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Introduction

Network science explores the network representations of physical, biological,
technological and social systems, leading to powerful predictive models of com-
plex phenomena. This relatively new research field is rooted at the border of
all those disciplines and draws on theories and methods including graph theory
from mathematics, statistical mechanics from physics, data mining from com-
puter science, inferential modeling from statistics, and social structure from so-
ciology. This rich theoretical grounding makes the field of network science ap-
propriate to study the emergence of the global properties of systems as diverse
as the brain or the Internet. Until recently, the network representations were
constructed exclusively in terms of static graphs. However, facing the evidence
that almost all real world networks evolve over time, either by adding or remov-
ing nodes or links over time, network science has been naturally extended to the
emergent field of temporal or time-varying networks. Such dynamical evolution
is, in particular, inherent to social networks where people make and lose friends
over time, thereby creating and destroying edges, and some people become part
of new social groups or leave theirs, changing the nodes in the network. The
growing interest towards the temporal dimension of networks has been made
possible with the gathering, over the last decades, of a tremendous amount of
high resolution data from telecommunication devices, virtual social networks
hosted on the internet, and all pervasive technologies in general. This data rev-
olution not only represents valuable information allowing to directly apprehend
human behaviour but also enhances advances in network science modeling. In-
deed, social network science is now divided into two different research axes
nourishing each other: on the first hand the collection of data allows to build
real social time-varying networks which can be used as substrates for further
study of collective behaviours such as information or disease spreading. On the
other hand, substantial endeavour is made to identify the underlying mecha-
nisms that lead to some kind of universality observed in the structural properties
of real social networks, enabling to build models capturing some of the major as-
pects of real social structures. The models are in their turn used as guidelines to
extract useful information from the data which would otherwise be overwhelm-
ing and sterile. Moreover, as the universality often applies beyond the borders
of social systems, the models draw on and inspire theoretical developments in
other fields such as biology, economy or transportation networks, leading to very
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fruitful and collective improvements. Most recently, empirical evidence revealed
the universality of non-Markovian temporal patterns of human dynamics, ex-
plained by underlying cognitive mechanims such as memory effects, and which
affect crucially any dynamical process unfolding on such a network. My thesis
lies in the core of these new exciting challenges brought forth by this promis-
ing field of social network science. This manuscript is organized as follows: In
chapter 1 we introduce the time-varying networks formalism and we present em-
pirical data sets of social dynamics, along with the different synthetic models of
social dynamics extensively used in the rest of the thesis, one of which constitut-
ing a cornerstone production of my doctoral investigation. A complete analysis
of the topological properties of the latter model is presented in chapter 2, gener-
alizing the so-called Activity Driven network model to non-Markovian dynamics.
Then, chapter 3 is devoted to the study of the emergence of a giant connected
component in the time-integrated network constructed from our model of social
dynamics, namely the temporal percolation of the network. In chapter 4, we
explore the limits of the mapping that may be considered from our model to the
Activity Driven model, exhibiting in particular the flaws arising in the evaluation
of the percolation threshold when identifying a non-Markovian links pattern to
a Poissonian dynamics. The non-Markovian nature of the interaction dynamics
of our model implies in some cases a non-stationarity of the network, giving rise
in its turn to aging effects visible in the topological properties of the network,
whose analysis is the object of chapter 5. In the three following chapters we
investigate dynamical processes running on top of the social network models
and the empirical networks presented in chapter 1. In chapter 6 we evaluate
the effect of risk perception on the spread of a disease in temporal networks.
In chapter 7, we present a voter-like opinion dynamics model, and solve it for
an underlying activity driven with attractiveness dynamics defined in chapter 1.
Thirdly, we fully describe the activated random walk process running on top of
our non-Markovian network model in chapter 8. A detailed summary and a dis-
cussion are reported at the end of each chapter, while conclusive remarks and
perspectives for future work are discussed in Conclusion.

Most of the work presented in this thesis was published in scientific papers
[114–116]. In particular, chapter 6 is similar to Ref. [114], with some minor
modifications. Besides, the results of chapter 7 motivated a paper submitted to
Phys.Rev.E, and the content of chapter 8 will soon be submitted to a scientific
journal.
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1. Generalities

Network science uses network representations in terms of graphs to elucidate
the properties of complex systems for which such representation is possible [43,
125]. The field provides a unified framework that has been proven very effective
in the understanding of the functional and structural properties of networked
systems. Besides, it allows to unravel the dynamical properties of spreading
and collective processes developing on top of network substrates with complex
topology [17, 44]. Traditionally, network representations have been made in
terms of graphs regarded as static objects, drawing an edge whenever a connec-
tion was recorded at least once between two nodes. For instance, in the actors
collaboration network, two actors are linked if they have co-starred in a movie
[13]. In the same manner, scientific collaboration networks connect researchers
that have co-authored at least one paper [122]. Nowadays it is clear that the
static representation must be regarded as a limiting case of a network evolving
in time, but where the timescales ruling the link dynamics are very large com-
pared to the observation time window. Indeed, almost all real networks exhibit
dynamical structures, in which connections appear and disappear in time [70].
Many natural and artificial networks are inherently dynamic, and their tempo-
ral evolution is of particular relevance to spreading processes taking place on
top of them, in particular when the dynamical process and the network itself
evolve at similar timescales. In the context of social dynamics [179], the tem-
poral evolution is particularly obvious since social relationships are based on a
succession of contacts, either through physical proximity and oral communica-
tion or technological-based communication. These social contacts are inherently
time-limited, but still constitute the key ingredients to the elaboration of a static
network representation. In this sense, the social networks considered in previ-
ous literature [13, 102, 122] represent a projection or time-integration of the
corresponding temporal networks. In this projection, a link is present as soon as
it appeared at least once during the observation of the network’s dynamics. An
illustration of this principle is presented on Fig. 1.1.

Recently, the recording of social interactions and data in digital format has
given access to data sets of unprecedented size. This so-called “data revolution"
has drawn the attention of the network science community to the temporal di-
mension of social interactions, leading to the development of new methods and
concepts that forge the rising field of time-varying networks [70]. The avail-
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Figure 1.1.: Time-integrated network. (c): Snapshot networks at successive times
t1, t2 and t3. (d): Integrated network.

ability of large databases such as scientific collaboration data sets [136], and
the deployment of infrastructures such as mobile phone communications [128],
facilitate the real-time monitoring of social interactions in different social bod-
ies and the reconstruction of the corresponding temporal networks [11, 34, 63,
127]. New experimental schemes have also been developed by the research
community, adopting a data-driven methodology to study social dynamics and
human activity, and making most of the collected data freely available to the
scientific community. Specially noteworthy in this context is the data on face-to-
face interactions recorded by the SocioPatterns interdisciplinary research collab-
oration [173], which collected longitudinal data on the physical proximity and
face-to-face contacts of individuals in numerous real-world environments, such
as schools, museums and hospitals. New fundamental questions regarding the
properties of network dynamics arise from the newly gathered empirical data. In
order to address these challenges, new theoretical models have been designed,
aimed at explaining both the temporal patterns observed and their influence on
the corresponding integrated networks [82, 155, 158, 183].

Empirical data analyses have revealed rich and complex patterns of dynamic
evolution [10, 34, 70, 71, 76, 85, 112, 128, 165, 172], calling for renewed mod-
eling efforts [164, 183]. Besides, researchers have tried to understand how dy-
namical processes such as epidemic spreading [78, 92, 146, 165], random walks
[14, 109], percolation [10, 130] and social consensus [3, 5, 31] are affected by
the temporal evolution of the underlying network substrate. Indeed, the irregu-
larity of the links, and their rate of appearance, can impact critically a dynamical
process developing on a temporal network [68, 138, 159, 175]. This intense in-
vestigation into the properties of social relationships led in particular to the dis-
covery of a cornerstone of human social dynamics, namely the “bursty” nature of
human interactions, characterised by intervals of rapidly occurring events sepa-
rated by long periods of inactivity [34, 71, 76, 127, 128, 172]. This observation
dramatically questions the traditional frameworks positing Poisson distributed
processes. Several mechanisms, such as the circadian cycle and weekly patterns
[81], reinforcement dynamics [183], and decision-based queuing process [11]
have been proposed as explanations for the observed bursty nature of human
social behaviour. Nevertheless, burstiness turned out to be ubiquitous in nature,
appearing in a wide range of systems in nature, ranging from earthquakes [39]

15



to neuronal activity [91] and sunspots [182]. The universality of this bursty
behaviour reveals a corresponding omnipresence of memory effects [87]. The
burstiness of social interactions and its consequences on the dynamical phenom-
ena possibly considered in social gatherings point out the necessity of designing
new models taking into account the temporal dimension of social networks. In
this chapter we introduce the basics of the time-varying networks formalism.

1.1. Basic concepts and formalism of static
networks

Network theory [124] applies to any system that admits an abstract mathemat-
ical representation in terms of a graph, whose nodes (vertices) identify the el-
ements acting in the system and in which the set of connecting links (edges)
represent the presence of a pairwise interaction among those elements. A graph
is formally defined as a pair of sets G = (V , E), where V = {i, j, k, ...} is a set of
vertices and E = {(i, j), (j, k), ...} is a set of edges connecting the nodes pairwise.
The number of nodes is usually denoted by N and the number of edges by E.
A graph can be directed if the edges are defined as ordered pairs of nodes, i.e.
distinguishing the links (i, j) and (j, i), or undirected if the links are defined as
unordered pairs of nodes. In a graphical representation, for undirected graphs
the presence of an edge between vertices i and j connects the vertices in both
directions, whereas the presence of an edge from i to j in a directed graph does
not necessarily imply the presence of the reverse edge from j to i. Additional
information may be considered in the network representation, encoded through
the definition of a weight wij assigned to each edge (i, j) [17].

1.1.1. Adjacency matrix
From a mathematical point of view, it is convenient to define a graph by means
of the adjacency matrix X = (xij). It is a N ×N matrix defined such that

xij =
{

1 if (i, j) ∈ E
0 if (i, j) /∈ E . (1.1)

For undirected graphs, the adjacency matrix is symmetric, xij = xji and thus
contains redundant information.

1.1.2. Paths and connected components
A central concept in the inquiry of graph structure is the reachability of vertices,
i.e. the possibility of going from one vertex to another following the connections
given by the edges in the network. A network is said to be connected if every
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vertex is reachable from any other vertex, i.e. if a virtual walker travelling on a
graphical representation of the graph can reach any vertex following the (possi-
bly oriented) arrows representing the edges of the graph. A path from a node i1
to another node in is formally defined as an ordered list of vertices P = {i1, ..., in}
containing at least two nodes, such that all the (possibly oriented) edges con-
necting two successive nodes of the list exist, (ik, ik+1) ∈ E , ∀ 1 6 k 6 n − 1. A
connected component of the graph is then simply defined as a subset of nodes,
such that every pair of elements in the subset is connected by at least one path.
The knowledge of the distribution of connected components of the graph repre-
sents a valuable information, and in particular the possible existence of a giant
connected component, defined as a subset of nodes whose size scales with the
number of vertices of the graph. The presence of a giant connected subgraph
implies that a macroscopic fraction of the graph is connected, and therefore its
size diverges in the limit N → ∞. Besides, this giant connected component is a
pivotal notion for the analysis of the percolation phenomenon, as we will see in
chapter 3.

1.1.3. Statistical characterization of networks
The concept of adjacency matrix is very useful in analytical approaches to dy-
namical processes that explicitly take into account the actual connectivity of the
network [32, 178]. However, in large systems, asymptotic regularities are not
easily detected by looking at the local connectivity of the network, and one has
to shift the attention to statistical measures that take into account the global
behaviour of the system. As in the rest of the manuscript we will consider undi-
rected graphs only, all the concepts defined hereafter implicitly suppose that the
graph is undirected, but most of them may be extended to directed graphs.

1.1.3.1. Degree distribution

The key concept of degree, defined as the number of adjacent edges to a given
vertex, concretely the number of neighbours of a node, allows to define the de-
gree distribution P (k), equal to the probability that any randomly chosen vertex
has degree k. It is obtained by constructing the normalized histogram of the de-
gree of the nodes in a network. Alternatively, the dispersion of the degree in the
network may be described in terms of the moments of order n of the distribution

〈kn〉 =
∑
k

knP (k). (1.2)

To completely define the network, we need to specify also how the different de-
gree classes are connected. To this end, one defines the conditional probabilities
P (k′, k′′, ..., k′(n)|k) that a vertex of degree k is simultaneously connected to a
number n of other vertices with corresponding degrees k′, k′′, ..., k′(n) . These
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quantities are the simplest theoretical tools that encode the degree correlations
in the network.

1.1.3.2. Two nodes degree correlations

The first case usually considered is the two-point conditional probability P (k′|k)
that any edge emitted by a vertex with degree k is connected to a vertex with
degree k′. In general, two nodes degree correlations can be represented as the
three-dimensional histograms of P (k′|k). However, this quantity is highly af-
fected by statistical fluctuations and, thus, the study of the network structure is
completed by the definition of the average degree of the nearest neighbours of a
vertex of degree k. Both quantities are related by the expression

k
nn(k) =

∑
k′
k′P (k′|k). (1.3)

In the presence of correlations, the behaviour of knn(k) discriminates two gen-
eral classes of networks. If it is an increasing function of k, vertices with high
degree have a larger probability of being connected with large degree vertices.
This corresponds to an assortative mixing [123]. On the contrary, a decreasing
behaviour of knn(k) defines a disassortative mixing, in the sense that high degree
vertices have a majority of neighbours with low degree, while the opposite holds
for low degree vertices [123].

1.1.3.3. Three nodes degree correlations

Triadic correlations can be measured by means of the probability P (k′, k′′|k) that
a vertex of degree k is simultaneously connected to two vertices with degrees k′

and k′′. A fortiori in this case, these probabilities are difficult to estimate directly
from real data because of finite size statistical fluctuations, so that the concept
of clustering coefficient has been proposed to help elucidate the connectivity
structure of networks. This quantity refers to the tendency to form triangles
or triadic closures in the network, and may be defined as the uniparametric
probability that a vertex of degree k is connected to vertices of degree k′ and k′′

and that those two vertices are, on their turn, joined by an edge, averaged over
all the possible values of the degrees of the neighbours. Therefore, one writes

c̄(k) =
∑
k′,k′′

P (k′, k′′|k)Π(k′, k′′), (1.4)

where the function Π(k′, k′′) is the probability that the vertices k′ and k′′ are
connected, and depends on the particular network considered and can also be a
function of the degree k of the common vertex.
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All these quantities can of course be obtained directly from the adjacency matrix
X, but most importantly the statistical description allows to develop powerful
network models and mean-field approaches to dynamical processes on complex
systems.

1.2. Time-varying graphs
The network formalism can be easily extended to include time dependent graphs,
also known as temporal or time-varying networks [70]. In temporal networks,
the nodes are defined by a static set of elements, and the edges represent pair-
wise interactions, which now appear and disappear over time. This temporal
evolution is thus embodied in the time dependency of the adjacency matrix Xt,
whose elements are now discontinuous functions of time, switching alternatively
between the values 0 and 1:

xij(t) =
{

1 if (i, j) is active at time t
0 otherwise . (1.5)

This formulation implicitly assumes that the links have a finite duration, and in
order to include links with infinitely small duration, we write

xij(t) =
∑
k>1

Θ(t− T (ij)
k,start)−Θ(t− T (ij)

k,end) + δ(t− T (ij)
k,0 ) (1.6)

where Θ(x) is the Heaviside step function such that Θ(x) = 1 if x > 0 and
Θ(x) = 0 if x 6 0, and δ(x) is the Dirac delta function. In this manner, xij(t) is
equal to one in the intervals [T (ij)

k,start, T
(ij)
k,end] where the link is active, is infinite at

the epochs T (ij)
k,0 standing for punctual activations of the link, and is equal to zero

otherwise. Depending on the system under scrutiny, characteristic timescales
may be at play, emerging from natural or technical constraints. For example, in
scientific collaboration networks [122] the interval of time between consecutive
editions of the journal considered imposes a periodic evolution, while in physical
proximity networks [34], the internal clock of the experimental setup imposes
a time step to the network evolution. Moreover, discrete-time approaches to
investigate dynamical processes on networks naturally posit a fundamental time
interval subsequently imposed to the network dynamics. In any case, while an
exact representation of the temporal network is given by the temporal adjacency
matrix, in practice one has access to a coarse-grained information about the
dynamical interactions in the network. This translates into a time-aggregation
procedure of the instantaneous network over successive time windows of length
∆t. Formally, a static projection is created from the links dynamics observed
during the interval [(` − 1)∆t , `∆t], and the elements of the adjacency matrix
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A
(∆t)
` hereby defined are expressed as

a
(∆t)
ij,` = Θ

(∫ `∆t

(`−1)∆t
xij(t) dt

)
(1.7)

In this sense, the detailed activation pattern of a link inside the interval ∆t is
encapsulated into a binary bit of information. The resulting graph defined by
A

(∆t)
` is a snapshot of the temporal network under study, which can be completed

by assigning a weight w(∆t)
ij,` to the edge (i, j)

w
(∆t)
ij,` =

∫ `∆t

(`−1)∆t
xij(t) dt (1.8)

Repeating this procedure over L successive time steps ∆t, one obtains a sequence
{G(∆t)

` , ` = 1, ..., L} of instantaneous snapshot graphs, representing a discrete
version of the corresponding continuous time-varying network in the time win-
dow [0, L∆t]. The choice of the aggregation window ∆t is a crucial issue as
it may severely impact the structure of the resulting discrete time-varying net-
works [96] and have non-trivial effects in the analysis of dynamical processes
taking place on top of them [143]. However, this operation is standard in the
investigation of temporal networks, and represents a fruitful and satisfying ap-
proximation as long as the aggregation window ∆t is not too large compared to
the characteristic timescales of the dynamics [143].

The discrete-time sequence representing the temporal network may in its turn
be projected onto an aggregated static network Gagg, whose graph is formed
by the union of the snapshot graphs, i.e., calling Eagg the set of edges of Gagg
and E (∆t)

` the set of edges of G(∆t)
` (the set of vertices being the same for all

graphs), (i, j) ∈ Gagg ⇔ [∃ 1 6 `0 6 L, (i, j) ∈ G(∆t)
`0 ]. While this graph informs

about the total number of neighbours of a node, the total time (counted as the
number of time steps ∆t) spent in contact by a pair of nodes is encoded in the
weights waggij = ∑

` a
(∆t)
ij,` associated to each link of the graph [70, 78, 128]. The

alternative definition waggij = ∑
`w

(∆t)
ij,` , measuring the real time spent in interac-

tion, also ensures the equivalence between the aggregated weighted graph Gagg
and the single snapshot graph G(L∆t)

1 obtained through the coarse-graining pro-
cedure with a time step L∆t. We also conveniently define the strength of node i,
saggi = ∑

j w
agg
ij , gauging the total time spent in contact by the node. The aggre-

gated representation facilitates the identification of interesting properties of the
system. More in general, the tools presented in this chapter help to unravel the
topological properties of social networks, and most importantly they give a novel
insight into the dynamics of a wide range of phenomena emerging from collec-
tive human behaviours, such as the formation of communities and the spreading
of information and social influence or rumours [66, 128].
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1.3. Empirical contact networks
The recent accumulation of large volumes of data has contributed to the quanti-
tative understanding of various phenomena that had previously been examined
only from a qualitative perspective [12, 79]. Examples range from the analysis
of political trends [2, 29, 98] and human behaviour as economic agents [140,
141], to human mobility patterns [22]. Various technological innovations have
also enabled this data avalanche, such as mobile phones and GPS devices [49,
113, 171], or radio-frequency wearable sensors [34]. Moreover, the ascent of
widespread online social networks has provided an optimal research field for the
social scientists [8, 36, 75, 97].

The so-called face-to-face contact networks represent a crucial substrate for
the creation of social bonds [168], the transmission of ideas, and the spread-
ing of infectious diseases [102, 148], and thus occupy a pivotal position in the
collection of human social networks. The singularity of these networks stems
from the fact that the richest information flow is generally obtained from face-
to-face communication [42]. This fundamental form of interaction is necessary
to workplace efficiency or sustaining social relationships, among others, and so
far outperforms in this respect other modes of communication [1]. Face-to-face
interaction networks, for these reasons, have long drawn an important attention
[6, 19, 80], but the scarcity of high resolution time-resolved data represented a
serious impediment to the quantitative analysis of the dynamics of human con-
tacts.

Recently, new experimental methods using electronic devices were developed to
monitor physical proximity interactions, allowing to reconstruct with relatively
good spatial and temporal resolutions face-to-face contact networks [173]. Mo-
bile phone traces permit to scan social relationships among large populations [49,
63], but do not allow to track face-to-face contacts, unless a specific software is
provided [41]. WiFi and Bluetooth devices can be used to evaluate spatial prox-
imity, but are limited by a spatial resolution of a few meters and are generally
not a good proxy for physical proximity interactions. Finally, the MIT Reality
Mining project gathered profitable data on face-to-face interactions, by means of
specifically conceived “sociometric badges" [50, 99]. Here we focus on the So-
cioPatterns collaboration [173], which designed an experimental procedure asso-
ciating resolution and scalability, by operating economical and non-intrusive ra-
dio frequency identification devices (RFID). This original setup can be deployed
at social gatherings involving up to several hundreds of individuals, and probes
interactions at different scales, from co-presence in a given area, to face-to-face
proximity of individuals, thanks to an adjustable spatio-temporal resolution. The
deployment of the SocioPatterns experimental scheme requires each volunteer to
wear on their chest a badge equipped with an active RFID device. These instru-
ments are designed to emit and receive very low power radio waves within a
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Figure 1.2.: (a): Schematic illustration of the RFID sensor system. RFID tags,
shown in panel (b), are worn as badges by the individuals participating
to the experiments. A face-to-face contact is detected when two per-
sons are close and facing each other. The interaction signal is then
sent to the antenna. Figure courtesy of SocioPatterns.

spatial cone roughly coinciding with the field of view of the carrier, and relay the
data about the proximity of other devices to RFID readers installed in the scenery
beforehand. The infrastructure is tuned so that interactions are recorded within
a proximity of one to two meters and with a time-resolution of 20 seconds. The
resulting data is coarse-grained, in the sense that two individuals are considered
to be “in contact" during an interval of 20 seconds as soon as their RFID devices
have exchanged at least one packet during that interval. A schematic illustra-
tion of the monitoring mechanism is shown in Fig. 1.2 The empirical datasets
collected by the SocioPatterns collaboration are naturally described in terms of
time-varying networks [70, 118], whose nodes represent the individuals wearing
the sensors, and whose links stand for pairwise interactions appearing and dis-
appearing over time. The properties of the electronic equipments and the exper-
imental protocol imply an implicit coarse-graining of the real temporal contact
network, as described in section 1.2. The elementary time step considered here
is ∆t = 20 seconds. In the following we briefly present datasets gathered in two
different social contexts. The first one is a recording of the contacts between stu-
dents of five classes of a high school (Lycée Thiers, Marseille, France), collected
during seven days in November 2012 (“Thiers” dataset) [54, 153]. The second
dataset consists in the temporal network of contacts between the participants of
a conference (2009 Annual French Conference on Nosocomial Infections, Nice,
France) during two days (“SFHH” dataset) [166]. The SFHH (Société Française
d’Hygiène Hospitalière) data correspond to a rather homogeneous contact net-
work, while the Thiers (high school) population is structured in classes of similar
sizes and presents contact patterns that are constrained by strict and repetitive
school schedules. In Table 1.1 we provide a brief summary of the main properties
of these two datasets. In particular, we focus on

• N: number of individuals engaged in interactions.
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Dataset N T p 〈∆tc〉 〈k〉 〈s〉
Thiers 180 14026 5.67 2.28 24.66 500.5
SFHH 403 3801 26.14 2.69 47.47 348.7

Table 1.1.: Some properties of the SocioPatterns datasets under consideration.

• T: total duration of the contact sequence, in units of the elementary time
interval ∆t = 20 seconds.

• p = ∑
t p(t)/T : average number of individuals p(t) interacting at each time

step.

• 〈∆tc〉: average duration of a contact.

• 〈k〉: average degree of the nodes in the projected binary network, aggre-
gated over the whole time sequence.

• 〈s〉: average strength of the nodes in the projected weighted network, de-
fined as the mean number of interactions per agent.

Furthermore, those networks exhibit non-trivial dynamical features, such as a
bursty behaviour, indicated by broad-tailed distributions of the gaps separating
successive social events. On Fig. 1.3 we plot the distributions of the waiting time
between two consecutive interactions, for a single individual and for the whole
network. More detailed analysis of these datasets can be found in Refs. [23, 78,
129, 167]. Such behaviour can impact dramatically the development of spread-
ing phenomena on the network. Besides, the fact that these dynamical properties
are shared across very different social contexts [23, 78, 129, 167] hints at a uni-
versality of these behaviours. These analysis thus ask for a twofold effort: On
the one hand, a modeling endeavour, aimed at capturing the probabilistic regu-
larities exhibited by empirical networks, and on the other hand, an investigation
into dynamical processes running on top of temporal networks confronting the
models and the empirical data. These two axes will both be explored in the next
chapters.

1.4. Temporal network models
Network modeling is fundamental in order to identify the basic mechanisms un-
derpinning the structural and dynamical regularities observed in many complex
systems. Its development is rooted in the powerful graph theory [51, 117], and
some of the models designed, such as the class of growing network models based
on preferential attachment [13, 47], reach successes in different fields [46]. Re-
cently, the temporal dimension of networks has drawn an increasing attention,
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Figure 1.3.: (Left): Probability distribution ψ(τ) of the gap times τ between con-
secutive interactions for all nodes. (Right): Probability distribution
ψ(τ) of the gap times τ between consecutive interactions of the most
active node in the network. On both panels we have ψ(τ) ∼ τ−1−α

with α ' 0.5 .

especially through the presence of complex and universal temporal patterns re-
vealed by the analysis of empirical data concerning various types of social inter-
actions such as mobile phone communications and face-to-face interactions [70,
71, 76, 165, 172] as discussed earlier. These achievements point out the need to
surpass the traditional network modeling paradigm, deploying static graphs and
thus unable to apprehend the crucial dynamical characteristics of human social
behaviour. Efforts in this direction unfold over different fields of investigation
ranging from social mobility [149] to air transportation [58], and call on original
concepts such as dynamic centrality [67], memory [88] or reinforcement dynam-
ics [183]. The Activity Driven network model, recently introduced by Perra et al.
[136] deserves a special attention for its convenient tractability and its success
in bridging the gap between the structural properties of real social networks and
the microscopic mechanisms yielding the observed topology. The cornerstone in
the definition of this model lies in the observation that the onset of social inter-
actions is driven by an intrinsic activity of individuals, urging them to interact
with their peers, along with the empirical evidence that individuals exhibit very
heterogeneous levels of social activity. The dynamics of this agent based model is
described at the individual level, and the activation pattern of a particular node
obeys a stochastic discrete-time sequence of Bernoulli trials whose probability
of success is proportional to the activity potential of the individual, defined as
the probability per unit time that he/she engages in a social interaction. The out-
come of this process is thus given by a sequence of static graphs, updated at each
elementary time step ∆t of the model, and depending on the distribution F (a) of
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the activity potential. Among the temporal network models that have flourished
in the last years, the activity driven model has the peculiarity of allowing for
analytic treatment. Its basic ingredients, indeed, suggest an analogy with a class
of hidden variables models [20, 25, 154], and through a convenient mapping
of the activity driven network to this model, it is possible to compute analytic
expressions for the topological properties of the time-integrated network, as a
function of the time span of observation T and the activity potential functional
form F (a) [160]. Moreover, the time-integrated activity driven network may be
regarded as a growing network, which subsequently raise the question of the
onset of a giant connected component, in other words the temporal percolation
of the network [162]. Last but not least, the framework proposed allows to ap-
prehend the dynamics of some processes of interest running on the top of the
activity driven networks [103, 109, 136].

1.4.1. Activity Driven Network Model
The activity driven network model is defined in terms of N individuals or agents,
endowed with an intrinsic activity potential, defined as the probability that she/he
solicits a social connection/act with other agents per unit time. The activity or
firing rate of the agents is a (quenched) random variable, extracted from the
activity distribution F (a) taken as a parameter of the model, and which can take
a priori any form. The model proceeds by creating a succession of instantaneous
graphs Gt, updated at each time step ∆t, and assuming a simple generative pro-
cess obeying the following rules:

• At each discrete time step t the network Gt starts with N disconnected ver-
tices.

• Each node i becomes active with probability ai∆t and generates a link that
is connected to another individual selected uniformly at random.

• Time is updated t→ t+ ∆t, and all the edges in the network Gt are deleted.
From this definition it follows that all the interactions have a constant du-
ration equal to ∆t.

We notice that ai∆t is a probability, which implies that the activity parameter is
restricted to values such that ai 6 1/∆t. The model hereby described is Marko-
vian in the sense that agents do not have memory of the previous time steps.
The full dynamics of the network and its ensuing structure is thus completely
determined by the activity potential distribution F (a). In particular, the degree
distribution of the aggregated network integrated over a time window T , is func-
tionally related to the activity distribution PT (k) ∼ T−1F (kT−1 − 〈a〉). This
interesting property is corroborated by empirical evidence [136] and constitutes
a key result of this model. The AD model has proved to be very flexible and an-
alytically suitable to study dynamical processes on time-varying networks [136,
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138, 139]. However, it is easy to see that in the continuous time limit, i.e. for
a vanishing ∆t, the discrete-time sequence of activations of a node with activity
a described above is equivalent to a Poisson process of rate a. In this interpreta-
tion, the activations of the nodes are punctual events stochastically distributed
in time, with an inter-event time between two activations distributed accord-
ing to ψ(τ) = a exp(−aτ). Described in these terms, it is clear that the activity
driven network model fails to reproduce the bursty nature of social interactions
[7], revealed by the observation of waiting times between two consecutive in-
teractions of the same individual following heavy tailed distributions that can
be approximated as power laws of the form ψ(τ) ∼ τ−(1+α), with 0 < α < 2 in
general. Meeting this challenge, we aim at designing a natural generalization of
the Activity Driven network model, where the distribution ψ(τ) of holding times
between consecutive activations of the agents is taken as an entry of the model
and can take a priori any form.

1.4.2. Generalized Activity Driven networks
Previous modeling efforts have shown that the concept of memory can induce
non-Poissonian interevent time distributions in temporal networks [38, 69, 105,
158, 177]. Here we propose a model extending the activity driven framework
and compatible with the empirically observed bursty nature of social interac-
tions, which allows for a simple mathematical treatment. Our model is defined
as follows: Each agent i in the network is endowed with a generalized activ-
ity parameter ci extracted from an arbitrary distribution η(c) taken as an entry
of the model. The activation pattern of agent i then follows a renewal process
[40], i.e. a series of punctual events separated by independently and equally dis-
tributed random times, with a waiting time distribution between two activations
given by ψci(τ). The functional form of the holding times distribution is thus
common to all the agents, and the possible heterogeneity among the individuals
is encompassed in the parameter c playing the role of a generalized firing rate
(i.e. inversely proportional to the average waiting time when it exists). When
an agent activates, a peer is selected at random, and a link is drawn connecting
both nodes, and lasting an infinitesimally small time. For reasons that will be de-
tailed in chapter 5, the time origin of a renewal process, i.e. the epoch of the 0-th
counted event, must be specified. In particular in our model, we suppose that all
the individual renewal processes start and are synchronized at time t = 0. The
model dynamics, observed throughout a time window [0, t], is then generated as
follows:

• We start with a set of N disconnected and synchronized nodes at time t = 0.

