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Chapter 1

Synthèse en français

1.1 Synthèse en français

L’apprentissage machine, en particulier au moyen des réseaux de neurones arti�ciels,

connaît depuis une dizaine d’année une expansion impressionnante. détecteurs de

collision d’aéronefs, aide au diagnostic pour di�érents cancers, aides aux décisions

de justice, véhicules autonomes et capteurs d’anomalies d’ancrage sur des plateformes

o�shores sont autant d’applications faisant intervenir les technologies d’apprentissage

profond au sein de systèmes critique; ouvrant des perspectives inexplorées pour les so-

ciétés humaines. Bien que béné�que en apparence, cette révolution a de quoi inquiéter

à mesure qu’elle se concrétise: la fragilité de ces techniques d’apprentissage est dé-

sormais un fait scienti�que établi. La taxonomie des vulnérabilités, qu’elles soient ac-

cidentelles ou malicieuses, ainsi que leur caractère imprévisible remet en question la

possibilité d’intégrer des réseaux de neurones dans des domaines critiques qui pour-

raient pourtant en béné�cier.

A l’heure actuelle, peu de méthodes permettent de démontrer formellement la �-

abilité d’un réseau de neurones. Par contraste, le domaine du logiciel critique, quant

à lui, jouit d’une multitude de méthodes et techniques: model checking, simulation,

interprétation abstraite, tests dirigés, etc.

L’objectif de cette thèse est de réconcilier l’abondance des techniques de véri�-

cation de programmes classiques et l’absence de garanties sur les réseaux de neu-

rones, ce pour permettre aux logiciels critiques de conserver le haut niveau de con-

�ance qu’ils ont atteint quand ils seront inévitablement modi�és avec des mécanismes

d’apprentissage machine.

Nous étudions d’abord en détail les raisons qui empêchent l’application directe

des approches de véri�cation formelle classique. Nous mettons ainsi en évidence que

l’absence de spéci�cation formelle inhérente aux systèmes dont les entrées sont à

hautes dimensions, l’explosion combinatoire entraînée par la structure linéaire par
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morceaux des réseaux de neurones, et l’absence de représentation adaptée à la véri-

�cation empêchent l’emploi de la plupart des approches.

De plus en plus d’acteurs industriels utilisent des simulateurs pour entraîner et

tester leurs programmes. Cette pratique largement répandue et documentée est égale-

ment employée pour les réseaux de neurones. Pour pallier le problème de la spéci-

�cation, nous présentons CAMUS, une approche théorique permettant de formuler

un problème de véri�cation formelle avec l’aide d’un simulateur. CAMUS o�re une

formalisation de la prise en compte d’un simulateur comme fournisseur d’entrées à

un réseau de neurones. Le problème de véri�cation formelle est reformulé de sorte à

prendre en compte les di�érents scénarios que le simulateur est capable de générer,

permettant ainsi une dé�nition formelle des entités composant la preuve.

La grande polyvalence et les résultats impressionnants des réseaux de neurones

modernes viennent en partie de leur non-linéarité. Cette propriété fondamentale rend

malheureusement très di�cile leur véri�cation formelle, et ce, même si on se restreint à

une structure linéaire par morceaux. Cependant, chacune de ces régions linéaires prise

indépendamment est simple à analyser. Nous exploitons cette structure linéaire par

morceaux pour proposer DISCO, un algorithme de véri�cation parallèle pour alléger

l’explosion combinatoire, en opérant une séparation du problème original en sous-

problèmes linéaires. Nous présentons également des résultats concernant la structure

de ces régions linéaires ainsi que leur similarité.

Nous implémentons nos contributions au sein de l’Inter Arti�cial Intelligence Stan-

dard Encoding Hub (ISAIEH), un prototype de plate-forme d’encodage pour les réseaux

de neurones à véri�er. ISAIEH est un logiciel écrit en langage OCaml qui implémente

une représentation intermédiaire universelle pour tous les réseaux de neurones gérant

le standard Open Neural Network eXchange (ONNX). Cette représentation intermédi-

aire o�re un support pour l’expression de propriétés formelles, notamment la conver-

sion du réseau de neurones au format standard de véri�cation via calcul de Satisfaction

Modulo Théorie (SMT) SMTLIB2.

1.2 English summary
Machine Learning techniques, Neural Networks in particular, are going through an

impressive expansion, permeating various domains, becoming the next frontier for

human societies. Aircraft collision avoidance, cancer detection, justice advisors, au-

tonomous vehicles, or mooring line failure detection are but a few examples of Neural

Networks applications. This e�ervescence, however, may hold more than bene�ts, as it

slowly but surely reaches critical systems. Indeed, the remarkable e�ciency of neural

nets comes at a price, more and more underlined by the scienti�c consensus: weakness

to environmental or adversarial perturbations, unpredictability... which prevents their

full-scale integration into critical systems.
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While the domain of critical software enjoys a plethora of methods that help verify

and validate software (abstract interpretation, model checking, simulation, bounded

tests...), these methods are generally useless when it comes to Neural Nets.

This thesis aims at bridging formal software veri�cation and machine learning, in

order to bring trust in critical systems incorporating Neural Networks elements.

We �rst study the exact causes that prevent a straightforward application of exist-

ing veri�cation techniques on Neural Nets. We state that those issues are threefold: the

lack of formal speci�cation on the inputs, the combinatorial explosion caused by the

piecewise linear structure of Neural Nets and the lack of a representation common to

Neural Nets and Formal Veri�cation. To tackle those issues, we present CAMUS, a the-

oretical framework allowing the speci�cation of veri�cation problems on perceptual

inputs using simulators. We exploit the piecewise linear structure of neural networks

on DISCO, an algorithm of parallel veri�cation, to mitigate the combinatorial explo-

sion. We implement these contributions into ISAIEH, a prototypal platform for neural

network encoding and veri�cation.





Chapter 2

Introduction

At the time of the redaction of this manuscript, the ubiquity of software in our lives

is not a question. This chapter is written with a text editor, on a laptop running an

operating system. This same laptop was used to develop experiments, using various

programming languages; to plan meetings (and because of the COVID-19 pandemic,

attend to them) and discuss with collaborators. Part of this manuscript was written

in a train, whose ticket was booked on an online platform. Said train was guided

on assigned railways using semi-automated decision procedures. Music tracks were

played to help during writing, streamed from a remote server; some of this music

was composed using synthesizers and sequencer, both pieces of software. Those small

moments of life, centered around this manuscript, were enabled and in�uenced by

software.

But software does not only shape individual lives; it also governs collectives: com-

munities, societies, nation states, corporations and non-pro�t organizations now rely

on software to function to varying degrees. Establishing milestones and tracking their

progression in software development companies is a critical process, powered by soft-

ware. It is also software that controls critical parts of a nuclear power plant. Finally,

modern social networks have a strong in�uence on the public debate by selecting and

presenting opinions and facts. In his book, Code 2.0, Lawrence Lessig [Les10] de-

�ned the cyberspace as the global environment de�ned by machine code. Bulletin

boards, personal blogs, commercial websites, bank and �nancial exchanges, every

packet transferred on the internet is a part of cyberspace. This space, however vast,

was more or less separated from the physical world. This separation still remains in

places untouched by human presence, or in certain areas of human lives of which we

choose to exclude software. But since the release of Lessig’s book, software has be-

come even more pervasive. Nowadays, a lot of human activities include software at

some point – and is reciprocally shaped by it, blurring the border between cyberspace

and physical space.

Remark 1. We think the word “physical space” is not the proper wording to designate
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everything that happen outside cyberspace, since the consequences of activities taking

place in the cyberspace have quite direct material consequences; internet works by

connecting kilometer long cables, and datacenters have a growing ecological impact.

We will keep the word “physical space” for the sake of common understanding, but

other wordings such as “corporeal space” or “material space” may better suit what we

mean.

As such, one may consider that software is a member of our society, as it is an

artifact that is deeply interlinked within human lives and communities. It is not to

say here that software produced by human is in any ways “aware”, “alive” or should

be considered as anything else than a tool we use for our own designs. Rather, it is

only to acknowledge the prevalence of this tool in modern lives, and recognize that

this prevalence is shaping those lives on a wide scale, sometimes much larger than

initially intended. Software is now an intermediary agent for all activities related to

commerce, with digital payment. Software enabled communication and new ways

to socialize - ways that allowed crucially needed socialization during the COVID-19

pandemic lockdowns.

Societies require a certain amount of trust between its members to properly func-

tion. People living in cities trust each other to not murder each other when they sleep.

Parents trust the teachers of their children to educate them reasonably well while they

are working. Citizens trust the people organizing elections to not tamper with the

democratic process, so that their will is correctly translated in their vote. We expect

physicians to properly do their job of healing us when we are hurt. When buying

something from someone, we trust the seller to respect its part of the deal and give us

the property of the commodity. We expect our supervisors and colleagues to advise

us, give constructive feedback and help us and science in general to further enlight

the future of humankind. All of those examples rely on informal rules (tradition, cour-

tesy, willingness to do a good job) and formal ones (laws, oaths); and violations of

these sets of rules tend to result in exclusion, or other kind of blame. Any member of

society aiming to integrate within it must be trustworthy, in a way. Trustworthiness

is enforced with education and behaviours that (partially) ensures that unwanted be-

haviours will not happen. As an artifact member of society, software should (ideally)

be subject to the same expectations. Thus arise this question: what are the reasons we

trust software enough to integrate it deeply in our societies?

Trust is a complex notion that may not seem in the scope of computer scientists. It

intertwines emotions, unspoken rules and is subject to change depending on the con-

text: it seems di�cult to characterize and manipulate de�ned this way. A sub notion of

trust is “reliability”. Reliability can be de�ned as the knowledge that someone or some-

thing will behave according as we expect it to behave. Reliability is a key component of

trust in multiple interactions between humans and humans, or humans and artifacts.

Someone that stays right to their word will be given more attention when they make
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a promise. As long as we are employed by an institution, we expect to receive a salary

each month. A train that is able to reliably transport us will build trust in train as a

transportation system. A software that provably behaves according to a speci�cation

will lay ground for trusting it on standard operational conditions. In computer science

and for this thesis, reliability can be rephrased as safety: that is, the quality a software

has when it operates under normal operational circumstances according to what it is

supposed to do.

With the rapid increase in processing power witnessed since the 60s, developping

reliable software became a necessity for the �eld [21c]. Thus the science of software

safety emerged. This science led to the birth of di�erent techniques to spot unwanted

behaviours during programming: among them are program debugging and best prac-

tices, type theory and its application on programming, programming and coding style.

Test procedures to assert the correctness of the program on given inputs were de-

veloped, where di�erent inputs are presented to a software to ensure that the actual

answer matches the expected one. Bad memory management is a common source of

errors, which led to the development of programming languages with embedded mem-

ory safety, such as Java and Rust. The life cycle of software was formalized to help its

industrialization.

Among numerous existing techniques, we will focus on a speci�c family: formal
methods. Formal methods are a scienti�c and technical �eld aiming to design tech-

niques bringing strong mathematical guarantees on the safety of programs. The re-

liability element here comes from the sound mathematical reasoning those tools im-

plement. Each step of formal veri�cation is backed up by mathematical logic that de-

rives from mathematical principles, with explicit de�nitions and reasoning rules. This

soundness brings an additional layer of reliability by a program that is veri�ed with

formal methods. Applying formal methods to critical industrial software was met with

successes. For instance the Paris subway lines 1 and 14 are fully automated; the cor-

rect behaviour of their software was proven using the Method B and Atelier B [Cle],

a kind of formal methods; other components of subway lines can be proven correct

as well [LSP07]. We call the process of verifying software using formal methods the

process of formal veri�cation.

Recently, a new kind of software was discovered: deep learning programs. Deep

learning is a software development technique that propose another way to design pro-

grams. The core idea is that a deep learning program is able to perceive data in the

human perceptual space (images, sounds, videos) and update its behaviour according

to the result of said perception. One of the earliest goals of computer science is to

mimic the human ability to process inputs from its physical environment, elaborate

goals and formulating strategies to meet those goals regarding the environment state.

Crucially, one strong objective is to develop the ability to adapt to changes in the en-

vironment, for instance being able to react to feedback provided by the environment
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and consequently adapt the output, through some sort of learning process. Percev-

ing, planning, adapting and learning are considered key elements to the development

of intelligent processes, hence the wording “arti�cial intelligence” to call the �eld of

computer science aiming at those goals. Deep learning helped to make huge progresses

toward those overarching research objectives.

The perception and adaptation abilities of deep learning programs led us to build

applications that were (theoretically) able to process the same “things” we process,

and “adapt” to the feedback the humans gave to software. Here are some examples of

softwares enabled with deep learning:

1. recommendation systems for entertainment, used for instance by Spotify (music

streaming platform), YouTube (video sharing platform) and Net�ix (movies and

shows streaming platform)

2. predictive maintenance for asserting the optimal moment to perform mainte-

nance on industrial settings [Tab+20]

3. medical assistance for screening radios, for instance against breast cancer [She+19]

4. automatic translations (this manuscript’s readability and correctness really ben-

e�ted from those) such as DeepL https://www.deepl.com/translator

5. art (see for instance the work of Alexey Popov and Tatiana Zobnina)

6. social surveillance software [Vin21]

As deep learning programs are software, we would require the same degree of

trust to integrate them within human society. But the main quality of deep learning

programs also constitutes its main �aw regarding reliability: since it processes inputs

in the perceptual space, formulating speci�cations and applying existing tools is quite

di�cult. Another issue is that existing formal veri�cation techniques are ill-adapted

to perform on deep learning programs. Speci�cally, scalability is a crucial issue that

still prevents from using existing techniques. We see some pervasive e�ects of those

programs failures:

1. a semi-autonomous car accident occured because, according to the manufac-

turer’s words, “[the car’s] camera failed to recognize the white truck against a

bright sky”[Haw19]

2. unexpected biases in recommendation systems (black people are more convicted

than white people)

3. hacking of personal assistants based on voice [CW18]

https://www.deepl.com/translator
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Integrating further those programs within our societies while trusting them using for-

mal methods is thus a di�cult problem.

The aim of this thesis is to provide insights on how to tackle those issues in order

to formally verify deep neural networks, in theory and in practice. Formal veri�cation

can be broken down into di�erent pillars, or research interests:

1. speci�cation: what do we formalize and how do we do it, what are the expected

behaviours

2. techniques: what kind of mathematical reasoning will we use, and which guar-

antees it gives to us

3. heuristics: how do we take into account the speci�cs of the problem at hand to

design and implement e�cient veri�cation algorithms

The work presented in this thesis studied those three pillars: we aimed to �nd a way

to adapt them to deep learning software.

Outline
The �rst part of the thesis, part I, is made of two introductory chapters that are nec-

essary to read in order to de�ne our object of study. In chapter 3, we will de�ne what

software is, and how its behaviour can be checked using formal veri�cation techniques.

We will detail some of the formal methods we will use during this thesis. Chapter 4

will focus on deep learning software, and describe its speci�cs. It will also describe the

current barriers that prevent us directly apply existing formal veri�cation techniques.

The second part, part II, will focus on the di�culties to specify deep learning meth-

ods and our contributions regarding those. Chapter 5 will present our �rst contribu-

tion: CAMUS, a framework to formulate properties on deep neural networks on per-

ceptive spaces. Chapter 6 will present the artifacts we developed to allow an easier

formulation of said properties for neural networks.

The third part,part III, will focus on the combinatorial problem of deep learning

veri�cation. Chapter 7 will present an algorithm we proposed to improve the problem

formulation of software veri�cation. Chapter 8 will present an evaluation of this algo-

rithm with an implementation, as well as further analysis on the problem formulation.

Finally, the last part, part IV) will present the future works and perspectives this

thesis shed into light. A �gure illustrating the outline of the thesis is available �gure 2.1.

How to read this thesis
This thesis can be read linearly. Some chapters are tightly linked to each other while

others are more independent. Chapters 3 and 4 are the introduction chapters and
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should be read to understand the aim and scope of this thesis. Chapter 6 introduces

a tool that is motivated by chapter 5. Finally, chapters 7 and 8 should be read together.

Each chapter has some reading helpers. We will provide summaries at the begin-

ning of each chapter. They are written as compact descriptions of the chapter’s aims,

and show core results. A time-constrained reader can read each summary and hope-

fully grab a �rst understanding of this thesis.

Summary of the chapter

Summaries are enclosed within an orange box.

Following the di�erent steps of a scienti�c development can sometimes be di�cult:

keeping up with notations and new concepts can quickly become overwhelming, and

hazardous writing may fail to channel the attention on the key points of the reasoning.

To try to address this issue, we will emphasize the key points of a chapter. Reading

those alone will not be enough to fully understand the thesis, as they are context de-

pendent. They are more to be seen as “anchors of focus”, that are fully necessary to

understand the rest of the chapter.

Key point

Keypoints are enclosed within a blue box.

Research questions are the topics we aim to research and (hopefully) provide an

answer for.

Research questions

Research questions are enclosed within a bright green box.

Although chapters are focusing on a speci�c topic, some adjacent notions may in-

terest the curious reader. At the end of some chapters, we will provide complementary

references that may broaden the reader’s views, but are not necessary to directly un-

derstand the chapter’s core message.

Due to the high number of references in this thesis, we recommend reading it dig-

itally using a pdf reader capable of link previewing, such as evince (Version 3.37.3 and

above) on most of Linux distributions, Adobe Acrobat Reader (Version 2017 and above)

on Windows.
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chap. 1,2

Software

chap. 3

Speci�cation

chap. 4,5
Tools

chap. 6Heuristics

Figure 2.1: Graph representing the progression of this thesis with regard to the pillars of formal veri�-

cation. Icons by Freepix on Flaticon.com





Chapter 3

Formal software veri�cation

Summary of the chapter

We de�ne software as a series of instructions written by humans or others to

perform actions on the real world. Possible failure of software requires methods

to ensure that its behaviour will not result in human harm.

We present formal veri�cation, a �eld of research aiming to develop techniques

that answer this goal.

We present some of those techniques:

1. Boolean Satisfaction (SAT) and Satisfaction Modulo Theory (SMT) calculi,

that translate programs and properties as logical formulae to prove

2. Abstract Interpretation, that transforms program into another, abstract

program, easier to verify

3. Symbolic Execution, that propagates symbolic variables within a program

control �ow, allowing to examine the possible paths and outputs taken by

certain sets of inputs

4. Linear Programming (LP), that solves linear optimization problems

Providing methods bringing trust to software is an important goal: trust is an im-

portant component of social acceptance, and social acceptance is desirable if we want

to further integrate software in the functioning of our societies. It is all the more true

for software based systems whose failure may cause physical harm, ecological or eco-

nomic loss. Such systems are called critical systems. Example of critical systems are

power plants controllers or autonomous transportation software.

To enable trust on the technical side, there exist di�erent techniques. Testing

checks the behaviour of the program on a pre-determined single inputs, which helps

23
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to detect the presence of bugs. Debuggers help the programmer to precisely monitor

what happens during the program execution, leading to a better understanding of its

inner working. Writting programs with certain languages can avoid entire classes of

malfunctions.

The technique we will focus on during this thesis are those we call formal methods,
a set of techniques and tools whose operation is grounded on di�erent types of mathe-

matical theories. Those techniques are used to analyse certain behaviours of programs.

The practical results of those analyses are guaranteed with sound theoretical funda-

tions, thus leading to an increased level of trust.

Those methods usually do not come for free, however. First, it is necessary to

formalize the goal of the analysis (what is the behaviour we want to verify) in a clear,

non-ambiguous way. Second, it is sometimes necessary to modify the program to make

the veri�cation process feasible, and to decide which parts of the program should be

veri�ed (what is the subject of veri�cation). Third, a careful choice and parametrization

of the veri�cation tools is often necessary to obtain sound results on a set time bud-

get (how is the veri�cation going to take place). This chapter aims to give a su�cient

understanding of formal methods through those points.

3.1 Representing software
But what is a software anyway? In the remainder of this thesis, we will use the fol-

lowing broad de�nition as a basis for our reasoning:

De�nition 1. A software is an ensemble of instructions designed and written by a

certain agent to accomplish a pre-de�ned objective. The instructions are written in

a standardized way, so that a computer can understand those instructions. Said stan-

dardized way is called a programming language. The act for a program to be run to

accomplish its purpose is called an execution.

Remark 2. The words software and program can be used more or less interchangeably;

the latter has a slightly more technical meaning but for the scope of this thesis, the

two words can be understood as meaning the same thing.

In de�nition 1, software designates both the �le containing the sequence of in-

struction and the actual artifact ready to be used. To go from the former to the latter,

the program is transformed through multiple steps. Each of those steps provides ways

to represent the program di�erently. The representation we will use for most of this

thesis is called the control-�ow graph.

De�nition 2. A control-�ow graph (CFG) is a graph G with vertices V and edges E
(denoted G(V,E) in the following) describing all the states a program can take during
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its execution. Vertices V represent memory states of the program, edges E represent

instructions (jumps, conditional, loops) that transform the memory.

Let us illustrate this de�nition with an example: A CFG has an entry node (the

1 l e t v = r e a d _ i n t ( )

2 l e t x = v

3 i f x %2==0{

4 y=1

5 }

6 e l s e {

7 y=0

8 }

x

x=v

x=v

y=1

x=v

y=0

x%2 == 0 x%2 == 1

Figure 3.1: On the left: instructions for a dummy program. On the right, a simpli�ed representation of

this program using a CFG.

starting point of the program) and exit nodes (possible ways for the program to exit).

This representation is helpful because it leverages graph theory tools to deduce prop-

erties on programs. For instance, a sub-graph not connected to the entry point denotes

behaviour that will never happen under execution, “dead code” that can safely be re-

moved. If all exit points are unreachable, this indicates an in�nite loop. CFG will thus

be our main way to represent programs (apart from source code snippets) for the rest

of this thesis. Note that while CFGs are used to analyse and transform programs, we

will mostly use them for their representation purpose.

Software is a human creation, and is involved in multiple human activities. Com-

merce, industry and science thus looked for ways to rationalize program design and

implementation, and articulate human workforce to produce software of better qual-

ity. This search is obviously still ongoing, and one may see this thesis as a contribution

to this e�ort. A lot of work exist on the organization of software production, which is

beyond the scope of this thesis. A relevant aspect, however, is that software is a com-

plex engineering artifact, that requires communication between multiple actors with

di�erent goals. A simpli�ed vision on how software is made can be seen in �gure 3.2.

Armed with a basic understanding of what is a program, we may now ask ourselves

the following questions. Can a program fail? If so, what are the consequences? How

can we spot this failure, and how can we prevent it?
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Figure 3.2: A possible way to design software

3.2 Why would we want to verify software?
As said in the introduction, software is taking part in our daily lives, and society de-

ployed programs and adapted around them, to the point that failure in their oper-

ations can have dire consequences. The Colonial Oil pipeline [21a] and the Rouen

hospital [Tri19] were both hit by a ransomware, a type of cyberattack. The pipeline

was unable to operate during the attack, and the hospital had to rely on triaging pa-

tients without the help of computers, complexifying drastically the work of healthcare

workers. A city water sanitization stations [Sta21] was left open to tamper with: a

malicious user could have induced a mass scale water poisoning. Hospital, pipelines,

water sanitization systems: all are examples of complex systems whose functions are

partly exercised by software. It is then a legitimate concern for members of society

to ask for guarantees to trust software to function according to its purpose. To plan a

trip, a reliable scheduling system is expected. Running a hospital smoothly requires a

power grid that functions all the time. And passengers of an aircraft expect its guiding

and sensing systems to work su�ciently well so that they don’t die during the trip

because of a malfunction.

Software is a human creation, and thus is subject to failure. There is a high prob-

ability that the reader may already have experienced a program malfunctioning, with

more or less frustrating results: unexpected failures while processing an administra-

tive chore online, or the crash of a text formatter or spreadsheet editor with no back-

ups. . . Failure of a train interlocking system [SCA15] would certainly have direr conse-

quences. Because of errors made by the programmers and/or unexpected behaviours

of the program, malfunctions are bound to happen if nothing is done to prevent them.

Of course, techniques helping to assess the quality of software predate the 21st

century. We can broadly divide them in the following categories:

1. organizational methods: code reviews, separation between developing and test-

ing, coding conventions
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2. safety-by-design: using tools that increase the con�dence we put into software,

such as memory-safe programming languages, proof of underlying algorithms

3. runtime monitoring

4. quality assessment: after the software is made, technical certi�cation can be

achieved using tests or formal veri�cation

This thesis mostly focuses on the last item: once the program is written and ready

to run, how can one verify its quality? More speci�cally, we are interested in a certain

property, called safety. There exist multiple formulations of software safety in the

literature, see for instance ISO 26262 and ISO 21448 SOTIF for safety in autonomous

vehicles. We propose the following de�nition that we think is enough for the scope of

our work:

De�nition 3. The safety of a software represents its ability to perform its purpose

under normal operating conditions and avoiding malfunctions.

A key point here is that normal operating conditions and malfunctions need both

to be characterized with a certain degree of precision, in order for technical tools to

operate. For the dummy program presented on �gure 3.1, one could want to verify that

the program always returns an integer value. On more complex programs, one could

formulate expectations on couple of inputs and outputs.

Remark 3. In de�nition 3, normal operating conditions are de�ned during the speci�ca-

tion phase of the program conception. However, the malfunctions we illustrated at the

beginning of this section are the result of an intentional action. Protecting software

against intentional degradation falls into the �eld of security. In classical software,

there exist a wide range of vulnerabilities, requiring to model a threat model describ-

ing what an attacker is able to do, leading to a wide range of di�erent techniques. Fault

injection and side-channel attacks are both attacks studied in security, and protecting

against those require di�erent approaches. Furthermore, protecting against those at-

tacks is not the same thing as enforcing the absence of crash under normal operating

condition. However, the programs we study in the rest of our thesis have special fea-

tures (that we will de�ne later on). Those features, that can make program unsafe,

can be leveraged to perform intentional attacks. Symmetrically, protecting against an

attacker and ensuring safety calls for the same approaches. Thus, this class of program

blurs the line between “pure” safety and “pure” security. When the potential malfunc-

tion of the program is human-induced, we will classify it under “security” threat. When

the potential malfunction can occur within normal operating range, we will classify it

under “safety”.

Formal methods are a possible way to assess the safety of software, and the main

subject of interest of this thesis. Under this wording lives a menagerie of research
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�elds and tools deployed on industrial settings; norms like DO-178C for avionics or

ISO/IEC 15408 require their use in some critical systems. Drawing a history of such a

wide variety is a complex work, and will necessarily be di�erent between storytellers

because of their teachers, their work and their a�nities. The following is adapted from

Julien Signoles’s habilitation thesis [Sig18]. A possible starting point is to �rst ask

ourselves why verifying if a program behaves accordingly to a speci�cation is even a

research problem. In his paper, Rice [Ric53] proves that there exist no exact, automatic

static analysis procedure that can answer if a program has a non-trivial property. Any

method wanting to verify non-trivial properties would need to go through a backdoor.

Any existing family of formal methods can be understood as using a di�erent backdoor

to bypass Rice’s theorem. The main component of all formal methods is a grounding

in mathematical reasoning, which allows them to provide strong guarantees. We shall

de�ne in more details the speci�c methods that are the object of this thesis.

For this thesis, we will be dealing with analysis done after the program is com-

pleted. We will thus not work on certi�ed code generation, nor typing systems (al-

though we will be working with strongly typed languages).

But before diving further into the details of formal veri�cation techniques, we will

�rst de�ne formally what it means to formally verify a program.

3.3 Formulating a veri�cation problem
Let f be a program. Let X the space of all possible inputs, let Y be the space of all

possible outputs. A veri�cation problem postulates a pre-condition on the input space

P(X ) and a post-condition on the output space Q(Y).

De�nition 4. A formal veri�cation problem consists on verifying that∀x ∈ X ,P(X ) =⇒
Q(Y)

The de�nition 4 does not make any hypothesis on the nature of the pre- and post-

conditions. To take an example, let us imagine an array of numbers of size 16 bits,

storing speed coordinates. A desired behaviour for this array is that, across execution

of the program, it never over�ows. Here, P(X ) can engulf all X . Q(Y) could be all

possible outputs, excluding over�ows errors (this example is inspired from the real-

world Ariane 5 crash, the full post-mortem report is available here [Lio96]).

3.4 Formal veri�cation techniques
It is now time to dive further into the speci�cs of the formal methods we will be study-

ing and using during this thesis. We �rst de�ne two important notions, coming from

logic:
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Figure 3.3: A schematic work�ow of formal veri�cation

De�nition 5. A method is sound if it yields no untrue result. A method is complete if

it processes all possible executions.

For instance, an algorithm that works only on a sub-part of the program will not

be complete. An algorithm that can produce wrong answers will not be sound (hence,

particular care must be taken during the implementation of veri�cation algorithms).

We can broadly separate our techniques of study into two families:

1. exhaustive methods, sound and complete but more costly

2. overapproximative methods, sound but not complete, more scalable

Exhaustive methods: SAT and SMT calculus
Those methods are sound and complete, and usually depends on an exhaustive explo-

ration of all possible situations, using search and simpli�cation heuristics. The follow-

ing explanation owes much to Gérard Berry’s course at Collège de France [Ber15].

Problems to verify can be encoded and solved using Boolean calculus. Boolean

calculus de�nes variables (also called atoms) with only two possible values: false or

true. Available operators are the logical AND, or conjunction (∧), and the logical OR,

or disjunction (∨). The following rules are given:

• associativity: A ∧ (B ∧ C) = (A ∧B) ∧ C

• commutativity: A ∧B = B ∧ A

• idempotency: A ∧ A = A
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• neutral elements: A ∧ true = A, A ∨ false = A

• absorbing elements: A ∧ false = false, A ∨ true = true

• distributivity

• negation ¬: ¬true = false, ¬false = true

• Morgan’s laws:

1. ¬(A ∧B) = (¬A) ∨ (¬B)

2. ¬(A ∨B) = (¬A) ∧ (¬B)

Those sets of rules can be used to encode logical formulae, which are a way to express

pre and postconditions.

De�nition 6. A clause is a disjunction of literals. The Cunjonctive Normal Form (CNF)
is a formula expressed as a conjunction of clauses.

