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Abstract

Iron as a building block material of the Earth naturally received significant atten-
tion. Considerable efforts have been made to determine its thermodynamic and
thermophysical properties up to the Earth’s inner core’s conditions. However, its
physical properties in the low-density regime are less explored, and notably the po-
sition of the liquid-vapor equilibrium line and of the critical point are lacking. The
missing information inhibits developing a complete equation of state that covers
the released state after shock waves, and thus hinders the characterization of large
planetary impacts.

The present study aims at closing the knowledge gap on the liquid-vapor equilibrium
dome of iron. For this we exploit molecular dynamics and Monte Carlo methods
where the energy and the forces are estimated by the density functional theory.
We then employ statistical and thermodynamics methods to construct the position
of the critical point, build the liquid-vapor dome, and characterize the physical
properties of the fluid iron.

First we determine the position of the critical point from ab initio molecular dynam-
ics simulations along several isotherms. The simulation results provide the position
of the liquid spinodal above 3000 K, and the gas spinodal close to the critical point.
We bracket the position of the critical point in the 9000-9350 K temperature range,
and 1.85-2.40 g/cm3 density range, corresponding to 4-7 kbars pressure range. Ad-
ditionally, we characterize the structure and the transport properties of the fluid
iron over a wide density and temperature range, with a particular focus on the
supercritical state.

Then we compute two Hugoniot lines starting with two realistic initial conditions.
By comparing the entropy values calculated along these Hugoniot lines to that at the
boiling point, we find that the pressure required to reach the onset vaporization is
significantly lower than previous estimates. It suggests that previous hydrodynamic
simulations underestimate the iron vapor production, and that the core of Theia
underwent partial vaporization during the giant impact. Similarly, we find that
a large fraction of the planetesimals falling on Earth during the late veneer must
have had their cores undergoing partial vaporization. The readily achieved partial
core vaporization would enhance the iron-silicates equilibration, which helps explain
geochemical observations.

At last, we determine the liquid-vapor equilibrium line of iron. For this, we have
extended and implemented the Gibbs ensemble Monte Carlo method coupled with
the finite-temperature density functional theory. The first benchmark test to sodium
shows a good agreement with available experimental results. We then apply this
technique to iron and calculate its liquid density in equilibrium with the vapor phase.
We also show the importance of magnetism diminishes as approaching the critical
point.
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Résumé

Le fer, en tant que brique élémentaire de la Terre, a reçu beaucoup d’attentions. Des
efforts considérables ont été mis en œuvre pour déterminer ses propriétés thermody-
namiques et thermophysiques à des conditions atteignant celles du noyau terrestre.
Cependant, ses propriétés physiques dans le domaine des faibles densités sont moins
explorées, et il manque en particulier la position de la courbe d’équilibre liquide-
gaz et du point critique. Les informations manquantes entravent le développement
d’une équation d’états complète qui couvrirait l’état de détente post onde de choc,
et donc empêchent la caractérisation des grands impacts planétaires.

Cette étude vise à réduire le fossé de connaissances sur l’équilibre liquide-gaz du
fer. Pour cela nous utilisons la Dynamique Moléculaire et la méthode Monte Carlo
dans lesquelles les énergies et les forces sont estimées à partir de la théorie de la
fonctionnelle densité. Nous utilisons ensuite des méthodes statistiques et thermo-
dynamiques pour construire la position du point critique, le dôme liquide-gaz, et
caractériser les propriétés physiques du fer à l’état de fluide.

Tout d’abord nous avons déterminé la position du point critique à partir de simu-
lations de dynamique moléculaire ab initio selon plusieurs isothermes. Les résultats
des simulations nous ont donné la position du spinodal liquide au-dessus de 3000 K,
et du spinodal gazeux à proximité du point critique. La position du point critique
est estimée entre 9000-9350 K et 1.85-2.4 g/cm3, ce qui correspond à 4-7 kbars. Nous
avons également caractérisé la structure et les propriétés de transport du fer fluide
pour une large gamme de densités et températures, avec une attention particulière
sur l’état supercritique.

Ensuite nous avons calculé deux courbes Hugoniot à partir de deux conditions ini-
tiales réalistes. En comparant les valeurs d’entropie calculées le long de ces courbes
à celle du point d’ébullition, nous avons trouvé que la pression requise pour atteindre
le seuil de vaporisation est significativement plus basse que précédemment estimée.
Cela suggère que les simulations hydrodynamiques précédentes sous-estiment la pro-
duction de vapeur de fer, et que le noyau de Théïa aurait subi une vaporisation
partielle lors de l’impact géant. De même nous avons trouvé qu’une grande fraction
des planétésimaux ayant frappé la Terre lors du vernis tardif ont dû voir leur noyau
vaporisé partiellement. La facilité avec laquelle les noyaux se vaporisent devrait
améliorer l’équilibration fer-silicate, ce qui permettrait d’expliquer les observations
géochimiques.

Enfin, nous avons déterminé l’équilibre liquide-gaz du fer. Pour cela nous avons
amélioré et implémenté la méthode Monte Carlo dans l’ensemble de Gibbs couplée
avec la théorie de la fonctionnelle densité en températures finies. Le premier test de
référence avec le sodium nous as donné un bon accord avec les résultats expérimen-
taux. Nous avons donc appliqué cette technique au fer et calculé sa densité liquide
à l’équilibre avec la phase vapeur. Nous avons également montré que l’importance
du magnétisme diminue à l’approche du point critique.
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Chapter 1

The formation of the Moon

Contents
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
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1.4 The dynamical constraint from the lunar orbital evolution 5

1.4.1 The lunar orbital evolution . . . . . . . . . . . . . . . . . . . 5

1.4.2 The high mutual inclination and the initial total angular mo-
mentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 The giant impact theory . . . . . . . . . . . . . . . . . . . . . 8

1.5.1 Material injection mechanism . . . . . . . . . . . . . . . . . . 8

1.5.2 The canonical impact model . . . . . . . . . . . . . . . . . . . 10

1.5.3 The high-angular momentum impact model . . . . . . . . . . 11

1.5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6 The behaviour of iron during giant impacts . . . . . . . . . 12

1.7 The role of equations of state . . . . . . . . . . . . . . . . . . 13

1.8 The phase diagram of iron . . . . . . . . . . . . . . . . . . . . 14

1.9 Proposed research . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.1 Introduction

The Moon is the most well-studied satellite in our solar system, whose investigation
can be dated back to the epoch of Hipparchus and Ptolemy. In the ancient time, the
primary attempt was to observe the lunar orbital motion, document its moving path
and estimate its speed relative to a fixed star. These tedious and time-consuming
astrophysical observations leads to the discovery of several exciting phenomena like
the lunar precession. After Isaac Newton formulated the laws of motion, which laid
the foundation of celestial mechanics, the focus has been shifted to explain the ob-
served lunar motion from the perspective of mutual gravitational attractions among
the Earth-Moon-Sun system. The modern research into the Moon was mostly mo-
tivated by the Apollo missions. These missions returned tons of the lunar rocks.
From measurements of their chemical composition, our understanding of the lunar
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interior structure has deepened considerably. These new findings, in return, stim-
ulate scientists from different disciplines to research into the possible origin of the
Moon.

This chapter will focus on the giant impact theory, which is considered as the most
plausible mechanism to explain the Moon’s formation. We will first review the major
geochemical observations that the giant impact theory must reconcile. We then
point out the total angular momentum at the time of the giant impact is still under
debate. Possible values are anywhere between once and twice the present value of
the Earth-Moon system. Based on this, we can divide the giant impact theory into
two categories: the canonical impact model and the high-angular momentum impact
model. Next, we give a brief synopsis of the geochemical consequence for these two
models. With these background information in mind, we narrow down to the topic of
iron, which is the main component of planets’ core, and explore its behavior during
giant impacts. By examining the phase diagram of iron, we identify a knowledge
gap on the thermodynamic properties of iron in the low-density region, which would
inhibit developing an accurate equation of state. As an essential ingredient in the
giant impact modeling, the equation of state affects the amount of vapor produced
as well as the energy distribution across the Earth during the impact. This chapter
will end up with research problems on which the present study will focus.

1.2 The possible origin scenarios for the Moon

Many theories have been devised to explain the Moon’s origin, including the fission
theory, the co-formation theory, the capture theory, and the giant impact hypothesis.
In the fission theory, the proto-Earth rotates so rapidly that it becomes dynamically
unstable. A lunar-sized mass from the Earth’s mantle is separated and injected into
the Earth’s orbit to be the satellite. Therefore, it is expected that the Moon has
a similar isotopic composition and is depleted in iron relative to the Earth. In the
co-formation theory, the Moon forms at the same time as its parent Earth. Under
such an explanation, in the early solar system, gravity would pull materials together
to form the Moon simultaneously as gravity bonds particles together to form the
Earth. Such a moon would be expected to have a very similar isotope composition to
the Earth. In the capture theory, a rocky body formed elsewhere in the solar system
and was later captured by the Earth’s gravitational field. Since the body captured
has a wide range of possibilities in its isotope composition and iron content, various
chemical consequences are possible.

However, each theory stated above fails to explain one of the major characteristics
of the Earth-Moon system (see Stevenson, 1987, for a review). The fission theory
needs three times more angular momentum than the present Earth-Moon system.
But there is no mechanism available to supply such large angular momentum during
the planetary accumulation process. The co-formation theory is also challenging due
to the difficulties in explaining the lunar iron depletion relative to the Earth (see
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Section 1.3). It is more reasonable to expect a very similar iron content if both bodies
form together. In the capture theory, the likelihood of capturing a lunar-sized body
to the present lunar orbit is nearly zero.

Influenced by Safronov’s work on the planet formation through collisions between
planetary embryos, both Hartmann and Davis (1975) and Cameron and Ward (1976)
proposed the giant impact hypothesis as a plausible explanation for the formation of
the Moon. In this model, appropriate impact conditions satisfying the Earth-Moon
system’s angular momentum constraints would generate a proto-lunar disk with
most of the materials originating from the silicate mantle of the impactor or of the
proto-Earth, then a Moon is accreted from such a disk. Therefore, the hypothesis
can easily explain the lunar iron depletion relative to the Earth. In addition, the
giant impact would happen naturally since the collision between planets is thought
to be common in the late accretion stage. These characters have rendered the giant
impact hypothesis the leading theory to explain the Moon’s origin.

1.3 The geochemical constraints

Measuring the lunar rocks’ chemical composition returned by Apollo missions and
their comparisons to the Earth provide important constraints on which the giant
impact hypothesis must reconcile. Both the Moon and the Earth have a very similar
interior structure, with an iron core in the center and a silicate mantle lying above.
But the average density is different with 3.34 g/cm3 for the Moon compared to
5.51 g/cm3 for the Earth, indicating a relative lunar iron depletion. There are two
potential iron reservoirs in the Moon: the silicate mantle/crust and the metallic
core. Although it is debated on the exact size of the Moon’s core, it is generally
accepted that its size is at most 400 km in radius (see Canup, 2004b, for a review).
The combination of seismic analysis and geological modeling sets an upper bound
of the total amount of iron, which is around 8-10 wt% in the Moon compared with
30 wt% in the Earth.

Despite the significant difference in the total amount of iron, a remarkable similar-
ity in the oxygen isotope composition between the Moon and the Earth’s silicate
mantle was revealed by measuring the oxygen isotope composition of the lunar rock
samples. Initially, it was considered that the oxygen isotopes were homogeneous
in the solar system, which can explain the observed similarity in the oxygen iso-
tope between the Earth and Moon. However, Franchi et al. (1999) found an offset
in fractionation line between the Earth and Mars, indicating oxygen isotopes were
distributed heterogeneously in the early solar system. Subsequent N-body simula-
tions also suggest the possibility of a similar oxygen isotope composition between
the impactor and the proto-Earth is very low (Pahlevan and Stevenson, 2007). As
the oxygen isotope remains unchanged during subsequent geological processes after
the Moon’s formation, the isotopic indistinguishability provides a strong argument
that the Moon’s origin is closely linked with the Earth’s mantle, and thus provide
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a strong constraint on developing the giant impact theory.

The Earth and the Moon also show indifference in titanium isotope composition
(50Ti/47Ti) (Zhang et al., 2012). Since titanium was distributed heterogeneously
in the solar system, the impactor should differ its titanium isotope composition to
the proto-Earth. Then we would expect the Moon to develop an offset in 50Ti/47Ti
compared to the Earth, but they do not. The titanium-isotope homogeneity in the
Earth-Moon system further confirms that the Moon is accreted from the proto-lunar
disk, where most materials are from the Earth’s mantle.

Two studies have recently measured the tungsten isotopic composition and found
the Moon has a slightly higher 182W/184W ratio than the Earth (Kruijer et al.,
2015; Touboul et al., 2015). Since the tungsten isotopes vary throughout the solar
system, it is reasonable to expect that the giant impact event would have involved
two objects with different isotopic compositions of tungsten. In order to explain the
slight difference in 182W/184W, both studies suggest that the Earth and Moon had
the same tungsten isotopic composition after the giant impact, and the difference in
the 182W/184W ratio between the Earth and Moon is due to the addition of the late
veneer, which is thought to have a chondritic composition. The model proposed also
requires siderophile elements stripping from the mantle by metal from the impactor’s
core. Otherwise, the tungsten data would be too abundant due to the addition of the
late veneer, which would not be self-consistent with the highly siderophile element
concentration in the terrestrial mantle.

Several volatile elements like K and Zn are found to differ their isotopic composition
in the Moon and Earth. Wang and Jacobsen (2016) found the lunar rocks are slightly
enriched in the heavy isotope of K compared to the Earth. They suggest it may
result from the incomplete condensation from a bulk silicate Earth vapor. During
the condensation, the lighter isotope would prefer to stay in the vapor phase, causing
the enrichment of heaver isotope in the solid or liquid phases. Wang and Jacobsen
(2016) also indicate the potassium isotope result is inconsistent with the canonical
impact model but supports the high-angular momentum giant impact model for the
origin of the Moon. However, as discussed by Canup et al. (2015), the preferential
accretion of volatile-rich melt in the inner disk to the Earth, rather than to the
Moon, could also contribute to the volatile elements depletion and their isotope
fractionation in the Moon. Therefore, the enrichment of the heavy K isotope in the
Moon may only support the presence of a proto-lunar disk from which the Moon is
accreted, but cannot be used to distinguish different impact models. Paniello et al.
(2012) found lunar rocks are enriched in the heavy isotope of Zn and have a lower
Zn concentration than the Earth. Since the equilibrium condensation would not
produce such a large degree of fractionation, they suggest these variations are due
to the lunar magma ocean’s large-scale evaporation, which not only decreases the
concentration of the volatile elements but also causes the fractionation.

In summary, the Moon is strongly depleted in iron but has a similar refractory
element isotope composition to the Earth. Besides, the Moon is enriched in the
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heavier isotope of the volatile elements, which is caused by the evaporation process
after the Moon’s formation and/or the equilibrium condensation accompanying the
Moon’s formation.

1.4 The dynamical constraint from the lunar orbital evo-
lution

To find a set of impact parameters that can produce a massive and iron-depleted
proto-lunar disk, we also need the dynamic constraint of the total angular momen-
tum, which includes the rotational angular momentum of the Earth and the Moon,
and the orbital angular momentum of the lunar motion. We know that the Moon is
almost in a circular cycle revolving around the Earth with an eccentricity of 0.0549
and a slight inclination of 5.14◦ to the ecliptic plane (Fig. 1.1). From these real mea-
surements, we can calculate the current total angular momentum of the Earth-Moon
system. However, this value may not be the total angular momentum at the time
when the Moon formed. Therefore, we need to find a way to recover its evolving
history and obtain the total angular momentum at the time when it completed the
accretion and detached from the proto-lunar disk. This is not an easy task since
the Moon is continuously affected by the tidal interaction exerted by the Earth and
Sun to recess its orbit.

1.4.1 The lunar orbital evolution

We can partially solve this problem by celestial mechanics and an essential contribu-
tion has been made by Touma and Wisdom (1994) and Touma and Wisdom (1998).
As these calculations are extremely complex due to the employment of generalized
coordinates like action-angle variables, only a general frame is outlined. Starting
with the derivation of an analytic Hamiltonian for the Earth-Moon-Sun system,
Touma and Wisdom (1994) made several assumptions like the lunar orbit is a circle
to reduce the problem into a manageable size. Together with averaging over the
short orbital time scale, the remaining degrees of freedom in the Hamiltonian is the
obliquity of the Earth to the ecliptic plane, the mutual inclination of the lunar orbit
to the Earth’s equator, the inclination of lunar orbit to the ecliptic plane, and the
precession rate of the lunar orbit. These variables are constantly changing due to
the Earth’s oblateness and tidal interactions. Although the physical origin of the
tidal torque can easily be understood as the presence of a phase lag due to the mis-
match between the orbital and rotational motion, for practical implementations, we
need to employ different tidal models to approximate it as a function of the orbital
elements of the Earth and the Moon. Fortunately, the detailed evolving history of
the lunar orbit shows indifference to a particular model. The most striking finding is
that the mutual inclination has a value of 12◦ when approaching the Earth (Goldre-
ich, 1966; Touma and Wisdom, 1994). However, it disagrees with the giant impact
theory which predicts the formation of the Moon is near to the Earth’s equator and
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thus the initial value is close to zero.

1.4.2 The high mutual inclination and the initial total angular mo-
mentum

The high mutual inclination problem has been re-investigated by Touma and Wis-
dom (1998). With direct numerical simulations, they discover two new phenomena
called evection and eviction resonance that have a dramatic impact on the dynamic
evolution of the Earth-Moon system. Resonance is a phenomenon of describing
increased oscillation amplitude when the frequency of a periodically applied force
matches the natural frequency of the system. We can exemplify this interesting phe-
nomenon by the vibration of a harmonic oscillator. If the driving frequency is equal
to the natural frequency of the oscillator, the resonance is achieved and the ampli-
tude of the oscillation increases dramatically. This concept can be extended into the
planetary science where resonance means a commensurability amongst the frequen-
cies of precession or orbital motions between two planets or stars. If it happens, a
periodic gravitational influence will excite the orbital eccentricity or inclination to
high values just like the vibration amplitude of an oscillator. The continuous action
from the Earth’s tidal torque will make the lunar orbital expand and the precession
period of the perigee increase (see Figure 13 in Touma and Wisdom, 1998). When
this period is close to the orbital period (about one year) of the Earth, the evection
resonance happens, and pumps up the eccentricity of the lunar orbit until the tides
induced by the Moon and by the Earth cancel out so that the Moon stops moving
outward. Then the lunar tide becomes slightly stronger than the tide in the Earth
causing the contraction of the lunar orbit. During this stage, the spin rate of the
Earth declines in a steady manner until escaping from the evection resonance. Af-
ter that, the Moon encounters a mixed evection-inclination resonance twice which
excites the mutual inclination to 12◦.

Touma and Wisdom (1998) found the Moon escapes the evection resonance very
fast and only a tiny amount of angular momentum is removed from the Earth-
Moon system. However, Ćuk and Stewart (2012) suggest the contraction period
is prolonged causing a significant de-spinning of the Earth and efficient removal of
the angular momentum to the heliocentric orbit of the Earth. They suggest the
initial total angular momentum at the time of the giant impact can be twice as
large as the current value. By employing a different tidal model, Wisdom and Tian
(2015) and Ward et al. (2020) found too much or too little angular momentum
was removed from the Earth-Moon system if the initial angular momentum is high,
which is inconsistent with the present Earth-Moon system. Different results obtained
from applying different tidal models suggest more work is needed to investigate
whether the evection resonance is a viable mechanism to remove the excess angular
momentum. Ćuk et al. (2016) proposed a new origin scenario for the Moon. In this
model, the Moon is accreted from the disk generated by a high-angular momentum
impact with an initial high-obliquity (70◦) proto-Earth. The following Laplace plane
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Figure 1.1: The dynamic evolution of the Moon. (a) The lunar orbital elements
at present. The inclination of the lunar orbit to the ecliptic plane is 5◦. The
mutual inclination of the Moon’s orbit to the Earth’s equator varies from 18◦ to
28◦. (b) The evolution of the mutual inclination as a function of radius. The mutual
inclination must be at least 12◦ when the Moon forms. However, the giant impact
theory predicts the moon formed at the Earth’s equator predicting an initial value
of 0◦. This discrepancy can be reconciled with the Moon-Sun resonance (Touma
and Wisdom, 1998), the disk-satellite resonance(Ward and Canup, 2000) or the
Laplace plane transition (Ćuk et al., 2016), which can excite the mutual inclination
to a high value (see the black dashed line in b). This figure is reproduced with
permission from Touma and Wisdom (1994). (c) Ćuk and Stewart (2012) have
shown the Earth’s rotational rate slows down due to the Moon-Sun resonance which
can be used to drain away the excess angular momentum. They suggest an initial
high angular momentum at the time of the giant impact is dynamically feasible.
However, subsequent studies using different tidal models found too much (Wisdom
and Tian, 2015) or too little (Ward et al., 2020) angular momentum be removed
from the Earth-Moon system, raising the question whether the Moon-Sun resonance
is still a viable mechanism. This figure is reproduced with permission from Ćuk and
Stewart (2012).
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transition will excite the lunar inclination to 30◦ and reduce the obliquity of the
Earth to 20◦. This process will also remove the excess angular momentum from the
Earth-Moon system and transfer to the heliocentric orbit of the Earth. Once the
Moon has passed through the Laplace phase transition, it will undergo the Cassini
state transition to achieve the spin-orbit resonance causing a large lunar obliquity
(over 30◦). The high-obliquity tides in the Moon, in return, will strongly damp the
lunar inclination to reach the present value of 5◦. However, Tian and Wisdom (2020)
found the vertical component of the total angular momentum in the Earth-Moon
system, which is perpendicular to the Earth’s orbital plane, is almost conserved.
They suggest an initial high-obliquity (70◦) Earth with a high angular momentum
proposed in Ćuk et al. (2016) would result in too large vertical angular momentum
that is inconsistent with the present observations.

