Une thèse, c'est court et long à la fois. Court, parce que trois ans pour prendre ses marques dans un domaine scienti que que nos très maigres connaissances préliminaires nous permettent tout juste d'appréhender, comprendre ses problématiques et pouvoir y apporter un petit quelque chose, le tout en prenant en compte les aléa de la vie, c'est court. Long, parce que trois ans, à l'échelle d'une vie, ce n'est pas négligeable. Quand presque la moitié de la thèse se déroule en con nement strict avec un contact très limité avec les amis, la famille et les collègues, le temps parait s'étirer déraisonnablement.

Ces petits paradoxes temporels, mélange de temps court et long, je n'aurais sans doute pas pu les supporter seuls. J'ai été diagnostiqué d'une dépression durant ma thèse; dépression dont, à l'écriture de ce chapitre, je suis pratiquement guéri. Ce n'est pas quelque chose de facile à vivre du tout; j'ai eu l'immense chance de béné cier de soutien et d'aide de toute provenance. La prévalence des troubles mentaux chez la population de doctorants tend toutefois à montrer que d'autres ont plus sou ert que moi, et qu'il serait bon de s'interroger sur les mécanismes politiques et organisationnels qui fragilisent de brillantes personnes qui s'engagent dans le plus haut niveau d'études existant.

Voici donc le traditionnel mais ô combien attendu chapitre de remerciements. Les gens qui me subissent depuis un certain temps savent que je ne suis pas avare de compliments au point de parfois en abuser. Qu'ils soient assurés toutefois: chaque mot dans ce chapitre est soigneusement pesé, ré échi et néanmoins tout à fait sincère.

Tout d'abord, je remercie en premier lieu mon encadrement de thèse, incarné dans les personnes de Marc, Zakaria et Guillaume. Être encadré par ces personnes à la rigueur scienti que exemplaire et à l'intuition impressionnante m'a aidé à comprendre et intégrer ce que devait être un scienti que. Les nombreuses incitations qu'ils m'ont donné à di user mon travail et prendre part à la communauté scienti que ont été appréciées à leur juste valeur. Je tiens en n à pro ter de l'occasion pour présenter mes excuses pour mon caractère parfois bougon, qui a pu se manifester lors de revues d'articles en dernière minute, ou de correction mineures mais importantes dans des présentations. Leur humanité chaleureuse m'a aidé à traverser des périodes sombres de ma thèse, et leur soutien sans faille quand des idées s'avéraient infructueuses (et dieu sait qu'il y en a eu) ou dans les dédales byzantins de l'administration de l'école charge de travail, il n'en est que d'autant plus important d'avoir des activités pour évacuer le stress et établir un sain équilibre entre vie personnelle et vie professionnelle. Je remercie donc chaleureusement Masato-sensei et l'ensemble des élèves de l'école Sayu -les Deux Spirales pour l'enseignement qu'ils me prodiguent. Le kenjutsu et le iaïdo, que j'apprends à leur côté, m'ont aidé à reprendre conscience que je n'étais pas qu'un cerveau qui habitait un corps malhabile.

Je remercie celles et ceux qui m'aident à cultiver mon humanité, depuis le début de ma thèse et avant.

Merci à Lou de m'apporter tant et de susciter du beau chez moi. Merci à Ludovic d'être toujours là et de persévérer. Ta régénération ne fait que commencer.

Merci à Bill Wurtz, FromSoftware, Co ee Stain Publishing, Autechre, Clark, John Coltrane, FlyByNo pour avoir peuplé mes loisirs, mes esgourdes et mon mental durant ces trois ans.

While the domain of critical software enjoys a plethora of methods that help verify and validate software (abstract interpretation, model checking, simulation, bounded tests...), these methods are generally useless when it comes to Neural Nets.

This thesis aims at bridging formal software veri cation and machine learning, in order to bring trust in critical systems incorporating Neural Networks elements.

We rst study the exact causes that prevent a straightforward application of existing veri cation techniques on Neural Nets. We state that those issues are threefold: the lack of formal speci cation on the inputs, the combinatorial explosion caused by the piecewise linear structure of Neural Nets and the lack of a representation common to Neural Nets and Formal Veri cation. To tackle those issues, we present CAMUS, a theoretical framework allowing the speci cation of veri cation problems on perceptual inputs using simulators. We exploit the piecewise linear structure of neural networks on DISCO, an algorithm of parallel veri cation, to mitigate the combinatorial explosion. We implement these contributions into ISAIEH, a prototypal platform for neural network encoding and veri cation.

Remerciements institutionnels

Cette thèse n'aurait pu se dérouler dans des conditions décentes sans le soutien matériel de di érents acteurs. Je tiens donc à remercier le Commissariat aux Énergies Atomique et Renouvelables (CEA) et l'Agence Innovation Défense de la Direction Générale de l'Armement (AID -DGA) pour avoir contribué au nancement de ma thèse.

Je remercie également l'Institut National de Recherche en Informatique et Automatique (INRIA), le Laboratoire Interdisciplinaire des Sciences du Numérique (LISN, ex LRI) et l'université Paris-Saclay d'avoir fourni les infrastructures, ainsi que des opportunités d'enseignement.

doctorale sont des souvenirs que je chérirai longtemps.

Je remercie les membres de mon jury d'avoir bien voulu relire mes travaux. Quand on est tout jeune chercheur, se voir juger par des experts qui peuplent une partie non négligeable de sa bibliographie peut être très intimidant. Je suis donc très reconnaissant de leur bienveillance et la pertinence de leurs questions durant la soutenance. Je remercie en particulier Gilles Dowek, que j'avais déjà rencontré lors de ma soutenance de mi-parcours et m'avait déjà donné à l'époque de judicieux conseils.

Un doctorant sans son laboratoire ne fait pas grand chose, et, bien loti que je suis, j'ai eu la chance de travailler au sein de deux équipes de grande qualité. Je remercie le Laboratoire de Sûreté et de Sécurité des Logiciels et l'équipe projet TAU de m'avoir accueilli et hébergé pendant ces trois ans. Ce remerciement s'adresse non seulement aux permanents de l'équipe, mais également aux doctorants, contrats courts et stagiaires. Vous avez tous contribué à votre manière à ma thèse, et vous êtes malheureusement trop nombreux pour que je vous cite tous ici. À défaut de personnes, je citerai des événements pour lesquels je suis heureux de vous avoir connu: les sorties escalades, les soirées Ghibli, les pique-nique à la Troche alors qu'on devait encore porter les masques, les randonnées, les soirées jeu de société, une dégustation fort arrosée de Beaujolais nouveau, des pauses café dont on aimerait qu'elles ne nissent pas, des après-midi aux Premier Samedi du Libre, de longues séances sur le Canapé de la Déprime, un séminaire de rédaction de thèse en montagne, nourrir un bébé au biberon en s'y mettant à plusieurs, de longues séances de discussion fructueuses en pause thé au deuxième étage d'un certain laboratoire de recherche en informatique. Je souhaite néanmoins remercier nominalement Maëva (de TAU) Frédérique et Ewa (du LSL). Leur véritable travail n'est que trop partiellement capturé par leur intitulé de poste, "assistantes administratives": elles ont constituté l'huile nécessaire à faire tourner les rouages des unités de recherche respective. Leur disponibilité sans faille et les innombrables petits coups de mains qu'elles ont donné méritent beaucoup plus que les remerciements que je formule ici. De la même manière, je remercie Tristana et Diane, qui ont été d'une réactivité rare pour organiser une soutenance en hybride, avec des modi cations de planning la veille pour le lendemain.

Assez tautologiquement, je ne serai pas là sans mes parents ni ma famille. Derrière cette formule un peu bateau se cache des trésors insoupçonnés d'a ection dont, il est vrai, un enfant a parfois du mal à apprécier la juste valeur. Il en faut du courage pour élever un enfant, il faut beaucoup d'amour aussi. Ma famille n'a manqué d'aucune de ces qualités, et m'en a donné à profusion. Je remercie donc Christian, Marie-Carmen, Mathilde, Consuelo, Jean-Raymond, Patricia, Marie-Lise, Paul, Jacqueline et Sarah d'être là, simplement. Merci à mamie Marthe, dont je suis certain qu'elle aurait été très heureuse de me voir soutenir.

Je remercie très fort et en continu les amis de Salle T Alumni et son adhérence. Merci Rémi pour tes blagues sur les anciens pays de l'Axe. Merci Léopold pour ta barbe et ton humanité soyeuse. Merci Eugénie pour ta droiture d'âme qui m'a beaucoup apporté. Merci Pauline parce que t(chou) t(chou). Merci Florian pour être un chef crêpu dont le tout jeune ls m'a o ert une motivation insoupçonnée. Merci Benoît pour être un chef barbu de fort bon conseil pour les choses de la vie, de la recherche et du hasard. Merci Servane pour être une fren d'excellente compagnie dont l'énergie et l'ingéniosité rare doivent être mentionnées. Merci Basile pour être un fabuleux bonhomme. Merci Baroux pour être agréable de discussion fertile, malgré nos désaccords (qu'ils puissent demeurer féconds!). Merci Aliénor pour être géniale, continue de devenir top. Merci Elliot pour avoir constitué une ancre et un modèle à de nombreux égards. Merci Quentin pour être un conoisseur de liqueurs qui, il faut l'avouer, ont été fort bienvenues à certains moments de cette thèse. Merci Lucille-Marie pour ta vivacité cachée. Merci Élise pour être giga mimi. Merci Zoé pour être zozo. Merci Manu pour avoir quelqu'un avec qui perdre mes moyens devant un chier son saturé. Merci Aurore pour LE MANGER (et bien plus). Merci BPJ pour être l'excès de sucre et de gras incarné, Merci Guillaume pour être le meyeur grapin. Merci Étienne pour être une barbe eurie capable d'expliquer n'importe quel jeu de plateau complexe à une assemblée inconnue. Merci Lukô pour être l'aventurier de mes amis. Merci Youssef pour rester un roc solide malgré la tempête. Merci Hugo pour être un daron. Merci Adrien pour être ce qui se rapproche le plus de l'incarnation de classe. Merci Florian pour être de bonne humeur constamment, et merci Aurélie pour ton énergie elle aussi constante, mais aussi haute. Je remercie en n Benoît, Dara et Juliette pour avoir été mes colocataires successifs durant ma thèse: ils ont été au plus près de l'action, si on peut dire, et leur compagnie, discrète ou ample quand nécessaire (ainsi que leurs compétences culinaires qu'il faut féliciter) constitue une pièce non-négligeable de cet ouvrage. Les oublis éventuels de cette énumération ne sont pas intentionnels; toute o ense contractée mérite compensation en boisson alcoolisée (ou pas), en restaurant ou en toute autre monnaie jugée pertinente. Sauf Emilien, lui c'est volontaire qu'il ne soit pas mentionné. À vous tous dans votre ensemble, merci pour les moments que nous avons partagé et les moments que nous partagerons encore.

Un grand merci aux tomos de NDM, qui sont dans ma vie depuis très, très, très longtemps. Xetausse, Bidoman, Troll, Nor, mon bon Mad, Rafou et Nens mes gars sûrs et tous les autres: vous m'avez aidé à tenir de toutes manières di érentes (c'est d'ailleurs un peu la faute à Xetausse si j'ai commencé une thèse). Qu'il s'agisse d'avoir des gens avec qui discuter d'à quel point la seule série Nintendo qui vaille le coup, c'est Metroid (ou pas), de trop rares IRL ou parcourir certains canaux du Discord à la recherche d'une excuse pour ne pas boucler un article, j'ai passé avec vous beaucoup plus de temps qu'avec une part importante de mon entourage. Si ces liens sont en grande partie virtuels, ils n'en sont pas moins forts.

Commencer une activité sportive en troisième année de thèse, on me l'a déconseillé plusieurs fois. Si il est vrai que la troisième année est généralement plus intense en Chapter 1 Synthèse en français 1.1 Synthèse en français L'apprentissage machine, en particulier au moyen des réseaux de neurones arti ciels, connaît depuis une dizaine d'année une expansion impressionnante. détecteurs de collision d'aéronefs, aide au diagnostic pour di érents cancers, aides aux décisions de justice, véhicules autonomes et capteurs d'anomalies d'ancrage sur des plateformes o shores sont autant d'applications faisant intervenir les technologies d'apprentissage profond au sein de systèmes critique; ouvrant des perspectives inexplorées pour les sociétés humaines. Bien que béné que en apparence, cette révolution a de quoi inquiéter à mesure qu'elle se concrétise: la fragilité de ces techniques d'apprentissage est désormais un fait scienti que établi. La taxonomie des vulnérabilités, qu'elles soient accidentelles ou malicieuses, ainsi que leur caractère imprévisible remet en question la possibilité d'intégrer des réseaux de neurones dans des domaines critiques qui pourraient pourtant en béné cier.

A l'heure actuelle, peu de méthodes permettent de démontrer formellement laabilité d'un réseau de neurones. Par contraste, le domaine du logiciel critique, quant à lui, jouit d'une multitude de méthodes et techniques: model checking, simulation, interprétation abstraite, tests dirigés, etc.

L'objectif de cette thèse est de réconcilier l'abondance des techniques de vérication de programmes classiques et l'absence de garanties sur les réseaux de neurones, ce pour permettre aux logiciels critiques de conserver le haut niveau de conance qu'ils ont atteint quand ils seront inévitablement modi és avec des mécanismes d'apprentissage machine.

Nous étudions d'abord en détail les raisons qui empêchent l'application directe des approches de véri cation formelle classique. Nous mettons ainsi en évidence que l'absence de spéci cation formelle inhérente aux systèmes dont les entrées sont à hautes dimensions, l'explosion combinatoire entraînée par la structure linéaire par 11 morceaux des réseaux de neurones, et l'absence de représentation adaptée à la vérication empêchent l'emploi de la plupart des approches. De plus en plus d'acteurs industriels utilisent des simulateurs pour entraîner et tester leurs programmes. Cette pratique largement répandue et documentée est également employée pour les réseaux de neurones. Pour pallier le problème de la spécication, nous présentons CAMUS, une approche théorique permettant de formuler un problème de véri cation formelle avec l'aide d'un simulateur. CAMUS o re une formalisation de la prise en compte d'un simulateur comme fournisseur d'entrées à un réseau de neurones. Le problème de véri cation formelle est reformulé de sorte à prendre en compte les di érents scénarios que le simulateur est capable de générer, permettant ainsi une dé nition formelle des entités composant la preuve.

La grande polyvalence et les résultats impressionnants des réseaux de neurones modernes viennent en partie de leur non-linéarité. Cette propriété fondamentale rend malheureusement très di cile leur véri cation formelle, et ce, même si on se restreint à une structure linéaire par morceaux. Cependant, chacune de ces régions linéaires prise indépendamment est simple à analyser. Nous exploitons cette structure linéaire par morceaux pour proposer DISCO, un algorithme de véri cation parallèle pour alléger l'explosion combinatoire, en opérant une séparation du problème original en sousproblèmes linéaires. Nous présentons également des résultats concernant la structure de ces régions linéaires ainsi que leur similarité.

Nous implémentons nos contributions au sein de l'Inter Arti cial Intelligence Standard Encoding Hub (ISAIEH), un prototype de plate-forme d'encodage pour les réseaux de neurones à véri er. ISAIEH est un logiciel écrit en langage OCaml qui implémente une représentation intermédiaire universelle pour tous les réseaux de neurones gérant le standard Open Neural Network eXchange (ONNX). Cette représentation intermédiaire o re un support pour l'expression de propriétés formelles, notamment la conversion du réseau de neurones au format standard de véri cation via calcul de Satisfaction Modulo Théorie (SMT) SMTLIB2.

English summary

Machine Learning techniques, Neural Networks in particular, are going through an impressive expansion, permeating various domains, becoming the next frontier for human societies. Aircraft collision avoidance, cancer detection, justice advisors, autonomous vehicles, or mooring line failure detection are but a few examples of Neural Networks applications. This e ervescence, however, may hold more than bene ts, as it slowly but surely reaches critical systems. Indeed, the remarkable e ciency of neural nets comes at a price, more and more underlined by the scienti c consensus: weakness to environmental or adversarial perturbations, unpredictability... which prevents their full-scale integration into critical systems.

Chapter 2 Introduction

At the time of the redaction of this manuscript, the ubiquity of software in our lives is not a question. This chapter is written with a text editor, on a laptop running an operating system. This same laptop was used to develop experiments, using various programming languages; to plan meetings (and because of the COVID-19 pandemic, attend to them) and discuss with collaborators. Part of this manuscript was written in a train, whose ticket was booked on an online platform. Said train was guided on assigned railways using semi-automated decision procedures. Music tracks were played to help during writing, streamed from a remote server; some of this music was composed using synthesizers and sequencer, both pieces of software. Those small moments of life, centered around this manuscript, were enabled and in uenced by software.

But software does not only shape individual lives; it also governs collectives: communities, societies, nation states, corporations and non-pro t organizations now rely on software to function to varying degrees. Establishing milestones and tracking their progression in software development companies is a critical process, powered by software. It is also software that controls critical parts of a nuclear power plant. Finally, modern social networks have a strong in uence on the public debate by selecting and presenting opinions and facts. In his book, Code 2.0, Lawrence Lessig [START_REF] Lessig | Code: Version 2[END_REF] dened the cyberspace as the global environment de ned by machine code. Bulletin boards, personal blogs, commercial websites, bank and nancial exchanges, every packet transferred on the internet is a part of cyberspace. This space, however vast, was more or less separated from the physical world. This separation still remains in places untouched by human presence, or in certain areas of human lives of which we choose to exclude software. But since the release of Lessig's book, software has become even more pervasive. Nowadays, a lot of human activities include software at some point -and is reciprocally shaped by it, blurring the border between cyberspace and physical space. Remark 1. We think the word "physical space" is not the proper wording to designate everything that happen outside cyberspace, since the consequences of activities taking place in the cyberspace have quite direct material consequences; internet works by connecting kilometer long cables, and datacenters have a growing ecological impact. We will keep the word "physical space" for the sake of common understanding, but other wordings such as "corporeal space" or "material space" may better suit what we mean.

As such, one may consider that software is a member of our society, as it is an artifact that is deeply interlinked within human lives and communities. It is not to say here that software produced by human is in any ways "aware", "alive" or should be considered as anything else than a tool we use for our own designs. Rather, it is only to acknowledge the prevalence of this tool in modern lives, and recognize that this prevalence is shaping those lives on a wide scale, sometimes much larger than initially intended. Software is now an intermediary agent for all activities related to commerce, with digital payment. Software enabled communication and new ways to socialize -ways that allowed crucially needed socialization during the COVID-19 pandemic lockdowns.

Societies require a certain amount of trust between its members to properly function. People living in cities trust each other to not murder each other when they sleep. Parents trust the teachers of their children to educate them reasonably well while they are working. Citizens trust the people organizing elections to not tamper with the democratic process, so that their will is correctly translated in their vote. We expect physicians to properly do their job of healing us when we are hurt. When buying something from someone, we trust the seller to respect its part of the deal and give us the property of the commodity. We expect our supervisors and colleagues to advise us, give constructive feedback and help us and science in general to further enlight the future of humankind. All of those examples rely on informal rules (tradition, courtesy, willingness to do a good job) and formal ones (laws, oaths); and violations of these sets of rules tend to result in exclusion, or other kind of blame. Any member of society aiming to integrate within it must be trustworthy, in a way. Trustworthiness is enforced with education and behaviours that (partially) ensures that unwanted behaviours will not happen. As an artifact member of society, software should (ideally) be subject to the same expectations. Thus arise this question: what are the reasons we trust software enough to integrate it deeply in our societies?

Trust is a complex notion that may not seem in the scope of computer scientists. It intertwines emotions, unspoken rules and is subject to change depending on the context: it seems di cult to characterize and manipulate de ned this way. A sub notion of trust is "reliability". Reliability can be de ned as the knowledge that someone or something will behave according as we expect it to behave. Reliability is a key component of trust in multiple interactions between humans and humans, or humans and artifacts. Someone that stays right to their word will be given more attention when they make a promise. As long as we are employed by an institution, we expect to receive a salary each month. A train that is able to reliably transport us will build trust in train as a transportation system. A software that provably behaves according to a speci cation will lay ground for trusting it on standard operational conditions. In computer science and for this thesis, reliability can be rephrased as safety: that is, the quality a software has when it operates under normal operational circumstances according to what it is supposed to do.

With the rapid increase in processing power witnessed since the 60s, developping reliable software became a necessity for the eld [21c]. Thus the science of software safety emerged. This science led to the birth of di erent techniques to spot unwanted behaviours during programming: among them are program debugging and best practices, type theory and its application on programming, programming and coding style. Test procedures to assert the correctness of the program on given inputs were developed, where di erent inputs are presented to a software to ensure that the actual answer matches the expected one. Bad memory management is a common source of errors, which led to the development of programming languages with embedded memory safety, such as Java and Rust. The life cycle of software was formalized to help its industrialization.

Among numerous existing techniques, we will focus on a speci c family: formal methods. Formal methods are a scienti c and technical eld aiming to design techniques bringing strong mathematical guarantees on the safety of programs. The reliability element here comes from the sound mathematical reasoning those tools implement. Each step of formal veri cation is backed up by mathematical logic that derives from mathematical principles, with explicit de nitions and reasoning rules. This soundness brings an additional layer of reliability by a program that is veri ed with formal methods. Applying formal methods to critical industrial software was met with successes. For instance the Paris subway lines 1 and 14 are fully automated; the correct behaviour of their software was proven using the Method B and Atelier B [Cle], a kind of formal methods; other components of subway lines can be proven correct as well [START_REF] Thierry Lecomte | Formal Methods in Safety-Critical Railway Systems[END_REF]. We call the process of verifying software using formal methods the process of formal veri cation.

Recently, a new kind of software was discovered: deep learning programs. Deep learning is a software development technique that propose another way to design programs. The core idea is that a deep learning program is able to perceive data in the human perceptual space (images, sounds, videos) and update its behaviour according to the result of said perception. One of the earliest goals of computer science is to mimic the human ability to process inputs from its physical environment, elaborate goals and formulating strategies to meet those goals regarding the environment state. Crucially, one strong objective is to develop the ability to adapt to changes in the environment, for instance being able to react to feedback provided by the environment and consequently adapt the output, through some sort of learning process. Perceving, planning, adapting and learning are considered key elements to the development of intelligent processes, hence the wording "arti cial intelligence" to call the eld of computer science aiming at those goals. Deep learning helped to make huge progresses toward those overarching research objectives.