• Each one of them is assigned an activity parameter c, extracted from a given
distribution η(c).
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• For each agent i, we repeatedly extract waiting times τk from the same
probability distribution ψci(τ), until the last activation time T (i)

` = ∑`
k=1 τk

is such that T (i)
` > t and T

(i)
`−1 < t (by convention T

(i)
0 = 0). In this way,

the total number of times ri that an individual i has activated in the time
interval [0, t] is equal to the total number of successive inter-event times τ
generated minus one (ri = `− 1).

• Each time an agent i is active, an individual j 6= i is chosen uniformly at
random and an edge is created between i and j. We do not consider time
extensions of links i.e. they are instantaneously removed.

In terms of the adjacency matrix, the temporal network hereby defined is undi-
rected and

xij(τ) =
ri(t)∑
k=1

δ(τ − T (i)
k )δ(i)k,j +

rj(t)∑
k=1

δ(τ − T (j)
k )δ(j)k,i (1.9)

where δ( · ) is the Dirac delta function, δ · , · is the Kronecker symbol, and (i)k is
the peer chosen by agent i at his/her k-th activation.

The Generalized Activity Driven framework hereby presented will be exten-
sively studied throughout this Thesis, and many topological and dynamical prop-
erties of these networks will be elucidated in the next chapters. As we pointed
out earlier, the original Activity Driven network constitutes a particular case of
our model with an exponential waiting time distribution ψci(τ) = ci exp(−ciτ).
However the discrete-time description is not convenient (although formally pos-
sible) to study a Non-Poissonian network in the general case, which can represent
a disadvantage in the investigation of some dynamical processes running on top
of the network as we shall see in chapter 6 and chapter 7. For this reason, al-
though the exponential holding time distribution assumed in the Activity Driven
network model is clearly at odds with empirical evidence, we will extensively
use it in the manuscript, when the assumption of a Non-Poissonian network sub-
strate does not allow for a mathematical tractability of the particular process
under scrutiny.

The models under consideration exhibit numerous limitations that we will dis-
cuss at the end of chapter 2. In particular, the fact that the peers solicited for
social interaction by activated agents throughout the dynamics are selected uni-
formly at random is obviously not realistic. We release this strong assumption by
considering two more sophisticated pairing mechanisms that will be used in the
rest of the manuscript, and for which analytic treatment will be developed as far
as possible.
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1.4.3. Reinforcement law
There is empirical evidence [86] that the establishment of connections is corre-
lated in time. Part of the explanation lies in the fact that the social sphere of a
person is divided into different classes of ordered intimacy, leading to the estab-
lishment of strong ties repeatedly activated and weak ties sporadically activated.
A local reinforcement mechanism proposed in [89] was able to mimic charac-
teristic aspects of social networks, among which the emergence of such strong
and weak ties. This mechanism is based on a distinction made by an individual
between the persons he/she has interacted with in the past and the rest of the
population. In the event of the activation of agent i, he/she will decide to inter-
act with one of his qi(t) known relatives with probability pi(t) and with a new
individual with probability 1 − pi(t). Both new individuals and known relatives
are chosen uniformly at random among their respective subgroups. Defining

pi(t) = qi(t)
1 + qi(t)

(1.10)

and starting with an empty network at time t = 0 the model reproduces both a
growth of the social circle and a reinforcement of the contacts with its members.
However it is worth noticing that this mechanism does not lead to a commu-
nity structure, as the social circles of the relatives of a given individual do not
necessarily coincide because new members are selected uniformly at random.

1.4.4. Attractiveness
In certain circumstances local mechanisms alone cannot explain the creation of
social ties. In social contexts that imply the interaction with unknown people,
the rules driving the establishment of social interactions are most likely different
from those driving the emergence of close social ties. For example on the online
social platform Twitter, one may start taking an interest in someone based on the
knowledge of some consensually established popularity. The same mechanism
may be put forward to explain how unfamiliar people relate when attending to
a congress [158]. Although in general the popularity is a complex emergent
property of a social network and may be evaluated differently by two distinct
individuals, a modelling of such quantity ignoring a possible time dependency
and local preferences is a good start for the sake of simplicity as previously men-
tioned. Thus we will use a model in which people are assigned a quenched
popularity index or attractiveness b and apply a linear preferential attachment
rule [13], i.e. when an agent i activates, s/he will connect to another agent j

with probability pj = bj
N〈b〉

.

Those pairing mechanisms may straightforwardly be added to the Generalized
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homogeneous PM reinforcement PM attractiveness PM
arbitrary WTD ψ(t) GAD0 GADM GADA
exponential WTD expAD0 expADM expADA

PL WTD ψ(t) ∼ t−1−α PLAD0 PLADM PLADA

Table 1.2.: Nomenclature of the models used in the thesis. PM stands for pairing
mechanism, WTD for waiting time distribution, and PL for power law.

Activity Driven model as they do not affect the activation dynamics. In the rest
of the manuscript, we will refer to the model defined with the random pairing
rule as GAD0, to the model with individual memory kernels as GADM, and to the
model with attractiveness as GADA. Besides, the original Activity Driven model
will be denoted expAD(0-M-A), as it is a particular case of our extension with ex-
ponential waiting time distribution, and the model with power-law distributed
holding times will be referred to as PLAD(0-M-A). This nomenclature is summa-
rized in Table 1.2. In the next chapter, we present a mathematical treatment
of the GADA model, which is further developed in the case of a homogeneous
attractiveness (i.e. the GAD0 model).
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2. Generalized Activity Driven
Network

2.1. Introduction
In the study of complex systems, one of the main assets of statistical physics con-
sists in the postulation of simple models capable to reproduce one given relevant
property of the system under consideration. This approach allows to simplify the
study, by focusing on the property under scrutiny, independently of other compli-
cating factors. In the case of static complex networks, the configuration model
fulfills this role with respect to the degree distribution, by considering networks
characterized exclusively by this degree distribution, and completely random re-
garding all other properties. In the field of temporal networks, the generalized
activity driven (GAD) model fills this niche, providing a simple model charac-
terized by an arbitrary inter-event time distribution, that assumes any form, in
particular that dictated by empirical evidence.

In this chapter we present a detailed mathematical analysis of the GADA model
defined in subsection 1.4.2, focusing in the properties of the static networks that
can be constructed integrating the contacts in the temporal dynamics. Indeed,
within the mathematical framework of temporal networks, a static representa-
tion can be recovered by integrating a time-varying graph in a time interval [0, t].
The study of this integrated network is relevant, since traditional static social
networks [79] are constructed in this way, and it is important to know how the
features of the temporal dynamics affects the topological properties of its inte-
grated counterpart. The inclusion of non-Poissonian dynamics in the process of
links addition, given by the waiting time ψ(t) with a non-exponential form, has
a deep impact on the topology of the resulting time-aggregated network. By per-
forming a mapping of our model to the class of networks with hidden variables
[20], we readily derive analytical expressions for different topological observ-
ables of the integrated network. For the particular case of a GAD0 network,
i.e. when the attractiveness of the agents is homogeneous in the network, and
for a power-law waiting time distribution between successive activations of the
agents, we prove that the degree distribution of the aggregated network is also
broad-tailed, and we check our analytical result with numerical simulations of
the model.
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2.2. Mapping to the hidden variable formalism
We are interested in the integrated network G(t)

1 obtained by applying the coarse-
graining procedure of section 1.2 to the temporal graph characterized by the
instantaneous adjacency matrix of (1.9). This network is undirected, has no mul-
tiple edges, and even though a weight increment may be considered for the links
(i, j) that have been generated several times by the GADA dynamics throughout
the time window [0, t], we do not study this feature in the rest of the manuscript.
The topological properties of the integrated networks generated by the GADA
model can be worked out by applying a mapping to the class of network mod-
els with hidden variables, proposed in Ref. [20] (see also [25, 154]). Hidden
variables network models are defined as follows: starting from a set of N ini-
tially disconnected nodes, each node i is assigned a (possibly multidimensional)
variable hi, drawn at random from a probability distribution ρ(h). Each pair of
nodes i and j, with hidden variables hi and hj, are connected with an undirected
edge with probability Π(hi, hj) (the connection probability). The model is fully
defined by the functions ρ(h) and Π(h, h′), and all the topological properties of
the resulting network can be derived through the propagator g(k|h) [20], de-
fined as the conditional probability that a vertex with hidden variable h ends
up connected to exactly k other vertices (has degree k). From this propagator,
expressions for the topological properties of the model can be readily obtained
[20]:

• Degree distribution:
P (k) =

∑
h

g(k|h)ρ(h). (2.1)

• Probability to arrive at a node of degree k′, following an edge emanating
from a vertex with degree k:

P (k′|k) = 1
P (k)

∑
h,h′

g(k′ − 1|h′)p(h′|h)ρ(h)g(k|h) (2.2)

where we defined

p(h′|h) = Nρ(h′)Π(h, h′)
k(h)

. (2.3)

• Degree correlations, as measured by the average degree of the neighbours
of the vertices of degree k, knn(k) [132]:

k
nn(k) = 1 + 1

P (k)
∑
h

ρ(h)g(k|h)knn(h), (2.4)

31



where we have defined

k
nn(h) = N

k(h)
∑
h′
ρ(h′)k(h′)Π(h, h′), (2.5)

and
k(h) =

∑
k

kg(k|h) (2.6)

which is the average degree of the vertices with hidden variable h.

• Average clustering coefficient 〈c〉, defined as the probability that two ver-
tices are connected, provided that they share a common neighbour [180]

〈c〉 =
∑
h

ρ(h)c̄(h), (2.7)

where we have defined

c̄(h) =
∑
h′,h′′

p(h′|h)Π(h′, h′′)p(h′′|h), (2.8)

Additionally, one can define the clustering spectrum, as measured by the
average clustering coefficient of the vertices of degree k, c̄(k) [132, 142]

c̄(k) = 1
P (k)

∑
h

ρ(h)g(k|h)c̄(h), (2.9)

We can apply the hidden variables formalism to the integrated GADA network
model by identifying the mapping to the corresponding hidden variables and
connection probability. From the definition of the model, the parameter that de-
termines the connectivity of a node i is the number of times ri that it has become
active in the considered time window (its activation number). This number de-
pends on its turn of the parameter ci characterizing the waiting time distribution
of node i. Moreover, a node receives a number a connections from other nodes
that depends on its own attractiveness b. Therefore, we choose as hidden vari-
ables

h→ (r, c, b). (2.10)

It is worth noticing that these quantities are not independent, and it is convenient
to describe the variable r with its conditional distribution χt(r|c, b). This quantity
corresponds to the probability that the number of activations counted between 0
and t for a node with activity c and attractiveness b is equal to r. By definition of
the model, it does not depend on b. Besides it can be computed in terms of ψc(τ)
[93]. The hidden variable probability distribution thus reads

ρ(h)→ ρt(r, c, b) ≡ η(c, b)χt(r|c). (2.11)
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Finally, it is easy to see that the connection probability does not explicitly depend
on the activity parameter c,

Π(h, h′)→ Π(r, r′, b, b′) (2.12)

As the connection attempts are independent, it is straightforward to derive the
connection probability Π from the complementary probability that each one of
the r + r′ attempts between two nodes to reach one another has failed:

Π(r, r′, b, b′) = 1−
(

1− b

N〈b〉

)r′ (
1− b′

N〈b〉

)r
(2.13)

Thus, in the limit N � rb′/〈b〉 and N � r′b/〈b〉, we have

Π(r, r′, b, b′) ' r b′ + r′ b

N〈b〉
1 (2.14)

Given the form of the connection probability, the corresponding propagator
will be independent of c, g(k|r, b). To find its functional form, one notices that
a node with activation number r will have a degree k equal to the sum of an
in-degree and out-degree, k = kout +kin, which accounts for the edges created by
the activation of the node, and by the activation of all other nodes, respectively.
In the case of a constant attractiveness b = 1, the probability that r activations
lead to outgoing links targeting r different people is equal to

gout(k = r) = N !
(N − r)!N r

(2.15)

In the limit N � r, at first order we have gout(k = r) ' 1− r(r − 1)
2N , which is very

close to one. In other terms, the propagator of the out-degree is in a good ap-
proximation given by a delta function centered at r, gout(k|r) = δ(k− r). This ap-
proximation still holds if we assume a regular distribution of the attractiveness b
(in the sense that there are no mega-attractors concentrating all the popularity).
In the rest of the chapter we suppose that this hypothesis is fulfilled. For the in-
degree we can write kin = ∑

r′ kin(r′), where kin(r′) is the number of connections
received from other nodes with hidden variable r′. Following [20] we obtain
that the generating function of the in-degree propagator, ĝin(z|b) = ∑

k gin(k|b)zk,
fulfils the equation

ln ĝin(z|b) = N
∑
r′,c′,b′

ρt(r′, c′, b′) ln [1− (1− z)π(r′, b)] (2.16)

1The symbol ' means, in all the manuscript, equal to at dominant order: [f(x) '
x→a

g(x)] ⇔
[f(x) =

x→a
g(x) + o(g(x))]
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where π(r′, b) = 1− [1− b
N〈b〉 ]

r′ is the probability that a node with attractiveness
b is reached at least once by a node with activation number r′. Therefore, for a
sparse network (in the limit 〈r〉/N � 1), the in-degree propagator reads [20]

gin(k|b) = exp
(
−〈r〉b
〈b〉

) [〈r〉 b〈b〉 ]
k

k! . (2.17)

Finally, we obtain the total propagator as the convolution of the in-degree and
the out-degree propagators, having the form

g(k|r, b) =

 exp
(
−〈r〉b
〈b〉

) [〈r〉 b〈b〉 ]
k−r

(k − r)! for k ≥ r

0 otherwise
. (2.18)

In the limit 〈r〉 � 1, the previous exact expression can be approximated by the
simple shifted Poissonian form

g(k|r, b) = e−(r+〈r〉 b〈b〉 )
(r + 〈r〉 b〈b〉)

k

k! , (2.19)

which we will use in the rest of the chapter to allow for mathematical tractability.
Note that this approximation corresponds to the general result derived in [20]
for sparse networks, i.e.

g(k|h) = e−k(h)k(h)k

k! (2.20)

where in our case k(h) = r + 〈r〉 b〈b〉 .

2.3. Topological observables

2.3.1. Degree distribution
2.3.1.1. General case

The most relevant topological property of any static network is its degree distri-
bution P (k), defined as the probability that a randomly chosen node has degree
k [125]. The degree distribution generated by the GADA model in an integration
window [0, t] can be expressed in terms of the propagator g(k|r, b) as [20]

Pt(k) =
∑
r,c,b

ρt(r, c)g(k|r, b). (2.21)

The general asymptotic form of the degree distribution can be obtained by per-
forming a steepest descent approximation. For 〈r〉 � 1, using the Poissonian
propagator Eq. (2.19), and considering r as a continuous variable, we can write
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Eq. (2.21) as

Pt(k) '
∑
c,b

η(c, b)
∫
dr eφ(r)χt(r|c) (2.22)

where

φ(r) = −〈r〉 b
〈b〉
− r + k ln

(
r + 〈r〉 b

〈b〉

)
− ln(k!). (2.23)

This function has a maximum at rm = k − 〈r〉 b〈b〉 and its second derivative at this
point is φ′′(rm) = − 1

k
. By expanding φ up to second order, one can obtain

eφ(r) ' e−(r−rm)2/2k
√

2πk
' δ(r − rm), (2.24)

where we have used Stirling’s approximation, and replaced the ensuing Gaussian
function by a Dirac delta function. Therefore, the degree distribution reads

Pt(k) '
∑
c,b

η(c, b)χt
(
k − 〈r〉 b

〈b〉
| c
)

(2.25)

2.3.1.2. Exponential waiting time

If we consider the simple case of a Poissonian inter-event time distribution,
ψc(τ) = ce−cτ , as in the original AD model, the activation number distribution is
simply given by the Poisson distribution [40],

χt(r|c) = e−ct
(ct)r

r! , (2.26)

with an average activation number 〈r〉 = 〈c〉t. In a continuous c approximation,
defining χt(rm|c) = eϕ(c) with

ϕ(c) = −ct+ rmln(ct)− ln(rm!) (2.27)

and applying once again a steepest descent approximation around the maximum
at cm = rm

t
, with the condition |ϕ′′(cm)| = t2

rm
� 1, one finally obtains

Pt(k) '
∑
c,b

η(c, b) δ
(
k −

[
ct+ 〈c〉t b

〈b〉

])
(2.28)

In particular, when b = 1 is constant, we recover the asymptotic form of the
integrated degree distribution obtained in [160], Pt(k) ' t−1η(k/t − 〈c〉), the
limits of its validity being 〈c〉t� 1, and t2 � (k − 〈c〉t)� 1.

35



2.3.2. Moments of the degree distribution
The moments of the degree distribution read

〈kn〉 =
∑
h

ρ(h)kn(h) (2.29)

where we define the moments kn(h) averaging over all the nodes with hidden
variable h

kn(h) =
∑
k

kng(k|h) (2.30)

The form of the degree propagator Eq. (2.18) indicates that at fixed values of r
the variable k− r is distributed according to a Poisson distribution, for which the
moments can be expressed as polynomials expressions of the rate 〈r〉 b〈b〉 . Thus
we write [144]

(k − r)n(h) = Tn

(
〈r〉 b
〈b〉

)
(2.31)

where

Tn(x) =
n∑
i=0

{
n

i

}
xi (2.32)

and
{
n
i

}
is the Stirling number of the second kind

{
n

i

}
= 1
i!

i∑
j=0

(−1)i−j
(
i

j

)
jn (2.33)

This expressions indicates that the moments 〈kn〉 cannot be computed directly
but are obtained by induction. As an example we give the expressions for the
first two moments:

〈k〉 = 〈r〉+
∑
h

ρ(h)(k − r)(h) = 2〈r〉 (2.34)

and the second moment is deduced from the first one as follows:

(k − r)2(h) = k2 − 2r k(h) + r2 = 〈r〉 b
〈b〉

+ 〈r〉2 b2

〈b〉2
(2.35)

which leads to

〈k2〉 = 〈r2〉+ 2〈r〉〈rb〉
〈b〉

+ 〈r〉+ 〈r〉2 〈b
2〉
〈b〉2

(2.36)

We see that for a network with homogeneous attractiveness, the first and second
moment of the degree distribution are functions of the moments of the activa-
tion number distribution 〈r〉 and 〈r2〉. In the appendix section B we develop a
method providing the Taylor series expansions of these two quantities for an ar-
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bitrary inter-event time distribution ψc(t).

Until now we have presented a description of the GADA model, unfortunately
the pairing process rule based on attractiveness does not allow for further math-
ematical tractability, in particular no simple expressions can be obtained for the
average degree of the neighbours of the vertices of degree k, knn(k), nor for the
average clustering coefficient 〈c〉. We will therefore focus on the generalized ac-
tivity driven network model with a random pairing rule GAD0 in the rest of the
chapter.

2.3.3. Degree correlations of a GAD0 network
The average degree of the vertices with hidden variable h reads

k(h) =
∑
k

k g(k|r)

= r + 〈r〉 (2.37)

then using Eq.(2.5) we deduce

k
nn(h) = N

r + 〈r〉
∑
r′,c′

η(c′)χt(r′|c′)(r′ + 〈r〉)
[
r + r′

N

]

= 2〈r〉+ 〈r
2〉 − 〈r〉2

r + 〈r〉 (2.38)

Inserting this expression into Eq.(2.6) and using the Poissonian approximation of
the propagator Eq. (2.19), we obtain

k
nn(k) = 1 + 2〈r〉+ P (k − 1)

k P (k) (〈r2〉 − 〈r〉2) (2.39)

In the limit of large k, one generally has P (k−1)
P (k) ∼ 1 (it is not true for Erdős–Rényi

networks for example but in practice the distribution of the activity η(c) is chosen
such that the resulting network exhibits fat-tail degree distribution) and we can
write

k
nn(k) ' 1 + 2〈r〉+ σ2

r

k
(2.40)

From this expression we conclude that, in general, the integrated networks re-
sulting from the GAD0 model shows disassortative mixing by degree. This be-
haviour is at odds with the assortative form observed for degree correlations in
real social networks [125]. However it is not surprising since the neighbours are
chosen uniformly at random during the network expansion.
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2.3.4. Clustering coefficient of a GAD0 network
Combining Eqs.(2.3) and (2.8) we find

c̄(h) = 2
N

(
〈r〉+ 〈r

2〉 − 〈r〉2

r + 〈r〉

)
(2.41)

Inserting this expression into Eq.(2.9) and using the poissonian approximation of
the propagator Eq. (2.19), we obtain

c̄(k) = 2〈r〉
N

+ 2P (k − 1)σ2
r

k P (k)N (2.42)

The first term of this equation corresponds to the average clustering coefficient
of a Erdős–Rényi network (i.e. where all possible links are drawn independently
with a fixed probability p) with the same density 2〈r〉/N .

2.4. GAD0 network with power-law waiting time
distribution

2.4.1. Degree distribution
Here we focus on the particular case of power-law waiting time distributions, of
the form ψc(t) ∼ t−1−α, with 0 < α < 1, empirically observed. In the case of
heavy tailed waiting time distributions, we expect to observe strong departures
from the simple result in Eq. (2.28). Let us focus in particular on the simple
power law form

ψc(t) = αAc (Ac t+ 1)−(α+1) , (2.43)

where Ac = c (Γ1−α) 1
α , c being the parameter quantifying the (possible) hetero-

geneity of waiting times in the population, and where we have defined Γz ≡ Γ(z),
the gamma function. For α > 1 the parameter c is inversely proportional to the
average waiting time and thus represents an activation rate. We will explore in
particular the case 0 < α < 1, for which the first moment of the waiting time
distribution diverges. We can still consider in this case the fractional moment
〈τα/2〉2/α, which is proportional to 1/c, thus defining a generalized firing rate.

As we can see from Eq. (2.25), the degree distribution Pt(k) depends mainly
on the activation time distribution χt(r|c). This probability may be expressed as

χt(r|c) =
∫ t

0
Ψr(u|c)ψ̃c(t− u) du (2.44)

where Ψn(t|c) is the probability that the r-th activation of a node with activity c
occurs at time t and ψ̃c(t) =

∫∞
t ψc(u)du is the survival probability, i.e. the proba-
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bility that a node having activated at t = 0 waits for a time longer than t before
activating again. This equation translates the fact that χt(r|c) is equal to the sum
of the probabilities that the r-th occurs at some time 0 < u < t, and that the
node waits at rest for the remainder of the time, t−u. The time Tr of occurrence
of the r-th activation is the sum of the successive inter-event times, which are
identically and independently distributed, so that the distribution Ψr(t|c) is the
convolution of ψc(t) with itself repeated r times. Therefore, in the Laplace space
we write Ψr(s|c) = ψc(s)r, where the Laplace transform is defined as

f(s) =
∫ ∞

0
dτ f(τ)e−τs. (2.45)

Besides, we straightforwardly prove that ψ̃c(s) = (1−ψc(s))/s. Finally, Eq. (2.44)
takes the form

χs(r|c) = ψc(s)r
1− ψc(s)

s
(2.46)

From this equation, we also derive (see details in section B) the average and
average square number of activations:

rc(s) =
∑
r

r χs(r|c) = ψc(s)
s(1− ψc(s))

(2.47)

r2
c(s) =

∑
r

r2 χs(r|c) = r(s) + 2ψ2
c

s(1− ψc(s))2 (2.48)

By virtue of the Tauberian theorem n°1, for s
c
� 1 we can expand the Laplace

transform of the waiting time distribution

ψc(s) ' 1−
(
s

c

)α
, (2.49)

and inserting into the previous equations, we obtain

χs(r|c) ' − 1
α r

∂

∂s
e−r(s/c)

α (2.50)

rc(s) ' cαs−1−α (2.51)

r2
c(s) ' 2 c2αs−1−2α (2.52)
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Then, using the Tauberian theorem n°2 we deduce

χt(r|c) '
1
α r

c t

r1/α L
(
c t

r1/α

)
(2.53)

rc(s) ' Γ−1
1+α(ct)α (2.54)

r2
c(s) ' 2 Γ−1

2α+1(ct)2α (2.55)

valid for ct � 1, and where L(z) is a one-sided Lévy distribution with Laplace
transform L(s) = e−s

α [93, 151]. Using the expansion at large r [61]

χt(r|c) '
(c t)−α

Γ1−α
exp

−(1− α)
[(
α

ct

)α
r
] 1
1− α

 ,
and inserting it into Eq. (2.25), we arrive at

Pt(k) ' (k − 〈r〉) 1
α
−1

Γ1−αt

∫
η
(
u

t
(k − 〈r〉) 1

α

)
eξ(α,u)

uα
du, (2.56)

where we have considered c continuous, and defined ξ(α, u) = −(1−α) (α/u)
α

1−α .
Expression Eq. (2.56) depends now only on the waiting time heterogeneity

distribution η(c). While the parameter c of an agent is not directly accessible
from empirical data, it can be argued that it is directly related to the average
activity potential a of a node [136], defined as the rate of activation averaged
over a time window of given length T . Indeed, for a single renewal process
parametrized by ψc(t), we identify this rate to

a = rc
T

(2.57)

which is the average number of activation per unit time. Besides, using the ex-
pression (2.54), we deduce that the activity potential and the generalized activity
parameter are related by a ∼ cα. Given the power law distribution of the activity
potential measured in real temporal networks [137], we deduce that the param-
eter c is also distributed with a power law. Thus we posit

η(c) = β

c0

(
c

c0

)−(β+1)
, β > 0, c > c0. (2.58)

With this form of η(c), the average activation number takes the form, for large t,

〈r〉 =
∫
rc(t) η(c) dc ' β Γ−1

1+α
(β − α) (c0t)α, (2.59)
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and the integral in Eq. (2.56) has a lower bound at u0 = c0 t (k − 〈r〉)− 1
α . Taking

the limit k − 〈r〉 � (c0t)α, u0 vanishes, and we finally obtain the asymptotic
result

Pt(k) ∼ (c0t)β(k − 〈r〉)−γ 2 (2.60)

with γ = 1 + β
α
. Now, keeping the notation F (a) for the activity distribution

defined in Ref. [136], and recalling that we defined a ∼ cα, a simple trans-
formation between probability distribution allows to write η(c) ∼ F [a(c)]da

dc
(c).

Besides, the activity potential was reported to be power-law distributed with an
exponent δ, F (a) ∼ a−δ, thus we obtain for the generalized activity parameter
η(c) ∼ c−1−α(δ−1). From here, we recover the postulated heterogeneity distri-
bution of c, Eq. (2.58), with an exponent β = α(δ − 1). Most remarkably, for
this value of β , the integrated network exhibits a degree distribution decaying
with an exponent γ = 1 + β/α = δ, i.e. we recover the main result of the activ-
ity driven model, stating the equivalence between degree and activity potential
distributions. In order to check our analytic predictions, we have performed
numerical simulations of the PLAD0 model with the waiting time and hetero-
geneity distributions Eqs. (2.43) and (2.58), respectively. In Fig. 2.1 we show
the degree distribution Pt(k) for different values of the exponents α and β of
the waiting time and heterogeneity distributions. As one can see, the scaling
relation of Eq. (2.60) is fulfilled remarkably well. In the same Figure we vali-
date the scaling of the degree distribution with the integration time t, showing
the collapse of the degree distribution for different t. The result Eq. (2.60) is
noteworthy in two respects. Firstly, it relates two fundamental features found in
real social networks, a broad tailed inter-event time distribution, as represented
by the waiting time distribution ψ(τ), and a scale free degree distribution Pt(k),
whose exponent γ is simply related to the parameters α, controlling ψ(τ), and β,
related to the heterogeneity of the individuals’ social activity. Secondly, it shows
transparently that non-Markovian effects are related to an exponent α < 1, as-
sociated with a diverging first moment of the waiting time distribution. Indeed,
in the limit α → 1, Eq. (2.60) recovers the Poissonian results Eq. (2.28), which
means that even if the second moment of the waiting time distribution is infinite
(1 < α < 2), the structure of the integrated network will not be significantly
different (at dominant order in t) to that of a Poissonian AD network.

2.4.2. Degree correlations
In this section we test the validity of the expression of the average degree knn(k)
of the neighbours of a node with degree k given by Eq. (2.40). We perform
numerical simulations of the PLAD0 network, for an activity distribution η(c) ∼
c−1−β with c ∈ [c0, cmax]. We set a cut-off cmax to avoid unnecessary numerical

2The symbol ∼ means, in all the manuscript, proportional to at dominant order:
[f(x) ∼

x→a
g(x)]⇔ [∃A 6= 0, f(x) =

x→a
A g(x) + o(g(x))]
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Figure 2.1.: (Left): Degree distribution Pt(k) at time t = 104 as a function of
the rescaled degree k − 〈r〉t from numerical simulation of the PLAD0
model with a network of size N = 106, c0 = 1, and different values
of α and β. The exponent γ = 1 + β/α is plotted in dashed line.
(Right): Rescaled degree distribution Pt(k)/(c0t)β for different times
t, in networks size N = 106, c0 = 1, α = 0.6, and β = 1.2. The
theoretical decay exponent γ = 3 is plotted as dashed line.

costs. On Fig. 2.2 we plot the rescaled average degree of the neighbours (knn(k)−
1 − 2〈r〉)/σ2

r as a function of k for different values of α and β and observe that
at large k the behaviour predicted by Eq. (2.40) perfectly fits the simulations.
Moreover, in order to assess the intensity of the disassortativity of the network,
we report the ratio

κ = k
nn(1)− knn(∞)

k
nn(∞)

= σ2
r

1 + 2〈r〉 (2.61)

evaluated with the simulations. For (α, β) = (0.7, 1.5), κ ' 250. For (α, β) =
(0.5, 1.5), κ ' 30 and for (α, β) = (0.3, 0.8), κ ' 8. Those values indicate a quite
strong decrease of knn as a function of k, at odds with what is observed in real
social networks. Moreover, this implies that the generating functions framework
[117] traditionally used to study the percolation of static uncorrelated graphs
is not suitable for the case of an aggregated PLAD0 network as we shall see in
chapter 3.
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Figure 2.2.: Degree correlations of the PLAD0 network for different values of α
and β. We plot the rescaled average degree of the neighbours as a
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r . c0 = 1, cmax = 103, t = 103 and
network size N = 106.

