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Abstract
Although autonomous vehicle technology has evolved significantly in recent years,
the navigation of self-driving vehicles in complex scenarios is still an open issue.
One of the major challenges in these conditions is safe navigation on roads open
to public traffic. In such driving environments, the main issue is the interaction
of the autonomous vehicle with regular traffic, as the behaviors and intentions of
human-driven vehicles are hard to predict and understand.
In this PhD thesis, we propose and study an approach to ensure safe autonomous

driving in such scenarios. In particular, we study the contribution that an intelligent
infrastructure can provide to improve safety via a reliable road users detection during
the navigation into complex zones. In this work, we address this problem at different
levels, considering a roundabout insertion as the main case study.
In the first part, we develop a navigation algorithm that adapts the concept of

virtual platooning to roundabout crossing, relying on High Definition (HD) maps.
Indeed, HD maps represent a useful framework to predict collision at lane-level in
terms of colliding trajectories with the ego-vehicle navigation corridor. The compu-
tations are done in curvilinear abscissa which is particularly efficient and fast. More-
over, to cope with human-driven vehicles unknown intentions, virtual instances of
the vehicles combined by an interval-based occupancy representation are proposed.
These intervals also include localization and perception uncertainties. The method
safely avoids collisions and guarantees that no priority constraints are violated dur-
ing the insertion maneuver, without providing an overly cautious insertion policy.
Finally, we also propose some techniques to extend the navigation strategy to the
safe crossing of multi-lane roundabouts.
The performance of this strategy is evaluated using the SUMO simulation frame-

work. To evaluate the complexity of the simulation scenario, a highly interactive
vehicle flow is generated using real dynamic traffic data from a public dataset. We
also report real tests carried out with an experimental self-driving vehicle on a test
circuit with both a simulated and real traffic.
In the second part, we focus on consistency and robustness of road users detection.

The main objective is to implement a LiDAR-based road users detection pipeline
to sense the driving environment and provide the necessary information to perform
autonomous driving. To do so, a fast and consistent method to manage uncertainties
on detected traffic agents is presented. The information provided by a 3D LiDAR-
based object detector is combined with an HD map to identify the drivable space
of the carriageway. A novel approach propagating localization uncertainty in the
LiDAR points is proposed and the performance of this approach is evaluated both
in an Euclidean and in a map-based curvilinear reference frames thanks to the use
of real data acquired at the entrance of a roundabout.
In the third part, we improve the performance of the on-board perception system

by using a map-aided tracking algorithm which provides the speed of road users and
an better estimation of their occupancy at lane level. To enhance the estimation
process, we study how the information provided by a remote cooperative intelli-
gent infrastructure can help the perception of a self-driving vehicle. To do so, a

7
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multi-sensor data fusion approach integrates the infrastructure information in the
perception framework. This extension leads to two main advantages. First, it en-
larges the field of view of the on-board perception system of the vehicle. Second, the
combined system perception provides a more accurate state estimation of perceived
objects in the zones where the fields of view overlap. It brings also redundancy
which increases integrity. The improvement of the cooperative system compared to
the standalone one is evaluated in terms of visibility but also in terms of state and
occupancy estimation.
The contributions of the PhD thesis can help intelligent vehicles to improve their

autonomous navigation capabilities in complex situations where reduced visibility
and interactions with other road users rise safety critical issues.
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Résumé
Bien que la technologie des véhicules autonomes ait considérablement évolué au
cours des dernières années, la navigation des véhicules autonomes dans des scé-
narios complexes reste toujours une question ouverte. L’un des principaux défis
dans ces scénarios est la sécurité de la navigation sur les routes ouvertes à la cir-
culation publique. Dans ces environnements de conduite, le principal problème est
l’interaction du véhicule autonome avec les véhicules à conduite manuelle, car leurs
comportements et leurs intentions sont difficiles à prévoir et à comprendre.
Dans cette thèse, une approche est proposée pour assurer une conduite auto-

nome sécurisée dans ces scénarios. En particulier, nous avons étudié la contribution
qu’une infrastructure intelligente digne de confiance peut apporter pour améliorer
la sécurité grâce à une détection fiable des usagers de la route lors de la navigation
dans des zones complexes. Dans ce travail, nous abordons ce problème à différents
niveaux, en considérant la manœuvre d’insertion dans un rond-point comme cas
d’étude principal.
Dans la première partie, un algorithme de navigation est développé selon le

concept de suivi virtuel adapté aux ronds-points, en s’appuyant sur des cartes haute
définition (HD). En effet, les cartes HD représentent un bon outil pour prédire les
interactions au niveau de la voie en termes de trajectoires de collision avec le couloir
de navigation de l’ego-véhicule. Les calculs se font en abscisses curvilignes ce qui est
particulièrement efficace et rapide. Pour faire face aux intentions inconnues des véhi-
cules à conduite manuelle, des instances virtuelles de véhicules dont l’occupation est
représentée avec des intervalles sont proposées. Ces intervalles englobent également
les incertitudes de localisation et de perception. La méthode apporte ainsi un haut
niveau de sécurité vis-à-vis des collisions et garantit qu’aucune contrainte prioritaire
n’est violée lors de la manœuvre d’insertion, et ce sans fournir une politique d’in-
sertion trop prudente. Enfin, nous proposons également des techniques pour étendre
cette stratégie de navigation à la traversée sure de ronds-points à plusieurs voies. La
performance de cette stratégie a été évaluée à l’aide de l’outil de simulation SUMO.
Un flux de véhicules hautement interactif a été généré à l’aide de données de trafic
dynamiques réelles provenant d’un jeu de données publiques. Nous avons également
effectué des tests réels avec un véhicule expérimental à conduite autonome sur un
circuit de test avec un trafic simulé et réel.
Dans la deuxième partie de la thèse, la cohérence et la robustesse de la détection

des usagers de la route avec un capteur LiDAR omnidirectionnel et multi-faisceaux
sont étudiées. Un pipeline complet de détection des usagers de la route basé sur le
LiDAR est proposé afin de détecter l’environnement dynamique et afin de fournir
les informations nécessaires à la conduite autonome. Les informations fournies par
un détecteur d’objets 3D basé sur le LiDAR sont combinées avec une carte HD
pour identifier l’espace occupé par les usagers sur la route. Une nouvelle approche
pour propager l’incertitude de localisation dans les points LiDAR est proposée et la
performance de cette approche est évaluée expérimentalement en termes d’occupa-
tion en considérant deux représentations, l’une euclidienne et l’autre en coordonnées
curvilignes.
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Dans la troisième partie, les performances du système de perception embarqué
sont améliorées avec un algorithme de pistage assisté par la carte, ce qui est im-
portant pour estimer la vitesse des usagers de la route avec un capteur optique.
Pour améliorer le processus d’estimation, nous étudions comment les informations
fournies par une infrastructure intelligente coopérative à distance peuvent aider la
perception embarquée d’un véhicule autonome. Pour cela, une méthode de fusion
de données multi-capteurs capable de gérer les latences des données transmises par
l’infrastructure est proposée. Cette extension conduit à deux avantages principaux :
elle élargit le champ de vision du système de perception embarqué du véhicule et elle
apporte de la redondance ce qui augmente de l’intégrité. L’amélioration du système
coopératif par rapport au système autonome est évaluée en termes de visibilité mais
aussi en termes d’estimation d’état et d’occupation.
Les contributions de cette thèse de doctorat peuvent aider les véhicules intelligents

à améliorer leurs capacités de navigation autonome dans des situations complexes
où la visibilité réduite et les interactions avec les autres usagers de la route posent
des problèmes notamment en termes de sécurité.

10



1 General Introduction
Autonomous driving is a widely studied research topic and, in the recent years, sev-
eral progresses have been made on this subject particularly in urban environments.
Nowadays there are several examples of vehicles that are able to perform navigation
tasks in full autonomous mode on different kinds of driving environments.
To perform autonomous driving in urban traffic, several aspects are still open

issues. One of the most challenging ones is the lack of visibility in complex urban
scenarios. This means that, for the autonomous vehicle, it is not always possible
to obtain a complete and reliable knowledge of the other traffic participants. This
lack of information might lead to poor performance when the autonomous vehicles
navigates through a complex urban environment. In particular, the presence of
missing information about other road users might compromise the safety during
navigation. In other words, the risk of accidents arises if the autonomous vehicle
has a partial knowledge of the driving environment.
To overcome this issue, several approaches can be found in the literature. One

appealing solution is offered by vehicle-to-vehicle (V2V) communication, which al-
lows vehicles to broadcast information about their state to other traffic participants.
This has the advantage to provide mutual awareness between vehicles, covering oc-
cluded zones and blind spots in the autonomous vehicle perception system. However,
nowadays this technology is available only on few vehicles.
Another solution is provided by the leveraging of external information sent from

a remote intelligent infrastructure. Such a system has the advantage of providing an
extra source of information from a different perspective with respect to the on-board
perception system of the autonomous vehicle. This information can be combined
together with the one provided by the on-board perception system to obtain a more
complete and reliable representation of the driving environment.
Another aspect that is crucial for autonomous vehicles navigation in urban traffic

is to deal with unknown vehicles intentions. This situation is common when the
autonomous vehicle navigates in an environment where several manually driven ve-
hicles are present. In this case, under the hypothesis that no direct communication
between vehicles exists, it is often challenging to estimate and understand other traf-
fic participants intentions. The only information that the self-driving vehicle can
have from other vehicles is the one obtained by its own perception system. This im-
plies that, in many cases, the estimation of some crucial pieces of information as the
other vehicles trajectories and intentions is difficult to estimate. As a consequence,
navigation algorithms must be designed taking into account this constraint, in a way
that they should be able to operate with incomplete or missing information. To do
so, it is required to find a way to incorporate not only uncertainty about vehicles
intentions, but also uncertainty about vehicles spatial occupancy directly into the
navigation strategy.
Once this step is achieved, it is necessary to provide a consistent way to validate

the navigation strategy. Starting from the fact that real tests with other road users
offer the most realistic way of validation, they are not always possible in public
roads. Real driving tests performed in private test circuit give an overview of the
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1 General Introduction

behavior of the algorithm on a real system. However, they are often limited to use-
cases with a limited number of interaction with other road users and they suffer of
scalability issues.
To get over this issue, it is necessary to re-create a realistic behavior in a simulated

environment. This is necessary because nowadays driving simulators always present
a gap between simulated and real driving environments in particular with several
road users in interaction. In addition, to provide a solid test-bed for navigation
algorithms, it is necessary to re-create a realistic driving behavior starting from real
traffic data.
Finally, it is necessary to find a criterion to quantify the level of uncertainty

about the estimated occupancy of perceived objects. This criterion has to provide
uncertainty bounds according to a given risk. Integrity metrics of localization are
quite well known nowadays and we are looking for a method to extend this concept
to perception. However, this task is not simple because perception is a composite
task that relies on several sub-tasks. All pre-treatments must therefore be given
special attention.

1.1 Problem Statement
1.1.1 Main Objectives
The main problem addressed in this PhD thesis is the safe navigation of autonomous
vehicles in complex urban scenarios with several road users in interaction. The main
scenario that is considered throughout this work is the autonomous vehicle (AD)
navigation in roundabouts. For this driving situation, a reliable estimation of the
occupancy and speed of the perceived objects obtained by the perception system
is a key issue. As a case study, we consider the roundabout crossing maneuver,
where the self-driving car has to cross safely the roundabout with an arbitrary flow
of regular vehicles inside it.
To cope with this, a navigation algorithm has been designed to perform safe

roundabouts navigation. It uses a High Definition (HD) map and a map-based
curvilinear framework. The proposed navigation strategy is entirely based on this
curvilinear framework and on the concept of virtual platooning. This method, that
was initially designed to cope with autonomous vehicles cooperative intersection
crossing, has been extended to roundabout crossing with priority constraints.
Another crucial point is the occupancy estimation of the perceived road users.

As a matter of fact, to avoid collisions due to wrongly estimated localization of the
other traffic participants, we propose to extend the curvilinear formalism with an
interval-based formalism to represent uncertainties on vehicles occupancy and we
present a way to provide a good estimation of the portion of the road occupied by
each perceived object. Moreover, we develop an integrity criterion to quantify the
overall level of uncertainty of the perceived objects according to a given risk.
Collaboration with an intelligent infrastructure is a new way to enhance safety

during navigation. We propose to investigate a cooperative data fusion of the on-
board perception with information provided by a remote intelligent infrastructure
that enhance both the self-driving car knowledge of the driving environment and
the integrity estimation of the perceived obstacles.
In the following part of this chapter, we consider in more detail the main problems

addressed in this manuscript.
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1.1.2 Autonomous Vehicles Navigation in Roundabouts
To navigate in urban traffic, an autonomous vehicle has to complete a series of
navigation missions (e.g. going from a point A to a point B without collision) while
a dynamic flow of vehicles is present on the driving scene. This kind of scenario
is typical for robotaxis and mobility oriented autonomous driving applications. In
such a situation, we consider the other traffic participants as an adversarial traffic
flow. Traffic is said adversarial if, under some circumstances, the other road users do
not cooperate with the autonomous vehicle. On the contrary, there is an individual
and selfish behavior regarding the adopted driving strategy. Such constraint also
implies that there is here no V2V or intention sharing between cars. In this case,
the challenge is twofold: first, autonomous vehicle has to both detect the other
vehicles and then, it has to estimate their intentions only by means of its on-board
perception system.
One of the main difficulties that arise is the necessity to quantify the level of

uncertainty of perceived environment and how to take into account such uncertainty
directly into the navigation framework. It is our opinion that, to enhance the safety
of AD vehicle navigation, the navigation strategy must be able to encapsulate in
the decision-making process the uncertainty associated to traffic participants. Such
uncertainty can be categorized in the following two groups:

1. Uncertainty about vehicles occupancy and speeds estimation;

2. Uncertainty about the identification of drivers intentions.

In the first case, uncertainty is linked to the accuracy of the estimation of the
road users localization and velocity, while in the second case, uncertainty refers
to the prediction or the identification of a certain driving maneuvers in a driving
environment.
It is widely known that a good knowledge of these information with low uncer-

tainty leads to a better driving performance in terms of safety. Furthermore, pre-
dicting the intentions of an adversarial vehicle can lead to more optimized navigation
maneuvers and a more fluid navigation among other cars.
To summarize, a safe autonomous vehicles navigation method must meet the

following requirements:

1. Ensure safe navigation maneuvers in a complex scenario;

2. Provide robustness to uncertain road users detections;

3. Provide a smooth and not overly-cautious navigation strategy.

Another problem is the test and validation of navigation strategies in a realistic
simulated environment. Nowadays there exist a wide range of tools and frameworks
to provide simulation for autonomous driving. Dedicated simulators provide a sim-
ulated representation for different purposes (perception, navigation, routing, etc.)
with different levels of detail. The use of simulation to test the performance of nav-
igation algorithms is a widely used technique in the AD vehicles domain for several
reasons. On one hand, it provides a cheap and scalable way to validate developed
strategies, allowing the generation of a wide range of different scenarios under dif-
ferent conditions. On the other hand, it ensures safety during tests and avoids the
occurrence of accident and dangerous driving situations, preventing from the risk of
causing damages to systems and harming people.
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However, even if the level of precision and detail has been increased over the
years, a gap between simulated environments and real tests still exists. In general,
such a gap is mostly due to the poor quality of simulated uncertainty on data and
the pseudo-randomness of simulated uncertainty. Regarding traffic flows simulators,
this gap is mostly due to the simplified modeling of adversarial vehicles behaviors
and limited motion models. Indeed, it is hard to describe with a mathematical
model the wide set of possible human behaviors during navigation. Some safety
critical maneuvers as for example lane change or overtaking are still far from the
naturalistic way of driving. For this reason, in the recent years, some researchers
prefer to validate their algorithms on recorded datasets rather than on simulated
scenarios. This, in general, provides a more realistic performance of algorithms
because the data are closer (sometimes the same) to real ones, especially for complex
navigation maneuvers and interaction between road agents. However, the main
drawback is the lack of reactivity and interaction feedback to the autonomous vehicle
navigation strategy. Indeed, a recorded flow cannot produce any reaction w.r.t. the
autonomous vehicle because such a vehicle was not present at the moment of the
dataset recording. This lack of reaction does not permit to take into account the
behavior of other vehicles w.r.t. the autonomous vehicle chosen decision.
In this work, we will combine the two approaches. Simulations will be carried

out for decision and navigation algorithms while raw data records will be used for
perception systems.

1.1.3 Road Users Detection and Localization
One other aspect that is crucial for autonomous navigation is the robust and reliable
detection of road users. If there is no direct communication between the self-driving
vehicle and the other vehicles, the navigation method must rely only on its percep-
tion capabilities for environment sensing and road obstacles detection tasks.
For this reason, another problem addressed in this manuscript is the design and

development of a perception system that can provide the navigation layer the nec-
essary information about the surrounding driving environment
Such a system must be able to operate in a real-time context and to provide de-

tection results sufficiently fast to react to any dynamical behavior or sudden change
in the driving scene. Moreover, as we consider safety-critical navigation tasks, it is
also required to avoid as much as possible missed detections, which may represent
an issue from the safety point of view.
In order to improve both the detection performance and the real-time feasibility,

High Definition (HD) maps can be exploited by the perception system. One of the
main advantages of this technology is their capability of identifying the drivable
surface. This is useful to filter detected objects with respect to the drivable surface.
Using a map implies being able to localize precisely the AD vehicle inside the map
itself. This could lead to dangerous results if the localization is not accurate. There-
fore the localization uncertainty needs to be carefully taken into account in order
not to wrongly filter the detected objects.
This manuscript presents the design and development of a perception system

that provides the navigation layer the necessary information about the surrounding
driving environment using 3D LiDAR and a HD map. Integrity of the information
will be considered carefully.
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1.1.4 Integrity of Perceived Information for Autonomous Driving
The concept of integrity has been proposed first to provide a means to bound lo-
calization error and sensor faults for flight localization. This technique consists in
providing a real-time measure of the level of trust to be placed in the localization
estimates as vehicles operate [4,95]. In other words, it provides a means for knowing
whether the position estimates computed by the AD vehicle on-board system are
exploitable for navigation purposes, based on a given risk factor. This concept has
been applied to the AD vehicles domain to quantify the accuracy of GNSS-based
absolute positioning systems [4].
Based on the knowledge of some uncertainty metrics, such as a covariance matrix

for low requirement levels, it is possible to compute some confidence bounds on the
position uncertainty according to a given risk level α. The integrity requirement
implies that the true position should be within the bounds with a probability of at
least 1−α. The intervals bounds obtained in such way represent the probability that
the ground truth of the vehicle position is contained in such interval with probability
of 1− α.
Bearing in mind this concept, one of the main objectives of this work is to discuss

and propose a method that allows to extend and exploit the same reasoning to
quantify the level of confidence on the AD vehicle perception results. However, the
application of the aforementioned method to perception is not straightforward due
to the complexity and the layered structure of the perception task.
A first definition for this concept can be to define the integrity of perceived infor-

mation as a measure of the risk caused by an unperceived object. This definition
allows to quantify the risk that the missed detection of an obstacle can have on a
certain driving task, according to the complexity of the driving scenario. However,
such a definition is not easy to implement in practical applications. This comes
from the fact that, in general, environment perception is a composite task and such
a definition must be applied to all the different sub-layers [18]. Furthermore, in
order to apply such definition to different sub-layers of the perception, one needs to
individuate and identify these sub-layers.
According to [18], perception integrity can be seen as a measure of the certainty of

the knowledge represented by the perception system in a given area. This definition
is useful to quantify how the available information from the different sensors is
disposed in the autonomous vehicle surrounding environment. Furthermore, it also
includes the presence of zones where information is unavailable or unknown. As
we can see, this definition covers only some aspects of the ideal definition that we
proposed before. To overcome this, we propose to define in a more concrete and
operational way perception integrity at different levels:

1. Integrity of the perception in terms of localization uncertainty of the road
users;

2. Integrity of the detected free-space;

3. Integrity of the perception result in terms of classification of the objects;

4. Integrity of perceived objects occupancy on the road surface.

In case (1), the main idea is to first bound localization errors of the ego-vehicle
according to a given risk, then to propagate these localization uncertainty bounds
to the estimation errors of a frame attached to the perceived objects.
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In case (2), the focus of integrity is on the perceived free space rather than com-
puting the integrity of detected objects. Case (2) aims to quantify the zones of the
driving environment where we are sure that only the ground has been detected and
nothing more.
Case (3) corresponds to the risk caused by an object wrongly classified or to

quantify the probability that an object has been correctly classified. In fact, some
detection algorithms for images are able to provide information not only on the
classification of an object, but also a confidence score.
Finally, in case (4), we focus the attention on determining objects spatial occu-

pancy according to a given risk which is well adapted to vehicles whose size is to
be taken into account (a bus for example). It can be thought that case (4) is the
dual of the situation presented in case (2). However, this is not the case. The main
reason is that there are blind spots and hidden areas. In this research work, we will
be particularly interested in case (4) because it fits perfectly with the navigation
algorithm we use. In addition, we will limit ourselves to 1D occupancy along the
polylines of the map.
Moreover, when a HD map supports the navigation strategy, the integrity of the

information contained in the map itself is an important question. However, this
topic is out of the scope of this dissertation and we suppose that the the HD map
does not contain misleading or wrong information.

1.1.5 Multi-sensor and Cooperative Data Fusion
Another aspect that is treated in this manuscript is the cooperative perception with
a remote intelligent infrastructure system. The main idea is to exploit a cooperative
perception system to provide a reliable and consistent information to the AD vehicle.
The perception system consists of a remote and fixed infrastructure that senses only
some particular driving zones. In other words, neither the position, nor the field of
view of the infrastructure vary over time. To do so, we focus the attention on the
cooperative data fusion between these two sources of information. In a cooperative
system, data fusion may be performed at different levels, with filtering and data
association issues. A problem that arises in this context concerns the data fusion
of asynchronous and out-of-sequence data. In a cooperative system with remote
sensors involved, it is necessary to guarantee the synchronization of the clocks of
all the systems to be able to solve those problems and to perform a proficient data
fusion process.
An aspect that we study in this part of the work is the performance of the coop-

erative system in terms of integrity of estimated objects occupancy, compared with
the one obtained by using only the on-board perception. In particular, we would like
to quantify the infrastructure contribution to this aspect according to the following
criteria:

• Gain with respect to the enhancement of the AD perception system field of
view;

• Gain with respect to the accuracy of estimated objects.

In the former case, the infrastructure information contributes to enlarge the self-
driving car field of view, while in the latter case, the infrastructure detection can
be useful to better estimate the objects occupancy and to ensure safety during AD
vehicle navigation.
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We need to underline that in this work we suppose that no misleading, erroneous
or malicious information is sent by the infrastructure. In other words, we rely
on the infrastructure information and all the problems that revolve around the
trustworthiness of the infrastructure are out of the scope of this work.
Finally, Figure 1.1 figures out the architecture of the whole system. For each

module that constitutes the system pipeline, an explanation of its role is reported
in the following section.

Velodyne VLP
32 LiDAR

Perception

Data Fusion
& Tracking

Controller

HD Map

AD Vehicle PC
Roadside
Camera

Novatel Span
GNSS system

I2V Communication
OBU

I2V Communication
RSU

Navigation
& Decision

Intelligent Infrastructure

Images
Treatment

Wireless
Communication

Figure 1.1: System architecture considered in this work. Notice that the part relative to
the intelligent infrastructure will be used only in the last part of the work.

1.2 Scientific Contributions and Manuscript
Organization

In chapter 2, a presentation of the state-of-the-art of autonomous vehicles naviga-
tion, focusing in navigation algorithms designed for roundabout navigation, local
trajectory planning, high definition maps and traffic simulation is given. Further-
more, the main formalisms and concepts that will be used through the rest of this
work will be discussed. In particular, the following elements will be highlighted:

• A high definition map formalism to compute curvilinear coordinates along
maps polylines;

• A traffic flow simulation tools and dataset for autonomous driving.

The contents and the results presented in this chapter lead to the publication of a
conference paper at the IEEE Intelligent transportation Systems conference [40].
Chapter 3 is focused on the navigation strategy for roundabout crossing. First, the

completely cooperative use-case is taken into account as a proof of concept for the
algorithm. Then, the previous case has been extended to the case of an autonomous
vehicle that navigates among a regular vehicle traffic flow. The main contributions
of this part are listed hereafter:

• A safe, priority-preserving and not overly cautious decision method for an AD
vehicle crossing a two-lane roundabout among a vehicle flow;
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• A practical evaluation of the algorithm in terms of safety and fluidity of the
insertion, with realistic simulations and real experiments.

The contents and the results presented in this chapter lead to two conference papers
at the IEEE Intelligent Vehicles Symposium [66, 67] and to the publication of a
journal paper in the IEEE Transactions on Intelligent Transportation Systems [68].
In chapter 4, a geometric LiDAR-based road users detection method with a focus

on how a HD map can be integrated in the perception task is described in details. For
that purpose, we provide an approach that is robust w.r.t. localization uncertainty.
The main contribution of this part are listed hereafter:

• A fast LiDAR-based road users detection that captures the occupancy uncer-
tainty and the localization errors;

• A HD map-based filtering step to reject obstacles that do not belong to the
road surface.

The main contributions presented in this chapter have been also published in a IEEE
Intelligent Vehicles Symposium [13].
Chapter 5 is dedicated to LiDAR-based tracking and objects occupancy estima-

tion and cooperative multi-sensor data fusion. In particular, the fusion of on-board
vehicle perception with information broadcast from a remote and intelligent infras-
tructure is taken into account. The goal is to enhance perception performance in
terms of objects occupancy estimation. The main contributions of this part are
listed hereafter:

• The development of a LiDAR-based tracking method to estimate objects speed
and occupancy;

• The cooperative data fusion between LiDAR and infrastructure.

The contents and the results presented in this chapter lead to the publication of a
paper at the IEEE Intelligent transportation Systems conference.
In chapter 6, conclusions about the different research topics investigated in this

work are drawn, focusing the attention on the contributions of HD maps and the
intelligent infrastructure to improve autonomous vehicles navigation.
Finally, Appendix 7 proposes two sections to better understand how the experi-

mental system works. In the first appendix, we analyze the ETSI communication
standards (CAM, DENM and CPM) in order to understand which standard has to
be used to implement I2V communication.
In the second part, an overview on the dataset that has been used for our test is

given. Such dataset contains several driving scenarios where several vehicles and an
intelligent infrastructure can exchange between them their local perception in order
to augment their knowledge of the driving scenario. Such dataset has been recorded
to validate algorithms based on shared perception.

1.3 Other Contributions
This PhD thesis has been carried out in the context of a French national project
entitled “Tornado” and also in the framework of the shared laboratory SIVALab be-
tween Renault, UTC and CNRS. The Tornado project had the goal of implementing
an robotaxi service to perform an on-demand mobility service in the French town of
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(a) (b)

Figure 1.2: (a) Demonstration of full autonomous driving and roundabout crossing in
Rambouillet for the mid-line project demonstrations (November 2019). (b)
Autonomous vehicles roundabout crossing during the Intelligent Vehicles Sym-
posium demonstration session (June 2019).

Rambouillet. The project, which was carried out under the supervision of Renault,
involved industrial and academia partners in order to study and develop different
technical aspects of the mobility service. There was also a task on the acceptability
of the service to the local population who were able to participate in the experiments.
During this PhD, several experiments and demonstrations have been carried out.

In particular, the research team took part to several project demonstration sessions
of the Tornado project. This has been useful to test and demonstrate the perfor-
mance of the proposed algorithms on live tests. Figure 1.2a shows a moment of
the demonstration given for the Tornado project mid-line demonstrations session.
The system has been validated experimentally on an urban road closed to public
traffic our roundabout crossing method. At that time, the main focus was on the
navigation strategy and consequently no perception was used. To overcome this,
V2V communication instead of vehicle on-board perception was used.
Moreover, we also took part in the 29th IEEE Intelligent Vehicles Symposium

demonstration session in Paris on June 2019. Figure 1.2b shows the Intelligent
Vehicles Symposium demonstration session where we proposed the same scenario of
the first demonstration on the white car, while a Lidar-based obstacles detection
algorithm was shown in the gray car.
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2 Autonomous Navigation with HD
Maps and Communication
Systems: Basic Concepts and
Tools

2.1 Introduction
The main objective of this chapter is to provide a general overview about the tools
and concepts that will be used in this manuscript. This includes both the literature
review on state-of-the-art methods and the description of the main tools that will
be used in the experiments and tests to validate the proposed strategies.
This chapter is organized as follows. The first part of section 2.2 describes some

methods that are used in cooperative Autonomous Driving (AD) vehicles navigation
for collision avoidance and roundabout crossing, focusing the attention on round-
about navigation maneuvers, while the second part of section 2.2 contains a survey
on the same topic but in the case of mixed traffic.
Section 2.3 proposes a general presentation on the HD map that is used in this

work and its corresponding formalism, illustrating and comparing different meth-
ods for computing HD map based road models and their corresponding curvilinear
coordinates.
Finally, section 2.4 introduces the main tools that we use to simulate a realistic

traffic flow, while section 2.5 describes the experimental vehicles used for demon-
stration and data acquisition.

2.2 State of the Art
In this section, a survey about published contributions on different topics treated
in this work regarding roundabout crossing is presented. In particular, we state the
progress that have been made by theses works, highlighting also their drawbacks
and the possible negative outcomes that such methods can have on our roundabout
navigation use-case. This literature review is also useful to illustrate how the state-
of-the-art knowledge has been exploited to design the navigation, perception and
data fusion algorithms and how the existing methods have been adapted to the
use-case of autonomous navigation in roundabouts.

2.2.1 Cooperative Navigation in Roundabouts
During the last decades, the research on autonomous driving systems has grown
significantly. However, severe challenges for autonomous driving remain on some
road sections that are complex for autonomous navigation, typically due to a lack
of visibility. These are for instance tunnels, crossroads, roundabouts and railroad

20



2 Autonomous Navigation with HD Maps and Communication Systems

crossings which are known to be the cause of most of the road accidents. Round-
abouts are increasingly used in urban areas because they allow a safer approach
than traditional crossroads with traffic lights. In fact, compared to traffic signals,
the research of the Insurance Institute for Highways Safety (IIHS) indicates that
roundabouts can lead to about a 90% reduction in fatalities and a 75% reduction
in crashes with injuries [84]. Moreover, roundabouts guarantee also efficiency and
are environmentally friendly, because a roundabout does not require a driver to
stop unless there is traffic already in the circulating lanes. This can avoid to wait
for a light to turn green or come to a complete stop if there is no traffic on the
lanes. While it is common to find papers in the literature that propose strategies to
handle a crossroad intersection [5, 23], even focused on cooperative driving control
as [58], much fewer researches have been conducted regarding roundabouts. In [9],
the authors proposed an algorithm that attempts to solve the roundabout crossing
problem with the help of game theory, while some approaches to control vehicle
inside a roundabout have been proposed in [81, 82]. Desaraju et al. [28] considered
partial order techniques to develop a strategy in order to avoid a collision between
two vehicles circulating into a roundabout. In these cases, the aspect that regards
the control of the vehicles has mostly been considered, rather than the decision
making part. Regarding the roundabout models, Rastelli et al. [81] used a very
simple model based on a circle connected with some branches to model entries and
exits, while the authors in [82] used Bézier curves to model them. One of the main
advantages of virtual platooning [69] is to allow a single platooning control law to
be adapted to several scenarios such as intersection crossing or lane merging. In this
chapter, this concept is generalized to roundabout crossing.

2.2.2 Mixed-traffic Navigation in Roundabouts
In the near future, one can imagine that AD vehicles will co-exist with manually
driven (MD) vehicles and other road users like bicycles or motorcycles. In this
heterogeneous scenario, safe navigation has to be guaranteed in complex dynamic
environments like in intersections, lane merging or roundabouts, where the risk of
accident is one of the highest on public roads.
Concerning roundabouts navigation in mixed traffic, one way to ease this co-

existence can be achieved by exploiting V2V communications to share to other
traffic participants the AD vehicle intentions. In such a way, other vehicles can
build driving plans considering explicitly the AD vehicle future behavior. However,
this method assumes that all the road users are equipped with V2X devices, which
is unrealistic in a short-term horizon.
Regarding the different approaches presented in the literature, many works have

been done for intersection crossing with only AD vehicles [20, 57, 72, 78] and with
priority constraints [26]. Moreover, there also exists some research works that aim
at predicting drivers intentions and behaviors as in [41, 90]. Some of them propose
to solve the intersection crossing problem with optimization techniques [72] or with
model predictive control [64,89]. The main idea is to compute all the possible config-
urations of the system where a collision is unavoidable even if an emergency braking
is executed and avoid them. Another way to address the problem is presented
in [80]. Finally, the Autonomous Intersection Management Protocol (AIM) [19, 75]
and virtual platoon methods [27,69] have shown interesting properties.
In a mixed traffic environment with AD and MD vehicles (in the following an MD

vehicle can be a car or any road user who uses the drivable space), avoidance sets
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can be computed with the reachability theory [30, 55, 98]. The authors in [73, 74]
have implemented a collaborative motion planning algorithm that cooperates with
MD vehicles. Other works as in [105] rely on the MD vehicle behavior in the worst-
case scenario (e.g., the acceleration of an MD car approaching an intersection is
considered to be the highest). In [37], the behavior of an MD vehicle is modeled
with a mathematical representation that captures the human way of driving. Some
tentacles-based motion planning techniques can also be found in the literature [92].
Such methods are often based on occupancy grids to estimate the free space in the
environment [8] even in combination with HD maps [38].
In order to better understand vehicle behaviors in complex scenarios, we investi-

gate in the literature the most important datasets that contain traffic flows informa-
tion for autonomous driving navigation tasks (e.g., collision avoidance, path plan-
ning, etc.). Several datasets can be found such as Common Road [6], ACFR [106] or
INTERACTION [102]. In this study, it has been decided to focus our attention on
the latter one because it provides highly dynamic traffic flow data in several different
road scenarios. In particular, several roundabouts are present.
Concerning the roundabouts crossing problem, fewer works can be found in the

literature, as we previously said in the preceeding section. Furthermore, another ap-
proach that involves an extra infrastructure layer to implement a time slot scheduling
protocol can be found in [43]. Despite the fact that the authors proposed interest-
ing and valid theoretical solutions, the experimental results have been tested only
on some test-bed scenarios with either simulated vehicles or with simplified round-
about models. Moreover, experiments have been carried out with a limited traffic
flow (only one adversarial vehicle), which is far from a full-scale experiment. If we
look carefully at roundabouts, some similarities can be found with classical road
merging or intersections. In particular, during the insertion maneuver, a round-
about is quite similar to a road merging where vehicles on the main road have
higher priority. However, several fundamental differences shall be accounted for.
First, in a roundabout the available space is limited w.r.t. a highway merging and
consequently there is less time to plan a driving maneuver. Then, the traffic be-
havior in the roundabout ring is highly heterogeneous and hard to predict. This
aspect is more visible if the roundabout has more than one lane. In particular, if
no lane marking is present, it is not easy to distinguish between the innermost and
outermost lanes in the roundabout. As a consequence, MD vehicles tend to have a
highly irregular behavior, making the navigation maneuver in the roundabout chal-
lenging. Some examples of this behavior can be found in the roundabout recordings
of the INTERACTION dataset [102]. Conversely, if one considers an intersection
(T-intersection or lane merging), in general MD vehicles choose their lane before
crossing the intersection or the merging. Another feature of roundabouts is that it
can be difficult to predict which exit vehicles will take. To deal with this problem, it
is then relevant to consider all possibilities by manipulating several virtual instances
of the vehicles.
The concept of using virtual vehicles along the lanes of a HD map is very efficient

to predict the dynamic situation in a roundabout and to control the longitudinal
behavior of an AD vehicle. For this reason, this approach will be studied in details
in this thesis.
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2.3 High Definition Maps
When multiple vehicles share the driving space, it is important to properly repre-
sent their spatial positions with respect to each other. Euclidean coordinates are
often not ideal for representing spatial relationships between road users. Curvilinear
coordinates, on the other hand, are able to effectively encapsulate lane-level interac-
tions between vehicles, for example in terms of conflicting trajectories w.r.t. the AD
vehicle navigation corridor [76,105]. The aim of this section is to introduce and ex-
plain the main elements concerning HD maps that will be exploited in the following
chapters for both navigation and perception modules of our system. In particular,
the attention will be focused on the computation of curvilinear coordinates w.r.t. a
HD map.

2.3.1 High Definition Map Formalism
Nowadays there are a number of open source navigation maps (e.g., OpenStreetMap,
Vssim networks OpenDrive etc.). However, for AD navigation tasks, a HD map, with
a higher level of detail and better accuracy, is needed.
The present work adopts a polylines formalism to represent the roads. This ap-

proach has been chosen in contrast to another well known standard that represents
roads geometry with continuous curves as splines or polynomials. In particular, the
road elements in a map are defined as follows:

• Node: a set N of geo-referenced 2D points used to mark the start and the end
points of a part of a lane, in particular where two lanes split, merge or cross.

• Link: the portion of the lane between two nodes (the starting and ending
nodes) that define the flow direction in the lane. The geometry of this part
is represented as a polyline, which is a sequence of line segments. A link Lk
composed of mk line segments is described by mk + 1 points

Lk =
(
p

(0)
k , p

(1)
k , . . . , p

(mk−1)
k , p

(mk)
k

)
, (2.1)

in which the first and last points are nodes, i.e., p(0)
k , p

(mk)
k ∈ N . It is important

to note that no crossing can occur within a link, but only at the starting or
ending nodes. An example of this can be found in the map representation of
Figure 2.1.

• Shape points: the 2D points used to model the geometrical shape of the lane
(i.e., the shape of the link) are called shape points. A node is also considered
to be a shape point.

• Line segment: a line segment

l
(i)
k =

(
p

(i)
k , p

(i+1)
k

)
, (2.2)

attached to a link Lk is composed of two consecutive shape points, and its
length is defined as

`
(i)
k =

∥∥∥p(i+1)
k − p(i)

k

∥∥∥ . (2.3)
A link Lk can be represented equivalently as an ordered sequence of mk seg-
ments Lk =

(
l
(0)
k , l

(1)
k , . . . , l

(mk−1)
k

)
. The length of a link Lk is denoted

Lk =
mk−1∑
i=0

`
(i)
k . (2.4)
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To better illustrate this concept, Figure 2.1 shows the representation in terms of
nodes and shape points for a given link. Another commonly used map representation
is the lanelet representation [11], which uses the left and right bounds of the lane.
In this case, a conversion into a center line representation is required beforehand, as
in [48]. Those concepts will be explained better in the next section.

Figure 2.1: A roundabout with its HD map representation. The decision zones are green,
the transition zones are yellow and the ring zone is red. The roundabout exits
are gray. For a given link, the nodes and shape points are shown.

2.3.2 Curvilinear Coordinates Along HD Maps
The principle of curvilinear coordinates is to map an Euclidean pose, defined as
X = [x, y, θ]T , where x and y represent the 2D position and θ is the heading angle
of the AD vehicle in a Cartesian working frame onto a curvilinear pose with respect
to a geometrical curve.
As it will be shown in the following part, there exists many curves that can be

used to represent roads. Such curves can be stored in a map in a variety of formats
including clothoids, splines, or polylines, and typically represent vehicles’ nominal
paths.
In many driving contexts, the center line of a lane is a sufficient approximation

of the path that the vehicles follow. In the particular cases of overtaking and lane
change, the AD vehicle can decide to replace its reference path by a new path
computed by a planner. Let us define the curvilinear coordinates [s, n, ψ]T , as
illustrated in Figure 2.2, where s represents the AD vehicle curvilinear abscissa
along the curve, n represents the signed lateral distance of the AD vehicle from the
curve and ψ is the heading angle computed w.r.t. the curve.
To compute a curvilinear pose from a Cartesian pose, the first step is to implement

a mapping between the center of the vehicle body frame and a point that lies on
the curve. In order to chose such a point, a criterion must be established (e.g.
the shortest point-to-point or point to curve distance). This process is called map-
matching and Figure 2.2 illustrates such concept. As one can see, the point M
is mapped into the point H on the curve via a map-matching process. Then, the
curvilinear abscissa can be computed w.r.t. the curve. Considering also the tangent
vector at point H, the signed lateral offset n and the relative angle ψ can be derived
to compute the curvilinear pose. Notice that the component n has a negative value
when M is at the right of the curve and it has a positive value when M is at its left.
Every curve is oriented.
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M

H
s

n

Figure 2.2: Curvilinear pose coordinates [s nψ]T relative to a polyline of a HD map com-
posed by the curvilinear abscissa s, the signed lateral distance n and the
relative orientation ψ computed from a Cartesian pose [x y θ]T . The vehicle
body frame is centered in point M .

As previously said in section 2.3.1, a HD map is a data structure that represents
geometry and semantic of the urban environment at different layers. In its simplest
form, a HD map can be provided as a sequence of points that represent the AD
vehicle nominal path. Furthermore, this model can be refined to represent more
complex driving situations. In a minimal representation, a HD map defined as
the set:

{
p

(i)
k = [xi, yi]T

}
with i ∈ 1, ..., n is considered. This set produces a set

of oriented polyline segments that define the road orientation for traffic circulation.
From this representation, it is possible to extract several different curves to represent
the center of the lane. In this work, three types of model to represent the center of
the lane have been considered. First, we consider the polylines model. This model
is one of the simplest representations that we can exploit in such a context. The
main idea of this approach is to connect two consecutive points p(i)

k and p(i+1)
k with

an oriented segment. Such process is repeated for every couple of subsequent points
of the map. To compute curvilinear coordinates with this new map representation,
the map-matching is performed by searching the smallest distance among all the
distances from point M to each segment of the polylines.
One other way to represent the centerlane consists in using a different curve repre-

sentation instead of a polyline one. In particular, a polynomial representation is con-
sidered. This representation is obtained by fitting the set of points

{
p

(i)
k = [xi, yi]T

}
.

The goal is to obtain a smoother curve than polylines and to eliminate discontinuities
at polyline vertex that appear when using polyline-based models. To perform map-
matching, an optimization technique that minimizes the point-to-curve distance is
exploited. In this work, we consider both B-spline and Hermite splines polynomials.
Finally, the lanelet model has been taken into account. This model exploits again

a polyline-based framework to represent the centerlane of the road. However, this
method exploits a non-Euclidean distance combined with a map-matching technique
to overcome the discontinuities that arise when using polylines, providing a more
continuous representation of the curvilinear coordinates. For further details about
the three aforementioned techniques, the reader is invited to look at Appendix 7.3.

2.3.3 Map-matching Methods Comparison
Let us compare the road models and map-matching techniques presented before in
order to understand their main advantages and drawbacks. A synthetic case study
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is presented in order to illustrate discontinuity and non-linearity issues. Such a
case study is useful to understand the effects that different map-matching and road
models can produce during the AD vehicle navigation.
Let us consider a vehicle driving at a constant speed along a straight line. Figure

2.3 depicts such scenario. In particular, in Figure 2.3a, the dashed magenta line
represents the AD vehicle trajectory. In order to build a navigation map to be used
for validating the aforedescribed algorithm, a set of four control points is provided.
The goal of this test is to compute the curvilinear coordinates of the vehicle with
respect to the road map which is represented by the application of the different road
models to the four control points. These points are illustrated by the red circles in
Figure 2.3a.
On Figure 2.3a, we can see that if the polyline or the lanelet road models are used,

the road path is represented by the set of line segments that connect subsequent
control points (red line). On the contrary, regarding spline-based road models, we
obtain a curve that passes through all the control points (green line) for the Hermite
spline, while for the B-spline (blue line) it is provided as an interpolation of them.

