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Résume :

Parmi les artefacts contaminant les signaux
d’électroencéphalogramme  (EEG) les  plus
importants sont les clins d’'oeuil qui pourraient
potentiellement conduire a une mauvaise
interprétation du signal EEG. La détection et la
suppression en ligne des artefacts de clignement
des yeux des signaux EEG sont essentielles dans
des applications telles que les interfaces cerveau-
ordinateur (BCI), le neurofeedback et la surveillance
de I'épilepsie. Dans cette theése, des algorithmes
qui combinent la détection non supervisée des
artefacts de clignement des yeux (eADA) avec
une décomposition en mode empirique améliorée
(FastEMD) et une analyse de corrélation canonique
(CCA) sont proposés, sous le nom de FastEMD-
CCA? et FastCCA, pour identifier automatiquement
les artefacts de clignement des yeux et les supprimer
en temps réel. Les algorithmes FastEMD-CCA? et
FastCCA sont comparés a la méthode FORCe.

La précision, la sensibilité, la spécificité et le taux
d’erreur moyens de suppression des artefacts de
FastEMD-CCA? sont respectivement de 97,9%,
97,65%, 99,22% et 2,1%, validés sur un ensemble
de données Hitachi. Pour ces mémes criteres nous
obtenons avec FastCCA une moyenne de 99,47%,
99,44%, 99,74% et 0,53% validés également sur
'ensemble de données Hitachi. Les algorithmes
FastEMD-CCA? et FastCCA sont développés et mis
en ceuvre dans le langage de programmation C ++
pour étudier la vitesse de traitement qu’ils pourraient
atteindre en cas dimplémentation embarquée.
L'analyse a montré que FastEMD-CCA? et FastCCA
ont pris respectivement environ 10,7 et 12,7
millisecondes, en moyenne, pour traiter un segment
d’EEG de 1 seconde. Cela en fait une solution
réalisable pour les applications nécessitant la
suppression en temps réel des clins d’oeuil dans
les signaux EEG.
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Abstract:

The most prominent type of artifact contaminating
electroencephalogram (EEG) signals are the
eyeblink (EB) artifacts, which could potentially lead to
misinterpretation of the EEG signal. Online detection
and removal of eyeblink artifacts from EEG signals
are essential in applications such a Brain-Computer
Interfaces (BCI), neurofeedback and epilepsy
diagnosis. In this thesis, algorithms that combine
unsupervised eyeblink artifact detection (eADA)
with enhanced Empirical Mode Decomposition
(FastEMD) and Canonical Correlation Analysis
(CCA) are proposed, i.e. FastEMD-CCA? and
FastCCA, to automatically identify eyeblink artifacts
and remove them in an online setting. FastEMD-
CCA? and FastCCA have outperformed one of
the existing state-of-the-art methods, FORCe.
The average artifact removal accuracy, sensitivity,

specificity and error rate of FastEMD-CCA? is
97.9%, 97.65%, 99.22%, and 2.1% respectively,
validated on a Hitachi dataset with 60 EEG signals,
consisting more than 5600 eyeblink artifacts.
FastCCA achieved an average of 99.47%, 99.44%,
99.74% and 0.53% artifact removal accuracy,
sensitivity, specificity and error rate respectively,
validated on the Hitachi dataset too. FastEMD-
CCA? and FastCCA algorithms are developed and
implemented in the C++ programming language to
investigate the processing speed these algorithms
could achieve in a different medium. Analysis has
shown that FastEMD-CCA? and FastCCA took about
10.7 and 12.7 milliseconds respectively, on average
to clean a 1-second length of EEG segment. This
makes them a feasible solution for applications
requiring online removal of eyeblink artifacts from
EEG signals.
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The human brain communicates or transmits information to other parts of the body
through signals sent via brain cells, called neurons. A synapse is a junction between brain
cells. Information is being transferred across the synapse in the form of neurotransmit-
ters, where electrical potentials are generated during this cerebral activity. This cerebral
activity can be acquired as brain signals through a non-invasive modality, the electroence-
phalogram (EEG) [1], resulting in an electrical signal which is termed as EEG signal. EEG
signals are usually recorded from multiple locations of the scalp using electrodes placed
at predetermined points. The International Federations and Societies for Electroencepha-
lography and Clinical Neurophysiology has recommended the 10-20 electrode placement
[2], which consists of 19 active electrodes and 2 reference electrodes. Fig. shows the
positions of EEG electrodes following the 10-20 system.
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FIGURE 1.1 — 10-20 Electrodes Placement

The EEG signal’s amplitude measured on the scalp usually lies between 10 to 100uV [3].
Basically, there are five types of brain rhythms that range from low to high frequencies.
They are the delta waves, theta waves, alpha waves, beta waves and gamma waves. The
delta wave which ranges from (0.5-4 Hz) are primarily associated with deep sleep. The
theta waves are found between (4-7.5 Hz), which indicates a state of consciousness slips
towards drowsiness. The alpha wave ranges between (8-13 Hz), common in humans



in a relaxed state which has been thought to indicate a relaxed plus awareness state
without any attention or concentration. The beta waves between (14-30 Hz) are found
in normal adults during active thinking, active attention, focus on the outside world, or
solving concrete problems, while the gamma waves (>30 Hz) are of very low amplitudes,
rarely found in the human brain [3]. EEG is one of the most preferred modalities in online
applications due to its non-invasive nature, for instance, in epileptic seizure detection,
in real-time detection of fatigue or drowsiness in drivers and brain-computer interfaces
(BCI).

However, EEG signals are highly susceptible to contamination from artifacts, which
causes deviation in the signal of interest. Artifacts are undesired information which appear
in the signal of interest, but not related to neural activity. These artifacts are physiologi-
cal signals that originate from various activities from other parts of the body. The most
common types of artifacts contaminating EEG signals are the cardiac artifact, the muscle
artifact and the eyeblink artifact, originating from the heartbeat, muscle movement, eye-
ball movement and eye blinking. The most trivial artifact superimposing the EEG signal
is the cardiac artifacts, mainly generated by the electrical activity of the heart, which are
repetitive and are of regular pattern. The influence of cardiac artifact on the scalp is ty-
pically low with low amplitude. The muscle artifacts are produced by muscle movement
and muscle contraction during EEG recording. The pattern or trend of muscle artifacts
is random and purely dependent on the degree of muscle contraction. Eyeblink artifacts
appear as spikes with amplitudes of typically around 10 times greater than the actual
brain potentials, noticeable in the delta wave range and can last up to 200ms to 400ms
[2,13]. The eyeblink potential propagates and spreads out to all EEG electrodes but in va-
rious conduction volume-higher conduction near the frontal and parietal regions while the
conduction in the occipital region is very low. The Fp1 and Fp2 electrode positions, which
are closest to the eyes and highlighted in Fig. can be used to capture the eyeblink ar-
tifacts. Each of the artifact signals can be recorded separately near the artifact originating
regions, using reference electrodes. The cardiac activity can be recorded with Electro-
cardiogram (ECG) electrodes, the muscle activity can be recorded with Electromyogram
(EMG) electrodes and the eyeblink activity can be recorded with Electrooculogram (EOG)
electrodes. In most of the available artifact removal algorithms, the use of a reference
channel is preferred, because it can serve as a piece of trusted complementary infor-
mation to identify the locations of cardiac, muscle and eyeblink artifacts in EEG signals
[4]. Out of all the artifacts, the eyeblink artifact is the most prominent in EEG signals as
blinking the eyes is inevitable and it produces relatively large electrical potentials around
the eyes.

The superimposition of eyeblink artifacts with EEG signals could potentially lead to inac-
curate EEG interpretation. This issue is particularly relevant in the medical field where
EEG signals are widely used as a diagnostic tool, thus failing to recognize and remove
eyeblink artifacts may affect clinical decisions. Therefore, eyeblink artifact identification
and removal in EEG signal processing is the first and most crucial step. This thesis pre-
sents algorithms, i.e. FastEMD-CCA? and FastCCA, which can automatically detect and
remove eyeblink artifacts in real-time.



Since applications such as Brain-computer Interface (BCl), neurofeedback and epilepsy
seizure detection units require online EEG signal processing, artifact detection and re-
moval algorithms should be capable of online processing too. Important criteria an online
eyeblink artifact detection and removal algorithm should possess are listed below :

e Accurate and sensitive in identifying and removing eyeblink artifacts.

¢ Artifact-free EEG segments of an EEG signal are preserved after artifact correction
is performed.

e The processing speed should be insignificant, making it feasible for online applica-
tions.

However, existing eyeblink artifact detection and removal algorithms do not comply with
the above criteria. They :

e Depend on a separate reference eyeblink activity recording via Electrooculogram
(EOG) to identify the eyeblink artifact events

e Depend on constant thresholds or constant features to make a binary decision to
recognize if an EEG segment contains an eyeblink artifact

e Cause loss of significant neural information in the artifact-free EEG segments during
eyeblink artifact correction

e Are computationally inefficient and slow, as the algorithms are applied to the entire
EEG signal for eyeblink artifact correction during real-time recording and analysis.

Hence, existing artifact removal algorithms are not favourable for applications requiring
online detection and removal of eyeblink artifacts.

Through literature survey, algorithms based on Empirical Mode Decomposition (EMD)
and Canonical Correlation Analysis (CCA) can be useful for online applications if eyeblink
artifact detection is made automatic and the computational complexity of the algorithms
is reduced. This has lead to the following questions which will be addressed in this re-
search :

i. How can the eyeblink artifacts be automatically identified without reference elec-
trodes or an expert’s advice ?

ii. How can algorithms based on EMD and CCA developed and adapted for online
removal of eyeblink artifacts, which can be utilized for online applications ?

iii. How well do the proposed algorithms perform in identifying and removing eyeblink
artifacts from EEG signals in real-time compared to conventional methods ?

iv. How well do the proposed algorithms could retain neural information in artifact-free
EEG segments after eyeblink artifact correction is performed ?

3



Based on the above research questions, it is hypothesized that the following solutions
would be able to produce suitable online eyeblink artifact removal algorithms.

e Develop an unsupervised and automatic eyeblink artifact detection algorithm with
adaptive threshold levels for eyeblink artifact components classification.

e Process the multi-channel EEG signals in blocks/windows, and apply eyeblink arti-
fact correction only on windows that are identified with eyeblink artifacts, which can
prevent loss of neural information on artifact-free EEG segments.

e Speed up the entire eyeblink artifact removal algorithm by processing multi-channel
EEG signals in blocks, rather than removing eyeblink artifacts from an entire EEG
signal.

The main objectives of the research are :

e To develop an unsupervised eyeblink detection algorithm with the help of adaptive
threshold values to identify eyeblink artifact components.

o Modify the use of existing EMD and CCA techniques to remove eyeblink artifacts
from multi-channel EEG signals effectively, with an acceptable processing time de-
lay (real-time processing of a system is estimated between 6 to 20 milliseconds) for
online applications.

¢ To investigate the performance of the proposed algorithms in C++ programming
language in terms of processing time, if they are feasible for online implementation.

This research explores a suitable algorithm to identify eyeblink artifacts that are conta-
minating the EEG signals without any manual supervision, with an automated varying
threshold value. The eyeblink artifacts are detected to assist in the subsequent artifact
removal process. For this purpose, the algorithm is evaluated on MATLAB using an EEG
dataset collected from Hitachi.

The decomposition and blind source separation techniques, specifically the EMD and
CCA techniques, are modified and investigated for their ability to remove the identified
eyeblink artifacts effectively, with the aim to help online removal of eyeblink artifacts fea-
sible. The proposed algorithms to remove eyeblink artifacts from EEG signals are desi-
gned from the modified EMD and CCA. The investigation and evaluation of the proposed
algorithms are conducted on the EEG dataset of Hitachi. Apart from that, a publicly avai-
lable EEG dataset that contains involuntary eyeblinks were used to evaluate the consis-
tency of performance of the proposed algorithms. All investigation and evaluation are
performed offline in MATLAB.

The proposed algorithms are then developed and investigated in the C++ programming
language. The primary purpose is to investigate the computation time or the processing

4



speed the proposed algorithms, FastEMD-CCA? and FastCCA could achieve, in line to
support an online application, while being able to retain the neural information on the
artifact-free EEG segments. The Hitachi EEG dataset is used for this investigation.

e Developed a novel unsupervised eyeblink artifact detection (eADA) algorithm which
identifies the locations of eyeblink artifacts correctly. Since the eyeblink artifact lo-
cations are correctly detected, the artifact-free EEG segments remain undistorted
after artifact elimination is performed.

e Developed FastEMD-CCA? and FastCCA algorithms that have achieved instanta-
neous eyeblink artifact elimination with acceptable processing time, while being able
to retain artifact-free EEG segments undistorted effectively, thus making them sui-
table algorithms for online applications.

In Chapter [2, commonly available eyeblink artifact removal techniques or algorithms that
were proposed and evaluated by other researchers are reviewed. Additionally, studies
that addressed online detection and removal of artifacts are reviewed. Critical analysis of
these techniques and algorithms are discussed, as well as the motivation to develop the
proposed algorithms.

Chapter [3discusses the necessary theoretical background of Empirical Mode Decompo-
sition (EMD), followed by discussion on the use of an alternative interpolation technique
within EMD. The performance of an alternative interpolation technique in EMD to ex-
tract out the eyeblink artifact template is evaluated on synthetically contaminated signals.
Then, the chapter presents the background and mathematical derivation of Canonical
Correlation Analysis (CCA). Three different matrix decomposition techniques that can
be used to estimate the de-mixing matrices in CCA are discussed as well. Then, the
implementation of CCA to eliminate artifactual components from EEG segments and re-
construction of clean EEG segments are illustrated. Finally, the performance of the three
matrix decomposition techniques within CCA is evaluated for their ability to properly de-
compose a matrix, consequently producing a reliable EEG reconstruction.

In Chapter 4], the proposed algorithms and the methodologies are presented. First, a novel
unsupervised eyeblink artifact detection algorithm based on adaptive threshold determi-
nation is proposed to assist subsequent eyeblink artifact elimination step. Next, various
modifications to the classical EMD algorithm to resolve the processing time inefficiency
of the algorithm are illustrated and discussed. It also elaborates on the method to classify
IMFs of EMD with the help of CCA, whether they belong to EEG or the eyeblink artifact.
The modified version of the EMD is then combined with the unsupervised artifact de-
tection algorithm and CCA to form the proposed eyeblink artifact detection and removal
algorithm, FastEMD-CCA?Z. Third, an algorithm that combines the unsupervised artifact
detection algorithm and CCA, FastCCA is proposed to remove eyeblink artifacts from
EEG signals for online applications.

The validation results of FastEMD-CCA? and FastCCA algorithms on synthetic and real



EEG signals are provided in Chapter[5] The algorithms are evaluated for the computation
time they take in identifying and removing eyeblink artifacts on real EEG signals, and for
their effectiveness in identifying and removing eyeblink artifacts.

In Chapter[6], implementation and assessment of the proposed algorithms in C++ is des-
cribed. These algorithms are developed and implemented in C++ programming language
to investigate the feasibility of the algorithms in removing eyeblink artifacts in an online
manner. So these two proposed algorithms are compared and critically analyzed for their
performance in effectively identifying and removing eyeblink artifacts online, both in MAT-
LAB computing environment and C++ programming language. Finally, conclusion and
future work are discussed in Chapter 7]



This chapter presents commonly available techniques that have been used for the remo-
val of artifacts from EEG by other researchers, mostly on eyeblink artifact removal, along
with their pros and cons. The impact of eyeblink artifacts in EEG based applications is
discussed as well. Then, analysis on available techniques is conducted before stating the
motivation to develop online artifact detection and removal algorithms.

EEG signals have been extensively used in the medical field for diagnosing epilepsy,
sleep disorders, coma, encephalopathy, brain injury and brain death [SH12]. EEG signals
are also utilized for research purposes in neuroscience, cognitive science, cognitive psy-
chology, neurolinguistics and psychophysiology [13H15]. Although EEG signals play a
vital role in many research and medical fields, they are often contaminated by various
artifacts. Some of the most common artifacts that contaminate the EEG signals are eye-
blink activity, cardiac activity and muscle activity, as stated in Chapter([i] The artifacts may
sometimes superimpose with the EEG signal, which is then considered as a pure EEG si-
gnal. This can mislead a practical application, such as the brain-computer interface (BCI)
[16]. It may also sometimes imitate cognitive behaviour ; therefore, it could cause misinter-
pretation and diagnosis of sleep disorders and Alzheimer’s disease [17], etc. Therefore,
artifact detection and removal is an imperative preprocessing step for any EEG-based
application.

For this purpose, various eyeblink artifact removal algorithms are developed to date. They
include algorithms of which are capable of manual, semi-automated, fully-automated
artifact elimination, either from single-channel EEG or multichannel EEG. The manual
eyeblink artifact rejection method is one of the most commonly used techniques, where
eyeblink artifact regions are identified through manual inspection by experts, and these
segments are discarded. This method can cause a significant loss of information as the
EEG segments being removed may contain useful neurological information. Alternatively,
many semi-automatic and fully-automatic eyeblink artifact removal algorithms were de-
veloped to replace manual eyeblink artifact rejection method, which were discussed and
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reviewed in [4, [18H22]. In addition to the existing automatic artifact removal algorithms,
techniques addressing and implementing online removal of eyeblink artifacts are essential
[2Q]. This is particularly relevant in BCI research for proper BCI output device controllabi-
lity and generating distinct feedback signals in neurofeedback. The subsequent sections
and subsections elaborate existing eyeblink artifact detection and removal techniques and
algorithms.

Many methods were developed in the past to automate identification or detection of eye-
blink artifacts in the EEG signal. One of the easiest and preferred way for eyeblink artifact
recognition is by merely using an amplitude threshold [23]. This method determines if an
eyeblink artifact is present in an EEG segment if the amplitude in the segment exceeds
a predetermined amplitude threshold. In most EEG-based applications, this method is
preferred due to its straightforwardness. However, eyeblink artifact detection through an
amplitude threshold may not be suitable in applications that require high detection ac-
curacy [24]. This method can also be useful when there is an abundance of EEG data
available, thus discarding required EEG segments or retaining unwanted EEG segments
may not cause any critical issue to the EEG signal analysis [25]. However, the ampli-
tude of eyeblink artifacts may vary depending on the blinking strength of an individual;
hence this method may not identify eyeblink artifacts from an individual who exhibits
gentle blinks, which may have lower amplitudes than the threshold value. Moreover, this
method struggles when the blinking duration of an individual varies [26].

The other common technique of detecting eyeblink artifacts is through feature-based iden-
tification, where the presence of eyeblink artifacts in EEG segments is determined by
extracting certain features. Some of the common features used are kurtosis, maximum
absolute value, entropy-based features and second-order difference [23, 25, 27, 28]. As a
general rule, these artifact detection features require a certain threshold value to classify
or make a binary decision whether or not an EEG segment is contaminated by eyeblink
artifacts. As elaborated earlier for the amplitude threshold, applying a fixed threshold va-
lue for the features discussed may lead to detection errors due to individual variance in
blinking pattern and blinking strength. As a result, the threshold values may need to be
tailored for every individual, making the technique impractical in online applications.

Recently, WD Chang et al. [29] have proposed a method that combines digital filters and
a rule-based decision system. This method may not be useful for applications that require
online processing of EEG data because it depends on the proper selection of threshold
value for every EEG dataset. The same authors have proposed an automatic approach
in [30] so that their existing method could support real-time eyeblink artifact detection.
They have combined the digital filters with an automatic thresholding algorithm proposed
by Kim et al. [31]. However, the proposed method may not correctly adjust its threshold
in extreme conditions, such as when there is more than one eye blink in every second of
the EEG signal.



Regression-based methods [32H34] perform a regression or correlation test between the
signal to be processed and a reference signal. For example, the EOG signal can be used
as the reference signal to be compared with the EEG signal. The segment of the EEG
signal that highly correlates with the EOG is then assumed to be related to the eyeblink
artifacts and thus removed. However, since EOG also contains some EEG components
due to the close proximity of EOG electrodes to the frontal region of the brain, artifact
removal via regression methods may also remove essential EEG data. Also, a reference
electrode is obligatory in regression-based methods, which may cause discomfort to pa-
tients when there is an extra pair of electrodes placed around the eyes, especially for
longer EEG recordings.

In the late 1990s, Blind Source Separation (BSS) methods are investigated to estimate
the underlying clean EEG signal from a contaminated EEG signal [35H37]. The funda-
mental goal of a BSS technique is to segregate source signals from a set of mixed si-
gnals. Isolation of the source signals from the mixed signals are performed without any
priori knowledge about the signals or the way they are mixed together. Conceptually,
BSS assumes the contaminated or the mixed signals are the combination of clean EEG
sources and artifacts, blended together with a mixing formula. Thus in EEG’s artifact
correction, BSS attempts to isolate EEG sources and artifacts apart, with an unmixing
formula. Mathematically, a contaminated multichannel EEG signal can be represented as
X, which is a result of linear mixing of sources, S, where sources comprise EEG sources
and artifactual components :

X = WS (2.1)

The mixing of sources relies on the weighted mixing matrix, W. The source signals can
then be estimated by projecting the weighted de-mixing matrix, A onto the contaminated
EEG signal :

-1
A=W (2.2)
S = AX
As stated earlier, the source signals consist of EEG sources and artifactual components.
Therefore, eliminating the artifactual components would yield artifact-free sources which
can be used to reconstruct a clean EEG signal. Among well-known BSS methods that
have been used to tackle eyeblink artifact removal from EEG signals are Independent
Component Analysis (ICA), Principal Component Analysis (PCA) and Canonical Correla-
tion Analysis (CCA).



Independent component analysis (ICA) is a BSS technique that produces independent
components (ICs), out of a multichannel EEG signal [38]. ICs acquired are identified to
be distinct and independent, provided that the temporal information of recorded multi-
channel data are maximally independent with one another [39]. Therefore, ICA appears
to be ideal in separating artifactual ICs from EEG sources, assuming artifactual compo-
nents and EEG sources are entirely independent. In EEG’s preprocessing step, variations
of ICA are used to remove artifacts [40-46]. Although ICA performs well in artifact remo-
val from EEG, it is not automatic as one has to manually identify and select the artifact
related ICs for correction [47]. Manual selection of ICs is not practical in applications re-
quiring real-time processing and it may also result in incorrect IC selection [47]. Many
automatic approaches have been proposed and studied to automate IC selection through
statistical analysis or feature classification that is able to classify an IC as artifactual [48-
50]. Most of these approaches prioritize automation on the selection of artifact related ICs
to remove them, but not many have focused on how well these techniques are preserving
the underlying EEG signal after artifact removal [51]. Furthermore, ICA based algorithms
are not suitable in online applications as it introduces higher computational complexity
[4].

Principal component analysis (PCA) is a statistical technique that groups multichannel
EEG observations into linearly uncorrelated variables. This is accomplished by applying
the orthogonal transformation to find the largest variance in the EEG observations, thus
transforming them into linearly uncorrelated variables, called principal components (PCs).
Each PC should be orthogonal and should exhibit the highest variance possible with its
predecessor [52]. Thus, the most prominent PC will have the largest possible variance.
With this concept, PCA is applied to EEG signals to obtain the largest variance in these
signals, which returns the major components representing eyeblink activity. Once the prin-
cipal components representing artifacts are removed, a clean EEG signal can be recons-
tructed through an inverse computation. PCA was first used by P.Berg et al. [53] for eye-
blink artifact removal. Thereafter, PCA has been used in various studies and evaluation to
remove artifacts from EEG and FMRI [54-57]. PCA is also used for comparison purposes
in removing artifacts from EEG signals in [45] 58, 59]. These papers clearly point out that
ICA performs better than PCA in EEG artifact removal ; therefore, a concrete opinion on
PCA’s performance in artifact removal can’t be provided. Apart from this, Lagerlund et al.
[6Q] have outlined limitations of PCA, whereby it is not able to completely separate some
artifacts from the raw EEG signal in the event that both artifacts and EEG signals are of
comparable amplitudes.

Canonical Correlation Analysis (CCA) is a BSS method that yields canonical components
by maximizing the temporal correlation within an epoch. The most pertinent artifactual
canonical components, usually the first row of the canonical components, are forced to
become zero in order for it to behave non-artifactual. The artifact-free canonical compo-
nents are then projected back to reconstruct an EEG segment that is clean from artifacts.
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CCA was initially proposed in [61] by Hotelling. In EEG artifact removal, CCA was em-
ployed in several works to remove muscle and ocular artifacts. CCA is implemented by
De Clercq et al. [62] to remove muscle artifacts from the EEG signal, followed by Hallez
et al. [63]. Other studies that have successfully implemented CCA proven that CCA out-
performs ICA in EEG artifact removal are [64-66]. Table lists some of the published
artifact removal studies using ICA, PCA and CCA.

TABLE 2.1 — Studies on BSS Algorithms to Remove Artifacts

Study Year Method Artifact
Berg and Sherg [53] 1991 PCA  eyeblink
Makeig et al. [38] 1996 ICA eyeblink
Jung et al. [67] 1997 ICA eyeblink
Vigario et al. |46] 1997 ICA eyeblink
Jung et al. [68] 2000 ICA eyeblink
Jung et al. [45] 2000 ICA  eyeblink
Vigon et al. [59] 2002 PCA  eyeblink
Casarotto et al. [69] 2004 PCA  eyeblink
Joyce et al. |70] 2004 ICA eyeblink
Dorffner et al. [71] 2005 ICA eyeblink
Li et al. [44] 2006 ICA eyeblink
Liu et al. [72] 2006 PCA  eyeblink
Teixeiraa et al. [73] 2006 PCA  eyeblink
Clercq et al. [62] 2006 CCA muscle
Hallez et al. [63] 2006 CCA  eyeblink
Frank et al. [74] 2007 ICA eyeblink

Delorme et al. [42] 2007 ICA eyeblink
Mammone et al. [75] 2008 ICA eyeblink
Hoffmann et al. [41] 2008 ICA eyeblink

Viola et al. [50] 2009 ICA eyeblink
Gao et al. [65] 2010 CCA muscle
Mennes et al. [40] 2010 ICA eyeblink
Vos et al. [64] 2010 CCA muscle
Feng et al. [76] 2010 ICA eyeblink
Winkler et al. [49] 2011 ICA eyeblink
Zhang et al. [77] 2012 CCA eyeblink

Chaumon et al. [47] 2015 ICA eyeblink
Raduntz et al. [48] 2015 ICA eyeblink
Turnip et al. |58] 2015 PCA  eyeblink
Somer et al. [78] 2016 CCA  eyeblink
Pontifex et al. [51] 2017 ICA eyeblink

Wavelet transform (WT) is a technique that decomposes an EEG signal into time-
frequency representations. This is obtained by convolving the EEG signal with the mother
wavelet [79]. Fundamentally, WT decomposes a signal into detail and approximation coef-
ficients. The detail coefficients are high-frequency components, while the approximation
coefficients are lower frequency components. Thus setting a threshold on the approxima-
tion coefficients could isolate out the artifactual components, and a clean EEG signal can
be reconstructed thenafter [79]. Wavelet has been extensively used for eyeblink artifact
removal in EEG by [79-82]. However, WT depends on choosing a suitable decomposition
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mother wavelet. The mother wavelet is a function comprising sine and cosine waves, thus
most often it will not characterize or adapt to a non-linear EEG signal, which may produce
decomposition errors [82]. It has to be emphasized here that WT removes artifacts only
from a single-channel EEG signal. Furthermore, selecting an inappropriate mother wave-
let could lead to inaccuracy in reconstructing artifact-free EEG signals. The accuracy of
WT is also sensitive to the selection of thresholding function, where selecting an inappro-
priate threshold could have an effect on preserving or discarding the neural information
in an EEG signal.

Empirical Mode Decomposition (EMD) is an algorithm that decomposes a raw signal into
several oscillating trends in a recursive manner through a repetitive interpolation and
subtraction process, producing highly oscillating and low oscillating decomposed trends.
These decomposed trends are called Intrinsic Mode Functions, IMFs. Each IMF extracted
out from the original signal is a slower oscillating trend compared to its predecessor.
Adding up all IMFs and the remaining residual signal obtained from the decomposition
would reconstruct the original signal as in Eq.&3) :

X(@) =

n—1
Xi(1) + Ry(2) (2.3)
1

=

where X(¢) is the raw EEG signal, x;(r) are i number of IMFs, and R,(¢) is the residual
trend, which is monotonous.

In [83H89], EMD has been proven effective in removing artifacts. Despite the fact that
it can effectively remove artifacts from the EEG signals compared to other techniques,
the algorithm is relatively slow. This is because EMD keeps on repeating until the final
residual trend becomes a monotonic function. Hence, the conventional EMD algorithm is
not computationally efficient in removing artifacts from EEG signals. Apart from this, this
algorithm is also susceptible to mode mixing issue, where the decomposed IMFs may
have overlapping EEG and artifact oscillations. To overcome this issue, the ensemble
EMD (EEMD) was developed, which is based on a noise assisted decomposition to sift
out IMFs [90].

