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Introduction

Illustration. Simulation of various scaling limits of the Wright-Fisher model.
Time is going downwards and each color represents an initial type in the popu-
lation. The thickness of a color region gives the fraction of individuals with the
corresponding type, and its dynamics is a Wright-Fisher diffusion. The measure-
valued process that records simultaneously the fraction of individuals with each
type is a Fleming-Viot process. Finally the black lines correspond to the ances-
tral lineages of three individuals sampled uniformly at the last time point of the
simulation. Their genealogy is a realization of Kingman’s coalescent.

1.1 Stochastic models in population biology
Populations play a central role in many areas of biology, including ecology, pop-
ulation genetics, demography, epidemiology, and evolutionary biology, that could
be gathered under the name of population biology. Yet, the notion of biological
population is hard to define. A population should be made of individuals. Those
individuals can represent physical individuals, as plants, humans or viruses, but
can also be abstract entities such as genes, populations, and even species. In order
to form a population, a collection of individuals should share some common char-
acteristic and interact together. This characteristic can be, for instance, spatial
proximity, belonging to the same species, or having the same genotype. Finally, a
population is endowed with a notion of ancestry: current individuals are descen-
dants from past individuals in the population.

The notion of population is thus loosely defined. Population biology is a col-
lection of distinct fields that are interested in populations with different biological
characteristics, acting at different scales, that study different aspects of them, and
do not have access to the same observables of these populations. For instance, de-
mography typically studies the variations in size of animal populations, and relies
on time-series of individual counts, whereas diversification is concerned with the
number of species and can only directly access the number of past species through
fossil records. However, despite the diversity of biological populations that can be
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1.1. Stochastic models in population biology 3

studied, an objective shared by of all the fields of population biology is to under-
stand how the interactions between individuals influence the dynamics on a larger
scale, that of the population.

In this thesis, I will present and study several probabilistic models of popula-
tions, applied mainly to population genetics and epidemiology. In this introductory
chapter, I will first give a brief and personal account on the biological questions
that have motivated my research during my PhD. Then, I will discuss the gen-
eral methodology that I have used to study them, and describe some of the tools
grounded in probability theory to understand the relationship between microscopic
characteristics and macroscopic behavior. Finally, in each subsequent chapter, I
will introduce a population model and the biological context that has motivated it,
and carry out an analysis of some features of the model using the tools presented
in this introduction.

1.1.1 From population genetics . . .
Population genetics studies the variations in frequencies of gene variants, called
alleles, in a population. It aims at understanding the patterns of genetic diversity
that we observe in extant populations, and the evolutionary forces that shaped this
diversity. From its very foundation in the 1920s, population genetics has relied ex-
tensively on mathematical models to make quantitative predictions that could be
tested on observed data. It is not surprising that its three founding fathers, Sewall
Wright, J.B.S. Haldane and Ronald Fisher, were accomplished mathematicians,
and that the latter of the three also made fundamental contributions to the theory
of statistics. Population genetics is a mature field, which has led to rich develop-
ments in both probability theory and evolutionary biology. My original academic
background being biology, but having a strong taste for mathematics, my initial
interest in population genetics lied in this interplay between elegant mathematics
and fascinating evolutionary questions. During my PhD, I have mainly focused on
two aspects of population genetics: recombination and range expansion. I have
also carried out more theoretical works on the representation of random genealo-
gies, which are presented in Chapter 2. Finally, with two other students who share
my interest in probability theory and population genetics, I studied a random for-
est model that encodes the parental relationship of extant individuals in a Moran
model, and is not contained is this manuscript [23].

Recombination. In a broad sense, recombination is the formation of new com-
binations of alleles out of old ones. In a sexually reproducing population, a subset
of the chromosomes of the offspring is inherited from one parent, and the rest of
the chromosomes from the other parent. If the alleles are not linked, that is, are
not on the same strand of DNA, recombination can occur through the random
sampling of parental chromosomes during reproduction as in the left panel of Fig-
ure 1.1. When alleles are linked, the only way to modify an association of alleles
is to break the DNA molecule, and to replace a chunk of DNA by a new one, as in
the right panel of Figure 1.1. The most well-known example of such a mechanism
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Figure 1.1: Two ways of creating new combinations of alleles. Left: A new combination
of unlinked alleles a/A is formed through the sexual reproduction of two individuals with
distinct alleles. Right: The new collection of linked alleles (a,B) is obtained after a
crossing-over, whose location is indicated by the dashed line.

is the crossing-over that occurs during meiosis in eukaryotes. We will be mostly
interested into the latter situation, and, in the remainder on the manuscript, the
use of the word recombination will always refer to that situation.

At the population level, due to recombination, individuals inherit chromosomes
that are mosaics of those of their ancestors. These mosaics are made of unre-
combined segments, also called identical by descent blocks (IBD blocks), separated
by junctions that correspond to past crossing-over events [71, 38]. Compared to
the theory for one locus which is now well-established [56, 61], understanding the
dynamics of these blocks and junctions remains challenging from both a mathe-
matical and a computational points of view [122, 154]. In Chapter 5, we study
the long-term genetic contribution of a focal individual in a constant-size, neutral,
well-mixed population experiencing recombination. We provide an expression for
the size and location on the genome of the blocks of genetic material left by this
individual in the limit of large population size and large recombination rate. A
better theoretical understanding of the impact of recombination on IBD blocks
could help to formulate a null model for the distribution of these blocks and lead
to the development of inference tools based on deviations from this model. Infer-
ence methods that leverage the length of IBD blocks have already been proposed
to detect past demography [146, 180, 124] and selection [187].

At the species level, recombination can lead to the transfer of genetic mate-
rial from one species to another through the formation of hybrids and subsequent
backcrosses with the recipient species, a phenomenon known as introgression [104].
Introgression is now recognized to have had a large impact on the genome of many
species [151, 175], including our own species [190, 191]. In Chapter 3, we propose
a model that follows the ancestral lineages of a subset of loci sampled in a focal
present-day species in backward time. Ancestral lineages are separated into distinct
species due to introgression events, and brought back together at speciation events.
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We encode the set of species to which the ancestral lineages of the loci belong as
a partition, where two loci are placed into the same block at time t if they belong
to the same species t units of time ago. Under the modeling assumption that we
make, the dynamics of this partition is given by an interesting mathematical object
known as Kingman’s coalescent with erosion [80].

Additionally, at the population level, the model considered in Chapter 5 pro-
vides the dynamics of a single hybrid individual into a large resident population,
under the assumption that the hybrid is viable, and as fit as individuals from the
recipient species. We can also interpret the results we obtain as providing an ex-
pression for the amount of introgressed genetic material and its location on the
genome.

Range expansion. The range of a species is the geographical region over which
this species is found. The phenomenon by which a species can colonize new habit-
able areas is known as range expansion. Two well-documented examples of range
expansions are the current invasion of cane toads in Australia [212, 208], and the
past out-of-Africa expansion of early human populations [108]. Chapter 4 is de-
voted to a model of expanding population. Our motivation for this study comes
from two quite recent observations on the genetics of such populations.

First, it was reported that a neutral or a deleterious allele can rapidly reach a
large frequency over a vast region of space during a range expansion, a phenomenon
dubbed gene surfing [54, 129, 211]. It was further predicted that, due to successive
surfing of deleterious mutations, the fitness of the population should decrease along
the expansion axis. The resulting fitness loss is called the expansion load [172, 29].

Second, there is growing evidence that the rate of loss of genetic diversity dur-
ing a range expansion is reduced by the presence of an Allee effect [184, 99, 27],
that is, when the per-capita growth rate of the population is not maximal at low
population size [132]. The intuition behind this effect is quite simple. The range of
a population can be divided into a region where it is well-established, the bulk, and
a boundary region where population densities are lower, the front. In the absence
of an Allee effect, individuals at the front have the highest growth rate, and are the
main genetic ancestors of newly colonized regions. The wave is pulled by the few
individuals at the front. In the presence of an Allee effect, the highest growth rate
is now achieved in a region intermediate between the front and the bulk. There are
more individuals that contribute genetically to the newly colonized habitats, and
the genetic diversity in that region is higher. The wave is said pushed.

The model studied in Chapter 4 is designed to investigate the impact of the
pulled or pushed nature of an expansion on the formation of an expansion load
during a range expansion.

1.1.2 . . . to epidemiology
In December 2019, a new coronavirus was discovered, SARS-CoV-2, that is the
causative agent of a severe respiratory disease, COVID-19. Since then, the world
is facing a major sanitary crisis, leading to the shutdown of entire economies and
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causing fatalities now estimated to more than a million. The research community
rapidly took action and started to explore many aspects of the disease. Willing
to get involved in this international research effort and with the help of my mixed
background in biology and mathematics, I have been the major driver of a modelling
project on the COVID-19 epidemic, initiated within the SMILE group to which I
belong. The scientific approach of this research project was very different from that
of other works presented in this thesis. After having elaborated an epidemic model
and studied its large population size limit, I collected epidemiological data from
different governmental sources. Then, a large part of my work was to construct
an inference framework based on the results that we had obtained and to apply
it to these data, which led to Section 6.4 of the present manuscript. Even if the
mathematical results of this project do not have the same level of originality as
other results that I will present, it was the opportunity for me to bridge the gap
between mathematics and data, and to develop a greater expertise in epidemiology.

Epidemiology is the branch of biology that studies the spread of transmissible
agents, such as viruses, bacteria, or other types of pathogens. It is a second ex-
ample of field where mathematical models play an important role. However, in
contrast with population genetics, epidemics are more often modeled using deter-
ministic tools, such as dynamical systems or partial differential equations, than
with probabilistic methods. In many situations, the deterministic equations that
are proposed for the dynamics of the epidemic correspond to the large population
limit of some stochastic population model, but this convergence step is not often
carried out rigorously, see for instance the discussion in [166], and the macroscopic
equations often rely on unrealistic assumptions (exponentially distributed waiting
times, constant infectiosity profile). In Chapter 6 and Chapter 7 we propose and
study two variants of the same stochastic epidemic model. Our approach is to
start by proving the convergence of the model to a deterministic set of equations,
and then to use inference methods for deterministic epidemic models to carry out
an estimation of some macroscopic epidemiological parameters, as the basic re-
production number or the total number of infected individuals, from measurable
individual characteristics, such as the generation time. This probabilistic approach
has many benefits, which are discussed in the forthcoming Section 1.1.3.

The epidemiological model considered in this thesis was intended to represent
the dynamics of the COVID-19 pandemic. It was designed to take into account
two important aspects of this epidemic. First, the COVID-19 is a complex disease.
Upon infection, some individuals develop very mild forms of the disease, with few
or no symptoms, but remain infectious [6, 164]. Even in the presence of symptoms,
it has been estimated that a significant fraction of transmissions could occur before
symptom onset [106, 209]. In some cases, infected individuals develop severe respi-
ratory symptoms that require an admission to intensive care unit (ICU), and can
eventually lead to death [189]. Moreover, there is a strong impact of cofactors on
the severeness of the disease. For instance, age is a major factor of risk [189]. An
accurate description of the dynamics of the epidemic should thus be able to take
into account this high degree of heterogeneity in the courses of infections among
different individuals.
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Second, the reaction of many countries to the COVID-19 epidemic has been the
enforcement of control measures such as school closures, nation-wide lockdowns, or
mandatory face masks [72]. These control measures have large impacts on the con-
tact rate in the population and can drastically reduce the number of transmissions.
Moreover, they are typically triggered after close monitoring of some epidemiologi-
cal quantity of interest, such as the case incidence, the number of occupied hospital
or ICU beds, or the number of deaths. Therefore, an epidemiological model for the
COVID-19 epidemic should be able to account for temporal changes in the trans-
mission rate, and should as much as possible provide a prediction for the complex
set of observables of the epidemic that are mentioned above.

The model proposed in Chapter 6 meets these two expectations. It is a rather
general epidemiological model, that could also be used to study the spread of many
diseases other than COVID-19. Note, however, that it is “mean field” in the sense
that it does not take into account any kind of spatial or social heterogeneity in the
contacts made in the population.

1.1.3 The scaling limit approach

The approach used in this thesis to study the problems exposed in the previous
section relies on the analysis of stochastic population models. First, these models
are often constructed by specifying a set of rules that describe the life, reproduction,
and death of individuals in the population. Most of the modeling work is carried
out at this step, and the specified rules should reflect the biological phenomenon
under consideration. Such models are often referred to as individual-based models.

Then, these individual-based models are studied in two steps. First, we prove
that, after an appropriate renormalization, some features of the population (its size,
its genealogy, etc.) converge under a large population size limit to a continuous
object called scaling limit. Then we study the scaling limit as an approximation of
the discrete individual-based model. Each chapter in this thesis is either devoted
to carrying out the first convergence step, and/or to studying the scaling limit
of a population model. More precisely, in Chapter 2 we provide new representa-
tion results on exchangeable coalescents, which are known to be the scaling limits
of genealogies of samples from a large population. In Chapter 3 and Chapter 4
new individual-based models are introduced and we study some properties of their
scaling limits, after having identified them using heuristic arguments. Finally, in
Chapter 5, Chapter 6 and Chapter 7, we also introduce individual-based models,
but the bulk of the work in these chapters is to prove the convergence of these
models toward their scaling limits.

In the next section we discuss the interest of this approach. In order to keep the
discussion as simple as possible, we will use as an example the celebrated central
limit theorem, and its functional version, Donsker’s invariance principle.
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1.1.4 Invariance principle, universality
It is a general observation in probability theory that the large scale dynamics
of many stochastic systems is independent of the fine scale description of that
system. When such a situation occurs, the system is said to display an invariance
principle and the large scale limit is called universal. The prime example of this
phenomenon is the central limit theorem, and its functional version which provides
the convergence of random walks to Brownian motion. We rapidly recall this well-
known result in order to illustrate the discussion of this section. Let (Xi; i ≥ 1) be
i.i.d. real random variables, satisfying

E[X1] = 0, E[X2
1 ] = ν2,

and define the random walk (S(t); t ≥ 1) as

S(0) = 0, ∀t ≥ 1, S(t) =
t∑
i=1

Xi.

Theorem 1.1 (Donsker’s invariance principle). Let (Bt; t ≤ 1) be a standard
Brownian motion. The following convergence holds in distribution for the uniform
topology, ( 1√

N
S
(
bNtc

)
; t ∈ [0, 1]

)
−→
N→∞

(
νBt; t ∈ [0, 1]

)
.

A proof of this result can be found in [120], Theorem 14.9. We will see other
examples of invariance principles for population models in the forthcoming Sec-
tion 1.2.

Universality is a very desirable property from a modeling perspective. First, a
universal limit is robust. The fine scale properties of a system will typically depend
on the details of the model under consideration. Studying a universal limit ensures
that the conclusions that are derived do not depend too heavily on the modeling
assumptions that are made. In a sense, it sorts out the properties that are artifacts
of the modeling procedure from the properties that are “intrinsic” to the system.

Second, the invariance principle justifies the use of “toy models”. For instance,
the random walk verifying P(X1 = 1) = P(X1 = −1) = 1/2, which is called the
symmetric simple random walk, is highly tractable and enjoys nice combinatorial
properties that make many computations feasible. The results obtained for this
special case can be used to derive properties of the universal limit, the Brownian
motion, which in turn provides a limiting expression for that property for all ran-
dom walks with finite variance. A well-known example is the use of the reflection
principle to derive the distribution of the maximum of a Brownian trajectory (see
for instance Section 8 of [25]). Thus, many properties of toy population models,
such as the Wright-Fisher model that we will introduce, hold for a wider class of
models through the existence of a common scaling limit.

Third, an invariance principle allows us to identify the characteristics of the mi-
croscopic system that influence its macroscopic behavior. Typically, the universal
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limit is an aggregated version of the discrete objects and depends on less param-
eters. The limiting Brownian motion only depends on the first two moments of
the increments of the walk, and not on their entire distribution. From an inference
point of view, this indicates the relevant parameters that should be estimated in
order to understand and predict the dynamics of the system. Moreover, the univer-
sal limit is often easier to simulate, and requires less computational effort to study
than the original system. Compare the simulation of one Gaussian random variable
to that of the sum of a large number of independent variables. These points will be
well illustrated in Chapter 6, where we conduct an estimation of the parameters of
the scaling limit of our epidemiological model that fit best the COVID-19 epidemic
in France.

Studying population models through their scaling limits often comes at the cost
of higher abstraction. Populations are discrete structures that can be described
intuitively as a finite collection of individuals that reproduce and die. Taking a
scaling limit involves going from this discrete description to a “continuous” version
of the population. It requires to identify what are the marginals of interest, as well
as suitable state spaces in which the limits live. The success of this approach is
conditioned on the prior theoretical development of an adequate framework, with
a convenient notion of convergence and enough analytical tools to study the limit.
Therefore, studying scaling limits is a challenging task, where deep mathematics
can prove useful to the understanding of natural phenomena.

1.2 Scaling limits of classical population models
In this section, we provide examples of classical scaling limits of stochastic popula-
tion models. These models are simpler than those studied in this thesis. Neverthe-
less these remarkable examples will be the building blocks of the more complicated
scaling limits that we will consider. It is also an opportunity to introduce the
formalism needed to study the objects that will be considered in this manuscript.

1.2.1 General neutral population models
All the scaling limits described in this chapter will be derived from the following
population model. The model is built out of an array (ξni ; 1 ≤ i ≤ n <∞) of ran-
dom variables valued in Z+, the set of non-negative integers. Generations are dis-
crete and non-overlapping: at each generation, all individuals die and are replaced
by a random number of new individuals. For each fixed n, the row (ξn1 , . . . , ξnn) gives
the offspring sizes when the population is of size n: ξni is the number of children of
the i-th individual. We assume that the vector of offspring sizes is exchangeable,
in the sense that for any permutation σ of [n] := {1, . . . , n} we have

(ξn1 , . . . , ξnn) (d)= (ξnσ(1), . . . , ξ
n
σ(n)).

Exchangeability amounts to saying that the contribution of each individual to
the following generation is identical in distribution. In particular, the number of
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children is not influenced by any inheritable trait carried by some individual. In
evolutionary biology, if an allele does not influence the reproductive success of
its carrier, it is called neutral. Thus, in our context, exchangeability reflects the
fact that all alleles carried by the individuals in the population are neutral. The
population model is now constructed as follows.

Definition 1.2. Suppose that the population starts from a random number of
individuals denoted by Z(0). Let Z(t) be the population size at some genera-
tion t ≥ 0. Conditional on Z(t) = n, label the individuals by {1, . . . , n} and let
(ξ1(t), . . . , ξn(t)) be a copy of (ξn1 , . . . , ξnn) independent of the previous generations.
Set ξi(t) to be the number of offspring of i in the next generation. In particular,

Z(t+ 1) =
Z(t)∑
i=1

ξi(t). ◦

Note that, by exchangeability, the previous construction does not depend on
the labeling of the individuals at some generation. This model, as defined above,
is too general to be studied. It is simply a convenient way to place into the same
framework two very influential population models: the Galton-Watson process and
the Cannings model.

Definition 1.3 (Galton-Watson process). Suppose that the array of offspring sizes
(ξni ; 1 ≤ i ≤ n <∞) is made of i.i.d. variables with common distribution µ. Then
the corresponding population model is called a Galton-Watson process. At each
generation, each individual gives birth to a number of children distributed as µ,
independently of other individuals in the population. ◦

Galton-Watson processes are maybe the simplest stochastic population mod-
els that one can conceive. Individuals in the population do not interact as they
reproduce independently from each other: they only give birth and die. Galton-
Watson processes enjoy the branching property. Suppose that (Z(t); t ≥ 0) and
(Z ′(t); t ≥ 0) are two independent Galton-Watson processes, started from Z(0)
and Z ′(0) respectively. Then

(Z(t) + Z ′(t); t ≥ 0) (d)= (Z̃(t); t ≥ 0) (1.1)

where (Z̃(t); t ≥ 0) is a Galton-Watson process started from Z(0)+Z ′(0). From the
branching property, it is possible to derive very precise results about (Z(t); t ≥ 0),
including the probability of extinction and the long-time asymptotic behavior of
the population size. We refer to [3] for a complete introduction to Galton-Watson
processes. The branching property (1.1) is the starting point for many extensions of
Galton-Watson processes, which have led to the rich theory of branching processes,
see for instance [147] for a treatment of a very general class of branching processes.

Galton-Watson processes either die out, or grow to infinity. This is in contra-
diction with the observation that the size of many natural populations seems to
remain close to an equilibrium value, named the carrying capacity, see for instance
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Chapter 4 in [105]. Therefore, even if Galton-Watson processes have led to impor-
tant developments in probability theory, they are poor population models. One
way to circumvent the previous issue is to reduce the growth rate of the population
at large population size [134]. The models of Chapter 4 and Chapter 7 follow this
approach. Another way to prevent infinite growth is to assume that the popula-
tion size is constant. Chapter 2 and Chapter 3 are based on constant-size models.
Finally, Galton-Watson processes remain good approximations of the early growth
phase of populations. Both Chapter 5 and Chapter 6 study branching approxi-
mations of more complex population models. We now introduce Cannings models
[36], which are the canonical examples of fixed size population models.

Definition 1.4 (Cannings model). Suppose that the array of offspring sizes fulfills

∀n ≥ 1,
n∑
i=1

ξni = n.

Then, starting from Z0 = n, the population remains of constant size n. The
corresponding population model is called a Cannings model. ◦

The most celebrated of all Cannings models is the Wright-Fisher model. It
corresponds to the Cannings model where

(ξn1 , . . . , ξnn) (d)= Multinomial
(
n; 1

n
, . . . , 1

n

)
.

The Wright-Fisher model is often described by saying that, at each generation,
individuals sample their parent uniformly from the previous generation.

Note that, as the population size is constant, it is possible to define Can-
nings models for all generations t ∈ Z by considering an i.i.d. sequence of vectors
(ξ1(t), . . . , ξn(t); t ∈ Z). Actually, a similar extension to all t ∈ Z could be made
for the more general model of Definition 1.2, provided that the population size
(Z(t); t ≥ 0) admits a stationary distribution.

The description of the population through Definition 1.2 contains much infor-
mation: from the array (ξi(t); t ≥ 0, i ≤ Z(t)) one can obtain the genealogical
relationship between any pair of individuals at any generation. In general we do
not need such a detailed description, but are rather interested in more aggregated
features of the population. From a mathematical standpoint, this amounts to pro-
jecting the distribution of the population on some smaller space, that is, to study
marginals of the population process. Let us provide some examples of interesting
marginals.

The simplest of all marginals is certainly the total population size. In our
setting, it is a Markov process (Z(t); t ≥ 0) valued in Z+. We could also be
interested in writing Z(t) as the sum of the contributions to generation t of each of
the initial individuals in the population. This can be encoded as a point measure
on {1, . . . , Z(0)} defined as

Y (t) =
Z(0)∑
i=1

Z(i)(t)δi
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where Z(i)(t) is the number of descendants at generation t of the initial individual
with label i. Note that the total mass of Y (t) is Z(t).

Another very important marginal is the genealogy of population. For some
fixed generation T , the genealogy of the population can be encoded as a process
(Π(t); t ≤ T ) valued in the partitions of {1, . . . , Z(T )} called a coalescent, and
defined as

i ∼Π(t) j ⇐⇒ i and j have a common ancestor at generation T − t.

An alternative way of encoding this genealogy is to record, for each pair of indi-
viduals, the time to their most-recent common ancestor (MRCA). If we define

d(i, j) = inf{t ≥ 0 : i and j have an ancestor at time T − t}

then d is called an ultrametric, and contains the same information as (Π(t); t ≤ T ).
The marginal obtained by further varying the time of observation T corresponds

to the dynamical genealogy of the population. Finally, the most informative of all
marginals is the vector of offspring sizes (ξi(t); t ≥ 0, i ≤ Z(t)), from which all the
features of the populations can be recovered.

Remark 1.5. There are continuous-time analogs of the discrete-time models pre-
sented here that have played an important role in population biology. Let us
mention the Moran model [158], which is a constant-size continuous-time model
very popular in population genetics, and the continuous-time branching processes
(see for instance Chapter III of [3]). ◦

1.2.2 Feller and Wright-Fisher diffusions
One of the most obvious features of a population is its size. It is thus not surprising
that the first stochastic scaling limits that have been derived were those for the
dynamics of the population size. The natural framework for this limit is that
of diffusions, that is, solutions to stochastic differential equations (SDE) driven
by a Brownian motion. Diffusion theory in one dimension has received a lot of
attention, and comes with many tools to study the limiting objects, such as the
speed measure, the scale function, random time-changes, or the Itô formula. They
allow us to obtain expressions for important quantities, such as the distribution of
the extinction time, or the probability of fixation of an allele. We refer to [145]
for a general introduction to diffusion theory, and to [56, 135] for other accounts
directed towards population processes. Let us now introduce the limiting diffusions
for the population size of a Galton-Watson process and of a Wright-Fisher model:
the Feller diffusion and the Wright-Fisher diffusion. Several realizations of these
processes are displayed in Figure 1.2.

Feller diffusion. We are interested in describing the dynamics of a Galton-
Watson process started from a large number N of individuals, where N is a scaling
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Figure 1.2: Simulation of diffusion limits of population processes. Left: Three inde-
pendent realizations of the Feller diffusion. Right: Three independent realizations of the
Wright-Fisher diffusion.

parameter. Recall the notation ξN1 for the number of children of each individual,
and ZN(t) for the total population size at generation t.

We will consider Galton-Watson processes that are “nearly critical”, that is,
such that

E
[
ξN1
]

= 1 + γN
N

where γN is of order 1. This assumption ensures that the process does not die
out or grow to infinity too fast, and that we obtain an interesting scaling limit.
Moreover, we will need the following technical assumption

∀a > 0, lim sup
N→∞

E
[
(ξN1 )2; ξN1 ≥ a

√
N
]

= 0. (1.2)

The proof of the following result can be found for instance in [169], Proposition 4.
The limiting diffusion in the next result is known as the Feller diffusion.

Theorem 1.6. Suppose that

ZN(0)
N

−→ x, γN −→ γ, Var
(
ξN1
)
−→ σ2.

Then, under assumption (1.2), the following limit holds in distribution for the
Skorohod topology,

( 1
N

ZN(bNtc); t ≥ 0
)
−→

(
Zt; t ≥ 0

)
, (1.3)

where (Zt; t ≥ 0) is the unique solution to

Z0 = x, dZt = γZt + σ
√
Zt dBt,

where (Bt; t ≥ 0) is a Brownian motion.
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Note that the Feller diffusion enjoys the branching property. If (Zt; t ≥ 0) and
(Z ′t; t ≥ 0) denote independent Feller diffusions started from x and y respectively,
then a direct application of Itô’s formula proves that

(
Zt + Z ′t; t ≥ 0

) (d)=
(
Z̃t; t ≥ 0

)
(1.4)

where (Z̃t; t ≥ 0) is a Feller diffusion started from x+ y. (The branching property
for the Feller diffusion actually follows from that of the Galton-Watson process
and the limit (1.3).) Real-valued strong Markov processes that have the branching
property (1.4) are called continuous-state branching processes (CSBP), and there
exist convergence results similar to (1.3) that prove the convergence of more general
Galton-Watson processes to CSBP, see [51].

Wright-Fisher diffusion. We now derive a similar limit for the Wright-Fisher
model. We will not be interested into the total population size, as it is fixed to
some constant N , but into the frequency of a given allele. Suppose that at some
locus there are two alleles a and A in the population. Let us denote by Y N(0)
the number of individuals carrying the allele A at t = 0, and assume that each
individual inherits the allele of its parent. Let Y N(t) be the number of individuals
with allele A at generation t.

The following result provides the diffusion approximation of the frequency of
alleles A in the population. A proof can be found in Chapter 10 of [58].

Theorem 1.7. Let (Y N(t); t ≥ 0) be the number of carriers of allele A in a
Wright-Fisher model. Then, if Y N(0)/N → x, the following convergence holds in
distribution for the Skorohod topology,( 1

N
Y N(bNtc); t ≥ 0

)
−→

(
Yt; t ≥ 0

)
,

where (Yt; t ≥ 0) is the unique solution to

Y0 = x, dYt =
√
Yt(1− Yt) dBt,

where (Bt; t ≥ 0) is a Brownian motion.

The limiting diffusion in the previous result is known as the Wright-Fisher
diffusion. Similar diffusion limits have been derived for extensions of the Wright-
Fisher model that account for mutation or selection [56]. Note that the previous
result does not explicitly show that the Wright-Fisher diffusion is a universal limit,
as we have only proved the convergence in a very particular case. Nevertheless,
a similar limit should hold for the allele frequency of a larger class of Cannings
models, under assumptions similar to those of Theorem 1.6.

There is a remarkable connection between the Feller diffusion and the Wright-
Fisher diffusion. Consider two independent Feller diffusions denoted by (Zt; t ≥ 0)
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and (Z ′t; t ≥ 0), started from x and x′ respectively, with γ = 0 and σ = 1. Let us
define

∀t ≥ 0, Yt = Zt
Zt + Z ′t

, Nt = Zt + Z ′t.

Then an application of Itô’s formula shows that (Yt; t ≥ 0) solves

Y0 = x

x+ x′
, dYt =

√
Yt(1− Yt)

Nt

dBt.

The previous SDE is similar to that solved by the Wright-Fisher diffusion, except
that there is an additional term accounting for the varying total population size:
when population size is low, the dynamics of the allele frequencies is faster. This
reflects the well-known fact that genetic drift, that is, the fluctuations in allele
frequencies due to random births and deaths, is stronger for lower population sizes.
Moreover, this simple calculation strongly suggests that the “genetic structure” of
the Feller diffusion is similar to that of a Wright-Fisher model. A formalization
of this idea in a much more general framework can be found in [26]. Even if
the population models introduced in Section 1.2.1 seemed rather different at first
sight, their large population size scaling limits allow us to draw new connections
between them, and to get deeper insight into the fundamental characteristics that
differentiate them.

1.2.3 Kingman’s coalescent
Recall the definition of a Cannings models of size N constructed from the vector
(ξN1 , . . . , ξNN ). Recall also that the genealogy of the population at generation T can
be encoded as a process (ΠN(t); t ≥ 0) valued in the partitions of [N ] and defined
as

i ∼ΠN (t) j ⇐⇒ i and j have a common ancestor at time T − t.
We will not be interested into the genealogy of the whole population, but only into
the genealogy of a sample of fixed size n. By exchangeability of the population, this
amounts to considering the genealogy of the individuals labeled {1, . . . , n}, that is
to consider the restriction of ΠN to [n], that we denote by ΠN

n .
As we will see, one universal limit of the genealogies of Cannings models is

Kingman’s coalescent, which was introduced in [128]. It is defined as follows, see
Figure 1.3 for a simulation.

Definition 1.8 (Kingman’s coalescent). The Kingman coalescent (ΠK(t); t ≥ 0)
is a process valued in the partitions of N. It is started from the partition into
singletons, and for any n, its restriction (ΠK

n (t); t ≥ 0) to [n] is a Markov process
such that each pair of blocks merges at rate one. ◦

Before stating the result, we need some additional notation. Let

cN =
E
[
ξN1 (ξN1 − 1)

]
N − 1 , dN =

E
[
ξN1 (ξN1 − 1)(ξN1 − 2)

]
(N − 1)(N − 2) .
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Figure 1.3: Simulations of coalescents. Left: Kingman’s coalescent with a sample size
of n = 100. Right: Beta(2−α, α) coalescent, with a sample size of n = 100, and α = 3/2.

By exchangeability, cN is the probability that two individuals find their common
ancestor at the previous generation, and dN is the probability that three individuals
all have the same ancestor at the previous generation. The following result, known
as Möhle’s lemma [155, 156], shows that under some mild assumptions on cN and
dN the genealogy of Cannings models converge to Kingman’s coalescent.

Theorem 1.9 (Möhle’s Lemma). Suppose that

lim
N→∞

dN
cN

= 0.

Then, for any n ≥ 1,(
ΠN
n

(
bcN tc

)
; t ≥ 0

)
−→

(
ΠK
n (t); t ≥ 0

)
,

in distribution for the Skorohod topology.

All of the points of the discussion in Section 1.1.4 are well illustrated by King-
man’s coalescent. The limiting object is simpler than the genealogy at fixed N .
Kingman’s coalescent is a binary tree, so that no more than two lineages coalesce at
a time, whereas it is possible to see multiple coalescences at fixed N . Moreover, the
limit only depends on the rate of pairwise mergers cN . Finally, the universality of
Kingman’s coalescent has made it popular in population genetics, as it is a robust
model for the genealogy of neutrally evolving populations. See for instance [216]
for an account more directed towards applications in biology.

Remark 1.10. Hidden in the hypothesis of Theorem 1.9 is the assumption that
no individual in the population leaves a very large offspring and contributes to a
large fraction of the population in the next generation. When such a situation
occurs, the limiting genealogy is no longer given by Kingman’s coalescent, but by
multiple mergers coalescents [195]. A very important subclass of these coalescents
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Figure 1.4: Simulation of a Feller branching diffusion (left), and of a Fleming-Viot
process (right). Each initial individual is given a different color, and the thickness of
each region indicates the size of the progeny of the individual with the corresponding
color.

are the Λ-coalescents introduced in [178, 188], see Figure 1.3 for an illustration.
Convergence of the genealogies of Cannings models to such coalescents has been
for instance conducted in [196] and [157]. ◦

Even if Kingman’s coalescent is a very popular genealogical model in population
genetics, the shape of species trees are better described by birth-death processes
[109, 159], which are continuous-time versions of Galton-Watson processes. Inter-
estingly, the approach of sampling individuals in the population and encoding their
genealogy as a partition-valued process has not received much attention for Galton-
Watson processes, but see [138, 119, 102] for results in this direction, and [19] for
a link between Kingman’s coalescent and the Feller diffusion. An alternative ap-
proach to study the tree shape of birth-death processes that has been very fruitful
is to endow the population with a “planar order”, and record the coalescence times
between consecutive individuals in this order, see Section 1.2.4 for a formal defi-
nition. The corresponding genealogy, called a coalescent point process (CPP), has
been studied for finite-size branching processes [136, 141], and its scaling limit has
been given in [179].

1.2.4 Other scaling limits
We end this section by presenting informally the scaling limits of more complex
marginals of the population, which lead to more involved objects in the limit.

Superprocesses. In addition to understanding the dynamics of the total popu-
lation size, it is interesting to separate this total size into the contribution of each
initial individual at t = 0. Recall that, if the population starts from N0 individuals,
this information can be encoded as a point measure

Y N(t) =
N0∑
i=1

Z(i)(t)δi,

where Z(i)(t) is the number of descendants at generation t of the individual with
label i at t = 0. Now, let us rescale both the population size and the label space
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by N , and define the rescaled process as

Ỹ N(t) = 1
N

N0∑
i=1

Z(i)(t)δi/N .

Suppose that N0/N → x, then the initial measure Ỹ N(0) converges weakly to the
Lebesgue measure on [0, x]. For the Galton-Watson process and the Wright-Fisher
model, it can be shown that the entire rescaled process (Ỹ N(t); t ≥ 0) converges to a
measure-valued process. In the former case, the limit is known as a Feller branching
diffusion and in the latter case it is the Fleming-Viot process. Both processes are
illustrated in Figure 1.4. More generally, measure-valued population processes are
known as superprocesses, we refer to [55] for a nice introduction to these notions.
Note that, in the original formulation of superprocesses, each individual moves
into space, so that the measure does not only encode the offspring sizes in the
population, but also the locations of the individuals. Here we have considered the
special case where there is no spatial motion.

Dynamical genealogies. Kingman’s coalescent corresponds to the genealogy of
a sample from the population at one point in time. A naive way to obtain an
evolving genealogy is to sample n individuals independently at each generation T ,
and to consider the collection of coalescents associated to each sample. However,
this coalescent-valued process does not enjoy any continuity property, as the sample
between two consecutive generations are independent, and it is hard to obtain a
scaling limit for this object. This issue can be overcome in several ways.

First, it is possible to sample the individuals in a “smart way”, so that the
individuals sampled at generation T + 1 are related to those sampled at generation
T and that the coalescent at T + 1 is similar to that at T . This idea leads to a
construction of the evolving Kingman coalescent from the lookdown process of [49],
that was first proposed in [176, 177]. The offspring of all individuals but one in the
population will eventually die out. Thus, individuals can be ranked according to
the time at which their offspring goes extinct, in decreasing order. This sequence
of initial individuals, ordered by time of extinction of their offspring, is called
the Eves of the population. The evolving Kingman coalescent constructed from
the lookdown process corresponds to the dynamical genealogy of the Eves of the
population [133].

Second, the genealogy of a population can be encoded as a metric space. The
distance between two individuals is the time to their MRCA. Using the framework
of random metric measure spaces [94, 91], it is possible to define a tree-valued pro-
cess that corresponds to the scaling limits of the evolving genealogy of a Cannings
model [91] or of a Galton-Watson process [43].

Finally, the point of view advocated in Chapter 2 is to make use of a planar
representation of the genealogies. Suppose that, at t = 0, the initial individuals
are given an order. Then we can define inductively for any T a total order �T on
the individuals alive at generation T as follows. For each set of siblings, choose an
arbitrary order. If i and j are not siblings, their order is that of their parents. If
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1 2 3 4 5 6t
Figure 1.5: Illustration of the planar representation of genealogies.

the individuals at generation T are labeled by [Z(T )] in such a way that i �T j
iff i ≤ j, their genealogy can be encoded as a vector (C1, . . . , CZ(T )−1), where Ci is
the time to the MRCA of i and i + 1, see Figure 1.5. The order of this vector is
crucial, as changing this order leads to distinct genealogies.

In the limit, this vector is conveniently encoded as a point process, and the
corresponding genealogy is known as a comb. If this point process is a Poisson point
process, then the comb is called a CPP, and was already discussed in Section 1.2.3.
The CPP associated to the Feller diffusion can be obtained as the depths of the
excursions of a Brownian motion below some level [179]. There is also a simple
construction of the comb associated to Kingman’s coalescent see for instance [140].
In Chapter 2 we will derive a similar representation result for a much broader class
of coalescents, and study the associated evolving genealogy.

Stochastic flows. All objects that we have introduced so far are scaling limits
of particular characteristics of the population. It is also possible to define a scaling
limit for the population as a whole. The idea is to record for each pair of times s ≤ t
a function Fs,t that records the ancestors of the individuals in generation t that
lived at generation s. (Formally, this is encoded as a measure in much the same
way as for superprocesses, and Fs,t is the distribution function of this measure.)
Then the collection (Fs,t; s ≤ t) is called a stochastic flow. The stochastic flow
associated to Galton-Watson processes is called the flow of subordinators and was
introduced in [21], whereas that corresponding to Cannings models is known as the
flow of bridges, see [21].

All the scaling limits that have been exposed in this section are marginals of
a stochastic flow. The Feller branching diffusion and Fleming-Viot process corre-
spond to the measure-valued process (F0,t; t ≥ 0), where (Fs,t) is a flow of sub-
ordinator and a flow of bridges respectively. The genealogy of the population at
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Figure 1.6: Illustration of the paintbox procedure. The interval I is the union of the
colored subintervals, and each Ui is represented by an arrow. The partition Π is the
partition in colors of the (Ui; i ≥ 1), that is, Π = {{1}, {2, 9}, {3}, {4, 6, 7, 8}, {5}}. Note
that each variable that does not belong to I forms a singleton block.

time T is encoded by the process (FT−t,T ; t ≥ 0), and Kingman’s coalescent can be
recovered through a sampling procedure involving this process. Finally, the process
obtained by varying the observation time T is an evolving genealogy. Stochastic
flows of bridges will play an important role in Chapter 2 and Chapter 3, where
there will be introduced formally.

1.3 Outline of the thesis
The remainder of the manuscript is divided into six chapters. Each chapter is self-
contained, with its own introduction, notation and references. As discussed in the
previous section, there are many features of a population that can be studied, and
the mathematical formalism that is used depends on the particular marginal under
consideration. The chapters have been gathered into three different parts, each
corresponding to a different type of formalism being used. The remainder of this
section contains some basic results and definitions about the objects that underpin
each part, as well as an outline of each chapter.

1.3.1 Exchangeable partition-valued processes
The first part of this manuscript contains two chapters that make use of the frame-
work of exchangeable partition-valued processes. Let us briefly recall some basic
facts on exchangeable partitions in order to motivate them. For any permutation
σ and partition π of N, we can define a partition σ(π) whose blocks are given by
the following equivalence relation

i ∼σ(π) j ⇐⇒ σ(i) ∼π σ(j).

A random partition Π of N is called exchangeable if, for any permutation σ, we
have

σ(Π) (d)= Π.

A fundamental result due to Kingman shows that any exchangeable partition can
be obtained through a procedure called a paintbox that we now describe.

Let I be some random open subset of (0, 1), and (Ui; i ≥ 1) be a sequence of
i.i.d. uniform variables on (0, 1). The open set I can be written as a countable
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union of open intervals. We can define a partition Π of N by prescribing that

i ∼Π j ⇐⇒ Ui and Uj belong to the same subinterval of I.

See Figure 1.6 for an illustration of the paintbox procedure. It is clear that the
partition Π is exchangeable. Kingman’s representation theorem states the converse,
that is that any exchangeable partition can be represented as a paintbox on some
random interval I, see [127] for the original proof, or Theorem 2.1 in [20] for a
modern proof. It is not hard to see that the distribution of Π only depends on the
sequence of lengths of the subintervals of I, and not on their location. This sequence
of lengths is called the asymptotic frequencies of Π, and entirely characterizes its
law. We refer to [20] for additional results on exchangeable partitions.

Coalescents, ultrametric spaces, combs. In Chapter 2, we study general
exchangeable coalescents, that is, partition-valued processes that are exchangeable,
non-decreasing, and a priori non-Markovian. As explained in Section 1.2.3, these
processes encode the genealogy of a sample from a population, and the canonical
example of exchangeable coalescents is Kingman’s coalescent. The main result of
this chapter proves that all exchangeable coalescents admit a planar representation
in the sense of Section 1.2.4. This requires to derive an extension of Kingman’s
paintbox construction for exchangeable coalescents, which involves sampling from
an interval-valued process called a nested interval-partition.

After having derived this result, we investigate two of its consequences. First,
we show that any exchangeable coalescent can be represented as a sample from
an ultrametric measure space. This extends a well-known connection between
separable ultrametric measure spaces and exchangeable coalescents without dust.
This result requires a non-trivial extension of the framework of ultrametric measure
spaces to incorporate non-separable spaces, which is another contribution of our
work. Second, we provide a new representation of the evolving Kingman coalescent
discussed in Section 1.2.4 using nested interval-partitions. This representation
can be easily adapted to more general dynamical genealogies, such as dynamical
genealogies whose one-dimensional marginal is a Λ-coalescent.

This chapter is joint work with Amaury Lambert and Emmanuel Schertzer. It
has been accepted for publication in the Annals of Applied Probability [79].

Kingman’s coalescent with erosion. In Chapter 3, we study a fragmentation-
coalescence process known as Kingman’s coalescent with erosion. In this process,
any pair of blocks merges at rate one, and any integer is eroded, that is, is removed
from its block and placed into a singleton block, at rate d. Our initial interest
in this process was to describe the backward in time dynamics of a diversification
model incorporating introgression and speciation, which has been discussed briefly
in Section 1.1.1.

An interesting feature of fragmentation-coalescence processes is that they dis-
play stationary distributions [18]. We show two results on this stationary distri-
bution. First, we give an expression for the asymptotic frequencies of its blocks
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in terms of a Fleming-Viot process discussed in Section 1.2.4. This expression can
also be formulated in terms of an infinite sequence of independent Wright-Fisher
diffusions, conditioned on non-extinction. Second, we investigate the asymptotic
properties of the restriction of the stationary distribution to [n], for large n. We
show that there are asymptotically

√
2dn blocks, and provide the limit of the em-

pirical distribution of the blocks sizes. This results is proved by coupling Kingman’s
coalescent with erosion to another process that we have introduced and that can
be of independent interest, called Kingman’s coalescent with immigration.

From a modelling perspective, our results predict that there are asymptotically√
2dn species that are ancestral to a set of n loci in a present-day focal species.

This prediction is unrealistically high. An explanation for this discrepancy is that
we have not taken into account the fact that hybridization is less likely to occur
between more distantly related species [41]. Backwards in time, the ancestral
lineages of the focal species will have a tendency to “cluster” together into the
same species. See [152] for a model where this effect is taken into account.

This chapter is joint work with Amaury Lambert and Emmanuel Schertzer. It
has been published in Electronic Journal of Probability [80].

1.3.2 Branching processes in population genetics
The two objects studied in the second part are related to the theory of measure-
valued branching processes. In both cases, each individual in the population has
a characteristic which can be seen as a point in some space E. In Chapter 4,
this characteristic is the spatial location and the number of deleterious mutations
carried by an individual, so that E = R × Z+. In Chapter 5, it is the block of
ancestral genetic material inherited by an individual, so that E = I(R+), the set
of intervals of R+. The population can then be conveniently encoded as a random
point measure on E, in a very similar way to the encoding of the Fleming-Viot
process and of the Feller branching diffusion discussed in Section 1.2.4, but where
the measure also encodes the location in E of the individuals. In both Chapter 4
and Chapter 5 we are interested in describing the scaling limit of the empirical
measure of the location of the individuals for a large population size. We refer
to [55] for an introduction to the theory of super-processes which correspond to
the latter scaling limit, to [199] for an introduction to branching random walks,
which are the discrete analogous of super-processes, and to [146] for a very general
account on measure-valued branching processes.

The spatial Muller’s ratchet. In Chapter 4, we consider a population ex-
panding on a linear space represented by the real line. The genetic structure of
the population is so that individuals can only accumulate deleterious mutations
through time, leading to what is known as a Muller’s ratchet. We observe that, as
the population expands, “spatial clicks” of the ratchet occur, in the sense that the
number of deleterious mutations of the fittest individuals at the front decreases.
These repeated spatial clicks of the ratchet lead to a decrease in fitness at the
front during the expansion, and thus to the formation of an expansion load, as
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described in Section 1.1.1. Using numerical simulations, we are able to study the
impact of the pushed or pulled nature of the expansion on the rate at which spatial
clicks occur, see Section 1.1.1 for a brief definition of pushed and pulled expansions.
Moreover, we derive heuristically the scaling limit of the location and number of
mutations of individuals in the population. It is a system of reaction-diffusion par-
tial differential equations. By reducing this system of equations to a well-known
one-dimensional PDE, we can prove that it admits a collection of travelling wave
solutions, and provide an expression for the wave speed of these solutions.

Chapter 4 is joint work with Alison Etheridge and has been published under a
slightly different form in Theoretical Population Biology [78].

A branching process with recombination. In Chapter 5 we study the branch-
ing approximation of a Wright-Fisher model with recombination. In the latter
model, the population has fixed size N , and each individual carries a single hap-
loid continuous chromosome represented by the interval [0, R]. At each generation,
each individual samples two parents uniformly from the previous generation and
inherits either a chromosome from one of its parents, or, with a small probability,
a recombined chromosome which is a mixture of that of its two parents, and where
the location of the crossing-over is chosen uniformly on the chromosome, see Fig-
ure 1.1. We consider a branching approximation of this model, and follow forward
in time the genetic contribution of one focal individual at t = 0. We provide the
large population size, large chromosome size limit of the empirical distribution of
the lengths of blocks of genome that descend from this focal individual. We also
provide an expression for the location of these blocks on the chromosome in terms
of a Brownian CPP discussed in Section 1.2.4, under the same limiting regime.

This chapter is work in progress with Amaury Lambert and Emmanuel Schertzer.

1.3.3 Branching processes in epidemiology
The last part of the manuscript consists of two chapters that study related epi-
demiological models. The two models are based on the notion of general branching
processes, also called Crump-Mode-Jagers processes (CMJ processes). General
branching processes are population models where the ages at which individuals
give birth can have a very general distribution. The life-history of each individual
i is given by a random variable Xi living in some general spaces Ω. This variable
Xi encodes the ages at which i dies and gives birth, and any desired characteristic
of the life of i. The only requirement is that the variables (Xi) are i.i.d. for differ-
ent individuals. We refer to [205] for an introduction to CMJ processes, and see
Figure 1.7 for an illustration.

From individual-based models to McKendrick-von Foerster PDEs (I).
In Chapter 6, we model the spread of COVID-19 with a CMJ process. Each birth
in the population now represents a new infection, and the age of an individual is the
time elapsed since her infection. The variable Xi is defined as a stochastic process
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t=0

Figure 1.7: Illustration of a Crump-Mode-Jagers process. Each black vertical line rep-
resents an individual, and the grey dots correspond to the times at which this individual
reproduces. At each such time, a new, independent individual is placed in the population.

(Xi(a); a ≥ 0) such that Xi(a) is the compartment to which i belongs at age a. A
compartment usually corresponds to a stage of the disease, but can also represent
the health condition, the job category or the real age of an individual. Classical
examples of compartments are the exposed compartment, when the individual is
not yet infectious, the infectious compartment, or the removed compartment when
the individual has recovered from the disease or is dead. Modelling the COVID-19
epidemic requires to add many other compartments, as discussed in Section 1.1.2.

Our main result proves the convergence of the empirical measure of ages and
compartments in the population towards a deterministic scaling limit. In the large
population size limit, the age structure converges to the solution of a PDE of the
McKendrick-von Foerster type, and the number of individuals in each compartment
is recovered by integrating the one-dimensional marginals of (X(a); a ≥ 0) against
this age structure. Then, we use this expression to estimate some key parameters
of the COVID-19 epidemic in France, such as the number of infected individuals
and the basic reproduction number R0, between March 2020 and May 2020, which
corresponds to the lockdown period.

This chapter has been submitted to Theoretical Population Biology [77]. Due
to my main contribution to this project, I have been listed as the first author.

From individual-based models to McKendrick-von Foerster PDEs (II).
Chapter 7 is an extension of the previous model that accounts for the saturating
number of individuals that are susceptible to the disease. The epidemiological
model is the same as in Chapter 6, except that each infection is targeted towards
a uniformly chosen individual in a population of size N . If this individual has
already been infected, this infection is discarded, otherwise this individual becomes
infected. As in Chapter 6, we provide the scaling limit of the empirical measure of



1.3. Outline of the thesis 25

ages and compartments in the population. We prove that, in the large population
size limit, the age distribution of the population converges to a non-linear version
of the McKendrick-von Foerster PDE derived in Chapter 6. If it is assumed that
the process (X(a); a ≥ 0) is a Markov process, the latter PDE reduces to a system
of ODE of the SIR type, which are popular models for the spread of diseases.

The previous chapter is work in progress with Jean-Jil Duchamps and Em-
manuel Schertzer.
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Exchangeable coalescents, ultrametric
spaces, nested interval-partitions:

A unifying approach

This chapter is joint work with Amaury Lambert and Emmanuel Schertzer. It has
been accepted for publication in the Annals of Applied Probability [79].

Illustration. Simulation of a Kingman comb, whose transition rates are given in
Remark 2.32. The black vertical lines correspond to the teeth of the comb, and the
corresponding ultrametric tree is pictured in grey.

2.1 Introduction

2.1.1 Ultrametric spaces and exchangeable coalescents
In this paper we extend earlier work from [142] on the comb representation of
ultrametric spaces. An ultrametric space is a metric space (U, d) such that the
metric d fulfills the additional assumption

∀x, y, z ∈ U, d(x, y) ≤ max(d(x, z), d(z, y)).

In applications, ultrametric spaces are used to model the genealogy of entities
co-existing at the same time. The distance between two points x and y of an
ultrametric space is interpreted as the time to the most recent common ancestor
(MRCA) of x and y. For instance, in population genetics ultrametric spaces model
the genealogy of homologous genes in a population. Another example can be
found in phylogenetics where ultrametric spaces are used to model the evolutionary
relationships between species.

In population genetics and more generally in biology we do not have access to
the entire population (that is to the entire ultrametric space) but only to a sample
from the population. To model the procedure of sampling we equip the ultrametric
space with a probability measure µ (also referred to as the sampling measure),
yielding the notion of ultrametric measure spaces.

36
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Definition 2.1. A quadruple (U, d,U , µ) is called an ultrametric measure space
(UMS) if the following holds.

(i) The distance d is an ultrametric on U which is U ⊗U measurable.

(ii) The measure µ is a probability measure defined on U .

(iii) The family U is a σ-field such that

∀x ∈ U, ∀t > 0, {y ∈ U : d(x, y) < t} ∈ U

and U ⊆ B(U), where B(U) is the usual Borel σ-field of (U, d).

If U = B(U), we say that (U, d,U , µ) is a Borel UMS. ◦

Remark 2.2. This definition might be surprising as we would naively expect a
UMS to be any ultrametric space with a probability measure on its Borel σ-field.
However the previous naive definition is not satisfying for several reasons, that
are exposed in Section 2.4.1. Notice that if (U, d) is separable, then U = B(U)
and point (i) always holds. We thus recover the usual definition of an ultrametric
measure space. ◦

A sample from a UMS is an i.i.d. sequence (Xi)i≥1 distributed according to
µ. The genealogy of the sample is usually encoded as a partition-valued process,
(Πt)t≥0 called a coalescent. For any time t ≥ 0, the blocks of the partition Πt are
given by the following relation

i ∼Πt j ⇐⇒ d(Xi, Xj) ≤ t. (2.1)

The process (Πt)t≥0 has two major features. First a well-known characteristic of
ultrametric spaces is that for a given t the balls of radius t form a partition of the
space that gets coarser as t increases. This implies that given s ≤ t, the partition
Πt is coarser than Πs. Second, if σ denotes a finite permutation of N and σ(Πt) is
the partition of N whose blocks are the images by σ of the blocks of Πt, we have

(Πt)t≥0
(d)= (σ(Πt))t≥0.

We call any càdlàg partition valued process that fulfills these two conditions an ex-
changeable coalescent (note that the process (Πt)t≥0 is not necessarily Markovian).

2.1.2 Combs in the compact case
Combs and ultrametric spaces. In this section, we address similar questions
in the much simpler framework of comb metric spaces which have been introduced
recently by [142] to represent compact ultrametric spaces. A comb is a function

f : [0, 1]→ R+
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0 110

t t

Figure 2.1: Representation of two nested interval-partitions. A point (x, t) is plotted
in dark if x 6∈ It. Left panel: A realization of the Kingman comb, a tooth of size y at
location x represents that f(x) = y. Right panel: The star-tree comb, an example of a
nested interval-partition that cannot be represented as an original comb.

such that for any ε > 0 the set {f ≥ ε} is finite (see Figure 2.1 left panel). To any
comb is associated a comb metric df on [0, 1] defined as

∀x, y ∈ [0, 1], df (x, y) = 1{x 6=y} sup
[x∧y,x∨y]

f.

In general df is only a pseudo-metric on [0, 1] and it is easy to verify that it is
actually ultrametric. One of the main results in [142] shows that any compact
ultrametric space is isometric to a properly completed and quotiented comb metric
space (see Theorem 3.1 in [142]).

Exchangeable coalescents. We also will be interested in the relation between
combs and exchangeable coalescents. Any comb metric space ([0, 1], df ) can be
naturally endowed with the Lebesgue measure on [0, 1]. Sampling from a comb can
be seen as a direct extension of Kingman’s paintbox procedure. More precisely,
given a comb f , we can generate an exchangeable coalescent (Πt)t≥0 by throwing
i.i.d. uniform random variables (Xi)i≥1 on [0, 1] and declaring that

i ∼Πt j ⇐⇒ sup
[Xi∧Xj ,Xi∨Xj ]

f ≤ t.

For the sake of illustration, we recall the comb representation of the Kingman
coalescent stated in [128]. The Kingman comb is constructed out of an i.i.d. se-
quence (ei)i≥1 of exponential variables with parameter 1, and of an independent
i.i.d. sequence (Ui)i≥1 of uniform variables on [0, 1]. We define the sequence (Ti)i≥2
as

Ti =
∑
j≥i

2
j(j − 1)ej.

The Kingman comb fK is defined as

fK =
∑
i≥2

Ti1Ui .
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See Figure 2.1 left panel for an illustration of a realization of the Kingman comb.
The paintbox based on fK is a version of the Kingman coalescent (see Section 4.1.3
of [20]).

More generally, the assumption that {f ≥ ε} is finite implies that the coalescent
(Πt)t≥0 obtained from a paintbox based on f has only finitely many blocks for any
t > 0. This property is usually referred to as “coming down from infinity”. It has
been shown in [137] that any coalescent which comes down from infinity can be
represented as a paintbox based on a comb, see Proposition 3.2.

2.1.3 General combs
One of the objectives of this work is to extend Theorem 3.1 of [142] and Proposi-
tion 3.2 of [137] to any ultrametric space (not only compact) and to any exchange-
able coalescent (i.e., beyond the “coming down from infinity” property). From a
technical point of view, we note that this extension is conceptually harder, and
requires the technology of exchangeable nested compositions which were absent in
[142]. This point will be discussed further in Section 2.2.1.

In order to deal with non-compact metric spaces, we need to generalize the
definition of a comb by relaxing the condition on the finiteness of {f ≥ ε}. We will
encode combs as functions taking values in the open subsets of (0, 1). Any open
subset I of (0, 1) can be decomposed into an at-most countable union of disjoint
intervals denoted by (Ii)i≥1. For this reason we will call an open subset of (0, 1) an
interval-partition and each of the intervals Ii is an interval component of I. The
space of interval-partitions is conveniently topologized with the Hausdorff distance
on the complement, dH , defined as

dH(I, Ĩ) = sup
{
d(x, [0, 1] Ĩ), x 6∈ I

}
∨ sup

{
d(x, [0, 1] I), x 6∈ Ĩ

}
.

We propose to generalize the notion of comb to the notion of nested interval-
partition.

Definition 2.3. A nested interval-partition is a càdlàg function (It)t≥0 taking
values in the open subsets of (0, 1) verifying

∀s ≤ t, Is ⊆ It.

Sometimes nested interval-partitions will be called generalized combs or even sim-
ply combs. ◦

Let us briefly see how this definition extends the initial comb of [142]. Starting
from a comb function f , we can build a nested interval-partition (It)t≥0 as follows

∀t > 0, It = {f < t} {0, 1}

and
I0 = int({f = 0})

where int(A) denotes the interior of the set A.
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Conversely if (It)t≥0 is a nested interval-partition we can define a comb function
fI : [0, 1]→ R+ as

fI(x) = inf{t ≥ 0 : x ∈ It}.
In general fI does not fulfill that {fI ≥ t} is finite. A necessary and sufficient
condition for this to hold is that for any t > 0, It has finitely many interval
components, and the summation of their lengths is 1. If the latter condition is
fulfilled, we say that It is proper or equivalently that it has no dust.

A nested interval-partition naturally encodes a (pseudo-)ultrametric dI on [0, 1]
defined as

dI(x, y) = inf{t ≥ 0 : x and y belong to the same interval of It}
= sup

[x,y]
fI

for x < y. We call the ultrametric space ([0, 1], dI) the comb metric space associated
to (It)t≥0. In order to turn ([0, 1], dI) into a UMS, we need to define an appropriate
σ-field and a sampling measure. The interval [0, 1] is naturally endowed with the
usual Borel σ-field B([0, 1]) and the Lebesgue measure. However, the usual Borel
σ-field does not fulfill the requirements of Definition 2.1 in general because two
points that belong to the same interval component of I0 are indistinguishable in
the metric dI . This can be addressed by considering a slightly smaller σ-field as
follows.

Let (I0
i )i≥1 be the interval components of I0. We define a σ-field I on [0, 1] as

I =
{
A ∪

⋃
i∈M

I0
i : A ∈ B([0, 1] I0) and M ⊆ N

}

where B([0, 1] I0) denotes the usual Borel σ-field on [0, 1] I0. It is clear that
I ⊆ B([0, 1]). We call a comb metric measure space associated to (It)t≥0 the
quadruple ([0, 1], dI ,I ,Leb), where Leb is the restriction of the Lebesgue measure
to I . The following lemma shows that the Lebesgue measure on I satisfies the
requirements of Definition 2.1, and that a comb metric measure space is a UMS.

Lemma 2.4. Any comb metric measure space ([0, 1], dI ,I ,Leb) is a UMS.

Proof. Let us first prove that (iii) holds. For x ∈ [0, 1] and t ≥ 0, let It(x) denote
the interval component of It to which x belongs if x ∈ It, or let It(x) = {x} else.
Then for t > 0 we have

{y ∈ [0, 1] : dI(x, y) < t} =
⋃
s<t

Is(x) ∈ I .

It remains to show that I ⊆ BI([0, 1]), where BI([0, 1]) denotes the σ-field induced
by dI . It is sufficient to prove that for all x, y 6∈ I0, we have (x, y) ∈ BI([0, 1]). Let
z ∈ (x, y) and suppose that z ∈ It for all t > 0. Then Itz(z) ⊆ (x, y) for a small
enough tz, and thus

{z′ ∈ [0, 1] : dI(z, z′) < tz} ⊆ (x, y).
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Otherwise if z 6∈ Itz(z) for some tz, then {z′ ∈ [0, 1] : dI(z, z′) < tz} = {z}. We can
now write

(x, y) =
⋃

z∈(x,y)
{z′ ∈ [0, 1] : dI(z, z′) < tz} ∈ BI([0, 1])

which proves that point (iii) of the definition is fulfilled.
Let It− = ⋃

s<t Is, then{
(x, y) ∈ [0, 1]2 : d(x, y) < t

}
= ∆0 ∪

⋃
x∈It−

It(x)× It(x),

where ∆0 = {(x, y) ∈ ([0, 1] I0)2 : x = y}. As there are only countably many
interval components of It, the union on the right-hand side is countable, and this
set belongs to the product I ⊗I . This proves that point (i) holds and that the
comb metric measure space is a UMS.

For later purpose, let us denote by UI the completion of the quotient space of
{fI = 0} by the relation x ∼ y if�f dI(x, y) = 0. (This completion can be realized
explicitly by adding countably many “left” and “right” faces to the comb, see
Section 2.4.5.)

Finally, as in the compact case, an exchangeable coalescent (Πt)t≥0 can be
obtained from a nested interval-partition (It)t≥0 out of an i.i.d. uniform sequence
(Xi)i≥1 by defining

i ∼Πt j ⇐⇒ Xi and Xj belong to the same interval component of It. (2.2)

Notice that this definition is a multidimensional extension of the original Kingman
paintbox procedure, see e.g. the beginning of Section 2.3.2 of [20].

Remark 2.5. The coalescent obtained through this sampling procedure is not
càdlàg in general. As a coalescent is a non-decreasing process, we can (and will)
always suppose that we work with a càdlàg modification of the coalescent. ◦

Remark 2.6. We have defined two natural ways of sampling a coalescent from a
nested interval-partition. First, one can realize the extended paintbox procedure
described in equation (2.2). Second, one can consider the comb metric measure
space associated to the nested interval-partition and sample the coalescent accord-
ing to equation (2.1). It is not hard to see that the coalescent obtained through (2.1)
is the càdlàg version of the one obtained through (2.2). ◦

We will now demonstrate that nested interval-partitions form a large enough
framework to answer our two initial problems: representing any exchangeable co-
alescent as a paintbox on a comb and representing general ultrametric measure
spaces.
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2.1.4 Comb representation of exchangeable coalescents
General comb representation. We start by showing that one can always find a
comb representation of any coalescent. First notice that this representation cannot
be unique. For example taking the reflection of a comb about the vertical line in the
middle of the segment [0, 1] yields a new comb but does not change the associated
coalescent. In many applications we will not be interested in this order but only in
the genealogical structure of the comb. For this reason we introduce the following
relation.

Definition 2.7. Two generalized combs are paintbox-equivalent if their associ-
ated coalescents are identical in law. Being paintbox-equivalent is an equivalence
relation, we denote by I the quotient space. ◦

Given I ∈ I we denote by ρI the distribution on the space of coalescents of
the paintbox based on any representative of I. We provide the following version
of Kingman’s representation theorem (e.g. see [20] Theorem 2.1) for exchangeable
coalescents.

Theorem 2.8. Let (Πt)t≥0 be an exchangeable coalescent. There exists a unique
distribution ν on I such that

P
(
(Πt)t≥0 ∈ ·

)
=
∫
I
ρI(·)ν(dI).

Remark 2.9. It is interesting to relate this result to the original theorem from
Kingman. A mass-partition is a sequence β = (βi)i≥1 such that

β1 ≥ β2 ≥ · · · ≥ 0,
∑
i≥1

βi ≤ 1.

Kingman’s representation theorem states that any exchangeable partition can be
obtained through a paintbox based on a random mass-partition, and that this
correspondence is bijective. A mass-partition can be seen as the ranked sequence
of the lengths of the interval components of an interval-partition. Now notice that
two interval-partitions are paintbox-equivalent, i.e. induce the same exchangeable
partition, if�f they have the same associated mass-partition. In this one-dimensional
setting, any paintbox-equivalence class of interval-partitions can be identified with
a random mass-partition. In a similar way, it would be natural to try to identify the
elements of I with mass-partition valued processes, also called mass-coalescents.
However, one can easily find two different equivalence classes of I that have the
same associated mass-coalescent, see Figure 2.2. ◦

Remark 2.10. A result very similar to Theorem 2.8 has been obtained in [76],
Theorem 4, in the context of hierarchies. Roughly speaking, an exchangeable hi-
erarchy is obtained from an exchangeable coalescent by “forgetting about time”.
In this sense, an exchangeable coalescent carries more information, and this part
of our work can be seen as an extension of [76]. However, the forthcoming Sec-
tion 2.3 and Section 2.4 heavily rely on the knowledge of the coalescence times, and
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tt

0 01 1

Figure 2.2: An example of two nested interval-partitions that have the same mass-
coalescent but different coalescents. For both processes, the initial mass-partition is
(1

3 ,
1
6 ,

1
6 ,

1
9 ,

1
9 ,

1
9 , 0, . . . ), then (2

3 ,
1
3 , 0, . . . ) and finally (1, 0, . . . ). However, for the process

on the left-hand side the first blocks to merge are those of mass 1/6 and 1/9, whereas
for the right-hand process, the blocks of mass 1/6 first merge with the block of size 1/3.

could not have been achieved in the framework of hierarchies. We have dedicated
Section 2.A to the explanation of the links between the present work and [76]. ◦

Λ-coalescents. Most of the efforts made in the study of exchangeable coalescents
have been devoted to the special case of Λ-coalescents [178, 188]. These coalescents
are parametrized by a finite measure Λ on [0, 1], and their restriction to [n] :=
{1, . . . , n} is a Markov chain whose transitions are the following. The process
undergoes a transition from a partition π with b blocks to a partition obtained by
merging k blocks of π at rate λb,k given by

λb,k =
∫

[0,1]
xk−2(1− x)b−kΛ(dx).

The next proposition states that we can always find a Markovian comb representa-
tion of a Λ-coalescent. Moreover in Section 2.3 we provide an explicit description
of its transition.

Proposition 2.11. Let (Πt)t≥0 be a Λ-coalescent. There exists (It)t≥0 a Markov
nested interval-partition such that the coalescent obtained from the paintbox based
on (It)t≥0 is distributed as (Πt)t≥0.

Remark 2.12 (Combs and the flow of bridges). The flow of bridges introduced
by [21] represents the dynamics of a population whose genealogy is given by a
Λ-coalescent. We will show that we can build a nested interval-partition from
the flow of bridges and that it has the same distribution as the Markov nested
interval-partition of Proposition 2.11, see Section 2.3. ◦

Remark 2.13. There exists a natural extension of the Λ-coalescents called the
coalescents with simultaneous multiple collisions or Ξ-coalescents [195]. All our
results carry over to Ξ-coalescents, however for the sake of clarity we will focus on
the case of Λ-coalescents. ◦
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A coalescent process models the genealogy of a population living at a fixed
observation time. Many works have been concerned with the dynamical genealogy
obtain by varying the observation time of the population. For example, in [176, 177]
the authors study some statistics of the dynamical genealogy, namely the time to
the MRCA and the total length of the genealogy. In [92] the genealogy is encoded
as a metric space (a real tree, see [59]) and the authors introduce the tree-valued
Fleming-Viot process, a process bearing the entire information on the dynamical
genealogy. This encoding requires to work with metric space-valued stochastic
processes, and with the rather technical Gromov-weak topology for metric spaces.

We address such questions in the framework of combs in Section 2.3.3. We
show that we can naturally encode a dynamical genealogy as a comb-valued process
called the evolving comb. This process is a Markov process, whose semi-group can
be explicitly described. In the particular case of coalescents that come down from
infinity, the semi-group of the evolving comb takes a particularly simple form in
terms of sampling from an independent comb.

2.1.5 Comb representation of ultrametric spaces
The second main aim of this paper is to provide a comb representation of ultra-
metric measure spaces in the same vein as Theorem 3.1 of [142]. We will only state
our results informally and refer to Section 2.4 for the precise statements.

We first introduce the Gromov-weak topology on the space of UMS and show
that any UMS is indistinguishable from a comb metric space in this topology. To do
so, we realize a straightforward extension of the work developed in [91, 94] which is
focused on separable metric measure spaces. In short, starting from a UMS we can
obtain a coalescent by sampling from it as described in Section 2.1.1. We say that
a sequence of UMS converges to a limiting UMS in the Gromov-weak sense if the
corresponding coalescents converge weakly as partition-valued stochastic processes
(see Section 2.4.2 for a more precise definition). We are now ready to state our
representation result, which is a direct application of Theorem 2.8.

