levels for
a particular contrast level. To this end, we use "sim to calculate a set of segment tolerances for a target
contrast of 10−6 and repeat the experiment described above, with 1000 iterations. Most e�orts put into
the simulator to date were intentionally invested in matching the operational interface, and the optical
scales and morphology (e.g., orientations, sampling and location of di�raction features, photometry). The
optical model currently matches its contrast predictions to results on the hardware to within a factor
of a few, which is why in this experiment, we chose a less demanding target contrast compared to the
experiments shown in Fig. 4.13. In this way, we retain an error margin for the resulting hardware contrast
values that takes this into account. The results of this experiment are plotted in Fig. 4.14. We can see
how the experimentally measured mean contrast (red dashed-dotted line) fails to meet the target contrast
marked by the black dashed line with an error of 10%. This indicates that the tolerances derived from the
simulated PASTIS matrix are less accurate than the experimentally measured ones.

Since the independent segment requirements in Eq. 4.12 (case of diagonal covariance matrix �0) only
depend on the PASTIS matrix diagonal, we compare the diagonals of the experimentally measured and
simulated PASTIS matrix in Fig. 4.15. While the experimental matrix displays the higher absolute peak
diagonal element (for the center segment), on average it contains lower contrast contributions per segment
than the simulated matrix. In particular, the outer segments in the pupil are consistently over-estimated in
terms of contrast contribution by the simulated matrix. A closer inspection of the pupil image shows that
the segmented mirror model in the HiCAT simulator is in fact over-stretched along the x axis compared to
the real IrisAO on the testbed, by 1.4%. As a consequence, the segments of the outer ring expose ∼ 5% more
total area compared to their visible area on the hardware, which in turn increases their in�uence on overall
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Figure 4.13: Monte Carlo experiments on HiCAT to validate the independent segment error budget shown in
Fig. 4.11, calculated from the experimental PASTIS matrix with Eq. 4.12, for target contrasts of
Δ2C = 5 × 10−7 (top) and Δ2C = 3 × 10−7 (bottom). Left: Time series of the measured random contrasts
(blue), from which the intermittently measured unaberrated contrast drift (green) has been subtracted.
The total duration of each experiment is 65 min and captures 1000 randomly generated WFE maps. The
target contrast of both experiments is indicated by the dashed orange lines. Right: Contrast measure-
ment from the random WFEs to the left, plotted as histograms. The experimental distributions have a
mean (dashed-dotted red lines) of 5.12 × 10−7 (top) and 3.04 × 10−7 (bottom). The expected standard
deviations (dotted orange lines) as calculated by Eq. 4.9 are 1.2 × 10−7 (top) and 6.7 × 10−8 (bottom),
versus the experimentally measured standard deviations (dotted red lines) of 1.3× 10−7 and 7.7× 10−8.
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Figure 4.14: Monte Carlo experiment on HiCAT for segment tolerances obtained from the simulated PASTIS matrix
diagonal using Eq. 4.12. The target contrast Δ2C = 10−6 as determined by the simulated tolerances is
indicated with the dashed black line. The experimental mean over 1000 segmented WFE maps (dashed-
dotted red line) does not recover the target contrast. However, we are able to predict this discrepancy
analytically: using Eqs. 4.8 and 4.9, we can calculate the resulting contrast mean (dashed-dotted orange
line) and variance (orange dotted lines) from the experimental PASTIS matrix and simulated segment
tolerances directly. For details, see the main text.

contrast in the simulator. With an increased contrast sensitivity to these segments in simulation, it explains
why the Monte Carlo experiment in Fig. 4.14 misses the targeted mean contrast: since the simulated matrix
assumes a larger contrast in�uence by each individual (outer ring) segment, and the segment tolerances `:
are inversely proportional to the matrix, the resulting per-segment requirements turn out more restrictive
than they need to be in reality. This result shows that the simulated and experimentally measured PASTIS
matrices have signi�cant di�erences on their respective diagonals, which is not captured in Fig. 4.7. This
is because the statistical analysis in Fig. 4.14 uses only the matrix diagonal, while the deterministic model
in Fig. 4.7 (Eq. 4.4) uses the full PASTIS matrix. In the latter case, it turns out that the di�erences between
"exp and "sim average out.

While the discrepancies between the experimental and simulated matrix lead to an o�set in the tol-
erancing results that can be improved upon with a more accurate model, we can show that this o�set is
directly predictable by using the experimentally measured matrix "exp with Eqs. 4.8 and 4.9. We consider
the segment tolerances obtained with "sim to be a covariance matrix �B8<0 , with the segment variances
�lling the covariance matrix diagonal. This allows us to calculate the analytically predicted mean with
tr("exp�B8<0 ) = 8.75 × 10−7 (dashed-dotted orange line), and the variance with 2 tr[("exp�B8<0 )2], with its
square root yielding a standard deviation on the contrast of 2.2 × 10−7 (dotted orange lines). These values
accord with the experimentally measured mean of 9.07 × 10−7 (dashed-dotted red line) and standard de-
viation of 2.3 × 10−7 (dotted red lines) to within a statistical error. Usage of these formulae circumvents
the need to reevaluate the contrast response of a large number of segmented aberration maps when a new
segment covariance matrix�0 is obtained from modeling, and can be used for the direct assessment of the
contrast performance for by-design instruments.

Overall, our experiments on HiCAT present successful experimental validations of the PASTIS model
for a speci�c high-contrast instrument. We measured an experimental PASTIS matrix and validated it by
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Figure 4.15: Comparing the PASTIS matrix diagonals from the hardware matrix "exp (dashed orange line) and
simulated matrix"sim (solid blue line). Segment number 0 (center segment) in the experimental matrix
has the largest absolute contrast in�uence, but the simulated matrix assumes on average the larger
in�uence of the individual segments on the average DH contrast. This translates directly into more
stringent segment tolerances, `: , than necessary for the given hardware setup.

comparing its modeled contrast results to testbed measurements. We decomposed the matrix into inde-
pendent optical modes that we scaled uniformly and cumulatively to a di�erential target contrast of 10−6.
We calculated statistical segment-level WFE tolerances under the assumption of independent segments
and validated them with Monte Carlo experiments at target contrasts of 5 × 10−7 and 3 × 10−7, measur-
ing the contrast from randomly drawn segmented WFE maps as prescribed by the derived requirements.
While using tolerances derived from a simulated PASTIS matrix was not enough to reach a particular con-
trast goal, the experimentally measured matrix allowed us to validate the analytical contrast predictions
in terms of a contrast mean and variance for an arbitrary segment covariance matrix. Future work will
aim to optimize the di�ering segment sizes in the segmented DM model; however, matching the contrast
prediction of the HiCAT simulator to the hardware is out of the scope of this study.

4.5 Discussion

The astronomical community’s experience with space-based segmented observatories is currently limited
to JWST, which will be launched very soon. Because of gravity and thermal constraints, the telescope
was not aligned entirely on the ground to test its optical performance. Instead, a large number of ground
optical tests including interferometry and other metrology techniques were performed to validate the
observatory-level optical model, including for example radius of curvature, or interferometric alignment
of adjacent segments (Perrin et al. 2018; Knight et al. 2012b). Something like LUVOIR would be two to three
times larger than JWST and therefore it is anticipated that performance validations of the observatory will
rely heavily on model-based assessments due to the sheer size and complexity of the telescope.

This raises the necessity for modeling, performance prediction and tolerancing tools that are not de-
pendent on testing of the fully integrated observatory system. The PASTIS tolerancing tool, presented in
theory so far (Laginja et al. 2021; Leboulleux et al. 2018b), provides us with methods to derive segment sta-
bility tolerances that in turn will determine the coronagraphic performance of an imaging instrument like
those on LUVOIR. In this paper, we perform the �rst hardware validation of an experimentally calibrated
tolerancing model. We use this to determine the constraints on segmented mirror stability for various
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Figure 4.16: Comparing independent segment WFE tolerances for di�erent levels of di�erential target contrasts,
calculated from the experimental PASTIS matrix "exp. The tolerances for Δ2C = 5 × 10−7 and Δ2C =

3 × 10−7 have been validated experimentally in the current performance regime on HiCAT. The other
lines describe predicted requirement limits on the segmented mirror for deeper contrast levels. These
curves isolate the in�uence of segmented mirror drifts from other system components that in�uence
the contrast. The curves appear top to bottom in the same sequence as in the �gure legend.

levels of contrast on the HiCAT testbed, which can be used to derive requirements of future testbeds that
will perform system analyses for the LUVOIR mission. This paper validates the statistics of phasing errors
without making any timescale assumptions for the WFE. Therefore, this applies not only to static phasing
residuals (which can inform the design of a sensing and control strategy), but also to dynamic tolerances
in the context of adaptive optics (AO) loops.

During the experiments, we observed that the variability in the static contrast poses a problem to the
accurate measurement of the experimental PASTIS matrix for the mirror segments, and the tolerancing
validations. We solved this issue in good part by adopting the di�erential contrast Δ2 as the metric of
interest: We have introduced a reformulation of the PASTIS tolerancing formalism in order to separate the
contrast in�uence of segmented mirror misalignments from all other aberration sources in the instrument
(see Sec. 4.2). This is particularly useful when we assume a time-dependent phase aberration term q01 (r, C)
which will in�uence the absolute raw contrast.

We successfully validated the PASTIS model on a real high-contrast instrument by measuring an ex-
perimental PASTIS matrix "exp. We performed the individual segment tolerancing with this matrix and
have shown that the derived segment requirements are indeed the correct standard deviations for a tar-
geted mean contrast. The experimental results in Fig. 4.13 coincide very well with the analytical formulas
for contrast mean and variance in Eqs. 4.8 and 4.9, down to a statistical error.

We can use this method to extrapolate the stability requirement of the segmented mirror to contrast
levels that lie beyond the current performance capability of the testbed. In the case of HiCAT, we are
currently limited to a static contrast of 2 × 10−8, and contrast variations up to the order of 1 × 10−7 due
to in�uences from the testbed environment and an incoherent background attributed to the light source.
After validating the individual segment requirements in a contrast regime in which the contrast �oor and
drift do not pose any problems, we compare the individual segment tolerances as calculated with "exp

in Eq. 4.12 for various target contrasts down to the 10−8 regime in Fig. 4.16. This result informs us about
the level of the segmented mirror contrast stability for future demonstrations that intend to get closer to
the envisioned LUVOIR performance. For example, the segmented mirror needs to be able to keep a sub-
nanometer stability if we want to achieve a contrast of 10−8. The numbers in Fig. 4.16 exclusively show
the requirements on the WFE component caused by the segmented mirror, which builds a fundamental
piece in the total error budget of a segmented high-contrast instrument.
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The mean di�erential contrast 〈Δ2〉 can be written as a sum of unrelated contributions from the seg-
ments only if the segment pistons are statistically independent (see Eq. 4.11), that is, if the matrix �0
is diagonal. But even if the segment pistons are correlated and even if these correlations are unknown,
the mean di�erential contrast can be written as a sum of independent contributions, namely those of the
optical modes of the system (see Eq. 4.10).

We showed that it is possible to use Eq. 4.17 in order to scale the individual optical modes to yield a
particular target contrast (Fig. 4.10). While there remain deviations from the exact equal contrast contribu-
tion of each mode to the overall contrast, this result clearly demonstrates that we can impose a weighted
scaling on these modes in order to in�uence the contrast. The remaining errors we see in the uniform mode
tolerancing are likely coming from calibration errors in the segmented DM actuator in�uences, unidenti-
�ed aberrations in the system, and an insu�ciently calibrated contrast �oor for the short duration of this
experiment (∼5 min).

Fundamentally, these optical PASTIS modes represent the natural instrument modes with respect to
contrast, which can be exploited for closed-loop adaptive optics (AO control during the operation of the
instrument). The LUVOIR mission aims to deploy a full AO system in space, which requires control on
all spatial frequencies. While fast, low-spatial-frequency control can be done with a low-order wavefront
sensor (LOWFS), a high-order wavefront sensor (HOWFS), which is not subjected to spatial �ltering, will
be sensing aberrations on the segmented pupil (Pueyo et al. 2021; Pogorelyuk et al. 2021).

Optimal wavefront control strategies will need to optimize the DH contrast, which is the main science
metric for these future instruments. The PASTIS modes therefore o�er a natural application to this problem
since their contrast in�uence is directly quanti�ed by their respective eigenvalues. PASTIS modes should
therefore be investigated further as part of the design of the high-order modal control scheme of a multiple-
layer space AO system for high-contrast applications.

There are existing methods (Chambouleyron et al. 2021) that allow a Fourier-�ltering WFS to be de-
signed with given sensitivity to speci�c modes. Exploiting this, one could design a WFS FPM, and thus a
transmissive mask, giving an enhanced sensitivity to the modes degrading the contrast (whose in�uence
mainly falls inside the DH area), accepting to have a reduced sensitivity outside. With such a WFS, the
control loop could be optimized to maximize the contrast performance of the instrument directly.

4.6 Conclusions

Accurate tolerancing of di�erent WFE contributions on future large observatories is crucial in order to be
able to design systems capable of su�ciently stable contrast levels for exoEarth detection, to predict their
contrast stability, and to assess their performance. In particular, the WFE contributions from cophasing
errors on segmented telescopes will have a direct impact on the performance of the high-contrast instru-
ment. In this paper, we used the PASTIS tolerancing model to perform a segmented WFE tolerancing
analysis on the HiCAT testbed, and presented experimental validations to demonstrate its utility.

We successfully measured an experimental PASTIS matrix on a 37-segment IrisAO mirror after iso-
lating the in�uence of the segments in the overall contribution to contrast drift. The individual segment
tolerances calculated from this matrix yield an accurate mean contrast and variance in Monte Carlo exper-
iments when compared to analytical predictions, up to a minimal statistical error. We also compared these
experimentally obtained segment tolerances to equivalent results obtained from a simulated PASTIS ma-
trix. The experimental measurements were more accurate for performance predictions, but the errors from
the simulated segment tolerances can likely be minimized with a more accurate model of the segmented
mirror.

Combining the experimental PASTIS matrix, which represents the realistic contrast in�uence of the
testbed, with a covariance matrix that describes segment piston variations allowed us to correctly predict
the resulting contrast mean and variance. This allows for a simple evaluation of the expected contrast
stability of a per-design instrument. Such a covariance matrix can be a diagonal one to describe the inde-
pendent segments from a simple segmented mirror design, as in the HiCAT case, or a non-diagonal one
that incorporates knowledge from opto-mechanical correlations between segments coming from realistic
�nite-element modeling.
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We uses the experimentally measured matrix to predict the required wavefront stability of the seg-
mented DM on HiCAT for contrast levels that are currently out of reach due to environmental in�uences
on the testbed. We �rst validated the segment tolerances for a di�erential contrast of 5×10−7 and 3×10−7,
for which the segment requirement standard deviations range from 2.5 to 6 nm. We then proceeded by
establishing a set of requirements for the segmented mirror for a contrast contribution in the 10−8 regime,
and conclude that the wavefront stability from the segmented DM will have to be better than 1 nm for
each individual segment.

Our future work aims to measure a simulated PASTIS matrix with a more accurate model and use
it to derive WFE tolerances that correctly de�ne the stability requirements for a target mean contrast
measured on the hardware. Further, we aim to demonstrate how to measure a PASTIS matrix on one
contrast level, and use the derived tolerance limits on a better performing contrast level. Finally, we intend
to explore closed-loop modal control with a HOWFS by using the optical modes from a measured PASTIS
matrix, since these modes represent the direct sensitivity of the instrument contrast to segmented mirror
misalignments.
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5
Applications of analytical tolerancing in
studies for ultra-stable telescopes

My work on segmented coronagraph sensitivity analyses started as part of the ULTRA study contract
between Ball Aerospace and our group at STScI. Lucie Leboulleux had developed the PASTIS forward
modeling approach during her PhD to serve as an alternative for numerical end-to-end simulations in
tolerancing studies for large, segmented telescopes. It is only after a closer look was put on the new
statistical interpretation and inversion of the model that we realized how useful it would be in these
studies. The work I presented in Chap. 2 lays out a very fundamental framework for the statistical
tolerancing of aberrations through a coronagraph, and it enabled a wide range of applications. It has
been used by other researchers, both internal and external to our team, during my PhD already to
continue the e�orts of learning how to de�ne allowable WFE limits on future HCI missions.

In a wider context, I broadened the code and method I developed during my initial work to enable a full
sensitivity analysis on an extended range of aberration modes beyond localized WFE on segments. This
allows us to treat the full spatial frequency range of expected aberrations on a large, segmented
telescope. Already discussed in the paper of Chap. 2, I mention that the PASTIS tolerancing framework
can be used for thermo-mechanical constraints on telescope structures. Indeed, I continued my work on
analytical tolerancing by using models of thermal and mechanical responses of individual segments,
provided by L3 Harris Technologies, to perform a quantitative analysis of the physical requirements for
such modes. I present this joint study with Laurent Pueyo and Ananya Sahoo, and its results, which are
currently a journal paper in preparation that I am a co-author on, in this chapter.

A central point of concern for the de�nition of WFE requirements is the amplitude of allowable WFE
drifts. There is a range of typical timescales associated with the various spatial frequency components of
WFEs, which need to be considered when creating error budgets. While the static control approach
traditionally deployed on space telescopes could in theory be extrapolated to the anticipated large
structures of an exoplanet-hunting space observatory, this results in dauntingly tight WFE requirements.
Especially segmented primary mirrors exhibit very stringent requirements of only a couple of picometers
across the entire multi-meter structure in this case, maintained over the course of several hours. I have
already shown in Chap. 2 that this is too conservative, as not all segments in the pupil need to be held
equally stable. Moreover, it is here where space-based telescopes bene�t tremendously from the
knowledge developed by the ground-based community, which o�ers enormous expertise in adaptive
optics and associated WFS&C methods for closed-loop wavefront control. In the very early stages of my
PhD, I spent many hours on a white board to understand the analytical connections between
coronagraphic sensitivities, wavefront sensing e�ciency and WFE drift rates that Laurent Pueyo had
devised, which was substantial to formulate a justi�cation for the PASTIS tolerancing model I published
as my �rst PhD result. I use this chapter to introduce the analytical framework that allows us to put my
results for segment tolerancing onto appropriate timescales for dynamical analyses. The major result is:
Folding the segment-by-segment tolerancing maps we obtain through the PASTIS analysis method into a
paradigm that allows for continuous correction of the drifting aberrations signi�cantly relaxes the
imposed WFE requirements.
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Figure 5.1: Exploring the relationship between telescope, WFS&C strategy and coronagraph is the main goal of
WFE sensitivity analyses. Forward modeling is the more traditional approach in which we numeri-
cally propagate di�erent states of the instrument to predict the HCI performance. Inverse modeling,
the approach followed in this thesis, starts from the required imaging performance and derives WFE
requirements from that. This method necessitates proper analytical models of the optical system and its
control architecture.

5.1 Tolerancing approaches for segmented telescopes

In the big picture, what we are exploring is the relationship between the telescope and all its subsystems,
the WFS&C strategy and the coronagraph, as illustrated in Fig. 5.1. It is crucial in this context to design,
construct and control the telescope and coronagraph as an integrated system and across a range of spatial
and temporal scales, which makes the de�nition of detailed subsystem WFE requirements no trivial task.
The traditional way to approach this issue is forward modeling. In this case, some assumptions about
the telescope are being made, aberrations with a certain WFE are added to the optics, and end-to-end
simulations then predict the performance with a given WFS&C strategy and coronagraph architecture
(Potier et al. 2021; Juanola-Parramon et al. 2019a,b). This process is repeated a large number of times,
usually in the form of Monte Carlo simulations, in order to converge to appropriate WFE speci�cations
for the targeted contrast by a trial-and-error approach. While this allows us to constrain the tolerances
to a certain degree, there is no clear procedure in which the contrast level is the input and the aberration
limits are the output. Moreover, this does not permit any conclusion about individual segment tolerances,
as this would increase the dimension of the parameter search to an untractable level.

The alternative approach is to set science requirements, for example motivated by exoplanet yield,
and then invert the aberrations-to-contrast relationship, at the heart of which lies the system consisting
of the telescope, WFS&C system, and coronagraph, and compute the WFE limitations from that. Optical
simulations can be used to convert contrast to wavefront stability, taking the various spatial and temporal
scales into account, and there has been work that uses such analytical approaches to quantify stability
requirements this way (Nemati et al. 2020; Stahl et al. 2020; Nemati et al. 2017a).

While the forward modeling approach predicts the imaging performance, the inverse approach allows
us to �rst de�ne top-level contrast stability constraints, which are �xed by the coronagraph performance
and expected science yield, and then compute WFE requirements as a direct result. While they gives us
an answer for the entire system as a whole, the next point to be addressed is how to �ow these top-
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level requirements down into all the sub-systems of the observatory - where do we allocate how much
of the total error budget? The recent program for Ultra-stable Large Telescope Research and Analysis
(ULTRA; Coyle et al. 2019b) led by Ball Aerospace performed a system study to address technologies that
are needed for picometer-level optical stability on large telescope structures, and addressed in particular
stability budgets. The classical error allocation used in these cases is a straightforward root-sum-squared
(RSS) (Lightsey et al. 2014), in which the overall WFE requirements get distributed to relevant subsystems.
Within the scope of studies like ULTRA however, it was found that this might be overly constraining in
some components of the system, and a approach based on power spectral densities (PSDs) to rebalance
the allocations in order to avoid an excessive strain on any one element or technology would be more
appropriate.

The tolerancing approach with the PASTIS model �nds its place at the very basis of these relations.
Its method of deriving WFE requirements o�ers itself exemplarily for the treatment of the mid-spatial-
frequency regime consisting of segment-to-segment aberrations, but the analytical nature of the work is
readily applicable to the treatment of any arbitrary aberration basis, which is what I dedicate the �rst part
of this chapter to. This provides us with a uni�ed way of treating coronagraphic sensitivities with respect
to the full range of spatial scales on which WFEs are to be expected, and leads to some very useful results
in the physical tolerancing of thermal gradients across segments.

One of the major results emerging from the work in Chap. 2 is the fact that the segments of a large
telescope do not exhibit the same sensitivity to contrast across the aperture. Instead, there is a spatial
structure in their allowable WFEs, which supports the idea that the tolerancing allocation in separate
subsystems of the HCI instrument need to be done very carefully. Mostly so, because it illustrates that the
often-quoted picometer-level WFE stability only concerns a small subset of possible misalignment modes,
in certain parts of the pupil. In turn, the segments and aberration modes that are not touched by this
worst-case-scenario require stability levels much closer to what we have already been able to achieve with
the nanometer-level requirements on for example JWST.

Considering the statistical approach to tolerancing that the PASTIS method brings with it, as we de-
scribed at length in Chap. 2, it is important to point out that PASTIS itself makes no assumptions about the
timescales involved in the tolerancing problem, as it does not assume any temporal evolution. The frame-
work itself can thus be used directly for the de�nition of static WFE limitations for a requested contrast
level, which is a crucial aspect in the design of passive telescope stability and control strategy. Equally, it
can be used as an input to dynamic studies, pairing it with the appropriate aberration timescales of concern
in a large telescope structure. The second part of this chapter dives into this dynamic WFE tolerancing,
and treats the bigger picture of de�ning dynamic WFE on a large, segmented telescope.

The idea is to have a proper analytical model for the propagation of aberrations, given by PASTIS,
which can be folded into the paradigm of operating a full AO system in space, as mentioned in Chap. 1.4.2.
PASTIS establishes an analytical relationship between the change of contrast, the linear coronagraph model
and the wavefront covariance, whether static and open-loop or dynamic and closed-loop, as its conclusions
are purely statistical. Therefore, it provides the ideal basis for the de�nition of WFE drift requirements,
when paired with the pertinent timescales of a WFS&C architecture.

In Sec. 5.2, I present the extension to modal bases of all spatial frequencies. In Sec. 5.3, I �rst detail
the global ideas behind dynamic WFE tolerancing, and the analytical equations used for it. I proceed by
showing how to apply this to dynamic segment-level tolerancing under the inclusion of an ideal wavefront
sensor, and show the dynamical tolerancing maps for LUVOIR A that are a direct result of my work with
PASTIS.

5.2 Extended spatial tolerancing bases

Since large space telescopes typically have various options for wavefront control (WFC), addressing di�er-
ent sources and spatial frequencies of the aberrations, it helps to categorize aberrations into three spatial
frequency domains: low, mid and high spatial frequencies. Such a separation between three spatial fre-
quency bands originates mostly in the availability of mitigation strategies for WFEs in the separate regimes,
an approach that has been identi�ed useful for JWST (Lightsey et al. 2014), and adapted later for initial
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Figure 5.2: Pupil-plane aberrations with various spatial frequencies (top) and their response in the coronagraphic
dark hole (bottom).

error budgets for LUVOIR (Lightsey et al. 2018). For example, using movements of the secondary mirror is
considered more amenable to control global aberrations like defocus or astigmatism, while segment-level
aberrations are addressed by adjusting the degrees of freedom on individual segments. While the chosen
control strategy represents one de�ning factor for the di�erent spatial frequency regimes, another one is
the optical response in the image plane. Due to the Fourier optics propagation of aberrations to the focal
plane, the impact of an aberration on the DH will depend on its spatial frequency content. The distinct
regimes thus have an impact in di�erent parts of the DH, as illustrated in Fig. 5.2: low-spatial-frequency
aberrations will induce light close around the optical axis, high frequencies will direct light outside the
dark hole and to concentrated specks of light, while mid frequencies cause a response in the middle of the
DH, which is the most interesting area in the focal plane for exoplanet observations.

Low-spatial-frequency aberration modes stem from global misalignments of the telescope, in particu-
lar secondary mirror misalignments and global deformations in the backplane structure. The aberrations
are easily described with a Zernike modal basis (Noll 1976) and can be sensed with a low-order wavefront
sensor. These aberrations can be compensated with motions of the secondary mirror, but many corona-
graphs are intrinsically insensitive to these low-order modes (N’Diaye et al. 2015b; Green & Shaklan 2003)
due to their robustness against stellar angular size, baked into their design. Mid-spatial-frequency aber-
rations arise from segmented aberrations on the primary (Douglas et al. 2019; Ruane et al. 2017), which
means that they do not exist on monolithic telescopes. They can be sensed with edge sensors (Coyle et al.
2018; Lou et al. 2018) and an out-of-band WFS that is not spatially �ltered by the coronagraph (Moore
& Redding 2018). While these WFEs are often mitigated with direct control of the segments themselves,
they can also be addressed with the main control components of the WFS&C loop, namely the continu-
ous DMs, or o�oaded to a segmented DM in a relay pupil (Lumbres et al. 2018). Finding the ideal modal
basis to describe the impact of these mid-frequency aberration modes on the contrast was presented in
Chap. 2, and in this chapter, I show how to analyze such aberrations beyond just a local piston misalign-
ment. High-spatial-frequency aberration modes arise mostly from surface polishing errors, which avails
itself straightforwardly to a treatment with sinusoidal functions, that is “ripples” across the pupil.