A study by Dora et al. [91] proposed an enhanced version of the EMD technique, called
the Variational Mode Decomposition (VMD) to suppress ocular artifacts (OA). The pro-
posed algorithm identifies the ocular artifacts with the help of modified multiscale sample
entropy (MMSE). Then VMD is applied to obtain band limited IMFs (BLIMFs), to ease the
identification of OA related IMFs which are high in amplitude and low in frequency. The
estimated OA is then regressed with a contaminated EEG signal to obtain a clean EEG
signal. Although the proposed algorithm has shown an improved performance in compari-
son with conventional EMD and EEMD algorithms, the computational complexity of VMD
is increased significantly, interpreted in terms of the execution time of the algorithm to de-
compose a 10s EEG segment (VMD-57.14s, EMD-0.55s and EEMD-148.125s). Hence,
VMD may not be a good choice for applications that requires online eyeblink artifact eli-
mination. Table lists some of the published artifact removal studies using WT and
EMD.
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TABLE 2.2 — Studies Based on WT and EMD to Remove Artifacts

Study Year Method Artifact
Zikov et al. [92] 2002 Wavelet eyeblink
Krishnaveni et al. [82] 2006 Wavelet eyeblink
lyer et al. [93] 2007 Wavelet eyeblink
Looney et al. [89] 2008 EMD  eyeblink
Molla et al. [88] 2010 EMD eyeblink
Yong et al. [94] 2012 Wavelet eyeblink
Molla et al. [85] 2012 EMD  eyeblink

Safieddinw et al. [86] 2012 EMD  eyeblink
Shahbakthi et al. [87] 2012 EMD  eyeblink
Seeeney et al. [90] 2013 EEMD eyeblink

Looney et al. [84] 2014 EMD  eyeblink
Patel et al. [83] 2016 EMD  eyeblink
Khatun et al. [80] 2016 Wavelet eyeblink
Guarascio et al. [95] 2017 EEMD eyeblink
Chavez et al. [79] 2018 Wavelet eyeblink
Dora et al. [91] 2019 VMD  eyeblink

Researchers have studied various hybrid techniques to detect and remove eyeblink arti-
facts from EEG signals, which may be useful for online applications. The impression be-
hind developing hybrid techniques or algorithms is to make use of the different beneficial
properties possessed by several individual techniques in correcting artifacts. Therefore,
researchers combine the advantageous features of several techniques to produce effec-
tive artifact removal algorithms and evaluate the performance of these algorithms. Some
of these techniques are discussed in the following subsections.

In the combination of regression and ICA, regression is performed between the ICs pro-
duced by ICA and the EOG signal. Klados et al. [96] used ICs obtained through ICA
undergoes regression with the EOG signal to remove the ocular artifacts, maintaining the
underlying neural signal. EOG-like artifacts are removed and projected back to get the
clean EEG signal. However, this algorithm requires dedicated EOG reference electrodes
to identify the ICs related to ocular artifacts. Moreover, there is no automatic selection of
ICs is performed, where all the ICs have to undergo regression with the EOG signal. This
can cause loss of neural information in cases when non-artifactual ICs exhibit artifact-like
properties. In [19], Mannan et al. proposed an automatic ocular related IC identification.
First, ICs from ICA are classified into neural and ocular ICs, based on features with certain
threshold level such as composite multiscale entropy and kurtosis. Secondly, the ocular
ICs are subjected to an additional level of threshold filtering, where any ocular IC that
exceeds a certain threshold of median absolute deviation is removed. Then, regression
is performed between the remaining ocular ICs and EOG signal to remove the artifactual
components further. Finally, the neural ICs and the ocular artifact removed ICs are com-
bined together to reconstruct the clean EEG signal. The authors have evaluated the per-
formance of their proposed algorithm in removing ocular over ICA, regression analysis,
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wavelet-ICA (wICA), and regression-ICA (REGICA). The analysis showed an improved
performance in terms of means square error(2.05, 86% lesser error than ICA, 59% lesser
error than REGICA) and mean absolute error (lowest MAE in beta band-0.0022, highest
MAE in Delta band-0.1087). One distinct disadvantage of the algorithm is that it depends
on EOG signals to remove the ocular artifacts.

BSS techniques and WT are extensively combined together in artifact removal studies.
Akthar et al. [97),198] have used the spatially constrained ICA (SCICA), with wavelets. First
SCICA is applied to extract artifactual ICs, then WT is applied to these ICs to remove the
remaining neural information. Once artifact-only ICs are obtained, these ICs are projec-
ted back and subtracted from the original EEG signal to get an EEG signal that is free
from artifacts. Quantitative measures have have indicated an improved performance over
wICA in terms of normalized mean squared error and mutual information on artifact-free
segments. However, this approach requires prior information to initialize the SCICA, thus
considered as semi-automatic and may not be suitable for online applications. Mowla et
al. in [99] performed similar artifact rejection as in [97], but the authors used CCA for
muscle artifact removal and second-order blind identification (SOBI) for ocular artifact re-
moval instead of SCICA. To automate the IC selection process in ICA, Al-Qazzaz et al.
[100] proposed an automatic ICA technique combined with WT (AICA-WT). In this algo-
rithm, ICs estimated by ICA are subjected to an automated artifactual IC identification
step through features such as the skewness, sample entropy and kurtosis. WT is then
applied on these ICs for de-noising ; thus, a clean signal is obtained. On the other hand,
Mammone et al. [101] suggested an algorithm based on automatic Wavelet Independent
Component Analysis (AWICA). WT is applied on the EEG signal, producing wavelet co-
efficients which are then subjected to automatic artifactual selection trough kurtosis and
Renyi’s entropy. These coefficients are then passed through ICA for another layer of ar-
tifact rejection by eliminating artifactual ICs. Finally, the inverse of ICA and the inverse
of WT is performed to reconstruct a clean EEG signal. AWICA has outperformed wiCA
in term of RMSE (AWICA-0.1, wiCA-0.17) and the correlation (AWICA-0.8, wiCA-0.22)
between the artifact-free EEG segment and reconstructed EEG segment, while removing
the eyeblink artifacts. Zhao et al. [102] proposed the wavelet enhanced CCA (wCCA),
where CCA is applied on the contaminated EEG signal to get the canonical components.
The most prominent canonical component vector representing the artifact is subjected to
WT to separate out the neural information, and the artifact-only components are remo-
ved. The algorithms have shown an improved performance in removing ocular artifacts
over CCA, ICA and wICA, in terms of signal-to-artifact ratio (WCCA-23.6 at posterior,
wiICA-2.16 at anterior). However, this result is obtained on semi-simulated data, and no
quantitative results on real EEG signals were provided.

Bono et al. [103],[104] has conducted a comparison study between Wavelet Packet Trans-
form with Empirical Mode Decomposition (WPTEMD), and Wavelet Packet Transform with
ICA (WPTICA). The main concept of these two algorithms is first to apply WPT on a conta-
minated EEG signal. The energy of the wavelet coefficients on every branch is calculated
for each channel. A common wavelet branch that captures the most energy is categorized
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to hold the artifact’s effect, thus selected and eliminated. The cleaned WPT-signal is fed
to either ICA or EMD for further artifact suppression. The authors have concluded that
WPTEMD outperformed WPTICA in removing eyeblink artifacts, in terms of Root Mean
Squared Error and Artifact to Signal Ratio.

Some of the researchers have combined statistical methods with a BSS or WT. Mahajan
et al. [105] automatically identify the eyeblink artifacts with modified multiscale sample
entropy (MMSE) and Kurtosis features. Identified eyeblink artifacts are then denoised
through a bi-orthogonal WT. Cinar et al. [106] have used the outlier detection method
with ICA (OD-ICA). In this algorithm, ICA is first applied on the contaminated EEG signal
to get a set of ICs. Then the outlier detection algorithm utilized the Chauvenet criterion,
the Peiree’s criterion and an adjusted box plot to determine if an IC is artifactual. Identified
artifactual ICs are then removed to construct a clean EEG signal.

Sweeney et al. [90] [107] used EEMD with CCA (EEMD-CCA) for single-channel artifact
correction, where CCA is applied on the IMFs obtained through EEMD. Artifactual cano-
nical components are removed to reconstruct a clean EEG signal from a single channel .
Mumtaz et al.[108] has proposed the use of EMD to decompose a single channel conta-
minated EEG signal into multiple IMFs. IMFs that characterize the artifact are summed
together to form an eyeblink artifact template. Then CCA is applied on the multichan-
nel contaminated EEG signal along with the artifact template obtained previously. Finally,
the algorithm eliminates artifactual canonical components and reconstructs a clean multi-
channel EEG signal. Patel et al. [109] have suggested an approach based on PCA appli-
cation on the IMFs obtained through EEMD to remove eyeblink artifacts. The artifactual
PCs are removed and a clean single-channel signal is reconstructed. Chen et al. [110]
used the EEMD and multiset CCA (MCCA) for single-channel muscle artifact correction.
EEMD is applied on a contaminated EEG signal to get a set of IMFs. MCCA is then ap-
plied on the IMFs, artifact components are made to zero followed by clean EEG signal
reconstruction. This technique is not suitable for online artifact removal as it removes arti-
facts only from single-channel EEG. In 2018, Chen et al. [111] used multivariate EMD with
ICA to remove muscle artifacts from multi-channel EEG instead of single-channel artifact
correction. Multivariate EMD (MEMD) is a method of applying EMD on a contaminated
multi-channel EEG signal to get a set of IMFs. Obtained IMFs are subjected to CCA for
artifact removal.

Jafarifarmand et al. [112] make use of the neural network with an adaptive filter. Adaptive
noise cancellation (ANC) is a method that compares a contaminated EEG signal with an
artifact reference such as EOG, thus producing an artifactual signal. The artifactual signal
then acts as feedback to an adaptive filter, which is subtracted from the contaminated
signal to produces a clean EEG signal. Zhao et al. [113] proposed an algorithm that used
WT with adaptive predictive filtering (WT-APF). First, WT is applied on a contaminated
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EEG signal, then an adaptive autoregressive model for prediction is used on the artifactual
coefficients of WT, thus removing the artifacts.

Soker et al. [114] proposed the use of support vector machine (SVM) on the ICs of a
contaminated EEG signal produced by ICA, to classify artifactual and non-artifactual ICs
accordingly. Sai et al. [115] used SVM on the components obtained through WT and ICA
(WT-ICA), where contaminated EEG signal is subjected to ICA to get ICs, which are then
subjected to WT. The artifactual wavelet coefficients obtained through WT is identified
with a pre-trained SVM and removed. Lawhern et al. [116] used the Autoregressive (AR)
model for artifact feature selection, followed by an SVM classifier for training purposes in
detecting the artifacts. Some of the hybrid techniques are listed in Table

TABLE 2.3 — Studies Based on Hybrid Techniques to Remove Artifacts

Study Year Method Artifact
Shoker et al. [114] 2005 ICA-SVM eyeblink
Halder et al. [117] 2007 ICA-SVM eyeblink
Akhtar et al. [98] 2009 SCICA-WT eyeblink
Ghandeharion et al. [118] 2010 ICA-WT eyeblink
Lindsen et al. [119] 2010 ICA-EMD eyeblink
Chan et al. [120] 2010 AF-ICA eyeblink
Raghavendra et al. [121] 2011 CCA-WT eyeblink
Klados et al. [96] 2011 AF-ICA eyeblink
Zhao et al. [102] 2011 WT-CCA eyeblink
Guerrero et al. [122] 2012 AF-ICA eyeblink
Mommone et al. [101] 2012 ICA-WT eyeblink
Akhtar et al. [97] 2012 SCICA-WT eyeblink
Sweeney et al. [107] 2012 EEMD-CCA eyeblink
Lawhern et al. [116] 2012 Autoregressive-SVM  eyeblink
Jafarifarmand et al. [112] 2013 AF-NN eyeblink
Peng et al. [123] 2013 AF-WT eyeblink
Sweeney et al. [90] 2013 EEMD-CCA eyeblink
Soomro et al. [108] 2013 EMD-CCA eyeblink
Zhao et al. [113] 2014 WT-AF eyeblink
Chen et al. [110] 2014 EEMD-CCA muscle
Mahajan et al. [105] 2015 Statistical-WT eyeblink
Mingai et al. [124] 2015 ICA-WT eyeblink
Gao et al. [125] 2015 ICA-EMD eyeblink
Mowla et al. [99] 2015 CCA-WT eyeblink
Zeng et al. [126] 2015 EEMD-ICA eyeblink
Wang et al. [127] 2015 ICA-EMD eyeblink
Mannan et al. [19] 2016 ICA-AF eyeblink
Bono et al. [103] 2016 WT-ICA/EMD eyeblink
Kanoga et al. [128] 2016 ICA-WT eyeblink
Patel et al. [109] 2016 EMD-PCA eyeblink
Jafarifarmand et al. [129] 2017 ICA-AF eyeblink
Patel et al. [130] 2017 EMD-Regression eyeblink
Al-Qazzaz et al. [100] 2017 ICA-WT eyeblink
Cinar et al. [106] 2017 Statistical-ICA eyeblink
Vijayasankar et al. [131] 2018 EMD-WT eyeblink
Chen et al. [111] 2018 EMD-ICA muscle
Sai et al. [115] 2018 ICA-WT-SVM eyeblink
Issa et al. [132] 2019 ICA-WT eyeblink
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Some of the most related works which may be viable for online applications are discussed
in the following subsections and summarized in Table [2.4]

Nguyen et al. [133] have reported their work on ocular artifact removal by combining WT
and Artificial Neural Network (ANN) and naming their technique Wavelet Neural Network
(WNN). Initially, the neural network is trained to classify artifacts using a separate arti-
fact/EOG recording and non-artifacts with simulated EEG signals. Once the network is
trained, contaminated EEG signals are subjected to WT to obtain wavelet coefficients,
which are then passed to the ANN classifier for artifact identification and correction. Cor-
rected wavelet coefficients are then reconstructed to get a clean version of the EEG
signal. The authors have mentioned that this algorithm is computationally efficient; the-
refore, it may be a reliable solution for real-time artifact removal. Though it is computa-
tionally efficient, this algorithm requires an additional artifact/EOG recording to train the
ANN classifier, which may add up some time delay for its implementation in real-time.
Moreover, the algorithm is only capable of removing artifacts from a single-channel EEG
signal, which is not practical for a real-world application.

Daly et al. [134] have developed a software plugin GUI, called the Fully Online and Auto-
mated Artifact Removal for Brain-Computer Interfacing (FORCe). This plugin works based
on the combination of WT, ICA and thresholding. It is designed to perform in an automa-
ted online environment and to remove several types of artifacts, such as the eyeblink
artifacts, cardiac artifacts and muscle artifacts. First, WT is applied to a 1-second epoch
on every channel of an EEG signal. The resulting approximation coefficients attained
through WT are subjected to ICA to get a set of independent components, ICs. Next,
the artifactual ICs are identified through several threshold criteria, where 1Cs exceeding
certain threshold values are classified as eyeblink and cardiac artifacts, and thus remo-
ved. The inverse of ICA on the remaining non-artifactual ICs is performed to estimate a
set of cleaned approximation coefficients. Then, soft thresholding is applied on resulting
approximation coefficients from ICA and detail coefficients acquired through wavelet to
suppress/remove muscle artifacts. Finally, the algorithm produces EEG epochs that are
free of artifacts.

While the algorithm is able to remove eyeblink, cardiac and muscle artifacts online, the
algorithm relies completely on manually pre-determined thresholds to classify if an IC is
artifactual. Furthermore, the selection of thresholds was based on the analysis performed
only on the EEG signals of two participants. Since artifact patterns or characteristics
may vary for every individual, manually adjusted and pre-determined thresholds based
on signals of two participants may not be suitable to detect and remove artifactual ICs
of a wider range of EEG datasets. The authors have also stated that the running time
of the algorithm would linearly increase with an increasing number of channels. So, this
would add up some time delay to its implementation in online operations, especially in
applications requiring additional number of channels, for example, in seizure detection
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units to localize epileptic foci.

Most recently, Tonachini et al. in [135] have developed an online automatic artifact rejec-
tion (REST), toolbox using artifact subspace reconstruction (ASR), PCA, online recursive
ICA (ORICA) and an IC classifier. ASR is an automated, variance-based algorithm, that
learns the statistical properties of an artifact-free EEG segment. Once the learning is
complete, PCA is applied to transform contaminated EEG segments into PCs, which are
then compared with the learnt data. PCs that are exceeding initially calibrated/learnt data
are removed, where transient and large-amplitude artifacts get removed in this stage. Re-
maining PCs are re-projected back to acquire a partially cleaned EEG segment. Next,
ORICA is performed on partially cleaned EEG segments from PCA, which produces a
set of ICs. These ICs are categorized into eye movement ICs and non-eye movement ICs
using an altered version of the EyeCatch classifier. The classification is done by getting
the correlation value of the ICs with the IC scalp maps contained in the library of Eye-
Catch. ICs that exceed a fixed correlation value is removed and a clean EEG segment is
reconstructed.

Though the authors have stated that this algorithm operates in an online setting to re-
move eyeblink, cardiac and muscle artifacts, they have clearly mentioned that ASR had
negligible effect on the removal of eyeblink artifacts. On the other hand, the time it took for
ORICA to converge well enough on the blink-related IC for the artifact to be removed is 26
seconds, which is too long for an online algorithm. Additionally, the authors have pointed
out that the altered version of EyeCatch classifier has introduced some instability to the
correlation values used in classifying the artifactual ICs. Hence, an online implementation
is certainly intolerable with the significant amount of time consumed by ORICA to identify
an eyeblink artifact related IC, and the instability introduced by the EyeCatch classifier.
Thus, it is concluded that this algorithm may not be suitable to eliminate eyeblink artifacts
in an online manner, although it can effectively remove cardiac and muscle artifacts.

18



TABLE 2.4 — Related Work on Online Artifact Removal

Network (WNN)

Neural Network

Related Work Techniques Findings/Limitations
Authors have clearly mentioned
that this algorithm requires an
additional artifact/EOG recording to
Wavelet Neural WT + Artificial | train the ANN classifier, which may

add up some time delay for its
implementation in real time, and it
removes artifacts only from a

single-channel EEG

Fully Online and Automated

Runs in MATLAB and is stated

Source Mapping
Toolbox (REST)

+ IC classifier
(EyeCatch)

Artifact Removal for ICA + WT + can be used forreal-time BCI
Brain-Computer Interfacing | Thresholding applications. FORCe able to remove
(FORCe) artifacts from multi EEG channels
Had negligible effect on eyeblink
ASR + PCA
Real-time artifact removal, instability of the
+ ORICA

EyeCatch classifier and ORICA
requires about 26 seconds to

converge well on a blink-related IC

Eyeblink artifacts pose a significant effect on the analysis and results of many EEG appli-
cations. The impact of eyeblink artifacts on some of the applications is discussed in this

section.

Epilepsy is a neurological disorder of the brain which causes seizures. According
to a study, an estimate of 150000 epilepsy cases is diagnosed yearly in the US
(http ://www.ninds .nih.gov/). One of the most common ways of diagnosing epilepsy is
through seizure detection using EEG signals. Whenever an epileptic patient develops a
seizure, a disruption of the electrical communication between neurons will occur, which
might endanger his life. Hence, developing automatic seizure detection is crucial. There
are several numbers of researches carried out to date for epileptic seizure detection. Yash

19




et al. [136] and Alotaiby et al. [137] have reviewed most of the existing seizure detection al-
gorithms. They include seizure detection and prediction through time-domain, frequency-
domain, Wavelet Transform, Singular Value Decomposition, Principal Component Analy-
sis, Independent Component Analysis, discrete Fourier transform, Hilbert transform, Ga-
bor transform, rational transform and Empirical Mode Decomposition. Recent techniques
utilize convolutional neural network [138, 1139], pyramidal one-dimensional convolutional
neural network [140], local binary pattern feature extraction [141] and cross-bispectrum
of EEG signal [142] in detecting epileptic seizures.

The latest direction in seizure detection is to perform real-time epileptic seizure detection.
Real-time seizure detection is necessary because patients suffering from epilepsy can
be treated without any time delay if their seizures are detected or predicted in real-time.
It is apparent that only very few studies been proposed on real-time epileptic seizure de-
tection. One of the issues in real-time seizure detection algorithms is how the eyeblink
artifacts can be identified and removed in real-time. Eyeblink artifacts often lead to mi-
sinterpretation of artifactual segments as an epileptiform activity. Epileptiform refers to
waves and spikes that may be associated with epilepsy. Eyeblink artifacts that are mi-
sinterpreted as the epileptiform activity may result in incorrect medication and treatment
of epilepsy patients [143]. Acar et al. [144] have stated that artifacts originating from eye
blinks and eye movements often undermine efforts to localize epileptic segments from
the EEG signal of an epilepsy patient.

Studies that are addressing real-time epileptic seizure detection techniques can be found
in [145H149]. Hanosh et al. [145] used Passive Infrared Sensors (PIR) for real-time epilep-
tic seizure detection during sleep. In this study, identifying and removing eyeblink artifacts
are not applicable as the study focused on seizure detection during sleep, where no eye
blinking activity occurs during this stage. Forooghifar et al. [146] have proposed the use
of a multi-parametric machine learning technique for real-time epileptic seizure detection.
The authors have mentioned that their proposed technique was not evaluated with the
presence of intense physical activities and artifacts, so the performance of the seizure
may degrade in the presence of such artifacts. Hosseini et al. [147] used the Random
Subspace Ensemble Learning. In this study, it was found that artifacts cause feature ex-
traction and classification prone to errors during automatic seizure detection. Vidyaratne
et al. [148] suggested a real-time seizure detection based on harmonic wavelet packet
transform (HWPT) and fractal dimension (FD). This study has also mentioned that EEG
artifacts may cause false seizure detection. The most recent study on real-time epileptic
seizure detection was proposed by Mansouri et al. [149] based on a network model of the
brain and a distance metric based on the spectral profiles of EEG signals. In this study and
analysis, the authors have found that the proposed method revealed poor performance
on some of the signals due to an excessive level of artifacts.

It is, therefore, crucial to remove eyeblink artifacts from EEG signals in real-time for proper
seizure detection and prediction in real-time epileptic seizure detection units.

In brain-computer interface (BCl) devices, eyeblink artifacts are considered as the most
significant and apparent type of artifact [150, [151]. If not correctly identified and removed,
eyeblink artifacts may be accidentally used as a source that could mislead classification
and the controllability of the BCI device. This scenario could lead to a drop in the BCI sys-
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tem’s performance during real-time applications. For this reason, BClIs related to severe
motor disabilities are in demand for accurate eyeblink artifact recognition and elimination
during online operations, which will make the BCI device more robust [152].

In neurofeedback, eyeblink artifacts are considered more problematic if not identified and
removed. Since the frequency of eyeblink artifacts often overlaps with those used for
neurofeedback training, the eyeblink artifacts could potentially manipulate the feedback
signal, which may strongly influence and invalidate the learning outcome [153]. Another
study by Sherlin et al. in [154] stated that eyeblink artifacts are possibly misinterpreted,
causing incorrect learning process. Therefore, the authors have strongly suggested that
a real-time eyeblink artifact detection and removal is required to avoid "artifact-driven”
feedback.

In research related to Alzheimer’s disease, EEG recording during the eyes open state is
not preferred mainly due to contamination from eyeblink artifacts, and artifact avoidance
is impractical. Whenever EEG signals are recorded during the eyes open state, excessive
eyeblink artifacts are present, thus artifact-free segments have to be patched together to
obtain sufficient duration of EEG signal for analysis. However, patching EEG segments
together produces discontinuous neural information, which may introduce incorrect inter-
pretation on the analysis of Alzheimer’s EEG signal [17]. In research related to cognitive
development, researchers prefer EEG portions associated with the cognitive process of
interest to be free of eyeblink artifacts so that the data analysis is meaningful [155]. It is,
therefore, mandatory to remove eyeblink artifacts from EEG signals for proper EEG signal
interpretation in any EEG-based application.

In clinical monitoring such as epileptic seizure detection units, neurofeedback and the
BCI, where EEG signals are analyzed and manipulated as they are being recorded, an
online artifact removal solution is required [20]. Various EEG based applications like BCl,
neurofeedback and epileptic seizure detection systems rely on the availability of instruc-
tions from the brain, which should be received instantly, and real-time operation of the
devices. It is imperative that these EEG-based systems are workable while the users are
performing their daily tasks or during a real-time monitoring, which means they should
operate in an online manner. However, researches and studies conducted thus far are
most often conducted in laboratory settings. Thus, the evolution of the applications from
the laboratory to real-life environments is essential. The online processing of a system
refers to operations of the desired application in acquiring EEG signal, process and pro-
duces output instructions to be executed during the experiment itself with acceptable time
delay. Therefore, it is mandatory for any algorithm that deals with BCI, neurofeedback and
epilepsy detection units perform EEG acquisition, artifact correction, feature extraction
and classification online. For reliable analysis of EEG signals, it is therefore essential that
eyeblink artifacts are correctly identified and removed. Useful EEG instructions can be
fed to BCI or neurofeedback applications only if eyeblink artifacts contaminating the EEG
signals are correctly identified and removed. Although automatic eyeblink artifact remo-
val algorithms are available, it has to be noted that studies addressing and implementing
online removal of eyeblink artifacts are essential.
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Since applications such as BCI, neurofeedback and epileptic seizure detection require
online signal processing, artifact removal methods and algorithms should be capable of
online processing. Hence, to cater for online eyeblink artifact removal, the methods or al-
gorithm should satisfy a few criteria. The most important requirement is that the algorithm
should be fully automatic without any expert’s intervention. Secondly, online applications
should avoid utilizing additional electrodes around the artifact originating regions, such
as EOG, as it may cause discomfort and inconvenience to the subject during long-term
EEG recordings. Third, it is advisable that the algorithm used for online applications do
not rely on eyeblink activity recording for training purposes, as they will add a significant
amount of time delay to the entire algorithm. Next, a multi-channel online eyeblink artifact
removal algorithms are preferred instead of single-channel artifact removal, as applica-
tions like BCIl and epilepsy detection require the availability of multi-channel cleaned EEG
data. Finally, online implementation requires the artifact removal algorithm to have mini-
mal computational complexity so that the algorithm doesn’t introduce unacceptable time
delay to the entire application.

All the techniques elaborated and discussed in section are among the most com-
monly available techniques in EEG’s artifact removal. An analysis is conducted on these
techniques to decide whether or not they can be used to remove eyeblink artifacts online,
which can be employed in EEG-based applications. Table [2.5]lists out existing techniques
and their viability for real-time eyeblink artifact correction.

From the analysis of the existing eyeblink artifact removal techniques, the following obser-
vations are made. Regression-based techniques can perform automatic eyeblink artifact
removal in the presence of a reference signal, hence may not be suitable for online appli-
cations. On the other hand, ICA, CCA and PCA-based techniques can be used for online
applications, provided these techniques are combined with an automatic artifact identifi-
cation and if the computational complexity is low. So among these 3 techniques, CCA,
which is with low computational complexity, can be considered as a solution for online
eyeblink artifact removal if the artifact identification is made automatic. Wavelet-based
techniques met 4 out of the 5 criteria listed for an online eyeblink artifact removal ap-
proach, however, it could only remove artifacts from a single-channel EEG. EMD-based
techniques also remove eyeblink artifacts from a single-channel EEG, but when combi-
ned with BSS techniques, it could perform multi-channel artifact removal. However, EMD-
based techniques are computationally costly, preventing it from being used for online
applications. All the hybrid techniques are also computationally complex, and some of
them requires training of the algorithms which may not be suitable for applications requi-
ring online removal of eyeblink artifacts. It can be concluded that a feasible online artifact
removal algorithm can be developed if artifact identification in CCA is made automatic
and the computational complexity of statistical features-BSS, EMD/EEMD-BSS/PCA al-
gorithms are reduced, without the need for training.

Contamination from eyeblink artifacts in EEG signals is inevitable, which could pose an
impact on the desired EEG application. To this extent, many studies have been conduc-
ted and various methods are developed to identify and remove eyeblink artifacts from
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EEG signals. However, studies and work to deal with online removal of eyeblink artifacts
remain an attractive research area. Every online artifact removal technique discussed in
this chapter depends on either a dedicated artifact reference recording or some kind of
training data that records artifacts separately for training purposes, which may add some
time delay to the techniques in online applications. There are still many issues in making
artifact removal algorithms truly real-time, reliable and practical. It has to be concluded
that studies addressing real-time processing and removal of eyeblink artifacts from EEG
signals are crucial.

Through literature survey, an algorithm that combines EMD and CCA in [108], is shown to
outperform the other commonly available artifact removal techniques in terms of artifact
removal accuracy, when evaluated on EEG signals added with synthetically generated
eyeblink artifacts. Despite the fact that it can accurately remove artifacts from the EEG
signals compared to other techniques, the algorithm is relatively slow due to its iterative
nature, making it computationally complex. As discussed earlier, if the artifact identifica-
tion is made automatic and if the computational complexity of the EMD-CCA algorithm is
reduced, the algorithm can be a feasible solution for online applications. The next chapter
provides an overview of EMD and CCA before discussing how these techniques can be
modified to make them faster for online applications.
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TABLE 2.5 — Criteria of Existing Techniques

. | Additional L Artifact Computational .
Method Automatic Training Online ?
Reference Removal Complexity
Expectation Yes No No Multi-channel Low Yes
Regression Yes Yes No ‘ Multi-channel Low No
BSS
ICA No No No Multi-channel High No
PCA No No No Multi-channel High No
CCA No No No Multi-channel Low No
Decomposition
Wavelet Yes No No Single-channel Low No
EMD No No No Single-channel High No
Hybrid

ICA-Regression Yes Yes No Multi-channel High No
Wavelet-BSS Yes No No Single-channel High No
Wavelet-EMD Yes No No Single-channel High No

Statistical ) )
Yes No No Multi-channel High No

features-Wavelet/BSS

EMD/EEMD-BSS/PCA Yes No No Multi-channel High No

Adaptive . .
Yes Yes Yes Single-channel High No

filters-Neural Network/WT

SVM-WT/BSS Yes No Yes Multi-channel High No
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This chapter discusses the implementation of Empirical Mode Decomposition (EMD) with
different interpolation techniques and Canonical Correlation Analysis (CCA) with different
matrix decomposition techniques, with the aim to help online eyeblink artifact removal
feasible. The Cubic Spline Interpolation (CSI) technique is the most commonly used tech-
nique in classical EMD for envelope construction [156]. In this chapter, EMD with Cubic
Hermite Spline Interpolation (CHSI) and the Akima Spline Interpolation (ASI) techniques
will be evaluated for their performance and efficiency in removing eyeblink artifacts, com-
pared to the conventional CSI technique. For CCA, three decomposition techniques, i.e.
Eigen decomposition, Singular Value Decomposition (SVD) and QR decomposition with
SVD are assessed in terms of their ability to decompose a multi-channel EEG segment
efficiently. Eyeblink artifact elimination and reconstruction of clean EEG segments with
CCA are illustrated as well.