2.3.3.1 Discontinuities and Non-linearities

According to the different road models of Figure 2.3a, the resulting curvilinear co-
ordinates computation, is depicted in Figure 2.3b, 2.3c and 2.3d. In particular, in
Figure 2.3b, one can observe the resulting curvilinear abscissa for each model. It can
be noticed that this quantity evolves in a different fashion for the four road models.
First of all, for the polyline model (red curve), one can clearly observe the presence

of a stationary point when reaching the second control point at around one meter. In
the neighborhood of this point, the value of the curvilinear abscissa remains constant
while the vehicle keeps moving along the x-axis. After that, when it reaches the third
control point, a discontinuity on the value of the curvilinear abscissa appears. This
can be seen because of the presence of a jump in the red curve of Figure 2.3b.
On the other hand, regarding the lanelet road-model (black curve), there is no

discontinuity of the curvilinear abscissa value in none of the control points neigh-
borhood. However, contrary to the polyline model, the curve between two control
points is non-linear. This has the effect that, even though the vehicle is moving
with constant velocity, the derivative of the curvilinear abscissa is not constant.
This produces a false estimation of the driving speed of the vehicle. Moreover, the
derivative of the curvilinear abscissa is not continuous in the neighborhood of the
the control points, which means that, if we compute such quantity when reaching a
control point, an infinite acceleration appears. The same phenomenon appears for
the polyline models.
Finally, considering the result obtained by the use of the spline-based road mod-

els, one can observe that the continuity issues of the curvilinear abscissa and its
derivative are not present. In particular, the curvilinear abscissa curves are contin-
uous and differentiable for both the Hermite spline (blue curve) and the B-spline
(green curve). However, a drawback of these two approaches is that a non-linearity
appears in the zones between the control points. Such non-linearity is more severe
than the one in the case of the lanelet model (this is particularly evident for the
Hermite spline).
In Figure 2.3c, the resulting curvilinear ordinates are also reported. One can

observe that the curvilinear ordinate is always continuous for the four methods.
Nevertheless, the splines present a smoother behavior and, at the control points,
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Figure 2.3: Discontinuities on the curvilinear pose of a vehicle using B-Spline (in green),
Hermite spline (in blue), polyline (in red) or lanelets (in black).
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Table 2.1: Properties of the different road models.
Polyline Lanelet Splines

s continuity � �
ṡ continuity �
s linearity �
n continuity � � �
ṅ continuity �
n linearity �
ψ continuity � �
ψ̇ continuity �
ψ linearity �
real-time � �

a break appears in the curvilinear ordinate computed with the polyline and the
lanelet. The derivative of the curvilinear ordinate of these two methods are also not
continuous at the joint points.
Figure 2.3d illustrates the resulting curvilinear orientation. It is possible to see

that the curvilinear orientation computed with the polyline jumps when the matched
segment changes. The curvilinear orientation of the lanelet method is continuous but
breaks appear at the control points and, as in the case of the curvilinear ordinate,
the derivative is not continuous either. The splines methods always keep smooth
trends with at least a C2 continuity even at the joint points.
To sum up the results and the conclusions of the case-study, the different proper-

ties of the road models are summarized in Table 2.1.

2.3.3.2 Map-matching Discontinuity

In the previous case study, we have demonstrated that the curvilinear coordinates
are at least continuous when using a lanelet-based and spline-based models to repre-
sent the driving corridor and for map-matching. However, the obtained results are
actually valid only if the map-matching process is continuous itself. In other words,
to provide continuous coordinates via a map-matching process, the vehicle must be
map-matched to each polyline segments consecutively one after another. In the case
of spline-based models, none of the portions of the curve between two consecutive
control points must be skipped. However, there exists situations in which there
is no guarantee that such constraint holds true. If we consider for example, cases
where the vehicle is far away from the center of the lanes, the map-matching process
may become discontinuous. This will inevitably lead to non-continuous curvilinear
coordinates.
To visualize this concept, Figure. 2.4 illustrates the map-matched zones relative

to each segment for the lanelet and splines methods. Because the tangents at the
control points are the same for all these three methods, the boundaries between the
different zones are exactly the same. One can see that if a vehicle drives on the upper
part of the driving scenario, being far away from the road model, it will switch from
the red zone directly to the blue zone, without going through the green zone. This
will lead to a missed segment in the map-matching procedure. As a consequence
of that, a non-negligible discontinuity in the curvilinear coordinates appears. The
same reasoning holds both for AD and MD vehicles.
Nevertheless, within the context of an AD vehicle, it is reasonable to assume that
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Trajectory with discontinuities

Trajectory with no discontinuities

Figure 2.4: Map-matching discontinuities w.r.t. a polylines-based and a continuous road
representation. The boundaries have been computed considering the lanelet
map-matching and splines criteria. The red, green and blue zones correspond
to geographic spaces for which the map-matching results to the first, second
and third lane segments, respectively.

the vehicle always remains at a sufficiently short distance w.r.t. the center of the
lanes. In such case, curvilinear coordinates using lanelet or spline road-models can
remain continuous.
In the rest of this manuscript, the Lanelet formalism will be used to both im-

plement the map-matching procedure and to compute curvilinear coordinates along
the HD map polylines.
This work and its results have been published in the 20th IEEE International

Conference on Intelligent Transportation Systems [40].

2.4 Simulation with a Realistic Traffic Flow
In the simulation environment that has been developed for testing the navigation
algorithms, the well known SUMO simulator has been integrated for handling the
generation of an heterogeneous and random MD vehicles flow. However, in a sim-
ulated environment, it is difficult to simulate a traffic flow with realistic behaviors.
Indeed, some driving maneuvers are often overly-simplified, as for example lane
changes, and they do not correspond to realistic vehicle behaviors. The main rea-
son is that, in general, motion and behavior models that traffic agents use in the
simulated environments do not provide a sufficient level of details to model these
kinds of maneuver in a general way. This is done to prevent the simulator to be
overly-charged when a wide set of vehicles is simulated at the same time, for exam-
ple for use-cases that need the presence of a wide set of cars moving together. On
the other hand, a driving behavior model that is extremely focused on one single
driving behavior, e.g. a lane change maneuver of an emergency brake can be used
only for this specific purpose, producing limited results regarding the rest of all the
possible maneuvers.
In the following, a technique that aims to re-create in a simulated environment the

behavior of traffic agent recorded in a real traffic dataset is presented. In particular,
we implemented a method to quantify the degree of adversariality of the obtained
traffic flow w.r.t. the one in the datasets in order to both generate challenging
driving scenarios for testing the navigation algorithms proposed later on Chapter 3
and to establish a ranking of the driving scenarios based on their complexity and
interaction between road agents.
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2.4.1 Traffic Simulation for Autonomous Vehicles
Simulation of the traffic environment is a technique widely used in relation to self-
driving cars. In fact, this approach has several advantages. Simulations are safer,
more efficient, and cheaper than live testing with real vehicles. With simulations
it is also possible to generate a variety of different driving scenarios that would be
hard to create using real road agents, thus reducing the risk of damage to material
and injury to people.
Of course, in order for simulators to be meaningful when testing AD applications,

a realistic simulation level w.r.t. the real world is essential.
In general, it is almost impossible to find a simulator that satisfies every single

requirement for autonomous driving. However, there are a wide range of simulators
that target individual aspects (traffic flow, sensor simulation, etc.).
In this work, we focus on traffic flow simulators. Simulators concerned with traffic

flow can be separated into two main types, namely macroscopic and microscopic
traffic simulators. Macroscopic simulators are mainly used to study large-scale flow
problems, relating to road capacities and bottlenecks over a large complex road
network. In these simulators, the dynamics of individual traffic agents are quite
simple, and sometimes there is an absence of information relating to single traffic
agents. The level of details is kept low to allow the simulator to perform simulations
involving hundreds of vehicles and with a reasonable computation time. Macroscopic
simulators are therefore not suitable for AD navigation because interactions between
the vehicles and driving maneuvers (e.g., lane changes) are overly simplified. As a
consequence, they do not provide a sufficient level of detail to be used for testing a
navigation algorithm.
Microscopic simulators, on the other hand, focus on the characteristics of single

road agents rather than global vehicle flow. The description level of every simulated
road agent must be high and detailed. Longitudinal and lateral motion of vehicles
can be obtained via a number of built-in driving models customizable with a large
set of driving parameters. For some simulators, e.g., SUMO, it is also possible to
parameterize some complex maneuvers such as lane changes, for example modeling
the duration of the maneuver and the overtaking strategy.
For this work, it has been decided to use the well-known SUMO simulator [51],

widely used for microscopic traffic simulation in the area of collision avoidance [32,
49]. We refer interested readers to [32] for more technical details about it.
Although simulation performance is becoming increasingly precise, it is important

to be aware that a gap still exists between simulated maneuvers and those performed
in the real world. However, state-of-the-art simulation technology is helping to
narrow that gap, with regular new releases of the simulators.

2.4.2 Vehicles Flow Generation
This section proposes a method to reproduce a realistic vehicle flow in a simulated
environment and to quantify its degee of adversariality w.r.t. the AD vehicle. To do
so, we use data contained into the real traffic dataset INTERACTION. As stated pre-
viously, this dataset has been chosen because it provides data for highly interactive
road users, including situations where road users have adversarial motion behav-
iors. With the term “adversarial” we mean a non-cooperative navigation behavior
that has the goal of fulfilling the single vehicle behavior, rather than optimize the
collective navigation of all the road users. As a consequence, sometimes adversarial
vehicles tend to have aggressive behaviors and they may not respect traffic rules.
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Traffic flow data recordings at a microscopic level in a dense traffic flow situation
are provided for every roundabout in the dataset.
In order to compare the performance of the generated flow in the simulator w.r.t.

the original flow, a metric is required. This metric must be able to capture the degree
of interaction between road users, especially in complex driving situations (close
navigation in parallel lanes, overtaking, intersection insertions without markings,
etc.).
The authors in [102] propose to use the ∆TTICmin (minimum Time-To-Imminent-

Conflict-point) difference metric for an interactive pair of vehicles [93]. Following
[102], we define an interactive pair of vehicles as a pair of vehicles that have at least
one common point in their respective reference paths.
For a given interactive pair of vehicles, the corresponding ∆TTICmin can be

computed as
∆TTICmin = min

t∈[Tstart,Tend]
(TTICt

1 − TTICt
2), (2.5)

where TTICt
i = 4dti/υti , and i = 1, 2, is the traveling time to the conflict point

of each vehicle in the interactive pair and the time interval [Tstart,Tend] represents
a time window where two vehicles interact. Note that 4dti is the distance from
the vehicle position to the conflict point in a Frénet frame, which is equivalent
to the absolute value of the curvilinear abscissa w.r.t. to a conflicting node, as
defined in Equation (3.2). When ∆TTICmin 6 3 s, there is deemed to be an
interaction between the vehicles. Moreover, an interaction between two vehicles is
termed intense if ∆TTICmin 6 1 s. In this study the focus is put on the data from
the “USA_Roundabout_FT” scenario, because this is the most interactive two-lane
roundabout, with the highest number of vehicles and recorded sequences.
We will now explain how SUMO can be used to generate a flow of vehicles based

on the INTERACTION traffic data with the same degree of interaction in terms of
∆TTICmin. This has several advantages. It allows us to quantify the performance
of the algorithm w.r.t. the interaction degree of the traffic scenario. It can give a
vehicle flow with the same degree of interaction as on a different roundabout test-
bed. A simulated vehicle flow in SUMO can react dynamically to the ego vehicle
decisions (e.g., braking when the insertion maneuver is too aggressive), while this is
not the case for a recorded flow dataset.
Using the curvilinear formalism introduced in section 2.3.1, an algorithm to com-

pute common intersection points between vehicle trajectories has been implemented.
In this case, trajectories are encoded as a list of links that a vehicle follows on the
road map, and consequently the intersection point is one node of the map. Unfor-
tunately, neither vehicle trajectories nor a lane-level high-definition map are present
in the INTERACTION dataset, and they therefore need to be computed both off
line.
To do so, a HD map representation of the “USA_Roundabout_FT” has been

computed starting from its lanelet2 [76] representation provided with the dataset
interface. The main idea behind this step is to convert the lanelet2 representation
of street borders to a centerline representation using our curvilinear formalism. A
Voronoi distances algorithm has been used to compute the set of center lines, that
is to say equidistant points from lane borders. However, this procedure is not com-
pletely automatic and can be error-prone where roads intersect and merge. Some
manual corrections were therefore done off line at the end of this step.
Although the “USA_Roundabout_FT” has more than one lane, we represent it

with only one lane in the HD map. This is to better capture the interaction between
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vehicles inside the roundabout ring, assigning vehicles navigating on multiple lanes
to the same portion of the map, even where vehicle trajectories do not overlap. This
is a reasonable strategy given that navigation in parallel lanes implies a possible
implicit interaction that should be taken into account (we cannot know in advance
the intentions of the vehicles).
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Figure 2.5: Comparison between the ∆TTICmin distribution generated from the same se-
quence of the USA_Roundabout_FT scenario of the INTERACTION dataset
(blue) and the one obtained from the traffic flow simulated by the resulting
traffic flow simulation in SUMO (green). One can notice that an highly dy-
namic behavior (∆TTICmin 6 1 s) is present in both scenarios.

To compute a reference trajectory for the vehicles w.r.t. the HD map, we have
implemented a map-matching procedure via the INTERACTION dataset animation
tool. From the raw data on trajectories this procedure directly computes the cor-
responding curvilinear position on the HD map and lists all the map links that a
vehicle traverses.
Once the intersection points between every interactive pair have been found, we

use the HD map to compute the curvilinear distances 4dti. Technical details about
this inter-distances computation can be found in section 3.3.6.
As for the input data to SUMO, for every track of the “USA_Roundabout_FT”

the arrival times, arrival speeds, inter-distances w.r.t. the vehicle ahead and be-
hind have been computed. The empirical distribution of these observed data was
estimated and used to randomly create vehicles with the same properties as their
real-world counterparts. Finally, the speed of each vehicle was bounded by the speed
limit provided by the road shape and the route attribute of each vehicle object was
chosen randomly, with more weight given to routes intersecting the AD vehicle’s
route.
The output of the system is a traffic flow with the ∆TTICmin distribution similar

to that computed using the real traffic data. Figure 2.5 illustrates the output of the
simulation for a recorded traffic sequence from INTERACTION. Highly dynamic
behavior (∆TTICmin 6 1 s) is present in both scenarios.
The high degree of interaction between interactive pairs comes mainly from the

double lane of the roundabout ring. Where two or more vehicles are traveling very
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close to each other in parallel lanes in the roundabout ring, there is a high volume
of interaction between them.
This method has been published in the IEEE Intelligent Vehicles Symposium

conference [67].

2.4.3 Hybrid Simulation Environment
After having discussed in details the method for simulating a realistic and highly
interactive traffic flow in our simulated environment, we present in this chapter
another tool that allows to move our simulation a step further closer to the reality.

Figure 2.6: Hybrid simulation experiment on the circuit Seville. On the right of the figure,
the MD traffic generation in SUMO (yellow cars) and the AD vehicle (gray
car, in the red circle). On the left, the corresponding intelligent vehicle frame-
work with the same obstacles (yellow rectangles). As all the MD vehicles are
simulated, they do not appear in the AD vehicle context camera

Let us consider again the simulator presented in section 2.4.2. Such a simulator
is composed of two main components: the SUMO-based simulator, for generating
an MD traffic flow and the ROS-based simulator, for simulating the motion of the
AD vehicle.
In this architecture, it is possible to replace the ROS-based simulator by connect-

ing directly the SUMO-based simulator real vehicles. This is possible because the
system has been designed to be modular w.r.t. different components, and both the
intelligent vehicles architecture and the SUMO-based simulators frameworks share
the same middle ware (ROS). In other words, it is possible to simulate the presence
of virtual obstacles in the navigation space of the intelligent vehicle. Such vehicles
are generated by SUMO according to the method described in section 2.4.2 and sent
to the intelligent vehicle on-board system.
However, to generate a consistent scenario, both the SUMO-based simulator and

the intelligent vehicle have to share the same HD map of the driving scenario.
Once this step is done, the intelligent vehicle can be programmed to perform a

certain mission (e.g. going through a roundabout) and, as soon as a virtual obstacle
appears, the intelligent vehicle will modify its behavior according to the driving
situation, treating the virtual obstacle as if it was a real one.
To better understand such situation, Figure 2.6 depicts an example of this tech-

nique. As one can see, on the right part of the figure, we have the SUMO with the
HD map representation of the experimental circuit Seville (section 2.5.5.1). Notice
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that some roundabout branches have been artificially added to generate a more com-
plex MD vehicles flow. On the other hand, it is possible to see the HD map-based
AD vehicle navigation space of the same driving scenario, with the corresponding
MD vehicles generated in SUMO. Notice that these vehicles do not appear in the
intelligent vehicle context camera.

2.5 Experimental Setup
In this last section of the chapter, we present the experimental platform of the
Heudiasyc laboratory that have been used in this thesis. In particular, the experi-
mental platform has been exploited both to test the navigation algorithms discussed
in chapter 3, and to acquire real-traffic datasets for testing our perception system
described in Appendix 4.
Those datasets have been recorded to propose a common benchmark from different

shared perception use cases. The detailed explanation of the context and of the
different scenarios of these datasets is given in chapter 7.
Those data have been recorded in both the cities of Compiègne and Rambouillet,

in France between 2018 and 2020, under different traffic and weather conditions.

2.5.1 Experimental Vehicles Platform
The Heudiasyc laboratory owns a research vehicles platform with several prototypes
of intelligent vehicles. Such vehicles can be used both to test autonomous vehicle
driving, and to collect data from real traffic environments.
Figure 2.7 illustrates the three Renault ZOEs of the platform. Vehicles illustrated

in Figures 2.7a and 2.7b are part of the ROBOTEX (ANR-10EQPX-44-01) project
and are fully controllable by an on-board computer via a micro-autobox device that
communicates directly with the car engine. In particular, it is possible to control
the vehicle acceleration and brake by generating a torque, and the vehicle’s steering
wheel by generating a steering wheel angle. The other car, shown in Figure 2.7c,
has not been modified to be controlled in autonomous mode.
Regarding the onboard sensors, all the three vehicles are equipped with a different

set of sensors to be used both in experiments and for data recording. A list of the
most relevant sensors is provided hereafter:

• Front and rear multi-layer LiDARS

• A 360◦ 32 Layers LiDAR on the vehicle’s roof

• Several On-board cameras

• An intelligent Mobileye camera

• Several GNSS localization receivers (with the possibility of exploiting Real
Time Kinematics corrections in real time and to do PPK for very accurate
positioning in post-processing)

• 802.11p radio modems for both V2V and V2I communication
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(a) (b) (c)

Figure 2.7: The three vehicles of the experimental platform of the Heudiasyc laboratory.
Figure 2.7a and 2.7b depict the two vehicles equipped with the control system,
respectively called the Zoe Grey and the Zoe White, while Figure 2.7c shows
the vehicle used for data recording, called the Zoe blue.
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2.5.2 On-board Sensors
We describe here the main on-board sensors involved in this work. In particular,
the attention will be focused on the localization system that is used to provide a
ground truth localization for the AD vehicle and the 32 Layers LiDAR sensor that
we use for perception tasks.

2.5.2.1 Localization

To obtain an accurate and robust localization for the AD vehicle, a NovAtel SPAN
CPT GNSS receiver with an Inertial Measurement Unit (IMU) is used. Such a
system provides an accurate and reliable localization by the combination of GNSS
positioning and information from accelerometers and gyrometers.
Moreover, localization accuracy is improved by exploiting Real-Time Kinematic

(RTK) corrections in real-time. Such corrections are provided via a fixed receiver.
An accurate knowledge of the antenna of this receiver is required. In this case,
an antenna has been installed on the roof of a building of the UTC campus. This
antenna sends the RTK corrections to the on-board receiver installed on the AD
vehicle providing a centimeter level of accuracy in localization. The uncertainty
on positioning provided by the sensor is around 10 centimeters on latitude and
longitude and around 3◦/4◦ on yaw angle orientation in the worst case. However,
for data acquisitions performed away from the campus area, either NRTK or post-
processing RTK corrections have been used.
This system has been used for several purposes. First, to provide an accurate

localization to the AD vehicle during experiments and real-time demonstrations on
the experimental site of the campus. Second, to provide a ground truth localization
for the recorded datasets. In this case, to have a full range cover on all the zones,
we exploit a post-processed PPK instead of RTK corrections in real-time. In such
cases, the three vehicles of the platform have been used for recording (details are
available in Appendix 7.2). For every vehicle, a localization system provides the
localization to be used either as the AD localization source or as the ground truth
that provides the exact localization for a detected road obstacle.
The coordinates provided by the localization system are converted from a global

reference frame (e.g. WGS 84) into an East North Up (ENU) frame coordinates.
The ENU frame is obtained by approximating the spherical earth’s surface with
a tangent plan centered at a fixed point. In our case, for each scenario of the
datasets, a point close to such driving environment has been chosen. In the rest of
the manuscript, the localization of the AD ego vehicle in the world reference frame
will be indicated as:

wXe =


wxe
wye
wθe

 (2.6)

Where the superscript index w indicates the ENU frame. Notice that in this work,
only a 2D pose is computed and the height coordinate is disregarded.

2.5.2.2 360° LiDAR Sensor

To perceive the AD vehicle’s surrounding obstacles, a 360° 32 beams Velodyne
VLP32-C LiDAR (Light Detection and Ranging) has been used. This sensor scans
the driving environment revolving around its center, providing a 3D environment
representation in the format of a dense point cloud.
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To build such a representation, the LiDAR sensor performs a non-contact distance
measurement by emitting a series of light pulses and measuring the impact distance
and the impact position along the X, Y and Z-axes of the series of points obtained
when the light beams hit an object. The travel distance of each pulse is obtained by
considering the pulse time-of-flight measurement. This time-of-flight is computed
by measuring the time difference between the time instant when the pulse is emitted
from the sensor and the time instant when the pulse returns to the sensor.
The choice of using of a laser pulse that moves at the speed of light allows to detect

the shortest distance between the sensor and a certain detected object. This prevents
to consider any other possible deflection. However, other different problems arise,
such as the impossibility to see through detected objects. As a consequence, this
may generate occlusions and blind spots in cluttered traffic environments. Another
issue that may arise is the phenomenon of multi-echoes. In this situation we have
multiple returning pulses that correspond to a single emitted light beam. This can
be caused by the presence of elements that partially reflect the laser beam, as for
example transparent objects or natural phenomena like rain, fog or dust.
The Velodyne VLP32-C is a particular LiDAR sensor that comes with 32 laser

beams disposed along the vertical axis of the sensor, with a vertical field of view
between +15◦ and −25◦. Moreover, it has an horizontal field of view of 360◦ and it
can range up to 200 meters. Such beams are emitted simultaneously and the sensor
revolves around its barycenter with a frequency of 10Hz (600 RPM). This leads to
a scanning with an azimuth resolution of 0.2◦.
The scanned points are stored into a point cloud data structure. A point cloud

is provided for every 360◦ revolution of the sensor. When a pulse is not reflected
back or it does not hit any object, no point is obtained. In general, each scanning
sequence provides around 60000 points. Each data point belonging to the point
cloud is acquired and provided in spherical coordinates. For each point, the radius
r, the elevation ω and the azimuth α are computed. Such quantities are respectively
obtained by radial impact distance, the vertical and horizontal angles of the laser
beam that generated the specific impulse. These spherical coordinates are converted
into Cartesian coordinates in the sensor frame by the Velodyne driver module by
computing the following transformation:

vP =


vx
vy
vz

 =

 r cos(ω) sin(α)
r cos(ω) cos(α)

r sin(ω)

 (2.7)

Where the angle α represents the azimuth angle, r the radius and ω the elevation
angle.

2.5.3 V2X Communication
To implement I2V communication between the AD vehicle and the intelligent infras-
tructure during the tests, the V2X technologies provided by Lacroix-City group has
been used. We have used an On Board Unit (OBU) and a Road Side Unit (RSU) to
achieve I2V communication. Such devices are able to encode, broadcast and decode
messages in the main formats of the ETSI standard (Appendix 7.1). In this specific
case, the Cooperative Perception Message (CPM) for broadcasting the results of
perceived information between the intelligent infrastructure and the AD vehicle has
been used. A detailed explanation of the exchanged information between the two
systems is discussed in Appendix 7.1. Furthermore, the devices are equipped with a
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(a) (b)

Figure 2.8: Equipment used to implement I2V communication. Figure 2.8a: On-board
Unit (OBU). Figure 2.8b: Road Side Unit (RSU).

GNSS receiver that allows to synchronize the different clocks in the same time basis
via a synchronization protocol. This step is crucial to exploit information in the
different systems. Figures 2.8a and 2.8b, show respectively the OBU and the RSU
used during our experiments.
In order to record our own cooperative perception datasets, another model of

Cohda 802.11p radio modems has been also used.

2.5.4 Intelligent Infrastructure
One of the objectives of this work is to study the benefits that an intelligent infras-
tructure can provided to enhance safety during complex driving maneuvers. In this
use-case, it has been decided to exploit an intelligent camera to monitor road traffic
in a roundabout (Figure 2.9). Such a camera is able to process the acquired images
in real-time and to broadcast the obtained results to the AD vehicle. To do so, the
camera has been installed in a way that it can provide additional information about
incoming MD vehicles on the left entering branch of the roundabout w.r.t. the AD
vehicle trajectory.
This part has been developed in the context of the Tornado project in collaboration

with the Université Gustave Eiffel.
In order to provide exploitable perception information, the camera raw image

are sent to a computer via Ethernet. The received images are then treated to
extract bounding boxes of road users and their estimated speeds. In order to extract
the aforementioned quantities, an implementation of the YOLO V3 [45] detection
algorithm has been used. Such a technique is capable to capture information as
the class of a detected object and the object bounding box in the image plan. The
dimension of the object are then inferred by combining the class information and
the object bounding box in the image plan.
After that, the bounding boxes are projected into the word frame via geometric

transformation and exploiting the HD map-based road geometry representation.
Notice that this procedure requires a non-trivial transformation. Details about this
process will be given in chapter 5.
Finally, the perceived information is encoded into a CPM object and sent period-

ically to the AD vehicle with the OBU.
The overall rate of this treatment is around 10Hz. Notice that, as in the case of

V2X communication, the camera’s clock is also synchronized at the same time as
the rest of the system.
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Figure 2.9: A surveillance camera used for monitoring road traffic in the roundabout sce-
nario.

SeVILLE

Figure 2.10: The HD map representation of the UTC campus. In the red circle, one can
see the SeVILLE experimental site.

2.5.5 Test Scenarios
In this last part of the chapter, the main scenarios where the experiments and tests
with the intelligent vehicles took place will be presented. Moreover, some of these
sites have also been used to collect datasets for validating the methods proposed in
chapter 4 and chapter 5. A further description of these datasets is given in Appendix
7.1.

2.5.5.1 Test Site: SEVILLE

The first testing scenario that we describe is the experimental circuit SeViLLE. This
site is an outdoor environment located at the Heudiasyc Laboratory in the city of
Compiègne. This site is closed to public traffic and it is used as a test-bed for the
intelligent vehicles of the laboratory platform.
Figure 2.10 illustrates the map of the Heudiasyc Laboratory campus and the corre-

sponding experimental circuit. Such a circuit is composed of two little roundabouts
and a road (that can be traveled in both directions) that joins them.
In this work, the circuit has been useful to test the navigation algorithms both in

a hybrid simulation context (section 2.4.3) and in a real experiment with the other
vehicles of the platform.
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(a)

(a)

(b)

(b)

Figure 2.11: The city of Compiègne (France) with its corresponding HD map. The area
(a) represents The Guy Dénielou roundabout in which data collection has
been performed, while area (b) represents the bridge where the intelligent
infrastructure has been installed.

2.5.5.2 Compiègne Scenario

Another experimental driving scenario that has been considered in this work is
the city of Compiègne. It includes several zones of the municipality. These zones
also have a HD map representation that contains several roundabouts and other
complex traffic zones. Figure 2.11a provides a global overview of the town with the
corresponding HD map.
The most used part of the city was the Guy Dénielou roundabout that has been

exploited for data acquisitions. This roundabout is situated next to the Heudiasyc
laboratory. Figure 2.11a illustrates this experimental scenario, while Figure 2.11b
depicts the roundabout that has been used for the tests.

2.5.5.3 Rambouillet Scenario

The Tornado project took place in the city of Rambouillet. For this reason, several
experiments have been also carried out in this site. Figure 2.12a shows a bird-eye
view of the whole city. The aim of the autonomous mobility service was to link the
different parts of the municipality. Figure 2.12a shows the whole municipality of
Rambouillet and its corresponding HD map. As one can see, such scenario includes
both urban environments and countryside roads.
In order to test cooperative navigation of AD vehicles on roundabouts, we have

installed an infrastructure-based system in the roundabout (a) of Figure 2.12b. This
choice has been done because we considered that this roundabout is the most chal-
lenging both in terms of reduced visibility and traffic load.

2.6 Conclusion
In this chapter, we have presented an overview of the main tools that will be used
in the rest of the manuscript. For each research topics of this work, a state-of-the-
art review has been carried out. Then, a HD-map based formalism for computing
curvilinear coordinates w.r.t. polylines has been introduced. A comparison of the
main methods for modeling a reference trajectory from a set of given points has
been performed. In particular, the comparison has been carried out looking for the
continuity of the computed curvilinear coordinates and the real-time implementation
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(a)

(a)

(b)

(c)

(b)

Figure 2.12: The city of Rambouillet (France) and its corresponding HD map representa-
tion. In Figure 2.12b, the urban scenario with some roundabouts. Round-
about represented by area (a) has been chosen to test the infrastructure-based
system, while roundabout represented by area (c) has been used to collect
some data. Finally, the path represented by area (c) has been used to test
some autonomous driving use-cases.

of the methods. The results show that, in order to achieve our objectives, the
lanelet technique is the best one. Indeed, this technique provides a continuity in the
obtained curvilinear coordinates and it can be computed in a reasonably low amount
of time. The concept of curvilinear coordinates along with HD map is crucial to
obtain a consistent representation of the curvilinear inter-distances between different
road agents, as it will be shown in the next chapter. If the continuity is not verified,
some unwanted behavior in the inter-distances computation can appear, leading to
a misleading representation of the interaction between road agents.
We have also introduced a novel approach for enhancing the simulation capabilities

of the well-known traffic simulator SUMO in the case of a dense traffic flow. In this
specific case, data recorded from several dense traffic scenarios all over the world
have been exploited to re-create the same kind of traffic scenarios in SUMO. To
compare the degree of interaction between these traffic flows, a metric has been
introduced. It is opinion of the authors this kind of approach allows to simulate a
more interactive and realistic traffic for simulation purposes. Such kind of approach
also allows to capture interactions between vehicles in dense traffic jams, for example
nudging and the non respect of traffic rules, which must be included in a navigation
test-bed in order to provide a set of use-cases as general as possible.
Finally, we have presented the main systems and sensors that we will exploit

during the experiments and also provide a description of the different scenarios
where tests and datasets recordings took place.
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3 Map-based Navigation Methods to
Cross Roundabouts Safely

3.1 Introduction
Despite the tremendous growth of research regarding fully autonomous driving ve-
hicles (AD) in the past few years, many safety critical scenarios, such as the crossing
of roundabouts, are still open issues. Vehicle-to-vehicle and vehicle-to-infrastructure
communications offer an appealing solution to handle such situations in a coopera-
tive way. In this chapter, we propose to adapt the concept of virtual platooning to
the roundabout crossing use-case. This idea allows a single navigation strategy to
handle complex scenarios such as intersection and roundabout crossings in a general
and scalable fashion. First, a demonstration of the efficacy of this algorithm in a
case where only communicating vehicles are present in the driving scenario is given.
Then, this approach is generalized not only to communicating AD vehicles, but also
to manually driven (MD) communicating vehicles or even non-communicating ones.
In the second part of the chapter, an extension of the aforementioned naviga-

tion strategy is proposed to deal with navigation scenarios with one self-driving car
among a flow of non-communicating and non-cooperative MD vehicles. One of the
major challenges of this driving scenario is the safe navigation of AD vehicles on
roads open to public traffic. Indeed, behaviors and intentions of MD vehicles are
hard to predict and understand.
The presented approach relies on High-Definition (HD) maps with a lane level

description which allows to predict the future situation thanks to the concept of
virtual vehicles. This method handles safely collision avoidance and guarantees that
no priority constraint is violated during the insertion maneuver without being overly
cautious. The performance is evaluated with the SUMO simulation framework. A
highly interactive vehicles flow has been generated using real data from the IN-
TERACTION dataset, according to the method discussed in the previous chapter.
We also propose strategies to extend the algorithm to multi-lane roundabouts and
report how these extensions behave in terms of safety and traffic flow. Finally,
the feasibility of this approach has been shown performing real tests carried out
with an experimental AD vehicle on a test circuit in real time. The results show
that this approach is easy to integrate into an embedded system and that it allows
roundabouts to be crossed with a high level of safety. This chapter is organized as
follows: in section 3.2, it is presented the roundabout crossing algorithm in the case
of a single-lane roundabout, with communicating and cooperative self-driving cars,
with no uncertainties on vehicles localization and no priority constraints. Section
3.3 presents the algorithm in the most generic case where all the aforementioned
simplifications have been progressively removed. Finally, section 3.4 illustrates the
main experimental results and in section 3.5 we discuss the main conclusions and
future perspectives about the presented work.
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3.2 Single-lane Roundabout Crossing with
Cooperative vehicles

The aim of this first part is to illustrate the main concepts of a navigation method
in a scenario with only cooperative and communicating vehicles. Moreover, in this
first part of the work, priority constraints between vehicles in the roundabout are
not still considered. This choice is motivated by the fact that if all the vehicles are
autonomous and cooperative, there is no need to impose priority rules to regulate
traffic flow in a roundabout. This assumption will be removed in the next section,
where the extension of the approach to MD vehicles will be discussed. In this work,
the word vehicle is used to represent several different kinds of road users, as for
example: cars, trucks, buses, bicycles, etc. This choice has been done to underline
the capability of the algorithm to work with any different kind of road agent.

3.2.1 Curvilinear Signed Inter-distance
The first step of the curvilinear representation is to get the lane followed by the
vehicles. For an AD vehicle, it is simply given by the path planning module in
the form of a list N=(L1, L2, ...) of links to follow. In contrast, the driving lanes
of the MD vehicles need to be estimated by a map-matching procedure. It is well
known that map-matching ambiguities may arise when a road splits or when the
vehicle changes lanes. For this, a map-matching process is exploited. This process is
achieved using the method that will be described in section 3.2.3 [66] where multiple
candidate lanes can be simultaneously occupied by creating virtual instances of the
MD vehicle, one for each lane possibly occupied. This technique will be detailed in
section 3.3.3.
According to the notation introduced in the previous chapter, the curvilinear

abscissa sLk
of a vehicle lying on the link Lk and map-matched to its i-th segment

l
(i)
k is computed w.r.t. the starting node p(0)

k of Lk as follows:

sLk
=

i−1∑
j=0
`

(j)
k + λ`

(i)
k , (3.1)

where λ ∈ [0, 1] is a parameter to model the position along the map-matched segment
l
(i)
k . In the rest of the chapter, sLk

will simply be noted s when there is no ambiguity.
Practical computation of the curvilinear coordinates can be found in [40].
This representation is particularly useful to do virtual platooning for safely cross-

ing an intersection with a vehicle driving on another road [69]. Given the path of
the vehicle N = (Lk, Lk+1, . . .), the curvilinear abscissa to any node from the path,
for example, the ending node of the link Ln, is computed as

sn =
n∑
j=k
Lj − sLk

. (3.2)

Equation (3.1) computes the curvilinear abscissa of a vehicle measured w.r.t. the
start node of the current link Lk, while in equation (3.2) the quantity sn is measured
from the ending node n of link Ln backward to sLk

. Note that sn is negative and
increases as sLk

approaches the node n.
Let us consider two vehicles Vi and Vj with paths Ni and Nj, respectively. If the

two paths intersect, the curvilinear abscissa can be used to compute the relative

43



3 Map-based Navigation Methods to Cross Roundabouts Safely

Figure 3.1: The curvilinear abscissa w.r.t. a given link and the relative distance computa-
tion to the intersection point. The blue arrow pointing towards the intersection
point indicates the sign of the distance.

virtual gap between the two vehicles. Suppose that Ni and Nj intersect at a given
node n, and let si|n and sj|n be the curvilinear abscissa of Vi and Vj w.r.t. this node
n as defined in equation (3.2). We define the virtual curvilinear signed inter-distance
between Vi and Vj as follows:

di,j|n = −dj,i|n = sj|n − si|n. (3.3)

Note that di,j|n is a signed inter-distance where di,j|n > 0 means that Vi is closer
to n than Vj, i.e., Vi is virtually ahead of Vj. Figure 3.1 illustrates the computation
of the curvilinear abscissa and distances.

3.2.2 Adaptation of the Virtual Platooning Technique
In this section, the main concepts of inter-distances computation and map-based
curvilinear coordinates seen in chapter 2 are applied in the navigation algorithm for
the case of a roundabout crossing for cooperative AD vehicles that exchange their
pose and future path. In particular, an adaption of the virtual platooning technique
to ensure a safe roundabout crossing maneuver will be explained in the following
part of the chapter.
Suppose an AD vehicle Vi needs to cross a roundabout in the presence of other

AD vehicles V1, V2, . . . , Vn in the roundabout or approaching it. Let us first assume
for simplification purposes that the vehicle is alone on its way to the roundabout.
The first idea is to find a leader vehicle Vj, if it exists, w.r.t. which the vehicle Vi
needs to do virtual platooning. Vj is the vehicle with the smallest positive virtual
inter-distance to Vi among all the vehicles whose paths cross the one of Vi. If the
vehicle finds that it has no leader, meaning that there are no other vehicles on its
path, it can drive at its nominal velocity, without any risk of collision. Otherwise, it
regulates its velocity in order to keep a safety inter-distance to its leader vehicle Vj.
The same procedure is followed by all the other vehicles. This procedure, described
in Algorithm 3.1, allows all the AD vehicles to cross the roundabout safely in a
distributed manner.
Let us recall the hypotheses necessary for the proper operation of this approach.

First, we suppose that the poses [x, y, θ]T are well estimated (with negligible errors)
for all the vehicles. We also assume that there is a perfect communication between
all the vehicles without messages loss and negligible delay. Another assumption is
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Algorithm 3.1 Elementary roundabout crossing procedure for AD vehicle Vi. In
this case, Ni corresponds to the trajectory of AD vehicle Vi.
Require: [xi, yi, θi], Ni . AD vehicle pose and trajectory
1: d← +∞
2: Send (xi, yi, θi, Ni) . broadcast of the AD vehicle pose
3: [V1, V2, . . . , Vc]← Receive() . collect information about other communcating

AD or MD vehicles
4: sLi

← CurvAbscissa([xi, yi, θi], Ni)
5: for j = 1 : c do
6: n← FindFirstCommonNode(Ni, Nj) . compute trajectories intersection

point (if it exists)
7: if n = ∅ then
8: Continue . Vj does not cross the path of Vi
9: else

10: sLj
← CurvAbscissa([xj, yj, θj], Nj)

11: dij|n ← Interdistance(sLi
, sLj

, n, Ni, Nj) . compute virtual curvilinear
inter-distance

12: if dij|n < 0 then
13: Continue . Vj goes after Vi
14: else
15: d← min(d, dij|n)
16: leader ← Vj
17: end if
18: end if
19: end for
20: if leader = ∅ then
21: Continue . go with nominal velocity
22: else
23: LongControl(leader, d) . platooning with leader
24: end if
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(a) (b) (c)

Figure 3.2: Mixed scenario. (a) Generation of the virtual vehicles V ′ and V
′′as copies

of vehicle V and their paths. (b) Branching scenario, the two vehicles V ′

and V ′′follow their virtual paths until the most unlikely copy w.r.t. the real
pose of V is deleted. (c) Re-computation of the virtual copies and their paths
according to the new branch.

that all the paths are known and shared, which is reasonable for cooperative AD
vehicles, but not for MD cars. For this more general use-case, a method to handle
this issue will be presented hereafter.

3.2.3 Extension of the Method with Virtual Copies to Handle
MD Vehicles

The approach explained previously shows how to handle scenarios in which only
communicating AD vehicles are involved. In a more general context, one has to
deal with the possible concomitant presence of both autonomous and MD vehicles.
While it is reasonable to assume that AD vehicles can share their intended paths,
it is not the case for MD vehicles, as they are not known a priori, since the route
depends on the driver’s intentions. Regarding the MD vehicles, we suppose only that
their localization w.r.t. the map frame is known with low uncertainty and known
by all the vehicles in the surroundings. This can be done by supposing either to
have vehicles that share their pose through wireless communication or to have an
intelligent infrastructure able to localize the vehicles in the environment and then
broadcast the vehicles it perceives.
A simple way to extend the approach proposed previously is to make it handle

manually driven cars by predicting their unknown paths. For this reason, a new
approach that replaces a MD vehicle V by two copies V ′ and V ′′ when a lane splits
in two has been proposed. The main idea behind this is to assign to each virtual
copy of V the two extreme paths w.r.t. the current position of V , that is the
first exit branch for V ′ and the last exit branch (U-turn) for V ′′ , as it is shown in
Figure 3.2a. When a branch occurs, the paths of the two virtual copies start to
diverge from each other. Therefore, the map-matching algorithm will assign two
different projections for each of them (see Figure 3.2b). Once the map-matching
criterion becomes unlikely regarding to the current pose of V , the corresponding
virtual copy is deleted and there is no longer ambiguities on the path of the manually
driven car.
Then, two scenarios can occur:

1. The vehicle V is on an exit branch. In this case, the remaining copy keeps
going on this branch until it disappears from the scenario. No new virtual
copies need to be introduced.

2. The vehicle V is on an internal branch. In this case, the remaining copy is
itself replaced if needed by two new virtual copies updated w.r.t. the new
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configuration (Figure 3.2c).

As a matter of fact, it is fairly simple to implement this approach by simply replacing
the line 3 of Algorithm 3.1, by the code of Algorithm 3.2 where the idea is just
to manipulate the virtual copies in place of the MD vehicles, and the line 10 of
Algorithm 3.1, with the code of Algorithm 3.3 to delete the irrelevant copy after a
branching.
A threshold (used line 2 in Algorithm 3.3) defines the limit to which the vehicle

can be far from the center of the lane. Such a threshold has been represented as a
generic function f that depends both on nVj |Lj

and ψVj |Lj
. Such function gives the

likelihood for a virtual vehicle to be matched on the different candidate lanes when
an ambiguity arises. Moreocer, this approach works under the hypothesis that a MD
vehicle always remains in the neighborhood of the lane (proximity constraint [40]).
This guarantees that at least one of the virtual copies will remain after a branching.

