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se doit de toujours am éliorer ses capacit és de production ainsi que sa connaissance de la consommation de ses clients. Ansi, l'analyse de signaux temporels est au coeur de nombreuses probl ématiques rencontr ées par les ing énieurs d'EDF, par exemple pour la surveillance de machines en production ou la pr édiction de consommation des clients. Dans ce cadre, les algorithmes d'apprentissage automatique ont prouv é qu'ils pouvaint r épondre à ces probl ématiques mais n écessitent bien souvent de larges bases de donn ées d'apprentissage, souvent co ûteuses à collecter. L'apprentissage par transfert englobe plusieurs m éthodes visant à capitaliser sur un mod èle ou une base de donn ées d éj à existants et pourrait permettre de r éduire le besoin de collecte de nouvelles donn ées. Dans ce contexte, ce travail propose d' étudier et de proposer de nouvelles m éthodes d'apprentissage par transfert pour des donn ées temporelles, avec en vis ée des applications sur l' étude de la consommation d'un foyer et la surveillance de machines par des capteurs en production.

Motivations scientifiques et industrielles

Autour de nous, de nombreuses activit és impliquent une variation dans le temps : les prix du p étrole changent toutes Hz à plusieurs kHz, un échantillonage bien sup érieur à celui de 30 minutes de Linky.

Par cons équent, la collecte de donn ées pour Le NILM est tr ès co ûteuse : non seulement la consommation de l'ensemble du m énage doit être mesur ée toutes les secondes, mais aussi la consommation de chaque appareil pr ésent dans le foyer. Cela signifie que pour collecter des donn ées pour une seule maison, un technicien doit venir à la maison pour installer les capteurs sur chaque appareil. Il serait irr éaliste de le faire à grande échelle et aucun ensemble de donn ées publiques collect ées pour le NILM ne contient plus d'une centaine de m énages. Nous devons donc concevoir des m éthodes de le NILM qui soient robustes à un changement de foyer.

Les s éries temporelles apparaissent aussi dans les syst èmes de production d'EDF car chaque syst ème industriel est surveill é par des capteurs. Dans les centrales électriques, plusieurs machines sont surveill ées pour d étecter des comportements anormaux et planifier une maintenance. Pour les éoliennes ou les panneaux solaires, la pr évision de la production est le principal d éfi. Lors de l'apprentissage d'un mod èle de pr évision sur un syst ème donn é, le transfert vers un autre syst ème peut entra 1ner une baisse de performance d ûe potentiellement à un changement d'environnement ou un changement de fonctionnement apr ès une maintenance.

Dans cette th èse, nous abordons la question de l'apprentissage par transfert pour les s éries temporelles.

L'objectif est de concevoir des m éthodes capables d'extraire des caract éristiques de s éries temporelles robustes à un changement d'environnement. Bien que les m éthodes d évelopp ées dans cette th èse soient d évelopp ées pour r épondre à des probl ématiques d'EDF, notre cadre est g én érique à d'autres types de probl ématiques.

L'apprentissage par transfert [START_REF] Pan | A survey on transfer learning[END_REF] est un sous-domaine de l'apprentissage automatique ayant rec ¸u beaucoup d'attention au cours de la derni ère d écennie. Une des principales hypoth èses de l'apprentissage automatique traditionnel est que les donn ées utilis ées pour apprendre un mod èle suivent la m ême distribution que les donn ées auxquelles le mod èle sera appliqu é. L'apprentissage par transfert suppose que cette hypoth èse n'est pas v érifi ée et propose de surmonter ce probl ème. L'apprentissage d'un nouveau mod èle sur le nouvel environnement n'est pas toujours possible, par exemple si la collecte de donn ées est co ûteuse. L'apprentissage par transfert vise à capitaliser sur les donn ées ou les mod èles existants pour s'adapter plus rapidement à un nouvel environnement.

Une analogie avec l'apprentissage humain serait qu'un guitariste confirm é apprendra plus rapidement à jouer du piano qu'un d ébutant complet.

Une s érie temporelle est un ensemble de mesures qui varient dans le temps. Elles sont particuli èrement difficiles à r éaliser car elles sont souvent de grande dimension, soumises au bruit et la d épendance temporelle brise l'hypoth èse d'ind épendance faite par de nombreux mod èles d'apprentissage statistique. C'est pourquoi des m éthodes sp écifiques aux s éries temporelles ont ét é d évelopp ées. En g én éral, les s éries temporelles brutes sont transform ées en de nouvelles repr ésentations, soit par une transformation experte telle que la transform ée de Fourier [START_REF] Bloomfield | Fourier analysis of time series: an introduction[END_REF] ou la transform ée en ondelettes [START_REF] Mallat | A wavelet tour of signal processing[END_REF], soit par l'apprentissage de cette transformation.

Dans cette th èse, nous proposons de coupler apprentissage par transfert et analyse des s éries temporelles.

Figure 1: Illustration du NILM: à partir de la consommation totale de la maison, l'objectif est de retrouver la consommation de chaque appareil.

En effet, si ces deux sujets ont suscit é beaucoup d'int ér êt dans la communaut é de l'apprentissage automatique, le d éveloppement de m éthodes d'apprentissage par transfert pour les s éries temporelles n'a suscit é qu'un nombre limit é de travaux [START_REF] Fawaz | Transfer learning for time series classification[END_REF]. L'objectif principal de cette th èse peut être formul é comme suit :

Pouvons-nous d évelopper des m éthodes d'extraction de features transf érables à partir de s éries temporelles ?

Les m éthodes pr ésent ées dans cette th èse s'appuient sur l'analyse traditionnelle des s éries chronologiques et transf èrent l'apprentissage afin de r éduire la n écessit é de collecter de nouvelles donn ées apr ès un changement d'environnement.

Contributions

Dans cette th èse, nous nous int éressons au probl ème de l'apprentissage par transfert appliqu é aux s éries chronologiques.

Nous étudions notamment le cadre dans lequel un ensemble de donn ées "source" est disponible, mais nous voulons apprendre un mod èle capable de g én éraliser à un ensemble de donn ées "cible" Par exemple, le jeu de donn ées source sera un m énage o ù la consommation de chaque appareil est mesur ée et la cible est une nouvelle maison, avec diff érents appareils et potentiellement une diff érente composition du foyer. Ce changement est repr ésent é par une modification de la distribution des donn ées. Il est clair que si la composition des maisons est radicalement diff érente, l'algorithme appris sur la maison source a peu de chances de fonctionner correctement sur la maison cible.

Afin de pouvoir g én éraliser à une nouvelle maison, diff érentes approches sont possibles. La g én éralisation est un probl ème de longue date dans l'apprentissage automatique, et plusieurs travaux ont propos é des garanties sur la capacit é de g én éralisation des m éthodes d'apprentissage statistique lorsqu'il n'y a pas de changement dans la distribution [START_REF] Mohri | Foundations of machine learning[END_REF] [START_REF] Vapnik | The nature of statistical learning theory[END_REF]. Lorsqu'il y a un changement d'environnement, ces garanties ne sont plus valables. C'est pourquoi de nouveaux travaux proposent des garanties d'apprentissage avec un changement de distribution. L'un des th èmes abord és dans le cadre d'un changement d'environnement est l'apprentissage de l'invariance ou des causalit és [142]. En g én éral, l' étude des causalit és formule le probl ème de l'apprentissage des relations entre diff érentes variables qui sont robustes au changement d'environnement.

L'apprentissage par transfert couvre un large éventail d'hypoth èses et de m éthodes, allant de la recherche d'une invariance entre plusieurs environnements à l'adaptation à un nouvel environnement. Dans cette th èse, nous nous int éressons au cadre d'adaptation de domaine, qui diff ère l ég èrement de l'apprentissage d'invariance. L'adaptation de domaine suppose que la nature des donn ées est la m ême pour le domaine source et le domaine cible, ie les variables d'entr ée mesur ées et la variable à pr édire sont de m ême nature dans chaque domaine. De plus, l'objectif de l'adaptation de domaine est d'extraire du domaine source les connaissances qui sont pertinentes pour le domaine cible. Cela doit être fait avec seulement des donn ées non étiquet ées ou un petit nombre de donn ées étiquet ées dans le jeu de donn ées cible.

Diff érents travaux ont pr ésent é des garanties pour l'adaptation de domaine [START_REF] Ben-David | Analysis of representations for domain adaptation[END_REF] [START_REF] Mansour | Domain adaptation: Learning bounds and algorithms[END_REF]. Dans le chapitre 2, nous pr ésentons les principales bornes de la litt érature pour l'adaptation de domaine. Nous passons également en revue plusieurs m éthodes d'adaptation de domaine afin de donner un aperc ¸u de la mani ère de r éduire le d écalage entre les diff érents ensembles de donn ées. Dans ce chapitre, nous pr ésenterons également l'adaptation à partir de plusieurs sources. En effet, lors de l'adaptation à partir de plusieurs domaines, il est possible d'extraire davantage d'information. Une premi ère possibilit é est d'utiliser les diff érents domaines pour extraire une invariance entre les domainesafin de g én éraliser à un nouveau domaine de m ême nature. On peut également essayer d'apprendre quels sont les domaines sources les plus pertinents pour la cible. Par exemple, si plusieurs maisons sont surveill ées et utilis ées comme domaines sources, lors de l'adaptation à une nouvelle maison cible, on s'attend à s électionner les maisons sources qui ont des caract éristiques similaires à la cible.

La plupart des m éthodes traditionnelles d'adaptation de domaine reposent sur la r éduction d'un d écalage entre les distributions source et cible. Lorsque l'on travaille avec des vecteurs x ∈ R d de dimension d et un échantillon ind épendamment et identiquement distribu é (iid) {x (1) , ..., x (n) }, il est possible d'estimer la distribution de l' échantillon avec des estimateurs courants tels que l'estimateur de densit é de noyau. Lorsque l'on travaille avec une s érie temporlle de dimensions d {x 1 , ..., x T } o ù x t ∈ R d , l'estimation de sa distribution n'est pas simple.

On pourrait consid érer x comme un vecteur de dimension dT mais tr ès souvent, T est plus grand que la taille de l' échantillon n. En effet, les s éries temporelles brutes sont souvent de haute dimension, soumises au bruit et ont une structure sp écifique avec leur d épendance temporelle.

Pour ces raisons, il est courant de transformer les s éries temporelles brutes en un nouvel espace de repr ésentation.

Dans le Chapitre 3, nous passons en revue certaines m éthodes d'extraction de caract éristiques courantes pour les s éries chronologiques. En particulier, nous nous int éressons aux r éseaux de neurones qui ont suscit é beaucoup d'int ér êt avec leur succ ès dans la communaut é de la vision par ordinateur [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF]. Il a ét é d émontr é que les r éseaux de neurones sont capables d'extraire des caract éristiques g én érales pour des donn ées d'images ou de texte lorsqu'elles sont apprises sur de grands ensembles de donn ées. Nous verrons que pour les s éries temporelles, il est plus difficile d' évaluer ces capacit és de g én éralisation car les s éries temporelles sont pr ésentent dans de nombreux domaines tr ès h ét érog ènes et aucun grand ensemble de donn ées étiquet ées n'est disponible à ce jour.

Dans ce chapitre, nous étudions le probl ème de la reconnaissance des appareils, ie reconna 1tre un appareil à partir d'un de ses cycles de consommation (aussi appel é signature de l'appareil). Nous discutons de diff érentes techniques de normalisation pour les s éries temporelles et montrons que pour trouver des invariants entre les ensembles de donn ées, des m éthodes sp écifiques sont n écessaires. Nous introduisons une m éthode d'ensemble de normalisation qui donne une meilleure robustesse à changement de domaine. Nous illustrons nos r ésultats sur des jeux de donn ées de NILM collect és à la fois en interne chez EDF et des jeux de donn ées publics.

Encourag és par la capacit é des r éseaux de neurones à apprendre des repr ésentations informatives pour les s éries temporelles, nous proposons une m éthode d'adaptation de domaine bas ée sur les r éseaux de neurones dans le Chapitre 4. Notre m éthode s'inspire de l'adaptation de domain adverse (domain-adversarial adaptation)

[72] : l'objectif formul é vise à apprendre une repr ésentation qui (i) soit discriminante pour la variable à pr édire et (ii) r éduise l' écart entre les domaines. Alors que la plupart des travaux pr éc édents se concentrent sur des probl èmes de classification, le NILM a pour but de trouver la consommation (une grandeur r éelle) et est g én éralement un probl ème de r égression [START_REF] Kelly | Neural nilm: Deep neural networks applied to energy disaggregation[END_REF]. Chapter 1

Introduction

Motivation

As an electricity producer, one of the main challenges of EDF is to ensure the matching between electricity production and electricity consumption, both for safety and economical reasons. While EDF controls the production of electricity and can adjust it, the consumption depends on external clients. Hence, EDF aims to enhance its knowledge of electricity consumption of its users.

A better understanding of the consumption patterns of its clients would have several other upsides for EDF. As the French electricity market has been open to competitors in 2010, EDF wants to offer contracts tailored for its clients. Moreover, self-production of electricity via a wind plant or solar panels attached to a household is larger everyday. Hence, understanding consumption at a household level is crucial to a better organization of the electricity network.

Consumption data of a household is traditionally monitored using a single sensor. The historical sensor meters could not be read remotely and were only read once per year by an EDF employee. Since 2015, Linky smart sensors are being deployed in France to replace the previous meters. These sensors collect the electricity consumption every 30 minutes and the consumption data is sent to EDF with the client's consent. Still, even with Linky sensors, access to household consumption data is still limited, due to transmission and processing costs or privacy issues.

Moreover, 30 minute data gives a general overview of a household consumption but does not provide details about the usage of different devices. Disagreggating the load curve (electricity consumption) of a household to the usage of each device is the topic of Non Intrusive Load Monitoring (NILM), illustrated in Figure 1.1. NILM may give a complete overview of the consumption of a client and could allow EDF to propose contracts perfectly tailored to clients' needs. But NILM requires data that is sampled from 1Hz to several kHz, which is far from the 30 minute sampling of Linky.

Hence, collecting training data for NILM is even more costly: not only do we need to monitor the whole household consumption at a second interval, but we also need to monitor each device in the household. This means that for collecting data for only one house, a technician needs to come to the home to install the sensors on every device which comes at an important cost. It would be unrealistic to do it on a large scale and no public dataset collected for NILM contained more than a hundred households. Hence, we need to design NILM methods that are robust to a change of household.

Time series can also arise in production systems at EDF as every industrial system is monitored with sensors.

In power plants, several machines are monitored to detect abnormal behaviours and plan maintenance. In wind plants or solar panels, production forecasting is the main challenge. When learning a prediction model on a given system, transferring it to a different system can lead to a drop in performance given to a distribution shift. It could also happen on the same system after a maintenance.

In this thesis, we tackle the issue of statistical learning on time series with a distribution shift, also called transfer learning for time series. The objective is to design methods able to extract features robust to a change of environment. While the methods developed in this thesis are applied to EDF applications, our framework is generic to other kind of temporal data.

Transfer Learning [START_REF] Pan | A survey on transfer learning[END_REF] is a sub-field of Machine Learning that received a lot of attention in the last decade.

In traditional Machine Learning, one of the main assumption is that the data used to train a model follows the same distribution as the data to which the model will be applied. In Transfer Learning, this assumption does not environment. An analogy with human learning would be that a proved guitarist will learn more quickly how to play the piano than a complete beginner.

Time Series analysis is a long-standing issue in the data mining community, with applications in many fields. A time series is a collection of measurements that vary over time. They are particularly challenging as they often are high-dimensional, subject to noise and the temporal dependence breaks the independence assumption made by many statistical learning models. Hence, methods specific to time series were developed. In general, the raw time series are transformed to new features, either by a hand-crafted transformation such as Fourier Transform [START_REF] Bloomfield | Fourier analysis of time series: an introduction[END_REF] or

Wavelet Transform [START_REF] Mallat | A wavelet tour of signal processing[END_REF] or by learning this transformation.

In this thesis, we match Transfer Learning and Time Series analysis. Indeed, while both topics attracted a lot of interest in the machine learning community, developing transfer learning methods for time series has prompted only a limited amount of works [START_REF] Fawaz | Transfer learning for time series classification[END_REF]. The main goal of this thesis can be formulated as follows:

Can we develop dedicated methods to extract transferable features from time series?

Organization of the manuscript

Transfer Learning covers a wide range of frameworks and methods, from finding invariance to adapting to a new environment. In this thesis, we are interested in the domain adaptation framework, which is slightly different from learning invariance. Domain adaptation assumes that the nature of the data is the same for the source and the target domain, ie the measured input variables and the variable to predict are of the same nature in every domain.

Moreover, in domain adaptation, the goal is to extract knowledge from the source domain that is relevant to the target domain. This needs to be done with only unlabeled data or a few labeled data in the target dataset.

In Chapter 2, we present the main domain adaptation guarantees of the literature [24] [121]. We also review several domain adaptation methods to give an overview of how to reduce the shift between different datasets. In that Chapter, we will also introduce adaptation from multiple sources as specific methods can be developed for this scenario. Firstly, one could use the several domains to learn invariance between domains, which is called domain generalization. One could also try to learn which source domains are the most relevant to the target. For instance, if several houses are monitored and used as a source domains, when adapting to a new target house, one would expect to select the source houses that have similar characteristics to the target. This is called multi-source domain adaptation.

Most traditional methods of domain adaptation relies on reducing a shift between the source and target distributions. When working with d-dimensional vectors x ∈ R d and an independently identically distributed (iid) sample {x (1) , ..., x (n) }, estimating the distribution of the sample is possible with common estimators such as Kernel Density

Estimator. When working with a d-dimensional time series {x 1 , ..., x T } where x t ∈ R d , estimating its distribution is not straightforward. One could vectorize x to a vector of dimension dT but very often, T is larger than the sample size n. Indeed, raw time series are often high-dimensional, subject to noise and have a specific structure with their temporal dependence.

For these reasons, it is common to transform raw time series to a new feature space. In Chapter 3, we will review some common feature extraction methods for time series. In particular, we are interested in neural networks which gained a lot of interest with their success in the computer vision community [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF]. Neural networks have been

shown to be able to extract general features for image or text data when learnt on large datasets. We will see that for time series, it is harder to evaluate those generalization capabilities as time series are heterogeneous as they arise in many fields and no large labeled dataset is available.

We will study the problem of appliance recognition, ie recognize an appliance from its consumption patterns. We discuss different normalization techniques for time series and show that in order to find invariants between datasets, specific methods are required. We introduce a normalization ensembling method that allows for better robustness when changing domain. We illustrate our results on non intrusive load monitoring datasets both collected at EDF and publicly available.

Encouraged by the ability of neural networks to learn informative features for time series, we propose a domain adaptation method based on neural networks in Chapter 4. It follows the line of adversarial domain adaptation [START_REF] Ganin | Domain-adversarial training of neural networks[END_REF]: the formulated objective aims to learn features that are (i) discriminative for the variable to predict and (ii) reducing the shift between domains. While most previous works focus on classification problems, Non-Intrusive Load Monitoring aims to find the consumption (a real value) and is generally a regression problem [START_REF] Kelly | Neural nilm: Deep neural networks applied to energy disaggregation[END_REF]. We

propose a new measure of discrepancy between domains, a new theoretical bound and an algorithm that offers a unifying view over many previous adversarial domain adaptation methods. We extend this guarantee to adaptation with multiple sources, where we propose to attribute weights to the sources depending on their relationship with the target domain. We illustrate our results on several NILM datasets, but also on other standard domain adaptation datasets: Amazon Multi-Domain Sentiment dataset [START_REF] Blitzer | Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification[END_REF] (text) and digits dataset [START_REF] Ganin | Domain-adversarial training of neural networks[END_REF] (images).

While neural network based methods give very good experimental results, they suffer from two issues: they generally require a lot of training data and are hardly interpretable. It makes it hard to integrate them in industrial applications, as very often, operators want to understand the behaviour of a model. Hence, in Chapter 5, we propose a transfer learning method for multivariate time series based on covariance information.

Namely, given several systems that are monitored with d sensors we propose to build a virtual sensor subspace of dimension d < d such the relationship between the extracted dimensions are the same in every system. As such, we propose to separate the knowledge that is transferable between every domain from the domain-specific knowledge. Our framework is applicable both to domain generalization and domain adaptation. As we only work on covariance information from multivariate time series, the new feature space lies on the manifold of Symmetric Positive Definite matrices. Our method makes use of the specific geometry of this manifold. Unfortunately, at the time of this thesis, no industrial dataset at EDF contained enough labeled data to experiment our method. Hence, we experiment our method on synthetic data and Human Activity Recognition datasets to show the strengths and limits of our approaches.

Those different contributions led to 3 publications in peer-reviewed national and international conferences and a pre-print:

• Chapter 3 G. The contribution of Chapter 5 will lead to a publication in the future. Finally, experiments conducted on public datasets for this thesis are publicly available, in the form of a contribution to the adapt package and public git repositories. We give in Appendix C details about the different implementations and how to reproduce the experiments on public datasets.

Chapter 2

Background on Transfer Learning

Contents fault detection model trained on an industrial system: when using it on a new industrial system operating in a different environment, the model under-performs. Transfer learning is a sub-field of Machine Learning where practitioners try to use knowledge learnt on a source problem to transfer it to a target problem. It has gained a lot of interest as often, data collection, annotation and storage for a new problem is expensive. Transfer learning has already proven its efficiency in the computer vision community: the knowledge learnt by an algorithm learnt to recognize a large number of objects can be used for more specific problems.

There are two natural questions arising with transfer learning, as was highlighted in [START_REF] Pan | A survey on transfer learning[END_REF]. The first question is on the guarantees of transfer learning: when can one expect a source problem to be relevant for a target domain? This is crucial as transferring knowledge from an unrelated source problem could lead to negative transfer, ie performing worse than learning directly on the target problem. The second natural question is on what and how to transfer this

knowledge. The answer appears to be dependent on the nature of the problem.

In this chapter, we introduce the transfer learning framework and give an overview of the different transfer learning scenarios and recall their definition, as they are sometimes used interchangeably in the literature. As the main focus of this work is on domain adaptation, we review the existing theory of Domain Adaptation. Then we present an overview of domain adaptation methods categorized on what they use to adapt the learning model. Finally, we also define the concept of learning from multiple sources.

What is Transfer Learning?

Ideally, when predicting the consumption of a device in a house based on its total consumption, one would collect data from this house and apply the model on the same house. In a classical machine learning setting, practitioners are generally provided with a training sample in order to perform a prediction task. Then, a model learned to perform this task is assumed to have good generalization capacities on a test sample as it is assumed to come from the same distribution.

Transfer learning breaks one of the traditional machine learning assumptions: the domain or task to be learnt are different from the domain or task on which the model is applied. For instance, the input source data space might be different from the target one, the task could change or there could be a shift in the distributions. In the general transfer learning framework, one assumes the existence of a source domain and task and a target domain and task.

If there is enough labeled data in the target domain, then one can simply use traditional machine learning to learn a model. But when there is not enough labeled target data, one wants to capitalize on the source data to extract knowledge that is transferable to the target data.

Following [START_REF] Pan | A survey on transfer learning[END_REF] and [START_REF] Weiss | A survey of transfer learning[END_REF], we introduce a domain D made of a feature space X and a marginal probability distribution P , such that any independent sample X = {x 1 , ..., x n } drawn from that domain is independently and identically distributed (x i i.i.d

∼ P ) and we write D = {X , P (X)}. We also introduce a task T = {Y, P (Y |X)} where Different taxonomies exist for transfer learning: for instance, in a survey [START_REF] Pan | A survey on transfer learning[END_REF], authors propose an assumptionbased taxonomy and a data-based taxonomy. Here we propose a taxonomy based on the assumptions made on the shift between source and target dataset. The assumptions can be made on a difference between the probabilities (homogeneous transfer learning) or the input and label spaces (heterogeneous transfer learning):

• P S (X) = P T (X) corresponds to domain adaptation. This is also referenced as sample bias in the literature.

Namely, the source and target marginal distributions of the input data are different, hence a model learnt on the source data might not generalize well to data drawn from a different distributions. For instance, one could imagine having seen the consumption of only people living alone and wanting to transfer the knowledge to family houses.

• P S (Y S |X S ) = P T (Y T |X T ) corresponds to concept shift. Here, the conditional distributions are different. For instance, if the source is consumption from winter data and the target the consumption from summer data and one wants to predict the consumption of a heater, there is a shift in the conditional (and also in the marginals, as it often happens in practice). We will also refer to this scenario as semi-supervised domain adaptation.

• X S = X T corresponds to heterogeneous transfer learning. This could be the case when transferring information from a system monitored by a set of sensors to another system with a different set of sensors.

• Y S = Y T corresponds to a label set mismatch. For instance, after learning to predict the consumption of a fridge from the house consumption, one could capitalize on this model to predict the consumption of an oven.

Several of those assumptions may happen at the same time. The more assumptions are broken, the harder the transfer is. Hence, most methods focus on one or two assumptions. Another common assumption that is often mentioned is a target shift, ie the case when P S (Y S ) = P T (Y T ).

In our work, unless otherwise stated, we focus on homogeneous transfer learning ie the input space is the same X S = X T and the label space is the same Y S = Y T . Hence, we are interested on differences between marginal and conditional distributions on the data. Namely, we are interested in problems where we have a large labeled source dataset and a target dataset with limited or no labeled data but possibly large unlabeled data.

The next sections review the theoretical guarantees of domain adaptation and present an inventory of existing methods. Finally, we review the adaptation with multiple source domains.

Theory of Domain Adaptation

The intuition behind Domain Adaptation is that it is possible to learn a model on a source domain and transfer it to a target domain if the domains are related. Defining rigorously how both domains should be related for adaptation to be possible is the inspiration of different works on domain adaptation theory. Namely, we seek to bound the error made on target set with information based on the source dataset. As there is a shift in the marginal or the conditional distributions, there is a need to be able to measure the shift between distributions.

Like for transfer learning, Domain Adaptation considers different scenarios, whose name appeared to be used interchangeably in the literature. Hence, in this work we refer to the different scenarios as:

• Unsupervised Domain Adaptation: when one has access to labeled source data and unlabeled target data 

Generalization bounds

Having theoretical guarantees on the performance and generalization abilities of a model is of primordial importance to machine learning. It has been well studied for traditional machine learning with different approaches. Two of the most common are based on the VC dimension and the Rademacher complexity. We first recall those two main results from statistical learning theory.

Generalization bound with VC-Dimension

In this section, we consider an input set X and a target set Y = {+1, -1} (binary classification) and an i.i.d. sample S = {(x 1 , y 1 ), ..., (x n , y n )} such that (x i , y i ) ∼ P (X, Y ). We consider a hypothesis class H : X → Y. For any hypothesis function h ∈ H, its associated risk is defined as:

R(h) = E (x,y)∼P (X,Y ) [L(h(x), y))] (2.1) 
where L : Y × Y → R is a loss function (for instance L : (y, y ) → 1(y = y )). Similarly, its empirical risk is defined as

R S (h) = 1 n n i=1 L(h(x i ), y i ) (2.2)
A natural question that comes to mind is to explore the error provided by the empirical risk estimation. For this purpose, Vapnik and Chervonenkis introduced the Vapnik-Chervonenkis dimension of an hypothesis class [START_REF] Vapnik | The nature of statistical learning theory[END_REF]. It is based on the ability of a hypothesis to shatter a set. To define the VC-dimension, one firstly needs to define the growth function, also called the shatter coefficient. 

V C H = max m {m|Π H (m) = 2 m } (2.4)
Using this definition, the following generalization bound on the empirical risk was proven [START_REF] Vapnik | The nature of statistical learning theory[END_REF]:

Theorem 1.
Using the previous notations with d = V C H , for any hypothesis h ∈ H, for any δ ∈]0, 1[, with probability at least 1 -δ over the choice of sample S = {(x 1 , y 1 ), ...,

(x m , y m )} ∼ (P (X, Y )) m , R(h) ≤ R S (h) + 4 m d ln 2em d + ln 4 δ (2.5) 
This bound offers an upper-bound on the gap between the empirical estimate of the error and its true value for a sample size m. VC-Dimension has been studied for many well-known classes of hypothesis and is still largely used in statistical learning theory. Bounds for the regression case can also be derived using pseudo-dimension [START_REF] Mohri | Foundations of machine learning[END_REF].

Generalization bound with Rademacher Complexity

Rademacher Complexity has been introduced as an alternative measure of the complexity of an hypothesis class.

While VC-Dimension measures the ability of an hypothesis class to shatter a dataset, Rademacher Complexity intuitively measures its ability to fit to random noise.

Keeping the same notations as before, we introduce the Rademacher variables σ taking binary values in {-1, +1} such that p σ (σ = 1) = 1 2 and p σ (σ = -1) = 1 2 . Then we introduce the Rademacher Complexity in the next definition. Definition 3. For a sample S = {x 1 , ..., x m }, the empirical Rademacher complexity of a hypothesis class H is defined as

R S (H) = E σ sup h∈H 2 m m i=1 σ i h(x i ) (2.6)
where (σ 1 , ..., σ m ) are m i.i.d Rademacher variables. Moreover, the Rademacher complexity of an hypothesis class

H is defined as R m (H) = E S∼(P (X)) m [R S (H)] (2.7)
The Rademacher Complexity is defined as an expectation over every sample possible when VC-Dimension includes a supremum over the samples. From there, it is possible to derive a bound based on the Rademacher Complexity of the hypothesis class.

