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Abstract

Stochastic and point processes are often used to model networks of spiking neurons. However, the
number of neurons, even in a small mammal brain, is at least a few millions. There is therefore
a strong need for efficient simulation algorithms. Nevertheless, traditional algorithms for point
process simulation cannot simulate such large networks within a reasonable time and memory
constraints.

In this thesis, we introduce new simulation algorithms for large networks of point and stochastic
processes. By using the time asynchrony of point processes, and discrete-event techniques from
computer science, we managed to reduce the time complexity of the simulation algorithm from
O(𝑀2 log𝑀) to O(𝑀 log𝑀), where 𝑀 is the size of the network. The algorithm was successfully
applied to reduce the execution time of large networks of Ornstein-Uhlenbeck processes and
Hawkes processes.

The new algorithm also displays a reduced memory complexity, from O(𝑀2) to O(𝑀). How-
ever, the data structures for storing the connectivity matrices usually have a O(𝑀2) memory
complexity. We proposed a new data structure for storing the connectivity matrix, based on
its partial reconstruction when the simulation software needs access to one of the connections.
This procedural connectivity is ensured by storing the internal state of a pseudo-random number
generator, used to create the random connection matrix, instead of the connection matrix.

With such a small imprint, our algorithm is able to simulate a network composed of millions
of Hawkes processes within minutes, on a single core laptop computer, paving the way for easier
study of brain-sized structures, and in particular functional connectivity inference.

Keywords: stochastic simulation, exact simulation, large-scale simulation, point process, stochas-
tic process, marked Hawkes process, Ornstein-Uhlenbeck process, discrete-event, spiking neurons,
procedural connectivity, DEVS
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Résumé

Les processus stochastiques et ponctuels sont souvent utilisés pour modéliser les réseaux de
neurones à impulsions. Cependant, le nombre de neurones, même dans le cerveau d’un petit
mammifère, est d’aumoins quelquesmillions. Il y a donc un fort besoin d’algorithmes et de logiciels
de simulation efficaces. Néanmoins, les algorithmes traditionnels de simulation de processus
ponctuels ne peuvent pas simuler de si grands réseaux dans un temps et avec des contraintes de
mémoire raisonnables.

Dans cette thèse, nous introduisons de nouveaux algorithmes de simulation pour les grands
réseaux de processus ponctuels et stochastiques. En utilisant l’asynchronisme temporel des pro-
cessus ponctuels et des techniques issues du monde de la simulation à événements discrets, nous
avons réussi à réduire la complexité temporelle de l’algorithme de simulation de O(𝑀2 log𝑀) à
O(𝑀 log𝑀), où 𝑀 est la taille du réseau. L’algorithme a été appliqué avec succès pour réduire
le temps d’exécution de grands réseaux de processus d’Ornstein-Uhlenbeck et de processus de
Hawkes. Le nouvel algorithme présente également une complexité mémoire réduite, passant de
O(𝑀2) à O(𝑀). Cependant, les structures de données permettant de stocker les matrices de
connectivité ont généralement une complexité mémoire de O(𝑀2). Nous avons proposé une
nouvelle structure de données pour stocker la matrice de connectivité, basée sur la reconstruction
partielle de la matrice de connexion lorsque le logiciel de simulation a besoin d’accéder à l’une des
connexions.

Avec une empreinte aussi faible, notre algorithme est capable de simuler un réseau composé de
millions de processus de Hawkes en quelques minutes, sur un ordinateur portable à un seul cœur,
ce qui ouvre la voie à une étude plus facile des structures cérébrales, et en particulier à l’inférence
de la connectivité fonctionnelle.

Mots clef: simulation stochastique, simulation exacte, simulation à grande échelle, processus
ponctuel, processus stochastiques, processus de Hawkes marqué, processus d’Ornstein-Uhlenbeck,
événement-discret, neurones impulsionels, connectivité procédurale, DEVS
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� Introduction

The human brain is a complex system: a network of hundreds of billions of neurons interacting
by means of self-generated electrochemical currents, called action potential. Neurons can be
viewed as signal processing devices [56, 73] or computing units, in the sense given by [150]: they
aggregate these electrochemical input currents over time and send a response [38, 124] to the
network once a certain threshold is reached. Even though these action potentials can have diverse
and complex shapes ([38, 124]), they are usually abstracted to a single temporal point [59, 83, 91],

as the information they carry is mostly contained in the emission time of the signal.
The mathematical framework which can deal with sporadic information is called point process

theory. The origin of this theory can be traced to the origins of probability theory itself, with life
tables modeling [28]. They are now used in a large variety of fields, such as (but not exhaustively):

• In chemistry, point processes model chemical transformation [41]

• In finance, point processes model market stock price changes [4, 8, 21]

• In geology, point processes model earthquakes and basaltic area distribution [25, 107, 121]

• In physics, point processes model the disintegration time of radioactive atoms [115]

• In demography, point processes model population size changes [68, 121]

• In biology and medicine, point processes model groups of patients [92], epidemic infec-
tions [121, 143], gene regulation [46]

Finally, in neuroscience, point processes can be used to model neuronal current emission [63].

Most applications of point processes seldom use networks of point processes with sizes bigger
than a dozen nodes. In medicine, Mancini [92] uses a marked Hawkes point process composed
of four marks (here groups of patients). In the context of genetics, Hansen [46] uses a marked
point process with up to eight marks (here transcription factors) in the three papers presented
in her thesis. Hawkes point process models in finance typically use less than 10 marks (see for
instance Bacry’s review [4]). Vestergaard simulated a contagion process with up to 1000 nodes
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1 Introduction

in an epidemiological study [143]. However, particle physics and chemistry are also interested in
large scale simulations, see for instance [12].

The research in algorithms for point processes reflects this state of fact and are unable to simulate
very large networks of point processes. This is an issue for creating and validating new models
and methods involving networks of millions or billions of point processes. Such algorithms
could become useful for many applications of point processes, such as crime modeling [121],

epidemiology [121] and, of course, neuroscience [63, 117].

This thesis deals with the improvements of current simulation algorithms for point processes,
with applications to neuroscience where the number of point processes to simulate is large. In this
introduction, we will first precise and disambiguate some vocabulary that have different meanings
across the three fields this thesis is built upon, namely mathematics, computer science and biology.
In a second time, we will present the point process theory in more details, before giving a brief
overview of the biological background. This introductory chapter ends with a review of the
computer science theoretical framework behind the proposed algorithms and implementations.

�.� Vocabulary

Different communities tend to have diverging vocabularies. Scientific communities do not escape
this fate, and transdisciplinary work is doomed to use vocabularies that might be misunderstood,
depending on the discipline on which the reader works. We collect here, at the beginning of the
introduction for easiness of retrieval, the vocabulary that might be misunderstood whether the
reader adopts the point of view of a mathematician or a computer scientist.

Time asynchrony

In computer science, the term time asynchrony refers to the hypothesis that, in a system composed
of many parts communicating with each other (for instance a network of neurons), only one new
event can happen in the system at any time.

In point process theory, the same hypothesis exists, and a process for which, at any time 𝑡, there
can be only one occurring point is called a simple process. When the conditional intensity exists
for a point process, this hypothesis is automatically verified by construction. The expression time
asynchrony hypothesis is used, for instance in chapters 3 and 4 instead of simple process.

Event

An event is “something” that can happen. In probability theory, an event is a set to which a
probability measure can be assigned [13].
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1.2 Mathematical background

𝑡
0 1

Figure 1.1: A graphical illustration of the realization of a point process (here a unit rate Poisson point
process), on the interval [0, 10]. Each triangle represents an occurrence of the point process.

In programming, an event is any action or occurrence that can be recognized by the computer [67,

144], for instance an interruption of the processor by an Input/Output (I/O) interrupt message
from the hard drive or the keyboard.

In discrete event systems, a discrete event is a moment in time assigned to an instantaneous
possible change of state of a system [6, 118, 154].

Process

In mathematics, a process is a function.
In computer science, the term process often refers to an instance of a computer program run

by the operating system (OS). In simulation modelling, a process is a sequence of activities, or a
sequence of events (an activity is what transforms an object, it begins and ends with an event) [6].

For agent-based models, a process is also the other name given to an agent.

�.� Mathematical background

Probability basics

We refer to the appendix A1 of [13] for a reminder of the basics of probability theory.

Point Process

Multiple definitions of point processes have been developed [13, 28, 126]. Given a continuum 𝜒, a
point processN is a random countable subset of points N = {𝑋𝑖}𝑖=1,…,𝑀,𝑀∈𝔻 on the continuum
𝜒. Some examples have been given at the beginning of this introduction and even more can be
found in [138]. From now on we will restrain our analysis to point processes on the set of positive
real numbers 𝜒 = R+ = [0, ∞[ for simplicity, but definitions and some results can be extended to
any continuum, the plane 𝜒 = R+ ×R+ for instance [5]. Point processes on the real line are often
called temporal point processes [120, 138].

Let N be a temporal point process on R+. We call a realization 𝜔 = {𝑡1, …} of the point
process N a countable subset ofR+ that is also a possible outcome of the point process N . The
figure 1.1 is a graphical representation of the realization of a point process, where each triangle
represents a point.
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1 Introduction

Red string example

It is time to introduce the red string example of this section, which will appear in boxes
like the current one. This is the story of a statistician, struggling to get asleep. Like any
human beings in their situation would do, (s)he decides to imagine sheep jumping over a
fence. Unlike most human beings, the statistician needs to imagine the time when a sheep
jumps as a realization of a temporal point process. We will try to characterize the possible
point process S imagined by our sleepy, yet impish, statistician.

There are several possible approaches to characterize point processes ([28] enumerates four),
the main one consists of characterizing the distribution of the points on the continuum space 𝜒.
For instance, one could look at the interpoint interval distribution. The case where the interpoint
intervals are independent and identically distributed (iid), and exponentially distributed is called
a Poisson point process, which is one of the most commonly used point processes. Here we will
start with another approach, and consider a characterization of some point processes called the
conditional intensity function. But first, we must introduce some important concepts.

�.�.� Counting process

A counting process [13, 36] is a function (here a function of time, 𝑁𝑡) associated to a point process
N . Informally, the counting process “counts” the number of points 𝑇𝑖 from the point process N

that happened before 𝑡. Let 𝐴 be a subset ofR+. The counting process 𝑁𝑡 is the number of points
of N lying in 𝐴, then ∀𝑡 ∈ R+:

𝑁𝑡 = ∑
𝑇 𝑖<sup𝐴

𝛿𝐴(𝑇 𝑖), with 𝛿𝐴(𝑇 𝑖) =
⎧⎪
⎨
⎪⎩

1, 𝑇 𝑖 ∈ 𝐴

0, otherwise
.
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1.2 Mathematical background

Red string example

The definition is explicit: the counting process associated to the point process S is the
function 𝑡 → 𝑆𝑡 counting the number of sheep that have jumped over the fence in the time
interval [0, 𝑡].

Using this definition, it is easy to understand that ∀(𝑡, 𝑡′) ∈ R2
+, 𝑡′ > 𝑡, the value 𝑁𝑡′ − 𝑁𝑡 is the

number of points of the point process N lying in [𝑡, 𝑡′]. Following from this remark, we define
the infinitesimal notation of the counting process as d𝑁𝑡 = 𝑁𝑡 − 𝑁𝑡−d𝑡. For sufficiently small d𝑡,
d𝑁𝑡 is a Dirac comb.

�.�.� Filtration

Informally, the filtration, or history, H𝑡 at time 𝑡, associated to a point process N , is the total
information needed for simulating the point process at time 𝑡′ ≥ 𝑡. Mathematically, H𝑡 is a
sub-sigma-algebra of the total set of possible events F [13]. H𝑡 is composed of the possible events
happening before time 𝑡. The mathematical details are not necessary for understanding what
follows, so we refer the inquisitive readers to the first chapter of [13]. The concept is, however,
important to define the conditional intensity of a point process.

Red string example

For our simple point process, the filtration H𝑡 at time 𝑡 contains, in particular, all the points
strictly before 𝑡. In other words, this corresponds to all the times when a sheep has jumped
over the fence.

�.�.� Stationarity

A point process is said to be stationary if the distribution of the point process in any interval
is invariant by translation of the interval. Said otherwise, the distribution of the points on any
interval depends on the length and not the location of the interval, that is

P𝑁[𝑡,𝑡+𝑥] = 𝑘, 𝑥 > 0, 𝑘 = 0, 1, …

depends on 𝑥 and not on 𝑡.
The stationarity of the point process is most of the time a given hypothesis, but it is important

because the demonstration of most properties of point processes depend on it. Precise mathemati-
cal insights can be found in [14], notably the demonstration of the convergence to stationarity of
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the Hawkes process, under certain conditions. Some algorithms are made so that the points are
computed by going back in time, which is a way to avoid this issue. See [117] for instance.

Note that the distribution of the first point of a simulated point process is often not stationary,
because the simulation of a point process generally starts with an empty past. Therefore, the
probability of having a certain realization at the beginning is clearly not invariant by translation.
Bremaud [14] demonstrates convergence towards the stationarity for bounded memory processes.

�.�.� Intensity function

The (conditional) intensity function 𝜆(𝑡|H𝑡) of a point process N is, informally, the instantaneous
rate of occurrence of new points. The existence of the intensity function for any stationary temporal
point process has first been shown by Khinchin [69]. The function is related to the expectation of
a point occurrence in an infinitesimal interval [𝑡, 𝑡 + d𝑡[ (see chapter 5 of [127]):

P𝑁[𝑡,𝑡+d𝑡[ = 𝑘|H𝑡 =

⎧⎪
⎪
⎨
⎪
⎪⎩

1 − 𝜆(𝑡) + 𝑜(d𝑡), 𝑘 = 0

𝜆(𝑡) + 𝑜(d𝑡), 𝑘 = 1

𝑜(d𝑡), 𝑘 > 1

,

where Landau’s little-o notation 𝑜(⋅) is understood at the limit d𝑡 → 0: 𝑓(𝑡, d𝑡) = 𝑜(d𝑡) ⟺
∀𝑡, ∀𝑐 > 0, ∃𝑘 > 0, ∀0 < d𝑡 < 𝑘, 0 ≤ 𝑐𝑓(𝑡, d𝑡) ≤ d𝑡. Said otherwise, 𝑜(d𝑡) means “negligible with
respect to d𝑡”.

The intensity function, when it exists, fully characterizes the distribution of a point process. The
conditional intensity function with the set of past points of the point process fully characterize the
point process itself. For instance, a constant intensity function defines a homogeneous Poisson
process. The particular case where 𝜆 = 1 is often called unit-rate Poisson process. The case
𝜆(𝑡) = 𝑓(𝑡), where the intensity depends solely on the time variable, is called inhomogeneous
Poisson process, and is, of course, the generalization of the homogeneous case.
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1.2 Mathematical background

Red string example

As a first approximation, we will make the hypothesis that the point process dreamed by
our statistician is a unit-rate homogeneous Poisson process. The random variable defined
by the time between two consecutive points has an expected value of 1, meaning on average,
one sheep per second are expected to jump over the fence. Sheep also do not influence
each other in this model: observing a jump does not change the probability to observe
another jump.

Figure 1.2: A realization of an homogeneous Poisson process, with parameter 𝜆 = 1.2, represented
as triangles on the bottom. The realization of the counting process associated to this
point process is represented as well.

In the more complex cases where the intensity function depends on the time 𝑡 and on a filtration
H𝑡 of the point process at time 𝑡, the intensity function is called conditional intensity function
(the contingency on the history is implied), and can be noted 𝜆(𝑡, H𝑡) or 𝜆(𝑡|H𝑡). We use the later
notation to invite the reader to remember that, because of its dependence on the past of the point
process, the conditional intensity function is itself a random variable.

Hawkes point process

The Hawkes process [48, 49] is a self-exciting process that is defined by its characteristic intensity
function

𝜆(𝑡|H𝑡) = 𝜈 + ∫
𝑡

0
ℎ(𝑡 − 𝑠) d𝑁𝑠 = 𝜈 + ∑

𝑇𝑘<𝑡
ℎ(𝑡 − 𝑇𝑘)

where 𝜈 is a constant value, called the background intensity, ℎ(𝑡) is a self-excitation function, often
ℎ(𝑡) = 𝛼 exp (−𝛽𝑡), for some 𝛼, 𝛽 > 0, and 𝑁𝑡 is the counting process associated with the Hawkes
point process.

The Hawkes process can be seen as an extension of the Poisson process, where 𝜈 is the intensity
of an homogeneous Poisson process, and the kernel ℎ(𝑡) is a self-excitation term. The conditional
intensity presented here actually corresponds to the linear Hawkes process. Other versions exists,
for instance as an extension of a nonhomogeneous Poisson process (𝜈 ↦ 𝜈(𝑡)). An important
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modification is the non-linear Hawkes process, which is the result of the composition of the linear
conditional intensity with another function 𝜙: 𝜆(𝑡|H𝑡) = 𝜙(∑𝑇𝑘<𝑡 ℎ(𝑡 − 𝑇𝑘)) [14].

�.�.� Multivariate (or marked) process

Until now we have been examining the case of univariate temporal point processes. This is the
case where the coordinates of the points are temporal values. However the possibility to classify
events into categories is a critical modeling tool. Point process theorists introduced the concept of
multivariate point processes (see the founding article [26]).

In a multivariate (or marked) point process, the coordinates of the points are bidimensional in
(R ×N): a type (or label), often chosen in a finite set of natural numbersN, is attributed to all the
points. In the following, the terms marked or multivariate, and type or label will be used without
any further distinction. The point process generating the points without the marks is called the
ground process, while the point process associated with a single mark is called a marginal process.

The previously introduced definitions and properties still hold, and we refer the inquisitive
readers to the chapter 7.3 of [28]. The counting process associated with the ground point process
is 𝑁𝑡 = ∑𝑀

𝑘=1 𝑁𝑘
𝑡 , where each marginal process N 𝑘, 𝑘 ∈ {1, … , 𝑀} is counted by the counting

process 𝑁𝑘
𝑡 . For any given 𝑘, H𝑡 is the history of the ground process at time 𝑡, and 𝜆𝑘(𝑡|H𝑡) the

conditional intensity function of the marginal process 𝑘. The ground point process has intensity
𝜆(𝑡|H𝑡) = ∑𝐾

𝑘=1 𝜆𝑘(𝑡|H𝑡). Note that the history of any marginal point process is the history of
the ground process itself. Informally, the information needed to simulate the marginal process 𝑘
may indeed be contained in the history of the other marginal processes.

Red string example

For instance, a sheep’s fur can be either gold or white, but there are fewer golden ones than
white ones (10% vs. 90%). The ground process is the point process whose realization is the
time of jumps, blind to the color of the jumping sheep. At the moment, let us consider that
the ground process is the same process generating the time of jumps as before (unit rate
Poisson process). There are two marginal processes here: one generating the points with
mark ‘golden’ (wewill call it 𝐺, with intensity 𝜆𝐺), the other one for the pointsmarked ‘white’
(called 𝑊, with intensity 𝜆𝑊). Combining two Poisson processes 𝑋 and 𝑌 with respective
intensity 𝜇 and 𝜈 results in a ground Poisson process with intensity 𝜆 = 𝜆𝑋 + 𝜆𝑌 = 𝜇 + 𝜈.
So here it can be assumed 𝜆𝐺 = 0.1 and 𝜆𝑊 = 0.9.
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1.2 Mathematical background

Multivariate Hawkes process

For the multivariate Hawkes process composed of 𝑀 marginal processes, the intensity function of
any marginal process 𝑖 is

𝜆𝑖(𝑡) = 𝜈 +
𝑀

∑
𝑗=1

∫
𝑡

0
ℎ𝑗→𝑖(𝑡 − 𝑠𝑗) d𝑁 𝑗

𝑠𝑗 = 𝜈 +
𝑀

∑
𝑗=1

∑
𝑇 𝑗

𝑘<𝑡

ℎ𝑗→𝑖(𝑡 − 𝑇 𝑗
𝑘)

For each couple of processes (𝑖, 𝑗), the function ℎ𝑗→𝑖(𝑡) is either ℎ𝑗→𝑖(𝑡) = 0 or a function of time.
In the case of the Hawkes point process, univariate or multivariate, a sufficient condition for

stability is given by the value of the spectral radius of the kernel, which must be strictly less than 1.
In other words, for a Hawkes process composed of 𝑀 marginal processes:

Theorem 1. [48] Let 𝜆𝑖(𝑡|H𝑡) = 𝜈𝑖 + ∑𝑀
𝑗=1 ∫𝑡

0 ℎ𝑗→𝑖(𝑡 − 𝑠) d𝑁𝑠 be the intensity of the marginal
process 𝑖. Let 𝜌1, … , 𝜌𝑀, be the eigenvalues of the matrix Κ = (∫∞

0 ℎ𝑗→𝑖(𝑠) d𝑠)(𝑖,𝑗)∈{1,…,𝑀}2 . The
spectral radius of Κ is defined by 𝜌(Κ) = max {|𝜌1|, … , |𝜌𝑀|}. Then the ground process is stable if
0 < 𝜌(Κ) < 1.

Note that in the case of the univariate Hawkes point process, the condition simply means that
the integral on the half-line [0, ∞[ of the kernel ℎ(𝑡) must be strictly less than 1 in absolute value.
Using the common choice ℎ(𝑡) = 𝛼 exp (−𝛽𝑡), 𝛼, 𝛽 > 0, the condition translates into: the process
is nonexplosive if 𝛼

𝛽 < 1. The condition can then be understood, in plain English, as: “If the
function ℎ(𝑡) does not take too high values during too long period of time, then the process is
nonexplosive”.

Local independence and graphical representation

Red string example

In sheep society, color is everything. A golden sheep tends to attract other ovines by natural
leadership, hence when a golden sheep jumps over, more white sheep jump too. White
sheep also influence each other directly, a white sheep alters the judgment of their kind so
that they act alike, though with less efficiency than golden sheep. Golden sheep, though,
tend not to mind their surroundings: their own beauty is so distracting they often cannot
think about anything else but themselves.

Developed by [133] for Markov processes, and extended to stochastic processes by [33, 34], the
concept of local-independence defines the local, temporal dependencies between the processes.
It is based on an extension of Granger-causality, which is a simple and direct form of causality.
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Informally, let 𝑋𝑡, 𝑌𝑡 be variables of time, the goal being to forecast 𝑋𝑡+1. If 𝑌𝑡 always precedes 𝑋𝑡+1,
and 𝑌𝑡 contains information useful for predicting 𝑋𝑡+1 that cannot be found in other variables,
then 𝑌𝑡 is said to Granger-cause 𝑋𝑡+1 (see for instance [134] for more mathematically detailed
explanation and some personal accounts about the development of Granger-causality by Professor
Clive Granger, which inspired this informal explanation).

The notion of Granger-causality is important here, and is embedded in the ”locally” term: local
independence from 𝑖 to 𝑗 does not mean the marginal processes 𝑖 and 𝑗 are independent. Indeed,
there can still be dependence from 𝑗 to 𝑖, or, for instance, there can be a third process ℎ on which 𝑖
and 𝑗 both depend. An extreme case is when there is an interaction from process 𝑖 to process ℎ to
process 𝑗. The process 𝑗 is Granger-independent from the process 𝑖, though the activity depends
indirectly on the activity of 𝑖.

The local-independence property translates perfectly in terms of graphical representation. For
self-exciting processes, the local-independence graph represents the interaction between processes:
in a graph where the vertices are the marginal processes, the absence of a directed edge from
process 𝑗 to 𝑖 represents the absence of direct interaction from process 𝑗 to process 𝑖. Note that the
edges are directed, so the graph can have an edge 𝑖 → 𝑗 and no edge 𝑗 → 𝑖.

Red string example

The graphical representation of the local-independence graph in our example looks like:

Golden sheep jump White sheep jump

The cattle hear the rumor of wolves in the nearby, and we can wonder: how will the sheep
react? Nothing to worry about, they aren’t dangerous in this imaginary world, but our
sheep generally prefer not taking risk. This will modify our independence graph, however.
Do you see how, dear reader?

Golden sheep jump White sheep jump

Big Good Wolf howls

These concepts may look simple but are the core of the algorithms developed in chapters 2
and 3.
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1.2 Mathematical background

Explosivity of the marked point process

The realization of a point process is said nonexplosive if the limit of the sequence of points (𝑇𝑛)𝑛

𝑇𝑛 < +∞ ⟹ 𝑇𝑛 < 𝑇𝑛+1

describing the point process is infinite [28]:

𝑇∞ = lim
𝑛→∞

𝑇𝑛 = +∞

Deciding whether a point process is explosive given a set of parameters is often a difficult problem.
However, most results on point processes hold only for nonexplosive realizations of the point
process. Homogeneous Poisson processes with intensity 𝜆 < ∞ can never be explosive, since the
number of points on any interval [𝐴, 𝐵] follows a Poisson distribution with parameter 𝜆|𝐵 − 𝐴|.
For marked point processes, the interactions between the processes can break the nonexplosivity
hypothesis. The nonexplosivity can be guaranteed a.s. by constraining the parameters of the point
process. This can, however, prove difficult for very large networks, like in chapter 4.

�.�.� Martingales

The term martingale refers to a gambling strategy in 18th-century France: to double the stake at
each loss, which guarantees a positive gain, provided enough money and at least a winning bet.
The exact origin of the word still remains unclear (read [93] for a thorough review of the possible
etymologies), but the concept has become one of the foundation stones of the theory of stochastic
processes.

Definition 1.2.1 (Martingale, from appendix A3.4 of [28]). If we denote (Ω, F ,P) a probability
space, and assuming H a history on (Ω, F ) and the real-valued process 𝑋(⋅) = {𝑋(𝑡) ∶ 0 ≤ 𝑡 <
∞}, 𝑋 is a P-H -martingale if for 0 ≤ 𝑠 < 𝑡 < ∞, E[𝑋(𝑡)|H𝑠] = 𝑋(𝑠).

In other words, a martingale is a stochastic process whose expected value at time 𝑡, though
conditioned on a certain history at 𝑡 H𝑡, depends solely on its last value 𝑋(𝑡).
The intensity function has another property, which is the most often used in practice. Indeed,
when the intensity function exists, it is possible to create a martingale from the counting process
𝑁𝑡 and the intensity function 𝜆(𝑡) associated to a point process N (see lemma 7.2.V of [28]):

𝑀𝑡 = 𝑁𝑡 − ∫
𝑡

0
𝜆(𝑠)d𝑠 is a martingale.
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The function Λ(𝑡) = ∫𝑡
0 𝜆(𝑠)d𝑠 is called the compensator of the counting point process. This

function is also critical in the formalization of the random-time change theorem, a fundamental
piece of the point process theory stating that any temporal point process with conditional intensity
𝜆(𝑡) can be reverted to a unit-rate Poisson process by a simple stretch of time 𝜏(𝑡) = Λ(𝑡).

�.�.� Random-time change theorem

Though the theorem has been formally demonstrated in 1974 by Papangelou [112], it has been in
the mind of point process theorists for a longer time (see Watanabe’s article [145], who is the first
to have characterized the Poisson process by the form of its compensator Λ(𝑡) in 1964, and 1971
Meyer’s article [99]). We will give the readers a simple form of the theorem, and as always refer
the curious ones to the chapter 7 of [28] and 14 of [29]. The name of the theorem also changes
depending on the author. For instance, Brown et al. call it the time-rescaling theorem [18, 47].

Theorem 2. From [29] Let N be a simple point process adapted to the history H with bounded,
strictly positive conditional H -intensity 𝜆∗(𝑡) and H -compensator Λ∗(𝑡) = ∫𝑡

0 𝜆∗(𝑠) d𝑠 that is not
a.s.-surely bounded. Under the random time change 𝑡 → Λ∗(𝑡), the transformed process

𝑁Λ∗(𝑡) = 𝑁𝑡

is a Poisson process with unit rate.

In simpler terms, if there has been a total of 𝑁𝑡− events in the interval [0, 𝑡[, with {𝑡1, … , 𝑡𝑁𝑡−
}

the times of the events, then the values of the compensator on the pointsΛ(𝑡𝑘), ∀𝑘 ∈ {1, … , 𝑁𝑡−}, 𝑡0 =
0 are the realization of a unit homogeneous Poisson point process. A more practical form is

∀𝑘 ∈ {1, … , 𝑁𝑡−}, 𝑢𝑘 ∼ U ([0, 1[), 𝑡0 = 0, Λ(𝑡𝑘) − Λ(𝑡𝑘) ∼ − log (1 − 𝑢𝑘)

This theorem is often used for simulation and goodness-of-fit tests (see chapter 3).

�.�.� Simulation

There are many methods for simulating point processes [12, 30, 85, 102, 106]. Many methods exploit
specific properties of point processes to try to accelerate the simulation algorithm. We will see
here some of the generic methods that have been developed for making a realization of a point
process. An introduction to point process simulation is also present at the beginning of chapter 3,
and chapters 2 and 3 both propose new algorithm ideas for point processes.
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1.2 Mathematical background

Simulation of a homogeneous Poisson process

The simulation of a homogeneous Poisson process of intensity 𝜆 is pretty straightforward, and
is detailed in the algorithm 1. It is based on the properties of the distribution of the points of an
homogeneous Poisson process.

Algorithm 1 Simulating an homogeneous Poisson process with intensity 𝜆 on [𝐴, 𝐵] in parallel
Require: 𝜆, 𝐴, 𝐵

Generate 𝑝 ∼ P(𝜆|𝐵 − 𝐴|) (Poisson distribution with parameter 𝜆|𝐵 − 𝐴|)
for all 𝑘 = 1 … 𝑝 do

Generate 𝑡𝑘 ∼ 𝑈([𝐴, 𝐵])
end for
return {𝑡𝑖}𝑖=1,…,𝑝

Simulation by the inverse-method

Using the random time change theorem, the interpoint intervals are given by the successive
observation of the random variables 𝑇𝑛 = 𝑇𝑛−1 − log𝑈(]0,1])

𝜆 .

Algorithm 2 Simulate an homogeneous Poisson process with intensity 𝜆 on [𝐴, 𝐵]
Require: 𝜆, 𝐴, 𝐵
1: Initialize 𝑡 = 𝐴, 𝑛 ← 0
2: while 𝑡 < 𝐵 do
3: Generate 𝑢 ∼ 𝑈(]0, 1])
4: Set 𝑡 = 𝑡 + − log 𝑢

𝜆
5: Set 𝑛 = 𝑛 + 1
6: Let 𝑡𝑛 = 𝑡
7: end while
8: Return {𝑡𝑖}𝑖=1,…,𝑛

The figure 1.2, illustrating the concepts of realization and counting process, has been generated
using algorithm 2.

For simulating inhomogeneous Poisson processes, and other kinds of point processes, other
methods have been introduced.

Thinning (Lewis and Shedler [��])

The thinning algorithm 3 was introduced in [85] for simulating, over [𝐴, 𝐵], 𝐴, 𝐵 > 0, an inhomo-
geneous Poisson processes 𝑁 with bounded intensity 𝜆(𝑡). The algorithm requires the simulation
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of another Poisson process 𝑁∗ (homogeneous or not), with an intensity 𝜆∗(𝑡), given the relation
𝜆(𝑡) ≤ 𝜆∗(𝑡) and a simulation interval [𝐴, 𝐵].

The condition line 10 of the algorithm 3 is what is called thinning. The name is explicit: Lewis
and Shedler (see Theorem 1 of [85]) demonstrated that for simulating an inhomogeneous Poisson
process with intensity 𝜆(𝑡), another inhomogeneous Poisson process with dominating intensity
𝜆(𝑡) ≤ 𝜆∗(𝑡) can be simulated while the resulting points {𝑇 𝑘}𝑘=1,… are deleted with probability

1 − 𝜆(𝑇 𝑘)
𝜆∗(𝑇 𝑘) .

Algorithm 3 Simulate a nonhomogeneous Poisson process with intensity 𝜆(𝑡) on [𝐴, 𝐵]
Require: 𝜆(𝑡), 𝜆∗(𝑡), 𝐴, 𝐵
1: Generate points of the Poisson process 𝑁∗ with intensity function 𝜆∗(𝑡).
2: Let 𝑛 be the number of points generated
3: if 𝑛 = 0 then
4: Exit, there are no points in the point process 𝑁 in the interval [𝐴, 𝐵].
5: else
6: Denote 𝑇 ∗

1 , 𝑇 ∗
2 , … , 𝑇 ∗

𝑛 the ordered points.
7: Set 𝑖 = 1 and 𝑘 = 0.
8: repeat
9: Generate 𝑢 ∼ U [0, 1].

10: if 𝑢 ≤ 𝜆(𝑇 ∗
𝑖 )

𝜆∗(𝑇 ∗
𝑖 ) then

11: Set 𝑘 = 𝑘 + 1 and 𝑇𝑘 = 𝑇 ∗
𝑖 .

12: end if
13: Set 𝑖 = 𝑖 + 1.
14: until 𝑖 = 𝑛
15: end if
16: return {𝑇𝑖}𝑖=1,…,𝑘

The algorithm is quite generic, no particular assumption being made on the bounding inhomo-
geneous Poisson process. The algorithm becomes interesting when considering the case where
the bounding process 𝑁∗ is a homogeneous Poisson process, with constant intensity function
𝜆∗(𝑡) = 𝜆∗. The algorithm 1 for simulating a homogeneous Poisson process can then be used to
generate the points 𝑇 ∗

1 , 𝑇 ∗
2 , … , 𝑇 ∗

𝑛 .
In the case where the upper-bound 𝜆∗ is so far from the real intensity function 𝜆(𝑡) that the

condition line 10 of the algorithm 3 is almost always false, a piecewise constant function can
be used instead. If we denote such function 𝜆∗(𝑡) = ∑𝑘=1,…,𝐾 𝜆∗

𝑘𝟙[𝑎𝑘,𝑏𝑘], with 𝟙⋅ the indicator
function, and {[𝑎𝑘, 𝑏𝑘]}𝑘=1,…,𝐾 a set of pairwise distinct intervals entirely covering [𝐴, 𝐵], then
the algorithm simply becomes:

The algorithm suffers from the need for an absolute bound existing for all possible past histories
of the point process. Finding such an absolutely dominating function can be difficult to achieve
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1.2 Mathematical background

Figure 1.3: Top: A realization of an nonhomogeneous Poisson process 𝑁, with parameter 𝜆(𝑡) =
𝛼 exp(−𝛽𝑡), with 𝛼 = 1.2, 𝛽 = 0.4, represented as triangles on the bottom of the counting
process associated to 𝑁. Bottom: The intensity of the Poisson process is displayed, as well as
the thinning procedure. The y-axis represents the uniform draws, and the red dashed horizontal
line represents the homogeneous Poisson process 𝑁∗ with intensity 𝜆∗(𝑡) = 𝛼, which is used as
dominating process. The uniformly distributed values 𝜆∗𝑢 ∼ U [0, 𝛼] are displayed as ’o’ (when
the thinning rejected them) or ’x’ (when they were accepted by the thinning procedure).

when the exact dynamic of the intensity function 𝜆(𝑡) is hard to compute in advance, for instance
when the analytical equation is unknown and the function is approximated via numerical analysis.

Modified thinning algorithm (Ogata [���])

The algorithm introduced by Ogata in [106] expands on the algorithm introduced by Lewis and
Shedler (see section 1.2.8) for univariate inhomogeneous Poisson process. However, in contrast to
the other algorithm, the modification introduced by Ogata allows the simulation of point processes
whose intensities are random variables, such as for the Hawkes point process. The algorithm

Algorithm 4 Simulate a nonhomogeneous Poisson process with intensity 𝜆(𝑡) on [𝐴, 𝐵] =
∪𝑖=1,…,𝐾[𝑎𝑖, 𝑏𝑖]

Require: 𝜆(𝑡), {𝜆∗
𝑘}𝑘=1,…,𝐾, {[𝑎𝑘, 𝑏𝑘]}𝑖=1,…,𝐾

1: for all 𝑘 = 1, … , 𝐾 do
2: Apply 1 with parameters 𝜆(𝑡), 𝜆∗

𝑘, 𝑎𝑘, 𝑏𝑘.
3: end for
4: return {𝑇𝑖}𝑘=1,…,𝑘
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proposed by Ogata is also similar to another algorithm proposed by Gillespie [40, 41] for simulating
stochastic systems with discrete states and where time advances with exponentially distributed
jumps. The algorithm proposed by Gillespie being less generic than Ogata’s modified thinning, we
will detail only the latter.

The idea behind the algorithm is, if 𝜆(𝑡) denotes the conditional intensity of the point process to
simulate, to construct iteratively a piecewise constant function 𝜆(𝑡)∗ so that 𝜆(𝑡) ≤ 𝜆∗(𝑡) at all time.
The algorithm is presented in algorithm 5. Note that in the original paper, two algorithms were
presented, one for the case where 𝜆(𝑡) is a monotonically decreasing function of time (if no new
points occur), and a second for a monotonically increasing function of time (again, without the
addition of new points). We chose here to present the algorithm for the monotonically decreasing
case, since this is the case that we are interested in for neuronal simulation (see chapter 3).

The algorithm 5 requires prior knowledge of the minimum value 𝜈 of the intensity function
𝜆(𝑡|H𝑡) and of the maximum increment 𝛼 of the intensity function 𝜆(𝑡|H𝑡) at a new point. The
lines 13 and 14 of algorithm 5 correspond to the step of choosing the mark of the point if the
simulated process is a multivariate point process with marginal intensities 𝜆𝑖(𝑡|H𝑡), where 𝑖 =
1, … , 𝑀 denotes the marks. In this case 𝜆(𝑡|H𝑡) = ∑𝑀

𝑖=1 𝜆𝑖(𝑡|H𝑡). A proof of the validity of the
procedure can be found in [106], page 24, Proposition 1. In the univariate case, these lines are
omitted (since 𝑀 = 1).

In the algorithm 5, we will note the filtration as a series of points {𝑡1, … , 𝑡𝑛−1}. This is a
simplification of what the filtration really is, which can contain more than past points. This
notation however will keep clearer when the conditional intensity function 𝜆(𝑡|H𝑡) is updated
after a new point has occurred. Therefore, if at time 𝑡 all the past points of the point process are
noted 𝑡1 < ⋯ < 𝑡𝑛−1 < 𝑡, then the conditional intensity function will be noted 𝜆(𝑡|𝑡1, … , 𝑡𝑛−1).
When 𝑛 = 0 or 𝑛 = 1, it is assumed that no points has occurred yet.

In Ogata’s version of the algorithm, the conditional intensity 𝜆(𝑡|𝑡1, … , 𝑡𝑛−1) is implicitely
updated when 𝑛 is increased, while we chose to write it explicitly here. Moreover, the new variable
𝑝 ∈ {0, 1} is here used to simplify the algorithm. In Ogata’s version [106], a conditional jump is
used depending on whether the new point is accepted or not by the thinning procedure line 10
of algorithm 5. Here the boolean 𝑝 is set to 0 when the point is rejected, and 1 when the point is
accepted.