Algorithm 3.2 Algorithms for virtual copies generation.
1: [V1, V2, . . . , Vc]← receive()
2: for j = 1 : c do
3: if isManual(Vj) then
4: [N ′j , N

′′
j ]← ExtremeTraj([xj, yj, θj])

5: [V ′j , V
′′
j ]← Copy(V )

6: V
′
j ← UpdateTraj(N ′j)

7: V
′′
j ← UpdateTraj(N ′′j )

8: Add(V ′j , V
′′
j )

9: Remove(Vj)
10: end if
11: end for

Algorithm 3.3 Algorithm for virtual copies deletion
1: [sLj

, nLj
, ψLj

]← CurvCoords([xj, yj, θj], Nj)
2: if isVirtual(Vj) AND f(nLj

, ψLj
) < Threshold then

3: Remove(Vj)
4: end if

3.2.4 Analysis and Verification of some Method Properties
In order to validate the algorithm presented before, we focus on verifying some prop-
erties that this method must satisfy in order to be considered a feasible approach.
Let us first prove its correctness. In other words, the absence of unwanted behaviors
during the execution of this method. In particular, the valodation of absence of
“deadlock” (all the vehicles are waiting to cross the roundabout) and “starvation”
(one vehicle is waiting indefinitely) will be investigated throughout this part. To do
so, the problem has been decomposed in two possible situations. In the first one,
the case in which it exists a total ordered sequence among the vehicles is considered,
while in the second one, the dual situation is taken into account. Let us remind that
every vehicle computes its own order sequence based on the current configuration
of the other vehicles w.r.t. its own path (notice that in such a case vehicles can be
real vehicles or virtual instances of them).
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3.2.4.1 Totally Ordered Case

The first case is the situation where there exists a totally ordered sequence for the
vehicles. This leads to a nominal virtual platooning scenario, where all the vehicles
go through the roundabout one after the other, following the common order. It is
quite easy to show that this occurs when, for any pair of paths, there is either no
intersecting node or the first intersecting node is unique.
Let V1, V2, . . . , Vc be a set of c vehicles crossing a roundabout and N1, N2, . . . , Nc

their respective paths. Supposing that for any pair of paths (Ni, Nj), eitherNiuNj =
∅ or NiuNj = NjuNi = n, where NiuNj corresponds to the first common node
between Ni and Nj relative to Ni, i.e., w.r.t. the ordered sequence of links of Ni.
A proof by contradiction has been used to demonstrate that there exists a total

order between the vehicles. In this section, the subscript indexes have been added to
a node in order to indicate the result of the operator u. In other words, the notation
nij corresponds to the first common node between Ni and Nj. This is useful to
distinguish cases where Ni and Nj intersect more than once, i.e. NiuNj 6= NjuNi.
Suppose there is no total order, that is there exists two vehicles Vi, Vj for which

Vi decides that it goes before Vj:

di,nij
< dj,nij

with nij = NiuNj, (3.4)

and Vj also decides to go before Vi:

di,nji
< dj,nji

with nji = NjuNi. (3.5)

However, as it has been supposed that NiuNj = NjuNi, which leads to nij = nji.
The two relations (3.4) and (3.5) lead to a contradiction. This concludes the proof.

This conclusion proves that in this case, if there is only one common intersection
point between each couple of vehicles, a total order between vehicles exists.
Following this reasoning, one can say that, if a total order between the vehicles

exists, it is not possible that a configuration where a vehicle cannot enter in the
roundabout occurs.
In particular, considering the last vehicle Vk of a given totally ordered sequence

of vehicles. If a new vehicle Vj arrives, this vehicle will be placed virtually behind
vehicle Vk if the following conditions hold true:

• A total order between vehicle exists (i.e. all the vehicles intersect in the same
point)

• The length of the distance from the beginning of the interaction zone and the
intersection point is the same for every entering branch

The second condition is necessary for preventing situations where a vehicle coming
from a branch that is far ahead w.r.t. some others will be blocked for an infinite
time. This situation can happen because, in our approach, the total crossing order
is decided considering only the relative inter-distance. In other words, a vehicle has
to wait an infinite amount of time before entering into the roundabout if an infinite
vehicles flow is coming from a branch that is much close to the common intersection
point.
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(a) (b) (c)

Figure 3.3: Dangerous cases: (a) Differently ordered case with the involved quantities. (b)
Both vehicles are leaders at the same time, NiuNj = nij for Vi and NjuNi =
nji for Vj . (c) Vi becomes leader of Vj as it overcomes nji and NiuNj = nij
for Vi and NjuNi = nij for Vj .

3.2.4.2 Differently Ordered Case

We suppose now that the first intersecting node between two paths can be different,
i.e., ∃i, j such that NiuNj = nij and NjuNi = nji with nij 6= nji. The objective is
now to show that no deadlock can occur even in this case.
Let us suppose a deadlock configuration in which both vehicles are waiting for the

other to cross the roundabout. This means that

di,nij
> dj,nij

and dj,nji
> di,nji

. (3.6)

We want to prove that this configuration cannot occur. Based on Figure 3.3a, one
can write the following expressions:

dj,nij
= dj,nji

+ dnji,nij
and di,nji

= di,nij
+ dnij ,nji

, (3.7)

where dnji,nij
> 0 and dnij ,nji

> 0 are the curvilinear distances from the node nji to
the node nij and from the node nij and nji according to the flow direction of the
roundabout.
taking the relation di,nij

> dj,nij
and substituting the corresponding values, the

following inequalities will be obtained:

di,nij
> dj,nij

⇔ di,nji
− dnij ,nji

> dj,nji
+ dnji,nij

⇔ di,nji
> dj,nji

+ dnji,nij
+ dnij ,nji

⇒ di,nji
> dj,nji

(3.8)

This contradicts the deadlock condition (3.6). The same reasoning can be general-
ized to any number of vehicles.
Even if the absence of deadlock has been proved, there still exist some cases in

which potentially unsafe configurations can arise.
Figure 3.3b shows a case in which, as it was said before, all the vehicles think to

be the leaders, in fact we have di,nij
< dj,nij

and dj,nji
< di,nji

. Such configuration
shows clearly that both Vj and Vi think to be the leader of the (virtual) platoon
and, for this reason they are free to move at their nominal speeds without taking
care of the other car as an obstacle. As a consequence, nobody performs control
w.r.t. the other, and both the vehicles proceed with their nominal velocities. This
situation may lead to severe consequences. As one can see from figure 3.3c, if the
virtual distance between nij and nji is not sufficiently large, we can have insufficient
space to brake Vj when Vi overcomes the node nij. In facts, once Vi overcomes the
node nij, Vj becomes the follower of Vi. In such situation, if Vj is too close to nij a
collision can occur (Figure 3.3c).

49



3 Map-based Navigation Methods to Cross Roundabouts Safely

Figure 3.4: The “Guy Deniélou” roundabout in the city of Compiègne, France. The green
line represents the outer lane of the roundabout while the blue one is the inner
one. The north-east exit of the roundabout was not mapped at the time we
conducted this study and was ignored in this study.

3.2.5 Simulation Study
To study the behavior of the algorithm, different experimental scenarios have been
considered. Simulations have been carried out considering the map representation
of a large roundabout in the city of Compiègne (see Figure 3.4). This roundabout
presents two lanes into the central part and two-lanes roads for some branches.
In the simulations, only the outer lane of the roundabout and the right side lane
for the branches with multiple lanes have been considered. This configuration is
represented as the green lines in Figure 3.4. The generalization to multiple lanes
will be describebed later in this chapter. Remember that, in this context, it has
been supposed to have a perfectly reliable V2V communication between MD and
AD vehicles.
In order to simulate the MD and AD vehicles motion, it has been decided to

constrain their motion along the polylines of the HD map. This allows to focus
the attention only on the longitudinal component of the motion, which is the most
relevant for preventing collisions between vehicles in our formalism.
One other reason of this choice is that, in absence of a received pose to map-match

on the HD map, this approach allows also to simulate the map-matching of a real
MD vehicle on the map polylines, without knowing its Cartesian pose. To do so,
the analytical the evolution of each MD and AD vehicle curvilinear abscissa along
the HD map polylines has been computed, according to a given dynamic evolution
model (in curvilinear coordinates) and the previously seen formalism.
In order to control the vehicles during platooning, a longitudinal control law has

been used. This control law is based on the inter-distance between the leader vehicle
(virtual or real) and the follower which implements the law. In a simple case, the
desired value of the curvilinear inter-distance is a linear function of the velocity v of
the following vehicle in the form:

d = d0 + h · v, (3.9)
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where d0 is the standstill distance and h is the time headway.
To do the feedback, a proportional-derivative control law has been used. That law
computes the acceleration of the follower as below:

a(t) = α1 (sl (t)− d− sf (t)) + α2 (ṡl (t)− ṡf (t)) , (3.10)

where α1 and α2 are two real valued gains, sl(t) and sf (t) the curvilinear abscissa of
the leader and the follower vehicles respectively, and ṡl(t), ṡf (t) their corresponding
velocities. Saturation functions in the form v(t) = max(vmax, v(t)) and v(t) =
min(vmin, v(t)) are considered to bound the velocity into fixed limits. Acceleration
saturation has also been added. As this study is done in simulation, the control law
calculates the acceleration and not the torque (acceleration or braking) as it does
with a real car.

3.2.5.1 Safety Diagram

Let us introduce a concept called “Safety diagram” in order to evaluate the behaviors
of the vehicles in a given scenario [66]. The aim of this diagram is to show when
safety margins are violated, i.e., when the curvilinear inter-distance w.r.t. the first
non-virtual obstacle along a vehicle path is too short given its current velocity.
Consider a diagram as the one in Figure 3.5, where the inter-distance is plotted

as a function of the velocity of the vehicle. One can see that Equation (3.9) draws
a boundary between the safe and unsafe zones. If a point (v, d) is above that line,
it means that the inter-distance d is sufficiently large for the velocity v. Inversely,
if the point (v, d) is found under the boundary, it means that d is too short for the
vehicle velocity v, i.e., an unsafe case occurs. Finally, if (v, d) lies on the boundary,
it means that the vehicle is perfectly at the desired curvilinear inter-distance in the
platoon w.r.t. its velocity v.
To illustrate a typical scenario that occurs in our algorithm with the corresponding

safety diagram interpretation, let us consider a leader vehicle driving at a constant
velocity vl and a follower in virtual platoon w.r.t. the leader. Figure 3.5 shows the
behavior of the follower that is entering the roundabout at time t = t0 and finds
a leader vehicle ahead of him. From t0 to t1 the follower accelerates to reach the
desired inter-distance from its leader until the speed saturation occurs at t1. Then
from t1 to t2, it continues to move at the maximum allowed speed vmax, decreasing
the inter-distance until t2 when it starts braking as it catches the leader. Finally,
at t3, the follower reaches the optimal inter-distance w.r.t. the leader and continues
driving at the same velocity as the leader.

3.2.5.2 Monte Carlo Simulation

To test our approach, we have developed a simulator able to generate random vehi-
cles over time, with stochastic trajectories. The simulator implements the algorithm
described in section 3.2, allowing to choose the frequency for generating both au-
tonomous and manually driven vehicles, in order to cover every possible scenario.
Figure 3.6 shows the resulting safety diagram for a given simulation with a dozen

vehicles mixing both autonomous and manually driven ones. One can see that all
the trajectories tend to converge towards the safety boundary which is the optimal
inter-distance. The control law may allow the vehicles to overshoot the optimal
inter-distance, but as one can see, it does not deviate significantly under the safety
boundary.
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Figure 3.5: Safety diagram illustration. The blue dots represent the (v, d) values of the
following vehicles w.r.t. the leader with velocity vl = 3m/s and vmax = 10m/s.
The orange line represents the safety boundary with d0 = 7m and h = 2s.
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Figure 3.6: Safety diagram for a stochastic simulation with a dozen vehicles.
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(a) AD vehicles only.
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(b) AD and MD vehicles.
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Figure 3.7: (a-b) Empiric joint log-probability density function after a Monte Carlo sim-
ulation with 100 iterations. (c) Distribution of the relative deviation between
the actual and optimal inter-distance. The circle depicts the unsafe region
with a proportion of about 1%.

In order to present an exhaustive analysis of this algorithm, a Monte Carlo sim-
ulation has been implemented. The aim is to extend the analysis to cover as many
cases as possible, in order to study statistically the performances of the algorithm.
results of two Monte Carlo simulations have been reported in the following figure:

1. AD vehicles only; (Figure 3.7a)

2. AD and MD vehicles. (Figure 3.7b)

In Figures 3.7a and 3.7b, the the empiric joint probability density function of the
velocity and the corresponding inter-distance using a logarithmic scale is displayed.
One can see that most of the points are located above the safety boundary. However,
there are also few points in the unsafe region. Several reasons can explain this
behavior. First, the imperfect tuning of the controller can lead the vehicles to have
some overshoots over the optimal boundary. Second, the differently ordered case
presented in section 3.2.4.2 also allows vehicles to have their inter-distances lower
than the optimal ones. Figure 3.7c shows the distribution of the relative deviations
from the optimal inter-distance computed as follows:

er = dv − (d0 + hv)
d0 + hv

= dv
d0 + hv

− 1, (3.11)

where dv is the actual distance w.r.t. the first non-virtual obstacle. Moreover, the
proportion of points that deviate more than the 5% into the unsafe region has been
computed and, it has been shown that this percentage is in the order of 1%.
From these figures, one can see that the algorithm performed similarly in both

cases. The autonomous only scenario allows the vehicles to drive with inter-distances
closer to the optimal ones (which optimizes traffic flow).

3.2.6 Discussion
The results reported in Section 3.2.5 highlight the efficiency of our proposed ap-
proach to solve the roundabout crossing problem for an AD vehicle. However, in
spite of the quality of the results, we need to point out some weaknesses and limi-
tations of the presented method.
First, the proposed formalism does not consider the existence of any priority

constraint between vehicles. Priorities and, as a consequence, the right of way, are
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aspect that naturally arise during AD vehicles navigation in mixed traffic. For this
reason, they cannot be disregarded during the design of a planning strategy. In this
particular use-case, it exists a priority constraint between vehicles in the roundabout
ring and vehicles that are coming from the roundabout entering branches.
Second, in the navigation strategy, the computation of the crossing order between

the different vehicles is based only on the comparison of relative inter-distances.
This method does not consider the relative speed between the AD vehicle and the
other MD one to be included in the crossing order computation. Such a method
may lead to poor performance when the relative speed difference is significant. Fur-
thermore, it does not allow to identify when a vehicle is stopped (for example at a
give way sign before entering into the roundabout), leading again the algorithm to
poor performance.
Finally, the previous approach supposes that vehicles are represented as dimen-

sionless points moving along the HD map polylines, disregarding the uncertainty on
the object position estimation and the size of the objects.
For these reasons, we propose, in the following part of the chapter, to incorporate

in the previously presented formalism the main aspects that have been pointed out in
this section. The main idea is to propose a new version of the roundabout insertion
algorithm that is more realistic and more scalable to a real life scenario.

3.3 Single-lane Roundabout Crossing with priority
and interval occupancy

3.3.1 Introduction
In the previous section, it has been shown that using virtual vehicles along the lanes
of a HD map is very efficient to control the longitudinal behavior of an AD vehicle
when crossing a roundabout.
Then, an extension of this method to handle cases with both AD and MD vehicles

is presented. However, some constraining hypothesis have been made about the MD
vehicles behavior. In particular, we assume that the localization of every MD vehicle
is known with low uncertainty and that MD vehicles drive with a straightforward
behaviors i.e. without breaking traffic rules, which is not always the case.
In addition, it has been also considered that direct communication exists between

both AD and MD vehicles. This means that they are able to exchange information
about their states respectively. Unfortunately, nowadays this assumption is of course
unrealistic, because there are only a few MD vehicles on public traffic equipped with
this kind of systems.
As a consequence, during autonomous navigation, AD vehicles have to estimate

thanks to their own on-board perception system the state of surrounding MD vehi-
cles.
Finally, in the previously described approach, traffic rules in roundabout naviga-

tion have not been explicitly taken into account. In particular, the priority constraint
between vehicles on the roundabout ring and incoming vehicles on entering branches
has been disregarded.
In this section, we propose an extension of the previously discussed strategy to

incorporate gradually the aforementioned conditions in order to provide a more
general navigation algorithm to be exploited in real MD traffic driving scenarios.
Then, an extended experimental evaluation will be provided to show the feasibility
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of this approach on a real-traffic scenario and to focus on the resolution of some issues
that arise when virtual vehicle techniques are applied to roundabouts. The main
questions of this part are listed hereafter:

• A safe, priority-preserving and not overly cautious decision method for one-
lane roundabout crossing for an AD vehicle among a MD vehicles flow;

• An extension of the curvilinear coordinates virtual platooning to an interval-
based curvilinear formalism to include both vehicles sizes and uncertainties in
vehicles positions in the navigation algorithm;

• The use of the virtual vehicle concept to handle prediction of unknown inten-
tion of vehicles and to handle the application of virtual vehicle methods to
roundabout cycles;

• A practical evaluation of the aforementioned algorithm in terms of safety and
fluidity of the insertion with realistic simulations and real experiments;

The rest of this part is organized as follows. In the next section, an introduction
a curvilinear formalism with intervals along with HD maps is presented. Then, in
section 3.3.3, we come back on the concept of virtual instances and its application
to roundabouts use cases. In section 3.3.4, a discussion about the main principles
and rules that we use in our approach is carried out, while in section 3.3.5, it will
be explained how the priority constraints and the right of way have been taken
into account. Finally, an explaination of the insertion maneuver for roundabout is
provided in the cases where MD vehicles are involved.

3.3.2 Interval-based Curvilinear Inter-distances
Let us present an interval-based formalism to compute curvilinear inter-distances
between several vehicles. Such a concept can be seen as a generalization of point-
based inter-distances that we used in the previous algorithm (3.2). The main idea
is to represent objects positioning w.r.t. the HD map with an interval rather than
a point on the polyline. Such a formalism is useful to encompass the positioning
uncertainty and the size of the MD vehicles. For this, the HD map formalism and
curvilinear coordinates computation are again exploited to develop a new formalism.
Based on the curvilinear formalism introduced in section 3.2.1, let us generalize

the virtual curvilinear inter-distance of Equation (3.3) to the case of interval curvi-
linear abscissa. For an interval [si, si], let us define

[
si|n, si|n

]
the lower and upper

curvilinear abscissa of the vehicle w.r.t. a given node n using Equation (3.2). As said
previously, these quantities are negative and increase when the vehicle approaches
the node n. Defining the interval-based virtual curvilinear signed inter-distance d∗i,j|n
between Vi and Vj, whose paths intersect at a node n as the signed distance between
the front of Vj and the back of Vi we obtain:

d∗i,j|n = sj|n − si|n. (3.12)

Therefore, d∗i,j|n < 0 means that w.r.t. node n, Vi is virtually ahead of Vj, i.e.,
they are in the first configuration illustrated in Figure 3.8c. It is important to
note that d∗i,j|n > 0 does not mean that Vj is ahead of Vi, indeed, any of the other
configurations in Figure 3.8c would lead to this case. Contrary to the case where a
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Figure 3.8: (a) Classical virtual platooning (dashed) and its extension to intervals (solid).
V is the ego-vehicle and V ,

1 is a virtual instance of V1. (b) Situation with 6
other vehicles (all the possible relative locations) Occupancy is projected onto
the road map. (c) Intervals overlapping.

single curvilinear abscissa is used, we have d∗i,j|n 6= −d∗j,i|n, i.e., this Equation is not
symmetric. To better understand this concept, Figures 7.7a, 7.7b and 3.8c explain
such concept in the case of a simple T intersection. In the rest of the paper, for
simplicity, d∗i,j|n will be denoted d∗i,j when there is no ambiguity.

3.3.3 Unknown MD Vehicles Intentions in Graph Cycles
In order to encompass all the possible behaviors of a MD vehicle, virtual instances
can be used to represent all the behaviors. The concepts that have been introduced
in section 3.2.3 are again exploited to provide a method that can help to solve some
situations of relative positioning inside the roundabout ring that arise in cyclic
graphs. Considering Figure 3.9 and applying the virtual platooning algorithm as
in section 3.2, one can see that the paths of V0 and the instance V1 of the truck
have ni as the first intersecting node (from the point of view of the AD vehicle V0).
This means that V1 is virtually behind V0 even if it is clearly not the case because
the truck can be seen both behind and ahead V0, depending on the point of view.
Moreover, if one considers long objects, as for example a truck with a trail, this
ambiguity is more flagrant w.r.t. cases where objects with small size are involved.
This particular behavior is due to the circular shape of the roundabout ring and
in some cases it may produce an erroneous representation of the scenario. In fact,
V0 needs to consider the presence of the truck during the insertion maneuver as a
vehicle to follow, and it also needs to consider its presence as a possible incoming
vehicle on the left side of the roundabout. To overcome this issue, let us consider
again the instance V ′1 that represents the same vehicle but with a different path. One
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Figure 3.9: The truck trajectories are estimated considering several virtual instances of
the same vehicle according to section 3.2 assigning at each instance a possible
trajectory. In this case, the truck can be both ahead and behind the AD
vehicle.

can see that it has nj as the first intersecting node with the path of V0. This means
that, in this case, V0 is behind the instance V ′1 . This representation is the dual of
the previous one, where we claimed that the instance V1 of the truck was virtually
behind V0. As a consequence, in a roundabout it is possible to have several instances
of the same object with a different relative positioning w.r.t. the AD vehicle. In
other words, an MD vehicle can be both virtually ahead and behind the AD vehicle.
This method enables the AD vehicle to overcome the problem of the roundabout
loop and allows it to consider all the possible MD vehicles configurations in the
scenario.

3.3.4 Insertion Strategy
Let us assume that the state of an MD vehicle Vi is represented as

Vi = [si, si, vi, Ni] , (3.13)

where [si, si] are the lower and upper bounds over the curvilinear occupancy of Vi
encompassing both the size and the uncertainty bounds over its position estimate,
vi is its estimated longitudinal speed and Pi its predicted path.
The values of si and si are computed as explained in section 3.3.2. From the

perspective of the ego AD vehicle, the state of a nearby vehicle is typically provided
by a perception system able to detect, track and map-match.
Moreover, it has been decided to add the MD velocities vi to the state because it

allows to better take into account the dynamic behavior of the MD vehicles. Adding
information about MD vehicles speeds allows to better encompass both MD vehicles
behavior and to implement a more complex roundabout insertion strategy that also
handles priority constraints between vehicles. This will be detailed in section 3.3.6.
In this work, in order to be compatible as much as possible with most of the

state-of-the-art road user detection algorithms, no other assumption has been made
on the information about surrounding vehicles. In particular, the reader may refer
to [13], where it is explained how the quantities in Equation (3.13) are provided to
the system.
Here the AD vehicle is constrained to navigate only on the outermost lane of the

roundabout. In other words, it is not allowed for the AD vehicle to overtake and
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change lane during the roundabout crossing. With this simplification, the navigation
algorithm only needs to control the longitudinal motion of the AD vehicle to perform
the task, the lateral control being done by path following.
Moreover, to cross a roundabout successfully, one needs to take into account

not only the safety inter-distance w.r.t. the vehicle ahead, but also the priority
relationships in the roundabout scenario. In a roundabout, the priority lanes are
situated inside the roundabout ring while the non-priority ones are in the entering
branches. Bearing in mind such concepts, three rules to describe the ideal behavior
of an AD vehicle should have have been inferred.
An AD vehicle:

R1) has to keep a safe inter-distance w.r.t. the vehicle ahead;

R2) has to respect the traffic rules (vehicles inside the roundabout have the right
of way);

R3) should avoid stopping on the carriageway as much as possible.

This means that a vehicle on a non-priority lane is allowed to enter into the
roundabout only if the insertion maneuver does not influence the behavior of another
vehicle with a higher priority rank. In other words, the entering vehicle is not allowed
to force a priority vehicle to decrease its speed. A priority vehicle follows its reference
speed profile and performs an inter-distance regulation only with respect to vehicles
that have the same priority level. It is also desired that the AD vehicle makes
an insertion as smooth as possible without making a stop at the entrance of the
roundabout which requires it to anticipate the behavior of the other vehicles.

3.3.5 Roundabout Lanes Classification and Priorities
In accordance to the problem statement and the three rules listed in section 3.3.4,
we propose to decompose a roundabout into three types of zones as illustrated in
Figure 3.10. Each zone describes sub-steps of the insertion maneuver and a different
priority rank, as follows:
a) The Decision Zone (in green in Figure 3.10) is before the merging into the

roundabout ring. In this zone, the AD vehicle does not have priority w.r.t. vehicles
in the roundabout. It has to evaluate the possibility of a safe insertion in the
roundabout without violating priority constraints.
b) The Transition Zone (in yellow in Figure 3.10) is the last part of the entering

lane where it merges with the roundabout ring. In this part, the AD vehicle performs
a transition to enter into the roundabout. When the AD vehicle is in that zone, a
safety inter-distance w.r.t. a potential incoming MD vehicle on the roundabout ring
must be kept in order to allow a safe insertion.
c) The Ring Zone (in red in Figure 3.10) corresponds to the roundabout ring.

In this zone, the insertion maneuver is completed and the AD vehicle follows the
nearest MD vehicle in the roundabout or drives at its nominal speed if it is alone.
d) The Exit Zone (in dark gray in Figure 3.10) is the zone where the AD vehicle

leaves the roundabout and continues its navigation following its path.
As a consequence, the crossing of the whole transition zone must be taken into

account in the decision-making procedure. Once a vehicle enters into that zone, it
can no longer change its decision. If it needs to stop, it means that the decision
of entering into the roundabout was wrongly taken which makes the approaching
vehicle decelerate in order to avoid a collision. Finally, once the AD vehicle has
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Figure 3.10: A roundabout with its HD map representation. The decision zones are green,
the transition zones are yellow and the ring zone is red. The roundabout exits
are blue. For a given link, the nodes and shape points are shown.

crossed the transition zone, it gains the same priority as all the vehicles in the
roundabout ring.

3.3.6 Intervals-based Virtual Platooning
A well-known technique to achieve intersection crossing is to establish a crossing
order between incoming vehicles [69]. However, when using intervals to represent
the curvilinear occupancy of vehicles, cases where no total order between vehicles
may arise if one applies virtual vehicle methods as in [69] and section 3.2. This is
due to possible intervals overlapping.
Let us consider the case illustrated in Figure 7.7a, where the trajectory of the

AD vehicle (in blue) crosses the one of a MD vehicle (in green) at a point n. Let
us define [s, s] the curvilinear occupancy of the AD vehicle w.r.t. the origin n, and
similarly [si, si] for a MD vehicle Vi. Figure 3.8c illustrates the six possible relative
positions between the AD vehicle and the MD ones with their corresponding virtual
projections.
Note that if there is no priority constraint between the vehicles, using intervals

does not lead to a unique order among them. Moreover, if there is no total order
between the vehicles and no priority constraints, some deadlock situations may arise,
as we previously discussed in section 3.2.4.
To overcome this issue, one needs to choose an insertion policy [68]. This issue

is out of the scope of this work, as it has been chosen to consider that vehicles
inside the roundabout have the highest priority. In Figure 3.8c, one can see that
in all the cases (2), (3),..., (6), the AD vehicle cannot be guaranteed to be in front
of the incoming MD vehicle. These cases should not occur when the AD vehicle
goes through the transition zone otherwise it will be in contradiction with rule R2.
If the AD vehicle cannot guarantee that such cases will not occur, the AD vehicle
decreases its speed to let the incoming vehicle go ahead. Such maneuver can lead
either to a safe stop at the give-way line or to a speed adaptation depending on
the relative intervals overlapping over time. In other words, the AD vehicle tries to
adapt as much as possible its behavior to let the other car go first and if it cannot,
it performs a safe stop. Notice that the only case where the AD vehicle may expect
to be in front of the MD vehicle is the case (1).
Let us consider the scenario depicted in Figure 3.9, where the AD vehicle V0 is in
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the decision zone of the roundabout and an incoming priority MD vehicle V1 is in
the ring zone. This scenario falls clearly into case (1), with d∗0,1 > 0.
Let us define t0 as the time when the front part of the AD vehicle enters into the

transition zone. At a given time t < t0 (i.e., when the AD vehicle was still in the
decision zone), one can see that having

d∗0,1(t0) > dsafe, (3.14)

is not sufficient for the AD vehicle to ensure a safe and priority preserving insertion
maneuver according to rule R2. Indeed, if the speed v1 of vehicle V1 is greater
than the speed v0 of V0, the inter-distance between the two vehicles will shrink
over time. This shows that vehicle kinematics must be taken into account at the
decision-making level.
Considering again rule R2, the AD vehicle needs to guarantee that Equation (3.14)

will be satisfied during the whole insertion maneuver, i.e., from the moment that the
upper bound s enters the transition zone until the lower bound s leaves it. Let ∆t
be the time needed by the AD vehicle to go completely through the transition zone,
i.e., the back of the AD vehicle has exited it. The decision to enter the roundabout
is taken if:

∀t ∈ [t0, t0 + ∆t], d∗0,1(t) > dsafe. (3.15)
In order to guarantee the inequality of Equation (3.15), one needs to know how

both s0|n and s1|n evolve over time. In this work, it has been assumed that vehicles
drive at an almost constant speed. This assumption may seem simplistic, but it is
representative of the driver behavior as indicated in the INTERACTION dataset.
Indeed, within the roundabout ring of the INTERACTION dataset, the speed pro-
files of the MD vehicles have a standard deviation less than 1 m/s in average. Under
this assumption, it is possble to use the formula ∆t = l/v0, where l is the length of
the transition zone, and the kinematics of each interval can be expressed as follows:

s0|n(t) = s0|n(t0)− v0 · (t− t0), (3.16)

s1|n(t) = s1|n(t0)− v1 · (t− t0). (3.17)
Substituting Equation (3.16) and (3.17) in (3.15), we obtain

s1|n(t0)− s0|n(t0)︸ ︷︷ ︸
=d∗0,1(t0)

+(v0 − v1) · (t− t0) ≥ dsafe, (3.18)

The inequality (3.18) needs to hold ∀t ∈ [t0, t0 + ∆t].
If v0 > v1, it leads to

d∗0,1(t0) ≥ dsafe. (3.19)
It means that if the AD vehicle drives faster than V1, it can insert if it is sufficiently
ahead of V1 at t0.
Otherwise, if v0 < v1, the following case occurs:

d∗0,1(t0) ≥ dsafe +
(
v1

v0
− 1

)
l. (3.20)

One can see that the relative speed v1/v0 needs to be taken into account in the
decision and that if Equation (3.20) holds at t0, it also holds for all the interval
[t0, t0 + ∆t]. This is particularly useful in the case where the AD vehicle accelerates
from a low speed (v0 = 0 in the case of a stop at give way) to enter into the
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roundabout because it already encompasses all the speed changes of the AD vehicle
in the decision. In other words, the decision taken at t0 cannot change if the speed
of the AD vehicle increases.
Inequality (3.20) allows the AD vehicle to decide if it has enough space to keep a

safety inter-distance w.r.t. an eventual incoming vehicle, knowing its velocity and
its occupancy at time t0. In the case where Equation (3.20) is not satisfied, the
ego vehicle slows down to perform a safe stop at the end of the decision zone (that
coincides with the give way marking).
Nevertheless, once the speed of the AD vehicle is close to zero, it is difficult for

the AD vehicle to find a sufficiently large gap to perform the insertion. This is
due to the singularity present in Equation (3.20) when v0 = 0. In fact, considering
the function h(v0) =

(
v1
v0
− 1

)
, one can see that it has a peak towards +∞ for

v0 → 0. This degrades the performance of the algorithm once the AD has stopped:
it will only insert once no incoming vehicle is present. To overcome this, it has been
proposed to replace h(v0) with another function for the case v0 < v1. In particular,
we look for a function that meets the following criteria:

1. As v0 → 0, the value of the function becomes less dependent on v0.

2. For v0 = 0 the value of the function depends at least on v1.

The main idea is to have a function that allows to set a safety gap that depends
at least only on the other vehicle speed v1. This solution is convenient when the
dynamic of the system is not well known and we need to perform a prediction without
being too pessimist. In this work, a function with the following characteristics has
been chosen:

ĥ(v0) = A
(1

2 −
1

1 + e−α(v0−v1)

)
(3.21)

Where the two parameters A and α have to be tuned experimentally to make a good
insertion maneuver. Equation (3.20) now becomesd∗0,1(t0) ≥ dsafe if v0 > v1,

d∗0,1(t0) ≥ dsafe + ĥ(v0)l else.
(3.22)

or equivalently d∗0,1(t0)− dsafe ≥ 0 if v0 > v1,

d∗0,1(t0)− dsafe − ĥ(v0)l ≥ 0 else.
(3.23)

Figure 3.11 illustrates the function ĥ for several values of A and α. As one can
see, the singularity present in h for v0 = 0 is avoided. For instance, for α = 1 and
A = 10, if the AD vehicle is at v0 = 0, then it decides to enter if the inter-distance is
around 50 m. To describe how to apply the aforementioned concepts in the case of
a traffic flow, algorithm 3.4 details the insertion strategy in a general case. In such
a case, one can notice that when the AD vehicle has at least one vehicle behind and
one ahead, the prediction Equation 3.23 is done considering the vehicle ahead speed
instead of the AD one. This allows to take into account the presence of an eventual
vehicle ahead during the insertion maneuver. On the other hand, when there is at
least one vehicle behind the AD car that does not satisfy Equation 3.23, the AD
vehicle performs a safe stop at the give way, and it chooses the vehicle to follow for
entering into the roundabout as the farthest object that does not satisfy Equation
3.23 in order to avoid unsafe configurations.
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Algorithm 3.4 Roundabout insertion for an AD vehicle V0.
Require: V0, t0
1: [V1, V2, . . . , Vc]← Perception() . Other road users
2: ∆t← l/v0
3: leader ← ∅, dleader ← −∞
4: VRISK ← [] . List of vehicles that present a risk
5: for j = 1 : c do
6: n← FindFirstCommonNode(N0, Nj)
7: if n = ∅ then
8: Continue . Vj does not cross the path of V0
9: else

10: d∗0,j|n(t0)← sj|n(t0)− s0|n(t0)
11: if d∗0,j|n(t0) < 0 then . Vehicle Vj in front of V0
12: if d∗0,j|n(t0) > dleader then
13: dleader ← d∗0,j|n(t0)
14: leader ← Vj
15: else
16: Continue
17: end if
18: else . Vehicle Vj behind or intersecting V0

19: if d∗0,j(t0) ≥ dsafe +
(
vj

v0
− 1

)
l then

20: Continue . Contraint satisfied
21: else
22: VRISK ← VRISK ∪ [Vj, d∗0,j(t0)]
23: end if
24: end if
25: end if
26: end for
27: if leader = ∅ then
28: vd ← vn . Go with nominal speed
29: else
30: vd ← leader.speed . Speed of vehicle ahead
31: end if
32: if VRISK 6= [] then . Change leader vehicle
33: leader ← maxd∗0,j|n

[VRISK ]
34: vd ← leader.speed
35: end if
36: SetSpeed(vd) . Perform longitudinal control
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Figure 3.11: The behavior of the decision function with h and ĥ (Equation (3.22)) in terms
of required inter-distance for several values of A and α for a fixed value of v1,
l and dsafe.

3.3.7 Simulation Results
To evaluate this approach, two simulators have been used. The complete description
of both of them can be found in Chapter 2. The SUMO simulator [51] was used
for microscopic traffic flow generation while a ROS-based simulation framework was
used to implement the navigation algorithm and the AD vehicle dynamics. The
coupling and synchronization of both simulators have been achieved with the TraCi
SUMO library and its Python API. A detailed explanation on time synchronization
and coupling of the two simulators can be found in the previous chapter and in [36].
Furthermore, we have imported in the SUMO simulation environment the HD

map representation of the test-bed roundabout. This has been achieved with the
Netedit and Netconvert tools included in the SUMO suite [48]. Figure 3.12 pictures
an overview of the roundabout scenario in both simulators.
For each simulation, a random high density vehicle flow that meets the ∆TTICmin

criterion has been generated over a fixed time horizon T = 200 s. Each simulation
contained between 200 and 400 seconds for a total amount of more than 1 hour of
simulation. The number of vehicles for each flow randomly varied between 50 and
175, for a total amount of more than 5, 000 vehicles.
These limits have been chosen to capture a wide range of scenarios, starting

from a sparse traffic flow until a denser vehicle stream. Moreover, to simulate both
localization (AD vehicle) and perception (MD vehicles) uncertainty, we consider a
±1 m bound to add to the curvilinear interval [si, si] and [s, s], which represents the
projection of the vehicle footprint on its lane.
To experimentally validate this approach, several scenarios have been considered

to generate high density traffic flows. Simulations have been carried out with the
HD map representation of the roundabout displayed on Figure 2.1.
To quantify the performance, the distributions of the inter-distances w.r.t. the

vehicle ahead and behind during the crossing of the transition zone have been com-
puted. Figure 3.13 shows the inter-distance distributions for both the ahead and
behind gaps. As one can see, the behind safety gap always meets the safety criterion.
Conversely, considering the gap w.r.t. vehicles ahead, there is a slight violation of
the safety bound. This violation is due to some controller imperfection and can be
neglected.
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Figure 3.12: The coupled simulator. The AD vehicle is in gray, while all the MD vehicles
are in yellow. Note that the roundabout in SUMO has been designed using
the HD map representation of the roundabout shown in Figure 2.1 .
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Figure 3.13: Inter-distance distributions w.r.t. the vehicle ahead (blue) and behind (green)
during an insertion maneuver. The red line represents the 5m safety gap.
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Table 3.1: The average insertion time, the percentage of average waiting time relative to
the nominal case and the average number of insertions as function of vehicles
flow for the single-lane roundabout case.

Flow size 50 75 100 125
Crossing Time (s) 5.60 (+1.3) 7.32 (+1.7) 10.05 (+2.39) 15.26 (+3.63)
Number of Insertions 24 21 18 16

Moreover, it is also interesting to quantify the insertion rate w.r.t. the vehicles
flow. Table 3.1 illustrates the average insertion rate and waiting time as a function
of the number of vehicles in the flow. The insertion time is computed considering
that the total length of the decision and transition zones is 33.4 m and the nominal
speed in this zone is 30 km/h, which gives us a nominal waiting time of 4.2 seconds.
As one can see, the number of insertions decreases w.r.t. the number of vehicles

in the flow. Conversely, the waiting time increases.

3.4 Two-lane Roundabout Crossing
3.4.1 Problem Statement
Let us see in this section how to exploit the virtual vehicles to model the behavior
of other vehicles to cope with nudging behaviors. Again, the roundabout shown
in Figure 2.1 has been considered. Remember that according to the navigation
strategy, an AD vehicle crosses a roundabout only by following the outermost lane
(and therefore cannot change lanes). One of the most difficult issues in this scenario
is the handling of vehicles that perform lane change maneuvers from the inner ring
of the roundabout to outer one which is the one that the AD vehicle uses in this
method. In practice, it is very challenging to predict a lane change maneuver,
especially when vehicles attempt to make a lane change with nudging [55]. Three
different strategies to handle the navigation of multiple vehicles inside a two-lane
roundabout have been proposed in the following.
To do that, the concept of virtual vehicles is leveraged again as it has been done

before to predict the intention of other vehicles. The main idea is to generate an
extra virtual instance of a given vehicle on the innermost lane of the roundabout to
occupy the outermost lane according to occupancy methods.
The first method consists in occupying systematically both lanes of the round-

about ring if at least one lane is occupied. This means that, if a vehicle is occupying
the innermost lane, the outermost one will result occupied too. Figure 3.14a illus-
trates this method. The second method consists in occupying the lanes only when
there is a significant physical occupancy of a vehicle. This implies that during a lane
change maneuver there is always one occupied lane at most, i.e., the outer lane be-
comes occupied only when the first half of the vehicle has already crossed the bound
between the two lanes of the roundabout (Figure 3.14b). The third method occupies
the outer lane only when the intention of a vehicle to change lane is detected. This
approach is shown in Figure 3.14c. In this case, we assume to have a system that is
able to predict when a driver decides to change lane, e.g., by detecting blinkers or
lateral distance from the lane center.
In summary, the three aforementioned methods [67] generate an extra virtual

instance according to the following statements:

1. Occupying systematically both lanes of the roundabout ring if at least one
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(a) (b)

(c)

Figure 3.14: Illustration of the three strategies to handle lane change maneuvers in a two-
lane roundabout. The vehicle trajectory is green and the corresponding lane
occupation is red. Note that for methods 3.14c the lane occupation becomes
red when the intention to change lane is detected (yellow square).

Figure 3.15: Illustration of the strategy to handle the lane change maneuvers in a two-
lane roundabout. The vehicle trajectory is green and the corresponding lane
occupation is red.

lane is occupied.

2. Occupying the lanes only when there is a significant physical occupancy of a
vehicle.

3. Occupying the outer lane only when the intention of a vehicle to change lane
is detected.

3.4.2 Simulation Results
For every strategy listed hereafter, several simulations on SUMO with a randomly
generated vehicle flow on the full roundabout (two lanes) have been carried out. To
properly model a lane change maneuver inside SUMO, a nonzero duration for lane
changes has been chosen and the other hypotheses as done in [48] will be still valid.
Furthermore, a kinematic model to model the AD vehicle dynamic and to simulate
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Table 3.2: Probability of a safety bound violation (ahead and behind), crossing times and
effective waiting times for the three methods.

Method behind Ahead Cross time Wait time
Two lanes occupancy 0% 0% 23.3s 14.46s
Only one lane occupancy 30% 29% 8.6s 4.7s
Intention detection 0% 4% 16.4s 7.79s

the controller part is used. Concerning other vehicles, motion models proposed
by SUMO will be exploited combined with the method proposed in section 2.4.2,
tuning the parameters of the simulator in a way that the interactive traffic behaves
as much realistic as possible to react to AD vehicle behavior and provide more
realistic results. In order to quantify the performance of our approach, Figure 3.16
and 3.17 show respectively the inter-distances w.r.t. the vehicles ahead and behind
for the three strategies. The first method always ensures safety. For the other two,
it is not the case. In fact, the third method violates the safety constraints in both
forward and backward cases. This is due to the late detection of lane changes. As
a consequence, it can happen that the ego vehicle performs an insertion maneuver
when another vehicle has already decided to change lane. In this situation, two
scenarios can happen: the ego vehicle forces the other car to change its intentions or
the other car completes the lane change despite the presence of the ego vehicle. In
the first case, this driving behavior is called nudging. In the second case, the other
vehicle cut off the road of the ego vehicle, resulting in a hazardous maneuver or on
a collision. The third case behaves as a compromise between the two.
To analyze this aspect, Table 3.2 shows the collision probabilities, average in-

sertion times and average waiting times for the three strategies. Logically, if one
wants to have safety ensured, the average waiting time increases. This is due to
the fact that, with the aforementioned methods for a double lane roundabout, the
available space slots where the AD vehicle can insert are reduced because, in two
cases at least, a vehicle matched in the innermost lane produces also an occupancy
on the outermost one. As a consequence, the capacity on the roundabout ring is
more reduced w.r.t. a single lane one. The first method (Figure 3.14a) tends to
be too overly-conservative. Conversely, the second method (Figure 3.14b) is much
more aggressive because of the lack of lane change prediction. However, this method
has a large unsafe set of configurations. Finally, the third method (Figure 3.14c)
behaves as a compromise between the two.
These three approaches have been compared in terms of both safety and system

availability and the results are reported in section 3.4.2. However, in order to use
proficiently such method, a precise lane change intention detector is required. In
this work, we limit our approach to the methods based on statement 1 (Figure
3.15) because such lane change intention predictor is not available in our system
architecture and our roundabout test bed is composed of only a one-lane roundabout.