The PASTIS model provides a fundamental tolerancing framework for any set of input aberrations.
The formalism is applicable to any arbitrary modal basis of WFEs. In the following sections, I present
the application to the full range of spatial frequencies as described above. Nominally, the local and global
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Figure 5.3: Examples of global aberration modes as an alternative aberration base for tolerancing analyses with
PASTIS, in form of their phase on the primary mirror. The top row shows the Zernike modes tilt, defocus
and vertical quadrafoil, each with a surface error amplitude of 1 nm rms. The sine wave aberrations on
the bottom have di�erent spatial frequencies and orientations, and all have a surface error amplitude of
10 pm.

modes as described by these three spatial frequency regimes need to share a contrast allocation for a
particular target contrast. However, as they are all addressed with di�erent control strategies as described
above, it is easier to treat them separately, as if the modes of a chosen basis (only local modes, or only low-
order global modes) were the only source of contrast degradation. Performing a comprehensive analysis of
all of them together can then be achieved by adjusting their individual contributions to the target contrast.

I brie�y address the application of low- and high-spatial frequency aberrations over the entire tele-
scope pupil, before extending the tolerancing application to local Zernike modes, and to thermally and
mechanically modeled local aberration modes by L3 Harris Technologies.

5.2.1 Global modes for low and high spatial frequencies

One of the original motivation points for the implementation of semi-analytical PASTIS matrices that are
calculated from a numerical simulator, as demonstrated in Laginja et al. (2019), was to expand the toler-
ancing application to non-analytical modes beyond what could be done with the original, fully analytical
approach in Leboulleux et al. (2018b). In this section, we brie�y touch on how to execute a sensitivity study
for global aberration modes. This can be done for example by using the simulator described in Chap. 3.1
to impose global Zernikes (low spatial frequencies) and sinusoidal ripples (high spatial frequencies) on
the telescope aperture, as shown in Fig. 5.3. Creating a contrast sensitivity matrix for global aberration
modes means that the contrast is measured for two such modes applied simultaneously, and each row and
column of the resulting matrix corresponds to one mode. For sinusoidal ripples for example, each row
or column corresponds to a di�erent spatial frequency and orientation across the telescope pupil. More
generally, the PASTIS matrix dimensions now represent each individual mode of its modal basis (which
can be per-segment, if so chosen), rather than representing an aberration per segment by default. Per-
forming the analytical inversion of the PASTIS matrix for purposes of tolerancing can be done in any of
these cases, following the formalism outlined in Chap. 2.3. In the general case, the analysis then yields
WFE requirements per each mode of the used basis.

Global modes like these have been extensively studied, as the treatment of both low-order (Sidick &
Riggs 2019; Riggs et al. 2019; N’Diaye et al. 2015b; Shaklan & Green 2005; Green & Shaklan 2003) as well
as high-order spatial aberration modes, as they appear in any telescope, monolithic or segmented. For the
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Figure 5.4: Examples of the �rst six local Zernike modes as ordered by Noll, approximated on a hexagonal support.
Just as the pure piston mode used in the previous chapters of this thesis, they can be used for local
segment tolerancing analyses.

purpose of this thesis, e�orts were put in the formalization of the segment-level contributions, as explained
in the following sections.

5.2.2 Local Zernike modes

The process for evaluating segmented tolerances with respect to contrast sensitivity is easily extendable to
other modes than piston, as it follows the same procedure like shown in the previous chapters. The most
straightforward modal basis for segment-level aberrations are Zernike polynomials (Noll 1976) truncated
to hexagonal segments, as shown in Fig. 5.4. Any of these modes can be used in the formalism laid out in
Chap. 2 to calculate a PASTIS matrix.

The same thing can be done on several local modes at once in order to obtain sensitivity maps that
show the relative contrast in�uence between a whole set of aberration modes. Such a PASTIS matrix
collects the relative contrast in�uence of the total number of used local modes, =;>2 , on all segments, =B46.
The dimensions of such a matrix are thus =;>2=B46 × =;>2=B46, and the mean target contrast is attained by
combining all toleranced modes together. The resulting tolerance maps of such a process, for the �rst
six Zernikes, are shown in Fig. 5.5, performed on the small-angle APLC of the LUVOIR A observatory,
equivalently to Chap. 2.5. This multi-mode tolerancing approach can be readily adapted to an arbitrary
modal basis, for example the custom local modes from the following section.

5.2.3 Custom local modes from thermo-mechanical modeling

Zernikes are an idealized basis and while some of these modes have been shown to have a signi�cant
in�uence on the coronagraphic contrast (Juanola-Parramon et al. 2019b), they are unlikely to materialize
as a segment deformation in this exact modal basis. Instead, we can perform a tolerancing analysis with
proper segment modes from thermal and mechanical modeling provided by L3 Harris Technologies that
describe the local segment behavior on a real telescope. These modes describe a segment’s response as
a function of applied thermal gradients or mechanical in�uences. A subset of thermal modes is shown
in Fig. 5.6. These modes show the surface deformation of the mirror substrate generated by applying a
temperature change of 1 milli-Kelvin (mK) along various axes of a segment. The mode in the center is
the resulting deformation when heating the front end of a segment, the mode on the bottom right shows
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Figure 5.5: Segment-level requirements for a set of six local Zernike modes on LUVOIR with the small-design
APLC, for a target contrast of Δ2C = 10−10. A multi-mode analysis approach like this provides a way to
do WFE tolerancing within a large number of aberration modes at once, taking into account requirement
trade-o�s between them as the requirement allocation is done for a uniform contrast across all segment
modes.
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Figure 5.6: Examples of thermo-mechanically modeled segment modes by L3 Harris Technologies. They show
the surface deformation for a temperature change of 1 mK applied in di�erent ways, and along vari-
ous spatial axes. This data allows us to connect changes in WFE with physical tolerances, in this case
temperature gradients.
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mKmK mK

mKmK
all in mK Min Max Avg Std
Faceplates 0.85 41.69 4.73 8.88
Bulk 12.87 214.60 36.17 37.19
Radial 8.29 427.70 41.62 72.36
Lateral 5.84 64.85 14.08 11.31
Axial 3.09 160.17 17.46 33.30

𝚫ct = 10-10

Faceplates Bulk Radial gradient

Lateral gradient Axial gradient

Figure 5.7: Acceptable thermal gradients are a direct physical interpretation of the surface requirements as com-
puted with PASTIS, interpreted as a standard deviation in mK. These are shown here for the requirements
of the �ve thermal Harris modes, where all of them together, on each segment, are toleranced to a total
target contrast of Δ2C = 10−10, on the narrow-angle APLC of LUVOIR A. The inset �gures below each
requirement map indicate the used local mode from the surface plots shown in Fig. 5.6.

the shape change when the whole segment is heated in bulk. The remaining three maps display a 1 mK
gradient along the radial, x-lateral and axial (z) axes.

We can use these local modes as a basis to do segment-level error budgeting, that is to quantitatively
constrain the surface deformation of each segment given an overall target contrast. By using thermally
modeled modes, this allows us to do the tolerancing in physical units. The deformation models give us
the relationship between a thermal gradient and the surface deformation, and the PASTIS tolerancing
model establishes the connection between surface deformation and contrast degradation. This means that
we can use the PASTIS framework to determine thermal tolerances motivated by wanting to limit the
coronagraphic contrast degradation.

We create a PASTIS matrix by applying these modes sequentially to each segment on the narrow-angle
APLC on LUVOIR A, and calculate sensitivity maps for each of the local, thermal modes shown in Fig. 5.6.
As in Chap. 2.4.2, we assume that all basis modes are independent of each other and that we have access
to the statistical mean of the average contrast in the DH. With �ve individual local modes applied to each
of the 120 segments in the LUVOIR pupil, the total number of modes used as a basis for this sensitivity
analysis is =<>34B = =;>2 × =B46 = 5 × 12 = 600, which means that we are building a 600 × 600 PASITS
matrix.

For a total target contrast ofΔ2 = 10−10, we �rst calculate the per-segment tolerance maps for the Harris
modes in terms of optical deformation (in pm) with PASTIS. Since these are expressed as one standard
deviation per local mode and segment, we can convert them into a temperature scale in order to limit the
allowable temperature change per segment. We rescale the tolerances from pm to mK with the respective
thermal modes and plot the results in Fig. 5.7. Each segment now has a temperature value associated with
it that corresponds to applicable temperature gradient limitations, expressed as a standard deviation. As
with the optical tolerances from Zernike modes on this APLC, the inner segments need to be constrained
more tightly than the outer segments, by 2–3 orders of magnitude. While the outer segments are more
tolerant to deformations overall, the di�erent modes still have a di�erent e�ect on the various segments
of the outer ring. The surface mode from a lateral gradient in particular (bottom left in Fig. 5.7) seems to
in�uence the contrast more uniformly across the outer ring segments than for example the axial gradient
modes (bottom center), which in�uence the most geometrically exposed “corner” segments in particular.
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Associating a single physical value to each segment, it becomes more obvious which local modes have
a stronger impact on the contrast than others. With all requirement maps in Fig. 5.7 being shown on
the same temperature scale, we can see that on top of the relaxation of the outer ring across all modes,
some modes in�uence the contrast globally less than others. Bulk heating of each individual segment
(top center), for example, impacts the contrast signi�cantly less than a temperature gradient imposed by
faceplate heating (top left).

Using a speci�cally modeled local basis like this allows us to investigate aberration modes that have
been identi�ed through thermo-mechanical modeling to occur in a real telescope. Performing the full,
statistical tolerancing analysis on this sort of data can translate the computed WFE requirements into
physical units. This reformulates the initially de�ned science requirements as concrete thermal and me-
chanical limits that have to be met with the telescope design, plus the WFS&C and the real-time thermal
control, in order to stay within the needed speci�cations, as set by the top-level mission goals.

5.3 Temporal domain analysis

While segmented telescopes with diameters over ten meters promise the most fruitful science results in
terms of exoplanet yield, they are also more structurally complex and harder to keep stable than smaller
telescopes, especially if monolithic. Conceiving such a large, segmented observatory as a space-borne
extreme AO system can signi�cantly relax the resulting WFE requirements, which is, incidentally, sup-
ported by the increased sensitivity tied to its large collecting area. Continuous WFS&C introduces new
instrumental parameters that can be exploited in order to keep the contrast stable. We are now trading
between the coronagraphic robustness to aberrations with the sensitivity of a wavefront sensor, which
become the de�ning parameters when establishing allowable WFE drifts. We �rst go over the general
analytical framework for WFE drift tolerancing in Sec. 5.3.1, and compare the relevant variables between
an open-loop scenario, also know as a “set-and-forget” control strategy, with a closed-loop setting using
continuous WFS&C. Using this generalized approach, partially presented in Pueyo et al. (2019) and Pueyo
et al. (2021), we apply it to the open-loop results of individual segment tolerancing obtained in Chap. 2 to
derive dynamic segment tolerancing maps in Sec. 5.3.2, and we discuss how this �ts into the global scope
of preparing a LUVOIR-type mission.

5.3.1 Dynamic wavefront errors and relevant timescales

In this section, we compare the open-loop (OL) and closed-loop (CL) wavefront control strategies and
identify relevant times scales for each. We further show an analytical derivation for the calculation of
required dynamic WFE drift rates for both scenarios, and identify the key instrumental parameters that
in�uence them. A visual representation of the contrast evolution in OL and CL operations is shown in
Fig. 5.8. To perform a high-contrast observation on a large telescope from space, the �rst thing to do is to
dig an initial DH by deploying a DH algorithm to reach the target raw contrast 20, at an initial point in
time C0, which includes a compensation of static WFEs. It is envisioned to do this “DH digging” on a bright
reference star before slewing to the target star for the observation. This process is indicated with the solid
blue line on the left side of Fig. 5.8. The right-hand side of the �gure depicts the di�erence between a
“set-and-forget”, or open-loop, observation strategy (dashed line) and a closed-loop observation strategy
that uses continuous WFS&C (solid line).

In a perfectly stable setup, the coronagraph would be observing at 20 for the duration of the observation,
which is de�ned here with the total science exposure time C4G? . However, this is not what happens in the
presence of disturbances on a real observatory structure due to thermal drifts from pointing changes, and
dynamic loads such as thrusters or reaction wheels. These thermo-mechanical e�ects translate directly
into dynamic wavefront errors. Between the beginning and the end of the science exposure time (from C0
to C1), the contrast therefore degrades and drifts by the contrast variation Δ2 = 21 − 20.

If the telescope is not stable enough on this timescale and the observatory is operating in open-loop,
this contrast degradation Δ2$! will surpass the acceptable di�erential contrast for exoEarth imaging, de-
�ned as Δ2C .
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Figure 5.8: Set-and-forget WFS&C strategy (dashed line) with the associated open-loop contrast drift Δ2$! , com-
pared to continuous WFS&C (solid line) with its associated close-loop contrast drift Δ2�! , as a function
of time. Initially, a DH is established with DM commands computed from focal-plane WFS&C. After an
instrumental raw contrast of 20 is reached, the observation begins, with the goal to keep the contrast
drift, or di�erential contrast Δ2 , within an acceptable range, Δ2C , for exoEarth detection.

The alternative approach of continuous WFS&C (i.e., similar to ground-based adaptive optics) allows
us to recover the required contrast level regularly, on much shorter timescales than the total science in-
tegration time, which is indicated with the timescale associated with one WFS&C iteration, C,�(� . By
estimating and applying regular surface command updates for the DMs, the closed-loop di�erential con-
trast Δ2�! can be controlled such that it remains beneath the required threshold of Δ2C .

In the following sections, we show how to analytically express the WFE drift, 3 , in each of these ob-
serving scenarios, which can be expressed as the WFE variation Δn over the respectively de�ning timescale
C in each of the control strategies:

3 =
Δn

C
. (5.1)

In this chapter, we do not attempt exact derivations of the contrast and WFE values but instead we perform
a dimensional analysis to provide general scaling laws for error budgeting and tolerancing purposes. While
our focus is on the dynamic WFE requirements, we do not di�erentiate between di�erent sources of WFE.
The goal is to present an order-of-magnitude comparison between two fundamentally di�erent wavefront
control architectures (set-and-forget and AO).

Open-loop drift

When the DM settings from the DH solution are held statically during the full observation, all dynamic
WFE that happen within the telescope and the HCI instrument need to be put in relation to the science
exposure time C4G? , as it de�nes a natural limit for the e�ect and treatment of the occurring aberrations.
The e�ect of WFE �uctuations on intermediate timescales on the same order as C4G? is integrated during
the exposure time and therefore impacts the contrast in a direct fashion. Any drifts evolving on timescales
larger than C4G? will be measured through focal-plane WFS and removed by the DMs in the same way as
static errors in-between science exposures. Conversely, perturbations happening on timescales that are
orders of magnitude faster than the scienti�c exposure time will cause a blurred halo in the coronagraphic
images that could be removed in post-processing, in which case the remaining limitation is the associated
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shot noise of the halo.
The goal is thus to determine the allowable WFE variation Δn (corresponding to the contrast change

Δ2) over the time interval C4G? . This variation can then be converted into the tolerable OL drift 3$! per
Eq. 5.1.

As we have shown in Chap. 2.2, the coronagraphic contrast is fundamentally a quadratic function of the
wavefront (Eq. 2.9). This relationship was used in Chap. 4 to de�ne the baseline contrast 20, which included
uncorrected WFE from the segmented mirror, general testbed aberrations and the DM correction obtained
with the DH algorithm. Our goal then was to focus on the validation of the PASTIS model, by introducing
controlled aberrations into the testbed optics. Since the testbed is also impacted by natural drifts we cannot
control, we needed to separate these contributions and therefore included all time-varying WFE in the term
20(C). In this chapter however, the goal is to establish requirements for the dynamic wavefront aberrations
in general, irrespective of what causes them.

Consistent with Chap. 4, at the end of the DH algorithm process, we assume an observation that
starts at an overall instrumental contrast 2 = 20 at time C = C0, which includes the e�ects from all physical
aberrations like telescope phasing residuals and DM corrections. The contrast 20 can therefore be expressed
by dimensional analysis as being proportional to a quadratic wavefront error term n0:

20(C0) = _2n20 . (5.2)

This is a simpli�ed, scalar version of the PASTIS equation given in Eq. 2.9, with a null static contrast �oor.
In this very simpli�ed model, the observed real contrast 20 is thus entirely described by a the coronagraph
sensitivity _ and a WFE n0. Under this assumption, the only thing that can change the contrast is a variation
in that WFE. As the wavefront drifts over the course of the observation, we can express the contrast at a
later time C = C1 as:

21(C1) = _2(n0 + Δn)2, (5.3)

where Δn is the WFE variation that induces the di�erence in contrast Δ2 between the beginning and the
end of the science exposure time (see Fig. 5.8). This means we can write:

Δ2 = 21 − 20 (5.4)
= _2(n0 + Δn)2 − _2n20 (5.5)
= 2_2n0Δn + _2(Δn)2 (5.6)
' 2_2n0Δn. (5.7)

With the assumption that the minimum contrast is given by 20, the presence of additional residual
aberrations n0 and Δn yield a linear dependence of the contrast on Δn as given by Eq. 5.6. In the small-
aberration regime, with only small contrast �uctuations Δ2 as compared to 20, we can assume that Δn is
smaller than n0. This allows us to approximate Δ2 with the linear expression given by Eq. 5.7.

Here, the variableΔ2 designates the same thing as in Chap. 4, except there we eliminated uncontrollable
drifts to isolate the controllable aberrations, which we introduced on the segmented DM. By isolating the
injected segment-level piston modes from the segmented DM in the contrast representations, we were
able to study the impact of these speci�c modes. More generally, the goal in Chap. 4 was to validate the
PASTIS model predictions independently of any time variations. Indeed, separate WFE aberration states
were taken sequentially instead of relating them to speci�c timescales. We note that we could readily
generalize the results obtained in Chap. 4 by scaling these wavefront variations to actual timescales. This
is precisely the goal of this chapter: we focus on the tolerancing of a system evolving with time, but without
introducing any additional aberrations. Therefore, the Δ2 here encompasses all the dynamic variations,
for all aberrations, and the goal is to tolerance them using a dimensional analysis.

We choose to relate the instrumental contrast 20 to the astrophysical planet-to-star �ux ratio � by
de�ning the ratio [:

[ =
20

�
. (5.8)

We solve Eq. 5.2 for n0 =
√
20/_, and substitute this together with Eq. 5.8 into Eq. 5.7 to obtain:

Δ2 = 2_
√
[�Δn. (5.9)
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Now the goal is to specify a maximum tolerable Δ2 during the course of the science exposure time in the
absence of a closed-loop adaptive optics correction.

In a purely idealistic static situation, the planet detection will be limited by the signal-to-noise ratio
(SNR) due to photon noise from the speckle background (assumed uniform and calibrated out) at the level
of contrast 20. Assuming that the planet would be detected at a SNR detection threshold ^? (e.g., ^? = 10
for a 10-f level detection) we can de�ne the maximum tolerable contrast variation Δ2 so that we are not
dominated by the wavefront dynamical e�ects, but instead remain in a planet photon-limited scenario:

Δ2 =
�

^?
. (5.10)

Inserting this into Eq. 5.9 and solving for Δn , we obtain a general expression for the WFE change:

Δn =

√
�

2√[_^?
. (5.11)

With the WFE variation Δn being de�ned, we now need an expression for the science exposure time
C4G? to be able to determine the OL dynamical drift 3$! . Assuming that the sole noise source ( in the data
is the contrast-limited background photon noise # , we can do this with the de�nition of ^? = (/# . The
signal of the planet is given by the star’s photon arrival rate, ¤#B , times its �ux ratio with the planet, � ,
integrated over the exposure time C4G? , written as ( = � ¤#BC4G? . The noise is proportional to the photon
noise of the instrumental raw contrast # = (20 ¤#BC4G?)1/2, to a scaling factor. Since the derivations in
this chapter are meant as general scaling laws for error budget and tolerancing purposes, we omit these
scaling factors in the noise calculations. In practice, these scaling factors depend on the exact observing
scenario (e.g.,

√
2 for ADI reference subtraction (Marois et al. 2006), 1 for polarimetry (Kuhn et al. 2001), or√

=A4 5 for library-based subtractions (Soummer et al. 2012)). It is important to note that ¤#B is an immediate
function of the relative stellar magnitude of the observed star, <+ , and the telescope’s collecting area as
parametrized by its diameter � . We solve the resulting expression for ^? , with substitution of Eq. 5.8, for
the observation exposure time and obtain:

C4G? =
^2?[

¤#B�
. (5.12)

The open-loop WFE drift requirement 3$! can then be calculated by limiting the WFE change over the
time of a science exposure, and is thus given by Δn/C4G? , as discussed above:

3$! =
1
^3?

¤#B� 3/2

2[3/2_
. (5.13)

We can see that the only instrumental parameters in Eq. 5.13 are the choice of instrumental contrast
parametrized by [, and the coronagraph sensitivity, given by _. The less sensitive the coronagraph is to
WFE (small values for _), and the lower the ratio between the instrumental contrast and astrophysical �ux
ratio (small values for [), the easier it will be to stay within drift requirements. We note that choosing an
instrumental contrast that is lower than the astrophysical brightness ratio makes [ < 1, which contributes
to a more relaxed WFE drift tolerance.

Closed-loop drift

The alternative approach to letting the telescope drift during the observation and counting on passive
stability alone is to use continuous, or active, WFS&C throughout the observation sequence. A qualitative
comparison between the two control strategies is shown in Fig. 5.8. Continuous WFS&C uses auxiliary
wavefront sensors to measure misalignments, and then sends correction commands to the DMs in the
coronagraphic instrument to correct for dynamic errors. In this way, the picometer-level stability does not
have to be maintained over the total duration of the observation anymore, since the WFS&C loop keeps the
contrast drift, the closed-loop residual, actively below target, Δ2 ≤ Δ2C (see Fig. 5.8). In this scenario, it is
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su�cient to stabilize the system over the WFS&C time interval, C,�(� (instead of the full science exposure
time), which relaxes the WFE requirements now de�ned as Δn/C,�(� . Here we assume a perfect controller
with no lag, which means that the WFS&C time will be dominated by the time needed for sensing, C,�( .

In the set-and-forget scenario, there is only one pertinent timescale for WFE variations, which is the
science exposure time, C4G? . The WFS time C,�( now adds an additional anchor point to the division be-
tween separate relevant timescales. We use this to derive the closed-loop drift requirement3�! = Δn/C,�( .

Assuming that the sensing error is driven by photon noise, the wavefront sensor error Xn,�( is given
by the WFE e�ciency V over the square root of the �ux on the WFS:

Xn,�( =
V√
¤#BC,�(

. (5.14)

Non-ideal wavefront sensors will generally have an e�ciency V > 1, but using out-of-band sensing and/or
predictive control can lead to values smaller than 1.

The maximum contrast variation that we can tolerate so that the planet detection remains limited by
its own photon noise is given in Eq. 5.10. If we assume that this contrast variation is solely due to the
wavefront sensor error Xn,�( (perfect controller assumption), we can relate this contrast variation to the
WFS error using dimensional analysis as Δ2 = _2Xn2

,�(
and therefore we have:

Xn,�( =
1
_

√
�

^?
. (5.15)

Equating this expression with Eq. 5.14 allows us to solve for the wavefront sensing timescale C,�( :

C,�( =
V2_2^?
¤#B�

. (5.16)

Putting together the WFE change Δn in Eq. 5.11 with the WFS timescale C,�( in Eq. 5.16 yields the closed-
loop drift requirement:

3�! =
1
^2?

¤#B� 3/2

2[1/2V2_3
. (5.17)

Additionally to [ and _, the WFE drift is now also in�uenced by the WFS e�ciency V . We observe how
3�! only scales with [−1/2, which is the dependence on the ratio between instrumental contrast and as-
trophysical �ux ratio of the planet, while a much greater in�uence is coming from V (squared) and the
coronagraph sensitivity _ (cubed). This means that if the coronagraph is very robust, you can let the WFE
drift for quite a while without degrading the contrast too much, especially with a good WFS e�ciency.

Leveraging continuous WFS&C

The open-loop and closed-loop WFE drift expressions given in Eqs. 5.13 and 5.17 show a striking di�erence
in their dependence on three core parameters of an HCI instrument. While 3$! is mostly determined by
the raw contrast and the associated photon noise, 3�! relies to a higher degree on coronagraph robustness
to misalignments. Fundamentally though, closed-loop operations signi�cantly shorten the time span over
which the WFE needs to be kept stable, with C,�(� being orders of magnitude shorter than C4G? . We can
now explore the advantages this brings in the temporal frequency domain.

Similar to the high-, mid- and low-spatial-frequency regime shown in Sec. 5.2, we can divide WFE
timescales into three separate temporal frequency domains, set by C4G? and C,�(� , as illustrated in Fig. 5.9.
This description follows precursory work on error budgeting for JWST (Lightsey et al. 2014), and recent
work on the same problematic for LUVOIR (Coyle et al. 2019b; Pueyo et al. 2019). We identify two factors
that are responsible for WFE drift: thermal excitations leading to drifts as long as hours or minutes, and
mechanical vibrations agitating telescope structures at frequencies of 10-100 Hz (Pueyo et al. 2019). The
power of the ensuing temporal frequencies on which these WFE aberrations occur are characterized by
their PSD, which has a qualitative example displayed in the top panel of Fig. 5.9. This red curve describes
the optical distortions in the system without deploying any active control components like DMs. In the
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Figure 5.9: Temporal frequency domains as imposed by the two relevant timescales for observations with integrated
AO: the science exposure time C4G? and the WFS&C time C,�(� , which can be approximated by the time
used exclusively for WFS, C,�( , assuming a perfect controller. The PSD of the uncorrected WFE in the
telescope is shown in the top panel, the �ltering by the temporal response of the closed-loop WFS&C
in the middle panel. The bottom panel indicates the resulting low-, mid- and high-temporal-frequency
regimes that determine the residual WFE, and hence contrast performance, after correction. Details: see
text. Adapted from Pueyo et al. (2019).

following, we want to relate the temporal frequencies of these aberrations to the temporal reference points
de�ned by the frequencies 1/C4G? and 1/C,�(� .

In the temporal frequency domain, starting from the lowest frequencies, the �rst mark of concern is
1/C4G? , which de�nes the point up to which any occurring WFE drifts are so slow that they can be con-
sidered static and thus do not contribute to the dynamic behavior of the contrast. Shortening the science
exposure time shifts 1/C4G? toward the right on the middle panel in Fig. 5.9 with the goal to maximize this
low-temporal-frequency domain while still allowing enough integration time for a su�cient SNR. Many
coronagraphs are designed with a built-in rejection of certain aberration modes, which allows for longer
integration times, and thus more signal, without a signi�cant increase in WFE residuals. The more robust
the coronagraph, the longer we can let the system drift without degrading our contrast too much.

For the set-and-forget scenario, 1/C4G? is the only relevant temporal frequency reference. Letting the
structural steadiness of the telescope shoulder all the work to stabilize the observatory enough to keep
the Δ2 within bounds would require extreme rigidity over very large spatial scales (Shaklan et al. 2006,
2005). This is why we are looking at the emergence of xAO technologies used in space in the future: they
add a second temporal frequency up to which a range of drifts faster than 1/C4G? can be compensated with
DMs, the maximal WFS&C frequency 1/C,�(� . The correction achieved with the AO system will not be
perfect, but the continuously applied DM command updates informed by the wavefront sensors mean that
the contrast drift can regularly be “reset” to an acceptable level smaller than Δ2C (Lyon & Clampin 2012),
as illustrated by the solid brown line in Fig. 5.8. The limit 1/C,�(� thus acts as the cuto� frequency of
what is essentially a high-pass �lter comprised by the WFS&C system. Finding an optimal cadence for
WFS&C is a tradeo� between maximizing the SNR on the WFS by increasing C,�(� and restricting the
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WFE drift by limiting C,�(� . Finding an ideal solution to this problem is contingent on the sensitivity
of the wavefront sensor and coronagraphic robustness to WFE. Apart from these factors, faster cadence
WFS&C is also favored by large telescope apertures, since their increased collecting area provides more
favorable SNR on the WFS.