The perception and adaptation abilities of deep learning programs led us to build applications that were (theoretically) able to process the same "things" we process, and "adapt" to the feedback the humans gave to software. Here are some examples of softwares enabled with deep learning:

1. recommendation systems for entertainment, used for instance by Spotify (music streaming platform), YouTube (video sharing platform) and Net ix (movies and shows streaming platform)

2. predictive maintenance for asserting the optimal moment to perform maintenance on industrial settings [START_REF] Tab | Azure AI Guide for Predictive Maintenance Solutions -Team Data Science Process[END_REF] 3. medical assistance for screening radios, for instance against breast cancer [START_REF] Shen | Deep Learning to Improve Breast Cancer Detection on Screening Mammography[END_REF] 4. automatic translations (this manuscript's readability and correctness really bene ted from those) such as DeepL https://www.deepl.com/translator 5. art (see for instance the work of Alexey Popov and Tatiana Zobnina)

6. social surveillance software [START_REF] Vincent | Canon Put AI Cameras in Its Chinese O ces That Only Let Smiling Workers Inside[END_REF] As deep learning programs are software, we would require the same degree of trust to integrate them within human society. But the main quality of deep learning programs also constitutes its main aw regarding reliability: since it processes inputs in the perceptual space, formulating speci cations and applying existing tools is quite di cult. Another issue is that existing formal veri cation techniques are ill-adapted to perform on deep learning programs. Speci cally, scalability is a crucial issue that still prevents from using existing techniques. We see some pervasive e ects of those programs failures:

1. a semi-autonomous car accident occured because, according to the manufacturer's words, "[the car's] camera failed to recognize the white truck against a bright sky" [START_REF] Hawkins | Tesla Didn't Fix an Autopilot Problem for Three Years, and Now Another Person Is Dead[END_REF] 2. unexpected biases in recommendation systems (black people are more convicted than white people)

hacking of personal assistants based on voice [CW18]

Integrating further those programs within our societies while trusting them using formal methods is thus a di cult problem. The aim of this thesis is to provide insights on how to tackle those issues in order to formally verify deep neural networks, in theory and in practice. Formal veri cation can be broken down into di erent pillars, or research interests: The work presented in this thesis studied those three pillars: we aimed to nd a way to adapt them to deep learning software.

Outline

The rst part of the thesis, part I, is made of two introductory chapters that are necessary to read in order to de ne our object of study. In chapter 3, we will de ne what software is, and how its behaviour can be checked using formal veri cation techniques. We will detail some of the formal methods we will use during this thesis. Chapter 4 will focus on deep learning software, and describe its speci cs. It will also describe the current barriers that prevent us directly apply existing formal veri cation techniques.

The second part, part II, will focus on the di culties to specify deep learning methods and our contributions regarding those. Chapter 5 will present our rst contribution: CAMUS, a framework to formulate properties on deep neural networks on perceptive spaces. Chapter 6 will present the artifacts we developed to allow an easier formulation of said properties for neural networks.

The third part,part III, will focus on the combinatorial problem of deep learning veri cation. Chapter 7 will present an algorithm we proposed to improve the problem formulation of software veri cation. Chapter 8 will present an evaluation of this algorithm with an implementation, as well as further analysis on the problem formulation.

Finally, the last part, part IV) will present the future works and perspectives this thesis shed into light. A gure illustrating the outline of the thesis is available gure 2.1.

How to read this thesis

This thesis can be read linearly. Some chapters are tightly linked to each other while others are more independent. Chapters 3 and 4 are the introduction chapters and should be read to understand the aim and scope of this thesis. Chapter 6 introduces a tool that is motivated by chapter 5. Finally, chapters 7 and 8 should be read together.

Each chapter has some reading helpers. We will provide summaries at the beginning of each chapter. They are written as compact descriptions of the chapter's aims, and show core results. A time-constrained reader can read each summary and hopefully grab a rst understanding of this thesis.

Summary of the chapter

Summaries are enclosed within an orange box.

Following the di erent steps of a scienti c development can sometimes be di cult: keeping up with notations and new concepts can quickly become overwhelming, and hazardous writing may fail to channel the attention on the key points of the reasoning. To try to address this issue, we will emphasize the key points of a chapter. Reading those alone will not be enough to fully understand the thesis, as they are context dependent. They are more to be seen as "anchors of focus", that are fully necessary to understand the rest of the chapter.

Key point

Keypoints are enclosed within a blue box.

Research questions are the topics we aim to research and (hopefully) provide an answer for.

Research questions

Research questions are enclosed within a bright green box.

Although chapters are focusing on a speci c topic, some adjacent notions may interest the curious reader. At the end of some chapters, we will provide complementary references that may broaden the reader's views, but are not necessary to directly understand the chapter's core message.

Due to the high number of references in this thesis, we recommend reading it digitally using a pdf reader capable of link previewing, such as evince (Version 3.37.

Formal software veri cation

Summary of the chapter

We de ne software as a series of instructions written by humans or others to perform actions on the real world. Possible failure of software requires methods to ensure that its behaviour will not result in human harm. We present formal veri cation, a eld of research aiming to develop techniques that answer this goal. We present some of those techniques:

1. Boolean Satisfaction (SAT) and Satisfaction Modulo Theory (SMT) calculi, that translate programs and properties as logical formulae to prove Providing methods bringing trust to software is an important goal: trust is an important component of social acceptance, and social acceptance is desirable if we want to further integrate software in the functioning of our societies. It is all the more true for software based systems whose failure may cause physical harm, ecological or economic loss. Such systems are called critical systems. Example of critical systems are power plants controllers or autonomous transportation software.

To enable trust on the technical side, there exist di erent techniques. Testing checks the behaviour of the program on a pre-determined single inputs, which helps 23 to detect the presence of bugs. Debuggers help the programmer to precisely monitor what happens during the program execution, leading to a better understanding of its inner working. Writting programs with certain languages can avoid entire classes of malfunctions.

The technique we will focus on during this thesis are those we call formal methods, a set of techniques and tools whose operation is grounded on di erent types of mathematical theories. Those techniques are used to analyse certain behaviours of programs. The practical results of those analyses are guaranteed with sound theoretical fundations, thus leading to an increased level of trust.

Those methods usually do not come for free, however. First, it is necessary to formalize the goal of the analysis (what is the behaviour we want to verify) in a clear, non-ambiguous way. Second, it is sometimes necessary to modify the program to make the veri cation process feasible, and to decide which parts of the program should be veri ed (what is the subject of veri cation). Third, a careful choice and parametrization of the veri cation tools is often necessary to obtain sound results on a set time budget (how is the veri cation going to take place). This chapter aims to give a su cient understanding of formal methods through those points.

Representing software

But what is a software anyway? In the remainder of this thesis, we will use the following broad de nition as a basis for our reasoning:

De nition 1.

A software is an ensemble of instructions designed and written by a certain agent to accomplish a pre-de ned objective. The instructions are written in a standardized way, so that a computer can understand those instructions. Said standardized way is called a programming language. The act for a program to be run to accomplish its purpose is called an execution. Remark 2. The words software and program can be used more or less interchangeably; the latter has a slightly more technical meaning but for the scope of this thesis, the two words can be understood as meaning the same thing.

In de nition 1, software designates both the le containing the sequence of instruction and the actual artifact ready to be used. To go from the former to the latter, the program is transformed through multiple steps. Each of those steps provides ways to represent the program di erently. The representation we will use for most of this thesis is called the control-ow graph.

De nition 2.

A control-ow graph (CFG) is a graph G with vertices V and edges E (denoted G(V, E) in the following) describing all the states a program can take during its execution. Vertices V represent memory states of the program, edges E represent instructions (jumps, conditional, loops) that transform the memory.

Let us illustrate this de nition with an example: A CFG has an entry node (the starting point of the program) and exit nodes (possible ways for the program to exit). This representation is helpful because it leverages graph theory tools to deduce properties on programs. For instance, a sub-graph not connected to the entry point denotes behaviour that will never happen under execution, "dead code" that can safely be removed. If all exit points are unreachable, this indicates an in nite loop. CFG will thus be our main way to represent programs (apart from source code snippets) for the rest of this thesis. Note that while CFGs are used to analyse and transform programs, we will mostly use them for their representation purpose.

1 l e t v =
Software is a human creation, and is involved in multiple human activities. Commerce, industry and science thus looked for ways to rationalize program design and implementation, and articulate human workforce to produce software of better quality. This search is obviously still ongoing, and one may see this thesis as a contribution to this e ort. A lot of work exist on the organization of software production, which is beyond the scope of this thesis. A relevant aspect, however, is that software is a complex engineering artifact, that requires communication between multiple actors with di erent goals. A simpli ed vision on how software is made can be seen in gure 3.2.

Armed with a basic understanding of what is a program, we may now ask ourselves the following questions. Can a program fail? If so, what are the consequences? How can we spot this failure, and how can we prevent it?

Why would we want to verify software?

As said in the introduction, software is taking part in our daily lives, and society deployed programs and adapted around them, to the point that failure in their operations can have dire consequences. The Colonial Oil pipeline [21a] and the Rouen hospital [Tri19] were both hit by a ransomware, a type of cyberattack. The pipeline was unable to operate during the attack, and the hospital had to rely on triaging patients without the help of computers, complexifying drastically the work of healthcare workers. A city water sanitization stations [START_REF] Statt | Hackers Tampered with a Water Treatment Facility in Florida by Changing Chemical Levels[END_REF] was left open to tamper with: a malicious user could have induced a mass scale water poisoning. Hospital, pipelines, water sanitization systems: all are examples of complex systems whose functions are partly exercised by software. It is then a legitimate concern for members of society to ask for guarantees to trust software to function according to its purpose. To plan a trip, a reliable scheduling system is expected. Running a hospital smoothly requires a power grid that functions all the time. And passengers of an aircraft expect its guiding and sensing systems to work su ciently well so that they don't die during the trip because of a malfunction.

Software is a human creation, and thus is subject to failure. There is a high probability that the reader may already have experienced a program malfunctioning, with more or less frustrating results: unexpected failures while processing an administrative chore online, or the crash of a text formatter or spreadsheet editor with no backups. . . Failure of a train interlocking system [SCA15] would certainly have direr consequences. Because of errors made by the programmers and/or unexpected behaviours of the program, malfunctions are bound to happen if nothing is done to prevent them.

Of course, techniques helping to assess the quality of software predate the 21st century. We can broadly divide them in the following categories:

1. organizational methods: code reviews, separation between developing and testing, coding conventions 2. safety-by-design: using tools that increase the con dence we put into software, such as memory-safe programming languages, proof of underlying algorithms 3. runtime monitoring 4. quality assessment: after the software is made, technical certi cation can be achieved using tests or formal veri cation This thesis mostly focuses on the last item: once the program is written and ready to run, how can one verify its quality? More speci cally, we are interested in a certain property, called safety. There exist multiple formulations of software safety in the literature, see for instance ISO 26262 and ISO 21448 SOTIF for safety in autonomous vehicles. We propose the following de nition that we think is enough for the scope of our work: De nition 3. The safety of a software represents its ability to perform its purpose under normal operating conditions and avoiding malfunctions.

A key point here is that normal operating conditions and malfunctions need both to be characterized with a certain degree of precision, in order for technical tools to operate. For the dummy program presented on gure 3.1, one could want to verify that the program always returns an integer value. On more complex programs, one could formulate expectations on couple of inputs and outputs. Remark 3. In de nition 3, normal operating conditions are de ned during the speci cation phase of the program conception. However, the malfunctions we illustrated at the beginning of this section are the result of an intentional action. Protecting software against intentional degradation falls into the eld of security. In classical software, there exist a wide range of vulnerabilities, requiring to model a threat model describing what an attacker is able to do, leading to a wide range of di erent techniques. Fault injection and side-channel attacks are both attacks studied in security, and protecting against those require di erent approaches. Furthermore, protecting against those attacks is not the same thing as enforcing the absence of crash under normal operating condition. However, the programs we study in the rest of our thesis have special features (that we will de ne later on). Those features, that can make program unsafe, can be leveraged to perform intentional attacks. Symmetrically, protecting against an attacker and ensuring safety calls for the same approaches. Thus, this class of program blurs the line between "pure" safety and "pure" security. When the potential malfunction of the program is human-induced, we will classify it under "security" threat. When the potential malfunction can occur within normal operating range, we will classify it under "safety".

Formal methods are a possible way to assess the safety of software, and the main subject of interest of this thesis. Under this wording lives a menagerie of research elds and tools deployed on industrial settings; norms like DO-178C for avionics or ISO/IEC 15408 require their use in some critical systems. Drawing a history of such a wide variety is a complex work, and will necessarily be di erent between storytellers because of their teachers, their work and their a nities. The following is adapted from Julien Signoles's habilitation thesis [START_REF] Signoles | From Static Analysis to Runtime Veri cation with Frama-C and E-ACSL[END_REF]. A possible starting point is to rst ask ourselves why verifying if a program behaves accordingly to a speci cation is even a research problem. In his paper, Rice [START_REF] Gordon | Classes of Recursively Enumerable Sets and Their Decision Problems[END_REF] proves that there exist no exact, automatic static analysis procedure that can answer if a program has a non-trivial property. Any method wanting to verify non-trivial properties would need to go through a backdoor. Any existing family of formal methods can be understood as using a di erent backdoor to bypass Rice's theorem. The main component of all formal methods is a grounding in mathematical reasoning, which allows them to provide strong guarantees. We shall de ne in more details the speci c methods that are the object of this thesis.

For this thesis, we will be dealing with analysis done after the program is completed. We will thus not work on certi ed code generation, nor typing systems (although we will be working with strongly typed languages).

But before diving further into the details of formal veri cation techniques, we will rst de ne formally what it means to formally verify a program.

Formulating a veri cation problem

Let f be a program. Let X the space of all possible inputs, let Y be the space of all possible outputs. A veri cation problem postulates a pre-condition on the input space P(X) and a post-condition on the output space Q(Y).

De nition 4.

A formal veri cation problem consists on verifying that ∀x ∈ X , P(X

) =⇒ Q(Y)
The de nition 4 does not make any hypothesis on the nature of the pre-and postconditions. To take an example, let us imagine an array of numbers of size 16 bits, storing speed coordinates. A desired behaviour for this array is that, across execution of the program, it never over ows. Here, P(X) can engulf all X . Q(Y) could be all possible outputs, excluding over ows errors (this example is inspired from the realworld Ariane 5 crash, the full post-mortem report is available here [START_REF] Lions | ARIANE 5 Failure -Full Report[END_REF]).

Formal veri cation techniques

It is now time to dive further into the speci cs of the formal methods we will be studying and using during this thesis. We rst de ne two important notions, coming from logic: For instance, an algorithm that works only on a sub-part of the program will not be complete. An algorithm that can produce wrong answers will not be sound (hence, particular care must be taken during the implementation of veri cation algorithms).

We can broadly separate our techniques of study into two families:

1. exhaustive methods, sound and complete but more costly 2. overapproximative methods, sound but not complete, more scalable

Exhaustive methods: SAT and SMT calculus

Those methods are sound and complete, and usually depends on an exhaustive exploration of all possible situations, using search and simpli cation heuristics. The following explanation owes much to Gérard Berry's course at Collège de France [START_REF] Berry | Structures de données et algorithmes pour la vérication formelle[END_REF].

Problems to verify can be encoded and solved using Boolean calculus. Boolean calculus de nes variables (also called atoms) with only two possible values: false or true. Available operators are the logical AND, or conjunction (∧), and the logical OR, or disjunction (∨). The following rules are given:

• associativity: A ∧ (B ∧ C) = (A ∧ B) ∧ C • commutativity: A ∧ B = B ∧ A • idempotency: A ∧ A = A • neutral elements: A ∧ true = A, A ∨ f alse = A • absorbing elements: A ∧ f alse = f alse, A ∨ true = true • distributivity • negation ¬: ¬true = f alse, ¬f alse = true • Morgan's laws: 1. ¬(A ∧ B) = (¬A) ∨ (¬B) 2. ¬(A ∨ B) = (¬A) ∧ (¬B)
Those sets of rules can be used to encode logical formulae, which are a way to express pre and postconditions.

De nition 6.

A clause is a disjunction of literals. The Cunjonctive Normal Form (CNF) is a formula expressed as a conjunction of clauses.

The SAT problem is thus de ned as follows:

De nition 7. A formula F (x 1 , x 2 , . . . , x n) is satis able (SAT) if there are boolean values x i making F true. A formula F (x 1 , x 2 , . . . , x n) is valid if it is true for all x i .
The main goal of SAT as a research domain is to nd e cient ways to solve a SAT problem, that is to say, answer if a formula is SAT or not. Solving a SAT problem is a NP-hard problem according to the Cook-Levin theorem [START_REF] Cook | The Complexity of Theorem-Proving Procedures[END_REF]. In practice, since the rst SAT solvers, multiple improvements were developed that allowed to solve most of real-world problems. The Davis-Putman-Logemann-Loveland algorithm [START_REF] Davis | A Machine Program for Theorem-Proving[END_REF] is the backbone of most solving procedure, guaranteeing a sound and complete exploration of all formula instantiation by xing the value of one variable at a time. Con ict-Driven Clause Learning [START_REF] Marques | GRASP-A New Search Algorithm for Satis ability[END_REF] consists on learning from the failure. Twowatched literals [START_REF] Moskewicz | Cha : Engineering an E cient SAT Solver[END_REF] greatly reduced the algorithmic overhead of keeping track of the backtracking points and formula states. There are still open research questions, among which is parallelization; the community is dynamic, with an annual competition to push up new ideas: SAT-COMP http://satcompetition.org/. Remark 4. Note that verifying if a formula is valid is equivalent to verifying that its negation is UNSAT:

F (x) = VALID ≡ ¬F (x) = UNSAT
One of the limitations of SAT solvers is that they only compute booleans formulae. This limits the expressiveness of the encoded formulae and requiring greater expertise to encode a real world problem into a SAT formula. Let us take an example. Suppose one would like to solve the following problem: To be able to do this, one would need to identify a, b, 2 and 3 as belonging to the same kind of things (real-valued numbers), specifying the meaning of the arithmetic sum and of the inequality, and nally a way to solve the equation. The Satisfaction Modulo Theory (SMT) calculus aims to answer this issue by providing a new conceptual tool: theories.

((a = 1) ∨ (a = 2)) ∧ (a ≥ 3 ∧ ((b ≤ 2) ∨ (b ≥ 3))) Original formula ((a = 1) ∨ (a = 2)) ∧ (a ≥ 3 ∧ ((b ≤ 2) ∨ (b ≥ 3))) SMT/SAT

De nition 8.

A theory is a set of symbols and rules specifying a semantic and a grammar for given symbols Theories aim to translate a formula written in a certain formalism to SAT problems. For our example, it is possible to de ne SAT variables, boolean valued:

x 1 : a = 1, x 2 : a = 2, x 3 : a ≥ 3, x 4 : b ≤ 2, x 5 : b ≥ 3. The initial formula thus become: (x 1 ∨ x 2) ∧ (x 3 ∧ (x 4 ∨ x 5
)), which then can be transformed into CNF and send to a SAT solver. The SAT solver generates a SAT assignment for the variables. This assignment is sent back to a Theory solver, that checks if the SAT assignment is valid in the target theory. Here, a possible assignment is true for all variables. But according to the integer arithmetic, b ≤ 2 and b ≥ 3 is not possible simultaneously. The SAT assignment is then not valid in the target theory, so new constraints are generated: x 4 ∧¬x 5 . This new constraint is added to the original problem, and the cycle continues until a de nitive answer is given (or the solver times out). This overall process is presented gure 3.4.

Modern tools implementing SMT calculus notably include Z3 [START_REF] De | Z3: An E cient SMT Solver[END_REF] and CVC4 [START_REF] Barrett | CVC4[END_REF]. Like SAT, there exist an annual competition that provides common benchmarks, SMT-COMP https://smt-comp.github.io/2021/.

Overapproximation: abstract interpretation

Contrary to exhaustive methods, overapproximation methods are not complete, because they usually compute a version of the program that has been transformed to behave di erently. However, they still have a soundness guarantee; they also tend to be faster than exhaustive methods.

Another way to circumvent Rice's theorem is to relax the exact nature of the verication procedure. This is the core of abstract interpretation, introduced by Cousot and Cousot in [START_REF] Cousot | Abstract Interpretation: A Uni ed Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints[END_REF]. The seminal idea is to compute an overapproximation (or abstraction) of the program behaviour. Veri cation is then made on the result of the abstract program computation. Usually, this is made by modifying the program to compute sets of inputs (or domains), that describe certain behaviours of the input. An example with intervals, a simple domain, is available gure 3.5. Note the important limitation of intervals: given a value x := [-1, 1], we have x -x = [-2, 2] according to interval arithmetic, where it should be equal to 0. Intervals propagate imprecision each time an operation is applied to them. More accurate numerical domains exist, such as zonotopes [START_REF] Khalil Ghorbal | The Zonotope Abstract Domain Taylor1+[END_REF], but using them is more costly. The key of abstract interpretation is to nd the good trade-o between precise analysis and reasonable execution times.

1 / / x ∈ [-1, 1] 2 / / y ∈ [2, 4]
3 l e t z = x + y 4 i f z < 0 then 5 c o s t l y _ f u n c t i o n 6 7 e l s e 8 s i m p l e _ f u n c t i o n , A is too wide, and the veri cation procedure raises a false alarm. On g. (c), A does not encompass all behaviours, resulting on an unsound analysis. Domains used in abstract interpretation must be sound, so case (c) is not supposed to happen when dealing with real tools. Credit: Antoine Miné

x ∈ [-1, 1] y ∈ [2, 4] x ∈ [-1, 1] y ∈ [2, 4] z ∈ [1, 5] x ∈ [-1, 1] y ∈ [2, 4] z ∈ [1, 5] costly_function x ∈ [-1, 1] y ∈ [2, 4] z ∈ [1, 5] simple_function z < 0 z > 0

Symbolic execution

The key to symbolic execution is to make use of symbolic values instead of concrete values. The program control ow is altered to propagate symbolic variables, and the whole execution is understood as a function of symbolic inputs. Symbolic execution creates a mapping m between a variable v and a symbolic value e: this mapping can be seen as equality constraint. At each execution step of the program, m is refreshed to add new additional symbolic variables v or change the symbolic values mapped to v, according to the semantic of the program. When a branching point -often, a conditional c that involve multiple v -is met, c is morphed into a constraint translating the satisfaction of the conditional. It is then added to m: m = m ∧ c. In parallel, a new mapping is created: m = m ∧ ¬c, corresponding to the other side of the conditional. The two symbolic execution paths continue their execution independantly. When an end point is reached, a constraint solver (often an SMT solver) solves the set of constraints formed by m and instantiate the symbolic values with concrete input values. When inputted in the original program, those concrete input values will result in the exact same execution path being taken. For instance, in the program described in gure 3.7, at line 3, we have variables x and y mapped to symbolic values without any constraints x 0 and y 0 . Then, when we enter the procedure, at line 7, symbolic variable z is mapped to symbolic value 2 * x 0 . A branching point occurs at line 8. A rst constraint, y! = 2 * x, is added to a copy of m (corresponding to the rst left node on the gure). Since the procedure ends if this conditional is not veri ed, then the symbolic execution ends and the solver returns concrete values for x 0 and y 0 that satisfy the constraints added to m. A similar procedure occurs for the rest of the execution.

