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Absiract

N this thesis, a real-valued function that approximates the cumulative distribution
I function (CDF) of a finite sum of real-valued independent random vectors is
presented. The approximation error is upper bounded and thus, as a byproduct,
an upper bound and a lower bound on the CDF are obtained. It is observed that in the case
of lattice and absolutely continuous random variables, the proposed approximation is identical
to the saddlepoint approximation of the CDF. This result is used to approximate decoding
error probability (DEP) bounds for the point to point and Multiple Access channels (MAC).
For the point to point channel, this result has pointed out the impertinence of the normal
approximation, especially for small values of the DEP. For the MAC, the introduction of the
notion of the individual (per user) DEP has revealed the almost non-interference between
transmitters in the regime of small values of DEP and blocklength that is not captured by the
system DEP.
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Résumeé

ANS cette these, une fonction qui approxime la fonction de répartition d’une
somme de vecteurs aléatoires indépendants et identiquement distribués est
présentée. L’erreur d’approximation est majorée, et par consequent, une borne

supérieure et une borne inférieure sur la fonction de répartition sont obtenues. Pour des
vecteurs aléatoires absolument continues ou lattices, ’approximation proposée est identique a
I’approximation du point de selle de la fonction de répartition. Ce résultat est ulitisé pour
approcher les bornes de probabilité d’erreur de décodage pour les canaux point a point et a
acces multiple. Sur le canal point & point, cette approche a permis de constater I'insuffisance
de l'approximation normale, particulierement pour des probabilité d’erreur de décodage de
faibles valeurs. Concernant les canaux a acces multiple, la considération de la notion d’erreur
individuel a revélé le comportement presque non interférant des transmetteurs pour des petites
valeurs de la probabilité d’erreur de décodage et de la longueur des paquets.
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Notation

Sets are represented by calligraphic letters, e.g, X. Sets, whose elements are sets, are
represented by script letters, e.g, 2Z". The empty set is denoted by . The sets of all integer
numbers, all real numbers, and all complex numbers are respectively denoted by N, R, and C.
In particular, 0 ¢ N. The Borel sigma field on R*, with k € N, is denoted by % (Rk) The
Lebesgue measure on the measurable space (R¥, Z(R¥)) is denoted by v;. Given a discrete
set K, the biggest sigma field, i.e., the set of all its subsets, is denoted by 2X. The Euclidian
norm in R¥ is denoted by ||-||. Given a set A € R¥, the closure of the set A, denoted by

cloA, is defined by cloA 2 {m eRF:Vr>0,3yc A, |z —y| < r}. A diagonal matrix whose
diagonal is the vector & € R” is denoted by diag (x).

Random variables and their realizations are respectively represented by uppercase and
lowercase letters, e.g, X and x. Random vectors and their realizations are respectively
represented by uppercase and lowercase boldface letters, e.g, X and . Random matrices and
their realizations are respectively represented by uppercase and lowercase boldface underline
letters, e.g, X and x.

The probability measure induced by a random variable/vectors/matrix is denoted by the
letter P indexed by the random variable/vector/matrix, e.g, Px, Px, and Px. When an
additional measure is needed for the same random variable, the letter @) is used in the place of
P to differentiate between measures and avoid confusion. The conditional probability measure
induced by a random variable Y given another random vector X is denoted by Py x. The
same notation for conditional probability measures holds for any combination of random
variable, vector and matrix. The set of all probability measures, whose support is subset of a
given set, is represented by A (< given set >), e.g, /A (S) represents the set of all probability
measures whose supports are subsets of S.

The logarithm function In is assumed to be in base e and is denoted by In.

xvii

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2021LY SEI065/these.pdf
© [D. Anade Akpo], [2021], INSA Lyon, tous droits réservés



Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2021LY SEI065/these.pdf
© [D. Anade Akpo], [2021], INSA Lyon, tous droits réservés



Infroduction

MART and autonomous are now common adjectives; for instance, smartphone,

S smart/autonomous car, smart home, and smart environment to cite a few. These

qualifications designate the ability of an object to exchange information with its

surroundings and to consequently act with respect to a given objective. The Internet of Things

(IoT) and Internet of Everything (IoE) are seen as first steps towards smart environments

thanks to the importance of a communication interface to support information exchange

between each object. Even though the acronym IoT appeared many more than a decade ago,
many challenges remain before the IoT becomes a reality.

The advent of the IoT challenges key assumptions present in traditional communication
systems. The first assumption is the number of users, which are dramatically large to allow
massive numbers of objects to communicate. Companies like Cisco and SigFox forecast
many billions of new objects to be connected []. The multiplication of users leads to a
scarcity of resources and questions how the latter must be allocated. For example, a key
question is whether the existing orthogonal multiple access (OMA) protocols are sufficient, or
if non-orthogonal multiple access (NOMA) protocols are required?

The second assumption is the number of different types of users in the network. Heterogeneity
among users may lead to a loss in quality of service (QoS). For example, an autonomous car may
have a lower latency requirement than a temperature sensor that must send its measurement
message each hour. A telemedicine system may have higher reliability requirement than a
video surveillance system. Due to the expected simultaneous access of the channel by a large
number of users, which may exhibit some heterogeneity, the decoding error probability (DEP)
may need refinement as it does not capture the requirement of individual objects. For instance,
must the IoT minimize the system error associated with all users or to ensure some success
probability to each user separately?

Third, the simultaneous access of the channel by different users may impact the distribution
of the interference. Indeed, the interference produced by a set of sensors is observed in [1] to
exhibit impulsivity, which does not align with Gaussian assumption.

The failure of standard hypotheses in the IoT setting leads to the question of whether
traditional protocols are sufficient. To determine whether new protocols are required, a key
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1. Introduction

approach is to characterize theoretical limits of IoT communication.

The theoretical study of communication systems relies on information theory, which was
started by Shannon in [2]. The tools developed in information theory for the analysis of
communication systems can be divided in three groups: (a) the channel (Shannon) capacity
(Asymptotic regime), (b) general bounds (Non-asymptotic regime), and (¢) second order
achievability (Almost non-symptotic regime).

The channel capacity is defined as the maximum information rate at which it is possible to
transmit with an arbitrary low DEP when communication is allowed to take infinite time. As
consequence, the channel capacity does not allow to study the latency constraint due to an
infinite time transmission consideration.

General bounds are the proposition of upper and lower bounds on the DEP that are
developed with no particular assumption on the latency or reliability constraints. Such bounds
are the answer of information theorists [3H6] to overcome the limitation of the channel capacity
framework. Despite the generality of the proposed bounds, their evaluation complexity makes
them useless without an approximation. Indeed, as it will be figured out in Chapter [2| such
bounds are functions of unknown cumulative distribution functions (CDFs) of random vectors.
The blind computation of such CDFs is impossible due to the high dimension of the random
vectors.

The second order achievability has been a middle point between the channel capacity and
general bounds. The second order achievability results from the approximation of general
bounds, which is a consequence of the normal (Gaussian) approximation of CDFs in these
bounds. These approximations are obtained under memoryless and stationary assumptions
that allow to work with sums of independent and identically distributed (IID) random vectors
and then to apply the normal approximation. As a consequence, the second order achievability
suffers from the limitation of the normal approximation that fails on the CDF tail and on a
sum with few IID random vectors. The CDF tail corresponds to the regime of low values of
DEP that is equivalent to a high reliability requirement. Few IID random vectors correspond
to the regime of small channel uses that is equivalent to the low latency regime. Hence, the
second order achievability is not suitable to analyze ultra-reliable low latency communication
(URLLC), which is a critical component for autonomous vehicle networks and for telemedicine
systems.

The previous paragraphs have shown limitations of the tools developed by information
theorists for understanding URLLC systems, which are part of the IoT. The objective of this
thesis is to reduce the limitations due to the normal approximation by introducing a new
family: Exponentially tilted Gaussian approximations of CDFs (Chapter |3| and Chapter .
This family is obtained from a change of measure that introduced a parametrized random
vector, which is also a sum of IID random vectors, followed by its normal approximation.
Thus, the normal approximation is applied to the intermediate random vector in the place of
the initial summation of IID random vectors. Due to this parametrization and the proposition
of an upper bound on the induced approximation error, the choice of intermediate random
vector can be optimized. Such an optimization seems to overcome the limitations of the
normal approximation on the CDF tail but also for sums with few IID random vectors. The
application of exponentially tilted Gaussian approximations to the general bounds (Chapter [5)
leads to easy computable bounds. The contributions of this thesis are:

e A proposition of the exponentially tilted Gaussian approximations of CDFs of sums of
independent random vectors and a characterization of the induced error by providing
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an explicit upper bound. Gaussian and saddlepoint approximations of CDFs are shown
to be particular cases of exponentially tilted Gaussian approximations. The non-lattice
discrete random vectors were covered by the exponentially tilted Gaussian approximation
compared to the saddlepoint approximation that is constrained to lattice random vectors.
Chapter [3] and Chapter [4] focus on the exponentially tilted Gaussian approximations of
CDFs of sums of independent random variable and vectors, respectively.

e The exponentially tilted Gaussian approximation is used to provide easy computable
bounds on DEPs point-to-point channels and multiple access channels (MAC) and are
presented Chapter

e A formalization of the notion of individual (per user) DEP for MAC presented in
Chapter [2]

The sequel of the manuscript is organized as follows: Chapter [2] reviews general bounds on
DEPs for point-to-point channels and MAC. The notion of individual error is also formalized
in Chapter [2] with the proposition of upper bounds on DEPs. Chapter [3]and Chapter [4] present
the exponentially tilted Gaussian approximations of CDFs of sums of independent random
variables and vectors, respectively. Chapter [5is an application chapter based on the theoretical
materials presented in the previous chapters and it provides easy computable bounds on DEPs.
Chapter [6] concludes this work and discusses points of improvement of our contributions.
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System Models and
the State of the Art

HIS chapter introduces the point to point channel and the MAC and reviews the
I main results on the DEP, achievability and converse bounds, that have been
proposed in the literature. A contribution on the improvement of the dependence
testing (DT) bound for the point to point channel is additionally presented. This chapter
also formulates an alternative approach to tackle the fundamental bounds of the MAC by
considering the individual DEP (IDEP). Usually, the DEP in the MAC is considered as what
we call the system DEP (SDEP), i.e. an error occurs if at least one user is wrongly decoded.
Unfortunately, this definition is not pertinent for applications with many transmitting users.
The consideration of the IDEP, i.e. the DEP of each transmitter in the network, is far more
insightful to design systems with high connectivity. It is worth mentioning that this vision has
been completely eluded from the information theory community and we have been among the
first people to get interest about it in the ANR ARBURST project, independently followed by
the work of Kowshik and Polyanskiy [7].

The chapter is organized as follows. Section [2.1] focuses on the point to point channel
and presents the main results on the achievable DEP (RCU, DT bound) and the converse
(meta converse (MC) bound). Section deals with the MAC system model and presents the
multi-user RCU and DT bounds for the achievable DEP (system and individual) as well as
the multi-user version of the meta converse bound.

2.1. Point-to-Point Channels

Starting from the system model formalization of the point-to-point channel in Sub-section [2.1.1
lower and upper bounds on the DEP are reviewed and shown to be related of the CDFs
of information density random variables in Sub-section [2.1.2] The evaluation difficulty of
these bounds due to unknown CDFs are discussed, which leads to Subsection [2.1.3] on the
approximations of the DEP, mainly the normal approximation. Finally, Sub-section
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2. System Models and the State of the Art

discusses the complexity of the bound evaluation and the limitation of the state of the art
(normal) approximations that leads to the development of exponentially tilted Gaussian
approximations in Chapter

2.1.1. System Model

Consider a point to point communication in which a transmitter aims at sending information
to one receiver through a noisy channel. Such a channel can be modelled by a random
transformation

where n € N is the number of channel uses, X and ) are respectively the channel input set
and output set. Given the channel inputs = (z1, 2, ..., a:n)T e X", the output is a random
vector Y = (Y1, Ya, ..., ¥;,)T that induces the probability measure

Py x—a (2.2)

on the measurable space (Y™, Z (J")).
The objective of the communication is to transmit a message index ¢, which is a realization of
a random variable W that is uniformly distributed over the set

WE{1,2,..., M}, (2.3)

with M € N, M > 1. To achieve this objective, the transmitter uses an (n, M)-code.

Definition 1 ((n, M)-code) Given a tuple (M, n) € N2, an (n, M)-code for the random
transformation in (2.1)) is a system

{ <u(1), D(l)), <u(2),D(2)> ey (u(M),D(M)) }, (2.4)

where for all (j,¢) € W?, with j # {:

u(j) = (ui(j),u2(j),...,un(4))" € X", (2.5a)
D(j)nD() = &, and ] D(j) = I". (2.5b)
JEW

Remark 1 Given an (n, M)-code €, m 2 {(u(1),D(1)),...,(u(M),D(M))}, the codebook is
the set of codewords u(1), ..., u(M).

Given an (n, M)-code &, m 2 {(u(1),D(1)),...,(u(M),D(M))}, to transmit the message
index i € W, the transmitter uses the codeword w(7). At channel use ¢, for all t € {1,2,...,n},
the transmitter inputs the symbol u:(7) into the channel. Assume that, at the end of channel
use t, the receiver observes the output y;. After n channel uses, the receiver observes the
vector y = (y1, Y2, - -+, Yn)'. The receiver determines that the symbol j was transmitted if y
e D(j), with j € W.
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2.1. Point-to-Point Channels

A decoding error occurs when the codeword w(i), with ¢ € W, is transmitted and the received
vector y satisfies:

y ¢ D(i). (2.6)

The DEP associated to the transmission of the message index ¢ can be computed as

Epy x—ui [Lvenay] (2.7)

where Py |x is the random transformation in (2.1)).
The average DEP associated to the (n,M)-code %, ar, denoted by A(€,, 1), can be computed
as

>

1 M
)‘(an,M) M Z ]EPY\X:u(i) []1{Y¢D(i)}] ) (2-8)
=1

where Py|x is the random transformation in (2.1)).
Given (n,M) € N2, the minimum average DEP associated to the random transformation
in (2.1) is defined hereunder.

Definition 2 Given a pair (n,M) € N2, the minimum average DEP for the random transfor-
mation in (2.1)), denoted by N\*(n, M), is defined as:

N (n,M)=_inf  XNGum), (2.9)

Cn,MECn M

where XN(Gn,nr) is defined in (2.8)) and Cy, a1 is the set of all (n, M)-codes.

The minimum average DEP (2.9)) is a fundamental limit of the random transformation in .
Indeed, it is possible to construct an (n, M)-code €, a for the random transformation in
with average DEP A\(%,, pr) > A*(n, M). However, the construction of an (n, M)-code for the
random transformation in with average DEP A(%,,0) < A*(n, M) is impossible.

The objective of many works in information theory [4-6,8] consists in determining this
fundamental limit of the point to point channel represented by the random transformation
in .

The minimum average DEP, \*(n, M) in , is an increasing function of M for a fixed value
of n. Such a claim is based on the observation that for all (n, M)-code achieving A\*(n, M),
an (n, M')-code, with M’ < M, can be constructed using the following steps. (M — M’)
codewords with the highest DEPs are removed and their decoding sets are merged with the
decoding set of the codeword with the lowest DEP. Denote this new code by %), 5, this
construction leads to an average DEP \(%), yy) that satisfies A\(;,,0/) < A*(n, M). This
implies A*(n, M') < X\*(n, M).

The monotonicity of \*(n, M) with respect to M allows to observe that the maximum M for
which A\*(n, M) < e, with e € [0,1], is also a fundamental limit of the point to pint channel.
In order to study the latter fundamental limit, it is helpful to consider the definition of an (n,
M, €)-code.

Definition 3 ((n, M, ¢)-code) Given a tuple (M, n, €) € N2 x [0,1], an (n, M, €)-code for
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2. System Models and the State of the Art

the random transformation in is an (n, M)-code 6, pm whose average DEP satisfies
MGnm) <e. (2.10)
Using the Definition [3 it can be shown that A*(n, M) in satisfies
X*(n, M)=inf {e € [0,1] : 3(n, M, €)-code} . (2.11)
An (n, M, e)-code is said to transmit at an information rate

_ logy (M)
n

R (2.12)
bits per channel use.
For a fixed value of n, studying R or M is equivalent. Operationally, R is more interesting than
M since it is directly connected to the information rate. Hence, the study of the maximum
of R instead of M will be considered in the sequel. To go further in this study, consider the
following definition.

Definition 4 (Capacity region) Given a blocklength n and an average DEP e, the capacity
region of the random transformation in (2.1)), denoted by A*(n,¢€), is defined as:

A*(n,€) £ {Re R : 3(n, 2"E, €)-code}. (2.13)
The supremum of A*(n, €) is called the (e, n)-capacity and is denoted by R*(n, €):
R*(n,e) =sup{ReR:3(n, okt €)-code} . (2.14)

The determination of R*(n, €) relies on the knowledge of A*(n, M) in (2.9), which requires to
solve a difficult problem (2.9). Indeed, the evaluation of the average DEP A(%, ) in
relies on the evaluation of all expectations IE Py |x—u(i) [1{Y¢D(i)}], with ¢ € W, that are generally
difficult to calculate. For instance in [3], an additive white Gaussian noise (AWGN) channel,
where input codewords belong to the power shell and decoding sets D(i) are n-dimensional
pyramids, with ¢ € W, is considered. Therein, the evaluation of E Py |x—u(i [ﬂ{y¢p(i)}] turns
out to be difficult. As result, D(i), with i € W, are approximated by n-dimensional cones in
order to facilitate the evaluation. Furthermore, solving may require to evaluate A(%, ar)
for all (n, M)-codes €, ps. For example with M = 5, n = 10, and the size |X| = 2 of the input
alphabet X, there exists a least ('ﬂn) =9.2912 - 10'2, which is a big number.

The difficult evaluation calls for the proposition of upper and lower bounds on A*(n, M)
in . These bounds allow to characterise the (e, n)-capacity.

The next section summarizes some of the existing upper and lower bounds on A*(n, M) in

29).

Remark 2 Throughout this thesis, an upper bound on the minimum average DEP will be
referred to as an achievability bound and a lower bound as a converse bound.

2.1.2. Bounds on the Decoding Error Probability

The study of achievability bounds and converse bounds dates back to the works in [2,3}[5,8-10]
and was recently renewed in [6]. Starting from the definition of the minimum average DEP
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2.1. Point-to-Point Channels

in , any upper bound on the average DEP of any (n, M)-code is an achievability bound.
Thus, an achievability bound is derived by assuming an (n, M)-code and deriving an upper
bound on its average DEP. However, a converse is a lower bound of all average DEPs of all
(n, M)-codes and its derivation must consider all possible (n, M)-codes, which is often difficult.

Achievability Bounds

Evaluating the average DEP of a given (n, M)-code, i.e. A(%y,) in (2.8), is generally difficult
due to the interplay between the decoding sets D(i), for all i € W, which form a partition of
Y™, This interdependence between the decoding sets may lead to heterogeneity of methods to
evaluate each Epy, []1 {Y¢D(i)}] in , with ¢ € W. To avoid using a different method for
each decoding set, a randomization has been introduced in [2,33] to bring some homogeneity.
The randomization consists in studying a set of (n, M)-codes instead of a particular (n, M)-
code. The main interest is to study the mean of the average DEPs across this set. Indeed, the
mean is greater than the minimum. Thus, the mean is an achievability bound. The main idea
consists in creating a symmetry between codewords through a rotation among them. From an
(n, M)-code to another, the same codeword can be associated to a different message index.
The same holds for the decoding sets. Following this process, a symmetry is created between
decoding sets associated to different message indices that breaks the heterogeneity among
them. Such a process is known as random coding and makes it easier to deal with the average
of \(¢,m) in by only concentrating on the average of EPy x—u) []].{Y¢’D(Z‘)}] with respect
to a probability measure Px on the codeword set X™. As a result of the induced symmetry,
the average of Epy x—ui) []l{y¢p(i)}] becomes a constant function of 4.

Depending on the method used to construct the decoding sets, the random coding leads to
different DEPs. In this thesis, two methods that summarize the majority of the decoding set
construction are presented: (a) the maximum likelihood and (b) a threshold decoding.

A decoder (decoding sets) is said to rely on the maximum likelihood if for a given signal
y € V", the estimated message index 1 satisfies:

e {ieW: Pyx (yluli)) = maxPyix (ylu(m))} . (2.15)

A decoder is said to be based on a threshold decoding if for a given signal y € )", the estimated
message index 1 satisfies:

me{ieW: Pyx (ylu(i)) >t (y,u(i),i)}, (2.16)

where the function ¢ : Y™ x X™ x W — R, is a threshold function.

Note that decoding sets based on the maximum likelihood lead to a lower average DEP than
those based on a threshold decoding. However, the average DEP based on the maximum
likelihood is more complex than the average DEP based on a threshold decoding.

These two methods of decoding set construction respectively lead to random coding union
(RCU) bound [6, Theorem 16] for the maximum likelihood and dependence testing (DT) bound
for a threshold decoding [6, Theorem 18].

To ease the presentation of these bounds, consider the following notation. For all x € X", y €
Y™ and for all probability measures Qy € A (Y™), let the function 7 : X" x V" x A (Y™) — R be

o A, (dPy|x—s
amioy) S (X)) (.17
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2. System Models and the State of the Art

where

(1) for all y € suppQy, the function d?Q";:w : Y™ — Ry u{oo} is equal to the Radon—Nikodym
derivative of the measure Py |x_, with respect to the probability measures Qy, with Py|x_,
defined as:

Py x_2(5) =Py |x_5(S) for all § < suppQy, and (2.18a)
Py x_» ({y € R: y ¢ suppQy })=0. (2.18b)

(i1) for all y € {t € suppPy|x_z : t ¢ suppQy },

dPy|x—¢
dQy

Note that the definition of the 7 (x;y|Qy) in appears also in [11] as “the density of the
modified mutual information” due to the change of measure from induced output probability
measure Py to a chosen probability measure Qy .

For all (n,y) € N x R and for all probability measures Px € A (X™) and Qy € A (J"), let the
function T: N x A (X™) x A(Y™) x Ry — R be

(y) = o0. (2.18¢)

A
T(n, Px,Qy,7) = Epxpyx [Lux:¥iQy)<in)}] + VErxoy [Lix:vi@y)smm] - (2:19)

Using these notations, the following lemmas introduce the RCU bound and the DT bound,
respectively.

Lemma 1 (RCU bound [6, Theorem 16]) Given a pair (n,M) € N2, the following holds
for all probability measures Px € A\ (X™), with respect to the random transformation in (2.1)):

N (0, M) < By py i [min {1,(M = DEpy | 1wy pyycagoviiny | (2.20)

where the function T is defined in (2.17)); the probability measure Py is the marginal of Px Py x;
and the random variable X is identically distributed as X but independent of X and Y ;

For given constraints on the codewords, e.g. power, amplitude constrains, the upper bound
in must be considered with respect to the input probability measures Px that satisfy
these constraints instead of all Px € A (X™).

Note that the right hand side (RHS) in can be minimized with respect to the input
probability measures Px under the constraints on the codewords to obtain a tighter upper
bound.

Comments 1 Unfortunately, the bound in Lemmal[l] is difficult to evaluate. The evaluation of
the RCU bound can be facilitated if the cumulative distribution function (CDF) of the random
variables i(x; y|Py) — i(X;y|Py) for allx e X™ and y € Y™ is known. In this particular case,
the evaluation of the RHS in reduces to the expectation of a function of this CDF with
respect to Px Py |x that is still difficult to compute. Generally, this CDF is not known, and
the evaluation of RHS in requires the evaluation of 3 x n-dimensional integral:

Erxpyp [min {1, (M = DEpg | Ly <izviry ) |

=J f min {1, (M —1) L ﬂ{z(x;yPy)gz(gz;mpy)}P)z(da_?)} Py|x—5(dy)Px (dz). (2.21)

10
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2.1. Point-to-Point Channels

This integration is difficult due to the number of the dimension (3n). Hence, the proposition
of another bound on the average DEP based on a threshold decoding.

Lemma 2 (DT bound [6, Theorem 18]) Given a pair (n,M) € N?, the following holds
for all probability measures Px € A (X™), with respect to the random transformation in ([2.1)):

M—-1
/\*(TL,M) <T <n,Px,Py, 5 ) , (2.22)

where the function T is defined in (2.19) and Py is the marginal of the joint probability
measure Px Py|x .

For given constraints on the codewords, the upper bound in must be considered with
respect to the input probability measures Px that satisfy these constraints. The upper bound
in can be minimized with respect to the input probability measures Px that satisfy the
constraints on the codewords.

The bound in Lemma [2] suggests to use a constant threshold for decoding. However, as some
codewords are discarded along the sequential decoding process, the error probability also
evolves and a tighter bound can be obtained by considering an adaptive threshold according
to the number of codewords that remains to test. The following lemma summarises this
result [12].

Lemma 3 Given a pair (n,M) € N2, the following holds for all probability measures Px €
A (X™), with respect to the random transformation in (2.1)):

M
1
* .
N (n, M) <M;T(n,Px,Py,M—z), (2.23)

where the function T is defined in (2.19) and Py is the marginal of the joint probability
measure Px Py |x .

Proof: The proof is presented in Appendix [A] ]
Note that the improvement of the bound (2.23)) with respect to the bound in (2.22)) is a
consequence of the concavity of the function T' (n, Px, Py,~) in ~.

Comments 2 The evaluation of the function T in 1s facilitated if the CDFs of the
random variable I (X;Y|Qy) under the probability measures Px Py|x and PxQy are known.
In this particular case, the evaluations of the first and second expectations in RHS of
respectively reduce to the evaluations of the CDF and the complementary CDF of the random
variable i (X;Y |Qy) under the probability measures Px Py|x and PxQy. Generally, these
CDFs are not known and the evaluation of the function T in requires 2 X n-dimensional
integral:

Epyxpy x []l{f(X;Y\Qy)Sln(v)}] = J . L}n 1 ii(@iylQy)<in(y)} Py | x =2 (dy) Px (dx) and  (2.24)
Erxay [Lioxvior)=mmy | = f ) Ln Li@iyl@y)>tne) Py (dy) Px (dz). (2.25)
This integration is difficult due to the number of the dimension (2n) but remains less complex

than the integration in (2.20)).

11
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2. System Models and the State of the Art

Converse Bound

The lower bound on A*(n, M) presented in this thesis is based on the Neyman-Pearson
hypothesis testing [104/13]. The following lemma presents this bound known as the meta
converse (MC) bound [6, Theorem 27]. To unify the presentation with respect to the bound
appearing in Lemma [2] the MC bound is presented using the form in [14.[15, Lemma 1].

Lemma 4 (MC Bound [14, Lemma 1]) Given a pair (n,M) € N2, the following holds for
all probability measure Qy on the measurable space (Y™, B(Y™)), with respect to the random

transformation in (2.1)):

: i
X (n, M) = f T(n, P, - — 2.2
(0> inf e (TP, Qro) = 37 ) (2:26)

where the function T is defined in (2.19)).

The infimum in is taken with respect to the input probability measures Px € A (X™). If
additional constraints hold on the codewords, the space of the probability measures is reduced
to reflect this constraints. Note that the lower bound in (2.26)) can be maximized with respect
to output probability measures Qy € A (J").

Remark 3 The lower and upper bounds proposed by Claude Shannon in [S5] are not discussed
here. Their derivations are based on the euclidean distance that is strongly related to Gaussian
distributions. This unique property of the AWGN channels does not allow to generalize this
technique to other channels.

Comments 3 The evaluation of the reviewed upper and lower bounds on the minimum average
DEP are greatly facilitated if the CDFs of 1 (X ;Y |Qy) under different probability measures
are known. Unfortunately, this is not generally the case. Hence, the approrimation of the
CDF of 1 (X:;Y|Qy) is pursued.

2.1.3. Approximations to the Decoding Error Probability

This section focuses on approximations to the DEP under the memoryless and stationary
assumptions on the channel.
The channel is said to be memoryless if for all input signal & = (21, 22, ..., z,)" € X" and

for all boxes B e Z()"), i.e.,
B =B xByx...xBy, (2.27)

where, for all t € {1,2,...,n}, B; is an interval of Y, it holds that
Py x (Blz) = | | Py;jx, (Blz1), (2.28)
t=1

such that for all t € {1,2,...,n}, 7, € X, and Py, x,—,, € A (Y) are given. This implies that
at time t the probability measure induced by channel output random variable Y; is totally
defined by the input signal ;.
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2.1. Point-to-Point Channels

The channel is said to be stationary if for all ¢t € {1,2,...,n} the conditional probability
measure Py, x, satisfies for all x € X and for all § < ), it holds that

where Py|x—, € A (Y).
Stationary and memoryless assumptions allow to expand the bound in Lemma [I] to the
following theorem known as the Gallager’s error exponent |5, Theorem 8§].

Theorem 5 (Random code error exponent [5, Theorem 8]) Given a pair (n,M) € N?,
for all input probability measures Px € A (X™), for all product probability measures Qx €
A (X™) such that Px is absolutely continuous with respect to Qx, the following holds with
respect to the random transformation in subject to (2.28) and (2.29)):

A (n, M) < max (M —1)? (a(Px,Qx))" ™ (EQY [EQX [exp (Z(X;Y|QY)>]H1> (2.30)

pe(0,1] 1+p
where, for all x = (x1,z2,...,2,) € X",
A dP
a(Px,Qx) = sup (), (2.31)
zexn dQx
Qx(z) = | [ Qx(x), (2.32)
=1

Qy s the marginal of Qx Py |x, and the function i is defined in (2.17).

Note that the function « in does not appear in [5, Theorem 8]. Indeed, [5] relies on
the maximum constraint on the input codeword power. However with few algebra steps, the
function « is obtained. The notation in is preferred in the aim to harmonize between
product input probability measures, i.e Px € A (X™) satisfying for all € X™:

Px(a}) = ﬁPX(xt), (233)

and non product input probability measures.

Note that the upper bound in can be minimized with respect to probability measures
Px and Qx. A first step of this minimization consists in finding for each Px a probability
measure (Qx that minimizes the function « in .

The main limitation of the bound in as pointed out in [5] is that it is loose for low
information rate. A solution is proposed for discrete memoryless channels (DMC). However,
the generalization of the proposed solution to other channels is not trivial.

Normal Approximation

The normal approximation of the function 7" in (2.19)) is useful to approximate the bound in
Lemma |2| and Lemma 4| In that case, the random variable i(X;Y |Qy) in (2.19)) is assumed
to follow a Gaussian distribution. More specifically, for all Px € A (X), let

u(Px,Qy) 2 Epypyp [1(X;Y[Qy)], (2.34)
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2. System Models and the State of the Art

o(Px,Qy) = Epypy x [(Z(X; Y|Qy) — n(Px, QY))2]7 and (2.35)
A [Ercpyx [‘Z(X§Y|QY) —M(PX,QY)|3]
£(Px,Qv) =a 3 +e |, (2.36)
O'(Px)2

with ¢; = 0.33554 and ¢y = 0.415, be functions of the input probability measure Py. In
particular, u(Px) and o(Px) are respectively the first moment and the second central moment
of the random variables ¢(X1; Y1), ¢(X2;Y2) ... t(Xy; Yy). Using this notation, consider the
functions N : N x Ry x A(X) - Ry and N : N x R, x A(X) — R, such that for all
(n,v) e N x Ry and for all Px € A (X),

N(n,v, Px,Qy) = max {O,N(n,”y, Px,Qy) — f(P)\(f’nQY)} , and (2.37)
N(n,~,Px) = min{l, N (n,, Px, Qy)+5 g(lz)/%QY) + (P );\/)7} , (2.38)

where
N (n. M, Py Qy)2 npu(Px,Qy) —In (v) 939
( X, Qy) Q( o (Px.Oy) (2.39)

is referred as the normal approximation of T'(n, Px,Qy,~). Using this notation, the following
theorem introduces lower and upper bounds on the function 7" in (2.19)).

Theorem 6 ( [16]) Given a pair (n, M) € N2, for all input product probability measures
Px € A (X™), the following holds with respect to the random transformation in (2.1) subject

to (2.28),
ﬁ(na’% PX)QY) < T(na PXvQvay) < N(TL,’Y,PX,QY), (240)

where the functions T, N and N are defined in (2.19)), 2.37) and ([2.38)), respectively.

