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Résumé

L'amélioration des normes de qualité de vie des bâtiments implique une consomma-

tion d'énergie plus élevée. Les occupants utilisent plus d'énergie pour alimenter leurs

smartphones, ordinateurs, télévisions, etc. ce qui implique une augmentation de la con-

sommation par habitant. De plus, la population mondiale augmente. Selon les Nations

Unies [1], la croissance totale de la population mondiale est passée de 2.536 milliards en

1950 à 7.713 milliards en 2019. Cette augmentation de la population mondiale implique

également une augmentation de la consommation d'énergie. L'augmentation de la con-

sommation d'énergie des bâtiments a des conséquences dramatiques sur l'environnement;

Réchau�ement climatique, changements climatiques et autres impacts négatifs. La ré-

duction de la consommation d'énergie est devenue une urgence mondiale, en particulier

dans le secteur du bâtiment, car il est l'un des plus grands secteurs consommant de

l'énergie. Toute cette demande croissante crée de nombreux nouveaux dé�s sociétaux

et technologiques. Grâce aux nouvelles technologies, telles que l'Internet des objets (en

anglais Internet of Things IoT), les facteurs de consommation énergétique des bâtiments

peuvent être analysés en collectant des données à partir de capteurs déployés à l'intérieur

comme à l'extérieur du bâtiment. Les travaux menés dans cette thèse visent à utiliser

les données du bâtiment pour réduire sa consommation d'énergie. Le comportement des

occupants du bâtiment devient une variable clé a�ectant l'e�cacité énergétique des bâ-

timents. Par conséquent, dans cette thèse, nous nous concentrons sur la compréhension

du comportement des occupants pour la minimisation énergétique dans les bâtiments.

Après un aperçu complet sur la consommation énergétique globale, de la smarti�ca-

tion des bâtiments et de son impact sur la réduction de la consommation énergétique des

bâtiments, nous concentrons nos e�orts sur le développement d'une nouvelle vision sur

la compréhension du comportement des occupants les bâtiments.

L'importance des données dans l'analyse du comportement des occupants nous pousse

à nous interroger sur leur utilisation. La première contribution de la thèse est de se con-

centrer sur la sélection des types de données et de la fréquence de collecte des données



des bâtiments, pour la compréhension du comportement des occupants centrée sur les

pièces du bâtiment. Ainsi, nous introduisons une approche pour sélectionner la période

de collecte des données et les données pertinentes a�n de pouvoir construire un modèle

de prédiction du comportement des occupants du bâtiment, tout en satisfaisant les con-

traintes de précision. Notre approche utilise et compare cinq algorithmes d'apprentissage

automatique (Machine Learning), appliqués à di�érentes périodes de collecte de données

(de 1 minute à 60 minutes) et di�érents ensembles de données IoT (jusqu'à 9 di�érents

capteurs par pièce). Les résultats de la simulation montrent que, parmi les 9 capteurs

utilisés dans l'expérience collectant des données chaque minute, notre approche montre

qu'un bon niveau de précision peut être obtenu en utilisant soit 8 capteurs collectant des

données à un intervalle de temps de 20 min, soit 5 capteurs collectant des données à un

intervalle de temps de 15 min, [2]. Comme deuxième contribution, nous proposons une

approche centrée sur l'occupant pour se concentrer davantage sur le comportement de

l'occupant lui-même dans un bâtiment plutôt que sur une seule pièce. Le but de cette

approche est de proposer un niveau d'abstraction plus élevé pour le bâtiment visant

une meilleure compréhension du comportement des occupants et de l'interconnexion des

pièces. Nous utilisons une représentation basée sur les graphes temporelles des comporte-

ments des occupants pour la prédiction des comportements des occupants. L'objectif est

de trouver un compromis entre la minimisation énergétique du bâtiment et la satisfac-

tion du confort des occupants. Notre approche combine un algorithme de fouille de

graphes (Graph Mining), un regroupement hiérarchique (hierarchical clustering) pour

identi�er les mouvements fréquents des occupants dans un intervalle de temps optimal

de décomposition des jours de la semaine, et une formulation et résolution de problèmes

multi-objectifs. Nous expérimentons notre approche sur un ensemble de données de 4

semaines de mouvements de 4 occupants à travers plusieurs pièces de bureaux. Les pre-

miers résultats ont montré que notre modèle permet de minimiser jusqu'à 62.21% de la

consommation énergie par rapport au fonctionnement conventionnel des systèmes HVAC,

et remplit jusqu'à 94.02% du confort thermique des occupants [3]. Pour améliorer encore

plus le confort de l'occupant, nous avons proposé une troisième approche qui, basée sur les



deux travaux précédents, propose de détecter les erreurs de prédiction du comportement

des occupants. L'approche utilise une prédiction du comportement des occupants basée

sur les graphes temporels, et une correction d'erreurs de prédiction en temps réel. Les

prédictions faussement négatives (faux négatifs) peuvent causer une gêne aux occupants,

c'est pourquoi nous utilisons la détection de l'état d'occupation des pièces en temps réel

et la comparons à la prédiction du modèle et, si un faux négatif est détecté, le système

corrige cette erreur. Cela permet de minimiser l'inconfort dans le bâtiment. Nous avons

expérimenté notre approche sur des données simulées et les résultats obtenus montrent

que notre modèle optimise jusqu'à 39.09% de l'énergie consommée par le système HVAC,

et o�re jusqu'à 99.39% de confort des occupants [4].

Nous utilisons la représentation temporelle du bâtiment et du comportement de

l'occupant basée sur les graphes pour la prédiction du comportement des occupants.

Mots-clés: Bâtiments Intelligents, E�cacité Énergétique dans les Bâtiments, Com-

portement des Occupants, Optimisation du Confort des Occupants, Capteurs Intelligents,

Apprentissage Automatique, Fouille de Graphes.





Abstract

Improvements in building life quality standards imply higher energy consumption.

Occupants are using more energy to power their smartphones, computers, televisions, etc.

which implies an increase in per capita consumption. Furthermore, the world population

is increasing. According to United Nations [1], total world population growth from

2.536 billions in 1950 to 7.713 billions in 2019. This increase in the world population also

implies an increase in energy consumption. The increase in building's energy consumption

has dramatic consequences on the environment; Global warming, climate changes, and

other negative impacts. Reducing energy consumption has become a global emergency,

especially in the buildings sector, because it represents one of the biggest energy consumer

sectors. All this rising demand creates many new societal and technological challenges.

Thanks to new technologies, such as the Internet of Things (IoT), building energy

consumption factors can be analyzed by collecting data from sensors deployed within and

around the building. The work conducted in this dissertation aims on using the building's

data to reducing its energy consumption. Building's occupant behavior becomes a key

variable a�ecting building energy e�ciency. Therefore, in this dissertation, we focus on

occupant behavior understanding for building energy minimization.

After a comprehensive overview of global energy consumption, building smarti�ca-

tion, and its impact on reducing building's energy consumption, we concentrate our e�orts

on the developments of a new vision of building's occupant behavior understanding.

The importance of data in the occupant's behavior analysis drives us to raise some

questions about their use. The �rst contribution of the thesis is to focus on selecting

building's data type and data collection frequency for room-centered occupant's behav-

ior understanding. Thus, we introduce an approach to select the data collection period

and the relevant data for building occupant behavior prediction model while satisfying

accuracy constraints. Our approach uses and compares �ve machine learning algorithms,

while applied to di�erent data collection periods (from 1 minute to 60 minutes) and dif-



ferent sets of IoT data (up to 9 di�erent sensors per room). Simulation results show that,

within the 9 sensors used in the experiment collecting data each minute, our approach

shows that a good level of accuracy can be obtained while using either 8 sensors collect-

ing data at a 20-min interval, or 5 sensors collecting data at a 15-min interval, [2]. As a

second contribution, we propose an occupant-centric approach to have a closer focus on

the occupant behavior itself within a building instead of just a room. The aim of this

approach is to propose a higher abstraction level for the building aiming at a better occu-

pant behavior and rooms interconnection understanding. We use temporal graph-based

building and occupant's behavior representation for occupant's behavior prediction. The

goal is to �nd a trade-o� between building energy minimization and occupant comfort

satisfaction. Our approach combines a graph Mining algorithm, a hierarchical clustering

to identify frequent occupant movements within an optimal time interval decomposition

of the week days, and a multi-objective problem formulation and resolution. We experi-

ment our approach on a 4-week data-set of 4 occupant movements among o�ce rooms.

The �rst results showed that our model helps minimizing energy consumption by up to

62.21% compared to the conventional functioning of HVAC systems, and ful�lls up to

94.02% of occupants' thermal comfort, [3]. To improve even more the occupant's comfort,

we have proposed a third approach that, based on the two previous works, proposes to

detect occupant's behavior prediction errors. The approach uses temporal graph-based

occupant behavior prediction and a real-time prediction error correction. False-negative

predictions can cause occupant's discomfort, hence, we use real-time room occupancy

state detection and compare it to model prediction and, if a false negative is detected,

the system corrects this error. This allows minimizing the discomfort in the building.

We experimented our approach on simulated data and the obtained results show that

our model optimizes the HVAC energy consumption by up to 39.09%, and provides up

to 99.39% of occupants comfort [4].

Keywords: Smart building, Building energy e�ciency, Occupant behavior, Occupant

comfort optimization, Smart Sensor, Machine Learning, Graph mining.





Chapter 1

Introduction

Contents

1.1 Thesis motivation: What is a Smart Building? . . . . . . . . . 21

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3 Organization of the Dissertation . . . . . . . . . . . . . . . . . 24

1.1 Thesis motivation: What is a Smart Building?

Buildings need to be comfortable, safe, energy-e�cient, secure and meet higher occu-

pant expectations. This can be achieved thanks to digital technologies and the Internet

of Things (IoT) in particular. To attract and retain occupants, buildings need to go

beyond the traditional focus of operational e�ciencies, to create people-centric environ-

ments that enhance occupant experience, instead of creating a non-smart but automated

building. To be called smart, a building must succeed in capturing occupant engagement,

transforming the building into an extension of the people who live in or visit it. Thus,

the building becomes an active contributor to both, the success of energy optimization

as well as the occupant's productivity and well-being goals. Mobile and computer ap-

plications give occupants direct control over their environment, such as the possibility

21



22 Chapter 1. Introduction

of personalizing temperature and control light. These capabilities provide an occupant-

centric approach and, e�ectively connecting the building's occupant with the building.

Smart buildings consider these capabilities but need to go beyond that.

In a smart building, sensors need to be deployed within and around the building.

These sensors need to be connected to state-of-the-art and new software, if necessary.

The goal is to collect data from all building's subsystems into a common data lake for the

whole ecosystem. Data is then analyzed and presented in a dashboard. This last o�ers

a clear picture of how the entire building is working. It allows to occupant to interact

with the building, receives noti�cations, such as security intrusion or indoor air quality

problems. These features become common nowadays but, again, smart buildings need to

go beyond that.

Indeed, the increase in the building's energy consumption represents a serious problem

that can lead to the longest and irreversible environmental disasters. Building energy

consumption needs to be carefully studied to be e�ectively minimized.

1.2 Contributions

In this dissertation, we aim to address the topic of occupant behavior in smart buildings.

As shown in Section 1.1, the occupant represents the center of Smart Building concep-

tualization. He/she is able to display all buildings collected or analyzed data and then,

interact with the building. It is for these reasons that we focus, in this thesis, on the occu-

pant. However, to study the building's occupant behavior we need to have data collected

about this. These are by sensors deployed within and around the building. Hence, in this

thesis, we make data-based occupant behavior understanding our main topics. Accord-

ingly, in this dissertation, we deal with the following questions: what data to use?, when

to collect these data?, how to model occupant's behavior?, how to use occupant behavior

prediction to minimize building energy consumption and maximize occupant's comfort?,

and how to correct occupant behavior prediction errors impacting occupant's comfort?.



1.2. Contributions 23

Our �rst contribution focuses on the two �rst questions, i.e. what data to use? and

when to collect these data?. Data collection requires deploying sensors within and around

buildings. However, this deployment costs time and money. Therefore, we need to min-

imize the number of sensors to use for meeting a speci�c need. Additionally, for many

sensor types such as temperature, humidity, luminosity, etc., we need to specify the fre-

quency of data collection as, nevertheless, the shorter the data collection frequency is, the

more the sensors consume energy, thus we need to �nd the adequate frequency to reach

our goal. In this contribution, we introduce a method for �nding the equilibrium between

the number of sensors (i.e. data types) to use and the data collection frequency. We aim

at minimizing the number of sensors while maximizing the frequency of data collection.

We use feature selection and compare many Machine Learning algorithms (Random For-

est Classi�er, Decision Tree Classi�er, Extra-Trees Classi�er, Gaussian Naive Bays, and

Multi-Layer Perceptron Classi�er) to reach such equilibrium and select the one that best

meets our expectations. The experiments were carried out on a real dataset from one-year

data collected from many rooms in E.ON Energy Research Center in Aachen Germany.

Results show that it is possible to build an occupancy predictive model with the Ran-

dom Forest Classi�er algorithm having an accuracy of at least 90%, by using 8 sensors

collecting data at a 20-min interval, or 5 sensors collecting data at a 15-min interval.

In our second contribution, we aim to answer the two following questions: how to

model occupant behavior? and how to use occupant behavior prediction to minimize build-

ing energy consumption and maximize occupant's comfort?. To achieve this, we propose

a graph-based building and occupant-movements representation in which building rooms

are represented by graph nodes, and possible direct movements between the rooms are

represented by graph edges. This representation gives a macroscopic vision of the oc-

cupant behavior within the building and the inter-connectivity between rooms based on

this behavior. Furthermore, virtual rooms can be created on the graph to study a future

possible physical decomposition of rooms. This occupant-centric method allows real-time

occupant tracking, thus produce an accurate prediction model. We use Graph Mining

algorithm to extract the prediction model. The approach combines a graph learning
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algorithm, a hierarchical clustering to identify frequent occupant movements within the

optimal time interval decomposition of days, and a multi-objective problem resolution.

We experimented our approach on a 4-week dataset of 4 occupant movements among of-

�ce rooms. The �rst results showed that our model helps minimize energy consumption

by up to 62.21% compared to conventional functioning of HVAC systems, and ful�lls up

to 94.02% of occupants' thermal comfort.

