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Référent : Faculté des sciences d’Orsay
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Titre: Traduction Automatique Neuronale Multidomaine
Mots clés: Traduction neuronale, Adaptation au domaine, Apprentissage multi-tâche

Résumé: Aujourd’hui, les systèmes de traduc-
tion automatique neuronale (TAN) constituent
des systèmes de pointe en traduction automa-
tique (TA). Cependant, ces modèles de traduc-
tion nécessitent des données d’entraı̂nement rel-
ativement volumineuses et ont de la difficulté à
traduire des textes dans les domaines spécifiques.
Un domaine peut être constitué de textes d’un
sujet particulier ou de textes écrits dans un but
particulier. Bien que les systèmes TAN puissent
être adaptés pour une meilleure qualité de traduc-
tion dans un domaine cible étant donné un cor-
pus d’apprentissage représentatif, cette technique
a des effets secondaires négatifs, notamment une
fragilité contre des exemples hors domaine et un
”oubli catastrophique” des domaines précédents
représentés dans les données d’entraı̂nement. De
plus, un système de traduction doit faire face à de
nombreux domaines dans des applications réelles,
ce qui rend impossible d’apprendre un modèle
par un domaine. Une solution prometteuse
consiste à construire des systèmes TAN multi-
domaines formés à partir des données de nom-
breux domaines et adaptés à plusieurs domaines
cibles. Il y a deux motivations. Premièrement,
les grands corpus d’apprentissage améliorent la
généralisation du système TAN. Deuxièmement,
les textes d’un domaine peuvent être utiles pour
adapter un modèle TAN à un domaine similaire.
La pénurie des données et l’effet de transfert
positif hypothétique sont également deux raisons
principales pour le développement des systèmes
TAN multilingues. Maintenir plusieurs systèmes
de traduction automatique bilingues nécessite de
nombreuses ressources matérielles, car le nombre
de paires de langues augmente de façon quadra-

tique avec l’augmentation du nombre de langues.
Les systèmes TAN multidomaines et multilingues
sont essentiels pour économiser des ressources
pour l’industrie TA et améliorer la qualité du ser-
vice TA. Cette thèse unifie d’abord l’adaptation
au domaine et l’adaptation multidomaines dans
un cadre mathématique. De plus, nous passons
en revue la littérature sur l’adaptation multido-
maines à travers une approche structurelle en dis-
tinguant quatre situation d’adaptation et en as-
sociant les méthodes proposées à chaque cas
d’application. Deuxièmement, nous proposons
une nouvelle évaluation multicritères des ap-
proches multidomaines. Nous soulignons les exi-
gences d’un système multidomaines et réalisions
une comparaison exhaustive d’un large ensem-
ble de méthodes. Nous proposons également de
nouvelles méthodes pour l’adaptation multido-
maines, y compris les plongements de mot parci-
monieux, les couches parcimonieuse et les adap-
tateurs résiduels, qui sont relativement légers et
capables d’adapter un TAN modèle à de nom-
breux domaines. Pour équilibrer l’hétérogénéité
des données d’entraı̂nement, nous explorons et
étudions les techniques à l’échantillonnage dy-
namique des données, qui adaptent de manière
itérative la distribution de l’entraı̂nement à une
distribution de test prédéterminée. Enfin, nous
nous intéressons aux approches de traduction
avec des contextes augmentés, qui réutilisent des
mémoires de traduction similaires pour améliorer
la prédiction d’une phrase. Nous analysons et
comparons plusieurs méthodes de cette famille
et démontrons qu’elles conviennent pour adapter
notre système TAN à un domaine inconnu au
détriment de coûts de calcul supplémentaires.
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Abstract: Today, neural machine translation
(NMT) systems constitute state-of-the-art sys-
tems in machine translation. However, such trans-
lation models require relatively large train data
and struggle to handle a specific domain text.
A domain may consist of texts from a partic-
ular topic or texts written for a particular pur-
pose. While NMT systems can be adapted for
better translation quality in a target domain given
a representative train corpus, this technique has
adverse side-effects, including brittleness against
out-of-domain examples and ”catastrophic forget-
ting” of previous domains represented in the train
data. Moreover, one translation system must cope
with many possible domains in real applications,
making the ”one domain one model” impractical.
A promising solution is to build multi-domain
NMT systems trained from many domains and
adapted to multiple target domains. The rationale
behind this is twofold. First, large train corpora
improve the generalization of the NMT system.
Secondly, texts from one domain can be valuable
for adapting an NMT model to a similar domain.
The scarcity of data and the hypothetical positive
transfer effect are also two main reasons for build-
ing multilingual NMT systems. Maintaining mul-
tiple bilingual MT systems requires lots of hard-
ware resources as the number of language pairs
grows quadratically with the increasing number
of languages. Both multi-domain and multilin-

gual NMT systems are essential for saving re-
sources for the MT industry and improving the
quality of the MT service.

This thesis first unifies domain adaptation
and multi-domain adaptation in one mathematical
framework. In addition, we review the literature
of (multi-)domain adaptation through a structural
approach by pointing out four principal cases and
matching previous methods to each application
case. Secondly, we propose a novel multi-criteria
evaluation of multi-domain approaches. We point
out the requirements for a multi-domain system
and perform an exhaustive comparison of a large
set of methods. We also propose new meth-
ods for multi-domain adaptation, including sparse
word embeddings, sparse layers, and gated resid-
ual adapters, which are cheap and able to han-
dle many domains. To balance the heterogene-
ity in the train data, we explore and study tech-
niques relating to dynamic data sampling, which
iteratively adapt the train distribution to a pre-
determined testing distribution. Finally, we are
interested in context augmented translation ap-
proaches, which reuse similar translation memo-
ries to improve the prediction of a sentence. We
carefully analyze and compare several methods in
this line and demonstrate that they are suitable for
adapting our NMT system to an unknown domain
at the expense of additional computational costs.
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Abstract
Today, neural machine translation (NMT) systems constitute state-of-the-art systems in

machine translation. However, such translation models require relatively large train data

and struggle to handle a specific domain text. A domain may consist of texts from a

particular topic or texts written for a particular purpose. While NMT systems can be

adapted for better translation quality in a target domain given a representative train cor-

pus, this technique has adverse side-effects, including brittleness against out-of-domain

examples and ”catastrophic forgetting” of previous domains represented in the train data.

Moreover, one translation system must cope with many possible domains in real applica-

tions, making the ”one domain one model” impractical. A promising solution is to build

multi-domain NMT systems trained from many domains and adapted to multiple target

domains. The rationale behind this is twofold. First, large train corpora improve the gen-

eralization of the NMT system. Secondly, texts from one domain can be valuable for

adapting an NMT model to a similar domain. The scarcity of data and the hypothetical

positive transfer effect are also two main reasons for building multilingual NMT systems.

Maintaining multiple bilingual MT systems requires lots of hardware resources as the

number of language pairs grows quadratically with the increasing number of languages.

Both multi-domain and multilingual NMT systems are essential for saving resources for

the MT industry and improving the quality of the MT service.

This thesis first unifies domain adaptation and multi-domain adaptation in one math-

ematical framework. In addition, we review the literature of (multi-)domain adaptation

through a structural approach by pointing out four principal cases and matching previous

methods to each application case. Secondly, we propose a novel multi-criteria evalu-

ation of multi-domain approaches. We point out the requirements for a multi-domain

system and perform an exhaustive comparison of a large set of methods. We also propose
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new methods for multi-domain adaptation, including sparse word embeddings, sparse

layers, and gated residual adapters, which are cheap and able to handle many domains.

To balance the heterogeneity in the train data, we explore and study techniques relat-

ing to dynamic data sampling, which iteratively adapt the train distribution to a pre-

determined testing distribution. Finally, we are interested in context augmented trans-

lation approaches, which reuse similar translation memories to improve the prediction of

a sentence. We carefully analyze and compare several methods in this line and demon-

strate that they are suitable for adapting our NMT system to an unknown domain at the

expense of additional computational costs.
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Chapter 1

Introduction

1.1 Motivation
A neural machine translation (NMT) model usually has trouble translating sentences that
differ in genre, register, or theme from the sentences used for training the model. This
is a common limitation of data-driven machine learning methods, whose performance is
guaranteed by assuming that the training and testing distributions are identical. Therefore,
to achieve high performance in a given domain, we must carefully tailor the NMT model
to that domain. The problem of tailoring an NMT model to a target domain is referred to as
the domain adaptation problem. Two factors make this problem complex, including the
scarcity of training data from the target domain and the catastrophic forgetting problem of
the deep models. The lack of training data drives us to leverage parallel data from other
domains to train our NMT models. The neural network-based models need many data to
optimize their parameters. Therefore, we usually have to adapt our NMT model to the
target domain using lots of out-of-domain data and a small amount of data from the target
domain. Second, several approaches to adapting an NMT model by finetuning it with the
in-domain data only make its performance very brittle to the out-of-domain test. This
problem is referred to as catastrophic forgetting in the neural network literature. The
neural models tend to perform dramatically worse in previous tasks after being trained to
perform their current tasks. In real applications, we usually aim to significantly improve
the performance in the target domain and the robustness of NMT models with respect to
previous training domains.

The domain problem is addressed to some extent by domain adaptation approaches as
long as the testing domain is known before training. However, in many applications, such
as online translation on the web, the text to translate can be from any domain. We consider
this situation ”non domain-deterministic testing” in our review 3. In this situation, we
could build domain-expert models for the source domains and combine their predictions
during the inference (Saunders et al., 2019) to get a domain-adapted translation on the
fly. Besides the mixture of model paradigm, several methods use context to improve
the translation of similar sentences. However, these methods do not guarantee domain
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robustness against the out-of-domain text.

Moreover, an MT engine has to translate text from many domains whose genre and
topic are highly variable in real applications. The strategy ”one domain / one model” will
cost us largely when the number of domains explodes. Therefore, developing a multi-
domain machine translation (MDMT) system is essential for the MT business.

This thesis aims to provide a complete overview of the multi-domain adaptation prob-
lem in machine translation and study the approaches to adapting an NMT system to many
domains with a small computation and storage cost.

1.2 Contributions
In this thesis, our contributions are as follows.

First, we provide a generalized framework of the machine translation (multi-)domains
adaptation problem. We point out four main situations in the domain mismatch problem.
We provide a complete match between each case and its feasible methods.

Second, we provide a new multi-criteria evaluation for MT (multi-)domain methods.
We reevaluate a large set of methods with our proposed experimental settings correspond-
ing to our proposed criteria.

Thirdly, we propose, evaluate and analyze a cheap MT multi-domain method, which
uses sparse word embedding with domain-specified units. The method is much cheaper
than residual adapters. Besides an improvement in some mild multi-domain settings, the
method can handle a growing number of domains. We extend the idea of sparse repre-
sentation to higher layers of an NMT model. We demonstrate an equivalent performance
of the method to several strong MDMT methods. We propose a novel analysis method
for word embeddings, which identifies domain-agnostic and domain-specific tokens by
observing the variation of K nearest neighbors of one token while changing its domain.

Our fourth contribution is a thorough study on the use of the residual adapters in (multi-
)domain adaptation. We demonstrate its practicality and strong performance in a multi-
domain MT setting consisting of a large set of domains with unbalanced sizes. We pro-
pose different regularization methods to avoid overfitting on low-resourced domains. Fi-
nally, we propose two more robust variants that are robust with respect to the domain label
errors and slightly reduce the computation cost.

Next, we study dynamical sampling strategies for multi-domain machine translation.
We show that those methods improve the data sampling from the mix of in-domain cor-
pora with respect to the heuristic fixed sampling strategy. Furthermore, we demonstrate
their effectiveness in several particular settings such as uni-domain adaptation, bi-domain
adaptation, and unseen domain adaptation.
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Finally, we study two popular paradigms for unknown test domains which rely on text
retrieval. Those techniques search for the most similar translations and incorporate this
additional information into the prediction of an NMT model. We demonstrate their ef-
ficacy and their weakness as well. Besides, we propose a simple variant that slightly
improves the performance of previous techniques and is able to leverage synthesis trans-
lations.

1.3 Outline
The structure of the thesis is as follows.

Chapter 2 is a review of neural machine translation. The chapter provides basic knowl-
edge in the text processing for neural machine translation systems, neural architectures for
machine translation, the training, and the inference procedures of neural machine transla-
tion models.

Chapter 3 reviews the literature of (multi-)domain adaptation in machine translation.
We introduce four main sub-problems of (multi-)domain adaptation and provide an overview
of the approaches for each sub-problem.

The remainder of the thesis consists of our original work. Chapter 4 proposes a novel
multi-criteria evaluation for multi-domain machine translation systems. We reevaluated
a large set of model-centric approaches using a relatively large collection of domains.
Chapter 5 proposes a (multi-)domain NMT system with cheap computation cost by using
a sparse word embedding that nullifies a number of domain-specific units. Chapter 6
proposes several approaches to regularize the residual adapters (Bapna & Firat, 2019b) in
the (multi-)domain setting. In this chapter, we propose two variants of the residual adapter
that allow us to modularize the domain-agnostic and domain-specific representation and to
improve the performance of the adapted NMT model against out-of-domain examples. In
Chapter 7, we study multiple dynamic sampling approaches for training the NMT model
in the (multi-)domain setting. We propose a novel method that automatically iteratively
adapts the sampling distribution to any pre-determined testing distribution. Chapter 8
discusses and reimplements different retrieval-based methods for unknown test domains.
We carefully analyze their performance in many domains and demonstrate their strengths
and issues in terms of latency, errors.

Finally, in Chapter 9, we draw conclusions in the current state of the development of
MDMT. We recall a need for effort to achieve the long-term goal of this approach.
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Chapter 2

Neural Machine Translation: a review
In this chapter, we briefly review some basic knowledge of Neural Machine Translation
(NMT) which provides the foundation for the experiments of this thesis. Neural Machine
Translation was first introduced in 2014 via the work of Cho et al. (2014); Bahdanau et al.
(2015). Since then, NMT has been largely developed and outperformed old approaches,
including Rule-based Machine Translation (RBMT) and Statistical Machine Translation
(SMT) in high-resource languages such as French-English or English-German.

Building a Neural Machine Translation model consists of 3 basic steps, including text
tokenization (Section 2.1), training NMT model with pairs of tokenized source and target
sentences (Section 2.6) and decoding or translating (Section 2.7). In the first step, each
sentence is transformed into a sequence of tokens, which can be words, sub-words, or
characters (Section 2.1). The sequence of tokens will be transformed into a sequence of
integers. In the second step, given a choice of neural architecture (Sections 2.3, 2.4 or 2.5);
the parameters of the NMT model are optimized according to a training objective (Section
2.6). The input of the NMT model during the training consists of a pair of sequences of
integers corresponding to a pair of source and target sentences. In the final step, when
the NMT model is learned, given any sentence in the source language, the NMT model
generates a translation via a decoding algorithm (Section 2.7) such as beam search (Koen,
2004). In the inference step, the input of the NMT model is only the sequence of integers
corresponding to the source sentence.

2.1 Text preprocessing for NMT
Text preprocessing includes two steps, including text normalization and text tokenization.
Text normalization aims to transform a text into a single canonical form. Text tokeniza-
tion transforms a sentence into the input format of the NMT model. In practice, text
normalization is optional, while text tokenization is obligatory.

The tokenization process consists of transforming a sentence into sequence of symbols
called tokens, which will be transformed into sequences of integers and then be served as
the input of the NMT model. Text tokenization is an essential step in NMT and needs to
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be carefully conducted. We have to tokenize sentences because NMT models only take
a sequence of integers as input. In practice, a token can be a word or a part of a word.
There are three common types of token: words, sub-words, and characters. These tokens
are indexed by a predetermined vocabulary so we can map each token to an integer. The
sequence of tokens is converted into a sequence of integers IDs ∈V where V is the set of
indices of the corresponding vocabulary. The vocabulary of the NMT model is fixed. Any
out of vocabulary (OOV ) token is mapped to a special token < UNK >, which stands
for unknown. The size of the vocabulary of an NMT model is chosen to balance the
coverage over the processed tokens with a practical constraint on the size of the model.
The vocabulary of an NMT model is usually limited to 30-40 thousand types. In the
following discussion, we denote Σx, Σy the source vocabulary and the target vocabulary,
respectively. . The tokenization process needs to be reversible. To get the final translation,
we convert the sequence of tokens predicted by the NMT model into a normal sentence.

2.1.1 Word tokenization

Word tokenization identifies all unique words in the respective training sets to construct
the source and target language vocabularies. Because of the computational constraints,
the vocabulary of an NMT model is typically limited to a few tens of thousands of types.
The types found in the training sets will be reordered according to their frequency, and
the top V most frequent types are selected to form a vocabulary Cho et al. (2014). This
tokenization algorithm has the disadvantage that its coverage is relatively small. Conse-
quently, word-based NMT models usually have to scope to out-of-vocabulary tokens Jean
et al. (2015); Luong et al. (2015); Li et al. (2016).

2.1.2 Subword tokenization

Subword tokenization is the process of finding an optimal segmentation of words such
that a limited set of word-pieces can segment a large vocabulary. The rationale behind the
sub-word tokenization is that words are usually composed of several morphemes. For ex-
ample a plural countable noun is composed of its root and the affix ”s”. By separating the
root and the affix, we avoid adding both the singular and the plural form of a noun in our
vocabulary and reduce the size of it. In practice, subword tokenization largely increases
the coverage of the vocabulary and efficiently handles unseen words. The vocabulary can
be built by applying the morphological rules of the language or can be learned by heuristic
algorithms such as Byte pair encoding (BPE )(Gage, 1994; Sennrich et al., 2016b). The
two more popular sub-word tokenizations are the BPE tokenization (Gage, 1994; Sen-
nrich et al., 2016b) and Sentence-piece tokenization (Kudo, 2018), which are based on 2
different approaches: frequency-based and sampling-based respectively.
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BPE tokenization is based on the following algorithm. Given a corpus and an upper
bound K of the number of merge operations, BPE tokenization learns a set of at most
K merge operations and a set of subwords that allows the formation of any word in that
corpus. In principle, words are first segmented into sequences of characters. At each it-
eration, the BPE algorithm counts the occurrences of each pair of the current types (char-
acters in the beginning), then adds the merge operation of the most frequent pair to its
operation set. Next, it redefines the segmentation of every word according to the new op-
eration set and moves to the next iteration. The algorithm stops when it reaches the upper
bound K. In the end, frequent words remain unsegmented while rare words become se-
quences of BPE types. Given a set of BPE operations, BPE tokenization segments a word
by first segmenting it into a sequence of characters and then applying merge operations
to the characters. BPE operations can be learned jointly from both the source and the tar-
get languages, from multiple languages as in multi-lingual NMT or separately from each
language. Despite the efficacy in the open-vocabulary NMT, BPE tokenization segments
a word into a unique sequence of tokens whereas there exists different segmentation can-
didates. Because the model only see the sequences of ids, while these sequences encode
the same input, NMT handles them as completely different inputs. Therefore, training a
NMT model with different segmentation candidates improve the robustness of the model
(Kudo, 2018). Provilkov et al. (2020) proposed BPE-dropout which introduces stochas-
tic corruptions in the segmentation procedure of BPE, which leads to producing multiple
segmentation candidates within the same fixed BPE framework.

Sentence-piece tokenization also allows many different segmentation candidates for
one word but uses a unigram language model to assign a probability to each word seg-
mentation candidate. The motivation of sentence-piece is to enable the NMT model to be
trained with multiple segmentation candidates, which will be sampled from a learned dis-
tribution over possible candidates. Applying sentence-piece tokenization on the fly allows
the NMT model to be robust against the ambiguity raised from the existence of multiple
sub-word encoding candidates of a word.

Besides sentence-piece and BPE, there are alternative paradigms for sub-word tok-
enization such as syllabification (Assylbekov et al., 2017) or linguistically informed tok-
enization (Ataman et al., 2017; Huck et al., 2017; Machácek et al., 2018).

2.1.3 Character tokenization

Character tokenization segments words into sequences of characters. This tokenization
circumvents the problem of finding an optimal sub-word segmentation for multiple lan-
guages in multilingual NMT. Furthermore, character tokenization reduces the size of the
vocabulary to a small number of written characters. However, the length of the resulting
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sequence increases significantly as words are extremely split into character units. As a re-
sult computational requirements during training and decoding time increase. First studies
on the character-based NMT , including the work of Ling et al. (2015); Luong & Man-
ning (2016), focused on solving the out-of-vocabulary and softmax bottleneck problems
associated with word-level models. Costa-jussà & Fonollosa (2016); Chung et al. (2016);
Lee et al. (2017); Costa-jussà et al. (2017) proposed variants of character-based model.

2.1.4 Byte-level tokenization

Byte-level tokenization is used to segment the byte-level representation of the text. The
rationale behind this tokenization is that byte-level representation could handle character-
rich languages such as Japanese and Chinese. However, for the same sentence, the byte-
level representation is usually much longer than the character-level representation. Fur-
thermore, taking a sequence of bytes as the input of the NMT model greatly increases
the cost. To reduce the length of the input sequence, byte-level tokenization applies BPE
tokenization on sequences of bytes. In practice, Wang et al. (2020a) showed comparable
performance of byte-level BPE-based NMT compared to BPE-based NMT.

2.2 NMT’s main components
In principle, an NMT model consists of 3 parts: 1) a look-up table of word embeddings,
2) an encoder and 3) a decoder. Similar to the SMT approach, an NMT model modelizes
the conditional probability of the target sequence given the source sequence, i.e. P(y|x)
in which x = [x0, · · · ,xI],y = [y0, · · · ,yJ]. Most existing NMT models are auto-regressive,
i.e., P(y|x) is factored into a product of a chain of conditional probabilities which predict
a target token given the previous predicted target tokens and the source sequence as

P(y|x) =
J

∏
i=1

P(yi|y<i,x). (2.1)

We always assume that the target sentence is initialized by a special token named ”begin-
of-sentence” < BOS >, hence, y0 =< BOS >.

The encoder maps the source sequence x to an intermediate representation in a contin-
uous high dimensional vector space. The Decoder takes the representation of the source
sequence Enc(x) as input to condition its prediction on the source sequence. At each time
step i, the decoder outputs a distribution over the target vocabulary by mapping its ith

hidden state to vector space R|Σy| where Σy is the target vocabulary

P(.|y<i,x) = softmax(Linear(si)), (2.2)
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where Linear is a dense layer mapping to R|Σy|.

The hidden state of the Decoder is computed recursively as

si = g(si-1,yi-1,ci), (2.3)

using the hidden state of the previous time step, the observation of the previous time step
(i.e. the (i-1)th token) and the context ci, which is computed from the representation of
the source sequence Enc(x) and si-1.

In order to transform the input sequence of integers into continuous hidden states, En-
coder and Decoder have to use a look-up table of word embeddings. A word embedding
is a real-valued vector in a high dimension space that represents a token in the vocabu-
lary of the NMT model. The motivation of using word embedding is to transform the
input sequence of integers to a sequence of vectors in a continuous space which allows
the parameters of the NMT model to be trained with gradient descent-based optimization
methods. The lookup table has the size of |Σ{x,y}| × d where |Σ{x,y}| is the size of the
corresponding vocabulary, and d is the dimension of word embedding space. Word em-
beddings are not only used in NMT models but also in Neural language models (Bengio
et al., 2003)(NLM). Le et al. (2012); Schwenk (2012) used NLM for phrase-based sta-
tistical machine translation. Moreover, word embedding can be trained alone using the
Skip-gram model (Mikolov et al., 2013b) or the Continuous Bag of Word model (Mikolov
et al., 2013a). After training such models, the resulting word embeddings possess seman-
tic properties so that words having similar meanings or close meanings are mapped to
similar vectors in terms of cosine similarity (Collobert et al., 2011; Mikolov et al., 2013b;
Collobert & Weston, 2008). The fine-grained semantic representation of word embed-
dings significantly improves the performance of AI in text classification, text retrieval,
etc., and surprisingly enables unsupervised machine translation and unsupervised word
translation (Pennington et al., 2014; Levy et al., 2015; Lample et al., 2018; Santos et al.,
2020). By using word embeddings, the source sequence is mapped to a sequence of real-
valued vectors.

The encoder encodes the source sequence of word embeddings to another sequence of
real value vectors (hidden states or contextualized embeddings) (Cho et al., 2014; Bah-
danau et al., 2015; Vaswani et al., 2017), in a high dimension space called a latent space.
This process aims to mix the representation of each token with ones of the context sur-
rounding that token. The context of a word is the set of words surrounding that word.
Combining the representation of a word with its context allows the NMT model to con-
dition the translation of that word on its context. The encoder can combine the state of
the token with one of its preceding tokens in a Recurrent encoder, with ones of the sur-
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rounding window in a Convolutional encoder, or with ones of the whole sentence in an
Attention-based encoder. We illustrate the range of context captured by those three en-
coders in figure 2.1. Each encoding paradigm has its advantages and disadvantages. The
Recurrent encoder respects the order of tokens because it consumes tokens one by one
from left to right. However, it is very slow to encode the input sequence. Convolutional
encoder and Attention-based encoder encode all input tokens simultaneously that brings a
great advantage in speed. But allowing direct connections between states prevents Convo-
lutional encoders and Attention-based encoders from apprehending the sequence’s order.
Therefore they have to use positional embedding to know the position of each token.

Figure 2.1: Illustration of context range at each token in different encoding mechanism.
From left to right: Recurrent encoder, Convolutional encoder, Attention-based encoder.
The example sequence is [a,b,c,d,e] and each colored column represent the context range
of the corresponding token.

The decoder works similarly to a language model as it predicts one token per time
step. However, the decoder conditions its prediction on the source sequence. Therefore,
the decoder takes the output of the encoder as its inputs. An Auto-regressive decoder
conditions its prediction on the predictions of previous steps and the source sequence.
Because all of our experiments use auto-regressive NMT, from now, a decoder is an auto-
regressive decoder if there is no other specification. The decoder usually uses the same
neural architecture as the encoder. However, unlike the encoder, the range of context
of a token is strictly limited to its preceding tokens. Because the hidden state of the
decoder is computed from the previous hidden states and the observation of the previous
step, we need to initialize the 0th hidden state s0 (optional) and the 0th token. That is
why we always begin the target sequence by the token < BOS >, and the decoder starts
predicting from the second token on. For example, if [a,b,c,d,e] is predicted by the
decoder, the prediction of token a is conditioned by source sequence x and < BOS >;
the prediction of token b is conditioned by source sequence x and [< BOS >,a] and so
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on. Besides, the decoder needs a signal to stop its generative prediction. We always end
a prediction by ”end-of-sentence” token or < EOS >. Therefore, instead of predicting
[a,b,c,d,e], the decoder predicts [a,b,c,d,e,< EOS >]. Concerning the construction of
hidden states, the Recurrent decoder usually initializes s0 by the last hidden state of the
encoder followed by a linear transformation. In contrast, the Convolutional decoder and
the Attention-based decoder do not need to initialize s0 as every hidden state directly
accesses the predictions preceding its time step without going through its preceding state.
We illustrate the difference between decoding paradigms in the figure 2.2.

Figure 2.2: From left to right: Recurrent decoder, Convolutional decoder, Attention-based
decoder. The example sequence is [a,b,c,d,e]. The figure illustrates only one layer of the
decoder.

NMT’s architectures are usually a stack of multiple layers. As described above, the in-
put source sequence is mapped to a sequence of word embeddings. This is considered the
0th layer of the Encoder. The ith layer is built upon the (i-1)th layer by applying the same
encoding mechanism, which can be recurrent layer, convolutional layer or self-attention
layer, to the output of the (i-1)th. We illustrate different multi-layer decoders in figure
2.3. For example, Vaswani et al. (2017) stacked 6 Transformer layers in both the encoder
and the decoder of their NMT model. Deep NMT models are able to learn from very
large-scale of parallel data (Ott et al., 2018) and continually create new state-of-the-art
performances. However, deep NMT models are harder to train because the gradient flow
has to back-propagate through many layers. In order to prevent the gradient flow from
vanishing, which happens when the value of the output of the linear transformation in
some layer jumps outside the domain of the activation function, (He et al., 2016) pro-
poses using residual connections, which replaces f (x) by f (x)+ x where x is the output
of the lower layer and f (.) is the transformation of the layer, to transit from the lower
layers to their following layers. By using residual connections, a fraction of the gradient
still reaches the lower layer and continues to propagate until the lowest layer.

Deep NMT models also suffer from Internal Covariate Shift in which the distribution
of the value of each layer significantly changes due to the change of the parameters of
the models. In deep neural network, the distribution of the value of high layers is highly
affected by the parameters of the lower layers and can be dramatically shifted by a small
change in the value of those parameters. Large shift can push the value of the layer
to the saturation zone of activation function where the gradient is extremely small. In
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practice, the saturation problem can be mitigated by using the Rectified Linear Units
RELU(x) = max(x,0) (Nair & Hinton, 2010). Recently, (Ioffe & Szegedy, 2015; Ba
et al., 2016) propose different normalization methods to stabilize the value of layers so
that they are not easily pushed to saturation zone of activation function. In principle,
Normalization methods re-scale and re-center the distribution of the value of each layer
with learnable mean and learnable variance. Normalization methods prove to be very
helpful in practice. For example, Layer normalization must be included in every layer of
Attention-based NMT (Vaswani et al., 2017).

Figure 2.3: From left to right: Recurrent decoder, Convolutional decoder, Attention-based
decoder. The example sequence is [a,b,c,d,e]. The figure illustrates only two layers of
the decoder.

2.3 Recurrent neural machine translation
This section reviews the very first NMT architecture, the Recurrent neural machine trans-
lation architecture (RNMT). RNMT is composed of a Recurrent encoder, a Recurrent
decoder, and tables of word embeddings. The Recurrent encoder and the Recurrent de-
coder usually use the same type of Recurrent neural network (RNN) layers, such as Gated
recurrent unit (GRU) and Long-short term memory (LSTM), which we will explain in
the following section. RNMT is strictly auto-regressive as each hidden state in the en-
coder/decoder has to go through every intermediate state to assess the information of any
time step before it. The hidden states of RNMT inherit the ordering information, which
is an advantage over Convolutional neural machine translation (CNMT) and Attention-
based neural machine translation (ANMT). However, a lack of straightforward connec-
tions between the positions of the input sequence causes many difficulties in the training
of RNMT, for example the vanishing gradient problem in backpropagation through time
Pascanu et al. (2013).

2.3.1 GRU, LSTM layers

Gated recurrent units (GRU) and Long-short term memory units (LSTM) are the two most
popular layers in the group of Recurrent neural networks. They follow the auto-regressive
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paradigm by constructing the hidden states one by one as follows

hl
t = f (hl-1

t ,hl
t-1) (2.4)

where hl-1
t is the hidden state at time step t of the (l-1)th layer, the 0th layer is the se-

quence of word embeddings; the mapping f can be GRU cell or LSTM cell, which will
be explained below.

LSTMs were first introduced by Hochreiter & Schmidhuber (1997). They use 4 gating
functions including input gate i, output gate o, forget gate f and memory cell c. At each
time step t, the contextualized embedding ht is computed as follows

ft = σg(Wf hl-1
t +U f ht-1 +b f ),

it = σg(Wihl-1
t +Uiht-1 +bi),

ot = σg(Wohl-1
t +Uoht-1 +bo),

c̃t = σc(Wchl-1
t +Ucht-1 +bc),

ct = ft� ct-1 + it� c̃t ,

ht = ot�σh(ct),

(2.5)

where σg is the sigmoid function, σc is the hyperbolic tangent function, σh is either the
hyperbolic tangent function or the identity function and� is the element-wise multiplica-
tion. These functions are applied element-wise to intermediate vectors in the equations.

The motivation behind this highly complex structure is to stabilize the exploding/di-
minishing gradient flow (Pascanu et al., 2013) induced by back-propagation through time
(BPTT ) (Hochreiter & Schmidhuber, 1997). The second architecture GRU, which was
proposed by Cho et al. (2014), mitigates the complexity of LSTM by using only three
gates as follows.

zt = σg(Wzhl-1
t +Uzht-1 +bz)

rt = σg(Wrhl-1
t +Urht-1 +br)

ĥt = σh(Whhl-1
t +Uh(rt�ht-1)+bh)

ht = (1− zt)�ht-1 + zt� ĥt

(2.6)

Where σh is a hyperbolic tangent function while other notations are the same as in the
equations 2.5.

2.3.2 RNN encoders

RNN encoders use LSTM or GRU layers to encode the source sequence. RNN encoders
can use more than one layer to capture more fine-grained language representations (Li
et al., 2020). The 0th layer is a sequence of word embeddings, which are extracted from
the look-up table of the source side using the word ordering provided by the source se-
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quence.

2.3.2.1 Bidirectional RNN encoders

Unlike the decoder, the encoder is not constrained to process the input sequence from
left to right. Effectively, the context of one token in the source sequence contains not
only its preceding neighbors but also its following neighbors. Therefore, encoding the
source sequence from left to right is not enough to fully describe the context of each
token. To increase the coverage of contextualized embedding, the encoder process the
source sequence both from left to right and from right to left at the same time. Such
encoders are deemed bidirectional. Bidirectional encoding results in two sequences of
contextualized embeddings; the encoder simply combines two contextualized embeddings
of a token into one real vector via either concatenation or summation. The resulting
contextualized embedding improves the representation of each word with information
regarding its neighbours on the right and on the left.

2.3.3 RNN decoders

RNN decoders predict the target sequence from left to right, one token per time step. It
initializes the 0th hidden state by zero vector or a linear transformation of the last hidden
state of the last layer of the encoder. The following section will discuss on an important
component of the NMT model, which are attention mechanisms. As the hidden represen-
tation of the decoder at each step is computed as follows

si = g(si-1,yi-1,ci), (2.7)

where ci is the context vector. ci is computed via an attentional mechanism using si and
Enc(x), which will be explained in Section 2.3.3.1.