The figure 1.4 illustrates the procedure in the particular case of the Hawkes point process.
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1.2 Mathematical background

Algorithm 5Ogata’s modified thinning algorithm, on [0, 𝑇max]

Require: 𝜆(𝑡|𝑡1, … , 𝑡𝑛−1), 𝑇max, 𝜈, 𝛼
1: Set 𝑘 = 0, 𝑡 = 𝑡0 = 0, 𝜆∗ = 𝜈, 𝑛 = 0, 𝑝 = 0
2: loop
3: Generate 𝑢 ∼ U [0, 1]
4: Set 𝜆∗ = 𝜆(𝑡|𝑡1, … , 𝑡𝑛−1)+𝑝𝛼 (𝜆∗ is still an upper bound since 𝜆(𝑡|𝑡1, … , 𝑡𝑛−1) is supposed

to be monotonically decreasing)
5: Compute 𝑡 = 𝑡 − log 𝑢

𝜆∗
6: if 𝑡 > 𝑇max then
7: Stop; there are no new points to generate
8: end if
9: Generate 𝑣 ∼ U [0, 1]

10: if 𝑣 ≤ 𝜆(𝑡|𝑡1,…,𝑡𝑛−1)
𝜆∗ then

11: Set 𝑛 = 𝑛 + 1, 𝑡𝑛 = 𝑡, 𝑝 = 1 (a new point has occurred)
12: Update the conditional intensity 𝜆(𝑡|𝑡1, … , 𝑡𝑛)
13: Generate 𝑣 ∼ U [0, 1]
14: Compute the mark 𝑖 so that ∑𝑀−1

𝑚=1 𝜆(𝑡|H𝑡)𝑚 < 𝑣𝜆(𝑡) ≤ ∑𝑀
𝑚=1 𝜆(𝑡|H𝑡)𝑚

15: else
16: Set 𝑝 = 0
17: end if
18: end loop

Figure 1.4: Top: A realization of a Hawkes process, represented as triangles on the bottom, with intensity
function 𝜆(𝑡) = 𝜈 + ∫𝑡

0 ℎ(𝑡 − 𝑠) d𝑁𝑠, 𝜈 = 1.2, ℎ(𝑡) = 0.6 exp−0.8𝑡. The associated counting
process 𝑁(𝑡) is represented as well. Bottom: The intensity 𝜆(𝑡) of the Hawkes process (in red) is
drawn below the constructed intensity 𝜆∗(𝑡). The uniformly distributed values 𝑢 ∼ U [0, 1] are
displayed, by ’x’ when they are accepted by the procedure, and ’o’ when they are rejected.
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�.� Biological background

The results presented in this thesis hold for a large variety of stochastic processes, and temporal
point processes in particular, and therefore are not bounded to a particular physical case. However,
they have been conceived with spiking neural network simulations in mind. We present here the
essential knowledge to understand what are the particularities of neural networks that we use in
later chapters to optimize the simulation algorithms.

�.�.� Neurons

Neurons are a family of cells that are the base constituent of the nervous system in animals [17]

(but not the only one, see for instance the glial cells [109]). The purpose of a neuron is to aggregate
electrochemical signals from other cells [55, 124], and after potential signal processing [15], to
choose whether to emit a signal of its own, called an action potential.

There are many types of neurons [9], but in this thesis, and during this brief introduction to the
biology of the mammalian central nervous system in particular, we will limit ourselves to the type
of neurons that can be found in the mammalian neocortex, namely spiking neurons. Mammalian
neurons behave differently from invertebrate neurons [66], as well as from neurons in other parts
of a mammalian body, like the analog neurons in the retina and the models we will explore apply
primarily to the former.

Here we need to introduce some vocabulary relative to neurons and neurons dynamics, so
that readers with little biological knowledge about the central nervous system do not get lost.
Neurons exchange bursts of electrical current, not alike the one running through the copper wire
of electrical devices, but transmembrane electrical potential waves traveling along some parts of
the neuron as ions get in and out of their membrane. This traveling electrical burst is called an
action potential.

The structure of a neuron, illustrated on figure 1.5a, drawn by Cajal on figure 1.5b, reflects the
function of this cell: gathering and accumulating action potentials, and releasing action potentials
of its own. A typical neuron is composed of three parts: the dendrites, the soma and the axon. The
dendrites are a branch-rich structure receiving the action potentials and carrying them to the soma.
The latter is the core of the cell, where the electrochemical currents accumulate, more precisely at
the axon hillock. Neurons from the cortex let their transmembrane potential accumulate until a
certain threshold is reached, which triggers the creation of an action potential that will flow down
their axon, where their axon terminal will meet with synapses of other neurons and the signal will
be transmitted. See [124, 132] for more details.

The intensity of an action potential does not reflect the amount of action potential energy a
neuron has received in order to emit one (at least for cortical neurons). The fact that the intensity
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1.3 Biological background

(a) Taken from [100], originally adapted from [124],
chapter 3, figure 1, page 43.

(b) Reproduction of a drawing by Cajal of a neuron
and its dendrites. From around 1900.

Figure 1.5: The structure of a neuron. Left is a schematic, right is a detailed drawing of a neuron. The soma
is easily recognizable, with the nucleus is lighter color than the rest of the cell. The synapses
are represented as small protuberances growing from the dendrites and axon. The axon is
recognizable as the thick, smooth line descending to the soma, with only few branches departing
from it (the cell is flipped vertically compared to the right figure).

of the response of a neuron to a stimulus is not a function of the intensity of the stimulus is called
the all-or-none principle [124]. A consequence of this principle is that action potentials are very
stereotypical objects (a fact at the basis of many models, see [19] for instance), conveying mainly,
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if not solely, a timing information. For this reason, a common simplification is to abstract action
potentials to a single point, called a spike. A series of spikes during a time window is called a spike
train, which is illustrated in figure 1.6. This convenient abstraction motivates the use of point
process theory as a model for spike train generation.

�.�.� Neural networks

If the mechanisms at work when an action potential is generated are well known, it is often difficult
to understand how many of them are generated in a live animal during a given unit of time.
Superficial measurements such as EEG can only measure the mean electromagnetic field resulting
from the total activity of ”large” populations of neurons [113]. A non-invasive but still more precise
method would be fMRI, but they are not precise enough to allow us to see at the level of individual
neurons, not even at the level of a handful of neurons [87]. Besides the non-invasive methods,
other means of measuring the neuronal activity is implanting sensors directly in the brain of a
live animal, or killing the animal and finely slicing the brain, then to plant sensors in the slices,
knowing that neural networks quickly decay after death. Besides the possibility of destroying parts
of the environment they are supposed to take measures from, sensors (as well as the non-invasive
methods) have the huge drawback of only measuring the activity of close but more importantly
active neurons. In other words, if during a task most of the neural network stays inactive, or
only marginally active, what will be seen will only be the tip of the iceberg, most of the existing
neurons/connections remaining invisible to our technological eyes.

This is an important topic because it introduces the issue with neural network studies: they
remain unknown objects because of the lack of possible live measurements. If the behavior
of individual neurons is at least partially known, direct measurements cannot help determine
important parameters of neural networks such as mean spiking rate, connectivity, number of
neurons, etc.

Number of neurons

Measuring the number of neurons in the brain of an individual is a tedious task at least, Sisyphean
at most. Just in a fruit fly, the number of neurons in the central nervous system is of the order
of ten to power five [136]. Count 108 for a rat [52], and 1011 for a human brain [50]. The famous
drawings made by the pioneering neuroscientist Cajal, one of which displayed as figure 1.5b, do
not (and cannot) do justice to the density of neurons present in the brain (which makes it all the
more impressive that rendering at this scale where already available at that time). Before 2008, the
traditional methods involved computing averages on small samples uniformly taken in diverse
areas of animal brains, and extrapolating to the whole with a simple cross-multiplication.
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These methods gave good order of magnitudes, but failed at delivering more precise results. The
new idea successfully experimented in 2008 byHerculano-Houzel [51] was to dissolve parts or even
the whole brain to obtain a soup in which the nuclei of neurons would still remain intact. After
homogenization, the same technique as before can be used: taking a small sample and counting
the neurons inside, except that the sample is now much more representative of the total average.
For a human being, it has been estimated that on average about 89 billion neurons were present.
In the cortex, a thin layer around the brain of mammals that is widely believed to be an essential
part in the production of abstract thoughts [101], Herculano-Houzel et al. estimated the number
of neurons for humans at around 16 billion [50].

Number of connections

Several types of connections can be considered. Synaptic connections refer to individual connecting
synapses, and there are a large number of them between any two neurons (said otherwise, the
graph where neurons are vertices and dendrites/axons are edges is not simple). The majority of
neuron-to-neuron connections are realized by multiple synapses, at least in the mammalian cortex
(see [54] for a list of experimental studies, and chapter 4 for a rough computation of the number
of synapse per neuron). Connectomic is the domain trying to map the synaptic connections of
a particular brain or a typical member of a specie [32]. To this day, only two species have had
their connectome fully mapped at nanoscale: the nematode C. Elegans [147] and a tadpole larva of
Ciona intestinalis (L.) [129]. Both have around two hundred neurons.

Some models, however, consider not the exact synaptic connections but rather the simple
existence of even a single synaptic connection between two neurons, effectively aggregating all the
individual pathways between two neurons in a single function. The average number of redundant
synaptic connections is difficult to compute exactly. In the barrel cortex for instance, it has been
estimated that about 10 synaptic connections separate any two cells [37]. This type of experimental
data can help create biological constraints to tune better the simulation of biologically constrained
neural networks, for instance in [95], where the reconstructed microcircuitry showed an average of
250 neuron-to-neuron connections, which is lower than the 1000 synapses per neuron computed
in chapter 4.

The cost of a spike

As stated earlier, it is difficult to measure directly the average activity of the brain, because most
of it may be silent during measures and we would not know it. An indirect way to compute this
value is to compute the cost of an individual spike, in terms of glucose or ATP molecules input,
and measure the amount of glucose the body can provide the brain with, in any given unit of time.
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This is a reliable computation, because ATP molecules, once used, are destroyed and cannot be
regenerated by the brain, and therefore the body needs to provide constantly the brain with new
ATP molecules. The ATP molecules are a necessary input of the spiking mechanism, but also for
the basic functioning of a neuron.

Details can be seen in [84]: the cost of each phase of the emission of an action potential gets
computed, and the aggregate gives the cost of emitting a single action potential. Assuming all
neurons are identical in the brain, or at least the cortex, and knowing the maximum throughput
of glucose flowing to the brain each second, the maximum number of spikes per second can be
determined for the whole brain and even for parts of it. The figure 1.7 shows the maximum average
spike rate sustainable by the human cortex.The energy consumption is expressed as a fraction
of the total energy expenditure of an average human brain, and is computed in two different
ways, one based on the estimates made by the author of energy availability and costs of neuronal
activity (dotted curve), the second (solid curve) being the most conservative estimate to obtain
the minimal theoretical energy consumption. Horizontal lines correspond to a percentage of total
brain energy consumption. The solid horizontal line corresponds to 44% of the brain energy,
which is the accepted value for the cortex [84], and indicates an average of 0.16 spikes/s/neuron.
This translates to around 0.30 spikes/s/neuron at the scale of the whole human brain. Higher
average spiking rates are therefore impossible to sustain by the brain, energy-wise, according to
these calculations.

Figure 1.6: An illustration of a spike train.
From [74], courtesy of the journal.

Figure 1.7: Energy potentially consumed by the
cortex as a function of the average sus-
tained level of activity in all neurons.
From [84], courtesy of the journal.
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�.�.� Biological neuron models

There are a variety of biological or biologically inspired neuron models [19, 20, 88], each serving its
own purpose or modeling a particular part of neurons. We are interested in particular in models
that use spikes as an abstraction of action potentials. Different models have been proposed, first
for single neuron spike train modeling, and later for neural networks (read [38, 39, 63] for possible
reviews on the matter).

Leaky-Integrate and Fire (LIF)

Introduced by Lapique in 1907 [1, 19, 82], the Leaky Integrate-and-Fire model, or LIF for short,
is a simple set of equations modeling a simplified spiking mechanism. It describes the evolution
of the transmembrane potential 𝑈𝑡 over time. The idea is simple: the LIF neuron accumulates
potential with each received input (bringing it closer to the threshold if the input is excitatory,
and farther if the input is inhibitory). However, the storage is not perfect, so in between inputs
from other neurons, some of the accumulated potential ”leaks” out of the neuron, bringing the
transmembrane potential closer to the ”resting potential” of the neuron. In the case where the
potential reaches at least a certain threshold, a spike would be emitted and the potential of the
spiking neuron would be reset to the resting potential.

The equation of the transmembrane potential 𝑢𝑖(𝑡) of neuron 𝑖 is described by the following set
of equations.

d𝑢
d𝑡

= 𝛾(𝑢𝑖(𝑡) − 𝑢𝑅) + 𝑅𝐼(𝑡)

𝑢(𝑡−) ≥ 𝑢𝑇 ⟹ 𝑢(𝑡) = 𝑢𝑅

𝛾 and 𝑅 are constant parameters of the model, 𝑢𝑅 is called the resting potential of the neuron
(this is the value of the potential when no spike has been received by the neuron for a long time,
see [65] for biological details), and 𝐼(𝑡) is an input current, which can be artificial (a generator) or
the spikes of other neurons in the network. When the potential 𝑢(𝑡) reaches a certain value 𝑢𝑇,
the potential is immediately reset to the resting potential 𝑢𝑅, and the spike is transmitted to other
neurons in the network.

The model is one of the foundations of neuroscience [1, 19, 38] and is complex enough to be
studied nowadays still. A large variety of variants have since been proposed, such as the noisy
LIF [39] or the Generalized ContextModel [38]. Other scientists have tried tomodel more precisely
the transmembrane potential dynamic, like the famous Hodgkin and Huxley [55].
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Ornstein-Uhlenbeck

The transmembrane dynamic of singular or assemblies of neurons can be described as a random
walk, like the Wiener process [81, 125], and are a type of noisy neuron models [39]. The Ornstein-
Uhlenbeck model is a modification of the LIF model, with the addition of a Gaussian noise.
The model let the potential randomly evolve, though the potential naturally drifts towards an
attractor, which can be set below or above the firing threshold. If the attractor value is set above
the threshold, the equation models the inclination towards spiking of the neuron (because of
unaccounted connections for instance). However, if the attractor value is below the threshold,
then only the random variations in the potential or the spikes emitted by its neighbors can make
the transmembrane potential cross the firing threshold. The mathematical details of the model
can be read in chapter 2.

Hawkes

Point processes have been used for modeling spike trains of single or assemblies of neurons for
a long time (see [22, 27, 63, 122, 123] and their references). Introduced by Hawkes [48, 49], the
Hawkes point process is a type self-exciting point process (see section 1.2 for details) that has been
proposed numerous times for modeling neuronal spiking activity [86].

The Hawkes model of spiking neurons differs from the LIF-inspired models by the fact that
no threshold is present that makes neurons spike. This means that as long as the background
intensity 𝜈 > 0, the neuron modeled as a Hawkes will spontaneously emit spikes. This can either
model noise, the basic spiking regime of a neuron during a task, or spontaneous spikes, called
“minis” [156]. Also, since the conditional intensity function is analog to an instantaneous firing
rate, the intensity of the Hawkes process models the instantaneous spiking rate of neurons, where
the equations of the LIF model the subthreshold dynamic of the transmembrane potential, which
does not translates directly into a firing rate.

In its linear formulation, the Hawkes process cannot model inhibition, since the conditional
intensity function must always be positive. This is an issue since inhibitory neurons constitute a
large part of the neurons, around 20% [7]. Non-linear Hawkes process models have been developed
to circumvent this limitation. The simplest one is to compose the linear intensity with a ramp
function, so that the conditional intensity evaluates to 0 when the linear part is negative.

Artificial Neural Networks

A kind of neural network models not discussed in this thesis are the models designed for learning
and classification, also called artificial neural networks. They encompass deep neural networks [2,

62], convolutional neural networks [44], recurrent neural networks [130] and many others.
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1.3 Biological background

Maass [89] classifies artificial neural networks in three generations. The first generation is
based on the McCulloh-Pitts neurons, also called perceptrons. They can be used in networks,
and are universal for digital input and output, meaning that any function mapping a finite set of
Boolean variables to another set of Boolean variables can be represented exactly by a network of
perceptrons.

Neurons from the second generation use a so-called activation function, mapping a continuous
weighted sum of the inputs to a continuous set of outputs. Feedforward neural networks are an
example of such a family. The family of second generation of neural networks can represent a higher
range of functions that the first generation. Indeed, any neural network from the first family can be
represented by a network of the second family, but in addition, second generation neural networks
are universal for analog computation. Thus, any continuous function with compact domain and
range can be approximated arbitrarily well by a neural network from the second generation. Those
neural networks are also suitable for learning using, for instance, a backpropagation algorithm.

Finally, the third generation of neural networks described by Mass [89] are the Spiking Neural
Networks [89], which can effectively be any spiking neuronmodel, as described in [38]. Maas in [89]

and the literature cited within, shows that spiking neural networks have a greater computational
power than the neural networks from previous generations. They are also universal for digital and
analog functions, but in addition smaller neural networks are needed for approximating to the
same degree the same functions, at least in the mentioned cases (ibid).

Artificial neural networkmodels from the first two generations differ from themodels previously
explained as the intent behind their design is not the description of physiological properties of
neurons, or the statistical reproduction of their spiking activity. However, artificial neural networks
are loosely linked to biological neural networks by the fact that both entities can learn to produce a
certain response to a given input. Spiking neural networks are an extension of more classical flavors
of artificial neural networks that aim at improving the performance of these artificial network.
Biological neural networks are indeed energy efficient (see chapter 5), and exhibit remarkable
computational performances in general [89, 116].

Though in this thesis we focused our attention on stochastic process models of spiking neurons,
the algorithm developed here may also improve the simulation of spiking neural networks in
general. The multivariate Hawkes model of a neural network is close to spiking neural network
models. They differ from the spiking neuron models presented in [89] as they are stochastic
neurons, with spontaneous spiking activity. Note however that spontaneous spikes, called minis,
with the conjunction of spike-timing dependent plasticity (STDP), to teach a network of spiking
neurons a target activity pattern in [58]. Some researchers also try to use the Hawkes neuron
model for learning, as in [98].
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Figure 1.8: A representation of the evolution of the state 𝑆 of a LIF model (parameters: 𝛾 = 1, 𝑈𝑅 =
0, 𝑈𝑇 = 3, with input 𝑋 to the model on top and outputs 𝑌 of the model at the bottom. The input
section is the same for the three representations of the LIF model. In blue, dashed: the constant
threshold 𝑈𝑇. In red, solid: the simulated trajectories. Middle (LIF): the curve is defined by the
piecewise differential equation in 1.3.3. The component receives 7 inputs, and emits 2 outputs.
Note that the two times the vertical dashed lines, representing the evolution of the state, crossed
the threshold 𝑈𝑇, the state 𝑈(𝑡) is directly reset at 𝑈𝑅. Left (DTSS): the LIF model defined
in 1.3.3 is represented within the DTSS class, and simulated using the Euler method. The time
steps are coarse (Δ𝑡 = 0.5), to show how the numerical resolution introduces errors. The state
𝑈(𝑡) follows loosely the trajectory (dashed black) of the LIF model, represented in the middle
column. For the third series of spikes, an output is missed because of the numerical integration,
and the trajectory starts diverging from the one defined by the LIF model. Right (DEVS): The
LIF modeled and simulated using discrete-events. Note how the state stays constant between
two inputs (opposed to the DTSS simulation where the state remains constant only between
any two time steps). In this scenario, where the input is scarce, the method is computationally
advantageous since there are many fewer events than time steps during the simulation interval.
The simulated trajectory is also closer to the true one, and no spike is missed.

Numerical simulations are an important tool for model validation or to better understand how
a system works, for instance by looking at discrepancies between simulated results and in vivo
experimental results. In this section we take a look at the necessary material for understanding
the science of simulation programming in the particular case where time is the main variable.

There are three main interconnected entities (sometimes called components) in simulation
software: the time management algorithm, the system formalism class and a formulation of the
model to simulate fitting within the system formalism. We first present, in this brief introduction,
the three main systems formalism classes as defined by [151, 154], then the time management
algorithms. The leaky integrate-and-fire (LIF) model is taken as an example, for two reasons. First,
efficient simulation algorithms for this particular model have been explored in [16, 104, 154], for
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both discrete-time systems specification (DTSS) and discrete-event systems specification (DEVS).
Second is that the analytical solution of the differential equation describing the subthreshold
dynamic is well known in the computational neuroscience literature [16, 45, 103, 119, 135]. Finally,
at the end of this section, we take the time to expose two central concepts in simulation science:
pseudo-random number generators and data structures.

�.�.� System formalisms

The three classes of system formalisms are DESS, DTSS and DEVS. We do not develop the DESS
formalism here, since the LIF model cannot be described in terms of DESS because of the discon-
tinuities in the model. However, the differential equations can be numerized and simulated in
terms of DTSS or DEVS [43].

DTSS: Discrete-Time System Specification

The DTSS is the family of models defined piecewise with discrete-time increments, such as
discretized differential equations and automata. A DTSS model is defined as the set

DTSS = {𝑋, 𝑌 , S , 𝛿, 𝜆}

where

• 𝑋 is the set of input to the model

• 𝑌 is the set of output from the model

• S is the set of possible states of the model

• 𝛿 ∶ S × 𝑋 → S is the state transition function

• 𝜆 ∶ S → 𝑌 is the output function

For instance, a discretized version of the LIF model can use the Euler method with fixed time
increments to characterize the state of the model. The sets of input and output remain composed
of spikes, but the input and output spiking times 𝑡 now are multiple of the same time steps
𝑡 = 𝑘 ⋅ Δ𝑡, 𝑘 ∈ N. Note that this is a source of divergence between the trajectory of a DTSS version
of a model and the trajectory of the true model. This divergence, and how to reduce it, is also an
active area of research: see for instance [45, 103, 119, 135]. An example is given on figure 1.8, using
a very coarse time discretization to exhibit the possible divergence.
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DEVS: Discrete-Event System Specification

DEVS is a modeling and simulation framework. Despite using discrete-events, DEVS can be used
for modeling both discrete-time and discrete-event systems. It was introduced for the first time by
Zeigler in 1984 in the first edition of Theory of Modeling and Simulation [152], though we refer
readers to the more modern version [154].

The formalism creates a clear divide between the model and the simulator. A model in the DEVS
formalism can be either Atomic or Coupled. An atomic model is described by a mathematical
structure:

𝐴𝑀 = {𝑋, 𝑆, 𝑌 , 𝛿int, 𝛿ext, 𝛿conf, 𝜆, 𝑡𝑎}

where

• 𝑋 is the set of input values

• S is the state of states

• 𝑌 is the state of output values

• 𝛿int ∶ S → S is the transition function for internal events

• 𝛿ext ∶ 𝑄 × 𝑋 → S is the transition function for external events, where

– 𝑄 = {(𝑠, 𝑒)|𝑠 ∈ S , 0 ≤ 𝑒 ≤ 𝑡𝑎(𝑠)}

– 𝑒 ∈ R+ is the time elapsed since the last transition

• 𝜆 ∶ S → 𝑌 is the output function

• 𝑡𝑎 ∶ S → R+ is the function computing the time until the next internal transition from
the current state 𝑠

• 𝛿conf ∶ 𝑄 × 𝑋 → S is the transition function when there is an internal and an external
event happens at the same time

For instance, for a LIF model, the internal event 𝛿int corresponds to the natural return of the
potential to the resting value. The external transition function computes what happens when an
action potential arrives through the dendrites of the neuron (namely the increase or decrease of the
potential). The 𝜆 function computes the spike that is emitted when the neuron generates an action
potential. The time advance function tells the time until the transmembrane potential reaches
the resting potential value. An example of the trajectory of the LIF model defined under DEVS
is displayed as the right column of figure 1.8. Note that in this example, we used the analytical
solution available for the LIF model, but that other methods exists, such as a quantized version
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of the LIF, developped by Kofman et al [43]. Indeed, in the general case, the simulation of a
continuous system can be achieved by using the quantization of the state described in [72].

Coupling model

Under suitable conditions, any models from one of the three families DTSS, DESS and DEVS can
be coupled together, under a structure called a coupling model [154]. This coupling model simply
describes the set of atomic models and how they are connected. The DEVS formalism additionally
allows the use of input and output ports on the models, so that two models can share multiple
connections. Again, examples can be found in [154].

Differences between the three classes

DTSS and DEVS are two families that generally contain a representation of the discretization of a
DESS model (or a discrete modeling of a DESS model), or a model based on a system of differential
equations in general. The DTSS class represents the models where the time is represented by a
clock-driven fashion, while the DEVS class includes the models where time evolves by jumps
between discrete-events.
The figure1.8 is a graphical display of the differences between a DTSS, and a DEVS representation
of the same model, using the LIF model described in section 1.3.3 as an example. The exact
integration of the LIF model has been taken in [128]. Though the DTSS and DEVS version of
the LIF are both approximations of the trajectory of the state displayed in the middle column of
figure 1.8, the trajectory of the DEVS version of the LIF model stays closer to the theoretical one,
because there are less state update, thus less introduction of numerical errors. Note also that in
this example the spikes are conveniently placed exactly as multiples of the time step on the left
column, but that in practice spikes often end up occurring in between time steps. We recall the
work of [45, 103, 119, 135] for a mathematical solution involving interpolation of the spiking time.
To keep computational cost low, the solution which is often preferred is to simply choose very thin
time steps. This is especially a necessity when each synapse creates its own delay, as explained
in [70], where model size was crucial since they used a procedural connectivity, alike the one we
proposed in chapters 2 and 4, to fit large-scale neural network on a GPU.

TheDEVS formalismmay seem cumbersome at first sight, and this is one of the critiques that has
been raised against it [140]. However, note that the formalism removes the need for interpretation
in the model (which is also a critique formulated in [140]). There is no bijection between the
models we create as scientists and the physical world. Furthermore, there is no bijection either
betweenmodels and their implementation in general, since implementation details focusmainly on
choosing the right data structure, the right programming language, sometimes the right hardware
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architecture. The liberty left to the scientists implementing the models hinders the reproducibility
of results, since different implementations may interpret the models differently. This is also a
problem for sharing models within scientific communities, and even worse between scientific
communities, since different communities often have different practices, computer science literacy,
and history of the software in use.

The DEVS formalism can be a way to reduce these frontiers since it sets a formal framework for
defining models that removes modeler interpretation. If the functions and sets are well defined,
then any implementation of a DEVS simulator will produce the same simulation output as any
other DEVS simulator, given the same stream of random numbers.

We understand, however, that the quality of the formalism does not lie in the execution speed
of the simulations implementing it, since the formalism forbids taking design a simulator to take
advantage of certain properties of any particular model. Prototyping or proof-of-concept, however,
can still be designed using the DEVS formalism, which would facilitate the diffusion of new ideas
if the DEVS formalism was more broadly adopted. Research teams could then separately take time
for implementing faster versions of a new model or algorithm, knowing on top of that they can
rely on the first version of the simulator for the model for testing other kinds of implementations.
This is at least a work habit we would like to promote here.

�.�.� Time management algorithms

Simulation time management can be achieved using either a clock-driven (also called a discrete-
time) approach or an event-driven (also called discrete-event) one. They differ by the way time is
discretized: cut in batches of fixed size for the discrete-clock scheme, and reduced to a sequence
of discrete events for the event-driven strategy. A thorough discussion and historical review on
the matter can be found in [154].

Discrete-time simulations

The easiest and most common approach is to discretize time, using either a fixed or variable time
step. Starting from an initial condition defined by the modeler, the simulator engine updates the
time variable and computes the state of the system at this value of time, then repeats until an
ending condition is met. The algorithm 6 illustrates the simulation procedure with discrete-time.

The algorithm relies on two functions, computing the state transition and ending condition,
which are applied iteratively starting with a user-specified initial state 𝑆0 at time 𝑡0.. If S is the
set of states, we define the functions transition and continue as:

• transition(𝑆, 𝑡):S ×R → S computes the new state 𝑆′ after transitioning at time 𝑡 from
state 𝑆.
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• continue(𝑆, 𝑡):S ×R → {0, 1} tells whether the ending condition is reached if the system
is in state 𝑆 at time 𝑡.

Algorithm 6 Stereotypical algorithm for computing discrete-time model trajectories
1: 𝑡 ← 𝑡0
2: 𝑆 ← 𝑆0
3: while continue(𝑆, 𝑡) do
4: 𝑆 ← transition(𝑆, 𝑡)
5: 𝑡 ← 𝑡 + 𝑡step
6: end while

On top of being easy to implement and understand, the algorithm allows the simulation of
equations for which an analytical solution or a numerical version is unknown. For discretized
differential equations, the algorithm is true at the limit 𝑡step → 0, so the time steps should be
chosen small enough to get a good numerical approximation. The algorithm can also easily be
computed in parallel if sub-components can be extracted from the system.

The method suffers some drawbacks too, which are important to acknowledge before using it.
Due to the fact the time steps should be small, the number of iterations needed to update the system
will be large and the rounding errors may become a problem because of the accumulation. Besides
the algorithm cannot adapt to the rate of new points it generates, and if the average generation
rate is low (see biological background for the average spike rate generation), then most of the
computation time will be spent on updating an unchanged system.

To solve some of these issues, another simulation scheme has been invented, which we must
know detail further.

Discrete-event simulations

A more subtle solution is to try to update the system only when a change in the state of the system
happen. Such possible state change in time is called an event. Note that the change of state is
instantaneous, even if the model in continuous time describes a continuous evolution of the state
between the time of two events. The algorithm is very similar to the one used for discrete-time
simulation, but requires a new function: time_advance(𝑆, 𝑡) ∶ S ×R → S . Given the state 𝑆 of
a system and the current time 𝑡, the function returns the time 𝑡 of the next change of state in the
system. The function transition(𝑆, 𝑡) ∶ S ×R → S must then be able to compute the transition
from state 𝑆 to the new state. The simulation procedure is described in algorithm 7.

Note that in the case of complex systems with multiple interconnected components (coupled
components), the time_advance function must be able to choose which component to prioritize if
the output of the time_advance function differs from components to components. The usual choice
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Algorithm 7 Stereotypical algorithm for computing discrete-event model trajectories
1: 𝑡 ← 𝑡0
2: 𝑆 ← 𝑆0
3: while continue(𝑆, 𝑡) do
4: 𝑡 ← time_advance(𝑆, 𝑡)
5: 𝑆 ← transition(𝑆, 𝑡)
6: end while

is to (i) compute the time_advance function independently for each component of the system
during initialization, (ii) keep the time of next events sorted at all time in order to, (iii) select the
smallest time at each iteration of the algorithm.

The clock-driven and event-driven time management algorithms we just described both present
the disadvantage to be applicable to only one type of model (derived from the DTSS class for
the clock-driven algorithm, derived from the DEVS class for the event-driven one), with no
place for interconnecting models. Furthermore, these algorithms make no assumption on the
models being simulated. Different wording of the same models may be incompatible with a
specific implementation of these time-management algorithms, or lead to discrepancies in the
outputs. If the scientific community focuses solely on these algorithms, model transfers become
harder and reproducibility of the results can be an issue. A solution which has been formalized
by Zeigler and al. [154] is to create a formal frame for system modeling, which would encompass
both discrete-time and discrete-event models.

Time management under coupling

The simulator of a coupled model stores at each time the value of the time advance 𝑡𝑎 function for
each atomic model in the system, and chooses the smallest for the next transition.

�.�.� Random numbers

Since computers are deterministic machines, can they compute random numbers? The answer to
this question is sadly no [78], but that did not stop mathematicians and computer scientists from
trying. The concept of pseudo-random number [78] emerged to describe numbers computed by
deterministic algorithms but for which statistical analysis would hardly tell the difference between
pseudo and perfectly random numbers.

There is a wide diversity of pseudo-random number generators (PRNG) having been developed
by the scientific community. Good examples of scientifically suitable random number generators
include the Mersenne-twister [97], gfsr4 [155], Xorshift (with caution [110]), WELL [111]. The
Mersenne-twister is actually one of the most widely used generators in scientific computing [79],
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being the default choice in programming languages like R, Python and to some extent C++. It is
also the pseudo-random number generator used in the work exposed in this thesis.

The following is mostly a summary of what can be found in [76].

Linear Recurrences modulo 𝑚

Pseudo-random number generation algorithms work by discrete transition 𝑥𝑖−1 → 𝑥𝑖 of their
internal state 𝑥⋅. The internal state is a set of bytes, or words, that is changed at each new random
number generation, and from which the random numbers are computed. The most popular choice
for the transition function is a linear recurrence of type

𝑥𝑖 = (𝑎1𝑥𝑖−1 + ⋯ + 𝑎𝑘𝑥𝑖−𝑘) mod𝑚

for some positive 𝑘, 𝑚 and coefficients (𝑎𝑖)𝑖 ∈ {0, … , 𝑚−1}, 𝑎𝑘 ≠ 0. The equation is often written
in matrix form

x𝑖 = Axi−1 mod𝑚

with x𝑖 = (𝑥𝑖−𝑘+1, … , 𝑥𝑖)𝑡.

A period of 𝑚𝑘 − 1 can be obtained when 𝑚 is a prime number and the coefficients 𝑎𝑖 are
appropriately chosen [71, 75]. The random numbers 𝑢𝑖 are computed either by using directly the
state 𝑥𝑖 of the generator (in which case 𝑢𝑖 ∈ {0, … , 𝑚 − 1}), or by choosing 𝑢𝑖 = 𝑥𝑖

𝑚 for instance.
We focus this review on two particular cases. The case where 𝑘 = 1 is called Linear Congruential
Generators (LCG), a classical but obsolete type of PRNG. The infamous RANDU is a member of
this family of generator for instance.

The case 𝑚 = 2 is a parametrization that is chosen by a large diversity of modern PRNG,
including LFSR, polynomial LCG, GFSR, WELL and the Mersenne-twister. The computation of
the output is generally modified as follows:

x𝑖 = Ax𝑖−1mod2

y𝑖 = Bx𝑖mod2

𝑢𝑖 =
𝑤

∑
𝑙=1

𝑦𝑖,(𝑙−1)2−𝑙

where A and B are respectively 𝑘 × 𝑘 and 𝑤 × 𝑘 binary matrices, and 𝑢𝑖 the 𝑖-th random number
generated.
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Importance of a good PRNG

IBM released in 1968 the now infamous RANDU PRNG, which was widely adopted and used
during a decade, because of the lack of instruction of the computer science community about
PRNG. We refer curious readers to [94] for an in-depth work of history and analysis about the
use of bad PRNG and their consequences. RANDU is now a famously bad generator, which fails
most statistical tests that have been developed since then. RANDU is a linear congruential PRNG,
which has parameters 𝑎 = 65539, 𝑐 = 0, 𝑚 = 231. The parameters have been explicitly chosen
for fast computation of the transition function: 𝑎 = 216 + 21 + 20, so multiplication by 𝑎 can be
executed with simple bit shifting (16 times and 1 time) and some additions, while the modulo
operation can also be executed with bit shifting. Figure 1.9 shows the correlation between any 3
consecutive numbers generated by RANDU. More precisely, if (𝑢𝑖−2, 𝑢𝑖−1, 𝑢𝑖) are 3 consecutive
numbers generated by RANDU, it is easy to demonstrate that 𝑢𝑖 = [6𝑢𝑖−1 − 9𝑢𝑖−2]mod231. This
correlation obviously makes RANDU a very bad random number generator. Note that this is in
fact a property of the class of linear congruential generators as demonstrated by Marsaglia in [96].

If a high number of choices exist, some have been tested and used for many years by the scientific
community, and therefore should be preferred over newer, less secure ones. In order to assert the
quality of a PRNG, some tests have been developed over the years. The NIST gives a battery of
tests for testing such software. Easier to use, and maybe of better quality (see chapter 11.8 and 11.9
of [64], also for the NIST suite), the Dieharder test series is a recognized battery of tests composed
of ideas from both the scientific community and users. Finally, the ”Crush” series (”Small Crush”,
”Crush” and ”Big Crush”, see [77]) are among the more thorough tests, though not as up to date
as the Dieharder suite since it is older. Note that most PRNG cannot pass all the tests [76], but
passing at least as many tests as highly recognized PRNGs such as the Mersenne-twister is the
minimum required for a new PRNG to get approved.

A story of seeds

Once a PRNG has been chosen, another important question is seeding. Just like for growing crops,
choosing good seeds is an important step to get healthy crops. Indeed, PRNG algorithms are
initialized by a seed, a number or a set of numbers provided by the user, sometimes unknowingly.
The algorithm then modifies this initial number in order to obtain a new, different number, then
repeats the operation on the new number. This series of numbers are called the state of the PRNG,
and can be different from what the PRNG will actually output in the end (sometimes the output of
the PRNG is the state itself, like for simple linear congruential generators [35, 76]).

Because the streams of random numbers generated depends exclusively on the initial state of
the PRNG, it is often important to start the PRNG with a state imbued with enough entropy. For
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Figure 1.9: Any triplet (𝑥, 𝑦, 𝑧) of numbers consecutively drawn from the RANDU generator is highly
correlated. The combination 9𝑥 − 6𝑦 + 𝑧 is displayed against the first value 𝑥 of any randomly
generated triplet.Left: what the result should look like when the numbers are generated using
a good PRNG, here a Mersenne-twister. Right: the same function, but now the triplets are
generated by successive calls to the RANDU PRNG. The outputs all fall within a small set of
hyperplanes.

instance, the initial version of the Mersenne-twister was known to have difficulties recovering
from a bad seeding, meaning a seed with a ratio between 0’s and 1’s far from 0.5 [111].

Entropy-based RNGs and true RNGs

Besides the pseudo-RNGs, another class of RNG exists based on entropy. Collecting data randomly
produced by the environment, they are able to generate ”true” random numbers [42]. In Linux-
based operating systems, the function urandom is one of the interfaces to this random number
generator. Their downside lies in their speed: since they collect events from real world devices
(mainly the hard drive, but also the keyboard, mouse or thermal noise in the processor chip [42])
in order to generate randomness, these kinds of algorithms are not able to generate too many
random numbers at a time (see [42]). This limit is in part due to the fact that these generators use
an entropy storage system, which is then used to generate random numbers. When the stock is
depleted, it must be refilled before the generator can generate new random numbers. They are
therefore not used in Monte Carlo scientific computing. Another reason is reproducibility: since
their output is unpredictable, and changes every call, a simulation using such a generator would
not be reproducible, unless the stream of numbers were stored along the simulation outputs.
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Random number generation for parallel streams

More and more applications are designed with parallel computing in mind. Parallelism is now
embedded directly in processors, even single core, through SIMD, while computers have gained
more core in the last years and supercomputers nowdeal with architectures of hundred of thousands
of cores. Furthermore, the rise of GPU computing has incentivized even more modelers to embed
parallelism in their models and simulation software, especially for Monte Carlo simulations. Not
all PRNGs are suitable for parallel simulations. The Mersenne-twister can be adapted for parallel
computing, and even GPU computing [139].