Theorem 2. Using the previous notations , for any hypothesis h ∈ H, for any δ ∈ [0, 1[, with probability at least 1 -δ over the choice of sample 

S = {x 1 , ..., x m } ∼ (P (X, Y )) m , R(h) ≤ R S (h) + R m (H) + ln(1/δ) 2m ( 
)} ∼ (P (X, Y )) m , R(h) ≤ R S (h) + 2µR m (H) + M ln 1/δ 2m (2.9)
For instance, if we assume Y to be a bounded subset of R, then the 2 loss L(y, y ) = (y -y ) 2 respects the assumptions of the theorem.

Other generalization bounds have been proposed based on PAC-Bayesian Theory [START_REF] Mcallester | Some pac-bayesian theorems[END_REF] or Stability [START_REF] Bousquet | Stability and generalization[END_REF] but are out of the scope of this work. Now that we have introduced some of the classical generalization bounds in the typical machine learning setting, we extend them in a presence of a shift in the distributions.

Divergence-based Domain Adaptation

The previous framework focuses on the generalization ability to a sample drawn from the same distribution. In this part, we review bounds for a sample drawn from a different distribution presented in [START_REF] Ben-David | A theory of learning from different domains[END_REF] and [START_REF] Mansour | Domain adaptation: Learning bounds and algorithms[END_REF].

H-Divergence based Domain Adaptation [25]

In the seminal paper of Ben-David et al. (2006) [START_REF] Ben-David | Analysis of representations for domain adaptation[END_REF], authors define a theoretical framework for domain adaptation introduced a specific distance and obtained a bound that was later corrected in [START_REF] Blitzer | Learning bounds for domain adaptation[END_REF] and [START_REF] Ben-David | A theory of learning from different domains[END_REF]. They consider the framework of domain adaptation with two domains D S = {X , p S (X S )} and D T = {X , p T (X T )} and labeling functions f S and f T such that f T : X → {0, 1} and f T : X → {0, 1}. They consider an hypothesis class H : X → {0, 1} and the loss function L(y, y ) = |y -y |. Then for any hypothesis h ∈ H, the source risk is defined as

R S (h) = E x∼p S [|h(x) -f S (x)|] and target risk as R T (h) = E x∼p T [|h(x) -f T (x)|].
The first bound they propose is based on the Total Variation distance defined as follows:

Definition 4. For two probability measures P and Q defined over a set of measurable subsets B, the total variation distance d T V is defined as

d T V (P, Q) = 2 sup B∈B |P (B) -Q(B)| (2.10)
Then the following bound holds:. Theorem 4. For any hypothesis h ∈ H,

R T (h) ≤ R S (h) + d T V (p S , p T ) + λ (2.11
)

where λ = min E x∼p S [|f S (x) -f T (x)|] , E x∼p T [|f S (x) -f T (x)|]
This bound relates the target risk to the source risk, a distance between marginal distributions and a distance between conditional distributions (in the form of labelling functions). This bound provides the first keys for domain adaptation and gives ground to adaptation models that try to find representations bringing the domains closer. The main issue is that the total variation distance is not possible to estimate it with finite samples, hence impossible to use in practice as a criterion for adaptation. Moreover, it is a supremum over every possible subset, which means that the bound is very loose.

Based on these remarks, Ben-David et al. (2010) [START_REF] Ben-David | A theory of learning from different domains[END_REF] propose the d H distance, inspired from [START_REF] Kifer | Detecting change in data streams[END_REF]:

Definition 5. For two probability measures P and Q defined over a set X and an hypothesis class H, and noting

I : h → {x ∈ X : h(x) = 1}, the H-divergence is defined as d H (P, Q) = 2 sup h∈H |P (I(h)) -Q(I(h))| (2.12)
This divergence is always smaller than d T V , depends directly on the hypothesis class H and can be estimated from finite samples. Indeed, if we note S S and S T two samples of size m from P S and P T , the empirical estimation To define a bound between source and error risks, the symmetric difference hypothesis space H∆H is introduced as follows: Definition 6. For an hypothesis space H, the symmetric difference hypothesis space H∆H is defined as

of d H is dH (S S , S T ) = 2   1 -min h∈H   1 m x:h(x)=0 I(x ∈ S S ) + 1 m x:h(x)=1 I(x ∈ S T )     (2.
H∆H = {g : x, x ∈ X → h(x) ⊕ h (x); h, h ∈ H} (2.15)
where ⊕ is the XOR operator.

Finally, the following bound holds using this theory:

Theorem 5. Using the previous notations, for any hypothesis h ∈ H,

R T (h) ≤ R S (h) + 1 2 d H∆H (p S , p T ) + λ (2.16 
)

where λ = min h∈H [R S (h) + R T (h)]
This bound is similar to Equation 2.11 as the target risk is bounded by the source risk, a divergence between marginal probabilities and a term on ideal hypothesis for both domains. R S (h) can be estimated from finite samples as shown with typical generalization bounds. d H∆H can also be estimated using Equation 2.13 and the fact that the V C H∆H ≤ 2V C H . Finally, the last term cannot be estimated without labels or further assumptions, such as the structure of the labelling functions. Thus it is assumed to be small for unsupervised domain adaptation. When the labelling functions are too different, one does not have guarantees of good adaptation, which can lead to negative transfer.

One can notice that the bound involves the symmetric difference hypothesis class H∆H and not the original H, and in practice, the computation of d H∆H is intractable. Hence, the authors of [START_REF] Ben-David | A theory of learning from different domains[END_REF] [START_REF] Ben-David | A theory of learning from different domains[END_REF] and [START_REF] Zhao | Adversarial multiple source domain adaptation[END_REF] tackle the issue of adapting from different source domains. They derive a bound based on a convex combination of source distributions to adapt to the target.

The seminal work of Ben-David et al. (2010) [START_REF] Ben-David | A theory of learning from different domains[END_REF] gave the first formal description of domain adaptation for binary classification. It can be extended to multi-class classification, for instance by decomposing the problem into binary classification. But the extension to regression problems is not straightforward and is the topic of the next section.

Discrepancy based Domain Adaptation

The previous bounds only hold for classification so the applications are limited. Hence, authors of [START_REF] Mansour | Domain adaptation: Learning bounds and algorithms[END_REF] developed a more general framework. In their framework, they consider general output space Y and loss functions

L : Y × Y → R + . In the following, for two hypotheses h, h ∈ H, we note R S (h, h ) E x∼p S [L(h(x), h (x))] and R T (h, h ) E x∼p T [L(h(x), h (x))]
. The source and target risks of an hypothesis h ∈ H are defined as

R S (h) = R S (h, f S ) and R T (h) = R T (h, f T )
Authors introduce the discrepancy distance, which is similar to the d H divergence.

Definition 7. For two probability measures P and Q defined over a set X , an hypothesis class H : X → Y and a loss L :: Y × Y → R + , the discrepancy between P and Q is defined as

disc H,L (P, Q) = sup h,h ∈H E x∼p S [L(h(x), h (x))] -E x∼p T [L(h(x), h (x))] (2.17)
It is closely related to d H∆H as for L 1 : (y, y ) → |y -y |, they are related by disc H,L 1 = 1 2 d H∆H . So the discrepancy can be seen as a generalization of the d H∆H to other classes of problems. For this general class of problems, most bounds are provided using Rademacher complexity rather than VC-Dimension. Theorem 6. Using the previous notations, let L : Y × Y → R + such that L(y, y ) = |y -y | q be bounded by M , ie sup y,y ∈Y L(y, y ) ≤ M . Then with probability 1 -δ over the sampling of S S and S T of size m from p s and p t , we

have disc H,L (p s , p t ) ≤ disc H,L (S S , S T ) + 4q(R S (H) + R T (H)) + 3M 2 log 2 δ m (2.18)
This bound, presented for q -losses also holds for any bounded loss by modifying the class of the Rademacher complexity to a composition with the loss. Similarly to the bound 2. 

where λ = R S (h * T ) + R T (h * S , h * T )
Once again, this bounds connects the target risk with the source risk, the discrepancy between marginal distributions and a term connecting the true labelling functions. It is not directly comparable to Equation 2.16 as it involves ideal hypotheses h * S and h * T , but for instance, if one assumes that h * S = h * T , then the bound based on the discrepancy becomes tighter.

The main contribution of this bound is the generalization to a larger class of loss, and hence problems. In the original paper, authors proposed a domain adaptation method for binary classification and regression based on kernels. Different follow-up works show bounds for specific class of predictors, mainly kernels [START_REF] Cortes | Adaptation algorithm and theory based on generalized discrepancy[END_REF] [START_REF] Cortes | Adaptation based on generalized discrepancy[END_REF]. In Figure 2.3, we illustrate the Discrepancy with bounded linear regressors on 1-dimensional data. One can already observe the difficulty of domain adaptation in regression, as the label space is a subset of R and not finite, leading to possibly very large discrepancies. More details about the difference between classification and discrepancy are provided in Chapter 4.

Alternative approaches

The previous sections reviewed domain adaptation theory with tailored divergence. More traditional statistical distances have been proposed for domain adaptation, especially the Maximum Mean Discrepancy and the Wasserstein Distance. We only present the framework for Maximum Mean Discrepancy and give an overview of other frameworks as they are less related to our work.

Maximum Mean Discrepancy based Domain Adaptation

First we define the Maximum Mean Discrepancy. Definition 8. Let H k be a Reproducing Kernel Hilbert Space over a set X with associated kernel k. For two distributions defined over X , The Maximum Mean Discrepancy is defined as

M M D(P, Q; H k ) = sup f ∈H k E x∼ps [f (x)] -E x∼pt [f (x)]
(2.20)

Maximum Mean Discrepancy is widely used as under the condition that the kernel is universal, every moment of the distributions match. Moreover, an unbiased estimate from two samples S S = {x } can be derived as

M M D(S S , S T ; H k ) 2 = 1 n 2 S n S i,j=1 k(x (i) S , x (j) 
S ) + 1 n 2 T n T i,j=1 k(x (i) T , x (j) 
T ) -

2 n S n T n S i=1 n T j=1 k(x (i) S , x (j) T ) (2.21) 
A common way to write this estimation is M M D(S S , S T ; H k ) 2 = T r(KL) where K ∈ R (n S +n T )×(n S +n T ) is the kernel matrix induced by k on S S ∪ S T and L is defined by

L ij = 1 n 2 S if x i , x j ∈ S S ; L ij = 1 n 2 T if x i , x j ∈ S S and 
L ij = -1 n S n T otherwise.
With this metric, it is possible to derive a bound with a similar interpretation to the one based on divergence [START_REF] Ievgen | Random subspaces nmf for unsupervised transfer learning[END_REF]. This bound holds for losses L : (y, y ) → |y -y | q for q > 0.

Theorem 8. Using previous notations, let H = {f ∈ H k ; f 2 ≤ 1}. If L respects the triangle inequality and l H q k ≤ 1, with probability 1 -δ over the samples S S and S T , we have for all h ∈ H

R T (h) ≤ R S (h) + M M D(S S , S T ) + λ + 2 log 2 δ 2m + 2 m E S∼ps [ T r(K S )] + E T ∼ps [ T r(K T )] (2.22 
)

where λ = min h∈H [R S (h) + R T (h)] .
Once again, the bound involves the source risk, the Maximum Mean Discrepancy between marginal distributions, a term λ between labels and some complexity terms. The main interest of using the MMD instead of the divergences lies in its easy estimation explaining why many methods are based on the MMD. MMD-based domain adaptation also has been extended to other scenarios such as semi-supervised learning.

Other Frameworks

Bounds with Wasserstein distance inspired from Optimal Transport [START_REF] Villani | Optimal transport: old and new[END_REF] have also been introduced [START_REF] Redko | Theoretical analysis of domain adaptation with optimal transport[END_REF] in the same spirit as the ones from Maximum Mean Discrepancy as Wasserstein distance also is an Integral Probability Metric. Indeed, for H = h : h L ≤ 1 a set of Lipschitz-1 hypotheses, the Wasserstein distance can be computed as

W 1 (P, Q) = sup h; h L ≤1 |E x∼P [h(x)] -E x∼Q [h(x)]| (2.23)
A new line of work on PAC-Bayesian Domain Adaptation [START_REF] Germain | A new pac-bayesian perspective on domain adaptation[END_REF] [74] appeared. It is particularly promising as the bounds involve terms on the expected shift between domains instead of a supremum as in the d H or the Discrepancy.

Namely, the bounds are tighter than the ones of Ben-David et al. (2010) [START_REF] Ben-David | A theory of learning from different domains[END_REF], although only algorithms for linear classifiers have been derived. Using Bayesian theory, it is also possible to encode some preliminary knowledge about the relationships between domains in this new measure. Another popular measure of discrepancy between domains has been the R ényi divergence, especially for domain adaptation with multiple sources [88] [123]. For more details about those methods, we refer the interested reader to the book of Redko et al. (2019) [START_REF] Redko | Advances in domain adaptation theory[END_REF].

Summary

Bounds for domain adaptation have been proposed under several frameworks and share some similarities. In order to be able to generalize to a target domain, we need to learn an hypothesis that can

• Minimize the source risk

• Minimize a divergence between marginal probabilities

• If labels are unavalaible, assume that the ideal hypotheses on each domains are close. Otherwise, use them to control the divergence between conditional probabilities.

Both divergence measures (d H∆H and its extension Disc) are nice tools for domain adaptation as they include the problem at hand in the bound, and in the design of algorithms. But as they respectively involve a supremum over H∆H or over two hypotheses, they require either an approximation (with d H for d H∆H ) or a limitation in the hypothesis space (to linear or kernelized regressors for instance) to be estimated.

Metrics such as the Maximum Mean Discrepancy do not suffer from the same issue. For this reason, many methods are based on the MMD, even before the theoretical bounds were shown. But MMD is restricted to kernels, which can be an issue for some applications. In the end, the choice of the metric for adaptation depends on the nature of the problem.

In Chapter 4, we derive bounds based on a novel discrepancy measure between distributions. Similarly to the original discrepancy, our bounds hold for both regression and classification problems. Moreover, we derive an efficient way to integrate the discrepancy in the training of neural networks.

Existing approaches for Homogeneous Transfer Learning

The bounds seen in the previous section gave the intuition behind what quantities a method for domain adaptation should try to control. Naturally, the question becomes how to use those bounds and what knowledge should one transfer from the source to the target. Consider a fault detection problem with a source dataset made of several wind plants monitored with some sensors that we want to transfer to a new target wind plant. In some cases, only a few of the source wind plants operate in a similar environment to the target one. Then we would want to give a higher weight to these specific source instances. Or it could be that the source and target datasets only share the same distributions over some sensors. Then we would want to extract new features to align the domains. Finally, without explicit assumptions on the nature of the transfer, one could use the source model parameters as an input for the target model, either as initial parameters or as constraints. To summarize, we differentiate three categories:

• adaptation whereas the authors of the seminal paper on discrepancy [START_REF] Mansour | Domain adaptation: Learning bounds and algorithms[END_REF] based their algorithm on instance reweighting. Some methods are hybrid as they perform two of these adaptations at the same time.

Instance-based domain adaptation

Broadly speaking, instance-based domain methods aim to select or re-weight the source instances depending on their relationship to the target. Namely, in terms of distributions, if we consider two domains D S = {X , P S (X S )} and D T = {X , P T (X T )} with respective tasks T S = {Y, P S (Y S |X S )} and T T = {Y, P T (Y T |X T )}, the aim of those methods is to find a weighting function w such that, for x ∈ X , P T (x) = w(x)P S (x) for unsupervised domain adaptation or P T (y|x) = w(x)P S (y|x) for semi-supervised domain adaptation.

One can note that, under the assumption that P S (y|x) = P T (y|x), the target risk can be re-written as:

R T (h) = E (x,y)∼P T [L(h(x), y)] = E (x,y)∼P S P T (x, y) P S (x, y) L(h(x), y) = E (x,y)∼P S P T (x) P S (x) L(h(x), y) (2.24) 
A straightforward solution is to directly estimate P S (x) and P T (x), and use w(x) = P T (x) P S (x) as weights for the source data, as was proposed in [192] [111]. This solution has two drawbacks: firstly, it requires that both distributions have the same support, and small errors on low values of P S (x) gives high weights to undesire data points. Secondly, the estimation of P T (x) may require a large number of points and is not related to the final prediction task. It is even more the case for semi-supervised learning where estimating P T (Y T |X T ) is as complicated as learning a predictor h T . Encoding this prediction task in the estimation of the weights may lead to more efficient methods.

Unsupervised domain adaptation

Discrepancy-based. Hence Mansour et al. (2009) [START_REF] Mansour | Domain adaptation: Learning bounds and algorithms[END_REF] presented a re-weighting algorithm for linear regressors with 2 -loss. Namely, they consider a labeled source sample S S = {(x 

(n T ) T } with an empirical distributions p S = 1 n S n S i=1 1 x (i) S and p T = 1 n T n T i=1 1 x (i) T .
They define the re-weighted empirical source distribution as

p S = n S i=1 β i 1 x (i)

S

. Then the objective formulated to compute the weights β with the discrepancy is:

min β, β 1≤1 Disc( p S , p T ; H, 2 ) (2.25)
where

H = {h : x → w T x | w 2 ≤ 1} and 2 : (y, y ) → (y -y ) 2
. With these choices of hypothesis space and loss it is possible to show that the problem can be solved efficiently using semi-definite programming [START_REF] Mansour | Domain adaptation: Learning bounds and algorithms[END_REF].

Later these results were extended to kernel functions with the generalized discrepancy [START_REF] Cortes | Adaptation based on generalized discrepancy[END_REF], and using quadratic programming to solve the problem: Generalized Discrepancy Minimization (GDM).

Kernel Mean Matching (KMM).

Similarly, Maximum Mean Discrepancy can be used to compare domains. It is proposed in [91] [78] where the formulated objective of KMM is

min β, β 1≤1 M M D( p S , p T ; H k ) (2.26)
where k is a chosen universal kernel, typically the Gaussian kernel. With the empirical estimation of the Maximum Mean Discrepancy described in Equation 2.21, the objective can be formulated as

min β, β 1≤1 1 n S β T Kβ - 2 n 2 S κ T β (2.27)
where

K ij = k(x (i) S , x (j) 
S ) and

κ ij = k(x (i) S , x (j) 
T ) which can be solved as a quadratic program.

Kullback-Leibler Importance Estimation Procedure. The same kind of problem is formulated using Kullback-Leibler divergence [START_REF] Sugiyama | Direct importance estimation for covariate shift adaptation[END_REF]. Namely, they assume that the weights can be computed as w(x) = b j=1 α l φ l (x) where b and {φ 1 , ..., φ b } are hyperparameter of a chosen basis of functions. The adaptation problem then is

min α 1 n S KL( p S ||p T ) (2.28)
which can be formulated as

max α 1 n S log b l=1 α l φ l (x (i) T ) subject to n S i=1 b l=1 α l φ l (x (i) S ) = 1 (2.29)
This can be solved by gradient descent as the objective is convex.

Discriminative Learning. [START_REF] Bickel | Discriminative learning for differing training and test distributions[END_REF] [START_REF] Bickel | Discriminative learning for differing training and test distributions[END_REF] try to model the weights w(x) as the probabilities given by a classifier trained to discriminate between domains. Namely, they learn a logistic regression classifier on source and target data that outputs an estimate of the appartenance of a point to the target dataset. Then the weight given to a source dataset is higher if it is considered likely to belong to the target data. An interesting point is the link that can be made between this method and the d H distance.

Semi-supervised domain adaptation

Using previous methods. The previous methods can be extended to semi-supervised domain adaptation by computing weights for each class, ie replace P (X S ) and P (X T ) by P (X S |Y S ) and P (X T |Y T ) in the objectives.

But this would require sufficient labeled data, hence, some methods are dedicated to semi-supervised domain adaptation.

TrAdaBoost. In a traditional boosting algorithm, weak learners are learnt sequentially on a re-weighted training samples [START_REF] Zhou | Ensemble methods: foundations and algorithms[END_REF]. At each step, higher weights are given to samples with high error. The TrAdaBoost algorithm [START_REF] Dai | Boosting for transfer learning[END_REF],

uses a similar scheme to re-weight the source samples. Namely, at each step the source samples that are well classified by the current learner are given higher weights. It is possible to show that the expected error made on data drawn from the target domain is not higher than the one made by a learner using only labeled target data. Later it was extend to TrAdaBoostR2 [START_REF] Pardoe | Boosting for regression transfer[END_REF] for regression.

Summary

Those methods differ in the criteria on which the weights are computed. The MMD and discrepancy-based methods lead to similar formulations and results. KLIEP suffers from the fact that the Kullback-Leibler divergence is not defined when the support of P T is not included in the one of P S . TrAdaBoost is very powerful when labeled target data is available but it is not the case of unsupervised domain adaptation.

In fact, the source and target probability distributions cannot be "too far" from one another for those methods to perform. For instance, if their support does not overlap, then the weights are very unlikely to have any meaningful sense for adaptation. As such, the name sample selection bias used in [START_REF] Huang | Correcting sample selection bias by unlabeled data[END_REF] is adapted for this framework. We do not expect these methods to work well when the domains are very different from each other. (asymmetrical feature adaptation).

Feature-based domain adaptation

Feature engineering is key to the success of many machine learning applications and feature selection [START_REF] Guyon | An introduction of variable and feature selection[END_REF] is often a necessary pre-processing step for many learning algorithms. Different types of methods exist for featurebased domain adaptation.

Traditional Methods

Frustratingly Easy Domain Adaptation. One of the first methods [START_REF] Daum | Frustratingly easy domain adaptation[END_REF] makes the assumption that some features are only relevant for the source domain, some only for the target domain and some for both domains.

Then, one would want to ideally extract the common features to both domains. To do that, they augment the feature space by duplicating the features and creating artificial source and target features: new variables are written

x S = (x S , 0, x S ), x T = (0, x T , x T ). Finally, a linear classifier is learnt based on those new variables. Hence, this method requires labels in the source and target domains.

Moment-matching representation-based domain adaptation. Many methods aim to find a representation

that aligns some or all of the moments of the distributions. It is often done using Maximum Mean Discrepancy (MMD), as it has been shown that when using a universal kernel, if the MMD between source domains and target domains is zero, then the domains are perfectly aligned [START_REF] Gretton | A kernel two-sample test[END_REF].

Transfer Component Analysis [START_REF] Pan | Domain adaptation via transfer component analysis[END_REF] proposes to extract features that minimize the MMD between both domains.

Namely, they use the empirical estimation of the MMD (Equation 2.21) M M D(X S , X T ) = T r(KL) to formulate a kernel learning problem by introducing a parameter W ∈ R (n S +n T )×m and the associated kernel K = KW W T K. In order to learn the parameter W , they formulate the objective

min W T r(W T W ) + µT r(W T KLKW ) s.t. W T KHKW = I (2.30)
where

H = I -1/(n S + n T )1 n S +n T 1 T n S +n
T is a centering matrix. After solving the problem, one expects the representations of source and target domains induced by the kernel k to be aligned. This work was later extended to semi-supervised domain adaptation [START_REF] Long | Transfer feature learning with joint distribution adaptation[END_REF] with Joint Distribution Adaptation. Later the Adaptation Regularization transfer learning [START_REF] Long | Adaptation regularization: A general framework for transfer learning[END_REF] framework proposed a unifying view on these methods.

CORrelation ALignment (CORAL) [START_REF] Sun | Return of frustratingly easy domain adaptation[END_REF] proposes a similar objective by aligning second-order moment of the distributions. Namely, it whitens the source distributions and "re-colors" it with target covariance, which is similar to aligning the distributions with MMD using a polynomial kernel of degree 2. Along with the extension to deep neural networks [START_REF] Sun | Deep coral: Correlation alignment for deep domain adaptation[END_REF], appears to give good results for many applications as a simple technique.

Subspace-based domain adaptation.

Another very common assumption in domain adaptation is that while the representations of the domains in the initial feature space are not aligned, there exists a subspace where source and target data share the same distribution. From this assumption, different methods are proposed.

Geodesic Flow Kernel [START_REF] Gong | Geodesic Flow Kernel and Landmarks: Kernel Methods for Unsupervised Domain Adaptation[END_REF] is proposed as a method to align subspace representation of source and target data.

Namely, a PCA is performed onto the source and target data giving two subspaces. Then, using concepts from Riemannian geometry, authors define a kernel to align both subspaces. This method is very dependent on the choice of dimensionality reduction and can be extended to other methods than PCA.

Subspace Alignment [START_REF] Fernando | Unsupervised visual domain adaptation using subspace alignment[END_REF] follows a similar idea and aims to align two domains. Authors aim to align the subspace obtained from source data to the one obtained from target data. After representations are aligned a classifier is learnt on the projected source data. It is later extended to semi-supervised domain adaptation [START_REF] Fernando | Joint cross-domain classification and subspace learning for unsupervised adaptation[END_REF] and refined in [START_REF] Aljundi | Landmarks-based kernelized subspace alignment for unsupervised domain adaptation[END_REF].

Domain Adaptation with Neural Networks

With the success of representation learning based on neural networks, domain adaptation methods is proposed using neural networks. For instance, some methods based on autoencoders [START_REF] Glorot | Domain adaptation for large-scale sentiment classification: A deep learning approach[END_REF] [40] is proposed by simply learning autoencoders on a combination of source and target data.

Domain-adversarial methods is introduced for domain adaptation in [START_REF] Ganin | Domain-adversarial training of neural networks[END_REF] and [4]. Authors propose domain adversarial training for neural networks. Taking inspiration from GANs [START_REF] Goodfellow | Generative adversarial nets[END_REF] they use a neural network to learn features that are discriminative for the task at hand and for which domains cannot be separated by a classifier.

The way it is done is the following: the first section of the network is used as feature extractor. Then, the network is separated into two branches: a predictor and a discriminator. The predictor learns to classify well the source examples whereas the discriminator learns to discriminate between domains. Then the gradient feeded to the feature extractor is reversed, so that it maximizes the discrimination loss between domains.

This method can be linked with the bound based on d H seen in the previous section. Numerous methods have been proposed for domain-adversarial training of neural networks, including one of the contributions of this thesis.

Hence, we give a more extensive discussion and comparison in Chapter 4.

Summary Those methods differ in the criteria chosen to extract common features for both domains. Maximum Mean Discrepancy is a very popular tool as it allows a straightforward use of kernels and an empirical estimation.

Divergence-based methods were less popular as their empirical estimation is hard in general. The recent surge of adversarial learning encouraged new methods using this criteria.

For those methods, the source and target datasets can be far from one another on their initial feature representation. Using a projection on a smaller subspace, may it be linear or based on a more complex structure, one expects to be able to find representations that can be discriminative (able to minimize the source risk) and where domains are aligned (able to minimize the difference between domains).

Alternative methods

Here, we mention other popular methods that do not fall in one of the previous categories.

Optimal Transport. Optimal Transport is a long-standing problem in mathematics finding applications in many fields. It has been proposed by [START_REF] Courty | Optimal transport for domain adaptation[END_REF] [START_REF] Courty | Optimal transport for domain adaptation[END_REF] as a tool to learn how to transport data from a source domain to a target domain. Namely, given two samples X S and X T , the Optimal Transport Domain Adaptation (OTDA) problem is formulated as finding the transport map T from X S to X T . Then, a classifier learnt on T (X S )

should perform well on X T . An extension to semi-supervised learning has been proposed using a regularization term.

Hypothesis Transfer. Hypothesis transfer learning is only applicable for semi-supervised domain adaptation.

It assumes the existence of an hypothesis h S learnt on source data which one wants to transfer to a small labeled target sample, meaning that the source data is not available for adaptation. Tommasi et al. ( 2010) [START_REF] Tommasi | Safety in numbers: Learning categories from few examples with multi model knowledge transfer[END_REF] propose the LS-SVM Adaptation for the semi-supervised adaptation. First an SVM is learnt on source data and then the model for the target data is constrained to be close to the source model by constraining its parameters with an 2 -norm.

This idea is close to the models from multi-task learning [START_REF] Caruana | Multitask learning[END_REF].

Several models propose to refine a model learnt on source data. An early example of such method is the Adaptive SVM: Yang et al. ( 2007) [START_REF] Yang | Cross-domain video concept detection using adaptive svms[END_REF] propose to add a regularization term based on target data to an SVM learnt on source data. Later, the DA-SVM [START_REF] Bruzzone | Domain adaptation problems: A dasvm classification technique and a circular validation strategy[END_REF] first learns an SVM on the source data and then iteratively adapts the margins based on the target data, in a semi-supervised fashion.

