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A soutenir le 26 Septembre 2016

Contacts entre individus : analyse et application à l’étude de la
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Résumé

Les contacts face-à-face entre individus permettent de caractériser les réseaux
sociaux et jouent un rôle important dans la compréhension des mécanismes de
propagation des épidémies dans une population. De récentes avancées tech-
nologiques ont rendu possible l’acquisition de données précises sur les inter-
actions humaines. En particulier, la collaboration SocioPatterns a développé
une infrastructure basée sur des capteurs portables (badges) qui enregistrent
les contacts entre les participants avec une grande résolution spatiale et tem-
porelle. Cette infrastructure a été déployée dans divers contextes tels que des
écoles, des hôpitaux ou des conférences. Cette thèse présente, dans un premier
temps, l’analyse de données de contacts collectées trois années de suite (2011,
2012 et 2013) dans un lycée français entre des étudiants de classes préparatoires.
L’analyse a montré que la plupart des contacts se produisent entre étudiants de
même classe et que les structures des contacts sont très similaires d’un jour sur
l’autre et également d’une année sur l’autre. De plus, les propriétés statistiques
des contacts concordent avec les résultats obtenus dans d’autres contextes. Des
méthodes de collecte plus traditionnelles basées sur l’auto-évaluation sont aussi
utilisées pour étudier les relations humaines. Toutes ces méthodes ont cha-
cune des avantages et des inconvénients mais sont rarement comparées dans un
environnement donné. Ici, nous avançons dans cette direction en comparant
différentes méthodes de collecte de données : les données collectées en 2013
concernent non seulement des données de contact obtenues avec les capteurs
mais aussi des données de contacts rapportés de façon rétrospective par les
étudiants eux-mêmes (registre de contacts), les relations d’amitié déclarées par
les étudiants et les liens d’amitié sur Facebook. Malgré la faible participation des
étudiants à ces autres méthodes, nous avons obtenu des résultats intéressants :
les étudiants se souviennent plus facilement des contacts les plus longs et ont ten-
dance à surestimer leur durée alors que la plupart des contacts de courte durée
sont oubliés ; les contacts les plus longs correspondent à des amitiés déclarées,
la plupart des amitiés débouchent sur des contacts enregistrés par les badges
mais la plupart des contacts courts ne correspondent pas à des amitiés déclarées
; la comparaison du réseau de contacts avec le réseau Facebook a montré que
la présence d’un lien sur Facebook ne donne pas d’information sur l’existence
effective de contacts ou d’amitiés réelles. Finalement, l’utilisation des reg-
istres de contacts ou des données d’amitié dans des simulations de propagation
épidémique mène à une sous-estimation du risque épidémique quand on compare
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avec les résultats obtenus en utilisant les données des badges. Dans la dernière
partie, nous étudions, dans le cas du réseau d’amitié, si cette sous-estimation
peut être vue comme un biais résultant d’un processus d’échantillonnage réalisé
sur le réseau des contacts, ce qui pourrait nous donner des indications sur com-
ment compenser ce biais et comment utiliser les informations contenues dans
un jeu de données incomplet pour obtenir des prédictions fiables sur le risque
épidémique, même en l’absence de données sur le vrai réseau de contact.



Abstract

Face-to-face contacts between individuals contribute to shape social networks
and play an important role in determining how infectious diseases can spread
within a population. Recently, technological advances have made it possible
to obtain accurate data on human interactions. In particular, the SocioPat-
terns collaboration has developed an infrastructure based on wearable sensors
that record contacts between participants with high spatio-temporal resolution.
This infrasctructure has been deployed in various contexts such as schools, hos-
pitals or conferences. This thesis first presents the analysis of contact data
collected three years in a row (2011, 2012 and 2013) in a French high school
among students of “classes préparatoires” (i.e., studies taking place after high
school and preparing for admission to higher education colleges). The analy-
sis showed that most contacts occur within students of same classes and that
contact patterns are very similar from one day to the next and also from one
year to the next. Moreover, statistical properties of contacts are in good agree-
ment with the results obtained in other contexts. More traditional methods
based on self-reporting are also used to investigate human relationships. These
methods have each advantages and limitations but are rarely compared in a
given setting. Here, we make progresses in this direction by comparing differ-
ent methods of data collection: the complete data set collected in 2013 gathers
not only contact data obtained from sensors but also contact data obtained
from retrospective contact diaries, friendship relations declared by students and
Facebook links. Despite the low participation of students in the latter methods,
we have obtained noteworthy results: the students remember more easily their
longest contacts and have a tendency to overestimate their durations while most
short contacts are forgotten; the longest contacts correspond to reported friend-
ships, most friendships lead to actual encounters but most short contacts did
not correspond to reported friendships; the comparison of the sensors network
and the Facebook network showed that the existence of a Facebook link gives
no information on the existence of actual contacts or real friendships. Finally,
we have found that the use of contact diaries or friendship data in simulations
of epidemic spreading leads to an underestimation of the epidemic risk when
compared with results obtained using the sensors data. In the last part, we
investigate, in the case of the friendship network, whether this underestima-
tion may be seen as biases due to a sampling process performed on the contact
network obtained from sensors, which might give hints on how to compensate
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these biases and how to use the information contained in incomplete data sets
to obtain accurate predictions of the epidemic risk, even in the absence of data
on the actual contact network.



Synthèse en français

Introduction

Dans cette thèse, on s’intéresse aux réseaux d’interactions humaines qui con-
stituent la toile de fond des phénomènes de propagation et en particulier la
propagation des maladies infectieuses. Ce terme “interactions humaines” re-
groupe un large spectre de différents types d’interactions tels que les e-mails, les
appels téléphoniques, les contacts face-à-face, entre autres. Lorsqu’on s’intéresse
à la propagation des épidémies, les contacts face-à-face semblent avoir un rôle
prépondérant car ils agissent comme un vecteur de transmission privilégié pour
les maladies infectieuses.

Pour étudier ce type de contacts, on utilise des données récoltées par la
collaboration SocioPatterns dans un lycée marseillais entre des étudiants de
classes préparatoires. Ce jeu de données regroupe des données de contacts face-
à-face collectées trois années de suite (2011, 2012 et 2013) enregistrées avec
un système basé sur des capteurs portables (badges RFID). Cette méthode
de collecte de données a l’avantage d’être objective contrairement à d’autres
méthodes faisant intervenir la mémoire ou les ressentis des participants.

Pour étudier les avantages et inconvénients de ces différentes méthodes, on
utilise d’autres types de données collectées en 2013 (dans la même population
que précédemment), à savoir : (i) des données de contacts collectées par un
questionnaire dans lequel les étudiants étaient invités à rapporter les contacts
qu’ils avaient eu, avec qui et leur durée approximative, (ii) des données d’amitié
collectées par sondage et (iii) le réseau des relations sur Facebook.

Enfin la comparaison de ces données nous poussera à chercher quelles infor-
mations nous pouvons tirer d’un jeu de données incomplet, en particulier quelles
sont les informations contenues dans ces données incomplètes qui permettent
d’obtenir une bonne estimation du risque épidémique dans une population.

Analyse des données de contacts

Dans cette première partie, on se concentre sur l’analyse des données de contacts
récoltées trois années de suite dans un lycée. Ces données ont été récoltées parmi
des étudiants de 3 (2011), 5 (2012) et 9 classes (2013). Pour éviter les répétitions,
nous rapportons ici les résultats obtenus avec les données de 2013.
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Figure 1: A gauche : distribution P (dt) des durées de contacts pour les données
de 2013 i.e., probabilité qu’un contact enregistré ait duré dt, à droite : distri-
bution P (it) des durées inter-contacts i.e., probabilité que le temps écoulé entre
deux contacts successifs d’un individu soit it.

Sur les 5 jours qu’a duré le déploiement de 2013, 67613 contacts ont été
détectés entre les 327 participants pour une durée cumulée d’environ 1047 heures
de contacts. Un contact est défini comme une série ininterrompue d’intervalles
pendant laquelle il existe un lien entre deux individus. Sur la figure 1, on
montre la distribution des durées de contacts ainsi que la distribution des durées
inter-contacts des nœuds i.e., durée pendant laquelle un nœud n’est en contact
avec aucun autre individu. Ces deux distributions sont larges : la plupart des
contacts sont de courte durée mais on observe aussi des contacts plus longs,
voire de très longs contacts. Le réseau de contact agrégé sur toute la durée
de l’étude a les propriétés d’un réseau “petit monde” : un petit diamètre (la
plus grande distance entre deux nœuds) et un grand coefficient de clustering. La
distribution des degrés des nœuds montre que le réseau de contact est homogène
en terme de degrés comme c’est le cas dans beaucoup de réseaux d’interactions
humaines. Au contraire, la distribution des poids des liens (durée agrégée des
contacts entre deux individus) est une distribution large : la plupart des liens
ont un faible poids mais on observe aussi des liens avec un poids beaucoup plus
important.

La population des étudiants impliqués dans l’étude est divisée en 9 classes.
On définit alors des matrices de contacts qui permettent d’avoir une idée générale
de la structure du réseau de contact en divisant la population en groupes. Les
matrices résultantes ont une structure quasi-diagonale montrant que la plupart
des contacts ont lieu entre des étudiants faisant partie de la même classe. Ces
résultats sont d’ailleurs en accord avec des résultats obtenus dans d’autres en-
vironnements scolaires. Au contraire, très peu de contacts ont lieu entre les
différentes classes. Cependant, on remarque une sous-structure de trois groupes
de classes étudiant des sujets similaires (biologie, mathématiques ou physique) :
il y a plus de contacts à l’intérieur de ces trois groupes de classes qu’entre les
groupes de classes.
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Figure 2: A gauche : Distribution p(k) des degrés des nœuds (encart : dis-
tribution en échelle semi-log) i.e., probabilité pour un nœud d’avoir un degré
supérieur ou égal à k, à droite : Distribution p(w) des poids des liens.

Etant donné cette structure en classes, il est évident qu’un mélange ho-
mogène des nœuds ne serait pas une bonne représentation. En revanche, il a été
observé qu’une division des individus en sous-groupes en fonction de leur genre
n’apporte pas d’information supplémentaire puisque nous n’avons pas observé
d’homophilie par rapport au genre (tendance à avoir plus de contacts avec des
individus de même genre que soi) dans les données utilisées, contrairement à ce
qui a été observé dans une école primaire. La division de la population à l’échelle
des classes apparait comme un niveau adéquat de description du réseau, notam-
ment si on souhaite concevoir un modèle des contacts pour évaluer le risque
épidémique dans cette population.

Une autre partie importante de l’analyse concerne l’analyse longitudinale de
notre dataset à deux échelles temporelles différentes : (i) d’un jour à l’autre
et (ii) d’une année sur l’autre. En effet, lorsqu’on cherche à concevoir des
modèles “data-driven” réalistes de contacts entre individus ou à renseigner
des modèles de propagation, la robustesse des caractéristiques des contacts à
plusieurs échelles temporelles représente une information cruciale. Sur la figure
2.11, nous montrons l’évolution du nombre de contacts au cours de la journée.
On remarque que le nombre de contacts varie beaucoup au cours de la journée
mais chaque jour présente une évolution très similaire aux autres. En effet,
chaque journée est marquée par des pics d’activité déterminés par les récréations
et les pauses repas. De plus, l’activité tombe à zéro pendant la nuit puisque les
étudiants rentrent chez eux (l’enregistrement des contacts n’ayant lieu que dans
l’enceinte du lycée).

Quand on s’attaque à la comparaison des propriétés des différents réseaux
journaliers on remarque que ces propriétés sont extrêmement robustes : les
distributions statistiques des caractéristiques des contacts (durées, durées inter-
contacts, poids des liens) et des degrés des nœuds des différents jours se super-
posent, la comparaison des matrices de contacts des différents jours révèle des
valeurs de similarités (similarités cosinus) très élevées. De plus, les étudiants
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Figure 3: A gauche : matrice de densités de liens entre les différentes classes, à
droite : représentation du réseau de contacts de 2013. Chaque nœud représente
un étudiant, la couleur représente la classe de l’étudiant et la taille représente
son nombre de voisins.

Figure 4: A gauche : Evolution du nombre de contacts par plage horaire de une
heure au cours de l’étude, à droite : Evolution du nombre de contacts par plage
horaire de 10 minutes pour chaque jour de l’étude.
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changent de voisins (individus avec qui ils ont des contacts) d’un jour à l’autre
mais beaucoup moins par rapport à ce qui serait attendu si les contacts avaient
lieu au hasard.

De plus, cette robustesse est aussi observée à l’échelle annuelle. En effet, la
comparaison entre les études réalisées en 2011, 2012 et 2013 avec des étudiants
différents chaque année a montré de grandes similarités : encore une fois les
distributions statistiques se superposent d’une année sur l’autre et les matrices
présentent une structure diagonale indiquant que les contacts ont plutôt lieu
entre des étudiants appartenant à la même classe. Les valeurs de clustering et
de distances sont également similaires sur les trois ans et l’évolution temporelle
du nombre de contacts au cours de la journée de cours présente des profils
similaires chaque année avec notamment les pics d’activité aux moments où les
étudiants ne sont plus en classe.

Nous avons aussi comparé les résultats obtenus avec nos données à ceux
obtenus dans un environnement similaire : un lycée américain où la proximité
entre 788 étudiants a été détectée par des méthodes similaires. Dans cette étude,
la définition d’un contact est légèrement différente de la nôtre, cependant les
résultats obtenus sont assez similaires : notamment les distributions des durées
de contacts et des poids des liens sont des distributions larges avec des pentes
similaires.

Comparaison des différentes méthodes de collecte

de données

La première partie se concentre sur l’analyse de données collectées par une
méthode objective, à savoir l’utilisation de badges qui enregistrent automatique-
ment les contacts (proximité physique et face-à-face) des étudiants. Certains
biais sont ainsi évités. Cependant chacune de ces méthodes a des avantages et
des inconvénients, par exemple les badges permettent d’enregistrer les contacts
de façon objective mais des questionnaires bien étudiés peuvent permettre de
récolter des informations supplémentaires sur les contacts tels que la nature du
contact (professionnel, amitié) et s’il y a eu contact physique ou non. Cette
partie est alors consacrée à la comparaison de différentes méthodes de collecte
de données. Cette comparaison sert de point de départ pour quantifier les biais
associés à chacune des méthodes par rapport à l’utilisation de badges considérée
à l’heure actuelle comme la méthode la plus efficace, et permet aussi de se faire
une idée de la quantité d’informations qui peut être récupérée dans des données
incomplètes et qui pourrait être utilisée dans le contexte de l’étude de la prop-
agation des maladies infectieuses.

Lors du déploiement de 2013, les contacts ont donc été enregistrés avec
l’infrastructure développée par la collaboration SocioPatterns (badges RFID
qui détectent la proximité spatiale de face avec un pas de temps de 20 secon-
des) mais d’autres données ont également pu être collectées : (i) à la fin du
quatrième jour de déploiement, les étudiants ont été invités à remplir une fiche
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Figure 5: Matrices de contacts des densités de liens pour le réseau de contact
obtenu avec les badges le 4ème jour du déploiement (gauche) et pour le réseau
des contacts rapportés par les étudiants.

dans laquelle ils devaient rapporter les noms de ceux avec qui ils avaient été
en contact au cours de la journée et la durée totale approximative (parmi 4
catégories de durée) de contact avec chacun de ces individus, (ii) les étudiants
ont également pu rapporter les noms de leurs amis parmi les autre étudiants par-
ticipants, (iii) enfin certains étudiants ont accepté de fournir leur réseau d’amitié
Facebook. Le premier inconvénient rencontré avec ces méthodes de collecte est
que peu d’étudiants ont participé en comparaison du nombre de participants au
déploiement SocioPatterns.

Dans un premier temps, nous avons comparé le réseau de contact avec le
réseau obtenu avec le sondage “mémoire” ainsi que les différentes réponses des
étudiants à ce sondage. En effet, un contact peut avoir été rapporté par l’un
des deux ou les deux étudiants impliqués dans ce contact et avec une durée
approximative différente. En fait, lorsque deux étudiants ont rapporté un con-
tact entre eux, dans la majeure partie des cas, les étudiants ont rapporté ce
contact avec la même durée approximative. Du côté de la comparaison avec
le réseau des badges, il apparait que la plupart des contacts de courte durée,
tels qu’ils ont été mesurés par les badges, n’ont pas été rapportés alors que
les contacts plus longs ont une probabilité plus grande d’avoir été rapportés ;
de plus tous les contacts enregistrés avec une durée supérieure à environ une
heure ont été rapportés. En contrepartie, la durée de contact rapportée par les
étudiants a tendance à surestimer la durée enregistrée par les badges (ce résultat
est d’ailleurs en accord avec plusieurs études sociologiques qui affirment que les
individus ont tendance à percevoir le temps différemment de la réalité et souvent
à le surestimer). Malgré le faible taux de participation au sondage “mémoire” et
la faible densité du réseau résultant, on a remarqué que la structure générale du
réseau était bien préservée par le processus de sondage, ce qui peut être notam-
ment observé à travers la similarité des matrices de contacts (Figure 3.4). En
conséquence, les données tirées du sondage pourraient éventuellement contenir
assez d’information pour informer des modèles décrivant les contacts humains.
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Les données rapportées par le sondage mémoire correspondent au même type
de relations que celles détectées par les badges, à savoir des contacts ayant eu
lieu. D’un autre côté, les données obtenues par le sondage d’amitié correspon-
dent à un type différent de relation. En effet, on peut s’attendre à ce que
des amis se rencontrent plus souvent mais une amitié ne mène pas forcément à
des rencontres physiques et les contacts n’ont pas lieu qu’entre deux amis. La
comparaison des réseaux de contact (badges) et d’amitié a montré que les con-
tacts les plus longs ont eu lieu entre des étudiants s’étant déclarés comme amis,
la plupart des amitiés déclarées correspondent à des contacts détectés par les
badges, en revanche, beaucoup de contacts de courte durée ne correspondent pas
à des amitiés. De plus, comme dit précédemment, le nombre de participants au
sondage d’amitié est largement inférieur au nombre d’individus qui ont accepté
de porter les badges. Ainsi le réseau d’amitié a beaucoup moins de nœuds et
est beaucoup moins dense que le réseau de contacts. Néanmoins, comme pour
le réseau obtenu avec le sondage mémoire, la structure en classes du réseau de
contact est bien préservée. Encore une fois, on pourrait alors considérer que le
réseau d’amitié contient assez d’information pour informer des modèles.

Le réseau d’amitié Facebook est quant à lui beaucoup plus difficile à anal-
yser. En effet, étant donné le nombre négligeable d’étudiants ayant accepté
de communiquer leur réseau Facebook, le réseau résultant n’est pas, à propre-
ment parler, un réseau puisque pour de nombreuses paires de nœuds, on ne sait
pas s’il existe un lien entre eux ou pas. Ce réseau ci contient bien trop peu
d’information pouvant être utilisée pour la modélisation.

Enfin, des simulations de propagation d’épidémies réalisées sur les réseaux
obtenus avec les badges et avec les deux types de sondages ont montré que
l’utilisation des réseaux obtenus par sondage mène à une grande sous-estimation
du risque épidémique tel qu’il est calculé en utilisant le réseau des badges. La
comparaison des résultats obtenus est intéressante car elle pourrait nous aider
à quantifier et comprendre les biais contenues dans les données auto-rapportées
ainsi que peut-être des pistes pour compenser de tels biais. Cela pourrait
également nous aider à comprendre comment utiliser des données incomplètes
pour informer des modèles de propagation d’épidémies.
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Figure 6: Réseaux de contact, d’amitié et Facebook. Les trois réseaux sont
montrés en utilisant la même spatialisation des nœuds. La couleur du nœud
représente la classe de l’étudiant et sa taille représente son degré dans le réseau
correspondant. *Note : les données Facebook ne donnent pas accès à un réseau
au sens strict du terme car pour certaines paires de nœuds nous ne savons s’il
y a ou pas un lien Facebook entre les deux.
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Figure 7: Nombre de liens dans le réseau échantillonné obtenu avec la méthode
EGOref en fonction du paramètre p. Le nombre de nœuds est fixé égal à celui
du réseau d’amitié. La droite horizontale rouge représente le nombre de liens
présent dans le réseau d’amitié.

Equivalence entre le réseau d’amitié et un échantil-

lonnage non-uniforme du réseau de contact

Dans la partie précédente on a vu que l’utilisation des réseaux obtenus par
sondage dans des simulations de propagation d’épidémie mène à une sous-
estimation du risque épidémique. Dans cette partie, on se concentre sur le
réseau d’amitié et on cherche à simuler les biais dus au processus du sondage
d’amitié par un échantillonnage réalisé sur le réseau de contact. On a vu que
le réseau d’amitié avait beaucoup moins de nœuds que le réseau des contacts et
était également beaucoup plus dilué.

Pour reproduire les biais du processus de sondage et en particulier ceux ob-
servés sur le risque épidémique, nous avons testé plusieurs méthodes d’échantillon-
nage. Dans un premier temps, nous avons utilisé des méthodes qui contrôlent
uniquement le nombre de nœuds du réseau échantillonné. Sans surprise, ces
méthodes ne permettent pas de reproduire les résultats de simulations d’épidémies
obtenus avec le réseau d’amitié. Dans un second temps, nous avons alors testé
des méthodes qui permettaient de contrôler le nombre de nœuds et le nombre
de liens du réseau échantillonné pour pouvoir choisir ces grandeurs égales à celle
du réseau d’amitié. En particulier, nous avons conçu une méthode (méthode
EGOref) qui sélectionne les liens du réseau de contact avec une probabilité
dépendant de leur poids dans le réseau de contact (avec l’hypothèse que les
contacts les plus longs correspondent à des amitiés et que toutes les amitiés cor-
respondent à des contacts) et d’un paramètre p. Ce paramètre peut être choisi
de telle façon que l’on obtienne le nombre voulu de liens dans le réseau résultant
(Figure 4.4).

Cette méthode a permis de reproduire avec beaucoup de fidélité les résultats
obtenus avec le réseau d’amitié et surtout bien mieux que d’autres méthodes
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Figure 8: Résultats de simulations d’épidémies réalisées sur le réseau d’amitié
et les réseaux échantillonnés ayant le même nombre de nœuds et le même nom-
bre de liens que le réseau d’amitié. A gauche : fraction d’épidémies avec une
taille finale supérieure à 20% de la population en fonction des paramètres de
propgation, à droite : taille moyenne des épidémies ayant une taille supérieure
à 20% en fonction des paramètres de propagation.

contrôlant également les nombres de nœuds et de liens (Figure 4.5). Le réseau
résultant a aussi des caractéristiques très proches du réseau d’amitié ; seul le
coefficient de clustering est remarquablement plus petit que celui du réseau
d’amitié mais bien plus grand que pour les autres réseaux échantillonnés. Une
méthode encore plus raffinée de ce modèle notée EGOref-het ne choisit pas
les nœuds entièrement au hasard (elle choisit les nœuds dans chaque classe de
façon à avoir la même division des nœuds en classe que dans le réseau d’amitié
où il n’y a pas du tout le même nombre de nœuds dans chaque classe). Cette
seconde méthode améliore quelque peu les résultats obtenus mais pas de façon
significative. De plus, le coefficient de clustering est toujours bien en dessous de
celui du réseau d’amitié.

Notre modèle EGOref dépend en fait de deux paramètres : le nombre de
nœuds N et le paramètre p. Dans le contexte d’un sondage, ces nombres vont en
fait correspondre au nombre de participants au sondage et à la quantité de con-
tacts rapportés. Cela rend son application possible dans de nombreux contextes :
en effet, nous avons commencé à étudier l’impact de ce type d’échantillonnage
sur d’autres données de contacts collectées dans d’autres environnements, mal-
heureusement la comparaison avec un réseau d’amitié correspondant est impos-
sible car ces autres jeux de données ne combinent pas des données de contacts
et des données d’amitié.