�.�.� Data Structures

Data structures is one of the most important topics in computer science: computing is processing
data, so the study of how to store these data is of prime importance. Or, as the Turing Award
laureate Niklaus Wirth titled his now famous entry level book on computer science: Algorithm +
data structure = program [148]. We expose here some of the commonly used data structures. We
use the notation of the NIST dictionary [11] of data structures, and encourage the reader to read
this resource for more information on the matter.

The most basic data structure is the array (illustrated figure 1.10a), which is simply a contiguous
area in memory. Elements in an array are identified with their relative index in the array, starting
either from 0 or 1 (depending on the language). Arrays are static data structure: once created the
size of an array cannot be changed. Elements can be read and modified, given their index in the
array. Arrays are often used to implement plain matrices.

A specialization of the static array is the dynamic array, which allows the insertion of new
elements at the end. To add an element in the middle of a dynamic array requires shifting the rest
of the array to the right.

The linked list is a specialized list (illustrated figure 1.10b), a data structure with a head and a
tail, and which supports insertion at both ends. It can be defined recursively: a linked list is a data
structure which is either 1) empty, or 2) a head node with a reference to a linked list. The linked
list additionally supports insertion in the middle without modifying the rest of the data structure.
This is possible because each element in the linked list possesses a link to the next element. Each
element has its own node which can be situated anywhere in memory. Random access is not
possible without reading sequentially the elements from the head or the tail of the list. Linked lists
are often used to implement sparse matrices.

The tree (illustrated figure 1.10c), particularly in its balanced specialization, is a middle ground
between the sorted dynamic array and the linked list. A tree is usually defined recursively. We
define here the binary tree, which is either 1) empty, or 2) a root node linked to a left binary tree
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(a) Illustration of an array (or a dynamic array) containing
5 elements. Each element is stored in a square, all the
squares being contiguous in memory. Elements are
identified by their relative index, here starting at 0 at
the left of the array.

(b) Illustration of a linked list with 3 elements. The head
and the tail are specified. The white square contains
the data, the black square contains the reference to the
next node of the linked list.

(c) Illustration of a binary tree with 5 elements. The root
and a leaf are identified. Each node is composed of a
data segment (white square), and two references, one
for the left tree and the other for the right tree. The tree
here is balanced: the height of the tree is 3 = ⌊log2 5⌋.

Figure 1.10: Graphical illustration of some classical and basic data structures.

and a right binary tree. The root node of a tree is the entry point of that tree. It is the only node
that has no parents. Trees for which their left and right tree are empty are called leaf. Balanced
trees use specific algorithms at insertion and deletion so that no leaf is farther away from the root
of the tree than any other leaf.

Binary tree data structures are often designed to keep the elements stored sorted, which is why
they are often used in event-driven simulation (see chapter 3).

Algorithms complexity

In computer science, the complexity of an algorithm is a function indicating the amount of
resources needed by an algorithm, depending on the data given as input. Complexities are often
denoted using big-O notations, with the same intent as how mathematicians use the notation: the
resources taken by the algorithm are expected to be of the order of the announced complexity
value.

The complexity that is the most often computed is the time complexity of an algorithm, in other
words, how long it takes for an algorithm to finish, depending on the input data. The computation
of the complexity of an algorithm often requires mathematical insight of the algorithm, see for
instance chapter 3.
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For the data structure presented in section 1.4.4, the time complexity depends on the number
of elements 𝑛 already present in the structure. Thus, the cost of reading or modifying an element 𝑒
at index 𝑖 in an array 𝑎 is O(𝑎.set(𝑖, 𝑒)) = O(𝑎.get(𝑖)) = O(1). For the linked list 𝑙 however, the
cost depends on the index of the element: O(𝑙.set(𝑖, 𝑒)) = O(𝑙.get(𝑖)) = O(𝑖).

The cost of adding an element 𝑒 at index 𝑖 of an array of size 𝑛 depends on its relative position
to the end: O(𝑎.add_at(𝑖, 𝑒)) = O(𝑛 − 𝑖) (without accounting for memory management costs).
Indeed, using example of figure 1.10a, adding a new element between position 1 and 2 necessitates
replacing the element of index 2 with the new one, then replacing the element in position 3 by
the element which was before in position 2, and continue until all elements of index larger than 2
have been shifted to the right ones. Adding an element at the head of a linked list, however, has
constant cost O(1).

Finally, the complexity of an operation looking for an element 𝑒 or modifying a balanced binary
tree 𝑡 is proportional to the logarithm base 2 of the number of elements in the tree: O(𝑡.add(𝑒)) =
O(𝑡.get(𝑒)) = O(log2 𝑛).

�.� Software

The algorithms proposed in this thesis have also been implemented, validated experimentally and
are available as open source software. The links to get the source code as well as the documentation
are given in this section. We also provide some implementation details and a summary of what
the software achieve.

GODDESS: Graph-based randOm Discrete-Event Simulator

The GODDESS is an implementation of the DEVS formalism. It is a modified version of the
architecture standard proposed by Hu [57]. The goal of the simulator is to provide an efficient and
generic DEVS simulator using a simplified architecture. The software uses for instance the base
class Object of Java as the base class for all the DEVS objects, in order to remove the need for an
artificial base class as proposed in [57].

Some applications have already been implemented in the simulator. The main application is
a neural network, using an Input-Brain-Output (IBO) architecture and LIF neuron model. The
second main application is a Hawkes point process simulator, which has served as a prototype
for testing the applicability of the DEVS formalism for the simulation of point processes models.
Another application include a rudimentary real-time DEVS (RT-DEVS) simulator.
URL: https://redmine2.i3s.unice.fr/projects/goddess
Language: Java (simulation) and R (statictical analysis)
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1.5 Software

Versioning system: git

Ornstein-Uhlenbeck simulator

The Ornstein-Uhlenbeck simulator was prototyped in Java during the 2017 edition of the CEM-
RACS, then simplified and reimplemented in C. The goal behind this Ornstein-Uhlenbeck simula-
tor is the study of the explosivity of model under certain sets of parameters, for very large networks.
A parallel version of the simulator is also available. It uses OpenMP for the parallelization of the
biggest tasks, such as the network generation and the main loop. It is also for this simulator that
we proposed and successfully experimented a procedural connectivity protocol for the storage of
the interaction matrices.

This simulator has been used to obtain in part the results of the article presented in chapter 2.
The simulator opens the way for using discrete-event techniques for the improving the simulation
algorithm of stochastic processes.

URL: https://github.com/mascartcyrille/cemracs
Language: Java and C (simulation)
Versioning system: git

SPIKES: Sparse graPh multIvaried hawKes point procEss Simulation

SPIKES is the descendant of the Hawkes simulator implemented in GODDESS, but uses C++
as main language instead of Java. The goal was to obtain a more efficient simulator, in terms of
both speed and memory, than the one available in GODDESS. Since the first objective was the
comparison between our newly proposed algorithm and the classical algorithm by Ogata (see
section 1.2.8), we also wanted to remove the parts pertaining to the DEVS formalism and that
were unnecessary for the simulation of a Hawkes process. The main ideas (separation of simulator
and model, discrete-event based simulator, internal and external events) are still present, though
some names have been changed.

A set of tools for statistical analysis of point processes, based on the UnitEvents R package, is
also available in the library. It is a series of goodness-of-fit tests for validating that the simulator
accurately simulates a Hawkes process. This can be used for test-driven implementation, or when
changes are made to the simulator for instance.

URL: https://gitlab.inria.fr/neuromod/nm-spikes
Language: C++ (simulation), R (statistical analysis)
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1 Introduction

Versioning system: git

�.� Organization

This introduction constitutes the chapter 1 of this document, while the rest of the thesis is composed
of three chapters, along with the conclusion. The three chapters are the transcript of articles that
have been submitted to peer-reviewed journal. Only the first one has been fully accepted yet, and
is published in ESAIM: Proceedings and Surveys. This is chapter 2 of the manuscript, which deals
with the efficient simulation of large-scale stochastic process. The chapter 3 has been accepted
in TOMACS, at the condition of minor modifications. Chapter 4 is still under the peer-review
process. These two chapters deal with the efficient simulation of point process, and Hawkes point
process in particular. At last, the conclusion synthesizes the whole thesis work and broaches on
open questions and future works.
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� Article �: Network of interacting
neurons with random synaptic
weights

Written by P. Grazieschi, M. Leocata, C. Mascart, J. Chevallier, F. Delarue, E. Tanré

In this article we explored the dynamic of a model of a network of 𝑁 spiking neurons. The
transmembrane potential of individual neurons is modeled using a stochastic version of the Leaky
Integrate and Fire, called Ornstein-Uhlenbeck. The interactions are instantaneous in this model,
which can create singularities (an infinite amount of spikes can be emitted in a finite time). The goal
is to search for initial conditions that can lead to singularities, in particular, how the connectivity
and the connections weights condition the singularity.

The article is divided in two parts. First a collection of mathematical results on the behavior of
the solution, when the synaptic weights are random and the connection graph is an instance of an
Erdös-Renyi graph. The second part focuses on the algorithm that can be used for simulating this
model.

My contributions to this article is the creation and implementation of an efficient discrete-event
algorithm in the second part. In particular, a new algorithm and a data structure for procedural
connectivity are proposed at the end of the article, along with the computation of the theoretical
complexity values for memory and time.

Status: Submitted and published in ESAIM
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2 Article 1: Network of interacting neurons with random synaptic weights

Abstract

Since the pioneering works of Lapicque [16] and of Hodgkin and Huxley [15], several types
of models have been addressed to describe the evolution in time of the potential of the mem-
brane of a neuron. In this note, we investigate a connected version of 𝑁 neurons obeying
the leaky integrate and fire model, previously introduced in [1, 2, 3, 6, 7, 14, 17, 19, 21]. As a
main feature, neurons interact with one another in a mean field instantaneous way. Due to
the instantaneity of the interactions, singularities may emerge in a finite time. For instance,
the solution of the corresponding Fokker-Planck equation describing the collective behavior
of the potentials of the neurons in the limit 𝑁 → ∞ may degenerate and cease to exist in
any standard sense after a finite time. Here we focus out on a variant of this model when the
interactions between the neurons are also subjected to random synaptic weights. As a typical
instance, we address the case when the connection graph is the realization of an Erdös-Renyi
graph. After a brief introduction of the model, we collect several theoretical results on the
behavior of the solution. In a last step, we provide an algorithm for simulating a network of
this type with a possibly large value of 𝑁.

�.� Introduction

�.�.� From a model for one neuron to a model for 𝑁 neurons

One of the first models for neurons was introduced by Louis Lapicque in 1907, see [16]. It is
called Integrate and Fire (IF) model. The membrane potential (𝑋(𝑡))𝑡 of a neuron evolves in time
according to the simple electrical equation

𝐼(𝑡) = 𝐶𝑑𝑋(𝑡)
𝑑𝑡

,

where (𝐼(𝑡))𝑡 is an input current that goes through the membrane. The above equation holds true
up until the neuron emits a spike. We use the generic notation 𝜏𝐹 for the spiking time. From the
mathematical point of view, 𝜏𝐹 is regarded as the first time when the membrane potential reaches
a certain hard threshold value 𝑋𝐹, the latter being referred to as a firing value. Equivalently, the
time 𝜏𝐹 is nothing but the first hitting time of 𝑋𝐹. As just mentioned, it must be seen as a firing
time at which the neuron emits a spike. After 𝜏𝐹, the dynamics are continued in the following
way: At time 𝜏𝐹, the potential is reset to a reset value 𝑋𝑅 and the dynamics are refreshed from
𝑋𝑅. This model serves as the basis for a large variety of other neural network models developed
in order to model more accurately certain behaviors of neurons and neural networks, such as
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2.1 Introduction

memory, leaking, etc. For instance, a common feature is to write the sub-threshold dynamics of the
membrane potential in the form of a stochastic (instead of ordinary) differential equation:

𝑑𝑋𝑡 = 𝑏(𝑋𝑡)𝑑𝑡 + 𝐼𝑡𝑑𝑡 + 𝑑𝑊𝑡,

for 𝑡 < 𝜏𝐹, where (𝐼𝑡)𝑡 describes the mean trend of the input current (we here use the probabilistic
convention: the time parameter is put in index) and ( 𝑑

𝑑𝑡 𝑊𝑡)𝑡 is a white noise accounting for
fluctuations in the input. A typical choice for the coefficient 𝑏 is 𝑏(𝑥) = −𝜆(𝑥 − 𝑎), in which case 𝜆
reads for some leakage parameter. This model is commonly referred to as a stochastic LIF model.

In this article, we address a network of 𝑁 connected neurons that evolve according to a variant of
the above stochastic LIF model. We describe the discrete system of neurons through the evolution
in time of the membrane potentials of each of the neurons: The membrane potential of neuron 𝑖
(for 𝑖 = 1, ⋯ , 𝑁) is described by a process 𝑋𝑖 = (𝑋𝑖

𝑡)𝑡≥0. The sub-threshold dynamics of each 𝑋𝑖

are of the general form:

𝑑𝑋𝑖
𝑡 = 𝑏(𝑋𝑖

𝑡)𝑑𝑡 + 𝑑𝐼 𝑖, network
𝑡 + 𝑑𝑊 𝑖

𝑡 , 𝑡 ≥ 0, 𝑖 = 1, ⋯ , 𝑁,

with initial conditions 𝑋𝑖
0 < 𝑋𝐹. Here (𝑋𝑖

0)𝑖=1,⋯,𝑁 is a family of independent and identically
distributed random variables and (𝑊 𝑖)𝑖=1,⋯,𝑁 is a family of independent Brownian motions, the
initial conditions and the noises being independent. The term 𝑑𝐼 𝑖, network

𝑡 models the current that
neuron 𝑖 receives at time 𝑡 from the other neurons. As above, the value 𝑋𝐹 is a firing threshold,
which is assumed to be common to all the neurons: Whenever a neuron reaches the threshold
value 𝑋𝐹, its potential is reset to 𝑋𝑅, 𝑋𝑅 being the same for all the neurons.

For sure, the term 𝑑𝐼 𝑖, network
𝑡 is of great importance in the description of the model. Inspired

by [17, 21], we choose 𝑑𝐼 𝑖, network
𝑡 in the form

𝑑𝐼 𝑖, network
𝑡 =

𝑁

∑
𝑗=1

∑
𝑘≥1

𝐽 𝑗→𝑖
𝑁 𝑑𝛿0(𝑡 − 𝜏𝑗

𝑘),

where 𝛿0 is the Dirac delta measure in 0, 𝜏𝑗
𝑘 (for some 𝑗 = 1, ..., 𝑁 and 𝑘 ∈ N) is the 𝑘-th time at

which the potential of neuron 𝑗 reaches the threshold value 𝑋𝐹, and 𝐽 𝑗→𝑖
𝑁 is a synaptic weight that

prescribes the influence of neuron 𝑗 onto neuron 𝑖. In case when the synaptic weight is positive,
the interaction from 𝑗 to 𝑖 is excitatory; otherwise, it is inhibitory. It is worth mentioning that,
with the above prescription, (𝑑𝐼 𝑖, network

𝑡 )𝑡 is not exactly a current since the measure 𝑑𝐼 𝑖, network
𝑡

is singular. Differently, the term 𝑑𝐼 𝑖, network
𝑡 account for impulses received by neuron 𝑖 from the

network at time 𝑡. These impulses account for the instantaneity of the interactions: each time
neuron 𝑗 spikes, neuron 𝑖 feels a pulse of intensity 𝐽 𝑗→𝑖

𝑁 .
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2 Article 1: Network of interacting neurons with random synaptic weights

The main purpose of this note is to address the case when the synaptic weights are of the form

𝐽 𝑗→𝑖
𝑁 =

𝛽
𝑁

𝛼𝑖,𝑗,

where 𝛽 is a scaling parameter that calibrates the global connectivity of the network and 𝛼𝑖,𝑗

represents some variability in the synaptic weight between neurons 𝑖 and 𝑗. The factor 1/𝑁 is
typical of a mean field model. The main feature is that we allow the weights (𝛼𝑖,𝑗)𝑖,𝑗=1,⋯,𝑁 to be
random, in which case the tuples (𝑋𝑖

0)𝑖=1,⋯,𝑁, ((𝑊 𝑖
𝑡 )𝑡≥0)𝑖=1,⋯,𝑁 and (𝛼𝑖,𝑗)𝑖,𝑗=1,⋯,𝑁 are required

to be independent.
The idea below is to study the behavior of the system, when 𝑁 is large, considering different

kind of randomness for 𝛼𝑖,𝑗.

�.�.� Mean field limit

The time integrated version of the dynamics may be put in the more accessible form:

⎧⎪
⎨
⎪⎩

𝑋𝑖
𝑡 = 𝑋𝑖

0 + ∫𝑡
0 𝑏(𝑋𝑖

𝑠)𝑑𝑠 + ∑𝑁
𝑗=1 ∑𝑘≥1 𝐽 𝑗→𝑖

𝑁 1{𝜏𝑗
𝑘≤𝑡} + 𝑊 𝑖

𝑡 , if 𝑋𝑖
𝑡− < 𝑋𝐹,

𝑋𝑖
𝑡 = 𝑋𝑅, if 𝑋𝑖

𝑡− = 𝑋𝐹.
(2.1)

The case 𝐽 𝑗→𝑖
𝑁 = 𝛼/𝑁, for a deterministic factor 𝛼, has been already addressed in several papers,

among which [1, 2, 3, 6, 7, 17, 21]. In all these references, authors have paid much effort to discuss
the asymptotic regime 𝑁 → ∞.

Because of the normalization factor 𝛼/𝑁 in the interaction term and by independence of the
various sources of noise, we may indeed expect from standard results on large particle system with
mean field interaction, see for instance [23], that neurons become independent asymptotically,
each of them solving in the limit a nonlinear stochastic differential equation with interaction
with the common theoretical distribution of the network. In the limiting network, the membrane
potential (𝑋𝑡)𝑡 of a representative neuron should evolve according to the equation:

⎧⎪
⎨
⎪⎩

𝑋𝑡 = 𝑋0 + ∫𝑡
0 𝑏(𝑋𝑠)𝑑𝑠 + 𝛼𝔼[∑𝑘≥1 1{𝜏𝑘≤𝑡}] + 𝑊𝑡, if 𝑋𝑡− < 𝑋𝐹,

𝑋𝑡 = 𝑋𝑅, if 𝑋𝑡− = 𝑋𝐹,
(2.2)

where 𝑊 = (𝑊𝑡)𝑡 is the proper noise to the representative neuron and (𝜏𝑘)𝑘 stands for its own
spike train. Passage from (2.1) to (2.2) is usually referred to as propagation of chaos in the literature.
While it may be simpler to justify for systems with regular interactions, it turns out to be a much
more challenging problem in the current framework because of the instantaneity of the interactions
between the neurons.
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2.1 Introduction

In fact, even equation (2.2) itself –which should be called a McKean Vlasov equation– is a
difficult object to study, especially in the excitatory regime 𝛼 > 0. In order to address its well-
posedness, two approaches are conceivable, a PDE one and a probabilistic one. The PDE approach
is based upon the description, through the so-called Fokker-Planck equation, of the evolution of
the marginal law of the potential. We refer to [1, 2, 3]. The probabilistic route is to analyze directly
equation (2.2), see [6, 7] and the more recent contributions [14, 19]. In fact, both approaches face
the same difficulty: Whenever the interaction parameter 𝛼 is too large, the system may blow up
in some sense. Heuristically, a blow-up occurs when a large proportion of neurons in the finite
network spike at the same time; in the limit regime, a blow up occurs when the time derivative
of the mean field term in (2.2) is infinite. It is proven in [1, 6] that a blow up appears if the mass
of the initial distribution is too concentrated near the firing threshold 𝑋𝐹 and, conversely, that
no blow up appears if the initial mass is sufficiently far away from 𝑋𝐹. While global existence
of solutions with a blow up is addressed in [7] local uniqueness results are shown in [6, 14, 19]:

In these latter references, successive improvements are obtained on the length of the interval on
which uniqueness is known to hold.

Blow up not only matters for the limiting mean field equation. Going back to the particle system,
we understand that the difference between the two values 𝑋𝐹 and 𝑋𝑅 is certainly important
because it must influence, among others, the typical delay between two consecutive spikes. In
particular, when 𝛼 is large in comparison with 𝑋𝐹 − 𝑋𝑅, a neuron may spike at a high frequency
because of the pulses received from the others. This stylized fact is at the core of our analysis. Still,
the reader must be aware that, in biological models, an additional refractory period is usually
added, during which a neuron is somehow locked after a spike. Here we shall not include such a
refractory period; for sure, it would ask for further investigations.

Whilst the case 𝐽 𝑗→𝑖
𝑁 = 𝛼/𝑁 has received much attention in the literature, the case of random

synaptic weights has received limited attention. This is our precise objective to understand how
randomness in the synaptic weights may impact the passage from (2.1) to (2.2) and how it may
impact the emergence of a blow up in the system. In this regard, it is worth noticing that another
form of inhomogeneous connection is addressed in [18]: Therein, a finite network of distinct
infinite populations is studied; inhomogeneous weights are used to describe the connections
between populations.
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2 Article 1: Network of interacting neurons with random synaptic weights

�.�.� Model with random synaptic weights

Throughout the text, we will take 𝑋𝐹 = 1 and 𝑋𝑅 = 0. This permits to rewrite equation (2.1) for
the network of 𝑁 ∈ N neurons in the following more concise form:

𝑋𝑖
𝑡 = 𝑋𝑖

0 + ∫
𝑡

0
𝑏(𝑋𝑖

𝑠)𝑑𝑠 + 𝑊 𝑖
𝑡 +

𝑁

∑
𝑗=1

𝐽 𝑗→𝑖
𝑁 𝑀 𝑗

𝑡 − 𝑀 𝑖
𝑡 , (2.3)

where the process 𝑀 𝑖
𝑡 counts the number of times that the potential of neuron 𝑖 has reached the

threshold value 𝑋𝐹 = 1; formally, we may write

𝑀 𝑖
𝑡 = ∫

𝑡

0 ∑
𝑘∈N

𝑑𝛿0(𝑠 − 𝜏 𝑖
𝑘) = ∑

𝑘∈N
1[0,𝑡](𝜏 𝑖

𝑘),

with 𝜏 𝑖
𝑘 standing for the random time at which the process 𝑋𝑖 reaches the threshold for the 𝑘-th

time.

As already announced, we will discuss the behavior of the system for different types of variables
{𝐽 𝑗→𝑖

𝑁 }𝑖,𝑗=1,⋅,𝑁. Particularly, we will address the case 𝐽 𝑗→𝑖
𝑁 = 𝛽 𝛼𝑖,𝑗/𝑁, with 𝛽 > 0 constant and:

1. 𝛼𝑖,𝑗 ∼ ℬ(𝑝) i.i.d.;

2. 𝛼𝑖,𝑗 dependent with 𝛼𝑖,𝑗 = 𝛼𝑖𝛼𝑗 and 𝛼𝑖 ∼ ℬ(𝑝) i.i.d.;

3. 𝛼𝑖,𝑗 dependent with 𝛼𝑖,𝑗 = 𝑝𝛼𝑖 and 𝛼𝑖 ∼ ℬ(𝑝) i.i.d.;

4. 𝛼𝑖,𝑗 ∼ ℬ(𝑝𝑁) i.i.d. with lim𝑁→∞ 𝑝𝑁 = 0.

The note is organized as follows. We provide some theoretical results in Section 2.2. Section 2.3
is dedicated to the presentation of an algorithm for simulating (a variant of) the particle system
with a large value of 𝑁. Throughout the text, all the Brownian motions are normalized, meaning
that their volatility is 1.

�.� Mathematical inquiries

This section is dedicated to a theoretical analysis of (2.3), choosing 𝑋𝐹 = 1 as firing threshold and
𝑋𝑅 = 0 as firing potential. Throughout the section, we discuss (sometimes in a pretty informal
way) the form of the limiting mean field equation together with the existence of a blow-up, as
defined in the previous section.
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2.2 Mathematical inquiries

�.�.� Independent Random weights: alphaîsim mathcalB(p)

Let us consider the case where the connections are i.i.d. Bernoulli variables, with a parameter 𝑝 that
is independent of 𝑁, namely 𝛼𝑖,𝑗 ∼ ℬ(𝑝) (this is case (1) in Subsection 2.1.3). From a modeling
point of view, this amounts to say that the neurons are connected through the realization of an
Erdös-Renyi graph. The first purpose is to conjecture what is the limit equation, or equivalently
the analogue of (2.2), for the network.

Observe first that, whenever 𝑝 = 1, the synaptic weight takes the form 𝐽 𝑗→𝑖 = 𝛽/𝑁, which
exactly fits the case addressed in (2.2). By some heuristic calculation, we expect that, in the more
general case 𝑝 ∈ (0, 1], the limiting mean field term manifests in the form:

𝑝 ⋅ 𝛽 ⋅ 𝔼[𝑀𝑡].

Intuitively, the reason is that, as 𝑁 → ∞, not only the neurons should become asymptotically
independent between them, but also they should become independent of the synaptic weights.
Indeed a given neuron 𝑖 feels less and less the values of each 𝛼𝑖,𝑗 as 𝑁 grows up; this means that,
applying a law of large numbers, the interaction term in (2.3) should get closer and closer to

𝛽
𝑁

𝔼
[

𝑁

∑
𝑗=1

𝛼𝑖,𝑗𝑀 𝑗
𝑡 ]

=
𝛽
𝑁

𝔼
[∫

𝑡

0

𝑁

∑
𝑗=1

∑
𝑘

𝛼𝑖,𝑗𝑑𝛿(𝑠 − 𝜏𝑗
𝑘)

]
=

𝛽
𝑁

𝔼
[

𝑁

∑
𝑗=1

∑
𝑘

𝛼𝑖,𝑗
1{𝜏𝑗

𝑘≤𝑡}]
≈ 𝑝⋅𝛽⋅𝔼[𝑀𝑡].

So, as a limit equation for the network, we expect the following (at least in the sub-threshold
regime):

𝑋𝑡 = 𝑋0 + ∫
𝑡

0
𝑏(𝑋𝑠)𝑑𝑠 + 𝛽 ⋅ 𝑝 ⋅ 𝔼[𝑀𝑡] + 𝑊𝑡 − 𝑀𝑡, (2.4)

with 𝑀𝑡 = ∑𝑘∈N 1[0,𝑡](𝜏𝑘). In other words, the Bernoulli parameter should scale as a linear factor
in the intensity of the interaction. In particular, if our derivation is correct, the limiting equation
fits the framework considered in [1, 2, 3, 6, 7]. We will come back to this point next.

For the time being, we have in mind to justify more rigorously the conjectured equation. To do
so, we propose the following argument based on a simple model for propagation of chaos.

�.�.� On the Derivation of the limit equation in a toy model

To get an idea of the behavior of particles in our setting, we consider the simpler model in which
the processes (𝑋𝑖)𝑖 satisfy the following system of equations:

𝑑𝑋𝑖
𝑡 = 1

𝑁

𝑁

∑
𝑗=1

𝛼𝑖,𝑗𝑋𝑗
𝑡 𝑑𝑡 + 𝑑𝑊 𝑖

𝑡 , 𝑖 = 1, ⋯ , 𝑁, (2.5)
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where (𝛼𝑖,𝑗)𝑖,𝑗=1,...,𝑁 is a family of i.i.d. bounded random variables and (𝑊 𝑖)𝑖 is a family of indepen-
dent standard Brownian motions. The families (𝛼𝑖,𝑗)𝑖,𝑗 and (𝑊 𝑖)𝑖 are assumed to be independent.
For simplicity, we do not address the influence of the threshold and do as if 𝑋𝐹 was equal to +∞.
Also, we take the same deterministic initial conditions 𝑋𝑖

0 = 𝑥0 for all the particles.

We use the technique of coupling introduced in [23]. That is, we want to show convergence of
(2.5) to

𝑑�̄�𝑡 = E[𝛼]E[�̄�𝑡]𝑑𝑡 + 𝑑𝑊𝑡, �̄�0 = 𝑥0, (2.6)

where 𝛼 is another random variable with the same distribution as each 𝛼𝑖,𝑗 and 𝑊 is a standard
Brownian. Although it is not needed to state the equation, we assume for convenience that 𝛼 and
𝑊 are independent and that (𝛼, 𝑊 ) is independent of the family ((𝛼𝑖,𝑗)𝑖,𝑗, (𝑊𝑖)). To prove the
convergence stated above, let us also introduce, for each 𝑖 ∈ {1, ⋯ , 𝑁}, the SDE:

𝑑�̄�𝑖
𝑡 = E[𝛼]E[�̄�𝑖

𝑡]𝑑𝑡 + 𝑑𝑊 𝑖
𝑡 , �̄�𝑖

0 = 𝑥0, (2.7)

and let us follow the strategy consisting in comparing (2.6) with (2.7) and (2.7) with (2.5).

As for (2.6) with (2.7), we notice that �̄� and �̄�𝑖 have the same law. We therefore just need to
consider 𝑋𝑖 and �̄�𝑖. For the latter point, we observe that the processes (�̄�, (�̄�𝑖)𝑖) are independent
of the family (𝛼𝑖,𝑗)𝑖,𝑗. Using the independence of 𝛼 and �̄�𝑖, we also know that

𝑑(𝑋𝑖
𝑡 − �̄�𝑖

𝑡) =
(

1
𝑁

𝑁

∑
𝑗=1

𝛼𝑖,𝑗𝑋𝑗
𝑡 −E[𝛼�̄�𝑖

𝑡])
𝑑𝑡

=
[(

1
𝑁

𝑁

∑
𝑗=1

𝛼𝑖,𝑗𝑋𝑗
𝑡 − 1

𝑁

𝑁

∑
𝑗=1

𝛼𝑖,𝑗�̄�𝑗
𝑡 )

+
(

1
𝑁

𝑁

∑
𝑗=1

𝛼𝑖,𝑗�̄�𝑗
𝑡 −E[𝛼�̄�𝑖

𝑡])]
𝑑𝑡.

Since 𝛼𝑖,𝑗 is bounded by a constant 𝐶, we may write

|𝑋𝑖
𝑡 − �̄�𝑖

𝑡 | ≤ ∫
𝑡

0

𝐶
𝑁

𝑁

∑
𝑗=1

|𝑋
𝑗
𝑠 − �̄�𝑗

𝑠|𝑑𝑠 + ∫
𝑡

0 |
1
𝑁

𝑁

∑
𝑗=1

𝛼𝑖,𝑗�̄�𝑗
𝑠 −E[𝛼�̄�𝑖

𝑠]|
𝑑𝑠.

By summing over 𝑖 and dividing by 𝑁, also defining 𝛿𝑡 to be the function 1
𝑁 ∑𝑁

𝑖=1|𝑋𝑖
𝑡 − �̄�𝑖

𝑡 |, we
get

𝛿𝑡 ≤ 𝐶 ∫
𝑡

0
𝛿𝑠𝑑𝑠 + 1

𝑁2 ∫
𝑡

0

𝑁

∑
𝑖=1|

𝑁

∑
𝑗=1

(𝛼𝑖,𝑗�̄�𝑗
𝑠 −E[𝛼�̄�𝑖

𝑠])|
𝑑𝑠.
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By using Gronwall’s lemma, we then deduce that

𝛿𝑡 ≤
exp(𝐶𝑡)

𝑁2 ∫
𝑡

0

𝑁

∑
𝑖=1|

𝑁

∑
𝑗=1

(𝛼𝑖,𝑗�̄�𝑗
𝑠 −E[𝛼�̄�𝑖

𝑠])|
𝑑𝑠.

Taking the expectation, we have the following:

E[𝛿𝑡] ≤
exp(𝐶𝑡)

𝑁 ∫
𝑡

0

𝑁

∑
𝑖=1(

1
𝑁
E

|

𝑁

∑
𝑗=1

(𝛼𝑖,𝑗�̄�𝑗
𝑠 −E[𝛼�̄�𝑖

𝑠])|)
𝑑𝑠.

Moreover, it is now useful to investigate the second moment of (𝛼𝑖,𝑗�̄�𝑗
𝑠 −E[𝛼�̄�𝑖

𝑠]), which is a

finite value 𝐶2
2 . Hence, by independence of (𝛼𝑖,𝑗)𝑖,𝑗 and (�̄�𝑗)𝑗, we get:

E[𝛿𝑡] ≤
exp(𝐶𝑡)

𝑁 ∫
𝑡

0

𝑁

∑
𝑖=1

𝐶2

𝑁1/2 𝑑𝑠 ≤ exp(𝐶𝑡)
𝐶2𝑡

𝑁1/2 .

Since it holds that

𝛿𝑡 ≥ 𝑊1(
1
𝑁

𝑁

∑
𝑖=1

𝛿𝑋𝑖
𝑡
, 1

𝑁

𝑁

∑
𝑖=1

𝛿�̄�𝑖
𝑡 )

,

where 𝑊1(⋅, ⋅) is the 1-Wasserstein distance defined as 𝑊1(𝜇, 𝜈) = inf𝜋 ∫ℝ2 |𝑥 − 𝑦|𝑑𝜋(𝑥, 𝑦), the
infimum being taken over all the probability measures 𝜋 on ℝ2 that have 𝜇 and 𝜈 as marginal
distributions, we have also proved that, for any 𝑇 > 0,

lim
𝑁→∞

sup
0≤𝑡≤𝑇

𝔼
[

𝑊1(
1
𝑁

𝑁

∑
𝑖=1

𝛿𝑋𝑖
𝑡
, 1

𝑁

𝑁

∑
𝑖=1

𝛿�̄�𝑖
𝑡 )]

= 0.

By the law of large numbers, this implies that

lim
𝑁→∞

sup
0≤𝑡≤𝑇

𝔼
[

𝑊1(
1
𝑁

𝑁

∑
𝑖=1

𝛿𝑋𝑖
𝑡
, ℒ(�̄�𝑡))]

= 0,

which is nothing but propagation of chaos.

�.�.� Blow-up Argument

We now address the blow-up phenomenon for (2.4). Since (2.4) is similar, up to the scaling factor
𝑝, to the equation investigated in [1, 6], we expect the same picture: If the initial condition is too
close to 𝑋𝐹 = 1, then a blow-up occurs; if it is sufficiently far away, then it cannot occur. Here we
show that a blow-up indeed exists if 𝑋0 = 𝑥0 for some deterministic 𝑥0 that is close enough to 1.
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2 Article 1: Network of interacting neurons with random synaptic weights

Our proof is based upon the probabilistic approach, but, in fact, it consists of a reformulation of
the arguments used by Cáceres et al. in [1]. Below, we use repeatedly the notation 𝑒(𝑡) ∶= E[𝑀𝑡].

Theorem 3. Assume that drift coefficient satisfies, for some 𝜆 > 0,

𝑏(𝑣) ≥ −𝜆𝑣, for all −∞ < 𝑣 ≤ 1.

If the (deterministic) initial condition 𝑋(0) = 𝑥0 < 1 is sufficiently close to the threshold 1, there is
no global in time solution of the SDE

𝑑𝑋𝑡 = 𝑏(𝑋𝑡) 𝑑𝑡 + 𝛽 𝑝 𝑒′(𝑡) 𝑑𝑡 + 𝑑𝑊𝑡 − 𝑑𝑀𝑡, 𝑡 ≥ 0,

𝜏𝑘+1 = inf{𝑡 ≥ 𝜏𝑘, 𝑋𝑡 ≥ 1}

𝑀𝑡 = ∑
𝑘≥1
1[0,𝑡](𝜏𝑘)

(2.8)

with 𝑒(𝑡) = 𝔼[𝑀𝑡].

Proof. The idea is to retrace the proof in [1]. Assume indeed that we have a global in time
solution (𝑋𝑡)𝑡≥0 to (2.8) with a differentiable mean counter 𝑒. The object of our study is then
𝐹𝜇(𝑡) ∶= 𝔼[𝜑(𝑋𝑡)] with 𝜑(𝑥) = exp(𝜇𝑥), where

𝑋𝑡 = 𝑋0 + ∫
𝑡

0
(𝑏(𝑋𝑠) + 𝛽 𝑝 𝑒′(𝑠))𝑑𝑠 + 𝑊𝑡 − 𝑀𝑡.

Now we apply Itô’s formula to 𝜑(𝑋𝑡):

𝜑(𝑋𝑡) = 𝜑(𝑋0) + ∫
𝑡

0
𝜑′(𝑋𝑠)⏟
𝜇𝜑(𝑋𝑠)

(𝑏(𝑋𝑠) + 𝛼 ⋅ 𝑝𝑒′(𝑠))𝑑𝑠 + ∫
𝑡

0
𝜑′(𝑋𝑠)⏟
𝜇𝜑(𝑋𝑠)

𝑑𝑊𝑠 + 1
2 ∫

𝑡

0
𝜑″(𝑋𝑠)⏟
𝜇2𝜑(𝑋𝑠)

𝑑𝑠

+ ∫
𝑡

0
[𝜑(𝑋𝑠− − 1) − 𝜑(𝑋𝑠−)]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(𝜑(0)−𝜑(1))

𝑑𝑀𝑠.

Taking expectation:

𝔼[𝜑(𝑋𝑡)] = 𝔼[𝜑(𝑋0)]+𝜇 ∫
𝑡

0
𝔼[𝜑(𝑋𝑠)(𝑏(𝑋𝑠) + 𝛽 ⋅ 𝑝𝑒′(𝑠))]𝑑𝑠+

𝜇2

2 ∫
𝑡

0
𝔼[𝜑(𝑋𝑠)]𝑑𝑠+(𝜑(0)−𝜑(1))𝑒(𝑡).