The SAT problem is thus de�ned as follows:

De�nition 7. A formula F (x1, x2, . . . , xn) is satis�able (SAT) if there are boolean

values xi making F true. A formula F (x1, x2, . . . , xn) is valid if it is true for all xi.

The main goal of SAT as a research domain is to �nd e�cient ways to solve a SAT

problem, that is to say, answer if a formula is SAT or not. Solving a SAT problem is a

NP-hard problem according to the Cook-Levin theorem [Coo71]. In practice, since the

�rst SAT solvers, multiple improvements were developed that allowed to solve most

of real-world problems. The Davis-Putman-Logemann-Loveland algorithm [DLL62]

is the backbone of most solving procedure, guaranteeing a sound and complete ex-

ploration of all formula instantiation by �xing the value of one variable at a time.

Con�ict-Driven Clause Learning [Mar+96] consists on learning from the failure. Two-

watched literals [Mos+01] greatly reduced the algorithmic overhead of keeping track

of the backtracking points and formula states. There are still open research questions,

among which is parallelization; the community is dynamic, with an annual competi-

tion to push up new ideas: SAT-COMP http://satcompetition.org/.

Remark 4. Note that verifying if a formula is valid is equivalent to verifying that its

negation is UNSAT: F (x) = VALID ≡ ¬F (x) = UNSAT

One of the limitations of SAT solvers is that they only compute booleans formulae.

This limits the expressiveness of the encoded formulae and requiring greater expertise

to encode a real world problem into a SAT formula. Let us take an example. Suppose

one would like to solve the following problem:

((a = 1) ∨ (a = 2)) ∧ (a ≥ 3 ∧ ((b ≤ 2) ∨ (b ≥ 3)))

http://satcompetition.org/
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Original formula

((a = 1) ∨ (a = 2)) ∧ (a ≥ 3 ∧ ((b ≤ 2) ∨ (b ≥ 3)))

SMT/SAT ensemble

SMT interpretor

SAT solver Theory solver

SAT, UNSAT, TIMEOUT

Boolean formula

CNF((x1 ∨ x2) ∧ (x3 ∧ (x4 ∨ x5)))

SAT assignment

Constraint synthesis

x4 ∧ ¬x5

Figure 3.4: simpli�ed work�ow of SMT calculus

To be able to do this, one would need to identify a, b, 2 and 3 as belonging to the same

kind of things (real-valued numbers), specifying the meaning of the arithmetic sum

and of the inequality, and �nally a way to solve the equation.

The Satisfaction Modulo Theory (SMT) calculus aims to answer this issue by pro-

viding a new conceptual tool: theories.

De�nition 8. A theory is a set of symbols and rules specifying a semantic and a gram-

mar for given symbols

Theories aim to translate a formula written in a certain formalism to SAT problems.

For our example, it is possible to de�ne SAT variables, boolean valued: x1 : a =
1, x2 : a = 2, x3 : a ≥ 3, x4 : b ≤ 2, x5 : b ≥ 3. The initial formula thus become:

(x1 ∨ x2) ∧ (x3 ∧ (x4 ∨ x5)), which then can be transformed into CNF and send to

a SAT solver. The SAT solver generates a SAT assignment for the variables. This

assignment is sent back to a Theory solver, that checks if the SAT assignment is valid

in the target theory. Here, a possible assignment is true for all variables. But according

to the integer arithmetic, b ≤ 2 and b ≥ 3 is not possible simultaneously. The SAT

assignment is then not valid in the target theory, so new constraints are generated:

x4∧¬x5. This new constraint is added to the original problem, and the cycle continues

until a de�nitive answer is given (or the solver times out). This overall process is

presented �gure 3.4.
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Modern tools implementing SMT calculus notably include Z3 [dMB08] and CVC4 [Bar+11].

Like SAT, there exist an annual competition that provides common benchmarks, SMT-

COMP https://smt-comp.github.io/2021/.

Overapproximation: abstract interpretation
Contrary to exhaustive methods, overapproximation methods are not complete, be-

cause they usually compute a version of the program that has been transformed to

behave di�erently. However, they still have a soundness guarantee; they also tend to

be faster than exhaustive methods.

Another way to circumvent Rice’s theorem is to relax the exact nature of the veri�-

cation procedure. This is the core of abstract interpretation, introduced by Cousot and

Cousot in [CC77]. The seminal idea is to compute an overapproximation (or abstrac-

tion) of the program behaviour. Veri�cation is then made on the result of the abstract

program computation. Usually, this is made by modifying the program to compute

sets of inputs (or domains), that describe certain behaviours of the input. An example

with intervals, a simple domain, is available �gure 3.5. Note the important limitation

of intervals: given a value x := [−1, 1], we have x− x = [−2, 2] according to interval

arithmetic, where it should be equal to 0. Intervals propagate imprecision each time

an operation is applied to them. More accurate numerical domains exist, such as zono-

topes [GGP09], but using them is more costly. The key of abstract interpretation is to

�nd the good trade-o� between precise analysis and reasonable execution times.

1 / / x ∈ [−1, 1]
2 / / y ∈ [2, 4]
3 l e t z = x + y

4 i f z < 0 then
5 c o s t l y _ f u n c t i o n

6

7 e l s e
8 s i m p l e _ f u n c t i o n

x ∈ [−1, 1]
y ∈ [2, 4]

x ∈ [−1, 1]
y ∈ [2, 4]
z ∈ [1, 5]

x ∈ [−1, 1]
y ∈ [2, 4]
z ∈ [1, 5]

costly_function

x ∈ [−1, 1]
y ∈ [2, 4]
z ∈ [1, 5]

simple_function

z < 0z > 0

Figure 3.5: Using interval arithmetic, we are able to rule out the costly computation within the condi-

tional.

https://smt-comp.github.io/2021/
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Figure 3.6: Stakes of abstract interpretation. On �g. (a), the abstraction A correctly encapsulates the

behaviour of the program. On �g (b), A is too wide, and the veri�cation procedure raises

a false alarm. On �g. (c), A does not encompass all behaviours, resulting on an unsound

analysis. Domains used in abstract interpretation must be sound, so case (c) is not supposed

to happen when dealing with real tools. Credit: Antoine Miné

Symbolic execution

The key to symbolic execution is to make use of symbolic values instead of concrete
values. The program control �ow is altered to propagate symbolic variables, and the

whole execution is understood as a function of symbolic inputs. Symbolic execution

creates a mapping m between a variable v and a symbolic value e: this mapping can

be seen as equality constraint. At each execution step of the program, m is refreshed

to add new additional symbolic variables v or change the symbolic values mapped

to v, according to the semantic of the program. When a branching point - often, a

conditional c that involve multiple v - is met, c is morphed into a constraint translating

the satisfaction of the conditional. It is then added to m: m = m∧ c. In parallel, a new

mapping is created: m
′

= m ∧ ¬c, corresponding to the other side of the conditional.

The two symbolic execution paths continue their execution independantly.

When an end point is reached, a constraint solver (often an SMT solver) solves the

set of constraints formed bym and instantiate the symbolic values with concrete input

values. When inputted in the original program, those concrete input values will result

in the exact same execution path being taken. For instance, in the program described

in �gure 3.7, at line 3, we have variables x and y mapped to symbolic values without

any constraints x0 and y0. Then, when we enter the procedure, at line 7, symbolic

variable z is mapped to symbolic value 2 ∗ x0. A branching point occurs at line 8.

A �rst constraint, y! = 2 ∗ x, is added to a copy of m (corresponding to the �rst

left node on the �gure). Since the procedure ends if this conditional is not veri�ed,

then the symbolic execution ends and the solver returns concrete values for x0 and y0
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that satisfy the constraints added to m. A similar procedure occurs for the rest of the

execution.

Symbolic execution is susceptible to limitations such as path explosions, when the

number of branching is too high, or potential in�nite execution. For programs with no

loops however, this technique, mostly used for testing, can provide crucial information

to other formal veri�cation techniques, or be used in a stand-alone fashion.

1 l e t main =

2 x = s y m b o l i c _ v a l

3 y = s y m b o l i c _ v a l

4 p r o c e d u r e x y

5

6 l e t p r o c e d u r e x y =

7 l e t z = 2 ∗ x

8 i f z == y {

9 i f y > x + 1 0 {

10 f a i l ( )

11 }

12 }

x = x0
y = y0

x = x0
y = y0

z = 2 ∗ x0

x0 = 0
y0 = 1

x = x0
y = y0

y0 = 2 ∗ x0

x0 = 1
y0 = 2

x0 = 15
y0 = 30
fail

y 6= 2× x y == 2× x

y ≤ x+ 10 y > x+ 10

Figure 3.7: Example adapted from [CS13]. Round nodes describe the memory state of the program,

rectangle nodes describe a possible concrete input leading to this execution path.

Linear optimization
Finally, let us introduce another technique that we will be using during this thesis:

linear optimization (also called Linear Programming, or LP). The overall goal of linear

optimization is to �nd the optimal solution for a linear function over a certain set of

linear constraints. This technique, mostly used in applied mathematics, can also be

used for software veri�cation, providing the program can be encoded under a set of

linear functions. Geometrically, this can be seen as �nding the minimum value inside

a convex polyhedron.

More formally:

De�nition 9. For x ∈ Rn
the real valued variables, c ∈ Rn

the objective function,

A ∈ Rm,n
and b ∈ Rm

the linear constraints, a linear optimization problem is the

minimization problem

min
x,Ax≤b

cTx
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Such problem can be solved using various algorithms. One of the most popular

is the simplex algorithm, described for instance in [21b]. The basic idea is to navi-

gate alongside the vertices of the constraints’ polyhedron in order to look for con�icts

between constraints. An optimal solution is found when no constraints are violated.

Common solvers used to solve LP problems are Gurobi[Gur21] and GLPK[Mak].

To go further The interested reader can look at[CS13] for a pedagogic explanation

of symbolic execution and its main challenges. Regarding abstract interpretation, a

good starting point is the Antoine Miné tutorial [Min17]. The author of this thesis

would encourage any interested reader on the topic of type systems to take the course

of Xavier Leroy’s [Ler19] on the developments of this idea on the �eld of mechanized

veri�cation.





Chapter 4

Programs that learn

Summary of the chapter

We present arti�cial intelligence, a �eld of computer science aiming to replicate

the human abilities of perception, reasoning and decision-making in the mate-

rial world. We focus on neural networks, a speci�c kind of program. Neural

networks are able to process inputs of high dimension and detect patterns in

them, thanks to the gradient descent algorithm, research in parallel computing

and availability of massive labeled datasets. Neural networks are programs and

as such, can fail. Small variations on their inputs can result on vastly di�erent

results, their control �ow is not explicitly programmed and the data they ma-

nipulate is di�cult to specify. Data as speci�cation prevent the formulation of

properties. Their non-linearity makes it di�cult to apply classical formal veri-

�cation, leading to combinatorial explosion.

In the previous chapter, we de�ned the overall process of formally verifying soft-

ware. A program – represented by a control �ow graph – is transformed and analyzed

using several techniques for a speci�cation to be checked against. So far, no speci�cs

were given on what kind of software we will study. The aim of this thesis is to study the

possibility to formally verify a certain class of software: machine learning programs.

4.1 A short history of data-oriented programs
If the words machine learning and deep learning are now commonplace in the every-

day discourses, they refer to programming paradigms that are ancient – relative to

computer science. The research �eld under which those techniques were developed

is called Arti�cial Intelligence (AI). Since its birth however, AI has become much more

than a research �eld. Humans imagined thinking and acting artifacts long before the

37
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dawn of the digital computer. Greek inventor Ktesibios compiled and developed the

principles of tamed mechanical force in numerous of his inventions, such as the clep-

sydra. The Jewish mythos of the Golem describe a humanoid �gure made of clay and

answering the wills of its creator. In Fritz Lang’s Metropolis, an automaton is created

to stem an unsuccessful revolt on a poor working class. Our imagination is thus pop-

ulated with projection of arti�cial artifacts. The increasing integration of software in

human life and society led new issues to be tackled by politics. In this context, we think

it is important to de�ne what is arti�cial intelligence (and its o�spring, deep learning

research) as a research �eld; and to produce a short history of this �eld to give some

perspective to the reader.

A tentative de�nition of arti�cial intelligence
While going through the literature, we found that there was no unique de�nition for

arti�cial intelligence. Rather, there are partial de�nitions: some focus on describing the

tasks performed by a hypothetical artifact, others focus more on the processes used to

build and run those artifacts. We propose here three of those partial de�nitions:

De�nition 10. Arti�cial intelligence is:

1. “the study of the computations that make it possible to perceive, reason and act.”

[Win92]

2. “an agent that acts as to achieve the best outcome or, when there is uncertainty,

the best expected outcome.” [RND10]

3. “the ability of a digital computer [. . . ] to perform tasks commonly associated

with intelligent beings. The term is frequently applied to the project of develop-

ing systems endowed with the intellectual processes characteristic of humans,

such as the ability to reason, discover meaning, generalize, or learn from expe-

rience.” [Cop]

Those de�nitions present the three main objectives of arti�cial intelligence, namely,

the characteristics an arti�cial intelligence program should aim to:

1. perceive information from the material space;

2. create knowledge and meaning from the perceived inputs;

3. act rationaly according to its knowledge, sometimes on the physical world.

As an example, on a rainy day, such programs could identify that the sky’s colour is

changing from blue to grey, conclude that some rain is about to pour and that a coating
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of some sort would be useful to not be drenched by the rain, and proceed to look for

the nearest coat.

Those three attributes led to di�erent research �elds: allowing a machine to per-

ceive led to computer vision and audio processing; building knowledge and reasoning

procedures led to knowledge representation and computational logics such as SAT cal-

culus (presented in previous chapter) and expert systems; acting on the physical world

is the topic of cybernetics, while designing and e�ciently implementing an action pol-

icy borrowed from mathematical optimization. The idea of studying reasoning (or at

least self-regulating) and acting artifacts can be tracked back to the beginning of the

18th century, with Watt’s steam engine, or the formalization of the study of feedback

systems as a discipline (automation) in the 19th. But those attributes were �rst put

together and formalized by Alan Turing in his seminal paper [Tur50], where he also

present his “imitation game” (later known as the Turing test): a set of tests that a com-

puter would need to succeed in order to seem intelligent for a human observer. AI

as a discipline began to �ourish, spawning multiple approaches that led multiple en-

couraging early results. One such approach focused on developing a certain kind of

programs: neural networks.

Formal neuron and perceptron (1943–1969)
The �rst description of a formal neuron is found in [MP43]. This model originally

stems from the biological neuron, even if computer science neurons do not have much

in common with biological ones. In this paper, the authors describe a computational

unit (the neuron) outputting a value once a certain threshold is met, using an activa-

tion function. The perceptron algorithm[Ros58] describes how formal neurons could

z

x1

x2

x3

yσ

w1

w2

w3
y = σ(z) = σ(

∑3
i=1wixi)

Figure 4.1: A formal neuron. σ is an activation function that introduce non-linearity in the neuron’s

behaviour (in the perceptron, σ was the Heaviside function)

reorganize their initial connections to achieve a given objective. See �gure 4.1 for a de-

scription of a formal neuron. Theoretical limitations were exhibited: in [MP72], it was

shown that a non-linear separable problem (such as the learning of the logical XOR)

could not be represented with a linear perceptron. This was due to the single-layered

nature of the perceptron, as well as the activation function used.

Another issue arose quickly. If programs of that time were able to provide im-

pressive results on toy problems with small dimensionality (3 inputs and 3 outputs for
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x1

x2

z11

z12

z13

y11

y12

y13

z21

z22

y21

y22

σ

σ

σ

σ

σ

W1 ∈ R3,2 W2 ∈ R2,3

Figure 4.2: A neural network with two inputs, one hidden layer of three neurons and two outputs, no

biases. Each neuron process the weighted sum of its inputs, followed by an activation func-

tion

an ADALINE[WH60]), results in other discipline showed that those programs did not

scale up to larger problems. In [Mit21], the authors advance the possible cause that

the combinatorial explosion (sometimes called “curse of the dimensionality”), was not

foreseen by researchers and industries at the time, leading to overoptimism. We can

note that di�culties to assess the hardness of an AI problem can be seen nowadays

with autonomous driving, with industrials that fail to deliver (see the multiple decla-

ration of Tesla’s CEO Elon Musk [Owe21], or this video of a Waymo car being stuck by

signaletic cones [JJR21]). The lack of expressiveness of perceptrons and the inability

to tackle high-dimensional problems led the �eld of neural networks to go dormant

for some time.

Backpropagation (1975–1986)
Presenting one single event as leading the rebirth of interest in neural networks would

not be wise. In twenty years, the landscape of computer science changed a lot. The

speci�cally-designed device implementing the ADALINE could be superseded by general-

purpose programming languages like C. Computers were multiple order of magnitude

faster than they were during the 60s, and they were now much more a�ordable. Com-

puter science as a �eld grew more mature, and the design of software shifted from

an engineering problem to a scienti�c process. Each �eld has its tradition however,

and the tradition of deep learning considered the rediscovery of the backpropagation

algorithm by several teams in a short period of time as the “rebirth” of neural net-

works. The history of this (re)discovery is somewhat a topic of discord in the �eld:

let us cite [RHW86] in 1986 and [Le 86] as the papers that sparked this new trend,
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and an earlier work [Wer90] from 1975. The interested reader can consult [Sch] for

more context on that matter. Nevertheless, this method of propagating error inside

deep neural networks is still the backbone of modern tools, and will be described with

more details later. Some early practical results are described in [Le +89], were a neural

network was able to detect handwritten digits with 1% error rate. Distributed program-

ming and the continuous increase of processing powers of computers allowed tackling

high-dimensional problems that were left undone at the end of the 60s, as well as new

ones.

Massive availability of data and the Boom of machine learning
(1989–present)
A �nal ingredient was required before the broth was ready. Availability of massive, an-

notated datasets allowed to leverage the theoretical computational power into practical

uses. The Mixed National Institute of Standards and Technology (MNIST) dataset[Li

12], �rst introduced in 1998, comprises 60000 28×28 grayscale images of handwrit-

ten digits. For teaching self-driving cars to drive, the nuScenes [Cae+20] datasets

is a collection of annotated videos containing locations of various entities at each

timestep. CommonVoice https://commonvoice.mozilla.org/fr is a project to cre-

ate a dataset of voice samples representative of the whole human population. Ima-

geNet[Den+09] is a collection of more than 14 million images and 21000 classes used

for image classi�cation in general, subject of a competition: ImageNet Large Scale Vi-

sual Recognition Challenge (ILSVRC).

All was set for the new neural network boom. In 2012, the authors of [KSH17]

presented an implementation of a neural network trained to detect classes on the Ima-

geNet dataset. They scored �rst on the ILSVRC challenge, pushing the state of the art

of computer vision. This sparked a vast reinvestment of research and industry in this

�eld, of which this thesis is a descendant. The �eld is now swarming, to the point that

historic machine learning conferences are having trouble to cope with the increasing

number of publications. An analysis of the submissions at one of the top machine

learning conference, NeurIPS 2020, is available at [Iva20]. Some key points include:

1. almost triple the number of submissions from 2017 than to 2020;

2. a constant acceptance rate during those three years;

3. a high number of United States organizations in the top publishers (in particular,

Alphabet’s subsidiary, Google, is the top publisher);

Trained sociologists and data experts [Syn20] show that the gender imbalance in AI

is increasing, on par with the similar phenomenon prevalent in computer science in

general.

https://commonvoice.mozilla.org/fr
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State-of-the-art is moving fast in neural network research. We can nevertheless

point the reader to some discoveries that we consider important for di�erent �elds.

Skip-connections [He+15] introduced an architectural block that eased the learning of

very deep architectures (the original paper presented state-of-the-art accuracy on Ima-

geNet with 50 layers). Generative adversarial networks [Cre+18] introduced a learning

scheme allowing a network to generate data from a learned distribution, with applica-

tions from music composition to fake picture generation. The Transformer architec-

ture [Vas+17] dramatically reduced the required resources needed to train programs

working on natural language, leading to vast improvements in text applications. Object

detection for autonomous or semi-autonomous vehicles [Boj+16] make use of neural

network techniques. Less consensual applications include facial recognition and rei-

denti�cation of people for public surveillance (see [Ye+21] for a survey on this tech-

nique). Clearview AI
1

is one of the numerous companies that use machine learning for

person reidenti�cation. Tech company Canon used facial recognition to detect smiles,

only allowing smiling workers to enter o�ces [Vin21].

4.2 Background and notations
Now that our readers have some element of context, we shall dive into our subject and

introduce the basic concepts necessary to understand how a neural network works.

Mathematical background
Let X be an input space. For RGB images, this typically is a subset of R3∗din

where din
is the number of pixels of the image. Let Y be an output space. For our problems, this

is typically a vector of Rp
where p is the number of di�erent entities to classify.

De�nition 11. Let W be a linear operation Rdin → Rdout
, let σ be an activation func-

tion R → R applied pointwise to each coe�cient of a vector; meaning for a, b, c ∈
R× R× R:

σ

ab
c

 =

σ(a)
σ(b)
σ(c)


We name layer the function composition σ ◦W . A neural network is a function f :
X → Y that is composed by a succession of layers. We note Xi the input vector of

layer i, Wi the linear operation occuring at layer i, parametrized by the parameters θi
(σ has no parameter). We note Zi = Wi(Xi), Yi = σ(Zi). Note that Xi+1 = Yi.

1https://clearview.ai/

https://clearview.ai/
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The gradient of a (possibly multidimensional) quantity x with respect to the (pos-

sibly multidimensional) variable y is denoted by∇yx. The partial derivative of x with

respect to y is denoted by
∂x
∂y

.

We will study networks after their training, meaning the weights will be �xed. In

our thesis, the architecture will be kept relatively simple and similar: we will only use

matrix multiplication and element-wise addition for the linear operations.

De�nition 12. Let A ∈ Rn,p
, B ∈ Rp,m

and d ∈ Rn,m
be three real-valued matrices.

The matrix multiplication between A and B is the operation producing the resulting

matrix C ∈ Rn,m
where coe�cients ci,j at coordinate i, j are ci,j =

∑p
k=1 ai,kbk,j .

The element-wise addition betweenC and d is the operation producing the resulting

matrix C
′ ∈ Rn,m

where c
′
i,j = ci,j + di,j . Similarly, element-wise multiplication can

be de�ned.

A popular activation function is the REcti�ed Linear Unit (ReLU for short):

ReLU : x ∈ R 7→ max(x, 0) (4.1)

Neural Nets with ReLU is a common design choice for most use cases. Furthermore,

ReLU is a piecewise-linear function: it is linear on ]−∞, 0] and on [0,∞[, which makes

formal analysis easier. Thus in this thesis we will limit our study to Neural Nets with

ReLU as activation functions.

Task de�nition: the example of classi�cation
Among the multiple tasks one can ask a neural network to do, we will study clas-
si�cation. Let us consider a sample x from a dataset D. Each x is assigned a label

yi, i ∈ (1..p). For instance, in a dataset of animals, images of dogs will be labelled

as “dogs”, while images of cats will be labelled as “cats”. The aim of the neural net-

work will be to output the probability for an unknown (i.e.,previously unseen) sample

to belong to one of the p classes. To this end, the last layer will have a log-softmax

activation function:

LogSoftmax : xi 7→ log(
exp(xi)∑
j exp(xj)

) (4.2)

This choice models the fact that neural networks output log-probabilities for their out-

puts to belong to a certain class.

Preparing a dataset
To perform sample classi�cation, an annotated dataset is required. The annotation

process is costly, and is nowadays mainly made manually, using microworking plat-

forms such as Amazon Mechanical Turk. See the work of Paola Tubaro [Tub21] for the
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social impact of that kind of activity. The prohibitive cost of collecting, normalizing

and annotating a su�cient amount of data can be mitigated by using public datasets.

Usually, a dataset D is divided between disjoints splits, usually a training split Dtrain

and a testing Dtest, to ensure that the evaluation of the neural network is not on al-

ready seen samples. When no dataset of su�cient size is available, it is possible to use

a technique called transfer learning [Tan+18] to �ne-tune a pretrained program to the

target task.

Ethics behind dataset

For neural networks in particular, the choice of a dataset is not without consequences.

Datasets are constituted by humans, who are not devoid of biases. Racism and sex-

ism biases do appear in the collection of data. Neural networks are not trained to

correct thoses biases if not speci�cally taught to do so. Since such technologies are

already used in law-enforcement or in security sectors, a special care should be taken

into ensuring that those algorithms treat fairly all the population, instead of enforcing

stereotypes (people may be eager to trust the result of an algorithm because it is some-

what “more neutral” than a human). Some example of potential unwanted biases can

be found in the Correctional O�ender Management Pro�ling for Alternative Sanctions

(COMPAS) algorithm [Mat+16]. The debate is still strong to assess the exact nature of

those biases, and the research �eld of algorithm fairness is focusing on identifying and

mitigating those biases.

Architecture and engineering
To train a neural network, one must assemble basic building blocks in a certain order.

The dimensionality and chaining of those building can vary, yielding di�erent results.

Finding the correct learning algorithm and loss function is also necessary. All those

elements are usually called hyperparameters. Hyperparameter tuning is a craft of care-

ful engineering, that usually require to train the same program several times with a

variation of the hyperparameters. Automatic machine learning (AutoML) aims to au-

tomate the hyperparameter tuning by using deep learning: we witness networks that

are “learning to learn”.

The learning algorithm: gradient backpropagation
Let L be a loss function, designed to calculate the error between the output of the

neural network and a given ground-truth. Common loss functions for classi�cation

tasks include binary cross entropy, while regression tasks consider most often mean

square error. For one given sample, binary cross-entropy is a kind of distance between

two probabilistic distributions:
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1. the perfect target distribution p∗ followed by the desired outputs, of the form

(0, 0, 1, 0, 0, ...);

2. the approximation p̂ of this distribution, which is the output of our classi�er:

− 1

N

N∑
i=1

p∗i ∗ log(p̂i) + (1− p∗i ) ∗ log(1− p̂i) (4.3)

Let δi = ∂L
∂Zi

be the variation of the loss according to the pre-activation of layer i,
and σ be the application of the activation function.

For the �nal layer L, an explicit expression exists for δL:

δL =
∂L
∂ZL

(4.4)

=
∂L
∂YL
∗ ∂YL
∂ZL

(4.5)

=
∂L
∂YL
∗ σ′(ZL) (4.6)

Going from equation (4.4) to equation (4.5) is done by applying the gradient chaining

rule. For previous layers:

δi =
∂L
∂Zi

(4.7)

=
∂Zi+1

∂Zi

∗ ∂L
∂Zi+1

(4.8)

=
∂Zi+1

∂Zi

∗ δi+1 (4.9)

We have

Zi+1 = Wi+1(Xi+1) (4.10)

= Wi+1(Yi) (4.11)

= Wi+1(σ(Zi)) (4.12)

(4.13)

Thus, injecting equation (4.12) in equation (4.9), we have

δi = Wi+1(σ
′
(Zi))δi+1 (4.14)
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We are thus able to compute the gradient of the error regarding the outputs of each

layer. Finally, to update the parameters at each layer, we need the following gradient:

∂L
∂Wi

=
∂L
∂Zi

∗ ∂Zi

∂Wi

(4.15)

= δi ∗
∂Zi

∂Wi

(4.16)

= δi ∗ σ(Zi−1) (4.17)

= δi ∗ Yi−1 (4.18)

The backpropagation algorithm is then the following:

1. Forward pass: For each layer i, compute linear operations Zi and activations Yi.

2. Output error : compute L(ZL)

3. Backpropagation: compute δl for each layer

4. Weight update: Wi ← Wi − δi ∗ Yi−1

X Z Y Y true

W1 ∈ R3,2 W2 ∈ R2,3

L(Y − Y true)

∇YL∇W2Y∇W1Z

∇WL = ∇YL ◦ ∇W2Y ◦ ∇W1Z

+

−

+

−+

−

−

+

Figure 4.3: Gradient backpropagation algorithm
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4.3 Vulnerabilities in machine learning
Algorithms described previously are implemented in practice within libraries that pro-

vide a variety of tools for the machine learning practitioner: most of the networks

studied during this thesis were parametrized and trained using the PyTorch[Pas+19]

library. TensorFlow[Aba+16a] is another popular choice. Those libraries being rel-

atively complex, they are not exempt of bugs. However, the scope of this thesis is

not to study library-dependent bugs. Across implementations, machine learning pro-

grams exhibit “odd” behaviours. The consistent reproduceability of those behaviours

between implementation led the scienti�c community to consider their de�nition and

mitigation a research problem. We now present some of those vulnerabilities.

Remark 5. Bug or fault are well-de�ned words in traditional software safety, but the

literature on machine learning safety is not �xed yet on a common term. Another

possible word is vulnerabilities, since this behaviour can be exploited by an external

agent. We think the latter better convey the idea that the phenomena we describe are

intrisinc weaknesses of neural networks in the way we currently train and use them,

rather than something that can be pinpointed and �xed with an explicit process. Frailty
will occasionally also be used.

Adversarial examples
Adversarial perturbations are small variations of an input that have been crafted so

that the network misclassi�es the noisy input, called an adversarial example. More

formally, given an input x0 ∈ X , a network f : X → Rd
, a distortion amplitude ε > 0

and a distance metric ‖.‖p, a neural network is locally ε-robust if for all perturbations

δ s.t. ‖δ‖p 6 ε, f(x0) = f(x0 + δ). Figure 4.4 explains schematically the crafting

of adversarial examples, and �gure 4.5 an iconic adversarial example.