More recently, fine-tuning a neural network trained on a large related dataset on a smaller target domain has been very successful for image or text data. Namely, the idea is to freeze or constrain the first N layers of the network learnt on the source data and only fine-tune the other layers using target data. As such, this method is hybrid between hypothesis transfer and feature transfer as the feature transformation is included in the neural network. In [START_REF] Yosinski | How transferable are features in deep neural networks?[END_REF], authors empirically study the transferability of image representations learnt on the ImageNet dataset. There are few theoretical studies about why this fine-tuning works and how it should be done but these techniques have been key to the recent surge of deep learning approaches. We give a more detailed overview of such methods with insights for time series in Chapter 3.

Summary

Following the theoretical works presented in Section 2.2, many transfer learning methods aim to minimize the distribution differences between domains, either by transferring instances, representations or hypotheses. We summarized those characteristics in Table 2.1. This overview presented general methods, but application-specific methods have already been developed and expert knowledge can largely enhance the performance of adaptation.

A question that has rarely been studied is the question of negative transfer ie when a domain adaptation algorithm

A returns an hypothesis that gives a larger target risk than the hypothesis learnt on the target labeled sample. One of the reasons is that a large number of theoretical and empirical works tackle the unsupervised case where negative transfer cannot be evaluated. Some algorithms have been proposed in the semi-supervised case [START_REF] Wang | Characterizing and avoiding negative transfer[END_REF] to limit the possibility of negative transfer. 

Method

Learning from Multiple Sources

In this subsection, we present an overview of methods for learning from multiple sources. Different sub-categories exist in the literature, each one of them corresponding to a different scenario:

• Multi-Task Learning: this is the case when several tasks are learnt at the same time with labeled samples, with the objective to minimize the average risk over all tasks.

• Domain Generalization: this corresponds to the ability of a model learnt on several domains to generalize well to a target domain that is not available at training time for adaptation.

• Multi-Source Domain Adaptation: this corresponds to the domain adaptation with several source domains with labeled data and a target domain with limited or no labeled data, with the objective to minimize the risk over the target domain.

This setting is different from the single-source domain adaptation as each source domain can be used to learn how to transfer. For instance, if we give ourself K source domains, then one hopes to find invariants between domains or can use a leave-one-domain-out procedure to perform cross-validation for instance.

For domain adaptation, a simple method would be to merge all the source domains to create a large single source domain. This would work under the assumption that the source domains are the same. But in many real world scenarios, some source domains share more similarities with the target domains. For instance, one would expect that the representations learnt from consumption data in cold areas of France would be more useful than the ones from warm areas of France to adapt to a target domain made of a neighbourhood from a cold area. Hence, the question of how to select or combine source domains for domain adaptation has been studied in the recent years.

We first present multi-task learning and domain generalization together as they are related. Then we present multi-source domain adaptation methods.

Multi-Task Learning and Domain Generalization

Framework Multi-Task Learning. Introduced in [START_REF] Caruana | Multitask learning[END_REF], multi-task learning (MTL) aims to leverage on information from different but related tasks. The framework assumes the existence of K domains D 1 , ..., D K with K tasks T 1 , ..., T K . In this work, we only present homogeneous multi-task learning, ie X 1 = ... = X K and Y 1 = ... = Y K . Unlike domain adaptation, no target domain is defined and each source domain is considered as a target domain. We introduce a common representation bias φ : X → Z and a class of predictors

H : Z → Y. Then, noting H φ = {h • φ ; h ∈ H},
the objective of multi-task learning is to minimize the average risk over every source domain 

R MTL (H φ ) = 1 K K k=1 min h∈H E (x,y)∼P k [L(h • φ(x), y)] (2 
R µ (H φ ) = E P ∼µ min h∈H E (x,y)∼P [L(h • φ(x), y)] (2.32) 
One can see that the risk of multi-task learning is a biased estimator of the risk of domain generalization. In our definitions, we included the common representation bias φ for more clarity but in more general definition, it is absent from the hypothesis class and only implicit. Hence, solving the multi-task learning or domain generalization problem comes back to learning the common bias between every source domains.

Domain generalization bounds

A first question is: why do multi-task learning and domain generalization work? In [START_REF] Baxter | A model of inductive bias learning[END_REF], Baxter proved a formal generalization bound between R MTL and R µ using covering numbers and get a bound of the form

R µ ≤ R MTL +
where depends on the number of domains K, the number of labeled samples n and the complexity of the class H φ . From the main theorem of this work, one can deduce that if the number of domains K and the number of labeled samples n per domain are sufficient, then any learner that learns the representation bias φ can bound the generalization error. This also means that it is possible to have an estimate of the ability of such a bias to generalize to an unseen domain using the K available domains. Moreover, they also show that the number of training examples per domain required to get a tight generalization bounds decrease as the number of domains grows, which confirms the intuition that leveraging from different domains helps to learn a good hypothesis. Finally, they show how it applies to feature maps learnt with neural networks.

This work confirms many of the intuitions proposed in the seminal work of Caruana [START_REF] Caruana | Multitask learning[END_REF]. Namely, those intuitions can be summarized as the fact that the different tasks share the same important features. Then multi-task learning helps each domain to learn those features with auxiliary data coming from the other domains. This ability to transfer features via sparse coding has also been proven in [125] [115].

Methods for MTL and DG

Block-Regularization. The main line of work of multi-task learning is to enforce a regularization between the different hypotheses learnt on each domain. In general, it takes the form of block regularization, as in [63] [10].

Authors propose a sparsity constraint between tasks with linear classifiers in the form of an 1 / 2 -norm. Namely,

given K samples S k = {(x (1) 
k , y

k ), ..., (x L(y

(n) k , y (n) 
(i) k , w T k x (i) k ) + λ W 2 2,1 (2.33) 
where W 2 2,1 = d i=1 w i 2 enforces a sparsity in the columns, ie only a few features are selected for every domain. This regularization has been very popular for multi-task learning and has been extended with block-sparse dictionary learning [START_REF] Obozinski | Joint covariate selection and joint subspace selection for multiple classification problems[END_REF] and other sparsity constraint such as hierarchical constraints [START_REF] Bach | Structured sparsity through convex optimization[END_REF] or mixed sparsity constraints [START_REF] Jalali | A dirty model for multi-task learning[END_REF].

Low-Rank assumption. Opposed to the sparsity constraint, some methods propose to use a low-rank assumption, ie the domains share parameters lying on a same subspace. Those methods can broadly be summarized with the framework of [START_REF] Ando | A framework for learning predictive structures from multiple tasks and unlabeled data[END_REF] for each task as w k = u k + Av k where u k ∈ R d is a domain-specific parameter and A ∈ R d ×d with d << d is a shared subspace between every domain. This low-rank assumption has later been made using a trace-norm regularization [START_REF] Pong | Trace norm regularization: Reformulations, algorithms, and multi-task learning[END_REF].

Parameter sharing. Using neural networks, multi-task learning takes the form of parameter sharing. Namely, the common bias learner φ is made of the first layers of a neural network, while final predictors h 1 , ..., h k are different of the classifiers learnt on each selected source as the final classifier. Recently, authors of [START_REF] Bascol | Improving domain adaptation by source selection[END_REF] proposed a source selection method based on distance between domains. We will see that those methods can be seen as a special case of the combining methods with binary weights.

Combining domains Another class of methods assumes that the domain distributions can be combined with a linear combination. In [START_REF] Ben-David | A theory of learning from different domains[END_REF], authors introduce the α-weighted source domain as

D α = {X , p α } such that p α = K k=1 α k p k with K k=1 α k = 1 and α k ≥ 0.
Then it is possible to prove a bound on the target risk of a minimizer 

h α ∈ H of the α-weighted source risk R α (h) = K k=1 α k R k (h)
R T ( h α ) ≤ R T (h * T ) + d H∆H (D α , D T ) + 2γ α + 4 K k=1 α 2 k V C H log (2m) -log δ 2m (2.34)
where

γ α = min h∈H R T (h) + K k=1 α k R k (h) .
From this theorem, we can conclude that learning weights that minimize the divergence between domains d H∆H (D α , D T ) helps for domain adaptation. After the weights are learnt, one only needs to learn one hypothesis on the re-weighted domain. Such an approach was used in [START_REF] Chattopadhyay | Multisource domain adaptation and its application to early detection of fatigue[END_REF], where the weights α were learnt using a manifold regularization. One work of this thesis [START_REF] Richard | Unsupervised multi-source domain adaptation for regression[END_REF] develops a similar framework.

Combining models Finally, a last class of methods combines models with weights. For instance, in [START_REF] Mansour | Domain adaptation with multiple sources[END_REF] authors

show that if the target distribution can be written as a mixture of every source distribution (ie

P T = K k=1 α k P k ), then the hypothesis hα : x → K k=1 α k P k (x) K l=1 α l P l (x) h k (x) is such that R T ( hα ) ≤ max k R T (h k ).
While this bound is quite loose, it means that with this re-weighting, one cannot learn a worse hypothesis than by selecting one of the h k , which does not hold for the linear combination

K k=1 α k h k .
In [START_REF] Hoffman | Algorithms and theory for multiple-source adaptation[END_REF], authors extended this work with the R ényi divergence and derived an algorithm to find these weights when they are unknown. A weighting scheme of predictors learnt on each domain was also proposed by using weights that represent the likelihood of each source sample to come from the target distribution, as in [START_REF] Sun | Bayesian multi-source domain adaptation[END_REF]. Another work [START_REF] Zhao | Adversarial multiple source domain adaptation[END_REF] used the bound 2.16 for multiple source adaptation by iteratively adapting a neural network to the domains that is the furthest using adversarial learning. While counter-intuitive, this method works when there is no source domain that is far from the target domain ; otherwise, it is subject to negative transfer.

Summary

The most common way to combine sources to adapt to a target is to linearly combine them. This combination can be done using the distributions or predictors learnt on each hypothesis. As was shown in the bound of Theorem 9, to avoid negative transfer a low weight must be given to domains far from the source. This is 

Conclusion

Figure 2.5 presents a synthetic view of the methods reviewed in this Chapter. Transfer learning is a very large field and some methods are missing from the review, but we focused the most relevant subfields for the work of this thesis. We observe that there are many ways to adapt, both from a theoretical point of view, but also depending on what kind of data is available.

In the computer vision and natural language processing (NLP) communities, the most popular transfer learning methods are based on fine-tuning a publicly available pre-trained neural network to the small target dataset [START_REF] Yosinski | How transferable are features in deep neural networks?[END_REF][START_REF] Yang | Transfer learning[END_REF]. While empirical results are extremely good, new research on the theoretical understanding of this method would greatly contribute to the field.

Clearly, a large pre-trained neural network is not available for every applications and more traditional methods are still popular. For instance, [START_REF] Minvielle | Classification d' év énements à partir de capteurs sols-Application au suivi de personnes fragiles[END_REF] propose a tree-based transfer learning model for fall detection by transferring from actors to elderly people or [START_REF] Ma | Transfer learning used to analyze the dynamic evolution of the dust aerosol[END_REF] [START_REF] Ma | Transfer learning used to analyze the dynamic evolution of the dust aerosol[END_REF] use TrAdaBoost [START_REF] Dai | Boosting for transfer learning[END_REF] to estimate dust aerosol based on satellite images by transferring from one satellite to another.

In the next Chapter, we review time series representations. Indeed, transfer learning is largely dependent on the representation or the data. As one wants to match source and target distributions, it is necessary to define good source and target features, which is not straightforward for time series. Studying household consumption device by device is a long-standing issue in machine learning applications for energy. It could potentially enhance the predictability of electricity consumption, which would lead to a reduction in electricity waste to help mitigate climate change and increase the efficiency of the energy industry. Moreover, household electricity consumption is a key factor for many applications of EDF as predicting the consumption is necessary to adapt the production. With the deployment of smart meters for electricity consumption in France, one could hope to extend the analysis made of a client's consumption, for instance for customized contract to give them incentive to smooth their consumption.

Chapter 3

Deep Time Series Representations for

Non-Intrusive Load Monitoring

As detailed below, collecting data on each device in each household is costly. It means that many datasets have been collected over separate experiments and therefore they are not homogeneous. The absence of large and clean datasets makes hard to learn very general features, as there is a huge variety of households, devices and consumer behaviours. Transferability from a household to another is not guaranteed and we present in this thesis solutions to improve transferability between households. Time series analysis is firstly reviewed, with a special interest on deep time series representations and their transferability. The issue of Non Intrusive Load Monitoring is then presented along with details explaining why Transfer Learning is required. Finally we present different datasets, both collected at EDF during this thesis and public datasets. This work first focuses on the sub-problem of appliance recognition: from the consumption data of one appliance, is it possible to recognize the nature of the appliance? We observe that for this problem, there is already a performance drop if the algorithm is learnt on some appliance models then applied to recognize new unseen models of the same appliances.

To mitigate this issue, we propose a novel deep-learning based method with a simple time series normalization solution that allows to learn more invariant features for appliance recognition. Extensive experiments are conducted on different datasets and show the benefits of our approach. This chapter is partly based on two works published in two conferences: 

Background on Time Series Representations

A time series is an ordered sequence of values of a variable observed at given time intervals. Time Series Analysis is a long standing field as time series arise in many real world data: weather, finance, audio processing, energy, ... Many methods have been proposed for various tasks on time series data, such as classification, forecasting, clustering, ... The time dependency makes the analysis of this data a real challenge. Moreover time series generally are high dimensional and subject to noise. This time-dependence and high dimensionality requires to find new representations to use instead of raw time series. After presenting the general definitions and notations, we review some classical time series representations methods for machine learning applications such as classification and regression.

Framework

A time series is generally defined by a sequence of ordered points taken at successive timestamps. Namely it is a sequence {X t1 , ..., X tn } where t 1 , ..., t n are the sampling times and X is a vector. When the sampling times are regular, ie t 2 -t 1 = t 3 -t 2 = ... = t n -t n-1 , one can define a multi-variate time series as an ordered sequence of vectors X = [X 1 , ..., X T ] ∈ R d×T where d is the dimensionality of the time series and T its length. For instance, in industrial system monitoring, d is the number of sensors. When d = 1, we speak of univariate time series. We consider the problem of time series binary classification but these feature engineering methods can be extended to regression or clustering. This means, that in general, we have a dataset X = {(X (1) , y (1) ), ..., (X (n) , y (n) )} where X (i) ∈ R d×T is a time series and y (i) ∈ {0, 1}. Moreover, we assume the different X (i) to be i.i.d. The time-dependence of time series means that simply treating each point as a separate feature and apply multivariate data analysis would be sub-efficient. Hence, different feature transformations have been proposed to include the time-dependence.

Overview of Univariate Time Series Representations

In this section, we only consider uni-variate time series as we focus on applications on (uni-variate) electricity consumption in Chapter 3 and Chapter 4. Some of the methods presented below can be extended to multivariate time series. In the following we denote a time series dataset X = {(X (1) , y (1) ), ..., (X (n) , y (n) )} where X (i) ∈ R T . 

Time Series Distance

Even if distances are not feature representations, they are a popular tool for time series classification, and stress why defining specific tools for time series is important [START_REF] Ding | Querying and mining of time series data: experimental comparison of representations and distance measures[END_REF]. A first possible distance to compare two time series is the traditional Euclidean distance:

d(X (i) , X (j) ) 2 = T t=1 (X (i) t -X (j) t ) 2 (3.1) 
The issue with this distance is that it is not robust to time shift in the data: for instance, in Figure 3.1, a small temporal is present between the plotted time series. The Euclidean Distance is high as it is calculated time stamp by time stamp. Hence, Dynamic Time Warping [START_REF] Berndt | Using dynamic time warping to find patterns in time series[END_REF] was proposed to allow some temporal shifts in the data. Namely, to compute the distance between two time series X (i) and X (j) , a path W = {w 1 , ..., w K } is defined such that w 1 = (1, 1), w K = (T, T ) and for w k = (t, s) and w k+1 = (t , s ), we have t ≤ t ≤ t + 1 and s ≤ s ≤ s + 1. If we define W the set of paths that respect these conditions, the Dynamic Time Warping distance is defined as:

d DT W (X (i) , X (j) ) = min W ∈W K k=1 (X (i) tw k -X (j) sw k ) 2 (3.2)
This is solved by dynamic programming and allows for shifts as showed in Figure 3.1. Dynamic Time Warping is still considered a very strong baseline for uni-variate time series classification and pattern retrieval [START_REF] Ding | Querying and mining of time series data: experimental comparison of representations and distance measures[END_REF]. The main issue of Dynamic Time Warping is its computation time although numerous methods propose tricks to accelerate its computation [START_REF] Mueen | Extracting optimal performance from dynamic time warping[END_REF].

Statistical features

A very common way to extract features from time series is to use its statistical features. Feature mapping has been extensively studied for time series analysis. Nanopoulos et al [START_REF] Nanopoulos | Feature-based classification of time-series data[END_REF] propose a method where different statistical features from time series are extracted for classification. These features are similar to these used in exploratory data analysis such as mean, variance, skewness, kurtosis, minimum, maximum, percentiles, ... at different orders (features extracted from S t+D -S t where D is a user-defined value).

Classically, the strong assumption made for such transformations is that the time series respect stationarity, which means the distribution of successive data points does not change over time. Wide Sense Stationarity is more widely used where only the first and second order moment of the distribution must stay constant.

These conditions are rarely respected in real-world applications but this kind of feature transformation is still a strong baseline. A way to circumvent this issue is proposed in [START_REF] Baydogan | A bag-of-features framework to classify time series[END_REF] where authors propose a bag-of-features model by extracting features from subsequences with a sliding window. While the whole time series is not stationary, one could expect smaller subsequences to be.

This class of methods is very useful as an exploratory tool. Indeed, it is generally easy to use and can be used as a first baseline. Moreover for many classifiers, the method is interpretable as feature importance can be analyzed.

Finally it is possible to create features for specific problems with expert knowledge, enhancing the performance of the method.

Dictionaries

Fixed Dictionary For many signal analysis application, designing a basis on which to decompose the signal allows to find relevant patterns. For simplicity we only present some basis function often used as a pre-processing step for machine learning applications. For our applications, we summarize these methods as follows:

• Choose a basis of functions

D ∈ R T ×T • Project X on D ie X = XD with X ∈ R T
• Use coefficients X as features.

In general, links can be made with functional analysis [START_REF] Ramsay | Functional data analysis[END_REF] where time series are treated as a function. Fourier basis [START_REF] Bloomfield | Fourier analysis of time series: an introduction[END_REF] for frequency analysis and Wavelet basis [START_REF] Mallat | A wavelet tour of signal processing[END_REF] for scale and frequency analysis are very popular methods for time series analysis. For electricity consumption, spline basis has been used successfully [START_REF] Wood | Generalized additive models for large data sets[END_REF]. Coefficients obtained from such decomposition are applied successfully for time series classification in [161] [160] where the spectrogram is used to create a symbolic representation of the time series.

Dictionary Learning For the method presented before, the functional basis is pre-defined, based on an insight on the underlying nature of the signal. It is also possible to learn it using dictionary learning [START_REF] Aharon | An algorithm for designing overcomplete dictionaries for sparse representation[END_REF]. In general, finding a basis to decompose a signal is an underdetermined problem so one has to guide the learning to find appropriate solutions.

We consider a dataset X ∈ R n×T of n time series of length T . In general, the basis D ∈ R f ×T to learn can be overcomplete (f >> T ) or undercomplete (f << T ). When the base is overcomplete, a sparsity constraint is imposed on the coefficients, for instance

D = min D X -AD 2 + λ n i=1 A i 1 (3.3)
Efficient solutions have been proposed to solve this problem [START_REF] Mairal | Online dictionary learning for sparse coding[END_REF]. Undercomplete dictionary is also often called matrix factorization [START_REF] Lee | Algorithms for non-negative matrix factorization[END_REF]. In general, overcomplete dictionaries are useful for signals that can be decomposed by a small number of a large collection of patterns and undercomplete dictionaries for signals that are a combination of a small number of common signals [START_REF] Dumitrescu | Dictionary learning algorithms and applications[END_REF].

Auto-regressive models

Other typical features for time series data are derivated from autoregressive models: one of the most popular is the AutoRegressive Moving Average (ARMA) model. It states that the time series follows the following model :

S t = C + t + p i=1 φ i X t-i + p i=1 θ i t-i (3.4) 
where p and q are hyperparameters, . are white noises and φ . and θ . are the parameters of the models that have to be fit on the time series. These two set of parameters are then used as features, such as in [START_REF] Bagnall | A run length transformation for discriminating between auto regressive time series[END_REF].

Transferability of Deep Time Series Representations

Deep Time Series Representations

Deep Learning has been very popular in recent times for unstructured data such as images or text, finding applications in object recognition [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF], text translation [START_REF] Vaswani | Tensor2tensor for neural machine translation[END_REF] or text generation [START_REF] Serban | Building end-to-end dialogue systems using generative hierarchical neural network models[END_REF]. Hence, some architectures are designed specifically for time series, reviewed in [START_REF] Fawaz | Deep learning for time series classification: a review[END_REF]. The two main architectures are convolutional neural networks (CNN) and recurrent neural networks (RNN). Deep neural networks simultaneously learn representations and a classifier.

Broadly speaking, RNNs are networks learning from sequences, where each neuron feeds the next one with a memory parameter so that prediction at time t depends of the whole sequence. RNNs are extremely popular for NLP applications where state-of-the art methods are based on recurrent neural networks. For time series, they are rarely applied for several reasons. Firstly, typical time series are very long, and methods such as Gated Reccurent Unit (GRU) [START_REF] Cho | Learning phrase representations using rnn encoder-decoder for statistical machine translation[END_REF] or Long Short Term Memory (LSTM) [START_REF] Hochreiter | Long short-term memory[END_REF] struggle to handle long sequences. Secondly, time series are often subject to noise where text data has in general a better structure. Some RNN are proposed for time series [START_REF] Gallicchio | Deep echo state network (deepesn): A brief survey[END_REF] but appear to be underperforming in general [START_REF] Fawaz | Deep learning for time series classification: a review[END_REF].

CNNs are similar to typical neural networks but use convolutional layers, meaning that these layers keep some temporal information from the input. This kind of layers can help to identify discriminative patterns in time series, as for the popular shapelet method [START_REF] Ye | Time series shapelets: a new primitive for data mining[END_REF]. Links have also been established between convolutional neural networks and wavelet analysis [START_REF] Mallat | Understanding deep convolutional networks[END_REF]. CNNs are very popular in computer vision, with popular architectures such as AlexNet [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF] or VGG16 [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF]. They are generally made of convolutional layers and fully connected layers defined as follows: a fully connected layer (also called dense layers) takes an input z ∈ R n and transforms it into an output y ∈ R l through an activation function σ :

y = σ(W z + b) (3.5)
where W ∈ R l×n and b ∈ R l are respectively the weight matrix and the bias of the layer to be learned. Similarly a convolutional layer is defined by a transformation :

y i = σ( r j=1 W j z 1+(i-1)s+j + b j ) (3.6)
where W ∈ R r and b ∈ R r are respectively the kernel matrix and the bias of the layer to be learned with kernel size r and stride s. For a classification task, convolutional layers are stacked before using fully connected layers for prediction. The parameters of the network are then trained in an end-to-end fashion by minimizing a loss L on training samples and using feed-forward backpropagation. More details about neural networks can be found in Appendix A.

The temporal structure of a time series is taken into account in a CNN as the convolutions keep temporal information as shown on Figure 3.2. From classical CNNs, many works tried to derive specific architecture for time series. Fully Convolutional Networks [START_REF] Wang | Time series classification from scratch with deep neural networks: A strong baseline[END_REF], Multi-scale Convolutional Neural Network [START_REF] Cui | Multi-scale convolutional neural networks for time series classification[END_REF], LeNet [START_REF] Le Guennec | Data augmentation for time series classification using convolutional neural networks[END_REF] are all proposed based on traditional neural networks architectures. Current state-of-the-art methods 1 on the popular UCR dataset [START_REF] Dau | The ucr time series archive[END_REF] for time series classification are ResNet [START_REF] Wang | Time series classification from scratch with deep neural networks: A strong baseline[END_REF] and DenseNets [START_REF] Richard | Densenets for time series classification: towards automation of time series pre-processing with cnns[END_REF] (see Section 3.4) which are both methods including skip connections.

In order to better take into account the temporal nature of the data, temporal convolutional network (TCN) [START_REF] Bai | An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[END_REF] have been proposed as an extension of WaveNet [START_REF] Oord | Wavenet: A generative model for raw audio[END_REF]. They extend the notion of CNN by including causal dilated convolution. Using causal convolutions means that, at layer k, the neuron at position t only receives information from neurons at position j < t at layer k -1:

y i = r j=1 W j x i-jd (3.7) 
where r is the kernel size and d the dilation rate. In Figure 3.2, one can observe that TCN is hybrid between CNN and RNNs.

Finally, CNN can also be used for feature extraction in an unsupervised way with autoencoders illustrated in 1 Better results can be obtained using ensembling such as [START_REF] Lines | Hive-cote: The hierarchical vote collective of transformation-based ensembles for time series classification[END_REF] [66]

On Transferability of Deep Time Series Representations

A reason for the popularity of deep learning in image and text is that the transferability or generalization ability of representations learnt on large datasets, such as ImageNet [START_REF] Deng | Imagenet: A large-scale hierarchical image database[END_REF] for computer vision or Word2Vec embeddings learnt on Twitter feeds [START_REF] Pennington | Glove: Global vectors for word representation[END_REF] or a mixture of large corpus [START_REF] Devlin | Pre-training of deep bidirectional transformers for language understanding[END_REF]. With a small number of labeled images, one can use an architecture such as AlexNet to fine-tune the network as mentioned in Section 2.3.3. This idea is the key to many sucessful applications of deep learning techniques today, as learning such architectures require a large amount of data.

A natural question is: can one find such large architecture and representations for time series? The question has been studied in recent works. [START_REF] Song | Gaitnet: An end-to-end network for gait based human identification[END_REF] tried to collect such a dataset for gait movement data. With limited data, there is a need for more advanced transfer learning methods than fine-tuning from a pretrained neural network.

Transfer Learning in Non Intrusive Load Monitoring

General presentation

Non Intrusive Load Monitoring (NILM) is the field of analysis of the consumption of electric appliances in a household. It is introduced by Hart (1989) [START_REF] Hart | Residential energy monitoring and computerized surveillance via utility power flows[END_REF] as the process to analyze changes in the voltage of different appliances with the goal of knowing which appliances are turned on or off.

Generally speaking, the goal of NILM is to the disaggregation of the load curve of a household. Formally, if we call X ∈ R T the total consumption of a home over a period T , the goal of NILM is to predict the consumption at each timestamp of each appliance in the household Y = [X 1 , ..., X A ] where A is the number of appliances (generally unknown). One can note that the whole consumption is equal to the sum of the sub-consumptions of each appliance, hence NILM is similar to a source separation problem.

As such this is a very hard problem for several reasons. Firstly, to solve it perfectly, one must know every appliance in a home. It is almost impossible as some appliances such as phone charges are not plugged all the time. In general, one only considers some high-consuming appliances such as washing machine, dishwasher, electric heater, water heater, ... Secondly, the problem of source separation is known to be already hard when the number of measured signals is the same as the number of sources. Here, we only have one output signal.

As presented in Figure 3.4, many interesting sub-problems exist for Non Intrusive Load Monitoring. The most basic problem is to know if an electric appliance can be recognized from its own consumption. This is known as appliance signature recognition, where a signature is a single cycle of consumption of an appliance. A more complicated problem is to detect if an appliance is turned on or off at a given timestamp. This is often formulated at a sequence classification by considering a window around the timestamp. More complicated is to predict the consumption of an appliance for a given time window. For instance one could consider the problem of predicting the daily consumption of a fridge from the whole house consumption over a day. These sub-problems are simpler to solve than the original disaggregation and are sufficient for many applications. Moreover, the complete disaggregation of the consumption of a household raises the issue of privacy. Solving simpler problems might mitigate this privacy issue.

Data collected for NILM can take two forms that lead to very different methods. The first class of data collected is made of only power measurements at a sampling of a second or more. This can be done using a smart meter to monitor house consumption and specific plugs for each device. The other class of data are high frequency (higher than 1000Hz) measurements of power and/or voltage. This allows to work on both active and reactive power and to detect appliance activations using their complex impedance.

In this work, we focus only on the first class of data, as it is the data collected in the experiments led by EDF.

Moreover, most houses are not equipped with high frequency sensors, so the applicability of such methods is limited.

Such methods seem more suited for commercial and industrial buildings, where the energy saved can be worth the investment.

Appliances are often categorized in four categories:

• On/Off appliances: these appliances are manually turned on or off and have two states, such as lamps, computers, TVs, ...

• Finite State appliances: these appliances have multiple operating states, such as washing machine, dish-washer, ...

• Permanent and cyclical appliances: these appliances have a permanent or cyclical unique operating state, such as fridge, smoke detectors, ...

• Continuously Variable Appliances: these appliances do not have fixed operating states and are very hard to process, such as electrical heater.

Many methods treat each appliance separately [START_REF] Parson | Non-intrusive load monitoring using prior models of general appliance types[END_REF] and some appliances are harder to analyze. For instance, EDF experts agree that continuously variable appliances such as electrical heaters are very hard to disaggregate whereas regular appliances such as the fridge should be easier to analyze.