Recalling that 𝐹𝜇(𝑡) = 𝔼[𝜑(𝑋𝑡)], we can rewrite the above expression as:

𝐹𝜇(𝑡) = 𝐹𝜇(0) + 𝜇 ∫
𝑡

0
𝔼[𝜑(𝑋𝑠)(𝑏(𝑋𝑠) + 𝛽 ⋅ 𝑝𝑒′(𝑠))]𝑑𝑠 +

𝜇2

2 ∫
𝑡

0
𝐹𝜇(𝑠)𝑑𝑠 + (𝜑(0) − 𝜑(1))𝑒(𝑡).
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Then, using the hypothesis on 𝑏, we get that

𝐹𝜇(𝑡) ≥ 𝐹𝜇(0) + 𝜇 ∫
𝑡

0
𝔼[𝜑(𝑋𝑠)(𝛽 ⋅ 𝑝𝑒′(𝑠) − 𝜆𝑋𝑠)]𝑑𝑠 +

𝜇2

2 ∫
𝑡

0
𝐹𝜇(𝑠)𝑑𝑠 + (𝜑(0) − 𝜑(1))𝑒(𝑡)

≥ 𝐹𝜇(0) + 𝜇 ∫
𝑡

0
(𝛽 ⋅ 𝑝𝑒′(𝑠) − 𝜆)𝐹𝜇(𝑠)𝑑𝑠 +

𝜇2

2 ∫
𝑡

0
𝐹𝜇(𝑠)𝑑𝑠 + (𝜑(0) − 𝜑(1))𝑒(𝑡),

that is

𝐹𝜇(𝑡) ≥ 𝐹𝜇(0) + ∫
𝑡

0
𝜇(𝛽 ⋅ 𝑝𝑒′(𝑠) − 𝜆 +

𝜇
2 )𝐹𝜇(𝑠)𝑑𝑠 + (𝜑(0) − 𝜑(1))𝑒(𝑡). (2.9)

Define ̃𝜆 as
̃𝜆 ∶=

𝜑(1) − 𝜑(0)
𝜇𝛽𝑝

and let us choose 𝜇 such that −𝜆 + 𝜇
2 > 0. We can now proceed by stating that:

𝐹𝜇(𝑡) ≥ 𝐹𝜇(0) + 𝑝(∫
𝑡

0
𝜇𝛽𝑒′(𝑠)𝐹𝜇(𝑠)𝑑𝑠 − ̃𝜆𝛽𝜇𝑒(𝑡)) ≥ 𝐹𝜇(0) + 𝑝 ∫

𝑡

0
𝜇𝛽𝑒′(𝑠)[𝐹𝜇(𝑠) − ̃𝜆]𝑑𝑠.

Claim: If 𝐹𝜇(0) ≥ ̃𝜆, then 𝐹𝜇(𝑡) ≥ ̃𝜆. It suffices to define the first time 𝑇 ∶= inf{𝑡 ≥ 0 ∶ 𝐹𝜇(𝑡) < ̃𝜆}
and to observe from the above inequality that 𝑇 = +∞.

Coming back to (2.9) we get that

𝐹𝜇(𝑡) ≥ 𝐹𝜇(0) + ∫
𝑡

0
𝜇(𝛽 𝑝 𝑒′(𝑠) − 𝜆 +

𝜇
2 )𝐹𝜇(𝑠)𝑑𝑠 − 𝑝 ̃𝜆𝛽𝜇𝑒(𝑡)

≥ 𝐹𝜇(0) + 𝑝 ∫
𝑡

0
𝜇𝛽𝑒′(𝑠)𝐹𝜇(𝑠)𝑑𝑠 + ∫

𝑡

0
𝜇(−𝜆 +

𝜇
2 )𝐹𝜇(𝑠)𝑑𝑠 − 𝑝 ̃𝜆𝛽𝜇𝑒(𝑡)

≥ 𝐹𝜇(0) + 𝑝 ̃𝜆𝛽𝜇𝑒(𝑡) + ∫
𝑡

0
𝜇(−𝜆 +

𝜇
2 )𝐹𝜇(𝑠)𝑑𝑠 − 𝑝 ̃𝜆𝛽𝜇𝑒(𝑡)

= 𝐹𝜇(0) + ∫
𝑡

0
𝜇(−𝜆 +

𝜇
2 )𝐹𝜇(𝑠)𝑑𝑠.

This implies that:
𝐹𝜇(𝑡) ≥ exp(𝜇( − 𝜆 +

𝜇
2 )𝑡)𝐹𝜇(0). (2.10)

But we know that
𝐹𝜇(𝑡) ≤ exp (𝜇). (2.11)
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2 Article 1: Network of interacting neurons with random synaptic weights

Figure 2.1: Plot of the upper bound estimate 𝑝+
𝑐 for the threshold 𝑝𝑐

From (2.10) and (2.11) we get a contradiction in the following sense: If we have a global in time
solution (𝑋𝑡)𝑡≥0 to (2.8) with a differentiable mean counter 𝑒 and with an initial condition that
satisfies 𝐹𝜇(0) ≥ ̃𝜆, then we get (2.10) and (2.11). As the latter two cannot be true at the same
time, we deduce that, whenever 𝐹𝜇(0) ≥ ̃𝜆, there is no global in time solution to (2.8).

Remark. In summary, for a fixed (𝛽, 𝑝) the phenomena of blow up holds for initial conditions that
are concentrated around the threshold, namely for initial conditions such that

∃𝜇 > 2𝜆 such that 𝐹𝜇(0) ≥ ̃𝜆 with ̃𝜆 =
𝜑(1) − 𝜑(0)

𝜇𝛽𝑝
.

Since we assumed for simplicity that the initial condition is deterministic, we know that 𝐹𝜇(0) =
exp(𝜇𝑥0). So, we have a blow-up for all 𝑝 such that:

𝑝 ≥ inf
𝜇≥2𝜆

𝑒𝜇 − 1
𝜇𝛽𝑒𝜇𝑥0

=∶ 𝑝+
𝑐 (𝑥0)

In Figure 2.1 we present the upper bound for the threshold 𝑝+
𝑐 , varying on the parameter of the drift

𝜆 and the initial condition 𝑥0. The parameter 𝛽 is taken equal to 1. Of course, values of 𝑝+
𝑐 (𝑥0) that

are above 1 are irrelevant, in the sense that there cannot be any blow-up in those cases.
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Blow up discussion for the Brownian case

Let us focus on a particular case, in absence of drift, so 𝜆 = 0, with deterministic initial condition
𝑥0 = 0.8 and 𝛽 = 1. From the previous remark, we get that 𝑝+

𝑐 ∼ 0.539. Moreover by Theorem
5.2 in [6] we get that 𝑝−

𝑐 ∼ 0.1, where 𝑝−
𝑐 is a lower bound under which there is no blow-up. From

simulations, we conjecture that there exists in fact a critical threshold 𝑝𝑐(𝑥0) ∈ (𝑝−
𝑐 (𝑥0), 𝑝+

𝑐 (𝑥0))
under which there is no blow-up and above which there is a blow up; numerically, the threshold is
around 0.385 (in red the result obtained by numerics).

0.38

0.39

0 0.1 0.539 1

GG B-U B-U

In the more general case, where 𝛽 ≠ 1, we get that the threshold for 𝑝 is simply rescaled by the
factor 𝛽.

�.�.� Dependent Random Weights

In this section, we will present a short analysis on the behavior of the network of neurons when
the synaptic weights are dependent. In particular, we will focus on two different forms of random
connections.

First, we focus on the case when 𝛼𝑖,𝑗 = 𝛼𝑖𝛼𝑗, where (𝛼𝑖)𝑖=1,...,𝑁 are independent Bernoulli
random variables with the same parameter 𝑝, in which case the dynamics of the system reads (this
is case (2) in Subsection 2.1.3):

𝑋𝑖
𝑡 = 𝑋𝑖

0 + ∫
𝑡

0
𝑏(𝑋𝑖

𝑠)𝑑𝑠 + 𝛼𝑖

𝑁

𝑁

∑
𝑗=1

𝛼𝑗𝑀 𝑗
𝑡 − 𝑀 𝑖

𝑡 + 𝑊 𝑖
𝑡 , 𝑖 = 1, ⋯ , 𝑁. (2.12)

Our first purpose is to find out the limit equation. We conjecture that the limit equation for this
system is the following:

𝑋𝑡 = 𝑋0 + ∫
𝑡

0
𝑏(𝑋𝑠)𝑑𝑠 + 𝛼E[𝛼𝑀𝑡] − 𝑀𝑡 + 𝑊𝑡, (2.13)

where 𝛼 is another Bernoulli random variable of parameter 𝑝 and 𝑊 is an independent Brownian
motion. The initial condition 𝑋0 has the same distribution as any of the 𝑋𝑖

0’s and is independent
of the pair (𝛼, 𝑊 ). We guess that (2.13) is the limit equation. Importantly, (2.13) does no longer
read as a rescaled version of (2.2). The reason is the processes 𝑋𝑖 and 𝑀 𝑖 should not become inde-
pendent of 𝛼𝑖, even if the network size tends to infinity. This is the main rationale for investigating
this example.
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Equation (2.13), in fact, defines a network that consists of two different components: The first
corresponds to those neurons for which 𝛼 = 1; it is a complete sub-network, composed by neurons
which are all connected among themselves, so that neurons of this sub-network feel an interaction
with all the other neurons of the same sub-network; The second component is made of isolated
neurons for which 𝛼 = 0. As such, the limit equation catches out the duality of the population
and the parameter 𝑝 describes the relative size of the connected sub-network within the whole
population. Noticeably, neurons in the asymptotic connected sub-network evolve according to a
rescaled version of (2.2), see Remark 2.2.4 right below.

The second case we would like to deal with is the one with 𝛼𝑖,𝑗 = 𝑝𝛼𝑖, where again (𝛼𝑖)𝑖 is an
i.i.d. family of Bernoulli random variables of parameter 𝑝 (this is case (3) in Subsection 2.1.3). The
rationale for this choice is that 𝛼𝑖,𝑗 here reads as the limit of 1

𝑁 𝛼𝑖 ∑𝑁
𝑗=1 𝛼𝑗, which prompts us below

to compare this example with the previous one. In this case as well, we have a network of neurons
with two different populations: one formed by isolated neurons and the other one composed by
neurons that are interact with one another with the same deterministic synaptic weight 𝑝. The
dynamics of the particle system reads:

𝑋𝑖
𝑡 = 𝑋𝑖

0 + ∫
𝑡

0
𝑏(𝑋𝑖

𝑠)𝑑𝑠 +
𝑝𝛼𝑖

𝑁

𝑁

∑
𝑗=1

𝑀 𝑗
𝑡 − 𝑀 𝑖

𝑡 + 𝑊 𝑖
𝑡 , 𝑖 = 1, ⋯ , 𝑁. (2.14)

Using the fact that 𝑝 = 𝔼[𝛼], our guess is that the limit mean field equation equation should be
given by:

𝑋𝑡 = 𝑋0 + ∫
𝑡

0
𝑏(𝑋𝑠)𝑑𝑠 + 𝛼E[𝛼]E[𝑀𝑡] − 𝑀𝑡 + 𝑊𝑡. (2.15)

Remark. In this remark, we try to make a first comparison between (2.13) and (2.15). As for (2.13),
we observe that

𝛼E[𝛼𝑀𝑡] = 𝛼E[𝑀𝑡 ⋅ 1{𝛼=1}] = 𝛼𝑝 ⋅E[𝑀𝑡| 𝛼 = 1],

which really says that, on the event 𝛼 = 1, (2.13) behaves like (2.4).
Regarding (2.15), we have:

𝛼𝑝 ⋅E[𝑀𝑡] = 𝛼𝑝(E[𝑀𝑡|1{𝛼=1} ] ⋅ 𝑝 +E[𝑀𝑡|1{𝛼=0} ] ⋅ (1 − 𝑝))

= 𝛼𝑝2 ⋅E[𝑀𝑡| 𝛼 = 1] + 𝛼𝑝(1 − 𝑝) ⋅E[𝑀𝑡| 𝛼 = 0].
(2.16)

As we expect the activity of the isolated neurons to be less than the activity of the connected ones, our
guess is that the leading term in (2.16) for causing a blow up is

𝛼𝑝2 ⋅E[𝑀𝑡| 𝛼 = 1].
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So if we denote by 𝑝1
𝑐 the critical value of 𝑝 (that should depend on the initial condition) for the

occurrence of a blow-up in (2.13) and similarly by 𝑝2
𝑐 the critical value in (2.15), we can expect that

𝑝2
𝑐 ≈ √𝑝1

𝑐 . Of course, we make the conjecture, based on the final discussion of the previous section,
that there is indeed, for each model, a critical value of the connectivity 𝑝 under which there is no
blow-up and above which there is a blow-up.

�.�.� Derivation of the limit equations in the toy model

Following Subsection 2.2.2, we here justify the mean field term manifesting in (2.13) by focusing
on a toy example. To make it clear, instead of studying rigorously the limit behavior of

𝑋𝑖
𝑡 = 𝑋𝑖

0 + ∫
𝑡

0
𝑏(𝑋𝑖

𝑠)𝑑𝑠 + 𝛼𝑖

𝑁

𝑁

∑
𝑗=1

𝛼𝑗𝑀 𝑗
𝑡 − 𝑀 𝑖

𝑡 + 𝑊 𝑖
𝑡

(where 𝛼𝑖 are i.i.d. Bernoulli variables with parameter 𝑝), we consider the simplermodel introduced
in Subsection 2.2.2:

𝑑𝑋𝑖
𝑡 = 𝛼𝑖

𝑁

𝑁

∑
𝑗=1

𝛼𝑗𝑋𝑗
𝑡 𝑑𝑡 + 𝑑𝑊 𝑖

𝑡 ,

where 𝑋𝑖
0 = 𝑥0 is deterministic. We also introduce, following the notation already used, the

processes �̄�𝑖 described by
𝑑�̄�𝑖

𝑡 = 𝛼𝑖
E[𝛼𝑖�̄�𝑖

𝑡]𝑑𝑡 + 𝑑𝑊 𝑖
𝑡 .

Assuming that 𝑋𝑖 and �̄�𝑖 have the same initial conditions, we get

𝑋𝑖
𝑡 − �̄�𝑖

𝑡 = ∫
𝑡

0

𝛼𝑖

𝑁

𝑁

∑
𝑗=1

𝛼𝑗
(𝑋𝑗

𝑠 − �̄�𝑗
𝑠)𝑑𝑠 + ∫

𝑡

0 (
𝛼𝑖

𝑁

𝑁

∑
𝑗=1

𝛼𝑗�̄�𝑗
𝑠 − 𝛼𝑖

E[𝛼𝑖�̄�𝑖
𝑠])

𝑑𝑠.

Taking absolute values, multiplying by 𝛼𝑖, summing over 𝑖 and dividing by 𝑁, we can assert that

1
𝑁

𝑁

∑
𝑖=1

𝛼𝑖
|𝑋

𝑖
𝑡 − �̄�𝑖

𝑡 | ≤ ∫
𝑡

0 (
1
𝑁

𝑁

∑
𝑖=1

(𝛼𝑖)2
)(

1
𝑁

𝑁

∑
𝑖=1

𝛼𝑖
|𝑋

𝑖
𝑠 − �̄�𝑖

𝑠|)
𝑑𝑠

+ ∫
𝑡

0 (
1
𝑁

𝑁

∑
𝑖=1

(𝛼𝑖)2
)|

1
𝑁

𝑁

∑
𝑗=1

𝛼𝑗�̄�𝑗
𝑠 −E[𝛼𝑖�̄�𝑖

𝑠]|
𝑑𝑠.
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2 Article 1: Network of interacting neurons with random synaptic weights

Defining ̃𝛿𝑡 = 1
𝑁 ∑𝑁

𝑖=1 𝛼𝑖|𝑋𝑖
𝑡 − �̄�𝑖

𝑡 |, we can write that

̃𝛿𝑡 ≤
(

1
𝑁

𝑁

∑
𝑖=1

(𝛼𝑖)2
)[∫

𝑡

0
̃𝛿𝑠𝑑𝑠 + ∫

𝑡

0 |
1
𝑁

𝑁

∑
𝑗=1

𝛼𝑗�̄�𝑗
𝑠 −E[𝛼𝑖�̄�𝑖

𝑠]|
𝑑𝑠

]
.

By using Gronwall’s lemma, we obtain

̃𝛿𝑡 ≤
(

1
𝑁

𝑁

∑
𝑖=1

(𝛼𝑖)2
)
exp

(
1
𝑁

𝑁

∑
𝑖=1

(𝛼𝑖)2𝑡
) ∫

𝑡

0 |
1
𝑁

𝑁

∑
𝑗=1

𝛼𝑗�̄�𝑗
𝑠 −E[𝛼𝑖�̄�𝑖

𝑠]|
𝑑𝑠.

Also defining 𝛿𝑡 = E[ ̃𝛿𝑡], 𝐴 = (
1
𝑁 ∑𝑁

𝑖=1(𝛼𝑖)2
), taking expectation and using Cauchy-Schwarz

inequality, we have

𝛿𝑡 ≤ (E[𝐴2 exp (2𝐴𝑡)])
1/2

∫
𝑡

0 (
E

[(
1
𝑁

𝑁

∑
𝑗=1

𝛼𝑗�̄�𝑗
𝑠 −E[𝛼𝑖�̄�𝑖

𝑠])

2

])

1/2

𝑑𝑠.

We can manage the last term in the expression above as we did before. In fact, using a standard
independence argument, we get

E
[(

1
𝑁

𝑁

∑
𝑗=1

𝛼𝑗�̄�𝑗
𝑠 −E[𝛼𝑖�̄�𝑖

𝑠])

2

]
= 1

𝑁(E[(𝛼1�̄�1
𝑠 )

2
] − (E[𝛼1�̄�1

𝑠 ])
2
).

Therefore,

𝛿𝑡 ≤ (E[𝐴2 exp (2𝐴𝑡)])
1/2 ⋅ 1

𝑁1/2 ∫
𝑡

0
(E[(𝛼1�̄�1

𝑠 )
2
] − (E[𝛼1�̄�1

𝑠 ])
2
)

1/2
𝑑𝑠,

and we conclude as in Subsection 2.2.2. The derivation of the toy version of equation (2.15) from
the corresponding toy version of the network of interacting neurons (2.14) follows from a similar
argument.

�.�.� Blow-up Argument

We now provide analogs to Theorem 3 for (2.13) and (2.15). Let us first consider the second case,
i.e., 𝛼𝑖,𝑗 = 𝑝𝛼𝑖, with 𝛼𝑖 Bernoulli independent random variables of parameter 𝑝.

Theorem 4. Assume that drift coefficient satisfies, for some 𝜆 > 0,

𝑏(𝑣) ≥ −𝜆𝑣, for all −∞ < 𝑣 ≤ 1.
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2.2 Mathematical inquiries

If the (deterministic) initial condition 𝑋(0) = 𝑥0 < 1 is sufficiently near the threshold 1, there is no
global in time solution of the SDE

𝑋𝑡 = 𝑋0 + ∫
𝑡

0
𝑏(𝑋𝑠)𝑑𝑠 + 𝛼𝑝 ⋅E[𝑀𝑡] + 𝑊𝑡 − 𝑀𝑡,

where 𝛼 ∼ ℬ(𝑝) is independent of 𝑊.

Proof. The idea of the proof is very close to that of Theorem 1. We want to find an initial condition
that leads to a contradiction if we assume that 𝑡 ↦ 𝑒(𝑡) = 𝔼(𝑀𝑡) is differentiable. However, the
proof slightly differs since we here focus on the quantity 𝐹 𝛼

𝜇 (𝑡) ∶= 𝔼[𝛼𝜑(𝑋𝑡)]. Assuming that
𝑒 is indeed differentiable, applying Itô’s formula to (𝜑(𝑋𝑡))𝑡≥0, multiplying by 𝛼 and taking the
expectation, we get

𝐹 𝛼
𝜇 (𝑡) = 𝐹 𝛼

𝜇 (0) + ∫
𝑡

0
𝔼[𝜇𝛼𝜑(𝑋𝑠)( − 𝜆 + 𝛼𝑝𝑒′(𝑠) +

𝜇
2 )]𝑑𝑠 + (𝜑(0) − 𝜑(1))𝔼[𝛼𝑀𝑡].

The random variable 𝛼 takes values in {0, 1} and 𝑀𝑡 is non-negative, which makes it possible to
state that 𝔼[𝛼𝑀𝑡] ≤ 𝔼[𝑀𝑡]. Therefore, since (𝜑(0) − 𝜑(1)) is negative,

𝐹 𝛼
𝜇 (𝑡) ≥ 𝐹 𝛼

𝜇 (0) + ∫
𝑡

0
𝜇(−𝜆 +

𝜇
2 )𝐹 𝛼

𝜇 (𝑠)𝑑𝑠 + ∫
𝑡

0
𝜇𝑝𝑒′(𝑠)𝐹 𝛼

𝜇 (𝑠)𝑑𝑠 + (𝜑(0) − 𝜑(1))𝑒(𝑡). (2.17)

Now, the proof exactly matches that of Theorem 1. Choose indeed −𝜆 + 𝜇
2 > 0 and take the initial

condition close enough to the threshold 1 so that

𝐹 𝛼
𝜇 (0) ≤ ̃𝜆 with ̃𝜆 = 1

𝜇𝑝
(−𝜑(0) + 𝜑(1)).

We then get
𝐹 𝛼

𝜇 (𝑡) ≥ 𝐹 𝛼
𝜇 (0) exp(𝜇( − 𝜆 +

𝜇
2 )𝑡), 𝑡 > 0.

This is a contradiction because 𝑋𝑡 ≤ 1 and 𝛼 ∈ {0, 1}, which means that 𝐹 𝛼
𝜇 (𝑡) ≤ 𝑒𝜇.

Remark. As explained in Remark 2.2.3, there is blow-up when

∃𝜇 > 2𝜆 such that 𝐹𝜇(0) ≥ ̃𝜆 with ̃𝜆 =
𝜑(1) − 𝜑(0)

𝜇𝑝
.

Assuming for simplicity that the initial condition is deterministic, we get:

𝐹 𝛼
𝜇 (0) = 𝑝 ⋅ exp(𝜇𝑥0)
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2 Article 1: Network of interacting neurons with random synaptic weights

Figure 2.2: Plot of the upper bound estimate 𝑝+,2
𝑐 for the threshold 𝑝𝑐

So, given a deterministic initial condition, we have a blow-up when 𝑝 is such that:

𝑝 ≥ √ inf
𝜇≥2𝜆

𝑒𝜇 − 1
𝜇𝑒𝜇𝑥0

=∶ 𝑝+,2
𝑐 (𝑥0)

In Figure 2.2, we present the upper bound for the threshold 𝑝+,2
𝑐 , varying on the parameter of the

drift 𝜆 and the initial condition 𝑥0.

Consider now the case 𝛼𝑖,𝑗 = 𝛼𝑖𝛼𝑗, with 𝛼𝑖 Bernoulli independent randomvariables of parameter
𝑝.

Theorem 5. Assume that drift coefficient satisfies, for some 𝜆 > 0,

𝑏(𝑣) ≥ −𝜆𝑣, for all −∞ < 𝑣 ≤ 1.

If the (deterministic) initial condition 𝑋(0) = 𝑥0 < 1 is sufficiently near the threshold 1, there is no
global in time solution of the SDE

𝑋𝑡 = 𝑋0 + ∫
𝑡

0
𝑏(𝑋𝑠)𝑑𝑠 + 𝛼 ⋅E[𝛼𝑀𝑡] + 𝑊𝑡 − 𝑀𝑡,
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2.2 Mathematical inquiries

where 𝛼 ∼ ℬ(𝑝) is independent of 𝑊.

Proof. The strategy is almost the same as in the previous case, namely the main tool is the function
𝐹 𝛼

𝜇 (𝑡) ∶= E[𝛼𝜑(𝑋𝑡)]. By Itô’s Formula:

𝐹 𝛼
𝜇 (𝑡) = 𝐹 𝛼

𝜇 (0) + ∫
𝑡

0
E[𝜇𝛼𝜑(𝑋𝑠)( − 𝜆 + 𝛼𝑒′

𝛼(𝑠) +
𝜇
2 )]𝑑𝑠 + (𝜑(0) − 𝜑(1))E[𝛼𝑀𝑡].

with 𝑒𝛼(𝑡) = 𝔼[𝛼𝑀𝑡]. With the same calculation as in the previous case, we get

𝐹 𝛼
𝜇 (𝑡) ≥ 𝐹 𝛼

𝜇 (0) + ∫
𝑡

0
𝜇(−𝜆 +

𝜇
2 )𝐹 𝛼

𝜇 (𝑠)𝑑𝑠 + ∫
𝑡

0
𝜇𝑒′

𝛼(𝑠)𝐹 𝛼
𝜇 (𝑠)𝑑𝑠 + (𝜑(0) − 𝜑(1))𝑒𝛼(𝑡).

The only differences with respect to the previous case are that we have 𝑒𝛼(𝑡) instead of 𝑒(𝑡) and
that there is no 𝑝 in the third term.

Remark. As before, there is blow-up when

∃𝜇 > 2𝜆 such that 𝐹 𝛼
𝜇 (0) ≥ ̃𝜆 with ̃𝜆 =

𝜑(1) − 𝜑(0)
𝜇

Assuming for simplicity that the initial condition is deterministic, we get:

𝐹𝜇(0) = 𝑝 ⋅ exp(𝜇𝑥0).

So, given a deterministic initial condition, we get a blow-up when 𝑝 is such that:

𝑝 ≥ inf
𝜇≥2𝜆

𝑒𝜇 − 1
𝜇𝑒𝜇𝑥0

=∶ 𝑝+,1
𝑐 (𝑥0),

which fits the formula obtained in Remark 2.2.3. So the upper bound varying on the parameters
(𝑥0, 𝜆) is the same of Figure 2.1. Observe also that

𝑝+,2
𝑐 (𝑥0) = √𝑝+,1

𝑐 (𝑥0),

which is consistent with our informal discussion in Remark 2.2.4.

Blow up discussion for the Brownian case

Let us focus on the case where the network includes a non complete subnetwork following the
dynamics prescribed in (2.15) (or equivalently case (3) in Subsection 2.1.3) in absence of drift,
i.e. 𝑏 ≡ 0, with deterministic initial condition 𝑥0 = 0.8. From the previous remark, we get
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2 Article 1: Network of interacting neurons with random synaptic weights

that 𝑝+,2
𝑐 ∼ 0.7201. Through simulations, we look for the threshold value 𝑝𝑐 (with the same

conjecture as before that, above this threshold, there is a blow-up whilst there is no blow-up below
the threshold). Here is the plot that we get (numerical values are in red):

0.59

0.58

0 0.7201 1

B-U B-U

Recall from the discussion right after Remark 2.2.3 the plot we get for the network of type (2.13)
(or equivalently case (2) in Subsection 2.1.3):

0.39

0.38

0.5390 1

B-UB-U

Notice that the numerical results confirm what we predict in Remarks 2.2.4, 2.2.6, 2.2.6; observe
in particular that √0.39 ∼ 0.62, which not so far from 0.59.

�.�.� Comparison between the two models

In this section we continue to investigate the differences between the two cases (2) and (3) in
Subsection 2.1.3. We here consider the following SDEs:

𝑋𝑖
𝑡 = 𝑋𝑖

0 + ∫
𝑡

0
𝑏(𝑋𝑖

𝑠)𝑑𝑠 + 𝛼𝑖

𝑁
𝑝

𝑁

∑
𝑗=1

𝑀 𝑗
𝑡 + 𝑊 𝑖

𝑡 − 𝑀 𝑖
𝑡 ,

𝑋𝑖
𝑡 = 𝑋𝑖

0 + ∫
𝑡

0
𝑏(𝑋𝑖

𝑠)𝑑𝑠 + 𝛼𝑖

𝑁

𝑁

∑
𝑗=1

𝛼𝑗𝑀 𝑗
𝑡 + 𝑊 𝑖

𝑡 − 𝑀 𝑖
𝑡 ,

with the usual definitions. Recall that our guess is that the two systems converge to the limit SDEs
(compare with (2.13) and (2.15)):

𝑋𝑡 = 𝑋0 + ∫
𝑡

0
𝑏(𝑋𝑠)𝑑𝑠 + 𝛼𝑝E[𝑀𝑡] + 𝑊𝑡 − 𝑀𝑡,

𝑋𝑡 = 𝑋0 + ∫
𝑡

0
𝑏(𝑋𝑠)𝑑𝑠 + 𝛼E[𝛼𝑀𝑡] + 𝑊𝑡 − 𝑀𝑡,

again with the usual definitions. Using the same conditioning argument as in Remark 2.2.4, these
two last SDEs can easily be rewritten as:

𝑋𝑡 = 𝑋0 + ∫
𝑡

0
𝑏(𝑋𝑠)𝑑𝑠 + 𝛼𝑝(𝑝 ⋅E[𝑀𝑡| 𝛼 = 1] + (1 − 𝑝) ⋅E[𝑀𝑡| 𝛼 = 0]) + 𝑊𝑡 − 𝑀𝑡,

𝑋𝑡 = 𝑋0 + ∫
𝑡

0
𝑏(𝑋𝑠)𝑑𝑠 + 𝛼(𝑝 ⋅E[𝑀𝑡| 𝛼 = 1]) + 𝑊𝑡 − 𝑀𝑡.
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2.2 Mathematical inquiries

Assuming, as we did to compute thresholds numerically, that the initial condition is deterministic,
i.e., 𝑋0 = 𝑥0, and that 𝑏 is zero, we finally get:

𝑋𝑡 = 𝑥0 + (𝛼𝑝2 ⋅E[𝑀𝑡| 𝛼 = 1] + 𝛼𝑝(1 − 𝑝) ⋅E[𝑀𝑡| 𝛼 = 0]) + 𝑊𝑡 − 𝑀𝑡, (2.18)

𝑋𝑡 = 𝑥0 + (𝛼𝑝 ⋅E[𝑀𝑡| 𝛼 = 1]) + 𝑊𝑡 − 𝑀𝑡. (2.19)

We now study equation (2.18) and compare it to (2.19). First, let us consider the termE[𝑀𝑡| 𝛼 =
0]: this is the expectation of the process 𝑀𝑡 given the fact that the neuron is not concerned by
interaction. The good point is that the limiting model without interaction can be solved explicitly.
Namely, we can identifyE[𝑀𝑡| 𝛼 = 0] withE[�̃�𝑡], where �̃�𝑡 solves the SDE:

�̃�𝑡 + �̃�𝑡 = 𝑥0 + �̃�𝑡, �̃�𝑡 = ⌊( sup
𝑠∈[0,𝑡]

(�̃�𝑠 + �̃�𝑠))+⌋ = ⌊(𝑥0 + sup
𝑠∈[0,𝑡]

�̃�𝑠)+⌋,

where ⌊𝑦⌋ is the floor part of 𝑦. Calling 𝑓𝑡 the density of the running maximum of Brownian
motion until time 𝑡, we get:

E[�̃�𝑡] = ∫ℝ
⌊(𝑥0 + 𝑥)+⌋𝑓𝑡(𝑥)𝑑𝑥.

Recalling that 𝑓𝑡(𝑥) = [√2/𝜋𝑡 exp ( − 𝑥2/2𝑡)]1{𝑥≥0}, the above expression becomes

E[�̃�𝑡] = √
2
𝜋𝑡 ∫ℝ+⌊(𝑥0 + 𝑥)+⌋ exp(−𝑥2

2𝑡 )𝑑𝑥

= √
2
𝜋𝑡 ∫

+∞

−𝑥0∨0
⌊(𝑥0 + 𝑥)+⌋ exp(−𝑥2

2𝑡 )𝑑𝑥

= 4
√𝜋 ∫

+∞

(−𝑥0/√2𝑡)∨0
⌊(𝑥0 + √2𝑡𝑥)+⌋ exp(−𝑥2)𝑑𝑥

= 4
√𝜋 ∑

𝑘∈N
𝑘 ∫

((−𝑥0+𝑘+1)/√2𝑡)∨0

((−𝑥0+𝑘)/√2𝑡)∨0
exp(−𝑥2)𝑑𝑥.

Particularly, since 𝑥0 < 1, it holds that −𝑥0 + 𝑘 is always positive for 𝑘 ≥ 1: therefore, (−𝑥0 +
𝑘)/√2𝑡 ∨ 0 = (−𝑥0 + 𝑘)/√2𝑡. Calling 𝑒0(𝑡) ∶= E[�̃�𝑡], we then see that the function 𝑒0 is
differentiable and its derivative is

𝑒′
0(𝑡) = 1

𝑡 √
2
𝜋𝑡

𝑒−
𝑥2

0
2𝑡 ∑

𝑘∈N
𝑘[(−𝑥0 + 𝑘)𝑒

−𝑘2+2𝑥0𝑘
2𝑡 − (−𝑥0 + 𝑘 + 1)𝑒

−(𝑘+1)2+2𝑥0(𝑘+1)
2𝑡

].

61



2 Article 1: Network of interacting neurons with random synaptic weights

Since 𝑥0 < 1, we have −𝑘2 + 2𝑥0𝑘 ≥ 0 whenever 𝑘 ≥ 2. Hence, we obtain the following:

𝑒′
0(𝑡) ≤ 1

𝑡 √
2
𝜋𝑡

𝑒−
𝑥2

0
2𝑡

[(1 − 𝑥0)[𝑒
−1+2𝑥0

2𝑡 − 𝑒
−2(1−𝑥0)

𝑡
]+

+ ∑
𝑘≥2

𝑘[(−𝑥0 + 𝑘)𝑒
−𝑘2+2𝑥0𝑘

2𝑡 − (−𝑥0 + 𝑘 + 1)𝑒
−(𝑘+1)2+2𝑥0(𝑘+1)

2𝑡
]],

and then:

𝑒′
0(𝑡) ≤ 1

𝑡 √
2
𝜋𝑡

(1−𝑥0)𝑒− (1−𝑥0)2

2𝑡 +1
𝑡 √

2
𝜋𝑡

𝑒−
𝑥2

0
2𝑡 ∑

𝑘≥2
𝑘[(−𝑥0 + 𝑘)𝑒

−𝑘2+2𝑥0𝑘
2𝑇 − (−𝑥0 + 𝑘 + 1)𝑒

−(𝑘+1)2+2𝑥0(𝑘+1)
2𝑇

],

that is, for a finite constant 𝐶𝑥0,𝑇,

sup
0≤𝑡≤𝑇

𝑒′
0(𝑡) ≤ 𝐶𝑥0,𝑇.

We now come back to (2.18) and (2.19). We can rewrite (2.18) in the form:

𝑋𝑡 = 𝑥0 + 𝛼𝑝(1 − 𝑝) ∫
𝑡

0
𝑒′

0(𝑠)𝑑𝑠 + (𝛼𝑝2 ⋅E[𝑀𝑡| 𝛼 = 1]) + 𝑊𝑡 − 𝑀𝑡, (2.20)

which shows that, in comparison with (2.19), there is not only an additional factor 𝑝 in the
conditional mean field term given the event 𝛼 = 1, but there is also an additional drift 𝑒′

0. In other
words, if we omit the term 𝛼𝑝(1 − 𝑝) ∫𝑡

0 𝑒′
0(𝑠)𝑑𝑠 in (2.20), we recover (2.19), but with 𝑝 replaced

by 𝑝2. Intuitively, this says that, if 𝑒′
0 was equal to 0, we would expect 𝑝2

𝑐 = √𝑝1
𝑐 . In fact, 𝑒′

0 is
positive: It helps pushing the particles towards the threshold. As a result, it makes sense to expect

𝑝2
𝑐 < √𝑝1

𝑐 . Fortunately, this is exactly what shows up in the numerical analysis performed at the
end of Subsection 2.2.6.

�.�.� Independent Bernoulli random variables with parameter 𝑝𝑁

We now address case (4) in Subsection 2.1.3, namely we deal with a neural network described by
the equation

𝑋𝑖
𝑡 = 𝑋𝑖

0 + ∫
𝑡

0
𝑏(𝑋𝑖

𝑠)𝑑𝑠 +
𝛽

𝑝𝑁 ⋅ 𝑁

𝑁

∑
𝑗=1

𝛼𝑖,𝑗
𝑁 𝑀 𝑗

𝑡 + 𝑊 𝑖
𝑡 − 𝑀 𝑖

𝑡 ,

where 𝛼𝑖,𝑗
𝑁 are i.i.d. Bernoulli random variables with parameter 𝑝𝑁 depending on 𝑁, the total

number of neurons in the network. We are interested in three cases:

• 𝑝𝑁 ⋅ 𝑁 = log1/2(𝑁);
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2.2 Mathematical inquiries

• 𝑝𝑁 ⋅ 𝑁 = log(𝑁);

• 𝑝𝑁 ⋅ 𝑁 = log2(𝑁).

The reason why we choose these three parameters follows from the theory of Erdös-Renyi for
random graphs, see [9, 10] for undirected graphs and [13, 22] for directed graphs. We indeed know
that 𝑝𝑁 = log(𝑁)/𝑁 is a sharp threshold for connectedness, meaning that:

• If 𝑝𝑁 < (1 − 𝜀) log(𝑁)/𝑁, then the probability that the graph has a unique connected
component tends to 0 as 𝑁 goes to infinity;

• 𝑝𝑁 > (1 + 𝜀) log(𝑁)/𝑁, then the probability that the graph has a unique connected compo-
nent tends to 1 as 𝑁 goes to infinity.

In contrast with more standard particle systems like those addressed in [23] or (say) of the same
form as in (2.5), it is here possible to have several neurons hitting the firing potential at the same
instant of time, and, most of all, it is even possible to have a neuron spiking more than once at
the same instant of time, which fact may be excluded in other models of neural networks, see for
instance [6]. As exemplified in [4, 7], this requires a sequential definition of the spikes that may
occur at the same time, given by an induction with the following initialization:

Γ0 ∶= {𝑖 ∈ {1, ⋯ , 𝑁} ∶ 𝑋𝑖
𝑡− = 1}.