Note that Theorem [ does not directly appeared in the literature. Indeed, Theorem [f] are
used as an intermediate result by focusing on the upper bound to develop second order
achievabilities or the lower bound for converse bound.

Note that the upper bound on the function 7" in leads to an upper bound on the DEP
through the Lemma 2] In order to derive a lower bound on the DEP, the function

C(n777 PX7 QY7 M) = T(n7 PX7 QY/Y) - (241)

e

M )
which appears in the MC bound (Lemma, must be bounded. To do so, consider the functions
gl

Mc(na Mv PX7 QY,’Y) :M(TL7’}/, PXa QY) - M? (242)
NC<H,M,PX,QY,’Y) :N(n777PX7QY)_%7and (243)
~ A

Ne(n, M, Px,Qy,v)=N (n,M, Px,Qy) — % (2.44)
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2.1. Point-to-Point Channels

Then, it holds that

Mc(n,M,PX,QY,'Y) < C(na’%PXaQYaM) < Nc(naMaPXaQYf}/)? (245)

and the term N, (n, M, Px,Qy,~) is referred as the normal approximation to the term
C(n,v, Px,Qy, M). Finally, the lower bound on the function C' after an optimal choice of
parameter v and Px leads to an lower bound on the DEP.

The normal approximation is less accurate for small values of the DEP and n. Indeed, the
normal approximation of CDF is less precise on its tail and also for sums with a small number of
IID random variables. This is captured by a small decay factor in of the normal approximation
error provided by the Berry-Esseen theorem, which will be presented in Chapter The
probability evaluated on the tail of the CDF may be several order of magnitude lower than
the approximation error especially for small values of n due to a small decay factor ﬁ This
can be seen by terms containing a factor ﬁ in the lower bound in and the upper
bound in and being independent of M. As consequence, for small values of M, which
correspond to the tail of the CDF of (X ;Y |Qy), such terms dominate the bounds, which

makes the approximations useless. However, for large values of n, such terms in —= can be

NGO
neglected, which validate the asymptotic expansion obtained from the normal.

Saddlepoint Approximation

The limitation of the normal approximation and random code error exponent leads the authors
of [14,/15,17-20] to be the first to consider the saddlepoint approximation of the DEP bounds.
The saddlepoint approximation of the function 7" in (2.19) is introduced in [15, Equation (18)]

in which the function ag represents that maximum of the function 7' with respect to variable

and B8 = L. To introduce this approximation, denote by K, p : R — R the cumulant
Y M 1YY ) Y ,

generating function of the random variable 7(X;Y|Qy). That is, for all € R,
K,.p(6) = In (EPXPY‘X [exp (01(X; Y|Qy))]) . (2.46)

The first and second derivatives of K, p denoted respectively by K L(llg and K L(zll
Using this notation consider the function 7 : N x R x A (X) x A (Y) — R,

T(n,v, Px,Qv)=1{g=0; + Ylip<_1} + exp (K, p(0) — 0In (7)) (

(—1)L0=0) exp <;92an‘2(0)> Q ( an3&(9)|9|>

) )

HDb e exp (0 + 12K 0) ) QKo+ 1)) >
(2.47)
in which the parameter 6 is the solution in t to
nK () = n (7). (2.48)

The function 7' is referred as the saddlepoint approximation of the function 7T". The saddlepoint
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2. System Models and the State of the Art

approximation is observed in |15] to be an accurate approximation even for small values
of n. However, the approximation error is neglected. Without the characterization of
the approximation error, the approximation accuracy cannot be validated without a heavy
evaluation of bounds on the DEP. The lack the approximation error characterization limits
the utility of the approximation. In our work, that will be discussed later, we provide the
characterization of the approximation error, which allows us to derive the easy computable
and avoid a heavy evaluation of bounds on the DEP.

The second constraint from the work in [14}15,/19.]20], in order to derive the saddlepoint
approximation, the mutual information random variable 7 (X;Y|Qy) must satisfy a lot of
conditions. That is, the mutual information random variable 7 (X;Y|Qy) must absolutely
continuous or lattice with some assumptions on its cumulant generation function that are
discussed in [21]. In our work to be presented in Chapter [3| we only required the existence of
the cumulant generation function.

Asymptotic Expansion

The asymptotic expansion refers to the approximation of upper and lower bounds on \*(n, M)

in (2.9) or (n,e)-capacity R*(n,¢) in (2.14]) for large values of n.

Following the seminal work of Claude Shannon in [2], it has been proven that:

. . * _ ~ .
lim lim R*(n, €)= plnax, Epcpyx [2(X;Y[Py)], (2.49)
with 7 defined in (2.17)).
The expression hII(l) lingo R*(n,€) is known as the channel capacity and is denoted by C.
e—0n—

Following the work in [10], it was recently shown in [6, Theorem 49 and Theorem 54|
and [22, Theorem 1] that for DMC and additive white Gaussian noise (AWGN) memoryless
channels the function R*(n,¢€) in (2.14) can be approximated for large values of n by:

R*(n,e) = C — \/ZQ_I(e) + O<ln72n)> , (2.50)

where C, V are respectively the channel capacity and channel dispersion, and @ is the
complementary CDF of the standard Gaussian random variable with zero-mean and unit-
variance:

Qt) = \/127 foo exp (-f)dx. (2.51)

Explicitly, the channel dispersion V is defined as:

_ : =Y. _ 2
V_PXz:nAlE(X) EPXPY|X [|L(X7Y|PY) C| ] ) (2'52)

where A* (X) is the set of input probability measures archiving channel capacity C' in (2.49)).

2.1.4. Discussion

Starting from the DEP formalization, upper and lower bounds on the minimum average
A (n,M) in (2.9) (Lemma [l Lemma 2] Lemmal3] and Lemmal[d]) are reviewed. The evaluation
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2.2. Multiple Access Channels

complex of these bounds calls for their approximations, the normal approximation under
memoryless and stationary assumptions. Despite the fact that the normal approximation
leads to correct second order achievability derivation, the normal approximation fails on small
values of DEP, especially for small values of blocklength n. Indeed, such a limitation is due
to the poor performance of the normal approximation of the CDF of a sum of IID random
variables on the CDF tail. Hence, the need to find an alternative approximation of CDFs of
sums of IID random variables that is the main focus of Chapter

2.2. Multiple Access Channels

MAC refers to the multiple-user communication scenario in the uplink, i.e. from the devices to
the base station. In classical information theory framework, the DEP is the SDEP, i.e. there
is an error if at least one message is wrongly decoded. An alternative notion of the DEP, i.e.
the IDEP, where DEPs are considered with respect to each transmitter is introduced.

Starting from the system model formalization of MAC, lower and upper bounds on the
SDEP are reviewed followed by the proposition of upper bounds on the IDEP. The evaluation
difficulty of these bounds are discussed that leads to the next sub-section on the approximations
of the DEPs. Finally, the last sub-section discusses the limitation of the state of the art
approximations, which open the subject of Chapter [4]

2.2.1. System Model

Consider a communication system in which K transmitters aim at simultaneously sending
information to one receiver through a noisy channel, with K € N. Such a channel can be
modelled by a random transformation

(AT x A x o x X, V™ Py X, Xo X i) (2.53)

where n € N is the number of channel uses. For all k € {1,2,..., K}, given the inputs x; € A},
the channel output is a random vector Y = (Y1, Ya, ..., ¥;,)T that induces the probability
measure

PY‘X1:$17X2:$27~--»XK:$K' (2'54)

on the measurable space (Y™, Z (Y")).
For all k € {1,2,..., K}, the message index sent by Transmitter & to Receiver is a realization
of a random variable W}, that is uniformly distributed over the set

Wi 2 {1,2,..., My}, (2.55)

with M} € N. To send the message indices within n channel uses, the transmitters use an
(n, M)-code.

Definition 5 ((n, M)-code) Given M = (My, My, ..., My) e N¥ and a blocklength n € N,
an (n,M)-code for the random transformation in (2.53)) is a system

{(w(2),D(2)) ;e Wy x Wy x ... x Wi}, (2.56)
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2. System Models and the State of the Art

where for all i = (i1, i, ..., ig)T €Wy X Wy X ... x Wy, €W, x Wy X ... x Wy, with
T#7J:

w(i) £ (ui(in), wa(ia), .., uk(ix)), (2.57a)
DGE) D) = &, and D) < Y, (2.57h)
1EEW, X W, X x Wi

with for all ke {1,2,..., K}

>

uk(zk) (uk,l(ik), u;@g(ik), . ,ukm(ik))T € X]? (2.570)

Given an (n, M)-code €, m = {(u(?),D(2)) : 1 € Wy x Wy x ... x Wy}, the transmitter k
uses the codeword wug (i) to transmit the message index i € Wy. At channel use ¢, with
te{1,2,...,n}, the transmitter k inputs the symbol uy .(7) to the channel. After n channel
uses, the receiver observes an output vector y € V"™ and determines that the indices ¢ =
(i1,12,...,1x) were transmitted if

yeD(i). (2.58)

The decoding error occurs when message indices ¢ were transmitted and the received vector y
satisfies:

y ¢ D(3). (2.59)

The definition of the decoding error in is restrictive. It may be useful to consider other
definitions like the decoding error occurrence with respect to a given transmitter or a set of
transmitters, especially for a large number of users. For instance, considering that decoding
error occurs if at least a certain number (percentage) of transmitters get their message indices
wrongly decoded may be more relevant for a telecommunication operator, especially for a
large number of users.

In this thesis, we limit ourselves to two kinds of decoding error: (a) System decoding error
that occurs if at least one message index is wrongly decoded; (b) Individual decoding error
associated to a given transmitter that occurs if a message index of the associated transmitter
is wrongly decoded.

To ease the notation, for all K € N, the sequence of vectors x1, s, ..., Tx of same dimension
is called a matrix and is denoted by x. As consequences, for all k € {1,2,..., K} and for all
xy € A}, the terms Py|x, x,..x, a0d Py|x -2, X,—as,.... X x—a, ar€ respectively denoted by
Py x and Py x_; for the rest of this manuscript.

System Decoding Error Probability

The system decoding error probability (SDEP) associated to the transmission of message
indices 2 € W, x W, x ... x Wy is given by

Epy x—ui [Livenan] s (2.60)

where Py|x = Py|x,x,..x, is random transformation in (2.53)).
Let an (n, M)-code be denoted by %, ar. The average SDEP (A-SDEP) associate to an
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2.2. Multiple Access Channels

(n, M )-code, denoted by A(%, ar), is

A 1
NG 2 — L Er o [Lyepan]- 2,61
S TN VAR T iewleé---XWK Pyix-u [1{veD(i] (2.61)

Given a fixed pair (n,M) € NX*! the minimum average DEP associated to the random
transformation in (2.53)) is defined hereunder.

Definition 6 Given a tuple (n,M) € NE*1 the minimum average A-SDEP for the random
transformation in (2.53), denoted by \*(n, M), is given by

*(n, M)=  inf ' .
A (n, M) %)H,Mgé’(n,M))\(% M), (2.62)

where XN(6,,ar) is defined in (2.61) and C(n, M) is the set of all (n, M)-codes.

Note that given M| = (M171, MLQ, - 7M1,K) e NX and My = (MQJ, M272, - 7M27K) e NK
such that for all k € {1,2,..., K}, My < Myy, it holds that \*(n, M) < A*(n, M>).

Definition 7 ((n, M, e)-code) Let e € [0,1) be fized and consider an (n, M )-code defined by
the system in (2.56|) such that \(€, pm) < €. Then, such a code is said to be an (n,M €)-code
with A-SDEP.

When ¢ is chosen accordingly with the reliability constraints, an (n,M, €)-code is said to
transmit at an information rate vector

R = (R, Ry, ...,Rx), (2.63)

with for all i € [K],

_ logy (M;)
n

R; (2.64)
bits per channel use.

Definition 8 (A-SDEP capacity region) The A-SDEP capacity region, denoted by A*(n, €),
is defined as:

A*(n,e) = {ReR:3(n, 2" ¢)-code} (2.65)
where
onB = (gnfh gnfa | onficy (2.66)
Any subset of A*(n,€) is called an A-SDEP achievable region.

Individual Decoding Error Probabilities

The individual decoding error probability (IDEP) associated to Transmitter k, with k €
{1,2,..., K}, and the transmission of message indices i = (iy, 42, ..., ix)', with 4 € W, x
Wy x ... x Wy, is given by

19

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2021LY SEI065/these.pdf
© [D. Anade Akpo], [2021], INSA Lyon, tous droits réservés



2. System Models and the State of the Art

Eryxu [Livenia] (2.67)
where
Di(ix) = U D(3), (2.68)
F=(41:d25 2 J K JEW X Wy X .. X W,
Je=tk

and Py|x = Py|x,x,..x, is the random transformation in (2.53)).
The average IDEP (A-IDEP) associated to Transmitter k, denoted by A (%, ar), is

A 1
M(Copg) E —— ) E N il 2.69
k‘( > ) MlMQ o MK iEWIXW2X.“XWK PY'X:EU’) [ {Y¢Dk( k)}:l ( )

The tuple (A1 (Gnr), A2 (Cnpr)s - - - s Ak (6, ar)) forms the A-IDEP vector associated to (n, M)-
code and is denoted by X(%p, ).

Definition 9 ((n, M, €)-code) Let € = (e1,e,...,¢x) € [0,1)X be fized and consider an
(n, M)-code defined by the system in (2.56)) subject to (2.68)) such that, for allk € {1,2,..., K},
Me(Cn,m) < €. Then, such a code is said to be an (n, M, €)-code with A-IDEP.

Definition 10 Given (n, M) € N1 the minimum A-IDEPs for the random transformation
in (2.53) associated to Transmitter k, with k€ {1,2,..., K}, denoted by A\ (n, M) is given by

Aj(n, M)=inf {e;, € [0,1] : 3(n, M, €)-code with A-IDEP} . (2.70)

When € is chosen accordingly with respect to the reliability constraints, an (n, M, €)-code is
said to transmit at the information rate vector R defined ({2.63]).

Definition 11 (IDEP capacity Region) The A-IDEP capacity region, denoted by E*(n, €),
is defined as:

E*(n,€) = {ReR:3(n,2"E €)-code} (2.71)

where 2" s defined in (2.66)).
Any subset of £*(n, €) is called an A-IDEP achievable region.

2.2.2. Bounds on the System Decoding Error Probability

This section presents previous works on upper and lower bounds on the minimum average
SDEP, i.e, \* (n, M) in proposed in [11},23-25].

To ease the presentation of bounds, consider the following notation. Given a K € N, let the
collection . (K) be defined by

S(K)E{Sc{1,2,....K}:S#{1,2,...,K}}. (2.72)

Given an integer K € N and a set S € .(K) and S # J, let the matrix X g be a sub-matrix
of the matrix X = (X1, Xo,..., X k) such that

LS:(XZ'U i27"'7Xis)a (273)
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2.2. Multiple Access Channels

with

1 <ig <...<t1g, and (2.74a)
{i1,d2,...,is} = S. (2.74b)

Given the probability measures Px € A (X x Xy x ... x Xg), Qx € A (X x Xy x ... x X),

and Qy|x € A(Y"), for all sets S € /(K), let the random variable [ (X;Y|Qyx,S) be
defined by

A ( dPx Py |x

L (X, Y|QYX’ S) =In dQXQY|XS (X7 Y)) ) (2'75)

. dPxPyix | pn n n n i i
where the function TOxQvixs - AT x AP x ... x X x Y* — R is the Radon-Nikodym
derivatives of the joint probability measures Px Py|x with respect to QxQy Xs = Qyx,;
and the probability measure Qx  Qy| X, Is the marginal of QxQy|x, with Qy| X, = Qy for

S=g.

Remark 4 For the rest of this manuscript, the probability of union of events will be represented
by the expectation of the maximum over their indicator functions. Indeed, let & and & be two
events. Then,

P[&1 U &] = E[max {1y, Lg }] - (2.76)

This choice allows us to explicitly index the expectation operator E by the distribution used
to evaluate the probability. Finally, the expectation operator E allows us to simultaneously
manipulate discrete and continuous measures.

Achievability

The following lemmas present the bounds of [16,125] that are the extensions of RCU and DT
bounds to MAC.

Lemma 7 (RCU bound [25, (14)]) Given a pair (n,M) € NE*1 the following holds for
all ke {1,2,...,K}, Px, € A (X)), with respect to the random transformation in (2.53)):

A (n, M) < EPXPY\X min|1, Z (H (M; — 19EPXSC []l{Z(X;Y\PYK,S)>Z(X;Y\PY§7S)}] ’
Se.s (K)\seS¢
(2.77)
where ' (K) is defined in (2.72)); the random matriz X is such that its sub-random matriz
Xs =X and X gc is independent from X gc but identically distributed, i.e., (P;SC = Px_.);
the function T is defined in (2.75)); for all x = (1, @2, ..., xK) € X X A x ... x X}t:

K
Px () = | [ Px,(an); (2.78)
k=1

and the set 8¢ is the complementary of S in {1,2,..., K}.
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2. System Models and the State of the Art

Note that as in the case of the point to point channel, the RHS of (2.77) is not generally
easy to evaluate. It involves CDFs of random variables that are function of K x n-dimensional
random variables. Such CDFs are generally not known.

Lemma 8 (DT bound [16}, (5.133)]) Given a pair (n,M) € NE*+1 the following holds for
allke{l,2,...,K}, Px, € A (X)), with respect to the random transformation in (2.53)):

)\*(n, M)ngipY\g max 1

+
Se.s(K) {Z(X;ﬂpyx,s)sln(l_[ (Ms - 1))}

seS¢

2 <H<MS_1)> EPKPY@S 1 ,(2.79)
Ses(K) \seS¢ {Z(X;Y|PYX,S)>ln(H (M, — 1))}

seS¢

where the function T, the sets .7 (K), the probability measure Px are respectively defined in

E7). @7, ond @79,

Even though, the expectation terms in the RHS of (2.79) can be expressed as functions
of CDFs of random variables that are function of K x n-dimensional random variables, the
bound in ([2.79) is generally difficult because such CDFs are generally unknown.

Converse

The following lemma is an extension of the results of Verdu-Han in [26] to MAC.

Lemma 9 (Verdu-Han [16]) Given a pair (n,M) € NE+1 the following holds for all prob-
ability measures Qy x with respect to the random transformation in (2.53):

A (n, M) = infEp, p, [ max L./ . ]— s
’ xPyix | g1 (XY |Qyx,S)<In(vs) > ;
Se.7(K) {a( yx,8)<in(ys)} Sey‘(K),l | M,
SESC

(2.80)

where the function r, the sets .7 (K) are respectively defined in (2.75)), (2.72) and the infinimum
is with respect to all input distributions Px satisfying (2.78]).

The following lemma is an extension of the MC bound to MAC.

Lemma 10 (MC bound [24]) Given a pair (n,M) € NEK+1 for all set S € .#(K) and for
all Qrx € A (Y™ x X x ... x XE), with respect to the random transformation in (2.53), it
holds that

i gl
A*(n, M) = inf max | Ts (Px,Qyx,v) — 7
( ) PxeA(XpxXxpx..xxp) 720 ( = .S 7) 1—[ M.
seS¢

(2.81)
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2.2. Multiple Access Channels

where,

Ts (Px,Qvx,7) = Epxpryx [ﬂ{z(x;Y\ng,S)sln(v)}] +YEPxQy xs [H{Z(X;Y\QY@SPIH(W)}] ’
(2.82)

the function © is defined in (2.75) and the infinimum is with respect to all input distributions

Px satisfying (2.78)).

2.2.3. Bounds on the Individual Decoding Error Probability
For ke {1,2,..., K}, let the set &(k, K) be defined by

Pk,K)={S<[K]: k¢ S}. (2.83)
Achievability The following lemmas extends the RCU and DT bounds to MAC.

Lemma 11 Given a pair (n,M) € NX*1 the following holds for all Px, € A (X)), with
ke{l,2,...,K}, with respect to the random transformation in (2.53):

No(n, M) < Epypy y[min|1, > (HWS - 1>)EPKSC []1{z(z;myx,s)>z(g;Y|Pyx,s)}] )
Se P (k,K)\seS¢ o o
(2.84)

where the random matriz X is such that its sub-random matriz Xs = X5 and XSC 18
independent from X gc but identically distributed, i.e., (PXSC = P&gc)f the function U, the set

P (k,K), the probability measure Px are respectively defined in (2.75)), (2.83), and (2.78).

Proof: The proof borrows the same lines in the proof of Lemma [7| which relies on the
maximum likelihood. Assume that the conditional probability measure Py|x is absolutely
continuous with respect to measure v and denote the density (Radon Nikodym derivative)
of Py x with respect to v by fy|x. Then, for a given transmitted message index vector
© = (i1,12,...,i5) € Wi x Wa x ... x Wk and the observed vector y at the output of the
channel, the message index i; of the transmitter k is successively decoded if the following
condition

3 fyix (ylu(m)) > max { 3 Fyix (ylu(ri) :
;:er XxWa X .. x Wi, meW, XAW2><‘..A><WK,
mp =i mE=Jjk
Jk € Wk, and ji # Zk}
(2.85)

is satisfied. The summation in is due to the computation of the conditional marginal
density with respect to the input of the transmitter k£ under uniform distribution assumption
of message index vectors. The uniform distribution assumption leads to simplification of
by factorizing with the message index vector probability. Due to the difficulty of working with
a such summation, the following suboptimal maximum likelihood is considered. That is, for a
given transmitted message indices vector ¢ € Wi x Wa x ... x Wk and the observed vector y
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2. System Models and the State of the Art

at the output of the channel, the message index i, of the transmitter k is successively decoded
if the following condition

fyx (ylu(i)) > max {fyg (ylu(m)) :me W) x Wa x ... x Wk

mr € Wk, and my # Zk}
(2.86)

is satisfied. Such a condition is equivalent to for all sets S € Z(k, K), with £ (k, K) in (2.83)),
Z(g(i);y‘Pyx,S) > max{l(g(j);mpyx,é‘) _] eWr x Wa x ... x Wk,

js=is, and V0 e S, j, # ig}.
(2.87)

Thus, the A-IDEP A, (%, am) associated to the suboptimal decoder in (2.87) is given by

1
Ak ar) = - > Epy ix-u [max { Loy 1Py x S)<i(u()¥ Py x.8)}
[Ti=1 M; PEW, Xx Wy X .. x Wi o a

Se P(k,K),jeWi x Wy x...x Wk, js =1s, and YVl € S, j, 7&@'@}] (2.88)

)

Se?(k,K)
1

T WZ y Epryix-ui) [max {]1{;(g(i);mp@,s)gg(m);mp@,s)} :
= € 1>< 2)(...)( K

JEWI XxWh x ... x Wk, jg =15, and Yl e S, j, # 24}] (2.89)

< ; Z min{l,

K
SeZ?(k,K) [Ti=1 M PEW, x Wy x .. x W

Z EPy xu) []1{Z(u(i);Y|PYX,S)<Z(u(j)§Y|PYX7$)} }] } (2.90)
JEW1 XxWa X...x Wk,
js=is, and vLeSe, j,#i,
Finally, the random coding argument leads to (2.84)).

Similarly to (2.84]), the RHS of (2.84]) is not generally easy to evaluate. Hence, the
consideration of the following bound.

Lemma 12 Given a pair (n,M) € NETL Py e A (X)), with k€ {1,2,..., K}, with respect
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2.2. Multiple Access Channels

to the random transformation in (2.53)):

Ar(n, M)<Epypyy |  max 1

_|_
SeP(k.K) {Z(X§Y|PYX7S><IH(H (M — 1))}

SESC

My —1) | Epgpyy. | 1 (2.91

SESC

with the function T, the set 2 (k, K), and the probability measure Px are respectively defined

Proof: The proof of Lemma [12| follows from Lemma From (2.77), for all @ = (as,,
as,, ---, as,) € RY with £ = |2(k, K)|, it holds that

Ak (n, M)

gEPXpYX[min 1, Z <H (M; — 1)>]EPX3c|EI]-{Z(X3Y|PYX7S)>Z(XZY|PYX73)}:|

Se. (K)\seS¢

1 —max {1{Z(§;Y\Py§78)<as} :Se y(K)} + max {]I{Z(X;Y“DYK,S)SQS} :Se y(K)}]

(2.92)
SEpypy x [max {1{5(5;Y|Pyg,3)<as} :SeS(K )}] + EPxPyx[ H ]l{z(&mpyé,s)ms}
Se/(K)
2 (H (M — 1)>EPXSC[]1{Z()_(;Y|PYX,S)BZ(X;Y|PYX,S)}]} (2.93)
Se.#(K)\seS¢

<prpyxlmax {1{2(§;Y|Py£,5)<as} :Se€ y(K)} ] +

Z (H (M; — 1)> Epx pyxPg []l{Z(X;Y|PYX7$)>04S}]I{Z(X;YUDYX73>2Z(X;Y|PYX73)}}

Se.s (K) \seS¢
(2.94)

<EPXPYX[H1{:LX {]I{Z(X;Y|PY§,3)<OCS} :Se y(K)} ] +

Z (H (M, — 1)) Engnggsc F{Z(X?Y|PYX18)>QS] (2.95)

Se. (K) \seS¢

<EPXPYX[H1&LX {H{Z(X;Y|PY§73)<QS} :Se y(K)} ] +
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2. System Models and the State of the Art

)3 (H (M, — 1)> Epxpyixg []l{Z(X;Y|PYX,S)>aS}]' (2.96)

Se.”(K) \seS¢

Note that (2.93) follows from splitting the min function in (2.92) and the fact that

1 — max {H{Z(X;Y\Pyé,8)<as} :Se y(K)} = Seg]{)ﬂ {Z(X§Y|PY£7$)>OZS}' (2.97)

Finally, choosing ag = In <H (M — 1)) concludes the proof. [
seS¢

Similarly to the RHS of (2.79)), the evaluation of (2.79) remains generally difficult.

2.2.4. Approximations to the Decoding Error probability

The evaluation of the presented bounds calls for their approximations. Such approximations
need further assumptions like memoryless and stationary hypotheses on the channel.

The channel is said to be memoryless if for all k€ {1,2,..., K}, ; = (1, Tk2,s - - - xkvn)T €
X' and for all boxes B e Z(Y"), i.e.,
B=DB; x By x...x By, (2.98)
where for all t € {1,2,...,n}, B; is an interval of Y, for all k € {1,2,..., K}, it holds that
n
Pyix, x5 x5 Blziza ... zx) = [ [ Prixyoxon.xi, Belore o, wxce), (2.99)
t=1
where, for all (z1,72,...,2K) € X1 x X2 X ... x X, Py|x,=2,, Xo=2,.... X maic € D (V).
The channel is said to be stationary when for all ¢ € {1,2,...,n} the parameter of the
conditional distribution Py,|x, ,x,,. xy, is insensible to the value of t:
Py, ix1 X040 Xk = Py|xi X0, X5 (2.100)

Based on memoryless and stationary assumptions, suitable expansions of the A-SDEP are
provided in [16,[23}25[27].

Theorem 13 (Random code error exponent [27]) Given a tuple (n,M) € NK+1_ for all
ke{l,2,...,K}, for all input product probability measures Px, € A (Xy), for all S € /' (K),
ps € [0,1], the following holds with respect to the random transformation in (2.53)) subject to
(2.99):

XN, M) < )] (H(MS—19 E(Px,S), (2.101)

Se.s (K) \seS¢
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2.2. Multiple Access Channels

where,

5 @ . 1 n
(L(XLXQ,--~,XK;Y\PYX1X2...XK75)>] +p$])

E(PX78) = <EPYPYXS [EPXSC [eXp 1 +p8

(2.102)

with for all k € {1,2,..., K}, X, = X ifk ¢ S and X, and X}, are independent but identically
distributed otherwise.

A similar bound hold for A-IDEP by replacing the summation set in (2.101]) by the set Z(k, K)
defined in ([2.83).

Normal Approximation

The normal approximation consists in assuming that the random variables ¢ ( X; Y| Qvx,
S), with Qyx = Pyx, involved in the previous bounds are Gaussian random variables. More
precisely, for all € < .7 (k), denote by

I(X;Y|Qvx,S1)
v

[(X;Y|Qvx, €)= (X;Y?YX’&) : (2.103)
(X Y\QYX, St)
such that
(81,8s,...,8)=%, (2.104)
X —(X1,Xo,..., Xg)T (2.105)

and the tuple (X, Y) induces the probability measure Px Py x. Consider also, for all Px Py x,
for all Qy|x and for all € < .7 (k):

K, (PXaQYX’(g) :EPXPHX [Z(X’Y|QYX’(5)]’ and
v, (PX7 ) QYX;CK):EP)(PY‘X [ (Z(X, Y‘QYXJCK) — K, (PX7 QYX?g))
-(T(X;Y|Qyx, %) — p, (Px, ny,%))T]. (2.106)

That p, and v are respectively the mean vector and the covariance matrix of the random
vector in . Using this notation, consider the function G NVYE x A (X1 x Xy x ... Xk)
x B(S(K)) — R such that for all (n, K) e N'*X for all Py, x, x. € A (X1 x X x ... Xk)
and for all ¢ € (.7 (K)), with Z((K)) the collection all subsets of . (K):

G(H,M,PX,%) = 1_®(7(C€)+HL (PX7PY|X5CK);QL (PX’PY|X5%))’ (2107)
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2. System Models and the State of the Art

where

(%) , (2.108)

~In (Hsengs 1))

with 81, S, ..., S satisfying (2.104)); and ®(.;v) is the CDF of a Gaussian vector with mean

vector zero and covariance matrix v.

A

For ¢ = ./ (K), G (n, M, Px,%) is referred as the normal approximation of the DT bound
(Lemma E} The error induced by this normal approximation is upper bounder by %, where
C is a constant that does not depend on the blocklength n. This constant term implies that
for some values of M and n, the upper bound on the error is at several order of magnitude
greater than the normal approximation. Under this particular case, the normal approximation
can lead to false conclusion. Indeed, small values of M correspond to the evaluation of the
CDF on tail where the normal approximation is known to be less precise for small values of n.

Asymptotic Expansion

In order to introduce asymptotic expansion, for all positive matrices v € R3*3 and € € [0, 1],
let the following set #(v, €) be defined as:

P(v,€) = {z = (21,22,23) eR® : Ep,

3
H 1{Zt<zz} =1- 5] } (2.109)

t=1

where Z = (Z1, Z2, Z3) is a zero mean Gaussian vector with covariance matrix v.

For all input probability measures Px, € A (X1), Px, € A (X2), and Qx, x,v € A (X1 X Xz x )),
let the following set Z(Px,, Px,, Qx,x,vy) be defined as

%(PXNPXWQXLXQY)
=i, (Px,x,, Qv x, 5,7 (2) — 2 (v, (Px,x,, Qv x, %5, (2)) , €) + O(lnén)>1, (2.110)

where
1=(1,1,1)T. (2.111)

In |23, Theorem 4] it is proven that for large values of n, the set Z(Px,, Px,, Px, x,v) in (2.110))
is an achievable region for two transmitter discrete memoryless MAC (DM), where Px, and
Px, are chosen to be product probability measures.