Finalement, nous avons aussi commencé à étudier des stratégies de recon-
struction du réseau de contact à partir du réseau échantillonné. En effet, si
nous pouvons reconstruire un réseau de contact, qui ne serait pas le vrai réseau
de contact mais reproduirait ses caractéristiques, nous pourrions obtenir une
bonne estimation du risque épidémique à partir de données incomplètes. Dans
le cas de processus d’échantillonnage uniformes, des stratégies simples suff-
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isent à reconstruire un réseau de contact de substitution et à évaluer le risque
épidémique dans une population. Cela étant, notre processus d’échantillonnage
reproduisant les caractéristiques du réseau d’amitié n’est pas uniforme et ces
stratégies simples échouent. En effet, la stratégie utilisée préserve la densité du
réseau échantillonné lors de la reconstruction, or, la méthode EGOref a juste-
ment été conçue pour modifier la densité du réseau de contact pour qu’elle cor-
responde à celle du réseau d’amitié. Ainsi, la reconstruction devrait, à partir du
réseau échantillonné reconstruire un réseau ayant une densité bien supérieure.
Les résultats des tests menés sur les réseaux échantillonnés avec la méthode
EGOref dépendent en fait des deux paramètres N et p. En effet lorsque p est
très grand, la méthode de reconstruction est efficace ; cela s’explique par le
fait que lorsque p est très grand la méthode d’échantillonnage s’apparente à un
échantillonnage uniforme.

Conclusion

Dans cette thèse, nous avons contribué à fournir une image plus complète des
réseaux d’interactions humaines. Dans un premier temps, nous avons analysé
des données de contacts collectées de façon objective à l’aide de badges dans un
lycée. L’analyse a révélé les caractéristiques d’un réseau petit monde comme
c’est le cas pour beaucoup de réseaux d’interactions humaines, de plus on a ob-
servé une grande robustesse des caractéristiques du réseau à plusieurs échelles
temporelles. Ensuite, nous avons comparé plusieurs manières de collecte de
données. Cette comparaison a montré que la méthode de collecte utilisant
les badges peut être considérée comme la meilleure à ce jour mais que les
méthodes utilisant des sondages permettent d’obtenir une bonne image de la
structure générale du réseau au moins dans le cas d’un établissement scolaire
où la plupart des contacts ont lieu entre des étudiants de même classe. Cepen-
dant, l’utilisation des réseaux construits à partir de données de sondage pour
la simulation de processus épidémiques mène à une sous-estimation du risque
épidémique. Enfin nous avons reproduit les résultats sur le risque épidémique
obtenus avec le réseau d’amitié avec un échantillonnage du réseau de contact.
Cette méthode d’échantillonnage permettant de reproduire les biais du réseau
d’amitié pourrait nous aider à compenser de tels biais et à apprendre à utiliser
l’information contenue dans des données incomplètes pour obtenir une bonne
estimation du risque épidémique.
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Chapter 1

Introduction

Biological systems, human relationships, airport networks and the Internet are
a few examples of physical systems that all have one thing in common: they
are composed by a large number of interconnected units and can be described
by complex networks [1]. The study of complex networks and their applications
have interested the research community for many years, since the mathematician
Leonhard Euler and the famous Königsberg bridges problem in the context of
graph theory. Recently, the study of complex networks has been extended to
various topics in which complex networks are characterized by complex topology
and heterogeneous structures.

In this thesis, we are interested in the networks of human interactions as
a substrate for spreading processes and in particular spreading of infectious
diseases. The term “human interactions” covers a large number of different types
of interactions, for instance: emails, phone calls, online social networks, scientific
collaborations or face-to-face interactions. In the context of epidemic spreading,
face-to-face contacts are expected to play a crucial role as transmission routes for
infectious diseases. However, contrary to e.g. emails, face-to-face interactions
do not leave any digital trace and thus are more complicated to measure. As
such, the development of measurement strategies has been a major challenge of
the last decades [2, 3].

Traditional methods consist in for instance, time-use data, video monitor-
ing, surveys or diaries. The benefit with surveys and diaries is that they can
ask to participants, in addition to reporting their contacts, an estimation of
contact durations, the possible presence of physical interactions during these
contacts and they might also allow to gather information about other types of
relationships surch as friendships for instance. These self-reporting methods are
however prone to biases due to their subjective character [4, 5].

Recent approaches take advantage of the development of new technologies
based on wearable sensors, which record contacts between participants with a
high spatio-temporal resolution allowing to collect data in an objective way. The
SocioPatterns collaboration [6] has developed an infrastructure based on RFID
(Radio Frequency Identification) which has been deployed in various contexts

3
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[7–12] such as schools, hospitals or conferences participating to the building of
an atlas of human contacts. The main limitation of these methods arises from
the fact that they allow to collect data only in a closed population and contacts
with the individuals not participating to the data collection cannot be recorded.

In both cases, sampling issues might arise if individuals in the target popula-
tion do not want to participate and wear the sensors or do not fill in the surveys.
Moreover, in the case of diaries, individuals might forget about some of their
contacts, especially short ones, yielding a network with a highly underestimated
number of contact links between individuals [13,14]. Indeed, many datasets are
incomplete samples of the actual network of interest. Thus, understanding if
and how incomplete data can be used in data-driven models describing human
interactions or the spreading of infectious diseases and for the design of contain-
ment strategies is of great interest.

The first chapter of this thesis is dedicated to the introduction of basic
concepts used in the study of complex networks and the presentation of datasets
used further in the thesis.

1.1 How to describe networks ?

In the following, we present some useful measurable quantities to classify net-
works. These properties of networks can help us to perform quantitative analysis
when the structure of networks becomes complex.

• A graph, denoted G(N,E), is the representation of a network. In this
thesis, we will the two terms equivalently. N is the number of nodes (or
vertices) in the network and E is the number of edges (or links) in the
network. An edge between the two nodes i and j is denoted (i, j). The
density d of a network is defined as the ratio of the number of edges
to the number of possible edges. Thus, the density is a number between
0 and 1: when d << 1 the network is sparse, when d ≈ 1 the network
is dense. For an undirected network G(N,E) the density is given by
d = E/[N(N − 1)/2]. A directed graph is defined as a set of nodes
and a set of ordered pairs of nodes i.e., edges with a specific direction:
(i, j) is not equivalent to (j, i). As the number of possible edges in a
directed graph is twice higher than in an undirected graph, the density is
dd = E/[N(N − 1)].

• The adjacency matrix of G is a N × N matrix: the element eij is 1
if there is a link between i and j, 0 otherwise. The adjacency matrix of
an undirected network is symmetric while it is asymmetric for a directed
network.

• A (simple) path between two nodes n1 and nk is a sequence of nodes
(n1, n2, ..., nk) in which subsequent nodes are neighbors and all the nodes
are distinct from each other. The shortest path between two nodes is the
path with the smallest number of nodes. The length of the shortest path
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between two nodes is called the distance. The diameter D of a graph is
the largest distance between two nodes of the graph.

• The degree k of a node i is the number of its neighbors V (i). It corre-
sponds to the number of edges incident to this node. The average degree
< k > of a network is 2E/N . The degree distribution P (k) is defined
as the probability that any randomly chosen node has degree k. Usually,
we preferably plot the complementary cumulative distribution function
(CCDF) of degrees which is defined as the fraction of nodes with degree
greater than or equal to k. We measure the level of heterogeneity of net-
works by defining κ =< k2 > / < k > and we distinguish scale-free net-
works (i.e., heterogeneous networks) with κ >>< k > and homogeneous
networks with κ ∼< k >. In a directed graph, we also define the in-degree
of a node kin which is the number of edges that arrive to this node and
the out-degree of a node kout which is the number of edges coming from
this node.

• The clustering coefficient of a graph G is a measure of the tendency
of nodes to cluster together. There are two definitions of the clustering:
a global one which is called transitivity and a local one ci. The local
clustering coefficient for each node is the ratio of the number of triangles
between this node and its neighbors T (i) to the number of possible edges
between its neighbors,

ci =
2T (i)

ki(ki − 1)
.

The definition of the network clustering coefficient that we will use is the
average of the local clustering coefficients of all the nodes.

C =
1

N

∑

i∈G

ci.

• Small-world networks refer to a category of networks in which most
nodes are not direct neighbors of one another but most nodes can be
reached from every other node by a small number of steps. This small-
world phenomenon can be found in many empirical graphs e.g., social
networks, networks of brain neurons, the Internet. This type of networks is
characterized by a large clustering coefficient and a small average shortest
path length: the typical distance is typically of the order of the logarithm
of the number of nodes N in the network L ∝ logN .

• Aweighted network is a network in which a weight wi,j is assigned to each
edge (i, j). The weight of a link is a numerical value which depends on the
nature of the network e.g., if the network represents an airline network,
the weights might represent the number of weekly flights between two
airports. In this thesis, the weight of an edge will represent (most of the



6 CHAPTER 1. INTRODUCTION

time) the time spent in contact by two nodes.
The strength of a node i is the sum of the weights of edges incident to
the node: si =

∑

j∈V (i) wi,j .

• A temporal network is a network that evolves over time. To investigate
the temporal evolution of the network we define new quantities:

– The activity of nodes (resp. edges) is the number of nodes in contact
(resp. number of pairs of nodes in contact) at a specific time interval
and can be plotted over time.

– A contact is defined as an uninterrupted sequence of timesteps in
which two nodes are linked, we define as well the contact duration
dt as a length of this sequence. The inter-contact duration it is the
duration during which a node is not linked to any other node. The
distributions of these quantities help to characterize the dynamics of
the network. In the time-varying networks of face-to-face contacts,
these distributions are broad with large variations.

– A temporal network can be aggregated over time to obtain a static
picture of a time-varying network. In networks depicting face-to-
face interactions, the aggregate contact duration i.e., the total time
spent in contact by two nodes during the aggregation time window
corresponds to the weight of the edge between these two nodes.

• When the nodes of a network can be separated into categories (e.g., gender,
school classes, countries...) we can study the mixing patterns between the
different categories using contact matrices.

We denote the number of nodes in the category X by nX . Then we define
the following possible contact matrices:

– the number of edges between nodes of category X with nodes of cate-
gory Y : EXY =

∑

i∈X,j∈Y eij for X 6= Y (and EXX = 1
2

∑

i,j∈X eij);

– the density of edges between category X and category Y : ρXY =
EXY /E

max
XY , where Emax

XY = nXnY is the maximum possible number
of edges between categoryX and category Y (Emax

XX = nX(nX−1)/2);

– the total number of contacts between nodes of category X with nodes
of category Y : NXY =

∑

i∈X,j∈Y nij (for X = Y we have NXX =
1
2

∑

i,j∈X nij);

– the average number of contacts of a nodes of category X with nodes
of category Y nXY = NXY

nX
;

– the total time spent in contact between nodes of category X with
nodes of category Y : WXY =

∑

i∈X,j∈Y wij (for X = Y we have

WXX = 1
2

∑

i,j∈X wij);

– the average time spent by a node of category X in contact with nodes
of category Y : wXY = WXY

nX
;
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In the context of comparing two matrices, we define the cosine similarity
between 2 matrices M and N as σ(M,N) =

Σi,jmijnij√
Σi,jm

2

ij

√
Σi,jn

2

ij

. This

number between 0 and 1 is close to 1 for similar matrices.

1.2 Epidemic spreading processes on networks

1.2.1 Compartmental models in epidemiology

The spread of infectious diseases is a complex phenomenon that depends on
many factors. A category of mathematical models used to study the dynamics
of outbreaks is the case of compartmental models. In this class of models,
the population is divided into comparments describing the health state of the
individuals. The number of nodes in each compartment fluctuates, whereas the
total number of nodes remains constant (when studying a closed population).
We give two examples of compartmental models: the SI model and the SIR
model.

The SI model

In the simplest epidemic model, the nodes can have two different states: Suscep-
tible (S) or Infectious (I). The number of individuals in each state is denoted
by S and I. The total number of nodes remains constant: N = S + I. A sus-
ceptible node in contact with an Infectious node changes its state to Infectious

with probability β: S + I
β−→ 2I. The Infectious nodes cannot return to the

Susceptible state. We use the mean field approximation i.e., we consider that all
nodes are linked to < k > (average degree) neighbors. In this approximation,
each Infectious individual (I) has < k > S/N Susceptible neighbors, thus the
number of new Infectious individuals per unit time is βI < k > S/N . The
differential equations describing the evolution of the number of individuals in
each compartment are given here (note that here the variables S, I and the time
are continuous):

dS

dt
= −β < k >

IS

N

dI

dt
= β < k >

IS

N

The SIR model

In the SIR model, besides the S and I states, the Infectious nodes transfer

to the immune Recovered state at rate µ: I
µ−→ R (N = S + I + R). The

Recovered individuals cannot infect other individuals and cannot be infected
anymore. As a consequence, the outbreak can stop before infecting all the
nodes. The final fraction of Recovered nodes depends on the parameters β and
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(a) R0 = 1.3 (b) R0 = 10

Figure 1.1: Numerical solution of the differential equations: evolution of the
numbers of Susceptible, Infectious and Recovered nodes over time for two dif-
ferent R0. The dynamic stops when the number of Infectious nodes goes to
zero.

µ. The basic reproduction number defined as R0 =< k > β/µ can be seen as the
average number of individuals an Infectious node will infect before reaching the
Recovered state, it describes the competition between the timescales of recovery
and of transmission. If R0 < 1, the infection will die out before reaching a
significant portion of the nodes, if R0 > 1, the infection is more likely to spread
in a population. The corresponding differential equations are:

dS

dt
= −β < k >

IS

N

dI

dt
= β < k >

IS

N
− µI

dR

dt
= µI

Figure 1.1 shows the numerical solution of the differential equations of the model
for different values of R0. In the case R0 ≈ 1, the final fraction of Recovered
nodes (i.e., the size of the outbreak) is far below 50%, whereas in the case where
R0 >> 1, the whole population has been infected.

1.2.2 How are simulations performed?

In this thesis, the simulations of epidemic spreading are performed with the
SIR model applied in an agent-based approach: the process is stochastic. We
perform the simulations either on dynamic or static networks. For each simu-
lation, we choose at random one node (i.e., the seed) to be the first Infectious
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node. The simulation process is quite different if we choose to use a dynamic or
a static network.

In the case of a dynamic network, we test the transmission of the infection
for each interaction between an Infectious and a Susceptible node. Actually, we
look at the number β×τ (where τ is the duration of the time step) and compare
this number with a random number between 0 and 1. If this number is higher,
the Susceptible node gets infected. For each time step, we also test the recovery
of the Infectious nodes by comparing the number µ × τ to a random number
between 0 and 1. As previously, the change of state happens if this number
is higher than the random number. In our datasets, we have only access to
daytime contacts and consider that nodes are no longer in contact when they
leave the place of data collection. As a consequence, in the case of epidemic
spreading we add “nights” divided in time steps during which Infectious nodes
can recover but cannot transmit the infection to Susceptible nodes.

In the static case, we use the weighted aggregated network where the weight
of an edge is the total time spent in contact by the two nodes during the time of
aggregation. Each weight wij of the network is divided by the total duration T
of the aggregation time. Then we create “days” and “nights” divided in discrete
time steps. For each daytime step, we test the transmission of the infection for
each Susceptible-Infectious edge by calculating the probability β

wij

T
τ and the

recovery of the Infectious nodes with the probability µ× τ . For each nighttime
step, we test only the recovery of the Infectious nodes as above.

In each case, we pursue the simulation until the number of Infectious nodes
is zero by looping back on the data if necessary. For the results to be stastically
significant, we perform at least 1000 simulations for each set of parameters β and
µ. To study the outcome of simulations, we will measure the whole distributions
of the epidemic sizes for each set of parameters, the fraction of epidemics with
size larger than 20% and the average size of epidemics with size larger than
20% (the cut-off of 20% is chosen as a way to distinguish between small and
large epidemics, we can change the value of this cut-off without altering our
conclusions).

1.3 Data collection

In the last years, many efforts have been dedicated to the collection of data
on human behaviours and contact patterns in various contexts [15]. The re-
cent technological advances have helped the research community to move from
traditional methods ranging from diaries and surveys [13,16–24], to new meth-
ods based on wearable sensors able to detect close proximity [13, 25–29] and
even face-to-face contacts between individuals [7–12,30,31]. These methods al-
low to collect high-resolution data in an objective way, avoiding biases due to
self-reporting [13,14,22].
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Figure 1.2: Schematic illustration of the RFID sensor system. RFID badges
are worn by the participants to the study. A contact is detected when two
individuals are close enough and facing each other. The signal of the contact is
then sent to an antenna.

1.3.1 The SocioPatterns collaboration

SocioPatterns is a collaboration for interdisciplinary research between researchers
and developers from the following institutions and companies: ISI Foundation
(Turin, Italy), CNRS - Centre de Physique Théorique (Marseille, France) and
Bitmanufactory (Cambridge, UK). It was originally created by Alain Barrat
(CNRS and ISI Foundation), Ciro Cattuto (ISI Foundation), Jean-François Pin-
ton (ENS Lyon) and Wouter Van den Broeck (ISI Foundation) in 2008.

The SocioPatterns collaboration developed an infrastructure able to obtain
accurate data on face-to-face contacts with high temporal and spatial resolu-
tion. This infrastructure is based on wearable wireless sensors working on RFID
technology. The participants to the deployment wear the sensors as badges. A
contact is detected between two individuals when they are close enough (less
than 1.5-2 meters) from each other and are facing each other (the signal is
tuned so that the human body acts as an obstacle). The signal is then sent
to an antenna (devices are shown in Appendix: Figure A.1). This process is
schematized in Figure 1.2. The temporal resolution is 20 seconds. The system is
used to gather data in various real-world environments as schools, conferences,
workplaces etc.

Further details and information can be found at the SocioPatterns website
[6]. SocioPatterns makes available most of the collected data on a dedicated
webpage: http://www.sociopatterns.org/datasets/

1.3.2 Description of datasets

The most used datasets in this thesis are face-to-face contacts data collected
by the SocioPatterns collaboration in a French high school in Marseille (Lycée
Thiers) over three years from 2011 to 2013. The number of participants involved
and the duration of study vary from one year to another. The data were collected
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in the same environment over the three years but the students changed from
one year to the next.

• In 2011 (Thiers11), the study lasted for 4 days (Tuesday to Friday in
December 2011) and involved 118 students divided into three different
classes.

• In 2012 (Thiers12), the study lasted for 7 days (from a Monday to the
Tuesday of the following week in November 2012) and involved the same
three classes already involved in the study of 2011 plus two other classes
(gathering 180 students).

• Finally in December 2013 (Thiers13), the study lasted for 5 days (from
Monday afternoon to Friday) and involved 327 students of nine classes
(five classes of 2012 plus four other classes).

For each year, metadata about participants were also collected such as class or
gender. Moreover, the dataset of 2013 contains data of different nature:

• At the end of the fourth day (the 5th of Dec.), students were asked to fill in
paper contact diaries giving the list of other students they had had contact
with (where contact was defined as close face-to-face proximity) during the
day in the high school, and to give the approximate aggregated duration
of the contacts with each nominated individual, to choose in one of four
possible categories: at most 5 minutes, between 5 and 15 minutes, between
15 minutes and 1 hour, more than one hour. 120 students returned a filled
in diary (Contact diaries).

• During the period of the deployment, students were asked to give the
names of their friends within the high school. Such friendship surveys
were obtained from 135 students (Friendship).

• Finally, students were asked to use the Netvizz application to create their
local network of Facebook friendships (i.e., the use of the application by
a student yields the network of Facebook friendship relations between
this student’s Facebook friends). 17 students gave access to their local
network, from which we removed all users who were not concerned by the
data collection (Facebook).

We will also use two other datasets collected by the SocioPatterns collabo-
ration in two different settings.

• InVS (workplace): the study lasted for two weeks (24 June - 5 July 2013)
and took place in the office building of the “Institut de Veille Sanitaire”
(the French institute for public health surveillance). The study involved
100 individuals structured in 5 departments.

• SFHH: the study took place during the Congress of the “Société Française
d’Hygiène Hospitalière” (3-4 July 2009) and involved 403 individuals.
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Data set Type N (participation rate) Duration Dates Notes
Thiers11 high school 126 4 days 6-9 Dec. 2011 3 classes + teachers
Thiers12 high school 180 7 days 19-27 Nov. 2012 5 classes
Thiers13 high school 327 (86%) 5 days 2-6 Dec. 2013 9 classes
Contact diaries 120 (37%*) 1 day 5 Dec. 2013
Friendship 135 (41%*)
Facebook 17 (5%*)
InVS workplace 92 (63%) 2 weeks 24 Jun.-5 Jul. 2013 5 departments
SFHH conference 403 (34%) 2 days 3-4 Jun. 2009

Table 1.1: Information about data sets used in this thesis. *Participation rate
with respect to the number of students who participated to the “Thiers13” data
collection.

The main characteristics of each data set is given in Table 1.1. Note that I
have actively participated to the deployment of the Sociopatterns infrastructure
in Lycée Thiers in 2013 (the locations of antennas is shown in Appendix: Figure
A.2) and performed some of the data cleaning on the combined data set of 2013,
moreover I have participated to the discussion leading to the data collection
performed in the Institut de Veille Sanitaire in 2013 as well as to the analysis
performed on the resulting data set (results reported in [32]).

1.4 Overview of the following chapters

This thesis tackles the following topics. In Chapter 2, we present the analysis
performed on the three data sets collected with wearable sensors in Lycée Thiers
in Marseille. We consider the statistical properties of the networks and study
the structure of the network determined by classes. We also compare the contact
patterns on two different timescales: we investigate similarities and differences
between the different days of one specific data set and between the three years of
study. In Chapter 3, we compare different methods of data collection using the
combined data set of 2013 which gathers face-to-face contact data obtained with
sensors, contact data obtained with contact diaries, reported friendships and
Facebook links. We question the possibility of using the information contained
in contact diaries and friendship data to obtain an accurate estimation of the
epidemic risk. In Chapter 4, we investigate whether the underestimation of the
epidemic risk obtained with the friendship network may be seen as biases due
to a sampling process performed on the contact network obtained from sensors.
In Chapter 5, we give a short conclusion and future perspectives.



Chapter 2

Analysis of face-to-face

proximity data

In this chapter, we present the results of the quantitative analysis performed
on the three high school datasets (Thiers11, Thiers12, Thiers13) describing the
contacts between the students. We investigate the mixing patterns of students
and how it is driven by the repartition of students into classes.

We compare the contact patterns on two different timescales: on the one
hand, we examine the similarities and differences between the different days
of one single deployment; on the other hand, even if people change from one
year to the next, we take advantage of the fact that we collected data in the
same environment in three consecutive years and study the long term stability
of contact patterns in this high school.

We finally investigate if gender differences have an impact on contact pat-
terns, as observed in primary school [33].

This chapter covers the results reported in the following paper: Contact
Patterns among High School Students, published in PLoS ONE in September
2014 [34], in which we analyzed only the data sets of 2011 and 2012; this chapter
presents the analysis performed on the data set of 2013 and additional results.

2.1 Study context

The students involved in the study were all part of classes called“classes prépara-
toires”. This type of studies is specific to the French schooling system and
gathers students after the end of the end of the usual high school studies. Dur-
ing the two years of these studies, the students prepare for competitive exams
yielding admission to various higher education colleges. The studies take place
in a high school environment but students are separated from the younger high
school students. In fact, classes are located in a different part of the high school
building and they take lunches separately. The study gathered only students of
second year of this specific school cycle. Indeed, students in second year of these

13



14 CHAPTER 2. ANALYSIS OF FACE-TO-FACE PROXIMITY DATA

Class name Number of individuals Male Female
PC 31 16 15
PC∗ 45 32 13
PSI∗ 42 32 10
teachers 8 5 3
Total 126 85 41

Table 2.1: Classes involved in the 2011 data collection. The study lasted for 4
years in December 2011 (from a Tuesday to the Friday).

Class name Number of individuals Male Female
PC 38 24 14
PC∗ 35 26 9
PSI∗ 41 29 12
MP∗1 31 27 4
MP∗2 35 27 8
Total 180 133 47

Table 2.2: Classes involved in the 2012 data collectionThe study lasted for 7
years in November 2012 (from a Monday to the Tuesday of the following week).

studies have to prepare a small project. Some of them based this project on their
participation to the data collection as well as the use of collected data for some
small scale analysis and numerical simulation. Thanks to their involvement in
the data collection, the participation of students was close to 100%.

The various classes participating to the study focus on different topics: “MP”
classes focus on mathematics and physics, “PC” classes on physics and chem-
istry, “PSI” classes on engineering and finally “BIO” classes focus on biology.
Tables 2.1-2.3 report the class names and the number of individuals of each gen-
der in each class involved in the study. We can notice that there are much more
males than females in “hard sciences” classes while the contrary is observed
in biology classes. Note that all classes involved in the study of 2011 (resp.
2012) are involved in the study of 2012 (resp. 2013) and that the three studies
took place at similar periods of the year; these two facts make the comparison
possible between the different studies.