We say that a spike occurs at time 𝑡 if Γ0 ≠ ∅. Because of the interactions between the neurons,
neurons in the set Γ0 may force the others to jump at the same time 𝑡. This happens for neuron
𝑖 ∉ Γ0 if

𝑋𝑖
1,𝑡− ∶= 𝑋𝑖

𝑡− +
𝛽

𝑝𝑁 ⋅ 𝑁

𝑁

∑
𝑗=1

𝛼𝑖,𝑗
𝑁1{𝑗∈Γ0} ≥ 1,

which prompts us to let Γ1 ∶= {𝑖 ∈ {1, ⋯ , 𝑁} ⧵ Γ0 ∶ 𝑋𝑖
1,𝑡− ≥ 1}. Iteratively, we define for any

𝑖 ∈ {1, ⋯ , 𝑁}:

𝑋𝑖
𝑘+1,𝑡− ∶=

⎧
⎪
⎨
⎪
⎩

𝑋𝑖
𝑘,𝑡− +

𝛽
𝑝𝑁 ⋅ 𝑁

𝑁

∑
𝑗=1

𝛼𝑖,𝑗
𝑁1{𝑗∈Γ𝑘} if 𝑖 ∉ Γ𝑘,

𝑋𝑖
𝑘,𝑡− − ⌊𝑋𝑖

𝑘,𝑡−⌋ if 𝑖 ∈ Γ𝑘,

Γ𝑘+1 ∶= {𝑖 ∈ {1, … , 𝑁}\Γ𝑘 ∶ 𝑋𝑖
𝑘+1,𝑡− ≥ 1}.
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2 Article 1: Network of interacting neurons with random synaptic weights

And then we let

𝑀 𝑖
𝑡 − 𝑀 𝑖

𝑡− = ∑
𝑘∈ℕ

1Γ𝑘
(𝑖),

𝑋𝑖
𝑡 = lim

𝑘→∞
𝑋𝑖

𝑘,𝑡− if the limit exists.
(2.21)

Intuitively, Γ𝑘 is the set of neurons that spike at the 𝑘th iteration, 𝑋𝑖
𝑘,𝑡− is the potential of neuron

𝑖 before the 𝑘th iteration and 𝑋𝑖
𝑘+1,𝑡− is the potential after the 𝑘th iteration. With this rule we

observe that:

• It is possible that one neuron receives (at a given iteration) a cumulative kick (from all the
other particles) that is greater than 1, meaning that the potential of a neuron can jump from
a potential less than 1 to a potential greater than 2. With our definition of 𝑋𝑖

𝑘+1,𝑡− if 𝑖 ∈ Γ𝑘,
we just regard the whole as a single spike.

Still a neuron can spike several times at the same time:

• It is indeed possible that a neuron 𝑖 spikes, that its kick makes others spike and that those, in
return, make 𝑖 spike again. This behavior may repeat again: when it repeats just for a finite
number of times, we call it a “finite cascade”. In that case, the limit in (2.21) is well defined.

• It may happen that the cascading behavior just described above goes on infinitely many
times: we call it an “infinite cascade”. In that case the limit in (2.21) may not exist.

Below, we choose 𝛽 < 1. We then try to make a connection between neurons that spike more
than twice and neurons that have a large degree, where, by definition, the degree 𝑑𝑖 of neuron 𝑖 is
𝑑𝑖 ∶= ∑𝑁

𝑗=1 𝛼𝑖,𝑗
𝑁 . Our guess is based on the fact that, for a neuron that is connected to neurons that

do not spike more than once at time 𝑡, the only way for it to record more than two spikes at time
𝑡 is that its degree is higher than ⌈𝑝𝑁𝑁/𝛽⌉. In particular, the first neurons that record a second
spike in the inductive construction of the sets (Γ𝑘)𝑘 must have a large degree. In this regard, we
show below that the probability that a neuron has a high degree gets smaller and smaller as 𝑁
tends to ∞. We thus conjecture that, for the prescribed values of parameters, most of the neurons
can only jump once at a given time and, henceforth, that, among those that record more than two
spikes at the same time, most of them have a large degree.

We are therefore interested in computing

P
[

1
𝑁

𝑁

∑
𝑗=1

𝛼1,𝑗
𝑁 ≥

𝑝𝑁
𝛽 ]

,

where the apex 1 may be substituted by any other index 𝑖.
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2.2 Mathematical inquiries

Remark (Estimate on the upper bound for the probability to have a multiple spikes). Observing
that 𝑝𝑁/𝛽 is bigger than 𝑝𝑁 and using the Cramer’s Theorem (in the context of Large Deviation
Theory), we find out that

P
[

1
𝑁

𝑁

∑
𝑗=1

𝛼1,𝑗
𝑁 ≥

𝑝𝑁
𝛽 ]

≤ 𝑒−𝑁⋅Λ∗
(

𝑝𝑁
𝛽 ), (2.22)

where
Λ∗(𝑥) ∶= 𝑥 log(

𝑥
𝑝𝑁 ) + (1 − 𝑥) log(

1 − 𝑥
1 − 𝑝𝑁 ).

We have that

− log(𝑒−𝑁⋅Λ∗
(

𝑝𝑁
𝛽 )

) = 1
𝛽
log(

1
𝛽) log𝑘(𝑁) +

(
𝑁 −

log𝑘(𝑁)
𝛽 )

log
(

𝛽𝑁 − log𝑘(𝑁)
𝛽𝑁 − 𝛽 log𝑘(𝑁))

,

(2.23)
where 𝑘 is such that 𝑝𝑁 = log𝑘(𝑁)/𝑁 (recall that 𝑘 = 1/2, 1, 2 in the three typical cases we have in
mind). The last part above is

(
𝑁 −

log𝑘(𝑁)
𝛽 )

log
(

𝛽𝑁 − log𝑘(𝑁)
𝛽𝑁 − 𝛽 log𝑘(𝑁))

=
(

𝑁 −
log𝑘(𝑁)

𝛽 )
log

(
1 −

1 − 𝛽
𝛽

log𝑘(𝑁)
𝑁 − log𝑘(𝑁))

.

Therefore, the last expression becomes

(
𝑁 −

log𝑘(𝑁)
𝛽 )(

−
1 − 𝛽

𝛽
log𝑘(𝑁)

𝑁 − log𝑘(𝑁)
+ 𝒪

((
log𝑘(𝑁)

𝑁 − log𝑘(𝑁))

2

))
,

which can be rewritten as

𝛽𝑁 − log𝑘(𝑁)
𝛽 (

−
(1 − 𝛽) log𝑘(𝑁)
𝛽(𝑁 − log𝑘(𝑁)))

+
𝛽𝑁 − log𝑘(𝑁)

𝛽
⋅ 𝒪

((
log𝑘(𝑁)

𝑁 − log𝑘(𝑁))

2

)

=
𝛽𝑁 − log𝑘(𝑁)

𝛽𝑁 − 𝛽 log𝑘(𝑁)(
−

(1 − 𝛽) log𝑘(𝑁)
𝛽 )

+
𝛽𝑁 − log𝑘(𝑁)

𝛽𝑁 − 𝛽 log𝑘(𝑁)
⋅

𝑁 − log𝑘(𝑁)
log𝑘(𝑁)

log𝑘(𝑁) ⋅ 𝒪
((

log𝑘(𝑁)
𝑁 − log𝑘(𝑁))

2

)
.
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2 Article 1: Network of interacting neurons with random synaptic weights

Finally, we can again rewrite the expression above as

(
𝛽𝑁 − log𝑘(𝑁)

𝛽𝑁 − 𝛽 log𝑘(𝑁))(
−

1 − 𝛽
𝛽

+ 𝒪
(

log𝑘(𝑁)
𝑁 − log𝑘(𝑁)))

log𝑘(𝑁).

Now, the first term in the expression above converges to 1 when 𝑁 → +∞; similarly, the “big O”
multiplied by log𝑘(𝑁) goes to 0 when 𝑁 → +∞; this means that, for every 𝑐 < 1,

(
𝛽𝑁 − log𝑘(𝑁)

𝛽𝑁 − 𝛽 log𝑘(𝑁))(
−

1 − 𝛽
𝛽

+ 𝒪
(

log𝑘(𝑁)
𝑁 − log𝑘(𝑁)))

log𝑘(𝑁) ≥ −𝑐(
1 − 𝛽

𝛽 ) log𝑘(𝑁),

for 𝑁 large enough. Coming back to (2.23):

− log(𝑒−𝑁⋅Λ∗
(

𝑝𝑁
𝛽 )

) ≥ [
1
𝛽(log(

1
𝛽) − 𝑐) + 𝑐] log

𝑘(𝑁).

Calling 𝐶(𝑐, 𝛽) ∶= 1
𝛽 (log(

1
𝛽 ) − 𝑐) + 𝑐 > 1

𝛽 − 1 − 𝑐
𝛽 + 𝑐 = ( 1

𝛽 − 1)(1 − 𝑐) > 0, we deduce that

𝑒−𝑁⋅Λ∗
(

𝑝𝑁
𝛽 ) ≤ 𝑒−𝐶(𝑐,𝛽) log𝑘(𝑁),

which is especially meaningful when 𝑘 > 0. To conclude, we have found that, for 𝑁 large enough,

P
[

1
𝑁

𝑁

∑
𝑗=1

𝛼1,𝑗
𝑁 ≥

𝑝𝑁
𝛽 ]

≤ 𝑒−𝐶(𝑐,𝛽) log𝑘(𝑁). (2.24)

Our conjecture is that, for 𝑘 > 0, this should be a good approximation of the probability to observe
more than two spikes for a single neuron at the same time.

By letting 𝑐 tend to 1 in (2.24), we get in fact the following large deviation upper bound.

Theorem 6. Assume that 𝛽 < 1 and choose 𝑝𝑁 in the form 𝑝𝑁 = log𝑘(𝑁)/𝑁. Then,

lim sup
𝑁→∞

𝑎−1
𝑁 log

(
ℙ

[
1
𝑁

𝑁

∑
𝑗=1

𝛼1,𝑗
𝑁 ≥

𝑝𝑁
𝛽 ])

≤ −𝐶(𝛽), (2.25)

with 𝑎𝑁 = 𝑁 ⋅ 𝑝𝑁 = log𝑘(𝑁) and 𝐶(𝛽) ∶= 1
𝛽 (log(

1
𝛽 ) − 1) + 1.

Remark. As for the lower bound, we did not manage to implement the usual tilting method used
in the proof of Cramer’s theorem. The fact that (𝑎𝑁)𝑁≥0 increases at a rate that is much smaller
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2.2 Mathematical inquiries

than the rate of convergence of the law of large numbers, as given by the central limit theorem, is a
hindrance.

�.�.� Comparison with the Mean Field Case

A crucial question is to decide whether the mean field approximation is still valid in each of the
three cases addressed in the preliminary discussion of Subsection 2.2.8. Observe indeed that,
since 𝑝𝑁 is assumed to get smaller and smaller as 𝑁 tends to 0, it is by no means clear that the
arguments used in Subsections 2.2.2 and 2.2.5 still apply. So, we consider the network given by a
family of i.i.d. Bernoulli synaptic weights (𝛼𝑖,𝑗

𝑁 )𝑖,𝑗 ∼ ℬ(𝑝𝑁), with 𝑝𝑁 as before, and we want to
compare numerically the behavior of the particle system driven by the interaction term

𝛽
𝑁 ⋅ 𝑝𝑁

𝑁

∑
𝑗=1

𝛼𝑖,𝑗
𝑁 𝑀 𝑗

𝑡 (2.26)

with the behavior of the particle system driven by the interaction term

1
𝑁

𝑁

∑
𝑗=1

𝛾 𝑖,𝑗𝑀 𝑗
𝑡 , (2.27)

where (𝛾 𝑖,𝑗)𝑖,𝑗 ∼ ℬ(𝛽) are i.i.d. Bernoulli variables of parameter 𝛽. The comparison between both
is motivated by the fact that 𝔼[𝛽𝛼𝑖,𝑗

𝑁 /𝑝𝑁] = 𝛽. And for sure, our preliminary investigations have
shown that (2.27) had the same limit behavior as the model driven by the simpler interaction term

𝛽
𝑁

𝑁

∑
𝑗=1

𝑀 𝑗
𝑡 . (2.28)

We provide in the left pane in Figure 2.3) simulations of the interaction terms in both cases, (2.26)
and (2.27), when 𝑝𝑁 = log2(𝑁)/𝑁 and 𝛽 = 0.375. It shows that, for 𝑁 large, both are indeed
close. This seems to be a numerical evidence that the mean field approximation should be valid
when 𝑝𝑁 is above the Erdös-Renyi threshold for connectedness of the interaction graph. When
𝑝𝑁 = log(𝑁)/𝑁 and 𝑝𝑁 = log1/2(𝑁)/𝑁, and for the same value of 𝛽, the center and right panes in
Figure 2.3 suggest that the mean field approximation is no longer valid below the Erdös-Renyi
threshold. These observations seem to be in accordance with the results obtained in [8] for the
mean field approximation of another interacting diffusion model (so-called Kuramoto model)
on a random Erdös-Renyi graph: Therein, the mean field approximation is shown to hold true if
𝑝𝑁𝑁/ log(𝑁) → ∞.
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2 Article 1: Network of interacting neurons with random synaptic weights

Figure 2.3: Comparison between interactions terms for 𝑝𝑁 = log2(𝑁)/𝑁, 𝑝𝑁 = log(𝑁)/𝑁 and 𝑝𝑁 =
log1/2(𝑁)/𝑁.

�.� Algorithm

�.�.� Introduction

In this section, we present the algorithms used to simulate the particles system (2.3). We also
consider a slightly different model in Section 2.3.3, where the neurons no longer spike when their
membrane potential crosses a fixed deterministic threshold but they spike with rate 𝑓 𝑖(𝑋𝑖

𝑡) at time
𝑡. (see Section 2.3.3 for a precise definition).

Clock-driven vs. event-driven algorithm

The simulation of a very large network of neurons requires to carefully organize the program. We
have used two different methods.

Clock-driven method. We fix a time step Δ and approximate the values of the membrane
potentials at each time step 𝑇0 + ℓΔ for ℓ ∈ ℕ. This method is quite simple to implement,
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2.3 Algorithm

but not very fast. The choice of the time step Δ is crucial: it has to be very small compared
to the typical length of an InterSpike Interval (ISI).

Event-driven method. This method consists in, first, simulating the times at which events
occur, and second, updating the state of the network at these times. The advantage is that
the clock is automatically fitted to the state of the system. In our algorithm, we have chosen
the spiking times to describe the important events of this method.

We have used the clock-driven method to simulate the hard threshold model and the event-driven
method for the soft thresholdmodel. In this case, our algorithm is an extension ofOgata’s algorithm,
see [20].

�.�.� Hard Threshold

We consider the finite system defined by (2.1), which we rewrite below for the sake of convenience:

⎧⎪
⎪
⎨
⎪
⎪⎩

𝑋𝑖
𝑡 = 𝑋𝑖

0 + ∫
𝑡

0
𝑏(𝑋𝑖

𝑠)𝑑𝑠 +
𝛽
𝑁

𝑁

∑
𝑖=1

𝛼𝑖,𝑗𝑀 𝑗
𝑡 + 𝑊 𝑖

𝑡 − (𝑋𝐹 − 𝑋𝑅)𝑀 𝑖
𝑡 ,

𝑀 𝑖
𝑡 = ∑

𝑘∈N
1[0,𝑡](𝜏𝑖

𝑘),
∀𝑖 ∈ {1, ..., 𝑁},

(2.29)
where, as usual, 𝜏 𝑖

𝑘 represents the time at which neuron 𝑖 reaches the threshold 𝑋𝐹 > 0 for the
𝑘-th time; above, 𝑋𝑅 is the (common) reset values of the neurons.

In this section, we simulate the network at each time step ℓΔ, where Δ is our fixed discretization
parameter. The network is fully described by ((�̄�𝑖

ℓΔ, �̄� 𝑖
ℓΔ), 𝑖 ∈ {1, … , 𝑁}, ℓΔ ≤ 𝑇 ).

• Initialization ℓ = 0.

– We set �̄� 𝑖
0 = 0 and simulate the membrane potentials �̄�𝑖

0 as independent and identi-
cally distributed according to the initial law.

• Step ℓ → (ℓ + 1).

– Evolution of the membrane potentials without interaction, nor spontaneous spikes:

̂�̄�𝑖
(ℓ+1)Δ = �̄�𝑖

ℓΔ + 𝑏(�̄�𝑖
ℓΔ)Δ + 𝑊 𝑖

(ℓ+1)Δ − 𝑊 𝑖
ℓΔ.

– Construction of the set Γ0
(ℓ+1)Δ of those neurons that are spiking first at time (ℓ + 1)Δ.

First, set Γ0
(ℓ+1)Δ ∶= {𝑖 ∈ {1, … , 𝑁}, ̂�̄�𝑖

(ℓ+1)Δ ≥ 𝑋𝐹}. For each neuron 𝑖 ∉ Γ0
(ℓ+1)Δ,

we have �̄�𝑖
ℓΔ ≤ 𝑋𝐹 and ̂�̄�𝑖

(ℓ+1)Δ ≤ 𝑋𝐹 but it could happen that supℓΔ≤𝑡≤(ℓ+1)Δ
̂�̄�𝑖
𝑡 ≥

𝑋𝐹, i.e. the process crosses the threshold during one time step but is back below the
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threshold at time (ℓ + 1)Δ. We approximate the probability of such an event by the
well known corresponding probability for a Brownian bridge (see [12]), that is

𝑝𝑖 = exp
⎛
⎜
⎜
⎝
−2

(𝑋𝐹 − ̂�̄�𝑖
(ℓ+1)Δ)(𝑋𝐹 − �̄�𝑖

ℓΔ)
Δ

⎞
⎟
⎟
⎠
.

More precisely, for each 𝑖 ∉ Γ0
(ℓ+1)Δ, we simulate 𝑈 𝑖

ℓ+1, uniformly distributed on [0, 1],
independently of everything. If 𝑈 𝑖

ℓ+1 < 𝑝𝑖, we add the neuron 𝑖 in the set Γ0
(ℓ+1)Δ of

spiking neurons.

– Construction of the cascade. Following Subsection 2.2.8, we let for 𝑖 ∉ Γ0
(ℓ+1)Δ:

̂�̄�𝑖
1,(ℓ+1)Δ ∶= ̂�̄�𝑖

(ℓ+1)Δ + ∑
𝑗∈Γ0

(ℓ+1)Δ

𝐽 𝑗→𝑖
𝑁 ,

and then Γ1
(ℓ+1)Δ ∶= {𝑖 ∈ {1, ⋯ , 𝑁} ⧵ Γ0

(ℓ+1)Δ ∶ ̂�̄�𝑖
1,(ℓ+1)Δ ≥ 𝑋𝐹}. Iteratively, we

define for any 𝑖 ∈ {1, ⋯ , 𝑁}:

̂�̄�𝑖
𝑘+1,(ℓ+1)Δ ∶=

⎧⎪
⎪
⎨
⎪
⎪⎩

̂�̄�𝑖
𝑘,(ℓ+1)Δ + ∑

𝑗∈Γ𝑘
(ℓ+1)Δ

𝐽 𝑗→𝑖
𝑁 if 𝑖 ∉ Γ𝑘

(ℓ+1)Δ,

̂�̄�𝑖
𝑘,(ℓ+1)Δ −

⎢
⎢
⎢
⎣

̂�̄�𝑖
𝑘,(ℓ+1)Δ − 𝑋𝑅

𝑋𝐹 − 𝑋𝑅

⎥
⎥
⎥
⎦
(𝑋𝐹 − 𝑋𝑅) if 𝑖 ∈ Γ𝑘

(ℓ+1)Δ,

Γ𝑘+1
(ℓ+1)Δ ∶= {𝑖 ∈ {1, … , 𝑁}\Γ𝑘

(ℓ+1)Δ ∶ ̂�̄�𝑖
𝑘+1,(ℓ+1)Δ ≥ 𝑋𝐹}.

– Final update. Call 𝑘max the first index when Γ𝑘max
(ℓ+1)Δ = ∅. And then we let

�̄� 𝑖
(ℓ+1)Δ = �̄� 𝑖

ℓΔ +
𝑘max−1

∑
𝑘=0

1Γ𝑘
(ℓ+1)Δ

(𝑖),

�̄�𝑖
(ℓ+1)Δ = ̂�̄�𝑖

𝑘max,(ℓ+1)Δ.
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Algorithm 8 Pseudo code for the simulation of a network of interacting neurons in case of hard
threshold

Initialize the processes 𝑋𝑖 and 𝑀 𝑖 of neuron 𝑖, for each 𝑖 = 1, ..., 𝑁;
repeat

simulate the potential of each neuron for one time-step not considering interaction or
resetting;

add every neuron with potential above the threshold to the list of spiking neurons;
for 𝑖 neuron still below the threshold do

simulate the event “a Brownian bridge crosses the threshold” for neuron 𝑖;
update the list of spiking neurons;

end for
repeat

update the entire network by adding kicks caused by spiking;
reset the spiking neurons;
update the list of spiking neurons;

until the cascade of spiking neurons has been exhausted
until we have simulated the network for enough time-steps

�.�.� Soft threshold

We now address a new model, which leads to a new algorithm. We explain below how this
new model is connected with the previous, but, first, we want to make clear the reasons why we
introduce this new model:

• One issue with the model developed previously is that it allows a cascade phenomenon; this
turns out to be a hindrance from the numerical point of view. We are thus interested in
having a smoother version.

• Anyway, the model studied up to now is not perfectly adapted to biological measurements:
one main criticism (to which we already alluded in introduction) is precisely the fact that
spikes are transmitted instantaneously to the post-synaptic neurons. Indeed, in (2.3), the
post-synaptic neuron 𝑗 receives a kick of size 𝐽 𝑖→𝑗

𝑁 exactly at the spiking time of the pre-
synaptic neuron 𝑖. If its membrane potential exceeds the threshold, the neuron 𝑗 also spikes
at the same time.

The idea for solving this issue is to use a point process based model (see [5, 11] for related
references), with the following main features: Neurons have a probability of spiking that is strictly
less than one when their potential reaches the threshold (which explains why the threshold is no
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2 Article 1: Network of interacting neurons with random synaptic weights

longer hard). Also the probability of having two spikes at the exact same time is zero (as long as
the potential has a finite value) and so there is no more possibility of a cascade. A point process
based system can be difficult to simulate, but there exist recipes for simplifying the creation of the
algorithm. One of them is an algorithm developed by Ogata, see [20], specifically designed for
simulating point processes. We make it clear below.

Our soft threshold model is a Markov process based upon the following general rule. The
neuron 𝑖 spikes at time 𝑡 with rate 𝑓 𝑖(𝑋𝑖

𝑡), that is

lim
𝑑𝑡→0

1
𝑑𝑡

ℙ(neuron 𝑖 spikes in [𝑡, 𝑡 + 𝑑𝑡] | 𝜎(𝑋𝑖
𝑠, 𝑠 < 𝑡, 𝑖 = 1, ⋯ , 𝑁)) = 𝑓 𝑖(𝑋𝑖

𝑡).

Also, given the history before 𝑡, neurons behave independently until a new neuron spikes. In
particular, for such a model, two neurons spike precisely at the same instant with probability 0,
which explains why we have no more cascades. Between two spikes in the system, the membrane
potentials of the neurons evolve independently according to the same diffusive dynamics as in
(2.1); when a neuron spikes, all the membrane potentials receive a kick, as prescribed by the values
of the synaptic weights.

Remark. 1. One can think of the hard threshold model as a particular case of the soft threshold
model with the rate functions

𝑓 𝑖(𝑥) =
⎧⎪
⎨
⎪⎩

+∞ if 𝑥 ≥ 𝑋𝐹

0 if 𝑥 < 𝑋𝐹,

in which case the rate functions are the same for all the neurons.

2. the choice 𝑓 𝑖(𝑥) = 𝐶((𝑥 − 𝑋𝐹)+)
𝑝 with a large 𝑝 ∈ ℕ and a good choice of constant 𝐶 should

be a good approximation of the hard threshold model. Notice that this intensity function is
equal to zero for values of the potential that are below 𝑋𝐹, the latter still playing the role of a
threshold: biological neurons indeed do not spike when their potential is below some threshold
(actually it depends on the type of neurons we are dealing with, but this is mostly true for cortex
neurons). When the potential exceeds 𝑋𝐹, the probability of spiking should quickly increase
with the membrane potential so that the neuron will quickly spike.

The soft threshold model can be rigorously defined as a multivariate point process. Although
we do not provide the definition explicitly, we borrow materials from this theory to construct our
algorithm.

• First, we know that, given the membrane potentials 𝑋1
𝑡 , ⋯ , 𝑋𝑁

𝑡 at a time 𝑡 (𝑡 being typically
an event of the multivariate point process), the first next event 𝑡 + 𝑇 after 𝑡 (or equivalently,
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the first time after 𝑡 at which a new neuron spikes) is given by the first occurrence of a new
point in a point process of intensity (∑𝑁

𝑖=1 𝑓 𝑖(𝑋𝑖
𝑡+𝜃))𝜃≥0.

• Second, given 𝑇, the label 𝑖 of the spiking neuron is distributed proportionally to 𝑓 𝑖(𝑋𝑖
𝑡+𝑇).

Although this construction is pretty simple, it is not possible to implement it directly in the form
of a simulation method. So, in practice, we combine the last two points with a rejection procedure.
Ideally, it reads as follows:

• For all, 𝑖 = 1, … , 𝑁, we introduce a (predictable) process ( ̃𝑓 𝑖
𝑡+𝜃)𝜃≥0 such that 𝑓 𝑖(𝑋𝑖

𝑡+𝜃) ≤
̃𝑓 𝑖

𝑡+𝜃, for all 𝜃 ≥ 0;

• provided we can do so, we simulate, conditional on the history up until time 𝑡, the next
event (or next point) 𝑡 + 𝑇 of a point process with intensity (∑𝑁

𝑖=1
̃𝑓 𝑖

𝑡+𝜃)𝜃≥0;

• we choose the label 𝑖0 of the spiking neuron proportionally to ̃𝑓 𝑖0
𝑡+𝑇;

• we simulate the membrane potential 𝑋𝑖0
𝑡+𝑇 according to the sole diffusive dynamics pre-

scribed before;

• we accept the spike of neuron 𝑖0 at time 𝑡 + 𝑇 with probability 𝑓 𝑖(𝑋𝑖0
𝑡+𝑇)/ ̃𝑓 𝑖0

𝑡+𝑇. In this case,
we update its membrane potential to its reset value 𝑋𝑖0

𝑡+𝑇 = 𝑋𝑅 and add the kick 𝐽 𝑖0→𝑗
𝑁 to

the post-synaptic neurons 𝑗 (i.e. such that 𝐽 𝑖0→𝑗
𝑁 ≠ 0);

• we then restart the procedure.

Of course, the choice of the “approximation functions” ( ̃𝑓 𝑖
𝑡+𝜃)𝜃≥0 is crucial, as the next event of the

process (∑𝑁
𝑖=1

̃𝑓 𝑖
𝑡+𝜃)𝜃≥0 should be easily simulated. In practice, functions ( ̃𝑓 𝑖)𝑖=1,⋯,𝑁 are taken

piecewise constant. We can even think of requiring the condition ̃𝑓 𝑖
𝑡+𝜃 ≥ 𝑓 𝑖(𝑋𝑖

𝑡+𝜃) for 𝜃 in a small
neighborhood of 𝑡 only and then of choosing ( ̃𝑓 𝑖

𝑡+𝜃)𝜃≥0 as a random function depending on the
sole past of the system before 𝑡, in which case the next event 𝑡 + 𝑇 is simulated as the next event in
a standard Poisson process.

In fact, the condition ̃𝑓 𝑖
𝑡+𝜃 ≥ 𝑓 𝑖(𝑋𝑖

𝑡+𝜃) may be easily verified when we consider the determinisic
part of the dynamics (with the sole drift 𝑏 and without the Brownian motion), as the values of the
process 𝑋𝑖 are then easily controlled. However, because of the Brownian part in the dynamics,
it is impossible to create a piecewise constant approximation function, as the support of a non-
degenerate Gaussian random variable is the whole (−∞, +∞). However the probability that these
values be very large is quite small; as a result, we can choose the approximation function in such a
way that ̃𝑓 𝑖

𝑡+𝜃 ≥ 𝑓 𝑖(𝑋𝑖
𝑡+𝜃) with very high probability for 𝜃 in the neighborhood of 𝑡.
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2 Article 1: Network of interacting neurons with random synaptic weights

For instance, if we consider that, between two spikes 𝑡 and 𝑡 + 𝑇, 𝑋𝑖 has the following Ornstein-
Ulhenbeck dynamics:

𝑑𝑋𝑖
𝜃 = −𝜆𝑖(𝑋𝑖

𝜃 − 𝑎𝑖)𝑑𝜃 + 𝜎𝑖𝑑𝑊 𝑖
𝜃 ,

with 𝑋𝑖
𝑡 as initial condition and 𝑎𝑖 as attractor, then we have the following explicit expression for

the membrane potential:

𝑋𝑖
𝜃 = 𝑎𝑖 + exp(−𝜆𝑖(𝜃 − 𝑡))(𝑋𝑖

𝑡 − 𝑎𝑖) + 𝜎𝑖
∫

𝜃

𝑡
exp(−𝜆𝑖(𝜃 − 𝑠))𝑑𝑊 𝑖

𝑠 , 𝜃 < 𝑡 + 𝑇 .

In words, the membrane potential follows Gaussian dynamics between two spikes and, using
standard confidence intervals for the supremum of Gaussian processes, we can easily cook up the
approximation function ̃𝑓 𝑖.

Remark. 1. For very large 𝑁, we do not update ̃𝑓 𝑖 at each spiking times of one neuron. We only
modify the value of ̃𝑓 𝑖0 and ̃𝑓 𝑗 for neurons 𝑗 s.t. 𝐽 𝑖0→𝑗

𝑁 ≠ 0.

2. The full network is implicitly updated after a fixed time interval: the time is segmented by
a coarse time grid of scale Δ, and the ̃𝑓 𝑖 are computed within these intervals. At the end of
one of these intervals, the maxima ̃𝑓 𝑖 are updated. We use this method in order to achieve
a trade-off: if Δ is large then the maxima ̃𝑓 𝑖 are large which means high computational cost
due to the percentage of rejected points whereas if Δ is small then the computational cost is
high due to the frequent updates of the full network. The scale Δ is chosen arbitrarily from
experience.

Summary

The algorithm can be found in a pseudo-code form in Algorithm 9 and is represented in Figure 2.4.
It can be summarized in three steps: generate a spiking time 𝑡, select a neuron, apply a rejection
sampling condition on the spike. This method is applied as many times as necessary for reaching
a certain condition, typically until a final time is reached or a given number of spikes has been
found. The rejection method is represented on step (4) in Figure 2.4, but several preliminary steps
are necessary.

The step (0) in Figure 2.4 is to find a time interval that should contain the next event. This step
is actually important for the speed of the algorithm. Events are exponentially separated, with the
sum of the approximation functions as parameter, see step (1) in Figure 2.4:

𝑇𝑘+1 = 𝑇𝑘 + T�, with T� ∼ E (∑
𝑖

̃𝑓 𝑖)
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This step gives the time when the event is occurring. To find the neuron responsible for the event,
we use again the sum of the approximation functions. The bigger the value of ̃𝑓𝑖, the higher the
probability that the neuron 𝑖 is the next one to spike.

Once we know which neuron spikes, we update its potential 𝑋𝑖(𝑇𝑛𝑒𝑥𝑡) (step (3)). In this regard,
it is important to remark that, while the event is categorized as 𝑇𝑛𝑒𝑥𝑡 in step (1), it is regarded in
the end as an event proper to neuron 𝑖 (2 in the figure); we denote it by 𝑇𝑖,𝑛.

The value of the potential 𝑋𝑖 at time 𝑇𝑖,𝑛 is needed to compute the value of the rate 𝑓𝑖(𝑋𝑖(𝑇𝑖,𝑛))
and thus to classify the event between false and true spikes (step (4)). The value of a random
variable uniformly distributed between 0 and ̃𝑓𝑖 gives the classification: if it is less than 𝑓(𝑋𝑖(𝑇𝑖,𝑛)),
the spike is a true one; if it is greater, it is a false one. If the spike is a true one, the potential of
the spiking neuron is reset to 𝑋𝑅 while the potentials of all the postsynaptic (children) neurons
are updated to the time of event 𝑇𝑛𝑒𝑥𝑡. The values of the synaptic weights (𝐽 𝑖→𝑗)𝑗=1,⋯,𝑁 are then
added to their potentials (step (5)) (so that the rates (𝑓𝑗(𝑋

𝑗
𝑇𝑖,𝑛

))𝑗=1,⋯,𝑁 may increase). If the spike
was a false one, nothing happens.

The algorithms then loops back to step (0) until a given condition (number of spikes reached,
time elapsed, etc.) is met.
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2 Article 1: Network of interacting neurons with random synaptic weights

Figure 2.4: Illustration of Algorithm 9 for a system composed of 3 neurons.

The steps (0)→(1)→(2)→(3)→(4)→ (5) are described in the text.
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The algorithm (for Ornstein-Ulhenbeck subthreshold dynamics)

Algorithm 9 Simulator
1: 𝑁: number of neurons
2: Set 𝑖 = 𝑘 = 𝑛 = 0 and 𝜏0 = 𝑇0 = 0
3: Set (𝑇 𝑗)𝑗∈{1,⋯,𝑁} = (0) and (𝑋𝑗)𝑗∈{1,⋯,𝑁} = (0)
4: Set 𝑖 = 𝑖 + 1 and generate 𝜏𝑖+1

5: Compute 𝑆 = ∑𝑁
𝑛=1

̃𝑓 𝑛
𝜏𝑖

6: Set ̃𝑇 ∼ E (𝑆) and Δ𝑡 = Δ𝑡 + ̃𝑇
7: if 𝜏𝑖−1 + ̃𝑇 > 𝜏𝑖 then
8: Set 𝑖 = 𝑖 + 1 and go to 4
9: end if

10: Set 𝑘 = 𝑘 + 1 and put 𝑇𝑘 = 𝑇𝑘−1 + ̃𝑇 ▷ System spiking time
11: Put 𝑢 ∼ U ([0, 1])
12: 𝑛 ← argmin𝑛∈{1,⋯,𝑁}(∑𝑁

𝑗=1
̃𝑓 𝑗

𝜏𝑖 ∗ 𝑢 < ∑𝑛
𝑗=1

̃𝑓 𝑗
𝜏𝑖)

13: Put 𝑡 = 𝑇𝑘 − 𝑇 𝑛 and 𝑇 𝑛 = 𝑇𝑘

14: Put 𝑋𝑛 = 𝑎𝑛 + 𝑒−𝜆𝑛𝑡(𝑋𝑛 − 𝑎𝑛) + 𝜎𝑛N (0, (1 − 𝑒−2𝜆𝑛𝑡)/(2𝜆𝑛))
15: Put 𝑢 ∼ U ([0, 1])
16: if ̃𝑓 𝑛

𝜏𝑖
∗ 𝑢 < 𝑓(𝑋𝑛) then

17: for all j do1N
18: if 𝑗 ≠ 𝑛 then
19: 𝑋𝑗 = 𝑎𝑗 + 𝑒−𝜆𝑗𝑡(𝑋𝑗 − 𝑎𝑗) + 𝜎𝑗N (0, (1 − 𝑒−2𝜆𝑗𝑡)/(2𝜆𝑗))
20: end if
21: 𝑋𝑗 = 𝑋𝑗 + 𝐽 𝑛→𝑗

22: end for
23: end if
24: Put 𝜏𝑖 = 𝑇𝑘 and go to 4

Comparison between clock-driven and event-driven algorithms

We now argue why the event-driven algorithm may be more advantageous than the clock-driven
one.

We first recall that the clock-driven method is based upon a time discretization. The state of
the system is indeed approximated at discrete times of the form (𝑇0 + ℓΔ)ℓ∈ℕ, for a given time
step Δ. The advantage is pretty clear: The clock-driven method may be easier to implement than
the event-driven one. Still, it has a major drawback: the time mesh disregards the own clock of
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the system; the former is indeed uniform whilst the latter is deeply heterogeneous since spikes
may occur much more frequently at certain periods. In other words, the time mesh chosen in
the clock-driven method may not be adapted to the dynamics of the system (we did not explore
adaptive time meshes since the event-driven method is automatically adapted). As a result, it
may be harder for the clock-driven algorithm to capture the right behavior, leading to precision,
stability and complexity issues.

For instance, precision issues may arise because spikes (at least in the simplest form of the
clock-driven method) can only occur at the nodes of the time mesh. For sure, this creates a
local small error, that may accumulate on the long run. Whilst sophisticated strategies may be
implemented to mitigate this effect (for instance the dynamics between two consecutive nodes
may be reconstructed a posteriori in the form of a bridge), a common (and simple) solution is to
take a very small time step Δ. However, the smaller the step Δ the higher the computational cost.

For sure, choosing Δ small has a low interest when the activity of the network is low: When
spikes are rare, the computational effort that is required for handling a small Δ looks somewhat
disproportionate.

Conversely, Δ has to be chosen very small in order to account for blow-ups. As stated above,
this increases the complexity of the method.

These basic observations explain the need for an alternative, event-driven, method. By focusing
on the spikes generation (and only computing that), the event-driven approach may indeed reduce
the global complexity. Also, times at which the dynamics are simulated are no longer multiples of
Δ but can now potentially take any decimal value within the precision range of the machine. The
values are then easily precise up to 10−15 on modern machines.

�.�.� Graph management

The storage of the interaction matrix 𝐽𝑁 is a strong limitation in our algorithm. To simulate a
network with 𝑁 neurons, we need to know the values of 𝑁2 synaptic weights 𝐽 𝑖→𝑗

𝑁 . In practice,
the size of the memory requested to store this matrix is one of the main limitation in our algorithm.
For instance, in the classical algorithm used for creating a 𝑁-node Erdös-Renyi directed graph, a
matrix of size 𝑁2 is created, where each element indicates whether there is a connection between
two neurons; typically, this may be an issue when 𝑁 is greater than 106. Indeed, it is impossible to
store on a laptop a graph with one million of nodes, or a network with one million of neurons.

The main idea we propose here is to slightly change the classical method for generating the
synapticweights (when given as the realizations of independent and identically distributed variables
as it is the case in the Erdös-Renyi graph); in a sentence, our strategy is: “instead of storing 𝑁
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rows of size 𝑁, store only 𝑁 numbers, namely store for each row one number that encodes the
whole row”.

We call our new algorithm a reconstruction algorithm. Let us rephrase the main idea: instead
of storing the full matrix of interaction, we store 𝑁 values, say 𝑆0, 𝑆𝑁 … , 𝑆𝑁(𝑁−1) (the fact the
indices are in the form 𝑁𝑖 is explained in Figure 2.5 below). The knowledge of 𝑆𝑁𝑖 is sufficient
to compute the row 𝐽 𝑖→•

𝑁 of the synaptic weights from 𝑖 to all the other neurons. In other words,
instead of requesting a memory stack of order 𝑁 × 𝑁, we just request to a smaller memory stack
of order 𝑁. Of course, the price to pay for this operation is that, each time we need the elements
of the row number 𝑖, we have to recompute from scratch the whole vector of interactions pointing
from 𝑖. As we make clear below, this method is numerically efficient if, first, the matrix is static (i.e.,
the values do not evolve in time), and second, we do not use it too often; in fact, both conditions
are fulfilled in our setting.