Any perturbations happening faster even than C,�(� (which is bound to be faster than C4G? ), with a
frequency higher than 1/C,�(� , are unobservable residuals that remain uncorrected by the WFS&C loop.
The aberrations in this high-temporal-frequency regime can be dampened with thermal or structural ob-
servatory stability, or with telescope metrology, but any net residuals will directly impact the science
images. This leaves the mid temporal frequencies, falling right in between the observing and WFS&C
timescales, as the main concern for active wavefront stabilization. The three relevant regimes in the tem-
poral frequency domain are illustrated in the bottom panel in Fig. 5.9. Considering that WFS&C command
updates can be generated on way faster intervals than the duration of science exposure times for the imag-
ing of exoEarths at 10−10 contrast, a closed-loop observing strategy brings a signi�cant easement in the
requirements of WFE stability compared to telescope designs that envision to statically stabilize the full
observatory structure over the course of an observation. In the following section, we perform a quantita-
tive comparison of open-loop versus closed-loop requirements, in particular for segment-level aberration
modes.

5.3.2 Drift requirements in a closed-loop WFS&C system

As introduced at the beginning of this chapter, numerical modeling as well as analytical treatment of the
problem can be used to place quantitative WFE stability requirements on a HCI system aiming to reach
10−10 contrast. Conventional error budgeting approaches trickle this constraint down to all involved sub-
systems in an allocation that is uniform in wavefront across the board. Moreover, the general assumption is
that the entirety of the observatory needs to stay su�ciently stable over the entire duration of the science
exposure so as not to hamper the detection of a potential exoEarth.

A major result presented in Chap. 2 shows that an equal WFE allocation across all components is not
optimal, and a better approach instead is to constrain the allocation to be uniform in contrast. This can be
seen on the individual segment tolerancing presented in Chap. 2.4.2, applied to LUVOIR A in Chap. 2.5.1
and displayed in Fig. 2.13. It shows that the narrow-angle APLC for example has a range of segment-level
tolerances between 7 and 116 pm across the 120 segments, as set by the coronagraph sensitivity. While
the segments on the inner rings still exhibit fairly constrained WFE limitations, the requirements on the
outer segments seem signi�cantly easier to meet under this consideration.

We noted before how the tolerancing analysis with PASTIS makes no assumption about the involved
timescales, as the results it produces have a purely statistical meaning. The statistical per-segment re-
quirements we obtain for example from the individual segment tolerancing implies that they will meet
the target contrast as a statistical mean over many WFE states. The duration of time over which these
states are realized is a concern of dynamical WFE tolerancing. As such, they can be interpreted as the
static WFE requirements Δn over the longest relevant timescale during an observation, which we saw in
Sec. 5.3.1 is the science integration time C4G? . The inferred stability requirement of only a couple of pm
over several hours is a truly intimidating goal, but it can be relaxed with the used of AO. In the same sec-
tion, we learned how including a continuous WFS&C strategy not only reduces the timescales over which
the telescope needs to be held passively stable, as shown in Fig. 5.8, but it also assigns more in�uence to
coronagraph robustness for the purpose of relaxing these requirements.

We now aim to quantify the relaxation of WFE requirements as introduced by a continuous WFS&C
strategy. To do that, we evaluate the expressions for open-loop and closed-loop drift requirements given
by Eqs. 5.13 and 5.17. In both cases, we assume a star with an apparent magnitude of <+ = 5 and the
spectral type A0V, its �ux integrated over a 100 nm bandwidth from 500–600 nm, and the 15 m telescope
architecture of LUVOIR A with the narrow-angle APLC described in Chap. 2.5. The instrumental raw
contrast is set to 20 = 10−10 and the di�erential target contrast to Δ2 = 10−11, with an astrophysical
brightness ratio for the planet of � = 4 × 10−11 and a planet SNR of ^? = 10. For the closed-loop case, we
assumed a theoretical WFS architecture with a sensing e�ciency close to ideal, V = 1. We then calculate the
segment-level WFE requirements both in OL and in CL, for an ensemble of six di�erent localized Zernike
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Figure 5.10: Gain associated with closed-loop WFS&C on a large, 15 m segmented telescope like LUVOIR A, for a
target contrast of Δ2 = 10−11, separately for the inner segments on the left and outer segments on the
right. The black, dashed horizontal line indicates a variation limit of 10 nm/min. Above this point, the
analytical model for WFE drift might not be valid anymore, as the linear approximation made for the
electric �eld relationship is suspended. The calculations use the WFE drift equations given in Eqs. 5.13
and 5.17. For details, see the main text.

modes on all 120 segments and their sensitivities as calculated in Sec. 5.2.2, and compare them.
The requirement relaxation associated with WFS&C is shown in Fig. 5.10, separately for the inner and

outer segments of the LUVOIR A telescope architecture. Operating in closed loop relaxes requirements
for this observatory structures by at least a factor of ten, and very often by two orders of magnitude. It
is remarkable that WFS&C techniques, which only involve minor modi�cations in an exoplanet imaging
instruments (adding a WFS since DMs will already be present to reach the static contrast), can make it one
hundred time easier to stabilize the large structure in a space telescope. In this analysis, the modes that
gain the least (only a factor of four in requirement relaxation when compared to open-loop operations) are
tip and tilt on the inner segments. In this example we thus have reduced the problem to a very small subset
of pathological modes with relatively tight requirements at the telescope level. This can be mitigated by
optimizing error budget allocations. Indeed, in practice one can give more room for these few modes to
drift, as some less constrained modes will meet their allocations (which are larger than nanometers per
minutes) with signi�cant margins. However, this re-allocation between modes, that is somewhat archi-
tecture speci�c, is left to more detailed studies in the future. Because of the tremendous photon collecting
ability of the 15 m primary mirror, even the tightest requirement would be of the order of 20 pm per minute,
commensurate with expected segment-level thermal drifts for JWST (Lightsey et al. 2012). This highlights
the tremendous potential associated with WFS&C during the course of long science exposures for future
exoplanet imaging missions.

5.3.3 Perspectives for dynamic WFE tolerancing

With the above results, the advantage of using continuous wavefront correction becomes strikingly clear.
However, the examples shown are based on an analysis of very generic aberration modes, and an order-of-
magnitude model. They o�er themselves very well for general studies, but we can use both more realistic
derivations of the WFE drift, as well as a realistic modal basis to produce more practicable results. I was
directly involved in the development of the above order-of-magnitude model during my PhD, and the
resulting Eqs. 5.13 and 5.17 are su�cient to prove the advantage of closed-loop telescope controls over
open-loop operations, as demonstrated with the results in Fig. 5.10. In this section however, we want to
switch to a more advanced approach for the derivation of dynamic WFE drifts, by using a method developed
by Pogorelyuk et al. (2021). We combine it with the thermo-mechanical tolerancing basis shown in Fig. 5.6,
for which the static WFE tolerances in units of mK are shown in Fig. 5.7. With the work that follows here,
we highlight the relevance of the PASTIS tolerancing model for a general statistical analysis of the in�uence
of aberrations on the coronagraphic contrast, and how it can be combined with any temporal model to
derive dynamic WFE drift requirements.
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The segment requirement maps in Fig. 5.7 provide the equivalent of Δn in units of allowable temper-
ature change Δ) in mK, which we can use to express the drift requirement 3�! = Δ) /C,�( in physical
units. In order to constrain this drift quantitatively, we need to calculate an appropriate WFS timescale
C,�( . While the optimal scaling of the WFS time is out of scope of this thesis, there is an entire part of
research that is looking at how to optimize the WFS&C parameters of a space-borne AO loop in order to
limit residual WFE to an appropriate level. One method developed for this purpose is recursive estimation
of the closed-loop contrast in a dynamic HCI instrument (Pogorelyuk et al. 2021).

This method supersedes the dimensional analysis approach in Sec. 5.3.1 as it provides scaling laws for
the closed-loop variance based on an assumed open-loop WFE drift magnitude, stellar brightness, the WFE
drift temporal PSD and detector noise. This allows us to calculate the optimal WFS time given a closed-
loop target contrast. While CL operations signi�cantly reduce the relevant timescale from C4G? to C,�( ,
the resulting WFE drift requirement is also in�uenced by the di�erent impact of instrumental parameters
under CL conditions, as discussed in Sec. 5.3.1. This means that an optimization of the WFS time C,�(

needs to take into account that for example coronagraph robustness plays a stronger role in CL than in
OL control strategies. Observing these di�erences between OL and CL (as is done by Pogorelyuk et al.
(2021)), the transformation of OL WFE drift requirements to CL requirements is not exclusively a matter
of dividing by a WFS time, but also by a scaling factor given by the optimization of all relevant instrumental
parameters.

The main assumptions of the model developed by Pogorelyuk et al. (2021) are that of a discrete time
sampling of C,�( , that the open-loop drift follows Brownian motion which adds some variance at each
iteration of the control loop, that we use a perfect controller and that we use an unbiased estimator. Under
such conditions, the resulting WFE drift is balanced against the sensing noise to obtain an optimal WFS
exposure time. We proceed by giving an example using a <+ = 5 star of spectral type A0V, with a �ux
integrated over a 100 nm bandwidth from 500–600 nm and on the 15 m-diameter aperture of LUVOIR
A and for a target contrast of Δ2C = 10−10. The results of such an iterative optimization of the photon
information on the WFS as per Pogorelyuk et al. (2021, Sec. 2.3) are used to scale the static temperature
gradient tolerances in Fig. 5.7 to dynamic drift requirements illustrated in Fig. 5.11. We assume a Zernike
WFS that is not �ltered by the FPM and sees the full telescope pupil (The LUVOIR Team 2019; Pueyo et al.
2019). In this case, the optimal WFS time using a batch-estimation is found to be C,�( = 4 sec. We remind
the reader that the drift requirements in temperature per time interval is given by the in�uence on contrast
of the surface deformations in Fig. 5.6, which are caused by thermal gradients. The respective individual
segment-level surface deformation maps are shown as �gure insets in each global requirement map in
Fig. 5.11, the latter given in units of mK per second.

The overall temperature stability requirements in Fig. 5.7 remain valid, but the allowable temperature
drifts di�er vastly between an open-loop and closed-loop case. For example, the temperature stability
requirement of 215 mK for bulk segment heating translates to 1 mK/s for a 10 h open-loop observation
sequence, but the same segments only have to be stabilized to 27 mK/s instead in closed-loop. Since the
dynamic requirements result from a global scaling of the static results, this relaxation is observed for all
segments and all modes on the primary telescope mirror.

While each of the local, thermal modes for which we calculate the dynamic tolerances that are shown
in Fig. 5.11 ends up with di�erent mK/s requirements, all of them take into account that the coronagraph
used in this analysis (narrow-angle APLC) has a lesser sensitivity to segment-level aberrations on the outer
segments. We have discussed this e�ect at length in Chap. 2.5 and Chap. 2.6. Since this is a product of
the particular design of the coronagraphic masks, and the Lyot stop, we can see it in all segment-level
tolerancing results for this particular coronagraph: from the piston-only tolerancing maps in Fig. 2.13,
over static thermal requirement maps in Fig. 5.7, to the dynamic requirement maps of the same modal
basis in physical units shown in Fig. 5.11. The segments along the edge of the telescope aperture are not
constrained to the same deformation limits like the inner segments and the engineering e�ort that goes
into keeping them stable thus does not need to be as strict. This comes to a big advantage of telescope
metrology systems that rely on diagnostics of segment misalignments that are complementary to a low-
order WFS (LOWFS) and OBWFS, like edge sensors. The segments on the outer rim of the telescope
aperture do not have a full set of such sensors toward all sides, which will make them �oppier by design,
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mK/s

all in mK/s Min Max Avg Std
Faceplates 0.11 5.21 0.59 1.11
Bulk 1.61 26.82 4.52 4.65
Radial 1.04 53.46 5.20 9.04
Lateral 0.73 8.11 1.76 1.41
Axial 0.39 20.02 2.18 4.16

𝚫ct = 10-10

mK/s mK/s

mK/s mK/s

Faceplates Bulk Radial gradient

Lateral gradient Axial gradient

Figure 5.11: Dynamic temperature requirements for the narrow-angle APLC on LUVOIR A for a <+ = 5 star of
spectral type A0V. The shown requirements give the acceptable temperature gradient in mK per second
in order to keep the residual WFE under close-loop operations with WFS&C within a target contrast of
Δ2C = 10−10. These numbers assume a perfect controller and an unbiased estimator, and are calculated
from the tolerance maps in Fig. 5.7 by using a scaling factor obtained with the method presented in
Pogorelyuk et al. (2021). The inset �gures below each requirement map indicate the used local mode
from the surface plots shown in Fig. 5.6.

and having a lesser contrast sensitivity to such segments is thus bene�cial.
The thermal aberration modes we addressed in this chapter represent thermal gradients that can be

modeled as fairly slow drifts of several mK/s. An area of e�ort that needs to be addressed in the future is the
determination of drift requirements for mechanical aberration modes, expressed in units of acceleration
per time interval, or Δ6/C . These manifest themselves on much faster timescales of 10–100 Hz as they
originate from thruster and reaction wheel vibrations and therefore they need full dynamical timescale
simulations. The ULTRA study team is tackling this problem in work e�orts that carry on beyond my PhD
with the implementation of the tools that I developed.

5.4 Conclusions

The PASTIS analytical tolerancing model is easily applicable to cases that go beyond the individual-
segment tolerancing of piston errors presented in Chap. 2. The statistical implications of this model
and its conclusions can be used for WFE tolerancing across a range of spatial frequencies, which cov-
ers global modes like Zernikes and sine wave ripples in the low- and high-spatial-frequency domain, as
well as segment-level aberrations in the mid-spatial-frequency regime. Whichever modal basis is chosen,
a PASTIS matrix can be generated to quantify the sensitivity of the coronagraph to WFE modes, used for
analytical predictions of the mean contrast, of its variability and for WFE tolerancing studies. The devel-
opment of the numerical optical simulators and the tolerancing package presented in Chap. 3 has enabled
studies both within as well as outside of the direct scope of my PhD in order to quantify the allowable
WFE when a particular coronagraphic contrast is to be achieved with a large telescope structure. An ex-
ample presented in this chapter shows the calculation of WFE requirements for particular local segment
modes obtained from thermo-mechanical modeling, which allow us to express allowable aberration levels
in physical units.

The approach for coronagraph sensitivity analyses presented in this thesis makes no a priori assump-
tions about the strategy providing the necessary mechanical and thermal stability of the observatory. Its
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derivations and conclusions are of purely statistical nature and need to be paired with an appropriate for-
mulation of the temporal behavior of WFE to provide drift requirements that are commensurate with the
start light suppression goals for exoEarth imaging. In this chapter we have confronted two functional
approaches to enable the speci�cation of telescope stability for this purpose. The �rst is the set-and-forget
way in which the observatory needs near-perfect static behavior over the course of an observation to en-
sure low enough open-loop WFEs. The second one uses continuous WFS&C akin to extreme AO used
routinely on the ground, where supplementary wavefront sensors and control components are used to
regularly drive down the residual WFE.

We �rst described a dynamical drift tolerance formalism based on a dimensional analysis, which I was
involved with as part of my PhD. This analytical, order-of-magnitude derivation for drift requirements in
two WFS&C strategies (passive and active) shows a di�erent dependence on key instrument parameters
that in�uence the WFE drift in each scenario. The ratio of the instrumental contrast over the astrophysical
�ux ratio, [, de�nes the OL drift requirement with an exponent of 3/2, while there is a �rst-order depen-
dence on the coronagraphic sensitivity, _. In CL operations however, it is the coronagraph sensitivity that
in�uences the drift requirement as a cube, while the dependence on the contrast ratio is reduced to the
order of only 1/2. Moreover, the drift is in�uenced by the WFS e�ciency V . Considering that coronagraphs
for telescope designs like LUVOIR are designed with an inherent rejection to some aberration modes, the
_−3 and V−2 dependence in continuous WFS&C could allow us to exploit these instrumental characteristics
for an improved stability level of aberrations in the future.

This simple formalism was more recently improved upon by that of Pogorelyuk et al. (2021) which we
combined with the segment-level tolerancing results for thermo-mechanical modes obtained with PASTIS.
By balancing the limitation on the WFS time C,�( imposed by a limited photon �ux and an ongoing
WFE drift, this method computes a value for C,�( that will allow us to meet a CL target contrast under
consideration of all relevant instrumental parameters, like detector noise, WFS e�ciency and coronagraph
robustness. We were able to show that the tolerancing results obtained with PASTIS are fundamental to
dynamic WFE tolerancing analyses, as they can be joined with methods optimizing the WFS&C loop to
derive required WFE drift rates.

Taking all this into account, it follows that deploying a full AO system on a space-based telescope can
provide signi�cant relaxation of the WFE drift requirements by a factor of 10–100, as indicated by the
results in Fig. 5.10. This is because the pertinent drift timescale in this control strategy is the time for
a WFS&C iteration, rather than the full duration of a science exposure. This eliminates the reliance on a
passive telescope structure that provides stability at the picometer-level without failure. While there is cur-
rently no space telescope that implements continuous WFS&C, RST is taking a step in that direction with
“ground-in-the-loop” WFS&C, where the static contrast will be improved with focal-plane WFS supported
by multiple DMs as well as “on-board” low-order fast WFS&C. Additionally, future space observatories can
capitalize on an immense heritage of ground-based optical control experience from instruments like GPI
and SPHERE, which is continuously evolving as we are preparing for new and more advanced imagers like
SPHERE+, MagAO-X and KPIC. In the meantime, the individual subsystems that are necessary for closed-
loop WFS&C in space are being continuously improved on. Wavefront sensing at the sub-nanometer
level (Ruane et al. 2020; Steeves et al. 2020), robust coronagraph designs (Fogarty et al. 2020) and algo-
rithms aimed at the continuous maintenance of WFE in particular (Redmond et al. 2021; Pogorelyuk &
Kasdin 2019) have reached a component-level maturity commensurate with the needed speci�cations for
a LUVOIR-like mission. On the road to fully develop these technologies, system-level demonstrations on
laboratory testbeds and on-orbit will pave the way for these concepts to be implemented in space in the
future.

The sensitivity analysis method developed during the course of this PhD is a cornerstone of these
studies. It focuses on contrast allocations rather than top-down �ows of uniform WFE attributions and
provides a concrete way of de�ning stability requirements under consideration of the speci�c telescope
geometry and coronagraph sensitivity. When paired with a suitable framework for the de�nition of wave-
front control strategies on large, segmented telescopes, it enables a comprehensive evaluation of WFE
requirements in a wide range of applications. It thus provides a fundamental basis for WFE tolerancing in
future work.
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6
Conclusions and outlook

The challenges posed by the ambitious science goals of detecting exoEarths require on the one hand further
understanding of the fundamental physics and image formation at high contrasts. In particular, some key
questions remain open about the sensitivity to wavefront aberrations at the picometer level, polarisation
e�ects, and the stability of control loops. On the other hand, we need extensive experimental validation
of the methods and the models developed analytically. I dedicated my PhD work to both of these aspects.

The work I presented in Chap. 2 addresses the fundamental issue of segment-level wavefront error
tolerancing. I have shown that we can in fact determine per-segment WFE tolerances in a purely analytical
derivation and described them with a meaningful statistical model. Applying this analysis framework to
the APLC designs on LUVOIR, I demonstrated that not all segments in the pupil have an equally tight
constraint on their WFE levels. Not only does this let us derive concrete WFE requirements, but it provides
us with a more palpable insight into the sensitivity of the coronagraph to speci�c aberrations. When we
transform these sensitivities into an orthonormal modal basis, we can pinpoint speci�c modes that the
contrast is more sensitive to than others. This lead to some preliminary analysis results of the coronagraph
sensitivity to aberrations induced by a continuous DM, rather than the segmented mirror the PASTIS
formalism was originally developed for, and it harbors a range of interesting applications that should be
explored in the future.

Among them, the more obvious is to utilize PASTIS for the tolerancing of Fourier-based aberrations
on continuous surfaces, like those of a continuous face-sheet DM. Performing an analysis like this would
allow us to specify the de�ning structure deformations for a monolithic telescope like RST, and verify the
limitations deducted by traditional E2E modeling (Riggs et al. 2019; Nemati et al. 2017a). More than just
pursuing a theoretical analysis, there is an interest in using the PASTIS eigenmodes, especially the ones on
continuous DMs, in an optimized WFS&C scheme. There is a potential bene�t to optimize the control loop
for a contrast sensitivity criterion set by the coronagraph rather than purely reducing the Strehl ratio and
the phase variance in the HCI system. In this way, we could make sure to enhance the results of the control
loop speci�cally for the contrast performance. Additionally, one could identify and use a controller that is
more e�cient in suppressing the modes that degrade the contrast the fastest, or design a sensor that is by
design more sensitive to these modes (Chambouleyron et al. 2021). Not only WFS&C could bene�t from
these results, but coronagraph design as well, as one can incorporate the sensitivities as found by PASTIS
to create apodizers that increase the robustness to WFEs arising from segment misalignments (Leboulleux
et al. 2021).

While PASTIS has been developed with the particular application to space-based telescopes in mind,
it proposes it self naturally for the contrast sensitivity analysis of ground-based instruments, in particular
segmented telescopes like the ELTs. The large optics on these observatories will su�er from global rigid-
body deformations during slew times and mechanical adjustments. The tolerancing method treated in this
thesis presents a tool that can be adjusted for analyses on such telescopes as well, provided it includes
a model for long-exposure PSFs to account for the e�ects of the atmosphere. The representation of such
long-exposure AO residuals has already been extensively considered in studies about HCI from the ground
(Herscovici-Schiller 2018; Sauvage et al. 2010), and pairing them with the PASTIS model would provide a
more complete tool for contrast-based tolerancing.

Studies like the ones mentioned above are enabled by the development of numerical tools like the
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ones showcased in Chap. 3. In this chapter, I explain the work that went into building the software that
enabled this entire thesis. This includes a modular, Python-based tolerancing package that performs the
PASTIS tolerancing analysis, and a suite of numerical simulators for coronagraphic imaging with LUVOIR
A, LUVOIR B, and HabEx. A particular focus was put on enabling the inclusion of externally-written optical
simulators in the tolerancing tool, which I used to perform a sensitivity study on a NIRCam coronagraph
on JWST. The results from this analysis show that the expected segment misalignments on the primary
mirror of JWST are small enough to enable HCI at the 10−5 contrast level, the expected performance of
these instruments (Perrin et al. 2018). The very same interface allowed me to perform simulations for a
tolerancing analysis of the segmented DM on the HiCAT testbed. Much of my work included improving
the testbed simulator for HiCAT, which I integrated with my WFE tolerancing tools in order to simulate
cophasing requirements of the segmented DM on HiCAT. Due to the nature of the HiCAT simulator, which
functions as an emulator of the real testbed infrastructure, performing these simulations meant to directly
prepare the experimental validations I performed later.

The results of the experimental validations of the PASTIS tolerancing model on HiCAT are presented
in Chap. 4. In fully remote operations of the Baltimore-based testbed while physically residing in Europe, I
successfully measured an experimental contrast sensitivity matrix with respect to local piston aberrations
on the segmented DM. After using this matrix to calculate the contrast eigenmodes and WFE tolerances
for the individual segments, I con�rmed through Monte Carlo simulations that these limits indeed lead to
the envisioned contrast level. These experiments represent a validation of the underlying analytical model
and its statistical meaning. I showed how to use this framework to compute WFE tolerancing limits on the
segmented DM for various contrast levels, even if they lie beyond the current performance of HiCAT, and
investigated how they change as a function of lateral LS misalignments. Acknowledging that PASTIS lets
us make predictions about the contrast behaviour of an HCI instrument, given a set of known variances,
it could �nd applications in combination with so-called DH maintenance algorithms (Redmond et al. 2021;
Pogorelyuk & Kasdin 2019). These algorithms are not designed to create a high-contrast DH, instead they
are deployed to keep the DH contrast from diverging too much over the course of an observation. DM
dithers are used to increase phase diversity and estimate the speckle drift, and the commands used for
sensing could be optimized with PASTIS by using poke patterns that the contrast is most sensitive to.

One of the problems that needed to be solved during the experimental validations is that the baseline
contrast of a coronagraph does not remain stable over time. While I proposed a way to account for that
during the experiments by isolating the contrast contribution from the segment aberrations alone, this
leads to a larger question about sources of WFE in a large, segmented telescopes, in particular dynamic
WFE sources. In Chap. 5, I �rst presented the results of a tolerancing analysis of very particular WFE
sources coming from thermo-mechanically modeled segment-level aberration modes. This yields WFE re-
quirements in terms of physical limits on the telescope, in this particular case how much of a temperature
change is allowable if a certain target contrast is to be met. I further proceeded by putting these consider-
ations in the context of applicable spatial and temporal scales that we expect for the evolution of dynamic
WFE on a large telescope. Since PASTIS is a fundamental tolerancing tool with a purely statistical interpre-
tation, it can in fact be used as a basis for sensitivity analyses across a wide range of spatial and temporal
frequencies. Using the example of segment-level aberrations, I compared how the WFE requirement dif-
fers between the assumption of a telescope controlled in open-loop, or one with closed-loop WFS&C. The
result is pretty clear: using a continuously running sensing and control loop on a large telescope relaxes
the WFE requirements by at least a factor of 10, which justi�es the complex systems currently envisioned
for LUVOIR and HabEx, similar to extreme AO on the ground.

Indeed, space- and ground-based imaging research has long developed complementary aspects that
are now mutually bene�ting each other. Space-based instrument designs, not limited by atmospheric
WFE, have advanced extremely precise coronagraph solutions to obtain the best performance with large
apertures containing secondary struts or segmented primaries. With the progress of extreme adaptive
optics, these complex apertures are now becoming the limitation of ground-based instruments and these
coronagraphic techniques will be crucial to design the next generation of instruments for the ELTs. In
turn, space-based instruments will soon be limited by very small WFE due to mirror quality or pointing
errors. Decades of wavefront sensing and calibration research from the ground are now greatly informing
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high-contrast space applications aboard future telescopes. With the RST launch predicted in the mid-2020s,
we are anticipating the �rst space telescope to �y deformable mirrors, enabling active correction of the
wavefront on-orbit. As it is a designated technology demonstration, the lessons learned from the operation
of Roman CGI will be crucial to inform the concrete implementations of extreme AO in space, in the same
way the segmented mirror technology of JWST is for LUVOIR. Such active sensing and control systems
will be indispensable to enable the large, complex structures of segmented telescopes to achieve the WFE
stability that is required for exoEarth imaging.

The work presented in this thesis contributes to these endeavors through the development of analytical
models for statistical WFE tolerancing that relate the various in�uences of WFEs on a large, segmented
telescope back to the coronagraphic contrast. In the end, what matters is the scienti�c output of our
observations, and in the case of exoEarth imaging, an important metric for that is exoplanet candidate
yield. Larger telescopes enable larger yield numbers, and to build such telescopes, we need to know how
they will behave with respect to the performance of the HCI instrument. A tremendous e�ort has already
been put in developing the individual subsystems that enable such complex observatories, and the ability
to put these pieces together will in the end determine whether we can tackle the question of whether we
are alone in the universe, or not.
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Cophasing of a segmented telescope testbed:
JOST

After joining the Makidon lab team in late 2017, the main focus of my work was on laboratory
experiments for the purpose of WFS&C on segmented telescopes. While the various activities on HiCAT
were targeting in particular system-level operations of a segmented coronagraph, the JWST Optical
Simulation Testbed (JOST) provided grounds to specialize on the WFS&C aspect. The synergy between
the two testbeds in terms of goals and operations proved vital to start developing my expertise on
hardware and software for high-contrast imaging laboratory experiments.