The third contribution aims to solve possible prediction errors of the second contribu-

tion. To do so, we introduce real-time room occupancy states to our previous verify the

correctness of the prediction model. If a false-negative prediction error is detected, the

system recovers the decision error by, for instant, activating a device that was wrongly

turned-o�. Since prediction models are not always that accurate, it is possible to face

situations where HVAC of some rooms are activated while these are empty or vice-versa,

leading to either a waste of energy or a lack of occupant's comfort. To deal with this

issue, we make use of sensors to detect real-time occupancy of building rooms and then

correct the prediction when necessary. To achieve this, we developed a graph mining-

based optimization approach that combines occupant behavior prediction and a real-time

correction. We experimented our approach on simulated data and results showed that

our model optimizes up to 39.09% of HVAC energy consumption, and provides up to

99.39% of occupants' comfort.

1.3 Organization of the Dissertation

This previous two sections discussed the importance of Building Smarti�cation and the

way such smarti�cation could be achieved with an aim of transforming traditional build-

ings into modern interactive buildings by involving new technologies, the Internet of

Things, and Data Science in order to put the occupants at the heart of Building's trans-

formation. In order to deeply present our proposed approach and solution, the organiza-

tion of this dissertation is as follows.
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In Chapter 2, we detail the problem of energy consumption and world global warming.

We also review the invention of the Smart Grid concept as well as the associated buildings'

energy e�ciency problem. Then, we discuss occupant behavior and its impact on building

energy consumption, and the problem of �nding a good compromise between building

energy minimization and occupant's comfort assurance. Finally, we position our work in

relation to the existing literature.

Chapter 3 details our �rst contribution. We introduce our approach of data types (i.e.

required sensors) minimization and data collection frequency maximization. Thereafter,

we list the experimental details. We �nish the chapter by discussing the obtained results,

then present some concluding remarks.

The Chapter 4 of the dissertation represents our second contribution. Mainly, we

de�ne a graph-based building and occupant behavior abstraction representation. We

show, based on such representation, graph mining techniques allow identifying the occu-

pant behavior within a building and thus help minimizing the energy consumption of the

building while maintaining a good comfort level. Then, we explain the experiment used

to validate such an approach. Thereafter, we discuss the obtained results and conclude

by analyzing our �ndings.

Our last contribution is presented in chapter 5. We highlight a limitation identi�ca-

tion in chapter 4, i.e. the impact of prediction errors. Then, we introduce the real-time

occupant behavior prediction veri�cation and errors correction as an add-on to our so-

lution in chapter 4. Then, we detail the experimented study and discuss the results

improvements. A conclusion about these results is given here as well.

To conclude, we summarize all dissertation contributions in the �nal chapter (chapter

6). The chapter also presents possible future directions that can be followed to further

improve our work.
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2.1 Introduction

Energy is everywhere. Nowadays, we cannot leave without it. It is in our houses, cars,

workplace, even in our pockets. The modern human cannot imagine his life without

energy and, in turn, his need for energy keeps growing. Furthermore, according to the

United Nations [5] the world population has grown from 2.6 billion in 1950 to 7.7 billion

humans in 2020, and could peak at nearly 11 billion around 2100. Therefore, world energy

needs are constantly increasing. Consequently, it is estimated that energy consumption

in the world will increase by 41% from 2015 to 2040 [6]. Nevertheless, this increase

in energy consumption is not without consequences, on the one hand, on the available

energy resources and, on the other hand, on the planet.

In this chapter, Section 2.2 presents the di�erent energy sources and the role of

Smart Grid for building energy supply. In section 2.3, we discuss the building's energy

e�ciency problem. Section 2.4 covers the importance of data in understanding building

energy performance and shows the di�erence between Intelligent Buildings and Smart

Buildings. Building Energy Management Systems are presented in Section ??. The role

of the occupant and its impact on building energy performance is presented in Section

2.5. Section 2.6 presents the problem position in relation with the studies literature. We

conclude the chapter by a conclusion (Section 2.7).

2.2 The What and Why Energy Management

2.2.1 Energy Sources

The �eld of energy development focused on investigating new sources of energy from

natural resources. Based on the origin of energy, we can distinguish two main types of

energy:

� Conventional energy (also called non-renewable energy): It consists of static stores

of energy extracted from underground by human interaction [7]. It represents
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energy that will run out, which means that it will disappear over time, and the

required time for these types of energy to be created is too long (millions of years)

in comparison with the speed of its consumption.

The main types of conventional energy are Coal, Oil (also known as petroleum),

Natural gas, and Nuclear. Conventional energy is a major source of energy for a vast

amount of industries [8]. According to the U.S. Energy Information Administration

(EIA) [9], within the U.S. primary energy consumption in 2019, around 88% comes

from conventional energy (Oil: 37%, Natural gas: 32%, Coal: 11%, and Nuclear:

8%).

This source of energy has the reputation of being �exible, short term available,

cheap to produce [10]. Nevertheless, the use of these energies is not without negative

consequences. In fact, the production of energy based on these sources produces

an enormous amount of carbon dioxide CO2. These emissions are the main cause

of global warming [11, 12, 13]. Furthermore, its transportation can lead to natural

disasters, like the Japanese-owned Tanker oil spill catastrophe in Mauritius, on

August 6th, 2020 [14].

� Renewable energy: It is the energy collected from natural repetitive local sources

[7]. Some of these energy sources can be daily renewable. The reputation, bene�ts,

and utilization of renewable energy is increasing all around the world.

The main types of renewable energy are Biomass, Hydro, Tidal, Wind, Solar, and

Geothermal. This type of energy is less used than conventional energy. For exam-

ple, in the United States of America, in 2019, renewable energy represents around

12% of the primary energy consumption, according to the U.S. Energy Information

Administration (EIA) [9]. Within this 12%, Biomass represents 43% of the global

renewable energy consumption (20% wood, 20% bio-fuels, and 4% biomass waste),

24% wind, 22% hydroelectric (Hydro and Tidal), 9% solar, and 2% geothermal.

Renewable energy has a good reputation for helping sustainable development,

less harm to the planet (less CO2 and Greenhouse Gas e�ect), no air pollutant
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emissions, low maintenance requirements, and it can be generated locally [7, 15].

Nonetheless, there are still some drawbacks. For this matter, we will give the dis-

advantages of each source of renewable energies [15]: Bad practices of Biomass

exploitation can generate high greenhouse gas, air pollution can be led by open

burning, and physical footprint can be left. For Wind sources, power supply �uc-

tuation, bird kills, and noises can be seen. The problem of hydro-power is that

it can a�ect the �sh population if it is not properly designed, and, because of the

irregularity of the wind, power supply �uctuation can be observed. Solar power

needs storage units (likes batteries), and has a physical footprint. Geothermal may

cause toxic gases to release from below the earth's surface.

An important challenge of the �rst half of the 21st century is to do the transition from

conventional to renewable energy [16]. A trade-o� between these two types of energy may

be a good start to compensate for the disadvantages of each of them [17, 18, 8, 15].

2.2.2 Smart Grid

As in a traditional system, energy is delivered by centralized energy providers. Extensions

to these need to be added to integrate the new decentralized local energy resources

provided by renewable energy sources. To better manage such an extended system, a

new concept for the electrical grid was born: Smart Grid.

Smart Grid, also called smart electrical/power grid, intelligent grid, ingelli-grid,

future-grid or inter-grid [19], is considered as a modern electric power grid infrastruc-

ture [20]. It is designed to be the grid of the future [21]. Smart Grid is a self-healing

distributed electrical network including dynamic optimization techniques that use real-

time measurements to detect and optimize electrical losses, increase reliability, and com-

bine di�erent energy sources to ful�ll energy needs [22, 23, 19, 20], while minimizing

greenhouse gas emissions [24].

Nevertheless, a critical step to enhance Smart Grid energy e�ciency is to extend
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smart into energy consumer sectors (transportation, buildings, factories, etc.) [25].

2.3 Building E�ciency

As mentioned in Section 2.2, energy consumption grows in the world, therefore, many

problems appear. On the one hand, the excessive use of non-renewable energy, which

means that the required time for the energy sources to be renewed (petroleum for exam-

ple) needs a very long time (thousands of years), compared to the time of its consumption

(days, months, or years). On the other hand, the use of these energy sources causes the

greenhouse gas e�ect and global warming [26], which is very dangerous for humankind.

Among the top energy consuming sectors, buildings remains to be one of the largest

share on �nal energy use and greenhouse gases emissions [27, 28, 29, 30]. In 2018, the

building sector represents 36% of the global �nal energy use, and emitted 39% of CO2

[30].

Building energy consumption depends on many factors, such as physical character-

istics, also known as building characteristics (envelope, maintenance, orientation, etc.),

ambient characteristics (space heating and cooling, lighting, appliances, etc.), and the

occupant behavior (occupancy, movement, etc.) in the building. In this dissertation,

we are focusing on studying occupant behavior and its impact on building an indoor

environment and, therefore, energy consumption.

The �nal energy consumption by use in buildings, in 2018 are [31]:

� Space heating/cooling: They represent the greatest sources of energy consump-

tion in buildings [32, 33, 27, 34]. Both count for 45.16% of global building energy

consumption. Studying HVAC (for Heating, Ventilation, and Air-Conditioning)

energy optimization is very important, not only because it represents the high-

est energy consumers within the buildings, but because it directly in�uences the

building occupant's thermal comfort, and it takes time to correct any discomfort.
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For example, if an o�ce occupant thermal comfort is �xed to be 22C and if the

occupant gets into his/her o�ce room and �nd the temperature is 18C the HVAC

system needs time (several minutes or several tens of minutes) to heat the o�ce

room to reach the required temperature. During this time, the occupant will feel

this thermal discomfort. Many studies aim to predict HVAC system energy con-

sumption to optimize energy consumption and preserve occupant's thermal comfort

[35, 36, 37, 38, 39, 40, 41, 42]. This shows that there is a real interest in studying

and reducing space heating and cooling.

� Water heating: Near 16.62% of building energy consumption is for water heating.

Many research studies [43, 44, 45, 46, 46] propose to use renewable energy (Photo-

voltaic, biomass, wind turbine) to heat water and store it in a water tank to reuse

it when necessary. They mainly focus on replacing non-renewable energy with re-

newable energy to decrease the greenhouse gas impact and energy cost. However,

there is not an energy consumption reduction here.

� Lighting: 8.46% of the building energy consumption is used by light. The use of

the latter can be impacted by many factors, such as the building envelope design

[47], or occupant behavior [48, 49]. Therefore, some studies propose to improve the

building envelope, or understand occupant's behavior, to minimize the use of light.

Furthermore, some research studies propose to use renewable energy sources, such

as photovoltaic systems, instead of non-renewable energy [50], or using natural light

instead of arti�cial light while saving visual comfort [51]. However, as lighting can

instantly be turned-on, the occupant's lighting discomfort duration can be reduced

by, for example, using a Passive Infrared occupancy sensor to turn-on the light if

an occupant enters a room. This is one of the reasons that fewer research studies

are dealing with the building's lighting optimization problem, compared to those

studying building occupant's thermal comfort problems. The later can last longer,

and rapidly leads to a real problem with the buildings' occupants.

� Cooking, appliances, and other electrical equipment: The energy used for cook-
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ing, and appliances and other electrical equipment in the building are estimated

to be 15.38% and 14.38%, respectively. Some research work-study the occupant

use of appliances and its impact on building's energy consumption [52], or replac-

ing conventional electrical appliances with energy-e�cient appliances [53, 54, 55].

Generally, cooking energy consumption requires material solutions. For example,

using an induction cook-top instead of electrical ones helps reduce wasted heat.

For appliances, nowadays there are smart sockets that help occupants remotely

controlling them and there are sockets able to detect human activity on appliances,

and turn them o� when there is no activity detected.

2.4 Smart Building VS Intelligent Building

In this section, we discuss the importance of data in Buildings in subsection 2.4.1, in-

troduce Smart Buildings in subsection 2.4.2 then, explain what is BEMS (for Building

Energy Management System) in subsection 2.4.3.

2.4.1 From Building Data Collection to Intelligent Building

To optimize building energy consumption, we need to observe, understand, and detect

energy consumption �aws, by collecting data and information within the building then,

propose actions or recommendations. Primary data collection represents an important

element in many research projects [56].

Many data and information collection methods exist: telephone interviews, question-

naires and surveys, face-to-face meetings, focus groups, etc. [57, 58, 56, 59], have been

used. Ensuring that gathering data is realized in a scienti�c and standardized manner

helps to obtain high-quality research results and thus, credible �ndings [58]. For example,

face to face methods may be ine�ective, especially if the interviewee has forgotten the

answer to some questions about old details, or hide information because he/she is afraid

of prejudice. This can lead to having missing or erroneous data.
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To enhance the validity, accuracy, reliability, and credibility of research results, data

collection methods need to be improved [56]. Thanks to the Internet of Things (IoT),

building's data gathering has become much easier, and more accurate, and �exible

[60, 61]. IoT allows automating data collecting processes using sensors within build-

ings and their surrounding areas. Sensors are widely used in buildings to collect indoor

data, such as room temperature, air quality, occupancy state, and outdoor data, such as

temperature, wind speed, humidity, etc. Using sensors are programmable and adaptable.

They help collect accurate data without the need for human interaction. The collected

data can be automatically sent to a control center, where they can be processed and

used for controlling room temperature, air quality, security intrusion detection, etc. Fur-

thermore, other technologies, such as Big Data, Cloud Computing, Edge Computing are

often used to help store and process data collected by the sensors.

In addition to sensors, another type of device can be deployed to help use the data

collected by the sensors and send them to the control center, then, in an automated

manner, control building's devices, such as heaters, coolers, lights, appliances, etc. These

devices are known as actuators. It operates in the reverse direction compared to sensors.

It takes orders from the control center and operates on devices, to turn-on a heater, open

a window, turn-o� the light, etc. Figure 2.1 summarizes the interaction �ow from sensor

data collection to actuator triggering within the devices. A building deploying this kind

of system is called Intelligent Building (IB) [62, 63, 64]. The building can collect and

analyze data automatically and then, interact with the building's devices (heater, light,

etc.).

2.4.2 Smart Building

A Smart Building is a responsive, adaptable, and �exible building [65]. Unlike an In-

telligent Building, in a Smart Building, the occupants can interact with the system and

be part of the decision making process, using user interfaces with the devices to, for ex-

ample, track their energy consumption, consult and change rooms ambient temperature,
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monitor air quality or many other factors, etc. Furthermore, in a Smart Building, the

control center can deploy Arti�cial Intelligence algorithms to use data to understand,

learn, and predict future decisions. In another word, Smart Building makes the human

in the heart of the system. It becomes a human-centric system, in which the occupant

can interact with most of the building's devices using smart objects such as smartphones,

smartwatches, etc. when He/She is within the building or even far from it.