2.5. Discussion and perspectives
In this chapter we have presented a detailed mathematical study of the prop-
erties of the time-integrated networks emerging from the dynamics of the GAD
model. We have focused on the topological properties of the integrated networks.
These properties are determined as a function of the model’s parameters, namely
the exponent α of the waiting time distribution ψc(t), and the exponent β of the
agents’ heterogeneity distribution η(c), by applying a mapping of the network’s
construction algorithm to the hidden variables class of models. For the case of
the degree distribution P (k), we recover the intimate connection between the
scale-free nature of static social networks, P (k) ∼ k−γ, and two main charac-
teristics of social temporal networks, namely a power-law distributed waiting
time, ψc(t) ∼ (ct)−1−α, and a power-law form of the heterogeneity distribution,
η(c) ∼ c−1−β, as deduced from the distribution of average activity [115, 137].
This relation is quantified in the identity γ = 1 + β/α.

In our model, the individual social behaviours are defined in terms of renewal
processes counting the outgoing links of the agents. In real social networks on
the other hand, it is usually not possible to determine who actually initiated an
interaction, and social bonds are thus considered to be symmetrical. As we jus-
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tify the power-law form of the waiting time distribution of the GAD model with
the empirical evidence that social interactions are usually separated by broad-
tailed distributed random times, we ought to explicit the relation between both
processes. Indeed, in our model, the process counting all the interactions of an
agent i is the superposition of the activation process of i, and the N−1 processes
counting the activations of all the other agents with a subsequent link targeting i.
Although the inter-event time distribution corresponding to this process cannot
be derived explicitly, we may argue that this process counts on average rci + 〈r〉
events, which is equal to the integrated degree k(r) = r + 〈r〉 of a node with
activation number r, averaged over all possible values of r. Besides, assuming
a power-law form ψc(t) ∼ (ct)−1−α, this quantity is proportional to ((ci + 〈c〉)t)α
in the large time limit, i.e. it is equal to the average number of events counted
for a renewal process with a waiting time distribution φi(t) ∼ ((ci + 〈c〉)t)−1−α.
Thus, the process counting the interactions of agent i with activity ci, regardless
of who initiated the social act, is similar to a renewal process with the same
inter-event distribution, but with activity c+ 〈c〉. The equivalence between both
formulations cannot be confirmed because the superposition of several renewal
processes is not in general a renewal process [40], however it is a strong argu-
ment supporting the relevance of the GAD model.

The framework presented in this chapter constitutes a minimal model of tem-
poral networks with long tailed inter-event time distribution. As such, it has a
wide potential to serve as a synthetic controlled environment to check both nu-
merically and analytically several properties of these networks, and in particular
their effect on dynamical processes, in much the same way as the configuration
model has played this role for static networks. Moreover, due to its simple defini-
tion, it can be easily modified to make it more realistic. We envision as the more
interesting of those improvements the introduction of temporal correlations in
the activation patterns of the nodes. Indeed, in the mapping to hidden variables
networks, no particular assumption are made concerning the activation number
distribution χt(r|c), and this quantity may be taken as the fundamental parame-
ter characterizing the counting process of the agents, thus allowing for temporal
correlations. The nodes are then directly assigned a distribution χi(r, t), replac-
ing the parameter ci, in such a way that the mapping performed in section 2.2
remains valid, and in particular the propagator in Eq. (2.19). We also contem-
plate the introduction of a finite duration for the social contacts between nodes.
Last but not least, the GAD0 integrated networks exhibit disassortative degree
correlations, at odds with empirical observations in real static social networks.
Correcting this effect emerges also as an important future objective.
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3. Percolation

3.1. Short overview of percolation theory
A crucial topic in the field of network science is the question of the existence of
a giant connected component also called giant cluster [26, 124]. This connected
set of nodes plays a predominant role in the investigation of all dynamical pro-
cesses that may unfold on the network. For instance in spreading processes,
whether such a connected subgraph, whose size is proportional to the size N
of the system, is present or not, will determine if the diffusing quantity under
consideration may possibly pervade a sizeable fraction of the network [121]. On
the other hand, the resilience of networked systems, defined as their ability to re-
main functional when they are subject to physical damage translating into links
or nodes removal, is deeply related to the conditions of existence of a giant con-
nected cluster [163]. More generally, the fact that a macroscopic fraction of the
network is connected is a necessary condition to an efficient navigability in the
system.

Percolation theory provides the natural theoretical framework to determine
the conditions of existence of such a giant connected cluster. In the context of
static Erdős–Rényi graphs, the percolation problem considers a random graph of
size N in which each of the N(N − 1)/2 edges is present with a probability 0 <
p < 1. The bond percolation problem hereby defined focuses on the properties
of the clusters, and in particular their sizes, as a function of the occupation
probability p. It is clear that if p is close to 0, the network is sparse and only
small and independent clusters can be formed, while at large p the network is
densely connected and is complete (i.e. fully connected E = N(N − 1)/2) for
p = 1. As the size of the network goes to infinity, the switch from sparsity to
completeness defines a phase transition at a critical value pc. For p < pc, the
network is fragmented into a myriad of small subgraphs, while for p > pc, a
giant connected component containing a finite fraction of the total number of
vertices appears, and thus becomes of infinite size in the thermodynamic limit
corresponding to N → ∞. This bond percolation problem may be extended to
arbitrary degree distributions [26, 124]. In this context, the existence of a giant
connected component translates into conditions on the connectivity properties
of the network.

Furthermore, it is clear that all network models implying the growth of the
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graph, in the sense that more and more edges are drawn between a fixed num-
ber of vertices, will at some point meet the conditions of existence of a giant
cluster, thus defining a temporal percolation process. In particular, the time-
integrated network obtained through the GAD dynamics and thoroughly studied
in chapter 2 is potentially the theater of the birth of a giant connected compo-
nent. Indeed, as time passes, more connections will be established in the inte-
grated network, forming a growing connected component until at some time Tp
this component will percolate, i.e. it will have a size proportional to the network
size N . The percolation threshold Tp is particularly relevant for the evolution
of dynamical processes running on top of the underlying network [17], since
any process with a characteristic lifetime τ < Tp will be unable to explore a
sizeable fraction of the network. In this chapter we derive a self-consistent equa-
tion which establishes a very general criterion implicitly defining the percolation
time Tp of a GAD0 time-integrated network. We check our result with numerical
simulations.

3.2. Percolation dynamics
The investigation of the percolation transition as a function of the connectivity
properties of uncorrelated random graphs finds a convenient formulation within
the generating functions framework [26, 124]. This technique allows for the
derivation of a necessary and sufficient condition for the existence of a giant
connected component, depending on the first and second moment of the degree
distribution

〈k2〉
〈k〉

> 2 (3.1)

This inequality, known as the Molloy-Reed (MR) [117] criterion, is exact if cycles
are statistically irrelevant in the network, which is the case for random uncorre-
lated graphs in the thermodynamic limit close to the transition. In the context of
time-aggregated GAD0 networks, 〈k〉t and 〈k2〉t are functions of the integration
time t, so that the criterion implicitly defines the transition time T 0

p of the tempo-
ral percolation process. Using the expressions Eqs. (2.34) and (2.36) for the first
and second moment of the degree distribution, T 0

p is given by the solution of the
equation

3〈r〉2
T0
p

+ 〈r2〉
T0
p
− 3〈r〉

T0
p

= 0 (3.2)

As we saw in chapter 2 however, the activity driven networks are in general not
rigorously uncorrelated, and the MR criterion can lead to a substantial inaccu-
racy in the evaluation of the percolation threshold, depending on the particular
activity distribution considered [162]. We thus resort to a more powerful frame-
work, adequate for the study of the percolation of correlated random networks.
The use of this formalism will be further justified in the next sections.
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3.2.1. General case
In order to find an expression for the percolation threshold, we will follow the
general formalism valid for correlated random networks, where the effect of
degree correlations are accounted for by the branching matrix [62, 162]

Bkk′(t) = (k′ − 1)Pt(k′|k), (3.3)

which implicitly depends on time through the conditional probability Pt(k′|k)
that a node with degree k is connected to a node with degree k′, in the time win-
dow [0, t] [132]. The percolation threshold is determined by the largest eigen-
value Λ(t) of the branching matrix Bkk′(t). Simplification of this matrix may be
worked out, using the hidden variable formalism presented in section 2.2. We
use the Poissonian form of the propagator derived in the previous chapter

g(k|h) = e−k(h)k(h)k

k! (3.4)

where k(h) = r + 〈r〉. Moreover, we proved that the probability Π(h, h′) that
two nodes with hidden variables h and h′ end up connected in the aggregated
network at time t is equal to

Πt(h, h′) = r + r′

N
= k(h) + k(h′)− 〈k〉

N
(3.5)

This allows us to simplify the conditional probability

P (k′|k) = 1
P (k)

∑
h,h′

g(k′ − 1|h′)p(h′|h)ρ(h)g(k|h)

= 1
P (k)

∑
h,h′

g(k′ − 1|h′)ρ(h′)(k(h) + k(h′)− 〈k〉)
k(h)

ρ(h)g(k|h)

= 1
pk

(
pk′−1pk + k′

k
pk′pk−1 −

〈k〉
k
pk′−1pk−1

)
(3.6)

where we have written P (k) = pk for brevity. The largest eigenvalue of the
matrix Bkk′ is then derived by means of the Perron-Frobenius theorem [56]. Fol-
lowing the last few steps of Ref. [162], we look for an eigenvector with positive
components. Positing νk = 1 + ωpk−1/(kpk), we derive two necessary conditions
for νk to be an eigenvector with eigenvalue Λ:

Λ = 〈k〉+ ω
∑
k

(k − 1)p2
k−1

kpk

Λω = 〈k2〉 − 〈k〉 − 〈k〉2 + ω〈k〉
(

1−
∑
k

(k − 1)p2
k−1

kpk

)
(3.7)
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In the limit of large N , we use the approximation
∑
k

(k−1)p2
k−1

kpk
' 1, so that we

obtain a single equation for Λ:

Λ2 − 〈k〉Λ− 〈k2〉+ 〈k〉2 + 〈k〉 = 0 (3.8)

whose non-negative solution reads

Λ(t) = 〈k〉2 + 1
2

√
4〈k2〉 − 4〈k〉 − 3〈k〉2, (3.9)

where the first and second moment of the degree distribution are computed on
the network integrated in the time window [0, t]. One can express Λ as a function
of 〈r〉 and 〈r2〉 using Eqs. (2.34) and (2.36), as

Λ(t) = 〈r〉t +
√
〈r2〉t − 〈r〉t. (3.10)

The percolation time Tp determined by imposing the condition Λ(Tp) = 1 [162],
is thus given by the solution Tp of the implicit equation

〈r2〉
Tp
− 〈r〉2

Tp
= 1− 〈r〉

Tp
. (3.11)

No explicit expressions exist for 〈r〉t and 〈r2〉t, except for an exponential waiting
time distribution (Poisson process) ψc(t) = c e−ct, in which case we recover the
result derived in [162]

〈r〉
Tp

= 〈c〉Tp
〈r2〉

Tp
= 〈c〉Tp + 〈c2〉T 2

p

}
⇒ T

AD

p = 1
〈c〉+

√
〈c2〉

(3.12)

Since the network percolation occurs at relatively short times (such that 〈r〉 <
1), the approximations for χt at large times performed in the previous chapter
cannot be applied, and one must resort in principle to numerical simulations to
estimate Tp.

In the following, we will study the percolation time Tp for a PLAD0 network
with an inter-event time distribution of the form ψc(t) = αc(ct + 1)−1−α with
0 < α < 1 and a parameter c distributed according to η(c) = (c/c0)−β−1. The
temporal threshold is evaluated as the peak of the clusters’ susceptibility ξ(t)
[162, 163]. This quantity is defined as ξ(t) = ∑

s s
2 ns, where ns is the number

of clusters of size s per node and the sum is restricted to all clusters, except the
largest one. On Fig. 3.1 we plot the size of the largest connected component
SGCC, divided by the total size N of the network, as a function of time, as well as
the susceptibility ξ(t). We observe that the peak of ξ(t) corresponds to the birth
of a giant connected component spanning a finite fraction of the total size N .

On the other hand, in order to check the validity of our general criterion,
we solve numerically Eq. (3.11), by means of a dichotomic search, with 〈r2〉

Tp
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Figure 3.1.: Temporal percolation of a PLAD0 network. We plot the reduced
susceptibility ξ(t)

2ξmax and the size of the largest connected component
SGCC/N as functions of time. α = 0.9 , β = 1.1 , c0 = 1 , cmax = 103

and network size N = 105. Results are averaged over 100 iterations.

and 〈r〉
Tp

evaluated from numerical simulations of the corresponding renewal
processes. We proceed as follows:

1. Evaluate θ0 = 1 − 〈r〉t0 − 〈r2〉t0 + 〈r〉2t0 at some small starting time t0 such
that θ0 > 0 (this is always possible because θ(t = 0) = 1)

2. Set a = 0 (see next step)

3. • Evaluate recursively θ1, θ2, ..., θk, at times ti = (1 + 1/10a)× ti−1

• Stop when θk < 0 (θk−1 > 0). As θ(t) is a monotonically decreasing
function of t one has tk > Tp > tk−1

• Set t0 = tk−1 and repeat step 3. with a = a+ 1

The process stops and return tk−1 when a predefined precision (corresponding
to a given value of a) is reached (for a = 4, 0.9999Tp < tk−1 < Tp). Fig. 3.2
contrasts the result of this numerical evaluation of Eq. (3.11) with estimations of
the threshold Tp from numerical simulations of the PLAD0 model, by means of
the peak of the susceptibility. We observe on the figure a very good agreement
between both methods for all values of α and β, although the threshold obtained
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Figure 3.2.: Percolation threshold Tp as a function of α and β. Blue dots correspond
to estimations of Tp as given by the peak of the clusters’ susceptibility;
the surface is obtained by a numerical solution of Eq.(3.11). Network
size is N = 108, c0 = 1 and cmax = 106 (see main text).

by means of ξ(t) tends to be slightly superior to that predicted by Eq. (3.11), with
an average error of 6%.

One can see that the percolation time Tp rapidly decreases toward zero in a
region of the (β, α) space. This is due to the fact that, as Eq. (3.11) shows, if the
second moment 〈r2〉t diverges, then Tp tends to zero in the thermodynamic limit,
N � 1. According to (2.55), one has, for ct� 1

r2
c(t) ∼ (ct)2α. (3.13)

Thus for β < 2α, 〈r2〉t =
∫
dc η(c)r2

c(t) is infinite at large times. This implies that
〈r2〉 is infinite ∀t > 0, since otherwise there would be a discontinuity at some
arbitrary time t > 0, which is absurd. Therefore, the percolation time is zero in
the thermodynamic limit for β < 2α, while it is finite otherwise. To avoid these
finite size effects, one needs to set a cutoff cmax for the parameter c (in Fig. 3.2
this cutoff is set to cmax = 106). We explore the impact of the cutoff in Fig. 3.3,
which shows the percolation time Tp in the (β, α) space for different values of
cmax. We choose a network size N such that N ≥ 100 cmax in order to hinder
sampling errors on the values of c. As expected, we observe a strong decay of Tp
towards zero in the region β < 2α, as cmax grows.

We also compare the percolation threshold obtained within the correlated net-
works formalism, Tp, with the prediction valid for uncorrelated networks T 0

p , as
given by the Molloy-Reed criterion of Eq. (3.2). This equation can be solved
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Figure 3.3.: Percolation threshold Tp as a function of α and β for different values
of cmax. Tp is calculated numerically from Eq. (3.11), with c0 = 1.
From top surface to bottom one, values of cmax = 103, 104, 105, 106.
Network size is N = 108.

numerically applying the dichotomic search method described above. Fig. 3.4
shows the relative error between Tp and T 0

p , in the (β, α) space. One can see
that only for large values of β the MR criterion is close to the real percolation
threshold, justifying the necessity of using the correlated networks formalism.

Another interesting observation comes from relating the behavior of the per-
colation time Tp as a function of α and β, shown in Fig. 3.2, with the average
number of activation events counted in the time window [0, Tp], 〈r〉Tp , which is a
measure of the density (average degree) of the integrated network. On the one
hand, increasing β while keeping constant α decreases 〈r〉

Tp
, and so it increases

the percolation threshold Tp. On the other hand, increasing α while keeping β
constant accelerates the growth of the integrated network, so 〈r〉

Tp
increases and

Tp is smaller. The average number of activations 〈r〉
Tp

, thus, as a measure of the
density of the network at time t = Tp, provides useful additional information on
the characteristics of the percolation process. Fig. 3.5 displays 〈r〉

Tp
as a function

of α and β, showing that this density has a minimum value which appears to be
close to the region α = β. In this region, agents form a giant component even
though they hardly have interacted, indicating that the link emission pattern is
more efficient for this particular set of parameters. A partial explanation of this
feature can be derived from an evaluation of Eq. (3.11) in the large time limit,
even though the network percolates at times where asymptotic expansions of

〈r〉t and 〈r2〉t are not relevant. In this limit we write 〈rn〉 ' Γn+1

Γαn+1Γn

1−α

〈cαn〉tαn
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Figure 3.4.: Relative error (Tp−T 0
p )/T 0

p as a function of α and β. T 0
p is obtained by

numerically solving the implicit equation ensuing from the Molloy-Reed
criterion, Tp is given by the numerical solution of Eq. (3.11). Network
size is N = 108, c0 = 1 and cmax = 106.

[151], which gives an average activation number at the threshold Tp

〈r〉
Tp
'

√
1 + 4R(α, β)− 1

2R(α, β) , (3.14)

where R(α, β) = 2 Γ2
α+1〈c2α〉/Γ2α+1〈cα〉2 − 1. We look for possible extremes in

Eq. (3.14), for a given value of α, and with a maximum cmax to avoid divergences.

∂〈r〉
Tp

∂β
= 0

⇔ ∂βR

2R2
√

1 + 4R
(−1− 2R +

√
1 + 4R) = 0 (3.15)

The term between parenthesis is equal to zero if and only if R = 0, however
R > 1 for 0 < α < 1, so that we deduce

∂〈r〉
Tp

∂β
= 0

⇔ ∂R

∂β
(α, β) = 0

⇔ ∂

∂β

〈c2α〉
〈cα〉2

= 0 (3.16)
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Figure 3.5.: Average activation number at the threshold, 〈r〉Tp, as a function of α
and β. Network size N = 107, c0 = 1 and cmax = 106.

Moreover, we write

〈c2α〉
〈cα〉2

= (β − α)2(1− c−β1 )(1− c2α−β
1 )

β(β − 2α)(1− cα−β1 )2
(3.17)

where c1 = cmax/c0. The factor (β −α)2 in the numerator implies that the deriva-
tive with respect to β is equal to zero at β = α. We thus observe a minimum in
〈r〉

Tp
located precisely at β = α, in qualitative agreement with Fig. 3.5.

As stated above, for the general form of the waiting time distribution given by
Eq. (2.43), neither explicit expressions are available for 〈r〉

Tp
and 〈r2〉

Tp
, nor are

approximations valid close to the percolation time Tp, so that one must resort
to numerical simulations to estimate Tp. An exception is the case of a power
law waiting time distribution with exponent α = 1/2, which corresponds to the
one-sided Lévy distribution [93]

ψc(t) = e−1/(ct)
√
πc t3/2

. (3.18)

In this case, the distribution of activation numbers at time t reduces to

χt(r|c) = erf
(
r + 1√
ct

)
− erf

(
r√
ct

)
, (3.19)
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Figure 3.6.: Percolation threshold Tp on a Lévy NoPAD network as a function of
β. Three different values of the parameter cmax are shown. Symbols
represent Tp evaluated by means of the peak of the susceptibility χ(s).
Continuous lines represent Tp evaluated numerically from Eq. (3.20)
and Eq. (3.11). Dashed lines represent the threshold T 0

p given by the
Molloy-Reed criterion. Triangles correspond to cmax = 104, circles to
cmax = 105 and crosses to cmax = 106. The corresponding dashed lines
follow the same downward progression. Lower bound activity c0 = 1.
Network size N = 108.

where erf(z) is the error function. The moments of the activation distribution
can be analytically expressed as

〈rn〉t =
∫
dc η(c)

∞∑
r=0

rn
(

erf
(
r + 1√
ct

)
− erf

(
r√
ct

))
, (3.20)

and the percolation time Tp can be computed by introducing Eq. (3.20) into the
general criterion Eq. (3.11), and solving numerically the ensuing self-consistent
equation.

Fig. 3.6 shows the percolation time Tp on a Lévy NoPAD network as a function
of the activity distribution exponent β. One can see that the theoretical predic-
tion fits very well the numerical estimation of Tp given by the peak of the cluster
susceptibility ξ(t). In the same Fig. 3.6, we also plot the percolation threshold
T 0
p as predicted by the MR criterion, showing that this is a good approximation
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only if β is close to 2, in accordance with what is observed in Fig. 3.4, for an
inter-event time distribution with a general form given by Eq. (2.43).

3.3. Summary
In this chapter we have presented a detailed mathematical study of the connec-
tivity properties of the time-integrated networks emerging from the dynamics of
the GAD0 model introduced in chapter 1. The systematic recording of the in-
stantaneous contacts prescribed by the dynamics of this model allows to define
the temporal percolation of the ensuing aggregated network, as determined by
the time Tp at which a giant connected component, spanning a finite fraction of
total number of nodes in the network, first emerges. Applying the branching ma-
trix formalism [62, 162], appropriate to elucidate the percolation of correlated
random static graphs, we derive a general criterion defining implicitly the perco-
lation time and featuring the first and second moments of the activation number
distribution 〈r〉

Tp
and 〈r2〉

Tp
. Unfortunately the equation is not directly solvable

for an arbitrary waiting time distribution ψc(t) and a distribution η(c) quantifying
the heterogeneity of the activity parameter c. However the criterion successfully
describes a phenomenon depending intrinsically on the connectivity properties
of the network in terms of quantities related to the local activation dynamics of
the agents only, regardless of who is connected to whom. We test the validity of
this criterion for a PLAD0 network, described in section 2.4, and characterized
by the exponent α of the waiting time distribution and the exponent β of the
distribution η(c) of the activity parameter. We compare, as a function of α and β,
the percolation time evaluated by a numerical resolution of the general criterion
and the real threshold evaluated as the peak of the clusters’ susceptibility [162,
163]. A very good agreement is found between the real percolation threshold
and that provided by the criterion. Besides, a relevant result revealed by our
analysis is that the percolation time vanishes in the thermodynamic limit in the
region β < 2α, where the fast aggregation of connections leads to a giant compo-
nent in a very short interval of time. The investigation of the percolation process
of integrated temporal networks opens new interesting tracks for future research,
related in particular to the properties of dynamical processes running on top of
them. Indeed, in the context of epidemic spreading, the SIR model (see chap-
ter 6) on expAD0 networks was shown to be conveniently mappable a temporal
percolation problem. Although such an equivalence is not guaranteed on gen-
eralized activity driven networks, we hope that our work will motivate further
research in this direction, and bring fruitful insights to the study of dynamical
processes on non-Markovian temporal networks.
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4. Temporal network
poissonization and
consequences on the
percolation

4.1. Introduction
While the structural properties of the static representation of a networked system
play a crucial role in its description, the temporal nature of the elements of the
network itself implies new dynamical phenomena that do not have a counterpart
in the corresponding time-aggregated graph [34, 59, 73, 88, 104, 112].

Moreover, we have now empirical evidence that Poisson processes, character-
ized by inter-event times between consecutive interactions that are exponentially
distributed, do not faithfully describe real interaction patterns in a variety of
physical and social systems. The times between successive contacts are better
described by heavy-tailed distributions, reflecting the so-called bursty behaviour
of the links dynamics. The recent discovery of this non-trivial feature has in-
cited renewed efforts aimed at unravelling the interplay between a variety of
dynamical processes and the temporal and structural properties of the underly-
ing networks. In general, it has been reported that the broad-tailed inter-contact
time distributions found in empirical datasets contribute to slow down the dy-
namics of stochastic processes on networks, compared with what happens when
randomization procedures are applied to the network substrate [77, 86, 88, 128,
175]. However, other studies reveal the existence of regimes exhibiting an accel-
eration of the dynamical processes with respect to these null models [147, 150].
In this chapter, we quantify the error made in the evaluation of the temporal per-
colation threshold when an arbitrary annealed static graph, resulting from the
time-aggregation of a given temporal contact sequence, is supposed to be gen-
erated by Poissonian activation processes of the agents, i.e. when the network
is mapped onto an activity driven network topology. This simple analysis allows
us to call attention to the crucial influence of not only the tail, but also the early
behaviour of the inter-event time distribution on the birth of a giant connected
component in the corresponding time-aggregated network.

56



time

time

0

0 T

T
p

T

T
p

AD

ORIGINAL ACTIVATION SEQUENCE

POISSONIZED ACTIVATION SEQUENCE

Figure 4.1.: Schematic illustration of a poissonization process. (top): arbitrary
sequence of activations in a time window [0, T ]. (bottom): possible
outcome of the randomization procedure. We display the percolation
time of the growing network corresponding to the time-aggregation of
the overall contacts sequence, and the percolation time of the activity
driven network obtained through the poissonization. Note that the
activation sequences do not correspond to any actual simulation or
empirical data, nor do the times Tp and T

AD

p , but rather constitute an
illustration of the general principle of the method.

Let us consider a set of N nodes, each activating according to a counting
process, i.e. a succession of punctual events occurring stochastically in time.
We suppose that subsequently to an activation, a node connects to a peer cho-
sen uniformly at random, defining a general temporal network dynamics. Be-
sides, suppose an external observer arriving at time T , and having only access
to the total number of activations counted in the interval [0, T ] for each node,
{ri , i ∈ [1, N ]}, and ignoring the epochs of occurrence of these activations. Hav-
ing no prior information about the dynamics of the network, this observer might
want, in a first approximation, to map the individual activation processes onto
Poissonian processes. In the following, we define three such poissonization meth-
ods, and derive for each of them the percolation threshold T

AD

p of the activity
driven network obtained through the randomization process. On Fig. 4.1 we
sketch an arbitrary sequence of activations for a single node in the interval [0, T ],
and a possible sequence obtained by a poissonization procedure. The estimated
threshold TAD

p does not in general coincide with the threshold Tp of the original
network. The methodology developed here is aimed at describing a real world
situation in which an observer has access to a static graph, usually rather dense
and thus having percolated, and is willing to infer a possible underlying temporal
network dynamics. For this reason in the rest of the chapter we assume that the
observation time T is larger than the percolation time Tp of the network under
scrutiny.
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4.2. Definition of the procedures

4.2.1. Direct poissonization
The intuitive direct poissonization consists in defining for agent i its activity rate
as

ai = ri
T

(4.1)

The average temporal percolation threshold of an activity driven network is given
by (3.12)

T
AD

p = 1
〈a〉+

√
〈a2〉

(4.2)

where the brackets 〈 · 〉 = 1
N

∑
i( · )i mean averaging over all the agents. From

equation (4.1) we have

〈a〉 = 〈r〉
T

T
(4.3)

〈a2〉 = 〈r2〉
T

T 2 (4.4)

From which we write
T
AD

p = T

〈r〉
T

+
√
〈r2〉

T

(4.5)

At time T the average number of activations of the poissonized network matches
that of the original network, i.e. 〈r〉AD

T
= 〈r〉

T
, but the average square number of

activations is overestimated because 〈r2〉AD
T

= 〈r〉
T

+〈r2〉
T
. In particular, if we sup-

pose that the original network has Poissonian dynamics, this direct poissoniza-
tion procedure fails to recover the actual activity distribution, and subsequently
leads to a systematic error in the evaluation of the percolation time, which is
not satisfying. On Fig. 4.2, panel (c), we compare the percolation threshold Tp
of an expAD0 network to the threshold obtained with a direct poissonization
at T = 10Tp. We plot the fraction of nodes belonging to the largest connected
component of the original network as a function of time (black circles), along
with the function θ(t) = −1 + 〈r〉t + 〈r2〉t − 〈r〉2t (red circles) which intersects
the zero horizontal axis at t = Tp as we saw in chapter 3. Meanwhile, a list
{ri} is generated through a single realization of the network’s dynamics during
a time T = 10Tp (Tp = 2.93) and the corresponding list of activities defining the
poissonized network is evaluated as {ai = ri/T}. The poissonized threshold is
subsequently evaluated as the intersection between the zero horizontal axis and
the curve θAD(t) = −1+2〈a〉t+ 〈a2〉t2−〈a〉2t2 (green circles). We clearly see that
the threshold of the poissonized network is not equal to that of the expAD0 net-
work, TAD

p 6= Tp. The weakness of this method stems from the fact that we try to
determine the supposed underlying activity distribution based on the knowledge
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of a single realization of a stochastic process, which induces an inevitable statisti-
cal error. To overcome this difficulty, we now assume a stronger prior knowledge
about the initial process.

4.2.2. Averaged direct poissonization
We now suppose that each agent i activates according to a renewal process start-
ing at t = 0, with inter-event time distribution ψi(t), and that instead of a single
realization of these processes, we have access to an ensemble average for each
node:

ri =
∑
r

r χ
T
(r|ψi) (4.6)

where χ
T
(r|ψi) is the probability that agent i activates r times in the time interval

[0, T ]. Thus we define

ai = ri
T

(4.7)

The moments of the poissonized network are then given by

〈a〉 = 〈r〉
T

T
(4.8)

〈a2〉 = 〈r2〉
T

T 2 (4.9)

Then
T
AD

p = T

〈r〉
T

+
√
〈r2〉

T

(4.10)

This procedure, by definition, allows to recover the exact activity distribution
when the original network has a Poissonian dynamics because in this case the av-
erage number of activation ri of the node i is equal to the original activity of the
node times the observational time T . However, if the poissonization is applied
to a network with an arbitrary inter-event time distribution ψi(t) at its threshold,
i.e. for T = Tp, we have in general 〈r2〉

Tp
6= 〈r2〉AD

Tp
. Combined with the fact that

〈r〉
Tp

= 〈r〉AD
Tp

, and that θ(Tp) = 0 by virtue of the general percolation criterion,
we deduce θAD(Tp) 6= 0. In other words, for T = Tp, the poissonized percolation
time is not equal to the original threshold Tp. On Fig. 4.2(c), we first check that
the curve θAD(t) (brown circles) evaluated via this second poissonization proce-
dure is equal to the curve θ(t) of the original expAD0 network. On panel (b), we
plot the relative size of the largest connected component of a PLAD0 network
as a function of time, the corresponding function θ(t), and the functions θAD(t)
resulting from the poissonization procedures applied to the PLAD0 network at
T = Tp (Tp = 0.084). We see that both methods fail to recover the correct perco-
lation threshold. We consider that the threshold should be conserved under the
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application of a satisfying poissonization procedure applied at T = Tp, and we
thus define a third method to overpass this flaw.