In [25, Theorem 2], it is proven that for large values of n, the set Z(Px,, Px,, @x,x,Y)
in is an achievable region for two transmitter Gaussian MAC under equal power
constraints on the codewords, where Px,, Px, are uniform on power shell and Qx,, @x, are
product Gaussian distributions.
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2.3. Conclusion

2.2.5. Discussion

The main advantage of the asymptotic expansion in [23, Theorem 4] |25, Theorem
2] compared to the bounds of Lemma |7 Lemma |8 and Lemma is the simplicity of the
computation. Indeed, the evaluation of the bounds in Lemma [7, Lemma [§] and Lemma [10]
involves the complex computation of unknown CDFs of random vecteur of (2K + 1) x n and
(K + 1) x n dimension. However, the asymptotic expansion in is limited to large
values of n compared to the bounds of Lemma [7] and Lemma [8] that hold for all values of n.
Indeed, the asymptotic expansion in is the result of the normal approximation. Hence,

the asymptotic expansion in (2.110]) suffers from the low convergence rate of O(%) of the

normal approximation of CDfs of sums of IID random vectors. This characteristic justifies the
search for another approximation for such CDFs, which is the topic of Chapter [4

2.3. Conclusion

The system models of the point to point channel and MAC have been presented, followed
by the literature of the state of the art bounds on the DEPs for both channels. A slight
improvement of the DT bound of the point to point channel is also proposed. The notion of
the IDEP, which separately associates the DEP to each transmitter compared to the tradition
conception where the DEP is indistinguishably associated to all transmitters, is introduced in
MAC. The evaluation complexity of these bounds, which involved unknown CDFs of random
vectors/variables, is discussed and leads to the survey of their approximations: the normal
approximation of such CDFs. Unfortunately, the limitation of the normal approximation
on the CDF tail makes it impertinent to analyse the performance of the emerging URLLC.
Hence, the search of other approximation of CDFs, which is the main object of Chapter [3] and
Chapter [4
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Approximation of the
CDF of Sums of
Independent Random
Variables

A new approximation of the CDF of sums of IID random variables is proposed. Such
approximation, referred as exponentially tilted Gaussian approximation, relies on a change of
the measure (exponentially tilted measure) and a normal approximation. The exponentially
tilted measure introduces a parametrized () sum of IID random variables whose measure is
approximated by a Gaussian measure. An upper bound on the approximation error is proposed
that depends on the parameter . Our approximation covers the Gaussian approximation (for
6 = 0) and the saddlepoint approximation for § = *. This work has been published in [28].

3.1. Preliminaries

Let Y7, Yo, ..., Y, with n an integer and 2 < n < 00, be real-valued random variables. For all
i€{1,2,...,n}, the random variable Y; induces the probability measure Py on the measurable
space (R, Z(R)). Denote by Fy the CDF associated with Py. That is, for all (a,b) € R?, with
a<b,

Py(]a, b]) = Fy(b) — Fy(a). (3.1)
When the Radon-Nikodymn derivative of Py with respect to the Lebesgue measure exists,
it is denoted by fy. Note that fy is the probability density function (PDF) of the random
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3. Approximation of the CDF of Sums of Independent Random Variables

variable Y;, with i € {1,2,...,n}. Let also

X0 =Y, (3.2)
t=1

be a random variable that induces the probability measure Px, on the measurable space
(R, Z(R)). Denote by Fx, the CDF and if it exists, denote by fx, the PDF associated with
Px, . The objective is to provide a positive function that approximates Fx, and an upper
bound on the resulting approximation error. In the following, a positive function g : R — R,
is said to approximate Fly, with an approzimation error that is upper bounded by a function
€:R— Ry, if, for all x e R,

|Fx, (x) — g(z)| < €(). (3.3)

The case in which Y7, Y5, ..., Y, in are stable random variables with Fy analytically
expressible is trivial. This is essentially because the sum X,, induces the same probability
measure on the measurable space (R, Z(R)) as a random variable a,Y +by,, where (ay,, b,) € R?
and Y is a random variable whose CDF is Fy. Examples of this case are random variables
following the Gaussian, Cauchy, or Levy distributions [29].

In general, the problem of calculating the CDF of X, boils down to calculating n — 1
convolutions. More specifically, it holds that

P = | gx e (3.

where fx, = fy. Even for discrete random variables and small values of n, the integral in
often requires excessive computation resources [21].

When the PDF of the random variable X, cannot be conveniently obtained but only the r first
moments are known, with r € N, an approximation of the PDF can be obtained by using an
Edgeworth expansion. Nonetheless, the resulting relative error in the large deviation regime
makes these approximations inaccurate [30].

When the cumulant generating function (CGF) associated with Fy, denoted by Ky : R — R,
is known, the PDF fx, can be obtained via the Laplace inversion lemma [21]. That is,
given two reals a_ < 0 and ay > 0, if Ky is analytic for all z € {a + by/=1 € C : (a,b) €
R? and o < a < oy} < C, then,

1 y+00y/—1
C2my/—1 y—ooy/=T

with v € (a—, a1 ). Note that the domain of Ky in has been extended to the complex
plane and thus it is often referred to as the complex CGF. With an abuse of notation, both
the CGF and the complex CGF are identically denoted.

In the case in which n is sufficiently large, an approximation to the Bromwich integral in
can be obtained by choosing the contour to include the unique saddlepoint of the integrand as
suggested in [31]. The intuition behind this lies on the following observations:

Ix, (x) exp (nKy (z) — zx) dz, (3.5)

(i) the saddlepoint, denoted by zg, is unique, real and zp € (a—, ay);

(74) within a neighborhood around the saddlepoint of the form |z — zp| < €, with z € C and
e > 0 sufficiently small, Im [nKy (z) — zz] = 0 and Re [nKy (z) — zx] can be assumed
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constant; and
(731) outside such neighborhood, the integrand is negligible.

From (7), it follows that the derivative of nKy (t) — tx with respect to ¢, with ¢ € R, is equal
to zero when it is evaluated at the saddlepoint zy. More specifically, for all £ € R,
d
&KY(t) = EPY [Y exXp (tY - KY(t)>] ) (36)
and thus .
Epy [Y exp (20Y — Ky (20))] = -, (3.7)

which shows the dependence of zy on both x and n.
A Taylor series expansion of the exponent nKy (z) — zz in the neighborhood of z, leads to
the following asymptotic expansion in powers of % of the Bromwich integral in ({3.5):

A 11 EP(z) 5 (Ka(f)(zo))z 1
Fra(@)=Fx, () [ 1+ = 8(K§><ZOO>)2_%(K§E><zO>)3 +0<n2> G

where an :R—-> R, is

fx, (z)= exp (nKy (20) — 201) , (3.9)

27TnK}(/2) (z0)

and for all £k € N and ¢ € R, the notation Ki(/k) (t) represents the k-th real derivative of the

CGF Ky evaluated at t. The first two derivatives K§,1 ) and K}(,2 ) play a central role, and thus

it is worth providing explicit expressions. That is,

KW (1) 2Ep, [Y exp (tY — Ky (t))], and (3.10)
KP(1)2Ep, “Y - K@(t)‘z exp (tY — Ky(t))] . (3.11)

The function f X, in (]3__9D is referred to as the saddlepoint approzimation of the PDF fx  and
was first introduced in [31]. Nonetheless, f x,, is not necessarily a PDF as often its integral on
R is not equal to one. A particular exception is observed only in three cases |32]. First, when
fy is the PDF of a Gaussian random variable, the saddlepoint approximation f x,, 1s identical
to fx,, for all n > 0. Second and third, when fy is the PDF associated with a Gamma
distribution and an inverse normal distribution, respectively, the saddlepoint approximation
f X,, is exact up to a normalization constant for all n > 0.

An approximation to the CDF Fx, can be obtained by integrating the PDF in , cf., [33H35].
In particular, the result reported in [33] leads to an asymptotic expansion of the CDF of X,
for all z € R, of the form:

Fx, (x)=Fx, (z) + O(\/lﬁ exp (nKy (z0) — :nz0)> , (3.12)

where the function FXn : R — R is the saddlepoint approximation of Fx,. That is, for all
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3. Approximation of the CDF of Sums of Independent Random Variables

reR,

. 1
Fx, (2)=1,-0) + (—1)1{Zo>0} exp (nKy(zo) — Z20x + 2zgnK§,2)(z0)> Q (\Zof nK}(E)(zO)> ,
(3.13)

where the function @ : R — [0, 1] is the complementary CDF of a Gaussian random variable
with zero mean and unit variance. That is, for all £ € R,

.7}2

Qt) - \/12? f:o exp <2> dz. (3.14)

Finally, from the central limit theorem [30], for large values of n and for all 2 € R, a reasonable
approximation to Fx, (x) is 1 — Q(z). In the following, this approximation is referred to as
the Gaussian approzimation of Fx, .

The main contribution of this work is an upper bound on the error induced by the saddlepoint
approximation Fl, in (3.13)) (Theorem in Section . This result builds upon two
observations. The first observation is that the CDF F, can be written for all z € R in the

form (see Appendix ,

Fx,(x)
=L <Bps, [exp MKy (20) — 2090) Lis, <ag] + Lizo>0y (L —Epg, [exp (nKy (20) — 2090) Lis,>x1)) -
(3.15)
where the random variable "
_ (20)
Sn =Y, (3.16)
=1

induces the probability measure Ps, on the measurable space (R, Z(R)), and the random
variables Yl(zo), Z(ZO), e 20) are independent that induce probability measure Py ()
on the measurable space (R, #Z(R)). The probability measure Py (., is an exponentially
tilted measure [36] with respect to the probability measure Py at the saddlepoint zy. More
specifically, the Radon-Nikodym derivative of the probability measure Py.(-,) with respect to

the probability measure Py satisfies for all y € supp Py,

dPY(zo)

TR () = exp (= (K (20) = z00) (317)

The second observation is that the saddlepoint approximation F x,, in (3.13) can be written
for all € R in the form (see Appendix ,

Fy, ()
=1 {zoéo}EPZn [exp (nKy(Zo) — Z()Zn) 1 {an;t}] +]l{20>0} (1 — EPZn [exp (nKy (Zo) — ZoZn) ]l{Zn>:c}]) s
(3.18)

where Z,, is a Gaussian random variable with mean z, variance nK}(/2 ) (z0), and induces the
probability measure Pz, on the measurable space (R, Z(R)). Note that the means of the

random variables S, in (3.15)) and Z,, in (3.18)) are equal to nl(}(/1 )(zo), whereas their variances
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are equal to an)(zo). Note also that, from (3.7)), it holds that x = nKS)(zO).

Using these observations, it holds that the absolute difference between Fx,, in (3.15)) and Fxn
in (3.18)) satisfies for all z € R,

P, (2) = Fx, (@)
= 1q<0) |Epsn [exp (nKy (z0) — 205n) H{Snéw}] —Ep,, [exp (nKy (z0) — 20Zn) ]l{anw}“
+1z>0 |Ep5n [exp (nKy (20) — 205n) ]l{Sn>z}] —Ep,, [exp (nKy (20) — 202n) ]l{Zn>m}]|(3'19)

A step forward (Lemma |35/in Appendix [B)) is to note that, when z is such that zy < 0, then,

|Epsn [exp (nKy (z0) — 205n) ﬂ{sngx}] —Ep,, [exp (nKy (20) — 20Zn) ]I{anx}“

< exp (nKy (z0) — zoz) min {1, 2sup |Fg, (a) — Fz, (a)|} , (3.20)

aeR

and when x is such that zg > 0, it holds that

‘EPS” [exp (nKy(Zo) — Z()Sn) H{Sn>x}] — Epzn [exp (’rLKy(ZO) — Zozn) H{Zn>:1:}]‘

< exp (nKy (z0) — zox) min {1, 2sup|Fg,(a) — Fz, (a)]} , (3.21)
aeR

where Fg, and Fyz, are the CDFs of the random variables S,, and Z,,, respectively. The final

result is obtained by observing that sup,cg |Fs, (a) — Fz, (a)| can be upper bounded using the

Berry-Esseen Theorem (Theorem [14]in Section [3.2)). This is essentially due to the fact that

the random variable S,, is the sum of n independent random variables, i.e., (3.16)), and Z, is a

Gaussian random variable, and both .S,, and Z,, possess identical means and variances. Thus,
the main result (Theorem [L7]in Section [3.3) is that, for all z € R,

[y, (@) — B, ()] < 25;(;0)

exp (nKy (z0) — 20 ) , (3.22)

where
M,
EPY ’Y — KY (ZQ)’ exp (Z[)Y — Ky(Zo))
&y (20) = a1 5 e |, (3.23)
2 /2
<K§f)(zo)>
with
c1 2 0.33554, and (3.24a)
cs 2 0.415. (3.24b)

Finally, note that (3.22)) holds for any finite value of n and admits the asymptotic scaling law
with respect to n suggested in (3.12)).

In the following sections, upper bounds on the absolute error of approximating Fly, by the
Gaussian approximation and the saddlepoint approrimation are presented.
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3. Approximation of the CDF of Sums of Independent Random Variables

3.2. Gaussian Approximation
Given a random variable Y, let the function &y : R — R be for all t e R :
M)y [?

Ep, ‘Y s (t)‘ exp (1Y — Ky (1))

(xP )"

fy(t)ch +co |, (3.25)

where ¢; and ¢y are defined in (3.24)).
The following theorem, known as the Berry—Esseen theorem [30], introduces an upper bound
on the approximation error induced by the Gaussian approximation.

Theorem 14 (Berry—Esseen [37]) Let Y1, Ys, ..., Y, be IID random variables, such that
each of them induces the probability measure Py on the measurable space (R, B(R)). Let also

Zn be a Gaussian random variable with mean nKX(,l)(O), variance an) (0), and CDF denoted
by Fz, . Then, the CDF of the random variable X, = Y] + Yo + ... + Y, denoted by Fx,,
satisfies

: ¢y (0)
il;]g |Fx, (a) — Fz,(a)| < min {1, n } , (3.26)

where the functions K\, K\ and & are defined in (3.10), (3.11), and (3.25).

An immediate result from Theorem [14] gives the following upper and lower bounds on F, (a),
for all a € R,

Fy, (a) < Fz, (a) + min {1, ’5’:/%0)} 2 S(a,n), and (3.27)
Fx,(a) = Fz,(a) — min {1, &\//(g) } 2 X(a,n). (3.28)

The main drawback of Theorem [14]is that the upper bound on the approximation error does
not depend on the exact value of a. More importantly, for some values of a and n, the upper
bound on the approximation error might be particularly big, which leads to irrelevant results.

3.3. Exponentially Tilted Gaussian Approximation

The following theorem introduces an upper bound on the approximation error induced by
approximating the CDF Fx, of X, in (3.2) by the function 1y : R®x N — R defined such
that for all (0, a, n) € R? x N,

ny (0,a,n)
£ Ligog+ (<) 0> exp @nezf{@(9)+nKY(9)—n9K§}>(9)>

@) gy, 7 (1)
Q (_1)]1{6<0}a+n9KY (9) nKY (0> ’ (329)

k) (6)
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3.3. Exponentially Tilted Gaussian Approximation

where the function @ : R — [0,1] is the complementary CDF of the standard Gaussian
distribution defined in (3.14). Note that ny (6, n,a) is identical to F'x, (a), when @ is chosen

to satisfy the saddlepoint K}(})(Q) = £ Note also that 7y (0,n,a) is the CDF of a Gaussian

n
random variable with mean an )(0) and variance nK)(,2 ) (0), which are the mean and the
variance of X, in (3.2]), respectively.

Theorem 15 Let Yy, Yo, ..., Y, be IID random variables, such that each of them induces the
probability measure Py on the measurable space (R, B(R)) and denote by Ky the corresponding
CGF. Let also Fx, be the CDF of the random variable X, = Y; + Yo + ... + Y,,. Hence, for
all a € R and for all 8 € Oy, it holds that

. (a) — 1y (0, a,n)] < exp (nKy (6) — 0 a) min {1, 2 5\’/%(9) } , (3.30)
where
Oy 2 {teR: Ky(t) < o}; (3.31)
and the functions & and ny are defined in and , respectively.
Proof: The proof of Theorem [I5]is presented in Appendix [ |
This result leads to the following upper and lower bounds on Fx, (a), for all a € R,
Fx,(a)<ny (0,a,n) + exp (nKy (0) — 6 a) min {1, 2 5\3/%(0) } , and (3.32)
Fx, (a)=ny (0,a,n) — exp (nKy (6) — 6 a) min {1, 2 é;}/}ge) } , (3.33)

with 6 € @y.

The advantages of approximating Flx, by using Theorem [15|instead of Theorem [14] are twofold.
First, both the approximation 1y and the corresponding approximation error depend on the
exact value of a. In particular, the approximation can be optimized for each value of a via the
parameter 6. Second, the parameter 6 in @D can be optimized to improve either the upper
bound in or the lower bound in @D for some a € R. Nonetheless, such optimizations
are not necessarily simple.

An alternative to the optimization on 6 in (3.32)) and (3.33)) is to choose € such that it minimizes
nKy (0) — 6 a. We wrote this solution §*. In addition, 8* corresponds to the saddlepoint of
Zy defined in (3.7). This follows the intuition that, for some values of a and n, the term
exp(nKy () — 60 a) is the one that influences the most the value of the right-hand side of (3.30)).
To build upon this idea, consider the following lemma.

Lemma 16 Consider a random variable Y that induces the probability measure Py on the
measurable space (R, B(R)) and denote by Ky the corresponding CGF. Given n € N, let the
function h : D, — R, with

t
n

D, 2 {teR:eintCy}, (3.34)
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3. Approximation of the CDF of Sums of Independent Random Variables

and intCy denoting the interior of the convex hull of supp Px,,, be such that for all a € Dy,

h(a) = inf nKy(0) —fa, (3.35)
96@}/

where Oy is defined in . Then, the function h is concave and for all a € R,

h(a) < h(nEp, [Y]) = 0. (3.36)
Furthermore,

h(a) = nKy (6%) — 0* a, (3.37)

where 0* is the unique solution in 0 to

nKP(0) = a, (3.38)
with Kx(,l) is defined in (3.10)).
Proof: The proof of Lemma [16] is presented in Appendix [C] [ |

Given (a,n) € Rx N, the value of h(a) in (3.35) is the argument that minimizes the exponential
term in (3.30). An interesting observation from Lemma [16[is that the maximum of h is zero,
and it is reached when a = nEp, [Y] = Ep, [X,]. In this case, 6 = 0, and thus, from (3.32)

and (3.33)), it holds that

Fx, (a)<ny (0,a,n) + min {1,
2¢

a

_Fy.(a) + min {1, \%0) 7}1 and (3.39)
Fx, (a)=ny (0,a,n) — min {1, 2 5\’/%(0) }
—F (a) — min {1, 2 5\%(0) } , (3.40)

where Fz is the CDF defined in Theorem Hence, the upper bound in and the lower
bound in obtained from Theorem |15 are worse than those in (3.27]) and (3.28) obtained
from Theorem In a nutshell, for values of a around the vicinity of nEp, [Y] = Ep, [Xy],
it is more interesting to use Theorem [14] instead of Theorem

Alternatively, given that h is non-positive and concave, when [a — nEp, [Y]| = |[a— Ep, [Xu]|
> v, with v sufficiently large, it follows that

0
exp (nKy (0*) — 6% a) < min {1, &\//(ﬁ) } , (3.41)
with 6* defined in (3.38)). Hence, in this case, the right-hand side of (3.30)) is always smaller
than the right-hand side of (3.26[). That is, for such values of a and n, the upper and lower
bounds in (3.32) and (3.33) are better than those in (3.27) and (3.28)), respectively. The
following theorem leverages this observation.

38

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2021LY SEI065/these.pdf
© [D. Anade Akpo], [2021], INSA Lyon, tous droits réservés



3.4. Examples

Theorem 17 Let Yy, Yo, ..., Y, be IID random variables, such that each of them induces the
probability measure Py on the measurable space (R, B(R)) and denote by Ky the corresponding
CGF. Let also Fx, be the CDF of the random variable X,, = Y1 + Yo + ... +Y,. Hence, for
all a € intCx, , with intCx, the interior of the convex hull of suppPx,, , it holds that

’Fxn(a) - Fxn(a)’ < exp (nKy (6%) — 0% a) min {1, 2&/\/(;*)} , (3.42)

where 0* is defined in (3.38), and the functions Fxn and & are defined in (3.13)), and (3.25)),

respectively.

Proof: The proof of Theorem [17]is presented in Appendix [

An immediate result from Theorem |17| gives the following upper and lower bounds on Fx (a),
forallae R,

Fyx,(a)<Fx, (a) + exp (nKy (0*) — 0* a) min {1, 2&/\/%0*)} 2 Q(a,n), and (3.43)
Fy, (a)>Fx, (a) — exp (nKy (6*) — 6* a) min {1, 253%9)} 2 Q(a, n). (3.44)

The following section presents two examples that highlight the observations mentioned above.

3.4. Examples

Example 1 (Discrete random variable) Let the random variables Y1, Ya, ..., Y, in
be IID Bernoulli random wvariables with parameter p = 0.2 and n = 100. In this case,
Epy, [Xn] = nEp, [Y] = 20. Fz’gure depicts the CDF Fx,,, of X100 in ; the normal
approzimation Fyz, , in ; and the saddlepoint approximation FXIOO in (3.13). Therein, it
is also depicted the upper and lower bounds due to the normal approzimation ¥ in and
2 in , respectively; and the upper and lower bounds due to the saddlepoint approzimation

Q in (3.43) and Q in (3.44)), respectively. These functions are plotted as a function of a, with
a € [0,60].

Example 2 (Continuous random variable) Let the random variables Y1, Ya, ..., Y, in
be IID chi-squared random variables with parameter k = 1 and n = 50. In this case,
Epy, [Xn] = nEp, [Y] = 50. Figure depicts the CDF Fx,, of Xso in ,' the normal
approximation Fgz., in ; and the saddlepoint approximation FX50 m . Therein, it
is also depicted the upper and lower bounds due to the normal approrimation ¥ in and
2 in , respectively; and the upper and lower bounds due to the saddlepoint approzimation
Q in and £ in , respectively. These functions are plotted as a function of a, with
a € [0,100].
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3. Approximation of the CDF of Sums of Independent Random Variables

1.2

0.8 -

0.6

0.2

=4~ Ground truth CDF Fy,(a)

O~ Upper bound (normal) ¥(a, 100)

- Normal approximation Fyz,, (a)
~0O-Lower bound (normal) ¥(a, 100)

- Upper bound (saddlepoint) Q(a, 100)

=0~ Saddlepoint approximation Fx,, (a)
= Lower bound (saddlepoint) Q(a, 100)
I Il Il

5 10 15 20 25 30 35

ot 102 ‘ : :
‘‘‘‘‘‘‘ —#—Ground truth complementary CDF 1 — Fy, (a)
‘‘‘‘‘‘‘‘‘ ‘- Normal approximation 1 — F,, (a)
" - Saddlepoint approximation 1 — Fy,, (a)
10 1074 & -7 Upper bound (saddlepoint) 1 — ©(a, 100) E
108 L 106 4
107 108k ]
108 4010k ]
10° 1072 ¢ 1
10-10 —4-Ground truth CDF Fy,, (a) 1014k ]
- Normal approximation Fyz,, (a)
-2 Upper bound (saddlepoint) Sz(a, 100)
-0~ Saddlepoint approximation F,,, (a)
10 -1 L L T T 10 -16
0 1 2 3 4 5 35 60
a a
(b) a € [0,5] (c) a e [35,60]

Figure 3.1.: Sum of the independent Bernoulli random variables Y7, Yo, ..., Y}, with n = 100,
and p = 0.2.
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il': 3 i'
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‘ /|=#=Ground truth CDF Fy;(a)
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/ ‘¢ Normal approximation Fyz, (a)
O Lower bound (normal) ¥(a,50)
- Upper bound (saddlepoint) Q(a, 50)
—0- Saddlepoint approximation ﬁxm(a)
- Lower bound (saddlepoint) Q(a, 50)
I I I

0 20 40 60 80 100

100 107! T T T
—4—Ground truth complementary CDF 1 — Fx,,(a)
- -#¢-Normal approximation 1 — Fyz,, (g)
108 4 Ty 0~ Saddlepoint approximation 1 — Fy,, (a)
102 Sso - Upper bound (saddlepoint) 1 — Q(a, 50)
*. e
1010 1
10" ] 103
10 -20 4
107 ¢
10 -25 4
10°% ] 105k |
103 1
6L
—% Ground truth CDF Fyx, (a) 10
10740 “%Normal approximation Fz, (a) H
-A- Upper bound (saddlepoint) Q(a, 50)
0~ Saddlepoint approximation Fy,, (a)
10745 I | . T T T T 107 I I I I
0 5 10 15 20 25 30 35 40 75 80 85 90 95 100
a a
(b) a € [0, 40] (c) a € [75,100]

Figure 3.2.: Sum of the independent chi-square random variables Y7, Y3, ..., Y,, with n = 50,
and k = 1.

Note that the CGF Ky of a Bernoulli random variable with parameter p = 0.2 is given by:

Ky (0) =1In(0.2exp (0) + 0.8) . (3.45)
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3. Approximation of the CDF of Sums of Independent Random Variables

Hence,
(1) pexp (0) ~ 0.2exp(6)
B O = e (0) 7 08 020 (9) +0.8’ (3.46)
* . p)a
0 = ( ~ ) < a)> ; (3.47)
and

@), 0.2exp(0) 0.2exp (0) 2
Ky™(6) = 0.2exp (6) + 0.8 <0.2 exp (0) + 0.8> ‘ (348)

Note that the CGF Ky of a chi-squared random variable with parameter k = 1 is given by:

Ky (0) = —gln(l —26) for § < 0.5. (3.49)

Consequently

M) k 1
N kn n
0 =0.5 — %—0.5 ~ 5 (3.51)
and
(2) —2k

Ky () 1= 20) (3.52)

3.5. Conclusion

In this chapter, exponentially tilted Gaussian approximations of the CDF of a sum of IID
random variables is introduced (Theorem . The Gaussian and saddlepoint approximations
are special cases. Thank to this result, an upper bound on the saddlepoint approximation
error is given. This upper bound confirms the precision of the saddlepoint approximation on
the tail of the CDF. Finally, unlike the Gaussian approximation that fails on the CDF tail,
the exponentially tilted Gaussian approximations when properly optimized overcome these
limitation both on the tail and for sums with a small IID random variables.

However, The bound on the approximation error presented in Theorem [I5] are looser that
the bound provided by Berry-Esseen Theorem in the vicinity of the mean of the sum in .
Indeed, the bound on the approximation error presented in Theorem [I5] uses a triangle
inequality in the proof of Lemma which is loose. This is essentially the reason why
Theorem [15|is not reduced to the Berry-Esseen Theorem when the parameter 0 is equal to
zero. An interesting extension of this work is to tighten the inequality in Lemma [35] such that
the Berry-Esseen Theorem can be obtained as a special case of Theorem i.e., when 0 = 0.
If such improvement on Theorem [15] is possible, Theorem [I7] will be strongly improved and it
would be more precise everywhere and in particular in the vicinity of the mean of the sum

in .

42

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2021LY SEI065/these.pdf
© [D. Anade Akpo], [2021], INSA Lyon, tous droits réservés



Approximation of the
CDF of Sums of
Independent Random
Vectors

The objective of this chapter is to extend the results of Chapter [3| to sums of independent
random vectors. The approach follows the same arguments (exponentially tilted measure and
Gaussian approximations). This work has been partly published in [3§].

4.1. Introduction

Let n be a finite integer, with n > 1, and let Y, Yo, ..., Y, be independent random
vectors such that each of them induces the probability measure Py on the measurable space
(R*, Z(R¥)), with k € N. Denote by Ky : R* — R the CGF of each of these random variables.
That is, for all t € R¥,

Ky(t) = In (]EPY [exp (tT Y)]) . (4.1)

The gradient of the CGF Ky is a function denoted by K§,1 ). R¥ — R¥. More specifically, for
all t € RF,

KX (t) =Ep, [Y exp (tTY - Ky(t))] . (4.2)

The Hessian of the CGF Ky is a function denoted by K}(,Q) : RF — R¥*k. That is, for all
t e RF,

E&(t) =Ep, [(Y - K§,1)(t)) (Y - K§,1)(t)>T exp <tTY - Ky(t))] . (4.3)
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4. Approximation of the CDF of Sums of Independent Random Vectors

Note that Kg) (0) is the covariance matrix of the random vectors Y1, Yo, ..., Y,. In the
@)

following, Ky’ (0) is assumed to be positive definite (instead of positive semidefinite).

Let also N
A
X, =) Y, (4.4)
t=1

be a random vector that induces the probability measure Px, on the measurable space
(R*, Z(R*)), with CDF denoted by Fx,.

Often, the calculation of the CDF Fx  requires elaborated numerical methods. From this
perspective, approximations to the CDF Fx , e.g., Gaussian approximations and saddlepoint
approximations [21,39H41|, are rather popular in the realm of applied mathematics. In the
particular case of information theory, Gaussian and saddlepoint approximations play central
roles in the approximation of the fundamental limits of data transmission, c.f., [144|15}/18-20,
421-44].

When for all i € {1,2,...,n} the random vector Y; in is absolutely continuous and its
corresponding CGF Ky is such that the set

Cy & {9 eRF: Ky (6) < oo} A] — o0, 0[F (4.5)

is not empty, the CDF Fx_ can be written as a complex integral [39]. In particular, for all
x e RF,

etie oxp (nKy (1) — 7'
Fx,( >_f ( k1 k )dT, (4'6)
c—ie (27’1’1) Ht=1 Tt
where i is the imaginary unit; 7 = (71, 72, ..., 7x); the constant c¢ is arbitrarily chosen to satisfy
c € Cy; and the vector e = (e, e9,...,ex) is such that for all t € {1,2,...,k}, e, = +00.

The complex integral in (4.6) results from the multivariate Laplace inverse transform [45],
and can be approximated with high precision, as shown hereunder. Denote by D the following
set

DL {u eRF: It e] — o0, 0[F, nK(t) = u} , (4.7)

and denote by 7¢ € R* the unique solution in T to

KW (r) = %w (4.8)

For all « € D, a Taylor series expansion of nKy (T) — 7'z in the neighborhood of 7, leads to

the following asymptotic expansion of the integral in (4.6]):

exp (nKy(To) — TE)I— :1:)
Jn )

Fx (x) = Fx, (x)+ o( (4.9)

where the function FXn :D—Ris

: o (R (ro)m0), (4.10)

A TK(2)
Fx, (x)=exp (nKY(To) — 7-8— T + nTy By (To) To r
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4.2. Gaussian Approximation

and the function Foo - R* — [0,1] is the CDF of a Gaussian random vector with mean

vector (0,0,...,0) and covariance matrix nKl(,Q) (10)-
The vector 7 and the function £ x,, in are respectively referred to as the saddlepoint and
the saddlepoint approzimation of the CDF Fx . In [39], it is shown that the approximation
FXn in also holds for the case in which for all i € {1,2,...,n} the vector Y; in is
a lattice random vector. Moreover, when for all i € {1,2,...,n} the random vector Y in
is a Gaussian random vector, then saddlepoint approzimation is exact. That is, F'x,, and Fx,,
are identical.
The main drawback of saddlepoint approximations, despite their well known precision, c.f., [21]
and [41], is that the approximation error lacks of a tight upper bound. This is the main
motivation of this chapter, whose main contributions are:
(a) A real-valued function that approximates the CDF Fx  is presented. This approximation
turns out to be identical to the saddlepoint approximation FXn in when Y1, Yo,
..., Y, are either absolutely continuous or lattices random vectors; and
(b) an upper bound on the error induced by the proposed approximation is also presented.
The asymptotic behaviour with n of the proposed upper bound is consistent with the
one suggested in .
(¢) An extension of (a) and (b) for CDFs of sums of independent random vectors but not
necessarily identically distributed.

This chapter is structured as follows. Section [£.2] introduces the Gaussian approximation to
Fx, , which is used as a benchmark. Section and Section [4.4] introduce the main results
of this report. Mainly, an approximation to the measure Px, and an approximation to the
CDF Fx, are presented in Section Section [4.4] generalizes the approximation of the
measure Py, when X, is a sum of independent random vectors but not necessarily identically
distributed. Section presents an example and numerical results. Section concludes this
work with some final remarks and a discussion on the main results.

4.2. Gaussian Approximation

Let px € R* and v x, € R**F be the mean vector and covariance matrix of the random
vector X, in (4.4). The Gaussian approximation of the measure Px, induced by X, is the
probability measure induced by a Gaussian vector with mean vector px and covariance
matrix vx . The following theorem, known as the multivariate Berry—Esseen theorem [46],
introduces an upper bound on the approximation error.