In order to avoid repetitions, we mainly report results of analysis performed
on the 2013 dataset. Supplementary results for 2011 and 2012 can be found in
the Appendix.
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Class name Number of individuals Male Female
PC 44 26 18
PC∗ 39 23 14
PSI∗ 34 24 10
MP∗1 29 23 6
MP∗2 38 32 6
MP 33 18 12
2BIO1 36 8 28
2BIO2 34 13 20
2BIO3 40 8 32
Total 327 175* 146*

Table 2.3: Classes involved in the 2013 data collection. The study lasted for 5
years in December 2013 (from a Monday to the Friday).*6 students did not give
information about their gender.

2.2 Number and durations of contacts

During the 5 days of data collection of 2013, 67,613 contact events were reg-
istered, corresponding to a cumulative duration of 3,770,160s (approximately
1,047 hours). Table 2.4 reports the number and cumulative duration of con-
tacts registered in each day. Figure 2.1 reports the distributions of contact
and inter-contact durations (time intervals between successive contacts of an
individual) measured over the whole data collection. We recall that a contact
event is defined as an uninterrupted sequence of 20-seconds time steps where
the two individuals are in contact. Most contacts are short, but contacts of very
different durations are observed, including very long ones. While the average
duration of a contact is 56 seconds, and 83% of the contacts last less than 1
minute, approximately 2% of the contacts last at least 5 minutes. The strong
variability in contact durations is shown by the large value of the squared co-
efficient of variation of the distribution, CV 2 = 7.4. In fact, the distribution
is heavy-tailed and can be approximated by a power law: as already observed
in previous studies (e.g., [7, 26, 32]) measuring the durations of contact events
between individuals. We cannot define a characteristic contact time scale. In
other words, the average contact duration is not a good representation of the
actual duration of contacts because both much shorter and much longer con-
tacts can be observed with non-negligible probabilities. That being said, the
duration of contacts play a leading role when studying how outbreaks spread
within a population. In fact, the transmission probability of an infectious dis-
ease between two individuals is generally assumed to depend on the time they
spend in contact: the longer they are in contact, the higher is the probability
of infection. However, it is also well known that the weak ties should not be
neglected in the models of epidemic spreading [35].

On the other hand, the distribution of inter-contact durations is also very
broad: most intervals between periods of activity are very short, but very long
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Number of contacts Cumulative duration of contacts N E
Day Number (% of total) Seconds (% of total) Minutes Hours
Monday (afternoon) 10,539 (15.6) 575,600 (15.3) 9,593 160 312 2242
Tuesday 16,702 (24.7) 946,760 (25.1) 15,779 263 310 2573
Wednesday 14,499 (21.4) 803,480 (21.3) 13,391 223 303 2161
Thursday 13,317 (19.7) 745,580 (19.8) 12,426 207 295 2162
Friday 12,556 (18.6) 698,740 (18.5) 11,646 194 299 2075
Total 67,613 3,770,160 62,836 1,047 327 5818

Table 2.4: Number and duration of contacts in the different days of the 2013
data collection that lasted 5 days.

(a) (b)

Figure 2.1: (a) Distribution P (dt) of contact durations for 2013 data i.e., prob-
ability for a registered contact to last dt, (b) Distribution P (it) of inter-contact
durations i.e., probability that the time elapsed between two successive contacts
of a node is it. The peak on the right correspond to inter-event durations of
one or two nights.

durations are also observed. It can be approximatively fitted by a power law.
This highlights the burstiness of human contacts, already observed in various
contexts where human behavior is involved [36,37].

2.3 Contact matrices

Figure 2.2 reports, in the form of contact matrices, the cumulative durations and
the total numbers of contacts between classes of individuals, measured over the
whole study duration. The second and third rows take into account the different
numbers of individuals in each class yielding asymmetric matrices. The matrices
have a strong diagonal strucure: most contacts occur between students of the
same class (92% of all contacts). These results shows the strong assortativity of
contacts with respect to class and are in agreement with the results obtained in
other school environments [10, 30, 31], moreover in many complex agent-based
models this assortativity is assumed as an important feature of contact networks
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[38]. On the contrary, very few contacts occur between students of different
classes.

Moreover, we can notice more contacts within three groups of classes: the
classes of Biology (2BIO1, 2BIO2, 2BIO3), the classes of Mathematics (MP,
MP*1, MP*2) and the classes of Physics (PC, PC*, PSI*). This substructure
can have two origins: first, the topics studied by classes of each group are similar;
moreover, the classrooms of each group are physically close in the high school.

However, if the number and duration of contacts are very different inside
and outside classes, the distributions of contact durations are very similar: these
distributions are broad with strong fluctuations. The main difference is that the
maximal contact duration within classes is higher than the maximal duration
of inter-classes contacs (Figure 2.3).

The contact matrix representation of the data in Figure 2.2 gives a picture
in which all students in class X are in contact with all students of class Y, even
if the numbers and durations of contacts vary strongly. Figure 2.4 shows the
numbers and densities of edges between pairs of classes. We observe that the
density of edges is instead very small for distinct classes, and that it is still far
from 1 inside each class, even if it takes much larger values. This shows the
interest of investigating contact patterns in more detail by studying the contact
network structure.
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Figure 2.2: Contact matrices giving the cumulated durations in seconds (first
column) and the numbers (second column) of contacts between classes during
the whole study. In the first row, the matrix entry at row X and column Y
gives the total duration (resp. number) of all contacts between all individuals
of class X with all individuals of class Y . In the second row, the matrix entry
at row X and column Y gives the average duration (resp. number) of contacts
of an individual of class X with all individuals of class Y . In the third row, we
normalize each matrix element of the second column matrices by the duration of
the study, in days, to obtain at row X and column Y the average daily duration
(resp. number) of contacts of an individual of class X with individuals of class
Y .
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Figure 2.3: Distributions P (dt) of contact durations for intra-class contacts and
inter-class contacts.

Figure 2.4: Contact matrices of edge numbers and densities. Left: the matrix
entry at row X and column Y gives EXY , i.e., the number of pairs of individuals
of classes X and Y who have been in contact at least once during the study.
Right: the matrix entry at row X and column Y gives ρXY , i.e., EXY normalized
by the maximal possible number of pairs of individuals of classes X and Y .
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2.4 Contact network

The contact network representing the data set of 2013, aggregated over the
whole study duration, has 327 nodes representing the 327 students, and 5818
edges corresponding to the pairs of students who have been in contact at least
once during the data collection. The contact network displays the properties
of a small-world network: the average shortest path length in this network is
equal to 2.15, and its clustering coefficient is equal to 0.503 (a random network
with the same number of nodes and edges would have a clustering coefficient
≈ 0.11).

Figure 2.5 shows a spatialization of the network obtained with the Force
Atlas algorithm of the Gephi software; this algorithm helps to visualize network’s
structure by using a model in which nodes repulse each other (like magnets)
while edges attract the nodes they connect (like springs). This layout highlights
the strong modular structure of the network in classes. Besides the structure in
classes, we can distinguish the additional substructure of the 3 groups of classes:
only the class PSI* seems to be equally close to two groups (MP classes and PC
classes).

Figure 2.6 displays the distributions of nodes’ degrees and of edges’ weights
in the global aggregated network (i.e., aggregated over the whole duration of
the study). The average degree of nodes in the aggregated network is equal to
35.6. The contact network is homogeneous in terms of degrees as seen in the
distributions of nodes’ degrees: the degree distribution is narrow (CV 2 = 0.14)
as observed in many empirical networks of human contacts in various contexts
[8, 10, 11, 26, 32]. The distribution of weights, on the other hand, shows strong
fluctuations (CV 2 = 14.9). It is a heavy-tailed distribution that can be fitted by
a power law. The average amount of time spent in interaction by two persons is
648 seconds (10 min 48 s) during the whole study duration, but very different
values of weights can be observed. Most cumulated durations are short (62% of
the pairs of individuals who have interacted at least once have been in contact
less than 2 minutes over the whole data collection period), but large values are
also observed: 16% have spent more than 10 minutes in contact and 4% more
than 1 hour. This strong heterogeneity is not entirely due to the structure in
classes of the network. In fact, the same heterogeneity is also observed if we
restrict the distributions to the links between students of the same classes or
between students of two different classes as shown in Figure 2.7. The main
difference is the maximal edge weight which is higher for intra-class edges than
for inter-class edges.
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Figure 2.5: Representation of the network of contacts between students, aggre-
gated over the whole study duration for 2013. Each node represents a student,
its color corresponds to the student’s class and its size represents its degree.
Created using the Gephi software: http://www.gephi.org.

(a) (b)

Figure 2.6: (a) Complementary Cumulative Distribution Function (CCDF) p(k)
of nodes’ degrees (inset: same distribution in log-lin scale) i.e., probability for
a node to have degree greater or equal to k. (b) Distribution p(w) of edges’
weights.
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(a) (b)

Figure 2.7: Distributions p(w) of edges’ weights for (a) intra-classes edges and
edges within one specific class and for (b) inter-classes edges and edges between
a specific pair of classes.

2.5 Gender homophily

In this section, we investigate if new specific structures emerge from the individ-
ual characteristics of students such as gender, as already observed for classes.
The term homophily refers to the preference that individuals exhibit when they
interact and build social ties with peers they consider to be alike. It is a well-
known feature of human behavior and has been studied in many contexts [31,39].
This homophily can be associated to the gender, the age or the political opin-
ions. In sociology, it is a well known fact that children tend to exhibit gender
homophily at school, and that this tendency decreases with age, especially dur-
ing adolescence. Statistical evidence of gender homophily has also been obtained
in a high-resolution time-resolved data set describing face-to-face proximity of
children in a primary school [33]. The present data set describes the interac-
tions of young adults in a high school context, and it is therefore of interest to
investigate the possible presence of gender homophily with the same methods.

Figure 2.8 displays contact matrices giving the normalized numbers of con-
tacts and the densities of edges between individuals of given units (class +
gender). Each unit is obtained by dividing each class in two groups accord-
ing to the students’ gender. Note that we remove the 6 students for whom
the gender is unknown. The resulting network has 321 nodes and 5615 edges.
Moreover, we look at each group of classes (groups: Biology stands for 2BIO1,
2BIO2 and 2BIO3 classes, Mathematics stands for MP, MP*1 and MP*2 classes
and Physics stands for PC, PC* and PSI* classes) separately for more clarity; it
is not a big issue because there are very few contacts between different groups.
As the numbers of male (M) and female (F) students are strongly different
(see Table 2.3), with much more male than female students (except for Biology
classes where it is the contrary), we consider normalized contact matrices: for
the number of edges, we normalize by the maximum number of edges between
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Group of classes Biology Mathematics Physics All classes

MM links 8.9% 58.5% 40.7% 32.9%
FF links 53.1% 6.3% 15.1% 26.4%
MF links 38% 35.2% 44.2% 40.7%

Null model
MM links 6.8% 55.6% 40.9% 32.3%
FF links 54% 6.2% 12.7% 24.8%
MF links 39.2% 38.2% 46.4% 42.9%

Table 2.5: Percentage of male-male links (MM), female-female links (FF) and
male-female links (MF) in each group of classes for the original data and in the
null model. Here we consider only links within each group of classes and not
links between two different groups of classes.

each pair of groups and, for the contact durations, each matrix element at row X
and column Y is normalized by the number of individuals in group X in order to
give the average time spent by a member of group X with individuals of group
Y.

The contact matrices display a block diagonal form, each 2x2 block cor-
responding to a class. The number and durations of contacts among female
students is slightly lower than among male students; in the global aggregated
contact network, 32.9% of the edges join two male students, 26.4% join two
female students, and 40.7% are between students of different gender. In Table
2.5, we show these percentages within each group of classes.

These values seem to indicate a preference for contacts with students of
the other gender among male students and for students of the same gender for
female students in Biology classes while it is the contrary in MP and PC classes.
This appears as well through the distribution of the same gender preference
index Psg: for each individual, this index is defined as the fraction of edges,
in the aggregated contact network, with individuals of the same gender. The
corresponding distributions are shown separately for male and female students
as boxplots and for each group in Figure 2.9 for the contact network aggregated
over the whole data collection, averages of these distributions are shown in Table
2.6. In Biology classes, the fraction of same-genders neighbors is much higher
for female students than for male students while the opposite is observed in
Mathematics classes. In Physics classes, the Psg is higher for males than for
females but the difference is not as striking. For the whole network, the Psg is
a little higher for males than for females.

To interpret these values, we need however to take into account the very
strong imbalance between male and female students inside classes, which clearly
plays an important role here. For instance, we recall that there are much more
female students in Biology classes. In the limit of a very small fraction of
male students, the fraction of male-male interactions would be negligible even
in the case of a fully homogeneous, gender-indifferent, mixing of individuals.
We therefore consider a simple null model, given by a graph with the same



24 CHAPTER 2. ANALYSIS OF FACE-TO-FACE PROXIMITY DATA

Figure 2.8: First column: Densities of edges between groups of individuals (class
+ gender) of the aggregated network for Biology (1st row), Mathematics (2nd
row) and Physics classes (3rd row). Second column: Normalized numbers of
contacts for the whole study duration for Biology, Mathematics and Physics
classes.
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Figure 2.9: Boxplots showing the distributions of the fraction of edges with
students of same gender for males and females with empirical data and using
the null-model described below for each class. The centre of each box indicates
the median of the distribution, its extremities the 25% and 75% quartiles.

Group of classes Biology Mathematics Physics All classes

Males 34.5 72.1 63.3 62.2
Females 70.4 32.5 43.9 56.5
Males (reshuffled
network)

30.1 70.5 62.7 60.6

Females (reshuf-
fled network)

69.0 28.6 36.6 53.0

Table 2.6: Average same gender preference index for males and females of each
group of classes, for the original data and in the null model.



26 CHAPTER 2. ANALYSIS OF FACE-TO-FACE PROXIMITY DATA

number of nodes and edges but randomly placed edges with a supplementary
condition: we keep the matrix of number of edges between groups of classes
unchanged, e.g., an edge between a Biology class and a Mathematics class will
remain between a node of Biology classes and a node of Mathematics classes.
As a result, the fractions of edges joining male students, female students and
students of different gender in the reshuffled network are given in Table 2.5.
The results are averaged over 1000 realizations of the null model.

Moreover, the distributions and averages of the same gender preference index
in the reshuffled network are shown in Figure 2.9 and Table 2.6. The average
value of the same gender preference index is systematically slightly lower in the
null model than in the empirical data for both male and female students. This
tends to indicate a slight tendency towards gender homophily for both genders.
The boxplots displayed in Figure 2.9 show however that this tendency is not
statistically significant, and that the observed data is in fact compatible with a
null hypothesis of absence of homophily and of gender indifference in the contact
patterns of the students. We also note that keeping only the links corresponding
to a weight larger than a given threshold, corresponding e.g., to an aggregated
interaction duration of 2 or 5 minutes over the study duration, changes the
number of edges of each type but does not change the results concerning the
absence of gender homophily.

Another way (and reason) to assess the presence of homophily in the classes
is related to the information of epidemiological models by data on human con-
tacts. As appears clearly from the contact matrix and contact network analysis,
the population of high school students is far from being homogeneously mixed,
and it is certainly relevant to use a level of description in which students are
divided into groups corresponding to their respective classes. If a strong gen-
der homophily were to be observed, corresponding to the presence of a strong
group substructure inside classes, it would as well be important to consider
such substructure in models of contact patterns in order to describe spreading
phenomena in such population. The assessment of such properties is thus re-
lated to the issue of the amount of information needed to inform models, as
discussed in [8, 40, 41]. While a detailed analysis of spreading processes in the
population under study goes beyond the scope of the present investigation, we
investigate this point through numerical simulations of a simple SIR spreading
process: we have performed these simulations on two different representations
of the network. In the CM representation, the weights of links are taken from
the matrix of contact durations in which nodes are divided into classes: all links
corresponding to a cell of the matrix have the same weight which the average
weight. The CMg representation is almost the same, except we take the ma-
trix where nodes are divided into classes and gender. The results are shown in
Figure 2.10. We do not observe any difference between the two representations:
hence, a description of the contact patterns at the level of classes corresponds to
a sufficient resolution and there is no need to represent the students population
at the finer level of a division into gender groups in each class.
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(a) (b)

(c) (d)

Figure 2.10: Results of the simulation of a stochastic SIR process with different
values for β/µ using different representations of the contact patterns between
students. (a) Distributions of epidemic sizes for β/µ = 30. (b) Distributions
of epidemic sizes for β/µ = 100. (c) Fraction of epidemics with size above
20% (at least 20% of recovered individuals at the end of the SIR process) as a
function of β/µ. (d) Average size of epidemic with size above 20% as a function
of the parameter of spreading β/µ. (Representations: In the CM network, the
weight of links are taken from the matrix of contact durations in which nodes
are divided into classes. In the CMg network, the weight of links are taken
from the matrix of contact durations in which nodes are divided into classes +
gender.)
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2.6 Longitudinal analysis at daily scale

Let us now turn to the longitudinal analysis of the dynamic network. Actually,
our data sets allow us to have an instantaneous picture of the contact network
every 20 seconds. Then we can aggregate these snapshots over different time
windows. The study of the similarities and differences of contact patterns de-
pending on the length of the aggregation window is of particular interest as it
can help us to understand for instance how much information is lost if data are
gathered only during one single day or few days, and how much data gathering
is needed to inform models of human behavior.

2.6.1 Temporal evolution of contact patterns

In this section, we look at the time evolution of properties of the network. Figure
2.11 reports the evolution of the number of contacts at two different temporal
resolutions: on the left we show this evolution over the whole study duration per
one-hour time windows, on the right we look at the evolution over the course of
each day discretized in 10-minutes time windows.

The number of contacts fluctuates strongly over the course of each day.
Class breaks and lunch breaks are determined by strong peaks of activity. As
the students leave the area of deployment after the end of lectures (around
5PM), the activity drops to zero at night. However, the evolution pattern is
very similar from one day to another with peaks at the same time of the day, a
feature already observed in other contexts [12].

Figure 2.12 shows the time evolution of the average strength and degree
during the five days of study. The total time spent in contact by an average
student grows regularly over time, both with students of the same class and with
students of different classes, showing that the average amount of time spent in
contact each day by a student does not fluctuate strongly from one day to the
next, as also observed in a primary school [10]. However, the average strength is
much higher for intra-class edges than for inter-class edges. Notably, the average
number of distinct individuals with whom a student has been in contact also
displays a strictly increasing behavior over the whole study duration, with no
clear saturation trend. Note that Figure 2.12 shows average values: at each
time the distribution of degrees is similar to the one displayed in Figure 2.6(a),
the average value of this distribution increases as time increases but the shape
remains similar. This means that an average student continues to meet new
persons each day, and that his/her neighborhoods in the contact network, i.e.,
his/her individual contact patterns, change from one day to the next. The
figure also shows that students meet a larger number of distinct individuals of
the same class than of other classes, as expected from the previous analysis of
contact matrices and networks, and that both numbers continue to grow during
the whole study.
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(a) (b)

Figure 2.11: (a) Evolution of the number of contacts per one-hour time-windows
during the study. (b) Evolution of the number of contacts per 10-minutes time-
windows for each day of the study.

(a) (b)

Figure 2.12: (a) Time evolution of the average time spent in contact (strength)
by a student during the study. (b) Time evolution of the average degree during
the study.
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(a)

Cosine similarity b/t Monday Tuesday Wednesday Thursday Friday
contacts matrices

Monday 1 0.98 0.98 0.97 0.95
Tuesday 0.98 1 0.96 0.95 0.94

Wednesday 0.98 0.96 1 0.93 0.93

Thursday 0.97 0.95 0.93 1 0.94
Friday 0.95 0.94 0.93 0.94 1

(b)

Cosine similarity b/t Monday Tuesday Wednesday Thursday Friday
contacts matrices

Monday 1 0.83 0.75 0.80 0.72
Tuesday 0.83 1 0.64 0.77 0.68

Wednesday 0.75 0.64 1 0.71 0.73
Thursday 0.80 0.77 0.71 1 0.82
Friday 0.72 0.68 0.73 0.82 1

Table 2.7: (a) Cosine similarities between contact matrices of the first column of
Figure 2.13. (b) Cosine similarities between contact matrices in which diagonal
elements are ignored. The numbers in blue (resp. red) are the maxima (resp.
minima) of the table.

2.6.2 Comparison of daily patterns

We define contact matrices for each day, each morning (before 12PM) and each
afternoon (after 12 PM) in Figure 2.13. Note that the study started at 12
PM the monday; as a consequence, we do not define morning or afternoon
matrices for this special day. The number of contacts between classes fluctuate
from one day to the other and between morning and afternoon. However, the
structure of the contact matrices presents a robust pattern, with higher values
on the diagonal and the additional substructure corresponding to the 3 groups of
classes, already observed in the contact matrix aggregated over the whole study
duration. To quantify more precisely this observation, we compute the cosine
similarities between (i) pairs of daily contact matrices and (ii) morning and
afternoon contact matrices for each day. The values are given in Table 2.7(a),
they are very large with a minimum of 0.93. The similarities between morning
and afternoon contact matrices are also very high with minimum at 0.85 (Table
2.8). We also check if these large values are only due to the diagonal elements
of the matrices as they take much larger values than the off-diagonal elements.
The corresponding values, given in Table 2.7(b), are still large with a minimum
of 0.64 and a maximum of 0.83. This shows that, despite the fluctuations in the
number of contacts, the structure of the contacts between classes is very robust
across different days, and is well captured by a data collection performed on
any given day.

This robustness is also observed in the statistical properties of the contact
networks of different days. We investigate this point in Figure 2.14. The dis-
tributions of weights, durations of contact events and inter-contact durations
overlap from one day to the other; the fitting by a power law yields similar ex-
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Figure 2.13: First column: Contact matrices giving the numbers of contacts
between classes for each day of the study. Second column: contact matrices for
each morning (before 12:00 p.m.). Third column: same for each afternoon (after
12:00 p.m.). The matrix entry at row X and column Y gives the total number of
contacts between all individuals of class X with all individuals of class Y during
the aggregation interval (one day, one morning or one afternoon).



32 CHAPTER 2. ANALYSIS OF FACE-TO-FACE PROXIMITY DATA

Cosine similarity b/t morning and afternoon
Tuesday 0.94

Wednesday 0.85
Thursday 0.98
Friday 0.90

Table 2.8: Cosine similarities between each pair of morning-afternoon contact
matrices of Figure 2.13 (2nd and 3rd columns).

ponents for different days. The degree distributions have different average values
but the shapes are similar; when rescaled by the average value the distributions
are superimposed.

The previous figures display distributions and aggregated measures of the
network; we now turn to a comparison at the individual level. Figure 2.15
displays boxplots of distributions of cosine similarities. These cosine similarities
measure the change in nodes’ neighborhoods between each pair of different days
of the study. The similarity between the neighborhoods of an individual i in the
contact networks measured in two different days denoted 1 and 2 is measured
through the cosine similarity defined this way:

σ1,2(i) =
Σjwij,1wij,2

√

Σjw2
ij,1

√

Σjw2
ij,2

The distributions shown in Figure 2.15 are obtained in the following way: in each
class, for each person we calculate the cosine similarities of his/her neighborhood
for each pair of days. Note that we distinguish intra-class and inter-class neigh-
borhoods. Each distribution thus corresponds to 10(couples of days)*N(number
of students in the class) similarity values. Cosine similarities restricted to intra-
class neighborhoods tend to be larger than the ones restricted to inter-class
neighborhoods, indicating a slightly larger stability of intra-class neighborhoods.

In both cases, the values of cosine similarities are rather far from 1, indicating
than the neighborhoods of each student change significantly accross the days.
However, without comparison to any reference values, we cannot state on the
character of these values. In other terms, to know if these empirical values
should be considered “small” or “large” , we need to compare them to values
obtained with null models. Table 2.9 lists the null models used. We first consider
null models in which the network edges are placed at random between the nodes
of the networks. We also consider edge rewirings which conserve the degree of
each node (“Sneppen-Maslov” null model [42]). Finally, we keep the network
topology unchanged but we reshuffle the weights on the edges. In the (b) version
of each null model, the additional constraint is to keep the contact matrix of
link densities unchanged.