Theorem 2.14. For any UMS (U, d,U , µ) there exists a comb metric measure
space that is indistinguishable in the Gromov-weak topology from (U, d,U , µ).

Proof. As we have identified any UMS with the distribution of its coalescent, two
UMS are indistinguishable if�f their coalescents have the same distribution. Theo-
rem 2.8 shows that we can always find a nested interval-partition (It)t≥0 such that
the coalescent obtained from a paintbox based on (It)t≥0 is distributed as the coales-
cent obtained by sampling from (U, d,U , µ). As noticed in Remark 2.6, the coales-
cent obtained by sampling in the comb metric measure space ([0, 1], dI ,I ,Leb) has
the same distribution as the coalescent obtained from the paintbox based on (It)t≥0,
and thus this comb metric measure space is indistinguishable from (U, d,U , µ).

The comb representation given by Theorem 2.14 is rather weak, since it only
ensures that we can find a comb that has the same sampling structure as a given
UMS. We would like to be more precise and obtain an isometry result as in the
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compact case. This is not possible in general, and we have to consider separately
the separable case and the non-separable case.

The separable case. In the separable case, the coalescent contains all the infor-
mation about the UMS. More precisely, the Gromov reconstruction theorem ensures
that two complete separable UMS that are indistinguishable in the Gromov-weak
topology have the supports of their measures in isometry, see e.g. [94], Section 3.1

2 .5
or [91], Proposition 2.6. The following refinement of Theorem 2.14 in the separable
case is a direct consequence of the Gromov reconstruction theorem and of Theo-
rem 2.14, see Section 2.4.6 for a proof.

Corollary 2.15. Let (U, d,U , µ) be a complete separable UMS. There exists a
comb metric measure space (UI , dI ,I ,Leb) such that the support of µ is isometric
to (UI , dI), and such that the isometry maps µ to Leb.

Additionally, any separable ultrametric space (U, d) can be endowed with a
probability measure whose support is the whole space U , see Lemma 2.53. This
result combined with Corollary 2.15 yields the following representation result for
complete separable ultrametric spaces, which is the direct extension of Theorem 3.1
of [142] to the separable case.

Proposition 2.16. Let (U, d) be a complete separable ultrametric space. We can
find a nested interval-partition such that (UI , dI) is isometric to (U, d).

A proof of this proposition is provided in Section 2.4.6. Notice that the proof
of the previous proposition is very different from the original proof of [142] which
is no longer valid for non-compact UMS.

The general case. In general, two UMS that are associated to the same coa-
lescent are not isometric. This essentially comes from the fact that a coalescent
only bears the information about a sequence of “typical” points of the UMS, and
that a non-separable UMS may contain more information than the topology gen-
erated by these “typical” points. The main idea of our approach relies on a new
decomposition that we now expose.

A UMS (U, d,U , µ) can be seen as the leaves of a tree. We show that we can
decompose this tree into two parts. The first part is a separable tree that we call the
backbone. Secondly, one can then recover the tree from the backbone by grafting
some “simple” subtrees on the backbone. By “simple”, we mean that each of those
subtrees has the sampling properties of a star-tree, in the sense that all points
sampled in the same subtree are at the same distance to each other. See Figure 2.3
for an illustration of this decomposition, and Definition 2.43 for a precise definition
of the backbone. An object very similar to the backbone is studied in [95] but the
construction of the backbone from a general UMS is not considered there.

Our result states that if two UMS have complete backbones and are associated
to the same coalescent, then the backbones are in isometry in a way that preserves
the star-trees attached to it. We say that the two UMS are in weak isometry, see
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Figure 2.3: Illustration of the backbone decomposition. The dark thick lines represent
the backbone. An element of the tree is represented in grey if its descendance has zero
mass.

Definition 2.46. We provide the following version of the Gromov reconstruction
theorem in the case of general UMS.

Proposition 2.17. Let (U, d,U , µ) and (U ′, d′,U ′, µ′) be two UMS with com-
plete backbones. These UMS are indistinguishable in the Gromov-weak topology if�f
(U, d,U , µ) and (U ′, d′,U ′, µ′) are in weak isometry.

An equivalent reformulation of the previous proposition is stated in Section 2.4.4,
see Proposition 2.47, and proved at the end of Section 2.4.4. As a consequence of
Proposition 2.17 and Theorem 2.14, we have the following version of Theorem 3.1
of [142] in the general case. See Section 2.4.5 for a proof.

Corollary 2.18. Let (U, d,U , µ) be a UMS with a complete backbone. There exists
a nested interval-partition (It)t≥0 such that, up to the addition of a countable num-
ber of points, the comb metric measure space ([0, 1], dI ,I ,Leb) is weakly isometric
to (U, d,U , µ).

2.1.6 Outline
The rest of the paper is divided into three parts. In Section 2.2 we introduce
the notion of composition and nested composition which will be our main tool to
study combs. Section 2.2.1 introduces the existing material on random composi-
tions. In Section 2.2.2 we define exchangeable nested compositions and prove the
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representation theorem linking combs and nested compositions. The proof of The-
orem 2.8 is given in Section 2.2.3. In Section 2.3 we restrict our attention to the
case of Λ-coalescents. We define there the notion of a Λ-comb and study a family
of nested compositions emerging from the Λ-coalescents. The proof of Proposi-
tion 2.11 is given in Section 2.3.2. The evolving comb is introduced and studied in
Section 2.3.3. Finally in Section 2.4 we envision combs as ultrametric spaces. A
precise outline of this section is given at the beginning of Section 2.4.

2.2 Combs and nested compositions
The objective of this section is to prove Theorem 2.8 on the comb representa-
tion of exchangeable coalescents. As was already mentioned in introduction, the
correspondence between combs and exchangeable coalescents cannot be bijective.
Roughly speaking, this comes from the fact that a nested interval-partition inher-
its an order from [0, 1], and that changing this order does not modify the associ-
ated coalescent. However, we will show in Section 2.2.2 that there is a bijective
correspondence between nested interval-partitions and exchangeable nested com-
positions, the ordered version of exchangeable coalescents. Exchangeable nested
compositions will be our main tool to study combs.

We start this section by recalling existing results and material on exchangeable
compositions developed in [86, 48] and then show how to extend them to nested
compositions.

2.2.1 Exchangeable compositions
In combinatorics, a composition of [n] (resp. N) is a partition of [n] (resp. N) with
a total order on the blocks. We write C = (π,≤) for a composition of N where π
is the partition and ≤ the order on the blocks. The blocks of the partition π can
always be labeled in increasing order of their least element, i.e. the blocks of π are
denoted by (A1, A2, . . . ) and are such that for any i, j ≥ 1,

i ≤ j ⇐⇒ min(Ai) ≤ min(Aj).

Let σ be a finite permutation of N, we denote by σ(C) the composition whose
blocks are (σ(A1), σ(A2), . . . ) and such that the order of the blocks is

σ(Ai) ≤ σ(Aj) ⇐⇒ Ai ≤ Aj.

For example, for n = 5, consider Cn the composition

Cn = {2, 3} ≤ {5} ≤ {1, 4}.

With our labeling convention, we have A1 = {1, 4}, A2 = {2, 3} and A3 = {5}
(A1 needs not be the first block of C for the order ≤). If σ = (2, 1, 3, 5, 4), the
composition σ(Cn) is given by

σ(Cn) = {1, 3} ≤ {4} ≤ {2, 5}.
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A random composition C of N is called exchangeable if for any finite permutation
σ,

C (d)= σ(C).

The author of [86] provides a procedure to build an exchangeable composition
of N from any interval-partition I called the ordered paintbox. Let (Vi)i≥1 be an
i.i.d. sequence of uniform [0, 1] variables. Let C be the composition of N whose
blocks are given by the relation

i ∼ j ⇐⇒ Vi and Vj belong to the same interval component of I

and the order of the blocks is

A ≤ A′ ⇐⇒ Vi ≤ Vj, ∀i ∈ A, ∀j ∈ A′.

The main result of [86] shows that any exchangeable composition of N can be
obtained as an ordered paintbox based on a random interval-partition (see Theo-
rem 11 in [86]). We now give a proof of this result that differs from the original
proof of [86]. We make use of de Finetti’s theorem in a similar way as Aldous’
proof of Kingman’s theorem, see e.g. the proof of Theorem 2.1 in [20]. The original
proof of [86] relies on a reversed martingale argument combined with the method
of moments.

Theorem 2.19 ([86]). Let C be an exchangeable composition of N. There exists on
the same probability space a random interval-partition I and an independent i.i.d.
sequence (Vi)i≥1 of uniform [0, 1] variables such that the ordered paintbox based on
I by the sequence (Vi)i≥1 is a.s. C.

Before showing the theorem we need a technical lemma. Any composition
C = (π,≤) can be encoded as a total preorder � on N defined as

i � j ⇐⇒ Bi ≤ Bj

where Bi (resp. Bj) is the block containing i (resp. j). The blocks of π can be
recovered from � by the following relation

i ∼ j ⇐⇒ i � j and j � i

and the order ≤ by

B ≤ B′ ⇐⇒ i � j, ∀i ∈ B, ∀j ∈ B′.

Lemma 2.20. Let C be an exchangeable composition of N. We can find an ex-
changeable sequence of [0, 1]-valued random variables (ξi)i≥1 such that

i � j ⇐⇒ ξi ≤ ξj.
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Proof. Let Di be the set of integers lower than i

Di = {k : k � i}.

It is immediate that the partition (Di {i},N {i} Di) is an exchangeable partition
of N {i}. Thus Kingman’s representation theorem (see e.g. Theorem 2.1 in [20])
ensures that the limit

ξi = lim
n→∞

1
n

Card(Di ∩ [n])

exists a.s. Fix a finite permutation σ whose support lies in [n], i.e. such that
σ(i) = i for i ≥ n. For m ≥ n, the distribution of (Card(Di ∩ [m]))i≥1 is invariant
by the action of σ. Taking the limit, the distribution of the sequence (ξi)i≥1 is also
invariant by the action of σ, and thus it is an exchangeable sequence.

We need to show that
i � j ⇐⇒ ξi ≤ ξj.

The only difficulty here is to show that ξi ≤ ξj implies i � j. Suppose that i 6� j,
we need to show that

ξi − ξj = lim
n→∞

1
n

Card
(
(Di Dj) ∩ [n]

)
> 0.

The partition (Dj {i, j}, Di {i, j} Dj, N {i, j} Di) is an exchangeable partition
of N {i, j}. Another interesting consequence of Kingman’s theorem is that in any
exchangeable partition, the blocks are either singletons or have positive asymptotic
frequencies. According to this, it is sufficient to show that a.s. Di Dj has at least
two elements that are not i. Consider Bi (resp. Bj) the block to which i (resp. j)
belongs. The set Di Dj is the reunion of all the blocks B such that Bj < B ≤ Bi.
Thus Di Dj is a singleton if�f Bi = {i} and there exists at most one singleton
block B such that Bj < B < Bi. Let n ≥ 1 and consider the block sizes and order
of Cn as fixed. Exchangeability shows that the labels inside the blocks are chosen
uniformly among all the possibilities. In particular this shows that the probability
that (Di Dj) ∩ [n] is a singleton goes to 0 as n goes to infinity.

Now Theorem 2.19 is essentially a corollary of the previous lemma and of de
Finetti’s theorem.

Proof of Theorem 2.19. Let (ξi)i≥1 be as above. Applying de Finetti’s theorem
we know that there exists a random measure µ such that conditionally on it the
sequence (ξi)i≥1 is i.i.d. distributed as µ. Consider the distribution function Fµ of
µ, and its generalized inverse

F−1
µ (x) = inf{r : Fµ(r) > x}.

The interval-partition associated with µ, Iµ, is defined as the set of flats of F−1
µ :

Iµ =
{
x ∈ [0, 1] : ∃y < x < z, F−1

µ (y) = F−1
µ (z)

}
.
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The measure µ has the property that if X is distributed as µ, then µ-a.s.
Fµ(X) = X. Conditioning on µ, this can be seen from the definition of the sequence
(ξi)i≥1 and the law of large numbers:

Fµ(ξ1) = lim
n→∞

1
n

n∑
j=1
1{ξj≤ξ1} = lim

n→∞

1
n

n∑
j=1
1{j�1} = ξ1 µ-a.s.

In the terminology of [86] this shows that the measure µ is uniformized. A uni-
formized measure has an atomic and a diffuse part. The support of the diffuse part
is [0, 1] Iµ and coincides with the Lebesgue measure. The atomic part is supported
by the right endpoints of the interval components of Iµ. If J = (`, r) is an interval
component of Iµ, the measure µ has an atom of mass r − ` located at r.

Let (Jk)k≥1 be the interval decomposition of Iµ, and write Jk = (`k, rk). Let
(Xi)i≥1 be an independent i.i.d. sequence of uniform variables, we define

Vi =
ξi if ξi 6∈ Iµ

(rk − `k)Xi + `k if ξi = rk.

In words, the variables from the sequence (ξi)i≥1 which are equal to the atom rk are
uniformly dispersed over the interval Jk. The previous remarks on the structure
of uniformized measures show that conditionally on µ, the sequence (Vi)i≥1 is i.i.d.
uniform on [0, 1]. The conditional distribution does not depend on µ, thus the
sequence (Vi)i≥1 is independent of µ and of Iµ.

We only need to show that the ordered paintbox based on Iµ using the sequence
(Vi)i≥1 is C a.s. This is plain from the design of the sequence.

We end this section with a technical result already present in [86] (see Propo-
sition 9) which we will require. Let C be an exchangeable composition of N and
Cn its restriction to [n]. Let us denote by ni the size of the i-th block of Cn. The
empirical interval-partition associated to Cn is given by

In =
(
0, n1

n

)
∪
(n1

n
,
n1 + n2

n

)
∪ · · · ∪

(n1 + · · ·+ nk−1

n
, 1
)
.

Here is a more pictorial way of constructing In. Divide [0, 1] in intervals of size
1/n and label them from 1 to n in such a way that i � j if�f the block with label
i is before the block with label j. Then In is obtained by merging the intervals
whose labels are in the same block of the composition. The next result states that
the interval-partition representing C in Theorem 2.19 can be obtained as the limit
of the empirical interval-partitions.

Proposition 2.21. If C is an exchangeable composition of N, I the interval-
partition obtained from Theorem 2.19 and (In)n≥1 the sequence of empirical interval-
partitions associated to C, we have

lim
n→∞

dH(In, I {0, 1}) = 0 a.s.
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Proof. Let µ, (ξi)i≥1 and Iµ be as in the proof of Theorem 2.19. De Finetti’s
theorem ensures that

lim
n→∞

µn := 1
n

n∑
i=1

δξi = µ a.s.

in the sense of weak convergence of probability measures. The interval-partition
Iµn coincides with the empirical interval-partition In and as was already noticed
in [86], the weak convergence of µn to µ implies the convergence of Iµn to I in the
Hausdorff topology.

Remark 2.22. This also shows that the representation obtained through Theo-
rem 2.19 is unique in distribution. The interval-partition I is a.s. recovered from
In whose distribution is fully determined by C. ◦

2.2.2 Exchangeable nested compositions
Gnedin’s theorem sets up a correspondence between random interval-partitions and
exchangeable compositions. We want to find a similar correspondence between
nested interval-partitions and exchangeable nested compositions, the ordered ver-
sion of exchangeable coalescents. A nested composition of [n] (resp. N) is a càdlàg
process (Ct)t≥0 taking values in the compositions of [n] (resp. N) such that, as t
increases, only adjacent blocks of the composition merge. More precisely, if (Ct)t≥0
is a nested composition, for any s ≤ t, the blocks of Ct are obtained by merging
blocks of Cs, and if A ≤ B are two blocks of Cs that merge, they also merge with
any block C such that A ≤ C ≤ B.

Naturally we say that (Ct)t≥0 is an exchangeable nested composition of N if for
any finite permutation σ we have

(Ct)t≥0
(d)= (σ(Ct))t≥0.

We can extend the ordered paintbox construction to nested compositions. Let
(It)t≥0 be a nested interval-partition, and (Vi)i≥1 an independent i.i.d. uniform
sequence. Let Ct be the composition obtained from the ordered paintbox based
on It by (Vi)i≥1. Then it is immediate that (Ct)t≥0 is an exchangeable nested
composition. Notice that this is only true because we have used the same sequence
(Vi)i≥1 for all times t.

Remark 2.23. Similarly to Remark 2.5, the nested composition obtained from
an ordered paintbox is not càdlàg in general. Again it admits a unique càdlàg
modification and we shall always consider this modification. ◦

We have the following direct reformulation of Theorem 2.19 in the framework
of nested compositions.

Theorem 2.24. Let (Ct)t≥0 be an exchangeable nested composition of N. We can
find on the same probability space a nested interval-partition (It)t≥0 and an indepen-
dent i.i.d. sequence (Vi)i≥1 of uniform variables such that a.s. the ordered paintbox
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based on (It)t≥0 with (Vi)i≥1 is (Ct)t≥0. This nested interval-partition is unique in
distribution.

Proof. Existence. For any t ≥ 0, Ct is an exchangeable composition of N. We can
apply Theorem 2.19 distinctly for t ∈ Q+ to find on the same probability space
a collection of interval-partitions (It)t∈Q+ such that for any t ∈ Q+ the ordered
paintbox based on It is Ct. Let Int be the empirical interval-partition associated to
Ct ∩ [n]. The fact that (Ct)t≥0 is a nested composition ensures that (Int )t∈Q+ is a
nested interval-partition. Taking the limit as n goes to infinity shows that (It)t∈Q+

is also a nested interval-partition. It admits a unique càdlàg extension given by

Is = int(
⋂
t≥s
t∈Q+

It).

Let (Vi)i≥1 be the i.i.d. uniform sequence given by Theorem 2.19 applied at
time t = 0. To see that (Vi)i≥1 is independent of (It)t≥0, one can do the exact same
steps as in the proof of Theorem 2.19 but using a vectorial version of de Finetti’s
theorem (see Section 2.B).

We now show that for any t ∈ Q+, a.s.

i ∼t j ⇐⇒ Vi and Vj are in the same interval of It (2.3)

where ∼t is the relation given by the blocks of Ct.
Let n ≥ 1 and divide the interval [0, 1] in n intervals of size 1/n. We label the

intervals from 1 to n in the same order as the variables V1, . . . , Vn. Let t ∈ Q+, the
first step is to notice that the empirical interval-partition Int can be recovered by
merging the blocks of size 1/n whose labels belong to the same block of Ct. Now, let
V

(n)
i (resp. V (n)

j ) be the right-hand extremity of the interval with label i (resp. j).
Using twice the law of large numbers shows that V (n)

i and V (n)
j converge to Vi and

Vj respectively. Moreover, we know that Int converges a.s. to It. If we suppose that
Vi < Vj and i ∼t j, then for any n ≥ 1, (V (n)

i , V
(n)
j ) ⊂ Int , and taking the limit

shows that (Vi, Vj) ⊂ It. Conversely if (Vi, Vj) ⊂ It, using the convergence, for n
large enough we have (V (n)

i , V
(n)
j ) ⊂ Int and thus i and j are in the same block of

Ct.
That relation (2.3) holds a.s. for any t ≥ 0 will follow by right-continuity.

However we have to be careful, in general the nested composition obtained from an
ordered paintbox is not càdlàg. By continuity, the relation (2.3) only holds a.s. for
all times t when (Ct)t≥0 is continuous. The original nested composition (Ct)t≥0 is
recovered by considering a càdlàg modification of the nested composition obtained
though an ordered paintbox based on (It)t≥0.

Uniqueness. The uniqueness will come from the following convergence result

lim
n→∞

sup
t≥0

dH(Int , It) = 0 a.s.

We start by showing the convergence. Let ε > 0, we can split [0, 1] into a finite
number of pairwise disjoint intervals of length smaller than ε denoted by J1, . . . , Jp.
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Given a combination of such intervals, J = Ji1 ∪· · ·∪Jik , let fnJ denote the fraction
of variables V1, . . . , Vn which belong to J . Then for any η > 0 using the law of
large numbers we can a.s. find a large enough NJ such that

∀n ≥ NJ , |Leb(J)− fnJ | < η.

Let N be large enough such that this condition is fulfilled for all possible combina-
tions of intervals.

We now show that a.s.

∀t ≥ 0, ∀n ≥ N, dH(Int , It) ≤ η + ε.

Let x 6∈ It, and Jx = (`x, rx) be the interval such that x ∈ J (in case x is the
boundary of two intervals, we choose the left interval). First suppose that `x = 0
or rx = 1. By construction 0, 1 6∈ Int , thus d(x, 0) < ε or d(x, 1) < ε. In the other
case, the variables (Vi)i≥1 which are in [0, `x] and those in [rx, 1] are not in the same
interval component of It, and by construction of the paintbox, their labels are not
in the same block of Ct. For n ≥ 1, let fn1 (resp. fn2 ) denote the frequency of the
variables (Vi)i≤n belonging to [0, `x] (resp. [0, rx]). The previous remark shows that
there is a point y ∈ [fn1 , fn2 ] which does not belong to Int . For n ≥ N we know that
y ∈ [`x − η, rx + η] and thus d(x, y) ≤ η + ε. This shows

∀t ≥ 0, ∀n ≥ N, sup
x 6∈It

d(x, [0, 1] Int ) ≤ η + ε.

Similarly consider xn 6∈ Int . If xn ∈ {0, 1}, clearly d(xn, [0, 1] It) = 0. In the
other case the point xn is the separation between two intervals of Int . These two
intervals can be seen as an agglomeration of blocks of size 1/n whose labels belong
to the same block of It. Let i (resp. j) be the label of the right-most (resp. left-most)
block of size 1/n of the left interval (resp. right interval) separated by xn. The rules
of the paintbox construction imply that Vi and Vj are not in the same interval of
It, thus there exists Vi ≤ yn ≤ Vj such that yn 6∈ It. The value of xn is exactly the
frequency of variables V1, . . . Vn which belong to [0, yn]. Let Jyn = (`yn , ryn) be the
interval to which yn belongs, and fn1 , fn2 be as above the frequency of the n first
variables in [0, `yn ] and [0, ryn ]. As `yn ≤ yn, we know that fn1 ≤ xn, and similarly
xn ≤ fn2 . Thus for n ≥ N , xn ∈ [`yn − η, ryn + η] and d(xn, yn) ≤ η+ ε. This shows

∀t ≥ 0, ∀n ≥ N, sup
x 6∈Int

d(x, [0, 1] It) ≤ η + ε.

Thus, a.s. (Int )t≥0 converges uniformly to (It)t≥0.
To get uniqueness, it is sufficient to notice that the distribution of the sequence

((Int )t≥0; n ≥ 1) is determined uniquely by that of (Ct)t≥0. As we can recover a.s.
(It)t≥0 from ((Int )t≥0; n ≥ 1), the distribution of (It)t≥0 is also determined by that
of (Ct)t≥0.

Remark 2.25. This also proves Proposition 2.21 in a more detailed way. ◦
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2.2.3 Uniform nested compositions, proof of Theorem 2.8
We recall that I stands for the quotient space of combs for the paintbox-equivalence
relation. To be entirely rigorous we need to define a suitable σ-field on I. By
definition of I a paintbox based on any of the representatives of a class yields the
same distribution on the space of coalescents. We can identify each class with
this distribution and endow I with the weak convergence topology of probability
measures on the space of coalescents. We consider the associated Borel σ-field.
This approach bears similarity with the Gromov-weak topology introduced in [91],
more on this can be found in Section 2.4.

The first step to find a comb representation of a given exchangeable coalescent
(Πt)t≥0 is to order the blocks of (Πt)t≥0 to obtain a nested composition. We will
do that using the notion of uniform nested composition that we now introduce.

Definition 2.26. Let (Ct)t≥0 be an exchangeable nested composition of N and
(Πt)t≥0 be the associated coalescent. We say that (Ct)t≥0 is uniform if for any
n ≥ 1, conditionally on (Πn

t )t≥0, the order of the blocks of (Cnt )t≥0 is uniform
among all the possible orderings, i.e. all the orderings such that (Cnt )t≥0 is a nested
composition. ◦

The following lemma shows that any exchangeable coalescent can be turned
into a uniform exchangeable nested composition.

Lemma 2.27. Let (Πt)t≥0 be an exchangeable coalescent. There exists a uniform
exchangeable nested composition (Ct)t≥0 whose associated coalescent is (Πt)t≥0.

Proof. We proceed by induction. For n = 1 there is a unique trivial possible
order on the blocks. Suppose that we have built for n an order on the blocks
of (Πn

t )t≥0 such that only adjacent blocks can merge, we call such an order an
order consistent with the genealogy. Then there are finitely many orders on the
blocks of (Πn+1

t )t≥0 that extend the previous order and are consistent with the
genealogy. More precisely, if n + 1 is in a block of Πn+1

0 the extension is unique.
If n + 1 is a singleton of Πn+1

0 , suppose that {n+ 1} coalesce at some point and
that k blocks are involved in this coalescence event. Then there are k consistent
extensions: {n+ 1} can be placed between any of the k− 1 other blocks, or at the
left-most (resp. right-most) position. If {n+ 1} does not coalesce, the singleton
can be placed at any position between blocks that do not coalesce. We pick one of
these orders independently and uniformly.

By induction, we have built on the same probability space as (Πt)t≥0 a nested
composition ofN whose blocks merge according to (Πt)t≥0. It is easily checked from
the construction that (Ct)t≥0 is a uniform nested composition. It remains to show
that it is exchangeable. Fix 0 ≤ t1 < · · · < tp, and let c1, . . . , cp be compositions of
[n], whose block partitions are π1, . . . , πn respectively. Fix some trajectory Πn :=
(Πn

t )t≥0 of the coalescent. Let us denote by O(Πn) the number of orderings of
the blocks of Πn

0 yielding a nested composition, and let O(c1, . . . , cp; Πn) be the
number of such orderings verifying that Cnti = ci, for i ∈ {1, . . . , p}. Then for any
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permutation σ of [n], the following direct calculation

P
(
Cnt1 = c1, . . . , Cntp = cp

)
= E

[
O(c1, . . . , cp; Πn)

O(Πn) 1{Πnt1=π1,...,Πntp=πp}

]

= E

[
O(c1, . . . , cp; σ(Πn))

O(σ(Πn)) 1{σ(Πnt1 )=π1,...,σ(Πntp )=πp}

]

= E

[
O(σ−1(c1), . . . , σ−1(cp); Πn)

O(Πn) 1{Πnt1=σ−1(π1),...,Πntp=σ−1(πp)}

]
= P

(
Cnt1 = σ−1(c1), . . . , Cntp = σ−1(cp)

)
proves that the nested composition is exchangeable.

Proof of Theorem 2.8. Let (Πt)t≥0 be an exchangeable coalescent. Let (Ct)t≥0 be
the uniform nested compositions obtained through Lemma 2.27. Invoking The-
orem 2.24 shows that there exists a comb representation (It)t≥0 of (Πt)t≥0. The
uniqueness is immediate from the definition of the quotient.

2.3 Comb representation of Λ-coalescents
In this section, we restrict our attention to the well-studied case of Λ-coalescents.
A process (Πt)t≥0 is a Λ-coalescent if for any n ≥ 1, its restriction (Πn

t )t≥0 to [n] is
a Markov process such that starting from a partition with b blocks, any k blocks
coalesce at rate

λb,k =
∫

[0,1]
xk−2(1− x)b−kΛ(dx)

for a finite measure Λ on [0, 1].
The broad aim of this section is to find a Markovian comb representation of a

given Λ-coalescent, and to provide its transitions. Recall from the last section the
path followed to obtain a comb associated to an exchangeable coalescent. The first
step is to order the blocks of the coalescent to get a nested composition, and then
to use Theorem 2.24 to define a comb. Here we will follow this path in the special
case of Λ-coalescents where we can have an explicit description of both the nested
composition and the comb.

Let us first define the nested composition associated to a Λ-coalescent. Consider
the modified transition rates

λ̃b,k = 1
b− k + 1

(
b

k

)
λb,k.

Let n ≥ 1, we define a Markov chain (Cnt )t≥0 taking values in the space of compo-
sition of [n] as follows. Starting from c, a composition of [n] with b blocks, any k
adjacent blocks merge at rate λ̃b,k. These transition rates have a natural combi-
natorial interpretation. Consider (Πn

t )t≥0 the restriction to [n] of a Λ-coalescent.
Starting from a partition with b blocks, there are

(
b
k

)
ways of merging k distinct

blocks. Thus the total transition rate from b to b− k + 1 blocks is
(
b
k

)
λb,k. Given
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that k blocks merge, the blocks that merge are chosen uniformly among the
(
b
k

)
possible choices. Starting from a composition with b blocks, there are only b−k+1
ways to merge k adjacent blocks. Thus, the total transition rate of (Cnt )t≥0 from
b to b − k + 1 blocks is the same as (Πn

t )t≥0, but instead of choosing uniformly k
blocks among the

(
b
k

)
possibilities, we choose k adjacent blocks among the b−k+1

possibilities.
We now extend this sequence of nested compositions to a nested composition

of N. To fully determine the distribution of (Cnt )t≥0 we have to specify an initial
distribution. We will always assume in this section that the process (Cnt )t≥0 starts
from the composition of [n] composed of only singletons ordered uniformly. Using
the Markov projection theorem (see e.g. [123], Section 6.3), it is not hard to see
that the sequence of processes ((Cnt )t≥0; n ≥ 1) is sampling consistent, i.e. that
the restriction of (Cn+1

t )t≥0 to [n] is distributed as (Cnt )t≥0. Using the Kolmogorov
extension theorem we can find (Ct)t≥0 an exchangeable nested composition of N
whose projections to [n] is distributed as (Cnt )t≥0 for all n ≥ 1. The process (Ct)t≥0
is a nested composition whose blocks merge according to a Λ-coalescent.

Lemma 2.28. Let (Πt)t≥0 be the coalescent associated to (Ct)t≥0. Then (Πt)t≥0 is
a Λ-coalescent. Moreover for any t ≥ 0, conditionally on Πn

t , the composition Cnt
is obtained by ordering uniformly the blocks of Πn

t .

Proof. Let (Cnt )t≥0 and (Πn
t )t≥0 be the restriction to [n] of (Ct)t≥0 and (Πt)t≥0 respec-

tively. Let Q̂n be the generator of (Cnt )t≥0 and Qn be the generator of a Λ-coalescent
on [n]. The result will follow by using a Markov projection theorem from [183], see
their Theorem 2. To apply this result, we need to find a probability kernel Ln from
the space of partitions of [n] to the space of compositions of [n] such that for any
function f from the space of compositions of [n] to R,

∀π, Q̂nLnf(π) = LnQnf(π)

and such that the initial distribution of (Cnt )t≥0 is the push-forward by Ln of the
initial distribution of (Πn

t )t≥0.
Let f be such a function. For π a partition of [n], let Cπ be the random

composition of [n] obtained by ordering the blocks of π uniformly. We set

∀π, Lnf(π) = E[f(Cπ)].

Our choice of initial distribution for (Ct)t≥0 ensures that the second condition holds.
A straightforward generator calculation shows that the above equality is fulfilled
and that the desired result holds. See Section 2.C for the details of the calculation.

Using Theorem 2.24, the nested composition (Ct)t≥0 defines a unique nested
interval-partition (It)t≥0 that we call the Λ-comb. In the remainder of the section
we want to show that the Λ-comb is a Markov process and give its transitions.
We will express the transitions in terms of composition of bridges that we now
introduce.
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We say that a function B : [0, 1]→ [0, 1] is a bridge if it is of the form

B(x) = x(1−
∑
i≥1

βi) +
∑
i≥1

βi1{x≤Vi}

for a random mass-partition β and an independent i.i.d. sequence (Vi)i≥1 of uniform
[0, 1]-valued variables. To any bridge we associate an interval-partition defined as

I(B) = int
(

[0, 1] B([0, 1])
)

where B([0, 1]) is the range of B. We can ask if the converse holds. The correct
notion to answer this question is that of uniform order.

Definition 2.29. Let I be a random interval-partition and C be the composition of
N obtained through an ordered paintbox based on I. We say that I has a uniform
order if for any n ≥ 1, the order of the blocks of C ∩ [n] is uniform. ◦

The following lemma shows that having a uniform order is a necessary and
sufficient condition for an interval-partition to be represented by a bridge. See
Section 2.3.1 for a proof.

Lemma 2.30. Let I be a random interval-partition. There exists a bridge B such
that I(B) = I if�f I has a uniform order. If I has a uniform order, the bridge B
such that I(B) = I is unique in distribution.

Notice that for any t ≥ 0, the Λ-comb It at time t has a uniform order. We
will denote by BIt the bridge associated to It through Lemma 2.30. We are now in
position to provide the transitions of the Λ-comb.

Proposition 2.31. Let (It)t≥0 be the Λ-comb. The process (It)t≥0 is Markovian,
and for any s, t ≥ 0, conditionally on It,

It+s
(d)= I(BIt ◦B′s) (2.4)

where B′s is an independent bridge distributed as BIs.

Remark 2.32. In the coming down from infinity case we have a simpler description
of the semi-group of the Λ-comb. Suppose that (It)t≥0 starts from an interval-
partition I0 with b blocks and no dust. Then any k adjacent blocks of I0 merge at
rate λ̃b,k. ◦

The above proposition shows that the Λ-comb can be represented in terms of
composition of independent bridges. As a direct corollary, we provide an alternative
construction of the Λ-comb based on the flow of bridges of [21]. A flow of bridges
is a collection (Bs,t)s≤t of bridges which fulfills the following three conditions:

(i) For any s < r < t, Bs,t = Bs,r ◦Br,t (cocycle property).
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(ii) For any t1 < · · · < tp, the bridges (Bt1,t2 , . . . , Btp−1,tp) are independent, and
Bt1,t2 is distributed as B0,t2−t1 (stationarity and independence of the incre-
ments).

(iii) The bridge B0,t converges to the identity map Id as t ↓ 0 in probability in
Skorohod topology.

It can be seen from the cocycle property that the interval-partition-valued process
(I(B0,t))t≥0 is a nested interval-partition. A sampling procedure has been defined in
[21] to obtain a coalescent from a flow of bridges. In our context, sampling from the
flow of bridges according to this procedure is the same as doing a paintbox based
on (I(B0,t))t≥0. An important result from [21] states that given a Λ-coalescent
(Πt)t≥0, there exists a unique flow of bridges whose associated coalescent is dis-
tributed as (Πt)t≥0 (see Theorem 1 in [21]). We call it the Λ-flow of bridges. As a
corollary of this correspondence and of Proposition 2.31, we are able to show that
the comb associated to the Λ-flow of bridges is the Λ-comb introduced above from
the transition rates.

Corollary 2.33. Let Λ be a finite measure on [0, 1], and let (It)t≥0 be the Λ-comb
and (Bs,t)s≤t be the Λ-flow of bridges. Then

(It)t≥0
(d)= (I(B0,t))t≥0.

Proof. Let p ≥ 1 and 0 ≤ t1 < · · · < tp. Using the Markov property of (It)t≥0 and
the expression of the transitions (2.4) we know that

(
It1 , . . . , Itp

) (d)=
(
It1 , I(BIt1 ◦B′1), . . . , I(BIt1 ◦B′1 ◦ · · · ◦B′p−1)

)
,

where (B′1, . . . , B′p−1) are independent bridges and for 1 ≤ k ≤ p − 1, B′k is dis-
tributed as BItk+1−tk .

Let (Bs,t)s≤t be the Λ-flow of bridges. Then from the cocycle property
(
I(B0,t1), . . . , I(B0,tp)

)
=
(
I(B0,t1), . . . , I(B0,t1 ◦Bt1,t2 ◦ · · · ◦Btp−1,tp)

)
.

Moreover as the flow of bridges has independent and stationary increments, the
bridge (Bt1,t2 , . . . , Btp−1,tp) are and have the same distribution as above.

2.3.1 Proof of Lemma 2.30
We will need the following continuity result.

Lemma 2.34. The map I : B 7→ I(B) that maps a bridge to its associated interval-
partition is continuous when the space of interval-partitions is endowed with the
Hausdorff topology and the space of bridges with the Skorohod topology.
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Proof. LetBn be a sequence of bridges that converge toB in the Skorohod topology.
We know that we can find a sequence of continuous bijections λn from [0, 1] to [0, 1]
such that

lim
n→∞
‖λn − Id‖∞ = 0

and
lim
n→∞
‖B −Bn ◦ λn‖∞ = 0.

Let I = I(B) and In = I(Bn). As the interval-partitions are obtained from bridges,
we can re-write the Hausdorff distance as

dH(I, In) = sup
x∈[0,1]

inf
y∈[0,1]

|Bn(x)−B(y)| ∨ sup
x∈[0,1]

inf
y∈[0,1]

|Bn(y)−B(x)|.

We have
sup
x∈[0,1]

inf
y∈[0,1]

|B(x)−Bn(y)| ≤ sup
x∈[0,1]

|B(x)−Bn(λn(x))|

and
sup
x∈[0,1]

inf
y∈[0,1]

|B(y)−Bn(x)| ≤ sup
x∈[0,1]

∣∣∣B(λ−1
n (x))−Bn(x)

∣∣∣
and thus

lim
n→∞

dH(I, In) = 0,

which ends the proof.

Proof of Lemma 2.30. First suppose that I is of the form I(B) for some bridge B.
Consider B−1 the generalized inverse of B. Let (Vi)i≥1 be i.i.d. uniform variables
and C be the composition obtained through an ordered paintbox using these vari-
ables. By construction of the ordered paintbox and as B−1 is non-decreasing, the
order of the blocks of C is given by the order of the variables (B−1(Vi))i≥1. Condi-
tionally on the bridge these variables are i.i.d. and thus their order is uniform.

Now let I be an interval-partition with a uniform order and C be the composition
obtained by an ordered paintbox. We will first consider the case where I has finitely
many interval components and no dust. The fact that the order of the blocks of the
composition C is uniform shows that the order of the interval components of I is
uniform (each block of C corresponds to an interval of I). Let K be the number of
blocks of I, and let V ∗1 < · · · < V ∗K be the order statistics of independent uniform
variables. Suppose that β1 is the length of the left-most interval of I, β2 that of
the second left-most, etc. then

∀u ∈ [0, 1], B(u) =
K∑
i=1

βi1{V ∗i ≤u}

is a bridge such that I(B) = I. Indeed, since the order of the intervals is uniform,
there is a uniform permutation σ of [K] independent of V ∗1 , . . . , V ∗K , such that (βσ(i))
is ranked in nonincreasing order. This shows that

B(u) =
K∑
i=1

βσ(i)1
{
V ∗
σ(i)≤u

}
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indeed defines a bridge. This also shows the uniqueness in distribution of B.
Let us turn to the general case. Let n ≥ 1 and consider In the empirical

interval-partition associated to C ∩ [n]. By assumption the interval-partition In

has a uniform order, thus using the above argument we can find a unique bridge
Bn such that I(Bn) = In. We know that In converges a.s. to I. Let βn (resp.
β) be the mass-partition associated to In (resp. I). As the function that maps an
interval-partition to its mass-partition is continuous, we have that βn converges a.s.
to β (see e.g. [20] Proposition 2.2). We can now make use of another continuity
result, namely Lemma 1 from [21], to show that the sequence of bridges (Bn)n≥1
converges in distribution to a bridge B obtained from the mass-partition β. Using
Lemma 2.34, we know that I(Bn) converges in distribution to I(B). By uniqueness
of the limit, we get that

I
(d)= I(B),

and that B is unique.

2.3.2 Proof of Proposition 2.31
We will first prove Proposition 2.31 for empirical interval-partitions and then take
the limit. We start by proving the following lemma, which is the direct reformula-
tion of Proposition 2.31 for empirical interval-partitions.

Lemma 2.35. Let Cn0 be an exchangeable composition of [n] with a uniform order
on its blocks, and let (Cnt )t≥0 be the Markov process started from Cn0 with transitions
(λ̃b,k; 2 ≤ k ≤ b < ∞). If (Int )t≥0 denotes the empirical nested interval-partition
associated to (Cnt )t≥0, then conditionally on Cn0 ,

Int
(d)= I(Bn

0 ◦Bt),

where Bn
0 and Bt are independent bridges such that I(Bn

0 ) = In0 and I(Bt) = It,
the Λ-comb at time t.

Proof. Let us denote by (A1, . . . , AK) the blocks of Cn0 in order of their least element.
As Cn0 has a uniform order on its blocks, according to Lemma 2.30 we can find
(U1, . . . , UK) such that conditionally on K these are i.i.d. uniform variables on
[0, 1] and

∀r ∈ [0, 1], Bn
0 (r) = 1

n

K∑
i=1

Card(Ai)1{Ui≤r}

defines a bridges satisfying I(Bn
0 ) = In0 . Let Bt be independent and such that

I(Bt) = It. To each interval component of In0 corresponds a unique block Ai of Cn0 ,
and thus a unique jump time Ui of Bn

0 . We claim that I(Bn
0 ◦ Bt) is obtained by

merging the intervals of In0 whose jump times belong to the same interval compo-
nent of It. To see this, notice that by definition I(Bn

0 ◦ Bt) is the set of flats of
(Bn

0 ◦ Bt)−1 = B−1
t ◦ (Bn

0 )−1. Thus x and y belong to the same flat of (Bn
0 ◦ Bt)−1

if�f (Bn
0 )−1(x) and (Bn

0 )−1(y) belong to the same flat of B−1
t , that is to the same
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interval component of It. The claim is proved by further noting that (Bn
0 )−1(x) is

the jump time of the interval component of In0 to which x belongs.
The previous procedure can be rephrased in terms of an ordered paintbox. The

interval-partition I(Bn
0 ◦Bt) is obtained by labeling uniformly the K blocks of In0 ,

sampling a composition C ′t of [K] according to an ordered paintbox based on It and
merging the intervals of In0 whose labels belong to the same block of C ′t. As It is the
Λ-comb at time t, the composition C ′t is distributed as CKt , the nested composition at
time t obtained by merging K initial singleton blocks ordered uniformly according
to the rates (λ̃b,k; 2 ≤ k ≤ b <∞). Thus I(Bn

0 ◦Bt) can be obtained by letting its
intervals merge at rate (λ̃b,k; 2 ≤ k ≤ b <∞), and is distributed as Int .

Proof of Proposition 2.31. Let (It)t≥0 be the Λ-comb, and (Vi)i≥1 be an indepen-
dent sequence of i.i.d. uniform variables on [0, 1]. Denote by (Cnt )t≥0 the nested
composition of [n] obtained by an ordered paintbox based on (It)t≥0 using the
sampling variables (Vi)i≥1, and let (Int )t≥0 be the corresponding empirical nested
interval-partition. According to Lemma 2.28 the interval-partition It has a uniform
order, and thus there exists a bridge Bt such that I(Bt) = It. Conditionally on Bt,
the sequence

∀i ≥ 1, ξi = B−1
t (Vi)

is i.i.d. We denote by µt the (random) law of ξ1 conditionally on Bt, and by µnt its
empirical distribution defined as

µnt = 1
n

n∑
i=1

δξi .

Note that Bt is the distribution function of µt. If Bn
t denotes the distribution func-

tion of µnt , then Bn
t is a bridge such that I(Bn

t ) = Int . It follows from Lemma 2.35
that

(Int , Int+s)
(d)= (Int , I(Bn

t ◦B′s)) (2.5)

where B′s is an independent bridge distributed as BIs . The result will follow by
taking the limit in (2.5).

According to the Glivenko-Cantelli theorem (see for instance Proposition 4.24
in [120]), the sequence of bridges (Bn

t )n≥1 converges almost surely to Bt in the
uniform topology. Thus Bn

t ◦B′s converges a.s. in the uniform topology to Bt ◦B′s,
and by Lemma 2.34 and Proposition 2.21 the right-hand side of (2.5) converges
a.s. to (It, I(Bt ◦B′s)). Moreover, according to Proposition 2.21, the left-hand side
converges a.s. to (It, It+s) and we have proved that (2.4) holds.

It remains to show that (It)t≥0 is Markovian. As (Ct)t≥0 is obtained from (It)t≥0
through the ordered paintbox procedure, it is sufficient to prove that (Ct)t≥0 is
Markovian. This follows from standard arguments from measure theory by noting
that the filtration of (Ct)t≥0 is induced by that of its restrictions to [n], and that
all of these restrictions are Markov.
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2.3.3 Dynamical combs
As mentioned in the introduction, an exchangeable coalescent models the genealogy
of a population observed at a given time. By varying the observation time we obtain
a dynamical genealogy that has been named the evolving coalescent. There has been
much interest into studying evolving coalescents. For example, if the coalescent at
a fixed time is the Kingman coalescent, the authors of [176, 177] have studied
statistics of the evolving coalescent using a look-down representation, the authors
of [92] studied the dynamics of the entire tree structure using the framework of the
Gromov-weak topology. Evolving coalescents such that the coalescent at a fixed
time is a more general Λ-coalescent have also been considered, see e.g. [126] for the
case of Beta-coalescents and [197] for the Bolthausen-Sznitman coalescent.

In this section we show that the previous results on the Markov property of
the Λ-comb allow us to define a comb-valued process, the evolving comb, such
that sampling from the evolving comb at a fixed time yields a Λ-coalescent. The
evolving comb contains all the information about the dynamical genealogy but
does not require the cumbersome framework of random metric spaces endowed
with the Gromov-Hausdorff topology as in [92]. For the sake of clarity we will only
consider the evolving Kingman comb where we have an explicit construction of the
genealogy at a fixed time.

We will build the evolving Kingman comb by defining its semi-group. Recall
that when the coalescent associated to a nested interval-partition comes down from
infinity, the comb can be represented using a comb function, see Section 2.1.2. Let
f be a deterministic comb function and s > 0, we want to describe the genealogy
of the population at time s given that its genealogy at time 0 is encoded by f . The
procedure we follow is illustrated in Figure 2.4. Recall the Kingman comb con-
struction discussed in introduction. Let (ei)i≥1 be a sequence of i.i.d. exponential
variables, and (Ui)i≥1 a sequence of i.i.d. uniform [0, 1] variables. For i ≥ 1, we set

Ti =
∑
k≥i+1

2
k(k − 1)ek.

The Kingman comb is given by

fK =
∑
i≥1

Ti1Ui .

It is known from [140], Proposition 3.1, that the above construction generates the
comb associated to the flow of bridges, i.e. the Λ-comb associated to the Kingman
coalescent. There are only finitely many teeth of fK that are larger than s, i.e.
such that Ti ≥ s, say Ns. Let σ be their order, e.g. σ(1) is the label of the left-most
tooth. Consider V ∗1 < · · · < V ∗Ns+1 the order statistics of Ns + 1 independent i.i.d.
uniform variables. For 1 ≤ k ≤ Ns let Mk be the greatest tooth of f in the interval
(V ∗k , V ∗k+1), i.e.

Mk = sup
(V ∗
k
,V ∗
k+1)

f.
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We define new variables (T̂i)i≥1 as follows

∀i > Ns, T̂i = Ti,

and
∀i ≤ Ns, T̂σ(i) = Mi + s.

We define
f̂K =

∑
i≥1

T̂i1Ui .

Geometrically, the comb f̂K is obtained through a cutting and pasting procedure
illustrated in Figure 2.4.

The above construction defines an operator given by

PtF (f) = E[F (f̂K)],

for all continuous bounded functions F . We will show below that the family of
operators (Pt)t≥0 is a semi-group. Thus we can define a comb-valued Markov
process (Ir)r≥0 whose transitions are given by the above construction. We call the
process (Ir)r≥0 the evolving Kingman comb.

Lemma 2.36. The family of operators (Pt)t≥0 is a semi-group. Moreover the
Kingman comb is a stationary distribution of the evolving Kingman comb.

Proof. Let s, t ≥ 0, let f be a deterministic comb. We call ft the comb obtained
through the above procedure at level t starting from f , and ft+s the one obtained
according to the above procedure at level s, but using ft as starting comb. We need
to show that ft+s is distributed as f ′t+s, the comb obtained at level t + s starting
from f .

It is sufficient to show that the portion of the comb ft+s lying between level
0 and t + s is distributed as a Kingman comb truncated at height t + s. To
show that, it is more convenient to see combs as nested interval-partitions. The
procedure described above can be rephrased in terms of composition. Suppose that
ft+s has K truncated teeth at time s, this defines K+ 1 intervals of [0, 1]. For each
of these intervals of ft+s, we throw a uniform variable. Two intervals merge at the
first moment when their corresponding variables belong to the same subinterval of
ft. This is exactly the description of the ordered paintbox procedure. Thus, using
the Markov property of the Kingman comb we know that ft+s, between level 0 and
t + s, is distributed as the truncation of a Kingman comb. This argument also
shows that the Kingman comb is a stationary distribution.

This construction can be easily extended to the case of Λ-coalescents that come
down from infinity, even though we do not have an explicit construction of the
comb in this case. In short, to obtain the evolving comb at time s, one needs
to sample independently a new comb, erase the portion lying above height s and
replace it by teeth sampled from the original comb. In the general case, we have
to define the transition of the evolving comb using composition of bridges.
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Figure 2.4: Transition of the evolving Kingman comb. The comb at time s, f̂K , is
represented on the right, and the initial comb f is on the left. To obtain f̂K , one has
first to erase the part of the right comb lying above level s. Here we have erased Ns = 4
teeth. Then throw Ns + 1 uniform variables V1, . . . , VNs+1, this defines Ns intervals
between these variables, here (V5, V1), (V1, V4), (V4, V2) and (V2, V3). Finally take the
largest tooth of f in each of these intervals, represented with a coloured root, and paste
it in place of the erased tooth.

Again, the evolving comb can be built from the flow of bridges. Let (Bs,t)t≥0
be a Λ-flow of bridges, for any time r we can build a nested interval-partition by
setting

(Irt )t≥0 = (I(Br,r+t))t≥0.

Then, using a similar argument as in the proof of Corollary 2.33 we could show that
the comb-valued process (Ir)r≥0 = ((I−rt )t≥0)r≥0 is distributed as the evolving comb
introduced above. As a remark this provides a càdlàg modification of the evolving
comb, and the Feller property of the flow of bridges ensures that the evolving comb
is a Feller process.

2.4 Combs and ultrametric spaces
In this section we envision combs as random UMS. Random metric measure spaces
have already been studied in [91, 94]. A key working hypothesis there is that the
metric spaces are separable. In terms of combs and coalescents, separability trans-
lates into absence of dust (see Section 2.4.6). While separability is a very natural
hypothesis when considering metric measure spaces, restricting our attention to
combs without dust seems arbitrary, as dust has not raised any difficulty so far.
In this section we provide a straightforward extension of the framework of random
metric measure spaces to account for non-separable UMS.
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Let us recall the heuristic of our approach and give a short outline of this
section. After a discussion on the assumptions of Definition 2.1 in Section 2.4.1, we
define a topology on the space of UMS in Section 2.4.2 by saying that a sequence
of UMS converges if the associated sequence of coalescents converges weakly as
probability measures. In the separable case, the Gromov reconstruction theorem
(see Section 3.1

2 .5 of [94]) ensures that spaces that are indistinguishable have the
support of their measures in isometry. In general this result does not hold, we
want to obtain a similar result for general UMS. In order to do that, we introduce
in Section 2.4.3 the notion of a backbone of a UMS. An UMS can be seen as
the leaves of a tree. This tree can be decomposed into 1) a separable part, that
we call the backbone and 2) additional subtrees grafted on this backbone. Even
though these subtrees can have a complex geometry, from a sampling standpoint
they behave as star-trees (recall Figure 2.3). In Section 2.4.4, we show that if two
UMS are indistinguishable in the Gromov-weak topology, then they are weakly
isometric, in the sense that we can find an isometry between their backbones and
a measure-preserving correspondence between the star-trees attached to them (see
Proposition 2.47 for a rigorous statement). Finally Section 2.4.5 is dedicated to
showing Corollary 2.18, i.e. that we can always find a comb metric space weakly
isometric to a given UMS with complete backbone, and Section 2.4.6 is devoted to
showing Corollary 2.15 and Proposition 2.16 which are the analogous results in the
complete and separable case.

2.4.1 Discussion of Definition 2.1
Recall Definition 2.1 of a UMS from the introduction. This definition has two
differences with the “naive” definition of a UMS (that is, any ultrametric space
endowed with a probability measure on its Borel σ-field). First, we impose a
measurability condition on the metric d. Second we allow the measure µ to be
defined on a σ-field that is smaller than the usual Borel σ-field. In this section, we
start with a discussion of the assumptions of Definition 2.1.

Let Pcoal denote the state space of coalescents, endowed with its usual Borel
σ-field (see [20] Lemma 2.6), and let Π be the map defined as

Π:
{
UN → Pcoal

(xi)i≥1 7→ (Πt)t≥0,

where
i ∼Πt j ⇐⇒ d(xi, xj) ≤ t.

The following simple lemma proves that the measurability of d is the minimal
requirement so that the coalescent obtained by sampling from U is a measurable
process.

Lemma 2.37. The map Π is measurable when UN is endowed with the product
σ-algebra U ⊗N if�f the distance d is U ⊗U measurable.
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Proof. Notice that by definition of Π we have

{d(x1, x2) ≤ t} = {1 ∼Πt 2}

which yields the “only if” part of the proof.
To prove the converse implication, let π be a partition of [n] and define

Ri,j =
{
{d(xi, xj) ≤ t} if i ∼π j,
{d(xi, xj) > t} if i 6∼π j.

Then {
Πt [n] = π

}
=

⋂
i,j≤n

Ri,j,

which ends the proof.

We now turn to the second point of the definition. Roughly speaking, the
Borel σ-field of a non-separable ultrametric space tends to be large, and fewer
measures can be defined on it. It is natural to ask whether all coalescents (especially
coalescents with dust) can be represented as samples from ultrametric measure
spaces, endowed with their natural Borel σ-field. (We call such ultrametric spaces
Borel UMS.) It turns out that this question can be linked to a deep measure-
theoretic problem known as the Banach-Ulam problem. It can be formulated as
follows: can we find a space X and a probability measure µ defined on the power
set of X such that µ({x}) = 0 for all x ∈ X? The next proposition connects
our question to the Banach-Ulam problem. Note that point (iii) yields a positive
answer to the problem.

Proposition 2.38. The following statements are equivalent.

(i) There exists an exchangeable coalescent with dust that can be obtained as a
sample from a Borel UMS.

(ii) Any exchangeable coalescent can be obtained as a sample from a Borel UMS.

(iii) There exists an extension of the Lebesgue measure to all subsets of R.

This proposition is proved in Section 2.F. Proposition 2.38 shows that answering
our initial question, that is, representing coalescents with dust as samples from
Borel UMS, amounts to finding an extension of the Lebesgue measure to all subsets
of R. A treatment of the latter problem requires advanced tools from set theory.
Let us recall some basic facts about it. The interested reader is referred to [82] for
a complete account on this question and on the Banach-Ulam problem.

A consequence of the various results stated in [82] is that point (iii) of the previ-
ous proposition has a greater consistency strength than the usual axioms Zermelo-
Fraenkel-Choice (ZFC) of set theory. This means that, if ZFC is consistent, further
assuming that there exists no extension of the Lebesgue measure does not lead to
any contradiction. However, even under the assumption that ZFC is consistent,
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it cannot be shown that there is no contradiction in assuming the existence of an
extension of the Lebesgue measure.

In other words, assuming that ZFC is consistent, one can safely work under
the hypothesis that no extension of the Lebesgue measure exists, and thus that no
coalescent with dust can be obtained by sampling from Borel UMS. On the contrary,
even assuming that ZFC is consistent, we cannot be sure that further assuming that
the Lebesgue measure can be extended (and thus that coalescents with dust are
obtained as samples from Borel UMS) will not lead to a contradiction. However,
according to the discussion in Remark 1E(e) in [82], it is extremely unlikely that
such a contradiction exists, as many consequences of the existence of an extension
of the Lebesgue measure have been explored without leading to any contradiction
so far.

Remark 2.39. There is a short direct proof that, if the continuum hypothesis and
the axiom of choice both hold, there can be no extension of the Lebesgue measure
to all subsets of R, see for instance the end of Section 3 of Chapter 2 of [24]. As it
is well-known that the continuum hypothesis is relatively consistent with ZFC, this
shows that the converse of point (iii) of Proposition 2.38 is also relatively consistent
with ZFC.

The greater consistency strength of (iii) is a consequence of Corollary 2E of [82],
which states that (iii) is equiconsistent with the existence of a measurable cardi-
nal. Measurable cardinals are instances of (strongly) inaccessible cardinals, whose
existence is well-known to have greater consistency strength than ZFC alone, see
for instance Theorem 12.12 in [118]. ◦

Obviously, all these considerations go far beyond the scope of the current work.
The approach we propose is to let the sampling measure be defined on a σ-field
smaller than the usual Borel σ-field, namely U . The previous discussion shows
that this is not a necessary assumption to be able to represent all coalescents as
samples from UMS, but that without it we would need to assume the existence of an
extension of the Lebesgue measure to all subsets of R. However, we hope that this
short digression has led the reader to the conclusion that, as allowing the sampling
measure to be defined on U avoids the aforementioned set-theoretic issues, it is
a more natural framework in which discussing coalescent theory on non-separable
UMS than having to assume that one of the statement of Proposition 2.38 holds.

Let us finally discuss the last point of Definition 2.1. This point can be refor-
mulated in terms of the ball σ-field which is defined as follows.

Definition 2.40. Let (U, d) be an ultrametric space. The ball σ-field denoted by
Ub is the σ-field induced by the open balls of (U, d), that is,

Ub = σ({B(x, t) : x ∈ U, t > 0}),

where
∀x ∈ U, ∀t > 0, B(x, t) = {y ∈ U : d(x, y) < t}. ◦
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Example 2.41. Consider any set U endowed with the metric

∀x, y ∈ U, d(x, y) = 1{x 6=y}.

In this case Ub is the countable-cocountable σ-field. ◦

The last point of Definition 2.1 can now be rephrased as Ub ⊆ U ⊆ B(U).
It is important to notice that if B(U) denotes the Borel σ-field of (U, d), then
Ub ⊆ B(U) always holds. In that sense, our definition of a UMS should be seen
as a generalization of the naive definition as more measures can be defined on Ub
than on B(U). The converse statement, i.e. that B(U) ⊆ Ub, does not hold in
general, as Example 2.41 shows. Nevertheless, in the important case where (U, d)
is separable, we have that Ub = B(U), and the ultrametric d is B(U) ⊗B(U)-
measurable. We thus recover the usual framework of metric measure spaces.

Remark 2.42. The ball σ-field appears in other contexts where the underlying
metric space is not separable, for example when considering the space of càdlàg
functions with the uniform topology, as in [25], Section 6 and Section 15. ◦

2.4.2 The Gromov-weak topology
We now define the Gromov-weak topology on the space of UMS. Let (U, d,U , µ)
be a UMS, and consider (Xi)i≥1 an i.i.d. sequence distributed as µ. Recall that we
define an exchangeable coalescent through the set of relations

i ∼Πt j ⇐⇒ d(Xi, Xj) ≤ t.

Alternatively, we can see this coalescent as a random pseudo-ultrametric on N
defined as

∀i, j ≥ 1, dΠ(i, j) = d(Xi, Xj).

Both objects encode the same information, as dΠ can be recovered from (Πt)t≥0
through the equality

∀i, j ≥ 1, dΠ(i, j) = inf{t ≥ 0 : i ∼Πt j}.

The distribution of this pseudo-ultrametric is called the distance matrix distribution
of the UMS.

We use distance matrix distributions to define a topology on the space of UMS.
Consider a sequence (Un, dn,Un, µn)n≥1 of UMS, and denote by (νn)n≥1 the as-
sociated sequence of distance matrix distributions. We say that the sequence
(Un, dn,U , µn)n≥1 converges in the Gromov-weak topology to (U, d,U , µ) if (νn)n≥1
converges weakly to ν, the distance matrix distribution of (U, d, µ), in the space of
probability measures on RN×N+ .
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2.4.3 Backbone
It is well known that any ultrametric space (U, d) can be seen as the leaves of a
tree. This is illustrated in Figure 2.3. Formally, we work on the space U ×R+ and
consider the pseudo-metric

dT
(
(x, s), (y, t)

)
= max

(
d(x, y)− s+ t

2 ,
|t− s|

2

)
.

Let T be the space U ×R+ quotiented by the equivalence relation

z ∼ z′ ⇐⇒ dT (z, z′) = 0.

Then the space (T, dT ) is a real tree (see [59], Definition 3.15) whose leaves can be
identified with (U, d).

Definition 2.43 (Backbone of T ). Define

f :
U → R+

x 7→ inf{t ≥ 0 : µ(B(x, t)) > 0},

(note that f is measurable since Ub ⊆ U ) and let

S := {(x, t) ∈ T : t ≥ f(x)}.

The space S will be referred to as the backbone of the tree T , and we denote by
dS the distance dT restricted to S. ◦

Let us now motivate the next result that will be fundamental to our approach.
In words, Proposition 2.44 states that even if the underlying UMS is not separable,
the backbone is always a separable tree. Secondly, one can recover the whole tree
from the backbone by grafting some “simple” subtrees on the skeleton. By “simple”,
we mean that each of those subtrees has the sampling properties of a star-tree. Let
us be more explicit about this last statement and discuss an example.

Consider the space [0, 1]× {0, 1} endowed with the ultrametric

∀x, y ∈ [0, 1], ∀a, b ∈ {0, 1}, d
(
(x, a), (y, b)

)
=


1 if x 6= y,

1/2 if x = y and a 6= b,

0 if (x, a) = (y, b).

The space ([0, 1]×{0, 1}, d) is a star-tree where each branch splits in two at height
1/2 (see Figure 2.5 left panel), we call it the bifurcating star-tree. We endow
this space with the product measure of the Lebesgue measure on [0, 1] and the
uniform measure on {0, 1}, defined on the usual product Borel σ-field. Consider
two independent random variables (X,A) and (Y,B) distributed according to the
above measure. We see that these two variables lie at distance 1/2 if�f X = Y and
A 6= B, which happens with probability 0. Thus, from a sampling point of view, all
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Figure 2.5: Left panel: The bifurcating star-tree. Right panel: The bifurcating star-
tree simplified according to the metric d̃. In both cases, the backbone is illustrated with
a bold black line and the subtrees attached to it with thin grey lines.

points of the space lie at distance 1 from one another, i.e. the bifurcating star-tree
is a star-tree (see Figure 2.5 right panel).

This examples illustrates the more general phenomenon that from the measure
point of view, the subtrees attached to the backbone behave like star-trees. More
formally, consider a UMS (U, d,U , µ). We introduce the distance

∀x, y ∈ U, d̃(x, y) = 1{x 6=y} inf{t ≥ 0 : d(x, y) ≤ t and µ(B(x, t)) > 0},

which replaces each subtree attached to the backbone by a star-tree. The point (iii)
of the following proposition shows that the coalescent obtained by sampling from
(U, d,U , µ) is the same as the coalescent obtained by sampling from (U, d̃,U , µ).

Proposition 2.44. (i) The space (S, dS) is a separable real tree.

(ii) The map

ψ :
(U,U )→ (S,B(S))
x 7→ (x, f(x))

is measurable and we define µS := ψ?µ, the pushforward measure (on (S,B(S)))
of µ by ψ. In particular, the support of µS belongs to the subset of the backbone
{(x, t) ∈ S : t = f(x)}.

(iii) Consider an i.i.d. sequence (Xi)i≥1 distributed according to µ. Then a.s. for
all i, j ≥ 1, d̃(Xi, Xj) = d(Xi, Xj).

Proof. We start by proving (i). The fact that S is a real tree can be checked
directly from the definition. We now show that it is separable. Let t ∈ Q+, there
are only countably many balls of (U, d) of radius t and positive mass, let us label
them (Bt

i)i≥1. For any t ∈ Q+ and i ≥ 1, let xti ∈ Bt
i . Let us now consider the

collection ((xti, t); t ∈ Q+, i ≥ 1). First, since µ(B(xti, t)) > 0, it follows from the
definition that t ≥ f(xti), and thus ((xti, t); t ∈ Q+, i ≥ 1) is a countable collection
of S and it remains to show that this collection is dense in S.
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Let ε > 0 and let (x, s) ∈ U × R+ be in S. We can find t ∈ Q+ such that
t > s ≥ f(x) and t − s < ε. By definition of f , µ(B(x, t)) > 0, and we can find i
such that B(x, t) = Bt

i . Then d(x, xti) < t and

d(x, xti)−
t+ s

2 < d(x, xti)− t+ ε

2 <
ε

2

and thus dT ((x, s), (xti, t)) < ε. This shows that the collection is dense and that
the space is separable.

We now turn to the proof of (ii). Let (x, t) ∈ S, we denote by

C(x, t) = {(y, s) ∈ S : dT ((x, t), (y, t)) = 0}

the clade generated by (x, t). In a genealogical interpretation, C(x, t) is the progeny
of (x, t) i.e. the subtree that has (x, t) as its MRCA. Notice that this notion can be
defined similarly on any rooted tree (here the root is an “infinite point” obtained
by letting t → ∞). It is clear that ψ−1(C(x, t)) = B(x, t). Our results is now
immediate from the fact that the clades of a rooted separable tree induce the Borel
σ-field of the tree. A proof of this fact is given in Section 2.D.

We now prove (iii). It is sufficient to prove that a.s. d(X, Y ) = d̃(X, Y ) for X
and Y two independent variables distributed as µ. Notice that for any x, y ∈ U ,
d(x, y) ≤ d̃(x, y). Thus the probability that d(X, Y ) 6= d̃(X, Y ) can be written

P
(
d(X, Y ) 6= d̃(X, Y )

)
=
∫∫

1{d(x,y)<d̃(x,y)}µ(dx)µ(dy)

=
∫
µ(dx)

∫
µ(dy)1{d(x,y)<f(x)} = 0,

where the last equality can be seen by writing

{x, y ∈ U : d(x, y) < f(x)} =
⋃
ε>0
{x, y ∈ U : d(x, y) < f(x)− ε}

and noticing that each event of the union in the right-hand side has null mass.

Remark 2.45 (Backbone and marked metric measure space). An object similar
to the backbone appears in [95] using the framework of marked metric measure
spaces introduced in [44]. We can interpret the backbone as a marked metric
measure space where the metric space is U endowed with the backbone metric

d̄(x, y) = dS
(
(x, f(x)), (y, f(y))

)
and the mark space is R+. According to this correspondence, backbones are ex-
amples of elements of the set Û defined in [95]. In [95] the marked metric measure
space corresponding to the backbone is either considered as given, or built as the
completion of the ultrametric measure space on N corresponding to the distance
matrix distribution. The novelty of the present work is that we start from a general
UMS and simplify it to obtain the backbone. This approach requires to identify
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the measurability assumptions to be made on UMS to avoid the problems that are
discussed in Section 2.4.1.

Moreover, the link between backbones and marked metric measure spaces en-
ables us to use the work of [44]. For instance, this provides a metric, the marked
Gromov-Prohorov metric, that metrizes the Gromov-weak topology on UMS and
ensures that the topology is separable. ◦

2.4.4 Isomorphism between backbones
The aim of this section is to introduce the notion of isomorphism between backbones
and to prove our reformulation of the Gromov reconstruction theorem.

Definition 2.46. Let (U, d,U , µ) and (U ′, d′,U ′, µ′) be two UMS with respective
backbones (S, µS) and (S ′, µ′S). We say that Φ is an isomorphism from S to S ′ if:

(i) The map Φ is a measure-preserving isometry from S to S ′.

(ii) For every (x, t) ∈ S, there exists x′ ∈ U ′ such that Φ
(
(x, t)

)
= (x′, t), i.e. Φ

preserves the second coordinate.

We say that two UMS are in weak isometry when they have isomorphic backbones.
◦

Recall Proposition 2.17 from the introduction. We want to show the following
reformulation of Proposition 2.17. In words, this states that having the same
distance matrix distribution is equivalent to being weakly isometric.

Proposition 2.47. Let (U, d,U , µ) and (U ′, d′,U ′, µ′) be two UMS with respective
backbones (S, µS) and (S ′, µ′S). We suppose that the two backbones are complete
metric spaces. Then the two spaces (S, µS) and (S ′, µ′S) are isomorphic if�f the
distance matrix distribution associated (U, d,U , µ) and (U ′, d′,U ′, µ′) are identical.

Let us compare this result to the original result from [94]. In the separable case,
if two UMS share the same coalescent then the supports of their measures are in
isometry. Thus two separable spaces that are indistinguishable in the Gromov-weak
topology share the exact same metric structure. The situation is rather different
in the general case. Even if two UMS share the same coalescent, they can have
rather different metric structures, think of the bifurcating star-tree and the star-
tree of Figure 2.5. What Proposition 2.47 states is that in this case there is only
a correspondence between coarsenings of the UMS, i.e. the backbones on which all
the subtrees are replaced by star-trees. This result is not surprising as the distance
matrix distribution only contains the information of a countable number of points,
which is not enough to explore the fine metric structure of the UMS.