The prediction probability will be computed as follows

p(yi|si,yi-1,ci) = softmax(Dense(ti))yi (2.8)

where yi is an index of the target vocabulary, Dense is a dense layer, whose output is of
dimension |Σy|, and ti is computed as follows

ti =
[
max

{
t̃i,2 j-1, t̃i,2 j

}]T
j=1,··· ,d,

t̃i = U0si-1 +V0Emb(yi1)+C0ci,
(2.9)

where Emb(yi-1) is the word embedding of the token yi-1, U0 ∈ R2l×d , V0 ∈ R2l×d′ , and
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C0 ∈ R2l×d for a uni-directional encoder and C0 ∈ R2l×2d for a bi-directional encoder.

2.3.3.1 Attention mechanisms

An attentional mechanism consists of 3 components: Query vectors, Key vectors, and
Value vectors. Given a sequence Qi, i ∈ [1 · · ·n], K j, j ∈ [1 · · ·m] and Vj, j ∈ [1 · · ·m], the
results of the attentional mechanism composed by those vectors will be as follows

Attention(Q,V,K)i =
m

∑
j=1

exp(sim(Qi,K j))
m

∑
p=1

exp(sim(Qi,Kp))

∗Vj, i ∈ [1, · · · ,m], (2.10)

where the function sim(x,y) can be the standard dot product < x,y > (Vaswani et al.,
2017), a generalized dot product < x,Wa ∗y > or < va, tanh(Wa ∗ [x,y])> (Luong & Man-
ning, 2015; Bahdanau et al., 2015).

The attention mechanism manages and quantifies the dependences between the input
sequence and the output sequence (e.g., source contextualized embeddings and target con-
textualized embeddings), or the input sequence itself (e.g., self-attention layers in Trans-
former (Vaswani et al., 2017)). In the RNN MT model, the attentional mechanism is used
to capture the dependences of each token in the target sequence on the tokens in the source
sequence. For example, Bahdanau et al. (2015) computed a context vector at ith time step
in the decoder as follows

ci = ∑ j αi jh j,

αi j =
exp(ei j)

∑k exp(eik)
,

eik = sim(si-1,hk),

(2.11)

where h j is the output of the last layer of the encoder, si-1 is the hidden state at the (i-1)th

time step of the last layer of the decoder.

2.4 Convolutional neural machine translation
The convolutional neural network was successfully applied to the MT task in the work
of Gehring et al. (2017) that outperformed the current state-of-the-art performance of the
RNMT. As we mentioned in the previous section, convolutional neural machine transla-
tion (CNMT) does not construct the hidden states iteratively in one direction. The model
considers the sequence as an image, of which each column of pixels is a word embedding,
and applies convolutional kernels on it. Therefore, CNMT is much faster than RNMT. We
give the detail of the convolutional encoder and the convolutional decoder in the following
sections.
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2.4.1 Convolutional encoders

Concretely, each layer of a convolutional encoder contains a one dimensional convolution
kernel followed by a non-linear activation function. We denote hl

i the ith hidden state of
the lth layer. Those hidden states are computed as follows

hl
i = v

(
W l[hl-1

i- k
2
, · · · ,hl-1

i+ k
2

]
+bw

)
+hl-1

i , (2.12)

where W l ∈R2d×kd , bw ∈R2d , d is the dimension of hidden states as well of word embed-
dings, k is the width of the kernel, the activation function v is Gated Linear Unit (Gehring
et al., 2017) defined as follows

v([A,B]) = A�σ(B), (2.13)

where � is the element-wise multiplication, σ is the sigmoid function.

2.4.2 Convolutional decoders

Unlike the convolutional encoder, in which each hidden states has access to its left and
right neighbors, the decoder only allows left accesses to avoid conditioning the predic-
tions on the following tokens, which remain unknown before the prediction during the
inference. Therefore, Gehring et al. (2017) appended k-1 padding tokens in the left side
of the output sequence, e.g PAD, PAD,< BOS >, je,t ′,aime for convolution kernel of size
3 so that

[
PAD,PAD,< BOS >

]
predicts je,

[
PAD,< BOS >, je

]
predicts t ′ and so forth.

The convolutional decoder also uses an attention mechanism to improve the performance
for long sentences. Gehring et al. (2017) proposed a slightly different version from ones
of Luong & Manning (2015); Bahdanau et al. (2015). For each lth decoder layer, the query
will be a combination of the hidden state hl

i and the word embedding of the previous token
gi as follows

Ql
i =W l

dhl
i +bl

d +gi. (2.14)

The keys are still the hidden states of the last layer of the encoder zu
j . The values are the

combinations of the hidden states zu
j and the word embedding e j as follows

V l
j = zu

j + e j. (2.15)

The attention score is the dot product between the query vector and the key vector fol-
lowed by the softmax function as follows

αi j =
exp(Ql

i ·zu
j)

∑
m
t=1 exp(Ql

i ·zu
t )
. (2.16)
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The context vector cl
i will be as follow

cl
i = ∑

j=1
αi jV l

j (2.17)

Once cl
i has been computed, it is simply added to the output of the corresponding decoder

layer hl
i .

2.4.3 Positional embeddings

Gehring et al. (2017) proposed using embeddings corresponding to each position of the
input sequence. The purpose is to equip the CNMT model with a sense of order as the
convolution kernel does not take into account the order of tokens in the input sequence.
Effectively, if we interchange the position of tokens outside the window of the kernel, the
value of the hidden state does not change. Positional embeddings are real value vectors
having the same dimension as word embeddings. Positional embeddings are added to
word embeddings of the corresponding position before passing to the first layer.

2.5 Attention-based neural machine translation
The Transformer architecture was first introduced by Vaswani et al. (2017) and has quickly
become the state-of-the-art architecture not only in MT but also in language modeling
(LM) (Devlin et al., 2019; Conneau & Lample, 2019a; Brown et al., 2020), text summa-
rization (Zhang et al., 2020) etc. The Transformer model’s power relies on the attentional
mechanism, which was discussed in the previous section 2.3.3.1. The Transformer model
consists of a fully attention-based encoder and decoder.

2.5.1 Transformer encoders

The Transformer encoder consists of layers made of a multi-head self-attention sub-layer
followed by a position-wise fully connected feed-forward network. The multi-head self-
attention sub-layer is an extension of the self-attention sub-layer and is described by the
following equation

MultiheadAttention
(
Q,V,K

)
= Concat

[
head0, · · · ,headh

]
W0

headi = Attention
(
QW Q

i ,VWV
i ,KW K

i
)
,

(2.18)

where W Q
i ,WV

i ,W K
i ∈ Rdk×dh with dh× h = dk, dk is the dimension of word embedding

space and also the size of the Transformer model. Unlike the version (2.21) in Section
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2.3.3.1, the attentional mechanism is simply as follows,

Attention
(
Q,V,K

)
= softmax

(QKT
√

dk

)
V. (2.19)

The feed-forward network is designed as follows

FFN(x) = ReLu(xW1 +b1)W2 +b2, (2.20)

where W1 ∈ Rdk×db ,W2 ∈ Rdb×dk ,b1 ∈ Rdb ,b2 ∈ Rdk . The final detail is that the output of
each sub-layer has to pass through a Layer-Normalization sub-layer (Ba et al., 2016). In
conclusion, the contextualized embedding of the lth layer of the Transformer encoder will
be as follows

h̃l = LN
(

Multihead
(
hl-1,hl-1,hl-1)+hl-1

)
,

hl = LN
(

FFN
(
h̃l)+ h̃l

)
,

(2.21)

where LN is a Layer-Normalization sub-layer.

2.5.2 Transformer decoders

The Transformer decoder consists of layers made of a multi-head self-attention sub-layer
followed by a multi-head cross-attention sub-layer then by a position-wise fully connected
feed-forward network. The multi-head self-attention sub-layer and the feed-forward net-
work have the same design as those in the Transformer encoder. The multi-head cross-
attention sub-layer of the lth layer of the decoder uses the output of the last layer of the
encoder as keys and values, the output of the lth self-attention sub-layer as queries

s̃l = LN
(

Multihead
(
sl-1,sl-1,sl-1)+ sl-1

)
,

s̄l = LN
(

Multihead
(
s̃l,hu,hu)+ s̃l

)
,

sl = LN
(

FFN
(
s̄l)+ s̄l

)
,

(2.22)

where sl ,sl-1 are the outputs of the lth and (l-1)th layers of the decoder respectively, hu is
the output of the last layer of the encoder.

In order to prevent the future information in the decoder, at each time step ith, the
attention scores of tokens at positions after ith are masked by zero.
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2.5.3 Positional embeddings

Similar to the convolutional encoder/decoder, the Transformer encoder/decoder does not
respect the order of tokens as it fully connects every pair of tokens in parallel. In order to
represent the position of tokens in the sequence, Vaswani et al. (2017) proposed the use of
positional embeddings. Unlike Gehring et al. (2017)’s positional embedding, this version
is not parameterized as given the size of word embedding dk , the positional embedding
of position ith is defined as

PE
(

pos,2i
)

= sin
( pos

1000
2i
dk

)
PE
(

pos,2i+1
)

= cos
( pos

1000
2i
dk

)
.

(2.23)

The positional embedding will be added to the corresponding word embeddings of the ith

token in the input sequence.

2.6 Training NMT models
The purpose of training NMT models is to find optimal values for their parameters so
that the error of the model is minimized in inference over unseen test sets. To learn these
optimal values, we need 3 type data sets including training set, validation set, and testing
set. The training set is used to optimize the model’s parameters via statistical learning
algorithms such as Maximum likelihood estimation (MLE)(Baum & Wilczek, 1987). The
testing set is used to evaluate the model once it’s optimized. The performance on the
testing set shows us how good the model is and is used to compare different models. The
validation set is not used to learn the model’s parameters nor to evaluate the model but to
prevent the ”over-fitting” of the optimization. Effectively, an NMT model can be trained
until very small error in the training set but this will result in poor generalization on the
test set. A common practice is to perform early stopping. During the training, the model
is evaluated on the validation set for every K iterations. The learning is represented by
2 learning curves, including the error on training set and the error on the validation set.
Training stops when the validation error does not improve after a predetermined number
of consecutive evaluations.

Concerning the optimization of the model on the training set, we usually use MLE, i.e.

θ̂ = argmax
θ

Ex∼De,y∼g(x)logP(y|x;θ), (2.24)

where De is the train distribution over the set of sentences, Ωe in language e and g is a
hypothetical translation function, g : Ωe→ Ω f , which needs to be learned by our model
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(Ω f is set of sentences in the language f ). According to Equation 2.1, MLE is equivalent
to minimizing the cross-entropy loss

LCE(θ ,De,g) = −Ex∼De,y∼g(x)

ly

∑
i

logP(yi|y<i,x;θ),

θ̂ = argmin
θ

LCE(θ ,De,g).
(2.25)

In order to optimize this function, we often use the gradient descent method, which is
one of the oldest approaches for optimizing continuous functions (Cauchy, 1847). The
gradient is computed by the back-propagation algorithm (Rumelhart et al., 1988). Like
many deep learning models, the NMT model is usually trained with a massive amount
of data that makes gradient descent computationally infeasible. Therefore, stochastic
gradient descent (SGD) is proposed to mitigate the computational burden of large-scale
models (Robbins & Monro, 1951; Kiefer & Wolfowitz, 1952; Bottou, 2010). In theory
the loss is (2.24), so we approximate the gradient with a small batch. SGD samples a
batch of examples from training set, calculates the gradient of the loss over this batch,
then updates the parameters according to this gradient.

2.6.1 Tips and tricks in training an NMT model

Deep Neural networks are usually very hard to train. Effectively, back-propagation through
time in RNMT usually creates exploding or vanishing gradients (Glorot & Bengio, 2010;
Pascanu et al., 2013). Gradient clipping (Pascanu et al., 2013), Truncated back-propagation
(Jaeger, 2002) are proposed to mitigate these problems.

Large NMT models are easily over-fitted to training data. Srivastava et al. (2014) pro-
posed randomly zeroing-out a subset of parameters during one training iteration, which
prevents the whole model from being fitted to one example. The method is called dropout.
We could interpret dropout as an ensemble method that allows training many sub-networks
in one training and ensembles them in testing. In practice, dropout is essential to train
neural models in general.

Besides, log-likelihood maximization (2.24) assumes that a ground-truth label is far
more likely than all other labels, excessively discriminates between the likelihood of
training examples and the likelihood of the ones that do not appear during training. The
log-likelihood maximization can result in over-fitting to the training data, reducing the
model’s generalization in testing. To mitigate this problem, we adopted the ’label smooth-
ing’ technique from computer vision Szegedy et al. (2016). The technique replaces the
loss (2.25) by a smooth approximation defined as follows
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LCE(θ ,De,g) = −Ex∼De,y∼g(x)

[ ly

∑
i

(
(1− ε)∗ logP(yi|y<i,x;θ)

+ ε

|Σy| ∗ ∑
y′∈Σy

logP(y = y′|y<i,x;θ)
)]
,

(2.26)

2.7 Inference with an NMT model
An NMT model translates a source sentence x by searching the target sequence y that
gives the highest probability conditioned on x,

ŷ = argmax
y

P(y|x;θ) (2.27)

However, the search space of y is of infinite dimension, making exact search intractable.
Beam search (Och & Weber, 1998) is the most common inference algorithm in Neural
Machine Translation and Statistical Machine Translation. For autoregressive NMT mod-
els, a single output token is produced at each inference step j. The prediction at step j is
conditioned by x and the partial translation hypothesis up to step j

ŷ j = argmax
y j∈Σy

P(y j|y<i,x,θ). (2.28)

Beam search tracks K most probable translation hypotheses. Beam search starts with K
empty hypotheses, which are initialized by the ”begin of sentence” token < BOS >. In
the jth inference step, for the nth partial hypothesis [yn

< j], the top-K most probable tokens
according to P(.|y< j,x;θ) are picked and appended to the current hypothesis

ŷn
j ∈ TopK

y j∈Σy

P(y j|y< j,x,θ). (2.29)

The search space, therefore, is extended to K ∗K hypotheses. Beam search selects only
the top K hypotheses from these K ∗K hypotheses. It stops extending an hypothesis when
< EOS > is predicted or the hypothesis reaches the predefined length limit.

Beside the left-to-right decoding, there are several variant decoding algorithms includ-
ing non-monotonic decoding (Welleck et al., 2019), non auto-regressive decoding (Gu
et al., 2017), and synchronous bidirectional decoding (Zhou et al., 2019). Because the
decoding algorithms are not central in this thesis, we would like to restrict ourselves to
this brief description.
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2.8 MT evaluation
The evaluation of MT systems can be done automatically by comparing n-grams of gen-
erated translations and n-grams of gold references. The most popular MT metric is BLEU
(Papineni et al., 2002). Recently, Post (2018) proposed standardizing hypotheses of MT
systems before calculating the BLEU score.

BLEU is computed at the corpus-level, i.e., it compares a corpus of hypotheses and
the corpus of references. BLEU score is the geometric average of n-gram precisions,
including 1-gram, 2-grams, 3-grams and 4-grams weighted by brevity penalty (BP)

BLEU = BP× exp(
1
4

4

∑
i=1

logpi). (2.30)

The n-gram precision pn is computed as follows

pn =
∑hyp∈hyps ∑n-gram∈n-grams min(Count(Re f ,n-gram),Count(hyp,n-gram))

∑hyp∈hyps ∑n-gram∈n-gramsCount(Re f ,n-gram)
, (2.31)

Where Count(C,g) is the number of occurrences of the n-gram g in the corpus C.

The Brevity penalty computed as follows

BP =

1 if |c|> |r|

exp(1− |r||c|) otherwise.
(2.32)

Where c is the total length of the hypothesis corpus, r is the total length of the reference
corpus. The Brevity penalty assures that a high-scoring candidate translation must also
match the reference translations in length.
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(Multi-)domain adaptation in neural
machine translation
The domain mismatch problem is one of the main challenges in machine translation
(Koehn & Knowles, 2017) in which the test distribution (the target domain) is different
from the train distribution (the source domain). Domain adaptation approaches address
the problem with one target domain, while multi-domain adaptation aims to improve the
performance of an NMT model in multiple domains. While the problem has been actively
studied for a long time, MT (multi-)domain adaptation literature lacks a unified founda-
tion. Several previous works aimed to disambiguate the notion of a domain in MT domain
adaptation, such as van der Wees et al. (2015); van der Wees (2017); Saunders (2021).
The thesis of Saunders (2021) gave us a good review of domain adaptation. Chu & Wang
(2018a) regrouped domain adaptation approaches into two main categories, including the
data-centric group and the model-centric group but also forgot to mention their use case.
Because none of the reviewed methods in Chu & Wang (2018a) solved all the situations
of the domain mismatch problem, it is essential to summarize which method solves which
case. Furthermore, these works only provided a facet of multi-domain adaptation. In this
chapter, we want to propose a complete overview of this problem. First, we point out four
main cases in (multi-)domain adaptation. Then we use a unique mathematical framework
to describe these situations. Finally, we match domain adaptation methods to each case
creating a Cartesian coupling of a technique and its application case.

We divide this chapter into five sections. In Section 3.1, we would like to discuss how
we usually define a domain, how translations differ between domains, and the importance
of domain adaptation in real applications. In Section 3.2 we would like to regroup two
notions, domain adaptation and multi-domain adaptation, then divide the problem MT
(multi-)domain adaptation into four main sub-problems. We dedicate the four follow-
ing sections to these sub-problems. In each of these sections, we review groups of ap-
proaches (data-centric or model-centric), according to Chu & Wang (2018b), that match
the requirement of the corresponding problem.
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3.1 What is a domain?
In a classical machine learning context such as the binary classification problem, Ben-
David et al. (2010a) defined a domain by a pair of a distribution Dx on the input space
Ωx and a labeling function g : Ωx→ {0,1}. In machine translation context, the labeling
function will be g : Ωe→ Ω f where Ωe and Ω f are the set of sentences of the language
e and the language f respectively. Denote 2 different domains,

(
DS

e ,g
S) and

(
DT

e ,g
T).

Domain adaptation is required when we train a machine learning model (statistical or
neural) with the data generated by

(
DS

e ,g
S) but apply it to the data generated by

(
DT

e ,g
T).

In principle, there is no guarantee that the model performs well in the second domain.
However, we could aim to exploit some sharing knowledge between the two domains; for
example, Blitzer et al. (2006); Miller (2019) explored pivot features, which are features
that frequently occur in the two domains and similarly contribute to the predictions in
both domains. This paradigm was applied to multi-domain machine translation in the
work of Britz et al. (2017). However, Pham et al. (2021) reevaluated the method with a
wider range of domains and observed a low performance.

In the machine translation literature, ”a domain is defined by a corpus from a specific
source” (Koehn & Knowles, 2017). van der Wees et al. (2015); van der Wees (2017)
identified the following elements of a text which influence the translation the most.

• Topic: the subject of the text such as medical, news, IT, or religious. A topic owns
its particular vocabulary. These items can not be transferred between distant topics
such as medical and religion.

• Genre: the purpose of the text such as education, talk, report, or instruction. It
identifies groups of texts that share a common form of transmission, purpose, and
discourse properties. We characterize genre by textual style, the structure of the
text, etc.

Carpuat et al. (2013) provided an essential insight into domain adaptation. The authors
carefully analyzed the sources of error when translating in a new domain. They identified
unseen words and senses as the primary sources of error. According to Carpuat et al.
(2013), there are four kinds of mistakes that an SMT system makes when translating in a
new domain:

• SEEN: unseen words in the new domain,
• SENSE: unseen domain-specific translations for known words,
• SCORE: wrong preference for non-new-domain translations,
• SEARCH: search algorithm chooses wrong words.

These errors are detected by analyzing the word alignment component of an SMT model.
However, NMT models do not use word alignments explicitly in their mechanism. More-
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over, the attention mechanisms in NMT architectures are usually hypothesized to play
the same role as word alignment components implicitly. Consequently, SEEN, SENSE,
SCORE, and SEARCH errors have not been used to analyze the performance of an NMT
model in an unseen domain.

Despite many specifications, domains share the same grammar of the corresponding
language and a relatively large vocabulary. Furthermore, domains from similar topics
such as medical and scientific can share many common domain-specific words. Domains
from a similar genre, such as administrative, can share the same formality. Therefore,
the data of one domain can be helpful to improve the performance of a NMT model in
other domains. The problem of (multi-)domain adaptation is to best exploit the similarity
between domains and the specialization for each domain. These two goals are contrary to
each other but both essential for a (multi-)domain MT system.

Solving the MT (multi-)domain adaptation problem is essential for deploying MT in a
real context. Machine Translation has applications in many sectors, such as translating le-
gal documents, news, scientific documents, books, movie subtitles, etc. Every domain has
its specific vocabulary, registers (formal or informal), and genres (e.g., talk, instruction).
Therefore, tailoring MT models to a target domain is essential to achieve good transla-
tion in that domain. In practice, MT models (SMT, NMT) trained with domain-related
data always perform much better in the domain of interest than ones trained with the same
amount of less relevant data (Sennrich, 2013; Saunders, 2021). The more domain-relevant
data is available, the better the MT system performs in the target domain. However, not
every domain has enough data to train an MT model. Moreover, state-of-the-art mod-
els such as Transformer models will need millions of parallel sentence pairs to learn its
parameters. Therefore, we have to work around the situation where there is very little
or no data. Domain Adaptation aims to improve the performance of an MT model in
low-resourced domains. Multi-domain adaptation seeks to achieve the best performance
in multiple domains at once. The domains of interest in multi-domain adaptation are not
limited to be low-resourced domains. The motivation of having one model adapted to
many domains is to optimize the storage, the training time, and deployment time. Having
one model per domain increases the storage, the time retrieving a model, and thus the
translation latency. Online translation services, such as Google Translate, Systran Trans-
late, or DeepL Translate, have to translate text from any possible domain while minimiz-
ing the latency of translation to be beneficial. In conclusion, the variety of text between
application fields requires domain adaptation, while fast and robust translation requires
multi-domain adaptation.
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3.2 Machine translation (multi-)domain adaptation - a
multi-faceted problem

3.2.1 From domain adaptation MT to multi-domain adaptation MT

Domain adaptation and multi-domain adaptation do not have same motivation as one fo-
cuses on low-resourced domain whereas the other focuses on adapting to as many as
possible domains, they can however cast under one general framework. Formally, train
instances are distributed according to a mixture DS

e such that DS
e (x) = ∑

nd
d=1 λ s(d)Dd

e (x),
with {λ s(d),d = 1 . . .nd} the mixture weights satisfying ∑d λ s(d) = 1. The target do-
mains are represented in the test distribution which is also a mixture of DT

e (x)=∑
nd
d=1 λ t(d)Dd

e (x),
with {λ t(d),d = 1 . . .nd} the mixture weights satisfying ∑d λ t(d) = 1. Domain adapta-
tion solves the case where λ t is an one-hot vector while multi-domain adaptation happens
to solve the case where λ t is not an one-hot vector. We illustrate this formulation in figure
3.1.

Figure 3.1: Training and testing with distribution mismatch. We consider just three do-
mains, and represent vectors of mixture weights λλλ

s and λλλ
t in the 3-dimensional simplex.

Training with weights in (a) and testing with weights in (c) is supervised multi-source do-
main adaptation to domain 2 (d2), while (b)-(c) is the unsupervised version, with no train
data from d2; training with weights in (a) and testing with weights in (d) is multi-domain
learning, also illustrated with configurations (a)-(e) (train domain d1 is not seen in test),
and (b)-(d) (test domain d2 is unseen in training).

This framework describes the real context closely because, in a typical setting in ma-
chine translation, we collect the most extensive collection of parallel data for the cho-
sen language pair to achieve optimal performance for the task of interest. In such situ-
ations, the train data’s distribution is opportunistic. The test data distribution is also a
pre-determined mixture of the target domains. A key objective in training (multi-)domain
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NMT models is to mitigate the detrimental effects of a possible mismatch between these
distributions.

Train data may be a mixture of many domains such as the JRC-Acquis Communau-
taire corpus (law-domain) (Steinberger et al., 2006) or documentation for KDE, Ubuntu,
GNOME and PHP from the Opus collection (Tiedemann, 2009) (it-domain). We can
also leverage a collection of data with no specific topic and genre, such as Paracrawl
(Bañón et al., 2020), for example in Ng et al. (2019).

In (multi-)domain adaptation, the test data is a mixture of target domains. The weight
of each target domain in the mixture is proportional to the priority of the domain. Empir-
ically, test data consists of the test sets of the target domains. The performance of an MT
system is the average of its performance on these tests weighted by domain weight in the
mixture. Most of papers use uniform weights. However, we can assess the quality of a
multi-domain MT system with different priorities over the target domains using weighted
mean.

3.2.2 Four main sub-problems

From our study of the literature of (multi-)domain adaptation, we realize that all the cases
of (multi-)domain adaptation can be classified into four groups by answering two follow-
ing questions:

• Is/Are the train domain(s) determined?
• Is/Are the test domain(s) determined?

More precisely, the first question asks whether the train data is composed of a number
of known domains. For example, the domain of a mixture of multiple corpora of specific
topics, such as JRC-Acquis Communautaire corpus (law-domain) and KDE (it-domain),
is well defined. However, the domains in Paracrawl (Bañón et al., 2020) are unknown
because the corpus was built by crawling the content of web-sites without specifying topic
or purpose. The second question asks whether the domain of the test data is determined.
If there exists a collection of text (monolingual or parallel) that defines the test domain,
then it is domain-determined and vice versa.

The first case of (multi-)domain adaptation, which will be presented in Section 3.3, is
supervised multi-domain adaptation in which domain labels are both available in training
and testing. The format of train data is the triple (d,x,y), in which d is the index of the
domain, (x,y) is a pair of parallel sentences. The format of test data is (d,x). This case
might be the most straightforward situation. Many studies have been conducted in this
setting (Pham et al., 2021).

The second case that we discuss in Section 3.4 considers the use of the parallel data

47



Chapter 3. (Multi-)domain adaptation in neural machine translation

crudely collected from web sites such as Paracrawl (Bañón et al., 2020) or Commoncrawl
1. The content of these corpora is a mixture of many topics, but unfortunately, there is
not any available domain label for sentences. Fortunately, in this second case, the target
domains are known, i.e., there exist data for these domains, which can be used to adapt
the model. The format of train data will be (?,x,y). The format of test data will be (d,x).
This case focuses on the exploitation of opportunistic text.

The third case in Section 3.5 assumes the availability of train data correctly domain-
labeled, whereas the test data can come from any possible domain. This case focuses on
the robustness of the MT system against any potential shift distribution in testing. The
format of train data is (d,x,y). The format of test data is (?,x). The third setting is very
close to most translations on the web, where the provenance of the input text is unknown.

Finally, the last setting in Section 3.6 focuses on both exploiting opportunistic data
in training and being robust against unknown test distribution. The format of train data
is (?,x,y). The format of test data is (?,x). We dedicate the four following sections to
discuss each setting more thoroughly.

Recently the work of Chu & Wang (2018b) attempted to describe the landscape of
MT domain adaptation by categorizing previous methods in 2 main classes: data-centric
and model-centric. The data-centric category includes methods that manipulate the train
distribution to resemble the distribution of the target domain better. The model-centric
methods focus on changing the architecture, modifying the train objective, and improving
the inference. Ramponi & Plank (2020) also adopted this taxonomy in their survey on
unsupervised domain adaptation in natural language processing.

According to Chu & Wang (2018a), the data-centric methods focus on two paradigms,
including 1) collecting parallel data related to the domain target, 2) creating synthetic
data resembling the domain target. The first paradigm searches for similar examples
to the ones of the domain target to enlarge the target domain’s train data. The second
paradigm aims to create pseudo samples resembling the data of the domain target. Besides
the two paradigms, we propose another paradigm, which is data sampling. The data
sampling paradigm consists of changing the data sampling scheme during the training
course to mitigate the heterogeneity of the data size between domains and the variety of
the ”difficulty” of the domains. The data-centric group consists of 2 paradigms, including
1) data sellection, 2) data synthesis.

This taxonomy is primarily adopted in MT domain adaptation’s research. However,
we find a naivety in this classification as it misses delivering an answer for the most
ultimate question: ”which method solves which problem?”. The four following sections

1https://commoncrawl.org/
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will explain how the model-centric and the data-centric categories solve 4 (multi-)domain
adaptation cases. We also introduce several adaptation problems that need more research
effort and other applications of existing methods. The work of Pham et al. (2021) recently
gave a brief review of several well-known adaptation methods via a reevaluation with
different domain adaptation cases. However, the experiments are still limited in the first
case 3.3 and the third case 3.5 as they excluded non-domain-determined train data such
as crawled corpora in their experiments.

3.3 Supervised (multi-)domain adaptation
In the supervised (multi-)domain adaptation problem, the domain label is available in both
the train data and the test data. Furthermore, the domain(s) in the test data is(are) included
in the train data. In this problem, we would like to train a single model that performs the
best in our target domains, given train data from those domains and probably from other
domains. This setting is the most popular adaption problem in the literature. This first
case represents the easiest requirement for an MT model. A model needs to achieve the
best performance on the domains of its train data. The difficulty of this situation is to both
exploit the proximity between domains while mitigating the interference due to inter-
domain heterogeneity. Effectively, similar topics, such as legal and administrative,
might improve the vocabulary coverage of each other as both domains share the same
domain-specific words. However, distant topics, such as religion and IT might confuse
the NMT system when sharing the same parameters. In the following sections, we will
discover how model-centric methods and data-centric methods solve this case.

3.3.1 Model-centric approaches

In the case of supervised multi-domain adaptation, model-centric methods focus on adding
domain-specific parameters to reduce the interference between domains while keeping
the total number of parameters small. The simplest approaches use domain tags. For ex-
ample, Kobus et al. (2017) proposed appending a special token to each source sequence
indicating its domain such as < Domain = IT > and train the NMT model with this input.
However, this method requires the domain tag of a sentence before translating it. There-
fore, we have to predict the domain tag of the source sentence if it is from an unknown
origin. Britz et al. (2017) originally proposed appending domain tag to the target sequence
so that the decoder will predict the domain in which it will generate the translation. In-
stead of using domain tags, (Kobus et al., 2017) proposed using domain embeddings to
incorporate the domain information into the context of the translation. Kobus et al. (2017)
concatenated a domain embedding of small size (e.g., 4) to the embedding of each token
in the input sequence. Each domain has its own embedding. Instead of using the domain
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embedding to represent the domain in the representation, Pham et al. (2019) used a sparse
word embedding called ”lexicalized domain representation”, in which a number of di-
mension are reserved for one domain and will be nullified if the model translates in other
domains. We will discuss more this method in Chapter 5. Besides domain embeddings,
it is possible to use domain-specified layers that can be plugged between 2 consecutive
layers of the NMT model without changing the architecture. There are 2 types of plug-in
layers: 1) residual adapters (Bapna & Firat, 2019b; Pham et al., 2020a) and 2) hidden unit
contribution layers (Vilar, 2018). Residual adapters were first introduced by Rebuffi et al.
(2017) in computer vision. Bapna & Firat (2019b) proposed this fine-tuning paradigm
for domain adaptation and for multilingual NMT. They introduced a variant of residual
adapters introduced in Rebuffi et al. (2017) composed of 2 linear projections and ReLU

activation function. The adapters are plugged into the NMT model as follows

hl
enc/dec = hl

enc/dec +ADAPl
enc/dec(h

l
enc/dec) (3.1)

where ADAPl
enc/dec is the adapter corresponding to the lth layer of the encoder/the decoder.

Pham et al. (2020a) studied the use of the residual adapters for multi-domain adaptation
and propose several techniques, including the regularization, a gating mechanism, to im-
prove the robustness of the model. They will be presented in Chapter 6. The hidden unit
contribution layers (LHUC ) were proposed by Vilar (2018) to adapt an NMT model to a
domain. The author applied an LHUC layer to the model as follows

hl
enc/dec = hl

enc/dec�a(ρ l
enc/dec) (3.2)

where ρ l
enc/dec is the adapter corresponding to the lth layer of the encoder/the decoder and

ρ l
enc/dec ∈ Rd . a(.) is a scaled element-wise sigmoid function.

a(x) =
2

1+ e−x

Residual adapters and LHUC layers adapt a pretrained model without changing its pa-
rameters.

While the previous methods aim to discriminate domains to reduce the interference,
Britz et al. (2017) were motivated to learn hidden representations that are invariant be-
tween domains. More precisely, the authors use a binary classifier that takes the output
of the encoder as input to predict the domain of the source sequence. They inverse the
sign of the gradient with respect to the loss of the classifier to confuse it, i.e., making
the hidden representation of the encoder invariant between 2 domains. This technique is
related to A-distance, which is a measure of similarity between two probability distribu-
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tions. Ben-David et al. (2006) showed that the A-distance between the source and target
distributions is a crucial part of an upper generalization bound for domain adaptation. The
authors hypothesized that it should be difficult to discriminate between the source and tar-
get domains to transfer between them well. Zeng et al. (2018)’s work was also inspired
by this idea. However, instead of forcing the encoder’s output to be invariant between
domains, the authors aimed to extract domain-agnostic features and domain-specific fea-
tures from the output of the encoder and feeding these features to the decoder. To this end,
they used two different non-linear transformations, which map the output of the encoder
to two feature vectors of the same size. Then, they applied a domain classifier on each
feature vector. The domain-agnostic feature vector is trained to confuse the classifier,
whereas the domain-specific feature vector is trained to facilitate its classifier.

Michel & Neubig (2018) adapted a pretrained model to a multi-user personalized model
by fine-tuning the bias of the output layer to each particular user of the MT system. The
number of additional parameters is |S| × |Σy|, in which S is the set of the users. The
authors reduced the size of the bias matrix B ∈R|S|×|Σy|, where each row is bias vector for
one user, by factoring it into lower dimension representation, i.e.

B = S× B̃,

where

S ∈ R|S|×r,

B̃ ∈ Rr×|Σy|.