2.4.3 Building Energy Management System

All the previous improvements brought to buildings, cited in the previous, show the

importance to have a structured management system that runs the full process to con-

trol the building, from the data collection to decision making and occupant assistance.

This system is called Building Energy Management System (BEMS). It is composed of a

combination of strategies and methods used to improve building performance, e�ciency,

and energy utilization and optimization [66]. BEMS allows key energy management

tasks implementation, such as supervising energy cost, detecting energy-wasting sources,
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automating demand and response approaches, study occupant comfort aspects, and clar-

ifying energy consumption information [67].

In BEMS, occupant interaction is important thus, we can �nd dashboards using

Human Machine Interfaces (HMI) deployed in the system to allow occupants to interact

with it. Figure 2.2 summarizes the BEMS interaction with building devices and the

occupants. One missing point in current BEMS to allow the full exploitation of the

Smart Building concept is that there does not yet allow the integrating of automatic

control loops based on Arti�cial Intelligence algorithms and allowing to implement future

decisions from collected data.

2.5 Building occupant behavior

We cannot talk about building energy optimization without mentioning the occupant.

As shown in section 2.3, the main building energy consumers depends on the occupant's

behavior, such as space heating and cooling, and lighting, whose counts for 45.16% and

16.62% of global building energy consumption, respectively. Building heating and cool-

ing aim to satisfy occupant's thermal comfort, and lighting ensure the occupant's visual

comfort. Therefore, while optimizing building energy consumption, we have to take into

consideration the occupant comfort and, because its behavior in�uences building energy
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consumption in various manner [68, 69, 70, 71], we need to closely understand this be-

havior to not decrease his/her comfort, otherwise, we risk having strong opposition to

changes from him/her. Moreover, occupant behavior is an important factor for build-

ing design and retro�t technologies evaluation [72, 71]. So, its understanding can also

serve that purpose. As such, it is important to understand, learn, and predict occupant

behavior to minimize building energy consumption [73, 74, 75].

Besides, Occupant behavior represents an enormous source of uncertainty in building

energy modeling [76]. The occupant behavior parameters that can be taken into account

for optimizing building energy consumption are presence, movement, window operation,

shading operation, thermostat adjustment, lighting operation, appliance use, clothing

adjustment, etc. [75].

2.6 Thesis positioning

Based on the discussion presented earlier in this chapter, we need to have a trade-o�

between two main factors. Building energy optimization and conserving occupant com-

fort. The state-of-the-art review shows that there is a need to develop more e�cient

and robust solutions to achieve these two goals. This dissertation proposes a set of tools

contributing to reaching these two goals. These contributions are summarized in the

following:

� The development of a room-based method to recognize the adequate set of data

and data collection frequency, within this set allowing to predict accurately the

occupant behavior. The method has the following advantages:

� Predict building's occupant behavior with the least possible amount of data.

It is important to use data in occupant behavior understanding for building

energy optimization, but it is even more important to just use the adequate

data and for it. Therefore, the question "what data do we need?" is a vital

question. In fact, after �xing the goal of energy consumption minimization,
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the need for data is immediate and that is why it is important to use the

adequate data-set and avoid random use of data.

� Minimize building energy consumption by minimizing sensors. Deploying sen-

sors within the building to understand occupant behavior is important and

very useful in energy optimization. Nevertheless, installing sensors leads to

capital expenditure (CAPEX) and operation expenditure (OPEX). There-

fore, minimizing the number of used sensors implies a minimization (CAPEX

and OPEX). Furthermore, in some sensors (example: temperature, humid-

ity), data collection frequency is programmable and, indeed, the shorter data

collection frequency, the higher energy sensors consume. Consequently, it is

important to select the longest data collection frequency possible to keep the

sensor last for long without human interactions to change batteries (i.e. OPEX

reduction). Nonetheless, it is vital not to select a random long frequency just

to minimize energy consumption, but, we need to select the data collection

frequency that allows for accurate occupant behavior prediction. As a result,

we need to �nd a trade-o� between the number of sensors to deploy and the

data collection frequency.

� A higher abstraction level for a better occupant behavior understanding. Occu-

pant behavior within the building is a combination of its behavior within all build-

ing rooms. Therefore, we propose a higher abstraction level representation of the

building to better visualize the inter-relations between occupant behavior and all

building rooms. We propose to represent the building as a graph, where rooms

are represented as the graph's nodes and the occupants' possible movements as the

graph's edges. Figure 2.3 illustrates this abstraction level. The presented abstrac-

tion has the following advantages:

� The relation between occupant movement behavior and room occupancy. Gen-

erally, room occupancy is studied for each room, separately. But, in reality,

the occupant moves within and among rooms, and if the occupant leaves a
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room (unoccupied room), he/she will go into another room (occupied room).

Therefore, room occupancy prediction can be studies based on the relation

between building rooms, and the prediction that one room will be occupied

may imply that another room will be unoccupied.

� Using graph-based representation allows applying graph-based algorithms such

as graph-mining or graph theory toolset.

� Generic representation the of building. Adding to what has been said, this

graph representation can be used for other possible purposes. For instance, it

allows di�erent representations of all building rooms such as including virtual

separation of rooms. For example, in a hallway, there are two HVAC systems,

we can represent this hallway as two separate rooms to study the movement

frequency of each of them and, perhaps, propose to physically separate the

hallway into two di�erent hallways if needed.

� The development of an occupant-based energy and comfort adaptation method.

As described in Section 2.5, occupant behavior has a direct and indirect impact

on energy consumption within buildings. Nonetheless, minimizing energy can have

a negative impact on the comfort of the occupant. Therefore, in our method, we

propose to use a graph-based occupant behavior prediction method to optimize the

building's energy and occupant's comfort. The main advantages of the proposed
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method are as follows:

� Room-based occupant behavior prediction for building energy optimization

seems to be an e�cient solution. Indeed, if the occupant stays in his/her

room for a long duration (his/her own o�ce for example), predicting his/her

behavior, based on room information only, could be e�cient. Nevertheless,

if the occupant often changes his/her room, room-prediction risks being less

accurate. Therefore, the occupant-centered prediction method helps learn the

behavior of each occupant within the building and then gives more accurate

prediction results.

� By understanding the behavior of each occupant on his/her individual and

shared rooms, optimization decisions can be adapted based on new behavior

changes.

� Improve the building's occupants' comfort by including real-time data. Occupant

comfort (especially thermal comfort) is an important factor that needs to be pre-

served while minimizing the building's energy consumption. Unfortunately, predic-

tion errors can lead to discomfort periods if they last longer. Therefore, we propose

to use associate real-time data information to correct prediction errors.

� Real-time error detection for an imminent correction. While minimizing the

building's energy consumption, indoor comfort risks being impacted. Occu-

pant's behavior prediction decides the state of some building's equipment such

as HVAC state (ON/OFF). If the decision during distant time intervals, any

wrong decision (especially false-negative decision) can impact the occupant's

comfort. For example, if the occupant is inside a room that has been predicted

as non occupied, the HVAC system will be turned-o� and, unfortunately, the

occupant will have thermal discomfort until the next decision time stamp.

Therefore, we propose to, in addition to prediction-based decision making,

use real-time data to detect and correct any wrong decision, thus increase the

occupant's comfort.
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2.7 Conclusion

In this chapter, we reviewed the problem of increasing energy consumption then, we have

de�ned the main energy consumer sector then, the main reason for energy consumption

in the building. Selecting the adequate set of sensory data and the associate data collec-

tion frequency is important for optimizing building energy consumption as well as sensor

deployment and maintenance cost. Furthermore, understanding occupant behavior and

the relation between building rooms helps predict occupant's behavior and thus optimiz-

ing energy while conserving occupant's comfort. Answering these two objectives is the

target of this dissertation. The di�erent contributions will be details in the next three

chapters.
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3.1 Introduction

Building energy consumption depends on many factors, such as occupant behavior and

occupancy. Many works studied building occupancy modeling and its impact on energy

consumption. Building occupancy prediction requires understanding building informa-

tion, extracted from datasets created from building collected data. These datasets can be

used to identify, train a model, and predict occupancy. Besides, instead of using surveys

and questionnaires, the IoT market has been developing sensors, to be deployed within

buildings and their surrounding areas, to help collect building data automatically.

In this context, existing datasets have been empirically built without considering the

relevant sensor types and the data collection frequency for building occupancy modeling.

The random deployment of sensors is cost and money consumer, and data collection

frequency impacts sensors' energy consumption and batteries life. Therefore, in this

chapter, we aim to solve the data collection period problem and to optimize the sensor (i.e.

data type) selection process, with the lowest complexity. We introduce an approach to

select the data collection period and the relevant and most dominant sensors for building

occupancy prediction with satisfying accuracy. Our approach uses Feature Selection

and machine learning classi�er algorithms, which are applied to di�erent data collection

periods, starting from 1 minute to 60 minutes.

For the experiment, we use a real dataset from one-year data collected from many

rooms in E.ON Energy Research Center in Aachen Germany. We compare 5 di�erent

machine learning classi�ers (Random Forest Classi�er, Decision Tree Classi�er, Extra-

Trees Classi�er, Gaussian Naive Bays, and Multi-Layer Perceptron Classi�er). Results

show that it is possible to build an occupancy predictive model with Random Forest

having an accuracy of at least 90%, by using 8 sensors collecting data at a 20-min

interval, or 5 sensors collecting data at a 15-min interval.

The remainder of the chapter is organized as follows. We �rst present the context

and motivations in Section 3.2. In Section 3.3, we discuss related work. We detail our
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proposed model for data selection and data collection period optimization in Section 3.4.

Section 3.5 covers experiments and obtained results, and we discuss our contribution

assessment in Section 3.6. Section 3.7 concludes the chapter.

3.2 Context and Motivations

Theoretically, the Internet of Things and Arti�cial Intelligence might help in understand-

ing building occupants' behaviors. But, in practice, there are many existing sensor types

and con�guration options. In this chapter, we are focusing on selecting the most rele-

vant sensor types and data collection periods to achieve an accurate and cost-e�ective

occupants behavior prediction. Also, with all available Arti�cial Intelligence techniques

and algorithms, it is important to study, for each context, which is the most appropriate

algorithm to use. This is also part of our objective to identify the best performing tool

for occupant behavior prediction. To sum up, in this chapter, we are interested in:

� De�ning relevant sensor types: Selecting appropriate data types, within all available

data collectors (sensors) on the market, is a di�cult and crucial task. In fact, the

more we deploy sensors within a building, the more it costs in terms of investment

and maintenance. Furthermore, and depending on the context and goal, some

sensor types are more relevant than others. Since selecting relevant data types

within n sensors is an NP-complete problem, we aim at providing in this chapter a

simple and e�cient method to select the appropriate data types i.e. sensor set for

occupants' behavior prediction.

� De�ning the data collection period: Sensors are con�gured to send data each P

period. This period can vary, from a few seconds to many hours or days. Data

gathering time directly in�uences the sensor's battery lifetime, for wireless sen-

sors, or building energy consumption, for wired sensors. Therefore, it is important,

for building maintenance minimization, to reduce this cost by reducing the data

collecting period, without negatively a�ecting the trained model quality. Further-
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more, identifying the key parameters to measure is important to avoid unnecessary

and redundant data collection, while redundant sensor deployment will cause un-

necessary cost and disturbance on occupant behavior modeling [77]. As stated in

[77], we need not only to select the relevant sensors but to identify their placement

(indoor, outdoor) as well.

With all this in mind, in this chapter, we focus on de�ning a data reduction mode,

then an algorithm for extracting, from the collected set of data, the optimal data features,

and data collection frequency for human indoor occupancy prediction. our objective is

to build an accurate predictive model for occupancy prediction. To deal with our issues

of selecting an optimal set of features, we harnessed tools and approaches from the �eld

of machine learning. To achieve this use �rst start by ranking the features from the most

to the least important ones, using the feature selection method, then, we proceed with a

classi�cation model based on 5 well-chosen Machine Learning Classi�ers (Random Forest,

Decision Tree Classi�er, Extra-Trees, Gaussian Naive Bayes, and Multi-layer Perceptron).

To assess our approach, we use a dataset about a building, organized as 10 multi-

person o�ces, belonging to the E.ON Energy Research Center in RWTH AACHEN

University-Germany. Building data are about indoor temperatures and humidity, CO2

level, VOC, windows and door state, and outdoor temperatures and humidity. All these

are obtained from di�erent sensors deployed inside and outside the building. These

features are then associated with o�ce occupancy. The sensors are con�gured to collect

and send their data at 1min-interval.

3.3 Related Work

Many studies have been carried out in the �eld of occupancy behavior prediction [78,

79, 80, 81, 82, 83], to name a few. Chen et al. [78] introduced a multi-tool for energy-

related occupant behavior simulation in buildings, to simulate and visualize occupancy

and occupant movement in o�ces, then generates occupant schedules for each space, and
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each occupant.

Yilmaz et al. [82] have developed an approach to bottom-up stochastic occupant

behavior modeling for predicting the use of household electrical appliances in domestic

buildings. The study is limited to domestic buildings in order to determine the data

which in�uences energy consumption. Wang et al. [84] made use of K-Nearest-Neighbors

to track building occupancy distribution and occupant activities. The data is collected

with proximity iBeacons. Other occupancy detection techniques use sensors (humidity,

CO2, temperature) or cameras [85, 86, 87] to check if a room in a building is occupied or

not, at a given timestamp or time interval. Other works proposed occupancy prediction

techniques to estimate when the building/room is occupied [88, 80, 89, 90, 91, 92].

In the recent paper of Li and Dong [88, 90], two short-term building occupancy

prediction approaches have been developed. The data is collected by using motion sensors

and is also �ltered to generate time-series data in 15-min, 30-min, and 1-hour intervals

for di�erent prediction window. The experiments are more about the forecasting period

than about the data collection period.

Adamopoulou et al. [89] proposed a Spatio-temporal historical analysis-based real-

time occupancy prediction. The data, in this case, is collected using depth-image cameras

in real-time, and acoustic and motion sensors. Their objective is to compute occupancy

prediction, based on the collected data.