1.4.3 Summary

The total angular momentum at the time the Moon formed is an essential part of
constraining the impact conditions. If there is no mechanism to remove or add an-
gular momentum to the Earth-Moon system, its initial angular momentum is the
same as the present Earth-Moon system. Ćuk and Stewart (2012) proposed the
Moon-Sun resonance would remove a large amount of angular momentum from the
Earth-Moon system. Therefore, the initial angular momentum could be up to two
times higher than the present observation. However, Wisdom and Tian (2015) and
Ward et al. (2020) found the resonance appears to remove too much to too little
angular momentum if the initial angular momentum is high, causing inconsistency
with the present Earth-Moon system. Ćuk et al. (2016) suggest that the instability
associated with the Laplace plane transition would remove considerable angular mo-
mentum from the Earth-Moon system. However, Tian and Wisdom (2020) suggest
an initial high obliquity Earth with a high angular momentum proposed in Ćuk
et al. (2016) cannot produce the present Earth-Moon system.

1.5 The giant impact theory

1.5.1 Material injection mechanism

Before we are going to discuss in detail the impact process and its geochemical im-
plications, a concise introduction of the material injection mechanism is given. The
energetic collision between the impactor and the proto-Earth creates powerful shock
waves, which will compress constitutive materials very rapidly to a high pressure
and temperature condition. When the shock wave reaches the free space assumed
to be a vacuum, to sustain the zero pressure interface a rarefaction wave or a relief
wave must be produced. Then it reflects from the free space and travels into the
compressed materials to make them expand (Forbes, 2013). As the pressure drops
and volume rises during the expansion, the particle velocity of shocked materials
would increase, so is the total energy which is defined as the sum of the kinetic
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Figure 1.2: In the canonical model (a), the graze collision of a Mars-sized projectile
with proto-Earth at a velocity of 10 km/s can generate a disk (b) and leave the
total angular momentum of post-impact structure close to the present Earth-Moon
system. The disk material is made of silicates liquids with 20 wt% vapor and
primarily derived from the impactor, from which the Moon is accreted. Thus the
Moon should have a distinct isotope composition compared to the Earth (Canup and
Asphaug, 2001). Canup and Esposito (1996) suggest a large amount of mass must
be injected directly beyond the Roche limit to form a single lunar-mass satellite. In
(b), all materials outside of the Roche limit are represented by a single Moon as the
accretion process is very fast on a timescale of years. Due to the Jeans instability
the high density magma disk inside the Roche limit will clump and then be sheared
apart by the tidal force, which results in an effective viscosity and is much larger
than the molecular viscosity (Stevenson, 1987). The entropy file in (e) represented
by the blue dashed line is typical for the canonical impact, which indicates the entire
structure is thermally stratified. In the high-angular momentum impact model (d),
a smaller impactor with a high velocity of 30 km/s hitting a rapid spinning proto-
Earth can produce a disk with enough material mixing between colliding bodies to
account for the measured isotopic ratios (Ćuk and Stewart, 2012). The post-impact
structure is highly thermally stratified (red line in (e)) and the silicate transitions
smoothly from liquid to the supercritical fluid to vapor (Lock et al., 2018), which
was named as synestia. Besides, there is a smooth change in the angular velocity
from the corotating inner region to the sub-Keplerian disk-like region (f).
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energy and gravitational potential energy. For the high-angular momentum impact
model, we need to include the rotational energy from the pre-impact spin to the
total energy as well, which will make the injection more easily.

If the total energy of the injected materials is negative, they will follow a Keplerian
orbit with the periapse on the Earth if there are no other materials block their
pathway to inject. After one orbital period they will fall back and re-impact with
the Earth. In contrast, if the injected materials have a positive total energy, they
will escape the Earth’s gravitational field. In order to form a proto-lunar disk, we
need other mechanisms to lift the periapse of some parts of shocked materials with
a negative total energy above the Earth.

One possible mechanism is the gravitational torque (Stevenson, 1987), which pumps
the angular momentum into the injected materials to make their orbits lift and avoid
to re-impact with the Earth. This mechanism is very similar to the current recession
of the lunar orbit due to the tidal torque exerted by the Earth. Another mechanism
is the pressure gradient, which becomes important if there is significant vaporization
happening during the giant impact. As compression is an irreversible process, the
shocked materials will gain entropy in the course to reach the peak pressure and
temperature conditions. Then an expansion is followed due to relief waves. As
the decompression process happens very fast, convection, viscous dissipation and
radiation play a very limited role. We can safely assume this process is isentropic.
If the decompressed materials intersect with the liquid-vapor dome, it will turn into
the liquid-vapor mixture. The significant volume change from the condensed phase
(liquid or solid) to the vapor phase upon vaporization causes an abrupt increase
in the particle velocity. Then the outflow materials is subjected to the pressure
gradients which is able to lift the periapse of injected materials (see Figure 6 in
Stevenson, 1987). Due to the complex impact geometry, how much materials are
injected into the proto-lunar disk and which mechanism is dominant can only be
determined from hydrodynamic simulations.

1.5.2 The canonical impact model

As the laboratory-scale experiments are not able to simulate such planetary-scale
impacts, our understanding of the giant impact mostly comes from hydrodynamic
simulations (Fig. 1.2). In this section, I summarize the outcome for the canonical
impact modeling. The high angular momentum impact scenario will be analysed
in the next section. For simulation results, we are more interested in what kind
of impact parameters will produce the present Earth-Moon system, which includes
the total mass (MT) as a sum of the impactor and the proto-Earth, the impact-to-
total-mass ratio (γ), impact angle (b) and the total angular momentum (Limp). The
simulation details are well beyond my interests.

Benz and Cameron pioneered the application of the SPH method to the giant impact
simulations. Interestingly, a series of papers were published in Icarus with the
same title ’The origin of the Moon and the Single Impact Hypothesis’ (Benz et al.,
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1986, 1987, 1989; Cameron, 1997; Cameron and Benz, 1991). Due to the limit on
the computational speed, all simulations except for in Cameron (1997) have a low
resolution. For instance, the total number of particles in the generated proto-lunar
disk is only 30 (Benz et al., 1987). From these simulations, they conclude that

1. the low-mass impactors with the impact-to-total-mass ratio less than 0.12
produces iron-rich disk;

2. the gravitational torque is more important than the pressure gradient for ma-
terials emplacement, which still holds even in the present high-resolution hy-
drodynamic simulations.

Cameron (1997) first performed the high-resolution simulations with a total number
of particles around N ∼ 104. The most successful impact to produce the current
Earth-Moon system is with γ=0.3 and MT=0.65ME, where ME is the mass of
the Earth. This case is also called the early-Earth impact scenario and the Earth
needs to acquire extra 0.35ME by the late accretion. Since the Moon will receive
a proportional amount of material as well and there is no mechanism available to
filter out iron in these materials, the initial iron-depleted Moon will become iron-
rich again causing an inconsistency with the geochemical observations. Therefore,
the early-Earth impact scenario is not favorable. Canup et al. (2001) re-examined
the simulation results in Cameron (1997) and proposed a scaling law to describe
the results of satellite-forming impact simulations. They found the disk mass tends
to increase and iron content decreases with increasing b for 0.4 < b < 0.8, which is
independent of MT. The maximum yielding of the massive and iron-depleted disk
is at b ∼ 0.8. Canup and Asphaug (2001) were guided by this trend and revisited
the small impactor case with γ < 0.12. A total of 36 impact simulations were run
with γ = 0.108 − 0.115, b = 0.70 − 1.0, Limp = LEM and MT = ME, where LEM
is the total angular momentum of the present Earth-Moon system. They found a
massive proto-lunar disk can be generated to allow the accretion of a single moon.
They also confirm most of the materials in the lunar disk is from the impactor with
a mass fraction of 0.6-0.74, indicating that the Moon will inevitably have a different
oxygen isotope ratio compared to the Earth’s mantle.

1.5.3 The high-angular momentum impact model

Ćuk and Stewart (2012) have proposed a new giant impact scenario which can
produce a Moon being isotopically similar to the Earth. In this model, a small
impactor with a mass around 0.026-0.1 ME but with a high velocity (30 km/s) hits
a rapidly spinning Earth. It results in a vapor-dominated disk with enough material
mixing between colliding bodies to account for the measured isotopic ratios. The
resulted disk has a much high angular momentum and more massive than the one
generated by the canonical impact model. However, the successful Moon-forming
impact leaves the Earth-Moon system with an excess angular momentum. Ćuk and
Stewart (2012) propose the Earth-Moon system can lose angular momentum by the
orbital resonance between the Sun and Moon, which is still under debate.
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Lock et al. (2018) found the post-impact structure is highly thermally stratified and
the silicate transitions smoothly from the liquid phase to the supercritical phase,
then to the vapor phase. This special structure was named as synestia. There is
also a smooth change in the angular velocity from the corotating inner region to
the sub-Keplerian disk-like outer region. The outer part of the disk-like region is
likely to be well mixed due to the falling condensates and vertical fluid motion (Lock
et al., 2018). However, a whole mixing in the synestia may be difficult. On the one
hand, synestia is thermally stratified, meaning the outer part is hot and has a lower
density. Lifting denser materials from the inner part to the outer part needs to
overcome the gravitational force. On the other hand, the monotonic increase of the
specific angular momentum from the inside-out creates a barrier. The exchange of
a large amount of materials between the inner part and outer part in the synestia
will decrease the angular momentum of the outer part, result in the collapse of the
disk-like region and leave too little materials in the disk (Melosh, 2014).

1.5.4 Summary

The giant impact model is the leading theory to explain the formation of the Moon.
The classic canonical impact model fails to explain the Moon’s isotopic similarity to
the Earth, while the high-angular momentum impact model has problems with the
removal of the excess angular momentum to match the present Earth-Moon system.

1.6 The behaviour of iron during giant impacts

Both the canonical and high-angular momentum impact models predict the im-
pactor’s core merge rapidly into the proto-Earth’s core at a timescale of hours (Kraus
et al., 2015). Since the chemical exchange between the sinking iron from the im-
pactor and the silicates in the magma ocean requires a much longer time, there is
a very limited chemical equilibration between the impactor’s core and the Earth’s
silicate mantle. However, the hafnium-tungsten isotope studies (Kruijer et al., 2015;
Touboul et al., 2015) have suggested a substantial level of metal-silicate equilibra-
tion is needed to remove siderophile elements almost entirely from the rocky mantle
to explain the small excess of 182W of the Earth relative to the Moon. There are
two possible mechanisms to enhance equilibration. The first one is to mechanically
break the impactor’s core into small pieces since the smaller metal pieces would
have longer falling time and shorter chemical equilibration time. Dahl and Steven-
son (2010) show only iron fragments less than 10 km in diameter would equilibrate
with silicates. Kendall and Melosh (2016) have futher revised this value by perform-
ing hydrodynamic simulations and found iron blobs with a radius of 100 km is in
full equilibrium with the magma ocean. It should be noted that all Moon-forming
impact simulations do not include the strength of materials, causing the overesti-
mation of the size of fragmented iron core (Barr, 2016). The second mechanism is
vaporisation. After cooling down, the vaporised materials would condensate into a
distribution of small droplets on a centimetre level, and thus enhance the metal-
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silicate equilibration. Kraus et al. (2015) developed an experimental technique to
determine the shock pressure required for vaporization of iron along the principal
Hugoniot line. They found the starting vaporization pressure is around 415 GPa
compared to 817 GPa from the previous theoretical estimate using ANEOS (Pier-
azzo et al., 1997). Therefore, previous hydrodynamic simulations with ANEOS may
underestimate the production of iron vapor.

Before the giant impact, the proto-Earth’s core may grow with stable compositional
stratification because higher abundances of light elements would be incorporated
into the liquid metal as a result of the increasing metal-silicate equilibration pressure
and temperature during accretion (Jacobson et al., 2017). The stable stratification
would inhibit the outer-core convection and prevent from generating a geodynamo.
Jacobson et al. (2017) proposed that an energetic giant impact may pump enough
energy to homogenise the core as long as at least 4% of the total energy is deposited
in the core. However, it remains as an open question on the exact amount of energy
distributed into the Earth’s core during the giant impact, which requires significant
numerical simulations to clarify.

1.7 The role of equations of state

During the giant impact, the colliding interface and silicates in the disk can be heated
up to 104 K and 7000-8000 K, respectively, even in the canonical impact model
(Canup, 2004a). More surprisingly, the core of the impactor can reach as high as
45000 K (Canup, 2004a). It remains unclear whether these reported temperatures
are physically reasonable and not caused by the equations of state of iron and
silicates used in these simulations. For any giant impact simulation, the equations
of state (EOS) are needed to describe the thermodynamic properties over a wide
range of temperature, pressures and density. It will inevitably affect the energy
distribution (Nakajima and Stevenson, 2015) and alter the after-impact dynamic
evolution of the Earth such as the core-mantle equilibration and homogenising the
compositional strafication of the Earth’s core.

There are two sets of equations of state that have been widely used in the hydro-
dynamic simulations. The first one is called Tillotson EOS, which has a relatively
simple analytic formula that makes computations very fast. The shortage is that
Tillotson EOS does not provide any information on the physical state of materials.
Therefore, simulation results are lack of vapor which may affect the efficiency of the
pressure gradient to inject materials into the proto-lunar disk (Stevenson, 1987).
The second one is ANEOS, which is more sophisticated and provides a thermody-
namically consistent description of the phase diagram of iron and silicates. However,
ANEOS treats the vapor phase as a monatomic mixture of atoms rather than the
molecular cluster, resulting in an unrealistic large amount of entropy needed to va-
porise solid or liquid into the gas. This problem has been solved in the improved
version of ANEOS or M-ANEOS (Melosh, 2007). Canup (2004a) has compared the
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hydrodynamic simulation results using the Tillotson EOS with that of M-ANEOS,
and found no difference in the origin of materials of the proto-lunar disk, where more
than 60 wt% is from the impactor. Only more vapor is produced using M-ANEOS
as expected, which is still not enough to make the pressure gradient as the major
injection mechanism.

1.8 The phase diagram of iron

As a building-block of the terrestrial planet, iron naturally receives a lot of attention
on its thermodynamic properties under various conditions. Many experimental tech-
niques have been developed to determine its phase diagram and equation of state.
The laser-heated or resistance-heated diamond anvil cell is capable of compressing
iron up to 400 GPa and 6000 K (Sinmyo et al., 2019). To reach pressures into
the terapascal (TPa) range and temperatures up to 10,000 K or more, the dynamic
compression is the only method available. It has been used to measure the physical
properties of iron up to 1.4 TPa (Smith et al., 2018). The rapid advance in the
computer capability in the last two decades has made ab initio simulations feasible.
It is capable of accessing pressure and temperature conditions that are difficult to
measure experimentally. In addition, theoretical simulations can directly compute
the entropy (e.g. Alfe et al., 1999), which is vital to build up an accurate equation
of state and is challenging to obtain from experiments.

Figure 1.3 displays the phase diagram for iron in a pressure range of 0-360 GPa and
a temperature range of 0 - 8000 K. At ambient conditions, the most stable phase of
iron adopts a body-centred cubic (α-bcc) structure and is in a ferromagnetic state.
The Curie temperature, which marks a transition from the ferromagnetic state to the
paramagnetic state, is about 1043 K. A further phase transition to the face-centred
cubic (γ-fcc) structure occurs at 1200 K. In the temperature range of 1670 K to 1815
K, iron adopts the δ-bcc structure again. Above 1815 K, iron starts to melt and
becomes liquid. At ambient temperature and with increasing pressure, iron changes
into the hexagonal close-packed structure (ε-hcp) at around 16 GPa. This structure
is stable up to at least 400 GPa and 6000 K, although recent studies suggest there is
a phase transition from ε-hcp to bcc structure (Belonoshko et al., 2017) at the inner
core conditions (360 GPa and 6000 K). The triple point between α-bcc, ε-hcp and
γ-fcc phase of iron is around 10.5 GP and 753 K. Along the melting curve, there are
two triple points. The first one is at 5 GPa and 2000 K coexisted with δ-bcc and
γ-fcc phase of iron. The second one is at 90 GPa and 3000 K coexisted with ε-hcp
and γ-fcc phase of iron.

A thermodynamically consistent EOS describing the Helmholtz free energy as a
function of volume and temperature (F (V, T )) requires the entropy information. It
is too expansive to perform a series of simulations over a wide range of pressure and
temperature conditions to directly determine the entropy. The common practice is
to build up a analytic EOS with several adjustable parameters that can be fitted
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Figure 1.3: (a) The phase diagram of the condensed iron up to 360 GPa and 8000
K. The melting curve was determined by the resistance-heated diamond-anvil cell
technique (Sinmyo et al., 2019). The pressure at the core-mantle boundary (CMB)
is around 130 GPa. The pressure at the inner-core boundary (ICB) is about 330
GPa. The empty red square is the melting temperature at ICB determined by
the ab initio method (Alfe, 2009). (b) The liquid-vapor equilibrium line in the
temperature-density space. The black solid line and red dotted line represents the
liquid-vapor equilibrium line estimated by Fortov and Lomonosov (2010) and Grosse
and Kirshenbaum (1963), repectively. The blue point denotes the density of liquid
iron at the boiling point of 1 bar. The magenta shared region is the experimental
conditions done by Hixson et al. (1990). (c) The liquid-vapor equilibrium line in the
temperature-pressure space. The supercritical state is represented by the shaded
region.
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from the measured or calculated pressure-density-temperature relations and phase
boundary of iron (e.g. Dorogokupets et al., 2017). The derived EOS works very
well to predict pressure as a function of temperature or density. However, the
obtained entropy from F (V, T ) are sometimes questionable since it is related to the
partial derivative of Helmholtz free energy to the temperature at a fixed volume and
thus depends on the particular EOS model. For iron, the magnetic entropy in the
paramagnetic phase further increases the complexity. Ruban et al. (2007) employed
a microscopic phenomenological model to study the effect of the longitudinal spin
fluctuation and found hcp-Fe may acquire a significant magnetic moment at high
pressure and temperature. Therefore, future studies are required to clarify whether
we need to consider magnetic entropy for all phases of iron.

Above studies are mainly on the condensed phases (>7.8 g/cm3) of iron. The re-
search into the low-density region near the liquid-vapor equilibrium line is very
scarce. Grosse and Kirshenbaum (1963) estimated the critical point of iron based
on the rectilinear law and the theorem of corresponding states. The rectilinear law
states the density at the boiling point (5.828 g/cm3 at around 3160 K) is 4.35 times
more than that at the critical point. With this in mind, we can determine the critical
density which is 1.34 g/cm3. Then the critical temperature (7000 K) can be extrap-
olated from the relation between the liquid density and temperature spanning from
the melting point to the boiling point. The corresponding law states for a metal,
the entropy change along the liquid-vapor equilibrium line is equal for all materials
at the same reduced temperature which is defined as the ratio between the physical
temperature and the critical temperature. Grosse and Kirshenbaum (1963) have
measured the entropy change at the boiling point of 3160 K for iron. This entropy
change is equal to that for mercury at a reduced temperature of 0.31. Therefore,
the critical temperature of iron is estimated to be about 10000 K (3160/0.31). Con-
sidering the significant difference of 3000 K given by these two methods, more work
is needed to determine the liquid-vapor equilibrium and the critical point of iron.
Hixson et al. (1990) measured the density of liquid iron up to 4000 K in an argon
gas atmosphere at a pressure of 0.2 GPa, where the high temperature was generated
by the electrical-pulse-heating technique. With an argon-ion laser backlighting the
sample, the density was calculated by measuring its sample diameter. Fortov and
Lomonosov (2010) has fitted a semi-empirical EOS by using available experimental
data from Grosse and Kirshenbaum (1963) and Hixson et al. (1990), and predicted
the critical point of iron at 8786 K and 1.638 g/cm3.

1.9 Proposed research

The lack of reliable information on the thermodynamic properties of iron in the
low-density region prevents us from developing an accurate equation of state to
describe its thermodynamic response to shock waves. Consequently, it would affect
the impact energy distribution and thus cause different geochemical and geodynamic
consequences such as the amount of iron vaporized and the extent of iron-silicates



1.9. Proposed research 17

equilibration. The aim of the present work is to close the knowledge gap of the
liquid-vapor equilibrium of iron and to improve our understanding of the behavior
of iron during giant impacts. In particular, we

1. assess whether the planets’ core undergoes partial vaporization during giant
impacts (Chapter 3),

2. implement a new technique to compute the liquid-vapor equilibrium and the
critical point for a metallic system and validate it with sodium for which
experimental data are available (Chapter 4),

3. apply this technique to iron (Chapter 5).

Before that, a brief introduction of first-principles simulation is provided, which is
fundamental for our research (Chapter 2). At last, a summary of the results is given
and future work is outlined (Chapter 6).





Chapter 2

Ab initio molecular dynamics: a
conceptual framework
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2.1 Introduction

In the present study, we employ ab initio molecular dynamics (AIMD) and Monte
Carlo method to determine the physical properties of iron in the low-density region
since it is experimentally difficult to access the low-density and high-temperature
conditions. This chapter’s focus is on the molecular dynamics method, and the
introduction of the Monte Carlo method will be left to Chapter 4. The roadmap of
this chapter is as following:

1. We start with the time-dependent Schrodinger equation that governs electron
and nucleus dynamics (Eq. 2.1). By applying the Born-Oppenheimer approx-
imation, we show the fast electrons would adiabatically follow the slow nuclei,
and stay at the ground state for a large band gap system or the thermal ground
state for the small band gap system. If we treat nuclei as classic particles and
neglect their quantum effects, the nuclei follow Newton’s second law of motion
(Eq. 2.10 and 2.9). The force exerted on the ions is obtained from the position
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derivative of the electronic potential energy. For a small band gap system, we
show the electronic potential energy should include the contribution of the ex-
cited states (Eq. 2.11). For a large band gap system, the effect of the excited
states is not pronounced, and thus the electronic ground state energy acts as
the electronic potential energy.