Symbolic execution is susceptible to limitations such as path explosions, when the number of branching is too high, or potential in nite execution. For programs with no loops however, this technique, mostly used for testing, can provide crucial information to other formal veri cation techniques, or be used in a stand-alone fashion.

i f z == y { i f y > x + 1 0 { f a i l () } } x = x 0 y = y 0 x = x 0 y = y 0 z = 2 * x 0 x 0 = 0 y 0 = 1 x = x 0 y = y 0 y 0 = 2 * x 0 x 0 = 1 y 0 = 2 x 0 = 15 y 0 = 30 fail y = 2 × x y == 2 × x y ≤ x + 10 y > x + 10

Linear optimization

Finally, let us introduce another technique that we will be using during this thesis: linear optimization (also called Linear Programming, or LP). The overall goal of linear optimization is to nd the optimal solution for a linear function over a certain set of linear constraints. This technique, mostly used in applied mathematics, can also be used for software veri cation, providing the program can be encoded under a set of linear functions. Geometrically, this can be seen as nding the minimum value inside a convex polyhedron. More formally:

De nition 9. For x ∈ R n the real valued variables, c ∈ R n the objective function, A ∈ R m,n and b ∈ R m the linear constraints, a linear optimization problem is the minimization problem min x,Ax≤b c T x
Such problem can be solved using various algorithms. One of the most popular is the simplex algorithm, described for instance in [21b]. The basic idea is to navigate alongside the vertices of the constraints' polyhedron in order to look for con icts between constraints. An optimal solution is found when no constraints are violated. Common solvers used to solve LP problems are Gurobi [START_REF] Llc Gurobi Optimization | Gurobi Optimizer Reference Manual[END_REF] and GLPK [Mak].

To go further The interested reader can look at [START_REF] Cadar | Symbolic Execution for Software Testing: Three Decades Later[END_REF] for a pedagogic explanation of symbolic execution and its main challenges. Regarding abstract interpretation, a good starting point is the Antoine Miné tutorial [START_REF] Miné | Tutorial on Static Inference of Numeric Invariants by Abstract Interpretation[END_REF]. The author of this thesis would encourage any interested reader on the topic of type systems to take the course of Xavier Leroy's [START_REF] Leroy | Programmer = démontrer ? La correspondance de Curry-Howard aujourd'hui[END_REF] on the developments of this idea on the eld of mechanized veri cation.

Chapter 4

Programs that learn

Summary of the chapter

We present arti cial intelligence, a eld of computer science aiming to replicate the human abilities of perception, reasoning and decision-making in the material world. We focus on neural networks, a speci c kind of program. Neural networks are able to process inputs of high dimension and detect patterns in them, thanks to the gradient descent algorithm, research in parallel computing and availability of massive labeled datasets. Neural networks are programs and as such, can fail. Small variations on their inputs can result on vastly di erent results, their control ow is not explicitly programmed and the data they manipulate is di cult to specify. Data as speci cation prevent the formulation of properties. Their non-linearity makes it di cult to apply classical formal verication, leading to combinatorial explosion.

In the previous chapter, we de ned the overall process of formally verifying software. A program -represented by a control ow graph -is transformed and analyzed using several techniques for a speci cation to be checked against. So far, no speci cs were given on what kind of software we will study. The aim of this thesis is to study the possibility to formally verify a certain class of software: machine learning programs.

A short history of data-oriented programs

If the words machine learning and deep learning are now commonplace in the everyday discourses, they refer to programming paradigms that are ancient -relative to computer science. The research eld under which those techniques were developed is called Arti cial Intelligence (AI). Since its birth however, AI has become much more than a research eld. Humans imagined thinking and acting artifacts long before the dawn of the digital computer. Greek inventor Ktesibios compiled and developed the principles of tamed mechanical force in numerous of his inventions, such as the clepsydra. The Jewish mythos of the Golem describe a humanoid gure made of clay and answering the wills of its creator. In Fritz Lang's Metropolis, an automaton is created to stem an unsuccessful revolt on a poor working class. Our imagination is thus populated with projection of arti cial artifacts. The increasing integration of software in human life and society led new issues to be tackled by politics. In this context, we think it is important to de ne what is arti cial intelligence (and its o spring, deep learning research) as a research eld; and to produce a short history of this eld to give some perspective to the reader.

A tentative de nition of arti cial intelligence

While going through the literature, we found that there was no unique de nition for arti cial intelligence. Rather, there are partial de nitions: some focus on describing the tasks performed by a hypothetical artifact, others focus more on the processes used to build and run those artifacts. We propose here three of those partial de nitions:

De nition 10. Arti cial intelligence is:

1. "the study of the computations that make it possible to perceive, reason and act. " [START_REF] Henry | Arti cial Intelligence[END_REF] 2. "an agent that acts as to achieve the best outcome or, when there is uncertainty, the best expected outcome. " [START_REF] Russell | Arti cial Intelligence: A Modern Approach[END_REF] 3. "the ability of a digital computer [. . .] to perform tasks commonly associated with intelligent beings. The term is frequently applied to the project of developing systems endowed with the intellectual processes characteristic of humans, such as the ability to reason, discover meaning, generalize, or learn from experience. " [Cop] Those de nitions present the three main objectives of arti cial intelligence, namely, the characteristics an arti cial intelligence program should aim to:

1. perceive information from the material space; 2. create knowledge and meaning from the perceived inputs; 3. act rationaly according to its knowledge, sometimes on the physical world.

As an example, on a rainy day, such programs could identify that the sky's colour is changing from blue to grey, conclude that some rain is about to pour and that a coating of some sort would be useful to not be drenched by the rain, and proceed to look for the nearest coat.

Those three attributes led to di erent research elds: allowing a machine to perceive led to computer vision and audio processing; building knowledge and reasoning procedures led to knowledge representation and computational logics such as SAT calculus (presented in previous chapter) and expert systems; acting on the physical world is the topic of cybernetics, while designing and e ciently implementing an action policy borrowed from mathematical optimization. The idea of studying reasoning (or at least self-regulating) and acting artifacts can be tracked back to the beginning of the 18th century, with Watt's steam engine, or the formalization of the study of feedback systems as a discipline (automation) in the 19th. But those attributes were rst put together and formalized by Alan Turing in his seminal paper [Tur50], where he also present his "imitation game" (later known as the Turing test): a set of tests that a computer would need to succeed in order to seem intelligent for a human observer. AI as a discipline began to ourish, spawning multiple approaches that led multiple encouraging early results. One such approach focused on developing a certain kind of programs: neural networks.

Formal neuron and perceptron (1943-1969)

The rst description of a formal neuron is found in [START_REF] Mcculloch | A Logical Calculus of the Ideas Immanent in Nervous Activity[END_REF]. This model originally stems from the biological neuron, even if computer science neurons do not have much in common with biological ones. In this paper, the authors describe a computational unit (the neuron) outputting a value once a certain threshold is met, using an activation function. The perceptron algorithm [START_REF] Rosenblatt | The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain[END_REF] describes how formal neurons could reorganize their initial connections to achieve a given objective. See gure 4.1 for a description of a formal neuron. Theoretical limitations were exhibited: in [START_REF] Minsky | Perceptrons: An Introduction to Computational Geometry[END_REF], it was shown that a non-linear separable problem (such as the learning of the logical XOR) could not be represented with a linear perceptron. This was due to the single-layered nature of the perceptron, as well as the activation function used. Another issue arose quickly. If programs of that time were able to provide impressive results on toy problems with small dimensionality (3 inputs and 3 outputs for A neural network with two inputs, one hidden layer of three neurons and two outputs, no biases. Each neuron process the weighted sum of its inputs, followed by an activation function

z x 1 x 2 x 3 y σ w 1 w 2 w 3 y = σ(z) = σ(3 i=1 w i x i)
x 1 x 2 z 1 1 z 1 2 z 1 3 y 1 1 y 1 2 y 1 3 z 2 1 z 2 2 y 2 1 y 2 2 σ σ σ σ σ W 1 ∈ R 3,2 W 2 ∈ R 2,3
an ADALINE [START_REF] Widrow | An Adaptative "Adaline" Neuron Using Chemical "Memistor[END_REF]), results in other discipline showed that those programs did not scale up to larger problems. In [START_REF] Mitchell | Why AI Is Harder Than We Think[END_REF], the authors advance the possible cause that the combinatorial explosion (sometimes called "curse of the dimensionality"), was not foreseen by researchers and industries at the time, leading to overoptimism. We can note that di culties to assess the hardness of an AI problem can be seen nowadays with autonomous driving, with industrials that fail to deliver (see the multiple declaration of Tesla's CEO Elon Musk [START_REF] Poletti | Opinion: It's Time for Elon Musk to Start Telling the Truth about Autonomous Driving[END_REF], or this video of a Waymo car being stuck by signaletic cones [START_REF] Studios | Waymo Self Driving Taxi Fumbles In Construction Zone, Blocks Tra c | JJRicks Rides With Waymo #54[END_REF]). The lack of expressiveness of perceptrons and the inability to tackle high-dimensional problems led the eld of neural networks to go dormant for some time.

Backpropagation (1975-1986)

Presenting one single event as leading the rebirth of interest in neural networks would not be wise. In twenty years, the landscape of computer science changed a lot. The speci cally-designed device implementing the ADALINE could be superseded by generalpurpose programming languages like C. Computers were multiple order of magnitude faster than they were during the 60s, and they were now much more a ordable. Computer science as a eld grew more mature, and the design of software shifted from an engineering problem to a scienti c process. Each eld has its tradition however, and the tradition of deep learning considered the rediscovery of the backpropagation algorithm by several teams in a short period of time as the "rebirth" of neural networks. The history of this (re)discovery is somewhat a topic of discord in the eld: let us cite [START_REF] Rumelhart | Learning Representations by Back-Propagating Errors[END_REF] in 1986 and [Le 86] as the papers that sparked this new trend, and an earlier work [START_REF] John | Backpropagation through Time: What It Does and How to Do It[END_REF] from 1975. The interested reader can consult [Sch] for more context on that matter. Nevertheless, this method of propagating error inside deep neural networks is still the backbone of modern tools, and will be described with more details later. Some early practical results are described in [Le +89], were a neural network was able to detect handwritten digits with 1% error rate. Distributed programming and the continuous increase of processing powers of computers allowed tackling high-dimensional problems that were left undone at the end of the 60s, as well as new ones.

Massive availability of data and the Boom of machine learning (1989-present)

A nal ingredient was required before the broth was ready. Availability of massive, annotated datasets allowed to leverage the theoretical computational power into practical uses. The Mixed National Institute of Standards and Technology (MNIST) dataset[Li 12], rst introduced in 1998, comprises 60000 28×28 grayscale images of handwritten digits. For teaching self-driving cars to drive, the nuScenes [START_REF] Caesar | nuScenes: A Multimodal Dataset for Autonomous Driving[END_REF] datasets is a collection of annotated videos containing locations of various entities at each timestep. CommonVoice https://commonvoice.mozilla.org/fr is a project to create a dataset of voice samples representative of the whole human population. Ima-geNet [START_REF] Deng | Im-ageNet: A Large-Scale Hierarchical Image Database[END_REF] is a collection of more than 14 million images and 21000 classes used for image classi cation in general, subject of a competition: ImageNet Large Scale Visual Recognition Challenge (ILSVRC).

All was set for the new neural network boom. In 2012, the authors of [KSH17] presented an implementation of a neural network trained to detect classes on the Ima-geNet dataset. They scored rst on the ILSVRC challenge, pushing the state of the art of computer vision. This sparked a vast reinvestment of research and industry in this eld, of which this thesis is a descendant. The eld is now swarming, to the point that historic machine learning conferences are having trouble to cope with the increasing number of publications. An analysis of the submissions at one of the top machine learning conference, NeurIPS 2020, is available at [START_REF] Ivanov | Comprehensive Analysis of Authors, Organizations, and Countries. Medium[END_REF]. Some key points include:

1. almost triple the number of submissions from 2017 than to 2020; 2. a constant acceptance rate during those three years;

a high number of United States organizations in the top publishers (in particular,

Alphabet's subsidiary, Google, is the top publisher);

Trained sociologists and data experts [START_REF] Synced | Exploring Gender Imbalance in AI: Numbers, Trends, and Discussions | Synced[END_REF] show that the gender imbalance in AI is increasing, on par with the similar phenomenon prevalent in computer science in general.

State-of-the-art is moving fast in neural network research. We can nevertheless point the reader to some discoveries that we consider important for di erent elds. Skip-connections [START_REF] He | Deep Residual Learning for Image Recognition[END_REF] introduced an architectural block that eased the learning of very deep architectures (the original paper presented state-of-the-art accuracy on Ima-geNet with 50 layers). Generative adversarial networks [START_REF] Creswell | Generative Adversarial Networks: An Overview[END_REF] introduced a learning scheme allowing a network to generate data from a learned distribution, with applications from music composition to fake picture generation. The Transformer architecture [START_REF] Vaswani | Attention Is All You Need[END_REF] dramatically reduced the required resources needed to train programs working on natural language, leading to vast improvements in text applications. Object detection for autonomous or semi-autonomous vehicles [START_REF] Bojarski | End to End Learning for Self-Driving Cars[END_REF] make use of neural network techniques. Less consensual applications include facial recognition and reidenti cation of people for public surveillance (see [START_REF] Ye | Deep Learning for Person Re-identi cation: A Survey and Outlook[END_REF] for a survey on this technique). Clearview AI1 is one of the numerous companies that use machine learning for person reidenti cation. Tech company Canon used facial recognition to detect smiles, only allowing smiling workers to enter o ces [START_REF] Vincent | Canon Put AI Cameras in Its Chinese O ces That Only Let Smiling Workers Inside[END_REF].

Background and notations

Now that our readers have some element of context, we shall dive into our subject and introduce the basic concepts necessary to understand how a neural network works.

Mathematical background

Let X be an input space. For RGB images, this typically is a subset of R 3 * d in where d in is the number of pixels of the image. Let Y be an output space. For our problems, this is typically a vector of R p where p is the number of di erent entities to classify.

De nition 11.

Let W be a linear operation R d in → R dout , let σ be an activation function R → R applied pointwise to each coe cient of a vector; meaning for a, b, c ∈

R × R × R: σ   a b c   =   σ(a) σ(b) σ(c)   We name layer the function composition σ • W . A neural network is a function f : X → Y that
is composed by a succession of layers. We note X i the input vector of layer i, W i the linear operation occuring at layer i, parametrized by the parameters θ i (σ has no parameter). We note

Z i = W i (X i), Y i = σ(Z i). Note that X i+1 = Y i .
The gradient of a (possibly multidimensional) quantity x with respect to the (possibly multidimensional) variable y is denoted by ∇ y x. The partial derivative of x with respect to y is denoted by ∂x ∂y . We will study networks after their training, meaning the weights will be xed. In our thesis, the architecture will be kept relatively simple and similar: we will only use matrix multiplication and element-wise addition for the linear operations.

De nition 12.

Let A ∈ R n,p , B ∈ R p,m and d ∈ R n,m be three real-valued matrices. The matrix multiplication between A and B is the operation producing the resulting matrix C ∈ R n,m where coe cients c i,j at coordinate i, j are c i,j = p k=1 a i,k b k,j . The element-wise addition between C and d is the operation producing the resulting matrix C ∈ R n,m where c i,j = c i,j + d i,j . Similarly, element-wise multiplication can be de ned.

A popular activation function is the REcti ed Linear Unit (ReLU for short):

ReLU : x ∈ R → max(x, 0) (4.1)
Neural Nets with ReLU is a common design choice for most use cases. Furthermore, ReLU is a piecewise-linear function: it is linear on] -∞, 0] and on [0, ∞[, which makes formal analysis easier. Thus in this thesis we will limit our study to Neural Nets with ReLU as activation functions.

Task de nition: the example of classi cation

Among the multiple tasks one can ask a neural network to do, we will study classi cation. Let us consider a sample x from a dataset D. Each x is assigned a label y i , i ∈ (1..p). For instance, in a dataset of animals, images of dogs will be labelled as "dogs", while images of cats will be labelled as "cats". The aim of the neural network will be to output the probability for an unknown (i.e.,previously unseen) sample to belong to one of the p classes. To this end, the last layer will have a log-softmax activation function:

LogSoftmax : x i → log(exp(x i) j exp(x j)) (4.2)
This choice models the fact that neural networks output log-probabilities for their outputs to belong to a certain class.

Preparing a dataset

To perform sample classi cation, an annotated dataset is required. The annotation process is costly, and is nowadays mainly made manually, using microworking platforms such as Amazon Mechanical Turk. See the work of Paola Tubaro [Tub21] for the social impact of that kind of activity. The prohibitive cost of collecting, normalizing and annotating a su cient amount of data can be mitigated by using public datasets. Usually, a dataset D is divided between disjoints splits, usually a training split D train and a testing D test , to ensure that the evaluation of the neural network is not on already seen samples. When no dataset of su cient size is available, it is possible to use a technique called transfer learning [START_REF] Tan | A Survey on Deep Transfer Learning[END_REF] to ne-tune a pretrained program to the target task.

Ethics behind dataset

For neural networks in particular, the choice of a dataset is not without consequences. Datasets are constituted by humans, who are not devoid of biases. Racism and sexism biases do appear in the collection of data. Neural networks are not trained to correct thoses biases if not speci cally taught to do so. Since such technologies are already used in law-enforcement or in security sectors, a special care should be taken into ensuring that those algorithms treat fairly all the population, instead of enforcing stereotypes (people may be eager to trust the result of an algorithm because it is somewhat "more neutral" than a human). Some example of potential unwanted biases can be found in the Correctional O ender Management Pro ling for Alternative Sanctions (COMPAS) algorithm [START_REF] Mattu | Machine Bias[END_REF]. The debate is still strong to assess the exact nature of those biases, and the research eld of algorithm fairness is focusing on identifying and mitigating those biases.

Architecture and engineering

To train a neural network, one must assemble basic building blocks in a certain order. The dimensionality and chaining of those building can vary, yielding di erent results.

Finding the correct learning algorithm and loss function is also necessary. All those elements are usually called hyperparameters. Hyperparameter tuning is a craft of careful engineering, that usually require to train the same program several times with a variation of the hyperparameters. Automatic machine learning (AutoML) aims to automate the hyperparameter tuning by using deep learning: we witness networks that are "learning to learn".

The learning algorithm: gradient backpropagation

Let L be a loss function, designed to calculate the error between the output of the neural network and a given ground-truth. Common loss functions for classi cation tasks include binary cross entropy, while regression tasks consider most often mean square error. For one given sample, binary cross-entropy is a kind of distance between two probabilistic distributions:

1. the perfect target distribution p * followed by the desired outputs, of the form (0, 0, 1, 0, 0, ...);

2. the approximation p of this distribution, which is the output of our classi er:

- 1 N N i=1 p * i * log(p i) + (1 -p * i) * log(1 -pi) (4.3)
Let δ i = ∂L ∂Z i be the variation of the loss according to the pre-activation of layer i, and σ be the application of the activation function.

For the nal layer L, an explicit expression exists for δ L :

δ L = ∂L ∂Z L (4.4) = ∂L ∂Y L * ∂Y L ∂Z L (4.5) = ∂L ∂Y L * σ (Z L) (4.6)
Going from equation (4.4) to equation (4.5) is done by applying the gradient chaining rule. For previous layers:

δ i = ∂L ∂Z i (4.7) = ∂Z i+1 ∂Z i * ∂L ∂Z i+1 (4.8) = ∂Z i+1 ∂Z i * δ i+1 (4.9)
We have

Z i+1 = W i+1 (X i+1) (4.10) = W i+1 (Y i) (4.11) = W i+1 (σ(Z i)) (4.12) (4.13)
Thus, injecting equation (4.12) in equation (4.9), we have

δ i = W i+1 (σ (Z i))δ i+1 (4.14)
We are thus able to compute the gradient of the error regarding the outputs of each layer. Finally, to update the parameters at each layer, we need the following gradient:

∂L ∂W i = ∂L ∂Z i * ∂Z i ∂W i (4.15) = δ i * ∂Z i ∂W i (4.16) = δ i * σ(Z i-1) (4.17) = δ i * Y i-1 (4.18)
The backpropagation algorithm is then the following:

1. Forward pass: For each layer i, compute linear operations Z i and activations Y i .

2. Output error: compute L(Z L)

3. Backpropagation: compute δ l for each layer 4. Weight update:

W i ← W i -δ i * Y i-1 X Z Y Y true W 1 ∈ R 3,2 W 2 ∈ R 2,3 L(Y -Y true) ∇ Y L ∇ W 2 Y ∇ W 1 Z ∇ W L = ∇ Y L • ∇ W 2 Y • ∇ W 1 Z + - + - + - - +

Vulnerabilities in machine learning

Algorithms described previously are implemented in practice within libraries that provide a variety of tools for the machine learning practitioner: most of the networks studied during this thesis were parametrized and trained using the PyTorch [START_REF] Paszke | PyTorch: An Imperative Style, High-Performance Deep Learning Library[END_REF] library. TensorFlow [START_REF] Abadi | TensorFlow: A System for Large-Scale Machine Learning[END_REF] is another popular choice. Those libraries being relatively complex, they are not exempt of bugs. However, the scope of this thesis is not to study library-dependent bugs. Across implementations, machine learning programs exhibit "odd" behaviours. The consistent reproduceability of those behaviours between implementation led the scienti c community to consider their de nition and mitigation a research problem. We now present some of those vulnerabilities.

Remark 5. Bug or fault are well-de ned words in traditional software safety, but the literature on machine learning safety is not xed yet on a common term. Another possible word is vulnerabilities, since this behaviour can be exploited by an external agent. We think the latter better convey the idea that the phenomena we describe are intrisinc weaknesses of neural networks in the way we currently train and use them, rather than something that can be pinpointed and xed with an explicit process. Frailty will occasionally also be used.