I inherited a fully aligned testbed from the previous lab team member Sylvain Egron that simulated JWST
with its most important degrees of freedom, the piston/tip/tilt controls of the segmented DM and
misalignments of the secondary mirror, for which JOST uses a lens. Sylvain had previously measured
wavefront errors in individual �eld points of the setup before the segmented DM installation, and
demonstrated closed-loop linear control of the secondary lens. With the work presented in this chapter,
adapted from a conference proceedings paper (Laginja et al. 2018) for SPIE Astronomical Telescopes &
Instrumentation in Austin, Texas (USA) in 2018, I show the results of closed-loop WFS&C on the fully
aligned JOST testbed, including an IrisAO DM. This was aided by my recalibration of the segmented DM
�atmap in front of an interferometer, the installation of a faster camera and substantial simpli�cations
and upgrades in the software control code.

Investigations like my work on JOST are relevant for WFS&C in the context of segmented telescopes. It
allows us to develop and test new algorithms for the coarse and �ne alignment of segments, which
constitutes a vital part of a full HCI system.
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Abstract

The James Webb Space Telescope (JWST) Optical Simulation Testbed (JOST) is a hardware simula-
tor for wavefront sensing and control designed to produce JWST-like images. A model of the JWST
three mirror anastigmat is realized with three lenses in the form of a Cooke triplet, which provides
JWST-like optical quality over a �eld equivalent to a NIRCam module. An IrisAO hexagonally seg-
mented mirror stands in for the JWST primary. This setup successfully produces images extremely
similar to expected JWST in-�ight point spread functions (PSFs), and NIRCam images from cryotest-
ing, in terms of the PSF morphology and sampling relative to the di�raction limit. The segmentation
of the primary mirror into subapertures introduces complexity into wavefront sensing and control
(WFS&C) of large space based telescopes like JWST. JOST provides a platform for independent anal-
ysis of WFS&C scenarios for both commissioning and maintenance activities on such observatories.
We present an update of the current status of the testbed including both single �eld and wide-�eld
alignment results. We assess the optical quality of JOST over a wide �eld of view to inform the fu-
ture implementation of di�erent wavefront sensing algorithms including the currently implemented
Linearized Algorithm for Phase Diversity (LAPD). JOST complements other work at the Makidon
Laboratory at the Space Telescope Science Institute, including the High-contrast imager for Complex
Aperture Telescopes (HiCAT) testbed, that investigates coronagraphy for segmented aperture tele-
scopes. Beyond JWST we intend to use JOST for WFS&C studies for future large segmented space
telescopes such as LUVOIR.
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A.1 Introduction

For large segmented telescopes, there is the need to actively control the telescope in order to achieve
the optimum alignment and optical quality, bringing the primary from millimeter misalignments to �ne
alignments of nanometers. While controlled optics have become common on ground based telescopes, this
technique will be extended to space for the James Webb Space Telescope (JWST). While its predecessor, the
Hubble Space Telescope (HST), consisted of a mostly passive design with the exception of a variable defocus
of the primary mirror, JWST will have 132 degrees of freedom between the primary and the secondary
mirror. These will be initially aligned during the commissioning activities of the telescope, then maintained
by periodic wavefront sensing and control (WFS&C) activities during its lifetime of at least �ve to ten years
in order to maintain superb image quality (Acton et al. 2004, 2012; Knight et al. 2012b). The procedures
for WFS&C on the JWST have been thoroughly tested in simulation and experiment (Barto et al. 2008) on
the Testbed Telescope (TBT) at Ball Aerospace (Acton et al. 2006, 2007), a 1:6 scale model of the telescope
that is equipped with the same degrees of freedom as the original, as well as the Integrated Telescope
Model (ITM) software (Knight et al. 2012a). Most recently, WFS&C methods have been demonstrated on
the integrated �ight hardware (Acton et al. 2018; Lajoie et al. 2018). However, during the decade-plus
development of JWST, WFS&C algorithms have continued to develop, and new advanced algorithms are
worth investigating to expand the toolkit for alignment and maintenance of JWST.

The JWST Optical Simulation Testbed (JOST) at the Space Telescope Science Institute (STScI) provides
a platform to test such algorithms for segmented mirror control, evaluating them for possible applications
on JWST as well as on future space missions with active primary segmentation like the Large UV/Optical/IR
Surveyor (LUVOIR) (Dalcanton et al. 2015; Bolcar et al. 2017). It is a simpli�ed tabletop model of the JWST,
as opposed to a high-�delity scaled model like the TBT, but it is a close enough physical representation
to model the key optical aspects. It is a supplement to existing veri�cation and validation activities for
independent cross-checks and novel experiments, not a part of the mission’s critical path development
process. In addition to exploring phase retrieval methods and implementing linear wavefront control over
a wide �eld of view, JOST is used to develop sta� expertise for commissioning and operations, conveniently
being co-located at STScI with the Science & Operations Center (SOC) that will support commissioning
and be responsible for operations of the JWST.

JOST is a three lens anastigmat, a refractive analogue to JWST’s three mirror anastigmat. An aperture
stop de�nes the system’s pupil while the segmentation is provided by the planar segmented deformable
mirror, whose segments can be controlled in piston, tip and tilt. The secondary lens (L2) that stands in
as surrogate for JWST’s secondary mirror is motorized in tip and tilt, and x, y and z translation. JOST
has in total 59 motorized degrees of freedom, which are the most relevant ones for WFS&C maintenance
activities. The setup design meets the requirement of an image quality of a minimum wavefront error
of 40 nm rms at a wavelength of 638 nm over a �eld equivalent to one NIRCam module, and our latest
measurements con�rm that we meet this requirement, as we detect a minimum wavefront error rms of
15 nm.

This paper presents the optical characterization of JOST’s full �eld of view after the successful �ne
alignment of L2 and DM, done previously. Our group presented a general overview of JOST in Perrin
et al. (2014b). Its detailed optical design and several trade studies were presented in Choquet et al. (2014).
The experimental implementation of the WFS&C on the testbed is described in Egron et al. (2016). The
experimental results regarding the linear control of L2 are described in Egron et al. (2017a) and the align-
ment of the segmented deformable mirror is presented in Egron et al. (2017b). Before moving on to the
implementation of WFS&C algorithms beyond the linearized algorithm for phase diversity (LAPD), we
perform wide-�eld wavefront sensing on JOST. In section A.2 we give an overview of the testbed and its
recent changes in hardware and software. In section A.3 we describe the wide-�eld wavefront sensing and
present its results, and �nally we summarize and conclude our �ndings in section A.4.
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Figure A.1: JOST testbed layout. An o�-axis parabola (OAP, not pictured) and a fold mirror put the laser beam
launched from an optical �ber onto a steering mirror that is controlled in x and y by a stepper motor.
This mirror illuminates the JWST-like pupil mask which directs the beam into the telescope simulator.
The three lenses L1, L2 and L3 form a Cooke Triplet, a refractive analogue to the re�ective three-
mirror anastigmat (TMA) of the JWST. L2 acts as a surrogate for the JWST secondary mirror and is
independently controllable by motors in tip and tilt, and x, y and z translation. Another fold mirror
positions the beam on a subset of 18 segments of the IrisAO segmented deformable mirror, where all
the segments can be independently controlled in piston, tip and tilt. A pupil imaging lens is attached to
a �ip-mount which allows for a fast change between pupil and focal plane imaging mode. The camera
is mounted on a translation stage of 100 mm travel, which enables us to take phase-diverse data sets.
The testbed can accommodate either a CMOS camera (shown here) for faster acquisition and smaller
�eld of view, or a CCD camera providing the same �eld of view as a NIRCam module, with identical
sampling.

A.2 Testbed description

An extensive description of the JOST optical design can be found in Perrin et al. (2014b) and Choquet et al.
(2014). The updated current layout can be seen in Fig. A.1. The main components of JOST are a �ber
launch, steering mirror for wide-�eld exploration, a JWST-like pupil mask, a telescope simulator made of
three custom lenses, a segmented deformable mirror (DM) and a camera on a translation stage, to be able
to provide focus-diverse images.

A.2.1 Key hardware components

The segmentation of the testbed, including gaps of the same size ratio like on JWST, is provided by an
IrisAO segmented deformable mirror. The entire mirror has 37 independently controllable segments in
piston, tip and tilt. A conjugated pupil mask with a hexagonal central obscuration and spiders de�nes
the area of 18 segments that ultimately form the pupil. The DM can be controlled either by a GUI that
is provided by the company, or by directly using the application programming interface (API) written in
the C programming language, which we can call from within a Python wrapper. For best performance of
the testbed, we need to have a baseline �at map of the DM, which is the con�guration of the segments
that gives the best optical quality of our data. The DM calibration provided by the vendor was for the
DM oriented in the horizontal plane, facing upwards, while we use it standing upright in a mount facing
horizontally, which makes all the segments sag forward and introduce large local tilts. A �rst �at map was
created by using the GUI and checking the results directly with a Fizeau interferometer, in 2016. While this
�at map showed a major improvement over the factory-de�ned �at position of the DM, we were able to
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do an even more accurate calibration in late 2017 by adjusting each segment individually instead of using
only global modes. The improvements led to an overall surface �atness of 10 nm rms over the entire pupil
of 18 segments, creating a PSF with 39 nm rms wavefront error. The calibration maps and the PSFs we
observe when the according �at map is put on the DM can be seen in Fig. A.2. This �at con�guration can
be improved further by running closed-loop iterations of LAPD on it, with the segment piston, tip and tilt
being the controlled modes of this WFS&C experiment. Fig. A.3 shows how the overall wavefront error
rms value drops from 40 nm to 16 nm after six iterations.

Factory	flat	map First	custom	flat	map Second	custom	flat	map

118	nm	rms 67	nm	rms 39	nm	rms

31	nm	rms 12	nm	rms 10	nm	rms

Figure A.2: Comparison of di�erent �at maps for the segmented DM. Top row: Interferometer measurements of
the DM surface with di�erent �at map implementations in the IrisAO GUI and the resulting surface
�atness rms. The red hexagon in the two left pictures denotes the JOST subaperture, while the third
picture shows the JOST subaperture only. Grey hexagons indicate the position of dead segments in the
engineering-grade device used on JOST. Bottom row: The corresponding PSFs to each �at map and their
wavefront error rms taken on JOST with the IrisAO installed. Left column: Vendor-provided �at map
where all values for piston, tip and tilt in the mirror GUI are zero. The DM was initially calibrated in
the horizontal plane, lying down �at, while we use it standing upright in a mount, which makes all the
segments sag forward and introduce a large local tilt. This leads to a PSF that shows many individial
sub-PSFs, as the segments are not stacked properly. Middle: First custom �at map from 2016. The
segments have been calibrated with masks that ignore the interfaces between the individual segments
and only with global Zernike mode adjustments. The PSF is stacked, but still shows residual aberrations
in the overall PSF structure. Right: Second and current custom �at map from late 2017. Instead of global
modes, individual adjustments of piston, tip and tilt have been made on each segment. Further, the mask
to de�ne the JOST pupil also includes the discontinuities in the segment gaps, giving a better estimate
of the �nal performance.

The telescope simulator consists of three custom made lenses that form a Cooke triplet, a refractive
analogue to the JWST three mirror anastigmat, providing good optical quality over a wide �eld of view.
During the alignment process of JOST, the third lens (L3) was added to the setup in reverse (Egron et al.
2016). The main e�ect of this is to reduce the size of the well-corrected �eld of view, but since it does not
change the general alignment physics, and for convenience of use (fast readout, shorter exposure times, low
noise) we have switched to a CMOS camera, whose smaller �eld of view matches the performance of the
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Figure A.3: Closed-loop LAPD WFS&C experiment with the DM segmented controls as control modes. Left: RMS
wavefront error vs. iteration number. Right: PSF at each iteration step. Iteration 1 is the initial con�gu-
ration of the testbed, with each consecutive iteration of LAPD wavefront sensing and linear control of
the DM providing a better overall quality of the system. The rms wavefront error drops to 16 nm after
only six iterations.

current system well, we have decided to keep this con�guration for now, until all wide-�eld infrastructure
is �nalized. Both cameras can be readily interchanged.

In order to be able to provide focus-diverse images which are needed for phase retrieval, the camera
is mounted on a translation stage which provides a movement range of 100 mm in the z-direction (optical
axis). The initial setup of JOST was using a CCD camera. However, the closed-loop experiments for
wavefront sensing algorithms require 20 to 100 images be taken during each loop, and with the exposure
times of one to ten seconds of the CCD camera the readout overheads would take a disproportionally long
time compared to the wavefront sensing computations. We replaced the CCD with a ZWO monochrome
CMOS camera that operates with exposure times between 0.5 and 500 ms, thus making the process of
image acquisition considerably faster. The pixel size of the new camera is almost a third of the old size, 3.7
microns versus 9 microns, but a 2x2 pixel binning in the data reduction process leaves us with an e�ective
pixel size of 7.4 microns, which means that our focused PSFs are still sampled with a factor slightly over 2,
albeit not at the exact same sampling as NIRCam, but this has no impact on algorithm development, and
both camera setups remain available.

The before-mentioned piston, tip and tilt controls of the segmented DM over all 18 segments total 54
degrees of freedom on the DM. The secondary surrogate lens L2 can be remotely controlled with a stepper
motor in tip and tilt, and x, y and z translation, yielding a total of 59 motorized degrees of freedom on
JOST that are used in the linear control model (Egron et al. 2016). While JWST has a total of 132 degrees
of freedom, the ones JOST misses are clocking, radius of curvature adjustment, and x and y translation of
each individual segment, all of which are control modes whose major adjustments will happen during the
initial six month commissioning process after launch. The degrees of freedom which are the same between
JOST and JWST on the other hand are those with the largest optical in�uence functions during wavefront
maintenance activities.

There is a steering mirror, movable in tip and tilt, positioned right before the JOST pupil mask. With
this motorized mirror we have the possibility of directing the laser beam to o�-axis positions on the de-
tector and exploring �eld-dependent aberrations.

A.2.2 Software upgrades

Between October 2017 and April 2018, e�ort was put into restructuring the JOST software components.
The �rst and crucial step was to migrate all prototype software to a version control system, to allow for
a smoother and safer way of collaboration. Furthermore, all code involved in JOST data acquisition, data
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reduction and hardware control have been translated to and extended in Python1.
JOST is co-located with the High-contrast imager for Complex Aperture Telescopes (HiCAT; Soummer

et al. 2018) and the two testbeds are taking advantage of each other’s developments. The HiCAT experi-
ment control software was recently rearchitectured as a modern, clean Python package by a professional
software engineer. Each instrument and hardware component has an interface that is easily accessible by
simply installing the HiCAT package and importing it. Each hardware interface follows a simple object-
oriented paradigm where the parent is an abstract class (e.g., “Camera”), which de�nes speci�c methods
and implements a context manager. Context managers are important for hardware control because they
will gracefully close the hardware even if the program crashes unexpectedly. The child classes implement
the abstract methods such as open(), close(), takeExposure() with code for the speci�c camera. This keeps
the scripts generic and means changing cameras will have little to no impact on the code. A thorough de-
scription of the HiCAT software infrastructure is given by Moriarty in these proceedings (Moriarty et al.
2018).

We installed and started using the HiCAT package on JOST. Since JOST uses the same type of hard-
ware like HiCAT (same laser source and motor controllers, same camera type but di�erent model), we only
needed to update the con�guration �le of the package and were able to use the code as is. The modular
structure of the code allows for very fast and clean generation of new scripts and implementation of new
experiments. These changes are intended to push for best practices in astronomy coding, and incidentally
move away from more traditional programming languages used in astronomy like IDL and Mathematica,
providing a concise environment for the work done. This arrangement will facilitate JOST’s role in provid-
ing a �exible multipurpose laboratory testbed for the testing and validation of independent phase retrieval
techniques.

A.2.3 Previous wavefront sensing and control activities

In Egron et al. (2016), the authors describe the alignment of the three lenses of JOST with a phase diversity
algorithm provided by the O�ce National d’Etudes et de Recherches Aerospatiales (ONERA) in France, and
a linear optical control model. At that point, JOST did not yet include the segmented deformable mirror.
Their results show a symmetric degradation of the wavefront when moving away from the optical axis.
In the following paper by Egron et al. (2017b), a linearized algorithm for phase diversity (LAPD) (Mocœur
et al. 2009) was used for the cophasing of the newly inserted segmented DM with the aligned testbed. In
this algorithm, the pupil is made out of 18 hexagonal subapertures that simulate the e�ective JOST pupil
consisting of the pupil mask and the DM segmentation, while the previous algorithm used for the lens
alignment was working with a circular pupil without any obscuration. LAPD allowed for the alignment
of the 18 mirror segments in piston, tip and tilt on each segment individually, and having both the mirror
and the lenses aligned left the total wavefront error of JOST with an rms of under 40 nm.

Egron et al. (2017b) completed the full automation of the JOST testbed with regards to hardware control,
data acquisition and reduction, wavefront sensing with an arbitrary phase retrieval algorithm and wave-
front control with a linear coupling model. While the WFS&C in Egron et al. (2016) was implemented on
a wide �eld of view, covering a range of (-1◦, 1◦), the WFS&C after the addition of the segmented mirror
was performed only on-axis.

A.3 Wide-�eld wavefront sensing with a segmented deformable mirror

A.3.1 Goals of wide-�eld WFS demonstration

The new goal is to expand the testbed capabilities to operation on a wide �eld for all degrees of freedom of
JOST, which means we want to implement a wide-�eld approach to WFS&C on both the degrees of freedom
of the DM (18 segments times 3 modes) and the motorized L2 variations (x, y and z translation plus tip
and tilt). To achieve this we are seeking a validation of the L2 alignment with a hexagonally segmented
pupil (as opposed to the round pupil in Egron et al. (2016)) and a closed loop WFS&C performance on an

1https://www.python.org

https://www.python.org
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extended �eld of view with the DM. In this paper, we present the results of wide-�eld wavefront sensing
with LAPD and a characterization of the JOST �eld of view now that the DM is in place.

Since our camera changed from a CCD to a CMOS camera, our �eld has shrunk to 0.6◦ x 0.9◦, but we
extended our characterization beyond that by translating the camera radially away from the optical axis.
With the motorized steering mirror in place it is easy to �nd the optical axis at any time and it enables us
to iteratively explore a wide �eld of view.

A.3.2 Data acquisition and reduction

To be able to run any kind of phase retrieval, we need to make an in-focus image and at least one defocused
image of the testbed con�guration we are interested in. On JOST, the defocus diverse data is acquired by
moving the camera on a translation stage; we move the camera by 93 mm to introduce a defocus of 4 waves
(23.88 rad). The nominal �eld of view of the camera is 0.6◦ x 0.9◦, so in order to get images out to 1.0◦,
we move the camera to di�erent lateral o�sets. A one-time shift is not enough though: the further away
we move from the optical axis, the bigger the o�set on the camera between the focused and defocused
images will be, so the range of �eld points we can cover with one camera o�set gets smaller with every
step further outward. With �ve o�sets, we cover a lateral distance from -0.3◦ to 1.02◦ and at one o�set
position, we move the steering mirror to 20 di�erent distances from the optical axis and obtain 20 focused
and defocused images each, as well as background images for both camera positions, thus probing the �eld
in 100 di�erent positions.

An automated Python script processes the images through the standard steps of stacking, background
subtraction, centering, 2x2 binning (leaving us with 512 x 512 pixel images), bad pixel correction and
normalization. The result are one focused and one defocused image that are consequently used by the
wavefront sensing code to determine the wavefront aberrations at all points in the �eld of view. We obtain
the overall wavefront error rms values through LAPD, which also creates wavefront maps which we then
decompose with the Python package POPPY (Perrin et al. 2012) into individual Zernike modes from defocus
(Z4; we follow the Noll convention (Noll 1976) for Zernike numbering) to primary spherical (Z11).

A.3.3 Wavefront sensing results

In a �rst step, we inspected the point-spread functions (PSFs) and wavefront maps obtained by the data
acquisition and LAPD wavefront sensing. In order to clearly see an aberrated PSF, one has to go to a �eld
point well beyond 0.5◦. The rightmost PSF frame in Fig. A.4 shows the distorted PSF at 1.0◦, and in this
image, astigmatism is very clearly seen. The wavefront maps show the wide-�eld aberrations a bit earlier,
for example at 0.5◦. The center right wavefront image in Fig. A.4, at a distance of 0.5◦, is starting to show
a global tendency of the dark and bright wedges typical for astigmatism. This global wavefront patterns
becomes more distinct when looking at the far right wavefront map in Fig. A.4, at a �eld point of 1.0◦.

In Fig. A.5, we can see how the overall wavefront error changes as a function of distance from the
optical axis of the testbed. The wavefront error is relatively uniformly scattered around 40 nm rms until a
radial distance of 0.4◦ and it starts to rise signi�cantly beyond 0.5◦. This con�rms that the JOST anastigmat
has good optical quality in a �eld of view with a diameter of 1◦. There are some discontinuities appearing
in the data around 0.4◦, 0.66◦ and 0.85◦, which indicate the interface between two datasets that have been
taken before and after a lateral detector shift as described in Sec. A.3.2.

Using the wavefront maps generated by LAPD, we decomposed each individual wavefront at each �eld
point into the 11 �rst Zernike modes of the Noll convention. The three modes contributing the strongest to
the overall wavefront error have been found to be Z4, Z6 and Z11 - defocus, 0◦ astigmatism and 3A3 order
spherical aberration. They are shown as a function of �eld position in Fig. A.6, with an average rms error of
7 nm rms for defocus, 13 nm for astigmatism and 0 nm for spherical in the inner region of the �eld of view
until 0.5◦. Defocus reaches 45 nm rms at 1.0◦, while the astigmatism reaches 20 nm and spherical reaches
18 at the same �eld distance. The results re�ect the overall wavefront error distribution from Fig. A.5: the
graphs are �at out to a distance of 0.4◦, beyond which they continuously rise beyond 100 nm rms after
1.0◦. The linear nature of the aberration modes con�rm the linear dependence of the Zernike terms for
a given �eld of observation as a function of the misalignment of L2, as it was demonstrated in Choquet
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Figure A.4: PSFs (top) and wavefront maps (bottom) of four di�erent points in lateral translation from the optical
axis. The wavefront quality is very uniform out to a distance of 0.5◦, the PSFs look very much alike.
While the wavefront maps of the PSF at -0.2◦ and 0.0◦ look very similar, the map of the PSF at 0.5◦ is
starting to show global aberrations, as inferred by the darker areas in the top right and bottom left parts
of the pupil. The PSF at 1.0◦ away from the optical axis is very clearly aberrated, showing very strong
astigmatism, which is also con�rmed in the Zernike decomposition of the wavefront maps in Fig. A.6.
The wavefront map at a �eld point of 1.0◦ distinctly shows astigmatism and defocus.

et al. (2014). While the big contributions of defocus and astigmatism repeat the results from Choquet et al.
(2014) and Egron et al. (2016) (where the wavefront analysis was done without the segmented mirror in
the system), the spherical aberration was not expected to be this dominant. It is not clear at this point
what causes it, especially since we would expect to see more signi�cant coma in the o�-axis PSF positions
instead.

A.3.4 Comparison to previous results without the segmented deformable mirror

In Choquet et al. (2014), �gures 8, 9 and 10 show the design-predicted Zernike coe�cients as a function
of the �eld angle. Comparing our results to those, we can con�rm the �eld-dependent rise of defocus and
astigmatism. While Choquet et al. (2014) do show an increasing amount of spherical aberration in the wide
�eld, it is not as dominant as the astigmatism while our results show the two to contribute equivalently to
the wavefront error. In addition, we do not see coma showing up in our analysis, while we would expect
to see some the further outwards we move.

Egron et al. (2016) have shown similar results in their �gures 2 (experiment) and 4 (simulation), al-
though the simulations have shown only signi�cant defocus and astigmatism appearing in the o�-axis
wavefronts, and no other modes. In that experiment, there was no coma detected except in one of the cor-
ner PSFs, consistent with our non-detection in this work. The authors hypothesized that it was introduced
by a �awed behavior of the L2 motors, since it showed up in only one of the four corners. This makes us
con�dent that our detections of defocus and astigmatism in the present paper are real; however we are not
able to tell at this point why the spherical aberration is so strong.

These �ndings support the further development of JOST into a multipurpose testbed that provides
the possibility to implement di�erent wavefront sensing and control techniques. With further work in
the upcoming months, we will be able to provide new wide-�eld evaluations through the implementa-
tion of new WFS&C algorithms, like the JWST baseline Hybrid Diversity Algorithm (HDA), Geometric
Phase Retrieval (GPR), Optimized Phase Retrieval Algorithm (OPERA) and Estimation of Large Amplitude
Subaperture Tip-tilt by Image Correlation (ELASTIC).
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Figure A.5: Total wavefront error rms of radially translated PSFs on JOST, as retrieved by LAPD, taking into account
the shape and segmentation of the JOST pupil. The wavefront error is relatively uniformly scattered
around 40 nm rms all the way out to 0.4◦, with a signi�cant rise after 0.5◦, from where on it continuously
grows to over 100 nm rms at 1.0◦ away from the optical axis. The discontinuities in the data at 0.4◦ and
0.85◦ are the limits between two data sets that are separated by a shift of the camera, as described in
Sec. A.3.2. Since the optical properties of the testbed will be radially symmetric around the optical axis,
this shows that JOST has very good optical quality in a wide �eld of 1◦ x 1◦, centered on the optical
axis of the system. Note that our baseline wavefront error rms here is 40 nm, while we demonstrated
in Fig. A.3 that we can align the testbed to about 15 nm rms. While in Fig. A.3 we demonstrate that we
have the ability to go down to 15 nm, we did not change the baseline alignment of the testbed to match
our best alignment state of 15 nm rms in this current wide-�eld characterization.

A.4 Summary and Conclusions

JOST is a hardware simulator designed to test and validate wavefront sensing and control algorithms on
segmented apertures like that of the JWST. In these proceedings, we presented the hardware and software
updates performed on JOST since late 2017 and showed the characterization of the JOST wide-�eld with
LAPD wavefront sensing.

One of the main hardware updates is the implementation of a new CMOS camera that allows for a
faster image acquisition, but it reduced the overall �eld of view to about a quarter of the initial area. The
second major hardware update is the new calibration �at map of the segmented deformable mirror, which
was achieved by tweaking each individual segment in the pupil in piston, tip and tilt, until an overall
surface error of 10 nm rms was achieved and integrated as the new baseline �at map on JOST. On the
software side, we migrated JOST to common Python tools in the Makidon Optics Laboratory. We put all
code on version control, translated control and analysis scripts from Mathematica and IDL to Python, and
make use of the HiCAT Python package for hardware control. The updated testbed is now a modular setup
for wavefront sensing and control experiments.