2. The remaining problem is how to obtain the electronic potential energy, where
the electron excited states must be included since we focus on the metallic iron
at high temperature. The direct method is to find all eigenfunctions and eigen-
values for the electronic Hamiltonian. But for this, we need to know the kinetic
energy and electron-electron coulomb energy operators for the interacting elec-
tron system. One the one hand, these terms are unknown. On the other hand,
it is extremely difficult to find numerical solutions. Finite-temperature den-
sity functional theory provides an alternative and cost-effective way. It shows
the electronic potential energy is a unique functional of the electronic density.
It simplify the problem since there are only three spatial coordinates in the
electronic density. In order to find the thermal ground state electronic density,
the Kohn-Sham scheme maps the interacting electron system onto a fictitious
non-interacting system, where they share the same thermal ground state elec-
tronic density. The solution of Kohn-Sham equation leads to the electronic
potential energy.

3. Although the iron atom in the solid phase below or close to the Curie tem-
perature and at ambient pressure contains a non-vanishing magnetic moment,
whether the liquid iron at a high temperature like 3500 K is still magnetic is
uncertain. But if it does, we need to consider spin dynamics that occur in
the paramagnetic state. However, the finite-temperature density functional
theory and its spin-polarized extension fail to describe the magnetism at high
temperature as they fail to capture the longitudinal and transversal fluctua-
tion.

Since the aim is to build a conceptual framework, the mathematical vigour and
proof are not pursued. Any reader being interested in mathematical physics may
refer to the excellent book by Eschrig (1996) for more details.

2.2 Deriving classical molecular dynamics

For a system with N nuclei and Ne electrons, The starting point of our discussion
is the time-dependent Schrodinger equation,

i~
∂Ψ({R}N , {r}Ne , t)

∂t
= HΨ({R}N , {r}Ne , t), (2.1)

where {r}Ne and {R}N denote a set of electron and nuclei coordinates, ~ is the
reduced Planck constant, t is the time and H is the total Hamiltonian operator
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Table 2.1: A summary of symbols used in Section 2.2.

H the total Hamiltonian operator of the system
Te the kinetic energy operator of electrons
Ti the kinetic energy operator of ions
Ve−e the electron-electron Coulomb interaction operator
Ve−i the electron-ion Coulomb interaction operator
Vi−i the ion-ion Coulomb interaction operator
N the total number of nuclei in the system
Ne the total number of electrons in the system

{R}N a set of nuclear coordinates {R0,R1, ..,RN}
{r}Ne a set of electronic coordinates {r0, r1, .., rNe}

Ψ({R}N , {r}Ne , t) the total wavefunction describing the dynamics of electrons and nuclei
Hfast the Hamiltonian governing the fast degrees of motion in H
Hslow the Hamiltonian governing the slow degrees of motion in H

Φl({r}Ne ; {R}N ) the eigenfunction of Hfast at fixed {R}N
El({R}N ) the eigenvalue of Hfast at fixed {R}N

l the electronic state (For instance, l = 0 denotes the ground state E0({R}N ))
χl({R}N , t) the expansion coefficient to expand Ψ({R}N , {r}Ne , t) by {Φl({r}Ne ; {R}N )}
F0({R}N ) the effective potential energy governing the ions’ motion in small band gap system
E0({R}N ) the potential energy governing the ions’ motion in large band gap system

Pi the momentum of the ith nucleus

defined as,

H = Te + Ti + Ve−e + Ve−i + Vi−i, (2.2)

where Te and Ti are the kinetic energy operator of electrons and ions, respectively,
Ve−e, Vi−i and Ve−i are the electron-electron, electron-nuclear and nuclear-nuclear
Coulomb interaction operator, respectively. Here the electron coordinates do not
include the spin degrees of freedom meaning spatial orbitals are the same in their
spin-up and spin-down electrons so that the band occupancy can be up to 2.

As the computational cost increases as the square of the number of coordinates, we
need to avoid treating a large amount of coordinates simultaneously. To solve this
problem, we can employ the Born-Oppenheimer (BO) approach (Born and Huang,
1954) to separate the fast electronic motion from the slow nuclear motion and to
divide the total Hamiltonian into two parts,

Hfast = Te + Ve−e + Ve−i + Vi−i (2.3)

Hslow = Ti. (2.4)

The solution of Eq. 2.3 at fixed nuclei configurations {R}N is given by,

HfastΦl({r}Ne ; {R}N ) = El({R}N )Φl({r}Ne ; {R}N ), (2.5)

where Φl({r}Ne ; {R}N ) and El({R}N ) are resulted eigenfunction and eigenvalue,
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here and thereafter the parametric dependence of any function on the nuclear coor-
dinates is indicated by the symbol after the semicolon, and l denotes the electronic
state. We stress that the parametric dependence means that dΦl({r}Ne ;{R}N

dRi
is always

zero but dEl({R}N )
dRi

may and may not be zero, where i denotes the ith nucleus.

If Eq. 2.5 is known for all nuclei configurations, we can expand the total wavefunction
Ψ as,

Ψ({R}N , {r}Ne , t) =
∞∑
l=0

Φl({r}Ne ; {R}N )χl({R}N , t), (2.6)

where χl({R}N , t) is the expansion coefficient. The insertion of Eq. 2.6 into Eq. 2.1
followed by exploiting the orthonormalization condition of yields a coupled differ-
ential equations (see Eq. (2.6) in Marx and Hutter, 2009), which is challenging to
handle. Therefore, some approximations need to be made to simplify the problem.

2.2.1 The large band gap system

For a system at a temperature that is much lower than its band gap, we can ignore
the mixing between different electronic levels in Eq. 2.6 and use only the first term
to expand the total wavefunction Ψ,

Ψ({R}N , {r}Ne , t) = Φ0({r}Ne ; {R}N )χ0({R}N , t). (2.7)

where Φ0({r}Ne ; {R}N ) is the ground state wavefunction, defined in Eq. 2.5. It
means electron always stays in its ground state (l = 0). Plugging the right-hand
side term of both Eq. 2.7 and Eq. 2.5 into Eq. 2.1 leads to,

i~
∂χ0({R}N , t)

∂t
= (Hslow + E0({R}N )χ0({R}N , t) (2.8)

where E0({R}N ) is ground state energy (l = 0) at the fixed nuclei configuration
{R}N as defined in Eq. 2.5 when l = 0. If we treat the nuclei as classic particles
and neglect the quantum effects, Eq. 2.8 can be transformed into,

Mi
dR2

i

dt2
= −∇iE0({R}N ), (2.9)

where Mi is the mass of the ith nucleus (Marx and Hutter, 2009).

Since the de Broglie thermal wavelength of an iron atom is much less than the
average atomic distance in fluid iron, it may be reasonable to negelect the nuclei
quantum effects (Hansen and McDonald, 2013). Approximating Ψ({R}N , {r}Ne , t)

with only one term in Eq. 2.7 and neglecting the quantum effects of nuclei inevitably
cause errors, which are supposed to be small. We have to live with it in order to
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find a numerical solution.

2.2.2 The small band gap and metallic system

For a system that has a small band gap or is metallic like iron at high temperature
(T ) , we can expand Ψ in a similar way as Eq. 2.7 but needs to take into account
the thermal excitation of electrons explicitly. The electronic subsystem cannot be
described by a pure state but by a mixed state (Eq. 2.14). We can employ the
similar procedure as in Section 2.2.1, which leads to,

Mi
dR2

i

dt2
= −∇iF0({R}N ), (2.10)

F0({R}N ) = − 1

β
ln Tr exp (−βHfast) (2.11)

where β = 1/kBT , kB is the Boltzmann’s constant and F0({R}N ) is the effective
potential energy of the electron subsystem at fixed nuclei configurations {R}N in-
cluding the free energy of the electrons and the coulombic attraction within nuclei.
The details on the derivation of Eq. 2.11 can be found in Zwanzig (1957).

Eq. 2.11 suggests that electrons response instantaneously to the ionic motions and
reach the thermal equilibrium (Alavi et al., 1994). We can also re-write Eq. 2.10 in
a more compact way (Zwanzig, 1957) that will be used in Chapter 4,

Z =
1

N !h3N

∫ ∫
exp

(
−β
( N∑
i=1

P 2
i

2Mi
+ F0({R}N )

)) N∏
i

dRidPi. (2.12)

where Z is the canonical partition function, N is the total number of ions, and Pi
is the momentum of the ith nucleus. In Eq. 2.12, the electronic contribution to the
partition function has been treated in a quantum-mechanical way, while the nuclei
has been treated in a classic way under the action of the free energy of the electron
system (Eq. 2.11).

2.2.3 Summary

In summary, this section has presented a practical way to solve Eq. 2.1 by separat-
ing the electronic motions from the nuclear motions. If we treat nuclei as classic
particles and neglect their quantum effects, the nuclei follow Newton’s second law
of motion (Eq. 2.10 and 2.9). The force is obtained from the position derivative
of the electronic potential energy. For the metallic system like iron, the electronic
potential energy should include the contribution of the excited states (Eq. 2.11). In
order to maintain the temperature of the system at a desired value (T ), the Nosé
thermostat (Nosé, 1984) is used. The conserved quantity becomes (Wentzcovitch
et al., 1992),

Etotal = F0({R}N ) +Ki + Uthermo +Kthermo. (2.13)
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where Ki the kinetic energy of ions, Uthermo and Kthermo are the potential and
kinetic energy of the thermostat, respectively. It should be noted that Wentzcov-
itch et al. (1992) suggest F0({R}N ) can be calculated at an arbitrary temperature.
However, we have shown in Eq. 2.11 that the electron subsystem must stay at the
simulated temperature (T ). For the sake of simplicity, we omit hereafter the para-
metric dependence of Φl({r}Ne ; {R}N ) on the ionic position {R}N . We also neglect
the dependence of any function on independent variables like {R}N and {r}Ne . For
instance, F0({R}N ) will be written as F0.

2.3 Finite-temperature density functional theory

Table 2.2: A summary of symbols used in Section 2.3.
F0 same as F0({R}N ) but omitting its dependence on {R}N
Γ a density matrix to describe the electronic subsystem at high temperature

{ψl} an arbitrarily complete orthonormal basis set in the Ne particle Hilbert space
pl the probability of the system being found in the state ψl

F [Γ] the Helmholtz free energy of the electronic subsystem as described by Γ
Γ0 the density matrix to give the minimal F = F0 for the electron subsystem

{Φ0l} a complete orthonormal basis set to form Γ0, and equal to Φl({r}Ne ; {R}N )
p0l the probability of the system being found in the state Φ0l

n the electron density
S the entropy of an interacting electron system
νext the external potential due to electron-ion interactions Ve−i

Ω the grand potential energy in the grand canonical ensemble
n0 the ground state electron density that gives F0

Te the kinetic energy of a non-interacting electron system
Ss the entropy of a non-interacting electron system
J [n] the classic Coulomb energy for a non-interacting electron system
Fxc[n] the exchange-correlation contribution to the free energy
νks the Kohn-Sham external potential
φl an arbitrarily complete orthonormal basis set in the single particle Hilbert space
fl the probability of the system being found in the state φl

2.3.1 Finite-temperature canonical-ensemble theory

In Eq. 2.11, the evaluation of F0 requires information of all eigenvalues and eigen-
states of Hfast, which needs a tremendous computational cost. The minimum princi-
ple may provide an alternative method that is easier to implement. Before describing
this theorem, we need to introduce some terminology. For the canonical ensemble
considering here, the electron subsystem is described by a density matrix, which is
characterized by a probability distribution over all pure states that have the same
particle number Ne,

Γ =

∞∑
l=1

pl |ψl〉 〈ψl| , pl ≥ 0,

∞∑
l

pl = 1 (2.14)

where the Dirac bra-ket notation is used, {ψl} forms a arbitrarily complete orthonor-
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mal basis set in the Ne particle Hilbert space and is not necessarily equal to the
eigenstates of Hfast, and pl is the probability of the system being found in the state
|ψl〉. Then we can define the Helmholtz free energy F as,

F [Γ] = F [{pl, ψl}] =
∞∑
l=1

pl(
1

β
lnpl+ < ψl|Te + Ve−e + Ve−i|ψl >) + Vi−i. (2.15)

The quantum statistical mechanics has shown in the thermal equilibrium, the Helmholtz
free energy is at its minimum (see Chapter 3 in Parr and Yang, 1989),

F [Γ] ≥ F [Γ0] = F [{p0l,Φ0l}] = F0 (2.16)

where Φ0l are the eigenstates of Hfast at the fixed configuration {R}N , and p0l is
defined as,

p0l =
exp(−βEl)∑∞
i exp(−βEl)

, (2.17)

where Ei is the eigenvalues of Hfast. Eq. 2.16 sets up the variational principle to find
F0. However, the computational complexity is very similar to the direct calculation
of eigenvalues and eigenstates of Hfast.

A more cost-effective method is density functional theory (DFT), which allows to
perform the minimization over the electron density which depends on only three
spatial coordinates. For a system with non-degenerate ground state, the Hohenberg-
Kohn (HK) theorem (Hohenberg and Kohn, 1964) proves there is one-to-one corre-
spondence between the external potential, the resulted non-degenerate ground state,
and the associated ground state density. Therefore, any ground state observable in-
cluding the ground state energy is a unique functional of electron density. The
extension of this theorem to high temperature was pioneered by Mermin (1965),
just one year after Hohenberg and Kohn published their seminal work. For the dis-
cussion of finite-temperature density functional theory, we need to define ensemble
N -representable electron density associated with a density matrix (Γ) defined in
Eq. 2.14 as,

n(r) = Ne

∞∑
l=0

pl

∫
d3r2

∫
d3r3· · ·

∫
d3rNψ

∗
l (r, r2, . . . , rN )ψl(r, r2, . . . , rN ).

(2.18)
and rewrite the electron-nuclear Coulomb interaction operator in Eq. 2.5 as a func-
tional of the electron density,

Ve−i =

∫
d3rνext(r)n(r). (2.19)

where νext is the external potential due to electron-ion interactions. Mermin (1965)
proved that in the grand canonical ensemble at a given temperature and chemical
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potential, no two external potentials can lead to the same equilibrium density. This
suggests the grand potential is a unique functional of electron density. Based on
this fact, we can define a universal functional (FL[n]) of the electron density which
is independent of the external potential and the quantity

Ω[n] =

∫
drνextn(r) + FL[n] (2.20)

is at its minimum and equal to the grand potential Ω0 when n(r) is the equilibrium
density n0(r). Mermin (1965) also mentioned about these arguments can be adapted
to the canonical ensemble with a few minor changes, which has been given in the
Chapter 3 of Parr and Yang (1989). With the help of the Lieb functional, we can
contruct the density functional theory for the minimum principle in Eq. 2.15 as,

F0 = min
n
F [n] = min

n
(FL[n] + Ve−i[n]) + Vi−i (2.21)

where the minimization is performed over all ensemble N -representable electron
densities defined in Eq. 2.18, and FL[n] is a universal density functional independent
of the external potential νext,

FL[n] = Te[n] + Ve−e[n] + S[n]

= min
{ψl,pl}→n

∞∑
i

pl(〈ψl|Te |ψl〉+ 〈ψl|Ve−e |ψl〉+
1

β
lnpl)

(2.22)

where {ψl, pl} → n is a constrained search over all sets {ψl, pl} that can generate n
and S[n] is the entropy of the interacting electron system. For more details on the
Lieb functional and N -representable electron density, please refer to Chapter 2 in
Engel and Dreizler (2013). If the definition domain of F [n] includes densities that
integrate to a fractional number of particles and δF

δn exits, the minimum principle in
Eq. 2.21 indicates it is possible to determine the ground state density by a variational
equation,

δ

δn(r)
F [n]− µ(

∫
d3rn(r)−Ne) = 0 (2.23)

where the Lagrange multiplier µ is used to impose the constraint,∫
d3rn(r) = Ne. (2.24)

2.3.2 Kohn-Sham formulation

We have built a varitional principle to find the F0 based on Eq. 2.23. However,
we still have no information on how to calculate 〈ψl|Te |ψl〉 and 〈ψl|Ve−e |ψl〉. The
Kohn-Sham formulation (Kohn and Sham, 1965) employs a mapping from the full
interacting system with Ve−e 6= 0 onto a fictitious non-interacting (Ve−e = 0) system
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where the electrons move within an effective potential νks,

νext
Ve−e 6=0←−−−→ n0

Ve−e=0←−−−→ νks, (2.25)

where we have assumed interacting ensemble N -representable electron density is
also non-interacting ensemble N -representable. The Kohn-Sham method is exact
since the non-interacting system yields the same ground-state density as the real
system. We can then transformed Eq. 2.21 into,

F0 = min
n(r)

(Te[n] + Ve−e[n] + S[n] + Vi−i)(interacting electron system)

= min
n(r)

(Ts[n] + J [n] + Fxc[n] + Ss[n] + Vi−i)(non-interacting electron system)

(2.26)

Ts is the kinetic energy of non-interacting electron system, Ss is the entropy of
non-interacting electron system, J [n] is the classic Coulomb energy by,

J [n] =

∫
dr

∫
dr′

n(r′)n(r)

|r′ − r|
, (2.27)

and Fxc[n] is the exchange-correlation contribution to the free energy that includes
the difference of the kinetic energy, entropy and Coulomb energy between the inter-
acting electron system and the non-interacting electron system,

Fxc[n] = (T [n] + S[n])− (Ts[n] + Ss[n]) + (Ve−e[n]− J [n]). (2.28)

For the non-interesting system, we can express the electron density n with respect
to the single particle states as,

n(r) =
∞∑
l=0

flφ
∗
l (r)φl(r), fl ≥ 0,

∞∑
l=0

fl = 1 (2.29)

where {φl} forms a arbitrarily complete orthonormal basis set in the single particle
Hilbert space and and fl is the probability of the system being found in the state
|φl〉.

Plugging Eq. 2.29 into Eq. 2.26 leads to,

F0 = min
{φl,fl}

( ∞∑
l=0

[fl 〈φl| −
1

2
∇2 |φl〉+

1

β
(fllnfl + (1− fl)ln(1− fl))]

+

∫
dr

∫
dr′

n(r′)n(r)

|r′ − r|
+ Fxc[n]

)
(2.30)

Based on the conclusion in Eq. 2.16, the minimization is obtained if φl are the
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eigenfunctions

[−1

2
∇2 + νks(r)]φl(r) = εlφl(r) (2.31)

and fl is

fl =
1

1 + exp[β(εl − µ])
(2.32)

where εl is the eigenvalues and µ is the chemical potential calculated from the
constraint,

∞∑
l=0

fl = Ne (2.33)

and νks is defined as,

νks(r) = νext(r) +

∫
n(r′)

|r − r′|
+
δFxc[n]

δn
. (2.34)

Eq. 2.31 have to be solved self-consistently. And the resulted equilibrium density
can be inserted into Eq. 2.26 to obtain F0 (see Chapter 9 in Parr and Yang, 1989).

In the finite-temperature density functional theory, the physically meaningful quan-
tity is F0 and its analytic derivative with respect to the atomic position and cell
volume from which the force and electronic pressure are calculated. It is questionable
to use the quantity F0−Ss as the internal energy for the interacting electron system
since Ss is the electronic entropy of the fictitious non-interacting electron system.
Besides, we cannot determine the heat capacity for the metallic system based on
the fluctuation-dissipation theorem since FT-DFT provides no information on the
fluctuation of the electronic internal energy.

2.4 Ab initio spin dynamics

2.4.1 Spin-polarized DFT at zero temperature

Magnetism comprises a large variety of phenomena that can be characterized by
quantities such as the magnetic moment, the magnetic order and the ordering tem-
perature and so on. Although there is no single theoretical approach to all magnetic
phenomena, the spin-polarized version of DFT allows the access to the magnetic
moment and the magnetic order at zero temperature. It can also serve to extract
other quantities like exchange interactions that can serve as input for other theo-
retical approaches. In this section, we will present how to extend the Kohn-Sham
formulation described in Section 2.3.2 to the spin-polarized case at zero temperature.

The basic variables of spin density functional theory are the scalar electronic density
n(r) and the vector of the magnetization density m(r). von Barth and Hedin
(1972) have extended the DFT concept to spin-polarized systems by defining the
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Hohenberg-Kohn-Sham spin density functional as,

E0[n(r),m(r)] = min
n(r),m(r)

[Te[n(r),m(r)] + Ve−e[n(r),m(r)] + Vi−i] (2.35)

It means the internal energy is at a minimum when n(r) and m(r) are the equilib-
rium electron and magnetization density, repectively. Here we choose the internal
energy E0 instead of the free energy F0 since the electronic entropy at zero tem-
perature is zero and E0 = limT→0 F0. Then we can map the interacting electron
system to a non-interacting electron system and express n(r) andm(r) with respect
to the single particle states. The details are not given here, which can be found in
Bihlmayer (2007). In this way, we are able to derive a spin-polarized version of
Kohn-Sham equations without a magnetic field,[(

− 1

2
∇2 +

∫
n(r′)

|r − r′|
+ νext(r)

)(
1 0

0 1

)
+
δExc
δn(r)

]
×

(
φ↑l
φ↓l

)
= εl×

(
φ↑l
φ↓l

)
, (2.36)

where ↑ and ↓ denote the spin-up and spin-down states, and the density matrix is
defined as,

nα,β(r) =

∞∑
l=1

φ∗,αl (r)φβ(r), α, β =↑ or ↓ . (2.37)

It can be decomposed into a scalar and vectorial part, correponding to the charge
and magnetization density,

n(r) =
1

2

[
n(r)

(
1 0

0 1

)
+ σm(r)

]
=

1

2

(
n(r) +mz(r) mx(r)− imy(r)

mx(r) + imy(r) n(r)−mz(r)

)
,

(2.38)
where σ is the Pauli matrices. And the magnetic moment is defined as,

MI =

∫
ΩI

m(r)dr, eI =
MI

|MI |
, (2.39)

where ΩI is a sphere centered at Ith atom and eI is the orientation of the local
magnetic moment.