Adversarial examples

Adversarial perturbations are small variations of an input that have been crafted so that the network misclassi es the noisy input, called an adversarial example. More formally, given an input x 0 ∈ X , a network f : X → R d , a distortion amplitude ε 0 and a distance metric . p , a neural network is locally ε-robust if for all perturbations δ s.t. δ p ε, f (x 0) = f (x 0 + δ). Adversarial examples were initially discovered in [START_REF] Szegedy | Intriguing Properties of Neural Networks[END_REF], where the authors maximized the error function of a neural network. Since then, the literature on adversarial examples bloomed. Multiple methods were proposed to generate adversarial samples, such as the Fast Gradient Sign Method (FGSM) in [START_REF] Goodfellow | Explaining and Harnessing Adversarial Examples[END_REF], that relies on creating a perturbation in the direction of higher error gradient, and the Carlini method in [START_REF] Carlini | Towards Evaluating the Robustness of Neural Networks[END_REF], which aims to nd the optimal perturbation. Their imperceptibility for humans and their transferability between networks and datasets [PMG16] make them a potentially dangerous phenomenon regarding safety and security; the authors of [START_REF] Eykholt | Robust Physical-World Attacks on Deep Learning Visual Classi cation[END_REF] synthetize physical adversarial "patches" used in the material world, resulting on a misclassi cation. A popular mitigation is Adversarial training. The basic idea is to generate adversarial examples, assign them to the same label of the original sample and present them to the network among regular samples. Some examples of adversarial training can be seen in [START_REF] Araujo | Robust Neural Networks Using Randomized Adversarial Training[END_REF] and [START_REF] Madry | Towards Deep Learning Models Resistant to Adversarial Attacks[END_REF]. To go further Other works focus on studying the theory behind adversarial examples. While the initial work [START_REF] Goodfellow | Explaining and Harnessing Adversarial Examples[END_REF] suggests that adversarial examples are a result of a default in the training procedure, "bugs", investigations [START_REF] Ilyas | Adversarial Examples Are Not Bugs, They Are Features[END_REF] suggest that (at least partly) adversarial examples may be inherently linked to the design principles of deep learning and to their resulting e ects on programs: using any input features available to decrease the loss function, including "non-robust" features that are exploited by adversarial examples generation algorithms.

Privacy leaks

Another issue with machine learning programs is that the privacy of the data they learn is not guaranteed. It has been shown in [START_REF] Tramèr | Stealing Machine Learning Models via Prediction APIs[END_REF] that it was possible to retrieve the parameters of a machine learning system only through its outputs, with a limited budget. In [START_REF] Shokri | Membership Inference Attacks Against Machine Learning Models[END_REF], the authors display a method allowing an attacker to check whether a given input has been used to train the neural network using probability outputs. This could lead to severe data leaks and directly threaten the con dentiality of the data used during training. The consensus is not clear on the practical application of this method (doubts are expressed for instance in [Tru+19]). Work is still ongoing [START_REF] Christopher | Label-Only Membership Inference Attacks[END_REF] to assess the exact scope of inference attacks. To mitigate those issues, a combination of adversarial training and di erential privacy is proposed in [START_REF] Abadi | Deep Learning with Di erential Privacy[END_REF] and [START_REF] Araujo | Robust Neural Networks Using Randomized Adversarial Training[END_REF].

Safety concerns, example of ACAS-Xu

Even without any intent to steal private data or to make the program malfunction, it is important to assess the ability of a neural network to output the expected outputs. Since the control ow is generated through an indirect method (minimization of an error function), even when trained on perfectly sanitized examples, it is still possible that the network learns "shortcuts" that allow it to perform very well in general, but fail on speci c cases. Even when neural networks are trained on low dimensional, understandable inputs, it is thus necessary to verify that they respect their given speci cation, just like any other program.

A popular benchmark used in the literature is the Aircraft Collision Avoidance System for unmanned crafts (ACAS-Xu). This standard presented in [START_REF] Manfredi | An Introduction to ACAS Xu and the Challenges Ahead[END_REF] describes a program that aims to analyze the surroundings of an aircraft (ownship), and output direction changes directives if another aircraft (intruder) is detected. The program models the situation as a 2D projection (altitude is ignored). This program has 7 input variables:

1. v own : speed of the ownship; 2. v int : speed of the intruder; 3. ρ: distance from the ownship to the intruder; 4. ψ: relative angle between the ownship and the intruder; 5. θ: relative angle between the speed vectors of the ownship and the intruder; The authors of [START_REF] Katz | Reluplex: An E cient SMT Solver for Verifying Deep Neural Networks[END_REF] de ne some safety properties for a program to respect the ACAS-Xu speci cation, as well as an implementation as a neural network. Those properties are reproduced below:

1. φ 1 : if the intruder is distant and is signi cantly slower than the ownship, the score of a COC advisory will always be below a certain xed threshold;

2. φ 2 : if the intruder is distant and is signi cantly slower than the ownship, the score of a COC advisory will never be maximal;

3. φ 3 : if the intruder is directly ahead and is moving towards the ownship, the score for COC will not be minimal;

4. φ 4 : if the intruder is directly ahead and is moving away from the ownship but at a lower speed than that of the ownship, the score for COC will not be minimal;

5. φ 5 : if the intruder is near and approaching from the left, the network advises "strong right";

6. φ 6 : if the intruder is su ciently far away, the network advises COC;

7. φ 7 : if vertical separation is large, the network will never advise a strong turn;

8. φ 8 : for a large vertical separation and a previous "weak left" advisory, the network will either output COC or continue advising "weak left"; 9. φ 9 : even if the previous advisory was "weak right", the presence of a nearby intruder will cause the network to output a "strong left" advisory instead;

10. φ 10 : for a far away intruder, the network advises COC;

Verifying those properties on ACAS networks is challenging enough for Z3 and Gurobi, so it constitutes a good benchmark to test methods and tools developed for neural network veri cation.

Frailties of machine learning: a two-problem game

Machine learning programs di er in their design of "classical" programs in numerous ways, that prevent us to perform formal analysis. We will now expose those di erences; trying to tackle those will constitute the backbone of our thesis.

What to specify

The very nature of the inputs of neural networks pose several issues:

1. Machine learning programs are working on high-dimensional inputs that are assigned a very high-level semantic (compared to classical programs): "image of a dog" encapsulates the de nition of an image, a background picture, an animal, a dog; "hate speech" contains the de nition of a text, a language, emotions, hate. . . Those "types" are highly context-dependent, yet they are the only source of speci cation. Data as speci cation leads to an ambiguity in the data speci cation 2. Contrary to classical programs, machine learning programs are not written through a deterministic process (be it a programmer, a compiler or a code generator), but through a stochastic algorithm. Even though the resulting program is functionally simple (ResNets [START_REF] He | Deep Residual Learning for Image Recognition[END_REF] have jumps and some architecture can encode loops, but most of classical architecture are only using a succession of linear operations and activation functions), the control ow is meaningless by itself.

There is thus an ambiguity in the control ow 3. Vulnerabilities de ned in previous sections are not easy to spot (there is no "Adversarial Example" exception lifting) and even more complicated to correct, and this comes with a cost on the accuracy of the network. There is thus an ambiguity in the speci cation to respect

Key point

It is di cult to formulate properties on machine learning programs because of the following ambiguities:

1. ambiguity in inputs speci cation 2. lack of direct agency in the control ow

lack of knowledge of failure modes

Those points can be summed up into one problem, which we will tackle during our thesis: the speci cation problem of machine learning veri cation.

How to verify

Another issue is more directly linked with how we represent neural network for SMT or model-checking. If we consider a neural network under its CFG form, there is a possible branching for each activation function. The ReLU can be naively implemented as an if then else construct: y = ReLU (x) : if x > 0 then x else 0. This produces two mutually exclusive clauses for the SMT solver:

x > 0 ∧ y = x (4.19) x ≤ 0 ∧ y = 0 (4.20)
The solver must then explore those two independent paths. Since this case split occurs for each ReLU neuron, if a neural network has n neurons, then the number of cases to explore is in the order of 2 n , if done naively. Without guiding our solvers, we are bound to fail against the curse of dimensionality. The speci cation problem

Summary of the chapter

Most research on formal veri cation of deep neural networks has focused on adversarial robustness, which studies the robustness of perceptive models in the neighbourhood of particular samples. However, other works have proved global properties of smaller neural networks. Yet, formally verifying perception remains insu ciently charted. This is due notably to the lack of relevant properties to verify, as the distribution of possible inputs cannot be formally speci ed.

We propose to take advantage of the simulators often used either to train machine learning models or to check them with statistical tests, a growing trend in industry.

Our formulation allows us to formally express and verify safety properties on perception units, covering all cases that could ever be generated by the simulator, to the di erence of statistical tests which cover only seen examples.

What do deep learning programs learn? Asking this question in an assembly of scientists will probably lead to a number of interesting and enthusiast hypotheses. However, verifying experimentally those hypotheses is a di cult task. Obtaining a certainty on what is "actually learned" by a deep learning algorithm is a complicated matter, for several reasons. The rst one is that "actually learned" is somehow ill-de ned, or rather, that what one would expect from a deep neural network is actually misaligned with how we make them learn. For a cancer detector applied to medical scans, or a predictor of nancial trends, how do we ensure the deep learning algorithm learned what it needs to perform his task reasonably well according to our standards? This is tangentially linked with the "AI goal alignment issue" stated by Stuart Russel: the way we phrase objectives to arti cial intelligence programs is of crucial importance, since they lack most of the cultural background, social clues and human habitus: the way we phrase 57 our goals shape the task much more than we expect.

The second one is that there is actually very few constraints on what the neural network learns. Data powered programming leaves all the semantic to the dataset, the labelling and the gradient descent mechanism. Thus, what the neural network learns will heavily rely on the data, their labelling and a mathematical formalism that puts very few constraints other than minimizing an error function, leaving to analyse quite alien behaviours (high dimensional spaces that we, as humans, fail to grasp intuitively, for instance). This may lead to unwanted behaviour, such as over tting. An over tting machine learning model maximizes its prediction score on the training set, which leads to poor generalization outside of this set. Learned features are usually not those a human would use to characterize a sample, given a similar task.

The third one is the one we will further study here: the act of training programs that learn on data and labels relies on the implicit assumption that the dataset and labelling encompass the full semantic of the concepts we are manipulating. Phrased otherwise, a dataset of collected and annotated images of birds is trusted to yield a su ciently "well-de ned idea" of a bird. We call this paradigm data as speci cation. Why use a proxy such as instances of a concept rather than the concept itself? The crux of the matter is that, sometimes, there exist no formal characterization of the concepts we manipulate. By formal characterization, we mean logical statements that we can input to a mechanized veri cation software with relative ease in order to formulate and check a veri cation problem. This lack of explicit formal speci cation is especially conspicuous with high dimensional data that we cannot reduce to a value. We de ne the space where such data live as the following:

De nition 13. A perceptual space is a high dimensional space of data sensed by humans. For instance: the space of 256×256 RGB images, the space of all possible sounds, or the set of all possible sentences in a given language.

The following questions, inspired by some of the most prominent use cases of deep learning, illustrate the di culty of extracting a formal characterization from perceptual space:

• What are the spatial properties of a sample of hate speech? How can we isolate them from "normal" speech, while taking into account cultural di erences?

• What are the geometrical features of a cat, independently of weather and lightning conditions?

• What are the features of an image containing a pedestrian? How to include people in wheelchairs in speci cations alongside pedestrians?

• How can we ensure a cancer detector on radio prints will scan the actual radio and not over t to some innocuous feature [START_REF] Douglas Heaven | Hundreds of AI Tools Have Been Built to Catch Covid. None of Them Helped[END_REF] Those di culties to de ne formal speci cations for complex concepts in the perceptual space are inherently why we use machine learning in the rst place. Nonetheless, they severely limit our ability to formulate and verify formal properties in the usual way. This chapter is a scienti c contribution, that was accepted at the European Conference of Arti cial Intelligence (ECAI 2020), that aim to address the following question:

Research questions

How can we formulate properties on data that represent a complex concept on a perceptual space? How can we verify global properties on perceptual inputs?

Contextualization and motivation

In 1. all pedestrians are detected 2. all detected pedestrians are avoided Figure 5.1: A theoretical software embedded in an autonomous vehicule. One property we would like to prove is the following: how can we ensure that the software does not output a "continue" directive for all images with a pedestrian?

For a formal certi cation, the property should be expressed in the form "For any image containing pedestrians, whatever the weather conditions or camera angle, all pedestrians present in that image are detected and avoided". Such a formulation supposes one is able to describe the set of all possible images containing pedestrians (together with their location). However, there exists no exact characterization of what a pedestrian is or looks like, and certainly not one that takes into account weather condition, camera angle, input type or light conditions. Any handmade characterization or model would be very tiresome to build, and still incomplete.

On the upside, machine learning has demonstrated its ability to make use of data that cannot be formally speci ed, yielding impressive results in all above-mentioned application domains, among others; on the downside, it has also been demonstrated that ML models can easily fail dramatically, for instance when attacked with adversarial examples. Thus, manufacturers of critical systems need to provide elements that allow regulators, contractors and end-users to trust the systems in which they embed their software.

Usually, car manufacturers rely on test procedures to measure their system's performances and safety properties. But testing can, at best, yield statistical bounds on the absence of failures: the e ciency of a system against a particular situation is not assessed before this situation is actually met during a real-world experiment. As the space of possible situations is enormous (possibly in nite) and incidents are rare events, one cannot assess that an autonomous vehicle will be safe in every situation by relying on eld tests alone.

A possible workaround is to use arti cial data that is used to build the tests scenarios. Those arti cial inputs are usually generated by a simulation software. In the context of this thesis, a simulation software is understood as a software designed to generate inputs in the perceptive space according to a certain parametrization. One of the rst attempts to use simulated images to make a neural network "drive" is ALVINN [START_REF] Dean | ALVINN: An Autonomous Land Vehicle in a Neural Network[END_REF]. Multiple simulated sources were used to provide inputs and training objectives to deep neural networks, most notably from video games. AlphaStar is a deep-learning based program aiming to play at a competitive level the real-time strategy game Starcraft 2 [START_REF] Vinyals | Grandmaster Level in StarCraft II Using Multi-Agent Reinforcement Learning[END_REF]. The rich criminalistic open world video game Grand Theft Auto V was used as a source for semantic segmentation tasks [START_REF] Richter | Playing for Data: Ground Truth from Computer Games[END_REF]. For autonomous driving, simulators like Carla [START_REF] Dosovitskiy | CARLA: An Open Urban Driving Simulator[END_REF] are openly available. Notably, CARLA features multiple perceptive inputs, climate and brightness control, scripting scenarios, and provide a vast number of options for simulating an urban environment, such as the modelling of other cars and pedestrians. Using a simulation software comes with several bene ts:

1. it reduces the overall cost of setting up and experimenting with autonomous driving;

2. it enables quick experimentation and reproducibility of experiments;

3. it makes it possible to generate potentially hazardous scenarios precisely, like a child running on the road or a car crash;

However, even if it is possible to arti cially generate corner cases more easily, the space of possible scenarios is still enormous, and some accidents remain completely unpredictable a priori by human test designers. For instance, in a car accident involving partially self-driving technology, the manufacturer admitted that the camera failed to distinguish a white truck against a bright sky [Haw19], causing the death of the driver. Such a test case is di cult to come up with for a human, because it is the conjunction of speci c environmental conditions and speci c driving conditions. Our motivation is to bring an additional layer of trust, not relying on statistical arguments, but rather on formal guarantees. Our long term objective is to be able to formalize a speci cation and to provide guarantees on every possible scenario, automatically nding violations of the speci cation. Because practitioners are relying more and more on simulators, we propose as a rst step to study such simulated setting. More precisely, we aim to formalize it. The idea is to rephrase the veri cation problem in order to include both the deep learning model and the simulator software within the veri cation problem. As said earlier, a simulator o ers more control on the learning data by providing explicit parameters (for instance: number and positions of pedestrians on the image).

Related work Adversarial robustness: a local property

Most of the literature work has focused on local adversarial robustness, de ned in section 4.3. Recall that adversarial perturbations are small variations of a given sample in the input space that have been deliberately crafted so that the network misclassi es the resulting noisy example. The crucial part to note here is that this property is local, tied to the particular sample we consider. A global adversarial robustness property could be phrased as the following:

De nition 14. A deep neural network f is globally ε-robust if ∀(x 1 , x 2) ∈ X 2 such that x 1 -x 2 p ε, f (x 1) = f (x 2).
Verifying this global property is intractable for several reasons:

1. for any sample x ∈ X where the input space is a subset of R 256×256×3 requires to search a space of more than 195000 dimensions. Even with relatively large discretization step (0.1), for values in [0, 1], this gives about 8.5e52 possible images;

2. for any pair of sample requires combining two samples pairwise, further increasing the complexity;

3. if one of the samples is too close to the boundary decision (ε > x -C l p where C l is the boundary for class l), this property will not hold, since any sample on the other side of C l will be classi ed otherwise;

For all of those reasons, most of the work on adversarial robustness has focused on local adversarial robustness.

Proving global properties in non-perceptive space

Sometimes, the neural network is used on simpler problems that allow the formulation of formal properties. By simpler, we mean two main characteristics: (i) the dimensionality of the input is much lower than in typical perception cases, where most of adversarial examples occur, and (ii) the problem the program aims to solve provides an explicit description of the meaning of the inputs and outputs, making a formulation of safety property much simpler. Rephrased otherwise, the program is working on inputs whose semantics are (at least partially) de ned. Provided the inputs are sufciently well-de ned, it is then possible to encode safety properties as relationships between inputs and outputs, such as inequality constraints on real values.

An example of such setting can be seen in the Anti Collision Avoidance System for Unmanned aircraft (ACAS-Xu), that we de ned in section 4.3. Inputs correspond to aircraft sensors, and outputs to airplane commands. In such case, speci cations can be directly encoded as a set of constraints on the inputs and outputs. We emphasize here that the inputs of the program are not perceptual: intruder distance, relative angle with the aircraft and relative speed vector. . . all the data were already obtained by the sensors and pre-processed to give a low-dimensional input to the program. In other words, an ACAS software can be seen as taking the output of a perception unit, and assumes that those outputs are correct. In [START_REF] Katz | Reluplex: An E cient SMT Solver for Verifying Deep Neural Networks[END_REF], the authors proposed an implementation of ACAS-Xu as a deep neural network, and they were able to formally prove that their program respected various safety properties.

Using simulators for veri cation

Recent work proposed to analyse programs trained on simulators [START_REF] Dreossi | VER-IFAI: A Toolkit for the Design and Analysis of Arti cial Intelligence-Based Systems[END_REF]. Although their motivations are similar to ours, they work on abstract feature spaces without directly considering the perception unit, and they rely on sampling techniques while we aim to use sound, exhaustive techniques. Their aim is to exhibit faulty behaviour in some type of neural network controllers, while we can formally verify any type of perception unit.

On one side, there exist a limited number of local veri cation properties on the perceptual space. On the other, we have global properties on non-perceptual spaces.

With our contribution, we aim to bridge the two worlds by providing a way to express global properties on perceptual inputs.

CAMUS: a new formalism to specify machine learning models

Problem formulation and notations

Let f : X → Y be an algorithm taking a perceptual input x ∈ X and yielding a decision y ∈ Y. The perceptual space X will typically be of the form R d or [0, 1] d . f is a program trained with a learning procedure on a nite subset of X to perform a speci c task (e.g., drive the passengers safely home). In our example, the task would be to output a command from an image, in which case, for a given image x, f (x) would be the driving action taken when in environment x.

Let us denote by g : S → X the simulator, that is, a function taking as input a conguration s ∈ S of parameters, and returning the result of the simulation associated to these parameter values. A con guration s of parameters contains all the information needed by the simulator to generate a perceptual input; each parameter may be a discrete or continuous variable. Taking for example a simulator of autonomous car scenarios such as CARLA: s would contain the road characteristics, the number of pedestrians and their positions, the weather conditions. . . , that is, potentially, thousands of variables, depending on the simulator realism.

The problem to solve here is the following: For a model f trained on data belonging to X generated by g to perform a certain task, how can we formulate and formally verify practical safety properties for all possible x ∈ X , including samples never seen during training?

Including the simulator in the veri cation

In classical formal veri cation settings, such as the one schematized in gure 5.2, speci cations express relationships from X to Y, using a formulation of f . But in autonomous driving, X is such a huge space that formulating properties that are nontrivial, let alone verify these, is prohibitively di cult, especially in the case of perceptive systems where the domain of x cannot be speci ed: all matrices in ([0, 255] 3) #pixels are images, technically, but few of them make sense, and one cannot describe which ones. Moreover, given an image x, the property to check might be di cult to express, as, to state that all pedestrians were detected and avoided, one needs to know whether there are pedestrians in x and where, which we do not know formally from just the image x. And if one had a way to retrieve such information from x (number and location of pedestrians) without any mistake, one would have already solved the initial problem, i.e., safe self-driving cars.

To summarize, in this setting, it is impossible to express a relevant space for x and ∀x ∈ ?, Φ? ?, f (x) (5.1)

In the setting of simulated inputs, though it remains di cult to formulate properties on the perceptual space X , we know that this space is produced by g applied to parameters in S. Contrary to X , S is a space where there exists an abstract, albeit simplistic characterization of entities. This characterization comes from choices made during the conception of the simulator. Indeed, setting on parameter s p for a pedestrian in the simulated input to appear will e ectively make it appear. Thus, the state of s p e ectively holds a speci cation of what a pedestrian is in X . The procedure g transforms elements s ∈ S, that represent abstracted entities, into elements x ∈ X that describe these entities in the rich perceptual space. To output values in Y, f has to capture the inner semantics contained in X , that is to say, to abstract back a part of S from X .

The above remark is the key to the proposed framework: if we include S and g alongside f , X and Y in the veri cation problem, then all meaningful elements of S are de facto included. It then becomes possible to formulate interesting properties, such as the following: "given a simulator that de nes pedestrians as a certain pattern of pixels, does a model trained on the images generated by this simulator avoid all pedestrians correctly?".

Key point

Including a simulator capable of generating perceptual inputs inside the verication problem allows to formulate formal properties on perceptual space, provided we limit ourselves to inputs that can be generated by the simulator.

Formally, to ensure that the output y = p • g(s) satis es a property Φ for all examples x = g(s) that can ever be generated by the simulator, the formula to check is of the form described in equation (5.2) ∀s ∈ S, Φ s, p • g(s)

(5.

2)

It is possible to describe the input space of x, as piloted by certain values of s, and is thus possible to describe the output property Φ(f (x)). The property Φ may depend on s indeed, as, in our running example, s explicitly contains the information about the number of pedestrians to be avoided as well as their locations. Including S and g in a formal property to check requires to formulate at least partially the multiple functions that compose g. Describing precisely these procedures is a key problem, that is also quite di cult. Indeed, if the simulator is a classical program, then the whole set of techniques de ned in the introduction is available to verify it. For instance, reachability analysis could be used on the simulator to monitor the e ect of a particular parameter on another. It would also be necessary to de ne properties to check, which requires careful thinking and formalization. It could also be possible to trust not the simulator as a whole, but only key parts, or a modelization of the simulator -that would also require formalization. If the simulator is a machine learning program, the relationships between S and X should be carefully controlled and veried. Formalizing simulators is a complex endeavour, that would require expertise in programming language design and simulation software, an expertise that we do not have. Since this thesis aims to cover the di erent aspects of the formal veri cation discipline -speci cation, tooling, heuristics -, we leave the topic of formalizing simulators for future work. For the rest of this thesis, we consider that there exist a su cient description of g to be included in the whole veri cation process.

As our framework relies on including the simulator in the veri cation problem, we call it Certifying Autonomous deep Models Using Simulators (CAMUS).