We presented wavefront sensing results with the currently implemented LAPD wavefront sensing
algorithm, going one step further in the validation of the wide-�eld optics since the implementation of the
DM. We showed the overall wavefront error on �eld points ranging from -0.3◦ to 1.0◦ and presented the
contributions from di�erent Zernike modes. The total wavefront error rms rises from a nominal 40 nm until
a �eld point of 0.4◦, where it starts to increase continuously, to over 100 nm at 1.0◦. The three main Zernike
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Figure A.6: Decomposition of the wavefront error of radially translated PSFs on JOST into individual Zernike
modes. We probed the wavefront from piston (Z1) to spherical aberration (Z11) and are showing here
the three most in�uential modes: defocus, 0◦ astigmatism and spherical aberration. The discontinuities
in the data at 0.4◦, 0.65◦ and 0.85◦ are the limits between two data sets that are separated by a shift of
the camera, as described in Sec. A.3.2. As is the total wavefront error rms (see Fig. A.5), the Zernikes
remain �at throughout the PSFs until 0.4◦ o� the optical axis. Beyond that, their contribution to the total
wavefront error grow continuously throughout all the data. From Choquet et al. (2014) and Egron et al.
(2016) we would expect a lot of defocus, astigmatism and coma, but not as much spherical aberration.
We are currently investigating where this is coming from.

contributors to the wavefront error are Z4, Z5 and Z11, which are defocus, astigmatism and spherical
aberration. While the defocus and astigmatism were expected from the analysis in Choquet et al. (2014)
and Egron et al. (2016), the spherical aberration has not occurred this strongly before and our upcoming
work will investigate the cause of it. We expect further results of the JOST wide-�eld characterization by
incorporating the Zemax interface within the JOST code to run simulations of the setup.

Now that the infrastructure is in place, with the L2 alignment and the IrisAO alignment done indi-
vidually and a wide �eld evaluation and validation of the wavefront sensing, we can proceed to investi-
gate wide-�eld control solutions and comparison of multiple phase retrieval techniques, namely the Hy-
brid Diversity Algorithm (HDA), Geometric Phase Retrieval (GPR), Optimized Phase Retrieval Algorithm
(OPERA) and Estimation of Large Amplitude Subaperture Tip-tilt by Image Correlation (ELASTIC).
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B
System-level demonstrations of high contrast
on a segmented aperture testbed: HiCAT

The experimental core work of my PhD were my contributions to the High-contrast imager for Complex
Aperture Telescopes testbed, HiCAT. Instead of pursuing the demonstration of just a speci�c
coronagraph or an individual WFS&C technique, HiCAT is exploring the interaction between the
di�erent components in an observatory to optimize the global system-level performance for exoplanet
detection and characterization with segmented apertures. Through signi�cant contributions to the
hardware installations and alignment, software infrastructure and experimental processes, I saw the
testbed reach an average dark-hole contrast on the 10−8 level, with an open-loop stability on the same
order over the course of many weeks.

HiCAT contains a range of sensitive hardware components that need to be carefully controlled to use
them in the sensing and control loops within experiments. Several deformable mirrors, o�-axis parabolas
and optical masks are aligned with in-built Michelson interferometers and many of them can undergo a
�ne-alignment through motorized stages. While there is no component on the testbed that I did not
touch during my time in Baltimore, I focused in particular on the installation and calibration of the
IrisAO segmented deformable mirror. Using a Fizeau interferometer, I established the optimal open-loop
surface calibration over the 37 segments of this DM and wrote its control software. After successful
installation on the HiCAT testbed itself, this work lead to the experimental validations of the contrast
stability model I presented in Chap. 4.

Apart from preparing HiCAT for experiments to test and validate the tolerancing method I described at
length in this thesis, I put in a lot of work into upgrading the testbed and de�ning procedures for its
operations. While I was there, we essentially �nished the testbed: we installed new mounts for the Lyot
stop, FPM, apodizer and DM1, and deployed a whole range of di�erent WFS&C techniques. I received the
opportunity to present the results of our work on HiCAT in an oral presentation at the Spirit of Lyot
conference in Tokyo, Japan, in October of 2019. The materials in this chapter aim to paint a fuller picture
of the HiCAT science, operations and infrastructure I enabled through my active investment in the
project.
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B.1 History and purpose

The motivation for the HiCAT testbed is to provide an integrated solution for starlight suppression in
combination with active WFS&C on a primary mirror geometry that contains segmentation, as well as a
central obscuration and spiders (N’Diaye et al. 2013). Its base design aims to use an Apodized Pupil Lyot
Coronagraph (APLC, see Chap. 1.3.1) and control with two continuous deformable mirrors with broadband
light in ambient air. In the optical design, particular care was dedicated to Fresnel propagation e�ects in
order to minimize amplitude-induced errors from out-of-pupil optics, in particular one of the two DMs.
Such e�ects were required to not exceed a contrast level of 10−8, one order of magnitude fainter than the
nominal target contrast of HiCAT (10−7). First light results of a bare assembly (no apodizer or DMs) were
obtained in 2014 (N’Diaye et al. 2014), and shortly after the �rst coronagraphic images were taken with
a classical Lyot coronagraph (CLC) and one single in-pupil DM (N’Diaye et al. 2015a). First results with
WFS&C on the CLC were realized through the speckle nulling technique in 2016 and 2017 (Leboulleux
et al. 2016, 2017a).

A �rst dark-hole demonstration on the fully assembled system was performed in 2018 (Soummer et al.
2018), with an APLC installed together with both continuous DMs as well as the segmented DM, including
a central obscuration and spiders. Control with a single DM through speckle nulling reached a monochro-
matic contrast of 1.7 × 10−6, and 6.3 × 10−6 in 6% broadband light centered on 640 nm, in a half-circular
DH. These results were the �rst to use a completely overhauled software infrastructure scripted almost
entirely in Python, with continuous integration and autonomous testbed operations (Moriarty et al. 2018).
This was the state of the testbed when I joined its e�orts during my PhD. In the months and years that
followed, I participated in obtaining WFS&C results on a circular dark hole like the results presented in
Chap. 4.3.2 and Fig. 4.3.

There is an inherent reliance on the individual components in a testbed like HiCAT, for example a
particular wavefront sensor, optical mask or controller. Each of them is crucial for the overall observatory
system, but the purpose of a system-level demonstration is to establish a “modus operandi” when a set of
such sub-components is connected into a system with the ultimate scienti�c goal to optimize exoplanet
yield. On HiCAT, the proxy performance metrics for scienti�c output is the instrumental contrast, and its
stability over various time scales, similar to what is outlined in Chap. 5.3. To this end, I have worked on
optimizing the interaction between subsets of the system components, identifying limiting factors for the
contrast and improving the overall testbed performance. This included writing parts of the optical simu-
lator that is used in the HiCAT testbed emulator (see Chap. 3.3.1), as well as characterizing the contrast
stability under the presence of environmental changes such as temperature and humidity �uctuations.
Moreover, one of the features of HiCAT is the fast turnaround time for changes between di�erent corona-
graphic modes, which consist of di�erent combinations of optical masks and components on the testbed.
After brie�y describing the overall testbed layout and the involved hardware in Sec. B.2, I go into more
detail about said testbed modes and overall HiCAT operations in Sec. B.3.

B.2 Testbed optical layout and hardware

The HiCAT testbed is installed in a class 1000 cleanroom inside an ambient-air enclosure mounted on a
�oating optical table shown in Fig. B.1, left, and the open testbed is shown in Fig. B.1, right. The tem-
perature and humidity inside the enclosure are controlled with a valve-regulated �ow of dry air, injected
through air di�users to reduce turbulence. The current semi-unfolded layout of the testbed is displayed
in Fig. B.2. The dotted-border regions in this schematic indicate the di�erent observatory components as
realized on HiCAT. The light source module on the top left is located in a cleanroom right next to the
HiCAT room shown in Fig. B.1. It allows for a choice between a monochromatic laser diode at 640 nm
and a supercontinuum laser source for broadband operations through a color �lter wheel. Optical �bers
connect the light source with the beam launcher installed on the testbed.

The �rst accessible pupil plane is populated with a mount for the pupil mask in which various laser-
cut aperture mask designs can be mounted with a magnetic three-point mount. The following pupil plane
after an unused focus contains the IrisAO 37-segment deformable mirror. In the next reimaged pupil plane,
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Flat mirror

DM2

Segmented DMDM1
FPMLS

Figure B.1: Left: HiCAT enclosure in its cleanroom, mounted on a �oating optical table. The theodolite in the
bottom left is used for �ne alignments during component changes. Right: Frontal view of the HiCAT
testbed with unmounted enclosure panels. The light source injection unit is located in the far right
corner and is not visible in this image. The white wide cables belong to the three DMs installed on the
testbed (the two Boston continuous DMs to the left and the IrisAO segmented DM to the right; DM1
and the segmented DM are seen from the back). The red cylindrical pieces are various CMOS camera
models by ZWO that are used both as science and pupil cameras, as well as the detector for the Zernike
wavefront sensor and as alignment cameras in the Michelson interferometers. The testbed mode in this
image is a “segmented CLC” mode where the apodizer is replaced by a high-quality �at mirror.

there is the mount intended for the apodizer in the APLC. Due to the use of easily mountable bonding cells,
the optic mounted in this plane can easily be exchanged for any new apodizer or a high-quality �at mirror
for CLC operations. The next pupil plane accommodates the �rst of the two continuous-surface Boston
Michromachines DMs (DM1) which is followed by the second such DM (DM2) mounted ∼30 cm out of
pupil. The refocused beam �nds its way to the re�ective focal-plane mask, where the light rejected by
the coronagraph passing through the central hole travels into the low-order wavefront sensing system
(LOWFS; Pourcelot et al. 2022, 2021, 2020). A �ip-in mirror right before the FPM serves as a pickup for a
phase retrieval camera (Brady et al. 2019, 2018). The light re�ecting o� the FPM and thus staying in the
coronagraphic system passes through a transmissive Lyot stop in the next pupil plane before entering the
equivalent of the science instrument. A beam-splitter divides the light between a pupil imaging arm and
the focal-plane image on the imaging camera.

B.3 Operations and testbed modes

Over time, HiCAT has evolved into a versatile testbed that supports several di�erent coronagraphic modes
as well as WFS&C techniques. While the implemented sensing and control techniques allow us to do a
quantitative comparison in terms of their performance, limiting factors, and advantages and disadvan-
tages with regards to their implementation (Will 2021), the various coronagraphic installations, or “testbed
modes”, are used to re�ne our understanding of the di�erent limitation factors on a high-contrast testbed.

The basic operational mode of HiCAT today is to use the pair-wise estimator together with the stroke
minimization controller to obtain dark holes with the process described in Chap. 4.3. This WFS&C strategy
is used as the benchmark against which all other sensing and control methods are compared to. While the
workhorse coronagraph of HiCAT is an APLC, including a real (controllable) segmented pupil, it is possible
to perform all experiments on HiCAT in several di�erent testbed modes, with di�erent permutations of
optical components installed. A visual representation of the current most important testbed modes is
shown in Fig. B.3. By running WFS&C experiments in such di�erent setups, we are exploring di�erent
parameters and performances in these modes. To be able to do such comparative work, we needed to de�ne
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Unsegmented CLC

ಜ�� ಜ�� ಜ� � � �� ��
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Segmented CLCUnsegmented APLC

Figure B.3: Three of the di�erent testbed modes in which HiCAT can be operated. The experimental DH results
in the unsegmented modes (left and center) were obtained without the IrisAO segmented DM installed
in the beam, the segmented mode (right) does include the segmented DM. All the DHs were obtained
with a WFS&C loop using PW and stroke minimization. We note how the angular scale in the left two
images is indicated in units of _/�0?>3 , while the right DH is shown in units of _/�!( . At the time of
writing, the best monochromatic contrast on HiCAT has been achieved in the segmented CLC mode
(right), with an average contrast of 2 × 10−8 in a DH from 6 − 10_/�!( . Not shown is the anticipated
“full” testbed mode of HiCAT, the segmented APLC.

ways to switch back and forth between the di�erent testbed modes without making each such mode swap
take up too much time. I invested a lot of work in de�ning these procedures, including how to remove
di�erent hardware components, in which order to remove and to install them, and how to restore the
performance once such a major hardware change is performed. The work I contributed to these e�orts
lead to a standard turnaround time between two testbed modes of no more than one day, including the
basic testbed recalibration. With a �ner recalibration performed one day after the mode swap, after the
testbed has had time to settle, we recover the best testbed performance within 36 hours after starting the
hardware change.

Over time, HiCAT has seen plenty of such mode swaps, with 11 of them alone happening in the time
that I worked with the Makidon lab team. A timeline of the di�erent HiCAT testbed modes and WFS&C
activities from the beginning of 2017 until the end of 2022 is illustrated in Fig. B.4. The di�erent testbed
modes shown in Fig. B.3 (unsegmented CLC, segmented CLC, unsegmented APLC) are color-coded in this
�gure, with a distinction being made between aplc1 and aplc2, because two di�erent apodizer designs were
used in these two modes. The small inset images are a visual representation of the pupil in each respective
testbed mode. We note how the segmented CLC mode prior to 2019 was using a circular entrance pupil,
while the segmented CLC mode after 2019 used a hexagonally outlined entrance pupil mask as described
in Chap. 4.3.1.

Apart from the di�erent hardware changes that happened over time, there were also a lot of changes
and additions in the types of algorithms that are used to perform experiments on HiCAT. The �rst al-
gorithm to dig a DH algorithm that was implemented and used until early 2019 was the speckle nulling
technique (Leboulleux et al. 2017a; Trauger et al. 2004). In 2018, the estimator called COronagraphic Focal-
plane waveFront Estimation for Exoplanet detection (COFFEE; Paul et al. 2014a, 2013) was successfully
implemented on HiCAT using a segmented CLC with a circular pupil (Leboulleux et al. 2020). In April
of 2019, the now routinely used WFS&C strategy consisting of PW sensing and stroke minimization was
implemented. With the end of 2020, the �rst experiments for the maintenance of a high-contrast DH have
been enabled (Redmond et al. 2020, 2021, 2022). Early 2021 saw the addition of standard EFC (Give’on et al.
2007), Kalman Filters (Riggs et al. 2016; Gro� & Kasdin 2013) and wavefront control through algorithmic
di�erentiation (Will et al. 2022, 2021a,b).

The main interest of the operational developments of HiCAT and my involvement in them was to have a
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robustly functioning testbed on which we can compare results from one day to another, across many weeks
and months. In my WFE tolerancing work that I presented in this thesis, a core point was to investigate
whether the developed methods are in fact applicable to the real HiCAT system. I started conducting
these experiments in late 2020, the successful results of which are presented in Chap. 4. By developing
numerical simulations for the testbed, devising processes for hardware changes and installations, designing
and running experiments on HiCAT, I have worked on all key aspects that constitute a high-contrast
imaging testbed project.
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Acronyms

ACE Ames Coronagraph Experiment

ADI angular di�erential imaging

ANDROMEDA ANgular Di�eRential OptiMal Exoplanet Detection Algorithm

AO adaptive optics

API application programming interface

APLC apodized pupil Lyot coronagraph

AVC apodizer vortex coronagraph

CA core accretion

CDI coherent di�erential imaging

CGI Coronagraph Instrumnet

CL closed-loop

CLC classical Lyot coronagraph

COFFEE COronagraphic Focal-plane wave-Front Estimation for Exoplanet detection

DH dark hole

DM deformable mirror

DMVC deformable-mirror-supported vortex coronagraph

dOTF di�erential optical transfer function

DST Decadal Survey Testbed

DZ dark zone

E2E end-to-end

ECLIPS Extreme Coronagraph for Living Planetary Systems

EFC electric �eld conjugation

ELASTIC Estimation of Large Amplitude Subaperture Tip-tilt by Image Correlation

ELT Extremely Large Telescope

ESA European Space Agency

ESO European Southern Observatory

ExEP Exoplanet Exoploration Program
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FP focal plane

FPM focal-plane mask

FQPM four-quadrant phase mask [coronagraph]

GI gravitational instability

GMT Giant Magellan Telescope

GPCT General Purpose Coronagraph Testbed

GPI Gemini Planet Imager

GPIES Gemini Planet Imager Exoplanet Survey

GPR Geometric Phase Retrieval

GRD Groupe Recherche et Développement

HabEx Habitable Exoplanet Observatory

HARMONI High Angular Resolution Monolithic Optical and Near-infrared Integral �eld
spectrograph

HCG HabEx Coronagraph

HCI high-contrast imaging

HCIT High-Contrast Imaging Testbed

HCST High-Contrast Spectroscopy Testbed for Segmented Telescopes

HDA Hybrid Diversity Algorithm

HiCAT High-contrast imager for Complex Aperture Telescopes [testbed]

HLC hybrid Lyot coronagraph

HST Hubble Space Telescope

IFS integral �eld spectrograph

IR infrared

ITM Integrated Telescope Model

IWA inner working angle

JOST JWST Optical Simulation Testbed

JPL Jet Propulsion Laboratory

JWST James Webb Space Telescope

KPIC Keck Planet Imager and Characterizer

L2 Lagrange point 2

LAM Laboratoire d’Astrophysique de Marseille

LAPD linearized analytic phase diversity

LBT Large Binocular Telescope
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LBTI Large Binocular Telescope Interferometer

LOCI locally optimized combination of images

LOWFS low-order wavefront sensor

LS Lyot stop

LSB least signi�cant bit

LUVOIR Large UltraViolet Optical InfraRed Surveyor

MagAO-X Magellan telescope extreme adaptive optics

MAORY Multi-conjugate Adaptive Optics RelaY

MC Monte Carlo

METIS Mid-infrared ELT Imager and Spectrograph

MICADO Multi-AO Imaging Camera for Deep Observations

MIRI Mid-Infrared Instrument

NASA National Aeronautics and Space Administration

NIRCam Near Infrared Camera

OAP o�-axis parabola

OBWFS out-of-band wavefront sensor

ODI orbital di�erential imaging

OL open-loop

OMC Occulting Mask Coronagraph [testbed]

ONERA O�ce National d’Etudes et Recherches Aérospatiales

OOP object-oriented programming

OPERA Optimized Phase Retrieval Algorithm

OTE Optical Telescope Element

OTF optical transfer function

OWA outer working angle

PAPLC phase-apodized pupil Lyot coronagraph

PASTIS Pair-based Analytical model for Segmented Telescope Imaging from Space

PCS Planetary Camera and Spectrograph

PDI polarization di�erential imaging

PFI Planet Formation Imager

PIAA phase-induced amplitude apodization [coronagraph]

PIAACMC phase-induced amplitude apodization complex mask coronagraph
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PP pupil plane

PSD power spectral density

PSF point spread function

PTT piston-tip-tilt

PW pair-wise [estimator]

R&R Roddier and Roddier [coronagraph]

RMOL Russell B. Makidon Optics Laboratory

RST Roman Space Telescope

RV radial velocity

SCC self-coherent camera

SCDA segmented coronagraph design analysis

SCExAO Subaru Coronagraphic Extreme AO [system]

SDI spectral di�erential imaging

SEAL Santa Cruz Extreme AO Lab

SHINE SpHere INfrared survey for Exoplanets

SM stroke minimization

SNR signal-to-noise ratio

SOC Science and Operations Center

SPC shaped pupil coronagraph

SPEED Segmented Pupil Experiment for Exoplanet Detection

SPHERE Spectro-Polarimetric High-contrast Exoplanet REsearch

SSI Starshade Instrument

STScI Space Telescope Science Institute

TBT Testbed Telescope

THD2 Très Haute Dynamique 2 [testbed]

TMA three-mirror anastigmat

TMT Thirty Meter Telescope

UV ultraviolet

UVOIR ultraviolet/optical/infrared

vAPP vector apodizing phase plate [coronagraph]

VC vortex coronagraph

VLT Very Large Telescope
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VLTI Very Large Telescope Interferometer

WF wavefront

WFE wavefront error

WFS wavefront sensor

WFS&C wavefront sensing and control

xAO extreme adaptive optics

ZWFS Zernike wavefront sensor
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English summary

For centuries, humans have wondered and imagined what lies beyond our home planet, the Earth. Early
philosophers asked themselves whether planets orbiting stars other than our Sun could exist. Concrete
scienti�c theories addressing this question emerged in the 19Cℎ and early 20Cℎ centuries, but in 1995, the
�rst detection of a planet orbiting a star that is similar to our Sun led us to seeing these extrasolar planets,
exoplanets, in a completely new way. Not only are there many more planetary systems out there than just
our own, but the diversity in planets has been found to be very di�erent compared to what we know about
the bodies in our solar system. With so many foreign worlds out there, the question arises: is there other
life out there too?

Detecting exoplanets requires sophisticated instruments that capture the signals of these hard-to-
detect objects: since it is easier to observe the much brighter host star rather than a planet directly, the
�rst detection methods that �ourished and unveiled thousands of new bodies are what we call indirect
detection methods. These do not collect the light of the planet directly, instead they measure e�ects that
let us infer the existence of one or more planets in orbit around a star. The two most fruitful methods in
this sense are planetary transits1 and the radial velocity method2. When an exoplanet transits its host star
through our line of sight toward that star, we can detect the dimming this causes in the star light, from
which we can determine the exoplanet’s existence and its radius. The radial velocity detection method
observes a periodic shift in the wavelength of the light that reaches us from the star, which is caused by its
back-and-forth motion from the gravitational tug the planet exerts on it; this also tells us an approximate
mass of the exoplanet.

Thousands of exoplanets have been detected with such indirect methods, but to be able to characterize
these distant worlds with more than just their radius and mass, we need to gain direct access to the light
they re�ect or emit themselves, rather than using the host star as a proxy. This is enabled by a direct
detection method, which blocks the overwhelming light from the star and takes images of the planets
themselves. This allows us to do a spectral analysis of their atmospheres, telling us what molecules they
contain and whether they would be able to support alien life. This method is called direct imaging, and
there are a couple of hurdles to overcome to be able to use it to detect exoplanets. First, when observed
from a distance, these planets are very close to their host star, with projected separations in the sky of one
arcsecond to several milli-arcseconds. Resolving the planet as an individual point source thus requires a
good angular resolution, which is enabled by telescopes with very large mirrors. Second, exoplanets are
very faint, and their light gets lost in the glare of their host star, much like trying to see a lightning bug
right next to a bright streetlight. This brightness ratio, or contrast, depends on the wavelength we observe
at: in the infrared, where young, giant planets still glow from their own formation process, this brightness
ratio is around 10−5 – 10−6. In visible wavelengths, where planets re�ect the light from their host star,
this ratio becomes even harder to overcome as it is as wide as 10−10. Assuming that a planet needs to
closely resemble the Earth to have a chance to support life, we need to be looking for rocky and relatively
small planets, orbiting a main-sequence star like the Sun at a distance of one astronomical unit, which
is the distance between the Sun and the Earth. An important goal of direct imaging is thus to �nd such
“exoEarths”. The instruments capable of such observations will need to be able to reach a contrast of 10−10
in re�ected light in the visible wavelength range, at an angular separation of 0.1 arcsec.

To overcome these two challenges that are imposed by the fundamental, physical behavior of light,
astronomers use complex high-contrast imaging instruments that provide, as their name suggests, high-
contrast observation capabilities at small angular resolution. There are three main components in such an

1https://exoplanets.nasa.gov/alien-worlds/ways-to-find-a-planet/#/2
2https://exoplanets.nasa.gov/alien-worlds/ways-to-find-a-planet/#/1
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instrument that each contribute to the overall imaging performance. The �rst of them, the coronagraph, is
a set of optical masks that aim to reduce the overall glare of the star while preserving the light coming from
the planet. The �rst concept for such a coronagraph was successfully built and used by French astronomer
Bernard Lyot in 1930, when he used a combination of a focal-plane mask and what we today call a Lyot stop
to block out the disk of the Sun in order to observe the faint solar corona. It was only decades later that
scientists adapted such instruments to be pointed at other stars, allowing us to observe faint circumstellar
disks - and planets.

The second important component of a high-contrast instrument arises from the distortions light is
exposed to before it reaches the detector. While unobstructed light from a distant, point-like object travels
as a plane wave, it can encounter sources of aberrations along the way that introduce awavefront error. This
can happen due to the Earth’s atmosphere, in which temperature and pressure gradients, as well as wind,
cause signi�cant turbulence to deteriorate the quality of the �nal image signi�cantly. Moreover, there are
sources of wavefront errors internal to the telescope that also contribute to this e�ect, like misalignments
of various components in the optical system, or polishing errors on optical surfaces. The component that
mitigates these e�ects to a certain degree is awavefront sensing and control system. It consists of a wavefront
sensor that detects the aberrations introducing the errors, and control components like deformable mirrors
that apply corrections by adapting their own surface shapes according to the measurement of the sensor.
Together with the coronagraph, such control loops are used to modulate the light in a designated part of
the image plane, creating a dark area of very high contrast, the dark hole.

The third big component of high-contrast imaging is post-processing. While it is preferable to sepa-
rate the planet and star light with an appropriate optical system before they get detected, there are data
reduction methods that allow us to improve the detected contrast in the �nal image, pushing the limit for
detection even further.

With these enabling technologies, there has been an abundance of exciting science results, for example
from circumstellar disk images like the ones shown in Fig. 1.2 in Chap. 1. The �rst exoplanet detection
with direct imaging was done in 2004, and several others followed. Observations of warm, giant exoplanets
like the ones shown in Fig. 1.3 are being used to constrain their planetary orbits and learn about their
atmospheres. However, with the instruments we have today, we are not able to see small, rocky exoplanets
that might potentially harbor life. Even with the 30 m–class ground-based telescopes coming online in the
mid 2030s, also called extremely large telescopes, or ELTs, we will be limited to contrast levels that will
at best reach 10−9, precluding us from seeing Earth-like exoplanets around Sun-type stars. To open the
window to those objects, we have to put our telescopes into space to avoid the adverse in�uence of the
Earth’s atmosphere; and we have to develop more powerful high-contrast imaging instruments than what
we use today.

Sending a telescope capable of exoEarth imaging to space poses a signi�cant set of challenges. To
achieve an angular resolution and required sensitivity that are su�cient to image a faint point source that
is only 0.1 arcsec away from a bright star, the observatory needs to contain a primary mirror diameter
of several meters, which yields a very large light collecting area. The engineering solution to build large
apertures of more than ∼4 m in space is to compose them of individual, hexagonal segments, assembled
to form the total primary mirror. This makes them lighter than monolithic equivalents, easier to manufac-
ture, and they can also be folded up to �t into the fairing of the rocket that brings them into space. The �rst
segmented telescope sent to space will be the James Webb Space Telescope, with 18 segments combined
to give a mirror with a total diameter of 6.5 meters, and it will provide us with valuable learning opportu-
nities for future, even more ambitious segmented telescopes. While a large telescope aperture gives us the
necessary angular resolution and sensitivity, the overall architecture of the high-contrast imaging system
de�nes what contrast levels we can achieve during observations.