4.2.3. Reshuffling of the activation times
The two methods presented before constitute attempts to define explicitly the
activity of a node i, ai based on the knowledge of ri. Here we apply a more
practical randomization procedure, assigning to each activation a random time
of occurrence, uniformly at random, in the interval [0, T ], so that the list {ri, i ∈
[1, N ]} stays unchanged. Through this method, the actual activity distribution
of the poissonized network is not explicitly defined any more, but the first and
second moment are implicitly obtained with

〈r〉
T

= 〈r〉AD
T

= 〈a〉T
〈r2〉

T
= 〈r2〉AD

T
= 〈a2〉T 2 + 〈a〉T (4.11)

which is equivalent to

〈a〉 = 〈r〉
T

T

〈a2〉 = 〈r2〉
T
− 〈r〉

T

T 2 (4.12)

From 〈a〉 and 〈a2〉 we then deduce the percolation threshold of the poissonized
network

T
AD

p = T

〈r〉
T

+
√
〈r2〉

T
− 〈r〉

T

(4.13)

This method ensures that when poissonizing a network at the percolation thresh-
old, i.e. at T = Tp, one recovers TAD

p = Tp, which is not true with the first two
procedures. On Fig. 4.2(c) we check that this method, applied to an expAD0
network, leads to θAD(t) = θ(t) and subsequently TAD

p
. On panel (b), we check

that the percolation time is left unchanged by the reshuffling method applied at
T = Tp, as indicated by the fact that θAD(Tp) = θ(Tp) = 0. On panel (a), we
plot the curves θAD(t) corresponding to the application of the three procedures
defined in this section to the same PLAD0 network at T = 10Tp. As expected,
we observe that the corresponding poissonized percolation time are erroneous.
In the following we will see that depending on the existence of a finite average
waiting time between consecutive interactions of the agents in the network, the
methods described above may lead to dramatically incorrect evaluations of the
threshold.
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Figure 4.2.: (a) Poissonization of a PLAD0 network at T = 10Tp (Tp = 0.084)
with α = 0.9, η(c) ∼ c−2.1 and c ∈ [1, 103]. (b): Poissonization of the
same PLAD0 network at T = Tp. (c): Poissonization of an expAD0
network at T = 10Tp (Tp = 2.93) with η(c) ∼ c−1.1 and c ∈ [10−3, 1].
In each case we plot the relative size of the largest connected compo-
nent SGCC/N as a function of time (black circles), the function θ(t) of
the original network (red circles) and the functions θAD(t) correspond-
ing to the direct poissonization (green circles), the averaged direct
poissonization (brown circles) and the reshuffling poissonization (blue
circles).

4.3. Poissonization of a network far from the
threshold

In this section we focus on the poissonization procedures applied to a network
at a time T much larger than the percolation threshold of the original network,
i.e. for T � Tp. We distinguish two cases: networks with finite average waiting
times and networks with infinite average waiting times.

4.3.1. Network with finite average waiting time
For a general waiting time distribution with finite first moment τ , the first and
the second moments of the distribution of the number of activations read, at
large time t [61]

ri '
t

τi

r2
i '

t2

τ 2
i

(4.14)

Then when poissonizing a network having a threshold Tp at large T � Tp, and
for which an agent i has a finite average waiting time τi, the ensuing percolation
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time reads
T
AD

p ' 1
〈1/τ〉+

√
〈1/τ 2〉

(4.15)

We notice that this threshold, obtained in the large time limit, is the same for the
three procedures defined above, and does not depend on the observation window
T . Indeed, when the average waiting time is finite, the relative fluctuations of
the number of renewals around its average value vanish at large times, so that
the three poissonization procedures defined above are practically equivalent for
T � 〈τ〉.

4.3.2. Waiting time distribution lacking a first moment
In this section we evaluate the percolation time obtained through the application
of the reshuffling method applied to a temporal network whose agents activate
according to a renewal process with a waiting time distribution lacking a first
moment, more precisely for ψ(t)∼

∞
t−1−α with α < 1. According to Eqs. (2.54)

and (2.55), the first and the second moments of the distribution of the number
of activations read, at large time t,

r ∼
∞

tα

r2 ∼
∞

t2α (4.16)

so that the poissonized percolation time, obtained from Eq.(4.13), diverges with
T

T
AD

p ∼∞ T 1−α (4.17)

This result of course holds for the three procedures presented above, neverthe-
less it can be further analysed in the light of the mapping performed in the sec-
ond method. Indeed, in this procedure we impose that for each node, the aver-
age number of interactions counted in the interval [0, T ] must be the same in both
representations of the network (Poissonian and non-Poissonian), i.e. ai = ri/T .
As the growth of ri is sublinear at large times, the resulting activity, averaged
over the time window [0, T ], vanishes, ai ∼ Tα−1. For all agents in the pois-
sonized network, the activity thus trivially tends to zero, and the corresponding
percolation time inexorably tends to infinity.
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4.4. Numerical analysis
We want to use the reshuffling method on two different temporal networks char-
acterized by the following fat-tailed inter-event time distributions:

ψ1(t) = αc1 (c1t)−α−1 e−(c1t)−α (4.18)
ψ2(t) = αc2 (c2t+ 1)−α−1 (4.19)

where α > 1, i.e. with finite average waiting time. Note that ψ1 is a Weibull distri-
bution with a negative shape parameter−α. We want to compare the percolation
time of the temporal PLAD0 networks hereby defined and their poissonized ver-
sions. For the sake of simplicity, we choose to consider homogeneous networks,
and we impose c1 = Γ(1− 1/α)/2 and c2 = 0.5/(α− 1) so that the average times
between two activations are τ1 = τ2 = 2. On Fig. 4.3 we plot the ratio Tp/T

AD

p as
a function of α for different values of the observational time T . The percolation
times of the original networks are evaluated with prior numerical resolution of
the general criterion established in chapter 3, while the poissonized thresholds
are computed with Eq. (4.13) (in which 〈r〉

T
and 〈r2〉

T
are calculated with nu-

merical simulations). In particular for T = ∞ the poissonized percolation time
in Eq. (4.15) is equal to 1, so that Tp/T

AD

p (T = ∞) = Tp. We see that the net-
work parametrized by ψ2 always percolates before its poissonized version and
that at fixed values of α the poissonized percolation time grows with T . This
phenomenology can be given some insight when looking at the behaviour of 〈r〉t
at small times. Indeed, poissonizing at T consists in creating a poissonian AD
network whose average number of activations coincides with that of the original
network at time T . Determining which network percolates first is equivalent to
determine if the original network grows faster or slower at short times than the
poissonized version, which can be determined graphically comparing 〈r〉t and
the straight line joining the origin and the point (T, 〈r〉

T
).

In the Laplace domain, we recall that (see Eq. (2.54))

〈r〉s = ψ(s)
s(1− ψ(s)) (4.20)

the behaviour of 〈r〉t at short times is determined by the behaviour of 〈r〉s at
large s, i.e.

〈r〉t '0 L
−1
[
ψ(s)
s

]
=
∫ t

0
ψ(t′)dt′ (4.21)

where L−1 is the inverse Laplace transform. If ψ(0) > 0 this simplifies into
〈r〉t ' ψ(0)t, otherwise the integral must be computed. For the network with ψ2,
we simply have

〈r〉t '0 αc2t (4.22)
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and we also know that at large times

〈r〉t '∞ (α− 1)c2t (4.23)

We extrapolate that at all times the curve 〈r〉t is always above its asymptote
(α − 1)c2t, and subsequently that ∀T and ∀t < T , 〈r〉t > 〈r〉

AD

t . Thus it is not
surprising to observe in Fig. 4.3 that the original network percolates faster than
its poissonized version. However, this naive picture of the percolation process is
not exact. Indeed the threshold depends also on the second moment 〈r2〉, and
is implicitly determined by the condition 1 − 〈r〉

Tp
= 〈r2〉

Tp
− 〈r〉2

Tp
, so that the

poissonized network may percolate later than its original version even though
its density grows faster at small times. For the network parametrized by ψ1, in-
deed, the phenomenology observed in Fig. 4.3 is much richer than for ψ2 and
is clearly in contradiction with the qualitative reasoning performed earlier. For
small values of α and large values of T , the poissonized network percolates af-
ter the original network even though the initial growth of the network’s density
is sublinear 〈r〉t '0 e−(c1t)−α, i.e. slower than for the poissonized network. Fur-

thermore, depending on the value of α, TAD

p may either be an increasing (for
α . 1.25) or decreasing (for α & 2.5) function of T , or even exhibit a minimum
at some finite value of T (for α ' 1.75). As a conclusion, it seems that there
is no systematic way to determine if the poissonized network percolates before
or after the original network, without computing Tp and T

AD

p . In particular the
probability density functions ψ1 and ψ2 are both fat-tailed with the same power-
law decay but they lead to totally different results when comparing Tp and TAD

p .

4.5. Conclusion
In this chapter, we analysed the implications of the poissonization procedure,
which lies at the core of the analysis of empirical temporal networks. Indeed,
for technical reasons, in a variety of situations an observer has only access to an
aggregated static version of a network. Then in order to infer the actual contacts
sequence that originated the network, or at least a faithful probabilistic represen-
tation of it, the simplest assumption he can make, which has been extensively
used in the literature, is that of a contact pattern following a Poissonian process,
and more specifically an agent based description in terms of activity driven tem-
poral networks [136]. Here the situation is slightly different, as we assume that
the dynamics of the network is that of the synthetic PLAD0 network defined in
Introduction. This approach allows us to perform a quantitative analysis of the
consequences of the application of such a method in the estimation of the tempo-
ral percolation threshold of the network. We give an expression of the estimated
percolation time, i.e. the percolation time of the inferred activity driven network,
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Figure 4.3.: (top): poissonization of a Weibull network (WTD ψ1). (bottom):
poissonization of a PLAD0 network (WTD ψ2) as a function of α, for
different values of T .

as a function of the average number and average square number of activations
in the network counted in the interval [0, T ] (or equivalently as a function of the
average degree and average square degree of the aggregated PLAD0 network as
explained in subsection 2.3.2). In the case of a power-law inter-event distribu-
tion with finite first moment, this threshold can either be larger or smaller than
the real threshold, depending on the value of the exponent α considered, and
the observation window T . In particular, we exhibit two different inter-event dis-
tributions sharing a common power-law decay behaviour at large times with the
same exponent, but leading to an opposite result when comparing Tp and T

AD

p .
We deduce that the traditional classification opposing bursty and Poissonian-like
behaviour is not entirely relevant, and we point out the necessity to take into
account the early behaviour of the inter-event time distribution in the dynami-
cal analysis of the network. Moreover, our investigation reveals that mapping
a bursty network with infinite average waiting time onto an activity driven net-
work leads to a dramatic error in the evaluation of the time of birth of a giant
connected component in the network. Indeed, in this case the threshold trivially
tends to infinity when the observational time T tends to infinity because the ac-
tivity of the agents of the poissonized network vanishes as T grows. In this sense,
this analysis goes along the same lines as what is found in the literature, indi-
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cating that the Poissonian model fails to capture the essential ingredients of the
network’s dynamics, and leads to a misleading picture of the unfolding of dynam-
ical processes running on top of it. However, two major criticisms can be made
of the investigation presented in this chapter. First, further effort should be de-
voted to proving that the PLAD0 model succeeds in capturing the major traits of
real empirical networks, and more specifically the percolation threshold. Indeed,
if this model was to be proven irrelevant, then our work would simply amount to
a proof of the incompatibility between two unrealistic models, regarding the per-
colation of the networks, and thus would have no practical consequences as far
as empirical networks are concerned. Secondly, while it was proven with quali-
tative arguments that the temporal percolation of an activity driven network is
equivalent to an SIR spreading process [162], such a mapping still needs to be
confirmed in the case of a GAD network. This means that, although it seems rea-
sonable to anticipate that the inaccuracy of the evaluated percolation threshold
of a PLAD0 network obtained through a poissonization procedure will have a
similar repercussion on the evaluation of the epidemic threshold of a spreading
process, the present work does not constitute a rigorous proof of this statement.
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5. Aging Effects

5.1. Aging of a renewal process
The analysis of the GAD model presented in this Thesis is rooted in the previ-
ously mentioned renewal theory. In very general terms, any stochastic process
r(t) counting the number of a certain type of instantaneous events occurring
during a time interval [0, t], with identically and independently distributed time
spans between consecutive events, may be called a renewal process, or renewal
counting process. Renewal theory does not specify the exact meaning or effect
of a single event, and is for this reason found at the core of many stochastic
problems throughout many different fields of science. In fact, the renewal for-
malism generalizes a Poisson process, defined as a series of events occurring
with exponentially distributed waiting times, to arbitrary distributions ψ(t) of
the holding times. For a Poisson process, ψ(t) = τ−1 exp(−t/τ) so that the events
are observed at a constant rate τ−1 and thus define a memoryless process. For
arbitrary holding times on the other hand, the counting process is in general
non-Markovian, but any memory of the past is erased with the occurrence of an
event.

The form of the inter-event time distribution ψ(t) can impact heavily the statis-
tics of the overall counting process. In particular, when this distribution is power-
law tailed, i.e. ψ(t)∼

∞
t−1−α, the average holding time 〈t〉 =

∫∞
0 tψ(t)dt is infinite

for 0 < α < 1. Such a distribution is said to be scale free because the largest
waiting time generated during a single realization of the renewal process is statis-
tically of the order of the observation duration. On the contrary, for distributions
possessing a finite average holding time τ , the corresponding renewal process
behaves quasi deterministically on large time scales, i.e. r(t) ' t/τ when t� τ .

Figure 5.1 shows the realizations of a deterministic renewal with ψ(t) = δ(t−
1), of a Poissonian renewal, ψ(t) = e−t, and of a heavy-tailed distribution of the
form ψ(t) = 4.5× (5t+ 1)−1.9. While the regularity of the deterministic process is
distinct, we observe that the two random processes cannot be clearly identified
by the observation of their initial evolution at short time scales. On the other
hand, the realizations of the deterministic and Poissonian renewal processes look
almost identical at larger time scales, r(t) ' t for t� 1. On the contrary, for the
power-law tailed renewal process, large holding times persist and are statistically
relevant on arbitrarily long time scales. The counting process remains non trivial,
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Figure 5.1.: Sample realizations for three different types of renewal processes.
Events are separated by waiting times, which are independently and
identically distributed according to a probability density function ψ(t).
In black, we plot the deterministic process counting one event at each
unit time step: ψ(t) = δ(t − 1). In blue, we plot a realization of a
Poissonian renewal with rate 1: ψ(t) = e−t. In red, we plot the real-
ization of a scale free process, ψ(t) = 4.5 × (5t + 1)−1.9, the average
inter-event time is infinite in this case.

even when t� 1.
That being said, we put forward at this point the notion of aged measure-

ments: considering a renewal process starting at time t = 0, an observer might
only be able or willing to count events starting from a later epoch ta > 0. In-
stead of the total number of renewals r(t), s/he then witnesses the counted
fraction ra(ta, t) = r(ta + t) − r(ta). As the inter-event times are independently
and equally distributed, the fundamental statistical difference between the re-
newal processes r and ra is completely encompassed in the statistics of the time
t1 elapsed between the start of the measurement at ta and the first observation
of an event. This interval is called the forward recurrence time [151] and its
probability distribution is denoted h(ta, t1). If the observer counts the events
from the beginning of the process, ta = 0 the forward recurrence time is of
course simply distributed like any other waiting time, h(ta = 0, t1) = ψ(t1). But
for deferred, aged measurements, ta > 0, the distribution is distinct, as indi-
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cated in Fig. 5.1. The dependence of the statistical properties of the counted
renewals ra on the starting time of the observation ta is called an aging effect.
Its intensity critically depends on the specific waiting time distribution under
consideration. For instance, a Poissonian renewal process is Markovian, which
means that events occur at a constant rate at all times, so that h(ta, t1) = ψ(t1),
∀ta. In other words, a Poissonian renewal process does not age. For any other
distribution, h(ta, t) 6= ψ(t) and aging is at play. However, the fact that a renewal
behaves quasi deterministically at large times when the average waiting time is
finite clearly means that the aging effects fade at such time scales. Contrariwise,
infinite average waiting times imply non trivial behaviour of the corresponding
counting processes at all time scales, and aging effects should be taken into care-
ful consideration in this case.

The investigation of a general aged renewal process finds a convenient formu-
lation in the Laplace domain. Keeping the notations of chapter 2, we give an
expression for the distribution χta,t(r|c) of the number of events counted in the
interval [ta, ta + t], for a renewal process with waiting time distribution ψc(t), c
being an arbitrary parameter having the dimension of a firing rate. Defining the
double Laplace transform

χu,s(r|c) =
∫ ∞

0
dta

∫ ∞
0

dt χta,t(r|c)e−utae−st (5.1)

we have [14, 61, 151]

χu,s(r|c) =
{

(us)−1 − hc(u, s)s−1 r = 0
hc(u, s)ψc(s)r−1[1− ψc(s)]s−1 r > 1 , (5.2)

where

hc(u, s) = ψc(u)− ψc(s)
s− u

1
1− ψc(u) (5.3)

is the double Laplace transform of the forward waiting time distribution hc(ta, t).
This expression is derived in the same manner as for the non-aged case (2.46),
except that here the time Tr of occurrence of the r-th renewal, for r > 1, is the
sum of r independent variables, the first one distributed with hc(ta, t) and the
other ones with ψc(t). Besides, the probability to count zero events is equal to the
survival probability h̃c(ta, t) associated to the forward waiting time distribution:
χta,t(r = 0|c) =

∫∞
t hc(ta, u)du. In the following, we will study the aging of a

renewal process with a power-law waiting time distribution, and we assume a
distribution of the form (2.43). In the case ta > 0, and working in the large time
limit ct � 1 and cta � 1, the expression of the forward waiting time in Laplace
space, Eq. (5.3), takes, using Eq. (2.49), the form

hc(u, s) = sα − uα

uα(s− u) , (5.4)
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while Eq. (5.2) becomes [151]

χta,t(r|c) = δ(r)[1−mc(ta, t)] + hc(ta, t) ∗t χt(r|c) (5.5)

where mc(ta, t) =
∫ t

0 hc(ta, t′)dt′, the symbol ∗t means convolution with respect to
the variable t, and χt(r|c) = χta=0,t(r|c). For ta > 0, we observe an increasing
probability of counting exactly r = 0 events during the time interval [ta, ta + t],
with a relative weight given by 1 −mc, which will have an important impact in
the shape of the degree distribution of the temporal network models considered.

In chapter 2, we investigated the properties of the GAD network, in which the
activations of a node i obeys a renewal process parametrized by ψci(t). In all
the developments, we implicitly considered that the epoch of the beginning of
the observation coincided with the onset of the renewal processes, additionally
assumed to be all synchronized at t = 0. In this chapter, we still make the hy-
pothesis, that the renewal processes start at the same time t = 0 for all nodes,
but we now investigate the properties of the aggregated network, based on the
observation of the link dynamics throughout the interval [ta, ta+ t]. We obviously
expect repercussions of the statistical aging effects at the individual level on the
overall properties of the network.

5.2. Degree distribution of an aged PLAD0 network

5.2.1. Degree distribution of slightly aged networks
We expect different aging effects according to the relative importance of the
aging time ta and the observation time window t. For slightly aged networks, in
which 1� ta � t (1� u� s), Eq. (5.4) reduces to

hc(u, s) '
1
u
− sα

uα+1 , (5.6)

and Eq. (5.5) is expressed as [151]

χu,s(r|c) ' δ(r)
(

1
us
− hc(u, s)

s

)
+ hc(u, s)χs(r|c)

' δ(r) s
α−1

uα+1 + χs(r|c)
u

− cα (s/c)αχs(r|c)
uα+1

' δ(r) s
α−1

uα+1 + χs(r|c)
u

+ cα

uα+1
∂χs
∂r

(5.7)
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Then, by means of the Tauberian theorem n°2 we deduce

χta,t(r|c) '
δ(r)(ta/t)α

Γ1+αΓ1−α
+ χt + (c ta)α

Γ1+α

∂χt
∂r

, (5.8)

where we write χt ≡ χt(r|c) for brevity. Inserting this expression into Eq. (2.21)
we obtain

Pta,t(k) =
∑
c

η(c)
∫ ∞

0

(
(c ta)α

Γ1+α

∂χt
∂r

+ χt

)
g(k|r)dr

+ P(k, 〈r〉) (ta/t)α

Γ1+αΓ1−α
(5.9)

where P(k, 〈r〉) is a Poisson distribution centered at 〈r〉. Noticing that for 〈r〉 � 1,
the Poissonian propagator in Eq. (2.19) tends to a Gaussian distribution and is as
such a quasi-symmetric function with respect to the axis k = r + 〈r〉, we write
g(k|r) ' g(k − r− 〈r〉). Moreover, the dependence of g on the aging time is fully
included in the average number of activation 〈r〉 ≡ 〈r〉ta,t, thus we can use the
following relation between g0 = g0,t and g = gta,t:

g(k|r) ' g(ka − r − 〈r〉0,t) ' g0(ka|r), (5.10)

where ka = k + 〈r〉0,t − 〈r〉ta,t. Moreover, the derivative of g0(ka|r) with respect
to r reads

∂g0

∂r
(ka|r) '

∂

∂r

[
e−r−〈r〉

(r + 〈r〉)k

k!

]
' g0(ka − 1|r)− g0(ka|r) (5.11)

Inserting this result in Eq. (5.9), and integrating by parts, we obtain

P (k) ' (cta)α

Γ1+α

[
χt(r|c)g0(ka|r)

]∞
0

+ P0(ka) + tαa
Γ1+α

∑
c

η(c)cα[P0(ka|c)− P0(ka − 1|c)]

+ P(k, 〈r〉) (ta/t)α

Γ1+αΓ1−α
(5.12)

where P0(k|c) = ∑
r χt(r|c)g0(k|r) is the non-aged degree distribution for a con-

stant activity c. In this equation the bracket term [ · ]∞0 vanishes for r = ∞ and
cancels out the poissonian term P(k, 〈r〉) for r = 0. Indeed, g0(ka|0) = P(k, 〈r〉)
and χt(0|c) = ψ̃c(t) ' Γ−1

1−α(ct)−α. This gives, for a distribution η(c) with a power-
law form given by Eq. (2.58),

P (k) ' P0(ka) + β (c0ta)α

(β − α)Γ1+α
[P̃0(k̃a)− P̃0(k̃a − 1)], (5.13)
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where we have defined P̃0(k) = ∑
c η̃(c)∑r χt(r|c)g̃0(k|r) as the non-aged degree

distribution with a modified activity distribution η̃ of parameter β̃ = β − α, and
used the approximation g(k|r) ' g0(ka|r) ' g̃0(k̃a|r) with k̃a = k + 〈r〉(η̃)

0,t − 〈r〉ta,t,
and 〈r〉(η̃)

0,t = ∑
c η̃(c)∑r χt(r|c). Thus, at large degree and leading order in ta/t,

the second term of the equation is negligible and the aged degree distribution is
simply equal to the non-aged distribution P0 evaluated at k = ka

Pta,t(k) ∼ (c0t)β(k − 〈r〉ta,t)−γ. (5.14)

Unsurprisingly, the degree distribution P (k) of the slightly aged network exhibits
the same scaling behavior as that of the non-aged one at large k, and we recover
the expected expression for a vanishing ta. Interestingly, in Eq.(5.13) the aged
degree distribution is expressed with two non-aged distributions P0 and P̃0, and
the dependence on the aging time ta is entirely embedded in the degree ka and
a scaling factor tαa . This allows for a direct evaluation of the aged distribution,
whatever ta, with the prior knowledge of P0 and P̃0 only. In practice however,
those two functions are evaluated via numerical simulations.

Fig. 5.2 checks the previous results by means of numerical simulations of the
GAD model in the slightly aged regime. We numerically estimate the distribu-
tions P0, P̃0 and P for a network of size N = 107, with three different sets of
parameters (α, β, ta, t). For each case we compare the aged degree distribution,
the non-aged degree distribution and the degree distribution given by Eq. (5.13).
One can see that Eq. (5.13) nicely predicts the aged degree distribution. More-
over, we observe a bump in the aged degree distribution for small degree values
with respect to the non-aged distribution, more or less visible depending on the
aging time ta. The fact that more individuals have a smaller degree in the aged
networks means that the dynamics in this case is slowed down with respect to
the non-aged case. Panel (d) of Fig. 5.2 confirms that the exponent of the power
law decay, γ = 1 + β/α, predicted by Eq. (5.14), is correct.

5.2.2. Degree distribution of strongly aged networks
The strongly aged network regime emerges for 1 � t � ta (1 � s � u). In
this limit, the forward waiting time distribution in the Laplace space can be
approximated as

hc(u, s) '
sα−1

uα
, (5.15)

and the aged activation distribution is given by

χu,s(r|c) ' δ(r)
(

1
us
− sα−2

uα

)
+ cα

(s/c)αχs(r|c)
s uα

' δ(r)
(

1
us
− sα−2

uα

)
− cα

uα s

∂χs
∂r

(5.16)
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Figure 5.2.: Slightly aged degree distribution P (k) for different values of α, β ta and
t. Plots (a), (b) and (c) show the non-aged distribution in black circles
and the aged distribution in green squares. The behavior predicted by
Eq. (5.13) (with P0 and P̃0 previously calculated numerically) is plotted
in red dashed line. Plot (d) shows the power law behavior at large k
for the three aged distributions shown in the other plots: (a) squares,
(b) circles, and (c) diamonds. Eq. (5.14) is plotted as a dashed line.
Network size N = 107, results are averaged over 50 runs. The values
of the parameters are the following. (a): (α, β) = (0.3, 1.2), t = 106

and ta = 103. (b): (α, β) = (0.7, 1.8), t = 500 and ta = 10. (c):
(α, β) = (0.5, 1.8), t = 5.103 and ta = 100.

Then, by means of the Tauberian theorem n°2, we obtain

χta,t(r|c) '
(

1− (t/ta)1−α

ΓαΓ2−α

)
δ(r)− cαtα−1

a

Γα

∫ t

0

∂χt′

∂r
dt′.

Using the same approximations as in the slightly aged case, we find, for η(c)
given by Eq. (2.58),

P (k) ' P(k, 〈r〉)− βcα0
β̃ Γαt1−αa

∫ t

0
dt′[P̃0,t′(k̃′a)− P̃0,t′(k̃′a − 1)], (5.17)
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Figure 5.3.: Rescaled degree distribution Pta,t(k) in case of strong aging. Different
values of the time window t and the aging time ta are shown. Inset:
Poissonian behavior of the degree distribution P (k) for small k with
ta = 105, t = 500. Network size N = 107. Parameters are set at
α = 0.7 and β = 1.1.

where k̃′a = k + 〈r〉(η̃)
0,t′ − 〈r〉ta,t. This expression shows the presence of a popu-

lation splitting: A majority of individuals remain inactive over the whole obser-
vation time window t, while they still receive connections from the active part
of the population. This leads to a dominant Poisson term in the degree distribu-
tion. Again, we find a power law behavior at large k, using the approximation
P̃0,t′(k̃′a)− P̃0,t′(k̃′a − 1) ∼ (c0t

′)β̃(k − 〈r〉)−γ̃−1

Pta,t(k) ∼ (c0t)β(t/ta)1−α(k − 〈r〉)−γ (5.18)

but this time the tail of the distribution vanishes when ta tends to infinity. Fig. 5.3
shows the validity of the scaling with the aging time ta predicted by Eq. (5.18)
and the Poissonian term highlighted in Eq. (5.17).

5.3. Temporal percolation of aged networks
Here we consider the effects of aging on the percolation threshold. We can
prove that the criterion Eq. (3.11) is valid also in presence of aging. Indeed,
no particular hypothesis on the distribution of the activation number χ(r|c) is
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required to derive the topological properties of the integrated-network, and in
particular the addition of a dependency on the aging time ta does not affect the
reasoning made in section 2.2 to perform a mapping of the model to a hidden
variable network. In the slightly aged regime, no expansions may be used for the
first and second moment of the activation number distribution. The threshold
is thus evaluated by a numerical resolution of the criterion just as for the non-
aged case, and we do not present it here. Most interestingly however, one can
determine the asymptotic behaviour of the percolation threshold Tp as a function
of the aging time ta, in the limit of strong aging, as follows. Since the main
effect of aging is to delay the growth of the integrated network, we expect the
same consequences for the birth of the giant component. Therefore, Tp must
be an increasing function of ta. Three different asymptotic behaviours are to
be considered when ta tends to infinity: Tp/ta either tends to 0, to a positive
constant, or it diverges. It is straightforward to discard the latter, since in this
case one would have 〈r〉ta,Tp ' 〈r〉0,Tp � 1, which is contradictory with the
condition 〈r〉Tp < 1. Thus, one can look for a solution satisfying Tp/ta → 0 for
ta → ∞, and if a solution is found, then it is the correct one, since it is a lower
bound for any other. Using the expansions for the strong aging regime proposed
in [151], for ta � Tp � 1 one has

〈rn〉ta,Tp '
Γn+1

ΓαΓαn+2−α
〈cαn〉 tα−1

a T 1−α+αn
p . (5.19)

By inserting the moments of r in Eq. (3.11), one finds

Tp ' A(α, β) t
1−α
1+α
a , (5.20)

where A(α, β) = [ΓαΓ2+α/2〈c2α〉]
1

1+α .
Fig. 5.4 shows the percolation time Tp evaluated from Eq. (3.11), using a di-

chotomic search strategy, as a function of the aging time ta, and computed from
direct numerical simulations using the susceptibility peak, for a GAD network
with β = 1.5 and different values of α. One can observe that aging has prac-
tically no effect on the percolation time Tp for ta smaller than the percolation
threshold with no aging. On the contrary, for ta � Tp � 1, the asymptotic
behavior of Tp as a function of ta is very well predicted by Eq. (5.20).

5.4. Poissonization of an aged network

5.4.1. Finite average waiting time
As discussed in section 5.1, a renewal process with finite average waiting time
τ behaves quasi deterministically at large times, i.e. r(t) ' t/τ for t � τ .
This straightforwardly implies that on average, the number of renewals ra(ta, t)
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Figure 5.4.: Percolation threshold Tp as a function of the aging time ta. Parameters
are set to β = 1.5, c0 = 0.001, cmax = 1 and α = 0.3, 0.5, 0.7 from
top to bottom. Circles represent Tp evaluated numerically from (3.11).
Crosses are an estimation of Tp as given by the peak of the susceptibility.
The asymptotic behavior predicted by (5.20) is plotted in dashed line.
Network size N = 106.

counted between ta and ta + t for a process starting at t = 0 is independent
of ta for ta � τ and is equal to ra(ta, t) = r(ta + t) − r(ta) ' t/τ . In other
words, there are no aging effects at large times, because the dynamics becomes
stationary. This allows to define the so-called equilibrium process, which simply
corresponds to a renewal process having started infinitely far in the past. In par-
ticular, the forward recurrence time no longer depends on the aging time ta, and
one has [108]

h(ta =∞, t) = h(t) = 1
τ

∫ +∞

t
ψ(u)du (5.21)

However, while the average number of counted events of such an equilibrium
process grows linearly with the time of observation, the second moment r2(t) of
the distribution of renewals is still non-trivial at short times for a general pro-
cess ψ, i.e. it is neither deterministic nor Poissonian. Thus if we simultaneously
observe a non-aged network between 0 and T and the corresponding equilib-
rium network over a time window of length T (independently of the starting
point because the dynamics is stationary), the dynamics at small times are dif-
ferent, but at large times rneq(t) ' rn(t) ' (t/τ)n. In particular, their percolation
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thresholds are distinct, as well as the thresholds estimated via the reshuffling
poissonization method presented in chapter 4. However in the large T limit the
poissonized thresholds coincide: (T eqp )AD = T

AD

p ' 1/(〈1/τ〉+ 〈1/τ 2〉).