Theorem 18 ( [46, Theorem 1.1]) Assume that the measure Py induced by each of the

random vectors Y1, Yo, ..., Y, in (4.4) satisfies,
Ep, [Y] =(0,0,...,0), and (4.11)
1
Ep, [YYT]z—diag(l, 1,...,1). (4.12)
n
Let Pz, be the probability measure induced on the measurable space (R, B(R¥)) by a Gaussian
random vector Z,, with mean vector (0,0,...,0) and covariance matriz diag (1,1,...,1). Then,
sup |Px,,(A) = Pz, (A)] < min (1,e(k)n B, |IIY]F]), (4-1)
.AECk
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4. Approximation of the CDF of Sums of Independent Random Vectors

where Cy, is the collection of all convex sets in B(RF); and the function ¢ : N — R satisfies for
all ke N,

c(k) = 42k + 16. (4.14)

The measure Pz, in (4.13]) is often referred to as the Gaussian approximation of Px . Similarly,
Fgz, , the CDF of the measure Pz, , is referred to as the Gaussian approximation of Fx, .
Theorem (18] leads to the following inequalities for all & € R¥,

2(n,x) < Fx, () < 2(n, ), (4.15)

where,
S(n, @) Fz, () + min (1, c(k) nEp, [HYH?’]) , and (4.16a)
S(n,2)2Fz, () — min (1, c(k) nEp, [y Y| \3]) . (4.16b)

That is, the functions X(n,-) and X(n, -) are respectively a lower and an upper bound on
the CDF Fy, .

4.3. Exponentially Tilted Gaussian Approximation

This section introduces two central results. First, given a convex set A in 2(R¥), the probability
Px, (A), with Px, the probability measure induced by the random vector X, in (4.4), is
approximated by a function that is a measure but not necessary a probability measure. This
function, which is parametrized by a vector in R¥ that can be arbitrarily chosen to locally
minimize the approximation error, is often referred to as the exponentially tilted Gaussian
approximation of Px, . Second, using the first result, the CDF of X,, is approximated by a
function that is not necessarily a CDF. Additionally, an upper bound on the approximation
error induced by both functions is provided. As a by product, an upper bound and a lower
bound are provided for both the measure Px, and the CDF Fx .

4.3.1. Approximation of the Measure

Given 0 € Oy, with
Oy 2 {te R": Ky (t) < o0}, (4.17)

let ng’ Yga), ey Y%e) be independent random vectors such that each of them induces the
probability measure Py.) on the measurable space (R¥, 2(RF)) that satisfies for all y € R¥,

dPy-e)

Py (y) = exp (GT y— Ky(9>> . (4.18)

That is, the probability measure Py (o) is an exponentially tilted measure with respect to Py .
Denote by Py o)y 0 30 and Py,y,. .y, the joint probability measures respectively induced
1 2 - tn

by the independent random vectors Yge), Yge), e Y%e) and Y1, Ys, ..., Y, in (4.4) on
the measurable space (kan,,%’ (R’””)). Then, for all j € {1,2,...,n} and for all y; € R, it
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4.3. Exponentially Tilted Gaussian Approximation

holds that

Wy oy v 1 4Py

Yo Yo Yy )= « 4.19
RY e (Y1:Y2:Y2---Yy) L=y (y;) (4.19)

—exp (i (aT Y, — KY(0)>> . (4.20)
j=1

Using this notation, for all A € R* and for all 8 € Oy, with Oy defined in (4.17)), it holds
that

Px, (A)=Epy, [1(x,ca] (4.21a)
:EPYlYQ.”Yn [1{2?:1 YjeA}] (4.21b)

dPy,y,.v 0) +(0) 0
—E 1. 1Yo Vo (Y YO oyl >) 421¢
Pyo)y )y © [ { J':lY§6)€A}dPng)yg9>my§f> 1,Y5 n ) [(4.21c)

dPyg")Y;") y®

=Ep Lic. Lo
y§9>yg")..y;") {Z]’:lyj EA} dPYlYQ...Yn

- ; Ty (0
_EPY@Y;")..‘YS’) []1{2?1 Yge)eA} exXp (le (KY(G) -0'Y; >>] (4.21e)
j=

- 4
=exp (nKy (0))Ep_y, Y<e>[ {52, ¥ @) O5P (—aT SNyl >)] (4.21f)
@y () &

To ease the notation, consider the random vector
n
=Y v (4.22)
j=1

which 1nduces the probablhty measure Py (o) On the measurable space (R*, Z(RF)). Hence,

plugging (4.22) in (4.21f) yields,

Px. (A)=exp (nKy (8)) Er, 4, {exp (—eT s§f’>) g A}] . (4.23)

The equality in is central as it expresses the probability Px, (A) in terms of another
measure P 50 which is the sum of n independent random vectors. From this observation, it
follows that an approximation on Px, (A) can be obtained by arbitrarily replacing P, 5(®) by
its Gaussian approximation, i.e., a probability measure P 70 induced on the measurable space

(Rk , B[R )) by a Gaussian random vector Zg,, ) with the same mean vector and covariance

matrix as the random vector SELB) in (4.22). Denote by p 2® € RF and v PIORS RF*E the mean
(6)

vector and the covariance matrix of the random vector Z;’, respectively. Hence,

JA 0
Hy0=Ep o [s; >] (4.24a)
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4. Approximation of the CDF of Sums of Independent Random Vectors

=nEp,_, [Y(B)] (4.24b)
—nEp, [Y exp (HT Y - KY(0)>] (4.24c)
—nKM(0), (4.24d)

where Kg ) is the gradient vector of the CGF Ky defined in (4.2). Alternatively,

A T
v,0=Er [(S;‘” - nK§,1)(9)) (sﬁ{” - nK(Y”(e)) ] (4.25a)
T
=nEp, [(Y("’) —Kﬁ)w)) (Y<9> - K§})(0)) ] (4.25b)

—nEp, {(Y . KQ)(G)) <Y . K§,1)(9)>T exp (0T Y - Ky(a))] (4.25¢)
—nKP (), (4.25d)

where Kl(/—) is the Hessian matrix of the CGF Ky defined in . The equality (4.25b) is a

©) in ([4.22) being a sum of mdependent random vectors.
Hence, the central idea for providing an approximation to Px, is to approximate the RHS
of ([#.23) by the function ny : R¥x 2 (R*) x N — R, which is such that

consequence of the random vector Sy,

L T 76
ny (60, A,n) = exp (nKY(B))EPZ;o) {exp (—0 2z )> ]l{Z(n”)eA}] . (4.26)

Note that ny (0, .4,n) can also be expressed as follows:

ny (0, A,n)
= exp (nKy(H))J exp( 0 )]l{zeA}dP 0 (2) (4.27a)
op (nKy(0) ~0'z) (2= nic¥ )(m)T(”Kg)(G))_l(z_”K(Yl)(e)> dvy(2)
exp|— v (z
\/27r kdet (nK( 9)) 2
(4.27D)
e kv (0 ol FEY D) (20 (= - nxi )
\/(27r)kdet nK 2
(2)
exp _29T<7”LK2 9 nKY 0 Z dvg(z) (4.27¢)

2
(2)
exp (nKy(G) 4 i 00 0%}(@(9))

\/ (27)kdet (nK§3> (e))
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4.3. Exponentially Tilted Gaussian Approximation

<z—nK§}>(0) + (nK@(9))T9>T<nK§2>(0))_1<z —nKP(0)+ <nK§E>(0))T 9>

exp [— 5 dvg(2)

A
(4.27d)

(2)
= exp <n (KY(G)OTK‘;(G)O - oTK,(})(o))) !
\/ (27)kdet (nK§,2) (9))
<z—nK§}> 0)+ (nK(Y2> (0))T0>T<nK§E> (0)>1<z —nKP(0)+ (an@ (0))T 9)

exp |— 5 dvg(2z)

A
(4.27e)

(2)

= exp <n (Ky(e) + GTKY2(0>0 - 9TK§})(9)>> Py (A) (4.27f)

where the probability measure P is the probability measure induced by a Gaussian random

vector H?) with mean vector n <K§,1)(0) —K§,2)(9) 0) and covariance matrix nK > )(9) on the
measurable space (R, Z(RF)).

Hence, the approximation of the probability Px, (A) by ny(0,A,n) follows from the
assumption that the probability measure P (6) can be approximated by the probability
measure P 70 Given that P, 5(0) is an exponentlally tilted measure with respect to Px, and

PZ(e) is the Caussian approx1mat10n of P_), the function ny in is referred to as the

exponentzally tilted Gaussian approa:zmatzon of Px,

The rest of this section follows by upper bounding the error induced by replacing P, 5(0) by
its Gaussian approximation P 20 in . That is, establishing an upper-bound on

|Px.,,(A) —nv (0, A,n)], (4.28)

which is the purpose of the following lemma.

Lemma 19 Given 8 = (01,02, ...,0;) € Oy, with Oy in [@.17), and a convex set A € B(RF),
it holds that

IPx, (A) =y (6, A,n)| < exp (nEy (6) — 07 a(A4,0)) A (Pyor, Pyo ), (429)
where

A
A (P @, P <e>) = sup ; (4-30)

Sn Zn BeCy

PS%G) (B) — Pzgle) (B)

the collection Ci, contains all convex sets in B(RF); and the vector a(A,0) = (ai(A,8),
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4. Approximation of the CDF of Sums of Independent Random Vectors

az(A,0), ..., ax(A,0)) is such that for all i € {1,2,...,k},
( 0 if 0; =0

A inf b; Zf 9@ >0

a; (A,0) =< (biba,..bp)eA (4.31)

sup b; Zf 0; < 0.
(b1,b2,...,b )€ A

Proof: The proof of Lemma [I9]is presented in Appendix [E] [ |
Note that the term A (Ps(o),PZ(o) in (4.30)) can be upper bounded by using Theorem
For doing so, consider the function ¢y : R¥ — R, such that for all ¢t € R¥,

&v(t) 2 Ep, [((Y ~kP®) (KP®) " (v - K$><t>))3/2

Using this notation, the following theorem introduces an upper bound on the error induced by
the approximation of the probability Px, (A) by 7y (0, A,n), where A < R is a convex Borel
measurable set and 0 € R¥ is a fixed parameter.

exp(t'Y — Ky(t))]. (4.32)

Theorem 20 For all A € Cy, with C. the collection of all convex sets in B(RF), and for all
0= (91,02, - ,Qk) € @Y, with @Y mn " it holds that

IPx..(A) — ny (8, A,n)| < exp (nKy(O) —07a (A, 9)) min (1, W) . (4-33)

where the functions ¢ and ny are respectively defined in (4.14]) and (4.271); the vector a(A, @) =
(a1(A,0),a2(A,0),..., ar(A,0)) is defined in (4.31); and the function &y is defined in (4.32)).

Proof: The proof of Theorem [20] is presented in Appendix [F] [ |

4.3.2. Approximation of the CDF

The CDF Fx, can be written in the form of the probability of a convex set in %(R¥). That
is, for all & = (1, x9,...,7;) € R¥ let the set A, be such that

Ap = {(tista, o ) €RF Vi€ (1,2, B}t < i (4.34)
Then, for all & € R¥, it holds that

This observation allows to use Theorem [20| to approximate the CDF Fx, of the random vector
X, in (#.4). Explicitly, for all € R¥ and for all § € ®y, with @y in ([#.17), it holds that

|Fx, (x) —ny (0, Az, n)| < exp <nKy(9) — 0" a(A,, 0)) min (1, Wﬂ) . (4.36)

The approximation of the CDF Fx_ in (4.36)) can be enhanced by choosing the parameter
0 € Oy that minimizes the right-hand side (RHS) of (4.36). From this standpoint, the
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4.3. Exponentially Tilted Gaussian Approximation

parameter 8 must be searched within a subset of ®y in which
0" a(Az,0) = 0" x < 0. (4.37)

More specifically, given A, in (4.34)), it follows from (4.31]) that the minimization must be
restricted to the set

Oy £ {(t1.ta,.. . tx) €Oy, Vie {1,2,. .. k}, t; <O} (4.38)

An arbitrary choice of 8 is the one that minimizes the exponential term exp (nKy(B) —
07 a( Ay, 0)), which depends on «. Denote such a choice by @(x), which is defined in terms
of the following quantity:

T(x) 2 arg min <nKy(t) —t :r) , (4.39)

teclo®y,

where clo®y is the closure of ©3. The uniqueness of 7(x) in ([4.39), for a given x, follows
from the fact that the set @y in is convex and the function nKy (8) — 07 a(Ay, 0) is
strictly convex with respect to 8. More specifically, the difference between a strictly convex
function, i.e., nKy (@) and a linear function, i.e., 7 a(Ag,0) is strictly convex. The former is
strictly convex due to the fact that the covariance matrix Kg)(O) is a positive definite matrix,
c.f., [21} Section 1.2] and [47, Theorem 7.1].

Given 7(z) in ([4.39), the choice of the vector € to reduce the RHS of is

T(x) if 7(x) € Oy

T(x) + € otherwise, (4.40)

where € € R” is chosen such that two conditions are simultaneously met: First, ||e|| < r, with
r > 0 arbitrary small; and second, 8(x) € Oy .
The following lemma, presents some of the properties of 8(x).

Lemma 21 For all x € R¥, 0(x) in ([4.40)) satisfies

(x — px,) 0(x) >0, (441)
and
O(px,) =0, (4-42)
where,
T
Kx, = (ILLXnJ?/'LXn,Z’ ce 7IL’LXn7k) (443)
is the mean of the random vector X,, in (4.4)).
Proof: The proof of Lemma [21] is presented in Appendix [G} [ |
Let the set £x,, be defined by
ané{(xl,@, R eRF Ve (1,2, k) @ > uxn,i} : (4.44)

where for all i € {1,2,...,k}, px, , is defined in (4.43). From (4.44)), it holds that for all
x € &x,, the vector © — px is such that all components are strictly positive. Similarly,
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4. Approximation of the CDF of Sums of Independent Random Vectors

from (4.38]), it follows that @(x) is a vector whose components are all nonpositive. Hence,
from (4.41)), it follows that,

6(x) =0, (4.45)

which leads to the Gaussian approximation of the CDF F'x  at the point . Hence, for all
x € Ex,, the choice of 0 in can still be improved. In this case, the objective is to focus
on 1 — Fx (x) and write it as a sum of probability measures of convex sets with respect to
Px . The following lemma provides such a result.

Lemma 22 For all € = (z1,x2,...,2;)" € R, with k € N, it holds that

k
1 - Fx,(z)=) Px, (B(x,1i)), (4.46)
=1

where the set B(x,i), with i € {1,2,...,k}, s,

B(m,i)z{tz (t1,tay.. . te) ERF 1 Vj € {1,2,... kb t; <a; if j <i, and t; > x; if j =i}.
(4.47)

Proof: The proof of Lemma [22]is presented in Appendix [H] [
For all i € {1,2,...,k}, the probability Px_ (B(x,i)) in (4.46) can be approximated by using
Theorem More specifically, for all i € {1,2,...,k} and for all 8 € Oy,
c(k) &y (9)

\Px.. (B(z,4)) — v (8, B(z,i),n)| < exp (nKy(B) — 0" a (B(x, i), 9)) min <1, \/ﬁ> .

(4.48)

Similar to the previous discussion on the minimization of the RHS of , the minimization
of the RHS of is focused only on the term exp (nKy () — 0" a (B(x,i), 6)), and thus,
the choice of @ must be constrained to a subset of Oy in which 87 a (B(z, 1), 0) is finite. That
is, for all € R*, the choice of @ must satisfy that

0" a(B(x,i),0) = 0" x < +o. (4.49)

More specifically, given a set B(x, 1), it follows from (4.31]), that the the choice of @ must be
restricted to the set

L2 (01,0, 00) €Oy Wie{l,2,.. . k}, 0, <O0ifj<i0;=0ifj =i
and 6; = 0 otherwise}. (4.50)

Denote such a choice by 6;(x), which is defined in terms of the following quantity:

7i(x) = arg min (’I’LKy(t) —t' iL') (4.51)

teclo®y,

with clo®}% the closure of ©% . The uniqueness of 7;(x) in ([.51)), for a given z, follows from
the fact that the set ®@% in (£.50) is convex and the function nKy (8) — 07 a(B(zx,i),8) is
strictly convex with respect to 6, as discussed above.
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4.3. Exponentially Tilted Gaussian Approximation

Given 7(x) in , the choice of the vector € to reduce the RHS of (4.48]) is

] _ ’Tl(aj) if Tl(ic) E@ZY
0i(x) = { Ti(x) + € otherwise, (4.52)

where € € R” is chosen such that two conditions are simultaneously met: First, ||e|| < r, with
r > 0 arbitrary small; and second, ;(x) € ©%.

Finally, for all i € {1,2,...,k}, it holds from that the probability Px, (B(x,i)) can be
approximated by ny (8, B(z,1),n). Using these approximations in (4.46)), the approximation
error can be upper bounded as follows:

k
L - Fx, (@) = Yy (6i(e), Bla,i),n)
=1

k k
= Z Px, (B(x,i)) — Z ny (0;(x), B(x,i),n) (4.53)
=1 i=1
< > |1Px, (B(=,1)) — ny (0i(), B(x,i),n)| (4.54)
=1
k
. c(k) &y (0i(x))
< ;exp (nKy(Oi(a:)) — 0] () :c) min (1, ‘:/ﬁ> , (4.55)

where the inequality in follows from the triangular inequality; and the inequality in (4.55]
follows from (4.48]).

In order to ease the notation, let the functions (y : N x RF > R and dy : N x RF > R be
such that for all (n,x) € N x R¥,

ny (0(x), Az, n) ifeé¢lx,
Gy (n, @) 23 k (4.56)
1= > 0y (0i(), B(x,i),n) ifxeéx,,
\ i=1
and
.
exp (nKy (8(x)) — 8(x)T ) min (1, W) if o ¢ Ex,
A
Sy (n,x)=1 (4.57)
. c(k) &y (0i(z))\ .
Zexp nKy (0;(x)) — 0] (x) 2 ) min <17 ifexelx,.
= ( ) \/n
Using this notation, the following theorem summarizes the discussion above.
Theorem 23 For all € R*, it holds that
’FX'n (w> - CY(n? x)‘ < 5Y(nv 33), (458)

where the functions (y and Jy are respectively defined in (4.56|) and (4.57)).

An immediate result from Theorem [23|is the following upper and lower bounds on Fx (x),
for all € R | B
Qn, @) < F, (@) < Q(n, @), (4.59)
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4. Approximation of the CDF of Sums of Independent Random Vectors

where,

(n,sc)QCy(n,w) + oy (n,x), and (4.60)
(n, zc)ég“y(n, x) — dy (n,x). (4.61)

o

4.3.3. Connexion with the Saddlepoint Approximation

The following claim underlines the relation between the saddlepoint approximation FXn

in (4.10) and the function (y in (4.56).

Claim 24 For all € D, with D in (4.7), it holds that
(v (n,2)=Fx, (@), (4.62)

where the function FXW and Cy are respectively defined in (4.10) and (4.56]).

Proof: From (4.7)), note that for all € D the solution in ¢ to
nKEM () = a (4.63)

denoted by Tg exists and the components of 7¢ are all strictly negative. Thus, 7¢ € Oy, with
Oy in .

Note that the vector T is also a solution to for all & € D. This follows from the fact
that the CGF Ky is strictly convex and K;l) is the gradient vector of the CGF Ky . Thus,

the vector 6(x) in (4.40|) satisfies
0(x) = 1o. (4.64)

Then, for all € D, from 14.64), all the components of @(x) are strictly negative and thus,
x ¢ Ex,. Then, plugging (4.64) in (4.56]) yields

CY(naw):nY(TOw'Aman)? (465)
TK(Q)
—exp <n (Kmo) iKY (r) + W TOTO) ) p ) (466)
T.-(1) m'g Kg) (10) To

=exp | nKy (7o) — n1o Ky (T0) + 5 PH;T())(AE) (4.67)

TK(2)
=exp (TLKY(T()) — ngzz + 70 Y2 (To) o PH;TO)(Am) (4.68)

TK(Q)
=exp (nKy(To) — Tgw + 7o Y2 (T0) 7o FH;TO) (), (4.69)

where PH(T()) is the probability measure induced by a Gaussian random vector H 7(17-0) with mean

vector n(Kg)('ro) - Kgf) (To)To) and covariance matrix an)(To) on the measurable space
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4.4. Sums of Independent Random Vectors

(R*, (R¥)); and F (o) is the CDF of the random vector H () The equality in (4.66]) follows
from (4.27f). The equality in (4.68) follows from 7o being the solution in ¢ to nKl(,l )(t) =

Let the random vector Z%TO) be such that

27 = H7) = n (K (ro) - Ky (o)) (4.70)

which induces the probability measure P -y on the measurable space (R*, Z(R*)) and the
corresponding CDF is denoted by F 70 rfkhen the mean vector and the covariance matrix of

Z7(7,T0) are respectively (0,0,...,0) and an;)(T()). Thus, for all € R¥, it holds that

Fpyro (@) =F e (2 = n (K (1) = K (r0)70)) (4.71)
= Z’EITO) (TLKg)(T())T()) y (4.72)

where the equahty in ) follows from 7 being the solution in ¢ to nK (! )( t) =x.

Plugging (4.72)) in - yleldb

2
=Fx, (@), (4.74)
where the equality in (4.74) follows from (4.10)). This concludes the proof. [ |

4.4. Sums of Independent Random Vectors

This section generalizes the results of Section [£.3] to CDFs of sums of independent random
vectors but not necessarily identically distributed. That is, the independent random vectors Y 1,
Yy, ..., Y, in respectively induce on the measurable space (Rk , %’(]Rk)) the probability
measures Py, Py,, ..., Py, that are not necessarily identical. More specifically, Lemma
Theorem and Theorem [23|are generalised when the random vector X,, in is a sum of
independent random vectors.

First, given a convex set A in Z(R¥), the probability Px,(A), with Px, the probability
measure induced the random vector X, in (4.4), is approximated by a function that is a
measure but not necessary a probability measure (Lemma . This function is parametrized
by a vector in R¥ that can be chosen to minimize the approximation error. Second, using
the previous result (Lemma , the CDF of X, is approximated by a function that is not
necessarily a CDF but inherits the parametrization by a vector in R* that can be chosen to
minimize the approximation error (Theorem .

Denote by ny,v,..v, : RFx ZB(RF) — R the function such that for all 8 € R¥

: r e, Y (0)0
m e v 0. 420 | Y [ Ky, 0) - 07KD(0) + 0 ) Py (), (47)
=1 !
where for all j € {1,2,...,n}, the functions K(]) R* — R* and K( ) RE > RFXk are

respectively the gradlent vector and the Hessian matrix of the CGF Ky of the random
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4. Approximation of the CDF of Sums of Independent Random Vectors

vector Y'; in (4.4); the probability measure PW“’) is induced by a Gaussian random vector
W with mean vector pI <K1(/1J)(0) —K}(,QJ(B) 9) and covariance matrix >, K§,2]) (6) on

the measurable space (R*, Z(RF)).

The objective is to show that Px,(A) can be approximated by ny,y,. v, (0, .A) for some
0 € R*. The intuition behind this becomes clear in the proof of Lemma [25{and in the following
lines only a discussion is presented.

Note that the probability Px, (A) can be written as follows

Px., (A)=exp (Z Ky, (0)) Ep,0 [exp (—9T s<“70>)11 (500c A}] : (4.76)
j=1
where
n 1 (0
j=1

2
J
the measurable space (R*, Z(R*)) that satisfies for all y € R¥,

and for all j € {1,2,...,n}, the random vector Y;"/ induces the probability measure PY<9), on
j

dPY§9>
dPy;

(y) = exp (GT y— Ky, (0)) : (4.78)

That is, the probability measure PY(e) is an exponentially tilted measure with respect to the
j

probability measure Py ;. The equality in (4.76)) is obtained by a change of measure with

which the expectation Ep, [1 (Xne A}] = Px, (A) is calculated with respect to the probability

measure Pgn,0) induced by the random variable S5m0 i (4.77)).

Note also that ny,v,..v, (0,.A) can be written as follows

NY1Ys2..Yn (O,A)zexp (Z Kyj (9)) EPZ(n,G) [exp (_BT Z(n’g))]l{z("ve)eA}] , (4.79)
j=1

where the probability measure P .6 is induced on the measurable space (Rk, %(Rk)) by

the Gaussian random vector Z(™? with the same mean vector and covariance matrix as the
random vector §9 in [A.77).

From this perspective, the approximation of the probability Px,(A) by ny,v,. v, (0,A),
follows from the arbitrary assumption that the probability measure Pgn,) is sufficiently close
to the probability measure P, o).

The idea behind the calculation of an upper bound on the error induced by such approximation
consists in upper bounding the following absolute difference

|Px,, (A) = ny,v,.v, (0, A)], (4.80)

which is the aim of the following lemma.

Lemma 25 Given 0 = (91, 92, e Ok) € @Y1Y2-~~Yn’ with
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4.4. Sums of Independent Random Vectors

A E
Ov,vs..v, = {teR 1 Vje {1,2,...,n}, Ky, (t) < o}, (4.81)

and a convexr set A e B(RF), it holds that

|Px, (A) —ny,v,.v,(0,A)] <exp (Z Ky, (0) — 0" a (A, 9)) A(Pgme), Pyine)), (4-82)

J=1

where

A
A (Pgn0); Pyno)) = Sup |Pgn.0) (B) — Pyne) (B)|, (4.83)
€Ck
and Cy, is the collection of all convex sets in B(RF); and the vector a(A,0) = (ai(A,8),
az(A,0), ..., ax(A,0)) is defined in (4.31)).

Proof: The proof of Lemma [25] is presented in Appendix [E] |
Note that the Lemma [25]is a generalization of Lemma [19] when the the random vector X,
in is a sum of independent random vectors but not necessarily identically distributed.
Note that the term A (Ps(n,ﬂ),PZ(n,B)) in can be upper bounded by leveraging the
observation that the random vector S is the sum of n independent random vectors
and Z(™9 is a Gaussian random vector with the same mean vector and covariance matrix
as SS9 This allows the use of the Multivariate Berry-Esseen Theorem [46, Theorem
1.'1] for upper bounding A (Ps(n,(a),PZ(n,e)) in (4.83)). For doing so, consider the functions
& v v, R* — R, with j € {1,2,...,n}, such that for all t € R¥,

. 1 3/2
& 1va.v, (O=En,, (Yj—Kélj(t))T(Z K&j(t)) (Vs - KV)] exp(t7Y; - Ky, (¢)
s=1

(4.84)

Using this notation, the following lemma introduces an upper bound on the error induced by
the approximation of the probability Px, (A) by ny,v,..v, (6,A), where A € R* is a convex
Borel measurable set and 6 € R is a vector parameter.

Lemma 26 Given a pair (k,n) e N2, let Y1, Yo, ..., Y, be independent random vectors
that respectively induce the probability measures Py, Py,, ..., Py, on the measurable space
(R, B(R¥)), with CGFs Ky,, Ky,, ..., Ky, on R¥. Denoted by Px, the probability measure
induced by the random vector X,, = Y1+ Ys + ... + Y, on the measurable space (Rk, B(RF)).
Then, for all A € Cy, with Cy the collection of all convexr sets in B(RF), and for all @ =

(91, Oo, ... ,Qk) € @Y1Y2---Yn7 with @Y1Y2...Yn m " it holds that

1Px, (A)=ny,vs..v,(0,A)|< exp(iKyj(O) —07a(A, 0)) min <1, c(k) i&%lyz..y”(e)),
j=1 Jj=1
(4-85)
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4. Approximation of the CDF of Sums of Independent Random Vectors

where the functions ¢ : N — R and ny,y,..y, are respectively defined in (4.14) and (4.75));
the vector a(A,0) 2 (a1(A,0),a2(A,0),..., ap(A,0)) is defined in [@.31); and for all j €
{1,2,...,n}, the function &, y, v is defined in ([£.84).

Proof: The proof of Lemma [20] is presented in Appendix [[} [ |
Note that the Lemma [26]is a generalization of Lemma [20| when the the random vector X,
in (4.4) is a sum of independent random vectors but not necessarily identically distributed.

4.5. Examples

Consider the case in which the independent random vectors Y1, Yo, ..., Y, in (4.4), with n
fixed, are such that for all i € {1,2,...,n},

) (5)

where p € [0, 1) is the Pearson correlation coefficient between the components of Y';; and both
By and Bj are independent Bernoulli random variables with parameter p = 0.25. The mean

of X, in is px = np <l,p+ V1-—= p2>T.

Given a vector € R?, Figure depicts the set A, in (blue rectangle); the set
Bz ({1})\Bz({1,2}) (grey rectangle), the set By ({2})\Bz({1,2}) (yvellow rectangle); and the set
Bx({1,2}) (red rectangle) in (4.47). Four cases are distinguished with respect to the given
vector & € R? and the mean vector p x, in . In Sub-figure the mean vector px
belongs to the set B({1,2}). In Sub-figure , the mean vector px belongs to the set
B:({2}). In Sub-figure the mean vector py, belongs to the set B.({1}). In these three
cases, the approximation of the CDF Fx  is done using the set A, i.e., using the equality
in . In Sub-figure the mean vector px belongs to the set A,. In this case, the
approximation of the CDF Fx  is done using the sets Bz ({1}), Bz({2}), and Bz ({1,2}). That
is, using the equality in (4.46|).

Figures depict the CDF Fx of X, in ; the Gaussian approximation Fz, in ;
the saddlepoint approximation (y in ; and the saddlepoint upper and lower bounds €2
in @ and  in ; through the line ad + px . The plots on the left and the center in
Figures are respectively for fixed vectors d = (1,1)T and d = (1, —1)T, as a function of
a. The plots on the right in Figures 4.4) are in function of p for a fixed point in the line
ad + px , with a € {—6,—-12,-24} and d = (1, 1)T, i.e., the tail of the distribution in the
direction of the vector d = (1,1)T. Note that Gaussian and saddlepoint approximations are
particularly precise near to the mean px . That is, when a = 0. Nonetheless, away from the
mean, i.e., a < —4 when n = 25, or a < —10 when n € {50,100}, the Gaussian approximation
induces a large approximation error. Note that this is in sharp contrast with the saddlepoint
approximation.

For the value of n = 50, Figure the lower bound € is negative, except when a > 5.
Alternatively, the Gaussian upper and lower bounds ¥ in and ¥ in are trivial.
That is, the lower bound is negative and the upper bound is bigger than one, which highlights
the lack of formal mathematical arguments to evaluate the Gaussian approximation. For
instance, note that when a < —10, the Gaussian approximation is bigger than the upper
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4.5. Examples

bound due to the saddle point approximation. In particular, note that Figure (Right)
highlights the fact that the same observation holds for all values of p.

Z2

B ({2})\Bz({1,2

I

B ({2})\B=({1,2})

(c) (d)

Figure 4.1.: Example of the set A, in (4.34]) (blue rectangle); the set B, ({1})\Bz({1,2}) (grey
rectangle), the set B, ({2})\Bz({1,2}) (yellow rectangle); and the set B, ({1,2})

(red rectangle) in (4.47]).
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4. Approximation of the CDF of Sums of Independent Random Vectors

[—%=Cround truth CDF: F (ad + iix,)
Saddlepoint approximation: Cy (n, ad + jix, )
Upper bound (saddlepoint): (n,ad + ux,) 1

Lower bound (saddlepoint): Q(n, ad + jix, )

jan approximation: (ad + pix,)

p =025 p=0.1; n =25 and d = (1,1)".

Ground truth CDF: Fy_(ad 1 ix,)
Saddlepoint approximation: Cy (n, ad + ix. )
Upper bound (saddlepoint): ©(n, ad + pix, )

-O- Gaussian approximation: Fz, (ad + pix,)
p=0.1; n=25; and d = (1,—1)°

-2 0 2 4 6
a

-4 2 0 2 4
a

§Gm\md truth CDF: Fx, (ad + px,))

-O-Gaussian approximatio

Saddlepoint approximation: Cy (n,ad + jix,)
Upper bound (saddlepoint): 2(n,ad + jix,)
Fy, (ad + pix, )
p=025a=—6n=25d=(1,1)

10°

102

104

106
Ground truth CDF: Fx_(ad + ix,)

108 Saddlepoint approximation: Cy(n,ad + px, )3 [—%=Cround truth CDF: Fx, (ad + jix,)
Upper bound (saddlepoint): Q(n, ad + ix, ) XSM\(llcpmm approximation: Cy(n, ad + jix, )
Lower bound (saddlepoint): ©(n,ad + jix,) Upper bound (saddlepoint): Q(n,ad + jix, )
Gaussian approximation: Fy, (ad + jix,) 0 approximation: Fy, (ad + jix,)
p=0.25 p=0.1; n =50; and d = (1,1)" : p=0.1; n =50; and d = (1, -1)".