The “only if” part of Proposition 2.47 is a direct consequence of the follow-
ing lemma, which shows that the distance matrix distribution of a UMS can be
recovered from an i.i.d. sequence of points of the backbone.
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Lemma 2.48. Let (Xi)i≥1 be an i.i.d. sequence in U sampled according to µ. Then
a.s.

∀i, j ≥ 1, d(Xi, Xj) = dS
(
(Xi, f(Xi)), (Xj, f(Xj))

)
+ f(Xi) + f(Xj)

2 (2.6)

and

∀i ≥ 1, f(Xi) = inf{t ≥ 0 : {j : d(Xj, Xi) ≤ t} is infinite}. (2.7)

Proof. We know from Proposition 2.44 that for any i, j ≥ 1, d̃(Xi, Xj) = d(Xi, Xj)
almost surely. Suppose that (Xi, f(Xi)) and (Xj, f(Xj)) lie at distance 0 in the
backbone, then d̃(Xi, Xj) = f(Xi) = f(Xj) and (2.6) holds. Otherwise notice that
d(Xi, Xj) ≥ f(Xi) and d(Xi, Xj) ≥ f(Xj). Thus

d(Xi, Xj)−
f(Xi) + f(Xj)

2 ≥ |f(Xi)− f(Xj)|
2

and
dS
(
(Xi, f(Xi)), (Xj, f(Xj))

)
= d(Xi, Xj)−

f(Xi) + f(Xj)
2 .

The second point of the lemma is a direct consequence of the definition of f
and of the observation that if µ(B(x, t)) > 0, then a.s. there are infinitely many
(Xi)i≥1 that belong to this ball.

It remains to show the converse proposition, i.e. that if two UMS are sampling
equivalent then they are in weak isometry. The proof we give is an adaptation of
Gromov reconstruction theorem from Section 3.1

2 .6 of [94].

Proof of Proposition 2.47. We say that a sequence (xi, ti)i≥1 in S is equidistributed
if for any A ∈ S,

lim
n→∞

1
n

n∑
i=1
1{(xi,ti)∈A} = µS(A).

A well-known fact is that the empirical measure of an i.i.d. sample converges weakly
to the sampling measure. Thus, a.s. an i.i.d. sequence is equidistributed.

Consider the map

D :
S

N → RN×N

(xi, ti)i≥1 7→
(
dS
(
(xi, ti), (xj, tj)

)
+ ti+tj

2

)
i,j≥1

.

and let D′ be the analogous map for U ′. Then Lemma 2.48 shows that the pushfor-
ward measureD?µ⊗NS is the distance matrix distribution associated to U . Similarly
D′ ? µ′S

⊗N is the distance matrix distribution associated to U ′. As we have sup-
posed that the two distance matrix distributions coincide, we can find a sequence
(xi)i≥1 in U and a corresponding sequence (x′i)i≥1 in U ′ that have the same distance
matrix, i.e. such that

D
(
(xi, f(xi))i≥1

)
= D′

(
(x′i, f(x′i)

)
i≥1

).
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We can suppose that these sequences are equidistributed and fulfill equalities (2.6)
and (2.7) as all these events have probability 1. Using (2.7) we have

∀i ≥ 1, f(xi) = f(x′i)
and then using (2.6) we obtain

∀i, j ≥ 1, dS
(
(xi, f(xi)), (xj, f(xj))

)
= d′S

(
(x′i, f(x′i)), (x′j, f(x′j))

)
.

We now extend this correspondence to an isomorphism between the backbones.
Let i ≥ 1 and t ≥ f(xi), we set

Φ((xi, t)) = (x′i, t).
It is clear that Φ is an isomorphism from the set {(xi, t) ∈ S : t ≥ f(xi), i ≥ 1} to
{(x′i, t) ∈ S ′ : t ≥ f(x′i), i ≥ 1}. It is now sufficient to show that this set is dense to
end the proof, by extending Φ to S by continuity. To see that, let (x, t) ∈ S. As
t ≥ f(x), we know that µ({y ∈ U : d(x, y) ≤ t+ ε}) > 0 for any ε > 0. Writing

{y ∈ U : d(x, y) ≤ t+ ε} =
{
y ∈ U : dS

(
(x, t+ ε), (y, t+ ε)

)
= 0

}
,

as (xi, f(xi))i≥1 is equidistributed, we see that we can find (xi, f(xi)) such that
(xi, t+ ε) = (x, t+ ε). Moreover, it is immediate that t+ ε ≥ f(xi), and we have

dS
(
(xi, t+ ε), (x, t)

)
= dS

(
(x, t+ ε), (x, t)

)
= ε.

The fact that Φ is measure preserving holds because we have chosen equidis-
tributed sequences.

Remark 2.49. According to the correspondence between backbones and marked
metric measure spaces outlined earlier, Proposition 2.47 is similar to the more
general Theorem 1 in [44], which is itself an adaptation of the Gromov recon-
struction theorem. However as we only address the case of backbones, we can be
more specific. A direct application of Theorem 1 in [44] would only provide an
isometry between the supports of the backbones whereas here we obtain a global
isometry. ◦

Remark 2.50. The results of this section show that the backbone of a UMS
contains the same information as the coalescent associated to that UMS. Thus
properties of the coalescent can be read off from properties of the backbone. In
particular, we can make precise an informal conjecture formulated in the context of
exchangeable hierarchies in [76], and addressed in [75], concerning a nice decompo-
sition of the sampling measure µ. Indeed, the sampling measure on the backbone is
naturally decomposed into its atoms, its diffuse part on the set {(x, t) ∈ S : t = 0}
of leaves of S at height 0 and the remaining diffuse part. This decomposition
induces three qualitatively different behaviors of the coalescent. In short, points
sampled in the atomic part form singletons of the coalescent that all merge at the
same time, an event called “broom-like explosion” in [76]. Second, points sampled
in {(x, t) ∈ S : t = 0} always belong to an infinite block of the coalescent for t > 0,
they form the “iterative branching part”. Finally points sampled in the remaining
part of the backbone are singletons of the coalescent that continuously merge with
existing blocks. This behavior is referred to as “erosion”. ◦
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2.4.5 Comb metric measure space, completion of the
backbone

An important assumption of Proposition 2.47 is that the backbones of the UMS
we consider are complete metric spaces. We will show in this section that the UMS
associated to a comb enjoys this property up to the addition of a countable number
of points. Let us start with two examples of combs illustrating that the backbone
of a comb metric measure space is not in general complete.

First, consider the comb associated to the diadic space. Let 0 < t < 1 and let
k be the only integer such that t ∈

[
2−(k+1), 2−k

)
. We set

I2
t =

⋃
0≤i≤2k+1−1

(
i2−(k+1), (i+ 1)2−(k+1)

)

and for t ≥ 1 we set
I2
t = (0, 1).

The diadic comb is illustrated in Figure 2.6. Now consider the comb metric d2
I

associated to this comb, and let x = 2−k for some k ≥ 1. Consider a non-decreasing
sequence (xn)n≥1 that converges to x. It is not hard to see that (xn)n≥1 is Cauchy
for d2

I but does not admit a limit.
Let us discuss a second example which is not separable. Consider the following

comb

I ′t =
O6 if t < 1/2
I2
t−1/2 otherwise.

This comb is illustrated in Figure 2.6. It is rather clear that the backbone associated
to (I ′t)t≥0 is isometric to the backbone obtained from (I2

t )t≥0 (notice that here the
isometry is not an isomorphism, as the backbone associated to (I ′t)t≥0 is “shifted
above by 1/2” from that of (I2

t )t≥0). The backbone is not complete for the same
reason as above. The following proposition shows that up to the addition of a
countable number of points, we can assume that the backbone associated to a
comb metric space is complete.

Proposition 2.51. Consider the comb metric dI associated to a comb (It)t≥0. We
can find a countable set F and an extension d̄I of dI to [0, 1] ∪ F such that d̄I is
ultrametric and the backbone associated to ([0, 1] ∪ F, d̄I ,I ,Leb) is complete.

Remark 2.52. Here we have implicitly extended the Lebesgue measure to [0, 1]∪F
by giving zero mass to F . ◦

A proof of this result is given in Section 2.E. The proof of Corollary 2.18 now
directly follows from the various results we have shown.

Proof of Corollary 2.18. Let (U, d,U , µ) be a UMS with complete backbone, and
let (Πt)t≥0 be the associated coalescent. Using Theorem 2.8 we can find a nested
interval-partition whose associated coalescent is (Πt)t≥0. We can now use Proposi-
tion 2.51 to find a comb metric measure space whose backbone is complete which
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tt

0 01 1

Figure 2.6: Left panel: The diadic comb. Right panel: The comb (I ′t)t≥0.

has the same distance matrix distribution as (U, d,U , µ). Using Proposition 2.47
ends the proof.

2.4.6 The separable case
In this section we consider the case of separable UMS and prove Corollary 2.15
and Proposition 2.16. The former result states that the weak isometry between
backbones can be reinforced to an isometry between the supports of the measures in
the case of separable complete UMS. The latter states that any complete separable
ultrametric space is isometric to a properly completed comb metric space. Let us
start with Corollary 2.15.

Proof of Corollary 2.15. Let (It)t≥0 be a nested interval-partition without dust,
and consider the corresponding comb metric measure space ([0, 1], dI ,I ,Leb). The
quotient space of {fI = 0} by the equivalence relation x ∼ y if�f dI(x, y) = 0 is a sep-
arable ultrametric space. Moreover, it is isometric to the subset {(x, t) ∈ S : t = 0}
of the backbone S of ([0, 1], dI ,I ,Leb). Thus the quotient space of ({fI = 0}, dI)
can be turned into a complete ultrametric space by adding a countable number
of points as in Proposition 2.51, we denote this completion by (UI , dI) as in the
introduction. As (It)t≥0 has no dust, we have Leb({fI = 0}) = 1. Thus UI can
be endowed with the pushforward measure of the restriction of Leb to {fI = 0},
defined on the Borel σ-field of (UI , dI). It is a probability measure, let us denote
it by Leb. The space (UI , dI ,Leb) is a separable complete Borel UMS that has
the same distance matrix distribution as the original comb metric measure space
([0, 1], dI ,I ,Leb).

Let (U, d,U , µ) be a complete separable UMS. By restricting our attention to
supp(µ) we can assume without loss of generality that supp(µ) = U . Accord-
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ing to Theorem 2.14 we can find a nested interval-partition (It)t≥0 and a cor-
responding comb metric measure space ([0, 1], dI ,I ,Leb) whose distance matrix
distribution is equal to that of (U, d,U , µ). As supp(µ) = U , for each t > 0 we
have µ(B(x, t)) > 0. If (Πt)t≥0 denotes the coalescent obtained by sampling from
(U, d,U , µ), this shows that for each t > 0 all the blocks of Πt have positive asymp-
totic frequency. Thus (It)t≥0 has no dust, and we let (UI , dI ,Leb) be the completion
of the comb metric measure space as above. Then (U, d, µ) and (UI , dI ,Leb) are
two complete separable metric measure spaces (in the usual sense) whose distance
matrix distributions are equal. Thus, the Gromov reconstruction theorem (see Sec-
tion 3.1

2 .6 of [94]) proves that we can find a measure-preserving isometry between
(UI , dI ,Leb) and (U, d, µ), which ends the proof.

We now turn to the proof of Proposition 2.16. We will need the following
lemma.

Lemma 2.53. Any separable ultrametric space (U, d) can be endowed with a mea-
sure µ on its Borel σ-field such that supp(µ) = U .

Proof. We build the measure by induction. For n = 1, as the space is separable
there are only countably many balls of radius 1. If there are finitely many such
balls, say k balls B1, . . . , Bk, we define

µ(Bi) = 1
k
.

Else we can find an enumeration of the balls, (Bi)i≥1, and we define

µ(Bi) =
(1

2

)i
.

Suppose that we have defined µ(B) for any ball of radius 1/n. Given a ball Bn of
radius 1/n there are at most countably many balls (Bn+1

i )i≥1 of radius 1/(n + 1)
such that Bn+1

i ⊂ Bn. Similarly if there are k balls we define

µ(Bn+1
i ) = µ(Bn)

k

and if there are countably many balls we define

µ(Bn+1
i ) = µ(Bn)

(1
2

)i
.

A simple application of Caratheodory’s extension theorem now provides a proba-
bility measure µ defined on the Borel σ-field of (U, d) that extends this measure.
It is straightforward from the construction that supp(µ) = U .

Remark 2.54. Note that a similar construction was mentioned in [142], where the
resulting measure was referred to as the “visibility measure”. ◦

Proof of Proposition 2.16. Let (U, d) be a separable complete UMS. Lemma 2.53
shows that we can find a measure µ such that supp(µ) = U . An appeal to Corol-
lary 2.15 now proves the result.
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Appendices for Chapter 2

2.A Exchangeable hierarchies
The aim of this section is to recall some results derived in [76] and discuss the
link they have with the current results. Again, we recall that the present work
should not be viewed as stemming from the work of [76], but should be viewed as
an independent approach bearing similarities that we now expose.

Let X be an infinite space. A hierarchy on X is a collection H of subsets of X
such that

(i) for x ∈ X, {x} ∈ H, X ∈ H and O6 ∈ H;

(ii) given A,B ∈ H, then A ∩B is either A, B or O6 .

Any ultrametric space encodes a hierarchy that is obtained by “forgetting the time”.
More precisely, if (U, d) is an ultrametric space, then

H = {B(x, t), x ∈ X, t ≥ 0} ∪ {{x}, x ∈ X} ∪ {X,O6 }

is a hierarchy. The hierarchy H encodes the genealogical structure of (U, d), i.e.
the order of coalescence of the families, but not the coalescence times.

Remark 2.55. The converse does not hold, there exist hierarchies that cannot be
obtained as the collection of balls of an ultrametric space. For example, consider a
space X with cardinality greater than the continuum, endowed with a total order
≤, and define

H = {{y : y ≤ x} : x ∈ X} ∪ {{x}, x ∈ X} ∪ {X,O6 }. ◦

The main object studied in [76] are exchangeable hierarchies on N. Let σ be a
permutation of N, and H be a hierarchy on N. Then σ naturally acts on H as

σ(H) = {σ(A), A ∈ H}.

A random hierarchy on N (see [76] for a definition of the σ-field associated to
hierarchies) is called exchangeable if for any permutation σ,

σ(H) (d)= H.

80
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In a similar way that exchangeable coalescents are obtained by sampling in UMS,
exchangeable hierarchies are obtained by sampling in hierarchies on measure spaces.
Let (X,µ) be a probability space, and consider a hierarchy H on X. An exchange-
able hierarchy H′ can be generated out of an i.i.d. sequence (Xi)i≥1 by defining

H′ = {{i ≥ 1 : Xi ∈ A}, A ∈ H}.

Again, an exchangeable hierarchy can be obtained from an exchangeable coalescent
by forgetting the time. Let (Πt)t≥0 be an exchangeable coalescent. Then

H = {B, B is a block of Πt, t ≥ 0}

is an exchangeable hierarchy.
The main results in [76] show that any exchangeable hierarchy can be obtained

by sampling from 1) a random “interval hierarchy” on [0, 1) and 2) a random real-
tree. The link with our results now seems straightforward.

An interval hierarchy on [0, 1) is a hierarchy H on [0, 1) such that all non-
singleton elements of H are intervals. Again, an interval hierarchy can be obtained
from a nested interval-partition (It)t≥0 by forgetting the time. The family of sets

H = {I : I is an interval component of It, t ≥ 0}
∪ {{x}, x ∈ [0, 1)}
∪ {[0, 1),O6 }

is an interval hierarchy. Theorem 4 in [76] states that any exchangeable hierarchy
on N can be obtained by sampling in a random interval hierarchy. This is the
direct equivalent of our Theorem 2.8 that states that any exchangeable coalescent
can be obtained by sampling in a random nested interval-partition.

Consider a measure rooted real-tree (T, d, ρ, µ), it can be endowed with a partial
order � such that y � x if x is an ancestor of y (see [59]). Then, the fringe subtree
of T rooted at x ∈ T is defined as the set

FT (x) = {y ∈ T : y � x},

it is the set of the offspring of x. The natural hierarchy associated to (T, d, ρ) is

H = {FT (x), x ∈ T}.

Theorem 5 in [76] states that any exchangeable hierarchy can be obtained by sam-
pling in the hierarchy associated to a random measure rooted real-tree. In our
framework, we have seen that a nested interval-partition can be seen as an ul-
trametric space, and in Section 2.4.5 we have seen how this ultrametric space is
embedded in a real-tree. Again we have proved here the reformulation of Theorem 5
from [76].

In a subsequent work, one of the authors has introduced the notion of mass-
structural isomorphism [75]. In a nutshell, two trees that are mass-structural iso-
morphic induce the same exchangeable hierarchy. In our framework, two spaces
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have the same coalescent if�f their backbones are isomorphic. Thus, the mass-
structural isomorphism is replaced here by the simpler notion of isomorphism.

Overall, the two works are very similar in the sense that they obtain the same
kind of representation results for exchangeable hierarchies and exchangeable coales-
cents. However the techniques used in the proofs are different, e.g. the work of [76]
relies on spinal decomposition whereas the present work relies on nested compo-
sitions. Moreover, as an ultrametric space contains “more information” than a
hierarchy, our results are not trivially implied by the results in [76], but constitute
an extension of their work.

Finally, we wish to stress two things. First, most of the difficulties that Sec-
tion 2.4 deals with stem from the fact that we consider non-separable metric spaces.
These issues and the work that is done here heavily relies on the theory of metric
spaces. Seeing genealogies as metric spaces is only possible if we keep the informa-
tion on the times of coalescence, which is not the case when considering hierarchies.

Second, keeping this information allows us to study genealogies as time-indexed
stochastic processes. It is a necessary step to study the Markov property of the
combs associated to Λ-coalescents as in Section 2.3. This creates a direct link
between the present work and the very rich literature on Λ-coalescents and coales-
cence theory that is not present in [76]. Moreover, this provides a new approach
to the question of dynamical genealogies, with the introduction of the dynamical
comb.

2.B Independence of the nested interval-partitions and
the sampling variables

Consider an exchangeable nested composition (Ct)t≥0, and let (It)t∈Q+ be the nested
interval-partition obtained by applying Theorem 2.19 distinctly for any t ∈ Q+,
and (Vi)i≥1 be the sequence of i.i.d. uniform variables obtained from Theorem 2.19
applied at time 0. The aim of this section is to show that (Vi)i≥1 is independent
from (It)t∈Q+ .

Let 0 = t0 < t1 < · · · < tp. We can build a collection of sequences (ξ(k)
i )i≥1,k=0,...,p

where for k = 0, . . . , p and i ≥ 1,

ξ
(k)
i = lim

n→∞

1
n

n∑
j=1
1{j�ki},

and �k is the partial order on N representing Ctk as in Section 2.2.1. The sequence
of vectors (ξ(0)

i , . . . , ξ
(p)
i )i≥1 is exchangeable. Thus by applying a vectorial version

of de Finetti’s theorem we know that there exists a measure µ on [0, 1]p+1 such
that conditionally on µ the sequence of vectors is i.i.d. distributed as µ. We can
now “spread” the variables (ξ(0)

i )i≥1 using an independent i.i.d. uniform sequence
as in the proof of Theorem 2.19 to obtain a sequence (Vi)i≥1 that is i.i.d. uniform
conditionally on µ. Thus the sequence (Vi)i≥1 is independent of µ. The interval-
partitions (It0 , . . . , Itp) can be recovered from the push-forward measures of µ by
the coordinate maps on Rp+1. Thus (Vi)i≥1 is independent from (It)t∈Q+ .



Appendices 83

2.C Generator calculation
Let n ≥ 1 and let Q̂n denote the generator of the nested composition (Cnt )t≥0 defined
from the transition rates (λ̃b,k; 2 ≤ k ≤ b < ∞). Let Qn be the generator of the
restriction to [n] of a Λ-coalescent. Here we show that for any function f , from the
space of compositions of [n] to R,

∀π, Q̂nLnf(π) = LnQnf(π),

where Ln is the operator defined in the proof of Lemma 2.28.
We will need additional notations. The space of partitions and compositions of

[n] will be denoted by Pn and Sn respectively. For π, π′ ∈ Pn, we denote by qπ,π′
the transition rate from π to π′, i.e. qπ,π′ = λb,k if π has b blocks and π′ is obtained
by merging k blocks of π, and qπ,π′ = 0 otherwise. Similarly for c, c′ ∈ Sn we define
qc,c′ to be the transition rate from c to c′. Finally, we denote by O(π) the set of
compositions of [n] whose blocks are given by the partition π, and Card(π) the
number of blocks of π. Let π ∈ Pn and denote by b the number of blocks of π, we
have

Q̂nLnf(π) =
∑
π′∈Pn

qπ,π′(Lnf(π′)− Lnf(π))

=
∑
π′∈Pn

qπ,π′
( ∑
c′∈O(π′)

1
Card(π′)!f(c′)−

∑
c∈O(π)

1
Card(π)!f(c)

)

=
∑
π′∈Pn

∑
c′∈O(π′)

qπ,π′
1

Card(π′)!f(c′)−
∑

c∈O(π)

b∑
k=2

1
Card(π)!

(
b

k

)
λb,kf(c).

Similarly, we have

LnQnf(π) =
∑

c∈O(π)

1
Card(π)!Qnf(c)

=
∑

c∈O(π)

1
Card(π)!

∑
c′∈Sn

qc,c′(f(c′)− f(c))

=
∑

c∈O(π)

1
Card(π)!

∑
c′∈Sn

qc,c′f(c′)−
∑

c∈O(π)

b∑
k=2

1
Card(π)!

(
b

k

)
λb,kf(c).

We will end the calculation by showing that for any c′ ∈ Sn, the coefficient in
front of the term f(c′) in the left sum is the same for both expression. Let π′ be
the partition associated to c′. If π′ is not obtained by merging k blocks of π for
some k, then the coefficient of the term f(c′) in the sum is 0 in both expressions.
Now suppose that π′ is obtained by merging k blocks of π. In the first expression,
we first choose the blocks of π that merge to get π′ and then order the resulting
partition to get the composition c′. There is only one possible way to do that and
obtain a given c′. Thus the coefficient in front of f(c′) is λb,k/(b − k + 1)!. In the
second expression, we first choose an order to obtain a composition c, and then
merge its blocks to get the composition c′. There are k! possible orderings of π,
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and then exactly one merger of c that lead to c′ (we can take any permutation of
the k blocks that merge). Thus the coefficient in front of term f(c′) is

k!
b! λ̃b,k = k!

b!
1

b− k + 1
b!

k! (b− k)!λb,k = 1
(b− k + 1)!λb,k.

2.D Measurability of separable rooted trees
In this section we prove the claim made in the proof of Proposition 2.44 that the
Borel σ-field of a separable rooted tree is induced by the clades of the tree. Let us
be more specific.

We consider a separable real-tree (T, d) with a particular point ρ ∈ T that we
call the root. For x, y ∈ T , we denote by [x, y] the unique geodesic with endpoints
x and y (see [59]). Recall from Section 2.A the fringe subtree of T rooted at x
equivalently defined as the clade

C(x) = {y ∈ T : x ∈ [ρ, y]},

see Figure 2.7 for an illustration. The claim is that

σ({C(x), x ∈ T}) = B(T ).

Remark 2.56. Our goal in the proof of Proposition 2.44 is to apply the result to
the backbone whose root should be such that clades are the balls of U . This can
be done by seeing the backbone as having a root “at infinity”. ◦

Let x ∈ T and ε > 0, we assume that ε < d(x, ρ). We denote by B(x, ε) the
open ball centered in x with radius ε, and S(x, ε) the sphere of center x and radius
ε, i.e.

S(x, ε) = {y ∈ T : d(x, y) = ε}.
There is a unique point in a ∈ [ρ, x] ∩ S(x, ε). It is clear that

B(x, ε) = C(a)
⋃

y∈S(x,ε) {a}
C(y).

Let y ∈ S(x, ε), and 0 < η < ε, we denote by yη the only point in [y, x] such that
d(yη, y) = η. We can write⋃

y∈S(x,ε) {a}
C(y) =

⋂
η>0

⋃
y∈S(x,ε) {a}

C(yη).

The claim is proved if we can show that the union on the right-hand side is count-
able. This holds due to the separability of (T, d). To see that notice that by
uniqueness of the geodesic, if y and y′ are such that yη 6= y′η, then d(y, y′) > η.
Thus if the set {yη : y ∈ S(x, ε) {a}} is not countable, we can find an uncountable
subset of S(x, ε) such that any two points lie at distance at least η. This is not
possible due to separability.
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Figure 2.7: A tree rooted at ρ. The ball of radius ε and center x is represented by the
black bold lines. An example of y ∈ S(x, ε) is given, and its corresponding clade C(y) is
represented by grey dashed lines.

2.E Comb completion
In this section we prove Proposition 2.51, i.e. that the backbone of a comb is
complete up to the addition of a countable number of points. We start from a
nested interval-partition (It)t≥0. We define

R = {x ∈ [0, 1] : ∃sx, tx s.t. x is the right endpoint
of an interval component of Iu for u ∈ [sx, tx]}

and

L = {x ∈ [0, 1] : ∃sx, tx s.t. x is the left endpoint
of an interval component of Iu for u ∈ [sx, tx]}.

We now work with a subset of [0, 1]× {0, r, `}. Let

Ī = ([0, 1]× {0}) ∪ (R× {r}) ∪ (L × {`}).

We will simply write x for (x, 0), xr for (x, r) if x ∈ R and x` for (x, `) if x ∈ L.
We extend dI to Ī in the following way. Let x < y, we define

d̄I(x, y) = d̄I(x, y`) = d̄I(xr, y`) = d̄I(xr, y) = sup
[x,y]

fI

d̄I(x, yr) = d̄I(xr, yr) = sup
[x,y)

fI

d̄I(x`, y) = d̄I(x`, y`) = sup
(x,y]

fI

d̄I(x`, yr) = sup
(x,y)

fI
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and d̄I(xr, x`) = f(x). We use symmetrized definitions if x > y. It is straightfor-
ward to check that d̄I is a pseudo-ultrametric. We will denote by SI the backbone
associated to this UMS, and dSI the restriction of the tree metric to SI , i.e.

∀(x′, t), (y′, s) ∈ SI , dSI
(
(x′, t), (y′, s)

)
= max

{
d̄I(x′, y′)−

t+ s

2 ,
|t− s|

2

}
.

Lemma 2.57. The backbone (SI , dSI ,Leb) associated to (Ī , d̄I ,Leb) is a complete
metric space.

Proof. Consider (x′n, tn)n≥1 a Cauchy sequence in Ī for the metric dSI . As
|tn − tm|

2 ≤ dSI
(
(x′n, tn), (x′m, tm)

)
,

the sequence (tn)n≥1 is Cauchy and converges to a limit that we denote by t. Each
point x′n can be written as x′n = (xn, an) with xn ∈ [0, 1] and an ∈ {0, r, `}. The
sequence (xn)n≥1 admits a subsequence that converges to a limit x for the usual
topology in [0, 1]. Without loss of generality we can assume that (xn)n≥1 is non-
decreasing and converges to x.

Using the fact that the sequence is Cauchy, we know that

lim
n→∞

sup
m≥n

d̄I(x′n, x′m)− tn + tm
2 ≤ 0,

which directly implies that
lim
ε→0

sup
[x−ε,x)

fI ≤ t.

Suppose that x ∈ R. By definition of d̄I and the above remark,

lim
n→∞

d̄I(x′n, xr)−
tn + t

2 ≤ 0.

Thus the sequence (x′n, tn)n≥1 converges to (xr, t).
Now suppose that x 6∈ R. We claim that

lim
ε→0

sup
[x−ε,x)

fI = f(x).

As x 6∈ R we directly know that

lim
ε→0

sup
[x−ε,x)

fI ≥ f(x).

Suppose that the above limit is strictly greater than f(x). Then we can find a
non-decreasing sequence (yn)n≥1 converging to x in the usual topology such that
f(yn) ↓ λ > f(x) as n goes to infinity. Let η < λ − f(x). Notice that the set
{y ∈ [0, 1] : f(y) > λ− η} is closed in the usual topology, as it is the complement
of Iλ−η. This shows that x belongs to this set, which is a contradiction. Our claim
is proved. Similarly to above, it is now immediate that

lim
n→∞

d̄I(x′n, x)− tn + t

2 ≤ 0.

and that (x′n, tn)n≥1 converges to (x, t).
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Remark 2.58. This completion is already present in the compact case in [142].
In this case, we have R = L = {fI > 0}. ◦

2.F The link between dust and the Banach-Ulam problem
In this section we prove Proposition 2.38. We prove this result by constructing a
solution to the so-called Banach-Ulam problem. This problem can be formulated
as follows: is it possible to find a space X with a probability measure µ on the
power-set P(X) of X such that µ({x}) = 0 for all x ∈ X?

Recall that a UMS (U, d,U , µ) is called a Borel UMS if U is the Borel σ-field
of (U, d). The support of the measure µ, supp(µ), is defined as the intersection of
all balls with positive mass. Equivalently, it can be defined as

supp(U) = {x ∈ U : ∀t > 0, µ(B(x, t)) > 0}.

We start with the following lemma, which gives a necessary and sufficient condition
for the coalescent sampled from U to have dust in terms of the support of µ.

Lemma 2.59. Let (U, d,U , µ) be a UMS, and let (Πt)t≥0 be the associated coales-
cent. Then (Πt)t≥0 has dust if�f µ(supp(µ)) < 1.

Proof. Let (Xi)i≥1 be an i.i.d. sequence in U distributed as µ and let (Πt)t≥0 be
the coalescent obtained as above. We say that i is in the dust of the coalescent if
there exists t > 0 such that {i} is a singleton block of Πt. We show that a.s.

i is in the dust ⇐⇒ Xi 6∈ supp(µ).

Suppose that Xi ∈ supp(µ). Then for any t > 0, µ(B(Xi, t)) > 0, thus a.s. there
are infinitely many other variables (Xj)j≥1 in B(Xi, t). Thus Xi is in an infinite
block of Πt. Conversely suppose that i is not in the dust, i.e. that for any t > 0, {i}
is not a singleton block. Using Kingman’s representation theorem for exchangeable
partitions, we know that the block of i is a.s. infinite and has a positive asymptotic
frequency fi. The law of large numbers shows that fi = µ(B(Xi, t)) > 0.

Proof of Proposition 2.38. Let us first show that (i) implies (iii). Let (U, d,U , µ)
be a Borel UMS with associated coalescent (Πt)t≥0. Suppose that (Πt)t≥0 has
dust. According to Lemma 2.59, we have µ(supp(µ)) < 1. Consider t > 0 and let
(Bt

α)α∈At be the collection of open balls of radius t with zero mass, where At is just
an index set. We know that⋃

t>0

⋃
α∈At

Bt
α = U supp(µ).

Using the continuity from below of the measure µ, we can find an ε > 0 such that
µ(⋃α∈Aε Bε

α) > 0. We now consider the equivalence relation

x ∼ y ⇐⇒ d(x, y) < ε
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and denote by X the quotient space of ⋃α∈Aε Bε
α for the relation ∼. We define the

quotient map as

ϕ :
U → X

x 7→ {y ∈ U : d(x, y) < ε}.

We claim that ϕ is continuous when U is equipped with the metric topology induced
by d, and X is equipped with the discrete topology P(X). Let C ⊂ X, then

ϕ−1(C) =
⋃

x∈ϕ−1(C)
B(x, ε)

which is an open subset of U . We call µX the push-forward measure of µ by the
map ϕ. The measure µX/µX(X) is a diffuse probability measure defined on P(X)
as required. Thus, (X,P(X), µX) is a solution to the Banach-Ulam problem.

Using the terminology from [82], this proves that the cardinality of X is a real-
valued cardinal (see Notation 1C in [82]). According to Ulam’s theorem (see The-
orem 1D in [82]), real-valued cardinals fall into two classes: atomlessly-measurable
cardinals and two-valued-measurable cardinals. The cardinal of X is atomlessly-
measurable. To see this, one can for example notice that our measurability as-
sumption on d implies that the cardinality of U (and thus that of X) is not larger
than the continuum. (If this does not hold, then the diagonal does not belong to
the product σ-field P(U) ⊗ P(U) and the metric d is not measurable.) Finally,
using Theorem 1D of [82] proves (iii).

The fact that (ii) implies (i) is obvious, it remains to show that (iii) implies (ii).
Suppose that there exists an extension of the Lebesgue measure to all subsets of
R, let us denote by Leb its restriction to [0, 1]. Let (Πt)t≥0 be any coalescent with
dust. By Theorem 2.8 we can find a nested interval-partition (It)t≥0 such that the
paintbox based on (It)t≥0 is distributed as (Πt)t≥0. Let dI be the corresponding
comb metric on [0, 1]. Then ([0, 1], dI ,BI([0, 1]),Leb) is a UMS, where BI([0, 1])
refers to the Borel σ-field induced by dI and Leb is restricted to that σ-field. The
coalescent obtained by sampling from this UMS is distributed as (Πt)t≥0.
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3

Kingman’s coalescent with erosion

This chapter is joint work with Amaury Lambert and Emmanuel Schertzer. It is
published in the Electronic Journal of Probability [80].

Illustration. Simulation of Kingman’s coalescent with erosion. Time is going
downwards and each black line separates two blocks, whose sizes are given by the
length of the interval between the lines. This simulation is based on the con-
struction of Kingman’s coalescent with erosion from a flow of bridges given in
Proposition 3.11.

3.1 Introduction

3.1.1 Motivation
In evolutionary biology, speciation refers to the event when two populations from
the same species lose the ability to exchange genetic material, e.g. due to the
formation of a new geographic barrier or accumulation of genetic incompatibilities.
Even if speciation is usually thought of as irreversible, related species can often still
exchange genetic material through exceptional hybridization, migration events or
sudden collapse of a geographic barrier [186]. This can lead to the transmission of
chunks of DNA between different species, a phenomenon known as introgression,
which is currently considered as a major evolutionary force shaping the genomes of
groups of related species [151]. Our study of Kingman’s coalescent with erosion was
first motivated by the following model of speciation incorporating rare migration
events, depicted in Figure 3.1.

Consider a set of N species, each harboring a genome of n genes indexed by
{1, . . . , n}. We suppose that the species are monomorphic, i.e., that all individuals
in the same species carry the same alleles, and that their dynamics is given by a
Moran model: at rate one for each pair of species (s1, s2), species s2 dies, s1 gives
birth to a new species, replicates its genome and sends it into the daughter species.
Moreover, we assume that the species are closely related and that they retain the
ability to exchange genetic material at exceptional migration events. This effect is
incorporated into the model by stating that at rate d for each gene g ∈ {1, . . . , n}

90
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{1, 2, 3}{1, 2}, {3}{1, 2, 3}{1, 3}, {2}

past present

Figure 3.1: Illustration of the model with N = 5 species, represented by grey tubes, and
n = 3 genes, represented by the colored lines inside the tubes. A species can split into
two, simultaneously replicating its genome (speciation). A gene can replicate and move
from one species to another and then replace its homologous copy in the recipient species
(introgression). At present time a randomly chosen species is sampled: the ancestral
lineages of its genes are represented with bolder colors. The green lineage is first subject
to an introgression event and jumps to a new species. It is then brought back to the
same species as the other genes by a coalescence event. The corresponding partition-
valued process obtained by assigning the labels 1, 2 and 3 to the red, blue and green gene
respectively is given.

and each pair of species s1 and s2, the gene g is replicated, the new copy of g is
sent from s1 to s2 and replaces its homolog in s2.

The assumption that each migrant transmits at most one gene to the recipient
species is strong. A more realistic model should allow any subset of the n genes to
be transmitted, at a rate that depends in a complex way on the geometry of the
genome due to the biological nature of recombination. However, if recombination
is sufficiently strong and if the number of individuals in each species is large, each
time a migrant goes from species s1 to s2, its genome is rapidly broken into small
segments due to frequent back-crosses with the resident. Each of these segments
behaves almost independently from the other segments, and has a small probability
to reach fixation. Thus, to the first order there should be at most one segment that
can reach fixation at a time, as we have assumed.

Now consider a fixed large time T , and sample uniformly one species at that
time. We follow backwards in time the ancestral lineages of its genes and the
ancestral species to which those genes belong. This induces a process valued in the
partitions of {1, . . . , n} by declaring that i and j are in the same block at time t
if the ancestral lineages of genes i and j sampled at T lie in the same ancestral
species at time T − t.
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At first (t = 0), all genes belong to the same ancestral species. Eventually
this species receives a successful migrant from another species. Backwards in time,
the gene that has been transmitted during this event is removed from its original
species and placed in the migrant’s original species. Such events occur at rate
(N − 1)d for each gene, and the migrant species is then chosen uniformly in the
population. Once genes belong to separate species, they can be brought back to
the same species by coalescence events, corresponding to genome replication foward
in time. Any two species find their common ancestor at rate one, and at such an
event the genes from the two merging species are placed back into the same species.

This informal description shows that the partition-valued process has two kinds
of transitions: each pair of blocks merges at rate one; each gene is placed in a
new uniformly chosen species at rate (N − 1)d. Setting the introgression rate to
dN = d/N and letting N →∞, introgression events occur at rate d for each gene.
At each such event the gene is sent to a new species that does not contain any of
the other n−1 ancestral gene lineages, i.e., it is placed in a singleton block. This is
the description of Kingman’s coalescent with erosion, that we now more formally
introduce.

3.1.2 Kingman’s coalescent with erosion
Let n ≥ 1, we define the n-Kingman coalescent with erosion as a Markov process
(Πn

t )t≥0 taking values in the partitions of [n] := {1, . . . , n}. Its transition rates are
the following. Started from a partition π of [n], the process jumps to any partition
π′ obtained by merging two blocks of π at rate one. Moreover, at rate d for each
i ≤ n, the integer i is “eroded”. This means that if C is the block of π containing i,
then the process jumps to the partition π′ obtained by replacing the block C with
the blocks C {i} and {i}. (Obviously if C = {i}, i.e., if i is in a singleton block,
no such transition can occur.)

Kingman’s coalescent with erosion is a special case of the more general class of
partition-valued processes called exchangeable fragmentation-coalescence processes,
introduced and studied in [18]. These processes are a combination of the well-
studied fragmentation processes, where blocks can only split, and coalescence pro-
cesses, where blocks are only allowed to merge. The main new feature of com-
bining fragmentation and coalescence is that they can balance each other so that
fragmentation-coalescence processes display non-trivial stationary distributions. In
this work we will be interested into describing the stationary distribution associ-
ated to Kingman’s coalescent with erosion. The following proposition, which is a
direct consequence of Theorem 8 of [18], provides the existence and uniqueness of
this distribution.

Proposition 3.1 ([18]). There exists a unique process (Πt)t≥0 valued in the parti-
tions of N such that for all n ≥ 1, the restriction of (Πt)t≥0 to [n] is distributed as
the n-Kingman coalescent with erosion. Moreover, the process (Πt)t≥0 has a unique
stationary distribution Π.
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Kingman’s coalescent with erosion is an exchangeable process in the sense that
for any finite permutation σ of N,

(σ(Πt))t≥0
(d)= (Πt)t≥0.

It is then clear that the stationary distribution Π is also an exchangeable partition
of N. Exchangeable partitions of N are often studied through what is known as
their asymptotic frequencies. Let Π = (C1, C2, . . . ) be the blocks of the partition Π.
Then, Kingman’s representation theorem [127] shows that for any i, the following
limit exists a.s.

lim
n→∞

1
n

n∑
k=1
1{k∈Ci} = fi.

Let (βi)i≥1 be the non-increasing reordering of the sequence (fi)i≥1. We call (βi)i≥1
the asymptotic frequencies of Π. The sequence (βi)i≥1 is such that

β1 ≥ β2 ≥ · · · ≥ 0,
∑
i≥1

βi ≤ 1.

Such sequences are called mass-partitions. Mass-partitions are interesting because
exchangeable partitions are entirely characterized by their asymptotic frequencies.
The partition Π can be recovered from its asymptotic frequencies (βi)i≥1 through
what is known as a paintbox procedure. Conditional on (βi)i≥1, let (Xi)i≥1 be an
independent sequence such that for k ≥ 1, P(Xi = k) = βk, and P(Xi = −i) =
1−∑k≥1 βk. Then the partition Π′ of N defined as

i ∼Π′ j ⇐⇒ Xi = Xj

is distributed as Π [127]. We see that i is in a singleton block iff Xi = −i. The set
of all singleton blocks is referred to as the dust of Π, and the partition Π has dust
iff ∑i≥1 βi < 1.

The main characteristics of the asymptotic frequencies of the stationary distri-
bution of fragmentation-coalescence processes have already been derived in [18],
see Theorem 8. In the case of Kingman’s coalescent with erosion, these results
specialize to the following theorem.

Theorem 3.2 ([18]). Let (βi)i≥1 be the asymptotic frequencies of Π, the stationary
distribution of Kingman’s coalescent with erosion. Then∑

i≥1
βi = 1, and ∀i ≥ 1, βi > 0 a.s.

In other words, the partition Π has infinitely many blocks, and no dust.

Before stating our main two results, let us motivate them. Consider a partition
Π̂ obtained from a paintbox procedure on a random mass-partition (β̂i)i≥1, and
denote Π̂n its restriction to [n]. There are two sources of randomness in Π̂n. One
originates from the fact that (β̂i)i≥1 is random. Moreover, conditional on (β̂i)i≥1,
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Π̂n is obtained by sampling a finite number of variables with distribution (β̂i)i≥1.
Thus, in addition to the randomness of (β̂i)i≥1, Π̂n is subject to a finite sampling
randomness.

Suppose that Π̂ has finitely many blocks, say N , with asymptotic frequencies
(β̂1, . . . , β̂N). When n gets large, the finite sampling effects vanish and the sizes of
the blocks of Π̂n resemble (nβ̂1, . . . , nβ̂N). However, when Π̂ has infinitely many
non-singleton blocks, there always exists a large enough i such that the size of the
block with frequency β̂i remains subject to finite sampling effects in Π̂n. In this
case it is not entirely straightforward to go from the asymptotic frequencies (β̂i)i≥1

to the size of the blocks of Π̂n, as this involves a non-trivial sampling procedure.
In this work our task will be twofold. First, we will investigate the size of the

“large blocks” of Πn by describing the distribution of the asymptotic frequencies
(βi)i≥1. In order to get an insight into the distribution of the “small blocks” of Πn,
we will then also study the empirical distribution of the size of the blocks of Πn,
for large n. Let us now state the corresponding results.

3.1.3 Main results
We show two main results in this work. One is concerned with the size of the large
blocks of the stationary distribution of Kingman’s coalescent with erosion, and
gives a representation of its asymptotic frequencies in terms of an infinite sequence
of independent diffusions. The other is concerned with the size of the small blocks
and provides the limit of the distribution of the size of a block chosen uniformly
from the stationary partition when n is large. Let us start with the former result.

Size of the large blocks. Let (Yi)i≥1 be an i.i.d. sequence of diffusions verifying

∀i ≥ 1, dYi = (1− Yi) dt+
√
Yi(1− Yi) dWi,

started from 0, and where (Wi)i≥1 are independent Brownian motions. Each Yi
is distributed as a one-dimensional Wright-Fisher diffusion with mutation, see for
example [56], Lemma 4.1. It represents the dynamics of the frequency of a focal
allele in a population with constant size, where the mutation rate from any other
allele to that focal allele is one, and there are no back mutations, i.e., the mutation
rate from the focal allele to any other allele is 0. Moreover, it is known that each
Yi is also distributed as a Wright-Fisher diffusion (without mutation) conditioned
on hitting 1 [see for instance 135, Proposition 2.3.4]. Thus we have

∀i ≥ 1, lim
t→∞

Yi(t) = 1 a.s.

Accordingly, we set Yi(∞) = 1. We build inductively a sequence of processes (Zi)i≥1
and time-changes (τi)i≥1 as follows. Set

∀t ≥ 0, Z1(t) = Y1(t), τ1(t) =
∫ t

0

1
1− Z1(s) ds.
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Then, suppose that (Z1, . . . , Zi) and (τ1, . . . , τi) have been defined, and set

∀t ≥ 0, Zi+1(t) = (1− Z1(t)− · · · − Zi(t))Yi+1(τi(t)),

∀t ≥ 0, τi+1(t) =
∫ t

0

1
1− Z1(s)− · · · − Zi+1(s) ds.

Then we have the following representation of the asymptotic frequencies of the
stationary distribution of Kingman’s coalescent with erosion.

Theorem 3.3. Let (Zi)i≥1 be the sequence of diffusions defined previously. Then
the non-increasing reordering of the sequence (zi)i≥1 defined as

∀i ≥ 1, zi =
∫ ∞

0
de−dtZi(t) dt,

is distributed as the frequencies of the blocks of the stationary distribution of King-
man’s coalescent with erosion rate d.

Remark 3.4. Note that the previous result provides a coupling between the sta-
tionary distributions of Kingman’s coalescent with erosion for various values of the
erosion rate d. ◦

Let us explain the intuition behind Theorem 3.3. Kingman’s coalescent is dual
to a measure-valued process called the Fleming-Viot process [55]. The Fleming-
Viot process describes the family size distribution of a population with constant
size, while Kingman’s coalescent gives the genealogy of that population. By a
classical duality argument, Kingman’s coalescent at time t can be obtained by
sampling individuals at time t from a Fleming-Viot process and placing in the
same block those that have the same ancestor [21]. The link with Theorem 3.3 is
that the diffusions (Zi)i≥1 correspond to the family sizes of the initial individuals of
a Fleming-Viot process, ordered by extinction time of their descendance, see Sec-
tion 3.5. The integral transformation is roughly due to the fact that in Kingman’s
coalescent with erosion, one needs to place in the same block the individuals that
have the same ancestor at their last erosion event, which is an exponential variable
with parameter d. This heuristic argument is made rigorous in Section 3.5, where
Theorem 3.3 is proved.

Size of the small blocks. In order to capture the characteristics of the small
blocks of Πn, we study the empirical measure of the size of the blocks of Πn. Let
Mn be the total number of blocks of Πn, and let (|Cn

1 |, . . . , |Cn
Mn|) be their sizes.

For each k ≥ 1, we denote

µnk = 1
Mn

Card
(
{i : |Cn

i | = k}
)

the frequency of blocks of size k. The probability vector (µnk)k≥1 is the empirical
measure of the size of the blocks of Πn. We give the following characterization of
the asymptotic law of (µnk)k≥1 and Mn.
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Theorem 3.5. (i) The following convergence holds in probability

lim
n→∞

Mn

√
n

=
√

2d.

(ii) Moreover, for each k ≥ 1, the following convergence holds in probability

lim
n→∞

µnk = 1
22k−1

1
k

(
2(k − 1)
k − 1

)
= P(J = k),

where J is half the return time to 0 of a simple symmetric random walk.

There is a natural interpretation of the random variable J involved in the pre-
vious proposition. Consider a Markov process on N starting from one that jumps
from k to k+ 1 and from k to k− 1 at rate k. It represents the size of a population
where each individual gives birth and dies independently at rate one, and is called
a critical binary branching process. Then the total progeny of this process, that
is the total number of particles that have lived before the population goes extinct,
is distributed as J . Actually, we will show the slightly stronger result that the
genealogy of a block sampled uniformly from Kingman’s coalescent with erosion is
a critical binary branching process, see Remark 3.22.

Remark 3.6. It is interesting to notice that the limiting distribution of the vector
(µnk)k≥1 is deterministic and does not depend on the erosion coefficient d. ◦

Remark 3.7. The convergence of the vector (µnk)k≥1 is equivalent to the conver-
gence in probability of the empirical measure of the size of the blocks of Πn to the
distribution of J in the weak topology. ◦

Kingman’s coalescent with immigration. The proof of Theorem 3.5 is based
on the following heuristic. Erosion occurs at a rate proportional to the size of
the blocks, i.e., a block of size k is eroded at rate dk, while coalescence events do
not take the sizes of the blocks into account. As there are only few blocks with
large size in Πn, and many small blocks, most coalescence events occur between
small blocks, while most erosion events occur within these few large blocks. When
restricting our attention to small blocks, we can neglect erosion, and consider that
pairs of blocks coalesce at rate one, and that new blocks of size one appear at
constant rate due to the erosion of the large blocks.

This heuristic led us to consider a process analogous to Kingman’s coalescent
with erosion, where pairs of blocks coalesce at rate one, but new singleton blocks
immigrate according to a Poisson process with rate d. We call this process King-
man’s coalescent with immigration, see Section 3.2.1 for a rigorous definition. We
will first prove that the genealogy of a block sampled uniformly from Kingman’s
coalescent with immigration converges, as the immigration rate goes to infinity, to
a critical binary birth-death process, see forthcoming Proposition 3.20. Then, we
will use this result and a coupling between Kingman’s coalescents with immigration
and erosion, described in Section 3.2.4, to prove Theorem 3.5.
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The main focus of the present work is the stationary distribution of Kingman’s
coalescent with erosion. We only use Kingman’s coalescent with immigration to
obtain information about this distribution. However, we believe that Kingman’s
coalescent with immigration is an interesting object in its own right, which could
describe the genealogy of entities sampled at distinct time points. In a population
genetics interpretation, Kingman’s coalescent models the genealogy of genes that
are all sampled at the current time. In this case, a new particle that immigrates
corresponds to a gene that has been sampled in the past. Such a multi-temporal
sampling could occur for example in two situations: in viral phylodynamics [90, 215]
and in macroevolution [201, 107]. Viral phylodynamics is a field of evolutionary
biology that studies viral phylogenies and their interaction with various charac-
teristics of the underlying epidemics. Viral sequences are often sampled at several
timepoints, corresponding for example to different viral outbreaks. Macroevolution
studies the evolutionary history of speciation, extinction. In this context, fossil data
correspond to remainders of individuals that have lived and been sampled at some
time point in the far past.

Outline. The remainder of the paper is organized as follows. In Section 3.2 we
provide two constructions of Kingman’s coalescent with immigration, as well as a
coupling between Kingman’s coalescents with erosion and immigration. Section 3.3
is then devoted to giving the genealogy of the blocks of Kingman’s coalescent with
immigration. The main result of this section is Proposition 3.15, which is the
reformulation of Theorem 3.5 in the immigration case. In Section 3.4, we use
Proposition 3.15 and the coupling between Kingman’s coalescents with erosion and
immigration to prove Theorem 3.5. Finally, we prove Theorem 3.3 in Section 3.5.

Possible extensions. As we have mentioned, Kingman’s coalescent is part of the
more general class of fragmentation-coalescence processes. We now briefly discuss
potential extensions of our results to such processes.

The main ingredient of our study of the size of small blocks is that fragmentation
is faster for larger blocks, while coalescence occurs at the same speed regardless
of the size of the blocks. This allows us to neglect fragmentation and consider a
purely coalescing system where new blocks immigrate due to the fragmentation of
the large blocks. This picture remains valid for Λ-coalescents with erosion, but
the proofs would be more involved because computations could no longer be made
explictly. Morever, we believe that this picture also remains valid for a broad class
of binary fragmentation measures. The particles that are removed from the large
blocks would no longer be of size one, but should not have time to split on the
time-scale when small blocks are formed, yielding a situation similar to the erosion
case.

Theorem 3.3 relies on a construction of the stationary distribution of Kingman’s
coalescent with erosion from a Fleming-Viot process that can be directly generalized
to Λ-coalescents with erosion (and even to Ξ-coalescents with erosion) by using the
corresponding Λ-Fleming-Viot process. However, the explicit expression of the size
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of the blocks in terms of independent diffusions cannot be achieved in general.
Nevertheless see the end of Section 3.5 for a discussion of a possible extension of
Theorem 3.3 to Beta-coalescents with erosion.

Overall, the techniques and ideas we use in this work are not entirely specific
to Kingman’s coalescent with erosion. Nevertheless, in this case, the proofs are
greatly simplified because all calculations can be made explicitly. This reason led
us to restrict our attention to Kingman’s coalescent with erosion in this work, and
to leave possible extensions for future work.

3.2 Kingman’s coalescent with immigration
In this section we construct Kingman’s coalescent with immigration as a partition-
valued process such that pairs of blocks coalesce at rate one and new blocks immi-
grate at rate d. Then, we give an alternative construction of Kingman’s coalescent
with erosion from the flow of bridges of [21]. Finally, the coupling between King-
man’s coalescents with erosion and with immigration is carried out in Section 3.2.4.

3.2.1 Definition
Consider a Poisson point process on R with intensity d dt, and let (Ti)i∈Z be its
atoms labeled in increasing order such that T0 < 0 < T1. The sequence (Ti)i∈Z
corresponds to the immigration times of new particles in the system.

Fix N ∈ Z, we will first define Kingman’s coalescent with immigration for the
particles that have a label larger that N , and then extend it to all particles by
consistency. We do that in the following way. Initially, set

∀t < TN , Π̄N
t = O6 .

We now extend Π̄N
t to all real times by induction. Suppose that Π̄N

t has been
defined on (−∞, Tk), for k ≥ N . We first set

Π̄N
Tk

= Π̄N
Tk− ∪ {k}

to represent the immigration of the new particle with label k. We now let each
pair of blocks of Π̄N

t coalesce at rate one for Tk ≤ t < Tk+1. One can achieve
this by considering, conditional on

{
Π̄N
Tk

= π̄k
}
, an independent version (Πk

t )t≥0 of
Kingman’s coalescent started from π̄k, and setting

∀t < Tk+1 − Tk, Π̄N
Tk+t = Πk

t .

We say that the process (Π̄N
t )t∈R is the N-Kingman coalescent with immigra-

tion rate d. The following proposition shows that we can extend consistently the
N -Kingman’s coalescent with immigration to a process taking its values in the
partitions of Z.
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Proposition 3.8. (i) There exists a unique process (Π̄t)t∈R, called Kingman’s
coalescent with immigration rate d, such that for all N ∈ Z, its restriction to
{i ∈ Z : i ≥ N} is distributed as the N-Kingman coalescent with immigration.

(ii) With probability one, Π̄t has finitely many blocks for all t ∈ R.

Proof. (i) Let (Π̄N
t )t∈R be a N -Kingman’s coalescent with immigration. It is suffi-

cient to show that the restriction (Π̄N+1
t )t∈R of (Π̄N

t )t∈R to {i ∈ Z : i ≥ N + 1} is
distributed as a N + 1-Kingman’s coalescent with immigration, and the result will
follow from Kolmogorov’s extension theorem. Obviously, the immigration times of
(Π̄N+1

t )t∈R have the desired distribution. The result is now a simple consequence
of the sampling consistency of Kingman’s coalescent.

(ii) Let us now prove the second point. Kingman’s coalescent has the property
of coming down from infinity [128]. This means that even if Kingman’s coalescent
is started from a partition with an infinite number of blocks, then for all positive
times it will have only finitely many blocks. Thus, as the number of immigrated
particles is locally finite, Kingman’s coalescent with immigration only has a finite
number of blocks for all times a.s.

In the remainder of this work we will make use of the process counting the
number of blocks of Kingman’s coalescent with immigration. More formally, for
t ∈ R, we define Mt as the (finite) number of blocks of Π̄t.

3.2.2 Preliminaries on flows of bridges
The previous construction of the Kingman coalescent with immigration is based
on Kolmogorov’s extension theorem. The aim of the next two sections is to give an
alternative construction of Kingman’s coalescent with immigration based on the
flow of bridges of [21]. This construction will only be needed in Section 3.4 for the
proof of Theorem 3.3. In this section we recall the material on flows of bridges that
will be needed.

Bridges. We call a bridge [21] any random function of the form

∀u ∈ [0, 1], B(u) = (1−
∑
i≥1

βi)u+
∑
i≥1

βi1{u≥Vi},

for some random mass-partition (βi)i≥1 and an independent i.i.d. sequence of uni-
form [0, 1] variables (Vi)i≥1. For a bridge B, we define its inverse B−1 as

∀u ∈ [0, 1), B−1(u) = inf{t ∈ [0, 1] : B(t) > u}, B−1(1) = 1.

Let (Ui)i≥1 be a sequence of i.i.d. uniform variables. An exchangeable partition Π̂
of N can be obtained from B and (Ui)i≥1 by setting

i ∼Π̂ j ⇐⇒ B−1(Ui) = B−1(Uj).
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Let (C1, C2, . . . ) be the blocks of Π̂ labeled in decreasing order of their least ele-
ments, i.e., such that

i ≤ j ⇐⇒ min(Ci) ≤ min(Cj).

To each block Ci is associated a unique random variable V ′i defined as

∀j ∈ Ci, V ′i = B−1(Uj).

If Π̂ has finitely many blocks, say M , for i > M we set V ′i = Ṽ ′i where (Ṽ ′i )i≥1 is
an independent sequence of i.i.d. uniform random variables. The sequence (V ′i )i≥1

will be referred to as the sequence of ancestors of the blocks of Π̂. The key results
on bridges from [21] is their Lemma 2 that we state here for later use.

Lemma 3.9 ([21]). Consider a bridge B, and let Π̂ and (V ′i ) be respectively the
partition and sequence of ancestors obtained from B as above. Then (V ′i )i≥1 is
independent of Π̂, and (V ′i )i≥1 is a sequence of i.i.d. uniform variables.

The standard flow of bridges. A flow of bridges is defined as follows.

Definition 3.10. A flow of bridges is a family of bridges (Bs,t)s≤t such that:

(i) For any s ≤ u ≤ t, we have Bs,u ◦Bu,t = Bs,t.

(ii) For t1 ≤ · · · ≤ tp, the bridges Bt1,t2 , . . . , Btp−1,tp are independent, and Bt1,t2 is
distributed as B0,t2−t1 .

(iii) The limit B0,t → Id as t ↓ 0 holds in probability in the Skorohod space. ◦

A flow of bridges encodes the dynamics of a population represented by the
interval [0, 1]. Let t ∈ R and x < y. If the interval [x, y] is interpreted as a
subfamily of the population at time t, then its progeny at time s ≤ t is represented
by the interval [Bs,t(x−), Bs,t(y)]. (Notice that time is going backward: if t is the
present, then s ≤ t represents the future of the population.)

By the independence and stationarity of the increments of the flow, the distri-
bution of a flow of bridges is entirely characterized by the distribution of B0,t, for
t ≥ 0. We will be particularly interested in the so-called standard flow of bridges,
that can be described as follows. Let t ≥ 0 and consider the bridge

∀u ∈ [0, 1], B0,t(u) =
Nt∑
i=1

βi1{Vi≤u},

where

(i) The process (Nt)t≥0 is distributed as a pure-death process started at ∞, and
going from k to k − 1 at rate k(k − 1)/2.

(ii) Conditional on Nt, (β1, . . . , βNt) has a Dirichlet distribution with parameter
(1, . . . , 1).
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(iii) The variables (Vi)i≥1 form an independent i.i.d. sequence of uniform variables.

Then we know [21] that there exists a flow of bridges (Bs,t)s≤t such that B0,t is
distributed as above. It is called the standard flow of bridges.

Our interest in the standard flow of bridges is that is represents the dynamics
of a population whose genealogy is given by Kingman’s coalescent. Let (Ui)i≥1 be
a sequence of i.i.d. uniform variables, and let Π̂t be the partition obtained from the
bridge B0,t and the sequence (Ui)i≥1. We stress that the same sequence is used for
all t. Then the process (Π̂t)t≥0 is distributed as Kingman’s coalescent started from
the partition of N into singletons [21].

The Fleming-Viot process. One of the main advantages of flows of bridges is
that they couple a backward process, giving the genealogy of the population, and a
forward process, giving the size of the progeny of the individuals in the population.
This forward process is often encoded as a measure-valued process known as a
Fleming-Viot process.

Let (Bs,t)s≤t be a standard flow of bridges. For each t ≥ 0, B−t,0 is the distri-
bution function of some random measure ρt on [0, 1]. The measure-valued process
(ρt)t≥0 is called a Fleming-Viot process [55]. A well-known fact that we will use is
that the dynamics of the mass of n fixed disjoint intervals is distributed as the n
first coordinates of a (n + 1)-dimensional Wright-Fisher diffusion. More precisely,
let (I1, . . . , In) be n disjoint intervals, and define

∀i ∈ {1, . . . , n}, ∀t ≥ 0, Xi(t) = ρt(Ii)

and
∀t ≥ 0, Xn+1(t) = 1− (X1(t) + · · ·+Xn(t)).

Then, if we denote by (|I1|, . . . , |In|) the lengths of the intervals (I1, . . . , In), the
process (X1, . . . , Xn+1) is distributed as the unique solution to

∀i ∈ {1, . . . , n+ 1}, dX ′i =
n+1∑
j=1
j 6=i

√
X ′iX

′
j dW ′

i,j,

started from (|I1|, . . . , |In|, 1 − |I1| − · · · − |In|), where (Wi,j)i<j are independent
Brownian motions and Wi,j = −Wj,i.

3.2.3 A flow of bridges construction of Kingman’s
coalescent with immigration

Let (Bs,t)s≤t be a standard flow of bridges. We now construct a version of King-
man’s coalescent with immigration from (Bs,t)s≤t. Consider a Poisson point process
on R × [0, 1] with intensity d dt ⊗ dx, and let (Ti, Ui)i∈Z be its atoms, labeled in
increasing order of their first coordinate such that T0 < 0 < T1. Similarly to Sec-
tion 3.2.1, the times (Ti)i∈Z correspond to immigration times of new particles. Here
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the sequence (Ui)i∈Z represents the location in the population of these immigrated
particles.

For each t ∈ R, we define a partition Π̄t of {i ∈ Z : Ti ≤ t} by setting

i ∼Π̄t j ⇐⇒ B−1
Ti,t

(Ui) = B−1
Tj ,t

(Uj).

The following proposition shows that (Π̄t)t∈R is distributed as Kingman’s coalescent
with immigration.

Proposition 3.11. The process (Π̄t)t∈R defined from the flow of bridges is a version
of Kingman’s coalescent with immigration rate d.

Proof. The proof is almost identical to the proof of Corollary 1 of [21]. The main
difference is that here the flow of bridges is sampled at various times (Ti)i∈Z while
for the classical Kingman coalescent, the flow of bridges is only sampled at an
initial time.

We work conditional on (Ti)i∈Z and consider these times as fixed. Let (Π̄N
t )t∈R

be the restriction of (Π̄t)t∈R to {i ∈ Z : i ≥ N}. It is sufficient to show that for
all N ∈ Z the blocks of (Π̄N

t )t∈R coalesce according to independent versions of
Kingman’s coalescent between immigration times.

Let t ∈ R, and let (C1, . . . , CMt) be the blocks of Π̄N
t , where Mt is the number

of blocks, and where the blocks are labeled such that

i ≤ j ⇐⇒ min(Ci) ≤ min(Cj).

Similarly to Section 3.2.2, we can define the sequence of ancestors of Π̄N
t by setting

∀j ∈ Ci, V ′i = B−1
Tj ,t

(Uj),

and supplementing it with an independent sequence of i.i.d. uniform variables
(Ṽ ′i )i≥1, i.e., defining ∀i > Mt, V ′i = Ṽ ′i .

Let us show by induction that for all k ≥ N ,

1. The ancestors (V (k)
i )i≥1 of Π̄N

Tk
are i.i.d. with uniform distribution.

2. The sequence (V (k)
i )i≥1 is independent of (Π̄N

t )t≤Tk .

3. (Π̄N
t )t≤Tk is a version of the N -Kingman coalescent with immigration.

Fix Tk ≤ t1 < · · · < tp+1 ≤ Tk+1. By induction on p we can suppose
that the sequence of ancestors of Π̄N

tp , denoted by (V (tp)
i )i≥1, is independent of(

(Π̄N
t )t≤Tk , Π̄N

t1 , . . . , Π̄N
tp

)
. Then (i) and (ii) are proved if we can show that the se-

quence of ancestors of Π̄N
tp+1 is independent of

(
(Π̄N

t )t≤Tk , Π̄N
t1 , . . . , Π̄N

tp+1

)
, and is a

sequence of i.i.d. uniform variables.
Let us now call Π∗ the partition obtained from the bridge Btp,tp+1 and the

sequence (V (tp)
i )i≥1, i.e.,

i ∼Π∗ j ⇐⇒ B−1
tp,tp+1(V (tp)

i ) = B−1
tp,tp+1(V (tp)

j ),
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and let (V ∗i )i≥1 be the sequence of ancestors of Π∗, i.e.,

∀j ∈ C∗i , V ∗i = B−1
tp,tp+1(V (tp)

j ),

where (C∗1 , C∗2 , . . . ) denote the blocks of Π∗ labeled in increasing order of their
minimal elements as above. Using the fact that for u ≤ s ≤ t, B−1

u,t = B−1
s,t ◦ B−1

u,s,
we get that for all N ≤ i, j ≤ k,

i ∼Π̄tp+1
j ⇐⇒ B−1

tp,tp+1(B−1
Ti,tp

(Ui)) = B−1
tp,tp+1(B−1

Tj ,tp
(Uj))

⇐⇒ B−1
tp,tp+1(V (tp)

b(i) ) = B−1
tp,tp+1(V (tp)

b(j) )
⇐⇒ b(i) ∼Π∗ b(j) (3.1)

where b(i) denotes the label of the block of Π̄N
tp to which i belongs.

By independence of the increments of the flow of bridges, the bridge Btp,tp+1

is independent of the collection of variables
(
(Π̄N

t )t≤Tk , Π̄N
t1 , . . . , Π̄N

tp , (V
(tp)
i )i≥1

)
.

Thus, (Btp,tp+1 , (V
(tp)
i )i≥1) are independent of

(
(Π̄N

t )t≤Tk , Π̄N
t1 , . . . , Π̄N

tp

)
, and hence

(Π∗, (V ∗i )i≥1) are independent of
(
(Π̄N

t )t≤Tk , Π̄N
t1 , . . . , Π̄N

tp

)
. Using Lemma 3.9, we

get that Π∗ is independent of (V ∗i )i≥1. This shows that (V ∗i )i≥1 is independent
of
(
(Π̄N

t )t≤Tk , Π̄N
t1 , . . . , Π̄N

tp ,Π∗
)
. Using (3.1), we see that Π̄N

tp+1 can be recovered
from Π̄N

tp and Π∗. Thus, the variables
(
(Π̄N

t )t≤Tk , Π̄N
t1 , . . . , Π̄N

tp+1

)
are independent

of (V ∗i )i≥1.
In order to end the proof of the claim we need to distinguish two cases. First,

suppose that tp+1 < Tk+1. Then, due to our labeling convention, we have that
(V ∗i )i≥1 = (V (tp+1)

i )i≥1 (up to the auxiliary variables (Ṽi)i≥1 that play no role).
Conversely, if tp+1 = Tk+1, then one of the variables (V ∗i )i≥1 has to be replaced
by the ancestor Uk+1 of the block {k + 1}. More precisely, if Π̄N

Tk+1
has Mk+1

blocks, again by labeling convention, the block {k + 1} has label Mk+1. Thus,
(V (tp+1)

i )i≥1 is recovered by setting V (tp+1)
i = V ∗i for i 6= Mk+1, and V (tp+1)

i = Uk+1
for i = Mk+1. It is straightforward to see that, as Uk+1 is independent of all other
variables, (V (tp+1)

i )i≥1 remains a sequence of i.i.d. of uniform variables, independent
of
(
(Π̄N

t )t≤Tk , Π̄N
t1 , . . . , Π̄N

tp+1

)
and thus the fact that points (i) and (ii) of the claim

hold.
For k ≥ N and t < Tk+1 − Tk consider the partition Πk

t of N defined as

i ∼Πkt j ⇐⇒ B−1
Tk,Tk+t(V

(k)
i ) = B−1

Tk,Tk+t(V
(k)
j )

As the sequence (V (k)
i )i≥1 is i.i.d. uniform and independent of (Π̄N

t )t≤Tk , the pro-
cess (Πk

t )t≥0 is a version of Kingman’s coalescent started from the partition into
singletons, independent of (Πk

t )t≥0. Using equation (3.1), we have that

i ∼Π̄NTk+t
j ⇐⇒ b(i) ∼Πkt b(j),

where b(i) denotes the label of the block of Π̄N
Tk

to which i belongs. In other words,
(Π̄N

Tk+t)0≤t<Tk+1−Tk is obtained by letting the blocks of Π̄N
Tk

coalesce according to
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an independent version of Kingman’s coalescent. This proves that (Π̄N
t )t≤Tk+1 is

distributed as a N -Kingman coalescent with immigration, and ends the proof of
the result.

3.2.4 Coupling erosion and immigration
We now explain the coupling between Kingman’s coalescents with erosion and with
immigration. Let n ≥ 1, consider a Poisson point process P n on R with intensity
nd dt and let (Ti)i∈Z be its atoms ordered increasingly such that T0 < 0 < T1. To
each atom of the process we attach a uniform mark in [n]. We denote by `i the
mark attached to Ti, so that (`i)i∈Z is a sequence of i.i.d. uniform variables on [n].

Consider t ∈ R. For each k ∈ [n], let ϕt(k) be the label of the last atom of P n

with mark k before time t, i.e., ϕt(k) ∈ Z is the unique i such that `i = k and there
is no atom T of P n with Ti < T ≤ t carrying mark k. Let (Π̄t)t∈R be Kingman’s
coalescent with immigration rate nd built from the Poisson process (Ti)i∈Z as in
Section 3.2.1. We define a partition Πn

t of [n] by setting

i ∼Πnt j ⇐⇒ ϕt(i) ∼Π̄t ϕt(j).