5.4.2. Infinite average waiting time
When the waiting time distribution lacks a first moment, we saw that strong
aging effects are at play. We consider here the poissonization of a strongly aged
network with a power-law waiting time distribution of the form ψ(t) ∼ t−1−α

with 0 < α < 1, the possible heterogeneity of the agents having no relevant
impact on what follows. The observation is made throughout a time window
[ta, ta + T ], so that we have to distinguish between two cases, i.e. 1 � T � ta
and 1 � ta � T . In the limit T � ta , the aging effects are not relevant any
more, and the poissonized percolation threshold is the same as that obtained for
the non-aged network T

AD

p ∼ T 1−α. For 1 � T � ta on the other hand, we
may use the approximation of Eq. (5.19), which combined with Eq. (4.13) gives,
at dominant order in ta/T

T
AD

p ' T

〈r2〉 1
2
∼ (T ta)

1−α
2 (5.22)

From which we deduce, with Eq. (5.20)

T
AD

p

Tp
∼ t

−(1−α)2
2(1+α)
a T

1−α
2 (5.23)

This ratio is thus a growing function of T , but more insight is given if we fix a
relation T (ta) and analyse the behaviour of the ratio as a function of ta. For T
proportional to the real threshold Tp given by Eq. (5.20) we obtain that TAD

p ∼
Tp, the error is in this case independent of ta. If we alternatively impose an
observation time T proportional to ta, we have

T
AD

p ∼ t
α(1−α)

1+α
a (5.24)

which means that the poissonized threshold highly overestimates the real thresh-
old in this case. We conclude that for a network with infinite average waiting
times, the estimation of the percolation threshold using a poissonization proce-
dure is dramatically erroneous, whether the network is aged or not.
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5.5. Conclusion
In this chapter, we analysed a renewal process for which the average holding
time between consecutive events is infinite. Such a process is subject to a non-
trivial phenomenon called aging: the statistics of the number of events counted
within a finite time window strongly depends on the specific instant at which the
observation starts. The most striking aging effect is an increasing probability to
count zero event during the observation. Simultaneously, the distribution of the
non-zero number of renewals is also modified. Being structured upon parallel re-
newal processes of the agents, the generalized activity driven model developed
in this thesis is obviously subject to aging effects. Distinguishing between the
strongly aged and the slightly aged regime, we provide effective expressions of
the degree distribution of the time-integrated aged PLAD0 network, as a function
of the corresponding non-aged degree distribution, i.e. integrated throughout a
time window of same length t. In the slightly aged regime, the aging implies
the birth of a small bump on the distribution at small degrees, and only brings
higher order corrections in ta/t to the tail of the distribution. In the strongly
aged case however, the distribution is essentially Poissonian due to a majority
of agents staying inactive throughout the time interval of observation, and still
exhibit a vanishing power-law tail. Our expressions are successfully confronted
to numerical analysis in both cases. Furthermore, we investigated the percola-
tion of an aged time-integrated GAD0 network. The general criterion derived
in chapter 3 giving implicitly the threshold Tp is still valid for aged networks.
Because the aging essentially acts as a slowdown of the dynamics, the percola-
tion threshold is an increasing function of the aging time ta. This allows us to
derive analytical expressions of the threshold in the strongly aged regime, using
accurate approximations of the first and second moment of the distribution of
the activation number 〈r〉 and 〈r2〉. The resulting expression is confirmed by
numerical analysis on Fig. 5.4. Finally, we discuss the poissonization procedure
presented in the previous chapter in the presence of aging. In the strongly aged
regime, the poissonization of a PLAD0 network with finite average waiting times
leads to an incorrect, although finite, error in the evaluation of the real percola-
tion time. For a PLAD0 network with infinite average waiting times on the other
hand, the poissonization leads to a diverging estimation of the threshold when
the procedure is applied at very large T . The main picture of the poissonization
method thus remains the same as in the non-aged case, and assuming a Poisso-
nian dynamics to explain a given time-integrated network structure may lead to a
dramatic error in the evaluation of the real percolation threshold of the network.
To sum up, aging effects are inherent to the generalized activity driven model
we developed, and affect in particular the structural and connectivity properties
of the corresponding time-aggregated network.

The aging phenomenon points out the crucial importance of the starting time
of a renewal process. This naturally leads to question the strong assumption
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we made about the synchronization of all the individual renewal processes in
the network. Indeed, a more realistic hypothesis would be to define a different
aging time for all agents, describing more faithfully the real-life scenario in which
new people regularly enter the network. However such an assumption renders
the model dramatically more complex, and does not allow for mathematical
tractability. Nevertheless, we may argue that a desynchronized network, i.e.
with heterogeneous aging times, is equivalent in the strongly aged regime to
our synchronized GAD model. Indeed, if we suppose that the individual process
of agent i starts at t0,i and that the observation of the dynamics starts at a time
Ta much larger than the largest starting time t0,max among the agents, then for
each agent the time elapsed since the beginning of the process is ta,i = Ta − t0,i
which is equal in a first approximation to Ta. In conclusion, one of the main
assets of the GAD model is that it allows to transparently observe the aging
effects introduced by arbitrary waiting time distributions, and is thus a suitable
null model for the detection of statistical aging effects, as opposed to a possible
physical aging effects of the agents [111, 184].
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6. Epidemic spreading with risk
perception

6.1. Introduction
The propagation patterns of an infectious disease depend on many factors, in-
cluding the number and properties of the different stages of the disease, the
transmission and recovery mechanisms and rates, and the hosts’ behavior (e.g.,
their contacts and mobility) [4, 90]. Given the inherent complexity of a mi-
croscopic description taking into account all details, simple models are typically
used as basic mathematical frameworks aiming at capturing the main charac-
teristics of the epidemic spreading process and in particular at understanding if
and how strategies such as quarantine or immunization can help contain it. Such
models have been developed with increasing levels of sophistication and detail
in the description of both the disease evolution and the behaviour of the host
population [4, 90].

Obviously, the diffusion of the disease in the host population depends crucially
on the patterns of contacts between hosts. The simplest homogeneous mixing
assumption, which makes many analytical results achievable, considers that in-
dividuals are identical and that each has a uniform probability of being in con-
tact with any other individual [4, 90]. Even within this crude approximation, it
is possible to highlight fundamental aspects of epidemic spreading, such as the
epidemic threshold, signaling a non-equilibrium phase transition that separates
an epidemic-free phase from a phase in which a finite fraction of the population
is affected [90]. However, this approach neglects any non-trivial structure of
the contacts, while advances in network science [125] have shown that many
networks of interest have in common important features such as a strong het-
erogeneity in the number of connections, a large number of triads, community
structures, and a low average shortest path length between individuals [24].
Spreading models have thus been adapted to complex networks, unveiling the
important role of these properties [17, 131, 133]. More recently, a number
of studies have also considered spreading processes on time-varying networks
[72, 74, 85, 104, 166, 174], to take into account the fact that contact networks
evolve on various timescales and present non-trivial temporal properties such as
broad distribution of contact durations [16, 35] and burstiness [11, 74] (i.e., the
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timeline of social interactions of a given individual exhibits periods of time with
intense activity separated by long quiescent periods with no interactions).

All these modeling approaches consider that the propagation of the disease
takes place on a substrate (the contacts between individuals) that does not de-
pend on the disease itself. In this framework, standard containment measures
consist in the immunization of individuals, in order to effectively remove them
from the population and thus break propagation paths. Immunization can also
(in models) be performed in a targeted way, trying to identify the most important
(class of) spreaders and to suppress propagation in the most efficient possible
way [37, 134]. An important point to consider however is that the structure and
properties of contacts themselves can in fact be affected by the presence of the
disease in the population, as individuals aware of the disease can modify their
behaviour spontaneously, adopting self-protecting measures such as vaccination
or mask-wearing. A number of studies have considered this issue along several
directions (see Ref. [55] for a review). For instance, some works consider an
adaptive evolution of the network [65] with probabilistic redirection of links be-
tween susceptible and infectious individuals, to mimic the fact that a susceptible
individual might be aware of the infectious state of some of his/her neighbors,
and therefore try to avoid contact with them. Such models can lead to a rich phe-
nomenology, with first order transitions, oscillations and hysteresis phenomena.
Other works introduce behavioral classes in the population, depending on the
awareness to the disease [135], possibly consider that the awareness of the dis-
ease propagates on a different (static) network than the disease itself, and that
being aware of the disease implies a certain level of immunity to it [64, 106].
The epidemic threshold depends then on the topology of the network on which
the awareness propagates.

Alternatively, other works explore scenarios where an individual takes self-
protecting measures that decrease his/her probability to be infected (such as
wearing a mask or washing hands more frequently): this probability can then
depend on the fraction of infectious individuals present in the whole population
or among the neighbors of an individual. Different model definitions can lead to
contrasting results. For instance, reducing the probability of being infected ac-
cording to the instantaneous fraction of infected neighbors of an individual leads
to a notable increase of the epidemic threshold and a decay of the prevalence [9].
On the other hand, in [27], the epidemic threshold stays unchanged when the
infection probability is reduced according to a local epidemic incidence obtained
by memorizing the past contacts with other infectious neighbors, although the
prevalence is also significantly reduced in this case. Both these studies consider
diseases propagating on static contact networks and local awareness effects. In
contrast, refs. [94, 145] investigate the case of a temporal network in which
awareness has the very strong and global effect of reducing uniformly the ac-
tivity of all individuals and their numbers of contacts, either because they are
infectious or because of a global knowledge of the overall incidence of the dis-
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ease. Under those assumptions of a global, non-local awareness effect, both the
epidemic threshold and the disease prevalence are notably affected.

Here, we consider instead the following scenario: First, individuals are con-
nected by a time-varying network of contacts, which is more realistic than a
static one; second, we use the scenario of a relatively mild disease, which does
not disrupt the patterns of contacts but which leads susceptible individuals who
witness the disease in other individuals to take precautionary measures. We do
not assume any knowledge of the overall incidence, which is usually very difficult
to know in a real epidemic, especially in real time. We consider standard models
of infectious diseases and both empirical and synthetic temporal networks of con-
tacts. We extend the concept of awareness with respect to the state of neighbors
from static to temporal networks and perform extensive numerical simulations
to uncover the change in the phase diagram (epidemic threshold and fraction of
individuals affected by the disease) as the parameters describing the reaction of
the individuals are varied.

6.2. Modelling epidemic spread in temporal
networks

6.2.1. Epidemic models and epidemic threshold
We consider the paradigmatic Susceptible-Infectious-Susceptible (SIS) and Susceptible-
Infectious-Recovered (SIR) models to describe the spread of a disease in a fixed
population of N individuals. In the SIS model, each individual belongs to one
of the following compartments: healthy and susceptible (S) or diseased and
infectious (I). A susceptible individual in contact with an infectious becomes in-
fectious at a given constant rate, while each infectious recovers from infection at
another constant rate. In the SIR case, infectious individuals enter the recovered
(R) compartment and cannot become infectious anymore. We consider a discrete
time modeling approach, in which the contacts between individuals are given by
a temporal network encoded in a time-dependent adjacency matrix aij(t) taking
value 1 if individuals i and j are in contact at time t, and 0 otherwise. At each
time step, the probability that a susceptible individual i becomes infectious is
thus given by pi = 1−∏j [1−λ aij(t)σj ], where λ is the infection probability, and
σj is the state of node j (σj = 1 if node j is infectious and 0 otherwise). We define
µ as the probability that an infectious individual recovers during a time step, and
we impose µ� 1 to ensure the equivalence between the discrete time approach
and a continuous-time Markov chain analysis [52]. The competition between
the transmission and recovery mechanisms determines the epidemic threshold.
Indeed, if λ is not large enough to compensate the recovery process (λ/µ smaller
than a critical value), the epidemic outbreak will not affect a finite portion of
the population, dying out rapidly. On the other hand, if λ/µ is large enough, the

82



spread can lead in the SIS model to a non-equilibrium stationary state, which we
determine with an average over surviving runs, and in which a finite fraction of
the population is in the infectious state. For the SIR model, on the other hand,
the epidemic threshold is determined by the fact that the fraction r∞ = R∞/N
of individuals in the recovered state at the end of the spread becomes finite for
λ/µ larger than the threshold.

In order to numerically determine the epidemic threshold of the SIS model, we
adapt the method proposed in Refs. [21, 110], which consists in measuring the
lifetime and the coverage of realizations of spreading events, where the coverage
is defined as the fraction of distinct nodes ever infected during the realization.
Below the epidemic threshold, realizations have a finite lifetime and the cover-
age goes to 0 in the thermodynamic limit. Above threshold, the system in the
thermodynamic limit has a finite probability to reach an endemic stationary state,
with infinite lifetime and coverage going to 1, while realizations that do not reach
the stationary state have a finite lifetime. The threshold is therefore found as the
value of λ/µ where the average lifetime of non-endemic realizations diverges.
For finite systems, one can operationally define an arbitrary maximum coverage
C > 0 (for instance C = 0.5) above which a realization is considered endemic,
and look for the peak in the average lifetime of non-endemic realizations as a
function of λ/µ.

In the SIR model the lifetime of any realization is finite. We thus evaluate the
threshold as the location of the peak of the relative variance of the fraction r∞
of recovered individuals at the end of the process [33], i.e.,

σr =

√
〈r2
∞〉 − 〈r∞〉2

r∞
. (6.1)

6.2.2. Modeling risk perception
To model risk perception, we consider the approach proposed in Ref. [9] for
static interaction networks. In this framework, each individual i is assumed to
be aware of the fraction of his/her neighbors who are infectious at each time step.
This awareness leads the individual to take precautionary measures that decrease
its probability to become infectious upon contact. This decrease is modeled by
a reduction of the transmission probability by an exponential factor: at each
time step, the probability of a susceptible node i in contact with an infectious
to become infectious depends on the neighborhood of i and is given by λi(t) =
λ0 exp(−Jni(t)/ki) where ki is the number of neighbors of i, ni(t) the number of
these neighbors that are in the infectious state at time t, and J is a parameter
tuning the degree of awareness or amount of precautionary measures taken by
individuals.

Static networks of interactions are however only a first approximation and real
networks of contacts between individuals evolve on multiple timescales [16]. We
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therefore consider in the present work, more realistically, that the set of neigh-
bors of each individual i changes over time. We need thus to extend the previ-
ous concept of neighborhood awareness to take into account the history of the
contacts of each individual and his/her previous encounters with infectious in-
dividuals. We consider that longer contacts with infectious individuals should
have a stronger influence on a susceptible individual’s awareness, and that the
overall effect on any individual depends on the ratio of the time spent in contact
with infectious to the total time spent in contact with other individuals. Indeed,
two individuals spending a given amount of time in contact with infectious indi-
viduals may react differently depending on whether these contacts represent a
large fraction of their total number of contacts or not. We moreover argue that
the awareness is influenced only by recent contacts, as having encountered ill
individuals in a distant past is less susceptible to lead to a change of behaviour.
To model this point in a simple way, we consider that each individual has a finite
memory of length ∆T and that only contacts taking place in the time window
[t−∆T, t[, in which the present time t is excluded, are relevant.

We thus propose the following risk awareness change of behaviour: The prob-
ability for a susceptible individual i, in contact at time t with an infectious one,
to become infectious, is given by

λi(t) = λ0 exp (−αnI(i)∆T ) (6.2)

where nI(i)∆T is the number of contacts with infectious individuals seen by the
susceptible during the interval [t − ∆T, t[, divided by the total number of con-
tacts counted by the individual during the same time window (repeated contacts
between the same individuals are also counted). α is a parameter gauging the
strength of the awareness, and the case α = 0 corresponds to the pure SIS pro-
cess, in which λi(t) = λ0 for all individuals and at all times.

6.3. Epidemic spreading on synthetic networks

6.3.1. SIS dynamics
6.3.1.1. Analytical approach

On a synthetic Activity Driven temporal network as defined in subsection 1.4.1,
an infectious individual can propagate the disease only when he/she is in contact
with a susceptible. As a result, the spreading results from an interplay between
the recovery time scale 1/µ, the propagation probability λ conditioned on the
existence of a contact and the multiple time scales of the network as emerging
from the distribution of nodes’ activity F (a). Analogously to what is done for
heterogeneous static networks [17, 131], it is possible to describe the spread at
a mean-field level by grouping nodes in activity classes: all nodes with the same
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activity a are in this approximation considered equivalent [136]. The resulting
equation for the evolution of the number of infectious nodes in the class of nodes
with activity a in the original AD model has been derived in Ref. [136] and reads

I t+1
a = I ta − µ I ta + λ aSta

∫ I ta′

N
da′ + λSta

∫ I ta′ a
′

N
da′ . (6.3)

where Ia and Sa are the number of infectious and susceptible nodes with activity
a, verifying Na = Sa + Ia.

From this equation one can show, by means of a linear stability analysis, that
there is an endemic non-zero steady state if and only if (〈a〉 +

√
〈a2〉)λ/µ >

1 [136]. Noticing that 〈a〉 +
√
〈a2〉 may be regarded as the highest statistically

significant activity rate, the interpretation of this equation becomes clear: the
epidemic can propagate to the whole network when the smallest time scale of
relevance for the infection process is smaller than the time scale of recovery.

Let us now consider the introduction of risk awareness in the SIS dynamics on
AD networks. In general, we can write for a susceptible with activity a

nI(a)∆T =

∆T∑
i=1

(
a
∫ I t−ia′

N
da′ +

∫ I t−ia′ a′

N
da′
)

(a+ 〈a〉) ∆T , (6.4)

where the denominator accounts for the average number of contacts of an indi-
vidual with activity a in ∆T time steps. In the steady state, where the quantities
Ia become independent of t, the dependence on ∆T in Eq. (6.4) vanishes, since
both the average time in contact with infectious individuals and the average to-
tal time in contact are proportional to the time window width. Introducing this
expression into Eq. (6.2), we obtain

λa = λ0 exp

−α
a
∫ Ia′
N
da′ +

∫ Ia′ a′
N

da′

a+ 〈a〉

 , (6.5)

which can be inserted into Eq. (6.3). Setting µ = 1 without loss of generality, we
obtain the steady state solution

ρa = λa(aρ+ θ)
1 + λa(aρ+ θ) , (6.6)
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where ρa = Ia/Na and we have defined

ρ =
∑
a

F (a)ρa, (6.7)

θ =
∑
a

aF (a)ρa. (6.8)

Introducing Eqs. (6.5) and (6.6) into Eqs. (6.7) and (6.8), and expanding at second
order in ρ and θ, we obtain (see appendix section C for details) the epidemic
threshold

λc = 1
〈a〉+

√
〈a2〉

. (6.9)

Moreover, setting λ0 = λc(1 + ε) and expanding at order 1 in ε we obtain

ρ = 2ε
Aα +B

, (6.10)

where

A = λc

〈 a3√
〈a2〉

+ 3a
√
〈a2〉+ 〈a2〉+ 3a2

a+ 〈a〉

〉
(6.11)

B = λ2
c

 〈a3〉√
〈a2〉

+ 3〈a〉
√
〈a2〉+ 4〈a2〉

 .
This indicates that, at the mean-field level, the epidemic threshold is not affected
by the awareness. Nevertheless, the density of infectious individuals in the vicin-
ity of the threshold is reduced as the awareness strength α grows.

In the case of activity driven networks with memory (ADM), no analytical
approach is available for the SIS dynamics, even in the absence of awareness.
The numerical investigation carried out in Ref. [170] has shown that the memory
mechanism, which leads to the repetition of some contacts, reinforcing some
links and yielding a broad distribution of weights, has a strong effect in the
SIS model. Indeed, the repeating links help the reinfection of nodes that have
already spread the disease and make the system more vulnerable to epidemics.
As a result, the epidemic threshold is reduced with respect to the memory-less
(AD) case. For the SIS dynamics with awareness on ADM networks, we will now
resort to numerical simulations.

6.3.1.2. Numerical simulations

In order to inspect in details the effect of risk awareness on the SIS epidemic pro-
cess, we perform extensive numerical simulations. Following Refs. [136, 170],
we consider a distribution of nodes’ activities of the form F (a) ∝ a−γ for a ∈ [ε, 1],
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Figure 6.1.: Effect of the strength of risk awareness on the SIS spreading on AD
and ADM networks with ∆T = ∞. (a): average lifetime of non-
endemic runs for AD network, (b): average lifetime of non-endemic
runs for ADM networks, (c): Steady state fraction of infectious for
AD, (d): Steady state fraction of infectious for ADM. Vertical lines
in subplots (a) and (b) indicate the position of the maximum of the
average lifetime. Model parameters: µ = 0.015, γ = 2, ε = 10−3,
∆T = ∞ and network size N = 105. Results are averaged over 1000
realizations.

where ε is a lower activity cut-off introduced to avoid divergences at small activ-
ity values. In all simulations we set ε = 10−3 and γ = 2. We consider networks
up to a size N = 105 and a SIS process starting with a fraction I0/N = 0.01 of in-
fectious nodes chosen at random in the population. In order to take into account
the connectivity of the instantaneous networks, we use as a control parameter
the quantity β/µ, where β = 2〈a〉λ0 is the per capita rate of infection [136]. No-
tice that the average degree of an instantaneous network is 〈k〉t = 2〈a〉 [161].
With this definition, the critical endemic phase corresponds to

β

µ
≥ 2〈a〉
〈a〉+

√
〈a2〉

. (6.12)

In Fig. 6.1 we first explore the effect of the strength of risk awareness, as
measured by the parameter α, in the case ∆T = ∞, i.e., when each agent is
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Figure 6.2.: Analysis of finite-size effects. We plot the average lifetime of non-
endemic realizations of the SIS process, for different system sizes and
2 different values of α. (a): ADM networks and α = 0. (b): ADM
networks with α = 10. (c): AD networks. Vertical lines indicate the
position of the maximum of the average lifetime. Model parameters:
µ = 0.015, γ = 2, ε = 10−3 and ∆T = ∞. Results are averaged over
1000 realizations.

influenced by the whole history of his/her past contacts, a situation in which
awareness effects should be maximal. We plot the steady state average frac-
tion of infectious nodes ρ = ∑

a ρaF (a) as a function of β/µ for three different
values of α, and evaluate the position of the effective epidemic threshold, as
measured by the peak of the average lifetime of non-endemic realizations, see
subsection 6.2.1. Figures 6.1c) and d) indicate that the effect of awareness in
the model (α > 0), with respect to the pure SIS model (α = 0) is to reduce the
fraction ρ of infectious individuals for all values of β/µ, and Figures 6.1a) and b)
seem to indicate in addition a shift of the effective epidemic threshold to larger
values. This effect is more pronounced for the ADM than for the AD networks.
As this shift of the epidemic threshold is in contradiction, at least for the AD case,
with the mean-field analysis of the previous paragraphs, we investigate this issue
in more details in Fig. 6.2, where we show, both for the pure SIS model (α = 0)
and for a positive value of α, the average lifetime of non-endemic realizations
for various system sizes. Strong finite-size effects are observed, especially for the
model with awareness (α > 0).
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Figure 6.3.: Finite-size scaling of the epidemic threshold of the SIS process for (a):
pure AD network, (b): AD network with α = 10, (c): ADM with α = 0
and (d): ADM with α = 10.

In Fig. 6.3, we plot the fitting of the values of the effective threshold (β/µ)c
(the position of the lifetime peak) with a law of the form (β/µ)c,N = (β/µ)c,∞ +
AN−ν , typical of finite-size scaling analysis [28]. In the thermodynamic limit of
(β/µ)c,∞ = 0.37(3) for the pure SIS model on AD networks, (β/µ)c,∞ = 0.34(2) for
AD with α = 10 (SIS model with awareness), (β/µ)c,∞ = 0.29(3) for ADM with
α = 0 (pure SIS model) and (β/µ)c,∞ = 0.29(2) for ADM with α = 10. We notice
here that the extrapolations for α = 0 are less accurate and thus with larger
associated errors. Nevertheless, with the evidence at hand, we can conclude that,
within error bars, the risk perception has no effect on the epidemic threshold in
the thermodynamic limit, in agreement with the result from Eq. (6.12), that gives
a theoretical threshold (β/µ)c = 0.366 for the AD case. It is however noteworthy
that the effective epidemic threshold measured in finite systems can be quite
strongly affected by the awareness mechanism, even for quite large systems, and
in a particularly dramatic way for ADM networks.

We finally explore in Fig. 6.4 the effect of a varying memory length ∆T , at
fixed risk awareness strength α. In both AD and ADM networks, an increas-
ing awareness temporal window shifts the effective epidemic threshold towards
larger values, up to a maximum given by ∆T = ∞, when the whole system
history is available. For the ADM networks, this effect is less clear because of
the changing height of the maximum of the lifespan when increasing ∆T . For
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AD networks, this result is apparently at odds with the mean-field analysis in
which ∆T is irrelevant in the stationary state. We should notice, however, that
for ∆T → ∞, the critical point is unchanged in the thermodynamic limit with
respect to the pure SIS dynamics. Given that for ∆T → ∞ the effects of aware-
ness are the strongest, we expect that a finite ∆T will not be able to change the
threshold in the infinite network limit. We can thus attribute the shifts observed
to pure finite size effects. Note that this effect is also seen in homogeneous AD
networks with uniform activity a (data not shown), observation that we can ex-
plain as follows: when ∆T is small, the ratio of contacts with infectious nI(i)∆T
recorded by an individual i can differ significantly from the overall ratio recorded
in the whole network in the same time window, which is equal to 〈nI(i)∆T 〉 = ρ
(for a uniform activity). Mathematically, we have

〈λi〉 = λ0 〈exp(−αnI(i)∆T )〉 ≥ λ0 exp(−α ρ) (6.13)

by concavity of the exponential function. Thus, even if locally and temporarily
some individuals perceive an overestimated prevalence of the epidemics and re-
duce their probability of being infected accordingly, on average the reduction in
the transmission rate would be larger if the ensemble average were used instead
of the temporal one, and thus the epidemics is better contained in the former
case. As ∆T increases, the temporal average nI(i)∆T becomes closer to the en-
semble one ρ and the effect of awareness increases. When ∆T is large enough
compared to the time scale of variation of the network 1/a, the local time record-
ing becomes equivalent to an ensemble average, and we recover the mean-field
situation.

6.3.2. SIR dynamics
6.3.2.1. Analytical approach

Following an approach similar to the case of the SIS model, the SIR model has
been studied at the heterogeneous mean field level in AD networks, in terms of a
set of equations for the state of nodes with activity a, which takes the form [103]

I t+1
a = I ta − µ I ta + λ a (Na − I ta −Rt

a)
∫ I ta′

N
da′

+ λ (Na − I ta −Rt
a)
∫ I ta′ a

′

N
da′ , (6.14)

where Na is the total number of nodes with activity a, and Ia and Ra are the num-
ber of nodes with activity a in the infectious and recovered states, respectively.
Again, a linear stability analysis shows the presence of a threshold, which takes

90



0.3 0.35 0.4 0.45 0.5 0.55 0.6

1.0×103

1.5×103

2.0×103

2.5×103
av

er
ag

e 
lif

et
im

e 
of

 fi
ni

te
 ru

ns

0.3 0.4 0.5 0.6
β/µ

0

1×103

2×103

3×103

av
er

ag
e 

lif
et

im
e 

of
 fi

ni
te

 ru
ns

∆T = 0
∆T = 10
∆T = 100
∆T = 1000
∆T = ∞

Figure 6.4.: Effect of the local risk perception with increasing memory span ∆T
for the SIS spreading on AD and ADM network. (top): AD network.
(bottom): ADM network. Vertical lines indicate the position of the
maximum of the average lifetime. Model parameters: α = 10, µ =
0.015, γ = 2, ε = 10−3 and network size N = 104. Results are averaged
over 1000 realizations.

the same form as in the SIS case:

β

µ
≥ 2〈a〉
〈a〉+

√
〈a2〉

. (6.15)

The same expression can be obtained by a different approach, based on the map-
ping of the SIR processes to bond percolation [162].

Since the SIR model lacks a steady state, we cannot apply in the general case
the approach followed in the previous section. The effects of risk perception can
be however treated theoretically for a homogeneous network (uniform activity)
in the limit ∆T →∞, which is defined by the effective infection probability

λ(t) = λ0 exp
(
−α
t

∫ t

0
ρ(τ) dτ

)
. (6.16)

Even this case is hard to tackle analytically, so that we consider instead a modi-
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fied model defined by the infection probability

λ(t) = λ0 exp
(
−α

∫ t

0
ρ(τ) dτ

)
. (6.17)

In this definition the fraction of infectious seen by an individual is no longer av-
eraged over the memory length but rather accumulated over the memory times-
pan, so that we expect stronger effects of the risk perception with respect to
Eq. (6.15), if any. The fraction of susceptibles s = S/N and the fraction of recov-
ered r = R/N in the system obey the equations

ds

dt
= −λ0 ρ(t) s(t) e−αr(t)/µ (6.18)

dr

dt
= µρ(t) (6.19)

where in the first equation we have used the second equation to replace
∫ t

0 ρ(τ) dτ
in λ(t) by (r(t)− r(0))/µ (with the initial conditions r(0) = 0).

Setting µ = 1 without loss of generality, the final average fraction of recovered
individuals after the end of an outbreak is given by

r∞ = 1− s(0) exp
(
−λ0

α
(1− e−αr∞)

)
. (6.20)

Close to the threshold, i.e., for r∞ ∼ 0, performing an expansion up to second
order and imposing the initial condition ρ(0) = 1 − s(0) = 0, we obtain the
asymptotic solution

r∞ '
2

λ0(α + λ0)(λ0 − 1), (6.21)

which leads to the critical infection rate λ0 = 1. This means that, as for the SIS
case, the risk perception does not affect the epidemic threshold at the mean field
level, at least for a homogeneous network. The only effect of awareness is a de-
pression of the order parameter r∞ with α, as observed also in the SIS case. The
same conclusion is expected to hold for the original model of awareness, with an
infection rate of the form Eq. (6.16) as in this case the dynamics is affected to a
lower extent. In analogy, for the general case of an heterogeneous AD network,
with rate infection given by Eq. (6.2), we expect the effects of awareness on the
epidemic threshold to be negligible at the mean-field level.