Empirical Mode Decomposition (EMD) is an algorithm that decomposes a signal into mul-
tiple oscillating components. The algorithm reiterates itself until it can isolate the highest
oscillating component that remains in a signal. This is achieved through a process called
"sifting”, where it continually sifts out a local high oscillating trend called the intrinsic mode
functions (IMF). Each IMF should satisfy the following criteria as illustrated in [156] :

e contains equal number of extrema and zero crossings, or differ at most by one
e envelopes of the IMF are symmetric with respect to zero

In sifting, the signal of interest is first subjected to extrema search, where all the relative
maximum and minimum points are identified and saved. Then, interpolation is performed
to connect all the maximum points, thus forming an upper envelope. Similarly, all minimum
points are interpolated together to form the lower envelope. Next, the upper and lower
envelopes are averaged out to get a mean trend. Finally, the mean trend is subtracted
from the signal, resulting in a residual signal. This residual signal will be saved as an
IMF if it satisfies the IMF properties, otherwise sifting is continued on the residual signal.
The sifting process is repeated multiple times until multiple IMFs are obtained. In general,
EMD is performed to decompose a signal, X(¢), into multiple IMFs, x;(r) and a single

residual component, R,(f), which is monotonous through the sifting process, as in Eq.
.1 -
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X(@) =

n—1
x;(t) + R,(0) (3.1)
1

=

The detailed sifting process in classical EMD in extracting out the IMFs are described
below :

a. EMD is first fed with an input signal, z(r) which is also the signal of interest, X ().

2(t) = X(t) (3.2)

b. All relative extrema points in the input signal are identified and interpolated,
constructing upper and lower envelopes by connecting maximum and minimum
points through Cubic spline interpolation.

c. The upper and lower envelopes are then averaged to get a mean trend, m(t), which
is then subtracted from the input signal, z(¢), producing an output signal,y;(t) :

yj(0) = z(1) = m(1) (3.3)

d. The algorithm checks if the output trend, y;(z) satisfies the IMF criteria as stated in
this section.

e. Steps]p][c]and|d]are repeated until the IMF criteria are satisfied. If the IMF criteria
are not met, then the current output signal, y;(?) is re-injected into the algorithm as
a new input signal :

() = y;(0) (3.4)

f. Once the IMF criteria are satisfied, the algorithm assumes the current trend, y;(r) as
the first IMF output, x;(?) :

x1(1) = y;(®) (3.9)

dg.- The steps mentioned above are repeated recursively on the residual signal Ry(z),
where :

Ri(1) = X(1) — x1(1) (3.6)

Each successful sifting loop produces the i-th IMF of the algorithm, x;(¥). The recursive
sifting discontinues after the algorithm extracts out n — 1 IMFs, the instance where the
residual signal, R,(r) becomes a monotonic trend. R,(¢) is the residue from the original
EEG data after n — 1 IMFs have been extracted, while x;(¢) is the i-th IMF of the algorithm.
Fig.[3.1]shows the flow chart of EMD. The algorithm is relatively slow because it reiterates
itself until the final residual becomes a monotonic function.
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START

i=1,j=1
Original signal = X() = Ry()
Input signal = z(7)
Start: z(f) = X(1) = yo(t)

l

Construct Upper & Lower Envelopes,
calculate mean, m(t)

Treat y;(f) as input I
w0 = yn

Subtract m(t) from input signal:
yi0) = 2(1) - m()

Treat residue, R,(¢) as input
z2(H) = Ra(®

y,(t) satisfies I
criteria?

A

NO

Store IMF as x;(t) = yj(t)
Subtract the IMF from input signal
Ru(?) =Ri.1(1) - xi(1)

Y

Is R,(#) monotonic?

NO

FIGURE 3.1 — Flowchart of Classical EMD Algorithm
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The idea of isolating out the eyeblink artifact from the EEG signal by applying EMD is
suggested by Flandrin et al. in [157]. As elaborated above, the signal of interest is de-
composed into several IMFs and a residue. It extracts out the highly oscillating signal
that remains in the signal. Each IMF is a slower oscillating trend compared to the one
extracted in the previous iteration. The original signal can be reconstructed by adding up
all IMFs and the final residual signal. The EEG signal, which is the highly oscillating trend
with low amplitudes, will be captured in the first few IMFs of the decomposition. The eye
blink artifact, which is the slowly varying trend with a higher amplitude, is expected to be
captured by higher IMF trends and by the final residual trend. Hence, partial reconstruc-
tion of the higher IMFs and the final residual function obtained from decomposition would
yield the eyeblink artifact trend.

An overview of the cubic spline interpolation is discussed in the next subsection. The
following subsection discusses alternative interpolation techniques that can be used in
EMD.

Cubic Spline Interpolation (CSI) uses a second-order derivative function at every data
point to ensure continuity and minimum curvature for smoothness of the curve as elabo-
rated below.

i. In cubic spline interpolation, a 3rd-degree polynomial function is constructed bet-
ween two data points ([x;-1, vi-1] [xi, yi1), represented by a cubic polynomial func-
tion.

ii. The function to the left of point [x;, y;] is indicated as fi(x;) at point x;. Similarly, the
function to the right of point [x;, y;] is indicated as f;+1(x;) at point x;. These segments
are connected together, thus satisfying :

Jixi) = firr(x:) (3.7)
iii. In order for the segments to become continuous at every joint, the curve segments
should have the same slope where they join, which could be achieved by equating

the first derivative of two adjacent functions. This enforces continuity as the slopes
match where the curves join, i.e.

fi(x) = fi () (3.8)

iv. To guarantee that the curves have minimal curvature for smoothness at the joint,
the second derivatives of the functions are forced to be equal :

£ () = fi () (3.9)
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The impact of alternative interpolation techniques instead of CSl in EMD has not been
adequately evaluated. Rilling et al. [158] have suggested that CSl is preferred over linear
interpolation, which tends to increase the required number of sifting iterations and “over-
decompose” signals by spreading out their components over adjacent modes. In [159],
Hawley et al. used the trigonometric interpolation instead of CSI. They have suggested
that trigonometric interpolation is useful from an analytical point of view, but computa-
tionally it is much more expensive than CSI. On the other hand, Chen et al. in [160]
approached the B-spline interpolation to fit combined extrema before obtaining the local
mean. In [161], Kopsinis et al. used the Hermite spline interpolation. All these alternative
interpolation techniques have shown initial encouraging results, however, they are either
in the development stage or need further development.

The Cubic Hermite Spline Interpolation (CHSI) as proposed in [161] is investigated, and
the computation efficiency is evaluated as compared to CSI. Each segment in the CHSI
is also constructed by a cubic polynomial function. The proposed CHSI sacrifices curve
smoothness to prevent overshoots. This is achieved by eliminating the equivalent second-
order derivative at every point and substituting it with a specified first-order derivative,
which is the tangent to the segments at point [x;, y;] :

[ = fi () = £/(x) (3.10)

Akima Spline Interpolation (ASI) is first developed by Hiroshi Akima in the late 1960s
[162]. Similar to the CSI and CHSI, each spline segment of ASI is constructed by a cu-
bic polynomial function from point [x;,y;] to point [xi:1,vi+1]. The main concept of this
technique is calculating the slope f’(x;) at point x; which depends on the two immediate
predecessors of x;’s, ([xi-1,yi-11[xi-2,yi-2]), and the two immediate successors of x;’s,
([xi+1, yis11[Xiz2, yis2]) @s shown in Fig.[3.2]

Xi-2,Vi-2

Xi+1, Vi+1

Xit+2,Vi+2

FIGURE 3.2 — Slope computation at point [x;, y;]

The slope f’(x;) at x; is calculated by :

| My —mip1 | (mi—)+ | mi—y —mi_a | (myy1)

| mipp —mic |+ | mi—y —m_y |

fx) =

(3.11)
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where,

My = Yi-1 — Yi-2 (3_12)

The slopes of ASI are determined based only on the slopes of adjacent segments as
elaborated before. This minimizes the necessity to solve large system equations, which
in turn, reduces the computation time.

A synthetically generated EEG signal through autoregressive (AR) model for a duration
of 10 seconds (2560 EEG sample points at a sampling frequency of 256 Hz) can be
represented using the equation below as proposed in [163] :

Y(r) = 1.5084y(t — 1) — 0.1587y(r — 2) — 0.3109y(r — 3) — 0.0510y(r — 4) + w(z) (3.13)
The eyeblink artifact can be generated through exponential function :

Z(1) = 100”1049 _ 75,-(10=757 | 50,~(101-20.5)° (3.14)

Signals simulated using Eq. €13 and €19 shown in Fig. [3.3(a) and [3.3(b) respectively
can then be added together to obtain a contaminated EEG signal, X(r) as shown in Fig.

B-3(c) :

XO=Y®+Z@ (3.15)
a) - EEG
50 T T @ T T
OWWMMWWMMM%A
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50 ‘ ‘ ‘ ‘
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(c) - Contaminated EEG
100 \ \ \
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Samples

FIGURE 3.3 — (a) Synthetically Generated EEG Signal, (b) Synthetically Generated Eye-
blink signal, (c) Mixed EEG and Eyeblink Signal
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This section aims to evaluate the performance of three different interpolation techniques
in terms of Root Mean Square Error (RMSE), Percentage Root Means Square Difference
(PRD), Signal to Noise Ratio (SNR), correlation coefficient and the total computation time.
The three interpolation techniques that will be evaluated for its performance in EMD are
CSI, CHSI and ASI.

To evaluate the decomposition accuracy of EMD via CSI, CHSI and ASI techniques in
extracting out the eyeblink artifact, RMSE is calculated. RMSE is calculated by finding
the difference between the original eyeblink artifact and the extracted eyeblink artifact,
in which the extracted eyeblink artifact can be obtained through partial reconstruction of
higher IMFs and the final residual trend acquired from EMD decomposition. In Eq. 19,
Z(t) refers to the original eyeblink artifact generated from Eq. @149 and the Xend(H) and
R,(?) correspond to the IMF and residue which belong to eyeblink artifact, respectively.
RMSE closer to zero indicates the extracted eyeblink artifact via EMD is more precise
and closer to the original eyeblink artifact.

RMSE = \/Z(Z(t) - (Xend(l) + Rn(l)))2

n

(3.16)

The percentage root means square difference (PRD), measures the distortion percentage
between the original EEG signal and the reconstructed EEG signal. After decomposition
via EMD, partially reconstructing the lower IMFs will produce the clean EEG signal, deno-
ted as Yout(?) in EqQ. 1D The v(¢)in Eq. represents the original EEG signal simulated
through Eq. 813 A higher PRD value signifies that the reconstructed EEG signal has a
higher distortion compared to the original EEG signal.

PRD = 100 + \/ Zou() - Y07 (3.17)

(Yout(r) * Y(1))

Correlation coefficient is a measurement that quantifies the similarity between two data
vectors, in this case, between the simulated EEG signal and the corrected EEG signal
after decomposition :

. - C
Correlation Coefficient = ——2You® (3.18)
TY(@t) * O Youl(r)

where Cyq) v, 1S the covariance between clean EEG signal, Y(7), and reconstructed
EEG signal, You(?), while oy, and oy, are the standard deviations of these signals.

The correlation coefficient lies between 0 and 1, where a value approaching 1 denotes
higher similarity or correlation. The SNR is used in this analysis to determine the scale
of eyeblink artifact removed from the contaminated EEG signal via EMD. The SNR is
calculated before and after eyeblink artifact removal, using Eq. and €20

g
S NRoefore = 10log [i] (3.19)
T (n-X(1)
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(oa
S NRafer = 101og[—”’> ] (3.20)
T (Y()-Your ()

where, Y is the original signal simulated through Eq. €13 x(7) is the contaminated si-
gnal obtained by adding Eq. and(3.14] and Yq(7) is the corrected EEG signal after
decomposition. The standard deviations of these signals are represented with o- symbols.

Canonical Correlation Analysis (CCA) is a technique that is based on the blind source
separation (BSS) concept. As suggested by the name, BBS separates out a set of source
signals from a set of mixed signals without any priori knowledge about the source signals
or the weighted mixing components. The linear relationship between two multidimensional
variables is measured.

Conceptually, BSS assumes the contaminated or the set of mixed signals as the combi-
nation of clean EEG sources and artifacts, blended together with a mixing formula. Thus,
BSS attempts to isolate EEG sources and artifacts apart with an unmixing formula, which
can be useful for artifact elimination from EEG signals.

The observed EEG signal, X(t) is the first multidimensional variable, while the second
multidimensional variable is obtained by taking a temporally delayed component of the
observed EEG signal, Y(t) = X(t — 1). As BSS implies, the observed EEG signal X(t) is a
combination of sources S(t), where S(t) consists of EEG sources and artifactual compo-
nents, mixed through a weighted mixing matrix, W :

X(t) = WxS(t)

(3.21)
Y(t) = WyS(t)

The source signals can be obtained by projecting the weighted de-mixing matrix onto the
observed EEG signals as in Eq.822 ;

(3.22)
Sx(t) = AX(t)

Sy(t) = BY(t)

Hence, sources of the two multidimensional variables, Sx(t) and Sy(t) can be estimated if
the weighted de-mixing matrices, A and B are known.

In CCA, the sources are named as canonical variates or canonical components, U and
V. Canonical variates for a multi-channel EEG signal can be represented through a linear
combination between the de-mixing matrices with mean removed EEG variables, X and
Y, with » number of EEG sample points in one channel, and p are the number of channels
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of X(t) and Y(t) :
Uil =A1 X1+ A%+ ... +A1I,XAP

Uy = Ay X1 + Ao + ... + Azpfp

U, = Anlfl + Anzfz + ...+ Anpx},

. ) A (3.23)
Vi =Buyi + Bioy2 + ... + Bypyp
Vo = Barty1 + Booys + ... + By
Vi = ButY1 + Bpoyo + ... + BnpyAp
The dimension of the two multidimensional variables X and Y is :
X=nx
P (3.24)
Y=nxp
The dimension of the de-mixing matrices A and B is :
A=px
pxp (3.25)
B=pxp

The de-mixing matrices, A = [A1,A12,...,A1p] and By = [By1, Bia, ..., B1] are p number of
weight vectors with respect to X and Y respectively.

Eq. 2 can be generalized as below, similar to Eq. €22 :
U=AX

R (3.26)
vV =BY

The purpose of CCA is to find the de-mixing matrices A and B such that the correlation
between canonical variates is maximized. The correlation between the canonical variates,
U and V is called the canonical correlation, p. The p between U and V should be maximi-
zed, or as large as possible :

pi = corr(U;, Vi)

Ui Vi (3.27)

pi= —/——
,hﬁUhh?w

where p; is the i-th canonical correlation, U; and V; are the i-th canonical variates. From
Eq. , canonical variate pairs are derived, where (Uy, V1) is the first canonical variate
pair; similarly, (U,, V») is the second canonical variate pair, so on and so forth. The de-
mixing matrices Ay = [A11,A12,...,A1,] and By = [By1, Bia, ..., B,] are computed such that
the coefficient of canonical correlation between the first pair of canonical variates U,
and V; is maximized. The canonical correlation of the second pair of canonical variates
is computed in a similar way, provided that the second pair of canonical variates are
uncorrelated or orthogonal with the first pair and other pairs of canonical variates in the
subspace.

corr(Uy, Up) = corr(Vy, Vo) = corr(Uy, Vo) = corr(U,, Vi) =0 (3.28)

This procedure of finding de-mixing matrices is repeated until minimum dimension as
in Eq. is achieved and the canonical correlation for n x p canonical variate pairs
are determined. Since every pair of canonical variates should be uncorrelated with each
other, columns of U and V are cross orthogonal, with :

Diag = UTV (3.29)

where Diag is a diagonal matrix formed by a scalar multiplying an identity matrix.
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As discussed earlier, some rows of the canonical variates obtained through CCA re-
present the clean EEG sources and one canonical variates row represents the artifact.
So, if the artifactual canonical variates are forced to become zero and the artifact-free ca-
nonical components are projected back, a clean EEG segment that is clean from artifacts
can be reconstructed.

As stated in section CCA maximizes the correlation between U and V through de-
mixing matrices A and B. Subsection (3.6.1|illustrates how de-mixing matrices A and B are
estimated conventionally through Eigen decomposition.

In this subsection, the weighted de-mixing matrices are estimated through Eigen decom-
position. Substituting the definition from Eq. into Eq. results in :

ATXTYB
P = — —
VATXTXA VBTYTYB

(3.30)

Let auto-covariance matrices of X and Y be Cxx and Cyy, and the cross-covariance
matrices between X and Y be Cxy and Cyx. The auto-covariance and cross-covariance
matrices are substituted into Eq. €39 :
ATCxyB
o= Cxy (3.31)
VATCxxA VBTCyyB

Now, to simplify Eq. 37 let's assume new variables ¢ and d as representatives of auto-
covariance matrices and de-mixing matrices :

c= C2A
d=CY’
N (3.32)
A =cCyy
B =dCyy’
Next, substitute Eq. into Eq. :
TC Y CxyC/2d
p = XX “XYltyy (3.33)
VO Cxx O e JaTC ey 2
Eq. can be simplified to Eq. :
T CxyCyy d (334
p= :
VeTe vdTd
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Eq. becomes :

e-d

P = JTevata (3.39)

where e is equal to ¢TC5y/*CxyCyy>. Now, applying Cauchy-Schwarz inequality on the
numerator of Eq. B39 results in :

e.d <l -ldl
e.d < Ve eV d (3.3
replacing e back into B39 results in :
(" CR P Cxy CoA (@) < (" C Cxy Cy Coy Cyx Cy 02 @" - ay'/2 (3.37)
Eq. is Now re-written as :
(€TCy Cxy Cy Cyx Cy 20)12@” - d)!2
ps (cTe)l2(dTd) /2 (3.38)
Cancelling out (dTd)'/? gives :
< (T Cox Crr Cry Crx0)' ™ (3.39)

(CTC)1/2

From Eq. €37, equality exists if vectors d and Cyy/*CyxCyy’c are collinear. The maxi-
mum correlation can be achieved if ¢ is the eigenvector for maximum eigenvalue matrix
Cx4CxyCyy Cyx. By reversing the coordinates, the maximum correlation can be attained
if A is the eigenvector of C¢l CxyCyi Cyx and B is proportional to C3,CyxA, similarly if B
is the eigenvector of C{},CyxCxxCxy and A is proportional to CyyCxyB. Eigen decom-
position is then applied on matrix C;&nycg{CYX to solve the eigenvalue/eigenvector

problem :
CxkCxyCyi CyxA = 1A

1 1 (3.40)

where A represents eigenvalues in descending order (1; > A> >,...,> 4,) and A =
[an1, an, ....,anp] are the de-mixing matrices or the eigenvectors corresponding to the ei-
genvalues. Since both multidimensional variables x(t) and y(t) are related, either one of
the weighted de-mixing matrix, A or B, is solved.

The following subsections elaborate two alternative decomposition techniques that can
be used to estimate the weighted de-mixing matrices.
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This subsection will elaborate de-mixing matrices estimation through Singular Value De-
composition (SVD). Singular value decomposition factorizes a matrix M into :

M = USVT (3.41)

where U is an orthonormal eigenvector matrix of MMT, V is an orthonormal eigenvector
of MM and S are diagonal non-negative square roots of the eigenvalues of MM, which
is called the singular values or principal values of M.

In estimating the weighted de-mixing matrices of CCA, first SVD is applied separately on
both multidimensional variables x and y :

X =uis1v T
oo (3.42)
Y = uzS2vy
Next SVD is applied on the multiplied matrix of uf and u; to give :
ll}‘llz = l.l3S3V3T (343)
De-mixing matrices A and B are then computed as follows :
A = visy'uz (3.44)
B =vss;'vs (3.45)

In order to check if the estimated weighted de-mixing matrices are correct, A and B are
substituted back into Eq. to verify if a diagonal matrix is obtained :

Diag = UTV
= ATX"YB
= (vi 57" u3)(uy's1vi)(uas2v3 (V283 'v3)
= (u3 87 'V])(vistu] )(uas2v) )(v2s; ' vs) (3.46)
= (u3)(ujuz)(v3)
= u] (u3s3v3 )V3
Diag = s3

where s3 are diagonal non-negative square roots of X and y. This proves that the estima-
tion of A and B through SVD is acceptable.

In this subsection, the QR decomposition is employed to estimate the de-mixing matrices
instead of SVD alone. QR decomposition is a matrix decomposition that factorizes a given
matrix into an orthogonal matrix Q, and a triangular matrix R.

First, the two multidimensional variables X and Y are decomposed with QR decomposi-
tion :

X =qr; (3.47)
? = (a1 (348)
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where the q; and q, are orthogonal columns, while r; and r, are the upper triangular
matrices. Secondly, singular value decomposition, SVD is applied onto the orthogonal
columns from Eq. and Eq. to give :

a'q = 11353Vr3r. (3.49)
De-mixing matrices A and B are then computed as follows :

A =rjlu; (3.50)
B=r,'vs (3.51)

In order to check if the estimated weighted de-mixing matrices are correct, A and B are
substituted back into Eq. to verify if a diagonal matrix is obtained :
Diag = UTV

= ATXTYB

= (r; Tu3)(qy r])(@2r2)(r;'vs)

= (u3r; ) q])(@2r2)(r;'vs) (3.52)

= (u3)(q 42)(V3)

= ll;r(ll3S3V§)V3

Diag = s3

This proves that the estimation of A and B through QR and SVD is acceptable.

The implementation of eyeblink artifact removal from EEG using CCA is summarized
below.

1. For elaboration purpose, a data set, s(t) with a length of 5 seconds is used.

2. Synthetic eyeblink artifacts are added to the EEG dataset to produce contaminated
EEG signal. The synthetic eyeblink artifacts, eb(r) can be simulated through expo-
nential functions with different amplitudes, as in Eq. €33,

eb(t) = 40e (1010 4 4101307 | 3 ,=(101-45)* 4 5g,~(10:-70)° (3.53)

Contaminated EEG signal can be obtained by adding the EEG dataset s(r) with
synthetic eyeblink artifacts, as in Eq. €39.

X(t) = eb(t) + s(t) (3.54)

The second multidimensional data set, Y(t) is taken, with Y(t) = X(t — 1).

Mean removed signals, X(z) in Fig.[3.4/and Y (1) in Fig.[3.5|are obtained by removing
the respective mean from X(t) and Y(t).
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FIGURE 3.4 — First multidimensional data set, X(7)
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FIGURE 3.5 — Second multidimensional data set, Y(7)

Next, the weighted de-mixing matrices are estimated using approaches discussed

in subsections[3.6.1][3.6.2.7]and [3.6.2.2]

Canonical variates U are computed by projecting the estimated de-mixing weight
matrix A onto the mean removed signal X as in Eq. B2 The resulting canonical
variate U, is shown in Fig.[3.6]
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3.6.3.2/ RECONSTRUCTION OF CLEAN EEG SIGNAL

Clean EEG signal that is free from artifacts can be reconstructed by taking the inverse of

de-mixing matrix, A~!

, into the non-artifactual canonical components, Ugean :
Xclean = A_lUclean (3-55)
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FIGURE 3.8 — Artifact-free EEG dataset

3.6.4/ PERFORMANCE ANALYSIS ON DECOMPOSITION TECHNIQUES IN CCA
WITH REAL EEG SIGNALS

All three decomposition techniques, Eigen decomposition, QR-SVD and SVD in estima-
ting the de-mixing matrices in CCA are evaluated on EEG signals before and after arti-
factual component elimination. This evaluation is necessary to determine which of these
three decomposition techniques are most appropriate and effective in estimating weighted
de-mixing matrices for CCA, thus making it reliable to be used in the proposed eyeblink
artifact removal algorithm.

The evaluation is carried out on clean EEG signals of 5 randomly selected subjects, each
with 5 seconds of length. These clean EEG signals are added with synthetically created
eyeblink artifacts from Eq. 53 to obtain 5 seconds length of contaminated EEG signals.
Contaminated EEG datasets are subjected to artifact elimination through CCA, with three
matrix decomposition techniques discussed in subsections and
The performance of these matrix decomposition techniques within CCA in retaining the
neural information of the EEG signals is verified through correlation coefficient (CC) and
root mean square error (RMSE) values from Eq. @58 and E59 respectively :

CC = i Xow (3.56)
o-Xin * O—Xout .
" (X - X 2
AMSE - \/ e o)~ Koul®) 0.5

where Cyx, x., IS the covariance between clean EEG signal, X;5, and reconstructed EEG
signal after eyeblink artifact elimination, Xout. ox,, and oy, are the standard deviations of
these signals, and » is the number of sample points of the EEG signal.
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The results obtained for EMD applied on 100 trials of synthetically contaminated EEG
signals are tabulated in Table[3.1]

TABLE 3.1 — Performance metrics of CSIl, CHSI and ASI on 100 Trials

Interpolation Technique Csi CHSI ASI
RMSE

5.6028 | 4.5503 3.318
(100 Trials)
PRD (%)

82.0216 | 70.0675 | 43.5816
(100 Trials)
SNR-Before(dB)

-9.8427 | -9.8427 | -9.8427
(100 Trials)
SNR-After (dB)

3.1014 | 5.1581 | 8.4794
(100 Trials)
Correlation Coefficient

0.7518 | 0.8077 | 0.9063
(100 Trials)
Computation Time (s)

0.32 0.28 0.24

(100 Trials)

Fig. and depict the recovered EEG signal and eyeblink artifact from EMD
via CSI, CHSI and ASI respectively.
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FIGURE 3.9 — (a) Mixed EEG and Eyeblink Signal, (b) Recovered EEG Signal from EMD,
(c) Extracted Eyeblink Artifact from EMD-CSI
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FIGURE 3.10 — (a) Mixed EEG and Eyeblink Signal, (b) Recovered EEG Signal from EMD,
(c) Extracted Eyeblink Artifact from EMD-CHSI

42



EMD using ASI
100 (a)-Contaminated EEG

T T T
50 =
0
-50 = 1 I | | L4
0 500 1000 1500 2000 2500
(b)-Corrected EEG via EMD
T T

50

.50 1 1 1 1 1
0 500 1000 1500 2000 2500

(c)-EB Atrtifact

Amplitude(uV)

Extraced EB Artifact via EMD

100 ‘ ‘ ‘

50 ‘ Simulated EB Artifact ‘ /\g
0

.50 L L L L L

0 500 1000 1500 2000 2500
Samples

FIGURE 3.11 — (a) Mixed EEG and Eyeblink Signal, (b) Recovered EEG Signal from EMD,
(c) Extracted Eyeblink Artifact from EMD-ASI

The RMSE obtained for these three interpolation techniques are tabulated in Table[3.1] In
this analysis, the ASI has produced an average error of 27% lower than CHSI and 41%
lower compared to the conventional CSI. As discussed earlier, a smaller RMSE value
indicates higher accuracy between the original eyeblink artifact and the extracted eye-
blink artifact via EMD. The PRD value when using ASI is 38% lower than the CHSI and
44% lower than the CSI. This result demonstrates that ASI produces the least distor-
tion in reconstruction among the three interpolation techniques. The average correlation
coefficient is obtained between the original EEG signal and the recovered EEG signal
after eyeblink artifact removal through EMD for 100 trials. The use of ASI within the EMD
algorithm has led to the highest correlation coefficient in comparison with the other two
interpolation techniques. From Table [3.1] ASI for EMD yields 63% higher SNR on average
compared to the CSI technique.

RMSE, PRD, SNR and correlation coefficient suggest that EMD algorithm with ASI will
help to ensure higher decomposition accuracy and a better option for eyeblink artifact
template extraction. These results justify that the ASI technique serves a lower compu-
tational burden to EMD algorithm with higher reconstruction accuracy in shorter compu-
tation time. Envelope construction through CSI fulfills second-order derivation at every
extremum point to ensure continuity and spline curvature smoothness. Since envelope
construction through CSI forces two adjacent splines to be continuous at first and second
derivatives, the formed envelopes are susceptible to overshoots and undershoots. This
produces an erroneous mean estimation during sifting and this error could eventually get
transferred and added to the whole data set on every iteration of EMD’s sifting process,
resulting in an inaccurate and unreliable decomposition. Since the envelope construction
of ASl is determined based only on the slopes of adjacent segments with continuity only
up to the first-order derivative, ASI produces envelopes that are not as smooth as the CSI
but results in better decomposition accuracy. This also reduces the necessity to solve
large system equations which in turn, reduces the computation time as indicated by the
results.
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3.7.2/ COMPARISON OF DECOMPOSITION TECHNIQUES IN CCA FOR EYEBLINK
ARYIFACT REMOVAL

The average CC , average RMSE and computation time of 5 EEG signals on all channels
are tabulated in Table [3.21

TABLE 3.2 — Average CC, RMSE and Time for Implementation of CCA through Eigende-
composition, QR-SVD and SVD

Average CC Average RMSE Average Time (s)
Channels | Eigen | QR-SVD | SVD | Eigen | QR-SVD | SVD Eigen | QR-SVD | SVD
Fp1 0.9597 | 0.9597 | 0.9609 | 1.5284 | 1.5199 | 1.4998
F3 0.9347 | 0.9347 | 0.9353 | 1.3800 | 1.3833 | 1.3742
C3 0.9312 | 0.9312 | 0.9329 | 1.4278 | 1.4257 | 1.4081
F7 0.9264 | 0.9264 | 0.9269 | 1.3856 | 1.3877 | 1.3796
Fz 0.9564 | 0.9564 | 0.9582 | 1.5914 | 1.5772 | 1.5508
Fp2 0.9634 | 0.9634 | 0.9642 | 1.4883 | 1.4796 | 1.4629 0.2265 | 02384 | 03268
F4 0.9528 | 0.9528 | 0.9536 | 1.4819 | 1.4817 | 1.4661
C4 0.9315 | 0.9315 | 0.9326 | 1.3964 | 1.3952 | 1.3865
F8 0.9515 | 0.9515 | 0.9521 | 1.4013 | 1.4002 | 1.3872
Cz 0.9170 | 0.9170 | 09177 | 1.3514 | 1.3529 | 1.3449
Pz 0.9293 | 0.9293 | 0.9299 | 1.3433 | 1.3449 | 1.3348
A2A1 0.9258 | 0.9258 | 0.9274 | 1.4003 | 1.3969 | 1.3848
Average CCof 5 Subjects
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20.9400 | |
= nnffil
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FIGURE 3.12 — Comparison of Average CC for Implementation of CCA through Eigende-
composition, QR-SVD and SVD
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FIGURE 3.13 — Comparison of Average RMSE for Implementation of CCA through Eigen-
decomposition, QR-SVD and SVD

The correlation coefficient (CC) is used to measure the resemblance of reconstructed
EEG signal with the clean EEG signal after artifact elimination. The root mean square
error (RMSE), on the other hand, measures the reconstruction error between clean and
reconstructed EEG signals. The ideal expectation is to have the reconstructed EEG si-
gnals with zero distortion after artifactual components are eliminated, whereby CC should
be 1 and RMSE should be 0. In reality, neural information loss during artifact correction
is inevitable. However, the loss of neural information can be minimized through enhan-
cements made to the artifact removal algorithms. The effectiveness of the three matrix
decomposition techniques within CCA in preserving underlying EEG can be interpreted
when CC value approaches 1 and RMSE value close to 0.