The distributions of the cosine similarities obtained through the use of null
models are shown as boxplots in Figure 2.16. The empirical values are much
larger than the ones obtained with the null models, even with the last null
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(a) (b)

(c) (d)

Figure 2.14: Properties of daily aggregated networks. (a) CCDF of nodes’
degrees of the daily aggregated networks rescaled by the average degree < k >
of each daily network. (b) Distribution of edge weights for each daily network.
(c) Distribution of contact durations in each day. (d) Distribution of inter-
contact durations.
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Figure 2.15: Boxplots showing the distributions of cosine similarities of neigh-
borhoods of nodes in pairs of daily contact networks, for each class and for
the whole population, and restricting the neighborhoods to intra-class (blue)
and inter-class (red) neighborhoods. The center of each box gives the median
(value given above each box) and its extremities correspond to the 25% and
75% quartiles. The star symbols show the mean value of each distribution.

model in which the topological structure of the contact network and the sta-
tistical properties of the cumulative contact durations are kept at the level of
each class. This comparison helps us to conclude that the changes of students’
neighborhoods from one day to another observed in the empirical network are
substantial, but much less than in a situation in which contacts would occur
at random. Moreover, not only the topological structure of the networks is im-
portant but also the attribution of weights in the network. This emphasizes
the need to take this robustness of contact patterns into account in models of
contacts between individuals, as done e.g., in [8].
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Figure 2.16: Boxplots showing the distributions of similarities of nodes’ neigh-
borhoods in different days (for all pairs of days in the data set), for the empirical
data and for the various null models (1000 realizations for each). The center of
each box gives the median (first value given above each box) and its extremities
correspond to the 25% and 75% quartiles. The star symbols show the mean
value (second value given above each box) of each distribution.
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Name of the null-model Description
Random graph (a) All edges with their weight are replaced randomly in

the graph.
Random graph (b) Same as above although each edge between class X

and class Y is replaced randomly remaining between
class X and class Y.

Rewiring Sneppen-Maslov (a) Choose 2 edges A-B and C-D such that A is not
linked to D and B is not linked to C; Remove these
edges replacing them by edges A-D (with weight of
edge A-B) and C-B (with weight of edge C-D). Re-
peat this procedure approximately 3∗E (E: number
of edges) times.

Rewiring Sneppen-Maslov (b) Same as above although we do this separately for
each pair of classes (and inside each class). Between
two classes X and Y: A and C must be in class X
and B and D must be in class Y. Inside a class X:
A, B, C, D must be in class X. Repeat the procedure
approximately 3 ∗ EXY (EXY : number of edges be-
tween class X and class Y)/ 3 ∗EXX (EXX : number
of edges inside class X) times. Note: when we cannot
find enough nodes that meet the eligibility criteria in
a specific cell, we do not do the rewiring.

Weight reshuffling (a) The topology of the graph remains unchanged but
the weights of the edges are reshuffled randomly.

Weight reshuffling (b) Same as above although weight reshuffling is done for
each pair of classes (or within each class) separately.

Table 2.9: Description of the null-models used.
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2.7 Long-term stability of patterns

We take here advantage of the fact that data was collected in the same context in
three different years and that each class participating to the study on a specific
year is involved in the data collection of the following year to investigate the
long term stability of the contact patterns between students in the high school.
As students participating in the data collection in the three years were not the
same, we cannot study the change in individual behaviors, but focus on the
overall structure of the contact networks and matrices.

Figure 2.17: Representation of the three networks of 2011, 2012 and 2013 (from
left to right). Each node represents a student, its color corresponds to the stu-
dent’s class and its size represents its degree. Created using the Gephi software:
http://www.gephi.org.

Table 2.10 compares the main statistics of the aggregated contact networks
of 2011, 2012 and 2013, both at the global level and for each class. Despite
fluctuations in the absolute values, which can be expected as the data concerns
different sets of individuals and different durations of study, similar properties
are observed, with high values of the clustering coefficient and small average path
lengths. Higher edge densities are also observed within each class, consistently
with the strong class structure observed previously.

Figure 2.18 displays the distributions of nodes’ degrees and link weights of
the contact networks obtained in 2011, 2012 and 2013, aggregated over the
whole data collection duration, as well as the distributions of contact durations.
All distributions are very similar, with an exponential decrease at large degree
values for the degree distributions, and very broad weights and contact duration
distributions which collapse on top of each other for the data obtained in the
different years.

Figure 2.19 moreover displays the contact matrices describing the structure
and numbers of contacts between classes. We evaluate the similarity between
the contact patterns of two specific years by computing the cosine similarity
between the matrices of the two years. As the classes involved in the three
studies are not entirely the same we compute the similarities between two years
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Year of study 2011 2012 2013

N 126 180 327
E 1,710 2,220 5,818
Number of contacts 10,432 19,774 67,613
Cumulative dura-
tion of all contacts

561,010s
(156 hrs)

900,940s
(250 hrs)

3,770,160s
(1,047 hrs)

Density 0.22 0.14 0.11
Density inside
classes

0.57 0.51 0.66

Coefficient of clus-
tering

0.58 0.48 0.50

Coefficient of clus-
tering inside classes

0.71 0.65 0.77

Average shortest
path length

1.95 2.15 2.15

Average shortest
path length inside
classes

1.44 1.53 1.31

Table 2.10: Comparison of the properties of the global aggregated networks of
the 2011, 2012 and 2013 data collections.

on contact matrices restricted to classes the two data sets have in common. The
results are given in Tables 2.11(a)-(c) for each type of matrix (contact durations,
contact numbers, link densities) and for each pair of data sets (2011 with 2012,
2011 with 2013 and 2012 with 2013). We obtain very high values; even the
smallest value is around 80%.

The overall contact structures are therefore very robust from one year to
the next, despite the different populations involved. In order to investigate in
more detail these similarities between years, we show in Figure 2.20 the tempo-
ral evolutions of the number of contacts registered in one-hour time windows in
the three cases. The number of contacts vary strongly within each day, but the
temporal patterns are very similar from one day to another in the three cases,
with daily rhythms due to class and lunch breaks. In the three cases however,
the contacts of each individual in different days are not completely the same,
as shown for 2013 in Figure 2.12 and through the measure of the cosine simi-
larities of neighborhoods in different daily aggregated networks (Figure 2.15).
Interestingly, the distributions and average values of these cosine similarities
take similar values in both years: for instance, the average values of the cosine
similarities of individual neighborhoods in different days vary from 0.35 to 0.43
in the 2011 data set, from 0.29 to 0.44 in the 2012 data set and from 0.35 to 0.57
in 2013. The rates of renewal of the contact neighborhood of each individual is
thus as well a robust property of these data sets.
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(a) (b)

(c) (d)

Figure 2.18: Properties of aggregated contact networks of 2011, 2012 and 2013.
(a) CCDF of nodes’ degrees. (b) Distribution of edge weights. (c) Distribution
of contact durations. (d) Distribution of inter-contact durations.
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Figure 2.19: Contact matrices giving the cumulated durations of contacts (1st
row), the number of contacts (2nd row) and densities of edges between classes
(3rd row) for 2011 (1st column), 2012 (2nd column) and 2013 (3rd column).
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(a)

Cosine similarities for contact durations matrices
2011 2012 2013

2011 1 0.91 0.96
2012 0.91 1 0.78
2013 0.96 0.78 1

(b)

Cosine similarities for contact numbers matrices
2011 2012 2013

2011 1 0.89 0.96
2012 0.89 1 0.82
2013 0.96 0.82 1

(c)

Cosine similarities for link densities matrices
2011 2012 2013

2011 1 0.98 0.99
2012 0.98 1 0.96
2013 0.99 0.96 1

Table 2.11: Cosine similarities between contact matrices of different years for (a)
contact durations matrices, (b) contact numbers matrices and (c) link densities
matrices (Figure 2.19).



42 CHAPTER 2. ANALYSIS OF FACE-TO-FACE PROXIMITY DATA

(a) 2011 (b) 2012

(c) 2013

Figure 2.20: Evolution of the number of contacts per one-hour periods the (a)
2011, (b) 2012 and (c) 2013 data sets.
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2.8 Comparison with another similar study

Comparison of data collected in different environments of similar nature is also
important, in particular to highlight similar patterns in specific structures and
therefore to inform mathematical models. Few studies using wearable sensors,
and giving access to high-resolution data on contacts between individuals, are
however available. Here, we compare our data sets (Thiers11,12,13) with the
data set made public by Salathé et al. [26], which gives the durations of close
proximity events between 788 individuals (mostly high school students, but also
teachers, high school staff and others) during a typical day in an american high
school. This contact network has 118,291 links, a coefficient of clustering equal
to 0.5 and a small average shortest path length (1.62). In Figure 2.21, we
compare some statistical properties of the contact networks. The definition of
a contact is slightly different in the data set of Salathé et al. as the sensors
detect a contact within a distance of 3 meters. As a consequence, the average
degree is much higher (299.5) than in our data sets (between 24 and 36 for the
three different years). Once rescaled however, the distributions of degrees of
the aggregated networks are similarly short-tailed, albeit with slightly different
functional shapes. Most importantly, the distributions of the contact durations
and of the edge weights in the contact networks are very similar in the four
studies, with similar slopes and heavy-tails. Moreover, the average duration
of a contact is similar in the four studies: between 45 seconds and 1 minute.
Finally, contrary to our data sets, no specific structure (e.g., classes, functions:
students or teachers...) can be defined from the analysis of the contact network.
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(a) 2011 (b) 2012

(c) 2013

Figure 2.21: Comparison of the distributions of (a) degree in the aggregated
network, (b) cumulated contact durations, (c) durations of contact events, for
the data sets analyzed above and the data set of [26])
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2.9 Conclusion

In this chapter, we have presented the analysis of three high-resolution face-
to-face contact data sets collected in a high school three years in a row using
wearable sensors. We have focused some parts of our analysis on the third one,
which was collected in December 2013, to avoid repetitions.

Many results can be drawn from this analysis. The network of contacts
aggregated over the whole study has a small diameter and a high coefficient of
clustering, which is common in many human interactions networks. Moreover,
the network is highly structured by classes, similarly to what was observed in
a primary school [10]. The distribution of degrees is narrow i.e., the number
of distinct individuals with whom a student has been in contact does not show
strong fluctuations. On the contrary, the distributions of contact durations and
edges’ weight are heavy-tailed with strong variations i.e., very short contacts
occur as well as very long ones. As a consequence, no particular timescale can be
defined. This is in agreement with results obtained in other environments [9–12].

The contact matrices highlight the structure in classes of the network with
much larger values on the diagonal (which corresponds to the contacts within
each class). Moreover, an additional substructure has been found gathering
classes in 3 distinct groups of 3 classes each: Biology classes (2BIO1, 2BIO2,
2BIO3), Mathematics and Physics classes (MP, MP*1, MP*2), and Physics,
Chemistry and Engineering classes (PC,PC*,PSI*). While the large values of
the number of contacts inside each class is expected due to the school structure
and schedule, the off-diagonal structure reflects patterns which are more due to
either spatial arrangements of classes inside the high school or to similarities in
the dominant subjects studied by the students. Given this structure in classes
and groups of classes, it is clear that a homogeneous mixing of nodes would not
be a good representation of the network. That being said, we have seen that
taking into account an additional division of nodes in subgroups determined by
the gender does not bring additional information as no strong gender homophily
was observed in our data set, contrary to the case of a primary school [33]. The
division of the population at the level of classes appears as an adequate level
of description, for instance when designing a model of contacts to evaluate the
outcome of a spreading process in this population [38].

In the context of the design of data-driven realistic models for human con-
tacts, or for the information of models of spreading processes, the robustness
of contact patterns at different timescales represents also a crucial information.
For instance, the number of contacts fluctuates strongly over the course of the
day while the evolution of the number of contacts is very similar from one
day to another with, for instance, peaks of activity determined by lunch and
class breaks. In addition, other properties of the network are extremely robust
between the different days of the study: the statistical distributions of contact
characteristics and nodes degrees of different days overlap, and contact matrices
have very high similarity from one day to the other. This robustness of patterns
is observed at a daily scale, as well as at a yearly scale with the comparison of
these properties between the studies performed on different years, namely 2011,
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2012 and 2013, with different students.
Interestingly, at the individual level, the contact patterns are not the same

in different days, as we see from the measure of the average cosine similarity of
students’ neighborhoods in daily aggregated networks. However, the values of
cosine similarities obtained for the empirical contact network are much larger
than the ones obtained with null models where edges are reshuffled randomly,
and even when the null model only reshuffles the weights of edges but keeps
the topology of the network unchanged, showing that the specific position of
weights in the network is somehow correlated to the topology of the network.

To our knowledge, few studies have performed similar analyses on contact
patterns between high school students. In [26], Salathé et al. have collected
data about close proximity events between 788 students of an American high
school during one specific day. Given the different definitions of contact in the
two studies, the average number of distinct neighbors in the aggregated contact
networks are different: 35.6 for the present study and 299.5 for [26]. As a
consequence, the distributions of degrees of the two different studies are not
comparable, however, once rescaled by the average degree, these distributions
are similarly short-tailed, albeit with slightly different functional shapes. Most
importantly, the distributions of the contact durations and of the edge weights
in the contact networks are very similar in the two studies, with similar slopes
and heavy-tails.

The use of wearable sensors appears as an appealing method to measure
contacts between individuals as it allows us to have time-resolved contact data
without some biases of other traditional methods such as surveys or time-use
data [15, 17, 19, 20, 24]. However, all these methods have both advantages and
limitations.

In the next chapter, we compare the contact data collected through the use
of wearable sensors with data of different nature collected at the same period
within the same students : face-to-face contacts reported in contact diaries,
friendship relations collected with a survey and Facebook ties. First, we com-
pare the contact networks obtained from wearable sensors and contact diaries.
Then we compare the sensor network with the friendship network and with
the Facebook network separately. Finally, we study the full network of stu-
dents’ relationships as a multiplex network with 3 layers : face-to-face contacts,
friendships and Facebook ties. These comparisons aim to quantify the biases
of the different methods of data collection with respect to the use of wearable
sensors and to have to have an idea of what amount of information can be drawn
from incomplete data sets, especially in the context of simulations of epidemic
spreading.
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Comparison of methods of

data collection

In the previous chapter, we have analyzed face-to-face contact data obtained
through the use of wearable sensors in a population of high school students
population.

Many studies have provided similar analyses in various contexts [7–12]. This
type of technology used to collect high-resolution data avoids the biases due
to self-reporting. However, these methods do not allow us to access contacts
with individuals not participating to the data collection but only in a closed
population. Moreover, sampling issues can also arise if the participation rate is
low in the population of interest [43].

These technologies are however recent and deployments are not always fea-
sible. Many datasets have been obtained with other methods such as contact
diaries. In contact diaries, participants are asked to report the individuals with
whom they have been in contact and can give access to other characteristics
of their contacts. In particular, participants may be asked to specify for each
contact an estimated duration, if it involved physical contact or not and distin-
guish periods of well-being and illness of the respondent. Moreover, surveys can
also be used to report other types of relationships than direct contacts, such as
friendships or work collaboration. This type of data can be helpful when study-
ing spreading processes such as spreading of infectious diseases: in particular,
it is often assumed that friendships yield actual encounters.

However, this type of procedures is often costly and it can be difficult to
recruit participants. Finally the main limitation are the biases inherent to self-
reporting procedures. These biases are difficult to estimate and come from vari-
ous reasons. First, the participants might not recall all their contacts (especially
very short ones) or make incorrect estimates of their durations, especially in ret-
rospective collection of data [4]; then, the individual perceptions and feelings or
the apparent ambiguities of questionnaires can affect participants’ answers [5].
Thus, the comparison between human relationships data coming from different

47
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methods in the same population is of great interest to investigate the impor-
tance of theses biases. To our knowledge, very few studies have been performed
such analyses on combined data sets [13, 31].

The complete data set collected in 2013 in Lycée Thiers gathers not only
face-to-face contact data, analyzed in the previous chapter, but also contact data
obtained with contact diaries, friendship relations obtained through surveys and
Facebook relationships. In this chapter, we perform a comparison between the
networks of these various types of interactions. First, we investigate similarities
and differences between face-to-face contact data collected through the use of
wearable sensors and contact diaries. Then, we study the multiplex network
obtained by the superposition of differents types of students’ relationships: face-
to-face interactions (obtained with wearable sensors), friendships and online
friendships (Facebook friendships). Finally, we investigate if the information
contained in self-reported data is sufficient to obtain an accurate estimation of
the epidemic risk computed with the contact network of sensors by performing
simulations of epidemic spreading on the corresponding networks. This might
help to quantify the biases and give hints on how to compensate for them.

This chapter covers the results reported in the following paper: Contact pat-
terns in a high school: a comparison between data collected using wearable sen-
sors, contact diaries and friendship surveys, published in PLoS ONE in Septem-
ber 2015 [14], and investigates more deeply some aspects of the analysis.

3.1 Data analysis

3.1.1 Contact diaries

In the previous chapter, we have analyzed data collected through wearable sen-
sors; the deployment of the SocioPatterns sensing platform lasted for 5 days. On
the fourth day of the study, students were asked to report the list of individuals
with whom they have been in contact that particular day and to give an esti-
mated aggregated duration of those contacts. As a consequence, the resulting
contact diaries do not yield temporally resolved data, contrary to SocioPatterns
data. Actually, we can build an aggregated weighted network where wdiary

ij is
the aggregated duration of contact between i and j as reported by i. We note
that links are not necessarily reciprocated (it can happen that i reports a contact
with j but j did not report a contact with i) and even if both i and j reported

a contact between them, the reported durations might not match: wdiary
ij can

be different from wdiary
ji . We will first perform a systematic study of this data

set as was done in [22].
As a second step, we will compare information contained in contact diaries

with the contact network (obtained with wearable sensors) aggregated over the
fourth day of study in the same spirit as [13]. To this aim, we will build a
symmetrized version of the network of reported contacts, in which a link exists
between i and j if at least one of the two reported a contact and the weight of
this link is the maximum of wdiary

ij and wdiary
ji . Finally, for such symmetrized
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network we can build, as for the sensor network, the contact matrices of the
numbers of edges and of contact durations.

3.1.2 Friendships

As the contact diaries, the friendship survey yields a directed network: a node
i can declare a friendship with node j without being reported as a friend by
j. Actually, students were asked to give the names of their friends without
specifying what is considered as a friendship relation. Moreover, the friendship
network is unweigthed as the survey did not ask to quantify the intensity of
a reported friendship. Note that we restrict the friendship network to partic-
ipants to the survey who filled in correctly this survey (e.g., participants who
declared friendship with all students of a given class were removed). We can also
symmetrize the friendship network in order to compare it with the aggregated
contact network, and obtain a link density contact matrix between classes.

3.1.3 Facebook

The analysis of the data gathered from the local Facebook network reveals a
more complex character. Actually, the local egocentric network obtained for
each student participating gives his/her friends and the relations of friendship
between his/her friends. As very few students (17) provide such data, the
presence or absence of a Facebook link for many pairs of students remains
unknown yielding a very incomplete picture of the network. Figure 3.1 explains
this point. We take the example of two students A and B giving access to their
local Facebook network. We know if there is a link between A and any other
students, idem for B. We know if there is a link between A’s friends (idem
for B’s friends): for example, we know there is a link between i and j and we
know there is no link between j and k. On the contrary, we are not aware of
relationships between individuals who are only friends with A and individuals
who are only friends with B: we do not know if there is a link or not between i
and k. Thus, in our case, Facebook data cannot be represented as a network but
consists in a list of “known-pairs” (pairs of students for which we know if they
are Facebook friends or not) and a list of “unknown-pairs” (pairs of students
for which we do not know if there is a Facebook link or not).
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A B

?

i j k

Figure 3.1: Facebook ego-networks. The local Facebook friendship networks
provided by students A and B are shown in black. In particular, we know that
i and j are friends on Facebook but not j and k, as i and j are both friends of
A and j and k are both friends of B. On the other hand, we do not know if i
and k are friends or not: the red dashed line represents the lack of knowledge
about the potential existence of this relationship.
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3.2 Contact diaries

3.2.1 Analysis of the contact diaries network

The network obtained from contact diaries is a directed and weighted network,
it has 120 nodes (corresponding to the 120 students who filled in a contact diary)
and 502 directed weighted links. We ignore contacts reported by respondents
with non-respondents i.e., students who did not participate to the memory sur-
vey. In a second step, we keep only the students for whom the sensors registered
at least one contact on the fourth day of study (Figure 3.2).

The resulting contact diaries network has 109 nodes and 416 weighted and
directed links (158 links correspond to contacts reported by only one student i.e.,
non-reciprocated links, the other 258 links correspond to 129 pairs of students
who both reported a contact with each other). Table 3.1 reports the correspond-
ing statistics. Among the 129 contacts reported by both students, 81 (63%) were
reported with the same estimated duration. In 35 cases, the reports of the two
involved students differed by only one category. Among the 72 reciprocated
links reported in the highest category of duration by at least one student, 71%
were also reported in this category by the other student. These results are in
agreement with the ones obtained in [22]. Moreover, following the work of [22],
we compute the probability P to report a contact of a certain duration, under
the hypothesis that such probability depends only on the duration. If Nc is the
real number of contacts i.e., the number of pairs of students who have been in
contact, and Nboth is the number of pairs of students reporting both the contact,
then Nboth = NcP

2, while the number of contacts reported by only one student
is None = 2NcP (1− P ); as a result, P is given by Nboth/(Nboth +None/2). We
obtain that the overall reporting probability is P ≈ 62%. Assuming that the
correct duration of a reported contact is the highest reported value, we obtain
that the probability to report a contact is 40% for contacts of less than 5 min,
54% for contacts between 5 and 15 min, 61% for contacts between 15 and 60
min, and 72% for contacts with aggregate duration longer than one hour.

3.2.2 Comparing contact diaries and sensors data

In this section, we compare the data collected by the wearable sensors with the
contacts reported by the students using contact diaries. To this end, we consider
on the one hand the aggregated weighted network of the contacts registered
by sensors the 4th day of the study and on the other hand the symmetrized
network of contact diaries. In this version of the network, a link exists between
two students if at least one of the two students reported a contact between the
two; if both students reported the contact the highest value of the aggregated
contact duration reported by the students is retained.

The network of contact diaries has much less nodes than the network ob-
tained from sensors as many students did not fill in the diaries. Moreover, the
respondents were not uniformly distributed in classes: 20 were in 2BIO1, 11 in
2BIO2, 13 in 2BIO3, 23 in MP, 1 in MP*1, 18 in MP*2, 23 in PC, none in PC*
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Figure 3.2: Venn diagram reporting the number of students who filled in a
contact diary and the ones who were detected by sensors the 4th day of study
as well as the number of students present in both networks.

Lower value
Higher value

<5 min 5-15 min 15-60 min >1 hour Row Tot

Not reported 38 (24%) 31 (20%) 33 (21%) 56 (35%) 158 (100%)
(75%) (63%) (56%) (44%) (55%)

<5 min 13 (42%) 10 (32%) 5 (16%) 3 (10%) 31 (100%)
(25%) (21%) (9%) (2%) (11%)

5-15 min 8 (32%) 12 (48%) 5 (20%) 25 (100%)
(16%) (20%) (4%) (9%)

15-60 min 9 (41%) 13 (59%) 22 (100%)
(15%) (10%) (8%)

>1 hour 51 (100%) 51 (100%)
(40%) (17%)

Column Tot 51 (18%) 49 (17%) 59 (20.5%) 128 (44.5%) 287 (100%)
(100%) (100%) (100%) (100%) (100%)

Table 3.1: Cross-tabulation of pairs of contacts reported by students in the
contact diaries. Each pair of participants with at least one contact reported
gives a single observation. For instance, there were 12 pairs of students (i, j)
such that i reported contacts with j with total duration between 15 minutes and
1 hour while j reported a duration between 5 and 15 minutes. Each percentage
within a cell represents the percentage with respect to the row (right of the cell
entry) and column (below the cell entry) totals.
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Sensors Contact diaries Sensors Contact diaries
Number of nodes 295 120 109 109
Number of edges 2162 348 488 287

Density 0.05 0.05 0.08 0.05
Average degree 14.7 (0.30) 5.8 (0.17) 9.0 (0.23) 5.3 (0.17)

Average clustering 0.38 (0.22) 0.45 (0.31) 0.45 (0.22) 0.44 (0.34)
Average SPL 2.81 (0.08) 5.36 (0.26) 2.94* (0.12) 5.36 (0.25)
Clique number 9 5 8 5

Table 3.2: Comparison of properties for the contact networks obtained from
sensors and diaries. On the day of collection of the contact diaries (4th day of
the study), only 295 students out of the 327 participating were present in sensor
data. All network properties for the contact diaries network are computed on its
symmetrized version (undirected network). In this summary table we assume
that if a contact is reported by at least one of the two nodes, it exists. The
right side of the table is performed after matching the population of the two
networks. Matching is done by removing the nodes who did not participate
to the survey and the ones who did not have contacts recorded by sensors on
the 4th day of the study. *After the match, the graph is no longer connected;
that means a path cannot always be found between two nodes. In this case,
we computed the average on the connected pairs only. Standard deviations are
given in parentheses.

nor PSI*, and this has consequences on the overall structure of the network as
some classes are not or almost not represented. We therefore perform a short
comparison of the sensor contact data of respondents and non-respondents: we
have compared the properties (numbers, durations and aggregate durations of
contacts, degree and centrality in the aggregated contact network) of respon-
dents and non-respondents using Wilcoxon tests and did not find any significant
difference.