2.4.2 Spin dynamics at high temperature

We can use the method described in the last section to simulate magnetic systems
and determine their ground state accurately. But at high temperature, we need to
consider the magnetic excitations consisting of the Stoner single particle and col-
lective excitation (Kaul, 2007). The single particle excitation is due to the transfer
of an electrons-hole pair in the band of opposite spins. The collective excitation is
caused by a spin flip from atom to atom and can be further divided into the transver-
sal and longitudinal fluctuation (Kaul, 2007). They would change the orientation
and magnitude of the local magnetic moment from one site to the other, respec-
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tively. When the temperature reaches the Curie point or above, the transversal and
longitudinal fluctuation destroy the long-range magnetic order and the ferromag-
netic system would become paramagnetic. However, the individual atom may still
contain a non-vanishing magnetic moment. We can explain the presence of spin
dynamics or magnetic excitations at high temperatures by analogy with atom vi-
brations in a perfect lattice. For the NV T ensemble in thermodynamic equilibrium,
the Helmholtz free energy should be at its minimum. At high temperatures, atom
vibration increases the internal energy but brings in extra entropy due to the in-
creased disorder. The overall effect is the entropy gain is larger than the cost of the
increasing internal energy. Similarly, although spin dynamics increases the internal
energy, the system would obtain more entropy due to the magnetic disorder.

Electronic structure calculations within DFT can be viewed as a modern extension
of the Stoner-type description of magnetism (Abrikosov et al., 2016). It is capable
of reproducing ground-state magnetic properties of 3d transition metals accurately,
whose magnetism comes from the imbalance between the number of spin-up and
spin-down itinerant 3d electrons. However, DFT fails to describe the magnetism
at finite temperature and significantly overestimates the Curie temperatures of iron
by a factor of five due to its inability of treating the transversal and longitudinal
fluctuation (Abrikosov et al., 2016).

To find a scheme to capture these fluctuations at high temperatures, we start again
with the time-dependent Schrodinger equation but need to include the spin degrees
of freedom explicitly, then precede to separate different dynamic time scales. Follow-
ing this, Antropov et al. (1995) partition the total Hamiltonian into a slow-motion
part that relates to the spin density and nuclear motion. By introducing the rigid
spin approximation and neglecting the longitudinal fluctuation, the time evolution
of the spin density is described by a rotation of the magnetization density inside the
atomic spheres. The remaining electronic Hamiltonian at fixed atomic positions and
the local magnetic moment direction plays the role of the potential energy for the
movement of nuclei and the magnetic moment direction. Therefore, we can write
the equation of motion for the direction of the local magnetic moment and nuclei
(Ma et al., 2017) as,

Z =
1

N !h3N

∫ ∫ ∫
exp

(
−β
( N∑
I=1

P 2
I

2MI
+ F0({R}N , {e}N )

)) N∏
i

dRidPidei.

(2.40)
where ei is a unit vector of the local magnetic moment associated with ith atom.
F0({R}N , {e}N ) is the effective potential energy at fixed {R}N and {e}N that can
be tacked by finite-temperature constrained spin-polarized density functional theory
(Ma and Dudarev, 2015). It means we need to extend the theory in Sec. 2.4.1
to include the electronic entropy and replace E0[n(r),m(r)] with F0[n(r),m(r)].
In addition, the band occupancy needs to be chosen based on Eq. 2.32. Band
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structure calculations suggest the magnetization density in Fe is well localized and
each iron atom could be associated with a local magnetic moment that behaves
in a Heisenberg-like manner (Abrikosov et al., 2016). Therefore, the rigid spin
approximation might be reasonable at least for iron. However, we cannot apply this
method to Ni since it does not develop a well localized magnetic moment and the
longitudinal fluctuation plays a dominant role (Abrikosov et al., 2016).

Both experimental (Waseda and Suzuki, 1970) and theoretical studies (Lichtenstein
et al., 2001) have suggested the liquid Fe is in the paramagnetic state with a non-
vanishing local magnetic moment. Although we may use the method described above
to study the effect of spin dynamics, it is too expensive to do so. We need to further
simplify the problem into a manageable size. For this, we re-consider the argument
of dynamic timescales. Abrikosov et al. (2016) suggest the spin de-coherence time is
10−14- 10−15 s which is very close to the characteristic timescale of electrons (10−15

s). Therefore, we may apply the adiabatic approximation to the orientation of the
local magnetic moment as well and re-write Eq. 2.40 as,

Z =
1

N !h3N

∫ ∫
exp

(
−β
( N∑
I=1

P 2
I

2MI
+ F0({R}N )

)) N∏
i

dRidPi. (2.41)

where we have integrated out the magnetic degrees of freedom compared to Eq. 2.40,
and F0({R}N ) is defined as,

F0({R}N ) = − 1

β

∑
{e}m

exp(−βFl({e}m, {R}N )) (2.42)

And the force on the {R}N is,

f =
∑
m

pmfm({e}m, {R}N ), pm =
exp[−F0({e}m, {R}N )]∑∞
i exp[−F0({e}i, {R}N )]

, (2.43)

which can be calculated by the self-consistent KKR-CPA method (Pindor et al.,
1983). This equation is equivalent to the disordered local momentum picture intro-
duced by Gyorffy et al. (1985). However, the KKR-CPA method has difficulties to
be integrated into the plane wave density functional theory code. Instead, Alling
et al. (2010) develop the magnetic sampling method to obtain the force by aver-
aging over a few magnetic configurations with randomly distributed spin-up and
spin-down local magnetic moments,

f =

∑Nc
i=1 fi({e}i, {R}N )

Nc
. (2.44)

Although Eq. 2.44 differ slightly from Eq. 2.43, Alling et al. (2010) have shown
for a large amount of magnetic configurations these two formula are equivalent. In
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present work, we will employ the magnetic sampling method to study the effect of
the paramagnetic state on the physical properties of liquid iron at high temperatures
and also discuss the magnetic state on its critical point in Chapter 5.

2.4.3 Approximate paramagnetism by either non-magnetism or
ferromagnetism?

One might wonder whether it is appropriate to approximate paramagnetism by
non-magnetism or ferromagnetism as the application of Eq. 2.41 to study the para-
magnetic phase is expensive. We can solve this problem from the perspective of
the Helmholtz free energy of the electron-ion system (not just the electronic free
energy!). If the magnetic fluctuation in the paramagnetic phase is substantial, an
extra magnetic entropy would be induced. Then neither the non-magnetic state nor
the ferromagnetic phase shares the same Helmholtz free energy as the paramagnetic
phase.

Despite this, it is conventional and quite popular to model the paramagnetic state
by the ferromagnetic state for iron-related materials. Then an empirical correction
for the magnetic entropy is added to the free energy of the ferromagnetic state. The
widely used term for the magnetic entropy is kBln(m + 1), where m is the average
magnitude of the local magnetic moment. It is derived from the quantum mechanical
entropy per magnetic atom (kBln(2S + 1)), where for a given total spin angular
momentum S its projection on the z-axis can take 2S + 1 values. As discussed by
Khmelevskyi (2018), the generalization from the quantum spin space to the classic
spin space is problematic. For a local magnetic moment with the magnitude of m,
it can point to more than m + 1 directions. Tsuchiya et al. (2006) used the term
kBln(n(2S+ 1)) to calculate the paramagnetic entropy of magnesiowustite, where n
is the electronic configuration degeneracy whose value is 3 for the high-spin phase
and 1 for low-spin phase. It is unclear why the electronic configuration degeneracy
enters the magnetic entropy term. To show this, in the high-spin magnesiowustite,
there are six electrons for Fe2+; two of them occupy the two eg orbitals and three of
them the three t2g orbitals. The remaining electron would occupy one of the three
t2g orbitals. We denote the occupancy as p1, p2, p3, where the sum of p1 + p2 + p3 is
one. In each case, the quantum magnetic entropy is still kBln(2S + 1). Therefore,
the total quantum magnetic entropy is

Stotal = p1 × kBln(2S + 1) + p2 × kBln(2S + 1) + p3 × kBln(2S + 1)

= (p1 + p2 + p3)× kBln(2S + 1)

= kBln(2S + 1).

(2.45)

Although one electron can occupy one of the three t2g orbitals in the high-spin state
of magnesiowustite, the total quantum magnetic entropy is kBln(2S + 1). Consid-
ering the great uncertainty in the magnetic entropy, we should avoid estimating the
free energy of the paramagnetic phase by giving an empirical correction to the free
energy of the ferromagnetic phase.
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3.1 Introduction

Once differentiated, the core of planets and planetesimals is dominated by liquid
or solid iron, alloyed with nickel and various lighter elements (Hirose et al., 2013).
Because of its obvious geophysical significance, considerable effort was put to deter-
mine both theoretically and experimentally the phase diagram of iron (Alfe et al.,
1999; Campbell, 2016; Caracas, 2016; Tateno et al., 2010) up to Earth’s inner core
conditions (around 360 GPa and 6000 K) and beyond. Recently, a complete set of
equations of state (EOS) was proposed, covering 7 - 30 g/cm3 densities and 10,000
– 1,000,000 K temperatures (Sjostrom and Crockett, 2018).

Much less is known about the thermodynamic and thermophysical properties of iron
below 1 GPa and above its melting point (around 1850 K). Hixson et al. (1990) have
measured the liquid iron density at 0.2 GPa up to 4000 K. Grosse and Kirshenbaum
(1963) measured the liquid-vapor equilibrium density up to the boiling point at 1
bar and 3160 K. In order to obtain the critical point, a large extrapolation must
be made. The first method is to employ empirical equations of state with several
adjustable parameters, which can be determined from available experimental data
(Fortov and Lomonosov, 2010; Medvedev, 2014); the second one is to use the law
of rectilinear diameter (Grosse and Kirshenbaum, 1963). However, it is unclear
whether these extrapolations work at high temperature where no experimental data
are available.

Indeed, the regime of low densities and high temperatures, still not yet well char-
acterized, is typical for the after-shock state of proto-planetary cores occurring in
the aftermath of catastrophic events such as giant impacts. The Earth’s Moon
formed after such a giant impact between the proto-Earth and Theia, an astro-
nomical body whose most commonly accepted size is that of Mars (Asphaug, 2014;
Canup, 2004b). Hydrodynamic impact simulations show that it results in the for-
mation of a disk (Canup, 2012; Canup and Righter, 2000; Ćuk and Stewart, 2012)
or a synestia (Lock et al., 2018). The disk might be iron-depleted, producing a small
Moon’s core. However, results of these simulations heavily rely on available EOS.
An experimental result on iron found the shock pressure required for vaporization
when compressed from ambient conditions and then decompressed to 1 bar to be
around 507 (+65, -85) GPa (Kraus et al., 2015), lower than previous estimates of
887 GPa (Pierazzo et al., 1997). This implies that the cores of a large number of the
planetesimals from the late stage of accretion largely vaporized during the impacts
(Kraus et al., 2015).

In order to assess whether the core of the planets undergoes significant vaporization
during a giant impact, we employ ab initio molecular-dynamics simulations to ex-
plore iron over a wide density region encompassing the critical point (CP) and the
Hugoniot lines of the shocked cores. In addition, we characterize the structural and
transport properties of iron including diffusion coefficients, viscosity and thermal
conductivity in the low-density region, which may provide a better constraint on
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the behavior of iron in the proto-lunar disk.

3.2 Simulation details

3.2.1 Ab initio molecular dynamics

Ab initio molecular dynamics simulations were performed by VASP code (Kresse
and Furthmüller, 1996; Kresse and Furthmüller, 1996). We used the NV T en-
semble, where N = 108 atoms, V is the volume of simulated system, and the
temperature T is maintained by the Nosé thermostat (Nosé, 1984). A Verlet algo-
rithm is used to integrate the Newton’s equation of motion with a timestep of 1 fs.
The total simulation time at each temperature and density condition is at least 10
ps. The interatomic forces were calculated by employing the projector augmented
wave (PAW) method (Blöchl, 1994; Kresse and Joubert, 1999) within the frame-
work of finite-temperature density functional theory (Hohenberg and Kohn, 1964;
Kohn and Sham, 1965; Mermin, 1965). The PBE formalism (Perdew et al., 1996)
for the exchange correlation term and the valence electron configurations (3d74s1)
for the pseudopotential were used. The partial occupancy for the electronic calcu-
lation were calculated using a Fermi smearing scheme with a width at simulated
temperature. The energy cut-off for the plane-wave basis set was set to 550 eV. The
break condition for the electronic self-consistent loop was 10−4 eV. The number of
electronic bands was adapted to the temperature conditions such as to cover the
entire spectrum of the fully and partially occupied states and to include enough
non-occupied bands. The convergence of the pressure tensor and the energy are on
the order of a few percent when compared to a grid of 4×4×4 k-points generated by
Monkhorst-Pack scheme (Monkhorst and Pack, 1976) and a kinetic energy cut-off
of 850 eV.

It should be noted that both experiments (Waseda and Suzuki, 1970) and theo-
retical simulations (Lichtenstein et al., 2001) suggest that liquid iron might be in
a paramagnetic state. As discussed by Marqués et al. (2015), spin-polarized MD
simulations yield an inherent long-range ferromagnetic order. In order to avoid such
residual magnetic state, we decided to perform non-spin-polarized simulations to
approximate the paramagnetic state of liquid iron at low pressure and high temper-
ature. This is the mean field approximation of the paramagnetic state, even if it
neglects the spin fluctuations whose effects will be discussed in Chapter 5.

3.2.2 Construction of the spinodal line

During the simulations at low temperatures, with decreasing density, the pressure
reaches a local minimum. This marks the liquid spinodal point: the minimal density
at which the liquid is stable. At densities lower than the spinodal, the liquid is un-
stable and cavitation occurs (Speedy, 1982). Under further expansion, the pressure
starts to increase and the local maximum marks the gas spinodal: the maximum
density at which the gas is metastable. Between the gas and liquid spinodal den-
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sities, neither gas nor liquid can exist as a single phase, but rather they co-exist.
This is similar to the van der Waals model. In order to fit the pressure-density
curves we employ a simple third-order polynomial function. This method has been
successfully used by other theoretical studies on super-cooled silicon (Vasisht et al.,
2011). Spinodal lines with negative pressure have been reported in experiments
(Green et al., 1990), classic MD simulations on the metastable extension of liquid
water (Poole et al., 1992), and first-principles MD on the metastable extension of
liquid silicon (Zhao et al., 2016).

3.2.3 Structural analysis

The short-range order in the fluid is revealed by the pair distribution function
(gFe−Fe(r)),

gFe−Fe(r) =
V

N(N − 1)
〈
∑
i

∑
j 6=i

δ(r − rij)〉 (3.1)

where r is the correlation length, rij is the distance between atoms i and j, N is the
total number of iron atoms in the simulations, V is the total volume of the system,
and 〈〉 is the ensemble average.

3.2.4 The mean-square displacements

The mean-square displacements (MSD) are defined as,

MSD(τ) = 〈[ri(t0 + τ)− ri(t0)]2〉 (3.2)

where the values are averaged over the total number of atoms and time origins (t0)
and τ represents a sliding time window spanning a portion of the trajectory. The
asymptotic slope of the mean square displacement with respect to time yields the
diffusion coefficient D in the long-time limit,

D =
1

6
lim
τ→∞

MSD(τ)

τ
. (3.3)

3.2.5 Velocity autocorrelation function

We calculate the normalized velocity autocorrelation function as,

Φ(τ) =
〈v(0)v(τ)〉
〈v(0)v(0)〉

, (3.4)

where v(t) is the velocity of a particle at time t. The self-diffusion coefficient D is
given by the time integral of the velocity autocorrelation function by,

D = lim
t→∞

1

3

∫ t

0
dτ〈v(0)v(τ)〉 (3.5)
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3.2.6 Entropy calculations

The Fourier-transform of the velocity auto-correlation function yields the total move-
ment of the atoms in the fluid defined as,

F (ν) =

∫ ∞
0

Φ(τ) cos 2πντdτ (3.6)

The entropy can then be obtained by integrating over the vibrational part of this
spectrum, in the same way as we do for solids. However, Eq. 3.6 captures not only
the agitation of the atoms but also their diffusion. The latter is zero in solids,
which allows us to directly obtain the entropy; but for fluids by definition it is finite
and positive, and thus must be removed from the spectrum of Eq. 3.6. For this
we employ the two-phase thermodynamic method (Lin et al., 2003) to decompose
the total spectrum of Eq. 3.6 into a diffusive, gas-like part and a purely vibrational
solid-like part,

F (ν) = (1− fg)Fs(ν) + fgFs(ν) (3.7)

where fg is the gas-like fraction. The entropy stemming from the gas-like and the
solid-like parts is obtained using the hard sphere model and the harmonic oscillator
model respectively. This method gives a reasonable estimation of entropy for pure
liquid metals (Desjarlais, 2013). We verify again our implementation and use the
same parameters as Desjarlais (2013) and conduct simulations at 0 GPa and 1800
K for liquid iron. We obtain a value for the entropy of 11.05 kB/atom, compared
to 12.00 kB/atom in Desjarlais (2013) . The discrepancy comes from the magnetic
entropy, which is estimated to be about 1 kB/atom (Desjarlais, 2013) and which we
did not include in our calculation.

3.2.7 Viscosity

The viscosity is given by the famous Green-Kubo formula,

η =
V

kBT

∫ ∞
0
〈Pαβ(t)Pαβ(0)〉dt (3.8)

where V is the total volume, kB is the Boltzmann constant, T is the temperature,
Pαβ stands for the off-diagonal element of the stress tensor and t denotes the corre-
lation time.

3.2.8 Electrical and thermal conductivity

The electrical and thermal conductivity were calculated based on 20 configurations,
equally spaced by 500 fs using the Kubo-Greenwood formalism (Greenwood, 1958;
Kubo, 1957). This was successfully applied to the Earth’s outer core (Pozzo et al.,
2012). The Brillouin zone was sampled with the Baldereschi point (Baldereschi,
1973). A test with a k-points mesh of 4× 4× 4yields results within 1 % difference
to using only the Baldereschi point.
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We calculate the dynamic Onsager coefficients using the Kubo-Greenwood formula
(Pozzo et al., 2012),

Llm(ω) = (−1)l+m
2πe2~2

3m2
eωV

∑
k

n∑
i,j=1

3∑
α=1

w(k)[f(εi,k)− f(εj,k)]

× |〈Ψj,k|∆α|Ψi,k〉|2[εj,k − µ]l−1[εi,k − µ]m−1δ(εj,k − εi,k − ~ω) (3.9)

where e and me are the electron charge and mass respectively, ~ is the reduced
Plank’s constant, V is the cell volume and n is the number of bands used in the
simulations, α sum runs over the three spatial directions, Ψi,k and εi,k are the
Kohn-Sham wavefunctions and associated eigenvalues at the corresponding k-point,
f(εi,k) is the Fermi factor. The δ function is represented by a Gaussian with width
equal to the average spacing between the eigenvalues. w(k) is the weight of the
particular k-point in the Brillouin zone.

The electrical (σ(ω)) and thermal (k(ω)) conductivity are obtained as,

σ(ω) = L11(ω), (3.10)

and
k(ω) =

1

e2T
(L22(ω)− L12(ω)L21(ω)

L11ω
). (3.11)

The σ0 and k0 are the respective values of σ(ω) and k(ω) in the limit ω → 0. In
order to verify our implementation, we conducted simulations at 328 GPa and 6350
K for liquid iron using exactly the same parameters as Pozzo et al. (2013). At these
conditions, the density of liquid iron is 12.95 g/cm3. We obtain an agreement better
than 1 % for both types of conductivity, when compared to the values reported in
Pozzo et al. (2013).

3.3 Results and discussion

3.3.1 The critical point

We perform first-principles molecular dynamics simulations in the 3000-15000 K
temperature range and densities below 8 g/cm3. This regime is characteristic of the
aftermath conditions of giant impacts (Canup, 2004a). We compute the pressure
dependence of the density along several isotherms (Fig. 3.1). We use a third-order
polynomial expansion of the pressure as a function of density to identify the liquid
spinodal and the position of the critical point, as detailed in the methodology. For
iron, we identify a liquid spinodal point for all isotherms up to 9000 K. Along
this latter isotherm the minimum pressure corresponding to the liquid spinodal is
obtained at 2.40 g/cm3. At 9000 K, we extend the simulations towards even lower
densities, which allows us to observe also a maximum along the pressure-density
curve. This corresponds to the gas spinodal, lying at 1.85 g/cm3. Starting with the
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Figure 3.1: Variation of pressure as a function of density for iron along several
isotherms. Along a given isotherm below the critical temperature, with volume
expansion, the pressure may decrease to reach negative values. These negative
pressures indicate the presence of hydrostatic tension in the system. According to
the classic nucleation theory (Karthika et al., 2016), the first-order transitions need
to overcome energy barriers due to the surface energy, which prevents the formation
of the thermodynamic stable phase. Therefore, this stage is thermodynamically
metastable but mechanically stable. The minimum of the pressure marks the liquid
spinodal (solid symbols). Joining the spinodal points yield the spinodal line (the
black solid line). At densities lower than that of the liquid spinodal the pressure
starts to increase until it reaches a maximum, which marks the gas spinodal, as
shown in the left inset figure. At densities between the two spinodal lines a two-
phase mixture coexists. Because of technical computing limitations we compute the
gas spinodal only at temperatures close to the critical one, that is 9000 K. Above the
critical temperature (9350 K) the pressure decreases continuously with decreasing
density, but does not show any minima or maxima. We obtain the critical point
to be in the range 1.85-2.40 g/cm3 and 9000-9350 K (black empty rectangle). The
right inset shows comparisons of the critical point, between our estimate and the
ones inferred from experiments (Fortov and Lomonosov, 2010; Medvedev, 2014).
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9350 K isotherm the pressure varies monotonically without any local minimum or
maximum; this is characteristic of the supercritical state. Therefore, the position
of the CP is bracketed by the two spinodal lines, which intersect in the CP itself,
and by the last isotherm with minima and maxima and the first isotherm with
monotonical pressure variation. For iron, using the results of our simulations we
predict that the CP lies in the 1.85-2.40 g/cm3, and 9000-9350 K range (Fig. 3.1).
These values correspond to pressure of 4-7 kbars.

3.3.2 Static structure
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Figure 3.2: The static structure of hot fluid iron. (a) Pair distribution function
for iron at selected temperatures and densities. The color of solid lines represents
different temperatures, as shown in the legend of (b). The unit of those numbers is
g/cm3. (b) The coordination number calculated by counting the number of atoms
within the first minimum of g(r) from a central atom. There is a weak dependence
of the coordination number with the temperature. However, its density dependence
is very strong below 7.75 g/cm3, then saturate at a value of 13 up to 6000 K and
13.3 g/cm3 (Alfè et al., 2000; Vočadlo et al., 1997), which is the condition at Earth’s
inner-outer core boundary.