From Table CCA implementation through Eigen decomposition and QR-SVD pro-
duces similar CC values on all channels, while SVD produces slightly better CC values
than Eigen decomposition and QR-SVD, but the difference is not significant as depicted in
Fig. In the worst-case scenario, the maximum CC difference among the three matrix
decomposition techniques is on the C3 channel, which is by 0.19%. In terms of RMSE,
CCA through SVD produces the least reconstruction error among the three decomposi-
tion techniques, followed by either QR-SVD or the Eigen decomposition as shown in Fig.
The maximum RMSE difference among these techniques is 2.55% on Fz channel.
In general, the CC values range from 0.9170 to 0.9642, and the RMSE values range from
1.3348 to 1.5914 for all three decomposition techniques. The minimum CC is 0.9170 and
maximum RMSE is 1.5914, denoting apparent loss of neural information along with arti-
factual component elimination. This is due to the distribution of some EEG information into
the artifactual canonical components, which is then forced to become zero and removed
during artifact elimination. Hence it is imperative to minimize the loss of neural informa-
tion during the reconstruction of a clean EEG signal. This can be achieved if CCA is used
for artifact removal only on artifact occurring locations. Another way to minimize neural
information loss is by incorporating a sliding window approach in CCA implementation.
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In this chapter, three interpolation techniques in EMD and three matrix decomposition
techniques in CCA are investigated to remove eyeblink artifacts from contaminated EEG
signals. Based on the discussion above, it can be concluded that all three interpolation
techniques in EMD are able to remove eyeblink artifacts reliably. The results have re-
vealed that EMD with ASI performs better in removing eyeblink artifacts, but slow time.
Therefore, further modification of the EMD algorithm is required to improve the computa-
tion time. This is to ensure the EMD algorithm can be used for real-time eyeblink artifact
removal in EEG applications. On the other hand, matrix decomposition techniques in
CCA has revealed that CCA implementation through SVD is better compared to Eigen
and QR-SVD. However, the reconstruction differences among them are very less, which
means they perform almost alike. Hence, any of these three techniques can be used as
a reliable decomposition technique to estimate the weighted de-mixing matrices of CCA.
The execution time of SVD is slightly longer, about 0.33s on average. Considering the the
requirement of faster computation time for a real-time application, either eigen or QR-SVD
technique can be used in CCA implementation for eyeblink artifact removal.
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This chapter is divided into several sections. First, a new algorithm, (eADA), to automa-
tically identify eyeblink artifacts with adaptable and varying threshold values, without any
supervision on the EEG signal is proposed. The idea behind designing an eyeblink artifact
detection algorithm is to assist the subsequent artifact removal algorithm. The eyeblink
artifacts contaminate the EEG signal at random points of the EEG signal, which tanta-
mount to a very short period in time compared to the entire length of the EEG signal. The
artifact correction algorithm does not have to work on long EEG segments if accurate lo-
cations of the eyeblink artifacts are identified in advance. Consequently, distortion to the
artifact-free segments of the EEG signal can be avoided.

Several modifications to the classical EMD algorithm are proposed to resolve the proces-
sing time inefficiency of the algorithm, which will be discussed in the second section. The
combination of eADA, modified EMD and CCA is proposed, producing FastEMD-CCA?
which can be used to remove eyeblink artifacts in online applications.

Thirdly, an algorithm that combines eADA and CCA, FastCCA, is proposed to remove
eyeblink artifacts from EEG signals for online applications. In this algorithm, the need to
use EMD is eliminated, so it is a viable solution as well for applications requiring online
removal of eyeblink artifacts.

Synthetic eyeblink and EEG signals are simulated for validation purpose in MATLAB
2018b. Synthetic eyeblink artifacts, Z(¢) can be simulated through exponential functions
with different amplitudes :

Z(1) = 15¢7 107" 4 15710307 4 11060 4 11085 (4.1)

On the other hand, a synthetic EEG signal can be generated through pinknoise, Y(¢) for a
duration of 10 seconds, 2560 sample points at a sampling frequency of 256 Hz. EEG and
eyeblink artifact models simulated through pinknoise and exponential function are shown
in Fig. [4.1(a) and [4.1}b) respectively. Both synthetic EEG signal and eyeblink artifact are

47



mixed together to acquire a set of synthetically contaminated EEG signal, X(¢) as in Fig.

[-Akc).
X0 =Z1) +Y() (4.2)
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FIGURE 4.1 — (a) Synthetic EEG Signal, (b) Synthetic Eyeblink Artifact, (c) Contaminated
EEG Signal

The synthetic EEG signals and the eyeblink artifact models differ from synthetic signals
generated in section[3.3.3] Chapter[3] The parameters chosen in generating the synthetic
signals differ as well, i.e., the amplitudes of the eyeblink artifacts generated through ex-
ponential functions. This difference is to indicate different means of generating synthetic
signals, as well as to demonstrate that the algorithms will be able to remove artifacts from
these synthetic signals regardless of the nature of their modelling.

The EEG dataset that is used for evaluation in this thesis were collected at Hitachi, Ha-
tayoma site in Japan. EEG signals from volunteers were obtained according to the regula-
tions of the internal review board on Central Research Laboratory, Hitachi, Ltd., following
receipt of written informed consent. The approval number is 20131021-0138. These EEG
signals have been primarily collected to conduct a study on mental stress. Since all re-
corded signals were contaminated by eyeblink artifacts, the dataset is appropriate for use
in this research. These EEG signals are recorded using 14 free electrodes placed on the
scalp following the 10-20 system. The EEG signals were collected from 10 participants
with 6 recordings from each participant, resulting in 60 EEG signals. The participants are
aged between 30 and 55 years. All recorded signals are of different durations, which were
recorded at a sampling rate of 256 Hz. This EEG dataset is mainly used to verify various
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techniques and algorithms discussed and proposed throughout the thesis. The total num-
ber of eyeblink artifacts found in this dataset are more than 5600, which were identified
through manual inspection. The number of eyeblink artifacts contaminating each of the
EEG signal varies, ranging from 20 to 172 occurrences.

Apart from the Hitachi dataset collected, a publicly available EEG dataset which contains
involuntary eyeblinks were used, which was collected through an experiment by Kanoga
et al. [128]. These EEG signals are recorded using 14 electrodes, following the 10-20
system. This dataset consists of EEG signals from 20 participants, with 3 recordings from
each participant, resulting in 60 EEG signals. The participation in the study was approved
by the Research Ethics Committee of Keio University, Japan. All recorded signals are of
different durations, which were recorded at a sampling rate of 256 Hz. This EEG dataset
is used as an additional dataset for validation purpose. The total number of eyeblink
artifacts found in this dataset are more than 4600, which were identified through manual
inspection. The number of eyeblink artifacts contaminating each of the EEG signal varies,
ranging from 5 to 200 occurrences.

In an EEG signal, the eyeblink artifacts are primarily captured in the frontal electrodes,
Fp1 and Fp2. This is because the frontal electrodes are in close proximity with the eyes.
Another logical point to note here is, both eyes of any individual blink simultaneously.
Hence, the correlation between the Fp1 channel and the Fp2 channel is expected to be
high whenever eyes blink, which can be confirmed with correlation analysis. The cor-
relation analysis is a method to statistically evaluate the relationship of two continuous
variables. In EEG signal, the correlation between Fp1 and Fp2 signals are thus defined
as a similarity index between these two signals, stated in Eq. :

CrplEp2
OFp1 * OFp2

Correlation Coefficient = (4.3)

where Crp1.rp2 is the covariance between segments of Fp1 and Fp2, oy and orp2 are
the standard deviations of Fp1 and Fp2 respectively.

To validate the hypothesis, where the correlation of Fp1 and Fp2 channels will be high
whenever eyes blink, the correlation between Fp1 and Fp2 channels of an EEG signal
is computed in segments of 500 sample points (1.95 seconds) per segment, on 30 EEG
signals. This window size is chosen so that at least one eyeblink artifact can be cap-
tured in this window. Fig. shows an example of Fp1 and Fp2 recordings and their
corresponding correlation coefficient values in each segment.
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FIGURE 4.2 — Correlation Coefficient, CC, between Fp1 and Fp2 Electrodes

The test has revealed that segments of Fp1 and Fp2 without eyeblink artifact produce a
correlation below than 0.7. This lower correlation may be due to the difference in neurolo-
gical activity in the frontal region, which produces lesser similarity between Fp1 and Fp2
channels. Whereas segments containing eyeblink artifact results in higher correlation,
usually more than 0.9. This is because, when the eyes blink, the electrical potentials ge-
nerated around the eyes are very high, which can be easily captured by the Fp1 and Fp2
electrodes, hence producing a higher correlation between Fp1 and Fp2 channels during
blinking. Thus, the existence of eyeblink artifact in a particular segment or window can be
easily found, by the high correlation coefficient value of more than 0.9, which proves the
hypothesis. So, the correlation coefficient value of 0.9 is set to indicate the presence of
an eyeblink artifact in a particular window while designing the automatic eyeblink artifact
detection algorithm.

Following this, segments of the EEG signal contaminated with eyeblink artifacts are iden-
tified. However, a threshold value is required to determine the eyeblink artifact potentials
and the starting point of the eyeblink artifacts, for subsequent analysis or artifact removal.
Subsection[4.2.2 will discuss on the automated calculation of the threshold level for every
window identified to contain an eyeblink artifact.

The unsupervised and automatic artifact detection algorithm requires a threshold to de-
termine the starting point of an eyeblink artifact. Displacement or deviation of amplitude
from the mean is chosen as a threshold criterion to classify the onset of an eyeblink arti-
fact. The displacement of amplitude is chosen as the threshold criterion because eyeblink
artifacts are, in general, higher in amplitude relative to that of the EEG or brain signal.
Therefore, the eyeblink artifact components are expected to produce higher amplitude
displacement compared to uncontaminated EEG potentials. First, the amplitude displa-
cement from the mean is calculated within an Fp1 window that exhibits a high correlation
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with Fp2, as illustrated in subsection using Eq. ¢4 :

Displacement[t] = |[X[7] — u]l. (4.4)

X[1] is the EEG signal’'s amplitude at time #, and for any given window starting at sample
point n, X[f] is evaluated from # = n to ¢t = n + 500, and u is the mean of that particular
window.

An experiment is conducted to define the classification criterion to classify EEG potentials
and eyeblink artifacts using varying threshold levels. From the displacement distribution,
mean (1) and standard deviation (o) are acquired.

Fig. shows an example of displacement distribution by setting the threshold value to
be any displacement value beyond 10 from the mean, while Fig. 4.4 shows the identified
eyeblink artifacts (plotted in red) when the threshold is set beyond 1o
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FIGURE 4.3 — Displacement Distribution for Threshold Greater Than 1o
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FIGURE 4.4 — Sample Points of Identified Eyeblink Artifacts for Threshold Greater Than
10

From Fig. it can be seen that some of the EEG potentials are identified as eyeblink
artifacts when the threshold is set beyond 1o from the mean.

Fig.[4.5]shows the displacement distribution of the same segment by setting the threshold
value to be any displacement value beyond 2o from the mean, while Fig. shows the
identified eyeblink artifacts (plotted in red) when the threshold is set beyond 2.
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FIGURE 4.5 — Displacement Distribution for Threshold Greater Than 2o
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FIGURE 4.6 — Sample Points of Identified Eyeblink Artifacts for Threshold Greater Than
20

From Fig. it can be seen that all eyeblink artifacts are identified as eyeblink artifacts
when the threshold is set beyond 20 from the mean, while no EEG potential is identified
as eyeblink artifacts.

Fig. shows the same displacement distribution by setting the threshold value to be
any displacement value beyond 3¢ from the mean, while Fig.[4.8|shows eyeblink artifacts
plotted when threshold is set beyond 3o
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FIGURE 4.7 — Displacement Distribution for Threshold Greater Than 3o
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FIGURE 4.8 — Sample Points of Identified Eyeblink Artifacts for Threshold Greater Than
30

From Fig. it can be seen that none of the eyeblink artifacts were identified as eyeblink
artifacts when the threshold is set beyond 3¢ from the mean.

The average accuracy level for 60 EEG signals from section|4.1.2.1], with thresholds grea-
terthan 10, 20- and 3o from the mean of the displacement distribution is tabulated in Table

4.1l

TABLE 4.1 — Average Accuracy in Eyeblink Artifact Detection with Different Thresholds

Average (60 EEG Signals)

Threshold | u+10 | u+20 | u+ 3o
Accuracy | 95.8% | 99.47% | 57.17%

From the experimental result, the onset point of an eyeblink artifact and eyeblink artifact
potentials can be correctly determined by taking two standard deviations, 20~ width from
the mean of the displacement distribution acquired, as in Eq. &3 :

threshold = u + 20 (4.5)

Any absolute value beyond 2¢ is classified as an eyeblink artifact potential and the first
sample point that exceeds this threshold is considered as the eyeblink artifact'’s onset
point.

In the algorithm, the starting point of the frame is moved 100 sample points (0.39 seconds)
ahead from the onset of the eyeblink artifact. The reason for setting the starting point of
the frame in advance of 100 sample points before the eyeblink artifact’s onset is to provide
a buffer for any subsequent analysis. The endpoint of the frame is then set to 256 sample
points, or 1 second, after the onset of the eyeblink artifact. The eyeblink artifact frame
is therefore taken to be from the starting point until the endpoint of the frame. Thus, an
eyeblink that can last up to 0.8 seconds (205 sample points) in duration completely fit into
this frame (100+256=356 sample points).
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Fig. summarizes the unsupervised eyeblink artifact detection (€ADA) algorithm in a

flowchart.

k=1:length of X(t)
A P> Window size = 500,
Windows (Fpl & Fp2) =k + Window size

\ 4

Find Correlation Coefficient (CC) between
Fpl & Fp2 windows

k =k + Window size

k=EB end CC>0.9

YES

Compute Amplitude Displacement (Deviation)
Threshold = (p + 2 o) of Displacement Distribution

v

EB onset = 1* sample > threshold
EB start = 100 samples before EB onset
EB end =1 second after EB onset,
EB frame = EB start to EB end,
Store this frame as an EB artifact region

NO

A

End of EEG Signal?

FIGURE 4.9 — Flowchart of the Unsupervised Eyeblink Artifact Detection Algorithm

In online applications, classical EMD could cause the overall processing time to increase
as the algorithm is iterative in nature. The existing classical EMD algorithm has to be
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modified and its usage has to be reduced, such that it can be a feasible algorithm to
be used in online applications. Some modifications to the classical EMD algorithm are
proposed in this subsection to resolve the processing time inefficiency of the algorithm.

A major concern in the sifting process of classical EMD is that it relies on how the upper
and lower envelopes are being constructed through interpolation. In online applications,
classical EMD could cause the overall processing time to increase as the algorithm is ite-
rative and dependent on interpolating a large number of extrema. The interpolation within
classical EMD would consume a lot of the computer resources, hence classical EMD can
be inefficient when removing eyeblink artifacts from lengthy EEG signals, especially in
applications requiring online processing.

The performance of classical EMD with other interpolation techniques were tested and
evaluated as elaborated in Chapter [3] Among the alternative interpolation techniques in-
vestigated were the Cubic Hermite Spline Interpolation (CHSI), and the Akima Spline
Interpolation (ASI). These two interpolation techniques were investigated in terms of their
ability to retain the reconstruction accuracy after decomposition and their speed compa-
red to Cubic spline interpolation (CSI), which is used in the classical EMD algorithm. The
ASI has produced the highest correlation coefficient of 0.9063, lowest Root Mean Square
Error (RMSE) of 3.3, and lowest percentage root means square difference (PRD) of 44%,
better Signal to Noise Ratio (SNR) of 8.5dB and faster computation time of 0.24s, in de-
composing an artificial EEG signal compared to CSI. These results justify that the ASI
technique will serve a lower computational burden with shorter computation time within
the FastEMD algorithm. Furthermore, its reconstruction accuracy is higher compared to
the other two interpolation techniques.

Another factor that limits the usage of classical EMD in online applications is the repetitive
sifting process required in obtaining the IMFs. Sifting in classical EMD algorithm can be
classified as redundant in two aspects. First, the algorithm has to repeat sifting numerous
times before any of the resulting trends satisfies the IMF criteria, and thus can be clas-
sified as an IMF. To overcome this issue, a stopping criterion for every IMF is used. The
stopping criterion for IMFs is adopted from [156], which is based on a standard deviation
computation. The standard deviation (SD) is defined as the normalized squared diffe-
rence between two sifting iterations, which is assumed to indicate consistency between
two sifting outputs and measures repetitiveness of the sifting outputs. The SD value is
calculated from two consecutive sifting outputs, y;(r) and y;_;(¢) as shown in Eq. :

k . — ()2
SD=) [M <02 (4.6)

1=0 y?—l(t)

where k is the number of sample points in the original signal, X(r). The SD value should
be less than a pre-determined value, normally 0.2 or 0.3 to stop the sifting iteration in
FastEMD.
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Secondly, the algorithm has to reiterate itself multiple times to attain multiple numbers
of such IMFs, because it can’t terminate sifting until the residual signal becomes a mo-
notonous function. Therefore, IMF extraction through repetitive sifting iterations causes
the classical EMD algorithm to be computationally expensive. To overcome this issue,
the number of IMFs extracted out through FastEMD is fixed to a constant number. The
higher oscillations in the raw EEG signal will be isolated out in the first few IMFs, while
the sum of remaining IMFs would by default produce an eyeblink artifact trend. Partially
reconstructing the highly oscillating IMFs which are lower in amplitude would yield the
EEG trend. Alternatively, low oscillating IMFs with high amplitudes are summed together
to obtain the eyeblink artifact trend. Manual observation on IMFs produced by 30 EEG
signals from the Hitachi dataset reveals that the clean EEG components are most often
sifted out in the first two IMFs, while the remaining IMFs and the residual signal comprise
the eyeblink artifact components. Therefore, the FastEMD algorithm is designed to de-
compose the raw EEG signal to up to 5 IMFs only, which is sufficient to segregate out
the clean EEG signal and the eyeblink artifact trend. Consequently, this reduces the com-
putation time, and the algorithm does not have to repeat itself to extract too many IMFs
until a monotonic residue is acquired. However, IMFs corresponding to EEG and IMFs
corresponding to eyeblink artifacts need to be selected for reconstruction purposes. This
selection process can be automated with the help of CCA, which will be discussed in the
following subsection.

Selection or classification of IMFs in FastEMD is required to categorize whether an IMF
belongs to EEG or the eyeblink artifact, subsequently extracting out the eyeblink artifact
template. This can be accomplished by subjecting the row vectors of IMFs to CCA. Fig.
shows the canonical variates obtained by applying CCA on the IMFs.

Canonical Components of IMFs
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FIGURE 4.10 — Canonical Variates of the IMFs

The most pertinent artifactual canonical variate row is extracted out as the eyeblink artifact
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template. The remaining canonical variates are non-artifactual sources, so they are used
to reconstruct the clean EEG trend. The eyeblink artifact template and the clean EEG
signal reconstructed using IMF’s canonical components are shown in Fig.

40 T T T

Eyeblink Artifact Template
30+ Reconstructed Clean IMFs | |

Amplitude (uV)

_40 Il Il Il Il Il Il Il
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FIGURE 4.11 — Extracted Eyeblink Artifact Template and Reconstructed EEG Signal

An updated flowchart of FastEMD-CCA with modifications discussed above is shown in

Fig.
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FIGURE 4.12 — Flowchart of FastEMD-CCA Algorithm
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In the previous section, a general eyeblink artifact template is extracted. In this subsection,
the extracted general eyeblink artifact template will be utilized further by CCA for eyeblink
artifact elimination. So CCA is used, first in selecting the eyeblink artifact related IMFs
after FastEMD application, and second in eliminating the remaining eyeblink artifacts that
are present in an EEG signal. Thus the entire algorithm is named FastEMD-CCA? as CCA
is used twice.

In applications that require online processing of EEG signals, the applications could not
wait until the entire EEG signal is recorded for analysis, as it may take from a few hours
to days for an EEG recording to be completed. Moreover, the eyeblink artifacts have to
be removed as the EEG is being recorded. Generally, the classical EMD algorithm is not
recommended to be used for artifact removal after the EEG recording is complete, as it
may cause a delay in artifact correction and subsequent signal interpretation. Applying
classical EMD on the entire EEG recording will also cause the desired application to get
computationally heavy. As an option, classical EMD can be applied repetitively on short
EEG segments to remove eyeblink artifacts, whenever eyeblink artifacts are captured,
provided the occurrence of eyeblinks are known. Unfortunately, classical EMD gets com-
putationally inefficient and slow on repetitive application to a huge EEG signal, especially
during online recording and analysis, which may even cause disruption to the recording
task.

To resolve this, the unsupervised eyeblink artifact detection algorithm (eADA) proposed
in section is utilized. Several eyeblink artifact regions are searched, identified and
saved using eADA until two eyeblink artifact regions exhibit a correlation coefficient of
more than 0.9. The correlation coefficient value of more than 0.9 is chosen assuming
that a high correlation between the eyeblink artifact regions denotes repetitiveness or
similarity in the blinking pattern of an individual, which can be assumed as a general eye
blinking pattern for that particular EEG signal. The two eyeblink artifact regions with high
cross-correlation are indicated with boxes in Fig.
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FIGURE 4.13 — Highly Correlating Eyeblink Artifact Regions Subjected to FastEMD

FastEMD is applied only on the latter eyeblink artifact region identified in Fig. [4.13|to ex-
tract out an eyeblink artifact template, thus keeping the number of FastEMD applications
as low as possible. This prevents FastEMD to be used repetitively, especially when the
EEG signal is processed in an online manner. This method is different compared to what
is being practised in classical artifact removal technique through EMD, where classical
EMD will be applied to remove the artifacts whenever an artifact event is identified. The
IMF's obtained through FastEMD are subjected to CCA as illustrated in subsection[4.3.1.3]
to extract out a general eyeblink artifact template. In this proposed technique, FastEMD
and CCA serve just for an eyeblink pattern or template extraction to be utilized further by
CCA again for artifact elimination. This eyeblink artifact template will serve as an artifact
reference to remove every other eyeblink artifacts that contaminate the EEG signal.

Remaining eyeblink artifacts that are contaminating an EEG signal are removed with the
help of the extracted eyeblink artifact template, assuming every other eyeblink artifacts
within a subject exhibit consistent pattern with the template. A sliding window with the
length of the extracted eyeblink artifact template is moved along the EEG signal and each

EEG window is cross-correlated with the general eyeblink artifact template extracted, as
in Eq. :

) C
Cross-correlation = —~-Xes® (4.7)

OX®) * TXep(0)
where Cx() x5 IS the covariance between the contaminated EEG signal, X(r), and the

eyeblink artifact template, Xgg(#), while ox) and oy, are the standard deviations of
these signals.

Observations and validation on the real EEG signals illustrated in section{4.1.2.1|revealed
that the correlation between the eyeblink artifact template and EEG windows contamina-
ted with eyeblink artifacts often lies in the range of 0.4 to 0.6, so a correlation value of
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more than 0.4 is used to indicate the presence of an eyeblink artifact. Hence, EEG win-
dows that exhibit a similarity score of more than 0.4 with the eyeblink artifact template
are confirmed as eyeblink artifacts, thus subjected to CCA for artifact removal. Remo-
val of the eyeblink artifacts from the multichannel EEG signal relies on the elimination of
the artifactual canonical components of CCA. First, CCA estimates the canonical com-
ponents that maximize temporal correlation within the specified window. Then, the most
pertinent artifactual canonical components, usually the the most cross-correlated canoni-
cal component (U;, V;), among the canonical variate vectors are forced to become zero in
order for it to behave non-artifactual. The artifact-free canonical components are termed
as Ugean- Finally, a clean EEG segment is reconstructed by projecting the inverse of the
de-mixing matrix, A~! into the non-artifactual source, Ugean, as explained in Chapter (3|
section3.6.3.2

X(f)clean = Al Uclean(?) (4-8)

The flowchart of the proposed technique, FastEMD-CCA? is shown in Fig.
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FIGURE 4.14 — Flowchart of the Proposed Technique FastEMD-CCA?
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FastEMD-CCA? is proposed and elaborated in section[4.3.1]for online removal of eyeblink
artifacts from EEG signals. FastEMD-CCA? is a template matching approach, where the
automated eyeblink artifact detection (€ADA) mechanism is performed to identify rele-
vant eyeblink artifact regions in Fp1 channel of an EEG signal, FastEMD with CCA is
applied subsequently on the most relevant artifact region identified to extract out a ge-
neral eyeblink template. Elimination of the remaining eyeblink artifacts from the entire
multichannel EEG signal is then conducted through cross-correlation between EEG seg-
ments and the eyeblink artifact template, where EEG segments that are highly correlated
with the eyeblink artifact template are subjected to CCA for artifact removal. Since an
automatic eyeblink artifact detection (eADA) is already developed and it could accurately
identify the eyeblink artifact locations, the performance of the proposed algorithm without
dependency on the eyeblink artifact template to identify the eyeblink artifact locations is
investigated.

Therefore, a second algorithm is proposed by combining eADA and CCA to develop
FastCCA algorithm which is purely a correlation-based approach. In FastCCA, the un-
supervised eyeblink artifact detection algorithm, eADA is performed in windows of about
1.95s on Fp1 and Fp2 EEG channels. Once an eyeblink artifact region is found on the Fp1
channel, the multichannel EEG signal of this region is subjected to CCA for artifact elimi-
nation. Then eADA is executed again to search for the next eyeblink artifact region on the
Fp1 channel. Multichannel artifact elimination is performed on the newly found eyeblink
artifact region via CCA. So, eADA and CCA are used repeatedly until all eyeblink artifacts
contaminating the EEG signal are identified and removed. The flowchart of the proposed
FastCCA algorithm is shown in Fig. In this approach, CCA is directly applied to EEG
segments identified with eyeblink artifacts with eADA. So this algorithm bypasses the re-
quirement to have an eyeblink template extracted via FastEMD-CCA, which could reduce
the computation time as well. This allows an adaptive detection and removal of eyeblink
artifacts for every event of blink, without the need for a general template for artifact remo-
val.
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FIGURE 4.15 — Flowchart of the Proposed FastCCA Algorithm

The overall work flow of both algorithms are shown in Fig.
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FIGURE 4.16 — Work flow of FastEMD-CCA? and FastCCA

Every analysis of this research was performed using MATLAB R2018b in Windows 7
Professional (64 bit OS), with a 4GB RAM.

Sixty EEG signals from the Hitachi EEG dataset, from section are used in this
analysis. Eyeblink artifacts can be clearly captured in the frontal channels, Fp1-Fp2 elec-
trodes of the EEG recordings. Hence, the proposed algorithm is evaluated on the frontal
channel, Fp1, of these EEG signals. For comparison purpose, eADA is compared with the
conventional constant threshold method. The constant threshold method is performed by
fixing the threshold values, with different amplitude displacement, for example, thresholds
of more than 10uV, 20uV, 30uV, 40uV and 50uV. Whichever amplitude displacement that
exceeds these thresholds are considered to be eyeblink artifacts.

The performance of the proposed approach, eADA, is measured by validating if it is ac-
curate in identifying eyeblink artifacts in comparison with the use of a fixed threshold
value. Binary classification which produces the confusion matrix as in Table is used
to determine the accuracy level of eADA in detecting the eyeblink artifacts.

e True positive (TP) : correct Eyeblink artifact detection
o False positive (FP) : clean EEG identified as Eyeblink artifact
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e True negative (TN) : correct clean EEG identification
e False negative (FN) : Eyeblink artifact identified as clean EEG

TABLE 4.2 — Confusion Matrix - Eyeblink Artifact Detection

Detected
Eyeblink Artifact | Clean EEG
Eyeblink Artifact TP FN
Observed
Clean EEG FP TN

The efficiency of the proposed algorithm compared to a constant threshold, is validated
by manually inspecting the EEG signals after artifact detection, with accuracy, Eq.
derived from the confusion matrix. Accuracy is the ratio of correct eyeblink artifact and
EEG detections by the total number of detections :

B TP+TN
" TP+TN+FN+FP

ACC (4.9)

The best accuracy is 1.

Any artifact removal algorithm is considered effective and successful depending on two
measures. The first and most important one is how well an algorithm is able to remove the
artifacts, and the second one is how well an artifact removal algorithm is able to preserve
neural information contained in an EEG signal after artifact elimination. On another note,
the online eyeblink artifact removal capability can be interpreted through processing time
taken by the algorithm. This is to evaluate whether the algorithm can achieve instanta-
neous artifact removal in online processing (real-time processing of a system is estimated
between 6 to 20 milliseconds [164]), without loss of neural information.