On ADM networks, the numerical analysis of the SIR model carried out in
Ref. [170] has revealed a picture opposite to the SIS case. In an SIR process in-
deed, reinfection is not possible; as a result, repeating contacts are not useful for
the diffusion of the infection. The spread is thus favoured by the more random
patterns occurring in the memory-less (AD) case, which allows infectious nodes
to contact a broader range of different individuals and find new susceptible ones.

92



0.6

0.8

1

σ r/σ
rm

ax

0.4 0.5 0.6 0.7 0.8
β/µ

α = 0
α = 20
α = 200

0.1 0.2 0.3 0.4 0.5 0.6
β/µ

0

0.05

0.1

0.15

0.2

r∞

(a) (b)

(c) (d)

Figure 6.5.: Effect of the local risk perception on the SIR spreading on AD networks
and ADM networks. We plot r∞ and σr/σmaxr for different values of
α. (a): σr/σ

max
r on AD network, (b): σr/σ

max
r on ADM network,

(c): r∞ on AD network and (d): r∞ on ADM network. Vertical lines
in subplots (a) and (b) indicate the position of the maximum of the
order parameter variance. Model parameters: ∆T = ∞, µ = 0.015,
γ = 2, ε = 10−3 and network size N = 105. Results are averaged over
1000 realizations.

The epidemic threshold for SIR processes is hence higher in the ADM case than
in the AD one [170].

6.3.2.2. Numerical simulations

To study the effects of risk perception on the dynamics of a SIR spreading process
in temporal networks we resort again to numerical simulations. In Fig. 6.5 we
compare the effects of the risk perception mechanism given by Eq. (6.2) for AD
and ADM networks. The spread starts with a fraction ρ0 = I0/N = 0.01 of
infectious nodes chosen at random in the population and the activity distribution
is the same as in the SIS case. In the present simulations the memory span ∆T
is infinite and we compare the results obtained for two different values of the
awareness strenght α. We see that the effective epidemic threshold is increased
for the ADM network, whereas it seems unchanged for the AD network and
around a value of β/µ = 0.35, an agreement with the theoretical prediction
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Figure 6.6.: Effect of the initial density of infectious on the SIR model on AD
networks for different values of the awareness strength α and the initial
density of infectious individuals ρ0. Model parameters: ∆T = ∞,
µ = 0.015, γ = 2, ε = 10−3 and network size N = 105. Results are
averaged over 1000 realizations.

quoted in the previous section.
The SIR phase transition is rigorously defined for a vanishing initial density of

infectious, i.e., in the limit ρ(0) → 0 and s(0) → 1, as can be seen at the mean-
field level in the derivation of Eq. (6.21). In Fig. 6.6 we explore the effects of
the initial density ρ0 = I0/N of infectious individuals on the effect of awareness
on AD networks. For large values of ρ0 = I0/N , the awareness (α > 0) can
significantly decrease the final epidemic size, as already observed in Fig. 6.5.
This effect can be understood by the fact that, for large ρ0, more individuals are
aware already from the start of the spread and have therefore lower probabilities
to be infected. At very small initial densities, on the other hand, r∞ becomes
independent of α. This is at odds with the result in Eq. (6.21), which however was
obtained within an approximation that increases the effects of awareness. The
milder form considered in Eq. (6.2) leads instead to an approximately unaltered
threshold, and to a prevalence independent of α.

For ADM networks, Fig. 6.7 shows the variance of the order parameter for
two different values of α. As in the SIS case, we see that an apparent shift of
the effective epidemic threshold is obtained, but very strong finite size effects
are present even at large size, especially for α > 0. The difference between the
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effective thresholds at α > 0 and α = 0 decreases as the system size increases,
but remains quite large, making it difficult to reach a clear conclusion on the
infinite size limit.

6.4. Epidemic spreading on empirical social
networks

As neither AD nor ADM networks display all the complex multi-scale features
of real contact networks, we now turn to numerical simulations of spreading
processes with and without awareness on empirical temporal contact networks,
using the datasets described in section 1.3.

6.4.1. SIS dynamics
As we saw in subsection 6.3.1, the susceptibility defined to evaluate the epidemic
threshold of the SIS process is subject to strong finite size effects. Since the em-
pirical networks used in the present section are quite small, we choose to focus
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only on the main observable of physical interest, i.e., the average prevalence ρ
in the steady state of the epidemics.

As we are interested in the influence of the structural properties of the network,
we choose to skip the nights in the datasets describing the contacts between
individuals, as obviously no social activity was recorded then, to avoid undesired
extinction of the epidemic during those periods. In order to run simulations of
the SIS spreading, we construct from the data arbitrarily long lasting periodic
networks, with the period being the recording duration (once the nights have
been removed). For both networks we define the average instantaneous degree

〈k〉 = 1
Tdata

∑
i kt where the sum runs over all the time steps of the data, and

kt is the average degree of the snapshot network at time t. We then define
β/µ = λ〈k〉/µ as the parameter of the epidemic. For each run, a random starting
time step is chosen, and a single agent in the same time step, if there is any, is
defined as the seed of the infection (otherwise a new starting time is chosen).

In Fig. 6.8, we compare the curves of the prevalence ρ of the epidemics in
the stationary state on both empirical networks, and for increasing values of the
memory length ∆T . We can see that an important reduction of the prevalence
is occurring even for ∆T = 1. This is due to the presence of many contacts of
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duration longer than ∆T (contrarily to the AD case): the awareness mechanism
decreases the probability of contagion of all these contacts (and in particular of
the contacts with very long duration, which have an important role in the prop-
agation) as soon as ∆T > 1, leading to a strong effect even in this case. At large
values of the control parameter β/µ, the effect of the awareness is stronger for
increasing values of the memory length ∆T , as was observed in subsection 6.3.1.
At small values of β/µ on the contrary, the awareness is optimum for a finite
value of ∆T , and the knowledge of the whole contact history is not the best way
to contain the epidemics. While a detailed investigation of this effect lies beyond
the scope of our work, preliminary investigations (not shown) seem to indicate
that it is linked to the use of the periodicity introduced in the data through the
repetition of the dataset.

6.4.2. SIR
In this section we study the impact of the awareness on the SIR spreading process
running on the empirical networks. In particular, we study the effect of self
protection on the fraction of recovered individuals r∞ in the final state, and
on the effective threshold evaluated as the peak of the relative variance of r∞
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defined in Eq. (6.1). In Fig. 6.9 and 6.10 we plot σr and r∞ for different memory
length ∆T , for the SFHH conference and the Thiers highschool data respectively.
We first notice that a notable effect appears already for ∆T = 1, similarly to the
SIS process. However, we see that r∞ is monotonously reduced as ∆T grows and
that the effective threshold is shifted to higher values of β/µ, also monotonously.
It is worth noticing that the timescale of the SIR process is much smaller than
the one studied in the SIS process because the final state is an absorbing state
free of infectious agents. The lifetime of the epidemic in this case is of the
order of magnitude of the data duration, so that the periodicity introduced by
the repetition of the dataset is not relevant anymore. Overall, we observe for
both networks an important reduction of outbreak size when people adopt a
self protecting behaviour, as well as a significant shift of the effective epidemic
threshold.

6.5. Conclusion
The implementation of immunization strategies to contain the propagation of
epidemic outbreaks in social networks is a task of paramount importance. In this
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chapter, we have considered the effects of taking protective measures to avoid
infection in the context of social temporal networks, a more faithful represen-
tation of the patterns of social contacts than often considered static structures.
In this context, we have implemented a model including awareness to the prop-
agating disease in a temporal network, extending previous approaches defined
for static frameworks. In our model, susceptible individuals have a local per-
ception of the overall disease prevalence measured as the ratio of the number
of previous contacts with infectious individuals on a training window of width
∆T . An increased level of awareness induces a reduction in the probability that
a susceptible individual contracts the disease via a contact with an infectious
individual.

To explore the effects of disease awareness we have considered the paradig-
matic SIS and SIR spreading models on both synthetic temporal networks, based
in the activity driven (AD) model paradigm, and empirical face-to-face contact
networks collected by the SocioPatterns collaboration. In the case of network
models, we consider the original AD model, and a variation, the AD model with
memory (ADM), in which a memory kernel mimics some of the non-Markovian
effects observed in real social networks.

In the case of synthetic networks, analytical and numerical results hint that
in AD networks without memory, the epidemic threshold on both SIS and SIR
models is not changed by the presence of awareness, while the epidemic preva-
lence is diminished for increasing values of the parameter α gauging the strength
of awareness. In the case of the ADM model (temporal network with memory
effects) on the other hand, awareness seems to be able to shift the threshold to
an increased value, but very strong finite size effects are present: our results are
compatible with an absence of change of the epidemic threshold in the infinite
size limit, while, as for the AD case, the epidemic prevalence is decreased.

In the case of empirical contact networks, we observe in all cases a strong
reduction of the prevalence for different values of α and ∆T , and an apparent
shift of the effective epidemic threshold. These empirical networks differ from
the network models from two crucial points of view. On the one hand, they have
a relatively small size. Given that important finite size effects are observed in
the models, especially in the one with memory effects, one might also expect
stronger effective shifts in such populations of limited size. On the other hand,
AD and ADM networks lack numerous realistic features observed in real social
systems. On AD and ADM networks, contacts are established with random nodes
(even in the ADM case) so that the perception of the density of infectious by
any node is quite homogeneous, at least in the hypothesis of a sufficiently large
number of contacts recorded (i.e., at large enough times, for a∆T � 1). This
is not the case for the empirical networks, which exhibits complex patterns such
as community structures, as well as broad distributions of contact and inter-
contact durations, specific time-scales (e.g., lunch breaks), correlated activity
patterns, etc. [59]. This rich topological and temporal structure can lead to
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strong heterogeneities in the local perception of the disease. In this respect,
it would be interesting to investigate the effect of awareness in more realistic
temporal network models.

Notably, the awareness mechanism, even if only local and not assuming any
global knowledge of the unfolding of the epidemics, leads to a strong decrease
of the prevalence and to shifts in the effective epidemic threshold even at quite
large size, in systems as diverse as simple models and empirical data. More-
over, some features of empirical contact networks, such as the broad distribution
of contact durations, seem to enhance this effect even for short-term memory
awareness. Overall, our results indicate that it would be important to take into
account awareness effects as much as possible in data-driven simulations of epi-
demic spread, to study the relative role of the complex properties of contact
networks on these effects, and we hope this will stimulate more research into
this crucial topic.
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7. Voter-like model of opinion
dynamics

7.1. Introduction
A wide variety of complex physical systems are concerned with the problem of
an initially disordered configuration that is able to achieve an ordered state by
means of local pairwise dynamical interactions. Examples of such systems range
from the formation of an opinion consensus in social systems [30] to the loss
of genetic diversity in evolutionary dynamics [48]. These situations, implying
a competition between different alternative states diffusing among the agents,
have been modelled with stochastic copying or invasion processes. In these
models, each individual is endowed with a state variable and copies or imposes
his/her state from or to neighbouring sites until one single state finally dominates
the whole system. Among those different frameworks, the voter model [101]
was introduced to schematically model the opinion spreading in human popula-
tions and has become emblematic for its simplicity and analytical tractability. In
this model, the agents possess one of two discrete opinions, and at each time step
an individual is chosen and adopts the opinion of a randomly chosen neighbour.
On the other hand, in the context of evolutionary dynamics, the Moran pro-
cess [119] considers a population of individuals belonging to different species,
that reproduce generating an offspring that replaces a randomly chosen nearest
neighbor. The voter and Moran models differ thus in the direction in which the
state is transferred between pairs of interacting agents.

Recently, it has been acknowledged that the topology in which such ordering
dynamics takes place in real systems is often far for homogeneous, and better
represented in terms of heterogeneous complex networks [13, 17, 125]. This
observation has led to an intense research activity in order to unveil the differ-
ent properties of ordering dynamics in heterogeneous topologies [15, 17, 107,
120, 152, 156, 176], yielding a good understanding of the problem both at the
numerical and analytical levels.

These studies have mainly focused on the case of static networks, in which
nodes representing agents are connected by a set of edges, standing for pairwise
possible interactions, that are fixed in time and never change. However, many
networks, and in particular social ones, are dynamic in nature, given by a pattern
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of connections that evolves in time. Despite their relevance, however, consensus
dynamics have seldom been studied in detail in temporal topologies [53, 84,
100].

Here we contribute to fill this gap by presenting a detailed study of the voter
and Moran processes on temporal networks, focusing on activity driven networks
introduced in subsection 1.4.1 . We provide a full analysis of basic ordering dy-
namics through a heterogeneous mean-field approach that allows us to describe
the dynamics of the process in the limit of a large system size, and in partic-
ular to compute the average time to reach consensus starting from a random
configuration. Another quantity of interest when studying consensus or invasion
processes is the so-called exit probability, defined as the probability that a single
agent having a discrepant opinion among an unanimous population manages to
spread his/her opinion to the whole population. In our work this quantity plays a
significant role as it highlights an interesting symmetry between the voter model
and the Moran process when comparing the unfolding of these processes either
on static heterogeneous networks or on and the activity driven network. In par-
ticular, we show how, depending on the type of dynamics, the effect of a node’s
characteristics on the dynamics can be similar or drastically different when the
dynamics runs on a temporal network or on the corresponding static aggregated
network.

7.2. Consensus dynamics in activity driven
networks with attractiveness

Throughout this chapter we use the synthetic activity driven model with attrac-
tiveness (expADA) defined in chapter 1 as a substrate for the consensus dynamics
we define. The dynamics of such a network is entirely determined by the joint
distribution η(a, b) of the activity a and attractiveness b. Coupling a dynamical
process with a temporal network always entails the problem of how to deal with
the different time scales inherent in the process and in the evolution of the net-
work. Here we consider the simplest case of a single time scale, imposed by
the network evolution. In this way, the state of an agent can only change when
s/he interacts with another agent, and is constant in the latency times between
interactions. The consensus dynamics are thus defined as follows:

• We start from an initial configuration of states si ∈ {0, 1}, assigned to each
agent.

• In an interval of time δt, an agent i, in state si, becomes active with proba-
bility aiδt, and chooses as peer another agent j (in state sj) with probability
bj∑
` b`
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• The states si and sj are updated according to the chosen consensus dynam-
ics.

• Time is updated t→ t+ δt.

We consider three different variations of opinion dynamics, based on the up-
date dynamics of the state variables. Assuming that, at given time t, agent i
becomes active, and chooses agent j to start an interaction, we consider the
three different updates:

1. Voter dynamics: si := sj (i.e., i adopts j’s state).

2. Moran dynamics: sj := si.

3. Mixed dynamics: With probability p, si := sj; with the complementary
probability 1− p, sj := si.

In what follows, we consider the mixed update rule, as the voter model and the
Moran process are particular cases of the latter obtained by setting p = 1 or p = 0
respectively.

7.3. Heterogeneous mean-field analysis
When agent activation is ruled by a Poisson process, it is possible to tackle the
behavior of voter-like dynamics by extending the heterogeneous mean-field [17,
44] approach developed in Refs. [156, 157] to study voter dynamics on static
networks. This method is based in a coarse-graining of the network, considering
that the state of an agent with activity a and attractiveness b depends exclusively
on those two quantities. In this way, one considers a fundamental description in
terms of the fraction ρa,b(t) of agents with activity strength a and attractiveness
b in the state 1 at time t; in other words, ρa,b(t) is the probability that a randomly
chosen agent with activity a and attractiveness b is in state 1 at time t. The corre-
sponding fraction of agents in state 0 is given by the complementary probability
1− ρa,b(t). The total fraction of agents in state 1, ρ(t), is given by

ρ(t) =
∑
a,b

η(a, b)ρa,b(t). (7.1)

To alleviate notation, we denote the pair (a, b) by the symbol h, writing thus
ρa,b(t) ≡ ρh(t).

The relevant functions defining the dynamics are the transition probabilities
Rh and Lh for respectively increasing and decreasing the number of voters in
state 1, among the pool of agents with activity strength a and attractiveness b,
in a time interval δt. From these transition probabilities, a differential equation
ruling the evolution of ρh(t) can be derived, as well as information about the exit
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probability and the average ordering time. In the dynamical rules described in
the previous section, agents activate independently so that a priori multiple acti-
vations are possible during a single time step. However the use of the transition
probabilities Rh and Lh relies on the implicit hypothesis that only one flip at-
tempt may occur during a single time step, thus in order to ensure the validity of
our analysis, we impose that 〈a〉Nδt� 1 so that the probability of counting more
than one activation during δt is almost zero. This is of course always possible as
the time step δt is arbitrary.

Let us now derive the time evolution equation of the fraction ρh(t) of agents
with activity strength a and attractiveness b in state 1 at time t.

7.3.1. Evolution equation
In a single time step, the number of agents with activity strength a and attrac-
tiveness b in state 1 may either increase by one unit with probability Rh, decrease
by one unit with probability Lh, or stay unchanged with probability 1−Rh − Lh.
Thus on average the variation δρh reads

δρh = (+1)× Rh

Nh

+ (−1)× Lh
Nh

+ 0× 1−Rh − Lh
Nh

, (7.2)

where Nh is the number of agents in the state (a, b). In the continuous time limit
(for δt� 1) we may write

∂ρh(t)
∂t

= Rh − Lh
Nh δt

. (7.3)

We consider the mixed process in which every agent, when activated, might
either copy the state of his/her peer with probability p, or impose his/her own
state to him with probability 1− p. The transition probabilities are thus given by

Rh = pRV
h + (1− p)RM

h (7.4)
Lh = pLVh + (1− p)LVh , (7.5)

where the rates LXh and RX
h refer to the voter (X = V ) and Moran (X = M)

dynamics, respectively.
In the case of the voter dynamics, these transition probabilities take the form

RV
h = Nh a δt (1− ρh)

〈b ρh〉
〈b〉

, (7.6)

LVh = Nh a δt ρh

(
1− 〈b ρh〉

〈b〉

)
. (7.7)

The origin of these expressions is easy to see. For example, in Eq. (7.6), the
probability that the number of agents in state 1, activity a and attractiveness b
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increases by one unit is proportional to the number of agents in this class in state
0, Nh[1 − ρh(t)], times the probability that any one of them becomes active in a
time interval δt (aδt), times the probability that an active agent generates a link
to an agent in state 1, thus copying the state of this last agent. The latter is the
sum over all the agents i of the probability that i is chosen and is in state 1, i.e.,∑
i

bi
〈b〉N si = 〈b ρh〉

〈b〉 The transition probability LVh can be obtained by an analogous
reasoning.

In the case of the Moran process, instead, the probability that in a timestep
the state of node i is flipped from 1 to 0 is

Pi(1→ 0) =
∑
j

si bi(1− sj)
〈b〉(N − 1) ajδt = si

bi
〈b〉

δt(〈a〉 − 〈aρh〉). (7.8)

Indeed, the probability that the agent i is flipped from 1 to 0 while interacting
with j is equal to the probability ajδt(1− sj) that j becomes active and is in state
0, times the probability si bi

〈b〉(N−1) that i is chosen among all the other agents and is
in state 1. We then sum over all the agents j to obtain the total probability. Then,
summing over all nodes i with activity a and attractiveness b we get

LMh = Nh δt ρh (〈a〉 − 〈a ρh〉)
b

〈b〉
. (7.9)

We obtain in a similar fashion

RM
h = Nh δt 〈a ρh〉 (1− ρh)

b

〈b〉
. (7.10)

From these two particular cases we deduce the time evolution equation of the
fraction of nodes with activity a and attractiveness b in state 1 in the general
mixed case, which is given by

∂ρh(t)
∂t

= pa

(
〈b ρh〉
〈b〉

− ρh
)

+ (1− p)〈a〉 b
〈b〉

(
〈a ρh〉
〈a〉

− ρh
)
. (7.11)

7.3.2. Conservation law
In the case of the voter model on a complete static graph, the total fraction ρ of
voters in state 1 is conserved by the dynamics. In our model, it is clear from the
previous equation that this in not in general true. Nevertheless, we may look for
a conserved quantity of the form

Ω =
∑
h

λh ρh, (7.12)
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where the weights λh are normalized as
∑
h λh = 1. Using Eq. (7.11), we can

check that the condition ∂Ω/∂t = 0 is fulfilled if the functions λh satisfy the self
consistent equation

λh = η(h) p b [∑h′ a
′λh′ ] + (1− p) a [∑h′ b

′λh′ ]
pa〈b〉+ (1− p)〈a〉b , (7.13)

where
∑
h aλh and

∑
h bλh are determined by the normalization of the weights λh

(see details in appendix section D):

∑
h

aλh = 1
Qp

〈 a
2

∆h,p

〉, (7.14)

∑
h

bλh = 〈a〉
Qp 〈b〉

〈 b
2

∆h,p

〉, (7.15)

where we have defined

∆h,p = pa〈b〉+ (1− p)〈a〉b (7.16)

and

Qp = p〈 a
2

∆h,p

〉〈 b

∆h,p

〉+ (1− p)〈a〉
〈b〉
〈 b

2

∆h,p

〉〈 a

∆h,p

〉. (7.17)

Notice that this last quantity depends only on p.

7.3.3. Exit probability
As in the case of the standard voter model [95], the presence of a conservation
law allows us to estimate directly the exit probability E for a single agent with
state 1 in a population of agents with state 0, i.e., the probability that all agents
finally adopt the state 1. Indeed, the final state with all voters in state 1, corre-
sponding to Ω = 1, takes place with probability E (by definition), while the final
state with all voters in state 0, with Ω = 0, happens with probability 1− E. The
conservation of Ω implies that Ω(t = 0) = E × 1 + (1 − E) × 0, from where we
immediately obtain

E =
∑
h

λh ρh(0), (7.18)

which depends exclusively on the initial state in which the system is prepared.
For the particular initial conditions consisting of a single voter with variables
h = (a, b), i.e., activity a and attractiveness b, in state 1 in a background of voters
in state 0, we have that ρh′(0) = δh′,hN

−1
h , which leads to an exit probability

Ea,b = λ(a, b)
Nη(a, b) , (7.19)
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which, using Eq. (7.13) can be more explicitly expressed as

Ea,b = 1
NQp

pb〈 a
2

∆h,p

〉+ (1− p)a〈a〉
〈b〉
〈 b

2

∆h,p

〉

pa〈b〉+ (1− p)b〈a〉 . (7.20)

Interestingly, this exit probability is a function of the ratio
a

b
only.

7.3.4. Average consensus time
In order to compute the consensus time we can follow [156, 157] and apply a
one-step calculation to write down the recursion relation for the time T [{ρh}] to
reach consensus starting from a configuration {ρh}:

T [{ρh}] = δt+
(

1−
∑
h

(Rh + Lh)
)
T [{ρh}]

+
∑
h

(
RhT [{ρh′ , ρh + 1/Nh}] + LhT [{ρh′ , ρh − 1/Nh}]

)
(7.21)

where the notation {ρh′ , ρh ± 1/Nh} denotes a modification of the configuration
{ρh} by the flip of one agent of variables h (either from state 0 to the state 1, for
the + case, or vice-versa for the − case).

This equation essentially amounts to consider that the consensus time for a
given configuration is equal to the consensus time at the configuration obtained
after a transition taking place in a time δt, weighted by the corresponding tran-
sition probabilities, plus δt. Expanding Eq. (7.21) at second order in 1/Nh we
obtain the backward Kolmogorov equation [57]

∑
h

vh
∂T

∂ρh
+
∑
h

Dh
∂2T

∂ρ2
h

= −1, (7.22)

where

vh = pa

(
〈b ρh〉
〈b〉

− ρh
)

+ (1− p)〈a〉 b
〈b〉

(
〈a ρh〉
〈a〉

− ρh
)

(7.23)

and

Dh = pa

2Nh

(
〈b ρh〉
〈b〉

+ ρh − 2 〈b ρh〉
〈b〉

ρh

)

+(1− p)〈a〉b
2〈b〉Nh

(
〈a ρh〉
〈a〉

+ ρh − 2 〈a ρh〉
〈a〉

ρh

)
(7.24)

are the drift and diffusion coefficients, respectively [57]. After a transient time
depending on the distribution η(a, b), the system reaches a steady state where
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ρh = Ω, ∀h. Then we may drop the drift term in Eq. (7.22), and, considering
Eq. (7.12), change variable from ρh to Ω [156, 157]

∂T

∂ρh
= λh

∂T

∂Ω . (7.25)

Substituting into Eq. (7.22) and simplifying (see details in appendix section D),
we finally obtain

Ω(1− Ω) ∂
2T

∂Ω2 = −N〈b〉
(∑h aλh) (∑h bλh)

. (7.26)

This last equation can be directly integrated, yielding the consensus time

T = τ
N

〈a〉

(
(1− Ω) ln 1

1− Ω + Ω ln 1
Ω

)
, (7.27)

where we defined the characteristic adimensional consensus time

τ = 〈a〉〈b〉
(∑h aλh) (∑h bλh)

. (7.28)

The model is then entirely solved in terms of the previous expressions for the
consensus time and the exit probability. These expressions are however quite
intricate and it is quite insightful to study particular cases of interest, for given
forms of the distribution of the activity and attractiveness η(a, b) and particular
values of the mixing probability p. We present this analysis in the following
Section.

7.4. Particular cases

7.4.1. p = 1/2
From the definition of ∆h,p in Eq. (7.16), one obtains, by multiplying this equation
respectively by a/∆h,p and b/∆h,p and averaging,

〈b〉 = p〈 ab∆h,p

〉〈b〉+ (1− p)〈 b
2

∆h,p

〉〈a〉, (7.29)

〈a〉 = p〈 a
2

∆h,p

〉〈b〉+ (1− p)〈 ab∆h,p

〉〈a〉. (7.30)

Thus for p = 1/2, one obtains, eliminating 〈ab/∆h,p〉 between these two equa-
tions,

〈a〉
〈b〉
〈 b

2

∆h,p

〉 = 〈b〉
〈a〉
〈 a

2

∆h,p

〉, (7.31)
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and Eq. (7.17) becomes

Q1/2 = 1
2〈

b2

∆h,p

〉〈a〉
〈b〉

(
〈 a

∆h,p

〉+ 〈 b

∆h,p

〉〈a〉
〈b〉

)

= 〈 b
2

∆h,p

〉 〈a〉
〈b〉2

= 〈1〉
〈a〉
〈 a

2

∆h,p

〉. (7.32)

From here, it follows that
∑
h a λh = 〈a〉 and

∑
h b λh = 〈b〉, which finally implies

that λh = ηh and τ = 1.
In this case, the dynamics becomes identical to the standard link update dy-

namics of the voter model [169], and it is totally independent on a and b (in
terms of the number of flip attempts) because the probability that the total num-
ber of voters in state 1 is increased during an update attempt is exactly compen-
sated by the probability that this same number is decreased.

7.4.2. Pure voter model
The voter model, corresponding to p = 1, leads in Eq. (7.13) to

λ(a, b) = η(a, b) b a−1

〈b a−1〉
. (7.33)

We also obtain ∆h,p = a〈b〉 and Q1 = 〈a〉〈ba−1〉/〈b〉2, leading for the consensus
time in Eq. (7.28) to the simple form:

τ = 〈a〉〈b a
−1〉2

〈b2a−1〉
(7.34)

The exit probability is also straightforward to derive from Eq. (7.19):

Ea,b = b a−1

N〈b a−1〉
. (7.35)

7.4.3. Moran process
The Moran process corresponds to p = 0, then Eq. (7.13) reduces to

λ(a, b) = η(a, b) a b−1

〈a b−1〉
, (7.36)

leading, with ∆h,p = b〈a〉 and Q0 = 〈ab−1〉/〈a〉, from Eq. (7.28) to

τ = 〈b〉〈a b
−1〉2

〈a2b−1〉
. (7.37)
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The exit probability reads in this case

Ea,b = a b−1

N〈a b−1〉
. (7.38)

It is noteworthy that the results for the Moran process are obtained from the
ones of the voter model by simply exchanging a and b. In fact, we see from
Eq. (7.13) that the dynamics of the mixed process is the same as the dynamics
of the symmetrical process (i.e. with p ← 1 − p) upon exchanging a and b. This
is intuitively clear if we examine the process from a stochastic point of view:
at each update attempt, the node i is chosen at random with probability ai

〈a〉 ,

according to the Gillespie procedure [60], and the node j with probability bj
〈b〉 .

Besides, changing p into 1 − p is equivalent to reversing the roles of i and j,
which has no effect if a and b are exchanged. This is however valid only when
the time is measured as the number of update attempts, the physical time being
multiplied by 〈a〉〈b〉 when swapping a and b.

7.4.4. Pure Activity Driven Networks
The original activity driven network model [137] does not consider a hetero-
geneous attractiveness, and this corresponds to a joint distribution η(a, b) =
F (a)δb,b0, where F (a) is the activity distribution and b = b0, constant. In this

case we have Qp = 〈a〉
b0
〈 [pa + (1 − p)〈a〉]−1〉, and the characteristic consensus

time reads

τ = 〈a〉
2〈 [pa+ (1− p)〈a〉]−1〉
〈a2 [pa+ (1− p)〈a〉]−1〉

, (7.39)

while the exit probability is given by

Ea = 1
N

p 〈a〉
τ

+ (1− p)a
pa+ (1− p)〈a〉 . (7.40)

In order to study the behavior of the consensus time, in Fig. 7.1 we plot the
analytical evaluation of τ , Eq. (7.39), for a normalized activity distribution with
a power-law form, as empirically observed in Ref. [137],

F (a) = 1− γ
1− ε1−γ a

−γ, a ∈ [ε, 1]. (7.41)

where ε is the minimum activity in the system, imposed in order to avoid diver-
gences in the normalization and moments of F (a). From Fig. 7.1 we see that the
consensus time has a minimum around γ = 2 for the Moran process (p = 0) and
a maximum around γ = 1 for the voter model (p = 1). Note that by virtue of
the symmetry property discussed above, the dynamics of the pure attractiveness
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Figure 7.1.: Characteristic consensus time τ for the dynamics on a pure activity
driven network, i.e., fixed attractivity b = b0, and a distribution of ac-
tivities F (a) given by Eq. (7.41), as a function of p and of the exponent
γ of the distribution F . ε = 10−3.

model (setting ai = a0,∀i), taking the same distribution F for b and imposing
a0 = b0, is the same upon exchanging p by 1 − p. In particular, the consensus
time is obtained by reversing the p axis in Fig. 7.1.

7.4.5. Independent activity and attractiveness
In the case where a and b are drawn independently from the same distribution
F , we have η(a, b) = F (a)F (b). In Fig. 7.2 we plot the characteristic consensus
time τ as a function of p and γ for F given by Eq. (7.41). For this particular form
of the distribution η(a, b) (and in general for any symmetric joint distribution
such that η(a, b) = η(b, a)), the dynamics remains the same when changing p
into 1 − p because exchanging a and b has no effect. This is clearly observed in
Fig. 7.2. Additionally, we see that both the voter model and the Moran process
have a minimum consensus time for γ ' 2.25 and a maximum consensus time
for γ = 0.75, respectively.