Adversarial examples were initially discovered in [Sze+13], where the authors max-

imized the error function of a neural network. Since then, the literature on adversarial

examples bloomed. Multiple methods were proposed to generate adversarial samples,

such as the Fast Gradient Sign Method (FGSM) in [GSS14], that relies on creating a per-

turbation in the direction of higher error gradient, and the Carlini method in [CW16],

which aims to �nd the optimal perturbation. Their imperceptibility for humans and

their transferability between networks and datasets [PMG16] make them a potentially

dangerous phenomenon regarding safety and security; the authors of [Eyk+18] syn-

thetize physical adversarial “patches” used in the material world, resulting on a mis-

classi�cation. A popular mitigation is Adversarial training. The basic idea is to generate

adversarial examples, assign them to the same label of the original sample and present

them to the network among regular samples. Some examples of adversarial training

can be seen in [Ara+19] and [Mad+17].
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Figure 4.4: Simpli�ed procedure to build adversarial examples. x and y are samples, δ and δ
′

are pertur-

bations, d is the decision boundary between classes C1 and C2

Figure 4.5: An iconic adversarial example illustration, from [GSS14]
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To go further Other works focus on studying the theory behind adversarial exam-

ples. While the initial work[GSS14] suggests that adversarial examples are a result of

a default in the training procedure, “bugs”, investigations[Ily+19] suggest that (at least

partly) adversarial examples may be inherently linked to the design principles of deep

learning and to their resulting e�ects on programs: using any input features available

to decrease the loss function, including “non-robust” features that are exploited by

adversarial examples generation algorithms.

Privacy leaks
Another issue with machine learning programs is that the privacy of the data they

learn is not guaranteed. It has been shown in [Tra+16] that it was possible to retrieve

the parameters of a machine learning system only through its outputs, with a lim-

ited budget. In [Sho+17], the authors display a method allowing an attacker to check

whether a given input has been used to train the neural network using probability out-

puts. This could lead to severe data leaks and directly threaten the con�dentiality of

the data used during training. The consensus is not clear on the practical application

of this method (doubts are expressed for instance in [Tru+19]). Work is still ongo-

ing [Cho+21] to assess the exact scope of inference attacks. To mitigate those issues, a

combination of adversarial training and di�erential privacy is proposed in [Aba+16b]

and [Ara+19].

Safety concerns, example of ACAS-Xu
Even without any intent to steal private data or to make the program malfunction, it

is important to assess the ability of a neural network to output the expected outputs.

Since the control �ow is generated through an indirect method (minimization of an

error function), even when trained on perfectly sanitized examples, it is still possible

that the network learns “shortcuts” that allow it to perform very well in general, but

fail on speci�c cases. Even when neural networks are trained on low dimensional,

understandable inputs, it is thus necessary to verify that they respect their given spec-

i�cation, just like any other program.

A popular benchmark used in the literature is the Aircraft Collision Avoidance

System for unmanned crafts (ACAS-Xu). This standard presented in [MJ16] describes

a program that aims to analyze the surroundings of an aircraft (ownship), and output

direction changes directives if another aircraft (intruder) is detected. The program

models the situation as a 2D projection (altitude is ignored). This program has 7 input

variables:

1. vown: speed of the ownship;

2. vint: speed of the intruder;
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3. ρ: distance from the ownship to the intruder;

4. ψ: relative angle between the ownship and the intruder;

5. θ: relative angle between the speed vectors of the ownship and the intruder;

6. τ : time until loss of vertical separation;

7. aprev: previous output;

Possible outputs are:

1. COC : clear of con�ict, do not change direction;

2. WL: change direction to the left, lightly;

3. SL: change direction to the left, strongly;

4. WR: change direction to the right, lightly;

5. SR: change direction to the right, strongly;

The authors of [Kat+17] de�ne some safety properties for a program to respect the

ACAS-Xu speci�cation, as well as an implementation as a neural network. Those prop-

erties are reproduced below:

1. φ1: if the intruder is distant and is signi�cantly slower than the ownship, the

score of a COC advisory will always be below a certain �xed threshold;

2. φ2: if the intruder is distant and is signi�cantly slower than the ownship, the

score of a COC advisory will never be maximal;

3. φ3: if the intruder is directly ahead and is moving towards the ownship, the score

for COC will not be minimal;

4. φ4: if the intruder is directly ahead and is moving away from the ownship but at

a lower speed than that of the ownship, the score for COC will not be minimal;

5. φ5: if the intruder is near and approaching from the left, the network advises

“strong right”;

6. φ6: if the intruder is su�ciently far away, the network advises COC;

7. φ7: if vertical separation is large, the network will never advise a strong turn;

8. φ8: for a large vertical separation and a previous “weak left” advisory, the net-

work will either output COC or continue advising “weak left”;
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Figure 4.6: The ACAS-Xu model, with all input variables

9. φ9: even if the previous advisory was “weak right”, the presence of a nearby

intruder will cause the network to output a “strong left” advisory instead;

10. φ10: for a far away intruder, the network advises COC;

Verifying those properties on ACAS networks is challenging enough for Z3 and

Gurobi, so it constitutes a good benchmark to test methods and tools developed for

neural network veri�cation.

4.4 Frailties of machine learning: a two-problem
game

Machine learning programs di�er in their design of “classical” programs in numerous

ways, that prevent us to perform formal analysis. We will now expose those di�er-

ences; trying to tackle those will constitute the backbone of our thesis.

What to specify
The very nature of the inputs of neural networks pose several issues:

1. Machine learning programs are working on high-dimensional inputs that are as-

signed a very high-level semantic (compared to classical programs): “image of

a dog” encapsulates the de�nition of an image, a background picture, an ani-

mal, a dog; “hate speech” contains the de�nition of a text, a language, emotions,

hate. . .Those “types” are highly context-dependent, yet they are the only source

of speci�cation. Data as speci�cation leads to an ambiguity in the data speci�ca-
tion
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2. Contrary to classical programs, machine learning programs are not written through

a deterministic process (be it a programmer, a compiler or a code generator),

but through a stochastic algorithm. Even though the resulting program is func-

tionally simple (ResNets [He+15] have jumps and some architecture can encode

loops, but most of classical architecture are only using a succession of linear

operations and activation functions), the control �ow is meaningless by itself.

There is thus an ambiguity in the control �ow

3. Vulnerabilities de�ned in previous sections are not easy to spot (there is no “Ad-

versarial Example” exception lifting) and even more complicated to correct, and

this comes with a cost on the accuracy of the network. There is thus an ambiguity
in the speci�cation to respect

Key point

It is di�cult to formulate properties on machine learning programs because of

the following ambiguities:

1. ambiguity in inputs speci�cation

2. lack of direct agency in the control �ow

3. lack of knowledge of failure modes

Those points can be summed up into one problem, which we will tackle during our

thesis: the speci�cation problem of machine learning veri�cation.

How to verify
Another issue is more directly linked with how we represent neural network for SMT

or model-checking. If we consider a neural network under its CFG form, there is a

possible branching for each activation function. The ReLU can be naively implemented

as an if then else construct: y = ReLU(x) : if x > 0 then x else 0. This produces

two mutually exclusive clauses for the SMT solver:

x > 0 ∧ y = x (4.19)

x ≤ 0 ∧ y = 0 (4.20)

The solver must then explore those two independent paths. Since this case split occurs

for each ReLU neuron, if a neural network has n neurons, then the number of cases

to explore is in the order of 2n
, if done naively. Without guiding our solvers, we are

bound to fail against the curse of dimensionality.
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Key point

Verifying deep neural networks is di�cult because of the high number of non-

linear case splits their structure generates.

This is the second issue we will try to tackle: the combinatorial problem of machine
learning veri�cation

To go further A survey on transfer learning is available at [Tan+18]. For a com-

prehensive survey on the de�nitions, metrics and algorithms of algorithm fairness, see

[Meh+19]. A survey on explainable AI is available at [Sam+21].



54 CHAPTER 4. PROGRAMS THAT LEARN

Figure 4.7: main di�erences between classical programs and neural networks

Icons made by Becris, Freepik, Google and Icongeek26 from www.�aticon.com
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Chapter 5

The speci�cation problem

Summary of the chapter

Most research on formal veri�cation of deep neural networks has focused on

adversarial robustness, which studies the robustness of perceptive models in

the neighbourhood of particular samples. However, other works have proved

global properties of smaller neural networks. Yet, formally verifying perception

remains insu�ciently charted. This is due notably to the lack of relevant proper-

ties to verify, as the distribution of possible inputs cannot be formally speci�ed.

We propose to take advantage of the simulators often used either to train ma-

chine learning models or to check them with statistical tests, a growing trend in

industry.

Our formulation allows us to formally express and verify safety properties on

perception units, covering all cases that could ever be generated by the simula-

tor, to the di�erence of statistical tests which cover only seen examples.

What do deep learning programs learn? Asking this question in an assembly of

scientists will probably lead to a number of interesting and enthusiast hypotheses.

However, verifying experimentally those hypotheses is a di�cult task. Obtaining a

certainty on what is “actually learned” by a deep learning algorithm is a complicated

matter, for several reasons.

The �rst one is that “actually learned” is somehow ill-de�ned, or rather, that what

one would expect from a deep neural network is actually misaligned with how we

make them learn. For a cancer detector applied to medical scans, or a predictor of

�nancial trends, how do we ensure the deep learning algorithm learned what it needs

to perform his task reasonably well according to our standards? This is tangentially

linked with the “AI goal alignment issue” stated by Stuart Russel: the way we phrase

objectives to arti�cial intelligence programs is of crucial importance, since they lack

most of the cultural background, social clues and human habitus: the way we phrase

57
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our goals shape the task much more than we expect.
The second one is that there is actually very few constraints on what the neural

network learns. Data powered programming leaves all the semantic to the dataset, the

labelling and the gradient descent mechanism. Thus, what the neural network learns

will heavily rely on the data, their labelling and a mathematical formalism that puts

very few constraints other than minimizing an error function, leaving to analyse quite

alien behaviours (high dimensional spaces that we, as humans, fail to grasp intuitively,

for instance). This may lead to unwanted behaviour, such as over�tting. An over�tting

machine learning model maximizes its prediction score on the training set, which leads

to poor generalization outside of this set. Learned features are usually not those a

human would use to characterize a sample, given a similar task.

The third one is the one we will further study here: the act of training programs

that learn on data and labels relies on the implicit assumption that the dataset and

labelling encompass the full semantic of the concepts we are manipulating. Phrased

otherwise, a dataset of collected and annotated images of birds is trusted to yield a

su�ciently “well-de�ned idea” of a bird. We call this paradigm data as speci�cation.

Why use a proxy such as instances of a concept rather than the concept itself? The crux

of the matter is that, sometimes, there exist no formal characterization of the concepts

we manipulate. By formal characterization, we mean logical statements that we can

input to a mechanized veri�cation software with relative ease in order to formulate

and check a veri�cation problem. This lack of explicit formal speci�cation is especially

conspicuous with high dimensional data that we cannot reduce to a value. We de�ne

the space where such data live as the following:

De�nition 13. A perceptual space is a high dimensional space of data sensed by hu-

mans. For instance: the space of 256×256 RGB images, the space of all possible sounds,

or the set of all possible sentences in a given language.

The following questions, inspired by some of the most prominent use cases of deep

learning, illustrate the di�culty of extracting a formal characterization from percep-

tual space:

• What are the spatial properties of a sample of hate speech? How can we isolate

them from “normal” speech, while taking into account cultural di�erences?

• What are the geometrical features of a cat, independently of weather and light-

ning conditions?

• What are the features of an image containing a pedestrian? How to include

people in wheelchairs in speci�cations alongside pedestrians?

• How can we ensure a cancer detector on radio prints will scan the actual radio

and not over�t to some innocuous feature [Dou21]
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Those di�culties to de�ne formal speci�cations for complex concepts in the perceptual

space are inherently why we use machine learning in the �rst place. Nonetheless, they

severely limit our ability to formulate and verify formal properties in the usual way.

This chapter is a scienti�c contribution, that was accepted at the European Conference

of Arti�cial Intelligence (ECAI 2020), that aim to address the following question:

Research questions

How can we formulate properties on data that represent a complex concept on

a perceptual space? How can we verify global properties on perceptual inputs?

5.1 Contextualization and motivation
In most deep learning application domains, such as image classi�cation [He+15], object

detection [Cha+17], control learning [Boj+16], speech recognition [RPB18], or style

transfer [KLA18], there exists no formal de�nition of the input. As a motivating ex-

ample, let us consider the (theoretical) software of an autonomous car. A visualisation

of what this software does is available �gure 5.1. Its goal is to detect various objects

on the sensor, and output driving directives. A desirable property would be not to run

over pedestrians. This property can be split in two:

1. all pedestrians are detected

2. all detected pedestrians are avoided

Figure 5.1: A theoretical software embedded in an autonomous vehicule. One property we would like

to prove is the following: how can we ensure that the software does not output a “continue”
directive for all images with a pedestrian?

For a formal certi�cation, the property should be expressed in the form “For any

image containing pedestrians, whatever the weather conditions or camera angle, all
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pedestrians present in that image are detected and avoided”. Such a formulation sup-

poses one is able to describe the set of all possible images containing pedestrians (to-

gether with their location). However, there exists no exact characterization of what a

pedestrian is or looks like, and certainly not one that takes into account weather con-

dition, camera angle, input type or light conditions. Any handmade characterization

or model would be very tiresome to build, and still incomplete.

On the upside, machine learning has demonstrated its ability to make use of data

that cannot be formally speci�ed, yielding impressive results in all above-mentioned

application domains, among others; on the downside, it has also been demonstrated

that ML models can easily fail dramatically, for instance when attacked with adversar-

ial examples. Thus, manufacturers of critical systems need to provide elements that

allow regulators, contractors and end-users to trust the systems in which they embed

their software.

Usually, car manufacturers rely on test procedures to measure their system’s per-

formances and safety properties. But testing can, at best, yield statistical bounds on

the absence of failures: the e�ciency of a system against a particular situation is

not assessed before this situation is actually met during a real-world experiment. As

the space of possible situations is enormous (possibly in�nite) and incidents are rare

events, one cannot assess that an autonomous vehicle will be safe in every situation

by relying on �eld tests alone.

A possible workaround is to use arti�cial data that is used to build the tests sce-

narios. Those arti�cial inputs are usually generated by a simulation software. In the

context of this thesis, a simulation software is understood as a software designed to

generate inputs in the perceptive space according to a certain parametrization. One

of the �rst attempts to use simulated images to make a neural network “drive” is

ALVINN [Pom89]. Multiple simulated sources were used to provide inputs and train-

ing objectives to deep neural networks, most notably from video games. AlphaStar

is a deep-learning based program aiming to play at a competitive level the real-time

strategy game Starcraft 2 [Vin+19]. The rich criminalistic open world video game

Grand Theft Auto V was used as a source for semantic segmentation tasks [Ric+16].

For autonomous driving, simulators like Carla [Dos+17] are openly available. Notably,

CARLA features multiple perceptive inputs, climate and brightness control, scripting

scenarios, and provide a vast number of options for simulating an urban environment,

such as the modelling of other cars and pedestrians. Using a simulation software comes

with several bene�ts:

1. it reduces the overall cost of setting up and experimenting with autonomous

driving;

2. it enables quick experimentation and reproducibility of experiments;
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3. it makes it possible to generate potentially hazardous scenarios precisely, like a

child running on the road or a car crash;

However, even if it is possible to arti�cially generate corner cases more easily, the

space of possible scenarios is still enormous, and some accidents remain completely

unpredictable a priori by human test designers. For instance, in a car accident involving

partially self-driving technology, the manufacturer admitted that the camera failed to

distinguish a white truck against a bright sky [Haw19], causing the death of the driver.

Such a test case is di�cult to come up with for a human, because it is the conjunction

of speci�c environmental conditions and speci�c driving conditions.

Our motivation is to bring an additional layer of trust, not relying on statistical

arguments, but rather on formal guarantees. Our long term objective is to be able

to formalize a speci�cation and to provide guarantees on every possible scenario, au-

tomatically �nding violations of the speci�cation. Because practitioners are relying

more and more on simulators, we propose as a �rst step to study such simulated set-

ting. More precisely, we aim to formalize it. The idea is to rephrase the veri�cation

problem in order to include both the deep learning model and the simulator software

within the veri�cation problem. As said earlier, a simulator o�ers more control on the

learning data by providing explicit parameters (for instance: number and positions of

pedestrians on the image).

Related work
Adversarial robustness: a local property

Most of the literature work has focused on local adversarial robustness, de�ned in sec-

tion 4.3. Recall that adversarial perturbations are small variations of a given sample in

the input space that have been deliberately crafted so that the network misclassi�es

the resulting noisy example. The crucial part to note here is that this property is local,
tied to the particular sample we consider. A global adversarial robustness property

could be phrased as the following:

De�nition 14. A deep neural network f is globally ε-robust if ∀(x1, x2) ∈ X 2
such

that ‖x1 − x2‖p 6 ε, f(x1) = f(x2).

Verifying this global property is intractable for several reasons:

1. for any sample x ∈ X where the input space is a subset of R256×256×3
requires to

search a space of more than 195000 dimensions. Even with relatively large dis-

cretization step (0.1), for values in [0, 1], this gives about 8.5e52 possible images;

2. for any pair of sample requires combining two samples pairwise, further increas-

ing the complexity;



62 CHAPTER 5. THE SPECIFICATION PROBLEM

3. if one of the samples is too close to the boundary decision (ε > ‖x− Cl‖p where

Cl is the boundary for class l), this property will not hold, since any sample on

the other side of Cl will be classi�ed otherwise;

For all of those reasons, most of the work on adversarial robustness has focused on

local adversarial robustness.

Proving global properties in non-perceptive space

Sometimes, the neural network is used on simpler problems that allow the formulation

of formal properties. By simpler, we mean two main characteristics: (i) the dimen-

sionality of the input is much lower than in typical perception cases, where most of

adversarial examples occur, and (ii) the problem the program aims to solve provides

an explicit description of the meaning of the inputs and outputs, making a formula-

tion of safety property much simpler. Rephrased otherwise, the program is working

on inputs whose semantics are (at least partially) de�ned. Provided the inputs are suf-

�ciently well-de�ned, it is then possible to encode safety properties as relationships

between inputs and outputs, such as inequality constraints on real values.

An example of such setting can be seen in the Anti Collision Avoidance System for

Unmanned aircraft (ACAS-Xu), that we de�ned in section 4.3. Inputs correspond to

aircraft sensors, and outputs to airplane commands. In such case, speci�cations can be

directly encoded as a set of constraints on the inputs and outputs. We emphasize here

that the inputs of the program are not perceptual: intruder distance, relative angle with

the aircraft and relative speed vector. . . all the data were already obtained by the sensors

and pre-processed to give a low-dimensional input to the program. In other words, an

ACAS software can be seen as taking the output of a perception unit, and assumes

that those outputs are correct. In [Kat+17], the authors proposed an implementation

of ACAS-Xu as a deep neural network, and they were able to formally prove that their

program respected various safety properties.

Using simulators for veri�cation

Recent work proposed to analyse programs trained on simulators [Dre+19]. Although

their motivations are similar to ours, they work on abstract feature spaces without

directly considering the perception unit, and they rely on sampling techniques while

we aim to use sound, exhaustive techniques. Their aim is to exhibit faulty behaviour

in some type of neural network controllers, while we can formally verify any type of

perception unit.

On one side, there exist a limited number of local veri�cation properties on the

perceptual space. On the other, we have global properties on non-perceptual spaces.

With our contribution, we aim to bridge the two worlds by providing a way to express

global properties on perceptual inputs.



5.2. CAMUS: A NEW FORMALISM TO SPECIFY MACHINE LEARNING MODELS 63

5.2 CAMUS: a new formalism to specify machine
learning models

Problem formulation and notations

Let f : X → Y be an algorithm taking a perceptual input x ∈ X and yielding a

decision y ∈ Y . The perceptual space X will typically be of the form Rd
or [0, 1]d. f

is a program trained with a learning procedure on a �nite subset of X to perform a

speci�c task (e.g., drive the passengers safely home). In our example, the task would be

to output a command from an image, in which case, for a given image x, f(x) would

be the driving action taken when in environment x.

Let us denote by g : S → X the simulator, that is, a function taking as input a con-

�guration s ∈ S of parameters, and returning the result of the simulation associated

to these parameter values. A con�guration s of parameters contains all the informa-

tion needed by the simulator to generate a perceptual input; each parameter may be

a discrete or continuous variable. Taking for example a simulator of autonomous car

scenarios such as CARLA: s would contain the road characteristics, the number of

pedestrians and their positions, the weather conditions. . . , that is, potentially, thou-

sands of variables, depending on the simulator realism.

The problem to solve here is the following: For a model f trained on data belonging
to X generated by g to perform a certain task, how can we formulate and formally verify
practical safety properties for all possible x ∈ X , including samples never seen during
training?

Including the simulator in the veri�cation

In classical formal veri�cation settings, such as the one schematized in �gure 5.2,

speci�cations express relationships from X to Y , using a formulation of f . But in

autonomous driving, X is such a huge space that formulating properties that are non-

trivial, let alone verify these, is prohibitively di�cult, especially in the case of percep-

tive systems where the domain of x cannot be speci�ed: all matrices in ([0, 255]3)
#pixels

are images, technically, but few of them make sense, and one cannot describe which

ones. Moreover, given an image x, the property to check might be di�cult to express,

as, to state that all pedestrians were detected and avoided, one needs to know whether

there are pedestrians in x and where, which we do not know formally from just the

image x. And if one had a way to retrieve such information from x (number and lo-

cation of pedestrians) without any mistake, one would have already solved the initial

problem, i.e., safe self-driving cars.

To summarize, in this setting, it is impossible to express a relevant space for x and
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Figure 5.2: Natural inputs with huge perceptual space: no formal characterization of the input can be

formulated, preventing formal veri�cation

a property to verify Φ, as expressed in the following equation (5.1).

∀x ∈ ?, Φ?
(

?, f(x)
)

(5.1)

In the setting of simulated inputs, though it remains di�cult to formulate prop-

erties on the perceptual space X , we know that this space is produced by g applied

to parameters in S . Contrary to X , S is a space where there exists an abstract, albeit

simplistic characterization of entities. This characterization comes from choices made

during the conception of the simulator. Indeed, setting on parameter sp for a pedes-

trian in the simulated input to appear will e�ectively make it appear. Thus, the state

of sp e�ectively holds a speci�cation of what a pedestrian is in X . The procedure g
transforms elements s ∈ S , that represent abstracted entities, into elements x ∈ X
that describe these entities in the rich perceptual space. To output values in Y , f has

to capture the inner semantics contained in X , that is to say, to abstract back a part of

S from X .

The above remark is the key to the proposed framework: if we include S and g
alongside f , X and Y in the veri�cation problem, then all meaningful elements of S
are de facto included. It then becomes possible to formulate interesting properties,

such as the following: “given a simulator that de�nes pedestrians as a certain pattern

of pixels, does a model trained on the images generated by this simulator avoid all

pedestrians correctly?”.

Key point

Including a simulator capable of generating perceptual inputs inside the veri�-

cation problem allows to formulate formal properties on perceptual space, pro-

vided we limit ourselves to inputs that can be generated by the simulator.
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Formally, to ensure that the output y = p ◦ g(s) satis�es a property Φ for all

examples x = g(s) that can ever be generated by the simulator, the formula to check

is of the form described in equation (5.2)

∀s ∈ S, Φ
(
s, p ◦ g(s)

)
(5.2)

It is possible to describe the input space of x, as piloted by certain values of s, and is

thus possible to describe the output property Φ(f(x)). The property Φ may depend on

s indeed, as, in our running example, s explicitly contains the information about the

number of pedestrians to be avoided as well as their locations.

Figure 5.3: Generated inputs with integration of the generation procedure in the veri�cation problem.

There are now new properties to check since we have a formal characterization of the per-

ceptual elements.

Including S and g in a formal property to check requires to formulate at least par-

tially the multiple functions that compose g. Describing precisely these procedures is a

key problem, that is also quite di�cult. Indeed, if the simulator is a classical program,

then the whole set of techniques de�ned in the introduction is available to verify it.

For instance, reachability analysis could be used on the simulator to monitor the e�ect

of a particular parameter on another. It would also be necessary to de�ne properties

to check, which requires careful thinking and formalization. It could also be possible

to trust not the simulator as a whole, but only key parts, or a modelization of the sim-

ulator - that would also require formalization. If the simulator is a machine learning

program, the relationships between S and X should be carefully controlled and veri-

�ed. Formalizing simulators is a complex endeavour, that would require expertise in

programming language design and simulation software, an expertise that we do not

have. Since this thesis aims to cover the di�erent aspects of the formal veri�cation

discipline - speci�cation, tooling, heuristics -, we leave the topic of formalizing simu-

lators for future work. For the rest of this thesis, we consider that there exist a su�cient

description of g to be included in the whole veri�cation process.

As our framework relies on including the simulator in the veri�cation problem, we

call it Certifying Autonomous deep Models Using Simulators (CAMUS).
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Separating perception and reasoning
Before the rise of deep learning, the perception function (which recognizes a certain

pattern of pixels as a pedestrian) and the control, or reasoning function (which analy-

ses the location of a pedestrian and proposes a decision accordingly) in vehicles were

designed and optimized separately. However, work such as [Boj+16] showed that end-

to-end learning can in general be a much more e�cient alternative; there exist many

incentives to adopt an end-to-end architecture, mixing and training jointly the per-

ception and control functions. However, combining perception and reasoning into

one model makes the formulation of safety properties more di�cult.

Thus, in our description (see �gure 5.4), we choose to separate the perception and

the reasoning functions, respectively in the components p and r. The perception part

p is in charge of capturing all relevant information contained in the image, while the

reasoning part r will make use of this relevant information to output directives accord-

ingly to a speci�cation.

One way to make sure that p retrieves all relevant information is to require it to

retrieve all information available, that is, to reconstruct the full simulator parameter

con�guration s. In this setting, let s
′

be the output of the perception module p. It lies

in the same space as the parameter con�guration space S , and the property we would

like to satisfy can be written as p ◦ g ≈ Id, which can be rewritten as:

∀s ∈ S, p ◦ g(s) ≈ s (5.3)

This way, we ensure that the perception module p correctly perceives all samples that

could ever be generated by the simulator. In case some parameters are known not

to be relevant (image noise, decoration details, etc.), p can learn to retrieve only the

relevant ones (for instance by zeroing out the non-relevant parameters). For the sake

of notation simplicity, we will here consider the case where we ask to reconstruct all

parameters.

This separation between perception p and further reasoning r brings modularity

as an additional bene�t: even when dealing with di�erent tra�c regulations or speci-

�cations, it is only necessary to prove p once; the veri�cation of compliance towards

local legislations and speci�cations by r can be done separately. Indeed, speci�cations

on how to navigate on the road are more susceptible to change than speci�cations on

what to perceive. It allows to reuse the complex perception module without needing

to prove it again, with di�erent reasoning modules r. Note also that r does not need

to be as complex as p, since it will work on much smaller spaces; veri�cations of r are

then easier.

One could argue that this formulation makes the problem more complex, and it

indeed may be the case. Our approach only work if the perception and reasoning

units are clearly separated as software components, while the trend tend to use end-

to-end learning when possible. However, our proposition is aimed at safety, and in
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Figure 5.4: Integration of the generation procedure in the veri�cation, with split between perception

and reasoning: p learns to capture all the relevant parameters; r learns to respect the spec-

i�cation. Verifying φ1 proves the perception module once and for all; verifying φ2 can be

done when the speci�cation changes (e.g., for di�erent driving rules).

order to provide additional trust, it is sometimes necessary to formulate the problem

di�erently. For instance, there are good practices to structure the code to provide some

safety guarantees: bounded loops, correctly allocated and de-allocated references, ban

of function references and goto statements . . . are constructs that voluntarily restrain

the expressive power of the programming language to ensure a safer behaviour. Hence,

although this formulation might seem like a step back with regard to the state-of-the-

art, we argue that it provides a new way to formulate safety properties, and hence will

be bene�cial in the long run.

Properties Formulation
Considering jointly the simulator g and the machine learning model f , split in p and

r, two families of properties are amenable to formal checking:

• Φ1: perception module p has captured su�cient knowledge from X ;

• Φ2: reasoning module r respects a speci�cation property regarding Y .

Families of property φ2 have been addressed in the literature – see section 5.1. The key

point of the proposed approach is thus to obtain a representation space that reliably

yields semantic meaning, which is the objective of Φ1. Since the simulator is included

in the veri�cation problem, properties of family Φ1 can be written as relationships

between input parameter con�gurations s ∈ S and retrieved parameter con�gurations

s′ ∈ S , outputs of the perception module p. Strict equality between s and s′ may be

di�cult to achieve, and is actually not needed as long as the reasoning module r is able

to deal with small estimation errors.
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Expressed in the proposed formalism, the perception task is equivalent to �nding (a

good approximation of) S . Thus, a relaxed version of property equation (5.3) to satisfy

could be formalized as some tolerance ε > 0 on the reconstruction error ‖s′ − s‖ (for

some metric ‖ · ‖):
∀s ∈ S, ‖s− p ◦ g(s)‖ 6 ε (5.4)

5.3 Discussion
Speci�cation through the simulator puts the burden of trust on the simulator. This

therefore require su�cient grounds to trust the simulator software, in particular its

ability to su�ciently well approximate the real input space. As companies such as

Ansys and Siemens are developping numerical simulation software that are taking

part in a wider certi�cation process of systems, it appears that trusting simulators is

an existing practice. This trust may not come from formal veri�cation tools however,

and it would be an interesting venue to �nd practical ways to apply formal veri�cation

tools on simulators.

Some recent work [FG19; Kat+21] propose to formally verify deep neural networks

using deep learning generative models as simulators. Generative models are speci�c

deep neural network programs able to approximate an input distribution and produce

synthetic but realistic inputs sampled from this approximated input distribution. Pro-

viding the generators can be written as ReLU networks, their work is quite nicely �t-

ting in the CAMUS framework. Still remains the problem of trusting a neural network

based simulator.

As stated earlier, it is not always necessary to retrieve all parameters of con�gura-

tion s. For instance, one could seek to retrieve only the correct number of pedestrians

and their locations, from any image generable by the simulator. In this case, the out-

put of p would be just a few coe�cients of s, and must consequently be characterized

di�erently (e.g., as belonging to a given subspace of S). This would allow expressing

more �exible properties than simply reconstruct all parameters.

For the model f to correctly generalize, the simulated data must have two charac-

teristics:

1. it needs to be su�ciently realistic (that is to say, they should look like real-world

images); if not the network could over�t the simplistic representation provided

by the simulator;

2. it must be representative of the various cases the model has to take into account,

to cover su�ciently diverse situations.