However, evaluating the performance of any algorithm in identifying and discarding ar-
tifacts is challenging in the absence of ground truth. Hence, the eyeblink artifacts and
EEG signals are artificially generated as discussed in subsection These artificial
signals serve as ground truth in carrying out the performance evaluation before applying
the proposed algorithm to real EEG signals. The EOG signal is not recorded for conve-
nience purpose. Additionally, there are no training data with blinking recorded so that the
algorithm is fully automatic. Since EOG is not recorded, validation turns out to be difficult
to confirm if the eyeblink artifacts are indeed removed. Thus, the algorithm’s ability to
remove eyeblink artifacts effectively is substantiated by an expert, through manual visual
inspection (MVI).

The developed algorithms, FastEMD-CCA? and FastCCA are compared with Wavelet
Transform, to evaluate the performance exhibited by these algorithms on the synthetically
contaminated EEG signal, in Eq. @2 . The synthetic EEG signal and the eyeblink artifacts
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are simulated for 100 trials for reliability purpose, and the results are averaged. Wavelet
is chosen as it has been extensively used for eyeblink artifact removal in EEG [80H82].
FastEMD-CCA? and FastCCA work as discussed in sections [4.3|and [4.4]respectively. For
Wavelet Transform, the sym9 mother wavelet from the Symlets family is chosen as it was
suggested by Al-Qazzaz et al. in [165] as resembling EEG signals the most and would
be the most compatible one for de-noising purposes. SWT is applied with soft threshol-
ding on the entire contaminated EEG signal to obtain wavelet coefficients. Approximation
coefficients are assumed to correspond to the eyeblink artifact and detail coefficients are
assumed to correspond to EEG. The inverse of SWT, ISWT is then applied on the coeffi-
cients corresponding to EEG and the artifact to reconstruct the clean EEG signal and the
eyeblink artifact respectively.

The performance of these algorithms in retaining the neural information in an EEG signal
is quantitatively assessed. Reconstructed EEG signals after artifacts have been remo-
ved via these algorithms are validated against synthetically generated EEG signals as
ground truths. Ideally, reconstructed EEG signals should remain intact after artifacts have
been removed. The algorithms are evaluated in terms of correlations coefficient (CC), root
means square error (RMSE) and signal to noise ratio (SNR), in the time domain. Each of
the performance criteria is expressed as confidence intervals for 95% of confidence level.
CCggg in Eq. measures the similarity between synthetically generated EEG signals
and reconstructed EEG signals after artifact correction, while CCgg in Eq. @17 estimates
the resemblance of removed eyeblink artifacts compared to synthetic eyeblink artifacts :

C
CCEEG — Y(0),Your(?) (41 0)
TY(@®) * O Youl(r)

C
CCgp = _ 20 Zow(®) (4.11)
OZ(t) * O Zow(1)

RMSE measures the removal and reconstruction error for eyeblink and EEG signals res-
pectively. The RMSE is calculated by finding the difference between synthetically gene-
rated eyeblink artifacts with removed eyeblink artifacts, as in Eq. &3 and synthetically
generated EEG signals with reconstructed signals, as in Eq. :

Yo (Y (1) = Your(1))?

n

(4.12)

RMSEggg = \/

n _ 2
RMSEEBz\/ =120 = Zow(®)) (4.13)

n

The SNR is used in this analysis to determine the ratio of signal to artifact that remains
after eyeblink artifacts are removed from the contaminated EEG signal. The SNR ratio is
calculated before and after eyeblink artifact removal, using Eq. and :

SNRygiore = 1010g [&] (4.14)
O(Y()-X(1)
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SNRgtter = 10 log [&] (4.15)
T (Y(t)-Your(1)

where X(¢) represents the synthetically contaminated EEG signals, Y(¢) refers to the si-
mulated/synthetic EEG signals generated using pinknoise, Yqui(¢) corresponds to the re-
constructed EEG signals which are free from artifact, Z(r) refers to the synthetic eyeblink
artifact and Zy(¢r) correspond to the extracted eyeblink artifact. From the performance
metrics, 95% of confidence interval has been estimated so that the probability of the per-
formance is repetitive over 95% of the time if the evaluation to be repeated multiple times
in another time frame.

This section aims to evaluate the total computation time taken by the conventional EMD-
CCA compared to the proposed FastEMD-CCA? and FastCCA algorithms, evaluated on
real EEG signals. In the conventional technique, EMD is applied to an eyeblink artifact
region, followed by CCA on the IMFs obtained through classical EMD. Identified canonical
components of the IMFs which are related to eyeblink artifact are excluded, thus clean
EEG segment is reconstructed. This process of applying CCA within classical EMD for
single-channel artifact removal will be repeated throughout the EEG signal whenever an
eyeblink artifact region is identified.

The proposed FastEMD-CCA? is based on optimal usage of the FastEMD with CCA to
extract an eyeblink artifact template, followed by eyeblink artifacts elimination from the
entire EEG signal, as elaborated in section FastCCA, on the other hand, performs
eyeblink artifacts elimination through CCA on the locations identified by eADA. The overall
workflow of these approaches is shown in Fig.
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FIGURE 4.17 — Workflow of Conventional EMD-CCA, Proposed FastEMD-CCA? and
FastCCA

Real EEG signals illustrated in sections |4.1.2.1| and [4.1.2.2| were used to evaluate the
proposed techniques, FastEMD-CCA? and FastCCA, compared to the state-of-the-art,
FORCe algorithm. The outcomes are then averaged for each of the dataset. In MATLAB
2018b, the EEG recordings are imported into the workspace and processed automatically
to remove the eyeblink artifacts in windows, with each window being at least 1-second in
length for FastEMD-CCA?, FastCCA and FORCe. The FastEMD-CCA? algorithm ope-
rates as discussed in sections [4.3.1]and [4.3.2, while the FastCCA algorithm works
as discussed in section The FORCe algorithm first applies wavelet decomposition
on each channel of an EEG signal. The resulting approximation coefficients obtained
through wavelet are subjected to ICA to get independent components, ICs. Next, the ar-
tifactual ICs are identified through several threshold criteria, where ICs exceeding certain
threshold values are classified as eyeblink and cardiac artifacts respectively, and thus
removed. The inverse of ICA decomposition is performed to estimate a set of cleaned ap-
proximation coefficients. Then, soft thresholding is applied on resulting approximation co-
efficients from ICA and detail coefficients acquired from WT to suppress/remove muscle
artifacts. Finally, a clean EEG signal is reconstructed.

Since the ground truths are not available for real EEG signals, the effectiveness of the
compared algorithms in identifying and removing eyeblink artifacts, while preserving the
artifact-free EEG segments are verified with the help of an expert, Neuroscientist Dr. Ta-
hamina Begum, through MVI. The evaluation criteria are derived from various measures
of the binary prediction [166, [167], thus determining the accuracy, sensitivity, specificity
and error rate of the algorithms. The binary classification for eyeblink artifact detection
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and removal produces the following outcomes and the confusion matrix as in Table [4.3]:

True positive (TP) : correct eyeblink artifact detection and removal

False positive (FP) : clean EEG identified as eyeblink artifact and removed

True negative (TN) : correct clean EEG identification

False negative (FN) : Eyeblink artifact identified as clean EEG, thus not removed

TABLE 4.3 — Confusion Matrix - Eyeblink Artifact Detection and Removal

Detected
Eyeblink Artifact | Clean EEG
Eyeblink Artifact TP FN
Observed
Clean EEG FP TN

Error : The error rate, ERR is computed by dividing the number of incorrect detection of
both eyeblink artifact and non eyeblink artifact regions over the total number of detections.
Values approaching zero denote better error rate.

FP+FN

ERR =
TP+TN+FN+FP

(4.16)

Accuracy : ACC is the opposite of error rate, where it is the ratio of correct eyeblink
artifacts and EEG segments detection by total number of detections. The best accuracy
is 1.

ACC - TP+TN
TP+TN +FN + FP (4.17)
ACC =1 - ERR

Sensitivity : SN is calculated by dividing correctly detected eyeblink artifacts with total
number of actual eyeblink artifacts. 1 is considered to be the best sensitivity value.

TP

SN =T 7N

(4.18)

Specificity : SP is estimated by dividing correctly identified clean EEG segments with
actual clean EEG segments. 1 is considered to be the best specificity value.

TN

SP = TN+ FP

(4.19)
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The chapter mainly focused on proposing the eyeblink artifact detection algorithm and
the eyeblink artifact removal algorithms. Conventional eyeblink artifact detection algo-
rithms depend on constant thresholds or constant features to make a binary decision to
recognize if an EEG segment contains eyeblink artifacts or not. In this chapter, an un-
supervised eyeblink artifact detection, eADA algorithm, is proposed and evaluated. The
algorithm determines the threshold for eyeblink artifacts based on the correlation between
the signal from two EEG electrodes and the amplitude displacement range.

Next, the chapter has focused on incorporating the unsupervised eyeblink artifact detec-
tion algorithm, eADA with FastEMD and CCA. Various modification are made to EMD al-
gorithm, so that it can serve a low computational burden to the entire proposed algorithm,
FastEMD-CCA?. Apart from FastEMD-CCA?, another algorithm, FastCCA is proposed as
well to remove eyeblink artifacts from EEG signals by combining eADA and CCA.
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This chapter discusses the results obtained for the proposed eyeblink detection algo-
rithm (eADA) and the proposed eyeblink artifact removal algorithms, FastEMD-CCA? and
FastCCA. Also, comparisons of these proposed algorithms with one of the state-of-the-art
algorithms are presented as well. Evaluation and analysis conducted on these algorithms
are provided, mainly with performance scores such as computation time, error rate, ac-
curacy, sensitivity and specificity of the algorithms in effectively detecting and removing
the eyeblink artifacts.

The accuracy of the proposed approach, eADA, in detecting eyeblink artifacts compared
to the use of a constant or fixed threshold is presented and discussed in this section. The
average accuracy obtained from the proposed method in comparison with constant thre-
sholds in detecting eyeblink artifacts correctly, applied on the Fp1 channel of 60 Hitachi
EEG signals is tabulated in Table The individual representation of accuracy for each
EEG signal is provided in Table

As elaborated in Section an automated eyeblink artifact detection algorithm is desi-
gned. The proposed approach detects eyeblink artifacts without human supervision. First
EEG segments containing eyeblink artifacts are recognized with the concept of correla-
tion between EEG electrodes, Fp1 and Fp2 as in subsection Secondly, to address
the issues of a constant threshold, an automated and varying threshold level is calculated
for every EEG segment containing eyeblink artifact using amplitude displacement. From
Table the accuracy achieved by the proposed technique in detecting eyeblink arti-
facts correctly is 99.47% on average. This average accuracy level is higher compared to
the average accuracies achieved through fixed thresholds. Fixing the amplitude displace-
ment thresholds of 10uV, 20uV, 30uV, 40uV and 50uV produced an average accuracy of
95.37%, 93.95%, 92.67%, 84.57.3% and 73.95% respectively.

TABLE 5.1 — Average Eyeblink Artifact Detection Accuracy

Average (60 EEG Signals)
Threshold | eADA 10uVv 20uVv 30uVv 40uVvV 50uVv
Accuracy | 99.47% | 95.37% | 95.34% | 92.67% | 84.57% | 73.95%
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The individual accuracy level on every EEG signal obtained using constant thresholds
lies between 81% to 100% for 10uV, 72% to 100% for 20uV, 71% to 100% for 30uV,
46% to 100% for 40uV, and 22% to 100% for 50uV. The fixed thresholds achieved 100%
detection accuracies on certain EEG signals, i.e. 10uV on( EEG 4, 43, 46, 47), 20uV on
(EEG 4, 38, 39, 43, 46, 47), 30uV on (EEG 33, 35, 36, 38, 43, 46, 47), 40uV on (EEG 35,
38, 40) and 50uV on (EEG 38). It can be concluded that the detection accuracy of fixed
thresholds is 100% perfect only on some of the EEG signals. The variation in accuracy
shown by 40uV threshold is 54% (46% to 100% across all signals), whereas the accuracy
of 50uV threshold varies by 78% (22% to 100% across all signals). This shows that the
performance of the fixed threshold method is inconsistent across all the EEG signals;
the method may sometimes achieve very high accuracy and sometimes may achieve
very low accuracy in detecting the eyeblink artifacts. This is due to the unpredictable
characteristics of the eyeblink artifacts, where the blinking duration, pattern and strength
of eye blinks differ for every individual. For instance, the constant threshold of 30uV has
achieved 100% accuracy in detecting eyeblink artifacts on EEG 33, 35, 36, 38, 43, 46,
47, which means this threshold level suits well for these EEG signals. However, the 30uV
threshold has only achieved 71.6% of accuracy in eyeblink artifact detection for EEG 53.
Similarly, the constant threshold of 50uV has achieved an accuracy of 100% in correctly
detecting eyeblink artifacts of EEG 38, but this threshold value has only achieved 22.22%
of detection accuracy for EEG 13. The analysis indicates that the performance of constant
thresholds is purely dependent on the nature of the eyeblink artifacts and is not consistent
across all EEG signals. Therefore, relying on fixed or constant thresholds in detecting
eyeblink artifacts for subsequent artifact removal step is not desirable.

On the other hand, the least accuracy level achieved by the proposed method (eADA)
in detecting eyeblink artifacts correctly is on EEG 5, about 94.34%. (eADA) achieved the
best accuracy level, 100% on 36 EEG signals as can be seen from Table[5.2] This reveals
that the performance of eADA is consistent in detecting the eyeblink artifacts in EEG si-
gnals, ranging between 94% to 100%. There is only a 6% accuracy variation among the
EEG signals. Since the threshold level for every window is calculated individually, the
calculated threshold thereby corresponds to the varying nature of the eyeblink artifact
in that window. Hence, the threshold is automatically determined for every window wi-
thout setting any specific value, producing high detection accuracy. This is the reason
why the eyeblink artifact detection accuracy by eADA does not vary much across all the
EEG signals. If eADA to be used in any other set of EEG signals to detect the eyeblink
artifacts, the algorithm will be able to adjust itself to detect the eyeblink artifacts that are
contaminating the EEG signal.

To check if the accuracies achieved by the proposed eADA algorithm are statistically signi-
ficant compared to the fixed thresholds, an analysis of variance, ANOVA test is conducted.
Before running the one way ANOVA test, the normality of the accuracies distribution by
different techniques is checked. The Shapiro-Wilk is used for this purpose, and the results
of the test are given in Table [5.3]
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TABLE 5.3 — Test of Normality for the Accuracies

Parameter Threshold Statistic | df | Sig.
Proposed eADA | 0.597 | 60 | 0.000
10uVv 0.900 | 60 | 0.000
20uVv 0.807 | 60 | 0.000
Accuracy
30uVv 0.870 | 60 | 0.000
40uVv 0.817 | 60 | 0.000
50uVv 0.873 | 60 | 0.000

From Table [5.3] statistically significant values (P<0.05) are observed for all accuracies
of different threshold conditions, denoting the accuracy data is not normally distributed.
A requirement for the ANOVA test is that the homogeneity of variance should be met,
which means the variances of each of the compared groups, the threshold in this case,
should be equal. Since the accuracies achieved by the different thresholds are not nor-
mally distributed, the assumption of homogeneity of variances is violated. So a Welch
ANOVA test is conducted instead of the one-way ANOVA. This test is appropriate when
the homogeneity of variance is violated. The accuracy of different threshold methods, i.e.
the proposed and the fixed thresholds, were analyzed using the Welch ANOVA test using
the SPSS software. The results of the Welch ANOVA test is provided in Table [5.4]

TABLE 5.4 — Welch ANOVA Test

Between Methods Sig.
Proposed eADA | 10uV | 0.000
Proposed eADA | 20uV | 0.000
Proposed eADA | 30uV | 0.000
Proposed eADA | 40uV | 0.000
Proposed eADA | 50uV | 0.000

The Welch ANOVA test reveals that the accuracies achieved by the proposed eADA algo-
rithm in comparison with the each of the fixed threshold in detecting the eyeblink artifacts
in the EEG signals are statistically significant, with P=0.000 (P<0.05). Further analysis
between the fixed thresholds reveals that there is no significant statistical difference ob-
served between fixed thresholds of 10uV, 20uV and 30uV. The Welch ANOVA between
10uV and 20uV results in (P=1.000), between 10uV and 30uV results in (P=0.114), and
between 20uV and 30uV results in (P=0.164).
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5.2/ EYEBLINK ARTIFACT REMOVAL ALGORITHMS

5.2.1/ COMPARISON BETWEEN FASTEMD-CCAZ?, FASTCCA AND WAVELET
TRANSFORM

The proposed algorithms, FastEMD-CCA? and FastCCA are compared with WT as ela-
borated in section to evaluate the performance exhibited by these algorithms on
synthetically generated EEG signals. Fig. [5.1(a) - [6.1fc) show the reconstructed EEG
signal and eyeblink artifact through FastEMD-CCA?. Fig.[5.2(a) -[5.2|c) show the recons-
tructed EEG signal and eyeblink artifact through FastCCA. Fig. [5.3(a) - [5.3|c) show the
reconstructed EEG signal and eyeblink artifact through SWT.

De-noising via FastEMD-CCA2
(a) Contaminated EEG
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FIGURE 5.1 — (a) Mixed EEG and Eyeblink Signal, (b) Reconstructed EEG Signal, (c)
Extracted Eyeblink Artifact
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FIGURE 5.3 — (a) Mixed EEG and Eyeblink Signal, (b) Reconstructed EEG Signal, (c)
Extracted Eyeblink Artifact

The performance metrics obtained for FastEMD-CCA?, FastCCA and WT, applied on syn-
thetically generated and contaminated EEG signals, are tabulated in Table [5.5
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TABLE 5.5 — Performance Metrics of FastEMD-CCA?, FastCCA and WT

Techniques FastEMD-CCA? FastCCA Wavelet (SWT)

mean = std (u + o) 95% ClI mean + std (u + o) 95% CI mean = std (u + o) 95% CI
CCeeg 0.8258 + 0.0486 | 0.8162t0 0.8355 | 0.9257 + 0.0202 0.9217 to 0.9297 0.5848 + 0.0429 | 0.5763 to 0.5933
CCeb 0.9802 + 0.0096 | 0.9783 to 0.9821 0.9913 + 0.0022 0.9909 to 0.9918 0.8524 + 0.0112 | 0.8502 to 0.8546
RMSEeeg 0.5665 + 0.0888 | 0.5489 to 0.5841 0.3765 + 0.0487 0.3669 to 0.3862 0.8969 + 0.0344 | 0.8901 to 0.9038
RMSEeb 0.5665 + 0.0888 | 0.5489t0 0.5841 | 0.3765+ 0.0487 | 0.36691t0 0.3862 | 2.2612 +0.0932 | 2.2427 to 2.2797
SNRafter (dB) 5.8223 + 1.2474 | 5.5748 t0 6.3941 9.8988 + 1.2976 | 9.6414 t0 10.1563 1.0950 + 0.3845 1.0187t0 1.1713
SNRbefore (dB) -10.2999 + 0.00 -10.2999 -10.2999 + 0.00 -10.2999 -10.2999 + 0.00 -10.2999
Time (s) 0.2651 + 0.2980 | 0.2060 to 0.3242 | 0.1297 + 0.0204 0.1256 to 0.1337 0.1111 £ 0.0294 | 0.1052 to0 0.1169

The algorithms are evaluated on 100 trials of synthetically contaminated EEG signals
to ensure the performance exhibited by the algorithms are reliable and repetitive. The
confidence interval for 95% of confidence level is determined for each of the performance
metrics. The 95% confidence level is chosen so that the estimation of results are sta-
tistically sound. CC value normally lies between -1 and 1, in which a value approaching
1 indicates a higher correlation or similarity. RMSE values that approach zero signifies
a more precise and accurate signal reconstruction, relative to the synthetic signals. The
SNR measures the scale of eyeblink artifacts that have been removed from the noisy
EEG signal and the degree of neural signal preservation. The effectiveness of the eva-
luated algorithms in preserving the underlying neural information in an EEG signal can
be deduced through CC value that approaches near 1, RMSE close to 0 and higher SNR
value.

In this analysis, the proposed techniques, FastEMD-CCA? and FastCCA, produces higher
CC values on average compared to SWT, 0.8258 and 0.9257 in reconstructing the EEG
signal, 0.9802 and 0.9913 in extracting out the eyeblink artifact. The error produced by
FastEMD-CCA? is 37% percent lower, and FastCCA is 58% lower than the error produ-
ced by SWT in reconstructing the EEG signal. While in extracting out the eyeblink artifact,
FastEMD-CCA? has produced an error of 75% lower, and FastCCA has produced an error
of 83% lower than SWT. This indicates that the FastEMD-CCA? and FastCCA algorithm
is able to remove eyeblink artifact components from the contaminated EEG signals better
in comparison with SWT. From Table FastEMD-CCA? and FastCCA yield very high
SNR values, close to 5 dB by FastEMD-CCA? and close to 9 dB by FastCCA on average
from -10dB before artifact correction, which denotes a higher ratio of neural information
has been preserved. Alternatively, SWT produced nearly 1 dB of SNR on average from
-10dB before artifact elimination. This shows that the FastEMD-CCA? and FastCCA are
a better choice in removing eyeblink artifacts, and at the same time, they are able to pre-
serve underlying EEG components better, by not introducing much distortion to the neural
signal. In terms of computation time, the SWT is 2.4 times faster than the FastEMD-CCA?
and 1.1 times faster than the FastCCA. It has to be emphasized here that SWT removes
artifacts only from a single-channel EEG signal, hence the faster computation time, while
FastEMD-CCA? and FastCCA perform the artifact elimination from multichannel EEG si-
gnal. Moreover, SWT is applied to the entire signal for processing, which is not applicable
for online applications, while FastEMD-CCA? and FastCCA algorithms process the EEG
signals in windows, which is what required for online processing. SWT also relies on ma-
nual selection of appropriate mother wavelet, which comprises sine and cosine functions,
which may not be suitable for non-stationary biomedical signals. Selecting an inappro-
priate mother wavelet could lead to inaccuracies in reconstructing artifact-free EEG si-
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gnals. Furthermore, the accuracy of SWT is also sensitive to the selection of thresholding
function which could have an effect on preserving or discarding the neural information in
an EEG signal.

The time taken by the conventional EMD-CCA (repetitive usage of EMD with CCA for
single-channel artifact removal)in comparison with the proposed FastEMD-CCA? and
FastCCA (for multi-channel artifact removal), evaluated on 15 randomly selected real EEG
signals section from are tabulated in Table 5.6

TABLE 5.6 — Comparison of Computation Time between Proposed FastEMD-CCA?Z,
FastCCA and Conventional EMD-CCA

Total Computation Time (s)
Artifact Elimination Multi Channel Single Channel
Signal Duration per Channel (s) | Proposed FastEMD-CCA? | Proposed FastCCA | Conventional EMD-CCA
EEG 1 389 15.17 2712 251.87
EEG 2 329 5.66 16.73 275.13
EEG 3 294 5.77 14.67 144.08
EEG 4 369 6.84 15.17 506.84
EEG 5 337 7.65 9.18 434.79
EEG 6 312 6.75 9.03 344.00
EEG 7 330 8.17 6.58 436.61
EEG 8 308 7.00 10.07 327.63
EEG 9 306 5.12 11.33 419.05
EEG 10 346 7.79 8.75 683.36
EEG 11 321 6.65 10.67 478.37
EEG 12 272 4.52 9.09 223.50
EEG 13 345 7.50 6.01 363.46
EEG 14 310 4.39 0.99 969.84
EEG 15 271 4.36 0.71 976.72

Fig. shows a portion of corrected EEG signal (EEG 2), through proposed
FastEMD-CCAZ, FastCCA and the conventional EMD-CCA.
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FIGURE 5.4 — Recovered EEG signal through proposed FastEMD-CCA?
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FIGURE 5.5 — Recovered EEG signal through proposed FastCCA
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FIGURE 5.6 — Recovered EEG signal through conventional EMD-CCA

Comparing Figs. - by visual inspection, it can be clearly seen that all three tech-
niques remove eyeblink artifacts reliably without distorting the neural signals. The com-
putation time taken to remove eyeblink artifacts from the EEG signals individually is ta-
bulated in Table The proposed methods, FastEMD-CCA? and FastCCA evaluated on
15 multichannel EEG signals, are significantly faster and less computationally expensive
than the conventional EMD-CCA. In the worst-case scenario, FastEMD-CCA? is at least
16 times faster compared to conventional EMD-CCA, FastCCA is 9 times faster compa-
red to conventional EMD-CCA. While in extreme cases, the conventional EMD-CCA is
roughly 224 times slower than FastEMD-CCA? and 1374 times slower than FastCCA. For
instance in EEG 15, EMD-CCA’s computation time is about 976.72s, whereas FastEMD-
CCA?'s and FastCCA’s computation time is 4.36s and 0.71s respectively. The resulting
corrected EEG signal for EEG 15 through FastEMD-CCA?, FastCCA and conventional
EMD-CCA is presented in Fig. - Fig. for comparison purpose. As can be seen
from these figures, EEG 15 is contaminated with too many eyeblink artifact events, justi-
fying the time taken by conventional EMD-CCA to remove artifacts from this signal. The
time conventional EMD-CCA took is primarily due to the repetitive application of classical
EMD, where EMD has to be applied on every eyeblink artifact instance. Apart from this,
the conventional EMD-CCA is also not able to completely remove the entire artifact re-
gion, whereby some peaks or potentials of the eyeblink artifacts remain in the corrected
signal, as shown in Fig. Such scenarios may happen when there are too many ins-
tances of eyeblink artifact in an EEG signal, which causes an error in aligning the EEG
windows properly for artifact elimination. So applying EMD and CCA on the improperly
aligned EEG windows can leave some of the artifact peaks uncorrected.
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FIGURE 5.7 — Recovered EEG signal through proposed FastEMD-CCA?
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FIGURE 5.8 — Recovered EEG signal through proposed FastCCA
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FIGURE 5.9 — Recovered EEG signal through conventional EMD-CCA

The average accuracy, sensitivity, specificity, error rate and computation time for
FastEMD-CCA?, FastCCA and FORCe on Hitachi and INV-SK datasets are tabulated
in Tables5.7land 5.8

TABLE 5.7 — Performance Metrics of FastEMD-CCA?Z2, FastCCA and FORCe on Hitachi
Dataset

Techniques FORCe | FastEMD-CCA’ | FastCCA
Accuracy 91.70% 97.90% 99.47%
Sensitivity 89.47% 97.65% 99.44%
Specificity 98.65% 99.22% 99.74%
Error Rate 8.30% 2.10% 0.53%
Computation Time 85.10s 6.78s 6.87s
Average Processing Time 979 5 ms 21.7 ms 29 ms
(to clean 1s of EEQG)
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TABLE 5.8 — Performance Metrics of FastEMD-CCA?Z, FastCCA and FORCe on INV-SK

Dataset
Techniques FORCe | FastEMD-CCA’ | FastCCA
Accuracy 96.60% 97.81% 98.33%
Sensitivity 95.32% 97.15% 97.60%
Specificity 100.00% 100.00% 100.00%
Error Rate 3.40% 2.19% 1.67%
Computation Time 85.94s 4.31s 7.20s
Average Processing Time 393 ms 16.9 ms 27 ms
(to clean 1s of EEG)

Fig.[5.10]- 5.12] show an example of an entire EEG signal from Hitachi’s dataset, recons-
tructed using FORCe algorithm and the proposed algorithms. Fig. - shows a
short portion of the same EEG signal, reconstructed using FORCe algorithm and the
proposed algorithms.
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FIGURE 5.10 — Entire EEG Signal-Reconstructed through FORCe
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FIGURE 5.11 — Entire EEG Signal-Reconstructed through FastEMD-CCA?
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FIGURE 5.12 — Entire EEG Signal-Reconstructed through FastCCA
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FIGURE 5.13 — A Portion of the EEG Signal-Reconstructed through FORCe
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FIGURE 5.14 — A Portion of the EEG Signal-Reconstructed through FastEMD-CCA?
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(a) Observed EEG Signal

100

50 b

-50 .

100 . . . . . . . . .
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

100 (b) Artifact-free EEG Signal

Amplitude(microvolts)

50 1

i

-50 b

Il Il Il Il Il Il Il
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Samples

-100

FIGURE 5.15 — A Portion of the EEG Signal-Reconstructed through FastCCA

Fig. - show an example of an entire EEG signal from INV-SK’s dataset, re-
constructed using FORCe algorithm and the proposed algorithms. Fig.[5.19|-[5.21] shows
a short portion of the same EEG signal, reconstructed using FORCe algorithm and the
proposed algorithms.
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FIGURE 5.16 — Entire EEG Signal-Reconstructed through FORCe

87



Amplitude(uV)

(a) Observed EEG Signal

500

(b) Artifact-free EEG Signal

x10%

500

Samples

7
x10*

FIGURE 5.17 — Entire EEG Signal-Reconstructed through FastEMD-CCA?
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FIGURE 5.18 — Entire EEG Signal-Reconstructed through FastCCA
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FIGURE 5.19 — A Portion of the EEG Signal-Reconstructed through FORCe
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FIGURE 5.20 — A Portion of the EEG Signal-Reconstructed through FastEMD-CCA?
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FIGURE 5.21 — A Portion of the EEG Signal-Reconstructed through FastCCA

The accuracy represents the ability of the proposed algorithms in accurately identifying
the eyeblink artifacts and uncontaminated EEG segments, in order for it to remove the
eyeblink artifacts. The proposed algorithms have achieved an average of 97.9% and
99.47% of accuracy compared to 91.7% by FORCe on the Hitachi dataset. While for the
INV-SK dataset, FastEMD-CCA?’s average accuracy is 97.8%, FastCCA’s is 98.3% and
FORCe’s is 96.6%. The proposed algorithms achieved a slightly higher accuracy level
compared to the FORCe algorithm.