(3.3)

Jiang et al. (2020)’s work was inspired by the mixture of expert paradigm. Their model
is based on the Transformer architecture (Vaswani et al., 2017) as they integrate a domain-
mixing mechanism to the multi-head attention layer. As we explained in Section 2.5.1,
each head of a multi-head attention layer is computed as follows

headi = Attention
(
QW Q

i ,VWV
i ,KW K

i
)
. (3.4)

Suppose that there are K domains: at the ith head, for the query, the key and the value
components, there are K transformation matrices W Q

i, j| j ∈ [1,K], W K
i, j| j ∈ [1,K], WV

i, j| j ∈
[1,K] respectively. The domain-mixing mechanism is applied to the query, the key and
the value components as follows

Qt
i = ∑

K
j=1 QtW Q

i, j ∗D j(xt),

Kt
i = ∑

K
j=1 KtW K

i, j ∗D j(xt),

V t
i = ∑

K
j=1V tWV

i, j ∗D j(xt),

headi = Attention
(
Qi,Ki,Vi

)
,

(3.5)
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where the subscript t indicates the position of the vector in the sequence of hidden rep-
resentations, D(xt) ∈ RK is the domain proportion of the corresponding token xt . The
proportion of domains of a token is computed by a domain classifier, that takes the input
embedding of that token as input. By doing this, the model adapts the hidden representa-
tion of a token to the domain to which the token likely belongs. Consequently, the model
is able to discriminate domains for domain-specific tokens while transferring knowledge
between domains for domain-agnostic tokens. However, the size of the model is propor-
tional to the number of domains, which is not practical in the real applications. The idea
can be applied to residual adapters or LHUC layers.

Recently, Gong et al. (2021b,a) proposed learning domain-specific head selections in
the multi-head attention mechanism to mitigate the interference between domains/lan-
guages. The authors used a variational NMT model with discrete latent variables z(h)t

from a Bernoulli distribution indicating whether a task t selects the attention head h. The
training jointly learns the NMT model and the inference networks q

θ
(h)
t
(z) of the pairs of

(task t, head h) by optimizing the evidence lower bound (ELBO) (Kingma & Welling,
2014) with Gumbel-softmax reparametrization trick (Jang et al., 2017).

Besides the model-centric methods related to the architecture, multi-task training is
another solution to the supervised (multi-)domain adaptation problem.

We illustrate several well-known model-centric methods for the supervised domain
adaptation problem in figure 3.2.

3.3.2 Data-centric approaches

3.3.2.1 Data sampling

In supervised multi-domain adaptation, data sampling approaches aim to balance the con-
tribution of each domain to the final model. In multi-domain train data collected oppor-
tunistically, the data size of each domain varies from few thousands examples to mil-
lions examples. In a trivial mixture of data, small domains are usually excessively under-
sampled causing a sub-optimal performance in average. However, if we equally sample
data from every domain, the NMT model is easily over-fitted in the small domains. There-
fore, finding an optimal sampling scheme across domains is essential. Wang et al. (2020c)
proposed parameterizing the probability of sampling data from a domain and learned this
probability via REINFORCE algorithm Williams (1992) using rewards computed from
the cosine-similarity between the gradient over in-domain train data and the gradient over
dev-sets’ data. We compare this technique to our approach in Chapter 7.

Other data-centric methods, that do not take into account the domains of the train data
will be discussed in Section 3.4.2.
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� Kobus et al. (2017)
� Dou et al. (2019)
� Bapna & Firat (2019b)
� Zeng et al. (2018)
� Vilar (2018)
� Dakwale & Monz (2017)
� Michel & Neubig (2018)
� Thompson et al. (2019)

Figure 3.2: Each color except the blue corresponds to one model-centric method. The
blue represents the NMT model.

3.4 Undetermined train domain, determined test
domain

In this situation, the train data is composed by an unknown number of domains. The
second case focuses on adapting the NMT model with an unknown source domain while
the target domain is well defined. There are two situations: 1) there exists parallel data
in the target domain 2) there exists only monolingual data in the target domain. The two
following sections will discuss how each group of method solves these cases.

3.4.1 Model-centric approaches

First, we discuss the case with one target domain in which there exist parallel data. In this
case, we can apply the same techniques proposed for supervised (multi-)domain adapta-
tion by considering the source domain as a generic domain. Besides, fine-tuning is a very
efficient approach for this problem(Luong & Manning, 2015; Servan et al., 2016; Freitag
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& Al-Onaizan, 2016; Miceli Barone et al., 2017). We first train an NMT model with the
mixture of source domains, then continue training this model with the parallel data of the
target domain. According to a recent review of multi-domain adaptation conducted by
Pham et al. (2021), fine-tuning is the strongest baseline in supervised domain adaptation.
However, fine-tuned NMT models usually suffer from catastrophic forgetting (McCloskey
& Cohen, 1989) as their performances drop dramatically in the source domains. To mit-
igate the catastrophic forgetting, several regularization techniques were introduced, in-
cluding mixed fine-tuning (Chu et al., 2017), uniform weight-decay (Miceli Barone et al.,
2017), elastic weight consolidation (EWC ) (Kirkpatrick et al., 2016; Thompson et al.,
2019; Saunders et al., 2019) and knowledge distillation (Dakwale & Monz, 2017).

Mixed fine-tuning (Chu et al., 2017) adapts an NMT model with the mixture of the
source domain and the target domain (by oversampling the target domain). The method
adapts the NMT model to the domain of interest thanks to the oversampling while main-
taining its robustness to generic text as it continues to be trained with the source domain.

Weight decay (Miceli Barone et al., 2017) continues training the NMT model on the
target domain’s data with a regularized loss

LCE(θ ,D
t
e,g

t)+α∗ ‖ θ −θ
A ‖L2, (3.6)

where θ A is the value of the pretrained model, D t
e,g

t characterize the target domain t.
Fine-tuning with the new loss fits the model to the target domain while preserving the the
old pretrained parameter values, therefore preventing the overfitting of the NMT model in
the target domain and maintaining the generality over source domains. Kirkpatrick et al.
(2016); Thompson et al. (2019); Saunders et al. (2019) were also motivated to penalize
the changes of the parameters compared to the initial model. However, the authors argued
that not every parameter has the same contribution to maintain the generality to the old
domains and that we can tune the parameters unimportant for the old domains to the target
domain. The contribution of each parameter of the pretrained model is approximated by
the diagonal of the Fisher matrix computed over the data of the source domains. Fine-
tuning with EWC uses the following loss

LCE(θ ,D
t
e,g

t)+∑
i

λ

2
Fi ∗ (θi−θ

A
i )

2, (3.7)

where the Fi is the ith element of the diagonal of the Fischer matrix approximated as
follows

F̄ = Ex∼D s
e ,y∼gs(x)

[
∇logP(y|x,θ)|θ A∇logP(y|x,θ)T

|θ A

]
, (3.8)

in which D s
e ,g

s characterize previous train domains. Dakwale & Monz (2017)’s method
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was motivated by the knowledge distillation paradigm (Hinton et al., 2015). The authors
proposed regularizing the standard cross-entropy loss with the Kullback-Leibner distance
(Kullback & Leibler, 1951) between two predicting distributions produced by the old
model and the new model as follows

LCE(θ ,D
t
e,g

t)+α ∗Ex∼D s
e ,y∼gs(x)

[
KL(P(.|x,θ)|P(.|x,θA))

]
, (3.9)

in which D s
e ,g

s characterize previous train domains. Instead of continuing training with
target domain only, Chen et al. (2017) differentiated directly domain-relevant instances
and irrelevant instances via instance weighting. The authors compute the weight of each
instance by a domain classifier, that is trained with source sequences. The training will
maximize the following objective

θ̂ = argmax
θ

Ex∼D s
e ,y∼gs(x)(1+ pd(x))log(P(y|x,θ))+Ex∼D t

e,y∼gt(x)(1+ pd(x))log(P(y|x,θ))

(3.10)
where D t

e,g
t , D s

e ,g
s are the target domain and other domains, pd(x) is the probability that

x comes from the target domain. Wang et al. (2017b) proposed using different domain-
relevance metrics for instance weighting.

Besides methods using auxiliary losses, ensemble methods are also promising. For
example, Freitag & Al-Onaizan (2016) proposed ensembling the pretrained model and
the fine-tuned model to combine the advantage of both models: the specialization in the
target domain and the generalization over general text.

Still in the case of uni-domain adaptation, but without parallel data, the model-centric
approaches mostly use monolingual data in the target language of the target domain.
The proposed methods mostly adapted the decoder to the target domain. For example,
Gülçehre et al. (2015) proposed training a language model adapted to the target domain
and fusing the language model to the decoder. The fusion could be deep or shallow. The
deep fusion combined the hidden representation of the decoder and the one of the lan-
guage model before computing the prediction probability. The shallow fusion combined
the prediction probability computed by the decoder and the one computed by the language
model. Domhan & Hieber (2017) was also motivated by this idea. However, the authors
proposed jointly training the language model and the NMT model via multi-task train-
ing. Furthermore, the decoder and the language model shared the word embedding of the
target side.

All previous methods were motivated to adapt an NMT model to a specific domain.
We realize that they can hardly be applied to multi-domain adaptation because all the
parameters of the MT model are adapted to one domain. However, in the case where there
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Chapter 3. (Multi-)domain adaptation in neural machine translation

are parallel data of the target domains, we could use model-centric methods proposed in
the supervised adaptation by considering the train domain a generic domain. Recently,
Dou et al. (2019) proposed using domain embeddings and task embeddings to adapt an
NMT model to the target domain using reconstruction loss on the monolingual data. More
precisely, for each layer lth of an ANMT model, there are 2 task embeddings θ

γ,l
task, γ ∈

{MT,LM}, which correspond to translation task and language modeling task respectively.
Furthermore, for each layer lth, and for each domain d, there is a domain task θ

d,l
dom. The

layer lth of encoder/decoder will be as follows

hl = LAY ERl(hl1)+θ
d,l
domain +θ

γ,l
task (3.11)

Now, the parallel data will be used to compute the translation loss, while the monolingual
data is used to compute the language modeling loss. The authors proposed adding noises
to the source sequence while computing the LM loss. Using domain-specific embeddings
enables the model to be adapted to multiple domains at once. Despite being applied
to multi-lingual machine translation, the monolingual adapter proposed by Philip et al.
(2020) shares the same spirit and can be applied to this situation.

3.4.2 Data-centric approaches

According to our study, the previous data-centric approaches proposed to this situation
belong to all three paradigms, including data selection, data synthesis, and data sampling.
The two following sections will discuss the methods of each paradigm.

3.4.2.1 Data selection

Data selection approaches collect parallel data, which resemble the target domain. The
selection is usually based on a score of proximity between a parallel example and the
domain. The score of proximity can be computed via sentence embeddings or variants of
Moore & Lewis (2010) score. For example, given two corpora of a target domain DI-src,
DI-tgt and two corpora of the source domain DO-src, DO-tgt , Axelrod et al. (2011) computed
a bilingual version of Moore & Lewis score of a sentence pair as follows

Sbi(x,y) = HI-src(x)−HO-src(x)+HI-tgt(y)−HO-tgt(y), (3.12)

where the cross-entropy H∗(z)|∗∈[I-src,I-tgt,O-src,O-tgt],z∈[x,y] of the sentence z is computed by
a language model trained only with the corpus D∗. Duh et al. (2013) proposed the same
formulation as proposed Axelrod et al. (2011) but used a neural language model instead
of a statistic language model. In a survey of data selection methods for neural machine
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translation, Silva et al. (2018) evaluated 3 popular methods in the domain adaptation task,
including the cross-entropy difference, the Term Frequency-Inverse Document Frequency
embeddings (TF-IDF ) (Salton & Yang, 1973) and the Feature Decay algorithm (FDA)
(Poncelas et al., 2018). More precisely, the cross-entropy difference was computed as
described above and normalized by sentence length. To compute a TF-IDF representation
vector, Silva et al. (2018) consider each sentence of the target domain as a query and every
sentence in the source domain as a key. The tf-idf vectors of the queries and the keys are
computed as in Salton & Yang (1973). The score of proximity between a query and a
key is the cosine-similarity of theirs tf-idf vectors. Based on the score of proximity, for
each sentence of the target domain, we retrieve K nearest-neighbors in the source domain.
The collection of the retrieved sentences is the result of the method. Finally, FDA aims
to extract from train data a set of sentences that are most relevant to the test set of the
target domain. We call an extracted n-gram a feature. The method extracts n-grams from
the source side of the test set. In the beginning, the features are assigned the same value.
Each sentence of the train data is scored as the normalized (by dividing by the number
of words) sum of the values of its features. Then, the method selects the sentence with
the highest score and adds it to the set of selected data (which initially is empty). After
selecting a sentence, the values of the features contained in it are decreased. The decay
function is defined as follows

decay( f ) = init( f )∗0.5CL( f ), (3.13)

where f is an n-gram, init( f ) is the initial value assigned to each feature and CL( f ) is the
count of the feature f in the selected data.

Wang et al. (2017a) proposed using a sentence embedding to represent a sentence in-
stead of a tf-idf vector. For each language side (source/target) the authors computed the
centroid of the target domain and one of the source domain. Assume CEin , CEout are the
centroid of the target domain and the source domain in the source language, CFin , CFout

are the centroid of the target domain and the source domain in the target language, ve is
the sentence embedding of a source sentence e, vf is the sentence embedding of a source
sentence f , then the proximity of the example (e, f ) to the target domains is defined as
follows

d(ve,CEin)−d(ve,CEout )+d(vf ,CFin)−d(vf ,CFout ), (3.14)

where d(., .) is the Euclidean distance in Rd . Aharoni & Goldberg (2020) proposed using
sentence embeddings computed by a pretrained Bidirectional Encoding Representation
Transformer (BERT) and the cosine-similarity to retrieve domain-related examples.
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3.4.2.2 Data synthesis

The most efficient approach in this paradigm is backtranslation (Sennrich et al., 2016a),
which consists of translating the monolingual data of the target language to the source
language. Burlot & Yvon (2018) showed significant improvement of an NMT model
in the target domain when trained with a mixture of parallel data and in-domain back-
translated data. Without backtranslating the target-side data, Currey et al. (2017) created
artificial sentence pairs from the monolingual data in the target language so that each
source sentence is identical to the target sentence. Training an NMT model with the mix-
ture of parallel data and artificial sentences improves the accuracy of the translation on
named entities and other words that should remain identical between the source and tar-
get languages. Recently Currey et al. (2020) proposed distilling knowledge from multiple
domain experts to a multi-domain NMT model. The authors translated each source side
in-domain corpus with the corresponding adapted model, then mixed the artificial corpora
to the train corpora and continued training the multi-domain NMT model with the new
corpora.

3.4.2.3 Data sampling

Data sampling methods dynamically change the composition of the train data over time.
In practice, the evolution of the train data is beneficial for training an NMT model spe-
cialized to a domain. For example, in the fine-tuning approaches, the training begins with
every available data and finishes with the data of the target domain. Data sampling meth-
ods consist of building an automatic curriculum without human supervision. For example,
van der Wees et al. (2017) proposed gradual fine-tuning, which first computes a sampling
distribution based on the cross-entropy difference (CED) (3.12) of each example, then
gradually decreases the number of sampled examples after each epoch. Formally, the
CED score of each example is normalized as follows

˜CED(x) = 1− CED(x)−min(CEDG)

max(CEDG)−min(CEDG)
, (3.15)

where G is the train corpus. Therefore higher-ranked examples have a higher ˜CED score
rather than having lower CED as in Axelrod et al. (2011). The sampling distribution is
computed as follows

ω(x) =
˜CED(x)

∑x′∈G ˜CED(x′)
. (3.16)
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For each epoch ith, a number ni of examples are selected according to the previous distri-
bution. ni is defined as follows

ni = α · |G| ·β b
i−1

n ,c (3.17)

where α ∈ [0,1] is the relative start size, β ∈ [0,1] is the retention rate. Via the same mech-
anism, Wang et al. (2019) proposed a more sophisticated dynamical sampling scheme
combining two scores of an example, domain−CED and noise−CED. The authors pro-
posed two variants: mixed co-curriculum, which scores an example by the sum of its CED

scores, and cascaded co-curriculum, which first selects examples by their domain−CED

scores then retains top examples according to their noise−CED scores from the previous
selection. Furthermore, Wang et al. (2019) proposed to recompute the language model
of the noisy data for each epoch. Instead of increasing the domain-relevance of the train
data, Zhang et al. (2019) did the opposite. More precisely, they reordered the train data
according to their relevance to the target domain then equally split the whole corpus into
many shards containing samples of a similar score. They trained an NMT model with one
shard per epoch in a decreasing order of domain-relevance.

Besides well-known metrics for domain-relevance, Zhang et al. (2019) proposed a pa-
rameterized scorer, that evaluates the usefulness of each sample to the performance on the
target domain, and optimized its parameters via Bayesian optimization. More precisely,
the scorer was formulated as follows

f (x,y) =V ·F(x,y), (3.18)

where the feature vector F(x,y) was extracted from the example, and the weight vector V

was learned by Bayesian optimization. Each element in F(x,y) represents the relevance
of the example to a target domain. Once the scorer was optimized, the training was
conducted as in van der Wees et al. (2017); Wang et al. (2019).

3.5 Determined train domain, undetermined test
domain

The third case is interesting because it resembles the real context of machine translation’s
applications. Effectively, the users’ text can be from any possible topic or for any possible
purpose (genre). In this situation, the NMT model needs to be both robust to the unseen
domains and adapted to known domains.

59



Chapter 3. (Multi-)domain adaptation in neural machine translation

3.5.1 Model-centric approaches

Mixture models are a promising solution for this situation as they combine domain-
adapted systems to perform the translation. Effectively, the performance of mixture mod-
els is guaranteed in the source domains while using a convex combination of the adapted
systems is robust against unseen domains. Mixture models have been successfully ap-
plied for SMT models (Sennrich, 2012a,b; Carpuat et al., 2014). Freitag & Al-Onaizan
(2016); Sajjad et al. (2017); Saunders et al. (2019) applied mixture models to NMT mod-
els. The contribution of each adapted model to the combination was uniform in Freitag
& Al-Onaizan (2016) while Sajjad et al. (2017) pre-finetuned the weights by Bayesian
optimization on a development set. However, a heuristic static weights are sub-optimal
when the test domain is highly variable. Saunders et al. (2019) proposed computing the
weights of the mixture for each source sentence x at the ith decoding step as follows

Wk,i = ∑
t

P(t = k|hi,x)λk,t ,

where

P(t = k|hi,x) = P(t = k|x) =
Pk

LM(x)

∑
k′

Pk′
LM(x)

,

(3.19)

where Pk′
LM(x) is the probability of the source sentence x according to a language model

learned from domain k′, λk,t can be uniform, identity or pre-finetuned with a develop-
ment set. Saunders et al. (2019) also proposed varying the mixture’s weights during the
inference by conditioning the domain posterior probability on both x and hi as follows

P(t = k|hi,x) =
P(hi|t,x)P(t|x)

∑
k′

P(hi|k′,x)P(k′|x)
. (3.20)

Besides one might be more interested in domain robustness than in domain specializa-
tion. The mixture model does not include the domain robustness in the training objective.
Müller et al. (2020) discussed several regularization methods to mitigate the problem,
including the subword regularization (Kudo, 2018), the defensive distillation (Papernot
et al., 2016), the reconstruction (Tu et al., 2017) and the neural noisy channel reranking
(Li & Jurafsky, 2016). The distributional robustness optimization (Ben-Tal et al., 2013;
Oren et al., 2019) is also a promising paradigm as the related methods optimize models
so that they perform well over a wide range of potential test distributions. However, the
application of this paradigm to neural machine translation has not yet been explored.

60



3.6. Undetermined train domain, undetermined test domain

3.5.2 Data-centric approaches

The data-centric paradigm can not be applied to this situation since the domain of the test
sentences is unknown. Indeed, the data-centric approaches aim to build train data that
approximates a target domain and require the monolingual data of that domain to create
the pseudo in-domain data. That can only be done when we know the target domain.

3.6 Undetermined train domain, undetermined test
domain

3.6.1 Model-centric approaches

Farajian et al. (2017b); Li et al. (2018) proposed fine-tuning on-the-fly a pretrained model
with a mini-batch similar to the source sentence before translating it. The authors chose
the learning rate and the number of fine-tuning iterations according to the similarity score
between the retrieved mini-batch and the source sentence so that the higher similarity
the higher the learning rate, the more iterations. Bulté & Tezcan (2019); Bapna & Firat
(2019a); Pham et al. (2020b); Xu et al. (2020) proposed learning an NMT model to reuse
parallel examples whose source sentence is similar to the source sentence. Some of these
techniques are discussed in Chapter 8.

3.6.2 Data-centric approaches

The data-centric paradigm can not be applied to this situation for the same reason as in
previous Section 3.5.2

3.7 Multi-domain and multi-lingual machine translation
We can put multi-domain and multilingual machine translation under the same umbrella
of multi-task learning where a task is one language pair or one domain. Most of the
model-centric approaches can be applied to both of these tasks. For example, the target-
language prefix token used in one-to-many multilingual NMT model (Johnson et al.,
2017a; Aharoni et al., 2019) has a similar role as the domain tag used in multi-domain
NMT (Kobus et al., 2017). Bapna & Firat (2019b) used the residual adapters for both
domain-adaptation and multilingual NMT. Multi-domain NMT and multilingual NMT
aim to improve low-resourced domain/language quality by exploiting the proximity be-
tween the low-resourced target domain/language and the high-resourced domains/lan-
guages. Gong et al. (2021b) learned domain/language-specific head selection to improve
the multi-domain/multilingual NMT system. In the data-centric category, Wang et al.
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(2020c)’s method can be used for both problems.

However, at a closer look, multilingual MT has a different context than multi-domain
MT. Multilingual MT does not have the same languages on both sides and aims to perform
zero-shot translations, in which the pair of source and target languages are not included
in the training data, thanks to a positive knowledge transfer via pivot languages. In con-
trast, multi-domain MT focuses on one language pair and exploits the positive knowledge
transfer between the domains.

In summary, both problems rest on the hypothesis on the positive transfer of multi-task
learning. Many approaches can be applied to both problems. However, the natures of
these tasks are different. Thus the implementation of an approach might need an adapta-
tion to each problem.

3.8 Conclusions
We want to summarize this chapter in Figure 3.3.

Figure 3.3: A complete overview of multi-domain adaptation with the four primary set-
tings and the two groups of approaches.

This thesis mainly focuses on the first setting in which domain train and domain test are
determined. We will present our most important contribution to the study in this setting
in the next chapter. This work presents a novel multi-criteria evaluation, which requires
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five primary properties for a multi-domain system, and reevaluates a wide range of pop-
ular model-centric methods with our experimental setting designed to evaluate these five
criteria. In Chapter 8, we study different approaches for the last setting in which domain
train and domain test are unspecified.
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Chapter 4

Revisiting supervised multi-domain
machine translation

4.1 Introduction
In this chapter, we analyze a wide range of popular model-centric methods which aim
to solve supervised (multi-)domain adaptation (see definition in Section 3.3). First we
formulate the motivations for developing multi-domain machine translation (MDMT) sys-
tems and the associated expectations with respect to performance. We define five essential
requirements that an effective MDMT system should meet (Section 4.2). We reevaluate
a wide range of popular MDMT systems and show that most of these expectations are
hardly met. We suggest that further work is needed to analyze the current behavior of
multi-domain systems better and to make them fully hold their promises.

Data-based Machine Translation (MT), whether statistical or neural, rests on well-
understood machine learning principles. Given a train sample of matched source-target
sentence pairs (x,y) drawn from an underlying distribution De of the input space Ωe and
a labeling function g : Ωe→Ω f where Ωe and Ω f are the set of sentences of the language
e and language f respectively. An NMT model parameterized by θ (here, a transla-
tion function hθ ) is trained by minimizing the empirical expectation of a loss function
`(hθ (x),y). This approach ensures that the translation loss remains low when translat-
ing more sentences drawn from the same distribution. Owing to the great variability of
language data, this ideal situation is rarely met in practice, warranting the study of an
alternative scenario, where the test distribution DT

e differs from train distribution DS
e and

the test labeling function gT differs from the train labeling function gS. In this setting,
domain adaptation (DA) methods are in order.

Multi-domain (MD) machine translation (Sajjad et al., 2017; Farajian et al., 2017b;
Kobus et al., 2017; Zeng et al., 2018; Pham et al., 2019) generalizes the conventional
setting of domain mismatch by considering a mixture of multiple domains (i.e., multiple
underlying distributions and multiple labeling functions). MDMT focuses on training
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one single system using a mixture of multiple train domains and evaluating it with data
from multiple test domains. MDMT corresponds to a very common situation, where all
available data, no matter its origin, is used to train a robust system that performs well
for any kind of new input. If the intuitions behind MDMT are quite simple, the exact
specifications of MDMT systems are rarely spelled out: for instance, how should MDMT
handle the heterogeneity of the domains’ size? Should MDMT be robust to the intra-
domain heterogeneity? Should MDMT also be robust to new domains? How should it
exploit the proximity between domains? How should it handle domain labeling errors
during the inference? How should it handle the growing number of domains?

Multi-domain seems more challenging than domain adaptation as it tries to optimize
MT performance for a more diverse set of potential inputs, with an additional uncertainty
regarding the distribution of test data. However, are there still situations where MDMT
systems can surpass single domain adaptation, as is sometimes expected?

The first contribution is thus of methodological nature and consists of lists of ex-
pected properties of MDMT systems and associated measurements to evaluate them (Sec-
tion 4.3). In doing so, we also shed light on new problems that arise in this context,
regarding, for instance, the integration of new domains in the course of training or the
computation of automatic domain tags. The second main contribution is experimental and
consists in a thorough reanalysis of eight recent multi-domain model-centric approaches
from the literature. We show in Section 4.5 that existing approaches still fail to match
many of these requirements, notably with respect to the handling of a large number of
heterogeneous domains and to dynamically integrating new domains in training.

This chapter draws from the following publication: Pham et al. (2021).

4.2 Requirements of multi-domain MT
In this section, we recap the main reasons for considering a multi-domain scenario and
discuss their implications in terms of performance evaluation.

4.2.1 Formalizing multi-domain translation

As introduced in Section 3.2.1, a domain d of a language pair (e, f ) is defined by an
underlying distribution Dd

e over the space Ωe of sentences in language e and a translation
function gd : Ωe→ Ω f , in which Ω f is the space of sentences in language f . A typical
learning scenario in MT is to have access to samples from nd domains, which means that
the train distribution on the source language DS

e is a mixture DS
e (x) = ∑d λ s(d)Dd

e (x),
with {λ s(d),d = 1 . . .nd} the corresponding mixture weights (∑d λ s(d) = 1). Multi-
domain learning, as defined in Dredze & Crammer (2008) further assumes that domain
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tags are also available in testing; the implication being that the test distribution is also as
a mixture DT

e (x) = ∑d λ t(d)Dd
e (x) of several domains, making the problem distinct from

mere domain adaption. A multi-domain learner is then expected to use these tags effec-
tively (Joshi et al., 2012) when computing the combined translation function gd(x), and
to perform well in all domains (Finkel & Manning, 2009). This setting is closely related
to the multi-source adaptation problem formalized in Mansour et al. (2009a,b); Hoffman
et al. (2018).

This definition seems to be the most accepted view of a multi-domain machine trans-
lation1 and one that we also adopt here. Note that in the absence of further specification,
the naive answer to the MDMT setting should be to estimate one translation function
ĝd(x) separately for each domain, then to translate using ĝ(x,d) = ∑d′ gd′(x)I(d′ = d),
where I(x) is the indicator function. We now discuss the arguments that are put forward
to proceed differently.

4.2.2 Reasons for building MDMT systems

The first motivation for moving away from the ”one domain / one model” solution is to
be practical in an environment diversified in terms of topics, genres, and styles (Sennrich
et al., 2013; Farajian et al., 2017a). When faced with inputs that are potentially from
multiple domains, it is easier and computationally cheaper to develop one system instead
of optimizing and maintaining numerous engines. Multilingual machine translation also
shares the same spirit (Johnson et al., 2017b). The underlying assumption here is that
the number of domains of interest can be large, for example, fully personalized machine
translation systems (Michel & Neubig, 2018).

The second reason rests on the linguistic properties of the translation function. The do-
main specificities are mainly expressed lexically and will primarily affect content words
or multi-word expressions. On the other hand, the function words are domain agnostic and
tend to remain semantically stable across domains, motivating some cross-domain param-
eter sharing. An MDMT system should simultaneously learn lexical domain peculiarities
and leverage cross-domain similarities to improve the translation of generic contexts and
words (Zeng et al., 2018; Pham et al., 2019; Jiang et al., 2020). We expect the MDMT
scenario to be more profitable when the domain mixture includes similar domains that
share more information.

The third motivation is of statistical nature. The train data available for each domain
is usually unevenly distributed; domains such as bank in English-German contain only
a few thousand examples 6.3.1. Moreover, for some test domains, there may even be

1An exception is (Farajian et al., 2017b), where test translations rely on similarity scores between test
and train sentences, rather than on domain labels.
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no train data at all (Farajian et al., 2017a). Tuning an NMT model to a small dataset
without regularizations usually gives us statistically less reliable estimates of the domain’s
parameters resulting in a high variance in the prediction. Training mix-domain systems
likely reduces this variance at the expense of the statistical bias (Clark et al., 2012). Under
this view, MDMT would be especially beneficial for domains with little train data. In the
case of multilingual MT from English, a significant improvement for under-resourced
languages was reported due to positive transfer, at the cost of a decrease in performance
for well-resourced languages (Arivazhagan et al., 2019).

Ensembling multiple domain-specific MT models can also be justified for the sake
of distributional robustness (Mansour et al., 2009a,b; Sennrich, 2012b,a; Carpuat et al.,
2014; Freitag & Al-Onaizan, 2016; Sajjad et al., 2017; Saunders et al., 2019), for instance,
when the test mixture differs from the train mixture or when it includes new domains un-
seen in training. An even more challenging case is when an MT system needs to perform
well for any test distribution, as studied for SMT models in Huck et al. (2015) or language
models in Oren et al. (2019). In all these cases, mixing domains in training will likely
improve robustness against unexpected or adversarial test distribution.

Another motivation is that mixing domains can have a positive regularization effect for
all domains. Introducing variability in training prevents DA from overfitting the available
adaptation data and could help improve generalization even for well-resourced domains.
Joshi et al. (2012) explored a related case, which shows that part of the benefits of MD
training is due to an ensembling effect, where systems from multiple domains are simul-
taneously used in the prediction phase; this effect may persist even in the absence of clear
domain separations.

In summary, there are multiple reasons for adopting MDMT, some already used in DA
settings, and some original. These arguments are not mutually exclusive; however, each
yields specific expectations for the performance of the MDMT models and should also
require an appropriate evaluation procedure. If the motivation is primarily computational,
then a drop in MT quality for multiple individual domains might be acceptable for the
computational savings. If the objective is to improve statistical estimation, we expect that
MDMT improves, at least for some under-resourced domains, over individually trained
systems. Finally, if the goal is to make the system more robust to adversarial test distri-
butions, one should use this setting to evaluate MDMT. The following section discusses
ways that could challenge these requirements of MDMT systems.
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4.3 Challenging multi-domain systems
In this section, we propose seven operational requirements that can be expected from an
effective multi-domain system, and discuss ways to evaluate whether these requirements
are actually met. All these evaluations will rest on comparison of translation performance,
and do not depend on the choice of a particular metric. To make our results comparable
with the literature, we will only use the BLEU score (Papineni et al., 2002) in Section 4.4,
noting it may not be the best yardstick to assess subtle improvements of lexical choices
that are often associated with domain adapted systems (Irvine et al., 2013). Other impor-
tant figures of merit for MDMT systems are the computational training cost and the total
number of parameters.

4.3.1 Multi-domain systems should be effective

A first expectation is that MDMT systems should perform well in the face of mixed-
domain test data. We thus derive the following requirements.

[P1-LAB] A MDMT should perform better than the baseline which disregards domain
labels. Evaluating this requirement is a matter of a mere comparison, assuming the test
distribution of domains is known: if all domains are equally important, performance av-
erages can be reported; if they are not, weighted averages should be used instead.

[P2-TUN] Additionally, one can expect that MDMT will improve over fine-tuning (Lu-
ong & Manning, 2015; Freitag & Al-Onaizan, 2016), at least in domains where data is
scarce, or in situations where several domains are close. To evaluate this, we perform two
measurements, using a real as well as an artificial scenario. In the real scenario, we simply
compare the performance of MDMT and fine-tuning for domains of varying sizes and ex-
pect an important improvement for smaller domains in MDMT compared to fine-tuning.
In the artificial scenario, we split a single domain in two parts which are considered dis-
tinct in training. The expectation here is that a MDMT should yield a clear gain for both
pseudo sub-domains, which should benefit from the supplementary amount of relevant
train data. In this situation, MDMT should even outperform fine-tuning on either of the
pseudo sub-domain. The property we assess here is the robustness to the cross-domain
heterogeneity.

4.3.2 Robustness to fuzzy domain separations

A second set of requirements is related to the definition of a domain. As repeatedly
pointed out in the literature, parallel corpora in MT are often collected opportunistically
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and the view that each corpus constitutes a single domain is often a gross approxima-
tion.2 MDMT should aim to make the best of the available data and be robust to domain
assignments. To challenge these requirements we evaluate the following requirements.

[P3-HET] The notion of a domain being a fragile one, an effective MDMT system
should be able to discover not only when cross-domain sharing is useful (cf. requirement
[P2-TUN]), but also when intra-domain heterogeneity is hurting. This requirement is
tested by artificially conjoining two closely related domains into one during training, hop-
ing that the loss in performance with respect to the original setting (using correct domain
tags) will remain small. The property we assess here is the robustness to the intra-domain
heterogeneity.

[P4-ERR] MDMTs should perform best when the true domain tag is known, but dete-
riorate gracefully in the face of tag errors; in this situation, catastrophic drops in perfor-
mance are often observed. This requirement can be assessed by translating test texts with
erroneous domain tags and reporting the subsequent loss in performance. The property
we assess here is the robustness to the unseen domains.