Table 3.2 reports some properties of networks of sensors and contact diaries.
On the one hand, we consider the entire networks obtained with both methods
i.e., for sensor data, the network with all the nodes for whom at least one contact
has been registered on the 4th day; for contact diaries, the network with all the
students who have filled in a contact diary (first two columns). On the other
hand, we consider the two networks restricted to the nodes present in both
networks i.e., we take the subgraph induced by these 109 matching nodes on
the two original networks (last two columns). The density and average degree
of the contact network obtained by the sensors are almost twice as large as the
ones obtained using contact diaries, but the degree distributions have similar
shapes (Figure 3.3(a)). The cliques are also larger in the sensor contact network,
while the average shortest path length is smaller (Figure 3.3(a)): nodes seem
farther apart in the contact diary network than in the sensor data network. The
average clustering coefficient is high and very similar from one network to the
other.

Figure 3.4 shows the matrices of edge densities of the network obtained from
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(a) (b)

Figure 3.3: Comparison of the contact networks obtained by sensors and by con-
tact diaries. (a) CCDF of nodes’ degrees. (b) Shortest path length distributions.
”No path” corresponds to disconnected pairs of nodes.

sensor data and the network obtained from contact diaries. The strong structure
of the sensors network in classes is well preserved in the contact diaries network.
Actually, the matrices are marked by the dominance of the diagonal elements
together with the existence of groups of classes. Despite the low sampling of the
contact diaries, a sensible information on the mixing patterns between classes is
obtained. The similarity between the link density contact matrices is very high
(97%).

Given the different numbers of links in the two networks, we expect dis-
crepancies between sensor data and contact diaries. Overall, 70.4% of the links
obtained from contact diaries correspond to contacts registered by the sensors,
while only 41.4% of the contacts registered by the sensors find a match in the
contact diary. We now investigate these discrepancies in more details.

Figure 3.5(a) compares the distributions of the cumulative durations of the
links registered by the sensors, distinguishing between the links which were
reported in the contact diaries and those which were not. For reference, the fig-
ure also reports the distribution of durations for all the links registered by the
sensors. Both distributions are broad and heavy-tailed; most links have short
cumulated durations, but large values are also observed in both cases. However,
the distribution of durations for the links finding a match in the contact diaries
is much broader, with much larger average duration and standard deviation
(Wilcoxon tests for each pair of distributions reject the null hypothesis of equal-
ity of the distributions). In particular, links not reported tend to correspond to
smaller durations, and all the links with a duration above a certain threshold
(close to 1 hour) were reported in the diaries.

We moreover investigate in Figure 3.5(b) the diversity of the cumulative
durations registered by the sensors for the links reported in the diaries in each
duration category. Strikingly, all distributions are rather broad and, given a



3.2. CONTACT DIARIES 55

(a) (b)

Figure 3.4: Contact matrices of link densities from (a) the network of contacts
obtained using the sensor data collected on the 4th day and (b) the network
of contacts as reported in the contact diaries. In order to compare easily the
two matrices we discarded here the data corresponding to the MP*1, PC* and
PSI* classes as too few students from these classes filled in a contact diary (1
for MP*1, 0 for PC* and PSI*).

reported category, both much shorter and much longer durations are registered
by the sensors. In particular, the distributions corresponding to the two first
categories (less than 5 min and between 5 and 15 min) are similar. However,
the distributions become consistently broader for categories corresponding to
larger durations, and links with durations (as registered by the sensors) above
a certain threshold are reported only in the highest duration category of the
diaries.

Table 3.3 gives more details through a cross-tabulation of the aggregate
durations of the contacts as registered by the sensors or reported in the diaries.
If we consider the duration registered by the sensors as accurate, we obtain that
68% of the contacts in the first category (less than 5 min) were not reported,
against 30% and 31% for the next categories, while all the contacts lasting more
than 1 hour were reported. Above all, 59% of the contacts detected by sensors
were not reported in the contact diaries. On the other hand, the number of
reported contacts which were not registered by the sensors does not strongly
depend on the reported duration.

202 links are common to both networks, yet there are discrepancies between
the durations reported by students and the durations detected by sensors. In
particular, 49 (24%) links were reported and detected in the same duration
category, while 146 (72%) links have a reported duration overestimated with
respect to the one found in sensor data, and only 7 (4%) were reported with a
shorter duration than the detected duration (overall, the Kendall’s τ computed
for the list of links ranked according to the durations either registered or reported
yields a rank-correlation of ≈ 26%). Note that, if we use a symmetrized version
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Figure 3.5: Sensors versus contact diaries. (a) CCDF of the aggregate durations
of contacts registered by the sensors for (i) all 488 links between the 109 nodes
belonging to both networks; (ii) the 202 links that were also reported in the
diaries; (iii) the 286 links that were not reported in the diaries. (b) CCDF
of aggregate durations of contacts registered by the sensors for the different
categories of links reported in the diaries.

of the contact diaries network in which we retain the lowest value of the reported
durations by each pair of individuals (including 0 for links non-reported by one of
the individuals i.e., if the contact was not reported by both students, we remove
the link) instead of the highest, the number of links found in both networks
drops to 102, but the other results are robust. In particular, 31 links (30%)
correspond to the same duration category in both networks, 64 (63%) to an
overestimation in the diaries, and 7 (7%) to an underestimation.

We now turn to the comparison of the two datasets at the individual level.
Contrary to the data presented in [13], we observe a significant correlation (0.4)
between the degree of a node in the network obtained with sensor data and its
degree in the symmetrized version of the contact diaries network, despite impor-
tant fluctuations are present (Figure 3.6). On the other hand, when considering
the directed network obtained with contact diaries, we do not find a significant
correlation (0.14) between the degree of a node in the sensor network and its
out-degree in the contact diaries network (number of contacts reported by the
corresponding student). However, we note a significant correlation (0.39) be-
tween the degree of a node in the sensor network and its in-degree in the contact
diaries network (number of students who declared a contact with this particular
student). Similar correlation values are obtained when considering only contacts
larger than a given threshold (Table 3.4). This interesting result indicates that
we obtain a better picture of contacts of a student, at least in terms of number
of contacts, by considering the contacts reported by other individuals with this
one instead of the contacts actually reported by the student.

Even though the correlation between the out-degree of a node in the contact
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Survey
Sensors

Not detected <5 min 5-15 min 15-60 min >1 hour Row Tot

Not reported unknown (n/a) 257 (90%) 17 (6%) 12 (4%) 0 (0%) 286 (100%)
(n/a) (68%) (30%) (31%) (0%) (50%)

<5 min 21 (41%) 24 (47%) 5 (10%) 1 (2%) 0 (0%) 51 (100%)
(25%) (6%) (9%) (3%) (0%) (9%)

5-15 min 20 (41%) 23 (47%) 6 (12%) 0 (0%) 0 (0%) 49 (100%)
(23%) (6%) (11%) (0%) (0%) (9%)

15-60 min 17 (29%) 24 (40.5%) 11 (18.5%) 6 (10%) 1 (2%) 59 (100%)
(20%) (6%) (20%) (15%) (7%) (10%)

>1 hour 27 (21%) 51 (40%) 17 (13%) 20 (16%) 13 (10%) 128 (100%)
(32%) (14%) (30%) (51%) (93%) (17%)

Column Tot 85 (15%) 379 (66%) 56 (10%) 39 (7%) 14 (2%) 573 (100%)
(100%) (100%) (100%) (100%) (100%) (100%)

Table 3.3: Cross-tabulation of the number of links detected by sensors and
reported by students in each duration category. For instance, there were 23
links that were reported by students with duration between 5 and 15 minutes
which were detected by sensors with an aggregated duration below 5 minutes.
The percentages within a cell are computed with respect to the row (right of
the cell entry) and column (below the cell entry) totals.

diaries network and its degree in the sensor network is not statistically signif-
icant, we investigate more in detail this relation with the idea that it could
depend on the characteristics of contacts of each individual. The comparison
of the two networks showed that students tend to remember more easily their
longest contacts. Given this fact, we compute for each student the coefficient
of variation (CV ) of his/her longest contacts recorded by the sensors: for each
student and each of his/her k neighbors we keep only the duration of the longest
contact, then we compute the CV on this list of k durations. Then we separate
the students into two groups: students with CVi ≤ 1 and students with CVi > 1.
CVi ≤ 1 means that the student i has contacts of similar durations with other
students, while CVi > 1 corresponds to a large variability, i.e., that i divides
his/her contact time in a heterogeneous way among the other students s/he has
met during the day. No particular grouping of individuals with CVi > 1 was
observed with respect to the various features (gender, class, field of study) of
the students. We obtain 47 students in the first group and 62 in the second one.
We find a significant correlation (close to 0.38) between the out-degree in the
contact diaries network and the degree in the sensor network in the first group,
while in the second group, no significant correlation was found. Note that the
correlation for the in-degree is similar in both groups (close to 0.4). In other
terms, for students who have encounters of similar maximum durations with
other individuals (CV ≤ 1), the contact diaries data reported by these students
correlate with the data registered by the sensors. For students whose maximum
contact durations are heterogeneous (CV > 1) on the other hand, no correlation
in the diary-reported and sensor-measured degrees is observed. This is perfectly
in line with our initial hypothesis: for CV ≤ 1 the number of links remembered
is then correlated with the real number of links in the contact network while, if
CV > 1, there might be an arbitrary large number of links of small weight that
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Figure 3.6: Comparison of the degree of individuals in the contact networks
obtained by sensors and by contact diaries. Scatterplot of the number of links
of each node in both networks. As the network built from contact diaries is
directed, we consider the degree in its symmetrized version (top), the in-degree
(middle) and the out-degree (bottom), vs. the degree in the contact network
obtained from sensor data.

are not remembered in the diaries as the number of links that are reported is
not correlated with the total number of links registered by the sensors.
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Threshold kin kout
No threshold 0.39 0.14
40 seconds 0.44 0.22
60 seconds 0.50 0.22
80 seconds 0.49 0.16
100 seconds 0.48 0.16

Table 3.4: Coefficient of correlation between the degree of a node in the contact
network built from the sensor data and the in- or out-degree of the same node
in the network built from contact diaries. Each row corresponds to keeping
only links with an aggregate duration above a certain threshold in the contact
network built from sensor data.

3.3 Multiplex network of students’ relationships

The previous sections concern only face-to-face proximity data which represents
one type of relationship between individuals. However, other types of social ties
exist; for instance, friendships and online relationships represent another aspect
of human interactions. The gathering of these different types of links contribute
to form a multiplex network in which each node represents a student and each
pair of nodes can be linked by one to three links of different nature. These links
might a priori be related: for instance, one has more physical encounters with
a friend, or becomes friend with someone because of frequent encounters, etc,
but might also differ substantially: one can be very good friend with someone
and meet him/her only rarely because of specific constraints (such as different
schedules of classes in our case) or can be friend with someone online only
for communication facilities without being “true” friends. Therefore, we need
to compare the different layers of this multiplex network to understand what
information on actual contacts can be gathered from data about friendship
relations. In particular, friendship survey data might be more reliable than
contact diaries: it might be easier to remember the names of one’s friends than
the contacts occurred during a day and moreover, friendships evolve on slower
timescales so that friendship surveys can more easily be gathered on several
days without memory biases (however, other types of biases can arise because
of personal perceptions i.e., considering someone as a friend is very subjective).

As described before, we have collected data about two types of friendships
among students participating to the study in the high school: students gave
the names of their friends through surveys and used a Facebook application
to compute their local friendship network and gave us access to this network.
However the participation to these two data collections was substantially lower
than for the collection of face-to-face contacts data: 135 students correctly
answered the friendship survey (41%) and only 17 students gave access to their
local Facebook network. In the latter case, we end up with 156 nodes (48%).
The number of students present in each data set is given in Figure 3.7. Figure
3.8 displays the network of contacts registered by the sensors during the week of
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Figure 3.7: Venn diagram reporting the number of students present in each
network. The student who did answer the friendship survey but who is not
present in the sensor data was removed from the diagram.

data collection, as well as the network of reported friendships and the Facebook
links, using the same position for the nodes in the three representations (as
already explained, in the case of Facebook other links than the ones represented
might exist: we are only representing the ”known-pairs”, so that Figure 3.8(c)
might be an underestimation of the real number of existing Facebook links.
For this reason, standard network metrics cannot be computed in this case).
Overall, the friendship and Facebook networks have clearly much less nodes
and appear substantially different, however, the grouping of nodes in classes is
still relevant. We perform a more detailed comparison in the next paragraphs.

3.3.1 Contact network versus friendship-survey network

We build the friendship network in the same way as the network obtained from
contact diaries. The friendship network is directed: a student A might report
a friendship with another student B while B does not mention A as a friend,
or A and B might both report each other as a friend. The directed network
of friendships has 689 directed links of which 137 are not reciprocated and 552
corresponding to 276 pairs of students who both declared a friendship with each
other. In the following, we will consider the symmetrized version of the network,
in which a link is drawn between two students if at least one of the two reported
a friendship with the other. The resulting network has 135 nodes and 413 links.

The students who filled in the friendship survey were not spread evenly in
the various classes: 11 were in 2BIO1, 18 in 2BIO2, 28 in 2BIO3, 21 in PC, 3 in
MP*1, 7 in MP*2, 21 in PC, 10 in PC*, 15 in PSI*. However, as in the case of the
contact diaries, we have checked using Wilcoxon tests that respondents and non-
respondents do not show significant differences in their contact characteristics
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Figure 3.8: Contact and friendship networks. The three layers of the multiplex
are shown using exactly the same layout: each node is placed at the same
position in the three panels. The color of each node represents its class and
size represents its degree in the corresponding network (here we consider a
symmetrized version of the network of reported friendships). * Strictly speaking,
the Facebook data do not provide a network as we do not have information about
the presence or absence of a link between many pairs of nodes (see Figure 3.1).
Figure created using the Gephi software http://www.gephi.org.
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Contact network Reported friendships Contact network Reported friendships
Number of nodes 327 135 134 134
Number of edges 5818 413 1235 406

Density 0.11 0.05 0.14 0.05
Average degree 35.6 (0.14) 6.1 (0.32) 18.4 (0.18) 6.1 (0.32)

Average clustering 0.50 (0.08) 0.53 (0.29) 0.55 (0.11) 0.54 (0.29)
Average SPL 2.16 (0.08) 4.06* (0.16) 2.22 (0.10) 4.02* (0.16)
Clique number 23 8 14 8

Table 3.5: Comparison of properties for the contact network and the network of
reported friendships. All network properties for the network of friendships are
computed on its symmetrized version. The right side of the table is performed
after matching the population of the two networks. Matching is done by re-
moving the nodes who did not participate to the friendship survey and the one
who was not present in sensor data. *The friendship network is disconnected.
In this case, we computed the average on the connected pairs only. Standard
deviations are given in parentheses.

(durations, aggregate durations, degree and centrality in the contact network
measured by the sensors).

In Table 3.5 we compare the main features of the networks of reported friend-
ships and of contacts. On the left side of the table, we consider the network
of contacts aggregated over the whole data collection and the whole friendship
network. On the right side of the table, we consider the networks restricted to
the nodes which are present in both networks (only 1 student participated to
the friendship survey but was never detected in contact with other students).
As already observed in the case of contact diaries data, the network of friend-
ships is much less dense than the network obtained with sensor data. This is
quite expected as one naturally encounters many persons whom one would not
list as friends in a survey. Moreover, the degree distribution is narrower than
in the case of face-to-face contacts as shown in Figure 3.9(a), this is explained
by the average degree < k > which is much smaller in the friendship network,
however, once rescaled by the average degree the two distributions have similar
dicrease and similar shape; the nodes appear to be further away from each other
in the friendship network as well. Actually, the average shortest path length is
around 4 in the friendship network compared to 2 in the sensors network and
the distribution of the shortest path lengths in the friendship network is also
broader (Figure 3.9(b)), finally the maximal distance between two nodes is 4
in the contact network while it is 10 in the friendship network. The contact
network has as well larger cliques than the network of friendships. Regarding
the clustering coefficient, it displays large values in both networks.

Despite the very different densities of the two networks, the structure of
contact matrices is well preserved in the friendship network as shown in Figure
3.10. Even though the density of links between each pair of classes differ between
both cases, the diagonal of each matrix display much larger values and even the
groups of classes (Biology, Mathematics and Physics) are highlighted in the
friendship case: in fact the similarity between the two matrices is very high
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(a) (b)

Figure 3.9: Comparison of the contact network and the network of reported
friendships. (a) CCDF of nodes’ degrees. (b) Shortest path length distributions.
”No path” corresponds to disconnected pairs of nodes.

and equal to 95%. Nevertheless, the major difference is that many values are 0
in Figure 3.10(b), which can be crucial when studying, for example, spreading
processes within a population.

More in detail, 86% of declared friendships correspond to actual encounters
in the contact network, while only 28% of contact links find a corresponding
link in the friendship network. This significant discrepancy might be a priori
explained by the fact that one tends to have actual encounters with his/her
friends and, in addition one may have contacts with someone without consid-
ering him/her as a friend. Moreover, we may think that friendship links corre-
spond to more frequent encounters or longer contacts. In fact, these numbers
change if we restrict the contact data to stronger links, i.e., to contacts of larger
aggregate duration: if we consider only links with an aggregate duration of more
than 1 minute (respectively 3 minutes) we find that 75% (resp. 62%) of the de-
clared friendship links have a corresponding link in the contact network, while
45% (resp. 58%) of the contact network links correspond to friendships.

In Figure 3.11, we show the cumulative distributions of aggregate durations
registered by sensors for different types of links in the contact network: we
distinguish 3 types (i) pairs of students for which no friendship is declared (887
links), (ii) pairs of students for which only one student reported a friendship (103
links), and (iii) pairs of students who both declared a friendship with each other
(245 links). For reference, we also show the cumulative distribution of aggregate
durations registered by sensors for all these three types of links (1235 links)
between the 134 students common to both networks. The three distributions
are broad with very short contacts and very long ones in each case: for instance,
pairs of students which are not declared friends have some very long contacts and
some students who have both declared a friendship with each other have very
short contacts. However, the aggregate durations of contacts of declared friends
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Figure 3.10: Contact matrices of link densities from (a) the global aggregated
contact network and (b) the symmetrized network of reported friendships.

Threshold kin kout
No threshold 0.42 0.34
40 seconds 0.51 0.44
60 seconds 0.51 0.45
80 seconds 0.53 0.47
100 seconds 0.52 0.47

Table 3.6: Coefficient of correlation between the degree of a node in the contact
network and the in- or out-degree of the same node in the friendship network.
Each row corresponds to keeping only links with an aggregate duration above a
certain threshold in the contact network.

have a larger average and a broader distribution, especially if the friendship was
reported by both. In particular, all links in the contact network with aggregate
duration larger than a certain threshold (close to 2 hours and a half) correspond
to a declared friendship and most contacts over this threshold correspond to a
reciprocated friendship. Thus, even if a reported friendship link can correspond
to effective contacts of very different durations, the global network of friendships
includes the most important contacts in terms of durations.

At the individual level, we look at the correlation of degrees of the two net-
works. We observe a significant correlation (0.44) between the degree of a node
in the contact network and its degree in the symmetrized friendship network
(Figure 3.12). Contrary to the case of contact diaries and when considering the
directed version of the friendship network, we observe significant correlations
between the degree in the contact network and its out- and in-degrees, although
slightly higher with the in-degree. As in the contact diaries network, similar
correlation values are obtained when considering only contacts larger than a
given threshold (Table 3.6).
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Figure 3.11: Contact network versus friendship network. CCDF of the aggregate
durations for different kinds of links in the contact network: (i) all contact links
between the 134 nodes belonging to both networks; (ii) links for which both
students reported the friendship; (iii) links for which only one node reported a
friendship with the other, and (iv) links for which no friendship was reported.
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Figure 3.12: Comparison of the degree of individuals in the contact network and
the friendship network. Scatterplot of the number of links of each node in both
networks. As the friendship network is directed, we consider the degree in its
symmetrized version (top), the in-degree (middle) and the out-degree (bottom),
vs. the degree in the contact network.
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Figure 3.13: Fraction of friendship and contact links as a function of the number
of features shared by two students. For instance: among the 1866 pairs of
students that share 3 common features, 1491 (80%) have neither contact link
nor friendship link, 23 (1%) have a link only in the friendship network, 272
(15%) have a link only in the contact network, 80 (4%) have a link in both
networks.

We recall that we have collected five characteristics (metadata) for each
student: the gender, the class of the student, his/her class in the previous
year, if s/he was repeating the year (called “age”) and if s/he was a smoker or
not. We want to know if the sharing of a certain number of metadata by two
students may inform us on the presence of contact or friendship links between
the two. In Figure 3.13, we show the fraction of the 4 types of relations that
can exist between two students: (i) contact and friendship links, (ii) only a
contact link, (iii) only a friendship link or (iv) neither contact nor friendship
link, as a function of the number of shared features (each pair of students can
share from 0 to 5 characteristics). If two students share less than 4 features, the
largely most probable situation is that they did not have any contact and are
not friends either. On the other hand, if they share 4 or 5 features, we find at
least one link in 73% of cases. In particular, friendship relations are observed
almost only between students sharing 4 or 5 features, especially if they did not
have any contact. Contacts among non-declared friends on the other hand can
also be found for pairs of students sharing few features, highlighting the more
random character of such links.

3.3.2 Face-to-face contacts and Facebook links

In this section, we focus on the comparison of the contact network with Facebook
data and perform a similar analysis as for the friendship data. As mentioned
before, only 17 students gave us access to their local Facebook network; as a
result and strictly speaking, we could not build a network of Facebook relation-
ships but rather work with a list of pairs of students (”known-pairs”) for which
we know if they have a Facebook link or not. The corresponding data set in-



68 CHAPTER 3. COMPARISON OF METHODS OF DATA COLLECTION

(a) (b)

Figure 3.14: Contact versus Facebook links. (a) CCDF of the aggregate dura-
tions in the contact network for different kinds of links: (i) all contact links for
which we know if there is a Facebook link or not (known pairs); (ii) links for
which there is a corresponding Facebook friendship; (iii) links for which there
is no Facebook link. (b) Fraction of Facebook and contact links as a function
of the number of features shared by two students.

cludes 4515 known-pairs involving 156 students, with 1437 Facebook links (and
3078 pairs of students for whom we know they are not friends on Facebook).
Moreover, these 156 students have 1118 links in the aggregated contact network.
52% of the Facebook links find a corresponding link in the contact network, and
67% of the 1118 links of the contact network are between Facebook friends.

The 17 students who gave access to their Facebook data are 9 in 2BIO3, 7
in MP and 1 in MP*2. The class repartition for the resulting 156 students is:
17 in 2BIO1, 14 in 2BIO2, 32 in 2BIO3, 26 in MP, 13 in MP*1, 20 in MP*2, 9
in PC, 13 in PC* and 12 in PSI*. As in the other data sets, Wilcoxon tests do
not show any significant difference in the distributions of the contact properties
of these students with respect to the others.

We report in Figure 3.14(a) the distributions of aggregate durations regis-
tered by sensors of links for which we find a Facebook link (750 links) and links
for which we know there is no Facebook link (368 links) i.e., we work only with
the “known-pairs”. Both distributions are broad, as in the case of reported
friendships, but the links between students who are not friends on Facebook
have a clearly narrower duration distribution, and links with aggregate dura-
tion larger than a certain threshold correspond all to contacts between Facebook
friends. However if we compare the distribution of the aggregate durations of
contacts between students who are Facebook friends with the one for the stu-
dents with reciprocated reported friendships (shown in Figure 3.11), the first
one is less broad (the average duration is smaller and the maximum is also
smaller).