Separating perception and reasoning

Before the rise of deep learning, the perception function (which recognizes a certain pattern of pixels as a pedestrian) and the control, or reasoning function (which analyses the location of a pedestrian and proposes a decision accordingly) in vehicles were designed and optimized separately. However, work such as [START_REF] Bojarski | End to End Learning for Self-Driving Cars[END_REF] showed that endto-end learning can in general be a much more e cient alternative; there exist many incentives to adopt an end-to-end architecture, mixing and training jointly the perception and control functions. However, combining perception and reasoning into one model makes the formulation of safety properties more di cult.

Thus, in our description (see gure 5.4), we choose to separate the perception and the reasoning functions, respectively in the components p and r. The perception part p is in charge of capturing all relevant information contained in the image, while the reasoning part r will make use of this relevant information to output directives accordingly to a speci cation.

One way to make sure that p retrieves all relevant information is to require it to retrieve all information available, that is, to reconstruct the full simulator parameter con guration s. In this setting, let s be the output of the perception module p. It lies in the same space as the parameter con guration space S, and the property we would like to satisfy can be written as p • g ≈ Id, which can be rewritten as:

∀s ∈ S, p • g(s) ≈ s (5.3)
This way, we ensure that the perception module p correctly perceives all samples that could ever be generated by the simulator. In case some parameters are known not to be relevant (image noise, decoration details, etc.), p can learn to retrieve only the relevant ones (for instance by zeroing out the non-relevant parameters). For the sake of notation simplicity, we will here consider the case where we ask to reconstruct all parameters. This separation between perception p and further reasoning r brings modularity as an additional bene t: even when dealing with di erent tra c regulations or specications, it is only necessary to prove p once; the veri cation of compliance towards local legislations and speci cations by r can be done separately. Indeed, speci cations on how to navigate on the road are more susceptible to change than speci cations on what to perceive. It allows to reuse the complex perception module without needing to prove it again, with di erent reasoning modules r. Note also that r does not need to be as complex as p, since it will work on much smaller spaces; veri cations of r are then easier.

One could argue that this formulation makes the problem more complex, and it indeed may be the case. Our approach only work if the perception and reasoning units are clearly separated as software components, while the trend tend to use endto-end learning when possible. However, our proposition is aimed at safety, and in Figure 5.4: Integration of the generation procedure in the veri cation, with split between perception and reasoning: p learns to capture all the relevant parameters; r learns to respect the speci cation. Verifying φ 1 proves the perception module once and for all; verifying φ 2 can be done when the speci cation changes (e.g., for di erent driving rules).

order to provide additional trust, it is sometimes necessary to formulate the problem di erently. For instance, there are good practices to structure the code to provide some safety guarantees: bounded loops, correctly allocated and de-allocated references, ban of function references and goto statements . . . are constructs that voluntarily restrain the expressive power of the programming language to ensure a safer behaviour. Hence, although this formulation might seem like a step back with regard to the state-of-theart, we argue that it provides a new way to formulate safety properties, and hence will be bene cial in the long run.

Properties Formulation

Considering jointly the simulator g and the machine learning model f , split in p and r, two families of properties are amenable to formal checking:

• Φ 1 : perception module p has captured su cient knowledge from X ;

• Φ 2 : reasoning module r respects a speci cation property regarding Y.

Families of property φ 2 have been addressed in the literature -see section 5.1. The key point of the proposed approach is thus to obtain a representation space that reliably yields semantic meaning, which is the objective of Φ 1 . Since the simulator is included in the veri cation problem, properties of family Φ 1 can be written as relationships between input parameter con gurations s ∈ S and retrieved parameter con gurations s ∈ S, outputs of the perception module p. Strict equality between s and s may be di cult to achieve, and is actually not needed as long as the reasoning module r is able to deal with small estimation errors.

Expressed in the proposed formalism, the perception task is equivalent to nding (a good approximation of) S. Thus, a relaxed version of property equation (5.3) to satisfy could be formalized as some tolerance ε > 0 on the reconstruction error s -s (for some metric •):

∀s ∈ S, s -p • g(s) ε (5.4)

Discussion

Speci cation through the simulator puts the burden of trust on the simulator. This therefore require su cient grounds to trust the simulator software, in particular its ability to su ciently well approximate the real input space. As companies such as Ansys and Siemens are developping numerical simulation software that are taking part in a wider certi cation process of systems, it appears that trusting simulators is an existing practice. This trust may not come from formal veri cation tools however, and it would be an interesting venue to nd practical ways to apply formal veri cation tools on simulators. Some recent work [START_REF] Fijalkow | Veri cation of Neural Networks: Specifying Global Robustness Using Generative Models[END_REF][START_REF] Katz | Veri cation of Image-based Neural Network Controllers Using Generative Models[END_REF] propose to formally verify deep neural networks using deep learning generative models as simulators. Generative models are speci c deep neural network programs able to approximate an input distribution and produce synthetic but realistic inputs sampled from this approximated input distribution. Providing the generators can be written as ReLU networks, their work is quite nicely tting in the CAMUS framework. Still remains the problem of trusting a neural network based simulator.

As stated earlier, it is not always necessary to retrieve all parameters of con guration s. For instance, one could seek to retrieve only the correct number of pedestrians and their locations, from any image generable by the simulator. In this case, the output of p would be just a few coe cients of s, and must consequently be characterized di erently (e.g., as belonging to a given subspace of S). This would allow expressing more exible properties than simply reconstruct all parameters.

For the model f to correctly generalize, the simulated data must have two characteristics:

1. it needs to be su ciently realistic (that is to say, they should look like real-world images); if not the network could over t the simplistic representation provided by the simulator;

2. it must be representative of the various cases the model has to take into account, to cover su ciently diverse situations.

Additional characterization of the simulator would be di cult. For instance, one could suggest requiring the simulator g to be either bijective or injective, in order to cover all possible cases x ∈ X , or for parameters to be uniquely retrievable. Yet, the largest part of the perceptual space X is usually made of nonsensical cases (think of random images in ([0, 255] 3) #pixels with each pixel color picked independently: most are just noise), and the subspace of plausible perceptual inputs is generally not characterizable (without which the problem at hand would already be solved). Regarding injectivity, being one-to-one is actually not needed when dealing with properties such as equation (5.4).

Finally, let us consider the case where several simulators g i are available, and where, given a perceptive system p, we would like to assert properties of type Φ 1 for each of them. At rst glance, as the output of p consists of retrieved parameters, this would seem to require that all g i are parameterized exactly identically (same S). However, for real tasks, one does not need to retrieve all parameters but only the useful ones (e.g., number of pedestrians and their locations), which necessarily appear in the con guration of all simulators (at least those generating images of roads).

For a simulator g i and a simulator g j with respective parameter spaces S i and S j , it would be possible to write a mapping between relevant parameters in S i and S j . For instance, if the two simulators are detecting pedestrians with a di erent number of parameters, a linear combination of those parameters could be given to a unique perception unit p, and formal properties for all simulators can thus be expressed.

To go further About the issue of goal alignment, the curious reader is encouraged to read the various work of Stuart Russel on that matter, for instance in [START_REF] Russell | Arti cial Intelligence: A Modern Approach[END_REF], or [START_REF]Value Alignment | Stuart Russell[END_REF]. The legend of King Midas, who asked to be able to change everything he touched into gold and perished because he was not able to eat, could be seen as an early example of the alignment problem: asking for something and wanting something are two di erent things. An instanciation of the goal alignment problem can be seen on model explainability, where what is explained can be nebulous. On this topic, the most excellent paper [START_REF] Lipton | The Mythos of Model Interpretability[END_REF] explain nicely how "explainability" is actually a complex notion that cannot be addressed easily.

Chapter 6 ISAIEH: the Inter Standard AI Encoding Hub

Summary of the chapter

We present ISAIEH, a tool aiming to bridge formal veri cation and neural network representations on a common ground. We describe the overall software architecture of ISAIEH, and its main features: a modular, extensible intermediate representation, a compiler from ONNX to LP and SMTLIB2 formats. We present a use case of ISAIEH, applied to CAMUS, and show how ISAIEH can be used to ease the veri cation process on deep neural networks.

A practical problem arose very early in the thesis: it was di cult to use existing formal veri cation tools on neural networks. Indeed, neural networks are usually saved in formats that are not adapted to the tools we considered. Most of the deep learning frameworks provide mostly an interface with C++ and Python programming languages, other APIs were limited both in functionality and documentation at the beginning of this thesis. At this time, formal veri cation of neural network was still a nascent eld. No standards allowed an easy communication with standard formats used in the formal method community, such as SMTLIB or LP. Phrasing any speci cation was di cult for the same reason, because deep learning frameworks did not o er ways to express (or prove) properties. Thus easing out the expression of properties and the communication between machine learning and formal veri cation standards was a necessary rst step in order to start comparing techniques on a fair basis. This chapter describes our answer to this issue: the Inter Standard Arti cial Intelligence Encoding Hub (ISAIEH).

Existing tools and formats for formal veri cation and deep learning

To understand the software context in which our artifact will live, we will describe shortly the tools usually used in deep learning, as well as present a state of the art on deep learning veri cation tools.

Tools for machine learning practice

Deep learning manipulates high-dimensional data, often represented as multidimensional arrays (or tensors). E cient manipulation of tensors is crucial. To do so, deep learning needs to make heavy use of parallelism and e cient memory management.

Another key point is that deep learning programs need to be di erentiable, as stated in chapter 4. Finally, deep learning researchers need to be able to prototype relatively easily their ideas, without needing a PhD on parallel programming or knowing the quirks of memory layouts.

To answer those needs, several deep learning framework were developed over the last decade. The one we mainly used for this thesis is PyTorch [START_REF] Paszke | PyTorch: An Imperative Style, High-Performance Deep Learning Library[END_REF], we occasionally used TensorFlow [START_REF] Abadi | TensorFlow: A System for Large-Scale Machine Learning[END_REF]. Other include Ca e2 and the Microsoft Cognitive Toolkit. They provide automatic parallelization of tensor computation, a vast collection of deep learning operators and clarify the ow of deep learning programming. Most of those frameworks operate on their own inner intermediate representations, and save the resulting program as blobs (binary large objects), framework-speci c format. Because deep learning research and application should not be limited by the kind of framework used during software development, several big players (Microsoft, Facebook. . .) started to develop a common representation for deep neural networks: the Open Neural Network eXchange (ONNX) format. It provides a uni ed view of deep learning programs as directed acyclic graphs, where each node represents a computation applied to input tensors. For the rest of this thesis, we almost exclusively worked on ONNX networks. Neural networks were designed, trained and tested using Py-Torch, then saved under the ONNX format.

Thus, the question we aim to answer here is the following:

Research questions

How can we express deep learning programs in a way suitable for formal verication?

A standard language for SMT veri cation: SMTLIB2

Mature SMT solvers are complex engineering artifacts with highly specialized heuristics. Those tools are used in multiple settings by di erent teams, who need to have a way to collaborate on their research topic with relative ease. To ensure this, an international e ort led to the birth of the SMTLIB standard. The latest version (2.6 at the time of redaction) [START_REF] Barrett | The SMT-LIB Standard[END_REF] provides the following (citation from the o cial website of the initiative1):

1. Provide standard rigorous descriptions of background theories used in SMT systems 2. Develop and promote common input and output languages for SMT solvers 3. Connect developers, researchers and users of SMT, and develop a community around it 4. Establish and make available to the research community a large library of benchmarks for SMT solvers.

Collect and promote software tools useful to the SMT community

We target the SMTLIB2 input language. Its grammar is quite simple, as it is only comprised of two elements: atoms and expressions: type e x p r = Atom of s t r i n g | e x p r l i s t A SMTLIB2 program is a succession of expressions (enclosed within parenthesis, much like Lisp's Symbolic expressions) that encode the various constraints the SMT solver should consider, as well as generic options (such as the theory to consider) and solverspeci c options.

ISAIEH: an encoding hub for neural networks

ISAIEH stands for Inter Standard Arti cial Intelligence Encoding Hub. It is written in OCaml. OCaml is a statically and strongly-typed language. Providing we design the type of our data according to a sensible speci cation, OCaml brings an additional layer of trust in our program by spotting type errors at compile time rather than runtime, which is a plus when building relatively complex tools such as formal veri cation tools. Additionally, the laboratory in which this thesis was conducted was gifted with several experts in the OCaml programming language, which helped kickstart some ideas and rapid prototyping. Since the agship formal veri cation tool designed in the lab, Frama-C [START_REF] Baudin | The Dogged Pursuit of Bug-Free C Programs: The Frama-C Software Analysis Platform[END_REF], was written in OCaml, writting a prototype of a formal veri cation tool for neural networks that could potentially interface with it seems a sensible thing to do. And nally, the author of this thesis has an aesthetic bias towards functional programming and tends to use it whenever it is reasonable to do. The overall architecture of ISAIEH is available gure 6.

What need does it ful ll/features

Very early in the thesis, the need to smooth communication between the neural networks world and the formal veri cation world arose: benchmarking state-of-the-art solvers was the rst necessary step, and a tool was already needed for that. Another need was to be able to work at di erent abstractions level, from a single neuron to the entire architecture, to perform analysis on the neural network. Finally, during the thesis, the need arose to reimplement some state-of-the-art tools and to develop our own veri cation technique. For all of those reasons, we needed to develop a tool that was:

1. expressive enough to take into account most of the neural networks constructs 2. exible in order to be able to add di erent kinds of algorithms

Description of the NIER

The NIER is an acyclic directed graph G with vertices V and labelled edges E. Let v ∈ V be a vertex, let e i ⊂ E be the input edges of v. There is only one output for vertices. Each v represents the application of a mathematical operation on the input of the node (determined by the labels of input edges e i). Supported operations are a subset of the ONNX standard, plus some custom operations used for speci c solving strategies, detailed later on. Most of those operations are not commutative, so it is necessary to keep from the ONNX description the operands and their order in a speci c eld. Finally, some nodes have no operation but store numerical values ("initializers" in the wording of ONNX): those are the parameters of the networks. They are stored in speci c vertices, "data vertices". Edges describe the control ow of tensors going through the calculus graph. Each label is labelled with a unique string identifying a tensor. A vertex has the following attributes:

This NIER is mostly descriptive. The main di erence with ONNX is the merging between "initializer" nodes and classical nodes. Since it is much smaller in scope, it is also easier to manipulate and extend than ONNX. Applications leveraging this NIER are described in the following section.

The SMTLIB2 compiler and SMTLIB solver API

The rst use developped for ISAIEH was to compile down a neural network control ow to a format that was readable by standard SMT solvers; the SMTLIB2 format was chosen. The main di culty is that while the semantics of deep learning heavily relies on multidimensional oating-point array computations, such constructs are not supported by the SMTLIB2 standard, nor any state-of-the-art SMT solver. SMTLIB2 standard theories, the Quanti er-Free Non-Linear Arithmetic (QF_NRA) and its linear counterpart (QF_LRA), only work on single numbers, and the expressivity of SMTLIB2 language is not enough to rede ne easily those computations. It was then necessary to de ne a " attened" version of all neural networks computations. Here, " attened" means that every single cell of the tensor needs to be registered and calculated as an independent variable. The SMTLIB2 compiler thus takes all nodes of the NIER, creates individual variables for each underlying tensor, performs the underlying mathematical operation using previously de ned variables (symbols), up until the last layer. Then, variables and operations are written according to SMTLIB2 syntax and written to a le.

Key point

ISAIEH compiles a neural network control ow to SMTLIB2 language, the standard input language for SMT solvers.

Using ISAIEH with CAMUS

We used ISAIEH to demonstrate a use case of CAMUS on a simple synthetic problem. Let us consider here the perception module of an autonomous vehicle, whose goal is to output driving directives that result in safe driving behaviour. The perception module is modeled as a deep neural network with one output node, taking as input an image. If an obstacle lies in a pre-de ned "danger zone", the network should output a "change direction" directive. Otherwise, it should output a "no change" directive.

The "simulator" is here a Python script, taking as input the number and the locations on the image of the one-pixel wide obstacles and generating the corresponding blackand-white images. The veri cation problem consists in the formulation of the network structure and constraints on the inputs, and in the following properties to check:

1. verify that an input with an obstacle (or several ones) in the danger zone will always lead to the "change direction" directive;

2. verify that an input without obstacle on the danger zone will never lead to the "change direction" directive.

If both properties are veri ed, our model is perfect for all the inputs that can be generated. If the rst one is not veri ed, our veri cation system will provide examples of inputs where our model fails, which can be a useful insight on the model aws. Such examples could be used for further more robust training, i.e., integrated into a future training phase to correct the network misclassi cations. Similarly, if the second property is not veri ed, the solver will provide false positives, that can help designers reduce erroneous alerts and make their tools more acceptable for the end-user. In this toy example, input data are N × N black-and-white images (see Fig. 6.

for examples).

The space of possible simulated data g(S) ⊂ X can simply be described by the constraint that each pixel can only take two values (0 and 1). In real life, data are much more complex, possibly continuous; such data can also be handled in our framework. The neural network is fully-connected with two hidden layers. The number of neurons in the rst and second hidden layers are respectively one half and one quarter of the attened size of the input (N 2). The danger zone is de ned as the bottom half part of the image. Any image with at least one white pixel in this zone should then yield a "change direction" directive: a binary cross-entropy loss function is used.

We use z3 [START_REF] De | Z3: An E cient SMT Solver[END_REF], CVC4 [START_REF] Barrett | CVC4[END_REF], YICES [START_REF] Dutertre | Yices 2.2[END_REF] and COLIBRI [START_REF] Marre | Real Behavior of Floating Point Numbers[END_REF] SMT solvers as standard veri cation tools.

Here, constraints on inputs are encoded as statements on the SMT-LIB variables. A fragment of property to check is presented on Figure 6.4. On such a simple problem, the decomposition perception/reasoning is not needed, since there exists a formal characterization of what an obstacle is. All network's parameters were converted using the QF_NRA theory.

The goal was to return UNSAT, meaning no counterexample to the property was found. Under the hypothesis that the space of all possible data is described by the simulator (which is the case here), the model will never fail to detect obstacles. Runtimes are available in Table 6.2. For N = 5 and N = 7, most of the possible input con gurations were not seen in the training or test sets. Yet, the network is proven always correct, which shows interesting generalization abilities. We were thus able to verify quickly that this perceptive module will never miss obstacles, at least for inputs generable by the simulator.

Discussion

The toy example presented last section is of course still simplistic; much work on scalability is needed before real self-driving car simulators can be incorporated into formal proofs.

While we provide a toolkit to translate neural network directly in our framework, a way to easily represent a simulator is yet to be included. It is not an easy task, since the simulator must be describable with su cient granularity to allow the solver to use the simulator's internal working to simplify the veri cation problem. A scene description language with a modelling language for simulators is a possible answer to these issues. Further theoretical characterization of the simulator procedure and its link with the perceptive unit will be undertaken, for instance to encompass stochastic processes.

Our current framework checks properties for all possible inputs, including anomalous ones such as adversarial attacks. A possible extension would be to identify "safe" subspaces instead, where perception is guaranteed to be perfect, and "unsafe" subspaces where failures may happen.

Altough our example uses a handcrafted simulator, our framework is not limited to it, provided su cient trust is put under the simulator design. A recent line of work [Tol+21; FG19; Kat+21] make use of simulators built using generative models trained on a certain input distribution. The noise parameters used to tune the simulators are representative of the input distribution, and can thus be used as proxies for speci cation using CAMUS. ;; inputs between 0 and 1 (assert (or (= actual_input_0_0_0_8 0) (= actual_input_0_0_0_8 1))) . . . ;; Property to check ;; ''If at least one input in ;; the danger zone is white...'' (assert (or (or (= actual_input_0_0_0_5 1.) (= actual_input_0_0_0_6 1.)) (or (= actual_input_0_0_0_7 1.) (= actual_input_0_0_0_8 1.)) . . . ;; Formulate constraint on outputs ;; ''... then output for detected ;; obstacle always higher ;; than for no obstacle'' (assert (> actual_output_0_0_0_0 actual_output_0_0_0_1)) networks is the REcti ed Linear Unit (ReLU): x ∈ R :→ max(x, 0). This function is piecewise linear: it is linear on ranges] -∞, 0] (where it is equivalent to the constant 0 function) and [0, ∞[(where it is equivalent to the identity function). When encountering piecewise linear functions, most standard SMT and LP solvers perform what is called a case-split. For a variable x ∈ [x, x] and z = ReLU(x), the following cases are possible:

1. x > 0, then z = x; 2. x ≤ 0, then z = 0; 3. x < 0 and x > 0, then the solver splits into two subdomains [x, 0] and [0, x and continue on those two subproblems;

The last case adds another problem for the solver. If no particular optimizations are applied (which is the case for solvers like Z3 and Gurobi) and the range of variables is wide enough, a pessimistic upper bound on the number of possible cases is then 2 #ReLU , corresponding to the case where every neuron is split in its two possible activation states. Furthermore, in [START_REF] Katz | Reluplex: An E cient SMT Solver for Verifying Deep Neural Networks[END_REF], it is proven that formally verifying a deep neural network is an NP-complete problem.

Experimental assertions

Theoretical results seem to point out that exploiting the linear regions for neural network veri cation is a dead-end. However, the 2 #ReLU upper bound is far from being tight: the hypothesis behind its formulation does not take into account several characteristics of neural networks: namely, their organization in layers creates a dependency between neurons that is not captured with the 2 #ReLU bound. Plus, problems that are known to be NP-complete can sometimes be solved practically, providing we use adapted tools and techniques (see for instance SAT solving). In order to assess whether classical tools would be able to work on deep neural networks, we used ISAIEH to translate neural networks and prove linear properties on toy neural networks with varying width and depth. Experiments made during this thesis show that traditional solvers tend to time out on neural networks with about 10 neurons on an output property that is linear. Overall, Z3 performs the best, but is still unable to scale to realistically sized neural networks, even when limiting to ACAS-like neural networks (with about 300 neurons): modern architectures processing perceptual inputs have multiple order of magnitude more neurons, and are thus even more intractable for classical tools. We also wrote a converter from ONNX to C language, and used Frama-C's EVA abstract interpretation analyzer on the resulting C code. Compared to the lab specialized abstract interpretation analyzer, PyRat, EVA was about 100 times slower.

Without any help, classical SMT or LP solvers are bound to fail; more generally, there is a need to adapt existing techniques to the speci cities of neural networks since classical tools tend to be slower.

Correctly leveraging facets

Recall that ReLU neurons have two linear pieces to consider: when the input is negative, and when the input is (strictly) positive. The linear functions here are quite simple to add into a solver with linear solving capabilities. The issue here is the sheer number of linear problems rather than their complexity.

However, there are elements in the literature that bring hope. Speci cally, a few theoretical contributions have brought interesting insights on the practical number of possible problems.