3.4.3 Real Experiments
To test the whole system architecture in a more realistic scenarion, the whole pipeline
has been installed on an autonomous Renault Zoé using the ROS middleware. More
details about the system architecture of our experimental cars are provided in [99].
We have tested the roundabout insertion first in a hybrid environment (i.e., with

simulated vehicles moving on the test track) then with real road agents detected
with a LiDAR-based perception system. In the experimental autonomous car, the
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Figure 3.16: Inter-distances distributions w.r.t. the vehicle ahead for the three strategies.

Figure 3.17: Inter-distances distributions w.r.t. the vehicle behind for the three strategies.
One can see that the intention detection method behaves as a compromise
between the other two.

68



3 Map-based Navigation Methods to Cross Roundabouts Safely

Figure 3.18: The experimental circuit “Seville” and the experimental Renault Zoés used
during the real outdoor tests. In our configuration, the white car (fully
autonomous) is the AD vehicle, while the others are the road users (manually
driven).

Figure 3.19: The experimental circuit “Seville” with the corresponding HD map and the
experiment configuration depicted in Figure 3.18. The AD vehicle is blue
and the MD vehicles are green. Notice that the situation case described in
section 3.3.3 may occur.

system controls the throttle, the brake pedal and the steering wheel. In our case,
the longitudinal motion of the vehicle (i.e., acceleration and brake) is computed
according to the traffic situation. In particular, based on the algorithm explained in
section 3.3.6, the vehicle can either perform an insertion maneuver into the round-
about or decrease its speed to let other cars go ahead, eventually effectuating a stop
at the give-way road sign. Regarding lateral motion, a simple lane keeping is per-
formed and for the detection part, we use a state-of-the-art LiDAR object detection
algorithm [13] able to provide information about the detected objects in the form
Vi = [si, si, vi, Ni]. Note that Ni and the curvilinear conversion have been computed
according to previously explained methods. To better illustrate the experimental
scenario, Figure 3.18 illustrates this situation.
Let us consider a scenario where two cars drive close to each other inside a round-

about doing infinite loops and the AD vehicle has to enter the roundabout (Figure
3.19).
Figure 3.20a illustrates the (virtual) inter-distances of the AD vehicle w.r.t. the

other road agents (backward and ahead) accordingly to the three zones. As one can
see, the sign of such distance depends on the relative positioning between the MD
vehicles and the AD vehicle.
Notice that due to the concept of vehicle instances a vehicle inside the roundabout

can be both ahead and behind the AD vehicle, which is coherent with the circular
shape of the roundabout. Furthermore, the colors of the background denote the
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Figure 3.20: Experimental results. Figure 3.20a illustrates the (virtual) inter-distances of
the two cars w.r.t the AD vehicle as a function of time. Notice that the same
vehicle may appear both behind and in front of the AD vehicle because of
the vehicle instance concept. Figure 3.20b depicts the value of the decision
function (red) and the result of Equation 3.23 (blue dots) for every vehicle
(virtually) behind the AD vehicle (points < 0 in Figure 3.20a). Figure 3.20c
shows the torque setpoint and the corresponding vehicle torque and speed
(amplified by a scale factor) as a function of the decision taken in Figure
3.20b.
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zone of the roundabout where the AD vehicle is. As one can see, during the crossing
of the transition and ring zones, the safety gap is always kept.
If we observe carefully the points in the decision zone, one can see that the other

road agents virtually overtake the AD vehicle. In fact, Figure 3.20b shows that,
due to the negative values of the constraint of Equation (3.22), the decision changes
from go to stop. As a consequence, the AD vehicle lets the other vehicle go ahead
and enters into the roundabout behind them.
To better understand the situation at decision and control level, Figure 3.20c

shows the system behavior during the whole maneuver. In particular, one can see
that the set-point torque changes following the decision output in Figure 3.20b.
Consequently, the vehicle speed and the applied torque to the engine change ac-
cordingly.
Finally, when the red function decreases to zero in Figure 3.20b, the controller

performs a safe stop maneuver. Conversely, once the decision-making part decides to
let the vehicle enter in the roundabout, the controller accelerates accordingly. Note
that when the vehicle is completely stopped (i.e., v = 0) it is still in the decision
zone. This means that no safety violation occurred during the maneuver.

3.5 Conclusion
In this chapter, we have studied an adaptation of the virtual platooning concept
to the roundabout crossing problem. This idea has the advantage to be easy to
implement in an embedded system that exploits a map-based approach. This work
has also shown the importance of exploiting a map to model a roundabout since all
the calculations are done in a curvilinear framework. As proven, the algorithm has
no deadlock. It has also been proposed a strategy to handle situations where both
autonomous and manually driven vehicles are involved. Thanks to a safety diagram
the algorithm performance has been evaluated in terms of safety.
Then, an extension of this strategy to real-word traffic has been proposed to handle

the uncertainty of localization and the issues linked to the detection and tracking of
uncertain objects. Furthermore, uncertainties in regular vehicles intentions, which
are hard to predict and understand too, have also been included in the proposed
approach. Finally, traffic regulations, such as the right of way, have been added
to the framework to make this approach effective in a real-life scenario. It has
been shown how the virtual instances of vehicles can be used to handle not only
the MD vehicles unknown intentions, but also the particular shape of roundabouts.
Then, an approach with occupancy intervals to compute the best gap to fit during a
roundabout insertion maneuver has been proposed too. The choice of representing
objects occupancy with intervals has been made to include the size of MD vehicles
and a possible uncertainty about their estimated occupancy. This approach has
been tested under a simulated traffic flow generated from real data. The degree
of interaction of the generated flow has been used to re-create a scenario close to
real world driving. It has been demonstrated that the proposed insertion maneuver
ensures safety. Moreover, some performance indexes to evaluate its efficiency in
terms of traffic fluidity have been proposed.
To handle the problem of a double-lane roundabout, a lane change intention

detector is required to obtain safe and not overly cautious performance. If this
technology is unavailable, the authors suggest using instead a worst-case occupation
method that always provides a safe insertion. Moreover, if a lane change detector is
able to detect also nudging, one can discriminate between a real intention of a driver
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to perform a lane change and a false alarm. This approach should add efficiency in
the insertion maneuver, decreasing waiting times without compromising safety.
Finally, the proposed method has been tested on an experimental test circuit with

real road users and a real AD vehicle in order to evaluate the performance of the
proposed algorithm in a real-world scenario with a perception system that provides
information about the surrounding road agents.
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4 LiDAR-based Road Users
Detection with Map Filtering and
Uncertain Localization

4.1 Introduction
The aim of this chapter is to study a LiDAR-based perception system to allow an
AD vehicle to perform an insertion maneuver in a roundabout with a MD vehicles
flow inside it. The main sensor that has been used to achieve on-board percep-
tion is a 360◦ LiDAR sensor that revolves around a fixed axis and provides scans
about the AD vehicle surrounding environment. The choice of implementing such
a task without exploiting any vehicle to vehicle (V2V) or vehicle to infrastructure
(V2I) communication is justified by the fact that V2V communication between road
users is not always available. In fact, even if there is a wide set of works in the
literature that focus on V2V communication and cooperative methods, nowadays
there are a few numbers of MD vehicles that have such technology truly included
in their on-board systems. On the other hand, V2I offers an appealing solution to
improve the knowledge about the surrounding driving scenario exploiting intelligent
infrastructure and Road Side Units (RSU) to broadcast information to the AD ve-
hicles. However, such intelligent infrastructures are seldom available in public roads
because of their costs to be installed and maintained.
First, a focus on the information needed to properly feed the decision algorithm

explained in the previous chapter has been done. Specifically, the interest is in
providing a compact, accurate and consistent information about detected road users.
This is crucial to implement a safety-critical driving maneuver as for roundabout
navigation. To prevent accidents and vehicle collisions, objects occupancy estimation
has to be precise as much as possible. To achieve such a task, one needs to handle
the uncertainty of the localization of the AD vehicle. This is necessary to obtain a
consistent and robust representation of the driving environment.
Then, it has been also proposed to include the information provided by a HD

map directly into the perception process. Indeed, performing object detection by
the fusion of LiDAR data with HD maps information can help in both improving
the detection performance and allowing faster computations for a real-time use-case.
To do so, the HD map information is exploited to detect only road users (i.e., the
carriageway) disregarding every other object that is not on the drivable road surface.
Regarding pedestrians, their presence has been considered only when they enter in
the drivable road surface. The prediction of pedestrians intentions (e.g. predict if a
certain pedestrian is about to cross a pedestrian crossing) is out of the scope of this
dissertation.
The result of such steps have to be converted into curvilinear occupancy to be

given as input to the decision module. In order to be consistent with the formalism
presented in the previous chapter, HD maps are again exploited to provide an oc-
cupancy interval relative to the HD map. This approach allows to consider objects
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occupancy as mono-dimensional occupancy intervals rather than to have informa-
tion regarding the space occupied by a detected object in terms of global volume
and area. This approach has several advantages. First, it allows to have a compact
representation about the along-track occupancy of the MD vehicles. Secondly, this
approach allows not to compute explicitly the heading angle of perceived objects
(that is known to be a non-trivial task for LiDAR-based perception) as the along-
track occupancy is projected along HD map polylines regardless of how the vehicles
move. This work has been done in collaboration with Edoardo Bernardi who was
supervised during his internship by Prof. Philippe Xu and I. Some results about
this work have been published in [12].
This chapter presents a perception pipeline that takes as input a 3D LiDAR point

cloud, a localization system and a HD map and returns the lane-level curvilinear
occupancy of the road users. It is organized as follows. In section 4.2, overview
of LiDAR-based perception methods is provided, differentiating machine learning
based approaches as opposed to geometry-based ones. Then, the 3D point cloud
segmentation method proposed by Zermas et al. [101] is detailed in section 4.3.
This algorithm has been used to process the raw LiDAR data and serves as input to
the rest of the pipeline. In section 4.4, a novel approach to compute the 2D spatial
occupancy of detected obstacles is introduced, taking into account uncertainty of
the vehicle localization. Then, this occupancy is used to filter out obstacles that
are not lying on the road. Finally, the lane-level curvilinear occupancy is computed
from the remaining detected road objects. In section 4.5, the concept of integrity in
this case study has been defined both from a Cartesian 2D occupancy and lane-level
curvilinear one. Finally, experimental results are reported in section 4.6 to evaluate
the approach.

4.2 Lidar-Based Perception State-of-the-Art
The field of LiDAR based perception for self-driving vehicles has been widely studied
in the recent years and different techniques and methods have been developed. The
aim of this section is to explore the existing literature about LiDAR based perception
for road users detection. This review will be useful to understand the advantages
and drawbacks for each proposed method, allowing us to choose the method that
better fits our specifications for our use-cases.
In this section, it has been decided to group the existing literature in two different

groups. The first one corresponds to methods that exploit machine learning based
techniques, as for example the use of artificial neural networks to treat LiDAR
raw data and obtain a representation of the perceived environment. On the other
hand, the second group does not rely on machine learning but exploits geometric
information provided by different sources (i.e. LiDAR data, road shape, etc.) to
build a representation of the obstacles around the AD vehicle.

4.2.1 Machine Learning-based Techniques
One of the mostly recent approaches to obtain a representation of the road obstacles
from LiDAR data is the use of machine learning based algorithms in combination
with artificial neural networks. The application of such techniques in AD vehicles
perception has started to largely spread in the last years accordingly to the devel-
opment of more and more powerful hardware architecture for AD vehicles on-board
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embedded computers. The main objective of these techniques is to utilize a pre-
trained network to extract relevant information about the traffic participants. Such
information can be vehicles classification and their occupancy. For the last one,
such methods are able both to estimate it from acquired data and to infer them
from their pre-trained neural networks. In the following part of the work, we are
going to analyze the main state-of-the-art algorithms of this category.
As said before, neural networks based perception can be used for several different

tasks. For example, they can be used to implement a semantic segmentation on the
acquired LiDAR point cloud data. This step consists in assigning to each LiDAR
point a class (e.g. ground or non-ground) as performed for images pixels. As it has
been shown by Mei et al. [70] this operation can be performed by considering the
LiDAR point cloud as a range image. Such an image is obtained by projecting the
3D LiDAR points onto a 2D image based on the distance from the sensor. Once
this step is done, the image is processed with classical image-based computer vision
methods. Alternatively, this problem can be addressed at a point-wise classification
problem directly on the LiDAR 3D point cloud [96]. Moreover, some other semantic
segmentation methods for objects detection based on deep learning methods can be
found in [35,71] and [39].
Some popular neural networks that can be found in the literature to perform ve-

hicles detection and bounding boxes estimation are VoxelNet or Fully Convolutional
Neural Networks [56, 104]. Once vehicle detection and bounding boxes estimation
have been achieved, machine learning-based approaches can also be employed to per-
form the comprehension of dynamics of moving objects, as for example the inference
of MD vehicles intentions [91] and their tracking and speeds estimation [34,83].
Machine learning-based techniques are well suited for object classification pur-

poses. In particular, considering the acquired LiDAR point clouds, it is possible
to identify different categories of road agents as cars, trucks, bicycles, bikes, pedes-
trians or not moving objects such as trees or panels. This has several advantages.
Firstly, this process can be helpful during the tracking process, because if we have
the information about the class of every object, it is possible to choose a correct evo-
lution model that better fits the object dynamics, providing an overall improvement
of the tracking performance. Then, the class information about perceived object
can also be helpful in rejecting objects that are not relevant for a specific use-case,
for example buildings, trees or static object in the case of AD vehicles navigation.
However, some drawbacks can be identified in these methods such as the necessity

of a labeled dataset to perform training of the neural network. In this case, the
training dataset should contain a heterogeneous variety of driving scenarios and
behaviors, in order to provide the network as much information as possible regarding
possible driving behaviors. As a consequence, one key issue of machine learning
based techniques is that obstacles that are not represented in the training dataset
will not be detected. For this reason, an obvious but uncommon obstacle, e.g., a
cow, is likely not to be detected (or detected wrongly). This may lead to critical
safety issues that will not appear if we use geometric methods.
In this work, a geometric method to perform road obstacles detection has been

implemented rather than a machine-learning based one because, even if these meth-
ods offer a more sophisticated solution and their performance is increasing more and
more over the years, we obtained satisfactory performance for our goals from the
use of geometry-based ones. Nonetheless, in the particular context of this work and
the research project related to it, we disposed of an on-board architecture with a
limited computational power on the test vehicles. Such a constraint forced us to
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choose more optimized and viable methods than machine-learning based ones for
real tests implementations. Furthermore, even if there exist in the literature some
machine-learning based methods that can perform in real-time with a reasonable
consumption of our computational power, we believe that the method adopted in
this work provides satisfactory performance for our use-case.

4.2.2 Geometry-based Techniques
Another approach that is commonly used to achieve LiDAR based perception con-
sists in treating perceived environment from a geometrical point of view. In partic-
ular, this set of techniques relies in the application of geometric principles to treat
point cloud data. In such cases, it is widely common to use a geometric concept
to discriminate LiDAR points in a point cloud that satisfies a certain criterion or
property or to extract some features according to a certain geometry tool. In gen-
eral, such techniques are based on a classic set of substeps. Each substep has the
goal of implementing a specific treatment on the output point cloud of the previous
one. A general straightforward example of such detection pipeline is composed of
the following steps.

• Ground not-ground segmentation: this step consists in separating the
acquired LiDAR point cloud in two different categories: the points that belong
to the ground surface, and the ones in which the points do not. The aim of
such a step is to discard points that are classified as ground points in order
to reduce the size of LiDAR points to treat in the following steps. This is
useful for road obstacles detection. However, on the other hand, the dual
reasoning can be performed on ground points if one is interested in extracting
the drivable surface rather than road obstacles.

• Clustering: LiDAR points are processed to group them according to some
similarity criteria, as for example for sets of points that are most likely to be
part of the same object.

• Bounding boxes: clusters are represented by a bounding volume that con-
tains all its points. Such volumes can be boxes or polygons representing the
object occupancy.

4.2.2.1 Ground Not-Ground Segmentation

In the literature, there exists a wide set of algorithms that can perform a ground/not-
ground segmentation of LiDAR point clouds. Some methods are based on grid
approaches. Such methods split the analyzed surface into small cells with fixed
dimensions. The overall result is that the whole space is divided by a rectangular
grid of cells. Each of the cells is then processed individually by identifying all the
LiDAR points overhanging it. Then, every grid cell is classified either to belong to
ground or to not-ground. However, the size of the cells has to be carefully chosen
in order to obtain a good result. To perform this step Chen et al. [21] compute the
height variance of points belonging to the same cell, if this value is above a certain
threshold, the cell is classified as not-ground. Another technique by Korchev et
al. [50] consists in computing two different maps: one that contains the maximum
height of a cell point and the other one the minimum one. The aim of this is
to compute the difference between the two maps and a thresholding technique is
deployed to assign the correct class to each one of the grid elements. The same
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grid-based reasoning can also be performed in polar coordinates rather than 2D
Cartesian space. Here the goal is to exploit circular geometry and polar coordinates
to build a radial grid, in which each radial cell is obtained as a portion of a circular
sector. The previous methodologies are able only to perform a binary classification
of each cell. For this reason, Asvaldi et al. [3] utilize a 2.5D grid instead of a normal
occupancy one. The main advantage of this is that this approach allows to insert
in each cell the average height of all LiDAR points and reject the points with this
value below a threshold.
Another commonly used technique for ground/non-ground segmentation of Li-

DAR points is a beam based technique that consists in splitting the circular area
scanned by the LiDAR into small circular sectors and then analyze each sector to
extract points not belonging to the ground surface.
Following this approach, Himmelsbach et al. [63] propose a method in which

each circular sector is split into several bins, based on the radial distance from the
LiDAR sensor. Acquired LiDAR points are assigned to a specific bin according to
their position and distance from the LiDAR sensor. For every bin, the point having
the minimum z-coordinate is chosen as a prototype point. This point has the role
of providing a compact representation of all the points contained into the bin. This
point and all the others of the same sector are then used to estimate the best line
that fits all the prototypes of that space portion. The same procedure is repeated
for all the sector and the set of obtained lines are used to represent the ground plan.
Such lines are then exploited to classify all the acquired LiDAR points into ground
or not-ground based on a likelihood criterion.
A similar methodology is presented by Chu et al. [22]. This approach, however,

consists in batch processing all the LiDAR points generated by the sensor at each
azimuth angle. These points are then classified as ground or not-ground considering
different factors such as the slope of the line conjoining two consecutive points, the
height difference between two conjoined points or the radial distance from the sensor.
Another method consists in iteratively computing and fitting with the LiDAR

points a parametric representation of a plan. Such plan is estimated from a geometric
representation and refined at every time step accordingly to the new segmentation
results. This approach has been proposed by Zermas et al. [101]. In this work, the
area scanned by the LiDAR sensor is divided in one or more sub-plans along the
vehicle driving direction in order to include multiple plan fitting for the eventual
presence of slope changes.
After that, a threshold on all the LiDAR points is performed according to their

distance to the plan and the points are finally classified into ground or not ground.

4.2.2.2 Clustering

The goal of clustering methods is to group LiDAR points that belong to the same
object in the same cluster. This technique is useful to identify LiDAR points that
constitute physical objects inside the detected LiDAR point cloud. The main idea
is to assign a class label to each LiDAR point. Consequently, LiDAR points that
belong to the same cluster will be identified with the same label.
In the literature, there exists a wide range of algorithms that perform clustering.

In particular, if a 2D or 2.5D grid has been used to implement a grid based seg-
mentation method, it is possible to apply an algorithm that aims to find connected
components in a binary image to perform the clustering step. In such a case, the bi-
nary image is given by the grid computed before, where the values 1 and 0 represent
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the two classes ground or not ground. One algorithm that exploits such technique
is the run-based two scans [53] algorithm. In this algorithm, a grid is traversed
twice to find the connected components. The first pass is made to get the linked
components and to assign them a class label, while the second pass is used to merge
linked components that are close enough to represent a single object.
By using the same data structure, it is also possible to implement a method for

moving objects detection by comparing the estimated grid with a map populated
with the last obtained observations [3].
On the other hand, if one applies a segmentation approach to LiDAR points, a

point cloud is returned instead of a grid. From such a representation, it is possible to
extract a range image and to use image-based techniques to perform clustering. The
3D LiDAR point cloud is first projected onto a 2D cylindric range image and each
not-ground point is treated as an image pixel. In the approach proposed in [101],
Zermas et al. treat this image identifying connected components by an adapted two
runs labeling algorithm. On the other hand, Bogoslavskyi et al. [42] use a technique
that involves the angle between the line formed conjoining two adjacent pixels and
the line conjoining the sensor positioning to implement a criterion for defining if two
adjacent points belong to the same cluster or not.
Finally, another approach consists in using a radial bounded nearest neighbor

technique [47]. Such an algorithm assigns the same label to LiDAR points that are
within a certain radial neighborhood of a given LiDAR point.

4.2.2.3 Bounding Boxes

This step has the goal of creating bounding boxes or bounding polygons that en-
capsulate the clustered points obtained at the previous step. The main objective of
building a bounding polyhedron is to identify at a geometric level the volume occu-
pied by an obstacle or by a MD vehicle. Furthermore, this compact representation
of a clustered object allows to forget about single LiDAR points and to treat the
more compact bounding polygon directly instead.
A first simple approach to create 3D bounding boxes for clustered objects is the use

of the Principal Component Analysis (PCA) algorithm. This technique computes
on the three x, y and z-axes the principal components of a given cluster of points.
These directions are then used to compute the sides of the 3D bounding box by
finding the maximum and minimum values of the clustered LiDAR points w.r.t. the
directions of the three principal components. However, in this approach there are
many drawbacks. The main drawback is that the estimated orientation of the object
is computed according to the principal components orientation. In other words, such
orientation is heavily influenced by the shape of the cluster. Some typical LiDAR
cluster shape that can lead to poor performances are L-shapes, obtained by a three-
quarter view of a car-like object.
In order to cope with such problem, several techniques have been developed in

the literature. The first technique consists is the L-shape fitting method. Such
method has been detailed in Zhang et al. [97]. In this work, the authors propose
three different criteria to extract the extreme points used to compute bounding box
vertices. In order to find the best configuration for the L-shape fitting, an area
minimization optimization problem is solved according to the different optimization
criteria. In other words, a point-to-edges squared error minimization process is
performed. This results in a bounding box estimation with small orientation error.
However, it requires a longer computational time.
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Another example that exploits the localization of L-shape vertices and its conse-
quent shape fitting via optimization problems are also considered by Qu et al. [79].
One other approach consists in estimating the object occupancy on both the x

and y-axes by computing the minimum area rectangle that contains the given set
of LiDAR points. One of the mostly used techniques to achieve such a task is
the computation of the minimum convex hull that surrounds all the points of a
specific cluster. Once this step is achieved, for each side of the obtained polygon a
rectangle having a side parallel to the polygon side is computed. Finally, once this
computation has been performed for every side of the polygon, the rectangle having
the minimum area is identified. Börcs et al. proposed an O(n2) approach that
exploits such technique [16], where n is the convex hull number of vertices. Another
approach shown by Eberly implements an O(n) bounding box method based on
rotating calipers [17].

4.3 3D Point Cloud Segmentation for Object
Detection

4.3.1 Ground Not-ground Segmentation
In this first block of the detection chain,the points of the raw data input LiDAR
point cloud are separated in two subsets: the ground points and not-ground points.
The aim of this phase is to reduce the number of points to be processed in the next
steps. In particular, in this work only road obstacles detection will be considered.
For this reason, only the non-ground points are forwarded to the next step.
By making this choice, it has been implicitly considered that the ground and non-

ground classification is correct for every point and that vehicles have a sufficiently
large height to not include all the points completely that represent a vehicle object
inside the ground points. In such a way, there is guarantee that no vehicle objects
will be classified as ground points, avoiding the missed detection of the vehicle.
Moreover, in this work it has been also assumed that the road surface is flat, i.e.

there are no ramps or any other kind of slopes. To cope with this hypothesis, one
needs to point out that the algorithm presented hereafter can be tuned to perform
ground plan fitting for non-flat surfaces. However, this aspect is out of the scope of
this work and it is not treated in detail.
On the other hand, for the sake of completeness, one needs to mention that there

also exists approaches that aim to estimate the free space (i.e. the navigable zone
for an AD vehicle) rather than focusing on estimating road obstacles.
As it has been previously shown in the state-of-the-art section 4.2, we investigate

the main existing approaches to find the most suited method for our architecture.
To the best of our knowledge, it has been found out that the plan fitting algorithm
proposed by Zermas et al. [101] behaves as a good compromise between precision
and computational time.
Moreover, such algorithm satisfies the hypothesis that have been listed before. In

fact, the algorithm is based on the assumption that ground points are identifiable
because belonging to plans and the points having small height values are more likely
to be classified as ground points.
The algorithm is based on a RANdom SAmple Consensus (RANSAC) algorithm

for plan fitting, initialized with a set of random points picked up from the raw-data
point cloud. Notice that in many cases a single plan is not correctly representative of
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the real ground surface and it cannot describe small changes of slope. Consequently
the point cloud can be divided into Nsegm segments along the x-axis, which represent
the along direction of AD vehicle motion. By doing that, the plan fitting is performed
on each of them and the resulting ground plan is represented by their union. For a
plane estimation, the first plan is estimated by using random seed points. A simple
linear model shown in Equation 4.1 is used

ax+ by + cz + d = 0
NTX = −d (4.1)

with N = [ a b c ]T and X = [ x y z ]T .
Then the estimation of the normal N to the plane is computed by using the

covariance matrix Ci computed by a set of seed points PGi
extracted in the previous

step.
C =

∑
j=1:|PGi

|
(sj − ŝ)(sj − ŝ)T (4.2)

with sj ∈ PGi
and ŝ is the mean of all sj.

Equation 5.5 shows the empiric computation of the covariance matrix. This quan-
tity is used to compute the three singular vectors representing the three main direc-
tions of dispersion for the seed points, that will be used to compute N according to
Zermas et al. [101].
Finally, each point pj ∈ Pi, where Pi denotes the points of the point cloud, is

classified as ground or not-ground by evaluating its distance w.r.t. the estimated
ground plan. Once this step is done, the new obtained ground points can be used
as new seeds to iterate and refine the plan estimation and points classification for a
fixed number of iterations.
Figure 4.1 illustrates a LiDAR raw-data point cloud and the corresponding non-

ground point cloud obtained after this step.

(a) (b)

Figure 4.1: The result of the ground non-ground segmentation: Figure 4.1a shows the
whole raw data point cloud before the treatments, while Figure 4.1b depicts
the point cloud that contains only the non-ground points.

4.3.2 Clustering Algorithm
After the ground removal module, the system needs to extract information about the
vehicles that are present in the driving scenario. For this reason, it has been decided
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Figure 4.2: Four main steps of the Scan Line Run clustering algorithm. The orange, green
and yellow points represent the points classified in the same run, while the
blue point represent points that have not been assigned yet. Steps (a), (b)
and (c) illustrate the labels propagation and the creation of a new run. Step
(d) depicts the merging of different runs. This figure is taken from the paper
of Zermas et al [101].

to exploit a clustering algorithm to individuate the vehicles in the pointcloud. The
goal of the clustering step is to group all the LiDAR points that belong to the same
object under the same label. This step is crucial to determine objects occupancy.
In fact, once the set of points that belong to the same cluster has been computed, a
bounding polygon can be extracted by such set in order to provide a more compact
representation of the perceived object.
In order to fulfill the requirements of our system, we investigate again the existing

literature to find an algorithm that fits as much as possible the aforementioned
criteria about real-time implementation. As it has been shown in Section 4.2.2.2,
different approaches have already been proposed for clustering LiDAR points.
Therefore, in this work it has been decided to consider the method proposed by

Zermas et al [101]. This choice has been made because it is the opinion of the
authors that this algorithm ensures both low complexity in clusters computation
and fast computational time [101]. However, on the other hand, such an algorithm
is sometimes prone to over-segmentation of detected objects. In other words, the
algorithm could have a tendency on splitting large detected objects in multiple sub-
clusters that belong to the same detection.
The main idea of this approach is that the 3D LiDAR point cloud is considered

as a 2D cylindrical image, where the row and column positions of the points in the
image are obtained by the different layers organization of the sensor. These points
are then labeled by using a two-run connected components algorithm as the one
shown by He et al. [53]. In particular, in their implementation of the algorithm,
the authors exploit the rings structure of the LiDAR sensor to optimize clusters
computation.
The main steps of the aforementioned algorithm are depicted in Figure 4.2. In

this representation, the blue circles represent the LiDAR points that have not been
traversed yet. In particular, sub-step (a) shows that two runs are identified and
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labeled with different labels (orange and green). In sub-step (b), a new label is
given to a run consisting of only a point that has no potential candidate label to
inherit. On the other hand, the other labels are propagated to new runs in the
subsequent scan-line. Sub-step (c) illustrates the case where a run has multiple
different neighboring labels to inherit. However, only the smallest one is assigned
to the new run. Finally, in sub-step (d), the different labels of neighboring runs are
merged.
The output of this block is a set of point clouds C = {Pk} with k = 1 . . . l. In

such sets, each point cloud Pk represents the set of LiDAR points that belong to
a given vehicle detection. Each cluster represents an object and a unique label is
assigned to every cluster. The set C is given as input to the following step.

4.3.3 Convex Hulls Bounding Polygons
Let us describe how to compute a convex bounding polygon to represent in a compact
way a vehicle cluster. In particular, only on 2D bounding boxes computation will
be considered in this work. For this reason, and because the main purpose of this
system is to extract curvilinear occupancy intervals, the z coordinate of LiDAR
points is disregarded.
Given a set of points, as for example a clustered point cloud Pi with at least

3 elements, a convex hull Ci is defined as the smallest convex set that completely
contains Pi. To perform this computation, the Monotone chain [103] algorithm has
been used, with a resulting complexity of O(n log n) [24]. The result of the convex
hull computation phase is a set of polygons H = {Ci} with i = 1 . . . l, where l is the
total number of clusters.
This step provides only the set H to the following blocks.

4.4 Road obstacles lane-level occupancy
4.4.1 Filtering the Points Thanks to the Map
In order to use the navigation strategy described in chapter 3, one needs to compute
the lane-level curvilinear occupancy of the road users with respect to a HD map.
The point cloud segmentation method described in the previous section provides a
set of convex polygons corresponding to the detected objects expressed in the vehicle
frame. A HD map can be used to filter out the obstacles that are not located within
the road space. To do so, the AD has to be able to localize itself with respect to the
map.
Let vXp =

[
vxp,

vyp
]T

be the position of a LiDAR point relative to the AD
frame. The LiDAR makes measurements in its own frame but since the geometric
transformation from the LiDAR frame to the AD vehicle one is very well known
through calibration, it is assumed that the LiDAR points are directly expressed in
the vehicle frame. To compute the coordinates wXp =

[
wxp,

wyp
]T

of this point

in the world frame, one needs to use the pose wXe =
[
wxe,

wye,
wθe

]T
of the AD

as follows
wXp = f (vXp,

wXe) =
[
wxp
wyp

]
=
[
wxe
wye

]
+
[

cos wθe − sin wθe
sin wθe cos wθe

] [
vxp
vyp

]
(4.3)

Then one can determine whether a point lies on the road surface or outside of
it by counting the number of times the laser beam intersects road boundaries as
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illustrated in Figure 4.3. Cases (a), (d) and (e) represent situations where the point
is outside the region (odd number of intersections), while cases (b) and (c) represent
cases where the point is inside (even number of intersections).

Figure 4.3: Different intersection cases. The drivable zone boundaries are depicted in black
and the segments between the AD vehicle sensor and the LiDAR points are in
green. Cases (a), (d) and (e) represent situations where the point is outside
the region (odd number of intersections), while cases (b) and (c) represent
cases where the point is inside (even number of intersections).

The method works well only if the localization of the AD is correct, otherwise
erroneous situations may arise as illustrated in Figure 4.4:

1. True Positive: a point inside the region of interest is correctly classified as
inside the region of interest.

2. False Positive: a point outside the region of interest is wrongly classified as
inside the region of interest.

3. True Negative: a point outside the region of interest is correctly classified as
outside the region of interest.

4. False Negative: a point inside the region of interest is wrongly classified as
outside the region of interest.

In terms of safety, false negatives (case 4) should be avoided as much as possible as
they may lead to hazardous situations. False positives (case 2) are less critical in
terms of safety but should also be kept as low as possible in order to increase the
availability rate of the navigation system.
In practice, localization is never perfect therefore its uncertainty needs to be

carefully taken into account. The main consequence of an uncertain localization is
that whether a given point lies on the road space or not may become ambiguous.
In the following, we introduce a method to propagate localization uncertainty

onto the occupancy of the detected clusters and show that it is more robustness to
non-linear transformations compared to classical linearization approaches. It will
be assumed that the localization information of the AD vehicle is provided as a
random variable wX̂e following a Gaussian distribution with a covariance matrix Pe.
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North

East

Figure 4.4: Impact of localization errors. The estimate is in red vehicle and the ground
truth in black.

We also assume that wX̂e is an unbiased estimator of the unknown true pose wXe

of the vehicle, i.e., E
(
wX̂e

)
= wXe, or in order words wX̂e ∼ N (wXe;Pe). Such an

estimation is typically provided by a Kalman filter.

4.4.2 Linearized Propagation of Point Uncertainty
Let us begin by dealing with the simple case of the propagation of the uncertainty of
the pose on a point. Given an uncertain pose wX̂e of the AD vehicle, the position of
a LiDAR point in the world frame wX̂p also becomes uncertain as it is related to the
AD vehicle pose wX̂p = f

(
vXp,

wX̂e

)
as expressed in Equation (4.3). Unfortunately,

because of the non-linearity of the function f , there is no closed form to describe
the probability distribution of wX̂p. It is, however, possible to approximate this
distribution by a Gaussian one using a first order approximation similarly to an
extended Kalman filter.
To do so, the covariance matrix Pp associated to wX̂p will be defined as follows:

Pp = JPeJ
T ,

where J is the Jacobian matrix of f defined as

∂f
(
vXp,

wX̂e

)
∂wX̂e

=
[

1 0 −vxp sin wθ̂e − vyp cos wθ̂e
0 1 vxp cos wθ̂e − vyp sin wθ̂e

]
. (4.4)

The LiDAR point position is now described by a Gaussian probability distribution.
The true position wXp of the LiDAR point in the world frame is unknown but, given
a risk α ∈ [0, 1], it is possible to compute a confidence domain C(α) such that

Pr (wXp ∈ C(α)) = 1− α. (4.5)
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(a) (b)

(c)

Figure 4.5: LiDAR point cloud processing. Figure 4.5a: Raw-data LiDAR point cloud.
Figure 4.5b: Clustering and bounding convex hulls computation on non-
ground point cloud obtained at the previous step. Figure 4.5c: Extended
convex hulls computed by injecting localization uncertainty .
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There exists an infinite number of such confidence domains. In our two-dimensional
case with a Gaussian distribution with covariance matrix Pp, this domain is com-
monly represented in the form of an ellipse with its major and minor axis aligned
along the eigen vectors of Pp. This domain is often chosen because it results being
the smallest, in terms of area, verifying Equation (4.5). In this specific problem,
an ellipse is difficult to be geometrically manipulated. In particular, it is complex
to compute the overall occupied space by a perceived object with several points.
Consequently, it has been chosen to to use rectangles, which provide a less complex
shape to manipulate.
Consider a rectangle having sides aligned with the eigenvectors of Pp and with

length li computed as:

li = 2Φ−1

1 + (1− α)1/2

2

λi, (4.6)

where λi is the i-th eigen value of Pp and Φ is the cumulative probability density of
the normal distribution N (0, 1). Figure 4.6 illustrates the obtained uncertainty for
a given point. It should be noted that the uncertainty is not yet well bounded in
this case. Thanks to a set-membership approach, a method to correctly encompass
all the uncertainty has been proposed.

Figure 4.6: Uncertainty ellipse constituting the confidence domain of a point. This poly-
gon has been obtained by applying the linearization method. The true uncer-
tainty distribution is illustrated in red by a banana shape, the black ellipsoid
represents the linearized propagation, while the bounding polygon is in blue.

4.4.3 Set-membership Direct Propagation of Point Uncertainty
To overcome the issue seen before, an approach that directly propagates the vehi-
cle pose confidence domain onto the one of the perceived object is proposed. No
linearization is necessary.
The covariance matrix Pe of the AD vehicle pose is used to compute the variances

in the cross-track (CT ) and along-track (AT ) directions w.r.t. the estimated heading
wθ̂e of the vehicle. Let σ2

CT , σ2
AT and σ2

θ be the resulting variances in these three
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dimensions. Similarly to the previous approach, a confidence domain is built over
the AD vehicle pose in the form of a “cube” in the CT , AT , and heading three-
dimensional directions. The length of each side is given by:

li = 2Φ−1

1 + (1− α)1/3

2

σi, (4.7)

where i ∈ {CT,AL, θ}.
To propagate this confidence domain onto a point vXp =

[
vxp,

vyp
]T
, let us

use a set-membership approach. The rectangle confidence domain resulting from
the uncertain position is firstly computed:

[vxp ± lCT/2]× [vyp ± lAL/2] . (4.8)
Then, in order to take into account the uncertainty over wθe, two other rectangles

are computed by using a rotation of angles ±lθ/2 (in the vehicle frame the heading
is always null). In order to represent the space occupied by the rectangle rotation,
the circles generated by the farthest vertexes are computed. Then the tangent lines
to such circles, passing through the aforementioned vertexes and the corresponding
ones in the rotated rectangles are extracted. Finally, the tangent lines intersection
points along with the corners of the three rectangles are used to compute a convex
hull corresponding to the confidence domain of the point.

Figure 4.7: Polygon corresponding to the confidence domain of a point (in grey). The
space occupied by the rectangle rotation is in yellow. Please note that this con-
vex approximation covers the banana shape illustrating the true uncertainty
distribution is red.

This procedure is depicted in Figure 4.7: the rectangles represent the confidence
domain resulting from the uncertain position and its rotations. The lines t1, t2 and t3
are obtained as tangent lines to the circle generated by the top left corner rotation,
passing through such vertex in the three rectangles. The same reasoning is applied
for the computation of t4 and t5 by the use of the top-right corner (in a symmetric
case also the tangent through the third rectangle vertex has to be computed). Points
wi are computed from the intersections of the previously calculated tangent lines.
Finally, the convex hull representing the point confidence domain is computed using
rectangle vertexes and tangent lines intersection points.
If one compares this approach to the propagation of uncertainty with the previous

one, one can observe that it is more conservative, which corresponds well to our
objectives of integrity.
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4.4.4 Extended Bounding Polygons of Detected Obstacles
Now knowing how to propagate the uncertainty of pose on a point, we look for a
method to apply this concept to the bounding polygons computed in section 4.3.3.
Indeed, by considering each perceived object as a polygon, it is possible to propagate
the pose uncertainty on every vertex of the convex hull. The overall occupied space
is then obtained by computing the bounding polygon of all the rectangles obtained
by the uncertainty propagation on the convex hull vertexes. This computation is
illustrated in Figure 4.8.
Notice that an alternative to this approach could be to propagate the uncertainty

on all the LiDAR points that constitute a cluster and, after that, to compute the
convex hull considering all the points that constitute all the polygons obtained from
the uncertainty propagation. In this work it has been preferred to reason in terms
of polygons rather than a single point to better take into account object shape and
to avoid filtering parts of uncertain objects that are outside the road surface.
This technique can be conceptually compared with a Minkowski sum [25] between

the general polygon bounding an object and the rectangle approximating the uncer-
tainty ellipsoid of the centroid of such a polygon. The ellipsoid dimension depends
on the hull vertex distance from the sensor perceiving it. To observe the overall ob-
tained result until this step, Figure 4.5a illustrates the input raw data, while Figure
4.5b illustrates the output of the clustering step. Finally, Figure 4.5c depicts the
extended bounding polygons corresponding to the previously computed clusters.

(a) (b)

Figure 4.8: Illustration of the extended convex hulls computation of the confidence domain
of a perceived object. In, Figure 4.8a a perceived object is bounded by a
polygon with three vertexes. The confidence domains the vehicle pose are also
depicted. In Figure 4.8b, the extended convex hull is built from the confidence
domain of each vertex. It represents the confidence domain of the perceived
object.

As all the computations are performed in the vehicle reference frame, the transfor-
mation f is directly applied on the vertexes of the previously computed confidence
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domain to get the final occupancy domain in the world frame. Unlike the previously
presented approach, no approximation is necessary to propagate such confidence
domain. In the following, this method will be called “direct method”.

4.4.5 Clusters Filtering with the HD Map
Once the 2D occupancy of the detected objects has been computed with the local-
ization uncertainty, the HD map can be used to filter out all the objects that are
not on the drivable space. A cluster is not considered on the road surface if all the
vertexes of its bounding polygon lie outside of the road and no edge intersects any
road boundary. Conversely, a cluster is considered as lying on the road if all the
vertexes of its bounding polygon is within the boundaries of the road surface, and
no edge intersects any road boundary. The rest of the clusters are ambiguous and
are considered as uncertain. The resulting classification is therefore constituted by
three categories: “road”, “not road” and “uncertain”.

North

East

Figure 4.9: Extended convex hulls computed taking into account the AD vehicle local-
ization uncertainty. Three classes are present: not-road (green), road (red),
uncertain (blue). The black convex hulls represent the hulls computed by tak-
ing into account the AD vehicle ground truth localization, highlighting the
differences between the two cases.

Figure 4.10 depicts the result of this classification on a driving scenario that
involves some MD vehicles in a roundabout.

4.4.6 Lane-level Curvilinear Occupancy
So far we have seen how to transfer the AD vehicle uncertainty into the perception
result in order to obtain a consistent environment perception. Once the 2D space
occupied by a perceived object has been computed, it is possible to use once more
the information contained in the HD map to compute the object occupancy at the
lane level. Indeed, the interactions between the AD vehicle and the surrounding
road users can be performed at lane level rather than at Euclidean space level.
This concept has already been discussed in detail in chapter 3. Therefore, the
curvilinear occupancy intervals generated by each obstacle along the driving lanes
is more informative than the 2D occupancy space. In the available HD map, in
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Figure 4.10: Experimental result of the HD map filtering applied to extended bounding
polygons. The green hulls represent the obstacles outside the region of inter-
est, while the red hulls represent vehicles inside it. The blue hulls represent
objects partially contained in the region of interest. Notice that the resulting
bounding polygons include the AD vehicle uncertainty.

addition to the road borders, the middle of each lane of the road is encoded as a
polyline, i.e., a sequence of line segments.
To compute the curvilinear occupancy of a 2D bounding polygon, first the inter-

section between such a polygon and the polygons obtained from the representation
of each road lane is computed. The obtained result is a sub-polygon representing the
2D space effectively occupied on such lane. This occupancy can occur on multiple
lanes, depending on the positioning of the bounding polygon.
After this step, each vertex of this sub-polygon is map-matched onto the HD

map lanes, according to the lanelet method explained in section 7.3.3. To make the
computation faster, the HD map has been organized with a graph-based structure
and a breadth-first search algorithm is used during the map-matching step.
The aforementioned operation is performed on all the obstacles being classified

as “road” or “uncertain”, in order to keep the integrity constraint. In fact, not
considering an object which confidence domain intersects a portion of the drivable
surface, even if small, could lead to collisions. On the other hand, some heuristics can
be proposed to handle objects that can lead to false positive during the occupancy
computation (e.g. bushes or trees at the road sides).
Regarding the polygon intersection with the HD map link borders, two different

situations may occur:

1. Only one lane is intersected: The resulting map matching operation is per-
formed directly on the original occupancy polygon vertices. A single occupancy
interval is defined by the minimum and the maximum curvilinear abscissa of
all the points on the polyline.