Figure 3.14(b) reports the fraction of Facebook and contact links as a func-
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tion of the number of shared features by two students. Comparing this with
Figure 3.13, we find that the number of common features has a strong influence
on the fraction of such pairs having a link in the contact network or on Face-
book, but smaller than in the case of reported friendships, as a non-negligible
fraction of pairs of students with none or only one feature in common have a
Facebook link. We also find Facebook links without corresponding link in the
contact network between pairs of students with small number of shared features
and even without any feature in common, contrary to what we found in the
case of reported friendships. Finally, above 4 common features, almost all pairs
(91%) of students have at least a link in one the two networks. This reveals the
more “random” character of Facebook links compared to friendship links given
the fact that the existence of a Facebook link gives no intuition on the existence
of actual encounters.

3.3.3 Contacts and friendship networks as a multiplex

Instead of seeing them separately, we can combine friendship relations, online
friendships and face-to-face contacts to provide a more complete picture of the
relationships between students in the high school. This results in a multiplex
network with three layers (strictly speaking, we have a multiplex set of nodes
and links and not a network, as for the Facebook layer we do not have infor-
mation about many pairs of nodes) where each pair of students has one, two,
three or none of the three possible links. We here perform a simple analysis
of this multiplex, in which we consider only students who are part of all three
corresponding data sets and only known pairs: they represent 82 nodes, 496
links in the contact network (aggregated over the whole study), 199 reported
friendship links and 513 Facebook links.

The conditional probability to find a link in one layer of the multiplex given
its existence in another layer is shown as a heat map in Figure 3.15(a). In the
case of a reported friendship link, the probabilities that we find a corresponding
Facebook link or a contact link are very high (more than 90%). On the contrary,
the probabilities that a friendship link was reported by a pair of students given
the fact that they have a Facebook link or that they have been in contact are
much lower (around 30%). On the other hand, the conditional probabilities
between contact and Facebook links are quite similar.

We investigate more in detail the differences between reported friendships
and Facebook links. Figure 3.15(b) shows the cumulative distributions of ag-
gregate contact durations detected by the wearable sensors for different sets
of pairs of nodes: (i) pairs of students for which no friendship is declared nor
Facebook link (150 contact links), (ii) pairs of students for which there exists
a Facebook link but no friendship is declared (168 links), (iii) pairs of students
who have both a declared friendship and a Facebook link (172 links) and (iv)
for reference we also show the case with all the different types of links (496
links). Note that we do not show the case for pairs of students who declared a
friendship but do not have a Facebook link because there are only 6 links of this
type. All the distributions are broad. However, the distribution for the pairs of
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(a) (b)

Figure 3.15: Multiplex Analysis. (a) Conditional probability to find a link in
one layer (row index) given its existence in another one (column index); (b)
CCDF of the aggregate durations in the contact network for different sets of
links. We did not compute the distribution for links for which there is a link in
the friendship network but no Facebook link because there was only 6 links of
this kind.

students who are both declared friends and friends on Facebook is much broader
than the two others. Actually, the distributions of aggregate contact durations
for pairs of students who are only friends on Facebook and for pairs who have
neither friends on Facebook nor reported friends are very similar. Links of a
duration above a certain threshold are observed only between reported friends.
With respect to the aggregate duration of registered contacts, having a link on
Facebook is therefore not at all equivalent to being reported friends: if it is only
a Facebook link (but not a reported friendship), such a link tends to correspond
to rather short face-to-face contacts; this reinforces the idea that Facebook links
have a more random character with respect to both contacts and friendships.
This emphasizes the need of an analysis taking into account the three layers and
not only the online friendship one.

3.4 Epidemic risk from different methods of data

collection

In the previous sections, we have found that the collection of human relation-
ships data using surveys or contact diaries yields incomplete pictures of the
contacts that actually happen between individuals and that are recorded by the
use of wearable sensors, at least in our data set. On the one hand, the numbers
of students who have filled in contact diaries and surveys were substantially
lower than the number of students who accepted to wear the sensors: this cor-
responds to a sampling of the population of interest. This might be explained
by the fact that students in these specific studies (“classes préparatoires”) have
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already a rather heavy workload without adding the burden of filling in contact
diaries or surveys. On the other hand, most short contacts recorded by sen-
sors were not reported in the contact diaries and did not correpond to declared
friendships; as a consequence the networks obtained from these methods are
much more dilute than the network obtained from sensors: this corresponds to
a sampling of ties within the population. Thus, the distance between individuals
in the networks obtained with self-reporting methods are overestimated, which
could have strong consequences when using such data in data-driven models
of dynamical processes (e.g., epidemic spreading). However, above a certain
threshold of duration all detected contacts were reported in the diaries and
reported as friendships. Moreover, the structural organization of the popula-
tion in classes was preserved in the networks obtained from diaries and surveys.
Thus, one could argue that the reported links carry enough information to feed
data-driven models [43].

To start investigating this point, we perform numerical simulations of an SIR
spreading model (defined in the first chapter) on the various networks, namely,
the contact network built from sensors, the network built from contact diaries in
its symmetrized version and the symmetrized friendship network. Specifically,
we first compare the simulations performed on the contact diaries network with
the aggregated network built with sensor data of the 4th day (i.e., the day
we have collected the contact diaries). The network of sensors is weighted so
the comparison should be done with results obtained with another weighted
network. The network built from diaries is already weighted, however, each re-
ported weight corresponds to a range of duration instead of a specific duration.
Moreover, as said before, the reported durations are, on average, overestimated.
Overall, there are thus many ways to build a weighted network. For the simu-
lations, we therefore use three different types of weights assignment: (a) we use
the reported weights in the following way: each category of duration (less than 5
minutes, between 5 and 15 minutes, between 15 minutes and 1 hour) is replaced
by the average of the range, for the category “more than 1 hour” we take the
average between one hour and the maximum aggregate duration registered by
sensors on the fourth day, note that if the two students reported a contact in
different categories of duration we take the highest reported duration, (b) for
the reported contacts which have a corresponding link in the sensor network of
the fourth day, we take the corresponding weights in this network (first step),
for the others we take the weights at random in the list of weights already as-
signed in the first step, (c) we pick the weights at random from the distribution
of weights of the sensor network of the 4th day.

On the other hand, the friendship network does not correspond to a spe-
cific day so the results obtained with this one could be compared to the sensor
network aggregated over the whole week of study or over any particular day.
Moreover, the friendship network is originally unweighted, thus for each com-
parison we assign weights to the friendship links in a consistent way: (i) for
the comparison with the sensor network aggregated over the week of study the
weights are picked at random from the list of weights of the aggregated sensor
network; (ii) for the comparison with the sensor network of one specific day, the
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weights are picked from the distribution of weights corresponding to the sensor
network aggregated over this specific day.

Figure 3.16 displays the outcomes of simulations of epidemic spreading on the
contact diaries and sensor networks. The simulations performed on the network
of contact diaries yield different results depending on the method used to assign
the weights. Actually, if the topology remains unchanged in the three cases, the
distributions of weights vary from one to another. The epidemic risk is clearly
underestimated for methods (b) and (c). Regarding the fraction of epidemics
with size above a certain threshold (Figure 3.16(a)), the results obtained with
contact diaries and method (a) are in good agreement with the ones obtained
for the sensor network. Yet, when looking at the average values of epidemic
sizes the use of the contact diaries network clearly underestimate the epidemic
risk and the shapes of distributions of epidemic sizes are completely different
(Figure 3.16(c) and (d)). We will investigate more closely the importance of the
way we assign the weights on edges in the case of the friendship network in the
next chapter.

The two different comparisons performed with the friendship network yield
similar results (Figures 3.17 and 3.18): the simulations using the friendship
network give a very strong underestimation of the epidemic risk with respect to
the ones using the contact network built from sensor data.

Overall, both contact diaries and friendship networks underestimate the epi-
demic risk when used for simulations of epidemic spreading. These discrepancies
are quite expected as three factors must be taken into account: the low partic-
ipation of students in these two cases, the low density of the two networks and
the way we assign the weights to the links. However, these comparisons should
not be done as an end in itself; actually, the comparison is interesting as it may
help us to quantify, understand the biases due to self-reporting data and com-
pensate for these biases. This might give hints on how to use the information
contained in incomplete data sets to inform models of epidemic spreading.
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(a) (b)

(c) (d)

Figure 3.16: Outcome of SIR spreading simulations performed on sensor and
contact diaries networks. (a) Fraction of epidemics with size above 20% (at
least 20% of recovered individuals at the end of the SIR process) as a function
of β/µ. (b) Average size of epidemic with size above 20% as a function of β/µ.
(c) and (d) Distributions of epidemic sizes for two different values of β/µ.
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(a) (b)

(c) (d)

Figure 3.17: Outcome of SIR spreading simulations performed on sensor and
friendship networks (first case: we use the sensor network aggregated over the
whole study duration and weights of the friendship network are taken at random
from the distribution of weights of the sensor network aggregated over the third
day). (a) Fraction of epidemics with size above 20% (at least 20% of recovered
individuals at the end of the SIR process) as a function of β/µ. (b) Average size
of epidemic with size above 20% as a function of β/µ. (c) and (d) Distributions
of epidemic sizes for two different values of β/µ.
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(a) (b)

Figure 3.18: Outcome of SIR spreading simulations performed on sensor and
friendship networks (second case: we use the sensor network aggregated over
the third day and weights of the friendship network are taken at random from
the distribution of weights of the sensor network aggregated over the whole
study duration). (a) Fraction of epidemics with size above 20% (at least 20% of
recovered individuals at the end of the SIR process) as a function of β/µ. (b)
Average size of epidemic with size above 20% as a function of β/µ.

3.5 Conclusion

In this chapter, we have presented a comparison of several data sets concerning
different types of interaction between the same individuals. The fact that these
data sets were collected at the same time and in the same population allowed us
to compare them and to quantify the overlap and complementarity of data sets
of different nature. Collection of contact data and comparison of interactions of
different nature are of interest for many purposes, including the information of
data-driven models of relevance in epidemiology, as well as the investigation of
human behaviour and social relations.

Even though the use of sensors to measure contact patterns has become
more widespread in the last years, such deployments are not always feasible.
Other methods, in particular based on contact diaries, have been and are still
widely used. We have thus, in the same spirit as [13], compared the network of
contacts reported in diaries by the students with the contact network measured
by the sensors. We have confirmed the results of [13] and obtained some further
insights:

1. most students who participated to the data collection by wearing sensors
did not fill in the contact diary, probably due to the extra burden at the
end of a school’s day. However, no significant difference has been found
between contact characteristics (in the sensor network) of respondents and
non-respondents;
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2. most short contacts detected by sensors were not reported in the contact
diaries, whereas long contacts have a high probability to be reported and
contacts of duration above a certain threshold (about 1 hour) were all
reported;

3. among reported contacts, the contacts which were reported by both stu-
dents were reported in the same category of duration most of the time,
similarly to what was observed in [22];

4. the distribution of aggregate durations measured by the sensors were broad
for contacts both reported and not reported in the diaries, the distribution
was however broader for contacts reported;

5. the contact durations reported by students tended to overestimate the du-
rations measured by sensors. This outcome is in agreement with results
from social studies about self-reported diaries biases stating that individ-
uals tend to perceive the time spent in some activities (talk, work, play)
differently from the reality [44] and frequently to overestimate it [45];

6. despite the low sampling of individuals and the lower density, the overall
structure of the sensor network was well preserved in the contact diaries
network with similar contact matrices;

7. at the individual level, the degree of an individual in the sensor network
is more correlated with his/her in-degree in the contact diaries network
than his/her out-degree. This interesting result seems to indicate that a
more accurate picture of the contacts of an individual is given by the other
individuals reporting a contact with him/her.

Since this data set in prone to biases (the low participation of individuals (1), the
lower density compared to the network obtained from sensor data (2) and the
overestimation of contact durations(5)), its use in the context of the design of
data-driven models describing human contacts must be done considering these
biases. However we retrieve most of the long contacts (2) as well as some crucial
characteristics of the network such as the structure in classes(6). Thus the
data set of reported contacts might give enough information to feed data-driven
models.

Friendship relations represent another type of data for which surveys are
commonly used; the resulting data sets are a priori less prone to biases due
to imperfect memory, and might also be easier to collect in a given population
than contact diaries. Surveys might indeed be given and collected on a less con-
strained time frame than contact diaries, as friendships evolve on longer time
scales than contacts. Similarly, online social networks might in some cases be
easier to collect automatically. However, the precise relation between reported
friendships or online friendships is not well known and need further investiga-
tion. In the case of reported friendships, the major findings were that (i) the
friendship survey suffer from low participation rate as well as in the case of con-
tact diaries, (ii) the longest contacts corresponded to reported friendships and
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most friendship relations lead to actual face-to-face encounters, but (iii) many
short contacts did not correspond to reported friendships, resulting in a friend-
ship network with much lower density than the contact network. Nevertheless,
the structure in classes of the contact network is well preserved as seen from the
similar structures of the contact matrices. On the other hand, Facebook friend-
ships yield a different picture than the reported friendship links. First, sampling
issues prevent us from building a network, strictly speaking, of Facebook rela-
tionships. The probability that a contact is observed between two individuals,
knowing that they are linked on Facebook, is also much smaller than the same
probability conditioned on a reported friendship. In addition, the distribution
of aggregate contact durations between individuals who are linked on Facebook
but did not report a friendship to each other is much narrower than the one
obtained for individuals who reported a friendship: overall, Facebook links seem
to have a more “casual” character than friendship links, in agreement with the
intuition that Facebook links are easier to establish than real friendships and
give no intuition on the strength of friendships. Except the lack of information
on contact durations, the network of reported friendships gives information of
quality similar to contact diaries with respect to the sensor-measured contact
network. And similarly to the case of contact diaries, feeding data-driven models
with friendship data would lead to the same biases, especially on the estimation
of the epidemic risk. Regarding the case of Facebook, this particular data set
contains too little information to be used for the design of models describing
human contacts.

Some limitations of this analysis are worth discussing. First, the participa-
tion rate to surveys and diaries was substantially lower than for the collection
of face-to-face contacts data using wearable sensors. Similarly the networks ob-
tained from contact diaries and friendship surveys are much less dense than the
network obtained from sensors, yielding large discrepancies in the properties of
the resulting networks. Moreover, little is known about how such samplings
affect the characteristics contact diaries and friendship networks and should be
investigated further. Actually, our study is limited to only one combined data
set in one specific environment and few studies [13,22,31] compare data coming
from different sources. It would be of great interest to gather more combined
data sets in which relationships between the same individuals are collected with
different methods.

In the next chapter, we start to explore more in detail the issue discussed
above (Section 3.4), i.e., the comparison of simulations of spreading processes
using sensor data and friendship survey data. We have seen in 3.4 that the use of
friendship data leads to an underestimation of the epidemic risk. We will inves-
tigate whether this underestimation might be seen as biases due to a sampling
process performed on the sensor network. Note that we will not try to check
if the friendship network is precisely a sampling of the contact network, but if
it is possible to reproduce the outcomes of simulations of epidemic spreading
obtained with the friendship network by using a sampled network of the sensor
network. An equivalence between survey and sampling procedures might in-
deed give hints on how to compensate for the biases due to the incompleteness
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of contact data deduced from self-reporting procedures.



Chapter 4

Equivalence between

friendship network and a

non-uniform sampling of

contact network

It is a well known fact that sampling procedures affect networks properties. De-
pending on the procedure of sampling and on the sample size, the networks can
be affected in different ways, many works have studied the impact of sampling
on networks’ characteristics such as average degree, degree distribution, clus-
tering or assortativity properties [46–52]. On the other hand, few studies have
investigated how the outcome of simulations of dynamical processes in data-
driven models is affected if incomplete or sampled data are used [43,53–55]. As
most data sets are in fact incomplete samples of the target network, researchers
have moreover tackled the issue of inferring network statistics from incomplete
data [56–59]. Since many networks are the support of dynamical processes, it
is also crucial to develop methods to obtain estimates of the outcome of such
processes in the case of incomplete or sampled data [43,54].

In this perspective, understanding if the differences in outcomes between
contact and friendship data may be seen as biases due to a sampling process
might then give hints on how to compensate for such biases and how to use the
information contained in the friendship network to obtain accurate prediction
on the epidemic risk, even in the absence of data on the actual contact network,
in the spirit of [43].

We have found in Section 3.4 that the use of the friendship network yields
an underestimation of the epidemic risk with respect to the use of the face-
to-face contacts network obtained from wearable sensors (we recall that similar
results were obtained for contact diaries). In this chapter, we ask if using the re-
ported friendship network is equivalent, in the context of simulations of epidemic

79
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spreading, to a specific sampling of the contact network. To make progresses in
this direction, we consider several sampling procedures: some are used as refer-
ence while others are attempts to mimic the friendship survey procedure. First,
we use simple sampling methods, already described in other contexts, such as
uniform random sampling of nodes or edges. Then we present a non-uniform
sampling method we have designed: it favors sampling of the most important
contacts of each sampled individual (links with large weight). The resulting
networks are used for SIR simulations of epidemic spreading. We show that the
outcomes of simulations performed on these sampled networks are equivalent to
the one obtained when the friendship network is considered.

Then, we apply this specific method of sampling to other data sets describing
face-to-face contacts and study how changing its parameters (number of nodes
sampled, density of sampled network) impacts the outcome of spreading simu-
lations. We also investigate how the choice of a method for assigning weights on
edges of unweighted networks affects the results of SIR simulations performed
on the resulting weighted networks.

This chapter covers the results reported in the following paper: Epidemic
risk from friendship network data: an equivalence with a non-uniform sampling
of contact networks, published in Scientific Reports in April 2016 [60].

4.1 Methodology

In this chapter, we consider the combined data set reporting face-to-face con-
tacts and friendship relations between high school students and compare the
outcomes obtained from numerical simulations of the SIR spreading model on
the corresponding networks with the results of simulations performed on net-
works obtained by sampling the contact network using several sampling methods
(described in the next paragraph). To quantify the epidemic risk and compare
outcomes of these simulations, we measure the distributions of epidemic sizes
(i.e., the final fraction of recovered nodes), the fraction of epidemics with size
larger than 20% and the average size of these epidemics (the cut-off of 20% is
chosen arbitrarily to distinguish between small and large epidemics; changing
the value of this threshold does not alter our results).

The contact network, measured using wearable sensors, has N = 327 nodes
and E = 5818 weighted edges. Each edge (i, j) with weight Wij corresponds
to the fact that individuals i and j have been in contact for a total time Wij

during the deployment, which lasted one week. The friendship network, ob-
tained through a survey, has NF = 135 nodes and EF = 413 unweighted and
undirected edges. All the nodes of the friendship network (but one) belong to
the contact network.

It is important to note that we consider here a static version of the contact
network, while the data of sensors provides temporal evolution of the network.
The rationale behind this choice is twofold. First, the friendship survey data
does not contain temporal information. If using friendship network can be seen
as a sampling of contact networks, it is thus necessarily a static sample. Second,
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when modeling the propagation of infectious diseases with realistic timescales
of several days, it has been shown in [8] that a static weighted contact network
contains enough information to obtain a good estimate of the process outcome.
Clearly, when dealing with faster processes, the temporal evolution of the net-
work becomes relevant; in that case, studies such as [43] have shown how to
build realistic surrogate timelines of contacts on weighted networks, using the
robustness of the distributions of the durations of single contact events and of
the intervals between successive contacts measured in different contexts.

4.1.1 Sampling methods

Many different sampling procedures of network data have been considered in
previous works, and their impact on the network’s statistical properties have
been studied [46–52]. Sampling of the network used as substrate for transmission
events is also known to affect the result of simulations of epidemic spread [43,
53,54]. In particular, population sampling has a strong impact, even in the case
of uniform sampling [43]. We therefore consider various sampling procedures
on the contact network: some methods are choosen for reference as they are
standard methods, other methods are attempts to truly mimic the friendship
survey procedure. As a first step, we consider methods of sampling which are
tuned to obtain the same number of nodes as in the friendship network:

• We first consider as reference the Subgraph method (“SubFr”): we con-
sider the 134 nodes of the Friendship network present in the contact net-
work and take the subgraph induced by these nodes on the contact net-
work. This would correspond to a population sampling of the contact
network, with the sampled population corresponding to the respondents
of the friendship survey, hence different from a random uniform choice.

• In the MSZ method, which is not strictly speaking a sampling, we consider
a randomized version of the friendship network using the algorithm of
rewiring described in [42]. In the case, the structures and correlations of
the friendship network are destroyed by the reshuffling of edges.

• In the Random Node method (“RN”), we choose NF = 135 nodes uni-
formly at random from the contact network and we take the subgraph
induced by these nodes on the contact network. This corresponds to a
population sampling with uniformly random choice of the sampled nodes.

• In the Degree-based Random Node method (“DRN”), we chooseNF = 135
nodes with probability proportional to their degree in the contact network
and we take the subgraph induced by these nodes on the contact network.
This corresponds to a non-uniform population sampling where the choice
is oriented towards the most “important” nodes of the network.

• We also consider the Egocentric sampling method (“EGO”): we select a
node at random and include this node and all its neighbors in the sample.
We repeat this step until we reach the desired number of nodes, NF . If
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this number is exceeded by including the chosen node and its neighbors,
we randomly choose a set of its neighbors so that the right number of
nodes is exactly reached. Then, we take the subgraph induced by this
sample of nodes on the original network. This would correspond, in the
friendship survey, to a case where respondents report all of their links.

As these methods do not allow us to control the number of edges in the sampled
network, we also consider several additional sampling methods, in which we can
tune this number and set it equal to EF .

• In the Random Edge method (“RE”), we first choose edges at random
from the contact network until we reach the desired number of nodes NF ;
as the number of chosen edges is still lower than EF we then choose edges
at random from the contact network with the condition that both their
extremities are in the set of nodes obtained in the first step, until the
desired number of edges is reached. This method is the simplest method
than can be used to choose the desired numbers of nodes and edges.

• In theWeight-based Random Edge method (“WRE”), we applied a method
of sampling similar to the RE method, except the edges are chosen pro-
portionally to their weight in the contact network. We found in the pre-
vious chapter that the longest contacts correspond to friendships: in this
method, we select edges in agreement with this idea.

• In the Refined Random Node method (“RNref”), we add the following
step to the RN method: after the subgraph is obtained, we remove edges
at random to get the desired number of edges in the final sampled net-
work. This method is another very simple one in which we can control
the numbers of nodes and edges.

• We propose a new Refined Egocentric method (“EGOref”), inspired by
the result of [14] that the longest contacts corresponded to reported friend-
ships, while many short contacts did not. Here, we select N nodes called
egos at random from the contact network. For each ego i we select some
of its edges as follows: each edge i− j is selected with a probability equal

to min
(

p ∗ wij

si
, 1
)

, with wij the weight of the edge between i and j,

si =
∑

ℓ wiℓ the strength of the ego node i and p is the parameter of the
model. We then keep only the egos and the selected edges linking them
and we remove the other edges (between egos and non-egos) and nodes
(non-egos). With this method, we end up with the desired number of
nodes by setting N = NF , and a number of edges that depends on the
parameter p. Figure 4.1 summarizes this process. This method really tries
to mimic the survey procedure: the egos correspond to the respondents to
the survey, they report edges with egos and non-egos depending on their
weight (the higher is the weight, the higher is the probability to report
the weight as a friendship), then the non-egos i.e., the non-respondents
are removed from the network yielding a friendship network among only
respondents to the survey.



4.1. METHODOLOGY 83

Figure 4.1: Sketch of the EGOref sampling process. We first select a certain
number of nodes as egos (in green), who represent the respondents to the sur-
veys. Links between non-respondents cannot be observed (dashed grey links in
the second panel). Each ego then “chooses” to report some of its links, with
probability depending on their weights (links shown in blue in the third panel,
while the non-reported links are shown in dashed grey lines). We then finally
keep only the egos and, among the chosen edges, only the ones joining egos (last
panel).

• While the egos are chosen uniformly at random among the nodes of the
contact network in the EGOref method, we also consider a heterogenous
EGOref method (“EGOref-het”), in which the distribution of egos in the
various high school classes corresponds to the one of the friendship network
(egos still being chosen at random within each class).

4.1.2 How are simulations performed ?

As mentioned in the previous chapter, the friendship network is unweighted.
However, for the purposes of comparison with the contact network, it is neces-
sary to have a weighted network: actually we might start with comparing only
the structure of networks using equal weights for all edges for the friendship
network as well as for the sampled networks, but it is a well-known fact that
weights and especially the heterogeneity of weights is important in the context
of spreading phenomena. Thus, we assign to each edge (i, j) of the friendship
network a weight wij : there are various ways to assign weights to edges; we have
chosen three of them as they are the most intuitive ways. The first method is
to choose weights at random from the distribution of weights of the contact
network. In the second one, we recall that 86% of declared friendships corre-
spond to links in the contact network, thus for these friendship ties we assign the
weight found in the contact network and for the others 14% we choose weights
at random from the distribution of the 86% already assigned weights. In the
third one, we choose the weights as in the previous method and then we reshuffle
randomly the weights among the links.