-10
0
-1 -10 5 0 5 10 15 15 -10 5 0 5 10
a a

Figure 4.3.: Sum of the independent random vectors Y1, Yo, .
for all i € {1,2,...,n}, Y, satisfies (

0
10 100
102
10
104
10710
10
10715 10
Ground truth CDF: Fx,(ad + jix,)
Saddlepoint approximation: (y(n,ad + ix, ) Ground truth CDF: Fx (ad + jux,)
Upper bound (saddlepoint): Q(n, ad + ix, ) Saddlepoint approximation: Gy (n,ad + ix, )
Lower bound (saddlepoint): ©(n, ad + ux. ) o Upper bound (saddlepoint): Q(n, ad + jux, )
n approximation: Fy, (ad + pix, ) 10 -O-Gaussian approximation: Fy, (ad + jix, )
: p=0.1; n =100; and d = (1,1)" P =025 p=0.1; n =100; and d = (1,~1)".
‘0—20
-30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20
a a

Ground truth CDF: F, (ad + jix,))
Saddlepoint approximation: y (n, ad + pix, )

Upper bound (saddlepoint): Q(n, ad + jix, ) |
-O-Gaussian approximation: Fyz (ad + pix,)
Pp=025a=-12%n=50;d=(1,1).

1013
0

= 50, such that

108
10710 ]
10—12
1071
‘0—15
10—18
20 i
10 Ground truth CDF: Fx, (ad + jix,))
Saddlepoint approximation: Cy(n, ad + jix, )
Upper bound (saddlepoint): Q(n,ad + pix, )
10224 -O- Gaussian approximation: Fy, (ad + px,) |
p=025a=-24n=100;d=(1,1)T
0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8

Figure 4.4.: Sum of the independent random vectors Y1, Yo, ..., Y, with n = 100, such
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that for all i € {1,2,...,n}, Y, satisfies .
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4.6. Final Remarks and Discussion

4.6. Final Remarks and Discussion

A final remark is the fact that for all & € D, the saddlepoint approximation FXn (z) in
is identical to (y (n,x) in . That is, the saddlepoint approximation FXn can be obtained
from Theorem [23|in the special case in which the vectors Y1, Yo, ..., Y, in are either
lattice or absolutely continuous random vectors. Additionally, it is worth to highlight that
Theorem holds for all random variables whose CGF exists. Under this condition, the
Multivariate Berry-Essen theorem in [46, Theorem 1.1], Theorem is a special case of
Theorem [20] for the choice 8 = 0.

The advantages of approximating the probability of a convex set in Z(RF) by using
Theorem instead of Theorem are twofold. First, the proposed upper bound on the
approximation error depends on the set to be approximated. Second, both the approximation
and the upper bound on the approximation error are parametrized by 8 € Oy, with Oy
in (4.17). Thus, the vector 6 in can be tuned to minimize the upper bound on the
approximation error. Nonetheless, such optimization is not trivial. In this work, a non
necessarily optimal choice has been made for obtaining an approximation of the CDF Fx
in Theorem [23] That being said, the possibility to obtain tighter upper bounds on the
approximation error on the measure Px, from Theorem and on the approximation error
on the CDF Fx, from Theorem [23]is not negligible.

In the single dimension case, i.e., k = 1, Theorem [20|leads to the same approximation on the
measure Py in |28, Theorem 2|. Nonetheless, the upper bound provided in [28, Theorem 2]
on the approximation error is better than the one provided by Theorem
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Memoryless Channels

HIS chapter introduces lower and upper bounds on the DEPs of point-to-point

I channels and multiple access memoryless channels (MAC) that are easier to

compute than the previous lower and upper bounds. These bounds are the

consequence of the application of the new upper bound on the saddlepoint approximation

error in chapter [3] and [4] to the CDFs appearing in lower and upper bounds on the DEPs in

Chapter 2] Memoryless point-to-point channels and multiple access channels with memoryless

inputs are respectively considered in Section [5.1] and Section [5.2] The main results of these

sections are lower and upper bounds on the DT bounds (Lemma 2| Lemma |8, Lemma ,

and the RCU bounds (Lemma |1}, Lemma E Lemma . Section also provides lower and
upper bounds on the MC bounds (Lemma [4]) introduced in Chapter

5.1. Point-to-Point Channels with Memoryless Inputs

Memoryless inputs refer to the assumption that the probability measure induced by input
channel vector on the corresponding measurable space can be written as a product of probability
measures induced by each of the coordinates of the channel input vector. More specifically,
the chapter focuses on the case in which each coordinate of the channel input vector induces
the same probability measure, i.e., the input is stationary. In other words, the inputs to
the channel are assumed to be independents and identically distributed. That is, given a
probability measure Px on the measurable space (R", Z(R")) for point-to-point channels, a
probability measure Px on the measurable space (R, Z(R)) is assumed to exist such that for
all boxes B € B(R"), i.e.,

B=DBi xByx...x By, (5.1)

where for all t € {1,2,...,n}, B, is an interval of R, for all k € {1,2,..., K}, it holds that

n

Px(B)=] | Px(By). (5.2)

t=1

The memoryless assumptions on the input and the channel result in the random variable
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5. Memoryless Channels

I(X;Y|Py) in that is a sum of IID random variables. Additionally, choosing Qy as a
product of probability measures results in the random variable 7 (X ;Y |Qy) in that is
a sum of IID random variables. That is, assuming the existence of a probability measure Qy
on the measurable space (R, Z(R)) such that for any set B in (5.1]),

n

QY(B):H Qy (By), (5.3)
=
under the assumption in ,

[(X;Y|Qy) = i (X3 YilQy ), (5.4)
where the function 7 is defined in and 7(X1;Y1|Qy), 1(X2;Y2|Qy ), ..., T (Xn; Ya|Qy)

are IID random variables.

Under the assumptions in and (5.3)), the DT bound (Lemma [2) and the MC (Lemma [4)
bound through the function 7" in become functions of CDFs of sums of IID random
variables. As consequence, their approximations result directly from the approximations to
these CDFs of sums of IID random variables.

In contrast to the DT bound and the MC bound, the RCU bound (Lemma (1)) is not a direct
function of CDFs of random variables. However, as it will be shown in Section [5.1.2] starting
from the RCU bound (Lemma (1)), a bound that is a direct function of CDFs of random
variables is derived.

5.1.1. Approximations to the Dependence Testing and Meta Converse Bounds

The approximations to the DT bound and the MC bound essentially consist in the approxi-
mation to the function T’ in . The function T in is a function of CDFS of random
variables, which are sums of IID random variables under the assumptions in and ( .
Hence, the usage of Theorem [17] . to approximate the function T m-. To 1ntr0duce this
approximation, consider the following definitions.

The CGF K, p : R — R of the random variable 7(X;Y|Qy) is defined for all # € R by

Kop(0) = (Epy py  [exp (070X YIQV))] ) (5.5)
The first and second derivatives of K, p denoted respectively by K fl,l and K 521; are given by

KU(0) = Epy py . [(0X:Y]Qy) exp (01(X: Y|Qy) — K, p(9))] . and (5.6)

)
P
2
K(6) = EPXPYX[(Z<X; YIQy) ~ K(0)) exp (02(X: Y1Qy) - Kb,p(e))] NGE)
Let also the function &, p : R — R be, for all 6§ € R,
3
ey | [(X5Y100) = K0 exp 01(X:Y1Q0) - K p(0)

(£20)"

k]

TOEE

+ c2 ,(58)
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5.1. Point-to-Point Channels with Memoryless Inputs

where the constants ¢; and ¢y are defined in (3.24)).
Using this notation consider the functions 77 : N x R x A (X) x A(Y) > Ry, T : N x R x
AX)xA(Y)—>Ri,and E:NxRx A(X) x A(Y) - Ry

) )

. 1
Tl (n7 v, PXa QY):]I{9>O} + (_1)1{9>0}6Xp QLKL,P(H) — Oln (’Y) + 2027'LKL(2]%(6)> Q< nKL(QFZ(Q)‘GD )

(5.9)
. 1
T, P Q) =exp(Kp(0) = 0+ Dln ) + 50+ 1Pk 50) ) Q(nk o)l + 1)
()Mo= + Lyp<_yy, and (5.10)
- 2§L,P(9)
E(n,v, Px,Qy) = exp (nK, p(#) — 0In (7)), (5.11)
Jn
where the parameter 6 is the solution in ¢ to
nK () = 1n(v). (5.12)

Note that 77 and 7% are the saddlepoint approximations to the CDF and the complementary
CDF of the random variable 7(X;Y |Qy) when (X,Y’) follows the probability measures
Px Py x and the PxQy, respectively. Consider also the following functions:

I1(n>%PX,QY)=H13X{O,Tl(n»% Px,Qy) — E(%%PX,QY)}» (5.13)
Ty(n,7, Px,Qy)=max {0,T2(na%PX,QY) - E(n’%fX’Qy) } ; (5.14)
IA(”KY, Px,Qy) ZIAl(na% Px,Qy)) + VAIz(n, 27,0, Px,Qy), (5.15)
T'(n,v, Px,Qy) =T1(n,v, Px,Qy) + v12(n,7, Px,Qy), and (5.16)
T(n,v, Px,Qy) =min (LT(N,%PX,QY) +2E(n, 7, PX,QY)>~ (5.17)

The function T(n,’y,PX,Qy) in (5.16|) is referred to as the saddlepoint approximation to
T(n, Px,Qy,v) in , which is indeed a language abuse. The function T(n,% Px,Qy)
in was first derived in [14] for continuous channels only in contrast to arbitrary channels
in this work. The following Lemma introduces a new lower bound and a new upper bound on

the function 7" in([2.19).

Lemma 27 Given a pair (n,v) € N x R, for all probability measures Px € A (X) subject to
(5.2) and Qy € A (X) subject to (5.3)) such that Py|x is absolutely continuous with respect to
Qy, it holds that

I(na’% PX?QY) < T(Tl,, PX?QY’V) < T(nvfya PXaQY) (518)

where the functions T, T and T are respectively defined in [2.19), (5.15) and (5.17).

Proof: The proof of Lemma [27] is presented in Appendix [J} |
Lower and upper bounds on the DT bound are obtained from Lemma by replacing ~ with
In (#) and @y with the channel output probability measure Py induced by the channel
input Px. To provide lower and upper bounds on the MC bound, an optimal probability

65

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2021LY SEI065/these.pdf
© [D. Anade Akpo], [2021], INSA Lyon, tous droits réservés



5. Memoryless Channels

measure Py and an optimal constant v* in (2.26) must be determined. Then, lower and
upper bounds on the MC are obtained by replacing v with v* and Px with P%. The following
corollary of Lemma [27] establishes these lower and upper bounds.

Corollary 28 Given a pair (n,7) € N x R, denote by Px € A(X) subject to that
minimizes the RHS of . Denote by v* the parameter that maximizes the RHS of
under Px. Then, for all Qy € A (X) subject to such that Py|x is absolutely continuous
with respect to Qy, the following lower and upper hold on the MC bound C(n, Py, Qy,v*, M):

Cln o', P, Qv M) < Cln, P, Qv 7, M) < Cln, 7", P, @y, M), (5.19)
where
Cln.+* P Q. M) =T(n. 7", Pt Qv) ~ L. (5.20)
O, P, Qv 7', M)=T(n, P, Qv 7) — 1o (5.21)
Oln,7*, P Qv M)=T(n, 7", P, @v) — 1, (5.22)

with the functions T, T, T defined in 2.19), (5.15) and (5.17), respectively. Furthermore, the
MC bound C(n, Py, Qy,v*, M) is approzimated by

é(nv P&)QY77*7M) = T(TlvP;(,QYa’Y*) - ryﬂ? (5’23)

which is referred as its saddlepoint approximation, with T defined in (5.16]).

5.1.2. Approximation of Random Coding Union Bound

The RCU bound in Lemma [1} is not directly expressible in term of CDFs of random variables.
The following Lemma provides a bound derived from Lemma [I] that is a function of CDFs of
random vectors.

Lemma 29 Given a pair (n,M) € N2, for all probability measures Px € /A (X™), and for all
a € R, the following holds with respect to the random transformation in (2.1)):

N (n, M) < Fop(a) + (M = 1)Fy, ((0, —a)T> 2 R(n, Px,a, M) (5.24)

where the function F;,, is the CDF of the random variable i(X;Y |Py); the function Iz, is
the CDF of the vector

0(X,.X;Y) 2 ( Z(X?Y_Z’;)(;}Z'(])JS)Y‘PY) > (5.25)

with the function © defined in ([2.17) and the tuple (X, X,Y) inducing the probability measure
Px Py|x Pg on the measurable space (X" x Y™ x X", B (X" x Y" x X™)) with Px = Px.

Proof: Starting from (2.20)), for all a € R, it holds that

A*(n, M)
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5.1. Point-to-Point Channels with Memoryless Inputs

<Epxpyix IH{Z(X;YleKa} min {L (M —1)Epg []I{Z(X;Y|Py)<i()?;Y|PY)}]}
+1axv|Py)>a) min {17 (M —1)Epg []l{z<x;y|Py><z(X;ypy)}]}] (5.26)

SEpx Py x lﬂ{Z(X;YIPY)@} + (M = Dlgxyipy)>atErg [H{Z(X;Y\Py)SZ(X';YWy)}] ]

<Epy Py x []l{f(X;YleKa}] + (M — 1)]EPXPY|XPX []l{f(X;Yle)>a}]l{Z(X;Y\Py)sz()_(;Y|Py)}]

(5.27)
~Ery v [Loxwim<ar] + (M = DEperyerg | Lioxvipy)<—al Ly o) (£ iey) <o)

(5.28)
—Fin(@) + (M = 1)F,,, ((0,-0)7) (5.29)
which completes the proof. [ |

Under the assumption in (5.2)), the random variables 7 (X;Y |Py) and 7 (X;Y|Py) in (5.28)
are sums of IID random variables. Thus, the random vector in (5.25)) is a sum of IID random
vectors. That is,

where

(5.31)

_ > A (WX, Y| Py) — i(Xy; Y| P
s, Ky 2 (TR IR )

—U(X; V3| Py)

with (Xy, X;;Y;) inducing the probability measure Px Py|x Pg on the measurable space
(X xYx X, B(X xYxX)) with Px = Pg. From this fact, the CDFs F;, and Fz,,
are the CDFs of sums of IID random vectors, which can be approximated using Theorem
and Theorem 23]

From Section note that, for all @ € Ry, F; () is approximated by T (n, o, Px, Py),
and it holds that

Il(na «, PX7QY) < Fl,n(a) < Tl(naaa'PX?QY)7 (532)
with

Ti(n,a, Px,Qy) = min (1,T (n,a, Px,Qy) + E(n,«a, Px, Qy)) (5.33)

To introduce the saddlepoint approximation to the CDF Fz, , of the random vector in (5.30)),
consider the following notation. Denote by Z2 the random vector in (5.31) and P, the

probability induced by the random vector z5. Denote by KW and K% the gradient vector

Lo L2
and Hessian matrix of the CGF Kj, of the random vector Zs.

Consider the functions 7;, : R? x Z(R?) x N — R and (z, : R?> — R such that for all 8 € R?,
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5. Memoryless Channels

for all A e %#(R?), and for all n € N,

O 0Tk (0)0
N, (0, A,n)=exp|n| K, (0) — HTKZQ (0) + # Pe)(A), and (5.34)

3/2
&, (0) =Eﬂp52[<<lg — Kg)(g))T ( L(22) (0)>—1 (~2 _ Ké”(@))) exp (8T —K7,(0)) |,
(5.35)

where the probability measure PI<9) is the probability measure induced by a Gaussian random

L2 L2

measurable space | R?, B (R?) > Denote by ug, , = (14731 H75») the mean vector of the
5.30). Let the set &, be

vector with mean vector n(Kg)(G) — K£2)(0)0> and covariance matrix nK.>) (6) on the

random vector in |

&y ={x = (z1,22) e R* : Vi e {1,2}, 2 > 11z, } - (5.36)

Using these notations, let the functions ¢z, : N x R? — R and dz, : N x R? — R be for all
(n,z) e N x R%

Nio (OU(Q), Aw, n) lf X ¢ E,j(g’n
G, @)= 2 (5.37)
1-— Z Nz, (05, B(x,i),n) otherwise,
i=1
exp (nKz,(6o(x)) — 0! (x) x) min (1, MW) ifz¢ &g,
5ey(n, )2 (5.38)
. c(k) &, (0i(x)) .
exp (nK;,(8i(x)) — 6] (x) ) min <1, —r s otherwise,
$ o o i

with the function ¢ in (4.14)), the sets A, and B(x,i) in (4.34) and (4.47), respectively, such
that: (a) for all i € {0, 1,2}, the vector 8(x) satisfies

Ti(x) if T;(x) € @%2

Oi(x) = { Ti(x) + € otherwise, (5.39)
where
T;(x) € argmin (nK;2 (t) —t" a:) , (5.40)
tc®f
with
Of ={t = (t1,t2) e R? : Ky, (t) < +o0, and Vi € {1,2}, ¢; <0}, and Vi e {1,2}, (5.41)

242:{t = (t1,t2) e R? : Kz, (t) < +o0, and Vj € {1,2},¢; < 0if j <i, t; = 0if j = i,
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5.1. Point-to-Point Channels with Memoryless Inputs

and t; =0 otherwise}; (5.42)

and € € R? is chosen such that two conditions are simultaneously met: First, ||e|| < r, with
r > 0 arbitrary small; and second, ;(x) € ©%, .

Using these notations, the saddlepoint approximation of the CDF Fz,  of the random vector
in is given by the following corollary of Theorem

Corollary 30 For all v € R?, it holds that
‘Fb,n (U) - CZQ (nv'v)‘ < 552 (n, v) ) (543)
where the functions (3, and 0z, are defined in (5.37)) and in (5.38)), respectively.

Finally, the combination of and leads to lower and upper bounds on the function
R in . To introduce these lower and upper bounds, consider the following definition.
For all (M,n) € N2, for all a € R, and for all probability measures Py, let the functions
R(n, Px,a, M), R(n,PX,oz, M), and R(n, Px,a, M) be defined by

R(n, Px,a, M)2T, (n,a, Px, Py) + (M — 1) max {o, G, (n (0, —a)T) 5, (n (0, —a)T>} ,

R(”a PXa «, M)éTI (na «, PX7 PY) + (M - 1>CZ'2 <na (07 _a>T) ) and

5.4
5.4
R(n, Px,«, M)éfl (n,a, Px,Py) + (M — 1) min {1, i, (n, (0, —a)T> + 0z, <n, (0, —a)T)} )
5.4

Using these definitions, given a couple (n, M) € N2, for all probability measures Px subject
to (5.2), and for all a € R, the term R(n, Px,«, M) is approximated by R(n, Px,a, M) and
satisfies

R(n, Px,a, M) < R(n, Px,a, M) < R(n, Px,a, M). (5.47)

5.1.3. Numerical Analysis

The normal and the saddlepoint approximations to the DT and MC bounds as well as their
corresponding upper and lower bounds presented in Section are studied in the cases of
the BSC, the AWGN channel, and the SaS channel. The latter is defined by the random
transformation in subject to (2.28)) and for all (z,y) e X x V:

Py x(ylz) = Pz(y — ), (5.48)
where Py is a probability distribution satisfying for all t € R,
Ep, [exp (it2)] = exp (—|ot]) (5.49)

with i = /=1. The reals a € (0,2] and o € Ry in are parameters of the SaS channel.

In the following figures, Figures the channel inputs are discrete X = {—1, 1}, and Px
is the uniform distribution. For the results relative to the MC bound, @)y is chosen to be equal
to the distribution Py, i.e., the marginal of Px Py x. The parameter 7* is chosen to maximize
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5. Memoryless Channels

the function C(n,2"%, Px, Py,~*) in (5.21)). The plots in Figures i a illustrate the
function T in as well as the bounds in . Figures -b 111ustrate the function
C in and the bounds in . The normal approximations, i.e, N (n onkt PX,Py)
in (2.39) and N, (n, QHR,Px,Py,’y*) in -, to the DT and MC bounds, respectively,
are plotted in black diamonds. The upper bounds, i.e., N (n, 2”R,PX,Py) in and
N (n, onlt Py Py, ’y*) in , are plotted in blue squares. The lower bounds of the DT and
MC bounds, i.e., N (n, M, Px, Py) in and N, (n,2”R,PX,Py,7*) in (2.42), are non-
positive in these cases, and thus do not appear in the ﬁgures The saddlepoint approximations
to the DT and MC bounds, i.e., T (n onkt PX,Py) in and C (n ¥ ,PX,Py,Q”R) in
, respectively, are plotted in black stars The upper bounds i.e. T( onft Py Py)
in 1_' and C (n v*, Px, Py, Q”R) in , are plotted in blue upward—pomtmg triangles.
The lower bounds, i.e., T (n,2 ,PX,Py) in and C (n,fy*,PX,Py, Q"R) in , are
plotted in red downward-pointing triangles.

Figure[5.1]illustrates the case of a BSC with cross-over probability 6 = 0.11. The information
rates are chosen to be R = 0.32 and R = 0.42 bits per channel use in Figure[5.1h,b, respectively.
The functions T" and C' can be calculated exactly and thus they are plotted in magenta
asterisks in Figure [5.1h,b, respectively. In these figures, it can be observed that the saddlepoint
approximations to the DT and MC bounds, i.e., T and C’, respectively, overlap with the
functions T" and C. These observations are in line with those reported in [14]. Therein, the
saddlepoint approximations to the RCU bound and the MC bound are both shown to be
precise approximations. Alternatively, the normal approximations to the DT and MC bounds,
i.e., N and Nc, do not overlap with 7" and C' respectively.

In Figure it can be observed that the new bounds on the DT and MC provided in
and -, respectively, are tighter than those of the normal approximation. Indeed, the
upper- -bounds N and N, on the DT and MC bounds derived from the normal approximations
N and N,, are several order of magnitude above T and C, respectively. This observation
remains valid for AWGN channels in Figure [5.2] and SaS channels in Figure respectively.
Note that, in Flgure , for n. > 1000, the normal approximation N is below the lower bound
T showing that approx1mat1ng T by N is too optimistic. These results show that the use of
the Berry—Esseen Theorem to approximate the DT and MC bounds may lead to erroneous
conclusions due to the uncontrolled error made on the approximation.

Figures [5.2] and [5.3] illustrate the cases of a real-valued AWGN channel and a SaS channel,
respectively. The signal-to-noise ratio (SNR) is SNR = 1 for the AWGN channel. The
information rate is R = 0.425 bits per channel use for the AWGN channel and R = 0.38 bits per
channel use for the SaS channel with (a, o) = (1.4,0.6). In both cases, the functions 7" in
and C in can not be computed explicitly and hence does not appear in Figures
and In addition, the lower bounds N (n, M, Px, Py') and N, (n, onft Py Py, ’y*) obtained
from the normal approximation are non-positive in these cases, and thus, do not appear on
these figures.

In Figure , note that the saddlepoint approximations, T and C’, are well bounded by
(5.18)) and (5.19) for a large range of blocklengths. Alternatively, the lower bounds N and N,
based on the normal approximation do not even exist in that case.

In Figure note that the upper bounds 7 and C on the DT and MC respectively
are relatively tight compared to those in AWGN channel case. This characteristic is of a
particular importance in a channel such as SaS channel, where the DT and MC bounds remain
computable only by Monte Carlo simulations.
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5.1. Point-to-Point Channels with Memoryless Inputs
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-A-Upper bound (saddlepoint) T(n, 2" % Py, Py) 10 ™ F|-A-Upper bound (saddlepoint) C(n,~*, Px, Py,2" %) B
4 ~#e Saddlepoint approximation T'(n, 2", Py, Py) - Saddlepoint approximation C’(n, 4%, Px, Py, 2" )
107" Fl—%DT Bound T'(n,2"%, Px, Py) 1 —#-MC Bound C(n, 2", P; *
, 2" Px, , 2", Px, Py, v")
—-Normal approximation N(n,2"%, Px, Py) -~ Normal approximation N(.(n, 2R Py, Py,v*)
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Figure 5.1.: Normal and saddlepoint approximations to the functions 7' (Figure ) in (2.19)
and C (Figure p.1p) in as functions of the blocklength n for the case of a
BSC with cross-over probability § = 0.11. The information rate is R = 0.32 and
R = 0.42 bits per channel use for Figure [5.Ih,b, respectively. The channel input
distribution Px is chosen to be the uniform distribution, the output distribution
Py is the induced channel output distribution, and the parameter v* is chosen to

maximize C in (5.21)).
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5. Memoryless Channels

1092
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=7-Lower bound (saddlepoint) T(n,2"R Px, Py) =7-Lower bound (saddlepoint) C(n,~*, Px, Py, 2"1)
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n n
(a) DT Bound (b) MC Bound

Figure 5.2.: Normal and saddlepoint approximations to the functions 7' (Figure ) in (2.19)
and C (Figure [5.2p) in as functions of the blocklength n for the case of a
real-valued AWGN channel with discrete channel inputs, X = {—1, 1}, signal to
noise ratio SNR = 1, and information rate R = 0.425 bits per channel use. The
channel input distribution Px is chosen to be the uniform distribution, the output
distribution Py is the induced channel output distribution, and the parameter ~*

is chosen to maximize C' in (5.21)).
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5.2. Multiple Access Channels With Memoryless Inputs
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Figure 5.3.: Normal and saddlepoint approximation to the functions 7' (Figure ) in
and C (Figure[5.3p) in as functions of the blocklength n for the case of a real-
valued symmetric a-stable noise channel with discrete channel inputs X = {—1,1},
shape parameter a = 1.4, dispersion parameter ¢ = 0.6, and information rate
R = 0.38 bits per channel use. The channel input distribution Px is chosen to
be the uniform distribution, the output distribution Py is the induced channel
output distribution, and the parameter v* is chosen to maximize C' in (5.21)).

5.2. Multiple Access Channels With Memoryless Inputs

Given probability measures Px,, Px,, ..., Px, on the measurable space (R", Z(R")) for
multiple access channels with K transmitters, probability measures Pyx,, Px,, ..., Px, on
the measurable space (R, Z(R)) are assumed to exist such that for all boxes B in (5.1]), for all
ke{1,2,...,K}, it holds that

PXk(B)zﬁ Py, (By). (5.50)
t=1

In other words, the inputs to the channel at each transmitter are independent and identically
distributed.

For memoryless multiple access channels, the memoryless assumption on the channel input
results in the random variable 7 (X ;Y| Pyx, S) in (2.75)) being a sum of IID random variables.
That is, for all input probability measures Px,, Px,, ..., Px, satisfying (5.50)),

[(X;Y|Pyx,S) = ) i(X;YilPyx,S), (5.51)
t=1
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5. Memoryless Channels

such that for all t € {1,2,...,n},

dPx P
(X4 Y| Pyx,S) =M <XY|X

(Xt,Yt)> , (5.52)

where Py|x is the marginal of Py x, with Py x; = Py|x for § = J; X s is a sub-random
vector of X = (X1, Xo, ..., Xkg)T; and X is the t-th row of the random matrix X. For all
te{l1,2,...,n}, the random variables i( X¢; Y| Py|x, S) are IID.

Under the assumption in (5.50)), the DT bounds (Lemma [§| and Lemma becomes a function
of CDFs of sums of IID random vectors. Their approximations result from the approximations
to these CDFs of sums of IID random vectors.

In contrast to the DT bounds, the RCU bounds (Lemma [7| and Lemma are not functions
of CDFs of random vectors. However, as it will be shown in Section [5.2.2] starting from the
RCU bounds (Lemma [7|, Lemma (11| ), bounds that are functions of CDFs of random variables
are derived.

5.2.1. Approximations of the Dependence Testing Bounds

The DT bounds in Lemma |8 and Lemma [12] are compactly represented by a single function.
More specifically, for all K € N, for all M € NX n e N, for all ¥ < . (K), with .7 (K)
in (2.72), and for all probability measures Px, let the function T'(n, M, Px, %) be defined by

T(n, M, Px,%)=Epypy 5 | maxl

Sev {Z(X;Y“DYX,S)Sln(H (Ms - 1))} +

seS¢

Se@ \seS¢

My —1)| Epypy iy |1 o
Z (H( )> e {Z(X;YPYX7S)>IH(H(MS - 1)>} |

SESC

Then, the DT bounds in Lemma |8 and Lemma (12| are identical to T'(n, M, Px, %) in (5.53))
with ¢ = Y(K) and ¢ = Z(k, K), respectively. The value of ¥ = .(K) stands for the
SDEP, whereas the value of € = Z(k, K) stands for the IDEP.

Note that the function 7" in (5.53)) is a function of CDFs of random vectors. The following
lemma states this fact.

Lemma 31 For all (K,n) € N2, for all M € NX | for all ¢ < .7 (K), with .7 (K) in ([2.72),
and for all probability measures Px, it holds that

T(n,M, Px, ©)21 — Fr g k0 (7()) + Z (H (M, — 1)> Fiisisn (YUS))), (5.54)

Se?% \seS¢
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5.2. Multiple Access Channels With Memoryless Inputs

where for all < .7 (K)

10 (TTpese (Me — 1)

~(B) & —In HSE‘S?(MS_D , (5.55)

—In (HseS;(Ms - 1))
with
{S1,82,...,8¢} = B, (5.56)
and for all Ae /(K), the notation F; g A, denotes the CDF of the random vector

—I(X;Y|Pyx,S)
I (X;Y|Pyx,Ss)

1>

I (X;Y|Pyx,R) ; (5.57)

-1 (X;Y|Pyx,S)

such that the couple (X,Y) induces the probability measure Px Py x ,, with Py\x , = Py for
A=.

Proof: From (j5.53)), it holds that

T(n,M,Px,€)=1-Epypyx | [ [1

_l’_
Set {Z(X;YPYX,S)>IH<H (M, — 1))}

SESC

Se¥ \seS¢

My —1)| Epypy iy |1 5.58
Z(H( >> PxPyix, {_Z<X;Y|pyx,s><_1n<H<Ms_1>)}( )

seSC

=1 —Epyryx H]l

_l’_
Se€ {—Z(X;Y|PYX,3)<—1H<H (Ms — 1))}

seSC

2 (H (Ms — 1)) Fisy.sm (Y{S})) (5.59)
Se€ \seS¢

=1 — Fyop (] (V(6)) + (H (M — 1)) Frgsysn (V(SH) (5.60)

Se€ \seS¢

which completes the proof. Note that with a little abuse of notation, the strict inequality is
used in the definition of the CDF. [ |

Note that by assumption in (5.50)), for all S € .#(K), the random variable 7 (X Y|Py x, S)
is a sum of IID random variables. Thus, the random vector in (5.57)) is a sum of IID random
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5. Memoryless Channels

vectors. That is,

[(X;Y|Pyx,6) = Y i(Xy;Yi|Pyx, %), (5.61)
t=1

where

Z(X; Y\Pyx,Sl)
I(X;Y|Pyrx,S2)

E(X;Y|Prx, %)= ; (5.62)

(XY |Pyx,Sp)
such that the sets S1, So, ..., § satisfy (5.56]).

Hence, for all ¢ < .(K), and for all S < ./(K), with .(K) in (2.72), the CDF F; ¢ s, is
the CDF of a sum of IID random vectors. This observation allows to apply Theorem [23] for
approximating the function 7" in (5.53)).