In words, i and j belong to the same block of Πn
t iff the most recently immigrated

particles of (Π̄t)t∈R with marks i and j have coalesced before time t. The key point
of this construction is that (Πn

t )t∈R is distributed as Kingman’s coalescent with
erosion.

Proposition 3.12. The process (Πn
t )t∈R is a stationary version of the n-Kingman

coalescent with erosion rate d.

Proof. Let k ∈ [n]. By thinning, the set of atoms of P n with mark k is a Poisson
process on R with intensity d dt, and these processes are independent. Thus new
atoms of P n with mark k arrive at rate d. Let us consider what happens at such
an arrival time. Suppose that `i = k. Then, by definition, we have ϕTi(k) = i, as
the atom Ti has mark k. Moreover, the particle i is a singleton of the partition Π̄Ti

(it is the particle that has newly immigrated). Thus at time Ti, the integer k is
removed from its block and placed in a singleton block. This is the description of
an erosion event, which occur at rate d.

Let us now describe the dynamics between two immigration times, say Ti and
Ti+1. Conditional on Π̄Ti , the blocks of (Π̄t)Ti≤t≤Ti+1 coalesce according to an inde-
pendent version of Kingman’s coalescent started from Π̄Ti . The labels of the atoms
of P n that are the last atoms with their marks form a subset of {j ∈ Z : j ≤ i}, say
L. By sampling consistency of Kingman’s coalescent, the restriction of (Π̄t)Ti≤t≤Ti+1

to L is also distributed as Kingman’s coalescent, starting from the restriction of
Π̄Ti to L. Thus, as the blocks of (Πn

t )Ti≤t≤Ti+1 are, up to an independent relabel-
ing, the blocks of the restriction of (Π̄t)Ti≤t≤Ti+1 to L, any two pairs of blocks of
(Πt)Ti≤t≤Ti+1 coalesce at rate one.

The fact that (Πt)t∈R is stationary follows from the stationarity of the Poisson
point process.
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Combined with the construction of Kingman’s coalescent with immigration from
the standard flow of bridges, this coupling gives an interesting construction of the
stationary distribution of Kingman’s coalescent with erosion.

Corollary 3.13. Let (Bs,t)s≤t be a standard flow of bridges, (Ti)i≥1 be an indepen-
dent sequence of i.i.d. exponential variables with parameter d, and (Ui)i≥1 be an
independent sequence of i.i.d. uniform variables. Then the partition Π defined by

i ∼Π j ⇐⇒ B−1
−Ti,0(Ui) = B−1

−Tj ,0(Uj)

has the stationary distribution of Kingman’s coalescent with erosion rate d.

Proof. Consider a Poisson process P n on R× [0, 1] with intensity nd dt⊗ dx, and
attach to each atom of P n a uniform mark on [n]. If (Ti, Ui) denotes the last atom
of P n with mark i before t = 0, then Ti is exponentially distributed with parameter
d, Ui is uniform on [0, 1], and all these variables are independent. A combination
of Proposition 3.12 and Proposition 3.11 now proves the result.

Remark 3.14. The construction of Kingman’s coalescent with immigration from
Section 3.2.1 and the construction with the flow of bridges of Section 3.2.3 only
rely on the sampling consistency of Kingman’s coalescent. These constructions
could be extended directly to a case where the coalescence events occur according
to a Λ-coalescent [178, 188]. In particular, the construction of the stationary dis-
tribution of Kingman’s coalescent with erosion of Corollary 3.13 extends directly
to Λ-coalescents with erosion if one replaces the standard flow of bridges by the
corresponding Λ-flow of bridges. ◦

3.3 Size of the blocks of Kingman’s coalescent
with immigration

In this section we study Kingman’s coalescent with immigration. The main result
we will show is the following.

Proposition 3.15. Let n ≥ 1 and consider (Π̄n
t )t∈R a version of Kingman’s coa-

lescent with immigration rate nd. Let (|C̄n
1 |, . . . , |C̄n

p |) be the size of p blocks chosen
uniformly from Π̄n

0 , then

(|C̄n
1 |, . . . , |C̄n

p |) =⇒ (J1, . . . , Jp)

where (J1, . . . , Jp) are i.i.d. variables distributed as the total progeny of a critical
binary branching process.

We prove this result by choosing k blocks uniformly from Π̄n
0 , and counting

backwards in time the number of blocks that are ancestors of these blocks, i.e., that
will further coalesce to form these blocks. We show that this process converges,
under appropriate scaling, to k independent critical binary branching processes,
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yielding the result. In this section we work in both directions of time. We will
index time by t when it is flowing forward, and by s when it is flowing backwards.

We first give a precise definition of the ancestral process counting the number
of blocks in Section 3.3.1, along with its basic properties. The convergence is then
carried out in Section 3.3.2.

3.3.1 The ancestral process
Let (Π̄t)t∈R be a version of Kingman’s coalescent with immigration rate d. The pro-
cess (Π̄t)t∈R is naturally endowed with a notion of ancestry between its blocks. For
t ∈ R, let Mt be the number of blocks of Π̄t. Let (C̄1, . . . , C̄Mt) be an enumeration
of the blocks of Π̄t. We say that this enumeration is exchangeable if conditional on
{Mt = k}, for any permutation σ of [k],

(C̄1, . . . , C̄k)
(d)= (C̄σ(1), . . . , C̄σ(k)).

We can always consider an exchangeable enumeration of the blocks of Π̄t by chang-
ing the labels of any enumeration according to an independent uniform permuta-
tion.

For u ≤ t, consider Π̄t = (C̄1, . . . , C̄Mt) and Π̄u = (C̄ ′1, . . . , C̄ ′Ms
) an enumeration

of the blocks of Π̄t and Π̄u respectively. In Kingman’s coalescent with immigration,
a block present at time u can only coalesce with other blocks. Thus, for any block
C̄ ′i, there is a unique block C̄j of Π̄t such that C̄ ′i ⊆ C̄j. We say that C̄ ′i is an ancestor
of C̄j. We define the ancestral process of Kingman’s coalescent with immigration
as the vector counting the number of ancestors of the blocks of Π̄0, enumerated in
an exchangeable way. This definition is illustrated in Figure 3.2.

Definition 3.16. Let (Π̄t)t∈R be Kingman’s coalescent with immigration, and let
(C̄1, . . . , C̄M0) be the blocks of Π̄0 enumerated in an exchangeable order. For s ≥ 0,
let (C̄ ′1, . . . , C̄ ′M−s) be the blocks of Π̄−s. We define the number of ancestors of the
i-th block as

As(i) =
Card

{
j ≤M−s : C̄ ′j ⊆ C̄i

}
if i ∈ {1, . . . ,M0}

0 if i > M0.

The process (As)s≥0 defined as As := (As(1),As(2), . . . ) is called the ancestral
process associated to (Π̄t)t∈R. ◦

The process (As)s≥0 can be seen as a particle system where at time 0, there are
M0 particles with distinct types, and (As(i))s≥0 records the number of particles
with type i. As we have reversed time, each coalescence event now corresponds to
the birth of a new particle, and each immigration event to the death of a particle.

Note that relative to the original population model described in the introduc-
tion, we have now reversed the time twice. As Kingman’s coalescents with erosion
and immigration represent genealogies, the future of these processes corresponds
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Figure 3.2: In this example, we have Π̄−s = (C1, C2, C3). Each black circle represents
an immigration event, and the lines merge at the coalescence time of the blocks to which
they correspond. At s = 0 the blocks of Π̄0 are labeled according to the permutation σ,
and the value of (As)s≥0 is given below for some times.

to the past of the population. Therefore, the “ancestors” of the blocks of King-
man’s coalescent with immigration actually correspond to the descendants of these
individuals in the population point of view.

Recall that (Mt)t∈R stands for the number of blocks of (Π̄t)t∈R forward in time.
For each s ∈ R, we define Ns := M−s, the number of blocks of (Π̄t)t∈R backwards
in time. The process (Ns)s≥0 also gives the number of particles of the ancestral
process (As)s≥0, that is we have

∀s ≥ 0, Ns =
∑
i≥1
As(i).

The following proposition shows that the ancestral process is Markovian. This is
a key feature that makes Kingman’s coalescent with immigration easier to study
than Kingman’s coalescent with erosion.

Proposition 3.17. Let (As)s≥0 be the ancestral process associated to Kingman’s
coalescent with immigration rate d, and let (Ns)s≥0 be the number of particles of
(As)s≥0. Then (As)s≥0 is a Markov process with initial condition

∀i ≤ N0, A0(i) = 1, ∀i > N0, A0(i) = 0.

Moreover, conditional on As:

• each particle gives birth to a new particle of its type at rate d/Ns.

• each particle dies at rate (Ns − 1)/2.

The proof of Proposition 3.17 can be found in Section 3.A, we only sketch
it here. We will first show that the process (Mt)t∈R is a stationary birth-death
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process, such that conditional on Mt = k, a birth occurs at rate d, and a death at
rate k(k− 1)/2. A simple calculation shows that it is actually a reversible process,
i.e., with our notation, that (Ns)s≥0 is distributed as (Mt)t≥0. When (Ns)s≥0 jumps
from k to k + 1, a particle has given birth to two particles. By exchangeability
of our system, the particle that gives birth is chosen uniformly, i.e., each particle
gives birth at the same rate d/k. Similarly, when (Ns)s≥0 jumps from k to k − 1 a
particle chosen uniformly from the population dies. Thus each particle dies at rate
k(k − 1)/(2k) = (k − 1)/2.

Making the above argument rigorous involves counting the number of trajec-
tories of (Π̄t)t∈R yielding a given trajectory of (As)s≥0. We postpone it until Sec-
tion 3.A.

In order to prove Proposition 3.15, we need to keep track of the number of ances-
tors of k blocks chosen uniformly from Π̄0. As we have chosen a uniform labeling of
the blocks of Π̄0, this amounts to considering the process (As(1), . . . ,As(k); s ≥ 0).
Proposition 3.17 directly gives us the distribution of this process.

Corollary 3.18. The process (As(1), . . . ,As(p), Ns; s ≥ 0) is a Markov process
such that conditional on {As(1) = a1, . . . ,As(p) = ap, Ns = k}, the process jumps
to:

• (a1, . . . , ai + 1, . . . , ap, k + 1) at rate d
k
ai.

• (a1, . . . , ai − 1, . . . , ap, k − 1) at rate k−1
2 ai.

• (a1, . . . , ap, k + 1) at rate d
k
(k − a1 − · · · − ap).

• (a1, . . . , ap, k − 1) at rate k−1
2 (k − a1 − · · · − ap).

Proof. We see from the expression of the transition rates of (As)s≥0 that the rate
at which each particle splits or dies only depends on the rest of the population
through the total population size Ns. This is enough to prove the result.

3.3.2 Convergence
We now prove that the process (As(1), . . . ,As(p); s ≥ 0) converges to independent
critical binary birth-death processes when time is rescaled by a factor 1/

√
n. We

start with the following lemma.

Lemma 3.19. Let Mn have the stationary distribution of (Mn
t )t≥0, the num-

ber of blocks of Kingman’s coalescent with immigration rate dn. The sequence
(Mn/

√
n; n ≥ 1) is tight.

Proof. Let n ≥ 1 and consider a birth-death process (Xn
t )t≥0 such that conditional

on {Xn
t = k}, the process jumps to

• k + 1 at rate dn;

• k − 1 at rate µk,
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where the death rate µk is defined as

µk =
0 if k <

√
2dn+ 1,

(
√

2dn+1)
√

2dn
2 else.

The process (Xn
t − b

√
2dn + 1c; t ≥ 0) is distributed as a simple random walk,

reflected at 0. Thus it admits a geometric stationary distribution with parameter
γn given by

γn = 2dn
(
√

2dn+ 1)
√

2dn
= 1

1 +
√

1
2dn

.

This shows that the process (Xn
t )t≥0 also admits a stationary distribution. IfXn has

the stationary distribution of (Xn
t )t≥0, then Xn is distributed as b

√
2dnc+ 1 +Y n,

where Y n has a geometric distribution with parameter γn.
Hence, for K and n large enough, we have

P
(
Xn ≤ K

√
n
)
≤ P

(
Y n ≤ K

√
n−
√

2dn
)

= 1− γ(K−
√

2d)
√
n

n

= 1− exp
(
− K −

√
2d√

2d

)
+ on(1).

Thus the sequence (Xn/
√
n; n ≥ 1) is tight.

Recall that (Mn
t )t≥0 is a birth-death process jumping from k to k + 1 at rate

dn, and from k to k− 1 at rate k(k− 1)/2 ≥ µk. Its stationary distribution is thus
dominated by that of Xn, and this proves the result.

We now prove our main convergence result. The proof will use a result from
Chapter 11 of [58] on the a.s. convergence of rescaled Markov processes. In order
to stick to their notation, we introduce

∀s ≥ 0, N̂n
s = Nn

s/
√
n, Âns = Ans/√n,

and
∀x ≥ 0, β+(x) = d, β−(x) = x2

2 , F (x) = d− x2

2 .

Proposition 3.20. Let (Ans )s≥0 be the ancestral process of Kingman’s coalescent
with immigration rate dn. Then

(
Âns (1), . . . , Âns (p), N̂

n
s√
n

; s ≥ 0
)

=⇒
(
X1(s), . . . , Xp(s),

√
2d; s ≥ 0

)
,

in the sense of convergence in distribution in the Skorohod space, and where the
processes (X1, . . . , Xp) are i.i.d. critical binary birth-death processes, with per-capita
birth and death rate

√
d/2.
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Proof. We start by showing that the process (N̂n
s /
√
n; s ≥ 0) converges to the

constant process with value
√

2d. By applying Proposition 3.17 (bearing in mind
that in Proposition 3.17 the immigration rate is d, and not dn) the process (N̂n

s )s≥0
is a Markov process jumping from

• k to k + 1 at rate d
√
n =
√
nβ+( k√

n
).

• k to k − 1 at rate k(k−1)
2
√
n

=
√
nβ−( k√

n
)− 1

2
√
n
.

Thus, the process (N̂n
s )s≥0 is of the same form as the processes considered in The-

orem 2.1 of Chapter 11 of [58], except that the scaling is
√
n and not n.

Let us consider a stationary version of the process (N̂n
s )s≥0. Lemma 3.19 shows

that the sequence (N̂n
0 /
√
n; n ≥ 1) is tight. We can thus find an increasing se-

quence of indices (nk)k≥1 such that the subsequence (N̂nk
0 /
√
nk; k ≥ 1) converges

in distribution to a limiting variable N . Using Skorohod’s representation theorem
[see e.g. 25, Theorem 6.7], we can assume that the convergence holds a.s.

Applying Theorem 2.1 of Chapter 11 of [58] shows that the sequence of processes
(N̂nk

s /
√
nk; s ≥ 0, k ≥ 1) converges a.s. uniformly on compact sets to the solution

of

ẋ = F (x) = d− x2

2 , (3.2)

started from the random variable N . (The original theorem is given for a differ-
ent scaling, but the proof is easily adapted to ours.) As each process (N̂nk

s )s≥0
is stationary, the limiting process is a stationary solution to (3.2), i.e., it is the
constant process with value

√
2d. This shows that each converging subsequence of

(N̂n
s /
√
n; s ≥ 0, n ≥ 1) converges to the same constant process, and thus that the

entire sequence converges.
Let us now prove the convergence of the ancestral processes. Consider in-

dependent Poisson processes (P−i (s))s≥0, (P+
i (s))s≥0 for i ≤ p, and (P−N (s))s≥0,

(P+
N (s))s≥0. Using e.g. Theorem 4.1 from Chapter 6 of [58], there exists a unique

strong solution to the following equation

∀s ≥ 0, ∀i ≤ p, Xn
i (s) = P+

i

( ∫ s

0

d
√
nXn

i (u)
Y n(u) du

)
− P−i

( ∫ s

0

Xn
i (u)(Y n(u)− 1)

2
√
n

du
)
,

∀s ≥ 0, ∀i ≤ p, Y n(s) = P+
N

( ∫ s

0
d
√
n
(
1−

∑
i
Xn
i (u)

Y n(u)

)
du
)

− P−N
( ∫ t

0

Y n(u)(Y n(u)−1)
2
√
n

(
1−

∑
i
Xn
i (u)

Y n(u)

)
du
)

+
p∑
i=1

Xn
i (s).

Moreover, the solution (Xn
1 , . . . , X

n
p , Y

n) to the previous equation has the same
distribution as (Âns (1), . . . , Âns (p), N̂n

s ; s ≥ 0).
As Y n/

√
n converges in probability to the constant process with value

√
2d, we

can find a subsequence such that

lim
n→∞

d
√
n

Y n(s) =
√
d

2 , lim
n→∞

(Y n(s)− 1)
2
√
n

=
√
d

2 a.s.
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holds uniformly in s on compact sets. This is sufficient to show that for each i ≤ p,
the subsequence of processes (Xn

i (s))s≥0 converges a.s. in the Skorohod space to
the solution (Xi(s))s≥0 of

∀s ≥ 0, ∀i ≤ p, Xi(s) = P+
i

( ∫ s

0

√
d

2Xi(u) du
)
− P−i

( ∫ s

0

√
d

2Xi(u)du
)
.

This proves that the entire sequence (Xn
1 , . . . , X

n
p ) converges in probability in the

Skorohod topology to the solution of the previous equation. Finally, noting that
the solutions of these equations are independent and distributed as critical binary
branching processes with branching rate

√
d/2 ends the proof.

We are now ready to prove Proposition 3.15.

Proof of Proposition 3.15. By construction, the size of p blocks of Π̄n chosen uni-
formly is given by the total number of particles of (Âns (1), . . . , Âns (p); t ≥ 0). Thus,
in the limit, the size of these blocks converges to the total size of p independent
critical binary branching processes.

3.4 Proof of Theorem 3.5
In the previous section we have derived the limiting distribution of the sizes of
blocks uniformly sampled from Kingman’s coalescent with immigration. In this
section we make use of the coupling between Kingman’s coalescent with immigra-
tion and Kingman’s coalescent with erosion from Section 3.2.4 to get the analogous
result in the erosion case.

We first show the following result.

Corollary 3.21. Let Πn have the stationary distribution of the n-Kingman coa-
lescent with erosion. Let (|Cn

1 |, . . . , |Cn
p |) be the size of p blocks chosen uniformly

from Πn. Then
(|Cn

1 |, . . . , |Cn
p |) =⇒ (J1, . . . , Jp),

where (J1, . . . , Jp) are i.i.d. variables distributed as the total progeny of a critical
binary branching process.

Proof. Recall the coupling between Kingman’s coalescent with erosion and King-
man’s coalescent with immigration. Let (Ti)i∈Z be the atoms of a Poisson point
process P n with intensity dn, labeled in increasing order such that T0 < 0 < T1.
Consider an independent i.i.d. sequence of marks (`i)i∈Z that are uniformly dis-
tributed on [n].

Let Π̄n
0 be the value at time 0 of the version of Kingman’s coalescent with

immigration rate nd built from (Ti)i∈Z as in Section 3.2.1. We know from Propo-
sition 3.12 that we can obtain a version Πn of the stationary distribution of the
n-Kingman coalescent with erosion rate d by placing i and j in the same block of
Πn if the most recent atoms of P n in (−∞, 0] with mark i and j both belong to
the same block of Π̄n

0 .
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Now let (C̄n
1 , . . . , C̄

n
p ) be p blocks chosen uniformly from Π̄0, and denote by

(|C̄n
1 |, . . . , |C̄n

p |) their respective sizes. For k ≤ p, let

|Cn
k | = Card

{
i ∈ C̄n

k : (Ti, `i) is the most recent atom in (−∞, 0] with mark `i
}
.

Then conditional on
{
|Cn

1 | ≥ 1, . . . , |Cn
p | ≥ 1

}
, (|Cn

1 |, . . . , |Cn
p |) are the sizes of p

blocks chosen uniformly from Πn. The result is thus proved if we can show that

lim
n→∞

P
(
|Cn

1 | = |C̄n
1 |, . . . , |Cn

p | = |C̄n
p |
)

= 1.

Let us first explain intuitively why the previous claim holds. The ancestors of
C̄n

1 have all immigrated on a time-scale of order 1/
√
n. On this time-scale, there

are of order
√
n particles that have also immigrated. All these particles receive a

uniform label in [n]. Thus the probability that an ancestor of C̄n
1 has received the

same label as one of the other
√
n particles, i.e., that it is not the most recent atom

with its mark, is of order 1/
√
n. Let us make this argument rigorous.

Set
τn1 := min

{
Ti : i ∈ C̄n

1

}
to be the total life-time of the ancestors of the block C̄n

1 . (The variable τn1 gives the
immigration time of the first particle that forms the block C̄n

1 .) The total number
of particles that have immigrated during the time interval [τn1 , 0] is then P n([τn1 , 0]).
Consider the event

Ek =
{
|C̄n

1 | = k, τn1 ∈ [− s√
n
, 0], P n([− s√

n
, 0]) ≤ (1 + ε)ds

√
n
}
.

On this event, if |Cn
1 | 6= |C̄n

1 |, then one of the k ancestors of C̄n
1 has received the

same label as one of the particles that has immigrated in the time interval [τn1 , 0],
that is, the same label as one of the (1 + ε)dt

√
n most recent atoms of P n. As the

labels are chosen uniformly, the probability that each of the k ancestors has a label
distinct from the labels of the other (1 + ε)ds

√
n− 1 most recent particles is

(
1− 1

n

)
. . .
(

1− k − 1
n

)(
1− k

n

)(1+ε)ds
√
n−k

which goes to 1 as n goes to infinity for all fixed k. Thus

P
(
|Cn

1 | 6= |C̄n
1 |, Ek

)
≤
(

1− 1
n

)
. . .
(

1− k − 1
n

)(
1− k

n

)(1+ε)ds
√
n−k

,

and

P
(
|Cn

1 | 6= |C̄n
1 |
)
≤ P

(
τn1 6∈ [− s√

n
, 0]
)

+ P
(
|C̄n

1 | ≥ K
)

(3.3)

+ P
(
P n([− s√

n
, 0]) > (1 + ε)ds

√
n
)

+ on(1).

Now, by Proposition 3.20, the sequence (−
√
nτn1 )n≥1 converges in distribution to

the total life-time of a binary critical branching process and (|C̄n
1 |)n≥1 converges to
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the total progeny of this process. Thus, the first two terms in the above equation
can be made as small as desired uniformly in n by taking t and K large enough.
For a fixed ε > 0, Chebishev’s inequality shows that the last term goes to 0 as n
goes to infinity. This proves the result for p = 1 and a simple union bound proves
the result for any p.

Remark 3.22. In the previous proof, on the event
{
|C̄n

1 | = |Cn
1 |
}
, not only the

size of the blocks of Kingman’s coalescents with erosion and immigration coincide,
but also the genealogy of the blocks. Thus we have shown the slightly stronger
result that, in the n-Kingman coalescent with erosion, the genealogy of a block
chosen uniformly from the stationary distribution converges to that of a critical
binary branching process. ◦

We can now prove Theorem 3.5. Recall that µnk denotes the frequency of blocks
of size k of Πn, i.e., if the blocks of Πn are (Cn

1 , . . . , C
n
Mn), then

µnk = 1
Mn

Card({i : |Cn
i | = k}).

Proof of Theorem 3.5. (i) We start by proving that Mn/
√
n converges to

√
2d in

probability. Let us consider a version Π̄n of the stationary distribution of Kingman’s
coalescent with immigration rate nd, coupled with a version Πn of the stationary
distribution of Kingman’s coalescent with erosion rate d on [n]. Let M̄n, resp.
Mn, denote the number of blocks of Π̄n, resp. Πn. Recall that the blocks of Πn

are subsets of the blocks of Π̄n, where a particle is retained if there are no other
particles with the same label that have immigrated after it. Let |C̄n| be the size of
a block of Π̄n chosen uniformly, and let |Cn| be the size of the corresponding block
of Πn. Some blocks of Π̄n are only composed of particles that are not retained to
form Πn. Such blocks have no corresponding blocks in Πn, and M̄n−Mn is exactly
the number of such blocks. Thus

E
[M̄n −Mn

M̄n

]
= P(|Cn| = 0) ≤ P

(
|Cn| 6= |C̄n|

)
−→ 0,

where the convergence holds by (3.3). This shows that Mn/M̄n goes to 1 in prob-
ability. Proposition 3.20 further shows that M̄n/

√
n goes to

√
2d in probability,

and thus that Mn/
√
n also goes to

√
2d in probability.

(ii) We prove the second point using the method of moments. Let (|Cn
1 |, . . . , |Cn

p |)
be the sizes of k uniformly sampled blocks of Πn. Then, as the number of blocks
Mn goes to infinity, Corollary 3.21 shows that

lim
n→∞

E[(µnk)p] = lim
n→∞

P
(
|Cn

1 | = · · · = |Cn
p | = k

)
= P(J = k)p,

where J is the total progeny of a binary critical branching process. The convergence
of the moments readily implies convergence in distribution as the limit is a Dirac
mass.
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3.5 Asymptotic frequencies of Kingman’s
coalescent with erosion

In this section we prove Theorem 3.3, which gives a representation of the asymptotic
frequencies in terms of independent diffusions. First, we use the flow of bridges
construction of Kingman’s coalescent with erosion from Corollary 3.13 to give a
correspondence between the frequencies of the blocks and the size of the families
of a Fleming-Viot process.

3.5.1 Eves of a Fleming-Viot process
Let (ρt)t≥0 be a Fleming-Viot process built from a standard flow of bridges as in
Section 3.2.2. For each individual x ∈ [0, 1], denote by

ζ(x) = inf{t ≥ 0 : ρt({x}) = 0}

the extinction time of the offspring of x. It is clear that the set

{x ∈ [0, 1] : ζ(x) > 0} = {x ∈ [0, 1] : ρt({x}) > 0 for some t ≥ 0}

is countable. The elements of this set can actually be enumerated in decreasing
order of their extinction time, that is, they can be written (ei)i≥0 with

ζ(e1) > ζ(e2) > . . .

This fact can be found e.g. in [133], Theorem 1.6. The sequence (ei)i≥0 is called the
sequence of Eves of (ρt)t≥0, and was introduced in [21] and [133], see also [50] for
a similar notion for Continuous-State Branching Processes. The following result
shows that the frequencies of the blocks of the stationary distribution of Kingman’s
coalescent with erosion can be recovered from the size of the offspring of the Eves.

Lemma 3.23. Let (ei)i≥1 be the Eves of a Fleming-Viot process (ρt)t≥0. Then the
non-increasing reordering of the sequence (zi)i≥1 defined as

∀i ≥ 1, zi =
∫ ∞

0
de−dtρt({ei}) dt

is distributed as the frequencies of the blocks of the stationary distribution of King-
man’s coalescent with erosion rate d.

Proof. Consider a flow of bridges (Bs,t)s≤t, and let (Ti)i≥1, (Ui)i≥1 be two inde-
pendent i.i.d. sequences of exponential variables with parameter d, and uniform
variables respectively. Again, as in Corollary 3.13, let Π be the partition of N
defined as

i ∼Π j ⇐⇒ B−1
−Ti,0(Ui) = B−1

−Tj ,0(Uj),
which has the stationary distribution of Kingman’s coalescent with erosion. We
denote by Π = (C1, C2, . . . ) the blocks of Π, ordered in increasing order of their
least elements, i.e., such that

i ≤ j ⇐⇒ min(Ci) ≤ min(Cj).
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Then let us call
Ai = B−1

−Tj ,0(Uj), ∀j ∈ Ci,

the ancestor of the block Ci.
As the flow of bridges (Bs,t)s≤t is independent of the sequences (Ui)i≥1 and

(Ti)i≥1, the sequence (B−1
−Ti,0(Ui))i≥1 is exchangeable. Thus, the law of large num-

bers shows that for any i ≥ 1,

1
n

Card(Ci ∩ [n]) = 1
n

n∑
j=1
1{

B−1
−Tj,0

(Uj)=Ai
} −→
n→∞

∫ ∞
0

de−dtρt({Ai}) dt a.s.

Thus the result is proved if we can show that a.s.

{ei : i ≥ 1} = {Ai : i ≥ 1}.

Clearly we have ζ(Ai) > 0, as otherwise the frequency of the block Ci would be
zero. Moreover, conditional on the flow of bridges, there exists a.s. some j ≥ 1
such that

(Uj, Tj) ∈
{

(x, t) : B−1
−t,0(x) = ei

}
as by definition of ei this set has positive Lebesgue measure. Thus, a.s. ei is the
ancestor of some block of Π, and the result is proved.

In order to prove Theorem 3.3, it remains to show that the sequence of pro-
cesses

(
ρt({e1}), ρt({e2}), . . . ; t ≥ 0

)
has the same distribution as the sequence of

diffusions introduced in Section 3.1.3. In the following section we characterize this
distribution, and complete the proof in the last section.

3.5.2 Wright-Fisher diffusion conditioned on its
extinction order

Consider a n-dimensional Wright-Fisher diffusion (X1, . . . , Xn). That is, the col-
lection of processes (X1, . . . , Xn) is distributed as the unique solution to

∀i ≥ 1, dXi =
n∑
j=1
j 6=i

√
XiXj dWi,j,

where (Wi,j)i<j are independent Brownian motions, and Wj,i = −Wi,j, and started
from an initial condition (x1, . . . , xn) ∈ (0, 1)n verifying x1 + · · · + xn = 1. The
Wright-Fisher diffusion describes the dynamics of a population with constant size,
where individuals can be of n different types; Xi denotes the frequency of type i
individuals in the population. Each process Xi is eventually absorbed at 0 or 1.
We say that the family Xi reaches fixation if it gets absorbed at 1, and that it
becomes extinct otherwise. Let

ζi = inf{t ≥ 0 : Xi = 0}
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denote its absorption time at 0.
In this section, we study the distribution of (X1, . . . , Xn) conditional on the

event {ζn < · · · < ζ1}. First, notice that as X1 + · · ·+Xn = 1, there is exactly one
family that reaches fixation. Thus, on the event {ζn < · · · < ζ1}, we have ζ1 = ∞
andX1 reaches fixation; X2 is the last family to go extinct, andXn is the first family
to go extinct. We now express the distribution of the conditioned Wright-Fisher
diffusion in terms of the diffusions introduced in Section 3.1.3.

We will work inductively, by first conditioning the process (X1, . . . , Xn) on
ζ1 being the largest extinction time, then on ζ2 being the second largest and so
on and so forth. The key point is that after conditioning on the fixation of X1,
the remainder of the population, (X2, . . . , Xn), is distributed as a rescaled, time-
changed, unconditioned (n − 1)-dimensional Wright-Fisher diffusion, independent
of X1.

Let us be more specific and let Y1 be the solution of

dY1 = (1− Y1) dt+
√
Y1(1− Y1) dW1, (3.4)

for some Brownian motion W1. Notice that Y1 is distributed as a usual one-
dimensional Wright-Fisher diffusion, conditioned on fixation. Consider the fixation
time of Y1 which is defined as

S1 = inf{t ≥ 0 : Y1(t) = 1}.

We further define a random time-change τ1 as

∀t < S1, τ1(t) =
∫ t

0

1
1− Y1(s) ds, ∀t ≥ S1, τ1(t) =∞.

We start by proving the following result.

Lemma 3.24. Let Y1 and τ1 be as above and consider an independent (n − 1)-
dimensional Wright-Fisher diffusion (X2, . . . , Xn). Then, the process (Z1, . . . , Zn)
defined as

Z1 = Y1, ∀i > 1, ∀t ≥ 0, Zi(t) = (1− Z1(t))Xi(τ1(t)),

is distributed as a n-dimensional Wright-Fisher diffusion conditioned on {ζ1 =∞}.

Remark 3.25. The time τ1(t) is infinite with positive probability. However, each
of the processes (X2, . . . , Xn) has an a.s. limit as t goes to infinity. On the event
{τ1(t) =∞}, we take Xi(τ1(t)) to be this limit, so that the process (Z1, . . . , Zn) is
now well-defined. ◦

Before proving Lemma 3.24, we need the following fact that we prove for the
sake of completeness.

Lemma 3.26. Let (Wt)t≥0 be a Brownian motion on R started at 1, and let T0 be
the first time it hits 0. Then for α ∈ R, a.s.∫ T0

0
Wα
s ds =

∞ if α ≤ −2
yα <∞ if α > −2.
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Proof. Let us define

∀t ≥ 0, ξt = W̃t −
t

2 , τ(t) = inf
{
s ≥ 0 :

∫ s

0
exp(2ξu) du > t

}
,

for a Brownian motion (W̃t)t≥0 with the convention that inf O6 =∞ and ξ∞ = −∞.
The Lamperti representation of positive self-similar processes [143] shows that Wt

stopped at T0 satisfies the equality in distribution

(Wt∧T0)t≥0
(d)= (exp(ξτ(t)))t≥0.

Thus ∫ t∧T0

0
Wα
s ds (d)=

∫ t

0
exp(αξτ(s)) ds =

∫ τ(t)

0
exp((2 + α)ξs) ds,

and ∫ T0

0
Wα
s ds (d)=

∫ ∞
0

exp((2 + α)ξs) ds,

which yields the result.

Proof of Lemma 3.24. Consider a n-dimensional Wright-Fisher diffusion (X1, . . . , Xn).
A calculation of Doob’s h-transform using the harmonic function

h(x1, . . . , xn) = P

(
lim
t→∞

X1(t) = 1
∣∣∣∣X1(0) = x1, . . . , Xn(0) = xn

)
= x1

shows that the process (X1, . . . , Xn) conditioned on {limt→∞X1(t) = 1} = {ζ1 =∞}
is distributed as the unique solution to the equation

dX1 = (1−X1) dt+
n∑
j=2

√
X1Xj dW1,j,

∀i ≥ 2, dXi = −Xi dt+
n∑
j=1
j 6=i

√
XiXj dWi,j,

where (Wi,j)i<j are independent Brownian motions, and Wi,j = −Wj,i. We will
prove that the process (Z1, . . . , Zn) solves this equation.

Now consider a (n− 1)-dimensional Wright-Fisher diffusion (X ′2, . . . , X ′n) inde-
pendent of Y1 which solves

∀i ≥ 2, dX ′i =
n∑
j=2
j 6=i

√
X ′iX

′
j dW ′

i,j,

where (W ′
i,j)i<j are independent Brownian motions and W ′

i,j = −W ′
j,i. We start

by giving the equation solved by the process (Y1, X
′
2 ◦ τ1, . . . , X

′
n ◦ τ1). Notice that

here, only a subset of the processes are time-changed, and that τ1 explodes in finite
time. For these two reasons, let us realize the time-change carefully.

We transform τ1 into a family of finite stopping times. Our first task is to prove
that τ1 goes continuously to infinity, we do this using the speed function and scale
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measures of the diffusion Y1, see e.g. [56]. If we define D = 1/Y1, then by Itô’s
formula,

dD = −
√
D − 1D dW1, ∀t ≥ 0, [D,D]t =

∫ t

0
(D(s)− 1)D(s)2 ds.

Recall that S1 stands for the first time when Y1 hits one. Using Dubins-Schwarz
theorem, see for instance Theorem 18.4 of [120], we obtain that

∫ S1

0

1
1− Y1(s) ds =

∫ S1

0

D(s)
D(s)− 1 ds

=
∫ S1

0

W̃1([D,D]s)
W̃1([D,D]s)− 1

ds =
∫ T1

0

1
(W̃1(s)− 1)2W̃1(s)

ds

where W̃1 is a Brownian motion (on a possibly larger probability space) started at
1/Y1(0), and T1 is the first time when W̃1 hits 1. We now know from Lemma 3.26
that this integral is a.s. infinite, and thus that τ1 goes continuously to infinity, and
does not “jump to infinity”.

Further consider the times

∀i ≥ 2, Si = inf{t ≥ 0 : X ′i(t) = 1}, S = min(S2, . . . , Sn).

At time S, one of the families has reached fixation, and thus for t ≥ S we have
X ′i(t) = X ′i(S). Therefore, for all t ≥ 0, we have X ′i(τ1(t)) = X ′i(τ1(t) ∧ S), where
the stopping time τ1(t) ∧ S is now a.s. finite, and t 7→ τ1(t) ∧ S is continuous.
(The continuity requires that τ1 does not jump to infinity.) Thus, by making a
time-change in the following integrals, see e.g. [120], Theorem 17.24, we obtain

∀t ≥ 0, X ′i(τ1(t)) = X ′i(τ1(t) ∧ S)

=
n∑
j=2
j 6=i

∫ τ1(t)∧S

0

√
X ′i(s)X ′j(s) dW ′

i,j

=
n∑
j=2
j 6=i

∫ t

0

√
X ′i(τ1(s) ∧ S)X ′j(τ1(s) ∧ S) dW ′

i,j(τ1(s) ∧ S)

=
n∑
j=2
j 6=i

∫ t

0

√√√√X ′i(τ1(s))X ′j(τ1(s))
1− Y1(s) dW̃i,j

where
∀t ≥ 0, W̃i,j(t) =

∫ t

0

√
1− Y1(s) dW ′

i,j(τ1(s) ∧ S).

A direct computation of the quadratic variations gives

∀i, j, t ≥ 0, [W̃i,j, W̃i,j]t = t ∧ S,
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and the crossed variations are null. Thus a multidimensional version of Dubins-
Schwarz theorem, see e.g. Theorem 18.4 in [120], shows that we can find indepen-
dent Brownian motions (Ŵi,j)i<j such that W̃i,j(t) = Ŵi,j(t ∧ S). This proves that
the time-changed processes solve

∀t ≥ 0, X ′i(τ1(t)) =
n∑
j=2
j 6=i

∫ t

0

√√√√X ′i(τ1(s))X ′j(τ1(s))
1− Y1(s) dŴi,j.

Finally, setting X̂i := X ′i◦τ1 and applying Itô’s formula to the process (Y1, X̂2, . . . , X̂n)
with the function

(x1, . . . , xn) 7→ (x1, (1− x1)x2, . . . , (1− x1)xn)

we obtain that for all i ≥ 2,

dZi = −X̂i dY1 + (1− Y1) dX̂i

= −X̂i(1− Y1) dt− X̂i

√
Y1(1− Y1) dW1 +

n∑
j=2
j 6=i

√
(1− Y1)X̂iX̂j dŴi,j

= −Zi dt− Zi
√

Z1

1− Z1
dW1 +

n∑
j=2
j 6=i

√
ZiZj

1− Z1
dŴi,j,

where (Z1, . . . , Zn) is defined as in the statement of the result. A straightforward
computation of the quadratic variations shows that (Z1, . . . , Zn) is distributed as
(X1, . . . , Xn) conditioned on {ζ1 =∞} and proves the result.

We can now proceed inductively. Let us set up the notation for the proof.
Consider i.i.d. processes (Y1, . . . , Yn−1) such that

∀i ≥ 1, dYi = (1− Yi) dt+
√
Yi(1− Yi) dWi

where (W1, . . . ,Wn−1) are independent Brownian motions. We set Z̃1 = Y1, and

∀t ≥ 0, τ̃1(t) =
∫ t

0

1
1− Z̃1(s)

ds.

We then define recursively, for i < n− 1,

∀t ≥ 0, Z̃i+1(t) = (1− Z̃1(t)− · · · − Z̃i(t))Yi+1(τ̃i(t))

∀t ≥ 0, τ̃i+1(t) =
∫ t

0

1
1− Z̃1(s)− · · · − Z̃i+1(s)

ds.

We finally set Z̃n = 1− Z̃1 − · · · − Z̃n−1.

Proposition 3.27. The collection of process (Z̃1, . . . , Z̃n) defined above is dis-
tributed as a n-dimensional Wright-Fisher diffusion conditioned on {ζn < · · · < ζ1}.
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Proof. We prove the result inductively. For n = 2, conditioning (X1, X2) on its
extinction order amounts to conditioning it on the fixation of X1, and Lemma 3.24
shows that the result holds.

Let (Y1, . . . , Yn−1) be the i.i.d. diffusions defined above. We first define

∀t ≥ 0, Z̃ ′2(t) = Y2(t), ∀t ≥ 0, τ̃ ′2(t) =
∫ t

0

1
1− Z̃ ′2(s)

ds

and then define inductively, for i < n− 1,

∀t ≥ 0, Z̃ ′i+1(t) = (1− Z̃ ′2(t)− · · · − Z̃ ′i(t))Yi+1(τ̃ ′i(t)),

∀t ≥ 0, τ̃ ′i+1(t) =
∫ t

0

1
1− Z̃ ′2(s)− · · · − Z̃ ′i+1(s)

ds,

and Z̃ ′n = 1 − Z̃ ′2 − · · · − Z̃ ′n−1. By induction, we can suppose that (Z̃ ′2, . . . , Z̃ ′n)
is distributed as a (n − 1)-dimensional Wright-Fisher diffusion conditioned on its
extinction order. We first claim that the process defined as

∀t ≥ 0, Z̃1(t) = Y1(t),
∀i > 1, ∀t ≥ 0, Z̃i(t) = (1− Z̃1(t))Z̃ ′i(τ̃1(t))

is distributed as a n-dimensional Wright-Fisher diffusion conditioned on its extinc-
tion order.

To see this, let (X2, . . . , Xn) be a (n − 1)-dimensional unconditioned Wright-
Fisher diffusion, independent of Y1, and recall the definition of (Z1, . . . , Zn) from
Lemma 3.24. Consider

ζ ′i = inf{t ≥ 0 : Zi(t) = 0}, ζi = inf{t ≥ 0 : Xi(t) = 0}

the extinction times of Zi and Xi. Lemma 3.24 ensures that (Z1, . . . , Zn) is dis-
tributed as a Wright-Fisher diffusion conditioned on the fixation of Z1. Thus, the
process (Z1, . . . , Zn) further conditioned on {ζ ′n < · · · < ζ ′2} has the distribution of
a Wright-Fisher diffusion conditioned on its extinction order. Now notice that

{ζ ′n < · · · < ζ ′2} = {ζn < · · · < ζ2}.

Thus conditioning (Z1, . . . , Zn) on {ζ ′n < . . . ζ ′2} amounts to conditioning (X2, . . . , Xn)
on {ζn < · · · < ζ2}, that is, conditioning it on its fixation order. As {ζn < · · · < ζ2}
is independent of Z1, conditioning the process (Z1, . . . , Zn) on this event is equiva-
lent to replacing (X2, . . . , Xn) by (Z̃ ′2, . . . , Z̃ ′n) in the construction of (Z1, . . . , Zn),
and this proves the claim.

It only remains to show that Z̃i+1 as defined in the proof can be written

∀i > 1, Z̃i+1(t) = (1− Z̃1(t)− · · · − Z̃i(t))Yi+1(τ̃i(t)).

A direct calculation first shows that, for i > 1 and t ≥ 0,
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τ̃i(t) =
∫ t

0

1
1− Z̃1(s)− · · · − Z̃i(s)

ds

=
∫ t

0

1
1− Z̃1(s)− (1− Z̃1(s))Z̃ ′2(τ̃1(s))− · · · − (1− Z̃1(s))Z̃ ′i(τ̃1(s))

ds

=
∫ t

0

1
1− Z̃ ′2(τ̃1(s))− · · · − Z̃ ′i(τ̃1(s))

1
1− Z̃1(s)

ds

= τ̃ ′i(τ̃1(t)),

and the result follows.

We end this section by pointing out the following fact that will be required in
the next section. We have only defined the Wright-Fisher diffusion conditioned on
its extinction order for an initial condition (x1, . . . , xn) such that for all 1 ≤ i ≤ n,
xi > 0. Nevertheless, the processes Yi have an entrance boundary at 0. Thus
there exists a unique extension of the process (Y1, . . . , Yn−1) started from (0, . . . , 0)
that remains Feller, see e.g. [120], Theorem 23.3. This shows that a Wright-Fisher
diffusion conditioned on its fixation order (Z̃1, . . . , Z̃n) admits a Feller extension
for the initial condition (0, . . . , 0, 1).

3.5.3 Proof of Theorem 3.3
Let (ρt)t≥0 be a Fleming-Viot process, and let (ei)i≥1 be its Eves. In this section
we end the proof of Theorem 3.3 by showing that the distribution of the sequence
of processes (ρt({e1}), ρt({e2}), . . . ; t ≥ 0) is that of a Wright-Fisher diffusion
conditioned on its fixation order.

The result we want to prove is the direct extension of Theorem 4 of [21]. Refor-
mulated in our setting, this theorem proves that (ρt({e1}); t ≥ 0) is distributed as
the solution to (3.4) started from 0. We now give a similar representation for the
process (ρt({e1}), . . . , ρt({en}); t ≥ 0) giving the size of the progeny of the first n
Eves.

Proposition 3.28. Let (ρt)t≥0 be a Fleming-Viot process, and (ei)i≥1 be its Eves.
Then for any n ≥ 1, the process (ρt({e1}), . . . , ρt({en}); t ≥ 0) is distributed as
(Z̃1, . . . , Z̃n) where (Z̃1, . . . , Z̃n+1) is a (n+ 1)-dimensional Wright-Fisher diffusion
conditioned on its extinction order, started from (0, . . . , 0, 1).

Proof. We realize a similar computation as in the proof of Theorem 4 of [21]. The
proof requires three facts. First notice that

lim
m→∞

ρt
((
bmeic
m

, bmei+1c
m

])
= ρt({ei}).

Then, if I1, . . . , In are n disjoint intervals of length 1/m, due to exchangeability of
the increments of bridges, the process (ρt(I1), . . . , ρt(In); t ≥ 0) is distributed as
the process (

ρt
((

0, 1
m

])
, . . . , ρt

((
n−1
m
, n
m

])
; t ≥ 0

)
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which is distributed as the n first coordinates of a (n+1)-dimensional Wright-Fisher
diffusion started from ( 1

m
, . . . , 1

m
, 1− n

m
).

Finally, notice that on the event {∀i 6= j ∈ {1, . . . , n}, bmeic 6= bmejc}, condi-
tioning the process (

ρt
((

0, 1
m

])
, . . . , ρt

((
n−1
m
, n
m

])
; t ≥ 0

)
on its extinction order as in Section 3.5.2 is equivalent to conditioning it on the
location of the Eves, i.e., on the event

{
∀k ∈ {1, . . . , n}, ek ∈

(
k−1
m
, k
m

]}
.

We can now proceed to the calculation. Let 0 ≤ t1 < · · · < tp and let ϕ1, . . . , ϕp
be continuous bounded functions. Consider (Z̃1, . . . , Z̃n+1) a (n + 1)-dimensional
Wright-Fisher diffusion conditioned on its extinction order. Then

E

[
ϕ1
(
ρt1({e1}), . . . , ρt1({en})

)
. . . ϕp

(
ρtp({e1}), . . . , ρtp({en})

)]

= lim
m→∞

m−1∑
i1=0

. . .
m−1∑
in=0

E

[
ϕ1
(
ρt1
((

i1
m
, i1+1

m

])
, . . . , ρt1

((
in
m
, in+1

m

]))
. . .

ϕp
(
ρtp
((

i1
m
, i1+1

m

])
, . . . , ρtp

((
in
m
, in+1

m

]))
1{
∀k∈{1,...,n}, ek∈

(
ik
m
,
ik+1
m

]}]

= lim
m→∞

mnE

[
ϕ1
(
ρt1
((

0, 1
m

])
, . . . , ρt1

((
n−1
m
, n
m

]))
. . .

ϕp
(
ρtp
((

0, 1
m

])
, . . . , ρtp

((
n−1
m
, n
m

]))
1{∀k∈{1,...,n}, ek∈( k−1

m
, k
m ]}

]
= lim

m→∞
E

[
ϕ1
(
Z̃1(t1), . . . , Z̃n(t1)

)
. . . ϕp

(
Z̃1(tp), . . . , Z̃n(tp)

)
| Z̃1(0) = · · · = Z̃n(0) = 1

m

]
= E

[
ϕ1
(
Z̃1(t1), . . . , Z̃n(t1)

)
. . . ϕp

(
Z̃1(tp), . . . , Z̃n(tp)

)
| Z̃1(0) = · · · = Z̃n(0) = 0

]
,

where, the last line comes from the Feller property of the process (Z̃1, . . . , Z̃n+1).

Our current proof of Theorem 3.3 relies on calculations specific to the Wright-
Fisher diffusion. We end this section by discussing a potential alternative proof of
this result that would more easily generalize to Beta-coalescents.

The Feller branching diffusion describes the size of a population where different
individuals die and reproduce independently. Similarly to the Fleming-Viot pro-
cess, it is possible to define a measure-valued process, called the Dawson-Watanabe
process, that encodes the size of the offspring of each individual in the initial popu-
lation, see e.g. [55]. (Note that there are no mutations here, i.e., no spatial motion
of the particles.) Its total mass is then distributed as a Feller diffusion. Start-
ing from a Dawson-Watanabe process, one can renormalize it by its total mass
to obtain a process valued in the space of probability measures. Then the result-
ing renormalized process is distributed as a time-changed Fleming-Viot process,
see [26].

Let us now discuss the results of Section 3.5.2 in the light of this new con-
struction. The key point of Section 3.5.2 is that after removing one family from a
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Fleming-Viot process and renormalizing the remainder of the population to have
mass one, the resulting process remains distributed as an independent time-changed
Fleming-Viot process. Suppose that the Fleming-Viot process has been obtained
by renormalizing a Dawson-Watanabe process. Then removing a family from the
Fleming-Viot process amounts to removing a family from the original Dawson-
Watanabe process. By the branching property, removing this family does not
change the distribution of the remainder of the population, which remains dis-
tributed as an independent Dawson-Watanabe process. Thus when renormalizing
the remainder of the population to have size one, we obtain a new time-changed
Fleming-Viot process, independent of the removed family. In other words, the
results of Section 3.5.2 essentially originate from the fact that the Fleming-Viot
process can be seen as a renormalized branching measure-valued process.

A similar link has been obtained in [26] between the Λ-Fleming-Viot processes
associated to Beta-coalescents and a family of α-stable measure-valued branch-
ing processes. Thus we believe that one could derive a similar, but less explicit,
representation of the asymptotic frequencies of the stationary distribution of the
Beta-coalescents with erosion than the one obtained in Theorem 3.3.
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Appendices for Chapter 3

3.A Proof of Proposition 3.17
In this section, we prove that the ancestral process of Kingman’s coalescent with
immigration is Markovian. To do this, consider a version of Kingman’s coalescent
with immigration (Π̄t)t∈R, and let (Π̄i)i∈Z be its embedded chain, i.e., the sequence
of states visited by (Π̄t)t∈R, where Π̄0 is the state at time t = 0. We count the
number of trajectories of (Π̄i)i∈Z that produce a given trajectory of (Ai)i≥0, the
embedded chain of (At)t≥0.

First, note that given the values of (Π̄−n, . . . , Π̄0) and a uniform permutation σ
of the blocks of Π̄0, one can uniquely reconstruct the values of (A0, . . . ,An). We
now fix a sequence (a0, . . . , an) of possible values of (A0, . . . ,An), and a partition
π̄−n with |an| blocks, where |an| is the total number of particles of an. Our first task
is to count the number of trajectories of (Π̄−n, . . . , Π̄0) starting from π̄−n, and of
labelings σ of the blocks of Π̄0 such that (A0, . . . ,An) = (a0, . . . , an). Before stating
the result we need to introduce one notation. The variable Ak+1 is obtained from
Ak by splitting or killing one particle. Let us denote `k the label of this particle.
That is, `k is the unique integer such that

|Ak+1(`k)−Ak(`k)| = 1, ∀i 6= `k, |Ak+1(i)−Ak(i)| = 0.

Lemma 3.29. Fix a sequence of states (a0, . . . , an) of (A0, . . . ,An), and a parti-
tion π̄−n of {i ∈ Z : i ≤ −n} with |an| blocks. Then the number of trajectories of
(Π̄−n, . . . , Π̄0) and labelings of the blocks of Π̄0 such that (A0, . . . ,An) = (a0, . . . , an)
and Π̄−n = π̄−n is

|an|!
2b a0(`0) . . . an−1(`n−1),

where b is the number of birth events along the sequence (a0, . . . , an).

Proof. Each trajectory of (Π̄−n, . . . , Π̄0) naturally encodes a forest that can be
built through the following procedure, which is illustrated in Figure 3.2. Choose
any labeling of the blocks of Π̄−n, and for each block add an initial leaf with the
corresponding label. Suppose that the forest corresponding to (Π̄−n, . . . , Π̄−k) has
been built. If Π̄−k+1 is obtained from Π̄−k by immigrating a new particle, then
add a new isolated vertex. Otherwise, a coalescence event has occurred between
two blocks of Π̄−k. Then add a new internal node and connect it to the nodes
corresponding to the two blocks that have coalesced. Once the forest representing
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126 Kingman’s coalescent with erosion

(Π̄−n, . . . , Π̄0) is built, by construction the nodes corresponding to Π̄0 all belong
to different trees. We set them to be the roots of their respective trees, and label
them according to the partition σ. (Notice that the resulting forest is endowed
with some additional structure: the nodes added along the procedure are totally
ordered by the induction step at which they have been added.)

Counting trajectories of (Π̄−n, . . . , Π̄0) now amounts to counting forests. Instead
of building the forests by starting from the leaves as above, we build a forest with
ancestral sequence (a0, . . . , an) by starting from the roots. Initially, consider a set
of |a0| roots, labeled by {1, . . . , |a0|}, that represent the particles of a0. Nodes
can be in two states: active or inactive. Active nodes represent the particles that
are still alive in the population while inactive nodes represent the dead particles.
Initially all roots are active. We build the forest recursively. Suppose that at step
k we have built a forest such that for all i there are ak(i) nodes that are active
in the tree with root i. If a particle with label `k has died from ak to ak+1, we
inactivate one of the nodes belonging to the tree with root `k. There are ak(`k)
such nodes. Similarly, if a particle has split from ak to ak+1, we inactivate one
node in the tree `k, and connect it to two new active nodes. There are again ak(`k)
active nodes in the tree `k. After step n, we have built a forest with ancestral
sequence (a0, . . . , an). We assign the blocks of Π̄−n to the remaining active nodes
of the forest by choosing one of the |an|! permutations of the blocks.

There are
|an|! a0(`0) . . . an−1(`n−1)

possible outputs of the previous construction, and all forests with ancestral se-
quence (a0, . . . , an) can be obtained that way. However, due to symmetries, some
forests can be obtained multiple times through this construction. More precisely,
at each birth event, the two daughter nodes are indistinguishable. Interchanging
the trees corresponding to the offspring of these two nodes yields the same forest.
Thus, the actual number of forests with ancestral sequence (a0, . . . , an) is

|an|!
2b a0(`0) . . . an−1(`n−1)

where b is the number of birth events, and the result is proved.

Lemma 3.30. Let (Mt)t∈R be the process counting the number of blocks of King-
man’s coalescent with immigration. Then (Mt)t∈R is a stationary Markov process
such that conditional on {Mt = k}, it jumps to

• k + 1 at rate d;

• k − 1 at rate k(k − 1)/2.

Moreover (Mt)t∈R is a reversible process.

Proof. Let us consider a version of Kingman’s coalescent with immigration built
from a Poisson point process P . Let us first show that (Mt)t∈R is a Markov process.
Conditional on Mt = k, each of the k(k − 1)/2 pairs of blocks coalesce a rate one,
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and new atoms of P immigrate at rate d. Thus, (Mt)t∈R goes to k − 1 at rate
k(k − 1)/2 and to k + 1 at rate d.

Let us now argue that the family of variables (Mt)t∈R is tight. Fix t ∈ R and
let T be the location of the most recent atom of P before time t. Then t − T is
exponentially distributed with parameter d, and Mt is distributed as the number
of blocks of Πt−T , where (Πs)s≥0 is a version of Kingman’s coalescent started with
MT blocks. Thus Mt is stochastically dominated by the number of blocks Π′t−T ,
where (Π′s)s≥0 is a version of Kingman’s coalescent started from an infinite number
of blocks. As each variable Mt is stochastically dominated by the same variable,
the family is tight.

It is not hard to see that a Markov process jumping from k to k + 1 at rate d,
and from k to k− 1 at rate k(k− 1)/2 admits a unique stationary distribution. As
it is irreducible we have

∀k ≥ 1, P(Mt = i |Ms = j) −→
t→∞

P(M∞ = i).

Thus, using the tightness of (Mt)t≥0, we have

P(Mt = i) =
∑
j≥1
P(Ms = j)P(Mt−s = i |Ms = j) −→

s→−∞
P(M∞ = i).

Let us compute the stationary distribution of (Mt)t∈R. As (Mt)t∈R jumps from
k to k + 1 at rate d and from k to k − 1 at rate k(k − 1)/2, a usual calculation
shows that its stationary distribution (νk)k≥1 is

∀k ≥ 1, νk ∝
(2d)k

k! (k − 1)!

where the renormalization constant is obtained by summing over all the terms.
Thus a direct calculation now proves that (νk)k≥1 fulfills the detailed balance equa-
tion

∀k ≥ 1, dνk = k(k + 1)
2 νk+1

and thus that (Mt)t∈R is reversible.

We are now ready to prove Proposition 3.17

Proof of Proposition 3.17. Recall the notations from Section 3.3.1. As proved in
Lemma 3.30, the process (Mt)t∈R that counts the number of the blocks of King-
man’s coalescent with immigration is a reversible Markov process. Thus, the pro-
cess (Nt)t≥0 that gives the number of particles of (At)t≥0 is a stationary process
jumping from k to k+1 at rate d, and from k to k−1 at rate k(k−1)/2. Hence, the
result is proved if we show that conditional on the sequence of states (N0, . . . , Nn)
visited by (Nt)t≥0, the type of the particle that dies or splits from Ak to Ak+1 is
chosen with a probability proportional to the vector Ak.

Let b denote the number of birth events along the sequence (a0, . . . , an). (Hence,
forward in time, there are n− b immigration events.) We have
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P(A0 = a0, . . . ,An = an)
=

∑
(π̄−n,...,π̄0)

∑
s

P
(
∀i < n, Π̄−i = π̄−i, σ = s

∣∣∣ Π̄−n = π̄−n
)
P
(
Π̄−n = π̄−n

)

where the sum is taken over all partitions π̄−n of {i ∈ Z : i ≤ −(n− b)} with
|an| blocks, all trajectories (π̄−n+1, . . . , π̄0) and labelings s of the blocks of π̄0
such that (A0, . . . ,An) = (a0, . . . , an). Now notice that the probability of see-
ing such a trajectory and labeling does only depend on the sequence of number
of blocks (|a0|, . . . , |an|). Indeed, conditional on (|a0|, . . . , |an|), two trajectories
(Π̄−n, . . . , Π̄0) are identical up to the choice of the pairs of blocks that merge at
each coalescence event, and these pairs are chosen uniformly.

Thus the probability of the event {A0 = a0, . . . ,An = an} is proportional to the
number of terms in the sum, and thus to the number of trajectories of (Π̄−n, . . . , Π̄0)
that correspond to this ancestral sequence. Hence, Lemma 3.29 shows that

P(A0 = a0, . . . ,An = an) = C(|a0|, . . . , |an|)a0(`0) . . . an−1(`n−1),

where the coefficient C(|a0|, . . . , |an|) only depends on (|a0|, . . . , |an|). This proves
the result.

Let us end this section by discussing a possible extension to Λ-coalescents.
The key point here is that conditional on the block counting process, the particles
that die or split are chosen uniformly in the population. This is a consequence
of 1) Lemma 3.29 and 2) the fact that all trajectories with a given sequence of
number of blocks have the same probability. The second point is a consequence of
exchangeability so remains valid for Λ-coalescents. As for Lemma 3.29, the proof
could be easily adapted to Λ-coalescents with immigration. (The factor 2b should
be replaced by the product of the number of blocks involved in coalescence events.)

Thus, the only difference between Kingman’s coalescent with immigration and
more general Λ-coalescents with immigration is that the block counting process is
no longer reversible. Hence we cannot obtain a closed form for the transition rates
of the corresponding ancestral processes. Nevertheless, we believe that in some
cases it should be possible to obtain a result similar to Theorem 3.5 by using the
same techniques as in this paper, if one can derive a good enough approximation
for the stationary distribution of the number of blocks.
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4

The spatial Muller’s ratchet:
Surfing of deleterious mutations

during a range expansion

This chapter is joint work with Alison Etheridge. It is published in Theoretical
Population Biology [78].

Illustration. Simulation of the spatial Muller’s ratchet in two dimensions. The
interpretation of the colors is described in the caption of Figure 4.6.

4.1 Introduction
Gene surfing and expansion load. The genetics of range expansion is a com-
plex topic that has attracted much attention. In a pioneering work, [54] reported
that during a range expansion a neutral mutant appearing in the front of an ex-
pansion could rapidly spread over a vast region of space. This phenomenon was
further studied in [129] and dubbed gene surfing, see Figure 4.1 for an illustra-
tion. Gene surfing originates from two features of range expansions. First, the
population density is lower at the range’s margin than in its core, where the pop-
ulation has had more time to grow to carrying capacity. Thus a mutant that
appears there is already in relatively high frequency among the few individuals
in the front. Moreover, individual-level demographic stochasticity, which is the
cause of population-level genetic drift, can lead to a further rapid increase of the
local frequency of this mutant. Second, population spread can be caricatured by
successive founding events, where a few individuals migrate to an empty habitat
and grow a new subpopulation. Individuals living at the edge are more likely to
be recruited to found these new subpopulations as they are spatially closer to the
empty habitats. In other words, individuals that form the subsequent front are
sampled from the current front, not from the bulk. Combining these two features,
the initial increase in frequency of the mutant at the front (which is the result
of the small population size) gets amplified by the successive resampling from the
front, and the mutant can reach a high frequency over a large spatial area, see
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(a) (b) (c)

Figure 4.1: Illustration of gene surfing: (a) a mutant (in green) appears in the front
of an expanding population; (b) the mutant rapidly reaches fixation in the front; (c) the
mutant offspring further expand, leading to a clear allele segregation.

Figure 4.1, panel (c). Gene surfing is now a well-understood phenomenon, that has
been assessed both theoretically [54, 129, 211, 99], and empirically using microbial
growth experiments [98, 100] or naturally occuring genetic data [88]. See [63, 62]
for reviews of this topic.

The very first step of the surfing phenomenon is the local increase in frequency
of an allele at the front, resulting from the increased growth rate when population
density is low. Increased genetic drift at the front makes reaching fixation easier
for both neutral and deleterious mutants. Hence it is not surprising that delete-
rious mutations can also surf [211]. As deleterious mutations are more frequent
than beneficial ones [64], it has been predicted and assessed in [172] that fitness
at the front is decreasing during a range expansion, due to successive surfing of
deleterious mutations along the expansion axis. This reduction in fitness due to
range expansion is known as expansion load. Expansion load is thus the additional
fitness disadvantage that a population has accumulated during a range expansion,
due to a reduced ability of selection to purge deleterious mutations, see [170] for a
review. While expansion load has been clearly highlighted using simulations [172,
173, 174, 85], genomic evidence of an expansion load remains a debated topic [47,
200]. The presence of an expansion load has been reported in human populations
after the Out of Africa expansion [108, 171], and in plants [87, 218], see [170] for a
review.

Impact of an Allee effect. A population exhibits an Allee effect if its maximal
per-capita growth rate is achieved at intermediate population density rather than
at low population density. The Allee effect is said to be strong if the per-capita
growth rate is negative at low population density, that is if the population is unable
to grow under a certain critical density threshold [30, 206]. Otherwise the Allee
effect is weak. Allee effects arise in many biological contexts, including for example
the presence of cooperation, or the difficulty in finding mates for reproduction [132,
203].

In the context of range expansion, an Allee effect shifts the location of the indi-
viduals with the highest per-capita growth rate towards the bulk of the population,
see Figure 4.2 panel (a). In the absence of an Allee effect, individuals at the lead-
ing edge of the front, where the population density is the lowest, have the highest



134 The spatial Muller’s ratchet

growth rate. The wave is pulled by these individuals in the front. Conversely, if
the Allee effect is strong enough, individuals with the highest growth rate are lo-
cated midway between the front and the bulk of the population. The wave is then
pushed by the bulk of the population. The distinction between pushed and pulled
waves is a well-established paradigm of the reaction-diffusion literature, see [204,
213]. The correspondence between the pulled/pushed nature of the waves and the
absence/presence of an Allee effect is not perfect. A weak Allee effect can lead to
both pulled and pushed waves, as is for instance the case in the model considered
in [27]. Nevertheless, an Allee effect is a necessary condition for the wave to be
pushed [204], and a strong Allee effect is a sufficient one.

From a genetic perspective, an Allee effect increases the “effective population
size” of the front. Individuals that leave the largest number of offspring are either
located in the front in the pulled case, or towards the bulk in the pushed case.
Thus, we expect that only the very few individuals far in the front contribute to
the genetic pool of the population in a pulled wave, leading to a more drastic
loss of diversity than in a pushed wave, see Figure 4.2 for an illustration. Several
theoretical studies have assessed the impact of an Allee effect on the genetics of
range expansion [184, 83, 99, 27] in a neutral setting, let us briefly review their
results.

The authors of [99] considered a stochastic particle system modelling range
expansion, and studied the fixation probability of individuals in the front as a
function of their locations. Using both simulations and analytical approximations,
they provided an expression for the fixation probability, and showed that it reaches
a maximum at a location which is shifting towards the bulk of the population as
the strength of the Allee effect increases. In [184, 83] the authors considered a
deterministic partial differential equation analogous to the celebrated Fisher-KPP
equation [70, 130], which has been widely used to model invading populations.
They divided the total population into several neutral fractions, and studied the
long-term fate of these fractions. They proved that in the pulled case, only the
fraction closest to the front is able to follow the expansion, and that all other
fractions are left behind. In the long run, the population is only composed of the
offspring of the individuals that were initially closest to the front. Conversely in
the pushed case all fractions are able to follow the expansion. Asymptotically,
all individuals in the population leave progeny that live in the front. The long-
term contribution to the front of the various initial fractions can be computed
explicitly, with an expression consistent with the approximate fixation probability
found in [99]. Finally, [27] used simulations and analytical approximations to study
the rate of loss of genetic diversity during a range expansion. They showed that,
as the strength of the Allee effect increases, the loss of genetic diversity is slowed
down.

All the above studies consistently find that an Allee effect impedes gene surfing,
and rescues the genetic diversity in the front of an expanding population. Expan-
sion load originates from successive surfing of deleterious mutants, we thus expect
the presence of an Allee effect to reduce expansion load. Nevertheless, the impact
of an Allee effect on expansion load has never been explicitly tested. All existing
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Figure 4.2: Illustration of the impact of an Allee effect. (a) Solid line: population
density; dashed line: per-capita growth rate. (b) Particles have been labeled in different
colours according to their initial location. (c) Genetic composition of the population after
expansion. In the pulled wave, only the few individuals in the front are the founders of
the new habitats, while in the pushed wave individuals from the bulk also contribute to
the new front.

theoretical studies on expansion load assume logistic growth of the population, in
particular no Allee effect [172, 174, 173]. Moreover, the only analytical results
available for these models have been derived using a serial founder approximation.
In this approximation, the front is supposed to be genetically isolated from the
bulk, and at each time-step, a new front is formed by sampling a few individuals
from the previous front and letting them grow logistically. Even if this approach
yields good approximations of the mean fitness at the front, it misses the continu-
ous gene flow between the bulk and the front that occurs during range expansion,
especially in the presence of an Allee effect. The objectives of the present work are
thus twofold. First we aim to study the impact of an Allee effect on the expansion
load. We will restrict our attention to the case of a weak Allee effect, and will not
consider the impact of a strong Allee effect. Second, we aim to build a model that
is more amenable to continuous space techniques, in order to take into account the
entire dynamics of the expanding population.

A spatial Muller’s ratchet. In order to keep the genetic structure of the pop-
ulation as simple as possible, we consider genetic dynamics similar to that of [97],
leading to a Muller’s ratchet [67, 160]. Muller’s ratchet is a mechanism that was
first proposed as an explanation for the evolution of recombination, it can be for-
mulated as follows. Consider a population of finite size that can only accumulate
deleterious mutations over time. If mutations are irreversible and negatively se-
lected, without drift the population should reach a mutation-selection equilibrium.
Nevertheless, due to genetic drift all individuals without mutations are eventually
lost. At such a time, in the absence of recombination, the minimal number of
mutations in the population is permanently increased by one. We say that the
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ratchet has clicked. At each click of the ratchet the fitness of the population is
decreased and successive clicks of the ratchet should drive it towards extinction. In
the presence of recombination, chromosomes without mutations can be recreated
by recombining two chromosomes with mutations at different loci, rescuing the
population from the ratchet, and thus giving recombination a selective advantage.