2. Several lanes are intersected: This may occur when a vehicle is changing lane
or when the occupancy space is too large. This situation implies that there is
an ambiguity regarding which lane results being effectively occupied. From an
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integrity point of view, every candidate lane has to be considered as occupied
by a curvilinear interval.

The final output of this step is a list of occupancy intervals that represent the space
occupied by all MD vehicles along the HD map polylines (see Figure 4.11).

Figure 4.11: The red polygon B̂i intersects two different lanes generating two sub-polygons
b̂i1 and b̂i2. All the vertices of each sub-polygons are map-matched on the
polyline in the middle of the occupied lane. The result is a set of curvilinear
intervals representing lane level occupied space Ŝi = {ŝi1, ŝi2}.

Figure 4.12 typical situations where multi-map matching can occur in practice.

(a) (b)

Figure 4.12: Results of the lane-level curvilinear occupancy extraction from the 2D bound-
ing boxes. Figure 4.12a: occupancy intervals generated by a vehicle entering
into a roundabout. Figure 4.12b: occupancy intervals from a vehicle driving
between two lanes. For both figures, occupancy is computed along several
lanes.

4.5 Integrity Definition of Perceived Objects
The method proposed in the previous section has been designed with a particular
attention to the integrity of the spatial occupancy of the perceived objects. Such
a definition means that the perception system must be able to provide information
with a certain degree of confidence and in a robust way.
In this case, the integrity of the perceived environment needs to follow two state-

ments:
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• It must be consistent w.r.t. the real object occupancy.

• It must be robust to localization uncertainty.

In the first case, it is required that the system provides the exact occupancy of every
detected vehicle. In particular, the system must avoid both missed detection and
wrong occupancy detection. Such statement implies that the bounding polygons of
the perceived objects must be representative as much as possible of the true object
occupancy. Nevertheless, this depends on the perceived information and it is not
always trivial to determine the whole object occupancy from a partial or incomplete
LiDAR-based representation. Indeed, it is not always possible to clearly understand
the object planar dimensions and if the computed bounding polygon corresponds to
the real object occupancy. As a consequence, an incomplete detection of the whole
occupancy of a vehicle can lead to severe consequences in terms of navigation safety,
as for example in the case of inter-distance keeping and vehicle following. To cope
with that, in the next chapter a tracking system with the help of an infrastructure-
based technique to compensate such lack of perception has been proposed.
Concerning the second statement, the system has to handle the localization uncer-

tainty directly into the perception layer. This means that, if one injects localization
uncertainty into the result of the perception system, the perception should remain
robust to localization errors. Given an estimation of an unknown quantity and a
risk α, it is possible to build a confidence domain that contains this unknown quan-
tity with probability equal to 1 − α. A confidence domain is said consistent if the
aforementioned probability is greater or equal to 1 − α. In this case, we consider
that the integrity property is respected.
In order to apply the definition to the case of bounding polygons, an extension

of what was previously said for points to clusters has been done. Considering that,
if the extended convex hull Ĉi contains all the LiDAR points of the cluster that
originates Ĉi with a probability of 1 − α, it means that the integrity property is
respected. In other words, in (1 − α) · 100 percent of the cases, Ĉi includes all
the perceived LiDAR points belonging to the originating cluster. This definition
holds true in the case where the ground truth localization wXe of the AD vehicle is
contained in the ellipse built from the observed localization wX̂e.
Figure 4.13 depicts the reasoning. Figure 4.13a shows the case in which the

ground truth localization wXe is contained in the ellipsoid centered on the observed
AD vehicle pose wX̂e and computed exploiting its the covariance matrix Σe.
In this case, the resulting extended convex polygon Ĉ1 contains entirely the convex

polygon C1 built considering the ground truth localization (which is, of course,
unknown in real-life applications). Figure 4.13b illustrates the dual case where the
ground truth localization is not contained in the ellipsoid generated by the observed
pose wX̂e. Consequently, the resulting extended convex polygon Ĉ1 is not guaranteed
to contain all the LiDAR points of the originating cluster. As it is shown, in such
case, some unsafe regions Γ arise.
Based on this reasoning, we define the integrity of a bounding polygon w.r.t. its

originating cluster as follows.
Definition: Given a raw-data cluster Gi, composed of LiDAR points gi, and a

transformation function f(·) that converts LiDAR points gi from the LiDAR sensor
frame to the world frame. By applying f(·) to the bounding polygon Bi computed
with the localization ground truth wXe, one obtains a polygon that bounds points of
Gi, and a risk α. A bounding polygon B̂i, obtained after having applied the trans-
formation f(·) with the estimated localization wX̂e, satisfies the integrity property
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North

East

(a)

North

East

(b)

Figure 4.13: Integrity extended to clusters bounding polygons: If the true pose is con-
tained in the ellipsoid of uncertainty centered on the observed pose, then the
extended hull fully contains the points (Figure 4.13a). If not, some points
are outside (Figure 4.13b).

if and only if:
Pr(Bi ⊂ B̂i) ≥ 1− α (4.9)

with B̂i = f
(
gi,

wX̂e

)
and Bi = f (gi, wXe).

These concepts can also be formulated at the lane-level curvilinear occupancy in
a similar fashion by considering the occupancy intervals instead of the bounding
polygons. Given a set of segments Si representing the lane level drivable space
occupied by a bounding polygon Bi and a risk α, a set of segments Ŝi, computed by
map matching the transformed bounding polygon B̂i, satisfies the integrity property
if and only if:

Pr(Si ⊆ Ŝi) ≥ 1− a. (4.10)

These integrity definitions are depicted in Figure 4.14.

(a) 2D occupancy integrity (b) Lane level integrity

Figure 4.14: Integrity representation in terms of 2D occupied space (a) and curvilinear
occupied space (b). The red hulls and segments take into account localization
uncertainty while grey ones are obtained from the ground truth.
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4.6 Results
In this section, results obtained to validate the perception pipeline are presented and
discussed. These results have been generated thanks to an experimental platform
to record datasets in roundabouts. The data contains real traffic data collected
on some public roundabouts in the cities of Compiègne and Rambouillet. The
whole detection pipeline has been coded in C++ with the middleware ROS. The
experimental validation has been carried out both on recorded data and during real
tests with experimental vehicles.

4.6.1 Map Classification and Filtering with Uncertainty
In order to test the behavior of the HD map-based filtering based on clusters convex
hulls computed with the localization uncertainty, a comparison between the HD
map-based filtering with uncertain convex hulls and the HD map-based filtering
obtained with the corresponding ground truth has been performed. The aim of such
tests is to check how the HD map-based filtering changes when the uncertainty on
the AD vehicle localization grows.
To obtain the bounding boxes computed with the localization ground truth instead

of the uncertain one, the same pipeline has been used. To compute the extended
bounding polygons, the set-membership propagation method (Section 4.4.3) has
been used to inject the uncertainty in the bounding polygons. Once one has obtained
both the hulls computed using the ground truth and the extended ones, it is possible
to apply the HD map filter to classify their relative position w.r.t. the region of
interest. This classification step is repeated for both hulls computed using the
ground truth and the extended ones. Then, a comparison between the two is carried
out. For a given bounding polygon, one is interested in checking its classification
result in both the aforementioned cases. Table 4.1 reports the overall percentage
of classification transitions for every bounding polygon when uncertainty in AD
vehicle localization is added. As one can see, when we switch to the case with the
localization uncertainty the class “uncertain” has been added.
Observing Table 4.1, it is possible to see for each cluster how the classification

result has changed when uncertainty has been added (in other words, how the un-
certainty has changed the relative positioning of an MD vehicle w.r.t. the HD map).
As previously said, some dangerous situation may arise when adding uncertainty.
Such situations are false positive and false negative cases. The first one corresponds
to a case where, due to localization uncertainty, an object previously classified as a
not-road point becomes road. The second case corresponds to a point that switches
from road to not-road.
Both cases must be avoided. However, false negatives are more dangerous than

false positives. If one observes again Table 4.1, it is possible to see that neither
false negative nor false positive cases occur. This means that the method does not
provide misleading information to the AD vehicle. It is also possible to observe that
no phantom objects appear when we switch to uncertain representation. Such a
point provides an improvement in system availability in the context of AD vehicles
navigation.
However, when uncertainty is added, a certain percentage of the objects switch

from road or not-road to uncertain. This is because when bounding polygons tend
to grow due to the uncertainty injection, they have more probability to intersect a
lane border. This phenomenon is more likely for road objects because they are closer
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to lane borders than uncertain ones, which can be distributed everywhere outside
the road surface.

Table 4.1: Classification results when localization uncertainty is added (percentage). No-
tice that neither False Positive nor False Negative cases occur.

Class Changing
Ground Truth\Uncertain Road Not road Uncertainty

Road 33.26 0 66.754
Not road 0 91.84 8.16

Finally, a qualitative overall result that illustrates the extended convex hull clas-
sification based on the AD vehicle uncertain positioning can be seen in Figure 4.10.

(a) (b)

(c) (d)

Figure 4.15: Overall result of the MD vehicles detection pipeline in the case where AD
vehicle uncertain localization is present. Figure 4.15a: the raw data LiDAR
point cloud. Figure 4.15b: non-ground points extraction. Figure 4.15c: ex-
tended bounding polygons computation. Figure 4.15d: curvilinear occupancy
extraction.

The whole detection pipeline with the AD vehicle uncertain localization propa-
gation is computed in around 33.965 ms on a laptop with a 2.2 GHz CPU, which
gives an average working rate of around 29 Hz. Such a rate is significantly below
the threshold of 100 ms that is required to run a system in an AD vehicle navigation
framework. Moreover, the whole algorithm running time is around 11.567 millisec-
onds for traffic scenarios that can contain up to 200 clusters. The computation times

95



4 LiDAR-based Road Users Detection with Map Filtering and Uncertain Localization

of each block for the case where AD vehicle localization is treated are summarized
hereafter in Table 4.2.

Table 4.2: Average Computational Time (ms)
Uncertain Computational Time

Step Segmentation Clustering Map Filtering Map Matching TOT
Time 7.743 9.317 11.567 5.075 33.702

4.6.2 Integrity Analysis: Simulation Study
In this section, a comparison of the performance between the set-membership prop-
agation method explained in section 4.4.3 and the state-of-the-art linearization
method described in section 4.4.2 is carried out. The aim of the test is to check
whether the integrity property is preserved when the localization uncertainty is
propagated to perception results via the two methods.
To test and compare the two methods, a case study in a simulated environment has

been implemented. First, it generate a random point which represents a simulated
single LiDAR point cluster. Then, we compute the bounding polygon that surrounds
it using the ground truth pose of the AD vehicle. After that, an uncertain vehicle
localization is generated from a Gaussian distribution centered on the ground truth.
As the transformation between the ground truth pose and the uncertain one is

perfectly known, we can apply the same transformation to the LiDAR point, in order
to simulate the acquisition of such point from a sensor situated in a position different
from the ground truth one. In this situation, a new extended bounding polygon is
computed taking into account the uncertain AD vehicle localization. Once this
computation has been done, we check if the new extended bounding polygon Ĉi
contains entirely the ground truth one Ci according to the integrity definition given
in section 4.5. The scenario of this test is depicted in Figure 4.16a.
The same reasoning is extended to a LiDAR cluster that represents a static object.

We used an experimental car as an obstacle and we have extracted its representation
from the LiDAR point clouds data. Figure 4.16b illustrates this process. Again, we
perform the same test that we did for the previous case.

Table 4.3: Integrity results for the three use-cases described in section 4.16 for a risk value
of α = 0.05.

Overall Integrity Ratio
Dataset Set-membership propagation Linearized propagation

Single point ∼ 1 0.95
Static object 0.978 0.867

Table 4.3 reports the overall percentage of integrity for each method and for each
scenario for an integrity risk α = 0.05. The set-membership method outperforms
clearly the one based on linearization. Indeed, the performance of the linearized
propagation is below the expected confidence value for the second scenario, and so
it does not reach the integrity objective.
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(a) (b)

(c)

Figure 4.16: Comparison results for the three different use-cases. Figure 4.16a illustrates
the case with a single point. Figure 4.16b illustrates the case of a static
cluster. The blue polygon represents the linearized propagation bounding
polygon, while the red polygon represents the one obtained with the set-
membership propagation. Figure 4.16c depicts the same reasoning for a scene
contained in the datasets.
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4.6.3 Integrity Analysis: Real Tests
To evaluate the performance of the method in both Cartesian and curvilinear coor-
dinates, several real experiments have been carried out. A dataset has been recorded
at the entrance of a roundabout in the cities of Compiègne and Rambouillet, France.
This dataset is composed of ten sequences of about 10 minutes of road traffic, with a
moderately dense traffic flow. Moreover, the Renault ZOE experimental vehicle was
equipped with a Velodyne VLP-32 LiDAR and a GNSS/IMU NovAtel SPAN-CPT
with PPK corrections to provide a ground truth localization. To simulate errors on
the localization, a Gaussian noise was injected into the ground truth pose provided
by the localization sensor. The standard deviation values used for such noise are
σx = 0.1 m, σy = 0.16 m and σθ = 0.01 rad.
First, the 2D occupancy of the linearized and set-membership method from an

integrity point of view has been computed. The integrity property refers to the
capability of the estimated occupation space, computed from an uncertain localized
sensor, to contain the whole cluster of point cloud or bounding polygon representing
the object perceived at their exact localization.

Table 4.4: Average computational time in ms for the whole processing (segmentation,
clustering, uncertainty propagation, map filtering and map matching).
Step Segm. Clust. Propagation Map Filt. Map Match.

set-membership 7.753 9.317 0.183 11.384 5.075

Considering a risk α and the confidence level 1−α ∈ {0.90, 0.95, 0.99, 0.999, 0.9999},
the occupancy confidence domain has been computed by using both methods. Then,
for each obstacle cluster, it has been computed whether all the points within the
cluster, acquired from the exact localization, were contained in the occupancy con-
fidence domain or not. A method satisfies the integrity constraint if the ratio of
clusters entirely contained in the confidence domain is greater than the confidence
level 1−α. Table 4.5 summarizes the results obtained in the experiments. It can be
seen that the linearized method does not provide reliable results. This is due to the
non-linearity of the heading error propagation that leads to a banana shaped dis-
tribution of the LiDAR points which is badly approximated by a Gaussian. On the
other hand, the set-membership approach keeps the integrity up to a confidence of
99%. For higher degrees of confidence, the integrity objective is not exactly reached
but the statistics remain very close.

Figure 4.17: As the red polygon B̂i does not contain the gray cluster Bi entirely, it does
not satisfy the 2D integrity property. Its projection Ŝi at lane level along the
blue polyline, however, includes the true curvilinear occupancy Si.

The same analysis has also been performed in terms of occupied curvilinear space.
Table 4.6 shows that the set-membership propagation method also outperforms the
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Table 4.5: Integrity comparison of the linearized and set-membership methods for 2D oc-
cupancy confidence domain.

1− α 90% 95% 99% 99.9% 99.99%
Linearized 44.54% 49.50% 56.45% 62.59% 66.33%

set-membership 97.69% 98.87% 99.21% 99.69% 99.88%

Table 4.6: Integrity comparison of the linearized and set-membership methods for lane-
level occupancy confidence domain.

1− α 90% 95% 99% 99.9% 99.99%
Linearized 91.04% 91.50% 91.96% 92.82% 93.05%

Set-membership 99.23% 99.30% 99.35% 99.73% 99.90%

linearization one at lane level. This is directly related to the better performance
identified in 2D space occupation. Nevertheless, the curvilinear integrity values are
significantly higher than the 2D occupation ones. This behavior is due to the fact
that a 2D bound that does not fully include a given obstacle may still include its
curvilinear occupancy at the lane level. Figure 4.17 illustrates such a situation.

4.7 Conclusion
In this chapter, we have shown a method that provides a robust and consistent
perception of the surrounding driving environment for AD vehicle navigation. This
method is based on the combination of Velodyne LiDAR data and a HD map to
extract the most relevant objects on the road surface. A full pipeline to process the
points acquired by a Velodyne LiDAR has been developed. This processing flow
also uses the data provided by a HD map, making the proposed work an innovative
way to perform perception for AD vehicles.
The case of uncertain vehicle localization has been taken into account by devel-

oping a new method that transfers it directly on LiDAR points in a set-membership
manner. The proposed approach has a good level of integrity and works better than
a method that uses linearization to propagate the uncertainty. This can be explained
by the fact that, as objects are far away from the LiDAR sensor, uncertainty on the
heading angle has a great impact. A linearization method provides only an approx-
imation of such uncertainty. The set-membership propagation method propagates
the whole uncertainty to bounding polygons rather than approximating it. For this
reason, its bounding polygons remain consistent in all the use-cases.
In order to evaluate the performance experimentally, we have used a ground truth

localization provided by an accurate GNSS receiver with PPK corrections. We found
out that the performance is very good in terms of integrity. Moreover, the whole
pipeline is processed in quite a low computational time, performing more than twice
faster than the minimum safety requirement for autonomous navigation, proving
that the proposed approach is viable for real-time autonomous vehicle navigation
in safety-critical scenarios. This has been demonstrated at the IEEE Intelligent
Vehicles symposium in Paris in June 2019 [66]. Autonomous driving tests were also
conducted on the Séville experimental test track of the University of technology of
Compiègne. A vehicle and a bicycle were looping inside a roundabout with the aim
of having the autonomous vehicle inserting in the roundabout. These tests with a
95% confidence level led to satisfactory behavior for autonomous navigation.
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5 Cooperative Road Users Tracking
with Intelligent Infrastructure

5.1 Introduction
This chapter presents a cooperative perception system able to provide consistent
and meaningful information to the AD vehicle about the surrounding traffic envi-
ronment. This approach is studied with the goal to ensure safe AD vehicle naviga-
tion in complex urban scenarios. In chapter 3, we have presented a decision-making
strategy for complex driving maneuvers using a HD map while taking into account
the uncertainties. In chapter 4, we discussed an on-board LiDAR perception system
that detects and localizes the road users with a special attention to the propagation
of the uncertainty on localization since this strategy relies on working in a fixed
working frame in which the map is expressed.
In order to obtain a safe navigation by using the algorithm described in chapter

3, it is required to get a consistent curvilinear occupancy of the perceived objects
and a good knowledge of their speeds along the polylines of the map. Indeed, the
system must be able to estimate correctly the entire occupancy of perceived objects
several seconds ahead in order to guarantee a safe navigation during the roundabout
crossing process.
To achieve this goal we propose to implement a tracking system that first exploits

the information provided by on-board LiDAR perception to estimate the occupancy
and the speed of the other vehicles. We are particularly interested in investigating
if this system provides information that meets the integrity criteria. In a second
stage, it will be studied how the information from a remote intelligent infrastructure
perception system can extend the field of view and improve the integrity of the
perceived objects in order to robustify the AD vehicle on-board perception system.
This idea comes from cooperative perception systems. An example of this work can
be found in [7,86] and [33]. In the particular case of a data-fusion approach with an
intelligent infrastructure, another example can be found at [62, 88]. Furthermore,
other details about cooperative and collaborative systems state-of-the-art have been
detailed in Chapter 2.2.1.
This chapter is organized as follows. After having reviewed classical tracking

systems, Section 5.3 will describe the method that have been used in this system
to track detected objects from LiDAR bounding polygons with the help of the HD
map. Section 5.4 will present the main aspect of the remote intelligent infrastructure
perception system. In section 5.5, the main details about the techniques that have
been adopted to implement a cooperative data fusion strategy between the intelligent
infrastructure and the AD vehicle perception system are presented. Moreover, a
comparison between the obtained results with the ones obtained exploiting only
the AD vehicle information is reported too. Finally, in section 5.6.5 a discussion
about the experimental results is provided where we highlight the main advantages
and drawbacks of the use of an intelligent and communicating infrastructure for
enhancing safety of AD vehicles navigation.
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5.2 Tracking Framework
5.2.1 State-of-the-Art
Moving object tracking is widely used in several domains, as for example traffic mon-
itoring, surveillance and aircraft detection. In the context of AD vehicles navigation,
the main purpose of tracking methods is to estimate values related to surrounding
vehicles and to estimate quantities that are not directly observable from the pro-
vided raw data. An example of this is the speed and acceleration of other vehicles
that are not directly observable from LiDAR point clouds. Moreover, tracking-based
methods can also be used to provide a more consistent and smooth estimation of
the evolution of state variables over time. Finally, it is also possible to recursively
estimate the degree of uncertainty on the estimated state variables along with their
estimation process. In the case of the simultaneous tracking of several objects, a
data association algorithm is necessary to perform a matching between the detected
observations and the existing tracks to do a tracking update or to create new ones.
The main role of a tracking system is to estimate the states of external dynamic

objects over time. Every object is represented by a set of state variables that are
considered necessary and sufficient to describe its behavior and to perform the nav-
igation task successfully. Considering the existing algorithms on this topic in the
literature, the Kalman Filter is recognized by the majority of researches as the most
common and widely used technique for this purpose [77]. The execution flow of such
a filter is divided into two main steps. First, there is a prediction step where the
estimation of a track state is propagated to the present time using only an evolution
model. Then, in the estimation step, the predicted state is fused with the infor-
mation coming from the measurements and an update of the state is done. Some
others examples of tracking techniques can be found at [29,31,33,61]
In order to run a Kalman filter, it is required to define an evolution and an obser-

vation model for modeling the system. Based on the different models used for both
the state and the observations, different types of Kalman Filter can be identified.
For a both linear evolution and observation models, the Kalman Filter (KF) can be
applied. In the case where observation and/or evolution models are non-linear, an
Extended Kalman Filter (EKF) or an Unscented Kalman Filter (UKF) is classically
used. In order to obtain a good performance during the estimation process, it is
required that measurement noises and uncertainty in the evolution model follow a
white zero mean Gaussian distribution. If not, the KF is not guaranteed to converge
towards the optimal solution during the estimation process.
To cope with that, some other techniques can be used instead. In particular, ad-

vanced Bayesian filters can replace a KF. This approach has the advantage that it
does not require the noise to follow a Gaussian distribution. For instance, it is suited
in the case of multi-modal noise distributions. The most common implementation
of this filter is the particle filter. Such a filter is based on a Monte Carlo method for
generating a set of particles that approximate the system state posterior distribu-
tion. Each particle has a weight representing the probability of being an estimate of
the system state. The filter alternates propagation and re sampling steps, assigning
at every time new weights to the particles according to the updated information
computed with the received observations. The set of the particles with their cor-
responding weights corresponds to an approximation of the probability distribution
of the system state. Despite the fact that this algorithm requires less hypotheses on
the system modeling, it demands a significant amount of computation power to be
implemented in real-time without some additional dedicated hardware.
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In the case of multi objects simultaneous estimation, a data association procedure
is required to understand which observation corresponds to which track. For multiple
objects tracking, a set of Kalman filters can be run in parallel and each single filter
performs the estimation of the state of a single object. In order to correctly associate
observed data to the correct filter, a data association step needs to be solved. In
this context, an estimation of the state of a single object is called a “track”. At
each iteration of the filtering process, the data association performs the following
operations. Firstly, it associates tracks to observations. Then, it creates a new track
if an observation has not been associated to an existing track and it removes a track
if such a track has not been assigned to any observations for a certain amount of
time. Considering the main state-of-the-art algorithms, we can summarize the main
techniques used to perform this task in the following list:

• Nearest Neighbor (NN): Assignment of each track to its closest observation
according to a certain distance. Such a distance can be the Euclidean or the
Mahalanobis distance.

• Global Nearest Neighbor (GNN): It works as the NN approach. However,
assignment is done by globally minimizing the distances between tracks and
observations, ensuring that all the tracks are assigned to an observation. To
compute the assignment, some heuristics as the Hungarian algorithm can be
used.

• Joint Probabilistic Data Association Filter (JPDAF): The probabilities of each
association hypothesis considering all the possible assignment combinations are
computed. After that, the probability of associating a track i to an observation
j is calculated by the sum of all the probabilities that satisfy the assignment.
The final assignment is done by validating the most probable one.

• Multi-Hypothesis Tracking (MHT): Instead of using the hypothesis only for
the association probability computation as it is done in JPDAF, a subset of
such probabilities is propagated to update a track with multiple observations
and then create multiple possible tracks of the same object.

The presented tracking and data association algorithms can be combined to per-
form data association and tracking according to the considered scenarios. Some
approaches that illustrate the deployment of such techniques in the cases of LiDAR
based objects tracking are [60, 100]. Moreover, tracking algorithms can be used to
track not only vehicles but also other road users as well. Some examples of tracking
algorithms for pedestrians can be found in [44,87].

5.2.2 Kalman-Based Moving Objects Tracking
An important stage of a tracking system is the filtering strategy based on a state
space modeling. In the literature, there exists a wide range of approaches to perform
this task. In this work, we have decided to use the Extended Kalman Filter (EKF).
The EKF has been chosen because it provides a good compromise between the
complexity of the algorithm and our specific needs.

5.2.2.1 State Modeling

An EKF is a state estimation technique suited for non-linear dynamic systems. In
its most general form, a non-linear dynamic system (with no input because we do
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tracking of external and uncontrolled objects) can be represented by the following
model:  Xk+1 = f(Xk) + αk

Yk = g(Xk) + βk
(5.1)

Equation 5.1 describe both the evolution and observation models which contain non-
linear equations. The vector Xk indicates the system state at a given time step k, Yk
is the observation vector, αk is the model noise that represents uncertainty about the
system model, and βk is the measurement noise. The main working hypothesis of
the Kalman Filter is that both the noises αk and βk are assumed to be represented
by white Gaussian random processes having zero mean. We have therefore that
E(αk) = E(βk) = 0. Furthermore, covariance matrices of these random processes
defined as V ar(αk) = Q and V ar(βk) = R have to be known. Finally, we assume
that the two noises αk and βk are not correlated.
In this work, we use the notation X̂k|k to represent the estimated track state at

time k, while the notation X̂k|k−1 represents the predicted state at time k based on
the estimate X̂k−1|k−1 computed at time k − 1.
In tracking methods, once a new track is created, it has to be correctly initialized

in order to begin the estimation process. Once the initialization of all the afore-
mentioned quantities is performed, the EKF consists of two subsequent phases: the
prediction step, used to predict the value of the state up to the time of the mea-
surements, and the estimation step, where the state value is updated according to
the new measurements.
To make the overall estimation process converge to a consistent state estimation,

it is required to perform a tuning of the noise covariance matrices Q ∈ Rn×n and
R ∈ Rm×m , where n is the dimension of the state vector and m is the dimension of
the measurements vector. This can be done using recorded data and ground truth.
Often, the state covariance matrix P ∈ Rn×n of the estimation error is initialized
with a diagonal matrix that contains weight coefficients accordingly to each state
variable.

5.2.2.2 Prediction

In order to run the EKF, the Jacobian matrix of the evolution model has to be
computed. It is needed to linearize the non-linear model around the state estimate
X̂k−1|k−1. This matrix is computed as follows:

Ak =
[
∂f

∂X
(X̂k−1|k−1)

]
(5.2)

In the prediction step, the state of a track is predicted by using the evolution
model X̂k|k−1 = f(X̂k−1|k−1), extrapolating the state estimate at time k − 1 up to
time k. In a similar way, the prediction of the state covariance matrix Pk|k−1 (of the
prediction error) at time k is obtained as:

Pk|k−1 = AkPk−1|k−1A
T
k +Q (5.3)

5.2.2.3 Estimation

As previously said, the aim of this steps is to integrate the acquired measurements
to update the state prediction X̂k|k−1 obtained at the previous step. To do so, first
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an observation Yk is elaborated at time k from the raw exteroceptive measurement.
Let us first define a matrix Ck in the following way:

Ck =
[
∂g

∂X
(X̂k−1|k−1)

]
The Kalman gain K is then calculated as:

Kk = Pk|k−1C
T
k (CkPk|k−1C

T
k +R)−1 (5.4)

After that, the prediction of the state is updated in the following manner:

X̂k|k = X̂k|k−1 +Kk(Yk − CkX̂k|k−1) (5.5)

The covariance matrix of the estimation error can be updated using Joseph’s form:

Pk|k = (I −KkCk)Pk|k−1(I −KkCk) +KkRK
T
k (5.6)

In practice, the tracking system often encounters situations where multiple de-
tections occur at the same time. This happens if there is more than one vehicle
in the driving scenario at the same time. For this reason, before performing the
estimation step, a data association algorithm is executed to assign each incoming
observation to the most likely track. An additional step is performed to handle not
updated tracks and not associated observations. This aspect is detailed in the next
paragraph.

5.2.3 Data Association
To find a correspondence between an existing track and an observation, the assign-
ment of tracks to detections is based on the maximization of a certain metric. First,
a cost matrix MNt×No is created after the prediction step. The dimensions Nt and
No correspond to the total number of tracks and observations. Each element of the
cost matrix corresponds to a value that expresses the likelihood between a track and
an observation. In the literature, there exists several methods to compute such a
metric [46]. In this work, we use the Mahalanobis distance. For a given track j and
an observation i, the corresponding squared Mahalanobis distance is computed as:

D2
ij =

(
Yi − g

(
X̂k|k−1

)
j

)T (
Ck
(
P−1
k|k−1

)
j
CT
k +Ri

)−1 (
Yi − g

(
X̂k|k−1

)
j

)
(5.7)

where the notation is the same as the one used before for the EKF description.
Once the cost matrix has been computed, the assignment of the detections to the

tracks is performed by using the Hungarian algorithm [52]. This heuristic attempts
to globally minimize the tracks to observation association cost expressed by the
metric defined in Equation 3.9. The resulting pairing is given as input to the EKF
estimation step.

5.2.4 Tracks Management
The aforementioned technique allows to perform data association between existing
tracks and observations in order to associate them and to carry on the tracking
process. However, to complete this step, it is necessary to define a policy for handling
the creation and elimination of tracks. In particular, it is necessary to create a new
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track when an observation is not associated to an existing track, in order to include
this new information in the list of tracked objects.
Conversely, the deletion of a track is performed when a track is not associated to

an observation for a given time period. This process allows to remove tracks that
represent objects that are no more on the AD vehicle field of view. To model the
overall elapsed time to decide when a track can be eliminated, often a variable is
used to count the number of consecutive iterations when a track was not associated
to any observation. A threshold on this parameter is set to choose when eliminating
tracks. This counter allows the tracker to keep alive tracks that do not receive
observation a few time instants because of short occlusions for instance.
The last process of the track management is the merging of close tracks in order to

fuse together tracks that represent the same object. This provides a more compact
representation of the tracked objects which can be of importance when there are
numerous objects to track. However, in our approach, it is crucial to keep in memory
a representation as complete as possible of the dynamic objects in order to fulfill the
integrity criteria. Moreover, the number of tracks remains small in practice. So, we
have decided not to perform the merging step between tracks.

5.3 Map-aided Road Objects Tracking using
On-Board LiDAR

5.3.1 Problem Statement
In this section, a tracking system capable to localize the road users in the world
frame using a 3D LiDAR installed high up on the roof of the vehicle is presented.
To do so, one needs to have a precise knowledge of the localization of the AD vehicle
(position and heading). As previously seen, the navigation algorithm needs objects
occupancy and speed along the polylines. The snapshot raw LiDAR clusters are
not an adequate information for several reasons. First, speed is missing and second,
lane occupancy can be badly estimated in some situations. A tracking system is
an interesting solution to get a more robust and consistent information about the
moving objects and to fulfill the integrity criteria discussed before. A tracking system
is also a mean to estimate the derivatives of the position of a tracked object and
consequently the speed vector.
Moreover, in order to improve the estimation of vehicles states and to provide

an occupancy according to the curvilinear formalism, it has been decided to exploit
again the information contained into the HD map at several levels. We will see in
this section how the HD map information is introduced to implement a map-aided
tracking algorithm.
The choice of a map-aided tracker is motivated by the following points that resume

the main goals of this stage:

• To estimate as best as possible the occupancy of the other vehicles (real or
virtual) on the AD vehicle path,

• To estimate as best as possible the speeds of the other vehicles (real or virtual)
along the polylines.

In order to fulfill the aforementioned statements, two approaches for developing the
tracking system have been considered: the curvilinear formalism and the Cartesian
one.
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A curvilinear tracker is a tracking system that is entirely based on tracking objects
along the polylines of the HD map. In this tracking method, the evolution model is
computed in curvilinear coordinates and the observation consists in the projection of
the measurements along the HDmap polylines. This method has the main advantage
that it does not involve an explicit computation of the heading angle, which is a
well known challenging task for LiDAR-based perception systems. Heading is not
necessary because the evolution of the tracks is constrained along the polylines of
the map.
However, this method has several drawbacks. Firstly, the evolution model in

curvilinear coordinates can be tricky to handle (in particular during the transition
from one polyline to another). Secondly, as tracked objects are constrained to move
only along polylines, the algorithm can lead to poor performance in situations where
tracked vehicles are far from the HD map polylines, as for example in a curve road
or during a lane-change maneuver. This is, in general, due to the fact that HD map
polylines represent the center of the lanes, which is not always the nominal path of
vehicles during navigation. Finally, it has been observed experimentally that the
distance along the polylines is often higher than the distance traveled by the vehicle
and, for this reason, the tracker estimation is often delayed which requests to add
an important evolution noise [14].
Conversely, if one considers a Cartesian 2D tracker, tracked objects are free to

move in the 2D space. In this case, a good estimation of the heading angle is neces-
sary to perform an acceptable prediction of the state. In order to properly update
the heading information, an accurate and consistent measurement of the heading
must be done from the observations on the perceived objects. This task is very
challenging in the case of LiDAR-based perception [31]. This is because the heading
estimation is based on the shape of the point cloud that represents the perceived
object. In general, this shape depends on the orientation of the object w.r.t. the
AD vehicle. For this reason, it is challenging to provide an accurate heading esti-
mation using a LiDAR. Moreover, the estimation of the heading uncertainty (which
is necessary to implement a tracker) is also a not trivial task to achieve.
A compromise between the two aforementioned approaches can be found by using

a map-aided tracking system. This solution allows to implement a Cartesian tracker
without using a measurement of the heading angle in the tracking process. Instead
of that, the heading will be inferred from the HD map polylines, allowing a more
robust solution than the 2D Cartesian case.
Furthermore, a map-aided tracker allows to feed the tracks with observations

projected onto the map polylines (in Cartesian coordinates). This is helps the tracker
to converge more quickly towards the HD map polylines, letting the tracks the
freedom to move away from them when tracked objects do not follow the road
center. This approach also needs to use a good covariance matrix relative to the
matched point along the polyline, in order to take into account the uncertainty of
the observation in the tracking process. Section 5.3.3 presents the proposed solution
to this problem.
Finally, this approach also allows to instantiate several tracks that correspond to

the same object in order to model all the possible MD vehicle unknown behaviors.
This will be explained in section 5.3.6.
To achieve the aforementioned objectives, it has been decided to develop a tracking

system able to track both the pose with speed and the length of detected vehicles.
For each vehicle, the tracked variables are composed by the position x and y, its
heading angle θ and its speed v. Furthermore, it has also been tracked the vehicle
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Working Frame

Figure 5.1: Track representation. The information about the position, speed and heading
is contained into the vector X̂k|k and its uncertainty Pk|k, while the length
along the map is represented by the red occupancy interval along polylines.
Variables b̂k|k and f̂k|k are used to track the length. The estimated speed
vector v̂k|k is not necessarily parallel to the map polyline.

length along the longitudinal motion direction (i.e. the polylines of HD map). For
this task, two variables f and b have been introduced to estimate the half-lengths
behind and ahead the location of the centered point of the detected vehicle. The
occupancy on the polylines of HD map is computed at the end, when the tracker
provides an estimate.

5.3.2 Tracks Representation
Let us see how we represent a single track instance in the tracking method. As
previously said, this tracking system exploits the HD map information to better
encompass the occupancy of detected objects at lane-level. Moreover, a separation
between the kinematic state of a track and its estimated length projected on the
polylines is done. These two pieces of information will give the occupancy necessary
for navigation. For the first part, the information contained in the estimate of the
state vector X̂k|k is represented in Cartesian coordinates and it is free to move in
the 2D space, instead of being constrained only to HD map polylines. The same
reasoning can be applied to the state covariance matrix estimate Pk|k. Regarding
the second part, the length of a detected track is estimated along the HD map poly-
lines. For every track instance, a curvilinear interval along the polylines is therefore
estimated. To track the size of the interval, it has been decided to introduce in the
tracking process two variables b̂k|k and f̂k|k. Figure 5.1 illustrates this representation
for a given track.

5.3.3 Map Observation Uncertainty Computation
The aim of this part is to choose a method to provide a good representation of the
uncertainty for the map observations used by the tracker.
Let us come back to the method of the previous chapter to build objects bounding

polygons of the LiDAR clusters. Consider the polygon of one LiDAR cluster without
propagating the AD vehicle localization uncertainty (in blue in Figure 5.2). Its
barycenter is the LiDAR measurement Zk. This measurement is map-matched to
give the observation Yk =

[
xk, yk

]
.
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Now, we are looking for a way to compute the uncertainty of this observation
thanks to the curvilinear coordinates. In particular, it is required to have a co-
variance matrix in the world reference frame. To do that, first the covariance is
computed (denoted LR ) along the polyline of the HD map.
Considering the integrity definition, for a given risk α, one can obtain a 1 − α

confidence interval by using the following formula:

Pr(X̂ − γσ ≤ X ≤ X̂ + γσ) = 1− α (5.8)

Given this interval, one can propagate uncertainty to point Zk accordingly to
section 4.4.3. That being done, a new convex polygon is obtained. Such a new
polygon represents the uncertainty on the barycenter of the cluster (in green in
Figure 5.2). Exploiting again the method proposed in section 4.3, it is possible
to project the obtained bounding polygon onto the HD map polylines and extract
its occupancy on both along and cross directions. Finally, considering a given risk
α = 0.05, we have γ = Φ−1(0.025) ' 2. With this value one can also compute the
variance along a polyline by now using as input a confidence interval obtained from
the occupancy projection according to the following equation:

Lσs = |sk,max − sk,min|4 (5.9)

where sk,min and sk,max are the minimum and maximum abscissa of all the edges of
the polygon along the polyline.
The same reasoning can be done also for the transverse component n of the

curvilinear pose. Figure 5.2 depicts this computation for a given barycenter of a
convex hull. This leads to a covariance matrix LR in the form:

LR =
[
Lσ2

s 0
0 Lσn

2

]
(5.10)

This matrix is computed in the frame L of the polyline. As one can see, this matrix
is diagonal in this frame. It means that, during this computation, the hypothesis
that the along error is uncorrelated with the cross error has been made. Therefore,
the obtained covariance matrix is oriented along the main axis of the local HD map
frame. In order to obtain the covariance matrix R in the world reference frame (it
is the matrix R of the observation of the tracker), the angle ψ of the polyline has
been considered to perform a rotation according to the following:

R = Rot(ψ).LR. (Rot(ψ))T (5.11)

Where the transformation Rot(ψ) corresponds to a 2D rotation matrix computed
for a given angle ψ. Here the hypothesis that the angle ψ has a negligible uncertainty
has been made too.
Equation 5.11 provides a matrix in the form:

R =
[
σ2
x σx,y

σx,y σ2
x

]
(5.12)

Where term σx,y represents correlations that appear between the two variables x
and y when passing from the polyline frame L to world frame w. Once this step is
done, the obtained matrix R represents the uncertainty on the object barycenter Y
map-matched along the polyline map in the world reference frame. This quantity
is used to handle the uncertainty about a given observation. Moreover, it is also
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Polyline Frame

Working Frame

Figure 5.2: Map-aided observation Y and its uncertainty. The blue polygon is the bound-
ing LiDAR cluster. The LiDAR measurement Z is the barycenter of this
polygon. The map-aided observation Y is the projection of point Z on the
polyline. The green polygon represents the direct propagation of the localiza-
tion uncertainty on point Z and the green ellipsoid represents the resulting
uncertainty on Y with the standard deviations σs and σn in the polyline frame.

used to perform data association and consequently fused with an existing track in
order to update its state. This method has the advantage of generating a covariance
matrix in its general form and exploits the heading information provided by the HD
map.

5.3.4 Map-Aided Tracking of the Pose
In order to obtain a relevant tracking information for the navigation strategy, we
propose to add a soft constraint coming from the map to make the motion of a
detected object attracted to the polylines of the HD map. This allows to obtain a
representation of the dynamic objects that matches well with the map-based nav-
igation framework. Moreover, the tracking is implemented in the world reference
frame, rather than the sensor’s frame. It is an allocentric approach that relies on a
good localization of the AD vehicle.
The estimated state of each track is defined as X̂k =

[
x̂k ŷk θ̂k v̂k

]T
where

x̂k, ŷk are the track coordinates in the world reference frame, θ̂k the heading in this
frame and v̂k the speed along the heading direction. For the sake of simplicity, the
superscript index w(·), that indicates the world frame has been omitted. The point
(x̂k, ŷk) represents the barycenter of the detected vehicle. In this work, the LiDAR
observation corresponds to this point. This observation is used for the track update.
Let us define a LiDAR polygon measurement as Zk. We suppose that this point

corresponds to the center of an object. Zk is transformed into an observation Yk
by performing a map-matching of Zk along the HD map polylines. The resulting
map-matched point is Yk =

[
xk , yk

]T
.

Here, a tracker using only one evolution model has been considerd. For road
users, a constant velocity and constant yaw rate model has shown to be a good
choice [85]. The non-linear discrete-time evolution model for a given track X̂k is
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therefore defined as:

Xk+1 = f(Xk) =


xk +4tvk cos(θk)
yk +4tvk sin(θk)

θk
vk

+ αk (5.13)

where 4t is the elapsed time since the last iteration. In practice, 4t is not really
constant in this system because it depends on the frequency of the LiDAR data.
The term αk represents the model noise and Q is its covariance matrix.