There is a whole range of coronagraph designs that are suitable for direct imaging from space, but
each of them comes with trade-o�s in their respective capabilities: di�erent inner and outer working angles
(how close or far from the star they can observe), planet throughput (how much of the planet light they lose
while eliminating the stellar light) or compatibility with segment gaps in the telescope pupil. However,
they are all conceived to be able to reach 10−10 contrast under perfect conditions - without aberrations and
without temporal evolution of the optical system. While there is no fast-evolving atmosphere in space that



ENGLISH SUMMARY 197

introduces aberrations, there are still several signi�cant sources of wavefront errors on a space telescope,
which the coronagraph is very sensitive to. Imperfections in the manufacturing of the optical components
and surfaces introduce distortions that an on-board wavefront sensing and control system can correct for
to a certain extent. More aberrations are introduced by thermally and mechanically induced deformations
of the whole observatory structure, which degrade the contrast. This is especially true for deformations
originating from the backplane structure of the primary mirror, which is holding together the array of
individual segments. Some of these wavefront errors dynamically evolve during the observations and
the question arises whether we can keep such a large, segmented telescope stable enough so that the
contrast does not degrade to the point where we become blind to exoEarths. The goal of this thesis is to
develop methods to characterize the necessary limits for these wavefront error variations, in particular
for the distortions introduced by primary mirror segments, and to prepare future space telescopes for the
e�cient use of high-contrast instruments in space.

Chapter 2: The theoretical basis of wavefront error tolerancing for large segmented tele-

scopes

Misalignments between the segments of a large telescope contaminate the images of coronagraphic obser-
vations with blobs of light, so-called speckles, in exactly the areas where we want to observe exoplanets,
the dark hole. Before we can decide how to mitigate this problem, it is important to characterize the exact
e�ect of segment-level misalignments on the coronagraphic contrast. The PASTIS model for propagations
of segmented aberrations through a coronagraph converts these wavefront errors truthfully into an av-
erage contrast number and provides an analytical basis that allows us to invert the problem. Instead of
asking: “What is the contrast under G amount of aberrations?”, we ask: “What level G of wavefront errors
can we tolerate if we need a speci�c contrast for our observation?” This chapter shows how to derive these
wavefront error tolerances with analytical equations and introduces their statistical interpretation over a
range of many di�erent misalignment realizations of the segmented mirror. A major result that emerged
from the work in this chapter is that not all segments on a segmented telescope carrying a coronagraph
need to be constrained equally strictly.

Chapter 3: Numerical simulation tools and simulated tolerancing results

Numerical simulators are an indispensable tool for the demonstration of an idea on a carefully implemented
model. The PASTIS tolerancing package is a software unit written in Python that performs a tolerancing
analysis as presented in Chap. 2. It contains a range of optical simulators that reproduce the telescope
geometry and coronagraph of several observatory designs, which can be connected to the calculations of
wavefront error tolerances. It also allows us to connect simulators not contained in this package to perform
the analysis. Applying these theoretical and numerical methods to the concrete case of a coronagraph on
the James Webb Space Telescope gives us an idea of how the contrast performance of this instrument
relates to potential misalignments on the primary mirror of this telescope. Aiming closer to home, this
chapter also presents simulated tolerancing experiments on the HiCAT testbed.

Chapter 4: Experimental validations of segmented wavefront error tolerances on HiCAT

The HiCAT testbed at STScI is an optical laboratory experiment for the demonstration of technologies for
high-contrast imaging from space. It contains a Lyot coronagraph, two continuous deformable mirrors for
wavefront sensing and control, and a segmented deformable mirror that reproduces the optical e�ects of
a large, segmented primary mirror. Its 37 segments can be controlled individually in piston, tip and tilt to
introduce misalignments. This chapter shows the results from experiments with this setup in which the
analytical equations developed in Chap. 2 are con�rmed on a real high-contrast instrument. The conclu-
sions from this work allow us to determine how well we need to control the segmented deformable mirror
if we want to reach contrast levels that lie beyond the current performance of HiCAT.

Chapter 5: Keeping large, segmented telescopes in space stable enough for exoEarth imaging

The analytical tolerancing framework developed in Chap. 2 is in fact not limited to misalignment e�ects
from segmented mirrors. The method is equally applicable to wavefront errors that span the entire tele-
scope pupil at once, or to treat speci�c aberrations that arise from thermal and mechanical deformations,
found through modeling. This opens a whole slew of applications for this very fundamental treatment of
aberrations. This includes going a step further, looking more closely at how certain wavefront aberrations
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evolve over time, and what would be appropriate measures to counteract the e�ect of evolving aberrations
on the coronagraphic contrast. This chapter �rst presents some quantitative results from the tolerancing
of thermally induced wavefront errors, and then showcases the role of such methods in the overall design
of wavefront sensing and control strategies of large, segmented telescopes in space.

Appendix A: Demonstrating wavefront sensing and control on a segmented testbed

Before any observation with a segmented telescope can start, the segment misalignments need to be re-
duced by means of wavefront sensing and control. For observations that include a coronagraph, the seg-
ments must be aligned to a level equal to or better than required by the tolerancing analysis developed
in Chap. 2. The segmented, but non-coronagraphic JOST testbed at STScI uses a wavefront sensing and
control algorithm called LAPD to �nd the best alignment solution. This chapter presents the results of
LAPD experiments on JOST on a wide �eld of view with the particular goal to align the segmented mirror
of the testbed.

Appendix B: Coronagraphy on a segmented-aperture laboratory testbed

Many coronagraphs and wavefront sensing and control technologies have been developed to reach a high
contrast on space telescopes. They usually work best in the perfect case of circular apertures that are not
obstructed by secondary mirrors and spiders, and under perfect conditions when there are no wavefront
errors present in the optical system. However, real observatories contain a whole range of features that
make reaching a high-contrast DH hard, like the ones listed above. The goal of the HiCAT testbed is to
investigate how to bring various components of high-contrast instruments like sensors, controllers and
starlight suppression techniques together into an e�ciently functioning system operating on obscured
apertures that include segmentation. This chapter lists the main motivation and design concept of this
testbed, and explains the various testbed setups that have been used to conduct wavefront sensing and
control experiments with a segmented-aperture coronagraph.

The ultimate reason for the e�orts put into instrumentation for high-contrast imaging is to improve
the scienti�c results we can obtain with our telescopes. To learn about the existence, but also the overall
occurrence of Earth-like exoplanets in our galactic neighborhood, what we seek to increase is the exoplanet
candidate yield, meaning we need to �nd a large enough number of potentially habitable planets to start
making more global conclusions, such as whether the Earth is a rather typical planet in our galaxy or not.
While there is currently no space telescope that uses actively controlled coronagraphs, future missions
will give us that capability. The monolithic 2.4 m Roman Space Telescope will be the �rst observatory in
space to �y deformable mirrors as an intermediate milestone, and future missions like the segmented 15 m
LUVOIR telescope concept will deploy the means for an exoEarth-imaging observatory.

I sincerely thank Eimear O’Reilly, Mia Mayer and Christopher Moriarty for proof-reading my thesis, and in
particular this summary.



Résumé en français

Depuis des siècles, les humains s’interrogent et imaginent ce qui se trouve au-delà de notre planète, la
Terre. Les premiers philosophes se sont demandé s’il existait des planètes orbitant autour d’autres étoiles
que notre Soleil. Si des théories scienti�ques concrètes répondant à cette question ont vu le jour au 19e et
au début du 20e siècle, la première détection d’une planète en orbite autour d’une étoile similaire à notre
Soleil en 1995 nous a amené à voir ces planètes extrasolaires, les exoplanètes, d’une manière totalement
nouvelle. Non seulement il existe beaucoup plus de systèmes planétaires que le nôtre, mais la diversité des
planètes s’est avérée très di�érente de ce que nous connaissons des corps de notre système solaire. Avec
un tel nombre de mondes extrasolaires, une question se pose : y a-t-il aussi de la vie ailleurs ?

La détection d’exoplanètes nécessite des instruments sophistiqués pour capter les signaux de ces objets
di�ciles à identi�er : comme il est plus facile d’observer directement l’étoile hôte, beaucoup plus brillante,
plutôt qu’une planète, les premières méthodes de détection qui ont émergé et dévoilé des milliers de nou-
veaux objets sont ce que nous appelons des méthodes de détection indirectes. Celles-ci n’enregistrent pas
directement la lumière de la planète, mais mesurent des e�ets qui nous permettent de déduire l’existence
d’une ou plusieurs planètes en orbite autour d’une étoile. Les deux méthodes les plus fructueuses dans
ce sens sont les transits planétaires3 et les vitesses radiales4. Un transit se produit lorsqu’une exoplanète
traverse notre ligne de visée vers son étoile hôte. Nous pouvons alors détecter l’atténuation provoquée
dans la luminosité de l’étoile, à partir de laquelle nous pouvons déterminer l’existence et le rayon de
l’exoplanète. La méthode de détection par vitesse radiale permet d’observer un décalage périodique de
la longueur d’onde de la lumière qui nous parvient de l’étoile. Ce décalage est causé par le mouvement
de va-et-vient de l’étoile induit par la force gravitationnelle que la planète exerce sur elle ; cela procure
également une approximation de la masse de l’exoplanète.

Des milliers d’exoplanètes ont été détectées à l’aide de ces méthodes indirectes. Cependant, pour pou-
voir caractériser ces mondes lointains autrement que par leur rayon et leur masse, nous devons avoir un
accès direct à la lumière qu’ils re�ètent ou émettent eux-mêmes, plutôt que d’utiliser l’étoile hôte comme
intérimaire. Ceci est possible grâce à une méthode de détection directe, qui consiste à bloquer la lumière
dominante de l’étoile et à imager les planètes elles-mêmes. Cela permet d’e�ectuer une analyse spectrale
de leur atmosphère, nous indiquant leur composition moléculaire et si elles sont susceptibles d’accueillir
une vie extraterrestre. Cette méthode, appelée imagerie directe, nécessite de surmonter quelques obstacles
a�n de l’utiliser pour détecter des exoplanètes. Premièrement, lorsqu’elles sont observées à distance, ces
planètes sont très proches de leur étoile hôte, avec des séparations projetées dans le ciel d’une seconde
d’arc à plusieurs millisecondes d’arc. La résolution de la planète en tant que source ponctuelle individuelle
nécessite donc une haute résolution angulaire, permise par les télescopes dotés de très grands miroirs.
Deuxièmement, les exoplanètes sont très peu lumineuses, et leur lumière se perd dans l’éblouissement de
leur étoile hôte, telles des lucioles à côté d’un lampadaire. Ce rapport de luminosité, ou contraste, dépend
de la longueur d’onde d’observation : dans l’infrarouge, où les jeunes planètes géantes brillent encore de
leur propre processus de formation, ce rapport de luminosité est d’environ 10−5 – 10−6. Dans les longueurs
d’onde visibles, où les planètes re�ètent la lumière de leur étoile hôte, ce rapport devient encore plus di�-
cile à surmonter puisqu’il peut atteindre 10−10. En supposant qu’une planète doive ressembler étroitement
à la Terre pour avoir une chance d’abriter la vie, un objectif important de l’imagerie directe est de trouver
une planète rocheuse et relativement petite, orbitant autour d’une étoile de la séquence principale comme
le Soleil à une distance d’une unité astronomique, qui est la distance entre le Soleil et la Terre. C’est à

3https://exoplanets.nasa.gov/alien-worlds/ways-to-find-a-planet/#/2
4https://exoplanets.nasa.gov/alien-worlds/ways-to-find-a-planet/#/1
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partir de ces propriétés physiques de ces « exoterres » que nous déduisons les objectifs instrumentaux de
contraste de 10−10 dans le visible à une séparation angulaire de 0,1 seconde d’arc.

Pour surmonter ces deux dé�s imposés par le comportement physique fondamental de la lumière,
les astronomes utilisent des instruments complexes d’imagerie à haut contraste qui fournissent, comme
leur nom l’indique, des capacités d’observation à haut contraste avec une haute résolution angulaire. Un
tel instrument comporte trois composants principaux qui contribuent chacun à la performance globale
de l’imagerie. Le premier, le coronographe, est un ensemble de masques optiques qui visent à réduire
l’éblouissement global de l’étoile tout en préservant la lumière provenant de la planète. Le premier concept
d’un tel coronographe a été construit et utilisé avec succès par l’astronome français Bernard Lyot en 1930. Il
a utilisé une combinaison d’un masque en plan focal et de ce que nous appelons aujourd’hui un diaphragme
de Lyot pour bloquer le disque du Soleil a�n d’observer la faible couronne solaire. Ce n’est que plusieurs
décennies plus tard que les scienti�ques ont adapté ces instruments pour les diriger vers d’autres étoiles
de manière à observer de faibles disques circumstellaires et des planètes.

La deuxième composante importante d’un instrument à haut contraste provient des distorsions aux-
quelles la lumière est exposée avant d’atteindre le détecteur. Alors que la lumière provenant d’un objet
ponctuel distant se déplace sous la forme d’une onde plane, elle peut rencontrer en chemin des sources
d’aberrations qui introduisent des erreurs de front d’onde. Cela peut être causé par l’atmosphère terrestre
dans laquelle les gradients de température et de pression, ainsi que le vent, provoquent des turbulences
importantes qui détériorent signi�cativement la qualité de l’image �nale. De plus, il existe des sources
d’erreurs de front d’onde internes au télescope qui contribuent également à cet e�et, comme les mau-
vais alignements des di�érents composants du système optique, ou les erreurs de polissage des surfaces
optiques. Le dispositif qui atténue ces e�ets est un système d’analyse et de contrôle du front d’onde. Il se com-
pose d’un analyseur de front d’onde qui détecte les aberrations introduisant les erreurs, et de composants
de contrôle tels que des miroirs déformables qui appliquent des corrections en adaptant la forme de leur
propre surface en fonction des mesures de l’analyseur. Avec le coronographe, ces boucles de contrôle sont
utilisées pour moduler la lumière dans une partie désignée du plan image, créant ainsi une zone sombre
de très haute contraste, le « dark hole ».

Le troisième grand élément de l’imagerie à haut contraste est le traitement de données. Bien qu’il
soit préférable de séparer la lumière de la planète et de l’étoile avec un système optique approprié avant
la détection, il existe des méthodes de réduction des données a�n d’améliorer le contraste détecté dans
l’image �nale et ainsi repousser la limite de détection.

Ces technologies ont permis d’obtenir une abondance de résultats scienti�ques passionnants, par
exemple dans le domaine des disques circumstellaires (voir �gure 1.2 du chapitre 1). La première détection
d’exoplanète par imagerie directe a été réalisée en 2004, et plusieurs autres ont suivi. Les observations
d’exoplanètes géantes et chaudes comme celles de la �gure 1.3 sont utilisées pour contraindre leur orbite
planétaire et en apprendre davantage sur leur atmosphère. Cependant, avec les instruments dont nous
disposons aujourd’hui, nous ne sommes pas en mesure de voir les petites exoplanètes rocheuses qui pour-
raient potentiellement abriter la vie. Même avec les télescopes terrestres de classe 30 m qui seront mis en
service au milieu des années 2030, également appelés « extremely large telescopes », ou ELTs, nous se-
rons limités à des niveaux de contraste qui atteindront au mieux 10−9, ce qui ne permettra pas de voir des
exoplanètes semblables à la Terre autour d’étoiles de type solaire. Pour ouvrir la possibilité de detecter ces
objets, nous devons envoyer nos télescopes dans l’espace a�n d’éviter l’in�uence néfaste de l’atmosphère
terrestre, et nous devons développer des instruments d’imagerie à haut contraste plus performants que
ceux que nous utilisons aujourd’hui.

L’envoi dans l’espace d’un télescope capable d’imager des exoterres pose de nombreux dé�s. Pour
atteindre une résolution angulaire et une sensibilité su�sante pour imager une faible source ponctuelle
située à seulement 0,1 seconde d’arc d’une étoile brillante, l’observatoire doit inclure un miroir primaire
de plusieurs mètres de diamètre, pour avoir une très grande surface de collecte de la lumière. La solution
technique pour construire de grandes ouvertures de plus de 4 m dans l’espace consiste à les composer de
segments hexagonaux individuels, assemblés pour former le miroir primaire total. Cela les rend plus légers
que les équivalents monolithiques, plus faciles à fabriquer, et ils peuvent également être repliés pour se
loger dans la fusée qui les emporte dans l’espace. Le premier télescope segmenté envoyé dans l’espace
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sera le James Webb Space Telescope, avec 18 segments combinés pour donner un miroir d’un diamètre
total de 6,5 mètres. Il nous fournira de précieuses opportunités d’apprentissage pour les futurs télescopes
segmentés encore plus ambitieux. Alors qu’une grande ouverture de télescope nous donne la résolution
angulaire et la sensibilité nécessaires, l’architecture globale du système d’imagerie à haut contraste dé�nit
les niveaux de contraste que nous pouvons atteindre pendant les observations.

Il existe toute une série de coronographes adaptés à l’imagerie directe depuis l’espace, mais chacun
d’entre eux s’accompagne de compromis dans ses capacités respectives : di�érents angles de travail in-
ternes et externes (à quelle distance de l’étoile ils peuvent observer, anglais : « inner and outer working
angle »), transmission hors axe (quelle quantité de lumière planétaire ils perdent en éliminant la lumière
stellaire, anglais : « planet throughput ») ou compatibilité avec les segments de la pupille du télescope. Ils
sont néanmoins tous conçus pour pouvoir atteindre un contraste de 10−10 dans des conditions parfaites
- sans aberrations et sans évolution temporelle du système optique. Bien qu’il n’y ait pas d’atmosphère
à évolution rapide dans l’espace qui introduise des aberrations, il existe encore plusieurs sources impor-
tantes d’erreurs de front d’onde pour un télescope spatial, auxquelles les coronographes sont très sensibles.
Les imperfections dans la fabrication des composants et des surfaces optiques introduisent des distorsions
qu’un système embarqué d’analyse et de contrôle du front d’onde peut corriger dans une certaine mesure.
D’autres aberrations sont introduites par des déformations thermiques et mécaniques de la structure de
l’observatoire qui dégradent le contraste. Ceci est particulièrement vrai pour les déformations provenant
de la structure maintenant l’ensemble des segments du miroir primaire. Certaines de ces erreurs de front
d’onde évoluent dynamiquement pendant les observations et la question se pose de savoir si nous pouvons
maintenir un télescope segmenté aussi grand su�samment stable pour que le contraste ne se dégrade pas
au point de devenir aveugle aux exoterres. Le but de cette thèse est de développer des méthodes pour
caractériser les limites nécessaires à ces variations d’erreur de front d’onde, en particulier pour les distor-
sions introduites par les segments du miroir primaire, et de préparer les futurs télescopes spatiaux pour
une utilisation e�cace des instruments à haut contraste dans l’espace.

Chapitre 2: La base théorique du tolerancement des erreurs de front d’onde pour les grands

télescopes segmentés

Les désalignements entre les segments d’un grand télescope contaminent les images des observations co-
ronagraphiques avec des tavelures (« speckles ») dans la zone sombre de l’image où nous voulons observer
les exoplanètes (« dark hole »). Avant de pouvoir décider comment atténuer ce problème, il est important
de caractériser l’e�et exact des désalignements des segments sur le contraste coronographique. Le modèle
PASTIS de propagation des aberrations liées aux désalignements entre segments à travers un coronographe
convertit �dèlement ces erreurs de front d’onde en un indice de contraste moyen et fournit une base ana-
lytique qui nous permet d’inverser le problème. Au lieu de se demander : « Quel est le contraste sous une
quantité G d’aberrations ? », nous nous demandons : « Quel niveau G d’erreurs de front d’onde pouvons-
nous tolérer si nous avons besoin d’un contraste spéci�que pour notre observation ? » Ce chapitre montre
comment exprimer ces tolérances d’erreur de front d’onde avec des équations analytiques et présente leur
interprétation statistique sur un ensemble de réalisations de désalignements du miroir segmenté. L’un des
principaux résultats du travail e�ectué dans ce chapitre est que tous les segments d’un télescope segmenté
équipé d’un coronographe ne doivent pas être contraints de manière aussi stricte.

Chapitre 3: Outils de simulation numériques et résultats simulés de tolérances

Les simulateurs numériques sont un outil indispensable pour l’étude et la mise en œuvre du tolérancement.
J’ai développé un logiciel écrit en Python qui e�ectue l’analyse de tolérancement présentée au chapitre 2. Il
contient une série de simulateurs optiques qui reproduisent la géométrie du télescope et du coronographe
pour plusieurs modèles de télescopes, qui peuvent être connectés aux calculs de tolérancement des erreurs
de front d’onde. Il permet également d’utiliser des simulateurs qui ne sont pas inclus dans ce logiciel
pour e�ectuer l’analyse. L’application de ces méthodes théoriques et numériques au cas concret d’un
coronographe sur le télescope spatial James Webb nous donne une idée de la manière dont les performances
de contraste de cet instrument sont liées aux désalignements potentiels du miroir primaire du télescope.
Plus près de nous, ce chapitre présente également des expériences de tolérancement simulées sur le banc
HiCAT.
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Chapitre 4: Validations expérimentales du tolérancement des erreurs de front d’onde seg-

mentées sur HiCAT

Le banc HiCAT au STScI est une expérience de laboratoire optique destinée à la démonstration de techno-
logies d’imagerie spatiale à haut contraste. Il contient un coronographe de Lyot, deux miroirs déformables
continus pour la détection et le contrôle du front d’onde, et un miroir déformable segmenté qui repro-
duit les e�ets optiques d’un grand miroir primaire segmenté. Ses 37 segments peuvent être contrôlés
individuellement en piston, en tip et en tilt pour introduire des désalignements. Ce chapitre présente les
résultats d’expériences réalisées avec ce système optique, dans lequel les équations analytiques dévelop-
pées au chapitre 2 sont con�rmées sur un instrument réel à haut contraste. Les conclusions de ce travail
nous permettent de déterminer dans quelle mesure nous devons contrôler le miroir déformable segmenté
si nous voulons atteindre des niveaux de contraste qui se situent au-delà des performances actuelles du
banc HiCAT.

Chapitre 5: Maintenir les grands télescopes segmentés dans l’espace su�samment stables

pour l’imagerie exoterrestre

Le cadre du tolérancement analytique développé au chapitre 2 n’est en fait pas limité aux e�ets de désa-
lignement des miroirs segmentés. La méthode est également applicable aux erreurs de front d’onde qui
s’étendent à toute la pupille du télescope en même temps, ou pour traiter des aberrations spéci�ques qui
proviennent de déformations thermiques et mécaniques, trouvées par modélisation. Cela ouvre toute une
série d’applications pour ce traitement très fondamental des aberrations. Il s’agit notamment d’aller un
peu plus loin, en examinant de plus près comment certaines aberrations du front d’onde évoluent dans le
temps, et quelles seraient les mesures appropriées pour contrer l’e�et de leur évolution sur le contraste co-
ronographique. Ce chapitre présente d’abord quelques résultats quantitatifs du tolérancement des erreurs
de front d’onde induites thermiquement, puis met en évidence le rôle de ces méthodes dans la concep-
tion globale des stratégies d’analyse et de contrôle du front d’onde des grands télescopes segmentés dans
l’espace.

Annexe A: Démonstration de l’analyse et du contrôle du front d’onde sur un banc optique

segmenté

Avant de commencer toute observation avec un télescope segmenté, il faut réduire les désalignements
des segments au moyen de l’analyse et du contrôle du front d’onde. Pour les observations incluant un
coronographe, les segments doivent être alignés à un niveau égal ou supérieur à celui requis par l’analyse
des tolérances développées au chapitre 2. Le banc d’essai JOST segmenté, mais non coronographique, au
STScI utilise un algorithme d’analyse et de contrôle de front d’onde appelé LAPD pour trouver la meilleure
solution d’alignement de ce banc optique. Ce chapitre présente les résultats des expériences LAPD sur JOST
sur un grand champ optique avec pour objectif particulier d’aligner le miroir segmenté du banc.

Annexe B: Coronographie sur un banc optique à ouverture segmentée en laboratoire

De nombreuses technologies de coronographie, d’analyse et de contrôle du front d’onde ont été dévelop-
pées a�n d’atteindre un haut contraste sur les télescopes spatiaux. Leur fonctionnement est généralement
meilleur dans le cas parfait d’ouvertures circulaires non obstruées par des miroirs secondaires, des arai-
gnées, et également dans des conditions parfaites lorsqu’il n’y a pas d’erreurs de front d’onde dans le
système optique. Cependant, les observatoires vrais, qui ne sont pas parfaits, contiennent plusieurs carac-
téristiques qui rendent di�cile l’obtention d’un DH à haut contraste, comme celles énumérées ci-dessus.
L’objectif du banc optique HiCAT est d’étudier comment combiner les divers composants des instruments
à haut contraste, tels que les senseurs, les contrôleurs et les techniques de suppression de la lumière des
étoiles, dans un système fonctionnant e�cacement sur des ouvertures comprenant des obstructions cen-
trales et de la segmentation. Ce chapitre présente les principales motivations, le concept de ce banc optique,
et explique les di�érentes con�gurations du banc qui ont été utilisées pour mener des expériences d’analyse
et de contrôle du front d’onde avec un coronographe à ouverture segmentée.

La raison principale des e�orts déployés dans l’instrumentation pour l’imagerie à haut contraste est
d’améliorer les résultats scienti�ques que nous pouvons obtenir avec nos télescopes. Pour en savoir plus
sur l’existence, mais aussi sur l’occurrence globale d’exoplanètes semblables à la Terre dans notre voisi-
nage galactique, nous cherchons à augmenter le rendement en exoplanètes candidates. Cela signi�e que nous
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devons trouver un nombre su�samment important de planètes potentiellement habitables pour commen-
cer à tirer des conclusions plus globales, par exemple pour déterminer si la Terre est une planète plutôt
typique de notre galaxie ou non. Bien qu’il n’existe actuellement aucun télescope spatial qui utilise de
coronographe à contrôle actif, les futures missions nous donneront cette capacité. Le télescope spatial
monolithique Roman de 2,4 m sera le premier observatoire spatial à utiliser des miroirs déformables, ce
qui constituera une étape intermédiaire. Les missions futures, comme le concept de télescope segmenté
LUVOIR de 15 m, déploieront les moyens d’un observatoire d’imagerie d’exoterres.

My thanks go out to Raphaël Pourcelot for his dedicated help in translating this summary into French.
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Deutsche Zusammenfassung

Seit Jahrhunderten fragt sich die Menschheit, was jenseits unseres Heimatplaneten, der Erde, liegt. Schon
antike Philosophen wollten die Frage beantworten, ob Planeten existieren könnten, die um andere Sterne
kreisen als um unsere Sonne. Die ersten konkreten wissenschaftlichen Theorien zu dieser Problematik
bildeten sich im 19. und dem frühen 20. Jahrhundert, aber die erste Entdeckung eines Planeten auf einer
Umlaufbahn um einen Stern ähnlich zu dem unseren erfolgte im Jahre 1995. Dies zwang uns, diese extra-
solaren Planeten, Exoplaneten genannt, in einem völlig neuen Licht zu sehen. Es stellte sich heraus, dass
es nicht nur viel mehr Planetensysteme gibt als unser eigenes, sondern wir lernten auch, dass die Arten-
vielfalt dieser Planeten weitaus größer ist als jene, die wir von den Himmelskörpern in unserem eigenen
Sonnensystem kennen. Bei so vielen fremden Welten in unserer galaktischen Nachbarschaft stellt sich die
Frage: Gibt es da draußen auch anderes Leben?