[P5-UNK] A related situation occurs when the domain of a test document is unknown.
Several situations need be considered: for domains seen in training, using automatically
predicted domain labels should not be much worse than using the correct one. For test
documents from unknown domains (zero-shot transfer), a good MD system should ideally
outperform the default baseline that merges all available data. The property we assess here
is the robustness to the erroneous domain tags.

[P6-DYN] Another requirement, more of an operational nature, is that an MDMT sys-
tem should smoothly evolve to handle a growing number of domains, without having to
retrain the full system each time new data is available. This is a requirement [P6-DYN]
that we challenge by dynamically changing the number of train and test domains. The
property we assess here is the robustness to the growing number of domains.

4.3.3 Scaling to a large number of domains

[P7-NUM] As mentioned above, MDMT systems have often been motivated by com-
putational arguments. This argument is all the more sensible as the number of domains

2Two of our own “domains” actually comprise several subcorpora (IT and MED), see details in Sec-
tion 4.4.1.
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increases, making the optimization of many individual systems both ineffective and un-
desirable. For lack of having access to corpora containing very large sets (eg. in the order
of 100-1000) domains, we experiment with automatically learned domains.

4.4 Experimental settings

4.4.1 Data and metrics

We experiment with translation from English into French and use texts initially originat-
ing from 6 domains, corresponding to the following data sources: the UFAL Medical
corpus V1.0 (med)3, the European Central Bank corpus (bank) (Tiedemann, 2012); The
JRC-Acquis Communautaire corpus (law) (Steinberger et al., 2006), documentations for
KDE, Ubuntu, GNOME and PHP from Opus collection (Tiedemann, 2009), collectively
merged in a it-domain, Ted Talks (talk) (Cettolo et al., 2012), and the Koran (rel).
Complementary experiments also use v12 of the News Commentary corpus (news). Most
corpora are available from the Opus web site.4 These corpora were deduplicated and tok-
enized with in-house tools; statistics are in Table 4.1. To reduce the number of types and
build open-vocabulary systems, we use Byte-Pair Encoding (Sennrich et al., 2016b) with
30,000 merge operations on a corpus containing all sentences in both languages.

We randomly select in each corpus a development and a test set of 1,000 lines and keep
the rest for training.5 Validation sets are used to chose the best model according to the
average BLEU score (Papineni et al., 2002).6 Statistical significance is estimated using
bootstrap resampling (Koehn, 2004), implemented in compare-mt7 (Neubig et al., 2019).
We report significant differences at the level of p = 0.05.

We measure the distance between domains using the H -Divergence (Ben-David et al.,
2010b), which relates domain similarity to the test error of a domain discriminator: the
larger the error, the closer the domains. Our discriminator is a SVM independently trained
for each pair of domains, with sentence representations derived via mean pooling from the
source side representation of the generic Transformer model. We used the scikit-learn8

implementation with default values. Results in Table 4.2 show that all domains are well
separated from all others, with rel being the furthest apart, while talk is slightly more
central.

3https://ufal.mff.cuni.cz/ufal_medical_corpus. We only use the in-domain (medical)
subcorpora: PATR, EMEA, CESTA, ECDC.

4http://opus.nlpl.eu
5The code for reproducing our train, dev and test datasets is available at https://github.com/

qmpham/experiments.
6We use detokenized, truecasing and the multibleu script.
7https://github.com/neulab/compare-mt
8https://scikit-learn.org
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med law bank it talk rel news

# lines 2609 (0.68) 501 (0.13) 190 (0.05) 270 (0.07) 160 (0.04) 130 (0.03) 260 (0)
# tokens 133 / 154 17.1 / 19.6 6.3 / 7.3 3.6 / 4.6 3.6 / 4.0 3.2 / 3.4 7.8 / 9.2
# types 771 / 720 52.7 / 63.1 92.3 / 94.7 75.8 / 91.4 61.5 / 73.3 22.4 / 10.5 77.8 / 80.4
# uniq 700 / 640 20.2 / 23.7 42.9 / 40.1 44.7 / 55.7 20.7 / 25.6 7.1 / 2.1 31.5 / 23.1

Table 4.1: Corpora statistics: number of parallel lines (×103) and proportion in the basic
domain mixture (which does not include the news domain), number of tokens in English
and French (×106), number of types in English and French (×103), number of types that
only appear in a given domain (×103). med is the largest domain, containing almost 70%
of the sentences, while rel is the smallest, with only 3% of the data.

law bank talk IT rel

med 1.93 1.97 1.9 1.93 1.97
law 1.94 1.97 1.93 1.99
bank 1.98 1.94 1.99
talk 1.92 1.93
IT 1.99

Table 4.2: The H -divergence between domains

4.4.2 Baselines

Our baselines are standard for multi-domain systems.9 Using Transformers implemented
in OpenNMT-tf10 (Klein et al., 2017), we build the following systems:

• a generic model trained on a concatenation of all corpora (Mixed). We develop two
versions11 of this system, one where the domain heterogeneity reflects the distribu-
tion of our train data given in Table 4.1 (Mixed-Nat) and one where all domains are
equally represented in training (Mixed-Bal). The former is the best option when
the train mixture D s is also expected in testing; the latter should be used when
the test distribution is uniform across domains. Accordingly, we report two aggre-
gate scores: a weighted average reflecting the train distribution, and an unweighted
average, meaning that test domains are equally important;

• fine-tuned models (Luong & Manning, 2015; Freitag & Al-Onaizan, 2016), based
on the Mixed-Nat system. Further description of the implementation can be found
in Appendix A. The full fine-tuning (FT-Full) procedure may update all the pa-
rameters of the initial generic model, resulting in six systems adapted for one do-
main, with no parameter sharing across domains.

9We however omit domain-specific systems trained only with the corresponding subset of the data,
which are always inferior to the mix-domain strategy (Britz et al., 2017).

10https://github.com/OpenNMT/OpenNMT-tf
11In fact three: to enable a fair comparison with WDCMT, a RNN-based variant is also trained and

evaluated. This system appears as Mixed-Nat-RNN in Table 4.3.
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All models use embeddings and the hidden layers sizes of dimension 512. Trans-
formers contain with 8 attention heads in each of the 6+6 layers; the inner feedforward
layer contains 2048 cells. The adapter-based systems (see below) additionally use an
adaptation block in each layer, composed of a 2-layer perceptron, with an inner ReLU
activation function operating on normalized entries of dimension 1024. Training uses
batches of 12,288 tokens, Adam with parameters β1 = 0.9, β2 = 0.98, Noam decay
(warmup steps = 4000), and a dropout rate of 0.1 in all layers.

4.4.3 Multi-domain systems

Our comparison of multi-domain systems includes our own reimplementations of recent
proposals from the literature:12

• a system using domain control as in Kobus et al. (2017): domain information is
introduced either as an additional token for each source sentence (DC-Tag) or as a
supplementary feature for each word (DC-Feat).

• a system using lexicalized domain representations presented in Chapter 5: sparse
word embeddings are composed of domain-agnostic units and domain-specific units
which will be nullified when translating in other domains (LDR);

• the three proposals of Britz et al. (2017). TTM is a feature-based approach where
the domain tag is introduced as an extra word on the target side. The training uses
reference tags, and inference is usually performed with predicted tags, just like for
regular target words. DM is a multi-task learner where a domain classifier is trained
on top of the MT encoder to make it aware of domain differences. ADM is the ad-
versarial version of DM, pushing the encoder towards learning domain-independent
source representations. These methods thus only use domain tags in training.

• the multi-domain model of Zeng et al. (2018) (WDCMT), where a domain-agnostic
and a domain-specialized representation of the input are simultaneously processed;
supervised classification and adversarial training are used to compute these repre-
sentations. Again, inference does not use domain tags.13

• two multi-domain versions of the approach of Bapna & Firat (2019b), denoted
FT-Res and MT-Res, which will be compared extensively in Chapter 6. The for-
mer variant corresponds to the original proposal of Bapna & Firat (2019b) (see also
Sharaf et al. (2020)). It fine-tunes the adapter modules of a Mixed-Nat system
independently for each domain, keeping all the other parameters frozen. The lat-
ter uses the same architecture but trains all parameters jointly from scratch with a

12Further implementation details are in Appendix A.
13For this system, we use the available RNN-based system from the authors (https://github.com/

DeepLearnXMU/WDCNMT) which does not directly compare to the other, Transformer-based, systems; the
improved version of Su et al. (2019) seems to produce comparable, albeit slightly improved, results.
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mix-domain corpus as in multi-task training (Caruana, 1997). The loss function of
MT-Res is the same as in Equation 5.1.

This list includes systems that slightly depart from our definition of MDMT. Standard
implementations of TTM and WDCMT rely on the domain inference, rather than on gold,
domain tags - which must somewhat affect their predictions. DM and ADM make no use of
domain tags at all.

4.5 Results and discussion

4.5.1 Computational costs

The strategy ”one domain / one model” allocates 65m parameters for one domain. The
second most expensive method is to use residual adapters, including FT-Res and MT-Res,
which use 12.4 additional parameters per domain. LDR follows residual adapters using
4×|Σe, f |× 3 (∼384k) additional parameters per domain (Σe, f is the joint vocabulary of
the source and target languages). Domain tags such as TTM, DC-Tag spend only 512 addi-
tional parameters, which account for one additional embedding, for one domain. Domain
embeddings DC-Feat add only 4 parameters per domain to the MDMT system. WDCMT’s
special gates consist of few thousand additional parameters which are however shared for
every domain. Other methods such as DM, ADM do not use any additional parameters.

While FT-Res finetunes residual adapters during at most 50k iterations, the other meth-
ods consume the same number of training iterations as generic models. The training and
inference latency is proportional to the number of parameters in each MDMT model. In-
deed, MT-Res has largest latency while other MDMT systems perform as fast as generic
models.

4.5.2 Performance of MDMT systems

In this section, we discuss the basic performance of MDMT systems trained and tested
on 6 domains. Results are in Table 4.3. There is a large difference between Mixed-Nat

and Mixed-Bal. The former system trained with balancing data in the generic setting is
2 BLEU points better in the uniform average, notably owing to the much better results for
rel. As explained above, this setting should be the baseline when the test distribution is
assumed to be balanced across domains. We use the weighted average to perform global
comparisons as all other MDMT systems are trained with unbalanced data distribution.

Fine-tuning each domain separately yields a better baseline, outperforming Mixed-Nat

for all domains, with significant gains for domains that are distant from med: rel, it,
bank, law.
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Model / Domain med law bank talk it rel wavg avg

Mixed-Nat [65m] 37.3 54.6 50.1 33.5 43.2 77.5 41.1 49.4
Mixed-Bal [65m] 35.3 54.1 52.5 31.9 44.9 89.5 40.3 51.4
FT-Full [6×65m] 37.7 59.2 54.5 34.0 46.8 90.8 42.7 53.8
DC-Tag [+6×512] 38.1 55.3 49.9 33.2 43.5 80.5 41.6 50.1
DC-Feat [+6×4] 37.7 54.9 49.5 32.9 43.6 79.9 41.4 49.9
LDR [+6×384k] 37.0 54.7 49.9 33.9 43.6 79.9 40.9 49.8
TTM [+6×1024] 37.3 54.9 49.5 32.9 43.6 79.9 41.0 49.7
DM [+0] 35.6 49.5 45.6 29.9 37.1 62.4 38.1 43.4
ADM [+0] 36.4 53.5 48.3 32.0 41.5 73.4 38.9 47.5
FT-Res [+6×12.4m] 37.3 57.9 53.9 33.8 46.7 90.2 42.3 53.3
MT-Res [+6×12.4m] 37.9 56.0 51.2 33.5 44.4 88.3 42.0 51.9
Mixed-Nat-RNN [51m] 36.8 53.8 47.2 30.0 35.7 60.2 39.2 44.0
WDCMT [73m] 36.0 53.3 48.8 31.1 38.8 58.5 39.0 44.4

Table 4.3: Translation performance of MDMT systems based on the same Transformer
(top) or RNN (bottom) architecture. The former contains 65m parameters, the latter has
51m. For each system, we report the number of additional domain specific parameters,
BLEU scores for each domain, domain-weighted (wavg) and unweighted (avg) averages.
For weighted-averages, we take the domain proportions from Table 4.1. Boldface denotes
significant gains with respect to Mix-Nat (or Mix-Nat-RNN, for WDCMT), underline
denotes significant losses.

All MDMT systems (except DM and ADM) slightly improve over Mixed-Nat(for most
domains), but these gains are rarely significant. Among systems using an extra domain
feature, DC-Tag has a small edge over DC-Feat and also requires less parameters; it
also outperforms TTM, which however uses predicted rather than gold domain tags in
the inference. TTM is also the best choice among the systems that do not use domain
tags in inference. The best MDMT candidates overall are FT-Res and MT-Res, which
significantly improve over Mixed-Nat for a majority of domains, and are the only ones
to clearly fulfill [P1-LAB]; WDCMT also improves on three domains, but regresses on one.
The use of a dedicated adaptation module thus seems better than feature-based strategies,
but yields a large increase of the number of parameters. The effect of the adaptation layer
is especially significant for small domains (bank, it and rel).

All systems fail to outperform fine-tuning, sometimes by a wide margin, especially for
an “isolated” domain like rel. This might be due to the fact that domains are well sepa-
rated (cf. Section 4.4.1) and are hardly helping each other. In other words, the statistical
bias is not well compensated by the variance reduction. In this situation, MDMT systems
should dedicate a sufficient number of parameters to each domain, so as to close the gap
with fine-tuning.
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Set-up Split Split Split Merge Wrong
Model med (0.5 / 0.5) med (0.25 / 0.75) law (0.5 / 0.5) bank+law rnd new

med1 med2 med1 med2 law1 law2 bank law all News

FT-Full -0.1 -0.6 -1.5 -0.2 -2.3 -5.1 -1.6 -1.4 -19.6 -3.3
DC-Tag -0.2 -0.3 +0.1 +0.2 -0.4 -0.4 -0.5 -0.4 -13.4 -1.7
DC-Feat -0.5 0.0 +0.3 +0.3 +0.3 +0.3 +0.3 +0.1 -14.2 -1.8
LDR +0.1 +0.1 +0.4 +0.4 0.0 0.0 0.0 +0.1 -12.0 -1.4
TTM (*) -0.2 -0.2 -0.2 -0.2 -0.3 -0.3 0.0 -0.3 0.0 -0.1
DM (*) -0.3 -0.3 +0.4 +0.4 +0.3 +0.3 +0.9 +0.1 0.0 -0.9
ADM (*) +0.6 +0.6 +0.4 +0.4 +0.4 +0.4 +0.1 -0.4 0.0 -0.2
FT-Res -0.1 -0.4 -0.3 -0.3 -2.2 -2.9 -2.4 -3.2 -13.3 -3.0
MT-Res -0.2 -0.1 +0.2 +0.0 -0.9 -0.9 +0.7 -0.3 -18.6 -1.3
WDCMT (*) -0.0 -0.0 +0.2 +0.2 +0.8 +0.8 -0.4 -0.8 0.0 +0.2

Table 4.4: Translation performance with variable domain definitions. In the Split /Merge
experiments, we report BLEU differences for the related test set(s). In the test new, we re-
port BLEU differences between each MDMT system and the generic system Mixed-Nat.
In the test rnd, we report BLEU differences between using random domain tag and using
true domain tag. Underline denotes significant loss when domains are changed wrt. the
baseline situation; bold for a significant improvement over FT-Full; (*) MDMT systems
ignoring test domains.

4.5.3 Redefining domains

Table 4.4 summarizes the results of four experiments where we artificially redefine the
boundaries of domains, to challenge requirements [P2-TUN], [P3-HET], and [P4-ERR].
In the first three, we randomly split one corpus in two parts and proceed as if this cor-
responded to two actual domains. An MD system should detect that these two pseudo-
domains are mutually beneficial and should hardly be affected by this change with respect
to the baseline scenario (no split). In this situation, we expect MDMT to even surpass
fine-tuning separately on each of these dummy domains, as MDMT exploits all data. In
contrast, the fine-tuning method focuses only on a subpart. In testing, we decode the test
set twice, once with each pseudo-domain tag. This makes no difference for TTM, DM, ADM
and WDCMT, which do not use domain tags in testing. In the Merge experiment, we merge
two corpora in training to assess the robustness to heterogeneous domains [P3-HET]. We
then translate the two corresponding tests with the same (merged) system.

Our findings can be summarized as follows. For the Split experiments, we see small
variations that can be positive or negative compared to the baseline situation, but these
are hardly significant. All systems show some robustness with respect to fuzzy domain
boundaries; this is mostly notable for ADM, suggesting that when domains are close, ig-
noring domain differences is effective. In contrary, FT-Full incurs clear losses across
the board, especially for the small data condition (Miceli Barone et al., 2017). Even in
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this very favorable case however, very few MDMT systems are able to significantly out-
perform FT-Full and this is only observed for the smaller part of the med domain. The
Merge condition is hardly different, with again large losses for FT-full and FT-Res, and
small variations for all systems. We even observe some rare improvements with respect
to the situation where we use actual domains.

4.5.3.1 Handling wrong or unknown domains

In the last two columns of Table 4.4, we report the drop in performance when the domain
information is not correct. In the first (rnd), we use test data from the domains seen in
training, presented with a random domain tag. In this situation, the loss with respect to
using the correct tag is generally large (more than 10 BLEU points), showing an overall
failure to meet requirement [P4-ERR], except for systems that ignore domain tags in
testing.

In the second (new), we assess [P5-UNK] by translating sentences from a domain un-
seen in training (news). For each sentence, we automatically predict the domain tag and
use it for decoding.14 In this configuration, again, systems using domain tags during
inference perform poorly, significantly worse than the Mixed-Nat baseline (Bleu=23.5).

4.5.3.2 Handling growing numbers of domains

Another set of experiments evaluate the ability to dynamically handle supplementary do-
mains (requirement [P6-DYN]) as follows. Starting with the existing MD systems of
Section 4.5.2, we introduce an extra domain (News) and resume training with this new
mixture of data15 for 50,000 additional iterations. We contrast this approach with training
all systems from scratch and report differences in performance in Figure 4.1 (see also
Table B.1 in Appendix B).16

We expect that MDMT systems should not be too significantly impacted by adding
a new domain and reach about the same performance as when training with this do-
main from scratch. From a practical viewpoint, dynamically integrating new domains
is straightforward for DC-Tag or TTM, for which new domains merely add new labels.
DC-Feat, MT-Res and FT-Res can also easily add new domain embeddings and residual

14Domain tags are assigned as follows: we train a language model for each domain and assign a tag
to a sentence basis based on the language model log-probability (assuming uniform domain priors). This
domain classifier has an average prediction error of 16.4% for in-domain data.

15The design of a proper balance between domains in training is critical for achieving optimal perfor-
mance: as our goal is to evaluate all systems in the same conditions, we consider a basic mixing policy
based on the new train distribution.

16WDCMT results are excluded from this table, as resuming training proved difficult to implement.
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adapters respectively. It is less trivial for DM, ADM and WDCMT, which include a built-in do-
main classifier whose outputs have to be pre-specified or for LDR where domain-specific
units have to be predefined. This makes a difference between domain-bounded systems,
for which the number of domains is limited, and truly domain-open systems.
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Figure 4.1: Ability to handle a new domain. We report BLEU scores for a complete
training session with 7 domains, as well as differences (in blue) with training with 6
domains (from Table 4.3); and (in red) differences with continual training
.

First, we compare the results of coldstart training with six and seven domains in Ta-
ble B.1. We observe that the extra train data is hardly helping for most domains, except
for News, where we see a significant gain, and for talk. The picture is the same when
one looks at MDMTs, where only the weakest systems (DM, ADM) seem to benefit from
more (out-of-domain) data.

Secondly, we compare the coldstart with the warmstart scenario. We see that the for-
mer is always significantly better for news, as expected, and that resuming training also
negatively impacts the performance for other domains. This happens notably for DC-Tag,
TTM and ADM. In this setting, MT-Res and DM show small average losses, with the former
achieving the best balance of training cost and average BLEU score.
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Model/ Train Mixed FT FT MT DC DC
TTM ADM DM LDRClusters size Nat Full Res Res Feat Tag

10 small 29.3k 68.3 70.0 70.7 71.2 70.6 53.1 67.3 69.8 67.0 70.2
10 mid 104.7k 44.8 48.0 46.0 45.7 44.8 44.3 44.5 43.7 41.6 44.5
10 large 251.1k 50.4 52.9 52.0 51.3 49.6 43.2 49.1 48.5 44.3 49.5
Avg 128.4k 54.5 57.0 56.2 56.1 55.0 46.9 53.6 54.0 51.0 54.7

Table 4.5: BLEU scores computed by merging the 10 smaller, medium, and larger cluster
test sets. Best score for each group is in boldface. For the small clusters, full-fine tuning
is outperformed by several MDMT systems - see details in Appendix C.

4.5.4 Automatic domains

In this section, we want to evaluate the performance of MDMT systems in a large-scale
setting that consists of a high number of domains. Without access to an actual large
condition, we propose an artificial setting with automatic domains, obtained by clustering
sentences of the mixed corpus into k = 30 classes using the k-means algorithm based
on generic sentence representations obtained via mean pooling (cf. Section 4.4.1). This
allows us to evaluate the requirement [P7-scale]. We train and test our MDMT systems as
if these clusters were distinct domains. Many of these clusters are mere splits of the large
med, while a fewer number of classes are mixtures of two (or more) existing domains
(full details are in Appendix C). We are thus in a position to reiterate, at a larger scale, the
measurements of Section 4.5.3 and test whether multi-domain systems can effectively take
advantage of the cross-domain similarities and perform better than fine-tuning eventually.
The results in Table 4.5 also suggest that MDMT can surpass fine-tuning for the smaller
clusters; for the large clusters, this is no longer true. The complete table (in Appendix C)
shows that this effect is more visible for small subsets of the medical domain.

Finally, Table 4.6 reports the effect of using automatic class index instead of true do-
main. For each of the 6 test sets, each sentence was first assigned to an automatic class,
then translated with the corresponding multi-domain system with 30 classes. We compare
the performance of MDMT systems on 30-automatic-class scenario with ones in the 6-
domain scenario. Results are clear and confirm previous observations: even though some
clusters are very close, the net effect is a loss in performance for almost all systems and
conditions.

4.6 Conclusions and outlook
In this study, we have carefully reconsidered the idea of multi-domain machine transla-
tion, which seems to be taken for granted in many recent studies. We spelled out the
various motivations for building such systems and the associated expectations in terms of
system performance. We designed a series of requirements that MDMT systems should
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Domain / Model med law bank talk it rel wavg avg

DC-Tag 38.5 54.0 49.0 33.6 42.2 76.7 41.6 49.0
DC-Feat 37.3 54.2 49.3 33.6 41.9 75.8 40.8 48.7
LDR 37.4 54.1 48.7 32.5 41.4 75.9 39.1 48.3
TTM 37.4 53.7 48.9 32.8 41.3 75.8 40.7 48.3
DM 35.4 49.3 45.2 29.7 37.1 60.0 37.8 42.8
ADM 36.1 53.5 48.0 32.0 41.1 72.1 39.5 47.1
FT-Res 37.5 55.7 51.1 33.1 44.1 86.7 41.6 51.4
MT-Res 37.3 55.5 50.2 32.2 42.1 86.7 41.2 50.7
WDCMT 35.6 53.1 48.4 30.5 37.7 56.0 38.5 43.6

Table 4.6: Translation performance with automatic domains, computed with the original
test sets. Significance tests are for comparisons with the 6-domain scenario (Table 4.3).

meet and proposed a series of associated test procedures. In our experiments with a wide
range of MDMT methods, we have found that most requirements were hardly met for
our experimental conditions. Effectively, when MDMT systems outperform the mixed-
domain baseline, at least for some domains, they all fall short of matching the performance
of fine-tuning on each domain, which remains the best choice in single domain adaptation.

However, MDMTs are less brittle than fine-tuning when domain frontiers are uncertain
and can, to a certain extend, dynamically accommodate additional domains, this being
especially easy for feature-based approaches. Our experiments finally suggest that all
methods show decreasing performance when the number of domains or the diversity of
the domain mixture increases.

Two other main conclusions can be drawn from this study. First, it seems that more
work is needed to make MDMT systems make the best out of the variety of the available
data, both to effectively share what needs to be shared while at the same time separating
what needs to be kept separated. Second, and maybe more importantly, there is a general
need to adopt better evaluation methodologies for evaluating MDMT systems. Systems
developers should spell out the test conditions and the associated distribution of test in-
stances and use as many domains as possible since a great variety of data is available
nowadays.
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Chapter 5

Lexicalized domain representations and
Contextualized domain representation

5.1 Introduction
In this chapter, we present an MDMT system that we developed and published in Pham
et al. (2019). Our system ”Lexicalized domain representation” (LDR ) was introduced in
Section 4.4.3 of the previous chapter and used as an MDMT baseline in our overview.
Recently, we extended the idea of LDR, in which a number of units in the 0th layer are
reserved for one domain and are dropped when translating in other domains, to Contex-
tualized domain representations (CDR), in which not only the 0th layer but also higher
layers use the same dropping mechanism.

The supervised multi-domain adaptation setting presented in Section3.3 usually in-
volves a large number of domains. Adapting the whole NMT system separately to each
domain would waste training resources and require large hardware resources for mainte-
nance. We develop a simple MDMT system that changes only the form of word embed-
dings, i.e., can be applied to any NMT architecture. Our proposal transposes to neural
machine translation the feature expansion technique of Daumé III (2007). We isolate
domain-agnostic from domain-specific units in word embeddings while sharing the rest
of the network across domains. Our main hypothesis is that domains mostly differ at
the lexical level due to cross-domain polysemy, which motivates domain-specific embed-
dings. Another motivation to reconstruct only word embeddings is that we can easily
handle the growing number of domains by creating more domain-specific units, which
can not be done so easily in higher layers.

CDRs are extensions of LDRs in higher levels of an NMT model. These layers create a
partition of nodes in the network of an NMT model assigning different sub-networks to
different domains. By doing this, we reduce the interference between domains in the con-
tribution of the parameters to the prediction. Our first version of CDRs is hard-coded, i.e.,
the choice of dropping mask is heuristically predefined. However, the dropping pattern
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can be learned via a latent variable Gong et al. (2021b,a).

Our experiments are complementary to those in Chapter 4 and consider four domains,
two neural architectures, and two language pairs and find that our technique yields ef-
fective multi-domain NMTs, outperforming several baselines. We also report the perfor-
mance of LDR in a highly heterogeneous MDMT setting (see Chapter 4). We evaluate
CDRs in the same MDMT setting as in Chapter 4.

Our contributions are thus as follows: we adapt and implement the ideas of Daumé III
(2007) for two NMT architectures; we provide experimental evidence that shows the ef-
fectiveness of this technique; we evaluate the ability of our networks to accommodate
new domains dynamically; we apply the idea of the sparse representation from LDR to
higher layers and receive promising results in a highly heterogeneous MDMT setting. Fi-
nally, we introduce a new technique to analyze word polysemy using embeddings, which
comforts the assumption that their variation across domains reflects the change of senses.

This chapter draws from the following publication: Pham et al. (2019).

5.2 Lexicalized domain representations

5.2.1 Multi-domain machine translation

As introduced in Section 3.2.2, a train example in the supervised multi-domain adap-

tation setting is a triplet (d,x,y), with x in the source language, y in the target lan-
guage and d a domain tag in [1 . . .nd]. According to Section 3.2.1 the training instances
are distributed according to a mixture DS

e such that DS
e (x) = ∑

nd
d=1 λ s(d)Dd

e (x), with
{λ s(d),d = 1 . . .nd} the mixture weights satisfying ∑d λ s(d) = 1. According to our def-
inition of the NMT loss function in Equation (2.25) and our definition of multi-domain
distribution in Section 3.2.1 and Section 3.1, our objective is to find a tuple of parameters
{θ1 . . .θd} ∈ RD×·· ·×RD minimizing:

nd

∑
d=1

λ
s(d)Ex∼Dd

e ,y∼gd(x)[−log(P(y|x,θd))]. (5.1)

in which the labeling function of each domain d will be gd : Ωe→ Ω f where Ωe and Ω f

are the set of sentences in the language e and the language f respectively.

A straightforward solution is to process each domain separately, computing the value
θ ∗d that minimizes the empirical loss in Dd

e and gd . This strategy is only effective if we
have sufficient training data for each domain; when this is not the case, some estimates
θ ∗d may be far from their optimal value. The alternative we consider here constraints each
parameter θd to be made of two parts: θd = [θs;θ ′d]. θs ∈ RDg is shared across all domains,
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while the second part θ ′d ∈RDd is only used in domain d. The parameter set is much more
constrained, yet we expect that tying parameters across domains will yield better estimates
for θs due to a larger training corpus. In this setting, the optimization program defined by
equation (5.1) can no longer be performed separately for each training corpus.

5.2.2 Lexicalized domain embeddings

To actually implement this idea for NMT, we need to define the subset of parameters
that will be shared across domains. In this section, we explore the hypothesis that do-
main specificities can be confined to the lexical level, and we define θs to contain all the
network parameters except for a subpart of the word embeddings. For each word v, the
embedding vector e(v) is thus decomposed as e(v) = [eg(v);e1(v); . . . ;ed(v)], where eg(v)

stores the domain-agnostic lexical embedding, while ed(v) stores the subpart that is spe-
cific to domain d. In our NMT architectures, the actual embedding layer composes these
vectors linearly to generate the word embedding for domain k according to:

ẽk(v) =Mgeg(v)+ ∑
d∈[1,..,nd ]

Md× ed(v)×δ (d = k)

= M[eg(v);e′1(v,k) . . . ;e′d(v,k)], (5.2)

where δ () is the indicator function, M is the matrix made of blocks Mg,M1 . . . ,Mnd , and
e′d(v,k) is the masked embedding: e′d(v,k) = ed(v)∗δ (d = k).

Figure 5.1: Lexicalized domain embeddings. When processing a sample from domain
2, we only activate the corresponding parameter region (θ2) in the input embeddings;
the remaining domain-specific parts are zeroed out and do not receive any update. The
domain-agnostic part is always active and is updated irrespective of the input domain.

Ensuring that the actual embedding does not contain any zero is essential for the Trans-
former model since the lexical representations are added to the positional encoding, which
would undo the effect of domain masking and propagate a gradient even to regions that
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should not be modified. With our design, we make sure that the matrix M receives gra-
dient 0 at regions corresponding to deactivated regions in the word embedding during
backpropagation. Those regions are also masked in the forward step. Thus they do not
interfere with the training on the domains to which they are not assigned (see Figure 5.1).
Our architecture is thus readily compatible with any NMT architecture, where we replace
standard embedding layers with the embeddings defined in equation (5.2). In our experi-
ments, we consider both the attentional RNN architecture of Bahdanau et al. (2015) and
the Transformer architecture of Vaswani et al. (2017).

5.3 Contextualized domain representations
CDRs replace the linear combination of domain-agnostic units and domain-specific units
used to compute LDR embeddings by multiplying the output of each layer with domain-
specific dropping vector as follows

h̃l = hl ∗ rl(d)

rl(d) ∈ Rdk

rl(d)i =


1, if i < da

1, if da +d× dk−da
nd
≤ i < da +(d +1)× dk−da

nd

0, otherwise

d ∈ {0, . . . ,nd−1}

(5.3)

hl is the output of the lth layer; da is the number of domain-agnostic nodes; nd is the num-
ber of domains. We allocate the same number of domain-specific nodes for every domain.
However, the number of nodes in each intermediate layer is always fixed at dk, CDR can
not dynamically create more units for new domains. Therefore, the model currently only
handles a fixed number of domains. In Section 5.6 we will discuss a promising approach
that allows CDR to handle an arbitrary number of domains.

In our experiments with CDR, we consider only the Transformer architecture and the
same experimental setting as in Section 4.4.1.

5.4 Experiments

5.4.1 Domains, data and metrics

5.4.1.1 4 domains, 2 language pairs

We experiment with two language pairs (English-French, English-German) and data orig-
inating from three domains, corresponding to texts from three European institutions: the
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Figure 5.2: Contextualized domain representations. When processing a sample from do-
main 1, only the signal of the domain-agnostic nodes and the 1th domain’s nodes are
passed to higher layers, other nodes are dropped out.

European Parlement (EPPS) (Koehn, 2005), the European Medicines Agency (EMEA),
the European Central Bank (ECB) (Tiedemann, 2009), In addition, for English-French
we also use corpora in the IT-domain obtained from the OPUS web site1 corresponding to
KDE, Ubuntu, GNOME and PHP datasets (IT). Moreover, we use IT only in the scenario
of continual training, in which we continue training our MDMT system with the mix of
new domain IT and the old domains EMEA, ECB and EPPS.

We randomly split those corpora into training, validation and test sets (see statistics
in Table 5.1). Validation sets are used to chose the best model according to the average
BLEU score (Papineni et al., 2002)2

Corpus Train Valid Test
English→ French
EMEA 1.09M 1,000 1,000(300)
ECB 0.19M 1,000 1,000
EPPS 2.01M 1,000 1,000
IT 0.54M 1,000 1,000
English→ German
EMEA 1.11M 1,000 1,000(300)
ECB 0.11M 1,000 1,000
EPPS 1.92M 1,000 1,000

Table 5.1: Corpora statistics.

Note that the EMEA dataset distributed on the OPUS site contains multiple sentence
1http://opus.nlpl.eu
2We use detokenized, truecasing multibleu.
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duplicates. We therefore report below two numbers as S(T ): the first (S) is comparable to
what has been published on earlier studies (e.g. Zeng et al. (2018)), the second one (T ) is
obtained by making the test entirely disjoint from the training (700 duplicated sentences
are discarded).

To reduce the number of lexical units and make our systems open-vocabulary, we apply
Byte-Pair Encoding (Sennrich et al., 2016b) separately for each language with 30,000
merge operations.