Several typical pair distribution functions (PDF) calculated from the MD simula-
tions are shown in Fig. 3.2(a). As the periodic boundary condition is used, the
maximum correlation length is limited to half of the cell length. All PDFs start at
zero, and continue as such up to a certain distance that defines the exclusion radius.
This is caused by the strong repulsive force between any two atoms that prevents
atoms from staying too close to each other. In the iron simulations, the exclusion
radius depends weakly on the density and temperature; it decreases from 1.9 Å at
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3000 K and 7.75 g/cm3 to 1.8 Å at 12000 K and 0.37 g/cm3 indicating a decline of
repulsive force over this temperature and density regime.

The first peak in PDF, usually considered as a good approximation for the average
bond distance in the fluid, occurs at 2.5 Å, with a height of 2.0 at 3000 K and 7.75
g/cm3. These values remain relatively constant over a large range of temperature
and density conditions, but the peak broadens with an increasing of temperature
due to thermal activation. Previous ab initio molecular dynamics simulations at
1850 K and around 6.95 g/cm3 also reported the main peak position of the PDFs
at around 2.5 Å (Marqués et al., 2015).

The first minimum of the PDF marks the end of the first coordination sphere. At
3000 K and 7.75 g/cm3, this lies at 3.3 Å and remains relatively constant over a large
range of temperature and density conditions. We observe a second peak (the second
coordination shell) at 4.5 Å, which again broadens with an increasing of temperature.
Above 7500 K and below 2.70 g/cm3, the positions of the first minimum and of the
second peak become less obvious. And at 12000 K and 0.37 g/cm3, the PDF decays
steadily to a value close to one without an apparent minimum point. Due to the
small cell size used here, we could not observe the long-distance behaviour in PDF
beyond 6 Å.

The integral of the PDF up to the first minimum gives the coordination numbers
(CNs). The Fe-Fe coordination as a function of density and temperature has been
shown in Fig. 3.2(b). We observe a weak dependence of the coordination number
with temperature. For example, at a density of about 6 g/cm3, the coordination
number decreases from about 11 at 3000 K down to about 9.5 at 7500 K, and by
extrapolation down to about 8 at 12000 K. However, density has a more pronounced
effect on the changes in coordination number. Along the 3000 K isotherm the
coordination number increases from about 9.5 at about 6 g/cm3 up to 13.5 at 8
g/cm3. At 3000 K and 7.75 g/cm3 (about 5 GPa in pressure) the coordination is
around 13.6, indicating a very close-packed liquid. Actually the value of 14 seems to
be a saturation value for coordination in liquid iron at high pressures and densities,
i.e. at 6000 K and 13.3 g/cm3, the conditions at inner-outer core boundary inside
the Earth, as was shown in other previous ab initio MD studies (Alfè et al., 2000;
Vočadlo et al., 1997). The change in slope around 7.75 g/cm3 implies that probably
the compression mechanism above this density is likely to be caused by the change
in the second coordination shell. With decreasing density along the same isotherm,
the Fe-Fe coordination decreases to around 10.8 at a density of 5.81 g/cm3. In
the supercritical region, at 12000 K, the Fe-Fe coordination drops from 6.3 at 2.7
g/cm3 density to 1.6 at 0.37 g/cm3. A change in slope of the density-coordination
dependence occurs around 1.46 g/cm3 along 12000 K. At the critical point, the Fe-Fe
coordination number is around 6.
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Figure 3.3: Speciation of isolated clusters of hot fluid iron at low densities and
high temperatures, representing a good approximant to the structure of the gaseous
iron. In (a) and (b), the relative abundance and the average lifetimes of isolated iron
atom are displayed. In (c) and (d), we have shown the abundance and lifetimes of
iron dimer (Fe2) represented by the circles, and iron trimer (Fe3) in squares. Other
clusters are not shown as their abundance are below 0.005. In the supercritical
regime (10000 K and 12000 K), the iron fluid is dominated by long-lived monoatomic
and diatomic clusters; at low temperatures we retrieve more familiar polymerized
melts.

3.3.3 Speciation

The coordination number as obtained from PDF only gives an average information
on the number of atoms that surrounds a central iron atom. The distribution of the
bond lengths and the lifetimes of atomic clusters are still missing. Consequently,
we also use a geometric criterion to analyse the interatomic connectivity at every
configuration generated during our simulations. The geometric cut-off length for two
atoms to be considered connected, i.e. bonded, is chosen to be the radius of the first
coordination sphere that is the first minimum of PDF. Then the size of any given
iron coordination polyhedron is defined as the number of atoms within the range of
the first minimum of PDF. Once the individual atoms forming a given coordination
polyhedron are identified, we monitor the time they obey the geometrical criterion
for bonding to define the polyhedron lifetime.

Fig. 3.3(a) shows the coordination of atoms at different conditions. In general, we
observe, as expected, a depolymerization of the fluid with decreasing temperature.
At 3000 K, from 7.97 g/cm3 to 6.78 g/cm3, the iron is highly polymerized with few
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or no isolated Fe atoms. With further decrease of density, we observe the presence
of isolated Fe atoms with an increasing abundance from 0.02 at 6.78 g/cm3 to 0.15
at 5.81 g/cm3 indicating a gradual depolymerization. Along the 4000 K isotherm,
the abundance of isolated iron atoms increases rapidly from 0.07 at 6.78 g/cm3

to 0.50 at 5.14 g/cm3. Above 7500 K and below 5.46 g/cm3, we observe a nearly
constant concentration of 0.85 of isolated iron atoms, irrespective of the temperature.
The lifetime of isolated Fe atoms is shown in Fig. 3.3(b); in general, the increase
of temperature and the decrease of density result in rising their lifetime. In the
supercritical regime, at 12000 K, the lifetime of isolated atoms increases linearly
with decreasing the density. At the lowest density of 0.37 g/cm3 calculated in the
present study, the lifetime is around 450 femtoseconds. We also observed some
small Fe2 dimers starting to appear from 5000 K and 6.60 g/cm3, as illustrated
in Fig. 3.3(c). There is a weak temperature dependence of the Fe2 abundance,
with a major role played by the density. The abundance of Fe2 clusters increases
considerably in the 5.46 to 4.32 g/cm3 density range. Below 5.46 g/cm3 density,
the abundance of Fe2 fluctuates around 0.11 until 1.08 g/cm3, then increases again
to 0.14 at further decreasing density to 0.37 g/cm3. We only find a small amount
of iron trimers (Fe3) at 12000 K. The lifetime of Fe2 and Fe3 clusters (Fig. 3.3(d))
is below 100 femtoseconds, shorter than that of Fe. Our results suggest the critical
iron fluid is mainly atomic with the Fe dimers being the next most abundant species.

3.3.4 Velocity autocorrelation function
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Figure 3.4: (a) The overall trend of velocity autocorrelation function from 3000 K
and 7.75 g/cm3 to 10000 K and 3.86 g/cm3. (b) Velocity autocorrelation function
along the supercritical isotherm 12000 K as a function of density.
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Figure 3.5: Vibrational spectrum of fluid iron calculated by Fourier transform
of the velocity autocorrelation function shown in Fig. 3.4(a). At 3000 K and 7.75
g/cm3, we observe a broad peak from 0-400 cm−1, which is caused by breathing-
types vibrations of the first coordination shell.

As a time-dependent correlation function, the velocity autocorrelation function
(VAF) not only reveals the underlying dynamical processes like diffusional and vi-
brational motions operating in an atomic or molecular system at a microscopic scale,
but also shows a direct connection with the macroscopic properties like the diffusion
coefficient. These facts offer a good reason to study VAF, whose straightforward
calculation details are provided in Section 3.2.5. We plot the overall trend from
3000 K and 7.75 g/cm3 to 10000 K and 3.86 g/cm3 in Fig. 3.4(a). At 7.65 g/cm3

and 3000 K, VAF decays to reach a first minimum at a value of 80 fs. The for-
mation of this first minimum is generally attributed to the cage effect formed by
the nearest neighbors, which exert a restoring opposite force on the central atom
when this encounters the cage during its vibration. There are two more minima
at larger correlation times. Globally, the three observed minima represent different
vibrational modes. With further decreasing density to 5.81 g/cm3 at 3000 K, as the
atoms become increasingly spaced, only two minima are found, and their positions
are shifted to longer correlation times (i.e. low frequency) due to a decrease of the
interaction strength (also see Fig. 3.5). With increasing temperature at fixed density
of 5.81 g/cm3, the minimum becomes less obvious and disappears at 7500 K where a
single exponential decay is present, indicating the cage structure can no longer hold
the Fe atoms due to the large thermal velocity at high temperature. The VAF decay
is weakly dependent on temperature, but appears at relatively similar densities.

To illustrate the dependence of the VAF with the density, we show its variation
along the 12000 K isotherm in Fig. 3.4(b). The decay of VAF becomes faster at
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high densities since collisions occur more frequently due to the relatively short dis-
tances between atoms, which break correlations. The decay time of VAF at 12000
K and 0.37 g/cm3 is around 2500 fs, suggesting that at these conditions, only 12
independent configurations are sampled during a 30 ps simulation. The situation
would become even worse when the temperature and density are below 12000 K and
0.37 g/cm3 since the correlation time increases with decreasing temperature and
density. Reed and Flurchick (1994) found the statistical inefficiency, which repre-
sents the average time needed to sample two statistically uncorrelated configurations
during an MD simulation, is almost linearly scaling with the inverse of density. For
the low-density phase, an intrinsic problem is that there are two times scales: the
inter-collision time and collision duration. As the collision duration is very short,
the atoms move in space for a very long time before the next collision occurs. A
common method to speed up the correlation time is to use a larger time step. But a
very large time step would cause missing collisions and thus decreasing accuracy of
sampling of the configurational space. Reed and Flurchick (1994) proposed a hybrid
algorithm that combines the time-driven simulation with event-driven simulation,
which is frequently used in the hard-sphere models. This may provide a promising
solution to the time scale problems. However, many questions need to be answered
before its practical implementations combined with density functional theory will
become available, especially on how to define a collision radius.

3.3.5 Diffusion
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Figure 3.6: The mean-squared displacement (MSD) of fluid iron at selected densities
and temperatures. The inset shows a log-log zoom-in plot for short times. The inset
outlines a slope change that separates the two characteristic regions of the diffusion:
ballistic, for times less than about 100 fs, and diffusive, at higher times.
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The mean square displacements (MSD) measure the average distance that atoms
move during a reference time window. We show in Fig. 3.6 four examples that cover
the whole studied temperature range from 3000 to 12000 K and density range from
7.75 to 0.37 g/cm3. The total diffusion process can be divided into two stages,
as seen by the change of slope in the log-log plot in the inset of Fig. 3.6. The
first part, on the order of about 100 fs, is the ballistic part dominated by the free
particle motion before collision. The second part is dominated by the diffusion of
the particles; in this region the square displacement linearly scales as the function
of time, where the slope of the MSD yields the diffusion coefficient.
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Figure 3.7: The temperature and density dependence of the self-diffusion coeffi-
cients of fluid iron. The solid circles and black crosses represent diffusivities de-
termined from velocity autocorrelation function and mean-squared displacement,
respectively. The green squares and black triangles denote several self-diffusion co-
efficients of liquid iron at high densities and temperatures previously reported in the
literature (Alfè et al., 2000; Posner et al., 2017).

We also calculate the diffusion coefficient by integrating the velocity autocorrelation
function, as shown in Fig. 3.7. The diffusivity increases by two orders of magnitude
from about 1.0× 10−8 m2s−1 at 7.75 g/cm3 and 3000 K to about 1.3× 10−6 m2s−1

at 0.37 g/cm3 and 12000 K. At high densities and low temperatures, the diffusion
coefficients correspond to distances travelled by the iron atoms on the order of about
2.5 cm in 24 hours, which would ensure highly efficient chemical equilibration close to
the surface of the iron droplets. At low densities and high temperatures, the diffusion
coefficients correspond to displacements on the order of 0.5 m in 24 hours, which
would contribute significantly to the chemical equilibration inside large-scale fluid
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volumes. As expected, the increasing temperature and decreasing density would
increase the diffusivity. There is an excellent agreement between the values of the
diffusion coefficients obtained using the two methods (the slope of the MSD and
the integration of the VAF). Our values also compare well with previous theoretical
studies in liquid iron (Alfè et al., 2000; Posner et al., 2017), at higher pressures and
lower temperatures.

3.3.6 Viscosity
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Figure 3.8: Viscosity of fluid iron varying as a function of temperature and density.
(a) Stress autocorrelation function for fluid iron at 3000 K and 7.75 g/cm3 calcu-
lated by averaging over three off-diagonal stress tensor and normalizing by dividing
the value at time zero. The inset shows the integral of the average stress autocor-
relation function as a function of time. The shaded areas denote the fluctuation
of the viscosity. (b) The overall overview of viscosity of fluid iron as a function
of temperature and density. The black square represents an experimental value at
2500 K and 6.40 g/cm3 (Assael et al., 2006), which is close to our 3000 K isotherm.
The black solid circles are the viscosity at 3000 K and 7.75 g/cm3 determined from
the Stoke-Einstein relation, which is in a fair agreement with the prediction by the
Green-Kubo method.

The viscosity of iron was computed previously only in its high-density liquid state
(Alfè et al., 2000; de Wijs et al., 1998) and applied to the dynamics of the liquid
outer core of the Earth. We obtain the viscosity from the self-correlation of the
shear components stress tensor. As a general rule this method requires much longer
simulations times than are needed to obtain the other properties. We can improve
the quality of the results by averaging over all the three shear components of the
stress tensor. Fig. 3.8(a) displays the stress autocorrelation function (SAF) for fluid
iron at 3000 K and 7.75 g/cm3. After 0.15 ps, SAF decays to zero with a still large
noise, about 5% compared with the value at t = 0. The inset in Fig. 3.8(a) shows the
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viscosity integral as a function of time. After 0.4 ps, the shear viscosity fluctuates
within the range 3.5× 10−3-5× 10−3 Pa s.

We present the variation of viscosity as a function of density along several isotherms
in Fig. 3.8(b). The values of viscosity at conditions typical to the outer parts of the
protolunar disk, i.e. low density and high temperature, are in the range 0.5× 10−3

to 4× 10−3 Pa s. They show a decreasing trend with decreasing density, but due to
the large scatter in values, we cannot identify any reliable trend with temperature.
The values that we obtain for conditions specific to the protolunar disk are one order
of magnitude smaller than in the Earth’s outer core, estimated to be on the order
of 2 × 10−3-15 × 10−3 (Alfè et al., 2000; de Wijs et al., 1998). Assael et al. (2006)
compiled viscosity data for liquid iron from 1850 K and 7.0 g/cm3 to 2500 K and
6.40 g/cm3. We find the viscosity at 3000 K and 6.40 g/cm3 of 2.1 × 10−3 Pa s to
be comparable to the corresponding value at 2500 K and 6.40 g/cm3 of 2.276×10−3

Pa s (Assael et al., 2006).

At 3000 K and 7.75 g/cm3 we perform a further check and compute the viscosity
using the Stoke-Einstein relations, which connects diffusion coefficient to estimate
the viscosity:

η =
kBT

2πaD
, (3.12)

where η is the viscosity, kB is the Boltzmann constant, T is temperature, D is the
diffusion coefficient and a is the effective atomic diameter chosen to be the radius
of the first peak in the radial distribution function from Fig. 3.2. This method has
been used in previous work to determine the viscosity of liquid iron at Earth’s core
conditions (de Wijs et al., 1998). By applying this method, the estimate viscosity
is 2.8× 10−3 Pa s, where a fair agreement with Green-Kubo method is achieved.

3.3.7 Electrical and thermal conductivity

We used the Kubo-Greenwood formalism (Greenwood, 1958; Kubo, 1957) to de-
termine the electrical and thermal conductivities. In this method, the electron-ion
collisions are accurately described, while the electron-electron scattering and is ne-
glected and its effect remains unclear (Dufty et al., 2018). All calculated electrical,
thermal conductivity and the Lorentz constant of pure fluid iron as a function of
density and temperature are shown in Fig. 3.9. Along 3000 K isotherm, the elec-
trical conductivity decreases from 1.2 × 106 Ω−1 m−1 at 7.76 g/cm3 to 0.8 × 106

Ω−1 m−1 at 5.81 g/cm3, while the thermal conductivity declines from 80 Wm−1K−1

to 40 Wm−1K−1. Along other isotherms, the electrical and thermal conductivity
decrease monotonically upon a decreasing density as well.

At a density that is beyond 6.19 g/cm3, the electrical conductivity decreases with
temperature, as expected for a typical metal. The increasing temperature would
generally enhance the electron-ion collisions causing a decrease of the relaxation
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Figure 3.9: Electrical conductivity (a), thermal conductivity (b) and Lorentz num-
ber (c) of the fluid iron as a function of density and temperature. The Lorentz
number is defined as L = k/σT . The results from our work are represented as solid
circles colored based on temperature. The theoretic results at around 3500 K and
6.22 g/cm3 are from Korell et al. (2019) shown as black squares. The black dashed
line in (c) represented the ideal Lorentz number of 2.44.

time and electrical conductivity. Below 6.19 g/cm3, the trend of electrical conduc-
tivity as a function of temperature is reversed, where the electrical conductivity
increases with temperature. It indicates the fluid iron at these conditions is more
like a semiconductor, where the temperature dependence may be as a result of the
increasing concentration of carriers due to thermal excitation. The observed change
of temperature dependence around 6.19 g/cm3 suggests a possible metal-non-metal
transition and has also been observed in the other expanded metals like aluminium
(Recoules et al., 2002).

Our calculated Lorentz number (Fig. 3.9(c)) almost keeps constant around 2.44
× 10−8 W Ω K−2 over the whole temperature and density range in this study.
Compared with Korell et al. (2019), it is no surprise that a very good agreement is
reached as the same method and DFT package are used.
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3.3.8 Hugoniot lines

The behavior of materials under shock waves can be described using the Rankine-
Hugoniot equations. These equations relate the density, pressure, and internal en-
ergy after shock to the initial state by,

E − E0 = (P + P0)(V0 − V )/2 (3.13)

where E, P , V are the internal energy, pressure and volume, respectively. And the
0 subscript denotes the initial state. The MD simulations that we performed at
various isotherms contain all the information needed to build the Hugoniot EOS
(see Fig. 3.10).
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Figure 3.10: (a) Pressure as a function of density along several isotherms for liquid
iron. (b) We have calculated the principal Hugoniot line with a initial condition of
300 K and 7.874 g/cm3, which compares well with theoretical simulation results by
Sjostrom and Crockett (2018) and shock experiments.

We consider two representative initial states. The first case has iron at 1 GPa and
1500 K, conditions similar to what we could expect to have in small planetesimals.
For these conditions that we call warm Hugoniot the EOS intercepts the iron melting
curve at 130 GPa. Previous shock experiments (Chen and Ahrens, 1997) on face-
centered cubic iron with an initial condition of 1570 K and 1 bar show that the
Hugoniot intercepts the iron melting curve at 80 GPa. In the second case we consider
the initial state at 40 GPa and 4000 K, which may be representative for the state
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of the core in Mars-sized impactors (Canup, 2004a). At these conditions iron is
already molten. Fig. 3.11(a) shows the computed Hugoniot lines for these two
cases. During shocks the temperature can easily reach thousands of degrees and the
pressures hundreds of GPa. These would be typical conditions for the core state
during giant impacts.

The actual amount of vaporization after an impact depends on entropy achieved.
The entropy at the boiling point was estimated at 15.84 kB/atom at 3100 K and
1 bar (Kraus et al., 2015). If the peak shock conditions during impact exceed
this entropy value, then the onset of vaporization may take place and part of the
shocked material can vaporize upon release and cooling (Ahrens and O’Keefe, 1972).
We compute the entropy of the liquid iron along the two Hugoniot lines and at the
spinodal points (Fig. 3.11) as a function of temperature from the vibrational spectra
(see Section 3.2.6). For peak shock conditions at 15000 K, we estimate that entropy
can reach 19.1 kB/atom and 18.6 kB/atom along the warm and the hot Hugoniot
curves respectively. At these conditions the entropy is high enough to result in
partial vaporization of the iron core. Our results show that above 7500 K, the
entropy along the warm Hugoniot is less than along the hot Hugoniot. The entropy
difference between these two Hugoniot lines is relatively small (0.5 kB/atom) in the
7500 K to 15000 K range. If we relate entropy to the peak shock pressure, based
on the computed entropy along the warm Hugoniot line, we find that the shock
pressure required to reach the onset of vaporization upon release and cooling is 312
GPa. This is less than previous estimates of 390 GPa (Kraus et al., 2015). Along
the hot Hugoniot, the onset vaporization pressure is 365 GPa. This is only slightly
higher than that of warm Hugoniot.