Failing to correctly identify the eyeblink artifacts and EEG segments are interpreted
through the error rate produced by the algorithms, where it counts the chance of the
algorithms to miss an eyeblink artifact. FastEMD-CCA? produced an average error rate
of 2.10%, FastCCA with 0.53%, while FORCe yield 8.30% on the Hitachi dataset. For
the INV-SK dataset, the average error rate of FastEMD-CCA?, FastCCA and FORCe is
2.19%, 1.67% and 3.40% respectively. This denotes that these algorithms are still sus-
ceptible to miss out eyeblink artifacts, regardless of the EEG dataset. FORCe records the
highest error rate and lowest accuracy level on average among the three algorithms for
both datasets. The average eyeblink artifact detection and removal accuracy of FastCCA
is 1.57% higher and the average error rate of FastCCA is 1.57% lower compared to
FastEMD-CCA? with Hitachi’s dataset. Similarly, with INV-SK’s dataset, FastCCA’s ave-
rage accuracy is 0.52% higher than FastEMD-CCA?. This shows that FastEMD-CCA? has
a higher probability of identifying eyeblink artifacts or EEG segments erroneously.

Apart from error rate and accuracy, sensitivity is used as a measurement to measure how
precise the algorithms are in correctly identifying and removing the eyeblink artifacts in
comparison with the actual number of observed eyeblink artifacts. Similarly, specificity is
used to measure the precision of the algorithms in properly recognizing EEG segments
and retaining them. Again FORCe records the lowest sensitivity on average for both data-
sets, but not significantly low. The results indicate that the proposed algorithms, FastCCA
and FastEMD-CCA? have achieved 99.44% and 97.65% of sensitivity respectively, which
are 9.97% and 8.18% higher than that of FORCe algorithm for Hitachi’s dataset. Evalua-
ting the INV-SK dataset also reveals that FORCe is 2.28% and 1.83% lower in sensitivity

90



percentage than FastCCA and FastEMD-CCA? respectively. The sensitivity of FORCe in
identifying and removing the artifacts is 89.47 %. This shows that FastCCA and FastEMD-
CCA? could identify and remove eyeblink artifacts relatively better than FORCe could. The
identification of artifact related ICs in FORCe during ICA application on the wavelet co-
efficients is dependent on manually adjusted threshold values, which classifies or make
a binary decision whether an IC is artifactual. So, having manually adjusted thresholds
may lead to detection errors, thereby some artifacts are not removed. Specificity is the
ratio of undistorted artifact-free EEG segments before and after artifact elimination. The
ideal expectation is to have these portions undistorted after artifacts have been removed.
FastCCA, FastEMD-CCA? and FORCe records an average specificity of 99.74%, 99.22%
and 98.65% respectively on the Hitachi dataset. Specificity of 100% is achieved by all
three algorithms on the INV-SK dataset. This signifies that these algorithms do not in-
troduce much distortion to the neural information of the EEG signals under evaluation.
From the comparison, it is clear that FastCCA and FastEMD-CCA? have achieved better
performance than FORCe on the same set of EEG signals.

The average computation time FastCCA and FastEMD-CCA? took to remove eyeblink
artifacts from 14-channel EEG signals with an average signal length of 312s (Hitachi da-
taset) is 6.87 and 6.78 seconds respectively, while FORCe took 85.10 seconds. FastCCA,
FastEMD-CCA? and FORCe took 7.20s, 4.31s and 85.94s respectively on the other da-
taset, INV-SK, with an average signal length of 266s. The computation time of FastEMD-
CCA? and FastCCA is at least 12 times faster than that of FORCe for Hitachi’s dataset.
On INV-SK’s dataset, FastEMD-CCA? is 19 times faster and FastCCA is 12 times faster
than FORCe.

It has to be noted that although FastCCA is better than FastEMD-CCA? as demonstrated
by accuracy, error rate and sensitivity measurement, it is slower than FastEMD-CCA? in
terms of processing time. This can be due to the difference in the detection mechanism of
the eyeblink artifact events in these algorithms. In FastEMD-CCA?, eADA is used to locate
a suitable eyeblink artifact frame, which is then extracted out as a general eyeblink arti-
fact template using FastEMD with CCA. The extracted general eyeblink artifact template
is used to identify the remaining eyeblink artifact events in that EEG signal. Whereas in
FastCCA, every eyeblink artifact event is continuously searched by the eADA algorithm to
be removed by CCA, so justifying the time difference between these algorithms. The ave-
rage processing time of FastEMD-CCA? is about 21.7ms (Hitachi) and 16.20ms (INV-SK)
to remove artifacts from a 1-second length of 14-channel EEG signal (256 sample points
x 14 EEG channels). The next is FastCCA with an average processing time of 22ms (Hi-
tachi) and 27.04ms (INV-SK) to remove eyeblink artifacts from a 1-second length of EEG
signal. The slowest processing time is recorded by FORCe, with 272.5ms (Hitachi) and
323.01ms (INV-SK) to remove eyeblink artifacts from a 1-second length of EEG signal.

The results indicate that the proposed algorithm, FastCCA is highly accurate in removing
eyeblink artifacts, as demonstrated by accuracy, error rate and sensitivity measurement.
However, the results are not significantly better than FastEMD-CCA?. Considering the
average processing time, FastEMD-CCA? is a better choice for online applications com-
pared to FastCCA, but again the processing time of FastEMD-CCA? is not significantly
better than FastCCA. So, both proposed algorithms can be used for applications requi-
ring online removal of eyeblink artifacts with high accuracy.

Despite the fact that the FastEMD-CCA? and FastCCA algorithms achieve attractive per-
formance scores on both Hitachi and INV-SK datasets, these algorithms still fail to detect
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and remove some of the eyeblink artifacts. FastEMD-CCA? was unable to detect and re-
move nearly 137 and 103 eyeblink artifact events on the Hitachi and INV-SK’s dataset
respectively, which accounts for about 2% of error rate. The undetected and unremoved
eyeblink artifacts are analyzed to find out the root cause for the failure, although the error
rate is quite low. The invalidity of the assumption mostly causes the failure cases, which
assumes that every eyeblink artifact event within a subject exhibits a consistent pattern,
similar to the eyeblink artifact template. In FastEMD-CCA?, the general eyeblink template,
is assumed closely correlates with all eyeblink artifact events in that EEG signal, so it is
used as a reference template to locate the remaining eyeblink artifacts. Theoretically, the
correlation between the general eyeblink artifact template and every EEG segment that
is contaminated by eyeblink artifact is expected to be >0.9. In a practical scenario, this
is not the case, whereby observations and validation on the real EEG signals, revealed
that the correlation often lies in the range of 0.4 to 0.6. Hence, using an artifact template
with a low correlation threshold of 0.4, as shown in the proposed flowchart in Fig. to
rule out if an EEG segment is contaminated by eyeblink artifact may fail occasionally. For
instance, if an EEG segment contaminated with eyeblink artifact exhibits a correlation of
lower than 0.4 with the eyeblink artifact template, this EEG segment will not be identified
as containing an eyeblink artifact, producing a false negative scenario. So a correlation
of 0.4 is considered strict for this eyeblink artifact event, and the algorithm could miss the
occurrence of the eyeblink artifact. Similarly, if an uncontaminated EEG segment exhibits
a correlation of more than 0.4 with the eyeblink artifact template, this EEG segment will
be identified as containing an eyeblink artifact, although it does not, developing a false po-
sitive scenario. Subsequent application of CCA to this EEG segment to remove eyeblink
artifact is irrelevant and may cause loss of neural information. Whereas in FastCCA, CCA
is directly applied to EEG segments identified contaminated by eyeblink artifacts with the
existing eADA algorithm. This allows an adaptive detection and removal of eyeblink arti-
facts for every event of blink. Thus the algorithm is not dependent on a general template
for artifact detection.

This explains why the average accuracy, sensitivity and specificity of FastEMD-CCA? are
lower than FastCCA by 1.57%, 1.79%, and 0.52%, respectively on the Hitachi dataset. In
summary, it can be concluded that in FastEMD-CCA?, eyeblink artifacts that are irregular
in pattern compared with the eyeblink template extracted are not classified as eyeblink ar-
tifacts, thereby not getting removed. Similarly, when an artifact-free EEG segment exhibits
an artifact-like pattern, this segment is misclassified as an eyeblink artifact and subjected
to eyeblink artifact rejection, although it isn't contaminated by an eyeblink artifact. The
high accuracy, sensitivity and specificity level of both algorithms suggest that these ap-
proaches are reliable in detecting and removing eyeblink artifacts in real-time ; however,
FastCCA is a better choice because of its better performance over FastEMD-CCA?.

The computation time, accuracy, sensitivity, specificity and error rate for FORCe and the
proposed algorithms, FastEMD-CCA? and FastCCA for the Hitachi dataset are checked if
statistically significant. Again, before conducting the ANOVA test, the normality of these
parameters is tested with the Shapiro-Wilk. The distribution normality of these parameters

is given in Table 5.9
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TABLE 5.9 — Test of Normality for the Hitachi Dataset

Performance Measure Algorithm Sig.
FORCe 0.137
Time FastEMD-CCA? | 0.000
FastCCA 0.000
FORCe 0.893
Error Rate FastEMD-CCA? | 0.032
FastCCA 0.000
FORCe 0.893
Accuracy FastEMD-CCA? | 0.032
FastCCA 0.000
FORCe 0.581
Sensitivity FastEMD-CCA? | 0.077
FastCCA 0.000
FORCe 0.000
Specificity FastEMD-CCA? | 0.000
FastCCA 0.000

From Table statistically significant values (P<0.05) are observed for all parameters
except for FORCe on time, error rate, accuracy and sensitivity. In this case, it is concluded
that not all the parameters are not normally distributed. Since the performance measures
achieved by FORCe, FastEMD-CCA? and FastCCA are not normally distributed, the as-
sumption of homogeneity of variances is violated. So a Welch ANOVA test is conducted
instead of the one-way ANOVA. The results of the Welch ANOVA test are provided in
Table
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TABLE 5.10 — Welch ANOVA Test for the Hitachi Dataset

Performance Measure | Between Algorithms Sig.
FastEMD-CCA? | 0.000
FORCe
FastCCA 0.000
. FORCe 0.000
Time FastEMD-CCA?
FastCCA 0.992
FORCe 0.000
FastCCA
FastEMD-CCA? | 0.992
FastEMD-CCA? | 0.000
FORCe
FastCCA 0.000
FORCe 0.000
Error Rate FastEMD-CCA>
FastCCA 0.000
FORCe 0.000
FastCCA
FastEMD-CCA? | 0.000
FastEMD-CCA? | 0.000
FORCe
FastCCA 0.000
, | FORCe 0.000
Accuracy FastEMD-CCA-
FastCCA 0.000
FORCe 0.000
FastCCA
FastEMD-CCA? | 0.000
FastEMD-CCA2 | 0.000
FORCe
FastCCA 0.000
. , | FORCe 0.000
Sensitivity FastEMD-CCA-
FastCCA 0.000
FORCe 0.000
FastCCA
FastEMD-CCA? | 0.000
FastEMD-CCA2 | 0.364
FORCe
FastCCA 0.011
L FORCe 0.364
Specificity FastEMD-CCA?
FastCCA 0.288
FORCe 0.011
FastCCA
FastEMD-CCA? | 0.288

From the Welch ANOVA test, a significant difference for the time is observed between
FastEMD-CCA?, FastCCA and FORCe. Also between FastEMD-CCA? and FastCCA
the P-value is 0.992, which means the computation time between FastEMD-CCA? and
FastCCA is not statistically significant. Statistical significance observed on error rate,
accuracy and sensitivity between all three algorithms, FORCe, FastEMD-CCA? and
FastCCA too, with P=0.000. For specificity, significant results observed between FORCe
and FastCCA, with P=0.011. In general, the proposed algorithms produce significant re-
sults compared to FORCe.

Similar to the Hitachi dataset, the Welch ANOVA is carried out on the INV-SK dataset.
The test results are provided in Table
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TABLE 5.11 — Welch ANOVA Test for the INV-SK Dataset

Performance Measure | Between Algorithms Sig.
FastEMD-CCA? | 0.000
FORCe
FastCCA 0.000
FORCe 0.000
Time FastEMD-CCA?
FastCCA 0.000
FORCe 0.000
FastCCA
FastEMD-CCA? | 0.000
FastEMD-CCA2 | 0.033
FORCe
FastCCA 0.002
FORCe 0.033
Error Rate FastEMD-CCA?
FastCCA 0.443
FORCe 0.002
FastCCA
FastEMD-CCA? | 0.443
FastEMD-CCA2 | 0.033
FORCe
FastCCA 0.002
FORCe 0.033
Accuracy FastEMD-CCA?
FastCCA 0.443
FORCe 0.002
FastCCA
FastEMD-CCA? | 0.443
FastEMD-CCA? | 0.061
FORCe
FastCCA 0.018
- , | FORCe 0.061
Sensitivity FastEMD-CCA-
FastCCA 0.778
FORCe 0.018
FastCCA
FastEMD-CCA? | 0.778

A significant difference is observed between all three algorithms, FORCe, FastEMD-CCA?
and FastCCA for time, with P=0.000 between them. For error rate and accuracy, no sta-
tistical significance observed between FastEMD-CCA? and FastCCA, with P=0.443, but
these algorithms are significant compared to FORCe. The results are also not significant
for sensitivity measurement, between FORCe and FastEMD-CCA? (P=0.061), and bet-
ween FastEMD-CCA? and FastCCA (P=0.776). It can be concluded that the proposed
algorithms produced significant computation time, error rate and accuracy in comparison
to FORCe.

Based on the results and discussions, it is apparent that the automated and unsupervised
eyeblink artifact detection algorithm proposed in this chapter is accurate in identifying eye-
blink artifact events in an EEG signal. On the other hand, the algorithm is also consistent
in detecting eyeblink artifacts across different EEG signals compared to the conventio-
nal algorithm, which uses a constant threshold to detect eyeblink artifacts. Thus, it can
be concluded that the proposed algorithm is a reliable solution in detecting eyeblink arti-
facts across all types of EEG signals, which may have individual variance due to blinking
duration, pattern and strength.

Next, the proposed eyeblink artifact removal algorithms proved to be effective in automati-
cally identifying and eliminating eyeblink artifacts from multi-channel EEG signals without
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the need to have an EOG channel as an artifact reference. Analysis proved that the pro-
posed algorithms, FastEMD-CCA? and FastCCA are computationally fast and accurate.
The algorithms appear promising to be used for online applications. The computation
environment is crucial for any application that requires online processing. Currently, MAT-
LAB is the most popular tool used for research purposes, but for online artifact removal
applications, MATLAB alone may not be a feasible platform. Hence, the next chapter will
discuss the implementation of eADA, FastEMD and CCA in an inexpensive computing
environment, C++, to investigate the feasibility of the algorithms to support online appli-
cations.
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TABLE 5.2 — Comparison of Eyeblink Artifact Detection Accuracy

Accuracy (%)

Signal Proposed Constant Thresholds
(Automated Varying Threshold, eADA) | 10uV | 20uV | 30uV | 40uV | 50uV
EEG 1 100.00 90.70 | 95.35 | 74.42 | 46.51 | 27.91
EEG 2 100.00 9423 | 96.15 | 84.62 | 55.77 | 46.15
EEG 3 100.00 97.22 | 97.22 | 77.78 | 58.33 | 50.00
EEG 4 100.00 100.00 | 100.00 | 80.56 | 55.56 | 38.89
EEG 5 94.34 84.91 90.57 | 88.68 | 58.49 | 47.17
EEG 6 100.00 92.31 92.31 | 80.77 | 55.13 | 46.15
EEG 7 100.00 98.11 95.28 | 90.57 | 83.02 | 66.98
EEG 8 98.96 92.71 89.58 | 89.58 | 86.46 | 64.58
EEG 9 100.00 97.75 | 95.51 | 95.51 | 82.02 | 59.55
EEG 10 100.00 95.70 | 91.40 | 89.25 | 83.87 | 68.82
EEG 11 100.00 92.63 | 87.37 | 86.32 | 82.11 | 63.16
EEG 12 100.00 90.14 | 85.92 | 85.92 | 80.28 | 78.87
EEG 13 100.00 97.62 | 95.24 | 88.89 | 48.41 | 22.22
EEG 14 100.00 98.84 | 98.84 | 94.77 | 71.51 | 23.26
EEG 15 100.00 92.51 98.93 | 98.93 | 86.63 | 43.32
EEG 16 100.00 98.36 | 97.81 | 96.17 | 89.07 | 45.36
EEG 17 100.00 98.31 98.31 | 98.31 | 93.79 | 46.89
EEG 18 99.45 99.45 | 98.90 | 98.90 | 93.37 | 61.33
EEG 19 100.00 96.92 | 90.00 | 86.92 | 69.23 | 56.15
EEG 20 98.84 96.51 96.51 | 86.05 | 60.47 | 44.19
EEG 21 100.00 9494 | 97.47 | 88.61 | 50.63 | 27.85
EEG 22 100.00 98.23 | 93.81 | 84.96 | 59.29 | 46.90
EEG 23 100.00 94.44 | 90.28 | 86.11 | 55.56 | 45.83
EEG 24 98.00 98.00 | 92.00 | 78.00 | 72.00 | 50.00
EEG 25 100.00 97.87 | 95.74 | 92.55 | 92.55 | 82.98
EEG 26 99.19 98.39 | 98.39 | 97.58 | 94.35 | 91.13
EEG 27 100.00 96.09 | 99.22 | 96.88 | 93.75 | 87.50
EEG 28 99.35 98.69 | 99.35 | 96.08 | 94.77 | 91.50
EEG 29 99.00 94.00 | 95.00 | 92.00 | 83.00 | 80.00
EEG 30 100.00 92.13 | 88.76 | 82.02 | 79.78 | 68.54
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Table 5.2 continued from previous page

Accuracy (%)

Signal Proposed Constant Thresholds
(Automated Varying Threshold, eADA) | 10uV | 20uV | 30uV | 40uV | 50uV
EEG 31 99.44 93.26 | 94.38 | 97.19 | 9719 | 97.75
EEG 32 99.26 99.26 | 99.26 | 98.52 | 98.52 | 94.81
EEG 33 97.47 94.30 94.30 | 100.00 | 99.37 | 97.47
EEG 34 97.31 92.47 | 93.01 | 97.31 | 94.09 | 93.55
EEG 35 97.47 94.30 | 96.20 | 100.00 | 100.00 | 98.73
EEG 36 98.16 93.25 | 94.48 | 100.00 | 98.16 | 96.93
EEG 37 100.00 94.00 | 97.00 | 99.00 | 98.00 | 95.00
EEG 38 100.00 99.01 | 100.00 | 100.00 | 100.00 | 100.00
EEG 39 100.00 94.74 | 100.00 | 98.95 | 98.95 | 98.95
EEG 40 100.00 89.87 | 97.47 | 98.73 | 100.00 | 98.73
EEG 41 100.00 97.56 | 97.56 | 98.78 | 98.78 | 98.78
EEG 42 100.00 98.85 | 98.85 | 98.85 | 98.85 | 96.55
EEG 43 100.00 100.00 | 100.00 | 100.00 | 94.57 | 88.37
EEG 44 100.00 97.66 | 98.44 | 98.44 | 97.66 | 95.31
EEG 45 97.76 96.27 | 94.78 | 94.03 | 94.03 | 88.06
EEG 46 99.40 100.00 | 100.00 | 100.00 | 98.80 | 95.81
EEG 47 100.00 100.00 | 100.00 | 100.00 | 99.43 | 95.43
EEG 48 100.00 93.98 | 98.80 | 98.80 | 98.19 | 87.35
EEG 49 100.00 95.83 | 93.33 | 90.83 | 89.17 | 84.17
EEG 50 100.00 99.19 | 98.39 | 96.77 | 95.97 | 87.90
EEG 51 100.00 89.57 | 9565 | 94.78 | 92.17 | 82.61
EEG 52 100.00 9259 | 87.96 | 86.11 | 84.26 | 79.63
EEG 53 100.00 8148 | 7284 | 71.60 | 70.37 | 62.96
EEG 54 99.05 95.24 | 93.33 | 93.33 | 90.48 | 80.95
EEG 55 99.14 97.41 | 95.69 | 9569 | 95.69 | 92.24
EEG 56 100.00 95.20 | 98.40 | 97.60 | 96.00 | 95.20
EEG 57 98.73 93.67 | 95,57 | 9557 | 94.94 | 92.41
EEG 58 100.00 97.37 | 96.49 | 95.61 94.74 | 94.74
EEG 59 99.44 91.53 | 99.44 | 96.61 | 96.05 | 95.48
EEG 60 98.36 96.72 | 97.81 | 99.45 | 93.99 | 97.81
AVERAGE 99.47 95.37 | 95.34 | 92.67 | 8457 | 73.95
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In this chapter, the proposed algorithms, FastEMD-CCA? and FastCCA are implemented
in C++. As discussed earlier, an online artifact removal algorithm should be an unsu-
pervised approach, fully automatic, and doesn’t depend on reference electrodes for ar-
tifact identification. Apart from this, the online artifact removal algorithm should be able
to process the EEG signals in windows or blocks to reduce computational cost. This will
automatically improve the processing speed of the online algorithm, thus not introducing
an unacceptable time delay to the entire application. The computational environment of
which the eyeblink artifact removal algorithm is implemented plays a vital role in online
applications. The proposed approaches are implemented and evaluated in an inexpen-
sive computing environment, C++ programming language, to investigate the feasibility of
the approaches in accommodating online applications. The reason the algorithms are
implemented in C++ is to investigate the computation time or the processing speed the
proposed algorithms, FastEMD-CCA? and FastCCA could achieve, in line to support an
online application.

Sixty EEG signals that were used to evaluate the proposed approaches were collected at
Hitachi, Hatayoma site in Japan, as stated in Chapter[4] These EEG signals are recorded
following the 10-20 international standardization with free electrodes placed on the scalp.
The EOG electrodes that capture eyeblink events are not used to record the EOG signals
for convenience purpose. Validation whether the eyeblink artifacts are removed turns out
to be difficult due to the unavailability of eyeblink ground truths. Thus, an expert’s advice is
required to substantiate if the approaches are able to remove eyeblink artifacts effectively.

In order to achieve an online implementation of the proposed approaches in removing
eyeblink artifacts from EEG signals, two implementation procedures are proposed. First,
the proposed algorithms are executed and processing is performed in small EEG win-
dows, rather than applying the proposed algorithm to the entire EEG signal. Secondly,
the proposed algorithms are implemented and evaluated with a compiled language, the
C++ language on an Ubuntu Linux 14.04 (64-bit OS, 4GB RAM).

The proposed algorithms, FastEMD-CCA? and FastCCA are initially implemented in MAT-
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LAB, then followed by C++. In MATLAB, the entire multichannel EEG signal is imported
into MATLAB’s workspace for processing. The algorithms are executed and artifact cor-
rection is performed on overlapping windows, with each window being about 1.95s in
length. In the C++ language, the algorithms are executed in Ubuntu to process the EEG
signals in a simulated online setting. The proposed algorithms are designed to stream
EEG recording on a sample by sample basis to fill up a buffer. Once a 1.95s length of
EEG epoch is buffered, the epoch will be subjected to unsupervised artifact detection and
artifact removal.

The competency of an online eyeblink artifact removal algorithm relies on the processing
speed of the algorithm, where the time taken for artifact elimination from EEG signals
should be acceptable for an online application. The time taken for a system to be consi-
dered as real-time is still debatable, but estimated to be between 6 and 20 milliseconds
[164]. As stated earlier, the reason for the proposed algorithms implemented in C++ is to
investigate the processing speed the algorithms can achieve. So, the other performance
measures should remain the same as they are the same algorithms, regardless of the
implementation platform. This is feasible only if the algorithms are correctly implemented
in C++. So, visual inspection and quantitative analysis in the time and frequency do-
mains are performed on the EEG signals to verify whether the algorithms are correctly
implemented in C++, compared to MATLAB. On the whole, the algorithm should achieve
instantaneous artifact correction without loss of neural information, to be useful in online
applications.

The proposed algorithms are evaluated through offline analysis performed on the online
processed EEG signals after artifact correction, in MATLAB and C++. The analysis is
conducted on 60 EEG signals, described in Chapter 4] section[4.1.2.1] The effectiveness
of the proposed algorithms, FastEMD-CCA? and FastCCA in both MATLAB and C++ is

evaluated through visual inspection on the EEG signals with measures such as error (Eq.
€19, accuracy(Eq. @1D), sensitivity(Eq. &) and specificity(Eq. &19).

Supplementary to eyeblink artifact detection and rejection, the performance of the pro-
posed algorithms in retaining the neural information were quantitatively assessed. Ran-
domly selected artifact-free EEG segments from the above-mentioned 60 EEG recordings
are used for this purpose. One randomly selected artifact-free EEG segment is assessed
from each EEG signal. Ideally, it is expected that these segments remain undistorted,
even after the artifacts have been removed. The evaluation is carried out in both time and
frequency domains.

In the time domain, the correlation coefficient (CC), root mean square error (RMSE) and
similarity index (n,5) [108] are used to measure how well the proposed algorithms have
preserved the artifact-free EEG segments after artifact correction. CC in Eq. €1 mea-
sures the similarity between the original artifact-free EEG segment, X, (r) with its corres-
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ponding reconstructed EEG segment, X,,,(¢) after artifact removal.

Cxin(6), Xou(®)

CC = (6.1)

O Xin(1) * O Xout(1)

RMSE measures the reconstruction error between original artifact-free EEG segment and
the reconstructed EEG segment. In Eq. €2 1 is the number of sample points in the EEG
segment :

n . _ 2
AMSE - \/ ", (Xin(0) = Xou(1) 62)

n

Similarity index (r45) in Eq. €3, of the artifact-free EEG segment is computed to quantify
the degree of neural information preservation.

(1= Xin(0) = Xout(1))
n

NdB = 1010%10[ (6.3)

In frequency domain, the mean absolute error (MAE) and mean absolute percentage
error (MAPE) in Eq. €2 and €3 as suggested in [16] are calculated.

MAE = [Px;,) — Poun)| (6.4)

Pxit) = Pxou

MAPE = x 100 (6.5)

Px,.)

MAE is used to measure any distortion in power spectral densities, Px, ;) and Px,,
across different frequency bands of an artifact-free EEG segment. MAE is evaluated over
five different frequency bands, including delta 6 waves, theta 6 waves, alpha o waves, beta
B waves and gamma y waves. It is expected that after artifact correction, the MAE has a
value nearing 0, indicating minimal loss of neural information. MAPE is used to estimate
the distortion percentage in every frequency band of the artifact-free EEG segment.

The online performance of the proposed algorithms is evaluated in terms of the computa-
tion time taken by the algorithms in removing artifacts from EEG signals. The processing
speed taken by both algorithms in two different platforms, MATLAB R2018b in Windows 7
Professional (64 bit OS, 4GB RAM) and C++ language on an Ubuntu Linux 14.04 (64-bit
OS, 4GB RAM), are recorded for evaluation purpose. The computation time is interpre-
ted as the computing efficiency of the algorithms in cleaning the eyeblink artifacts online.
Hence, it is used to evaluate the feasibility of the algorithms for online processing, whe-
ther they can achieve instantaneous artifact removal. Whichever algorithm that achieves
a shorter computation time denotes better computing efficiency, making it a more suitable
candidate for online eyeblink artifact removal applications.
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6.3/ RESULTS AND DISCUSSION

6.3.1/

OFFLINE ANALYSIS RESULTS THROUGH VISUAL INSPECTION

The EEG signals are subjected to online eyeblink artifact elimination via FastEMD-CCA?
and FastCCA in MATLAB computing environment and C++ programming language. Vi-
sual comparison of Fp1 channel of EEG 3, before and after artifact correction using
FastEMD-CCA? and FastCCA in MATLAB and C++ are presented in Figs. [6.1]and[6.2]
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FIGURE 6.1 — Recovered EEG Signal from Fp1 Channel through FastEMD-CCA? in MAT-

LAB and C++
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FIGURE 6.2 — Recovered EEG Signal from Fp1 Channel through FastCCA in MATLAB
and C++

Screen-shots of EEG3’s Fp1 channel display in the C++ programming language, after
artifact correction through FastEMD-CCA? and FastCCA are shown in Figs. [6.3)and [6.4}
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FIGURE 6.3 — Display of Recovered EEG Signal from Fp1 Channel through FastEMD-
CCA?in C++
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FIGURE 6.4 — Display of Recovered EEG Signal from Fp1 Channel through FastCCA in
C++

Figs. [6.6], [6.7] and [6.8] visualize multichannel EEG signal of EEG 3, before and after
artifact correction using FastEMD-CCA? and FastCCA in MATLAB and C++.
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Contaminated & Corrected EEG Signal
through FastEMD-CCA? in MATLAB
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FIGURE 6.5 — Recovered Multichannel EEG Signal through FastEMD-CCA? in MATLAB
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Contaminated & Corrected EEG Signal
through FastEMD-CCA? in C++
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FIGURE 6.6 — Recovered Multichannel EEG Signal through FastEMD-CCA? in C++
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Contaminated & Corrected EEG Signal
through FastCCA in MATLAB
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FIGURE 6.7 — Recovered Multichannel EEG Signal through FastCCA in MATLAB
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Contaminated & Corrected EEG Signal

through FastCCA in C++
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FIGURE 6.8 — Recovered Multichannel EEG Signal through FastCCA in C++

The average error rate, accuracy, sensitivity and specificity obtained through Egs. €19,
€17 @18 and @19, by offline visual inspection on the corrected EEG signals are presen-
ted in Table[6.7] The individual representation of error, accuracy, sensitivity and specificity

are presented in Appendix [Al

TABLE 6.1 — Average Performance Metrics of FastEMD-CCA? and FastCCA in MATLAB

Samples

x10*

and C++
Average (%)
Multichannel EEG Signal | FastEMD-CCA? FastCCA

MATLAB | C++ | MATLAB | C++
Error Rate 2.10 2.10 0.53 0.53
Accuracy 97.9 97.9 99.47 99.47
Sensitivity 97.65 97.65 99.44 99.44
Specificity 99.22 99.22 99.74 99.74
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Results in Tables[A.1][A.2] [A.3 and [A.4] represent the individual error rate, accuracy, sen-
sitivity and specificity obtained through offline manual visual inspection performed on the
artifact-free EEG signals that have been processed online. FastEMD-CCA? has achieved
similar performance measures in both MATLAB and C++, i.e error rate of 2.10%, accu-
racy of 97.9%, sensitivity of 97.65% and specificity of 99.22%. Similarly, FastCCA has
achieved an error rate of 0.53%, accuracy of 99.47%, sensitivity of 99.44% and speci-
ficity of 99.74%, in both MATLAB and C++. Achieving similar performance measures in
removing the eyeblink artifacts in both platforms is expected, proving that the algorithms
are implemented correctly in C++.