Q = 4t


qx 0 0 0
0 qy 0 0
0 0 qθ 0
0 0 0 qv

 (5.14)

{qx qy qθ qv} are tuning parameters that represent the power of the model noise.
In particular, qx and qy are about the uncertainty on the position propagation, qθ is
about the heading variation and qv is for the speed change over time.
The Jacobian matrix Ak of the prediction step is as follows:

Ak =
[
∂f

∂X
(X̂k−1|k−1)

]
=


1 0 −4tv̂k−1|k−1 sin(θ̂k−1|k−1) 4t cos(θ̂k−1|k−1)
0 1 4tv̂k−1|k−1 cos(θ̂k−1|k−1) 4t sin(θ̂k−1|k−1)
0 0 1 0
0 0 0 1


(5.15)

The tracks are initialized as follows. When a track is initialized by duplicating
another one, it retrieves the attributes of its mother track. When it is a new track
because of a new object detection, we proceed as follows:

x̂k−1|k−1 = wxk

ŷk−1|k−1=
wyk

θ̂k−1|k−1 =w ψk

v̂k−1|k−1 = vn

(5.16)

vn is the average speed of the lane of the object. This information can be observed
experimentally and registered in the map. From a Bayesian point of view, this is
the best prior that one can have.
A good heading initialization is of prime importance. It is obtained from the cor-

responding angle of the lanelet frame ψk. For a given detected object, the curvilinear
representation of the observation is represented as follows (the superscript on the
left indicates that the coordinates are in lanelet):

LYk =

 sk
nk
ψk

 (5.17)

Where the superscript index L indicates that the coordinates are curvilinear along
the HD map polylines. As previously said in section 4.3, it has been assumed that a
conversion between the point LYk and Yk always exists. Moreover, the initial values
of the position correspond to the x and y coordinates of the observation Yk.
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Let us now focus on updating the tracks with LiDAR measurements. After several
tests, it has been decided that this step can be broken down into two phases: position
and heading.
When the update occurs, the tracking algorithm has performed a propagation of

the previous state estimate up to the time instant of the received measurements
according to Equation 5.1. If the heading is correctly estimated, the state has been
approximately propagated along the tangent vector of a polyline. Please note that in
this tracking strategy, we make the assumption that the observations are provided
at a sufficiently high rate, in order to avoid a significant drift of the model since
the prediction is performed along the heading vector given by θ̂k. To associate
the observations (a LiDAR scan provides in general several clusters) with their
corresponding tracks, the Hungarian data association procedure with Mahalanobis
distances has been used (see section 5.2.3). For every good match, the predicted
state X̂k|k−1 is updated into X̂k|k.
The position observation model is linear and defined as follows:

Yk = CXk + βk =
[

1 0 0 0
0 1 0 0

] 
xk
yk
θk
vk

+ βk (5.18)

Regarding this update stage, no linearization is therefore required and the map-
matched observation Yk along the HD map polylines acts as a soft constraint in the
tracker. In the update step of the EKF, the covariance matrix of this observation
has been presented in section 5.3.3.
The map can also provide knowledge on the heading of the track, which is very

useful to improve tracking. However, this should be done only if the track is close
to a polyline to enable a good tracking when a dynamic object changes lanes. As
a result, we proceed as follows. If the angular deviation between the track heading
and the polyline angle is less than a chosen threshold (5 degrees for example), then
we use the following observation model:

Yθ,k =
[

0 0 1 0
] 

xk
yk
θk
vk

+ βθ,k (5.19)

where Yθ,k is the heading of the polyline at the map-matched point. The variance of
the noise βθ,k is a tuning parameter which can be easily adjusted because it has a very
concrete physical meaning. In this specific case, a value of var(βθ,k) = (5 · π

180)2rad2

has been chosen.

5.3.5 Length Estimation of the Tracked Objects
The exploitation of a HD map-based formalism is useful not only for improving the
estimation of the pose and speed of the tracks but also to compute at the lane-level
the occupancy of the tracked vehicles. For this, it has been proposed to include
in the tracking system the information about the length of the tracks projected on
to the polylines. The main objective is to get a reliable estimation of the object
occupancy. This is crucial to avoid potential collisions when the estimated lane
occupancy is given as input to the navigation methods described in chapter 3.
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Polyline Frame

Working Frame

Figure 5.3: Observation of the length of a detected object. It is the hull of the bounding
polygon of the LiDAR cluster in blue projected on the map. The blue cluster
is the same as the one of Figure 5.2. bm and fm are respectively the measured
backward and forward lengths w.r.t. point Y .

Let us consider the occupancy curvilinear interval [sk,min, sk,max] associated to the
curvilinear occupancy of map-matched vertices of an observed bounding polygon
(without the inclusion of the localization uncertainty of the AD vehicle). Such an
interval is computed along the HD map polylines and reflects the portion of the lane
occupied by a detected matched object (see Figure 5.3).
A simple approach to well estimate the length of track is to include in the state of

the tracker two new variables b and f that keep track of the backward and forward
lengths that describe the curvilinear occupancy from the estimated center of the
track.
A question that might arises is the following: how one can define an evolution

model for propagating the lengths during the prediction step? The solution that
has been proposed is to keep constant the lengths during the prediction step and
to perform a “max update” based on the comparison of the estimated lengths and
the corresponding observed lengths along the map-matched polyline and to keep in
memory the largest one, as it is shown hereafter:

b̂k|k = max(b̂k−1|k−1, bm,k) (5.20)

f̂k|k = max(f̂k−1|k−1, fm,k) (5.21)

in which bm,k and fm,k represent backward and forward lengths of the measured
curvilinear occupancy interval relative to the Yk observation.
In general, fm,k 6= bm,k because in the case of bounding polygons coming from

LiDAR measurements, the position of Yk depends on the shape of the convex hull.
Furthermore, Yk can be different from the barycenter of a detected object.
There are different ways to update the length variables. If one knows (or supposes)

that Yk represents the barycenter of a detected object, then, he can carry out the
computation as follows. Let Lk be the observed length of the vehicle, i.e. Lk =
sk,max − sk,min. In such a case, one can write:

b̂k|k = max
(
b̂k|k−1,

Lk
2

)
(5.22)
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Working Frame

(a)

Working Frame

(b)

Working Frame

(c)

Working Frame

(d)

Figure 5.4: Update process of a track. 5.4a illustrates the matching of a track prediction
(red) with an observation (blue). 5.4b depicts the update process of the pose
only. 5.4c shows only the length intervals of the prediction (red) and the
observation (blue). 5.4d describes the length update process (green).

f̂k|k = max
(
f̂k|k−1,

Lk
2

)
(5.23)

Now, if one has the knowledge that Yk represents the front of the car, one can
write sk,max = 0 and sk,min = Lk and vice-versa in the dual case.
This approach works as follows. First, estimate X̂k|k and the observation Yk

are aligned and the maximum between the predicted occupancy f̂k|k−1, b̂k|k−1 are
computed. Then, their corresponding observations fm,k and bm,k. Figure 5.4 depicts
the interval information associated to a given observation.
The “max update” approach prevents the estimated occupancy to shrink and

it updates the current state only if a bigger occupancy has been estimated. The
occupancy interval of a track can only increase over time which is pessimistic but
reliable in terms of integrity. This is coherent with the idea of avoiding misleading
information, even if it can happen that objects occupancy are overly-estimated. One
possible solution to cope with this issue could be to perform the lengths updates
according to some criteria, for example by introducing an algorithm that identifies
outliers in order to prevent an excessive growth of our intervals.

5.3.6 Multi-hypothesis objects Lane Occupancy
Another interesting aspect about a HD map-aided tracking algorithm is that it
can handle multi-hypothesis occupancy for a detected object during the tracking
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Figure 5.5: An example of multi-hypothesis tracking for a single detected object. Notice
that the two tracks X1 and X2 are treated independently w.r.t. each others.

stage by using a multi-hypothesis occupancy criteria. This allows to create several
instances of tracked objects in order to model the occupancy of tracked objects
at lane-level. This idea finds a perfect match with the multi-hypothesis criteria
explained in sections 3.2.3 and 3.3.3 for handling uncertain driving behavior at the
decision step. Now, it allows to handle the uncertainty about vehicles unknown
locations.
In this part of the work, the tracking is made to handle several instances of the

same MD vehicle. This means that, when there are more than one interval occupancy
obtained from the same object, the tracker keeps track of all the possible hypotheses
individually, in order to encompass all the possible MD vehicle behaviors.
To illustrate this concept, Figure 5.5 gives a case where a multi-hypothesis object

tracking occurs. It can be seen that this behavior typically appears when a tracked
object is moving from a center-lane to another. In the case of the figure, the MD
vehicle is leaving the outermost lane to perform a lane change maneuver. For this
reason, lane occupancy appears slightly on both lanes. Notice that, when the vehicle
finishes its lane change maneuver, there won’t be any observation on the outermost
lane that matches to it and this first hypothesis will be removed.
As a consequence, it may happen that the system has more tracks w.r.t. the

actual number of MD vehicles present in the driving scenario. In this work, we
have decided to treat the estimation process of each track instance originated from
the same object independently from the others. In other words, we let each track
evolve independently from the other tracks. Nonetheless, for each track instance
that represents a given detected object, we attribute a label that represents this
relationship. This can be useful to implement a more optimized criterion for handling
tracks association, creation and elimination. The creation and elimination of the
tracks are implemented immediately after the data association step. Further details
about this particular stage and the strategy adopted to handle tracks creation and
deletion will be given in the next section.
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5.3.7 Integrity-based Data Association and Tracks Handling

(a) (b)

(c) (d)

Figure 5.6: Several cases that can occur during the data association phase. The orange
point represents the map-matched observation and its uncertainty and the
orange intervals represent its occupancy at lane-level. The ellipses represent
existing tracks (in blue when there is no association) .

To get a high integrity system during the tracking stage, we propose in this section
to discuss about different data association strategies. A general overview about
the data association technique that have been used in this work has been already
provided in section 5.2.3, where the association criterion and the heuristic used to
assign observations to existing tracks has been discussed. Nonetheless, the focus
here is on improving the aforementioned strategy to achieve a data association that
provides high integrity of the perceived objects in this particular case.
To get a high level of integrity, it has been considered that every detection must

be associated to a track. This is done in order to avoid missed detection of the
perceived objects. In other words, if No observations and Nt existing tracks are
present, the inequality Nt ≥ No must hold at every step of the tracking stage. This
means that, during the data association step, either one observation is associated to
an already existing track, or a new track is created to track the new detection. This
approach can be seen as redundant on the one hand, however, on the other hand, it
allows to represent every single object detection without losing information about
perceived objects.
Figure 5.6 illustrates several situations that can occur during the data association

step and how the tracker handles these cases in order to provide the maximum level
of integrity. As one can see from Figure 5.6a, when there is an unique association
between an existing track and an observation, the observation is merged with that
track. Conversely, when the observation is too far away from the existing track, as
in the case of Figure 5.6b, a new track is created to incorporate the new information
in the tracked objects. In the case where a track that is associated to multiple
observations, as in the case of Figure 5.6c, the observation that maximizes the

115



5 Cooperative Road Users Tracking with Intelligent Infrastructure

association criterion will be chosen. Regarding the unassigned observation, they
will be used to initialize a new track to include the new observation into the tracked
objects.
Finally, when multiple tracks that can be associated to a single observation are

present, as in the case of Figure 5.6d, the track that better satisfies the association
criterion will be chosen. Regarding the other track, it will be left unassociated and
its number of skipped frames will be incremented. If, for a given track, the number
of consecutive skipped frames is greater than a fixed threshold, the track is deleted.
In order to maintain a more compact representation of the tracks, instead of

counting the number of skipped frames to remove tracks from the list of tracked
objects, one can exploit the duplication mechanism seen in section 5.3.6 to keep
track of duplicated tracks that have been created from a parent track. This technique
allows to know how many different tracks relative to a single object are present. In
order to satisfy the integrity condition, one can remove tracks immediately after
when a track has not been associated for the first time. However, before doing that,
one needs to check if at least one instance of the track has been associated during
this step. If it is the case, the track is kept alive and only the unassigned instance
is removed. Conversely, the whole set of track instances is removed.

5.3.8 Lane Occupancy Estimation
In the final step of the tracking stage, it is required to provide an estimate of the
detected vehicles position, speed and occupancy to be sent to the decision-making
level. As previously seen, information that is necessary to this step is elaborated
in several phases. The EKF estimates objects position and speed and the forward
and backward lengths are estimated in parallel with a max strategy as the perceived
shape of a moving object changes over time when using a LiDAR sensor.
Accordingly to the integrity objective, the aim is to get an object occupancy that

can be as much as possible consistent with reality. For this reason, the estimated
length of a tracked object occupancy is enlarged with the estimated uncertainty
about the tracked object position.
Let us consider a track estimate X̂k|k in the world reference frame. It has a certain

uncertainty represented by the covariance matrix Pk|k. This uncertainty needs to be
included in the final estimation of the occupancy interval.
In practice, the estimates b̂k|k and f̂k|k are taken and a confidence interval is added

to them:

smax = s+ b̂k|k + 2σl (5.24)

smax = s− f̂k|k − 2σl (5.25)

where the term σl represents the uncertainty on the longitudinal direction of the
matrix Pk|k in the polyline frame. This quantity is obtained by projecting the
ellipse dimensions along the road path frame via the scalar product. This can be
interpreted in the following way: an uncertainty on the object position is propagated
to the final estimate of the object occupancy. As a consequence, the final estimate
encompasses this uncertainty to provide a reliable estimation of the occupied space.
Notice that if the object position is perfectly known, i.e. σl = 0, Equation 5.24 and
5.25 provide the same results as Equation 5.20 and Equation 5.21. Figure 5.7 gives
an illustration of this process.
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Working Frame

Figure 5.7: The final lane-level occupancy computed as the sum of the occupancy and the
localization uncertainty of the estimated track.

5.4 Remote Infrastructure Perception System
In this section, we describe the main components of the intelligent infrastructure sys-
tem that has been considered in this work. This system has been used for detecting
MD vehicles and to provide additional information about them to the AD vehicle in
real-time. This system has been developed in the framework of the Tornado project
by the Université Gustave Eiffel.

5.4.1 System Overview
The goal of this system is to exploit a remote intelligent infrastructure to provide
additional information about a given complex urban scenario. Combined with the
AD vehicle on-board sensors, it can provide enhanced and redundant perception
information of the ongoing driving situation. In order to associate the data from
these two sources, a data fusion approach needs to be performed.
The focus here is on the problem formulation and the description of the main

image-processing steps. In the Tornado project, it was decided to install two cameras
to monitor the most dangerous branches of a roundabout on the left side of the AD
vehicle entering branch. This choice has been done in order to provide the AD
vehicle a sufficient field of view for the decision-making and navigation algorithms.
Figure 5.8 illustrates the positions where the two intelligent cameras were installed.
One can observe that, for every AD vehicle trajectory of the roundabout crossing
use case, these cameras provide additional information w.r.t. the left side of the
roundabout and its entering branches.
Furthermore, each camera has been installed on a road pole and its position

referenced into the HD map. This is helpful for knowing the exact location of the
intelligent infrastructure and the projection of its perception results in a HD map-
based framework. Figure 5.9 depicts the whole system installed. This intelligent
system allows to detect the vehicles on some zones of the roundabout that the on-
board perception is not able to see.

5.4.2 Images Processing
Images processing has been performed by the researchers of the Université Gustave
Eiffel. To detect the vehicles in the acquired infrastructure images, the detection
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CAM 1

CAM 2
Roundabout crossing

Roundabout crossing

Figure 5.8: Location of the two cameras and their fields of view (yellow cones) w.r.t. the
AD vehicle path (in blue) in both driving directions. City of Rambouillet,
France.

Figure 5.9: An intelligent camera installed on a road pole close to the roundabout test-bed
in Rambouillet. In order to obtain the best detection performance, we tested
two different models of cameras that are visible on the pole.
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Figure 5.10: Bounding boxes of detected vehicles from the image acquired by the intelli-
gent infrastructure. Université Gustave Eiffel results.

algorithm YOLO (You Only Look Once) version 3 has been used [45]. This approach
performs both objects detection and classification. Furthermore, a single neural
network predicts bounding boxes and class probabilities directly from full images
in one evaluation, which allows this algorithm to provide detection results in a
reasonable amount of time for real-time purposes.
In order to obtain more precise results in terms of classification of the detected

objects, the last layer of the neural network behind YOLO has been fine-tuned
using a dataset containing several driving sequences recorded in the roundabouts
test sites introduced in section 2.5. Moreover, the 80 classes of objects from the
COCO dataset [59] used to train YOLO have been reduced to include only the
classes relevant to driving scenes.
Figure 5.10 depicts the results of the objects detection algorithm. As one can see,

the different vehicles have been well detected and a bounding box has been drawn
for each of them.

5.4.3 HD-Map Projection
In order to exploit the bounding boxes detected by the camera, one needs to trans-
form them from the image frame to the HD map frame. This is needed to provide
the results in the same working frame as the AD vehicle on-board perception. In
particular, the infrastructure exploits the CPM (Cooperative Perception Message)
standard (7) to encode the perception information and share it with the AD vehicle.
This standard expects the encoding of the perceived information in a common frame
between the different perception sources. In order to cope with that, the hypothe-
sis that both the intelligent infrastructure and the AD vehicle share the same HD
map-based reference frame has been done. This frame is used as a common frame
to project all the perception results.
By calibrating the camera and assuming that the ground is planar, one can es-

timate the homography matrix that converts any pixel coordinates on the ground
to its coordinates in the HD map. A first approximation of the occupancy of the
detected vehicles is to consider the projection of the four corners of each bounding
box. However, if one look carefully at the bounding boxes obtained in Figure 5.11,
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A

B

C

Figure 5.11: Some examples of relative orientations of bounding boxes in the plan of the
image. The bounding box in circle A covers the width and the depth of the
object, while the one in circle B represents the height and a combination
between width and length. Finally, the box in circle C represents the length
and the height of the vehicle. This image belongs to a data sequence acquired
in the city of Compiègne.
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Figure 5.12: An example of bounding boxes in the image frame with their corresponding
lower sides used for the bounding box projection.

one can observe that the corners of the bounding boxes do not always correspond
to the planar dimension of the detected objects (length and width). In particular,
this correspondence depends on the relative orientation between the detected object
and the intelligent infrastructure, as it is depicted in the different cases of Figure
5.11. For this reason, a simple projection of the detected bounding boxes on the HD
map plan leads to consistent but overly-estimated results. In fact, this projection
tends to over-estimate the occupancy of objects, in particular their depth and does
not provide information about the yaw angle of detected vehicles. To visualize this,
Figure 5.13 illustrates these projections w.r.t. some detected vehicles.
To cope with that, the inferred length and width obtained from the classification

information is exploited to provide a better estimate of the true occupancy of the
detected object. The detection algorithm is able to classify the vehicles into different
categories, e.g., passenger car, truck, bus, etc., from which a standard vehicle size
can be used.
Once this information has been obtained, its position is computed in the HD

map frame. To do that, the red segments of Figure 5.12 are considered. These
segments correspond to the lowest corners of the detected bounding boxes in the
image frame (i.e. the side of the bounding box lying on the ground). These parts of
the bounding boxes coincide with the projection of the vehicles on the ground plane.
This information together with the information about road geometry provided by
the HD map can be used to project correctly the detected MD vehicles lengths and
widths into the HD map framework. The transformation is based on the information
obtained from the boxes in the image frame and the prior knowledge of the HD map.
Moreover, thanks to the road geometry information, a heading angle can be in-

ferred to orient the bounding boxes accordingly to the road where objects have been

121



5 Cooperative Road Users Tracking with Intelligent Infrastructure

Figure 5.13: Occupancy obtained by projecting the corners of the detected bounding boxes
from the image plan to the HD map plan. As one can see, overly-estimated
sizes in the objects estimation occur and there is no information about the yaw
angle of detected objects. The LiDAR scan of an experimental is displayed
as an overlay.
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Figure 5.14: The projected bounding boxes in the HD map frame. This representation
has been obtained by exploiting the classification information.

detected. This information is useful to understand the relative orientation of the
detected objects w.r.t. the infrastructure and consequently to choose properly either
the width or the length of the computed bounding box to represent the detected
depth of the object.
To illustrate this concept, Figure 5.14 depicts the result of this new projection in

the frame of the HD map. Notice that the classification results are more precise when
detected objects are close to the infrastructure camera. Moreover, the localization
of the objects is less precise w.r.t. the one obtained by using the LiDAR data.
As one can see, the obtained bounding boxes represent the object size and they
are no more dependent on the relative angle of the vehicle w.r.t. the infrastructure.
Furthermore, in this infrastructure an extra layer has been added to estimate objects
speeds. This layer considers the motion difference between two consecutive images,
in order to compute the objects speeds. To achieve this task, a data association
procedure has been implemented to retrieve detections that correspond to the same
vehicle in consecutive images.

5.5 Cooperative Perception with Infrastructure
5.5.1 Problem Statement
The main objective of this section is to study how the introduction of a remote
intelligent infrastructure can improve the perception of the driving environment
from the AD vehicle point of view. In particular, one is interested in studying how
this system can cope with the problem to perform an extended and more robust
estimation of the MD vehicles position, speed, and size.
The goal is to combine the information from the intelligent infrastructure received

by wireless communication with the one provided by the embedded LiDAR. In par-
ticular, we are looking for a method that allows to combine together both pieces of
information in order to better estimate objects occupancy on the polylines for a safe
roundabout crossing.
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(a)

(b)

Figure 5.15: Illustration of an out-of-sequence measurements problem with an on-board
LiDAR sensor (in red) and the intelligent infrastructure (in green). Figure
5.15a depicts a case where data fusion is performed in a synchronous way.
In this case, the state update is performed accordingly to the chronological
order of the data (k1 < k2). Figure 5.15b illustrates a situation where an
out-of-sequence measurement occurs because the update is performed before
considering the LiDAR sample which has an acquisition time smaller than
the camera one. As a consequence, when the camera measurement arrives, it
is necessary to perform a state prediction backward in time from k2 to k1.

5.5.2 Out-Of-Sequence Problem
A challenging problem when performing multi sensor data fusion is the synchroniza-
tion of the data received from several sensors that are not working at the same rate.
This problem is called “out-of-sequence data synchronization” and occurs when data
sent from a sensor are received with some delay because of the computation time
and/or transmission delay. Figure 5.15a illustrates the reception and processing of
observations coming from the on-board LiDAR and from the infrastructure camera.
In this case, we assume that both sensors provide data at the same frequency (in
our case 10Hz) and that the processing of the data is completed before the next
time instant.
Let us consider first the synchronous example depicted in Figure 5.15a. In this

case, a previous state estimate X̂k0|k0 , and the reception of the LiDAR data at time
k1 > k0. In order to perform the data fusion between the state estimate and the
received information timestamped at k1, one first need to extrapolate the estimate
X̂k0|k0 up to time k1 which gives X̂k1|k0 . The update of the state provides X̂k1|k1 . In
the meantime, the AD vehicle gets an observation from the intelligent infrastructure.
Such an observation has been timestamped at k2 > k1. The information updated
after the camera is computed w.r.t. the time instant k2 > k1. In order to incorpo-
rate the new measurements to the current estimate X̂k1|k1 , the same procedure is
repeated. Firstly, we extrapolate X̂k1|k1up to k2, obtaining X̂k2|k1 , then, performing
the update to obtain X̂k2|k2 . Notice that both times k2 and k1 correspond to times at
which the observations have been timestamped by the sensors which is, in general,
different from the times when the information is received by the AD vehicle.
This time difference can be caused either by the processing time or because of some

latency that occur when sending information from the intelligent infrastructure to
the AD vehicle. In this case, it may happen that an information that has been
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acquired before is available after another one. Figure 5.15b illustrates this case.
Let us consider again the case of an infrastructure data and a LiDAR acquired
respectively at times k1 and k2, with k1 < k2. In order to be coherent with the
aforementioned working hypothesis, we expect the camera data available before than
the LiDAR ones. However, this time the LiDAR data, which has been acquired after
the camera data, is available before the camera ones, as one can see in Figure 5.15b.
To deal with this kind of scenario, one can compute again the extrapolation of X̂k0|k0

up to time k2, obtaining X̂k2|k0 The corresponding update leads to X̂k2|k2 .
Nonetheless, when the camera information is available to the AD vehicle, the

information has been acquired at a previous time w.r.t. the current state estimation
X̂k2|k2 . In this case, with k1 < k2 we have an out-of-sequence data. In order to treat
this information, several approaches are possible.
On one hand, it is possible to perform an extrapolation of the state X̂k2|k2 back-

ward in time down to k1 and compute first X̂k1|k2 and then the corresponding update
X̂k1|k1 . This approach allows to incorporate the out-of-sequence information in our
estimation process. However, this extrapolation back in time is valid only for small
delays of out-of-sequence measurements and it is not possible to use it in a general
case [10].
On the other hand, it is possible to implement a buffer that keeps track of the

consecutive state estimates over a fixed time slot. This buffer allows to choose the
correct state estimate according to the received measurements timestamps. This
allows to merge each measurement with the good state estimate from a temporal
point of view. Once every measurement has been associated and fused with the
correct state estimate, an overall estimation process of all the partial state estimates
is carried out to provide a global estimation of the content of the buffer.

5.5.3 Data Fusion Evaluation
The asynchronous data fusion technique between the two sources of information
has been evaluated experimentally. As said before, the Extended Kalman Filter
technique has been used to fuse data. In order to solve data asynchronicity, The
backward propagation models for back propagation of the state estimation described
in section 5.5.2 Has been implemented. The whole system has been implemented in
C++ with ROS environment. We report here experiments carried out with experi-
mental vehicles.
Figure 5.16 illustrates the comparison between the tracking performed first only

with LiDAR data (Figure 5.16a), then with only infrastructure measurements (Fig-
ure 5.16b) and finally with both (Figure 5.16c). The data fusion has been performed
at a roundabout, where the AD vehicle has been stopped in order to test its eval-
uation of the ongoing driving scenario before an insertion maneuver. On Figure
5.16, the red and green dots indicate the location of the the tracked road users with
the on-board LiDAR sensor and with the intelligent infrastructure. The blue points
correspond to a tracker that uses both modalities.
One can observe that the two sensors provide complementary information due to

their different fields of view. This is highlighted by the results that are present in
both Figures 5.16a and 5.16b. The zones where the different sensors track the road
users are complementary and partially overlapped.
This leads us to investigate whether it is interesting for our application to max-

imize the field of view of the cooperative system by disposing the sensors in a
configuration that enhances complementarity in their fields of view or, if it is more
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(a)

(b)

(c)

Figure 5.16: Comparison of the tracking results for LiDAR (Figure 5.16a), camera (Figure
5.16b) and both (Figure 5.16c). Notice that the field of view augments in the
multi-sensor case.
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convenient to put them in a configuration where a consistent overlapping zone is
present. The presence of the overlapping zone between the two sensors can be use-
ful to improve the accuracy of the detected objects estimation when switching from
one sensor’s field of view to another. For this reason, in the following part of the
chapter we will analyze in detail the different benefits and drawbacks of this config-
uration in terms of both enhancement of the field of view and accuracy of the state
estimation.

5.5.4 Proposed Solution
Given the sensors configuration, we now investigate the best way to fuse information
in the cooperative system. This new approach has been designed to exploit the main
characteristics of each sensor. The LiDAR can provide a good precision in tracking
objects position and speed. However, LiDAR measurements can have difficulties to
estimate the length of the detected vehicles due to variation in the appearance of
perceived vehicles.
The intelligent infrastructure on its side is less accurate to localize vehicles because

of the camera’s resolution. Nonetheless, it is able to infer objects dimensions thanks
to the classification information provided by the YOLO processing of the camera
images. In order to exploit the advantage of both sensors, we have therefore decided
to implement the following approach:

1. A multi-sensor data fusion approach which exploits both camera and LiDAR
data for estimating objects state;

2. Objects occupancy is estimated by standalone sensors measurements in the
zones with complementary field of view. Camera observation can be used
to improve LiDAR objects occupancy estimation in the zones where overlaps
occur.

Condition (1) allows to extend the LiDAR field of view by providing additional
information from the cameras of the intelligent infrastructure. In this case, when
no LiDAR information is available, we use the camera data to estimate the state of
perceived objects. This allows to notify to the AD vehicle the presence of incoming
vehicles that are not already into its on-board sensors field of view.
Condition (2) aims to introduce the camera information in the occupancy estima-

tion process of the vehicles that are within the on-board sensor field of view. This
allows to better estimate the size of perceived objects by introducing the classifica-
tion information provided by the camera in the occupancy estimation process. If
only camera measurements are available, they will be used to estimate the occupancy
of the perceived objects.
Figure 5.17 presents our objective. It illustrates the superposition of a LiDAR

point cloud and a camera detection after having solved the out-of-sequence prob-
lem. As it can be seen, the camera detection is less accurate compared to the
LiDAR. However, thanks to the classification information provided by the camera,
it is possible to infer the size of the object bounding polygon. The result is displayed
on Figure 5.17b. In this situation, the box corresponding to the vehicle is better
estimated thanks to the camera.
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(a)

VAN

(b)

Figure 5.17: Contribution of the intelligent infrastructure information in compensating
missing LiDAR information on an object dimension. Figure 5.17a: camera
detection and corresponding LiDAR measurements. Figure 5.17b: compari-
son of size estimation for both LiDAR (red) and camera (blue). The green
text “VAN” indicates the classification information provided by the infras-
tructure.

5.6 Experimental Results
In this section, we present experimental results for both the LiDAR-based perception
and the cooperative data fusion presented before. In particular, we focus the atten-
tion on the performance of the single LiDAR-based tracker and the infrastructure-
based cooperative perception system used to estimate the size of perceived objects.
The main idea is to compare the performance of both systems in terms of integrity
of perceived objects occupancy estimation. This evaluation is carried out thanks
to a dataset that provides the ground truth position and size for some perceived
vehicles. Moreover, we also introduce a tool that helps to visualize and quantify the
integrity gain for a given estimation strategy.

5.6.1 Integrity Evaluation Metrics
Let us introduce the tools that we use to carry out an integrity analysis in the rest
of this chapter. The aim of the perception system is to provide to the decision level
an good estimation of the speed and an occupancy estimation on the HD map of
the detected objects as close as possible to the real one. In practice, we compare
the occupancy estimate with the occupancy of an experimental vehicle equipped
with a ground truth localization system. In other words, we compare the occupancy
interval generated by the ground truth with the one obtained with the tracker.
For a given tracked occupancy interval, we are interested in estimating the per-

centage of overlapping surface w.r.t. the corresponding ground truth one. To do so,
let us define the two quantities df and db which represent respectively the relative
position of the tracked interval boundaries w.r.t. the ground truth ones. These
quantities have different signs according to the relative position w.r.t. the ground
truth interval. Figure 5.18 illustrates this concept.
Once df and db have been computed, we express these quantities w.r.t. the total

length of the ground truth interval l. We have:

if = df
l

(5.26)

and
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Ground truth

Track

Figure 5.18: Relative position of the tracked occupancy interval boundaries (green) w.r.t.
the ground truth ones (red). Please note that db is positive in the left direc-
tion, contrary to df which is positive in the right direction. In this example,
both quantities db and df are positive according to the relative overlapping,
while l represents the ground truth interval length.

Figure 5.19: Examples of intervals compared with ground truth. The numbers correspond
to the regions depicted in diagram of Figure 5.20.

129



5 Cooperative Road Users Tracking with Intelligent Infrastructure

ib = db
l

(5.27)

According to the relative sign of if and ib, one of the following situations can
happen:

if =


0 ≤ if (a)
−1 < if < 0 (b)
if ≤ −1 (c)

(5.28)

ib =


0 ≤ ib (d)
−1 < ib < 0 (e)
ib ≤ −1 (f)

(5.29)

Figure 5.19 depicts examples of intervals overlapping for every case.
Equation 5.28 indicates the three possible cases that can happen regarding the

forward boundary of the estimated occupancy. Case (a) implies that the boundary
ahead of the tracked occupancy wraps the one of the corresponding ground truth
occupancy. In other words, the integrity property is satisfied for this side of the
occupancy. On the contrary, in cases (b) and (c) the estimation of the interval
boundary does not contain the ground truth one. This implies that the integrity
criterion is not met. In particular, case (b) means that the estimated boundary ahead
is contained by the corresponding ground truth one, while case (c) corresponds to a
situation where the estimated occupancy interval is disjoint w.r.t. the corresponding
ground truth one.
That being said, one can repeat the same reasoning for the ib interval considering

Equation 5.29. The reasoning is similar to the previous one. In particular, case
(d) represents again the only case where the integrity condition is met, while cases
(e) and (f) represent respectively the underestimation of the backward occupancy
boundary and intervals disjunction.
Bearing this result in mind, if one plots the quantities ib and if on a 2D plane,

an integrity diagram presented in Figure 5.20 is obtained. This diagram has if on
the abscissa axis and ib on the ordinates axis. In this diagram, the space is divided
in several sub-regions according to all the possible combinations of the conditions
illustrated in Equation 5.28 and 5.29. The belonging of a given point to one of those
regions determines the integrity of the occupancy interval.
In the diagram of Figure 5.20, the red region represents the zone where no points

in the form of (if , ib) can be. This is because, if a point is in this zone, it would mean
that the interval bound ahead is behind the interval bound backward, which is of
course impossible. For this reason, we focus the attention on the other regions of the
diagram. Zone (1) represents the area where both the front and behind occupancy
interval bound are correctly estimated w.r.t. the corresponding ground truth ones.
In this case, the occupancy estimation satisfies the integrity property. Moreover, the
more the points are close to the if or ib axes, the more the ahead and behind interval
boundaries are close to the ground truth ones. The ideal case is the point (0, 0).
This means that the estimated occupancy overlaps perfectly the ground truth one.
Conversely, as we move towards infinite, the estimates of the forward and behind
intervals boundaries grow and become overly-estimated w.r.t. the corresponding
ground truth.
The region that corresponds to case (2f) includes points belonging to detection

where only the ahead boundary of the occupancy interval satisfies the integrity
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Figure 5.20: Integrity diagram. Notice that no points can belong to the red zone. Zone
(1) represents a correct integrity estimation for both backward and ahead
interval bounds, while zone (4) represents the under-estimation of both of
them. Zones (2b) and (2f) correspond to zone where only the backward or
the forward boundary satisfies the integrity property, while zones (3f) and
(3b) correspond to disjoint intervals.

property. Again, as we move towards 0, the forward boundary becomes closer to
the corresponding ground truth one. Regarding the backward occupancy boundary,
it is always under-estimated in this region.
The dual situation of case (2f) is represented by case (2b). In facts, this region

includes points that satisfies the integrity property for the behind interval boundary
but not for the boundary ahead.
Regions (3b) and (3f) represent zones in which the intervals are disjointed. In case

(3b) the estimated occupancy interval is behind the corresponding ground truth
one, without any intersection and, in case (3f) the estimated occupancy is ahead
the ground truth one. For none of those cases we consider the integrity property
satisfied.
Finally, the region represented by case (4) contains points that have both the

forward and backward interval boundary under-estimated w.r.t the corresponding
ground truth one. Again, none of the points belonging to this region satisfy the
integrity property.
Notice that, in comparison with cases (3b) and (3f) points that belong to region

(4) have the advantage that, even if they do not satisfy the integrity property, the
resulting estimated interval provides a clue about the position of the estimated
object. In fact, the estimated occupancy is contained entirely inside the ground
truth one, which is not the case for points in (3b) and (3f), where, if the object
has been wrongly detected, the corresponding occupancy can be very far from the
object ground truth.

5.6.2 Experimental set-up
In order to validate the algorithms presented before, we exploit data collected with
experimental vehicles platform in the city of Compiègne. For this experiment, we
have used a dataset that contains recorded accurate positions of the AD vehicle
(white car) and another vehicle (grey car) used as an obstacle. For both cars, the
accurate position were obtained with a Novatel Span CPT GNSS receiver, with
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Figure 5.21: The AD vehicle used for the data acquisition (grey vehicle) and another
vehicle of the platform used for ground truth localization (in black).

Post Processed Kinematics (PPK) corrections, which gives a centimetric-level of
accuracy. Moreover, the white vehicle was equipped also with a Velodyne VLP32
LiDAR sensor used to provide the observations for the LiDAR-based objects tracking
system.
In the experiment, we used the white car to simulate the AD vehicle navigation

through a roundabout, stopping also the car at the roundabout entrance to acquire
some data about the incoming traffic flow. At the same time, the grey car was
navigating into the roundabout among other vehicles, providing extra obstacles for
the white car. The main advantage of this approach is that when the white car
detects and tracks the gray one, it is possible to compare the resulting estimated
state of the track (e.g. position and velocity) w.r.t. the ones obtained with the
ground truth localization system. To do so, we select, for every time instant and
among all the detected objects, the one that corresponds to the track of the gray
vehicle and we compare its estimated state and occupancy with the ground truth
ones. To visualize this, Figure 5.21 illustrates a scenario of the dataset with the two
cars and the corresponding LiDAR point cloud.
Regarding the infrastructure system, we have installed a fixed camera on a bridge

in the southern direction of the roundabout, in order to observe the traffic on that
side of the roundabout. The camera was synchronized with the clocks of the on-
board systems of the two cars (through GNSS) and it recorded images about the
vehicles in the roundabout. After the recording session, the camera data were sent
to the Université Gustave Eiffel and treated offline to detect vehicles in the recorded
images and to provide the vehicles position and occupancy estimation in a CPM like
format.
Figures 5.22 and 5.23 depict the navigation scenarios for this validation tests with

the corresponding trajectories of the AD vehicle.

5.6.3 Lidar-based Tracking and Objects Occupancy Estimation
In this section, we detail the experiments that we carried out on real data to test the
performance of the LiDAR-based tracking system. To do so, we have implemented
in C++ the tracking algorithm and we have run the tracker on the testing scenarios
described previously.
Figure 5.24 illustrates the results of the tracking system in some sequences of the

dataset. In particular, the three scenarios presented in Figure 5.24a, Figure 5.24b
and Figure 5.24c represent respectively three subsequent time instants and show the
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Figure 5.22: A scenario recorded in the dataset. The AD vehicle trajectory is in red and
the yellow cone represents the infrastructure field of view.

CAM 1
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Roundabout
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Intelligent
infrastructure 

End

Figure 5.23: Another scenario recorded in the dataset. The AD vehicle trajectory is in
red and the yellow cone represents the infrastructure field of view.
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(a)

(b)

(c)

Figure 5.24: Tracked objects. The blue green and red local frame represents the pose of
every tracked object, while the blue boxes represent their occupancy estima-
tion. The LiDAR detections are in green and the corresponding curvilinear
occupancy is represented by a red segment. Only the objects belonging to
the drivable surface are tracked.

evolution of the tracks estimates over this time horizon.
In this scenario, the white car represents the AD vehicle, while the magenta text

over each object represents the object label and the estimated object speed. Notice
that, in many cases, objects keep the same label throughout the whole time horizon,
while in Figure 5.24c the object labeled as “28” keeps the previously estimated size
even if the corresponding observed occupancy is smaller.

5.6.3.1 Analysis of the Lidar-Only Tracking

The main objective of this section is to analyze and discuss the performance of the
tracking system. To do so, we exploit the ground truth data described in section
5.6.2 to carry out a more quantitative analysis of the algorithm performance.
Figures 5.25 and 5.26 illustrate the estimation error relative to the position esti-

mation in the x and y directions for the whole duration of the data sequence. These
errors are plotted with a ±2σ envelope for the error bounds, which is represented
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Figure 5.25: Estimation error of the x-coordinate as a function of time and the corre-
sponding ±2σ uncertainty bound.
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Figure 5.26: Estimation error of the y-coordinate as a function of time and the corre-
sponding ±2σ uncertainty bound.
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Figure 5.27: Tracked speed estimation (green) and the corresponding ground-truth speed
(red). Notice that the speed is estimated only when the vehicle is perceived
by the system.

by the dashed black bounds and it is computed comparing the obtained estimation
of the gray vehicle position with the corresponding position obtained by the ground
truth data. For both figures, only the points where the ground truth vehicle is per-
ceived by the LiDAR-based perception system are represented in the plots. Notice
that in both figures we observe that the estimation of the position is more stable
when the vehicle is stopped. This can be seen in the samples of the intervals around
[0, 50] and [160, 200]. This is due to the fact that the shape of the perceived object
does not change significantly between each time step. On the contrary, we can ob-
serve that when the vehicle is performing rounds of the roundabout in the interval
around [60, 140], the estimation becomes more imprecise due to the different shape
of the perceived object bounding polygons. This shape difference comes from the
fact that the object is perceived from different points of view by the AD vehicle that
is waiting at the roundabout entrance.
Regarding the resulting tracked speed, Figure 5.27 provides the speed estimation

w.r.t. the speed profile recorded by the ground truth. Again, the speed estimation
is visible only when the vehicle is detected by the tracking system. An unavoidable
delay in speed estimation can be observed. On the other hand, the estimation is not
too noisy. There are also areas where the object is not followed because of masking
in the roundabout.
Finally, to visualize the resulting tracked paths, Figure 5.28 illustrates the es-

timated tracks of the ground truth detection and the corresponding ground truth
trajectory, which is recorded in the dataset.
The color of the point corresponds to the labels given to the track. If the color

changes, this means that the tracker has lost the track and it needs to re-initialize
another one which is compared to the ground truth car position and speed. More-
over, we need to underline that the estimated track position, i.e. the red solid lines
of Figure 5.28 are estimated following the polylines of the HD map. For this reason,
sometimes the estimate can be different from the ground truth one (the black dashed
lines). This happens because of the natural way of driving a vehicle, which does not
always follow straightforwardly the road lanes.
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Figure 5.28: The tracked position of the gray car (red) and its corresponding ground truth
path (dashed black lines) A change of color of the points in the plot represent
the creation of a new object to track the ground truth car.
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Figure 5.29: Estimation of the vehicle length (green) and the corresponding behind (red)
and ahead (blue) boundaries compared to the ground truth length of the
vehicle which is 4.082 m.
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Figure 5.30: Comparison of the performance of the three tracking systems (red, blue and
green dots) in terms of field of view extension w.r.t. the ground truth data
(dashed black line).

Finally, Figure 5.29 gives the estimate of the vehicle total length and its forward
and backward occupancy interval boundaries. As one can see, the blue total length
is often above the ground truth size, which is represented by the blue dashed line.
This implies that the estimated size of the object is often overly-estimated w.r.t.
the true one.
All these results show overall that the LiDAR tracker works well enough to esti-

mate the position of the tracks as well as their speed.

5.6.3.2 Analysis of the Cooperative Tracking

The main objective of this section is to analyze and compare the performance of the
cooperative tracking system regarding the state estimation accuracy. We evaluate
the performance of the tracking system when it uses the on-board and infrastructure
data separately and then combined together.
To illustrate the accuracy of the tracking system, Figure 5.30 depicts the tracking

result for only a target vehicle that was accurately localized with a post-processed
SPAN CPT IMU. It shows the tracking results using only the LiDAR data, the
camera data and both compared with the ground truth of the vehicle. From this
figure, one can notice that even if the target car is free to move in the 2D space of the
map, the tracking result is more constrained to be close to the HD map polylines.
This is because of the map-aided tracking method. However, one can notice some
cases where the tracking result deviates from the polylines. This can happen for
example in the case of a lane change maneuver.
Furthermore, we have computed the root mean squared error for the three cases

described before. To do so, we have projected both the estimated state and the
ground truth position of the vehicle on the roundabout polylines and compared the
estimation error in terms of along track error in curvilinear coordinates. This is use-
ful because, many autonomous vehicles navigation and motion planning strategies
rely on curvilinear coordinates [68]. For this reason, it is interesting to investigate
the accuracy in estimating objects in a curvilinear framework. Table 5.1 illustrates
the computation of the RMSE for the three cases. When using the whole sequence,
the LiDAR-only tracking performance is better than the camera-only one. This is
mainly due to the different accuracy of the sensors. The combined approach be-
haves as a compromise between the two. When focusing the analysis on the parts
of the sequence where both the AD vehicle and infrastructure can track the target
vehicle, the combination of both sensors performs better than the camera-only and
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Table 5.1: Root mean square error and the duration of the time sequence (in seconds) for
the tracking methods obtained using only the LiDAR, the camera and both
sensors.

Class Changing
Sensors Whole (m) Time (s) Overlapping (m) Time (s)
LiDAR 0.70 31.5 0.99 4.3
Camera 1.88 17.1 0.78 4.3
Both 1.31 42.5 0.49 4.3

the LiDAR-only ones. In this particular situation, which corresponds to the zones
where we have a transition from the camera-only setup to the LiDAR-only one, the
target vehicle is almost out of the field of view of the sensor and perceived from a
frontal orientation w.r.t. the LiDAR, making the estimation of its size less accurate.