NILM opens several sources of potential shifts between different houses. The first source of shift is the differences between appliances both in their cycles and in their power load. For instance, appliance consumption is higher in the US than in France. Moreover, some devices are very different: for instance, in the US, water is already hot when arriving in the washing machine, whereas in France, a first cycle is required to heat the water. Secondly, there are differences in behaviour. The usage of a washing machine is very different for single people from large families. This means that when learning a disaggregation algorithm on one house, it may be under-performing on another house. 

Review of methods

The seminal work of [START_REF] Hart | Residential energy monitoring and computerized surveillance via utility power flows[END_REF] [START_REF] Hart | Residential energy monitoring and computerized surveillance via utility power flows[END_REF] proposed combinatorial optimization to solve the original problem but requires power and voltage data. Later, Batra et al. ( 2013) [START_REF] Batra | Indic: Improved non-intrusive load monitoring using load division and calibration[END_REF] proposed to use combinatorial optimization for single power measurements later by comparing the signal to a fixed database of appliance signatures and using methods similar to dictionary learning. This approach can work when the number of appliances is small but is not robust to continuously variable appliances and does not scale well with the number of appliances. Hence, when electric heater is present, it is very hard to detect other motifs. Dictionary Learning is also proposed for load disaggregation but suffers even more from these issues [START_REF] Kolter | Energy disaggregation via discriminative sparse coding[END_REF].

Parson et al. (2012) [START_REF] Parson | Non-intrusive load monitoring using prior models of general appliance types[END_REF] opened a new line of work based on Factorial Hidden Markov Models. The basic idea behind this line of work is to model the state of an appliance using a HMM. For instance, ON/OFF appliances are modeled by two states and finite state appliances by their number of states, where each state is described by a gaussian distribution. This class of models is later extended using more complex models [START_REF] Zhong | Latent bayesian melding for integrating individual and population models[END_REF]. These methods are currently a strong baseline for disaggregation, although they require expert knowledge on the a priori power distributions of the appliances. Such knowledge is possible when every device is known but there is a huge variability in devices depending on brands, countries, ... They are also weak to continuously variable appliances, but perform extremely well for cyclical appliances such as the fridge for instance.

Deep Learning is the third main branch of NILM methods. Originally proposed by [START_REF] Kelly | Neural nilm: Deep neural networks applied to energy disaggregation[END_REF] [100], several models are proposed. The setup uses data from the publicly available REDD experiment (power measurement sampled at 1 minute): they select 5 appliances and consider the problem of predicting the load curve of each appliance based on the total consumption during a week. The first model learns a seq2seq architecture traditionnally used for denoising based on an RNN and a convolutional autoencoder. It is similar to an encoder where the input is the total load curve and the output the load curve of one appliance. The second model simply predicts the start and the end of an activation with its average value. These models outperform the previously mentioned models on the REDD dataset and are currently considered as state-of-the-art. These promising results opened several works, both academic [START_REF] Zhang | Sequence-to-point learning with neural networks for nonintrusive load monitoring[END_REF] and industrial at EDF for instance, including the ones of this thesis. The main disadvantage of this class of method is the requirement of a large labeled dataset.

Finally, an emerging class of method is based on Graph Signal Processing [START_REF] Sandryhaila | Big data analysis with signal processing on graphs: Representation and processing of massive data sets with irregular structure[END_REF]. In Graph Signal Processing, each appliance is considered as a node of a graph and its consumption is a time series. In [START_REF] Zhao | On a training-less solution for non-intrusive appliance load monitoring using graph signal processing[END_REF], authors propose an unsupervised disaggregation method based on graph signal processing, which works well if the appliances have mean power very different from each other. This line of work is not the best performing but is promising.

Datasets Electric Data (EDF)

The main dataset of interest for our work is collected by EDF firstly in 2016 and in 2018 and 2019 (during this thesis).

In total, 27 households are monitored during several months, both at the whole consumption level and the appliance level. It is done using only the house electricity meter: a sensor monitors the whole consumption every second and A white square means it was not monitored or was mixed with another appliance. Each house has different appliances and some may be absent from some houses. The details about the composition of each house is available in Figure 3.5. Unfortunately, the collected data does not allow to analyse smaller appliances. Indeed, they are too often mixed with larger appliances as two appliances can be connected to the same circuit breaker. For this reason, in our experiments, we are limited to few devices. On Figure 3.6, the consumption over one day of different appliances is represented. One can observe that heating appliances are responsible for a large part of the consumption and they are very noisy.

Public datasets

Public datasets are also used in our experiments. A large number of datasets exist but we decide to keep the one that are closer to our experiments in terms of measurements: REFIT and TraceBase. REFIT is a dataset made of cleaned consumption data in Watts for 20 households at aggregate and appliance level, sampled at a various TraceBase is a collection of single-appliance measurements. It cannot be used for disaggregation purposes but for appliance recognition. It is a collection of measurements over one appliance during one day. In total, 11 types appliances are monitored, with several models for each appliances (from 1 to 12 models).

Problem formulation

As illustrated in Figure 3.7, the total disaggregation is hard since some large appliances are not monitored. In this thesis, we take interest in two sub-problems. The first sub-problem is the one of appliance recognition: is it possible to recognize the signature of a model of an appliance that has never been seen before?

Indeed, if such recognition is already impossible, load monitoring is even harder. For this purpose, we formulate the problem of time series classification and study two kinds of transferability: cross-house transferability and crossdataset transferability. Indeed, REFIT and Trace Base datasets are respectively collected in the UK and in Germany.

While European appliances are in general similar, we expect their signatures to be different from the ones in France.

The second problem is the one of appliance daily consumption estimation. It is a harder problem as it works on the aggregated load curve. Moreover, it is a regression problem, wich requires different techniques from classification. This problem is treated in Chapter 4. 

Time Series Normalization for Invariant Appliance Recognition

Global and z-normalization

It is well known that pre-processing is crucial for time series analysis. Operations such as z-normalization, detrending or de-seasonalizing are traditional pre-processing tools for time series analysis. Finding the appropriate pre-processing is not an easy task and generally depends on inner data characteristics. Each technique may discard some information and should be used with caution. For signature recognition, detrending and de-seasonalizing are not necessary. For Time Series Classification, z-normalization is classically used, including as a pre-processing for deep learning methods. But as was noted in [START_REF] Fawaz | Deep learning for time series classification: a review[END_REF], "this traditional pre-processing step should be further studied [...] since normalization is known to have a huge effect on DNNs' learning capabilities".

Firstly, we define two common normalization techniques for time series: standardization and min-max normalization. Each of them is broken down into per instance and global normalization. Here, X ∈ R n×T is the full dataset where n is the number of samples and T the time series length, Y ∈ R n×C is the label vector.

X i = {X 1 i , ..., X T i }
denotes the i th element of X.

Global min-max normalization (GN) normalizes the values of X according to its minimum and maximum converting it into the range [0, 1]. Typical issues would be out-of-sample minimum and maximum and outliers, which happens often in many time series applications. Global standardization (GS) standardizes the values of X according 

Min-Max

Standardization Global GN (X j i ) = is that similarity between two time series can be meaningless without proper pre-processing in presence of an offset or a scale variation [START_REF] Rakthanmanon | Searching and mining trillions of time series subsequences under dynamic time warping[END_REF].

X j i -min(X) max(X)-min(X) GS(X j i ) = X j i -mean(X) std(X) Instance IN (X j i ) = X j i -min(Xi) max(Xi)-min(Xi) IS(X j i ) = X j i -mean(Xi) std(Xi)
We argue that this choice might not be optimal for every domain, especially when the scale or the offset are discriminative. It can be seen on a toy example: in Figure 3.9a, without normalization, a euclidean or DTW-based classifier would not discriminate the classes properly: dotted time series is classified in the same class. With classes from Figure 3.9b, instance standardization has the opposite effect. One can notice that there is no obvious choice of normalization and for more complex data, balancing shape and scale information is challenging.

Normalization for appliance consumption

Using the previously mentioned notations, we analyze how it applies for appliance signature recognition. It was already mentioned in the seminal paper of [START_REF] Hart | Residential energy monitoring and computerized surveillance via utility power flows[END_REF] [START_REF] Hart | Residential energy monitoring and computerized surveillance via utility power flows[END_REF] that normalizing power measurements per appliance was useful to compare between different models of the same devices using voltage data. Since it is not available in our dataset, we simply use power measurements. Kelly and Knottenbelt (2015) [START_REF] Kelly | Neural nilm: Deep neural networks applied to energy disaggregation[END_REF] subtract each sequence by its own mean but divide each sequence by the standard deviation of the whole training set as a pre-processing step for neural networks. They already notice that it loses the information of the nominal power of an appliance which is crucial to other methods and assumed that "there are likely to be ways to have the best of both world".

Indeed, for some appliances, the nominal power is discriminative whereas for other appliances, only the shape matters. and kettle / microwave), we firstly plot the distribution of the signatures of two models of each appliance and then a comparison between appliances. For dishwashers and washing machines there is a higher variability but in general, dishwashers signatures are made of two cycles, whereas washing machine are made of only one cycle. The cycle length depends on the usage and the model of the appliance, while the nominal power is dependent on the model and varies between 2000W and 2500W for both appliances. For kettles and microwaves, they both have the same shape of signature, with a single short step. But the nominal power is different, as for kettles it is in general between 1500W and 2200W , whereas for microwaves, it is around 1000W .

The danger of instance normalization is visible on the example of kettles and microwaves, as both signatures are very similar as illustrated in Figure 3.11. But on the example of dishwashers and washing machines, normalizing would allow for better transferability between appliances, as the main difference between two models of dishwashers or washing machines is their nominal power. In order to combine both information and get the best of both worlds,

we propose an ensembling model using deep learning. 

z k = f k ([z k-m , ..., z k-1 ])
DenseNets allow to produce more complex information from layer outputs than ResNets. On the other hand, they tend to have larger layer inputs, due to the successive concatenations, depending on the number m of preceding layers being concatenated. In our architecture, we use bottleneck layers: after a dense block, a bottleneck layer brings back the number of inputs to the initial number of feature maps, as described on Figure 3.12. Hence for a fixed number of feature maps K and maximum m max size of dense block, the number of inputs never exceeds

K × m max .
Another novelty of our architecture is to explicitly feed features from different scales to the final predictor. Namely we concatenate the outputs of each dense block to create the input of the last fully connected layer. As the number of dense blocks is relatively small, the input size stays tractable.

DenseNets are comparable to ResNets, which are state of the art in time series classification, as they introduce skip connections. DenseNets showed better performance in the experiments but are also longer to train than ResNets.

Mixing scale and shape

In theory, it is rarely strictly necessary to standardize the inputs of a neural network and most pre-processing tricks are hard to analyze properly. In practice, standardization allows non-fittable networks to be fittable [START_REF] Lecun | Efficient backprop[END_REF], as the gradients of most activation functions tend to be more informative for values close to 0. Hence, we always use at The first case is our baseline scenario. In the second case, we expect a shift in the distributions as the devices in the training houses are not the same as the ones in the test houses. Finally, in the cross-dataset scenatio, our objective is to study the transferability between countries and different experimental process. For the REFIT and Electric Data datasets, we only have the measurements over the whole experiments (several months) for each appliance and need to extract each signature. In order to extract the signatures, we use a detector function to extract activations. It is based on several parameters:

Experiments on NILM Datasets

Preprocessing and Methods

Preprocessing

• A minimum power to reach

• A minimum time window

• A minimum off period to split cycles correctly.

It is better to set these parameters specifically for each appliance. It must be noted that this function is not perfect, hence some untypical signatures can be extracted from raw data (extremely high consumption, very short spike, ...). For the REFIT dataset, we get satisfying results after simply removing outliers based on Local Outlier Factor. For Electric Data, it must be noted that the final database has been created using manual intervention.

Firstly, some signatures are wrongly annotated in the experiment and had to be changed manually. Secondly, some signatures are curated with outlier detection, but we still noticed some remaining untypical signatures. Other methods for signature extraction are being developed at EDF but were not available during our work.

In the end, we extracted signatures for different appliances in each dataset as summarized in Table 3.3. Water heater is particularly present in France, while in the UK and in Germany gas heating is more popular. Moreover, our architecture requires time series to be of the same length. For this reason, we use right zero-padding to make signatures 2 hours long, which gives 720 points with a 10s sampling. We also tried architectures that do not require same-length time series such as recurrent networks or Fully Convolutional Networks, but results are worse.

For the TraceBase dataset, signatures are already extracted. We do not know the house of origin of each device, so we artificially created 7 house splits by gathering some devices together. The database is quite small with ∼ 1000 signatures in total and with only 20 signatures for some appliance models. One can note, that even for REFIT and Electric Data, in the case of appliance recognition, the cross-house framework could be extended considering any combination of devices coming from different houses (for instance, train on some devices from houses 1 and 2 and test on some devices from houses 3 and 4), as long as we keep only one model per appliance.

Compared Methods

In the experiments, we compared different methods: The first method is a non deep learning method. In RF, 113 statistical features from the whole time series and windows are extracted and feeded in a random forest. The feature extraction is made on signatures of different lengths (we do not need different padding). The methods 3 to 8 are described in the previous section. The last three methods are only used for the cross-house and cross-dataset experiments as they are adaptation techniques. They correspond to the adversarial scheme described in Section 2.3.2: at the dense layers in our architecture, an additional branch is added to learn a discriminator between domains. Other methods were tried, such as Discriminative Dictionary Learning [START_REF] Kolter | Energy disaggregation via discriminative sparse coding[END_REF], but gave very poor results.

The DenseNet architecture is kept the same for every neural network based method. It is made of 3 dense blocks, each of them composed of 3 convolutional layers with 64 filters of size 7, 5 and 3. We tried other architectures but we found that with more than 3 convolutional layers, the network could not fit anymore. We ran each experiment 10 times with different seeds for weight initialization and we report only mean F1-scores with standard deviations. 

Layers

Same House

When training and testing on signatures coming from the same house, there is very little shift in the signatures.

Overall, the problem is quite easy and every algorithm performs well. We report the macro-F1 score on Electric Data database in Table 3.7. We ran the experiments 10 times with different initial weights. In this database, we only consider large appliances, hence it is quite easy to recognize them for every method. In general, the few mislabeled signatures are outliers. We did not notice significant differences between min-max normalization and standardization. Table 3.9: Same house: F1 score (%) for different methods with standard deviation over 10 runs on REFIT dataset

Electric Data

Cross-House Results

In this case, we sequentially consider one house as the test house and merge every other as a training house. We report in Figure 3.16 the whole confusion matrix for REFIT data for GN, IN and Ens. Results for ElectricData and TraceBase are represented in Figure 3.15 and Figure 3.17 respectively. Here, we clearly observe the gain of our ensemble technique. The observations made in Section 3.4.2 are confirmed with our experiments, as the Instance normalization methods tend to under-perform for appliances such as kettles, microwaves, TVs, and computers. On the other hand, when keeping scale information, some signatures from washing machines tend to be misclassified, especially for one house where the dishwasher has a high nominal power.

On Electric Data, similar observations can be made. Even with global normalization, the kettles and microwaves are still hard to discriminate. Indeed, kettles in this dataset tend to have a lower nominal power and are often mixed with microwaves.

On TraceBase data, the results are similar with every method, although once again, our EnsNormNet gives the best results of all methods. TraceBase is only made of very clean signatures and has a lower variety of appliance models in general. Hence, there is a high homogeneity between appliances and a low shift between houses. In Table 3.11, Table 3.10 and Table 3.12, we present the macro-F1 score for every method on ElectricData, REFIT and TraceBase respectively. We expected the FeatNet method to perform as well, but it gives very similar results

to Global Normalization, which could mean that the network gives too much importance to the scale information.

Similarly, the random forest model underperforms compared to neural nets-based methods. Other methods such as dictionary learning or Nearest Neighbours with Dynamic Time Warping are both underperforming compared to the Random Forest model.

Another thing to notice is that the Domain Adversarial Training does not bring any improvement to the classification performance. In fact, on Electric Data it even brings down the classification performance. Since it is unsupervised adaptation, it tended to match representations without any knowledge about the label, which com- pletely mixed together kettle and microwaves and even large appliances. We could improve on these results by selecting only houses similar to the target houses but the similarity measure required supervision (knowledge about the target appliances). This motivates the idea of source selection which we develop in the next chapter. 

Cross-Dataset Results

Finally, we study if appliance recognition is transferable between datasets coming from different countries. Here, we only consider European countries where appliances are similar. For each experiment, we only keep the appliances available in every dataset. We merge signatures coming from every houses for the source dataset and applied on the target dataset. We report the confusion matrix for the REFIT → ElectricData and ElectricData → REFIT scenarios in Figure 3 The results are poor compared to the cross-house scenario (note that the F1 scores are not directly comparable as the classes are different). Our ensembling method still gives the best results but in total the recognition accuracy is around 54%. The main issue is with small appliances like kettle and microwave: in the UK, kettles tend to have a higher nominal power but it is not the case in Electric Data. This is in line with a recent study [START_REF] D'incecco | Transfer learning for non-intrusive load monitoring[END_REF] that showed that transferring between countries is not easy. Once again, the unsupervised domain adaptation methods does not give any improvement.

Discussion

A first conclusion is that, as expected, both scale and shape information matter for appliance recognition. Hence, our ensembling method takes the best of both worlds and allows better generalization. While not directly a Transfer Learning method, it still allows to reduce the shift between different models of the same appliances. We visualize it on Figure 3.20, where we show a visualization of the features learnt by the neural network. In the first subfigure, the network was learnt using Instance Normalization, in the second using Global Normalization and in the third, we use our Ensembling Network. We represent the features of appliances coming from a house not seen during training. and we see that EnsNormNet manages to bet the best of both worlds. Here, the adaptation is very specific to our problem at hand. In a way, using two channels with different information is also related to data augmentation.

Indeed, by feeding different information on the time series to the network, we perform implicit data augmentation, which is known to be good for better generalization. Finally, we also noticed that the domain adversarial methods did not give any improvement on the classification performance.

As we want to reduce shifts between houses, we also introduce other normalization methods, for instance by standardizing using the mean and the standard deviation of each appliance in each house. In that way, the distribution of power measurements of each appliance would have the same first two moments. The results are very similar to the instance normalization approach as it completely ignored the nominal power of the appliance. We tried using instance weighting as described in Section 2.3.1 but it gave poor results.

It must be noted that such experiments are hard to conduct as it is not clear what a signature is. Here, we use a function depending on different parameters which is imperfect. We know that by setting stricter parameters, we can get a cleaner database where appliance recognition is easier but our database is incomplete, as some signatures be missing. The zero-padding is also questionable.

It would also be possible to use a hierarchical structure on the classes, such as learning a first predictor to separate large appliances (washing machine, dishwasher, ...) from small ones (TV, computer, kettles, ...) and two predictors for each categories. When we tried such method, the results are not better than in a general model.

Finally, additional experiments are conducted on the UCR suite where we show that Ens always outperform methods based on only one normalization. These results are reported in Appendix ...

Conclusion

In this chapter, we presented different representations for time series with an emphasis on deep learning methods.

We saw that deep learning methods, in particular convolutional neural networks, are very efficient tools for time series classification. This feature extraction is key for transfer learning as the transfer is very dependent on the feature space. As detailed in Chapter 2 many successful methods extract transferable features from the data.

Hence one could perform a feature extraction on time series and then apply one of the Transfer Learning methods seen previously. But it would be sub-optimal as we expect that driving the feature extraction with the goal of Transfer Learning leads to more transferable features.

In this part, we proposed a method for appliance recognition. We observe that there is a gap in the performance between same-house appliance recognition and cross-house appliance recognition. In order to reduce this gap, we proposed a method that takes information from both shape and scale of time series and experimentally show that it allows to reduce the shift between appliances models for better transferability between houses. When trying domain adaptation techniques, no improvement was observed.

Nevertheless, our method is very field specific. Even for the more general problem of appliance consumption estimation, it is not always applicable. Domain adaptation methods presented in Chapter 2 do not integrate field specific information, whereas our ensemble methods does. As described in Figure 3.4, appliance recognition is the first sub-problem of Non Intrusive Load Monitoring. Our method is useful when collecting new data: indeed, during the collection of Electric Data datasets, a lot of manual re-labelling was necessary for mis-annotated data or residents switching appliances between plugs. We can automate this process with this method for future data acquisition. Moreover for the real problem of NILM, in general the aim is not to discriminate between small appliances.

It would still be interesting to apply the method using a clean database for training, as new methods are currently tested to extract signatures from Electric Data.

While our method displays good experimental results, there are still some open questions for time series classification using deep neural networks. We saw that because of the lack of a large benchmark database for time series, finding a very general architecture for time series is a hard issue. We argue that the main effort to solve this problem is the collection and preparation of such a large dataset. Moreover, deep neural networks are not very interpretable. For industrial applications this often is an issue, as practitioners are reluctant to use them. Research on more interpretable neural networks is in progress [START_REF] Zhang | Interpretable convolutional neural networks[END_REF] and this will be a key factor for better industrialization of such methods.

The sub-problem of appliance classification presented previously shows that while a shift existed between houses, it ishard to reduce it using typical domain adaptation methods. Based on this observation we develop a framework for the problem of appliance consumption estimation, ie predicting the consumption of one appliance over a time window given the whole house consumption illustrated in As mentioned in Section 2.3.2, adversarial domain adaptation has been introduced by Ganin et al. ( 2016) [START_REF] Ganin | Domain-adversarial training of neural networks[END_REF].

The main idea is to learn transferable discriminative features using a neural networks optimizing two objectives.

Considering a classification task with X ⊂ R d and Y ∈ {0, 1}, authors introduce a neural network feature extractor φ : X → R m , a neural network predictor h : R m → Y and a neural network discriminator D : R m → {S, T }.

The predictor aims to learn to classify the input data while the discriminator aims to discriminate between domains.

Namely, considering a labeled source sample S S = {(x

S , y

S ), ..., (x } of size n T , two losses are introduced:

• L y = n S i=1 L h(φ(x (i) S )), y (i) S ) • L d = n S i=1 L D(φ(x (i) S )), 0 + n T i=1 L D(φ(x (i) T ) , 1)
where L is a classification loss, such as cross entropy. Finally, the objective is to minimize

min h,φ max D L y + λL d (4.1)
This is done using the traditional feed-forward backpropagation and a gradient reversal layer between the feature extractor and the discriminator.

This idea is directly motivated by the H∆H-divergence 

Limits of Domain Adversarial Adaptation in Regression with H-divergence

Both previous methods base their analysis on the specific problem of binary classification. Moreover, they both minimize a lower bound on d H∆H as d H ≤ d H∆H . Chapter 2 also presented that the discrepancy is able to generalize d H∆H to more general classes of loss and predictors.

Zhao et al. ( 2018) [START_REF] Zhao | Adversarial multiple source domain adaptation[END_REF] directly used the DANN presented above for regression by simply changing the prediction loss L y to the 2 loss, and obtain good experimental results. We argue that this is in general ill-advised as the d H∆d H is in general uninformative for the actual discrepancy between domains induced by regressors.

We highlight our argument with a simple example. We simply generate three source and target datasets using 1D-Gaussians, ie X S ∼ N (µ S , σ S ) and X T ∼ N (µ T , σ T ). We chose in the first example µ S = 1, µ T = 1 and small values of σ S = σ T << 1, in the second example, µ S = 1, µ T = 1 and σ S << σ T , finally µ S = µ T = 0 and σ S = 1 and σ T = 4in the last example.

loss L :: Y × Y → R + , the discrepancy between P and Q is defined as

disc H,L (P, Q) = sup h,h ∈H E x∼P [L(h(x), h (x))] -E x∼Q [L(h(x), h (x))] (4.2)
One of the main difficulties when estimating the discrepancy is due to the computation of the supremum over two hypotheses h and h . For this reason, we introduce the concept of hypothesis-discrepancy as follows Definition 10. For two distributions P , Q over a set X and for a hypothesis class H over X , for any h ∈ H, the hypothesis-discrepancy (or HDisc) associated with h is defined as:

HDisc H,L (P, Q; h) = sup h ∈H E x∼P [L(h(x), h (x))] -E x∼Q [L(h(x), h (x))] (4.3)
For any given h ∈ H hypothesis-discrepancy measures a similarity between two distributions. It is directly dependent on the hypothesis class H and the loss L. In the definition, h can be seen as a predictor that would be very close to h on the source domain but far on the target domain (or vice-versa). Theorem 10 states that hypothesis-discrepancy can be estimated with finite samples.

Theorem 10. We assume that the loss L is symmetric, follows the triangle inequality and there exists M > 0 such that L verifies L(h(x), y) ≤ M for all h ∈ H and (x, y) ∈ X × Y. Then for two distributions P S and P T defined over X , for any hypothesis h ∈ H, with probability 1 -δ over the samples of S S of size m according to P S and S T of size n according to P T the following bound holds: Hypothesis-Discrepancy is directly linked to the original discrepancy by Disc H,L (P S , P T ) = sup h∈H HDisc H,L (P S , P T ; h). [START_REF] Kuroki | Unsupervised domain adaptation based on source-guided discrepancy[END_REF] also have noted that the presence of a supremum over two hypotheses is suboptimal and introduced the source-discrepancy which is a specific case of our hypothesis-discrepancy with h = h * s .

HDisc H,

Kuroki et al. (2019)

Domain Adaptation Guarantees with Hypothesis-Discrepancy

Using HDisc, we are able to show the following theorem for unsupervised single source domain adaptation:

Theorem 11. If L is symmetric and follows the triangle inequality, then the following bound holds:

R T (h, f T ) ≤ R S (h, f S ) + η H (f S , f T ) + HDisc H,L (p t , p s ; h) (4.9)
where

η H (f S , f T ) = min h0∈H R T (h 0 , f T ) + R S (h 0 , f S ) Proof. For any h ∈ H, R T (h, f T ) ≤ R S (h, f S ) + |R T (h, f T ) -R S (h, f S )| ≤ R S (h, f S ) + |R T (h, h 0 ) -R T (h, f T )| + |R S (h, h 0 ) -R S (h, f S )| + |R T (h, h 0 ) -R S (h, h 0 )| ≤ R S (h, f S ) + HDisc H,L (p s , p t ; h) + E x∼pt [|L(h(x), h 0 (x)) -L(h(x), f T (x))|] + E x∼ps [|L(h(x), h 0 (x)) -L(h(x), f T (x))|]] ≤ R S (h, f S ) + HDisc H,L (p s , p t ; h) + E x∼pt [|L(h 0 (x), f T (x))|] + E x∼ps [|L(h 0 (x), f S (x))|] ≤ R S (h, f S ) + R S (h 0 , f S ) + R T (h 0 , f T ) + HDisc H,L (p s , p t ; h)
where the first inequality comes from the triangle inequality, the second holds for any h 0 ∈ H. The third comes from the definition of HDisc(p s , p t ) and the fourth follows from triangle inequality on L. Finally, the result follows taking the minimum over all h 0 .

The term R S (h, f S ) characterizes the source risk and can be controlled. The second term measures the joint error of an ideal hypothesis on both domains. As it involves f T it cannot be controlled without further assumptions in unsupervised domain adaptation but one can still notice it is smaller than the one of Equation 2.19. We assume it to be small ie f S f T .

The last term is dependent on h and involves only one supremum over h ∈ H. Hence while our hypothesisdiscrepancy is less general than the discrepancy it allows tighter bounds for Domain Adaptation. Using Theorem 10, one can see that HDisc can be estimated with finite samples, as can R S (h, f s ) using generalization bounds seen in Section 2.2.1.

Minimizing the hypothesis-discrepancy

Thanks to hypothesis-discrepancy, we proved that the target risk can be controlled by the sum of the source risk and the hypothesis-discrepancy under the assumption that η is small. The source risk can be estimated and minimized using a traditional learning algorithm. However the hypothesis-discrepancy requires a supremum and is dependent on the predictor h.

We propose to formulate an objective corresponding to our bound with a min-max problem. Hence we formulate the following objective for Adversarial Hypothesis Discrepancy Minimization (AHDM): 

min h∈H max h ∈H R S (h, f S ) + |R S (h, h ) -R T (h, h )| (4.
min φ θ ,h∈H Z max h ∈H Z R S (h • φ θ , y S ) + |R T (h • φ θ , h • φ θ ) -R S (h • φ θ , h • φ θ )| (4.11)
In order to minimize this objective, we use a neural network as described in Figure 4.3. In practice we consider h and h to be neural networks with constrained weights. The parameters of each part of the network are minimized successively by:

1. L h = R S updates h to minimize the source loss 2. L h = -HDisc updates h to maximize discrepancy 3. L θ = HDisc + R S updates φ θ to minimize discrepancy and source loss

We use the traditional feed-forward back-propagation to minimize those losses. To the best of our knowledge, this is the first adversarial method proposed working in the regression case.