In the case of networks obtained from the sampling methods described above,
we have as well multiple choices to assign the weights, for instance: we can keep
the weight of sampled edges (as the sampled networks are subgraphs of the
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contact network, all edges have a corresponding weight in the contact network)
or we can choose the weights at random from the distribution of weights of the
contact network.

The use of different methods of weight assignment will cause discrepancies
in the outcome of simulations of epidemic spreading. First, the randomization
of the assignment of weights might break some correlation between the strength
and the degree of a node. Then, some of the sampling methods choose edges
proportionally to their weights, as a consequence, the distribution of the em-
pirical weights of the sampled network is not the same as the one obtained in
the contact network. We recall that the purpose of this chapter is to under-
stand if the friendship survey procedure is equivalent to a sampling procedure.
Hence, the most suitable method for comparison is to assign weights chosen at
random from the distribution of weights of the contact network in friendship
and sampled networks, which is known to be a robust feature of human contact
patterns [2, 34]. We come back more in detail to the differences caused by the
choice of either of these methods further in this chapter.

4.2 Properties of sampled networks and outcome

of SIR simulations

4.2.1 Simple sampling methods

As a first step, we study sampled networks obtained from simplest methods of
sampling and compare the results obtained with these networks with the contact
and friendship networks. Table 4.1 shows the characteristics of the empirical
contact and friendship networks compared to the networks obtained by the
simplest sampling techniques (SubFr, MSZ, RN, DRN, EGO, RE). The contact
network has 327 nodes, while the friendship and sampled networks have 135
nodes. The density is twice higher in the contact network than in the friendship
network; however, the subgraph induced by the nodes of the friendship network
(SubFr) has in fact a slightly higher density than the contact network as well as
the DRN sampled networks, that is not surprising as the DRN sampling chooses
preferentially nodes with high degree. As the RN method samples uniformly
the nodes of the contact network, the resulting density is on average equal to
the density of the contact network. On the other hand, the density of the
EGO sampled networks is even higher. Finally, RE and MSZ methods yield by
construction the same density as the friendship network.

The clustering coefficient displays interesting features: despite a much lower
density, the friendship network has a higher clustering coefficient than the con-
tact network. Networks obtained through the SubFr, RN, DRN and EGO
methods have as well rather large clustering coefficients, while the RE sam-
pling yields much lower values. Similarly, the MSZ reshuffling of the friendship
network makes the clustering coefficient drop as it breaks some correlation of
the friendship network.

Figure 4.2 shows the outcome of the spreading simulations performed on the
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Number of nodes Number of edges Density Average degree Average clustering Avg shortest path*
Contact network 327 5818 0.11 35.6 0.50 2.15
Friendship network 135 413 0.05 6.1 0.53 4.06
SubFr 134 1235 0.14 18.4 0.55 2.22
RN 135 987 0.11 14.6 0.50 2.37
DRN 135 1218 0.13 18 0.50 2.18
EGO 135 1679 0.19 24.9 0.57 2.04
MSZ 135 413 0.05 6.1 0.07 2.92
RE 135 413 0.05 6.1 0.16 3.19

Table 4.1: Features of the empirical networks and of the networks obtained with
the simplest sampling methods: SubFr, RN, DRN, EGO preserving the number
of nodes and MSZ and RE preserving both the number of nodes and edges of
the friendship network. *The average shortest path length is computed on the
largest connected component of the network.

two empirical networks and on sampled networks obtained by the RN, RE and
EGO sampling methods: it displays the fraction of epidemics with size above
20% and the average size of epidemics among the ones with size above 20%, as
a function of the spreading parameter β/µ.

As found in Section 3.4, simulations using the friendship network give a
very strong underestimation of the epidemic risk with respect to the ones using
the contact network. The simulations performed on the sampled networks RN
and EGO yield a much larger estimation of the epidemic risk than when using
the friendship network but smaller than in the case of the contact network.
Moreover, the estimation of the epidemic risk increases with the density of
the sampled network, as expected since the availability of transmission paths
increases with density. In the case of the RE sampling, the resulting networks
have the same density as the friendship network, however simulations using RE
sampled networks yield larger epidemic sizes than when using the friendship
network: the main difference between these networks is that the friendship
network has a much larger clustering coefficient. This is in agreement with the
results of Smieszek et al. [61] stating that high clustering values tend to hinder
propagation processes, at fixed density.

We show in Figure 4.3 the results of simulations performed on the SubFr
network as well as on the randomized version of the friendship network using
the MSZ method. The SubFr network corresponds to a population sampling
of the contact network, and leads to a limited underestimation of the epidemic
risk with respect to the whole contact network as the density is larger than in
the whole contact network. Contrary to the RN case, the SubFr procedure is
not a uniform sampling method. Indeed, there is a slight bias towards nodes
with high degree: the 134 nodes of SubFr have an average degree of 37.9 in
the contact network while 135 nodes chosen at random have an average degree
of 35.6 in the contact network (equal to the average degree of the 327 nodes),
explaining the discrepancies between the results of simulations performed on the
resulting networks of these two methods of sampling. The MSZ network has the
same number of nodes and edges than the frienship network, hence the same
density, but a much smaller clustering, due to the randomization, and gives thus
a higher epidemic risk, in agreement with [61].
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(a) (b)

Figure 4.2: Outcome of SIR spreading simulations performed on empirical and
sampled networks. (a) Fraction of epidemics with size above 20% (at least 20%
of recovered individuals at the end of the SIR process) as a function of β/µ. (b)
Average size of epidemic with size above 20% as a function of the parameter of
spreading β/µ.

(a) (b)

Figure 4.3: Outcome of SIR spreading simulations performed on empirical, sam-
pled and reshuffled networks. We compare here the case of the SubFr sampling
and of the randomized friendship network (MSZ) with the empirical contact
and friendship networks. (a) Fraction of epidemics with size above 20% (at
least 20% of recovered individuals at the end of the SIR process) as a function
of β/µ. (b) Average size of epidemics with size above 20% as a function of β/µ.
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All methods used in this section yield intermediate results between results
obtained with the contact network and results obtained with the friendship
network. As expected, the sizes of simulated epidemics depend mostly on two
characteristics of the network used for simulations: the density and the cluster-
ing coefficient, indeed the higher is the density, the higher is the epidemic risk,
on the contrary, at fixed density, the smaller is the clustering, the higher is the
epidemic risk.

4.2.2 More refined methods of sampling

We now turn to more sophisticated methods of sampling where the numbers of
nodes and edges can be tuned to correspond to the friendship network and in
particular we investigate the case of the EGOref sampling method. In the result-
ing EGOref sampled networks, the number of edges depends on the parameter
p, at fixed number of sampled nodes NF . Figure 4.4 shows the average number
of edges in the sampled network as a function of p. For p > maxi,j(si/Wij), this
number reaches the average number of edges in the subgraph induced by NF

nodes chosen at random on the contact network, which is equal to the number
of edges obtained through the RN sampling process. As our goal is to obtain a
sampled subgraph of the contact network that is similar to the friendship net-
work, we tune p in order to obtain sampled networks with an averaged number
of edges close to EF = 413, the number of edges in the friendship network. This
value is obtained for p ≈ 31.3 (Figure 4.4). At this value, we point out that the
obtained network is always connected.

In Table 4.2, we report the properties of the networks sampled using the
RE, WRE, RNref and EGOref methods. These methods allow to choose the
number of edges and we choose it to be equal to EF , the number of edges in
the friendship network. The clustering coefficient is systematically smaller in
sampled networks than in the friendship network, but a better agreement is
found for the WRE and EGOref networks. The average shortest path length
is also smaller in sampled networks than in the friendship network, except for
the sampled network using WRE method; again the WRE and EGOref sampled
networks are the ones with the average shortest path length closest to the case of
the friendship network. Further refinements of the EGOref method might yield
a clustering closer to the one of the friendship network, at the cost however of
an increase in the method’s complexity and number of parameters.

Number of nodes Number of edges Density Average degree Average clustering Avg shortest path*
Friendship network 135 413 0.05 6.1 0.532 4.06
RE 135 413 0.05 6.1 0.157 3.19
WRE 135 413 0.05 6.1 0.371 4.22
RNref 135 413 0.05 6.1 0.197 3.21
EGOref 135 413 0.05 6.1 0.355 3.90

Table 4.2: Features of the friendship network and of the sampled networks
obtained by RE, RNref and EGOref method, all of them preserving the number
of nodes and edges of the friendship network. *The average shortest path length
is computed on the largest connected component of the network.
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Figure 4.4: Average number of edges in the sampled network obtained by the
EGOref method as a function of the parameter p with NF = 135. The horizontal
red line represents the number of edges EF in the friendship network.

Figure 4.5 shows the outcomes of epidemic spreading simulations performed
on the friendship network and on the contact networks sampled using the
EGOref, RNref, RE and WRE methods. A very good agreement with the
epidemic risk estimated from the friendship network is obtained for the EGOref
sampling, while the RE and RNref sampled networks yield large epidemic sizes
with higher probability and larger average epidemic sizes, even if they have the
same density. In the case of the WRE sampling, the epidemic sizes are smaller
than the friendship network: this can be explained by the larger average shortest
path length (as the nodes are on average further than in the friendship network,
the spreading is slowed down) and the rather large clustering coefficient. Figure
4.6 displays the whole distributions of epidemic sizes for simulations performed
on the friendship and EGOref networks, for 4 values of the spreading parameter
β/µ. A good agreement in the shape of the distributions is observed, although
the maximal size of epidemics is systematically higher in the EGOref sampled
contact networks than in the friendship network, especially at large β/µ.

As a further refinement, we consider the case of the EGOref-het sampling
method. In that case, the nodes are not sampled uniformly but we select a
certain number of nodes in each class (uniformly in each class) such that the
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(a) (b)

Figure 4.5: Outcome of SIR spreading simulations performed on friendship and
sampled networks. (a) Fraction of epidemics with size above 20% (at least 20%
of recovered individuals at the end of the SIR process) as a function of the
parameter of spreading β/µ. (b) Average size of epidemic with size above 20%
as a function of the spreading parameter β/µ.

repartition of nodes in classes is the same as in the friendship network. The
number of edges is fixed at the same value as before i.e., 413 edges; in that case,
this number is obtained for p ≈ 22. The resulting average shortest path length
is 4.03 and the average clustering is 0.334, still smaller than in the friendship
network and in fact, very close to the clustering in the EGOref sampled net-
works. We show in Figure 4.6 that the outcomes of the spreading simulations
are similar to the EGOref case, with a slightly better agreement with the results
of simulations using the friendship network, in particular for large epidemics.
This refinement of the model of sampling appears not so useful as it does not
bring strong improvements to the results of simulations.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: Outcome of SIR spreading simulations performed on friendship and
both EGOref sampled networks. (a)-(d) Distributions of epidemic sizes for
different values of β/µ. (e) Fraction of epidemics with size above 20% (at least
20% of recovered individuals at the end of the SIR process) as a function of the
parameter of spreading β/µ. (f) Average size of epidemic with size above 20%
as a function of the spreading parameter β/µ.
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4.3 Sampling model exploration

In this section, we investigate how simulations of spreading processes performed
on networks obtained from the contact network using the EGOref sampling
method depend on the method’s parameters p and N . We consider 135 ≤ N ≤
327 and 15 ≤ p ≤ 500 (as for p > 500 the number of links is almost equal to its
maximum possible value). We first observe (Figure 4.7) that, at fixed N , the
density of the sampled network is fully determined by the value of p. Changing
p is thus equivalent to tuning the resulting network’s density. For p = 500 and
N = 327, we almost recover the whole contact network.

In Figure 4.8, we show the average epidemic size obtained on the sampled
networks as a function of p and N for different values of the spreading param-
eter β/µ: this size increases with both p and N . Increasing p (which would
correspond to the probability to report a link as a friendship in the case of the
friendship survey) at fixed N (which would correspond the number of partici-
pants to the survey) or the contrary is not enough to obtain a correct estimation
of the epidemic risk: both have to be increased in order to obtain the same value
as when using the whole contact network, shown by the continuous line. The
dashed lines show the values of p and N necessary to obtain an estimation of
the epidemic size within 5%, 10% or 20% of this reference value.

We also note that the average epidemic size obtained for the largest values
of p and N is actually larger than the reference, although the corresponding
EGOref network is structurally almost the same as the contact network. This
discrepancy stems from the fact that the edge weights are placed differently in
both cases: weights are indeed assigned at random on the edges of the network
obtained by the EGOref sampling procedure. In the next section, we investigate
more in detail the reasons for this discrepancy.

Figure 4.7: Average density of the resulting EGOref sampled networks as a
function of the number of nodes for different values of p.
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(a) β/µ = 30 (b) β/µ = 60

(c) β/µ = 100 (d) β/µ = 5000

Figure 4.8: Color maps of the average epidemic size for epidemics with size
above 20% for several values of β/µ. When no epidemics has size above 20%,
the value is zero. The three dashed lines represent the value of average epidemic
size at 5%, 10%, 20% of the reference value (solid line), which corresponds to
the average epidemic size of the SIR spreading simulations performed on the
contact network.
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4.4 Impact of weight assignment

We have adressed in Section 4.1.2 the need for weight assignment to edges of un-
weighted network to properly compare the outcomes of simulations of epidemic
spreading; the results will be however different depending on the choice of the
weight assignment method. We investigate here the impact of several possible
ways to assign weights to the networks used for the simulation of spreading pro-
cesses, namely the empirical contact network measured by the wearable sensors,
the network of reported friendships, and the networks obtained through various
sampling procedures from the contact network. Indeed:

• the measured contact network is weighted, as the sensors give access to
the duration of contacts. We can therefore consider the weighted network
with its true weights (“Original weights”) or, to assess the impact of cor-
relations between weights and structure, reshuffle them at random among
the network’s links (“Reshuffled weights”).

• any sampling procedure produces a subgraph of the contact network. As a
consequence, the weights of the edges can be either taken directly from the
contact network (“Original weights”), under the hypothesis that the sam-
pling procedure keeps information about the weights. On the other hand,
the opposite hypothesis, that sampling only informs about the existence
of a link, and not on its importance, leads us to another weight assignment
procedure, namely a random weight assignment from the distribution of
weights of the contact network (“Random weights”). This is the proce-
dure considered in the previous sections, as it is the most parsimonious
and realistic in terms of availability of information.

• the friendship network is not weighted. In order to use it in the simulations
of SIR process, we can assign weights to links in different ways:

– we can choose the weights randomly from the distribution of weights
in the contact network (“Random weights”), again this method is the
one used in the previous sections for the same reason, or,

– for each edge of the friendship network present in the contact network
(86% of the links in the friendship network find a corresponding link
in the contact network), we can use the corresponding weight and,
for the remaining 14%, we can take the weights at random from
the distribution of weights obtained from the first step (we call this
assignment procedure “Original weights”), or,

– we assign the weights as in the previous method and then reshuf-
fle randomly the weights among the links of the friendship network
(“Reshuffled weights”).
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4.4.1 Contact network and sampling procedures indepen-

dent from weights

Most of the methods of sampling used on the contact network (RN, DRN, RNref,
RE, EGO and SubFr) sample edges independently from their weights, thus the
distribution of weights of the contact network is preserved in the sample neworks.
In this sense, the “Random weights” procedure performed on these sampled
networks is equivalent to the “Reshuffled weights” performed on the contact
network. Indeed, reshuffling the weights does not change the distribution of
weights.

Even though the distribution of weights is unchanged by the reshuffling
procedure, the simulations performed on the contact network with “Reshuffled
weights” yield larger epidemic sizes than with original weights (Figure 4.9).
Similarly, in the case of sampled networks, we show in Figure 4.10 that the
simulations performed with the use of the “Random weights” assignment proce-
dure leads systematically to larger epidemic sizes than the use of the “Original
weights” assignment procedure. Given the fact that the distribution of weights
is unchanged in both procedures, this discrepancy is a sign of some correlations
between weights and structure of the network that hinders the propagation of
simulated epidemics.

We investigate this potential correlation in Figure 4.11: it displays the ratio
sk/k as a function of k for the contact network and the RN, EGO and RE
sampled networks (similar results are obtained for DRN, RNref and SubFr sam-
pled networks), where sk is the average strength of nodes of degree k. The
two different ways of assigning the weigths yield different behaviors: (i) when
weights are shuffled or assigned at random, sk/k is independent of k, (ii) on
the contrary, when the original weights are used, a distinct trend is observed,
with smaller strengths at large k than for the random/reshuffled weights. In
the latter case, the hubs (i.e., nodes with high degree) have smaller spreading
power than expected by random chance, and the epidemic spread is hindered,
leading to smaller epidemic risk.
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(a) (b)

(c) (d)

Figure 4.9: Outcome of SIR spreading simulations performed on contact network
with “Original weights” and “Reshuffled weights”. (a) Fraction of epidemics
with size above 20% (at least 20% of recovered individuals at the end of the SIR
process) as a function of β/µ. (b) Average size of epidemics with size above
20% as a function of β/µ. (c) and (d) Distributions of epidemic sizes for two
different values of β/µ.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.10: Outcome of SIR spreading simulations performed on contact net-
works sampled with the RN, RE and EGO methods, and with weights as-
signed either through the “Original weights” or “Random weights” procedures.
(a),(c),(e) Fraction of epidemics with size above 20% (at least 20% of recovered
individuals at the end of the SIR process) as a function of β/µ. (b),(d),(f)
Average size of epidemics with size larger than 20% as a function of β/µ.
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(a) (b)

(c) (d)

Figure 4.11: Comparison of average strength sk of nodes with degree k, divided
by the degree k, as a function of k between the “Original weights” and the
“Reshuffled/Random weights” cases for (a) the contact network, (b) the RN-
sampled network, (c) the EGO-sampled network, (d) the RE-sampled network.
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4.4.2 Friendship network

Figure 4.12 compares the outcomes of SIR simulations on the friendship network
with weights assigned in the three different ways described above. The size of
epidemics is a little higher in the case of “Reshuffled weights” than in the case
of “Original weights”: this is due to the same mechanism as for the contact
network, i.e., to correlations between weight and structure that are destroyed
by the reshuffling.

Simulations on the network with “Random weights” lead on the other hand
to a much smaller epidemic risk. In Figure 4.13 we show the distributions
of weights of all the links of the contact network (in blue, 5818 links) and of
friendship links that are also present in the contact network (in red, 348 links).
As already found in the previous chapter, the distributions are not the same
and the links present in both networks tend to correspond to larger cumulative
durations. The blue distribution is the one used in the “Random weights” case,
while the red one is used in“Original weights” and “Reshuffled weights”. The
average weight is larger in two latter cases and this of course favours the spread.

(a) (b)

Figure 4.12: Outcome of SIR spreading simulations performed on the friendship
network with “Original weights”, “Reshuffled weights” and “Random weights”.
(a) Fraction of epidemics with size above 20% (at least 20% of recovered indi-
viduals at the end of the SIR process) as a function of β/µ. (b) Average size of
epidemic with size above 20% as a function of β/µ.
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Figure 4.13: CCDF of weights for two different kinds of edges in the contact
network: (i) all edges, (ii) edges corresponding to a reported friendship (i.e.,
present in both friendship and contact networks).

4.4.3 WRE sampling procedure

The case of the WRE sampling procedure is different from the other sampling
techniques as it selects edges with a probability depending on their weights.
Thus, the distribution of “Original weights” of the edges selected throughout
the sampling is different from the distribution of weights of edges of the contact
network used in the “Random weights” assignment procedure (Figure 4.14): the
distribution of “Original weights” is shifted towards larger weights.

Figure 4.15 shows the outcomes of simulations performed on the WRE sam-
pled networks with both weight assignment techniques. Contrary to sampling
techniques independent from weights, the epidemic sizes are larger in the case
of “Original weights” than with “Random weights” and the difference between
the two cases is also larger. In the case of “Random weights” there is no corre-
lations between weights and structure, while in the case of “Original weights”
the correlations between weights and structure are preserved but they are coun-
terbalanced by the larger weights in the sampled networks such that epidemic
sizes are larger.

A very good agreement is found between the results of SIR simulations per-
formed on WRE sampled networks with “Original weights” assignment and the
results obtained with the friendship network (with “Random weights” assign-
ment), yet less good than between EGOref sampled networks and friendship
network (Figure C.1). However this agreement is misleading as it might be
the result of compensation between two effects in this specific case: (i) in the
friendship network, there is no correlations weights-structure (accerelerates the
propagation of simulated epidemics) and the distribution of weights of the con-
tact network is preserved (ii) in the WRE sampled networks, the correlations
weights-structure are preserved (hinders the propagation) but weights are larger
(risk of infection from a Infectious node to a Susceptible node is higher). More-
over, it assumes that we are able to measure the weights, while in the EGOref



100 CHAPTER 4. FRIENDSHIP SURVEY VS SAMPLING PROCEDURES

case we can use a distribution of weights from other data sets.

Figure 4.14: CCDF of weights for two different kinds of edges in the contact
network: (i) all edges, (ii) edges which were chosen in the WRE sampling.

(a) (b)

Figure 4.15: Outcome of SIR spreading simulations performed on the WRE
sampled networks with “Original weights” and “Random weights”. (a) Fraction
of epidemics with size above 20% (at least 20% of recovered individuals at the
end of the SIR process) as a function of β/µ. (b) Average size of epidemic with
size above 20% as a function of β/µ.
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4.4.4 EGOref sampling procedure

In the case of the EGOref sampling procedure, the interesting part is that
it combines the two effects discussed above: there is a competition between
the fact that the random assignment of weights does not take into account the
correlations weights-structure and the fact that the EGOref sampling procedure
chooses preferentially edges with large weights. Indeed, the difference between
the outcomes of simulations performed on EGOref-sampled networks using the
“Original weights” and “Random weights” assignment procedures depends on
the parameters of the sampling procedure p and N , as shown in Figure 4.16.

For small p, the average epidemic size is higher in the case of “Original
weights” whereas for large p, it is higher in the “Random weights” case. This
can be explained by the two following competing effects:

• at small p, relatively few edges are selected in the contact network, and
each ego selects preferentially links with large weights. The resulting dis-
tribution of original weights is thus biased towards large weights, and the
weights are on average larger than when using weights taken at random
from the overall distribution of weights of the contact network. This tends
to favour the spread and thus leads to a larger epidemic risk for “Original
weights” than for “Random weights”.

• at large p, the probability to select an edge is large even for links with
small weights. As a result, the distribution of weights of sampled links
becomes close to the global distribution of weights in the contact network
used in the “Random weights” cases. The correlations between weights
and structure present in the contact network can then play a role and act
in the same way as for the RN, RE and EGO sampling methods: a random
assignment of weights destroys the correlations and favours the spread.

Finally, we note that the value of N (Figures 4.16(b) and (d)) does not
change the sign of the difference between the epidemic risk obtained by the two
weight assignment procedures, but only its amplitude.
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(a) (b)

(c) (d)

Figure 4.16: Average size of epidemic (with size above 20%) for SIR spreading
simulations performed on EGOref-sampled network with “Original weights” and
“Random weights” for four different couples of p and N : (a) p = 31.3, N = 135,
(b) p = 400, N = 135, (c) p = 31.3, N = 327, (d) p = 400, N = 327.
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4.5 The EGOref sampling in other contexts

The previous sections have shown the efficiency of the EGOref sampling in
reproducing the results of SIR simulations performed on the friendship network
of our data set. However, the efficiency of this method of sampling is attested
in only one case: the current lack of data sets combining contact data and
friendship data prevents us from testing this efficiency in other cases. Given
this fact, we can still study the consequences of the EGOref sampling on other
data sets decribing face-to-face contacts and compare to the impact of other
types of sampling.

We consider here two data sets describing contacts in (i) offices (InVS) and
(ii) a conference (SFHH) already mentioned in Section 1.3.2. The InVS data
contains the contacts measured in offices during two weeks between 92 individ-
uals, while the SFHH data describes contacts between 403 individuals during
the two days of a conference.