5.6.3.3 Occupancy Integrity Analysis

After having presented the performance of the tracking system for both estimating
the state of the detected vehicles, we focus our attention on the integrity estimation
of the vehicles occupancy. Again, we exploit the ground truth data collected in
the dataset as we previously explained in section 5.6.2 to analyze in a quantitative
fashion the results.
Let recall that the final occupancy estimation is obtained by the tracked occu-

pancy estimation and the injection of the estimated state uncertainty, following the
method discussed in section 5.3.8. Figure 5.31 illustrates the obtained estimated
occupancy boundaries compared with the corresponding ground truth ones. Notice
that for a given estimation of the ahead occupancy boundary (blue), we consider
that this estimation satisfies the integrity criterion if it contains the true occupancy
interval boundary. In other words, if a blue point lies above the blue line, this means
that it satisfies the integrity criterion.
The same reasoning can be repeated for red points also, which correspond to the

backward interval boundary. However, this time the condition needs to be inverted
due to the negative coordinate of the local frame centered in the ground truth
vehicle barycenter. This means that, if a red point lies underneath the red solid
line, it satisfies the integrity property.
To obtain an occupancy estimation that satisfies the integrity property, we want

that both the ahead and behind estimates satisfy the integrity property. As we
introduced in section 5.6.1, we propose to use the integrity diagram to visualize
when this condition is fully satisfied by the estimates. Figure 5.32 depicts the
integrity diagram for all the estimates corresponding to the ground truth data. As
one can see, this result shows that almost all the points are distributed between
the regions (1) and (2b). This implies that in the majority of the cases the system
provides an estimation of the backward occupancy interval bound that satisfies the
integrity property. In many other cases, i.e. cases where points belong to region (1),
the whole estimation of the occupancy interval satisfies the integrity property.

5.6.4 Cooperative Perception: LiDAR and Infrastructure
After having analyzed the performance of the LiDAR-based tracking system, we
move our attention to the performance of the cooperative data fusion system. The
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Figure 5.31: The resulting estimation of the gray car occupancy ahead (blue) and back-
ward (red) w.r.t. the corresponding ground truth (solid lines).

Figure 5.32: Integrity diagram for the ground truth tracks according to the region de-
scribed in section 5.6.1 (LiDAR only). Notice that for both the axes the unit
of measurement is dimensionless, according to the definition of ib and if . The
percentage of points in the zone (1) is the 55%, while the points in zone (2b)
are the 45%. Finally, only the 0.001% of the points is in the (2f) zone.
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main objective of this step is to evaluate the cooperative data fusion with data
broadcast from the remote intelligent infrastructure, as we previously explained in
section 5.5. The main interest of this step is to check whether the performance of
this new cooperative system outperforms the previously obtained results. To carry
out this comparison, we focus on two principal aspects: the enhancement of the AD
vehicle field of view, which will be discussed in the next section and the improvement
in the occupancy estimation of perceived objects, which will be analyzed in section
5.6.4.2.

5.6.4.1 Enhanced Perception Field of View

The first characteristic that we analyze here is the enhancement of the AD vehicle
field of view obtained thanks to the collaborative perception system. In this case, we
use again the dataset presented in section 5.6.2. This time, we exploit not only the
data about the AD vehicle and the ground truth car, but also the vehicles detections
obtained from the intelligent infrastructure.
In this experiment, we use the recorded scenario to determine the impact of the

intelligent infrastructure perception on the AD vehicle decision to perform an inser-
tion maneuver. Figure 5.33 illustrates the scenario. In this situation, the AD vehicle
comes from the right road and wants to enter into the roundabout. Figure 5.33a
illustrates a situation where the AD vehicle can take the decision of stopping be-
fore entering into the roundabout sufficiently far ahead thanks to the perception of
the intelligent infrastructure. The red arrow in Figure 5.33a indicates the detected
objects broadcast to the AD vehicle. Notice that no bounding boxes belonging to
the AD vehicle perception are present because the vehicle is still too far from the
roundabout.
On the other hand, Figure 5.33b depicts the instant where the AD vehicle decides

to perform a stop maneuver considering only its on-board perception system. As
one can see, the red arrow in Figure 5.33b points towards the first object detection
obtained from the on-board perception system (blue box) that causes the AD vehicle
to stop at the roundabout entrance.
Finally, the two red markers present in Figure 5.33b illustrate the different instants

where the decision of stopping before entering has been taken either considering the
cooperative perception system (the farthest marker on the right) or considering only
the on-board perception results (the closest marker to the roundabout).
Furthermore, we are also interested in providing quantitative results to quantify

the performance gain provided by the infrastructure. Let us consider again the
experiment presented in section 5.6.3.2. In this case, we consider again the tracking
results depicted in Figure 5.30. To quantify the gain of the cooperative system
w.r.t. the two single-sensor ones, we compute the percentage of time where the
target vehicle has been tracked by each of them. This percentage is computed as
the ratio between the number of samples that correspond to the target vehicle and
the total number of samples of the ground truth in the time interval represented
in Figure 5.30. For the single-sensor systems, the LiDAR-only system tracks the
target vehicle for 68% of the time, while the camera-only system tracks it for 37%.
Regarding the multi-sensor tracker, it tracks the target vehicle for 92% of the total
time, outperforming the two others. Notice that the sum of the single sensor system
percentages does not correspond to the multi-sensor system percentage because of
the presence of overlapping zones in sensors fields of view.
In conclusion, we can observe that a remote infrastructure as the one that we
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(a)

(b)

Figure 5.33: Infrastructure impact on the AD vehicle insertion maneuver. The infrastruc-
ture perception is represented by green boxes, while the AD vehicle is repre-
sented by a blue box. The small red markers indicate the instants where the
AD vehicle took the decision to stop at the roundabout with only on-board
perception (Figure 5.33b) and with cooperative perception (Figure 5.33a).
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Figure 5.34: The perceived objects bounding boxes generated from the intelligent infras-
tructure (green boxes) and the ones generated by our on-board perception
system (blue) for a roundabout insertion scenario.

used in this study can help efficiently to enhance the AD vehicle field of view. To
better observe this aspect, Figure 5.34 illustrates the comparison between the boxes
generated by the remote infrastructure system and the ones generated by the AD
vehicle perception one. This enlargement of the vehicle field of view allows an AD
vehicle to have a wider horizon to plan its driving maneuver, as we have seen in the
case of the roundabout insertion maneuver.

5.6.4.2 Added Value of the Infrastructure Information with Field of View
Overlap

The second aspect that we want to analyze is the improvement that the remote
infrastructure can offer to better estimate the occupancy of the detected objects.
By considering the proposed data fusion strategy presented in Section 5.5.4, we use
again the dataset described in section 5.6.2 to perform a quantitative analysis on the
performance of the system in terms of integrity estimation of the vehicles occupancy.
In other words, we perform again what we previously did with the LiDAR-based on-
board perception system in section 5.6.3.3, but this time considering the cooperative
data fusion between LiDAR and infrastructure data.
To visualize the performance of this approach, we draw the same plots that we have

shown in section 5.6.3.3 for the cooperative system. In order to properly compare
the performance of this new system with the previous one, we consider only the
zone where there is an overlapping field of view of both the LiDAR and the camera
to perform cooperative data fusion. This means that we associate camera detection
to the tracked objects obtained by the LiDAR tracker and, if an association occurs,
we integrate the size information provided by the intelligent infrastructure to the
estimation process.
Figure 5.35 gives the final backward and ahead occupancy interval bounds estima-

tion w.r.t. the ground truth ones. As we can see, the introduction of the intelligent
infrastructure information does not provide a remarkable improvement in the occu-
pancy estimation compared with the one obtained by the LiDAR only system shown
on Figure 5.31. Moreover, one can also observe that the integrity diagram of Figure
5.36 provides almost the same results of the previous one. However, if we have a
closer look at the ib axis of the new diagram, one can see that a few more points
are lying closer to it. This is because of the added information of the intelligent

143



5 Cooperative Road Users Tracking with Intelligent Infrastructure

Time (s)

Le
ng

th
(m

)

Figure 5.35: The resulting estimation of the gray car occupancy ahead (blue) and back-
ward (red) w.r.t. the corresponding ground truth (solid lines) thanks to the
cooperative perception system.

infrastructure. Nonetheless, this percentage of points is negligible with respect to
the overall result. This can be due to the fact that our tracking policy for esti-
mating the objects occupancy tends to be pessimistic. In fact, it allows the object
occupancy only to grow. Moreover, the addition of the uncertainty obtained from
the state estimation to the final occupancy estimation leads to a more pessimistic
occupancy too and so the information provided by the infrastructure as very little
impact. To better visualize that, Figure 5.37 illustrates a comparison between the
results depicted in Figure 5.36 and the ones shown in Figure 5.32. Notice that in
the cases where there is the influence of the infrastructure, the estimation becomes
always more consistent. Moreover, we can observe that, in some particular cases, we
switch from a situation where the estimation does not satisfy the integrity criterion
to a situation where it is satisfied.

5.6.5 Discussion on the Added Value of the Infrastructure
In the previous sections, we have presented some approaches to propagate the local-
ization uncertainty directly into the tracks occupancy at lane-level accordingly to
the integrity concept. This method allows to model correctly the perceived objects
occupancy and it leads to an efficient representation of the road users. Nonetheless,
to properly evaluate the integrity of the obtained results, some considerations need
to be pointed out.
Firstly, the proposed algorithm provides a good result that performs high integrity

perception in terms of localization of the road users along the lanes. This represents
a step towards a robust perception of the driving scene when HD maps are used for
decision. However, for our specific use-case, we are interested also in guaranteeing
integrity of the perceived objects occupancy on the road surface. For this reason,
we have decided to focus the attention on checking whether the objects bounding
polygons provide consistent curvilinear occupancy w.r.t. the real objects. To do
so, we have used experimental recorded shared perception datasets. Such datasets
contain the ground truth localization of some experimental vehicles. In our specific
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Figure 5.36: Integrity diagram for the ground truth tracks computed with the help of the
cooperative perception system.
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Figure 5.37: Comparison of the resulting estimation of the gray car occupancy ahead
(blue) and backward (red) obtained with the LiDAR (full dots) and with
the cooperative system (empty dots) in the case where the infrastructure im-
proves the estimated occupancy. The solid lines represent the corresponding
ground truth.
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Figure 5.38: An example of a detected object (red polygon) and its corresponding ground
truth occupancy (blue rectangle).

case, we used only the on-board perception of one experimental vehicle and, regard-
ing the others, we used them as road obstacles. The main advantage is that the
position of the experimental vehicles is known precisely thanks to a precise GNSS
positioning system and it can be used as a ground truth to evaluate the approach.
This allows to compare if the AD vehicle estimated occupancy is coherent w.r.t. the
real object size. However, for the LiDAR-based perception system, one can observe
that it is not always the case. This is mainly due to the fact that, in general, the
LiDAR sensor detections do not respect the integrity property. This means that,
for a given object, LiDAR sensors are not always able to provide a detection of the
whole object. This is mostly dependent on the relative positioning of the detected
object. To illustrate this concept, Figure 5.38 depicts a case where an incomplete
LiDAR detection produces a partial bounding polygon. This bounding polygon does
not cover all the corresponding occupancy of the detected object.
However, considering the results presented in the previous part of this chapter,

we can conclude that in our particular case, the infrastructure information does
not provide a significant improvement in the process of estimation of the perceived
objects occupancy.
However, we observe that a cooperative system with a remote intelligent infras-

tructure is helpful to enhance and extend the field of view of an on-board perception
system. This extension is useful to provide the AD vehicle an extended perception
of the ongoing driving situation. This additional information can be used to imple-
ment a more safe and optimized navigation strategy, in particular for safety critical
driving maneuvers.

5.7 Conclusion
In this chapter, we have presented a cooperative map-aided tracking system that
exploit both LiDAR and camera data to estimate the detected road users state and
their occupancy along the HD map polylines. The occupancy estimation is carried
out by considering both the observed occupancy and the estimated uncertainty about
the detected track estimated state. Moreover, the performance of this approach has
been evaluated in terms of integrity w.r.t. the real occupancy of a detected object
thanks to the ground truth data recorded in a dataset. More detailed results have
been discussed in [65].
In the first experimental part, the performance of this system has been studied

in terms of augmentation of the AD vehicle field of view, highlighting the gain of
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the cooperative perception system over the standalone AD on-board perception.
Clearly, a cooperative system improves of the ability to track vehicles in almost all
the parts of the roundabout ring that has been considered in this work.
Then, we have presented an evaluation of the tracking performance thanks to the

use of a target vehicle accurately localized which allows computing errors on real
data. As observed, the three trackers have different accuracy, depending on the
sensors capabilities. This means that, in this particular configuration and with the
chosen sensors, enhancing the field of view of the AD vehicle by adding an extra
source of information implies an accuracy loss in the overall estimation of the position
of the tracked objects by the standalone AD vehicle perception. Nonetheless, we
have shown that this multi-sensor data fusion leads to benefits in the zones where
the field of view of the two sources of perception overlap, providing a more accurate
estimation of the state of the perceived objects.
In the second part of the chapter, we have considered the map-aided tracking

algorithm but with the assistance of a cooperative remote infrastructure to improve
the performance of the perception. We have leveraged the classification information
obtained from the remote camera to infer the objects dimensions. The main objective
of this was to study if a better estimation of the objects occupancy along the HD
map polyline can be obtained.
We have proposed to quantify the performance of a perception system under

evaluation according to an integrity diagram for estimating the quality of objects
occupancy. We observed that the LiDAR on-board system performs well, and in
the particular configuration that we have studied, the information provided by the
cooperative system does not significantly improve the LiDAR tracking system when
the fields of view of the two systems overlap. This can be due to the fact of that.
The approach that we chose for updating the estimation of the occupancy intervals

is quite pessimistic, i.e. it allows only to increase and not to decrease the size of the
estimated occupancy. This means that the tracks tend to accumulate occupancy
and grow, leading to a long term overly-estimated size.
In order to improve the proposed method, a possible perspective would be to

improve the quality of the infrastructure information and to integrate it in the
state estimation process of the detected objects in terms of pose and occupancy.
Furthermore, an other approach would be to consider a map-aided tracker that
tracks the bounds of the objects instead of considering the barycenter of perceived
clusters. This would help to provide a more stable and consistent estimation of
the state because, as we observed in our experiments, the shape of the detected
objects can change a lot from one instant to another, with the consequence that the
barycenter moves a lot too.
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The work presented in this manuscript addresses the problem of safe autonomous
driving vehicle navigation in complex urban scenarios. This has been developed in
the context of the French national project Tornado, which aimed at experimenting
autonomous shuttles and robotaxis in urban driving environment. In the first part
of work, we focused the attention on the navigation strategy and longitudinal plan-
ning in roundabouts in presence of a regular vehicle traffic flow. Then, in the second
part of this research, we developed an on-board perception system to provide the
self-driving vehicle information about the road users. Then, we proposed a coop-
erative data fusion strategy with a remote intelligent infrastructure to enhance the
perception capabilities of the autonomous system and to provide a more robust and
accurate estimation of the perceived road users.

6.1 High Definition Maps: Key Enablers for
Autonomous Navigation

A contribution of this manuscript is the development of a longitudinal path planning
method over a short time horizon. This method relies heavily on the High Definition
(HD) map formalism to model the road environment. This formalism allows the
autonomous vehicle to take decisions when interacting with the other road agents
within the vehicle navigation corridor thanks to the HD map. One of the most
important strengths of this approach is that it models the motion of the vehicle along
the map polylines. This reduces the degrees of freedom needed to model motion of
the vehicle. This is useful when performing a prediction over a time horizon of all the
possible vehicles behaviors because it exploits the constraints provided by the map
to reduce the number of possible configurations in the state space. For this reason,
HD map polylines are useful to obtain a fast and sufficiently detailed formalism to
find the possible interactions between the autonomous vehicle and the other road
agents.
Furthermore, the use of a HD map can also be integrated to model the road agents

dynamics. Indeed, by exploiting the topological information stored in the map, it is
possible to extract a realistic path for the prediction of road agents behaviors. An
example of that can be the use of speed limits information or the computation of
an upper bound speed to reduce the set of all the possible outcomes over a time
horizon.
Finally, a HD map is helpful also at the control level since it is possible to encode in

the HD map some useful information that can be exploited by both the longitudinal
and lateral controllers. In the former case, a speed profile can be encoded together
with the polylines information to provide the autonomous vehicle a set-point speed
to follow as a function of the map polylines. In the latter case, the HD map can be
used as a reference path to be followed by the lateral controller.
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On the flip side, even if HD maps offer an appealing solution for a wide set
of autonomous driving tasks, they also have some limitations. Firstly, the HD
map formalism works well to model driving situations that occur close to the road
polylines. Map-matching has a tendency to place objects along the map polylines
even if they are not close to the road center, as for example a parked car or some
pedestrians along a sidewalk. To overcome this issue, a dedicated system able to
select only the objects that belong to the driving scenario and that represent an
obstacle for the self-driving car is needed. It remains challenging to develop a
system that only selects the “true” road obstacles.
Secondly, one other difficult issue about HD maps is their maintenance. If one

wants to use a HD map to perform safety-critical tasks, e.g. for navigation purposes,
the information contained in the map has to be correct and representative of the real
driving environment. Unfortunately, due to changes in the road environment, it is
difficult to guarantee the consistency of such information over a long time horizon.
Moreover, it is also challenging for the AD vehicle to detect with its own system an
inconsistency on the driving environment representation.
A solution to partially resolve this could be to exploit the ETSI DENM (Decen-

tralized Environmental Notification Message) to notify a self-driving vehicle about a
modification in the environment. Such a notification should provide information on
the nature of the notification, e.g. road works, accident, etc. and also a timestamp
to notify the user.
Another alternative that it is gaining more and more attention nowadays is the

crowd-sourcing of HD maps. This technique consists in providing to the HD map
clients quasi real-time information about the modifications of the elements present
in the map. For this to work properly, users are supposed to notify at any time
changes and modifications on the map elements in order to enforce the correctness
of the geographical information.

6.2 Autonomous Vehicles Navigation
Another contribution of this work is the design and the implementation of an algo-
rithm for roundabout insertion maneuvers in urban traffic. This algorithm has been
specifically designed to operate in a scenario where an autonomous vehicle navigates
among a regular vehicle flow. One of the advantages of the proposed method is to
use virtual instances of vehicles to predict uncertain intentions of self-driving cars
both in path prediction and in multi-lane roundabout navigation.
This formalism allows to cover all the possible decisions about the uncertain in-

tentions of MD vehicles thanks to the HD map-based representation and the concept
of virtual vehicle. A limit of this approach is that it does not guarantee an optimal
estimation of the driver’s intention. To obtain such information, adding a layer in
our architecture that is able to identify drivers intentions could improve the perfor-
mance of the system. Moreover, this layer could be useful not only to identify for
example the road that a car is going to take into an intersection, but also to identify
the intention of the vehicles to do other maneuvers like lane change.
Another improvement that could be added is a negotiation layer to unblock a

deadlock situation that may occur in high density traffic particularly for roundabout
insertion. This can happen in conditions where, due to traffic jams, human drivers
tend not to respect traffic rules and, for example, take the right of way even if
they do not have the right. All the roundabouts are priority-based. It means that
vehicles in the roundabout ring have the right of way w.r.t. incoming ones. In the
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proposed strategy, this priority constraint has been handled when there is a large
enough gap between vehicles on a priority branch. In other words, a vehicle that
does not have the right of way can effectuate an insertion maneuver if and only if it
does not influence the behavior of another vehicle with a higher priority rank.
Another contribution of work part is the extension of the single-lane roundabout

crossing algorithm to multi-lane ones. This extension allows to handle more complex
traffic scenarios and to choose among three policies to effectuate the roundabout
insertion maneuver. Again, we have chosen to use the most pessimistic one to ensure
that, under no circumstances, collisions due to the wrongly estimated intention of a
manually driven vehicle can occur. It is also possible in this case to add a layer to
estimate intentions of changing lane to improve the overall number of insertions.
Another future research direction on this topic is to take into account the lack of

information about the surrounding driving scenario. Indeed, the current perception
system may contain some zones that are occluded by the presence of road obstacles.
The presence of large objects as trucks or vans may hide the presence of another
obstacle behind them. This means that such an obstacle is out of the on-board
system field of view and cannot be perceived. However, this obstacle can potentially
represent a danger during the insertion maneuver. To avoid such an issue, the
proposed strategy needs to be reinforced with a system capable of identifying the
occluded zones and to include this notion in the planning step during safety critical
maneuvers.
Finally, the use of a more sophisticated control strategy (as for example the model

predictive control) would allow to compute reference signals over a time horizon,
providing smoother signals and embedding some navigation constraints directly in
the control layer.

6.3 LiDAR-based Road Users Localization
Road users detection and localization with 3D LiDAR is a point that has been
considered carefully in this research. Such a system has been used to provide the AD
vehicle the necessary knowledge of the road users as vehicles. We have implemented
a multi-layer approach that processes raw LiDAR point clouds data and identifies
the main road obstacles using geometric methods. We have chosen to use geometry-
based techniques in contrast to machine learning based ones because it is well known
that those methods provide fewer missed detections w.r.t. the other category. This
is because there is no need to provide a database of potential obstacles to train the
algorithm. Indeed, machine learning is only able to recognize objects correctly that
belong to the training set. This may lead to dangerous situations when an unknown
object appears.
Conversely, even if geometry-based methods are more reliable in terms of missed

detection rate, they have strong limitations for estimating a consistent occupancy
of the perceived objects. They lack prior knowledge that can infer important in-
formation about perceived objects like for instance the nominal objects dimension.
Adding a classification layer, as we did in the case of the intelligent infrastructure
perception system, could help in better estimating the objects dimension.
To meet the needs of our navigation strategy, the perception system must be

able to provide the estimated occupancy of road obstacles. In this work, we chose
to estimate the surface occupied by road users from the objects detected by the
LiDAR clusters. There is a dual approach. Instead of estimating the occupied space
starting from the LiDAR obstacles, it is also possible to perform such an estimation
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by considering the free space instead of the occupied one. This information can be
retrieved from the ground points outputted from the first block of the pipeline. This
point cloud contains all the points that have been classified as ground and they can
be used to infer the zones of the drivable space that are free of obstacles. Following
this reasoning, one can obtain the information about the occupancy of road obstacles
by considering the intersection between the estimated free space and the drivable
space. One can also refine this approach by adding more sophisticated models that
consider for example the unknown space to model cluttered environments or free
space that has not been perceived by the on-board perception. This can be obtained
by adding a free space detector based on the ground segmentation module to the
presented pipeline.
Regarding the integrity of perceived bounding polygons with respect to the AD

vehicle localization uncertainty and the map-based object filtering, we have demon-
strated experimentally that the proposed method is safe. The pessimism it generates
should be assessed more closely.
Furthermore, this method can also be useful if one is interested in estimating

the effects that different sources of localization can produce on perception results.
For instance, the AD vehicle localization uncertainty depends on the quality of the
GNSS receiver. It is possible to test how the localization uncertainty provided by
different GNSS technologies is propagated to the perception results and which is
its impact on the resulting bounding polygons in terms of integrity and occupancy
of the lanes. This is useful to evaluate the percentage of space occupied by MD
vehicles and in function of that, to choose which GNSS technology is better to use
to obtain a trade-off between localization accuracy and space occupancy for the AD
vehicle navigation tasks.
Finally, in the experimental part, we have compared the LiDAR perception sys-

tem in the curvilinear map-based coordinates with the Cartesian framework. From
the point of view of integrity, we found out that working in a curvilinear framework
provides better performance than in Cartesian coordinates. For safety-critical appli-
cations, we therefore recommend this formalism to obtain a consistent representation
of the driving environment, especially if a map-based filtering step is involved.

6.4 Curvilinear Tracking
The tracking of the perceived objects constitutes an important step to provide to
the navigation algorithm the necessary information to run. In this work, a tracking
step has been added to estimate perceived objects speed and occupancy. We have
implemented a map-aided algorithm for objects tracking. The main motivation of
this choice was to provide the tracking result along the HD map polylines. This is
coherent with both the representation of the driving environment and the formalism
adopted to design the navigation strategy. However, tracking objects w.r.t. a curvi-
linear framework may lead to poor performance when the detected objects do not
follow the driving behavior encoded in the HD map. As a consequence, the tracking
system is not able to encode all the possible driving behaviors.
Working in curvilinear coordinates allows the system to compute occupancy in-

tervals directly in the curvilinear framework and with respect to the navigation
corridors provided by the map. This formalism allows to compute the occupancy
only on the along direction of the motion and avoids the computation of oriented 2D
bounding boxes.We leave as a future perspective the comparison of the performance
of this system with a general 2D Cartesian tracking algorithm.
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During the experiments, we observed that considering the barycenter of the per-
ceived objects as the observation for the tracking algorithm degrades the perfor-
mance. This is because the position of this point heavily depends on the shape of
the perceived cluster and, considering LiDAR-based perception, it can vary signifi-
cantly over time. This depends on the relative position between the sensor and the
tracked object. An alternative could be to change the tracking approach by replac-
ing the barycenter tracking with the tracking of the occupancy interval boundaries.
Such information can be helpful not only to better stabilize the tracked object es-
timation, but also at the navigation layer to quantify the uncertainty about the
boundaries of the occupancy interval of a perceived object.
Finally, another improvement to our approach could be to choose a wiser policy

for updating the size of the estimated occupancy interval. One could develop a
criterion that allows to include outliers detection in order to avoid to overly estimate
objects sizes. This could be helpful to improve the pessimistic estimation of objects
occupancy without introducing risks w.r.t. the integrity criterion.

6.5 Cooperative Perception with Intelligent
Infrastructure

Another aspect that we considered in this work was how an extra perception coming
from a remote intelligent infrastructure can help the autonomous vehicle to improve
its knowledge of the driving environment. Firstly, the different positions of the two
sensors allow to extend the field of view of the AD vehicle and the scene is perceived
from different directions. This aspect is important to detect road users sufficiently
ahead. As a consequence, the autonomous vehicle can decide to use more elaborated
navigation algorithms and to plan its navigation strategy with a clearer knowledge
of the driving environment. This aspect was shown in our experimental tests for
roundabout crossings, where we compared the gain of the cooperative system again
the standalone ones. Secondly, the remote infrastructure also offers an appealing
solution to robustify the knowledge of perceived objects by using the infrastructure
observations in the LiDAR-based objects tracking of the self-driving car to improve
the estimation of objects occupancy via a data fusion technique. To do so, it is
necessary to synchronize temporally both the remote and the on-board systems.
Moreover, we have shown that a multi-sensor data fusion technique not only helps

in enhancing the AD vehicle on-board perception field of view, but also it allows to
better estimate the state of perceived objects in situations where the two sensors
fields of view overlap. This brings to light one discussion about the positioning of
the infrastructure in the cooperative system either to optimize the complementarity
of the fields of view or to maximize the overlapping zone in order to provide a more
robust state estimation of perceived objects. Because a monocular camera was
used, using the objects detected from the image frame to estimate their occupancy
on the road plane in the world frame introduced a additional layer of uncertainty
and inaccuracy on the final result.
Another aspect to obtain a good performance in real-time is the optimization of

all the delays accumulated during the infrastructure processing of the data. To work
well, this approach needs to have the minimum delay between the moment when
a raw image is acquired and the moment when the detection result is received by
the data fusion framework. Between these two points, there are some steps as the
transit of the data in the system, the image treatment, the encoding of the detection
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result into a CPM message, etc. If one of these sub-step is not optimized, it might
happen that the data are received by the autonomous vehicle with too long a delay.
Finally, considering the data-fusion technique used in the cooperative system, we

found out that it provides only a negligible improvement in terms of integrity of
occupancy estimation considering the results provided by the LiDAR-only system.
However, due to the large quantity of uncertainty accumulated during the occupancy
update and the criterion that we chose to update tracked objects occupancy, it could
be helpful to exploit the classification information and the inferred objects dimen-
sions provided by the infrastructure to fix an upper bound on objects occupancy.
This implies that object occupancy will not be allowed to grow more than their real
lengths. However, if we are in the case where it is not clear if the barycenter of the
tracked occupancy corresponds or not to the real object one, we suggest majoring
the occupancy estimation with the double of the inferred length, in order to provide
a further upper bound. This approach results again in pessimism but it has the
advantage that it always contains the perceived object.

6.6 General Perspectives
This work has highlighted the importance of using HD maps for autonomous vehicles
navigation and to exploit them for safety-critical navigation tasks. Furthermore, the
emerging concept of integrity of perceived environment has been addressed at several
levels. Integrity of perceived environment represents a crucial aspect in several tasks
of autonomous driving. However, some issues still remain. Regarding autonomous
driving use-cases, the results provided by applying the integrity criteria to perception
add unavoidably some pessimism. This is mainly due to the uncertainty inclusion
in the computation of the occupancy estimation. As a consequence, autonomous
driving algorithms tends to be overly-cautious.
To overcome this issue, it is required to find a trade-off between the integrity

criterion and an excessive pessimism of the system in terms of overly-estimated
occupancy. One practical solution could be to exploit the classification information
about perceived objects, coming from either the intelligent infrastructure or from
an on-board camera system, to add more constraints to reduce the final amount of
occupied road surface by the perceived objects. This has the goal of making the
estimated occupancy as close as possible to the real one.
In a more general way, exploiting information from different sensors with different

modalities can help in providing different pieces of information about the driving
environment. When such information is puzzled out, it can give a more detailed,
robust and accurate description of the perceived objects.
Another aspect that we would like to point out concerns cooperative perception

systems. In the presented approach, we exploited a remote cooperative perception
source to enhance and extend the self-driving vehicle knowledge of the driving envi-
ronment. However, this domain offers a plethora of different solutions to cooperative
perception problems. A crucial aspect of this is the format that data should have in
order to be proficiently exchanged between road users. On the one hand, cooperative
systems tend to reduce the amount of information to be send in order to minimize
latency and to avoid network saturation. This is often implemented by providing a
more compact and object oriented representation of the perceived information. On
the other hand, raw data are more informative w.r.t. treated ones because there is
no information loss during the sharing process. Nonetheless, it could be challenging
to send raw data because, for certain sensors, they require a huge amount of memory
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to be stored.
Furthermore, in the field of cooperative systems it is also important to obtain

redundant information coming from sensors that use different perception modalities
from different points of view. In our specific case, we exploited a 360◦ LiDAR and an
intelligent fixed camera. It is useful to consider the cooperative perception problem
as a function of the different sensors involved with their own fields of view. For on-
board perception systems, it would be interesting to investigate the infrastructure
benefits in the case of on-board systems that do not have a 360◦ vision range, like a
forward looking camera for instance. In such a case, it would be useful to perform
cooperative multi-sensor data fusion with both on-board and remote sensors that
scan the world from different positions and directions. It can be really helpful to
improve the overall system performance by increasing the coverage of the scene
perceived and reducing occlusions.
Regarding the intelligent infrastructure, it would also be interesting to evaluate the

benefits of a remote system that exploits a technology different from the one of vision
cameras. Some other interesting alternatives could be to explore infrastructure
LiDAR sensors and radars to provide a better estimation of the speed of the detected
objects.
Cooperative systems with remote infrastructure offer a trustworthy additional

source of information to cooperative perception. The remote position of the infras-
tructure helps in providing a different vision of the driving situation from another
perspective and its contribution offers, in general, an enhancement of the coopera-
tive perception system field of view. To proficiently exploit the information provided
by the infrastructure at the data-fusion level, an optimization process to minimize
latency and delay due to information broadcast is necessary to obtain a sufficiently
high refresh rate that meets safety criteria for autonomous vehicles.
To summarize, we can state that an intelligent infrastructure helps in enhancing

the field of view of autonomous vehicles on-board perception which is very useful
for the anticipation of the driving situation and therefore at the tactical level of
navigation. Because of the processing and broadcast delays, the infrastructure is not
sufficiently adapted to assist reactive problems with strong real-time constraints. In
practical implementations, the cost of equipping a roundabout with such an extended
perception system is maybe not proportional to the benefits it provides. However,
some practical use-cases where this technology can provide a significant benefit are,
for example, private sites as warehouses or parking lots or, regarding public roads,
some particular traffic zones where the risk of road accident is high like roundabouts
with blind spots or occluded zones.
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7.1 ETSI Standards for Vehicles Communication
In this first appendix, we provide a detailed explanation of the main standards
used to achieve vehicular communication in the autonomous vehicles domain. In
particular, we focus the attention on the European standard ETSI for vehicles com-
munication. In the chapter, we detailed the main types of messages contained in this
standard and we also provide a brief comparison with the American SAE standard.
Moreover, we discuss in details the format and the contents of the Cooperative Per-
ception Message (CPM) providing an evaluation about the relevance of its different
fields to our I2V communication use-case.

7.1.1 Introduction
Cooperation in autonomous driving is an emerging technology that is looking at
to enhancing the performance of autonomous vehicles by means of cooperation in
Intelligent Transportation Systems (ITS). In order to implement cooperation, it
is required to share information between road users. Vehicular communication is
one of the most important means to share such information among several users.
Moreover, the communication can be implemented not only between road users,
but also between road users and Road Side Units (RSU) in both directions. The
aim of this section is to present an overview about of the existing standards used
in vehicular communications. Furthermore, we analyze also the application of such
communication standards to ensure the exchange of information with an intelligent
infrastructure in order to ensure safe navigation. In particular, we focus on the nec-
essary information and its format that RSUs and self-driving cars have to exchange
to achieve enhanced perception.
There exists in the literature a wide range of scenarios that take advantage of

inter-vehicles communication. All these cases can be grouped into three principal
subsets:

• Safety-oriented: These applications aim to ensure driving safety. This im-
poses many constraints on the communication standards as for example real
time constraints, low message latency and low messages loss rates. In general,
the aim of these applications is to make cars exchange data about their current
status, their perceived environment and the notification of a perturbing event.
Exchanging such information between cars in a road network can provide to
single cars a global and enhanced view of the surrounding environment that
a driver in general cannot have. Some example of that are the possibility
of seeing cars in bad weather conditions, the advertising of traffic jams and
car accidents on the road, enhancing a vehicle perception on cluttered envi-
ronments and blind spots and the advertising of the presence of an incoming
emergency vehicle.
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• Traffic-Control Oriented: These applications are not related to safety.
However, exchanging information about the vehicles positions can help in in-
dividuating the zones with traffic congestion giving a global view about the
traffic. This can be used to regulate the traffic in function of the traffic jams.
A typical use case is a smart traffic light manager that collects information
about the queues of cars that are waiting to pass and regulates the passage
minimizing the waiting time.

• User-Comfort Oriented: These applications are oriented at providing ser-
vices that a user can enjoy while he is driving on the car. Some examples are
the possibility of downloading movies or music during a trip. All these cases
have the basic requirement of having access to the internet.

7.1.2 ETSI Standard
In Europe, the first experiments to achieve vehicular communication started around
1980. Before that date, several projects had been launched to achieve cooperation
among communicating devices. The standards to achieve these tasks have been
developed by the European Standardization Union (ESOs), the European Telecom-
munication Standards Institute (ETSI) and the Comité Européen de Normalisation
(CEN). This standardization covers all types of transportation systems and also
infrastructure based systems as the tolling systems. The standardization is driven
by the Car-2-Car Communication Consortium (C2C-CC), which is an industry con-
sortium of automobile manufacturers that signed an agreement to introduce the
standard in Europe since 2015.
The ETSI ITS standard is based on the concept of ITS station. An ITS station

can be a connected vehicle, a person with a connected device, or a communicating
roadside unit. In the United States, another standard called WAVE has been devel-
oped. Figure 7.1 shows the architecture of the ETSI standard compared with the
WAVE architecture. The access technologies layer primarily utilizes a specific set of
options of the IEEE 802.11 standard, that is, ITS-G5 (where G5 stands for 5 GHz).
In the United States, this set is named Wireless Access in Vehicular Environment
(WAVE), formerly referred to as the IEEE 802.11p amendment and now integrated
into the IEEE 802.11-2012 standard release. The European variant, ITS-G5, is
derived from WAVE and adapted to European requirements.
On the top of the network and transport layer, there are the standards for

application-oriented vehicular communication. Among these facilities, there are two
services for cooperative communication. The CAM protocol conveys critical vehi-
cle state information in support of safety and traffic efficiency application. This is
useful because receiving vehicles can track other vehicles positions and movement.
The DENM protocol disseminates event-driven safety information in a geographical
region.
Finally, the new Cooperative Perception Message (CPM) protocol (which is not

present in Figure 7.1 because it has been recently introduced) allows vehicles to
exchange information about their perceived environment. This is useful to enhance
onboard sensors’ fields of view and to obtain a extended and more consistent repre-
sentation of the driving environment. It will be presented below.
From Figure 7.1, one can see that the upper layers facilities are implemented by

the CAM and DENM (and CPM) protocols for the ITS-G5 standard, while for the
WAVE standard there are the BSM and SAE. Regarding the lowest layers, we can
say that the standards are very similar in both versions.
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Figure 7.1: Architecture of ITS ETSI standard compared with the WAVE architecture.
Figure from [1]

Let us briefly show the contents of the SAE standard. We do not provide de-
tails about the lower level architecture of the system, because we are interested in
analyzing and comparing only the services provided by higher level application lev-
els. In particular, we are interested in the SAE J2735 standard that specifies the
dictionary for the Base Safety Message (BSM) which is used to achieve the main
tasks about navigation safety. Figure 7.2 shows the messages list available on SAE
J2735 standard, while Figure 7.3 displays the contents of a BSM. It is easy to see
that there exist similarities between the European and the American Standards. A
brief explanation of the most important messages reported in Figure 7.2 is given
hereafter:

• Basic Safety message: a message that is constantly exchanged between the
neighboring vehicles to inform all the other ITS about the presence of a vehicle.

• A la carte message: a message customizable by the user which allows flexi-
bility in data representation.

• Emergency vehicle alert message: used used to broadcast warnings to the
surrounding vehicles of an emergency vehicle operating in the neighborhood.

• Generic transfer message: a basic mean to exchange data between a vehicle
and the roadside unit.

• Common safety request message: used when a vehicle that exchanges
BSM needs to make specific requests to other vehicles for additional informa-
tion about safety applications.

7.1.3 Cooperative Awareness Messages (CAM)
To provide cooperative awareness between several communicating road entities, a
Cooperative Awareness Service has been implemented. The standard is defined into
the ETSI EN_30263702 document [1]. This standard can be applied to every road
vehicle (cars, motorbikes, truck, etc.. . . ), to pedestrians and to roadside infrastruc-
ture units (intelligent traffic lights, barriers, tolls, etc...). To implement cooperative
awareness, the information to be shared is exchanged by means of the Cooperative
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Figure 7.2: A list of different messages contained into the J2735 standard. Notice that
several messages corresponds to the same use-cases of ETSI. Figure taken
from [2].

Figure 7.3: The payload of a BSM message. Figure taken from [2].
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Figure 7.4: The format of an ETSI CAM message. Figure taken from [1]

Awareness Message (CAM). To implement this, every road users has to exchange
information about its status. On reception of a CAM, the receiving user becomes
aware of the existence of the sending one and its current status. Several use cases
for this service are present in literature, as it is explained in [1].

7.1.3.1 CAM Generation Frequency

To implement the cooperative awareness service, it is important to update period-
ically the status of the surrounding environment. For safety critical scenarios, the
evolution of the driving situation is highly dynamic. To achieve this, the CAM
standard proposes some constraints:

• The CAM generation interval should not be inferior to 100 ms (10 Hz).

• The CAM generation interval should not be superior to 1000 ms (1 Hz).

The upper bound limit of 10 Hz has been chosen to avoid network saturation and
bottlenecks that can be caused by multiple sending of several road agents.

7.1.3.2 CAM Messages Format

CAM is composed by a “ITS-PDU” header and several containers, which together
constitutes a CAM. The ITS PDU header is a common header that includes the
information of the protocol version, the message type and the user ID of the origi-
nating user. Figure 7.4 illustrates the structure of a CAM.
To successfully implement cooperative awareness, a CAM must include at least

one basic container and one high frequency container. It can also have one low
frequency container, and one or more special vehicle container:

• The basic container includes basic information related to the originating user.

• The high frequency container contains highly dynamic information of the orig-
inating user.

• The low frequency container contains static and not highly dynamic informa-
tion of the originating user.

• The special vehicle container contains information specific to the vehicle role
of the originating vehicle user.
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7.1.3.3 CAM Payload Description

Let us see the information necessary to implement the CAM basic services. In this
part, we decided also to assign a color to each field of the payload. Such colors
are assigned to fields according to the criteria explained in Table 7.1.3.3. Colors are
assigned to each field in order to specify the importance of every piece of information
in the context of a safety-critical autonomous vehicles navigation application. The
following table 7.1.3.3 explains the meanings of each color.

Red High
priority

information

Used to highlight information that is necessary to develop
an application for road safety.

Yellow Middle
priority

information

Used to have some information that is not considered
necessary to implement safety-oriented applications.
However, it can be useful to have its knowledge.

Green Low priority
information

This information is not considered relevant for our
use-case. It can be eventually erased to make space for

other more relevant fields.
Blue High

priority
information

Used to highlight information that is necessary to develop
an application for road safety. However, this information

is, in general, hard to compute
Classification criteria for messages fields w.r.t. our use-case application.

Basic Container This container provides basic information about the identity of
the user. The following table 7.1.3.3 explains in detail the contents of this container.

Importance Field Name Description
R Station

Type
Station type of the originating user.

R Reference
Position

Position and position accuracy measured at the reference
point of the originating user. The measurement time shall

correspond to generationDeltaTime. The
positionConfidenceEllipse provides the accuracy of the

measured position with the 95 % confidence level.
Otherwise, the positionConfidenceEllipse shall be set to

unavailable.
R Timestamp Time corresponding to the time of the reference position

in the CAM, considered as time of the CAM generation.
Basic Container

High Frequency Container This container provides highly dynamic information
about a certain user. This information must be refreshed frequently in order to keep
the state updated. Table 7.1 illustrates the container’s field in details.

Importance Field Name Description
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B Heading Heading and heading accuracy of the
vehicle movement of the originating user

with regards to the true north. The
heading accuracy provided in the DE
headingConfidence value shall provide
the accuracy of the measured vehicle

heading with a confidence level of 95 %.
Otherwise, the value of the

headingConfidence shall be set to
unavailable.

R Speed Driving speed and speed accuracy of the
originating user. The speed accuracy
provided in the DE speedConfidence

shall provide the accuracy of the speed
value with a confidence level of 95 %.

Otherwise, the speedConfidence shall be
set to unavailable.

R Driving Direction Vehicle drive direction (forward or
backward) of the originating user.

Y Vehicle Length This DF includes:

• vehicleLengthValue: Vehicle length
of the vehicle user that originates
the CAM. If there are vehicle at-
tachments like a trailer, or over-
hanging attachments like a crane,
that extend the vehicle length to the
front and/or rear; then the vehicle-
LengthValue shall provide the length
for the vehicle including the attach-
ments.

• vehicleLengthConfidenceIndication:
indication of whether trailer is
detected to be present and whether
the length of the trailer is known.

Y Vehicle Width Vehicle width, measured of the vehicle
user that originates the CAM, including

side mirrors.
R Longitudinal

Acceleration
Vehicle longitudinal acceleration of the
originating user in the center of the mass
of the empty vehicle. It shall include the

measured vehicle longitudinal
acceleration and its accuracy value with
the confidence level of 95 %. Otherwise,
the longitudinalAccelerationConfidence

shall be set to unavailable.
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G Curvature This DF is related to the actual
trajectory of the vehicle. It includes:

• curvatureValue denoted as inverse of
the vehicle current curve radius and
the turning direction of the curve
with regards to the driving direction
of the vehicle

• curvatureConfidence denoted as the
accuracy of the provided curva-
tureValue for a confidence level of 95
%.