Classifiers When working on classification, a link can be made between our ADM and the Maximum Classifier Discrepancy (MCD). In MCD, the loss minimized by h and h both are R S -R T (h, h ). Under the assumption that h and h are very similar on D S , R S (h, h ) 0. Hence, under this assumption,

|R T (h, h ) -R S (h, h )| R T (h, h ),
which is exactly the "discrepancy" used by the MCD method. Hence, MCD can be seen as a specific case of our method where (i) the hypothesis space H is restricted to "good" classifiers on the source data (ii) the problem is a classification problem.

Linear Regressors Another interesting case is the case of 2 -loss with constrained linear regressors, ie H Z = {h : x → w T x; w 2 ≤ 1}. In this case, we can develop a closed-form estimation of HDisc. Indeed, let us write

h(x) = w T x and h (x) = w T x. If, for two samples X S = [x (1) 
S , ..., x

(n S ) S ] ∈ R n S ×d and X T = [x (1) 
T , ..., x

(n T ) T ] ∈ R n T ×d
we denote Z S = φ θ (X S ) and Z T = φ θ (X T ) the output of the feature extractor for source and target data, then

HDisc H Z , 2 (Z S , Z T ; h) = sup ||w ||2≤1 1 n (w -w ) T Z S T Z S (w -w ) - 1 m (w -w ) T Z T T Z T (w -w ) ≤ sup ||u||2≤2 u T 1 n Z S T Z S - 1 m Z T T Z S u = 2 1 n Z S T Z S - 1 m Z T T Z T 2 (4.12)
where . 2 denotes the spectral norm. The spectral norm can be computed using SVD or power method, and the gradients can be computed as well using the eigendecomposition and feeded to the feature extractor φ θ . Adlam et al. ( 2019) [2] used a similar idea to train GANs where they show that minimizing the discrepancy comes down to bringing closer the covariance of the extracted features. This is similar to the CORAL [START_REF] Sun | Return of frustratingly easy domain adaptation[END_REF] and its extension Deep CORAL [START_REF] Sun | Deep coral: Correlation alignment for deep domain adaptation[END_REF] where a similar regularization on the covariance matrix is used. As such, our framework provides a theoretical ground to this method and shows that it should work particularly well with regression.

Extension to multiple sources

When multiple sources are available, a straightforward idea is to merge all the source domains into one and transform the problem to a single-source domain adaptation where Theorem 11 holds. This solution is clearly not optimal as different source domains may have different relationships to the target one. 

The framework of Unsupervised Multiple

(h) = E x∼P T [L(h(x), f T (x))].
We introduce a new bound relating the target risk with a weighted combination of the source risks R k (h).

Theoretical Guarantees with multiple sources

We propose to attribute weights to each source and introduce the α-weighted source domain

D α = {p α , f α } such that for α ∈ ∆ = {α ∈ R K ; α k ≥ 0, K k=1 α k = 1}, f α : x → ( K k=1 α k p k (x)f k (x))/( K j=1 α j p j (x)) and p α = K k=1 α k p k .
In this framework, the objective is that sources that are unrelated to the target are given low weights whereas sources closely related to the target have a weight close to 1. The α-weighted sample is defined as

S α = K k=1 S k
with probabilities pα (x 

(i) k ) = α k /m.
H k = {g : x → L(h(x), f k (x)); h ∈ H}.
Theorem 12. Assuming that the loss L is symmetric and follows the triangle inequality, then for any hypothesis h ∈ H, with probability 1 -δ the following bound holds:

R T (h, f T ) ≤ K k=1 α k Rk (h, f k ) + HDisc H,L (p t , p α ) + η H,α + 2 K k=1 α k R m (H k ) + α 2 M log(1/δ) 2m (4.13)
where

• η H,α = min h0∈H [R α (h 0 , f α ) + R T (h 0 , f T )] • R m (H k ) is the Rademacher complexity of H k = {h : x → L(h(x), f k (x)); h ∈ H} Proof.
Using Theorem 11, with p α , we get:

R T (h, f T ) ≤ R α (h, f α ) + η H (f T , f α ) + HDisc H,L (p α , p t ; h) (4.14)
Let us consider K empirical distributions pk corresponding to a sample S k = {x

(k) 1 , ..., x (k) 
m } of size m and a hypothesis h ∈ H. Then the α-weighted sample S α is of size Km and empirical distribution pα defined as pα (x

(i) k ) = α k m . We define φ = R α (h, f α ) -Rα (h, f α ). Noting that changing an element x (i)
k modifies φ by a maximum of α k m , we can deduce from the McDiarmid's inequality that:

P(φ -E(φ) ≤ t) ≤ exp -2mt 2 K k=1 α 2 k (4.15)
Hence with probability 1 -δ,

R α (h, f α ) ≤ Rα (h, f α ) + E pα [φ] + α 2 M log 1/δ 2m (4.16)
We are able to compute E pα using the classical tool of ghost sample in Rademacher complexity analysis. In the following the random variable σ takes its values uniformly over {-1, 1}. We denote {x

(i) k ; 1 ≤ k ≤ K, 1 ≤ i ≤ m} the sample associated to pα ∼ p α and {z (k) i ; 1 ≤ k ≤ K, 1 ≤ i ≤ m} qα ∼ p α . E pα∼pα [φ] = E pα R α (h, f α ) -Rα (h, f α ) ≤ E pα∼pα sup h∈H R α (h, f α ) -Rα (h, f α ) ≤ E pα∼pα sup h∈H E qα∼pα [E x∼ qα [L(h(x), f α (x))]] -E x∼ pα [L(h(x), f α (x)) ≤ E pα, qα∼pα sup h∈H E x∼ qα [L(h(x), f α (x))] -E x∼ pα [L(h(x), f α (x)) ≤ E pα, qα∼pα sup h∈H K k=1 α k (E x∼ qk [L(h(x), f k (x)) -E x∼ pk [L(h(x), f k (x))) ≤ E pα, qα∼pα sup h∈H K k=1 α k m m i=1 (L(h(x (i) k ), f k (x (i) k )) -L(h(z (k) i ), f k (z (k) i ))) ≤ E pα, qα∼pα σi∼σ sup h∈H K k=1 α k m m i=1 σ i (L(h(x (i) k ), f k (x (i) k )) -L(h(z (k) i ), f k (z (k) i ))) ≤ E pα∼pα σi∼σ sup h∈H K k=1 α k m m i=1 σ i L(h(x (i) k ), f k (x (i) k )) + E qα∼pα σi∼σ sup h∈H - K k=1 α k m m i=1 σ i L(h(z (k) i ), f k (z (k) i )) ≤ 2 E pα∼pα σi∼σ sup h∈H K k=1 α k m m i=1 σ i L(h(x (i) k ), f k (x (i) k )) ≤ 2 K k=1 α k R m (H k ) (4.17)
Finally, noting that with empirical distributions Rα (h,

f α ) = K k=1 α k ˆ k (h, f k )
, we obtain the final result with probability 1 -δ over the sample of S 1 , ..., S K :

R T (h, f T ) ≤ K k=1 α k Rk (h, f k ) + HDisc H,L (p t , p α ) + η H,α + 2 K k=1 α k R m (H k ) + α 2 M log(1/δ) 2m (4.18)
Theorem 12 presents a theoretical analysis in the multi-source domain adaptation framework. The first term corresponds to the α-weighted source risks and can be controlled by learning h close to f k . The second term connects the target distribution with the α-weighted source distribution. The third term is related to how different the labelling functions on the target and the source are and is expected to be small in unsupervised domain adaptation.

The last two terms are related to the convergence rate of this bound and Cortes et al. ( 2017) [START_REF] Cortes | Adanet: Adaptive structural learning of artificial neural networks[END_REF] proved that In order to adapt from the K sources to the target, we need to minimize the hypothesis-discrepancy between the α-weighted domain and the target domain. We propose in the next section an algorithm to find ideal representations of the sources and weights to select the best sources for adaptation.

Algorithm

We now present a practical solution for the case of multiple sources. We introduce a feature extractor parametrized by θ φ θ : X → Z and a class of predictor H Z : Z → Y. Given unlabeled target sample S T = {x

T , ..., x

(n T ) T } ∈ R n T ×d and K labeled sources S k = {x (1) k , ..., x (m) k } ∈ R m×d with labels Y k = {y (1) k , ..., y (m) 
k } ∈ R m , our aim is to minimize the combination of the source risk and the hypothesis-discrepancy between the marginal weighted source distribution and target distribution as in Theorem 12.

Using the definition of HDisc, we formulate the following objective for our Adversarial Multi-Source Hypothesis-Discrepancy Minimization (AMSHDM), illustrated in Figure 4.4:

min φ θ ,h∈H α 1=1 max h ∈H K k=1 α k R k (h • φ θ , y k ) + λ α 2 +|R T (h • φ θ , h • φ θ ) - K k=1 α k R k (h • φ θ , h • φ θ )| (4.19) Algorithm 1 Pseudo-algorithm for AMSHDM Initialize α k = 1
K , h, h and θ randomly, choose learning rates η h , η θ and η α for e = 1...epochs do Forward propagation

R k = 1 m m i=1 L(h (e) (φ θ (e) (x (i) k ), y (k) i )) HDisc = R T (h (e) • φ θ (e) , h (e) • φ θ (e) ) - K k=1 α k R k (h (e) • φ θ (e) , h (e) • φ θ (e) )
Backward propagation

h (e+1) ← h (e) -η h K k=1 α (e) k ∆ h R k (h (e) ) ( * ) h (e+1) ← h (e) + η h K k=1 α (e) k ∆ h HDisc(h (e) ) θ (e+1) ← θ (e) -η θ K k=1 α (e) k ∆ θ R k (θ (e) ) + ∆ θ HDisc(θ (e) ) α (e+1) k ← α (e) k -η α ∆ α k HDisc(α (e) k ) + 2λα (e) k Clip weights of φ (e+1) θ , h (e+1) and h (e+1) α (e+1) = α (e+1) / α (e+1)
1 end for ( * ) For a parameter p and a loss L, we note ∆ p L(p 0 ) the gradient of L with respect to p computed at p 0 where λ is a hyperparameter. The first term of the objective leads h to be a good predictor on the source task.

For any given h and h the discrepancy term constrains both representations φ θ and weights α to align domains.

The term η H is ignored in our objective and assumed to be small.

Similarly to the single-source scenario, we sequentially optimize different parameters of our networks according to different objectives. At a given iteration, four losses are minimized sequentially: The loss L α only contains the discrepancy term. Indeed, our goal is to select the domains closer to the source in terms of discrepancy. Including the source loss in L α may give too large weights to sources that are "easy" to predict.

1. L h = α k R k updates h to
It is possible to keep the term with a µ parameter to control its influence but in our experiments, it did not bring any improvement. It is also be possible to completely update α at each epoch but it appears to be sub-performing. Our method allows the weights to smoothly adapt to the representations learnt by φ θ . The weighting scheme is generic and can also be used with the specific cases of Discrepancy mentioned above (linear regressors for instance).

Experiments

We conducted extensive experiments for our method, both on synthetic and real data. Experiments on publicly available data are available on our git repository (https://github.com/GRichard513/ADisc-MSDA). For applications on NILM, we give details to make the experiments reproducible. More details about architectures can also be found in σ shif t ). This experiment helps to understand the purpose of unsupervised domain adaptation. Indeed, as the underlying condition for unsupervised DA to work is that the labelling function is similar in every domain (η H small in our experiments), unsupervised DA is closely related to the issue of generalization. As a consequence, if the algorithm learnt on the source data is able to generalize, domain adaptation brings no improvement. As such, one can see unsupervised DA as a data-driven regularization to improve the target risk.

For this experiment, we use a shallow network with 2 layers with 5 neurons and LeakyRelu activation for the feature extractor and 1 layer for the final predictor. We keep this architecture for three methods: Multi-Layer Perceptron (MLP) without adaptation, Domain-Adversarial Neural Network (DANN) minimizing the d H between domains and our Adversarial Hypothesis-Discrepancy Adaptation (AHDM) our method in the case of single source (no weights α). To get the results for DANN, we tune then hyperparameter µ balancing the regression and domain losses:

without this tuning, DANN always fails to converge because its adversarial scheme is related to classification.

We conduct the experiments with various amount of shift. In Figure 4.6, we report the validation loss (computed validation set different from the training set) and target loss for each method for σ x = 0.2, µ shif t = 0.5 and σ shif t = 0.5, which is the case of target data related but not too close to the source domain.

While MLP and DANN overfit on the source data, our method is able to decrease the target loss. Hence, our adversarial scheme helps the algorithm to better learn for the target data. We report in Table 4.1 the average MSE scores over ten runs for the three methods and various shifts. One can notice that the further µ shif t is, the more useful the adaptation is.

We also report in Figure 4.7 a visualization of the extracted features from AHDM and DANN which shows that DANN tries to align domains only to be able not to separate them while AHDM is constrained by the final regression task. Multi-Source DA We also evaluate our multi-source algorithm on the previous target domain. As expected, multisource domain adaptation does not bring any improvement in the previous scenario as the target is sharing the same relations with every source. But MSDA is particularly interesting in the case where some of the sources are not useful for adaptation. We demonstrate it in an experiment where we control the weights α given to each source in the creation of the target domain.

µ
In a first experiment, we attribute equal weights α 1,2,3 = 1/3 to every source in one cluster and α 4:9 = 0 for every other cluster. In a second experiment, we attribute equal weights to two clusters α 1:6 = 1/6 and α 7:9 = 0 In both experiments, and on different runs, the algorithm is able to retrieve weights close to the real ones as illustrated in Figure 4.8. It is translated by a decrease of the target loss. When putting weights to only one source in a cluster, our algorithm struggles to identify a specific source but still gives large weight to sources in the same cluster. In some experiments where sources were very different from each other (no cluster), we notice a tendency for α to give 1 for one source and 0 for all the others. It can be meaningful as the target may be close to only one source in that case or be balanced using the λ parameter of the 2 regularization. 

Same-house results

Firstly, our goal is to see the results in the same-house scenario, as a baseline result without adaptation. For each house, we firstly try to use K-fold cross-validation using only data coming from one house. We experiment three different methods:

• LR: linear regression from the total consumption to the water heater consumption.

• RF: extracting 113 statistical features (see Appendix C.2.1 feeded to a Random Forest (as in the appliance recognition experiment).

• ResNet: a convolutional neural network with residual connections, similar to the DenseNet presented in Chapter 3.

• TCN: the Temporal Convolutional Network presented above.

We keep the same architectures for every house. For the ResNet, we use 3 layers with kernel sizes 64, 128 and 256 and a dropout rate of 0.3. The main difference between the ResNet and the TCN is the causal convolution.

In Table 4.3, we give the average MAE over 5 runs for each house. We see that TCN gives the best results on almost all houses. We also notice that TCN tends to overfit. Indeed, for each house, only around 200 days are available for training, where each day is a time series of length 8640.

In an additional experiment, we use data from every house for training but only data from one house (that is seen during training) for test. We observe in Table 4.4 that both deep learning methods benefit from this additional data. Overall, in our experiments, we show that TCN gives the best results. We also notice that adding data from other houses improves the results. But this scenario is only possible when the test house is monitored, whereas in general, we do not monitor the water heater consumption. In the next section, we experiment our adaptation method for this new scenario.

Cross-house results

In this experiment, we assume that at training time, labeled samples from 7 houses and an unlabeled sample from the test house are available. At test time, a additional unlabeled sample from the test house is available.

Using our analysis of the previous section, we choose the TCN architecture presented in Section 4.5.2 as a feature extractor for every adaptation method. We compare different methods:

1. TCN: the TCN trained on the labeled samples from the training houses 2. DANN: DANN [START_REF] Ganin | Domain-adversarial training of neural networks[END_REF] with a regressor head for the predictor 3. CORAL: Deep CORAL [START_REF] Sun | Deep coral: Correlation alignment for deep domain adaptation[END_REF] 4. AHDM: our method for the single-source scenario 5. MDAN: Multi-Source Adversarial Domain adaptation [START_REF] Zhao | Adversarial multiple source domain adaptation[END_REF], which extends DANN to multi-source 6. AMSHDM: our method with the multi-source scenario For every adversarial method, the feature extractor is a TCN, and the predictor and discriminator is a network made of 2 fully connected layers. For the single source method (1-4), we merge data coming from every training houses to create a single source. The average MAE for every method and house is given in Table 4.5. One can see the improvement obtained with hypothesis-discrepancy based adaptation, whereas H-divergence based adaptation gives poor results. Moreover, our weighting scheme gives a slight improvement: we notice that the weights tend to group houses with similar consumption levels. It can be seen in Figure 4.11, where we plot the weights obtained by AMSHDM. Finally, CORAL gives very good results. We expected it to be the case as CORAL regularization is similar to our hypothesis-discrepancy minimization as described in Section 4.3. As such, CORAL is a very good baseline as it is faster to train. Indeed, it only implies a regularization term instead of an adversarial scheme.

Method

Comparison with data augmentation

The results highlights the efficiency of our method as it allows to get better results than not using adaptation. It must still be noted that similar results can be obtained using data augmentation. Indeed, a Multi-Agent Simulation (MAS) system has been developed at EDF to generate synthetic load curve of individual households: SMACH [START_REF] Amouroux | Simulating human activities to investigate household energy consumption[END_REF]. This tool is based on 10 minutes activity reports (27000 reports in total) which are representative of the french population's behaviour. Then for each activity, it helps to establish a sequence of actions for each profile in the MAS, defined by its duration, rhythm and preferential period of use. Based on the activities defined by those reports, the MAS outputs ON/OFF activations for each appliance in the household. Finally, for each activation, a signature is added at the timestamp.

Based on ElectricData, EDF researchers were able to generate synthetic data for a Transfer Learning problem.

For each test house, they generated synthetic data using signatures from the other 7 houses (see Figure 4.13).

More details about those experiments are available in [START_REF] Delfosse | Deep learning applied to nilm: is data augmentation worth for energy disaggregation?[END_REF]. The results obtained from training a TCN from synthetic data were slightly better than the ones obtained with AMSHDM. As such, data augmentation allows for better generalization. Our method allows to adapt to a specific space, as illustrated in Figure 4.12. The data augmentation still requires a lot of expert knowledge. Indeed, the MAS took years to develop and is not easy to use. We tried to use data augmentation based on GANs but got very poor results. This study opens the perspective of data augmentation driven by transfer learning. In the future, if large datasets are available, data augmentation seems to be a better option than Transfer Learning but data collection is difficult for NILM. 

Other devices

We also try to transfer for other devices. It led to less interesting results overall as they were either too easy (fridge) or too hard (small appliances). For some appliances, we did not have enough data available to run our experiments.

For instance, for the washing machine, we had on average only 18 days where it was turned on for the 16 houses where it was monitored. For the fridge, simply using a linear regressor from total daily consumption led to the best results. EDF experts agree that electric heater is very hard to study as it has a very high consumption and is very noisy. Because of those issues, testing for cross-dataset was impossible as electric water heater is barely present in other countries.

Experiments on other datasets

We also led some experiments on other datasets as our method is generic to any neural network architecture and can be applied to image or text for instance. We present experiments on two public domain adaptation datasets: (i)

Multi-Domain Sentiment Dataset2 (ii) Digit dataset made of different databases of images of digits.

Amazon Sentiment Dataset

We use the extended version of the Multi-Domain Sentiment Dataset3 with 25 categories (books, dvd, ...). The dataset is made of textual reviews from Amazon and associated ratings. We treat it as a regression problem where the goal is to predict the rating based on the review. As in previous papers [START_REF] Zhao | Adversarial multiple source domain adaptation[END_REF] [72], we transform it using tf-idf transform and filtering only the 5, 000 words with highest coefficients. Similarly to the original dataset, we keep 2, 000 samples for each category (or less when there was not 2, 000 available). We alternate on each category as a target and use every other categories as the multiple sources.

We compare our method to several other baselines:

• MLP corresponds to merging all sources and applying to the target dataset without adaptation.

• DANN corresponds to merging all sources into one and applying the DANN from [START_REF] Ganin | Domain-adversarial training of neural networks[END_REF].

• AHDM corresponds to merging all sources into one and applying our adversarial scheme using discrepancy specific to the task.

• MDAN is a multi-source domain adaptation based on the d H distance proposed in [START_REF] Zhao | Adversarial multiple source domain adaptation[END_REF]. It gives large weights to sources far from the target (we used the soft version).

• AMSHDM is our method described in Algorithm 1.

For DANN and MDAN, predictors have been specified to regression by changing the last head by a regression layer and loss with mean squared error. The implementation of MDAN is inspired from the original implementation from the authors. 4 . For fair comparison, the basic MLP architecture is kept the same for every method (see

Appendix C.4).
Hyperparameter selection in unsupervised domain adaptation is a hard task as no labeled target data is available. For DANN and MDAN, we tried different sets of values and only report the ones giving the best results on test data which is very advantageous and normally not possible for unsupervised DA (λ = 0.01 for DANN, γ = 10, µ = 0.1 for MDAN which are the hyperparameters they used in the classification setting). For our algorithm, the only hyperparameter is λ for 2 -regularization of α for which we tried different settings and we report results for α = 0.01 and α = 1 here.

We run the experiment 5 times and report the average MAE for each method in Table 4.6. For most domains, either single-source or multi-source AHDM obtains the best result with multi-source bringing an improvement for many domains. One can notice the instability of DANN and MDAN for a few number of domains where the error becomes very large. Overall, the AMSHDM gets state of the art result and shows its power over d H for adversarial regression domain adaptation. The weights obtained by our method were meaningful for some domains (giving large weight for software to transfer to video games for instance) but not for all.

Digits

Finally, we experiment our method on a digit classification task using 5 different domains: MNIST, MNIST-M, Synth, SVHN and USPS. SVHN and USPS are known to be the hardest datasets to classify as they are much more diverse. In each experiment, we use one domain as the target and the 4 others as the sources. We resize all domains to images made of 28 × 28 pixels. For fair comparison we use the same architecture for every network, using a simple convolutional neural network (see Appendix C.4 for the detailed architecture). For this experiment, we use a reduced version of the datasets with 10, 000 samples in each domain. Since we are in a classification setting, the loss used to train AHDM cannot be the Mean Squared Error. For the bound to hold, we need a loss that is symmetric and follows the triangle inequality. However, we found that the cross-entropy loss is performing better than the 1 -loss, hence we use it to compute the discrepancy. Our adversarial structure becomes very close to the Maximum Classifier Discrepancy introduced in [START_REF] Saito | Maximum classifier discrepancy for unsupervised domain adaptation[END_REF] and our weighting scheme extends this structure to a multi-source setting.

We report the accuracy for each dataset and each method in Table 4.7. One can observe that for a classification task, our HDisc still provides good results even though there is no clear improvement compared to methods tailored for classification. For MNIST, even without adaptation, the CNN can learn general features from other datasets.

MDAN fails as it gives large weights to datasets that are not similar (such as USPS for SVHN) while our AMSHDM does not suffer from this drawback. 

Dataset

Extension to semi-supervised adaptation

Method

In our work, we assume that the labelling functions are similar in every domain. But it is known not to be the case in many scenarios. When it is not the case, two solutions are available: (i) assume further knowledge about the structure of the labelling functions (ii) collect some labels on the target domain to perform semi-supervised domain adaptation.

We propose a simple solution in the second case to perform semi-supervised domain adaptation using hypothesisdiscrepancy. In this framework, the only difference is the presence of a small labeled target sample

S T = {(x (1) 
T , y

)}. Our solution is motivated by the Y-discrepancy introduced in [START_REF] Medina | Learning Theory and Algorithms for Auctioning and Adaptation Problems[END_REF] which is an extension of the original discrepancy to the semi-supervised scenario defined by Definition 11. For two distributions p S and p T with associated labelling functions f S and f T , the Y-discrepancy is defined as

disc Y (p S , p T ) = sup h∈H |R S (h, f S ) -R T (h, f T )| (4.20) 
In semi-supervised domain adaptation, Y-discrepancy can be estimated with finite samples, even though its estimation is limited by the small size of the labeled target sample. It is easy to see that

R T (h, f T ) ≤ R S (h, f S ) + disc Y (p S , p T ) (4.21) 
As such, this bound is not very informative as it is a simple implication of the triangular inequality. We still tried to derive an adversarial scheme using Y-discrepancy. We see in Equation 4.21 that in order to minimize R T (h, f T )

we can formulate a min-max objective as before, by introducing a feature extractor φ θ and a class of predictor H Z :

min φ θ ,h∈H Z max h ∈H Z R S (h • φ θ , y S ) + R T (h • φ θ , y T ) + |R T (h • φ θ , y S ) -R S (h • φ θ , y T )| (4.22) 
In this formulation, h tries to give low error rate on both source and target data. We add the term R T (h • φ θ , y T ) even though it is not present in the bound as it can only help h to be a better predictor for target data. On the other hand, h tries to maximize the Y-discrepancy between source and target domains. Finally, the feature extractor minimizes a combination of source and target risks and the Y-discrepancy.

Using this scheme allows the feature extractor to create features that are discriminative and where predictors cannot compute very different predictions between source and target data. This regularization prevents overfitting on source or target data, as shown in our experiments.

We use our weighting scheme as presented in the unsupervised scenario, by creating an α-weighted source 

distribution p α = L k=1 α k p k to the estimation of Disc Y : Disc Y (p α , p T ) = sup h ∈H K k=1 α k R k (h , f k ) -R T (h , f T ) (4.23)
1. L h = K k=1 α k R k + R T 2. L h = -Disc Y 3. L θ = Disc Y + L k=1 R k + R T 4. L α = Disc Y + λ α 2
We only consider the case where a small labeled target dataset was available without any unlabeled data, however, it is also be possible to extend the model for the case of unlabeled data.

Experiments

We run experiments on the Electric Data database for the water heater consumption estimation. We use the same experiment process as in Section 4.5.4, with the difference that we consider small labeled dataset for the target domain. Namely, we tried with target datasets of size 5, 10, 20 and 100.

In Table 4.8, we give the average MAE on every house obtained by different methods: TCN-S is directly learnt on every source without adaptation ; TCN-S+T is directly learnt from a combination from the source and target data without adaptation ; AMSHDM is performing unsupervised DA ; AMSYDM is the scheme described above. We keep the same basic architecture of the unsupervised DA. As expected, the larger the target labeled sample size, the better is the performance on the target test sample.

Moreover, we see that AMSYDM gives a small improvement on the no-adaptation framework. It also gives a notable improvement compared to unsupervised domain adaptation. It can be explained easily for this use case as the labelling functions of every domain are different. Yet, we assume it to be small in our domain adaptation guarantee (Theorem 11).

Limits

Several limitations prohibit the use of Y-discrepancy in practice. The main one is the availability of a labeled target sample. For Non Intrusive Load Monitoring, it is costly to monitor a single appliance because the main cost comes from the installation of a sensor. Hence, in general, for the target domain, either no labeled data is available or a large number of labeled samples are available and there is no need for adaptation. The applicability of semi-supervised domain adaptation for non intrusive load monitoring is very restrained.

Moreover, Y-discrepancy does not have better estimation guarantees than the target risk. Hence, there is no theoretical guarantee as to why our adaptation algorithm would give a better predictor for the target domain than a predictor trained using empirical risk minimization.

In [START_REF] De Mathelin | Adversarial weighting for domain adaptation in regression[END_REF] we propose a framework for re-weighting the source distribution using the Y-discrepancy and neural networks. We formulate an objective that gives large weights to source samples that are close to the target samples in the sense of the Y-discrepancy. This is still an ongoing work and opens perspectives for semi-supervised domain adaptation for regression.

The main applications of previous chapters focus on electricity consumption, one of the main part of EDF operations. However, the main mission of EDF is electricity production, with a large variety of production means such as nuclear or thermal power plants, power dams, wind farms, solar panels ... Those systems also bring a large number of machine learning challenges: for instance, wind farms and solar panels require production prediction as their production is not controlled. System monitoring is also required to plan maintenance in power plants.

For some systems, a large history of data is already available. For instance, most power plants have been implemented more than 20 years ago. Similarly, wind farms have been implemented during the last 15 years. When a new wind farm is implemented for production, it is natural to capitalize on existing wind farms to calibrate a model for failure prediction or consumption forecast. As technology evolves, there might be a shift between existing wind farms and new wind farms. Moreover, the environment is different for every farm which raises the issue of transfer learning.

This monitoring is often performed with sensors installed on some critical devices of the power plants, which leads to multivariate time series analysis. As opposed to uni-variate time series analysis, where temporal dependence is the most informative feature, multivariate time series analysis raises the issue of cross-sensor dependence.

The work of this final chapter deals with a transfer method for multivariate time series analysis. As the methods developed in the previous chapters can also be extended by using architectures specific to multivariate time series, we introduce a more interpretable method dedicated to multivariate time series. Intuitively, we assume that the main information contained in our sensors can be explained by autocovariance between sensors and we base our method on auto-covariance matrices of the multivariate time series. We assume that some relationships between sensors are invariant between domains and develop a method to infer those unknown invariant relationships.

Our work is based on covariance matrix analysis as covariance matrices lie on the manifold of Symmetric Positive Definite (SPD) matrices. After presenting this manifold, we propose a method to extract a subspace common to source and target domains based on covariance information: this subspace is defined as a linear combination of the original sensors and we experiment our method on Human Activity Recognition datasets.