Arief-Ang et al. [93] proposed a semi-supervised occupancy counting based on CO2

sensor only. In our case, we deal with 9 sensors, including CO2 sensor, to build a

predictive model for building occupancy. In another paper of the same team [94], a

method to calculate the number of occupants with di�erent classi�ers, to identify sensors

with a strong correlation. This work is close to ours, but in their case, they limited

the number of features to the top 3 dominant ones, and the time has been divided

into segments of 10 minutes, and part of day segments (Morning, Afternoon, Evening

and Night). In our case, the time and number of features are the main objectives and

outputs of our method, such that the time is measured with the data collection period,
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and features are determined based on the best accuracy of the predictive model, obtained

by those features. To the best of our knowledge, there is no work which deals with

dataset creation in terms of data features (sensors to be deployed), and the data collection

period (sensors con�guration) in order to consider the cost of sensors maintenance and

deployment within a building for occupancy modeling and prediction.

3.4 Data Reduction Model Description

Our objective is to reduce the amount of data while computing an accurate enough

predictive model. There are two ways to achieve data reduction in our IoT context,

namely:

� Reduce data dimensionality by applying feature selection methods,

� Decrease the frequency of the data collection: having the sensors sending their data

each minute, then it would be interesting to study the e�ect of a larger period of

data collection on the occupancy of the predictive model we can obtain from the

reduced data.

In our case, we combine the two aforementioned ways for data optimization. It amounts

to solve the following problems, depending on the priority to attach to data dimension-

ality and data frequency.

Priority to frequency:

The problem can be expressed as follows: �to compute the largest data collection period

Π, that provides a predictive model with the smallest set of features, ensuring an Ac-

ceptable Prediction Accuracy (denoted by APA)�. More formally, it can be expressed by

the following Formula (3.1):

Π = max{Pi ∈ N : min|Fj |{Fj : (Aj(MjPi(Fj)) ≥ APA}} (3.1)
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where:

� Pi is the period of data collection. It is �xed by the user as a multiple of the initial

period of collection of the dataset: Pi = k ∗ P0.

� j is a function computing the accuracy of the model built upon the set of features

Fj ,

� MjPi is the jth model built by a given machine learning algorithm,

� Fj = Fj−1 \minimp(Fj−1); j = 1, ..., |F |; and F0 = F , and imp is the importance

of features of Fj−1.

Priority to data dimensionality:

The problem can be expressed as follows: �to compute the smallest set of data features,

that provide a predictive model with a larger period of data collection, having an accept-

able prediction accuracy�. More formally, it can be expressed by the following Formula

(3.2):

min|Fj |{Fj : max{Pi ∈ N : Aj(MjPi(Fj)) ≥ APA}} (3.2)

Where Pi, Aj ,MjPi and Fj have the same meaning as in formula (3.1).

We introduce in the next subsection an algorithm implementing Formula (3.1).

3.4.1 Feature Selection-based Data Collection Period Selection Algo-

rithm (FS-DCP)

In this algorithm, we mainly focus on Data Collection Period, denoted DCP. The goal is

to �nd the largest DCP that guarantees an APA.

Let us suppose that we have a dataset D of N data features, collected each P0 period.

We start by generating data collection periods, denoted {P0, ..., Pk}.



50
Chapter 3. Understanding Building Occupants' Behavior Based On Arti�cial Intelligence and

IoT

For each Pi, such that i = {0, ..., k}, we extract from the global dataset D, the sub-

dataset Di of data collection period Pi. Then, we apply the feature selection process

on dataset Di to rank the features from the most to the least important, according to

their degree of relevance. After that, we eliminate the weakest relevant feature, and we

generate a model using a Machine Learning Classi�er, denoted MLC. We calculate its

Model Accuracy, denoted by MA, and we compare it to APA. We repeat the process,

starting from eliminating the weakest feature from the new resulting set of features until

we process all the features.

At the end of the algorithm, we obtain the largest period of P with the corresponding

shortest set of features (FP ), and the accuracy of the current best model obtained. FS-

DCP algorithm is detailed in Algorithm 2.

Algorithm 1 FS-DCP computing algorithm.

Require: {P0, P1, ..., Pk, F0}, D,APA
Ensure: (Max(P ),Min(FP ),MA)
BEGIN

Max(P )← P0 // Max P Initialisation
Min(FP )← F0 // Min F Initialisation
MA← 0
for i = 0 to k do
DPi ← Generate dataset for Pi

RFPi ← Rank(FPi) // using Feature selection
for j = 0 to |F0| do
Fj ← Fj \ F(|F0|−j) //Fj are ranked
CM(DPi , Fj) // Generate model
MA(DPi , Fj) //Model Accuracy calculation
if (MA(DPi , Fj) ≥ APA) or (MA < MA(DPi , Fj)) then
Max(P )← Pi

Min(FP )← Fj

MA←MA(DPi , Fj)
end if

end for

end for

return (Max(P ),Min(FP ),MA) END.

The complexity of the algorithm depends on the complexity of the model generated

by a given machine learning classi�er algorithm, denoted C, in addition to the complexity
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of the nested loops, such that one is over the list of periods, and the other is over the list

of features. Therefore, time overhead has a complexity of O(C ∗ n2).

The algorithm is terminal, which means that each of its executions reaches an end,

because the list of periods P , and features F are bounded. Besides, it returns a solution

in both following cases:

� Case 1: There exists a model with an accuracyMA ≥ APA. In this case, the algo-

rithm returns the greatest period P with its corresponding smallest set of features

Fp.

� Case 2: There is no predictive model having the accuracy MA ≥ APA, the algo-

rithm returns the greatest period P with its corresponding set of features FP that

build a model having the closest accuracy to APA.

3.5 Experiments

We detail in this section the experiments we carried out, and we discuss the obtained

results. In Subsection 3.5.1, we describe the dataset. In Subsection 3.5.2 we introduce

the algorithm settings, and in Subsection 3.5.3 we detail our results with a discussion.

3.5.1 Dataset description

In this experiment, we use a dataset containing data collected for 9 o�ces located at

E.ON Energy Research Center in Aachen, Germany.

The data is collected by using 8 sensors deployed inside and outside the building.

The sensors are as follows:

� Indoor data: CO2, humidity, temperature, air quality (volatile organic compounds:

VOC), door state (open, closed), window state (open, half-open, closed),

� Outdoor: Humidity and temperature.
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Table 3.1: Features description.

Feature Data Type Measure Unit
CO2 Numeric parts-per-million (ppm)
Indoor humidity Numeric %
Indoor temperature Numeric Degree Celsius (°C)
VOC Numeric ppm
Door state Binary {0, 1}
Window state Triple {0, 0.5, 1}
Outdoor humidity Numeric %
Outdoor temperature Numeric Degree Celsius (°C)
Week day 1: Mon to 7: Sun

The aforementioned sensors de�ne 8 attributes or data features; we have added the

weekday attribute to refer to the time. The 9 attributes are described in Table 3.1. Data

is collected between February and July 2018. As the sensors send their data at di�erent

intervals, then a process of data collection period is carried out to unify the data collection

interval to 1 minute. After we carried out a data cleaning and preparation process, we

obtain a dataset of 70500 samples.

3.5.2 Algorithm parameters (Pi, Fj, APA,MLC)

We instantiated Algorithm 2 with the following parameters:

Frequency of collection (P ):

The set of frequencies we have experimented is P = {1, 5, 10, 15, 20, 30, 60}, to study the

in�uence of the data variations over the time (from the high to the low) on the sensitivity

of the predictive model.

Data features (F ):

We consider the set of features described in Table 3.1.



3.5. Experiments 53

Acceptable Prediction Accuracy (APA):

We de�ne accuracy as the percentage of correct occupancy predictions over all predictions

obtained from test dataset (1/3 of global dataset). From the user point of view, the higher

accuracy, the better. We can consider an APA of at least 90% as acceptable prediction

quality of generated model.

Machine Learning Classi�er (MLC):

As the label of the model is binary, then classi�cation is the suitable machine learning

method to use in our case. We have instantiated our method with the following 5

classi�ers:

� Random Forest Classi�er, denoted by RF,

� Decision Tree Classi�er, denoted by DT,

� Extra-Trees Classi�er, denoted by ET,

� Gaussian Naive Bayes, denoted by GNB,

� Multi-layer Perceptron Classi�er, denoted by MLPC.

We have compared them according to the accuracy of the occupancy predictive model

they provide. It is noteworthy that we can use any other classi�er algorithm.

Implementation:

We have implemented our algorithm with Python programming language, using Scikit-

Learn machine learning library.
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Table 3.2: DCP,NF,MA for each MLC algorithm.

MLC DCP (min) NF MA(%)
RF 20 9 90.30
DT 10 9 91.94
ET 15 5 90.16
GNB 20 8 79.34
MLPC 15 9 81.39

3.5.3 Results and discussion

We applied algorithm 2 on the cleaned dataset described above for the aforementioned

MLC with each data collection period Pi ∈ {1, 5, 10, 15, 20, 30, 60}.

Figure 3.1 summarizes the maximum of the model accuracy obtained for all data

collection periods considered in our experiment and for eachMLC algorithm. We notice

that RF , DT and ET classi�ers ensure the required APA (90%). GNB and MLPC

classi�ers do not provide any model with the required APA. Their best accuracies are

79.34% and 81.39%, respectively.

Figure 3.2 details the minimum number of features for each DCP and MLC that

ensures the requiredAPA or the maximum possible accuracy for the occupancy predictive

model.

From Fig. 3.1 and Fig. 3.2, we obtain the su�cient MA and the corresponding

DCP and NF for each MLC. We sum up the results in Table 3.2, where we notice

that RF,DT and ET algorithms satisfy the APA, instead of GNB and MLPC, which

do not. We can conclude that the Random Forest classi�er (RF ) is the most suitable

algorithm to use since it gives the higher DCP that provides a predictive model with

an accuracy greater or equal to APA. Therefore, we focus hereinafter on the details of

the experiments carried out for that algorithm (RF ) with the di�erent data collection

periods.

3.3a-3.3g display the model accuracy variation according to number of features con-

sidered for each data collection period Pi ∈ {1, 5, 10, 15, 20, 30, 60}, respectively.



3.5. Experiments 55

70

75

80

85

90

95

1-min 5-min 10-min 15-min 20-min 30-min 60-min

M
A 

(%
)

DCP

DCP-based Max MA variation

R-F D-T E-T GNB MLPC APA

NF=9

NF=9

NF=5

NF=8

NF=9

Figure 3.1: The maximum of the model accuracy according to each data collection period
for di�erent ML algorithms.



56
Chapter 3. Understanding Building Occupants' Behavior Based On Arti�cial Intelligence and

IoT

0

1

2

3

4

5

6

7

8

9

10

1-min 5-min 10-min 15-min 20-min 30-min 60-min

N
um

be
r o

f F
ea

tu
re

s

DCP

DCP-based Number of Features

R-F D-T E-T GNB MLPC

Figure 3.2: Minimum number of features for DCP corresponding to the optimal MA
(Fig. 3.1), for each ML algorithm.

We noticed that for P = 1min, 2 features are su�cient to provide a model with

an accuracy of 90.9%. 1 minute is the lowest P and it requires the least number of

features comparing to other P , whereas, for P = 20min we need to use all the 9 features

to obtain a predictive model with an accuracy of 90.3%. For P greater than or equal

to 30 min, there is no predictive model achieving the required APA. In this case, the

algorithm returns the number of features ensuring the closest model accuracy to the

required APA. For example, for P = 30min, the number of features is 8, and the

accuracy of its corresponding model is 84.67%.

To conclude, the larger P is, the more features the model requires, until reaching a

P beyond which we cannot build any predictive model (according to the chosen classi�er

algorithm) satisfying the APA. Fig. 3.4 summarizes the maximum accuracy of the model

obtained for all data collection periods considered in our experiment. The best trade-o�

between the model accuracy and the data collection period is provided by P = 20min.

For this period, Fig. 3.3e shows that we need to use all the 9 features.
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Figure 3.3: The variation of the model accuracy according to the number of features.
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(e) (f)

(g)

Figure 3.3: (Cont.) The variation of the model accuracy according to the number of
features.
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Figure 3.4: The maximum of the model accuracy according to each data collection peri-
ods.

Remark. We notice in Fig. 3.3d that P = 15min can be seen as a good deal between

the number of features (number of sensors to deploy), which is 5 in this case (CO2,

indoor humidity, outdoor humidity, outdoor temperature and VOC), instead of 9 for

P = 20min, and the amount of data we need to collect to build a good predictive model

(having 90.53% of accuracy). Therefore, it is possible to improve our solution, to consider

this kind of trade-o�, where the number of sensors is also important to reduce the cost

of deployment and maintenance of sensors within buildings.

90%, by using 8 sensors collecting data at a 20-min interval, or 5 sensors collecting

data at a 15-min interval.

3.6 Summary of the Results

All the above simulation results illustrate the importance of data selection to build a solid

building occupants' behavior prediction model. The three main take away messages from

our results are:

� The right data type for the right model: minimizing deployed sensors helps min-
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imize building energy consumption and sensors deployment costs. Furthermore,

selecting relevant data types helps obtain the right information for an optimal pre-

diction model construction. In our experiment, we test the building's occupancy

prediction using 8 sensor types which are: Indoor data: CO2, humidity, temper-

ature, air quality (volatile organic compounds: VOC), door state (open, closed),

window state (open, half-open, closed), and Outdoor data: humidity and temper-

ature. Results show that 5 sensors are su�cient to give an accurate prediction.

These sensors are: (CO2, indoor humidity, outdoor humidity, outdoor tempera-

ture, and VOC). This shows that, in our experiment, more than 44% of the used

sensors are not necessary.

� The largest data collection period, the longest battery life: we have proposed a

model that helps determine the optimal data collection period to have the longest

battery life and optimize sensors' maintenance time and cost while giving an ac-

ceptable prediction model. In the dataset we used for our experiment, data were

collected each one minute. Our approach shows that collecting data each 15 min-

utes is su�cient. Thus, the sensors' battery life lasts longer.

� The right algorithm for the right prediction: Many machine learning algorithms

can be used for the prediction model construction. Nevertheless, it is important,

for each context, to select the most relevant algorithm. In our case, the test results

show that Random Forest was the most relevant ML algorithm that provides the

most satisfying results, with an optimal number of sensors and data collection

period.

3.7 Conclusion

In this chapter, we have developed a method to select a data collection period and the

relevant sensors to use for accurate building an occupancy prediction. Our approach

uses a feature selection algorithm and compares 5 machine learning classi�ers (Random
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Forest, Decision Tree Classi�er, Extra-Trees, Gaussian Naive Bayes, and Multi-layer

Perception), applied for di�erent data collection periods, starting from 1 minute to 60

minutes from the selected set of sensors. We performed a set of experiments on a real-

world data set in 9 o�ces located at E.ON Energy Research Center in Aachen, Germany.