5.4.1.2 7 domains, 1 language pair

We report again the performance of LDR in the same setting presented in Section 4.4.1,
which consists of 7 domains in English→French translation task. For the sake of brevity,
we will not provide the description of the data here (see Section 4.4.1).

5.4.1.3 Statistical significance

Statistical significance is estimated using bootstrap resampling (Koehn, 2004), imple-
mented in compare-mt3 (Neubig et al., 2019). We report significant differences at the
level of p = 0.05.

5.4.2 Baselines

5.4.2.1 3 domains, 2 language pairs

To validate our findings, we compared lexicalized domain embedding models with stan-
dard models using both attentional Recurrent Neural Networks (RNNs) and the Trans-
former architecture. Our baselines consist of:

• generic models trained with a simple concatenation of all corpora (Mixed-Nat);
• models tuned separately on each domain for respectively (10000, 15000, 5000)

iterations using in-domain data (ftEMEA, ftEPPS, ftECB);
• models using domain tags as in Kobus et al. (2017) (DC);

For all models, we set the embeddings size equal to 512; the size of hidden layers is
equal to 1024 for RNNs and 512 for Transformer. Other important configuration details
are as follows: Transformer models use multi-head attention with 8 heads in each of
the 6 layers; the inner feedforward layer contains 2048 cells; RNN models use 1 layer
on both sides: a bidirectional LSTM encoder and a unidirectional LSTM decoder with
attention. The domain control systems are exactly as their baseline counterparts (RNN
and Transformer), with an additional 2 cells encoding the domain on the input layer. To

3https://github.com/neulab/compare-mt
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train NMT systems, we use Adam, with parameters β1 = 0.9, β2 = 0.999, α = 0.0005
for RNNs; with parameters β1 = 0.9, β2 = 0.98, with Noam decay (Vaswani et al., 2017)
for Transformer (warmup steps = 4000). In all cases, we use a batch size of 128 and
a dropout rate of 0.1 for all layers. All our systems are implemented in OpenNMT-tf4

(Klein et al., 2017).

5.4.2.2 6 domains, 1 language pair

The description of MDMT systems for the comparison with CDR and LDR was provided in
Section 4.4.2 and in Section 4.4.3.

5.4.3 Implementing Lexicalized Domain Representations

5.4.3.1 3 domains, 2 language pairs

In order to implement LDR, we split the embedding vector into four regions: 3 are do-
main specific and 1 is domain-agnostic, with sizes [8,8,8,488] respectively. If a sentence
originates from domain i, the domain specific regions for all domains j 6= i will be zeroed
out while the other regions are activated (cf. Figure 5.1). We then use a dense layer of
size 512 to fuse the region for the active domain and the domain-agnostic region. Train-
ing is formalised in algorithm 1. Note that each iteration of algorithm 1 uses 2 batches: a
“generic” batch updating only the domain-agnostic region; and a “domain-specific” batch
updating both the domain-agnostic and domain-specific parameters.

Algorithm 1 Multi-domain Training

Require: Corpora Ci, i ∈ [1, ..,d] for d domains, Batch size B
1: repeat
2: Randomly pick i ∈ [1, ..,d] w.r.t the multinomial distribution [ |Ci|

∑i∈[1,..,d] |Ci| ].
3: Randomly pick B sentences from Ci.
4: Activate only domain-agnostic region to create generic batch, denoted Wg.
5: Compute gradient of θs, ∂L

∂θs
using Wg.

6: Activate domain-specific and domain-agnostic regions to create domain-specific
batch Wi

7: Compute gradient of domain-specific parameters θi, ∂L
∂θi

using Wi.

8: Update parameters θs using ∂L
∂θs

(Wg) and θi using ∂L
∂θi

(Wi)
9: until convergence

The batch selection procedure (step 2 of algorithm 1) ensures that the number of ex-
amples in each domain used in training follows the distribution of the training data, i.e.,
sentences from the Europarl domain will be selected more frequently that the two other

4https://github.com/OpenNMT/OpenNMT-tf
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domains. We also consider a more balanced sampling procedure, where i is selected ac-

cording to distribution [

√
|Ci|

∑i∈[1,..,d]
√
|Ci|

]. The corresponding results are reported as LDR0.5.

5.4.3.2 6 domains, 1 language pair

In this setting, we split the embedding vector of size 532 into seven regions: 6 are domain
specific and 1 is domain-agnostic, with sizes [4,4,4,4,4,4,508] respectively. By doing
this, each domain will have 512 effective units. A dense layer maps the resulted sparse
LDR embedding to an embedding of 512 units before passing to the encoder/decoder.

5.4.4 Implementing Contextualized domain representations

5.4.4.1 6 domains, 1 language pair

We do nothing special except applying domain dropping mask to each layer as explained
in Equation (5.3) in both the encoder and the decoder of an NMT model. For the hyper-
parameters, we choose heuristically da = 480 and dk = 672 so that there are 672−480

6 = 32
domain-specific nodes for each domain, making the effective number of nodes for each
domain equal to 512. This setting uses approximately 3m additional parameters per do-
mains, which is only 25% compared to FT-Res and MT-Res (see Section 4.5.1 and Table
4.3).

In our experiments, we evaluate this method with Transformer models, which are state-
of-the-art architecture in MT. We also report CDR1.0 and CDR0.5 which correspond to the
distribution of simple concatenation of the domains’ corpus and the down-sampling dis-

tribution [

√
|Ci|

∑i∈[1,..,d]
√
|Ci|

].

5.4.5 Results

5.4.5.1 3 domains, 2 language pairs

Results are summarized respectively in Table 5.2 for the Transformer systems and Ta-
ble 5.3 for the RNN systems5. First, we observe that Transformers are consistently better
than RNNs and that fine-tuning on a domain-specific corpus, when applicable, is almost
the best way to optimize the performance on that domain.6 Note that fine-tuning how-
ever yields a marked (even sometimes catastrophic, eg. for the EMEA-tuned Transformer
system) decrease in performance for the other domains.

5As explained above, we report two numbers when testing with EMEA, except for the fine-tuning sce-
narios when tuning on ECB and EPPS.

6This is not so clear for EPPS, where fine-tuning does not seem to help.
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Our approach (LDRoracle) is consistently better than the Mixed-Nat strategy, with gains
that range from very large (for EMEA and ECB) to unsignificant (for EPPS in most con-
ditions). This means that our architecture is somehow able to compensate for the data
unbalance and to raise the performance of the multi-domain system close to the best
(fine-tuned) system in each domain. We even observe rare cases where the LDRoracle sys-
tem outperforms fine-tuning (e.g. Transformer en:de in the EMEA domain). LDRoracle is
also better than Domain Control in three conditions out of four, DC being seemingly a
better choice for the RNN than for the Transformer architecture. As expected, ignoring
the true domain label yields a light drop in performance: this is reflected in the results of
LDRpred , which relies on automatically predicted domain labels.7 Note that this decrease
is however hardly significant, showing that our architecture is quite robust to noisy labels.
Even in the worst case scenario where all domain tags are intentionally wrong (LDRwrong),
we see that the domain-agnostic part still ensures a satisfying level of performance. A
last contrast is with LDR0.5

oracle where we change the distribution of training sentences to
decrease the weight of EPPS data and increase the number of ECB samples. As a result,
we see a small decrease for EMEA and EPPS, and a large boost for ECB. This shows that
our technique can be used in conjunction to other well known strategies for performing
domain adaptation.

We also compare our architecture with the multi-domain model of Zeng et al. (2018)
(WDCMT) for the pair English→French. We use the author’s implementation8 that is com-
posed of one bidirectional Gated recurrent units (GRU) layer on the encoder side; and one
unidirectional conditional GRU layer on the decoder side; the dimension of “domain” lay-
ers is 300. The direct comparison with our RNN is difficult, as both networks differ in
many ways: framework, cell types, etc. Results in Table 5.4 therefore use a variant of our
model that makes it more similar to the WDCMT network. In particular, this variant also
uses a single GRU layer in the encoder and a single conditional GRU layer in the decoder
(LDRcondgru

pred ). As can be seen in this table, our model is on average comparable to WDCMT,
while using a much simpler design.

5.4.5.2 6 domains, 1 language pair

To allow the readers easily compare the performance of LDR between 2 settings: 4 do-
mains and 6 domains, we report again a part, which contains only Transformer-based
system, of Table 4.3 (see Table 5.5).

In this setting, LDR is only slightly better than the generic model Mixed-Nat, which

7Our domain classifier uses a bi-LSTM RNN encoder, followed by a simple softmax layer. Its precision
on a development set exceeds 95%.

8http://github.com/DeepLearnXMU/WDCNMT
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Model EMEA EPPS ECB Avg.
English→French
Mixed−Nat 67.6947.60 37.50 53.49 52.89
FTEMEA 76.7749.43 17.16 11.99 35.30
FTEPPS 20.86 37.04 24.53 27.47
FTECB 26.93 27.09 56.52 36.84
DC 67.8745.42 37.31 54.14 53.10
LDRoracle 74.2649.90 37.67 54.07 55.33
LDR0.5

oracle 74.9549.38 37.35 55.91 56.07
LDRpred 74.2949.84 37.73 54.01 55.34
LDRwrong 72.9549.78 37.62 53.35 54.64
English→German
Mixed−Nat 64.5742.99 26.47 68.67 53.23
FTEMEA 68.3542.97 17.02 32.87 39.41
FTEPPS 36.19 26.29 40.71 34.39
FTECB 24.72 18.36 74.05 39.04
DC 63.4842.98 26.27 66.95 52.23
LDRoracle 70.9046.12 26.30 68.90 55.36
LDR0.5

oracle 71.3145.23 25.98 73.74 57.01
LDRpred 70.8946.12 26.53 68.63 55.35
LDRwrong 69.5143.50 26.31 66.86 54.22

Table 5.2: BLEU scores for Transformer systems . Boldface denotes significant gains
with respect to Mixed−Nat.

is trained with the same sampling distribution. The system is only significantly better
than Mixed-Nat in rel. Moreover, LDR achieves a performance equivalent to DC-Tag,
DC-Feat. This result is inconsistent with the results in the previous setting with only four
domains. This might be explained by the interference between domains in the contribution
of parameters in the prediction. As there are more domains and the domains’ sizes are
much more unbalanced, the partition of the parameters should be more extensive than the
word embedding level. Moreover, word-embeddings do not capture the context, which
is more important for the prediction than the word alone. We find that a partition of
intermediate nodes in higher layers captures better the statistical bias than just in the 0th

layer, where the context is not formed. Our hypothesis is supported by the performance
of CDR1.0. Our model significantly outperforms Mixed-Nat in 4/6 domains except for
talk and med which are ”hard” domains where no MDMT systems significantly does
better than Mixed-Nat. Moreover, CDR1.0 performs equivalently to MT-Res using 75%
less additional parameters. Furthermore, with a sampling strategy more balanced, CDR0.5

matches the performance of FT-Res, which is carefully fine-tuned for each domain.

However, Table 4.4 shows a dramatic loss in the random domain tag setting, which
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Model EMEA EPPS ECB Avg.
English→French
Mixed−Nat 65.4245.11 34.70 51.38 50.50
FTEMEA 72.0647.33 18.62 16.78 35.82
FTEPPS 35.47 34.61 39.56 36.55
FTECB 21.93 22.60 51.53 32.02
DC 68.2643.76 35.13 50.09 51.16
LDRoracle 71.7346.30 35.21 50.91 52.62
LDR0.5

oracle 71.7046.41 34.24 52.37 52.77
LDRpred 72.7646.35 35.10 50.38 52.75
LDRwrong 62.1043.29 34.17 48.79 48.35
English→German
Mixed−Nat 57.3737.94 23.10 63.54 48.00
FTEMEA 65.6444.71 12.36 15.93 31.31
FTEPPS 24.90 22.98 26.26 24.71
FTECB 41.80 15.97 71.07 42.95
DC 62.5339.25 23.74 65.71 50.66
LDRoracle 63.4340.04 22.66 64.40 50.16
LDR0.5

oracle 63.2738.16 21.83 69.55 51.55
LDRpred 63.1739.92 22.51 64.00 49.89
LDRwrong 56.8437.05 22.06 61.66 46.85

Table 5.3: BLEU scores for RNN systems

Model EMEA EPPS ECB Avg.
English→French
LDRpred 72.7646.35 35.10 50.38 52.75
LDR

condgru
pred 71.7046.21 35.09 51.22 52.67

WDCMT 68.7645.29 35.71 52.75 52.40

Table 5.4: BLEU scores for RNN systems. Comparison between WDCMT and LDRpred built
using conditional GRUs.

means LDR is not robust in the case of 6 domains. This observation is inconsistent with
the results in Table 5.2. This loss might be due to the fact that this MDMT setting is much
more adverse than the previous setting with only 3 domains. This again illustrates the
need to use a wide range of available domains to evaluate the systems.
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Model / Domain med law bank talk it rel wavg avg

Mixed-Nat [65m] 37.3 54.6 50.1 33.5 43.2 77.5 41.1 49.4
Mixed-Bal [65m] 35.3 54.1 52.5 31.9 44.9 89.5 40.3 51.4
FT-Full [6×65m] 37.7 59.2 54.5 34.0 46.8 90.8 42.7 53.8
DC-Tag [+6×512] 38.1 55.3 49.9 33.2 43.5 80.5 41.6 50.1
DC-Feat [+6×4] 37.7 54.9 49.5 32.9 43.6 79.9 41.4 49.9
LDR [+6×384k] 37.0 54.7 49.9 33.9 43.6 79.9 40.9 49.8
CDR1.0 [+6×3m] 38.0 55.9 51.4 33.9 45.0 87.4 42.4 51.9
CDR0.5 [+6×3m] 37.3 57.0 54.5 32.2 47.6 91.0 42.4 53.3
TTM [+6×1024] 37.3 54.9 49.5 32.9 43.6 79.9 41.0 49.7
DM [+0] 35.6 49.5 45.6 29.9 37.1 62.4 38.1 43.4
ADM [+0] 36.4 53.5 48.3 32.0 41.5 73.4 38.9 47.5
FT-Res [+6×12.4m] 37.3 57.9 53.9 33.8 46.7 90.2 42.3 53.3
MT-Res [+6×12.4m] 37.9 56.0 51.2 33.5 44.4 88.3 42.0 51.9

Table 5.5: Translation performance of MDMT systems based on the same Transformer
architecture. The former contains 65m parameters. For each system, we report the num-
ber of additional domain specific parameters, BLEU scores for each domain, domain-
weighted (wavg) and unweighted (avg) averages. For weighted-averages, we take the
domain proportions from Table 4.1. Boldface denotes significant gains with respect to
Mix-Nat, underline denotes significant losses.

5.5 Complementary experiments

5.5.1 Balancing domain-agnostic and domain-specific
representations in LDR

An important practical question concerns the balance between the domain-agnostic and
the domain-specific part of the embeddings. In the limit where the domain specific part
is very small, we should recover the performance of the Mixed-Nat system; conversely,
we expect to see a less effective sharing of data across domains by increasing the domain-
specific regions. Table 5.6 reports the result of a series of experiments for the Transformer
architecture (English-French) with varying domain-specific sizes allocating between 4
and 64 cells for domain-specific information, and the complement to 512 for the domain-
agnostic part. The differences are overall quite small in our experimental setting, where
the training data is relatively limited and does not require to use a large embedding size.
We therefore decided to allocate 8 cells for the domain specific part in the experiments
of Section 5.4.3.1. This suggests that we could easily accommodate more domains with
the same architecture and even reserve some regions to handle supplementary data (see
below).
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LDRoracle EMEA EPPS ECB Avg.
English→French
size=4 74.6549.61 37.42 54.49 55.52
size=8 74.2649.90 37.67 54.07 55.33
size=16 74.1549.10 37.78 54.56 55.50
size=32 75.1048.61 37.64 54.29 55.68
size=64 74.5050.17 37.27 54.50 55.42

Table 5.6: BLEU scores for the Transformer architecture for varying domain-specific
embedding sizes

5.5.2 Additional domain setting with LDR

5.5.2.1 4 domains

We now evaluate the ability of our model to integrate new domains, a very common sce-
nario for industrial MT. In this setting, we consider that we have a model (LDRoracle)
trained as before for EMEA, EPPS and ECB during 200,000 iterations, which needs
to process new training data from the IT domain. Assuming that we have reserved ex-
tra empty embedding cells9 for this domain, we resume training with 4 domains dur-
ing 100,000 additional iterations, yielding an updated model LDR∗oracle. Results for the
English→French language pair are in Table 5.7, where for comparison purposes we also
report numbers obtained with continued training with the Mixed−Nat model, training
for the same number of iterations and using the same four datasets (Mixed−Nat∗).

Model EMEA EPPS ECB IT Avg.
English→French
Mixed−Nat 67.6947.60 37.50 53.49 13.91 43.15
Mixed−Nat∗ 66.4945.79 37.59 55.07 51.78 52.73
LDRoracle 74.2649.90 37.67 54.07 13.40 44.85
LDR∗oracle 76.1749.71 37.48 55.12 55.24 56.00

Table 5.7: BLEU scores for the Transformer architecture when including IT as additional
domain

As expected, a huge improvement in performance is observed for the IT test set when
learning includes in-domain data for both models, with LDR∗oracle outperforming Mixed−Nat∗

by a wide margin. It is interesting to see that this additional data has also a positive impact
on other test sets: both models similarly increase their performance for the ECB domain,
and LDR∗oracle additionally improves the results for the EMEA test, which is not the case

9For this experiment, word embeddings contain 480 cells for the domain-agnostic region and 32 cells
for domain specific regions (8 cells x 4 regions).
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for Mixed−Nat∗; finally, using IT data does not impact the quality of translations for the
EPPS domain of any of the models. Overall better results are obtained by our LDR∗oracle

model trained with data from an additional source.

5.5.2.2 7 domains

We report again the result of the experiments in the continuous learning presented in
Section 4.5.3.2. We observe a significant loss of LDR compared to the generic baseline
Mixed-Nat while adding domain news. The loss is mainly due to a decrease of LDR’s
performance in the largest med domain. This result shows the brittleness of our system
against the change of train data distribution, in which the proportion of med drops 5%
from 0.68 to 0.65.

5.5.3 Analysis of Word Embeddings of LDR

One of our main assumptions is that the difference between domains can be confined at
the lexical level, warranting our decision to specialize lexical representations for each
domain, while the remaining part of the network is shared across domains. Linguistically,
this assumption relates to the classical “one sense per collocation” (Yarowsky, 1993) and
corresponds to the fact that in many cases, polysemy corresponds to variation of use
across domain. This variation of senses was reported in Carpuat et al. (2013) as a source
of errors when translating in unseen domains. The authors demonstrated that a word
would be translated to different translations with respect to the domains. SMT models
can not boostrap this lack of knowledge and make sense errors. In MDMT, MT models
cope the same problem. In the weaker form of (Yarowsky, 1993)’s theory, it allows us
to assume that all occurrences of a given form in a given domain correspond to the same
sense and share the same representation; the same form occurring in different domains is
allowed to have one distinct embedding per domain, which may help capture polysemy
and lexical ambiguity in translation.

To check this hypothesis, we performed the following analysis of embeddings learned
with the multi-domain Transformer system for English:French. For each unit10 in our
English dictionary, we compute the k nearest neighbours for each domain i ∈ [1 . . .d],
where the distance between unit u and v for domain i is the cosine distance in the cor-
responding embedding space, ie. assuming that the actual embedding of v for domain i

is e(v, i) = Mgeg(u)+Miei(v) (cf. equation (5.2)). This process yields d lists of k near-

10In this study, we work with BPE units, in many cases we observe the variation of use of word parts.
As we work with a large inventory, many of these units still correspond to actual words and we focus on
these in our comments. We also restrict our analysis to words that occur at least 30 times in each domain,
to ensure that each domain-specific region is updated during training.
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est neighbours. A small intersection should then be a sign of a variation of use across
domains; conversely, an near-identical set of neighbours across domains should reflect
the stability of word use. Table 5.8 list the 10 units with the smaller (respectively larger)
intersection (we use k = 10 and d = 3).

Polysemic “words” Monosemic “words”
ases (0) obtain (10)

impairment (1) virtually (10)
convenience (1) represent (10)

oring (1) safety (10)
ums (1) defence (10)

turnover (1) coordinated (10)
occurrence (1) handling (10)

tent (2) July (10)
ture (2) previous (10)

mation (2) better (10)

Table 5.8: Analyzing the variation of embeddings across domains. For each word or
subword we also report the size of the intersection (between 0 and 10).

Let us first consider the full words in the left column of Table 5.8. The case of impair-

ment is pretty clear, occuring in EMEA mostly in terms such as “hepatic impairment” or
“renal impairment”, and translating into French as insuffisance. In ECB, its collocates are
quite different and impairment often occurs in terms such as “cost subject to impairments”
(French: coût soumis à des réductions de valeur). Likewise, “convenience” seems to have
its general meaning (“for convenience”) in EMEA, but appears in ECB in the specific con-
text of “convenience credit card” (French: carte de crédit à remboursement différé). We
finally see the same phenomena with “turnover”, which is consistently translated with its
economic meaning (French: chiffre d’affaire) in ECB and EPPS, but whose collocates
in EMEA (”bone turnover”, “hepatic turnover”) are associated with the idea of the cell
renewall process, yielding translations such as remodelage osseux in French. Subword
units can be analysed in the same ways: “ums”, for instance, appears in words such as
“gums”, “serums”, “vacuums” in EMEA; in ECB, “ums” is mostly the suffix of “maxi-
mums”, “minimums”, or “premiums”; EPPS finally contains a more diverse set of “-ums”
ending words (“stadium”, “forum”, equilibrium”, etc).

Let us now consider the list of putative monosemic words (on the right part of Ta-
ble 5.8), ie. words for which the nearest neighbors are the same in all domains. This
list contains mostly words for which we do not expect much variation in translation:
adjectives (“previous”, “better”), adverbs (“virtually“), generic verbs (“handling”, “co-
ordinated”). Further down this list, we will also find prepositions (“at”, “in”), auxiliary
(“been”) etc.
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5.6 Conclusions and outlook
In this chapter, we have presented two new techniques for multi-domain machine trans-
lation: LDR embeddings, which is a result of adapting the “frustratingly easy” idea of
Daumé III (2007) to NMT architectures; CDR, which is an extension of LDR to higher
layers of the NMT model.

Our experiments have shown that for both architectures (Transformer and RNN) and
two language pairs, LDR improves over the simple DC-Tag system and standard Trans-
former and that it is robust to noise in domain labels. However, the improvement is still
limited in a mild situation where the number of domains is low, and there is less het-
erogeneity. Our second proposal system CDR outperforms many MDMT systems except
FT-Res, which is carefully fine-tuned for each domain in a highly heterogeneous MDMT
setting. However, this version of CDR handles only a fixed number of domains.

Furthermore, it is noticeable that these results are obtained without impacting the ar-
chitecture or training complexity, making our approach an effective baseline for further
studies in multi-domain translation. We have also shown that LDR can dynamically han-
dle new domains; and that its domain-specific embeddings often reflect differences of
”stand-alone” senses.

In our future work, we aim to develop another version of CDR using learnable domain-
node allocations which allows the method to accommodate an arbitrary number of do-
mains.

95



Chapter 6

Multi-domain residual adapters

6.1 Introduction
In supervised multi-domain adaptation discussed in Section 3.3, the fine-tuning method
(Luong & Manning, 2015; Freitag & Al-Onaizan, 2016) usually achieve the best perfor-
mance in single domain adaptation. However, fine-tuned models are usually brittle to
out-of-domain examples. Therefore, it is only suitable for the ”one domain one model”
strategy, which requires much effort for maintenance and training. Several recent stud-
ies (Vilar, 2018; Wuebker et al., 2018; Michel & Neubig, 2018; Bapna & Firat, 2019b)
have proposed more lightweight schemes to perform domain adaptation while also pre-
serving the value of pre-trained models. Our main inspiration is the latter work, whose
proposal relies on small adapter components (Bapna & Firat, 2019b) that are plugged in
each hidden layer. These adapters are trained only with the in-domain data, keeping the
pre-trained model frozen. Bapna & Firat (2019b) used the adapters for MT domain adap-
tation and multilingual MT. Because these additional adapters are very small compared
to the size of the baseline model, their use significantly reduces the cost of training and
maintaining fine-tuned models while delivering a performance that remains close to that
of full fine-tuning.

In this chapter, we conduct a thorough analysis of the adapter model in the context of
a multi-domain machine translation task. We notably explore ways to adjust and/or reg-
ularize adapter modules to handle situations where the adaptation data is minimal. We
also propose and contrast two new variants of the residual architecture: in the first one
(highway residual adapters), adaptation still affects each layer of the architecture, but
its effect is delayed till the last layer, thus making the architecture more modular and
adaptive; our second variant (gated residual adapters) exploits this modularity and en-
ables us to explore ways to improve performance in the face of train-test data mismatch.
We experiment with two language pairs and report results that illustrate the flexibility
and effectiveness of these architectures. Our main conclusions are that residual adapters
provide a fast and relatively low-cost method (compared to fine-tuned systems) for super-
vised multi-domain adaptation; our two variants prove as effective as the original adapter
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model and open perspectives to make adapted models more robust to label domain errors.

This chapter draws from the following publications: Pham et al. (2020a).

6.2 Residual adapters
In this section, we describe the basic version of the residual adapter architectures (Houlsby
et al., 2019; Bapna & Firat, 2019b), as well as two novel variants of this model.

6.2.1 Basic architecture

6.2.1.1 The computation of adapter layers

Our reference architecture is the Transformer model, which we assume contains a stack
of layers both on the encoder and the decoder sides. Each layer contains two subparts, an
attention layer, and a dense layer. Details vary from one implementation to another, we
simply contend here that each layer i ∈ {1 . . .L} (in the encoder or the decoder) computes
a transform of a fixed-length sequence of d-dimensional input vectors hi into a sequence
of output vectors hi+1 as follows (LN denotes the (sub)layer normalization, ReLU is the
“rectified linear unit” operator):

hi
0 = LN(hi)

hi
1 = Wi

dbhi
0 +ai

1

hi
2 = ReLU(hi

1)

hi
3 = Wi

bdhi
2 +ai

2

h̄i = hi
3 +hi.

Overall, the ith adapter is thus parameterized by matrices Wi
db ∈ Rd×b,Wi

bd ∈ Rb×d , bias
vectors bi

1 ∈ Rb, bi
2 ∈ Rd , with b the dimension of the adapter . For the sake of brevity, we

will simply denote hi
3 = ADAP(i)(hi), and θADAP(i) the corresponding set of parameters.

The ”adapted” hidden vectors h̄i
1≤i≤L−1, where L is the number of layers, will then be

the input of the (i+1)th layer; h̄L is passed to the decoder if it belongs to the encoder side,
or is the input of output layer if it belongs to the decoder side. Note that zeroing out all
adapters enables us to recover the basic Transformer, with h̄i = hi for all i.

In the experiments of Section 6.3, we use 2×L = 12 residual adapters, one for each of
the L = 6 attention layers of the encoder and similarly for the decoder.1

1In the decoder, the stack of self-attention and cross encoder-decoder attention only counts as one atten-
tion layer and only corresponds to one residual adapter.
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6.2.1.2 Design space and variants

This general architecture leaves open many design choices pertaining to the details of the
network organization, the training procedure, and the corresponding objective function.

The first question is the number of adapter layers. While in principle, all Transformer
layers can be subject to adaptation, it is nonetheless worthwhile to consider simpler adap-
tation schemes, which would only alter a limited number of layers. Such strategys might
be especially relevant when the training data contains very small domains, as in the exper-
iments of Section 6.3, and for which a complete adaptation may not be necessary or/and
or prone to overfitting. This, in turn, raises the issue of which layer(s) to adapt, a ques-
tion that can be approached in the light of recent analyses of Transformers models, which
conjecture that the higher layers encode global patterns with a more “semantic” interpre-
tation, while the lower layers encode local patterns akin to morpho-syntactic information
Raganato & Tiedemann (2018).

Beside the reduction of the numbers of adapters in a model, we can apply smooth
regularization methods to mitigate overfitting. Our first proposition is to use weight decay
(Krogh & Hertz, 1991). The method proposes adding a second term, which is the norm
L2 of the model’s parameters, to cross-entropy loss as follows

L̄ = Ex∼Dd
e ,y∼gd(x)[−log(P(y|x,θd))]

+ λ ∑i∈{1,..,6}⊗{enc,dec}‖θADAP(i)
(d)
‖2

in which d is the target domain, variables θ
ADAP(i)

(d)
belongs to θd and θd \{θADAP(i)

(d)
}i∈{1,..,6}⊗{enc,dec}

are frozen during the training. We reuse the same notations as in Equation 5.1. We denote
FT-Res-WD the MDMT system with adapter tuned by weight decay.

An alternative scheme is layer regularization, which penalizes the output of the adapters,
corresponding to the following objective:

L̄ = Ex∼Dd
e ,y∼gd(x)

[
− log(P(y|x,θd))

+ λ ∑i∈{1,..,6}⊗{enc,dec}‖ADAP(i)(hi(x,y))‖2
]

We denote FT-Res-LR the MDMT system with adapter tuned by layer regularization.

Finally, another independent design choice relates to the training strategy for adapters.
A first option is to generalize supervised domain adaptation to multi-domain adaptation
and to proceed in two steps: (a) train a generic model with all the available data; (b) train
each adapter layer with domain-specific data, keeping the generic model parameters un-
changed. Another strategy is to adopt the view of Dredze & Crammer (2008), where the
multi-domain setting is considered as an instance of multi-task learning Caruana (1997)
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with each domain corresponding to a specific task. This suggests training all the param-
eters from scratch, as we would do in a multi-task mode. The generic parameters will
still depend on all the available data, while each adapter will only be trained with the
corresponding in-domain data.

6.2.2 Highway Residual Adapters

In the basic architecture described in Section 6.2.1, the computation performed by lower-
level layers will impact all the subsequent layers. This section introduces a variant of
residual adapters, which delays the adaptation of each layer to the last layers (of the
encoder and the decoder). We demonstrate our proposal in Figure 6.1. While the basic
architecture performs adaptation in sequence, we propose here to perform it in parallel.
In this version, only the last hidden vector of the encoder (decoder) is thus modified
according to:

h̄L = hL + ∑
1≤i≤L

ADAPi(hi) (6.1)

One obvious benefit of this variant is that it allows us to reuse the hidden vectors hi

of all hidden layers when computing an adapted output for several domains during the
inference. In this situation, the forward step only needs to compute the hidden vectors
hi once for the inner encoder layers before an adapted sequence of vectors is computed
at the topmost layer. Therefore, we can fine-tune the model to multiple domains at once
without recomputing hi. This variant also opens the way to more parameter sharing across
adapters, a perspective that we will not explore further in this work. Instead, we use it to
develop a second variation of the adapter model, which is presented in the next section.

Figure 6.1: Highway residual adapter network

6.2.3 Gated Residual Adapters

The basic architecture presented above rests on a rather simplistic view of “domains” as
made of well-separated and unrelated pieces of texts that are processed independently dur-
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ing adaptation. Likewise, when translating test documents, one needs to choose between
either using one specific domain-adapted model or resorting to the generic model. In
this context, using wrong domain labels can have a strong (negative) effect on translation
performance.

Therefore, we would like to design a version of residual adapters that is more robust
to such domain errors. This variant, called the gated residual adapter model, relies on
the training of a supplementary component that will help decide whether to activate, on a
word per word basis, a given residual layer and to regulate the strength of this activation.
To this end, we extend the highway version of residual adapters as follows.

Formally, we replace the adapter computation of equation (6.1) and take the adapted
hidden (topmost) layer to be computed as (this is for domain k):

h̄L = hL + ∑
1≤i≤L

ADAPi
k(h

i)� zk(hL), (6.2)

where the scalar zk(hL[t]) ∈ [0,1] measures the relatedness of the t th word wt to domain k.
The more likely wt is in domain k, the larger zk(hL[t]) should be; conversely, for words2

that are not typical of any domain k (eg. function words), adaptation is minimum and
the corresponding adapted encoder output (h̄L[t]) will remain close to the output of the
generic model (hL[t]). In our implementation, we incorporate two domain classifiers on
top of the encoder and the decoder, that take the last hidden layer of the encoder (resp.
decoder) as input and use the posterior probability P(k|hL[t]) of domain k as the value for
zk(hL[t]).

Training gated residual adapters thus comprises three steps, instead of two for the base-
line version:

1. learn a generic model with mixed corpora from multiple domains.
2. train a domain classifier on top of the encoder and decoder; during this step, the

parameters of the generic model are frozen. This model computes the posterior do-
main probability P(k|hL[t]) for each word wt , based on the representation computed
by the last layer.

3. train the parameters of adapters with in-domain data separately for each domain,
while freezing all the other parameters.

2The term “word” is employed here by mere convenience, as systems only manipulate sub-lexical BPE
units; furthermore, the values of the hidden representations hi at position t depend upon all the other posi-
tions in the sentence.
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6.3 Experimental settings

6.3.1 Data and metrics

We perform our experiments with two translation pairs involving multiple domains: English-
French (En→Fr) and English-German (En→De). For the former pair, we reuse the same
data as in Chapter 4, which is reported in Section 4.4.1.

En→De is a much larger task, for which we use corpora distributed for the News task
of WMT203 including: European Central Bank corpus (bank), European Economic and
Social Committee corpus (eco), European Medicines Agency corpus (med)4, Press Re-
lease Database of European Commission corpus, News Commentary v15 corpus, Com-
mon Crawl corpus (news), Europarl v10 (gov), Tilde MODEL - czechtourism (tour)5,
Paracrawl and Wikipedia Matrix (web). Statistics are in Table 6.1.

bank eco med gov news tour web

4 (0.00022) 2857 (0.15) 347 (0.018) 1828 (0.095) 3696 (0.19) 7 (0.00039) 10473 (0.54)

Table 6.1: Corpora statistics for En→De: number of parallel lines (×103) and proportion
in the basic domain mixture. web is the largest domain, containing about 54% of the
sentences, while bank and tour are very small.