Die Detektion von Exoplaneten benötigt ausgeklügelte Instrumente, die das Signal dieser schwer zu
erkennenden Objekte einfangen: Dadurch, dass es so viel einfacher ist, den viel helleren Zentralstern
zu beobachten als einen Planeten, waren die ersten produktiven Methoden, die tausende solcher neuen
Objekte entdeckten, sogenannte indirekte Beobachtungsmethoden. Diese sammeln kein direktes Licht
vom Planeten selbst, sondern messen E�ekte, die es uns ermöglichen, die Existenz eines oder mehrerer
Planeten in der Umlaufbahn um einen Stern abzuleiten. Die zwei ertragreichsten solcher Methoden sind
die Transitmethode5 und die Radialgeschwindigkeitsmethode6. Wenn ein Exoplanet während eines Transits
durch unsere Sichtlinie hindurch an seinem Zentralstern vorbei wandert, dann verringert das die von
uns gemessene Lichtstärke des Sternes. Dieser E�ekt ist messbar und wir können dabei den Radius des
Planeten ermitteln. In der Radialgeschwindigkeitsmethode messen wir die periodische Verschiebung der
Wellenlänge des Lichtes von dem Stern durch den Dopplere�ekt. Diese Verschiebung ergibt sich dadurch,
dass der Planet den Stern mit seinem gravitationellen Ein�uss zu einer Taumelbewegung zwingt. Mit
diesen Daten lässt sich eine ungefähre Masse des Planeten errechnen.

Tausende neue Exoplaneten wurden mit solchen indirekten Methoden detektiert. Um aber mehr als
nur deren Radius und Masse ermitteln zu können, müssen wir jenes Licht analysieren, das diese Planeten
selbst emittieren und re�ektieren, anstelle des Lichtes ihrer jeweiligen Zentralsterne. Dies wird durch di-
rekte Detektionsmethoden ermöglicht, die das überwältigende Licht eines Sternes blockieren, um Bilder
des Planeten selbst aufzunehmen. Dadurch können wir eine Spektralanalyse von der Atmosphäre eines
Planeten erstellen, um zu ermitteln, welche Moleküle darin enthalten sind und ob außerirdisches Leben
auf dem Planeten möglich wäre. Diese Methode nennen wir direkte Beobachtung (engl.: “direct imaging”).
Dabei müssen einige Hürden überwunden werden, um sie zur Detektion von Exoplaneten anwenden zu
können. Das erste Problem ist die geringe Distanz zwischen einem Exoplaneten und seinem Stern. Po-
tenziell bewohnbare Exoplaneten be�nden sich aus der Ferne betrachtet sehr nahe an ihrem Stern, mit
einer projektierten Entfernung am Himmel von einer Bogensekunde bis zu wenigen Millibogensekun-
den. Um den Planeten also als einzelne Punktquelle au�ösen zu können, benötigen wir ein sehr gutes
Winkelau�ösungsvermögen, das wir nur mit Teleskopen erreichen können, die sehr große Primärspiegel
haben. Das zweite Problem ist die schwache Leuchtkraft dieser Himmelskörper. Diese Exoplaneten sind
sehr lichtschwach und werden von dem um ein Vielfaches helleren Stern überstrahlt, ganz so wie ein
Glühwürmchen direkt neben einem Flutlicht. Dieses Helligkeitsverhältnis, oder Kontrast, hängt von der
Wellenlänge ab in der wir unsere Beobachtungen durchführen: Im infraroten Bereich, wo junge, riesige
Planeten noch von ihrem eigenen Entstehungsprozess glühen, ist dieses Helligkeitsverhältnis etwa 10−5
– 10−6. Im sichtbaren Licht, in dem Planeten das Licht ihres Zentralsternes re�ektieren anstelle selber

5https://exoplanets.nasa.gov/alien-worlds/ways-to-find-a-planet/#/2
6https://exoplanets.nasa.gov/alien-worlds/ways-to-find-a-planet/#/1
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Strahlung zu verursachen, vernehmen wir einen astrophysikalischen Kontrast von bis zu 10−10. Wenn
wir annehmen, dass ein Exoplanet unserer Erde ähneln muss, um fremde Lebensformen unterstützen zu
können, dann müssen wir nach relativ kleinen Gesteinsplaneten suchen, die auf einer Distanz von ei-
ner astronomischen Einheit um einen sonnenähnlichen Stern kreisen, was der Entfernung von unserer
Erde zur Sonne entspricht. Eines der Hauptziele der direkten Beobachtung ist daher solche sogenannte
“Exoerden” zu �nden. Um das zu erreichen, brauchen wir Instrumente, die unter solchen physikalischen
Parametern Beobachtungen durchführen können: nämlich mit re�ektiertem Licht im sichtbaren Bereich
des Lichtspektrums, mit einem Kontrast von 10−10 auf einer Winkelentfernung von 0,1 Bogensekunde.

Um diese zwei Hürden, die aus dem grundlegenden, physikalischen Verhalten des Lichtes folgen, zu
überwinden, benutzen Astronomen komplexe Instrumente für die Methode des “high-contrast imaging”.
Diese erlauben es uns, Beobachtungen mit einem hohen Lichtkontrast auf sehr kleinen Winkelentfernun-
gen durchzuführen. Diese Instrumente bestehen aus drei Hauptkomponenten, die alle zur ganzheitlichen
Leistung der Abbildungen beitragen. Die erste Komponente ist derKoronograf, der aus mehreren optischen
Masken besteht, die gemeinsam eine Abblendung des Sternlichtes bewirken, während das Planetenlicht
erhalten bleibt. Das erste Konzept für so einen Koronografen wurde von dem französischen Astronomen
Bernard Lyot erstellt und im Jahre 1930 das erste Mal erfolgreich benutzt. Er verwendete eine Kombina-
tion aus einer Brennpunktblende (engl.: “focal-plane mask”) und was wir heute eine Lyotblende nennen
(engl.: “Lyot stop”), um die gleißende Ober�äche der Sonne abzudecken, was ihm die Beobachtung der
lichtschwachen Sonnenkorona ermöglichte. Jahrzehnte später adaptierten Wissenschafter solche Instru-
mente, um sie auf andere Sterne anzuwenden. Dies erlaubt uns heutzutage, lichtschwache zirkumstellare
Scheiben und Exoplaneten zu beobachten.

Die zweite Komponente in einem Hochkontrastinstrument ist dadurch motiviert, dass das Licht Stö-
rungen erfährt, bevor es auf den Detektor tri�t. Unangetastetes Licht von einer weit entfernten Punkt-
quelle breitet sich als eine �ache Wellenfront aus, aber wenn es unterwegs auf Aberrationsquellen tri�t,
erfährt es so genannte Wellenfrontstörungen. Dies kann durch die Erdatmosphäre verursacht werden, in
der Temperatur- und Druckunterschiede sowie Windturbulenzen erzeugt werden, die die Qualität des auf-
genommenen Bildes negativ beein�ussen. Zusätzlich gibt es viele Quellen für Wellenfrontstörungen inner-
halb des Teleskopes selbst, wie zum Beispiel feine Fehler in der Ausrichtung von optischen Elementen oder
Polierungsdefekte auf optischen Ober�ächen. Eine Komponente, die zu einem gewissen Teil gegen diese
Ein�üsse helfen kann, ist ein Wellenfrontsensorik und -kontrollsystem. Es besteht aus einem Wellenfront-
sensor, der die Abbildungsfehler im Lichtbündel detektiert, und Kontrollkomponenten wie deformierbare
Spiegel, die Korrekturen anwenden. Das tun sie indem ihre Ober�ächen an die Resultate der Messungen
des Wellenfrontsensors angepasst werden, um die detektierten Fehler zu kompensieren. Zusammen mit
dem Koronografen werden diese Kontrollschleifen benutzt, um das Licht in einem bestimmten Bereich
der Bildebene zu modulieren und den Kontrast zu verbessern. Dadurch entsteht ein Bildbereich mit sehr
hohem Kontrast, die sogenannte “dark hole”.

Die dritte Komponente in der Hochkontrast-Bildgebung ist die Nachbearbeitung. Es ist selbstverständ-
lich bevorzugt, das Planetenlicht mit optischen Komponenten von dem des Sternes zu trennen bevor es
den Detektor erreicht. Allerdings gibt es sehr wohl Datenreduktionsmethoden, die es uns erlauben, den
Kontrast auch in der Nachbearbeitung zu verbessern, was das Detektionslimit noch erweitert.

Diese Technologien ermöglichten zahlreiche aufregende wissenschaftliche Ergebnisse, zum Beispiel
die Bilder von zirkumstellaren Scheiben in Abb. 1.2 in Kap. 1. Die erste Detektion eines Exoplaneten mit
direkter Bildgebung erfolgte im Jahre 2004 und eine Handvoll anderer folgte. Beobachtungen von warmen
Gasriesen wie die in Abb. 1.3 werden benutzt, um deren Umlaufbahnen zu bestimmen und mehr über ihre
Atmosphären zu erfahren. Allerdings ist es uns mit den Instrumenten, die uns heute zur Verfügung stehen,
nicht möglich, kleine Gesteinsplaneten zu beobachten, auf denen möglicherweise Leben besteht. Selbst mit
den erdgebundenen Teleskopen der 30 m Klasse, den Riesenteleskopen oder sogenannten “extremely large
telescopes” (ELTs), die im kommenden Jahrzehnt in Betrieb genommen werden, werden wir im besten Fall
einen Kontrast von 10−9 erreichen. Dies hindert uns daran, erdähnliche Exoplaneten zu beobachten, die
auf einer Umlaufbahn um sonnenähnliche Sterne kreisen. Um einen Weg zur Beobachtung dieser Objekte
zu �nden, müssen wir Teleskope im Weltraum platzieren, um die störende Erdatmosphäre zu vermeiden.
Außerdem werden wir bessere Hochkontrastinstrumente entwickeln müssen, verglichen mit dem, was wir
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heute haben.
Ein Teleskop in den Weltraum zu senden, das Exoerden abbilden kann, birgt einige Herausforderungen.

Dieses muss die nötige Winkelau�ösung und Lichtemp�ndlichkeit erreichen, damit ein lichtschwacher
Planet abgebildet werden kann, der nur 0.1 Bogensekunden entfernt von einem hellen Stern liegt. Dazu
muss der Primärspiegel des benutzten Teleskopes mehrere Meter groß sein, was sowohl sein Au�ösungs-,
als auch sein Lichtsammelvermögen steigert. Die praktische Lösung, um solche Teleskope mit Spiegel-
durchmessern von mehr als ∼4 m herzustellen ist, mehrere individuelle, hexagonale Segmente zu einem
großen Primärspiegel zu verbinden. Das macht ihn leichter als äquivalente monolithische Spiegel, er ist
einfacher herzustellen und kann auch zusammengefaltet werden, um in einer Trägerrakete Platz zu �n-
den. Das erste segmentierte Teleskop im Weltraum ist das James-Webb-Weltraumteleskop, in dem seine
18 Segmente zu einem Spiegeldurchmesser von 6,5 Metern zusammengesetzt sind. Dieses Observatorium
wird uns eine wertvolle Gelegenheit bieten, unser Wissen für zukünftige, noch ambitiösere Teleskope mit
neuer Erfahrung zu erweitern. Während uns der Teleskopdurchmesser die nötige Au�ösung und Licht-
sensitivität gibt, ist der generelle Aufbau eines Hochkontrastinstrumentes dafür verantwortlich, welche
Kontrastlevel wir während der Beobachtungen erreichen können.

Es existiert eine ganze Reihe von Koronografmodellen, die eine direkte Bildgebung vom Weltraum aus
ermöglichen, aber jedes kommt mit seinen eigenen Vor- und Nachteilen: Unterschiedliche innere und äu-
ßere Arbeitswinkel (wie nahe am Stern oder weit entfernt von ihm wir mit hohem Kontrast beobachten
können, engl.: “inner and outer working angle”), Transmission abseits der optischen Achse (wie viel Pla-
netenlicht geht verloren, während das Sternenlicht eliminiert wird, engl.: “planet throughput”), oder seine
Kompatibilität mit Segmentierungsspalten in der Teleskopapertur. Nichtsdestotrotz sind alle von ihnen
imstande, einen Kontrast von 10−10 zu erreichen, wenn die Umstände perfekt sind – also ohne Aberratio-
nen und ohne eine zeitliche Entwicklung des optischen Systems. Obwohl wir im Weltraum nicht mehr
gegen die Atmosphäre arbeiten müssen, birgt ein Weltraumteleskop immer noch Ursachen für signi�kan-
te Wellenfrontstörungen, gegenüber denen der Koronograf sehr emp�ndlich ist. Abweichungen in der
Herstellung von optischen Komponenten und Ober�ächen verursachen Distorsionen, die ein integriertes
Wellenfrontsensorik und -kontrollystem zu einem gewissen Teil kompensieren kann. Weitere Aberra-
tionen stammen von thermischen und mechanischen Deformationen der Gesamtstruktur des Teleskopes,
die den Kontrast negativ beein�ussen. Dies tri�t im Speziellen auf Deformationen in der Rückwand des
Primärspiegels zu, die die einzelnen Segmente zusammenhält. Manche von diesen Wellenfrontstörungen
entwickeln sich dynamisch über die Dauer von Beobachtungen. Dies wirft die Frage auf, ob wir imstande
sind, solche großen, segmentierten Teleskope stabil genug zu halten, ohne dass der Kontrast so weit de-
gradiert, dass wir blind gegenüber erdähnlichen Exoplaneten werden. Das Ziel dieser Dissertation ist es,
Methoden zu entwickeln, um die zulässigen Limitationen für die Veränderung solcher Wellenfrontstörun-
gen zu ermitteln. Dabei wird der Fokus auf jene Abbildungsfehler gelegt, die von einer Fehlausrichtung
der Segmente des Primärspiegels herrühren. Diese Arbeit trägt dadurch zur Vorbereitung von zukünftigen
Weltraumteleskopen bei, die auf e�ziente Abbildungen mit hohem Kontrast spezialisiert sind.

Kapitel 2: Die theoretische Basis des Tolerierens von Wellenfrontstörungen für große, seg-

mentierte Teleskope

Die Fehlausrichtungen zwischen den Segmenten eines großen Teleskopes kontaminieren die Bilder einer
koronogra�schen Beobachtung mit Licht�ecken, sogenannten “speckles”. Diese tauchen genau in jenen
Bereichen des Bildes auf, in denen wir Exoplaneten �nden wollen, in der “dark hole”. Bevor wir uns die
Frage stellen, wie dieses Problem gelöst werden kann, muss der exakte Ein�uss der unterschiedlichen
Fehlausrichtungen der Segmente auf den koronogra�schen Kontrast charakterisiert werden. Das PASTIS
Modell der Lichtausbreitung von segmentierten Aberrationen durch einen Koronografen wandelt diese
Wellenfrontstörungen wahrheitsgetreu in einen mittleren Kontrast um und bereitet dadurch die analy-
tische Basis vor, die es uns erlaubt, das Problem umzukehren. Anstelle zu fragen: „Was ist der Kontrast,
wenn eine Menge G an Aberrationen vorliegt?“, fragen wir nun: „Welches Level G an Wellenfrontstörungen
können wir tolerieren, wenn wir einen spezi�schen Kontrast in unseren Beobachtungen benötigen?“ Die-
ses Kapitel veranschaulicht wie diese Toleranzen mit analytischen Gleichungen abgeleitet werden können
und stellt ihre statistische Interpretation über viele Zustände des segmentierten Spiegels hinaus vor. Ein
bedeutendes Ergebnis aus diesem Kapitel ist, dass nicht alle Segmente auf einem segmentierten Teleskop
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mit einem Koronografen gleichmäßig beschränkt werden müssen.

Kapitel 3: Numerische Simulationswerkzeuge und simulierte Tolerierungsresultate

Numerische Simulatoren sind unabdingbare Werkzeuge für die Demonstration einer Idee in einem sorgfäl-
tig implementierten Modell. Das PASTIS Tolerierungspackage ist eine in Python geschriebene Software-
einheit, die die Tolerierungsanalyse aus Kap. 2 durchführt. Es enthält eine Reihe an optischen Simulatoren,
die die Teleskopgeometrien und die Koronografen einiger bestehender Observatoriumkonzepte wiederge-
ben. Diese wiederum können mit der Kalkulation von Wellenfrontstörungstoleranzen verbunden werden.
Das Package enthält auch die Möglichkeit, externe Simulatoren, die nicht in dieser Software enthalten
sind, mit der Analyse zu verbinden. Die Anwendung dieser theoretischen und numerischen Methoden an
den konkreten Fall eines Koronografen auf dem James-Webb-Weltraumteleskop gibt uns ein Gefühl dafür,
wie der Kontrast in so einem Instrument von den potenziellen Ausrichtungefehlern zwischen den Primär-
spiegelsegmenten abhängt. In einer etwas näher liegenden Anwendung präsentiert dieses Kapitel auch
simulierte Tolerierungsexperimente für die optische Testvorrichtung namens HiCAT.

Kapitel 4: Experimentelle Validationen von segmentierten Wellenfrontstörungstoleranzen

auf HiCAT

Die Testvorrichtung HiCAT am STScI ist ein optisches Laborexperiment zur Demonstration von Tech-
nologien für Hochkontrastbeobachtungen aus dem Weltraum. Es besteht aus einem Lyot-Koronografen,
zwei deformierbaren Spiegeln mit durchgehender Ober�äche für Wellenfrontsensorik und -kontrolle sowie
einem segmentierten deformierbaren Spiegel, der die optischen E�ekte eines großen, segmentierten Pri-
märspiegels nachbildet. Seine 37 Segmente sind einzeln in Piston, Tip und Tilt kontrollierbar und werden
dazu benutzt, um dem System Ausrichtungsfehler zuzuführen, um im Folgenden ihre E�ekte zu unter-
suchen. Dieses Kapitel präsentiert die Ergebnisse von Experimenten mit diesem Aufbau, mit denen die
analytischen Gleichungen, die in Kap. 2 entwickelt wurden, auf einem realen Hochkontrastinstrument
validiert werden. Die Schlussfolgerungen dieser Experimente lassen uns ermitteln, wie präzise wir den
segmentierten deformierbaren Spiegel kontrollieren können müssen, um ein Kontrastlevel zu erreichen,
das momentan jenseits der Leistungsfähigkeit von HiCAT liegt.

Kapitel 5: Große, segmentierte Weltraumteleskope stabil genug halten, um Exoerden zu be-

obachten

Der analytische Tolerierungsrahmen, der in Kap. 2 entwickelt wurde, ist nicht auf Ausrichtungse�ekte von
segmentierten Spiegeln beschränkt. Diese Methode kann genauso gut auf Wellenfrontstörungen angewen-
det werden, die sich über die gesamte Pupillenebene des Teleskopes erstrecken, sowie auf Aberrationen,
die von thermischen und mechanischen Deformationen stammen. Dies erö�net eine Reihe neuer Mög-
lichkeiten, diese fundamentale Behandlung von Abbildungsfehlern anzuwenden. Es bedeutet auch, einen
Schritt weiterzugehen und sich anzusehen, wie sich gewisse Wellenfrontaberrationen über die Zeit hin-
weg entwickeln und was angemessene Maßnahmen sind, um dem E�ekt von sich zeitlich entwickelnden
Aberrationen auf den koronogra�schen Kontrast entgegenzuwirken. Dieses Kapitel präsentiert zuerst ei-
nige quantitative Ergebnisse der Tolerierung von thermal induzierten Aberrationen. Danach zeigt es die
Rolle solcher Methoden in dem gesamtheitlichen Design von Wellenfrontsensorik und -kontrollstrategien
für große, segmentierte Weltraumteleskope auf.

Appendix A: Demonstration von Wellenfrontsensorik und -kontrolle auf einer segmentier-

ten optischen Testvorrichtung

Bevor jegliche Beobachtung mit einem segmentierten Teleskop angefangen werden kann, müssen die Aus-
richtungsfehler zwischen den einzelnen Segmenten mittls Wellenfrontsensorik und -kontrolle so gut es
geht reduziert werden. Für Beobachtungen mit einem Koronografen müssen die Segmente zu einem glei-
chen oder besseren Level ausgereichtet werden, wie es die Tolerierungsmethode in Kap. 2 vorgibt. Die seg-
mentierte, aber nicht koronogra�sche Testvorrichtung JOST am STScI benutzt einen Wellenfrontsensorik
und -kontrollalgorithmus namens LAPD, um die beste Lösung hierfür zu �nden. Dieses Kapitel präsentiert
die Ergebnisse von LAPD Experimenten auf JOST auf einem weiten Bildfeld, mit dem spezi�schen Ziel,
die Segmente in dieser Vorrichtung gleichmäßig aneinander auszurichten.
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Appendix B: Koronogra�e auf einer optischen Testvorrichtung mit segmentierter Spiegel-

ö�nung

Es wurden viele Technologien im Bereich der Koronogra�e sowie Wellenfrontsensorik und -kontrolle ent-
wickelt, die es uns erlauben, einen hohen Kontrast auf Weltraumteleskopen zu erreichen. Diese funk-
tionieren im Normalfall am besten auf solchen Spiegelö�nungen, die nicht von Sekundärspiegeln und
deren Stützen beschattet werden, sowie in perfekten Konditionen, wenn keine Wellenfrontstörungen im
optischen System vorhanden sind. Allerdings besitzen reale Teleskope eine ganze Reihe an Merkmalen,
die das Erreichen eines hohen Kontrastes erschweren, so die oben gelisteten Eigenschaften. Das Ziel der
optischen Testvorrichtung namens HiCAT ist es, zu untersuchen, wie man die verschiedenen Komponen-
ten eines Hochkontrastinstrumentes wie Sensoren, Kontrollelemente und lichtblendende Technologien in
ein einzelnes System zusammen zusammenfügt, das e�zient mit bedeckten und segmentierten Aperturen
funktioniert. Dieses Kapitel führt die Motivation und das Design von HiCAT auf. Es erklärt weiters die un-
terschiedlichen Aufbaumodi, die benutzt wurden, um Experimente für Wellenfrontsensorik und -kontrolle
auf einem Koronografen mit segmentierter Spiegelö�nung durchzuführen.

Der maßgebende Grund, warum so viel Aufwand in die Entwicklung von Instrumentation für “high-
contrast imaging” gesteckt wird, sind die wissenschaftlichen Ergebnisse, die wir mit unseren Teleskopen
erhalten. Um mehr über die Existenz, aber auch die Häu�gkeit von erdähnlichen Exoplaneten in unserer
galaktischen Nachbarschaft zu lernen, müssen wir den Ertrag von Exoplanetenkandidaten erhöhen. Das
bedeutet, dass wir eine ausreichend hohe Zahl an möglicherweise bewohnbaren Planeten �nden müssen,
um globalere Schlüsse über ihre Population ziehen zu können, zum Beispiel ob die Erde ein eher typischer
Planet in unserer Galaxie ist oder nicht. Obwohl heutzutage kein Weltraumteleskop existiert, das aktiv
kontrollierte Koronografen benutzt, werden zukünftige Teleskope mit solchen Fähigkeiten ausgestattet
sein. Das monolithische 2,4 m Roman-Weltraumteleskop wird das erste weltraumgebundene Teleskop
sein, das die Benutzung von deformierbaren Spiegeln demonstriert. Dadurch stellt es einen wichtigen
Meilenstein in der Vorbereitung zukünftiger Weltraumteleskope dar, die groß genug und leistungsstark
genug sein werden, um Exoerden zu beobachten, wie zum Beispiel das 15 m große LUVOIR-Teleskop.

I would like to thank Sarah Fest for proof-reading the German summary.
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Hrvatski sažetak

Ljudi su se stoljećima pitali i zamišljali što se nalazi izvan našeg matičnog planeta, Zemlje. Stari �lozo�
pitali su se postoje li planeti koji kruže oko zvijezda koje nisu naše Sunce. Konkretne znanstvene teorije
koje se bave ovim pitanjima pojavile su se kroz 19. i u ranom 20. stoljeću. Prvo otkriće planeta koji kruži
oko zvijezde slične Suncu 1995. godine potaknulo nas je da vidimo ove ekstrasolarne planete, odnosno
egzoplanete, na potpuno novi način. Ne samo da postoji puno više planetarnih sustava od našeg, već je
utvrđeno da je raznolikost planeta vrlo različita u usporedbi s onim što znamo o tijelima u našem Sunčevom
sustavu. S toliko stranih svjetova u prostranstvu svemira, postavlja se pitanje: postoji li život izvan Zemlje?

Otkrivanje egzoplaneta zahtijeva so�sticirane instrumente koji hvataju signale tih objekata koje je te-
ško otkriti. Budući da je lakše promatrati puno svjetliju matičnu zvijezdu, a ne izravno slabo vidljiv planet,
prve metode otkrivanja koje su otkrile tisuće novih planetnih tijela su one koje nazivamo neizravnim meto-
dama otkrivanja. Te metode ne prikupljaju svjetlost planeta izravno, već mjere efekte koji nam omogućuju
da zaključimo postoji li jedan ili više planeta u orbiti oko promatrane zvijezde. Dvije najplodonosnije me-
tode u tom smislu jesu metoda planetarnih tranzita7 i metoda radijalne brzine8. Kada egzoplanet prolazi
kroz izravnu liniju između Zemlje i svoje matične zvijezde, možemo zamijetiti zatamnjenje nastalo u svje-
tlu zvijezde, iz čega možemo odrediti samo postojanje egzoplaneta i njegov polumjer. Metodom radijalne
brzine promatra se periodični pomak valne duljine svjetlosti koja do nas dopire od zvijezde, a što je uzro-
kovano njezinim gibanjem naprijed-natrag uslijed gravitacijske sile kojom planet djeluje na nju; ovo nam
također govori o približnoj masi egzoplaneta.

Tisuće egzoplaneta otkriveni su takvim neizravnim metodama, no da bismo mogli karakterizirati ove
udaljene svjetove ne samo njihovim radijusom i masom, moramo dobiti izravan pristup svjetlosti koju oni
re�ektiraju ili emitiraju, umjesto da koristimo zvijezdu domaćina kao posrednika. Ovo nam omogućuje
metoda izravnog slikanja, koja blokira ogromnu svjetlost zvijezde i snima slike samih planeta. To nam
dopušta da napravimo spektralnu analizu njihove atmosfere, govoreći nam koje molekule sadrže i bi li
mogle podržati izvanzemaljski život. Ova metoda naziva se izravno snimanje (eng. “direct imaging”),
a postoji nekoliko prepreka koje treba prevladati kako bi se mogla koristiti za otkrivanje egzoplaneta.
Prvo, kada se promatraju iz daljine, ovi su planeti vrlo blizu matične zvijezde s projiciranim razmacima
na nebu od jedne kutne sekunde do nekoliko kutnih milisekundi. Razlučivanje planeta kao pojedinačnog
točkastog izvora svjetlosti stoga zahtijeva dobru kutnu razlučivost koju omogućuju teleskopi s vrlo velikim
zrcalima. Drugo, egzoplaneti su vrlo slabog sjaja i njihova svjetlost se gubi u odsjaju njihove matične
zvijezde, slično kao da pokušavate vidjeti krijesnicu tik uz jarku uličnu rasvjetu. Ovaj omjer svjetline, ili
kontrast, ovisi o valnoj duljini na kojoj promatramo: u infracrvenom području, gdje mladi, divovski planeti
još uvijek emitiraju svjetlost od svojih vlastitih procesa formiranja, ovaj omjer svjetline je oko 10−5 – 10−6.
U vidljivim valnim duljinama, gdje planeti re�ektiraju svjetlost svoje matične zvijezde, ovaj omjer postaje
još teže prevladati jer doseže čak 10−10. Pod pretpostavkom da planet mora jako ličiti Zemlji da bi imao
priliku podržati život, moramo potražiti stjenovite i relativno male planete koji kruže oko zvijezde glavnog
niza poput Sunca na udaljenosti od jedne astronomske jedinice, koliko iznosi udaljenost između Sunca i
Zemlje. Značajan cilj izravnog snimanja je stoga pronaći takve “egzozemlje”. Instrumenti za opservacije
planeta s takvim �zičkim svojstvima moraju moći provoditi detekcije u re�ektiranom svijetlu vidljivih
valnih duljina, s kontrastom od 10−10 pri kutnom razmaku od 0,1 kutne sekunde.