Results showed that Random Forest is the most suitable machine learning algorithm

ensuring a good building occupancy modeling built with 9 features (8 sensors and the

weekday) associated to a data collection interval of 20 minutes, or with 6 features (5

sensors and the weekday) to collect data at a 15-min interval. These con�gurations

allow training the occupancy predicting model with an accuracy of at least 90%. The

method proposed in this chapter is room-centric, i.e. it studies the occupancy behavior

of each room, independently from the inter-relation that rooms can have among each

other. Indeed, an occupant that leaves a room is more likely to join another room. Such

inter-relations are very important in modeling the building occupant's behavior and its

understanding in order to achieve energy e�ciency and optimized comfort. Proposing

such an occupant-centric method, that takes into account the behavior of each occupant

within the building as a whole and then, to build a dynamic occupant behavior prediction

modeling is the target of the next chapter of this dissertation.
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4.1 Introduction

In the previous chapter, we focused on optimizing occupants' presence prediction by

selecting the relevant data types (i.e. sensor set) and the optimal data collection periods.

This aims to optimize building energy consumption while keeping the sensor deployment

costs and maintenance cost low. The proposed approach is room-centric, which means

that it provides room occupancy patterns. Nevertheless, occupancy patterns are related

to the occupant movements and their behavior at a room level and, if one of these changes,

the room occupancy pattern will no more be accurate. We argue, in this chapter, that a

more complete model, considering the building as a whole (i.e. not just one room) would

alleviate such an inconvenience.

To alleviate the above-mentioned inconvenience, we introduce, in this chapter, an

occupant-centered approach to build a more accurate prediction model. The proposed

approach is a temporal graph-based approach centered on occupant movement behavior.

It is a higher abstraction level of the building organization and occupant movement

behavior representation within the building as a whole (i.e. a set of interconnected

rooms and spaces). In this chapter, we propose to:

� Build a higher abstraction of both the building and its usage for a better under-

standing: In this step, we represent the building as a graph, where building rooms

are represented by nodes, and possible direct movements between the rooms are

represented by edges. This representation, which uses graph theory, can be used

for any building type (habitats, o�ces, etc.).

� Understand and Learn occupants movements pattern throughout the above-mentioned
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representation as well as graph mining algorithms and multi-objective optimization

then, build an occupant movement prediction model based on this Spatio-temporal

data.

The remainder of this chapter is organized as follows. We start by giving the context

and motivations in section 4.2. Section 4.3 sums up some recent works in the domain

of building occupant behavior and energy consumption reduction. Section 4.4 details

our temporal graph-based building modeling system for building occupancy and energy

consumption optimization. Section 4.5 details our experiments to validate our model. A

discussion about our obtained results is given in Section 4.6. Section 4.7 concludes the

chapter.

4.2 Context and Motivations

Building room occupancy status impacts energy consumption, as stated in [83]. More-

over, building rooms may be occupied di�erently depending on the usage and the impor-

tance of the rooms from the occupant standpoint. For example, in an o�ce building, a

break room is located at the same �oor as o�ces can be occupied at midday for an hour,

but not occupied at all the rest of the day. Therefore, we consider a time relationship

linking occupants to rooms, and a location relationship linking rooms to gather, in the

sense that some rooms are connected to others, to a hallway, or even to the outside of

the building, which in�uences the occupant's movements and the overall occupancy of

the building.

To be able to predict occupancy status for each room at each time interval, there is

a need for a model that helps represent both types of information, upon which it would

be easier to predict occupancy within accurate time interval division of days, so as an

energy optimization process can be performed accordingly. In this context, we can make

use of graphs as a powerful modeling tool, because they can better identify occupant

movement behavior among rooms, regardless of the type of building (residential, o�ce,
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public administration, etc.), and provide a large amount of information to be used for

energy optimization.

Therefore, in this chapter, we propose a temporal graph-based approach for occupant

behavior modeling and energy consumption optimization, in which nodes represent rooms

of a given building, and edges represent occupant movements among the rooms of the

building. A timestamp is also attached to edges to carry the time information. Then, a

graph mining algorithm is used to extract the most frequent subgraphs and, thus, allows

us to learn the best temporal coverage of the rooms in the building. Furthermore, the time

information is exploited in a hierarchical clustering algorithm to de�ne the best division

of days into signi�cant time intervals, which maximizes the comfort and minimizes the

energy loss thanks to a multi-objective optimization problem we derived as well as its

resolution.

We carried out an experiment on a synthetic dataset representing 4 weeks of 4 person

movements inside an o�ce building at o�ce hours (from 8:00 am to 6:30 pm), orga-

nized in 8 rooms equipped with HVAC systems. The dataset split into training and test

datasets, such that, the �rst one contains 3 weeks, and the second contains the fourth

week. The obtained results show that our approach can reduce the heating/cooling pe-

riod by up to 62.21% with an average of 58.16%, comparing to the traditional permanent

heating approach, leading to an energy consumption reduction. By doing so, our ap-

proach still guarantees an average mean of 71.28% of occupant's comfort. Moreover, we

compared our graph-based approach to a machine learning approach for occupant energy

consumption prediction, an approach similar to the one proposed in [95] and where an

extreme deep learning approach is de�ned. The obtained results show that our approach

performance is of the same order of magnitude as the one based on machine learning,

but it is simpler. Also, our approach allows visualizing occupant behavior and provides

coverage information involving many rooms at once.
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4.3 Related Work

Many studies have been carried out in the �eld of occupancy behavior prediction. The

main proposed approaches have been introduced in [78, 81, 79, 80, 82, 83]. Chen et al.

[78] introduced a multi-tool for energy-related occupant behavior simulation in buildings,

to simulate and visualize occupancy and occupant movement in o�ces, then generate

occupant schedules for each space, and each occupant. Yamaguchi and Shimoda [81]

proposed a stochastic discrete-event model to generate occupants' activities at home to

be used in community-/-urban-scale energy demand models. Sun and Hong [79] used

building performance simulation to study the impact of occupant behavior on energy

conservation measures, based on behavior styles (austerity, normal, and wasteful) to

develop three baseline models which have been used by decision-makers to reduce the

risks of energy retro�t associated with the occupants. Wang et al. [84] made use of

K-Nearest-Neighbors to track building occupancy distribution and occupant activities.

Other occupancy detection techniques use sensors (humidity, CO2, temperature) or

cameras [86, 87, 85], to check if a room in a building is occupied or not, at a given

timestamp or time interval. Other works proposed occupancy prediction techniques to

estimate when the building/room is occupied [89, 90, 88, 91, 80, 78]. In the recent

paper of Li and Dong [88], two short-term commercial building occupancy prediction

approaches have been developed. The �rst is based on a Markov model including a

change-point analysis, and the second is a modi�ed random sampling approach with 24-

h ahead prediction. Li and Dong [90] proposed a Markov model and a moving learning

window for occupancy presence prediction. The method was compared to a modi�ed

probability sampling, Arti�cial Neural Network (ANN), and Support Vector Regression

(SVR) methods. Results showed that the Markov model provides up to 15% correctness

comparing with the other methods. Massana et al. [91] studied the importance of

occupancy indicators, such as binary occupancy, daily pro�le, and hourly pro�le on

building occupancy prediction, using many building scenarios and data, such as electrical

load, temperature, calendar, classroom devices, etc. Adamopoulou et al. [89] proposed
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a Spatio-temporal historical analysis-based real-time occupancy prediction. The results

show that the narrow period time-based implemented prediction method (15 mn, 30 mn)

gives more accurate prediction results than the large time prediction period.

The above-mentioned machine learning approaches to model and predicts building

occupant behavior, based on building appliances, windows, or on the impact of occu-

pancy on energy consumption. Although their simulation results are promising in terms

of accuracy of prediction, still they are limited in the sense that they consider only one

output feature, such as a given o�ce occupancy status prediction, while in our case, we

need to combine both time and location to predict the rooms that would be occupied in

di�erent time intervals in a day, in order to optimize energy consumption. We also dif-

ferentiate rooms occupancy duration and room passage frequency, to distinguish among

rooms having a low passage frequency but a high occupancy period, which is easier to

model in the temporal graph-based approach we detail in the next section.

4.4 Temporal Graph Model for Occupancy Behavior Pre-

diction

In this section, we �rst introduce our temporal graph model for building representation

(Subsection 4.4.1). Then, we develop our frequent movement identi�cation process using

graph theory and graph mining (Subsection 4.4.2).

4.4.1 Building Movement Model

Let us suppose a building with V rooms and O occupants. Building movements of an

occupant Oi are seen as a temporal oriented graph denoted by GOi = (V,EOi , TOi), such

that V is the set of rooms (nodes), EOi is the set of movements of Oi among rooms

(edges), and TOi is a function attaching timestamps of occupant Oi to the edges EOi , as

labels. This model is �exible enough to represent physically or logically spaces, such as

a long hallway with two heaters can be represented as two rooms R1 and R2 connected
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Figure 4.1: Example of building movements of an occupant.

with an edge (R1, R2).

Example. Fig. 4.1 illustrates a building movement graph GOi , where the rooms are

represented by the nodes R1, R2, R3 and R4 and the movements are also attached with

timestamps: TOi(R1, R2), TOi(R2, R1), TOi(R1, R3), TOi(R3, R4), TOi(R4, R1).

4.4.2 Daytime Intervals and Frequent Occupant Movement Behavior

Identi�cation

Our approach aims to �nd the optimal room occupancy in a day. First, we need to split

a day into time intervals, and then, identify which set of rooms the occupants could

visit in each time interval. Our approach consists in the following four steps, from data

modeling to decision making:

� Time interval occupants movement timestamp uni�cation

� Frequent movement sequence time interval identi�cation

� Frequent movement sequence identi�cation
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� Energy optimization process

These four steps are detailed in what follows.

Time interval-based occupants movement timestamp uni�cation

Since graph mining algorithms classify two movements as di�erent, if they do not have

the exact label, then we make use of a hierarchical clustering method to group times-

tamp of occupants' movements, which have similar source and destination rooms, having

timestamps close to each other, whatever the day. Thereafter, we set the same timestamp

(hour and minute) for each group.

Remark: Since our approach is based on movement behavior among building rooms,

the occupant's labels are removed. This helps preserve the occupant's privacy.

Example. Let M1O1 = ((R1, R2)O1 , [D1 : 18h00]) and M2O1 = ((R1, R2)O1 , [D2 :

18h02]) be two movements for the occupant O1. The hierarchical clustering method

puts them into the same group. Therefore, they are attached with the same timestamp

Min(TIM1,1,O1 , T IM2,1,O1), which is [18h00]. Thus, the two movements become M1 =

((R1, R2), [D1 : 18h00]) and M2 = ((R1, R2), [D2 : 18h00]).

Frequent occupant movement sequence time interval identi�cation

In this step, we compute the optimal daytime interval decomposition that optimizes

frequent movement sequence detection. We start with dividing each day Dx(Oi) for

the occupant i into time intervals. The jth time interval of day Dx(Oi) is denoted

by TIDx,j(Oi)
. Then, we gather occupant movements MTIDx,j for each time interval

TIDx,j into groups. To do not divide randomly days into intervals, which gives many

insigni�cant division possibilities, we use a hierarchical clustering method for each day,

which groups occupant movements close to each other, based on time distance. We

denote by [MinTIDx,j ,MaxTIDx,j ] the j
th time grouped interval of day Dx.
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Figure 4.2: Distance between two days with k-intervals.

Since we have d days and o occupants, then we will have d ∗ o possible time interval

groups. Instead of identifying occupant movements for all d ∗ o groups, we eliminate

similar days time intervals by grouping days which have the same number of interval

decomposition. Then, we compute for each group of days a representative day Dx, which

has the smallest distance to the center of the group dDx = Min(dgroup) ≤ ε, such that ε

is the maximum distance allowed for a day to be a representative candidate.

Fig. 4.2 illustrates the principle of distance computation between two days divided

into k intervals. Each interval i of day Dx (except the �rst interval i = 1 and the last

interval i = k) has MinDx,i = MaxDx,(i−1)
and MaxDx,i = MinDx,(i+1)

.

We compute the distance by using the quadratic mean which allows aggregating both

positive and negative values. Similarity between two intervals α1, α2 ∈ {1, ..., k} of day

Dx and Dy of Fig.4.2 is calculated as follows:

‖Dx,α1
−Dy,α2

‖2 =

√
(mx,α1

−my,α2
)2 + (Mx,α1

−My,α2
)2

2
(4.1)

To calculate similarity between two days Dx and Dy, we generalize Formula (4.1) to

k intervals as follows:

‖Dx −Dy‖2 =

√∑k
i=1((mx,i −my,i)2 + (Mx,i −My,i)2)

2k
(4.2)
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FrEquent MOvement Sequence identi�cation (FEMOS)

We use a graph mining algorithm such as gSpan to identify, for each time interval com-

puted in the previous step, its frequent occupant movement sequences. gSpan as any

Graph Mining algorithm requires minimum frequency (MF ) information to extract all

FEMOSs that appear at least in MF% graphs of the dataset, considered as frequent.

Then, we eliminate from graph mining algorithm result all frequent sequences FSx which

are sub-sequences of other sequences and their frequencies Fx is less than or equal to the

highest sequence frequency. This helps converge the selection decision. The elimination

rule is expressed as follows:

Eliminate(FSx)⇔ (FSx ⊂ FSy) ∧ (Fx 6 Fy) (4.3)

Energy optimization process

In this last step, we solve the decision optimization problem of turning ON/OFF ap-

pliances such as HVAC system in rooms, while optimizing building energy consumption

and occupant comfort. The optimization problem is formulated as follows:

Min(WE + LC) (4.4)

s.t


MinHT 6 TIDx,i < MaxTI

0 6 NUHRDx,i 6MaxRN

0 6 VURDDx,i 6MaxTI

such that WE represents wasted energy, and LC lack of occupant comfort. WE and LC

are calculated as follows:

WE =
∑
i

(NURDx,i ∗ TIi) (4.5)
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LC =
∑
i

VURDi (4.6)

with NUHRDx,i represents the number of unoccupied but heated/cooled rooms in day

Dx, and time interval TIDx,i, VURDDx,i represents the duration of occupied but un-

heated/uncooled rooms in day x and time interval TIDxi, and TIDxi is the time interval

duration i in day x.