In our context, we consider an expanding population where individuals can only
accumulate deleterious mutations, without possible reversion or recombination.
Due to higher genetic drift at the front, we expect the ratchet to click more often
in the front than in the bulk. After a click at the front, we expect the population to
be separated into two distinct regions: one towards the front where the ratchet has
clicked, and the other towards the bulk where the ratchet has not clicked. Despite
their lower fitness, individuals in the front will still be able to colonise new habitat
as the low population density guarantees a positive growth rate. Interestingly,
individuals without mutations have a positive growth rate when they are placed in
a location where the ratchet has clicked, as their fitness is larger. Therefore, the
region where the ratchet has not clicked should also be able to expand into the
region where it has, at a rate depending on the fitness difference between the two
regions. This can be thought of as an inner expansion wave evolving inside the
larger expansion wave of the whole population. Each click of the ratchet should
create a new inner wave of less unfit individuals. Successive rapid clicks of the
ratchet at the front will create an expansion load, but there will be some recovery
of fitness at any given location as fitter individuals from the “bulk” invade. This
phenomenon will be illustrated numerically in the forthcoming Section 4.3.2. Let
us spell out the dynamics of the model more precisely.

4.2 Methods
Description of the model. We consider a population of non-recombining in-
dividuals each carrying a single chromosome. The population is subdivided in
demes indexed by Z. Each individual is entirely characterized by the number of
deleterious mutations it carries and its spatial location. We record as ni,k(t) the
number of individuals carrying k ≥ 0 mutations in deme i ∈ Z at time t ∈ R+, and
let Ni(t) = ∑

k≥0 ni,k(t) be the total population size in deme i. Thus the vector
(ni,k(t); i ∈ Z, k ≥ 0) contains all the information about the population at time t.

Time is continuous and individuals can reproduce, die or migrate according to
the following rules. An individual located in deme i and carrying k mutations gives
birth to a new individual at rate λk(Ni), and dies at rate δ(Ni), where

λk(n) = r(1− s)k(B n

N
+ 1), δ(n) = r(B n

N
+ 1) n

N
. (4.1)

The offspring is located in the same deme as its parent. With probability 1 − µ,
it inherits the same number of mutations as its parent, and with probability µ, it
accumulates an additional one. Finally each individual migrates at rate m, and
goes to one of the two nearest demes with equal probability.
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Let us provide an intuitive description of equation (4.1) and of the parameters
of the model. All deleterious mutations have the same fitness effect s > 0, and
fitness is multiplicative across loci. If B = 0, we recover a stochastic version of
the usual logistic growth, where r is the Malthusian growth parameter and N is
a scaling parameter that can be thought of as the local carrying capacity of the
population. Taking B > 0 introduces a density-dependence in the growth rate of
the population. We think of B as a cooperation parameter, where cooperation acts
on the overall growth rate of the population, which will tune the strength of the
Allee effect. Notice that the function n 7→ λ0(n) − δ(n) is non-negative, and that
it reaches its maximum for n = max(0, N(B−1)

2B ). Thus, for B ≤ 1, the per-capita
growth rate is maximal for n = 0, i.e., there is no Allee effect, while for B > 1,
we see a weak Allee effect. Increasing B increases the strength of that Allee effect,
as it further shifts the location of the maximal per-capita growth rate to higher
population density. This parametrization of the Allee effect is similar to the one
considered in [27].

Large population scalings. As is usual in population genetics, in order to
obtain analytical results about our model, we consider a large population size
scaling. We begin with the deterministic infinite population limit. For a fixed
value of N , let (nNi,k(t); t ≥ 0, i ∈ Z, k ≥ 0) be a realization of the above model,
with population size parameter N and migration rate mN . Let L be a space
renormalization parameter, and for i ∈ Z and x = i/L set

∀k ≥ 0, uNk (x, t) =
nNi,k(t)
N

,

and interpolate the function uNk (·, t) linearly between the points {i/L : i ∈ Z}.
Then a standard generator calculation (see Section 4.A) suggests that provided
the initial condition converges, and mN/L

2 → m, then, as N,L → ∞, (uNk )k≥0
converges to the solution of

U =
∑
k≥0

uk, u−1 ≡ 0,

∀k ≥ 0, ∂tuk = m∂xxuk + r(BU + 1)
[
uk
(
(1− µ)(1− s)k − U

)
+

µ
(
(1− s)k−1uk−1 − (1− s)kuk

)]
,

started from the corresponding initial condition. In what follows, we will always
assume that selection is weak, and that mutation is low, i.e., that s, µ� 1. To the
first order in s and µ, the above equation becomes

U =
∑
k≥0

uk, u−1 ≡ 0,

∀k ≥ 0, ∂tuk = m∂xxuk + r(BU + 1)
(
uk(1− ks− U) + µ(uk−1 − uk)

)
.

(4.2)
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This limit is deterministic and thus does not take genetic drift into account and
we do not observe gene surfing. By retaining terms up to order 1/N in a generator
calculation, we can derive a diffusion approximation for our model that accounts
for finite size fluctuations, see Section 4.A. Under a diffusive scaling, where the
population size is further rescaled by a factor L, and time is rescaled by a factor
L2, when N is large, the process (uk)k≥0 is approximated by the following system
of stochastic partial differential equations

U =
∑
k≥0

uk, u−1 ≡ 0,

∀k ≥ 0, ∂tuk = m∂xxuk + r(BU + 1)
(
uk(1− ks− U) + µ(uk−1 − uk)

)
+
√
r

N
uk(BU + 1)(1− ks+ U)Ẇk,

(4.3)

where (Ẇk)k≥0 are independent space-time white noises.
The above two limits have been obtained by qualitative comparison of the

generator of (uNk )k≥0 for large N . We do not prove the convergence of the process
to any of these limiting objects, which is a highly non-trivial problem. Nevertheless,
see [53, 161] for rigorous treatments of similar convergence results.

Simulation setup. When started from a finite number of individuals, our model
is a simple continuous-time Markov chain that we simulate using the following clas-
sical algorithm: at each iteration of the algorithm, we compute the total transition
rate w̄ of the population and increment the time t by an exponential variable with
mean 1/w̄. The transition that occurs is then chosen independently with proba-
bility proportional to the transition rates. Notice that t will always refer to the
“actual time” of the simulation and not to the number of iterations. In each sim-
ulation, at t = 0 only the first 30 demes are occupied, all other demes are empty.
The initial number of individuals in the occupied demes, and the distribution of
the number of mutations, is chosen according to their deterministic equilibrium
value, computed in (4.7). We restricted the spatial domain to 500 demes and used
reflecting boundary conditions for the migration, i.e., individuals are not allowed
to move outside the domain.

Estimation of the click rate. In order to estimate the click rate, we need
to determine from the simulation the moment when the ratchet has clicked. Let
us denote by nmax

k (t) the location of the right-most deme containing individuals
carrying k mutations at time t, defined as

nmax
k (t) = max{i ∈ {1, . . . , 500} : ni,k(t) > 0}.

We define the approximate first click time T1 of the ratchet as

T1 = inf{t ≥ 0 : ∃s ≥ t, nmax
1 (s)− nmax

0 (s) > d and ∀r ∈ [t, s], nmax
1 (r) > nmax

0 (r)}.

In words, T1 is the first moment when individuals with one mutation get ahead of
individuals with no mutations, and will get d demes ahead before being caught up.
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We set d = 30 by observing from the simulations that once nmax
1 − nmax

0 > d, it
is very unlikely that the inner wave catches up the front of expansion before the
population has colonized the entire habitat.

In order to obtain the mean time to the first click, we averaged T1 over many
simulations for various parameter values. Once the population has expanded, as
there are many more individuals in the bulk than in the front, most of the events
that occur are reproduction events in the bulk. These events are not relevant for
the computation of the click time as individuals far in the bulk will never be able
to reach the front. Thus in order to speed the simulations up, a frame of width d,
co-moving with the front, was used for the simulations of Figure 4.5. We set the
birth, death and migration rates of all individuals in deme i such that i < nmax

1 −d
to 0, and also prevent individuals in deme nmax

1 − d from migrating to the left. We
emphasize that the co-moving frame was only used in the simulations of Figure 4.5
and that all other simulations account for the events that occur in the bulk.

Additionally, we define the time between the k − 1-th and the k-th click as

Tk = inf{t ≥ 0 : ∃s ≥ t, nmax
k (s)− nmax

k−1(s) > d

and ∀r ∈ [t, s], nmax
k (r) > nmax

k−1(r)} − Tk−1. (4.4)

The number of demes that the population has colonized between the k − 1-th and
the k-th click is then given by

dk = nmax
k (T1 + · · ·+ Tk)− nmax

k (T1 + · · ·+ Tk−1).

Two-dimensional simulations. In the two-dimensional simulations, at t = 0 a
five by five square of demes is occupied in the centre of the habitat and all other
demes are empty. The number of individuals in these demes is chosen as in the
one-dimensional case according to the deterministic values computed in (4.7). The
simulation is run until t = 150. (Recall that t = 150 refers to the “actual time” of
the simulation, and not to a number of iterations.) We want to record the number
of clicks of the ratchet at the colonization time in each deme. One naive way of
doing this could be to record for each deme the number of mutations of the first
individual that migrates to this deme. However this would produce an extremely
noisy picture. Even if the ratchet has not clicked yet, many individuals in the front
carry mutations and could by chance migrate first to a new deme. In order to
reduce this noise, we have chosen to look at the population at each time unit of the
“actual time”, i.e., at t = 1, 2, . . . , 150, and to record the least number of mutations
in each newly colonized deme. More precisely, let ni,j;k(t) denote the number of
individuals carrying k mutations in deme (i, j), and let Ni,j be the total number
of individuals in deme (i, j). We define the colonization time tcol

i,j and number of
clicks at colonization kcol

i,j in deme (i, j) to be

tcol
i,j = inf{t ∈ {1, . . . , 150} : Ni,j(t) > 0 and Ni,j(t− 1) = 0}

kcol
i,j = inf{k ≥ 0 : ni,j;k(tcol

i,j ) > 0}.
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4.3 Results

4.3.1 Analysis of the deterministic limit
In this section we study the set of reaction-diffusion equations that we obtained
by taking the deterministic scaling of the model, namely equation (4.2). Simi-
lar reaction-diffusion equations have been widely used to model biological inva-
sions [184, 70]. They are usually studied through their travelling wave solutions.
In our context, a travelling wave solution to (4.2) is a solution (uk)k≥0 that can be
written

∀k ≥ 0, ∀x ∈ R, ∀t ≥ 0, uk(x, t) = ûk(x− ct),
where c > 0 is the wave speed and

∀k ≥ 0, ûk : R→ R+

is the wave shape. A travelling wave solution is thus a constant wave form (ûk)k≥0
that is shifted at a constant speed c towards the positive reals. Additionally, we
impose that the solution connects two stationary points of (4.2), i.e., that

lim
x→∞

ûk(x) = u+
k , lim

x→−∞
ûk(x) = u−k ,

where (u+
k )k≥0 and (u−k )k≥0 are two homogeneous solutions to (4.2). Let us first

study the non-spatial equivalent of (4.2) to obtain the homogeneous solutions of
the system.

Equilibrium of the non-spatial system. Let us consider the following non-
spatial version of (4.2),

∀k ≥ 0, duk
dt = r(BU + 1)

(
uk(1− ks− U) + µ(uk−1 − uk)

)
. (4.5)

Equivalently, this system can be reformulated in terms of the total population size
U and of the vector (pk)k≥0 = (uk/U)k≥0 giving the frequencies of the different
types, that we call the genetic composition of the population. Equation (4.5) is
then equivalent to

dU
dt = rU(BU + 1)(1− sp̄− U), p−1 ≡ 0,

∀k ≥ 0, dpk
dt = r(BU + 1)

(
spk(p̄− k) + µ(pk−1 − pk)

) (4.6)

where we have set
p̄ :=

∑
j≥0

jpj

to be the mean number of mutations. Up to the non-constant population size, equa-
tion (4.6) has already been derived in [57] to describe dynamics of the frequencies
of individuals carrying different numbers of mutations in Muller’s ratchet.
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It is straightforward to see that if (u∗k)k≥0 is a stationary point of (4.5), then
either it is the trivial null equilibrium, or there exists some k0 ≥ 0 such that

∀k < k0, u∗k = 0,

∀k ≥ k0, u∗k = U∗p∗k = (1− µ− k0s)e−µ/s
(µ/s)k−k0

(k − k0)! .
(4.7)

Thus, at the equilibrium, the population size is U∗ = 1− µ− k0s, and the number
of mutations has a Poisson distribution with parameter µ/s, shifted by k0, where
k0 is the number of mutations of the best class.

Recall that a travelling wave solution should connect two stationary points
of (4.5). From the above calculation, we conclude that equation (4.2) has at most
two different types of travelling waves. Travelling waves that connect the trivial
null equilibrium with a non-trivial equilibrium of the form (4.7). Travelling waves
connecting two equilibria of the form (4.7) for different values of k0. The former
travelling wave corresponds to the expansion of a population in an empty available
habitat. We call it a population travelling wave. The latter wave corresponds to
the invasion of fitter individuals in a region where the ratchet has clicked. The
total population size remains almost constant, but the genetic composition of the
population shifts from one Poisson equilibrium to the other. We call it a genetic
travelling wave. Let us now study these two kinds of waves separately.

Population travelling wave. We first prove the existence of population trav-
elling waves. We can write (4.2) in terms of the total population size and of the
genetic composition. Equation (4.2) is then equivalent to

∂tU = m∂xxU + rU(BU + 1)(1−−sp̄− U), p−1 ≡ 0,
∀k ≥ 0, ∂tpk = m(∂xxpk + 2∂x log(U)∂xpk)

+r(BU + 1)
(
spk(p̄− k) + µ(pk−1 − pk)

)
.

(4.8)

Suppose that the initial genetic composition is Poisson with parameter µ/s for all
x ∈ R. Then, as the Poisson distribution is a stationary point of (4.5), (pk)k≥0
remains Poisson for all x, t, and the equation for U now reads

∂tU = m∂xxU + rU(BU + 1)(1− µ− U). (4.9)

Up to a scaling in time and space, the above equation has already been considered
in [27, 96], and we know from [96] that it admits a travelling wave solution for all
speeds c ≥ c0, where c0 is given by

c0 =


2
√
mr(1− µ) if B ≤ 2

1− µ√
mr

2B (B(1− µ) + 2) if B ≥ 2
1− µ.

(4.10)
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Figure 4.3: Simulation of (4.2) with different initial conditions. (a, c) Population
travelling wave at t = 0 (a) and t = 50 (c). (b, d) Genetic travelling wave at t = 0 (b)
and t = 250 (c); the initial condition is of the form (4.11) for x0 = 20. Parameter values
are r = 1, m = 0.1, s = 0.05, µ = 0.025, B = 0.

Thus, if Û is the wave form of a travelling wave solution with speed c of (4.9), then

∀k ≥ 0, ∀x ∈ R, ∀t ≥ 0, uk(x, t) = e−µ/s
(µ/s)k
k! Û(x− ct)

is a population travelling wave solution to (4.2). In this case, for B ≤ 2/(1 − µ),
the population wave is pulled, as it has the same minimal speed as the linearized
version of (4.2), while for B ≥ 2/(1 − µ) the wave is pushed. In addition to the
existence of travelling wave solutions to (4.9), there exist several results concerning
the convergence to these travelling waves for various initial conditions, see e.g.
Theorem 4.1 and Theorem 4.3 from [2]. These results can be directly adapted to
the solutions of (4.2), started from a Poisson genetic composition.

As a remark, the above population travelling wave connects the null equilibrium
with the equilibrium (4.7) for k0 = 0. In a similar way we can find a population
travelling wave for all k0 ≥ 0, the corresponding wave speed is obtained by replacing
the term µ by µ+ k0s.

Genetic travelling wave. We simulated numerically equation (4.2) with initial
condition

∀x ∈ R, ∀k ≥ 0, uk(x, 0) =


(1− µ)e−µ/s (µ/s)k

k! if x ≤ x0

(1− µ− s)e−µ/s (µ/s)k−1

(k − 1)! if x > x0,

(4.11)
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for some x0 ∈ R, see Figure 4.3. The population is initially divided into two
regions, one towards the positive reals where the fittest individuals carry one dele-
terious mutation, the other towards the negative reals where the fittest individuals
carry no mutation. The initial condition of the former region approximates the
state of the population after one click of the ratchet, while that of the latter region
approximates the state of the population when no click has occured. Thus, equa-
tion (4.11) corresponds to the situation where fit individuals from the bulk invade
a region where the ratchet has clicked once. A travelling wave rapidly forms at the
onset of the simulation. Such a wave connects the equilibrium given by (4.7) with
k0 = 0, to that with k0 = 1, and corresponds to a genetic travelling wave.

We do not prove the existence of such a wave. Nevertheless, we are able to give
an upper bound on the speed at which individuals with no mutations spread. Let
us suppose that the total population size U is non-increasing in space, as observed
in the simulations. Then, the following bounds would hold,

U∗ := 1− µ− s ≤ U ≤ U∗ := 1− µ.

Using these bounds in the equation for u0 we obtain

∀x ∈ R, ∀t ≥ 0, ∂tu0 ≤ m∂xxu0 + ru0(BU∗ + 1)(1− U∗ − µ)
≤ m∂xxu0 + sru0(B(1− µ) + 1).

A classical comparison argument (see Proposition 2.1 in [2]) now shows that u0 is
bounded above by the solution to the linear equation

∂tv = m∂xxv + rs(B(1− µ) + 1)v,

with initial condition v(x, 0) = 1(−∞,x0]. This linear equation can be solved explic-
itly, and an argument taken from [184], that we have recalled in Section 4.B, shows
that if u0 is spreading at speed c, then

c ≤ 2
√
msr(B(1− µ) + 1).

Comparing this bound with (4.10), we see that for a genetic travelling wave, c =
O(
√
s), while for a population travelling wave, c = O(1). As we assume weak

selection, i.e., s � 1, genetic travelling waves are much slower than population
travelling waves.

4.3.2 Simulations of the model
Spatial clicks at the front. In order to reproduce a range expansion, we con-
sidered a population initially at carrying capacity and mutation-selection balance,
and then let it expand into an empty region of space. A typical simulation output
is shown in Figure 4.4. At the start of the simulation, the population is invading
the new habitat at a constant speed, forming a stochastic population travelling
wave, see Figure 4.4, panel (a). Within each deme, the total population size and
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(a) (b)

(c)

Figure 4.4: Typical simulation of the spatial Muller’s ratchet. (a) Time evolution of the
population; in each row, the colour gives the number of mutations of the fittest individual
in the deme, i.e., the number of clicks of the ratchet in this deme. Black stars indicate
genetic waves collisions, and the black square indicates an inner click of the ratchet.
(b, c) Genetic composition of the population at time t = 1600 and t = 400 respectively;
the number of individuals carrying a given number of mutations is given by the height
of the region with the corresponding colour. Parameter values are N = 1000, r = 1,
m = 0.1, s = 0.05, µ = 0.025, B = 0.

the genetic composition fluctuate around their deterministic values derived in (4.7),
see Figure 4.4 panel (c).

Eventually, due to stronger genetic drift at the front, the best type is lost from
the front. The population is now divided into two spatial regions: one region
towards the front, that has lost the best type; the other region towards the bulk
where the best type remains present. By analogy with the non-spatial Muller’s
ratchet, we call this loss of the best type at the front a spatial click of the ratchet.
The region where the ratchet has clicked rapidly approaches a Poisson distribution
of mutations, with a slightly decreased total population size as predicted by (4.7).

The situation is now a mixture of the two initial conditions considered in Fig-
ure 4.3. The population has not yet colonized all the available demes, and it keeps
on spreading according to a population travelling wave (whose speed is decreased
due to the spatial click). Nevertheless, the population is now divided into two
regions in a similar way to Figure 4.3 panel (b), and we see the formation of an
inner genetic wave. The genetic wave is much slower than the population wave.
This can be understood from the calculations of Section 4.3.1. We have shown
that the speed of genetic waves scales as O(

√
s), and thus vanishes as the selection

coefficient goes to 0. Conversely, for a fixed ratio µ/s, the minimal speed of pop-
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ulation waves, provided in equation (4.10), converges to a positive limit as s goes
to 0. Thus, as we consider s� 1, we expect genetic waves to be much slower than
population waves, as observed.

After the first spatial click of the ratchet, the population returns to its original
selection-mutation balance, except that each individual now bears an additional
mutation. Eventually a new spatial click of the ratchet will occur, and subsequent
clicks will occur repeatedly during the expansion, see Figure 4.4. We can interpret
these results in terms of expansion load. Recall that the expansion load refers to
the additional loss in fitness due to range expansion. Initially, the population is at
mutation-selection balance, and has a mutational load µ/s. After k clicks of the
ratchet, the mean number of mutations at the front is µ/s+k. Thus in our context,
the expansion load is given by the number of spatial clicks that the population has
experienced. In order to quantify the speed at which expansion load is building,
we need to compute the rate at which spatial clicks of the ratchet happen in the
population.

Bulk dynamics. After the ratchet has clicked several times, the bulk is divided
into regions where the number of mutations of the fittest individuals corresponds
to the number of clicks that the region has experienced. Each region has a fitness
advantage compared to the adjacent region located towards the front, but has a
fitness disadvantage compared to that towards the bulk. Thus each region is able to
move forward even as it is being chased, resulting in a sequence of genetic travelling
waves, see Figure 4.4 panel (a). We are interested in the dynamics of these genetic
waves.

Each wave separates two regions that have accumulated distinct numbers of
mutations, and thus have distinct mean fitness. The speed of the wave increases
with the fitness difference between these regions. After a single click of the ratchet,
this fitness difference is s. All waves that separate regions where the ratchet has
clicked once spread at the same average speed, leading to the parallel genetic waves
observed in Figure 4.4 panel (a). However, we observe that “double clicks” of the
ratchet occur: the best and second best class of individuals can be lost simulta-
neoulsy from the front, for example this is the case at t = 400 in Figure 4.4. In
this case, the fitness difference between the two sectors resulting from the click is
2s, and the corresponding genetic wave spreads faster. It is able to catch up the
next genetic waves, leading to wave collisions as indicated by the black stars in
Figure 4.4. When two waves collide, the fitness difference between the two regions
separated by the resulting wave increases, and thus the wave speeds up.

Interestingly, after several wave collisions, we observe that a genetic wave can
split into two waves, as is indicated by the black square in Figure 4.4 (see also
Figure 4.8 for an example of simulation where this split occurs earlier). This
corresponds to an “inner” click of the ratchet: the best class of the genetic wave is
lost from the front (of the genetic wave). The mechanism leading to such an inner
click is the same as that leading to spatial clicks at the front of the population
wave. Fit individuals at the front of a genetic wave have a high growth rate as
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they compete with individuals that have accumulated many deleterious mutations.
If an individual from the second best class gets ahead, it can rapidly grow a large
subpopulation that will further expand, creating a new genetic wave. We expect
such an event to occur at a higher rate when the fitness difference between the
sectors separated by the genetic wave is large.

The picture that emerges from the analysis of the dynamics of the bulk is the
following. We can think of the bulk as a branching-coalescing system of particles:
each genetic wave corresponds to a particle located at the front of that wave. Then
the system has the following dynamics. Each particle follows a random motion,
with an average speed towards the positive reals that increases with the fitness
difference of the regions it separates. When two particles meet, i.e., when two
genetic waves collide, they merge, and the resulting particle speeds up. Finally,
when an inner click of the ratchet occurs, a new particle is created, and the two
daughter particles are slower than their mother. Such a branching event occurs
at a rate that increases with the fitness difference of the regions separated by the
particle.

4.3.3 Impact of the Allee effect on the expansion load
We now aim to study the impact of an Allee effect on the expansion load, i.e., on
the click rate in our context. Analysis of the formation of expansion load requires
us to take into account genetic drift. Recall that a generator calculation suggests
that a good approximation of our model that retains finite size fluctuations is given
by equation (4.3). The parameter that controls the strength of the Allee effect is
B. However, we see from equation (4.3) that increasing B also increases the noise
term, and hence increases genetic drift. Thus the parameter B has two antagonistic
effects on the click rate: on the one hand it should reduce the click rate by increasing
the strength of the Allee effect, and shifting the nature of the wave from pulled to
pushed; on the other hand, it increases the click rate by reinforcing genetic drift,
and hence gene surfing. In order to disantangle these two effects, we will study the
impact of B on the scaling with N of the click rate. If the pulled/pushed nature
of the wave does not impact expansion load, increasing B should only increase the
strength of the drift and we expect a similar scaling of the click rate with N for
different values of B.

A direct computation of the click rate from (4.3) is not feasible. We thus
used simulations to assess the impact of B on the click rate. Starting from an
initial condition similar to Figure 4.4, we let the population expand, and record
the time T1 and spatial location nmax

1 (T1) − nmax
1 (0) of the first spatial click of

the ratchet, see Section 4.2 for a precise definition of these quantities. Both T1
and nmax

1 (T1) − nmax
1 (0) should be inversely related to the click rate. Figure 4.5

panel (a) shows the time of this first click, averaged over 5000 simulation replicates,
for various values of B and N . We have performed a similar analysis for the second
and third clicks of the ratchet. The results, shown in Figure 4.9, are qualitatively
similar.
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First, notice that for each fixed value of B, the mean time to the first click
increases with N , i.e., the ratchet is slower for large population sizes. This is
in agreement with our intuitive understanding of the ratchet, since increasing N
reduces the strength of genetic drift and hence reduces gene surfing. Second, for
a fixed value of N , increasing B either speeds up the ratchet if N is low, or slows
it down if N is large. This observation can be explained intuitively as follows.
Recall that B has two antagonistic effects on the click rate: increasing the genetic
drift, and increasing the gene flow from the bulk to the front. For low values of
N , the population size in the bulk is low, and the gene flow from the bulk restores
the genetic diversity at the front less efficiently than for large values of N . Thus
increasing the gene flow from the bulk to the front has a larger impact on the click
rate for large values of N . For low values of N , the increase of genetic drift with
B prevails, while the converse holds for large values of N .

Let us now consider the scaling of the time to the first click, T1, with N . First,
notice that for any value of B, T1 scales faster than a power law with N . It is clear
that N has more impact on T1 for pushed waves, i.e., for large B, than for pulled
waves. In the pulled case, T1 increases with N very slowly, and the rate of ratchet
is only slightly changed by the population size. Conversely, in the pushed case, N
has a drastic effect on T1: the ratchet clicks very fast for low N , but we see almost
no click of the ratchet for large N .

We thus conclude that the Allee effect has a large impact on the click rate.
For small values of B, the population size has little impact on the building of the
expansion load. This reflects the fact that the dynamics is mostly determined by
the few individuals in the front, that are almost insensitive to the change in the
carrying capacity in the bulk. Conversely, for large values of B, the dynamics of
the wave is determined by an intermediate region between the bulk and the front.
Increasing N reduces the genetic drift in this region and leads to the large effect of
N on T1 observed in Figure 4.5.

4.4 Discussion
Expansion load originates from the strong genetic drift induced by the low popu-
lation size at the edge of an expanding population. From a modelling perspective,
demography, spatial structure, stochasticity and selection are minimal ingredients
to account for expansion load. Each of these features is known to make mathemat-
ical treatment harder, and thus building a tractable model for expansion load is
challenging. In this work we proposed a model similar in spirit to [174], but with
two major differences: we greatly simplified the genetic structure of the population
to that of a Muller’s ratchet, and we introduced an Allee effect in the population,
tuned by the parameter B. This simplification allowed us to prove rigorous results
for the deterministic scaling of the model, however an analysis of the stochastic
scaling (4.3) where the building of an expansion load occurs remained out of reach.

Among other factors that are known to impact the genetics of range expansion,
such as density dependent migration [28] or long distance dispersal [66], we have
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Figure 4.5: Scaling of the click rate and click position with N . The left plot shows
the value of T1, and the right plot the value of nmax

1 (T1) − nmax
1 (0), see Section 4.2 for

the definitions. Each point is averaged over 5000 simulations. The parameter values are
r = 1, µ = 0.01, s = 0.02, m = 0.1.

focused here on the impact of an Allee effect on expansion load. It is already
understood from several studies that an Allee effect impedes gene surfing [27, 184,
83]. In agreement with these findings and our intuitive expectations, we have
shown that adding an Allee effect to the population slows down the rate at which
the ratchet clicks for large population size, and thus reduces the expansion load.

However, [184, 83] predict a sharp qualitative difference between pulled and
pushed waves. This disagrees with Figure 4.5 where increasing B continuously
changes the scaling of the click rate with N . Nevertheless, note that the results
in [184, 83] were obtained in a deterministic setting, and that stochasticity has
a tendency to smoothen such transitions. In a stochastic setting, [27] have fitted
a power law to the rate of genetic diversity loss in an expanding population, as a
function ofN . They predicted that the exponent of this power law remains constant
outside of the parameter region B ∈ [2, 4], see their Figure 4 and Figure 5. Again,
in our Figure 4.5 we see a change in the scaling on the entire range of B. This
discrepancy might be explained by the coupled effect B has on the nature of the
wave and the genetic drift.

Moreover, for low N , we observe that increasing B increases the rate of the
ratchet. This originates from the complex interaction between Allee effect and
genetic drift in our model. More generally, genetic drift depends on the rate at
which birth and death events occur in the population. Changing the strength of the
Allee effect should modify these rates, and we can expect the Allee effect to interact
with genetic drift for a large class of models. The specific form of this interaction
should depend on the details of the microscopic model under consideration and the
way the Allee effect is implemented. Therefore, we believe that our results cannot
be directly transposed to other models of population expansion incorporating an
Allee effect. The impact of the Allee effect on the expansion load should depend
in a crucial way on its interplay with genetic drift, which is a model dependent
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feature. In order to illustrate this, we have reproduced the results of Figure 4.5 for
an alternative parametrization of our model, see Section 4.C and Figure 4.7. We
observe that the results are qualitatively very different. Increasing the strength of
the Allee effect reduces the rate of the ratchet for all N in this new parametrization.

Our model also relates to the vast literature on Muller’s ratchet, see e.g. [149]
and references therein. The effect of spatial structure on the dynamics of Muller’s
ratchet has already been investigated in [110]. They concluded that, for a fixed
total population size, subdividing the population into smaller habitats reinforces
Muller’s ratchet, since genetic drift is enhanced in each single habitat. The setting
we consider is different. The total population size is not fixed as we allow new
subpopulations to grow in empty demes. We find that space has two effects on
the ratchet. In the bulk of the population, we do not observe clicks of the ratchet.
Spatial structure has a stabilizing effect: if the ratchet clicks in one deme, the best
type can be reintroduced by migration from the adjacent demes. Conversely, in the
front spatial structure causes low population size and thus speeds up the ratchet.
Overall, our study shows that spatial structure can interact in a non-trivial way
with Muller’s ratchet.

We have considered the expansion of a population in a linear one-dimensional
habitat. Multiple studies have also been concerned with range expansion in two
dimensions, using microbial growth experiments on petri dishes [100, 98, 131, 89]
or simulations [62, 172]. The typical set up of these studies is to place a drop con-
taining two labelled strains in the centre of a petri dish, and to let them expand.
The colony is rapidly separated into sectors where only one of the two strains is
present, and the other is absent, see for example Figure 1 in [89]. These studies
have examined the dynamics of these sectors, especially when there exists a fitness
difference between the two strains. They have established that the boundary be-
tween two sectors should move towards the strain with the lower fitness, and gave
an expression for the speed of the boundary in terms of the fitness difference [131,
100].

In the context of the spatial Muller’s ratchet, the major expected difference
between one and two dimensions is the following. In one dimension, once the
ratchet has clicked, best type individuals are trapped in the bulk of the population.
The only way to restore the fitness at the front is that the genetic wave of fit
individuals catches up with the population wave. We know that this is extremely
unlikely, because the genetic wave is much slower than the population wave. In
two dimensions, the front is a one-dimensional curve, and a click of the ratchet
only removes best type individuals from a small part of it. The remaining best
type individuals have a fitness advantage compared to individuals in demes where
the ratchet has clicked, and according to the aforementioned studies, they should
be able to remove the unfit individuals from the front. Thus, in two dimensions, a
click of the ratchet does not irredeemably trap best type individuals in the bulk,
and fitness should be restored by migration of fit individuals from parts of the front
where the ratchet has not clicked.

In order to assess these predictions and to compare the behavior of our model
to previous studies, we have simulated the spatial Muller’s ratchet on a two dimen-
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Figure 4.6: Two dimensional simulations, shown at time t = 150. All simulations
are realized with N = 300, µ = 0.02, r = 1, m = 0.1. We set B = 0 in the pulled
case, and B = 3 in the pushed case. The value of the selection coefficient is chosen
in s ∈ {0.01, 0.02, 0.04} to obtain the various values of µ/s. The colour indicates the
number of mutations of the best type at the deme colonization, see Section 4.2. The red
dashed line indicates a funnel-shaped sector.

sional lattice. Demes are now indexed by Z2, the reproduction rules within each
deme remain the same, but at each migration event individuals now choose one
of the four adjacent demes with equal probability. A key difference between our
model and the microbial growth experiments is that the cells are non-motile and
unable to migrate. In the spatial ratchet, the bulk of the population is dynamical,
and fit individuals slowly expand according to genetic waves. In the growth exper-
iments, cells in the bulk remain at their initial location, and the observed patterns
correspond to a “frozen record” of the front at the time of colonization. In order
to carry out the comparison between our model and the existing studies, we have
depicted in Figure 4.6 the number of mutations in each deme at its colonization
time, see Section 4.2 for the precise definition of this quantity. We emphasize the
fact that this is not the state of the entire population at the end of the simula-
tion: many sectors will have been taken over by fit individuals from the bulk and
their shapes would not be comparable to that of the sectors obtained in microbial
growth experiments. For comparison, we have shown the state of the population
in Figure 4.10.

As in the one-dimensional case, we observe in Figure 4.6 clicks of the ratchet
leading to the formation of sectors with lower mean fitness. An achievement of the
microbial growth experiments on petri dishes is to link the shape of these sectors
to their relative fitness. If the strains that are placed on the petri dish have the
same fitness, then the sectors should be “cone-shaped”: the boundary between
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two sectors is wandering due to stochastic effects but does not have a preferential
direction. Conversely, if one strain is fitter than the other, the sectors of the
fitter strain should have a typical “funnel” shape, see for instance Figure 4 in [89]
for examples of these two shapes. Most sectors in Figure 4.6 have a cone shape,
indicating that the expansion is nearly neutral. Selection is too weak in these
simulations to allow fit individuals to efficiently remove unfit individuals from the
front. Nevertheless, we have indicated by a red dashed line a sector that has the
typical shape of a selectively advantaged strain. Notice that the regions adjacent
to this sector have experienced multiple clicks of the ratchet, and thus that the
fitness advantage of this sector is large.

Apparently, in the parameter region we have considered, selection is not strong
enough to reverse spatial clicks of the ratchet and efficiently restore fitness at the
front. The dynamics of the sectors is nearly neutral, and we do not observe any
major difference from the one-dimensional case. The pushed/pulled nature of the
wave seems to have the same qualitative effect on the clicks of the ratchet as in the
one-dimensional case. A better understanding of the two-dimensional case would
require a more quantitative and thorough investigation, which goes beyond the
scope of the present work.

During a range expansion, the front can accumulate mutations leading to an
expansion load, but individuals in the bulk do not bear this additional burden.
Thus, at each location in space, fitness should be slowly recovered through migra-
tion of fit individuals from the bulk: expansion load is a transient phenomenon [84,
172]. In the spatial Muller’s ratchet we have a clear quantification of the rate of
this fitness recovery. Fit individuals take over the population through inner genetic
waves, with a speed proportional to the square root of their selective advantage. As
discussed previously, on the one hand the speed of genetic waves can increase due to
wave collisions. On the other hand, the speed of the population wave is decreased
by the successive clicks of the ratchet. It is natural to ask whether the population
wave is eventually caught up by a genetic wave. More generally, it would be inter-
esting to study the long-term behavior of the spatial Muller’s ratchet. A possible
starting point is to approximate the dynamics of the bulk of the population by
a branching-coalescing particle system as described previously, and to study the
asymptotic behavior of this simplified system.

The nature of population travelling waves changes from pulled to pushed at the
critical value of B = 2/(1 − µ). It is interesting to ask whether such a transition
occurs for genetic waves. From (4.8), the per-capita growth rate of p0, the frequency
of individuals without mutations, is

s(BU + 1)(p̄− µ/s).

In a genetic travelling wave, the total population size U is almost constant (it
ranges from 1− µ to 1− µ− s). As we have the constraint ∑ pi = 1, we see that,
roughly speaking, the maximal per-capita growth rate of p0 is achieved for lower
values p0. In our intuitive definition of pulled and pushed waves, this corresponds
to the pulled case. In our model, genetic waves are always pulled, regardless of the
value of B.
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This essentially comes from the fact that we have considered a haploid popu-
lation. The dynamics of the frequency p of a gene with fitness advantage s in a
haploid population with local migration is given by the classical Fisher-KPP [70,
130] equation

∂tp = ∂xxp+ sp(1− p)
which is the archetypical example of a pulled wave. Considering a diploid popula-
tion where homozygotes have fitness 1+2αs and heterozygotes a fitness 1+(α−1)s
leads to a special case of the so-called Allen-Cahn equation [13]

∂tp = ∂xxp+ sp(1− p)(2p+ α− 1)

that displays a transition from pulled to pushed waves when varying the parameter
α. One could thus obtain pushed genetic waves by considering a diploid population
with heterozygote advantage [16].
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Appendices for Chapter 4

4.A Generator computations
Deterministic scaling. Let (ni,k(t); t ∈ R+, i ∈ Z, k ≥ 0) be the process de-
scribed in Section 4.2, and recall that we have defined the renormalized process
as

∀t ≥ 0, ∀i ∈ Z, ∀k ≥ 0, uk
( i
L
, t
)

= ni,k(t)
N

.

Let ϕ : R→ R be a twice-differentiable function with compact support, and set

〈uk, ϕ〉 = 1
L

∑
i∈Z

uk(i/L, t)ϕ(i/L).

Recall that U stands for the total renormalized population size

U =
∑
k≥0

uk.

We expect a deterministic limit as N →∞, so in order to identify the limit of the
uk under this scaling, it is enough to consider the generator applied to functions of
this form. If GN is the generator of uk, then

GN〈·, ϕ〉
(
uk
)

= 1
NL

∑
i∈Z

(
mN

2 ni,k

[
ϕ
(
i+ 1
L

)
+ ϕ

(
i− 1
L

)
− 2ϕ

(
i

L

)]

+ r(1− s)kni,k(BU + 1)(1− µ)ϕ
(
i

L

)
− rni,k(BU + 1)Uϕ

(
i

L

)
+ r(1− s)k−1ni,k−1(BU + 1)µϕ

(
i

L

))
.

Thus we see that, provided uk is converging and mN/L
2 → m, the above quantity

converges to

m
∫
R
uk(x)ϕ′′(x)dx+

∫
R
r
(

(BU+1)uk((1−s)k−U)+µ((1−s)k−1uk−1−(1−s)kuk)
)
ϕ(x)dx,

which suggests that in the limit (uk) solves

∂tuk = m∂xxuk + r(BU + 1)(uk((1− s)k − U) + µ((1− s)k−1uk−1 − (1− s)kuk)).
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Stochastic scaling. Consider a function ϕ : RZ×N → R that only depends on
a finite number of coordinates, and suppose that ϕ is twice continuously differen-
tiable. Under these assumptions, by making a Taylor expansion of ϕ at the point
u = (ui,k; i ∈ Z, k ≥ 0) and ignoring terms of order greater than 1/N2, we obtain
the following expression for the generator G̃N of the process with population size
N

G̃Nϕ(u) =
∑
i∈Z

∑
k≥0

m
2 Nui,k

 1
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We suppose m � r and that µ � 1, so that we can neglect the mixed second
order derivatives and discarding terms of O(1/N2) we find that the generator of
our rescaled process is approximately

G̃Nϕ(u) =
∑
i∈Z

∑
k≥0

∂ϕ

∂xi,k
(u)

m
2 (ui−1,k + ui+1,k − 2ui,k)

+ r(B
∑
j≥0

ui,j + 1)(ui,k((1− s)k −
∑
j≥0

ui,j) + µ((1− s)k−1ui,k−1 − (1− s)kui,k)


+ 1
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∂2ϕ
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∑
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ui,j)(B
∑
j≥0

ui,j + 1).

Thus, for large N , and m fixed such that s, µ � 1,m � r, our process is well-
approximated by the following set of stochastic differential equations,

∀i ∈ Z, k ≥ 0, dui,k =
(
m
ui−1,k + ui+1,k − 2ui,k

2
+ r(BUi + 1)(ui,k(1− ks− Ui) + µ(ui,k−1 − ui,k))

)
dt

+
√

1
N
rui,k(1− ks+ Ui)(BUi + 1)dWi,k,

where (Wi,k; i ∈ Z, k ≥ 0) are independent Brownian motions.
Writing

〈uk, ϕ〉 = 1
L

∑
i∈Z

uk(i/L)ϕ(i/L)
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as before and speeding up time by a factor of L2 in order to obtain a diffusive
rescaling and scaling N 7→ LN (corresponding to replacing the population size in a
deme by the local population density), we expect that as L→∞ we should recover
the system of stochastic partial differential equations

∀k ≥ 0, ∂tuk =
(
m∂xxuk + r(BU + 1)(uk(1− ks− U) + µ(uk−1 − uk))

)

+
√

1
N
ruk(1− ks+ U)(BU + 1)dẆk

where (Ẇk)k≥0 are independent space-time white-noises, see for example [14], Sec-
tion 2. We emphasize that this derivation is heuristic. Again, see [53, 161] for
rigorous treatments of similar convergence results.

4.B Spread of a linear wave
Let us consider the equation

∂tv = m∂xxv + αv

with bounded initial condition v(x, 0) = v0(x). The solution to this equation is

∀t ≥ 0, ∀x ∈ R, v(x, t) = 1√
4πmt

∫
R
e−

(x−y)2
4mt eαtv0(y)dy.

Following [184], let c ≥ 0 be some speed, then

∀t ≥ 0, ∀x ∈ R, v(x+ ct, t) = 1√
4πmt

∫
R
e−

(x+ct−y)2
4mt eαtv0(y)dy

= 1√
4πmt

∫
R
e−

(x−y)2
4mt e−

c(x−y)
2m e−

c2t
4m eαtv0(y)dy

≤ 1√
4πmt

eαt−
c2t
4m−

cx
2m

∫
R
e
cy
2mv0(y)dy.

Thus, for c ≥ 2
√
mα,

∀t ≥ 0, ∀x ∈ R, v(x+ ct, t) ≤ 1√
4πmt

e−
cx
2m

∫
R
e
cy
2mv0(y)dy.

Hence, provided the integral is finite and c ≥ 2
√
mα (which is the case when v0 is

Heaviside), v(x + ct, t) goes to 0 uniformly on sets of the form [A,∞) for A ∈ R.
This shows that the process u of Section 4.3.1 cannot converge to a travelling wave
solution with speed larger than 2

√
mα, i.e., larger than 2

√
msr(B(1− µ) + 1) in

this case.
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1/A

Figure 4.7: Scaling of the click rate and click position with N for the parametriza-
tion (4.12). The left plot shows the value of T1, and the right plot the value of
nmax

1 (T1) − nmax
1 (0), see Section 4.2 for the definitions. Each point is averaged over

5000 simulations. The parameter values are ρ = 1, µ = 0.01, s = 0.02, m = 0.1.

4.C Alternative parametrization of the Allee effect
In the current work, the birth and death rates have been chosen so that the overall
growth rate of the population is a cubic function of the population size n,

n(λ0(n)− δ(n)) = rn(B n

N
+ 1)(1− n

N
).

An alternative parametrization of the same polynomial can be obtained by setting
ρ = rB and A = 1/B, so that

n(λ0(n)− δ(n)) = ρn( n
N

+ A)(1− n

N
). (4.12)

In this case, the population exhibits a weak Allee effect for A ∈ (0, 1) and no Allee
effect for A ≥ 1, so that the strength of the Allee effect is inversely related to the
parameter A.

We have reproduced the results of Figure 4.5 for this alternative parametriza-
tion. The results are shown in Figure 4.7. In order to make the comparison with
Figure 4.5 easier, we have used the values of A corresponding to the values of B
used in Figure 4.5. The result is qualitatively very different from Figure 4.5. In-
creasing the strength of the Allee effect reduces the click rate for all N , whereas
this was only the case for large N in Figure 4.5.
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4.D Supplementary figures

Figure 4.8: Space-time diagram of a simulation of the spatial Muller’s ratchet. Each
row corresponds to a time value, and the number of mutations of the fittest individual in
each deme at that time is represented. Notice that a fast genetic wave rapidly forms, and
that it experiences several successive inner clicks of the ratchet. The parameter values
are the same as in Figure 4.4.
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B

Figure 4.9: Scaling of the first, second and third click rate and click distance with N .
Each point is averaged over 5000 simulations. The parameter values are r = 1, µ = 0.01,
s = 0.02, m = 0.1.
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Figure 4.10: Simulation of the two-dimensional spatial Muller’s ratchet. (a,b,c) State
of the population at time t = 50, 100, 150 respectively. In each deme the number of mu-
tations of the fittest individuals is represented. (d) Number of mutations at colonization
time, see Section 4.2 for the definition. The parameters are N = 300, µ = 0.02, s = 0.02,
r = 1, m = 0.1, B = 0.



Chapter 5

163



5

A branching process with recombination

This chapter is work in progress with Amaury Lambert and Emmanuel Schertzer.
Even if we provide rigorous proofs of the results stated in the introduction, the
reader should be warned that these are only preliminary versions of them The
notation can certainly be improved, the results strengthened and the proofs short-
ened.

Illustration. The top tree is a simulation of the limiting rescaled genealogy of the
branching process with recombination, and the bottom picture is the location of
the blocks of ancestral genome in the population corresponding to this genealogy,
see the caption of Figure 5.2.

5.1 Introduction

5.1.1 Motivation
A large part of population genetics has been devoted to understanding the dynamics
of the allele frequencies at one locus. Many results in this case are available,
and allow to incorporate several evolutionary forces, such as selection, mutation,
population structure, or spatial structure, see for instance [56]. When it comes to
studying several loci, it is necessary to take into account recombination. Genetic
recombination is any mechanism by which the offspring inherits a collection of
alleles which not that of one of its parents. If we suppose that all alleles are
on the same chromosome, the collection of alleles of an individual is called the
haplotype of this individual. Without recombination, each individual would inherit
the haplotype from one of its parents, and we would be back to the situation
with one locus, where the locus is now the entire chromosome, and an allele is a
haplotype.

In eukaryotes, an important recombination mechanism is the crossing-over,
which is pictured in Figure 1.1 of Chapter 1. It is a mechanism by which an
offspring can inherit a chromosome which is a mosaic of the parental chromosomes.
A crossing-over corresponds to some location on the chromosome such that the ge-
netic material on one side of the crossing-over originates from one parent, and that
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on the other side from the other parent. Thus, due to crossing-overs, all loci are not
inherited from the same parent. The probability of inheriting a particular set of
loci depends on the distance between them, and on their linear arrangement along
the chromosome. This creates complex dependencies between the allelic frequen-
cies in the population. It is possible to give an expression for the dynamics of these
allelic frequencies, but in practice it becomes intractable even when considering a
few number of loci. See for instance Chapter 3 in [52].

Instead of following the allelic frequencies at a finite number of loci, it is pos-
sible to envision the chromosome as a continuous line. Each crossing-over can be
seen as a point on this line, called a junction [71]. The two parts of the chro-
mosome separated by a junction have distinct evolutionary histories as they were
inherited from different individuals. The set of all junctions splits the chromosome
into segments called identical by descent blocks (IBD blocks, see for instance [38])
which have not experienced any recombination event, and thus correspond to a
fragment of chromosome that existed in an ancestral population. In this work, we
are interested into studying the dynamics of these junctions and IBD blocks in a
constant-size, panmictic, neutral population. Obtaining a better understanding of
the dynamics of the genomes in the population in this situation can serve as a null
model, and help to identify deviations it. For instance, the length and location of
the IBD blocks on the genome have already been leveraged to infer selection [187]
or past demographic history [180, 146]. We will follow the genetic contribution of
one focal individual in a branching population with recombination, similar to that
considered in [7]. We think of this process as the branching approximation of a
Wright-Fisher model with recombination. Let us now present the model that we
consider.

5.1.2 Wright-Fisher and branching models with
recombination

Wright-Fisher model. In order to motivate our object of study, let us consider
first the following version of the Wright-Fisher model with recombination. Consider
a population of fixed size N , where each individual carries a unique linear haploid
chromosome of size R, represented by the segment [0, R]. Generations are non-
overlapping, and generation t + 1 is built from generation t by, independently for
each individual, realizing the following operations.

• Pick independently two parents uniformly at random from generation t, with
resampling.

• With probability 1−R/N , no recombination occurs and the offspring inherits
a copy of the chromosome of one of its parents, chosen with equal probability.

• With probability R/N , a recombination event occurs. We assume that each
recombination event is made of a single crossing-over, so that both chromo-
somes are cut into two at the same location. This location is assumed to be
uniformly distributed on [0, R]. The offspring inherits a copy of the portion
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t

Figure 5.1: Left: Illustration of the Wright-Fisher model with recombination. Each
individual is connected to each of its two parents with a line. This line is solid if the
parent has transmitted some genetic material, and dotted if it has not transmitted any
genetic material. The ancestral origin of the segments of chromosomes are indicated by
the colors. Right: All individuals that are not in the pedigree of the left-most individual
are represented with a lighter shade. Note that not all individuals in the pedigree carry
genetic material from the ancestor, and that the formation of a chromosome with two
intervals of genetic material requires the inbreeding of two individuals from the pedigree.

of the chromosome to the left of this point from one of its parent, and a copy
of the portion to the right of this point from its other parent. There are two
possible such chromosomes, they are chosen with equal probability.

Suppose that, at t = 0, each chromosome is given a different color. Due to
recombination, new chromosomes will be formed that are mosaics of the colors
of the initial individuals, see Figure 5.1. Note that segments carrying the same
color correspond to IBD segments. If, at some time, all individuals in the popu-
lation share the same haplotype, that is, have the same mosaic of color on their
chromosomes, then recombination cannot create new haplotypes anymore, and all
subsequent individuals in the population will carry the same haplotype. We say
that the haplotype has fixed. It is clear from the transition of the model that there
will a.s. be a unique haplotype that reaches fixation, in finite time.

Our ultimate goal is to understand the distribution of colors along the chro-
mosome that reaches fixation. As segments of the same color correspond to an
IBD block, the distribution of colors along the fixed haplotype informs us on the
identity by descent of the various loci of the fixed genome in the population.

Some results on this distribution have previously been derived in [139], under
a large population, large chromosome size limit. Their approach relies on a de-
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scription of the joint genealogy of all the loci on the chromosome, known as the
ancestral recombination graph (ARG) [93]. An IBD block can be recovered from
the ARG as the set of all loci that have the same ancestor at some large time. We
will review their findings in the forthcoming Section 5.1.4. In this work we take a
different approach and follow forward in time the long-term genetic contribution to
the population of an initial focal individual. We anticipate that most of the genetic
material of the focal individual will be lost within the first generations, where the
blocks of ancestral genome are long, and recombination acts strongly on them. As
long as the number of descendants of the focal individual is small compared to
the total population size N , the fixed size constraint of the Wright-Fisher model is
negligible, and the dynamics of the focal individual’s progeny is well approximated
by a branching process that we now introduce.

Branching model. The branching process that we consider is described in Def-
inition 5.1. We start with an informal derivation of this branching approximation
leading to this definition. Consider a focal ancestral individual at t = 0. Let us first
consider the number of descendants of this individual, regardless of them carrying
genetic material from that ancestor or not. Suppose that the ancestor has k descen-
dants at generation t. For each individual at generation t+ 1, the probability that
both its parents are descendants of the ancestral individual is (k/N)2. As there are
N individuals at generation t + 1, the probability that at least one individual has
its two parents among these k individuals vanishes. Thus, for large N , and as long
as k/N � 1, there is no reproduction event among the descendants of the ancestral
individual. We say that there is no inbreeding. Now, let XN

i denote the number of
individuals at generation t+ 1 that have one parent among the N − k individuals
that are not descendants of the focal individual, and whose other parent is i. It is
clear that

(XN
1 , . . . , X

N
k ) (d)= Multinomial(N ; 2(N−k)

N2 , . . . , 2(N−k)
N2 ).

Thus, the following convergence holds

(XN
1 , . . . , X

N
k ) −→ (X1, . . . , Xk),

where (Xi) are i.i.d. Poisson(2) random variables.
The previous informal derivation shows that, in the large N limit, the number

of descendants of a focal individual at t = 0 converges to a Galton-Watson process
with Poisson(2) offspring distribution. This total progeny is often referred to as
the pedigree of the ancestor [37, 15]. However, not all individuals in the pedigree
carry genetic material from the ancestor, see Figure 5.1. Understanding the ge-
netic contribution of the ancestor requires us to superimpose the process of genetic
transmission on top of the pedigree.

Recall that there is no inbreeding in the pedigree: exactly one of the parents
of each individual in the pedigree at generation t + 1 is in the pedigree at time t.
An important consequence of this fact is that individuals in the pedigree can only
carry segments of the ancestral genome, that is, the set of all loci the carry ancestral
material is an interval. Forming a haplotype with two intervals of ancestral genetic



168 A branching process with recombination

material requires a recombination event between an individual with one interval,
and the other with the other interval, see Figure 5.1. As there is no inbreeding
in the pedigree in our approximation, such a recombination event does not occur.
The segment of ancestral material carried by an individual in the pedigree will also
be referred to as the block of ancestral genome. Let us consider the dynamics of
the blocks along the pedigree.

Suppose that an individual has inherited a segment I of ancestral genetic ma-
terial. It will give birth to a Poisson(2) distributed number of children. Each child
has a probability 1 − R/N of experiencing no recombination. In this case, no an-
cestral genetic material is passed on to the child with probability 1/2, otherwise
the offspring inherits the entire segment I. If a recombination event occurs, and
|I| denotes the length of I, then with probability 1 − |I|/R the location of the
crossing-over is outside of I, in which case we are back to the situation without
recombination. If the crossing-over occurs within I = [a, b], and U is uniform on
[a, b], then the offspring inherits the segment [a, U ] or [U, b], with equal probability.
Summarizing, each child inherits:

• no ancestral material with probability

1
2

(
1− |I|

N

)
;

• the whole block I with probability

1
2

(
1− |I|

N

)
;

• a recombined block [a, U ] or [U, b], each with probability

1
2
|I|
N
.

Discarding all individuals that do not carry ancestral genetic material, and re-
calling that the number of offspring of each individual is a Poisson(2) variable,
we obtain the following branching approximation of the Wright-Fisher model with
recombination.

Definition 5.1. The branching process with recombination is a Markov branching
process with values in the subintervals of [0, R]. An individual with block I = [a, b]
gives birth, independently of the rest of the population, to

• a Poisson(1− |I|/N) distributed number of children with block I;

• a Poisson(|I|/N) distributed number of children with segment [a, U ], where
U is uniformly distributed on [a, b] and is independent for different children;

• a Poisson(|I|/N) distributed number of children with segment [U, b], where U
is uniformly distributed on [a, b] and is independent for different children. ◦
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In the previous definition, we could account for the individuals with no genetic
material by assuming that an individual with chromosome I gives birth to an
additional Poisson(1−|I|/N) distributed number of individuals with block O6 . This
branching process would correspond to the pedigree of the initial individual, and the
interval carried by each individual gives the amount of genetic material inherited
by this individual.

5.1.3 Main results
We study the branching process with recombination conditioned on having some
remaining genetic materiel at generation σN . We have defined the block of ances-
tral genetic material of an individual v as an interval Iv = [a, b]. It will be more
convenient to encode Iv as two reals: the block length ρv = b−a and the block left
endpoint Hv = a. We prove two main results in this chapter. The first one, see
Theorem 5.2, provides the limit of the empirical distribution of the block lengths.
The other one, see Theorem 5.4, gives the limit of the empirical distribution of
the locations of the blocks on the genome. As we shall see, deriving this limit will
require us to see the locations of these blocks as a random metric space, and thus
our result provides the limit of the “geometry” of the blocks along the chromosome.

A k-spine decomposition theorem. Both the previous results are proved using
a k-spine technique that we believe to be of independent interest. The broad idea
of spinal decomposition results for branching Markov processes is to construct a
tree with one distinguished lineage, the spine, and to connect the distribution of
this tree to the original distribution of the branching process under consideration.
Such spinal decomposition results have been derived for the case k = 1 in a variety
of contexts including Galton-Watson trees [150], superprocesses [182], branching
random walks [199], and CMJ processes [117].

One application of spinal decomposition theorems is the “many-to-one formula”.
It is a general principle which states that the expectation of some quantity of
interest, summed over all individuals at some generation, can be expressed in terms
of the sole spine. Here, we want to study the empirical distribution of blocks at
some large time using a moment technique. The many-to-one formula gives us
access to the first order moment of this empirical distribution. In order to derive
its moment of order k, we will need to construct a tree with k distinguished vertices,
known as a k-spine. The analogous of the many-to-one formula for a k-spine has
been dubbed the “many-to-few formula”. A general k-spine decomposition theorem
and many-to-few formula has been derived in [103]. In this work, we derive another
general k-spine decomposition theorem, closer in spirit to the 2-spine decomposition
considered in [181], see Theorem 1.2. The link between our theorem and existing
results is discussed in more details in Section 5.2. We use our version of the many-
to-few formula to derive the following two results. As was already pointed out, we
believe that our k-spine results is a quite general tool which could be used in many
other contexts.
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Distribution of the block sizes. Consider a branching process with recombi-
nation started from a chromosome of length R, with total population size N . Let
us define the empirical distribution of block lengths at time t as a measure νN,Rt on
R+ defined as

νN,Rt =
∑
|v|=t

δ(ρv),

where the sum is over all individual alive at t. The following result, proved in
Section 5.4.3, provides the large population, large chromosome size limit of νt.

Theorem 5.2. Let ν̄N,Rt denote the empirical distribution of the block sizes of the
branching process with recombination at generation t, conditioned on non-extinction
at time σN , and started from a chromosome of size R in a population of size N .
Then the following convergence holds in distribution for the weak topology,

lim
R→∞

lim
N→∞

1
N logRν̄

N,R
bNσc = YσLσ,

where Yσ ∼ Exponential(1/σ), and Lσ denotes the Exponential(σ) distribution.

The previous result shows that the block lengths distribution converges to a
deterministic measure Lσ with random total mass Yσ. It is remarkable that we
did not need to rescale the block lengths. Thus, even starting from a very large
chromosome of size R, recombination acts so strongly that for any σ > 0, the size
of the blocks in the population at time σN is of order 1. This also shows that the
“interesting part” of the dynamics, where the blocks in the population are reduced
from length R to length of order 1, occurs on a very short time-scale which is not
captured in the natural time-scale of the process. See the discussion in Section 5.1.5
for a possible refinement of the Theorem 5.2 that would provide the distribution
of the block lengths on this shorter time-scale.

Another consequence of Theorem 5.2 is that the total number of individuals,
once properly renomarlized, converges to an exponential variable. This is remi-
niscent of Yaglom’s exponential limit law for critical branching processes (see for
instance [3], Section 9 of Chapter 1).

Remark 5.3. This result also shows that the total number of individuals at time
Nσ is of orderN logR� N . Therefore we know that, by timeNσ, some inbreeding
will occur in the Wright-Fisher model so that the branching process approximation
breaks down. The branching approximation should hold until a time of order
N/ logR, in which case all individuals carry a block of length logR. All proofs
could be adapted to conditioning on survival until time σN/ logR, as this would
roughly amount to using that Rε � logR rather than Rε � 1, for any ε. We
decided not to do so here as we are more interested in giving the general properties
of the branching process rather than using it to prove results on the Wright-Fisher
model. ◦
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Geometry of the blocks. Our result for the geometry of the blocks requires
to see the population as a random metric measure space. More precisely, consider
the branching process with recombination of size N and initial chromosome size R.
Let Vt be the index set of all individuals alive at time t. (For simplicity we drop
the N and R from the notation.) We can define a random metric measure space
(Vt, dV , µt) by defining

∀u, v ∈ Vt, dV(u, v) = |Hu −Hv|

and setting µV to be the counting measure on Vt. The distance between two
individuals is simply the usual distance between the left endpoint of their blocks.

The limiting geometry of the blocks will be expressed in terms of the Brownian
coalescent point process (CPP) introduced in [1], that we now recall. Consider a
Poisson point process P on R+ ×R+ with intensity measure

dt⊗ 1
u2 du.

Let Y1 denote the first time when the second coordinate of an atom of P exceeds
1. (Note that Y1 ∼ Exponential(1), and is independent of the restriction of P to
R+ × [0, 1].) Then P encodes a random ultrametric space defined as

∀x < y ∈ [0, Y1], d(x, y) = sup{u : (t, u) ∈P, x ≤ t ≤ y}.

This ultrametric space is naturally endowed with the Lebesgue measure on [0, Y1],
defining a random ultrametric measure space. This random ultrametric space is
actually an example of a comb metric space that were introduced in Chapter 2. It
is the comb metric space associated to the comb function

∀x ∈ [0, Y1], f(x) =
u if (x, u) ∈P,

0 else.

It can be described in a pictorial way by thinking of each atom (x, u) ∈ P as a
tooth of length u located at t, and defining d(x, y) as the length of the largest tooth
between x and y. See Figure 5.2 for an illustration.

Finally we need a notion of convergence for random metric measure spaces. We
will endow the space of complete separable metric measure spaces with the Gromov-
weak topology, introduced in [91] in the case where the measure is a probability
measure, see [43] for an extension for general finite measures. For a general metric
measure space (X, d, µ), let us define the following map, also called the n-distance
matrix,

Dn :
Xn → R(n2)

(xi) 7→ (d(xi, xj)),

and define ιn = µ⊗n◦D−1
n as the push-forward measure of the product measure µ⊗n

by the map Dn. A sequence (XN , dN , µN) converges in the Gromov-weak sense to
(X, d, µ) if, for any n ≥ 1, ιNn converges as N → ∞ in the weak topology to ιn,
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Figure 5.2: Top: simulation of a Brownian CPP. The black vertical lines represent to
the atoms of P, and the corresponding tree is pictured in grey. Bottom: geometry of
the blocks of ancestral material corresponding to the top CPP. Each block is represented
by a black stripe. The distance between two consecutive stripes is the logarithm of their
distance on the chromosome. Note that this induces a strong deformation of the intuitive
linear scale.

where ιNn , resp. ιn, denotes the push-forward measure of µN , resp. µ, by Dn. The
Gromov-weak topology naturally defines a notion of convergence in distribution for
random metric measure spaces and we can show the following result.

Theorem 5.4. Let (Vt, dV , µV) represent the geometry of the blocks of a branching
process with recombination in a population of size N , and initial chromosome size
R. The following convergence holds in distribution in the Gromov-weak topology

lim
R→∞

lim
N→∞

(
VbNσc,

log(dV ∨ 2)
logR ,

µV
N logR

)
=
(
[0, Y1], d, σ Leb

)
,

where ([0, Y1], d,Leb) is a Brownian CPP.

Remark 5.5. The metric dV ∨ 2 is defined as

∀u, v ∈ Vt, 1{u6=v}(dV(u, v) ∨ 2).

This modification of dV ensures that it remains a distance after taking the loga-
rithm. ◦

The previous result is proved in Section 5.5.2, and is illustrated in Figure 5.2.
It shows that, in the limit, individuals at time σN can be identified with the
leaf-set [0, Y1] of a Brownian CPP, and that the distance of the blocks of any two
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individuals x and y in the population is of order Rd(x,y). Note that this distance
does not depend on σ. The final time σ only impacts the total population size and
the lengths of the blocks, but not their distribution along the genome. We also
recover that the population size at time σN is of order N logR.

Our proof of Theorem 5.4 also provides a genealogical interpretation to the
limiting Brownian CPP. First, we show that the distance on the chromosome of
two individuals in the population is of the same order as the length of the block
of their most-recent common ancestor (MRCA). This can be explained intuitively
as follows. At the time of the MRCA of two individuals u and v, the population
can be separated into two parts: the family to which u belongs and that to which
v belongs. By the branching property, these two families are independent. The
final sizes of the blocks of u and v are of order one, and are negligible compared
to that of the block of their MRCA. Thus, they appear as points on the block
of their MRCA, and the location of these points are independent, so that their
distance is of the same order as the length of the block of their ancestor. This idea
is formalized in Proposition 5.24.

The second step of the proof is to show that the genealogy of the population is
given by a Brownian CPP, after an appropriate time-change. Most of the branching
events in the genealogy will occur within the short initial period where the chro-
mosome is broken up from size R to size of order 1. Obtaining a non-degenerate
genealogy requires us to time-change the process in order to explore this initial
phase. A formal definition of this time-change requires further notation and is
provided in Section 5.4.1, however it can be intuitively envisioned as a Lamperti
transform [143] the branches of the tree.

Remark 5.6. Our two main results provide the convergence of the empirical mea-
sure of the block sizes and of the block locations. It would be natural to obtain the
convergence of the joint empirical measure of these two quantity. A formalization
of this result would require us to see the sizes of the blocks as marks attached
to the individuals, and to use the framework of random marked metric measure
spaces [44]. We prefer not to do so in this preliminary version of our work, even
if the spinal techniques that we use should enable us to obtain a result in this
direction. ◦

5.1.4 Connection with the literature
A similar branching process was considered in [7], in a slightly more general set-
ting. They allow for selection, and for more general offspring distributions than
the Poisson distribution considered here. Our approach mostly depends on the
fact that, conditional on the number of children, the recombination events are in-
dependent for different children. We believe that it could be extended to the more
general case considered in [7].

Among other things, [7] provide a super-process approximation to the branching
process with recombination, and derive an expression for the first two moments of
the block length distribution at a given time. In our work, we have supposed that
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the recombination rate is of order R/N , and considered a large N limit first, and
then a large R limit. Their result holds for a wider scaling of these two parameters.
However, we believe that our results can also be adapted to obtain a joint limit, as
long as N � R (as in their work). The large N convergence step is essentially a
convergence towards a Poisson point process, for which many precise convergence
results exist. The expression that we obtain for the moments of the block lengths
distribution coincides with that of [7] applied to the scaling that we consider. In
this sense, Theorem 5.2 is an extension of their expression to all moments of the
block length distribution.

Finally, they provide an expression for the probability of non-extinction that
we will need. Under our scaling, their expression reduces to the following result.

Proposition 5.7 ([7]). Let pN,R(t) be the probability of non-extinction of the
branching process with recombination at generation t, started from one individual
with chromosome of size R. Then, for any σ > 0, we have that

lim
R→∞

lim
N→∞

N logR
R

pN,R(bσNc) = 1.

We now review some results from [139]. Their setting is similar to ours, but
they consider a Moran model, and look backwards in time at the genealogy of the
fixed haplotype. One of their main results gives the geometry of all loci of the fixed
haplotype that are IBD with the left endpoint of the chromosome, that is, of all
loci that are of the same color as the left endpoint.

More precisely, they prove the existence of a process valued in the partitions
of [0, R], the R+-partitioning process. This process admits a unique stationary
distribution, and if Πeq denotes a partition distributed according to this stationary
distribution, the blocks of Πeq are distributed as the colors of the fixed haplotype
in a Moran model with recombination. Let us define the following random measure

∀x ≤ y ≤ 1, ϑR([x, y]) =
∫ Ry

Rx
1{0∼Πequ} du

that encodes the loci that are IBD with the left endpoint of the chromosome, on a
logarithmic scale. Then they proved the following result.

Theorem 5.8 ([139]). The following convergence holds in distribution for the weak
topology

lim
R→∞

1
logRϑ

R =
∑
i

yiδ(xi)

where ((xi, yi); i ≥ 1) are the atoms of a Poisson point process on R+ × R+ with
intensity measure

1
x2 e

−y/x dx dy.

It was already noticed in [139] that the limit of ϑR in the previous theorem can
be constructed from a Brownian CPP as follows. Let ϑ̃ be the random measure
such that

∀a ≤ Y1, ϑ̃([0, a]) = Leb({x ≤ Y1 : d(0, x) ≤ a}),
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then ϑ̃ = ∑
i yiδ(xi) where ((xi, yi); i ≥ 1) are the atoms of a Poisson point process

with intensity
1
x2 e

−y/x dx dy.

Theorem 5.4 shows that, in the limit, the population can be identified with the
random metric measure space ([0, Y1], d, σ Leb), where d(x, y) corresponds to the
limit of the logarithm of the chromosomic distance between the blocks of x and y.
Thus, if in the discrete branching process U is an individual chosen uniformly in
the population at generation σN , and we denote by

ϑN,R =
∑

|v|=bσNc
ρvδ

( log|HU −Hv|
logR

)

the empirical measure of the chromosomic distance between the block of U and
the other blocks in the population, Theorem 5.4 and Theorem 5.2 strongly suggest
that

1
N logRϑ

N,R −→ ϑ̃,

so that we recover Theorem 5.8. Note that Theorem 5.8 only provides the geometry
of the blocks “seen from the left endpoint of the chromosome”. Blocks on the
genome are aggregated into clusters that correspond to the atoms of the Poisson
point process, and their result does not give the finer description of the geometry
of these clusters. Here we have established the convergence in the Gromov-weak
sense, so that we proved that the geometry of each cluster is given by a Brownian
CPP. In that sense, Theorem 5.4 is an extension of Theorem 5.8, in the branching
process framework. We also have provided a clear genealogical interpretation to
this result.