We randomly select in each corpus a development and a test set of 1,000 lines each and
keep the rest for training.6 Development sets help choose the best model according to the
average BLEU score Papineni et al. (2002).7

6.3.2 Baseline architectures

Using Transformers implemented in OpenNMT-tf8 Klein et al. (2017), we train the fol-
lowing baselines:

• a generic model trained on a concatenation of all corpora, denoted Mixed-Nat;
• a fine-tuned model (Luong & Manning, 2015; Freitag & Al-Onaizan, 2016), based

on the Mixed-Nat system, denoted FT-Full

The description of these systems and their implementations can be found in Section 4.4.2
and Appendix A.

3http://www.statmt.org/wmt20/news.html
4https://tilde-model.s3-eu-west-1.amazonaws.com/Tilde_MODEL_Corpus.html
5https://tilde-model.s3-eu-west-1.amazonaws.com/Tilde_MODEL_Corpus.html
6Scripts to replicate these experiments are available at https://github.com/qmpham/

experiments.git.
7We use detokenized, truecasing and the multibleu script.
8https://github.com/OpenNMT/OpenNMT-tf
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For all En→Fr models, we set the embeddings size and the hidden layers size to 512.
Transformers use multi-head attention with 8 heads in each of the 6 layers; the inner
feedforward layer contains 2,048 cells. Residual adapters additionally use an adaptation
block in each layer, composed of a 2-layer perceptron, with an inner ReLU activation
function operating on normalized entries of dimension b = 1024. Bapna & Firat (2019b)
showed that the performance of adapted models increases with respect to the size of the
inner dimension and obtained performance close to the full fine-tuned model with b =

1024, which is twice as large as the dimension of a Transformer layer. We used the same
setting in our experiments.

Training uses a batch size of 12,288 tokens; optimization uses Adam with parameters
β1 = 0.9, β2 = 0.98 and Noam decay (warmup steps = 4,000), and a dropout rate of
0.1 for all layers. For the Mixed-Nat model, we use an initial learning rate of 1.0 and
take the concatenation of the validation sets of 6 domains for development. In the fine-
tuning experiments, we continue training using Mixed-Nat as starting point, using the
same learning rate schedule, and continuing the incrementation of the number of steps.
In the multi-task training, we use the same learning rate schedule as for Mixed-Nat: for
each iteration, we sample a domain a probability proportional to its size; we then sample
a batch of 12,288 tokens that is used to update the shared parameters and the parameters
of the corresponding adapter.

Models for En→De are larger and rely on embeddings as well as hidden layers of
size 1024; each Transformers layer contains 16 attention heads; the inner feedforward
layer contains 4,096 cells. Adapter modules have the same architecture as for the other
language pair, except for their size, which is doubled (b = 2,048).

6.3.3 Multi-domain systems

In this section, we evaluate several proposals from the literature on multi-domain adap-
tation and compare them to full fine-tuning on the one hand, and to two variants of the
residual adapter architecture on the other hand. The reference methods included in our
experiments are the following:

• a system using “domain control” (Kobus et al., 2017). In this approach, domain
information is introduced either as an additional token for each source sentence
(DC-Tag) or in the form of a supplementary feature for each word (DC-Feat);

• a system using lexicalized domain representations presented in Chapter 5 (LDR);
• the three proposals of Britz et al. (2017). TTM is a feature-based approach where

the domain tag is introduced as an extra word on the target side. The training uses
reference tags and inference is performed with predicted tags, just like for regular
target words. DM is a multi-task learner where a domain classifier is trained on top of
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Model / Domain med law bank talk it rel avg

Mixed-Nat 37.3 54.6 50.1 33.5 43.2 77.5 49.4
FT-Full 37.7 59.2 54.5 34.0 46.8 90.8 53.8
DC-Tag 38.1 55.3 49.9 33.2 43.5 80.5 50.1
DC-Feat 37.7 54.9 49.5 32.9 43.6 79.9 49.9
LDR 37.0 54.7 49.9 33.9 43.6 79.9 49.8
TTM 37.3 54.9 49.5 32.9 43.6 79.9 49.7
DM 35.6 49.5 45.6 29.9 37.1 62.4 43.4
ADM 36.4 53.5 48.3 32.0 41.5 73.4 47.5
FT-Res 37.3 57.9 53.9 33.8 46.7 90.2 53.3
MT-Res 37.9 56.0 51.2 33.5 44.4 88.3 51.9
MT-Res+ 37.5 57.1 52.4 33.7 46.2 89.5 52.7
MT-Res (gen) 37.7 51.0 34.0 30.4 34.2 15.2 36.4

Table 6.2: Translation performance of various multi-domain MT systems (En→Fr) com-
pared to variants of the residual adapter models. The performance of MDMT contrasts is
borrowed from Table 4.3.

the MT encoder, so as to make it aware of domain differences; ADM is the adversarial
version of DM, pushing the encoder towards learning domain-independent source
representations. These methods only use domain labels in training.

The description and the implementation of each MDMT system are provided in Ap-
pendix A and Section 4.4.2.

The two variants of the residual adapter model included in this first round of experi-
ments have been presented in Section 6.2.1: FT-Res is the approach of Bapna & Firat
(2019b) based on a two-step training procedure; while MT-Res is the “multi-domain” ver-
sion, where the parameters of the generic model and of the adapters are jointly learned
from scratch. We also report results for the same system, using the parameters of the
Mixed-Nat model as initialization (MT-Res+).9

Because of the limit of our computational resources, we restrict the experiments in this
section to the En→Fr task. Results are in Table 6.2

These results first show that full fine-tuning outperforms all other methods for the in-
domain test sets. However, FT-Res is able to reduce the gap with this approach for sev-
eral domains, showing the effectiveness of residual adapters. The “multi-task” variant
is slightly less effective in our experiments than the basic version, where optimization is
performed in two steps. As it turns out, using residual adapters proves here better on aver-
age than the other reference multi-domain systems; it is also much better than the generic
system for translating data from known domains, outperforming the Mixed-Nat system
by more than 4 BLEU points in average. Gains are especially large for small domains

9This system also includes a layer dropout policy that cancels adapter layers with probability 0.5
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such as law and rel.

Comparing training schemes (FT-Res vs MT-Res vs MT-Res+) suggests that the simul-
taneous learning of all parameters is detrimental to performance in our settings: we see
that the 2-step procedure implemented in FT-Res always yields the best scores, even when
MT-Res is initialized with good parameter values . This may be because in this setting,
the adapters have access to a stable version of the generic system. The last line (MT-Res
(gen)) gives the results for a MT-Res trained system in which we cancel the adapter in
inference - comparing this to Mixed-Nat shows how differently the generic parts of these
two systems behave.

6.3.4 Varying the positions and number of residual adapters

Tables 6.3-6.4 report BLEU scores for 6 domains in each language pair: med, law, bank,
talk, itand rel for En→Fr; gov, eco, tour, bank, med and news for En→De. We first
see that for the latter direction, the basic version FT-Res also outperforms the Mixed-Nat
baseline on average, with large gains for the small domains tour, bank and comparable
results for the other domains.

By varying the number and position of residual adapters (see Section 6.2.1), we then
contrast several implementations. Because the set of possible configurations is large,
we only perform experiments for layers i = 2,4,6 (both for the encoder and decoder).
Two settings are considered: keeping just one adapter or keeping the three. The trend is
the same for the two language directions: suppressing adapters always hurts the overall
performance, albeit by a small margin: having six adapters is better than three, which is
better than keeping only one. However, in the tiniest domain bank of the En−De pair,
which contains only 4k train instances, using less adapters is better than using 6 adapters
by a margin of 0.6 BLEU. With only one adapter active, we observe small, insignificant
changes in performance when varying the adapter’s depth.

6.3.5 Regularizing adapter tuning

The translation from English into German includes two domains (tour and bank) that
are extremely small and account only for a very small fraction of the training data (re-
spectively for 0.039% and 0.022% of the total number of sentences). Fine-tuning on
these domains can lead to serious overfitting. We assess two well-known regularization
techniques for the adapters to help mitigate this problem: weight decay and layer regular-
ization.

For each method, the optimal hyper-parameter λ (weight decay or layer regulariza-
tion coefficient, see Section 6.2.1.2) are chosen by grid search in a small set of values
({10−3,10−4,10−5}).
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Model / Domain med law bank talk it rel avg params

Mixed-Nat 37.3 54.6 50.1 33.5 43.2 77.5 49.4 65m/0
FT-Res 37.3 57.9 53.9 33.8 46.7 90.2 53.3 65m/12m
FT-Res(2,4,6) 37.7 57 53 33.3 45 90 52.7 65m/6m
FT-Res(6) 37.7 55.8 51.5 33.9 43.6 89.2 51.9 65m/2m
FT-Res(4) 37.9 55.6 51.7 33.7 44.4 88.7 52 65m/2m
FT-Res(2) 37.8 55.5 51.4 34 43.8 86.7 51.5 65m/2m
FT-Res-WD 37.2 56.0 52.9 33.4 46.0 90.6 52.7 65m/12m
FT-Res-LR 37.4 56.1 51.8 33.3 45.0 89.7 52.2 65m/12m

Table 6.3: Translation performance of various fine-tuned systems (En→Fr). We report
BLEU scores for each domain, as well as averages across domains. Column params

reports the number of domain-agnostic/domain-specific parameters.

Model / Domain gov eco tour bank med news avg params

Mixed-Nat 29.3 30.5 17.6 38.1 47.9 20.9 30.6 213m/0m
FT-Res 29.6 30.4 19.2 49.0 47.2 20.6 33.1 213m/48m
FT-Res(2,4,6) 29.7 30.5 18.8 49.6 47.1 20.6 32.7 213m/24m
FT-Res(6) 29.5 30.4 18.1 49.1 46.9 20.4 32.4 213m/8m
FT-Res(4) 29.7 30.4 18.1 49.6 47.0 20.6 32.6 213m/8m
FT-Res(2) 29.6 30.4 18.3 49.4 46.7 20.6 32.5 213m/8m
FT-Res-WD 29.7 30.8 20.4 50.2 47.7 20.6 33.2 213m/48m
FT-Res-LR 29.6 30.4 19.2 49.0 47.2 20.6 33.1 213m/48m

Table 6.4: Translation performance of various fine-tuned systems (En→De). We report
BLEU scores for each domain, as well as averages across domains. Column params

reports the number of domain-agnostic/domain-specific parameters.

Results in Tables 6.3 and 6.4 show that regularizing the adapter model can positively
impact the test performance for the smallest domains (this is especially clear for weight-
decay (FT-Res-WD) in En→De), at the cost of a small drop in performance for the other
domains. Using weight decay proves here to be effective in most cases.

6.3.6 Highway and Gated Residual Adapters

We now turn to the evaluation of our new architectural variants: Highway residual adapters
FT-Res-HW on the one hand, and Gated residual adapters FT-Res-Gated on the other
hand. We use the same domains and settings as before, focusing here exclusively on the
language direction En→Fr.

To also evaluate the robustness with respect to out-of-domain examples, we perform
two additional experiments. We first generate translations with erroneous (more precisely:
randomly assigned) domain information: the corresponding results appear in Table 6.5
under column rnd. We also compute translation for a domain unseen in training (news) as
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follows. For each sentence in this test set, we automatically evaluate the closest domain,10

then use the predicted domain label to compute the translation. This is an error-prone
process, which also challenges the robustness of our multi-domain systems. Results are
in Table 6.5.

A first observation is that for domains seen in training, our variants FT-Res-HW and
FT-Res-Gated achieve BLEU scores that are on a par to those of the original version
(FT-Res), with insignificant variations across test sets.

The two other settings are instructive in several ways: they first clearly illustrate the
brittleness of domain-adapted systems, for which large drops in performance (more than
15 BLEU points on average) are observed when the domain label is randomly chosen.
Our gated variant however proves much more robust than the other adaptation strategy
and performs almost on par to the generic system for that test condition. The same trend
holds for the unseen news domain, with FT-Res-Gated being the best domain adapted
system in our set, outperforming the other variants by about 2 BLEU points.

Model / Domain med law bank talk it rel avg rnd news

Mixed-Nat 37.3 54.6 50.1 33.5 43.2 77.5 49.4 49.4 23.5
FT-Full 37.7 59.2 54.5 34.0 46.8 90.8 53.8 32.5 20.2
FT-Res 37.3 57.9 53.9 33.8 46.7 90.2 53.3 38.4 20.5
FT-Res-HW 37.5 57.2 53.4 33.1 46.3 91.0 53.1 36.6 20.2
MT-Res-HW 37.4 56.4 52.1 33.7 44.8 89.8 52.4 27.1 20.4
MT-Res-HW+ 37.7 57.0 52.5 33.5 46.1 89.0 52.6 46.5 21.4
FT-Res-Gate 38.0 57.5 53.0 33.5 46.0 90.1 53.0 49.0 22.5

Table 6.5: Translation performance of highway and gated variants for En→Fr. news is
excluded from the training data and considered as an out-of-domain test.

6.4 Conclusions and outlook
In this chapter, we have performed an experimental study of the residual adapter archi-
tecture in the context of multi-domain adaptation, where the goal is to build one single
system that (a) performs well for domain seen in training, ideally as well as full fine-
tuning; (b) is also able to robustly handle translations for new, unseen domains. We have
shown that this architecture allowed us to easily adapt a model to a specific domain, deliv-
ering BLEU performance than are much better than the generic, mixed domain baseline,
thus closing the gap with the full-fine-tuning approach, at a modest computational cost.
Several new variants have been introduced and evaluated for two language directions: if
none is able to clearly surpass the baseline, residual adapter models, they provide direc-
tions for improving this model in practical settings: unbalanced data condition, noise in

10As measured by the perplexity of a language model trained with only in-domain data..
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label domains, etc. In our future work, we would like to continue the development of
the gated variant, which, it seems to us, provides a flexible and robust tool to address the
various challenges of multi-domain machine translation.
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Dynamic sampling strategies for
multi-domain adaptation

7.1 Introduction
Building effective Neural Machine Translation models often implies accommodating di-
verse sets of heterogeneous data so as to optimize performance for the domain(s) of in-
terest. Such multi-source / multi-domain adaptation problems are typically approached
through instance selection or reweighting strategies, based on a static assessment of the
relevance of training instances with respect to the task at hand. In this work, we study
dynamic data selection strategies that are able to automatically re-evaluate the usefulness
of data samples and to evolve a data selection policy in the course of training. Based
on the results of multiple experiments, we show that such methods constitute a generic
framework to automatically and effectively cater to a variety of real-world situations, from
supervised multi-domain adaptation to unsupervised domain adaptation.

As we usually reported in the previous chapters, MDMT train data usually admit an ad-
verse heterogeneity in the domains’ data. In the MDMT setting presented in Section 4.4.1,
most common MDMT systems hardly achieve significant improvement compared to the
generic model. This might prove the brittleness of the MDMT model-centric approaches
to the heterogeneity of data. To overcome this challenge, we study the efficacy of the
data-centric approaches, and particularly the data sampling methods.

As introduced in Chapter 3, data sampling approaches aim to find the optimal bal-
ance of training data with respect to a certain objective, which can be one or multiple
target domains. This is, however, a challenging task due, for instance, to the similarity
between domains/languages, but also due to regularization effects of out-of-domain data
(Miceli Barone et al., 2017). It may also be suboptimal, as some target domains or lan-
guages might be easier to train than others. Finally, improving the performance of the MT
system in one domain will often hurt that of another (van der Wees et al., 2017; Britz et al.,
2017), and improving model generalization across all domains (Koehn et al., 2018) may
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not achieve optimally for any particular domain. Several recent proposals have explored
ways to instead consider dynamic data selection and sampling strategies that surpass static
strategies. Notably, van der Wees et al. (2017); Zhang et al. (2019) construct a static cur-
riculum, while Graves et al. (2017); Platanios et al. (2019); Kumar et al. (2019); Wang
et al. (2020b,c) build curricula that automatically adapt to the training data.

In this chapter, we contribute to this line of research in several ways. First, we propose
a novel framework (Multi-Domain Automated Curriculum, MDAC for short) that simul-
taneously accounts for the domain adaptation and the multi-domain adaptation problems.
Second, we propose a variant of the work of Wang et al. (2020c) for building an auto-
mated curriculum for training Multi-Domain NMT models. We evaluate our method in
various single-domain and multi-domain adaptation settings. We compare our method
with several contrasts, including the work of Zhang et al. (2019) and Wang et al. (2020c),
which was previously only applied to multilingual MT. Based on these experimental re-
sults, our main conclusions are that (a) using MDAC often yields overall performance
that is as good as the standard fine-tuning strategy for domain adaptation; (b) MDAC can
effectively handle a variety of test situations, from targeting one single domain to the full
multi-domain scenario.

7.2 Learning with multiple data sources
First, we want to recall our definition of MDMT setting in Section 4.2.1. Our train in-
stances are distributed according to a mixture DS

e such that DS
e (x) = ∑

nd
d=1 λ s(d)Dd

e (x),
with {λ s(d),d = 1 . . .nd} the mixture weights satisfying ∑d λ s(d) = 1. In the sequel, we
also use boldface to denote the vector λλλ , and λ (d) is used to denote a scalar corresponding
to the dth element of the vector λλλ .

The main challenge is then to make the best of this heterogeneous data, with the aim to
achieve the optimal performance for the intended test conditions. These might correspond
to data from just one of the training domains, as in standard supervised (multi-source) do-
main adaptation; a more difficult case is when the test data is from one domain unseen
in training (unsupervised domain adaptation); in multi-domain adaptation finally, the test
distribution is itself a mixture of domains, some of which may also be observed in train-
ing. Without loss of generality, one may then assume that the test distribution takes the
form DT

e (x) = ∑
nd
d=1 λ t(d)Dd

e (x) - with only one non-null component in the case of pure
domain adaptation. These settings are illustrated on Figure 7.1.

These situations have been amply documented from a theoretical perspective (eg. Man-
sour et al. (2009b,a); Hoffman et al. (2018)). A general recommendation in the DA set-
ting is to adjust the sampling distribution used to optimize the system so as to compensate
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Figure 7.1: Training and testing with distribution mismatch. We consider just three do-
mains, and represent vectors of mixture weights λλλ

s and λλλ
t in the 3-dimensional simplex.

Training with weights in (a) and testing with weights in (c) is supervised multi-source
domain adaptation to domain 2 (d2), while (b)-(c) is the unsupervised version, with no
training data from d2; training with weights in (a) and testing with weights in (d) is multi-
domain learning, also illustrated with configurations (a)-(e) (training domain d1 is not
seen in test), and (b)-(d) (test domain d2 is unseen in training).

for the mismatch between DS
e (x) and DT

e (x). This can be approximated by reweight-
ing instances, or more conveniently domains, which are selected during training with a
probability λ l(d), with λ l(d) 6= λ s(d).

A widely used approach to supervised DA is fine-tuning (Luong & Manning, 2015;
Freitag & Al-Onaizan, 2016), where λλλ

l is allowed to vary during learning. With our
notations, this approach amounts to first learning an initial parameter value with all the
data (∀d,λ l(d) = λ s(d)), then to continue training with only batches from the test domain
dt (λ l(d) = I(d = dt)) with I(A) the indicator function for predicate A. Note that this
strategy is potentially suboptimal, as some out-of-domain samples may contribute to the
final performance due to eg. domain overlap. Optimizing the learning distribution in
multi-domain settings is even more challenging, as the learner has to best take advantage
of potential domains overlaps, and also of the fact that some domains might be easier to
learn than others.

7.3 Multi-Domain Automated Curriculum

7.3.1 Basic principles

Assuming training data in each of the nd domains d1 . . .dnd , we denote the size of the
training corpus from domain d as Ns

d , and Ns = ∑d Ns
d is the total number of training

samples. We use D̂d,l
e and D̂d,t

e to denote the empirical train and test distributions for

110



7.3. Multi-Domain Automated Curriculum

domain d over the source language e, and D̂u
e (x;λλλ

u) = ∑d λ u(d)D̂d,u
e (x) for u ∈ {l, t}.

In our setting, λλλ
t , and hence D̂ t

e(x;λλλ
t) are fixed and predefined, approximated with an

equivalent number of development corpora.

MDAC constructs an adaptative training distribution λλλ
l that optimizes the data selec-

tion policy along with the training of the NMT model. We parameterize λλλ
l by a differen-

tiable function λλλ
l(ψψψ). We divide the training into many short sessions; in each session t,

the model is trained with a static data distribution λλλ
l(ψψψ t). After one learning session, we

update the data distribution using the REINFORCE algorithm of Williams (1992). The
evolution of ψψψ is thus defined by:

ψψψ t+1 = ψψψ t + lr1 ∗
nd

∑
d=1

R(d)∗ ∂λ l(d;ψψψ t)

∂ψψψ
,

where reward R(d) is computed as:

R(d) = Jt(θt ,λλλ
t)− Jt(θt+k,λλλ

t),

and where we also define:

θt+i = U pdate
(
θt+i-1, [xi

j,y
i
j]

N
j=1
)

i ∈ {1, · · · ,k}

xi
j ∼ D̂d,l

e ,yi
j ∼ gd(xi

j)

Jt(θ ,λλλ t) =
nd

∑
d=1

λ
t(d)E

xd,t∼D̂d,t
e ,yd,t∼gd(xd,t)

[
l(θ ,xd,t ,yd,t)

]
.

In these equations, k is number of simulation step, N denotes the size of a batch; lr1 is

the learning rate of the sampling distribution; l(θ ,x,y) =−
ly

∑
i

logP(yi|y<i,x;θ) is the loss

of the NMT model on sample (x,y); Jt(θ ,λλλ t) is the weighted loss aggregated over nd

dev-sets corresponding to the nd domains.

To compute the reward R(d) of using data from domain d to train the model, we sim-
ulate k training steps from the current checkpoint by training the model with k batches
sampled from Dl(d) and compute the gain of the weighted dev-loss. This computation
is inspired by the target prediction gain in Graves et al. (2017). However, where Graves
et al. (2017) used accumulated gains from the past as rewards, we instead predict the
usefulness of each domain for improving the future performance of the system given its
current state. This is achieved by simulating a round of training with only the data from
one domain. Furthermore, the choice of the parameterization of the sampling distribution
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in our method differs from that of Graves et al. (2017), although this choice is empirical.

The work of Wang et al. (2020c) is also related: it is based on the Bi-level Optimization
framework, which aims to find an optimal static distribution λλλ

l that will result in the best
NMT model with respect to a given target dev set at the end of training. These authors
also derive a similar form of update for ψψψ . However, their reward is the cosine similarity
between the gradient computed with the training data from one domain and the gradient
computed with the dev set. We compare this approach with ours in the experiment section.

7.3.2 MDAC for (multi) domain adaptation

The setting developed in previous sections is quite general and can, in principle, accom-
modate the variety of situations mentioned above, and many more: basic domain adaption,
multi-domain adaptation with various target distributions, possibly including domains un-
seen in training. In our experiments, we would like to better assess the true potential of
MDAC in these settings and seek to experimentally answer the following questions:

• is MDAC a viable alternative to conventional fine-tuning? In particular, does it
enable to better take advantage of relevant data from other domains?

• is MDAC also a viable option in multi-domain adaptation scenarios?
• does MDAC also enable to perform unsupervised (multi-)domain adaptation?

These questions are further explored in Section 7.5. We now turn to our experimental
conditions.

7.4 Experimental settings

7.4.1 Data and metrics

In this work, we reuse the MDMT setting of Section 4.4.1, which has proved to be chal-
lenging for MDMT systems. We uses the same metric and processing procedure as in
Section 4.4.1. For the sake of brevity, we will not provide the description here.

7.4.2 Baseline systems

Our baselines are standard for multi-domain systems.1 Using Transformers implemented
in OpenNMT-tf2 (Klein et al., 2017), we build the following systems:

• Generic models trained with predefined mixtures of the training data taking the

1We however omit domain-specific systems trained only with the corresponding subset of the data,
which are always inferior to the mix-domain strategy (Britz et al., 2017).

2https://github.com/OpenNMT/OpenNMT-tf
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form:

λα(d) =
qα

d
nd

∑
d=1

qα
d

qd =
| Ns

d |
Ns (7.1)

with α ∈ {0,0.25,0.5,0.75,1.0}. We denote these as Mixed-α below. Mixed-0
uses a uniform distribution, Mixed-1.0 the empirical domain distribution;

• fine-tuned models (Luong & Manning, 2015; Freitag & Al-Onaizan, 2016) which
was already presented in Section 4.4.2. Their implementations are provided in Ap-
pendix A;

• systems trained with fixed data mixtures corresponding to λλλ
l ∈
[
λλλ 0,λλλ 0.25,λλλ 0.5,λλλ 0.75,λλλ 1.0

]
;

these are used in the multi-domain experiments of Section 7.5.3;
• our own implementations of recent dynamic sampling proposals from the literature:

Curriculum Learning (CL) of Zhang et al. (2019) and Differential Data Selection
(DDS) of Wang et al. (2020c) (see details below);

All models use embeddings and hidden layers of dimension 512. Transformer models
contain 8 attention heads in each of the 6+6 layers; the inner feedforward layer contains
2048 cells. Training lasts for 200K iterations, with batches of 12,288 tokens, Adam with
parameters β1 = 0.9, β2 = 0.98, Noam decay (warmup steps = 4000), and a dropout rate
of 0.1 in all layers.

7.4.3 CL and DDS’s re-implementation

We re-implement DDS in Tensorflow without any change in the choices of parameteri-
zation and hyper-parameters compared to the original code of Wang et al. (2020c).3 We
also re-implement the approach of Zhang et al. (2019) according to the authors’ descrip-
tion. For each domain adaptation experiment, we combine the training data of all other
domains into one corpus then compute the cross-entropy difference score of each source
sentence of this combined dataset. We then sort and split the corpus into 9 shards and
execute curriculum learning with 10 shards, using the in-domain corpus as the first shard.

7.4.4 MDAC systems

The behavior of MDAC only depends on (a) the initial domain distribution at the start of
training λλλ

l
t=0, and (b) the targeted (dev/test) distribution λλλ

t . We thus report these systems
as MDAC(λλλ

l
t=0, λλλ

t
) and compare with DDS using the same settings.

In our work, we parameterize the distribution λλλ
l as follows (with β = 24 in all experi-

3https://github.com/cindyxinyiwang/multiDDS
4This setting corresponds to the spherical softmax of de Brébisson & Vincent (2016).
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ments):

λ
l(d;ψψψ) =

ψ[d]β

∑i ψ[i]β
.

This parameterization avoids the “rich-get-richer” effect that we observe when using
λλλ (ψψψ) = softmax(ψψψ), which yields gradients wrt. ψ[d] that are proportional to exp(ψ[d])

(see also Figure 7.2). Additional settings for the hyper-parameters of our method include
the number of simulation steps k = 10 and the learning rate lrdata = 0.001. We update
the sampling distribution via 100 gradient descent iterations for almost all experimental
settings except that for adaptation with automatic clusters (Section 7.5.5), where we use
20 gradient descent iterations to avoid converging to degenerate distributions. We split
the training into 100 short sessions that last 2000 training steps each. The choice of those
hyper-parameters is mostly heuristic except for the learning rate lrdata which is optimized
via grid search over a set of values {0.001,0.0025,0.005}.

The computational cost of our approach is due to the simulation step, which is con-
ducted after every 2000 iterations to compute the reward of each domain. During the
simulation step, we update the temporary checkpoint with k updates for each domain,
which cost as much as k training updates. Therefore, we execute k× nd updates in total
after every 2000 iterations. Our algorithm approximately costs 1+ k×nd

2000 times as much as
a standard training.

7.4.5 Experimental tasks

We evaluate and compare our method with multiple baselines in the 5 following con-
ditions. In the supervised domain adaptation task, given the data from 6 domains (med,
bank, law, it, talk, rel), we aim to build distinct expert NMT models for each domain.
To challenge the flexibility of the method, we also consider a bi-domain adaptation task,
where given the same 6 domains, we only focus on adapating only to 2 domains.

In the multi-domain adaptation task, given the same 6 domains, we aim to build one
single NMT model that would perform optimally, assuming a uniform distribution of
domains during the test.

In a fourth experiment (unseen domain adaptation), given training data in 6 domains
and a small development set of a new domain (News in our case), we aim to build an NMT
model which performs well for the unseen domain.

Finally, in the unsupervised domain adaptation task, we cluster all available training
data into 30 clusters using the KNN algorithm in the same way as in (Tars & Fishel, 2018),
then adapt these clusters to one of 6 domains using the corresponding in-domain dev set.
We compare MDAC to DDS for each of our 6 test sets.
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7.5 Results and discussion

7.5.1 Domain Adaptation

In this setting, we aim to build an NMT model for one single domain: we accordingly set
λλλ

t to a deterministic distribution λλλ d , where the target domain d has probability 1.

We consider three initializations for MDAC and DDS, using λλλ 0, λλλ 1 and λλλ d . According
to Table 7.1, MDAC achieves the overall best performance when λλλ t=0 = λλλ 0. Doing
so proves much better than initializing with λλλ d for small domains: talk, bank andit.
Conversely, initializing with λλλ d is beneficial when targeting large domains such as med

and law. The same conclusion holds for DDS.

We now compare the best MDAC system (using λλλ t=0 = λλλ 0) to full fine-tuning. Ac-
cording to Table 7.1, fine-tuning is better for large domains such as med and law, while
MDAC outperforms fine-tuning by approximately 1.2 BLEU for bank and 1.0 BLEU for
rel. This indicates that for small domains, out-of-domain data helps improve the gen-
eralization and that MDAC is able to exploit both the in-domain and the out-of-domain
training data instead of edging out the out-of-domain training data as in fine-tuning. Re-
sults for DDS display similar trends but are always outperformed by MDAC. The behavior
of CL, which does only well the large domain med lag somewhat behind.

domain d = med law bank talk it rel avg.
FT-Full(d) 40.3 63.8 54.4 38.5 52.0 91.0 56.7
CL(d) 40.2 60.2 53.7 36.5 51.1 91.1 55.5
DDS(λλλ 0,λλλ d) 39.6 60.1 55.0 38.5 52.5 92.0 56.3
MDAC(λλλ 0,λλλ d) 39.6 62.5∗∗ 55.6∗ 38.5 52.4 92∗∗∗ 56.8
DDS(λλλ 1,λλλ d) 39.7 53.9 49.6 37.9 43.1 64.3 48.1
MDAC(λλλ 1,λλλ d) 40.2 59.9 52.6 38.5 50.7 79.8 53.6
DDS(λλλ d ,λλλ d) 39.9 63.9 54.5 35.4 51.2 91.8 56.1
MDAC(λλλ d ,λλλ d) 40.6 63.9 54.5 35.6 51.3 92.3 56.4

Table 7.1: Domain adaptation experiments. We report BLEU scores of each method for
6 target domains and their average: each column corresponds to a distinct system. (∗)
MDAC is significantly better than CL, fine-tuning and DDS with p < 0.05. (∗∗) MDAC is
significantly better than CL and DDS with p < 0.05. (∗∗∗) MDAC is significantly better
than CL, fine-tuning with p < 0.05.

7.5.2 Bi-domain adaptation

In these control experiments, we showcase the flexibility of dynamic sampling and try to
adapt to (arbitrary) pairs of target domains with equal weight and contrast our results with
those of DDS. Results are in Table 7.2. Here, MDAC significantly outperforms DDS in
two settings (med+it and law+bank) while being surpassed in talk+rel.
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7.5.3 Multi-domain adaptation

We now turn to a more realistic scenario and consider multi-domain adaptation, which
aims to train one single system with optimal performance averaged over 6 domains. This
setting targets a uniform test distribution λλλ

t = λλλ 0. In this situation, CL (Zhang et al.,
2019) does not apply. We therefore only contrast the performance of MDAC, DDS and
several fixed training data distribution λλλ

l ∈
[
λλλ 0,λλλ 0.25,λλλ 0.5,λλλ 0.75,λλλ 1.0

]
, where λλλ α is de-

fined according to equation (7.1).

We again initialize MDAC and DDS with two distribution λλλ 0 and λλλ 1. According to
Table 7.3, MDAC achieves the best performance with initial (uniform) λλλ 0. The same
conclusion holds for DDS. For this configuration, MDAC outperforms in average static
training distributions including

[
λλλ 0,λλλ 0.75,λλλ 1.0

]
by a significant margin, and performs

slightly better than
[
λλλ 0.25,λλλ 0.5

]
. This indicates that MDAC allows us to skip the some-

what heuristic choice of the optimal training mixture.

A second observation is that DDS is again outperformed by MDAC by a significant
margin of 1.5 BLEU on average; the only domain where DDS does (much) better is
med. Figure 7.2, where we plot the evolution of the training mixture in the course of
training sessions, helps understand the difference between the two methods. For DDS
(Figure 7.2a), the sampling distribution quickly converges towards a bi-domain mode in
which only med and rel have significant probability – hence the good performance on the
former domain. In contrast, the distribution computed by MDAC evolves more smoothly;
small domains such as bank, it, talk and rel receive a larger proportion of training data
in the early stages; their weights then slowly decrease as larger domains such as med and
law increase their share. This, however, only happens at the end of the training, when the
NMT models might have already been close to their optimal performance for the small
domains.

domain d = med law bank talk it rel

DDS(λλλ 0,λλλ 2) 39.5 - - - 50.1 -
MDAC(λλλ 0,λλλ 2) 39.1 - - - 51.8∗ -
DDS(λλλ 0,λλλ 2) - 60.8 53.3 - - -
MDAC(λλλ 0,λλλ 2) - 61.9∗ 54.5∗ - - -
DDS(λλλ 0,λλλ 2) - - - 37.9 - 91.3
MDAC(λλλ 0,λλλ 2) - - - 36.9 - 90.4

Table 7.2: Adapting to two domains. For a given line, non empty columns correspond to
the pair of target domains. (∗) MDAC is significantly better than DDS with p < 0.05.
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domain d = med law bank talk it rel mean
Mixed-0 38.6 59.3 53.7 37.3 51.0 90.4 55.1
Mixed-0.25 38.9 59.6 53.3 37.6 50.5 90.6 55.1
Mixed-0.5 39.0 60.2 52.5 38.5 51.9 90.3 55.4
Mixed-0.75 39.4 59.9 51.9 38.8 50.0 87.6 54.6
Mixed-1 40.3 59.5 49.8 36.4 49.0 80.0 52.5
DDS(λλλ 0,λλλ 0) 40.1 56.9 50.7 37.4 46.8 92.0 54.0
MDAC(λλλ 0,λλλ 0) 38.5 60.3∗∗ 54.4∗ 37.3 51.3∗∗ 91.4∗ 55.5∗∗

DDS(λλλ 1,λλλ 0) 40.6 55.5 48.0 36.2 46.9 60.1 47.9
MDAC(λλλ 1,λλλ 0) 40.2 59.3∗∗ 51.0∗∗ 36.9∗∗ 48.6∗∗ 80.7∗∗ 52.8∗∗

Table 7.3: Multi domain adaptation. For a given line, all the columns correspond to the
same multi-domain system. (∗) MDAC is significantly better than Mixed-α with p< 0.05.
(∗∗) MDAC is significantly better than DDS with p < 0.05.