If two-time intervals tie (equal minimal), then we compare their duration of energy

consumption, denoted DEC , computed as follows:

DEC =
∑
i

(VHRNDxi ∗ TIi) (4.7)

where NV HRNDx,i is the number of visited and heated rooms.

4.5 Experiments

For our experiments, we considered the movements of 4 occupants in an o�ce building

composed of 8 rooms (Fig. 4.3). Fig. 4.3a illustrates the building structured as rooms

and doors. We extract its graph representation in Fig. 4.3b, such that rooms become

nodes and doors become edges allowing possible movements.

In Subsection 4.5.1, we describe our dataset. In Subsection 4.5.2, we detail the process

of similar occupants movement uni�cation and daytime identi�cation. In Subsection

4.5.3, we compute the process frequent movement sequence identi�cation. We discuss

the results obtained in Subsection 4.5.4.

4.5.1 Dataset Description

We have generated a 4-week dataset of four occupants' movement among o�ce building

rooms. 3 weeks are used for possible frequent occupants' movement and day time iden-
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ti�cation, and frequent occupants' movement and daytime intervals selection, and the

fourth week is used for the test. As we consider weekdays, and as movement is occupant

centric, then we obtain 5 movement graphs for each week and each occupant, which

means 16 graphs in total: 12 graphs are used for movement learning, and 4 graphs for

the test.

Our synthetic dataset contains the movements of all the occupants among o�ces of

the building. For example, an occupant starts his day around 8 a.m. and works mainly

in o�ce room 2 (R2). He takes his lunch break around 12h30 p.m. and has a meeting

in the meeting room (R8) once or twice a week. Occupant gets into/out of the building

from hallway 1 (R1), since it represents the entrance of the building. Therefore, the day

starts when the occupant enters hallway 1 (R1) and ends when the occupant leaves the

building from this hallway.

4.5.2 Similar occupant movement grouping and daytime identi�cation

To group similar time movements between 2 rooms Rx and Ry we use a hierarchical

clustering algorithm. Each movement is represented as follows: M(Rx,Ry)n = [D :

HH : MM ], where x and y represents room source and destination, respectively, n

is the nth movement from Rx to Ry, D is the movement day, HH and MM repre-

sent hour and minute time information of the movement. For example, M(R1, R4) =

{M(R1, R4)1,M(R1, R4)2,M(R1, R4)3, ...,M(R1, R4)n} represents the n possible move-

ments from R1 to R4, and vice-versa.

This algorithm regroups these movements. Fig. 4.4 illustrates an example of move-

ment grouping for movement M(R1, R4). Each group is in a dotted-line rectangle. For

example, movements M(R1, R4)1,M(R1, R4)3,M(R1, R4)10 are grouped into the same

cluster. Thus, we replace all their timestamps by a single timestamp, which is the mini-

mum timestamp among all these four movements.

We use hierarchical clustering to identify time interval groups of occupant movements



4.5. Experiments 75

Hallway 1
(R1)

Manager’s office
(R2)

Toilet
(R5)

Office 2
(R7)

Office 3
(R9)

Hallway 2
(R4)

Office 1
(R3)

Break room
(R6)

Meeting 
room
(R8)

(a) Example of building and its rooms.
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(b) Graph-based building and its rooms representation.

Figure 4.3: Example of building.
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Figure 4.4: Possible movements from R1 to R4.
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Table 4.1: Time interval day groups and representative days calculation.

Number of
decomposi-

tions

Number of days in
the decomposition

Distance between day Dx

and other days in the
same group (DSx)

Centroid of group

5 4 DS7 = 13.58,
DS12 = 13.58

D7

7 34 DS2 = 8.66, DS14 = 8.66 D2

9 17 DS1 = 8.74
DS4 = 8.30, DS5 = 7.26
DS6 = 4.54, DS8 = 13.94
DS13 = 6.88, DS15 = 6.37

D6

11 5 DS2 = 144.63
DS2 = 75.45,
DS2 = 74.26

D3, D10, D11

for each day of the three �rst weeks. The results show that there are four possible

decompositions: 1) 5 subintervals, 2) 7 subintervals, 3) 9 subintervals 4) 11 subintervals.

Fig. 4.5 illustrates an example of dayD1 decomposition. It shows thatD1 movements can

be split into 7 subintervals, such that 4 subintervals correspond to occupant's movements

and 3 subintervals correspond to no movement periods (occupant says in the same room).

Table 4.1 shows day groups, the number of days that have the same decomposition,

distance calculation, and identi�ed representative days. We set ε = 30 for distance

calculation. Thus, days D3, D10, and D11 are not uni�ed since the distance among them

is greater than ε. For D7 and D12 (resp. D2 and D14 ) the distance between them is less

than ε. Thus, each of them can represent the other. We have chosen D7 and D2. Since

D6 has the lowest distance among days D1, D4, D5, D6, D8, D13, D15, which is less than

ε, then D6 represents the centroid of this group. As it is shown in Table 4.1, only 4 and

5 days are suitable for decomposition to 5 and 11 subintervals, respectively, but these

decompositions are not representative. Therefore, we only consider the possibilities of 7

and 9 decompositions. Moreover, decomposition to 9 subintervals contains subintervals of

16 min, 6 min, and another of 9 min, which is too narrow to be used in the heating/cooling

decision-making process. Consequently, decomposition to 9 subintervals is also discarded.
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Figure 4.5: Day 1 intervals decomposition.

4.5.3 Frequent Movement Sequence Identi�cation

As shown in Subsection 4.5.2, we decompose the daytime interval into 7 subintervals.

Subgraphs of the same subinterval are grouped. At the end of the process, we obtain

7 groups of 12 subgraphs (a subgraph for each occupant for each day of weekday). We

used a graph mining algorithm (gSpan) to identify frequent occupants' movements among

building rooms. The fourth week of the dataset is used for the test. Its days are divided

into 7-time intervals as day D7, and then compared to frequent occupant movements

given by D7 decomposition.

4.5.4 Results

Fig. 4.6 (from Fig. 4.6a to Fig. 4.6d) displays the comfort computed for each occupant

during the test week. The comfort is the proportion between the duration where the

occupant is in a heated/cooled room and the total occupancy duration. We notice that

our system ensures an average occupant's comfort from 47.78% (Fig. 4.6d) to 88.01%
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(Fig. 4.6c). We aggregated the comfort of the test week for the occupants, in addition

to the saved energy (in percentage compared to the continuous heating/cooling method)

in Fig. 4.7. Total comfort provided is up to 77.82%, with an average of 71.28%. The

energy saved by our approach is up to 62.21%, with an average of 58.16%.

4.6 Summary of the Results

In the previous section, we have evaluated the performance of the proposed approach.

Simulation results showed that:

� Our approach helps model and understand occupants' movement within buildings

using graph abstraction. This abstraction level can help represent any type of

buildings, whatever its dimension.

� By using our solution, we can help minimize the energy consumed by the HVAC

system by up to 62.21%. This represents an enormous energy economy for the

building because heating and cooling represent the greatest energy consumption of

the buildings.

� The average comfort provided by our system is on average 71.28%. We notice

that more than 25% of the occupants' comfort is wasted and this is one of the

disadvantages of this method. Nevertheless, we have considered as a moment of

discomfort any moment the occupant is within a room/hallway which is not heated,

even the moments when the occupant walk in an unheated hallway, to go from a

room to another, but if we have considered that the shortest occupancy duration

(for example less than 10 minutes) of a room does not impact the comfort of the

occupant, then the comfort going to be higher.
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(a) Comfort computed for occupant 1 in test week.

91,88

78,09

65,34

74,54

90,94

80,16

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

100,00

Day 1 Day 2 Day 3 Day 4 Day 5 Mean

(b) Comfort computed for occupant 2 in test week.
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(c) Comfort computed for occupant 3 in test week.
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(d) Comfort computed for occupant 4 in test week.

Figure 4.6: Provided comfort for the four occupants in each day of the fourth week, plus
the mean comfort for each occupant.
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Figure 4.7: Daily saved energy and provided comfort.

4.7 Conclusion

Building occupant behavior is an important factor that impacts building occupant com-

fort and energy consumption, especially by HVAC systems. In this chapter, we studied

occupant movement behavior based on a temporal graph model, such that nodes rep-

resent building rooms and edges represent occupants movement among building rooms.

The main contributions of this chapter can be summarized as follows:

� Temporal graph-based building and occupant movement representation: The use

of temporal graphs gives a higher abstraction level of any building types (habitats,

o�ces, etc.), which helps apply many graph theoretic approaches to extract infor-

mation about occupant's movement habit and, then construct a realistic prediction

model of the occupant interaction with the appliances, light, HVAC system, etc.

in order to optimize the energy consumption.

� Data Mining algorithm-based rooms-changes and time-frames patterns detection:

We made use of hierarchical cluster analysis to learn temporal occupants movement
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information, which helps identify the time intervals in which the occupants visit

a subset of speci�c rooms. The use of this technique helps avoid empirical time

interval decomposition and therefore avoids possible mistakes.

� Graph Mining-based occupant behavior prediction: We make use of a graph mining

algorithm to identify frequent occupants' movements. The graph-based represen-

tation helps us detect the rooms' relationship based on the occupant movement

habits. Thanks to GM algorithms we can extract the occupant behavior pattern

and then build an accurate prediction model that helps predict the rooms that

the occupant may visit during a future time interval and then, anticipate some

decisions to avoid impacting the occupant comfort, such as rooms temperature,

and building energy consumption, such as turning-o� HVAC systems in the rooms

foretasted to remain unoccupied rooms.

To gather necessary data for this approach we need to track the movement of each

occupant of the building, from the moment he/she gets into the building, until the

moment he/she leaves the building. Although, this approach helps deeply understand

the exact movement behavior of each occupant of the building. This solution has some

disadvantages, which are:

� Privacy problem: Tracking occupant's movement within a building represents an

invasion of the privacy of the person, which may psychologically a�ect the occu-

pants' real movement behavior through the building. This is the main weakness of

our approach.

� Deploying a tracking system requires a high-quality localization detection system.

Therefore, any wrong detection of the occupant localization (occupant is in the

room R1 but the system detects that he/she is in the room R2) can a�ect the

accuracy of the prediction model.

To ful�ll the localization problem, there are some solutions in the literature [96, 97].

Nevertheless, the problem of privacy is still partially resolved. Furthermore, sometimes
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the model can give come wrong prediction that impact the occupants' comfort. Hence,

these issues need to be �xed. Therefore, we need to propose a solution that is less intrusive

for the occupant's privacy, but at the same time needs to be accurate. In fact, in chapter

3 we have proposed a room-centric approach that does not require information about each

building's occupant. As such, it protects occupant privacy. Nevertheless, this approach

does not consider the occupant behavior but only consider rooms occupancy pattern.

Therefore, it needs to be improved. Besides, in this chapter (chapter 4), we have proposed

an approach that takes into account the occupant movement behavior and occupancy

preference in a deep way, but, it represents a real privacy problem. Consequently, we

need to propose an intermediate solution that is adaptable to occupant behavior and

occupant behavior habit changes, and, at the same time, gives an accurate prediction

model. This will be the focus of the next chapter.
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5.1 Introduction

In the previous chapter, we focused on graph-based building energy optimization. We

have proposed a model that gives a higher abstraction representation of building and

its occupants, and learns occupant movement behavior within the building. This model

gives a close vision of occupant's movements habit hence it can give a clear image of

energy that can be saved. Nevertheless, this model is occupant-centric, and requires

tracking each occupant's movements, from the moment he/she enters the building until

the moment he/she leaves it. This can be sen as a privacy intrusion by many occupants.

Furthermore, this model can give wrong predictions and, without correcting it, the model

may cause lack of occupant's comfort, in false-negative cases. For example, if during the

tth time-interval, a room is predicted as unoccupied, the HVAC will be turned OFF

during the predicted time-interval. But, if during this time-interval, an occupant gets

into the room, his/her comfort will be reduced. Consequently, we need to cope this

problem. Nevertheless, we have presented, in chapter 3, a real-time occupancy detection

system, that can provide room occupancy state using real-time collected data.

To alleviate the two above mentioned inconvenient we propose, in this chapter, to

combine the model presented in chapter 4 with the model presented in chapter 3. We

aim at predicting occupants' movements among rooms and use the predicted movements

to deduce room and space occupancy using the prediction model from chapter 4 in the

building. The latter is then used to preheat/pre-cool rooms. However, since prediction
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models are not always that accurate, it is possible to face situations where HVAC of some

rooms are activated while these are empty or vice-versa, leading to either a waste of energy

or a lack of occupant's comfort. To deal with this issue, we make use of sensors to detect

real-time rooms occupancy state (inspired from chapter 3) to correct the prediction when

necessary. To achieve this, we developed a graph mining-based optimization approach

that combines occupant behavior prediction and a real-time correction.

The remainder of this chapter is organized as follows. Section 5.2 presents the context

and motivation. Section 5.3 discusses related work. Section 5.4 introduces our methodol-

ogy. Evaluation settings and results are discussed in section 5.5. Discussions are given in

Section 5.6. Section 5.7 concludes the chapter and proposes future directions for future

work.

5.2 Context and Motivations

In any occupied building, rooms are interconnected through doors or hallways. Occu-

pant's moves within rooms and create a spatiotemporal relationship between building

rooms. To understand and learn occupant's movements behavior within the building, we

can use these movements traces to build a pattern of movement behavior that can help

predict occupant's behavior and then, optimize energy (example: turn-o� HVAC system

in the rooms predicted to be unoccupied in the future) and increase comfort. In this man-

ner, we will mainly focus on the occupant, creating a method that is occupant-centric.

Nonetheless, as showed in chapter 4, we need to trace each occupant's movements within

the building during all the time the occupant is inside the building.

To address this inconvenience, we develop, in this chapter, a combined approach to

optimize building energy usage while ensuring occupant comfort. First, we exploit our

graph mining-based prediction model, proposed in [3], to predict room occupancy based

on building occupants' movement over time. This occupancy prediction is then used to

schedule the functioning of the HVAC inside rooms according to a prediction of their
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future occupancy status. Second, we track the occupancy status based on real-time

data collected by sensors deployed inside the building. The objective of this second step

is to be able to use real-time sensor-based occupancy detection, as proposed in [2], to

correct room occupancy prediction errors by reactivating (resp. deactivating) HVAC

systems in occupied (resp. unoccupied) rooms, where their occupancy status have been

miss-predicted by the prediction system. The main objective is still to decrease energy

consumption while ensuring building occupants' thermal comfort. We experimented our

approach based on a realistic building occupancy dataset and the result shows that

our combined approach allows saving up to 39.09% of HVAC energy consumption while

ensuring up to 99.39% of thermal comfort for building occupants. Furthermore, while

we have collected occupants' movement data only for a speci�c duration but not after

it, we cannot know the occupancy behavior of each occupant, but the system only gives

a prediction of room occupancy state. Hence, there will be no occupant's tracking and

thus, occupancy is preserved.