As a first step, we perform the RN and EGOref sampling methods on both
InVS and SFHH data sets. For this, we use the same parameters of sampling
used in the case of high school (nodes are sampled at 41% and for the EGOref
case we choose p = 31.3) and the same method of weight assignment (“Random
weights” procedure). In Table 4.3, we report the number of nodes and edges in
each empirical and sampled networks: in both cases, the RN sampling preserves
the density of the contact network and the density is much smaller in EGOref
sampled networks. We show in Figures 4.17-4.20, the outcome of simulations
performed on these networks. The simulations performed on sampled networks
yield much smaller epidemic sizes than with the use of the contact network,
moreover the epidemic sizes are smaller with the EGOref sampling than with
the RN sampling which is just a population sampling: the ranking between the
two methods is the same as for the high school case. However, it is impossible
to compare the results with a potential friendship network.

Finally, we show in Figures 4.21-4.22, the equivalent of Figure 4.8 in the case
of InVS and SFHH data sets, highlighting the combined effects of population
sampling and of the absence of links with small weights in the sampled network.

Number of nodes Number of edges Density
InVS Contact network 92 755 0.18
InVS EGOref network 37 88 0.13
InVS RN network 37 119 0.18
SFHH Contact network 403 9565 0.12
SFHH EGOref network 165 766 0.06
SFHH RN network 165 1598 0.12

Table 4.3: Number of nodes and edges in the empirical and sampled data sets.
The sampled networks consider the same fraction of nodes as for the data set
used in high school case.
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(a) (b)

Figure 4.17: Outcome of SIR spreading simulations performed on empirical and
sampled contact networks (InVS data set). We compare here the simulations on
the original contact network with a sampled network using the EGOref sampling
procedure with p = 31.3 and N = 165 nodes (corresponding to a sampling
fraction equal to the case of of Lycée Thiers) and with the RN case (still with
N = 165 nodes). (a) Fraction of epidemics with size above 20% (at least 20%
of recovered individuals at the end of the SIR process) as a function of β/µ. (b)
Average size of epidemics with size above 20% as a function of β/µ.

(a) (b)

Figure 4.18: Outcome of SIR spreading simulations performed on empirical and
sampled contact networks (SFHH data set). We compare here the simulations on
the original contact network with a sampled network using the EGOref sampling
procedure with p = 31.3 and N = 37 nodes (corresponding to a sampling
fraction equal to the case of of Lycée Thiers) and with the RN case (still with
N = 37 nodes). (a) Fraction of epidemics with size above 20% (at least 20% of
recovered individuals at the end of the SIR process) as a function of β/µ. (b)
Average size of epidemics with size above 20% as a function of β/µ.
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(a) β/µ = 500 (b) β/µ = 1000

(c) β/µ = 1500 (d) β/µ = 2000

Figure 4.19: Distributions of epidemic sizes of SIR spreading simulations (InVS
data set). We compare the distributions of epidemic sizes for simulations per-
formed on the original contact network and on the sampled network using the
EGOref sampling procedure with p = 31.3 and N = 37 nodes (corresponding
to a sampling fraction equal to the case of Lycée Thiers) and with the RN case
(still with N = 37 nodes), for different values of β/µ.
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(a) β/µ = 500 (b) β/µ = 1000

(c) β/µ = 1500 (d) β/µ = 2000

Figure 4.20: Distributions of epidemic sizes of SIR spreading simulations (SFHH
data set). We compare the distributions of epidemic sizes for simulations per-
formed on the original contact network and on the sampled network using the
EGOref sampling procedure with p = 31.3 and N = 165 nodes (corresponding
to a sampling fraction equal to the case of Lycée Thiers) and with the RN case
(still with N = 165 nodes), for different values of β/µ.
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(a) β/µ = 200 (b) β/µ = 500

Figure 4.21: Color maps of the average epidemic size for epidemics with size
above 20% for several values of β/µ (InVS data set). When no epidemics has
size above 20%, the value is zero. The three dashed lines represent the value
of average epidemic size at 5%, 10%, 20% of the reference value (solid line),
which corresponds to the average epidemic size of the SIR spreading simulations
performed on the contact network.

(a) β/µ = 100 (b) β/µ = 500

Figure 4.22: Color maps of the average epidemic size for epidemics with size
above 20% for several values of β/µ (SFHH data set). When no epidemics has
size above 20%, the value is zero. The three dashed lines represent the value
of average epidemic size at 5%, 10%, 20% of the reference value (solid line),
which corresponds to the average epidemic size of the SIR spreading simulations
performed on the contact network.



108 CHAPTER 4. FRIENDSHIP SURVEY VS SAMPLING PROCEDURES

4.6 Conclusion and outlook

In the context of the spread of infectious diseases, contact networks are consid-
ered as a relevant proxy of transmission possibilities [26]. However, gathering
objective data on contacts is not always feasible and other types of data, such
as friendship networks, could be easier to obtain than contact networks in some
situations. Moreover, surveys asking individuals about their friends might suffer
less from memory biases than contact diaries. In Section 3.4, we have found,
considering a data set combining contacts and friendship relations, than the
use of the friendship network for simulations of epidemic spreading leads to
an underestimation of the epidemic risk with respect to the use of the contact
network obtained from sensors. In this chapter, we have investigated if this
underestimation can be seen as biases resulting from a sampling procedure per-
formed on the contact network. The rationale leading to this question comes
from the quantitative comparison between the friendship and contact networks
performed in the previous chapter: friendship and contact networks are indeed
different, the friendship network has much less nodes than the contact network,
and many short contacts occur between individuals who are not friends; how-
ever, the longest contacts, which play an important role in potential propagation
events, effectively correspond to friendship links, and the overall structure of the
networks, in terms of interactions between different classes, are similar. Under-
standing if and how friendship surveys could be used in models of spreading
processes would thus be interesting. Most importantly, framing the relation be-
tween friendship networks and actual contact networks as a sampling procedure
might also help design and evaluate procedures to compensate for the resulting
biases in the estimation of epidemic risks.

To make progresses in this direction, we have considered several ways of
sampling the contact network and investigated the similarities of the resulting
sampled networks with the friendship network with respect to the outcomes of
simulations of epidemic spread. The friendship network has much less nodes
than the contact network, so that, we have first considered a uniform sampling
of nodes. Assuming that the individuals who have answered the friendship sur-
vey are more “important” in the contact network, we have considered the DRN
method which samples nodes with probability proportional to their degrees in
the contact network. These two methods simply sample nodes and consider
the subgraph induced by these nodes on the contact network, while the EGO
method is closer in its mechanism to a survey procedure as it includes nodes
chosen at random and all their contacts. The resulting networks obtained with
these three methods have much higher densities than the friendship network;
in particular the density of the DRN sampled networks is equivalent to the
density obtained by taking the subgraph induced by the respondent nodes to
the friendship network on the contact network (SubFr method). The epidemic
risk obtained with simulations performed on these sampled networks is much
higher than in the case of the friendship network. We have therefore considered
sampling methods in which the density could be tuned to be equal to the den-
sity of the friendship network. In the RE and RNref methods, we select edges
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at random, which leads to a rather small clustering coefficient in the sampled
networks with respect to the friendship network and thus yields larger epidemic
sizes. These methods seem indeed too naive to recover the small scale structures
and correlations of the friendship network. As the friendship links present in
the contact network tend to correspond to edges with large weights, we have
then considered the WRE method which samples edges with a probability pro-
portional to their weights in the contact network. The resulting networks have
a rather large clustering coefficient but still smaller than in the friendship net-
work, however the average shortest path length is higher in the WRE sampled
networks, i.e., the nodes are further apart than in the friendship network; as
a consequence the epidemic risk is smaller with this method of sampling than
with the friendship network.

Finally, we designed the EGOref sampling method as a way to mimic a
survey procedure in which individuals (egos nodes) report on their friendships
under the assumptions that all reported friendships correspond to contacts, and
that the probability that a contact corresponds to a friendship is larger for
longer contacts. Note that this method is not aimed at reproducing exactly
the friendship network (in which some links in fact do not correspond to con-
tacts), but its goal is to produce a sampled network whose properties are close
enough to the friendship network to lead to similar outcomes when used in sim-
ulations of spreading processes. This method of sampling depends mainly on a
single parameter p which determines the number of edges an ego would report
as friendships: actually, at fixed number of egos, the density of the sampled
networks is fully determined by this parameter. In particular, we can choose
the number of egos equal to the number of nodes in the friendship network and
tune the parameter p to have the same density in the sampled networks than
in the friendship network. At fixed density, this method allows us to recover a
higher coefficient of clustering than the other sampling methods. Most impor-
tantly, simulations of spreading processes performed on the resulting sampled
network yield an estimation of the epidemic risk in very good agreement with
simulations using the friendship network, for a wide range of spreading param-
eters. Note that the EGOref method samples egos uniformly at random while
the EGOref-het method chooses egos in the various classes to correspond to the
numbers of indivuals in each class in the friendship network. The value of p
required to have the desired number of edges is smaller with this variation of
the EGOref method but the outcomes of simulations do not show significant
improvements with respect to the EGOref method. Moreover, the clustering
coefficient is still lower than in the friendship network. More involved sampling
procedures allowing to control the clustering might be sought, but would result
in more complex and less intuitive sampling rules.

Some limitations of our approach are worth discussing. First, the way we
choose to assign the weights to edges in the sampled networks can be discussed.
On the one hand, the distribution of weights is known to be very robust in
human contact networks, even in very different contexts such as schools or
hospitals [10, 12], so that it seems natural to use the empirical distribution of
weights, which can be taken from publicly available datasets, to assign weights



110 CHAPTER 4. FRIENDSHIP SURVEY VS SAMPLING PROCEDURES

to links obtained through surveys. Here the distribution of weights used is the
one of the contact network obtained from sensors. On the other hand, a ran-
dom assignment of weights destroys correlations between the weights and the
structure of the network that can have an impact on the outcome of spreading
simulations, a scenario verified in our case. We have considered such a random
assignment as our goal is to compare the friendship network to a sampled con-
tact network: when only friendship data is available we do not have information
on the weights so a natural way to perform simulations of epidemic spreading
processes is indeed to assign weights at random to the friendship links. More
accurate ways to assign weights in order to mimic the correlations linking the
strengths and degrees of nodes in the contact network would be of great interest,
but might depend on the context and would require supplementary information.
Moreover, here we have considered static networks while real contact networks
evolve over time. As mentioned above, this is based on a twofold rationale:
first the data obtained from friendship surveys does not contain temporal infor-
mation, the comparison should be done with a sampling of a static version of
the contact network; then for slow propagation timescales corresponding e.g. to
flu-like illnesses, the precise dynamic of the contacts does not represent a crucial
information [8]. In the case of faster processes where the temporal evolution of
the network is important, one should create surrogate timescales on the links
similarly to [43]. Finally the main limitation comes from the fact that our study
is limited to one specific population. This is due to the current lack of datasets
combining both contacts and friendship relations. Further investigations in dif-
ferent contexts would be of great interest.

The sampling method we have proposed here depends on two parameters:
the number of egos N and p. In the context of a survey, these two numbers allow
to tune the number of respondents and the amount of contacts reported. This
makes its application possible in various contexts; actually, we have started to
study the impact of this method of sampling on various data sets, yet the com-
parison with a corresponding friendship network is impossible as these data sets
do not combine both contacts and friendship data. Following the work of [43],
we have also started preliminary investigations on reconstruction strategies to
obtain better estimates of the epidemic risk from sampled network, with respect
to the results of simulations performed on the contact network. However, in [43]
Génois et al. have chosen a uniform method of sampling in which selected nodes
(and their edges) are removed from the contact network which is equivalent to
the RN method described in this chapter. This method preserves the density
of the contact network which allows to rebuild a surrogate contact network by
adding the desired number of nodes (to obtain the total number of nodes in
the target population) and a certain number of edges chosen to preserve the
overall density. Moreover, in data sets where nodes are naturally separated in
different groups (e.g., classes for high school), it is also possible to preserve the
density at the scale of these groups when it is necessary; indeed in the case of
Lycée Thiers data set the density is much higher inside classes than between
different classes which is known to have an importance in the context of epi-
demic spreading. The case of the EGOref method of sampling is different as the
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sampling of edges is not uniform and in the case described in this chapter, at
small p the density is much lower than the density of the contact network. Thus
a method of reconstruction equivalent to the one described in [43] turns out not
to be to obtain a good estimation of the epidemic risk with the reconstructed
networks. In Appendix (Figures C.3-C.7), we show the results of simulations
of epidemic spreading obtained before and after reconstruction (the method of
reconstruction is equivalent to the one of [43]) of the sampled networks. At
small p and after reconstruction, the epidemic risk is still much smaller than in
the case of the contact network. Moreover, the epidemic risk depends only on
p and the number of egos N chosen in the sampling phase does not have any
impact on the epidemic risk simulated after reconstruction. In other words, if
we aim to obtain a good estimation of the epidemic risk, we have to increase
the value of p or, in the case of an empirical survey, increase the number of con-
tacts reported. Other reconstruction strategies should also be sought. Future
work will focus on designing and evaluating new methods of reconstruction to
estimate the epidemic risk from incompletely and non-uniformly sampled data.
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Chapter 5

Conclusion

Measuring human interactions and in particular face-to-face contacts between
individuals has been a challenge of crucial importance in scientific domains such
as social sciences or epidemiology. As such, various methods of data collection
have been developed in the last decades by the research community [2, 3]. Tra-
ditional methods consist mostly in the use of surveys or diaries while the emer-
gence of new technologies have made possible the measurement of contacts with
high precision. Each of these methods has advantages and limitations.

On the one hand, methods based on surveys can help to gather various types
of information. Indeed, well-studied questionnaires can ask not only on the ex-
istence of contacts but also an estimated duration of contacts as well as the
context of such contacts (e.g., home, work, travel). In some contexts where it
is requested (e.g., when studying the propagation of sexually transmitted dis-
eases), questionnaires can also ask whether contacts involved physical contact
or not. Moreover, surveys can collect information about other types of relation-
ships such as friendship which could lead to actual contacts. Surveys however
have limitations [4, 5]. First of all, they are costly and it is difficult to recruit
participants as individuals can be discouraged by the burden of filling question-
naires. Most importantly, the self-reporting character of these methods yields
different types of biases that are difficult to estimate. In retrospective diaries,
participants might not recall all their contacts, especially the shortest ones, and
make incorrect estimations of contact durations. In surveys asking about friend-
ships for instance, personal feelings and perceptions can lead to other biases if
the questionnaires are not precise enough.

On the other hand, methods based on wearable sensors allow to measure
face-to-face contacts in an objective way and thus avoid the biases inherent in
self-reporting methods. Sensors are able to detect contacts, even very short
ones, with a high spatio-temporal resolution and gives access to temporal net-
works that evolve over time. Moreover the decrease in the related costs makes
nowadays large-scale deployments feasible. The main limitation of such proce-
dures comes from the fact that they do not register contacts with individuals not
participating to the deployment i.e., are limited to the study of contacts within
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a closed population. Sampling issues can also arise if not all the members of the
target population agree to wear the sensors.

In this thesis, we have analyzed a data set combining data about face-to-face
contacts detected with sensors (collected three years in a row), contact diaries,
friendship relations and Facebook relationships. The analysis of the contact
network obtained from sensors has given the following conclusions. First, the
distributions of typical durations are heterogeneous and the distribution of de-
grees is narrow, in agreement with results obtained in other environments. The
network was highly structured in classes and no gender homophily was observed
contrary to the case of a primary school [33]. The longitudinal study at two
different timescales has shown the robustness of contact patterns.

The comparison of data collected with different methods in the same context
has been performed, to our knowledge, in only two other studies [22, 31]. The
comparison we made on the combined data set has yielded the following results.
The contact diaries suffer from low participation, moreover most short contacts
were not reported and we have observed an overestimation of contact dura-
tions reported by participants. However, the longest contacts were all reported
and the structure in classes observed in the network obtained from sensors was
preserved in the network obtained from diaries. In the case of the friendship
survey, the participation rate was also very low. Most shorts contacts do not
correspond to friendships while the longest contacts all correspond to friend-
ships and most friendships lead to actual encounters. As for contact diaries, the
structure in classes was preserved in the friendship network. The two networks
obtained with these methods of data collection are more dilute than the sensor
network and thus are considered as incomplete data sets. Finally, the compari-
son of Facebook data with networks obtained from sensors and friendship survey
lead to the conclusion that the existence of a Facebook link does not give any
information on the existence of face-to-face contacts or friendships.

Then, we have investigated the use of the incomplete data sets in the sim-
ulations of epidemic spreading processes. The simulations yield strong under-
stimations of the epidemic risk with respect to the results obtained with the
contact network of sensors. In order to understand if this underestimation can
be seen as biases resulting from a sampling process performed on the contact
network, we have designed a non-uniform method of sampling created to mimic
the friendship survey procedure. This could indeed give hints on the possibili-
ties of using incomplete data to obtain an accurate estimation of the epidemic
risk [43]. This method of sampling has given results in very good agreement
with the results obtained when the friendship network is used. The interest of
our method of sampling is that it depends only on two parameters which makes
its utilisation in various contexts. We have started to tackle this perspective
using the sampling procedure on other data sets, however the comparison of net-
works sampled from the contact network with networks obtained through other
methods of data collection was impossible given the current lack of combined
data sets. The next step was the reconstruction of a surrogate contact network
from sampled networks, in order to use it in simulations of epidemic spread-
ing, and the comparison of the results with the outcomes of such simulations
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obtained with the actual contact network. The first attempts of reconstruction
using intuitive strategies such as the one used in [43] have failed to obtain a
good estimate of the epidemic risk as it is still much smaller with respect to
the epidemic risk measured with the contact network, mainly because of the
non-uniform sampling of edges. We should not forget that most data sets are in
fact incomplete samples of the network of interest. The design of more refined
reconstruction strategies would lead on a mid-term objective to estimate the
epidemic risk from incomplete data. Finally, even if the precise epidemic risk
is not well estimated, a complementary research direction will be to investigate
if it is still possible to evaluate mitigations strategies using incomplete data or
reconstructed surrogate data [43].
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Appendix A

Introduction

Figure A.1: RFID sensors and antennas used for deployments. Photo credit:
SocioPatterns
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Figure A.2: Locations of antennas (blue crosses) used in the deployment in
Lycée Thiers in 2013. Each class has most of its classes in one specific classroom
(written in black).



Appendix B

Analysis of face-to-face

proximity data

Number of contacts Cumulative duration of contacts N E
Day Number (% of total) Seconds (% of total) Minutes Hours
Tuesday 4,234 (39.7) 211,980 (37.1) 3,533 59 121 975
Wednesday 1,826(17.1) 93,120 (16.3) 1,552 26 113 582
Thursday 2,477 (23.2) 146,520 (25.7) 2,442 41 115 597
Friday 2,140 (20.0) 119,060 (20.9) 1,984 33 112 609
Total 10,677 570,680 9,511 159 126 1710

Table B.1: Number and duration of contacts in the different days of the 2011
data collection that lasted 4 days.

Number of contacts Cumulative duration of contacts N E
Day Number (% of total) Seconds (% of total) Minutes Hours
1st Monday 4,191 (21.2) 199,140 (22.1) 3,319 55 156 758
1st Tuesday 3,170 (16.0) 132,720 (14.7) 2,212 37 158 664
Wednesday 1,547 (7.8) 64,540 (6.4) 965 16 145 486
Thursday 2,641 (13.4) 106,920 (11.9) 1,782 30 146 550
Friday 3,184 (16.1) 154,360 (17.1) 2,573 43 151 659
2nd Monday 2,988 (15.1) 156,360 (17.4) 2,606 43 153 566
2nd Tuesday 2,053 (10.4) 93,540 (10.4) 1,559 26 151 483
Total 19,774 900,940 15,016 250 180 2220

Table B.2: Number and duration of contacts in the different days of the 2012
data collection that lasted 7 days.

121



122 APPENDIX B.

Figure B.1: 2011 dataset: Contact matrices of edge numbers and densities. Left:
the matrix entry at row X and column Y gives EXY , i.e., the number of pairs
of individuals of classes X and Y who have been in contact at least once during
the study. Right: the matrix entry at row X and column Y gives ρXY , i.e., EXY

normalized by the maximal possible number of pairs of individuals of classes X
and Y .

Figure B.2: 2011 dataset: Contact matrices of edge numbers and densities. Left:
the matrix entry at row X and column Y gives EXY , i.e., the number of pairs
of individuals of classes X and Y who have been in contact at least once during
the study. Right: the matrix entry at row X and column Y gives ρXY , i.e., EXY

normalized by the maximal possible number of pairs of individuals of classes X
and Y .
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Figure B.3: 2011 dataset: Contact matrices giving the cumulated durations in
seconds (first column) and the numbers (second column) of contacts between
classes during the whole study. In the first row, the matrix entry at row X and
column Y gives the total duration (resp. number) of all contacts between all
individuals of class X with all individuals of class Y . In the second row, the
matrix entry at row X and column Y gives the average duration (resp. number)
of contacts of an individual of class X with all individuals of class Y . In the
third row, we normalize each matrix element of the second column matrices
by the duration of the study, in days, to obtain at row X and column Y the
average daily duration (resp. number) of contacts of an individual of class X
with individuals of class Y .
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Figure B.4: 2012 dataset: Contact matrices giving the cumulated durations in
seconds (first column) and the numbers (second column) of contacts between
classes during the whole study. In the first row, the matrix entry at row X and
column Y gives the total duration (resp. number) of all contacts between all
individuals of class X with all individuals of class Y . In the second row, the
matrix entry at row X and column Y gives the average duration (resp. number)
of contacts of an individual of class X with all individuals of class Y . In the
third row, we normalize each matrix element of the second column matrices
by the duration of the study, in days, to obtain at row X and column Y the
average daily duration (resp. number) of contacts of an individual of class X
with individuals of class Y .
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Equivalence between

friendship network and a

non-uniform sampling of

contact network

(a) (b)

Figure C.1: Outcome of SIR spreading simulations performed on the WRE sam-
pled networks with “Original weights” and on friendship and EGOref sampled
networks with “Random weights”. (a) Fraction of epidemics with size above
20% (at least 20% of recovered individuals at the end of the SIR process) as a
function of β/µ. (b) Average size of epidemic with size above 20% as a function
of β/µ.
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Here we describe the reconstruction procedure. This method is applied to
the EGOref sampled networks and preserves the density of the sampled net-
works. We assume that we know the total number of individuals in the target
population (i.e., number of nodes in the contact network) and their potential
repartition in groups (classes, office departments...). From the EGOref sam-
pled networks, we build the matrix of link densities between different groups.
Then we add in the sampled networks the number of nodes missing in each
group. Finally, we add edges randomly but preserving the matrix of link densi-
ties measured before the addition of nodes. We show in Figure C.2 the results
of simulations obtained when using the contact network, the EGOref sampled
networks and the reconstructed network for the dataset Thiers13. One can see
that changing the value of N in the EGOref sampling procedure does not have
a strong impact on the results obtained with the reconstructed network. On the
contrary, the value of p has a strong influence on the final results. On the one
hand, when p is large, the EGOref sampling method leads to sampled networks
with rather large density and the results obtained after reconstruction are in
good agreement with the results obtained with the empirical contact network.
In fact, when p is large enough the EGOref method of sampling is quite equiv-
alent to the RN method of sampling for which we know that the reconstruction
of a surrogate contact network yields very good results with respect to the orig-
inal contact network [43]. On the other hand, when p is small, the results are
better after reconstruction: the discrepancy between sampled and contact net-
works is reduced after reconstruction but the epidemic risk is still significantly
underestimated given the very small density.
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(a) N = 135, p = 31.3 (b) N = 135, p = 400

(c) N = 303, p = 31.3 (d) N = 303, p = 400

Figure C.2: Thiers13 dataset: Distributions of epidemic sizes for the empirical
contact network, EGOref sampled networks and reconstructed networks. The
distributions are shown for two different values of the parameter p and two
values of N for the EGOref sampling method.
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Figure C.3: Outcome of SIR spreading simulations performed on networks sam-
pled with the EGOref method, before and after reconstruction (Lycée Thiers
2011 dataset).
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Figure C.4: Outcome of SIR spreading simulations performed on networks sam-
pled with the EGOref method, before and after reconstruction (Lycée Thiers
2012 dataset).
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Figure C.5: Outcome of SIR spreading simulations performed on networks sam-
pled with the EGOref method, before and after reconstruction (Lycée Thiers
2013 dataset).
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Figure C.6: Outcome of SIR spreading simulations performed on networks sam-
pled with the EGOref method, before and after reconstruction (InVS dataset).
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Figure C.7: Outcome of SIR spreading simulations performed on networks sam-
pled with the EGOref method, before and after reconstruction (SFHH dataset).
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