Remark 5.9. The fact that we recover the same geometry on the chromosome for
the IBD blocks in the fixed haplotype and for the surviving blocks in the branching
process can be quite puzzling. In the former case, all the blocks belong to the same
chromosome, carried by all individuals in the population. In the latter case, each
block is carried by a unique individual, and all blocks lie on different chromosomes.
After the branching phase, there will be a logistic phase where inbreeding will form
haplotypes with more than one ancestral block. The fact that the distribution of
the blocks along the genome is the same at the end of the branching phase and at
fixation suggests that all portions of the ancestral chromosome that make it until
the end of the branching phase will be combined on the same haplotype that will
reach fixation. ◦

5.1.5 Future directions, outline
Size of the largest block. Here, we have used the spinal decomposition theorem
to compute the moments of the empirical distribution of the block sizes, using a
many-to-few formula. This approach provides the behavior of the “bulk” of the
population, but does not give any information about the extrema of the process,
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that is, about the size of the largest block. Another application of the spinal
decomposition theorem in the branching random walk literature is to provide the
location of the minimum of the walk, see for instance Chapter 5 in [199]. It could
be interesting to see if these techniques could be adapted to provide an expression
for the size of the largest block.

Initial fast recombining phase. As mentioned above, looking at the process
at time σN completely misses the initial phase where the blocks break from size R
to size of order 1. In order to investigate this initial phase, we consider the process
until time σ(R)N , where

σ(R) = 1
R1−σ .

Recall that νt stands for the empirical measure of block lengths at generation t.
Let us denote by

ν̃σ(dx) = R1−σ

N logRνNσ(R)

( dx
R1−σ

)
the renormalized empirical measure at time σ(R)N . Note that we have rescaled
the lengths of the blocks by R1−σ. Let us now provide some heuristic arguments
that suggest that the process (ν̃σ; s ∈ [0, 1]) is approximated in the limit by(

ZσL1(dx); σ ∈ [0, 1]
)

(5.1)

where L1 is the distribution of an Exponential(1) variable, and (Zt; t ≥ 0) solves

Z0 = 0, dZt = dt+
√
Zt dBt

where (Bt; t ≥ 0) is a standard Brownian motion. The solution to the previous
equation is a Doob harmonic transform of the critical Feller diffusion, and cor-
responds to the so-called Q-process of the Feller diffusion, that is, to the Feller
diffusion “conditioned on never going extinct”.

First, using the expression of [7] for the survival probability, we obtain that

lim
R→∞

lim
N→∞

N logR
R

pN,R(Nσ(R)) = 1
σ
.

We recover the usual 1/σ decay of the survival probability at time σ of a critical
Feller diffusion.

Second, the Brownian CPP stopped at its first atom above level h > 0 corre-
sponds to the genealogy of a critical Feller diffusion, conditioned on survival until
time h. The calculation of Section 5.4 that proves that the genealogy of the popu-
lation is a Brownian CPP stopped above level 1 can be readily adapted to consider
the population until time Nσ(R). They show that the limiting genealogy of the
population at time Nσ(R) is a Brownian CPP, stopped at its first atom above level
σ.

Finally, an adaptation of those calculation would also prove that

ν̃σ −→ YσL1,
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where Yσ is an Exponential(σ) variable. This is the one-dimensional marginal of
(5.1).

Therefore, those heuristic arguments suggest that both the survival probabil-
ity, the one-dimensional marginals, and the genealogy of the population at time
N/R1−σ converge to that of (5.1).

Outline. The paper is laid out as follows. In Section 5.2 we prove our spinal
decomposition theorem for a general class of branching Markov processes. In
Section 5.3 we apply these results to the branching process with recombination,
and provide the large population size limit of its k-spine. Most of the proofs
are contained in Section 5.4. We start by providing all the estimates required
for the convergence of the block size distribution, and prove Theorem 5.2 in Sec-
tion 5.4.3. Finally, Section 5.5 contains the proofs of the results on the genealogy
of the branching process with recombination, and on the geometry of the blocks
on the chromosome.

5.2 A spinal decomposition theorem
Our strategy to prove Theorem 5.2 and Theorem 5.4 is to use the method of
moments. In this section, we derive an expression for the k-th factorial moment
of the empirical measure of the branching process with recombination in terms of
a tree with k leaves, that we call a k-spine. We first derive this expression for a
large class of branching Markov processes, and then carry out the calculations in
the special case of the branching process with recombination.

The general setting that we consider is the following. Let E be a Polish space.
We consider a population process where each individual u is endowed with a random
variable Xu ∈ E that gives its location. The population starts from one individual
located at x0 ∈ E. Then, at each generation, individuals reproduce independently
from each other. We suppose that, conditional on Xu = x, the location of the
offspring of u is given by the atoms of a random point process ξ(x). The distribution
of the branching process thus depends on the location x0 of the initial individual,
and on the family of point processes (ξ(x); x ∈ E). We denote this distribution by
Px0 , see Section 5.2.1 for a more formal construction.

We say that a function H : E → R+ is (positive) harmonic if

∀x ∈ E, E
[
〈H, ξ(x)〉

]
= H(x), (5.2)

where we have used the notation 〈f, µ〉 for the integral of f against the measure µ.
Note that H is harmonic iff the following process is a martingale

∀t ≥ 0, Z
(1)
t =

∑
|u|=t

H(Xu),

where the sum is taken over all individual at generation t, with the convention that
the sum is 0 if there are less than k individuals at generation N . Fix k ≥ 1, some
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generation N , and let H be a harmonic function. Let us assume that the following
variable has a finite expectation under Px0 ,

Z
(k)
N :=

∑
u1 6=···6=uk
|ui|=N

k∏
i=1

H(Xui)

where the sum is taken over all k-tuples of distinct individuals at generation N .
We can then define a new probability Qk,N

x0 by prescribing that

dQk,N
x0

dPN
x0

∝
∑

u1 6=···6=uk
|ui|=N

k∏
i=1

H(Xui), (5.3)

where PN
x0 is distribution of the firstN generations of the branching Markov process.

The aim of the current section is to provide a k-spine construction of the probability
measure Qk,N

x0 , that is, to give a construction of Qk,N
x0 in terms of a tree with k

distinguished leaves.
Let us comment the definition of Qk,N

x0 . For k = 1, as we have assumed that
H is harmonic, (Z(1)

N ; N ≥ 0) is a martingale, and thus Q1,N
x0 is a martingale

change of measure of the initial law Px0 . We recover the classical framework of
spinal decomposition, see Chapter 4 of [199] for a nice account in the case of
branching random walks, or [117] for a spinal decomposition for CMJ processes. If
k > 1, (Z(k)

N ; N ≥ 0) is no longer a martingale. However, the change of measure
Z

(k)
N is rather elementary. If we forget about space and consider a plain Galton-

Watson process, Z(k)
N is simply the k-th factorial moment of the population size

at generation N . In general, Z(k)
N is directly related to the k-th moment of the

empirical distribution of the locations of the individuals at generation N .
Compare this to the k-spine derived in [103]. The spinal decomposition theorem

that they obtain involves a martingale change of measure, so that the k-spine they
introduce is a Markov process. However, their change of measure is more involved
than ours. For instance, their many-to-few formula, see their Lemma 1, depends
on the whole genealogical structure of the k-spine, and not only on the leaves of
the k-spine. In that sense, our spinal decomposition result is closer in spirit to the
2-spine decomposition proposed in [181], where the change of measure involved the
second factorial moment of a Galton-Watson process. Actually, setting k = 2 and
forgetting about space, we recover their 2-spine construction.

The rest of this section is laid out as follows. Section 5.2.1 contains the formal
definition of the class of branching process that we consider. The k-spine is con-
structed in Section 5.2.2, and the spinal decomposition theorem, that is, that the
k-spine tree built in Section 5.2.2 corresponds to the change of measure (5.3), is
proved in Section 5.2.3 along with our many-to-few formula. Finally, Section 5.2.4
is devoted to a Palm measure construction of the k-spine.
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5.2.1 Preliminaries and notation
We try to follow as much as possible the notation in [199]. A realization of the
branching process is envisioned as a random tree, where each vertex of the tree is
equipped with a mark that corresponds to the location in space of that individual.
Let us denote by

Ω :=
∞⋃
n=0

Nn

the set of finite words with alphabet N, that correspond to all individuals in the
population. For u ∈ Ω, we will denote by |u| the generation of u, defined as the
length of the vector u. Moreover, we denote by ui the i-th coordinate of u, for
i ≤ |u|. If u = (u1, . . . , un) and v = (v1, . . . , vm), we define

uv := (u1, . . . , un, v1, . . . , vm), ←−u := (u1, . . . , un−1)

to be the concatenation of u and v, and the parent of u respectively. Finally, define
Ω∗ = Ω {O6 }.

A branching Markov process is defined as a random subset T of Ω, as well as
a collection (Xu)u∈T of E-valued random variables that encode the location of the
individuals in the population. The distribution Px0 of T and (Xu)u∈T is constructed
out of an element x0 ∈ E, giving the location of the initial individual O6 , and a
collection of point processes (ξ(x); x ∈ E) that encodes the reproduction events in
the population.

More precisely if, for n ≥ 0,

Gn = T ∩ {u : |u| = n}

denotes the n-th generations of T , then conditional on (G1, . . . , Gn) and on the
locations (Xu; u ∈ Gn), Gn+1 is constructed as follows. Let (ξu; u ∈ Gn) be
independent point processes such that ξu ∼ ξ(Xu). Then define

Gn+1 =
⋃

u∈Gn
{ui : i ≤ |ξu|},

where |ξu| denotes the total mass of ξu. Moreover, suppose that for each u ∈ Gn,
the atoms of ξu are uniformly labeled from 1 to |ξu|, and let Xi(ξu) denote the
location of i-th atom of ξu. Then for i ≤ |ξu|, we set Xui = Xi(ξu). We let Px0 be
the distribution of the pair [T, (Xu; u ∈ T )] constructed this way.

In words, an individual u alive at generation n gives birth to |ξu| new individuals,
independently of the rest of the population. The location of the newborns are given
by Xi, where (X1, . . . , X|ξu|) denotes the location of the atoms of ξu.

Finally, we will need the notation Tw for the subtree of T attached at the vertex
w:

Tw := {u ∈ T : ∃v ∈ Ω∗, u = wv}.
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5.2.2 Construction of the k-spine
In the previous section, T denotes a (possibly) infinite subset of Ω. From now
on, we fix a generation N and only consider the dynamics of the population up to
this generation. To ease the notation, the dependence in N will be made implicit
and we still denote by T the restriction of T to the first N generations. We now
construct a tree T̂k with vertices locations (X̂u; u ∈ T̂k) and k distinguished vertices
(V 1, . . . , V k) at generation N . We start by constructing T̂1 and V 1.

The 1-spine tree. The distribution of T̂1 is that of a branching process where,
at each generation, there is exactly one distinguished individual, which is marked.
All unmarked individuals give birth according to the original collection of point
processes (ξ(x); x ∈ E). The marked individual gives birth according to a modified
family of point processes (ξ̂(x); x ∈ E), where ξ̂(x) is such that for any functional
F ,

E

[
F (ξ̂(x))

]
= 1
H(x)E

[ ∑
y∈ξ(x)

H(y)F (ξ(x))
]

for a fixed harmonic function H. (Note that this defines a probability distribution
since H is harmonic.) All children but one of the marked particles are unmarked.
Conditional on ξ̂ = ∑

i xi, the marked children is chosen to be the atom xi of ξ̂ with
probability proportional to H(xi). (Note that by construction of ξ̂, P(|ξ̂| > 0) = 1,
so that this is a well-defined procedure.)

As mentioned previously, this construction coincides with the classical spinal
tree which has been derived in many contexts [199, 117]. Note that the 1-spine
tree can be built in a Markovian way for all generations. This is essentially a
consequence of the fact that the underlying change of measure is a martingale
change of measure. We define T̂1 as the restriction to the first N generations of the
previous branching process, and V 1 as the unique marked vertex at generation N .

The k-spine tree. We now build a tree with k distinguished vertices by induc-
tion. Suppose that T̂k, (X̂u; u ∈ T̂k) and (V 1, . . . , V k) have been defined. For any
vertex u ∈ Ω with |u| = n, let

JO6 , uK =
n⋃
t=1

(u1, . . . , ut)

denote the path from the root to u. Define

Sik =
i⋃

j=1
JO6 , V iK

as the subtree spanned by (V 1, . . . , V i) and let Sk = Skk. Further define the set of
all children of Sk that do not belong to Sk as

Bk = {v ∈ T̂k : v = ui, u ∈ Sk, i ≥ 0} Sk.
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The set Bk can be thought of as the set of “dangling ends” attached to the spine
Sk.

The k + 1-spine will be defined under the assumption that

E

[ ∑
u∈Bk

H(X̂u)
]
<∞. (5.4)

Let T̃k, (X̃u; u ∈ T̃k) be a tree with k distinguished vertices (Ṽ 1, . . . , Ṽ k), such that
the distribution of [T̃k, (X̃u), (Ṽ i)] is that of [T̂k, (X̂u), (V i)], biased by∑u∈Bk H(X̂u).
That is, [T̃k, (X̃u), (Ṽ i)] is such that for any functionals F , (fi), (gu),

E

[
F (T̃k)

k∏
i=1

fi(Ṽ i)
∏
u∈T̃k

gu(X̃u)
]

=

E

[ ∑
u∈Bk

H(X̂u) · F (T̂k)
k∏
i=1

fi(V i)
∏
u∈T̂k

gu(X̂u)
]

E

[ ∑
u∈Bk

H(X̂u)
] .

Conditional on [T̃k, (X̃u), (Ṽ i)], let W be sampled in Bk in such a way that

P
(
W = u | T̃k, (X̃v), (Ṽ i)

)
= H(X̃u)∑

v∈Bk H(X̃v)
.

The tree T̂k+1 is obtained by replacing the subtree rooted atW by an independent 1-
spine tree, and the vertex V k+1 is defined to be the only marked vertex at generation
N of this 1-spine tree. More formally, conditional on X̃W , let [T̂ ′, (X̂ ′u), V ′] be an
independent 1-spine tree, started at X̂ ′O6 = X̃W , and stopped at generation N−|W |.
Recall the notation T̃Wk for the subtree attached at W :

T̃Wk =
{
u ∈ T̃k : ∃v ∈ Ω∗, u = Wv

}
and let

T̂k+1 =
(
T̃k T̃Wk

)
∪
{
Wu : u ∈ T̂ ′

}
.

Moreover, we define
∀u ∈ T̂ ′, X̂Wu = X̂ ′u,

and X̂u = X̃u for all other vertices. Finally, we define V k+1 = WV ′ and V i = Ṽ i

for i ≤ k.

Remark 5.10. The distribution of the k-spine is not “sampling consistent”: if
T̂k+1 and (V 1, . . . , V k+1) denote the k + 1-spine, the joint distribution of T̂k+1 and
(V 1, . . . , V k) is not that of the tree T̂k with distinguished vertices (V 1, . . . , V k).
Therefore, we should be more careful in our notation and indicate the total number
of distinguished vertices k when referring to a distinguished vertex V i. As k will
always be clear from the context, we choose to stick to the current notation to not
make it heavier. ◦



182 A branching process with recombination

5.2.3 A many-to-few formula
We start with the following spinal decomposition result that connects the distri-
bution of the 1-spine to that of the original branching process. The proof of this
lemma is classical, see for instance [199], Theorem 4.3 for a proof in the case of
branching random walks.

Lemma 5.11. Let t be a tree of height N , (ϕu; u ∈ t) be continuous bounded
functionals, and H be a harmonic function in the sense of (5.2). Then, for any v
in t such that |v| = N ,

H(XO6 )E
[
1
T̂1=t1V 1=v

∏
u∈t

ϕu(X̂u)
]

= E

[
1T=tH(Xv)

∏
u∈t

ϕu(Xu)
]
.

We now provide our k-spine decomposition result. Recall the notation Z
(k)
t

from the beginning of Section 5.2.

Theorem 5.12. Fix k ≥ 1 and a harmonic function H.

(i) If for any i ≤ k, E[Z(i)
N ] <∞, then for any i < k, assumption (5.4) is fulfilled

and
E
[
Z

(k)
N

]
= H(XO6 )

k−1∏
i=1
E
[∑
u∈Bi

H(X̂u)
]
.

(ii) Let t be a tree of height N , and (ϕu; u ∈ t) be continuous bounded functions.
Then, under the assumption of the previous point, for any distinct vertices
v1, . . . , vk in t such that |vi| = N , we have

E

[
1
T̂k=t,V 1=v1,...,V k=vk

∏
u∈t

ϕu(X̂u)
]

= 1
E
[
Z

(k)
N

]E[1T=t

k∏
i=1

H(Xvi)
∏
u∈t

ϕu(Xu)
]
.

In particular marginal the distribution of T̂k, started from x0, is Qk,N
x0 .

Proof. We prove the result by induction. Fix some vertices (v1, . . . , vk+1) at gen-
eration N . By analogy with the construction of the k spine, let us define

sk =
k⋃
i=1

JO6 , viK,

the subtree spanned by (v1, . . . , vk). Define w as the oldest ancestor of vk+1 that
does not belong to sk, that is, w = (vk+1

0 , . . . , vk+1
p ) where p is the unique generation

such that (vk+1
0 , . . . , vk+1

p−1) ∈ sk but (vk+1
0 , . . . , vk+1

p ) /∈ sk. Finally, let tw be the
subtree of t attached to w:

tw = {u ∈ Ω∗ : wu ∈ t}

and define wtw = {wu : u ∈ tw}. Let also v′ be the unique vertex so that
vk+1 = wv′.
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By the branching property, we have that

E

[
1T=t

k+1∏
i=1

H(Xvi)
∏
u∈t

ϕu(Xu)
]

= E

[
1T Tw=t (wtw)

k∏
i=1

H(Xvi)
∏

u∈t wtw
ϕu(Xu)

× E
[
1T ′=twH(X ′v′)

∏
u∈tw

ϕwu(X ′u) | X ′O6 = Xw

]]
,

where T ′ is an independent copy of T , started at Xw. Moreover, by Lemma 5.11,

E

[
1T ′=twH(X ′v′)

∏
u∈tw

ϕwu(X ′u) | X ′O6 = Xw

]

= H(Xw)E
[
1
T̂ ′=tw1V ′=v′

∏
u∈tw

ϕwu(X̂ ′u) | X̂ ′O6 = Xw

]

where [T̂ ′, (X̂ ′u), V ′] is a 1-spine tree. Now, summing first over all v′, then over all
w shows that

∑
|vk+1|=N
∀i, vk+1 6=vi

E

[
1T=t

k+1∏
i=1

H(Xvi)
∏
u∈t

ϕu(Xu)
]

= E

[
1Tk Twk =t (wtw)

k∏
i=1

H(Xvi)
∏

u∈t wtw
ϕu(Xu)

×
∑
w∈bk

H(Xw)× E
[
1
T̂ ′=tw

∏
u∈tw

ϕwu(X̂ ′u) | X̂ ′O6 = Xw

]]
,

where bk is defined as Bk, replacing Sk by sk. By induction, we can write

∑
|vk+1|=N
∀i, vk+1 6=vi

E

[
1T=t

k+1∏
i=1

H(Xvi)
∏
u∈t

ϕu(Xu)
]

= E
[
Z

(k)
N

]
E

[
1
T̂k T̂

w
k

=t (wtw)1V 1=v1,...,V k=vk
∏

u∈t wtw
ϕu(X̂u)

×
∑
w∈bk

H(X̂w)× E
[
1
T̂ ′=tw

∏
u∈tw

ϕwu(X̂ ′u) | X̂ ′O6 = X̂w

]]
.

Further setting ϕu ≡ 1 and summing first over all distinct (v1, . . . , vk), then over
all t proves that

E
[
Z

(k+1)
N

]
= E

[
Z

(k)
N

]
E

[ ∑
w∈Bk

H(X̂w)
]

yielding the first part of the result.
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For the second part of the result, by induction and by definition of [T̃k, (X̃u), (Ṽ i)]
we have

E

[
1T=t

k+1∏
i=1

H(Xvi)
∏
u∈t

ϕu(Xu)
]

= E

[
1T Tw=t (wtw)

k∏
i=1

H(Xvi)
∏

u∈t wtw
ϕu(Xu)

×H(Xw)× E
[
1
T̂ ′=twH(X̂ ′v′)

∏
u∈tw

ϕwu(X̂ ′u) | X̂ ′O6 = Xw

]]
,

∝ E
[
1
T̂k T̂

w
k

=t (wtw)1V 1=v1,...,V k=vk
∏

u∈t wtw
ϕu(X̂u)

×H(X̂w)× E
[
1
T̂ ′∗=t∗w

1V ′=v′
∏
u∈t∗w

ϕwu(X̂ ′u) | X̂ ′O6 = X̂w

]]
,

∝ E
[
1
T̃k T̃

w
k

=t (wtw)1Ṽ 1=v1,...,Ṽ k=vk
∏

u∈t wtw
ϕu(X̃u)

× H(X̃w)∑
v∈bk H(X̃v)

× E
[
1
T̂ ′=tw1V ′=v′

∏
u∈tw

ϕwu(X̂ ′u) | X̂ ′O6 = X̃w

]]
,

= E

[
1
T̂k+1=t1V 1=v1,...,V k+1=vk+1

∏
u∈t

ϕu(X̂u)
]
,

ending the proof.

Our many-to-few formula is now a simple corollary of the previous spinal de-
composition result. In the next result, we only consider functionals that depend on
the locations of k vertices (v1, . . . , vk) at generation n. It would also follow from
the spinal decomposition theorem that we can express any functional of the subtree
spanned by (v1, . . . , vk) in terms of the k-spine only.

Corollary 5.13 (Many-to-few). For k ≥ 1, let (g1, . . . , gk) be continuous bounded
functions. Then

E

[ ∑
v1 6=···6=vk
|vi|=n

k∏
i=1

gi(Xvi)
]

= E
[
Z

(k)
N

]
E

[ k∏
i=1

gi(X̂V i)H(X̂V i)−1
]
.

Proof. Consider a fixed t and (v1, . . . , vk). An application of Theorem 5.12 with

ϕu =
gi if u = vi

1 else,

shows that

E

[
1T=t

k∏
i=1

gi(Xvi)
]

= E
[
Z

(k)
N

]
E

[
1
T̂k=t1V 1=v1,...,V k=vk

k∏
i=1

gi(X̂V i)H(X̂V i)−1
]
.

The result now follows by summing first over all vertices at generation n in t, and
then over all trees t.
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5.2.4 Distribution of the k-spine
In the previous sections, we have defined jointly the tree T̂k with k distinguished
vertices (V 1, . . . , V k), spanning the subtree Sk of T̂k. The many-to-few formula
shows that in order to understand the distribution of the subtree spanned by k
individuals sampled uniformly in the population, it is sufficient to study the tree
Sk. The objective of this section is to construct Sk in an autonomous way, and give
distribution of T̂k conditional on Sk.

Let us define ξ̂u as the point process giving the position of the children of u in
T̂k, defined as

ξ̂u =
∑
ui∈T̂k

δ(X̂ui).

A first, direct consequence of Theorem 5.12 is the following result.

Corollary 5.14. Conditional on Sk, (X̂u; u ∈ Sk) and (ξ̂u; u ∈ Sk, |u| < N), the
tree T̂k is recovered by grafting for each u ∈ Bk an independent subtree Tu that has
the original distribution T started from X̂u.

The previous corollary shows that all what needs to be understood is the joint
distribution of Sk and of the children of Sk. The tree Sk has been defined as a
subset of T̂k. This encoding is not convenient for our purpose, as the labeling of
individuals in Sk contains information about their number of siblings. Our first
task is to re-encode Sk as a collection

(
(X i

t), Ki, Li; i ≤ k
)
. In this encoding, we

envision Sk as being built inductively by grafting the branch Sk Sk−1
k on Sk. The

variable Lk is the length of that branch, (Xk
t ; t ≤ Lk) the individual’s location

along the branch, and Kk the label of branch onto which Sk Sk−1
k is grafted. Let

us give a formal definition of these quantities.
Recall that Sik stands for the subtree spanned by (V 1, . . . , V i). For u ∈ Sk, let

us define the label of u as

κu = inf{i ≤ k : u ∈ Sik}.

This label is the unique i ≤ k such that u ∈ Sik Si−1
k . Moreover, define W i as the

youngest individual in Sik Si−1
k . Any u ∈ Sik Si−1

k can be written as W iv with
v ∈ Ω. Let us define tu = |v| + 1 and Li = N − |W i| + 1. The variable Li is the
length of Sik Si−1

k , and tu is the generation of individual u, re-indexed in such a
way that W i belongs to the first generation. The map

u ∈ Sk {O6 } 7→ (κu, tu) ∈ {(i, t) : i ≤ k, 1 ≤ t ≤ Li}

is a bijection. For i ≤ k and t ≤ Li, we denote by uit ∈ Sk the individual in the
spine corresponding to (i, t), and set X i

t to be the location of uit, that is,

X i
t = XW iv,

where v is the unique element of Ω verifying W iv ∈ Sik, and |v| = t− 1. Note that
X i

1 = XW i is the location of the oldest vertex in Sik Si−1
k and X i

Li = XV i is the
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location of the i-th marked leaf. Finally we define

Ki = inf{j < i :←−W i ∈ Sjk}

to be the label of the parent of W i, that is, the label of the vertex of Si−1
k on which

Sik Si−1
k is grafted.

Finally, for (i, t) such that i ≤ k and t < Li, we define

ζ it =
∑

uitj /∈Sk

δ(Xuitj
), ζ̄ it =

∑
uitj∈Sk

δ(Xuitj
),

to be the location of the children that do not belong to Sk, and do belong to Sk
respectively. The following result gives the distribution of (ζ it) conditional on the
spine. We restrict our attention to the case where the point processes (ξ(x); x ∈ E)
are Poisson point processes, as is the case for the branching process with recombi-
nation. However, we provide an alternative statement of this result in the general
case, which makes use of the Palm measures of (ξ(x); x ∈ E) is Section 5.A. The
first point of the following result does not require the Poisson assumption.

Proposition 5.15. Let us assume that all the point processes (ξ(x); x ∈ E) are
Poisson point processes. Then the following holds.

(i) For k = 1, the process (X1
t ; t ≥ 0) is a Markov process. Its transition is given

by
E
[
f(X1

t+1) | X1
t = x

]
= 1
H(x)

∫
E
H(y)f(y)µ(x, dy),

for a continuous bounded function f , and where µ(x, dy) is the intensity mea-
sure of the point process ξ(x).

(ii) For any k ≥ 1, conditional on (X i, Ki, Li; i ≤ k), the collection of point
processes (ζ it ; i ≤ k, t < Li) is independent. Moreover, ζ it is distributed as
ξ(Xuit

).

Proof of Proposition 5.15. Let us first prove point (i) and point (ii) for k = 1,
and then point (ii) for any k by induction. Recall the construction of the 1-spine
and its siblings. The population start from one marked particle. At generation t,
if X1

t denotes the location of the marked particle, the location of its offspring is
X1
t +ξ̂(X1

t ), where ξ̂(X1
t ) is an independent point process, whose distribution is that

of the original point process ξ(X1
t ), biased by ∑y∈ξ(X1

t ) H(y). The marked particle
is chosen among the atoms of X1

t + ξ̂(X1
t ) in such a way that an atom located

at y is chosen with probability proportional to H(y). According to Lemma 5.26,
this reproduction step can be achieved by first choosing the location X1

t+1 of the
marked particle so that conditional on X1

t = x, X1
t+1 is distributed as H(y)µ(x, dy).

Then, conditional on X1
t+1 = y the siblings of the marked particles are distributed

as ξ!,y(x), where ξ!,y(x) has the reduced Palm distribution of ξ(x), conditional
on having an atom at y. This yields the result for k = 1. It is a well-known
fact that the reduced Palm distribution of a Poisson point process Φ conditioned
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on having an atom at any location x is the original distribution of Φ, see for
instance Theorem 3.2.4 in [4]. Thus, the distribution of ζ1

t is that of ξ(X1
t ), and is

independent of X1
t+1, yielding the result for k = 1.

Let us now assume that (ii) holds for some k ≥ 1. The k + 1-spine is obtained
by first biasing the k-spine by

∑
u∈Bk

H(Xu) = H(X1
0 ) +

k∑
i=1

Li−1∑
t=1
〈H, ζ it〉,=

∑
(i,t)
〈H, ζ it〉,

and we denote by (X̃ i, K̃i, L̃i; i ≤ k) and by (ζ̃ it) the corresponding biased variables.
Then, an atom belonging to one of the point processes (ζ̃ it) is chosen in such a
way that, if it is located at y it is chosen with probability proportional to H(y).
Then, an independent 1-spine is grafted to this atom. From now on, let us work
conditional on (X̃ i, K̃i, L̃i; i ≤ k). If (I, T ) denote respectively the label and re-
indexed generation of the parent of the chosen atom, then for any collection of
bounded continuous functions (F(j,s)), by induction hypothesis,

E

[
1(I,T )=(i,t)

∏
(j,s)

F(j,s)(ζ̃js )
]

= E

[ 〈H, ζ̃ it〉∑
(j,s)〈H, ζ̃js〉

∏
(j,s)

F(j,s)(ζ̃js )
]

∝ E
[
〈H, ζ it〉

∏
(j,s)

F(j,s)(ζjs )
]

=
∏

(j,s)6=(i,t)
E
[
F(j,s)(ζjs )

]
E
[
〈H, ζ it〉F(i,t)(ζ is)

]
.

This calculation shows that

P
(
(I, T ) = (i, t)

)
∝ E

[
〈H, ζ it〉

]
and that, conditional on (I, T ) = (i, t), the point processes (ζ̃js ) remain indepen-
dent, and ζ̃ it has the distribution of ζ it biased by 〈H, ζ it〉 while all other point pro-
cesses have their original distribution, that is, are distributed as (ξ(X̃j

s )). Now,
note that conditional on (I, T ) = (i, t), the selected atom of ζ̃ it , and is chosen with
probability proportional to H(y). Lemma 5.26 again tells us that, if ν denotes
the intensity measure of ζ it and X ′ is the location of the chosen atom, then its
distribution is such that

E
[
f(X ′)

]
∝
∫
H(y)f(y) ν(dy).

Moreover, conditional on X ′, ζ̃ it − δ(X ′) has the reduced Palm distribution of ζ it ,
conditional on having an atom located at X ′. By induction, ζ it is distributed as
ξ(X i

t), and thus its reduced Palm distribution is again that of ξ(X i
t), yielding the

result.

As a corollary of Proposition 5.15, we have the following inductive procedure
to build the sequence of spines autonomously. Let us assume that the k-spine
(X i, Ki, Li; i ≤ k) has been constructed. The k + 1-spine can then be constructed
inductively as follows.
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1. Let ((X̃ i
t), K̃i, L̃i; i ≤ k) have the distribution of ((X i

t), Ki, Li; i ≤ k) biased
by

k∑
i=1

Li−1∑
t=1

E
[
〈H, ζ it〉

]
=

k∑
i=1

Li−1∑
t=1

H(X i
t).

2. Choose (I, T ) such that

P
(
(I, T ) = (i, t) | ((X̃ i

t), K̃i, L̃i; i ≤ k)
)
∝ H(X̃ i

t).

3. Conditional on (I, T ) = (i, t), let Lk+1 = L̃i − t, Kk+1 = i, and (Xk+1
t ; t ≤

Lk+1) be an independent 1-spine started from Xk+1
0 = XI

T .

5.3 The infinite population size limit
We now apply our spinal decomposition theorem to the branching process with
recombination. This short section contains the description of the k-spine of the
branching process with recombination in the large N limit. Most of the work for
proving our main theorems will be carried out in the forthcoming Section 5.4.

5.3.1 Limit of the 1-spine
Recall Definition 5.1, where the branching process with recombination is con-
structed as a Markov branching process valued in the subintervals of [0, R]. The key
property that allows the study of this branching process is that the total amount
of genetic material, that is, the sum of the lengths of the blocks, is a martingale.
Rephrased in the terminology of Section 5.2, the function

H : I 7→ |I|

is harmonic. This is checked by an easy calculation.
Let us write (INt ; t ≥ 0) for 1-spine of the branching process with recombination,

in a population of size N . We know from Section 5.2.4 that it is a discrete-time
Markov process valued in the intervals whose transitions are given by

E
[
F (INt+1) | INt = [a, b]

]
= 1
ρ

∫
|I|F (I)µ

(
([a, b], dI

)
= 1− ρ

N
F ([a, b]) + ρ

N

1
ρ2

∫ ρ

0
xF

(
[a, a+ x]

)
dx+ ρ

N

1
ρ2

∫ ρ

0
xF

(
[b− x, b]

)
dx

= 1− ρ
N

F ([a, b]) + ρ

2N

∫ 1

0
2uF

(
[a, a+ ρu]

)
du+ ρ

2N

∫ 1

0
2uF

(
[b− ρu, b]

)
du

for any functional F , and where ρ = b− a is the length of [a, b].
Thus, the transition of the 1-spine can be described as follows. Conditional on

INt = [a, b], and with ρ = b− a:

• with probability 1− ρ/N , no recombination occurs and INt+1 = [a, b];
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• with probability ρ/N , a recombination occurs, and either INt+1 = [a, a+ ρU∗]
or INt+1 = [b − ρU∗, b] with equal probability, where U∗ ∼ 2x dx has the
size-biased distribution of a uniform variable on [0, 1].

The following convergence result is straightforward from the previous description
of the transitions of the 1-spine.

Lemma 5.16. Let (INt ; t ≥ 0) be the 1-spine with population size N and ini-
tial chromosome size R. The following convergence holds in distribution for the
Skorohod topology: (

INbNtc; t ≥ 0
)
−→

(
It; t ≥ 0

)
,

where (It; t ≥ 0) is a Markov process started at I0 = [0, R] and such that, condi-
tional on It = [a, b], it jumps to [a, a+ ρU∗] at rate ρ/2 and to [b− ρU∗, b] at rate
ρ/2, where U∗ ∼ 2x dx and ρ = b− a.

Proof. The result follows by noting that the inter-jump times of (INbNtc; t ≥ 0) con-
verge to exponential variables with the parameters corresponding to the transition
rates described above.

Let us denote by ρt = |It| the length of the block of the limiting 1-spine at
time t. A direct consequence of the previous result is that, in the limit, the process
(ρt; t ≥ 0) is also a Markov process. Conditional on ρt = ρ, it jumps to ρU∗ at
rate ρ, where U∗ ∼ 2x dx. It is important to note that (ρt; t ≥ 0) is a self-similar
process, in the sense that for any c > 0,

(cρt; t ≥ 0) (d)= (ρ′ct; t ≥ 0),

where (ρ′t; t ≥ 0) is a copy of (ρt; t ≥ 0) started from cρ0, see for instance [168].
Let us end this section by providing a Poissonian construction of the 1-spine

(It; t ≥ 0). Let Q be a homogeneous Poisson point process on R+ ×R+ with rate
1. Let V be an independent uniform variable on [0, R]. At time t, the set

[0, R] {x : (x, s) ∈ Q, s ≤ t}

is the union of finitely many subintervals of [0, R]. Let It be the subinterval to
which V belongs. Then (It; t ≥ 0) is distributed as the 1-spine of the branching
process with recombination.

5.3.2 Limit of the k-spine
We will now prove an analogous convergence result for the k-spine. Here and later
in this work, we will make repeated use of the following elementary fact, that we
isolate as a lemma.

Lemma 5.17. Let (Xn) be a sequence of positive, integrable random variables,
and (Yn) a sequence of random variables in any topological space. Suppose that, for
n ≥ 1, Zn has the distribution of Yn, biased by Xn. Then, if

(Xn, Yn) −→ (X, Y )
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in distribution, if (Xn) is a uniformly integrable family, and if P(X > 0) > 0, we
have that

Zn −→ Z

in distribution, where Z has the distribution of Y , biased by X.

Proof. Let ϕ be any continuous bounded real function on the state space of (Yn).
Then

E
[
ϕ(Zn)

]
= E[Xnϕ(Yn)]

E[Xn] −→ E[Xϕ(Y )]
E[X]

where the convergence follows from the fact that both (Xn) and (Xnϕ(Yn)) are
uniformly integrable families of random variables.

The following result provides the large N limit of the k-spine, as well as the
inductive construction of the k-spine analogous to that of Section 5.2.4.

Proposition 5.18. We any k ≥ 1, let(
(I i,Nn ), Ki,N , Li,N ; i ≤ k

)
be the k-spine with population size N and initial chromosome size R, constructed
until time bσNc for σ > 0. Then there exists a collection of random variables
((I it), Ki, Li) such that the following convergence holds in distribution:

(
(I i,NbtNc), Ki,N ,

Li,N

N

)
−→

(
(I it), Ki, Li

)
.

Moreover, writing ρit = |I it |, in the limit the distribution of the k+1-spine is obtained
inductively from the k-spine by:

1. Letting
(
(Ĩ it), K̃i, L̃i; i ≤ k

)
have the law of

(
(I it), Ki, Li; i ≤ k

)
biased by

k∑
i=1

∫ Li

0
ρit dt.

2. Sampling Kk+1 so that

P
(
Kk+1 = i |

(
(Ĩ it), K̃i, L̃i; i ≤ k

))
=

∫ L̃i

0
ρ̃it dt

k∑
j=1

∫ L̃j

0
ρ̃jt dt

.

3. Drawing Lk+1 according to

E

[
f(Lk+1) | Kk+1 = i

]
∝
∫ Li

0
f(t)ρ̃i

L̃i−t dt.
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4. Conditional on Kk+1 and Lk+1, letting (Ik+1
t ; t ≤ Lk+1) be an independent

1-spine started from
Ik+1

0 = Ĩ i
Lk+1−L̃Kk+1 .

Proof. We prove the result by induction. The case k = 1 has been treated in
Lemma 5.16.

Assume that the result holds for some k. Recalling that for the k-spine we
consider the harmonic function H : I 7→ |I|, the k + 1-spine is obtained by first
biasing the distribution of the k-spine by

k∑
i=1

Li,N−1∑
t=1

ρi,Nn ,

which is equivalent to biasing it by

k∑
i=1

1
N

Li,N−1∑
n=1

ρi,Nn .

Moreover, the convergence of the
(
(ρi,NbtNc), Li,N/N ; i ≤ k

)
implies the following

convergence in distribution

k∑
i=1

1
N

Li,N−1∑
n=1

ρi,Nn −→
k∑
i=1

∫ Li

0
ρit dt.

Using the inequality
k∑
i=1

1
N

Li,N−1∑
n=1

ρi,Nn ≤ kR

to obtain uniform integrability, Lemma 5.17 shows that
(

(ρ̃i,NbtNc), K̃i,N ,
L̃i,N

N
; i ≤ k

)
−→

(
(ρ̃it), K̃i, L̃i; i ≤ k

)
,

where the limiting variables have the distribution of ((ρit), Ki, Li; i ≤ k), biased by

k∑
i=1

∫ Li

0
ρit dt.

That Kk+1,N and Lk+1,N converge to their respective limits is now straightforward.
The last statement of the proposition is again a consequence of Lemma 5.16.

5.4 The infinite chromosome size limit
We now consider the recombination rate limit of the branching process with re-
combination. Again, we first derive the limiting behavior of the 1-spine, and then
that of the k-spine by induction.
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5.4.1 Limit of the 1-spine
Let (ρt; t ≥ 0) be the block length of the continuous-time 1-spine, started at some
fixed R0. Let us consider the following random time-change:

∀t ≥ 0, θt =
∫ t

0
ρu du, τt = θ−1

t ,

and the time-changed process

∀t ≥ 0, St = ρ ◦ τt.

Then, (St; t ≥ 0) is a Markov process such that, conditional on St = ρ, (St) jumps
at rate one to U∗ρ, where U∗ ∼ 2x dx.

Recall that (ρt; t ≥ 0) is a self-similar process, so that the time-change τt is
the well-known Lamperti transform of the process [143]. The time-changed process
(St; t ≥ 0) is the exponential of a surbordinator.

The following proposition provides the limiting distribution of the 1-spine for
large R.

Proposition 5.19. Let us assume that, as R→∞,

logR0

logR −→ γ.

The following convergences hold in distribution, as R→∞.

(i) For any fixed t > 0, we have

1
logR

∫ t

0
ρu du −→ 2γ,

(ii) For any fixed t > 0,
ρt −→ Yt.

where Yt is a Gamma(2, t) variable.

(iii) Finally ( logSu logR

logR ; u ≥ 0
)
−→

(
γ − u/2; u ≥ 0

)
,

in distribution in the Skorohod topology.

Proof. To prove the result, let us build (ρt) and (St) jointly as follows. Consider an
i.i.d. sequence (Ti)i≥0 of Exponential(1) variables with mean 1, and an independent
i.i.d. sequence (U∗i )i≥1 of variables on [0, 1] distributed as 2x dx. Let us define

∀i ≥ 0, ρi = R0

i∏
j=1

U∗i
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with the convention that ρ0 = R0. Define

∀t ≥ 0, Nt = inf
{
i ≥ 0 :

i∑
j=0

Ti
ρi
> t

}
, ρt = ρNt .

Then it should be clear that (ρt; t ≥ 0) is distributed as a 1-spine started from R0.
Let us further define

∀t ≥ 0, Mt = inf
{
i ≥ 0 :

i∑
j=0

Ti > t
}
, St = ρMt .

Again, it is readily checked that (St; t ≥ 0) is the time-changed version of the
process (ρt; t ≥ 0).

Let us start with the convergence of
∫ t

0 ρu du/ logR. The following inequality
holds a.s.

Nt−1∑
i=0

Ti ≤
∫ t

0
ρu du ≤

Nt∑
i=0

Ti

so that, by the law of large numbers, it is sufficient to show that Nt/ logR converges
to 2γ in probability.

To ease the notation, let us define, for ε > 0,

n1 = b2γ(1 + ε) logRc, n0 = b2γ(1 + ε/2) logRc.

We have

P

(
Nt

logR ≥ 2γ(1 + ε)
)

= P

( n1∑
j=0

Ti
ρi
≤ t

)
≤ P

( n1∑
j=n0

Ti
ρi
≤ t

)

≤ P
( 1
ρn0

n1∑
j=n0

Ti ≤ t
)
.

Moreover,

log ρn0

logR = logR0

logR + 1
logR

n0∑
i=1

logU∗i

= logR0

logR + b2γ(1 + ε/2) logRc
logR

1
n0

n0∑
i=1

logU∗i

−→ −γε/2 a.s.

so that ρn0 → 0 a.s., where we have used that E[logU∗1 ] = −1/2. Thus

P

(
Nt

logR ≥ 2γ(1 + ε)
)
−→ 0.

Similarly, by setting n2 = b2γ(1− ε) logRc,

P

(
Nt

logR ≤ 2γ(1− ε)
)

= P

( n2∑
j=0

Ti
ρi
≥ t

)
≤ P

( 1
ρn2

n2∑
j=0

Tj ≥ t
)
.
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By the same computation as above and by the law of large numbers

log ρn2

logR −→ ε,
1
n2

n2∑
j=0

Tj −→ 1, a.s.

so that
1
ρn2

n2∑
j=0

Tj −→ 0 a.s.

yielding the result.
Let us now turn to the proof of the convergence of ρt. Using the construction of

(ρt; t ≥ 0) with a Poisson point process and a uniform variable V from Section 5.3.1,
we see that ρt is the sum of the smallest atom on [0, V R0] of a Poisson point process
with intensity tLeb, and of the smallest atom of this Poisson point process on
[0, (1− V )R0]. It is straightforward that, as R0 →∞, the location of these atoms
converge to independent Exponential(t) variables, yielding the result.

Let us finally prove the last convergence. We have that

logR0 +
Mbu logRc∑

i=1
logU∗i ≤ logSu logR ≤ logR0 +

Mbu logRc−1∑
i=1

logU∗i

Moreover, as (St; t ≥ 0) jumps at rate 1, and Mt is the number of jumps of
(St; t ≥ 0) before time t, we have that

Mbu logRc

logR −→ u a.s.

This, with the previous inequality and the law of large numbers proves the finite-
dimensional convergence of the process. That the finite-dimensional convergence
can be reinforced to a convergence in the Skorohod space follows from the fact
that the process is non-increasing, see for instance Theorem 3.37 of Chapter IV of
[111].

In the following, we will apply Lemma 5.17 to deduce convergence results on
the k-spine from the previous proposition. The uniform integrability condition
required in Lemma 5.17 is provided by the next results.

Lemma 5.20. For any p ≥ 1, σ > 0,

sup
R>0

1
(logR)pE

[( ∫ σ

0
ρt dt

)p
| ρ0 = R

]
<∞.

Proof. In the following computation let us assume that R0 = R without mentioning
it to ease the notation. We have that

1
(logR)pE

[( ∫ σ

0
ρt dt

)p]
= 1

(logR)p
∫

[0,σ]p
E
[
ρt1 . . . ρtp

]
dt1 . . . dtp

= p

(logR)p
∫ σ

0
E

[
ρt1

∫
[t1,σ]p−1

ρt2 . . . ρtp dt2 . . . dtp
]

dt1
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= p

(logR)p
∫ σ

0
E

[
ρt1E

[∫
[t1,σ]p−1

ρt2 . . . ρtp dt2 . . . dtp | ρ0 = ρt1
]]

dt1

< p sup
R>0

{ 1
(logR)p−1E

[( ∫ σ

0
ρt dt

)p−1]} 1
logR

∫ σ

0
E
[
ρt
]

dt

so that, by induction, we are left to showing that

sup
R>0

1
logR

∫ σ

0
E
[
ρt
]

dt <∞.

If ρ0 = R, according to the Poisson construction of (ρt; t ≥ 0) described in
Section 5.3.1, ρt is obtained by throwing a Poisson(Rt) distributed number of uni-
form variables on [0, R], breaking [0, R] is subintervals, and picking one of these
subintervals in a size-biased way. Therefore, ρt/R has a density w.r.t. the Lebesgue
measure on [0, 1] given by

∑
k≥1

e−Rt
(Rt)k
k! k(k + 1)x(1− x)k−1 = xRte−Rt

∑
k≥0

(Rt)k
k! (k + 2)(1− x)k

= xRte−xRt(Rt(1− x) + 2).

Moreover, ρt has an atom at R of mass e−Rt. Therefore

E
[
ρt
]

= Re−Rt +
∫ 1

0
(xR)2te−xRt(Rt(1− x) + 2) dx

≤ Re−Rt +
(1
t

+ 1
Rt2

) ∫ Rt

0
u2e−u du

= Re−Rt + 2
(1
t

+ 1
Rt2

)(
1− e−Rt

(
1 +Rt+ (Rt)2

2
))
.

Thus ∫ σ

0
E
[
ρt
]

dt ≤ 1 + 2
∫ Rσ

0

(1
v

+ 1
v2

)(
1− e−v

(
1 + v + v2

2
))

dv,

from which is directly follows that

lim sup
R→∞

1
logR

∫ σ

0
E
[
ρt
]

dt <∞

yielding the result.

Corollary 5.21. Let
(
(ρit), Ki, Li; i ≤ k

)
be the k-spine. We have

sup
R>0

1
(logR)pE

[( k∑
i=1

∫ Li

0
ρit dt

)p
| ρ1

0 = R
]
<∞.

Proof. Recall that (ρkt ; t ≤ Lk) is a 1-spine started from ρk0, and that, conditional
on ρk0 it is independent of ((ρit), Ki, Li; i < k). By self-similarity of the 1-spine, we
can assume that

ρkt = ρk0
R
ρ′(ρk0 t)/R
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where (ρ′t; t ≥ 0) is a 1-spine, started from R and is independent of the variables
((ρit), Ki, Li; i < k). Thus we have that∫ Lk

0
ρkt dt = R

ρk0

∫ (Lkρk0)/R

0
ρk(Rt)/ρk0

dt ≤
∫ σ

0
ρ′t dt,

and
k∑
i=1

∫ Li

0
ρit dt ≤

k−1∑
i=1

∫ Li

0
ρit dt+

∫ σ

0
ρ′t dt.

The proof is ended by a straightforward induction using Lemma 5.20.

5.4.2 Limit of the k-spine
We now study the large R limit of the k-spine. Before stating our result, let us
show a lemma that we will need. In the large R limit, under the appropriate
time-change, the branching times of the k-spine will be uniformly distributed on
[0, 2]. The following simple lemma shows that this property is preserved under the
inductive step that constructs the k + 1-spine from the k-spine.

Lemma 5.22. Let (U2, . . . , Uk) be i.i.d. uniform variables on [0, 2], and let U1 = 2.
Let (Ũ1, . . . , Ũk) have the distribution of (U1, . . . , Uk), biased by U1 + · · · + Uk, let
K be such that

P(K = i | Ũ1, . . . Ũk) ∝ Ũi,

and Ũk+1 = V ŨK, where V is an independent uniform variable on [0, 1]. Then the
order statistics of (Ũ2, . . . , Ũk+1) is that of k i.i.d. uniform variables on [0, 2].

Proof. Let i ≥ 1, and ϕj be bounded continuous functions. We have that

E
[k+1∏
j=1

ϕj(Ũj)1K=i
]

= E
[ k∏
j=1

ϕj(Ũj)1K=i
1
Ũi

∫ Ũi

0
ϕk+1(x) dx

]

= E
[ k∏
j=1

ϕj(Ũj)
1∑k

j=1 Ũj

∫ Ũi

0
ϕk+1(x) dx

]
∝ E

[
ϕi(Ui)

∫ Ui

0
ϕk+1(x) dx

]∏
j 6=i
E[ϕj(Uj)].

This shows that, for i ≥ 2, conditional on K = i, (Ũi, Ũk+1) are distributed as the
order statistics of two uniform variables on [0, 2], independent of (Ũj; j 6= i) that
are i.i.d. uniform variables on [0, 2]. For i = 1, the previous calculation shows that,
conditional on K = 1, (Ũ2, . . . , Ũk+1) are i.i.d. uniform random variables on [0, 2].
Therefore, the result holds conditional on K = i for any i proving the lemma.

Let us now introduce the time-changes and notation for the convergence of the
k-spine. Let ((ρit), Ki, Li; i ≤ k) be the k-spine, started from a block of length R,
and stopped at time σ. For any i ≤ k, we consider the random time-change

∀t ≤ Li, θit =
∫ t

0
ρiu du, L̄i = θiLi =

∫ Li

0
ρiu du.
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We denote by τ i its inverse, and let

∀t ≤ L̄i, Sit = ρi ◦ τ it
be the corresponding time-changed process. The following result is the k-spine
analogous of Proposition 5.19.

Proposition 5.23. Fix k ≥ 1, and let ((Sit), Ki, L̄i; i ≤ k) be the time-changed
k-spine, started at R until time σ. Then, the following convergences hold jointly
in distribution as R→∞.

(i) We have (
L̄1

logR, . . . ,
L̄k

logR

)
−→

(
U1, . . . , Uk

)
,

where U1 = 2, and the order statistics of (U2, . . . , Uk) are that of i.i.d. uniform
variables on [0, 2].

(ii) For any fixed t > 0, we have

(ρ1
t , . . . , ρ

k
t ) −→ (Y 1

t , . . . , Y
k
t )

where (Y 1
t , . . . , Y

k
t ) are i.i.d., distributed as Gamma(2, t) variables, and inde-

pendent of (U1, . . . , Uk).

(iii) Moreover, for each i ≤ k,( logSit logR

logR ; t ≤ L̄i

logR

)
−→

(U i − t
2 ; t ≤ U i

)
in distribution for the uniform topology.

(iv) Finally,
(L1, . . . , Lk) −→ (σ, . . . , σ).

Proof. We proceed by induction. For k = 1, we have

L̄1 =
∫ σ

0
ρ1
t dt,

so that (i), (ii) and (iii) follow from the corresponding points in Proposition 5.19
with γ = 1. By definition we have L1 = σ.

Suppose that all convergences occur jointly for some k. Then

L̄1 + · · ·+ L̄k

logR −→ U1 + · · ·+ Uk

in distribution. Thus, provided that the latter variables are uniformly integrable,
by Lemma 5.17, all convergences in the statement of the result also hold for the
versions of the variables biased by

L̄1 + · · ·+ L̄k

logR
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to the limiting variables, biased by

U1 + · · ·+ Uk.

The required uniform integrability follows from Corollary 5.21.
With an abuse of notation, we still denote by ((Sit), L̄i, Ki; i ≤ k) the biased

variables, and by (U1, . . . , Uk) the limiting variables biased by (U1, . . . , Uk). It
follows from

P
(
Kk+1 = i | (Sit), L̄i, Ki; i ≤ k

)
= L̄i

L̄1 + · · ·+ L̄k
−→ U i

U1 + · · ·+ Uk
.

that Kk+1 converges in distribution to some random index Kk+1
∞ such that

P
(
Kk+1
∞ = i | U1, . . . , Uk

)
= U i

U1 + · · ·+ Uk
.

Moreover recall that, conditional on Kk+1 = i, Lk+1 is chosen so that

E
[
ϕ(Lk+1) | Kk+1 = i

]
∝
∫ Li

0
ρiLi−tϕ(t) dt

With the random time-change, we have that

E
[
ϕ(L̄k+1) | Kk+1 = i

]
∝
∫ Li

0
ϕ(θt)ρiLi−t dt =

∫ L̄i

0
ϕ(t) dt,

so that, conditional onKk+1 = i, L̄k+1 is uniformly distributed on [0, L̄i]. Therefore,
L̄k+1/ logR converges to some limit Uk+1, and according to Lemma 5.22, the order
statistics of (U2, . . . , Uk+1) are that of i.i.d. uniform variables on [0, 2]. This proves
(i).

Conditional on Kk+1 = i, (Sk+1
t ; t ≤ L̄k+1) is obtained out of an independent

1-spine started at Si
L̄i−L̄k+1 . The joint convergence of

L̄i − L̄k+1

logR −→ Ũ i − Ũk+1

and of ( logSit logR

logR ; t ≤ L̄i

logR

)
−→

( Ũ i − t
2 ; t ≤ Ũ i

)
proves that

logSk+1
0

logR =
logSi

L̄i−L̄k+1

logR −→ Ũk+1

2 ,

so that, by Proposition 5.19,
( logSk+1

t logR

logR ; t ≤ L̄k+1

logR

)
−→

( Ũk+1 − t
2 ; t ≤ Ũk+1

)
.
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This proves (iii).
Let us prove the last two points. For any i we have

1
logR

∫ L̄i

0
ρit dt −→ U i

whereas ∫ L̄i

ε
ρit dt ≤ σρiε −→ σYε

with Yε ∼ Gamma(2, ε). Thus, conditional on Kk+1 = i, as Li − Lk+1 is sampled
in [0, Li] with a density proportional to ρit, we have that

P(Li − Lk+1 ≥ ε | Kk+1 = i) =

∫ Li

ε
ρit dt∫ Li

0
ρit dt

≤ σYε∫ Li

0
ρit dt

−→ 0.

Thus, by induction,
Lk+1 −→ σ,

and by Proposition 5.19, we directly obtain that for all t > 0,

ρk+1
t −→ Yt

in distribution. Our proof of is now complete.

5.4.3 Proof of Theorem 5.2
We are now ready to prove the convergence of the empirical measure of the block
lengths.

Proof of Theorem 5.2. Let us denote by νt the empirical distribution of block length
at time t, with population size parameter N and recombination rate R. For sim-
plicity, the dependence in N and R is not taken into account in the notation. Then,
if Mt = 〈1, νt〉 is the total population size at time t,

1
Nk
E
[
〈f, νt〉k | Mt > 0

]
= 1
NpN,R(t)

1
Nk−1E

[
〈f, νt〉k

]
= 1
NpN,R(t)

1
Nk−1E

[ ∑
|vi|=t

f(ρv1) . . . f(ρvk)
]
,

where pN,R(t) denotes the extinction probability at generation t. As, on the set of
non-extinction at time Nσ, the number of individuals is of order N , we have that

E
[ ∑
|vi|=bNσc

f(ρv1) . . . f(ρvk)
]
∼ E

[ ∑
|vi|=bNσc
v1 6=... 6=vk

f(ρv1) . . . f(ρvk)
]
.
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Moreover, by the many-to-few formula of Corollary 5.13 and by point (i) of Theo-
rem 5.12, we have that

E
[ ∑
|vi|=bNσc
v1 6=... 6=vk

f(ρv1) . . . f(ρvk)
]

= RE
[
f(ρV 1)
ρV 1

. . .
f(ρV k)
ρV k

] k−1∏
i=1
E

[ i∑
j=1

bNσc∑
n=1

ρV jn

]

so that

lim
N→∞

1
Nk−1E

[ ∑
|vi|=bNσc
v1 6=... 6=vk

f(ρv1) . . . f(ρvk)
]

= RE
[
f(ρ1

L1)
ρ1
L1

. . .
f(ρkLk)
ρkLk

] k−1∏
i=1
E
[ i∑
j=1

∫ Lj

0
ρjt dt

]

where (ρ1
t , . . . , ρ

k
t ) are the block length of the continuous-time k-spine. The last

convergence requires some uniform integrability on the various variables. We claim
that the required property follow from ρit ≤ R and from the Poissonian construction
of the 1-spine. The behavior near 0 of ρit is that of the sum of two independent
exponential variables, so that the integrability of 1/ρit is not problematic.

Let us now take the limit R→∞. By Proposition 5.23,

lim
R→∞

1
logRE

[ i∑
j=1

∫ Li

0
ρjt dt

]
= E

[
U1 + · · ·+ U i

]
= i+ 1,

and
lim
R→∞

E

[
f(ρ1

L1)
ρ1
L1

. . .
f(ρkLk)
ρkLk

]
= E

[
f(Y 1)
Y 1 . . .

f(Y k)
Y k

]
where (Y 1, . . . , Y k) are independent Gamma(2, σ) variables. Thus

E

[
f(Y 1)
Y 1 . . .

f(Y k)
Y k

]
= σkE

[
f(Z)

]k
where Z ∼ Exponential(σ). (Again, the uniform integrability follows either from
Corollary 5.21 or from the Poissonian construction.)

Putting pieces together, and using Proposition 5.7, for k ≥ 1, we have that

lim
R→∞

lim
N→∞

1
(N logR)kE

[
〈f, νt〉k | Mt > 0

]
= lim

R→∞

(
lim
N→∞

R

pR(σ)N logR

)
E

[
f(ρ1

σ)
ρ1
σ

. . .
f(ρkσ)
ρ1
σ

] k−1∏
i=1
E
[ 1
logR

i∑
j=1

∫ σ

0
ρjt dt

]
= σkE

[
f(Z)

]k
k!

= E
[
f(Z)

]k
E
[
Y k
]

where Y ∼ Exponential(1/σ).
Thus, by the method of moments, this proves that

lim
R→∞

lim
N→∞

1
N logR〈f, νbNσc〉 = Y 〈f, Z〉
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in distribution, conditional on MbNσc > 0, where Y is an Exponential(1/σ) vari-
able and Z an Exponential(σ) variable. This entails the convergence of the condi-
tioned renormalized empirical measure in the weak topology to the random measure
YL (Z) and proves the result, see for instance [121], Theorem 4.11.

5.5 Geometry of the blocks on the chromosome
In this section, we prove Theorem 5.4 which provides the limit of the locations on
the chromosome of the blocks in the population, in the Gromov-weak sense. We
start by recalling some convergence facts about this topology, in order to identify
what needs to be proved, and to motivate the remainder of this section.

Let (X, d, µ) be a random metric space. Recall the definition of the (random)
measure ιn as the push-forward measure of µ⊗n by the map Dn. According to
Lemma 2.7 in [43], in our case, proving the convergence in distribution in the
Gromov-weak topology amounts to proving the convergence of

E
[
〈F, ιn〉

]
= E

[
µ(X)nF

(
(d(Yi, Yj); i, j ≤ n)

)]

for any bounded continuous function F : R(n2)
+ → R, where (Y1, . . . , Yn) are i.i.d.

variables in X sampled according to µ/µ(X). (Note that this is a consequence of
the fact that the total mass of a Brownian CPP is exponentially distributed, and
that this distribution is characterized by its moments.)

Let (Vt, dV , µV) be the population at generation t, viewed as a random metric
space. Then, for a continuous bounded function F , the previous functionals of the
random metric space can be written as

E
[
〈F, ιn〉

]
= E

[ ∑
v1,...,vn

|vi|=t

F
(
(d(vi, vj); i, j ≤ n)

)]

= E

[ ∑
v1,...,vn

|vi|=t

F
(
(|Hvi −Hvj |; i, j ≤ n)

)]
.

Moreover, by our many-to-few formula, the previous quantity can be directly ex-
pressed in terms of the locations of the blocks of the distinguished vertices of the
k-spine. In Section 5.5.1 we start by showing that, in the limit, the distance on the
chromosomes of the blocks of the k-spine are that of their time to the MRCA. Then,
in Section 5.5.2, we express these times to the MRCA in terms of the Brownian
CPP, and complete the proof of Theorem 5.4.

5.5.1 Convergence of the block distance
Recall the notation (I it ; i ≤ k, t ≤ Li) for the blocks carried by the k-spine. For
each t let H i

t be the left endpoint of I it . We now consider the large recombination
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1 2 3 4 5

Figure 5.3: Construction of the tree encoded by (U1, . . . , U5) and (K1
∞, . . . ,K

5
∞). In

this tree, (K1
∞, . . . ,K

5
∞) = (0, 1, 1, 1, 3).

rate limit of the distance matrix of the tips of the spine, defined as(
|H i

Li −H
j
Lj |; i, j ≤ k

)
.

We will show that, as R → ∞, the distance between the locations of the blocks
of any two branches of the spine is of the same order as the block length of their
most-recent common ancestor (MRCA). Let us start by giving a definition of that
MRCA.

We can build a tree out of the vectors (U1, . . . , Uk) and (K1
∞, . . . , K

k
∞) as follows.

Start from a branch of length U1 = 2, with the root of the tree at one endpoint,
and the other endpoint labeled 1. At step i, add an external branch of length U i

with label i to the tree. Graft one of its endpoint on the branch with label Ki
∞, in

such a way that the other endpoint lies at distance 2 from the root. See Figure 5.3
for a graphical illustration. The time to the MRCA between i and j, T i,j, is then
defined as half the distance between the tips of the branches with label i and j.

Proposition 5.24. As R→∞, the following convergence holds in distribution( log|H i
Li −H

j
Lj |

logR ; i, j ≤ k
)
−→

(T i,j
2 ; i, j ≤ k

)
,

where T i,j is the time to the MRCA of i and j in the limiting tree encoded by the
variables (U1, . . . , Uk) and (K1

∞, . . . , K
k
∞).

Proof. Again, we work by induction. For k = 1 there is nothing to prove. Suppose
that the convergence holds for some k ≥ 1. Again, by Lemma 5.17, we have
convergence of the distribution of( log|H i

Li −H
j
Lj |

logR ; i, j ≤ k
)
,
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biased by L1 + · · ·+ Lk to the distribution of

(T i,j
2 ; i, j ≤ k

)
,

biased by U1 + · · · + Uk. Therefore, if, with a slight abuse of notation, we still
denote by

(
(H i

t); i ≤ k, t ≤ Li
)
and (T i,j; i, j ≤ k) the block locations and times

to the MRCA of the first k branches of the k+ 1-spine, we might still assume that
the convergence holds.

Let Kk+1
∞ be the parent of the k + 1-branch. Let us first work conditional on

Kk+1
∞ = i, and show that

log|Hk+1
Lk+1 −H i

Li |
logR −→ T k+1,i

2 .

Recall that, for a fixed R, (Ik+1
t ; t ≤ Lk+1) is distributed as an independent 1-

spine, started from (I iLi−Lk+1). Recall that this 1-spine can be constructed from
an independent homogeneous Poisson point process Q on R+×R+ and a uniform
variable V on [0, 1] as follows. Let It be the subinterval of

I iLi−Lk+1 {x : (x, s) ∈ Q, s ≤ t}

to which H i
Li−Lk+1 + ρiLi−Lk+1V belongs. Then Hk+1

t can be defined as the left
endpoint of It, and ρk+1

t as its length.
Moreover, we know from Proposition 5.23 that ρk+1

Lk+1 converges to a Gamma(2, σ)
variable, while the variable ρiLi−Lk+1 converges to +∞. Thus

Hk+1
Lk+1 −H i

Li−Lk+1

ρiLi−Lk+1
−→ V

in probability, that is, in the limit the size of the interval Ik+1
Lk+1 is negligible compared

to that of its ancestor. As V is independent of the k-spine, we have that

|Hk+1
Lk+1 −H i

Li |
ρiLi−Lk+1

−→ Uniform([0, 1]),

in distribution. Thus, it follows from

log ρiLi−Lk+1

logR −→ Uk+1

2 ,

that
log|Hk+1

Lk+1 −H i
Li |

logR −→ Uk+1

2 = T k+1,i

2
in distribution.
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Up to using Skorohod representation theorem, see for instance Theorem 6.7 in
[25], we now assume that all the previous converges hold almost surely. By the
construction of the time to the MRCA, as Kk+1

∞ = i, for j 6= i we have

T k+1,j =
T i,j if T k+1,i < T i,j

T i,k+1 if T k+1,i > T i,j.

(This follows from the fact that the tree encoded by (T i,j) is ultrametric.) Now,
using that∣∣∣|Hk+1

Lk+1 −H i
Li | − |H i

Li −H
j
Lj |
∣∣∣ ≤ |Hk+1

Lk+1 −Hj
Lj | ≤ |H

k+1
Lk+1 −H i

Li |+ |H i
Li −H

j
Lj |,

and that
log|Hk+1

Lk+1 −H i
Li |

log|Hj
Lj −H i

Li |
−→ T k+1,i

T i,j

we see that:

• if T k+1,i < T i,j, then

log|Hk+1
Lk+1 −Hj

Lj |
logR −→ T i,j

2 = T k+1,j

2 ;

• if T i,j < T k+1,i,

log|Hk+1
Lk+1 −Hj

Lj |
logR −→ T k+1,i

2 = T k+1,j

2 .

This proves the result conditional on Kk+1 = i, for all i ≤ k, and thus ends the
proof.

5.5.2 Proof of Theorem 5.4
Now that we have connected the locations of the blocks of the k-spine to the times
to the MRCA, it remains to be shown that the tree structure of the k-spine is that
of a Brownian CPP.

Note that we have two encodings of the tree structure of the k-spine. First, the
vector (T i,j; i, j ≤ k) encodes the ultrametric structure of the tree, that is, the tree
distance between the leaves. Second, the vectors (U1, . . . , Uk) and (K1

∞, . . . , K
k
∞)

represent respectively the length of the branch leading to leaf i, and the label of the
branch to which it is grafted. The correspondence between the two representations
is not one-to-one: there can be distinct vectors (U1, . . . , Uk) and (K1

∞, . . . , K
k
∞)

with the same underlying ultrametric space. As we are only interested into showing
that the ultrametric structure of the k-spine is that of a biased Brownian CPP,
we can (and will) consider different ways of recovering branch lengths out of the
Brownian CPP.
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Recall the definition of the Brownian CPP ([0, Y1], d,Leb) out of a Poisson point
process Q with intensity

dt⊗ 1
x2 dx.

Conditional on Y1, let (V i)i≥1 be i.i.d. uniform variables on [0, Y1]. We define a
random ultrametric on N as follows

∀i, j, dN(i, j) = d(V i, V j).

This random ultrametric is called the distance matrix of the Brownian CPP.
We now define two ways of recovering trees whose underlying ultrametric space

is d out of the Brownian CPP. For i ≤ k, let←−K i be the label of the closest variable
among (V 1, . . . , V k) to the left of V i, and let ←−V i = V

←−
K i be the location of this

variable. If V i is the left-most variable, set V i = 0, and assign an arbitrary value
to Ki. Then, if ←−

U i = sup{x : (x, t) ∈ Q, t ∈ [←−V i, V i]},

we call the tree with branch lengths (←−U 1, . . . ,
←−
U k) and ancestors (←−K 1, . . . ,

←−
K k) the

left-oriented tree associated to the Brownian CPP. Similarly, we define −→K i as the
label of the closest variable among (V 1, . . . , V k) to the right of V i, and −→V i = V

−→
K i ,

with the convention that −→V i = Y1 if V i is the right-most variable. We set
−→
U i = sup{x : (x, t) ∈ Q, t ∈ [V i,

−→
V i]},

and call the tree with branch lenghts (−→U 1, . . .
−→
U k) and ancestors (−→K 1, . . . ,

−→
K k) the

right-oriented tree associated to the Brownian CPP.
The left-oriented (resp. right-oriented) tree can be obtained from Q and from

(V 1, . . . , V k) in the following pictorial way. Recall that Q can be seen as a set of
teeth on [0, Y1]. The variables (V 1, . . . , V k) break [0, Y1] into k + 1 subintervals.
Remove all teeth from Q but the largest tooth in each of the k−1 inner subintervals,
that is, those intervals with both endpoints in (0, Y1). Add a tooth of length 1 at 0
(resp. Y1). Each remaining tooth represents a branch of the tree, and its parent is
defined as the first tooth encountered by an arrow sent from the top of the tooth
towards the left (resp. the right). The label of a branch is the label of the closest
variable to the right (resp. to the left) of the stem of the tooth. See Figure 5.4 for
an illustration of this procedure.