(a) DDS (b) MDAC

Figure 7.2: Evolution of the sampling distribution during training.

7.5.4 Unseen domain

The left part of Table 7.4 displays the performance on the unseen domain news for
NMT systems trained with the mixtures λλλ

l ∈
[
λλλ 0,λλλ 0.25,λλλ 0.5,λλλ 0.75,λλλ 1.0

]
and with dy-

namic data selection (MDAC and DDS). These systems have insignificant differences in

domain d = news domain d = med law bank talk it rel mean
Unseen domain Training with 30 clusters

Mixed-0 25.7 DDS(λλλ
∗,λλλ d) 38.3 60.1 50.3 35.8 49.1 90.1 53.9

Mixed-0.25 25.8 MDAC(λλλ
∗,λλλ d) 39.2∗ 61.6∗ 52.0∗ 38.2∗ 49.1 89.7 55.0∗

Mixed-0.5 26.5
Mixed-0.75 26.8
Mixed-1 26.9
DDS(λλλ 0,λλλ news) 26.3
MDAC(λλλ 0,λλλ news) 26.3

Table 7.4: Unseen domain adaptation (left) and unsupervised adaptation (right). For a
given line, each column corresponds to one distinct system. (∗) MDAC is significantly
better than DDS.
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BLEU, showing that dynamic mixture does not improve the robustness of the NMT sys-
tem against unseen domains. However, the fact that the performance of MDAC and DDS
is close to the best performance is a sign that they can also apply in such challenging
situations.

7.5.5 Automatic clustering

The right part of Table 7.4 reports the performance of NMT systems adapted to each do-
main.5 In comparison to Section 7.5.1, the training data is distributed in 30 automatic
clusters instead of the 6 original domains. Splitting the train data into small groups pro-
vides the learner with extra degrees of freedom when selecting the best distribution. How-
ever, as these clusters are built automatically, they are noisier in nature. According to the
results in Table 7.4, this scenario is hard both for DDS and MDAC, which perform much
worse than for the supervised DA setting. This again signals the importance of initial-
ization: analyzing the clustering, we find that the data for rel mostly correspond to one
single cluster. When using a uniform initialization, this cluster starts with a very small
weight and never succeeds in yielding the (good) performance observed in the DA setting.

7.5.6 Reward analysis

(a) DDS (b) MDAC

Figure 7.3: Evolution of the rewards during training.

For MDAC, the magnitude of the rewards decreases dramatically from 1.e-2 to 1.e-3
in about first 10k iterations, then stays around 1.e-3 until the end of the training. We have
not tried to rescale the magnitude of rewards to (-1,1) as proposed in Graves et al. (2017)
but left this perspective for the future work.

For DDS, the magnitude of the rewards decreases dramatically from 1.e-1 to 1.e-2 in
about first 10k iterations, then stays around 1.e-2 until the end of the training.

5A more detailed analysis is in the supplementary material.
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7.6 Related Work
Most approaches to adaptive/dynamic data selection take inspiration from Bengio et al.
(2009), where the notion of curriculum learning is introduced. CL relies on the notion of
the “easiness” of a sample to schedule the presentation of training data so that the easiest
examples are presented first and the hardest last. Various ways to automate CL using the
framework of multi-armed bandits are explored in (Graves et al., 2017), which has been
an inspiration for our implementation. While the initial aim was primarily to improve
and speed up training, CL has also proven useful for domain adaptive / multi-domain /
multilingual MT, based on alternative definitions of “easiness”. For instance, Zhang et al.
(2019) study supervised DA and propose a curriculum approach which progressively aug-
ments the training data: in the early stages, only in-data is used, while shards containing
less relevant6 data are introduced in later stages. This is somehow opposite to the rec-
ommendations of van der Wees et al. (2017), whose gradual fine-tuning progressively
focuses on the in-domain data.

Kumar et al. (2019) use reinforcement techniques (deep Q-learning) to learn the cur-
riculum strategy: in this work, complexity corresponds to difficulty levels which are
binned using contrastive data selection. The reward is based on the decrease of the devel-
opment set’s loss that results from the actual data selection strategy. The same technique
is recently applied to multilingual NMT in (Kumar et al., 2021). Zhou et al. (2020) pro-
pose another curriculum-based approach which instead relies on instance uncertainty as
a measure of their difficulty and presents the data sample starting with the easiest (more
predictable) first. Another contribution of this work is an alternative criterium for stop-
ping the training. More related to our problems, Wang et al. (2020b) adapt CL for multi-
domain adaptation, where an optimal instance weighting scheme is found using Bayesian
optimization techniques. Each step consists of (a) weighting instances based on relevance
features, (b) fine-tuning a pretrained model using the weighted training set, and is applied
iteratively to train a sequence of models. The one that maximizes the development set
performance is finally retained.

7.7 Conclusions and outlook
In this study, we have presented a generic framework to perform a variety of standard
adaptation tasks for machine translation, ranging from the conventional supervised do-
main adaptation to multi-domain adaptation and unseen domain adaptation. By experi-
menting with all these settings, we have shown that the same algorithm, aimed at auto-

6Domain distance is computed with Lewis-Moore scores (based on the cross-entropy of in-domain LM
and mixed-domain LM).
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matically finding an effective data sampling scheme during the course of training, could
be used in all these situations. This algorithm, we believe, provides us with a more sound
approach to (multi-domain) DA than existing heuristics and dispenses with the costly
search of optimal meta-parameters. Another contribution of our work is an experimental
comparison of recent approaches to dynamic data selection. In the future, we intend to
continue developing this approach and improve its effectiveness. One issue that we have
left unaddressed is reward normalization. We remarked that rewards in early stages of the
training have much higher magnitude than in the middle and ending stages making pre-
mature judgments of the utility of each domain. Kumar et al. (2019) also reported this
problem. Graves et al. (2017) proposed a simple rule for re-scaling rewards to the interval
(−1,1). Another area where we need to progress is the unsupervised learning setting of
Section 7.5.5, where our results still lag way behind that of supervised DA - this might
be due to the inability of our simplistic optimization strategy to handle a large number of
domains.
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Chapter 8

Attempts at unsupervised multi-domain
adaptation

8.1 Introduction
In this chapter, we discuss recent studies on the fourth setting of MDMT presented in
Section 3.6. When the test domain is undetermined, we can work around by adapting the
generic NMT system to a latent domain of the test sentence on the fly. Li et al. (2018);
Farajian et al. (2017b) used similar sentences to adapt the NMT system to the test sen-
tence. The authors proposed finetuning the NMT model over a batch of similar sentences
retrieved from a translation memory (TM). We group these method under ”one-sentence
adaptation paradigm”. Recent works of Bulté & Tezcan (2019); Xu et al. (2020) intro-
duced a simple and elegant framework where similar translations are used to improve the
context of the translation effectively boosting translation accuracy. We group these meth-
ods into the group of ”context-augmented NMT”. In all cases, context-augmented NMT
is performed by simply injecting retrieved sentences in the input stream prior to inference
decoding. Context-augmented NMT and one-sentence adaptation can be grouped into a
larger category, that we name retrieval-based MT.

In this chapter, our primary goal is to compare two paradigms: on-the-fly one-sentence
adaptation (Farajian et al., 2017b; Li et al., 2018) and augmented context NMT (Bulté &
Tezcan, 2019; Xu et al., 2020). We also discuss how different retrieval methods affect the
quality of context-augmented NMT.

Finally, we propose a variant of Bulté & Tezcan (2019), which performs slightly better
and can be used with monolingual data, providing a scenario where NMT can be effec-
tively helped by large amounts of available data. Our proposal does not require to change
the NMT architectures or algorithms, relying solely on input preprocessing and on pre-
fix (forced) decoding (Knowles & Koehn, 2016; Santy et al., 2019), a feature already
implemented in many NMT toolkits.
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8.2 Context-augmented NMT
This section describes the general context-augmented NMT with similar translations. We
follow the work by Bulté & Tezcan (2019); Xu et al. (2020) and build a translation model
that incorporates similar translations from a translation memory (TM) to boost translation
accuracy. In this work, TMs are parallel corpora containing translations falling in the
same domain as test sentences.

The following section describes several common retrieval methods used in Farajian
et al. (2017b); Bapna & Firat (2019a); Bulté & Tezcan (2019); Xu et al. (2020). We will
also describe a variant of Pagliardini et al. (2018), which is developed by Josep Maria
Crego.

8.2.1 Similarity Computation

We detail the sentence similarity tools evaluated in this work. The first employs discrete
word representations, while the rest relies on building distributed representations of sen-
tences to perform similar sentence retrieval:

FM: fuzzy matching is a lexicalized matching method aimed to identify non-exact matches
of a given sentence. Following Xu et al. (2020), we use FuzzyMatch1, where the fuzzy
match score FM(si,s j) between two sentences si and s j is:

FM(si,s j) = 1−
ED(si,s j)

max(|si|, |s j|)

with ED(si,s j) being the Edit Distance between si and s j, and |s| is the length of s.

S2V: we use sent2vec2 (Pagliardini et al., 2018) to generate sentence embeddings.
The network implements a simple but efficient unsupervised objective to train distributed
representations for sentences. The model is based on efficient matrix factor (bilinear)
models (Mikolov et al., 2013a,b; Pennington et al., 2014).

CBON: the Continuous Bag of n-grams (CBON) model denotes our re-implementation of
the previous sent2vec model. In addition to multiple implementation details, the main
difference is the use of arbitrary large n-grams to model sentence representations, where
sent2vec only used bigrams.

Both sent2vec and CBON learn a source (or context) embedding vvvw for each n-gram

1https://github.com/systran/FuzzyMatch
2https://github.com/epfml/sent2vec
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w in the vocabulary V . Once the model is trained, the embedding of sentence s (hs) is
obtained as the average of its n-gram embeddings:

hhhs =
1
|R(s)| ∑

w∈R(s)
vvvw

where R(s) is the list of n-grams (including unigrams) occuring in sentence s and vvvw is
the target embedding of n-gram w.

The similarity score EM(si,s j) between two sentences si and s j is then defined via the
cosine similarity of their sentence vector representations hi and h j:

EM(si,s j) =
hi ·h j

||hi||× ||h j||
,

where ||h|| denotes the norm of vector h.

Note that models differ in their vocabularies, which are built selecting the most frequent
n-grams. Both models implement Negative Sampling to avoid the softmax computation.

8.2.2 How to present similar translations to an NMT model

There are several schema to integrate similar translations to an NMT model. We describe
below three simple schema, which do not require change in the NMT architecture.

tgtk this approach was proposed in the work of Bulté & Tezcan (2019), where the
input sentence in the source language is augmented with the k translations (in the target
language) having the highest matching score (FM or EM) in the TM.

In training, sentence pairs (s,t) are preprocessed as follows: the source sentence s is
concatenated with translations tk of the k most similar sentences (sk) to s found in the
TM. Augmented translations are sorted by matching score, with k = 1 denoting the most
similar. Sentences in the source stream are separated using the special token ◦.

src: tk ◦ ...◦ t2 ◦ t1 ◦ s
tgt: t

In inference, only the source-side is input to the translation network.

Xu et al. (2020) reported an issue in the method of Bulté & Tezcan (2019) regarding
unrelated tokens present in similar translations tk. The model effectively learns to copy
most of the content present in similar translations, but has difficulties to avoid also copy-
ing unrelated words. Consider for instance the input sentence s = pertussis vaccin with
similar sentence s1 = measles vaccin and its corresponding translation t1 = vaccin contre

la rougeole. Following the tgtk scheme, the NMT input consists of:
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vaccin contre la rougeole ◦ pertussis vaccin

yielding the output: vaccin contre la rougeole. The word rougeole is actually the trans-
lation of an unrelated word (measles). The model often copies such unrelated tokens (Xu
et al., 2020), due to the fact that they are present in the input stream as similar translations
(tk) and are usually semantically related to the correct translation choice (here coqueluche,
the correct translation for pertussis).

tgtk+STU adopts the proposal of Xu et al. (2020) to alleviate the unrelated word prob-
lem. It relies on an additional source stream (factor) to label related/unrelated tokens. In
this scheme the input of the NMT model contains two parallel streams:

src1: vaccincontrela rugeole◦ pertussisvaccin
src2: T T T U T S S
tgt: vaccincontrela coqueluche

Tokens in the second stream are: S for source tokens, U for unrelated and T for related
target tokens. rougeole is thus tagged as an unrelated word that must not be copied in
the translation output. Word embeddings are built after concatenating both factor embed-
dings. Xu et al. (2020) claim achieving a 8% reduction of unrelated tokens when using
this scheme.

Note that this solution is computationally expensive as it requires to identify related/un-
related tokens in each input sentence and in the corresponding similar translations, based
in Xu et al. (2020) on word alignments and edit distance computations.

s+tk the solution introduced in Pham et al. (2020b) relieves us from the tagging burden.
It considers both sides of similar translations (sk and tk). Training streams take the form:

src: sk ◦ ...◦ s2 ◦ s1 ◦ s
tgt: tk ◦ ...◦ t2 ◦ t1◦ t

In inference, target-side similar translations tk are used by the model as a target prefix.
The initial steps of the beam search use the given prefix tk ◦ ...◦ t2 ◦ t1◦ in forced decoding
mode, returning to a regular beam search after the last ◦ token is generated.

A similar strategy of concatenating previous and current sentences was explored by
Tiedemann & Scherrer (2017) in the context of handling discourse phenomena. How-
ever, since we use true translation as prefixes, our strategy does not suffer from exposure
bias Ranzato et al. (2016) and the subsequent error propagation problem. Continuing on
our running example, during inference the model receives:
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input: measles vaccin ◦ pertussis vaccin
prefix: vaccin contre la rougeole ◦

the encoder embeds the input stream, and force-decodes the target prefix, before starting
the translation generation. Note that during beam search, the decoder has thus access both
to all input tokens (sk and s) as well as to similar translations tk (in the translation prefix).

8.3 Experimental Framework

8.3.1 Corpora

In this chapter, we use an experimental setting larger than the one of Chapter 4. We
experiment with the English-French language pair and data originating from eight do-
mains, corresponding to texts from three European institutions: the European Parliament
(EPPS), the European Medicines Agency (EMEA) and the European Central Bank (ECB);
Legislative texts of the European Union (JRC); IT-domain corpora corresponding to KDE4

and GNOME; News Commentaries (NEWS); and parallel sentences extracted from Wikipedia
(WIKI). Table 8.1 contains statistics regarding the corpora used in this work3 (Tiedemann,
2012). Statistics are computed after splitting off punctuations.

Corpus #Sents (K)
Lmean Vocab (K)

English French English French
Parallel Corpora

EPPS 1,992.8 27.7 32.0 129.5 149.2
NEWS 315.3 25.3 31.7 90.5 96.7
WIKI 749.0 25.9 23.5 527.5 506.6
ECB 174.1 28.6 33.8 45.3 53.5
EMEA 336.8 16.8 20.3 62.8 68.9
JRC 475.2 30.1 34.5 81.0 83.5
GNOME 51.9 9.6 11.6 19.0 21.6
KDE4 163.9 9.1 12.4 48.7 64.7

Monolingual Corpora
WIKI 6,426.8 - 24.1 - 1,626.3
NEWS 83,567.8 - 25.5 - 3,444.1

Table 8.1: Corpora statistics. Note that K stands for thousands and Lmean is the average
length in words.

Each corpora is considered as a different domain. Training data sets are also employed
as TM of the corresponding domain. This is, similar sentences are mined from the same
training set that is used to build the model. Note that we also consider monolingual
(French) corpora. For the News domain we use all available monolingual WMT news

3Freely available from http://opus.nlpl.eu
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crawl data4. For the Wikipedia domain, we use the French-side of the WikiMatrix data
(Schwenk et al., 2021).

We randomly split the parallel corpora by keeping 500 sentences for validation, 1,000
sentences for testing and the rest for training. All data is preprocessed using the Open-
NMT tokenizer5 (conservative mode).

8.3.2 System Configurations

This section gives learning/inference details of the various systems used in this work.

Similarity

For fuzzy matching FM we follow the works of Koehn & Senellart (2010); Bulté & Tezcan
(2019); Xu et al. (2020) and keep the n-best matches when FM(s1,s2) ≥ 0.5 with no
approximation. Concerning S2V, the model is trained with default options during 20
epochs using all training data. We use an embedding dimension of 300 cells.

Regarding CBON, we learn models using also the entire training data during one epoch
(∼50,000 iterations). Similarly to S2V we use 10 negative samples per positive word to
approximate the softmax, a batch size of 2k examples, and embedding size of 300 cells.
We build CBON models using 3-grams and 4-grams to enable a comparison with sent2vec

which only uses bigrams. All vocabularies are selected keeping the 500,000 most frequent
n-grams (n = 2 for S2V and n = 3 and 4 for CBON).

For both CBON and S2V models, we use the 5-best matches when EM(s1,s2) ≥ 0.8 6.
In all cases, perfect matches are not used for training. Accuracy results on the translation
task indicate that 3-grams yield slightly lower accuracy results than those obtained with
4-grams. In the remainder, we always use the 4-gram version of CBON.

Sentence Retrieval

To identify similar translations using distributed representations, we use the faiss7 search
toolkit (Johnson et al., 2019) through its Python API with exact FlatIP index.

4http://data.statmt.org/news-crawl/
5https://github.com/OpenNMT/Tokenizer
6Optimization experiments on a held-out development set are carried out for both models.
7https://github.com/facebookresearch/faiss
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Translation

Our NMT models rely on the Transformer base architecture, implemented in the OpenNMT-tf8

toolkit (Klein et al., 2017). We use the standard setting of Transformers for all exper-
iments: size of word embedding: 512; size of hidden layers: 512; size of inner feed-
forward layer: 2,048; number of heads: 8; number of layers in the encoder or in the
decoder: 6. In the tgt1+STU scheme, token (508 cells) and STU (4 cells) streams are
concatenated as in MDMT systems with domain embeddings of Kobus et al. (2017), thus
using the same number of parameters in all schemes.

For training, we use the Adam (Kingma & Ba, 2015) optimiser with a batch size of
4,096 tokens. We set the warmup steps to 4,000 and update the learning rate for every
8 iterations. Models are optimised during 300K iterations, using a single NVIDIA V100
GPU. We limit the length of training sentences to 300 BPE tokens (Sennrich et al., 2016b)
in both source and target sides to enable the integration of similar sentences. We use a
joint BPE-vocabulary of size 32K for both source and target texts. Inference is performed
with a beam size of 5 using CTranslate29, a custom C++ runtime inference engine for
OpenNMT models that enables fast CPU decoding and also implements prefix decoding.
For evaluation, we report BLEU (Papineni et al., 2002) scores computed by detokenized,
truecasing multi-bleu.perl10.

We re-implement the work of Farajian et al. (2017b) as a contrastive model that we
denote µadapt. Note that we only experiment with the basic version of this work, where
the closest neighbours of the input sentence are first retrieved from the memory and then
used to fine-tune a generic model during 15 additional iterations with a fixed learning rate
of 0.0005; the fine-tuned model is then used to produce the translation of the given input
sentence. In addition, Farajian et al. (2017b) include a variant where learning rate and
number of epochs are dynamically adapted considering sentence similarity. Adaptation is
run on a sentence-by-sentence basis.

8.4 Results
Retrieval algorithms employed in this work are significantly faster than NMT Transformer
decoding, thus implying a limited decoding overhead.

Table 8.2 reports efficiency scores (tokens/second) for computing vector representa-
tions (Vector), performing sentence retrieval (Retrieval) and translation (NMT) for the
WIKI test set according to the similarity model and context-augmented schema used. Re-

8https://github.com/OpenNMT/OpenNMT-tf
9https://github.com/OpenNMT/CTranslate2

10https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/
multi-bleu.perl
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Model Schema Vector Retrieval NMT
Base - - - 806

FM
tgt1

- 25K
750

s+t1 687
S2V tgt5 222K

17K
639

CBON
tgt5

59K
s+t5 523

Table 8.2: Efficiency (tokens/second) of each step for different inference configurations.
All steps run on CPU (16 cores). K stands for thousands.

sults show that the computational cost is dominated by the NMT step. This step, in turn,
is affected by the length of the input (and prefix) streams. Table 8.3 reports BLEU scores
for various configurations, tested on 8 domain-specific test sets. The last column (avg) re-
ports average results. This table also reports the number of input sentences (out of 1,000)
for which at least one similar sentence was retrieved (in a smaller font).

Sim Scheme ECB EMEA EPPS GNOME JRC KDE4 NEWS WIKI avg

Base - 49.23 49.53 42.83 49.99 59.05 49.52 36.66 35.15 46.50

FM tgt1 56.21 59.34 42.08 60.95 65.86 53.49 35.80 34.54 51.03
(Bulté & Tezcan, 2019) 585 765 195 686 612 575 54 184 457

FM tgt1+STU 57.30 61.03 42.95 62.68 67.24 54.68 35.54 35.16 52.07
(Xu et al., 2020) 585 765 195 686 612 575 54 184 457

FM s+t1 56.16 60.88 43.18 62.50 67.58 55.25 36.55 36.94 52.38
585 765 195 686 612 575 54 184 457

S2V s+t5 57.16 60.44 43.19 62.44 65.39 51.32 35.98 35.82 51.47
740 840 161 639 735 623 39 297 509

CBON s+t5 56.50 61.04 42.22 63.76 68.75 55.83 35.41 36.38 52.49
710 896 195 854 733 862 63 378 586

FM µadapt 53.09 55.02 43.04 53.88 62.99 48.70 36.48 35.81 48.63
(Farajian et al., 2017b) 585 765 195 686 612 575 54 184 457

CBON µadapt 53.41 53.32 43.20 54.77 63.37 52.06 36.47 36.39 49.12
(Farajian et al., 2017b) 710 896 195 854 733 862 63 378 586

Table 8.3: BLEU scores for various model configurations and 8 test domains. Smaller
numbers correspond to the number of input sentences in each domain for which at least
one similar sentence is found.

All NMT models are built using the concatenation of the original parallel corpora in
Table 8.1. The Base configuration does not integrate similar sentences in the training
data. All other models extend the original corpora with sentences retrieved following
similarity methods (Sim) introduced in Section 8.2.1 and integration schemes presented
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in Section 8.2.2 (Scheme).

The second block of results in Table 8.3 displays scores obtained when performing
translations extended with fuzzy matches FM. In line with results presented by Xu et al.
(2020), using a second stream to mark related/unrelated tokens (+STU) yields a boost
in performance of around 1 BLEU points. When the s+t1 scheme is used, the average
improvement reaches 1.25 BLEU points.

The third block compares translation results obtained when identifying similar trans-
lations by S2V and CBON. In both cases, the s+t5 scheme is used. The choice for 5-best
similar translations and EM(si,s j) ≥ 0.8 threshold is made after running optimization
work on a held out development set. Sentences identified by CBON outperform those se-
lected by S2V. The idiosyncrasy of fuzzy matching does not enable to find multiple similar
sentences for a given input sentence. Overall best results are obtained by the CBON s+t5

configuration. Note that as expected, the number of similar translations found using dis-
tributed representations is larger than those found by fuzzy matching.

Finally, the last block in Table 8.3 gives results for a system that retrieves similar sen-
tences to dynamically adapt the model on a sentence-per-sentence basis (Farajian et al.,
2017b; Li et al., 2018). We show micro-adaptation results when similar sentences are
found by CBON and FM models (µadapt). In our experiments, micro-adaptation does not
yield the gains observed with context-augmented methods. As previously stated, the best
performing variants of the adaptation method presented in Farajian et al. (2017b) were
not included in our comparison. Variants employ a dynamically adapted learning rate and
number of epochs.

Monolingual Corpora

Retrieval results shown in Table 8.3 (small font numbers) indicate a reduced number of
similar sentences found for some domains (NEWS, EPPS and WIKI). In the context of scarce
similar sentences, the boost in translation quality observed for most domains is subse-
quently reduced. The case of the NEWS domain is particularly harmful since worst results
are always obtained when compared to the Base system.

However, very large monolingual collections of texts exist, far exceeding the amount of
available parallel corpora. The latter are more expensive to collect and typically only exist
for a limited number of domains and language pairs. With the objective to enhance NMT
with monolingual corpora, we now apply the methods presented above to monolingual
corpora.

We collect monolingual corpora in the target language (French in this work) and trans-
late each sentence back into English to obtain synthetic parallel data. Similar to back-
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translation experiments in Sennrich et al. (2016a), we only use original (human-crafted)
target-language data. We expect this to add less noise than incorporating synthetic target-
language data into the NMT input. Once translated into English, the various context-
augmented approaches identify similar synthetic sentences and injects both the synthetic
source and original target in the NMT input stream. Note that cross-lingual sentence
embedding models exist (Schwenk & Douze, 2017; Sabet et al., 2019; Conneau & Lam-
ple, 2019b) but our preliminary experiments using these tools did not show satisfactory
results.

Thus, we exploit large collections of French texts for the News and Wikipedia domains
(as detailed in Table 8.1) that we translate into English to enable similarity retrieval. Ta-
ble 8.4 reports BLEU scores obtained by the best performing network CBON following the
s+t5 scheme.

The supplementary number of similar sentences (468 input sentences have similar
translations) collected for the WIKI domain over parallel and monolingual11 corpora (par+mon)
yields an improvement of 2 BLEU points. However, very few (97) similar sentences are
identified in NEWS domain12 over nearly 95 million sentences (par+mon), showing a small
gain when compared to using only parallel sentences (par). The network does not succeed
to outperform the accuracy of the base system. As outlined by Bulté & Tezcan (2019);
Xu et al. (2020) the accuracy of context-augmented networks may slightly drop in perfor-
mance when no similar translations are integrated. He et al. (2021) mitigated this problem
by jointly training the NMT model with and without retrieval.

Sim Scheme Data NEWS WIKI

Base - - 36.66 35.15

CBON s+t5 par
35.41 36.38

63 378

CBON s+t5 par+mon
36.05 38.20

97 468

Table 8.4: Translation performance for the NEWS and WIKI domain test sets using sim-
ilar sentences retrieved from parallel data (par) and from both parallel and monolingual
(par+mon) data. The first two rows correspond to experiments already shown in Table 8.3.

11Test French sentences entirely found in monolingual WIKI corpora are not considered as similar trans-
lations.

12In all cases we consider similar sentences si and s j when (EM(si,s j)≥ 0.8)
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8.5 Discussion

Unrelated Words

As previously outlined in Section 8.2, Xu et al. (2020) raised a problem regarding unre-

lated words. It concerns those words that, even through they appear in similar translations,
must not be used to translate input sentences. An example of translation with unrelated
word is given in Section 8.2.2 where the input sentence with similar translation:

vaccin contre la rougeole ◦ pertussis vaccin

is translated as: vaccin contre la rougeole, the right translation being: vaccin contre
la coqueluche. The error is because word rougeole is present in the input stream and is
semantically related to coqueluche. The problem is particularly hurting when it involves
keywords, for example, the proper noun ”pertussis vaccin” in the above example, which
convey essential information regarding the meaning of sentences.

The work by Xu et al. (2020), that we denoted tgt1+STU, obtains an average reduction
of these erroneous words in the translation hypotheses of 8%. We conduct the same
experiment to analyse the performance of the new scheme s+t1 introduced in this work.
Table 8.5 reports the total number of unrelated words in 1-best similar sentences obtained
by fuzzy matching13. As can be seen, the scheme s+t1 further mitigates the apparition of
unrelated words in translations, with a drop of -8.3%.

Scheme ECB EMEA EPPS GNOME JRC KDE4 NEWS WIKI avg
tgt1+STU 3,555 2,320 312 1,285 3,515 940 39 344 1,538
s+t1 3,199 1,985 306 1,195 3,413 845 31 310 1,410
unrelated 6,310 4,405 4,405 2,473 6,309 2,358 236 1,591 3,510

Table 8.5: Number of unrelated words appearing in test sets according to different aug-
mentation schemes. The last row indicates the total number of unrelated words included
in 1-best FM similar sentences.

Similarity with Synthetic Sentences

Results in Table 8.4 show a clear boost in performance (∼2 BLEU points) when making use
of synthetic translations from the WIKI monolingual data set. We now want to measure the
noise introduced by synthetic translations when compared to human translations. Thus,
we consider the input sentences of the WIKI test set for which we found similar sentences

13We follow the procedure detailed in Xu et al. (2020) to identify related/unrelated words.
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in both the parallel (human translation) and monolingual (synthetic translation) corpus
(279 sentences).

Results in Table 8.6 show a clear drop in BLEU scores when using synthetic matches.
As expected, machine translation quality degrades the results of similarity search which
in turns provides less valuable similar translations.

retrieved sentences WIKI

par (human) 52.50
mon (synthetic) 49.94

Table 8.6: Results for a reduced test set (279 sentences) using CBON when integrat-
ing human and synthetic (back-translated) translations. Here, par = parallel, mon =
monolingual

8.6 Conclusions and outlook
We presented a comparison between two paradigms for undetermined train/test domains.
Both paradigms rely on similar translations to boost the quality of the prediction of an
NMT model. They admit a considerable latency in the retrieval. Moreover, the one-
sentence adaptation paradigm uses additional computational time to compute gradient
from a retrieved batch and update model for each test sentence. The context-augmented
methods have to process much longer input streams (in encoder and/or decoder) which
are K times longer than the sole test sentence. We also demonstrate that only extremely
similar retrieved translations boost the quality of context-augmented methods, limiting the
application cases of the methods. In fact, domains such as news, which does not include
similar translations with high scores in Fuzzy-match, or cosine similarity, can not benefit
from this technique. In our experimental setting, which test domains are included in
train domains, both paradigms outperform generic models and the finetuning method with
large margin. Our proposal variant of the work of Bulté & Tezcan (2019) demonstrates
a surprising improvement while using synthesis translation pairs, which is worth to be
studied further.
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Conclusions
This thesis aimed to clarify the objectives of MDMT, unify the mathematical notions used
in MDMT into one system of notations, and finally propose different approaches for the
supervised multi-domain adaptation setting. Besides, we discussed several attempts to
handle unknown test domains.

The performance of MDMT systems in individual test sets is usually considered a rule
of thumb to accept or reject a novel method. Still, they are often assessed by crudely
designed experiments. Moreover, the success of an MDMT system does not rely only on
the in-domain performance but also on the robustness with respect to unseen domains,
the cross-domain heterogeneity, the intra-domain heterogeneity, the growing number of
domains, and erroneous domain tags. Our most important contribution has been to build
a multi-criteria evaluation that assesses five previous properties of an MDMT system.
Those five ”axiomatic” properties correspond to many issues reported in the research of
(multi-)domain adaptation, which, however, have never been systematically formalized
and assessed with well-designed tests. We built an MDMT testbed in English−French

inspired by our proposed multi-criteria evaluation. The data in our testbed consists of
seven domains collected from OPUS. Furthermore, this collection is highly unbalanced,
which is ideal for assessing MDMT systems. We reimplemented and evaluated a large
set of popular MDMT methods that have been frequently used as baselines for comparing
with novel MDMT methods. We demonstrated that our MDMT testbed was challenging
and revealed many weaknesses of MDMT approaches, thus ideal for assessing the fu-
ture work in MDMT. Furthermore, this work illustrates the need to use a wide range of
domains to evaluate MDMT systems.

Secondly, our three proposal MDMT systems, including LDR, CDR and FT-Res-Gated,
constitute different ways to partition parameters/nodes between a subset of domain-agnostic
ones and a subset of domain-specific ones. Those systems can close the gap with fine-
tuning in a well-conditioned MDMT setting while being robust to erroneous domain tags.
However, our proposed methods are still far from fulfilling all of our MDMT multi-criteria
evaluations.
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The domains’ unbalanced train data challenges all the model-centric MDMT approaches.
Effectively, the performance of an MDMT model in each domain depends largely on how
often train instances of that domain are presented to that model. A heuristic fixed sam-
pling of the train domains usually lags behind more sophisticated dynamical sampling
strategies (Wang et al., 2020c). Moreover, fixed sampling strategies can not generalize
for non-standard test distributions such as uni-domain adaptation, bi-domain adaptation,
or unseen domain adaptation. We studied a group of dynamical sampling strategies which
are parametrizable and learned during the training. These methods can adapt the sampling
strategy to any predefined test distribution. Moreover, we demonstrated that this type of
sampling strategy upper-bounds fixed sampling strategies in general cases while achieving
good performance in particular circumstances such as uni-domain adaptation, bi-domain
adaptation, or unseen domain adaptation.

Besides, we analyzed several approaches for unknown test domains. These approaches
rely on text retrieval, which searches for the most similar translations given a source sen-
tence. There are two propositions to consume the retrieved examples: 1) fine-tuning the
current NMT model with these examples; 2) Encoding retrieved examples by an addi-
tional encoder or simply concatenating to the source sentence. On the one hand, those
methods strongly outperform strong MDMT baselines such as fine-tuning in many do-
mains. On the other hand, those approaches rely on a strong similarity of the retrieved
examples and admit a considerable latency due to the retrieval search and the processing
of the retrieved examples or the fine-tuning step.