Additional characterization of the simulator would be di�cult. For instance, one

could suggest requiring the simulator g to be either bijective or injective, in order to
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cover all possible cases x ∈ X , or for parameters to be uniquely retrievable. Yet, the

largest part of the perceptual space X is usually made of nonsensical cases (think of

random images in ([0, 255]3)
#pixels

with each pixel color picked independently: most

are just noise), and the subspace of plausible perceptual inputs is generally not char-

acterizable (without which the problem at hand would already be solved). Regarding

injectivity, being one-to-one is actually not needed when dealing with properties such

as equation (5.4).

Finally, let us consider the case where several simulators gi are available, and

where, given a perceptive system p, we would like to assert properties of type Φ1 for

each of them. At �rst glance, as the output of p consists of retrieved parameters, this

would seem to require that all gi are parameterized exactly identically (same S). How-

ever, for real tasks, one does not need to retrieve all parameters but only the useful

ones (e.g., number of pedestrians and their locations), which necessarily appear in the

con�guration of all simulators (at least those generating images of roads).

For a simulator gi and a simulator gj with respective parameter spaces S i and Sj ,

it would be possible to write a mapping between relevant parameters in S i and Sj .

For instance, if the two simulators are detecting pedestrians with a di�erent number

of parameters, a linear combination of those parameters could be given to a unique

perception unit p, and formal properties for all simulators can thus be expressed.

To go further About the issue of goal alignment, the curious reader is encouraged

to read the various work of Stuart Russel on that matter, for instance in [RND10],

or [Wor15]. The legend of King Midas, who asked to be able to change everything

he touched into gold and perished because he was not able to eat, could be seen as an

early example of the alignment problem: asking for something and wanting something

are two di�erent things. An instanciation of the goal alignment problem can be seen

on model explainability, where what is explained can be nebulous. On this topic, the

most excellent paper [Lip16] explain nicely how “explainability” is actually a complex

notion that cannot be addressed easily.





Chapter 6

ISAIEH: the Inter Standard AI
Encoding Hub

Summary of the chapter

We present ISAIEH, a tool aiming to bridge formal veri�cation and neural net-

work representations on a common ground. We describe the overall software

architecture of ISAIEH, and its main features: a modular, extensible interme-

diate representation, a compiler from ONNX to LP and SMTLIB2 formats. We

present a use case of ISAIEH, applied to CAMUS, and show how ISAIEH can be

used to ease the veri�cation process on deep neural networks.

A practical problem arose very early in the thesis: it was di�cult to use exist-

ing formal veri�cation tools on neural networks. Indeed, neural networks are usually

saved in formats that are not adapted to the tools we considered. Most of the deep

learning frameworks provide mostly an interface with C++ and Python programming

languages, other APIs were limited both in functionality and documentation at the

beginning of this thesis. At this time, formal veri�cation of neural network was still

a nascent �eld. No standards allowed an easy communication with standard formats

used in the formal method community, such as SMTLIB or LP. Phrasing any speci�ca-

tion was di�cult for the same reason, because deep learning frameworks did not o�er

ways to express (or prove) properties. Thus easing out the expression of properties

and the communication between machine learning and formal veri�cation standards

was a necessary �rst step in order to start comparing techniques on a fair basis. This

chapter describes our answer to this issue: the Inter Standard Arti�cial Intelligence

Encoding Hub (ISAIEH).

71
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6.1 Existing tools and formats for formal
veri�cation and deep learning

To understand the software context in which our artifact will live, we will describe

shortly the tools usually used in deep learning, as well as present a state of the art on

deep learning veri�cation tools.

Tools for machine learning practice

Deep learning manipulates high-dimensional data, often represented as multidimen-

sional arrays (or tensors). E�cient manipulation of tensors is crucial. To do so, deep

learning needs to make heavy use of parallelism and e�cient memory management.

Another key point is that deep learning programs need to be di�erentiable, as stated

in chapter 4. Finally, deep learning researchers need to be able to prototype relatively

easily their ideas, without needing a PhD on parallel programming or knowing the

quirks of memory layouts.

To answer those needs, several deep learning framework were developed over the

last decade. The one we mainly used for this thesis is PyTorch [Pas+19], we occasion-

ally used TensorFlow [Aba+16a]. Other include Ca�e2 and the Microsoft Cognitive

Toolkit. They provide automatic parallelization of tensor computation, a vast collec-

tion of deep learning operators and clarify the �ow of deep learning programming.

Most of those frameworks operate on their own inner intermediate representations,

and save the resulting program as blobs (binary large objects), framework-speci�c for-

mat. Because deep learning research and application should not be limited by the kind

of framework used during software development, several big players (Microsoft, Face-

book. . . ) started to develop a common representation for deep neural networks: the

Open Neural Network eXchange (ONNX) format. It provides a uni�ed view of deep

learning programs as directed acyclic graphs, where each node represents a computa-

tion applied to input tensors. For the rest of this thesis, we almost exclusively worked

on ONNX networks. Neural networks were designed, trained and tested using Py-

Torch, then saved under the ONNX format.

Thus, the question we aim to answer here is the following:

Research questions

How can we express deep learning programs in a way suitable for formal veri-

�cation?
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A standard language for SMT veri�cation: SMTLIB2
Mature SMT solvers are complex engineering artifacts with highly specialized heuris-

tics. Those tools are used in multiple settings by di�erent teams, who need to have a

way to collaborate on their research topic with relative ease. To ensure this, an inter-

national e�ort led to the birth of the SMTLIB standard. The latest version (2.6 at the

time of redaction) [BFS17] provides the following (citation from the o�cial website of

the initiative
1
):

1. Provide standard rigorous descriptions of background theories used in SMT sys-

tems

2. Develop and promote common input and output languages for SMT solvers

3. Connect developers, researchers and users of SMT, and develop a community

around it

4. Establish and make available to the research community a large library of bench-

marks for SMT solvers.

5. Collect and promote software tools useful to the SMT community

We target the SMTLIB2 input language. Its grammar is quite simple, as it is only

comprised of two elements: atoms and expressions:

type expr = Atom of s t r i n g | expr l i s t

A SMTLIB2 program is a succession of expressions (enclosed within parenthesis, much

like Lisp’s Symbolic expressions) that encode the various constraints the SMT solver

should consider, as well as generic options (such as the theory to consider) and solver-

speci�c options.

6.2 ISAIEH: an encoding hub for neural networks
ISAIEH stands for Inter Standard Arti�cial Intelligence Encoding Hub. It is written in

OCaml. OCaml is a statically and strongly-typed language. Providing we design the

type of our data according to a sensible speci�cation, OCaml brings an additional layer

of trust in our program by spotting type errors at compile time rather than runtime,

which is a plus when building relatively complex tools such as formal veri�cation tools.

Additionally, the laboratory in which this thesis was conducted was gifted with sev-

eral experts in the OCaml programming language, which helped kickstart some ideas

and rapid prototyping. Since the �agship formal veri�cation tool designed in the lab,

1http://smtlib.cs.uiowa.edu/

http://smtlib.cs.uiowa.edu/
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Frama-C [Bau+21], was written in OCaml, writting a prototype of a formal veri�ca-

tion tool for neural networks that could potentially interface with it seems a sensible

thing to do. And �nally, the author of this thesis has an aesthetic bias towards func-

tional programming and tends to use it whenever it is reasonable to do. The overall

architecture of ISAIEH is available �gure 6.1.

ONNX_PARSER

PIQI bindings to parse

ONNX protobuf

NIER

operators de�nition

OUTS

LP format

SMTLIB2 format

PROBLEM

conversion to Z3 API

conversion to LP API

PROBLEM_PARSER

SOLVE

Z3 bindings

GLPK bindings

GUROBI bindings

COUNT

DISCO algorithm

Figure 6.1: ISAIEH architecture. Arrows indicate a dependency.

What need does it ful�ll/features
Very early in the thesis, the need to smooth communication between the neural net-

works world and the formal veri�cation world arose: benchmarking state-of-the-art

solvers was the �rst necessary step, and a tool was already needed for that. Another

need was to be able to work at di�erent abstractions level, from a single neuron to

the entire architecture, to perform analysis on the neural network. Finally, during the

thesis, the need arose to reimplement some state-of-the-art tools and to develop our

own veri�cation technique. For all of those reasons, we needed to develop a tool that

was:

1. expressive enough to take into account most of the neural networks constructs

2. �exible in order to be able to add di�erent kinds of algorithms
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3. able to bind neural networks to formal veri�cations tools in a streamlined way

The (ongoing) result of this work is the Inter Standard Arti�cial Intelligence Encod-

ing Hub (ISAIEH). The code is freely available under the LGPLv2 licence
2
. The most

prominent features of ISAIEH are the following:

1. support of ONNX standard to produce a Neural IntermediatE Representation

(NIER)

2. transcription of the NIER to SMTLIB2 and LP format to be used by state-of-the-

art solvers

3. implementation of facets counting

4. bindings to the Z3 SMT solver to perform direct solving of SMT problems, and

to the GLPK and GUROBI LP solvers to solve LP problems

Description of the NIER
The NIER is an acyclic directed graph G with vertices V and labelled edges E. Let

v ∈ V be a vertex, let ei ⊂ E be the input edges of v. There is only one output for

vertices. Each v represents the application of a mathematical operation on the input

of the node (determined by the labels of input edges ei). Supported operations are a

subset of the ONNX standard, plus some custom operations used for speci�c solving

strategies, detailed later on. Most of those operations are not commutative, so it is

necessary to keep from the ONNX description the operands and their order in a speci�c

�eld. Finally, some nodes have no operation but store numerical values (“initializers”

in the wording of ONNX): those are the parameters of the networks. They are stored

in speci�c vertices, “data vertices”. Edges describe the control �ow of tensors going

through the calculus graph. Each label is labelled with a unique string identifying a

tensor. A vertex has the following attributes:

This NIER is mostly descriptive. The main di�erence with ONNX is the merging

between “initializer” nodes and classical nodes. Since it is much smaller in scope, it is

also easier to manipulate and extend than ONNX. Applications leveraging this NIER

are described in the following section.

The SMTLIB2 compiler and SMTLIB solver API
The �rst use developped for ISAIEH was to compile down a neural network control

�ow to a format that was readable by standard SMT solvers; the SMTLIB2 format was

2https://git.frama-c.com/pub/isaieh

https://git.frama-c.com/pub/isaieh
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type i d = i n t

type shape = i n t l i s t

type o p e r a t o r = | Add | Mul | Matmul

| LogSoftmax | ReLu | Transpose

| Squeeze | MaxPool | Conv

| I d e n t i t y | NO_OP | RW_Linearized_ReLu

type k s i z e = K s i z e of shape

type s t r i d e = S t r i d e of shape

type pads = Pads of shape

type d i l a t i o n s = D i l a t i o n s of shape

type o p e r a t o r _ p a r a m e t e r s =

| Pool_params of ( k s i z e ∗ s t r i d e o p t i o n ∗

pads o p t i o n ∗ d i l a t i o n s o p t i o n )

| Conv_params of ( k s i z e ∗ s t r i d e o p t i o n ∗

pads o p t i o n ∗ d i l a t i o n s o p t i o n )

| Transpose_params of shape

| RW_Linearized_ReLu_params of ( ( b o o l l i s t l i s t ) ∗

( ( s t r i n g , f l o a t ) H a s h t b l l i s t ∗

i n t ) )

type t = {

i d : i d ;

name : s t r i n g o p t i o n ;

mutable shape : shape ;

o p e r a t o r : o p e r a t o r ;

o p e r a t o r _ p a r a m e t e r s : o p e r a t o r _ p a r a m e t e r s o p t i o n ;

pred : s t r i n g l i s t ;

succ : s t r i n g l i s t ;

t e n s o r : Tensor . t o p t i o n

}

Figure 6.2: Attributes of vertex

chosen. The main di�culty is that while the semantics of deep learning heavily re-

lies on multidimensional �oating-point array computations, such constructs are not

supported by the SMTLIB2 standard, nor any state-of-the-art SMT solver. SMTLIB2

standard theories, the Quanti�er-Free Non-Linear Arithmetic (QF_NRA) and its linear

counterpart (QF_LRA), only work on single numbers, and the expressivity of SMTLIB2

language is not enough to rede�ne easily those computations. It was then necessary

to de�ne a “�attened” version of all neural networks computations. Here, “�attened”

means that every single cell of the tensor needs to be registered and calculated as an
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independent variable. The SMTLIB2 compiler thus takes all nodes of the NIER, creates

individual variables for each underlying tensor, performs the underlying mathematical

operation using previously de�ned variables (symbols), up until the last layer. Then,

variables and operations are written according to SMTLIB2 syntax and written to a

�le.

Key point

ISAIEH compiles a neural network control �ow to SMTLIB2 language, the stan-

dard input language for SMT solvers.

Using ISAIEH with CAMUS
We used ISAIEH to demonstrate a use case of CAMUS on a simple synthetic problem.

Let us consider here the perception module of an autonomous vehicle, whose goal

is to output driving directives that result in safe driving behaviour. The perception

module is modeled as a deep neural network with one output node, taking as input an

image. If an obstacle lies in a pre-de�ned “danger zone”, the network should output

a “change direction” directive. Otherwise, it should output a “no change” directive.

The “simulator” is here a Python script, taking as input the number and the locations

on the image of the one-pixel wide obstacles and generating the corresponding black-

and-white images. The veri�cation problem consists in the formulation of the network

structure and constraints on the inputs, and in the following properties to check:

1. verify that an input with an obstacle (or several ones) in the danger zone will

always lead to the “change direction” directive;

2. verify that an input without obstacle on the danger zone will never lead to the

“change direction” directive.

If both properties are veri�ed, our model is perfect for all the inputs that can be gen-

erated. If the �rst one is not veri�ed, our veri�cation system will provide examples

of inputs where our model fails, which can be a useful insight on the model �aws.

Such examples could be used for further more robust training, i.e., integrated into a

future training phase to correct the network misclassi�cations. Similarly, if the second

property is not veri�ed, the solver will provide false positives, that can help designers

reduce erroneous alerts and make their tools more acceptable for the end-user. In this

toy example, input data are N ×N black-and-white images (see Fig. 6.3 for examples).

The space of possible simulated data g(S) ⊂ X can simply be described by the con-

straint that each pixel can only take two values (0 and 1). In real life, data are much

more complex, possibly continuous; such data can also be handled in our framework.

The neural network is fully-connected with two hidden layers. The number of neurons
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Figure 6.3: Example of inputs for the toy problem. White pixels represent obstacles. If they are in the

top half of the image, no alert should be �red (�rst two examples), while an alert should be

�red if at least one lies in the (dashed) bottom half of the image (last two examples). 9x9

picture is depicted here for clarity.

in the �rst and second hidden layers are respectively one half and one quarter of the

�attened size of the input (N2
). The danger zone is de�ned as the bottom half part of

the image. Any image with at least one white pixel in this zone should then yield a

“change direction” directive: a binary cross-entropy loss function is used.

We use z3 [dMB08], CVC4 [Bar+11], YICES [Dut14] and COLIBRI [MBC17] SMT

solvers as standard veri�cation tools.

Here, constraints on inputs are encoded as statements on the SMT-LIB variables.

A fragment of property to check is presented on Figure 6.4. On such a simple prob-

lem, the decomposition perception/reasoning is not needed, since there exists a formal

characterization of what an obstacle is. All network’s parameters were converted using

the QF_NRA theory.

The goal was to return UNSAT, meaning no counterexample to the property was

found. Under the hypothesis that the space of all possible data is described by the

simulator (which is the case here), the model will never fail to detect obstacles. Run-

times are available in Table 6.2. For N = 5 and N = 7, most of the possible input

con�gurations were not seen in the training or test sets. Yet, the network is proven

always correct, which shows interesting generalization abilities. We were thus able to

verify quickly that this perceptive module will never miss obstacles, at least for inputs

generable by the simulator.
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N 3 5 7

Train set size 461 500 500

Test set size 51 500 500

Total possible number of samples 512 2672 19650

Table 6.1: Total number of possible samples for each N

N z3 CVC4 YICES COLIBRI

3 0.04s 0.08s TIMEOUT UNKNOWN

5 30.2s 61.2s TIMEOUT TIMEOUT

7 434s TIMEOUT TIMEOUT TIMEOUT

Table 6.2: Runtimes of solvers to answer UNSAT. TIMEOUT is one hour.

6.3 Discussion
The toy example presented last section is of course still simplistic; much work on scal-

ability is needed before real self-driving car simulators can be incorporated into formal

proofs.

While we provide a toolkit to translate neural network directly in our framework,

a way to easily represent a simulator is yet to be included. It is not an easy task,

since the simulator must be describable with su�cient granularity to allow the solver

to use the simulator’s internal working to simplify the veri�cation problem. A scene

description language with a modelling language for simulators is a possible answer to

these issues. Further theoretical characterization of the simulator procedure and its

link with the perceptive unit will be undertaken, for instance to encompass stochastic

processes.

Our current framework checks properties for all possible inputs, including anoma-

lous ones such as adversarial attacks. A possible extension would be to identify “safe”

subspaces instead, where perception is guaranteed to be perfect, and “unsafe” sub-

spaces where failures may happen.

Altough our example uses a handcrafted simulator, our framework is not limited

to it, provided su�cient trust is put under the simulator design. A recent line of work

[Tol+21; FG19; Kat+21] make use of simulators built using generative models trained

on a certain input distribution. The noise parameters used to tune the simulators are

representative of the input distribution, and can thus be used as proxies for speci�ca-

tion using CAMUS.
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;;;; Automatically generated part
;; Inputs declaration
(declare-fun |actual_input_0_0_0_8| () Real)

. . .
;; Weights declaration
(declare-fun |l_1.weight_31_4| () Real)
(assert (= |l_1.weight_31_4| (/ -5585077 33554432)))

. . .
;; An example of encoded calculation
(assert (= |8_0_0_0_39| (* |actual_input_0_0_0_8| (+ |7_80_39| (* |

actual_input_0_0_0_7| (+ |7_79_39| (* |actual_input_0_0_0_6| (+ |7
_78_39|

. . .
;; Outputs declaration
(assert (= |actual_output_0_0_0_1| ( + |16_0_0_0_1| |l_3.bias_1| )))

. . .
;;;; Handmade annotations
;; Simulator description
;; Input space constraints:
;; inputs between 0 and 1
(assert (or (= actual_input_0_0_0_8 0) (= actual_input_0_0_0_8 1)))

. . .
;; Property to check
;; ‘‘If at least one input in
;; the danger zone is white...’’
(assert
(or
(or (= actual_input_0_0_0_5 1.)

(= actual_input_0_0_0_6 1.))
(or (= actual_input_0_0_0_7 1.)

(= actual_input_0_0_0_8 1.))
. . .

;; Formulate constraint on outputs
;; ‘‘... then output for detected
;; obstacle always higher
;; than for no obstacle’’
(assert (> actual_output_0_0_0_0 actual_output_0_0_0_1))

Figure 6.4: A SMTLIB2 �le describing our problem. First part is a full description of the network, auto-

matically produced by ONNX2SMT. Handmade annotations describe the property to check,

i.e. there are no false negatives in our network. The goal for the solver is to �nd a counterex-

ample.
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Chapter 7

The tooling problem

Summary of the chapter

The impressive results of modern neural networks partly come from their non-

linear behaviour. Unfortunately, this property makes it very di�cult to apply

formal veri�cation tools, even if we restrict ourselves to networks with a piece-

wise linear structure. However, such networks yield subregions that are linear

and thus simpler to analyse independently. In this chapter, we present a method

to simplify the veri�cation problem by partitioning it into multiple linear sub-

problems. To evaluate the feasibility of such an approach, we perform an em-

pirical analysis of neural networks to estimate the number of linear regions, and

compare them to the bounds currently known. We also present the impact of a

technique aiming at reducing the number of linear regions during training.

In the previous part, we presented a possible way to address the speci�cation prob-

lem encountered when performing formal veri�cation on deep neural networks. There

is still the need of actually performing the mechanism of veri�cation, by using speci�c

tools that are properly tuned for the problem at hand. For this chapter, we will review

the performance of state-of-the-art formal veri�cation tools on deep neural networks

and present some insights on why we might need new tools.

7.1 Trying veri�cation with classical solvers

Theoretical results
Before launching veri�cation on neural networks, let us recall a few things.

Recall that neural networks are functions that are composed by linear operations

and activation functions. The most common activation function in modern neural

83
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networks is the REcti�ed Linear Unit (ReLU): x ∈ R :→ max(x, 0). This function is

piecewise linear : it is linear on ranges ]−∞, 0] (where it is equivalent to the constant

0 function) and [0,∞[ (where it is equivalent to the identity function).

When encountering piecewise linear functions, most standard SMT and LP solvers

perform what is called a case-split. For a variable x ∈ [x, x] and z = ReLU(x), the

following cases are possible:

1. x > 0, then z = x;

2. x ≤ 0, then z = 0;

3. x < 0 and x > 0, then the solver splits into two subdomains [x, 0] and [0, x and

continue on those two subproblems;

The last case adds another problem for the solver. If no particular optimizations are

applied (which is the case for solvers like Z3 and Gurobi) and the range of variables

is wide enough, a pessimistic upper bound on the number of possible cases is then

2#ReLU
, corresponding to the case where every neuron is split in its two possible ac-

tivation states. Furthermore, in [Kat+17], it is proven that formally verifying a deep

neural network is an NP-complete problem.

Experimental assertions
Theoretical results seem to point out that exploiting the linear regions for neural net-

work veri�cation is a dead-end. However, the 2#ReLU
upper bound is far from being

tight: the hypothesis behind its formulation does not take into account several charac-

teristics of neural networks: namely, their organization in layers creates a dependency

between neurons that is not captured with the 2#ReLU
bound. Plus, problems that

are known to be NP-complete can sometimes be solved practically, providing we use

adapted tools and techniques (see for instance SAT solving). In order to assess whether

classical tools would be able to work on deep neural networks, we used ISAIEH to

translate neural networks and prove linear properties on toy neural networks with

varying width and depth.

Experiments made during this thesis show that traditional solvers tend to time out

on neural networks with about 10 neurons on an output property that is linear. Over-

all, Z3 performs the best, but is still unable to scale to realistically sized neural net-

works, even when limiting to ACAS-like neural networks (with about 300 neurons):

modern architectures processing perceptual inputs have multiple order of magnitude

more neurons, and are thus even more intractable for classical tools. We also wrote a

converter from ONNX to C language, and used Frama-C’s EVA abstract interpretation

analyzer on the resulting C code. Compared to the lab specialized abstract interpreta-

tion analyzer, PyRat, EVA was about 100 times slower.
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Without any help, classical SMT or LP solvers are bound to fail; more generally,

there is a need to adapt existing techniques to the speci�cities of neural networks since

classical tools tend to be slower.

7.2 Correctly leveraging facets
Recall that ReLU neurons have two linear pieces to consider: when the input is nega-

tive, and when the input is (strictly) positive. The linear functions here are quite simple

to add into a solver with linear solving capabilities. The issue here is the sheer number

of linear problems rather than their complexity.

However, there are elements in the literature that bring hope. Speci�cally, a few

theoretical contributions have brought interesting insights on the practical number of

possible problems.

In [HR19a], the authors present an upper bound on the number of linear regions

that is exponential in the dimension of the input rather than in the number of neurons.

For a neural network with N total ReLU, L layers, nl ReLU for layer l, n0 for the input

dimension and #facets number of facets:

#facets ≤ Nn0

n0!

In the particular case where each nl has the same value k (equal width for all the

layers), another upper bound is proposed in [Rag+17]:

#facets ≤ O(kLn0)

Authors of [STR18] propose another upper bound. Let jl ∈ Z such that 0 ≤ jl ≤
min (n0, n1 − j1 . . . nL−1 − jL−1, nL). Then:

#facets ≤
jL∑
j1

L∏
l=1

(
nl

jl

)

Finally, the work presented in [Urb+19] uses linear regions to verify fairness prop-

erties by assessing them on multiple linear regions at once, leveraging parallelism. If

the number of linear regions is far lower than pessimistic theoretical upper bounds, is

it possible to use them to change how we formally verify neural networks?

This chapter is a contribution to be submitted, that aims to address the following

research questions:
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Research questions

Can we leverage the sub-exponential upper bound in the number of facets for

formal veri�cation? Is the veri�cation facet by facet faster than verifying them

independently? Can we identify features in linear regions that make formal

veri�cation more amenable?

7.3 Background

Activation vectors and facets

LetX ⊂ RDin
be a multidimensional input space, letY ⊂ RDout

be a multidimensional

output space. Let f be a trained neural network of L layers, computing values from

X to Y : f : X → Y . Each layer computes a multidimensional input and produces

a multidimensional output, both represented as multidimensional arrays (also known

as tensors). Each cell of a tensor is called a neuron. A layer li has an input in RD(i−1)

and an output in RDi
, for i = 2..L, with D1 = Din and DL = Dout. In the rest of this

thesis, we will denote a layer by l to avoid cluttering.

We consider here a network for which each layer l is composed of a linear applica-

tion, followed by a ReLU activation function on all the resulting neurons. Parameter

tensors are obtained after training and do not change while using the resulting pro-

gram. The only variables are the inputs living in X . As a running example for the rest

of this chapter, we shall take the neural network described in �gure 7.1.

For a given input x ∈ X , each neuron of the layer l can be either active, if their

value before the application of ReLU is greater than 0, or inactive when this value is

stricly lower than 0. We denote by S l
F the activation state of ReLU neurons for a given

layer l: an active neuron is denoted by 1, an inactive neuron by 0. As an example, for

the network in �gure 7.2, S1
F = (1, 1, 0), and S2

F = (1, 0). S l
F can also be seen as a

vector of dimension RDi
.

We call a facet the subset F of the input space generating a certain activation pat-

tern S l
F . The network yields the same activation pattern for all inputs within this

region. Such a facet describes a linear region, because all ReLU have a �xed behaviour

within it; thus the network with inputs reduced to F is simply a composition of lin-

ear applications. In that case, the output vector y is obtained by element-wise multi-

plication between the pre-activation vector and S l
F . For example, in the network in

�gure 7.1, for all inputs in F , y1 and y2 are inactive, while y3 is active. Thus, the �nal

output of the network is z ∗ SF = (0, 0, z3).
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Figure 7.1: A two layered fully-connected network. Weights are indicated on edges. Green circle denotes

an active ReLU neuron, while red cross denotes an inactive ReLU neuron. Both inputs x1
and x2 are positive. We see that the neuron y13 is inactive, since the weighted sum z13 =
−0.5(x1 + x2) is negative. Similarly, y22 is inactive since z22 = −0.5(y11 + y12) is negative,

y11 and y12 being positive because of being active neurons. The resulting activation states are

S1F = (1, 1, 0) (�rst layer) and S2F = (1, 0) (second layer).

Building facets

Let zli be the pre-activation value of a neuron at layer l, yli the post-activation value.

The value of this neuron is the result of a composition of a�ne transformations and

ReLUs. If yli is active, by de�nition of the ReLU, it means that zli ≥ 0. Similarly, it yli is

inactive, it means that zli < 0. It follows that the activation state can be expressed as

a linear constraint on the di�erent neurons on the previous layer. For example, if the

a�ne transformation in layer l is a matrix multiplication of elements wl
i,j with outputs
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yl−1j of the previous layer, the linear constraint to express that the neuron is active is:

zli =
∑
j

wl
i,j y

l−1
j ≥ 0 (7.1)

yli = zli (7.2)

Similarly, an inactive neuron yields the constraint:

zli =
∑
j

wl
i,j y

l−1
j < 0 (7.3)

yli = 0 (7.4)

Each of the outputs of the previous layer yl−1j are themselves the result of a compo-

sition of a�ne transformations followed by ReLUs. We can thus write equations (7.1)

and (7.3) for every previous layer, up to the input layer. Those equations de�ne bound-

aries (hyperplanes) in the space of the current layer between active and inactive state.

Thus, each ReLU neuron generates a constraint on the space of current layer. It is pos-

sible to write the activation constraints as depending solely on the input variables. Let

us take the network depicted in �gure 7.1, with two hidden layers, the �rst one having

three neurons and the second one two. For the �rst layer, z11 , z12 and z13 are directly

expressed as functions of the inputs:

z11 = w1
1,1x1 + w1

1,2x2 (7.5)

z12 = w1
2,1x1 + w1

2,2x2 (7.6)

z13 = w1
3,1x1 + w1

3,2x2 (7.7)

Expressing z21 and z22 with inputs depends on the activation S1
F . First, we have:

z21 = w2
1,1y

1
1 + w2

1,2y
1
2 + w1,3y

1
3 (7.8)

z22 = w2
2,1y

1
1 + w2

2,2y
1
2 + w2,3y

1
3 (7.9)

For instance, if S1
F = (1, 1, 0), then we have

y11 = z11
y12 = z12
y13 = 0

Thus, equation (7.9) becomes

z21 = w2
1,1y

1
1 + w2

1,2y
1
2 (7.10)

z22 = w2
2,1y

1
1 + w2

2,2y
1
2 (7.11)
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Reinjecting equation (7.7) in equation (7.11) �nally gives

z21 = (w1
1,1w

2
1,1 + w1

2,1w
2
1,2)x1 + (w2

1,1w
1
1,2 + w2

1,2w
1
2,2)x2 (7.12)

z22 = (w1
1,1w

2
2,1 + w1

2,1w
2
2,2)x1 + (w2

2,1w
1
1,2 + w2

2,2w
1
2,2)x2 (7.13)

Note that equation (7.13) is only valid within the facet F de�ned by S1
F = (1, 1, 0).

A di�erent activation state in the �rst layer would change the numerical coe�cients.

Recall that for our particular case, weights wl
i,j are known during analysis: the only

variables are the input variables xi and the result of propagation zli.

More generally, given a facet F , the corresponding activation states S [1..L]
F , and an

input vector X , we can obtain the hyperplane equations upto layer l by computing

l∏
k=1

Sk
FW

kX (7.14)

Geometric interpretation
We just explained how, given a facet, it was possible to express all hyperplanes equa-

tions in function of the inputs. Recall that each ReLU neuron generates one hyperplane

in the input space; each side of this hyperplane is thus a subspace of the input space;

each subspace de�nes where the neuron is active or inactive. The conjunction of the

constraints of all ReLU neurons gives a facet. Since all constraints are linear, the result

of this conjunction is a convex polyhedron.