In [START_REF] Hanin | Complexity of Linear Regions in Deep Networks[END_REF], the authors present an upper bound on the number of linear regions that is exponential in the dimension of the input rather than in the number of neurons. For a neural network with N total ReLU, L layers, n l ReLU for layer l, n 0 for the input dimension and #f acets number of facets:

#f acets ≤ N n 0 n 0 !
In the particular case where each n l has the same value k (equal width for all the layers), another upper bound is proposed in [START_REF] Raghu | On the Expressive Power of Deep Neural Networks[END_REF]:

#f acets ≤ O(k Ln 0)
Authors of [START_REF] Serra | Bounding and Counting Linear Regions of Deep Neural Networks[END_REF] propose another upper bound. Let j l ∈ Z such that 0 ≤ j l ≤ min (n 0 , n 1 -j 1 . . . n L-1 -j L-1 , n L). Then:

#f acets ≤ j L j 1 L l=1 n l j l
Finally, the work presented in [Urb+19] uses linear regions to verify fairness properties by assessing them on multiple linear regions at once, leveraging parallelism. If the number of linear regions is far lower than pessimistic theoretical upper bounds, is it possible to use them to change how we formally verify neural networks?

This chapter is a contribution to be submitted, that aims to address the following research questions:

Research questions

Can we leverage the sub-exponential upper bound in the number of facets for formal veri cation? Is the veri cation facet by facet faster than verifying them independently? Can we identify features in linear regions that make formal veri cation more amenable?

Background Activation vectors and facets

Let X ⊂ R D in be a multidimensional input space, let Y ⊂ R Dout be a multidimensional output space. Let f be a trained neural network of L layers, computing values from X to Y: f : X → Y. Each layer computes a multidimensional input and produces a multidimensional output, both represented as multidimensional arrays (also known as tensors). Each cell of a tensor is called a neuron. A layer l i has an input in R D (i-1) and an output in R D i , for i = 2..L, with D 1 = D in and D L = D out . In the rest of this thesis, we will denote a layer by l to avoid cluttering.

We consider here a network for which each layer l is composed of a linear application, followed by a ReLU activation function on all the resulting neurons. Parameter tensors are obtained after training and do not change while using the resulting program. The only variables are the inputs living in X . As a running example for the rest of this chapter, we shall take the neural network described in gure 7.1.

For a given input x ∈ X , each neuron of the layer l can be either active, if their value before the application of ReLU is greater than 0, or inactive when this value is stricly lower than 0. We denote by S l F the activation state of ReLU neurons for a given layer l: an active neuron is denoted by 1, an inactive neuron by 0. As an example, for the network in gure 7.2, S 1 F = (1, 1, 0), and S 2 F = (1, 0). S l F can also be seen as a vector of dimension R D i . We call a facet the subset F of the input space generating a certain activation pattern S l F . The network yields the same activation pattern for all inputs within this region. Such a facet describes a linear region, because all ReLU have a xed behaviour within it; thus the network with inputs reduced to F is simply a composition of linear applications. In that case, the output vector y is obtained by element-wise multiplication between the pre-activation vector and S l F . For example, in the network in gure 7.1, for all inputs in F, y 1 and y 2 are inactive, while y 3 is active. Thus, the nal output of the network is z * S F = (0, 0, z 3).

x 1

x 1 ∈ [0.6, 1] x 2 x 2 ∈ [0, 0.4] z 1 1 z 1 2 z 1 3 y 1 1 y 1 2 y 1 3 z 2 1 z 2 2 y 2 1 y 2 2 1 1 -1 1 1 1 A B C 1 -0.5 1 -0.5 -1 1 D E Figure 7
.1: A two layered fully-connected network. Weights are indicated on edges. Green circle denotes an active ReLU neuron, while red cross denotes an inactive ReLU neuron. Both inputs x 1 and x 2 are positive. We see that the neuron y 1 3 is inactive, since the weighted sum z 1 3 = -0.5(x 1 + x 2) is negative. Similarly, y 2 2 is inactive since z 2 2 = -0.5(y 1 1 + y 1 2) is negative, y 1 1 and y 1 2 being positive because of being active neurons. The resulting activation states are S 1 F = (1, 1, 0) (rst layer) and S 2 F = (1, 0) (second layer).

Building facets

Let z l i be the pre-activation value of a neuron at layer l, y l i the post-activation value. The value of this neuron is the result of a composition of a ne transformations and ReLUs. If y l i is active, by de nition of the ReLU, it means that z l i ≥ 0. Similarly, it y l i is inactive, it means that z l i < 0. It follows that the activation state can be expressed as a linear constraint on the di erent neurons on the previous layer. For example, if the a ne transformation in layer l is a matrix multiplication of elements w l i,j with outputs y l-1 j of the previous layer, the linear constraint to express that the neuron is active is:

z l i = j w l i,j y l-1 j ≥ 0 (7.1)
y l i = z l i (7.2)
Similarly, an inactive neuron yields the constraint:

z l i = j w l i,j y l-1 j < 0 (7.3)
y l i = 0 (7.4)
Each of the outputs of the previous layer y l-1 j are themselves the result of a composition of a ne transformations followed by ReLUs. We can thus write equations (7.1) and (7.3) for every previous layer, up to the input layer. Those equations de ne boundaries (hyperplanes) in the space of the current layer between active and inactive state. Thus, each ReLU neuron generates a constraint on the space of current layer. It is possible to write the activation constraints as depending solely on the input variables. Let us take the network depicted in gure 7.1, with two hidden layers, the rst one having three neurons and the second one two. For the rst layer, z 1 1 , z 1 2 and z 1 3 are directly expressed as functions of the inputs:

z 1 1 = w 1 1,1 x 1 + w 1 1,2 x 2 (7.5) z 1 2 = w 1 2,1 x 1 + w 1 2,2 x 2 (7.6) z 1 3 = w 1 3,1 x 1 + w 1 3,2 x 2 (7.7)
Expressing z 2 1 and z 2 2 with inputs depends on the activation S 1 F . First, we have:

z 2 1 = w 2 1,1 y 1 1 + w 2 1,2 y 1 2 + w 1,3 y 1 3 (7.8) z 2 2 = w 2 2,1 y 1 1 + w 2 2,2 y 1 2 + w 2,3 y 1 3 (7.9)
For instance, if S 1 F = (1, 1, 0), then we have

y 1 1 = z 1 1 y 1 2 = z 1 2 y 1 3 = 0
Thus, equation (7.9) becomes

z 2 1 = w 2 1,1 y 1 1 + w 2 1,2 y 1 2 (7.10) z 2 2 = w 2 2,1 y 1 1 + w 2 2,2 y 1 2 (7.11)
Reinjecting equation (7.7) in equation (7.11) nally gives

z 2 1 = (w 1 1,1 w 2 1,1 + w 1 2,1 w 2 1,2)x 1 + (w 2 1,1 w 1 1,2 + w 2 1,2 w 1 2,2)x 2 (7.12) z 2 2 = (w 1 1,1 w 2 2,1 + w 1 2,1 w 2 2,2)x 1 + (w 2 2,1 w 1 1,2 + w 2 2,2 w 1 2,2)x 2 (7.13)
Note that equation (7.13) is only valid within the facet F de ned by S 1 F = (1, 1, 0). A di erent activation state in the rst layer would change the numerical coe cients. Recall that for our particular case, weights w l i,j are known during analysis: the only variables are the input variables x i and the result of propagation z l i . More generally, given a facet F, the corresponding activation states S [1..L] F , and an input vector X, we can obtain the hyperplane equations upto layer l by computing

l k=1 S k F W k X (7.14)

Geometric interpretation

We just explained how, given a facet, it was possible to express all hyperplanes equations in function of the inputs. Recall that each ReLU neuron generates one hyperplane in the input space; each side of this hyperplane is thus a subspace of the input space; each subspace de nes where the neuron is active or inactive. The conjunction of the constraints of all ReLU neurons gives a facet. Since all constraints are linear, the result of this conjunction is a convex polyhedron.

Key point

A facet is the convex polyhedron described by the set of constraints resulting from a given activation pattern. A neural network with inputs restricted to one facet is a linear function.

Changing the activation state of one neuron means crossing a hyperplane on the input space. See gure 7.2 for a geometric illustration of this phenomenon.

Divide and conquer on linear regions

We aim to formally verify a neural network: given a network f , a precondition on the input space D ⊂ X and a postcondition on the output space P ⊂ Y, we want to provably ensure that ∀x ∈ D → f (x) ∈ P

The form of the pre and postcondition varies according to the property we want to check. For instance, given x ∈ X , ∀ε < ε 0 , local adversarial robustness around a

x 1 x 1 ∈ [0.6, 1] x 2 x 2 ∈ [0, 0.4] z 1 1 z 1 2 z 1 3 y 1 1 y 1 2 y 1 3 z 2 1 z 2 2 y 2 1 y 2 2 1 1 -1 1 1 1 A B C 1 -0.5 1 -0.5 -1 1 D E x 2 x 1 A B C D E F x 1 x 1 ∈ [0, 1] x 2 x 2 ∈ [0, 1] z 1 1 z 1 2 z 1 3 y 1 1 y 1 2 y 1 3 z 2 1 z 2 2 y 2 1 y 2 2 1 1 -1 1 1 1 A B C 1 -0.5 1 -0.5 -1 1 D E x 2 x 1 A B C D E F Figure 7.2:
On the left: a network with activation states. On the right: the corresponding input space. On top: S 1 F = (1, 1, 0). On bottom: S 1 F = (1, 1, 1). Changing the activation state results in a di erent linear region in the input space. Also note that all potential facets are convex. sample would be expressed as f (x + ε) = f (x) (note that x + ε might be in a di erent facet than x). For safety properties of the ACAS benchmark, the preconditions on the inputs and outputs are linear constraints.

Linear operations are easier to verify than networks with ReLU, since they do not produce case splits on solvers. If we somehow have an exhaustive list of actually reached facets for our problem at hand, it would be possible to verify each facet independently. The naive estimation of the number of possible facets is exponential in the number of neurons: 2 #ReLU . This is because for each neuron, there are two possible activation states. However, literature shows that a network does not actually exploit the whole set of possible linear regions. Multiple works on expressivity [START_REF] Raghu | On the Expressive Power of Deep Neural Networks[END_REF] and experimental counting of linear regions [START_REF] Hanin | Deep ReLU Networks Have Surprisingly Few Activation Patterns[END_REF], [START_REF] Serra | Bounding and Counting Linear Regions of Deep Neural Networks[END_REF], [START_REF] Serra | Empirical Bounds on Linear Regions of Deep Recti er Networks[END_REF] show that the actual number of reached linear regions is not exponential in the number of ReLU neurons. For a simple task, a deep and wide network could partition the input space into a few regions only. Some facets may also have speci c characteristics, for instance having a wider support in the input space. Analyzing the number of facets and their characteristics is thus relevant.

On the other hand, we want to perform a sound and complete veri cation. Sound means that if our method answers that a system is safe, then it is actually safe; complete means that if a faulty behaviour exists for our problem, it will be spotted by our procedure. The key point is thus to exhibit a procedure to enumerate all the facets that are actually within the (constrained) input space, while excluding empty facets, i.e., associated to activation patterns that are not realizable. In other words, we want to nd all non-empty F i such that i F i = X .

Enumeration of facets

Our approach is to start from the beginning of the network and proceed neuron by neuron. Using an initial bounding box D as an initial constraint on the inputs, we iteratively build the linear constraints composing the neural network, as described in section 7.3. When a ReLU neuron y i is considered, we aim to check whether it can be active, inactive or both, considering the activation state of its predecessors. We thus write the constraints corresponding to the activation states, and check if they are consistent with the previous activation states. A facet is thus a valid activation pattern for all the network: the conjunction of one possible valid activation for all ReLU neurons.

The active pattern yields the constraint described by equation (7.1):

z l i = j w l i,j y l-1 j ≥ 0
y l i = z l i
Similarly, the inactive pattern yields the constraint described by equation (7.3):

z l i = j w l i,j y l-1 j < 0 y l i = 0
If only one of the two activation states is possible, then the constraints describing this state are added to s, and the algorithm goes through the next neuron. If both activations are possible, then the problem stack is copied. Active constraints are added to the rst copy, while inactive constraints are added to the second one. Since the two sub-problems are independent, this algorithm can be parallelized. Let us detail the algorithm on the neural network presented in gure 7.3.

x 1 Both inputs are positive. An initial constraint stack s 1 is lled with the constraints describing the linear operations occuring in the rst layer, as well as the input constraints:

x 1 ∈ [0, 1] x 2 x 2 ∈ [0, 1] z 1 1 z 1 2 z 1 3 y 1 1 y 1 2 y 1 3 z 2 1 z 2 2 y 2 1 y 2 2 -1 1 1 -0.
x 1 ≥0 x 1 ≤1 x 2 ≥0 x 2 ≤1 z 1 1 =x 1 + x 2 z 1 1 =x 1 + x 2 z 1 2 =x 1 + x 2 z 1 3 = -x 1 + x 2
Looking at the rst equation, z 1 1 can only be positive. The solver answers negatively when asking it to solve what is currently on s 1 , plus the following constraint, corresponding to the case where the neuron y 1 1 is inactive:

z 1 1 ≤0 y 1 1 = 0
inputs yielded by F i , and in enforcing the corresponding activation state for all ReLU neurons. The resulting function is thus a composition of linear operations: original matrix multiplications and active or inactive ReLU (which are diagonal matrices multiplied to the pre-activation inputs). Then, the veri cation problem becomes x ∈ D ∩ F i =⇒ f (x) ∈ P. As facets are Dividing the Input Space into COnvex polytopes, we will be referencing our technique as DISCO in the rest of this thesis (not to be confused with [START_REF] Bouchacourt | DISCO Nets: DISsimilarity COe cient Networks[END_REF]).

Studies on facets

So far, we presented a methodology to use facets to ease formal veri cation. Some characteristics of those facets remain however unknown. What is the volume occupied by a facet in the input space? Are all facets activated uniformly? Which parameters in uence the number of facets? In this section, we perform an analysis of the facets of several networks. These are fully-connected networks with three hidden layers, with various numbers of inputs. Architecture details are on table 7.1. Those networks are trained to perform multiplication between N oating point numbers sampled randomly according to a normal distribution between 0.5 and 2.

Towards counting facets and beyond

The initial motivation of this work was that the theoretical maximum number of facets was far over the actual number, and that it might be possible to leverage facets for formal veri cation. We observe that for our problem at least, this seems to be the case. We took the best performing networks in terms of accuracy and reported their number of facets in gure 7.5. The x-axis is the dimension d of the input, y-axis is the number of facets. Note that the number of neurons n directly depends on d as de ned in table 7.1, hence the log-linear progression for both the naive and Hanin bounds. Most of the networks have about one or two orders of magnitude fewer facets than the bound proposed in [START_REF] Hanin | Deep ReLU Networks Have Surprisingly Few Activation Patterns[END_REF]: K * n d d! . This is an encouraging result, as it indicates that on multilayer feedforward neural networks, this upper bound is not tight and can be further re ned. The progression seem sub-exponential on the input dimension; further experimentations are to be conducted to validate our hypothesis.

Not all facets are equal

Reducing the number of facets is a way to reduce the complexity of veri cation. When starting the veri cation, the solver will try each facet without prioritizing one over the other. This relies on the assumption that all facets are activated relatively evenly, that is to say, that each achievable facet has an equal chance to be activated by an gure is for the big architecture, right gure is for the super architecture. y-scale is logarithmic input point. However, if some facets were activated more frequently than others, this would mean that the neural network is biased towards certain input subspaces. For instance, in image recognition, the subspace of the inputs that contain images with a speci c signi cant feature would be processed similarly by the network. Another point of interest is that prioritizing veri cation on those could result in obtaining a meaningful answer faster, since a wider part of the input space is within the facet. Also, the frequency of a facet's occurrence can be a good proxy to estimate the space occupied by the facet in the input space.

Thus, we plotted the distribution of points for each facet, as follow. We built a test set by uniformly sampling 10000 inputs on neural networks (according to a lognormal distribution between 0.5 and 2), and collected the number of points contained in each facet. This can be done without requiring an exhaustive enumeration of facets, as only facets reached by those 10000 points are considered. Results are available on gure 7.6. On this gure, x-axis denotes a unique facet, y-axis denotes the number of points that activated it. The y-scale is logarithmic. We rst observe that points are not distributed uniformly on facets. For instance, for two inputs, the rst most activated facet is activated by almost 10 4 points, while the second most activated facet is activated by less than 10 3 points, which means that the rst facet captures almost all the sampled inputs, thus the computation of most of the sampled inputs by the neural network can be reduced to the processing of a single linear function. More generally, we observe that a few facets are activated by a relatively high fraction of the total sampled points. This validates the hypothesis that, at least on our problem, facets are not activated uniformly by the inputs. This is no surprise: complex non-linear functions approximated by neural networks over an input space X have no particular reasons to vary uniformly. To elaborate a bit more, let i F i = X the decomposition of X into facets. By slightly abusing notations, we denote by F i the linear function represented by its corresponding facet. Finally, let us denote our neural network by f : X → Y. Having a uniform distribution of points within facets would mean that the support of f on each F i should be of the same volume, which is less and less likely as the input dimension increases.

What makes facets shine?

Neural networks are the result of a complex optimization process. As the weights of a neural network directly in uence its possible activation states, one may wonder if this optimization process has an in uence on the number of facets. We postulate that, as stated in [START_REF] Raghu | On the Expressive Power of Deep Neural Networks[END_REF], a higher number of facets can be interpretated as a higher expressivity for the network, leading to better accuracy. To answer, we trained several neural networks of the same architecture with di erent seeds. We present on gure 7.7 a summary of all the experiments we made. We observe for instance that for the dataset 5 with 25 total neurons, some neural networks have less than 200 facets, while others have more than the double. More generally, changing the initialization seed greatly modi ed the number of facets for a given neural network, with extreme consequences on higher input dimensions. In contrast, changing the learning rate and the number of epochs did not result in a signi cant change in the number of facets compared to the initialization. Our hypothesis is that the training of small, underparametrized neural networks is very sensitive to the initialization, for optimization di culty reasons. This Adding more parameters to our neural networks to overparametrize them may lead to a better stability in the number of facets. We observe that a higher number of facets results in a higher accuracy: networks on the right of the x-axis (number of facets) tend to be on the top of the y-axis (accuracy). This is not the case for dataset 5 with 25 neurons. Apart from it, which could be an outlier due to the lack of accurate neural network for this speci c dataset, this validates our hypothesis that the number of facets is correlated with the accuracy. To get an intuitive understanding of this fact, let us consider the two extreme cases. If the number of facets is very low compared with the input space dimension, it means that the neural network have very little di erent possible behaviours on the input space. For a classi cation, if the number of facets is below the number of classes, the task cannot be achieved. On the opposite, a neural Data: An input space domain D, a list of all neurons in the network N Result: A set of linear problems describing all feasible facets for the input space // build the expressions for each neuron 1 lin_exprs, relu_neurons = BuildExpression(N) 2 len = Length(relu_neurons)

Chapter 8

Tackling the combinatorial problem in practice

Summary of the chapter

We present our implementation of DISCO on ISAIEH. To give a proper context, we present some of the most prominent tools of neural network veri cation, classi ed under two main categories: exact methods and overapproximative methods. Exact methods are able to provide optimal answers, but are di cult to scale to larger networks. Overapproximative methods provide certi ed upper and lower bounds on the reachable output for the neural network, which can be used to answer veri cation queries. Our approach of DISCO is quite simple, without any optimization. We perform faster than traditional SMT solvers on simple problems while LP problems do not seem to bene t from our approach. Implementing optimizations within our implementation is a rst research track; an overapproximation scheme reducing the number of linear regions while preserving the semantic of the network is currently planned.

We described why leveraging linear regions for formal veri cation was a track worth considering. After showing that the number of linear regions was far below the upper bounds found in literature for our problems, we now present our implementation of the DISCO method and the result of our approach compared to state-of-the-art machine learning veri cation tools.

Existing tools for machine learning veri cation

In less than a decade, an impressive amount of research was undertaken to bring formal veri cation knowledge and tools to the eld of adversarial robustness. We shall present 103 a fraction of those tools, using a taxonomy presented in [START_REF] Bunel | A Uni ed View of Piecewise Linear Neural Network Veri cation[END_REF]. This taxonomy separates existing tools between two main families: exact methods and overapproximative methods. We will present the tools in those two categories, and further re ne this classi cation. Note that this taxonomy is also closely linked to how we presented formal methods in chapter 3.

Exact methods

The rst category regroups all techniques relying on exhaustive exploration of the search space, or exact methods. Among such techniques are SMT calculus and LP optimization. Recall that SMT or LP rely on the same basic idea: the veri cation problem consists in deciding whether, for a given formula, there exists an instantiation of the variables that makes the formula true. Program properties and control ows are encoded as logical formulae, that specialized solvers try to solve. For SMT, it is possible to express precise properties such as elaborate logical constructs (conjunctions of disjunctions) and non-linear properties (multiplication between values). Since most solvers try to be exhaustive over the search space, a careful formulation of the constraints and control ow is necessary to keep the problem tractable.

SMT

Reluplex [START_REF] Katz | Reluplex: An E cient SMT Solver for Verifying Deep Neural Networks[END_REF] and Planet [START_REF] Ehlers | Formal Veri cation of Piece-Wise Linear Feed-Forward Neural Networks[END_REF] are the rst techniques to aim for exhaustive veri cation of neural networks, using SMT calculus. They propose a reformulation of the simplex algorithm to lazily evaluate ReLU and branching heuristics such as casesplitting on individual neurons. Their work focus on the algorithmic method used to solve a non-linear, non-convex problem. ReLuPlex is an SMT solver integrating a modi ed simplex algorithm, that lazily evaluates ReLU, reducing the need to branch on non-linearities. The core idea is that Reluplex stores upper and lower bounds of every variable (inputs and outputs of each layer) at any time. A veri cation query will add constraints on inputs and outputs: the overall goal is to either reach a possible assignment for each variable regarding the query, or reach a point where no assignment exists. Each step of the algorithm is trying to modify the bounds of variable assignments in order to meet constraints; which leads to tighter bounds and new constraints to take into account. The process is proven to terminate on piecewise linear networks. Reluplex follow-up work, Marabou [START_REF] Katz | The Marabou Framework for Veri cation and Analysis of Deep Neural Networks[END_REF], improves and extends the tool to support more complex networks. They propose a divide and conquer approach where the solver starts with an initial small timeout on an input space: failure to reach a conclusive answer will split the input domain into smaller subdomain. Smaller subdomains reduce the search space and allow for more e cient deductive steps. The original paper does not detail what kind of splitting heuristic is used. Marabou also integrates network-level reasoning, for instance by tightening the bounds of variables by propagating symbols.

Branch and bound

In [START_REF] Bunel | Branch and Bound for Piecewise Linear Neural Network Veri cation[END_REF], the authors rephrase the problem of adversarial robustness veri cation as a global optimization problem on which we can apply various solving strategies. The key point of their approach is to split the search space into multiple branches to nd optimal bounds with a reasonable time budget: hence the name branch and bound (B&B).