The whole trick is based on the fact that, from the numerical point of view, the matrix 𝐽𝑁 is
obtained by a simulation technique, which is in fact deterministic! Consider indeed a Pseudo
Random Number Generator (PRNG) in a state 𝑆0. If one uses this PRNG once, a random number
𝑟0 is produced and the state of the PRNG is changed from 𝑆0 to 𝑆1. After 𝑁 iterations, the PRNG
is in a state 𝑆𝑁 and 𝑁 random numbers have been returned. Now if we put the PRNG back to
state 𝑆0, and ask again for a number, then 𝑟0 will be returned again and the RNG will be back in
state 𝑆1; after 𝑁 iterations, the PRNG is again in state 𝑆𝑁 and the 𝑁 random numbers that have
been returned are the same as the 𝑁 numbers that had been initially generated. So, going back
to the matrix 𝐽𝑁, we can store the states 𝑆𝑁𝑖 of the PRNG at the beginning of the simulation of
the row 𝑖 + 1. Each time we need the values of the weights 𝐽 𝑖0→𝑗

𝑁 , we just change the state of the
PRNG to 𝑆𝑁𝑖0 and generate again (with the PRNG) the pseudo-random values 𝐽 𝑖0→𝑗

𝑁 . Obviously,
putting the PRNG in the same state gives the same pseudo-random result. We make this clear in
Figure 2.5 below.

This method is easily implemented in the case of an Erdös-Renyi graph (which is our benchmark
example), see also Algorithm 10. Instead of storing the connections in a matrix, one stores only
the first states (𝑆𝑁𝑖)𝑖=0,⋯,𝑁−1; at the end of the day, the memory print is much lower... but the
computational cost is higher. To make it clear, this algorithm is not very efficient if one needs to
often access the individual entries of the matrix, or if one wants a dynamical system where the
graph connections are allowed to evolve in time. But in our case the connections are fixed once
for all at the beginning of the simulation and the only moment we need them is to update the
potential of the children after a spike; in the latter case (and this the key point), what we want is
exactly the full row of the matrix.
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Classical method ∶

𝑆0

𝑆𝑁

⋮
𝑆𝑁(𝑁−1)

→
→
⋮
→

⎛
⎜
⎜
⎜
⎜
⎝

𝐽11 𝐽12 ⋯ 𝐽1𝑁

𝐽21 𝐽2𝑁

⋮ ⋮
𝐽𝑁1 𝐽𝑁2 ⋯ 𝐽𝑁𝑁

⎞
⎟
⎟
⎟
⎟
⎠

= 𝐽

Reconstruction method ∶ 𝐽 =

⎛
⎜
⎜
⎜
⎜
⎝

𝑆0

𝑆𝑁

⋮
𝑆𝑁(𝑁−1)

⎞
⎟
⎟
⎟
⎟
⎠

→
→
⋮
→

𝐽11 𝐽12 ⋯ 𝐽1𝑁

𝐽21 𝐽2𝑁

⋮ ⋮
𝐽𝑁1 𝐽𝑁2 ⋯ 𝐽𝑁𝑁

Figure 2.5: The two graph management methods summarized here. The → means “generate the row on
the right”, the (𝑆𝑖)𝑖∈{0,⋯,𝑁(𝑁−1)} are the state of the PRNG before the generation of the row and
(⋅) is what is kept in memory (graph in the classical method, vector of PRNG’s states in the
reconstruction method)

Algorithms

Algorithm 10 Generation of a vector of PRNG states
1: PRNG: Pseudo Random Number Generator
2: p: probability of connection between two neurons
3: N: number of neurons in the system
4: (𝑉𝑖)𝑖∈{1,⋯,𝑁}: vector of PRNG status
5: for i do0N-1
6: 𝑉𝑖 ← 𝑆𝑖∗𝑁

7: for j do1N
8: PRNG ▷ State change from 𝑆𝑖∗𝑁+𝑗−1 to 𝑆𝑖∗𝑁+𝑗

9: end for
10: end for

Remark. We have to use another random generator number for the simulations of the Brownian
motions and the Poisson Processes.

Algorithm 11 gives a comparison between the two (classical and reconstruction) methods:
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Algorithm 11 Comparison of usage between classical method and reconstruction
(𝑀𝑖𝑗)(𝑖,𝑗)∈{1,⋯,𝑁}2 : Interaction matrix

Neuron i is spiking
▷ Using matrix graph
for j do1N

if M𝑖,𝑗 = 1 then
Update potential of neuron j

end if
end for
▷ Using reconstruction
RNG.SetState(𝑉𝑖)
for j do1N

if Bernoulli(RNG)= 1 then
Update potential of neuron j

end if
end for

A natural question is the question of the complexity of such a reconstruction-based method
compared to the complexity of the classical one. This is a broader matter that is addressed in the
next section.

�.�.� Complexity: memory and instructions

We remind the user that algorithmic complexity must be read as a function relating the input of
an algorithm (more precisely its size) and the number of steps it takes (its time complexity) or the
number of storage locations it uses (its space complexity). The asymptotic values of this function
(for larger and larger sizes of the input) are noted with a big O notation.

Of course, the reader must remember that two algorithms with the same order of complexity
(or two implementations of the same algorithm) may execute with different amounts of resources
because of a multiplicative factor between the two (which will become somehow insignificant
asymptotically, but which is not for inputs of small size). Having in mind this limitation, the
analysis we provide below focuses on the comparison between the orders of complexity.
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2 Article 1: Network of interacting neurons with random synaptic weights

Time complexity
at creation

Time complexity
during usage

Space complexity

Reconstruction method O(𝑁2) O(𝑁) O(𝑁)
Interaction matrix O(𝑁2) O(1) O(𝑁2)

Table 2.1: Number of operations to create the matrix (col. 1); Number of operations at each call (col. 2);
Memory complexity (col. 3).

It must be stressed that the only input that we regard in the analysis of the complexity is the
number 𝑁 of neurons. In particular, all the routines that do not depend explicitly on 𝑁 do not
really appear in the complexity, whilst they could have a non-negligible cost. For instance, PRNG
takes time, but it does not show up in the final computation of the complexity.

The first complexity column is given as an example of how the complexity is computed. In the
classical algorithm for generating an interaction matrix, for all the parents, we must look at all the
other neurons in order to determine whether they are children of the parent. Hence the double
loop, leading to 𝑁2. In the case of the reconstruction method presented above, the number of
children of a given parent is determined before hand, and in the second loop their index.

It must be also stressed that, in practice, the time complexity at creation of the reconstruction
method is lower than the complexity of the interaction method; theoretically, this is not the case
as one should take into account the worst case scenario (i.e, the complete graph).

As for the last two columns, the space complexity is obviously smaller for the reconstruction
method, making it very relevant for big graphs. Still, the time complexity using the vector of PRNG
states is worse than the time complexity of the interaction method, but, as we already commented,
this is not such a hindrance in our case.
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� Article �: Efficient simulation of
sparse graphs of point processes

Written by C. Mascart, A. Muzy, P. Reynaud-Bouret

A new algorithm for multivariate point process simulation, and in particular Hawkes point
process with piecewise constant intensities, is exposed in this second article. The algorithm is
derived from the algorithm proposed by Ogata in [106] and developed in section 1.2.8. The
theoretical complexity, depending on the number of processes, of the new algorithm is compared
with the theoretical complexity of the classical algorithm developed by Ogata, adapted here for
piecewise constant functions to keep the comparison fair. The execution time of the two algorithms
are also compared using different topologies, and a discrete sampling of the parameter space.
Finally goodness-of-fit tests are applied to the output of both algorithms to verify the quality of
the simulation.

My contributions to this article consists of successive designs and implementation of the algo-
rithm, as well as running the simulations, collecting the results and executing the goodness-of-fit
tests.

Status: Submitted and accepted in TOMACS
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�.� Abstract

We derive new discrete event simulation algorithms for marked time point processes. The
main idea is to couple a special structure, namely the associated local independence graph,
as defined by Didelez [13],with the activity tracking algorithm [23] for achieving high perfor-
mance asynchronous simulations. With respect to classical algorithm, this allows reducing
drastically the computational complexity, especially when the graph is sparse.

�.� Introduction

Point processes in time are stochastic objects that model efficiently event occurrences. The variety
of applications is huge: frommedical data applications (time of death or illnesses) to social sciences
(dates of crimes, weddings, etc), from seismology (earthquake occurrences) to micro-finance
(actions of selling or buying a certain assets), from genomics (gene positions on the DNA strand)
to reliability analysis (breakdowns of complex systems) (see e.g. [1, 9, 13, 25, 30, 32]).

Most of the time, point processes are multivariate, in the sense that either several processes are
considered at the same time, or in the sense that one process regroups together all the events of
the different processes and marks them by their type. A typical example consists in considering
either two processes, one counting the wedding events of a given person and one counting the
birth dates of children of the same person. One can see this as a marked process which regroups
all the possible dates of birth or weddings independently and on each event one marks it by its
type, here wedding or birth.

In the sequel, we denote the individual process 𝑁𝑗, the set of all events corresponding to type
𝑗, for 𝑗 = 1, ..., 𝑀 and the joint process 𝑁 = 𝑁1 ∪ .. ∪ 𝑁𝑚. In this multivariate or marked case,
the individual processes are usually globally dependent, the apparition of one event or point on a
given type influencing the apparition of other points for the other types and the simulation of the
whole system cannot be easily parallelized.

This is especially true in neuroscience [29]. Let us detail a bit more this set up which is a
benchmark example here. Neurons are excitable electric cells that are linked together inside a
huge network (1011 for humans [3], 108 for rats [19], 106 for coackroaches), each cell receives
inputs from approximately 103 to 104 presynaptic (upstream) neurons [27]. Depending on its
excitation, the neuron might then produce an action potential also called spike, information which
is propagated to postsynaptic (downstream) neurons.

From a stochastic point of view, one might then see the spike trains emitted by a given neuron
as an individual point process which in fact is embedded in a multivariate point process with 𝑀,
the total number of neurons as the total number of types. The size of the network requires then
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very well adapted simulation schemes that may use the relative sparseness of the network with
respect to the global size of the network.

To do so, we use the mathematical notion of local independence graph for marked point
processes due to Didelez [13], which is detailed in Section 3.5 and which informally corresponds to
the real neuronal network. In this sense, in the sequel we call marks, processes and type the nodes of
the graph. The only strong assumption that is used is the time asynchrony hypothesis, (i.e. points or
events of different mark or types, meanings points or events appearing in different nodes, cannot
occur at the exact same time) together with the fact that all processes have a conditional intensity
[6].

Simulation of point processes has a long history that dates back to Doob in the 40’s [14] for
Markov processes. In the 70’s, Gillespie [16] popularized the method for a particular application:
chemical reactions. At the same time, Lewis and Shedler [20] proposed a thinning algorithm for
simulating univariate inhomogeneous Poisson processes (this can also be viewed as a rejection
method). Few years later, Ogata [26] produced a hybrid algorithm able to simulate multivariate
point processes in the general case even if they are not markovian, including both a choice of the
next point by thinning and a choice of the node to activate thanks to Gillespie principle. This
method is still up to now the benchmark for simulating such processes, and is for instance used in
recent packages such as ppstat in R (2012). It has been rediscovered many times in various cases,
most of the time as a Generalized Gillespie method (see for instance [2]).

When the number of types or nodes is huge, this method can quickly become inefficient in
terms of computational times. Many people have found shortcuts, especially in Markovian settings.
For instance, Peters and de With [28] proposed a new simulation scheme exploiting a network of
interaction for particular physical applications. In [4], the authors reformulated this algorithm
in a more mathematical way for a particular case of Piecewise Deterministic Markov Processes.
People have even exploited very particular structures such as Hawkes processes, with exponential
interactions (special case which leads to Markovian intensities) [12], to be able to simulate huge
networks, as in the Python package tick (2017).

In the mean time, the technique of discrete event simulation first appeared in the mid-1950s [31]

and was used to simulate the components (machines) of a system changing state only at discrete
“events”. This technique has then been formalised in the mid-1970s [33]. Discrete event modelling
and simulation seem very close to point process models (dealing with events, directed graphs, con-
tinuous time, etc.). Against all expectations, as far as we know, there is no direct use of any discrete
event simulation algorithm for point processes. Maybe, the sophistication of these algorithms
being of the same order than the mathematical technicality of point processes, prevented any
direct application. Besides, the continuous nature of the conditional intensity associated to a point
process with respect to the discreteness of event-based simulations could make appear the two
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domains as separated whereas discrete event theory is a computational specification of mathemati-
cal (continuous) systems theory [22] integrating more and more formally stochastic simulation
concepts [34]. We hope to show here that both domains can take advantage from each other,
by introducing new discrete-events models that act as generators of point processes. Especially,
whereas discrete event simulation algorithms have been developed considering independently the
components (nodes) of a system, a new algorithm for activity tracking simulation [23] have been
proposed to track activity (events from active nodes to children). The activity tracking algorithm
is used here and proved to be the right tool for both simplifying usual discrete event algorithms
(which are difficult to relate to usual point process algorithms) and efficiently simulating point
processes.

Our aim is to derive a new simulation algorithm, which generalises the algorithm of [4] to gen-
eral multivariate point processes that are not necessarily Markovian, by exploiting the underlying
network between the types, which is here a local independence graph. In Section 3.3, the main
mathematical background and notations are provided and the classical multivariate algorithm
due to Ogata [26] is explained. A simplified version in discrete event terms and called full scan
algorithm is proposed. In Section 3.4, discrete event data structure and operations specific to point
processes are designed. In Section 3.5, after recalling the notion of local independence graph [13], a
new local graph algorithm is presented. In Section 3.6, we evaluate the computational complexities
of both algorithms on Hawkes processes with piecewise constant interactions, which model easily
neuronal spike trains [29]. We show that in this case, for sparse graphs, new local graph algorithm
clearly outperforms the classical Ogata’s algorithm in its discrete event version.

�.� Set-up

�.�.� Mathematical framework

A (univariate) point process 𝑁 in ℝ+ is a random countable set of points of ℝ+. For any subset 𝐴
of ℝ+, 𝑁(𝐴) is the number of points that lie in 𝐴.

As real random variables might be defined by their density with respect to Lebesgue measure,
if it exists, a point process is characterised by its conditional intensity with respect to a given
filtration or history (ℱ𝑡, 𝑡 ≥ 0). For the mathematical details, we refer the reader to [6]. Informally,
the filtration or history at time 𝑡−, ℱ𝑡−, contains all the information that is needed to simulate the
next point of 𝑁, when one is just before time 𝑡. It usually includes as generators, all the points
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𝑇 ∈ 𝑁 such that 𝑇 < 𝑡 in particular. The (conditional) intensity of the point process 𝑁 is then
informally defined [6] by

𝜆(𝑡) = lim
𝑑𝑡→0

1
𝑑𝑡

ℙ(there is a point of 𝑁 in [𝑡, 𝑡 + 𝑑𝑡]|ℱ𝑡−),

for infinitesimal 𝑑𝑡, where ℙ(there is a point of 𝑁 in [𝑡, 𝑡 + 𝑑𝑡]|ℱ𝑡−) is the probability that a point
appears in the interval [𝑡, 𝑡 + 𝑑𝑡] given what happened strictly before 𝑡 in the history. This is a
random process which, at time 𝑡, may depend in particular on all the past occurrences of the
process itself, that is the 𝑇 < 𝑡.

A multivariate point process can be seen as a collection of 𝑀 different point processes 𝑁𝑗.
With the time asynchrony hypothesis, one can also consider equivalently the univariate joint point
process 𝑁 = 𝑁1 ∪ ... ∪ 𝑁𝑀 and say that for each point 𝑡 of 𝑁 there is one and only one subprocess
𝑗 such that 𝑡 ∈ 𝑁𝑗. This 𝑗 is then called the mark of point 𝑡, or the node associated to 𝑡.

We are given the set of intensities of each of the 𝑁𝑗, 𝑡 ↦ 𝜆𝑗(𝑡), with respect to a common
filtration (ℱ𝑡, 𝑡 ≥ 0). Note that ℱ𝑡− includes as generators, all the points 𝑇 ∈ 𝑁, the joint process
such that 𝑇 < 𝑡 as well as their respective marks.

Examples Let us give just few basic examples

• Homogeneous Poisson processes with rates (𝜈𝑖)𝑖=1,...,𝑀. In this case, all 𝜆𝑖 are constant
and not even random and for all 𝑖,

𝜆𝑖(𝑡) = 𝜈𝑖.

We see in this expression, that the intensities do not depend neither on time, nor on the
previous occurrences. This is why one often refers to such dynamics as “memoryless”. Since
these processes do not interact, one can of course simulate each 𝑁𝑖 in parallel if need be. In
this case, for each of them, it is sufficient to simulate the time elapsed until the next point,
by an exponential variable of parameter 𝜈𝑖, independently from anything else. To unify
frameworks, this exponential variable might also be seen as − log(𝑈)/𝜈𝑖, with 𝑈 a uniform
variable on [0, 1].

• Inhomogeneous Poisson processes with time-dependent rates (𝑓𝑖)𝑖=1,...,𝑀. In this case,
the 𝜆𝑖’s are not necessarily constant and but they are still non random and for all 𝑖,

𝜆𝑖(𝑡) = 𝑓𝑖(𝑡).
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3 Article 2: Efficient simulation of sparse graphs of point processes

Once again parallelization is possible, and for each individual process 𝑁𝑖 and given point
𝑡𝑖
𝑘, one finds the next point 𝑡𝑖

𝑘+1 by solving

∫
𝑡𝑖
𝑘+1

𝑡𝑖
𝑘

𝑓𝑗(𝑠) d𝑠 = − log(𝑈)

• Linear multivariate Hawkes process with spontaneous parameter (𝜈𝑗)𝑗=1,...,𝑀 and non
negative interaction functions (ℎ𝑗→𝑖)𝑖,𝑗=1,...,𝑀 on ℝ+. This process has intensity

𝜆𝑖(𝑡) = 𝜈𝑖 +
𝑀

∑
𝑗=1

∑
𝑇 ∈𝑁𝑗,𝑇 <𝑡

ℎ𝑗→𝑖(𝑡 − 𝑇 ). (3.1)

This process is used for many excitatory systems, especially the ones modelling the spiking
activity of neurons [29]. It can be interpreted in this sense, informally: to a homogeneous
Poisson process of rate 𝜈𝑖, which models the spontaneous activity of the neuron 𝑖, one
adds extra-points coming from the interactions. Typically a point 𝑇 of mark (neuron) 𝑗
adds a term ℎ𝑗→𝑖(𝛿), after delay 𝛿 to the intensity of 𝑁𝑖 making the apparition of a new
point at time 𝑡 = 𝑇 + 𝛿 more likely. In this sense there is an excitation of 𝑗 on 𝑖. Here
we see a prototypical example of global dependence between the marks. Each new point
for each mark depends on all the points that have appeared before, with all the possible
marks, preventing a brute force parallelization of the simulation. Except when the ℎ𝑗→𝑖’s
are exponentially decreasing [12], this process is clearly not Markovian. It is for this kind of
general process that one needs efficient simulation algorithms.

�.�.� Simulation of univariate processes

The time-rescaling theorem (see [8] or [6] for more mathematical insight) states that if a point
process 𝑁 has a conditional intensity 𝜆(𝑡), and if

∀𝑡, Λ(𝑡) = ∫
𝑡

0
𝜆(𝑠) d𝑠,

then 𝒩 = {Λ(𝑇 ), 𝑇 ∈ 𝑁} is a Poisson process of rate 1. This is why, even for general point
processes, it is always possible to find, by iteration the next point of 𝑁 by solving recursively, for
all 𝑘 ∈ ℕ∗ the set of positive natural numbers,

∫
𝑡𝑘+1

𝑡𝑘

𝜆(𝑠) d𝑠 = − log(𝑈) (3.2)
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3.3 Set-up

initializing the method with 𝑡0 = 0.

Of course, to be able to mathematically solve this easily, one needs to be able at time 𝑡𝑘 to
compute 𝜆(𝑡) on (𝑡𝑘, +∞) if no other point occurs. This in particular happens if the filtration ℱ𝑡 is
reduced to the filtration generated by the points themselves and this is what we will assume here.
Of course all algorithms discussed here can easily be adapted to richer filtrations, as long as the
computation of 𝜆(𝑡) on (𝑡𝑘, +∞) can be carried out (if no other point occurs).

In this situation, two cases might happen, each of them leading to a different algorithm:

Transformation method: The function 𝜆(𝑡) on (𝑡𝑘, +∞) (and if no other point occurs) has an
easily computable primitive function with inverse Λ−1(𝑡). Then (3.2) reduces to

𝑡𝑘+1 = Λ−1(− log(𝑈) + Λ(𝑡𝑘)).

Thinning method: It applies if the previous computation is not possible or easy but one can still
compute 𝜆∗(𝑡) ≥ 𝜆(𝑡) such that 𝜆∗(𝑡) has all the desired properties of the transformation
method (typically 𝜆∗(𝑡) is constant, with constant that might depend on the 𝑡ℓ for ℓ ≤ 𝑘).
Then the algorithm does as follows to compute a possible next point (cf. Algorithm 12). If
thinning for Poisson processes is due to [20], it has been generalized to general processes by
Ogata [26]. One can find a complete proof in [10].

Algorithm 12Thinning algorithm

1: initialize 𝑡∗
0 ← 𝑡𝑘

2: repeat
3: Generate next point 𝑡∗ after 𝑡∗

0 of a point process with intensity function 𝜆∗ by the Trans-
formation method.

4: Generate 𝑈 ∼ 𝒰[0, 1]
5: if 𝑈 > 𝜆(𝑡∗)/𝜆∗(𝑡∗) then # Rejection
6: 𝑡∗

0 ← 𝑡∗

7: end if
8: until 𝑈 ≤ 𝜆(𝑡∗)/𝜆∗(𝑡∗)
9: return 𝑡𝑘+1 ← 𝑡∗
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3 Article 2: Efficient simulation of sparse graphs of point processes

�.�.� Discrete event version of classical multivariate algorithm for point
processes

To simulate multivariate processes, Ogata [26] made an hybridation between two different notions
: the thinning algorithm presented above and the attribution of marks. Indeed, since all processes
𝑁𝑗 are communicating with each other, Ogata’s idea for the attribution of marks is to generate the
next point of the aggregated process 𝑁 and, then, to decide for its mark.

In the present article, we choose to discard the thinning part, which can be added to all the
algorithms that we derive here. The attribution part of Ogata’s multivariate algorithm [26], is
referred in the sequel as full scan, because the intensities of all nodes of the graph need to be
scanned and updated at each time stamp 𝑡𝑘. Once the next point of 𝑁 is decided, the basic idea for
the attribution of marks is to attribute them at random, the distribution taking into account the
relative value of the intensity of each subprocess. The main steps of this algorithm are presented in
Figure 3.1 for a visual representation of the method. More details about the algorithm steps are
provided through the Hawkes application in Section 3.6.

Algorithm 13 Full scan multivariate algorithm modified from [26]
1: 𝑡0 ← 0
2: while 𝑡𝑘 < 𝑇 do
3: Compute intensity sums ∑𝑖

𝑗=1 𝜆𝑗(𝑡) = 𝜆𝑖(𝑡), for 𝑖 ∈ {1, ..., 𝑀} on 𝑡 ∈ (𝑡𝑘, +∞)
4: Get by simulation 𝑡𝑘+1 as the next point of a univariate point process of intensity 𝜆𝑀(𝑡)

5: Select the unique possible node 𝑖𝑘+1, such that
𝜆𝑖𝑘+1−1(𝑡𝑘+1)

𝜆𝑀(𝑡𝑘+1)
< 𝑉 ≤

𝜆𝑖𝑘+1(𝑡𝑘+1)

𝜆𝑀(𝑡𝑘+1)
, with

𝑉 ∼ 𝒰[0, 1] and 𝜆0 = 0
6: Update intensities 𝜆𝑗 on (𝑡𝑘+1, +∞), ∀𝑗 ∈ {1, ..., 𝑀}
7: 𝑘 ← 𝑘 + 1
8: end while
9: return points (𝑡1, ..., 𝑡𝑘−1) and associated nodes (𝑖1, ..., 𝑖𝑘−1)

Step a/

Step b/

Step c/

Step d/
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1 - INTENSITY SUM 

2 NEXT POINT 3 NODE SELECTION

By thinning or 
transformation method

Selected node

4 UPDATE 

Figure 3.1: Steps of the full scan algorithm for point processes. The intensities are piecewise constant (cf.
Section 3.6).

Original Ogata’s algorithm uses thinning at step 4 of Algorithm 13. However the complexity
of a thinning step is difficult to evaluate because it depends on both the complexity of the upper-
bounding function 𝜆∗ and how far this function is from 𝜆, which influences how much time
the thinning algorithm rejects. Therefore for a clear evaluation of the complexity, we focused
on simulations where the transformation method is doable, typically when the intensities are
piecewise constant.

�.� Specific discrete event data structures and operations

Before introducing our new algorithm, we present a particular structure, which is very important
for discrete events algorithm : the scheduler.

A scheduler 𝑄 is a data structure, which can be represented as an ordered set of events, and
which is provided with a set of operations for ensuring the correct order of the events. The events
are noted 𝑒𝑣𝑖 = (𝑡𝑖, 𝑣𝑖), where 𝑡𝑖 is the event time and 𝑣𝑖 is the event value. The events in the
scheduler are increasingly ordered in time, i.e., 𝑒𝑣𝑖, 𝑒𝑣𝑗 ∈ 𝑄, 𝑒𝑣𝑖 < 𝑒𝑣𝑗 ⟺ 𝑡𝑖 < 𝑡𝑗. The length
of the scheduler is noted |𝑄|.
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Figure 3.2: Example of events in scheduler 𝑄. For an event 𝑒𝑣𝑖 in the scheduler, the value is accessed by
𝑄[𝑖].𝑣𝑎𝑙𝑢𝑒 and the time is accessed by 𝑄[𝑖].𝑡𝑖𝑚𝑒, with 𝑖 = 0 the first event index.

In both full scan and local graph algorithms schedulers are used. They are usually implemented
using one of the many kinds of self-balancing binary tree. The choice of structure (AVL, red-black,
etc.) depends on corresponding operation complexity. Here we choose the red-black self balancing
tree, which exhibits the best performance with respect to other usual self-balancing trees [18].

To make a scheduler, the red-black tree is equipped with a set of classical (insert, remove,
upper bound and lower bound) and non-classical operations. All these operations, except stated
otherwise, have time complexity bounded by the logarithm log2 of the number of elements in the
set. In addition it is supposed that any element of the scheduler can be accessed with a constant
time. This may not be the case depending on the language used for the implementation. However,
it is true for C++ language, which was used in our implementation.

�.�.� Basic scheduler operations

We describe and illustrate the set of operations completing the red-black tree to form the scheduler
data structure needed for our algorithms. Any operation on a scheduler 𝑄 directly modifies it.
Also, to simplify the operations, it is supposed that all events stored in a scheduler 𝑄 are unique.

Access element operation (𝑡𝑖, 𝑣𝑖)𝑖∈{0,…,|𝑄|−1} is the list of events stored in scheduler 𝑄 and sorted
by ascending values of 𝑡. Then operation 𝑄[𝑖] returns event (𝑡𝑖, 𝑣𝑖) with constant time
complexity O(1).

Insert operation of an event (𝑡, 𝑣) ∈ ℝ+ × ℝ (cf. Figure 3.3): 𝑄 ⊕ (𝑡, 𝑣) inserts the event in the
tree. This operation has a total maximum complexity of 𝒪(𝑙𝑜𝑔2(|𝑄|)), to find the place of
the event and rebalance the tree.
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time

values

𝑡1 𝑡2 𝑡

𝑣

𝑡1 < 𝑡∗ < 𝑡2

or 𝑡 = 𝑡∗

𝑣∗

⊕ =
time

values

𝑡1< 𝑡∗ <𝑡2 𝑡 = 𝑡∗

𝑣 + 𝑣∗

Figure 3.3: A graphical example of the insertion of a new event (𝑡∗, 𝑣∗) inside a scheduler. There are
two cases: if the event time is unmatched in the set of event times already present in the
scheduler (case 𝑡1 < 𝑡∗ < 𝑡2), the event is just inserted in the right place; otherwise (case
𝑡 = 𝑡∗) the event in the scheduler with the same time has its value increased by the value
𝑣∗ of the new event.

Remove operation of an event (cf. Figure 3.4): 𝑄 ⊖ (𝑡, 𝑣), removes the event (𝑡, 𝑣) from the tree.
This operation has a maximum complexity of O(log2(|𝑄|)), to find the place of the event
and rebalance the tree. If the index 𝑖 of the element is known, the remove operation can be
executed in constant time.

time

values

𝑡1 𝑡2 𝑡

⊖(𝑡, 𝑣)=
time

values

𝑡1 𝑡2

Figure 3.4: A graphical example of the removal of an event given its time 𝑡.

Remove first operation 𝑄∗ over the scheduler 𝑄, which removes the first event 𝑄[0] = (𝑡0, 𝑣0)
from the scheduler, the second event becoming the first. Operation ⋅∗ has complexity 𝒪(1).

Prune operation of the scheduler 𝑄𝑡 (cf. Figure 3.5) removes all events (𝑡∗, 𝑣∗) from |𝑄| whose
time value 𝑡∗ ≤ 𝑡. Theoperation𝑄𝑡 has complexity𝒪(𝑙𝑜𝑔2(|𝑄|) + |number of events until time 𝑡|).

time

values

𝑡

𝑄𝑡 =
time𝑡

values

Figure 3.5: A graphical example of the prune operation: here all the points with a time less or equal to 𝑡
(here the first two points of this scheduler) are removed. The time complexity of the operation is
O(log2(4) + 2) (scheduler of size |𝑄| = 4 and 2 events removed).
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Upper and lower bound operations (cf. Figure 3.6): Upper bound operation: ⌈𝑡⌉𝑄 and lower
bound operation ⌊𝑡⌋𝑄, return the smaller event (𝑡∗, 𝑣∗) verifying respectively 𝑡∗ > 𝑡 and
𝑡∗ ≥ 𝑡. In both cases the time complexity of the operation is 𝒪(𝑙𝑜𝑔2(|𝑄|)).

time

values

𝑡𝑖 𝑡𝑗 𝑡𝑘 𝑡ℓ

Figure 3.6: Upper/lower bound operations on an example of scheduler 𝑄. For 𝑡𝑘 < 𝑡 < 𝑡ℓ the upper bound
operation consists of ⌈𝑡⌉𝑄 = ℓ. The lower bound operation consists of ⌊𝑡⌋𝑄 = 𝑘.

�.�.� Using a scheduler to represent piecewise constant functions

Let ℎ∶ ℝ∗ → ℝ, 𝑡 ↦ ℎ(𝑡) be a piecewise constant function with finite support 𝑆 ⊆ ℝ∗. A
scheduler can encode piecewise constant functions on 𝑆. There are two possible methods to
achieve this:

1. Let each discontinuity (𝑡, ℎ(𝑡)) be its own event in the scheduler 𝑄 representing the function
ℎ (see top part of Figure 3.7).

2. Represent the discontinuity not as a new value (𝑡, ℎ(𝑡)) but as an increment, that is a difference
between the new value of ℎ after the discontinuity and the value of ℎ just before: (𝑡, ℎ(𝑡) −
ℎ(𝑡−)) (see bottom part of Figure 3.7).

The first representation is more straightforward, and is very efficient when the function is stored
only for lookups: the function can then be stored in an array and a dichotomic search algorithm
be used to locate any event in logarithmic time.

However, if discontinuities must be introduced or removed, for instance by adding another
piecewise constant function to ℎ, then some of the events stored in the scheduler may need to be
changed or moved in the scheduler, thus creating an undesirable overhead. For instance in the
first line of figure 3.7, a piecewise function ℎ (first column) is represented and encoded (second
column) with the straightforward method by a scheduler. Last column shows the new encoding
representing a sum. The discontinuity at 𝑡𝑘+2 had to be modified because of the introduction of
discontinuities at 𝑡𝑘+3 and 𝑡𝑘+4. For a function with many more discontinuities, or when summing
two piecewise functions of similar size, the operation would necessitate to modify a large part of
the already represented points.
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Function Encoding Summing
ℎ, ℎ′

𝑡𝑘 𝑡𝑘+1 𝑡𝑘+2𝑡𝑘+3 𝑡𝑘+4

𝐻0

𝐻1

𝐻2

𝐻′
1 𝐻′

2

h

𝑡𝑘 𝑡𝑘+1 𝑡𝑘+2

𝐻0

𝐻1

𝐻2

ℎ + ℎ′

𝑡𝑘 𝑡𝑘+1 𝑡𝑘+2𝑡𝑘+3 𝑡𝑘+4

𝐻0

𝐻1
(∗)

(∗∗)
𝐻2

(∗) ∶ 𝐻1 +𝐻 ′
1

(∗∗) ∶ 𝐻2 +𝐻 ′
2

ℎ, ℎ′

𝑡𝑘 𝑡𝑘+1 𝑡𝑘+2𝑡𝑘+3 𝑡𝑘+4

Δ𝐻0

Δ𝐻1
Δ𝐻2

Δ𝐻′
0 Δ𝐻′

1

h

𝑡𝑘 𝑡𝑘+1 𝑡𝑘+2

Δ𝐻0

Δ𝐻1
Δ𝐻2

ℎ + ℎ′

𝑡𝑘 𝑡𝑘+1 𝑡𝑘+2𝑡𝑘+3 𝑡𝑘+4

Δ𝐻0

Δ𝐻1

Δ𝐻 ′
0 Δ𝐻2

Δ𝐻 ′
1

Figure 3.7: Example of a straightforward encoding of a piecewise constant function (first line) and an
optimised one (second line). We use the notation 𝐻𝑛 = ℎ(𝑡𝑘+𝑛), 𝑛 ∈ ℕ for concision. The
Function column represents the piecewise constant function ℎ to encode (plain lines), as well as
another function ℎ′ (dashed lines, see column Summing). Column Encoding represents in bold
the events (𝑡𝑛, ℎ(𝑡𝑛)) encoded by a scheduler representing the function ℎ. Column Summing
represents in bold the values encoded by a scheduler now representing the function ℎ + ℎ′.

The solution we proposed is to store not the values ℎ(𝑡) of the function ℎ at a time 𝑡 where
a discontinuity happens, but the variation Δℎ𝑡 = ℎ(𝑡) − ℎ(𝑡−) of the value of ℎ during the
discontinuity. An example is represented on the second line of Figure 3.7.

Let us now present two different operations for piecewise contant functions with this encoding:

Piecewise sum, which is in fact a union operation over two schedulers 𝑄, 𝑄′ encoding two
piecewise constant functions (cf. Figure 3.8): The operation 𝑄 ∪ 𝑄′ has complexity
𝒪(𝑚𝑖𝑛(|𝑄|, |𝑄′|)𝑙𝑜𝑔2(𝑚𝑎𝑥(|𝑄|, |𝑄′|))), since the smallest scheduler is inserted into the
largest scheduler.

Piecewise prune operation of the scheduler 𝑄𝑡
𝑝𝑐𝑤 (cf. Figure 3.9): removes from scheduler 𝑄 all

the events (𝑡∗, 𝑣∗) with 𝑡∗ ≤ 𝑡, while accumulating all the values 𝑣∗ up to time 𝑡. At the end
of the operation the scheduler begins with an event of the form (𝑡, ∑ 𝑣∗). The operation
𝑄𝑡

𝑝𝑐𝑤 has complexity 𝒪(𝑙𝑜𝑔2(|𝑄|) + |number of events until time 𝑡|).

Shift operation of the scheduler 𝑄→𝑡
(cf. Figure 3.10): shifts all points by 𝑡. The operation 𝑄→𝑡

has complexity 𝒪(|𝑄|).
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Sched𝑖

Sched𝑗

∪ =
Sched𝑘

Figure 3.8: A graphical example of the union of two schedulers. The events of Sched𝑖 are represented as
dotted, while the events of Sched𝑗 are dashed. In the merged scheduler Sched𝑘, the values
of events at the same time in both schedulers 𝑖 and 𝑗 are summed and the resulting event is
represented with a continuous line.

  

Figure 3.9: Example of piecewise prune operation 𝑄𝑡
𝑝𝑐𝑤.

  Figure 3.10: The shift operation 𝑄→𝑡
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3.5 Local graph algorithm for point processes

�.� Local graph algorithm for point processes

�.�.� Local independence graph

Local independence graphs are fully presented in a sound mathematical form in [13]. For a given
multivariate point process 𝑁𝑗, 𝑗 = 1, ..., 𝑀, the corresponding local independence graph is a
directed graph on the nodes 𝑗 = 1, ..., 𝑀 (see for instance Figure 3.11). We assume for sake of
simplicity that the filtration is reduced to the internal history, that is ℱ𝑡 is generated only by the
𝑇 < 𝑡 in 𝑁 = 𝑁1 ∪ ... ∪ 𝑁𝑀 and their associated mark or node.

To explain more fully what a local independence graph means, we need to define rougher
filtration. For a subset 𝐼 ⊂ {1, ..., 𝑀}, ℱ 𝐼

𝑡 is the filtration generated by the 𝑇 < 𝑡 in ∪𝑖∈𝐼𝑁𝑖 and
their associated node.

In a local independence graph, the absence of edge 𝑗 → 𝑖 means that the apparition of a point
at time 𝑡 in 𝑁𝑖 is independent from ℱ {𝑗}

𝑡− conditionally to ℱ {𝑗}𝑐

𝑡− , where {𝑗}𝑐 = {1, ..., 𝑀} ⧵ {𝑗}.

So this means that for every time 𝑡, the intensity 𝜆𝑖(𝑡) of 𝑁𝑖 does not depend directly on the
positions of the points of 𝑁𝑗 strictly before 𝑡.

This extends directly to the notion of parents and children in the graph. For a given node 𝑖, one
defines

𝑝𝑎(𝑖) = {𝑗, 𝑗 → 𝑖 is in the graph} and 𝑐ℎ(𝑖) = {𝑗, 𝑖 → 𝑗 is in the graph}.

Therefore it means that the intensity 𝜆𝑖(𝑡) at time 𝑡 of 𝑁𝑖 in fact only depends on the points of
𝑁𝑗 for 𝑗 ∈ 𝑝𝑎(𝑖) strictly before 𝑡.

Conversely, a point on 𝑁𝑖 directly impacts the occurrence of points for 𝑁𝑗 for 𝑗 ∈ 𝑐ℎ(𝑖). Note
that in any case, it also impacts the next point of 𝑁𝑖 because even for a Poisson process without
memory one needs by the transformation method to know 𝑡𝑘 for finding 𝑡𝑘+1. However, it will
not have any direct impact on the future points of 𝑁𝑗 for 𝑗 ∉ 𝑐ℎ(𝑖) ∪ {𝑖}.
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1

4

5 7

2 3

6

Figure 3.11: Example of local independence graph. With this graph, 𝑐ℎ(2) = {3, 6} and 𝑝𝑎(2) = {1, 5}. As
indicated by the difference of colour, a point with mark 2 shall impact the point generation
only for {2} ∪ {3, 6}.