G Curvature Calculation
Mode

Flag indicating whether vehicle yaw-rate
is used in the calculation of the curvature
of the vehicle user that originates the

CAM.
R Lane Position The DE lanePosition of the

referencePosition of a vehicle, counted
from the outside border of the road, in
the direction of the traffic flow. This DE
shall be present if the data is available at
the originating user. This concept can be
computed in a curvilinear framework if a

map is available.
B Steering Wheel angle This DF includes the steering wheel

angle and accuracy as measured at the
vehicle user that originates the CAM. It

consists of the following DEs:

• steeringWheelAngleValue denotes
steering wheel angle as measured at
the vehicle user that originates the
CAM.

• steeringWheelAngleConfidence de-
notes the accuracy of the measured
steeringWheelAngleValue for a con-
fidence level of 95 %. Otherwise,
the value of steeringWheelAngle-
Value shall be set to unavailable.
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G Lateral Acceleration Vehicle lateral acceleration of the
originating user in the center of the mass
of the empty vehicle. It shall include the
measured vehicle lateral acceleration and
its accuracy value with the confidence

level of 95 %. This DE shall be present if
the data is available at the originating

user.
G Vertical Acceleration Vertical Acceleration of the originating

user in the center of the mass of the
empty vehicle. This DE shall be present
if the data is available at the originating

user.
G Performance Class The DE performanceClass characterizes

the maximum age of the CAM data
elements with regard to the

generationDeltaTime
G CenDRSCTollingZone
G Yaw Rate This DF includes:

• yawRateValue denotes the vehicle
rotation around the center of mass
of the empty vehicle. The leading
sign denotes the direction of rota-
tion. The value is negative if the mo-
tion is clockwise when viewing from
the top.

• yawRateConfidence denotes the ac-
curacy for the 95 % confidence
level for the measured yawRate-
Value. Otherwise, the value of
yawRateConfidence shall be set to
unavailable.

G Vehicle Role The role of the vehicle user that
originates the CAM. The setting rules for

this value are out of the scope of the
present document.

G Vehicle Light Status of the most important exterior
light switches of the vehicle user that

originates the CAM.
G Path History This DF represents the vehicle’s recent

movement over some past time and/or
distance. It consists of a list of path

points, each represented as DF
PathPoint. The list of path points may

consist of up to 23 elements.
High Frequency Container
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Special Container This container must be filled with another container according
to the type of special vehicle and its characteristics we want to describe (e.g. if it is
a police car, it is communicated whether the car is on an emergency status or not).
This part is not considered relevant to our study and so it is not described in detail.

7.1.4 Cooperative Perception Message (CPM)
The main goal of a Cooperative Perception (CP) basis service is to share with
others road users the environment perceived by a vehicle with its own sensors. The
perceived environment representation can be refined, fused, processed and classified
before the broadcast. Final results are stored into CP objects and broadcast to other
road users. Moreover, some quality indexes can be added to perceived objects, in
order to quantify the information reliability and consistency.
A CP object contains an aggregated and interpreted abstract information per-

ceived by sensors about other road participants and obstacles. Typically objects are
represented in a mathematical formalism i.e. a set of variables describing character-
istics as their dynamics, their geometry and several other aspects.
In this part, we are also interested in analyzing which information is relevant to

exchange perception between several road users. In particular, we focus our attention
to safety-critical use-cases and we investigate the required level of information to
proficiently ensure safety. Obviously, a trade off between detailed information and
payload size of the message exists. Such constraint implies that we must investigate
the essential information to be shared among road users in order to both provide a
compact and complete environment representation and to avoid sending redundant
information.
Finally, the object representation is sent to other surrounding vehicles exploiting

the V2X communication. With this new received knowledge, other users can enhance
their environment representation and complete their knowledge of the ongoing road
scenario with information that is not directly accessible.
Some examples where this service can improve the performance are the filling of

blind spots and cluttered environments. In our specific case, we exploit a remote
intelligent infrastructure to provide the autonomous vehicle additional sources of
information via I2V communication. For this reason, in the following part, we
investigate the contents of a CPM message to select information that is necessary
to broadcast to ensure safe navigation in a roundabout.

7.1.4.1 Cooperative Perception versus Cooperative Awareness

Cooperative Perception is the concept of sharing perceived environment of a road
user to others. This perception is based on information obtained from sensors. The
main difference between cooperative perception (CP) and the cooperative awareness
(CA) is that, in the first case, the broadcast information is about the vehicle current
environment, rather than about the vehicle current status. However, it is mandatory
to include in a CP basic service information about the sending vehicle in order to
reference the perceived objects in other vehicles frames.

7.1.4.2 Messages Transmission and Generation

The road user is supposed to send a CPM whenever it detects an object with a
sufficient level of confidence. It is possible to not send a detected object because
the confidence level on the detection is low. However, even if the object is rejected,

164



7 Appendices

the user should send a CPM (at least empty, if no objects are reputed to have good
confidence) at minimum sending frequency. The empty container must have inside
it the information about the sending vehicle. This can help other road users in
knowing the following things:

• A road user is present on the scenario

• A potential additional source of information is present on the scenario

Transmission rate of a CPM is computed according to the following criterion:

• Broadcast information should be as detailed as possible and provided as fre-
quently as possible

• The utilization of the channel should be minimized

According to this, the CP basic services define the limits of the interval between two
consecutive CPMs (and the corresponding sending frequencies) as follows:

• TgenCpm > TgenCpmMin, with TgenCpmMin = 200 ms (CPM generation rate of 5
Hz)

• TgenCpm < TgenCpmMax, with TgenCpmMax = 1000 ms(CPM generation rate of 1
Hz)

A CPM message needs to be generated when:

• A new object is detected

• A change in position of a previously declared static object is detected

• A change in velocity or position of a previously declared dynamic object is
detected.

7.1.4.3 Object Confidence

Transmitted data should be as close as possible to the original data. In such situ-
ation, one idea could be to send directly sensors raw data. This has the advantage
that no information loss occurs. In facts, perceived information is transmitted in its
raw data form without introducing any kind of treatment on data. However, it is
not possible to send directly raw data because it is not feasible in terms of channel
load and there is no guaranty that the receiving user has the necessary means to
process them. For this reason, it is often preferred to send a compact representation
of the perceived environment. If the channel constraints allow it, it is also possible
to attach into the CPM some raw data representation.
In order to fulfill the whole requirements of CPM standard, some processing at

low level is needed. In particular, it is required to send an object and to provide an
index that quantifies the confidence level of the provided information. This has to be
done to provide the receiving user a mean to evaluate the quality of a detected piece
of information. Such confidence needs to be computed in a way that it can have the
same meaning for every user that has access to the shared object. However, there
exist some cases in the literature where this value depends on the particular method
that has been used to compute it. Confidence needs to be computed considering
coherency with previously sent CAMs. This can help in tracking object and in
associating the new detection to the previously existing ones.
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Figure 7.5: General structure of a CPM message. Figure courtesy of [1]

7.1.4.4 Objects Localization and HD Maps

CPM deals only with objects that move or have the ability to move. This assumption
correspond to driving scenarios. This imposes that objects must be located on the
driving lanes or pedestrian walks. If a map-based representation of the driving
environment is available, it can be useful to have map matching procedure to localize
objects on the scene at lane-level. Such phase has to be included into the CPM
pre-processing part. Moreover, the map matching results should be sent to other
users, in order to provide also the vehicle location inside a high-definition (HD) map
and also their occupancy at lane level. However, to exploit such information in a
proficient way, one needs to assume that the HD map is the same for every agent,
which is, in general, not true. In our case, we assume that both the remote intelligent
infrastructure and the autonomous vehicle share the same HD map representation
of the driving environment.

7.1.4.5 CPM Message Format

The CPM format is made of several containers, as the usual structure of ETSI
standard messages. In Figure 7.5, we illustrate the general structure of a CPM
message.
On Figure 7.5, the ID of the sender is contained into the ITS PDU header. As we

did for the CAM before, we need to ensure that every sender (Vehicles and RSU)
has a unique identifier. This time, we also need to specify if the sender is a vehicle
or a road side unit (RSU).
If the sending entity is a vehicle, it is strongly advised to specify into the Origi-

nating Vehicle Container the information about the dynamic of the vehicle (if it is
available). On the other hand, if the message is generated by an RSU, containers
need to provide references to identify the infrastructure on the HD road map. This
is useful to localize information in the correct working frame. In our work, we con-
sider the map frame as the world frame. As a consequence, information perceived
by both the intelligent infrastructure and the autonomous vehicle onboard sensors
is converted into such frame to be taken into account during navigation.

7.1.4.6 CPM Payload Description

As we did previously, we have decided to assign a color to each field of the payload.
Such colors are assigned to fields according to the criteria explained in Table ??.
Colors are assigned to each field in order to specify the importance of every piece
of information in the context of a safety-critical autonomous vehicles navigation
application. Contrary to the scenario taken into account in section 7.1.3.3, we
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consider now a use-case where there is only one AD vehicle in a driving scenario
with only MD vehicles. Direct communication exists only between the infrastructure
and the AD vehicle and, of course, information about other road agents needs to be
estimated by the AD vehicle perception system. Table ?? explains the meaning of
each color.

Importance Field
Name

Description

R Station
Identi-
fier

It allows to identify the source of a certain CAM. It also
permits to distinguish between several sources of information.

Y Station
Type

Tells us if the sending user is a vehicle or an infrastructure
(RSU)

R Reference
position

It provides a position to reference perceived objects relatively
to a global provided position. Detected objects are referenced
into the vehicle’s body frame. Once a CPM is shared, the

receiving user should be capable of converting received data in
their own frames.

R Timestamp A timestamp that indicates the time at which the cam has
been sent by the user. It is important to distinguish between
the sending timestamp of a CAM message and a timestamp

used to date perceived objects.
Management Container Information.
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Importance Field
Name

Description

B Heading Value of the vehicle’s heading w.r.t. to the true north
with a 95% confidence level. This data can help in

knowing the vehicle intentions in terms of trajectory. We
need to clarify the difference between vehicle heading and

vehicle orientation.
R Speed Driving speed of the sending vehicle. This measure should

be provided with a 95% confidence level.
B Vehicle

Orien-
tation

Angle and angle accuracy of the disseminating vehicle
absolute orientation. This value is not equal to the

heading, that is computed considering the speed value.
An accuracy with a confidence level of 95% should be

provided.
R Driving

Direc-
tion

Vehicle driving direction (Forward or Backward)

R Longitudinal
Acceler-
ation

Vehicle longitudinal acceleration of the originating user at
the reference point of the vehicle. Accuracy value with

the confidence level of 95% should be included.
R Lateral

Acceler-
ation

Vehicle lateral acceleration of the originating user at the
reference point of the vehicle. Accuracy value with the

confidence level of 95% should be included.
R Vertical

Acceler-
ation

Vehicle vertical acceleration of the originating user at the
reference point of the vehicle. Accuracy value with the

confidence level of 95% should be included.
R Yaw

Rate
Rotation of the vehicle around its center of mass with its

95% confidence level
R Path The nominal trajectory of a vehicle. In a map-based

approach, Path is represented as an ordered list of
identifiers of the road links.

R Pitch
Angle

Vehicle pitch angle with 95% confidence level.

R Roll
Angle

Vehicle roll angle with 95% confidence level.

R Vehicle
Width

Width of the sending vehicle with 95% confidence level

R Vehicle
Length

Length of the sending vehicle with 95% confidence level

R Vehicle
Height

Height of the sending vehicle with 95% confidence level

R Trailer
Details

Detailson eventual vehicle trails

Originating Vehicle container information

Importance Field Name Description
R Intersection ID Allows to link a CPM perceived from a given intersection

to an existing intersection on the HD road map
Originating RSU Container Information
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Importance Field Name Description
R Sensor ID An identifier of a sensor. This pseudonym is used to

relate sensor measurements to the sensor that perceived
the measurements. A correspondence between the

perceived objects and the corresponding sensor id should
be instantiated.

R Sensor type Type of sensor. (Enumerated value). This field can
indicate information not only from a single sensor, but

also information fused from several sensors.
R Vehicle

Sensor
Specifies if the sensor is mounted on a vehicle, other
characteristics are provided in [tab vehicle sensor]

R Stationary
Sensor

Specifies if the sensor is mounted on a roadside
infrastructure, other characteristics are provided in [tab

infrastructure]
Sensor Information Container

Importance Field
Name

Description

R Ref.
Point Id

Identification of a reference point in the case the sensor is
mounted on the trailer

R Sensor
Position
X offset

Mounting position of the sensor in the x position w.r.t.
the reference point of the vehicle

R Sensor
Position
Y offset

Mounting position of the sensor in the y position w.r.t.
the reference point of the vehicle

R Sensor
Position
Z offset

Mounting position of the sensor in the z position w.r.t.
the reference point of the vehicle

R Range Value of the sensor range
R Horizontal

opening
angle
start

Start of the horizontal opening angle of the sensor w.r.t.
a vehicle body frame. The angle is measured from

Horizontal opening angle start to Horizontal opening
angle end in counter-clockwise direction

R Horizontal
opening
angle
end

End of the horizontal opening angle of the sensor w.r.t. a
vehicle body frame. The angle is measured from

Horizontal opening angle start to Horizontal opening
angle end in counter-clockwise direction

R Vertical
opening
angle
start

Start of the vertical opening angle of the sensor w.r.t. a
vehicle body frame. The angle is measured from

Horizontal opening angle start to Horizontal opening
angle end in counter-clockwise direction

R Vertical
opening
angle
end

End of the vertical opening angle of the sensor w.r.t. a
vehicle body frame. The angle is measured from

Horizontal opening angle start to Horizontal opening
angle end in counter-clockwise direction

Vehicle Sensor Container
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Importance Field
Name

Description

R Sensor
Position
X offset

Mounting position of the sensor in the x position w.r.t.
the reference point of the infrastructure

R Sensor
Position
Y offset

Mounting position of the sensor in the y position w.r.t.
the reference point of the infrastructure

R Sensor
Position
Z offset

Mounting position of the sensor in the z position w.r.t.
the reference point of the infrastructure

R Range Value of the sensor range
R Horizontal

opening
angle
start

Start of the horizontal opening angle of the sensor w.r.t.
the infrastructure body frame. The angle is measured

from Horizontal opening angle start to Horizontal opening
angle end in counter-clockwise direction

R Horizontal
opening
angle
end

End of the horizontal opening angle of the sensor w.r.t.
the infrastructure body frame. The angle is measured

from Horizontal opening angle start to Horizontal opening
angle end in counter-clockwise direction

R Vertical
opening
angle
start

Start of the vertical opening angle of the sensor w.r.t. the
infrastructure body frame. The angle is measured from
Horizontal opening angle start to Horizontal opening

angle end in counter-clockwise direction
R Vertical

opening
angle
end

End of the vertical opening angle of the sensor w.r.t. the
infrastructure body frame. The angle is measured from
Horizontal opening angle start to Horizontal opening

angle end in counter-clockwise direction
Stationary Sensor Container

Importance Field
Name

Description

R Circular Sensor with a circular view. It provides the radius of the
sensor field of view and the center point w.r.t. the vehicle

body frame
R Polygon This can be used to provide a detection polygonal area.

This area can be associate to one sensor or considered as
the union of several sensors characteristics. In the latter
case, the sensor type should be set to “fusion”. The field
PolyPoint provides the geometry of this detection area

R Ellipse This field can be used to provide a description of an
elliptic detection area. The required information is only
the geometry of the ellipse and its orientation in the

frame of the infrastructure.
R Rectangle This field can be used to provide a description of a

rectangular detection area. The required information is
only the geometry of the rectangle and its orientation in

the frame of the infrastructure.
Detecting characteristics of a sensor
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Importance Field
Name

Description

R Object
ID

Identifier of the detected object. This id is unique for
every object from the same user. This id should help in
identifying different objects. Before labeling with this id,
detected objects should be refined via data fusion and

tracking procedures in order to have a consistent
estimation of objects motion. It is recommended to use
the same id for the same objects in subsequent CPMs to

facilitate the association.
R Sensor

ID
Id of the sensor that detected the perceived object

R Time of
Mea-
sure-
ment

A timestamp that states the exact time at which the
measurements from the detected object have been taken.
This must not be confused with the message timestamp.
It is possible to express this time relatively to the message
timestamp. Information for synchronization should be

provided.
R Object

Age
Provides the age of the detected object. In order to have
this field, several data association procedures need to be
taken into account before sending the perceived objects

R Object
Confi-
dence

The confidence associated to an object. This confidence
should be computed in a way that it is equal for every

user, i.e. every road entity can have the same information
from this value. Objects with confidence under a certain

threshold value should not be sent.
R X, Y, Z

Dis-
tances

Absolute distance from the detected object to the user
reference point in the three coordinates x, y, z at the time

of measurement. This distance is expressed in the
detecting user reference frame. A confidence level of 95%

should be provided.
R X, Y, Z

Speed
Relative speed of the detected object from the user
reference point in x, y, z directions at the time of

measurement. This parameter should be estimated as
well as possible in order to track the object. A confidence

level of 95% should be provided.
B X, Y, Z

Acceler-
ation

Relative acceleration of the detected object from the user
reference point in the x, y, z directions at the time of the

measurement. A confidence level of 95% should be
provided.

B Yaw
angle

Relative yaw angle of object from the user reference
point. This angle is computed w.r.t. the x direction of the

detecting user body frame. A confidence level of 95%
should be provided.
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B Object
Bound-
ing
Box

A bounding box representing the detected object. This
object can be modeled as a parallelepiped, with the 3
dimensions Length, Width and Height. Some different

and more detailed shapes of the road entity as a mesh or
a surface estimation can be considered to be included in
this field. We also need to associate a level of uncertainty
relative to these 3 measures, in order to quantify risks in

estimation of the detected user boundaries.
B Object

refer-
ence
point

The reference point relative to the perceived object.
Provided measurements are computed w.r.t. this point.

B Object
dy-

namic
status

Classification of a perceived object towards the capability
to move. Three status are possible:Dynamic Has been

dynamic Static

R Classification Provides the classification of an object in several
pre-defined categories.

Perceived Object Container

7.1.4.7 CPM Reference Position

For vehicles, we consider the reference position (i.e. the origin of the vehicle body
frame) as the center of the front side (i.e the width) of the bounding box of the
vehicle, according to the CPM standards. However, there exists several models in
literature that consider the origin of the vehicle body frame placed on the middle
of the rear wheels axis. Other implementations also suggest also putting it on the
middle of the back side of the vehicle bounding box. It is mandatory to define a
unique standard for this field. If this is not possible, transformations to pass from
the alternative vehicle body frame to the standard one must be provided.
If the user is a RSU, the origin of the local frame should be defined as a point of

the infrastructure (e.g. the point in which a camera is mounted).

7.1.4.8 Sensor Mounting Specifications

In Figure 7.8, we can see an example of the sensors parameters that can be described
in the Sensor Information container.

7.1.4.9 Sensors Field of View Description

It is possible to describe the field of view of a sensor according to its characteristics.
It is also possible to fuse several fields of view obtaining a polygon describing a more
complex covering zone.

172



7 Appendices

Figure 7.6: Different standards for the body frame.

(a) (b)

Figure 7.7: Sensors mounted on a vehicle and on an intelligent infrastructure with param-
eters description.
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Figure 7.8: Illustration of the different sensors fields of view encoded in CPM.

7.2 Enhanced Perception Datasets for Autonomous
Driving

In this part the setup and configuration adopted to record the experimental dataset
are described.

7.2.1 System Setup and Sensors
The dataset has been recorded via a fleet of three Zoe, each one equipped with pro-
prioceptive and exteroceptive on board sensors; a truck mounting a precise local-
ization system giving its ground truth position and an infrastructure with a camera
providing additional knowledge on road environment.
The localization sensors are:

• NovAtel SPAN-CPT: It provides a centimeter level of precision by the use of
a fixed antenna providing RTK corrections. It is mounted on all the fleet of
road vehicles.

• Ublox 8T: It provides a precision of the order of a meter. It is mounted on the
three Zoe.

• Septentrio Aste-RX SB: It provides a precision of the order of a meter but a
better quality in the acquired measurements. It is mounted on the three Zoe.

Obstacles and road agents detection is provided by:

• Velodyne VLP32-C: A LiDAR sensor representing the environment surround-
ing the vehicle on which it is mounted in terms of a dense point cloud. It is
mounted on the three Zoe.

The infrastructure is composed by a monocular camera. The acquired images are
processed to identify and classify the road obstacles via a neural network based
object detector algorithm.
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Span

Velodyne

Velodyne Span

Figure 7.9: Sensors reference frames position

7.2.2 HD Map
In this work a precise driving environment representation is provided. Such a repre-
sentation is encoded into a high definition (HD) map containing relevant information
regarding road geometry and lane level topology. The map results having a centime-
ter level of precision, which gives a precise information about the position of roads
and road elements in every scenario. In particular, road environment is represented
by:

• Centerlane_polyline: it is an oriented polyline used to represent the middle
of each lane. The driving direction is from the first to the last point of the
polyline. Each of them has a unique ID, a list of points which represent the
road geometry and the width of the lane.

• Laneborder_polyline: it is a polyline used to represent the left and right
borders of each lane. Notice that a road can have several lanes and a couple
of laneborder_polyline for each of them. Each object present a unique ID and
a set of points representing its geometry.

• Road_element: This object represents all the relevant road entities being
present in the driving environment. In particular, objects as pedestrian cross-
ings, parking spots and speed bumpers are encoded as polygons and their
corresponding occupancy can be retrieved in the Geometry attribute.

• Road_sign: In this object, the position and type of road signs are encoded.
Each of them presents a unique ID, a type and a point representing its position.

The information about each of the objects is contained into a .csv file with
the same name of the referenced object and the same properties explained be-
fore. Furthermore, to read handle and visualize the contents of each .csv file, the
script display_map.py is provided. In this script, contents from each .csv file are
read and stored in a dictionary data structure. If the reader is interested in im-
porting map information into a ROS environment, it is necessary to compile in
a ROS workspace the package “map_visualization”. After that, it has to launch
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Sensor x y z
Velodyne 1.736 0.128 1.296
Span 0.023 -0.005 1.296
Ldmrs 3.377 0.000 0.075

Laser: lms -0.807 0.000 0.160
GPS ant 1.360 -0.003 1.300
Mobileye 2.060 0.000 0.860
Dashcam 2.220 0.300 0.860

Table 7.3: White Zoe sensors positioning w.r.t. fixed base reference frame

Sensor x y z
Velodyne 1.736 0.128 1.296
Span 0.023 -0.005 1.296
Ldmrs 3.377 0.000 0.075

Laser: lms -0.807 0.000 0.160
GPS ant 1.360 -0.003 1.300
Mobileye 2.060 0.000 0.860
Dashcam 2.220 0.300 0.860

Table 7.4: Grey Zoe sensors positioning w.r.t. fixed base reference frame

the “map_visualization” node and subscribe to the topics “/Centerlane_polylines”,
“/Laneborder_polylines”, “/Road_elements” and “/Road_signs” to retrieve infor-
mation about the corresponding quantities.

7.2.3 Reference Frames
All the sensors reference frames are depicted in Figure 7.9, the sensors disposition
is the same for all the fleet. Relatives distances between sensors are represented in
Tables 7.3, 7.4, 7.5, one for each vehicle of the fleet. Only the sensor mounted on the
specific vehicle are shown. Sensors distances are written w.r.t. base reference frame,
the x dimension increases along the vehicle, the y dimension increases through its
left.

7.2.4 Dataset Organization
7.2.4.1 Architecture

To facilitate the use of the dataset, the general architecture and the main blocks
composing it are described in detail. First, the dataset is mainly divided in scenar-

Sensor x y z
Velodyne 1.736 0.128 1.296
Span 0.023 -0.005 1.296
Ldmrs 3.377 0.000 0.075

Laser: lms -0.807 0.000 0.160
GPS ant 1.360 -0.003 1.300
Mobileye 2.060 0.000 0.860
Dashcam 2.220 0.300 0.860

Table 7.5: Blue Zoe sensors positioning w.r.t. fixed base reference frame

176



7 Appendices

ios. Each scenario represents a group of recordings over a fixed time horizon. In
particular, all the recordings that have been grouped in the same scenario deal with
the same driving situation (e.g. roundabout crossing, platoon navigation etc...).
Scenarios have been chosen to capture driving situations or maneuvers that can be
improved or optimized exploiting V2V and/or I2V-V2I communication.
For every scenario, several instances containing data recordings about the corre-

sponding driving situation are provided. Each instance is different w.r.t. the others
because the distribution of traffic participants and the scenario configuration may
change. For instance, several recordings of the same use-case with different traffic
density and different weather conditions are given. This configuration allows a user
to have a wide set of instances of the same scenario to be used as a test bench for
user-implemented algorithms.

7.2.4.2 Data Layers

One of the main advantages of this dataset is that information about data can
be found at different abstraction levels. In other words, different representations
are provided for a specific group of data. This is particularly useful for sensors
data. The raw data can be interesting for users that want to manipulate data at
the sensor-level. For users that want to exploit the final output of sensor data
(e.g. the bounding boxes of a detection algorithm), they do not have to implement
themselves the whole pipeline to obtain, from sensor-level data, the final output.
In this dataset, both the raw-data and the final treatment, corresponding to the
application of a certain processing method on the raw data, are provided for many
sensors. This choice is motivated by the fact that in the case of V2V and V2I-I2V,
it is often preferred to exchange data between communicating traffic participants
in a compact object-like representation instead of raw data. This concept can be
observed in the main definitions of V2V, V2I-I2V messages (e.g. CAM, DENM and
CPM).
Finally, it has to be underlined that for the non raw-data layers, the output has

been obtained considering some state-of-the-art algorithms that the authors found
in the existing literature e.g. YOLO [45]. One consequence is that the treatment
output depends on the particular algorithm used to compute it. Moreover, each
algorithm may have some weaknesses that are necessarily included in the provided
layer. For the sake of completeness, the authors provide references as [45] and [?]
about the used algorithms in each non raw-data layer.

7.2.4.3 Data Format

The main format that is used as a container for the data is the Rosbag format. This
format has several advantages: first, it is compatible with the widely used middle-
ware ROS. This allows to exchange messages simulating real-time communication
that mimic the real Vehicle-to-vehicle and Vehicle-to-Infrastructure iteration. More-
over Rosbags can be easily replayed in order to simulate data and their real time
acquisition from the sensor or the subsequent reception from the suited algorithm
processing them.

7.2.5 Scenarios
An overview and a brief description of the scenarios available in the dataset is
provided. Each scenario has been recorded from real driving situations.
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Figure 7.10: A representation of the Roundabout Crossing scenario. The three Zoe are
depicted respectively in white (1), grey (2) and blue (3), while other traffic
participants are depicted in black. Also the intelligent infrastructure (4) is
represented.

7.2.5.1 Roundabout Crossing

The aim of this scenario is to re-create the navigation of an autonomous driving
(AD) vehicle through a roundabout. In particular, the focus is in how the V2V-I2V
can improve the on-board AD vehicle perception by extending its field of view to
achieve the navigation task. In the presented case, the white Zoe has been used
as an autonomous vehicle, while the other vehicles (gray and blue ones) as other
traffic participants communicating with it. Furthermore, the information from the
intelligent infrastructure is obtained from of a remote camera pointing towards the
roundabout.
This configuration has several advantages. First, the exact position and speed

(with low uncertainty) of every Zoe is precisely known.
Then, not only V2V perception, communicated from other traffic participants,

can be exploited, but also information provided by the intelligent infrastructure by
I2V communication. Figure 7.10 illustrates this use-case.

7.2.5.2 Navigation with FOV Partially Occulted

In this scenario, the benefits of V2V and I2V communication to extend the field
of view of an AD vehicle driving behind a truck are exploited. A vehicle platoon
composed by a truck between two Zoe is considered as depicted in Figure 7.11. In
such a case, the field of view of the white vehicle is limited by the presence of the
truck. However, thanks to V2V communication, the first Zoe can send information
about its perceived environment back to the white one. A wide set of this information
is complementary w.r.t. the one of the white Zoe because of the absence of any
obstacle in the blue Zoe field of view. Furthermore, when the platooning is driving
in proximity of the intelligent infrastructure, the knowledge of the AD vehicle is
enhanced by the camera perception. This allows the AD vehicle to have a full
comprehension of the surrounding environment even if mostly covered by the vehicle
in front.

7.2.5.3 Roundabout Insertion with FOV Partially Occulted

This scenario is provided to study the benefits of V2V and I2V communication in
the case of a hazardous driving maneuver. As it can be seen in Figure 7.12, the
white Zoe and the van are performing a roundabout insertion maneuver at the same
time on different parallel lanes of the same road. In this situation, the FOV of the
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Figure 7.11: A platooning scenario where the view of the vehicle behind the truck (1-white
Zoe) is partially reduced (FoV in light blue, occulted part in grey). In such
case, V2V information transmitted backward by the blue Zoe (3) along with
I2V communication (4-camera) can help the white Zoe to see through the
truck.

Figure 7.12: An hazardous roundabout insertion maneuver with the field of view in light
blue of the white Zoe (1) partially occulted by the presence of a van (occlusion
in grey).

white Zoe is partially occluded by the van. Even the AD vehicle cannot directly
perceive vehicles in the roundabout it waits at the sign if the insertion cannot be
safely performed. On the contrary if the insertion can be executed without risks
the AD continues its movement even if its field of view is occluded during the whole
maneuver.
The main issue in this maneuver is the lack of information in the roundabout and

a better knowledge of the occulted zones can be obtained by exchanging perception
with other vehicles having an on-board perception system.

7.2.5.4 Hidden Pedestrian Road Crossing

This scenario is presented in order to show the benefits of shared perception in
terms of different points of view of the same scene. As described in Figure 7.13
the field of view of the white Zoe, being the AD vehicle, is partially covered by
a van on the right lane of the same road, hiding a pedestrian crossing the street.
The information exchange between the communicating vehicles and between the
AD vehicle and the smart infrastructure allows the intelligent one to stop before the
pedestrian crossing even if it is not capable of directly detecting the pedestrian. It
can be seen how collaborative perception, providing different fields of view of the
scene, increases situational awareness and allows to have a better comprehension of
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Figure 7.13: A dangerous road crossing of a pedestrian in red (5) with the field of view
depicted in light blue of the white Zoe (l1) partially occulted by the presence
of a van (occlusion in grey).

Figure 7.14: An example of intersection crossing exploited in normal navigation. The
three Zoe are depicted in white (1), grey (2) and blue (3) while the other
vehicles in black. V2V communication is performed among the vehicles of
the fleet.
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(a) Orthogonal projection
for a point M between
the segment Lk .

M
M'

(b) Distance of point M
during the transition
between Lk−1 and Lk.

M

H1
H2

(c) A jump appears for
point M when it crosses
the bisecting line at
point p(0)

k .

Figure 7.15: A Polyline map-matching with a point-to-segment distance.

the environment. Consequently, because what cannot be directly seen is perceived
anyway, filling the AD vehicle lack of information, the safety of the autonomous
navigation is increased.

7.2.5.5 Navigation

This scenario has been realized to provide the best possible scenario not based on
a particular situation. In this scenario the whole fleet composed by the three Zoe
is used to perform normal navigation. Different scenarios such as roundabouts or
intersections are traversed as long as urban or suburban environments and road
previewing different maximum speeds. When a vehicle meets the other, the infor-
mation exchange takes place enhancing their respective fields of views and providing
different fields of view of the scene. When a vehicle of the fleet enters in the intel-
ligent infrastructure field of action, the shared perception is performed. A possible
example of such navigation and interaction is depicted in Figure 7.14.
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7.3 Road Centerlane Representation Models
In this appendix, the different methods presented in Chapter 2 to model the road
centerlane are presented, highlighting the technical details and the implementation
choice that we used throughout the manuscript.

7.3.1 Polyline Model
The main idea of this approach is to connect two consecutive points p(i)

k and p(i+1)
k

with an oriented segment. Such process is repeated for every couple of subsequent
points of the map. To compute curvilinear coordinates with this new map represen-
tation, the map-matching is performed by searching the smallest distance among all
the distances from point M to each segment of the polylines. To compute curvilin-
ear coordinates with this new map representation, the map-matching is performed
by searching the smallest distance among all the distances from point M to each
segment of the polylines. However, in the case of a complex road networks, it is pos-
sible that sometimes there are more than one candidate points for map-matching
the pointM . In such cases, this basic map-matching procedure has to be robustified
using heading information or allowing multiple hypothesis for the matching in case
of ambiguity.
The computation of the distance from a point to a segment is illustrated in Figure

7.15. When the point M is between the orthogonal line of the starting point of the
segment Lk and the orthogonal line of the end point of Lk, the obtained distance is
the orthogonal distance and the map-matching procedure is straightforward. Such
case is illustrated in Figure 7.15a.
On the other hand, when the point is in the zone between the orthogonal line of

the end point of the previous segment Lk−1 and the orthogonal line of the starting
point, the distance is always computed from point M to point p(mk−1)

k−1 . Notice that
the point p(mk−1)

k−1 is the same as p(0)
k as illustrated in Figure 7.15b. Moreover, one

can also observe that point H obtained with the map-matching result is either
the orthogonal projection in Figure 7.15a or the starting point pi in Figure 7.15b,
depending on the position of point M .
This point is used to compute the curvilinear abscissa, summing the lengths of

each segment from the first one of the road link to the map-matched one as we said
in section 2.3.1. The curvilinear ordinate is obtained as the signed lateral distance
computed during the map-matching step and ψ the curvilinear orientation is the
difference between the orientation in the world frame and the orientation obtained
from the map-matched segment.
However, one can see that in the case as the one depicted in Figure 7.15b, the

transformation from Cartesian coordinates to curvilinear coordinates and vice versa
is not bijective.
This comes from the fact that situations where discontinuities and stationary

points may arise because, in general, polylines are not differentiable at their junctions
points. This implies that the discontinuity of the tangent in such points leads to
discontinuity issues near these conjoining points. If we observe carefully the case
shown in Figure 7.15b, we can see that the value of the curvilinear abscissa remains
the same for every point M that lies in the zone between the lines Lk−1 and Lk.
This happens because if we use map-matching on this points, the projection always
corresponds to the projected point M ′. On the other hand, Figure 7.15c depicts a
case where two projections can appear at the same time during map-matching. This

182



7 Appendices
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Figure 7.16: Map-matching process for a point M w.r.t. a spline C defined by the vector
of polynomial p(t).

depends on where pointM lies with respect to the bisecting line. In other words, we
can observe that, once the bisecting line is crossed, a jump appears in the curvilinear
abscissa value, i.e. a discontinuity appears. The same behavior can be also seen in
the case of the curvilinear orientation, because such quantity is computed w.r.t. to
the segment.

7.3.2 Spline Model
One way to remove the discontinuity problem discussed in the previous part is to
use a different curve representation instead of a polyline-based one. In particu-
lar, we consider a polynomial representation obtained by fitting the set of points{
p

(i)
k = [xi, yi]T

}
. The goal is to obtain a smoother curve than polylines and to

eliminate discontinuities at polyline vertex. To do so, each segment is replaced by
vectors of two polynomial functions representing a curve to obtain at least a C1

continuity. In this work, we consider only polynomials up to the 3rd degree, which
correspond to cubic splines.
The spline curve can be defined as follows:{

pi(t) =
(
pi,x(t)
pi,y(t)

)
, i ∈ {0, ..., n} , t ∈ [0; 1]

}
, (7.1)

where pi,x(t) and pi,y(t) represent two polynomials curves parameterized by t. Every
point of the curve corresponds to a value of the vector pi(t). Considering this
representation, and exploiting the continuity of the curve, the tangent at point pi(t)
is equal to the first derivative p′i(t), while the curvature is equal to the second order
derivative p′′i (t).
In order to find the closest point of the spline from pointM = [x, y]T , a polynomial

equation needs to be solved. In particular, all the minimum and maximum points
can be found when the condition (M − pi(t))⊥p′i(t) is met. In other words, this
leads to the resolution of the following equation:

(M − pi(t)) .p′i(t) = 0. (7.2)
However, this equation has no closed form solution in the general case. To obtain
the result faster, we first start by searching the closest vector of polynomials corre-
sponding to an index imin. In such a way, we only have to find the roots for this
single index. To find this index imin, the distance between M and every joint point
pi = pi(0) has to be computed. When the minimal distance is found for an index
i, the index is imin = i if the projection of M in the tangent at the joint point
p′i = p′i(0) is positive and imin = i− 1 otherwise.
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To better achieve this task, the dot product is performed between polynomial of
3rd degree vector M − pi(t), and the polynomial of 2nd degree vector p′i(t). This
leads to a vector of polynomials of degree 5. As we previously said, there exists no
general closed-form solution to find the roots of a polynomial of degree 5. However,
numerical approaches exist to solve this problem. In our problem, we do not consider
neither complex roots nor the solutions not contained in the [0, 1] interval. Finally,
we select at the end the parameter tmin in a way that the quantity ‖M − pimin(tmin)‖
is the smallest distance between the point M and the curve C. This distance will
also be considered as the curvilinear ordinate n. A minus sign is added if the point
M is on the right side of the tangent p′imin(tmin).
To compute the curvilinear abscissa length s, we need to integrate the quantity∥∥∥p′imin(t)

∥∥∥ according to the following formula:

s =
∫ tmin

0

∥∥∥p′imin(t)
∥∥∥ dt+

imin−1∑
j=0

(∫ 1

0

∥∥∥p′j(t)∥∥∥ dt) . (7.3)

Equation 7.3 has no closed-form solution, because computing the norm of a 2nd
degree polynomial leads to compute the square root of a 4th degree polynomial. As
we previously pointed out, only an approximated solution can be obtained in this
case. In order to make the computation faster, one can compute in advance the arc
length associated to each pj. Doing this, only the first term of Equation (7.3) needs
to be computed on-the-fly.
On the other hand, if one wants to find the Cartesian pose that corresponds to a

given curvilinear pose, the inverse of Equation (7.3) needs to be solved. This means
that one needs to compute the correct value of tmin given the curvilinear abscissa s.
Again, numerical approaches need to be used to solve this problem. An alternative
solution could be to approximate the inverse and the arc-length by a polynomial or
another function [94].
In order to compare different possible behaviors, two different cubic splines are

studied in this section. The first is the B-Spline, which consists in an approximation
of the map which gives a smooth trajectory to follow. The latter is Hermite spline,
which is constructed with an interpolation of the map. For this reason, it provides
a better representation of the map. However, this last spline model is nevertheless
less comfortable if the control points are not well positioned.

7.3.2.1 B-Spline Model

A B-Spline is an approximation of the path which is not passing through the points
of the path {pi, i ∈ {1, ..., n}}. One can compute the polynomials of a B-Spline as
follows [15]:

(
pi,x(t)
pi,y(t)

)
=

(
pi−1 pi pi+1 pi+2

)
· · · (7.4)

×1
6


−1 3 −3 1
3 −6 0 4
−3 3 3 1
1 0 0 0



t3

t2

t
1

 .
The advantages of using an approximation is to have a smoother curve more com-
fortable for control. However, this approximation can be problematic in some cases,
e.g., the spline may cut through the corner at T-junctions.
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M

H

Figure 7.17: Lanelet map-matching of point M on a polyline segment.

7.3.2.2 Hermite Spline Model

In the case where one needs a curve going through all the points of the polyline, an
interpolation can be used instead. This can be done using a Hermite spline with
polynomials defined as follows [54]:

(
pi,x(t)
pi,y(t)

)
=

(
pi ti pi+1 ti+1

)
· · · (7.5)

×


2 −3 0 1
1 −2 1 0
−2 3 0 0
1 −1 0 0



t3

t2

t
1

 ,

where {ti, i ∈ {1, ..., n}} are the tangents of these control points. They can be
computed as ti = (pi+1 − pi−1) /2 .

7.3.3 Lanelet Model
Another strategy to overcome the problem of discontinuities in the neighborhood of
the junction points is to use a map-matching algorithm based on a non-Euclidean
metric as shown in Figure 7.17. This leads to the computation of a new frame, called
lanelet frame [11], where the matched point on the polyline segment is obtained as
a convex combination of the starting and ending points of the given segment, and
not with a straightforward point-to-line distance, as in the previous case. The main
idea of this technique is to define the normal and tangent vectors to a discrete curve,
in our case a polyline-based one. In this case, such vectors are identified as nλ and
tλ, and they constitute the abscissa and ordinate axis of the lanelet frame. The
matching point w.r.t. a given link segment can be computed as follows:

pλ = λp
(i)
k + (1− λ)p(i+1)

k . (7.6)

where 0 ≤ λ ≤ 1. In order to obtain an orthogonal reference frame, we add the
constraint that nλ and tλ, that are respectively the tangent and normal vectors to
the curve in pλ (i.e. the abscissa and the ordinate axis in the new frame), must be
orthogonal, i.e. nλ · tλ = 0. From this constraint, one can compute λ as follows:

λ = x+ y ·mtk
`− y(mtk −mtk+1) , (7.7)
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where mtk are the ordinates of the tangent vectors at points p(i)
k in the form tk =

(1,mtk) and tk+1 = (1,mtk+1) computed in the local frame of the kth segment of
the link and ` is the length of the polyline segment. Once the origin of the frame
pλ has been computed, we compute the new frame abscissa axis called tλ again as a
convex combination of two vectors called respectively tk and tk+1 which have been
previously computed for every polyline segment:

tλ = λtk + (1− λ)tk+1. (7.8)

Finally, we compute the normal vector nλ, orthogonal to tλ, as nλ = M − pλ.
After that, one can obtain the distance from point M to the kth polyline segment
considering the value of ||nλ|| as a thresholding criterion for choosing the polyline
segment that better fits the matching.
It can be shown that with this method there are no discontinuities at the polylines

junction points. As for the polyline method, this technique produces also a partition
of the space, i.e., a set of regions in which all the points are matched to a certain
polyline segment. Such region are determined by computing the normal vector for
every tangent vector in every junction point of the structure and using them as a
boundaries.
However, the aforementioned statement holds under the constraint that the point

M that needs to be matched is close enough to the polyline segments. Otherwise, it
might happen that some segments will be skipped during the matching step, leading
again to discontinuities in the curvilinear abscissa.
The conversion from Cartesian coordinates to curvilinear ones and vice versa is

straightforward in this context. Once the index k of the matched polyline segment
is known, we compute the curvilinear abscissa as follows:

s =
k−1∑
j=1

`j + λ`k (7.9)

where `j is the length of the jth polyline segment. Regarding the value of n, we
compute it by considering the second component of the vector nλ in the lanelet
frame. In fact, this quantity corresponds to the lenght of the ordinate axis of such
a frame.
On the other hand, if one want to convert a curvilinear pose [s, n, ψ] back to the

Cartesian coordinates, the corresponding λ is computed as follows:

λ =
s−∑k−1

j=1 `j

`k
, (7.10)

where the index k that indicates the kth segment is found by subtracting iteratively
from s the length of the jth segment of the polyline, until it becomes negative or
null.
Given λ and the index k of the matching polyline, it is easy to compute again Hλ

and tλ and, with the knowledge of tλ, it is possible now to compute the coordinates

of the matched point in the local frame asMl = R ·tλ/||tλ|| ·n, where R =
[

0 −1
1 0

]
is the rotation matrix computed for a rotation angle of π

2 . After this computation,
the point Ml is transformed in the world frame. It is important to underline that
once the criterion for matching the polylines is fixed, this method is bijective and
easy to compute.
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