3.3.9 Vaporization of small planetesimals

The onset of core vaporization can easily be reached in case of impacts of small
planetesimals, like the ones that might have occurred either during the first stages
of formation of the solar system, or during the late veneer. As a model example
we consider a differentiated planetesimal with a mantle made of enstatite (MgSiO3)
and a core made of iron; we set the core-mantle boundary at 1 GPa and 1500 K
(Raymond et al., 2009). We approximate the shock wave as a planar wave (Melosh,
2011) traveling through the two layers. However, this yields a simplified estimate
of the peak pressure and does not thoroughly describe the pressure distributions in
these bodies. When the impact occurs, shock waves travel through the silicate layers
of the two bodies. At the core-mantle boundary, because of the density contrast
between silicates and iron, the shock wave is partly reflected, going backward into
the mantle, and partly transmitted, going forward into the core. Assuming a steady
shock in a model MgSiO3-based mantle(Militzer, 2013) and in the iron core, the
impedance match method allows us to determine the properties of the reflected
wave in the mantle and the transmitted wave in the core (Forbes, 2013). Fig. 3.12
illustrates the propagation of the shock wave according to this model through the
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Figure 3.11: Computed Hugoniot lines for iron starting from two realistic initial
states. (a) Temperature - pressure plots for various impact scenarios. The principal
Hugoniot (Sjostrom and Crockett, 2018) that starts at ambient conditions and the
melting curve of iron (Bouchet et al., 2013) are shown for reference only. For a
smaller impactor like Moon, we approximate the initial state conditions as 1 GPa
and 1500 K; for a large impactor like Mars, the initial state is set at 40 GPa and
4000 K. The Hugoniot lines cross because the gains in temperature and pressure is
not linear with respect to changes in initial conditions. The shaded area represents
estimated temperature gradients ranges in the metallic cores of the different objects
involved in the impact (Antonangeli et al., 2015; Hirose et al., 2013; Stewart et al.,
2007). (b) Computed entropy along the two Hugoniot lines. The star indicates the
experimentally estimated entropy of boiling liquid iron at 3000 K, marked also by
the dashed line.
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Figure 3.12: Graphical representation of the impedance match analysis for the
core of the small impactor. The shock wave generated at the moment of the impact
travels through the impactor’s mantle assumed to be homogeneous. The shock
state at the core-mantle is given by the MgSiO3 principal Hugoniot line (green line)
estimated based on previous ab initio simulations (Militzer, 2013). More recent
experimental Hugoniot data points are represented by crosses (Fratanduono et al.,
2018). At the core-mantle boundary the shock wave splits in two opposite waves.
The one traveling forward enters the core. The final state in the core is given by
the intersection between the re-shocked MgSiO3 Hugoniot (red line) and the iron
Hugoniot (blue line) with an initial state at 1 GPa and 1500 K (the warm Hugoniot
in Fig. 3.11). The inset shows the fraction of iron that would vaporize from the
corresponding impactor’s core as a function of the impact velocity.
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planetesimal.

As the shock proceeds through the mantle of the impactor this can lead to partial
fragmentation. During this process the mantle fragments and can detach from the
core leaving behind bare fragments of shocked core. In the post-shocked state, frag-
ments of planetesimal core without mantle confinement can undergo an isentropic
release into vacuum. In this case, if the entropy reached during the shock is high
enough, the core may partly vaporize; otherwise it will remain liquid and accrete to
the impacted body, or escape gravitationally and eventually crystallize.

For heads-on collisions of small planetesimals, the impact velocity required to onset
vaporization is around 11.5 km/s. With an impact velocity around 13.5 km/s,
peak pressure and temperature reach 450 GPa and 15000 K (Fig. 3.12). At these
conditions about 22 % of iron would vaporize. In contrast, oblique impacts greatly
reduce the peak pressure, due to a sin(θ) factor where θ is the obliquity (Pierazzo
and Melosh, 2000a). For the maximum frequency impact angles of 45◦ (Pierazzo and
Melosh, 2000b), the velocity threshold to onset vaporization increases to 15.3 km/s.
With mean impact velocities at 14.5 km/s and median impact angles at 40◦, around
70% of the impacts of N-body simulations (Raymond et al., 2009) yield velocities
larger than our threshold. This suggests that core vaporization is a common process
during planetary formation. During the collision with the Earth’s mantle, the core
of the incoming planetesimal can be efficiently mixed into the molten silicate pond
locally produced by the impact itself or into a pre-existing larger magma ocean.
If such impacts happen after the Earth’s core formation, this process would then
increase the amount of highly siderophile elements that is seen today trapped and
dispersed into the Earth’s mantle.

3.3.10 Vaporization during giant impacts

In the case of giant impacts, the geometry effect plays an important role in control-
ling the shock peak conditions. As the validity of the impedance matching method
is limited to the impacts where the lateral dimension of the impactor is small com-
pared to the distance the shock wave has propagated (Melosh, 2011), it has only a
limited applicability. However, the entropic and pressure criteria for vaporization
still hold. For impacts with Mars-sized bodies, because of the hotter initial state of
their cores, our simulations suggest a vaporization pressure of only 312 GPa. This is
again smaller than previous estimations by Kraus et al. (2015) suggesting that even
more iron will be vaporized than previously thought. However, the amount of iron
that can be vaporized depends also on the local pressure conditions as the process
of the impact itself takes its due course. As the predicted pressure thresholds for
vaporization can be easily reached, a large amount of iron receives enough entropy
to vaporize. The entropy threshold can even be easier exceeded due to the entropy
gain after the first and secondary shocks and the conversion of gravitational poten-
tial energy to internal energy (Carter et al., 2020; Nakajima and Stevenson, 2015).
Once again during this process the confinement of core fragments by the surrounding
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Figure 3.13: Isentropic release of the iron core starting from various peak conditions
attained during large impacts. The shocked material gains entropy that is conserved
during the release. If this entropy is larger than that of the boiling point then
partial vaporization may occur. We compute the entropy along the spinodal and
the Hugoniot lines at different temperatures, which allows us to map the entropy
increase during various impact scenarios. We find that the entropy of the critical
point, at 21.8 kB/atom, is reached for impacts with peak pressures of 605 GPa in
the case of small planetesimals or for peak pressures of 825 GPa in the case of Mars-
sized objects. Peak pressures of 312 GPa are enough to provide entropy higher
than the entropy at boiling of iron at 1 atm, i.e. 15.84 kB/atom (Kraus et al.,
2015). These conditions can be easily exceeded during giant impacts between the
proto-Earth and Theia, but could also be reached in almost half of the impacts with
planetesimals during the late veneer. However, the liquid-vapor dome is reached
only if the density, and hence the pressure, is allowed to decrease sufficiently. This
can happen if the mantle is stripped away when fragments of the core are allowed
to decompress without the mantle confinement.
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mantle may prohibit the isentropic expansion and thus the vaporization (Fig. 3.13).
But if during the impact parts of the mantle are detached from fragments of the core
(Nakajima and Stevenson, 2015), then during the isentropic release these fragments
will then undergo partial vaporization. Part of the vapor will remain in the outer
part of the disk and eventually condense to form the Moon’s core while the rest will
fall into the central body and mix into the magma ocean.

Kendall and Melosh (2016) suggest fully mixing between impactor’s core and proto-
Earth Magma Ocean can be achieved for iron blobs that are less than 100 km
across. Consequently, core fragmentation, promoted by partial vaporization during
release, will enhance equilibrium and/or mixing between the impactor’s core and the
molten silicates, on a larger degree than the previous estimations of hydrodynamic
simulations, which generally predicted the impactor’s core directly merge into the
Earth’s core (Canup, 2012; Ćuk and Stewart, 2012). Then the mixing process can
easily explain the recent W-isotope data, which require at least 30 % core-mantle
equilibration in the aftermath of the giant impact (Nimmo et al., 2010; Rudge et al.,
2010; Touboul et al., 2015).

3.4 Conclusions

In this chapter, we perform ab initio molecular dynamics to determine the position
of the critical point of iron, and to characterize the fluid iron over a wide density
and temperature range. Based on our calculations, we predict the critical point
of iron to be in the 9000-9350 K temperature range and 1.85-2.40 g/cm3 density
range, corresponding to a pressures range of 4-7 kbars. We find that the low-
density fluid is highly depolymerized, its structure dominated by isolated atoms
and dimers. The coordination number increases strongly with density below 7.75
g/cm3, then saturates at a value of 14 that persists at least up to 6000 K and
13.3 g/cm3, which is the condition at the Earth’s inner-outer core boundary. The
viscosity of iron in the outer parts of the protolunar disk is also extremely low, on
the order of 10−3 Pa s, which is one order of magnitude smaller than the value
in the Earth’s liquid outer core (de Wijs et al., 1998). A low viscosity implies a
limited role in the global energy budget of the disk, a term oftentimes neglected
in magneto-hydrodynamic simulations, and a possible presence of turbulence as
the primary mechanism of transporting mass in the disk. Finally, the computed
electronic and thermal conductivities decrease with the density, suggesting a gradual
reduction of the metallic character. We do not observe any discontinuity in the
density dependence of the electric conductivity. The only visible effect is that the
electric conductivity falls more rapidly as the density decreases below 5.14 g/cm3.

The determination of the Hugoniot lines and our estimations of the amounts of en-
tropy gained during giant impacts show that the core of Theia underwent partial
vaporization. This would easily explain the recent W-isotope data which requires
at least 30% core-mantle equilibration in the aftermath of the giant impact (Nimmo
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et al., 2010; Rudge et al., 2010; Touboul et al., 2015). Moreover, during the late
veneer, a large fraction of the planetesimals’ cores would undergo partial vaporiza-
tion. This would help mixing the highly siderophile elements into magma ponds or
oceans (Rubie et al., 2015).
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Ab initio Gibbs ensemble method
and its application to sodium
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4.1 Introduction

In the previous chapter, we used the spinodal line to estimate the position of the
critical point of iron. As discussed by Binder et al. (2012), the spinodal line is due
to the presence of an interface between the liquid and vapor phases as a result of the
finite size effect. In this chapter, we present the Gibbs ensemble (GE) Monte Carlo
(MC) method, which was first developed by Panagiotopoulos (1987) and is able to
determine the liquid-vapour equilibrium without an explicit interface between two
phases. In this method, we simulate two independent phases by two boxes at the
same time and allow them to exchange volume and particles to reach the chemical
equilibrium. Following this way, it directly mimics the macroscopic equilibrium
at a microscopic level but avoids the interface issues allowing for a more reliable
determination of the phase equilibrium. At this stage, we limit ourselves to the
NV T version of the Gibbs ensemble where the number of particles (N), the total
volume (V ) of two boxes and the temperature (T ) is fixed. As this method relies on
a reasonable number of particle exchanges to achieve the same chemical potential,
it is not very useful for studying equilibria involving high-density phases.
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In the classical Gibbs ensemble scheme (Panagiotopoulos, 1987), the potential en-
ergy evaluated from a force field is used in the acceptance criterion for a trial move.
This can be extended to include ab initio simulations, where the internal energy of
the electron-ion system plays a similar role as the potential energy in the classical
scheme. In the pioneering work of McGrath et al. (2005), the GEMC method has
been combined with KS-DFT – often referred as ab initio (aiGEMC) – to improve its
accuracy. Ever since different groups have applied the aiGEMC technique to calcu-
late the liquid-vapor equilibrium line of water (McGrath et al., 2006a,b; Schienbein
and Marx, 2018), methanol, methane (McGrath et al., 2011) and argon (Goel et al.,
2018). All above materials are insulators and have a critical point that is below
700 K. Due to the relatively large band gaps, the thermal excitation of electrons in
these systems is not significant, while it may play an important role in determining
the phase equilibrium of metallic systems at high temperature. In order to capture
the thermal excitations of electrons, it is necessary to make full use of FT-KS-DFT
which explicitly includes the contribution of excited electronic states. Because of
the extra electronic entropy term in FT-KS-DFT framework, a great care should
be given to the electronic contribution as the excited states also play a role in the
acceptance ratio. This problem is of considerable conceptual importance, and thus
warrants a brief outline of statistical mechanics derivations in order to find an ap-
propriate energy term that can be used in the acceptance criterion for a MC trial
move. Here we chose the Monte Carlo method due to its simplicity for practical
implementations. But the generalization to Gibbs ensemble molecular dynamics is
straightforward (e.g. Palmer and Lo, 1994).

4.2 Statistical mechanics of the Gibbs ensemble

4.2.1 Partition function in the Gibbs ensemble

We start with Eq. 2.12, then perform the integral over the momenta {P }N analyt-
ically and renormalize the coordinates {R}N by the factor L ≡ V 1/3 leading to the
standard configurational canonical NV T partition function Zconfig(N,L, T ) (Balian
et al., 2007; Huang, 1987):

Z(N,V, T ) =
V N

N !Λ3N
dB

∫ N∏
i=1

dsi exp (−βF0(N,L, {s}N ))

≡ V N

N !Λ3N
dB

Zconfig(N,L, T ), (4.1)

where ΛdB = h/
√

2πMkBT is the de Broglie wavelength, and si ∈ [0; 1] ∀i, F0(N,L, {s}N )

is an effective potential energy that is equal to F0({R}N ) as defined in Eq. 2.11.
The Gibbs ensemble (Frenkel and Smit, 2001; Panagiotopoulos et al., 1988; Pana-
giotopoulos, 1987) is a particular case of the canonical ensemble, made of two sub-
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systems of volumes V1 and V2 containing respectively N1 and N2 particles. The
two sub-systems are in contact with the same thermostat and can exchange vol-
ume and atoms, but the sum N1 + N2 = N and V1 + V2 = V are conserved. This
construction ensures that all the intensive quantities are equal when equilibrium is
reached: temperature (by construction), pressure (P1 = P2) and chemical potential
(µ1 = µ2). The corresponding partition function for the Gibbs ensemble is written
as the product of the partition functions of each sub-system by Eq. (4.1) and sum
over all volumes and particle distributions:

ZGibbs =

Ntot∑
N1=0

∫ Vtot

0
dV1Z1(N1, V1, T )×Z2(N2, V2, T )

=

Ntot∑
N1=0

∫ Vtot

0
dV1

V N1
1 V N2

2

N1!N2!Λ
3(N1+N2)
dB

×Zconfig
1 (N1, L1, T )×Zconfig

2 (N2, L2, T ). (4.2)

From Eq. 4.2, we can see that one microstate in the Gibbs ensemble is specified by
six parameters (N1, L1, {s}N1 , N2, L2, {s}N2). It is also interesting to note that the
partition function written as in Eq. 4.2 includes the possibility for one box to be
empty or vanishing volume. Although counter-intuitive, these states, if explored by
the GEMC algorithm, must be taken into account (Smit et al., 1989).

4.2.2 Monte Carlo in the canonical ensemble

A direct computation of the integral appearing in Eq. (4.1) or Eq. (4.2) is in general
not possible, but most of the time we only need to estimate ensemble averages such
as:

〈A〉 =
1

Zconfig(N,L, T )

∫ N∏
i=1

dsi A(N,L, {s}N ) exp (−βF0(N,L, {s}N ) . (4.3)

For such calculations specific methods have been developed among which is the
famous MC importance sampling algorithm introduced by Metropolis et al. (1953).
As such approaches are fairly well-known, we will only give the key features for
the sake of completeness and to introduce the notations that we will need when
presenting our numerical results.

The Metropolis algorithm is a Markov chain Monte Carlo method that can draw a
sequence of random samples from the probability distribution of

ρ({s}N ) =
exp{−βF0(N,L, {s}N )}
Zconfig(N,L, T )

(4.4)
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without the need to know Zconfig(N,L, T ). For a Markov process, we need to define
a transition probability P ({s′}N |{s}N ), which is the probability of transitioning
from the current state {s}N to any other state {s′}N . The choice of P ({s′}N |{s}N )

needs to meet the detailed balance,

ρ({s}N )P ({s′}N |{s}N ) = ρ({s′}N )P ({s}N |{s′}N ), (4.5)

to assure that the Markov process asymptotically reaches a unique stationary dis-
tribution such that,

lim
n→∞

Pn({s}N |{s′}N ) = ρ({s}N ), (4.6)

which is independent of the initial state ({s′}N ). If the initial state is not sampled
from ρ({s}N ), we need to equilibrate the system and discard the initial part of
simulations. Metropolis et al. (1953) separate P ({s′}N |{s}N ) into two parts as,

P ({s′}N |{s}N ) = Q({s′}N |{s}N )A({s′}N |{s}N ) (4.7)

where Q({s′}N |{s}N ) is the conditional probability of proposing a state {s′}N
given {s}N and chosen to be symmetric meaning Q({s′}N |{s}N ) = Q({s}N |{s′}N ),
A({s′}N |{s}N ) is the acceptance ratio by

A({s′}N |{s}N ) = min(1,
ρ({s′}N )

ρ({s}N )
). (4.8)

Then the general procedure for each MC step is:

• compute the potential energy (F0(N,L, {s}N )) of the system in the old state
{s}N ,

• make a move proposal based on Q({s′}N |{s}N ),

• compute the potential energy (F0(N,L, {s′}N )) of the system in the new state
{s′}N ,

• compute the energy change,

• accepte or reject the move proposal based on A({s′}N |{s}N ).

4.2.3 Monte Carlo in the Gibbs ensemble: implementation and
setup

In the GEMC method, we simulate two independent phases by two boxes simulta-
neously and allow them to exchange volume and particles. To realize this, three
types of trial moves (Figure 4.1) are considered, namely

• a random displacement of a randomly chosen particle in each box (j = 1, 2) to
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a

b

c

Figure 4.1: Three different Monte Carlo moves in the Gibbs ensemble method. (a)
A random displacement of a randomly chosen particle in each box. (b) A random
volume rearrangement. (c) The transfer of a randomly chosen particle between the
two sub-systems. (see main text for more details)

relax both systems to the pre-defined temperature with an acceptance ratio of

Aj({s′}Nj |{s}Nj ) = min(1,
exp
{
−βF0(Nj , Lj , {s′}Nj )

}
exp
{
−βF0(Nj , Lj , {s}Nj )

} ), (4.9)

where we need to keep the volume (V1, V2) and number of particles (N1, N2)
in both boxes unchanged,

• a random volume rearrangement (V1, V2 → V ′1 , V
′

2) to equate the pressure of
these two boxes with an acceptance ratio of

A(V ′1 , V
′

2 |V1, V2) = min(1,

(
V ′1
V1

)N1
(
V ′2
V2

)N2

e−β∆(U1+U2)), (4.10)

where ∆Uj(j = 1, 2) is

∆Uj = F0(Nj , L
′
j , {s}Nj )− F0(Nj , Lj , {s}Nj ), (4.11)

and V1 + V2 = V ′1 + V ′2 = V
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• a transfer of a randomly chosen particle between the two sub-systems (N1, N2 →
N ′1, N

′
2) to equate the chemical potential with an acceptance ratio of

A(N ′1, N
′
2|N1, N2) =

(
V2

V1

)(
N1

N ′2

)
e−β∆(U1+U2), (4.12)

where ∆Uj(j = 1, 2) is

∆Uj = F0(N ′j , Lj , {s}N ′j )− F0(Nj , Lj , {s}Nj ), (4.13)

and N1 +N2 = N ′1 +N ′2 = N .

The derivation of the acceptance ratio can be found in Panagiotopoulos (1987). Here
I show an example of how to derive Eq. 4.12. The relative weight of two microstates
in the Gibbs ensemble is:

ρ(N ′1, L
′
1, {s}N ′1 , N

′
2, L

′
2, {s}N ′2)

ρ(N1, L1, {s}N1 , N2, L2, {s}N2)
=

V ′1
N′1V ′2

N′2

N ′1!N ′2!Λ
3(N′1+N′2)
dB

exp
(
−βF0(N ′1, L

′
1, {s}N ′1

)
exp

(
−βF0(N ′2, L

′
2, {s}N ′2

)
V

N1
1 V

N2
2

N1!N2!Λ
3(N1+N2)
dB

exp (−βF0(N1, L1, {s}N1) exp (−βF0(N2, L2, {s}N2)
. (4.14)

After plugging in N1 = N ′1, N2 = N ′2, {s}N1 = {s}N ′1 , {s}N2 = {s}N ′2 , it can be
reduced to:

ρ(N1, L
′
1, {s}N1 , N2, L

′
2, {s}N2)

ρ(N1, L1, {s}N1 , N2, L2, {s}N2)
= (

V ′1
V1

)N1
(
V ′2
V2

)N2

e−β∆(U1+U2) (4.15)

where ∆U1 and ∆U2 are defined in Eq. 4.11.

The implementation of the Markov chain described in the previous section is rel-
atively straightforward. We define three probabilities ηDispl. = 0.5, ηVol. = 0.25,
and ηPart. = 0.25 for the choice among the different moves for each cycle, such as
ηDispl. + ηVol. + ηPart. = 1. We define δsmax as the maximal (normalized) particle
displacement, which can be different for the two boxes, chosen such as to reach an
acceptance ratio for moves of type (i) around 50% for each sub-system, and δVmax as
the maximal volume exchange, similarly optimized for an acceptance rate of about
50%. The detailed values are compiled in Tab. 4.2.

In particular for sodium we used as initial conditions a liquid box of 17 Å with
80 atoms and an empty vapor box of 25 Å for the simulations below 2000 K, and
a liquid box of 18 Å with 80 atoms and an empty vapor box of 18 Å at 2000 K.
One accepted configuration at 2000 K served as starting point for the simulations at
2100K, 2200 K, 2300K and 2400 K. At 2500 K, we start with two 40-atoms boxes of
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17 Å. In addition, we have performed an extra simulation at 2000 K with 120 atoms
to estimate the finite-size effect, which is found to be small at this condition (see
Figure 4.4). All the simulation boxes are cubic and the dimensions above define the
edge of the box. The equilibrium values and their uncertainty were calculated using
the autocorrelation technique (Frenkel and Smit, 2001). The error bars reported in
the following sections are one-sigma error bars.

4.2.4 Setup of the DFT calculations

We compute the energy of the two sub-systems at each MC step using first-principles
calculations in the projector augmented wave (PAW) method (Blöchl, 1994; Kresse
and Joubert, 1999) of the DFT in the VASP (Kresse and Furthmüller, 1996; Kresse
and Furthmüller, 1996) implementation. We employ the Generalized-Gradient Ap-
proximation in the Perdew-Burke-Ernzerhof formalism (Perdew et al., 1996) for the
exchange correlation term. We treat the 3s1 as valence electron configurations for
the PAW pseudopotentials. The partial occupancies for the electronic calculation
are calculated using a Fermi-Dirac smearing scheme with a width corresponding to
the nuclear temperature. The energy cut-off for the plane-wave basis set was set to
400 eV. The break condition for the electronic self-consistent loop was 10−4 eV. The
number of electronic bands was adapted to the temperature conditions such as to
cover the entire spectrum of the fully and partially occupied states and to include
enough non-occupied bands. The Brillouin zone was sampled with the Baldereschi
point (Baldereschi, 1973). A test with a grid of 2 × 2 × 2 k-points yields results
within 0.5% difference in energy. At each MC step, for each ionic configuration
we compute the effect potential energy F0 as defined in Eq.2.11 including the free
energy of the electrons in a coulombic potential due to the ions and the ion-ion
interaction. Our implementation is done outside of the VASP package (Kresse and
Furthmüller, 1996), which is called only as an energy routine.