Finally, we say that (Ŷ1, d̂N) is a k-biased Brownian CPP if is has the distribu-
tion of (Y1, dN) biased by Y k

1 . Then Ŷ1 has a Gamma(k + 1, 1) distribution, and
conditional on Ŷ1, the ultrametric d̂N is obtained out of an i.i.d. sequence (V i; i ≥ 1)
of uniform variables on [0, Ŷ1] in the exact same way as in the unbiased Brownian
CPP. Moreover note that, as Ŷ1 is Gamma(k+1, 1) distributed, (V 1, . . . , V k) break
[0, Ŷ1] in k + 1 subintervals, and the length of these subintervals are independent
Exponential(1) variables. Moreover, a simple calculation shows that the size of the
largest tooth in those subintervals are independent uniform variables on [0, 1]. This
is the key property that we use to show the following result.
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4 2 1 3 4 2 1 3

Figure 5.4: Orientation of a CPP tree. The CPP is represented on the right panel. The
other two panels represent the left and right orientation of this CPP, respectively.

Proposition 5.25. For k ≥ 1, let (T i,j; i, j ≤ k) be the time to the MRCA in the
tree obtained from (U1, . . . , Uk) and (K1

∞, . . . , K
k
∞). Then(

d̂N(i, j); i, j ≤ k
) (d)=

(
T i,j

2 ; i, j ≤ k
)
,

where (d̂N(i, j); i, j ≤ k) is the distance matrix of a k-biased Brownian CPP.

Proof. Let Ŷ1 be the total mass of a k+1-biased Brownian CPP, and (V 1, . . . , V k+1)
be k+1 uniform variables on [0, Ŷ1]. We build some branch lengths (U1

Q, . . . , U
k+1
Q )

and ancestors (K1
Q, . . . , K

k+1
Q ) by choosing the orientation of the k+ 1-biased CPP

tree according to the location of V k+1. More precisely:

• on the event {∀i ≤ k; V k+1 < V i}, define

∀i ≤ k, (U i
Q, K

i
Q) = (←−U i,

←−
K i)

(Uk+1
Q , Kk+1

Q ) = (−→U k+1,
−→
K k+1);

(5.5)

• on the event {∀i ≤ k; V k+1 > V i}, define

∀i ≤ k, (U i
Q, K

i
Q) = (−→U i,

−→
K i)

(Uk+1
Q , Kk+1

Q ) = (←−U k+1,
←−
K k+1);

(5.6)

• on the contrary event:

– on {←−U k+1 >
−→
U k+1}, define

(U i
Q, K

i
Q) =


(−→U k+1,

−→
K k+1) if i = k + 1,

(←−U k+1, k + 1) if i = −→K k+1,
(←−U i,

←−
K i) else;

(5.7)

– on {←−U k+1 <
−→
U k+1}, define

(U i
Q, K

i
Q) =


(←−U k+1,

←−
K k+1) if i = k + 1,

(−→U k+1, k + 1) if i =←−K k+1,
(−→U i,

−→
K i) else.

(5.8)
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Let us go through all the cases separately. In equation (5.5), as conditional on
the event {∀i; V k+1 < V i}, the variable Ŷ1 − V k+1 has a Gamma(k + 1, 1) distri-
bution, and (V 1, . . . , V k) are i.i.d. uniform on the interval [V k+1, Ŷ1], the subtree
spanned by the first k leaves is distributed as the left-oriented tree of a k-biased
Brownian CPP. Moreover, Uk+1

Q is uniformly distributed on [0, 1], and Kk+1
Q is the

label of the unique branch of length 1 in the subtree. A similar conclusion holds
for equation (5.6), so that with probability 2/(k + 1) the length of the k + 1-th
branch is uniformly distributed on [0, 1], and it is grafted on the unique branch of
length 2 of the tree with k leaves.

In equation (5.7), we consider the left-oriented tree associated to the Brownian
CPP, except that we have swapped the branch lengths of the leaves k + 1 and−→
K k+1. (Note that this does not change the underlying ultrametric structure of the
tree.) The distribution of the subtree spanned by the first k leaves is that of the
left-oriented tree of the k-biased Brownian CPP, except that the branch length of−→
K k+1 is the maximum of two independent uniform variables. As −→K k+1 is uniform
in {1, . . . , k}, the tree on k+ 1 leaves is thus obtained by size-biasing the length of
a uniformly chosen branch −→K k+1, and grafting the branch k+ 1 uniformly on it. A
similar conclusion holds for equation (5.8).

Overall, we have just shown that the ultrametric structure of a sample of size
k + 1 in the k + 1-biased Brownian CPP is obtain from that of the k sample by:

• with probability 2/(k+ 1), choosing the unique branch of size 1, and grafting
branch k + 1 uniformly on it;

• with probability 1/(k + 1) for each other branch, size-biasing its length and
grafting branch k + 1 uniformly on it.

As this is the inductive step used to build the k + 1-spine out of the k-spine, and
as U1/2 = 1, the proof is complete.

The proof of Theorem 5.4 can now be completed.

Proof of Theorem 5.4. To ease the notation, let us define

D(v1, . . . , vk) =
( log|Hvi −Hvj |

logR ; i, j ≤ k
)
,

the distance matrix of (v1, . . . , vk). Let F : R(n2)
+ → R be a continuous bounded

function and fix σ > 0. According to Lemma 2.7 in [43], the result is proved if we
can show that

lim
R→∞

lim
N→∞

1
N logRE

[ ∑
v1,...,vk

|vi|=bσNc

F
(
D(v1, . . . , vk)

)]
= E

[
(σY1)kF

(
(dN(i, j); i, j ≤ k)

)]
,

where ([0, Y1], d,Leb) is a Brownian CPP, and dN is its distance matrix. (The set
of such functionals is convergence determining for the Gromov-weak topology, as
the mass of the Brownian CPP is characterized by its moments.)
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Reasoning along the same lines as in the proof of Theorem 5.2, we have that

E

[ ∑
|vi|=bσNc

F
(
D(v1, . . . , vk)

)]
= 1
pN,R(bσNc)E

[ ∑
|vi|=bσNc

F
(
D(v1, . . . , vk)

)]

∼ 1
pN,R(bσNc)E

[ ∑
|vi|=bσNc
v1 6=... 6=vk

F
(
D(v1, . . . , vk)

)]
.

By Corollary 5.13,

lim
N→∞

1
Nk−1E

[ ∑
|vi|=bσNc
v1 6=... 6=vk

F
(
(v1, . . . , vk)

)]

= R lim
N→∞

1
Nk−1E

[ k∏
i=1

1
ρV i

F
(
D(V 1, . . . , V k)

)] k−1∏
i=1
E

[ i∑
j=1

Lj∑
t=1

ρV jt

]

= RE
[ k∏
i=1

1
ρiLi

F
( log|H i

Li −H
j
Lj |

logR ; i, j
)] k−1∏

i=1
E

[ i∑
j=1

∫ Lj

0
ρjt dt

]
.

Moreover,

1
(logR)k−1

k−1∏
i=1
E

[ i∑
j=1

∫ Lj

0
ρjt dt

]
−→ k!

and by Proposition 5.23, Proposition 5.24, and Proposition 5.25,

E

[ k∏
i=1

1
ρiLi

F
( log|H i

Li −H
j
Lj |

logR ; i, j
)]
−→ σkE

[
F
(
d̂N(i, j); i, j

)]

where d̂N is the ultrametric obtained by sampling uniformly in the k-biased Brow-
nian CPP. Moreover, if Y1 denotes the total mass of a Brownian CPP, and dN(i, j)
the ultrametric obtained by sampling in the (unbiased) Brownian CPP, we have

E

[
F
(
d̂(i, j); i, j

)]
= 1
k!E

[
Y k

1 F
(
d(i, j); i, j

)]
.

Therefore, we have that

lim
R→∞

lim
N→∞

1
(N logR)kE

[ ∑
|vi|=bσNc

F (D(v1, . . . , vk))
]

= E

[
(σY1)kF

(
dN(i, j); i, j

)]

ending the proof.
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Appendices for Chapter 5

5.A Palm measures
In this section, we recall some basic facts on the Palm measures of a point process,
and provide an extension of Proposition 5.15 for general offspring point process.
We follow the notation in [4] for the exposition of Palm measures.

Let Φ be a point process on some Polish space E. Let us denote by ν its
intensity measure, defined as the unique measure on E such that∫

E
f(x) ν(dx) = E

[∑
x∈Φ

f(x)
]
,

for any bounded continuous function f . We now define a measure C on E×M(E),
whereM(E) is the set of point measures on E, referred to as the Campbell measure
of Φ. This measure is such that, for any continuous bounded function F , we have∫

E×M(E)
F (x, µ)C(dx, dµ) = E

[∑
x∈Φ

F (x,Φ)
]
.

It is clear that the projection C(·,M(E)) of C to E is the intensity measure ν. By
general disintegration results on finite measures, there exists a collection of random
point processes (Φx; x ∈ E) such that∫

E×M(E)
F (x, µ)C(dx, dµ) =

∫
E
E
[
F (x,Φx)

]
ν(dx).

This family of point processes (Φx; x ∈ E) is called the family of Palm measures
associated to Φ. It is not hard to see that for ν-almost every x ∈ E, we have
P(x ∈ Φx) = 1. Therefore, we can define for x ∈ E

Φ!,x = Φx − δ(x)

which is a point process for ν-almost every x ∈ E. The family of point processes
(Φ!,x; x ∈ E) is called the family of reduced Palm measures associated to Φ.

The following result is a simple reformulation of the sampling procedure of the
marked individuals in the 1-spine in terms of Palm measures.

Lemma 5.26. Let Φ be a point process with intensity measure ν and H be such
that ∫

E
H(x) ν(dx) <∞.
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Suppose that Φ̃ is distributed as

E
[
F (Φ̃)

]
∝ E

[∑
x∈Φ

H(x)F (Φ̃)
]

and that, conditional on Φ̃, X is an atom of Φ̃ chosen with probability proportional
to H(x). Then X has distribution

E
[
f(X)

]
∝
∫
H(x)f(x) ν(dx),

and conditional on X, Φ̃ − δX has the reduced Palm distribution of Φ conditional
on having an atom at X.

Proof. We have

E

[
f(X)F (Φ̃− δX)

]
= E

[∑
x∈Φ̃H(x)f(x)F (Φ̃− δx)∑

x∈Φ̃ H(x)

]

=
E

[∑
x∈Φ

H(x)f(x)F (Φ− δx)
]

∫
H(x) ν(dx)

=

∫
H(x)f(x)E

[
F
(
Φ!
x

)]
ν(dx)∫

H(x) ν(dx)
,

where Φ!
x denotes the reduced Palm distribution of Φ with an atom at x. The

first equality follows from the definition of X, the second from that of Φ̃ and the
last from the Campbell-Little-Mecke formula, see for instance Corollary 3.1.14 in
[4].

The Palm measure Φx corresponds, roughly speaking, to the distribution of
Φ “conditioned on having an atom at x”. We now introduce higher order Palm
measures, which correspond the distribution of Φ, conditioned on having atoms
located at ζ, where ζ is a finite point measure on E.

We proceed inductively on the number of atoms of ζ. If ζ = δx, we define

Φ!,ζ = Φ!,x.

Moreover, if x ∈ ζ, we define

Φ!,ζ =
(
Φ!,ζ−δx

)!,x
.

It can be checked that this definition does not depend on the order in which the
atoms of ζ are considered. See Chapter 3 in [4] for a rigorous definition.

Recall the notation (X i, Ki, Li; i ≤ k) for the k-spine, and the notation ζ it
(resp. ζ̄ it) for the point process of children of X i

t that do not belong (resp. belong)
to the spine Sk. Then we have the following reformulation of Proposition 5.15 in
the general case. It can be proved along the same lines as Proposition 5.15.
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Proposition 5.27. Conditional on (X i, Ki, Li; i ≤ k), the collection of point pro-
cesses (ζ it ; i ≤ k, t ≤ Li) is independent. Moreover ζ it has the reduced Palm distri-
bution of the original point process ξ(X i

t), conditional on having atoms located at
ζ̄ it .
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6

From individual-based epidemic models to
McKendrick-von Foerster PDEs:

A guide to modeling COVID-19 dynamics

This chapter has been submitted to Theoretical Population Biology [77], and I am
listed as the first author of this project.

Illustration. Graphical representation of a Crump-Mode-Jagers branching pro-
cess, which is the general framework from which our model is built.

6.1 Introduction

6.1.1 Challenges posed by complex diseases such as
COVID-19

The transmission of pathogens between species is a global concern [17, 42]. As
such zoonotic episodes are expected to become increasingly common in humans,
it is critical to develop analytic tools that can quickly transform epidemiological
observations into informed public policy in order to mitigate and control epidemics.

A novel coronavirus, SARS-CoV-2, has recently crossed the species barrier into
humans and, within months, has rapidly spread to all corners of our planet [219].
The sheer scale of this pandemic has overburdened our medical infrastructure,
caused fatalities estimated well into the hundreds of thousands, and shut down
entire economies. Remarkably, the rapid spread of COVID-19 and its consequences
can be attributed to the unique life cycle of a 30,000 base pair single-stranded
virus. SARS-CoV-2 is an airborne pathogen transmitted by both symptomatic
and asymptomatic carriers in close proximity to non-infected individuals. Milder
COVID-19 symptoms include a dry cough, fever, and/or shortness of breath while
more serious cases include respiratory failure and eventual death. With millions
of infections and hundreds of thousands of documented deaths and recoveries, the
COVID-19 pandemic is providing a wealth of independent estimates of important
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clinical characteristics that can help predict health outcomes specific for a country
or region.

It quickly became understood that accurate descriptions of the life cycle of this
disease needed to distinguish between several stages of the disease, referred to as
compartments, depending on whether an infected individual is infectious or not,
symptomatic or not, hospitalized, etc. However it remains unclear to what extent
making precise predictions of the dynamics of such a complex disease requires to
have a precise knowledge of clinical features such as incubation period, generation
time, and duration times between infection, symptom establishment, hospitaliza-
tion, recovery and death, to know how these durations correlate and what are the
exact probabilities of transition between stages.

In this work, we consider a fully stochastic, generic epidemiological model with
an arbitrary number of compartments, that encompasses life cycles of most com-
plex diseases and that of COVID-19 in particular. We show how structuring the
infected population by its infection age, i.e., time elapsed since infection, allows us
to decouple dependencies between stages and to time. More specifically, when the
population size is large enough, the joint evolution of all compartment sizes can
be described by means of a linear, first-order partial differential equation (PDE)
known as the McKendrick-von Foerster equation describing the number n(t, a) of
infecteds of (infection) age a at time t. The boundary condition at age 0 is driven
by the infection rate from infecteds of age a averaged over all life cycles and the
number of individuals of age a in compartment i at time t is obtained by thin-
ning n(t, a) by a factor p(a, i) which is the probability of being in compartment i
conditional on having age a, averaged over all life cycles.

In the case of COVID-19, we display a simple procedure to infer these param-
eters, some from the biological literature and most from time series of numbers of
severe cases, hospitalized cases, discharged patients and deaths that can be applied
easily to any regional or national dataset. We also allow for time inhomogeneity in
the infection rate to account for temporary mitigation measures such as lockdowns
or social distancing. We apply this procedure to French COVID-19 data from
March to May 2020 and estimate various parameters of interest including R0 in
different phases of the epidemic (before, during, and after lockdown) and biological
parameter values that we compare to empirical estimates.

6.1.2 Generic model assumptions
We consider a population model of the SIR fashion where each individual goes
through successive stages, starting from stage S (susceptible) and ending in one
of two states: R (recovered) or D (dead). Depending on disease complexity, the
number of stages in this life cycle can vary. In the SARS-CoV-2 example, typical
intermediate stages are A (asymptomatic) or P (presymptomatic), I (mild case) or
C (severe case), H (hospitalized), U (intensive care unit). These stages are some-
times called compartments, types, classes, stages or simply states. See Figure 6.4
for an illustration.
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We assume that S individuals are always in excess (branching assumption) and
that each individual infects new S individuals at successive times of a random point
process, one at a time. We further assume that upon infection, an S individual im-
mediately changes state and never returns to state S (ruling out multiple infections
in particular). More formally,

• The set of all possible states is denoted S and we consider that a stochastic
process (X(a); a ≥ 0) with values in S gives the state of a typical individual of
age a, where here age means age of infection, i.e., time elapsed since infection.
For the sake of simplicity, we will assume that S is a discrete space.

• A random point measure P describes the times of secondary infections. Due
to the previous assumptions, atoms of P all have mass 1 and only charge
(0,∞).

• We can (and will) superimpose time heterogeneity to this process by means
of a suppression function (c(t); t ≥ 0) valued in [0, 1] thinning the infection
process. More precisely, if t is a potential time of infection for individual
x (i.e., t is an atom of its infection point process Px), we ignore the event
with probability 1 − c(t). This suppression function can model the effect of
vaccination, of density-dependence (i.e., relaxing the branching assumption
due to an excess of removed or of deceased individuals), or of governmental
mitigation measures (i.e., social distancing, lockdown).

The population is thus described by a Crump-Mode-Jagers branching process, where
all individuals x are characterized by independent copies (Px, Xx) of the pair (P , X)
describing, respectively, the process of infection and the life cycle. In the branching
process literature, X is often referred to as a random characteristic of individual x
[162, 116, 205].

Remark 6.1. A typical infection measure is a Poisson Point Process with intensity
λ killed at an independent exponential random variable with parameter γ. (By
killing we mean that we erase all atoms of the PPP after the killing time.) This
corresponds to the classical SIR process with rate of infection λ and recovery rate
γ. More generally, we can construct a SEIR process (E for exposed) as follows.
Let L be a random variable and consider ξ be a Poisson Point Process with an
intensity measure λ(x) dx. Then define P([a, b]) = ξ([(a − L)+, (b − L)+]) so that
no infection occurs during the incubation period [0, L]. ◦

Remark 6.2. P and X are generally not independent. As a simple example, since
(most) diseases cannot be transmitted by deceased individuals, no atom of P is
allowed once X has reached the end-state D. In the same spirit, one could assume
that the infection potential of a given individual is reduced once in the hospital and
that individuals with many atoms in their infection process P (high infectiosity)
are identified and isolated. ◦
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Remark 6.3. Classes such as P , I or H must sometimes be refined to account
for additional structuring variables like general health condition, (real) age, spatial
position or previous exposure to similar pathogen. Knowledge of such variables can
help predict more accurately the outcome of the infection and parametrize more
precisely the infection process. Regarding this last point, note that the assumptions
in force here allow for any implicit or explicit structure provided that transmission
from an individual of type i to an individual of type j does not depend on j (but may
depend on i, as we have seen). Relaxing this assumption would result in describing
the large population limit by a multidimensional PDE instead of a one-dimensional
PDE (see Section 6.1.4). Also, note that ignoring structuring by a hidden variable
such as spatial position or health condition can lead to difficulties in estimating
sojourn times in each compartment (such as P , I or H) from clinical data, due to
over- or under-representation in this compartment of subsets of individuals carrying
certain values of the hidden variable. ◦

6.1.3 Statement of results and outline
The stochastic epidemic models we consider here are fairly general and can exhibit
quite complex dependencies (i) between states and time, due to the lack of any
Markov-type assumption, (ii) between states, due to possibly hidden structuring
variables impacting the life cycle, (iii) between state and infection rate, and (iv)
between past and future infection events. The main message of this note is that
despite this apparent complexity, most of this complexity vanishes when the size of
the population is large. More specifically, we show that in the limit of large popu-
lations (obtained by starting from a large initial population or as a consequence of
natural exponential growth), the population of infecteds structured by age (of the
infection) can be described by a one-dimensional PDE that only depends on

(i) the average infection rate

τ(da) := E(P(da));

(ii) the one-dimensional marginals of the life-cycle process

p(a, i) := P(X(a) = i).

Large initial population. Let us start with N infected individuals and define
the empirical measure µNt describing the ages and types of infected individuals
present at time t

µNt (da× {i}) :=
∑
x

1σx<tδ(t−σx,Xx(t−σx))(da× {i}), (6.1)

where the sum is taken over all individuals x having ever lived and σx denotes the
birth (infection) time of x. According to our first result (Theorem 6.11), starting
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from N infected individuals at time 0 with i.i.d. infection ages with law g, we have
the a.s. convergence

lim
N→∞

1
N
µNt (da× {i}) = n(t, a)p(a, i) da,

where n(t, a) solves the McKendrick-von Foerster PDE

∀t, a > 0, ∂tn(t, a) + ∂an(t, a) = 0

∀t > 0, n(t, 0) = c(t)
∫ ∞

0
τ(da)n(t, a)

∀a ≥ 0, n(0, a) = g(a).

(6.2)

After lockdown. Our second result (TheoremTheorem 6.13) displays a similar,
but more subtle, convergence in the case when the process is supercritical, where
natural growth leads by itself to large population sizes. Let Z(t) denote the total
population size at time t and assume that Z(0) = 1, i.e., we start from a single
individual. By a slight abuse of notation, denote by µtKt the empirical measure of
ages and types as in (6.1), but under the assumption that the suppression function
at time t is equal to c(t− tK) where c is equal to 1 for negative arguments, and tK
is some large, random time. We are motivated by modeling a situation where the
infection is separated into two distinct phases:

(Phase 1) We let the epidemic develop until a certain random time tK . For instance,
tK could be the time at which the number of recorded deaths exceeds a large
threshold K. We assume no suppression before tK ;

(Phase 2) We let the suppression function vary after time tK , e.g., due to mitigation
measures and/or behavioral changes (i.e., lockdown phase).

Conditional on non-extinction, letting (tK) be any sequence of stopping times
such that tK →∞ on the non-extinction event, we have the following convergence
in probability

lim
K→∞

µtKtK+t

Z(tK) = n(t, a)p(a, i) da.

Now n(t, a) solves the McKendrick-von Foerster PDE with the same boundary con-
dition as previously, but with initial condition n(0, a) = αe−αa, where α > 0 is the
exponential growth rate of Z(t) for t ≤ tK , also called Malthusian parameter. This
second result can be seen as a refinement of limit theorems for exponentially grow-
ing populations counted with random characteristics, where here the characteristic
of a typical individual is the number of her descendants in class i of age a, born
at least s time units after her birth (summed over sx = tK − σx). In particular,
taking t = 0 in the statement yields the convergence to the exponential stable age
distribution decorated by the one-dimensional marginals p of X. The way we state
the result nicely displays dependencies between characteristics corresponding to
different t’s.
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To summarize: (1) the macroscopic infection process is characterized by the sole
intensity measure τ and dictates an explicit age structure of the population, and (2)
the class structure is deduced by averaging the life-cycle process against the limiting
age profile. In order to validate our approach, we use those deterministic approxi-
mations to infer epidemiological parameters (R0 before and during lockdown) from
recent empirical observations, and show that our findings are in accordance with
the current literature.

Outline. The paper is organized as follows. In Section 6.2, we study equa-
tion (6.2). After providing a precise description of the branching process that we
are considering in Section 6.2.1, we give the definition of a weak solution to (6.2)
in Section 6.2.2. Then, we give two probabilistic representations of these weak so-
lutions. We first show in Section 6.2.3 that the weak solution to (6.2) corresponds
to the first moment of the branching process that we are studying, when viewed
as a random measure on the ages of infection. Second, Section 6.2.4 provides a
construction of the weak solution using a dual genealogical process. The two laws
of large numbers are proved in Section 6.3. Finally the inference in carried out in
Section 6.4. Section 6.4.2 and Section 6.4.3 describe our choice of parametrization
and the inference results are discussed in Section 6.4.4.

6.1.4 Natural extensions
Some of the assumptions underlying the previous models can be relaxed and our
general framework can be adapted to more complex and realistic populations.

Contact matrix. So far, infectious individuals infect new individuals uniformly
at random. In general, a contact matrix specifies the contact rate, depending on
contact location (household, school, work, . . . ) or individual types of source and
target (real age, susceptibility, . . . ) [34, 33]. More precisely, each individual now
belongs to one class, and we denote by C the (finite) set of all classes. An individual
in class j ∈ C is characterized by a multi-dimensional process (Xj,Pj,1, . . . ,Pj,C)
where the atoms of Pj,k provide the age at which this individual infects a new indi-
vidual of type k ∈ C, and (Xj(a); a ≥ 0) is a S-valued process whose distribution
can depend on j.

We define the mean contact matrix as

∀j, k ∈ C, τ jk(du) := E(Pj,k(du)).

The population is again described by a multi-type Crump-Mode-Jagers branching
process. Analogously to (6.1), µN,j

t denotes the empirical measure of j individuals
starting with N = (N j; j ∈ C) infected individuals at time t = 0. Assume that
there exists a constant N such that for all j ∈ C, N j/N → yj as N → ∞. Under
the usual technical conditions (the matrix τ is irreducible and Malthusian, x log x
type condition, see [39]),

∀j ∈ C, ∀i ∈ S, 1
N j

µN,j
t (da× {i}) =⇒ nj(t, a)P(Xj(a) = i) da
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where (nj; j ∈ C) satisfies the multidimensional McKendrick-von Foerster equation

∂tn
j(t, a) + ∂an

j(t, a) = 0

∀t > 0, nj(t, 0) =
∑
k∈C

ckj(t)
∫ ∞

0
τ kj(da)nk(t, a),

∀a ≥ 0, nj(0, a) = yjgj(a).

(6.3)

where gj describes the initial age profile of class j and cjk(t) is a matrix at time
t generalizing the suppression function of the previous section. Following Theo-
rem 6.13, it is natural to consider the initial condition

gj(u) = α exp(−αu)ϕj

where α is the Malthusian parameter, i.e. the unique α such that the largest
eigenvalue of the matrix ∫

exp(−αu) τ(du)

is equal to 1 and (ϕj; j ∈ C) is its Perron-Frobenius left eigenvector with (positive)
entries summing up to 1. As in Theorem 6.13, such initial condition can be justified
by starting with a single individual and let the population grow up to a large
random time tK conditional on non-extinction [39].

Shortage of susceptibles. Another natural extension consists in taking into
account saturation of infected in the population. Start with a finite, but large
population of size N with a fraction of infected individuals x ∈ (0, 1) with an age
profile g at time t = 0. Here infection is only effective if the target individual
is susceptible, which thins infection rate by the fraction of susceptibles in the
population. At the limit, this saturation translates into a non-linear McKendrick-
von Foerster equation

∀t, a > 0, ∂tn(t, a) + ∂an(t, a) = 0

∀t > 0, n(t, 0) = S(t)c(t)
∫ ∞

0
τ(da)n(t, a),

∀a ≥ 0, n(0, a) = xg(a),

(6.4)

where we have defined
S(t) := 1−

∫ ∞
0

n(t, a) da,

and the limiting empirical measure is given by n(t, a)p(a, j) da. Convergence results
to this limiting PDE are addressed by some of the present authors in Chapter 7.

6.1.5 Compartmental ODE models
An important special case of our model is when the process (X(a); a ≥ 0) is a
Markov process and infections from individual x occur at a rate that only depends
on the current state of x.
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Under these assumptions, the McKendrick-von Foerster PDE reduces to a finite
set of ODEs. Similar sets of ODEs have been widely used to model the SARS-CoV-2
epidemic [189, 185, 60, 46], and in that sense, taking into account explicitly the
(infection) age structure of the population allows us to incorporate all these models
into the same general framework.

More precisely, for i ∈ S define

∀t ≥ 0, Ni(t) =
∫ ∞

0
n(t, a)p(a, i) da

to be the number of individuals in state i. We will assume that (X(a); a ≥ 0)
is a Markov process with transitions (λij; i, j ∈ S). Moreover, we suppose that
conditional on (X(a); a ≥ 0), the infection process Px from individual x is a
Poisson point process with intensity rate τi when x is in state i. Then a direct
computation shows the following result.

Proposition 6.4. Suppose that (X(a); a ≥ 0) is a Markov process with transitions
(λij; i, j ∈ S), and that conditional on (X(a); a ≥ 0), P is a Poisson point pro-
cess with intensity (τX(a); a ≥ 0). Then, if (n(t, a)) denotes the solution to (6.4),
(Ni(t); t ≥ 0)i∈S solves the following set of ODE:

∀i ∈ S, Ṅi =
∑
j∈S

λjiNj −Ni

∑
j∈S

λij +
∑
j∈S

ajiNjS, (6.5)

where aji := τjp(0, i) and S := 1−∑i∈S Ni.

Proof. Recall that
Ni(t) =

∫ ∞
0

n(t, a)p(a, i) da.

By differentiating both sides with respect to time we get

Ṅi(t) =
∫ ∞

0
∂tn(t, a)p(a, i) da = −

∫ ∞
0

∂an(t, a)p(a, i) da

=
∫ ∞

0
n(t, a)∂ap(a, i) da+ n(t, 0)p(0, i).

By using the boundary condition and the fact that (X(a); a ≥ 0) is a Markov
process, we obtain that

Ṅi(t) =
∫ ∞

0
n(t, a)

(∑
j∈S

λjip(a, j)− λijp(a, i)
)

da+ S(t)p(0, i)
∫ ∞

0
n(t, a)

∑
j∈S

τjp(a, j) da.

=
∑
j∈S

λjiNj(t)−Nj(t)
∑
j∈S

λij +
∑
j∈S

ajiS(t)Nj(t),

which ends the proof.

Conversely, let us consider from the start the system of ODEs (6.5). Here, λij
is interpreted as the rate at which a type i individual turns into type j and aij
as the rate at which a type i individual gives birth to a type j individual. If the
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contact matrix with generic entries aij has rank 1 and non-negative entries, it can
always be decomposed as aij = τip(0, j) where τi ≥ 0 and (p(0, j)) is a probability
vector. The vectors (τi) and (p(0, j)) can be recovered by

τi =
∑
j∈S

aij and p(0, j) = aij
τi

(∀i, j).

Note that here aij = λ(i)p(0, j), so that actually a type i individual gives
birth at rate λ(i) and her offspring has type independently distributed according
to p(0, ·). As a result, the contact matrix with generic entries aij has rank 1, and
λ and p(0, ·) can be recovered by

λ(i) =
∑
j∈S

aij and p(0, j) = aij
λ(i) (∀i, j).

Then one can define (X(a); a ≥ 0) as the S-valued process with rates given by the
matrix Λ (with diagonal entries λii = −∑j 6∈S λij) and initial distribution (p(0, i)).
Denote as in the rest of the text

p(a, i) = P(X(a) = i),

so that the row matrix p(a, ·) can be computed as the product p(0, ·) exp(aΛ).
Now let us consider the solution (Ni(t); t ≥ 0) to (6.5) and assume there is

some age distribution g (integrable but possibly not summing to 1) such that

Ni(0) =
∫ ∞

0
g(a)p(a, i) da. (6.6)

Then by uniqueness of (Ni) and thanks to Proposition 6.4, for all i ∈ S,

Ni(t) =
∫ ∞

0
n(t, a)p(a, i) da,

where n is the solution to the McKendrick-von Foerster PDE with initial condition
g and boundary condition

n(t, 0) =
∫ ∞

0
τ(a)n(t, a) da,

where τ(a) := ∑
j∈S τjp(a, j). This shows that the solution to any linear system of

ODEs of the form (6.5) has a simple representation in terms of the solution to the
McKendrick-von Foerster PDE decorated with types, provided there is a represen-
tation of the initial condition in the form (6.6). Note that this last property is not
necessarily fulfilled. For example, if X is ergodic and started in its stationary prob-
ability distribution, then p(a, i) = p(0, i) and (6.6) would only hold if (ni(0); i ∈ S)
were proportional to (p(0, i); i ∈ S).

If the matrix with generic entries aij does not have rank 1, one could derive
a similar representation of the solutions to (6.5), but using the multi-dimensional
version of the McKendrick-von Foerster equation (6.3).
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6.1.6 Relation with previous works
Non-Markov epidemic models have already been investigated, see e.g. [198, 166, 9,
10]. The idea of representing a general branching population by its age structure
has a rich history in probability theory [112, 65, 115, 114, 113, 101, 210, 69] and the
connection with the McKendrick-von Foerster PDE has been acknowledged several
times [65, 101]. In the latter two works, the authors allow for birth and death
rates that may depend not only on abundances of each type, but also on the whole
age structure of the population. This impressive level of generalization comes at
the cost of assuming that the process describing the evolution of the empirical
measure on ages and types is Markovian. In particular, birth and death rates are
not allowed to depend on past individual birth events. The Markov property then
allows the use of a generator for the empirical measure and with some extra finite
second moment assumptions on the intensity measure, this approach allows the
authors to obtain a law of large numbers and a central limit theorem.

We acknowledge that the current work is certainly not as mathematically chal-
lenging as the works alluded to above, and that some of our results are almost
implicit in some of the previous works. However, we believe that our point of view
(one-dimensional PDE decorated with types) does deserve to be highlighted in the
current sanitary crisis since it provides a natural and efficient inference methodol-
ogy. More than 70,000 publications related to the COVID-19 crisis have appeared
since the onset of the pandemic, with many different modeling approaches. One
of the modest aims of the present note is to convey the idea that individual-based
stochastic models suggest a simple and tractable framework for tackling some of
the complex features of the disease. Furthermore, since we ignore finite popula-
tion effects, our proofs are quite elementary compared to [65, 101] and should be
accessible to a much wider audience interested in such a modeling approach.

Finally, we already pointed out that the connection between branching processes
and McKendrick-von Foerster PDE has been discussed in previous works. However,
as far as we can tell, the duality result exposed in Section 6.2.4 is new and can
presumably be extended to more general branching processes where birth and death
rates are allowed to be frequency-dependent. In Chapter 7, some of the authors of
the present work show that this duality result has a natural counterpart in a model
with a finite but large population.

6.2 Two Feynman-Kac formulæ

6.2.1 Assumptions and notation
CMJ branching process with suppression. Recall that the infection process
is modeled by a Crump-Mode-Jagers (CMJ) branching process [112, 162] with no
death, starting from one individual called the progenitor (or root of the tree).
Each individual x is characterized by an independent pair (Px, Xx) embodying
respectively the processes of secondary infection events from x and of types carried
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t=0

Figure 6.1: The initial individual (P̃, X̃) is represented by a black segment. In Sec-
tion 6.2.1, we assume that at time t = 0, the age of the initial individual (length of the
grey segment) is distributed according to a probability density g. If a branching event
is observed at time t (see e.g., black dots), the infection occurs with probability c(t). In
the CMJ, this amounts to prune the corresponding subtree with probability c(t) (dotted
red tree).

by x. Each pair (Px, Xx) is a copy of the pair (P , X) with law L, except when x
is the root, where it is distributed as (P̃ , X̃) with law L̃ (more on that below).

Also recall some infection events can be suppressed using a suppression function
(c(t); t ≥ 0). Given a realization of the CMJ tree, for each branching point occur-
ring at time t, we trim the tree by independently pruning the subtree stemming
from it with probability c(t). See Figure 6.1.

For simplicity, we will assume that the suppression function c is a piecewise
right-continuous function, and that for any t ≥ 0, the process (X(a); a ≥ 0) is
a.s. continuous at t. Define the average infection measure (that is, the intensity
measure of the point process P) as

τ(du) := E(P)(du).

We assume that τ is absolutely continuous w.r.t. the Lebesgue measure in such a
way that there exists a measurable non-negative function β such that

τ(du) = β(u) du and R0 :=
∫ ∞

0
β(u) du <∞. (6.7)

We also assume that there exists a unique parameter α ∈ R (the so-called Malthu-
sian parameter of the CMJ process) such that∫

exp(−αu) τ(du) = 1. (6.8)

The parameter α can be either positive (supercritical) or negative (subcritical).
Finally, we will also enforce the Kesten and Stigum criterium [165]

E
(
Rα log+(Rα)

)
<∞, (6.9)
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where
Rα :=

∫ ∞
0

exp(−αt)P(dt).

Initial shifted law. For any finite measure m on R+, we define θt ◦ m as the
measure shifted by t, i.e.,∫ ∞

0
f(u)θt ◦m(du) =

∫ ∞
t

f(u− t)m(du),

where f is any measurable, bounded function f on R+. For any measurable func-
tion F : R+ → S, we similarly define θt ◦ F by θt ◦ F (u) = F (u + t). (We make a
slight abuse of notation by using the same symbol for the shift operator on mea-
sures and functions.)

Let g be a probability density on R+. We now specify the law L̃g of the
pair (P̃ , X̃) characterizing the root. In order to connect the CMJ process with
the McKendrick-von Foerster equation, we will focus on the case where (P̃ , X̃) is
identical in law to (θA ◦ P , θA ◦ X), where A is a r.v. independent of (P , X) and
distributed according to g. The distribution L̃g will be referred to as the shifted
law. In particular, we have

τ̃(da) := E(P̃(da)) =
(∫ ∞

0
β(x+ a)g(x) dx

)
da.

Notation. We assume that individuals are indexed by the standard Ulam-Harris
labeling. Namely, individuals are indexed in I = ∪n(N∗)n. If x ∈ I, then xi (the
concatenation of x and i) is interpreted as the i-th child of x. Children are ranked
according to their birth time: (x, 1) is the oldest child of x, (x, 2) the second oldest,
etc. (Since we assumed that τ has a density, there is no simultaneous births and
the atoms of P are distinct a.s.) We denote by σx the date of birth of x with the
convention that σx = ∞ if the individual is never born. For instance, if σx < ∞
and x has k children, then σxj = ∞ for j > k. Finally, O6 will denote the root of
the tree.

6.2.2 McKendrick-von Foerster PDE: Weak solutions
In this section, we consider the time-inhomogeneous, linear McKendrick-von Foer-
ster PDE (6.2). The first line in (6.2) is the transport equation with unit velocity,
i.e., ages of individuals increase at rate 1. The second line gives the number of
newly infected individual (age 0) at time t.

In order to motivate our definition of weak solutions, we start by giving a formal
resolution of the PDE using the method of characteristics. Fix a > 0. Let

A(t) = a− t

Then
d
dsn(t− s, A(s)) = −∂tn(t− s, A(s))− ∂an(t− s, A(s)) = 0,
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so that s 7→ n(t− s, a− s) is conserved along the characteristics, i.e.,

∀s < a, n(t, a) = n(t− s, a− s).

It follows that

n(t, a) =
g(a− t) when a > t

b(t− a) when a ≤ t
(6.10)

where b(t) = c(t)
∫∞

0 τ(da)n(t, a). We now determine the function b. Injecting the
previous expression into the “spatial” boundary condition of the PDE, we obtain
a delayed equation for b: for every t > 0

b(t) = c(t)
∫ t

0
τ(da)b(t− a) + c(t)

∫ ∞
t

τ(da)g(a− t). (6.11)

Lemma 6.5. There exists a unique solution b to (6.11) which is locally integrable.
Moreover, for any δ ≥ 0 such that δ > α we have b ∈ L1,δ, where L1,δ denotes the
set of all functions f : R+ → R such that ‖f‖L1,δ :=

∫∞
0 e−δt|f(t)| dt <∞.

Proof. Fix δ > α and denote by L1,δ the space L1,δ quotiented by the relation ∼δ,
where f ∼δ g if ‖f − g‖L1,δ = 0. Then define the linear operator Φ: L1,δ → L1,δ by

Φf : t 7→ c(t)
∫ t

0
f(t− u)β(u) du.

Then we have

‖Φf‖L1,δ =
∫ ∞

0
e−δtΦf(t) dt =

∫ ∞
0

e−δtc(t)
∫ t

0
f(t− u)β(u) du dt

=
∫ ∞

0
e−δuf(u)

∫ ∞
u

β(t− u)e−δ(t−u)c(t) dt du.

Now using that ∫ ∞
u

β(t− u)e−δ(t−u)c(t) dt ≤
∫ ∞

0
β(t)e−δt dt < 1

we obtain that ‖Φ‖ < 1. Define

Ψ := Id−Φ.

Then Ψ is invertible with inverse∑k≥0 Φk. Note that equation (6.11) can be written
as

Ψ(b) = F,

where
F : t 7→ c(t)

∫ ∞
t

β(a)g(t− a) da.

The proof ends noting that F ∈ L1,δ as∫ ∞
0

e−δtF (t) dt ≤
∫ ∞

0

∫ ∞
t

β(a)g(t− a) da dt <∞.
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We have thus proved existence and uniqueness of the solution b to (6.11) in L1,δ.
Now for any two functions b1 and b2 such that b1 ∼δ b2 and b1 and b2 both satisfy
(6.11), we have b1 = b2 (i.e., there is a single element in the equivalence class of b).
This shows uniqueness of the solution b to (6.11) in L1,δ.

Since all elements of L1,δ are locally integrable, this also shows the existence of
a locally integrable solution to (6.11). Its uniqueness can be proved following the
exact same reasoning as previously, replacing integrations on [0,∞) by integration
on compact intervals.

Definition 6.6. We say that (n(t, a); a, t ≥ 0) is the L1,loc weak solution to the
McKendrick-von Foerster PDE with initial condition g if it satisfies the relation
(6.10) where (b(t); t ≥ 0) is the unique locally integrable solution to (6.11) displayed
in the previous lemma. ◦

6.2.3 A forward Feynman-Kac formula
Define

Z(t) :=
∑
x

1(σx ∈ (0, t]), B(t) := E
(
Z(t)

)
where Z(t) is interpreted as the number of infections between 0 and t. Recall that
R0 :=

∫∞
0 β(u) du < ∞ guarantees that B(t) < ∞ for all t ≥ 0. Finally, B is

non-decreasing and we denote by dB the Stieljes measure associated to B.

Lemma 6.7. There exists a locally integrable function (b(t); t ≥ 0) such that

dB(t) = b(t) dt.

Further, b coincides with the unique locally integrable solution of the delayed equa-
tion (6.11).

Proof. The fact that dB has a density easily follows from the fact that τ has a
density. The fact that B(t) <∞ ensures that b is locally integrable.

Define P̄x the infection measure obtained from Px after random thinning by
the function (c(t); t ≥ 0). Namely, conditional on σx and the atoms a1 < a2 < · · ·
of Px, we remove independently each of the atoms with respective probabilities
1− c(σx + a1), 1− c(σx + a2) . . . , whereas the other atoms remain unchanged.

Fix t > 0. Let k ≤ n ∈ N. Define Tk,n(Px) as the measure obtained from Px as
follows. Conditional on the atoms a1 < a2 < · · · of Px, we remove independently
each of the atoms with respective probabilities

1− max
z∈(t k

n
,t k+1

n
]
c(z + a1), 1− max

z∈(t k
n
,t k+1

n
]
c(z + a2) · · ·

and leave other atoms unchanged. Note that the thinning procedure is now in-
dependent of the starting time σx. Further, if σx ∈ (t k

n
, tk+1

n
], the point measure

Tk,n(Px) dominates P̄x.
We decompose the births on (0, t] into two parts: individuals stemming from

the root O6 and a second part from subsequent births. Using the fact that for
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every individual x, the (un-suppressed) random measure Px is independent of its
birth time σx (see second equality below), and setting M(t) :=

∫ t
0
∫∞
0 g(a)β(a +

u)c(u) da du, we get

B(t) =
n−1∑
k=0

∑
x

E

(
1

(
σx ∈ (tk

n
, t
k + 1
n

]
) ∫

[0,t−σx]
P̄x(da)

)
+ M(t)

≤
n−1∑
k=0

∑
x

E

(
1

(
σx ∈ (tk

n
, t
k + 1
n

]
)∫

[0,t−t k
n

]
Tk,n(Px)(da)

)
+ M(t)

=
n−1∑
k=0

∑
x

E

(
1

(
σx ∈ (tk

n
, t
k + 1
n

]
))
E

(∫
[0,t−t k

n
]
Tk,n(P)(da)

)
+ M(t)

=
n−1∑
k=0
E

(∑
x

1

(
σx ∈ (tk

n
, t
k + 1
n

]
))

E

(∫
[0,t−t k

n
]
Tk,n(P)(da)

)
+ M(t)

=
n−1∑
k=0

(
B(tk + 1

n
)−B(tk

n
)
)
E

(∫
[0,t−t k

n
]
Tk,n(P)(da)

)
+ M(t)

=
n−1∑
k=0

(
B(tk + 1

n
)−B(tk

n
)
)∫

[0,t−t k
n

]
ck,n(u)β(u) du + M(t).

with ck,n(y) = maxv∈(t k
n
,t k+1

n
] c(y + v). In particular, if tk/n → x, and x + y is a

continuity point of c, we have ck,n(y)→ c(x+ y). We will pass to the limit n→∞
in the latter inequality. Recall that c is bounded (and valued in [0, 1]) and that c
is right-continuous. The first term on the RHS can be written under the form

n−1∑
k=0

(
B(tk + 1

n
)−B(tk

n
)
)∫ t−[x]n

0
ck,n(u)β(u) du =

∫ t

0
fn(x) dB(x),

where

f (n)(x) =
∫ t−[x]n

0
sup

v∈([x]n, [xn]+ t
n

]
c(v + u)β(u) du and [x]n = t

n
bnx/tc.

We will now apply twice the bounded convergence theorem. On the one hand, for
a fixed value of x, as n→∞

1[0,t−[x]n](u) sup
v∈([x]n,[x]n+ t

n
]
c(v + u)β(u)→ 1[0,t−x](u)c(x+ u)β(u) Lebesgue a.e.

Further, the latter term (i.e., the integrand in the integral defining fn) is uniformly
bounded by β and

∫∞
0 β(u)du <∞. A first application of the bounded convergence

theorem implies that for every x, as n→∞

fn(x)→
∫ t−x

0
c(x+ u)β(u) du.

On the other hand, the uniform bound, fn(x) ≤ R0 =
∫∞

0 β(u) du for all x, n,
allows us to again apply the bounded convergence theorem, so we get

B(t) ≤
∫ t

0
b(x) dx

∫
[0,t−x]

c(x+ u)β(u) du+
∫ t

0

∫ ∞
0

g(a)β(a+ u)c(u) da du.
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By an analog argument, one can establish the same lower bound and strengthen
the latter inequality into an equality. After a simple change of variable and inter-
changing the order of integration, this yields

B(t) =
∫ t

0
c(v)

∫ v

0
β(v − x)b(x) dx dv +

∫ t

0

∫ ∞
0

g(a)β(a+ u)c(u) da du.

Finally, differentiating with respect to t yields the desired result.

Corollary 6.8 (Forward Feynman-Kac formula). For every t ≥ 0, define

µ̄t(da× {i}) := n(t, a)× P(X(a) = i) da,

where n is the unique L1,loc weak solution to the McKendrick-von Foerster PDE
with initial condition g. Then

µ̄t(da× {i}) = E

(∑
x

1σx<tδ(t−σx,Xx(t−σx))(da× {i})
)

(6.12)

where the expected value is taken with respect to a CMJ process starting with one
individual with infection and life-process distributed according to the shifted law L̃g.

Proof. Define

µ̄′t(da× {i}) := E

(∑
x

1σx<tδ(t−σx,Xx(t−σx))(da× {i})
)

We need to check that µ̄′t = µ̄t on the space of finite measures. Let F be a
measurable, non-negative, bounded, continuous function onR×R×S with compact
support on R+ ×R+ × S. As in the previous lemma, we have

∫
F (s, a, i)̄µ′s(da, di) ds =

∑
x6=O6

E

(∫
F (s, s− σx, Xx(s− σx))1(σx < s) ds

)

+
∫ ∞

0

∫ ∞
0
E (F (t, t+ a,X(t+ a)) g(a) da dt.

Let (I) be the first term on the RHS. For every n ∈ N∗

(I) =
∑
k≥0

∑
x

E

(∫
F (s, s− σx, Xx(s− σx))1(σx > s, σx ∈ (k

n
,
k + 1
n

]) ds
)

≤
∑
k≥0

∑
x

E

(∫ s

0
max

u∈( k
n
, k+1
n

]
F (s, s− u,Xx(s− u))1(σx ∈ (k

n
,
k + 1
n

]) ds
)

=
∑
k≥0

∑
x

∫ s

0
E

(
max

u∈( k
n
, k+1
n

]
F (s, s− u,X(s− u))

)
P

(
σx ∈ (k

n
,
k + 1
n

]
)

ds

=
∑
k≥0

∫ s

0
E

(
max

u∈( k
n
, k+1
n

]
F (s, s− u,X(s− u))

) (
B(k + 1

n
)−B(k

n
)
)

ds



234 From epidemic models to McKendrick-von Foerster PDE

By reasoning along the same lines as in Lemma 6.7 (i.e., applying the bounded
convergence theorem several times) and using the almost sure continuity at every
fixed time of the process X, one can show that the RHS converges to

∫ ∞
s=0

∫ s

u=0
E

(
F (s, s− u,X(s− u))

)
b(u) du ds

as n→∞ and thus∫
F (s, a, i)̄µ′s(da, di) ds ≤

∫ ∞
s=0

∫ s

u=0
E

(
F (s, s− u,X(s− u))

)
b(u) du ds

+
∫ ∞

0

∫ ∞
0
E (F (t, t+ a,X(t+ a)) g(a) dt.

By a similar argument, the inequality can be strengthened into an equality. More-
over we have∫

F (s, a, i) µ̄t(da, di) ds =
∫
F (s, a, i)n(t, a)P(X(a) ∈ di)da ds

=
∫ a

0

∫
F (s, a, i)b(s− a)P(X(a) ∈ di) da ds

+
∫ ∞
a

∫
F (s, a, i)g(a− s)P(X(a) ∈ di) da ds

so that ∫
F (s, a, i) µ̄t(da, di) =

∫
F (s, a, i) µ̄′t(da, di).

Now take F (s, a, i) = h(s)f(a, i) with h measurable, bounded, compact support
on R+ and f bounded continuous. We get∫

h(s)〈µ̄s, f〉ds =
∫
h(s)〈µ̄′s, f〉 ds.

On the other hand it is easy to check that the two functions s → 〈µ̄s, f〉 and
s → 〈µ̄′s, f〉 are both continuous. As a consequence, we have 〈µ̄s, f〉 = 〈µ̄′s, f〉 for
every test function f , concluding the proof.

6.2.4 Dual CMJ process and backward Feynman-Kac
formula

We end this section by making a connection between a dual process – interpreted
as an ancestral process – and the (PDE) method of characteristics. In addition,
this approach provides a probabilistic proof of uniqueness for the PDE.

LetM be any random point measure with intensity measure τ(du). Fix a, T >
0. We now construct a dual process using the measure M, which can be seen as
a generalized Bellman-Harris branching process (individuals have a finite lifetimes,
births only occur upon death). Let us first describe the process with no suppression
(i.e., c = 1).
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• Start with a single particle at time t = 0. Assume that the residual lifetime
of this original particle is a, so that this particle dies out at time a.

• As in a Bellman-Harris process, the number of offspring of an individual and
their lifetime durations are independent of the parent’s characteristics.

• Upon death, each individual x is endowed with an independent copyMx of
M: the number of offspring of x is given by the number of atoms ofMx and
their lifetime durations are given by the positions of the atoms inMx.

The dual process with suppression c 6= 1 can be coupled with the case c = 1.
Given a realization of the process, if a branching occurs at time t, the children are
killed independently with probability c(T − t). (Note that as in the original CMJ
process, suppression translates into trimming the dual tree.)

Remark 6.9. We note that there are as many dual processes as there are point
processes with intensity measure τ . Here are a few natural choices:

1. M = P .

2. Let M be a Poisson Point Process with intensity measure τ(du). In this
particular case, the dual process is a Bellman-Harris branching process (i.e.,
the offspring lifetime durations are independent conditional on offspring num-
ber). We note that τ(du) appears naturally when considering the ancestral
spine of a critical CMJ, see e.g. [194]. The measure τ can be obtained by
size-biasing P (i.e. biasing by the total mass of P) and then recording the
age of the individual at a uniformly chosen birth event. ◦

Let (Yt; t ≥ 0) be the stochastic process valued in ∪n∈NRn
+ recording the resid-

ual life-times at time t listed in increasing order, i.e. if Yt = (Y (1)
t , · · · , Y (n)

t ) there
are n particles alive at time t and Y (k)

t is the residual life-time of the kth-individual
with Y

(1)
t < · · · < Y

(n)
t . (We assumed that τ has a density so that the residual

lifetimes are distinct a.s.). In particular, the particle labelled 1 at any given time t
will be the first to expire, and at death time t+ Y

(1)
t a random number of children

is produced. We let dim(YT ) denote the number of particules alive at time t, i.e.,
the dimension of the vector Yt.

Finally, we will say that n is a right-continuous version to the McKendrick-von
Foerster equation, if n is a L1,loc weak solution and for every T, x ≥ 0 the function
s→ n(T − s, x− s) is right-continuous on [0, x].

Proposition 6.10 (Backward Feynman-Kac formula). Assume that the suppres-
sion function (c(t); t ≥ 0) is right-continuous. Then there is a unique right-
continuous solution to the McKendrick-von Foerster equation, and for every a ≥ 0,
T ≥ 0

n(T, a) = Êa

 ∑
i≤dim(YT )

g(Y (i)
T )

 (6.13)
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t

a

(a,T)

T-𝙩1

T-𝙩2

T-𝙩3

Figure 6.2: Graphical representation of the process (Zs; s ≥ 0). We start with a single
individual with residual lifetime a. In this picture, time flows downwards for the branch-
ing process. The residual lifetime of the initial individual decreases linearly until reaching
0 (this corresponds to time T − t1 in our representation). At this time, the particle dies
and produces 2 red particules. Residual lifetimes travel along the characteristics of the
McKendrick-von Foerster PDE until reaching the spatial boundary condition {a = 0}
where a new branching occurs.

where Êa is the distribution of the process (Yt; t ≥ 0) starting with an individual
with residual lifetime a.

Proof. We first assume that there exists a right-continuous solution to the PDE.
Let t1 < · · · < tk < · · · be the successive branching times of the dual branching
process. Since τ has a density, there is a single branching particle at the successive
branching times t1, · · · . Define the càdlàg process

Zs :=
∑

i≤dim(Ys)
n(T − s, Y (i)

s )

See also Figure 6.2 for a pictorial representation of the process. It is plain from
the definition that n is preserved along the characteristics of the PDE, i.e., that
for every x the function s → n(T − s, x − s) remains constant on [0, x). As a
consequence, (Zs, s ≥ 0) remains constant on every interval [tn, tn+1), with the
convention t0 = 0. Define zn := Ztn the value of the process (Zt; t ≥ 0) at the
n-th branching time. Let (Fn; n ∈ N) be the filtration induced by the process
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(zn; n ∈ N). For every n > 1

Êa (zn | Fn−1) =
∑

2≤i≤dim(zn)
n(T − tn, Y (i)

tn ) + c(T − tn)
∫ ∞

0
n(T − tn, a) τ(da)

=
∑

2≤i≤dim(zn)
n(T − tn, Y (i)

tn ) + n(T − tn, 0) = zn−1,

where the second equality follows from the spatial boundary of the McKendrick-
von Foerster equation. As already mentioned, the process (Zs; s ≥ 0) is constant
between two branching times. As a consequence, (Zs; s ≥ 0) is a martingale (w.r.t.
its natural filtration) so for every s ≥ 0,

n(T, a) = Êa

( ∑
i≤dim(Ys)

n(T − s, Y (i)
s )

)
.

Relation (6.13) follows by taking s = T in the latter expression.
The proof ends by checking that when c is right-continuous, the RHS of (6.13)

indeed is a right-continuous solution to the PDE. This elementary step is left to
the interested reader.

6.3 Two laws of large numbers
Theorem 6.11 (N individuals). Start with N individuals at time 0 with indepen-
dent infection and life-processes distributed according to the initial shifted law L̃g.
Define the empirical random measure for ages and types at time t

µNt (da× {i}) :=
∑
x

1σx<tδ(t−σx,Xx(t−σx))(da× {i}). (6.14)

As in Corollary 6.8, let

µ̄t(da× {i}) = n(t, a)× P(X(a) = i) da

where n is the unique L1,loc weak solution to the McKendrick-von Foerster PDE
with initial condition g. For every t > 0,

1
N
µNt −−−→

N→∞
µ̄t a.s.

where the convergence is meant in the weak topology.

Proof. We have

µNt (da× {i}) = 1
N

N∑
i=1

µ
1,(i)
t (da× {i}) (6.15)

where {µ1,(i)
t } are independent copies of µ1

t . Let f be an arbitrary measurable and
bounded function on R+×S. The L.L.N. combined with Corollary 6.8 implies that

〈 1
N
µNt , f〉 → 〈µ̄t, f〉 a.s.

which ends the proof.
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In the following, we are motivated by modeling a situation where the infection
is separated into two distinct phases. We start from a single individual.

(Phase 1) We let the epidemic develop until a certain random time tK . For instance,
tK could be the time at which the number of recorded deaths exceeds a large
threshold K. We assume no suppression before tK .

(Phase 2) We let the suppression function vary after time tK , e.g., due to mitigation
measures and/or behavioral changes (i.e., lockdown phase).

We will see in Theorem 6.13 below that the dynamics after time tK converge to
the same solution as in Theorem 6.11 but with an exponential initial age density
(g(x) = α exp(−αx)) and a (large) random number of initial infected individuals.

Let us now provide a more formal set-up. First ignore suppression and consider
a plain CMJ process starting from one individual with shifted law L̃g. Let us now
assume that the Malthusian parameter α of the CMJ process is strictly positive
(supercritical assumption). We assume that g is chosen in such a way that there is
a positive probability of non-extinction (to avoid trivialities).

Let Ft = σ ({(Px, Xx) : x ∈ ⋃nNn, σx < t}) be the σ-field generated by the
observation of the infection and life-cycle processes of the individuals born before
time t (including the root O6 ). Let {tK} be a sequence of stopping times (w.r.t.
(Ft; t ≥ 0)) with tK →∞ a.s. on the non-extinction event.

Now we assume that the suppression function cK ≡ c of the CMJ depends on K
and that cK(t) := C(t− tK), where (C(t); t ∈ R) is a piecewise continuous function
in [0, 1] such that C(t) = 1 for all t ≤ 0. Finally, µtKt is again the empirical measure
of ages and types (as defined in (6.14)) w.r.t. the suppression function cK .

Example 6.12. Take

tK = inf{t > 0 : #{x ∈ ∪nNn : σx < t,Xx(t− σx) = D} ≥ K},

i.e., tK is the first time that the accumulated number of deaths reaches level K.
Further take C(t) = 1 if t ≤ 0 and C(t) = r < 1 if t > 0. This corresponds to
a lockdown strategy where transmission is reduced by a factor r upon reaching K
deaths. ◦

Theorem 6.13 (One individual). Conditional on non-extinction

• There exists a r.v. W∞ such that W∞ > 0 a.s. and∑
x

1(0 < σx < tK) exp(−αtK) −−−→
tK→∞

W∞,

almost surely and in L1.

• Fix t ≥ 0. We have

exp(−αtK)µtKtK+t ===⇒
tK→∞

W∞ µ̄t
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in probability, where the convergence is meant in the weak topology, and

µ̄t(da× {i}) = n(t, a)× P(X(a) = i) da

with n the unique L1,loc weak solution to the McKendrick-von Foerster PDE
with initial condition g(a) = α exp(−αa) and with suppression function given
by (C(t); t ≥ 0).

Proof. We recall some basic facts about the method of random characteristics. We
consider a plain CMJ with no death (no suppression function, no types). Every
individual is characterized by an independent pair of random variables (P , χ). As
before, P is the infection measure recording the times of secondary infections.
Now χ is a general stochastic process indexed by the age of the individual called a
random characteristic with the convention χ(−a) = 0 for a ≥ 0. In great generality,
P and χ may exhibit a non-trivial correlation. Define

Zχ(T ) =
∑
x

χx(T − σx)

the branching process counted by the random characteristic χ at time T . We now
recall one of the main results of Jagers and Nerman [116] (see also Theorem 5,
Appendix A in [205]). On top of all the assumptions above, we make the two
following extra assumptions.

(a) There exists α′ < α such that

E

(
sup
T≥0

exp(−α′T )χ(T )
)
<∞. (6.16)

(b) The map T → E(χ(T )) is continuous a.e. With respect to the Lebesgue
measure.

Then there exists a positive r.v. W∞ (independent of the choice of χ) such that
conditional on non-extinction

Zχ(T ) exp(−αT ) −→ W∞

∫ ∞
0

α exp(−αt)E(χ(t)) dt

almost surely and in L1(dx) as T → ∞. (Note that the L1 convergence holds
thanks to the x log x condition (6.9).)

To illustrate the method, we recall that if we take χ(T ) = 1R+(T ) then Zχ(T )
coincides with B(T ), the total number of births before time T . For this particular
choice of (deterministic) characteristic, the two properties above are immediately
satisfied (recall that α > 0), so that conditional on non-extinction∑

x

1(0 < σx < u) exp(−αu) −→ W∞ (6.17)

almost surely and in L1(dx) as u→∞. The a.s. convergence ensures that the first
item of our theorem is satisfied.
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Next, the second part of the theorem requires a choice of characteristic, called
“general characteristic”, that depends on the descendance of each extant individual
at time tK . Because we need to prove an a.s. convergence result, whereas limit
theorems on branching processes counted with general characteristics only hold in
distribution, we have to design by hand an individual characteristic that has the
same distribution as the requested general characteristic.

In order to define our next random characteristics, we start with some definition.
Let (P∗, X∗) be a pair of infection and life-cycle processes (that may or may not be
identical to (P , X) in distribution). One can construct a collection (Z(∆); ∆ ≥ 0)
of (P∗, X∗)-CMJ processes starting at respective times ∆ and with a suppression
mechanism C, i.e.,

• Z(∆) is a (P∗, X∗)-CMJ process starting at time ∆ with one progenitor.

• The suppression function applied to infection events is C.

• The previous rule applies at time t = ∆, that is, Z(∆) is identically empty
with probability 1− C(∆).

For any t ≥ ∆, we let ν(∆)(t) denote the empirical measure for ages and types of
Z(∆)(t). Finally, we define {(ν(∆)

i ; ∆ ≥ 0)}i∈N∗ as the collection made of indepen-
dent copies of the collection (ν(∆); ∆ ≥ 0).

We are now ready to construct our random characteristics by enlarging the
initial CMJ process in the following way. Fix t ∈ R+ and f a bounded non-
negative continuous function on R×S with compact support in R+×S. Consider
a typical individual O6 , with infection and life processes (P , X). Denote by (ri) the
atoms of P listed in increasing order. For any T ≥ 0, define the individual random
characteristic χ(t,f)(T ), by

χ(t,f)(T ) := f(T + t,X(T + t)) +
∑

i:ri∈P∩[T,T+t]
〈ν(ri−T )
i (t), f〉,

See Figure 6.3 for a intuitive constructing of the random characteristics.
From now on, we assume that (P∗, X∗) is identical in law to (P , X), which

implies the following two crucial facts.

(i) E(
∫∞

0 χ(t,f)(a)g(a)da) = 〈µ̄t, f〉 where µ̄t is defined as in Corollary 6.8 with
initial condition g and suppression function C.

(ii) Let us now count our branching process by its random characteristic

Zχ(t.f)(T ) =
∑
x

χ(t,f)
x (T − σx).

Since tK is a stopping time with respect to the filtration (Ft; t ≥ 0), the
branching property implies that Zχ(t,f)(tK) is identical in distribution to the
process 〈µtKtK+t, f〉 where we remember that µtKt is the empirical measure w.r.t.
the CMJ process with suppression function cK : t 7→ C(t− tK).
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T

T+t

T+s

Figure 6.3: The individual x with characteristic (Px, Xx) under consideration is repre-
sented by a black segment. We graft independent (P∗, X∗)-CMJ processes with suppres-
sion function t 7→ C(t − T ) to the atoms of Px occurring at time T + s, independently
with probability C(s) if s ≥ 0 and 0 if s < 0. We ignore all other atoms and their
descendances (lower dotted red tree s < 0, upper dotted tree s > 0).

In order to apply the aforementioned result of Jagers and Nerman, we need
to check that condition (a), (b) above are satisfied. Condition (b) easily follows
from the fact that τ has a density. We now check the first condition. Consider a
(P , X)-CMJ process, assuming that the initial individual is un-shifted. For every
s, let vs(da×{i}) the empirical measure of ages and types at time s. We assumed
f to be non-negative and thus

E

(
sup
s∈[0,t]

〈vs, f〉
)
≤ ‖f‖∞B(t).

Let a1 < a2 < · · · be the atoms of P between T and T + t. The random char-
acteristic under consideration is obtained by attaching independent (suppressed)
CMJ processes between T and T + t to the ai’s and by summing up the respective
empirical measures at time T + t− ai. By construction, T ≤ T + t− ai ≤ T + t so
that

E

(
sup
T≥0

exp(−α′T )χ(T )
)
≤ E

(
sup
s∈[0,t]

〈vs, f〉
)
E

(
sup
T≥0

exp(−α′T )
∫ T+t

T
P(du)

)

= ‖f‖∞B(t)E
(

sup
T≥0

exp(−α′T )
∫ T+t

T
P(du)

)
≤ R0B(t)‖f‖∞.

This shows that property (a) is satisfied for any 0 ≤ α′ < α. This shows that as
v →∞, conditional on non-extinction

Zχ(t,f)(v) exp(−αv)→ W∞E
(∫ ∞

0
α exp(−αu)χ(t,f)(u)

)
a.s.
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As already pointed out in (i),

E

(∫ ∞
0

α exp(−αu)χ(t,f)(u) du
)

= 〈µ̄t, f〉

where µ̄t is defined as in Corollary 6.8 with initial condition α exp(−αt) and sup-
pression function (C(t); t ≥ 0). Since the latter convergence is a.s. and Zχ(t,f)(tK)
is identical in law with 〈µtKtK+t, f〉 (see (ii) above), the result follows.

6.4 Inference

6.4.1 Case study: the French COVID-19 epidemic
In this section, we illustrate how to use our framework to make inferences from
macroscopic observables of the epidemic, e.g., incidence of positively tested pa-
tients, hospital or ICU (intensive care unit) admissions, deaths, etc. We show how
to use those observables to extract the underlying age structure of the population,
estimate model parameters and forecast the future of the epidemic.

We focused on a longitudinal case study in France. From March 18 2020, the
French government has provided daily reports of the numbers of ICU and hospital
admissions, of deaths, of discharged patients, and of occupied ICU and hospital
beds. Moreover, several theoretical studies have already been conducted on the
same dataset. This allowed us to fix the values of some crucial biological parameters
that had already been estimated and to carry out a comparison with our method.
We want to emphasize that the aim of this section is to provide a mathematical
framework in which convergence results can be rigorously proved while remaining
flexible enough for other applications. Our goal is not to provide new estimates
of epidemiological parameters for France, as many robust estimates are already
available. For instance we do not provide confidence intervals for our estimates,
and neither do we conduct a sensibility analysis.

The remainder of the section is laid out as follows. In Section 6.4.2 we identify
the mathematical quantities that impact the dynamics of the epidemic for large
population sizes. Section 6.4.3 then presents the choice of distribution we made for
these quantities and the parameters that need to be estimated. Finally, estimation
of these parameters from the French incidence data is performed in Section 6.4.4.
We start by fitting a simple model and then show how this model can be made
more complex to account for more complex incidence data.

6.4.2 The model
As mentioned previously, the age structure of the population cannot be directly
accessed. What is observed is a subset of the population with some characteris-
tic of interest, for instance individuals that have been tested positively, deceased
individuals or discharged patients. Recall that under the assumptions stated in Sec-
tion 6.3, the number of individuals that are in a given state i at time t converges
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to ∫ ∞
0

n(t, a)P(X(a) = i) da,

where (n(t, a)) is the solution to the McKendrick-von Foerster equation. Note
that the assumptions of Theorem 6.13 are in essence that the epidemic has been
ongoing for a long enough time at the lockdown onset for the infected population
to be large, which we assume to hold true for France as the number of infected
individuals on March 16 2020 was on the order of tens of thousands of individuals.

The McKendrick-von Foerster equation is determined by two quantities: (i)
the average infection measure τ defined Section 6.2.1 and (ii) an initial condition,
which is of the form

∀a ≥ 0, n(0, a) = Wαe−αa

for some initial number of infected individuals W and a parameter α which corre-
sponds to the exponential growth rate of the epidemic before the lockdown onset.

Therefore, using Theorem 6.13 to obtain a theoretical prediction for some ob-
servables under consideration requires the knowledge of:

1. The intensity measure τ of secondary infections.

2. The initial number of infected W and the parameter α.

3. For each state i of interest the probability P(X(a) = i).

The next section exposes how we have parametrized these quantities.

6.4.3 Parametrization of the model
Average infection measure. Recall the definition of τ from Section 6.2.1. Let
us further define

R0 = τ([0,∞)), τ̂(da) = τ(da)
τ([0,∞)) ,

so that τ can be expressed as

τ(da) = R0 τ̂(da).