Key point

A facet is the convex polyhedron described by the set of constraints resulting

from a given activation pattern. A neural network with inputs restricted to one

facet is a linear function.

Changing the activation state of one neuron means crossing a hyperplane on the

input space. See �gure 7.2 for a geometric illustration of this phenomenon.

7.4 Divide and conquer on linear regions
We aim to formally verify a neural network: given a network f , a precondition on

the input space D ⊂ X and a postcondition on the output space P ⊂ Y , we want to

provably ensure that

∀x ∈ D → f(x) ∈ P

The form of the pre and postcondition varies according to the property we want to

check. For instance, given x ∈ X ,∀ε < ε0, local adversarial robustness around a
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Figure 7.2: On the left: a network with activation states. On the right: the corresponding input space.

On top: S1F = (1, 1, 0). On bottom: S1F ′ = (1, 1, 1). Changing the activation state results in

a di�erent linear region in the input space. Also note that all potential facets are convex.

sample would be expressed as f(x+ ε) = f(x) (note that x+ ε might be in a di�erent

facet than x). For safety properties of the ACAS benchmark, the preconditions on the

inputs and outputs are linear constraints.

Linear operations are easier to verify than networks with ReLU, since they do not

produce case splits on solvers. If we somehow have an exhaustive list of actually
reached facets for our problem at hand, it would be possible to verify each facet in-

dependently. The naive estimation of the number of possible facets is exponential in

the number of neurons: 2#ReLU
. This is because for each neuron, there are two possible

activation states. However, literature shows that a network does not actually exploit

the whole set of possible linear regions. Multiple works on expressivity [Rag+17] and
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experimental counting of linear regions [HR19b], [STR18], [SR19] show that the actual

number of reached linear regions is not exponential in the number of ReLU neurons.

For a simple task, a deep and wide network could partition the input space into a few

regions only. Some facets may also have speci�c characteristics, for instance having a

wider support in the input space. Analyzing the number of facets and their character-

istics is thus relevant.

On the other hand, we want to perform a sound and complete veri�cation. Sound

means that if our method answers that a system is safe, then it is actually safe; com-

plete means that if a faulty behaviour exists for our problem, it will be spotted by our

procedure. The key point is thus to exhibit a procedure to enumerate all the facets

that are actually within the (constrained) input space, while excluding empty facets,

i.e., associated to activation patterns that are not realizable. In other words, we want

to �nd all non-empty Fi such that

⊔
iFi = X .

Enumeration of facets
Our approach is to start from the beginning of the network and proceed neuron by

neuron. Using an initial bounding box D as an initial constraint on the inputs, we

iteratively build the linear constraints composing the neural network, as described in

section 7.3. When a ReLU neuron yi is considered, we aim to check whether it can be

active, inactive or both, considering the activation state of its predecessors. We thus write

the constraints corresponding to the activation states, and check if they are consistent

with the previous activation states. A facet is thus a valid activation pattern for all the

network: the conjunction of one possible valid activation for all ReLU neurons.

The active pattern yields the constraint described by equation (7.1):

zli =
∑
j

wl
i,j y

l−1
j ≥ 0

yli = zli

Similarly, the inactive pattern yields the constraint described by equation (7.3):

zli =
∑
j

wl
i,j y

l−1
j < 0

yli = 0

If only one of the two activation states is possible, then the constraints describing

this state are added to s, and the algorithm goes through the next neuron. If both

activations are possible, then the problem stack is copied. Active constraints are added

to the �rst copy, while inactive constraints are added to the second one. Since the

two sub-problems are independent, this algorithm can be parallelized. Let us detail the

algorithm on the neural network presented in �gure 7.3.
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Figure 7.3: The same two-layered network, but with a wider input space. Here, possible activation states

are S1F = (1, 1, 0) or (1, 1, 1) (�rst layer) and S2F = (1, 0) or (1, 1) (second layer).

Both inputs are positive. An initial constraint stack s1 is �lled with the constraints

describing the linear operations occuring in the �rst layer, as well as the input con-

straints:

x1 ≥0

x1 ≤1

x2 ≥0

x2 ≤1

z11 =x1 + x2

z11 =x1 + x2

z12 =x1 + x2

z13 =− x1 + x2

Looking at the �rst equation, z11 can only be positive. The solver answers negatively

when asking it to solve what is currently on s1, plus the following constraint, corre-

sponding to the case where the neuron y11 is inactive:

z11 ≤0

y11 = 0
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It means that the opposite constraints (y11 is active) is the only possibility. We thus add

to s1 the following contraints

z11 >0

y11 =z11

Similarly, z12 can only be positive: we solve s1 plus the inactive constraints set, the

solver answers negatively so we add to s1 the active constraints set.

z12 >0

y12 =z12

For z13 , if x1 > x2, then the result is negative; and positive otherwise. Since the speci-

�cation on our inputs does not give that information, both cases are possible. Indeed,

the solver answers positively for both cases. The stack s1 then is copied, obtaining a

new stack s2. We add to s1 the following constraints, corresponding to the activation

of y13 :

z13 >0

y13 =z13

and we add to s2 the following constraints, corresponding to the inactivation of y13 :

z13 ≤0

y13 =0

We now have two stacks with di�erent contraints: a new process is spawned to deal

with stack s2, while the initial process keeps s1. On the second layer, we add to both

stacks the linear equality constraints:

z21 =y11 + y12 − 3y13
z22 =− 0.5(y11 + y12) + y13

We then proceed to neuron y21 . Here, the possibilities depend on the stack we are in:

1. if the current stack is s2, then y13 = 0, hence z12 > 0, thus y21 can only be active;

we add the corresponding constraints to s
′
;
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2. if the current stack is s1, then y13 > 0, thus z12 can be both positive and negative

(z21 = 5x1 − x2); we must then copy the stack s1 on a new stack s3. s1 con-

tains the activation constraints for neuron y21 , while s3 contains the inactivation

constraints

We now have three constraint stacks: s1, s2 and s3. Finally, on neuron y22 , another

choice is possible:

1. if the current stack is s1, then all neurons are active; z22 can only be negative,

thus the inactive constraint is added to s

2. if the current stack is s2, then neuron y13 is inactive; z22 can only be negative

again, thus the inactive constraint is added to s2

3. since s3 has the same constraints on previous layer than s2, the result is the same

We �nally have three di�erent constraints stacks, whose content is displayed �gure 7.4.

See alg. 1 for a pseudo-code description.

z11 =x1 + x2 z12 =x1 + x2 z13 =− x1 + x2

z21 =y11 + y12 − 3y13 z22 =− 0.5(y11 + y12) + y13
z11 ≥0 y11 =z11
z12 ≥0 y12 =z12

s1

z13 ≥0 y13 =z13
z21 <0 y21 =0

z22 <0 y22 =0

s2

z13 <0 y13 =0

z21 ≥0 y21 =z21
z22 <0 y22 =0

s3

z13 <0 y13 =0

z21 <0 y21 =0

z22 <0 y22 =0

Figure 7.4: Content of constraint stacks; constaints above the three stacks are common to all of them

Once we obtain the set of all relevant facets, it is possible to build the corresponding

linear functions. This set of linear functions represent all the possible behaviours of

the network on its input space. Veri�cation of the property can then be launched on

each linear function; since they are independent problems: parallelization can also be

used.

More formally, let us consider a facet set

⋃
iFi for a network f , an input space X ,

an output space Y , a precondition on the input space D ⊂ X and a postcondition on

the output space P ⊂ Y . We aim to formally verify that x ∈ D =⇒ f(x) ∈ P .

Partitionning consists on adding to the network’s control �ow the constraint on the
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inputs yielded by Fi, and in enforcing the corresponding activation state for all ReLU

neurons. The resulting function is thus a composition of linear operations: orig-

inal matrix multiplications and active or inactive ReLU (which are diagonal matri-

ces multiplied to the pre-activation inputs). Then, the veri�cation problem becomes

x ∈ D ∩ Fi =⇒ f(x) ∈ P . As facets are Dividing the Input Space into COnvex

polytopes, we will be referencing our technique as DISCO in the rest of this thesis (not

to be confused with [BKN16]).

7.5 Studies on facets
So far, we presented a methodology to use facets to ease formal veri�cation. Some

characteristics of those facets remain however unknown. What is the volume occupied

by a facet in the input space? Are all facets activated uniformly? Which parameters

in�uence the number of facets? In this section, we perform an analysis of the facets

of several networks. These are fully-connected networks with three hidden layers,

with various numbers of inputs. Architecture details are on table 7.1. Those networks

are trained to perform multiplication between N �oating point numbers sampled ran-

domly according to a normal distribution between 0.5 and 2.

Towards counting facets and beyond
The initial motivation of this work was that the theoretical maximum number of facets

was far over the actual number, and that it might be possible to leverage facets for

formal veri�cation. We observe that for our problem at least, this seems to be the

case. We took the best performing networks in terms of accuracy and reported their

number of facets in �gure 7.5. The x-axis is the dimension d of the input, y-axis is the

number of facets. Note that the number of neurons n directly depends on d as de�ned

in table 7.1, hence the log-linear progression for both the naive and Hanin bounds.

Most of the networks have about one or two orders of magnitude fewer facets than the

bound proposed in [HR19b]: K ∗ nd

d!
. This is an encouraging result, as it indicates that

on multilayer feedforward neural networks, this upper bound is not tight and can be

further re�ned. The progression seem sub-exponential on the input dimension; further

experimentations are to be conducted to validate our hypothesis.

Not all facets are equal
Reducing the number of facets is a way to reduce the complexity of veri�cation. When

starting the veri�cation, the solver will try each facet without prioritizing one over

the other. This relies on the assumption that all facets are activated relatively evenly,

that is to say, that each achievable facet has an equal chance to be activated by an
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Figure 7.5: x-axis is the input dimension d. Upper orange line with dots is the naive, 2n bound. Middle

blue line with crosses is the bound proposed by [HR19b] K ∗ nd

d! . Red stars are the best

performing networks for our experiments. Left �gure is for the simple architecture, middle

�gure is for the big architecture, right �gure is for the super architecture. y-scale is logarith-

mic

input point. However, if some facets were activated more frequently than others, this

would mean that the neural network is biased towards certain input subspaces. For

instance, in image recognition, the subspace of the inputs that contain images with

a speci�c signi�cant feature would be processed similarly by the network. Another

point of interest is that prioritizing veri�cation on those could result in obtaining a

meaningful answer faster, since a wider part of the input space is within the facet.

Also, the frequency of a facet’s occurrence can be a good proxy to estimate the space

occupied by the facet in the input space.

Thus, we plotted the distribution of points for each facet, as follow. We built a

test set by uniformly sampling 10000 inputs on neural networks (according to a log-

normal distribution between 0.5 and 2), and collected the number of points contained

in each facet. This can be done without requiring an exhaustive enumeration of facets,

as only facets reached by those 10000 points are considered. Results are available on

�gure 7.6. On this �gure, x-axis denotes a unique facet, y-axis denotes the number

of points that activated it. The y-scale is logarithmic. We �rst observe that points

are not distributed uniformly on facets. For instance, for two inputs, the �rst most

activated facet is activated by almost 104
points, while the second most activated facet

is activated by less than 103
points, which means that the �rst facet captures almost

all the sampled inputs, thus the computation of most of the sampled inputs by the neural
network can be reduced to the processing of a single linear function. More generally,

we observe that a few facets are activated by a relatively high fraction of the total

sampled points. This validates the hypothesis that, at least on our problem, facets are
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Figure 7.6: Distribution of points in facets for di�erent input dimensions

not activated uniformly by the inputs. This is no surprise: complex non-linear functions

approximated by neural networks over an input space X have no particular reasons to

vary uniformly. To elaborate a bit more, let

⊔
iFi = X the decomposition of X into

facets. By slightly abusing notations, we denote by Fi the linear function represented

by its corresponding facet. Finally, let us denote our neural network by f : X 7→ Y .

Having a uniform distribution of points within facets would mean that the support of

f on each Fi should be of the same volume, which is less and less likely as the input

dimension increases.

What makes facets shine?
Neural networks are the result of a complex optimization process. As the weights

of a neural network directly in�uence its possible activation states, one may wonder

if this optimization process has an in�uence on the number of facets. We postulate

that, as stated in [Rag+17], a higher number of facets can be interpretated as a higher

expressivity for the network, leading to better accuracy. To answer, we trained several

neural networks of the same architecture with di�erent seeds. We present on �gure 7.7

a summary of all the experiments we made. We observe for instance that for the dataset

5 with 25 total neurons, some neural networks have less than 200 facets, while others

have more than the double. More generally, changing the initialization seed greatly

modi�ed the number of facets for a given neural network, with extreme consequences

on higher input dimensions. In contrast, changing the learning rate and the number of

epochs did not result in a signi�cant change in the number of facets compared to the

initialization. Our hypothesis is that the training of small, underparametrized neural

networks is very sensitive to the initialization, for optimization di�culty reasons. This
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Figure 7.7: x-coordinate denotes the number of facets, y-coordinate the accuracy of the network

may also come from the low complexity of the function we are studying on the input

space (multiplication of two real values on [0.5, 2.0] is a saddle with small curvature).

Adding more parameters to our neural networks to overparametrize them may lead to

a better stability in the number of facets. We observe that a higher number of facets

results in a higher accuracy: networks on the right of the x-axis (number of facets)

tend to be on the top of the y-axis (accuracy). This is not the case for dataset 5 with

25 neurons. Apart from it, which could be an outlier due to the lack of accurate neural

network for this speci�c dataset, this validates our hypothesis that the number of facets

is correlated with the accuracy. To get an intuitive understanding of this fact, let us

consider the two extreme cases. If the number of facets is very low compared with

the input space dimension, it means that the neural network have very little di�erent

possible behaviours on the input space. For a classi�cation, if the number of facets is

below the number of classes, the task cannot be achieved. On the opposite, a neural
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network with a very high number of facets compared to the input space dimension

would theoretically be able to approximate the expected behaviour for each datapoint,

which would result in a higher accuracy.
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Data: An input space domain D, a list of all neurons in the network N
Result: A set of linear problems describing all feasible facets for the input

space

// build the expressions for each neuron

1 lin_exprs, relu_neurons = BuildExpression(N)
2 len = Length(relu_neurons)
3 stack = D
// the only shared resource between processes

4 facets = ∅
5 def SendToNewProcess(stack, index, facets):
6 while index < len do

// linear expressions describing the activation state for a given

neuron

7 neuron = relu_neurons [ index ]

8 lin_expr = lin_exprs [ index ]

9 stack.push(lin_expr)
10 active_expr, inactive_expr = BuildConstraints(neuron)

// test and propagate only the feasible activations

11 if Solve(stack
⋂

active_expr) then
12 if Solve(stack

⋂
inactive_expr) then

13 stack_copy = stack.copy()

14 stack_copy.push(active_expr)
// send the copied stack to a new instance of the algorithm

15 SendToNewProcess(stack_copy, index + 1, facets)
// proceed in the current process with the other possible state

16 stack.push(inactive_expr)
17 else
18 stack.push(active_expr)
19 end
20 else
21 stack.push(inactive_expr)
22 end
23 index = index + 1

24 end
// when all neurons have been analysed, add the resulting linear

constraints to the list of facets

25 facets.append(stack)

26 end
// launch the algorithm on the first ReLU neuron

27 SendToNewProcess(stack, 0, facets)
28 return facets

Algorithm 1: Counting facets
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name L1 L2 L3
Total number of

neurons

simple d× 2 d d/2 3.5d
big d× 3 d d/2 4.5d

super d× 4 d× 2 d 7d

Table 7.1: number of neurons for the di�erent architectures. d denotes the dimension of the input, Li

the i− th layer of the network





Chapter 8

Tackling the combinatorial problem
in practice

Summary of the chapter

We present our implementation of DISCO on ISAIEH. To give a proper context,

we present some of the most prominent tools of neural network veri�cation,

classi�ed under two main categories: exact methods and overapproximative

methods. Exact methods are able to provide optimal answers, but are di�cult to

scale to larger networks. Overapproximative methods provide certi�ed upper

and lower bounds on the reachable output for the neural network, which can

be used to answer veri�cation queries. Our approach of DISCO is quite simple,

without any optimization. We perform faster than traditional SMT solvers on

simple problems while LP problems do not seem to bene�t from our approach.

Implementing optimizations within our implementation is a �rst research track;

an overapproximation scheme reducing the number of linear regions while pre-

serving the semantic of the network is currently planned.

We described why leveraging linear regions for formal veri�cation was a track

worth considering. After showing that the number of linear regions was far below the

upper bounds found in literature for our problems, we now present our implementa-

tion of the DISCO method and the result of our approach compared to state-of-the-art

machine learning veri�cation tools.

8.1 Existing tools for machine learning veri�cation
In less than a decade, an impressive amount of research was undertaken to bring formal

veri�cation knowledge and tools to the �eld of adversarial robustness. We shall present

103
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a fraction of those tools, using a taxonomy presented in [Bun+17]. This taxonomy sep-

arates existing tools between two main families: exact methods and overapproximative
methods. We will present the tools in those two categories, and further re�ne this clas-

si�cation. Note that this taxonomy is also closely linked to how we presented formal

methods in chapter 3.

Exact methods
The �rst category regroups all techniques relying on exhaustive exploration of the

search space, or exact methods. Among such techniques are SMT calculus and LP op-

timization. Recall that SMT or LP rely on the same basic idea: the veri�cation problem

consists in deciding whether, for a given formula, there exists an instantiation of the

variables that makes the formula true. Program properties and control �ows are en-

coded as logical formulae, that specialized solvers try to solve. For SMT, it is possible to

express precise properties such as elaborate logical constructs (conjunctions of disjunc-

tions) and non-linear properties (multiplication between values). Since most solvers

try to be exhaustive over the search space, a careful formulation of the constraints and

control �ow is necessary to keep the problem tractable.

SMT

Reluplex [Kat+17] and Planet [Ehl17] are the �rst techniques to aim for exhaustive

veri�cation of neural networks, using SMT calculus. They propose a reformulation of

the simplex algorithm to lazily evaluate ReLU and branching heuristics such as case-

splitting on individual neurons. Their work focus on the algorithmic method used

to solve a non-linear, non-convex problem. ReLuPlex is an SMT solver integrating a

modi�ed simplex algorithm, that lazily evaluates ReLU, reducing the need to branch

on non-linearities. The core idea is that Reluplex stores upper and lower bounds of

every variable (inputs and outputs of each layer) at any time. A veri�cation query will

add constraints on inputs and outputs: the overall goal is to either reach a possible as-

signment for each variable regarding the query, or reach a point where no assignment

exists. Each step of the algorithm is trying to modify the bounds of variable assign-

ments in order to meet constraints; which leads to tighter bounds and new constraints

to take into account. The process is proven to terminate on piecewise linear networks.

Reluplex follow-up work, Marabou [Kat+19], improves and extends the tool to sup-

port more complex networks. They propose a divide and conquer approach where the

solver starts with an initial small timeout on an input space: failure to reach a conclu-

sive answer will split the input domain into smaller subdomain. Smaller subdomains

reduce the search space and allow for more e�cient deductive steps. The original pa-

per does not detail what kind of splitting heuristic is used. Marabou also integrates
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network-level reasoning, for instance by tightening the bounds of variables by propa-

gating symbols.

Branch and bound

In [Bun+20], the authors rephrase the problem of adversarial robustness veri�cation

as a global optimization problem on which we can apply various solving strategies.

The key point of their approach is to split the search space into multiple branches to

�nd optimal bounds with a reasonable time budget: hence the name branch and bound
(B&B).

In their framework, a ReLU neural network veri�cation problem can be encoded

by the following:

x0 ≤ x0 ≤ x0 (8.1)

xn ≤ xn (8.2)

zi+1 = Wi+1xi + bi+1 (8.3)

xi+1 = max(zi, 0) (8.4)

(8.5)

Their goal is to assess the sign of the output, using linear optimization. To increase the

e�ciency of this approach, they propose new branching heuristics:

1. on input domains, they propose to split the domain on the highest dimension

2. on ReLU neurons, they propose to prioritize splits that may lead to tighter lower

bounds

Their recommendation is to focus on designing new splitting heuristics for both ReLU

neurons and input domains, which is exactly what we do with DISCO. We lacked the

time to implement their proposal on DISCO; we believe that doing so would lead to

even better performances.

Mixed Integer Linear Programming

The veri�cation of adversarial robustness properties on piecewise linear networks can

also be formulated as a MILP problem, such as in [TXT19]. This encoding is the one we

used for neural networks on the LP side. Encoding the linear operations is similar to

equation (8.5). Their ReLU encoding is the only key di�erence; we reproduce it below.

We can encode the ReLU operation y = max(z, 0) like this:

y ≤ z − z(1− a)) ∧ (y ≥ z) ∧ (y ≤ z ∗ a) ∧ (y ≥ 0) ∧ (a ∈ 0, 1)
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They make use of interval arithmetic and linear programming to compute tight bounds

of the linear relaxations of ReLU neurons, vastly improving the scalability of veri�ca-

tion. Adversarial robustness properties were thus checked on ResNets (an architecture

considered quite deep, with about 16 layers) with l∞-bounded perturbations on CIFAR-

10.

Performances

Here, we present a synthesis of performances of the selected tools. Performance is

evaluated regarding the speed of di�erent methods and, for adversarial robustness, on

the accuracy of bounds. A summary is presented table 8.1.

Benchmarks are the following:

1. proving ACAS properties as described in chapter 3; unless stated otherwise, this

is the φ2 property, which is one of the hardest;

2. assessing that all inputs of a neural network trained on MNIST are correctly

classifed around an l∞ ball (MNIST);

Apart from B&B, most tools used di�erent input formats and were not easily tailored

to work on di�erent networks and benchmarks. Methods worked on other bench-

marks than those presented here; we selected results that seemed representative of the

performance of the presented tools.

Overall, the MILP approach supports the widest range of threat models, while being

able to compute lower bounds and exact values for adversarial robustness. MILP tend

to be slightly less expressive than SMT approaches to express properties: for instance,

conjunctions of disjunctions like the φ2 property of ACAS are di�cult to express, and

non-linear properties are impossible to prove directly. However, the authors are able

to �nd the minimal perturbation above which misclassi�cation is possible, where B&B

only assess the robustness on existing perturbation settings. The B&B reformulation

and subsequent optimizations proved to be the most e�cient of approaches, in terms

of range of veri�able properties as well as runtimes.

Overapproximation methods
The second set of techniques in formal methods is based on overapproximating the

program’s behaviour. Indeed, since solving the exact veri�cation problem is hard,

some authors worked using techniques building overapproximations of the program,

on which it is easier to verify properties. This usually results on guaranteed lower

bounds on the perturbation around a set of points (usually the dataset). Most work

in this line of work also devised techniques to enhance the adversarial robustness of

their networks, based on the bounds they were able to compute. A summary of the

performances of those tools is available table 8.1.
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Method

Benchmark
ACAS

MNIST adversarial

robustness

Marabou[Kat+19]

1200s (average) for one

property

–

Planet[Ehl17]

on par with Marabou

on simple instances, ≈
1000 times slower on

di�cut instances

106.8s (l∞0.08 threat

model)

MILP[TXT19] –

≈ 100s to �nd the

exact minimal

distortion

B&B[Bun+20]

98% of properties

solved in one hour

1200 cases solved in

about 120s

Table 8.1: Runtimes for di�erent benchmarks as reported in the original publications

Abstract interpretation

A line of work from ETH Zurich focused on adapting abstract interpretation to deep

neural networks, for instance in [MGV18; Sin+19; SG19]
1
. In those papers, the au-

thors propose and enrich ERAN (ETH Robust Arti�cial Intelligence), a framework for

building abstract interpretations of neural networks, which they use to derive a tight

upper bound on robustness for various architectures and for regularization. They also

combine with exact methods to compute tighter bounds, such as in [SG19]. They pro-

pose abstract transformers for the most common operations of deep learning, and use

those to verify local adversarial robustness on CIFAR-10 and MNIST, as well as to prove

ACAS properties.

Upper and lower bound propagation

The �rst instance of speci�cally-tailored deep learning veri�cation described how to

re�ne non-linear sigmoid activation function to help veri�cation [PT10].

The authors of [WK17] proposes an outer convex envelope for ReLU classi�ers

with linear constraints, expressing the robustness problem as a Linear Programming

(LP) problem. Their approach, shared by most of the authors in this line of work, is

to overapproximate the output of a ReLU y = relu(z) neuron by its convex hull (see

�gure 8.1).

They choose to maximize the dual problem of the original veri�cation problem

problem to achieve a lower bound; the dual formulation being easily solvable. Up-

1
full list of publications available at https://github.com/eth-sri/eran#publications, last con-

sulted 2021/07/12

https://github.com/eth-sri/eran#publications
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z

y

z z

ReLU

z

y

z z

convex relaxation of reachable set

y ≥ 0, y ≥ z,−zz + (z − z)y ≤ −zz

Figure 8.1: Linear overapproximation of y =ReLU(z). Note that it includes negative values, which

would normally not be possible for the output of a ReLU.

per and lower bounds on each neuron are computed by a backward propagation on

the neural network of the original constraint. Once those bounds are computed, the

authors use it during training to identify “worst case” perturbations and train neural

networks to detect wrong cases.

The authors of the tool Reluval [Wan+18b] introduce symbolic interval analysis

and various heuristics applied to it. Inputs of the neural network are symbolic values

with bounds, that are propagated through the network. Through careful heuristics (for

instance, leveraging parallelism with interval bisection), they are able to derive output

bounds on neural networks. The following work, Neurify [Wan+18a], combines this

approach with targeted overapproximation to further enhance scalability.

CNN-Cert [Boo+19] is a framework for neural network veri�cation developped at

IBM. Its bound propagation follows a forward approach, by proposing tight boundings

for every non-linear operation of the neural network (much like abstract interpretation

approaches).

Tools leveraging linear regions
Regarding linear regions, a theoretical extension of the universal approximation the-

orem applied to robustness certi�cation was proposed in [BMV20]. An exact enumer-

ation scheme was proposed by [STR18] using MILP. Our enumeration scheme closely

follows theirs, with some additional heuristics; we also leverage the obtained linear

regions to perform formal veri�cation, while they do not. They also provide initial

insights by showing a correlation between accuracy and the number of facets.
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Method

Benchmark
ACAS MNIST CIFAR

Outer Polytope[WK17] –

5.81%, ε = 0.1
robustness bound

–

ReluVal[Wan+18b] 15632s for φ9
4.4% test error on

MNIST for l∞ < 1

ERAN[SG19] 227s for φ9

15% robust test error,

35s mean runtime,

ε = 0.03

ε = 0.1, 79% robust

error, 20s mean

runtime

CNN-CERT[Boo+19] –

0.049 certi�ed lower

bound, 2.33s for one

sample

0.0042 certi�ed lower

bound, 15.11s for one

sample

Table 8.2: Runtimes for di�erent benchmarks as reported in the original publications

Finally, our work is closely related to [Bak+20], where authors propagate linear

constraints within neural networks to check formal properties on fully-connected deep

neural networks. They use numerical domains to propagate more information than we

do, namely upper and lower bounds of variables within each linear regions. They are

also able to overapproximate their propagated set, although this makes their method

not complete. In contrast, our path enumeration is always sound and complete, and

only needs to be called once to verify any property afterward.

Performances

Most of the following methods are properly scaling to more complex datasets and wider

architectures. As such, another comparison can be made on the CIFAR-10 dataset.

Overall, CNN-CERT and ERAN are the tools that support the most operations (re-

cent work on ERAN [Bon+21] even try to tackle transformer architectures), while the

outer polytope and ReluVal approaches are behind in terms of support. ERAN is faster

on deeper networks. Another tool, [Tra+20], implements various abstract domains, as

well as a new star set. They evaluate their work on ACAS-Xu properties φ3 and φ4,

and they report results consistently slower than ReluVal on those instances.

8.2 E�ciently implementing DISCO in ISAIEH
To count facets, it was necessary to be able to modify the activation state of a ReLU

neuron. To do so, we devised an operator, outside ONNX scope, that replace the ReLU

operator with an identity followed by a multiplication by 0 or 1 according to the op-

erator parameters. This binary vector is the direct implementation of the layer-wise

activation state SFi
. Then, a forward propagation is conducted, following the algo-

rithm described in alg. 1 and creating a Problem value. Problems are a list of linear

constraints attached to NIER operators. A problem can be solved using LP or SMT
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technologies, or directly written down into SMT or LP format for later use. To take

into account the various solving technologies, a Solver functor is de�ned. Functors

are OCaml implementation of polymorphism: they provide functions from modules to

modules, providing the input modules respect a certain interface speci�cation. Here,

the function SolverModule takes a SolverTech module which must implement an in-

stanciation function, as well as a string representation. The resulting module has the

ability to solve a problem, as well as to write it down under a string representation. A

Problem is encoded as follows:

module Constraint : sig
type variable = Var of string
type value = float
type t = Hashtbl (variable, value)

end
module Problem : sig
type b = ApplyReLU | ApplyRW_ReLU of NIER.operator_parameters | ApplyNothing
type t = {constraints : (Constraint.t*b) list,

variables : Constraint.variable set
}
val from_nier : NIER.t -> t
val add : t -> Constraint.t -> t

end
module Solver (Target : SolverTech) : sig
type res : OK | KO
val solve : constrs -> Target.t -> Target.opts option -> res

end
module SolverTech : sig
type t
type opts
val instanciate : Problem.t -> opts -> t
val to_string : Problem.t -> string

end

Parallel implementation of DISCO

Since DISCO is implemented in OCaml, direct multicore implementation was di�-

cult, as the language was not straightforwardly supporting parallel implementation at

the time: although there exists an implementation of multicore OCaml, preliminary

experimentations using Python shown that parallelism brought quanti�able, but lim-

ited improvements; the engineering work of implementing DISCO alone was complex

enough.
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name L1 L2 L3
Total number of

neurons

simple d× 2 d d/2 3.5d
big d× 3 d d/2 4.5d

super d× 4 d× 2 d 7d
perception d/2 d/4 – 0.75d

Table 8.3: number of neurons for the di�erent architectures. d denotes the dimension of the input, Li

the i− th layer of the network

8.3 Experimentations
This section describes analysis and performance assessments made on our implemen-

tation of DISCO. On all settings, neural networks are trained with PyTorch [Pas+19]

and exported into ONNX using PyTorch dedicated functions. Unless speci�ed other-

wise, neural networks weights are initialized using Glorot initialization with a gain

of 1, and trained using the PyTorch implementation of the Adam optimizer. Neural

network training took place on the lab GPU cluster, Titanic, a SLURM-powered clus-

ter. Experiments using formal veri�cation tools are conducted on a Dell Precision 5530

with an Intel Core i7-8850H CPU, 2.6Ghz, and Ubuntu 20.04.1 LTS as operating system.