Perspectives
Our work revisited the MDMT literature and illustrated several interesting problems that
lack attention from the community, such as the robustness with respect to unknown test
domains. For the popular supervised MDMT setting, we described five properties of an
effective MDMT system. Each of these fundamental requirements opens many possibili-
ties to improve the quality of an MDMT system. Our future work will be to improve these
qualities of an MDMT system.

All model-centric approaches share the same underlying idea, which is to distinguish
domain-agnostic parameters and domain-specific parameters. However, the heterogene-
ity in the proximity of the domains leaves an open question on whether the partition of
domain-agnostic and domain-specific parameters in one MDMT model can be optimized
automatically rather than predefined heuristically. Furthermore, the sampling strategies
should be optimized automatically with respect to the test distribution rather than being
chosen heuristically. Our study of dynamical sampling strategies is the first step in that
direction. The process of searching for the best hyperparameters or the best partitions for
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each pair of MDMT ”problem-method” should be carried by machine learning approaches
such as Reinforcement Learning.

Next, personalized MT is an extreme case of MDMT (Michel & Neubig, 2018) which
constitutes an exciting application in the MT industry. This situation rests on adapting an
MT system to a large number of translators’ writing styles; thus, MDMT systems are a
possible solution. It would, however, requires scaling the methods developed in this thesis
to thousands of domains, which remains a non-trivial task.

Besides, we have seen in Chapter 8 that retrieval-based MT demonstrated surprisingly
good performance in MDMT. However, this paradigm relies on the retrieval process,
which is predefined a priori and unrelated to the translation task. That leaves an open
avenue for developing retrieval processes dedicated to the retrieval-based models.

Finally, we hope that future work in multi-domain machine translation will rely on
our five axiomatic requirements and pay more attention to the experimental design to
assess the proposed method’s ability accurately. Furthermore, despite the importance of
in-domain performance, the robustness against variable test distributions should be equiv-
alently taken into account. As multilingual machine translation, multi-domain machine
translation is a promising paradigm for the MT industry and still needs lots of effort to
achieve its long-term objective.
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Daumé III, H. (2007). Frustratingly easy domain adaptation. In Proceedings of the
45th Annual Meeting of the Association of Computational Linguistics, (pp. 256–263).
Prague, Czech Republic: Association for Computational Linguistics.
URL https://aclanthology.org/P07-1033 [Cited on pages 80, 81, and 95.]
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Gülçehre, Ç., Firat, O., Xu, K., Cho, K., Barrault, L., Lin, H.-C., Bougares, F., Schwenk,
H., & Bengio, Y. (2015). On using monolingual corpora in neural machine translation.
arXiv e-prints, abs/1503.03535.
URL https://arxiv.org/abs/1503.03535 [Cited on page 55.]

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recog-
nition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
(pp. 770–778). [Cited on page 31.]

He, Q., Huang, G., Cui, Q., Li, L., & Liu, L. (2021). Fast and accurate neural machine
translation with translation memory. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers), (pp. 3170–3180). Online:
Association for Computational Linguistics.
URL https://aclanthology.org/2021.acl-long.246 [Cited on page 130.]

Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the knowledge in a neural network.
In NIPS Deep Learning and Representation Learning Workshop.
URL http://arxiv.org/abs/1503.02531 [Cited on page 55.]

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Comput.,
9(8), 1735–1780.
URL https://doi.org/10.1162/neco.1997.9.8.1735 [Cited on page 33.]

Hoffman, J., Mohri, M., & Zhang, N. (2018). Algorithms and theory for multiple-source
adaptation. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
& R. Garnett (Eds.) Advances in Neural Information Processing Systems 31, (pp.
8246–8256). Curran Associates, Inc.
URL http://papers.nips.cc/paper/8046-algorithms-and-theory-for-multiple-source-adaptation.
pdf [Cited on pages 66 and 109.]

Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B., De Laroussilhe, Q., Gesmundo,
A., Attariyan, M., & Gelly, S. (2019). Parameter-efficient transfer learning for NLP.
vol. 97 of Proceedings of Machine Learning Research, (pp. 2790–2799). Long Beach,
California, USA: PMLR.
URL http://proceedings.mlr.press/v97/houlsby19a.html [Cited on page 97.]

Huck, M., Birch, A., & Haddow, B. (2015). Mixed domain vs. multi-domain statistical
machine translation. In Proceedings of Machine Translation Summit XV: Papers. Mi-
ami, USA.
URL https://aclanthology.org/2015.mtsummit-papers.19 [Cited on page 67.]

Huck, M., Riess, S., & Fraser, A. (2017). Target-side word segmentation strategies for
neural machine translation. In Proceedings of the Second Conference on Machine
Translation, (pp. 56–67). Copenhagen, Denmark: Association for Computational Lin-
guistics.
URL https://www.aclweb.org/anthology/W17-4706 [Cited on page 27.]

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In Proceedings of the 32nd International Con-
ference on International Conference on Machine Learning - Volume 37, ICML’15, (p.
448–456). JMLR.org. [Cited on page 32.]

Irvine, A., Morgan, J., Carpuat, M., Daumé, H., & Munteanu, D. (2013). Measuring
machine translation errors in new domains. Transactions of the Association for Com-
putational Linguistics, 1, 429–440.
URL https://doi.org/10.1162/tacl_a_00239 [Cited on page 68.]

142

http://arxiv.org/abs/1711.02281
https://arxiv.org/abs/1503.03535
https://aclanthology.org/2021.acl-long.246
http://arxiv.org/abs/1503.02531
https://doi.org/10.1162/neco.1997.9.8.1735
http://papers.nips.cc/paper/8046-algorithms-and-theory-for-multiple-source-adaptation.pdf
http://papers.nips.cc/paper/8046-algorithms-and-theory-for-multiple-source-adaptation.pdf
http://proceedings.mlr.press/v97/houlsby19a.html
https://aclanthology.org/2015.mtsummit-papers.19
https://www.aclweb.org/anthology/W17-4706
https://doi.org/10.1162/tacl_a_00239


Bibliography

Jaeger, H. (2002). Tutorial on training recurrent neural networks, covering bppt, rtrl, ekf
and the echo state network approach. GMD-Forschungszentrum Informationstechnik,
2002., 5. [Cited on page 40.]

Jang, E., Gu, S., & Poole, B. (2017). Categorical reparameterization with gumbel-
softmax. In 5th International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net.
URL https://openreview.net/forum?id=rkE3y85ee [Cited on page 52.]

Jean, S., Cho, K., Memisevic, R., & Bengio, Y. (2015). On using very large target vocab-
ulary for neural machine translation. In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers), (pp. 1–10). Beijing, China:
Association for Computational Linguistics.
URL https://aclanthology.org/P15-1001 [Cited on page 26.]

Jiang, H., Liang, C., Wang, C., & Zhao, T. (2020). Multi-domain neural machine trans-
lation with word-level adaptive layer-wise domain mixing. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, (pp. 1823–1834).
Online: Association for Computational Linguistics.
URL https://aclanthology.org/2020.acl-main.165 [Cited on pages 51 and 66.]

Johnson, J., Douze, M., & Jégou, H. (2019). Billion-scale similarity search with GPUs.
IEEE Transactions on Big Data.
URL https://arxiv.org/pdf/1702.08734.pdf [Cited on page 126.]

Johnson, M., Schuster, M., Le, Q., Krikun, M., Wu, Y., Chen, Z., Thorat, N., Viégas, F. a.,
Wattenberg, M., Corrado, G., Hughes, M., & Dean, J. (2017a). Google’s multilingual
neural machine translation system: Enabling zero-shot translation. Transactions of the
Association for Computational Linguistics, 5, 339–351.
URL https://transacl.org/ojs/index.php/tacl/article/view/1081 [Cited on
page 61.]

Johnson, M., Schuster, M., Le, Q. V., Krikun, M., Wu, Y., Chen, Z., Thorat, N., Viégas, F.,
Wattenberg, M., Corrado, G., Hughes, M., & Dean, J. (2017b). Google’s multilingual
neural machine translation system: Enabling zero-shot translation. Transactions of the
Association for Computational Linguistics, 5, 339–351.
URL https://aclanthology.org/Q17-1024 [Cited on page 66.]

Joshi, M., Dredze, M., Cohen, W. W., & Rosé, C. (2012). Multi-domain learning: When
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Appendix A

A - Description of multi-domain systems
(Chapter 4)
We use the following setups for MDMT systems.

• Mixed-Nat, FT-full, TTM, DC-Tag use a medium Transformer model of Vaswani
et al. (2017) with the following settings: embeddings size and hidden layers size
are set to 512. Multi-head attention comprises 8 heads in each of the 6 layers; the
inner feedforward layer contains 2048 cells. Training use a batch size of 12,288
tokens; optimization uses Adam with parameters β1 = 0.9, β2 = 0.98 and Noam
decay (warmup steps = 4000), and a dropout rate of 0.1 for all layers.

• FT-Res and MT-res use the same medium Transformer and add residual layers with
a bottleneck dimension of size 1024.

• ADM, DM use medium Tranformer model and a domain classifier composing of 3
dense layers of size 512× 2048, 2048× 2048 and 2048× domain num. The two
first layers of the classifier use the ReLU() as activation function, the last layer uses
tanh() as activation function.

• DC-Feat uses medium Transformer model and domain embeddings of size 4. Given
a sentence of domain i in a training batch, the embedding of domain i is concate-
nated to the embedding of each token in the sentence.

• LDR uses medium Transformer model and for each token we introduce a LDR feature
of size 4× domain num. Given a sentence of domain i ∈ [1, ..,K] in the training
batch, for each token of the sentence, the LDR units of the indexes outside of the
range [4(i− 1), ..,4i− 1] are masked to 0, and the masked LDR feature will be
concatenated to the embedding of the token of size 508. Details are in Section
5.4.3.2.

• Mixed-Nat-RNN uses one bidirectional LSTM layer in the encoder and one LSTM
layer in the decoder. The size of hidden layers is 1024, the size of word embeddings
is 512.

• WDCNMT uses one bidirectional GRU layer in the encoder and one GRU-conditional
layer in the decoder. The size of hidden layers is 1024, the size of word embeddings
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is 512.

Training For each domain, we create train/dev/test sets by randomly splitting each cor-
pus. We maintain the size of validation sets and of test sets equal to 1,000 lines for every
domain. The learning rate is set as in Vaswani et al. (2017). For the fine-tuning proce-
dures used for FT-full and FT-Res, we continue training using the same learning rate
schedule, continuing the incrementation of the number of steps. All other MDMT sys-
tems reported in Tables 4.3 and 4.4 use a combined validation set comprising 6,000 lines,
obtained by merging the six development sets. For the results in Table B.1 we also ap-
pend the validation set of news to the multi-domain validation set. In any case, training
stops if either training reaches the maximum number of iterations (50,000) or the score
on the validation set does not increase for three consecutive evaluations. We average five
checkpoints to get the final model.
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Appendix B

B - Experiments with continual learning
(Chapter 4)

Domain
Model

med law bank talk it rel news wavg avg

Mixed-Nat 37.1 54.1 49.6 34.1 42.1 77.0 28.9 40.8 49.0
+0.2 | – +0.5 | — +0.5 | – -0.6 | – +1.1 | – +0.5 | – -5.4 | – +0.3 | – +0.4 | –

DC-Tag 37.7 54.5 49.9 34.8 43.9 78.8 29.5 41.4 49.9
+0.3 | +0.3 +0.8 | -0.1 -0.04 | -0.6 -1.6 | -1.1 -0.4 | -1.3 +1.7 | -3.5 -7.7 | -1.4 +0.2 | -0.1 +0.1 | -1.1

DC-Feat 37.4 54.9 50.0 34.7 43.9 79.6 28.9 41.2 50.1
+0.3 | -0.2 -0.1 | -0.1 -0.3 | -0.1 -1.3 | -0.6 -0.1 | -0.9 +0.4 | +0.3 -7.3 | -0.8 +0.1 | -0.2 -0.2 | -0.3

LDR 37.0 54.6 49.6 34.3 43.0 77.0 28.7 40.8 49.2
0.0 | -0.6 +0.1 | +0.5 +0.2 | -0.4 -0.4 | -0.6 +0.5 | +0.5 +2.9 | +3.8 -6.6 | -0.9 +0.6 | +0.5 +0.1 | -0.4

TTM 37.3 54.4 49.6 33.8 42.9 78.2 29.1 41.0 49.4
0.0 | -0.3 +0.4 | -0.3 -0.1 | -0.5 -0.9 | -1.1 +0.6 | -1.0 +1.8 | -4.0 -5.7 | -1.4 0.0 | -0.5 +0.3 | -1.2

DM 36.0 51.3 46.8 31.8 39.8 65.7 27.0 38.9 45.2
-0.4 | +0.6 -1.8 | +0.4 -1.2 | +0.6 -1.8 | -0.1 -2.6 | +0.5 -3.3 | 0.0 -4.4 | -1.2 -0.8 | +0.5 -1.8 | +0.3

ADM 36.6 54.2 49.1 32.9 42.1 75.7 28.7 40.2 48.4
-0.2 | +0.3 -0.7 | -0.8 -0.8 | -0.8 -0.9 | -0.2 -0.5 | -0.4 -2.3 | -5.0 -5.4 | -1.9 -0.5 | -0.2 -0.9 | -1.1

FT-Res 37.0 57.6 53.8 34.5 46.1 91.1 29.6 42.2 53.3
+0.3 | +0.3 +0.4 | +0.4 +0.1 | +0.1 -0.7 | -0.7 +0.5 | +0.5 -0.9 | -0.9 -9.0 | -0.6 -0.1 | -0.1 +0.2 | +0.2

MT-Res 37.7 55.6 51.1 34.4 44.5 87.5 29.1 41.9 51.8
+0.2 | -0.2 +0.4 | +0.5 +0.1 | 0.0 -0.9 | -0.4 -0.1 | -0.2 +0.9 | -0.2 -8.0 | -0.8 +0.1 | -0.2 +0.1 | -0.1

Table B.1: Ability to handle a new domain. We report BLEU scores for a complete
training session with 7 domains, as well as differences with (left) training with 6 domains
(from Table 4.3); (right) continuous training mode. Averages only take into account six
domains (News excluded). Underline denotes a significant loss, bold a significant gain.
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Appendix C

C - Experiments with automatic
domains (Chapter 4)
This experiment aims to simulate with automatic domains a scenario where the number
of “domains” is large and where some “domains” are close and can effectively share
information. Full results in Table C.1. Cluster size vary from approximately 8k sentences
(cluster 24) up to more than 350k sentences. More than 2/3 of these clusters mostly
comprise texts from one single domain, as for cluster 12 which is predominantly med,
the remaining clusters typically mix 2 domains. Fine-tuning with small domains is often
outperformed by other MDMT techniques, an issue that a better regularization strategy
might mitigate. Domain-control (DC-Feat) is very effective for small domains, but again
less so in larger data conditions. Among the MD models, approaches using residual
adapters have the best average performance.
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Model size Mixed FT FT MT DC DC
TTM ADM DM LDRCluster train / test Nat Full Res Res Feat Tag

24 [med] 8.1k / 3 90.4 90.4 90.4 90.4 100.0 65.6 100.0 90.4 100.0 100.0
13 [-] 17.3k / 52 67.6 75.4 74.3 74.3 75.0 54.7 74.7 75.9 65.9 76.9
28 [-] 25.6k / 54 71.6 68.7 68.1 70.2 71.0 42.5 72.0 71.3 65.6 72.6
19 [IT] 27.2k / 88 58.5 63.0 60.9 63.9 63.7 57.2 59.4 61.1 60.5 60.3
0 [-] 27.4k / 72 43.9 33.3 45.4 45.4 49.9 15.4 46.8 49.2 46.6 47.8
22 [-] 27.5k / 103 91.5 93.7 93.4 93.9 92.5 72.8 92.3 93.2 91.4 93.4
25 [-] 28.2k / 56 57.0 44.8 48.2 49.1 54.6 47.2 49.8 54.2 45.1 52.4
16 [med] 30.4k / 18 57.2 70.4 77.4 73.5 61.8 54.2 58.4 58.1 52.5 58.3
23 [med] 47.0k / 23 24.5 27.2 26.5 28.5 30.5 27.3 32.0 24.4 29.0 29.8
17 [med] 54.4k / 26 39.9 40.3 41.6 38.0 37.1 36.6 35.2 35.4 31.3 33.7
8 [IT] 61.4k / 214 46.9 53.1 55.8 53.6 48.9 45.1 48.8 50.9 43.0 46.7
1 [-] 68.1k / 122 47.2 47.5 48.7 45.1 46.8 39.1 45.4 44.2 40.7 44.9
7 [med] 91.5k / 30 41.3 35.5 41.4 39.9 41.4 36.5 37.3 37.1 40.7 41.8
11 [med] 93.0k / 38 31.6 42.6 31.8 35.4 36.0 29.6 36.7 32.7 26.5 36.6
29 [law] 109.2k / 242 65.9 69.2 67.6 67.7 66.0 63.8 65.1 64.7 62.4 65.9
27 [med] 109.3k / 49 11.0 9.6 8.7 9.2 10.0 19.4 9.4 7.9 10.7 10.6
5 [-] 109.9k / 267 46.3 47.4 46.9 45.4 44.0 42.9 43.7 44.3 40.9 45.7
6 [med] 133.4k / 73 37.2 38.9 38.7 36.8 37.5 27.5 38.0 37.2 31.3 35.9
26 [-] 134.8k / 428 31.8 30.8 31.8 31.2 31.9 32.6 32.2 30.5 29.6 31.2
15
[bank]

136.9k / 674 46.5 51.5 47.9 48.0 46.6 46.0 45.8 45.7 42.9 46.0

4 [rel] 137.4k / 1016 77.1 85.3 83.5 83.3 75.8 46.1 74.2 73.3 63.2 75.9
2 [med] 182.6k / 85 70.6 75.8 71.7 69.4 68.2 67.3 67.3 68.6 65.6 68.2
20 [med] 183.0k / 71 47.4 47.2 46.8 47.2 48.4 47.5 48.8 47.3 47.1 46.8
21 [-] 222.8k / 868 38.7 38.8 39.0 37.2 37.5 35.9 36.9 37.1 33.4 37.0
10 [med] 225.4k / 115 40.0 42.6 40.0 38.2 39.9 35.8 39.5 39.1 36.3 40.7
18 [med] 245.0k / 106 57.7 60.3 58.7 58.6 58.4 56.3 57.3 56.1 54.9 55.9
9 [med] 301.6k / 145 37.2 37.3 36.5 36.1 36.4 37.7 36.4 35.2 34.2 37.0
3 [law] 323.5k / 680 50.1 52.0 50.8 50.1 49.1 48.3 49.0 48.2 44.4 49.1
14 [med] 334.0 / 146 31.6 31.4 31.9 33.0 32.5 34.1 31.4 32.1 30.5 31.8
12 [med] 356.4k / 148 36.3 36.6 35.9 35.9 35.8 37.0 36.4 35.4 34.2 36.3

Table C.1: Complete results for the experiments with automatic domains. For each cluster,
we report: the majority domain when one domain accounts for more than 75% of the class;
training and test sizes; and BLEU scores obtained with the various systems used in this
study. Most test sets are too small to report significance tests.
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Appendix D

D - Generalized Multi-Domain Dynamic
Adaptation Curriculum Algorithm
(Chapter 7)
The pseudo-code for the generalized Multi-Domain Adaptation Dynamic Sampling Al-
gorithm is in Algorithm 2.
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Appendix E

E - Experiments with automatic
domains (Chapter 7)
This experiment aims to simulate with automatic domains a scenario where the number of
“domains” is large and where some “domains” are close and can effectively share infor-
mation. Full results are in Table E.1. Cluster sizes vary from approximately 8k sentences
(cluster 24) up to more than 350k sentences. More than 2/3 of these clusters mostly com-
prise texts from one single domain, as for cluster 12, which is predominantly med, the
remaining clusters typically mix 2 domains. According to the table, for each system, the
clusters most sampled by MDAC contain most of the data of the corresponding domain.
This demonstrates that MDAC is able to find related data to the task automatically. How-
ever, MDAC performance is still far behind that of the supervised scenario, as we explain
in the paper.

Algorithm 2 Multi-Domain Adaptation Dynamic Sampling
Require:

• nd corpora Cd,d ∈ [1, . . . ,nd] for nd domains equipped by an empirical distri-
bution Dd(x)

• nd dev sets Devd,d ∈ [1, . . . ,nd] for nd domains.
• Domain testing distribution λλλ

t ∈ Rnd

• Batch size B
• Domain Dynamic Sampling Distribution λ l

i ∈ Rnd where i indexes iterations.
• Eval scores = []

• Early stopping criterion
• Total training iterations iter num
• Update rule for sampling distribution λλλ

l
i

1: repeat
2: // Start of iteration i
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3: Randomly pick d ∈ [1, . . . ,nd] from sampling distribution λ l
i

4: Sample B sentences from Cd with empirical distribution Dd(x)

5: Update model by applying SGD computed from B sampled sentences
6: if i≡ 0 mod eval step then
7: Evaluate current model with nd dev sets. Sd

i is the performance at iteration ith on
domain d

8: Report weighted score using test distribution λλλ
t .

eval(i) =
nd

∑
d

λ
t(d)Sd

i

9: Eval scores.append(eval(i))

10: end if
11: if i≡ 0 mod sampler updating step then
12: Update λλλ

l
i

13: end if
14: if Early stopping(Eval scores) then
15: break
16: end if
17: i = i+1
18: until i > iter num
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Cl. size Domain content MDAC systems
MED ECB IT LAW REL TALK MED ECB IT LAW REL TALK

1 27436 0.24 0.11 0.47 0.17 0.00 0.01 0.01 0.00 0.01 0.00 0.00 0.01
2 68108 0.48 0.04 0.19 0.28 0.00 0.00 0.02 0.03 0.02 0.01 0.02 0.02
3 182594 1.00 0.00 0.00 0.00 0.00 0.00 0.03 0.06 0.04 0.06 0.03 0.03
4 323474 0.05 0.06 0.01 0.87 0.00 0.00 0.03 0.07 0.03 0.20 0.03 0.04
5 137451 0.03 0.00 0.00 0.00 0.86 0.10 0.03 0.04 0.04 0.06 0.17 0.04
6 109949 0.44 0.04 0.40 0.07 0.01 0.04 0.04 0.06 0.04 0.05 0.02 0.03
7 133395 0.92 0.01 0.01 0.05 0.00 0.00 0.03 0.04 0.03 0.05 0.05 0.03
8 91464 0.98 0.00 0.00 0.02 0.00 0.00 0.04 0.03 0.04 0.04 0.05 0.03
9 61353 0.02 0.01 0.96 0.01 0.00 0.00 0.03 0.02 0.03 0.01 0.04 0.02
10 301639 0.98 0.00 0.00 0.02 0.00 0.00 0.02 0.01 0.01 0.01 0.02 0.03
11 225347 0.93 0.00 0.01 0.04 0.00 0.01 0.03 0.04 0.04 0.02 0.03 0.04
12 92982 0.98 0.00 0.01 0.01 0.00 0.00 0.04 0.02 0.03 0.01 0.03 0.03
13 356377 0.99 0.00 0.00 0.01 0.00 0.00 0.03 0.03 0.04 0.03 0.03 0.04
14 17260 0.03 0.37 0.01 0.59 0.00 0.00 0.03 0.03 0.03 0.02 0.03 0.02
15 333957 0.98 0.00 0.01 0.01 0.00 0.00 0.04 0.02 0.03 0.01 0.03 0.03
16 136944 0.02 0.89 0.01 0.08 0.00 0.00 0.04 0.08 0.03 0.04 0.03 0.04
17 30443 0.96 0.01 0.02 0.01 0.00 0.00 0.04 0.03 0.03 0.03 0.04 0.03
18 54378 0.93 0.00 0.05 0.02 0.00 0.00 0.04 0.04 0.02 0.03 0.07 0.03
19 245000 0.99 0.00 0.00 0.00 0.00 0.00 0.04 0.04 0.03 0.03 0.04 0.03
20 27227 0.15 0.00 0.79 0.05 0.00 0.01 0.04 0.03 0.03 0.02 0.04 0.03
21 182990 0.99 0.00 0.00 0.01 0.00 0.00 0.03 0.02 0.03 0.03 0.03 0.03
22 222802 0.21 0.01 0.40 0.04 0.02 0.32 0.04 0.04 0.08 0.02 0.01 0.08
23 27534 0.11 0.48 0.02 0.39 0.00 0.00 0.03 0.03 0.05 0.02 0.01 0.04
24 47065 0.99 0.00 0.01 0.00 0.00 0.00 0.04 0.02 0.05 0.05 0.03 0.04
25 8129 0.95 0.00 0.04 0.01 0.00 0.00 0.03 0.03 0.04 0.03 0.02 0.02
26 28237 0.59 0.02 0.23 0.11 0.00 0.05 0.03 0.02 0.02 0.01 0.03 0.02
27 134828 0.53 0.00 0.02 0.00 0.01 0.44 0.04 0.03 0.03 0.01 0.01 0.05
28 109324 0.99 0.00 0.00 0.01 0.00 0.00 0.04 0.03 0.03 0.02 0.01 0.02
29 25561 0.56 0.16 0.08 0.16 0.00 0.04 0.03 0.03 0.03 0.02 0.02 0.03
30 109260 0.01 0.06 0.00 0.92 0.00 0.00 0.03 0.03 0.03 0.06 0.04 0.04

Table E.1: Automatic clustering experiments. We report the size of each cluster. In
the 6 left columns, each line gives the proportions of the domains in each cluster. In
the 6 right columns, each column corresponds to a MDAC experiment; each line gives
the cumulated proportion of the corresponding cluster in the training data. For instance,
when targeting the domain ecb, cluster 4 (mostly law) is sampled with a probability of
0.07, and cluster 16 (mostly ecb) is sampled with probability 0.08. For each system, we
underline the most often sampled clusters.
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Appendix F

F - Résumé en Français
Un modèle de traduction automatique neuronal (NMT) a généralement du mal à traduire
des phrases dont le genre, le registre ou le thème diffèrent de ceux des phrases utilisées
pour l’entraı̂nement du modèle. Il s’agit d’une faiblesse des méthodes d’apprentissage au-
tomatique axées sur les données, dont les performances sont garanties en supposant que
les distributions d’entraı̂nement et de test sont identiques. Par conséquent, pour obtenir
des performances élevées dans un domaine cible, nous devons soigneusement adapter le
modèle NMT à ce domaine. Le problème de l’adaptation d’un modèle NMT à un do-
maine cible est appelé le problème d’adaptation au domaine. Deux facteurs rendent ce
problème complexe, notamment la pénurie de données d’entraı̂nement du domaine cible
et le problème d’oubli catastrophique des modèles neuronaux. Le manque de données
d’entraı̂nement nous incite à exploiter des données parallèles provenant d’autres domaines
pour entraı̂ner nos modèles NMT. En effet, les modèles basés sur les réseaux neuronaux
ont besoin de nombreuses données pour optimiser leurs paramètres. Par conséquent,
nous devons généralement adapter notre modèle NMT au domaine cible en utilisant de
nombreuses données hors domaine et une petite quantité de données du domaine cible.
Deuxièmement, malgré les améliorations importantes plusieurs approches visant à adapter
un modèle NMT en l’affinant à l’aide des données du domaine cible ont des performances
très faibles au test hors du domaine. Ce problème est appelé oubli catastrophique dans la
littérature de recherche sur les réseaux neuronaux. Les modèles neuronaux ont tendance
à être nettement moins performants sur les données hors-domaine lorsqu’on les affine sur
les données du domaine. Dans les applications réelles, nous cherchons généralement à
améliorer les performances dans le domaine cible et la robustesse des modèles neuronaux
par rapport aux domaines connus précédemment.

Dans cette thèse, nos contributions sont les suivantes. Premièrement, nous formal-
isons le problème de l’adaptation multidomaines de la traduction automatique (TA). Nous
mettons en évidence quatre situations principales dans le problème de l’inadaptation des
domaines. Nous fournissons une correspondance complète entre chaque situation et ses
méthodes d’adaptation associées.

Ensuite, nous proposons une nouvelle évaluation multicritères pour les méthodes de
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traduction automatique multidomaines. Nous réévaluons un large ensemble des méthodes
avec les paramètres expérimentaux correspondant aux critères que nous proposons.

Troisièmement, nous proposons, évaluons et analysons une méthode de TA multido-
maines, qui utilise des plongements lexicaux génériques conjointement avec des plonge-
ments spécifiques aux domaines. Cette méthode est beaucoup moins coûteuse que la
méthode des adaptateurs résiduels qui dont l’objet d’un chapitre ultérieur. Outre une
amélioration dans certains contextes multi-domaines, la méthode peut gérer un nom-
bre croissant de domaines. Nous développons l’idée de la représentation parcimonieuse
aux couches supérieures d’un modèle NMT. Nous démontrons que la performance de la
méthode est équivalente à celle de plusieurs méthodes d’adaptation multidomaines. Nous
proposons une nouvelle méthode d’analyse de la corrélation entre les prolongements lex-
icaux et le sens d’un mot, qui identifie les tokens agnostiques et spécifiques au domaine
en observant la variation des K voisins les plus proches d’un mot tout en changeant son
domaine.

Notre quatrième contribution est une étude approfondie de l’utilisation des adaptateurs
résiduels dans l’adaptation multidomaines. Nous démontrons son efficacité et ses bonnes
performances dans un contexte de la TA multidomaines, impliquant d’un grand nom-
bre de domaines aux tailles déséquilibrées. Nous proposons différentes méthodes de
régularisation pour éviter de sur-apprendre au modèle sur les domaines peu dotés. En-
fin, nous proposons deux variantes plus robustes qui sont robustes par rapport aux erreurs
d’étiquettes de domaine et réduisent légèrement le coût de calcul.

Ensuite, nous étudions des stratégies d’échantillonnage dynamique pour la traduction
automatique multidomaines. Nous montrons que ces méthodes améliorent l’échantillonnage
des données à partir du mélange des corpus par rapport à la stratégie heuristique d’échantillonnage
fixe. De plus, nous démontrons leur efficacité dans plusieurs contextes particuliers tels que
l’adaptation à un unique domaine, l’adaptation à un couple de domaines et l’adaptation à
un domaine inconnu.

Enfin, nous étudions deux paradigmes populaires pour adapter un modèle de traduc-
tion aux domaines de test inconnus qui reposent sur la recherche de texte. Ces tech-
niques recherchent les traductions les plus semblable et incorporent ces informations
supplémentaires dans la prédiction d’un modèle NMT. Nous démontrons leur efficacité
ainsi que leurs faiblesses. En outre, nous proposons une variante simple qui améliore
légèrement les performances des techniques précédentes et qui est capable d’exploiter les
traductions de synthèse.

Notre travail a revisité la littérature sur la traduction automatique multidomaines et
a illustré plusieurs problèmes intéressants qui avaient reçu jusque là peu d’attention de
la part de la communauté, comme la robustesse par rapport à des domaines de test in-
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Appendix F. F - Résumé en Français

connus. Pour le cadre standard de l’adaptation multidomaines supervisée, nous avons
décrit cinq propriétés d’un système multidomaines efficace. Chacune de ces exigences
fondamentales ouvre de nombreuses possibilités pour améliorer la qualité d’un système
multidomaines. Notre travail futur consistera à améliorer ces qualités d’un système de TA
multidomaines.

Toutes les approches centrées sur les modèles partagent la même idée, qui consiste à
distinguer les paramètres agnostiques au domaine et les paramètres spécifiques du do-
maine. Cependant, l’hétérogénéité dans la proximité des domaines laisse une question
ouverte sur la possibilité d’optimiser automatiquement la partition des paramètres agnos-
tiques et spécifiques au domaine dans un modèle MDMT plutôt que de les prédéfinir de
manière heuristique. De plus, les stratégies d’échantillonnage devraient être optimisées
automatiquement par rapport à la distribution du test plutôt que d’être choisies de manière
heuristique. Notre étude des stratégies d’échantillonnage dynamiques est le premier pas
dans cette direction. Le processus de recherche des meilleurs hyperparamètres ou des
meilleures partitions pour chaque paire ”problème-méthode” de l’adaptation multido-
maines devrait être effectué par des approches d’apprentissage automatique telles que
l’apprentissage par renforcement.

Ensuite, la TA personnalisée est un cas extrême de la TA multidomaines (Michel &
Neubig, 2018) qui constitue une application intéressante dans l’industrie de la TA. Cette
situation repose sur l’adaptation d’un système de TA aux styles d’écriture d’un grand
nombre de traducteurs ; les systèmes de traduction multidomaines sont donc une solution
possible. Cela nécessiterait cependant de développer les méthodes étudiées dans cette
thèse à des milliers de domaines, ce qui reste une tâche non-triviale.

De plus, nous montrons dans un chapitre ultérieur que la TA basée sur la recherche de
texte a démontré des performances étonnamment bonnes en l’adaptation multidomaines.
Cependant, ce paradigme repose sur le processus de recherche de texte, qui est prédéfini
a priori et sans rapport avec la tâche de traduction. Cela laisse une voie ouverte pour
le développement de processus de recherche optimisé pour identifier des exemples de
traduction utiles pour la phrase courante.

Enfin, nous espérons que les travaux futurs dans le domaine de la traduction automa-
tique multidomaines s’appuieront sur nos cinq exigences axiomatiques et accorderont
plus d’attention au design expérimentale afin d’évaluer avec précision la capacité de la
méthode proposée. En outre, malgré l’importance des performances dans le domaine, la
robustesse face à des distributions de test variables devrait être prise en compte de manière
équivalente. Comme la traduction automatique multilingue, la traduction automatique aux
multi-domaine est un paradigme prometteur pour l’industrie de la TA et nécessite encore
beaucoup d’efforts pour atteindre ses objectifs de long terme.
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