Outline of the method

To analyze multivariate time series, a naive solution is to perform uni-variate time series computations on each dimension independently, and then merge the obtained results. It is sub-optimal as it completely ignores the potential Our idea is illustrated in Figure 5.1. We consider one or several source domains, for instance several existing wind plants, monitored by a set of sensors for which a labeled source sample is available and a target domain. Our method follows the idea of subspace-based domain adaptation [START_REF] Fernando | Unsupervised visual domain adaptation using subspace alignment[END_REF]: we propose to extract a subspace on the set of sensors invariant between source and target domains. Our method is made of three steps:

1. Transform the raw time series into covariance or auto-covariance matrices, which are good features to represent relationships between sensors.

2. Learn a common subspace based on an objective composed of three parts aiming to:

• Discriminate between labels (classes) ;

• Align source and target domains in an unsupervised way (marginal distributions) ;

• Align conditional source and target distributions.

3. Use the extracted subspace to learn a classifier on the source domain that can be generalized to the target domain.

As such, the goal of our method is to extract relationships between sensors that are invariant in every domain.

We formulate the relationships between sensors using covariance matrices, which have a specific structure as they are Symmetric Positive Definite (SPD). SPD Matrices lie on a Riemannian manifold [START_REF] Bhatia | Positive definite matrices[END_REF] associated with metrics with interesting properties, finding applications in computer vision [START_REF] Harandi | Dimensionality reduction on spd manifolds: The emergence of geometry-aware methods[END_REF] or Brain Computer Interface [START_REF] Rodrigues | Dimensionality transcending: a method for merging bci datasets with different dimensionalities[END_REF]. We also use this geometry in our method and briefly present it in Section 5.3, focusing mainly on the advantage of these metrics when dealing with time series. The second step is to learn a common subspace of sensors using covariance matrices. For this purpose, we formulate a dimensionality reduction problem based on Maximum Mean Discrepancy (MMD) to align domains.

Multivariate Time Series and Covariance

The first step our method transforms the multivariate time series obtained with the sensors into covariance matrices.

Here, we recall the definition of covariance and auto-covariance matrices for time series and their link with the popular Vector Auto-Regressive (VAR) model.

Covariance

To deal with multivariate time series, auto-regressive models have been extended to vector autoregressive models (VAR) where the coefficients represent the relationships between each dimension with lags. This is related to the notion of covariance and autocovariance. In the following, we consider a time series X(t) of dimension t, sampled between 1 and T :

X =       X 1,1 ... X 1,T ... X i,t ... X d,1 ... X d,T      
indexed by t ∈ {1, ..., T } with d the number of sensors. In the following, we also sometimes note as the value of X at time t by X(t). Then the covariance matrix C is defined as

C = 1 T (T -1)       E[X 1 (t)X 1 (t)] ... E[X 1 (t)X d (t)] ... ... ... E[X d (t)X 1 (t)] ... E[X d (t)X d (t)]       (5.1)
where

E[X i (t)X j (t)] = 1 T -1 T i=1 (X i,t -Xi )(X j,t -Xj ) ( Xi = 1 T T t=1 X i,t
). C is the standard covariance matrix that does not take into account temporal dependencies. To better take into account the temporal dependence, we introduce the autocovariance matrix AC w of x at a fixed horizon w > 0 as

AC w =          E[X(t) T X(t)] E[X(t -1) T X(t)] ... E[X(t -w) T X(t)] E[X(t) T X(t + 1)] E[X(t + 1) T X(t + 1)] ... ... ... ... ... E[X(t + w) T X(t)] ... ... E[X(t + w) T X(t + w)]          (5.2)
where E[X(t + i) T X(t + j)] is the covariance matrix between sensors with lags (assuming the time series are centered). Under the assumption that the time series is stationary AC w is symmetric definite positive. In general, we assume wide-sense stationarity which means that the mean and autocovariance of the time series stays constant.

In most industrial systems, the stationarity assumption does not hold over the entire time series. However, a common way to circumvent it is to consider small time windows around an event of interest. On this small time window, stationarity is often ensured [START_REF] Lovrić | Algoritmic methods for segmentation of time series: An overview[END_REF].

Partial Autocorrelation Covariance matrix and partial autocorrelation matrix are directly linked. Partial autocorrelation at order r of a time series X is defined as follows: and P = AC -1 w the precision matrix, we have

ρ(r) = E[X(t) T X(t -r)|X(t -1), ..., X(t -r + 1)] E[X(t) T X(t)|X(t -1), ..., X(t -r + 1)]E[X(t -r) T X(t -r)|X(t -1), .
ρ i,j = - p ij √ p ii p jj (5.4) 
As highlighted in [START_REF] Hallac | Toeplitz inverse covariance-based clustering of multivariate time series data[END_REF], partial auto-correlation matrix shows the conditional independence structure between the variables. It can then be used to detect causality between sensors with the Granger causality test. Moreover, Barndorff-Nielsen and Schou (1973) [START_REF] Barndorff-Nielsen | On the parametrization of autoregressive models by partial autocorrelations[END_REF] proved that there is a one-to-one correspondence between partial correlations at horizon w and the coefficients of a Vector AutoRegressive model of horizon w. In [START_REF] Hallac | Toeplitz inverse covariance-based clustering of multivariate time series data[END_REF], authors use the Partial Auto-Correlation Matrix as a feature to perform time series clustering.

Estimation When trying to estimate matrix AC w (of horizon w) for a d-dimensional time series, the number of covariance coefficients to estimate is dw. When the time series length T is small, the estimation of AC w is impossible. In the following, we use Ledoit-Wolfe regularization [START_REF] Ledoit | A well-conditioned estimator for large-dimensional covariance matrices[END_REF], which is better conditioned for high-dimensional covariance estimation. But there still is a limit on the number of coefficients that we can estimate.

VAR Model

The main method working on relationships between sensors and lags is the Vector AutoRegressive (VAR) model. A time series X is assumed to follow the VAR model of degree p if

X t = p r=1
A r X t-r + e t (5.5) where e t is an error term such that (i) E[e(t)] = 0 (ii) E(e T t e t ) = Σ (iii) E[e(t)e(t -s)] = 0 for all s > 0. The first two conditions give the structure of the same-time dependence. The last condition assumes no correlation between different error terms.

The coefficients A r ∈ R d×d can be directly estimated using Yule-Walker equations [START_REF] Walker | On periodicity in series of related terms[END_REF]. The VAR coefficients are the roots of a polynom whose coefficients are the autocovariance. Hence, the autocovariance matrix AC w contains every information required for VAR model estimation.

Overall, autocovariance information is useful for modelling linear relationships between sensors at different timestamps. It has shown its efficiency in forecasting, but also in anomaly detection or time series classification.

Hence, we propose to use covariance information as features for multivariate time series analysis.

Riemannian Geometry of Symmetric Positive Definite Matrices and Time Series

As our method is based on covariance matrices, we can use the specific geometry developed for SPD matrices. We present the metrics of interest for our work and why their properties are relevant for time series. We do not present details on the Riemannian manifold of SPD matrices but interested reader can refer to the extensive work of Bhatia (2009) [START_REF] Bhatia | Positive definite matrices[END_REF].

Basics

We note the set of Symmetric Positive Definite (SPD) Matrices S

+ such that

S (d) + = {M ∈ R d×d ; M T = M , x T M x > 0, ∀x ∈ R d , x = 0} (5.6)
Bhatia (2009) [START_REF] Bhatia | Positive definite matrices[END_REF] proved that when endowed with an appropriate Riemannian metric, S

+ is a smooth Riemannian manifold with non positive curvature [START_REF] Moakher | A differential geometric approach to the geometric mean of symmetric positive-definite matrices[END_REF]. This means that every neighbourhood of a matrix M ∈ S

+ can be bijectively mapped to Euclidean space. While we do not develop the theory of Riemannian geometry, we can use some tools for machine learning applications. In the following, we detail the specific distances of these manifolds as they are more informative for some applications.

A SPD Matrix M admits the following decomposition M = Q T ΛQ where

Q T Q = 1 and Λ =       λ 1 0 ... 0 0 λ 2 ... 0 0 0 ... λ d       with λ 1 ≥ ... ≥ λ d > 0.
We respectively define the matrix exponential and logarithm over S

(d) + as expm(M ) = Q T       exp(λ 1 ) 0 ... 0 0 exp(λ 2 ) ... 0 0 0 ... exp(λ d )       Q logm(M ) = Q T       log(λ 1 ) 0 ... 0 0 log(λ 2 ) ... 0 0 0 ... log(λ d )       Q (5.7)
The two main metrics proposed for S

+ are the affine invariant metric (AIM) [START_REF] Pennec | Intrinsic statistics on riemannian manifolds: Basic tools for geometric measurements[END_REF] and log-euclidean metric (LEM) [START_REF] Arsigny | Log-euclidean metrics for fast and simple calculus on diffusion tensors[END_REF], both having different properties. The Affine Invariant Metric between two matrices M 1 , M 2 ∈ S

+ is defined as

δ AIM (M 1 , M 2 ) = logm(M -1/2 1 M 2 M -1/2 1 ) F (5.8) 
where . F is the Frobenius norm. AIM has two interesting invariance properties:

• δ AIM (M -1 1 , M -1 2 ) = δ AIM (M 1 , M 2 ) → Invariance to inversion • For any invertible matrix W ∈ R d×d , δ AIM (W T M 1 W, W T M 2 W ) = δ AIM (M 1 , M 2 ) → Affine invariance
Those properties make it an attractive tool to process SPD Matrices with machine learning. The main drawback is that δ AIM is computationally expensive.

The Log-Euclidean Metric between two matrices

M 1 , M 2 ∈ S (d) 
+ is defined as •

δ LEM (M 1 , M 2 ) = logm(M 1 ) -logm(M 2 ) F (5.
δ LEM (M -1 1 , M -1 2 ) = δ LEM (M 1 , M 2 ) → Invariance to inversion • δ LEM (sW T M 1 W, sW T M 2 W ) = δ LEM (M 1 , M 2 )
for any rotation matrix W ∈ O(d) and s ∈ R + , → Invariance to rotation and scaling LEM is only invariant to rotation and scaling but is easier to compute and manipulate.

Finally, we mention a last divergence that does not define a manifold but still has good properties for SPD Matrices: Stein-Divergence [START_REF] Sra | A new metric on the manifold of kernel matrices with application to matrix geometric means[END_REF]. The Stein Divergence between two matrices M 1 , M 2 ∈ S

+ is defined as

δ S (M 1 , M 2 ) = log det M 1 + M 2 2 - 1 2 log det(M 1 M 2 ) (5.10)
Stein-divergence shares the same invariance properties as AIM but is less expensive to compute.

The three metrics defined above share similar invariance properties. Moreover, using these metrics, it is possible to define means, geodesics and even Gaussian distributions [START_REF] Said | Gaussian distributions on riemannian symmetric spaces: statistical learning with structured covariance matrices[END_REF] over S (d) + .

Working with time series

Let us consider a multivariate time series X ∈ R d×T , its autocovariance matrix with horizon w AC w and its covari-

ance matrix C = 1
T -1 XX T . The geometry detailed above gives good properties to the analysis of time series: (i) equivalence between working on sensors and underlying source signals when they are linearly mixed (ii)

The invariance to rotation means that it is equivalent to work on the covariance matrix C or W T CW (and equivalently for autocovariance matrix). This implies that it is equivalent to work on the original time series X or W T X as W T CW = (W T X) T W X. This property is relevant to applications where sensors capture phenomenons coming from different sources, as in Source Separation. If we assume that the observed sensors X capture information from d sources S via X = W S, then for two time series X 1 , X 2 , δ LEM (X 1 , X 2 ) = δ LEM (S 1 , S 2 ).

The invariance to inversion means that working with C or C -1 is equivalent. We saw that the precision matrix C -1 is equivalent to the partial correlation between sensors, up to a normalizing factor: if we note ρ ij the partial autocorrelation between sensors i and j, we have

ρ ij = (C -1 ) ij C -1 ii C -1 jj (5.11)
This property can be extended to auto-covariance matrix by noting that AC w is the covariance matrix of

         X 1:T -w X 2:T -w+1 ... X w:T         
where X j:T -w+j = {x j , ..., x T -w + j}.

This means that when using those metrics, we use features that are very informative on the true relationship between sensors. As there is an equivalence between partial auto-correlation and VAR coefficients, our method allows to work implicitly on VAR coefficients, which are used in many applications.

Finally, one could note that when using auto-covariance matrix, AC w is not only SPD but also Block-Toeplitz.

{(X

k , y

k ), ..., (X

(n) k , y (n) k )} where X (i) k ∈ R d×T and y (i) k ∈ {-1, +1}.
We also assume that we have a target domain D T = {X T , P T (X)} and a target task T T = {Y T , P T (Y |X)} with an unlabeled sample S T = {X

T , ..., X

T }.

For instance, the K sources could be K existing wind turbines and the target a wind turbine that just got launched. We aim to present a very general framework even though some special cases are studied. If K = 1, it corresponds to the single-source scenario. Our solution encompasses domain generalization and still works if the target sample is unavailable at training time.

Learning a subspace aligning domains

In general, when monitoring a system, many variables are monitored but only a few of them are useful. This led to variable selection or dimension reduction. Here, we propose a method to reduce the dimension of the original time series using only covariance information. The method is done in two successive steps: (i) learn a common subspace between one or several source domains and target domain (ii) use the extracted subspace to learn a classifier on the source domain that can be generalized to the target domain.

Our model is formulated as follows: we want to learn a mapping parametrized by a matrix W ∈ R d ×d where d < d that maps every time series X ∈ R d×T to W T X. The criteria for this dimensionality reduction is that the new features need to be discriminative and transferable between domains. We use only covariance information on the new data space. For every domain D k and sample S k , we write

C (i) k = X (i) k (X (i) k ) T . One can note that if W ∈ R d ×d is full rank, then W T C (i) k W is SPD, ie W T C (i) k W ∈ S (d )
+ . Hence, we constrain W to full rank matrices.

In the following, we learn the kernel parametrized by W as:

k LE [W ](C 1 , C 2 ) = e -γδ LE (W T C1W,W T C2W ) (5.14)
We further define

K[W ] =             K 11 [W ] K 12 [W ] ... K 1R [W ] K 1T [W ] K 21 [W ] K 22 [W ] ... K 2R [W ] K 2T [W ] ... ... ... ... K R1 [W ] K R2 [W ] ... K RR [W ] K RT [W ] K T 1 [W ] K T 2 [W ] ... K T R [W ] K T T [W ]             ∈ R Kn+m×Kn+m
the kernel matrix over all samples where K rs [W ] is the kernel matrix between samples from domains r and s.

Our objective is made of three parts: (i) the common subspace must be able to discriminate between labels on the source domains (ii) it must align marginal distributions between source and target domains (iii) it must align conditional distributions between source and target domains. In presence of several source domains, the adaptation is done between the different source domains as well.

M (rs) c =                                (m c ) (rs) ij = 1 nr,cnr,c if x i , x j ∈ S r,c (m c ) (rs) ij = 1 ns,cns,c if x i , x j ∈ S s,c (m c ) (rs) ij = -1 nr,cns,c if x i ∈ S r,c , x j ∈ S s,c or x i ∈ S s,c , x j ∈ S r,c (m c ) (rs) ij = 0 otherwise (5.18)
Finally, we note M (rs) = c∈{-1,+1} M (rs) c

. We introduce the objective on conditional distributions as

J c (W ) = R r,s=1 T r[K rs [W ]M (rs) ] (5.19)
We can simplify the notations by introducing a single matrix L for every MMD-regularizer. We note

L =         
L (11) L (12) ... L (1R) L (1T ) ... ... ... .... Using the matrix L defined above, we can simplify the definitions of our objectives as

L (R1) L (R2) ... L (RR) L (RT ) L (T 1) L (T 2) ... L (RT ) L (T T )          ∈ R Rn+m×Rn+m
J a (W ) + J c (W ) = T r(K[W ]L) (5.20)
where K is the kernel matrix over every domain.

Objective Finally, we formulate our objective as

min W ∈R d×d J(W ) = T r(K[W ](λL -Y T Y )) such that W T W = I d (5.21)
where λ is a hyperparameter to balance discrimination and adaptation. The constraint W T W = I d enforces full

In [START_REF] Baktashmotlagh | Distribution-matching embedding for visual domain adaptation[END_REF], authors propose a dimensionality reduction for domain adaptation using MMD. For two domains and samples X S ∈ R d×n S , X T ∈ R d×n T , they propose to minimize M M D(W T X S , W T X T ). Their method is unsupervised and only minimizes difference between marginal distribution and the discriminative is done in a second stage.

Our method enhances on those two works by combining discriminative learning and adaptation. It was proved to be state of the art for domain adaptation with for instance Adaptation Regularization [START_REF] Long | Adaptation regularization: A general framework for transfer learning[END_REF]. Other dimensionality reduction based on MMD such as TCAdo not learn a new subspace on original data but learn a kernel in the form of k(x 1 , x 2 ) =< w T φ(x 1 ), w T φ(x 2 ) > on the source data but learn a kernel, which is less interpretable.

Algorithm

Grassmannian optimization

To solve the objective of Problem 5.21, we have a convex cost with a full rank constraint. In fact, the problem can be formulated as an optimization over a manifold. Indeed, the set {W ∈ R d×d } is also called the Stiefel Manifold.

Moreover, we notice that for any W ∈ R d×d and rotation matrix R ∈ O(d ), J(W ) = J(W R) as the Log-Euclidean Kernel is invariant to rotation. Hence, the minimization can be done over the Grassmannian Manifold G(d , d), which is defined as the space of d -dimensional linear subspace of R d . Classical optimization techniques such as Newton Descent or Conjugate Gradient Descent have been extended to optimization over a manifold [START_REF] Absil | Optimization algorithms on matrix manifolds[END_REF].

To solve our problem, we use conjugate gradient descent. It is done in four steps:

1. Compute the euclidean gradient of the objective function D W J(W )

2. Compute the Grassmannian gradient ∇ W J(W ) using ∇ W J(W ) = (I d -W W T )D W J(W )
3. Find the search direction H using the previous search direction and ∇ W J(W )

4. Perform a line search along the geodesics of W in the direction of H to find the step size

The last three steps were defined in [START_REF] Absil | Optimization algorithms on matrix manifolds[END_REF] and are available in the Pymanopt package [START_REF] Townsend | Pymanopt: A python toolbox for optimization on manifolds using automatic differentiation[END_REF], which is available in Python. The only remaining step is the computation of the gradient of J(W ), which involves gradients of matrix logarithms.

In [START_REF] Harandi | Dimensionality reduction on spd manifolds: The emergence of geometry-aware methods[END_REF], authors propose to approximate logm(W T XW ) by W T logm(X)W using Taylor expansion, which circumvents the computations of gradients of the Log-Euclidean Metric. In fact, it is possible to compute them completely.

Indeed:

D W J(W ) = D W T r(K[W ](L -Y Y T ) = D W   Rn+m i,j=1 K i j[W ](l i j -y i y j )   = Rn+m i,j=1 (l i j -y i y j )D W [K i j[W ]] (5.22) 
Hence, we need to compute

D W [K i j[W ]].
We detail the computation of this gradient by noting C i and C j the covariance matrix corresponding to samples i and j. Moreover, this computation is based on the work of [START_REF] Huang | Geometry-aware similarity learning on spd manifolds for visual recognition[END_REF].

D W [K i j[W ]] = D W logm(W T C i W ) -logm(W T C j W ) = D W T r(logm 2 (W T C i W ) + T r(logm 2 (W T C j W ) -2T r(logm(W T C i W )logm(W T C j W ))
(5.23)

Using [START_REF] Boumal | A discrete regression method on manifolds and its application to data on so (n)[END_REF], one can compute each of those three terms

D W (T r(logm 2 (W T C i W )) = 4C i W Dlogm(W T C i W ) logm(W T C i W ) D W (T r(logm 2 (W T C j W )) = 4C j W Dlogm(W T C j W ) logm(W T C j W ) D W (T r(logm(W T C i W )logm(W T C j W ))) = 2C i W Dlogm(W T C i W ) logm(W T C j W ) + 2C j W Dlogm(W T C j W ) logm(W T C i W ) (5.24)
Combining those three equations, we have

D W [k i j[W ]] = -4(C i W D logm(W T CiW ) logm(W T C i C) -logm(W T C j W ) + C j W D logm(W T Cj W ) logm(W T C j C) -logm(W T C i W ) )γK ij (W ) (5.25)
Finally, the quantity DlogmX[Y ] for X, Y ∈ S(d ), corresponding to the directional derivative of logm at X along Y can be computed using Theorem 4.11 from [5] which states that

logm    X Y 0 X    =    logm(X) Dlogm(X)[Y ] 0 logm(X)    (5.26)
Using the previous formula, it is possible to compute the derivative in Equation 5.25 which can be fed to the derivative of the cost (Equation 5.22).

Each gradient step of our algorithm has a cost of O((Rn + m) 2 )dd 2 , which gives a total cost of O(n iter (Rn + m) 2 dd 2 . Even though with RCG, the number of iterations is small, it can be prohibitive for some applications. It is also possible to use the Stein divergence introduced in Section 5.3 instead of the Log-Euclidean Metric as it is also invariant to rotation. The main drawback is that the associated kernel stays positive definite only for some values of γ. As the choice of hyperparameter is important to the performance of our algorithm, we prefer to use the Log-Euclidean Metric.

Sparsity Constraint

As we wanted our model to be as interpretable as possible, we wanted to impose a sparsity constraint on W , in the form of

min W ∈R d×d J sparse (W ) = T r(K[W ](λL -Y T Y )) + µ W 1 such that W T W = I d (5.27)
With such constraint, only a few original sensors would contribute to each created dimension in W , meaning that we could extract meaningful relationships between sensors. However, manifold optimization with sparsity constraint is a hard task as the 1 -norm is not differentiable everywhere.

In [START_REF] Li | Nonsmooth optimization over stiefel manifold: Riemannian subgradient methods[END_REF], authors proposed to use subgradients (sign(W ) in the case of W 1 ) and prove a convergence rate in O(k -1/4 ) for optimization over the Stiefel manifold. We tried to use subgradients in our algorithm to solve Problem 5.27 but the obtained solution was never sparse, even for high values of µ.

In [START_REF] Chen | Proximal gradient method for nonsmooth optimization over the stiefel manifold[END_REF], authors propose to extend proximal methods to manifold optimization. In general, proximal operators decompose the problem into two steps, one optimizing the differentiable part of the cost, and one projecting the obtained solution using a proximal operator. However, for this method to be useful, we need to be able to solve the proximal problem easily (in euclidean optimization, the proximal operator for the 1 -norm has a closed form solution).

For our problem, we did not find any "easy" solution to the proximal problems, but we think it is an interesting direction of work in the future.

Hyperparameter Selection

Dimensionality selection

We propose a method to chose the dimensionality d based on the subspace disagreement measure introduced in [START_REF] Gong | Geodesic Flow Kernel and Landmarks: Kernel Methods for Unsupervised Domain Adaptation[END_REF]. Our method is based on the principal angles between subspaces. We first give ourselves a maximum dimensionality d max . Then given K source domains, we propose to solve K subproblems as

W k = arg min W ∈R d max T r(K k , -Y T k Y k ) (5.28)
where K k and Y k corresponds to the submatrix of K and Y with indices of domain r. Each W k spans a different basis. We use the notion of principal angles between subspaces to study the agreement between every basis of dimension ≤ d max by each W k . For two domains k and l, we introduce

V l ∈ R d×(d-d max ) and V k ∈ R d×(d-d max ) the orthogonal complements of W k and W l , ie V T k W k = 0 and V T l W l = 0. Then one can show that in the Singular Value Decomposition of V T l W k V T l W k = U ΣV T (5.29)
the diagonal elements of Σ corresponds to sin(θ kl 1 ), ..., sin(θ kl d max ) where 0 ≤ θ kl 1 ≤ ... ≤ θ kl d max ≤ π 2 are called the principal angles between W l and W l : in particular, for d ∈ {1, ..., d max }, if θ d kl = π 2 , then the domains are orthogonal. We want to avoid the domains to be orthogonal but still want to keep a reasonable dimensionality to build a classifier.

Our criteria is formulated as

min d ∈{1,...,d max } {d | 1 K(K -1) r =s sin(θ kl d ) ≥ η} (5.30)
where η is a hyperparameter chosen by the user, set to 0.9 in our experiments.

Domain selection

As discussed above, our method assumes equal relationship between every source domain and the target domain.

Hence, we propose a simple method to remove outlier source domains and mitigate negative transfer. Given K source domains, we propose to learn a matrix W solving

W * = arg min W ∈R d ×d T r(K S [W ], -Y T S Y S ) (5.31) 
where K S and Y S corresponds to the submatrix of K and Y with indices of every source domain. W * is a matrix that learns how to classify every domain. Then we compute the error made by W * on each domain k (W * ). We remove every domain such that k (W * ) ≤ η d where η d is a parameter set by the user. In our experiments, we set it to the mean of the errors over every domain minus two standard deviations.

Leave-one-domain-out CV

Cross-validation is a popular method for hyperparameter selection in traditional Machine Learning. However, in unsupervised domain adaptation, we do not have labels in the target domain, hence, traditional cross-validation cannot be used. We propose leave-one-domain-out cross-validation to select γ and λ. First, we define a grid for possible values of γ and λ. Then, for every set of hyperparameters, we iteratively learn our model on K -1 domains with the remaining domain used as a target domain. The chosen hyperparameters are the ones giving the overall lowest error rate. Note that we could use this scheme to select the dimensionality as well but it requires to learn our model for every possible set of hyperparameters. Our dimensionality selection scheme is less costly and leads to good results in practice.

Numerical Results

We present the results of our method on both synthetic and real world data. We first simulated synthetic data using a Vector AutoRegressive model, which is often used to analyze industrial multivariate time series. Then we experimented on Human Activity Recognition datasets: UCI Daily Activites [START_REF] Anguita | A public domain dataset for human activity recognition using smartphones[END_REF] and NTU RGB-D 120 Dataset [START_REF] Shahroudy | Ntu rgb+ d: A large scale dataset for 3d human activity analysis[END_REF].

The next step is to apply our method on industrial dataset at EDF when they are collected and pre-processed.

Simulated data

We use two procedures to simulate synthetic data: in a first example, we directly simulate covariance matrices corresponding perfectly to our framework. In a second example, we simulate source and target domains using a VAR model, which should be harder for our method but closer to real world data.

Covariance data

We first simulate synthetic data corresponding to the assumptions of our models. We generate a binary classification ∈ S(20) on each domain k. Then, we generate n = 100 samples (x

(i) k , y (i) k ) such that x (i) k ∈ R 20,1000 , y (i) k ∈ { -1, +1} and x (i) k [t] i.i.d ∼ N (0, C k (y (i) k )) + t where t ∼ N (0, I d ).
The goal is to classify each time series x In our evaluation, we consider R = 9 domains as the source domains and the last one as the target domain. We estimate the covariance from each x The last three methods are based on our model: LEK-DR-SVM does not perform adaptation and is similar to [START_REF] Huang | Geometry-aware similarity learning on spd manifolds for visual recognition[END_REF], LEK-DG-SVM corresponds to domain generalization and LEK-TL-SVM corresponds to domain adaptation.

In LR-MTL, the specific geometry of the covariance matrix is ignored, as it takes vectors as an input. We set the dimensionality d = 4, keep every domain and use leave-one-domain-out cross validation to select γ and λ for the last four methods. We report the average accuracy over every domain in Table 5.1. We also report the result of intra-domain learning using LEK-SVM learned on the target domain and tested on the same domain. those methods, but fails to find relevant dimensions for some domains. LEK-DG-SVM and LEK-TL-SVM both give very good results, almost as good as the intra-domain scenario. In Figure 5.2, we also plot the obtained matrix W for one experiment. One can see that only the common variables between every domain are selected. Previous results demonstrate the ability ouf our method. We still underline that the generated problem is very simple and has been designed perfectly for our method. Hence, we also propose to simulate synthetic data using a VAR model.

Method AIM-MDM LR-MTL LEK-SVM LEK-DR-SVM LEK-DG-SVM LEK-TL-SVM

Vector AutoRegressive model

We also simulated a similar dataset using the Vector AutoRegressive model. We consider R = 10 Finally, we generate n = 100 samples (x

(i) k , y (i) k ) such that y (i) k ∈ {-1, +1}, x (i) 
k has a length 1000 and

x (i) k [t] = 5 l=1 A (r,y (i) k ) l x (i) k [t -l] (5.32) 
In our evaluation, we consider R = 9 domains as the source domains and the last one as the target domain. We estimate the autocovariance matrix with horizon 5 from each x (i) k . Note that the horizon was chosen by hand, but could be chosen from the traditional Partial Autocorrelation Function method. We tested the five methods described above and report the average accuracy over every domain in We make similar observations to the previous experiment, which can be explained by the fact that both metrics are invariant to inversion. Once again, the methods that extract transferable features are the ones using conditional adaptation and there is no gain from the marginal adaptation using target data. One can note that LR-MTL performs worse than a random classifier as it does not take the specific geometry of covariance matrices. On the other hand, when we directly feed AR coefficients to LR-MTL, it performs as well as in the previous experiment.