For instance, for linear Hawkes process (cf. Equation 3.1), 𝑐ℎ(𝑖) = {𝑗/ℎ𝑖→𝑗 ≠ 0}.

�.�.� Local-graph algorithm

The children of each node are stored in a simple one dimensional array, whose indexes are the
node indexes, and whose cells contain vectors of the children indexes. So accessing a node simply
costs 𝒪(1).

Because of the interpretation of 𝐼 = 𝑐ℎ(𝑖) ∪ {𝑖} of a given node 𝑖 given above in the local
independence graph, it means that in fact, after having simulated 𝑡𝑘 with mark/node 𝑖𝑘 in the joint
process, we know that only the next points of 𝑁𝑗 for 𝑗 ∈ 𝐼 have to be modified.

At simulation level, discrete events are used to track activity nodes associated to selected
points (time stamps) to their children. Discrete events are stored into a scheduler 𝑄 of events
𝑒𝑣𝑖 = (𝑡𝑖

𝑛𝑒𝑥𝑡, 𝑖), where 𝑡𝑖
𝑛𝑒𝑥𝑡 is the possible next point associated to node 𝑖.

The local graph algorithm for point processes is described in Algorithm 14. A visual representa-
tion is presented in Figure 3.12.

Let us detail a bit more each step.

• At Step a/, we decide for the next possible point of each of the subprocesses 𝑁𝑖 by either
using the transformation method or the thinning algorithm (Algorithm 1).

• At Step b/, for each 𝑖 ∈ 𝐼 we remove the old event associated to 𝑖 and insert the one computed
at Step a/.

• At Step c/, we retrieve the minimum of all possible times to find out which subprocess 𝑖 is
actually generating a new point.
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3.6 Hawkes evaluation

• At Step d/, we look for the children of 𝑖 and update 𝐼.

• Step e/ depends hugely on the type of process at hand. The apparition of a new point has
clear impact on the intensity but this depends on the formula. For instance if the intensity
is given by Equation (3.1), we need to shift intensities and update sums (see Section 5 for
more details).

More details about the algorithm steps are provided in Section 3.6, which presents in full details
the application of the algorithm to the Hawkes case.

Algorithm 14 Local graph algorithm for the simulation of point processes: Application of the
simulation activity tracking algorithm [23].

1: 𝑘 ← 0, 𝑡𝑘 ← 0
2: 𝐼 ← {1, ..., 𝑀}
3: while 𝑡𝑘 < 𝑇 do
4: Compute the next possible points 𝑡𝑖

𝑛𝑒𝑥𝑡 for each 𝑖 ∈ 𝐼 based on intensity 𝜆𝑖 on (𝑡𝑘, +∞)
5: Update 𝑄 with each next possible point 𝑡𝑖

𝑛𝑒𝑥𝑡 for each 𝑖 ∈ 𝐼
6: Get next selected point 𝑡𝑘+1 ← 𝑚𝑖𝑛{𝑡𝑖

𝑛𝑒𝑥𝑡} and 𝑖 the associated node, updating 𝑄 ← 𝑄∗

7: Find the children of 𝑖 and update 𝐼 ← 𝑐ℎ(𝑖) ∪ {𝑖}
8: Update intensities 𝜆𝑗(𝑡) for each node 𝑗 ∈ 𝐼 on (𝑡𝑘+1, +∞)
9: 𝑘 ← 𝑘 + 1

10: end while
11: return (𝑡1, ..., 𝑡𝑘−1) points and associated nodes (𝑖1, ..., 𝑖𝑘−1)

Step a/
Step b/
Step c/
Step d/
Step e/

�.� Hawkes evaluation

We want to evaluate the complexity of the previous algorithms, but this of course depends on
the computational complexity of the conditional intensities associated to each point process.
Previous general algorithms for simulating point processes are applied here to non explosive
Hawkes processes with piecewise constant interactions with finite support (see Equation (3.1)). In
this situation, note that the 𝜆𝑖’s become piecewise constant, so that the complexity for calculating
such intensities or updating them will be linked to the number of breakpoints of the corresponding
piecewise constant function. Moreover with piecewise constant intensities, one can apply the
transformation method directly, so we do not evaluate the complexity of the thinning /rejection
step. The general algorithms are specified at data structure level in order to detail the computational
complexity of each algorithmic step.
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UPDATE SCHEDULER

UPDATE NEW POSSIBLE NEXT POINTS
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insert new

remove old

Figure 3.12: Steps of the local graph algorithm for the simulation of point processes. As for figure 3.1, the
intensities are piecewise constant.

�.�.� Notation and data structures

In the following, ↔ means ”corresponds to the mathematical notation”. Data structure notation
consists of:

• 𝑄: A scheduler of next point events 𝑒𝑣𝑖 = (𝑡𝑖
𝑛𝑒𝑥𝑡, 𝑖), where 𝑡𝑖

𝑛𝑒𝑥𝑡 is a possible next point
associated to node 𝑖.

• 𝐿[𝑖](↔ 𝜆𝑖): is the scheduler corresponding to the piecewise constant intensity of node 𝑖,
The length of the scheduler is 𝐿𝑖

𝑡 = 𝑙𝑒𝑛𝑔𝑡ℎ(𝐿[𝑖]) when 𝐿[𝑖][0].𝑡𝑖𝑚𝑒 = 𝑡.

• ℎ[𝑗][𝑖](↔ ℎ𝑗→𝑖): is the scheduler corresponding to the piecewise constant interaction ℎ𝑗→𝑖

(with support included in [0, 𝑆]) from node 𝑗 to node 𝑖. The maximum number of events in
ℎ[𝑗][𝑖] is noted 𝐴 ≥ 𝑙𝑒𝑛𝑔𝑡ℎ(ℎ[𝑗][𝑖]).

• 𝐿 = 𝐿[1] ∪ ... ∪ 𝐿[𝑀] (↔ 𝜆(𝑡) = ∑𝑀
𝑖=1 𝜆𝑖(𝑡)): is a scheduler storing the piecewise sum of

all 𝐿[𝑖], from node 1 to node 𝑀 (cf. Figure 3.8).

• 𝐿[𝑖] = 𝐿[1] ∪ ... ∪ 𝐿[𝑖] (↔ 𝜆𝑖(𝑡) = ∑𝑖
𝑗=1 𝜆𝑗(𝑡)): is a scheduler storing the partial piecewise

sum of the intensities from node 1 to node 𝑖. Obviously, 𝐿[𝑀] = 𝐿.
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3.6 Hawkes evaluation

�.�.� Algorithm for the transformation method for piecewise constant
intensities

Algorithm15 presents the basic transformationmethod for piecewise constant conditional intensity
functions, here represented by the scheduler 𝑄 (cf. Equation 3.2).

Algorithm 15 Function getTnext(Q) with 𝑄 a scheduler storing the events corresponding to a
piecewise constant intensity trajectory.

1: function getTnext(𝑄)
2: 𝑉 ∼ 𝒰[0, 1]
3: 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 ← 0
4: 𝑡𝑛𝑒𝑥𝑡 ← 𝑄[0].𝑡𝑖𝑚𝑒
5: 𝑘 ← 0
6: 𝑣𝑎𝑙 ← 0
7: repeat
8: 𝑣𝑎𝑙 ← 𝑣𝑎𝑙 + 𝑄[𝑘].𝑣𝑎𝑙𝑢𝑒
9: 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 ← 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 + (𝑄[𝑘 + 1].𝑡𝑖𝑚𝑒 − 𝑄[𝑘].𝑡𝑖𝑚𝑒) × 𝑣𝑎𝑙

10: 𝑘 ← 𝑘 + 1
11: until (𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 > −𝑙𝑜𝑔(𝑉 ) or 𝑘 = 𝑠𝑖𝑧𝑒(𝑄) − 1)
12: if 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 ≤ −𝑙𝑜𝑔(𝑉 ) then
13: 𝑣𝑎𝑙 ← 𝑣𝑎𝑙 + 𝑄[𝑘].𝑣𝑎𝑙𝑢𝑒
14: end if
15: return 𝑡𝑛𝑒𝑥𝑡 ← 𝑄[𝑘].𝑡𝑖𝑚𝑒 − 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙+𝑙𝑜𝑔(𝑉 )

𝑣𝑎𝑙 // 𝑡𝑛𝑒𝑥𝑡 ← +∞ if 𝑣𝑎𝑙 = 0
16: end function

The complexity of the getTnext(Q) operation is 𝒪(|𝑄|).

�.�.� Full scan and local graph algorithms

Algorithm 16 is the application of Algorithm 13 to Hawkes processes. The mention to a, b c, d
refers to the steps in Algorithm 13. We split step d to lower the complexity. The value 𝑇 is an
arbitrary stopping time, the condition 𝑡𝑘 < 𝑇 ending the main loop in both Algorithm 16 and
Algorithm 17 can be changed by whatever condition is deemed more appropriate by the modeller.
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Algorithm 16 Full scan algorithm for Hawkes processes
1: 𝑡0 ← 0
2: 𝑘 ← 0
3: while 𝑡𝑘 < 𝑇 do
4: 𝐿[1] ← 𝐿[1]
5: for all 𝑗 ∈ {2, ..., 𝑀} do
6: Prune intensities 𝐿[𝑗] ← 𝐿[𝑗 − 1] ∪ 𝐿[𝑗]
7: end for
8: 𝑡𝑘+1 ← getTnext(𝐿[𝑀])
9: for all 𝑗 ∈ {1, ..., 𝑀} do

10: 𝐿[𝑗] ← 𝐿[𝑗]𝑡𝑘+1
𝑝𝑐𝑤

11: end for
12: ℓ[0] ← 0
13: for all 𝑗 ∈ {1, ..., 𝑀} do
14: compute ℓ[𝑗] = 𝜆𝑗(𝑡𝑘+1) by ℓ[𝑗] ← ℓ[𝑗 − 1] + 𝐿[𝑗][0].𝑣𝑎𝑙𝑢𝑒
15: end for
16: Select the associated node 𝑖𝑘+1 as the only 𝑗 such that ℓ[𝑗−1]

ℓ[𝑀] < 𝑉 ≤ ℓ[𝑗]
ℓ[𝑀] for

𝑉 ∼ 𝒰[0, 1]
17: for all 𝑗 ∈ {1, ..., 𝑀} do
18: Update intensities 𝐿[𝑗] ← 𝐿[𝑗] ∪ ℎ[𝑖𝑘+1][𝑗]→𝑡𝑘+1
19: end for
20: end while
21: 𝑘 ← 𝑘 + 1
22: return points (𝑡1, ..., 𝑡𝑘−1) and associated nodes (𝑖1, ..., 𝑖𝑘−1)

Step a/

Step b/

Step d1/

Step c/

Step d2/

Algorithm 17 is the application of Algorithm 14 to Hawkes processes.

104



3.6 Hawkes evaluation

Algorithm 17 Local graph algorithm for Hawkes processes
1: 𝐼 ← {1, ..., 𝑀}, 𝑘 ← 0
2: while 𝑡𝑘 < 𝑇 do
3: Compute the next point 𝑡𝑖

𝑛𝑒𝑥𝑡 ← getTnext(𝐿[𝑖]) of each 𝑖 ∈ 𝐼
4: 𝑄 ← 𝑄∗ ⊕ (𝑡𝑖

𝑛𝑒𝑥𝑡, 𝑖) of each 𝑖 ∈ 𝐼
5: 𝑡𝑘+1 = 𝑄[0].𝑡𝑖𝑚𝑒
6: 𝑖𝑘+1 = 𝑄[0].𝑣𝑎𝑙𝑢𝑒
7: Find children of 𝑖 and update 𝐼 ← 𝑐ℎ(𝑖𝑘+1) ∪ {𝑖𝑘+1}
8: for all 𝑖 ∈ 𝑐ℎ(𝑖𝑘+1) do
9: 𝐿[𝑖] ← 𝐿[𝑖]𝑡𝑘+1

𝑝𝑐𝑤 ∪ ℎ[𝑖𝑘+1][𝑖]→𝑡𝑘+1
10: end for
11: if 𝑖 ∉ 𝑐ℎ(𝑖𝑘+1) then
12: 𝐿[𝑖] ← 𝐿[𝑖]𝑡𝑘+1

𝑝𝑐𝑤 ∪ ℎ[𝑖𝑘+1][𝑖]→𝑡𝑘+1
13: end if
14: 𝑘 ← 𝑘 + 1
15: end while
16: return (𝑡1, ..., 𝑡𝑘−1) points and associated nodes (𝑖1, ..., 𝑖𝑘−1)

Step a/
Step b/

Step c/

Step d/

Step e/

�.�.� Complexities of both algorithms

If 𝐴 (the number of breakpoints to describe the interaction functions ℎ𝑗→𝑖) and 𝑆 (the support
of the ℎ𝑗→𝑖’s) are true constants, assumed to be of order 1 in the sequel, the size of the different
schedulers that are used in the previous algorithms are most of the time random and changing step
after step. They depend in particular on the number of points of 𝑁𝑗 appearing in the interaction
range that is 𝑁𝑗([𝑡 − 𝑆, 𝑡)). To evaluate further the order of such a random quantity, we know that
a stationary Hawkes process has a mean intensity vector 𝑚 = (𝑚1, ..., 𝑚𝑀)𝑇 (see [11]):

𝑚 = (𝐼𝑀 − 𝐻)−1𝜈, (3.3)

with 𝜈 = (𝜈1, ..., 𝜈𝑀)𝑇, 𝐼𝑀 the identity matrix of size 𝑀 and 𝐻 = (∫+∞
0 ℎ𝑗→𝑖(𝑥) d𝑥)𝑖,𝑗=1,...,𝑀.

Note that the linear Hawkes process is explosive when the spectral radius of 𝐻 is strictly larger
than 1 (we refer the reader to [5] and [21] for demonstrations even in the non-linear cases). When
the spectral radius is strictly less than 1, the non explosive Hawkes process, with no points before
time 0, has always less points than the stationary version. Therefore,

𝔼(𝑁𝑗([𝑡 − 𝑆, 𝑡))) ≤ 𝑚𝑗𝑆 (3.4)
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3 Article 2: Efficient simulation of sparse graphs of point processes

with 𝑚𝑗 given by Equation (3.3).

Moreover, the local independence graph for Hawkes process is completely equivalent to the
graph with edge 𝑗 → 𝑖 if and only if ℎ𝑗→𝑖 is non zero. The corresponding adjacency matrix is
denoted 𝑅 = (1∫ ℎ𝑗→𝑖≠0).

At time 𝑡, the scheduler 𝐿[𝑖] describes the piecewise constant conditional intensity 𝜆𝑖(.) on
[𝑡, +∞) in absence of new points after 𝑡. The number of breakpoints of 𝐿[𝑖] is denoted 𝐿𝑖

𝑡. But (3.1)
can be rewritten as

𝜆𝑖(𝑡) = 𝜈𝑖 + ∑
𝑗∈𝑝𝑎(𝑖)

∑
𝑇 ∈𝑁𝑗,𝑇 ∈[𝑡−𝑆,𝑡)

ℎ𝑗→𝑖(𝑡 − 𝑇 )

So we can first note that 𝐿𝑖
𝑡 and therefore its expectation ℒ𝑖 = 𝔼(𝐿𝑖

𝑡) are always larger than 1
because the scheduler 𝐿[𝑖] is at least of size 1. Moreover this piecewise constant function has
potential breakpoints at all 𝑇 + 𝑎, for 𝑇 ∈ 𝑁𝑗, 𝑇 ∈ [𝑡 − 𝑆, 𝑡), and 𝑎 breakpoints of ℎ𝑗→𝑖.

Therefore we can compute the order of magnitude of 𝐿𝑖
𝑡, which is the length of the scheduler

associated to 𝜆𝑖(𝑡), by

𝐿𝑖
𝑡 = 𝒪

(
1 + 𝐴 ∑

𝑗∈𝑝𝑎(𝑖)
𝑁𝑗([𝑡 − 𝑆, 𝑡)

)

where 𝒪 means that there exists an absolute positive constant 𝐶 such that

𝐿𝑖
𝑡 ≤ 𝐶

(
1 + 𝐴 ∑

𝑗∈𝑝𝑎(𝑖)
𝑁𝑗([𝑡 − 𝑆, 𝑡)

)
.

In expectation, this gives, thanks to (3.4) and since 𝐴𝑆 = 𝒪(1),

ℒ = 𝒪(1 + 𝑅𝑚) = 𝒪(1 + 𝑅(𝐼𝑀 − 𝐻)−1𝜈) (3.5)

with ℒ = (ℒ𝑖)𝑖=1,...,𝑀, the notation 𝒪 being understood coordinate by coordinate.

Now we can evaluate the (mean) complexity of both algorithms, replacing 𝐿𝑖
𝑡 by ℒ𝑖 thanks to

the respective complexities of each operation on the schedulers, see Section 3.4.

Full-Scan Algorithm Step a/ has a complexity of

𝒪
(

𝑀

∑
𝑗=1

ℒ𝑖 log(
𝑗

∑
𝑖=1

ℒ𝑖))
= 𝒪(|ℒ|1 log |ℒ|1)
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with |ℒ|1 = ℒ1 + ... + ℒ𝑀 ≥ 𝑀 Step b/ has complexity 𝒪(|ℒ|1), as well as Step d1/. Step c/ has
complexity 𝒪(𝑀) ≤ 𝒪(|ℒ|1). Step d2/ has complexity

𝒪
(

𝑀

∑
𝑗=1

(𝐴 log(ℒ𝑖) + 𝐴 + ℒ𝑖))
= 𝒪(|ℒ|1 log |ℒ|1)

So globally one iteration of the full scan algorithm has a complexity of the order

𝒪(|ℒ|1 log |ℒ|1) = 𝒪((𝑀 + |𝑅𝑚|1) log(𝑀 + |𝑅𝑚|1)).

Therefore since the mean total number of iterations of this algorithm is also the mean total number
of points produced on [0, 𝑇 ], that is 𝑇 |𝑚|1, the full-scan algorithm should have the following
mean complexity

𝒪(𝑇 |𝑚|1(𝑀 + |𝑅𝑚|1) log(𝑀 + |𝑅𝑚|1)). (3.6)

As expected, the complexity is linear with the duration 𝑇 of the simulation. Moreover this com-
plexity heavily depends on the whole set of parameters (type of graph, strength of the interaction
functions etc), because in particular these parameters affect the number of points that have to be
produced. So for very unbalanced networks where |𝑚|1 = 𝒪(1) (if for instance only one node in
the whole network is clearly active and the others almost silent), the complexity seems to be of
order 𝒪(𝑇 𝑀 log(𝑀)). But these very unbalanced networks are not the most usual. Let us look
now at more balanced networks. Let us assume that all the 𝑚𝑗’s are roughly the same and are of
order 1 (no really small 𝑚𝑗) and that the number of parents of a given node is bounded by 𝑑, this
give us a complexity of

𝒪(𝑇 𝑀2𝑑 log(𝑑𝑀)).

So up to the log factor, if the network is sparse but balanced, the complexity is quadratic in the
number of nodes of the network. If the network is a full complete graph, the complexity is cubic
in 𝑀.

Local graph algorithm As before we need to evaluate first the complexity of one iteration of
the algorithm. But because 𝐼 is chosen at step d/ and the size of 𝐼 impacts the complexity of steps
a/b/ and e/, we choose to evaluate the complexity of an iteration which starts with e/ and then
does a/b/ c/ and d/, so that that until d/ the set 𝐼 is the same.
If the node 𝑖𝑘+1 = 𝑗, then the complexity of step e/ is

𝒪
(

ℒ𝑗 + ∑
𝑖∈𝑐ℎ(𝑗)

(ℒ𝑖 + 𝐴 + 𝐴 log(ℒ𝑖)))
= 𝒪

(
ℒ𝑗 + ∑

𝑖∈𝑐ℎ(𝑗)
(ℒ𝑖 + log(ℒ𝑖)))

.
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The complexity of step a/ is

𝒪
(

ℒ𝑗 + ∑
𝑖∈𝑐ℎ(𝑗)

ℒ𝑖)
.

The complexity of step b/ is

𝒪
(
log(𝑀) + ∑

𝑖∈𝑐ℎ(𝑗)
log(𝑀)

)
.

Steps c/ and d/ have complexity 𝒪(1).

So for one iteration ”e/a/b/c/d/” after a point on node 𝑗, the complexity is

𝒪(ℒ𝑗 + log(𝑀) + [𝑅′(ℒ + log(𝑀) 1)]𝑗),

with 𝑅′ the transpose of 𝑅 and 1 the vector of size 𝑀 full of ones.

The main point is that a point in 𝑁𝑗 is appearing in average at most only 𝑇 𝑚𝑗 times during the
simulation since 𝑚𝑗 is the mean intensity of 𝑁𝑗, which leads us to a global complexity of

𝒪(𝑇 𝑚′ℒ + 𝑇 log(𝑀)|𝑚|1 + 𝑇 𝑚′𝑅′[ℒ + log(𝑀)1]) = 𝑇 𝒪(𝑚′𝑅𝑚 + log(𝑀)|𝑚|1 + 𝑚′𝑅′𝑅𝑚 + log(𝑀)|𝑅𝑚|1).
(3.7)

As before this is linear in the duration of the simulation 𝑇 and depends heavily on the parameters.
But the complexity is much lower. Indeed, for very unbalanced networks where only one node is
really active, the complexity logarithmic in 𝑀. For balanced networks where the 𝑚𝑗’s are roughly
the same and if the number of children of a given node, as well as the number of parents is bounded
by 𝑑, then we get a complexity of

𝒪(𝑇 𝑀𝑑[𝑑 + log(𝑀)]),

For sparse balanced graphs, we therefore get a complexity which is linear in 𝑀 up to logarithmic
factors. The gain is clear with respect to the full scan algorithm. For complete graphs, we also get
a cubic complexity in terms of 𝑀, as the full scan algorithm but without logarithmic factors.

So at least theoretically speaking, it seems that the local graph algorithm is always a better choice
than the full-scan algorithm, with a clear decrease of complexity from quadratic to linear in the
number of nodes for balanced sparse graphs.
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3.7 Numerical experiments

�.� Numerical experiments

This section is devoted to two main problems: statistically proving that both algorithm (full scan
and local graph) indeed simulate a Hawkes process and asserting that the local graph algorithm
clearly outperforms the full scan algorithm.

�.�.� Hardware and software specifications

The main simulations have been performed on 5 nodes of a Symmetric MultiProcessing (SMP), i.e.,
shared memory, computer1. Each of this computational nodes has up to 20 physical cores (210),
25 MB of cache memory and 62.5 GB of RAM. The processors are Intel(R) Xeon(R)CPU E5-2670
(v0 and v2) at 2.60 GHz. The statistical analysis required more RAM, so we used another type of
node, which has 770GB of RAM, 25MB of cache memory, 20 physical cores (210), each processor
being an Intel(R) Xeon(R)CPU E5-2687W v3 at 3.10GB. The algorithms were implemented in C++
programming language (2011 version). No other external libraries were used for the simulator,
which is compiled using gcc 4.7. The plots and statistical analyses were obtained using using R
software (v3.6), part of it using the UnitEvent package (v0.0.5).

�.�.� Statistical analysis

We generated an Erdös-Rényi network of 100 nodes with connection probability 𝑝 = 1/100, that
is fixed for the rest of the statistical analysis. When an edge 𝑗 → 𝑖 is in the graph, we associate it to
an interaction function 𝑡 ↦ ℎ𝑗→𝑖(𝑡) = 5 ⋅ 1𝑡∈[0,0.02]. The spontaneous parameters 𝜈𝑖 are all fixed
to 10. Out of this multivariate Hawkes process, we focus on two nodes 𝑎 and 𝑏. The node 𝑎 is fully
disconnected, meaning the corresponding process should be an homogeneous Poisson process of
rate 10. The node 𝑏 is the one with the largest number of parents (4 parents).

Time transformation In [Ogata_test], Ogata derives methodological benchmarks to assess if
the data are obeying a point process with a given intensity, and in particular Hawkes processes. This
is based on the time-rescaling theorem (see for instance [7]), which says that if 𝜆𝑠 is the conditional
intensity of the point process 𝑁 and if Λ(𝑡) = ∫𝑡

0 𝜆𝑠𝑑𝑠, then the points �̃� = {Λ(𝑇 ), 𝑇 ∈ 𝑁} form
an homogeneous Poisson process of rate 1. Ogata proposed the following method to test that a
given point process has intensity given by 𝜆𝑠

• Apply the time-rescaling transformation. This leads to a point process �̃�.

• Test that the consecutive delays between points of �̃� obeys an exponential distribution of
rate 1, for instance by Kolmogorov-Smirnov test (Test 1)
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• Test that the points of �̃� themselves are uniformly distributed, for instance by Kolmogorov-
Smirnov test (Test 2).

• Test that the delays between points of �̃� are independent, for instance by checking that the
autocorrelation between delays with a certain lag are null (Tests 3). We performed them up
to lag 9.

We simulated the multivariate Hawkes process on [0, 𝑇 ] with 𝑇 = 150 and we applied the previous
tests to node 𝑎 and node 𝑏.

Table 3.1: Table of the p-values of a Kolmogorov-Smirnov test (for uniformity) applied to the p-values
obtained with tests 1, 2 and 3 for 1000 independent simulations of the same Hawkes point
processes (with the same underlying graph).

full-scan local-graph
Node 𝑎 Node 𝑏 Node 𝑎 Node 𝑏

Test 1 0.5384525 0.1491268 0.0594925 0.86789804
Test 2 0.6008973 0.2462138 0.1819709 0.99025263

Test 3 with lag 1 0.1602718 0.1781804 0.4385096 0.92162419
Test 3 with lag 2 0.7498109 0.9038829 0.6954876 0.90558993
Test 3 with lag 3 0.5604420 0.7220130 0.4144515 0.77140051
Test 3 with lag 4 0.7003987 0.1838913 0.4367523 0.83833821
Test 3 with lag 5 0.9960351 0.4009543 0.3740874 0.14749913
Test 3 with lag 6 0.1883506 0.1246654 0.4387684 0.12202262
Test 3 with lag 7 0.1259022 0.8588754 0.9114556 0.47030751
Test 3 with lag 8 0.8848928 0.9720601 0.5200698 0.03765871
Test 3 with lag 9 0.2278844 0.3880436 0.5042846 0.92768290

If we have simulated indeed the correct Hawkes processes for the processes associated to node
𝑎 and 𝑏, the p-values should be uniform. So we performed 1000 simulations of the same Hawkes
process (with the same underlying graph) but with different pseudorandom generator seeds for
the simulation of the points themselves. We can visually check that they are indeed uniform by
seeing diagonals for their cumulative distribution functions (see Figures 3.13 and 3.14). In order
to confirm this qualitative result with a more quantitative one, the p-values for the three tests
1, 2 and 3 are independently tested for uniformity with another Kolmogorov-Smirnov test. The
resulting p-values are displayed in Table 3.1.
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Figure 3.13: Cumulative distribution functions of the p-values of Test 1 and 2. In columns the test and node,
in rows the algorithms (full scan then local graph)

Martingale properties Another very important property of the Hawkes process is that
𝑡 ↦ 𝑁𝑡 − Λ𝑡 is a martingale and this property remains true if we integrate with respect to a
predictable process. So for each node 𝑎 or 𝑏, we can compute

𝑋𝑘 = ∫
𝑇

0
𝜓𝑘

𝑡 (𝑑𝑁𝑡 − 𝑑Λ𝑡),

for 𝜓1
𝑡 = 1 or 𝜓2𝑗

𝑡 = 𝑁𝑗([𝑡 − 0.02, 𝑡)] or 𝜓2𝑗+1
𝑡 = 𝑁𝑗([𝑡 − 0.04, 𝑡 − 0.02)]. If the martingales

properties are true, then the variable 𝑋𝑘 for each 𝑘 should be centered around 0. We also expect
eventually different behaviors, when 𝑘 = 1, which corresponds to the spontaneous part or when
𝑘 = 2𝑗 or 2𝑗 + 1 for a node 𝑗 which is connected to the node of interest or disconnected from the
node of interest. We simulated the network 40 times on [0, 𝑇 ] with 𝑇 = 20 and reported the 𝑋𝑘.
We see on Figure 3.15 and 3.16 that the variables 𝑋𝑘 are indeed centered in both cases as expected.
So we can conclude that both algorithms indeed simulate the given Hawkes process.

�.�.� Performance

Wewant to assess the performances of both algorithm in the main interesting case: sparse balanced
networks. To do so, we took three different topologies of graphs:

• Erdös-Rényi: a topology model where each edge has a probability 𝑝 of being present or
absent, independently of the other edges. We took 𝑝 in {0, 1

𝑀 , 2
𝑀 , … , (𝑙𝑛(𝑀)−1)

𝑀 } for 𝑀 the
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number of nodes. These choices for 𝑝 ensure a sparse graph with roughly speaking 𝑑 = 𝑝𝑀
parents and children for each node.

• Cascade: a classical topology model where each node has exactly one parent and one child
(except for two nodes, start and end, that have respectively no parent and one child, and
one parent and zero child), and there are no cycles in the network. There is only one graph
per number 𝑀.

• Stochastic-Block: it is an Erdös-Rényi by block. In our setting the nodes are partitioned
in two blocks and the matrix gives the probability of inter-block connection of intra-block
connection (see Table 3.2).

Table 3.2: The three bloc sizes vectors (first line) and the three probability matrices (second line) used for
the simulations.

Block sizes (
𝑀
2

𝑀
2 ) (

𝑀
2

𝑀
2 ) (ln𝑀 𝑀 − ln𝑀)

Probability matrices
(

2
𝑀 ln 𝑀

2 0
0 2

𝑀 ln 𝑀
2

) (
0 2

𝑀 ln 𝑀
2

2
𝑀 ln 𝑀

2 0 ) (

0 ln(⌈ln𝑀⌉)
⌈ln𝑀⌉

ln(𝑀−⌈ln𝑀⌉)
(𝑀−⌈ln𝑀⌉) 0 )

Each graph was generated using a different pseudorandom generator seed. Each existing edge
𝑗 → 𝑖 is associated with an interaction function 𝑡 ↦ ℎ𝑗→𝑖(𝑡) = 5 ⋅ 1𝑡∈[0,0.02]. We computed the
largest eigen-value of the corresponding matrix 𝐻. If it is larger than 1, this graph should be
discarded. To force the balance of the network, we decided to take 𝑚 = (10, ..., 10) and compute
the 𝜈𝑖’s by 𝜈 = (𝐼𝑀 − 𝐻)𝑚. It may happen that some of the 𝜈𝑖’s become negative. These graphs
should be also discarded, as by construction the conditional intensity 𝜆(𝑡) of a Hawkes point
process must remain positive at all time, and so it is the case for the background intensity 𝜈𝑖 (see [6]

for reference). Because of the parameter values, especially the interaction functions, no graph was
discarded here. A total of 2890 = 1770 + 280 + 840 (Erdös-Rényi + Cascade + Stochastic-Block)
graphs was obtained with 𝑀 = {10, 20, … , 100} ∪ {150, 200, … , 500} ∪ {600, 1100, … , 5100}
for the local-graph algorithm, and 𝑀 = {10, 20, … , 100} ∪ {150, 200, … , 500} for the full-scan
algorithm. Once the parameters of the Hawkes process are fixed, we simulated 10 times each
process on [0, 𝑇 ] with 𝑇 = 10, each simulation with a different generator seed.

Figure3.17 shows that the theoretical complexities of both full scan and local graph algorithms
are equivalent to their actual execution times.

112



3.7 Numerical experiments

Figure 3.17: Three topologies together: the execution time (vertical axis, log-scaled) and the theoreti-
cal complexity (horizontal axis, log-scaled), for the full scan algorithm (red squares, left
part) and the local-graph algorithm (blue circles, right part). A line of slope 1 is dis-
played in black, on both scatter plots, showing the equivalence. The colour gradient rep-
resents similar values of the mean number of connections per process. A particular value
(mean of 4 children per process) is emphasised with a violet tone. The number of nodes
is 𝑀 = {10, 20, … , 100} ∪ {150, 200, … , 500} for the full-scan algorithm and 𝑀 =
{10, 20, … , 100} ∪ {150, 200, … , 500} ∪ {600, 1100, … , 5100} for the local graph algorithm.

Figure 3.18 shows that the execution time is quadratic for the full scan algorithm and linear
behaviour for the local graph algorithm. For example, when the local graph algorithm is executed
in less than 10s for more than 5000 nodes, the execution of the full scan algorithm takes about
100s for 500 nodes. The local graph algorithm clearly outperforms the full scan algorithm.
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Figure 3.18: Three topologies together: the execution time (vertical axis, log-scaled) and the theoretical
complexity (horizontal axis, log-scaled), for the full scan algorithm (red squares, left part) and
the local-graph algorithm (blue circles, right part). A line of slope 2 is displayed in black, on
the scatter plot for the full scan algorithm, and a line of slope 1 for the local graph algorithm.
The colour gradient represents similar values of mean numbers of connections per process.
A particular value (mean of 4 children per process) is emphasised with a violet tone. The
number of nodes is 𝑀 = {10, 20, … , 100} ∪ {150, 200, … , 500} for the full-scan algorithm
and 𝑀 = {10, 20, … , 100} ∪ {150, 200, … , 500} ∪ {600, 1100, … , 5100} for the local graph
algorithm.

�.� Conclusion

We presented a new discrete event simulation for point processes: the local graph algorithm,
aiming at tracking only the nodes changing state in the network, only updating their children
(based on the local independence graph hypothesis [13]). The computational complexity reduction
of the local graph algorithm with respect to the full scan algorithm (an adaptation of Ogata’s
algorithm [26]) is from 𝑀2 to 𝑀. Although there was no simulation algorithm able to simulate
large point process networks, the local graph algorithm now opens new perspectives for simulating
such networks. Especially, based on the local graph generation, an interesting perspective concerns
the memory reduction. Instead of statically storing the whole network topology in memory at the
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beginning of the simulation, only the local graphs corresponding to the children of changing state
nodes could be dynamically generated during the simulations [17]. Based on time asynchrony, this
corresponds to asynchronous dynamic structure changes in discrete event systems [24]. Generating
only local graphs with respect to the whole network graph should allow simulating very large
networks. The same complexity reduction order is expected. However, at execution time level, the
cost of re-generating the local graphs will have to be taken into account.

The network structure plays a central role in the arguments. While we assume that all processes
in the population are of the same type, the connectivity between the processes in the population is
not homogeneous. Each process in the population of 𝑁 nodes receives input from 𝐶 randomly
selected processes in the population. Sparse connectivity means that the ratio 𝛿 = 𝐶

𝑁 ≪ 1 is
a small number. One can ask if it is this realistic. In the context of the human brain, a typical
pyramidal neuron in the cortex receives several thousand synapses from presynaptic neurons
while the total number of neurons in the cortex is much higher [27]. Thus globally the cortical
connectivity 𝐶

𝑁 is low. On the other hand, we may concentrate on a single column in visual cortex
and define, e.g., all excitatory neurons in that column as one population. We estimate that the
number 𝑁 of neurons in one column is below ten thousand. Each neuron receives a large number
of synapses from neurons within the same column. In order to have a connectivity ratio of 0.1, each
neuron should have connections to about a thousand other neurons in the same column. [15]. In
the brain, last estimations consist of 86 billions of neurons [3], each neuron having around 7′000
connections. Either for the overall brain or for a single column of the visual cortex, the hypothesis
of sparse connectivity of the network remains valid. This work thus allows achieving grounded
stochastic simulations of the neuronal functional interactions in parts of the human brain.
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3.8 Conclusion

Figure 3.14: Cumulative distribution functions of the p-values of Test 3. In columns the node, in rows the
algorithm (full scan then local graph)
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Figure 3.15: Full scan algorithm: verifying the Martingale property for Nodes a and b. The black points
represent the 𝑋1 (spontaneous), then for the nodes connected to Node b, 𝑋2𝑗 and 𝑋2𝑗+1 are
displayed in red. In blue are the 𝑋𝑘 and 𝑋𝑘+1 (still for Node b) from Node b’s grand-parents
to Node b’s parents. Finally the two green scatter plots show the Nodes not disconnected from
b and a respectively.
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Figure 3.16: Local-graph algorithm: verifying the Martingale property for Nodes a and b. The black points
represent the 𝑋1 (spontaneous), then for the nodes connected to Node b, 𝑋2𝑗 and 𝑋2𝑗+1 are
displayed in red. In blue are the 𝑋𝑘 and 𝑋𝑘+1 (still for Node b) from Node b’s grand-parents
to Node b’s parents. Finally the two green scatter plots show the Nodes not disconnected from
b and a respectively.
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� Article �: Simulation scalability of
large brain neuronal networks
thanks to time asynchrony

Written by C. Mascart, G. Scarella, A. Muzy, P. Reynaud-Bouret

In this third contribution to the field of computational neuroscience, the algorithm developed
in chapter 3 is used for simulating very large network of point processes, with a size of the order of
magnitude of the number of neurons in a small mammalian brain. This discrete-event algorithm is
advantageous in cases where the mean spiking rate of neurons (or average event rate in the system
in general) is small compared to the number of neurons (or components of the system). Indeed,
simulation algorithms based on discrete-time management need to use a small time increment to
mitigate numerical differentiation errors, which is detrimental to performances. Furthermore,
when the spike rate is low, most of the updates of the state of any neurons will leave the state
unchanged because of the low event rate.

We show that our algorithm allows the simulation of large-scale neural networks in reasonable
time on any modern laptop, without the need for multiprocessor architecture or GPU. We explored
the effect of the variation of the connectivity of the neural network on the execution time, and
develop how to parametrize the model to guarantee nonexplosivity.

Status: Submitted
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4 Article 3: Simulation scalability of large brain neuronal networks thanks to time asynchrony

Abstract

We present here a new algorithm based on a random model for simulating efficiently large
brain neuronal networks. Model parameters (mean firing rate, number of neurons, synap-
tic connection probability and postsynaptic duration) are easy to calibrate further on real
data experiments. Based on time asynchrony assumption, both computational and memory
complexities are proved to be theoretically linear with the number of neurons. These results
are experimentally validated by sequential simulations of millions of neurons and billions of
synapses in few minutes on a single processor desktop computer.

�.� Introduction

There are more and more vast research projects, whose aim is to simulate brain areas or even
complete brains to better understand the way it works. Let us cite for instance: the Human Brain
Project [1] in Europe, the Brain Mapping by Integrated Neurotechnologies for Disease Studies
(Brain/MINDS) [7] in Japan or the Brain Initiative [25] in the United-States. Several approaches
are feasible. There is the biochemical approach [34], which is doomed for systems as complex
as the brain. A more biophysical approach has been investigated, see for instance [14], where
cortical barrels have been successfully simulated, but are limited to about 105 neurons. However,
the human brain contains about 1011 neurons whereas a small monkey, like marmosets [7], has
already 6 × 108 neurons [22] and a bigger monkey, like a macaque, has 6 × 109 neurons [22].