5.3 Related Work

Energy is of vital importance in all sectors such as transport, industry, households, and

services. Under the new policy scenario, global energy consumption and CO2 emissions

are expected to increase by approximately 50% in 2018 to 19.8% 2050, respectively [98].

In this context, buildings consume a huge amount of energy reaching about 40% of the

EU and US residential and commercial buildings [99]. Therefore, optimizing buildings'

energy consumption becomes a big challenge and an important topic to study not only

for researchers but also by industries and public authorities as well.

Building energy consumption depends on both external factors, such as buildings'

envelope and orientation [100, 101], and internal factors seen as indoor environment

conditions such as occupancy and occupants' behaviors [102, 103, 104]. Recent research

results showed signi�cant di�erences between simulated energy consumption and actual

energy consumption. Furthermore, they showed why most traditional building systems,
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that usually apply a �xed operating schedule according to certain regulations (such as

ASHRAE or user surveys), results in wasted energy and discomfort for the occupants

[85].

Despite the above mentioned �ndings as well as a lot of research in the �eld of build-

ing systems, there is a lack of research work on occupant behavior detection and analysis

[102]. Building occupants highly impacts HVAC energy consumption, which represents

over 50% of typical building's energy consumption [105]. Therefore understanding build-

ing's occupancy and occupant's behavior can help optimize HVAC energy consumption

[69, 106, 107].

Many researches in the �eld of sensor-based energy optimization in buildings have

focused on building occupants' behavior, room or space occupancy status, and occupancy

prediction. Several data-driven methods have been introduced encompassing optimiza-

tion approaches, probabilistic approaches, and machine learning approaches, to name a

few.

Kusiak et al. [108] have considered data-driven optimization methods to reduce

HVAC energy consumption in o�ces by adjusting control settings (supply air static

pressure and supply air temperature). They tested eight supervised machine learning al-

gorithms to simulate the nonlinear relationship between controlled settings, energy con-

sumption, and uncontrolled variables. They found that, among the tested algorithms,

multiple-linear perceptron (MLP) provides the highest accuracy. Their system saves up

to 7% of the HVAC energy consumption. Brooks et al. [109] have proposed an improved

Variable Air Volume (VAV) HVAC system based on occupancy. Their results demon-

strates from 29% to 80% of energy reduction in 5-room building served by the improved

VAV HVAC system. Nevertheless, the HVAC equipment was common to all these rooms,

which prevents to �nally control the HVAC system for each room independently.

Chen et al. [110] have proposed a stochastic occupancy modeling based on a Markov

chain. Two new non-uniform Markov chain models have been proposed, which have been

harnessed in two situations: multi-person single-zone (MOSZ) and multi-person multi-
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zone (MOMZ). The novelty of this study is that the state of the Markov chain is has

de�ned as the increment in the number of occupants, not the number of MOSZ occu-

pants. For MOMZ, the state of the Markov chain is a vector where each component is the

occupancy increment in each region. This is performed with the aim to reduce, the com-

puting burden. To compute the probability matrix, a maximum likelihood estimation is

used. The approach was compared to the ABM model proposed in [111] and the results

showed that it performs better, under some assumptions. A real-time occupancy predic-

tion method based on spatio-temporal history analysis is proposed by Adamopoulou et

al. [89]. In this study, the data is collected in real time using depth image cameras as well

as acoustic and motion sensors. Their goal is to calculate the occupancy rate prediction

based on the collected data. Yilmaz et al. [82] have developed a bottom-up random

occupant behavior modeling method to predict the use of household appliances in home

buildings. The study is limited to home buildings to determine data that a�ect energy

consumption. The above mentioned studies did not consider building rooms occupants'

movements behavior relationship, which is an important factor that may cause changes

in the occupancy status of the building rooms. In fact, rooms occupancy state is re-

lated to occupants' movements among rooms. Indeed, knowing the occupant movement

pattern, we can predict the rooms that he would visit, and the ones that he would not

visit, and then anticipate the activation (resp. deactivation) of the HVAC in the rooms

accordingly, in order to improve his comfort and minimize energy consumption.

Related works addressed either rooms occupancy or data-driven energy e�ciency, but

not both at the same time. Additionally, from prediction error detection and correction

viewpoint, to the best of our knowledge, there is no work in the literature where that

issue has been tackled in the �eld of building energy consumption. Therefore, in order

to achieve the objectives of our smart building energy optimization, we describe in the

subsequent sections our graph mining-based approach combined to an optimized method

to deploy sensors inside a building to collect data for a real-time room occupancy status

determination and erroneous occupancy prediction detection and correction.
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5.4 Methodology

Our approach consists in two main steps: (i) Occupant Movement Prediction (OMP)

to predict occupant movements, and HVAC system control plans (detailed in Subsection

5.4.1), and (ii) Real-time Room Occupancy status Correction (ROC) to correct prediction

(detained in Subsection 5.4.2).

5.4.1 Occupant Movement Prediction (OMP)

Occupant Movement Prediction (OMP) aims to compute future occurrences of occupants'

movements within building rooms, and predict the occupancy status of the rooms, based

on occupants' historical movements. Anticipating movements and occupancy allow a

pre-commanding the HVAC system to pre-heat/pre-cool rooms before occupant arrival.

Let B be a building of N rooms, which are connected with hallways and corridors.

Occupants can move from a room to another. We represent their movements by a graph

G(V,E), such that V represents the building rooms, and E represents possible movements

among these rooms. O represents an occupant of B. MV is the matrix of all occupant's

movements within TIi = [t1, t2] time interval, such that:

MV = V[t1,t2] × V[t1,t2] ≡ (mi,j) =


1 if (Vi, Vj) ∈ E[t1,t2]

0 otherwise.

(5.1)

As we suggested in [3], a graph-mining approach is a suitable approach for predicting

MV . The whole process consists in the following steps:

� Time interval Occupants Movement timestamp Uni�cation (TOMU)

� Frequent Movement sequence time interval Identi�cation (FMI)

� Building occupants' movements prediction

� Decision making
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Figure 5.1: TOMU algorithm uni�es timestamps T1 and T3 to become T1 for two di�erent
movements, as well as for Tt1 and Tt2, which are uni�ed as Tt1.

Time interval Occupants Movement timestamp Uni�cation (TOMU)

Graph mining algorithm is an accurate enough approach in selecting frequent subse-

quences (in our case: subgraphs of movements). It distinguishes even the same move-

ments happens within very close times. As we are dealing with human mouvements, the

distinction between such movements is not that relevant, we propose to unify them with

the aim to accelerate the algorithm and to provide human readable results. To perform

this timestamps uni�cation, we propose to use a hierarchical clustering algorithm that

groups movements with close timestamps then, we give a �xed timestamps (the smallest

timestamps in the group) to each movement in the same group. Figure 5.1 illustrates

the TOMU process through an example of timestamp uni�cation of close movement

timestamps.

To avoid manually unifying timestamps, we implemented the algorithm by using a

hierarchical clustering.

Frequent Movement sequence time interval Identi�cation (FMI)

To optimize prediction periods, we need to divide a day (24 hours) into a Time Interval

List TIL = {TI1, ..., T It} of t time intervals, where TIi,i∈{1..t} = [tSi , tEi ], with tSi is the

beginning of the interval, and tEi is the end of the interval.
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We apply on each day d a hierarchical clustering method to generate its set of time

intervals, denoted by TILd, then we eliminate all TILd that contain at least a TIi such

that TIi < minTime, with minTime is the required duration to heat/cool a room to

the comfort temperature.

A second elimination process is required to select, from obtained TIL lists, the rep-

resentative one, i.e. the one which is the most frequent. It is then considered the TIL

decomposition for all days.

Predicting building occupants' movements

To proceed with the occupants' movements prediction. We need to rely results on the

two previous steps (TOMU and FMI). We divide occupants' movements of each day into

groups based on the timestamp of each movement. We denote byMv = {MvD1, ...,MvDd}

the list of movements of all days, where MvDi consists of all the movements of day Di,

such that each movement is represented by the triplet source room (Rs), destination

room (RD), and timestamp (tRs,RD
) representing the time when the movement happened.

Therefore, MvDi of m movements is de�ned as:

MvDi = {E1 = [Rs1, RD1, t(E1)], ...,

Em = [Rsm, RDm, t(Em)]}
(5.2)

Algorithm 2 describes the sub-movement list extraction for each TI of TIL. The result

of this algorithm is then used in a second step by the graph mining algorithm to extract,

for each TI of TIL, occupants' movements prediction.
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Algorithm 2 Sub-movements selection algorithm.

Require: MT = {Mv(D1), ...,Mv(Dd)}, T IL = {TI1, ..., T It}
Ensure: Mv(TI1), ...,Mv(TIt)
BEGIN

for each TIi in TIL do

for each MvDi in Mv do

for each E in MvDi do

if t(E) ∈ TIi then
add [E, t(E)] to Mv(Di)tIi

end if

end for

add Mv(Di)TIi to Mv(TIi)
end for

end for

return Mv(TI1), ...,Mv(TIt)
END.

Decision making

After extracting list of movements of each day and for each TI of TIL, we compute the

movement prediction matrix as follows:

MP = V[t1,t2] × V[t1,t2] ≡ (mi,j) =


1 if (Vi, Vj) ∈ E[t1,t2]

0 otherwise.

(5.3)

We extract, from MP , the Occupancy Prediction vector, denoted by PO[t1,t2] for Pre-

dicted Occupancy during [t1, t2], of V elements, such that each room de�ned as a desti-

nation is considered as an occupied room. More precisely, PO[t1,t2] = [P1s, ..., Pvs], such

that Pxs is the predicted occupancy status of room x, computed using Equation 5.4, with

s is the source room, and v is the number of rooms in the building.

Psx =


1 if ∃(Vi, Vx) ∈ E[t1,t2], i ∈ [1, v]

0 otherwise.

(5.4)

We introduce our Occupants Movements' Prediction algorithm (OMP), listed in Al-
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gorithm 3, in order to compute the occupancy prediction for all rooms during all the

considered prediction periods.

Algorithm 3 OMP algorithm.

Require: MT = {Mv(D1), ...,Mv(Dd)}
Ensure: TIL,Mv, POTIL

BEGIN

TIL← Generate time interval list using hierarchical clustering
for each TI of TIL do

Mv(TI)← GM(MT, TI)
POTI ← Generate Prediction vectors from Mv using Graph Mining Algorithm

end for

return TIL,Mv, POTIL

END.

Based on Algorithm 3, the rooms are predicted as occupied during TIi = [ta, tb]

will be pre-heated/pre-cooled t minutes before ta. As this process is dependant on the

human movements which may change transiently, we added in our next step the real-time

occupancy veri�cation, and prediction correction.

5.4.2 Real-time Occupancy prediction veri�cation and Correction (ROC)

Relying on the occupants movement prediction, the system decides about the HVAC

status for each room of the building during each time interval TI = [tS , tE ] of TIL. As

such prediction may contain errors, we adjust to it a new algorithm called ROC for Real-

time Occupancy prediction veri�cation and Correction. The real-time room occupancy

status at a timestamp t, denoted by ROt, is computed based on data collected from the

sensors deployed inside the building as detailed in [2].

ROt = [R1, ..., Rv], such that Rx is the occupancy status of room x at time t.

We compare POTI with ROt to detect occupancy prediction errors. The comparison

result is denoted by OC for Occupancy Comparison and is computed by equation 5.5.

As POTI and ROt are 2 vectors of binary values, then OC is the vector containing the

absolute values of the subtractions between these 2 vectors. It is also a vector of binary
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values.

OC = [OC1, ..., OCv] = |POTI −ROt| =

[|POTI(R1)−ROt(R1)|, ..., |POTI(Rn)−ROt(Rn)|]
(5.5)

The obtained vector OC is used for correcting predicted decisions, and occupancy

prediction (for new time interval [t, tE ]). The two corrections are Real-time decision

correction and Occupancy prediction correction, detailed below. The ROC algorithm is

summarized in Algorithm 4.

Real-time decision correction

Each OCi of OC is interpreted as follows:

� If OCi = 1 then it means that the value of POTI and ROt are di�erent, and the

real occupancy status is di�erent from prediction occupancy status for room i.

Therefore, the control system will reverse the HVAC status of that room: if the

HVAC is turned ON (resp. OFF), the system will turn it OFF (resp. ON).

� Otherwise, occupancy prediction of room i is considered as correct. No change is

required for the HVAC status in room i.

Occupancy prediction correction

After the real-time occupancy detection at time t, the time interval [tS , t] is no more

valid. Therefore, we need to generate new occupants' movements and occupancy pre-

diction for new time interval, denoted by NTI = [t, tE ]. Thus, new Mv(NTI) must

be generated. Furthermore, some Mv(Di)NTI should be eliminated. We eliminate all

Mv(Di)NTI such that PONTI(Mv(Di)NTI) is di�erent from ROt. The new Mv(NTI),

denoted by NMv(NTI), is used to generate both new prediction movement matrix and

vector using graph mining algorithm the same way we have done for the precedent inter-
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val.

Example. Suppose that we predict occupancy for time interval [10:00, 12:00] and we

use occupancy detection each 30 minutes t ∈ {10:30, 11:00, 11:30}. If, for t =10:30 the

system detects that OCi = 1, then the system will generate new occupant's movement

and occupancy prediction for the new time interval started from t: [10:30, 12:00]. The

same tests and decision will be made for t =11:00 and t =11:30.

Algorithm 4 ROC algorithm.

Require: MvTI, TI, POTI , ROt,MT = {Mv(D1), ...,Mv(Dd)}
Ensure: ROt, NMV TI
BEGIN

OC ← |POTI −ROt|
NMv ← (MT/OC) {selecting from MT only elements that verify ROt}
NMv(TI/OC)← GM(NMv, T I) {generate new Mv}
return ROt, NMV TI
END.

5.5 Evaluation and results

In this section, we detail the evaluation carried out to assess our solution, and we discuss

the obtained results.