DISCO
We implemented DISCO in OCaml, within ISAIEH. ISAIEH performs symbolic propa-

gation to compute the hyperplanes delimiting facet boundaries during a forward pass,

the building of facets is then made according to alg. 1. The linear programming im-

plementation was made with the Python programming language, and Gurobi [Gur21]

was used as an LP solver (Version 9.1.1). For the SMT veri�cation, z3 [dMB08] was

used (Version 4.8.10).

We consider the two synthetic problems we already used before:

1. detection of the presence of an obstacle within a given area, already presented

in chapter 6; this problem will be N-perception for the rest of this thesis

2. multiplication between N �oating points numbers, already presented in chap-

ter 7 ; this problem will be called N-multiplication for the rest of this thesis

For those problems, we study di�erent architectures. All of them are fully-connected

networks. N − multiplication networks have three hidden layers, N − perception
ones have two hidden layers. Details are on table 8.3.

For each of the two problems, we aim to count the number of facets, then verify

whether the network respects its speci�cation. For N − multiplication, we check
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whether the network can indeed produce multiplication results within the tolerance.

As formulating this problem directly is impossible due to linear programming limita-

tions, we instead check if following property is veri�ed:

N∑
k=1

xk + 1− 5

4
N + αN 6

N∏
k=1

xk (8.6)

with αN = 0 if the input dimension N is even and αN = 1
4

otherwise. This property

should be always true for our input space [0.5, 2]N . A proof of this inequality can be

found in part V. For N − perception, we check the following two properties:

1. if an input with at least one obstacle (modeled as white pixel) in the lower half

of the image is presented to the network, the output will always be over 0

2. if an input with no obstacle on the lower half of the image is presented to the

network, the output will always be below 0

See table 8.4 for results. For each network, the �rst column describes the runtime of

veri�cation without our technique, while the second column describes the runtime of

veri�cation on all facets. To be fair, the runtime of the enumeration scheme is also

noted in the third column. Solving with DISCO or with standard MILP formulation

always returns the same result. Note however that the splitting in linear regions is

independent of the veri�cation problem: costly enumeration algorithms could be used

to obtain the facets of a neural network once, then veri�cation could happen after-

ward. A violation of property in one facet stops the veri�cation and returns the fail-

ure, in a naive "fail-�rst" heuristic. Preliminary experiments on networks with a high

number of facets show that failures are detected early: guiding the search with a fail-

�rst heuristic would prove even more useful. Chosen networks are those with the

maximum accuracy, with similar architectures. N − multiplication problems were

solved using Linear Programming, while N − perception problems were solved us-

ing SMT, QF_LRA theory. We note that the speed-up for the problem veri�cation is

much higher with SMT than LP. A possible explanation is that the number of facets

with N − multiplication being much lower than in N − perception, the additional

cost of counting and parallelizing veri�cation on each facet is not worth the e�ort. It

is also likely that Gurobi performs speci�c heuristics allowing to e�ciently deal with

piecewise linear problems.

Formally proving a property using DISCO requires to enumerate all possibly reach-

able facets. Even if their practical number is far below theoretical upper bounds, any

existing method reducing it is worth studying. Such a method exists: maximum mar-

gin regularization (MMR), presented in [CAH19]. The authors propose to modify the

learning objective of the neural network to maximize the distance between a sample

and nearby facet boundaries. Neural networks tend to “push away” the boundaries,
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Dimension of

input

No split

DISCO

veri�cation

Facet

enumeration

Total time

DISCO

3 super 0.769s±0.0205 0.145s±0.012 2.69s±0.0596 2.83s

3 super mmr 0.498s±0.00295 0.184s±0.0142 1.86s±0.0142 2.05s

4 big 0.25s±0.00423 0.0972s±0.00764 0.663s±0.0156 0.76s

4 big mmr 0.454s±0.0104 1.43s±0.0444 16.9s±0.0931 18.3s

4 super 5.43s±0.31 0.71s±0.0591 13.1s±0.859 13.8s

4 super mmr 3.69s±0.133 2.77s±0.174 35.7s±1.41 38.4s

5 simple 0.0179s±0.00596 0.0771s±0.0077 0.699s±0.0124 0.776s

5 simple mmr 0.0204s±0.00084 0.346s±0.0174 3.75s±0.0581 4.09s

5 big 0.0279s±0.00148 1.31s±0.0622 17.4s±0.283 18.7s

5 big mmr 0.0154s±0.000531

1.48s±0.0513 18.8s±0.0867 20.3s

6 simple 0.0264s±0.00124 0.988s±0.0693 11.6s±0.186 12.6s

6 simple mmr 0.0291s±0.00132 1.3s±0.0342 16s±0.149 17.3s

7 simple 0.0474s±0.00158 16.8s±0.831 227s±8.51 244s

7 simple mmr 0.0306s±0.0016 1.09s±0.0348 15.6s±0.555 16.7s

8 simple 0.0484s±0.00551 1.65s±0.113 27.2s±0.576 28.8s

8 simple mmr 0.12s±0.00269 1.72s±0.0988 28.9s±0.697 30.6s

5× 5 perception 132s 23.7s 0.86s 24.56s
7× 7 perception TIMEOUT 1393s 15.38s 1406.38s

Table 8.4: Runtime for di�erent problems. TIMEOUT is set at 10000s. Figures are mean taken over 10

runs, standard deviation is reported next to the ± symbol

resulting in fewer facets for a �xed X . More formally, let us consider a facet Fi. This

facet is neighbored by k others, leading to k boundaries. Each of those boundaries are

hyperplanes yielded by Fi and its neighbours, their equation can then be written as

V k
Fi

. Here, V k
Fi

is the orthogonal vector to the hyperplane constituting the kth boundary

with Fi. For any sample s within Fi, the distance between s and a hyperplane de�ned

by V k
Fi

is 〈V k
Fi
, s〉 (where 〈·, ·〉 denotes the scalar product). In their paper, they compute

this distance and aim to maximize it. Another distance towards decision boundaries is

also computed, but since we focus on regression tasks, the notion of decision bound-

aries is not relevant here. The �nal term added to the cost function of the network is

then, with γrb a parameter and p either 1, 2 or∞:

max (0, 1−min
k

(
〈V k
Fi
, s〉+∥∥V k
Fi

∥∥
p

∗ 1

γrb
)) (8.7)

We reimplemented their method and applied DISCO to networks trained with MMR,

forN−multiplication problems. We trained 10 neural networks with various degrees

of MMR, and compared their accuracies and number of facets. Results are available ta-

ble 8.4 and �gure 8.2. We performed an additional experiment by training 30 networks

on 4−multiplication. γrb was set to 0.01, 0 (no MMR enabled), and 100. 10 networks
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Figure 8.2: Graph summing up the performances of several networks. x-coordinate denotes the number

of facets, y-coordinate the accuracy of the network. Orange crosses are networks trained

with MMR, blue dots are networks trained without.

were trained for each value of γrb, with di�erent seeds. Results are available �gure 8.3.

We noted no di�erence between neural networks trained with MMR and without

it; a possible explanation is that our neural networks are too small, which leads to a

greater variety in initialization states: MMR e�ects would then be negligible compared

to those. On �gure 8.3, we observe that neural networks �rst struggle to perform above

50% of accuracy with less than 50 facets, then their performance enhance dramatically



8.4. DISCUSSION 115

Figure 8.3: Red denotes a high value of parameter γrb, orange a low value, blue that the parameter is set

to 0 value. x-axis is the number of facets, y-axis is the accuracy.

from that point up to 100 facets, where most of neural networks tend to perform above

90% accuracy. Outliers may be due to the high sensibility of optimization to initial-

ization. Most neural networks lie on a Pareto front. This Pareto front enlights us on

the relationship between accuracy and number of facets. Indeed, we clearly see that a

reduction in the number of facets results in a reduction in accuracy; although accuracy

does not fall before reducing the number of facets to less than 100. As said in previous

chapter, a wider number of facets leads to a broader diversity of behaviours for the neu-

ral network, i.e., expressivity. It is then necessary to �nd a tradeo� between accuracy

and robustness. Such tradeo� could be the transposition of a “No Free Lunch” Theorem

for formal veri�cation: it would be impossible to have a network that is both robust

and accurate, because of the way we craft our neural networks. This argument is more

detailed in the paper [Tsi+18]. Investigating this tradeo� by studying this Pareto front

may enhance our understanding of the link between expressivity and accuracy.

8.4 Discussion
Our method provided enhancements for SMT solvers, but not for LP solvers. The piece-

wise linear structure of ReLU neural network could be much more amenable for the

latter: LP solvers may have optimizations for linear problems that SMT solvers lack.

However, the range of expressible properties with SMT solvers is far greater than with

LP solvers, limited to conjunctions of linear inequalities. If the targetted property is

complex and requires high expressivity, our method could be useful.

Our method has limited scalability on LP solvers, but problems with higher input

dimensions solved with SMT solvers are bene�ting from DISCO. Nevertheless, par-

allelizing and linear solving will still be prohibitively hard because of the increasing
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number of facets for high dimensional inputs. However, there exist industrial cases

with low dimensional inputs and relatively small networks that can bene�t from this

method. Using facets to perform parallel veri�cation has also been used successfully

in other works, for instance [Urb+19]; the global idea of considering the piece-wise-

linearity of neural networks must then be investigated further.

DISCO does not perform well compared to specialized tools like ERAN or Marabou.

Indeed, DISCO was not aimed to be a fully featured solver (ERAN and Marabou are de-

veloped in labs with more than 15 members). Rather, it must be seen as another heuris-

tic that can be integrated within more mature tools. Because of engineering issues,

we were not able to compare ourselves to MNIST and ACAS benchmarks: launching

DISCO on ACAS did not terminate in more than twice the timeout value. Considering

those results, we did not tried to test on MNIST, as both input dimension and neural

network size are wider than in the ACAS setting.

Using o�-the-shelf solvers rather than develop a specialized solver was a prag-

matic decision. At the start of the thesis, most of state-of-the-art tools were not easily

adaptable to our experiments. LP and SMT solvers have years of expertise of talented

researchers and engineers that we wanted to build upon rather than start from scratch.

With the rise of multiple tools and instrumenting platforms that integrates LP and SMT

solvers, we think it is not a vain approach.

Since the input distribution seems not uniformly spread over facets, a possible

enhancement for solving techniques would be to guide solving by focusing on “big”

facets as a fail-�rst heuristic. The current OCaml implementation is not parallel, since

the OCaml runtime does not allow straightforward multiprocess. Any multiprocess-

capable language could be used to increase performance, since facets are independent.

Finally, if the number of facets still remain too high, we could devise an overapproxi-

mation scheme to merge them and keep DISCO veri�cation tractable.
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Perspectives

Summary of contributions
In this thesis, we went through the �eld of formal veri�cation and tried to apply it on

machine learning programs.

In chapter 4, we showed that straightforwardly applying formal veri�cation tech-

niques to machine learning was not possible. We summed up the di�culty under two

di�erent problems: the inability to formally de�ne the input space of machine learn-

ing programs, and the lack of suitable tools and heuristics to perform e�cient formal

veri�cation.

In chapter 5, we introduce CAMUS, a formalism describing how to formally express

safety properties on functions taking simulated data as input. This �rst step helps us to

consider formalizing high-dimensional inputs, in particular perceptual inputs. Using

simulators as a proxy, we may be able to provide sound formalizations of speci�cations.

In chapter 6, we propose ISAIEH, an open source tool that leverages two standards

used by the communities of formal methods and machine learning, to automatically

write machine learning algorithms as logical formulae and ease the veri�cation pro-

cess. We demonstrated the joint use of ISAIEH and CAMUS on a synthetic example

mimicking a self-driving car perceptive unit, as a proof of concept of our framework.

In chapter 7, we present DISCO, an algorithm that aims to facilitate the process of

formal veri�cation for neural networks. By leveraging their piece-wise linear struc-

ture, this algorithm can speed up the veri�cation of problems using o�-the-shelf solvers.

In chapter 8, we build an implementation of DISCO in ISAIEH and present our

results, as well as the limitations of our approach.

Beyond this thesis
In general, the �eld of formal network veri�cation is blooming and is attracting numer-

ous scientists. It is birthing several tools and techniques. Its core strength is the inter-

disciplinarity between formal veri�cation and machine learning, which yields promis-

ing advances for the �eld and the end users in general.
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The speci�cation problem of machine learning remains a hard one. Being able

to soundly formulate speci�cations that the user can trust is an open research track.

Indeed, perceptual inputs are di�cult to qualify precisely; using a proxy that approx-

imates the input distribution (be it a hand-crafted or learned generator) could help,

providing some characterization of the quality of the input distribution exists. Any

software claiming to formally verify perceptual inputs should transparently expose to

all relevant parties the tradeo�s made during its conception, as well as rely on sound

premises. Combining explainability approaches with generative models could provide

an additional level of trust; and help people link abstractions like Gaussian noise and

its actual consequence on the generated data.

The combinatorial problem is heavily researched. During the conduct of this thesis,

we witnessed an explosion in the number of tools and techniques, which made keep-

ing up with the last advances sometimes di�cult. Most of prominent tools tend to

focus on piece-wise linear neural network and exploit this feature to prune the search

space, or propagate tight overapproximations. Adapting existing techniques of formal

veri�cation to this setting yielded fruitful results, thus advances in abstract interpreta-

tion, model-checking and guided testing should be carefully examined. Interestingly,

undergoing venues to enhance solvers tend to use machine learning techniques. In a

satisfying twist, neural networks could thus be used to ease the veri�cation of neural

networks. To the best of our knowledge, we do not know any work using interactive

proof assistants to verify deep learning programs. We may only postulate hypothesis

on the reasons of this absence. Encoding neural networks under tools like Coq or Is-

abelle may be too cumbersome. Coq’s input language, Gallina, is expressive enough

to formulate the properties we veri�ed during this thesis. Proof assistants rely a lot on

interaction with the user; if the veri�cation process asks for input at each case split,

the tool is not practically usable. In any case, a proof assistant could be useful to verify

fragments of properties, or showing inner contradictions of neural networks reasoning

in a more �ne-grained manner.

The explosion of tools and techniques calls for a unifying way to formulate proper-

ties and choose the best (combination of heuristics) for the job to be done. We observe

that most maintained tools tend to take features found in others, which leads to some

sort of “selection pressure”. We observe some tools that start to combine di�erent

techniques (for instance, overapproximation and linear programming). The next step

would be to further intertwine reasoning techniques, so that one heuristic could inform

another. To do so, we will need to unify neural network representations and provide

a common reasoning base. Doing so will allow the community to further consolidate

its �nding while developping new approaches. One may think at the veri�cation plat-

forms Why3 or Frama-C, which allow such communication between methods. CAISAR

is a platform currently in development that aims to answer those needs.

Most properties witnessed in the literature are either conjunctions of linear con-
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straints, either adversarial robustness ones. The �eld would bene�t from tackling a

more diverse set of properties, which would enhance the tools and allow more real-

world, complex problems to be tackled. For instance, trying to enforce fairness prop-

erties with formal methods could be an interesting research track.

As machine learning programs are deployed within the frames of our society, it is

paramount that all members of society are engaged with it; trust is necessary if those

tools are to ful�ll their purpose while respecting democratic values. As computer sci-

entists, providing ways to formally verify neural networks is a - modest - contribu-

tion to bring trust. Crafting de�nitions of machine learning fairness, to ensure justice

against programs, is another. The potentialities of deep learning are however so big

that, to paraphrase Georges Clémenceau, “Machine learning is too serious to be left

alone to computer scientists”. Deep learning technologies have the potential to impact

our governments, and the understanding of those e�ects should be given to the public

to conduct a democratic discussion on how we want to use technology.
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Additional material

Proof for equation (8.6)
Though f : x 7→ xn is convex for any n ∈ N, the multiplication of n variables f :
(x1, x2, . . . , xn) 7→

∏
k xk is not convex.

For instance for n = 2, the surface f : x, y 7→ xy is a saddle surface.

Formulation
We aim at �nding a linear (a�ne) lower bound and a linear upper bound to the multi-

plication

∏n
k=1 xk of n variables xk in [0.5, 2].

Upper bound
First, note this inequality between the product and the average:

n∏
k=1

xk 6

(∑n
k=1 xk
n

)n

Proof

log is concave; consequently, the average of logs is smaller than the log of the average:

n∑
k=1

1

n
log(xk) 6 log

(∑n
k=1 xk
n

)
hence

n∑
k=1

log(xk) 6 n log

(∑n
k=1 xk
n

)
and taking the exponential we get the desired result. Note that we use the positivity

of all xk. The average

∑n
k=1 xk

n
of numbers in [0.5, 2] lies in [0.5, 2] as well.
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As the function f : x ∈ R+ 7→ xn is convex, one has, for any 0 6 a 6 x 6 b, that

f(x) is below the line from f(a) to f(b):

f(x) 6
f(b)− f(a)

b− a
(x− a) + f(a)

For our case of study, a = 0.5 and b = 2, this yields:

∀x ∈ [0.5, 2], xn 6
2n − 1

2n

2− 0.5
(x− 1

2
) +

1

2n

that is,

∀x ∈ [0.5, 2], xn 6
2

3
(2n − 2−n)(x− 1

2
) + 2−n

n∏
k=1

xk 6

(∑n
k=1 xk
n

)n

6
2

3
(2n − 2−n)

(∑n
k=1 xk
n

− 1

2

)
+ 2−n

Lower bound
Let us denote by f the product:

f : (x1, x2, . . . , xn) 7→
∏
k

xk

Then note that at the middle point (x1, x2, . . . , xn) = (1, 1, . . . , 1):

∀k, ∂f(x1, x2, . . . , xn)

∂xk
=

n∏
j 6=k

xj = 1

and that consequently around the middle point, the �rst order approximation of the

function is:

f(x1, x2, . . . , xn) = f(1 + (x1 − 1), 1 + (x2 − 1), . . . , 1 + (xn − 1))

= f(1, 1, . . . , 1) +
∑
k

∂f

∂xk
(xk − 1) +O

(
(xk − 1)2

)
= 1 +

∑
k

(xk − 1) +O
(
(xk − 1)2

)
= 1− n+

∑
k

xk +O
(
(xk − 1)2

)
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so that the linear function (x1, x2, . . . , xn) 7→ 1 − n +
∑

k xk looks like a promising

approximation of the function. Unfortunately, as said earlier, the multiplication f is

not convex nor concave, so some parts of the graph of the function are above it and

some other ones below. Let us just remember that the hyperplane direction

∑
k xk

sounds reasonable.

The tautology:

∏
k

xk −
∑
k

xk > inf
y1,y2,...,yn∈[0.5,2]

(∏
k

yk −
∑
k

yk

)

leads to:

∀x1, x2, . . . , xk ∈ [0.5, 2],∏
k

xk >
∑
k

xk + inf
y1,y2,...,yn∈[0.5,2]

(∏
k

yk −
∑
k

yk

)
which leads us to a lower bound of the form:∏

k

xk >
∑
k

xk + C

for some constant C that may depend only on n and the interval chosen [0.5, 2].
Let us study the function:

g : (x1, x2, . . . , xn) ∈ [0.5, 2]n 7→
∏
k

xk −
∑
k

xk

We want to �nd its minimum over [0.5, 2]n. For each variable xk: **if the minimum is

reached in the interior of [0.5, 2]** (i.e. not at xk = 0.5 or 2), then necessarily at that

point the derivative is 0:

∂g

∂xk
=
∏
j 6=k

xj − 1 = 0

i.e. ∏
j 6=k

xj = 1

and consequently

∏
j xj = xk.

Otherwise, if the minimum is reached on the boundaries of [0.5, 2], then either xk =
0.5 or xk = 2.

For each k we consequently have:

• either

∏
j 6=k xj = 1

• or xk = 0.5
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• or xk = 2

Note that if a variable xk satis�es the �rst property then:

g(x1, x2, . . . , xn) =
∏
j

xj −
∑
j

xj = xk −
∑
j

xj = −
∑
j 6=k

xj

which does not depend on xk. Thus in that case one can choose to change xk for 0.5
or 2 and this will not change the value of g. Thus one can assume that all xk are 0.5 or

2, that is, the minimum is reached on a corner of the domain [0.5, 2]n.

Let us assume that K variables xk are 0.5 and the n − K remaining ones are 2.

Then:

g(x1, x2, . . . , xn) = 2n−K0.5K − ((n−K) 2 +K 0.5))

i.e.

g(x1, x2, . . . , xn) = 2n−2K +
3

2
K − 2n

What is the value of K ∈ [[0, N ]] that minimizes this?

Let is study the function h : x ∈ [0, N ] 7→ 2n−2x + 3
2
x. If it reaches a minimum

strictly inside [0, N ] then at that point its derivative is 0:

−2× 2n−2x +
3

2
= 0

that is

2n+2

3
= 22x

x =
1

2
(n+ 2− log 3

log 2
)

that is

x ' n

2
+ 0.2

This point is a minimum indeed (and not a maximum) as the second derivative of h
is positive. Therefore the K that we are searching for is the closest lower or upper

integer to
n
2

+ 0.2.

If n is even: these are
n
2

and
n
2

+ 1.

If n is odd: these are
n−1
2

and
n+1
2

.

By computing the associated values of h, one �nds that the minimum in the even

case is reached for K = n
2

and is 1 + 3
4
n, while in the odd case, the same value is

obtained for both possible values of K and is 2 + 3
4
(n− 1).

As g = h−2n at corners, this leads to: - inf g = 1− 5
4
n if n is even - inf g = 5

4
− 5

4
n

if n is odd

∀x1, x2, . . . , xk ∈ [0.5, 2],
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∏
k

xk >
∑
k

xk + 1− 5

4
n+

1

4
δn is odd

with δn is odd = 1 if n is odd and 0 otherwise. The bound is tight and reached on

many corners (all the ones with half lowest and half highest coordinates) as well as on

the edges linking these corners if n is odd (free variable that can take any value).

Final result:

∀x1, x2, . . . , xk ∈ [0.5, 2],∑
k

xk + 1− 5

4
n+

1

4
δn is odd 6

∏
k

xk

∏
k

xk 6
2

3
(2n − 2−n)

(∑n
k=1 xk
n

− 1

2

)
+ 2−n





Bibliography

[21a] Colonial Pipeline Cyberattack. In: Wikipedia. May 24, 2021. url: https:
//en.wikipedia.org/w/index.php?title=Colonial_Pipeline_
cyberattack&oldid=1024940187 (visited on 05/25/2021) (cit. on p. 26).

[21b] Simplex Algorithm. In: Wikipedia. June 18, 2021. url: https : / / en .
wikipedia.org/w/index.php?title=Simplex_algorithm&oldid=
1029200726 (visited on 08/10/2021) (cit. on p. 35).

[21c] Software Crisis. In: Wikipedia. July 7, 2021. url: https://en.wikipedia.
org/w/index.php?title=Software_crisis&oldid=1032500538
(visited on 08/26/2021) (cit. on p. 17).

[Aba+16a] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Je�rey Dean, Matthieu Devin, Sanjay Ghemawat, Geo�rey Irving, Michael

Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore,

Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete

Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. “TensorFlow: A

System for Large-Scale Machine Learning”. In: 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 16). 2016, pp. 265–

283. url: https://www.usenix.org/system/files/conference/
osdi16/osdi16-abadi.pdf (visited on 03/22/2021) (cit. on pp. 47, 72).

[Aba+16b] Martin Abadi, Andy Chu, Ian Goodfellow, Brendan McMahan, Ilya Mironov,

Kunal Talwar, and Li Zhang. “Deep Learning with Di�erential Privacy”.

In: 23rd ACM Conference on Computer and Communications Security (ACM
CCS). 2016, pp. 308–318. url: https://arxiv.org/abs/1607.00133
(visited on 05/15/2019) (cit. on p. 49).

[Ara+19] Alexandre Araujo, Rafael Pinot, Benjamin Negrevergne, Laurent Meu-

nier, Yann Chevaleyre, Florian Yger, and Jamal Atif. Robust Neural Net-
works Using Randomized Adversarial Training. Mar. 25, 2019. arXiv: 1903.
10219 [cs, stat]. url: http://arxiv.org/abs/1903.10219 (visited

on 04/25/2019) (cit. on pp. 47, 49).

131

https://en.wikipedia.org/w/index.php?title=Colonial_Pipeline_cyberattack&oldid=1024940187
https://en.wikipedia.org/w/index.php?title=Colonial_Pipeline_cyberattack&oldid=1024940187
https://en.wikipedia.org/w/index.php?title=Colonial_Pipeline_cyberattack&oldid=1024940187
https://en.wikipedia.org/w/index.php?title=Simplex_algorithm&oldid=1029200726
https://en.wikipedia.org/w/index.php?title=Simplex_algorithm&oldid=1029200726
https://en.wikipedia.org/w/index.php?title=Simplex_algorithm&oldid=1029200726
https://en.wikipedia.org/w/index.php?title=Software_crisis&oldid=1032500538
https://en.wikipedia.org/w/index.php?title=Software_crisis&oldid=1032500538
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://arxiv.org/abs/1607.00133
https://arxiv.org/abs/1903.10219
https://arxiv.org/abs/1903.10219
http://arxiv.org/abs/1903.10219


132 BIBLIOGRAPHY

[Bak+20] Stanley Bak, Hoang-Dung Tran, Kerianne Hobbs, and Taylor T. John-

son. “Improved Geometric Path Enumeration for Verifying ReLU Neural

Networks”. In: Computer Aided Veri�cation. Lecture Notes in Computer

Science. Cham: Springer International Publishing, 2020, pp. 66–96. isbn:

978-3-030-53288-8. doi: 10.1007/978-3-030-53288-8_4 (cit. on p. 109).

[Bar+11] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean,

Dejan Jovanović, Tim King, Andrew Reynolds, and Cesare Tinelli. “CVC4”.

In: Computer Aided Veri�cation (CAV). Ed. by Ganesh Gopalakrishnan

and Shaz Qadeer. Vol. 6806. Lecture Notes in Computer Science. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2011, pp. 171–177. isbn: 978-3-

642-22110-1. doi: 10 . 1007 / 978 - 3 - 642 - 22110 - 1 _ 14. url: http :
//link.springer.com/10.1007/978-3-642-22110-1_14 (visited on

05/19/2021) (cit. on pp. 32, 78).

[Bau+21] Patrick Baudin, François Bobot, David Bühler, Loïc Correnson, Florent

Kirchner, Nikolai Kosmatov, André Maroneze, Valentin Perrelle, Virgile

Prevosto, Julien Signoles, and Nicky Williams. “The Dogged Pursuit of

Bug-Free C Programs: The Frama-C Software Analysis Platform”. In: Com-
munications of the ACM 64.8 (Aug. 2021), pp. 56–68. issn: 0001-0782,

1557-7317. doi: 10.1145/3470569. url: https://dl.acm.org/doi/10.
1145/3470569 (visited on 11/26/2021) (cit. on p. 74).

[Ber15] Gérard Berry, director. Structures de données et algorithmes pour la véri-
�cation formelle. Collège de France, 2015. url: https://www.college-
de-france.fr/site/gerard-berry/course-2015-2016.htm (visited

on 03/04/2021) (cit. on p. 29).

[BFS17] Clark Barrett, Pascal Fontaine, and Aaron Stump. The SMT-LIB Standard.

July 18, 2017, p. 104. url: http://smtlib.cs.uiowa.edu/about.shtml
(cit. on p. 73).

[BKN16] Diane Bouchacourt, M. Pawan Kumar, and Sebastian Nowozin. “DISCO

Nets: DISsimilarity COe�cient Networks”. In: Oct. 28, 2016. arXiv: 1606.
02556 [cs]. url: http://arxiv.org/abs/1606.02556 (visited on

09/13/2021) (cit. on p. 95).

[BMV20] Maximilian Baader, Matthew Mirman, and Martin Vechev. “Universal

Approximation with Certi�ed Networks”. In: International Conference on
Learning Representations (ICLR). 2020. url: https://openreview.net/
forum?id=B1gX8kBtPr (visited on 01/15/2020) (cit. on p. 108).

[Boj+16] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner,

Beat Flepp, Prasoon Goyal, Lawrence D. Jackel, Mathew Monfort, Urs

Muller, Jiakai Zhang, Xin Zhang, Jake Zhao, and Karol Zieba. End to End

https://doi.org/10.1007/978-3-030-53288-8_4
https://doi.org/10.1007/978-3-642-22110-1_14
http://link.springer.com/10.1007/978-3-642-22110-1_14
http://link.springer.com/10.1007/978-3-642-22110-1_14
https://doi.org/10.1145/3470569
https://dl.acm.org/doi/10.1145/3470569
https://dl.acm.org/doi/10.1145/3470569
https://www.college-de-france.fr/site/gerard-berry/course-2015-2016.htm
https://www.college-de-france.fr/site/gerard-berry/course-2015-2016.htm
http://smtlib.cs.uiowa.edu/about.shtml
https://arxiv.org/abs/1606.02556
https://arxiv.org/abs/1606.02556
http://arxiv.org/abs/1606.02556
https://openreview.net/forum?id=B1gX8kBtPr
https://openreview.net/forum?id=B1gX8kBtPr


BIBLIOGRAPHY 133

Learning for Self-Driving Cars. Apr. 25, 2016. arXiv: 1604.07316 [cs].

url: http://arxiv.org/abs/1604.07316 (visited on 08/30/2019) (cit.

on pp. 42, 59, 66).