7.4.6. Strongly correlated activity and attractiveness
As we previously mentioned, the weight function λh is the product of ηh and a
function of the ratio a

b
. This fact straightforwardly implies that, in the maximally

correlated case η(a, b) = F (a)δa,b, where a = b for every agent, the dynamics is
the same as in a fully connected static network, i.e. the average density ρ = 〈ρh〉
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Figure 7.2.: Characteristic consensus time τ as a function of γ and p in the case
η(a, b) = F (a)F (b), with F given by Eq. (7.41) and ε = 10−3.

of voters in state 1 is conserved, the reduced consensus time τ is equal to 1, and
the exit probability is homogeneous and equals 1/N .

7.4.7. Discussion
The results obtained above relate the average consensus time and the exit prob-
ability with the moments of the joint distribution η(a, b) and the value of the
activity a and the attractiveness b of the initial invading voter. Remarkably, when
we compare these results with the ones obtained in the case of static networks
with a given degree distribution P (k) [156, 157] we observe interesting symme-
tries between voter and Moran dynamics.

This symmetry is of particular interest when we consider the pure activity
driven network (setting b = 1). Let us consider for instance the invasion exit
probability, Eqs. (7.35) and (7.38). In the case of the voter model, this exit prob-
ability is inversely proportional to the activity of the node with initial state 1
(Evoter

a ∝ 1/a), while for the Moran process, it is proportional to the activity
(EMoran

a ∝ a). This can be understood by the fact that an active node will often
change state in the voter model, by contacting other nodes, while in the Moran
process it will often spread his/her state towards the other nodes contacted.

These results have to be compared with the result for the voter and Moran
processes in static networks, in which the exit probability for a single node of
degree k with state 1 is Evoter

k ∼ k for the voter and EMoran
k ∼ k−1 for the Moran

process [156, 157]. Intuitively indeed, in the case of static networks, in the voter
model high degree nodes are chosen to be copied with high probability [45],
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implying that they are very efficient spreaders of their own state to the rest of
the network. Hence, the larger k, the higher the exit probability. In the case of
the Moran process, by applying the same argument, high degree nodes are prone
to often change state by adopting the state of a neighbor [156, 157], and hence
the exit probability decreases with the degree.

Let us now recall that, for a pure activity driven network, the aggregated de-
gree of a node with activity a takes the value k̄a(t) ' (a + 〈a〉)t at time t: nodes
with high activity tend to have large integrated degree [137, 160]. Putting this
in relation with the behavior of the exit probability as a function of activity in
temporal networks and of degree in static networks, we thus obtain that the dy-
namics on the temporal activity driven network yields a completely different and
opposite result when compared with the dynamics on the static, integrated net-
work counterpart: High activity nodes are more prone to spread under Moran
dynamics, while low activity nodes are more prone under voter dynamics.

This symmetry voter-Moran between pure activity driven networks and their
integrated counterpart occurs as well at the level of the average consensus time
when we measure it as a function of the update attempts. Considering that a
randomly chosen node becomes active with average probability 〈a〉, we have
that, as a function of updated attempts, the convergence time is T̄N ≡ 〈a〉TN . We
have thus, for homogeneous initial conditions (Ω = 1/2),

T̄ voter
N = N〈a〉〈a−1〉 ln 2, T̄Moran

N = N
〈a〉2

〈a2〉
ln 2. (7.42)

Comparing with the results for static networks [156, 157],

T̄Moran
N = N〈k〉〈k−1〉 ln 2, T̄ voter

N = N
〈k〉2

〈k2〉
ln 2, (7.43)

we observe that the formulas for voter and Moran dynamics are indeed mirror
images, with the activity distribution a in the temporal representation substituted
by the degree distribution in the integrated representation.

Let us now consider instead the pure attractiveness temporal network model
(setting a = 1). In that case, the exit probability is proportional to the attractive-
ness for the voter model, Evoter

b ∝ b, while for the Moran process, it is inversely
proportional to the attractiveness, EMoran

b ∝ 1/b. Moreover, the integrated de-
gree of a node with attractiveness b is k̄b(t) ∼ b

〈b〉t. Here therefore, we have
the same kind of behavior on the temporal and corresponding integrated static
network when making an equivalence between attractiveness in the temporal
network and degree in the static network. This equivalence between a static net-
work with a degree distribution P (k) and a pure attractiveness temporal network
with the same distribution P (b) is also obtained by looking at the consensus time
measured as the number of update attempts.
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7.5. Numerical results
In order to check the analytical predictions made above, we have performed
simulations of the mixed process defined earlier on activity driven networks with
attractiveness, choosing a marginal activity distribution following a power-law,
Eq. (7.41), similar to the distribution observed empirically in some real networks
[137]. We have performed simulations for network sizes N = 102, 103 and 104,
averaging over 103 realizations.

In Fig. 7.3 we plot the reduced consensus time τ as a function of γ for three
different values of the network size and three different dynamics: voter and
Moran processes on a pure activity driven network, and voter model on an ac-
tivity driven network with attractiveness with a and b independently and equally
distributed η(a, b) = F (a)F (b). The curves are compared to the theoretical value
given in Eq. (7.28). We see that for N = 104 the dynamics already matches
well the expected behaviour in the infinite size limit. We deduce that our het-
erogeneous mean-field analysis captures efficiently the opinion dynamics on the
activity driven network with attractiveness.

7.6. Asymptotic behaviour
In Figs. 7.1-7.3, we see that the consensus time presents minima and maxima
when γ varies. To investigate this point in more details, we analyse the asymp-
totic behaviour of the moments of the distribution F (a) when ε tends to zero.
For an activity distributed with Eq. (7.41), the moments of a take the form

〈an〉 = 1− γ
n+ 1− γ

1− ε1+n−γ

1− ε1−γ . (7.44)

The dynamics of the voter and Moran processes on pure activity driven network
and on activity driven network with equally and independently distributed a and
b depends on the moments 〈a−1〉, 〈a〉 and 〈a2〉 only. The asymptotic behaviour
of these three quantities for ε → 0 are summarized in Tables 7.1 and 7.2, along
with the resulting behaviour of the consensus time in the case with a and b
independently and equally distributed and p = 1 (or equivalently p = 0), for
which

τ = 〈a〉
3〈a−1〉
〈a2〉

. (7.45)

We observe that for 0 < γ < 1.5 the consensus time in Eq. (7.45) diverges when
ε goes to zero, and tends instead to zero for 1.5 < γ < 3. We also recover the fact
that the fastest consensus is reached for γ = 2 and the slowest for γ = 1 and that
for 0 < γ < 3 the consensus time exhibits a symmetry with respect to the axis
γ = 1.5 : τ(γ) = 1

τ(3−γ) . Finally, for γ � 3, the heterogeneity of the distribution of
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Figure 7.3.: Voter-like dynamics in temporal activity driven networks with attrac-
tiveness. Reduced consensus time as a function of γ for different
values of the network size N , for an activity distribution F (a) given
by Eq. (7.41) with ε = 10−3. (a): Voter and Moran processes (equiv-
alent) for η(a, b) = F (a)F (b). (b): Voter model on pure AD network
(b = 1). (c): Moran process on pure AD network (b = 1). In each
case, the dashed line corresponds to the analytical expression given by
Eq. (7.28).

a is no longer significant, so that the dynamics is that of a fully connected static
network. In Fig. 7.4 we plot the reduced consensus time for the voter dynamics
on a network with independent activity and attractiveness as obtained by direct
numerical simulations of a voter model on a temporal network, compared with
the analytical predictions of Eq. (7.45), for various values of ε and N = 104. The
simulations confirm the predicted asymptotic behaviour of τ when ε tends to
zero. We also observe stronger finite size effects when epsilon tends to zero due
to a poorer sampling of the activity distribution given by Eq. (7.41).

7.7. Conclusions
In this chapter, we have studied in detail the properties of consensus processes
mixing the voter and Moran models update rules, on temporal network models
based on the activity driven paradigm. Through a heterogeneous mean-field ap-
proach, we have derived the evolution equation of the average density of voters
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Figure 7.4.: Voter dynamics in temporal networks with independent and equally
distributed activity and attractiveness. Consensus time τ as a function
of γ for activity and attractiveness distributed according to Eq. (7.41)
and different values of ε. The analytical expression given by Eq. (7.45)
is shown in dashed lines. The numerical simulations are performed with
network size N = 104.

in state 1 with activity a and attractiveness b. This has allowed us to identify a
conserved quantity of the dynamics, and subsequently to compute the average
time to reach consensus and the probability that a single agent with a discrepant
opinion among an otherwise unanimous population spreads his/her opinion to
the whole network, called the exit probability. Surprising results arise from the
study of particular cases of the distribution of the parameters a and b. When the
attractiveness is taken to be proportional to the activity a, the dynamics is the
same as if the copying process were running on a static complete graph. The
average activity 〈a〉 determines the time scale of the dynamics, but otherwise
the precise distribution of activity among the agents is no longer relevant. This
holds for all values of the probability p determining the state update rule, and in
particular for the voter model (p = 1) and the Moran process (p = 0). The same
behaviour happens when p = 1/2, regardless of the distribution η(a, b) of activity
and attractiveness: surprisingly, the exit probability is equal to 1/N and does not
depend of the parameters of the initial invading node.

Interestingly, when the activity and the attractiveness are independent and
equally distributed, the dynamics is unchanged when replacing p by 1 − p. In
fact, it appears that by construction, when the time is counted as the number of
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γ ]0, 1[ ]1, 2[ ]2, 3[ > 3
〈a−1〉 O(ε−γ) O(ε−1) O(ε−1) O(ε−1)
〈a〉 O(1) O(εγ−1) O(ε) O(ε)
〈a2〉 O(1) O(εγ−1) O(εγ−1) O(ε2)
τ O(ε−γ) O(ε2γ−3) O(ε3−γ) O(1)

Table 7.1.: Asymptotic behaviour of the moments of the distribution F (a) defined
in Eq. (7.41), and resulting asymptotic behaviour of the reduced con-
sensus time τ given by Eq. (7.45) when ε tends to zero, as a function of
the exponent γ. For γ = 0, 1, 2, 3, logarithmic corrections are present,
given in Table 7.2.

γ 0 1 2 3
〈a−1〉 − ln ε −(ε ln ε)−1 (2ε)−1 2

3ε
−1

〈a〉 1/2 −(ln ε)−1 −ε ln ε 2ε
〈a2〉 1/3 −(2 ln ε)−1 ε −2ε2 ln ε
τ −3

8 ln ε −2ε−1(ln ε)−3 −1
2ε(ln ε)

3 −8
3(ln ε)−1

Table 7.2.: Asymptotic behaviour of the moments of the distribution F (a) defined
in Eq. (7.41), and resulting asymptotic behaviour of the reduced con-
sensus time τ given by Eq. (7.45) when ε tends to zero, for the specific
cases γ = 0, 1, 2, 3.

update attempts, exchanging a and b on all the nodes is equivalent to replace p
by 1 − p in the update rule. One of our main results lies in the observation that
the voter model and the Moran process on a pure activity driven network (set-
ting b = 1 for all nodes) are in some sense mirror images of their static network
counterparts. Indeed, the dynamics of the voter model on an activity driven net-
work with a distribution F (a) is the same as the Moran dynamics running on top
of a static network with a degree distribution P (k) = F (k). The same holds for
the Moran process on the activity driven network and the voter model on the
static network. This implies that the apparently appealing operation consisting
in considering an activity driven network and its integrated counterpart as sim-
ilar substrates for this kind of opinion dynamics process would be misleading,
despite the fact that the degree distribution of the integrated network is practi-
cally equal to the activity distribution of the temporal network [137]. On the
contrary, a pure attractiveness temporal network (setting a = 1 for all nodes)
and its integrated counterpart are equivalent substrates for the voter and Moran
processes. It would be very interesting to check whether similar conclusions hold
for other consensus formation processes with more complex update rules like the
majority rule process. Our results will hopefully motivate further research in this
direction.
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8. Random Walks on
non-Markovian temporal
networks

8.1. Introduction
The exploration and navigation of complex networks represent a challenging
scientific problem with a large number of practical applications. The most em-
blematic example is the World Wide Web (WWW), a colossal database which
however acquires a practical interest only if one is able to efficiently locate a
specific desired information. These searching processes and the related algo-
rithms in large-scale networks are clearly related to the paradigmatic random
walk process diffusing on a given topology [108]. Indeed, the simplest strategy
to explore a network is to select a node, to follow randomly one of the depart-
ing links to probe one of its neighbours, and to iterate this process until the
requested information is found or a satisfying knowledge of the network connec-
tivity is obtained. It is clear that random walks lie at the core of this strategy,
and in order to properly implement the search and navigation of a network an
accurate knowledge of this process is necessary.

Heterogeneous topologies of complex networks [125] can dramatically impact
the properties of dynamical processes running on top of them [17, 44]. More-
over, such dynamical effects, originally studied within the static networks frame-
work, may take an even more complex turn when one considers the inherent
time-varying nature of many real networks [73]. Most notably, the burstiness
observed in the temporal patterns of social contact networks may further com-
plicate the picture, causing for example an important slowing down in the dy-
namics of epidemic spreading, diffusion or synchronization processes [83, 92,
175]. Random walks are of course no exception to this state of facts, and one ex-
pects noticeable differences with respect to static networks when a time-varying
substrate is considered [138, 143]. Particularly noteworthy in this sense is the
analysis of the random walk process in activity driven networks. Indeed, the
inquiry of the random walk in this class of models, focusing on steady state
quantities, reveals striking differences induced by a time-varying topology, with
respect to a static one. In particular, the steady state probability for a walker to
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be hosted by a node with activity a is inversely proportional to a plus a constant
contribution from all the other nodes [138]. On static uncorrelated networks on
the other hand, this large time visiting probability is proportional to the degree k
of the node [17]. Recalling that for activity driven networks, there is a linear re-
lation between the activity of a node and its degree in the static time-aggregated
counterpart, we deduce that the unfolding of a random walk process on a time-
varying network yields a totally different result as compared to the outcome of
the same process running on top of the static counterpart of the graph, pointing
out once more the limits of the static representation of temporal networks.

In this chapter, we naturally extend these investigations by analysing a ran-
dom walk process on a PLAD0 network, appropriate to investigate the effects
of the empirically observed burstiness of social activity. We observe dramatical
changes with respect to the activity driven network framework, depending on
the exponent α of the waiting time distribution.

8.2. Random walks on non-Markovian activity
driven networks

We suppose that the nodes activate according to renewal processes with waiting
time distributions ψi(t), which can take any form, including a non-Markovian
one ψi(t) ∼ t−α−1. The dynamics of a random walk on non-Markovian activity
driven networks is defined as follows: A walker arriving at a node j at time t
remains on it until an edge is created joining i and other node j at a subsequent
time t′ > t. We consider that the internal clock of the host node is not reset
at the walker’s arrival, thus defining a node-centric passive random walk [108].
The walker then jumps instantaneously to node j and waits there until an edge
departing from it is created. To simplify calculations, here we will focus on di-
rected random walks: a walker can leave node i only when i becomes active and
creates an edge pointing at another node [138]. Once the walker has arrived
to node i, it must wait there until i creates a new connection. The dynamics of
directed random walks under these restrictions is particularly easy to implement
in continuous time and can be directly mapped to a continuous time random
walk (CTRW) on a fully connected network in which each node i has a different
distribution of waiting times ψi(t) [181].

We can obtain information on the time evolution of the random walk by solv-
ing it in Laplace space, applying techniques of CTRW and renewal processes [40,
181]. It is important to notice that, although the fundamental quantity defin-
ing the dynamics of the network is the inter-event time distribution ψc(t), when
mapping to an directed CTRW, the relevant quantity is the forward waiting time
distribution hc(t′, t), defined as the probability that a walker arriving on a node
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with activity c at time t′ will be trapped for a time t before escaping from the
node. We suppose, for the sake of simplicity, that all the nodes are synchronized
at time t = −ta < 0 (i.e., the internal clock of all nodes is reset to zero at time
−ta ) and that the random walk starts at time t = 0 from a node with activity c0,
chosen for gen- erality with probability H(c0).

To proceed, let us define P (c, t|c0) as the probability that a walker is at a node
with activity c at time t , provided it started its walk at time t = 0 on a node with
activity c0. The probability that the walker is at c in time t, independently of its
starting point, will thus be

P (c, t) =
∑
c0

H(c0)P (c, t|c0). (8.1)

Where H is the initial distribution of the walkers’ hosts activity, possibly distinct
from η. Let us define also the probability Φn(c, t|c0) that a walker starting at c0
has performed n hops at time t, landing at the last hop at a node c. These two
probabilities are related by

P (c, t|c0) =
∞∑
n=0

Φn(c, t|c0). (8.2)

We obviously have
Φ0(c, t|c0) = h̃c0(ta, t)δc,c0 (8.3)

where δc,c′ is the Kronecker symbol and we have defined

h̃c(ta + t′, t− t′) =
∫ ∞
t−t′

hc(ta + t′, τ) dτ (8.4)

as the probability that a walker arriving at time t′ on a node c has not jumped
at time t. To calculate Φn(c, t|c0) for n ≥ 1 we make use of a self-consistent
condition. Defining Ψn(t|c0) as the probability that the n-th jump of a walker
starting at c0 takes place exactly at time t, we can write

Φn(c, t|c0) =
∫ t

0
Ψn(t′|c0)η(c)h̃c(ta + t′, t− t′) dt′. (8.5)

This equation simply expresses the sum of the probabilities of the events in which
the walker performs its n-th jump at any time t′, arrives in this jump at a node c,
given by the probability η(c), and rests at that node c for a time larger than t− t′.
To compute Ψn(t|c0) we apply another self-consistent condition, namely

Ψn(t|c0) =
∑
c′

∫ t

0
Ψn−1(t′|c0)η(c′)hc′(ta + t′, t− t′) dt′. (8.6)

This equation implies the (n − 1)-th jump taking place at time t′, and leading
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to a node c′, with probability η(c′), and the last jump taking place, from c′, at
time t − t′. The expression is averaged over all possible values of the activity c′

of the intermediate step. The form of Eq. (8.5) and Eq. (8.6) suggests passing
to Laplace space to obtain a closed solution. However, the general case is not
solvable because of the dependency of the forward waiting time distribution hc
on the epoch of arrival t′. From now on we will suppose that this dependency
vanishes, i.e. that hc(ta + t′, t − t′) = hc(t − t′), and in the next sections we will
study particular cases for which this condition is fulfilled. Then in the Laplace
space we can write Eq. (8.5) as

Φn(c, s|c0) = η(c)Ψn(s|c0)h̃c(s). (8.7)

Eq. (8.6) is also simplified in Laplace space,

Ψn(s|c0) =
∑
c′
η(c′)Ψn−1(s|c0)hc′(s). (8.8)

The ensuing iterative equation can be easily solved, yielding

Ψn(s|c0) =
[∑
c′
η(c′)hc′(s)

]n−1

Ψ1(s|c0). (8.9)

Considering that Ψ1(t|c0) = hc0(t), we can combine Eqs. (8.9) and (8.7) to obtain

Φn(c, s|c0) = η(c)h̃c(s)
[∑
c′
η(c′)hc′(s)

]n−1

hc0(s), (8.10)

valid for n ≥ 1. Combining this last result with Eqs. (8.1), (8.2), and (8.3) ,
expressed in Laplace space, we obtain the final solution

P (c, s) =
∑
c0

H(c0)
∞∑
n=0

Φn(c, s|c0)

=
∑
c0

H(c0)h̃c0(s)δc,c0 + η(c)h̃c(s)
∑
c0

H(c0)hc0(s)
∞∑
n=1

[∑
c′
η(c′)hc′(s)

]n−1

= H(c)h̃c(s) + η(c)h̃c(s)
∑
c0 H(c0)hc0(s)

1−∑c′ η(c′)hc′(s)
. (8.11)

8.3. Random walk on a PLAD0 network
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8.3.1. Random walk on a network with finite average
individual interevent time

Let’s focus on a NoPAD network with an inter-event time distribution

ψc(t) = αc(ct+ 1)−(1+α), 1 < α < 2 (8.12)

Then for an infinitely aged network, i.e. for ta → +∞ the forward recurrence
time no longer depends on the ageing time and one has [40]

hc(t) = 1
τ̄c

∫ ∞
t

ψc(u)du (8.13)

where τ̄c = 1
c(α−1) is the average waiting time between two activations of a node

with activity c. In the Laplace space, by virtue of the Tauberian theorem n°1, we
can write

ψc(s) ' 1− τ̄c s+ Γ(2− α)
α− 1 c−α sα + o(sα) (8.14)

hc(s) = 1− ψc(s)
τ̄c s

' 1− Γ(2− α)c−(α−1) sα−1 + o(sα−1) (8.15)

h̃c(s) = 1− hc(s)
s

' Γ(2− α)c−(α−1) sα−2 + o(sα−2) (8.16)

Which, combined with (8.11) gives,

P (c, s) ' η(c)c−(α−1)

s〈c−(α−1)〉
+ o

(1
s

)
(8.17)

so that at large t one finally obtains

P (c, t) ' η(c)c−(α−1)

〈c−(α−1)〉
+ o(1) (8.18)

In order to confirm this result, we perform numerical simulations of the di-
rected random walk on an infinitely aged network with an inter-event time dis-
tribution given by Eq. (8.12) and power-law distributed activity η(c) ∝ c−γ, where
the activity takes values in the interval [ε, 1]. For α > 1 and ta →∞, the distribu-
tion of the waiting time between two hops of a walker at a node with activity c
reads

hc(t) = (α− 1)c (ct+ 1)−α. (8.19)

It is worth noting that this distribution is the same as the distribution ψc of
the inter-event time between two activations of a node with activity c, upon
replacing α by α − 1. This means that the directed random walk on a network
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Figure 8.1.: Directed random walk on an infinitely aged network with waiting time
distribution of the form Eq. (8.12), for different values of the exponent
γ of the activity distribution. Left panel: α = 1.2 . Right panel
α = 1.7 . The black dashed lines correspond to the analytical result of
Eq. (8.18). Number of walkers N1 = 5.106, t = 106 and ε = 10−2.

parametrized by {ψ, α, η, ta = ∞} is equivalent to a reset directed random walk
(i.e. where the nodes are reset when a walker arrives on them, the waiting time
until the next activation being counted from the epoch of arrival) parametrized
by {ψ, α − 1, η}. This allows us to simplify the numerical analysis, as in the
reset random walk framework there is no aging and the links dynamics prior to
the beginning of the walkers dynamics is not relevant. On Fig. 8.1 we plot the
steady state probability for two different values of α and three different values
of γ along with the expected result of Eq. (8.18). We observe a perfect agreement
between the simulations and the analytical prediction.

Interestingly, when taking the limit α → 2 in Eq. (8.18), we recover the re-
sult established for Poissonian Activity Driven networks, i.e. that P (c,∞) =
η(c)c−1/〈c−1〉. Besides, for values of α > 2, corresponding to a distribution of
inter-event times with finite first and second moments, the latter result obvi-
ously still holds and the dynamics is the same as that of a random walk running
on top of a Poissonian activity driven network. In the literature, the continuous
time random walks are generally defined in terms of edge-centric processes [68,
108]. Within this framework the "slowest" dynamics that has been considered is
that of an active random walk with power-law waiting time distribution between
two link activations with infinite first moment [126]. However, we saw that this
scenario is closely related to a particular case of our model, obtained for an in-
finitely aged network with inter-event time distributed according to Eq. (8.12)
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and 1 < α < 2. In this sense, if we investigate the behaviour of our model for
values of α < 1, we explore an even slower dynamics that cannot be considered
in the context of active random walks. In the next section we will focus on those
values of the parameter α.

8.3.2. Network with infinite average individual interevent time
In this section we consider a waiting time distribution ψ of the form (8.12) but
with 0 < α < 1, which implies that the average time between two activations of
an agent with activity c is infinite. For such values of α, the dependency of the
forward waiting time distribution on the aging time cannot be eliminated even in
the limit of strongly aged networks, so that the equations derived in the previous
section do not seem to be solvable in a first analysis, in the sense that the use of
the Laplace transform does not yield any substantial simplification. Nevertheless,
some insight may be given concerning the dynamics of the random walk starting
on a strongly aged network. Let us recall the expression of the double Laplace
transform of the forward waiting time distribution

hc(u, s) = 1
1− ψc(u)

ψc(u)− ψc(s)
s− u

(8.20)

In the hypothesis of a strongly aged network, i.e. for c ta � 1, corresponding to
u
c
� 1, we may write, by virtue of a the Tauberian theorem n°1

ψc(u) ' 1− (u/c)α Γ1−α + o(uα) (8.21)

which, inserted into the expression of the forward waiting time distribution gives

hc(u, s) '



1
Γ1−α

(
c

u

)α 1− ψc(s)
s

for u� s

1
u
− sα

uα+1 for u� s

(8.22)

we recognize the Laplace transform (1−ψc(s))/s of the survival probability ψ̃c(t)
defined in section 2.4. Using the Tauberian theorem n°2 we derive

hc(ta, t) '


c (c ta)α−1 sinπα

π
ψ̃c(t) for t� ta

tαa
sinπα

π
t−α−1 for t� ta

(8.23)
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Given Eq. (8.12) one has ψ̃c(t) = (ct+1)−α, so that the behaviour of hc(ta, t) splits
into three different regimes

hc(ta, t) '



c (c ta)α−1 sinπα

π
ψ̃c(t) for c t� 1

tα−1
a

sinπα

π
t−α for 1� c t� c ta

tαa
sinπα

π
t−α−1 for t� ta

(8.24)

Surprisingly, at large times, i.e. ct � 1, the forward waiting time distribution is
independent of c. Besides, the tail of the distribution is proportional to tαa t

−α−1,
so that the probability that the forward waiting time is greater than ta is con-
stant and does not depend on ta. This means that the interval [ta,+∞[ carries
a constant probability weight although its size decreases when ta grows. This,
along with the fact that the total weight is constant and equal to 1 because hc is
normalized, implies that the weight carried in a time window [0, t0] tends to zero
when ta tends to infinity. In fact, one could argue that the weights calculated
from Eq. (8.24) are not exact because they neglect higher order corrections (in
particular the distribution in Eq. (8.24) is not normalized). The reasoning is thus
true under the implicit assumption that the weights calculated from Eq. (8.24)
and carried in the intervals [0, t0] and [t0,+∞[ are proportional to their corre-
sponding real weights, which is not guaranteed. On Fig. 8.2(b) we compare
the ratio of the real weights

[
h̃c(ta, 0)− h̃c(ta, t0)

]
/ h̃c(ta, t0), evaluated from a

numerical simulation and the ratio evaluated from Eq. (8.24), whose dominant
order, with the conditions 1 � ct0 � cta, is equal to α(t0/ta)1−α. We observe a
good agreement between the simulations and the analytical estimation, which
allows us to make the following reasoning: let us consider a network of size N
with waiting time distribution given by Eq. (8.12) with α < 1, and an arbitrary ac-
tivity distribution η(c) excluding zero-valued activities. Then there exists a node
with a minimum activity cmin > 0, and also a time t0, such that cmin t0 � 1. Then
if the nodes are synchronized at t = −ta with ta � t0 and we start an directed
random walk dynamics at time t = 0, the probability that the time t1 at which
the walkers escape from their first hosts is greater than t0 is almost equal to 1.
This holds a fortiori for all the following waiting times of the walker occurring at
times t = t2, t3, ..., tk because tk is extracted from the distribution hc(ta + tk−1, τ).
Besides, the conditional probability that t1 = τ given that t1 ≥ t0 is independent
of c as we see from Eq. (8.24), which means that all the hops for all the walkers
are performed with waiting times that practically do not depend on the activity
of the hosts.

As a result, after its first jump, the probability that a walker is at a node of
activity c is constant and equal to η(c). In other words, if the initial distribution
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of the walkers is H(c), the probability P (c, t) that the walker is at a node with
activity c at time t is equal to η(c) if the walker has escaped from its first host
and H(c) otherwise, i.e.

P (c, t) ' H(c)h̃c(ta, t) + η(c)(1− h̃c(ta, t)) (8.25)

In order to test the validity of this expression, we perform numerical simulations
of the directed random walk on a network of size N = 9.104 where the activity
is three-valued: c = 0.1, 1 or 10. We consider the simple case for which the
probability that a node i has activity ci is constant and equal to 1/3 for each of
the three possible values of c. The N1 = 106 walkers are initially hosted by nodes
with activity equal to c = 10 , i.e. H(c) = δc,10 , and the age of the network is
ta = 103. The probability h̃c is evaluated numerically. On Fig. 8.2, panels (a1), (a2)
and (a3) corresponding to α = 0.2 and α = 0.5 and α = 0.7 respectively, we plot
the probabilities [P (c = 10, t)− 1/3]/2 , 1/3− P (c = 1, t) and 1/3− P (c = 0.1, t)
along with their expected value h̃c=1(ta, t)/3 (this last curve is in fact evaluated
with an independent numerical simulation). For α = 0.2 we observe that the
result stated in Eq. (8.25) perfectly fits the simulations, for α = 0.5 the fit is not
very accurate at large times and for α = 0.7 the curves take negative values at
large times, at odds with the expected power-law decay, so that the plot is made
with a linear vertical axis. The reason why the fit is less accurate for values of
α close to 1 is clear if we observe the panel (b) of the figure, which allows us
to evaluate the accuracy of the hypothesis we made, stating that the probability
that the forward waiting time is less than t0 = 103 is almost zero at large ta. We
see that for a network of age ta = 103, this probability is even larger than the
complementary probability that the waiting time is larger than t0.

For values of α close to 1, the substrate network needs to be strongly aged in
order for the random walk to be correctly described by Eq. (8.25). On the other
hand at those values of α the nodes are more active, which renders numerical
simulations very costly at large ta. Although additional simulations would be
required to further establish the relevancy of Eq. (8.25), we are confident that
finer simulations would corroborate our result.