In their framework, a ReLU neural network veri cation problem can be encoded by the following:

x 0 ≤ x 0 ≤ x 0 (8.1) x n ≤ x n (8.2) z i+1 = W i+1 x i + b i+1 (8.3) x i+1 = max(z i , 0) (8.4) (8.5)
Their goal is to assess the sign of the output, using linear optimization. To increase the e ciency of this approach, they propose new branching heuristics:

1. on input domains, they propose to split the domain on the highest dimension 2. on ReLU neurons, they propose to prioritize splits that may lead to tighter lower bounds

Their recommendation is to focus on designing new splitting heuristics for both ReLU neurons and input domains, which is exactly what we do with DISCO. We lacked the time to implement their proposal on DISCO; we believe that doing so would lead to even better performances.

Mixed Integer Linear Programming

The veri cation of adversarial robustness properties on piecewise linear networks can also be formulated as a MILP problem, such as in [TXT19]. This encoding is the one we used for neural networks on the LP side. Encoding the linear operations is similar to equation (8.5). Their ReLU encoding is the only key di erence; we reproduce it below. We can encode the ReLU operation y = max(z, 0) like this:

y ≤ z -z(1 -a)) ∧ (y ≥ z) ∧ (y ≤ z * a) ∧ (y ≥ 0) ∧ (a ∈ 0, 1)
They make use of interval arithmetic and linear programming to compute tight bounds of the linear relaxations of ReLU neurons, vastly improving the scalability of veri cation. Adversarial robustness properties were thus checked on ResNets (an architecture considered quite deep, with about 16 layers) with l ∞ -bounded perturbations on CIFAR-10.

Performances

Here, we present a synthesis of performances of the selected tools. Performance is evaluated regarding the speed of di erent methods and, for adversarial robustness, on the accuracy of bounds. A summary is presented table 8.1. Benchmarks are the following:

1. proving ACAS properties as described in chapter 3; unless stated otherwise, this is the φ 2 property, which is one of the hardest;

2. assessing that all inputs of a neural network trained on MNIST are correctly classifed around an l ∞ ball (MNIST);

Apart from B&B, most tools used di erent input formats and were not easily tailored to work on di erent networks and benchmarks. Methods worked on other benchmarks than those presented here; we selected results that seemed representative of the performance of the presented tools. Overall, the MILP approach supports the widest range of threat models, while being able to compute lower bounds and exact values for adversarial robustness. MILP tend to be slightly less expressive than SMT approaches to express properties: for instance, conjunctions of disjunctions like the φ 2 property of ACAS are di cult to express, and non-linear properties are impossible to prove directly. However, the authors are able to nd the minimal perturbation above which misclassi cation is possible, where B&B only assess the robustness on existing perturbation settings. The B&B reformulation and subsequent optimizations proved to be the most e cient of approaches, in terms of range of veri able properties as well as runtimes.

Overapproximation methods

The second set of techniques in formal methods is based on overapproximating the program's behaviour. Indeed, since solving the exact veri cation problem is hard, some authors worked using techniques building overapproximations of the program, on which it is easier to verify properties. This usually results on guaranteed lower bounds on the perturbation around a set of points (usually the dataset). Most work in this line of work also devised techniques to enhance the adversarial robustness of their networks, based on the bounds they were able to compute. A summary of the performances of those tools is available

Upper and lower bound propagation

The rst instance of speci cally-tailored deep learning veri cation described how to re ne non-linear sigmoid activation function to help veri cation [START_REF] Pulina | An Abstraction-Re nement Approach to Veri cation of Arti cial Neural Networks[END_REF]. The authors of [START_REF] Wong | Provable Defenses against Adversarial Examples via the Convex Outer Adversarial Polytope[END_REF] proposes an outer convex envelope for ReLU classi ers with linear constraints, expressing the robustness problem as a Linear Programming (LP) problem. Their approach, shared by most of the authors in this line of work, is to overapproximate the output of a ReLU y = relu(z) neuron by its convex hull (see gure 8.1). They choose to maximize the dual problem of the original veri cation problem problem to achieve a lower bound; the dual formulation being easily solvable. Up- Finally, our work is closely related to [START_REF] Bak | Improved Geometric Path Enumeration for Verifying ReLU Neural Networks[END_REF], where authors propagate linear constraints within neural networks to check formal properties on fully-connected deep neural networks. They use numerical domains to propagate more information than we do, namely upper and lower bounds of variables within each linear regions. They are also able to overapproximate their propagated set, although this makes their method not complete. In contrast, our path enumeration is always sound and complete, and only needs to be called once to verify any property afterward.

Performances

Most of the following methods are properly scaling to more complex datasets and wider architectures. As such, another comparison can be made on the CIFAR-10 dataset.

Overall, CNN-CERT and ERAN are the tools that support the most operations (recent work on ERAN [START_REF] Bonaert | Fast and Precise Certi cation of Transformers[END_REF] even try to tackle transformer architectures), while the outer polytope and ReluVal approaches are behind in terms of support. ERAN is faster on deeper networks. Another tool, [START_REF] Tran | NNV: The Neural Network Veri cation Tool for Deep Neural Networks and Learning-Enabled Cyber-Physical Systems[END_REF], implements various abstract domains, as well as a new star set. They evaluate their work on ACAS-Xu properties φ 3 and φ 4 , and they report results consistently slower than ReluVal on those instances.

E ciently implementing DISCO in ISAIEH

To count facets, it was necessary to be able to modify the activation state of a ReLU neuron. To do so, we devised an operator, outside ONNX scope, that replace the ReLU operator with an identity followed by a multiplication by 0 or 1 according to the operator parameters. This binary vector is the direct implementation of the layer-wise activation state S F i . Then, a forward propagation is conducted, following the algorithm described in alg. 1 and creating a Problem value. Problems are a list of linear constraints attached to NIER operators. A problem can be solved using LP or SMT technologies, or directly written down into SMT or LP format for later use. To take into account the various solving technologies, a Solver functor is de ned. Functors are OCaml implementation of polymorphism: they provide functions from modules to modules, providing the input modules respect a certain interface speci cation. Here, the function SolverModule takes a SolverTech module which must implement an instanciation function, as well as a string representation. The resulting module has the ability to solve a problem, as well as to write it down under a string representation. A Problem is encoded as follows:

Parallel implementation of DISCO

Since DISCO is implemented in OCaml, direct multicore implementation was dicult, as the language was not straightforwardly supporting parallel implementation at the time: although there exists an implementation of multicore OCaml, preliminary experimentations using Python shown that parallelism brought quanti able, but limited improvements; the engineering work of implementing DISCO alone was complex enough.

DISCO

We implemented DISCO in OCaml, within ISAIEH. ISAIEH performs symbolic propagation to compute the hyperplanes delimiting facet boundaries during a forward pass, the building of facets is then made according to alg. 1. The linear programming implementation was made with the Python programming language, and Gurobi [START_REF] Llc Gurobi Optimization | Gurobi Optimizer Reference Manual[END_REF] was used as an LP solver (Version 9.1.1). For the SMT veri cation, z3 [START_REF] De | Z3: An E cient SMT Solver[END_REF] was used (Version 4.8.10). We consider the two synthetic problems we already used before:

1. detection of the presence of an obstacle within a given area, already presented in chapter 6; this problem will be N-perception for the rest of this thesis 2. multiplication between N oating points numbers, already presented in chapter 7 ; this problem will be called N-multiplication for the rest of this thesis

For those problems, we study di erent architectures. All of them are fully-connected networks. N -multiplication networks have three hidden layers, N -perception ones have two hidden layers. Details are on table 8.3.

For each of the two problems, we aim to count the number of facets, then verify whether the network respects its speci cation. For N -multiplication, we check whether the network can indeed produce multiplication results within the tolerance. As formulating this problem directly is impossible due to linear programming limitations, we instead check if following property is veri ed:

N k=1 x k + 1 - 5 4 N + α N N k=1 x k (8.6)
with α N = 0 if the input dimension N is even and α N = 1 4 otherwise. This property should be always true for our input space [0.5, 2] N . A proof of this inequality can be found in part V. For N -perception, we check the following two properties:

1. if an input with at least one obstacle (modeled as white pixel) in the lower half of the image is presented to the network, the output will always be over 0 2. if an input with no obstacle on the lower half of the image is presented to the network, the output will always be below 0 See table 8.4 for results. For each network, the rst column describes the runtime of veri cation without our technique, while the second column describes the runtime of veri cation on all facets. To be fair, the runtime of the enumeration scheme is also noted in the third column. Solving with DISCO or with standard MILP formulation always returns the same result. Note however that the splitting in linear regions is independent of the veri cation problem: costly enumeration algorithms could be used to obtain the facets of a neural network once, then veri cation could happen afterward. A violation of property in one facet stops the veri cation and returns the failure, in a naive "fail-rst" heuristic. Preliminary experiments on networks with a high number of facets show that failures are detected early: guiding the search with a failrst heuristic would prove even more useful. Chosen networks are those with the maximum accuracy, with similar architectures. N -multiplication problems were solved using Linear Programming, while N -perception problems were solved using SMT, QF_LRA theory. We note that the speed-up for the problem veri cation is much higher with SMT than LP. A possible explanation is that the number of facets with N -multiplication being much lower than in N -perception, the additional cost of counting and parallelizing veri cation on each facet is not worth the e ort. It is also likely that Gurobi performs speci c heuristics allowing to e ciently deal with piecewise linear problems. Formally proving a property using DISCO requires to enumerate all possibly reachable facets. Even if their practical number is far below theoretical upper bounds, any existing method reducing it is worth studying. Such a method exists: maximum margin regularization (MMR), presented in [START_REF] Croce | Provable Robustness of ReLU Networks via Maximization of Linear Regions[END_REF]. The authors propose to modify the learning objective of the neural network to maximize the distance between a sample and nearby facet boundaries. Neural networks tend to "push away" the boundaries, resulting in fewer facets for a xed X . More formally, let us consider a facet F i . This facet is neighbored by k others, leading to k boundaries. Each of those boundaries are hyperplanes yielded by F i and its neighbours, their equation can then be written as V k F i . Here, V k F i is the orthogonal vector to the hyperplane constituting the k th boundary with F i . For any sample s within F i , the distance between s and a hyperplane de ned by V k F i is V k F i , s (where •, • denotes the scalar product). In their paper, they compute this distance and aim to maximize it. Another distance towards decision boundaries is also computed, but since we focus on regression tasks, the notion of decision boundaries is not relevant here. The nal term added to the cost function of the network is then, with γ rb a parameter and p either 1, 2 or ∞:

max (0, 1 -min k (V k F i , s + V k F i p * 1 γ rb)) (8.7)
We reimplemented their method and applied DISCO to networks trained with MMR, for N -multiplication problems. We trained 10 neural networks with various degrees of MMR, and compared their accuracies and number of facets. Results are available table 8.4 and gure 8.2. We performed an additional experiment by training 30 networks on 4-multiplication. γ rb was set to 0.01, 0 (no MMR enabled), and 100. 10 networks were trained for each value of γ rb , with di erent seeds. Results are available gure 8.3.

We noted no di erence between neural networks trained with MMR and without it; a possible explanation is that our neural networks are too small, which leads to a greater variety in initialization states: MMR e ects would then be negligible compared to those. On gure 8.3, we observe that neural networks rst struggle to perform above 50% of accuracy with less than 50 facets, then their performance enhance dramatically from that point up to 100 facets, where most of neural networks tend to perform above 90% accuracy. Outliers may be due to the high sensibility of optimization to initialization. Most neural networks lie on a Pareto front. This Pareto front enlights us on the relationship between accuracy and number of facets. Indeed, we clearly see that a reduction in the number of facets results in a reduction in accuracy; although accuracy does not fall before reducing the number of facets to less than 100. As said in previous chapter, a wider number of facets leads to a broader diversity of behaviours for the neural network, i.e., expressivity. It is then necessary to nd a tradeo between accuracy and robustness. Such tradeo could be the transposition of a "No Free Lunch" Theorem for formal veri cation: it would be impossible to have a network that is both robust and accurate, because of the way we craft our neural networks. This argument is more detailed in the paper [Tsi+18]. Investigating this tradeo by studying this Pareto front may enhance our understanding of the link between expressivity and accuracy.

Discussion

Our method provided enhancements for SMT solvers, but not for LP solvers. The piecewise linear structure of ReLU neural network could be much more amenable for the latter: LP solvers may have optimizations for linear problems that SMT solvers lack. However, the range of expressible properties with SMT solvers is far greater than with LP solvers, limited to conjunctions of linear inequalities. If the targetted property is complex and requires high expressivity, our method could be useful.

Our method has limited scalability on LP solvers, but problems with higher input dimensions solved with SMT solvers are bene ting from DISCO. Nevertheless, parallelizing and linear solving will still be prohibitively hard because of the increasing number of facets for high dimensional inputs. However, there exist industrial cases with low dimensional inputs and relatively small networks that can bene t from this method. Using facets to perform parallel veri cation has also been used successfully in other works, for instance [Urb+19]; the global idea of considering the piece-wiselinearity of neural networks must then be investigated further.

DISCO does not perform well compared to specialized tools like ERAN or Marabou. Indeed, DISCO was not aimed to be a fully featured solver (ERAN and Marabou are developed in labs with more than 15 members). Rather, it must be seen as another heuristic that can be integrated within more mature tools. Because of engineering issues, we were not able to compare ourselves to MNIST and ACAS benchmarks: launching DISCO on ACAS did not terminate in more than twice the timeout value. Considering those results, we did not tried to test on MNIST, as both input dimension and neural network size are wider than in the ACAS setting.

Using o -the-shelf solvers rather than develop a specialized solver was a pragmatic decision. At the start of the thesis, most of state-of-the-art tools were not easily adaptable to our experiments. LP and SMT solvers have years of expertise of talented researchers and engineers that we wanted to build upon rather than start from scratch. With the rise of multiple tools and instrumenting platforms that integrates LP and SMT solvers, we think it is not a vain approach.

Since the input distribution seems not uniformly spread over facets, a possible enhancement for solving techniques would be to guide solving by focusing on "big" facets as a fail-rst heuristic. The current OCaml implementation is not parallel, since the OCaml runtime does not allow straightforward multiprocess. Any multiprocesscapable language could be used to increase performance, since facets are independent. Finally, if the number of facets still remain too high, we could devise an overapproximation scheme to merge them and keep DISCO veri cation tractable.

The speci cation problem of machine learning remains a hard one. Being able to soundly formulate speci cations that the user can trust is an open research track. Indeed, perceptual inputs are di cult to qualify precisely; using a proxy that approximates the input distribution (be it a hand-crafted or learned generator) could help, providing some characterization of the quality of the input distribution exists. Any software claiming to formally verify perceptual inputs should transparently expose to all relevant parties the tradeo s made during its conception, as well as rely on sound premises. Combining explainability approaches with generative models could provide an additional level of trust; and help people link abstractions like Gaussian noise and its actual consequence on the generated data.

The combinatorial problem is heavily researched. During the conduct of this thesis, we witnessed an explosion in the number of tools and techniques, which made keeping up with the last advances sometimes di cult. Most of prominent tools tend to focus on piece-wise linear neural network and exploit this feature to prune the search space, or propagate tight overapproximations. Adapting existing techniques of formal veri cation to this setting yielded fruitful results, thus advances in abstract interpretation, model-checking and guided testing should be carefully examined. Interestingly, undergoing venues to enhance solvers tend to use machine learning techniques. In a satisfying twist, neural networks could thus be used to ease the veri cation of neural networks. To the best of our knowledge, we do not know any work using interactive proof assistants to verify deep learning programs. We may only postulate hypothesis on the reasons of this absence. Encoding neural networks under tools like Coq or Isabelle may be too cumbersome. Coq's input language, Gallina, is expressive enough to formulate the properties we veri ed during this thesis. Proof assistants rely a lot on interaction with the user; if the veri cation process asks for input at each case split, the tool is not practically usable. In any case, a proof assistant could be useful to verify fragments of properties, or showing inner contradictions of neural networks reasoning in a more ne-grained manner.

The explosion of tools and techniques calls for a unifying way to formulate properties and choose the best (combination of heuristics) for the job to be done. We observe that most maintained tools tend to take features found in others, which leads to some sort of "selection pressure". We observe some tools that start to combine di erent techniques (for instance, overapproximation and linear programming). The next step would be to further intertwine reasoning techniques, so that one heuristic could inform another. To do so, we will need to unify neural network representations and provide a common reasoning base. Doing so will allow the community to further consolidate its nding while developping new approaches. One may think at the veri cation platforms Why3 or Frama-C, which allow such communication between methods. CAISAR is a platform currently in development that aims to answer those needs.

Most properties witnessed in the literature are either conjunctions of linear con-straints, either adversarial robustness ones. The eld would bene t from tackling a more diverse set of properties, which would enhance the tools and allow more realworld, complex problems to be tackled. For instance, trying to enforce fairness properties with formal methods could be an interesting research track.

As machine learning programs are deployed within the frames of our society, it is paramount that all members of society are engaged with it; trust is necessary if those tools are to ful ll their purpose while respecting democratic values. As computer scientists, providing ways to formally verify neural networks is a -modest -contribution to bring trust. Crafting de nitions of machine learning fairness, to ensure justice against programs, is another. The potentialities of deep learning are however so big that, to paraphrase Georges Clémenceau, "Machine learning is too serious to be left alone to computer scientists". Deep learning technologies have the potential to impact our governments, and the understanding of those e ects should be given to the public to conduct a democratic discussion on how we want to use technology.

As the function f : x ∈ R + → x n is convex, one has, for any 0 a x b, that f (x) is below the line from f (a) to f (b):

f (x) f (b) -f (a) b -a (x -a) + f (a)
For our case of study, a = 0.5 and b = 2, this yields:

∀x ∈ [0.5, 2], x n 2 n -1

2 n 2 -0.5 (x - 1 2) + 1 2 n that is, ∀x ∈ [0.5, 2], x n 2 3 (2 n -2 -n)(x - 1 2) + 2 -n n k=1 x k n k=1 x k n n 2 3 (2 n -2 -n) n k=1 x k n - 1 2 + 2 -n

Lower bound

Let us denote by f the product:

f : (x 1 , x 2 , . . . , x n) → k x k
Then note that at the middle point (x 1 , x 2 , . . . , x n) = (1, 1, . . . , 1): ∀k, ∂f (x 1 , x 2 , . . . , x n) ∂x k = n j =k

x j = 1 and that consequently around the middle point, the rst order approximation of the function is:

f (x 1 , x 2 , . . . , x n) = f (1 + (x 1 -1), 1 + (x 2 -1), . . . , 1 + (x n -1))

= f (1, 1, . . . , 1) +

k ∂f ∂x k (x k -1) + O (x k -1) 2 = 1 + k (x k -1) + O (x k -1) 2 = 1 -n + k x k + O (x k -1) 2
so that the linear function (x 1 , x 2 , . . . , x n) → 1 -n + k x k looks like a promising approximation of the function. Unfortunately, as said earlier, the multiplication f is not convex nor concave, so some parts of the graph of the function are above it and some other ones below. Let us just remember that the hyperplane direction k x k sounds reasonable. The tautology: We want to nd its minimum over [0.5, 2] n . For each variable x k : **if the minimum is reached in the interior of [0.5, 2]** (i.e. not at x k = 0.5 or 2), then necessarily at that point the derivative is 0: ∂g ∂x k = j =k

k x k - k x k inf
x j -1 = 0 i.e. j =k

x j = 1 and consequently j x j = x k . Otherwise, if the minimum is reached on the boundaries of [0.5, 2], then either x k = 0.5 or x k = 2.

For each k we consequently have:

• either j =k x j = 1

• or x k = 0.5

• or x k = 2
Note that if a variable x k satis es the rst property then:

g(x 1 , x 2 , . . . , x n) = j x jj

x j = x kj x j =j =k

x j which does not depend on x k . Thus in that case one can choose to change x k for 0.5 or 2 and this will not change the value of g. Thus one can assume that all x k are 0.5 or 2, that is, the minimum is reached on a corner of the domain [0.5, 2] n . Let us assume that K variables x k are 0.5 and the n -K remaining ones are 2. Then:

g(x 1 , x 2 , . . . , x n) = 2 n-K 0.5 K -((n -K) 2 + K 0.5))

i.e. g(x 1 , x 2 , . . . ,

x n) = 2 n-2K + 3 2 K -2n
What is the value of K ∈ [[0, N]] that minimizes this? Let is study the function h : x ∈ [0, N] → 2 n-2x + 3 2 x. If it reaches a minimum strictly inside [0, N] then at that point its derivative is 0:

-2 × 2 n-2x + 3 2 = 0 that is 2 n+2 3 = 2 2x
x = 1 2 (n + 2 -log 3 log 2)

that is x n 2 + 0.2
This point is a minimum indeed (and not a maximum) as the second derivative of h is positive. Therefore the K that we are searching for is the closest lower or upper integer to n 2 + 0.2. If n is even: these are n 2 and n 2 + 1. If n is odd: these are n-1 2 and n+1 2 . By computing the associated values of h, one nds that the minimum in the even case is reached for K = n 2 and is 1 + 3 4 n, while in the odd case, the same value is obtained for both possible values of K and is 2 + 3 4 (n -1). As g = h -2n at corners, this leads to: -inf g = 1 - 5 4 n if n is even -inf g = with δ n is odd = 1 if n is odd and 0 otherwise. The bound is tight and reached on many corners (all the ones with half lowest and half highest coordinates) as well as on the edges linking these corners if n is odd (free variable that can take any value).

Final result: L'objectif de cette thèse est de réconcilier l'abondance des techniques de vérification de programmes classiques et l'absence de garanties sur les réseaux de neurones, ce pour permettre aux logiciels critiques de conserver le haut niveau de confiance qu'ils ont atteint quand ils seront inévitablement modifiés avec des mécanismes d'apprentissage machine.

∀x 1 ,

Title: Verification and validation of machine learning techniques

Keywords: Neural Networks, Formal Verification

Abstract: Machine Learning techniques, Neural Networks in particular, are going through an impressive expansion, permeating various domains, becoming the next frontier for human societies. Aircraft collision avoidance, cancer detection, justice advisors, autonomous vehicles, or mooring line failure detection are but a few examples of Neural Networks applications. This effervescence, however, may hold more than benefits, as it slowly but surely reaches critical systems. Indeed, the remarkable efficiency of neural nets comes at a price, more and more un-derlined by the scientific consensus: weakness to environmental or adversarial perturbations, unpredictability... which prevents their full-scale integration into critical systems. While the domain of critical software enjoys a plethora of methods that help verify and validate software (abstract interpretation, model checking, simulation, bounded tests...), these methods are generally useless when it comes to Neural Nets.

This thesis aims at bridging formal software verification and machine learning, in order to bring trust in critical systems incorporating Neural Networks elements.