[Bon+21] Gregory Bonaert, Dimitar I. Dimitrov, Maximilian Baader, and Martin

Vechev. “Fast and Precise Certi�cation of Transformers”. In: International
Conference on Programming Language Design and Implementation (PLDI).
Virtual Canada, June 2021, pp. 466–481. isbn: 978-1-4503-8391-2. doi: 10.
1145/3453483.3454056. url: https://dl.acm.org/doi/10.1145/
3453483.3454056 (visited on 11/25/2021) (cit. on p. 109).

[Boo+19] Akhilan Boopathy, Tsui-Wei Weng, Pin-Yu Chen, Sijia Liu, and Luca Daniel.

“CNN-Cert: An E�cient Framework for Certifying Robustness of Con-

volutional Neural Networks”. In: AAAI Conference on Arti�cial Intelli-
gence. Honolulu, HI, 2019, pp. 3240–3247. isbn: 978-1-57735-809-1 (cit.

on pp. 108, 109).

[Bun+17] Rudy Bunel, Ilker Turkaslan, Philip H. S. Torr, Pushmeet Kohli, and M. Pawan

Kumar. A Uni�ed View of Piecewise Linear Neural Network Veri�cation.

Nov. 1, 2017. arXiv: 1711.00455 [cs]. url: http://arxiv.org/abs/
1711.00455 (visited on 10/24/2018) (cit. on p. 104).

[Bun+20] Rudy Bunel, Jingyue Lu, Ilker Turkaslan, Philip H.S. Torr, Pushmeet Kohli,

and M. Pawan Kumar. “Branch and Bound for Piecewise Linear Neu-

ral Network Veri�cation”. In: Journal of Machine Learning Research 21.42

(2020), pp. 1–39. url: http://jmlr.org/papers/v21/19-468.html
(cit. on pp. 105, 107).

[Cae+20] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin

Liong, Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar

Beijbom. nuScenes: A Multimodal Dataset for Autonomous Driving. May 5,

2020. arXiv: 1903.11027 [cs, stat]. url: http://arxiv.org/abs/
1903.11027 (visited on 03/11/2021) (cit. on p. 41).

[CAH19] Francesco Croce, Maksym Andriushchenko, and Matthias Hein. “Prov-

able Robustness of ReLU Networks via Maximization of Linear Regions”.

In: International Conference on Arti�cial Intelligence and Statistic. 2019,

pp. 2057–2066 (cit. on p. 112).

[CC77] Patrick Cousot and Radhia Cousot. “Abstract Interpretation: A Uni�ed

Lattice Model for Static Analysis of Programs by Construction or Ap-

proximation of Fixpoints”. In: Principles of Programming Languages (POPL).
New York, NY, USA, 1977, pp. 238–252. doi: 10.1145/512950.512973.

url: http : / / doi . acm . org / 10 . 1145 / 512950 . 512973 (visited on

10/25/2018) (cit. on p. 32).

https://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1604.07316
https://doi.org/10.1145/3453483.3454056
https://doi.org/10.1145/3453483.3454056
https://dl.acm.org/doi/10.1145/3453483.3454056
https://dl.acm.org/doi/10.1145/3453483.3454056
https://arxiv.org/abs/1711.00455
http://arxiv.org/abs/1711.00455
http://arxiv.org/abs/1711.00455
http://jmlr.org/papers/v21/19-468.html
https://arxiv.org/abs/1903.11027
http://arxiv.org/abs/1903.11027
http://arxiv.org/abs/1903.11027
https://doi.org/10.1145/512950.512973
http://doi.acm.org/10.1145/512950.512973


134 BIBLIOGRAPHY

[Cha+17] Florian Chabot, Mohamed Chaouch, Jaonary Rabarisoa, Céline Teulière,

and Thierry Chateau. Deep MANTA: A Coarse-to-�ne Many-Task Network
for Joint 2D and 3D Vehicle Analysis from Monocular Image. Mar. 22, 2017.

arXiv: 1703.07570 [cs]. url: http://arxiv.org/abs/1703.07570
(visited on 08/30/2019) (cit. on p. 59).

[Cho+21] Christopher A. Choquette-Choo, Florian Tramer, Nicholas Carlini, and

Nicolas Papernot. Label-Only Membership Inference Attacks. Jan. 21, 2021.

arXiv: 2007.14321 [cs, stat]. url: http://arxiv.org/abs/2007.
14321 (visited on 03/18/2021) (cit. on p. 49).

[Cle] Clearsy. Analyse des logiciels critiques du CBTC ligne1. CLEARSY. url:

https : / / www . clearsy . com / references / saet - l1/ (visited on

08/13/2021) (cit. on p. 17).

[Coo71] Stephen A. Cook. “The Complexity of Theorem-Proving Procedures”. In:

ProceedinSymposium on Theory of Computing (STOC). Shaker Heights,

Ohio, United States, 1971, pp. 151–158. doi: 10.1145/800157.805047.

url: http://portal.acm.org/citation.cfm?doid=800157.805047
(visited on 08/10/2021) (cit. on p. 30).

[Cop] Copeland. Arti�cial Intelligence | De�nition, Examples, and Applications.
Encyclopedia Britannica. url: https://www.britannica.com/technology/
artificial-intelligence (visited on 03/08/2021) (cit. on p. 38).

[Cre+18] Antonia Creswell, Tom White, Vincent Dumoulin, Kai Arulkumaran, Biswa

Sengupta, and Anil A. Bharath. “Generative Adversarial Networks: An

Overview”. In: IEEE Signal Processing Magazine 35.1 (Jan. 2018), pp. 53–

65. issn: 1053-5888. doi: 10.1109/MSP.2017.2765202. arXiv: 1710.
07035. url: http://arxiv.org/abs/1710.07035 (visited on 03/22/2021)

(cit. on p. 42).

[CS13] Cristian Cadar and Koushik Sen. “Symbolic Execution for Software Test-

ing: Three Decades Later”. In: Communications of the ACM (2013), pp. 82–

90 (cit. on pp. 34, 35).

[CW16] Nicholas Carlini and David Wagner. Towards Evaluating the Robustness
of Neural Networks. Aug. 16, 2016. arXiv: 1608.04644 [cs]. url: http:
//arxiv.org/abs/1608.04644 (visited on 11/07/2018) (cit. on p. 47).

[CW18] Nicholas Carlini and David Wagner. Audio Adversarial Examples: Tar-
geted Attacks on Speech-to-Text. Jan. 5, 2018. arXiv: 1801.01944 [cs].

url: http://arxiv.org/abs/1801.01944 (visited on 11/21/2018) (cit.

on p. 18).

https://arxiv.org/abs/1703.07570
http://arxiv.org/abs/1703.07570
https://arxiv.org/abs/2007.14321
http://arxiv.org/abs/2007.14321
http://arxiv.org/abs/2007.14321
https://www.clearsy.com/references/saet-l1/
https://doi.org/10.1145/800157.805047
http://portal.acm.org/citation.cfm?doid=800157.805047
https://www.britannica.com/technology/artificial-intelligence
https://www.britannica.com/technology/artificial-intelligence
https://doi.org/10.1109/MSP.2017.2765202
https://arxiv.org/abs/1710.07035
https://arxiv.org/abs/1710.07035
http://arxiv.org/abs/1710.07035
https://arxiv.org/abs/1608.04644
http://arxiv.org/abs/1608.04644
http://arxiv.org/abs/1608.04644
https://arxiv.org/abs/1801.01944
http://arxiv.org/abs/1801.01944


BIBLIOGRAPHY 135

[Den+09] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. “Im-

ageNet: A Large-Scale Hierarchical Image Database”. In: IEEE Computer
Vision and Pattern Recognition (CVPR) (2009), p. 8 (cit. on p. 41).

[DLL62] Martin Davis, George Logemann, and Donald Loveland. “A Machine Pro-

gram for Theorem-Proving”. In: Communications of the ACM 5.7 (July 1,

1962), pp. 394–397. issn: 0001-0782. doi: 10.1145/368273.368557. url:

https://doi.org/10.1145/368273.368557 (visited on 03/05/2021)

(cit. on p. 30).

[dMB08] Leonardo de Moura and Nikolaj Bjørner. “Z3: An E�cient SMT Solver”.

In: Tools and Algorithms for the Construction and Analysis of Systems. Ed.

by C. R. Ramakrishnan and Jakob Rehof. Lecture Notes in Computer Sci-

ence. Berlin, Heidelberg: Springer, 2008, pp. 337–340. isbn: 978-3-540-

78800-3. doi: 10.1007/978- 3- 540- 78800- 3_24 (cit. on pp. 32, 78,

111).

[Dos+17] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and

Vladlen Koltun. “CARLA: An Open Urban Driving Simulator”. In: Con-
ference on Robot Learning. Oct. 18, 2017. url: http://proceedings.
mlr.press/v78/dosovitskiy17a.html (visited on 06/03/2021) (cit. on

p. 60).

[Dou21] Will Douglas Heaven. Hundreds of AI Tools Have Been Built to Catch
Covid. None of Them Helped. MIT Technology Review. July 30, 2021. url:

https : / / www . technologyreview . com / 2021 / 07 / 30 / 1030329 /
machine-learning-ai-failed-covid-hospital-diagnosis-pandemic/
(visited on 08/18/2021) (cit. on p. 58).

[Dre+19] Tommaso Dreossi, Daniel J. Fremont, Shromona Ghosh, Edward Kim,

Hadi Ravanbakhsh, Marcell Vazquez-Chanlatte, and Sanjit A. Seshia. VER-
IFAI: A Toolkit for the Design and Analysis of Arti�cial Intelligence-Based
Systems. Feb. 12, 2019. arXiv: 1902.04245 [cs]. url: http://arxiv.
org/abs/1902.04245 (visited on 10/02/2019) (cit. on p. 62).

[Dut14] Bruno Dutertre. “Yices 2.2”. In: Computer Aided Veri�cation (CAV). Ed. by

Armin Biere and Roderick Bloem. Vol. 8559. Lecture Notes in Computer

Science. Springer, July 2014, pp. 737–744 (cit. on p. 78).

[Ehl17] Ruediger Ehlers. Formal Veri�cation of Piece-Wise Linear Feed-Forward
Neural Networks. May 3, 2017. arXiv: 1705.01320 [cs]. url: http://
arxiv.org/abs/1705.01320 (visited on 06/20/2019) (cit. on pp. 104,

107).

https://doi.org/10.1145/368273.368557
https://doi.org/10.1145/368273.368557
https://doi.org/10.1007/978-3-540-78800-3_24
http://proceedings.mlr.press/v78/dosovitskiy17a.html
http://proceedings.mlr.press/v78/dosovitskiy17a.html
https://www.technologyreview.com/2021/07/30/1030329/machine-learning-ai-failed-covid-hospital-diagnosis-pandemic/
https://www.technologyreview.com/2021/07/30/1030329/machine-learning-ai-failed-covid-hospital-diagnosis-pandemic/
https://arxiv.org/abs/1902.04245
http://arxiv.org/abs/1902.04245
http://arxiv.org/abs/1902.04245
https://arxiv.org/abs/1705.01320
http://arxiv.org/abs/1705.01320
http://arxiv.org/abs/1705.01320


136 BIBLIOGRAPHY

[Eyk+18] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati,

Chaowei Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Song. “Robust

Physical-World Attacks on Deep Learning Visual Classi�cation”. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake

City, UT, USA: IEEE, June 2018, pp. 1625–1634. isbn: 978-1-5386-6420-9.

doi: 10.1109/CVPR.2018.00175. url: https://ieeexplore.ieee.
org/document/8578273/ (visited on 03/18/2021) (cit. on p. 47).

[FG19] Nathanaël Fijalkow and Mohit Kumar Gupta. Veri�cation of Neural Net-
works: Specifying Global Robustness Using Generative Models. Oct. 11, 2019.

arXiv: 1910.05018 [cs, stat]. url: http://arxiv.org/abs/1910.
05018 (visited on 06/09/2021) (cit. on pp. 68, 79).

[GGP09] Khalil Ghorbal, Eric Goubault, and Sylvie Putot. “The Zonotope Abstract

Domain Taylor1+”. In: Computer Aided Veri�cation. Ed. by Ahmed Boua-

jjani and Oded Maler. Vol. 5643. Lecture Notes in Computer Science.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 627–633. isbn:

978-3-642-02658-4. doi: 10.1007/978-3-642-02658-4_47. url: http:
//link.springer.com/10.1007/978-3-642-02658-4_47 (visited on

04/02/2020) (cit. on p. 32).

[GSS14] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining
and Harnessing Adversarial Examples. Dec. 19, 2014. arXiv: 1412.6572
[cs, stat]. url: http://arxiv.org/abs/1412.6572 (visited on

10/24/2018) (cit. on pp. 47–49).

[Gur21] LLC Gurobi Optimization. “Gurobi Optimizer Reference Manual”. In: (2021).

url: http://www.gurobi.com (cit. on pp. 35, 111).

[Haw19] Andrew J. Hawkins. Tesla Didn’t Fix an Autopilot Problem for Three Years,
and Now Another Person Is Dead. The Verge. May 17, 2019. url: https:
//www.theverge.com/2019/5/17/18629214/tesla- autopilot-
crash-death-josh-brown-jeremy-banner (visited on 03/29/2021) (cit.

on pp. 18, 61).

[He+15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual
Learning for Image Recognition. Dec. 10, 2015. arXiv: 1512.03385 [cs].

url: http://arxiv.org/abs/1512.03385 (visited on 04/02/2019) (cit.

on pp. 42, 52, 59).

[HR19a] Boris Hanin and David Rolnick. Complexity of Linear Regions in Deep
Networks. Jan. 25, 2019. arXiv: 1901.09021 [cs, math, stat]. url:

http://arxiv.org/abs/1901.09021 (visited on 03/27/2019) (cit. on

p. 85).

https://doi.org/10.1109/CVPR.2018.00175
https://ieeexplore.ieee.org/document/8578273/
https://ieeexplore.ieee.org/document/8578273/
https://arxiv.org/abs/1910.05018
http://arxiv.org/abs/1910.05018
http://arxiv.org/abs/1910.05018
https://doi.org/10.1007/978-3-642-02658-4_47
http://link.springer.com/10.1007/978-3-642-02658-4_47
http://link.springer.com/10.1007/978-3-642-02658-4_47
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572
http://www.gurobi.com
https://www.theverge.com/2019/5/17/18629214/tesla-autopilot-crash-death-josh-brown-jeremy-banner
https://www.theverge.com/2019/5/17/18629214/tesla-autopilot-crash-death-josh-brown-jeremy-banner
https://www.theverge.com/2019/5/17/18629214/tesla-autopilot-crash-death-josh-brown-jeremy-banner
https://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1901.09021
http://arxiv.org/abs/1901.09021


BIBLIOGRAPHY 137

[HR19b] Boris Hanin and David Rolnick. “Deep ReLU Networks Have Surprisingly

Few Activation Patterns”. In: Conference on Neural Information Processing
Systems (NeurIPS). 2019, pp. 361–370 (cit. on pp. 91, 95, 96).

[Ily+19] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Bran-

don Tran, and Aleksander Madry. Adversarial Examples Are Not Bugs,
They Are Features. May 6, 2019. arXiv: 1905.02175 [cs, stat]. url:

http://arxiv.org/abs/1905.02175 (visited on 05/17/2019) (cit. on

p. 49).

[Iva20] Sergei Ivanov. NeurIPS 2020. Comprehensive Analysis of Authors, Orga-
nizations, and Countries. Medium. Oct. 15, 2020. url: https://medium.
com/criteo-engineering/neurips-2020-comprehensive-analysis-
of-authors-organizations-and-countries-a1b55a08132e (visited

on 03/22/2021) (cit. on p. 41).

[JJR21] JJRicks Studios, director. Waymo Self Driving Taxi Fumbles In Construc-
tion Zone, Blocks Tra�c | JJRicks Rides With Waymo #54. May 13, 2021.

url: https://www.youtube.com/watch?v=zdKCQKBvH-A (visited on

07/07/2021) (cit. on p. 40).

[Kat+17] Guy Katz, Clark Barrett, David Dill, Kyle Julian, and Mykel Kochenderfer.

“Reluplex: An E�cient SMT Solver for Verifying Deep Neural Networks”.

In: International Conference on Computer Aided Veri�cation. Springer, Feb. 3,

2017, pp. 91–117. arXiv: 1702.01135 (cit. on pp. 50, 62, 84, 104).

[Kat+19] Guy Katz, Derek A. Huang, Duligur Ibeling, Kyle Julian, Christopher

Lazarus, Rachel Lim, Parth Shah, Shantanu Thakoor, Haoze Wu, Alek-

sandar Zeljić, David L. Dill, Mykel J. Kochenderfer, and Clark Barrett.

“The Marabou Framework for Veri�cation and Analysis of Deep Neural

Networks”. In: Computer Aided Veri�cation. Ed. by Isil Dillig and Serdar

Tasiran. Lecture Notes in Computer Science. Cham: Springer Interna-

tional Publishing, 2019, pp. 443–452. isbn: 978-3-030-25540-4. doi: 10.
1007/978-3-030-25540-4_26 (cit. on pp. 104, 107).

[Kat+21] Sydney M. Katz, Anthony L. Corso, Christopher A. Strong, and Mykel

J. Kochenderfer. Veri�cation of Image-based Neural Network Controllers
Using Generative Models. May 14, 2021. arXiv: 2105.07091 [cs]. url:

http://arxiv.org/abs/2105.07091 (visited on 06/08/2021) (cit. on

pp. 68, 79).

[KLA18] Tero Karras, Samuli Laine, and Timo Aila. A Style-Based Generator Archi-
tecture for Generative Adversarial Networks. Dec. 12, 2018. arXiv: 1812.
04948 [cs, stat]. url: http://arxiv.org/abs/1812.04948 (visited

on 08/22/2019) (cit. on p. 59).

https://arxiv.org/abs/1905.02175
http://arxiv.org/abs/1905.02175
https://medium.com/criteo-engineering/neurips-2020-comprehensive-analysis-of-authors-organizations-and-countries-a1b55a08132e
https://medium.com/criteo-engineering/neurips-2020-comprehensive-analysis-of-authors-organizations-and-countries-a1b55a08132e
https://medium.com/criteo-engineering/neurips-2020-comprehensive-analysis-of-authors-organizations-and-countries-a1b55a08132e
https://www.youtube.com/watch?v=zdKCQKBvH-A
https://arxiv.org/abs/1702.01135
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1007/978-3-030-25540-4_26
https://arxiv.org/abs/2105.07091
http://arxiv.org/abs/2105.07091
https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1812.04948
http://arxiv.org/abs/1812.04948


138 BIBLIOGRAPHY

[KSH17] Alex Krizhevsky, Ilya Sutskever, and Geo�rey E. Hinton. “ImageNet Clas-

si�cation with Deep Convolutional Neural Networks”. In: Communica-
tions of the ACM 60.6 (May 24, 2017), pp. 84–90. issn: 0001-0782, 1557-

7317. doi: 10.1145/3065386. url: https://dl.acm.org/doi/10.
1145/3065386 (visited on 03/09/2021) (cit. on p. 41).

[Le +89] Y. Le Cun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hub-

bard, and L. D. Jackel. “Handwritten Digit Recognition with a Back-Propagation

Network”. In: Advances in Neural Information Processing Systems (NIPS).
Cambridge, MA, USA: MIT Press, Jan. 1, 1989, pp. 396–404 (cit. on p. 41).

[Le 86] Yann Le Cun. “Learning Process in an Asymmetric Threshold Network”.

In: Disordered Systems and Biological Organization. Ed. by E. Bienenstock,

F. Fogelman Soulié, and G. Weisbuch. NATO ASI Series. Berlin, Heidel-

berg: Springer, 1986, pp. 233–240. isbn: 978-3-642-82657-3. doi: 10.1007/
978-3-642-82657-3_24 (cit. on p. 40).

[Ler19] Xavier Leroy, director. Programmer = démontrer ? La correspondance de
Curry-Howard aujourd’hui. Collège de France, 2019. url: https://www.
college-de-france.fr/site/xavier-leroy/course-2018-2019.
htm (visited on 03/03/2021) (cit. on p. 35).

[Les10] Lawrence Lessig. Code: Version 2.0. SoHo Books, 2010. isbn: 978-1-4414-

3764-8 (cit. on p. 15).

[Li 12] Li Deng. “The MNIST Database of Handwritten Digit Images for Ma-

chine Learning Research [Best of the Web]”. In: IEEE Signal Processing
Magazine 29.6 (Nov. 2012), pp. 141–142. issn: 1053-5888. doi: 10.1109/
MSP.2012.2211477. url: http://ieeexplore.ieee.org/document/
6296535/ (visited on 03/11/2021) (cit. on p. 41).

[Lio96] Jacques-Louis Lions. ARIANE 5 Failure - Full Report. June 19, 1996. url:

http://sunnyday.mit.edu/accidents/Ariane5accidentreport.
html (visited on 03/04/2021) (cit. on p. 28).

[Lip16] Zachary C. Lipton. The Mythos of Model Interpretability. June 10, 2016.

arXiv: 1606.03490 [cs, stat]. url: http://arxiv.org/abs/1606.
03490 (visited on 11/07/2018) (cit. on p. 69).

[LSP07] Thierry Lecomte, Thierry Servat, and Guilhem Pouzancre. “Formal Meth-

ods in Safety-Critical Railway Systems”. In: Brazilian Symposium on For-

mal Methods. 2007, p. 9 (cit. on p. 17).

[Mad+17] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras,

and Adrian Vladu. Towards Deep Learning Models Resistant to Adversar-
ial Attacks. June 19, 2017. arXiv: 1706.06083 [cs, stat]. url: http:
//arxiv.org/abs/1706.06083 (visited on 10/24/2018) (cit. on p. 47).

https://doi.org/10.1145/3065386
https://dl.acm.org/doi/10.1145/3065386
https://dl.acm.org/doi/10.1145/3065386
https://doi.org/10.1007/978-3-642-82657-3_24
https://doi.org/10.1007/978-3-642-82657-3_24
https://www.college-de-france.fr/site/xavier-leroy/course-2018-2019.htm
https://www.college-de-france.fr/site/xavier-leroy/course-2018-2019.htm
https://www.college-de-france.fr/site/xavier-leroy/course-2018-2019.htm
https://doi.org/10.1109/MSP.2012.2211477
https://doi.org/10.1109/MSP.2012.2211477
http://ieeexplore.ieee.org/document/6296535/
http://ieeexplore.ieee.org/document/6296535/
http://sunnyday.mit.edu/accidents/Ariane5accidentreport.html
http://sunnyday.mit.edu/accidents/Ariane5accidentreport.html
https://arxiv.org/abs/1606.03490
http://arxiv.org/abs/1606.03490
http://arxiv.org/abs/1606.03490
https://arxiv.org/abs/1706.06083
http://arxiv.org/abs/1706.06083
http://arxiv.org/abs/1706.06083


BIBLIOGRAPHY 139

[Mak] A. Makhorin. “GLPK (GNU Linear Programming Kit)”. In: () (cit. on p. 35).

[Mar+96] Jo Marques, Joao P. Marques Silva, Joao P. Marques Silva, Karem A. Sakallah,

and Karem A. Sakallah. “GRASP—A New Search Algorithm for Satis�a-

bility”. In: In Proceedings of the International Conference on Computer-
Aided Design. 1996, pp. 220–227 (cit. on p. 30).

[Mat+16] Surya Mattu, Julia Angwin, Je� Larson, and Lauren Kirchner. Machine
Bias. ProPublica. 2016. url: https://www.propublica.org/article/
machine - bias - risk - assessments - in - criminal - sentencing ?
token=nEh5WNViIayEtqf96qVA8Dp-s2YDMY-f (visited on 03/12/2021)

(cit. on p. 44).

[MBC17] Bruno Marre, Francois Bobot, and Zakaria Chihani. “Real Behavior of

Floating Point Numbers”. In: 15th International Workshop on Satis�abil-
ity Modulo Theories. Heidelberg, Germany, 2017. url: https://smt-
workshop.cs.uiowa.edu/2017/papers/SMT2017_paper_21.pdf (cit.

on p. 78).

[Meh+19] Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman,

and Aram Galstyan. A Survey on Bias and Fairness in Machine Learning.

Sept. 17, 2019. arXiv: 1908.09635 [cs]. url: http://arxiv.org/abs/
1908.09635 (visited on 03/12/2021) (cit. on p. 53).

[MGV18] Matthew Mirman, Timon Gehr, and Martin Vechev. “Di�erentiable Ab-

stract Interpretation for Provably Robust Neural Networks”. In: Interna-
tional Conference on Machine Learning (ICML). 2018 (cit. on p. 107).

[Min17] Antoine Miné. “Tutorial on Static Inference of Numeric Invariants by

Abstract Interpretation”. In: Foundations and Trends® in Programming
Languages 4.3-4 (2017), pp. 120–372. issn: 2325-1107, 2325-1131. doi: 10.
1561/2500000034. url: http://www.nowpublishers.com/article/
Details/PGL-034 (visited on 03/04/2021) (cit. on p. 35).

[Mit21] Melanie Mitchell. Why AI Is Harder Than We Think. Apr. 28, 2021. arXiv:

2104.12871 [cs]. url: http://arxiv.org/abs/2104.12871 (visited

on 05/25/2021) (cit. on p. 40).

[MJ16] Guido Manfredi and Yannick Jestin. “An Introduction to ACAS Xu and

the Challenges Ahead”. In: IEEE/AIAA Digital Avionics Systems Confer-
ence (DASC). Sacramento, CA, USA, Sept. 2016. isbn: 978-1-5090-2523-7.

doi: 10.1109/DASC.2016.7778055. url: http://ieeexplore.ieee.
org/document/7778055/ (visited on 03/29/2021) (cit. on p. 49).

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing?token=nEh5WNViIayEtqf96qVA8Dp-s2YDMY-f
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing?token=nEh5WNViIayEtqf96qVA8Dp-s2YDMY-f
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing?token=nEh5WNViIayEtqf96qVA8Dp-s2YDMY-f
https://smt-workshop.cs.uiowa.edu/2017/papers/SMT2017_paper_21.pdf
https://smt-workshop.cs.uiowa.edu/2017/papers/SMT2017_paper_21.pdf
https://arxiv.org/abs/1908.09635
http://arxiv.org/abs/1908.09635
http://arxiv.org/abs/1908.09635
https://doi.org/10.1561/2500000034
https://doi.org/10.1561/2500000034
http://www.nowpublishers.com/article/Details/PGL-034
http://www.nowpublishers.com/article/Details/PGL-034
https://arxiv.org/abs/2104.12871
http://arxiv.org/abs/2104.12871
https://doi.org/10.1109/DASC.2016.7778055
http://ieeexplore.ieee.org/document/7778055/
http://ieeexplore.ieee.org/document/7778055/


140 BIBLIOGRAPHY

[Mos+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang,

and Sharad Malik. “Cha�: Engineering an E�cient SAT Solver”. In: De-
sign Automation Conference (DAC). New York, NY, USA: Association for

Computing Machinery, June 22, 2001, pp. 530–535. isbn: 978-1-58113-

297-7. doi: 10.1145/378239.379017. url: https://doi.org/10.
1145/378239.379017 (visited on 03/05/2021) (cit. on p. 30).

[MP43] Warren S. McCulloch and Walter Pitts. “A Logical Calculus of the Ideas

Immanent in Nervous Activity”. In: The bulletin of mathematical bio-
physics 5.4 (4 Dec. 1, 1943), pp. 115–133. issn: 1522-9602. doi: 10.1007/
BF02478259. url: https://link.springer.com/article/10.1007/
BF02478259 (visited on 03/10/2021) (cit. on p. 39).

[MP72] Marvin Minsky and Seymour A. Papert. Perceptrons: An Introduction to
Computational Geometry. 2. print. with corr. Cambridge/Mass.: The MIT

Press, 1972. 258 pp. isbn: 978-0-262-63022-1 (cit. on p. 39).

[Owe21] Therese Poletti Owens Jeremy C. Opinion: It’s Time for Elon Musk to Start
Telling the Truth about Autonomous Driving. MarketWatch. May 29, 2021.

url: https://www.marketwatch.com/story/its-time-for-elon-
musk-to-start-telling-the-truth-about-autonomous-driving-
11621958761 (visited on 07/07/2021) (cit. on p. 40).

[Pas+19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,

Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca

Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito,

Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu

Fang, Junjie Bai, and Soumith Chintala. “PyTorch: An Imperative Style,

High-Performance Deep Learning Library”. In: Advances in Neural Infor-
mation Processing Systems (NeurIPS). 2019. url: https://proceedings.
neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-
Abstract.html (cit. on pp. 47, 72, 111).

[PMG16] Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. Transferability
in Machine Learning: From Phenomena to Black-Box Attacks Using Ad-
versarial Samples. May 23, 2016. arXiv: 1605.07277 [cs]. url: http:
//arxiv.org/abs/1605.07277 (visited on 12/18/2018) (cit. on p. 47).

[Pom89] Dean A Pomerleau. “ALVINN: An Autonomous Land Vehicle in a Neural

Network”. In: Proceedings of Advances in Neural Information Processing
Systems (NIPS) (Dec. 1989), pp. 305–313 (cit. on p. 60).

[PT10] Luca Pulina and Armando Tacchella. “An Abstraction-Re�nement Ap-

proach to Veri�cation of Arti�cial Neural Networks”. In: Computer Aided
Veri�cation (CAV). 2010. doi: 10.1007/978-3-642-14295-6_24 (cit. on

p. 107).

https://doi.org/10.1145/378239.379017
https://doi.org/10.1145/378239.379017
https://doi.org/10.1145/378239.379017
https://doi.org/10.1007/BF02478259
https://doi.org/10.1007/BF02478259
https://link.springer.com/article/10.1007/BF02478259
https://link.springer.com/article/10.1007/BF02478259
https://www.marketwatch.com/story/its-time-for-elon-musk-to-start-telling-the-truth-about-autonomous-driving-11621958761
https://www.marketwatch.com/story/its-time-for-elon-musk-to-start-telling-the-truth-about-autonomous-driving-11621958761
https://www.marketwatch.com/story/its-time-for-elon-musk-to-start-telling-the-truth-about-autonomous-driving-11621958761
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://arxiv.org/abs/1605.07277
http://arxiv.org/abs/1605.07277
http://arxiv.org/abs/1605.07277
https://doi.org/10.1007/978-3-642-14295-6_24


BIBLIOGRAPHY 141

[Rag+17] Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha

Sohl-Dickstein. “On the Expressive Power of Deep Neural Networks”.