8.4. Conclusion
In this chapter we have investigated the temporal relaxation of the random walk
process on the class of generalized activity driven temporal networks. We have
focused in particular in the case of directed random walks, in which a walker
can only leave a node when the latter becomes active and creates an outgoing
link to another node chosen uniformly at random. As the waiting time between
the walker’s arrival at a node and the next activation of the node corresponds
to the forward waiting time of the renewal process ruling the node’s dynam-
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ics, the fully passive random walk process we defined is subject to aging effects.
In the case of power-law distributions of the holding times with finite first mo-
ment, we derive an exact expression, in the Laplace domain, of the probability
to find the walker at a node with activity c, for a random walk taking place on
a equilibrium (infinitely aged) network. The ensuing steady state probability is
subsequently expressed explicitly, and checked with numerical simulations. For
infinite average waiting times of the agents, we surprisingly observe that a ran-
dom walk starting after a large enough time ta since the beginning of the network
dynamics (at which all the nodes are synchronized), will "feel" a network with
homogeneous activity, so that the probability that a walker is at a node of activity
c is equal to η(c) in the large time limit. This result is straightforwardly extended
to arbitrary aging times ta (including non-aged networks ta = 0) because after a
transient regime of duration t′, the forward waiting time distribution hc(ta+ t′, τ)
will meet the conditions expressed earlier and the system is in the same situa-
tion as before, i.e. evolving as if the network was homogeneous. Interestingly,
this result is recovered taking the limit α → 1 in the equation Eq. (8.18) of the
previous section, providing additional evidence of its relevance.
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Figure 8.2.: Random walk dynamics on an aged network with three-valued activity
and infinite average waiting time. η(c) = 1/3 and H(c) = δc,10. In the
panels (a1,2,3) we plot the probability of presence P (c, t) as a function
of time: [P (c = 10, t) − 1/3]/2 , 1/3 − P (c = 1, t) and 1/3 − P (c =
0.1, t). (a1): α = 0.2. (a2): α = 0.5. (a3): α = 0.7. The behaviour
predicted by Eq. (8.25) is plotted in dashed lines. Network size N =
9.104, number of walkers N1 = 106 and aging time ta = 103. (b):
Ratios

[
h̃c(ta, 0)− h̃c(ta, t0)

]
/ h̃c(ta, t0) as a function of ta, obtained

from numerical simulations. The asymptotes α(t0/ta)1−α calculated
from Eq. (8.24) are plotted in dashed lines. Reference time t0 = 103

and c = 1.
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Conclusion

The ever increasing availability of large datasets in social science motivated in-
tense scientific investigations that revealed complex patterns of interactions in
human dynamics, such as heterogeneity and burstiness of social contacts. These
recently uncovered temporal features of social interactions call for a renewed
effort in the analysis and modeling of empirical time-vaying networks. I hope
to have contributed to pursue this program with the doctoral investigation pre-
sented in this manuscript, focusing on a twofold objective: the modeling of dy-
namical social systems and the study of the impact of non-Markovian substrates
on dynamical processes running on top of them. The following is a general sum-
mary of the overall content of the manuscript, including perspectives for future
work. For more detailed considerations the reader should examine the conclud-
ing sections of each chapter.

Firstly, in chapter 1 we defined the basic concepts of the static networks for-
malism, and we extended some of them to include the temporal evolution of
the network. Besides, we also presented the main statistical properties of two
real social contact networks, recorded by the SocioPatterns collaboration, the
most emblematic of which is the burstiness of human social behaviour, revealed
by the heavy tailed distributions of the holding times between consecutive in-
teractions. This fundamental trait of human dynamics motivates the modelling
effort presented afterwards, and which constitutes a keystone of my doctoral
investigation. Indeed we consider the activity driven network model (expAD0),
which defines the nodes in terms of their fundamental rate, or activity, at which
they engage into social interaction, and generalize it to arbitrary distributions
of the holding times between successive activations of the agents, and in par-
ticular the power-law form observed in real temporal social networks. We also
consider two pairing mechanisms that go beyond the simplistic assumption of
the original activity driven model, for which peers are chosen uniformly at ran-
dom in the network. The reinforcement rule mimics the empirically observed
existence of strong and weak ties among the agents, by setting a different prob-
ability for an agent to choose a peer inside or outside the circle of previously
encountered neighbours. The introduction of such local memory kernels implies
non-Markovian dynamical effects, and is used extensively in chapter 6. We also
consider a pairing rule based on the concept of social attractiveness, i.e. the
idea that some people are intrinsically socially attractive (due to their status for
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example) are more likely to make people connect to them.
In chapter 2, we provide a full mathematical description of the generalized

activity driven network with attractiveness (GADA), by means of a mapping of
the model onto the class of hidden variables networks. The topological prop-
erties of the integrated network, and in particular the degree distribution and
the degree-degree correlations are explicitly computed in the case of power-law
waiting time distributions with a homogeneous attractiveness (PLAD0 network).
Most interestingly, the degree distribution is power-law tailed, and indicates an
intimate connection between the scale-free nature of static social networks, and
two main characteristics of social temporal networks, namely a power-law dis-
tributed waiting time, and a power-law form of the heterogeneity distribution.
This connection is quantified in a simple identity relating the three exponents.
The generalized activity driven framework constitutes a minimal model of tem-
poral networks with long tailed inter-event time distribution. As such, it has a
wide potential to serve as a synthetic controlled environment to check both nu-
merically and analytically several properties of these networks, and in particular
the effect of the non-Markovianity on dynamical processes, in much the same
way as the configuration model has played this role for static networks. More-
over, due to its simple definition, it can be easily modified to take into account,
among others, the finite duration of the social contacts, and the temporal corre-
lations of the individual patterns of activations.

In chapter 3, we studied the connectivity properties of the time-integrated net-
works emerging from the dynamics of the GAD0 model. As the network grows,
a giant cluster spanning a finite fraction of the total size of the network emerges
at some time Tp, defining the temporal percolation transition of the network.
Applying the branching matrix formalism [62, 162], we derive a general crite-
rion defining implicitly the percolation time and depending on the average and
average square number of activations of the agents in the network. This cri-
terion successfully relates the percolation phenomenon, which depends on the
connectivity properties of the whole network, to local quantities only, regardless
of who is connected to whom. We check the validity of this criterion for a PLAD0
network, and for the particular case of a Levy distribution of the waiting times.
This criterion remains a priori valid, although no numerical experiments were
conducted to verify it, in the case where the activation pattern of an agent fol-
lows a general counting process characterized by the distribution of the number
of events counted in a time window [0, t], i.e. when the holding times are not
necessarily independently distributed, thus allowing for temporal correlations.
Our criterion appears to be a crucial result for the study of the percolation on
temporal networks, and we hope that this framework will help understanding
how dynamical processes, and in particular epidemic spreading, unfold on time-
varying networks.

In the context of empirical inquiry of social networks, an observer has often
access to an aggregated static version of a network only. Then in order to infer
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the actual contacts sequence that originated the network, a simple assumption,
widespread in the literature, is that of a contact pattern following a Poissonian
process, and more specifically a description in terms of activity driven temporal
networks. In chapter 4 we investigate such a poissonization procedure, and in
particular we gauge the error made in the estimation of the percolation thresh-
old with this method. When the network under scrutiny is a PLAD0 network,
we provide an expression of the estimated percolation time, i.e. the percolation
time of the inferred activity driven network, as a function of the average num-
ber and average square number of activations in the original network counted
in the interval [0, T ]. Two major observations arise from our study. Firstly, the
traditional classification opposing bursty and Poissonian-like behaviour is not en-
tirely relevant, as revealed by the fact that the ratio between the poissonized
percolation threshold and the original threshold depends on the early behaviour
of the inter-event time distribution of the original network. Secondly, mapping
a bursty network with infinite average waiting time onto an activity driven net-
work leads to a dramatic error in the evaluation of the time of birth of a giant
connected component in the network. Indeed, in this case the threshold triv-
ially tends to infinity when the observational time T tends to infinity because
the activity of the agents of the poissonized network vanishes as T grows. To
sum up, our analysis goes along the same lines as what is found in the literature,
indicating that the Poissonian model fails to capture the essential ingredients of
the network’s dynamics, and leads to a misleading picture of the unfolding of
dynamical processes running on top of it.

In chapter 5, we analysed a renewal process for which the average holding
time between consecutive events is infinite. For such a process, the number of
events counted within a time window of fixed length strongly depends on the
specific instant at which the observation starts. This statistical effect is called
aging of the process. Being structured upon parallel renewal processes of the
agents, the generalized activity driven model developed in this thesis is obviously
subject to such aging effects. Distinguishing between the strongly aged and the
slightly aged regime, we provide effective expressions of the degree distribution
of the time-integrated aged PLAD0 network, as a function of the correspond-
ing non-aged degree distribution, i.e. integrated throughout a time window of
same length t. Besides, we investigate the percolation of an aged time-integrated
GAD0 network. The general criterion derived in chapter 3 giving implicitly the
threshold Tp is still valid for aged networks and in the strongly aged regime we
derive an explicit asymptotic expression for the percolation time as a function
of the aging time. The resulting expression is confirmed by numerical analy-
sis. In a third part, we discuss the poissonization procedure presented in the
previous chapter in the presence of aging. It turns out that the main picture of
the poissonization method thus remains the same as in the non-aged case, i.e.
that assuming a Poissonian dynamics to explain a given time-integrated network
structure may lead to a dramatic error in the evaluation of the real percolation
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threshold of the network. To sum up, aging effects are inherent to the general-
ized activity driven model we developed, and affect the structural and connectiv-
ity properties of the corresponding time-aggregated network, and subsequently
any dynamical process unfolding on top of it.

In chapter 6, we investigated the effects of the individual risk perception of
a disease propagating on social temporal networks. In our model, susceptible
individuals have a local perception of the overall disease prevalence measured
as the ratio of the number of previous contacts with infectious individuals on a
training window of width ∆T . An increased level of awareness then induces a
reduction in the probability to get infected via a contact with an infectious indi-
vidual. We have considered the paradigmatic SIS and SIR spreading models on
expAD0 networks with random pairing rule, and with the reinforcement pairing
rule (expADM), in which the memory kernel mimics some of the non-Markovian
effects observed in real social networks. A similar study is conducted for the
empirical face-to-face contact networks collected by the SocioPatterns collabora-
tion presented in the first chapter. For both synthetic networks, analytical and
numerical results hint that the epidemic threshold on both SIS and SIR models is
not changed by the presence of awareness, but very strong finite size effects are
present: the effective threshold is increased with the level of awareness, while
the epidemic prevalence is substantially decreased. In the case of empirical con-
tact networks, we observe in all cases a similar strong reduction of the prevalence
and an apparent shift of the effective epidemic threshold. Notably, the awareness
mechanism, even if only local and not assuming any global knowledge of the un-
folding of the epidemics, leads to a strong decrease of the prevalence and to
shifts in the effective epidemic threshold even at quite large size, in systems as
diverse as simple models and empirical data. Moreover, some features of empir-
ical contact networks, such as the broad distribution of contact durations, seem
to enhance this effect even for short-term memory awareness. To confirm this
statement, we envision to study the risk perception on larger empirical networks,
as well as on the GAD model, which exhibits some of the non-Markovian effects
observed in empirical networks.

In chapter 7, we have studied in detail the properties of consensus processes
mixing the voter and Moran models update rules, on expADA networks. Through
a heterogeneous mean-field approach, we derived the average time to reach con-
sensus and the probability that a single agent with a discrepant opinion among
an otherwise unanimous population spreads his/her opinion to the whole net-
work, called the exit probability. One of our main results lies in the observation
that the voter model and the Moran process on a pure activity driven network
(setting b = 1 for all nodes) are in some sense mirror images of their static net-
work counterparts. Indeed, the dynamics of the voter model on an activity driven
network with a distribution F (a) is the same as the Moran dynamics running on
top of a static network with a degree distribution P (k) = F (k). The same holds
for the Moran process on the activity driven network and the voter model on the

132



static network. This implies that the apparently appealing operation consisting
in considering an activity driven network and its integrated counterpart as sim-
ilar substrates for this kind of opinion dynamics process would be misleading,
despite the fact that the degree distribution of the integrated network is practi-
cally equal to the activity distribution of the temporal network [137]. On the
contrary, a pure attractiveness temporal network (setting a = 1 for all nodes)
and and its integrated counterpart are equivalent substrates for the voter and
Moran processes. It would be very interesting to check whether similar conclu-
sions hold for other consensus formation processes with more complex update
rules like the majority rule process. Moreover, using the GAD model as a sub-
strate for this voter-like process, in order to take into account the bursty nature
of human social behaviour, constitutes in our view an interesting guideline for
further research in this direction.

Finally, in chapter 8 we investigated the unfolding of a random walk process
on GAD0 networks. We have focused in particular in the case of directed and
fully passive random walks, in which a walker does not alter the internal clock
of his/her hosts, and can only leave a node when the latter becomes active and
creates an outgoing link to another node chosen uniformly at random. In the
case of power-law distributions of the holding times with finite first moment, we
derive, for infinitely aged networks, the steady state probability for a walker to be
at a node with activity c and confirm the result with numerical simulations. For
infinite average waiting times of the agents, we surprisingly observe that a ran-
dom walk starting after a large enough time ta since the beginning of the network
dynamics (at which all the nodes are synchronized), will "feel" a network with
homogeneous activity, so that the probability that a walker is at a node of activity
c is equal to η(c) in the large time limit. This result is straightforwardly extended
to arbitrary aging times ta (including non-aged networks ta = 0) because after a
transient regime of duration t′, the forward waiting time distribution hc(ta+ t′, τ)
will meet the conditions expressed earlier and the system is in the same situation
as before, i.e. evolving as if the network was homogeneous. Interestingly, this
result is recovered taking the limit α → 1 in the equation Eq. (8.18) of the previ-
ous section, providing additional evidence of its relevance.

The investigation of non-Markovian effects on temporal network is still in its
infancy. In this thesis we have proposed a relatively simple model that allows to
evaluate the impact of non-Markovian contact sequences on different dynamical
processes running on top of the network, providing new insights into the field of
social temporal networks. We hope that our work will motivate further efforts in
that direction, taking the models to more realistic levels, and possibly bridging
with other field of research involving dynamical networked systems.
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A. Tauberian theorems
A proof of these theorems can be found in Ref. [18]

A.1. Tauberian theorem n°1
Consider the probability density function f : R+ −→ R+ of a non-negative con-
tinuous random variable t. By definition f is normalized

∫∞
0 f(t)dt = 1. We

suppose that f is power-law tailed, i.e. ∃A > 0, f(t) =
∞
A t−1−α + o(t−1−α). Then

for α ∈ R+\N the following holds

F (s) =
0

bαc∑
k=0

µk
(−s)k

k! + AΓ(−α)sα + o(sα) (.26)

where F is the Laplace transform of f , µk =
∫∞

0 tkf(t)dt, b · c is the floor function
and Γ is the gamma function.

A.2. Tauberian theorem n°2
Consider the probability density function f : R+ −→ R+ of a non-negative con-
tinuous random variable t. For λ > −1 and A > 0 the following holds

f(t) =
∞
A tλ + o(tλ)⇔ F (s) =

0

AΓ(1 + λ)
sλ+1 + o(s−1−λ) (.27)

where F is the Laplace transform of f .
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B. Taylor series expansions of the average and
average square number of counted events for a
renewal process with arbitrary inter-event time
distribution

Suppose a renewal process with inter-event time ψ(t), starting at t = 0. We
demonstrate that the Taylor expansion of the average number of renewals counted
in the interval [0, t] reads

r(t) '
0

q∑
n=1

αn t
n (.28)

where α1 = ψ(0) and

αn = 1
n! (tr(FnDn) + ψ(0)n) , n > 2 (.29)

with Fn and Dn being two matrices of size n− 1 such that

Fn,ij =


(
i
j

)
ψ(0)i−j for j 6 i 6 n− j

0 otherwise
(.30)

the indices running from 1 to n− 1, and

Dn =



(M0
nAn)T

(MnAn)T

(Mn−2
n An)T


(.31)

where we used the intermediate matrix

Mn =



0 ψ′(0) ψ′′(0) ψ(n−2)(0)

ψ′′(0)

ψ′(0)

0 0


(.32)
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and the column vector

An =



ψ(n−1)(0)

ψ′(0)


(.33)

The T exponent represent the matrix transposition operator and tr is the trace
operator i.e. the sum of the diagonal elements of a matrix.

Additionally, we prove that the average square number of renewals reads

r2(t) '
0

q∑
n=1

βnt
n (.34)

where β1 = ψ(0), β2 = α2 + ψ(0)2 and

βn = αn + 2
n! (tr(GnDn−1) + (n− 1)ψ(0)n) , n > 3 (.35)

with Gn being a matrix of size n− 2 such that

Gn =



L2

2L3

(n− 2)Ln−1


(.36)

where Lk is the kth line of the matrix Fn with the last column previously re-
moved.

B.1. Proof
The distribution of the number of renewals is expressed in the Laplace domain
as (see the derivation in section 2.4)

χs(r|ψ) = ψ(s)r 1− ψ(s)
s

, (.37)
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Then using the partial derivation ∂ψ we derive the average number of renewals
r(s) = ∑

r r χs(r|ψ)

r(s) = ψ(s)
s(1− ψ(s))

= 1
s

∞∑
k=1

ψ(s)k (.38)

In the time domain, this reads

r(t) =
∞∑
k=1

∫ t

0
du gk(u) (.39)

where gk = ψ ∗ψ ∗ ...∗ψ is the convolution of ψ with itself repeated k times. Now
we perform a Taylor expansion of this expression at order q

r(t) =
∞∑
k=1

q∑
n=1

dn−1

dtn−1 gk(0) t
n

n! (.40)

from which we identify α0 = 0 and

αn = 1
n!

∞∑
k=1

dn−1

dtn−1 gk(0), n > 1 (.41)

By definition, one has for k > 1

gk+1(t) =
∫ t

0
ψ(t− u)gk(u)du (.42)

From which we deduce, for m > 1

dm

dtm
gk+1(t) =

∫ t

0

dmψ

dtm
(t− u)gk(u)du+

m−1∑
`=0

d`ψ

dt`
(0) d

m−1−`

dtm−1−` gk(t) (.43)

Then at t = 0 we write

dm

dtm
gk+1(0) =

m−1∑
`=0

d`ψ

dt`
(0) d

m−1−`

dtm−1−` gk(0) (.44)

with a straightforward recurrence, we deduce that for n > 1

dn−1

dtn−1 gk(0) = 0, ∀ k > n+ 1 (.45)
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so that the expression of αn reduces to

αn = 1
n!

n∑
k=1

dn−1

dtn−1 gk(0), n > 1 (.46)

and the Eq.(.44) reduces to

dm

dtm
gk+1(0) =

m−1∑
`=k−1

ψ(m−1−`)(0) d
`

dt`
gk(0) (.47)

we see that
dk

dtk
gk+1(0) = ψ(0)k+1 (.48)

and after computing the first terms of the sequence dn+1+k
t gn+1(0) with n fixed

we look for a general term of the form

dn+1+k
t gn+1(0) =

k∑
j=0

ψ(0)n−j
(
n+ 1
j + 1

)
aj,k+1 (.49)

where
(
n+1
j+1

)
is the binomial coefficient with the convention

(
n+1
j+1

)
= 0 for j > n.

Then using Eq.(.47) we write, for n > 2

dn+1+k
t gn+1(0) =

n+k∑
`=n−1

ψ(n+k−`)(0) d
`

dt`
gn(0)

=
 k∑
j=0

k∑
`=j

ψ(0)n−1−jψ(k−`)(0)
(

n

j + 1

)
aj,`+1

+ ψ(0)nψ(k+1)(0)

=
k−1∑
j=0

k−1∑
`=j

ψ(0)n−1−jψ(k−`)(0)
(

n

j + 1

)
aj,`+1

+
k∑
j=0

ψ(0)n−j
(

n

j + 1

)
aj,k+1

+ψ(0)nψ(k+1)(0) (.50)

from which we identify

(
n+ 1
j + 1

)
aj,k+1 =

(
n

j + 1

)
aj,k+1 +

k−1∑
`=j−1

(
n

j

)
ψ(k−`)(0)aj−1,`+1 for j > 1

(
n+ 1

1

)
a0,k+1 = ψ(k+1)(0) +

(
n

1

)
a0,k+1 for j = 0 (.51)
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which finally implies

aj,k+1 =
k−1∑
`=j−1

ψ(k−`)(0)aj−1,`+1 for j > 1 (.52)

and a0,k+1 = ψ(k+1)(0). This can be put under the matricial form Bj = M j
k+2Ak+2

where we defined the column vector

Bj =



aj,k+1

aj,k

aj,1

 (.53)

Now we can write

αn = 1
n!

(
n−2∑
k=0

dn−1
t gk+1(0) + ψ(0)n

)
(.54)

and
n−2∑
k=0

dn−1
t gk+1(0) =

n−1∑
k=1

n−k−1∑
j=1

ψ(0)k−j
(
k

j

)
aj−1,n−k (.55)

which can be put under the matricial form tr(FnDn).

The average square number of renewals r2(s) = ∑
r r

2 χs(r|ψ) reads (using again
∂2
ψ)

r2(s) = r(s) + 2ψ(s)2

s(1− ψ(s))2 (.56)

= r(s) + 2
s

∞∑
n=1

n gn+1(s) (.57)

from which we identify, in the time domain,

βn = αn + 2
n!

n−1∑
k=1

k
dn−1

dtn−1 gk+1(0) for n > 3

= αn + 2
n!

(
(n− 1)ψ(0)n +

n−2∑
k=1

k
dn−1

dtn−1 gk+1(0)
)

= αn + 2
n! (tr(GnDn−1) + (n− 1)ψ(0)n) (.58)
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B.2. Power-law renewal process
We can explicit the coefficients of the expansions when ψc(t) = α c(ct + 1)−1−α.
Indeed, in this case we straightforwardly prove that

ψ(n)
c (0) = (−1)n cn+1

n∏
k=0

(α + k) , ∀n > 0 (.59)

For reasons of dimensional consistency of the series expansions, we expect the
coefficients αn and βn to be proportional to cn, which means that without loss of
generality we may set c = 1. The coefficients are then functions of the exponent
α only, and may be readily computed with the formulas (.28) and (.34). In the
following we provide a simple Octave program which calculates the coefficients
αn and βn until an arbitrary large order q for a given value of α and prints the
resulting r(t) and r2(t) to a file. It is clear that the expansions at a finite order q
grow as tq at large times, in fact the divergence is really fast and in practice the
expansions are useless as soon as t > 1. On Fig. .3 we plot the result obtained for
four values of α, and compare it with the average activation numbers obtained
via numerical simulations of the renewal process parametrized by ψc. We observe
that the expansions perfectly fits the numerical data for values of the time t
smaller than 1.

1 c l e a r ;

3 # def ine \ alpha
a = 0 .9 ;

5

# def ine the order of the s e r i e s expansion
7 q = 50;

9 f o r n = 2: q

11 # def ine the matr ix F_n of s i z e n−1
F = eye (n−1)*0;

13 f o r i = 0:n−2
fo r j = 0:n−2

15 i f ( j <= i )
i f ( j < n−i−1)

17 F( i +1, j +1) = a (̂i−j ) ;
F( i +1, j +1) *= f a c t o r i a l ( i +1)/ f a c t o r i a l ( j +1)/ f a c t o r i a l ( i−j ) ;

19 end i f
end i f

21 endfor
endfor

23

# def ine the column vec to r A_n of s i z e n−1
25 A = l i n s p a c e (a , a , n−1) ;

# l i n s p a c e (u , v ,w) i s a l i s t of w elements
27 # the 1 s t one being u and the l a s t one v
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f o r i = 1:n−1
29 f o r k = 1: i

A(n−i ) = A(n−i ) *( a+k) ;
31 endfor

A(n−i ) = (−1)̂ i *A(n−i ) ;
33 endfor

35 # def ine the matr ix M_n of s i z e n−1
M = eye (n−1)*0;

37 f o r i = 1:n−2
fo r j = i +1:n−1

39 M( i , j ) = A(n−j+i ) ;
endfor

41 endfor

43 # def ine the matr ix D_n of s i z e n−1
D = eye (n−1) ;

45 f o r i = 1:n−1
# ( matr ix ) ’ i s the t r a n s p o s i t i o n operator

47 D( i , : ) = (M̂ (i−1)*A ’ ) ’ ;
endfor

49

# def ine the c o e f f i c i e n t s \ alpha_n
51 alpha (n) = ( t r a c e (F*D) + â n) / f a c t o r i a l (n) ;

53 i f (n > 2)
# def ine the matr ix G_n of s i z e n−2

55 G = F ;
# remove the 1 s t l i n e and then the l a s t column

57 G( 1 , : ) = [ ] ;
G( : , n−1) = [ ] ;

59 # def ine the column vec to r A_(n−1) of s i z e n−2
A2 = A;

61 A2(1) = [ ] ;
# def ine the matr ix M_(n−1) of s i z e n−2

63 M2 = M;
M2(n−1 ,:) = [ ] ;

65 M2( : , n−1) = [ ] ;
f o r k = 1:n−2

67 G(k , : ) *= k ;
endfor

69

# def ine the matr ix D_(n−1) of s i z e n−2
71 D2 = eye (n−2) ;

f o r i = 1:n−2
73 D2( i , : ) = (M2̂ (i−1)*A2 ’ ) ’ ;

endfor
75 # c a r e f u l with th i s , \ beta_n = alpha (n) + betaa (n)

betaa (n) = (2* t r a c e (G*D2) + 2*(n−1)*â n) / f a c t o r i a l (n) ;
77 end i f

79 endfor
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81 alpha (1) = a ;
betaa (2) = a^2;

83 betaa (1) = 0;

85 # def ine the time a x i s
t = l i n s p a c e (0 ,1 ,100) ;

87 f o r i = 1: q
r r ( i , : )= alpha ( i ) * t .^i ;

89 r r2 ( i , : ) = ( alpha ( i )+betaa ( i ) ) * t .^i ;
endfor

91

# def ine <r>_t
93 r = sum( r r ) ;

95 # def ine <r 2̂ >_t
r2 = sum( rr2 ) ;

97

op = fopen ( ’ r_avgTh . dat ’ , ’w ’ ) ;
99 f o r j = 1:100

f p r i n t f (op , "%e %e %e \n " , t ( j ) , r ( j ) , r2 ( j ) ) ;
101 endfor

f c l o s e (op) ;
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Figure .3.: rc and r2
c as functions of ct for a homogeneous population with waiting

time distribution ψc(t) = α c (ct + 1)−1−α and different values of α.
(a): α = 0.9, (b): α = 0.7, (c): α = 0.3 and (d): α = 0.1 . The
series expansions of rc and r2

c at order q = 50, given by Eqs. (.28) and
(.34) respectively, are plotted in dashed lines, while the circles represent
numerical simulations of the renewal processes defined by ψc.
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C. Expansion of the steady-state infection
prevalence of a SIS process with risk
perception on activity driven networks

We want to solve Eq.(6.3) in the stationnary state, defining the following

ρ =
∑
a

F (a)ρa (.60)

θ =
∑
a

aF (a)ρa

and setting µ = 1 without loss of generality, this equation reads

ρa = λ(aρ+ θ)
1 + λ(aρ+ θ) (.61)

Expanding at second order in ρ and θ, we write

ρ = b1θ + c1ρ
2 + d1θ

2 + e1ρθ (.62)
θ = b2ρ+ c2ρ

2 + d2θ
2 + e2ρθ

where the coefficients bi, ci, di and ei are functions of λ and the moments 〈an〉 of
the activity distribution. Then expressing θ as a function of ρ only, we obtain

ρ = 1− b1b2

b1(c2 + d2b2
2 + e2b2) + c1 + d1b2

2 + e1b2
(.63)

θ = b2ρ+ c2ρ
2 + d2b

2
2ρ

2 + e2b2ρ
2

In the stationnary state, and at second order, Eq.(6.2) reads

λ = λ0

(
1− α aρ+ θ

a+ 〈a〉

)
(.64)

Then we derive

ρa = λ0 aρ+ λ0 θ − λ0

(
α

a+ 〈a〉 + λ0

)
(aρ+ θ)2 (.65)
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and identify the coefficients

b1 = λ0

1− λ0〈a〉
b2 = 〈a2〉b1 (.66)

c1 = −〈a2L〉b1 c2 = −〈a3L〉b1

d1 = −〈L〉b1 d2 = −〈aL〉b1

e1 = −2〈aL〉b1 e2 = −2〈a2L〉b1

L = α

a+ 〈a〉 + λ0

The system Eq.(.63) has a non-negative solution if and only if 〈a2〉b2
1−1 > 0, from

which we obtain the epidemic threshold

λc = 1
〈a〉+

√
〈a2〉

(.67)

setting λ0 = λc(1 + ε) and expanding at order 1 in ε we obtain

ρ = 2ε
Aα +B

(.68)

where

A = λc

〈 a3√
〈a2〉

+ 3a
√
〈a2〉+ 〈a2〉+ 3a2

a+ 〈a〉

〉
(.69)

B = λ2
c

 〈a3〉√
〈a2〉

+ 3〈a〉
√
〈a2〉+ 4〈a2〉



164



D. Details of some computations of the voter-like
model on activity driven networks with
attractiveness

From the expression of the weights λh in Eq. (7.13) we obtain, by multiplying
by a and summing over h (in the next equations we write

∑
aλ and

∑
bλ as

shorthands for
∑
h aλh and

∑
h bλh, respectively):

∑
h

aλh = p 〈 ab∆h,p

〉
[∑

aλ
]

+ (1− p) 〈 a
2

∆h,p

〉
[∑

bλ
]
, (.70)

which gives a relation between
∑
aλ and

∑
bλ

∑
bλ =

1− p〈 ab∆h,p

〉

(1− p)〈 a
2

∆h,p

〉

∑
aλ. (.71)

The normalization of the weights gives

p 〈 b

∆h,p

〉
[∑

aλ
]

+ (1− p) 〈 a

∆h,p

〉
[∑

bλ
]

= 1 . (.72)

Combining Eqs. (.71) and (.72) leads to

∑
aλ =

〈 a
2

∆h,p

〉

p〈 b

∆h,p

〉〈 a
2

∆h,p

〉+
(

1− p〈 ab∆h,p

〉
)
〈 a

∆h,p

〉
. (.73)

Besides, by definition of ∆h,p we wrote Eq. (7.29) which, after dividing by 〈b〉
gives

1− p〈 ab∆h,p

〉 = (1− p)〈 b
2

∆h,p

〉〈a〉
〈b〉

. (.74)

Inserting this into Eqs. (.73) and (.71) one recovers the correct expressions given
in Eqs. (7.14) and (7.15).

To derive the expression of the average consensus time, we write, combining
Eqs.(7.22), (7.24) and (7.25)

Ω(1− Ω) ∂
2T

∂Ω2

∑
h

ηh ∆h,p

(
λh
ηh

)2

= −N〈b〉. (.75)
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We have

∑
h

ηh ∆h,p

(
λh
ηh

)2

=
∑
h

ηh
(pb [∑ aλ] + (1− p)a [∑ bλ])2

∆

=
[∑

aλ
] [∑

bλ
] (
p2〈 b

2

∆h,p

〉
∑
aλ∑
bλ

+ (1− p)2〈 a
2

∆h,p

〉
∑
bλ∑
aλ

+ 2p(1− p)〈 ab∆h,p

〉
)

= [∑ aλ] [∑ bλ]
〈a〉〈b〉

(
p2〈 a

2

∆h,p

〉〈b〉2 + (1− p)2〈 b
2

∆h,p

〉〈a〉2 + 2p(1− p)〈 ab∆h,p

〉〈a〉〈b〉
)

= [∑ aλ] [∑ bλ]
〈a〉〈b〉

〈
( pa〈b〉+ (1− p)〈a〉b )2

∆h,p

〉

=
[∑

aλ
] [∑

bλ
]

(.76)

which, inserted in Eq. (.75), finally yields Eq. (7.26).
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