To compare with the Gibbs ensemble method, we also performed molecular dynamics
simulations of the liquid phase in the DFT framework at several densities along the
2000 K isotherm. In order to stay consistent with the MC calculations we used the
same DFT parameters for the MD simulations. The temperature was kept constant
thanks to a Nosé thermostat (Nosé, 1984). We used a fixed volume cell containing
80 atoms. The time step was set to 2 fs for a total duration of 20 ps.

4.3 Results and discussion

4.3.1 Stationary state and equilibrium

At the very beginning of the simulation, there is a net particle flux from the liquid
box to the vapor box since the latter is initially empty (Figure 4.2). The driving
force is the difference in chemical potentials. Because of the random character of
the acceptance of moves along the Markov chains, particles from the gas box may
also be transferred to the liquid box. This is captured by fluctuations of the density
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Figure 4.2: Evolution of the number of particles (N), cell length (L), pressure (P ),
internal energy (E) and effective potential energy (U) as a function of Monte Carlo
steps in the vapor and in the liquid phase for the simulation at 2000 K.

in each of the two boxes. After about 20000-50000 attempted moves, both boxes
have reached a stationary state and the equilibrium is achieved. At equilibrium, for
a temperature of 2000 K the cell length of both boxes fluctuates around 18 Å. The
pressure in the liquid phase is 0.0 ± 0.2 kbar and 0.08 ± 0.03 kbar for the vapor
phase. The liquid phase has 76 atoms on average but the vapor phase only 4. The
stationary state thus seems to correspond to a thermal, dynamical and chemical
equilibrium.

The acceptance ratios reported in Tab. 4.2 are very satisfactory with typical values
between 10 and 75 % for each move. The 1200 K simulation shows a very low accep-
tance rate for the particle exchange because the temperature is very low compared
to the energy barrier. Since the acceptance rate is non zero, the results are still re-
liable since a long enough simulation has been run. Figure 4.2 shows the evolution
of different quantities as a function of the MC step at 2000 K. Table 4.1 lists all the
values of the thermodynamic quantities.

4.3.2 Liquid-vapor equilibrium

As can be seen from Figure 4.3, at low temperature there is a clear distinction be-
tween the low-density and the high-density phase that corresponds to the liquid and
vapour phase. It is then possible to determine the average thermodynamic quantities
of both the vapor and the liquid phases by averaging over each distinct distribution.
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Figure 4.3: (A) Density versus Monte Carlo steps for the Gibbs ensemble sim-
ulations at 1200, 1500, 1800, 2000, 2100, 2200, 2300, 2400 and 2500 K from top
to bottom, respectively. (B) Corresponding unnormalized probability distribution
functions.
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Figure 4.4: Liquid-vapor equilibrium of Na obtained from the ab initio Gibbs
ensemble simulations (blue circles) and its comparison with the experiment (Dillon
et al., 1966) (black stars). The blue line is a fit of the equilibrium line using the
scaling law and the red line is the law of rectilinear diameter with A = 0.80± 0.02
and B = 0.07± 0.01 parameters (see text for more details).

As temperature increases the two peaks become less and less separated, eventually
preventing for a clear difference between the two phases. As we approach the crit-
ical temperature, the simulations have a higher probability of switching identity or
even having two phases at once in the same simulation box. The latter is due to
a comparable magnitude of the surface tension effect and the entropy contribution
as already observed by Smit et al. (1989). It results in the appearance of three
peaks in the density distribution plot. In order to better quantify the density of
the three phases (gas, liquid and the mixed phase), we fitted the three peaks by
three Gaussian functions (solid black line in Figure 4.3) as suggested by Smit et al.
(1989). The center of the Gaussian is assumed to be the average density of each
phase and its width is the standard deviation entering in the determination of the
uncertainty. The low density peak corresponds to the gaseous phase and the high
density peak to the liquid phase. The middle peak, close to the average density of
the two boxes is the mixed phase, and is disregarded in the liquid-vapor equilibrium
analysis. At 2300 K, the fluctuations become extremely large and we thus decided
to only show the results in the density plot for reference but not to use them for the
fit since they offer too loose a constraint on the critical point. For 2400 and 2500 K
both boxes reach a very similar equilibrium and seem identical. This means that
these conditions are above the critical point.

Based on the equilibrium densities, we can plot a vapor-liquid coexistence curve
as shown in Figure 4.4. In general we obtain a good agreement compared to ex-
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perimental data available in the literature (Dillon et al., 1966). At 1200 K, the
saturated liquid density is 20% lower than that of experiments, which may be due
to the choice of the exchange correlation functional that has already been noted in
previous studies of argon (Goel et al., 2018). A precise direct determination of the
critical point is made difficult by the finite size of our system since the correlation
length is expected to tend to infinity at the critical point; this cannot be captured
within our small simulation cells. The critical point may however be approximated
using the law of rectilinear diameter (Rowlinson and Swinton, 1982):

ρL + ρV = 2
[
ρc +B

(
1− T

Tc

)]
(4.16)

together with the scaling law (Rowlinson and Widom, 1982)

ρL − ρV = A
(

1− T

Tc

)β
, (4.17)

where ρL and ρV are the densities of the coexisting liquid and vapor, at a given
temperature T. The fitted parameters are the critical temperature Tc and density
ρc, and the two constants A and B. β is the critical exponent, which is fixed here
at 0.326 (Wilding, 1995), as for other three dimensional systems (Frenkel and Smit,
2001; Rowlinson and Widom, 1982).

We obtained the critical point by applying the scaling law to all data points above
2000 K. Using our data we obtain our best fit withA = 0.87±0.1 andB = 0.19±0.03.
The critical point lies at 2338 ± 108 K and 0.24 ± 0.03 g/cm3. We stress here
that the density values at 1800 K are compatible with the extrapolation of the
scaling law, providing confidence in our fit. Our theoretical critical temperature is
slightly lower than the experimental value at 2573 ± 171 K (Dillon et al., 1966),
and the critical density is similar to the experimental value of 0.21 ± 0.02 g/cm3.
We want to underline that both our values and the experimental ones are the result
of extrapolations, as in both cases it is too challenging to obtain equilibrium data
in the very vicinity of the critical point. With this in mind, the good agreement
that we obtain between our calculations and experiments confirms the suitability of
the ab initio Gibbs ensemble method for the determination of accurate coexistence
curves. We also include the Clausius-Clapeyron plot of the saturated vapor pressure
and density as a function of the inverse temperature in Figure 4.6. We obtain a nice
affine behavior for both the logarithm of the density and of the pressure on these
plots. We also have a relatively good agreement with the experimental density data.

In order to check our Gibbs ensemble results, we also performed a set of ab initio
molecular dynamics simulations in the canonical ensemble at 2000 K for different
densities. This allows us to analyse the structure of the liquid and to determine
the corresponding spinodal point (Speedy, 1982). Figure 4.5 shows the variation of
pressure as a function of the density along the 2000 K isotherm. This curve exhibits
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Figure 4.5: Pressure evolution during the isothermal volume expansion for sodium
at 2000 K. The insets show the snapshots at 0.52 and 0.38 g/cm3, respectively.

a clear minimum close to 0.48 g/cm3; this is the liquid spinodal point. This is the
smallest density at which the liquid is metastable. Above this density the fluid is
homogeneous, as shown for example in the insets of Figure 4.5. At lower densities,
in the unstable branch, bubbles form proving that the liquid becomes unstable.
The density of the spinodal point is close yet lower than the equilibrium density of
0.50 ± 0.02 g/cm3 predicted by the Gibbs ensemble method. We thus have a full
consistency between these two completely different methods ensuring the reliability
of the Gibbs ensemble method.

4.3.3 Structure of the liquid

We compare the structure of the liquid as we obtain it using the MC Gibbs ensemble
and the MD approach. We analyse the radial distribution function (RDF)(also see
Section 3.2.3) and stress here that the calculation of the RDF in the Gibbs ensemble
is performed on a series of snapshots, and the number of particles and volume of
each phase fluctuate. Figure 4.7 shows the RDF at several temperatures as extracted
from our Gibbs ensemble simulations. The main peak lies around 3.5 Å. Along the
vapor-liquid equilibrium line, the position of the peak changes slightly and broadens
due mostly to the temperature effects. The spherical integration of the RDF from 0
to its first minimum gives the coordination number. At 2000 K and 0.52 g/cm3 the
agreement of the RDF as obtained in the MC and in the MD simulations is excellent.
As the two methods start from different initial configurations and use different paths,
they give a remarkable consistent outcome as they explore the configurational space.
While this is not an absolute proof that we achieved ergodicity, it strongly suggests
that our simulations are satisfying it.
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4.4 Conclusions

We have implemented the ab initio Gibbs ensemble algorithm and performed a series
of simulations to compute the liquid-vapor equilibrium line and the critical point
of sodium. We emphasize the electronic contribution at finite temperature, which
is essential for metallic systems, but not always clearly explained in the literature.
The effective nuclear potential energy defined in Eq. 2.11 should be used in the
acceptance rule for a MC trial move in the Gibbs ensemble. We demonstrated that
our simulations reached a mechanical and chemical equilibrium and the calculated
phase coexistence curve and critical point of sodium are in a good agreement with
the experimental results. The comparison of our results with molecular dynamics
also showed very good consistency. Therefore, we confirm the reliability and validity
of the ab initio Gibbs ensemble method.



Chapter 5

Ab initio Gibbs ensemble study of
the liquid-vapor equilibrium and

critical point of iron

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 Simulation details . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 78

5.3.1 The liquid-vapor equilibrium line from aiGEMC simulations 78

5.3.2 The critical point . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3.3 The bulk modulus . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3.4 The liquid density at zero pressure from ab initio MD simulations 84

5.3.5 The structure of the fluid . . . . . . . . . . . . . . . . . . . . 87

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.1 Introduction

Iron, as the major constitutive material of the metallic core in a telluric planet and
as a basic engineering material, has received and continues to receive considerable
attention from academics across multiple disciplines. Significant efforts were made
for studying the thermodynamic and thermophysical properties of its liquid and
solid phases for a wide range of temperature and pressure conditions by either ex-
perimental or theoretical methods. These information have been used, on the one
hand, to design new technological devices, and on the other hand, to infer the phys-
ical state and investigate the thermodynamic evolution of planetary cores. Recent
developments in the field of extreme shock experiments and giant impact simula-
tions led to an increased interest in obtaining a complete thermal equation of state
(EOS) that can describe all vapor, liquid and solid phases of iron (Canup, 2004a).
However, only a few studies have been performed to examine the vapor-liquid equi-
librium (VLE) and the critical point (CP) of iron (Assael et al., 2006; Grosse and
Kirshenbaum, 1963; Hixson et al., 1990). The scarceness of data inhibited building
an accurate set of EOS for iron that spans a wide-enough density and temperature
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region to cover all the different phases of interest. These limitations cause problems
in predicting the chemical and dynamic consequences in a giant impact simulation.
Therefore, it is imperative to close the knowledge gap of the VLE and CP of iron.

However, it is still challenging to determine the VLE and CP experimentally above
4000 K. Computer simulations might provide an alternative option and sometimes
are the only viable way. The Gibbs ensemble Monte Carlo (GEMC) method, coupled
to finite-temperature density functional theory, has just opened up the possibility
of studying the VLE and CP for a metallic system with a reasonable computational
cost. Its first application to sodium has shown an excellent agreement with available
experimental results (see Chapter 4). Unfortunately, we cannot directly apply this
technique to iron due to the additional complication from the high-temperature
magnetism.

Both experiments (Waseda and Suzuki, 1970) and theoretical simulations (Licht-
enstein et al., 2001) suggest that the liquid iron might be in a paramagnetic state
with a non-vanishing local magnetic moment at ambient pressure. Therefore, we
need to take into account the magnetic excitation or the magnetic degrees of free-
dom, including the transversal fluctuation, which changes the orientation of the
local magnetic moment, and the longitudinal fluctuation that modifies the magni-
tude of the local magnetic moment (Kaul, 2007). We must remind the readers that
a spin-polarized DFT calculation with a fully self-consistent electronic optimization
to find the electronic ground state will only yield the size and direction of the local
magnetic moment that corresponds to the zero temperature on the magnetic degrees
of freedom (Gambino et al., 2020). As pointed out by Abrikosov et al. (2016), the
variation in the size and orientation of the local magnetic moment observed in the
spin-polarized ab initio molecular dynamics simulations is only a direct impact of
atom vibrations.

Several new approaches have been developed to study the magnetic excitation.
Among them, the accurate one is based on the dynamic mean-field theory (Lichten-
stein et al., 2001). Because of the computational limitations and poor tractability,
this technique is still limited to a small system size that is insufficient to properly
describe the structural disorder of a fluid, even metallic like iron. To reduce the
complexity to a manageable extent, we first note that each iron atom can be asso-
ciated with a well-defined local magnetic moment that behaves in a Heisenberg-like
manner, although 3d itinerant electrons cause the magnetism (Abrikosov et al.,
2016). It suggests that the longitudinal fluctuation might play a limited role and
is thus often neglected. We can further simplify the problem by considering that
the magnetic fluctuations adiabatically follow the atomic motions. This treatment
is a special case of the disordered local moment molecular dynamics (DLM+MD),
where the paramagnetic state is realized by the statistical average of many different
random magnetic configurations known as the magnetic sampling method (Alling
et al., 2010). In this way, we treat the atomic vibrations and the transversal fluc-
tuations on a similar footing. However, the incorporation of the magnetic degrees
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of freedom into the aiGEMC method is too expensive. Fortunately, as we shall see
later, the paramagnetic state can be well approximated by the ferromagnetic state
in terms of the liquid-vapor equilibrium densities.

In the present study, we employed the aiGEMC method to determine the liquid-
vapor equilibrium line and the critical point of iron in the non-magnetic (NM)
and ferromagnetic (FM) state. Then we used DLM+MD method to determine
the equilibrium density for the liquid iron from 1800-7500 K at 0 GPa, where the
paramagnetic (PM) state is treated by the magnetic sampling method.

5.2 Simulation details

In the aiGEMC method, we simulate two independent phases (liquid and vapor)
by two boxes simultaneously but allow them to exchange volume and particles to
achieve the chemical equilibrium. We employed finite-temperature density func-
tional theory (Hohenberg and Kohn, 1964; Kohn and Sham, 1965; Mermin, 1965)
as implemented in the Vienna Ab initio Simulation Package (VASP) (Kresse and
Furthmüller, 1996; Kresse and Furthmüller, 1996) to compute the effective poten-
tial energy for the Monte Carlo acceptance criteria. The Perdew-Burke-Ernzerhof
functional (Perdew et al., 1996) and the projector augmented wave (PAW) potential
(Blöchl, 1994; Kresse and Joubert, 1999) with 3d74s1 as valence electrons were used.
The partial occupancies for the electronic structure calculation were calculated us-
ing a Fermi-Dirac smearing scheme with a width corresponding to the simulation
temperature. The energy cut-off for the plane-wave basis set was set to 400 eV and
the Brillouin zone was sampled with the Baldereschi point (Baldereschi, 1973). For
the ab initio molecular dynamics simulations, we used the same DFT parameters
as the MC calculations to be consistent. The temperature was controlled by the
Nosé thermostat (Nosé, 1984). The timestep of the aiMD simulation was set to
1 fs for a total simulation time of at least 3 ps. For the paramagnetic phase, the
transversal fluctuation is taken into account by the magnetic sampling method. We
exploited 40 magnetic configurations at every MD step to obtain the average force
exerted on atoms, where the initial local magnetic moments for the electronic min-
imization were set to be orientated in a randomly spin-up or down direction but
with a zero total magnetic moment in the simulation cell (Alling et al., 2010). For
the ferromagnetic phase, we reinitialized the system to be ferromagnetic at every
MD step in order to prevent the electronic subsystem from getting stuck in a local
minimum during the electronic minimization. In this study, we used 80 atoms for
both aiGEMC and aiMD simulations. But an extra aiGEMC simulation with 108
atoms at 7500 K has been performed to estimate the finite size effects.
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5.3 Results and Discussion

5.3.1 The liquid-vapor equilibrium line from aiGEMC simulations

5.3.1.1 The nonmagnetic case

First, we approximate the paramagnetic state by a nonmagnetic simulation. We plot
the density evolution as a function of MC step in Fig. 5.1(a). In order to verify that
the simulation results are independent of the initial condition, including the starting
volume and atomic positions for each box and the total volume of the two boxes,
we perform two aiGEMC simulations at 3500 K. The first simulation employs two
identical boxes, each with 40 particles and the same atomic position. The second
simulation starts with one empty box and one box with 80 atoms. However, these
two simulations have different total volumes.

In the former case, we observe an instantaneous phase separation, i.e. all the atoms
move into one box, leaving the other one empty (Fig. 5.1(a)). When the atoms are
transferred into one fully populated box, its volume also changes to accommodate
this amount of atoms. Even if one box becomes empty, there is still a volume
exchange between the two boxes. Eventually, the simulation converges to 10.113 Å3

for the liquid box, which corresponds to 7.18 ± 0.03 g/cm3 density. In the second
case, we did not observe any particle transfer between the two boxes, but the volume
exchange is still present. Its final volume is 10.153 Å3, which corresponds to 7.10
g/cm3 ± 0.05 density. Consequently, we observe that the two simulations yield the
same density for the liquid iron phase, suggesting that the value of the density we
obtain using this procedure is reliable.

As we approach the critical point, we observe that the density of the equilibrium
liquid drops with increasing temperature. We also observe the appearance of the
first atoms in the vapor box at 5000 K, and the equilibrium vapor density increases
with increasing temperature. At 7500 K, we perform another simulation with 108
iron atoms to estimate the finite-size effects, which is found to be small.

We plot the unnormalized density probability distribution functions in Fig. 5.1(b).
There are two well-separated peaks in the density histogram below 7500 K, which
corresponds to the liquid and vapor phase. At 8500 K, there is a significant fluc-
tuation in the density evolution since the temperature is very close to the critical
temperature. At 9500 K, the two boxes frequently exchange their identities, and
a single peak is present, indicating the simulated temperature is above the critical
temperature.

Coming back to the simulations at 3500 K, the extrapolated density of the vapor
phase at this temperature should be on the order of 10−4 g/cm3. It implies that we
need to exploit a simulation cell of at least 2003 Å3. Due to the limitation on the
computation facilities, we could not further increase the simulation cell beyond the
703 Å3 which is used in the present study at 3500 K. However, an empty vapor box
should not affect the accuracy of the liquid equilibrium density and position of the
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Figure 5.1: (a) The evolution of density as a function of Monte Carlo step from the
aiGEMC simulations for iron in the nonmagnetic state at 3500, 5000, 6500, 7500,
8500 and 9500 K from top to bottom, respectively. (b) Corresponding unnormalized
probability distribution functions. An extra simulation has been performed at 3500
K to examine whether the simulation results depend on the initial condition. By
running the aiGEMC simulation with 108 iron atoms at 7500 K, we found the finite
size effects are small at this condition.
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critical point. The empty box without any atom acts like a pressure buffer and sets
the pressure on the liquid phase to zero. Although the real equilibrium pressure at
3500 K is not zero if a sufficiently large simulation cell is employed, it should be
very close to zero. As we will explain in Section 5.3.4, a variation of even 1 GPa in
pressure only changes the density of the liquid by less than 1% at 3500 K. Therefore,
the zero pressure density for the liquid phase is an excellent approximation to the
equilibrium liquid density.

5.3.1.2 The ferromagnetic case
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Figure 5.2: (a) The evolution of density as a function of Monte Carlo step from the
aiGEMC simulations with iron in the ferromagnetic state at 3500, 5000, 6500, 7500,
8500, and 9500 K from top to bottom, respectively. (b) Corresponding unnormalized
probability distribution functions.

In a second step, we take into consideration the magnetism and perform aiGEMC
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simulations using the ferromagnetic state for iron. We plot the density evolution
as a function of MC step and corresponding unnormalized probability distribution
functions in Fig. 5.2. We recognize a very similar trend in the FM-aiGEMC simu-
lations compared to the NM-aiGEMC simulations. At 3500 K, we start with one
empty box and a full box with 80 atoms. We do not observe any particle transfers
between the two boxes, but the volume exchange is still present. The simulation
yields the liquid density of 6.47 ± 0.04 g/cm3. With increasing temperature, the
equilibrium liquid density falls. At 5000 K we start to observe a few atoms in the
vapor box, and the equilibrium vapor density increases with increasing temperature.
From the density histogram we can see two well-separated peaks in the density his-
togram below 7500 K and a significant fluctuation in the density evolution above
7500 K as the temperature is very close to the critical temperature. At 8000 K,
we identify three peaks in the density histogram for the FM-aiGEMC simulation,
where the middle peak is due to the comparable magnitude of the surface tension
effect and the entropy contribution as already mentioned by Smit et al. (1989). At
9500 K, the two boxes frequently exchange their identities, and we only observe a
single peak, suggesting the simulated temperature is above the critical temperature.

5.3.2 The critical point

The liquid-vapor equilibrium line for iron obtained from the aiGEMC simulations
is plotted in Fig. 5.3. As the correlation length tends to be infinity near the critical
point, a direct determination of the critical point from finite simulation cells is diffi-
cult. However, we might approximate it by applying the scaling law (Eq. 4.17) and
the rectilinear law (Eq. 4.16) to the equilibrium liquid and vapor densities above 7500
K. This method has been successfully applied to sodium and the resulted critical
point compare well with experimental results (see Chapter 4). For the ferromagnetic
case, we obtain the critical point at 1.64 ± 0.23 g/cm3 and 8690 ± 141 K. For the
nonmagnetic case, the critical point lies at 1.41 ± 0.17 g/cm3 and 8701 ± 100 K.
The nearly identical critical point for iron in the nonmagnetic and ferromagnetic
state indicates the effect of magnetic state of iron is limited. We extrapolate the
saturated vapor pressure to the critical density and obtain the critical pressure of 2.0
kbar and 2.4 kbar for iron in the nonmagnetic and ferromagnetic state, respectively.
The critical point obtained in the present study agrees very well with Medvedev
(2014), which lies at 1.638 g/cm3 and 8763 K. In their study, a semi-empirical equa-
tion of state for iron with several adjustable parameters was developed and these
parameters were determined by fitting to available experimental data. Considering
the scarceness of experimental data for iron in the low-density regime, the excellent
agreement is unexpected.