To introduce the saddlepoint approximation to the function 7" in (5.53)), consider the following
notation. Denote by Ty s the random vector £ (X Y|Py x, %”) in ((5.62) with (X,Y") inducing
the probability measure Px Py |x . Denote by P, s the probability induced by the random

s and ngs the gradient vector and Hessian matrix of the CGF

vector Iy s. Denote by Kgg)
of the random vector Ig,s-

Kig s
Consider the functions 7z, 5 : Rf x Z(RY) x N - R and Gip.s R? — R such that for all
6 € RY, for all Ae Z(R’), and for all n € N,

77[<g,5 (07 A7 n)
W 0Tk (0)8
=exp|n| Kz, 5(0) — 0Kz (6) + — P (A), and (5.63)
gf%,s (9)
3/2
T ~1
:EPZ%S [((’}5,5 - Kbgg),.s (0)> (Ké?;s (9)> (ch,s - Kl('clg),s (0))> exp (GTZ%”,S_KZ%,S @) |

(5.64)

where the probability measure PI(g) is the probability measure induced by a Gaussian random

vector with mean vector ”(Kz((?s (9) _KZ((Zg)s (0)0) and covariance matrix nk Z(i)s (0) on the

measurable space | R¢, B (Re) . Denote by p; == (ug%yl,ug%yz, . ,ugw) the mean vector
of the random vector in (5.57). Let the set &, , be

Ergn = {a) = (x1,22,...,2) eR :Vie {1,2,...,0}, z; > ,u;%’i}. (5.65)

Using these notations, let the functions (7, 5 : N x R! - R and ¢ : N x R - R be such

le,s
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5.2. Multiple Access Channels With Memoryless Inputs

that for all (n,z) e N x RY,

Nie.s(00(x), Az, 1) ifeé¢ &,
A
Crg,s (M, @)= ¢ (5.66)
1- Z N s(0i, B(x,i),n) otherwise,

i=1

exp (1 5 (60(2) — 6] (@) ) min (1, O @) oy,
O o (n, )= , (5.67)

c(k) &y s (Bi())
exp (1 5(63(2) - 6] (@) ) min (1, 55 ) ottervise,

with the function ¢ in (4.14]); the sets A, and B(x, i) respectively defined in (4.34) and (4.47));
such that for all i € {0,1,2,...,/¢}, the vector 8;(x) satisfies

‘ B Ti(x) if T;(x )e(—)i(gs
Oi(w) = { 7i(x) + € otherwise, (5.68)

where

7;(x) € arg min (nK“g S(t) —t" :U) ; (5.69)

te®L
.S

€ € R¥ is chosen such that two conditions are simultaneously met: First, ||e|| < r, with r > 0

arbitrary small; and second, 6;(x) € ® .55 and
e, = {t — (t1,te, . ) € RY: Ky () < 40, and Vi€ {1,2,..., 0}, t; < 0}; (5.70)

and for all i € {1,2,...,¢},

61%3 { (tl,tQ,...,tg)ERg KZ%S()<+OO, andee{l,Q,...,E},tj<Oifj<z',

tj=0if j=4d, andt; =0 otherwise}. (5.71)

Using these notations, the following corollary of Theorem [23| gives the saddlepoint approxima-
tion to the CDF F; ¢ s, of the random vector in ((5.57)).

Corollary 32 For all v € R, it holds that
’FZ,‘f,S,n (U) - C&g’g (n, ’U)’ < 55%,5 (n) ’U) ’ (5 72)
where the functions (z, s and dz, s are defined in (5.66) and in (5.67), respectively.

From Corollary 32} an approximation, lower and upper bounds are derived for the function
T in . For doing so, consider the following definitions. For all K € N, for all M e NX|
neN, for all ¥ < ¥ (K), with (K) in , and for all probablhty measures Px, let the
functions T'(n, M, Px, %), T(n, M, Px, %) T (n, M, Px,%) and T'(n, M, Px, %) be defined

7
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5. Memoryless Channels

by

I(n, M, Px, €) Smax (0,1 = G 1 (0,7(6)) = b iy (. 7(6))) +
Z(fﬂMk49Hm%OQasm7%$» 516 (1S
Se@ \seS¢

(5.73)
T(n, M, Px,%) 2 min (1, 1= G i) (0, (%)) + G2 (1 (n,’y(%))) +

2(HML—Qmmoﬁ@gmwwm+&@gmwwm)wm>

Se@ \seS¢

immmﬂnﬁaéym( — Gogsypir (0 YUASD) + G5,y (m ¥({SD) ) +
(HM@—@mmO&wAm%wm+%mAmﬂwmf (5.75)
seS¢

Se% \seS¢

T(n,M, Px,€) 21 - Cig i) (M, 7(€)) + Z(H(Ms_1)> Cisys (M 7({S})) - (5.76)

with ~ in .

Then, the function T in is referred as the saddlepoint approximation to the function T°
in (5.53) and given a tuple (n, M) € N'*X for all k € {1,2,..., K}, and for all probability
measures Px, € A (Xk), it holds that

I(TL, M, P&,%) ST(TL,M,P&,CK)

T(n, M, Px,%) and (5.77)
T(n, M, Px,€¢)< T,

c(n, M, Px,%). (5.78)

NN

5.2.2. Approximation of Random Coding Union Bound

The RCU bounds in Lemma [7] and Lemma [11] are not directly expressible in term of CDFs
of random variables. The following Lemma provides bounds derived from Lemma [7| and
Lemma [11] that are functions of CDFs of random vectors.

Lemma 33 Given a pair (n,M) € NET1_ for all Px € A(XP x X} x ... x XR), for all
ke{1,2,...,K}, for all « € R, with { = |.7(K)|, and for all oy, € Rek, wzth U, = |2 (k,K)|,
the following holds with respect to the random transformation in :

A*(n, M)<R(n, Px, o, M, 7 (K)), (5.79)
)\Z(n,M)éR(n,PX,ak,M,e@(k,K)), (580)

such that for all € < L (K), and for all B € R™, with m = |€|

R(n7 Pivﬂva%) é 1- FZ,%,S,n (IB) + Z(H (MS - 1)>Fi,8,n ((07 _53)T> ’ (581)

SeC\seS¢

where the CDF' F; ¢ s, is defined according to Lemma ' the function F; s, is the CDF of
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5.2. Multiple Access Channels With Memoryless Inputs

the random vector

(XX Y.5) 2 < i (X;Y|Pyx,S) —i(X;Y|Pyx,S) >

—I(X;Y|Pyx,S) (5:82)

with Xg = Xg, (X, X,Y) inducing the probability measure PXPYlXPXSc on the measurable
space (X" x Y x X" B (X" x YT x X)), PXSC = PXsc and X" = X x X3 x ... x X
and for all S € €, Bs are the coordinates of the vector f3.

Proof: The proof is made for A*(n, M) and the proof for Aj(n, M) follows the similar
steps. From (2.77), for all @ = (as,, as,, - .., as,) € RY, with £ = |.#(K)|, it holds that

A*(n, M)

<prPyx[ 1= H H{Z(X;Y\Pyé,8)>a5}
SeS(K)

min|1, Z H (Ms - 1)>EPXSC[]I{Z(X;YPyx73)>Z(X§Y|PYX7S)}] ]

Se.s (K)\seS¢

Se.

min|1, Z

+EPXPYX[ H 1{Z(K;Y|Py£,3)>as}
Z(K)

(M

Se.7(K)\seS

s 1)>EPXSC[]1{Z(X;YPYX,$)>£(X;Y|PYX,S)}] } (5.83)

1_prPyx[ H ]1 (X;Y|Pyx,S)<— as}]+EPXPYX[ H ]1 i(X;Y|Pyx,S)<—as}
syK)

Ses( K)
Z ( H (M; — 19Epfsc[]l{Z(X;Y|PYX,5)—Z(X(3);YPYX73)<0]] (5.84)
Se.7(K)\seS¢
1- Fz,y(K),s,n () + Z <H (M — 1)> EPgPnggsc []1{—5(X;Y|PYX,5)<—as}
Se.(K)\seS¢ -
]l{Z(X;YPYX,S)—Z(X;YPYX,S)<0] (5.85)
=1-F; yxysn (@) + ) (H (M — 1)>Fi,8,n ((0, —Oés)T> : (5.86)
SeS(K)\seS¢
=R(n, Px,a, M, 7 (K)), (5.87)

which concludes the proof on A*(n, M). Similar steps induce to
Ai(n, M) < R(n, Px, oy, M, Z(k, K)). (5.88)

|
The random vector in (5.82)), as a consequence of the assumption in (5.50)), is a sum of IID

79

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2021LY SEI065/these.pdf
© [D. Anade Akpo], [2021], INSA Lyon, tous droits réservés



5. Memoryless Channels

random vectors. That is,

(X, X;Y,8) = > (X, X3V, S), (5.89)
t=1

where

E(Xtht;ifh‘S)
§< (XY Pyx,S) — (X Yi|Prx,S) )
—Z(Xt;Y|Pyx,S) ’
(5.90)

such that the random 7sub-vector X t.s, Xt of respectively X, and X, satisfy X ts =Xis
and the tuple (X,Y, X;) induces the probability measure Px Py x PXSC, with PXSC = Pxg.
This observation allows to exploit Theorem 23| to approximate the CDF Fj s ,,.

To introduce the saddlepoint approximation to the CDF F; s, of the random vector in ([5.89)),

consider the following notation. Denote by Zs the random vector in (5.90) and P;g the

probability induced by the random vector Zs. Denote by KZ(;) and KZ(? the gradient vector

and Hessian matrix of the CGF Kjg of the random vector s, respectively.

Consider the functions 7z : R? x Z(R?) x N — R and (;; : R? — R such that for all 8 € R?
for all A € #(R?), and for all n € N,

O 0"k ()6
Nis (0, A, n)=exp|n|K;;(0) — OTKZS (6) + L% Pe)(A), and (5.91)

3/2
s (0) —EPES[<(ZS — KL%) (0)>T <K§§)(9)) -1 (,‘;5 — Kl%)(e))) exp (gTz’S —K;;(0)) |,
(5.92)

where the probability measure P ) is the probability measure induced by a Gaussian random

vector with mean vector n(KL%)(B) — Ké?(ﬂ)B) and covariance matrix an) (0) on the

measurable space (R? B (RQ) > Denote by p;, = (ug&l,m‘m) the mean vector of the
5.89)

random vector in (§ . Let the set &, be

& = {m = (21,22) e R? : Vi€ {1,2}, m; > g, } - (5.93)

Using these notations, let the functions (;5 : N x R? - R and ;5 : N x R? — R be such that
for all (n,x) € N x R?,

Nis(0o(x), Az, n) if x ¢ &y,

>

Gis(n, @) 2 (5.94)
1- Z Nis (0, B(x,i),n) otherwise,

=1
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5.2. Multiple Access Channels With Memoryless Inputs

exp (nKzg(Oo(x)) — 0! (x) x) min (1, MW) if e ¢ &,

>

2 (5.95)
Z exp <nK;S(0¢(as)) — 0/ (x) ac) min (1, W) otherwise,

i=1

dzs(n, x)

where for all 7 € {0,1,2} the vector 8;(x) satisfies

) _ Tl(:li) 1fTZ(az)e®§~S
0i() = { Ti(x) + € otherwise, (5.96)

where

7;(x) € arg min (nK;S (t) —t" x) (5.97)
te®:
ts

and € € R? is chosen such that two conditions are simultaneously met: First, ||e|| < r, with
7 > 0 arbitrary small; and second, 8;(x) € ©;_; and with

@?S:{t = (t1,t2) e R? : Kz, < +00, and Vi e {1,2},¢; <0}, and Vi e {1,2} (5.98)
@z;sz{tz (t1,1) e R : K, < +oo, and Vi e {1,2},¢; <0 if j <1,

t;>0if j=i, and t; =0 otherwise}; (5.99)

the function c is respectively defined in (4.14)); the sets A, and B(x, ) are respectively defined
in (£3) and (L17).

Then, the saddlepoint approximation to the CDF Fj; = of the random vector in (5.89)) is given
by the following corollary of Theorem

Corollary 34 For all v € R2, it holds that
|F1757n (’U) - 4175 (n’v)| < 6!75 (TL,’U) ) (5100)
where the functions (zs and 6z are defined in (5.94)) and in (5.95)), respectively.

Finally, the approximation, lower and upper bounds for the function R in are obtained
from Corollary [32] and Corollary To do so, consider the following definitions.

For all K € N, for all M € NX| for all n € N, for all ¥ < .#(K), and for all B € R™,
with m = |¥|, and for all probability measures Px, let the functions R(n, Px,8, M, %),

A

R(n,Px,B8,M,¥¢), R(n,Px,8,M,%), and Rc(n,PX,B,M,%) be defined by

E(n7 P£7/67M7%) =Imax (O) 1 - C&g’s (TZ,,B) - 55%’3 (n7ﬁ)) +

Z(H (o, - 1>) s (0,6 (10, ~88)7) — 6 (10, ~55)7))

Seb\seS¢
(5.101)
R(H,Pé, 167 Maig) =1- Cl'cg,s (n7 IB> + Z(H (MS - 1)) CZ'S (nv (07 _BS)T) 5 (5102)
Set\seS¢
R(n,PX, B, M ,%¢) =min (1, 1= Crps (n,B) + Ot (n, B)) +
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5. Memoryless Channels

3 T 00 ) i (1. (0. 07) 6 (. 0.-557))

Set'\seS¢
(5.103)
Re(n, Px, 8, M, €)=Y min (1,1 = G, 5 (0, Bs) + Gz 5 (0, Bs) ) +
Se¥
(H (M, - 1>> win (1,6 (. (0,-85)7) + by (m. 0, 6517 )
SESC
(5.104)
Using these definitions, it holds that
R(n,Px,B,M,%) <R(n, Px,B3, M,¢)< R(n, Px, 3, M, ) (5.105)
R(n, Px,B,M,%)< R.(n, Px,3, M,%). (5.106)

The function R is referred as the saddlepoint approximation to the function R in (5.81]).

5.2.3. Numerical Analysis

This section firstly compared the saddlepoint approximations to the DT bounds and the RCU
bounds as well as their corresponding upper and lower bounds presented from Section to
the normal approximation in the case the memoryless Gaussian MACs. Secondly, the best
bound is used to study the achievable region of two transmitters memoryless Gaussian MAC
under A-SDEP, average and maximum IDEP.

In the following figures, Figures the channel inputs at transmitter k, with k €
{1,2,..., K}, are discrete X = {—Ay, A}, with A; € R and Px, is the uniform distribution.
For the results relative to the RCU bounds, for all collection ¥ < . (K), the parameter
B = (Bs,:Bsys---,Bs,) is chosen such that for all S € {S1,Sa,...,S5} =€,

Bs = —In <H (M, — 1)) +1n(n). (5.107)

seS¢

Bound Comparison

The plots in Figures and illustrate the functions 7" in (5.53)) and R in (5.81]) as well as

the bounds in (5.77) (5.78]), (5.105) and (5.106)), with € = . (K). The choice of € = .7 (K),
with .(K) in (2.72), is equivalent lo study of the bounds on the SDEP \*(n, M) in (2.62)).

The normal approximation, i.e, G in to the DT bound is plotted in (-®-)). The
upper and lowers bound on the normal approximation provided by Berry-Theorem Theorem
are respectively greater than one and negative. For this reason, they are not plotted. The
saddlepoint approximations to the DT and RCU bounds, i.e., 7" in @ and R in @ ,
respectively, are plotted in ED and . The upper bounds, i.e., T in @, T, in @ ,
R in (5.105)), and R. in (5.106), are respectively plotted in (27), (&), (-&), and (~e).
The lower bounds, i.e., T in (]5__7—7[) and R in , are non-positive in these cases, and thus
do not appear in the figures.

Figures and respectively illustrate the case of Gaussian MAC with two transmitters
identical power levels and information rates on one hand, and asymmetric power levels and
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5.2. Multiple Access Channels With Memoryless Inputs

information rates. For both Figure and Figure the approximation R to the RCU bound
R in is the lowest. The upper R on the RCU bound R in is also the lowest upper
bound on the SDEP. The missing of lower bounds to not allow to conclude on the validity of the
normal approximation as in the case of the point to point channels. However, it is important
to note that upper bounds obtained from the upper bound on the saddlepoint approximation
error are close to the approximation and exhibit the same behaviour as illustrate by a constant
gap for the DT bound on both figures and RCU bound starting from n = 300. Such behaviour
enhance the confidence in the saddlepoint approximation. Additionally, the upper bounds
can be used alone as firms bounds on SDEP, which removes the confusion brought by the
approximation. For instance, in Figure for n > 320, the upper bound R, allows to state
that the normal approximation GG is achievable but for n < 320, nothing can be said about
the achievability of the normal approximation G.

T T T T T T T T T T T T T ]
100 |- .
1071 E
1072 F & A s
N AN A ]
i - TN 7
|-m-T(n, M, Px,?) in (5.70) \-\ ~a ]
~—T(n, M, Px,%) in (5.70) '\.\ g |
1073 o +TC(H,M,P£, Cf) in (5.75)) '\' .
- |+ R(n, B, M, Px, %) in (5.102) \-\ ]
| |-~ R(n,8,M,Px,%) in (5.103) e 1
~#- R.(n,8,M, Px,%) in (5.104) |
04| —©-G(n, M, Px,%) 1
b | | I | I | I | I | I | I | I | I | I | I | I | I -

0 50 100 150 200 250 300 350 400 450 500 550 600

n

Figure 5.4.: Normal and saddlepoint approximation to the functions 7" in and R in
as functions of the blocklength n for the case of two transmitter Gaussian MAC
with discrete channel inputs X; = X» = {—1,1}, noise variance 02 = 1, and
information rates Ry = Ro = 0.32 bits per channel use.
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5. Memoryless Channels

F T T T T T T T T T T T T T |
100 - A —B-T(n, M, Px,%) in (5.70) 1
E ~—A — E
i Ny ~&—T(n, M, Px,%) in (5.70) |
0! i \A —4—T,.(n, M, Px,%) in (5.79) 1
NAN —4R(n,8,M,Px,%) in 5102 | |
» E A S —e—R(n, B, M, Px,€) in (5.103) | |
1072 ¢ RN ~#-R.(n,B,M,Px,%) in (5.104) | |
i - G(n,M, Px, %) ]
1073 E E
1074 ¢ E
107° E
1070 ¢ E
1077 ¢ E
107% ¢ E
C | | ! | ! | ! | ! | ! | ! | ! | ! | ! | ! | ! | [—
0 50 100 150 200 250 300 350 400 450 500 550 600
n
Figure 5.5.: Normal and saddlepoint approximation to the functions 7" in (5.53)) and R in ((5.81))

as functions of the blocklength n for the case of a two transmitter Gaussian MAC
with discrete channel inputs &} = {—1,1}, &> = {—+/1.5,4/1.5}, noise variance
2 = 1, and information rates R; = 0.3 and Ry = 0.35 bits per channel use.

Archievable Region

The plots in figures illustrate the achievable regions (red curves) and their approxi-
mations (blue curves) based on the upper bound R, in (5.104)) and the approximation R of

the RCU bound for two transmitters Gaussian MAC. leferent achievable regions and their
approximations are plotted based on the SDEP \*(n, M) in , i.e., the curves in

and (-£); the maximum and average IDEPs A} (n, M) in , i.e., the curves in (-4
and (HEH for the maximum; and and - for the average. Flgure E 6| focuses on

two transmitters Gaussian MAC With symmetric power levels, whereas Figure [5.7] targets
asymmetric power levels.

The average IDEP and A-IDEP achievable regions have the shape that is different than the
maximum [DEP achievable region. Such a similar shape implies a possible equivalence between
the average IDEP and A-IDEP. The almost square shape of the achievable region induced by
the maximum IDEP seems to demonstrate that the two transmitters do not interfere with each
other as was observed in the work of [7]. This observation is missed by the A-SDEP achievable
region. It is also interesting to observe that for the special case of the symmetric information
rates and power levels, an equivalence can be find between the maximum and average IDEPs
as captured by the overlapping point in Figure As expected, for identical constraint on
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5.2. Multiple Access Channels With Memoryless Inputs

this tree considerations of the DEP, the maximum IDEP achievable region is included in the
A-SDEP achievable region, which is itself included in the average IDEP achievable region.

0.25 -

0.2 |

0.15 -

Ry

0.1

—— SDEP: R(n, 8, M, Px, & (K)) in

5-1072 F | o spep: Re(n, B, M, Px, #(K)) in

—l— Max of IDEP: R(n, B, M, Px, 2(k,K)) in
—A— Max of IDEP: R¢(n,8, M, 171, P (k, K)) in
0l —O— Average of IDEP: R(n, 8, M, Px, 2(k, K)) in
—O— Average of IDEP: R¢(n, 8, M, Px, 2(k, K)) in

C |

| | |
0 5.10"2 0.1 0.15 0.2 0.25 0.3
Ry
Figure 5.6.: Achievable regions and their approximations for the case of a two transmitters

Gaussian MAC with discrete channel inputs X7 = X> = {—1, 1}, noise variance
0% = 1, blocklength n = 50, and DEP € = 1072,
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0.45 -
0.4
0.35 -
0.3+
0.25 |-
N
= L
0.2
0.15 -
—5— SDEP: R(n, 8, M, Px, & (K)) in
0.1 & spee. Re(n, B, M, Px, #(K)) in
I | Max of IDEP: R(n, B8, M, Px, &(k, K)) in
5. 10_2 | | —&— Max of IDEP: Rc(n, 8, M, Px, 2 (k, K)) in
—O— Average of IDEP: R(n, 8, M, Px , 2(k, K)) in
| | —~©— Average of IDEP: Rc(n, 8, M, Px, 2 (k, K)) in
0L I I I I I I I I
0 4.10"2 8.102 0.12 0.14 0.16 0.18 0.2
Ry

Figure 5.7.: Achievable regions and their approximations for the case of a two transmitters
Gaussian MAC with discrete channel inputs X = {—1,1}, X = {—1/2,/2}, noise
variance o2 = 1, blocklength n = 50 and DEP € = 1073,

5.3. Conclusion

In this chapter, the saddepoint approximations to the DEP bounds of Chapter [2] have been
derived. For the point to point channel, the bounds induced by the saddepoint approximation
have shown the limitation of the normal approximation, especial for small values of the
DEP. These bounds are very close to the approximation with the advantage of being firm
bounds. For the MAC, the saddlepoint approximation of the RCU bound and related upper
bound are observed to outperform others. Unlike the normal approximation, the upper bound
induced by the saddlepoint approximation is close to the approximation, which boots the
confidence on the approximation. Thank to the firm upper bound induced by the RCU bound
approximation, achievable regions for two transmitters Gaussian MAC have been studied
based on different DEPs. It is has been observed that the consideration of the IDEP seems to
show the no-interference nature between the two transmitters, which was completely eluded
by the sole consideration of the A-SDEP.
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Conclusion

In this thesis, the problem of the characterization of the fundamental limits of communication
at low values of DEP and finite blocklength has been tackled. The fundamental bounds are of
particular importance for emerging URLLC systems. Chapter [2| has discussed the evaluation
difficulty of such fundamental bounds on DEPs for point to point channels and MAC, which
leads information theorists to consider the second order achievabilities. The strong foundation
of the second order achievabilities on the normal approximation of CDFs of sums of IID
random vectors makes them irrelevant to the study of small values of the DEP and the small
blocklengths.

In this thesis, by observing that the evaluation of the CDFs contained in the bounds on the
DEP constitutes the main bottleneck, new methods (Chapter [3| and Chapter {4)) to approach
these CDFs are proposed, under the stationary and memoryless assumptions where the involved
random variables are sums of IID random variables. The method, which is referred as the
exponentially tilted Gaussian approximation, relies on a changed of measure that introduced a
parametrized random vector, which is also a sum of independent random vectors, followed by
its Gaussian approximation. The resulting family of approximations, which contain saddlepoint
and Gaussian approximations, when properly optimized has shown to overcome the limitation
of the normal approximation. Thank to these results, easy computable bounds on DEPs
have been provided in Chapter 6} For point to point, such new bounds have pointed out the
limitation of the normal approximation for small values of the DEP. The analyse of achievable
regions of MAC under different types of the DEP has shown the interest of the notion of the
IDEP. Indeed, the almost rectangular shape of the maximum IDEP achievable region seems
to infer the non-interference nature between transmitters as observed in [7]. This observation
was completely missing by the sole consideration of the SDEP.

Despite the importance of this thesis contribution, the concentration on the approximation
of CDFs of sums of independent random variables or vectors limits the focus to the memoryless
channels with also the memoryless assumption on the input. Dropping the independence
assumption in Theorem [15| and Lemma [25] must be useful to the study of any channel DEP
bounds. The principal challenge is to overcome the CGF of arbitrary sums that is no more
factorizable and may lead to a computation bottleneck.

The negative lower bound for the CDFs of random vectors does not allow to study converse
bounds for MACs as in the case of the point to point channels. However, the close gap between
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6. Conclusion

the upper bound and the approximation encourages to investigate the approximation error
upper bounds in Theorem (15| and Lemma The factor two in Theorem [15] that is obtained
by the triangular inequality in the proof of Lemma can be improved to one by finding
an alternative to the triangular inequality. If such an improvement is made, the study of
converse bound for the point to point channel can be extended to arbitrary small values of the
blocklength. Theorem (17| can be enhanced by improving the factor ¢(k) in the Berry-Esseen
Theorem or finding an alternative to the final step involving the Berry-Esseen Theorem. The
choice of parameters 6 in Theorem [15| and 6 in Lemma which respectively leads to main
results Theorem [I7] and Theorem [23] can be optimized by minimizing the upper bound instead
of the exponential factor as carried out in this thesis due the difficulty reason.

The almost rectangle shape of the the maximum IDEP achievable region must be investigated
by studying the converse region. If the almost rectangle shape still holds, the NOMA can
replace OMA protocols with almost no-interference, which is a considerable change in nowadays
resource allocation.
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Proof of Lemma 3

Assume that an (n, M)-code %, s defined by the system in (2.4) is used for the transmission.
Given an observation y, the receiver successively performs the following tests starting form
it=1uptoi=M, withieW:

i(u(i), y) > (1), (A1)

where the function 7 is defined in and v : W — R. Then, the receiver chooses the lowest
message index ¢ satisfying the condition in , if it exists, as being the transmitted message
index, or declares an error if no message index satisfies .

Note that the decoding scheme based on is a particular instance of the threshold decoding
defined in ([2.16)).

Considering the transmission of message index i, two events lead to a decoding error: (a)
message index ¢ does not satisfies the condition in ; (b) there exists a message index j,
with j < i, that satisfies the condition . The DEP associated to message index i, denoted
by €;, is given by:

€6i=EPy x_u) [max {]1{Z(u<z‘),Y><v(i)}’ jello i1y L) )=} }] (A.2a)
<Epyix—ui | L@ y)<y)y + Z Lizu(g),y)=~()y | - (A.2b)
jef1,2,....i—1}

Note that the right hand side term in follows from ¢; being the probability of union of
events that can be written in the form of the expectation of the maximum of their indicator
functions. The upper bound in results from the observation that the sum of positive
elements (in this case indicator functions) is greater than their maximum. Then, the average
DEP A(%,,m) associated to this (n, M)-code €, ar is given by:

=

1

N(Guar)=57 D¢ (A.3a)

-
I
—
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A. Proof of Lemma @

M
Z Prix—u | iwm<y@y + 2y Lw)v)s6) (A.3b)

je{1,2,....i—1}

1 M
=17 2\ Brvixcue Miworisol+ 20 Bryxw Dewmysonl | (A30)
=1

jef1,2,...i—1}
1 M
=27 2B Lol 2 Brvixug i yisyap] |- (A-3d)
i=1 jeli+1,i+2,...,M}

The right hand side term in follows from the expectation being a linear operator. By
regrouping the terms containing 7(w(i),Y) for all i € {1,2,..., M} in , the right term
in is obtained. Taking the expectation of the bound in with respect to an input
probability measure Px induced by random coding and using the definition of \*(n, M) in

(2.9), the following holds:

A¥( M)<1§
n, ST

( Ln Ery x_o [Li@,y)<y(}] Px(d)+
=1

J n f VErvixs, L@y)=o)] Px(dwl)Px(dw)> (A.4a)

jefi+1i+2,.. .M

M
:MZ prpy|x [11{5(X,Y)<w(i)}]+ 2 f Epy []l{i(ny)M(i)}]PX(dw) (A.4b)
i=1 jefi+1,i+2,.. . MW"

M
(EPXPYX [Lpxw<an] + 2 Erery [Lpxy)=-oy) > (Adc)
1 je{i+1,i+2,...,M}

S

<.
Il

(EPXPYX [Lax yvy<an] + (M = DEpypy [Liax vy~ ) (A.4d)

I
SIS
M=

1
Finally, choosing (i) = In (M — i) in (A.4d)) and using the definition of the function 7" in

(2.19)) leads to

~
I

M
A (n, M) < Z T (n, Px,Py,M — i), (A.5)

1=1

<L
M
which concludes the proof.
Note that EPXPy\X []l{Z(X,Y)s'y(i)}] + (M - i)EpoY []I{Z(X,Y)>'y(i)}]> in ’ can be
written in the form:

Epxpyix [Lax vy ] + (M = DEpxpy [Lxy)>40)]

' 1 M —q
=(M—i+1) (MEPXPY|X [Lx yy<rn] + M i1 PxPy (L) >~

D>\_/
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where by choosing (i) = In (M — 1),

1 M —i
<M — 1 Ercrvix [Lexn <] + g1 Erxry [ﬂ{z<x,Y)>w(i)}]> . (A7)

which is the minimum Bayesian error probability of a binary hypothesis test with: (a) the
null hypothesis having the probability M]Vf 1 and inducing the probability measure Px Py
and (b) the alternative hypothesis having the probability M%H-l and inducing the probability

measure Px Py |x. Thus, the choice of (i) = In (MQ_ 1) that leads to the bound in Lemma
can be improved with (i) = In (M — i) instead.
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Proof of Theorem (15

The proof of Theorem [15| relies on the notion of exponentially tilted distributions. The proof
is based on three steps

e Writing the probability Px, (LA) with respect to exponentially tilted measure of Px, in

B3).

e Approximating the exponentially tilted measure of Px, by a Gaussian distribution in

B3).

e The distance between Px, (\A) and the approximation is bounded by using the Kolmogorov—
Smirnov distance ((B.G)) in (B.7) as detailed in Appendix [K] The Kolmogorov—Smirnov
distance is in turn bounded Berry-Esseen Theorem.
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B. Proof of Theorem

Let ¢y be the moment generating function of the distribution Py-. Given 0 € Oy, let }/1(0), YQ(Q)
,56) be random variables whose joint probability distribution, denoted by Py(e)y(a) OR
Oy 9 Ly

satisfies for all (y1,y2,...,yn) € R™,

dPY1<9>Y2<9>“_Y759)( ) exp (92?:1 yj)
Privyy, I T oy (0)"

(B.1)

That is, the distribution P YOy y© is an exponentially tilted distribution with respect to
Py,y,..y,. Using this notatlon Tor all A C R and for all 8 € Oy,

Py, (A)=Epy, [11x,ca] (B.2a)
=Epy v, v, []1{2?:1 yjeA}] (B.2b)
dPyviv,...y, 0) () 6)
—— (Y77, Yy, YL B.2
PYl(e)Yz(e)mYée) dP (Q)Y(G) ¥ ( 1 2 ) {Zj:l Yj(e)eA} ( C)

B oy y©

dPyiv;..v, j=1Y;

dP. 0)y.(0) + (0 -1
YOy @yl 0 9
(1 2 (Yf’,)@“,...,}g@)) s vi0ea) B.2d)

n 0 -1
exp (037, V")
]Ep 1 n (6) (BZe)
YOy _y® (py (0))" { LY, eA}

j=1

_ n ' (0)
—((py(@)) EPYI(Q)YQG)_“YT(L") [eXp <_9]Z:1Yj )1{ ", Y.(e)e.A}] (B.Qf)

J

For the ease of the notation, consider the random variable

Sno =2 V", (B.3)
j=1

whose probability distribution is denoted by Ps, ,. Hence, plugging (B.3) in (B.2f]) yields,

Py, (A)=(pv(0)" Ers, [exp (-0Suo)l g o] (5.4)

The proof continues by upper bounding the following absolute difference

Py, (A) = (v () Er,, [exp (~0Z00)1 (]|

(B.5)

where Z, ¢ is a Gaussian random variable with the same mean and variance as S, 9, and
probability distribution denoted by Pz, ,. The relevance of the absolute difference in is
that it is equal to the error of calculating Px, (.A) under the assumption that the resulting
random variable 5, follows a Gaussian distribution. The following lemma provides an upper
bound on the absolute difference in in terms of the Kolmogorov—Smirnov distance
between the distributions Psn’g and Py ,, denoted by

n,0?