Université Paris-Saclay Espace Technologique / Immeuble Discovery Route de l'Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

 1. speci cation: what do we formalize and how do we do it, what are the expected behaviours 2. techniques: what kind of mathematical reasoning will we use, and which guarantees it gives to us 3. heuristics: how do we take into account the speci cs of the problem at hand to design and implement e cient veri cation algorithms

 3 and above) on most of Linux distributions, Adobe Acrobat Reader (Version 2017 and above)

Figure 2 .

 2 Figure 2.1: Graph representing the progression of this thesis with regard to the pillars of formal verication. Icons by Freepix on Flaticon.com

Figure 3 . 1 :

 31 Figure 3.1: On the left: instructions for a dummy program. On the right, a simpli ed representation of this program using a CFG.

Figure 3 . 2 :

 32 Figure 3.2: A possible way to design software

Figure 3 . 3 :

 33 Figure 3.3: A schematic work ow of formal veri cation

Figure 3 . 4 :

 34 Figure 3.4: simpli ed work ow of SMT calculus

Figure 3 . 5 :

 35 Figure 3.5: Using interval arithmetic, we are able to rule out the costly computation within the conditional.

Figure 3 . 6 :

 36 Figure 3.6: Stakes of abstract interpretation. On g. (a), the abstraction A correctly encapsulates the behaviour of the program. On g (b), A is too wide, and the veri cation procedure raises a false alarm. On g. (c), A does not encompass all behaviours, resulting on an unsound analysis. Domains used in abstract interpretation must be sound, so case (c) is not supposed to happen when dealing with real tools. Credit: Antoine Miné

l e t

 main = x = s y m b o l i c _ v a l y = s y m b o l i c _ v a l p r o c e d u r e x y l e t p r o c e d u r e x y = l e t z = 2 * x

Figure 3 . 7 :

 37 Figure 3.7: Example adapted from [CS13]. Round nodes describe the memory state of the program, rectangle nodes describe a possible concrete input leading to this execution path.

Figure 4 .

 4 Figure 4.1: A formal neuron. σ is an activation function that introduce non-linearity in the neuron's behaviour (in the perceptron, σ was the Heaviside function)

Figure 4 . 2 :

 42 Figure 4.2: A neural network with two inputs, one hidden layer of three neurons and two outputs, nobiases. Each neuron process the weighted sum of its inputs, followed by an activation function

Figure 4 . 3 :

 43 Figure 4.3: Gradient backpropagation algorithm

Figure 4 .

 4 4 explains schematically the crafting of adversarial examples, and gure 4.5 an iconic adversarial example.

Figure 4 . 4 :

 44 Figure 4.4: Simpli ed procedure to build adversarial examples. x and y are samples, δ and δ are perturbations, d is the decision boundary between classes C1 and C2

Figure 4 . 5 :

 45 Figure 4.5: An iconic adversarial example illustration, from [GSS14]

 6. τ : time until loss of vertical separation; 7. a prev : previous output; Possible outputs are: 1. COC: clear of con ict, do not change direction; 2. W L: change direction to the left, lightly; 3. SL: change direction to the left, strongly; 4. W R: change direction to the right, lightly; 5. SR: change direction to the right, strongly;

Figure 4 . 6 :

 46 Figure 4.6: The ACAS-Xu model, with all input variables

Figure 4 .

 4 Figure 4.7: main di erences between classical programs and neural networks Icons made by Becris, Freepik, Google and Icongeek26 from www. aticon.com

 most deep learning application domains, such as image classi cation[START_REF] He | Deep Residual Learning for Image Recognition[END_REF], object detection[START_REF] Chabot | Deep MANTA: A Coarse-to-ne Many-Task Network for Joint 2D and 3D Vehicle Analysis from Monocular Image[END_REF], control learning[START_REF] Bojarski | End to End Learning for Self-Driving Cars[END_REF], speech recognition[START_REF] Ravanelli | The PyTorch-Kaldi Speech Recognition Toolkit[END_REF], or style transfer[START_REF] Karras | A Style-Based Generator Architecture for Generative Adversarial Networks[END_REF], there exists no formal de nition of the input. As a motivating example, let us consider the (theoretical) software of an autonomous car. A visualisation of what this software does is available gure 5.1. Its goal is to detect various objects on the sensor, and output driving directives. A desirable property would be not to run over pedestrians. This property can be split in two:

Figure 5 . 2 :

 52 Figure 5.2: Natural inputs with huge perceptual space: no formal characterization of the input can be formulated, preventing formal veri cation

Figure 5 . 3 :

 53 Figure 5.3: Generated inputs with integration of the generation procedure in the veri cation problem.There are now new properties to check since we have a formal characterization of the perceptual elements.

Figure 6

 6 Figure 6.1: ISAIEH architecture. Arrows indicate a dependency.

 type i d = i n t type s h a p e = i n t l i s t type o p e r a t o r = | Add | Mul | Matmul | L o g S o f t m a x | ReLu | T r a n s p o s e | S q u e e z e | MaxPool | Conv | I d e n t i t y | NO_OP | R W _ L i n e a r i z e d _ R e L u type k s i z e = K s i z e of s h a p e type s t r i d e = S t r i d e of s h a p e type p a d s = P a d s of s h a p e type d i l a t i o n s = D i l a t i o n s of s h a p e type o p e r a t o r _ p a r a m e t e r s = | P o o l _ p a r a m s of (k s i z e * s t r i d e o p t i o n * p a d s o p t i o n * d i l a t i o n s o p t i o n) | Conv_params of (k s i z e * s t r i d e o p t i o n * p a d s o p t i o n * d i l a t i o n s o p t i o n) | T r a n s p o s e _ p a r a m s of s h a p e | R W _ L i n e a r i z e d _ R e L u _ p a r a m s of ((b o o l

Figure 6 . 3 :

 63 Figure 6.3: Example of inputs for the toy problem. White pixels represent obstacles. If they are in the top half of the image, no alert should be red (rst two examples), while an alert should be red if at least one lies in the (dashed) bottom half of the image (last two examples). 9x9 picture is depicted here for clarity.

Figure 6 . 4 :

 64 Figure 6.4: A SMTLIB2 le describing our problem. First part is a full description of the network, automatically produced by ONNX2SMT. Handmade annotations describe the property to check, i.e. there are no false negatives in our network. The goal for the solver is to nd a counterexample.

5 1-Figure 7 . 3 :

 573 Figure 7.3: The same two-layered network, but with a wider input space. Here, possible activation states are S 1 F = (1, 1, 0) or (1, 1, 1) (rst layer) and S 2 F = (1, 0) or (1, 1) (second layer).

Figure 7

 7 Figure 7.5: x-axis is the input dimension d. Upper orange line with dots is the naive, 2 n bound. Middle blue line with crosses is the bound proposed by [HR19b] K * n d d! . Red stars are the best performing networks for our experiments. Left gure is for the simple architecture, middle gure is for the big architecture, right gure is for the super architecture. y-scale is logarithmic

Figure 7 . 6 :

 76 Figure 7.6: Distribution of points in facets for di erent input dimensions

Figure 7

 7 Figure 7.7: x-coordinate denotes the number of facets, y-coordinate the accuracy of the network

Figure 8 . 2 :

 82 Figure 8.2: Graph summing up the performances of several networks. x-coordinate denotes the number of facets, y-coordinate the accuracy of the network. Orange crosses are networks trained with MMR, blue dots are networks trained without.

Figure 8 . 3 :

 83 Figure 8.3: Red denotes a high value of parameter γ rb , orange a low value, blue that the parameter is set to 0 value. x-axis is the number of facets, y-axis is the accuracy.

y 1 ,y 2 ,

 2 ∀x 1 , x 2 , . . . , x k ∈ [0.5, 2], k x k k x k + inf y 1 ,y 2 ,...,yn∈[0.5,2] k y kk y kwhich leads us to a lower bound of the form:k x k k x k + Cfor some constant C that may depend only on n and the interval chosen [0.5, 2].Let us study the function:g : (x 1 , x 2 , . . . , x n) ∈ [0.5, 2] n → k x kk x k

 3. able to bind neural networks to formal veri cations tools in a streamlined wayThe (ongoing) result of this work is the Inter Standard Arti cial Intelligence Encoding Hub (ISAIEH). The code is freely available under the LGPLv2 licence 2 . The most prominent features of ISAIEH are the following:

	1. support of ONNX standard to produce a Neural IntermediatE Representation
	(NIER)
	2. transcription of the NIER to SMTLIB2 and LP format to be used by state-of-the-
	art solvers
	3. implementation of facets counting
	4. bindings to the Z3 SMT solver to perform direct solving of SMT problems, and
	to the GLPK and GUROBI LP solvers to solve LP problems

Table 6

 6

			.1: Total number of possible samples for each N
	N	z3	CVC4	YICES	COLIBRI
	3	0.04s	0.08s	TIMEOUT	UNKNOWN
	5	30.2s	61.2s	TIMEOUT	TIMEOUT
	7	434s	TIMEOUT TIMEOUT	TIMEOUT

Table 6 .

 6 2: Runtimes of solvers to answer UNSAT. TIMEOUT is one hour.

Table 7 .

 7 1: number of neurons for the di erent architectures. d denotes the dimension of the input, L i the i -th layer of the network

	3 stack = D
		// the only shared resource between processes
	4 facets = ∅
	5 def SendToNewProcess(stack, index, facets):
	6	while index < len do
		// linear expressions describing the activation state for a given
		neuron
	9	stack.push(lin_expr)
		active_expr, inactive_expr = BuildConstraints(neuron)
		// test and propagate only the feasible activations
		if Solve(stack active_expr) then
		if Solve(stack inactive_expr) then
		stack_copy = stack.copy()
		stack_copy.push(active_expr)
		// send the copied stack to a new instance of the algorithm
		SendToNewProcess(stack_copy, index + 1, facets)
		// proceed in the current process with the other possible state
		stack.push(inactive_expr)
		else
		stack.push(active_expr)
		end
		else
		stack.push(inactive_expr)
		end
		index = index + 1
		end
		// when all neurons have been analysed, add the resulting linear
		constraints to the list of facets
		facets.append(stack)
		end
		// launch the algorithm on the first ReLU neuron
		SendToNewProcess(stack, 0, facets)
		return facets
		Algorithm 1: Counting facets

7 neuron = relu_neurons [index] 8 lin_expr = lin_exprs [index]

 table 8.1.

	Benchmark	ACAS	MNIST adversarial
	Method		robustness
		1200s (average) for one	
	Marabou[Kat+19]		-
		property	
		on par with Marabou	
	Planet[Ehl17]	on simple instances, ≈	106.8s (l ∞ 0.08 threat
		1000 times slower on	model)
		di cut instances	
			≈ 100s to nd the
	MILP[TXT19]	-	exact minimal
			distortion
		98% of properties	1200 cases solved in
	B&B[Bun+20]		
		solved in one hour	about 120s

Table 8 .

 8

1: Runtimes for di erent benchmarks as reported in the original publications

Abstract interpretation

A line of work from ETH Zurich focused on adapting abstract interpretation to deep neural networks, for instance in [MGV18; Sin+19; SG19] 1 . In those papers, the authors propose and enrich ERAN (ETH Robust Arti cial Intelligence), a framework for building abstract interpretations of neural networks, which they use to derive a tight upper bound on robustness for various architectures and for regularization. They also combine with exact methods to compute tighter bounds, such as in

[START_REF] Singh | Boosting Robustness Certi cation of Neural Networks[END_REF]

. They propose abstract transformers for the most common operations of deep learning, and use those to verify local adversarial robustness on CIFAR-10 and MNIST, as well as to prove ACAS properties.

Table 8 .

 8 2: Runtimes for di erent benchmarks as reported in the original publications

	Benchmark	ACAS	MNIST	CIFAR
	Method			
	Outer Polytope[WK17]	-	5.81%, ε = 0.1	-
			robustness bound	
	ReluVal[Wan+18b]	15632s for φ 9	4.4% test error on MNIST for l ∞ < 1	
			15% robust test error,	ε = 0.1, 79% robust
	ERAN[SG19]	227s for φ 9	35s mean runtime,	error, 20s mean
			ε = 0.03	runtime
			0.049 certi ed lower	0.0042 certi ed lower
	CNN-CERT[Boo+19]	-	bound, 2.33s for one	bound, 15.11s for one
			sample	sample

Table 8 .

 8 3: number of neurons for the di erent architectures. d denotes the dimension of the input, L i the i -th layer of the network8.3 ExperimentationsThis section describes analysis and performance assessments made on our implementation of DISCO. On all settings, neural networks are trained with PyTorch[START_REF] Paszke | PyTorch: An Imperative Style, High-Performance Deep Learning Library[END_REF] and exported into ONNX using PyTorch dedicated functions. Unless speci ed otherwise, neural networks weights are initialized using Glorot initialization with a gain of 1, and trained using the PyTorch implementation of the Adam optimizer. Neural network training took place on the lab GPU cluster, Titanic, a SLURM-powered cluster. Experiments using formal veri cation tools are conducted on a Dell Precision 5530 with an Intel Core i7-8850H CPU, 2.6Ghz, and Ubuntu 20.04.1 LTS as operating system.

Table 8 .

 8

4: Runtime for di erent problems. TIMEOUT is set at 10000s. Figures are mean taken over 10 runs, standard deviation is reported next to the ± symbol

 5 4 -5 4 n if n is odd ∀x 1 , x 2 , . . . , x k ∈ [0.5, 2],

	k	x k	k	x k + 1 -	5 4	n +	1 4	δ n is odd

 x 2 , . . . , x k ∈ [0.5, 2], Réseaux de neurones, méthodes formelles Résumé: L'apprentissage machine, en particulier au moyen des réseaux de neurones artificiels, connaît depuis une dizaine d'année une expansion impressionnante. détecteurs de collision d'aéronefs, aide au diagnostic pour différents cancers, aides aux décisions de justice, véhicules autonomes et capteurs d'anomalies d'ancrage sur des plateformes offshores sont autant d'applications faisant intervenir les technologies d'apprentissage profond au sein de systèmes critique; ouvrant des perspectives inexplorées pour les sociétés humaines. Bien que bénéfique en apparence, cette révolution a de quoi inquiéter à mesure qu'elle se concrétise: la fragilité de ces techniques d'apprentissage est désormais un fait scientifique établi. La taxonomie des vulnérabilités, qu'elles soient accidentelles ou malicieuses, ainsi que leur carac-tère imprévisible remet en question la possibilité d'intégrer des réseaux de neurones dans des domaines critiques qui pourraient pourtant en bénéficier. A l'heure actuelle, peu de méthodes permettent de démontrer formellement la fiabilité d'un réseau de neurones. Par contraste, le domaine du logiciel critique, quant à lui, jouit d'une multitude de méthodes et techniques: model checking, simulation, interprétation abstraite, tests dirigés, etc.

		k	x k + 1 -	5 4	n +	1 4	δ n is odd	k	x k
	k	x k	2 3	(2 n -2 -n)	n k=1 x k n	-	1 2	+ 2 -n

Titre: Vérification et validation de techniques d'apprentissage machine

Mots clés:

https://clearview.ai/

http://smtlib.cs.uiowa.edu/

https://git.frama-c.com/pub/isaieh

network with a very high number of facets compared to the input space dimension would theoretically be able to approximate the expected behaviour for each datapoint, which would result in a higher accuracy.

full list of publications available at https://github.com/eth-sri/eran#publications, last con-

sulted 2021/07/12

Remerciements

Key point

Verifying deep neural networks is di cult because of the high number of nonlinear case splits their structure generates. This is the second issue we will try to tackle: the combinatorial problem of machine learning veri cation

To go further A survey on transfer learning is available at [START_REF] Tan | A Survey on Deep Transfer Learning[END_REF]. For a comprehensive survey on the de nitions, metrics and algorithms of algorithm fairness, see [START_REF] Mehrabi | A Survey on Bias and Fairness in Machine Learning[END_REF]. A survey on explainable AI is available at [START_REF] Samek | Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications[END_REF].

Part III

The Tools and Heuristics Problem Chapter 7

The tooling problem

Summary of the chapter

The impressive results of modern neural networks partly come from their nonlinear behaviour. Unfortunately, this property makes it very di cult to apply formal veri cation tools, even if we restrict ourselves to networks with a piecewise linear structure. However, such networks yield subregions that are linear and thus simpler to analyse independently. In this chapter, we present a method to simplify the veri cation problem by partitioning it into multiple linear subproblems. To evaluate the feasibility of such an approach, we perform an empirical analysis of neural networks to estimate the number of linear regions, and compare them to the bounds currently known. We also present the impact of a technique aiming at reducing the number of linear regions during training.

In the previous part, we presented a possible way to address the speci cation problem encountered when performing formal veri cation on deep neural networks. There is still the need of actually performing the mechanism of veri cation, by using speci c tools that are properly tuned for the problem at hand. For this chapter, we will review the performance of state-of-the-art formal veri cation tools on deep neural networks and present some insights on why we might need new tools.

Trying veri cation with classical solvers

Theoretical results

Before launching veri cation on neural networks, let us recall a few things.

Recall that neural networks are functions that are composed by linear operations and activation functions. The most common activation function in modern neural It means that the opposite constraints (y 1 1 is active) is the only possibility. We thus add to s 1 the following contraints

Similarly, z 1 2 can only be positive: we solve s 1 plus the inactive constraints set, the solver answers negatively so we add to s 1 the active constraints set.

, then the result is negative; and positive otherwise. Since the specication on our inputs does not give that information, both cases are possible. Indeed, the solver answers positively for both cases. The stack s 1 then is copied, obtaining a new stack s 2 . We add to s 1 the following constraints, corresponding to the activation of y 1 3 :

and we add to s 2 the following constraints, corresponding to the inactivation of y 1 3 :

We now have two stacks with di erent contraints: a new process is spawned to deal with stack s 2 , while the initial process keeps s 1 . On the second layer, we add to both stacks the linear equality constraints:

We then proceed to neuron y 2 1 . Here, the possibilities depend on the stack we are in:

1. if the current stack is s 2 , then y 1 3 = 0, hence z 1 2 > 0, thus y 2 1 can only be active; we add the corresponding constraints to s ; 2. if the current stack is s 1 , then y 1 3 > 0, thus z 1 2 can be both positive and negative (z 2 1 = 5x 1 -x 2); we must then copy the stack s 1 on a new stack s 3 . s 1 contains the activation constraints for neuron y 2 1 , while s 3 contains the inactivation constraints We now have three constraint stacks: s 1 , s 2 and s 3 . Finally, on neuron y 2 2 , another choice is possible:

1. if the current stack is s 1 , then all neurons are active; z 2 2 can only be negative, thus the inactive constraint is added to s 2. if the current stack is s 2 , then neuron y 1 3 is inactive; z 2 2 can only be negative again, thus the inactive constraint is added to s 2 3. since s 3 has the same constraints on previous layer than s 2 , the result is the same We nally have three di erent constraints stacks, whose content is displayed gure 7.4. See alg. 1 for a pseudo-code description. Once we obtain the set of all relevant facets, it is possible to build the corresponding linear functions. This set of linear functions represent all the possible behaviours of the network on its input space. Veri cation of the property can then be launched on each linear function; since they are independent problems: parallelization can also be used.

More formally, let us consider a facet set i F i for a network f , an input space X , an output space Y, a precondition on the input space D ⊂ X and a postcondition on the output space P ⊂ Y. We aim to formally verify that x ∈ D =⇒ f (x) ∈ P. Partitionning consists on adding to the network's control ow the constraint on the per and lower bounds on each neuron are computed by a backward propagation on the neural network of the original constraint. Once those bounds are computed, the authors use it during training to identify "worst case" perturbations and train neural networks to detect wrong cases.

The authors of the tool Reluval [START_REF] Wang | Formal Security Analysis of Neural Networks Using Symbolic Intervals[END_REF] introduce symbolic interval analysis and various heuristics applied to it. Inputs of the neural network are symbolic values with bounds, that are propagated through the network. Through careful heuristics (for instance, leveraging parallelism with interval bisection), they are able to derive output bounds on neural networks. The following work, Neurify [START_REF] Wang | E cient Formal Safety Analysis of Neural Networks[END_REF], combines this approach with targeted overapproximation to further enhance scalability.

CNN-Cert [START_REF] Boopathy | CNN-Cert: An E cient Framework for Certifying Robustness of Convolutional Neural Networks[END_REF] is a framework for neural network veri cation developped at IBM. Its bound propagation follows a forward approach, by proposing tight boundings for every non-linear operation of the neural network (much like abstract interpretation approaches).

Tools leveraging linear regions

Regarding linear regions, a theoretical extension of the universal approximation theorem applied to robustness certi cation was proposed in [START_REF] Baader | Universal Approximation with Certi ed Networks[END_REF]. An exact enumeration scheme was proposed by [START_REF] Serra | Bounding and Counting Linear Regions of Deep Neural Networks[END_REF] using MILP. Our enumeration scheme closely follows theirs, with some additional heuristics; we also leverage the obtained linear regions to perform formal veri cation, while they do not. They also provide initial insights by showing a correlation between accuracy and the number of facets.

Part IV

Perspectives

Perspectives

Summary of contributions

In this thesis, we went through the eld of formal veri cation and tried to apply it on machine learning programs.

In chapter 4, we showed that straightforwardly applying formal veri cation techniques to machine learning was not possible. We summed up the di culty under two di erent problems: the inability to formally de ne the input space of machine learning programs, and the lack of suitable tools and heuristics to perform e cient formal veri cation.

In chapter 5, we introduce CAMUS, a formalism describing how to formally express safety properties on functions taking simulated data as input. This rst step helps us to consider formalizing high-dimensional inputs, in particular perceptual inputs. Using simulators as a proxy, we may be able to provide sound formalizations of speci cations.

In chapter 6, we propose ISAIEH, an open source tool that leverages two standards used by the communities of formal methods and machine learning, to automatically write machine learning algorithms as logical formulae and ease the veri cation process. We demonstrated the joint use of ISAIEH and CAMUS on a synthetic example mimicking a self-driving car perceptive unit, as a proof of concept of our framework.

In chapter 7, we present DISCO, an algorithm that aims to facilitate the process of formal veri cation for neural networks. By leveraging their piece-wise linear structure, this algorithm can speed up the veri cation of problems using o -the-shelf solvers.

In chapter 8, we build an implementation of DISCO in ISAIEH and present our results, as well as the limitations of our approach.

Beyond this thesis

In general, the eld of formal network veri cation is blooming and is attracting numerous scientists. It is birthing several tools and techniques. Its core strength is the interdisciplinarity between formal veri cation and machine learning, which yields promising advances for the eld and the end users in general.

Part V Appendix

123

Additional material

Proof for equation (8.6)

For instance for n = 2, the surface f : x, y → xy is a saddle surface.

Formulation

We aim at nding a linear (a ne) lower bound and a linear upper bound to the multi-

Upper bound

First, note this inequality between the product and the average:

log is concave; consequently, the average of logs is smaller than the log of the average:

and taking the exponential we get the desired result. Note that we use the positivity of all x k . The average