The performance of the proposed algorithms in preserving the underlying neural informa-
tion of an EEG signal is evaluated on randomly selected artifact-free EEG segments, after
artifact correction. One artifact-free Fp1 EEG segment is evaluated on every EEG signal.
Some of the EEG signals are excluded from this analysis as they are contaminated by too
many eyeblink artifacts, making it difficult to select a proper artifact-free EEG segment.
The EEG signals that are excluded from the analysis are EEG 14-18, EEG 25-36, EEG
45-50 and EEG 57-60.

Figs. [6.9/ and show visual comparison of a short segment of EEG recording (EEG
3), corrected using FastEMD-CCA? and FastCCA in MATLAB and C++. From Fig. it
can be seen that the proposed algorithms are able to remove eyeblink artifacts effectively
and Fig. shows a portion of reconstructed artifact-free segment that overlaps well
with the raw EEG segment. Visual inspection on the removed eyeblink artifacts and the
reconstructed artifact-free EEG segment shows both algorithms are effective in eyeblink
artifact removal and preserving the neural information.
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FIGURE 6.9 — Corrected Eyeblink Artifact Regions through FastEMD-CCA? and FastCCA
in MATLAB and C++
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FIGURE 6.10 — Reconstructed Artifact-free EEG through FastEMD-CCA? and FastCCA in
MATLAB and C++

The individual results obtained for CC, RMSE and Similarity Index (n4s), of the artifact-
free Fp1 EEG segments are presented in Appendix [A] Table presents the average
CC, RMSE and Similarity Index (r45), of the artifact-free Fp1 EEG segments.

TABLE 6.2 — Average CC, RMSE and 75,3 of FastEMD-CCA? and FastCCA in MATLAB
and C++

Average
Multichannel EEG Signal FastEMD-CCA? FastCCA
MATLAB | C++ MATLAB | C++
Correlation Coefficient (CC) 0.9992 | 0.9999 | 0.9993 | 0.9998
Root Mean Square Error (RMSE) | 0.1572 | 0.0154 | 0.1010 | 0.0227
Similarity Index (7,5) -0.3132 | 0.0010 | -0.1377 | 0.0009

In order to evaluate the proposed algorithms in the frequency domain, the mean absolute
error (MAE) and mean absolute percentage error (MAPE) are calculated. The perfor-
mance of the proposed algorithms in preserving the underlying neural information of an
EEG signal is evaluated on randomly selected artifact-free EEG segments, after artifact
correction. One artifact-free Fp1 EEG segment is evaluated on every EEG signal. Similar
to time-domain analysis, some of the EEG signals are excluded from the analysis due
to the presence of too many eyeblink artifacts. The results obtained for MAE and MAPE
across five different frequency bands are given in Appendix [Al The average MAE and
MAPE across five different frequency bands of these EEG signals are tabulated in Tables

6.3 and 6.4l
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TABLE 6.3 — Average MAE of FastEMD-CCA? and FastCCA in Different Frequency Bands

Average Mean Absolute Error
Multichannel EEG Signal Delta
FastEMD-CCA2 | FastCCA
Delta 0.0059 0.0035
Theta 0.0004 0.0001
Alpha 0.0002 0.0004
Beta 0.0000 0.0001
Gamma 0.0000 0.0000

TABLE 6.4 — Average MAPE of FastEMD-CCA? and FastCCA in Different Frequency
Bands

Average Mean Absolute Percentage Error (%)
Multichannel EEG Signal Delta
FastEMD-CCA2 | FastCCA
Delta 0.0343 0.0201
Theta 0.0087 0.0044
Alpha 0.0044 0.0125
Beta 0.0096 0.0193
Gamma 0.0879 0.3777

In the time domain, CC, RMSE and similarity index are used to evaluate the ability of
the proposed algorithms in retaining neural information contained on artifact-free EEG
segments. The proposed algorithms, FastEMD-CCA? and FastCCA are implemented in
MATLAB and C++ to remove eyeblink artifacts from the EEG signals. Twenty-seven EEG
signals designated with “na” in Tables [A.5] [A.6] and [A.7| are excluded from the analysis
as they are contaminated by too many eyeblink artifacts, leading to difficulty in identifying
proper artifact-free EEG segments. Hence, only 33 EEG signals out of 60 EEG signals
are used for quantitative analysis. The artifact-free EEG segments in an EEG signal are
expected to be unaffected, and the neural information in these segments should remain
intact after artifact elimination is performed. The effectiveness of the proposed algorithms
in preserving the underlying EEG information can be deduced through CC value that
approaches 1, RMSE and n,p that is close to 0.

The average RMSE and n,4p are very low, RMSE ranges between 0.0154 to 0.1572
and ngp range between -0.3132 to 0.0010. The highest average RMSE was recorded
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by FastEMD-CCA? in MATLAB, but it produced the least RMSE in C++. The average
CC value for FastEMD-CCA? is 0.9992 and 0.9999 in MATLAB and C++ respectively.
FastCCA has achieved average CC value of 0.9993 in MATLAB and 0.9998 in C++. In
Section it is stated that the performance measures should be similar in both MATLAB
and C++, indicating correct implementation of the algorithms in C++. However, the quan-
titative analysis of the artifact-free EEG segments has shown a slight difference in results
obtained in C++. This may be due to the QR decomposition and SVD that are used in
MATLAB and C++ are from different toolboxes and libraries, producing decomposition
difference. This difference in decomposition eventually causes a slight difference during
EEG reconstruction. However, the average CC values for both algorithms in MATLAB and
C++ are comparable and the difference among them is considered insignificant. In gene-
ral, the individual CC values produced by FastEMD-CCA? and FastCCA in reconstructing
artifact-free segments are more than 0.99, for all 33 analysed EEG signals, in both MAT-
LAB and C++. This indicates that both algorithms do not introduce much distortion to
the artifact-free EEG segments during reconstruction, thus reliable in preserving neural
information of an EEG signal.

In the frequency domain, the MAE and MAPE are calculated to validate if the proposed
algorithms introduce any distortion to the signal over different frequency bands after arti-
fact elimination is performed. FastEMD-CCA? produces the highest average MAE in the
delta band, which is 0.0059 compared to 0.0035 by FastCCA. The average MAE in every
other frequency band is very close to zero, denoting negligible loss of neural information.
The highest distortion percentage is observed in the gamma band with an average MAPE
of 0.3777% and 0.0879%, produced by FastCCA and FastEMD-CCA? respectively. The
least distortion percentage is 0.0044% by FastEMD-CCA? in the alpha band. It is clear
that the average MAPE lies in the range of 0.0044% to 0.3777%. The percentage re-
presentation of MAPE is very low and can be considered very minimal. The MAE and
MAPE have shown that the distortion caused by the proposed algorithms is very minimal,
thus these algorithms are suitable to be used in any EEG-based applications for eyeblink
artifact removal.

The time and frequency domain analysis were conducted to verify the performance of
the proposed algorithms quantitatively, in retaining neural information of artifact-free EEG
segments. The performance results of FastEMD-CCA? and FastCCA, in both time and fre-
quency domains, suggest that they have caused insignificant loss of neural information
to the EEG signals. In FastEMD-CCA?, the eADA algorithm is first implemented to iden-
tify the first few eyeblink artifact locations, and an eyeblink artifact template is extracted
out through FastEMD-CCA. The eyeblink artifact template is cross-correlated with sliding
EEG windows, where highly correlated EEG windows are subjected to eyeblink artifact
removal. CCA is applied to remove artifacts, only on EEG windows that were confirmed to
be contaminated by eyeblink artifacts. Hence, this is the reason that the artifact-free EEG
segments are unaffected in FastEMD-CCA?, causing negligible loss of neural information
during the reconstruction of the neural signal. In FastCCA, the eyeblink artifact locations
are identified with the help of eADA algorithm, and then CCA is used for eyeblink artifact
removal only on locations where eyeblink artifacts occur. Similar to FastEMD-CCA?, the
artifact-free EEG segments are unaffected, preventing loss of neural information during
the reconstruction of a clean EEG signal.
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The individual computation time taken by FastEMD-CCA? and FastCCA in MATLAB com-
puting environment and C++ programming language to remove eyeblink artifacts from 14-
channel EEG signals are provided in Appendix [A] Table[A.10] The average computation
time taken by these algorithms in MATLAB computing environment and C++ program-
ming language to remove eyeblink artifacts from 14-channel EEG signals are tabulated in

Table 6.5

TABLE 6.5 — Average Computation Time of FastEMD-CCA? and FastCCA in MATLAB and
C++

Average
Multichannel EEG Signal | Average Duration per Channel (s) | FastEMD-CCA? FastCCA
MATLAB | C++ | MATLAB | C++
Computation Time (s) 312.33 6.78 3.35 6.87 3.96
Processing Time 1-second of EEG segment 0.0217 | 0.0107 | 0.0220 | 0.0127

The proposed algorithms are carried out on every 1.95s epoch of the recorded EEG si-
gnal to remove any eyeblink artifact that is present. The average computation time of
FastEMD-CCA? is 6.78s in MATLAB and 3.35s in C++. It takes an average of 21.7 millise-
conds in MATLAB and 10.7 milliseconds C++ to process and remove any eyeblink artifact
from a 1-second length of 14-channel EEG signal (256 sample points x 14 EEG chan-
nels). The average computation time of FastCCA is 6.87s in MATLAB and 3.96s in C++.
The average processing time to process and clean a 1-second length of 14-channel EEG
signal by FastCCA is 22 milliseconds in MATLAB and 12.7 milliseconds in C++. Com-
paring FastEMD-CCA? and FastCCA, the shorter processing time of 10.7 milliseconds
is achieved by FastEMD-CCA? in C++, followed by FastCCA in C++, with a processing
time of 12.7 milliseconds. Results clearly show that the eyeblink artifact removal in C++ is
well-suited for real-time implementation. Both algorithms took about 10 to 13 milliseconds
on average to clean an EEG epoch of 1s length (256 x 14 EEG sample points) in C++
environment. This is because the proposed algorithms in C++ are designed to stream
the EEG signal on a sample by sample basis into a buffer, before the eyeblink artifacts
are located and removed. The streaming of EEG sample points into the buffer, and the
cleaning process are performed in parallel. Therefore the processing speed of proposed
algorithms in C++ is purely dependent on the speed of EEG sample point acquisition and
instantaneous processing, hence the processing is considered as online.

FastEMD-CCA? and FastCCA proposed in Chapter |4| are analysed and discussed after
implementing the algorithms in C++. This chapter has evaluated the performance of these
algorithms in removing eyeblink artifacts in real-time, and how well the algorithms are
able to preserve artifact-free EEG segments, without distorting the neural signal. The al-
gorithms are implemented in MATLAB and C++, both in a real-time setting. It appears that
both algorithms have achieved instantaneous eyeblink artifact elimination, with very fast
processing time in C++. From subsection the artifact removal accuracy of FastCCA
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is 1.57% higher than FastEMD-CCA? in both MATLAB and C++, indicating FastCCA is
slightly better in artifact removal, regardless of the implementation medium, MATLAB or
C++. On the other hand, quantitative analysis in time and frequency domains has pointed
out that both FastEMD-CCA? and FastCCA are effective in retaining underlying neural
information, with insignificant distortion to the artifact-free EEG segments. Thus, any of
these two algorithms are suitable to be used in EEG-based applications requiring eyeblink
artifact removal without loss of neural information in real-time, with FastCCA is slightly de-
sirable in terms of artifact removal accuracy.
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The main intention of this research is to develop robust algorithms that are able to perform
online detection and removal of eyeblink artifacts from EEG signals. In short, the deve-
loped algorithms are expected to perform online eyeblink artifact elimination from EEG
signals without distorting the neural signal, with acceptable processing time delay. Online
detection and removal of eyeblink artifacts from EEG signals are essential as contamina-
tion from eyeblink artifacts are inevitable in EEG based applications. BCI, neurofeedback,
epileptic seizure detection and diagnosis of Alzheimer’s disease are some of the EEG ba-
sed applications that require multichannel EEG signals to be available online for further
analysis and interpretation.

For an eyeblink artifact removal algorithm to be effective, the eyeblink artifact locations
need to be correctly identified so that the algorithm doesn’t have to perform artifact elimi-
nation on artifact-free EEG segments, preventing loss of neural information from the EEG
signal. So, this work has first focused in developing a novel unsupervised eyeblink artifact
detection algorithm (eADA), which locates eyeblink artifact frames effectively, assisting
subsequent artifact elimination process. eADA is accurate in locating eyeblink artifacts
that are contaminating an EEG signal. The performance of eADA is consistent as well,
being able to identify and locate eyeblink artifacts across different EEG signals although
there may be variance in the eyeblink characteristics, i.e. blinking duration, eyeblink pat-
tern and eyeblink strength.

Secondly, the performance of Empirical Mode Decomposition (EMD) is improved with
various modifications discussed in Chapters [3| and |4| to resolve the processing time in-
efficiency of the technique, resulting in FastEMD. FastEMD is then used with Canonical
Correlation Analysis (CCA), for eyeblink artifact template extraction and removal of eye-
blink artifacts from EEG signal, and the developed technique is called FastEMD-CCA?Z.
Additionally, another novel eyeblink artifact removal algorithm is proposed and develo-
ped, combining unsupervised eyeblink artifact detection algorithm (eADA) and CCA, and
naming it as FastCCA. The proposed FastEMD-CCA? and FastCCA algorithms are com-
pared with Wavelet Transform using simulated EEG signals and eyeblink artifacts, for
its effectiveness in removing eyeblink artifacts from EEG signals. Moreover, the propo-
sed FastEMD-CCA? and FastCCA are evaluated for their speed of computation using
real EEG signals as shown in Chapter [5, and compared with conventional EMD-CCA
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technique. FastEMD-CCA? and FastCCA proved to be very fast compared to the conven-
tional EMD-CCA, at least 16 and 9 times faster respectively. To evaluate and analyze the
ability of the proposed algorithms, FastEMD-CCA? and FastCCA in accurately removing
eyeblink artifacts from EEG signals online, they are compared with one of the existing
state-of-the-art methods, i.e. FORCe using two EEG datasets. These algorithms have
outperformed FORCe in terms of artifact removal accuracy and processing speed, ma-
king them a feasible solution for applications requiring online removal of eyeblink artifacts.

Additionally, FastCCA and FastEMD-CCA? algorithms are developed and implemented in
C++ programming language and compared with implementation in MATLAB. This is done
to analyse the processing speed that can be achieved by the proposed algorithms in C++.
The performance of the proposed algorithms in removing eyeblink artifacts online without
distorting the neural signal is evaluated and quantitatively analysed. The artifact removal
accuracy of FastCCA is slightly better than FastEMD-CCA? in both MATLAB and C++,
indicating FastCCA is preferable. It appears that both algorithms have achieved instan-
taneous eyeblink artifact elimination, with FastEMD-CCA? slightly faster than FastCCA.
These algorithms have also demonstrated impressive EEG signal reconstruction, with
insignificant distortion to the artifact-free EEG segments.

To conclude, FastEMD-CCA? and FastCCA implemented in C++ programming language
are reliable and suitable to be used to remove eyeblink artifacts from EEG signals in real-
time applications, with FastCCA more preferable in terms of artifact removal accuracy.

FastEMD-CCA? and FastCCA have proven to be successful and reliable algorithms that
can be used for online detection and removal of eyeblink artifacts from EEG signals.
The implementation of the algorithms can be further enhanced if the following issues are
addressed :

e The real EEG signals used in this thesis are recorded beforehand, thus the pro-
posed algorithms are designed to process the EEG signals in a simulated online
setting, i.e. EEG segments are processed in blocks in MATLAB and EEG sample
points are streamed sample by sample basis to be processed in C++.

e Current work is done on a PC that operates with a central processing unit (CPU),
for both MATLAB and C++. MATLAB is used on a Windows, while C++ is used
on an Ubuntu Linux system. Although realization of the proposed algorithms in C++
programming language on a CPU achieve an online solution, it is not an application-
centric solution. This is due to the fact that the algorithms rely on sequential execu-
tion on a CPU.

Future work is recommended for further improvement in the implementation of the propo-
sed algorithms :

e An appropriate real-time EEG hardware system is required for real-time recording,
acquisition and processing of the EEG signal. EEG signals can then be recorded
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in real-time, allowing the proposed algorithms to grab the EEG sample points and
remove eyeblink artifacts instantaneously.

The real-time EEG system, incorporated with a high-performance computing sys-
tem is required to support real-time implementation. A graphics processing unit
(GPU) can be used for this purpose. GPU is capable of parallel computing and
programming, with the help of CUDA (Compute Unified Device Architecture) crea-
ted by NVIDIA. Using CUDA, the programmer can take advantage of the massive
parallel computing power of an NVIDIA graphics card to perform general-purpose
computation and multi-thread algorithm execution. Parallel processing and multi-
thread execution methods are an efficient solution to decrease complexity in real-
time implementations. Considering the parallel computational capabilities of a GPU
compared to a CPU, it seems promising to use GPU in combination of an EEG
system, for demanding EEG signal pre-processing tasks, particularly for real-time
eyeblink artifact removal. The hardware-based implementation will not only be ca-
pable of removing eyeblink artifacts from EEG signals in real-time, but will also serve
as an ideal device for ambulatory EEG applications.
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TABLE A.1 — Comparison of Error Rate Between FastEMD-CCA? and FastCCA in MAT-
LAB and C++

Error Rate (%)

Multichannel EEG Signal | Duration per Channel (s) FastEMD-CCA” FastCCA

MATLAB | C++ | MATLAB | C++
EEG 1 389 4.65 4.65 0.00 0.00
EEG 2 329 1.92 1.92 0.00 0.00
EEG 3 294 2.78 2.78 0.00 0.00
EEG 4 369 2.78 2.78 0.00 0.00
EEG 5 337 5.66 5.66 5.66 5.66
EEG 6 312 2.56 2.56 0.00 0.00
EEG 7 330 0.00 0.00 0.00 0.00
EEG 8 308 1.04 1.04 1.04 1.04
EEG 9 306 1.12 1.12 0.00 0.00
EEG 10 346 4.30 4.30 0.00 0.00
EEG 11 321 2.11 2.11 0.00 0.00
EEG 12 272 1.41 1.41 0.00 0.00
EEG 13 345 2.38 2.38 0.00 0.00
EEG 14 310 1.16 1.16 0.00 0.00
EEG 15 271 0.53 0.53 0.00 0.00
EEG 16 345 1.09 1.09 0.00 0.00
EEG 17 316 1.13 1.13 0.00 0.00
EEG 18 280 1.66 1.66 0.55 0.55
EEG 19 335 0.77 0.77 0.00 0.00
EEG 20 302 2.33 2.33 1.16 1.16
EEG 21 289 1.27 1.27 0.00 0.00
EEG 22 346 0.00 0.00 0.00 0.00
EEG 23 304 0.00 0.00 0.00 0.00
EEG 24 269 2.00 2.00 2.00 2.00
EEG 25 359 1.06 1.06 0.00 0.00
EEG 26 265 3.23 3.23 0.81 0.81
EEG 27 334 2.34 2.34 0.00 0.00
EEG 28 326 1.31 1.31 0.65 0.65
EEG 29 272 4.00 4.00 1.00 1.00
EEG 30 264 1.12 1.12 0.00 0.00
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Table A.1 continued from previous page

Error Rate (%)

Multichannel EEG Signal | Duration per Channel (s) FastEMD-CCA* FastCCA

MATLAB | C++ | MATLAB | C++
EEG 31 346 5.06 5.06 0.56 0.56
EEG 32 289 0.74 0.74 0.74 0.74
EEG 33 298 2.53 2.53 2.53 2.53
EEG 34 360 3.76 3.76 2.69 2.69
EEG 35 291 3.80 3.80 2.53 2.53
EEG 36 296 4.91 4.91 1.84 1.84
EEG 37 331 2.00 2.00 0.00 0.00
EEG 38 297 0.00 0.00 0.00 0.00
EEG 39 263 0.00 0.00 0.00 0.00
EEG 40 334 3.80 3.80 0.00 0.00
EEG 41 299 1.22 1.22 0.00 0.00
EEG 42 268 1.15 1.15 0.00 0.00
EEG 43 359 1.55 1.55 0.00 0.00
EEG 44 314 1.56 1.56 0.00 0.00
EEG 45 278 2.24 2.24 2.24 2.24
EEG 46 364 1.20 1.20 0.60 0.60
EEG 47 325 1.71 1.71 0.00 0.00
EEG 48 284 2.41 2.41 0.00 0.00
EEG 49 337 2.50 2.50 0.00 0.00
EEG 50 280 1.61 1.61 0.00 0.00
EEG 51 253 0.87 0.87 0.00 0.00
EEG 52 346 2.78 2.78 0.00 0.00
EEG 53 288 0.00 0.00 0.00 0.00
EEG 54 271 3.81 3.81 0.95 0.95
EEG 55 339 3.45 3.45 0.86 0.86
EEG 56 302 2.40 2.40 0.00 0.00
EEG 57 335 1.27 1.27 1.27 1.27
EEG 58 350 3.51 3.51 0.00 0.00
EEG 59 314 2.82 2.82 0.56 0.56
EEG 60 284 3.83 3.83 1.64 1.64
Average 312.33 2.10 2.10 0.53 0.53
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TABLE A.2 — Comparison of Accuracy Between FastEMD-CCA? and FastCCA in MATLAB
and C++

Accuracy (%)

Multichannel EEG Signal | Duration per Channel (s) FastEMD-CCA’ FastCCA
MATLAB | C++ | MATLAB | C++
EEG 1 389 95.35 95.35 | 100.00 | 100.00
EEG 2 329 98.08 98.08 | 100.00 | 100.00
EEG 3 294 97.22 97.22 100.00 | 100.00
EEG 4 369 97.22 97.22 | 100.00 | 100.00
EEG 5 337 94.34 94.34 94.34 94.34
EEG 6 312 97.44 97.44 | 100.00 | 100.00
EEG 7 330 100.00 | 100.00 | 100.00 | 100.00
EEG 8 308 98.96 98.96 98.96 98.96
EEG 9 306 98.88 98.88 | 100.00 | 100.00
EEG 10 346 95.70 95.70 | 100.00 | 100.00
EEG 11 321 97.89 97.89 | 100.00 | 100.00
EEG 12 272 98.59 98.59 | 100.00 | 100.00
EEG 13 345 97.62 97.62 | 100.00 | 100.00
EEG 14 310 98.84 98.84 | 100.00 | 100.00
EEG 15 271 99.47 99.47 | 100.00 | 100.00
EEG 16 345 98.91 98.91 100.00 | 100.00
EEG 17 316 98.87 98.87 | 100.00 | 100.00
EEG 18 280 98.34 98.34 99.45 99.45
EEG 19 335 99.23 99.23 | 100.00 | 100.00
EEG 20 302 97.67 97.67 98.84 98.84
EEG 21 289 98.73 98.73 | 100.00 | 100.00
EEG 22 346 100.00 | 100.00 | 100.00 | 100.00
EEG 23 304 100.00 | 100.00 | 100.00 | 100.00
EEG 24 269 98.00 98.00 98.00 98.00
EEG 25 359 98.94 98.94 | 100.00 | 100.00
EEG 26 265 96.77 96.77 99.19 99.19
EEG 27 334 97.66 97.66 | 100.00 | 100.00
EEG 28 326 98.69 98.69 99.35 99.35
EEG 29 272 96.00 96.00 99.00 99.00
EEG 30 264 98.88 98.88 | 100.00 | 100.00
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Table A.2 continued from previous page

Accuracy (%)

Multichannel EEG Signal | Duration per Channel (s) FastEMD-CCA” FastCCA
MATLAB | C++ | MATLAB | C++

EEG 31 346 94.94 94.94 99.44 99.44
EEG 32 289 99.26 99.26 99.26 99.26
EEG 33 298 97.47 97.47 97.47 97.47
EEG 34 360 96.24 96.24 97.31 97.31

EEG 35 291 96.20 96.20 97.47 97.47
EEG 36 296 95.09 95.09 98.16 98.16
EEG 37 331 98.00 98.00 | 100.00 | 100.00
EEG 38 297 100.00 | 100.00 | 100.00 | 100.00
EEG 39 263 100.00 | 100.00 | 100.00 | 100.00
EEG 40 334 96.20 96.20 | 100.00 | 100.00
EEG 41 299 98.78 98.78 | 100.00 | 100.00
EEG 42 268 98.85 98.85 | 100.00 | 100.00
EEG 43 359 98.45 98.45 | 100.00 | 100.00
EEG 44 314 98.44 98.44 | 100.00 | 100.00
EEG 45 278 97.76 97.76 97.76 97.76
EEG 46 364 98.80 98.80 99.40 99.40
EEG 47 325 98.29 98.29 | 100.00 | 100.00
EEG 48 284 97.59 97.59 | 100.00 | 100.00
EEG 49 337 97.50 97.50 | 100.00 | 100.00
EEG 50 280 98.39 98.39 | 100.00 | 100.00
EEG 51 253 99.13 99.13 | 100.00 | 100.00
EEG 52 346 97.22 97.22 | 100.00 | 100.00
EEG 53 288 100.00 | 100.00 | 100.00 | 100.00
EEG 54 271 96.19 96.19 99.05 99.05
EEG 55 339 96.55 96.55 99.14 99.14
EEG 56 302 97.60 97.60 | 100.00 | 100.00
EEG 57 335 98.73 98.73 98.73 98.73
EEG 58 350 96.49 96.49 | 100.00 | 100.00
EEG 59 314 97.18 97.18 99.44 99.44
EEG 60 284 96.17 96.17 98.36 98.36
Average 312.33 97.90 97.90 99.47 99.47
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TABLE A.3 — Comparison of Sensitivity Between FastEMD-CCA? and FastCCA in MAT-
LAB and C++

Sensitivity (%)
Multichannel EEG Signal | Duration per Channel (s) FastEMD-CCA’ FastCCA
MATLAB | C++ | MATLAB | C++

EEG 1 389 93.94 93.94 | 100.00 | 100.00
EEG 2 329 96.97 96.97 | 100.00 | 100.00
EEG 3 294 100.00 | 100.00 | 100.00 | 100.00
EEG 4 369 96.00 96.00 | 100.00 | 100.00
EEG 5 337 97.14 97.14 97.14 97.14
EEG 6 312 96.36 96.36 | 100.00 | 100.00
EEG 7 330 100.00 | 100.00 | 100.00 | 100.00
EEG 8 308 100.00 | 100.00 | 98.46 98.46
EEG 9 306 98.25 98.25 | 100.00 | 100.00
EEG 10 346 96.05 96.05 | 100.00 | 100.00
EEG 11 321 97.06 97.06 | 100.00 | 100.00
EEG 12 272 97.92 97.92 | 100.00 | 100.00
EEG 13 345 97.06 97.06 | 100.00 | 100.00
EEG 14 310 98.77 98.77 | 100.00 | 100.00
EEG 15 271 99.38 99.38 | 100.00 | 100.00
EEG 16 345 98.69 98.69 | 100.00 | 100.00
EEG 17 316 98.73 98.73 | 100.00 | 100.00
EEG 18 280 98.17 98.17 99.39 99.39
EEG 19 335 100.00 | 100.00 | 100.00 | 100.00
EEG 20 302 96.43 96.43 98.21 98.21

EEG 21 289 98.33 98.33 | 100.00 | 100.00
EEG 22 346 100.00 | 100.00 | 100.00 | 100.00
EEG 23 304 100.00 | 100.00 | 100.00 | 100.00
EEG 24 269 96.55 96.55 96.55 96.55
EEG 25 359 98.41 98.41 100.00 | 100.00
EEG 26 265 96.08 96.08 99.02 99.02
EEG 27 334 96.88 96.88 | 100.00 | 100.00
EEG 28 326 98.26 98.26 99.13 99.13
EEG 29 272 94.81 94.81 100.00 | 100.00
EEG 30 264 98.59 98.59 | 100.00 | 100.00
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Table A.3 continued from previous page

Sensitivity (%)

Multichannel EEG Signal | Duration per Channel (s) FastEMD-CCA” FastCCA
MATLAB | C++ | MATLAB | C++
EEG 31 346 94.55 94.55 99.39 99.39
EEG 32 289 99.15 99.15 99.15 99.15
EEG 33 298 97.28 97.28 97.28 97.28
EEG 34 360 95.93 95.93 97.09 97.09
EEG 35 291 95.92 95.92 97.28 97.28
EEG 36 296 94.70 94.70 98.01 98.01
EEG 37 331 97.37 97.37 | 100.00 | 100.00
EEG 38 297 100.00 | 100.00 | 100.00 | 100.00
EEG 39 263 100.00 | 100.00 | 100.00 | 100.00
EEG 40 334 98.15 98.15 | 100.00 | 100.00
EEG 41 299 98.48 98.48 | 100.00 | 100.00
EEG 42 268 98.51 98.51 100.00 | 100.00
EEG 43 359 98.08 98.08 | 100.00 | 100.00
EEG 44 314 98.02 98.02 | 100.00 | 100.00
EEG 45 278 97.52 97.52 97.52 97.52
EEG 46 364 98.71 98.71 99.35 99.35
EEG 47 325 98.01 98.01 100.00 | 100.00
EEG 48 284 97.33 97.33 | 100.00 | 100.00
EEG 49 337 96.94 96.94 | 100.00 | 100.00
EEG 50 280 97.73 97.73 | 100.00 | 100.00
EEG 51 253 98.92 98.92 | 100.00 | 100.00
EEG 52 346 96.70 96.70 | 100.00 | 100.00
EEG 53 288 100.00 | 100.00 | 100.00 | 100.00
EEG 54 271 96.51 96.51 98.84 98.84
EEG 55 339 96.39 96.39 98.80 98.80
EEG 56 302 96.77 96.77 | 100.00 | 100.00
EEG 57 335 98.31 98.31 98.31 98.31
EEG 58 350 95.45 95.45 | 100.00 | 100.00
EEG 59 314 96.97 96.97 99.24 99.24
EEG 60 284 95.57 95.57 98.10 98.10
Average 312.33 97.65 97.65 99.44 99.44
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TABLE A.4 — Comparison of Specificity Between FastEMD-CCA? and FastCCA in MAT-
LAB and C++