5.5.1 Dataset description

We have considered a one-month set of observed movements of four persons within univer-

sity building rooms. The �rst three weeks are used for model training: Time interval Oc-

cupants Movement timestamp Uni�cation (TOMU), Frequent Movement sequence time

interval Identi�cation (FMI), and occupants' movements prediction model construction.

The fourth week is used for Occupant Movement Prediction (OMP), OMP performance

veri�cation, and Real Time Occupants' Movements Correction (ROC).

Figure Fig. 5.2 illustrates the rooms of the considered building. Doors are represented
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Figure 5.2: Building Rooms representation.

by blue triangles, Each room and space is control by an HVAC system, as represented

on the top left corner of each of these.

We represent the building as a graph, such that building rooms are the set of vertices

or nodes, and possible movements within these rooms correspond to the edges. Figure

5.3 illustrates the graph drawn from our building (Fig. 5.2).

The data used in the simulation gathered the observed movements within the building

of the four occupants considered. For example, occupant O1 mainly works in O�ce 1.

He/she enters the building at around 8 : 30 am, works in o�ce 1, takes his/her lunch at

the Break Room at around 12 pm, has a meeting once or twice a week in the Meeting

Room, and leaves the building at 6:00 pm.

We start recording movements from the moment when occupants enter the building;

in our case, Hallway 1 (R1) represents the entrance of the building. The last recorded

movement is by the end of the day or when the occupants have left the building. There-

fore, each movements graph depends on a di�erent occupant's behaviour. Hence, in our

case, we can end up with four movements' graphs per day: a graph for each occupant.
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Figure 5.3: Graph-based Building representation.

5.5.2 Experiment description

In Occupant Movement Prediction (OMP) step, we used gSpan (graph-based substruc-

ture pattern mining) algorithm, for selecting frequent subgraphs from movement graphs.

It requires an important parameter called minimum frequency of acceptance of subgraph

(the number of times a frequent pattern has to appear in the graph), which means that

the algorithm selects only subgraphs that occur with a minimum number of times greater

than or equal to that frequency of acceptance.

In our experiment, we have considered a frequency of acceptance of 20%. Thus, all

subgraphs that appear less than 20% for the OMP process are eliminated. This frequency

of appearance can seem to be low but it is adequate to our application context since each

occupant has its own o�ce room and we need to capture in our prediction model his/her

individual movements too. As we have experimented, a higher frequency of acceptance

(60% for instance) generates weak model in terms of accuracy of rooms occupancy status,

since it limits the prediction model to only the movements occurring among shared spaces

in the building such as hallways, corridors and break rooms. Besides, it is worth noticing
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that this value is empirical at this level of the experiment, and we need to tune it to

obtain a better prediction accuracy.

In Real-time Occupants' movements Correction (ROC) process, we need to de�ne

a time period in which we verify room occupancy status. In our experiment, we have

compared three time periods: 10 minutes, 20 minutes and 30 minutes.

We computed saved energy percentage by the HVAC system compared to a conven-

tional use of such systems where the HVAC is ON during o�ce hours (from 08h30 am to

06 pm).

We also computed occupant's comfort percentage. We start with computing comfort

duration. It is the cumulative addition of minutes where an occupant is inside a given

room where the HVAC system is turned ON. Occupant's comfort percentage is the ratio

of comfort duration to total day occupancy duration of the building, for each occupant

of that building.

5.5.3 Result and discussion

Figure 5.4 displays the percentages of saved energy within all building rooms, during

the test week while using OMP. Saved energy is the di�erence between HVAC activation

duration in regular system (turned ON during all working time), and the controled by

our proposed system, i.e. the HVAC is turned ON only on predicted occupancy periods.

Results show that, in our case and with 20% of prediction accuracy, we can save up

to 39.09% of HVAC energy consumption, with an average of 38.83%. This result can

vary depending on building type and occupants' behavior. Figure 5.5 shows provided

occupants' comfort comparison between OMP and ROC using its 3 veri�cation time

periods (10 minutes, 20 minutes and 30 minutes). It shows that, in our case, OMP

provides between 59.85% and 73.16% of occupants' comfort when using OMP only. When

ROC is also deployed, comfort can reach 99.39%, 98.86% and 98.93% for 10 minute-, 20

minute- and 30 minute- time period, respectively. This high di�erence between OMP and
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Figure 5.5: Occupants' comfort satisfaction level during the test week.
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Energy Optimization

ROC results is due to the real-time comfort correction. It allows to turn ON instantly

the HVAC system if a room was predicted as not occupied during a time interval (HVAC

turned OFF), but it is detected as occupied by ROC. Therefore, discomfort is reduced

to few minutes (in our case 10 minutes, 20 minutes or 30 minutes).

5.6 Summary of the Results

The above simulation results show the importance of combining prediction and correction

methods. It shows that:

� Spatiotemporal graph-based Occupant's movement prediction is e�cient for opti-

mizing building energy consumption. Up to 39.09% of HVAC energy consumption

is saved using our system.

� Any changes in occupant's movements behavior can lead to a lack in the prediction

model, and in�uence occupant's comfort. Prediction errors can decrease occupants'

comfort by 59.85% to 73.16%. This is why we need to reinforce it.

� Real-time occupancy detection can help correct prediction errors and increase oc-

cupant's comfort within the building. In our experiment, we reach up to 99.39% of

occupants' comfort within the building.

5.7 Conclusion

In this chapter, we developed a combined approach for Occupants' Movements Prediction

(OMP) and Real-time Occupants' Movements Correction (ROC). OMP �rst predicts

occupants' movements among building rooms and pre-heat/pre-cool rooms according to

their predicted occupancy. Then, to deal with prediction errors, ROC is activated to

correct identi�ed erroneous predictions and to control the HVAC system accordingly.

Results showed that OMP can help reduce up to 39.09% of the HVAC consumed energy,
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and provide between 59.85% and 74.42% of occupants' comfort. The combination with

ROC allows to reach up to 99.39% of occupants' comfort.

So far, the ROC approach helps reduce occupants' discomfort, but it does not improve

OMP prediction model. The approach proposed above can be improved in many ways.

For example, develop a tightly coupled prediction-correction model, i.e. including real-

time prediction model adaptation (i.e. the correction is implemented at the level of the

model itself) could be interesting to investigate, even thought the results we obtained

that are already highly competitive. Such a new model could be built using either Markov

Chains [112] or the AdaBoost algorithm [113].
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This dissertation has made a number of contributions towards joint energy and com-

fort optimization in IoT enabled Smart Buildings. The key contributions of this disser-

tation are: (i) a room-centric method using Machine Learning algorithms to determine

an adequate set of data and data collection frequency for predicting occupant behavior

and thus optimize building energy, accordingly; (ii) the use of graph-based building and

occupant movement representation to understand, learn and predict occupant's behavior

to reach the targeted energy and comfort optimization; and, (iii) the use of a room-centric

real-time occupancy detection to correct occupant behavior prediction errors and mini-

mize occupant's discomfort. A discussion about these contributions is given in Section

6.1. Besides, we discuss the possible future work in Section 6.2.
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6.1 Contributions

Throughout this dissertation, we tried to answer the following inter-related questions:

what data to use?, when to collect these data? how to model occupant behavior? how to

use occupant behavior prediction to minimize building energy consumption and maximize

occupant's comfort? and how to correct occupant behavior prediction errors impacting

occupant's comfort?. In this section, we are going to show how these questions had been

answered.

In our �rst contribution, we have answered the two �rst questions, namely: what data

to use? and when to collect these data?. To minimize building energy consumption, we

need to understand the occupant's behavior, as this behavior represents one of the most

important energy consumption factors within the building. To do so, we need to collect

data to construct knowledge about this behavior and then, try to make decisions that

target minimizing the energy consumed within the building. For example, turning-o�

the HVAC system in unoccupied rooms. One of the best and e�cient ways of collecting

data is to deploy sensors within and around the building. Indeed, sensors allow collecting

accurate data 24 hours a day, 7 days a week, automatically, without the need for human

interaction. Nevertheless, with the explosion of IoT equipment types and numbers, too

many sensors types exist and, deploying random sensors or so many sensors costs time

and money to buy, install, and to maintain the deployed sensor system.

Therefore, we need to know what sensors to use to have the data that meet our

needs. Therefore, we proposed a method that helps carefully de�ne the set of data to

use to meet a speci�c need. Nevertheless, our method will either not be precise or be too

costly to maintain if we do not de�ne the adequate frequency of data collection. In fact,

many sensors require specifying the period of data collection, such as CO2, humidity,

temperature sensors, etc. For this kind of sensors, we can con�gure a sensor to collect

data every few seconds, minutes, hours, or days. As a consequence, the "When to collect

data?" question becomes vital as the shorter data collection frequency is the more energy

the sensors consume, and the more maintenance they require, and batteries changing (in
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case of using wireless sensors). At the same time, precision increases. So, what is the

adequate trade-o�?

In this contribution, we aimed to minimize the number of used sensors and maximize

data collection frequency while reaching an acceptable precision. We tested and com-

pared many Machine Learning algorithms to de�ne the e�cient algorithm that meets our

requirements. Results show that it is possible to build an occupancy predictive model

with the Random Forest Classi�er algorithm having an accuracy of at least 90%, by using

8 sensors collecting data at a 20-min interval, or 5 sensors collecting data at a 15-min

interval.

Our second contribution was about answering the question of how to model occupant

behavior?. In fact, modeling occupant behavior is important to generate an occupant

habit prediction system that allows anticipating occupant movements and then, disacti-

vate some building equipment when their use is not necessary, or reactivating them when

it becomes necessary. In this contribution, we propose the use of a higher abstraction

level, based on the graph, to represent the whole system, building, and occupant, in which

building rooms are represented by graph nodes, and possible direct movements between

the rooms are represented by graph edges. This representation gave us a macroscopic vi-

sion of the occupant behavior within the building and the inter-relations between rooms,

based on this occupant behavior.

Based on this abstraction presentation, we generate, Graph Mining algorithms, the

occupant's movement model that we use to predict future occupants' movements and

then, decide to activate (resp. disactivate) equipment in rooms that the occupant is

forecasted to visit (resp. will not visit) at the predicted time of the visit, i.e. in the

future. The purpose of this decision process is to minimize building energy consumption

while preserving occupant's comfort. A 4-week dataset of 4 occupant movements among

o�ce rooms was used to experiment with our approach. The results showed that our

model helps minimize energy consumption by up to 62.21% compared to conventional

functioning of HVAC systems, and ful�lls up to 94.02% of occupants' thermal comfort.
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In addition to this usage, one can also note that such generic graph-based representa-

tion can be used beyond what use it for in this dissertation. For instance, virtual rooms

can be created on the graph to study a future possible physical decomposition of one or

many rooms. For instance, if a hallway is composed of more than one HVAC system,

and the attendance on one side of it is higher than the other side then, we can decide to

turn-o� the HVAC system in the less frequented side of the hallway and, to minimize the

loss of heat/cool in the heated/cooled side, we can decide to create, for example, a door

to separate the two sides. Therefore, the use of this abstraction does not only giving a

higher abstraction level, but it can also help propose future building organization ideas.

Nonetheless, even though this contribution allows preserving a good average level of

occupant's comfort, it does not allow to fully satisfy them at all times due to prediction

errors. Consequently, we propose, in our third contribution, to combine occupant behav-

ior prediction and a real-time correction, using real-time data, collected by the sensors

deployed in building's rooms, to correct prediction errors (i.e. false-negative situations).

By doing so, and integrating this in our previous graph-based solution, we can achieve a

better equilibrium between building energy consumption and building's occupant com-

fort. We experimented our approach on simulated data and results showed that our

model optimizes up to 39.09% of HVAC energy consumption, and provides up to 99.39%

of occupants' comfort.

Another feature of our proposed solution is that it allows us to preserve occupant's

privacy. In fact, using graph-based occupant behavior prediction requires real-time oc-

cupant's behavior tracking, but while using room-based real-time occupant behavior

detection method, the system does not require knowing the behavior of each occupant,

but only the room occupancy states (occupied or not, which equipment are on/o�) is

enough to correct prediction errors.

Overall, these contributions give a new vision to occupant behavior understanding

in smart building and show the importance of selecting accurate data to have the most

precise information. This allows for increasing chances of �nding the way to building
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energy optimization without sacri�cing its occupant's comfort.

6.2 Perspectives

The di�erent studies and results described here opened up many lines for future work to

explore. We present some of these ideas in the following.

Real-time prediction correction: In our last contribution, we proposed to correct

the prediction error in a reactive way. In fact, this correction increases the occupant's

comfort through a proactive method. Indeed, additional improvements can be achieved

by changing the prediction model based on detected prediction errors, and thus provid-

ing an adaptive dynamic prediction system that takes naively lope with the occupant's

behavior habit changes. The advantage of such a system is to avoid discomfort zones for

the occupant. This can be the case for instance when disactivating an HVAC system in

a room predicted as unoccupied by a static model while occupants get in this room of

such moments. The real-time error correction system proposed here will each time order

to turn-on the HVAC system to heat or cool the room to meet the occupant's thermal

comfort. Nevertheless, during the time of heating/cooling the room, there will be ther-

mal discomfort for the occupant during all this period. In the case where the model is

static (i.e. not adaptive), and if this kind of situation is repeated, the occupant may get

too angry against the adoption of the system.

Man in the loop: or more precisely, occupant in the loop. In fact, all the work

done, from the moment of �nding that the building sector is the most energy consumers

to the moment of predict occupant behavior and optimizing energy, does not take into

account the occupant interaction with the system itself. The occupant is that person who

can help improve the system e�ciently by customizing the notion of comfort. If he/she

does not understand well the system or maybe feel insecure with such a new system, it

can generate on him/her a high opposition to changes and thus jeopardize the bene�ts

of all the previously cited solutions. Therefore, involving the occupant in these changes
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by proposing a recommendation platform is a must. This allows him/her to understand

the right habits to have, or send him/her noti�cation when, for example, he/she forgets

the windows open while the HVAC is turned-on in his/her room. Designing such an

interaction and recommendation systems while putting the user experience (UX) at the

heart of the approach is another important perspective for our work.

Federated Learning-based privacy improvement: in all our solutions, we use a

centralized system, i.e. all our data are sent to one main server who analyzes and learns

from this data, and takes a decision based on these data. Nevertheless, sending data to a

server that may be in the cloud can represent a serious privacy issue. Fortunately, Fed-

erated Learning (or Collaborative Learning) trains algorithms across many decentralized

edge devices (or servers). This helps hold the data locally without the need to transfer

it and thus, minimize data privacy issues.
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