The total mass of τ , R0, is the mean number of secondary infections induced by a
single infected individual. Thus R0 corresponds to the basic reproduction number
of the epidemic, and we leave it as a parameter to infer. The epidemiological inter-
pretation of the probability measure τ̂ is the following. Consider a large population
of infected individuals. Then, as the size of that population goes to infinity, the
distribution of the time between the infection of a uniformly sampled individual
and the infection of its “parent” converges to τ̂ . Therefore, τ̂ is the distribution of
the so-called generation time of the epidemic, which has already been estimated in
several previous studies. We used the estimation of [68], and assumed that τ̂ is a
Weibull distribution, that is

τ̂(da) = k

λ

(
a

λ

)k−1
e−(a/λ)k da, (6.18)
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where the values of the shape parameter k and scale parameter λ are recalled in
Table 6.1.

Initial condition. The growth rate α is defined implicitly through equation (6.8).
Moreover, we know that α corresponds to the exponential growth rate of any of
the observables of the epidemic before the lockdown onset. We chose to estimate
α from the cumulative number of deaths, which appeared to be more reliable than
the number of positive tests as the number of tests that have been conducted in
the early phase of the epidemic in France varied greatly. We simply estimated α
using a linear regression on the logarithm of the number of deaths from March 7
to March 20, 2020. The estimated α as well as the corresponding R0 pre-lockdown
are shown in Table 6.1. The number of infected individuals at the time of lockdown
was left as a parameter to infer.

Life-cycle. The last quantities that need to be defined are the one-dimensional
marginals of the life-cycle process (X(a); a ≥ 0). From now on, we assume that
the sequence of states visited by (X(a); a ≥ 0) is a Markov chain and that the
sojourn times in each state is Gamma distributed.

More specifically, we suppose that we are given a global dispersion parameter
γ > 0 and that for each state i ∈ S, the time Di spent in state i follows a Gamma
distribution with expectation ti > 0 and variance ti/γ,

• E(Di) = ti

• Var(Di) = ti/γ

This assumption has the following consequence. Let i1, . . . , ik be a possible se-
quence of states of (X(a); a ≥ 0), and denote by Ti1 , . . . , Tik the respective entrance
times in these states. Then conditional on (X(a); a ≥ 0) successively visiting the
states i1, . . . , ik in this order, we have

(Ti1 , . . . , Tik) ∼ (0, Yt1 , . . . , Yt1+···+tk−1)

where (Yt)t≥0 is a Gamma process such that

Yt ∼
γγt

Γ(γt)a
γt−1e−γa da.

Another advantage of this parametrization is that the one-dimensional marginals
of (X(a); a ≥ 0) can be computed efficiently, while only requiring one parameter
for each state of interest, and a global dispersion parameter.

6.4.4 Fitting the model to incidence data
In this section, we fit six time series of the French epidemic: the number of ICU
and hospital admissions, the number of deaths, the number of occupied ICU and
hospital beds and the number of discharged patients. We provide two examples of
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Figure 6.4: Illustration of the admission model.

Markov chains that we use to fit these data. The first Markov chain is only used to
fit the first three curves, that we will call incidence curves, i.e., the daily number of
ICU admissions, of hospital admissions and of deaths. With the parametrization of
the previous section, the predictions of our model for these time series only involves
the delay between infection and death, ICU, or hospital admissions. We do not
need to estimate the time between hospitalization and discharge, which makes the
model and the inference procedure easier. Then we show how this model can be
made more complex to fit the last three curves, that we call prevalence curves.
All parameter estimations were realized using the data from March 18 to May 11,
2020. This time frame corresponds to the lockdown period in France.

Fitting incidence data. In order to fit the incidence curves, we considered the
simplest model that can account for these three time series. The model is illustrated
in Figure 6.4.

Upon infection, with probability 1−phosp, an individual develops a mild form of
COVID-19 and is placed in state I, which encompasses all cases that do not require
a hospitalization. With probability phosp the individual has a severe infection and
is placed in state C. Individuals in state C are eventually hospitalized and moved
to state H. Then, with probability pICU individuals in state H are admitted in
ICU and move to state U . Otherwise they eventually recover and are discharged.
Finally, individuals in state U die with probability pdeath, or recover with probability
1− pdeath. In this model, only individuals in ICU may die.

As we are fitting the number of individuals that enter a state, and not the num-
ber of individuals that are currently in that state, we only need to track the times
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Figure 6.5: Best fit of the admission model. Solid line correspond to the number of
hospital admissions, ICU admissions and deaths predicted by the admission model. The
dots are the corresponding observed values.

TH , TU , and TD elapsed between infection and hospital admission, ICU admission
and death, respectively. We will refer to this model as the admission model.

Estimations for phosp, pICU and of death probability conditional on hospitaliza-
tion (equal in our setting to pICU × pdeath) in France have already been conducted
in [189]. We used these estimates and considered the values of phosp, pICU and pdeath
to be fixed. All other parameters were estimated using a maximum likelihood pro-
cedure which is described in Section 6.A. The parameter estimations are provided
in Table 6.2, and the corresponding predicted values for the time series under con-
sideration are displayed in Figure 6.5. Overall, our simple model seems to match
the observed data. Note however that the model overestimates the number of ICU
admissions in the second part of the lockdown. This is likely due to a temporal
reduction in the ICU admission probability which has been reported in [189].

Our estimation of the basic reproduction number during the lockdown period
is R0 = 0.745. This suggests that lockdown has reduced the basic reproduction
number by a factor 0.23 compared to the beginning of the epidemic. Moreover, we
estimated that 9.85 × 105 infections have occurred in France before March 17th.
Both these values are in line with previous estimates for France [202, 189].

We did not impose that TH < TU in the inference procedure. Interestingly we
found that the data are best explained by assuming that the mean of TH is 14.4
days, whereas the mean of TU is 11.4 days. This indicates that the delay between
infection and hospital admission is shorter for individuals that end up in ICU,
compared to the average time between infection and hospitalization. Therefore it
would be more appropriate to allow individuals to have an admission to hospital
delay that is different depending on whether they will end up in ICU or not,
modeling the fact that they have a more severe form of the disease. We estimated
the mean of TD, the time between infection and death, to be 18.6 days. This
estimate is lower than but consistent with previous estimates based on the study
of individual-case data [219, 148, 214].

Fitting prevalence data. A first attempt to fit the prevalence curves could
be to keep the admission model of Figure 6.4 and to estimate the time between
hospital admission and discharge using the observed number of occupied ICU,
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Notation Description Value Source

α Pre-lockdown exponential growth rate 0.315 E

Rpre Basic reproduction number before lock-
down

3.25 E

k Shape parameter of the generation time 2.83 [68]

λ Scale parameter of the generation time 5.67 [68]

Table 6.1: Parameter values common to both models. In the “Source” column, “E”
indicates that the parameter has been estimated in the present work.
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Figure 6.6: Illustration of the occupancy model

hospital beds, and discharged patients. However this only yields a poor fit of the
data (see Section 6.B). We identified two main reasons for this discrepancy. First,
we assumed that all individuals are admitted to ICU prior to death. Using the
probability estimated in [189] then yields that the probability of dying conditional
on being in ICU is 0.953. This value is unrealistically high, and we need to assume
that a fraction of hospital deaths occur without going through the ICU. Second,
under the admission model, the delay between hospital admission and discharge is
almost unimodal. However, the observed number of occupied hospital beds rises
fast but falls slowly. Such a shape cannot be easily accounted for by a unimodal
distribution for the time spent in hospital.
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Notation Description Value Source

R0 Basic reproduction number during
lockdown

0.745 E

W Total number of infections before
March 17 2020

9.85× 105 E

phosp Probability of being hospitalized 0.036 [189]

pICU Probability of entering ICU conditional
on being at the hospital

0.19 [189]

pICU · pdeath Death probability conditional on being
hospitalized

0.181 [189]

TH Delay between infection and hospital
admission

14.4 days E

TU Delay between infection and ICU ad-
mission

11.4 days E

TD Delay between infection and death 18.6 days E

γ Scale parameter common to all Gamma
distributions

0.463 E

Table 6.2: Inferred parameter set for the admission model. The values indicated for the
durations correspond to the means of the Gamma distributions. In the “Source” column,
“E” indicates that the parameter has been estimated in the current work.

Taking into account the previous two points required us to make the model more
complex. The resulting model, referred to as the occupancy model, is illustrated in
Figure 6.6. We now consider that upon infection, individuals go to one of three
states depending on the severity of their infection:

• The state Cu which gathers critical infections that lead to death or ICU
admission. The probability of having a critical infection is denoted by pcrit.

• The state Ch which corresponds to severe infections that require a hospital-
ization but are not critical. Such infections occur with probability psev.

• The I state which consists of all mild infections that do not lead to a hospital
admission, and occur with probability 1− pcrit − psev.

Individuals in state Ch are admitted to hospital after a duration DCh . Then,
with probability pshort they are discharged after a duration Dshort, while with prob-
ability 1− pshort they are discharged after a duration Dlong.

Critically infected individuals are admitted to hospital after a duration DCu .
Upon arrival at hospital, they die immediately with probability dhosp, or go to ICU
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Figure 6.7: Best fit of the admission model. The solid lines correspond to the number
of deaths, discharges, occupied ICU and hospital beds and ICU and hospital admissions
predicted by the occupancy model. The dots are the corresponding observed values.

after a duration DHu . Individuals in ICU die with probability dICU after a delay
DD. Otherwise they are discharged after a stay of length DU .

In our model, the probability of hospital admission is pcrit +psev, the probability
of ICU admission is pcrit(1−dhosp) and that of death is pcrit(dhosp +(1−dhosp)dICU).
We have fixed these three values to those estimated in [189], and we only had one
remaining parameter out of 4 (pcrit, psev, dshort, dICU) to estimate from the data.
We have fixed the time DU to 1.5 days as estimated in [189]. All other parameters
were estimated using the same likelihood method as previously, which is described
in Section 6.A. The estimated parameter set is shown in Table 6.3, while Figure 6.7
shows the best-fitting model.

The estimated parameters provide a good fit of the six observed time series.
Again, the model has a tendency to overestimate the ICU admissions in the second
part of the lockdown, which has the same interpretation as before.

Under the occupancy model, we estimated that R0 = 0.734, andW = 9.52×105.
These estimates are extremely close to those made with the admission model. The
estimated mean time between infection and death or hospital, ICU admission are
respectively 19.5 days, 13.7 days and 12.5 days. Again we see that these estimates
in the more complex model are consistent with those of the simple model. The
mean recovery time from hospital is 19.4 days for severe infections, and 28.2 days
for critical infections. This yields an overall mean recovery time of 20.0 days.
Finally, we estimated that the death probability conditional on being in ICU is
0.709. This yields that in our model a fraction 0.256 of all deaths occur shortly
after hospital admission. This result is consistent with [189] that estimated that
a fraction 0.15 of all deaths occurred within the first day after hospital admission.
However, it has been reported in [192] that the death probability of ICU patients
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is 0.23. Our estimated value is thus unrealistically high. This indicates that there
is a fraction of hospital deaths that occur without any ICU admission, and not
quickly after hospital admission, that our model is not accounting for.

Our estimates, though they are not the key message of the present paper, can
nevertheless draw attention to potential heterogeneities in the infected population.
We estimated that the mean time between infection and ICU admission is shorter
than that between infection and hospital admission. This suggests that the time
between infection and severe symptom onset is shorter for critical infection, that
lead to ICU admission, than for milder ones. Moreover, fitting the prevalence time
series required to divide the hospital and death compartments in two subcompart-
ments, indicating that the data are not well explained by a simple homogeneous
model, as seen in Figure 6.8. Such heterogeneity could originate from underlying
structuring variables, such as comorbidity or (real) age, that we are not account-
ing for. Many estimates of clinical features, such as the incubation period, are
obtained from a pooled dataset that does not take heterogeneity in the population
into account [5, 148, 144, 207, 22, 153, 46]. When estimating the total number
of infected individuals using only a fraction of the detected cases, e.g., using the
hospital admissions or deaths, it is interesting to keep in mind that the time peri-
ods estimated from pooled studies could be inaccurate for the fraction of infected
individuals under consideration.
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Appendices for Chapter 6

6.A Maximum likelihood method
The incidence and prevalence data for France were taken from [193]. For a fixed set
of parameters, the solution n(t, a) to the McKendrick-von Foerster equation was
solved numerically using a Euler scheme and spatial boundary condition making
use of τ = R0τ̂ specified by (unknown, to be estimated) R0 and τ̂ fixed as in (6.18).
The predicted number of deaths, discharges, and ICU/hospital occupied beds were
then computed numerically using

∀t ≥ 0, ni(t) =
∫ ∞

0
n(t, a)p(a, i) da,

where ni(t) is the size of the subpopulation in state i at time t and p(a, i) =
P(X(a) = i), where X is the life process of a typical individual. The predicted
incidence in state i between time t and s, denoted by ñi(t, s), can be obtained using
the expression

ñi(t, s) = ni(s)− ni(t) +
∑
j

nj(s)− nj(t),

where the sums is taken over all states j such that the process (X(a); a ≥ 0) can
reach state j after having visited state i. The predicted number of ICU/hospital
admissions was computed using this expression.

We considered a Poisson likelihood. More precisely, given the predicted values
displayed previously, we assumed that the observed values follow a Poisson dis-
tribution whose mean is the corresponding predicted values. We supposed that
Poisson observations were independent among days, and among time series. This
yields a product-form expression for the likelihood of the data. We then looked for
the parameter set that maximizes this likelihood.

The maximum likelihood parameter set was obtained using the minimize func-
tion of the Python scipy.optimize module, using a Nelder-Mead algorithm. We
selected as initial point of the optimization algorithm a set of parameters that were
close to the existing estimates in the literature, or which seemed realistic if such
estimates did not exist.

6.B Best fitting prevalence curves under admission model
Recall the admission model from Section 6.4.4. By adding two parameters to
the model, one for the mean time between hospital admission and discharge, the
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Figure 6.8: Best fit of the admission model for prevalence data.

other for the mean time between ICU admission and discharge, we can derive an
expression for the likelihood of the prevalence and incidence time series under the
admission model. The best-fitting values for these two parameters were obtained by
maximizing the likelihood with all other parameters values fixed to those estimated
in Table 6.2. The corresponding model is displayed in Figure 6.8.
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7

From individual-based epidemic models to
McKendrick-von Foerster PDEs (II):

The non-linear case

This chapter is work in progress with Jean-Jil Duchamps and Emmanuel Schertzer.

Illustration. Graphical representation of a Crump-Mode-Jagers process with sat-
uration.

7.1 Introduction

7.1.1 General individual-based epidemic model
In this chapter, we study an extension of the general epidemiological framework
that we introduced in [77] to model the COVID-19 epidemic. Let us briefly recall
the main features of this model.

We consider a population made of susceptible individuals, that have never en-
countered the disease, and infected individuals. Each infected individual is sup-
posed to belong to one compartment, that models the stage of the disease of this
individual. Classical examples of compartments are the exposed compartment (E),
where the individual is infected but not yet infectious, the infectious compartment
(I), and the recovered compartment (R), once the individual has become immu-
nized to the illness. In the case of the COVID-19 epidemic, it might be relevant to
add a hospitalized (H) and an intensive care unit (U) compartment, as monitoring
the number of individuals in these states is typically important for policy making.
See Figure 7.1 for an example of compartmental model used for the COVID-19
epidemic. We denote by S the set of all compartments, and assume that S is
finite.

We encode the compartment to which individual k belongs as a stochastic
process (Xk(a); a ≥ 0) valued in S, that we call the life-cycle process. The random
variable Xk(a) gives the compartment to which k belongs at age of infection a, that
is, a unit of time after its infection. Moreover, individual k is endowed with a point
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C

Figure 7.1: An example of compartmental model. The compartments are: S, suscep-
tible; I, mildly infected; C, severely infected; H, hospitalized; U , admitted to intensive
care unit; R, recovered; and D, dead.

measure Pk on R+ that we call the infection point process. The atoms of Pk encode
the age at which k makes infectious contacts with the rest of the population. We
think of the pair (Pk, Xk) as describing the course of the infection of individual k.
We make the fundamental assumption that the pairs (Pk, Xk) are i.i.d. for distinct
individuals in the population.

In [77] we assumed that susceptibles are in excess, and that any infectious
contact leads to a new infection. The resulting population is then distributed
as a Crump-Mode-Jagers (CMJ) process. In the current work, we consider an
extension of this model that takes into account the saturation due to the finite pool
of susceptibles in the population. More precisely, we consider a population of finite
fixed size N . Each infectious contact is made with an individual uniformly chosen
in this population, and it results in a new infection only if the targeted individual
is susceptible. Finally, we model the impact of control measures, such as school
closure, or national lockdown, with a suppression function (c(t); t ≥ 0). This
suppression function is such that an infection occuring at time t is only effective
with probability c(t) ∈ [0, 1]. With probability 1 − c(t), the infection is removed.
A formal description of this model is provided in Section 7.2.1

7.1.2 Convergence of the age structure

A standard way to study compartmental models is to consider the dynamics of
the number of individuals in each compartment. If the underlying probabilistic
model is Markovian, this typically gives rise to systems of ODEs of the SIR type
in the large population size limit, see [35] for a recent account. Here, we will not
keep track of the count of individuals in the various compartments, but we will
rather be interested into the age structure of the population. Our main result is a
law of large number for the age structure of population, which is the equivalent of
Theorem 7 of [77] for our non-linear extension of the model.

We anticipate the notation of Section 7.2 and denote the empirical measure of
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ages and compartments in the population at time t as

∀i ∈ S, µNt (da, {i}) =
∑
σk≤t

1{Xk(t−σk)=i}δt−σk(da),

where σk is the birth time of individual k, and the sum runs over all infected
individuals at time t. (Note that t−σk is just the age of k at time t.) The measure
µNt encodes the ages and compartments of infected individuals at time t. The
limiting distribution of µNt will depend on the following two quantities:

• The intensity measure of the infection point process defined as

τ(da) := E
[
P(da)

]
.

We assume that τ has a density w.r.t. the Lebesgue measure that we denote
by τ(a) with a slight abuse of notation, and that R0 := τ([0,∞)) <∞.

• The one-dimensional marginals of the life-cycle process, denoted by

∀i ∈ S, ∀a ≥ 0, p(a, i) := P
(
X(a) = i

)
.

Let us also denote by

∀t ≥ 0, ∀i ∈ S, Y N
t (i) = #{individuals in i at time t}.

We define IN0 ⊆ [N ] as the set of infected individuals, and denote by |IN0 |
the number of individuals in IN0 . We suppose that the ages of those individuals
are i.i.d. with common distribution g(a) da for some probability density g. See
Section 7.2.1 for a formal description of this initial condition We can now state our
main convergence result.

Theorem 7.1. Assume that there exists I0 > 0 such that

lim
N→∞

1
N
|IN0 | = I0

in probability. Then, as N →∞, the following convergence holds in probability for
the weak topology

1
N
µNt (da, {i}) −→ n(t, a)p(a, i) da

where (n(t, a); t, a ≥ 0) is the solution to
∂tn(t, a) + ∂an(t, a) = 0

∀t ≥ 0, n(t, 0) = c(t)S(t)
∫ ∞

0
n(t, a) τ(da)

∀a ≥ 0, n(0, a) = I0g(a)

∀t ≥ 0, S(t) = 1−
∫ ∞

0
n(t, a) da.

(7.1)

Moreover, for any i ∈ S, we have( 1
N
Y N
t (i); t ≥ 0

)
−→

( ∫ ∞
0

n(t, a)p(a, i) da; t ≥ 0
)

in probability in the Skorohod topology.
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This result will follow from the more general Theorem 7.6, and is proved in
Section 7.2.3. The definition of a solution to equation (7.1) is provided in Sec-
tion 7.2.2. Theorem 7.1 states that the age structure of the population converges
to a limiting non-linear PDE of the McKendrick-von Foerster type. Moreover, it
also entails that the number of individuals in each compartment can be recovered
by integrating the one-dimensional marginals p(a, i) against the age structure.

There are two consequences of our result that we would like to emphasize. First,
it shows that the macroscopic dynamics of the infected population is given by a
universal equation, the McKendrick-von Foerster PDE, which does not depend
on the distribution of the life-cycle process. In order to recover the number of
individuals in each compartment, one needs to decorate this PDE with a life-cycle
process. The expression that links the age structure to the individual counts in
each compartment is elementary.

Second, our approach allows to identify the characteristics of the microscopic
model that impact the large population size dynamics. Recall that X and P are a
priori correlated in a complex fashion: in time, because X is not a Markov process,
and P is not a homogeneous Poisson process; and between them, as X and P are
not independent. However, in the limit, the only two parameters that impact the
dynamics of the epidemic are the intensity measure τ and the one-dimensional
marginals p. These parameters are “first order quantities” of X and P in the sense
that they only involve the distribution of the respective processes at one point in
time, and are not influenced by the aforementioned correlations. Moreover, τ is
the intensity measure of the infection point process, “averaged” over all life-cycles.
Therefore, there is no need to assess which compartments are the most infectious
in order to compute τ . Finally, let us argue that τ and p are two quantities that
can be accessed in real epidemics. Write the intensity τ as

τ = R0ν,

where
R0 =

∫ ∞
0

τ(da), ν(da) = τ(da)
R0

.

These two quantities have clear epidemiological interpretation:

• R0 is the basic reproduction number, that is, the mean number of secondary
infections induced by a single individual in an entirely susceptible population;

• ν is the distribution of the generation time, that is, the time between the
infection of the source individual and that of the recipient individual in a
typical infection pair [81].

The generation time distribution can be inferred from the time interval between
the symptom onset of two individuals in an identified infectious contact, as in
[68]. The basic reproduction number R0 is typically a quantity that needs to be
estimated from the course of the epidemic, and plays an important role in assessing
the efficiency of and planning control measures. The one-dimensional marginals can
be inferred using a compartmental model as in [77].



262 From epidemic models to McKendrick-von Foerster PDE (II)

7.1.3 A genealogical dual to the delay equation
The McKendrick-von Foerster equation (7.1) can be reformulated in terms of a non-
linear delay equation. If (n(t, a); t, a ≥ 0) denotes the solution to equation (7.1)
with c ≡ 1, let us define the number of infections between time 0 and t as

B(t) =
∫ t

0
n(s, 0) ds =

∫ t

0
S(s)

∫ ∞
0

n(s, a) τ(da)ds.

Then we will derive in Section 7.2.2 that B solves the following non-linear delay
equation:

B(t) = S0

(
1− exp

(
−
∫ t

0
τ(a)B(t− a) da−

∫ ∞
0

∫ t

0
τ(a+ s)g(a) ds da

))
, (7.2)

where S0 = 1− I0 is the initial number of susceptibles.
Our proof of Theorem 7.1 uses a genealogical approach, where we look back-

wards in time at the set of potential infectors of a focal individual. This approach
leads to a genealogical dual to the delay equation that we think to be of independent
interest. The dual is built out of the following branching process.

Recall that R0 stands for the total mass of τ and ν = τ/R0. We define a
measure τ̄ on R+ such that for any continuous bounded function ϕ,∫ ∞

0
ϕ(u) τ̄(du) =

∫ ∞
0

g(a)
∫ ∞
a

ϕ(u− a)τ(u) du da.

The measure τ̄ is the intensity measure of the infection point process of an indi-
vidual with initial age distributed as g. Let us further set

R̄0 =
∫ ∞

0
τ̄(da), ν̄(da) = τ̄(da)

R̄0
.

The branching process is constructed as follows. Let us assume that individuals in
the branching process are either marked or unmarked. Suppose that the population
starts from a single unmarked individual. Then, at each generation, an unmarked
individual produces:

• a Poisson
(
S0R0

)
distributed number of unmarked individuals;

• a Poisson
(
(1− S0)R̄0

)
distributed number of marked individuals.

Unmarked individuals have no offspring. Draw an oriented edge from each indi-
vidual towards its parent. Assign a weight independently to each edge, such that
the weight of an edge originating from an unmarked individual is distributed as ν,
and that of an edge coming from a marked individual is distributed as ν̄.

The previous branching process corresponds to the large population size limit of
the set of potential infectors of a fixed individual. Marked individuals correspond
to individuals that were initially infected. Each edge corresponds to an infectious
contact in the population, and the weight of that edge is the age at which this
contact occurs.
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Let us denote by σ∞ be the minimum of the lengths of the paths from a marked
individual to the root in the previous tree. The length of a path is defined as the
sum of the weights of the edges along the path. Then the following result connects
the distribution of σ∞ to the delay equation.

Proposition 7.2. For any t ≥ 0, define

B(t) = S0P(σ∞ ≤ t).

Then (B(t); t ≥ 0) solves the delay equation (7.2).

In Section 7.3.3, we will derive a similar dual for the delay equation with c 6≡ 1.
The previous proposition will be a special case of the more general Proposition 7.11.

7.1.4 Link with literature
The idea of considering an infection through its age structure dates back to at least
the work of [125], who introduced the SIR model as a special case of a more general
age-structured model. More generally, delay equations, which are an equivalent
formulation of the McKendrick-von Foerster PDE, have been widely proposed as
models for the spread of epidemics, see for instance [40, 217, 31, 32] Surprisingly,
the convergence of probabilistic epidemic models towards the solution of a delay
equation or a McKendrick-von Foerster PDE has received only little attention. Let
us briefly review the works in this direction that we are aware of.

In [12], the authors studied an epidemic model extremely similar to the one
under consideration here. The only difference with our model is that they do not
explicitly model the compartments, and do not allow for a suppression function
(c(t); t ≥ 0). They obtain a slightly different kind of law of large number. Instead
of starting from a macroscopic fraction of infected individuals, they look at the epi-
demic started from one infected individual. They show that, after an appropriate
time-shift so as to skip the long initial branching phase when there are few indi-
viduals, the number of susceptibles converges to a solution of the following delay
equation

∀t ∈ R, Ṡ(t) = S(t)
∫ ∞

0
τ(a)Ṡ(t− a) da,

see their Theorem 2.10. Setting B(t) = 1 − S(t) for the number of infecteds, the
previous equation can be written in the following integral form,

∀t ∈ R, B(t) = 1− exp
(
−
∫ ∞

0
τ(a)B(t− a) da

)
.

Compare this to equation (7.2). The limiting delay equation obtained in [12] is
defined on the whole real line, and thus does not have an initial age profile at
t = 0. Note also that this delay equation is stationary, in the sense that shifting
a solution to the delay equation yields another solution. We became aware of [12]
after having derived most of the results that are presented in this chapter. Even
if our main result is very close to that of [12], let us highlight some important
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differences. First, [12] considered rather restrictive hypothesis on the infection
point process τ , see Assumption 2 on the top of page 7. For instance, the case
of the Markovian SIR model is not covered by these assumptions. Here, our only
assumption is that τ has a finite mean, which is the minimal assumption to derive
a law of large numbers. Second, even if the bulk of the work in this chapter is
to prove the convergence of the age structure, and that further incorporating the
life-cycle process (X(a); a ≥ 0) and the suppression function (c(t); t ≥ 0) is quite
straightforward, these two extensions are very important from an application point
of view. This is especially true in the case of the COVID-19 dynamics, where
it is important to monitor many compartments, such as the number of ICU and
hospital beds that are occupied, and where the transmission rate can vary greatly
due to the enforcement of control measures. Finally, we believe that our graph
convergence approach can be adapted to study more general epidemic models, see
the discussion in the forthcoming Section 7.1.5.

In a recent work, [166] derived a functional law of large numbers and a func-
tional central limit theorem for classical SIR-like models with general sojourn time
distribution in each compartment. They also obtained similar results for extensions
of these models incorporating spatial heterogeneity [167] and varying infectiosity
[73], and applied these models to the COVID-19 epidemic in France [74]. The
limiting equations that describe the dynamics of the density of individuals in each
compartments are systems of so-called Volterra integral equations. These equations
are particular cases of the more general McKendrick-von Foerster equation (7.1),
when the infection point process is assumed to be a (inhomogeneous) Poisson point
process restricted to the I state. However, their setting allows for more general
initial conditions and the bulk of their works is dedicated to the proof of the various
central limit theorems, which is out of reach with our current method.

Finally, there exists a rich literature on general age-dependent population pro-
cesses, not necessarily related to epidemic models. Let us first mention the Crump-
Mode-Jagers (CMJ) processes, where the birth times of the children are allowed to
depend in a very general way on the age of the parent, see [112] or [205] for a more
recent account. The only restriction is that individuals should reproduce indepen-
dently from each other. By assuming that the age structure of the population is a
Markov process, it is possible to release this assumption and consider a much wider
class of age-dependent models. Using the framework introduced in [113, 114], [101,
65] derive respectively a law of large numbers and a central limit theorem for the
age structure of a very general class of population models. The deterministic limit
they obtain for the age structure corresponds to the McKendrick-von Foerster PDE
that we have derived here. Even if our results are not trivially implied by [101, 65],
as we do not make any Markov assumption, we believe that the main contribution
of our work is to use explicitly the notion of age structure of a population in an
epidemiological context, with a probabilistic framework which can be readily used
for applications [77].
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7.1.5 Future directions, outline
One initial infected. Theorem 7.1 provides the dynamics of the age structure
of the population, when started from a macroscopic fraction of infecteds. This
approach requires to prescribe an initial age profile, which is a quantity that cannot
be easily observed. However, in many situations, the large number of infected
individuals results from natural population growth from a small number of initial
infecteds. In this case, the age profile of the population is shaped by the initial
population growth, and it is natural to ask what this age profile should be.

The answer to that question is provided in [12], again under some rather drastic
conditions on the infection point process. Recall that they proved the convergence
of the number of susceptibles to a stationary version of the delay equation (7.2).
Moreover, it was shown in [45] that this equation admits a unique positive nonin-
creasing solution, up to time-shift. Thus, for a given initial fraction of infecteds
in the population, there is a unique initial age profile such that the solution of
the McKendrick-von Foerster equation (7.1) coincides with the restriction of the
delay equation to R+. This age profile should be the natural candidate in many
situations.

From an application point of view, as we have already mentioned, it is in-
teresting to explicitly model the compartments, and to introduce the suppression
function (c(t); t ≥ 0). The branching approximation for the model that we con-
sider here is the CMJ process that was studied in [77]. We know from general
results [163] that the limiting age profile in a CMJ process is an exponential dis-
tribution, whose parameter is the Malthusian growth parameter of the CMJ. We
believe that we could recover the result of [12] by plugging this exponential age
profile as the initial condition of (7.1), and by letting the initial population size
vanish. This broad idea that the large population size limit of a population process,
when started from a few individuals, can be described as a deterministic dynamical
system with a random initial condition that originates from the initial branching
phase as already been considered in a variety of contexts, see for instance [11, 8].

More general dependence structure. It is important to derive epidemic mod-
els that account for time variations in the contact rate. Such variations can reflect
the enforcement of control measures, such as the lockdown, school closure, manda-
tory masks, etc., but also reflect behavioral changes that occur during the course
of the epidemic: some people avoid crowds, wash hands more often, etc. These
variations are captured by the notion of instantaneous reproduction number [81,
40], Rt, which in our context can be written as

Rt := n(t, 0)∫∞
0 n(t, a)τ(a) da = R0c(t)S(t).

Therefore, in the present work, variations in Rt originate from the reduction of the
number of susceptibles, and from the suppression function (c(t); t ≥ 0). From a
modeling perspective this is not satisfying, as it is very likely that the variation
of Rt is not a “pure” temporal effect, but rather the consequence of the dynamics
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of the epidemic itself. For example, control measures are typically enforced when
some indicator (for instance, the number of deaths, or the number of cases) reaches
a given threshold, and people’s perception of the spread of the epidemic, which is
probably one of the main driver of behavioral changes, is highly dependent on
regular reports of similar indicators.

A possible way to model that is to introduce a more complex suppression func-
tion

C : R+ ×M(R+ × S)→ [0, 1],

where M(R+ × S) is the space of positive measures on ages and compartments.
An infection occurring at time t would then be effective with probability C(t, µNt ),
where µNt denotes the age and compartment empirical measure of the population at
time t. We believe that, under some regularity conditions similar to Definition 3.1
of [101], the graph method that we develop here could be adapted to prove the
convergence of this extension of our model to a McKendrick-von Foerster equation
of the following form

∂tn(t, a) + ∂an(t, a) = 0

∀t ≥ 0, n(t, 0) = C(t, µt)S(t)
∫ ∞

0
n(t, a)τ(a) da

∀a ≥ 0, n(0, a) = I0g(a)

∀t ≥ 0, S(t) = 1−
∫ ∞

0
n(t, a) da

µt(da, {i}) = n(t, a)p(a, i) da.

In this situation, the instantaneous reproduction number is

Rt = R0C(t, µt)S(t),

so that we have a more mechanistic interpretation of Rt, but it should not be
possible to estimate the function C in practice.

Outline. The rest of this chapter is organized as follows. A formal description
of the model is provided in Section 7.2.1, and the McKendrick-von Foerster PDE
is studied in Section 7.2.2. Section 7.2.3 contains the statement of our main result,
which states that the empirical distribution of infection times in the population
converges to a delay equation.

The proof are carried out using a graph approach. The infection graph is in-
troduced in Section 7.3.1 and Section 7.3.2. The last three sections, Section 7.3.3,
Section 7.3.4, and Section 7.3.5 are dedicated to the proofs of the various conver-
gence results.
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7.2 Epidemiological model with saturation
decorated with a life cycle

7.2.1 Description of the model
In the following, we will consider an epidemic model in which individuals’ life
trajectories are represented by independent stochastic processes. We distinguish
between two types of individuals:

• Susceptible individuals that have never been infected before.

• Infected individuals that have been infected in the past. We emphasize that
the meaning of infected is a bit broader than usual. For instance, a recovered
or dead individual is considered as infected. To each infected individual, we
associate an age. The age is the time elapsed since the beginning of the
infection.

There are N individuals in the population. To each individual x ∈ [N ], we associate
a pair of processes (Px, Xx) describing respectively the process of secondary infec-
tions and the successive stages of the disease experienced by the focal individual
x. More precisely:

• The life-cycle process, denoted by (Xx(a); a ≥ 0), is a random process valued
in S where Xx(a) is the stage of the disease (e.g., exposed, death, etc.) of x
at age a.

• The infection point process Px is a point measure describing the ages of
potential infections.

Let us denote by Xx = (Px, Xx). We will always assume that (Xx; x ∈ [N ]) are
i.i.d. and denote by X = (P , X) their common distribution. The state space of X
is denoted by X .

Remark 7.3. Note that we allow for non-trivial correlation between the life-cycle
and the infection process. Examples of such correlations can be that a deceased
individual is not infectious anymore, a hospitalized individual may have a reduced
potential of infection due to quarantine, etc. ◦

We suppose that at t = 0, a subset IN0 ⊆ [N ] of the population is infected. For
each x ∈ IN0 we need to prescribe an age, or equivalently, an infection time. We
assume that, conditional on IN0 , the ages of the initial individuals (Tx; x ∈ IN0 ) are
i.i.d. with common distribution g. Let us denote by (σNx ; x ∈ IN0 ) the birth time
of the initial infecteds, that is, σNx = −Tx.

The epidemic now spreads as follows. Suppose that, at some time t0, we have
defined a set INt0 ⊆ [N ] of infected individuals at time t0, and a vector (σNx ; x ∈ INt0 )
of infection times. Let t1 be the first atom after t0 of the point measure∑

x∈INt0

∑
a∈Px

δ(σx + a).
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If there is no such atom, the infection stops. Otherwise, let U be uniformly chosen
in [N ], independent of the rest, it is the first individual that comes in contact with
any of the infected individuals after time t0. If U ∈ INt0 , then nothing happens,
and we carry out the same procedure for the next atom t2. If U /∈ INt0 , then, with
probability 1 − c(t1), the infection is ineffective in which case nothing happens
and we consider the next infection time t2. Otherwise, set INt1 = INt0 ∪ {U} and
σNU = t1, and continue the procedure as if starting from time t1 with the initial
infected set INt1 . This inductive procedure will be reformulated in terms of a graph
in Section 7.3.1.

7.2.2 McKendrick-von Foerster PDE
In this section we provide our definition of the solution to the McKendrick-von Fo-
erster equation (7.1). We start with a formal resolution of the PDE using the
method of characteristics.

Let I0 be the initial density of infected individuals and g the initial age profile
of the population. First, note that if n is solution of the PDE, then for every pair
(t, a) of non-negative numbers, s 7→ n(t − s, a − s) is constant on (0, t ∧ a). This
yields

∀t, a ≥ 0, n(t, a) =
I0g(a− t) when a > t

b(t− a) when a ≤ t,
(7.3)

with
∀t ≥ 0, b(t) := n(t, 0)

is the number of new infections at time t. Moreover,

Ṡ(t) = −
∫ ∞

0
∂tn(t, a) da =

∫ ∞
0

∂an(t, a) da

= −b(t) = −c(t)S(t)
∫ ∞

0
τ(a)n(t, a) da.

As a result, we have

S(t) = S(0) exp
(
−
∫ t

0
c(s)

∫ ∞
0

τ(a)n(s, a) da ds
)

= S(0) exp
(
−
∫ t

0
c(s)

( ∫ s

0
τ(a)b(s− a) da+ I0

∫ ∞
s

τ(a)g(a− s) da
)

ds
)

= S(0) exp
(
−
∫ t

0
c(s)

( ∫ s

0
τ(s− a)b(a) da+ I0

∫ ∞
0

τ(a+ s)g(a) da
)

ds
)

so necessarily

B(t) :=
∫ t

0
b(s) ds = S0 − S(t)
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solves the nonlinear delay equation

B(t) = S0

[
1− exp

(
−
∫ t

0
c(s)

( ∫ s

0
τ(s− a)B(da) da+ I0

∫ ∞
0

τ(a+ s)g(a) da
)

ds
)]

(7.4)

where B(da) = b(a) da is the Stieltjes measure associated to the nondecreasing
map B. This motivates the following definition of a solution to the McKendrick-
von Foerster equation.

Definition 7.4. We say that (n(t, a); t, a ≥ 0) is a weak solution to (7.1) if there
exists a nonnegative function (b(t); t ≥ 0) such that:

(i) the functions n and b are related through (7.3);

(ii) the function B(t) :=
∫ t

0 b(s) ds solves the delay equation (7.4). ◦

If a nondecreasing function B satisfies (7.4), then we have the following inequal-
ity:

B(t+ u)−B(t) ≤ S(0)
∫ t+u

t
c(s)

( ∫ s

0
τ(s− a)B(da) + I0

∫ ∞
0

τ(a+ s)g(a) da
)

ds.

The previous inequality readily entails that B is absolutely continuous, and thus
that we can find b such that B(t) =

∫ t
0 b(s) ds. Therefore, existence and uniqueness

of solutions to (7.1) reduce to existence and uniqueness of nondecreasing solutions
to (7.4), which is provided by the following result.

Lemma 7.5. There is a unique nondecreasing, nonnegative solution to (7.4).

Proof. Let us denote by E the set of all nondecreasing, nonnegative, càdlàg func-
tions on [0,∞). For γ > α ∨ 0, define

Eγ = {f ∈ E :
∫ ∞

0
e−γtf(t) dt <∞}.

We endow Eγ with the metric

dγ(f, g) =
∫ ∞

0
e−γt|f(t)− g(t)| dt

which makes (Eγ, dγ) a complete metric space. As any solution to (7.4) is bounded
and continuous, it is sufficient to show existence and uniqueness of the solution in
Eγ.

We introduce the operator Φ: Eγ → Eγ such that

Φf(t) = S0

(
1− exp

(
−
∫ t

0
c(s)

( ∫ s

0
τ(s− a)f(da)

)
ds

− I0

∫ ∞
0

( ∫ t

0
c(s)τ(a+ s) ds

)
g(a) da

))
,
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where f(da) denotes the Stieltjes measure associated to f . Note that Φf ∈ Eγ,
since it is clear that Φf is bounded, continuous, nonnegative and nondecreasing.
Let us show that Φ is a contraction. We have, for f1, f2 ∈ Eγ,

dγ(Φf1,Φf2) ≤ S0

∫ ∞
0

e−γt
∣∣∣∣∫ t

0
c(s)

( ∫ s

0
τ(s− a)f1(da)−

∫ s

0
τ(s− a)f2(da)

)
ds
∣∣∣∣ dt

≤
∫ ∞

0
e−γt

( ∫ t

0
τ(s)|f1(t− s)− f2(t− s)| ds

)
dt

= dγ(f1, f2)
∫ ∞

0
e−γtτ(t) dt.

As γ > α, we know that
∫∞
0 e−γtτ(t) dt < 1, showing that Φ is a contraction. The

Banach fixed point theorem therefore shows that there exists a unique B ∈ Eγ such
that ΦB = B, ending the proof.

7.2.3 Main result
Rather than proving directly the convergence of the age and compartment empirical
distribution of the population to the McKendrick-von Foerster equation, we will
prove the convergence of the empirical measure of birth times in the population to
the delay equation (7.4). Let us start by introducing some notation.

Recall that Xx = (Px, Xx) ∈ X stands for the life-cycle and infection process
of x ∈ [N ], and σx for the birth time of x. We define the empirical birth measure
of the infection as the following measure on R×X :

λN :=
∑
x∈[N ]

1{σx<∞}δ(σx,Xx).

The following result proves the convergence of λN to the solution of the delay
equation (7.4).

Theorem 7.6. Suppose that there exists I0 > 0 such that

lim
N→∞

1
N
|IN0 | = I0

in probability. Then as N →∞,

1
N

λN −→ b̃(t) dt⊗ P(X ∈ ·),

where the convergence is in distribution for the weak topology and b̃ : R → R+ is
the map defined by

b̃(t) =
I0g(−t) if t < 0
b(t) = n(t, 0) if t ≥ 0,

where n(t, a) is the weak solution to (7.1).
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Our proof of this result uses a random graph representation of the infection
process which we introduce in Section 7.3. The proof is deferred until Section 7.3.4.

Recall the notation

µNt =
∑
x∈[N ]

1{σx≤t}δ(t− σx, Xx(t− σx))

for the empirical distribution of ages and compartments at time t, and the notation

Y N
t (i) =

∑
x∈[N ]

1{σx≤t,Xx(t−σx)=i} = µNt
(
[0,∞), {i}

)

for the number of individuals in compartment i at time t. Note that µNt can be
written in terms of λN as follows∫

f(a, i)µNt (da, di) =
∫
1σ≤tf(t− σ,Xξ(t− σ))λN(dσ, dξ), (7.5)

where ξ = (Pξ, Xξ) denotes a generic element of X . Theorem 7.1 is now a direct
consequence of Theorem 7.6.

Proof of Theorem 7.1. The convergence of µNt for fixed t ≥ 0 is immediate from
that of λN by formula (7.5).

Because of the expressions of Y N(i) in terms of µNt , identification of their limit
is trivial. All there is to check is tightness of the processes. We will make the sim-
plifying assumption that the underlying compartmental model has a “tree shape”.
Without being too formal, we assume that for any two compartments i, j ∈ S, if
j can be accessed from i with positive probability, that is, if the event that we
can find s ≤ t such that X(s) = i and X(t) = j has positive probability, then i
cannot be accessed from j. This assumption is not very restrictive, most natural
compartmental models enjoy this “tree shape” property. Then, writing i � j if j
can be accessed from i, the process

∑
j: i�j

1
N
Y N
t (j),

is nondecreasing in time. Since the finite-dimensional marginals of this process
converge towards a continuous limit, tightness follows easily, see for instance The-
orem 3.37, Chapter VI of [111]. The tightness of Y N

t (i)/N follows by subtracting
the previous processes in an appropriate way.

7.3 A graph point of view of the infection

7.3.1 Infection graph
Recall the infection model defined in Section 7.2.1, and the notation (Px; x ∈ [N ])
for the infection point processes, IN0 for the set of initially infected individuals,
and (σNx ; x ∈ IN0 ) for their birth time. Each atom of a point process Px encodes
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an infectious contact, which is targeted to a uniformly chosen individual in the
population. We now enrich the infection point processes by adding the information
about the label of this target.

Formally, we define a collection (P̂x; x ∈ [N ]) of point measures on R+ × [N ]
as follows.

• If x ∈ IN0 , conditional on Px, define

P̂x =
∑
a∈P

1{a+σx≥0}δ(a+ σx, Ux,i)

where (Ux,i; i ∈ [N ]) are i.i.d. variables uniform on [N ], independent of all
other variables. Note that all atoms before t = 0 have been removed.

• If x /∈ IN0 , conditional on Px, define

P̂x =
∑
a∈P

δ(a, Ux,i)

where again (Ux,i; i ∈ [N ]) are i.i.d. variables uniform on [N ], independent
of all other variables.

We now build a graph out of the family (P̂x; x ∈ [N ]) that records the potential
infections in the population. For every j /∈ IN0 , define the set of potential infectors

ANj = {i ∈ [N ] : (a, j) ∈ P̂i}.

(Note that this set is possibly empty.) We give the following definition of the
infection graph.

Definition 7.7. The infection graph built from the collection of point processes
(P̂x; x ∈ [N ]) is the random oriented weighted graph GN = (V N , EN) with V N =
[N ] and

EN =
⋃

i∈ [N ]

⊔
(a,j)∈P̂i

(i, j),

where the second union is a disjoint union. Each edge e corresponds to an atom
(ae, je) of some point process P̂ie . We define the weight of e to be ae. ◦

Remark 7.8. As the second union is a disjoint union, for every pair (i, j) we allow
for multiple edges from i to j in the infection graph. ◦

A path in GN is a set of edges π = (e1, . . . , en) such that, jek = iek+1 , with the
notation (ie, je) for the origin and target vertices of the edge e. The length of a
path |π| is defined as

|π| =
∑
ek∈π

aek .

We say that π is a path from i to j if ie1 = i and jen = j. A path in GN from i
to j corresponds to a potential infection chain between i and j. The length of the
path is the length of time interval between the infection of i and that j.
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If c ≡ 1, the graph GN contains all information about the epidemic. In this
case, the infection time of an individual x is given by the length of the shortest
path from an initially infected individual y ∈ IN0 to x. However, for general c,
not all infections are effective, and some edges of GN need to be removed. The
following random procedure describes how the birth time of x can be recovered
from a realization of the infection graph.

Procedure 7.9. Consider an initial infection graph GN and a focal vertex x ∈ [N ].
Let (πk) be the set of all paths from a some vertex y ∈ IN0 to x, ordered in such a
way that

|π1| < |π2| < . . .

(Note that such an ordering always exists since we have assumed that τ has a
density w.r.t. the Lebesgue measure.) We will assign to all edges in (πk) a state,
which can be marked or removed. Marked edges, resp. removed edges, correspond
to infections that are known to be effective, resp. ineffective. Consider all the paths
(πk) in the previous order, starting from π1.

At step k, let (ek1, . . . , ekn) denote the edges of πk. Examine successively these
edges, starting from ek1. Suppose that ekp is being examined. It can be in one of
three states:

• marked: then examine ekp+1;

• removed: then move to step k + 1;

• unmarked: let t = aek1 + · · ·+aekp . With probability c(t) mark ekp and examine
ekp+1. Otherwise remove ekp and move to step k + 1.

The procedure stops when all edge from a path πk0 are marked. In this case
set σNx = |πk0 |. If the procedure does not end, set σNx = ∞, and the individual x
is not infected. ◦

Remark 7.10. (i) Even if the graph GN is finite, the set of all paths from an
infected individual to x can be infinite due to possible loops.

(ii) When c ≡ 1, Procedure 7.9 stops at k0 = 1, provided that there is a path from
a vertex y ∈ IN0 to x. ◦

It is not completely clear that the birth time σx defined from the previous proce-
dure coincides with that defined from the description of the model of Section 7.2.1.
To see this, note that when an edge (i, j) is examined there exists a path π of
marked edges leading from an vertex in IN0 to i, and π is the shortest such path,
as we consider paths in increasing order of their lengths. Thus, as there are no
shorter path of marked edges leading to i, the infection time of i is |π|. If a denotes
the weight of the edge (i, j), then it is removed with probability c(|π| + a), as in
the construction from Section 7.2.1.

Our strategy to prove Theorem 7.6 is now the following. We will show that GN
converges, in some appropriate sense, to the random tree that has been described in
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Section 7.1.3. We will then prove that the convergence of GN in this sense implies
that of σNx to the dual σ∞ of the delay equation. In the next section, we start by
recalling a classical topology on graph that we will use.

7.3.2 Local topology on graphs
For x ∈ [N ], define GN(x) as the subgraph induced by all the vertices y with an
oriented path from y to x (including x itself). The graph GN(x) is a pointed graph,
with x as the reference vertex. Note that the edges of GN(x) are endowed with
weights as defined above. Finally, we distinguish between infected and susceptible
vertices at time t = 0, by marking every infected vertices (that is, every x ∈
IN0 ). Following the standard terminology of the literature, GN(x) is a random
element of H , a pointed geometric oriented graph with marks. An element of H
is characterized by four coordinates (V,E,w,m), respectively the set of vertices,
the set of edges, w the weights on edges, m ⊆ V the set of marked vertices. For
GN(x), note that m = IN0 ∩ V .

We now equip H with a metric dH so that (H , dH ) is a Polish space. A
graph isomorphism ϕ between two finite rooted-marked graphs G = (V,E,m) and
G′ = (V ′, E ′,m′) is a bijection from V to V ′ such that

(i) (u, v) ∈ E iff (u′, v′) ∈ E ′.

(ii) ϕ maps the reference vertex of G to the reference vertex in G′.

(iii) The map preserves the marking (i.e., m is mapped onto m′).

By convention, we set min(O6 ) = ∞ in the following. Let G1 = (V1, E1, w1,m1),
G2 = (V2, E2, w2,m2) be two finite elements of H . Define

d(G1, G2) = min{1,min
ϕ

max
e: e∈E1

|w1(e)− w2(ϕ(e))|}

where the minimum is taken over all possible graph isomorphisms between the two
graphs (in the sense prescribed above, that is, we only consider the isomorphisms
preserving the root and the marking). In particular, if there is no isomorphism
between G1 and G2, we set d(G1, G2) = 1.

For G ∈ H and y ∈ G, the topological distance to the reference vertex x is
defined as

inf{n : there exists a path (y = x1, . . . , xn = x) in G}.

For every r ∈ N∗, we denote by [G]r, the subgraph induced by the vertices at a
topological distance to the origin, that is, to the reference vertex, less than r. For
two elements G1,G2 ∈H , we define the (pseudo-)distance dH as follows

dH (G1,G2) =
∑
r

2−rd([G1]r, [G2]r).

The metric dH naturally induces a notion of local convergence on (equivalence
classes of) H . It can be proved that (H , dH ) is a Polish space.
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7.3.3 A limiting random tree
Recall that we have define

τ(a) da = E
[
P(da)

]
, R0 =

∫ ∞
0

τ(a) da.

Recall also that we have defined τ̄ so that for any f∫ ∞
0

f(s)τ̄(s) ds =
∫ ∞

0
g(a)

∫ ∞
a

f(u− a)τ(u) du da.

Note that τ̄ is the intensity measure of the shifted point process P̂x of an infected
individual x ∈ IN0 . Finally, recall the notation R̄0 for the total mass of τ̄ and
the notation ν and ν̄ for the renormalization of τ and τ̄ to probability measures,
respectively.

Recall the definition of the Poisson marked random tree of Section 7.1.3, which
we denote by H. The topological structure of H depends on the two positive real
parameters S0R0, (1−S0)R̄0, and the random weights are constructed from the two
probability distribution ν, ν̄. The graph structure is given by a pointed-marked
tree with Poisson offspring:

• Start from an unmarked root O6 .

• Unmarked nodes have independent Poisson(S0R0) unmarked offspring, and
Poisson((1− S0)R̄0) marked offspring.

• Marked nodes have no offspring.

Edges of the tree are oriented towards the root. Every oriented edge (i, j) is assigned
an independent age aij:

• If i is a marked node (and thus a leaf), aij is distributed according to ν̄.

• Otherwise, it is distributed according to ν.

The pair (S0R0, (1−S0)R̄0) will be referred to as the topological parameters of the
random tree, whereas (ν, ν̄) will be referred to as the weight parameters of the tree.

The random tree H corresponds to the local limit of the graph GN(x). The
birth time σ∞ of the root is obtained by removing the edges of H that correspond
to ineffective infections. Let us define σ∞ as the random time obtained by applying
Procedure 7.9 to H. In order to apply Procedure 7.9, it is needed that the paths
leading to the root can be ordered in increasing length. It is not a priori clear that
this can be done for H since the tree is infinite, but it will follow from an argument
that we give in the proof of Theorem 7.6. The following key result connects the
distribution of σ∞ to the delay equation.

Proposition 7.11. Define

∀t ≥ 0, B(t) := S0P(σ∞ ≤ t).

Then B solves the delay equation (7.4).
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Proof. As we have assumed that τ has a density w.r.t. the Lebesgue measure, it is
clear that this also holds for the distribution of σ∞. We denote its density by f . Let
K, resp. K̄, be the number of unmarked, resp. marked, children of the root of H.
Let (H1, . . . ,HN) denote the subtrees attached to the root O6 , and let (σ∞1 , . . . , σ∞K )
be the birth times obtained by applying Procedure 7.9 to those subtrees. Moreover,
let (W1, . . . ,WK) and (W̄1, . . . , W̄K̄) be the weights of the edges starting from O6
and leading to unmarked and marked children respectively. Conditional on these
variables, let (Bi) and (B̄i) be independent and such that

Bi ∼ Bernoulli
(
c(Wi + σ∞i )

)
, B̄i ∼ Bernoulli

(
c(W̄i)

)
.

When Procedure 7.9 is applied to a tree, it can be described recursively as
follows. Apply Procedure 7.9 to all unmarked children of the focal vertex. This
yields a vector (σ∞1 , . . . , σ∞K ) of infection times for these children. Then, remove
the edge leading to the i-th unmarked children with probability c(σ∞i + Wi), and
that leading to the i-th marked children with probability c(W̄i). The infection time
of the focal individual is the minimum of the variables (σ∞i + Wi) and (W̄i), for
those i whose edge leading to the focal individuals has not been removed. In other
words, the following holds

σ∞
(d)=
(

min
1≤i≤K

{
Bi(Wi + σ∞i ) + (1−Bi)×∞

})
∧
(

min
1≤i≤K̄

{
B̄iW̄i + (1− B̄i)×∞

})
,

with the convention 0×∞ = 0.
Define G(t) = P(σ∞ > t). As by the branching property, conditional on K and

K̄, all previously introduced variables are independent, we have

G(t) = E

{(
1− E

(
c(σ∞ + V )1{σ∞+V≤t}

))K(
1− E

(
c(V̄ )1{V̄≤t}

))K̄}
= E

{(
1−

∫ t

0

∫ t−a

0
c(a+ s)f(s) ds ν(da)

)K(
1−

∫ t

0
c(s) ν̄(ds)

)K̄}
= exp

(
− S0

∫ t

0

∫ t−a

0
c(a+ s)f(s)τ(a) ds da

− I0

∫ t

0
g(a)

∫ ∞
a

c(u− a)τ(u) du da
)
,

where, in the last equality, we have used the generating function of a Poisson
distribution. It now follows that B(t) = S0(1−G(t)) satisfies (7.4).

7.3.4 Convergence of the infection graph
Recall the infection graph GN defined in Section 7.3.1, and the notation Xx =
(Px, Xx). The following result proves the convergence of the local structure of GN
to the tree described in the previous section.

Proposition 7.12. Let x, y /∈ IN0 with x 6= y. Then

(GN(x),GN(y),Xx,Xy) =⇒
(
G,G ′,X ,X ′

)
,
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where all the limiting variables are independent; X and X ′ are identically dis-
tributed; G and G ′ are distributed as the aforementioned geometric Poisson marked
tree with parameters (S0R0, (1− S0)R̄0) and (ν, ν̄).

Proof. The proof is not so difficult with the right approach, but somewhat heavy in
terms of notation. Consider r ≥ 1 and T1, T2 two finite discrete, rooted, planar trees
with height at most r and with marked subsets of their set of leaves. We separate
E1 = E ′1∪E ′′1 , where E1 is the set of edges of T1, E ′′1 is the set of edges that originate
from a marked leaf, and E ′1 = E1 E ′′1 . Let B1 be the set of unmarked vertices of
T1 that are at graph distance strictly less than r from the root. For any vertex
u ∈ B1, define nu (resp. mu) as the number of unmarked (resp. marked) offspring of
u. Also, for any e ∈ E1, let us fix a continuous bounded map fe : [0,∞)→ [0,∞).
We define the analogous quantities E2 = E ′2 ∪E ′′2 for T2. Note that if T denotes a
random Poisson marked tree with topological parameters (S0R0, (1 − S0)R̄0) and
weight parameters (ν, ν̄), then the following functional F defined by

F (T1, (fe)e∈E1) := E

(
1([T ]r = T1)

∏
e∈E1

fe(We)
)
,

where We denotes the weight of edge e in T , can be explicitly computed. Indeed,
by definition, it is immediate that

F (T1, (fe)e∈E1) =
∏
u∈B1

(
e−S0R0−(1−S0)R̄0

(S0R0)nu((1− S0)R̄0)mu
nu!mu!

)
∏
e∈E′1

∫
fe dν

∏
e∈E′′1

∫
fe dν̄.

Then, to rephrase the problem, we aim to show that for x 6= y ∈ SN , we have:

E

(
1([GN(x)]◦,pl

r = T1 and [GN(y)]◦,pl
r = T2)

[ ∏
e=(i,j)∈E1∪E2

fe(aij)
]
H1(Xx)H2(Xy)

)

−→
N→∞

F (T1, (fe)e∈E1)F (T2, (fe)e∈E2)E[H1(X )]E[H2(X )],

where H1 and H2 and continuous bounded maps X → R, and on the event that
[GN(x)]r is a tree, [GN(x)]◦,pl

r denotes a random planarization of [GN(x)]r, built by
forgetting the labels of [GN(x)]r, then choosing random uniform orders on the sets
of children of all inner vertices.

To compute this, let us fix N large enough so that we can find a [N ]-labelings
of T1 and T2 in the following way. We choose some injective maps ϕ1 : T1 → [N ]
and ϕ2 : T2 → [N ] such that

• for all u ∈ T1, u is marked iff ϕ1(u) ∈ IN0 ,

• ϕ1 maps the root of T1 to x,
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and where the analogous properties hold for ϕ2. We further assume that the images
of ϕ1 and ϕ2 are disjoint. Let us define T̃1 and T̃2 as the planar trees T1 and T2
whose vertices are labeled thanks to the corresponding maps ϕ1 and ϕ2. Let us
identify the vertices i ∈ T̃1 with their labels in [N ], and define for i ∈ T̃1:

• p(i) as the parent of i in T̃1; if i = x, then for convenience let p(i) := †
denote any element not in [N ]. Note that the parent of i corresponds to an
individual that i can infect.

• e(i) as the edge (i, p(i)) in T̃1.

We define the analogous p(i), e(i) for i ∈ T̃2. For i /∈ T̃1 ∪ T̃2, we define for
convenience of notation p(i) = e(i) = †. Recall the notation ANk for the set of
ancestors of k in GN . Let us define the event

Qi =
⋂

k∈B1∪B2 {p(i)}
{i /∈ ANk }

where B1, resp. B2, denotes with an abuse of notation the set of unmarked vertices
of T̃1, resp. T̃2, that are at graph distance strictly less than r. Finally, let [GN(x)]pl

r

denote a uniform planarization of [GN(x)]r, where the vertices retain their original
labels in [N ]. With all these definitions, using the independence of (Pi; i ∈ [N ])
and the fact that{

[GN(x)]pl
r = T̃1 and [GN(y)]pl

r = T̃2
}

=
⋂

i∈(T̃1∪T̃2) {x,y}

(
{i ∈ ANp(i)} ∩Qi

)
∩

⋂
i/∈(T̃1∪T̃2) {x,y}

Qi,

it should be clear that

E

(
1([GN(x)]pl

r = T̃1 and [GN(y)]pl
r = T̃2)

[ ∏
e=(i,j)∈E1∪E2

fe(aij)
]
H1(Xx)H2(Xy)

)

=
∏

i∈(T̃1∪T̃2) {x,y}

E
[
fe(i)(aip(i))1({i ∈ ANp(i)} ∩Qi)

]
×

∏
i/∈(T̃1∪T̃2) {x,y}

P(Qi)

× E[H1(X )]E[H2(X )]×
∏
u∈B1

1
nu!mu!

∏
u∈B2

1
nu!mu!

, (7.6)

where the last term is simply the probability that the planarization of [GN(x)]r
and [GN(y)]r matches that of T̃1 and T̃2.

Now let us compute each term separately. Recall the notation P̂i, which is the
shifted infection point process for i ∈ IN0 , and the entire infection point process for
i /∈ IN0 . Starting from i /∈ (T̃1 ∪ T̃2) {x, y}, we have
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P(Qi) = E

[(
1− n

N

)|P̂i|]

= 1−
nE
[
|P̂i|

]
N

+ E
[(

1− n

N

)|P̂i|
− 1 + n|P̂i|

N

]
,

with n := |B1 ∪B2|. Noticing that |1− (1− n/N)|P̂i|| ≤ n|P̂i|/N , an application of
dominated convergence shows that

lim
N→∞

NE
[(

1− n

N

)|P̂i|
− 1

]
= nE

[
|P̂|i

]
so that

E

[(
1− n

N

)|P̂i|
− 1 + n|P̂i|

N

]
= o(N−1). (7.7)

Therefore, for i /∈ IN0 , we have P(Qi) = 1 − nR0/N + o(N−1), and similarly,
for i ∈ IN0 , we have P(Qi) = 1 − nR̄0/N + o(N−1). This yields the following
approximation for the product∏

i/∈T̃1∪T̃2 {x,y}

P(Qi) = e−n(S0R0+(1−S0)R̄0) + o(1).

For i ∈ T̃1∪ T̃2 {x, y}, the argument is similar but slightly more complicated. First
let us define Q̃i as the event

Q̃i = {i has no multiple edges to p(i)}.

We have

P
(
{i ∈ ANp(i)} Q̃i

)
= E

[
1−

(
1− 1

N

)|P̂i| − |P̂i| 1
N

(
1− 1

N

)|P̂i|−1
]
.

Dominated convergence shows that

lim
N→∞

NE
[
|P̂i|

1
N

(
1− 1

N

)|P̂i|−1
]

= E
[
|P̂i|

]
and combined with (7.7) with n = 1, this proves that

P
(
{i ∈ ANp(i)} Q̃i

)
= o(N−1)

Therefore if we show that

E
[
fe(i)(aip(i))1(Q̃i ∩Qi)

]
= 1
N
C + o(N−1)
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for some constant C, then we can simply plug this expression into (7.6). To show
this, assume that i /∈ IN0 and check that by definition, the following holds:

E
[
fe(i)(aip(i))1({i ∈ ANp(i)} ∩Qi ∩ Q̃i

]
= E

[ 1
N

(
1− n− 1

N

)|Pi|−1 ∫
fe(i)(a) dPi(da)

]
= 1
N

∫
fe(i) dτ + o(N−1),

where in the o(N−1) terms, there are constants depending on the trees T1 and T2
and the maps (fe). It is easy to check in the same way that if i ∈ IN0 , the same
formula holds, with τ̄ instead of τ . Letting n′ := |T1|+ |T2| and putting everything
together into (7.6), we get

E

(
1([GN(x)]pl

r = T̃1 and [GN(y)]pl
r = T̃2)

[ ∏
e=(i,j)∈E1∪E2

fe(aij)
]
H1(Xx)H2(Xy)

)

= 1
Nn′−2 (e−n(S0R0+(1−S0)R̄0))

∏
e∈E′1∪E

′
2

R0

∫
fe dν

∏
e∈E′′1∪E

′′
2

R̄0

∫
fe dν̄

× E[H1(X )]E[H2(X )]×
∏
u∈B1

1
nu!mu!

∏
u∈B2

1
nu!mu!

+ o(N2−n′).

Notice that this approximation does not depend on the choice of the labelings ϕ1
and ϕ2. The number of unmarked, resp. marked, vertices is equivalent to S0N , resp.
(1−S0)N , so that the number of maps ϕ1 and ϕ2 compatible with our assumptions
is equivalent to

(S0N)|E′1|+|E′2|((1− S0)N)|E′′1 |+|E′′2 | = S
|E′1|+|E′2|
0 (1− S0)|E′′1 |+|E′′2 |Nn′−2,

where n′− 2 is the number of edges in T1 and T2. It is readily checked that we get
the correct approximation

E

(
1([GN(x)]pl

r = T̃1 and [GN(y)]pl
r = T̃2)

[ ∏
e=(i,j)∈E1∪E2

fe(aij)
]
H1(Xx)H2(Xy)

)

= F (T1, (fe)e∈E1)F (T2, (fe)e∈E2)E[H1(X )]E[H2(X )] + o(1),

which ends the proof.

7.3.5 Proof of Theorem 7.6
Corollary 7.13. Let x, y /∈ IN0 with x 6= y, then

(σNx , σNy ,Xx,Xy) =⇒ (σ∞, σ̃∞,X ,X ′) ,

where σ∞ (resp., σ̃∞) are defined from G and G ′ (the limiting random variables in
Proposition 7.12) according to Procedure 7.9.



7.3. A graph point of view of the infection 281

Proof. It is sufficient to show that the distribution of σNx , obtained from GN out
of Procedure 7.9, converges to that of σ∞, obtained from Procedure 7.9 applied
to the Poisson limiting tree H. Up to using Skorohod’s representation theorem,
see Theorem 6.7 in [25], we might assume that GN(x) converges a.s. to H is the
topology defined in Section 7.3.2. In what follows, we work conditional on GN and
H and consider them as deterministic. It is now sufficient to prove that

P
(
σNx ≥ t

)
−→ P

(
σ∞ ≥ t

)
.

First, let us show that the paths from a marked leaf to the root in H can be
a.s. ordered in increasing order of their length. To see this, let (Zr; r ≥ 0) be the
process that records the ages of the unmarked vertices of H, defined as

Zr :=
∑

u∈H, d(u,O6 )=r
u unmarked

δ(|πu|),

where πu is the unique path connecting u to the root O6 . It is clear that (Zr)r≥0 is
a branching random walk with Poisson offspring distribution, and it follows from
general results that, conditional on non-extinction, its minimum drifts to ∞, see
for instance Theorem 5.12 in [199]. As H is obtained by attaching independently
to any unmarked vertex a Poisson(I0R̄0) distributed number of marked leaves, this
also shows that

lim
r→∞

min
u∈H

d(u,O6 )>r

|πu| =∞ (7.8)

where πu is the unique path from u to the root. As there are only finitely many
marked vertices in [H]r, they can be ordered such that their length is increasing.

Moreover, (7.8) also entails that, for a.e. realization of H, we can find a large
enough r such that for all i /∈ [H]r, the path from i to the root has length larger
that t. For N large enough, [GN(x)]r is isomorphic to [H]r, and the weights of the
edges of [GN(x)]r converge to those of [H]r. Let S (resp. SN) denote the number
of steps before Procedure 7.9 applied to H (resp. GN) stops, and M (resp. MN)
the number of marked vertices in [H]r (resp. [GN ]r). It should be clear that on
{S > M}, we have σ∞ > t, as all paths considered after step M have a length
larger than t. It should also be clear that

P
(
σNx ≤ t; N ≤MN

)
−→ P

(
σ∞ ≤ t; ≤M

)
as this event can be expressed in terms of the tree topology of [GN(x)]r and the
weights of the edges of [GN(x)]r. (It is the probability that, in Procedure 7.9, we
find a marked path from a marked vertex in [GN(x)]r to the root.) Therefore, this
shows that

P
(
σNx ≤ t

)
−→ P

(
σ∞ ≤ t

)
and ends the proof.

We are now ready to prove Theorem 7.6.
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Proof of Theorem 7.6. For the convergence of λN , note that as the ages of the
initial infecteds are i.i.d. with distribution g, it follows from

|IN0 |
N
−→ I0

that
1σ<0λ

N(dσ, dξ)−→ I0g(−σ) dσ ⊗ P(X ∈ ·).
Therefore it remains only to show that

1σ≥0λ
N(dσ, dξ)−→ b(σ) dσ ⊗ P(X ∈ ·).

Since the limiting measure b(σ) dσ ⊗ P(X ∈ ·) is deterministic, it is sufficient to
check convergence in distribution of∫

1σ≥0f(σ)g(ξ)λN(dσ, dξ) = 1
N

∑
x∈SN

f(σNx )g(Xx),

for any continuous bounded maps f : R→ R and g : X → R (see for instance [121,
Theorem 4.11]). First, taking the expectation in the previous display and using
Corollary 7.13, we obtain(

1− |I
N
0 |
N

)
E[f(σN1 )]E[g(X )] −→

N→∞
S0E[f(σ∞)]E[g(X )].

Now by definition of B, we can write

S0E[f(σ∞)] =
∫
f(σ) dB(σ) =

∫
f(t)b(t) dt.

Furthermore we have

E

(
1
N

∑
x∈SN

f(σNx )g(Xx)
)2

= 1
N2

∑
x/∈IN0

E(f(σNx )2g(X )2] + 1
N2

∑
x 6=y
E

[
f(σNx )f(σNy )g(Xx)g(Xy)

]
−→(S0E[f(σ∞)]E[g(X )])2

again by Corollary 7.13. This concludes the proof.
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