Specificity (%)
Multichannel EEG Signal | Duration per Channel (s) FastEMD-CCA’ FastCCA
MATLAB | C++ | MATLAB | C++
EEG 1 389 100.00 | 100.00 | 100.00 | 100.00
EEG 2 329 100.00 | 100.00 | 100.00 | 100.00
EEG 3 294 93.75 93.75 | 100.00 | 100.00
EEG 4 369 100.00 | 100.00 | 100.00 | 100.00
EEG 5 337 88.89 88.89 88.89 88.89
EEG 6 312 100.00 | 100.00 | 100.00 | 100.00
EEG 7 330 100.00 | 100.00 | 100.00 | 100.00
EEG 8 308 96.77 96.77 | 100.00 | 100.00
EEG 9 306 100.00 | 100.00 | 100.00 | 100.00
EEG 10 346 94.12 94.12 | 100.00 | 100.00
EEG 11 321 100.00 | 100.00 | 100.00 | 100.00
EEG 12 272 100.00 | 100.00 | 100.00 | 100.00
EEG 13 345 100.00 | 100.00 | 100.00 | 100.00
EEG 14 310 100.00 | 100.00 | 100.00 | 100.00
EEG 15 271 100.00 | 100.00 | 100.00 | 100.00
EEG 16 345 100.00 | 100.00 | 100.00 | 100.00
EEG 17 316 100.00 | 100.00 | 100.00 | 100.00
EEG 18 280 100.00 | 100.00 | 100.00 | 100.00
EEG 19 335 98.28 98.28 | 100.00 | 100.00
EEG 20 302 100.00 | 100.00 | 100.00 | 100.00
EEG 21 289 100.00 | 100.00 | 100.00 | 100.00
EEG 22 346 100.00 | 100.00 | 100.00 | 100.00
EEG 23 304 100.00 | 100.00 | 100.00 | 100.00
EEG 24 269 100.00 | 100.00 | 100.00 | 100.00
EEG 25 359 100.00 | 100.00 | 100.00 | 100.00
EEG 26 265 100.00 | 100.00 | 100.00 | 100.00
EEG 27 334 100.00 | 100.00 | 100.00 | 100.00
EEG 28 326 100.00 | 100.00 | 100.00 | 100.00
EEG 29 272 100.00 | 100.00 | 95.65 95.65
EEG 30 264 100.00 | 100.00 | 100.00 | 100.00
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Table A.4 continued from previous page

Specificity (%)
Multichannel EEG Signal | Duration per Channel (s) FastEMD-CCA” FastCCA
MATLAB | C++ | MATLAB | C++
EEG 31 346 100.00 | 100.00 | 100.00 | 100.00
EEG 32 289 100.00 | 100.00 | 100.00 | 100.00
EEG 33 298 100.00 | 100.00 | 100.00 | 100.00
EEG 34 360 100.00 | 100.00 | 100.00 | 100.00
EEG 35 291 100.00 | 100.00 | 100.00 | 100.00
EEG 36 296 100.00 | 100.00 | 100.00 | 100.00
EEG 37 331 100.00 | 100.00 | 100.00 | 100.00
EEG 38 297 100.00 | 100.00 | 100.00 | 100.00
EEG 39 263 100.00 | 100.00 | 100.00 | 100.00
EEG 40 334 92.00 92.00 | 100.00 | 100.00
EEG 41 299 100.00 | 100.00 | 100.00 | 100.00
EEG 42 268 100.00 | 100.00 | 100.00 | 100.00
EEG 43 359 100.00 | 100.00 | 100.00 | 100.00
EEG 44 314 100.00 | 100.00 | 100.00 | 100.00
EEG 45 278 100.00 | 100.00 | 100.00 | 100.00
EEG 46 364 100.00 | 100.00 | 100.00 | 100.00
EEG 47 325 100.00 | 100.00 | 100.00 | 100.00
EEG 48 284 100.00 | 100.00 | 100.00 | 100.00
EEG 49 337 100.00 | 100.00 | 100.00 | 100.00
EEG 50 280 100.00 | 100.00 | 100.00 | 100.00
EEG 51 253 100.00 | 100.00 | 100.00 | 100.00
EEG 52 346 100.00 | 100.00 | 100.00 | 100.00
EEG 53 288 100.00 | 100.00 | 100.00 | 100.00
EEG 54 271 94.74 94.74 100.00 | 100.00
EEG 55 339 96.97 96.97 | 100.00 | 100.00
EEG 56 302 100.00 | 100.00 | 100.00 | 100.00
EEG 57 335 100.00 | 100.00 | 100.00 | 100.00
EEG 58 350 100.00 | 100.00 | 100.00 | 100.00
EEG 59 314 97.78 97.78 | 100.00 | 100.00
EEG 60 284 100.00 | 100.00 | 100.00 | 100.00
Average 312.33 99.22 99.22 99.74 99.74
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TABLE A.5 — Comparison of Correlation Coefficient Between FastEMD-CCA? and
FastCCA in MATLAB and C++

Correlation Coefficient (CC)

Multichannel EEG Signal Evaluated Fp1 Segment | FastEMD-CCA? FastCCA
(samples from - to) MATLAB | C++ | MATLAB | C++
EEG 1 24000-33000 0.9989 | 0.9996 | 0.9999 | 1.0000
EEG 2 69000-78000 0.9991 1.0000 | 1.0000 | 1.0000
EEG 3 30000-43000 0.9980 | 1.0000 | 0.9994 | 1.0000
EEG 4 60000-70000 0.9986 | 1.0000 | 0.9989 | 0.9998
EEG 5 8000-18000 0.9964 | 0.9971 | 0.9971 | 0.9979
EEG 6 8000-14000 0.9989 | 1.0000 | 0.9995 | 1.0000
EEG 7 23000-24000 0.9999 | 1.0000 | 0.9943 | 0.9942
EEG 8 60000-61000 0.9998 | 1.0000 | 1.0000 | 1.0000
EEG 9 16000-18000 0.9992 | 1.0000 | 1.0000 | 1.0000
EEG 10 68000-69000 0.9999 | 1.0000 | 1.0000 | 1.0000
EEG 11 63000-66000 0.9993 | 1.0000 | 0.9991 1.0000
EEG 12 4500-8500 0.9996 | 1.0000 | 0.9998 | 1.0000
EEG 13 500-1500 1.0000 | 1.0000 | 1.0000 | 1.0000
EEG 14 na na na na na
EEG 15 na na na na na
EEG 16 na na na na na
EEG 17 na na na na na
EEG 18 na na na na na
EEG 19 65000-67000 0.9988 | 1.0000 | 0.9994 | 1.0000
EEG 20 44000-48000 0.9989 | 1.0000 | 0.9997 | 1.0000
EEG 21 56000-61000 0.9995 | 1.0000 | 0.9992 | 0.9999
EEG 22 51000-55000 0.9993 | 1.0000 | 0.9999 | 1.0000
EEG 23 5500-8500 0.9990 | 1.0000 | 0.9997 | 1.0000
EEG 24 18000-20000 0.9993 | 1.0000 | 0.9997 | 1.0000
EEG 25 na na na na na
EEG 26 na na na na na
EEG 27 na na na na na
EEG 28 na na na na na
EEG 29 na na na na na
EEG 30 na na na na na
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Table A.5 continued from previous page

Correlation Coefficient (CC)

Multichannel EEG Signal Evaluated Fp1 Segment | FastEMD-CCA? FastCCA
(samples from - to) MATLAB | C++ | MATLAB | C++
EEG 31 na na na na na
EEG 32 na na na na na
EEG 33 na na na na na
EEG 34 na na na na na
EEG 35 na na na na na
EEG 36 na na na na na
EEG 37 10000-12000 0.9993 | 1.0000 | 1.0000 | 1.0000
EEG 38 26000-28000 0.9996 | 1.0000 | 1.0000 | 1.0000
EEG 39 21000-24000 1.0000 | 1.0000 | 0.9992 | 1.0000
EEG 40 39000-43000 0.9989 | 1.0000 | 0.9996 | 1.0000
EEG 41 13000-16000 0.9987 | 1.0000 | 0.9988 | 1.0000
EEG 42 35000-37000 0.9999 | 1.0000 | 0.9998 | 1.0000
EEG 43 40000-42000 0.9984 | 1.0000 | 0.9956 | 1.0000
EEG 44 5500-7500 0.9997 | 1.0000 | 0.9996 | 1.0000
EEG 45 na na na na na
EEG 46 na na na na na
EEG 47 na na na na na
EEG 48 na na na na na
EEG 49 na na na na na
EEG 50 na na na na na
EEG 51 59000-61000 0.9997 | 1.0000 | 1.0000 | 1.0000
EEG 52 54000-56000 0.9992 | 1.0000 | 1.0000 | 1.0000
EEG 53 55000-58000 0.9999 | 1.0000 | 1.0000 | 1.0000
EEG 54 41000-43000 0.9998 | 1.0000 | 1.0000 | 1.0000
EEG 55 42000-45000 0.9992 | 1.0000 | 1.0000 | 1.0000
EEG 56 12000-14000 0.9996 | 1.0000 | 1.0000 | 1.0000
EEG 57 na na na na na
EEG 58 na na na na na
EEG 59 na na na na na
EEG 60 na na na na na
Average 0.9992 | 0.9999 | 0.9993 | 0.9998
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TABLE A.6 — Comparison of Root Mean Square Error Between FastEMD-CCA? and
FastCCA in MATLAB and C++

Root Mean Square Error (RMSE)

Multichannel EEG Signal Evaluated Fp1 Segment | FastEMD-CCA? FastCCA
(samples from - to) MATLAB | C++ | MATLAB | C++
EEG 1 24000-33000 0.1942 | 0.1180 | 0.0551 0.0000
EEG 2 69000-78000 0.1924 | 0.0000 | 0.0351 0.0000
EEG 3 30000-43000 0.2499 | 0.0000 | 0.1351 0.0000
EEG 4 60000-70000 0.2577 | 0.0444 | 0.2250 | 0.0923
EEG 5 8000-18000 0.3640 | 0.3202 | 0.3235 | 0.2764
EEG 6 8000-14000 0.2054 | 0.0247 | 0.1360 | 0.0000
EEG 7 23000-24000 0.0633 | 0.0000 | 0.3280 | 0.3300
EEG 8 60000-61000 0.0715 | 0.0000 | 0.0000 | 0.0000
EEG 9 16000-18000 0.1440 | 0.0000 | 0.0000 | 0.0000
EEG 10 68000-69000 0.0389 | 0.0000 | 0.0000 | 0.0000
EEG 11 63000-66000 0.1406 | 0.0000 | 0.1997 | 0.0000
EEG 12 4500-8500 0.0873 | 0.0000 | 0.0673 | 0.0000
EEG 13 500-1500 0.0658 | 0.0000 | 0.0000 | 0.0000
EEG 14 na na na na na
EEG 15 na na na na na
EEG 16 na na na na na
EEG 17 na na na na na
EEG 18 na na na na na
EEG 19 65000-67000 0.1535 | 0.0000 | 0.1178 | 0.0000
EEG 20 44000-48000 0.1377 | 0.0000 | 0.0751 | 0.0000
EEG 21 56000-61000 0.0952 | 0.0000 | 0.1230 | 0.0498
EEG 22 51000-55000 0.1131 0.0000 | 0.0421 0.0000
EEG 23 5500-8500 0.1711 0.0000 | 0.0772 | 0.0000
EEG 24 18000-20000 0.1327 | 0.0000 | 0.0679 | 0.0000
EEG 25 na na na na na
EEG 26 na na na na na
EEG 27 na na na na na
EEG 28 na na na na na
EEG 29 na na na na na
EEG 30 na na na na na
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Table A.6 continued from previous page

Root Mean Square Error (RMSE)

Multichannel EEG Signal Evaluated Fp1 Segment | FastEMD-CCA? FastCCA
(samples from - to) MATLAB | C++ | MATLAB | C++
EEG 31 na na na na na
EEG 32 na na na na na
EEG 33 na na na na na
EEG 34 na na na na na
EEG 35 na na na na na
EEG 36 na na na na na
EEG 37 10000-12000 0.2843 | 0.0000 | 0.0000 | 0.0000
EEG 38 26000-28000 0.1608 | 0.0000 | 0.0000 | 0.0000
EEG 39 21000-24000 0.0592 | 0.0000 | 0.2417 | 0.0000
EEG 40 39000-43000 0.3169 | 0.0000 | 0.1805 | 0.0000
EEG 41 13000-16000 0.3282 | 0.0000 | 0.3012 | 0.0000
EEG 42 35000-37000 0.0753 | 0.0000 | 0.1192 | 0.0000
EEG 43 40000-42000 0.2011 0.0000 | 0.3606 | 0.0000
EEG 44 5500-7500 0.1167 | 0.0000 | 0.1214 | 0.0000
EEG 45 na na na na na
EEG 46 na na na na na
EEG 47 na na na na na
EEG 48 na na na na na
EEG 49 na na na na na
EEG 50 na na na na na
EEG 51 59000-61000 0.0983 | 0.0000 | 0.0000 | 0.0000
EEG 52 54000-56000 0.1445 | 0.0000 | 0.0000 | 0.0000
EEG 53 55000-58000 0.0477 | 0.0000 | 0.0000 | 0.0000
EEG 54 41000-43000 0.0698 | 0.0000 | 0.0000 | 0.0000
EEG 55 42000-45000 0.2424 | 0.0000 | 0.0000 | 0.0000
EEG 56 12000-14000 0.1624 | 0.0000 | 0.0000 | 0.0000
EEG 57 na na na na na
EEG 58 na na na na na
EEG 59 na na na na na
EEG 60 na na na na na
Average 0.1572 | 0.0154 | 0.1010 | 0.0227
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TABLE A.7 — Comparison of Similarity Index Between FastEMD-CCA? and FastCCA in
MATLAB and C++

Similarity Index (77,5)

Multichannel EEG Signal Evaluated Fp1 Segment FastEMD-CCA? FastCCA
(samples from - to) MATLAB | C++ | MATLAB | C++
EEG 1 24000-33000 -0.2278 | 0.0241 | -0.1104 | 0.0000
EEG 2 69000-78000 -0.9123 | 0.0000 | 0.0671 | 0.0000
EEG 3 30000-43000 -0.6954 | 0.0000 | -0.1620 | 0.0000
EEG 4 60000-70000 -0.3233 | -0.0105 | -0.2071 | -0.0268
EEG 5 8000-18000 -0.6476 | 0.0159 | -0.2416 | -0.0687
EEG 6 8000-14000 -0.3959 | 0.0024 | -0.0541 | 0.0000
EEG 7 23000-24000 0.4462 0.0000 0.1134 0.1191
EEG 8 60000-61000 -0.3118 | 0.0000 | 0.0000 | 0.0000
EEG 9 16000-18000 -0.4616 | 0.0000 | 0.0000 | 0.0000
EEG 10 68000-69000 -0.1050 | 0.0000 | 0.0000 | 0.0000
EEG 11 63000-66000 -0.3218 | 0.0000 | -1.3111 | 0.0000
EEG 12 4500-8500 -0.0722 | 0.0000 | 0.1329 | 0.0000
EEG 13 500-1500 -0.5872 | 0.0000 | 0.0000 | 0.0000
EEG 14 na na na na na
EEG 15 na na na na na
EEG 16 na na na na na
EEG 17 na na na na na
EEG 18 na na na na na
EEG 19 65000-67000 0.1400 | 0.0000 | 0.5455 | 0.0000
EEG 20 44000-48000 -0.3239 | 0.0000 | -0.3096 | 0.0000
EEG 21 56000-61000 0.2838 | 0.0000 | -0.4595 | 0.0077
EEG 22 51000-55000 -0.3437 | 0.0000 | -0.0289 | 0.0000
EEG 23 5500-8500 -1.2821 | 0.0000 | -0.2697 | 0.0000
EEG 24 18000-20000 -0.8928 | 0.0000 | -0.2965 | 0.0000
EEG 25 na na na na na
EEG 26 na na na na na
EEG 27 na na na na na
EEG 28 na na na na na
EEG 29 na na na na na
EEG 30 na na na na na
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Table A.7 continued from previous page

Similarity Index (7,5)

Multichannel EEG Signal Evaluated Fp1 Segment | FastEMD-CCA? FastCCA
(samples from - to) MATLAB | C++ | MATLAB | C++
EEG 31 na na na na na
EEG 32 na na na na na
EEG 33 na na na na na
EEG 34 na na na na na
EEG 35 na na na na na
EEG 36 na na na na na
EEG 37 10000-12000 -2.0686 | 0.0000 | 0.0000 | 0.0000
EEG 38 26000-28000 -0.4610 | 0.0000 | 0.0000 | 0.0000
EEG 39 21000-24000 -0.2392 | 0.0000 | -0.5537 | 0.0000
EEG 40 39000-43000 0.6426 | 0.0000 | 0.3529 | 0.0000
EEG 41 13000-16000 0.8944 | 0.0000 | -0.2848 | 0.0000
EEG 42 35000-37000 -0.1956 | 0.0000 | -0.5167 | 0.0000
EEG 43 40000-42000 0.2084 | 0.0000 | -1.3070 | 0.0000
EEG 44 5500-7500 -0.4190 | 0.0000 | 0.3577 | 0.0000
EEG 45 na na na na na
EEG 46 na na na na na
EEG 47 na na na na na
EEG 48 na na na na na
EEG 49 na na na na na
EEG 50 na na na na na
EEG 51 59000-61000 -0.2224 | 0.0000 | 0.0000 | 0.0000
EEG 52 54000-56000 -0.0814 | 0.0000 | 0.0000 | 0.0000
EEG 53 55000-58000 -0.0061 | 0.0000 | 0.0000 | 0.0000
EEG 54 41000-43000 -0.0747 | 0.0000 | 0.0000 | 0.0000
EEG 55 42000-45000 -0.6005 | 0.0000 | 0.0000 | 0.0000
EEG 56 12000-14000 -0.6782 | 0.0000 | 0.0000 | 0.0000
EEG 57 na na na na na
EEG 58 na na na na na
EEG 59 na na na na na
EEG 60 na na na na na
Average -0.3132 | 0.0010 | -0.1377 | 0.0009
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TABLE A.8 — Comparison of MAE Between FastEMD-CCA? and FastCCA in Different
Frequency Bands

Mean Absolute Error

Fpi1 5 0 « B y
EEG Signal (samples from - to) FastEMD-CCA’ | FastCCA | FastEMD-CCA? | FastCCA | FastEMD-CCA’ | FastCCA | FastEMD-CCA® | FastCCA | FastEMD-CCA’ | FastCCA
EEG 1 24000-33000 0.0188 0.0000 0.0085 0.0000 0.0024 0.0000 0.0003 0.0000 0.0000 0.0000
EEG 2 69000-78000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EEG 3 30000-43000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EEG 4 60000-70000 0.0112 0.0448 0.0012 0.0001 0.0007 0.0001 0.0000 0.0000 0.0000 0.0000
EEG 5 8000-18000 0.1614 0.0612 0.0041 0.0022 0.0007 0.0093 0.0003 0.0010 0.0000 0.0000
EEG 6 8000-14000 0.0016 0.0000 0.0010 0.0000 0.0014 0.0000 0.0001 0.0000 0.0000 0.0000
EEG 7 23000-24000 0.0000 0.0030 0.0000 0.0002 0.0000 0.0010 0.0000 0.0003 0.0000 0.0001
EEG 8 60000-61000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EEG 9 16000-18000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EEG 10 68000-69000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EEG 11 63000-66000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EEG 12 4500-8500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EEG 13 500-1500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EEG 14 na na na na na na na na na na na
EEG 15 na na na na na na na na na na na
EEG 16 na na na na na na na na na na na
EEG 17 na na na na na na na na na na na
EEG 18 na na na na na na na na na na na
EEG 19 65000-67000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EEG 20 44000-48000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EEG 21 56000-61000 0.0000 0.0060 0.0000 0.0019 0.0000 0.0015 0.0000 0.0010 0.0000 0.0000
EEG 22 51000-55000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EEG 23 5500-8500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EEG 24 18000-20000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EEG 25 na na na na na na na na na na na
EEG 26 na na na na na na na na na na na
EEG 27 na na na na na na na na na na na
EEG 28 na na na na na na na na na na na
EEG 29 na na na na na na na na na na na
EEG 30 na na na na na na na na na na na
EEG 31 na na na na na na na na na na na
EEG 32 na na na na na na na na na na na
EEG 33 na na na na na na na na na na na
EEG 34 na na na na na na na na na na na
EEG 35 na na na na na na na na na na na
EEG 36 na na na na na na na na na na na
EEG 37 10000-12000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EEG 38 26000-28000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EEG 39 21000-24000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EEG 40 39000-43000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EEG 41 13000-16000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EEG 42 35000-37000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EEG 43 40000-42000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EEG 44 5500-7500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EEG 45 na na na na na na na na na na na
EEG 46 na na na na na na na na na na na
EEG 47 na na na na na na na na na na na
EEG 48 na na na na na na na na na na na
EEG 49 na na na na na na na na na na na
EEG 50 na na na na na na na na na na na
EEG 51 59000-61000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EEG 52 54000-56000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EEG 53 55000-58000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EEG 54 41000-43000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EEG 55 42000-45000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EEG 56 12000-14000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EEG 57 na na na na na na na na na na na
EEG 58 na na na na na na na na na na na
EEG 59 na na na na na na na na na na na
EEG 60 na na na na na na na na na na na
Average 0.0059 0.0035 0.0004 0.0001 0.0002 0.0004 0.0000 0.0001 0.0000 0.0000

156



TABLE A.9 — Comparison of MAPE Between FastEMD-CCA? and FastCCA in Different
Frequency Bands

Mean Absolute Percentage Error (%)

Fp1 delta theta alpha beta gamma
EEG Signal (samples from - to) FastEMD-CCA’ | FastCCA | FastEMD-CCA? | FastCCA | FastEMD-CCA’ | FastCCA | FastEMD-CCA? | FastCCA | FastEMD-CCA” | FastCCA
EEG 1 24000-33000 0.1197 0.0000 0.1624 0.0000 0.0730 0.0000 0.1433 0.0000 2.6894 0.0000
EEG 2 69000-78000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EEG 3 30000-43000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EEG 4 60000-70000 0.0440 0.1763 0.0220 0.0014 0.0236 0.0034 0.0144 0.0067 0.0900 0.4504
EEG 5 8000-18000 0.9571 0.3630 0.0880 0.0477 0.0219 0.2922 0.1187 0.3523 0.0723 2.3148
EEG 6 8000-14000 0.0100 0.0000 0.0151 0.0000 0.0277 0.0000 0.0400 0.0000 0.0492 0.0000
EEG 7 23000-24000 0.0000 0.0398 0.0000 0.0069 0.0001 0.0522 0.0000 0.0288 0.0001 5.4902
EEG 8 60000-61000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EEG 9 16000-18000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EEG 10 68000-69000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EEG 11 63000-66000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EEG 12 4500-8500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EEG 13 500-1500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000
EEG 14 na na na na na na na na na na na
EEG 15 na na na na na na na na na na na
EEG 16 na na na na na na na na na na na
EEG 17 na na na na na na na na na na na
EEG 18 na na na na na na na na na na na
EEG 19 65000-67000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EEG 20 44000-48000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EEG 21 56000-61000 0.0000 0.0827 0.0000 0.0881 0.0000 0.0640 0.0000 0.2476 0.0000 4.2071
EEG 22 51000-55000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EEG 23 5500-8500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EEG 24 18000-20000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EEG 25 na na na na na na na na na na na
EEG 26 na na na na na na na na na na na
EEG 27 na na na na na na na na na na na
EEG 28 na na na na na na na na na na na
EEG 29 na na na na na na na na na na na
EEG 30 na na na na na na na na na na na
EEG 31 na na na na na na na na na na na
EEG 32 na na na na na na na na na na na
EEG 33 na na na na na na na na na na na
EEG 34 na na na na na na na na na na na
EEG 35 na na na na na na na na na na na
EEG 36 na na na na na na na na na na na
EEG 37 10000-12000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EEG 38 26000-28000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EEG 39 21000-24000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EEG 40 39000-43000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EEG 41 13000-16000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EEG 42 35000-37000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EEG 43 40000-42000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EEG 44 5500-7500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EEG 45 na na na na na na na na na na na
EEG 46 na na na na na na na na na na na
EEG 47 na na na na na na na na na na na
EEG 48 na na na na na na na na na na na
EEG 49 na na na na na na na na na na na
EEG 50 na na na na na na na na na na na
EEG 51 59000-61000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EEG 52 54000-56000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EEG 53 55000-58000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EEG 54 41000-43000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EEG 55 42000-45000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000
EEG 56 12000-14000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EEG 57 na na na na na na na na na na na
EEG 58 na na na na na na na na na na na
EEG 59 na na na na na na na na na na na
EEG 60 na na na na na na na na na na na
Average 0.0343 0.0201 0.0087 0.0044 0.0044 0.0125 0.0096 0.0193 0.0879 0.3777
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TABLE A.10 — Comparison of Computation Time Between FastEMD-CCA? and FastCCA
in MATLAB and C++

Computation Time (s)
Multichannel EEG Signal | Duration per Channel (s) FastEMD-CCA” FastCCA

MATLAB | C++ | MATLAB | C++
EEG 1 389 15.17 4.04 27.12 3.92
EEG 2 329 5.66 3.32 16.73 | 3.22
EEG 3 294 5.77 3.18 14.67 2.86
EEG 4 369 6.84 3.72 15.17 | 410
EEG 5 337 7.65 3.72 9.18 4.03
EEG 6 312 6.75 3.22 9.03 3.65
EEG 7 330 8.17 3.32 6.58 4.06
EEG 8 308 7.00 3.20 10.07 | 3.45
EEG 9 306 5.12 3.19 11.33 | 3.33
EEG 10 346 7.79 3.61 8.75 4.16
EEG 11 321 6.65 3.64 10.67 | 3.63
EEG 12 272 4.52 2.97 9.09 2.96
EEG 13 345 7.50 3.78 6.01 4.22
EEG 14 310 4.39 3.21 0.99 4.53
EEG 15 271 4.36 2.92 0.71 4.04
EEG 16 345 7.64 3.83 2.45 4.82
EEG 17 316 6.22 3.32 1.83 4.53
EEG 18 280 3.17 3.05 0.80 414
EEG 19 335 5.94 3.55 5.01 4.62
EEG 20 302 4.09 3.21 4.88 3.94
EEG 21 289 417 3.21 7.61 3.57
EEG 22 346 5.45 3.98 4.56 4.81
EEG 23 304 6.07 3.29 5.98 3.90
EEG 24 269 3.78 2.86 5.40 3.46
EEG 25 359 1529 | 3.60 na 4.78
EEG 26 265 3.15 2.89 2.88 3.67
EEG 27 334 6.54 3.59 4.25 4.48
EEG 28 326 7.36 3.90 1.50 4.76
EEG 29 272 2.48 3.27 3.80 3.51
EEG 30 264 2.74 3.02 3.97 3.46
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Table A.10 continued from previous page

Computation Time (s)

Multichannel EEG Signal | Duration per Channel (s) FastEMD-CCA” FastCCA

MATLAB | C++ | MATLAB | C++
EEG 31 346 7.63 3.77 0.92 5.26
EEG 32 289 2.79 3.16 0.69 4.32
EEG 33 298 6.39 3.43 0.67 4.48
EEG 34 360 6.22 4.50 1.07 5.40
EEG 35 291 5.80 3.70 0.62 4.43
EEG 36 296 4.84 3.32 0.71 4.46
EEG 37 331 6.27 3.45 7.39 410
EEG 38 297 7.25 3.06 7.40 3.52
EEG 39 263 8.45 2.67 6.06 3.13
EEG 40 334 8.28 3.44 7.87 410
EEG 41 299 6.74 3.21 7.07 3.64
EEG 42 268 7.04 2.79 5.99 3.25
EEG 43 359 9.51 3.62 8.29 4.64
EEG 44 314 7.93 3.27 4.55 412
EEG 45 278 4.75 3.00 1.63 3.85
EEG 46 364 8.62 3.72 2.91 5.13
EEG 47 325 9.03 3.34 2.74 4.47
EEG 48 284 5.50 3.16 1.86 4.07
EEG 49 337 9.41 3.52 10.73 3.98
EEG 50 280 6.44 2.99 5.29 3.52
EEG 51 253 5.40 2.69 5.34 3.23
EEG 52 346 9.34 3.78 13.19 3.97
EEG 53 288 9.27 2.89 13.78 2.80
EEG 54 271 6.70 2.91 8.49 3.16
EEG 55 339 9.48 3.43 18.18 3.55
EEG 56 302 6.25 3.21 9.72 3.49
EEG 57 335 13.61 3.44 12.92 3.49
EEG 58 350 7.25 3.61 17.57 3.81
EEG 59 314 6.82 3.38 6.92 3.95
EEG 60 284 6.20 3.20 3.69 3.76
Average 312.33 6.78 3.35 6.87 3.96

Processing Time 1s EEG 0.0217 | 0.0107 | 0.0220 | 0.0127
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