5.3.3 The bulk modulus

If neglecting the difference between the NPT ensemble and the Gibbs ensemble with
a continuous change in the number of atoms for each box, we can estimate the bulk
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Figure 5.3: (a) The liquid-vapor equilibrium line for iron obtained from the
aiGEMC simulations. The blue and green color denote simulations for iron in
the nonmagnetic and ferromagnetic state, respectively. The solid circles represent
the resulted liquid or vapor densities from the aiGEMC simulations, while empty
triangles are densities determined by the law of rectilinear diameter. The blue and
green line is a fit of the equilibrium liquid and vapor densities to the scaling law and
the law of rectilinear diameter. The predicted critical point is represented by the
solid stars. (b) The Clausius-Clapeyron plot of the logarithm of the saturated vapor
pressure obtained from the aiGEMC simulations as a function of temperature.
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Figure 5.4: (a) The pressure-density fluctuation in the aiGEMC simulations for
iron in the nonmagnetic (NM) and ferromagnetic state (FM) at 3500, 5000, 6500
and 7500 K. (b) The bulk modulus of the liquid iron phase defined as ρdPdρ , where
dP
dρ is derived by a linear fitting of the pressure-density data. In comparison, we also
performed aiMD simulations for the liquid iron in the nonmagnetic, ferromagnetic
and paramagnetic state (PM) to find the zero pressure density and estimate its bulk
modulus.
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Figure 5.5: The zero pressure density up to 7500 K obtained from ab initio MD
simulations. For comparison, we also plot the equilibrium liquid iron density derived
from aiGEMC simulations and experimentally determined liquid iron density at
around 0 GPa (Beutl et al., 1994; Grosse and Kirshenbaum, 1963; Hixson et al.,
1990).

modulus for the liquid phase based on the pressure-density fluctuation (Fig. 5.4).
The bulk modulus of the liquid iron phase in the NM state decreases from 250 GPa
at 3500 K to 10 GPa at 7500 K, while in the FM state, it falls from 95 GPa at
7500K to 8 GPa at 7500 K. The large discrepancy at 3500 K is mainly due to the
difference in the liquid iron density, which is 7.18 g/cm3 in the NM state compared
to 6.47 g/cm3 in the FM state. The large bulk modulus for the liquid iron suggests
a variation of 1 GPa in the pressure only changes the density by at most 1% at
3500 K and 10% at 7500 K. Therefore, we can safely use the density at 0 GPa to
approximate the density at the liquid-vapor equilibrium density since the difference
is insignificant. We could not give a reliable estimation of the bulk modulus at 8500
K due to a substantial density fluctuation. However, our previous MD simulations
at 8100 K and 8750 K (see Fig. 3.1) suggest the bulk modulus should be very small
since a pressure deviation of 2 kbar changes the density by 1 g/cm3.

5.3.4 The liquid density at zero pressure from ab initio MD sim-
ulations

In order to estimate the density of liquid iron at zero pressure, we perform ab initio
MD simulations in the NVT ensemble to extract the average pressure at two or three
densities, from which the zero pressure density is obtained by a linear interpolation.
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For the liquid iron in the FM state, we notice that the electronic optimizations in
the ab initio MD simulation are often trapped in a local minimum. We show an
example of such simulations starting with two different initial configurations at 3500
K and 6.63 g/cm3 in Fig. 5.6. In both simulations, the liquid iron was initialized to
be ferromagnetic, and the wavefunction and charge density extrapolation scheme as
implemented in VASP was employed. From Fig. 5.6(a) and (d), we can see that there
is a large energy drift, and the total magnetization of the system decreases steadily to
zero and then oscillates around it. To reveal the origin of the energy drift, we select
several snapshots and re-calculate the effective potential energy as defined in Eq. 2.13
by re-initializing the system to be ferromagnetic. The resulted potential energy is
found to be lower than the one using the extrapolation scheme, and both the effect
potential energy and the total magnetization fluctuates around a constant value.
The energy difference might be caused by the different initial trial wavefunction
employed as a starting point for the electronic optimization. As there are many local
minima in the potential energy surface for a spin-polarized calculation, the electronic
minimization algorithm may be trapped in such a minimum that is related to the
initial conditions. Since the electronic minimization fixes the magnetic degrees of
freedom at 0 K, the only physically meaningful magnetic configuration is the one
with the lowermost effective potential energy. In this case, it is the ferromagnetic
state. Therefore, in the present study we re-initialize the system to be ferromagnetic
at every MD step in order to maintain the system to be ferromagnetic. We also
stress that the simulations after 1 ps shown in Fig. 5.6(c) and (f) do not represent a
paramagnetic state due to the lack of spin dynamics, even if the total magnetization
is around zero.

We employ the DLM + MD method to evaluate the effect of paramagnetism on
the liquid density at zero pressure. In order to determine the number of magnetic
configurations needed to converge the force exerted on the atoms, we choose two
snapshots from FM-aiMD simulations at 1850 K and 7.22 g/cm3 and generate 1000
magnetic configurations by randomly assigning the initial magnetic moments in the
up and down direction but with a zero total magnetic moment. In the DLM+MD
scheme, we allow the electronic minimization and the spin dynamics is introduced by
the average over many magnetic configurations. Fig. 5.8 and Fig. 5.9 show the force
exerted on one randomly selected atom, pressure, the local magnetic moment of one
randomly selected iron atom, the total magnetization, and their moving averages
over magnetic configurations. We find that the force and pressure converged to 5% or
better after employing more than 40 magnetic configurations. Therefore, we choose
40 magnetic configurations for the PM-aiMD simulations. It is also interesting to
see that the selected atom in the first snapshot has a local magnetic moment of
about 2.8 µB which is independent of the initial magnetic configuration, while in
the second snapshot, it is more spread in a range of 0-2 µB. The difference may be
caused by the variation in the local atomic environment.

The zero pressure densities of the liquid iron from aiMD simulations are plotted
in Fig. 5.5. For iron in the nonmagnetic and ferromagnetic state, the determined
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densities are in a good agreement with the values determined by the aiGEMC
simulations with a difference that is less than 10%. In addition, the zero pressure
density for iron in the paramagnetic state are very close to the values for iron in the
ferromagnetic state, but is larger than the densities for iron in the nonmagnetic state.
In order to understand this trend, we show the distribution of the local magnetic
moment for iron atoms from FM-aiGEMC, FM-aiMD, and PM-aiMD simulations
in Fig. 5.10. As expected, the magnetic moment distribution from FM-aiGEMC
matches well with FM-aiMD simulations in all temperature conditions considered
here. With increasing temperature, a small number of atoms flip their magnetic
moment direction to be negative, and more particles become nonmagnetic. For the
PM-aiMD simulation at 1850 K, there are two distinct peaks centered at 2.3 µB
and -2.3 µB. Starting from 5000 K, the third peak at around 0 µB appears and
its height increases with temperature, suggesting more atoms become nonmagnetic
as well. The average size of the magnetic moment as a function of temperature is
displayed in Fig. 5.11. It falls with increasing temperature due to the competing
effect of the density, electronic Fermi smearing, and thermal motion. The decreasing
density would cause the strong localization of the 3d electrons and boost the local
magnetic moment, while the latter two factors reduce it. The average magnetic
moment in FM is larger than PM, resulting in a larger effective atomic volume and
thus a slightly lower zero pressure density. The decreasing average magnetic moment
with temperature also reduces the difference of the zero pressure density between
the nonmagnetic state and the magnetic state. Therefore, it is reasonable to expect
that the magnetic state only slightly affect the critical point.

Comparing to the liquid iron densities determined by experiments at around zero
pressure (Beutl et al., 1994; Grosse and Kirshenbaum, 1963; Hixson et al., 1990),
our NM-aiMD and NM-aiGEMC simulations considerably overestimate the liquid
density by 1.2 g/cm3 (18%) at 1850 K, while the aiGEMC and aiMD calculations
with iron in the FM or PM state overestimate the liquid density by 0.4 g/cm3 (5%)
at 1850 K. The improved agreement given by spin-polarized simulations compared
to non-spin-polarized simulations confirms that the magnetism plays an important
role in determining the physical properties of liquid iron at high temperature. At
3500 K, the liquid iron density in the ferromagnetic or paramagnetic state from our
simulations is 0.4 g/cm3 denser than the experimental value, although the experi-
mental data are scattered above 3000 K. The discrepancy might be caused by the
PBE exchange-correlation functional. Previous DLM-MD simulations for bcc and
fcc iron at experimental densities from 300 K to 1662 K reported a negative pressure
of 7 GPa, indicating PBE functional overestimate the zero pressure density (Alling
et al., 2016). More experiments, especially at above 3500 K, are also needed in order
to have a better insight into the origin of the discrepancy.
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5.3.5 The structure of the fluid

We analyze the fluid structure by the radial distribution function (RDF) extracted
from our aiGEMC and aiMD simulations. For the liquid phase, the main peak lies
at 2.4 Å and almost keeps constant from 3500 K to 8500 K. For the vapor phase,
we only show two cases at 7500, 8000 and 8500 K, where the vapor simulation box
contains more than ten atoms that allow the computation of EDF. As expected,
we fail to identify any local structure in the vapor phase. Our results suggest that
the liquid iron in the NM state has a very similar structure to that in the FM and
PM states. At 3500 K, the agreement of the RDF as obtained by the aiGEMC
and the aiMD simulations is excellent. As the two methods start from different
initial configurations and sample the configurational space with different paths, the
remarkable consistency strongly suggests that our simulations achieved ergodicity,
although this is not a formal proof. The RDF’s spherical integration from 0 to its
first minimum gives the coordination number, which drops from 13 at 3500 K to 7
at 8500 K for the liquid phase.

5.4 Conclusions

We have combined the aiGEMC method and the aiMD method to determine the
liquid-vapor equilibrium and the critical point of iron in the nonmagnetic, ferromag-
netic and paramagnetic states. The paramagnetic phase is treated by the magnetic
sampling method. By comparing the liquid density at zero pressure from 1850 K to
7500 K, our study shows the FM liquid iron phase is a good proxy to the PM liquid
iron phase in terms of liquid-vapor equilibrium densities. We also found the differ-
ence of the zero pressure density between the nonmagnetic state and the magnetic
state drops with temperature due to the decreasing average magnetic moment. We
predict the critical point lies at 1.69 g/cm3 and 8814 K for the magnetic phase, and
at 1.38 g/cm3 and 8697 K for the nonmagnetic phase. The improved agreement
with available experimental results given by spin-polarized simulations compared to
non-spin-polarized simulations suggests we need to consider the magnetism in the
simulations.
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Figure 5.6: The constant of motion ((a) and (d)) as defined in Eq. 2.13, the effec-
tive potential energy (solid squares in (b) and (e)) as defined in Eq. 2.11 and the
total magnetization (solid lines in (c) and (f)) of the system as function of time from
the aiMD simulations starting with two different initial configurations at 3500 K
at 6.63 g/cm3. In both simulations, the system was initialized to be ferromagnetic
at the first MD step and the wavefunction and charge density extrapolation scheme
as implemented in VASP was employed for the following MD steps. We selected
several snapshots and performed the electronic minimization by re-initializing the
system to be ferromagnetic. The resulted effective potential energy and the total
magnetization (empty circles in (b) and (c)) is lower and higher than the one calcu-
lated with the wavefunction extrapolation scheme, respectively. It suggests that for
the spin-polarized simulations, the results of the electronic minimization depends
on the initial trial wavefunction or charge density.



5.4. Conclusions 89

0 1000 2000 3000 4000 5000
Time (fs)

628.0

627.5

627.0

626.5

626.0

625.5

625.0

624.5

624.0

Co
ns

ta
nt

 o
f m

ot
io

n 
[e

V]

a 3500 K and 6.50 g/cm3

3500 K and 6.41 g/cm3

0 1000 2000 3000 4000 5000
Time (fs)

120

130

140

150

160

170

180

M
ag

m
om

 [
B
]

b

Figure 5.7: The constant of motion (a) and the total magnetization (b) of the
system as function of time for FM-aiMD simulations at 3500 K and 6.50 g/cm3 rep-
resented by the blue line, and 6.41 g/cm3 represented by the green line, respectively.
In both simulations, the system was initialized to be ferromagnetic at every time
step.
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Figure 5.8: The calculated force for one randomly selected atom in the snapshot,
pressure, the local magnetic moment for the selected atom, and the total magne-
tization of the different magnetic configurations. The accumulated average of the
generated configurations is shown with a solid line.



5.4. Conclusions 90

0 200 400 600 800 1000
Iteration

3

2

1

0

1
Fo

rc
e 

[e
V/

Å]
a

x direction
y direction
z direction

0 200 400 600 800 1000
Iteration

8

6

4

2

0

P 
[G

Pa
]

b

0 200 400 600 800 1000
Iteration

3
2
1
0
1
2
3

m
ag

m
om

 [
B
]

c

0 200 400 600 800 1000
Iteration

0.4

0.2

0.0

0.2

0.4

m
ag

m
om

 p
er

 a
to

m
 [

B
]

d

Figure 5.9: The information is the same as Fig. 5.8 but for a different snapshot.
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Figure 5.10: The histogram of resulting values of local magnetic moments from
FM-aiGEMC, FM-aiMD, and PM-aiMD simulations at different temperatures.
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Figure 5.11: The average size of the local magnetic moment as a function of
temperature derived from FM-aiGEMC, FM-aiMD, and PM-aiMD simulations.
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Figure 5.12: Radial distribution function (g(r)) for the liquid phase at 3500, 5000,
7500 and 8500 K (a), and for the vapor phase at 7500 K and 8500 K (b), as computed
with the aiGEMC simulations. The shaded areas correspond to our estimate of the
one-sigma uncertainty. The curves were shifted for readability. (c) Comparing the
g(r) resulted from aiGEMC simulations to that from aiMD simulations for iron
in the different magnetic states at 3500 K. For aiMD simulations, we show two
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pressure density. (d) The coordination number for the liquid iron as a function of
temperature.
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6.1 Conclusions

The prevailing theory to explain the origin of the Moon is the giant impact hypoth-
esis, where a Mars-sized impactor collides with the proto-Earth, and the Moon is
subsequently accreted from the proto-lunar disk made of the ejected materials. As
laboratory-scale experiments are not able to simulate such planetary-scale impacts,
our understanding of the giant impact mostly comes from hydrodynamic simula-
tions. However, the outcome of these simulations depends heavily on the available
equations of state to describe the thermodynamic response of the constitutive ma-
terials of the proto-Earth and of the impactor to extreme shock waves.

Iron as a building block material of the terrestrial planets naturally received signif-
icant attention. But the major effort has been put to determine its phase diagram
up to the Earth’s core conditions (126-360 GPa and 3000-7000 K) and beyond.
The studies of iron at low densities and high temperatures are still scarce, causing
great uncertainty in estimating its liquid-vapor equilibrium densities and the critical
point. Consequently, it prevents us from developing an accurate equation of state
for iron. As an essential ingredient in the hydrodynamic simulations, the equa-
tion of state would affect the impact energy distribution and thus cause different
geochemical and geodynamic consequences, such as the amount of iron vaporized,
the extent of iron-silicates equilibration, and the depth of the magma ocean. This
study focuses on the thermodynamic and thermophysical properties of iron in the
low-density regime to better understand iron’s behavior during giant impacts.

In the first attempt, we employed ab initio molecular dynamics to study the me-
chanically stable limit of the liquid iron under the hydrostatic tension (i.e., the
spinodal line), which helps locate the position of the critical point. We found the
critical point lies in the temperature range of 9000-9350 K and the density range
of 1.85-2.40 g/cm3 corresponding to a pressures range of 4-7 kbars. We also com-
puted two Hugoniot lines starting from two realistic initial states (1GPa and 1500
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K, 40 GPa and 4000 K) to model the behavior of the iron core in planetesimals
and planets during the impacts. By comparing the entropy values, determined by
the two-phase thermodynamic method, along these Hugoniot lines to that at the
boiling point of 1 bar and 3150 K, we found that the shock pressure required to
reach the onset vaporization upon release and cooling is 312 GPa and 365 GPa,
respectively. The application of the impedance matching method yields the peak
condition achieved for a planetesimal colliding with the Earth. We found at least
70 % of the impacts in the late veneer results in a peak pressure larger than the
threshold, suggesting the partial core vaporization is readily achieved. This would
help mix the highly siderophile elements into magma ponds or oceans and explain
the excess amount of siderophile elements in the Earth’s mantle (Rubie et al., 2015).
For giant impacts, the geometry effect plays an essential role in controlling the shock
peak conditions, and the impedance matching method is no longer valid. However,
considering the significantly lower threshold for vaporization than the previous es-
timation (887 GPa) which was developed based on an inaccurate equation of state,
our study suggests that Theia’s core underwent partial vaporization and previous
hydrodynamic simulation underestimate the vapor production during giant impacts.
After cooling down, the vaporized iron would condensate into a distribution of small
droplets on the centimeter-level. It would enhance the iron-silicates equilibration
and easily explain the recent W-isotope data that requires at least 30% core-mantle
equilibration in the aftermath of the giant impact.

Additionally, we characterize the structural and transport properties of the fluid
iron in the low-density region, including diffusion coefficients, viscosity, and thermal
conductivity. They may provide a better constraint on iron’s behavior in the proto-
lunar disk. The diffusivity increases by two orders of magnitude from about 1.0 ×
10−8 m2s−1 at 7.75 g/cm3 and 3000 K to about 1.3 × 10−6 m2s−1 at 0.37 g/cm3

and 12000 K. We found the low-density fluid is highly depolymerized and is mainly
made of isolated atoms. The coordination number increases strongly with density
below 7.75 g/cm3, then saturates at a value of 14 that persists at least up to 6000
K and 13.3 g/cm3, which is the condition at the Earth’s inner-outer core boundary.
The viscosity of iron in the outer parts of the proto-lunar disk is also extremely
low, on the order of 10−3 Pa s. The computed electronic and thermal conductivities
decrease with the density, suggesting a gradual reduction of the metallic character.

To better constrain the liquid-vapor equilibrium and the critical point of iron, we
implemented the Gibbs ensemble Monte Carlo method, which avoids the interface
issues and allows for a more reliable determination of the phase equilibrium. The
Gibbs ensemble method, coupled with the density functional theory, has successfully
been applied to the insulating system, where the internal energy of the electron-ion
system is used in the Monte Carlo acceptance criteria. However, we need to consider
excited electronic states for the metallic system at high temperatures. Therefore,
it is necessary to utilize the finite-temperature density functional theory to capture
these excited states. By taking a step back to statistical physics, we found the
effective potential energy that includes the electronic free energy should be used in
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the Monte Carlo acceptance criteria. Then we applied this method to sodium where
several experimental data are available. The obtained liquid-vapor equilibrium and
critical point are in good agreement with the experimental results, confirming our
implementation’s reliability and validity.

However, the application of this method to iron is not straightforward due to the
extra complication from the paramagnetism of the fluid iron at high temperatures.
We first performed ab initio Gibbs ensemble Monte Carlo simulations for iron in
the nonmagnetic and ferromagnetic states. Based on the pressure-density fluctu-
ation, we found the bulk modulus of the liquid iron from 3500 K to 7500 K is
large enough that a variation of 1 GPa in pressure only changes the density by a
few percent. Therefore, we can approximate the liquid-vapor equilibrium densities
for the liquid branch with the densities at zero pressure in this temperature range.
This is confirmed by our ab initio molecular dynamics simulation results. In order
to evaluate the effect of the possible paramagnetism, we employed the disordered
local moment molecular dynamics to investigate the liquid density at zero pressure,
where the paramagnetic state is treated by the statistical average of many random
magnetic configurations known as the magnetic sampling method. Our study shows
the ferromagnetic liquid iron phase is a good proxy to the paramagnetic liquid iron
phase in terms of liquid-vapor equilibrium densities. The improved agreement with
available experimental results for the liquid iron density at around ambient pressure
up to 4000 K given by spin-polarized simulations compared to non-spin-polarized
simulations suggests we need to consider the magnetism in our simulations. Our
preliminary results predict the critical point lies at 1.69 g/cm3 and 8814 K for the
magnetic iron phase, and at 1.38 g/cm3 and 8697 K for the nonmagnetic iron phase.
But we are running more simulations from 7500 K to 8500 K in order to accurately
determine the critical point.

6.2 Future work

Within the time available, several problems could not be resolved. However, they
are necessary to better understand the thermodynamic properties of iron in the
low-density regime. It includes the following:

1. The role of exchange-correlation functional on the liquid-vapor equilibrium
of sodium and iron. In this study, we employed the PBE-GGA exchange-
correlation functional. It is a general trend that the GGA functionals un-
derbind atoms, leading to a slighly longer bond length. Therefore, underes-
timating the liquid sodium densities around zero pressure, as we observed in
Chapter 4, meets our expectations. For bcc iron at zero temperature, PBE
underestimates its density as well. However, we found PBE overestimates the
zero pressure densities of the liquid iron at high temperatures, even includ-
ing the magnetism. Therefore, future work is needed to clarify the reason for
the inconsistent performance of PBE on different iron phases. The inclusion
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of dispersion interactions may change the phase equilibrium, which needs to
be investigated in the future. However, we expect that the vapor may suffer
a more significant impact since its bulk modulus is very small, and a tiny
variation of pressure would shift the density considerably.

2. The effect of the longitudinal fluctuation of the magnetization on the liquid-
vapor equilibrium of iron. The density difference of 0.5 g/cm3 at 3500 K
between experimental results and disorder local magnetic moment molecular
dynamics simulations might be partially caused by the longitudinal fluctuation
that is not considered in our study. It would shift the zero pressure densities
to a lower value and improve the agreement with the experimental results.
However, there is no consistent and cost-effective way to incorporate this effect
in DFT calculations. Therefore, more works need to be done on improving
the theoretical treatment for paramagnetism at high temperature.
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