A (PSn,mPZn,e) = su]g ’anﬁe (z) — Fz, ., (:U)| , (B.6)
xe
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where Fg, , and Fz, , are the CDFs of the random variables S, 9 and Z,, g, respectively.

Lemma 35 Given 0 € Oy and a € R, consider the following conditions:
(i) <0 and A= (—x,a], and
(5) 6>0 and A= (a,0).

If at least one of the above conditions is satisfied, then the absolute difference in (B.5|)
satisfies

(e (0))"

Py, (A) = (v (0)" Ep,, [exp (~0Z00)1 (5 o ay]| < no(6a)

min {1,2A(Ps, ,, Pz, ,) {B.7)
Proof: The proof of Lemma [35] is presented in Appendix [K] [
The proof continues by providing an upper bound on A (Pgn’g, PZW) in leveraging
the observation that S, ¢ is the sum of n independent and identically distributed random
variables. This follows immediately from the assumptions of Theorem [I5] nonetheless, for the
sake of completeness, the following lemma provides a proof of this statement.

Lemma 36 For all f € Oy, Yl(e), 2(9), cen Yn(e) are mutually independent and identically dis-
tributed random variables with probability distribution Py ). Moreover, Py (o) is an exponential
tilted distribution with respect to Py. That is, Py ) satisfies for all y € R,

dPy ) exp (fy)
- ) B.8
dPy (@) ey (0) (B5)
Proof: The proof of Lemma [36] is presented in Appendix [ ]

Lemma, [36| paves the way for obtaining an upper bound on A (Psnﬂ7 PZW) in (B.7) via the
Berry—Esseen Theorem (Theorem . Let pg, Vp, and Ty be the mean, the variance, and the
third absolute central moment of the random variable Y(®), whose probability distribution is

Py ) in (B.8]). More specifically:

Y exp (6Y)
_ 01 = P
0= [V 0] = B |~ (B.9)
2
_ ©) N1 _ (Y — pg)” exp (0Y)
VB [~ o)) = B, | TSR g (B.10)
Y — g|* exp (0Y)
Ty=E YO ] = Ep, | B.11
o Py(e)[| lu‘9| ] Py QOY(H) ( )
Let also & be
T
§o =1 <30/2 + CQ) ; (B.12)
Vo
with ¢; and ¢y defined in (3.24)).
From Theorem it follows that A (Psn’g, PZn,e) in (B.7) satisfies:
. €o §o
A(Psnﬂ’PZn,H) < min {1, % < % (B13)
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B. Proof of Theorem

Plugging (B.13) in (B.7)) yields

}PXn(A) 7(901/(0))” EPZn,e [exp (7927179)]1 {Znﬁ € -A}]’ < M { go

oxp (00 1 2} ., (B.14)

\/7
under the assumption that at least one of the conditions of Lemma [35] is met.

The proof ends by obtaining a closed-form expression of the term Ep, 9[ exp (—0Z,9)

1z, ,ea; | in (B.14) under the assumption that at least one of the conditions of Lemma [35] is
met. First, assuming that condition (7) in Lemma [35] holds, it follows that:

EPZn,e [exp (—QZn’g) ]I{Zn,QEA}]

¢ 1 (z — npp)®
= —0z) —— ——)d B.15
foo exp (—6z) NeEnT exp < Vs z ( a)
@ 1 22 —2znup + n’ul +2n0 Vp 2
_ _ d B.15b
J_Oc V2mnVy P ( 2nVy i ( )
a 1 (z — nug +nbVy)? — n292V92 + 2nug nOVy
= — - d B.15
f_o@ V2mnVy P < 2nVy : ( )
1 1 (2 — nug + nbVy)?
= —0 —nVyt® — — dz  (B.15d
exp< niy + 5"Ve ) » Wexp( 5V z )
1 a— nu9+n9V9 1 t2
= exp ( Onpg + anHQ) " exp ( > dt (B.15e)
2 —o 27r 2
1 oV
=exp | —Onpug + =nVeh?* | Q — Mo F 1OV (B.15f)
2 VnVy
Second, assuming that condition (i) in Lemma E 5| holds, it follows that:
1 (2 — npp)°
Epznﬁ [exp (—0Z,) ]]'{Zn,OEA}]:L exp (—6z) W exp <_2nV9 dz (B.16a)
1 ) 0 t2
=exp <—0nu9 + §nV99 > L S \ﬁ exp ( 5 )(Rt16b)
NG
1 0V
=exp <—01w9 + 2nV992> Q < n\/j%n 0) , (B.16¢)

where @ in (B.15f) and (B.16c) is the complementary CDF of the standard Gaussian distribu-
tion defined in (3.14)).

The expressions in (B.15f) and (B.16¢) can be jointly written as follows:

1 a —npg + ndVg
Ep,,, [exp (—0Z,) ]l{Zn,geA}] = exp (—Hn,ue + 2nV902> Q <(—1)1{9<0} 5‘;7‘/9 d B.17)

under the assumption that at least one of the conditions (7) or (i7) in Lemma [35| holds.

Finally, under the same assumption, plugging (B.17) in (B.14)) yields

a+n0V9—n,u9> ‘

Px, (A) —exp (nln (py(0)) — nbug + ;n92Vg> Q ((—1)1{6@} NOT
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< exp (nln (py (0)) — 6a) min {1, 2\/%9} . (B.18)

Under condition (i) in Lemma (35 the inequality in (B.18]) can be written as follows:

Fx, (a) —exp <nln (py(0)) —nbug + ;n92V9> -Q ((—1)1{9@} NOT

< exp (nln (py (0)) — 6a) min {1, 2\/%9} . (B.19)

Alternatively, under condition (i7) in Lemma |35} it follows from (B.18|) that

a+n9V9n,ug>‘

1— Fx,(a) —exp (nln (py(0)) — nbug + ;n92V9> -Q ((—l)ﬂ{eso} at nj‘% nug) ‘
28

< exp (nln (py(0)) — fa) min {1, \/ﬁ} , (B.20)

Then, jointly writing (B.19) and (B.20)), it follows that, for all a € R and for all 6 € Oy,

’Fxn(a)—]l o0 —()te=9exp Qun (gpy(@))—nﬁug—i—;TLHQ%)Q((—U]I{KM a+nfvy — ”“9)

VnVy
< exp (nln (py (0)) — 6a) min {1, 2\/%9} ) (B.21)
which can also be written as
Fx,(a) — 1y (6, a,n)| < exp (nKy (6) — 0 a) min {1, 2&/\/5(0)} . (B.22)

This completes the proof.
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Proof of Lemma (16

ET g:R? x N — R be for all (#,a,n) € R? x N,
L g(0,a,n) = nKy(0) — 6a = nln (¢y (0)) — O a. (C.1)

First, note that for all § € ©y and for all n € N, the function ¢ is a concave function of a.
Hence, from the definition of the function A in (3.35]), h is concave.

Second, note that 0 € ©y given that ¢y (0) = 1 < co. Hence, from (3.35)), it holds that, for
all a € R,

h(a) < nKy(0) = nln (py(0)) = nln (1) = 0. (C.2a)

This shows that the function & in (3.35) is not positive.
Third, the next step of the proof consists of proving the equality in (3.37). For doing so,
let 0¥ : R x N — R be for all (a,n) e R x N,

0*(a,n) = arginf g(0,a,n). (C.3)
Ge@y

Note that the function ¢ is a convex in . This follows by verifying that its second derivative
with respect to 6 is positive. That is,

{900 0m) = o (6) = o, and (C42)
(519229(9,61,”):(%/?9))2 (w(ﬁ);;w(m — (C?GW(G))Q) (C.4b)
- (@iwy<e> - (@Yl@jgw(e)f) (C4e)
- (@;WCLEP foxp(@¥)] - (L [exp<9Y>])2> (C.4d)
(B - (e )
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C. Proof of Lemma

_ Y2exp(6Y) ] Yexp(6Y) 1\

- (EPY |:]EPY [eXP(QY)]} <EPY {EPY [exp(HY)]}> ) (C.4f)

—n Y2ep(0Y) | _,p [ Yem(®Y) | M)’

- (EPY [Epy[eXp(eY)]] ey |5 [exp(HY)]] K 0) + (570)) )
(v - £0)” exp(oy)

=nEp, Ep, [exp(6Y)] > 0. (C.4g)

Hence, if the first derivative of g with respect to 0 (see (C.4a))) admits a zero in Oy, then
0*(a,n) is the unique solution in € to the following equality:

%g(@, a, n):gpyn(e) %gpy(@) —a=0. (C.5)

Equation (C.5) in € can be rewritten as follows:

SR Y o
ZW;QEPY [exp(6Y)] (C.6b)
ZWEPY [Y exp(6Y)] (C.6c)

Y exp(6Y)
&5 Tt (oD
kM) (C.6e)

From ((C.6d)), it follows that  is the mean of a random variable that follows an exponentially
tilted distribution with respect to Py. Thus, there exists a solution in 6 for (C.6d]) if and only
if * € intCy—hence the equality in (3.37).

Finally, from (C.6d)), a = nEp, [Y] implies that 6*(a,n) = 0. Hence, h(nEp,[Y]) = 0
from (3.37). This completes the proof for h(nEp, [Y]) = 0.
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Proof of Theorem

FROM Lemma it holds that given (a,n) € R x N such that % € intCy,
1) px
nK}(,)(H ) = a. (D.1)

Then, plugging (D.1)) in the expression of ny (6%, a,n), with function ny defined in (3.29)),
the following holds:

ny (6%, a,n)

8" P0) 1y (6°)-0°0) Q-1 20)

* (2) *\
:]1{9*>0}+(_1)1{9*>0} exp (; a+nb* Ky’ (0%) q
)

\
\/nK}(/Q)(Q*
1 * * * * < * *
=1 geogy+(—1) 10700 exp <2n(e 2K (0)+nky (6%)—6 69 Q((—N{e <o g*/nK P (0 )> (D.2b)
— N ggeng+(—1)10*>0) exp (;n(e*)zK}(,Q)(Q)+nKY(9*)—9*69 QQ@*| nK§3)<9*)) (D.2c)
= Fx, (a), (D.2d)

where equality in (D.2d)) follows (3.13). Finally, plugging (D.2d) in (3.30) yields

‘FXn (a) — Fx, (a)‘ < exp (nKy (6*) — 6*a) min {1, 251”\/%9)} (D.3)

This completes the proof by observing that ¢ € intCy is equivalent to a € intCx,, .

n
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Proof of Lemma

First, the proof of Lemma [20]is given under more general conditions where the random vectors
Y, Ys, ..., Y, in are independent and not necessarily identically distributed. That is,
for i € {1,2,...,k}, the random Y; induces the probability measures Py, on the measurable
space (R¥, (R¥)) and the corresponding CGF is denoted by Ky,. Then, the second part of
proof concentrated on the identically distributed random vectors by relying on the results of
first part of the proof.
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E. Proof of Lemma

E.1. Independent Random vectors

The proof relies on the notion of exponentially tilted measures. Given 6 € Oy vy, vy, , with
Ov.vs.v, = {t eRF:Vie{1,2,...,k}, Ky,(t) < +oo}, (E.1)

let Yge), Yée), . Y(G) be independent random vectors that respectively induce the probability
measures P Y@ P Y@ o P y© on the measurable space (R*, %(R¥)), such that for all

je{l,2,... n} andfor allyeRk

dPY(e)

iRy ) = e (67y - Kv,(0)). (E2)

That is, for all j € {1,2,...,n}, the probability measure PY(."’ is an exponentially tilted

measure with respect to Py . Denote by PY(B)Y(B) v(® and P}ily%yn the joint probability
1 Y2 ot

measures respectively induced by the independent random vectors Ygg), Ygg), ey Y%H) and

Y, Y5, ..., Y, on the measurable space (R"“",% (R’“")). Then, for all j € {1,2,...,n}
and for all y; € R it holds that

dP, 6):(6) + (6 n dPy
Y Ov® v Y

) 5 Y )T ; E.3

—exp (Z (eT y; — KY].(H))) . (E.4)
j=1

Using this notation, for all A < RF and for all @ € Oy,v,..v,, with Oy |y, vy, defined in

E.D),
Px, (A)=Epy, [1x,e4] (E.5a)
=Epry. v, v, []l{zg;lyje,at}] (E.5b)

dPy,y,. vy 0) () 0
_E 1. 1Yz ¥ (Y YO Lyl >> E.5¢
Pygo)yée)_'_ygbe) [ {Z].ZIYE_Q)G_A} dP Oy 30 1 2 n ( )

dPp, YOy® y© —1
= Yy - Yao (3-(0) 3(6) )
EPygs)ng,,y;m 11{2?_1y§e>eA}< dPYlYg...Yn (Yl JYs /Y )) (E.5d)

_ N v®
“Er o0 o []1{2;_1Y;9>6A xp (Z ( Y; ))] (E.5e)

=exp (JZJI Kyj (0)) EPY?)YQO),.,YS)) [1{2?1 Yée) .A exp < g )] E 5f)
=exp <Z:1 Ky, (9)) Epsﬁf’) [exp (—OT 57(10)>]l{5519>e,4}} , (E.5g)
‘]:
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E.1. Independent Random vectors

the random vector 57(19) is defined in (4.77) under the condition that for all j € {1,2,..., k},
Y;B) satisfies (E.2). This proves the observation made in (4.76)). The proof continues by upper
bounding the following absolute difference

: (E.6)

Px,,(A) — exp (i Ky, (0)> EP, ) [exp (-o7 Z%O))]l{zspm}}

j=1
where the random vector ng)) is defined in (4.26)).

Plugging (E.5g) in (E.6) yields

Px, (A) —exp (i Kyj(0)> ]EPZS,) [exp <_9TZ7(10))]1{Z;9)GA}]’

j=1
=exp (Z:l Ky, (0)> Epsgf) [eXp<_0TS£ze)>ﬂ{Sﬁf)eA}] —EPZ;G)[eXp<—9TZ$L9)>]1{Z;Q)EA}]‘. (E.7)
=

The following lines focuses on obtaining explicit expressions for the terms

Epsgf) {exp <*0T ngo)>]l{s$f>eA}] , and (E.8)
EPZ;Q) [exp (_gT zga))]l (20 ,4}} : (E.9)

in .

E.1.1. Explicit Expression of (E.8)
From (E.8)), the following holds

EPS%Q) [eXp (—HT S’("‘e)>]1{5519)€¢4}] = J]Rk exp (—BT w)ﬂ{meA}dPS;o) (CC) .
(E.10)

The next step consists in writing the function exp (—OT :n) in the right hand-side of (E.10]) as
a Lebesgue integral. For doing so, consider the set I = {1,2,...,k} and let the set-valued
functions Z© : Oy,v,..y, — 2’C, Z:Oy,v,.vy, — 2’C, and ZT : Oy,y,. .y, — 2K be

respectively defined such that for all w = (uy,ug,...,ux) € Oy,y,. v,
I (u)={ie{1,2,...,k}:u; <0}, (E.11)
Z(u) ={ie{1,2,...,k} : u; = 0}, and (E.12)
It (u) ={ie{1,2,...,k}:u; > 0}. (E.13)

Then, for all & = (1, x2,...,7;) € R¥, the following holds

exp (—GT :13)
=exp (—01x1 — O220 — ... — Opxy) (E.14)
= exp(—0121) exp(—baz2) . . . exp(—Oizk) (E.15)
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E. Proof of Lemma

= H exp (—0; ;) H exp —0; x;) H eXp —0sxs) (E.16)
i€Z~(0) JEZ(0 seZt (0
= H —0 exp (—0; t;)dt; H H 9 exp (—0sts)dts (E.17)
ieZ— (0 jez(y0 seT+ () Ts
= H f 0; exp (—0;t;)dt; || ] J ati|[ T1 9 exp (—0st,)dts|. (E.18)
(€L~ jeZ( 0) seT+ () Fs

To ease the notation, for all v € R and for all a € R, let the set B, , be:

[0,1] ifu=0
(—o0,a] fu<0 (E.19)
[a,0) ifu>0.

Then, using the notation in (E.19), the equality in (E.18)) can be written as follow

exp(—OTw>
N Hf eexp (—oitodt)| ] || ] 0 exp (—0sts)dts

(€L~ JEZ(0 89 T seZ+ (0 Bos,ws
(E.20)

—nFel 7 el 11 gf

f f exp (—eT t) dty, ... dt2dty, (E.21)
1€Z-(0) SEZT(0) Boy u1 Y Bog g B

0,z

where the equality in (E.21)) follows from the linearity of the integration operator. To ease the
notation, consider the set defined as

BG,:E = 391,:1:1 X BGg,xQ X ... X BHk,xka (E22)

where for all i € {1,2, ..., k}, the set By, ,, is defined in (E.19)). Then, plugging (E.22)) in (E.18))
yields

exp (—OT :13)

)T @TT e || TT o J exp (faT t) duy, (¢) (E.23)
i€Z—(0) s€Z+(0) Bo,2

— (—=1)F @ 0; 1_[ 05 J  xp (—HT t) 1{t68972}dyk (t), (E.24)
€T (0) seZ+(0) R

where v, is the Lebesgue measure on the measurable space (R¥, Z(R¥)).

Then, plugging (E.24) in (E.10) yields
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E.1. Independent Random vectors

EPSS,) [exp <_9T 57(1(9))]1 (50 A}}

:ka(_l)I(e) H 91 H 95 f keXp <—9Tt) ]l{tEBg,m}de (t) ﬂ{mEA}dPS%‘” ($) (E.25)

icZ—(0) seZ+(0) R

:(—1)|1—7 (0)] H 0; H 0 f kf kexp (—OTt> ]l{teBgyw}]l{ﬂfe-A}dyk (t) dpsgle) (x) (E.26)
icZ—(0) seZ+(0) R*JR

—u= @ 7 o) 17 9sf

kazexp (—HTt> ]l{tEBg,m}]l{:EEA}dyk : PSS)) (t, CC) y (E.27)
i€Z—(0) sEZT(0)

where the Lebesgue integral in (E.27) is with respect to the product measure vy, - Psﬁf’) on the

measurable space (R¥*2, 2(R**?)). Note that the integral in (E.27) is absolutely integrable.
Thus, using Fubini’s Theorem [48], the right hand-side of (E.27) can be written as follows

EPS(B) {exp (—OT SgLO))]].{Sg)EA}]

n

_ - (6 . T
_(_1)| @l H 0; H 0 JkaRk exp <—0 t> ]l{teBgym}]l{l‘GA}dPSs)) (:13) dvg (t) .

i€Z~(0) sEZT(0)
(E.28)
From (E.22), the indicator 1 (teBo.0) in (E.28) can be written as follows
Liienoy = | L Bieony || ] Bemon || 1] Tizen (E.29)
JEZ(6) i€7-(6) seZ+(0)
To ease the notation, let the set
[3_’9715 = 891,t1 X [3_’927752 X ... X ng,tlw (E30)
where, for all i € {1,2,...,k}, the set l?gm is defined by:
B R if 0, =0
891‘7151' = (—OO,tZ‘] ifg; >0 (E.?)l)
[ti, OO) if 91 < 0.
Then, plugging (E.30) in (E.29) yields
]l{tEBG,q:} - H ]]'{tje[o’l]} ]l{iliegg’t}' (E32)
JEZ(8)
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E. Proof of Lemma

Hence, plugging (E.32) in (E.28) yields

Epsgf) [exp (—QT S;H))H{SS?)GA}}

(\
—(—1)F" @) H 0; H 05 exp (—OTt) H Lt ef0,1)
€L~ seZ+(0) JRFJRE JEZ(0)
L oeB ) LzeydPgo ( ) dvy, (¢) (E.33)
r\
=(—1)%" @) 1_[ 0, 1—[ 0, exp <79T t) 1—[ Lt efo.])
i€L— S€I+ JRFE ]eI
Leiy ) LzeaydPge (@) dvy (2) (E.34)
Rk
=(-n)F @ TT e[ [T o 6XP< ) [T Lite0m Pgo) (A N Bp,e)duy(t)
i€Z—(0) seZt(0) RF JEZ(0)

(E.35)

Note that the support of the integrand in (E.35) is a proper set of R*. Hence, the objective of
the following lines is to characterize a proper subset of R¥, denoted by D(A, ), that contains
the support of the integrand in (E.35)). The integrand is different from zero if P (AN Bgy)
and [ | jeT(0) Lit,e(0,1)) are simultaneously strictly positive. On the first hand, given a vector &t

= (t1, to, ..., ) € R* the product HjeZ(G) Lt,eq0,17) s strictly positive if and only if for all
i€ {1,2,...,k}, it holds that

t;e[0,1] if6; =0
On the other hand, given ¢t = (t1, ta, ..., tx) € R¥, a necessary condition for P 5(0) (A N Bg t)

to be strictly positive is that the set A N By ¢ is not empty. Now a necessary condltlon for the
non-emptiness of A N By + is that the set Bo + contains at least one element e = (eq, e2,. .., €x)
such that for all i € {1,2,...,k},

inf b; <e < sup b, (E.37)
(b1,b2,...,b)EA (b1,ba,...,.bg)eA

which imposes some conditions the given vector t. More specifically, from the definition of the

set By in (E-30), the vector t = (t1,ta,...,t) must satisfy for all i € {1,2,...,k},
t; > inf b; if6;>0
(b1,b2,...,b )€ A
t; < sup b; if6; <O0.
(b1,b2,...,b;)eA

(E.38)
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E.1. Independent Random vectors

Hence, from (E.36]) and (E.38)) the set D(A, 8) can be defined as follows
D(A, 9)6{@1,152, oo tk) € R¥ : Vie {1,2, RN k}, t; € [O, 1] if 0; =0,
t; = inf b if 0; >0, and t; < sup b; if 6; <0 . (E.39)
(b1,b2,....br)EA (b1,b2,...,b )EA

Then, the equality in (E.35) can be written as follows
—_9T S0
EPSSLG) {exp( 0’ S, )]l{sﬁf”eA}]

T T

1€l seZT (0

E.1.2. Explicit Expression of (E.9)

Following similar steps as in Subsection the following holds with the random vector Z %9):
T (0
EPZ;(;) {exp (_0 Z7(7, )> ]l{z,(f)eA}]

—(—1)T" @) H 0; H 0, JD(Ae)exp( 9T> 20 (AN Bgy)dug (t). (E.41)

1€Z~(0) seZt ()

E.1.3. Upper Bound on (E.7)

The proof ends by plugging (E.40) and (E.41)) in the right hand-side of (E.7). This yields,
Px, (.A) — exp (Z ) EPZn,e {exp <_0Z7(10)>]I{Z,<19>€A}:|‘
‘]:
:exp@z@ ) vr el T7 o) 1 o)
=1

icZ-(0) ) \sez+(6) | IP(A0)

exp <—0Tt) Ps(e) (.A N 897,5) dvg(t)

_(_1)|Ii(0)| 9 05 f exp —BTt () _A ) Bgt dI/k( ) (E42)
zege seg D(A,0) < > Z, ( )
=exp (}ZKyj(9)> H 0; H 0,
j=1 i€Z~(0) seZ+(0)
T = _
JD(A,O) exp (—0 t) (PS,(f) (A 8 B'a,t) - PZEZG) (.A N Bg7t)) duvg (t) | (E.43)

The set l’)—’g?t nA in (E.43)) is convex Borel measurable, given that A is convex Borel measurable
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E. Proof of Lemma

from the assumptions of the lemma. From (|4.30)), it holds that
’ (9) .A N By t) Zﬁf’) (A N Be,t)’ <A <P ©), P (9)> . (E.44)

Sn Zn
Then, plugging (E.44) in (E.43) yields

Px,,(A) — exp (i}(yj(e)) Ep, {eXp (_gT Zﬁf’))ﬂ (20 A}H
< exp (i Kyj(0)> [] ¢ [T o fD(Ae)‘exp( 0Tt )‘A( ), PZ@) vi(dt)

i€Z—(0) seZt(0)
(E.45)

n
= exp (Z Ky,;(0) | A <P55Le) , PZSLG)) H —0; 1_[ 0 fD(A e)exp(*e-rt) vi(dt) .

i€Z—(0) seZT(0)
(E.46)

The expression SD(A g) €XD (—OT t) dvy (¢) in (E.46) using the notation in (E.19) and (E.22)
can be written in the form

L)(A’O) exp <—0T t) dug (t)

a;(A,0)
f exp (—92 ti) dti
—0

H J exp —0Osts) dts (E.47)

) seZt ()

oy e (—0; a; (A, 0)) ] e (=05 as (A, 0)) (E.48)
icZ- () 0i €T+ (6) b

_ exp (07 a (A,0)) (E.49)

(Hief* 0) _Hi) (Hsez+ ) 95)

where the vector a(A,0) = (a1(A,0),a2(A,0),...,a,(A,0)) is defined in (4.31)). Hence,

plugging in yields
Px, (A) —exp (Z Ky, (0)) Ep,,, [exp (ng Z%O)) { e )EA}H

J=1

< exp (i Ky,(0) — 0" a (4, 9)) (P Py (E.50)

Jj=1

which provides an upper bound.

The last part of the proof consists in proving the equality between the RHS of (4.26]) and
the RHS of (4.26]). For doing so, the expectation term in (E.50)) is expanded in the following

subsection.
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E.1. Independent Random vectors

E.1.4. Expansion of the Expectation Term in (E.50)

Denote by p PONS R* and v 70 € R*¥*k the mean vector and the covariance matrix of the

random vector Z\? in (4.26)), respectively. More specifically,

K5 :EPZ(e) [ng))] (E.51a)
=Ep, [Sg))] (E.51b)
=N B, [Yg.")] (E.51c)
=1

-NEp, [Yj exp <0T Y, - Kyj(e))] (E.51d)
j=1

:i ng?(e)’ (E.51e)
=1
’ (E.51f)

where for all j € {1,2,...,n}, K§,1]) is the gradient vector of the CGF Ky of the random
vector Y ;; and

i n n T
QZ;G):EPZ@ (ng) - Z K$3(9)> <Z$Le) - Z K@.(t‘))) (E.52a)
" j=1 j=1
[ n n T
:EP5<9> (‘517(16) - Z Kﬁ?(@)) <S£Le) - Z ng) (6’)> (E.52b)
"L j=1 j=1
N o 0 1 T
S | (70 - 60 (v - Kw)] (©.520)
j=1
- T
=2, Ery, [(Yﬂ - Kk)0) (Y, - K)0)) exp (07Y, - Ky, (9))} (E.52d)
j=1

Il
D=
=

<.

(E.52e)

RN
I
—_

where Kg]) is the Hessian matrix of the CGF Ky,. Note that the equality (E.52d) is a
consequence of the random vector 57(10) in (4.77) being a sum of independent random vectors.

Denote by v the Lebesgue measure on the measurable space (R, Z(R¥)), then,

exp (i KYJ(9)> BP0 [eXp <_9TZ7("09)) ]1{255’@\}]

j=1
= exp <Z Ky, (0)>JRkeXp<—0Tz> ]l{zeA}dPng) (2) (E.53a)
j=1 |
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E. Proof of Lemma

T -1
(z—u <e>) (f) <e)) (z—u (e>>
= exp Z Ky (6 exp(- exp |— Zn Z; Zn dvg(2)
\/27r kdet v (9))

(E.53b)
T ~1
o (5380) [ (o) () o)
\/(27r)’fdet <’l_JZ(0)> A
-1
20 ( Z(e))(’ﬁz;e)> z
exp|— dvk(2z) (E.53c)
n 0'v,_00 1
= eXp((Z Ky, (0 ) 75” — HTuZ;e)
j=1 \/(27r)kdet (’l_JZw))
T \' -1 T
(z [J,Z(a)—i-( Z(9)> 9) <’EZ£LQ)> <z—uz(9)+< Z(e)) 0)
exp|— 5 dvg(2)
A
n 070,00  _
= exp Kyj 0) ] + # -0 K50 PW%B) (A) (E.53d)
j=1
n 0"k 0)0
= exp| Y | Ky, (6) ++—0TK§};(9) Py (A), (E.53¢)
j=1

where Py o) is the probability measure induced on the measurable space (RF, B(R*)) by a
Gaussian random vector W with mean vector pI (K%) (0) — K%)(O) 0) and covariance

matrix Z?:l ng)(e) The equality in (E.53€) follows by plugging (E.51€) and (E.52€) in
(E.53d)).

Finally, plugging (E.53¢)) in (E.50)) yields

n 0"k (0)6
Px, (A) —exp Z Ky, (0) + + — HTKg,IJ), (@) | |Py@(A)
j=1
< exp <Z Kyj (6) — 0" a (A, 9)) A <PS(9),PZ(9)> , (E.54)
j=1

which completes the proof for the case of independent random vectors.
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E.2. Independent and Identically Distributed Random Vectors

E.2. Independent and lIdentically Distributed Random Vectors

In this section, the approximation in (E.54)) is simplified for IID random vectors. For identically
distributed random vectors, Oy in (??) Oy,y, vy, in (E.1) satisfy

Oy = Oy,v,..y, (E.55)

and for all j € {1,2,...,n}, for all @ € Oy

Ky, (6)=Ky (). (E.56)
Ky (0)=K(8), (E.57)
K3 (0)=K)(0), (E.58)
which yields
n 0"k (0)6
eXp(Z Ky,(6) + YQJ 07K\ (6) Py (A)
j=1
T 7-(1) BTKl(/Q)(O)G
—oxp(n | Ky (8) = 07Ky (0) + == | | Pyyonor (A) (E.59)
T7-(2)
—exp(n (KY(O) _ 0Tk W () + 0KY2(0)0>>PH(n,e> (A) (F.60)
=ny (6, A,n), (E.61)

where H %9) is the Gaussian random vector in (4.26]) and the function 7y is defined in (4.26)).

Finally, plugging (E.56) and (E.61)) in (E.54]) yields
IPx, (A) = 1y (6, 4,n)| < exp (nKy (6) — 67 a(A,0)) APy, Pyo ), (E62)

which completes the proof.
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Proof of Lemma 20

From Lemma it holds that

1Px, (A) — 1y (8, A,n)| < exp (nKY(a) —0Ta(A, 9)) A (Psgf) : PZ@) . ()

z
be obtained immediately from Theorem except for the fact that the vectors Y§9)7 Yée), e
YS” in (4.22) do not have means (0,0, ...,0) and variances %diag (1,1,...,1), as required by
Theorem Denote by py-(e) € RF and Vy-(0) € RFxk respectively, the mean vector and the
covariance matrix of these random vectors, for some 6 € Oy, with Oy in (4.17). Then, the
following holds,

Hence, the objective is to provide an upper bound on A (Ps(e) , P (9)). An upper bound would

py® “Ep, ,, [Y )] (F.22)
—Ep, [Y exp <0T Y - Ky(a))] (F.2b)
—k1(0), (F.2c)

where K}(,1 )(0) is the gradient vector of the CGF Ky defined in (4.2)). Alternatively,

vy@ZEp_, [(Yw) - K(0) (Y® - K$’<0>)T] (F.2d)
—Ep, {(Y . K$)(9)) (Y - KQ’(@))T exp (oT Y - Ky(9)>] (F.2¢)
:K;?) (), (F.2f)

where Kg) (@) is the Hessian matrix of the CGF Ky defined in (4.3). Let the Cholesky
decomposition of the matrix vy, o) be

vy =Lyl (F.3)
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F. Proof of Lemma

where Ly, o) is a real lower triangular matrix. Note that the matrix vy, () is nonsingular. This
follows from the assumption that the covariance matrix Kl(f )(0) is positive definite, which

implies that the CGF Ky is strictly convex and thus, its Hessian matrix K)(,Q) is positive
definite.