As a conclusion, our method allows to find relevant dimensions for domain generalization and transfer learning for synthetic data, both for covariance and VAR models. While the assumptions made by our model and experiments rarely are perfectly met in practice, we experiment on real world datasets in the next section. 

Human Activity Recognition

We evaluate our method on two Human Activity Recognition (HAR) datasets: UCI Human Activity Recognition dataset [START_REF] Anguita | A public domain dataset for human activity recognition using smartphones[END_REF] and NTU RGB-D [START_REF] Shahroudy | Ntu rgb+ d: A large scale dataset for 3d human activity analysis[END_REF] dataset. It could be useful in EDF production facilities for worker safety monitoring especially when workers have to work alone, such as in a power plant. Moreover, it illustrates how our algorithm can perform on a domain adaptation task for multivariate time series.

UCI Daily Activities dataset

This public dataset is made of motion sensor data of 6 daily and sports activities performed by 30 subjects for 2.56 seconds. Each subject is monitored with a smartphone worn on the waist. Using the accelerometer and the gyroscope of the smartphone, each activity corresponds to a 9-dimensional time series: 3-dimensional acceleration, 3-dimensional triangular velocity and 3-dimensional estimated body acceleration. Every sensor is sampled at 50Hz, giving a time series of length 128. In total, 10299 samples are available over the 30 subjects. In Figure 5.3, we illustrate the monitored time series for the walking upstairs and walking downstairs classes.

Here, we only represented each time series with its covariance matrix C ∈ S(9) as results were not better when using autocovariance matrix. Moreover, the time series length is 128 which makes the estimation of autocovariance matrix unstable. We used ledoit-wolfe regularization to estimate the covariance matrices.

Our dimensionality selection method gave a subspace size of d = 3. We report the average accuracy of the 5 methods in Table 5.3. Our method LEK-TL-SVM outperforms every other method that does not use adaptation although results obtained from the LEK-SVM are already good. Our method helps to increase the performance on several domains on which the LEK-SVM underperformed.

Method AIM-MDM LR-MTL LEK-SVM LEK-DR-SVM LEK-DG-SVM LEK-TL-SVM

To visualize it, we represent on Figure 5.4 the accuracy of the LEK-SVM (without adaptation) and LEK-TL-SVM (with adaptation) on every domain. One can see that the lowest accuracy obtained without adaptation is close to 50%, whereas with our adaptation scheme, the lowest accuracy is around 70%. Overall, we noticed that our method allows to extract features that are more robust to a domain change.

The matrix W learnt by our model indicates that the most relevant features are the z-acceleration and the yestimated body acceleration when the last dimension is a mixture of y-rotation and z-estimated body acceleration.

We represent the obtained matrix in Figure 5.5.

Finally, it should be noted that better results can be obtained with deep learning methods, even without adaptation. When we use a CNN by learning on 29 subjects and applying on the last one, we obtain overall accuracy of 96.14%, even without adaptation. However, our method is more interpretable as the weights can be visualized and is shorter to train (less than 10 minutes as the optimization converged in 5 iterations).

NTU RGB-D Dataset

NTU RGB-D1 [START_REF] Shahroudy | Ntu rgb+ d: A large scale dataset for 3d human activity analysis[END_REF] is a dataset collected at NTU where 40 subjects were filmed while performing 60 actions. The 60 actions are various actions of everyday life, such as drinking water or running.

While the dataset can be considered as a video dataset, we use the 3D skeleton data: for each video, the 3Dcoordinates of 25 body joints (see Figure 5.6) are collected at each frame. Hence, we consider as an input time series of dimension 75. The duration of the sequence is different for every video: it is not an issue with our method as we only use covariance information, which can be compared between two time series of different sizes. Once again, the length of the time series is very short (∼ 100), hence we only use covariance information. We did not use autocovariance, as they did not improve the results and led to even bigger SPD Matrices whose estimation is more unstable.

In total, 60, 000 samples are available. For this dataset, state-of-the art results were obtained using recurrent neural networks but covariance-based methods were also successful [START_REF] Cavazza | When kernel methods meet feature learning: Log-covariance network for action recognition from skeletal data[END_REF] [182] [START_REF] El-Ghaish | Covp3dj: Skeleton-parts-based-covariance descriptor for human action recognition[END_REF]. Those methods did not take into account the specific geometry of SPD Matrices but focused on creating hand-engineered features for skeletonbased activity recognition.

Whole dataset

In our experiment, we iteratively take 39 subjects as source domains and the last one as the test domain. Once again, we tried the 5 methods described in the previous experiments. We also tried to use a Temporal Convolutional Network (TCN) with three causal convolution layers, with size 128, 128 and 256 and a dilation rate of 2 at each layer, with a dense layer in the end. The only difference with univariate time series is that the input and only add noise.

It can also be seen on Figure 5.8 where we represented the Kernel PCA of the log-euclidean kernel on covariances computed on the original sensors and on covariances computed on the reduced space. One can see that with our method, classes are well separated and domains are mixed together. On the other hand on the original data, the noise added by the uninformative features makes it harder to separate classes. 

Conclusion

With these experiments on real-world datasets, we can draw several conclusions on the advantages and the limits of our method. Mainly, we showed that our method outperforms other covariance based methods in a transfer learning scenario, as it is the first method to combine discriminative learning and adaptation based on covariance information. For Human Activity Recognition, it can be sufficient to get good performance and interpretable features.

On the other hand, better performance can be obtained with deep learning methods, especially when the training set is large. In this case, neural networks are able to learn features robust to a change of subject. When the training set is smaller, our method gets similar performance to deep learning methods with more interpretability.

Conclusion

This Chapter proposed a method for transfer learning based on covariance data. This is the first method that proposes to learn a linear dimensionality reduction on time series data with two objectives: discriminative learning and transfer learning. We showed in our experiments the applicability of our methods to both synthetic multivariate time series and human activity recognition. While deep learning methods provide better performance when the learning set is large, our method extracts interpretable features and the performance gap becomes smaller when the dataset size is small.

Our work opens many perspectives for covariance-based methods for time series. Firstly, we saw that the runtime of our method suffers when the training set becomes too large. While it could be mitigated with a parallelized implementation of our algorithm, methods that are not based on kernels could also be used. For instance, a new line of work tried to design deep neural networks for SPD Matrices. This means that the methods developed in Chapter 4 could be extended to SPD Matrices.

Secondly, we led experiments on synthetic data created with a Vector AutoRegressive model representative of an industrial system. We would like to try our method on real industrial data, but at the time of this work, most datasets available at EDF were outlier detection problems and did not contain labels. Our method could be used for outlier detection by modifying the discriminative learning objective to an unsupervised dimensionality reduction as in [START_REF] Harandi | Dimensionality reduction on spd manifolds: The emergence of geometry-aware methods[END_REF], but mixing the two objectives of matching distributions across domains and separating outliers would need a detailed analysis.

As discussed before, we also would like to add a sparsity constraint to our algorithm to obtain more interpretable dimensions. This is directly linked with manifold optimization and we think a solution based on proximal methods similar to [START_REF] Chen | Proximal gradient method for nonsmooth optimization over the stiefel manifold[END_REF] could be obtained for our problem.

Finally, we used the specific geometry of covariance and auto-covariance matrices as Symmetric Positive Definite matrices. When working on time series, we know that the temporal dependence is important, which is captured by auto-covariance matrices. Auto-covariance matrices are block-Toeplitz when working with stationary time series, and block-Toeplitz matrices also have a specific geometry [START_REF] Jeuris | The kahler mean of block-toeplitz matrices with toeplitz structured blocks[END_REF]. Some classical algorithms such as K-means [START_REF] Cabanes | Toeplitz hermitian positive definite matrix machine learning based on fisher metric[END_REF] were derived using this specific geometry and it would be interesting to see if it is possible to include it in a transfer learning method.

Chapter 6

Conclusion and Perspectives

In this thesis, we proposed novel methods to extract transferable features from time series. We proposed different approaches for learning transferable features using neural networks: one using an ensemble of normalizations and the second one following adversarial learning. In our adversarial learning method, we showed that our new measure of discrepancy unifies previous works. Our framework can be applied in both classification and regression problems, and is generic to other kinds of data. In a last chapter, we developed a framework to extract more interpretable features for time series. Building on previous works on learning from covariance matrices, we proposed a method to learn invariant relationships between sensors in a multivariate time series. When a large dataset is available, deep learning methods outperforms our method, however, when the dataset size is smaller, our method leads to similar performance with better interpretability. Our methods can answer several problems of real-world applications.

Firstly, for many applications such as Non Intrusive Load Monitoring, data collection is expensive. Our methods can use existing resources to learn from fewer new data. Secondly, training an algorithm requires computing power and energy. More and more methods pose the objective of learning on a budget, ie learning with a limited computing or environmental cost. By pre-learning an invariant subspace of features, the method proposed in Chapter 5 reduces the cost of learning on a new dataset.

Perspectives

Further experiments. For every method proposed in this thesis, we conducted extensive experiments on synthetic and real-world datasets. For applications to NILM, one could still note that the size of the training and test sets is always limited. It would be interesting to carry out similar experiments on larger datasets when they become available.

Moreover, we ony tried to deal with daily consumption estimation, which would be sufficient for most applications for individual households. Industrial warehouses or production sites are also interested in energy disaggregation and it would be interesting to try our method for those larger buildings. While we conducted experiments on synthetic data and Human Activity Recognition, the next step is to test the method of Chapter 5 on industrial problems.

Larger Training Sets.

Having larger training set would also probably allow the learning of a general architecture that could be fine-tuned to a new small target dataset, in a similar way to AlexNet [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF] for images. We argue that the main effort of such work would not reside on finding the best architecture but rather on the collection of the dataset: the collection of ImageNet took several years for a dedicated team to collect images, pre-process them, and label them. Collecting such dataset for individual household electricity consumption would be expensive and raises privacy issues. Assuming the existence of such a large training set, one could learn a large model. Knowledge distillation [START_REF] Hinton | Distilling the knowledge in a neural network[END_REF] can then be used to create smaller models that can be deployed on each sensor.

Data Augmentation. We saw that results obtained with transfer learning are equivalent to the ones obtained with data augmentation. Indeed using a Multi-Agent System to simulate the electricity consumption of a house, we are able to generate a larger training space and increase the generalization ability of an algorithm learnt on this new data. This is related to the topic of learning from simulations. We think that in the context of transfer learning or domain adaptation, it would be possible to drive the simulation using the target domain. It would allow to increase the knowledge on the data space around the target domain. This could be done using field-specific information or using statistical learning, as was proposed with GANs [START_REF] Huang | Auggan: Cross domain adaptation with gan-based data augmentation[END_REF].

Interpretability. Interpretability is very important for the deployment and acceptance of statistical models by operators of a system. Neural Networks are very popular and state-of-the-art in many applications but are still hard to understand. A better understanding of features learnt from time series and linking them with real-world quantites would allow them to be better accepted by users or authorities. For our covariance-based method, imposing a sparsity constraint would allow to directly extract measured quantities. This requires more work on optimization over a manifold, where proximal methods such as [START_REF] Chen | Proximal gradient method for nonsmooth optimization over the stiefel manifold[END_REF] seem to be a good starting point.

Federated Learning.

As the public becomes more knowledgeable about the usage of its data, privacy preserving methods are an interesting solution. In all of our experiments, we assumed that the whole dataset was available on our machines to fit our algorithm. Each household in France has or will have a smart sensor (Linky) able to directly send information to the electricity provider. Instead of uploading the whole electricity consumption to a central server held by EDF, one could imagine training an algorithm across multiple smart sensors, without storing or exchanging the raw electricity consumption. This problem is tackled by federated learning. Federated Learning already attracted attention from the transfer learning community, as different nodes most likely have different distributions [START_REF] Mansour | Three approaches for personalization with applications to federated learning[END_REF].

Having a centered model that can be updated in a decentralized manner and adapt to each node would be ideal.

Learning causal relationships. In Chapter 5, we proposed a method to learn relationships between sensors in a multivariate time series that were invariant to a change of system or subject. While we formulated these relationships using covariance, or equivalently partial autocorrelation as our metric is invariant to inversion. While we did not formulate it in terms of causal learning, connections can be made. In causal learning, the goal is to learn the causal graph between variables that is robust to a change of environment. By exchanging environment with domains, one can see that causality and domain generalization are closely related. It was noted in a recent work [START_REF] Rojas-Carulla | Invariant models for causal transfer learning[END_REF] where authors propose a method to combine causality and transfer learning.

Heterogeneous Transfer. Methods presented in this thesis assume homegeneity in the input and prediction space across domains. In the future, it could be interesting to extend our work to heterogeneous data space. For instance, industrial systems are often monitored with a different set of sensors. With our method, one should remove the different dimensions from the dataset. Finding a way to match distributions from multivariate time series with different dimensionalities would allow to make us of even more information. For instance, [START_REF] Rodrigues | Dimensionality transcending: a method for merging bci datasets with different dimensionalities[END_REF] tried to propose such a method for EEG data. Even more ambitious would be to merge information from data of different natures: for instance, some industrial systems are monitored with sensors but operators also write reports. Merging time series data and textual annotations has been proposed for time series forecasting [START_REF] Obst | Textual data for time series forecasting[END_REF] and could be extended to a transfer learning framework.

Clustering consumer based on their consumption has several interests for EDF: a better knowledge of its clients allows to propose tailored solutions. Moreover, some consumption forecasting methods are based on an ensemble of predictors learnt on clusters of clients.

Here, we illustrate the obtained results on a public dataset of electricity consumption in Ireland: CER Smart

Metering project [START_REF] For | Cer smart metering project -electricity customer behaviour trial[END_REF]. This experiment collected consumption data from 3,174 1 Irish households and SMEs between 2009 and 2010. We only consider daily consumption for the first 384 days of the experiment. A survey on households was conducted and for some consumers, we know if they are residential households or SMEs. When left un-answered, the monitored house can be either of those classes or a secondary residence. The general pattern for SMEs is a lower consumption during week-ends and Christmas vacations, which is opposite to residential households. 

B.2 Method

B.2.1 Convolutional AutoEncoder

Our goal is to cluster the clients, hence we use an unsupervised architecture with a convolutional autoencoder (CAE). The CAE is made of an encoder, which follows the general convolutional architecture, a bottleneck and a decoder with deconvolution layers, as described in • Dictionary Learning + K-Medoids: K-medoids performed on the coefficients learnt from a dictionary learnt with non-negative matrix factorization

• CAE+K-medoids: K-medoids performed on latent vector from the convolutional autoencoder

B.2.3 Outliers

One of the main issues of traditional clustering techniques is the robustness to outliers. But defining an outlier in a dataset is a challenging task. Different approaches have been proposed: Mahalanobis distance, Outlier Detection using Indegree Number, ... Here, we use the Local Outlier Factor metrics [START_REF] Breunig | Lof: identifying density-based local outliers[END_REF].

To define this metric we have to define a distance on our initial space. Here we choose the euclidean distance.

A k-NN graph is computed on the dataset. Defining the local reachibility density of an example x i as : The Local Outlier Factor is defined as:

LOF (x i ) = xj ∈N (xi) lrd(x j ) klrd(x i ) (B.
3)

The main idea behind this metric is that it allows to define outliers locally. Therefore points that would be defined as outliers with other methods such as Mahalanobis because they belong to a small or sparse cluster will be considered as normal with this metric. A threshold is manually defined such that every point with a LOF higher than the threshold is considered as an outlier. We use this definition to determine the number of outliers per cluster which quantifies the outlyingness of a cluster.

On the CER dataset, using this LOF on raw data shows that outliers often are secondary houses with extremely high consumption. Ideally, we would want a clustering method that groups those outliers together. We will see that most feature transformations fail to do so but features extracted from a CAE give surprisingly good results. 

B.3 Results

Using the elbow method we find that a good number of clusters would be 10 or 16. On We could only identify one variable corresponding to the week-end consumption drop for SMEs while NMF extracts interpretable components (week-end drop, higher consumption in January given the extreme cold in Ireland, ...). • Human Activity Recognition dataset: [START_REF] Anguita | A public domain dataset for human activity recognition using smartphones[END_REF] 30 subjects were monitored using a smartphone while performing 6 daily activities. Raw time series and extracted features are available.

Those datasets are the most commonly used datasets in the domain adaptation community. It should still be noted that for the Amazon Multi-Domain Sentiment Dataset, most papers use the same pre-processing step with TF-IDF. We noted in our experiments that better results can be obtained using a pre-trained Word2Vec, without any adaptation. Similarly, for image datasets, state-of-the art results were obtained by using adversarial adaptation methods based on neural networks. Those neural networks were initialized using a pre-trained network like VGG16. This is already a form of transfer learning and it makes it hard to evaluate the contribution of the pre-training and the subsequent adaptation.

Hypothesis-Discrepancy

The method developed in Chapter 4 is publicly available in the following github repository: https://github.com/GRichard513/ADisc-MSDA. We also give the code for the experiments on synthetic data and public datasets for reproducibility. The implementation of our method is based on PyTorch3 . We give the implementation for those public datasets but the extension to other datasets is straightforward: the user simply needs to change the parameters of the class Disc MSDANet: in particular, the feature extractor parameter allows the user to define its own feature extractor network, which will be application-specific. The feature extractor needs to be implemented using pytorch.

Covariance-based Transfer Learning

For this implementation, we based our implementation on the PyManopt [START_REF] Townsend | Pymanopt: A python toolbox for optimization on manifolds using automatic differentiation[END_REF] package. We simply defined our own functions to compute the Log-Euclidean Kernel matrix and the gradient steps efficiently by caching the matrix logarithm of the input covariance matrices in memory. We will make the implementations public after publication of the method.

C.2 Other implementations C.2.1 List of statistical features extracted (Chapter 3)

We used the library tsfresh (https://tsfresh.readthedocs.io/en/latest/index.html) to extract features using their EfficientParameters class. The full extracted features are available in count below mean energy ratio by chunks num segments 10 segment focus 0 energy ratio by chunks num segments 10 segment focus energy ratio by chunks num segments 10 segment focus 2 energy ratio by chunks num segments 10 segment focus energy ratio by chunks num segments 10 segment focus 4 energy ratio by chunks num segments 10 segment focus energy ratio by chunks num segments 10 segment focus 6 energy ratio by chunks num segments 10 segment focus energy ratio by chunks num segments 10 segment focus 8 energy ratio by chunks num segments 10 segment focus first location of maximum first location of minimum has duplicate index mass quantile q 0.1 index mass quantile q 0.2 index mass quantile q 0.3 index mass quantile q 0.4 index mass quantile q 0.6 index mass quantile q 0.7 index mass quantile q 0.8 index mass quantile q 0.9 kurtosis last location of maximum last location of minimum length " linear trend attr ""intercept""" " linear trend attr ""pvalue""" " linear trend attr ""rvalue""" " linear trend attr ""slope""" " linear trend attr ""stderr""" longest strike above mean longest strike below mean maximum mean mean ab change mean change mean second derivative central median minimum number crossing m m -1 number crossing m m 0 number crossing m m 1 number peaks n 1 number peaks n 10 number peaks n 3 number peaks n 5 number peaks n 50 partial autocorrelation lag 0 partial autocorrelation lag 1 partial autocorrelation lag 2 partial autocorrelation lag 3 partial autocorrelation lag 4 partial autocorrelation lag 5 partial autocorrelation lag 6 partial autocorrelation lag 7 partial autocorrelation lag 8 partial autocorrelation lag 9 quantile q 0.1 quantile q 0.2 quantile q 0.3 quantile q 0.4 quantile q 0.6 quantile q 0.7 quantile q 0.8 quantile q 0.9 range count max 1 min - 

C.3 Additional Experiments of Chapter 3

In order to compare with existing methods, we report the results available online The first observation is that different data preparations affect the performance of a convolutional neural network.

Moreover there is no universal choice of normalization to get the best classification accuracy. For most datasets, the Ens-Norm Network achieves better accuracy than the simple DenseNets, which indicates that this architecture is able to derive the best from both standardizations. Standardization seems to be more efficient than min-max normalization in general.

Overall we achieve slightly better results than the existing nearest neighbour classifiers. We do believe that better accuracies can be achieved, notably with ensemble-based methods, whose voting scheme could even include neural networks. We conducted experiments with ResNets and FCN architectures that generally did not lead to better accuracies but showed similar observations for the impact of pre-processing. In a first part, we investigate time series pre-processing for neural networks with a view on household consumption. We propose a method that allows for better robustness when learning on one house and applying on a new one.

In a second part, we develop a general framework for adversarial domain adaptation for regression. We provide learning bounds and an algorithm for both single and multisource domain adaptation. We conduct extensive experiments on both private and public datasets, showing better performance than previous domain adaptation methods.

Finally, we investigate transfer learning methods for multivariate time series using covariance information. We 
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  les milli-secondes, la consommation d' énergie varie toutes les secondes, la propagation d'un virus est aussi un ph énom ène temporel ... L'analyse de ces ph énom ènes qui d épendent du temps est le champ d' étude de l'analyse des s éries chronologiques. Chez EDF, les ph énom ènes variant dans le temps apparaissent dans de nombreux sc énarios. En tant que producteur d' électricit é, l'un des principaux d éfis d'EDF est d'assurer l'ad équation entre la production et la consommation d' électricit é, tant pour des raisons de s écurit é que pour des raisons économiques. Alors qu'EDF contr ôle la production d' électricit é et peut l'ajuster, la consommation d épend des clients, qui sont externes à l'enterpise et donc non contr ôl és. Une meilleure connaissance des habitudes de consommation de ses clients aurait plusieurs autres avantages pour EDF. Le march é franc ¸ais de l' électricit é ayant ét é ouvert à la concurrence en 2010, EDF souhaite proposer des contrats de plus en plus adapt és à ses clients. De plus, l'autoproduction d' électricit é via une éolienne ou des panneaux solaires attach és à un foyer prend de plus en plus d'importance. Il est donc essentiel de comprendre la consommation au niveau des m énages pour mieux organiser le r éseau électrique, car les donn ées de consommation d'un m énage sont traditionnellement suivies à l'aide d'un seul compteur. Les compteurs historiques ne peuvent pas être lus à distance et ne sont relev és qu'une fois par an par un technicien. Depuis 2015, les compteurs communicants Linky sont d éploy és en France pour remplacer les anciens compteurs. Ces compteurs collectent la consommation d' électricit é toutes les 30 minutes et les donn ées de consommation sont envoy ées à EDF avec l'accord du client. Cependant, m ême avec les compteurs Linky, l'acc ès aux donn ées de consommation des m énages reste limit é, en raison des co ûts de traitement et de stockage ansi que de probl èmes de confidentialit é. De plus, les donn ées à pas 30 minutes donnent un aperc ¸u g én éral de la consommation d'un m énage mais ne fournissent pas de d étails sur l'utilisation des diff érents appareils. La d ésagr égation de la courbe de charge (consommation d' électricit é) d'un m énage en fonction de l'utilisation de chaque appareil est le sujet de la surveillance non intrusive de la charge (NILM), illustr ée dans la figure 1.1. Le NILM peut donner un aperc ¸u complet de la consommation d'un client et pourrait permettre à EDF de proposer des contrats parfaitement adapt és aux besoins d'un client. Mais Le NILM n écessite des donn ées échantillonn ées de 1
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 11 Figure 1.1: Non Intrusive Load Monitoring illustration: from the whole house consumption, the goal is to retrieve the consumption of each appliance

Figure 2 . 1 :

 21 Figure 2.1: Taxonomy of Transfer Learning

  Extensions have been proposed to tackle other scenarios than unsupervised domain adaptation:• Semi-supervised Domain Adaptation: authors from[START_REF] Cortes | Adaptation algorithm and theory based on generalized discrepancy[END_REF] [46] introduced the generalized discrepancy and the Y-discrepancy to allow the use of labeled target data and derive bounds similar to Equation2.19• Multi-Source Domain Adaptation: during this PhD, we developed a bound and a method for adaptation from multiple sources[START_REF] Richard | Unsupervised multi-source domain adaptation for regression[END_REF] 

Figure 2 . 2 :

 22 Figure 2.2: Illustration of the H-divergence with linear classifiers

Figure 2 . 3 :

 23 Figure 2.3: Illustration of the discrepancy with linear regressors H = {h : x → w T x ; w 2 ≤ 1} and 2 -loss. Source and target data are generated as 1D-Gaussian distributions centered on -1 and +1 with different standard deviations in each graph ({1, 1}, {0.5, 5} and {4, 4}).

  Instance-based domain adaptation: where an algorithm tries to select or re-weight the source data points based on their relevance for adaptation • Feature-based domain adaptation: where a feature transformation is performed on the source or target domains to bring the domain closer • Model-based domain adaptation: where the parameters of a model learnt on the source data are transferred to the target model For instance, the authors who proved the bound based on d H∆H based their algorithm for feature-based domain

  an unlabeled target sample S T = {x (1) S , ..., x

Feature-based domain

  adaptation methods are the second large class of domain adaptation methods. They aim to find a feature transformation of the input data that brings the domains closer. Namely, in terms of distributions, if we consider two domains D S = {X , P S (X S )} and D T = {X , P T (X T )} with associated tasks T S = {Y, P S (Y S |X S )} and T T = {Y, P T (Y T |X T )}, the aim of those methods is to find a feature extraction function φ such that, for x ∈ X , P T (φ(x)) = P S (φ(x)) (symmetrical feature adaptation) or two functions φ and φ such that P T (φ (x)) = P S (φ(x))

Figure 2 . 4 :

 24 Figure 2.4: Domain Adversarial Neural Network (figure from [72])

. 31 )

 31 Domain Generalization. Domain Generalization (DG) is related to multi-task learning as it also aims to learn common knowledge from different domains. Formally, this framework assumes the existence of K domains and tasks D 1 , ..., D K = with K tasks T 1 , ..., T K defined over the same sets X and Y. We call P the set of distributions over X × Y. Then domain generalization assumes that every joint distribution P k (X k , Y k ) is drawn from a distribution µ ∈ P. Similarly to MTL, we introduce a common representation bias φ : X → Z and a class of predictors H : Z → Y. Then, noting H φ = {h • φ ; h ∈ H}, the goal of domain generalization is to minimize the risk over any possibly unseen domain drawn from µ

k

  )} with x ∈ R d and y ∈ R, they propose the following objective min

Figure 2 . 5 :

 25 Figure 2.5: Scenarios of Transfer Learning with or without multiple sources
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  • G. Richard, G. H ébrail, M. Mougeot and N. Vayatis. "DenseNets for Time Series Classification: towards automation of time series pre-processing with CNNs." MiLeTS19SIGKDD 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD'2019) • G. Richard, B. Grossin, G. Germaine, G. H ébrail and A. de Moliner. "Autoencoder-based time series clustering with energy applications." Conf érence sur l'Apprentissage Automatique 2018 (CAp 2018).
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 31 Figure 3.1: Euclidean Distance vs Dynamic Time Warping
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 32 Figure 3.2: Different architectures for time series classification

Figure 3 . 3 .

 33 Figure 3.3. Autoencoders are a class of unsupervised methods used to learn a new data coding. Deep autoencoders has led to numerous works in recent years and gave promising results for time series analysis [105]. In Appendix B, we show an application of autoencoders for consumption clustering.
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 33 Figure 3.3: Convolutional Auto-Encoder
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 34 Figure 3.4: Sub-problems of Non Intrusive Load Monitoring (NILM)

Figure 3 . 5 :

 35 Figure 3.5: Examples of monitored appliances for each house: a blue square means the appliances was monitored.A white square means it was not monitored or was mixed with another appliance.
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  sensors are plugged to the circuit breaker corresponding to some large appliances:

Figure 3 . 6 :

 36 Figure 3.6: Examples of monitored consumption for one day in the Electric DataBase (x-axis is in hours and y-axis is in W)

Figure 3 . 7 :

 37 Figure 3.7: Examples of monitored consumption for one day in the REFIT Database (x-axis is in hours and y-axis is in W ; the house numbers correspond to the ones in the database as technical issues happened for other houses)
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 3839 Figure 3.8: Examples of signatures from the Trace Base dataset (x-axis is in minutes, y-axis is in W). Signatures have been zero-padded to a length of 2 hours.

Figure 3 . 10 :

 310 Figure 3.10: Dishwasher and Washing Machine Signature data: for each plot, the main line is the median consumption over all signatures. Other areas represent different percentiles of the distribution.

Figure 3 . 11 :

 311 Figure 3.11: Kettle and Microwave Signature data: for each plot, the main line is the median consumption over all signatures. Other areas represent different percentiles of the distribution.

Figures 3 .

 3 10 and Figure 3.11 illustrate this on two examples. For each pair (washing machine / dishwasher

Figure 3 . 12 :

 312 Figure 3.12: DenseNet: each block is made of successive convolutions and skip connections ended by a bottleneck convolution

  least a global normalization. Recently batch normalization proposed by Ioffe and Szegedy[START_REF] Ioffe | Batch normalization: Accelerating deep network training by reducing internal covariate shift[END_REF] has had a great impact on neural network training and works as a speedup technique for neural networks.