Kako bi prevladali ova dva izazova koja su nametnuta temeljnim, �zikalnim ponašanjem svjetlosti, as-
tronomi koriste složene instrumente za snimanje visokog kontrasta koji, kao što im i ime sugerira, pružaju
mogućnosti promatranja s visokim kontrastom pri maloj kutnoj razlučivosti. Postoje tri glavne kompo-

7https://exoplanets.nasa.gov/alien-worlds/ways-to-find-a-planet/#/2
8https://exoplanets.nasa.gov/alien-worlds/ways-to-find-a-planet/#/1
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nente u takvom instrumentu od kojih svaka doprinosi ukupnoj izvedbi slike. Prvi od njih, koronograf,
predstavlja skup optičkih maski koje imaju za cilj smanjiti ukupni odsjaj zvijezde, a da pritom očuvaju
svjetlost koju emitira planet. Prvi koncept za takav koronograf uspješno je izradio i upotrijebio francu-
ski astronom Bernard Lyot 1930. godine, kada je upotrijebio kombinaciju žarišne pločice (eng. “focal-plane
mask”) i onoga što danas zovemo “Lyot stop” (otvor koji smanjuje učinak ogiba oko rubova žarišne pločice)
kako bi blokirao površinu Sunca kako bi mogli promatrati slabu solarnu koronu. Samo nekoliko desetljeća
kasnije znanstvenici su prilagodili takve instrumente da budu usmjereni prema drugim zvijezdama, omo-
gućujući nam da promatramo slabe cirkumstelarne diskove - i planete.

Druga važna komponenta instrumenta visokog kontrasta proizlazi iz izobličenja kojima je svjetlost
izložena prije nego što dođe do detektora. Dok neometana svjetlost udaljenog, točkastog objekta putuje
kao ravni val, na putu može naići na izvore aberacija koje unose pogrešku valne fronte. To se može dogoditi
zbog Zemljine atmosfere, u kojoj razlike temperature i tlaka, kao i vjetar, uzrokuju turbulencije koje zna-
čajno pogoršavaju kvalitetu konačne slike. Štoviše, postoje izvori pogrešaka valne fronte unutar teleskopa
koji također pridonose ovom učinku, poput neusklađenosti različitih komponenti u optičkom sustavu ili
pogrešaka poliranja na optičkim površinama. Komponenta koja do određenog stupnja ublažava ove učinke
je sustav za očitavanje i kontrolu valne fronte. Sastoji se od senzora valne fronte koji detektira aberacije
koje unose pogreške i upravljačkih komponenti poput deformabilnih zrcala koja vrše korekcije prilagođa-
vajući oblike vlastite površine prema mjerenju senzora. Zajedno s koronografom, takve se kontrolne petlje
koriste za modulaciju svjetlosti u određenom dijelu ravnine slike, stvarajući tamno područje vrlo visokog
kontrasta, odnosno “dark hole”.

Treća velika komponenta visokokontrastne slike je naknadna obrada. Iako je poželjno odvojiti svjetlost
planeta i zvijezde odgovarajućim optičkim sustavom prije nego što budu detektirani, postoje metode re-
dukcije podataka koje nam omogućuju da poboljšamo mjereni kontrast na konačnoj slici, unaprijeđivajući
granicu otkrivanja još više.

S ovim tehnologijama došlo je do obilja uzbudljivih znanstvenih rezultata, primjerice iz slika cirkums-
telarnih diskova poput onih prikazanih na slici 1.2 u Pogl. 1. Prvo otkrivanje egzoplaneta izravnim snima-
njem obavljeno je 2004. godine, a nekoliko drugih je uslijedilo naknadno. Promatranja toplih, divovskih
egzoplaneta poput onih prikazanih na slici 1.3 koriste se za preciznije određivanje njihovih planetarnih
orbita i saznanja o njihovoj atmosferi. Međutim, s instrumentima koje danas imamo, nismo u mogućnosti
vidjeti male, stjenovite egzoplanete na kojima bi se potencijalno mogao nalaziti život. Čak i sa zemaljskim
teleskopima klase 30 m koji će biti operativni krajem 2020-ih i sredinom 2030-ih, koji se također nazivaju
ekstremno veliki teleskopi ili ELT (eng. “extremely large telescopes”), bit ćemo ograničeni na razine kon-
trasta koje će u najboljem slučaju doseći 10−9, sprečavajući nas da vidimo egzoplanete nalik Zemlji oko
zvijezda nalik Suncu. Kako bismo omogućili promatranje takvih objekata, moramo postaviti naše teleskope
u svemir kako bismo izbjegli štetan utjecaj Zemljine atmosfere; i moramo razviti moćnije instrumente za
snimanje s visokim kontrastom od onoga što danas koristimo.

Slanje teleskopa sposobnog za snimanje egzozemlje u svemir povezano je sa nizom značajnih izazova.
Kako bi se postigle kutna rezolucija i potrebna osjetljivost koje su dovoljne za snimanje slabog točkastog
izvora svjetla koji je udaljen samo 0,1 kutnu sekundu od svijetle zvijezde, opservatorij treba primarno zrcalo
promjera od nekoliko metara što daje vrlo veliku površinu prikupljanja svjetlosti. Inženjersko rješenje za
izgradnju velikih teleskopskih otvora, većih od ∼4 m u promjeru, je njihovo sastavljanje od pojedinačnih,
šesterokutnih segmenata, složenih da tvore ukupno primarno zrcalo. To ih čini lakšim od monolitnih
ekvivalenata, jednostavnijim za proizvodnju, a također se mogu sklopiti kako bi stali u oklop rakete koji
ih dovodi u svemir. Prvi segmentirani teleskop poslan u svemir je svemirski teleskop James Webb, s 18
segmenata koji zajedno tvore zrcalo ukupnog promjera od 6,5 metara, a pružit će nam vrijedne prilike
učenja za buduće, još ambicioznije segmentirane teleskope. Dok nam veliki otvor teleskopa daje potrebnu
kutnu razlučivost i osjetljivost, cjelokupna arhitektura visokokontrastnog slikovnog sustava de�nira koje
razine kontrasta možemo postići tijekom promatranja.

Postoji cijeli niz modela koronografa koji su prikladni za izravno snimanje, no svaki od njih dolazi
s prednostima i manama u odnosu na svoje sposobnosti: različiti unutarnji i vanjski radni kutevi (koliko
blizu ili daleko od zvijezde mogu opažati, eng. “inner and outer working angle”), planetarna propusnost (ko-
liko svjetlosti planeta izgube eliminirajući svjetlost zvijezde, eng. “planet throughput”) ili kompatibilnost
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sa segmentalnim prazninama u teleskopskoj zjenici. Ipak, svaki od njih može postići kontrast kvalitete
10−10 u idealnim uvjetima – bez aberacija i temporalnih evolucija optičkog sustava. Iako u svemiru ne
postoji brzorazvijajuća atmosfera koja uvodi aberacije, i dalje postoje značajni izvori grešaka valne fronte
na svemirskim teleskopimana na koje je koronograf vrlo osjetljiv. Nesavršenosti u izradi optičkih kom-
ponenti i njihovih površina stvaraju distorzije koje ugrađeni sustav za očitavanje i kontrolu valnih fronti
može ispraviti u određenoj mjeri. Dodatno, iako u svemiru ne postoji brzorazvijajuća atmosfera koja stvara
aberacije, i dalje postoje aberacije nastale termalnim i mehaničkim deformacijama na cjelokupnoj opser-
vacijskoj strukturi koje smanjuju kvalitetu kontrasta. Ovo je naročito istinito za deformacije koje izviru
iz stražnje ravnine strukture primarnog zrcala, koja drži zajedno niz individualnih segmenata. Neke od
ovih grešaka valnih fronti dinamično se razvijaju tijekom opservacije te se postavlja pitanje je li moguće
takav velik, segmentirani teleskop očuvati dostatno stabilnim kako kontrast ne bi izgubio kvalitetu u to-
likoj mjeri da bismo bili slijepi na egzozemlje. Cilj ovog rada je razviti metode koje karakteriziraju nužne
limite za ove varijacije valnih fronti, posebice distorzije nastale na primarnim zrcalnim segmentima, kao i
pripremiti buduće svemirske teleskope za e�kasnu upotrebu visokokontrastnih instrumenata u svemiru.

Poglavlje 2: Teoretska osnova tolerancije grešaka valnih fronti za velike segmentirane tele-

skope

Neusklađenost segmenata velikog teleskopa zagađuje slike koronografskih zapažanja mrljama svjetlosti
(eng. “speckles” ) na točno onim dijelovima slike na kojima bismo htjeli promatrati egzoplanete (“dark
hole”). Prije nego li odlučimo kako doskočiti ovom problemu, važno je točno okarakterzirati efekt ne-
dostatka poravnjanja segmenata na koronografski kontrast. PASTIS model za propagaciju segmentiranih
aberacija kroz koronograf vjerodostojno pretvara greške valnih fronti u brojni prikaz prosječne količine
kontrasta te daje analitičku osnovu koja nam omogućava da preokrenemo problem. Pitanje „Koji je kon-
trast u slučaju G količine aberacija?“ postaje „Koja G količina grešaka valnih fronti može biti tolerirana
ako trebamo speci�čan kontrast za svoje promatranje?“ Ovo poglavlje pokazuje kako izvesti tolerancije
grešaka valnih fronti analitičkim jednadžbama i uvodi njihovu statističku interpretaciju kroz niz različitih
ostvarenih nedostataka poravnanja dijelova segmentiranog zrcala. Jedan od važnih rezultata proizašlih iz
rada u ovom poglavlju jest da nije nužno sve segmente na segmentiranom zrcalu koje nosi koronograf
jednako strogo ograničiti.

Poglavlje 3: Numerički simulacijski alati i simulirani rezultati tolerancije

Numerički simulatori nezamjenjiv su alat za demonstraciju ideje na pažljivo implementiranom modelu.
PASTIS paket za toleriranje je softver napisan u Pythonu koji izvodi tolerancijsku analizu prezentiranu u
Pogl. 2. Sadrži niz raznih optičkih simulatora koji reproduciraju geometriju i koronografe nekoliko različi-
tih teleskopa koji mogu biti spojeni u kalkulacije tolerancije grešaka valnih fronti. Dodatno, on omogučava
spajanje vanjskih simulatora koji nisu u PASTIS paketu u taj proces. Time se omogučava vršenje iste ana-
lize tolerancije grešaka valnih fronti za dodatne simulatore. Primjena ove teoretske i numeričke metode na
konkretan slučaj koronografa na svemirskom teleskopu James Webb daje nam ideju kako njegova razina
kontrasta ovisi o potencijalnim nepravilnostima u poravnanju primarnog zrcala ovog teleskopa. Napos-
ljetku, ovo poglavlje pokazuje i simulirane tolerancijske eksperimente na optičkom ispitnom stolu HiCAT.

Poglavlje 4: Eksperimentalna potvrda tolerancije grešaka segmentiranih valnih fronti na

HiCAT-u

HiCAT ispitni stol u STScI-u je optički laboratorijski eksperiment za demonstraciju tehnologija visokokon-
trastnog mapiranja iz svemira. Sadrži Lyot koronograf, dva neprekidna deformabilna zrcala za očitavanje
i kontrolu valnih fronti, te segmentirano deformabilno zrcalo koje reproducira optička svojstva velikog
segmentiranog primarnog zrcala. Njegovih 37 segmenata mogu se individualno kontrolirati na visinu, i
nagibno na dvije međusobno okomite osi. Time se stvaraju nedostaci u poravnanju koje onda izučavamo.
Ovo poglavlje prikazuje rezultate eksperimenata s ovim parametrima u kojima se analitičke jednadžbe iz
Pogl. 2 potvrđuju na pravom visokokontrastnom instrumentu. Zaključci iz ovog rada omogućavaju nam
da utvrdimo koliko dobro moramo moći kontrolirati segmentirana deformabilna zrcala ako želimo postići
razine kontrasta koje su bolje od trenutnih mogućnosti HiCAT-a.
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Poglavlje 5: Kako održati velike segmentirane teleskope u svemiru dovoljno stabilnima za

direktno promatranje egzozemalja

Okvir analitičke tolerancije razvijene u Pogl. 2 nije ograničena samo na učinak nedostatka poravnjanja
u segmentiranim zrcalima. Metoda je jednako primjenjiva na greške valnih fronti nastalih preko cijele
zjenice teleskopa odjednom, ili za ispravljanje konkretnih aberacija koje nastaju uslijed termalnih i me-
haničkih deformacija, a koje pronalazimo modeliranjem. Ovo otvara cijelu paletu mogućnosti primjene
za ovaj fundamentalni način obrade aberacija. To uključuje i odlazak korak unaprijed, gledajući pobliže
na to kako pojedine aberacije valnih fronti evoluiraju kroz vrijeme te koji bi bio prikladan postupak za
otklanjanje učinka promjenjivih aberacija na koronografski kontrast. Ovo poglavlje prvo prezentira kvan-
titativne rezultate toleriranja termalno induciranih grešaka valnih fronti te zatim pokazuje ulogu takvih
metoda u cjelokupnom dizajnu strategija za očitavanje i kontrolu valnih fronti na velikim segmentiranim
teleskopima u svemiru.

PrilogA:Demonstracija očitavanja i kontrole valnih fronti na segmentiranom ispitnomstolu

Prije nego li bilo kakvo promatranje segmentiranim teleskopom može biti započeto, nedostatci u poravna-
nju moraju biti reducirani pomoću očitavanja i kontroliranja valnih fronti. Za promatranje koje uključuju
koronograf, segmenti moraju biti poravnati u mjeri koja je jednaka ili bolja od zahtjeva postavljenih to-
lerancijskom analizom u Pogl. 2. Segmentirani, ali ne koronografski ispitni stol JOST u STScI-u koristi
algoritam za očitavanje i kontrolu valnih fronti zvan LAPD kako bi pronašao optimalno rješenje porav-
nanja ove optičke osnove. Ovo poglavlje prezentira rezultate LAPD eksperimenta na JOST-u na širokom
vidnom polju s ciljem da poravna segmentirano zrcalo ovog ispitnog stola.

Prilog B: Koronogra�ja na laboratorijskom ispitnom stolu sa segmentiranim zrcalom

Razvijeno je mnogo tehnologija za koronogra�ju te očitavanja i kontrole valnih fronti kako bi se postigao
visoki kontrast na svemirskim teleskopima. One uglavnom rade najbolje u idealnom slučaju okruglog,
monolitnog teleskopskog ogledala bez zatamnjenja uzrokovanog sekundarnim zrcalom i njegovim podu-
piračima te kada nema aberacija u optičkom sistemu. Međutim, stvarni teleskopi sadrže razna svojstva koja
otežavaju postizanje visokog kontrasta, kao što su ova ranije navedena. Cilj HiCAT ispitnog stola je istra-
živanje u svrhu spajanja raznih sastavnica visokokontrastnog instrumenta kao što su senzori, kontroleri i
tehnike suzbijanja svjetla kako bi sastavili učinkovit cjelokupni sustav koji uspješno radi i na zaklonjenim
zjenicama sa segmentacijom. Ovo poglavlje navodi glavnu motivaciju i konstrukciju ovog ispitnog stola i
objašnjava razne modove koji su korišteni za pokuse očitavanja i kontrole valnih fronti na koronografu sa
segmentiranim otvorom.

Krajnji razlog za trud uperen prema instrumentaciji visokokontrastnih promatranja je poboljšanje
znanstvenih rezultata koje možemo ostvariti svojim teleskopima. Kako bismo saznali za njihovo posto-
janje, tj. samu učestalost pojavljivanja zemljolikih egzoplaneta u svom galaktičkom susjedstvu, ono što
želimo povećati je učestalost opažanja kandidata egzoplaneta. To znači da želimo pronaći dovoljno velik
broj potencijalno nastanjivih planeta kako bismo mogli izvesti globalne zaključke, poput toga je li Zemlja
u biti tipičan planet u našoj galaksiji ili nije. Iako trenutno ne postoji svemirski teleskop koji rabi aktivno
kontrolirane koronografe, buduće misije stvorit će nam tu mogućnost. Monolitski Roman Space Telescope
od 2,4 m bit će prvi opservatorij u svemiru koji će koristiti deformabilna zrcala te kao takav predstavlja
važan korak u daljnjem razvoju budućih misija, kao što je segmentirani 15–metarski LUVOIR teleskop
čijim će se lansiranjem postaviti osnove za direktno promatranje egzozemalja.

I am truly grateful to Dorotea Sremec and Fran Al�rević for translating this summary into Croatian.
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In the Spirit of Lyot, October 2019
Tokyo, Japan
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LAM PhD day
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Predicting contrast sensitivity to segmented aperture misalignment modes for the HiCAT testbed
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Virtual
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results
Adaptive Optics for Extremely Large Telescopes 6, June 2019
Quebec, Canada
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AAS meeting #233, January 2019
Seattle, Washington, USA
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Software

During my PhD, I wrote a signi�cant amount of code and contributed to various projects, many of which
are open-source. The below table lists GitHub repositories I have made contributions to, roughly ordered
by amount of contributed code. The PASTIS package contains the bulk of my PhD work.

Name GitHub
PASTIS spacetelescope/PASTIS Analytical tolerancing of coronagraphs
hicat-package spacetelescope/hicat-package Control code and simulator for HiCAT (private)
jost-package spacetelescope/jost-package Control code for JOST (private)
ExoTiC-ISM hrwakeford/ExoTiC-ISM Marginalized exoplanet transit parameters
FouFourier ivalaginja/FouFourier Learning notebooks for Fourier optics
catkit spacetelescope/catkit Hardware control interfaces for lab intstrumentation
hcipy ehpor/hcipy Optical propagations for HCI
poppy spacetelescope/poppy Physical optical propagation

I also became an advocate for standardized software development principles in the astronomy commu-
nity and designed my own course for teaching version control with git and GitHub. Split in an introductory
and an advanced session, the �rst installments of this course took place in March and April of 2021 as a
remote class with interactive tutorials. I want to thank Christopher Moriarty and Pablo Rodriguez Robles
for their inputs and ideas for this course and their hands-on support during the classes.

Mentoring of students and interns

I had the pleasure to mentor and (co-)supervise several students for their internships during my PhD, both
while at STScI as well as during my time at LAM.

2021 David Bourgeois Master OSAE Paris, France 6 months/LAM
2020 Kelsey Glazer Towson University, Baltimore, USA 6 months/STScI
2019 Lucas Batista University of São Paolo, Brazil 2 months/STScI
2019 Maggie Kautz University of Arizona, Tucson, USA 3 months/STScI

Community engagement

During the academic year 2020/2021, I was in charge of the organization of the weekly GRD group seminar
together with my colleague Felipe Pedreros. I invited researchers from the international community to give
presentations, coordinated schedules and hosted talks.

In early 2020, I was invited to serve a three year term on the Equity, Diversity and Inclusion com-

mittee of SPIE, the international society for optics and photonics. As part of this work, I have been
involved in the development and discussion of strategies to make the global optics community a more
welcoming and inclusive professional collective.
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I was born on 17th of October 1992 in the city of Zagreb, Croatia. With my parents, Ana and Igor, and
my younger sister, Marta, I grew up in Vienna, Austria. The frequent travels between Austria and Croatia
for family visits and vacations incited an early interest in comparing the German and Croatian languages,
both of which I grew up to use as a native speaker, and I started learning English as a foreign language at
age �ve. I spent my summers on the beautiful Croatian coast with my aunt Ivana and my grandparents:
Drago and Rajna on my mother’s side, and Danka on my father’s side. As a preschooler, it was there that
I learned how to count: both by running rounds around our house, meticulously keeping track of the laps
I did, clearly showing my early enthusiasm for sports. And also, by counting the stars appearing in the
evening sky before I had to go to bed. I kept describing this activity with a childish skew of the Croatian
word for stars, “zvijezde”, fabricating a phrase that my late grandmother would lovingly repeat in later
years: “Gledamo žveždice!” – “We are watching the stars!”

Between the four years in elementary school, and the eight years in high school at the Theresianische
Akademie in Vienna, my interest would latch on to any new topic I laid my eyes on. My parents provided
me with the opportunities I needed to explore them all, from language courses, over music classes and
summer schools to athletic training and competition. I was lucky to have had a range of enthusiastic and
caring teachers, above all my high school head teacher Mag. Gábor Magyary-Kossa. He not only taught
me French, but also the importance of critical thinking, the value of imagination and the reward from
approaching life with serenity.

With my �rst big passion being competitive sports and after some stints in football, basketball, and �eld
hockey, I embraced the sport of table tennis. For a decade between ages 13-23, my coaches Franz Klaus and
Ivana Masařikova helped me not only to gain the technical �nesse of this sport, but also to strengthen the
self-con�dence I carried into my adult life. My second main passion was an insatiable interest in technical
topics, speci�cally the natural sciences. Astronomy in particular sparked a hunger for knowledge that I
could never fully satisfy with the books I read during my time in high school, so after graduating in 2011 I
enrolled in the University of Vienna to pursue a bachelor’s degree in astronomy. To solidify my knowledge
of fundamental physics, I also enrolled in the physics bachelor’s degree shortly after.

A random glance at a poster at the Institute for Astrophysics in Vienna turned out to be a career-
de�ning moment for me. It was the announcement for the 2014 Dunlap Institute Summer School on
Astronomical Instrumentation at the University of Toronto, happening in August that year. During this
week-long experience I met enthusiastic lecturers and inspiring students from all continents, all sharing a
passion for the technical aspect of astronomy. Consequently, upon my return to Vienna I started my search
to �nd where I could enter the world of instrumentation after my bachelor’s degree. Between becoming the
Vienna table tennis women’s single champion in 2014 and an “Erasmus” exchange semester in Strasbourg,
France, in the spring of 2015, I found that place to be Leiden University in the Netherlands, where I applied
for and got accepted to the master’s degree in astronomy and instrumentation.

I enrolled in the master’s degree in the fall of 2015, after graduating with a BSc in astronomy that
summer; I also �nished the BSc in physics, remotely, in early 2016. I spent the following two years with
a fantastic cohort of both international and Dutch students, and my time in Leiden would prove to be
the base on which I built my knowledge and career later on. In parallel to our courses, in my �rst year I
worked with Dr. Matthew Kenworthy on the modeling of exomoons, moons around exoplanets, and their
orbits within exoplanetary disks. I was looking at what potential exomoon signatures could look like in
the Hill sphere transit of V Pictoris b, which I wrote up as my minor thesis. In my second year, I prepared
my master’s thesis with Prof. Dr. Christoph Keller and Dr. Michael Wilby, working on simulations and
laboratory demonstrations of the vector Apodizing Phase Plate (vAPP) coronagraph. This was my �rst
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concrete exposure to coronagraphy and laboratory work, and I defended successfully in August of 2017.
While I considered PhD positions at this point, my gut feeling was telling me that I was better o�

following a di�erent path. It was only years later that I could put concrete words as to why and how
that feeling manifested, but this decision brought me to the Space Telescope Science Institute (STScI) in
Baltimore, USA, where I joined the Russell B. Makidon Optics Laboratory under Dr. Rémi Soummer as
a Research and Instrument Analyst, later promoted to Astronomical Optics Scientist. It was an exciting
time to join the institute, with the intended launch of the James Webb Space Telescope (JWST) only a year
away, planned for the fall of 2018 at the time. I spent my time working on wide-�eld wavefront sensing
and control on the JOST testbed, until about six months after joining STScI my manager and I started
talking about my longer-term career options. Considering how my enthusiasm and joy with the work I
had been doing at the lab was only growing by the day, I decided to buy into my then-manager’s idea to
create a suitable PhD position. We identi�ed a suitable collaboration with Dr. Laurent Mugnier from the
O�ce national d’études et de recherches aérospatiales (ONERA) in Châtillon, near Paris, and Dr. Jean-
François Sauvage at the Laboratoire d’Astrophysique de Marseille (LAM) in France to craft a PhD that was
co-funded by ONERA and STScI.

I remained in Baltimore for the �rst half of my 3-year doctorate which o�cially started on 1st October
2018 – shortly after crowning myself the 2018 Maryland State Women’s Singles Champion in table tennis.
I removed myself from JWST activities, whose launch was now scheduled for some time in 2021, around
the same time as I was supposed to graduate. It turned into a running gag that I started working with the
Makidon lab team just months before its launch, and that I would leave the group just before launch too
- I set up a personal bet with myself to see who would do their thing �rst, me �nishing my PhD or JWST
being shot into space. The �nal result ended up way tighter than anticipated.

My main PhD research activities revolved around coronagraphy with segmented aperture telescopes,
and I analyzed, simulated, and tested the impact of segment-level WFE on the coronagraphic contrast.
With initial guidance from Dr. Lucie Leboulleux, who originally developed the PASTIS model for contrast
calculations from aberrated segments, and in collaboration with Dr. Laurent Pueyo at STScI, and Dr. Laura
Coyle and Dr. Scott Knight from Ball Aerospace, I developed a way to determine segment-level WFE
tolerances for a given target contrast, and I provided this model with a statistical context. At the same
time, as a member of the Makidon lab team, I started contributing heavily to the operations of the High-
contrast imager for Complex Aperture Telescopes (HiCAT) testbed, which I used in the later stages of my
PhD to perform experiments for my WFE tolerancing model. During my studies, I took part in various
summer schools and conferences in places around the world, from Seattle in Washington/USA, San Diego
in California/USA over Austin in Texas/USA and Quebec, Canada, to so many more. I was also trusted to
give the Makidon lab overview presentation at the Spirit of Lyot conference in Tokyo, Japan, in October
of 2019.

Many of these activities came to a sudden halt with the outbreak of the Coronavirus pandemic in
March of 2020, just two weeks before I was set to move to Marseille for the second half of my PhD.
With no �ights to bring me to Europe, I stayed in Baltimore for a couple more weeks, during which I
acted as the de facto deputy team lead to the Makidon lab while we were all trying to cope with the
new situation. In May I got back to Europe, albeit to Austria since France had closed its borders to limit
the circulation of the virus. I �nally arrived in Marseille on 1st July 2020, starting the last 18 months of
my degree within the Groupe Recherche et Développement (GRD), the instrumentation group at LAM.
Hard lockdowns with permanent work-from-home orders were our daily life for months, with much of
public life shut down, like in many other parts of the world. Conferences and workshops were held entirely
online, work travel for collaborations was limited and only possible nationally. It was during this time that
I started holding remote classes on software version control, an e�ort that was well-received in the French
astronomy community. On 15th December 2021, I successfully defended my PhD at the Observatoire de
Paris, thus beating the launch of JWST by 10 days.

I will continue my career as a CNES postdoctoral fellow at the Laboratoire d’Etudes Spatiales et
d’Instrumentation en Astrophysique (LESIA) in Meudon by Paris. I am looking forward to pursuing my
studies of coronagraphy and wavefront sensing and control within the team of the Très haute dynamique
(THD) testbed, namely Dr. Johan Mazoyer, Dr. Raphaël Galicher and Dr. Pierre Baudoz.
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