Let the random vector Rﬁf’) be such that

a1
R7(16) = %LY%G) (57(10) - nNy(")) (F.4)

which induces the probability measure Pp) on the measurable space (Rk, B (Rk)) Plugging

(4.22)) in (F.4) yields:

1
o_ 1 ;1 o _
R, NG Ly(a) ; (Y] ﬂy(9)> (F.5)
I 0
=Y =l (Y = iy (F.6)
j=1
(6
=S u?, (F.7)
j=1
where
o) 1 0
U & bl (V) — by (F8)

is a random vector that induces the probability measure Py on the measurable space
(R*, 2(R¥)). Thus, the random vector R? in (F.4) is the sum of n IID random vectors

U 59), Uée) S ey U%e) such that each of them induces the probability measure P ) on the
measurable space (R, Z(R¥)), which satisfies,
1
(7] -1 7]
1
:%LY%@EPW) [(Yw) - “Y”))] (F.10)
=0, (F.11)
and

Eryo [U(H)U(G)T]:%Epy(m [l;,}m (Y(B) - 'U‘Y(")) (L;_f%re) (Y(B) - Nyw)))T] (F.12)

:%L;}B)]EPYW) [(Y(e) —yw) (YO - uy(g))T] (L;,%g))T (F.13)

1. _ T

:ﬁly}o)yy(e) (LY%Q)) (F.14)
1. . T

:ﬁly%g)LY<9)L;<9> (ly%o)> (F~15)
1

:ﬁdiag(l,l,...,l). (F.16)
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Similarly, let the random vector ngo) be such that

1
w® L - -l (Z()—nuy(e)>, (F.17)

[ ~y (6)

which induce the probability measure PW(e) on the measurable space (]Rk,,%’ (Rk)) The

mean vector and the covariance matrix of the random vector Zy, ©) are identical to those of the
random vector Sg) See for instance and (| . Then, from (F.4]) and (| -, it holds
that the mean vector and the covariance matrlx Of the random vector Wne are identical to
those of the random vector Rﬁf’).

The rest of the proof follows by noticing that for all B € A (Rk), the set S (B) defined by

A .
S (B)z{y eRF:3xeB, y= %LY%G) (x— nuY(g))} (F.18)
:{y e Rk : (\/ﬁly(g)y + ’rlp,Y(g)) € B} . (F.lg)

allows writing that

PS“’) =Ep 4®) {]l } (F.20)
=Ep (9) []1 Vnl (B)R +nuy(g)>68}] (F21)
=Ppe ({ : nlY<a>y + nqu)) € B}) (F.22)
=Ppe (S (B)) (F.23)
Similarly, from (F.17) and (F.18]), it holds that
stf) (B)=PW519) (S(B)). (F.24)

This implies that,

APy, Pyor ) =5 [Pyor (S (B) = Pyor (S (B))] (F.25a)
<§ug) PR(e) (S) — PW(e) (8)’ (F.25b)

e k T n
=A ( R(g PW%’”) s (F25C)

where the inequality in (F.25b]) is a consequence of the fact that the collection Cj of all convex
sets in %(RF) is stable under linear transformations. Then, from the multivariate Berry-Essen
Theorem (Theorem [L8), it holds that

A <PR$19) , PWSQ))

< min (l,c(k)nEp [HU |\3]) (F.26a)
= min (1,c(k) nEp [(U(G)TU(9)>3D (F.26Db)
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F. Proof of Lemma

= min <1, C(\/I%)Epy(e) _<((ly<9>)_1 (Y(H) - Hyw)))T lyw) (Y(G) - ﬂy(m))g )
= min <1, C(\/]%)Epy(o) _<(Y(9) — 'uy(e)>T ((LY(B))71>T (ly(o))il <Y(9) _ llfy(ﬂ))) ]

= min <1, C(\/]%)Epy(o) _<(Y(9) - Hy(e))T (Qy(9>)_1 (Y(e) - “Y“”)) g])
= min (1, C(\/kﬁ)EpY {((Y — ,u,Y(g))T (gy(g))*l (Y — My<9>)>3/2

where c is the function defined in (4.14)).
Finally, plugging (F.2c) and (F.2f]) in (F.26f) yields

A (PRgle) , PW%9)>

< min <1, C(\/kﬁ)EPY [((Y — K§})(9)>T(K§?)(9)) —1 (Y - K}(})(g))>3/2€xp (oTY — Ky

] [J I — |

exp <9T Y - Ky(0)>

- in (1, S @),

where the function £y is defined in (4.32). Plugging (F.27b)) in (F.25c]) yields

Finally, plugging in yields
P, () = 1y (6. A )| < exp (nFy (6) 67 a (A,0)) min (1, L)),

which completes the proof.
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(F.26¢)

)(F.QGd)

(F.26¢)

=

)

(F.27a)
(F.27b)



Proof of Lemma 21|

Note that for all € R*, it holds from ([4.40]) and from the fact that 0 € ®y, that
nKy (0(z)) — 0T (z) x < (nKY(O) —oT m) — 0. (G.1)

Moreover, for all € R* and for all 6 € clo®y,, it holds that

nKy (8) — 0" x =nlog <EPY [exp (HTY>D —0"x (G.2)
>nEp, [log (exp (BTY))] —0'x (G.3)
—nEp, [OTY] L (G.4)
=0"nEp, [Y]-0"z (G.5)
07 (nEp, [Y] - x) (G.6)
=0" (Epy, [X,] — =) (G.7)
-0 (bx, — ), (G.8)

where the inequality in (G.3)) follows from Jensen’s inequality Section 2.6]; the equality
in (G.7)) follows from (4.4); and the equality in (G.8)) follows from (4.43]).

From (G.1)) and (G.§), it holds that for all & € R¥, 8(x) in ([#.40) satisfies
6" (x) (nx, — ) <0, (G.9)

which implies that (z — px, )'6(z) > 0 and proves the inequality in (4.41)).
From (G.1)) and (G.8), it holds that for x = px ,

nKy (t(pux,)) — 7' (Bx,) px, = (nKY(O) -0 an) = 0. (G.10)
Thus, the uniqueness of T(py, ) implies from (G.10) that

r(ux,) = 0. (G.11)
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G. Proof of Lemma

Finally, note that 0 € ®y and thus, from (4.40)), it holds that

0(px,) = 7(ux,) =0, (G.12)

which concludes the proof.
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Proof of Lemma 22

For all © = (21,22, ...,2;) € RF, it holds that

k
1-Fx,(x)=1-Ex, [H H{Xn,t@t}] (H.1)
t=1
k
:]EXn [1 - H H{Xn,téwt}] (HQ)
t=1
=Ex, [max {I(x, >z :t€{1,2,...,k}}]. (H.3)

The proof continues by using a property of the max function provided by the following
lemma.

Lemma 37 For all k € N, and for all (a1, as, ..., a;) € {0,1}*, it holds that

max{ai,as,...,a;} = Z (1)1 H aj, (H.4)

Je (k) jeg

where the collection .7 (k) is defined in (77).

Proof: The proof is made by recurrence. For k = 1, the results is trivial. For k = 2, it
holds that

max{ay,as} = a1 + az — ajas. (H.5)
Assume that for all k € N and for all (ay, ag, ..., ax) € {0,1}*, it holds that
max{ai, @z, ..., a5} = Z (‘UHW H aj, (H.6)
Tes (k) jeT

where the collection . (k) is defined in (??). Let ag41 a real be such that ag.1 € {0,1}. Then,
it holds that

max{ai,az, ..., ak, ag+1} = max{agy1, max{ai,ag,...,ar}}. (H.7)
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H. Proof of Lemma

Note that max{ai,as,...,ar} € {0,1}. Then, plugging (H.5) in (H.7)) yields

max{ai, az, ..., A, g1} = Agy1 +Max{ar,az,...,a;} — apr1 max{ar, ag, ..., ag}.(H.8)
Then, plugging (H.6) in (H.8)) yields

max{al, Az, ...k, akJrl}

= Ak+1 + Z (—1)1+|‘7| H a,j — Ak+1 Z (—1)1+|‘7| H aj (HQ)
Jes (k) jeT Tes (k) jeJ

= Q41 + 2 (—1)1+|J| H 7 + Z (—1)2+|‘7|ak+1 H a; (H.IO)
Jes (k) jeJ Jes (k) jeg

—apt+ | D GOV e |+ D) 02T e (H.11)
Jes (k) jeg Jes (k) jeTJu{k+1}

Note for all k € N, using the definition in (?7?), it holds that

LEh+1)={{k+ 1} k) o{{k+1}vT : T eI(k)}. (H.12)
Then, plugging in (H.11)) yields
max{ai, az, . .., ak, Qg1 }= 2 (—1)* H @js (H.13)
Jes (k+1) jeT

which concludes the proof by recurrence.

|
Using Lemma |37|in (H.3), it follows that
1-Fx,(@)=Ex, | >, D"V ]1x,, 50 (H.14)
JeS (k) JjeJ
= Z (—1 1+\J\EX [H IL{XWNJ}] (H.15)
Jes (k) j€T
= > ()M, (Bo()), (H.16)
Jes (k)

where the set B (J) is defined in (4.47). The equality in (H.15|) follows from the linearity of
the expectation. This concludes the proof.
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Proof of Lemma 26

The proof of Lemmafollows from Lemmaby providing an upper bound on A (Ps(g) , PZ(9)>

in (4.30) leveraging on the fact that the random vector S in (4.77)) is the sum of independent
random vectors Y(10)7 Yge), e Y7(16> in (4.77).

o) € RF¥F respectively, the mean vector

and the covariance matrix of the random vector Y'; ) that induces the probability measure

Py;e) on the measurable space (R¥, 2(R¥)) described in (4.78). That is,

For all j € {1,2,...,n}, denote by Hy (o) € R* and Vo
J J
[

A
Hyg_e) :EPY(.B) [Yge)] (I'la)
J
_E [Y- 0TY — Ky (6 Lib
“Ep,, [Yexp (07Y — Ky, (0) (L1b)
—K)(0), (Lic)
(L1d)

where K}(}J)(O) is the gradient vector of the CGF Ky ; and
A 0 1 0 1 T
yyﬁm:=E;;§m {(1,5) __}c§3(9)> ()f§> __1(§3(9)> } (L1e)

—Ep, [(Yj - K) (v, - Ky (0)>T exp (07Y; - Ky, (0))] (L1f)
=K{)(0), (L1g)

where K ;23 (0) is the Hessian matrix of the CGF Ky ;. Note that by positive-definite assumption
on the covariance matrix of Py, Ky is strictly convex Theorem 7.1]. Thus, the Hessian

matrix Kl(,2 ) is positive-definite.

Denote by p 5O € RF and v 50 € RExk respectively, the mean vector and the covariance
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I. Proof of Lemma

matrix of the random vector S%e) in (4.77). That is,

Let the Cholesky decomposition of the covariance matrix v

in (4.77) be

s

- T
vgo =lgolo),

where Ly (o) is a real lower triangular matrix. Let the random vectors Ry,
that

4

R’Ele) L;;LG) (S'I(’Le) - l’l’ng)> ) and

N,
W7(7,0) = LS(IB) (ZgLO) - HS;0)> )

y of the random vector Sp,

(6)

(I.2a)

(1.2b)

(I.2¢)

(L.2d)

(0)

(1.3)

be such

(L4)

(L5)

which respectively induce the probability measures PR(e) and PW(‘” on the measurable space

(R*, % (R¥)).
For all set B € 2 (R¥), let the set S (B) be defined by
S (B)é{y eRN:3zeB y=1_ (m . “s@)}
:{y e RF: (Ls%g)y + “ng)) € B} .

Then, from and , it holds that

Py B1=Er g | 10|

=Ep 1
R {<L5<9)R%9)+us<o>>68}

:PRLLQ) ({y e RF . (Ls;e)y + “S@) € B})
=Pp (S (B)).

Similarly, from and , it holds that

Pzgle) (B)ZPW;O) (S(B)).
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Then, using (4.30))

A<P 5@ P zge>)=;gg> Py (S (B)) = Py (S (B))|, (L.13a)
<sup |[Pro) (8) = Py (S)| (L13b)

eCy, n n
:A (PRS));PWSLH)) s (113(3)

where the inequality in ([.13b) is a consequence of the collection Cy, of all convex sets in Z(R¥)
being stable under linear transformation.

Plugging (4.77)) and ( @ in . 1.4) yields:

IR 0
RO-1 g > (Y -y (114a)
j=1
— [}
=N <Y§ ) — “y@)) (1.14b)
j=1 """ !
=\ U;‘”, (I.14c)
j=1
where
9) A ,_ 7]
vl = Ll <Y§ ) _ MYE_G)> (I.14d)
induces the probability measure P U®) on the measurable space (R*, 2(R¥)). Thus, R,(f)
in ([.4) is the sum of independent random vectors Uj (®) Ugg), cen &0) such that for all
je{l,2,...,n},
) . 1 (9)
7] o i (7)) "
7]
=l <9>EP 0 [<Y§ : —uyg_m)] (1.14f)
=0, and (I.14g)
)y ()T 0) pOT
ZEP (9) [U U ] Ep 2(©) [R%)Rn) ] (I.14h)

Er (1 (57 =) (5 (59 ge)) ] 000

=l <9>Ep 5 [(sgf’) - us%m) (sgf’) —~ “S%"))T} (;;ie))T (.14j)

=1L L) I.14k

Loovg@ (Lo (I.14k)
T

ZL;;L‘”LSS’)[;S’) <L‘;§9)> (I.141)

=diag (1,1,...,1). (I.14m)
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I. Proof of Lemma

Note that by assumption of Lemma the mean vector and the covariance matrix of the
random vector an are identical to the the mean vector and the covariance matrix of the
random vector S%e). Then, from ([.4) and (L.5)), the mean vector and the covariance matrix

of the random vector Wn‘9 are identical to the mean vector and the covariance matrix of

the random vector R;e). Hence, from ([.14c)), (I.14g) and (I.14ml), the random vector W,(f)

in (L.5) is a Gaussian random vector with mean vector (0,0,...,0) and covariance matrix
diag (1,1,...,1). Then, from the multivariate Berry-Essen Theorem ( |46, Theorem 1.1]), it
holds that

)
iEPU@) [IIU§0)|I3]> (I.15a)

j=1
n T 2
. — 2] — 0
= min 17 C(k) Z EPy(g) <<l5§9) (Yg ) - IJ‘Y;G)>) L Slf)) (Yg ) — HY§9)>> (115C)
J=1 7
B 3
n T T 2
=min | 1, c(k) Z Epy(g) <<Y] ) I,Lygg)) (Lfég)> l;ie) (Yj — ,uY;e)>> (I.15d)
J=1 7
n [ T 2
=min | 1, c(k) Z EPY(9> <<Y] - /,LY(_Q)) Q;(19> <Y§9) — “Y(g)>> (I.15e)
j=1 ; J n J
n T 3/2
—min(1,¢(k) Y E Y, — Yy, - 'Y, — Ky (6
min |1, c(k) Z Py ; T By Yo i~ Hy® eXp J Yj( N )
j=1 J n J
(I.15f)

where ¢ is the function defined in (4.14)).

Plugging (1) and (LTg) in (LI5) yields

n n -1 v/2
< minll, e(k))" Ep, (Yj . KQ(@))T(E K (9) (Yj _ K,Gj(é))) exp(gT Y, - Kyj(0)>
j=1 s=1
(I.15g)
— min (1, (k)D& vo v, (9)) : (L.15h)
j=1
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where the function §§1Y2...Yn is defined in (4.84). Plugging (I.15h]) in (I.13b), it holds that

A (Psif’)’Pzif’)) < min (1, c(k);gfly%yn (9)) ) (1.16)

Finally, plugging (I.16]) in (4.82)) yields
1Px,, (A) = 1v,v,..v,. (0, A

< exp (Zn] Ky,(0) — 0" a(A, 9)) min (1, c(k) Zn] & v v, (9)) : (1.17)

j=1

which completes the proof.
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Proof of Lemma

Note that the function 7" in (2.19)) can be written in the form

T(n, Px,Qy,v)=Fw, (In (7)) +v (1 = Fy, (In(v))), (J.1)

where Fyy,, and Fy, are respectively the CDFs of W,, and V,, that are sums i.i.d. random
variables, i.e,

WnZE Z(XtaYHQY) ) (J2)
t

I
—

NgE

Vo =) 1 (X5 Y3Qy) . (J.3)

t

Il
i

such that the couple (X¢,Y;) induces the probability measure Px Py|y whereas (X, Y;) induces
the probability measure Px@Qy. This observation allows to use the theorem [17|to bound the
function T" in (2.19)). That is, the following bounds hold on the CDFs Fyy, and Fy;, in (J.1)):

v () = Fur, (i ()| <exp (05.(6) -0 ) i1, 25270)
SE(n,’y,Px,Qy), and (J5)
. (n 0)) = (0 (0)] <exp (1K) o () min1, Z500)

where for all z € R

A 1

Fiw, (2)=T g0y + (1)1 =% exp (Mg,p(e) — Oz + 292nK§?;(9)> Q <w| ang(e)> L (3.7)
:Tl(nvexp (x)’aaPX7QY) (JS)

A 1

Fy, (#) =1{s=0p + (—1)" =0 exp (nKj,G(s) —sx + 232nK](-7zG)(s)> Q (|s| ané(s)) , (J.9)
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J. Proof of Lemma

Epypy x [)wf; vIQy) - K6 exp (67 (X vIQy)) - Kj,Gw)]
£1,p(0) =1 S 37 + ¢ [(J.10)
(K%0)
WP -
Ervar | [/(X:Y1Q0) = KL xp (51 (X:Y1Q1) ~ K|
£ra(s) =1 SUNTD +eo |, (3.11)
(K2)
and
nK2(0) = In (7) = nK L (s), (J.12)

with the constants ¢; and ¢y in (3.24), K;p and Kj g the CGFs of the random variables
7(X;Y|Qy) and Z(X; Y]Qy), respectively.

More specifically, for all t e R

K;a(t)=In(Ep,q, [exp (t7(X;Y|Qy))]), and (J.13)
p(t)=In <EpoY|X exp (£ (X; Y|Qy))]) (J.14)

] (E {d A YIX oy vy P(X;
2 (Brcar | peg KV (i vIQ)| (1.15)
=In (Epyqy [exp (¢ + 1) T(X;Y|Qy))]) (J.16)
=Kja(t+1) (J.17)

where the expression in (J.15]) follows from change of a measure from Px Py|x to PxQy due
to the absolutely continuity of the former with respect to the latter; the expression in (|J.16|)

follows from the definition of 7 in (2.17); and the expression in (J.17) follows from (J.13).
Combining the observation in (J.17) to the equality in (J.12)) leads to

f+1=s. (J.18)
Plugging (J.17) and (J.18) in (J.10) yields
0
=&sp(s—1) (J.19)
Epy Py x []z(x; Y|Qy) — K\p(s — 1)]3exp ((s — DI (X;YIQy)) — Kj.p(s - 1)]
=C1 (2) 3/2 + (&)
(Kj,P(S - 1))
(J.20)
prpyx[lux;wczy) ~ K| exp (s~ DI YIQY) ~ K ols >]
=c; 35 + c2 (J21)
(K2
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EPXQY[%<U> F(X:Y1Qy) — K)o (s — DE (X:Y1@v)) — Ko >]
—c + c
1 (K}%(s))gp 2
(J.22)
Erca | (X:71Gy) - K20 oxp 61 (X:¥1Q1) - Ky
=cy @ 37 + Co
(K] G( ))
(J.23)

:gJ,G(S)’ (J.24)

where the expression in (J.24]) follows from (J.11).

Plugging (J.17)) and (J.18)) in (J.9)) yields

A 0) ==y + (-100=0Q (164 k50 + 1))
exp (nKjg(H +1)—(0+ Dz + = (0 +1)%nK (0 + 1)) (3.25)

ey + (1) eQ <|e 1] nK%l(e))

exp (nKjg(@ +1) =0+ Dz + = (9 +1) nK@)D(o)) (3.26)
=1 _TQ(naexp (m)¢PX7QY)7 (J27)

where the expression in (J.27)) follows from (5.10)). Plugging (J.17)), (J.18)), (J.24) and (J.27)

in (J.6) yields

}Fvn(ln (7)) -1 +Tg(n,’y,9,Px,QY)’<eXp (nK; p(0)—(0+1)n(v)) mln( 2.0 )) (J.28)

f
2 .
<exp (13 p(6) - (6-+ Din ) 271 (7.20)
E P
_ (n,% XaQY) (JSO)
Y
which can be written in the form
. E P
L= Ry (1 (0) < T, Py, Q) + Z 20D g (131)
- E n, 7P )
1= Fy,(In(v)) 2To(n, v, Px,Qy) — (.7 7X QY). (J.32)
The combination of the positivity of the function 1 — Fy;, (In (7)) with (J.32) yields
. E P
1 — Fy, (In(v))>max (0, To(n,v,0, Px,Qy) — (n’%ﬁyx’ QY)) (J.33)
:IQ(nvvaPXaQY)’ (J34)
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J. Proof of Lemma

where the expression in (J.34]) follows from (5.14]).
From (J.5)) and (J.8), it holds that

FWn (ln (7)) ng(”?Va PX7 QY) + E(nﬁ’% PX; QY)7 and (J35)
FWn (ln (7)) >T1(’)’L,’)/7 07 PX7 QY) - E(TL,'Y, PXa QY) (J?)G)

The combination of the positivity of the function 1 — Fyy, (In (v)) with (J.36) yields

Fy,, (In (7)) >max (0, T1(n,~, Px,Qy) — E(n,v, Px, Qy)> (J.37)
:Il(nvva-PXaQY)’ (J38)

where the expression in (J.38]) follows from (5.13]).
Plugging (J.34) and (J.38) in (J.1)) yields

T(n, Px,Qy,v)=T1(n,v, Px,Qy) + vLs(n,v, Px,Qy) (J.39)
:I(na v, PX7 QY)7 (J4O)

which complete the first part of the proof.
Plugging (J.31)) and (J.35)) in (J.1]) yields

T(na PX:QY77)< Al(”’?’% PXaQY) + ’YTZ(anaPXaQY) + 2E(TL,’7,P)(,QY) (J41)
= (nv Y PX? QY) + QE(TL, 7> PXa QY) (J42)

Note that T'(n, Px,Qy,7) < 1. Hence,

T'(n, Px,Qy,~)<min (LT(H,% Px,Qy) + 2E(n,~, Px, QY)) (J.43)
=T(n,v, Px,Qy), (J.44)

which complete the second part of the proof.
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Proof of Lemma 35

The proof is derived in two steps:

e The terms in (K.I) are expressed as a function of the CDFs of S, ¢ and Z, 9. The
derivation is done fore discrete and absolute continuous random variables and leads to a
unique formulation in (K.§]).

e The difference is bounded by using the Kolmogorov—Smirnov distance in (K.12)).
The left-hand side of (B.7) satisfies

‘Pxn (A) = (v (0)"Ep, , [eXp (—9Zn,0)]l{z,heeA}”
=(pv(0))" ’Epsn,g [GXP(—95n,9)]1{5n,96A}] —Ep,, [GXP(—GZn,e)]l{ZMeA}”- (K.1)

The focus is on obtaining explicit expressions for the terms Ep . [exp (—0S,0)1 (S, 06 A}]

and Ep, [exp (—=0Z,0)1 (Zn o A}] in (K.1). First, consider the case in which the random
variable Snﬁ is absolutely continuous and denote its probability density function by fs, , and
its CDF by Fg, ,. Then,

Eps, , [eXP (—05n0) ]1{Sn,9eA}] :L exp (—0z) fs,, ,(x)dz. (K.2)

Using integration by parts in (K.2|), under the assumption (i) or (i) in Lemma the
following holds:

Epsn’g[exp (—0S,.0) ﬂ{Sn,eeA}] = (_1)1{9>0} exp (—6a) Fs, 4 (a) —l—L‘H exp (—0x) Fs, 4 (x)dz(K.3)

Second, consider the case in which the random variable S, ¢ is discrete and denote its
probability mass function by pg, , and its CDF by Fg, ,. Let the support of S, 9 be {s0, s1,
.., S¢} < R, with £ € N. Assume that condition (¢) in Lemma [35|is satisfied. Then,

An{so,s1,---,5} = {80,815+, Su}, (K.4)
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K. Proof of Lemma

with v < ¢, and

Ep [exp (—0S5.0) ]l{Sn,geA}]

||
n
D= ¢

exp (—0sk) s, o (Sk) (K.5a)
k=0
= Fs, ,(s0) exp (—0s0) + Y (Fs, o (sk) = Fs, ,(sx-1)) exp (—bsy,) (K.5b)
k=1
= D Fs, (sk)exp (=sp) — Y Fs, ,(sx-1) exp (—0sy) (K.5¢)
k=0 k=1
u u—1
= > Fy, ,(s) exp (=0sk) — > Fs, ,(sk) exp (—0sp41) (K.5d)
k=0 k=0
= Fs, ,(su) exp (—0sy) — Z 5.6 (Sk) (exp (—0sk41) — exp (—0sy)) (K.5¢)
k=0
u=1 rspiq
= Fg, ,(su) exp (—0sy) — J —0exp (—0t) Fs, ,(sx)dt (K.5f)
k=0
— Fs, ,(su) exp (—fs,) + J " Bexp (~6t) Fs, , (1)t (K.5)
= Fs, ,(a) exp (—0a)—Fs, ,(a) exp (—0a)+Fs, ,(su) exp (—0su) —l—f (t)0 exp (—6t) d{K.5h)

=F5n,9(a) exp (—9@)—an’0(su)exp (—9(1)+an‘ (su) exp (—0sy,) +f 0 exp (—0t) FS , (1) dEK.51)

= Fs, ,(a)exp (—ba) — Fs, ,(su) (exp (—fa) — exp (—0sy)) + J 0 exp (—0t) Fs, ,(t)dt(K.5j)

— Fo, () exp (~0) + | Bexp (=08) Fo, (st + [ 0exp (~00) F, (1 (K.5K)
Su, S0

= exp (—fa) Fs, ,(a) + J 0 exp (—0t) Fs, ,(t)dt (K.51)
50

= exp (—ba) Fs, ,(a) + f 0 exp (—0t) Fs, ,(t)dt, (K.5m)
—©

which is an expression of the same form as the one in (K.3)). Alternatively, assume that
condition (77) in Lemma (35 holds. Then,

An{so, 81,81} = {Su, Sut1s---,S1}, (K.6)
with u < ¢, and

Epsnﬂ [exp (_9571 9) ]l{Sn,QEA}]

l
Z (—0sk) ps,, , (sk) (K.7a)
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l
= (Fs,4(su) = Fs,4(a)) exp (=0su) + > (Fs, ,(s) = Fs, 4(sk—1)) exp (—0s)  (K.7b)

k=u+1
l l
= —Fyg, ,(a)exp (—0s,) + Z S, 0 (Sk) exp (—0sy) — Z Fs, o(sk—1)exp (—0s;)  (K.7c)
l
= —Fs, ,(a)exp (—0sy) + Fs, o(sk) exp (—0sy) — Z Fs, o(sk)exp (—0sk11) (K.7d)
k=u
= Fg, o(s1) exp (=0s;)—Fs, ,(a) exp (—0sy)— ZFS (exp (—Osk+1) — exp (—Osp) (K.Te)

0 Sk+1

-1
—0exp (—0s;) Fs,, ,(s;)dt — Z j —0exp (—0t) Fs,, ,(sx)d(K.7f)

~Fs, @) exp (05|

S1

= —Fg, ,(a)exp (—0sy) + J O exp (—0t) Fs, ,(t)dt (K.7g)
“ es}

=Fgs,, (a) exp (—9@)—an79 (a) exp (—Ga)—an!g (a) exp (—95u)+f 0 exp (—0t) Fs, , (t)d¢K.7h)

Su,
o6}

=—Fs,, (a) exp (—0@)—F5n79(a) (exp (—0sy) — exp (—0a)) —|—f 0 exp (—6t) Fs,, (t)dt(K.71)

Su
Su,

— _Fs, ,(a) exp (~0a) — J “Gexp (—6t) Fs, , (a)dt + f “bexp (-0 Fs, ,(0dt (K.7))

a
Q0

= —Fs, ,(a)exp (—0a) + J O exp (—0t) Fs, ,(t)dt, (K.7k)

a

which is an expression of the same form as those in (K.3) and (K.5m).

Note that, under the assumption that at least one of the conditions in Lemma [35 holds,

the expressions in (K.3|), (K.5ml|), and (K.7k) can be jointly written as follows:

EPSW [exp (—6S5.0) ]I{Sn,geA}] = (71)1{9>0} exp (—bfa) Fs,, , (a)+fA9 exp (—0z) Fs, 4 (r)dx(K.8)

The expression in (K.8) does not involve particular assumptions on the random variable
Sne other than being discrete or absolutely continuous. Hence, the same expression holds
with respect to the random variable Z, ¢ in (K.1)). More specifically,

Er,, [0 (~0200) Lz, pey] = (~1)'00 exp (~6a) F, ,(a)+ L@ exp (—0) F, ,(x)d(K.9)

where Fz,_ , is the CDF of the random variable Z,, 4.
The proof ends by plugging (K.8) and (K.9|) into the right-hand side of (K.1)). This yields

P, (A) = (ov ()" e, , [ex0(~0Z00) (5, ]|
— (v (8))" | (= 1)"5>0) exp (~6a) F, , (a) + L 0 exp (—0) Fs, , (x)dz

—(—1)1{9>0} exp (—06a) Fz, ., (a) — Ll 0 exp (—0z) Fz, ., (m)dx‘ (K.10a)
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K. Proof of Lemma

=(py ()" [(-1)'>9 exp (—a) (Fs, ,(a)—Fz,, (a))+L9 exp (—0z) (Fs, ,(2)~F7z, ,(x)) daffK.10D)
< (v (0)) (yexp —0a) (an’e(a)—FZn,g(a))H’f 0 exp (—0z) (Fs, ,(z) — da(% 10c)
< (pv(0)" (eXp( 0a) A (Ps, ., Pz, ,) f |0 exp (—0z)| A (Ps,, ,, Pz, )d) (K.10d)
= (py(0))" (exp (—ba) A (Ps, ,. Pz, ,) + A(Ps, .. Pz, ,) L 0 exp (—0z) dz ) (K.10e)
= (¢v(0))" (exp (—ba) A (Ps, 4, Pz, ,) + A (Ps, 4, Pz, ,) exp (—0a)) (K.10f)
= QMA (Ps, 4:Pz,.,) - (K.10g)

Finally, under the assumption that at least one of the conditions in Lemma (35| holds, then

[P, (4) = oy (0)" En,_, [ex0 (=0Z00)1 (]|
<(py ()" max (EPSW [exp (—=05,0)1{Snp € A}, Ep,  [exp(=0Zn0)1{Zn € A}]()(-lla)

<(¢y(0))" exp (—0a) = %- (K.11b)

Under the same assumption, the expressions in (K.10g) and (K.11b|) can be jointly written as
follows:

9 n
Py, (A)=(py (O)"Ep,, , |exp (~0Z00)1 (5, e ]| < mmin{m (Ps,o» Pz, 0) » 10K.12)

This concludes the proof of Lemma
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Proof of Lemma 34

N the case in which Y is discrete (py, pyo), Dy (0)y0) 1(0) denote probability mass
Oy 9 Ly

I functions) or absolutely continuous random variables (py, py ), Py
1 T2 edn
denote probability density functions), the following holds for all (y1, y2, ..., yn) € R™,

dP, .
YOr©® v ® . yn):pyl(e)yée)._'yée) (Y1, Y2, s Yn) (L.1)
dPyiv,..v, [T5_1 oy (y;)
and for all y € R,
dP,
y©) Py (y) (L.2)
dPy py(y)
Equating the right-hand side of both (B.1]) and (L.1)), it yields for all (y1,ya2,...,y,) € R”
(L.3)

Hence, Yl(e), YQ(G), e Yég) are mutually independent and identically distributed. Moreover,
for all y € R,
exp (0y)
by \Y)= py\Yy). L4
v )= "2 2y 1) (L)

Finally, plugging (L.4)) in (L.2) yields, for all y € R,
APy . exp (fy)
- , L.5
dPy ) oy (0) (L-5)

which completes the proof.
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