In: International Conference on Machine Learning. International Confer-

ence on Machine Learning. PMLR, July 17, 2017, pp. 2847–2854. url:

http://proceedings.mlr.press/v70/raghu17a.html (visited on

07/02/2021) (cit. on pp. 85, 90, 97).

[RHW86] David E. Rumelhart, Geo�rey E. Hinton, and Ronald J. Williams. “Learn-

ing Representations by Back-Propagating Errors”. In: Nature 323.6088

(6088 Oct. 1986), pp. 533–536. issn: 1476-4687. doi: 10.1038/323533a0.

url: https : / / www . nature . com / articles / 323533a0 (visited on

03/09/2021) (cit. on p. 40).

[Ric+16] Stephan R. Richter, Vibhav Vineet, Stefan Roth, and Vladlen Koltun. Play-
ing for Data: Ground Truth from Computer Games. Aug. 7, 2016. arXiv:

1608.02192 [cs]. url: http://arxiv.org/abs/1608.02192 (visited

on 06/03/2021) (cit. on p. 60).

[Ric53] Henry Gordon Rice. “Classes of Recursively Enumerable Sets and Their

Decision Problems”. In: Transaction of American Mathematical Society 74

(1953), pp. 358–366. doi: 10.1090/S0002-9947-1953-0053041-6 (cit.

on p. 28).

[RND10] Stuart J. Russell, Peter Norvig, and Ernest Davis. Arti�cial Intelligence:
A Modern Approach. 3rd ed. Prentice Hall Series in Arti�cial Intelligence.

Upper Saddle River: Prentice Hall, 2010. 1132 pp. isbn: 978-0-13-604259-4

(cit. on pp. 38, 69).

[Ros58] Frank Rosenblatt. “The Perceptron: A Probabilistic Model for Informa-

tion Storage and Organization in the Brain.” In: Psychological Review 65.6

(1958), pp. 386–408. issn: 1939-1471, 0033-295X. doi: 10.1037/h0042519.

url: http://doi.apa.org/getdoi.cfm?doi=10.1037/h0042519 (vis-

ited on 03/09/2021) (cit. on p. 39).

[RPB18] Mirco Ravanelli, Titouan Parcollet, and Yoshua Bengio. The PyTorch-Kaldi
Speech Recognition Toolkit. Nov. 18, 2018. arXiv: 1811.07453 [cs, eess].

url: http://arxiv.org/abs/1811.07453 (visited on 09/07/2019) (cit.

on p. 59).

[Sam+21] Wojciech Samek, Gregoire Montavon, Sebastian Lapuschkin, Christopher

J. Anders, and Klaus-Robert Muller. “Explaining Deep Neural Networks

and Beyond: A Review of Methods and Applications”. In: Proceedings of
the IEEE 109.3 (Mar. 2021), pp. 247–278. issn: 0018-9219, 1558-2256. doi:

10.1109/JPROC.2021.3060483. url: https://ieeexplore.ieee.
org/document/9369420/ (visited on 08/10/2021) (cit. on p. 53).

http://proceedings.mlr.press/v70/raghu17a.html
https://doi.org/10.1038/323533a0
https://www.nature.com/articles/323533a0
https://arxiv.org/abs/1608.02192
http://arxiv.org/abs/1608.02192
https://doi.org/10.1090/S0002-9947-1953-0053041-6
https://doi.org/10.1037/h0042519
http://doi.apa.org/getdoi.cfm?doi=10.1037/h0042519
https://arxiv.org/abs/1811.07453
http://arxiv.org/abs/1811.07453
https://doi.org/10.1109/JPROC.2021.3060483
https://ieeexplore.ieee.org/document/9369420/
https://ieeexplore.ieee.org/document/9369420/


142 BIBLIOGRAPHY

[SCA15] SCADAStrangeLove. 32C3 Slides. Dec. 27, 2015. url: http://www.scada.
sl/2015/12/32c3-slides.html (visited on 05/25/2021) (cit. on p. 26).

[Sch] Jürgen Schmidhuber. Who Invented Backpropagation? url: https : / /
people.idsia.ch/~juergen/who-invented-backpropagation.html
(visited on 03/09/2021) (cit. on p. 41).

[SG19] Gagandeep Singh and Timon Gehr. “Boosting Robustness Certi�cation

of Neural Networks”. In: International Conference on Learning Represen-
tations (ICLR). 2019, p. 12 (cit. on pp. 107, 109).

[She+19] Li Shen, Laurie R. Margolies, Joseph H. Rothstein, Eugene Fluder, Russell

McBride, and Weiva Sieh. “Deep Learning to Improve Breast Cancer De-

tection on Screening Mammography”. In: Scienti�c Reports 9.1 (1 Aug. 29,

2019), p. 12495. issn: 2045-2322. doi: 10.1038/s41598-019-48995-4.

url: https://www.nature.com/articles/s41598- 019- 48995- 4
(visited on 06/22/2021) (cit. on p. 18).

[Sho+17] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov.

“Membership Inference Attacks Against Machine Learning Models”. In:

2017 IEEE Symposium on Security and Privacy (SP). 2017 IEEE Symposium

on Security and Privacy (SP). San Jose, CA, USA: IEEE, May 2017, pp. 3–

18. isbn: 978-1-5090-5533-3. doi: 10.1109/SP.2017.41. url: http:
//ieeexplore.ieee.org/document/7958568/ (visited on 11/16/2018)

(cit. on p. 49).

[Sig18] Julien Signoles. “From Static Analysis to Runtime Veri�cation with Frama-

C and E-ACSL”. July 9, 2018. url: http://julien.signoles.free.fr/
publis/hdr.pdf (visited on 03/04/2021) (cit. on p. 28).

[Sin+19] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. “An

Abstract Domain for Certifying Neural Networks”. In: Proceedings of the
ACM on Programming Languages (POPL). Vol. 3. 2019, pp. 1–30 (cit. on

p. 107).

[SR19] Thiago Serra and Srikumar Ramalingam. Empirical Bounds on Linear Re-
gions of Deep Recti�er Networks. Dec. 14, 2019. arXiv: 1810.03370 [cs,
math, stat]. url: http://arxiv.org/abs/1810.03370 (visited on

04/03/2020) (cit. on p. 91).

[Sta21] Nick Statt. Hackers Tampered with a Water Treatment Facility in Florida by
Changing Chemical Levels. The Verge. Feb. 8, 2021. url: https://www.
theverge.com/2021/2/8/22273170/hackers-water-treatment-
facility-florida-hacked-chemical-levels-changed (visited on

05/25/2021) (cit. on p. 26).

http://www.scada.sl/2015/12/32c3-slides.html
http://www.scada.sl/2015/12/32c3-slides.html
https://people.idsia.ch/~juergen/who-invented-backpropagation.html
https://people.idsia.ch/~juergen/who-invented-backpropagation.html
https://doi.org/10.1038/s41598-019-48995-4
https://www.nature.com/articles/s41598-019-48995-4
https://doi.org/10.1109/SP.2017.41
http://ieeexplore.ieee.org/document/7958568/
http://ieeexplore.ieee.org/document/7958568/
http://julien.signoles.free.fr/publis/hdr.pdf
http://julien.signoles.free.fr/publis/hdr.pdf
https://arxiv.org/abs/1810.03370
https://arxiv.org/abs/1810.03370
http://arxiv.org/abs/1810.03370
https://www.theverge.com/2021/2/8/22273170/hackers-water-treatment-facility-florida-hacked-chemical-levels-changed
https://www.theverge.com/2021/2/8/22273170/hackers-water-treatment-facility-florida-hacked-chemical-levels-changed
https://www.theverge.com/2021/2/8/22273170/hackers-water-treatment-facility-florida-hacked-chemical-levels-changed


BIBLIOGRAPHY 143

[STR18] Thiago Serra, Christian Tjandraatmadja, and Srikumar Ramalingam. Bound-
ing and Counting Linear Regions of Deep Neural Networks. Sept. 15, 2018.

arXiv: 1711.02114 [cs, math, stat]. url: http://arxiv.org/abs/
1711.02114 (visited on 03/26/2020) (cit. on pp. 85, 91, 108).

[Syn20] Synced. Exploring Gender Imbalance in AI: Numbers, Trends, and Discus-
sions | Synced. Mar. 13, 2020. url: https://syncedreview.com/2020/
03/13/exploring- gender- imbalance- in- ai- numbers- trends-
and-discussions/ (visited on 03/22/2021) (cit. on p. 41).

[Sze+13] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Du-

mitru Erhan, Ian Goodfellow, and Rob Fergus. Intriguing Properties of
Neural Networks. Dec. 20, 2013. arXiv: 1312.6199 [cs]. url: http://
arxiv.org/abs/1312.6199 (visited on 10/24/2018) (cit. on p. 47).

[Tab+20] Mark Tab, Kent Sharkley, David Coulter, and C.J. Gronlund. Azure AI
Guide for Predictive Maintenance Solutions - Team Data Science Process.
Oct. 1, 2020. url: https://docs.microsoft.com/en- us/azure/
machine - learning / team - data - science - process / predictive -
maintenance-playbook (visited on 06/22/2021) (cit. on p. 18).

[Tan+18] Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, and

Chunfang Liu. “A Survey on Deep Transfer Learning”. In: Arti�cial Neu-
ral Networks and Machine Learning – ICANN 2018. Ed. by Věra Kůrková,

Yannis Manolopoulos, Barbara Hammer, Lazaros Iliadis, and Ilias Ma-

glogiannis. Lecture Notes in Computer Science. Cham: Springer Interna-

tional Publishing, 2018, pp. 270–279. isbn: 978-3-030-01424-7. doi: 10.
1007/978-3-030-01424-7_27 (cit. on pp. 44, 53).

[Tol+21] Felipe Toledo, David Shriver, Sebastian Elbaum, and Matthew B Dwyer.

“Distribution Models for Falsi�cation and Veri�cation of DNNs”. In: The
36th IEEE/ACM International Conference on Automated Software Engineer-
ing. July 14, 2021, p. 13 (cit. on p. 79).

[Tra+16] Florian Tramèr, Fan Zhang, Ari Juels, Michael K. Reiter, and Thomas Ris-

tenpart. “Stealing Machine Learning Models via Prediction APIs”. In: 25th

USENIX Security Symposium (USENIX Security 16). 2016, pp. 601–618.

url: https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/tramer (visited on 11/16/2018)

(cit. on p. 49).

[Tra+20] Hoang-Dung Tran, Xiaodong Yang, Diego Manzanas Lopez, Patrick Musau,

Luan Viet Nguyen, Weiming Xiang, Stanley Bak, and Taylor T. Johnson.

“NNV: The Neural Network Veri�cation Tool for Deep Neural Networks

and Learning-Enabled Cyber-Physical Systems”. In: Computer Aided Ver-
i�cation. Ed. by Shuvendu K. Lahiri and Chao Wang. Vol. 12224. Lecture

https://arxiv.org/abs/1711.02114
http://arxiv.org/abs/1711.02114
http://arxiv.org/abs/1711.02114
https://syncedreview.com/2020/03/13/exploring-gender-imbalance-in-ai-numbers-trends-and-discussions/
https://syncedreview.com/2020/03/13/exploring-gender-imbalance-in-ai-numbers-trends-and-discussions/
https://syncedreview.com/2020/03/13/exploring-gender-imbalance-in-ai-numbers-trends-and-discussions/
https://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199
https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/predictive-maintenance-playbook
https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/predictive-maintenance-playbook
https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/predictive-maintenance-playbook
https://doi.org/10.1007/978-3-030-01424-7_27
https://doi.org/10.1007/978-3-030-01424-7_27
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/tramer
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/tramer


144 BIBLIOGRAPHY

Notes in Computer Science. Cham: Springer International Publishing,

2020, pp. 3–17. isbn: 978-3-030-53287-1. doi: 10.1007/978- 3- 030-
53288-8_1. url: http://link.springer.com/10.1007/978-3-030-
53288-8_1 (visited on 07/13/2021) (cit. on p. 109).

[Tri19] Gilles Triolier. Frappé par une cyberattaque massive, le CHU de Rouen forcé
de tourner sans ordinateurs. Le Monde.fr. Nov. 18, 2019. url: https://
www.lemonde.fr/pixels/article/2019/11/18/frappe-par-une-
cyberattaque- massive- le- chu- de- rouen- force- de- tourner-
sans- ordinateurs_6019650_4408996.html (visited on 05/25/2021)

(cit. on p. 26).

[Tru+19] Stacey Truex, Ling Liu, Mehmet Emre Gursoy, Lei Yu, and Wenqi Wei.

Towards Demystifying Membership Inference Attacks. Feb. 1, 2019. arXiv:

1807.09173 [cs]. url: http://arxiv.org/abs/1807.09173 (visited

on 03/18/2021) (cit. on p. 49).

[Tsi+18] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner,

and Aleksander Madry. Robustness May Be at Odds with Accuracy. May 30,

2018. arXiv: 1805.12152 [cs, stat]. url: http://arxiv.org/abs/
1805.12152 (visited on 10/24/2018) (cit. on p. 115).

[Tub21] Paola Tubaro. “Disembedded or Deeply Embedded? A Multi-Level Net-

work Analysis of Online Labour Platforms”. In: Sociology (Jan. 31, 2021),

p. 003803852098608. issn: 0038-0385, 1469-8684. doi: 10.1177/0038038520986082.

url: http://journals.sagepub.com/doi/10.1177/0038038520986082
(visited on 08/10/2021) (cit. on p. 43).

[Tur50] A. M. Turing. “I.—COMPUTING MACHINERY AND INTELLIGENCE”.

In: Mind LIX.236 (Oct. 1, 1950), pp. 433–460. issn: 1460-2113, 0026-4423.

doi: 10.1093/mind/LIX.236.433. url: https://academic.oup.com/
mind/article/LIX/236/433/986238 (visited on 03/09/2021) (cit. on

p. 39).

[TXT19] Vincent Tjeng, Kai Xiao, and Russ Tedrake. “Evaluating Robustness of

Neural Networks with Mixed Integer Programming”. In: International

Conference on Learning Representations (ICLR). 2019. url: https://
openreview.net/pdf?id=HyGIdiRqtm (visited on 06/19/2019) (cit. on

pp. 105, 107).

[Urb+19] Caterina Urban, Maria Christakis, Valentin Wüstholz, and Fuyuan Zhang.

Perfectly Parallel Fairness Certi�cation of Neural Networks. Dec. 5, 2019.

arXiv: 1912.02499 [cs]. url: http://arxiv.org/abs/1912.02499
(visited on 03/26/2020) (cit. on pp. 85, 116).

https://doi.org/10.1007/978-3-030-53288-8_1
https://doi.org/10.1007/978-3-030-53288-8_1
http://link.springer.com/10.1007/978-3-030-53288-8_1
http://link.springer.com/10.1007/978-3-030-53288-8_1
https://www.lemonde.fr/pixels/article/2019/11/18/frappe-par-une-cyberattaque-massive-le-chu-de-rouen-force-de-tourner-sans-ordinateurs_6019650_4408996.html
https://www.lemonde.fr/pixels/article/2019/11/18/frappe-par-une-cyberattaque-massive-le-chu-de-rouen-force-de-tourner-sans-ordinateurs_6019650_4408996.html
https://www.lemonde.fr/pixels/article/2019/11/18/frappe-par-une-cyberattaque-massive-le-chu-de-rouen-force-de-tourner-sans-ordinateurs_6019650_4408996.html
https://www.lemonde.fr/pixels/article/2019/11/18/frappe-par-une-cyberattaque-massive-le-chu-de-rouen-force-de-tourner-sans-ordinateurs_6019650_4408996.html
https://arxiv.org/abs/1807.09173
http://arxiv.org/abs/1807.09173
https://arxiv.org/abs/1805.12152
http://arxiv.org/abs/1805.12152
http://arxiv.org/abs/1805.12152
https://doi.org/10.1177/0038038520986082
http://journals.sagepub.com/doi/10.1177/0038038520986082
https://doi.org/10.1093/mind/LIX.236.433
https://academic.oup.com/mind/article/LIX/236/433/986238
https://academic.oup.com/mind/article/LIX/236/433/986238
https://openreview.net/pdf?id=HyGIdiRqtm
https://openreview.net/pdf?id=HyGIdiRqtm
https://arxiv.org/abs/1912.02499
http://arxiv.org/abs/1912.02499


BIBLIOGRAPHY 145

[Vas+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention Is All You
Need. Dec. 5, 2017. arXiv: 1706.03762 [cs]. url: http://arxiv.org/
abs/1706.03762 (visited on 04/02/2020) (cit. on p. 42).

[Vin+19] Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Math-

ieu, Andrew Dudzik, Junyoung Chung, David H. Choi, Richard Powell,

Timo Ewalds, Petko Georgiev, Junhyuk Oh, Dan Horgan, Manuel Kroiss,

Ivo Danihelka, Aja Huang, Laurent Sifre, Trevor Cai, John P. Agapiou,

Max Jaderberg, Alexander S. Vezhnevets, Rémi Leblond, Tobias Pohlen,

Valentin Dalibard, David Budden, Yury Sulsky, James Molloy, Tom L.

Paine, Caglar Gulcehre, Ziyu Wang, Tobias Pfa�, Yuhuai Wu, Roman

Ring, Dani Yogatama, Dario Wünsch, Katrina McKinney, Oliver Smith,

Tom Schaul, Timothy Lillicrap, Koray Kavukcuoglu, Demis Hassabis, Chris

Apps, and David Silver. “Grandmaster Level in StarCraft II Using Multi-

Agent Reinforcement Learning”. In: Nature 575.7782 (7782 Nov. 2019),

pp. 350–354. issn: 1476-4687. doi: 10.1038/s41586-019-1724-z. url:

https://www.nature.com/articles/s41586-019-1724-z (visited on

08/24/2021) (cit. on p. 60).

[Vin21] James Vincent. Canon Put AI Cameras in Its Chinese O�ces That Only
Let Smiling Workers Inside. The Verge. June 17, 2021. url: https : / /
www . theverge . com / 2021 / 6 / 17 / 22538160 / ai - camera - smile -
recognition-office-workers-china-canon (visited on 06/21/2021)

(cit. on pp. 18, 42).

[Wan+18a] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman

Jana. “E�cient Formal Safety Analysis of Neural Networks”. In: Advances
in Neural Information Processing Systems 31. Ed. by S. Bengio, H. Wallach,

H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett. Curran As-

sociates, Inc., 2018, pp. 6369–6379. url: http : / / papers . nips . cc /
paper/7873- efficient- formal- safety- analysis- of- neural-
networks.pdf (visited on 12/17/2018) (cit. on p. 108).

[Wan+18b] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman

Jana. Formal Security Analysis of Neural Networks Using Symbolic Inter-
vals. Apr. 28, 2018. arXiv: 1804.10829 [cs]. url: http://arxiv.org/
abs/1804.10829 (visited on 06/21/2019) (cit. on pp. 108, 109).

[Wer90] Paul John Werbos. “Backpropagation through Time: What It Does and

How to Do It”. In: Proceedings of the IEEE 78.10 (Oct. 1990), pp. 1550–

1560. issn: 00189219. doi: 10.1109/5.58337. url: http://ieeexplore.
ieee.org/document/58337/ (visited on 03/09/2021) (cit. on p. 41).

https://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://doi.org/10.1038/s41586-019-1724-z
https://www.nature.com/articles/s41586-019-1724-z
https://www.theverge.com/2021/6/17/22538160/ai-camera-smile-recognition-office-workers-china-canon
https://www.theverge.com/2021/6/17/22538160/ai-camera-smile-recognition-office-workers-china-canon
https://www.theverge.com/2021/6/17/22538160/ai-camera-smile-recognition-office-workers-china-canon
http://papers.nips.cc/paper/7873-efficient-formal-safety-analysis-of-neural-networks.pdf
http://papers.nips.cc/paper/7873-efficient-formal-safety-analysis-of-neural-networks.pdf
http://papers.nips.cc/paper/7873-efficient-formal-safety-analysis-of-neural-networks.pdf
https://arxiv.org/abs/1804.10829
http://arxiv.org/abs/1804.10829
http://arxiv.org/abs/1804.10829
https://doi.org/10.1109/5.58337
http://ieeexplore.ieee.org/document/58337/
http://ieeexplore.ieee.org/document/58337/


[WH60] Bernard Widrow and Ted Ho�. An Adaptative "Adaline" Neuron Using
Chemical "Memistor". Technical report 1553-2. Oct. 17, 1960. url: https:
//isl.stanford.edu/~widrow/papers/t1960anadaptive.pdf (vis-

ited on 03/10/2021) (cit. on p. 40).

[Win92] Patrick Henry Winston. Arti�cial Intelligence. 3rd ed. Reading, Mass: Addison-

Wesley Pub. Co, 1992. 737 pp. isbn: 978-0-201-53377-4 (cit. on p. 38).

[WK17] Eric Wong and J. Zico Kolter. “Provable Defenses against Adversarial Ex-

amples via the Convex Outer Adversarial Polytope”. In: Proceedings of the
35th International Conference on Machine Learning (Nov. 2, 2017). url:

https://arxiv.org/abs/1711.00851v3 (visited on 04/12/2019) (cit.

on pp. 107, 109).

[Wor15] World Economic Forum, director. Value Alignment | Stuart Russell. May 24,

2015. url: https://www.youtube.com/watch?v=WvmeTaFc_Qw (visited

on 08/24/2021) (cit. on p. 69).

[Ye+21] M. Ye, J. Shen, G. Lin, T. Xiang, L. Shao, and S. C. H. Hoi. “Deep Learning

for Person Re-identi�cation: A Survey and Outlook”. In: IEEE Transac-
tions on Pattern Analysis and Machine Intelligence (2021), pp. 1–1. issn:

1939-3539. doi: 10.1109/TPAMI.2021.3054775 (cit. on p. 42).

List of Figures

2.1 Graph representing the progression of this thesis with regard to the pillars

of formal veri�cation. Icons by Freepix on Flaticon.com . . . . . . . . . . . 21

3.1 On the left: instructions for a dummy program. On the right, a simpli�ed

representation of this program using a CFG. . . . . . . . . . . . . . . . . . 25

3.2 A possible way to design software . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 A schematic work�ow of formal veri�cation . . . . . . . . . . . . . . . . . 29

3.4 simpli�ed work�ow of SMT calculus . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Using interval arithmetic, we are able to rule out the costly computation

within the conditional. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

146

https://isl.stanford.edu/~widrow/papers/t1960anadaptive.pdf
https://isl.stanford.edu/~widrow/papers/t1960anadaptive.pdf
https://arxiv.org/abs/1711.00851v3
https://www.youtube.com/watch?v=WvmeTaFc_Qw
https://doi.org/10.1109/TPAMI.2021.3054775


LIST OF FIGURES 147

3.6 Stakes of abstract interpretation. On �g. (a), the abstraction A correctly

encapsulates the behaviour of the program. On �g (b), A is too wide, and

the veri�cation procedure raises a false alarm. On �g. (c), A does not en-

compass all behaviours, resulting on an unsound analysis. Domains used

in abstract interpretation must be sound, so case (c) is not supposed to

happen when dealing with real tools. Credit: Antoine Miné . . . . . . . . . 33

3.7 Example adapted from [CS13]. Round nodes describe the memory state of

the program, rectangle nodes describe a possible concrete input leading to

this execution path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 A formal neuron. σ is an activation function that introduce non-linearity

in the neuron’s behaviour (in the perceptron, σ was the Heaviside function) 39

4.2 A neural network with two inputs, one hidden layer of three neurons and

two outputs, no biases. Each neuron process the weighted sum of its inputs,

followed by an activation function . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Gradient backpropagation algorithm . . . . . . . . . . . . . . . . . . . . . . 46

4.4 Simpli�ed procedure to build adversarial examples. x and y are samples,

δ and δ
′

are perturbations, d is the decision boundary between classes C1
and C2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5 An iconic adversarial example illustration, from [GSS14] . . . . . . . . . . 48

4.6 The ACAS-Xu model, with all input variables . . . . . . . . . . . . . . . . . 51

4.7 main di�erences between classical programs and neural networks . . . . . 54

5.1 A theoretical software embedded in an autonomous vehicule. One prop-

erty we would like to prove is the following: how can we ensure that the
software does not output a “continue” directive for all images with a pedestrian? 59

5.2 Natural inputs with huge perceptual space: no formal characterization of

the input can be formulated, preventing formal veri�cation . . . . . . . . . 64

5.3 Generated inputs with integration of the generation procedure in the ver-

i�cation problem. There are now new properties to check since we have a

formal characterization of the perceptual elements. . . . . . . . . . . . . . 65

5.4 Integration of the generation procedure in the veri�cation, with split be-

tween perception and reasoning: p learns to capture all the relevant pa-

rameters; r learns to respect the speci�cation. Verifying φ1 proves the

perception module once and for all; verifying φ2 can be done when the

speci�cation changes (e.g., for di�erent driving rules). . . . . . . . . . . . . 67

6.1 ISAIEH architecture. Arrows indicate a dependency. . . . . . . . . . . . . . 74

6.2 Attributes of vertex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76



148 LIST OF FIGURES

6.3 Example of inputs for the toy problem. White pixels represent obstacles.

If they are in the top half of the image, no alert should be �red (�rst two

examples), while an alert should be �red if at least one lies in the (dashed)

bottom half of the image (last two examples). 9x9 picture is depicted here

for clarity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.4 A SMTLIB2 �le describing our problem. First part is a full description of

the network, automatically produced by ONNX2SMT. Handmade annota-

tions describe the property to check, i.e. there are no false negatives in our

network. The goal for the solver is to �nd a counterexample. . . . . . . . . 80

7.1 A two layered fully-connected network. Weights are indicated on edges.

Green circle denotes an active ReLU neuron, while red cross denotes an

inactive ReLU neuron. Both inputs x1 and x2 are positive. We see that

the neuron y13 is inactive, since the weighted sum z13 = −0.5(x1 + x2) is

negative. Similarly, y22 is inactive since z22 = −0.5(y11 + y12) is negative,

y11 and y12 being positive because of being active neurons. The resulting

activation states are S1
F = (1, 1, 0) (�rst layer) and S2

F = (1, 0) (second

layer). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.2 On the left: a network with activation states. On the right: the corre-

sponding input space. On top: S1
F = (1, 1, 0). On bottom: S1

F ′ = (1, 1, 1).

Changing the activation state results in a di�erent linear region in the in-

put space. Also note that all potential facets are convex. . . . . . . . . . . 90

7.3 The same two-layered network, but with a wider input space. Here, pos-

sible activation states are S1
F = (1, 1, 0) or (1, 1, 1) (�rst layer) and S2

F =
(1, 0) or (1, 1) (second layer). . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.4 Content of constraint stacks; constaints above the three stacks are common

to all of them . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.5 x-axis is the input dimension d. Upper orange line with dots is the naive,

2n
bound. Middle blue line with crosses is the bound proposed by [HR19b]

K ∗ nd

d!
. Red stars are the best performing networks for our experiments.

Left �gure is for the simple architecture, middle �gure is for the big archi-

tecture, right �gure is for the super architecture. y-scale is logarithmic . . 96

7.6 Distribution of points in facets for di�erent input dimensions . . . . . . . . 97

7.7 x-coordinate denotes the number of facets, y-coordinate the accuracy of

the network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

8.1 Linear overapproximation of y =ReLU(z). Note that it includes negative

values, which would normally not be possible for the output of a ReLU. . . 108



8.2 Graph summing up the performances of several networks. x-coordinate

denotes the number of facets, y-coordinate the accuracy of the network.

Orange crosses are networks trained with MMR, blue dots are networks

trained without. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8.3 Red denotes a high value of parameter γrb, orange a low value, blue that

the parameter is set to 0 value. x-axis is the number of facets, y-axis is the

accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

List of Tables

6.1 Total number of possible samples for each N . . . . . . . . . . . . . . . . . 79

6.2 Runtimes of solvers to answer UNSAT. TIMEOUT is one hour. . . . . . . . 79

7.1 number of neurons for the di�erent architectures. d denotes the dimension

of the input, Li the i− th layer of the network . . . . . . . . . . . . . . . . 101

8.1 Runtimes for di�erent benchmarks as reported in the original publications 107

8.2 Runtimes for di�erent benchmarks as reported in the original publications 109

8.3 number of neurons for the di�erent architectures. d denotes the dimension

of the input, Li the i− th layer of the network . . . . . . . . . . . . . . . . 111

8.4 Runtime for di�erent problems. TIMEOUT is set at 10000s. Figures are

mean taken over 10 runs, standard deviation is reported next to the± symbol 113

149





Titre: Vérification et validation de techniques d’apprentissage machine

Mots clés: Réseaux de neurones, méthodes formelles

Résumé: L’apprentissage machine, en parti-
culier au moyen des réseaux de neurones arti-
ficiels, connaît depuis une dizaine d’année une
expansion impressionnante. détecteurs de col-
lision d’aéronefs, aide au diagnostic pour dif-
férents cancers, aides aux décisions de justice,
véhicules autonomes et capteurs d’anomalies
d’ancrage sur des plateformes offshores sont au-
tant d’applications faisant intervenir les tech-
nologies d’apprentissage profond au sein de sys-
tèmes critique; ouvrant des perspectives inex-
plorées pour les sociétés humaines. Bien que
bénéfique en apparence, cette révolution a de
quoi inquiéter à mesure qu’elle se concrétise: la
fragilité de ces techniques d’apprentissage est
désormais un fait scientifique établi. La tax-
onomie des vulnérabilités, qu’elles soient acci-
dentelles ou malicieuses, ainsi que leur carac-

tère imprévisible remet en question la possibil-
ité d’intégrer des réseaux de neurones dans des
domaines critiques qui pourraient pourtant en
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