To simulate such huge networks, models reduction have to be made. In particular, a neuron
has no more physical shape and is just represented by a point in a network with a certain voltage.
Hodgkin-Huxley equations [31] are able to reproduce the physical shape if it is combined to other
differential equations, representing the dynamic of ion channels, but the complexity of these
coupled equations that form a chaotic system [19], makes the system quite difficult to simulate
for huge networks. If ion channels dynamic is neglected, the simplest model of voltage is the
Integrate-and-Fire model [26]. With such models, it has been possible on supercomputers to
simulate a human-scale cerebellar network reaching about 68 × 109 neurons [49].

However there is another point of view, which might allow us to simulate such massive networks
with simplified models. Indeed, one can use much more random models to reproduce the essential
dynamics of the neurons: their firing pattern. The randomization of not only the connectivity
graph but also the dynamics on the graph is making the model closer to the data at hand and
explain to a certain extent their variability. The introduction of randomness is not new and has
been done in many models including Hodgkin-Huxley [13] and Leaky Integrate-and-fire (LIF for
short) [27].
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4.1 Introduction

Here we want to focus on particular random models - point processes [46] - which have a
particular property: time asynchrony, that is the inability of the model to have two spikes that are
produced exactly at the same time by two different neurons. This includes in particular Hawkes
models and variants such as GLM, Wold processes, Galves-Löcherbach models, and even some
random LIF models with random or soft threshold, all of them having been used to fit real data [5,

15, 36, 38, 40, 42, 46].

This property, which is well known in mathematics [3, 5], combined with graph sparsity lead us
to propose a new algorithm in [30]. The computational complexity of this new algorithm has been
computed. Thanks to time asynchrony and to the computational activity tracking of firing neurons
[32], we have shown in particular that if the graph is sparse, the complexity cost of the computation
of a new point in the system is linear in the number of neurons. However the memory burden was
too high to reach networks of 108 neurons.

In a preliminary work [18] focusing on the mathematical aspects of mean-field limits of LIFs,
we formalized a way to deal with this memory aspect without putting it into practice: the main
point is to not keep in memory the whole network, but to regenerate it when need be. Recently,
the same idea, under the name of procedural connectivity, has been applied with success on LIF
models in [24]: using GPU-based parallel programming, and without time asynchrony, the authors
have been able to simulate a network of 4 × 106 neurons and 24 × 109 synapses on a desktop GPU
computer.

But, as we show in the present article, the gain of procedural connectivity is even huger when
combined with time asynchrony. Indeed, classical parallel programming usually uses a discrete
simulation time and computes for all neurons (or synapses) what happens at each time step in
a parallel fashion (even if spikes can be communicated in between two time steps [49]). At each
time step, each process corresponding to a different neuron has to wait for the calculations of all
the other processes to know what needs to be updated before computing the next step. With time
asynchrony, we can leverage discrete-event programming [4, 33, 41, 45] to track the whole system in
time by jumps: from one spike in the network to another spike in the network. Since a very small
percentage of a brain is firing during a given unit of time [28], the gain we have is tremendous in
terms of computations. Thanks to the procedural connectivity, the memory needed to access for
the computation of each new spike is also controlled. Hence, thanks to procedural connectivity
combined with time asynchrony, we propose a new algorithm for time asynchronous models,
running sequentially on a single processor, thus simulating a realistic network of 108 neurons for
which computational complexity as well as memory costs can be controlled beforehand.
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�.� Results

�.�.� Time synchrony for parallel simulation

Brain simulation of large networks is usually done in parallel based on simulation synchronization.
Of course, this depends on both the mathematical model at hand and the simulation algorithm.
However, for most models, differential equations are used to derive the time course of the mem-
brane voltage for each individual neurons. These equations are (approximately) solved by usual
discrete-time numerical schemes (cf. Figure 4.1a) [24].

In this kind of implementation, when one presynaptic neuron fires at a time 𝑡, i.e., emits a spike
(red dots in Figure 4.1a), the synaptic transmission to post-synaptic neurons is done at the next
time step 𝑡 + Δ𝑡 (orange dots in Figure 4.1a). Between two synaptic transmissions, the membrane
potential of a neuron evolves independently of the other neurons and can be computed in parallel
(green dots in Figure 4.1a). However, since one does not know when a spike will be emitted in
the network in advance, the membrane potential of all the neurons are classically computed in a
synchronous way to be able to eventually transmit spikes, at each time step Δ𝑡 of the algorithm.

�.�.� Time asynchrony for sequential simulation

As said in the introduction, point processes models of neuronal network may guarantee time
asynchrony if they have a stochastic intensity. Such processes include Hawkes processes, GLM
approaches, Wold processes or Galvès Löcherbach models in continuous time [15, 36, 38, 40, 46].

Most of these models have proved their efficiency in terms of goodness-of-fit with respect to
real spike train data [5, 12, 36, 38, 40, 46]. Often, the intensity in these models can be informally
interpreted as a function of the membrane voltage and for more evidence, we refer the reader to
[23], where the spike train of a motor neuron has been shown to be adequately modeled by a point
process whose stochastic intensity is a function of the membrane voltage.

These point processes models differ from classical LIF, mainly because the higher the intensity
(or the membrane potential) of a given neuron is, the more likely it is that the neuron fires, but this
is never for sure. In classical LIF models, the neurons fire when their membrane potential reaches a
fixed threshold. Therefore it may happen that if a presynaptic neuron fires, and if the corresponding
postsynaptic neurons have a potential close to the threshold, then all the postsynaptic neurons
fire at the exact same time. This phenomenon can be massive [6, 8]: this corresponds to the
mathematical phenomenon of blow-up, which happens for some mean-field limits of such models.
In this case, no time asynchrony is possible but such phenomenon is completely unrealistic from a
biological point of view. There are LIF models with random or soft threshold [18, 42] which might
not have this problem and which may also satisfy time asynchrony.
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4.2 Results

In [30], we proposed a discrete-event algorithm to simulate point processes with stochastic
intensities. This algorithm is based on the theory of local independence graph [10], which is the
directed neuronal network in our present case.

The algorithm works as follows (see Figure 4.1b). The spike events happen in continuous time
in the system (up to the numerical precision). Once a spike on a particular presynaptic neuron
happens (red dots in Figure 4.1b), the postsynaptic neurons are updated (orange dots in Figure
4.1b). The presynaptic and the post synaptic neurons compute their intensities (assimilated to
membrane potential) and forecast its evolution (green arrows in Figure 4.1b) if nothing in between
occurs in the system. They are therefore able to forecast their potential next spike (gray dots
in Figure 4.1b). The algorithm maintains a scheduler containing all potential next spikes on
all neurons and decides that the next neuron to fire effectively is the one corresponding to the
minimum of these potential next spikes. For more details, we refer to [30].

The gain comes from the fact that neurons that are not firing a lot, do not require a lot of
computation either. In particular we do not have to update all neurons at each spike but only the
pre and post synaptic neurons that are involved in the spiking event. This is the main difference
with the parallel simulation framework detailed above. The other difference is that we can work
with arbitrary precision, typically 10−15 if necessary, without impeding the time complexity of the
algorithm.

Note that the whole algorithm is possible only because two neurons in the network will not
spike at the same time: the whole concept is based on time asynchrony to be able to jump from
one spike in the system to the next spike in the system. Of course, this is true only up to numerical
precision: if two potential next spikes (gray dots on Figure 4.1b) happen at the exact same time
with resolution 10−15, by convention the neuron with the smaller index is said to fire. But the
probability of such event is so small that this is not putting the simulation in jeopardy.

Also note that this does not prevent neurons to eventually synchronize frequently over a small
time duration of a few milliseconds, as defined for instance in [47] and the references therein.

�.�.� Procedural connectivity

One of the memory burden of both methods (parallel and time asynchrony) comes from the fact
that a classic implementation stores the whole connectivity graph, which is huge for brain scale
models.

If the connectivity is the result of a random graph and that each presynaptic neuron is randomly
connected to its postsynaptic neurons, one can store the random seed instead of the result of the
random attribution. Hence the whole graph is never stored in full but only regenerated when
need be (see Figure 4.1b). The random connectivity is regenerated at each spike taking advantage
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of the deterministic nature of the pseudo-random generator used in the simulation. Storing the
generator initial seed, the seed of each neuron is computed based on initial seed value and neuron
index (see Figure 4.1c). With this method, only the initial seed is stored in memory. Of course
this dynamic regeneration at each spike has a cost in terms of time complexity, but this cost is
negligible with respect to the other computations that need to be made and this saves memory.

This method has been evoked at first in [18] for time asynchronous algorithms, without being
put into practice, whereas this method has been already implemented with success on parallel
programming with GPU [24].

�.�.� Computational and memory costs

In [30], we obtained an accurate estimate of the complexity of the algorithm without procedural
connectivity, for the simulation of linear Hawkes processes (cf. Equation 7 of [30]). This can
be reused to compute the computational complexity of the same model, when the procedural
connectivity step is added. Thus the overall time complexity of our algorithm is of the order of

𝒪(𝑇[𝑀𝑑2�̄�2 + log(𝑀)𝑀𝑑�̄� + 𝑀𝑑�̄�]) (4.1)

where 𝑀 is the number of neurons, 𝑝 the connection probability, 𝑑 = ⌈𝑝𝑀⌉ the average degree of
the network, �̄� the average firing rate of the network and 𝑇 the simulation duration. The last term
in (4.1) corresponds to the computational cost of the procedural connectivity at each spike, which
is indeed negligible with respect to other terms, as explained before.

Note that such computational costs depend in particular on the intensity shape of the underlying
point process model. The linearity of the Hawkes processes makes it easy to derive, whereas this
can be much more cumbersome with other models such as stochastic LIF, which needs to compute
the distribution of the time at which the threshold is reached.

The maximal memory cost of the procedural connectivity, without the spike times storage, is of
the order of 𝒪(𝑑𝜔) = 𝒪(𝑝𝑀𝜔), with 𝜔 the number of bits necessary for representing the index of
a post-synaptic neuron.
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The memory cost of a static storage of the whole graph is of the order of 𝒪(𝑑𝑀𝜔) = 𝒪(𝑝𝑀2𝜔).
We do not include in this the memory costs for the storage of each spike of each neuron. However,
this cost is the same whatever the method and it is of the order of 𝑀𝑇�̄�𝜖, where 𝜖 is the number
of bits necessary to represent a spike, which depends on the numerical precision with which time
is recorded. If 𝑑 is thought to be a fixed parameter, the memory cost of our complete algorithm
with procedural connectivity is thus

𝒪(𝑑𝜔 + 𝑀𝑇�̄�𝜖) (4.2)

Conversely, the use of a static storage of the network is 𝒪(𝑑𝑀𝜔 + 𝑀𝑇�̄�𝜖). Note however that
depending on what the program needs to return, we might not want to have the whole set of
points but only summary statistics such as firing rates that will cost in memory much less than
𝒪(𝑀𝑇�̄�𝜖).

�.�.� Choice of brain scale parameters

Because of the precision of the actual measurements and the brain region and neuron variability,
it is difficult to estimate quantitatively both physiological (number of synapses per neuron, etc.)
and dynamic parameters (average firing rate, etc.) of neuronal networks in primates [22] and
humans [21]. Only rough estimates are available. The human brain being themore computationally
intensive, we estimate here its main parameters for simulation. Our goal is indeed to show the
algorithm scalability to simulate large networks with such parameters.

To our knowledge, the best documented region of the human brain is the (neo)cortex. Based
on the structural statistics (number of neurons and synaptic connections) of neuronal networks in
the (neo)cortex, we extrapolate here their representative parameter values at brain scale.

The firing rate of a neuron in the brain can be estimated by the limited resources at its disposal,
especially glucose. Measures of ATP consumption have shown (see [28]) that the firing rate of a
neuron in human neocortex can be estimated around 0.16𝐻𝑧. Still based on ATP consumption,
only 10% of the neurons in the neocortex can be active at the same time. So it seems coherent to
choose an average of 0.16𝐻𝑧. These values can be extrapolated to the whole brain1, as follows.

The neocortex represents 80% of the volume of the brain [44] and consumes 44% of its energy
[28]. Considering that the energy consumed by the brain is proportional to the firing rate of the
neurons, the power ratio then consists of

𝑃𝑐𝑜𝑟𝑡𝑒𝑥
𝑃𝑏𝑟𝑎𝑖𝑛

∼
𝑉𝑐𝑜𝑟𝑡𝑒𝑥�̄�𝑐𝑜𝑟𝑡𝑒𝑥
𝑉𝑏𝑟𝑎𝑖𝑛�̄�𝑏𝑟𝑎𝑖𝑛

,

1This calculus can be found onAI impact project webpage: https://aiimpacts.org/rate-of-neuron-firing/
(lastly verified: 02/09/2021)
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4.2 Results

Simulation duration 𝑇 = 5𝑠
Mean firing rate �̄� = 0.3𝐻𝑧

Number of neurons simulated 𝑀 = {105, 106, 107, 108}
Synaptic connection probability 𝑝𝑀 = 1000/𝑀

Postsynaptic duration 𝜏 = 20𝑚𝑠

Table 4.1: Neuronal network parameters at human brain scale level.

with �̄�𝑐𝑜𝑟𝑡𝑒𝑥 the mean firing rate of individual neurons in the neocortex (resp. in the brain) and
𝑉𝑐𝑜𝑟𝑡𝑒𝑥 the volume of the neocortex (resp. in the brain). The average firing rate of the brain then
consists of �̄�𝑏𝑟𝑎𝑖𝑛 = 0.8 × 0.16

0.44 = 0.29 𝐻𝑧 per neuron.
This average firing rate should not be confused with the fact that particular neurons can have

a much larger firing rate. Particularly, groups of neurons synchronize together for achieving a
particular cognitive task: this is the concept of neuronal assemblies [17]. In an assembly, neurons
can usually increase their rates to tens 𝐻𝑧 (possibly 50𝐻𝑧) over a short duration. Therefore, we
choose a firing rate in the brain where most of the neurons have a firing rate of 0.3𝐻𝑧 but some
have a much higher firing rate (up to 50𝐻𝑧) using an heavy tailed distribution, see Materials and
Methods and Table 4.2.

The average number of synaptic connections in human brains is hard to estimate and depends
heavily on the neuron types and brain regions. For example, in the brain, it is assumed that the
majority of neurons are cerebellum granule cells [43]. In [29], the number of synaptic connections
to granule neurons is estimated to an average of only 4 connections, matching those observed
anatomically. On the other hand, Purkinje neurons can have up to 200, 000 synapses on only one
dendrite in the human brain [43]. The approximate number of synapses in the cortex is 0.6 × 1014

[11]. Assuming that the volume of the cortex represents around 80% of the volume of the brain,
the number of synapses in the brain is of order 1014. Considering that the number of neurons in
the human brain is of order 1011 [21], we find that the average number of synapses is about 1, 000
synapses per neuron2. The synaptic connection probability thus depends on the number of neurons
𝑀: 𝑝𝑀 = 1,000

𝑀 .
Finally, an action potential arriving on one pre-synaptic neuron produces an Excitatory Post-

Synaptic Potential (EPSP), or an Inhibitory PostSynaptic Potential (IPSP), in the postsynaptic
neuron. The duration of these postsynaptic potentials is about 𝜏 = 20𝑚𝑠 [43].

Therefore the parameters that we used in the simulation are indicated in Table 4.1. Notice that
these parameters are generic and intuitive and can be taken easily into account in further studies,
either at a biological or at theoretical model level.

2Calculus on AI impact project webpage: https://aiimpacts.org/scale-of-the-human-brain/ (lastly veri-
fied: 02/09/2021).
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�.�.� Software and hardware configurations

The simulations have been run on a Symmetric shared Memory multiProcessor (SMP) computer
equipped with Intel CascadeLake@2.6GHz processors3. This kind of computer is used here to
have access to larger memory capacities. At computational level, only one processor was used
for the simulations. For small sizes of networks requiring small amounts of memory (cf. Figure
4.3b), e.g. a network of 106 neurons with a total of 109 synaptic connections, this computer is
equivalent to a simple desktop computer. The simulation of such networks takes only 25 minutes
for each biological second. This is of the order of the 4.13 × 106 neurons and 24.2 × 109 synapses
simulated on GPUs [24], which takes about 15 minutes for each biological second. This GPU-based
simulation was already running up to 35% faster than on 1024 supercomputer nodes (one rack of
an IBM Blue Gene/Q) [16]. Our simulation only requires a single usual processor and no GPU.

The implementation of the algorithm is written in C++ (2011) programming language and
compiled using g++ 9.3.0.

�.�.� Firing rate at network level

Table 4.2 presents classical elementary statistics on the simulated firing rates, whereas Figure 4.2
presents the corresponding densities. As one can see in Section Material and Methods, the system
is initialized with a lot of neurons whose spontaneous spiking activity is null. The system needs to
warm up to have almost all neurons spiking. This explains why the density at 𝑇 = 5s is still rippled
whereas, at 𝑇 = 50𝑠, it looks much smoother. This last case corresponds basically to the stationary
version of the process. Indeed, as explained in Section Material and Methods, the parameters
of the Hawkes model (in particular the spontaneous spiking activity) have been fixed to achieve
a certain stationary distribution of the firing rates (with mean 0.3Hz), which is heavy tailed to
achieve records as large as 50 Hz. As one can see (even if at 𝑇 = 5s the system is not warmed up
yet with a lot of non spiking neurons), one can still achieve the desired average firing rate and
extremal values. These basic statistics are not varying a lot with 𝑇 (see Table 4.2). Note that the
density plots are roughly the same for all configurations: with ripples at 𝑇 = 5s and smooth curve
at 𝑇 = 50s.

Our approach is particularly adapted to simulate precisely and efficiently a huge disparity in
frequency distributions. Indeed, our simulation algorithm [32] allows focusing efficiently the
computing resources on highly spiking neurons without computing anything for almost silent

3We used v100l and v100xl partitions on Joliot-Curie supercomputer at TGCC as a Fenix Infrastructure resource.
Each node of v100l and v100xl has Intel CascadeLake@2.6GHz processors. A node on v100l is a dual-socket one
with 2x18 cores, each core having a memory of 10 GBytes, so the total amount of available memory is 360 GBytes.
A node on v100xl is a quad-socket one with 4x18 cores, each core having a memory of 41.5 GBytes, so the total
amount of available memory is 3 TBytes.
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Figure 4.2: Densities (on a logarithmic scale) of the simulated firing rates in the network with 𝑀 = 106

neurons and 𝑑 = 1000 post-synaptic connections in average. In red, for 𝑇 = 5s and in blue for
𝑇 = 50s. These densities are obtained with a Gaussian kernel estimator with bandwidth 0.02.

neurons (cf. Figures 4.1a and 4.1b). The last advantage of our approach is to be able to store time
stamps with a precision of 10−15𝑠.

�.�.� Execution times and memory usage

The simulation execution times are presented in Figure 4.3a for different sizes of neural networks
and different numbers of synaptic connections (called children). The experimental execution
times obtained are in agreement with (4.1) which predicts, for instance, 𝑂(1012) operations for
𝑀 = 107 and 𝑑 = 103. The curves are almost linear (with slopes around 1.1) with respect to the
number of neurons, for different numbers of synaptic connections.
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M d Average freq. Freq. min. Freq. max. Freq. std. Percentage of
non spiking
neuron

1e5 250 0.279 (0.279) 0 (0) 14 (13.94) 0.315 (0.222) 31.2 (0.01)
1e5 500 0.334 (0.333) 0 (0.02) 6.6 (5.76) 0.328 (0.218) 23.5 (0)
1e5 1000 0.399 (0.398) 0 (0.04) 10.4 (11.64) 0.345 (0.220) 16.9 (0)
1e6 250 0.267 (0.267) 0 (0) 19.2 (20.84) 0.308 (0.217) 33 (0.01)
1e6 500 0.322 (0.324) 0 (0) 38.4 (39.38) 0.329 (0.225) 25.1 (0.00)
1e6 1000 0.383 (0.387) 0 (0.02) 13.4 (12.9) 0.344 (0.223) 18.5 (0)
5e6 250 0.26 (0.261) 0 (0) 27.4 (28.5) 0.307 (0.217) 34.1 (0.02)
5e6 500 0.315 (0.316) 0 (0) 34.2 (34.1) 0.324 (0.220) 26 (0.00)
5e6 1000 0.377 0 19.8 0.342 19
1e7 250 0.258 (0.259) 0 (0) 23.2 (21.62) 0.306 (0.217) 34.4 (0.02)
1e7 500 0.311 0 21.6 0.322 26.4
1e7 1000 0.374 0 21.8 0.342 19.3
5e7 250 0.253 0 38.2 0.304 35.4
5e7 500 0.305 0 50.6 0.321 27.2
1e8 250 0.251 0 46.2 0.303 35.7

Table 4.2: Firing rates elementary statistics obtained by simulation for different sizes of neural networks
and different numbers of synaptic connections and 𝑇 = 5𝑠. The number between parentheses
displays the results at 𝑇 = 50𝑠 for the less complex simulations
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Figure 4.3: Simulation execution times (4.3a) and memory usage (4.3b) for different sizes of networks.

The total amount of memory used is displayed in Figure 4.3b. They are in agreement with
the procedural memory complexity of (4.2) and also almost linear (with slopes slightly below 1).
Note in particular that for 𝑀 = 107, 𝑑 = 103, 𝜔 = 32 and 𝜖 = 64 (leading to a 10−15 precision
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in time), the memory cost predicted by (4.2) is 𝑂(1011) for the static implementation, whereas
it is 𝑂(109) for the procedural connectivity implementation. Besides notice that, as expected,
increasing the average number of post-synaptic connections per neuron has few impact on the
memory. Indeed, within the network, only the post-synaptic connections receiving spikes are
dynamically generated.

�.� Material and Methods

�.�.� Model

For a set of 𝑀 neurons, we first design the graph of interaction by saying that neuron 𝑗 influences
neuron 𝑖 if a Bernoulli variable 𝑍𝑗→𝑖 of parameter 𝑝 is non zero. The resulting network is an
Erdös-Rényii graph.

Once the network is fixed, we design the spike apparition thanks to a Hawkes process, that is a
point process whose intensity is given by

𝜆𝑖(𝑡) = 𝜈𝑖 +
𝑀

∑
𝑗=1

∫
𝑡

0
ℎ𝑗→𝑖(𝑡 − 𝜏)𝑑𝑁 𝑗

𝜏 ,

with 𝑑𝑁 𝑗 the point measure associated to neuron 𝑗. In this formula, 𝜈𝑖 represents the spontaneous
firing rate of the neuron 𝑖 if the other neurons do not fire, whereas ℎ𝑗→𝑖 is the interaction function,
that is ℎ𝑗→𝑖(𝑢) is the increase (if positive) or decrease (if negative) that the firing rate of neuron 𝑖
suffers due to a spike on 𝑗, which happens 𝑢 seconds before.

We are interested in a particular case of the Hawkes process where all the interaction functions
are always the same when they are non null. More precisely, we set the interaction function

ℎ𝑗→𝑖 = 𝑍𝑗→𝑖𝜃ℎ,

where ℎ is a fixed positive interaction function of integral 1, 𝜃 is a tuning parameter that we need
to calibrate to avoid explosion of the process. We also set ℎ𝑖→𝑖 = 0 (no self interaction). We take
ℎ = 501[0,0.02]: the interaction function is a constant and non zero only on a small interval of
length 20ms, which corresponds to typical Post Synaptic Potentials in the brain.

Let us denote 𝐻𝑗→𝑖 = ∫+∞
0 ℎ𝑗→𝑖(𝑡)𝑑𝑡) and 𝐻 = (𝐻𝑗→𝑖)𝑖,𝑗=1,...,𝑀 is the corresponding matrix

(line 𝑖 corresponds to a triggered neuron, column 𝑗 to a triggering neuron).

Note in particular that in this model, there are only excitatory neurons : if in the brain, there are
inhibitory neurons, this will only reduce the number of points without changing the complexity.
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Moreover when all the interaction functions are non negative, we can easily understand the
explosion condition.

Indeed, this Hawkes process explodes, that is, it produces an exponentially increasing number
of point per unit of time (see [9]) if the spectral radius of 𝐻 is larger than 1.

If (Condition Stat) the spectral radius is strictly smaller than 1 [20], then a stationary version
exists and the corresponding vector of mean firing rates 𝑚 = (𝑚𝑖)𝑖=1,...,𝑀 is given by

𝑚 = (𝐼 − 𝐻)−1𝜈. (4.3)

Note also that if we start the simulation without points before 0 in (Condition Stat), the process
is not stricto sensu stationary but it will converge to an equilibrium given by the stationary state
(ergodic theorem) and that the number of points that will be produced is always smaller than the
stationary version.

In the present case we want (i) to prevent explosion and (ii) to reach a certain vector 𝑚 which is
biologically realistic (average around 0.3 Hz, records around 50 Hz). Both of these calibrations
can be done mathematically beforehand in the Hawkes model : we can guarantee the behavior
of the whole system even before performing the simulation, whereas this might be much more
intricate for other models such as LIF.

�.�.� Choice of theta or how to avoid explosion

Note that 𝐻 = 𝜃𝒵, with 𝒵 = (𝑍𝑗→𝑖)𝑖,𝑗=1,...,𝑀. So if we can compute the largest eigenvalue of 𝒵
or an upper bound, we can decide how to choose 𝜃.

We can use Gershgorin circles [48] to say that any complex eigenvalue 𝜆 of 𝒵 satisfies (because
the diagonal is null),

|𝜆| ≤ max
𝑖=1,...,𝑀 ∑

𝑗≠𝑖
𝑍𝑗→𝑖.

Therefore the spectral radius is upper bounded by max𝑖=1,...,𝑀 𝐵𝑖, where 𝐵𝑖 = ∑𝑗≠𝑖 𝑍𝑗→𝑖. This
random quantity can be computed for small networks but it is clearly too intensive in our setting:
indeed, with the procedural connectivity implementation, it is always easy to access the children ℓ
of a given 𝑖, i.e. such that 𝑖 → ℓ is in the graph, but we need to look at all the neurons in the graphs
to find out the set of parents 𝑗 of 𝑖, i.e. such that 𝑗 → 𝑖 is in the graph. However, probabilistic
estimates might be computed mathematically. Indeed 𝐵𝑖 is just a sum of i.i.d. Bernoulli variables.
So we can apply Bernstein’s inequality [2]. This leads to, for all positive 𝑥,

∀𝑖 = 1, ..., 𝑀,

ℙ(𝐵𝑖 ≥ (𝑀 − 1)𝑝 + √2(𝑀 − 1)𝑝(1 − 𝑝)𝑥 + 𝑥/3) ≤ 𝑒−𝑥,
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and, by union bound, for the maximum

ℙ(max
𝑖=1,...,𝑀

𝐵𝑖 ≥ (𝑀 − 1)𝑝 + √2(𝑀 − 1)𝑝(1 − 𝑝)𝑥 + 𝑥/3) ≤ 𝑀𝑒−𝑥.

Therefore let us fix a level 𝛼, say 1%, and take 𝑥 = log(𝑀) + log(1/𝛼) in the previous equation.
We obtain that with probability larger than 1 − 𝛼, the spectral radius of 𝒵 is upper bounded

𝜌max = (𝑀 − 1)𝑝 + 𝜉𝛼

with

𝜉𝛼 = √2(𝑀 − 1)𝑝(1 − 𝑝)[log(𝑀) + log(1/𝛼)]

+[log(𝑀) + log(1/𝛼)]/3

Note that 𝜌max is roughly (𝑀 − 1)𝑝, which is the largest eigenvalue of 𝔼(𝒵). Finally it means
that if we take 𝜃 < 1/𝜌max, the process will not explode with probability larger than 1 − 𝛼. In
practice, to ensure a strong enough interaction, we take 𝜃 = 0.9𝜌−1

𝑚𝑎𝑥.

�.�.� Choice of nu_i or how to constraint the distribution of the mean firing
rates

The first step consists in deciding for a target distribution for the 𝑚𝑖. We have chosen to pick
the 𝑚𝑖’s independently as 0.1𝑋 where 𝑋 is the absolute value of a student variable with mean 3
and 4 degrees of freedom. The choice of the student variable was driven by the wish of having
a moderate heavy tail, which will ensure records around 50 Hz and a mean around 0.3Hz. The
problem is that the 𝑚𝑖’s are not parameters of the model, so we need to understand how to tune 𝜈𝑖

to get such 𝑚𝑖’s. Note that by inverting (4.3), we get that

(𝐼 − 𝐻)𝑚 = 𝜈

that is for all 𝑖
𝜈𝑖 = 𝑚𝑖 − 𝜃 ∑

𝑗≠𝑖
𝑚𝑗𝑍𝑗→𝑖,

which is very intuitive [39]. Indeed the spontaneous rate that we need to put is the mean firing
rate 𝑚𝑖 minus what can be explained with the parents of 𝑖.

So in theory, the Hawkes model is very easy to tune for prescribed firing rates since there is a
linear relationship between both. However, and for the same reasons as before, it might be too
computationally intensive to compute this explicitly.
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One possible way is to again use concentration inequalities, but this time on ∑𝑗≠𝑖 𝑚𝑗𝑍𝑗→𝑖 and
not on 𝐵𝑖. However we decided to do something simpler, which works well (as seen in Figure 4.2).

Indeed ∑𝑗≠𝑖 𝑚𝑗𝑍𝑗→𝑖 is a sum of about (𝑀 − 1)𝑝 ≃ 1000 i.i.d variables with mean �̄� = 0.3Hz.
Hence it should be close to �̄�𝐵𝑖. With the previous computations, we know already that 𝜈𝑖 should
therefore be larger than 𝑚𝑖 − 𝜃𝜌max�̄�.

With the previous choice of 𝜃 = 0.9𝜌−1
max, we have chosen to take the positive part for the 𝜈𝑖’s in

the simulation, that is :
𝜈𝑖 = max(𝑚𝑖 − 0.9�̄�, 0).

Therefore 𝜈𝑖 remains positive or null, which guarantees that the Hawkes process stays linear.
However, this also means that a non negligible portion of the neurons start with a null spontaneous
firing rate, which explains the ripples of Figure 4.2.

With this choice, we cannot hope to have exactly the same distribution as the desired 𝑚𝑖’s, but it
conserves the same heavy tail and roughly the same mean firing rate as the one we wanted, as one
can see on Table 4.2.

�.� Discussion

Thanks to time asynchrony, we propose a new scalable algorithm to the simulate spiking activity
of neuronal networks. We are able to generate roughly the same firing pattern as a real brain for a
range between 105 and 108 neurons, in a few minutes on a single processor, most parameters being
tuned thanks to general considerations inferred from the literature. Corresponding computational
and memory complexities are shown to be both linear.

At simulation level, whereas usual simulations are based on the continuous variation of the
electrical potentials of LIF neurons, point processes lead to much more efficient simulations. In
particular, instead of computing the small continuous variations for all neurons, only discrete
spikes and their interactions are simulated in the network. Between two spikes no computations
are done. Point processes also lead to time asynchrony (two spikes cannot occur at the same time
in the network), which is a fundamental hypothesis for the algorithm to work.

Combining the time asynchrony hypothesis with procedural connectivity drastically reduces
the memory consumption and also, for the same network activity, reduces the computations per
spikes (cf. Figures 4.1a and 4.1b). In particular, complexities (both theoretical and concrete) can
be computed and proved to be almost linear in the number of neurons, when Hawkes processes
are generated, leading to simulation scalability of the whole approach without precision loss.

Both modeling and simulation results open many research perspectives. We are currently
developing new discrete event algorithms that are able to simulate the spiking activity of neurons
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embedded in potentially infinite neuronal networks [35]. This paves the path for simulation of
parts of the brain as an open physical system.

Furthermore, the minimal number of computations and memory storage obtained here open
new exciting perspectives with respect to massive neuromorphic computers, by improving the
energy saving consumption of neuromorphic components [37].

Finally, if we have proved that the simulation is doable, the point process model used here
can be calibrated further on real data, by incorporating inhibition and more variability in the
interaction functions. Also, this model can be used for reconstructing the functional connectivity
of experimentally recorded neurons [39, 40] to have access to more realistic interaction functions.
Besides, as only few computing resources (one single processor) is used with a minimal memory
amount, this opens new possibilities to run in parallel many independent replications of stochastic
simulations of large networks. This is particularly interesting for calibrating models based on real
data collections.
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� Conclusion and perspectives

Point processes, and in a certain way stochastic processes, model sporadic events in time. Sim-
ulation algorithms are well known but are often too slow for large-scale applications such as
brain-scale simulation. On the other hand, discrete-event system specification is a formalism
which deal with the modeling and simulation of system changing state at the occurrence of events.
It has been used and improved over the years for modeling and simulating very complex systems
efficiently.

While there is a large corpus of research on improving simulation algorithms for point processes
and stochastic processes, as far as we know, little work has been done to combine the known simu-
lation algorithms for point processes and stochastic processes with discrete-event techniques. This
is surprising because point process models are, at their core, discrete-event systems, undergoing
state change only at the time when a new point is generated.

In this thesis we have worked on synthesizing the classical algorithms for simulation of point and
stochastic processes with the methods and formalism from the field of discrete-event systems. Our
first approach was to formalize the Hawkes process model in the terms of the DEVS formalism. We
also simplified the architecture of our home-made DEVS simulator, GODDESS, to get a prototype
for future work on point process simulation using discrete-event techniques.

A second initiative was launched with the 2017 edition of the CEMRACS summer school,
during which we successfully applied the discrete-event formalism to the modeling and simulation
of the Ornstein-Uhlenbeck model of spiking neurons. The concept of procedural connectivity
was also rediscovered and applied for the first time during this particular project. This project
helped strengthening the idea that the DEVS formalism and using techniques from the field of
discrete-event simulation was indeed a good idea for bettering current simulation algorithms for
both point and stochastic processes.

During the third phase of this thesis, we focused on re-designing and re-implementing the point
process simulator in C++. We called the simulator SPIKES, in reference to the spikes that wemodel
using point processes. SPIKES uses both the new algorithm that we proposed for the simulation of
point processes, and the procedural connectivity introduced for stochastic process simulation to
lower the memory complexity of both the algorithm and the data structures, compared to classical
algorithms and implementations. The simulator currently works on single processor, yet it is still
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able to achieve real-time simulation of networks of thousands of processes/neurons. The simulator
has proven able to simulate networks of processes at the same scale as the number of neurons in a
small monkey brain.

An interesting fact that was discovered at the end of this thesis is that the concept of procedural
connectivity has already been introduced by Izhikevich in 2005, in an unpublished work. His
personal website references the unpublished experimentation [60]. Izhikevich explains he tried to
simulate a large network of 100 billions spiking neurons, which is the same order of magnitude as
the number of neurons in the human brain. What is interesting is the explanations Izhikevich
gives to this simulation [61]: he tells that 1 second of simulation took about 50 days on a 27 3GHz
cluster (in 2005), and that according to Moore’s law, the simulation of an entire brain would be
possibly achieved by 2016, on a cluster of 911250 processors each running at 384GHz. The hope
was clearly that even more massive parallelization than what was available at that time would solve
the simulation limits, and yet in 2020 no satisfying full-scale brain simulation has been run.

It is worthy of noting that Izhikevich achieved his impressive technical feat by using a similar
technique for the storage of the synapses as we developed in chapters 2 and 4. Indeed, he imple-
mented the model so as to regenerate the anatomy at every time step (1ms). There is no further
explanation as whether it was the anatomy of the whole brain that was regenerated at every time
step, or just a subgraph. Indeed, some of the ideas that made this thesis work possible had been
suggested, at least in parts, 15 years before this manuscript came to life. There is no more humbling
sentiment than to realize how much we step on the shoulders of giants.

A lot of work has been done for improving the parallelization of current algorithms for neuronal
simulation on computer clusters [53, 131, 137] and with the use of GPU [31, 70, 105, 108]. Yet, we
would like to defend the single processor approach in this conclusion.

Resource-savvy algorithms will become more and more important in an energy-stressed world,
while allowing neuroscience researchers to work at the scale of a human brain without the need
to use the resources of expensive supercomputers. The idea of promoting the research for more
resource-savvy algorithms is on par with the resource-effectiveness of the brain compared to the
simulations: the current consensus is that the brain takes 20% of the energy of the whole body [24,

50, 90, 114, 146], which implies an energy consumption of 20 − 30W: assuming 2000 kCal/day
consumed by an adult, this would translate to about 400 kCal/day consumed by the brain, or
less than 20W. A higher estimation is given in [50]: 600kCal/day, or 30W, is estimated for 100
billion neurons, and a quick computation gives about 25W for 86 billion neurons. The Japanese K
computer, which held the 20th place in the Top500 ranking of supercomputers in 2019 when it
was decommissioned, can simulate a human-scale cerebellar model with 68 billion neurons [149],

but at the cost of 12MW [141]. By comparison, a generic laptop computer consumes less than
50W [10].
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Moreover, the DEVS formalism can help the development of models and simulation software
suitable for both single processor and parallel computing. The DEVS formalism can easily be
adapted in a parallel version [23, 142, 154], and is able to handle both discrete-event and discrete-
time models [142, 154]. The advantage of using DEVS as a building block for designing models and
simulation software is that it opens the possibility of simulating a large range of models, even when
they use different formalisms [57, 154]. Finally, theoretical analysis by Zeigler [153] has shown
that the Parallel DEVS protocol is very close to optimality in terms of performance, so using the
DEVS formalism could help building efficient yet generic simulation software. This could also be
a path towards the integration of more interdisciplinary work at the confluence of mathematics,
computer science and neuroscience for example.

The research presented in this thesis is already coming to fruition. With the ability to simulate
greater network of point and stochastic processes, it is possible to verify the performance of old
and new statistical tools. For instance, numerous techniques for reconstructing the functional
connectivity of a biological neural network from the measured spiking activity of the neurons
have been proposed in the past [3, 22, 27, 123]. We worked on improving the algorithlms for the
computation of the functional connectivity using the LASSO method, as proposed in [80], with
encouraging results thus far.

In addition, a collaboration with the SED team at the Inria laboratory of Sophia-Antipolis, a
graphical interface for the SPIKES simulator and the reconstruction algorithm is being imple-
mented. The goal is to couple the simulation and reconstruction software to allow neuroscientist
to be able to quickly and easily transform raw spiking data into a reconstructed neural network,
which can then be verified using the simulation software.

Finally, a newly proposed algorithm by Phi et al. [117] allow the simulation of neurons in a
potentially infinite network of neurons. This could even improve the performance of the simulation
of multivariate Hawkes models of neural networks. The idea would be to use the same kind of
discrete-event techniques that were used in this thesis to improve the result of [117].
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