Figure 3 .

 3 Figure 3.13: Proposed architectures
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 314 Figure 3.14: Overview of the different experiments
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 17 RF: Feature extraction + RandomForest 2. GS DenseNet with Global Standardization 3. GN DenseNet with Global Min-Max Normalization 4. IS DenseNet with Instance Standardization 5. IN DenseNet with Instance Min-Max Normalization 6. IN-Feat FeatNet with Instance Min-Max Normalization Ens EnsNormNet with Min-Max Normalization 8. IN-DA Domain Adversarial DenseNet with Instance Min-Max Normalization 9. GN-DA Domain Adversarial DenseNet with Global Min-Max Normalization 10. Ens-DA Domain Adversarial EnsNormNet with Min-Max Normalization
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 315316 Figure 3.15: Confusion Matrix for Electric Data in the cross-house appliance recognition experiment

Figure 3 . 17 :

 317 Figure 3.17: Confusion Matrix for TraceBase Data in the cross-house appliance recognition experiment

  .18 and Figure 3.19. We note that models learnt on TraceBase give very poor results on Electric Data and REFIT, maybe due to the lack of data for appliances common to these datasets in the TraceBase dataset (∼ 1000 signatures).

Figure 3 . 19 :

 319 Figure 3.18: REFIT → Electric Data experiment

Figure 3 . 20 :

 320 Figure 3.20: TSNE Representation of the latent variables obtained by learning a DenseNet using different normalizations: first column is the latent training variables and second column is the latent variables of unseen houses (test) on REFIT data
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 41 We formulate this problem as a multiple source domain adaptation problem for regression, where different houses are considered as multiple sources to a different target house. Chapter 2 highlights that domain adaptation for regression requires a specific framework. The main line of our work follows the idea of discrepancy minimization [121], solved using kernel based methods. The last Chapter shows that neural networks are powerful tools to learn features for consumption data. Hence, we develop a new framework for adversarial domain adaptation based on neural networks for regression. This chapter introduces an extension to the original discrepancy first introduced by Mansour et al. (2009) [121]: hypothesis-discrepancy. Based on this new measure of dissimilarity between domains, we prove a general bound for domain adaptation encompassing both regression and classification tighter than the one with discrepancy. We extend our method to domain adaptation with multiple sources, and derive an algorithm that can select the most informative sources and adapt to the target at the same time. Our hypothesis-discrepancy based algorithm appears to unify different frameworks of domain adversarial training of neural networks. Finally, we study the applicability of our method on Electric Data for NILM and other kinds of data. This chapter is partly based on the work published in an international conference and a pre-print: • G. Richard, A. de Mathelin, G. H ébrail, M. Mougeot and N. Vayatis. "Unsupervised Multi-Source Domain Adaptation for Regression." Joint European Conference on Machine Learning and Knowledge Discovery in Databases 2020 (ECML 2020) • A. de Mathelin, G. Richard, M. Mougeot, and N. Vayatis. "Adversarial Weighting for Domain Adaptation in Regression." arXiv preprint arXiv:2006.08251. (Pre-print)
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 4141411 Figure 4.1: Water heater consumption estimation: input is the whole consumption (gray curve), variable to predict is the whole Water Heater consumption (green area)

  size n S and an unlabeled target sample S T = {x

  propose to (a) learn two classifiers h and h to minimize the source risk (b) maximize the discrepancy between those classifiers in the target domain (c) minimize the discrepancy induced by those classifiers in the feature extractors. This is more closely related to d H∆H (P S , PT ) = sup h,h |E x∼P S [I(h(x) = h (x)] -E x∼P T [I(h(x) = h (x)]|as pointed out in [158]. Here, assuming h and h close on the source dataset (done by step (a) of their algorithm), E x∼P S [I(h(x) = h (x)] 0. Hence, maximizing the discrepancy on the target dataset induced by E x∼P T [I(h(x) = h (x)] gives an estimation of H∆H. It can be intepreted as reducing H∆H to the set of "good" predictors for the source data.

10 )

 10 Equation 4.1 and DANN share a similar objective. Hence, we now propose a general adversarial domain adaptation algorithm to learn transferable representations. We introduce a feature extractor φ θ : X → Z parametrized by

Figure 4 . 3 :

 43 Figure 4.3: Adversarial Hypothesis Discrepancy Minimization (AHDM) using Neural Networks

  Source Domain Adaptation is defined as follows: we consider K independent source domains D k = {X , P k } with associated labelling function f k and a target domain D T = {X , P T } with associated labelling function f T . Once again, the goal is to minimize the target risk R T

Figure 4 . 4 :

 44 Figure 4.4: Adversarial Multi-Source Hypothesis Discrepancy Minimization (AMSHDM) The adversarial scheme is similar to single-source with weights α. At each iteration, the weights α are updated.

minimize the source loss 2 .

 2 L h = -HDisc updates h to maximize discrepancy 3. L θ = HDisc + K k=1 α k R k updates φ θ to minimize discrepancy and source loss 4. L α = HDisc + λ||α|| 2 updates α to minimize the discrepancy

  (a) Validation loss on source data (b) Target loss

Figure 4 . 6 :

 46 Figure 4.6: Training curves for Single Source DA: without adaptation, the target loss increases as the validation loss keeps decreasing. DANN exposes the same behaviour as the target loss of AHDM decreases.

Figure 4 . 7 :

 47 Figure 4.7: X-axis: Extracted features (before the final predictor) using AHDM (left) and DANN (right) ; Y-axis: labels to predict (y)

  (a) One cluster with uniform weights (b) Two clusters with uniform weights
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 4849 Figure 4.8: Friedman Multiple Source experiment: α found by AMSHDM (blue) vs True α (orange)

Figure 4 . 10 :

 410 Figure 4.10: Temporal Convolutional Network model used in our experiments

Figure 4 . 11 :

 411 Figure 4.11: Weights found by AMSHDM

Figure 4 . 12 :

 412 Figure 4.12: Data augmentation vs Adaptation: with data augmentation, a new training space is created using sources 1 to 4 ; with adaptation, the training data is moved closer to the testing data.
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 413 Figure 4.13: Learning from Synthetic Data

Figure 4 . 14 :

 414 Figure 4.14: Visualization of digits datasets

Figure 4 . 15 :

 415 Figure 4.15: Adversarial Multi-Source Y-Discrepancy Minimization (AMSYDM)

Figure 5 . 1 :

 51 Figure 5.1: Illustration of the proposed method: raw time series are transformed to covariances and invariant relationships between sensors with different lags are extracted

  .., X(t -r + 1)](5.3)Those coefficients estimate the relationship between values of X at time t -r and time t after removing the effects of every intermediate value. They are also directly linked to the VAR coefficients. It can be shown that,

9 )

 9 LEM also has invariance to inversion, but does not have full affine invariance. It is still invariant to rotation. If we define the set of rotation matrix O(d) = {W ∈ R d×d , W T W = I d } where I d is the identity matrix of size d, then the two following properties hold.

For

  r, s ∈ {1, ..., R, T }, for r = s, if we note M (rs) rs) ) T D (rs)    then we define L (rs) = B (rs) and L (rr) = r s=1 A(rs) .

(

  {+1, -1}) problem over 10 domains by generating two SPD covariance matrices with dimension d = 20, noted C (+1) k ∈ S(20) and C (-1) k

  each domain but we assume that every domain share the same relationships on the first d = 4 dimensions: [C

k

  and use them as features in five different methods: 1. AIM-MDM: Minimum Distance to Mean classifier with the Affine Invariant Metric without Dimensionality Reduction 2. LR-MTL: multi-task learning with a linear classifier with group-sparsity constraint presented in [10] 3. LEK-SVM: Support Vector Machine classifier with the Log-Euclidean Kernel without Dimensionality Reduction 4. LEK-DR-SVM: Support Vector Machine classifier with the Log-Euclidean Kernel with Dimensionality Reduction using only discriminative learning (J y ) and no transfer 5. LEK-DG-SVM: Support Vector Machine classifier with the Log-Euclidean Kernel with Dimensionality Reduction using only discriminative learning (J y ) and conditional adaptation (no information from the target domain is used) 6. LEK-TL-SVM: Support Vector Machine classifier with the Log-Euclidean Kernel with Dimensionality Reduction using our model in Equation 5.21

1 , 5 ∈RFigure 5 . 2 :

 1552 Figure 5.2: Parameter W learned by the model for the synthetic covariance experiment (abs(W ) T is represented here and values are normalized to sum to 1 for each dimension for better readability)

Figure 5 . 3 :

 53 Figure 5.3: Examples of time series from UCI Daily Activities Dataset: top row represents walking upstairs and bottom row corresponds to walking downstairs. On each figure, blue is the x-dimension, orange the y-dimension and green the z-dimension.
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 54 Figure 5.4: Accuracy (%) of LEK-SVM (orange) and LEK-TL-SVM (blue) over every domain
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 5556 Figure 5.5: Parameter W learned by the model for the HAR with smartphones experiment (abs(W ) T is represented here and values are normalized to sum to 1 for each dimension for better readability)
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 5758 Figure 5.7: Parameter W learned by the model for the reduced NTU RGB-d dataset (abs(W ) T is represented here and values are normalized to sum to 1 for each dimension for better readability)
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 2 Figure B.2: Proposed method: Convolutional Auto-Encoder (CAE)

Figure B. 2 .

 2 Our input time series are of length 384 and we • K-medoids: K-medoids performed on raw data (divided by the mean) • PCA+K-medoids: only the 20 first components of PCA are used • Haar+IK-means: the coefficients of a Discrete Wavelet Transform with Haar wavelet are used in an interactiveK-Means as defined in[START_REF] Vlachos | A wavelet-based anytime algorithm for k-means clustering of time series[END_REF] 

  ∈N (xi) max(d k (x j ), d(x i , x j )) d k (x j ) = max x k ∈N (xi) d(x j , x k ) and N (x i ) is the neighbourhood of x i

Figure B. 3 :

 3 Figure B.3: Left: number of clients per cluster ; Center: number of elements per clusters ; Right: number of outliers in each cluster (an element is an outlier if its Local Outlier Factor is above the 95 % quantile)

  Figure B.4: Centroids of each cluster found with the CAE+K-Medoids method

Figure B. 5 :

 5 Figure B.5: SME vs Residentials using (a) PCA representation (b) NMF representation (c) TSNE representation of the latent variables obtained by CAE

  [? ] using Nearest Neighbour classifiers associated with Euclidean Distance (ED-NN), Dynamic Time Warping (DTW-NN) and Dynamic Time Warping with a learned window (WDTW-NN). The full results are available in Table C.2 and we plot the rank distribution of each algorithm on Figure C.1.

Figure C. 1 :C. 4 --

 14 Figure C.1: Rank distribution of each method over UCR non-normalized datasets. Each bar corresponds to a method. Red shows a high rank and blue a low rank.

  represent multivariate time series by their autocovariance matrix and develop a domain adaptation framework using the specific geometry of those matrices. Maison du doctorat de Université Paris-Saclay 2 e étage, aile ouest, École normale supérieure Paris-Saclay 4 avenue des Sciencs 91190 Gif-sur-Yvette, France
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  Nous proposons une nouvelle mesure de divergence entre les domaines, une nouvelle borne th éorique associ ée et un algorithme qui propose une vision unifi ée de nombreuses m éthodes d'adaptation de domaine adverse ant érieures. Cette garantie est étendue à l'adaptation multi-source, pour laquelle nous proposons d'attribuer des poids aux sources en fonction de leur relation avec le domaine cible. Nous illustrons nos r ésultats Mougeot and N. Vayatis. "DenseNets for Time Series Classification: towards automation of time series pre-processing with CNNs." MiLeTS19@SIGKDD 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD'2019).

	• Chapitre 3 G. Richard, B. Grossin, G. Germaine, G. H ébrail and A. de Moliner. "Autoencoder-based time
	series clustering with energy applications." Conf érence sur l'Apprentissage Automatique 2018 (CAp 2018).
	• Chapitre 4 G. Richard, A. de Mathelin, G. H ébrail, M. Mougeot and N. Vayatis. "Unsupervised Multi-Source
	Domain Adaptation for Regression." Joint European Conference on Machine Learning and Knowledge Discov-
	ery in Databases 2020 (ECML 2020)
	• Chapitre 4 A. de Mathelin, G. Richard, M. Mougeot, and N. Vayatis. "Adversarial Weighting for Domain Adap-

sur plusieurs jeux de donn ées de NILM, mais aussi sur d'autres probl èmes typiques d'adaptation au domaine : (i) analyse de sentiment des commentaires textuels sur Amazon

[START_REF] Blitzer | Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification[END_REF] 

et (ii) labellisation d'images de chiffres (MNIST, MNIST-M, ...)

[START_REF] Ganin | Domain-adversarial training of neural networks[END_REF]

.

Si les m éthodes bas ées sur les r éseaux de neurones donnent de tr ès bons r ésultats exp érimentaux, elles souffrent de deux probl èmes : elles n écessitent g én éralement beaucoup de donn ées d'entra 1nement et sont difficilement interpr étables. En effet, il est difficile de visualiser les repr ésentations apprises par le r éseau et de les relier à des concepts interpr étables. Il est donc difficile de les int égrer dans des applications industrielles car tr ès souvent, les op érateurs veulent comprendre le comportement d'un mod èle. C'est pourquoi, dans le chapitre 5, nous proposons une m éthode d'apprentissage par transfert pour les s éries temporelles multivari ées bas ée sur les informations de covariance. Plus pr écis ément, étant donn é que plusieurs syst èmes sont surveill és par des capteurs d, nous proposons de construire un sous-espace virtuel de capteurs de dimension d < d de telle sorte que les relations entre les dimensions extraites soient les m êmes dans chaque syst ème. Ainsi, nous proposons de s éparer les caract éristiques communes à tous les syst èmes des caract éristiques sp écifiques à chaque syst ème. Notre cadre d' étude int ègre donc à la fois la g én éralisation de domaine et à l'adaptation à un domaine pr écis. Comme nous ne travaillons que sur les matrices de covariance provenant de s éries temporelles multivari ées, le nouvel espace de repr ésentation se base sur la g éom étrie sp écifique des matrices sym étriques à d éfinition positive. Malheureusement, durant ce travail de th èse, aucun jeu de donn ées industrielles à EDF ne contenait suffisamment de donn ées étiquet ées pour exp érimenter notre m éthode. Par cons équent, nous exp érimentons notre m éthode sur des donn ées synth étiques et des jeux de donn ées de reconnaissance d'activit é humaine afin de montrer les performances et les limites de notre approche. Ces diff érentes contributions ont donn é lieu à des publications dans des conf érences nationales et internationales : • Chapitre 3 G. Richard, G. H ébrail, M. tation in Regression." arXiv preprint arXiv:2006.08251. (Pre-print) Enfin, les exp ériences men ées sur les ensembles de donn ées publiques pour cette th èse sont accessibles, sous la forme d'une contribution au paquet adapt et d'un d épot git. Nous donnons dans l'Annexe C des d étails sur les diff érentes impl émentations pour la reproduction des r ésultats obtenus sur des jeux de donn ées publiques.

  Richard, G. H ébrail, M. Mougeot and N. Vayatis. "DenseNets for Time Series Classification:

	towards automation of time series pre-processing with CNNs." MiLeTS19@SIGKDD 25th ACM SIGKDD Inter-
	national Conference on Knowledge Discovery & Data Mining (KDD'2019).

• Chapter 3 G. Richard, B. Grossin, G. Germaine, G. H ébrail and A. de Moliner. "Autoencoder-based time series clustering with energy applications." Conf érence sur l'Apprentissage Automatique 2018 (CAp 2018). • Chapter 4 G. Richard, A. de Mathelin, G. H ébrail, M. Mougeot and N. Vayatis. "Unsupervised Multi-Source Domain Adaptation for Regression." Joint European Conference on Machine Learning and Knowledge Discovery in Databases 2020 (ECML 2020) • Chapter 4 A. de Mathelin, G. Richard, M. Mougeot, and N. Vayatis. "Adversarial Weighting for Domain Adaptation in Regression." arXiv preprint arXiv:2006.08251. (Pre-print)

• Semi-supervised Domain Adaptation: when

  

	one has access to labeled source data and labeled target data,
	with possibly unlabeled target data
	• Unsupervised Multi-Source Domain Adaptation: when one has access to labeled source data coming from
	different source domains, and unlabeled target data
	• Semi-

Supervised Multi-Source Domain Adaptation: when

  

	Numerous distances have been introduced to compare probability distributions. They are key to many applica-
	tions, such as statistical tests, estimation, generative modeling ... In Domain Adaptation, they are used as a tool
	to compare two domains, and as a quantity to minimize in order to bring domains closer. While classical distances
	such as Maximum Mean Discrepancy [79], Wasserstein Distance [156] or Total Variation Distance have been used
	for bounds in Domain Adaptation, the first works on the topic involved distance created specifically for the problem.
	We now shortly recall the main generalization bounds based on Vapnik Chervonenkis (VC)-Dimension and
	Rademacher complexity. Then we present an overview of the bounds based on the divergence-like distance. and
	finally present other results based on more classical statistical distances.
	one has access to labeled source data coming
	from different source domains, labeled target data, with possibly unlabeled target data

Definition 1 .

 1 The growth function Π H of an hypothesis class H is defined asThe growth function measures the ability of a hypothesis class to classify m samples in a different way. From this definition, it is possible to define the VC-Dimension. Namely, the VC-Dimension of a hypothesis class H is the maximum number of samples that an hypothesis class H is able to shatter completely, ie with hypothesis in H, it is possible to assign any labels to the sample {x 1 , ..., x m }.

	where for any set A, |A| is the cardinality of A.		
	Definition 2. The VC-Dimension of an hypothesis class H is defined as	
	Π H (m) =	max {x1,...,xm}⊂X	|{(h(x 1 ), ..., h(x m )), h ∈ H}|	(2.3)

  Using the previous notations, let L : Y × Y → R + be bounded by M > 0, ie sup y,y ∈Y L(y, y ) ≤ M . Moreover, for any y ∈ Y, we assume y → L(y, y ) to be µ-Lipschitz. Then for any hypothesis h ∈ H, for any δ ∈]0, 1[, with probability at least 1 -δ over the choice of sample S = {(x 1 , y 1 ), ..., (x m , y m

	2.8)
	Rademacher complexity has been studied for many methods, such as SVM, Neural Networks, ... The Rademacher
	complexity is data dependent and leads to tight bounds. Moreover, it has been extended to regression in an easier
	way than through pseudo VC-Dimensions. In the regression case, Y ⊂ R. The following generalization bound holds
	in the regression case [131]:
	Theorem 3.

  [START_REF] Bagnall | A run length transformation for discriminating between auto regressive time series[END_REF] So computing the d H between two domains boils down to finding a classifier able to discriminate between domains. Moreover, the empirical estimation of d H converges towards its true value if H has finite VC-Dimension[START_REF] Kifer | Detecting change in data streams[END_REF] with probability 1 -δ over the samples of S S and S T :

	d H (p S , p T ) ≤ dH (S S , S T ) + 4	2V C H log(2m) + log( 2 δ ) m	(2.14)

Table 2 .

 2 

		Criteria	Class	Needs labeled target data?
	GDM (2015, [44])	Disc	Instance	No
	KMM (2007, [91])	M M D	Instance	No
	KLIEP (2008, [168])	KL	Instance	No
	Discriminative Learning (2007, [28])	Sim to d H	Instance	No
	TrAdaBoost (2007, [50])	Target error	Instance	Yes
	FEDA (2009, [52])	None	Feature	Yes
	TCA (2011, [139])	M M D	Feature	No
	JDA (2013, [113])	M M D	Feature	Yes
	ARTL (2014, [114])	M M D	Feature	No
	CORAL (2016, [170])	Correlation	Feature	No
	GFK (2017, [76])	Subspace alignment	Feature	No
	SADA (2013, [67])	Subspace alignment	Feature	No
	JSADA (2015, [68])	Subspace alignment	Feature	Yes
	MSDA (2011, [75])	None	Feature	No
	DANN (2016, [72])	d H	Feature	No
	OTDA (2017, [47])	Wasserstein	OT	No
	A-SVM (2007, [187])	Margin	Hypothesis	Yes

1: Summary of reviewed methods

  similar to the bound 2.16: Using the previous notations, if h * T = min h∈H R T (h), then with probability 1 -δ over the sampling K samples of size m {S 1 , ..., S K }, we have

	Theorem 9.

  [START_REF] Fawaz | Transfer learning for time series classification[END_REF] [START_REF] Fawaz | Transfer learning for time series classification[END_REF] use the UCR archive to empirically study the transferability of pre-trained neural networks. They observe that in general, transferring from one dataset to another lead to negative transfer but if the source dataset is well chosen, it can improve the classification accuracy.One must note that the UCR archive is made of datasets of time series of various length and coming from very different fields: some are shapes transformed to time series, others come from medical applications (EEG/ECG),

others are electricity consumption, ... Moreover, the size of the datasets is generally small, between 20 and 8926 time series with only 11 out of 128 datasets made of more than 1000 time series. As a comparison, the ImageNet dataset is made of more than 14 million images. UCR archive is currently the largest database for time series classification and a very useful tool to experiment a new method, but is not suited to assess the transferability of pre-trained neural networks. One could even argue that with datasets made of 16 time series, most neural network architectures would be prone to overfitting.

In summary, the results on transferability of pre-trained neural networks obtained in computer vision are hard to assess for time series, mainly for the lack of a ImageNet-like time series database. Intuitively, we still expect that given a large dataset of time series coming from a specific application (consumption data in France for instance), one could hope to learn a deep CNN on this dataset and use this pre-trained CNN on a similar dataset (consumption data in Belgium for instance). For instance,

[START_REF] Song | Gaitnet: An end-to-end network for gait based human identification[END_REF] 

Table 3 .

 3 

1: Summary of REFIT households

Table 3 . 2

 32 

: Normalization methods

Table 3 .
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	Electric Data	REFIT	TraceBase
		Computer	Computer
	Dishwasher	Dishwasher	Dishwasher
	Kettle	Kettle	Kettle
	Microwave	Microwave	Microwave
	Oven		
		Toaster	
	Tumble Dryer	Tumble Dryer	
		TV	TV
	Washing Machine Washing Machine Washing Machine
	Water Heater		

3: Appliances for which signatures are extracted in each dataset.

Table 3 .
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									Layers	Input shape	Output shape	Filter shape
		Input shape	Output shape	Filter shape	
									Input (1)	Instance-standardized time series
	Input			Time series of length l			
									Conv (1)	l × 1	l × 64	1 ×
	Conv (1)	l × 1		l × 64	1 × 7			Conv (2)	l × 64	l × 64	64 × 5
	Conv (2)	l × 64		l × 64	64 × 5		Conv (3)	l × 128	l × 64	128 ×
	Conv (3)	l × 128	l × 64	128 × 3	
									Conv (4)	l × 192	l × 64	192 ×
	Conv (4)	l × 192	l × 64	192 × 3		Pooling (1)	l × 64	l/2 × 64	2
	Pooling (1)	l × 64		l/2 × 64	2		
									Conv (5)	l/2 × 64	l/2 × 64	64 × 7
	Conv (5)	l/2 × 64	l/2 × 64	64 × 7		Conv (6)	l/2 × 64	l/2 × 64	64 × 5
	Conv (6)	l/2 × 64	l/2 × 64	64 × 5		Conv (7)	l/2 × 128	l/2 × 64	128 ×
	Conv (7)	l/2 × 128	l/2 × 64	128 × 3	
									Conv (8)	l/2 × 192	l/2 × 64	192 ×
	Conv (8)	l/2 × 192	l/2 × 64	192 × 3		Pooling (2)	l/2 × 64	l/4 × 64	2
	Pooling (2)	l/2 × 64	l/4 × 64	2		
									Conv (9)	l/4 × 64	l/4 × 64	64 × 7
	Conv (9)	l/4 × 64	l/4 × 64	64 × 7		Conv (10)	l/4 × 64	l/4 × 64	64 × 5
	Conv (10)	l/4 × 64	l/4 × 64	64 × 5		Conv (11)	l/2 × 128	l/4 × 64	128 ×
	Conv (11)	l/2 × 128	l/4 × 64	128 × 3	
									Conv (12)	l/4 × 192	l/4 × 64	192 ×
	Conv (12)	l/4 × 192	l/4 × 64	192 × 3		Pooling (3)	l/4 × 64	l/8 × 64	2
	Pooling (3)	l/4 × 64	l/8 × 64	2		
									Input (2)	µi, σi
	Merge			Pooling (1)+(2)+(3)			
									Merge	Pooling (1)+(2)+(3) + Input (2)
	Dense	56l		n class	56l			Dense	56l + 2	n class	56l +
	4: DenseNet architecture used in both experiments	Table 3.5: FeatNet architecture used in both experiments
		Layers	Input shape	Output shape	Filter shape	Layers	Input shape	Output shape	Filter shape
		Input (1)		Global-Standardized TS	Input (2)	Instance-Standardized TS
	Conv (1)		l × 1	l × 64	1 × 7	Conv (13)	l × 1	l × 64	1 × 7
	Conv (2)		l × 64	l × 64	64 × 5	Conv (14)	l × 64	l × 64	64 × 5
	Conv (3)	l × 128	l × 64	128 × 3	Conv (15)	l × 128	l × 64	128 × 3
	Conv (4)	l × 192	l × 64	192 × 3	Conv (16)	l × 192	l × 64	192 × 3
	Pooling (1)		l × 64	l/2 × 64	2	Pooling (4)	l × 64	l/2 × 64	2
	Conv (5)	l/2 × 64	l/2 × 64	64 × 7	Conv (17)	l/2 × 64	l/2 × 64	64 × 7
	Conv (6)	l/2 × 64	l/2 × 64	64 × 5	Conv (18)	l/2 × 64	l/2 × 64	64 × 5
	Conv (7)	l/2 × 128	l/2 × 64	128 × 3	Conv (19)	l/2 × 128	l/2 × 64	128 × 3
	Conv (8)	l/2 × 192	l/2 × 64	192 × 3	Conv (20)	l/2 × 192	l/2 × 64	192 × 3
	Pooling (2)	l/2 × 64	l/4 × 64	2	Pooling (5)	l/2 × 64	l/4 × 64	2
	Conv (9)	l/4 × 64	l/4 × 64	64 × 7	Conv (21)	l/4 × 64	l/4 × 64	64 × 7
	Conv (10)	l/4 × 64	l/4 × 64	64 × 5	Conv (22)	l/4 × 64	l/4 × 64	64 × 5
	Conv (11)	l/2 × 128	l/4 × 64	128 × 3	Conv (23)	l/2 × 128	l/4 × 64	128 × 3
	Conv (12)	l/4 × 192	l/4 × 64	192 × 3	Conv (24)	l/4 × 192	l/4 × 64	192 × 3
	Pooling (3)	l/4 × 64	l/8 × 64	2	Pooling (6)	l/4 × 64	l/8 × 64	2
		Merge					Pooling (1)+(2)+(3)+(4)+(5)+(6)
		Dense						Class prediction

Table 3 .
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6: EnsNormNet architecture: dense blocks are applied in parallel before being merged

Table 3 .

 3 7: Same house: Macro F1 score (%) for different methods with standard deviation over 10 runs (different initial weights) on REFIT dataset For REFIT and Trace Base, similar results are obtained (see Table3.8). The only exception is for neural network using instance normalization for some devices such as kettle and microwaves. These results indicate that appliance recognition is easy when training and testing on the same appliance models and the same users.

	REFIT Dataset

98,42 (0,01) 98,47 (0,11) 98,52 (0,12) 96

  ,33 (0,21) 96,28 (0,17) 98,32 (0,[START_REF] Ben-David | Analysis of representations for domain adaptation[END_REF] 

98,57 (0,14)

  

Table 3 . 8 :

 38 Same house: F1 score (%) for different methods with standard deviation over 10 runs on REFIT dataset

	TraceBase Dataset

98,42 (0,01) 98,47 (0,11) 98,52 (0,12) 96

  

	,33 (0,21) 96,28 (0,17) 98,32 (0,24) 98,57 (0,14)

Table 3 .

 3 10: Cross-house: F1 score (%) for different methods with standard deviation over 10 runs on Electric Data dataset

			REFIT Dataset		
	RF	GS	GN	IS	IN
	73,12 (0,08) 78,37 (0,63) 77,37 (0,58) 75,69 (0,89) 75,48 (0,76)
	IN-Feat	Ens	IN-DA	GN-DA	Ens-DA
	76,11 (0,97)				

83,39 (0,54) 75

  

	,28 (0,87) 76,12 (0,68) 81,14 (1,02)

Table 3 .

 3 11: Cross-house: F1 score (%) for different methods with standard deviation over 10 runs on REFIT dataset

			TraceBase Dataset		
	RF	GS	GN	IS	IN
	87,28 (0,21) 88,12 (0,31) 88,32 (0,34) 85,67 (0,29) 85,30 (0,28)
	IN-Feat	Ens	IN-DA	GN-DA	Ens-DA
	87,99 (0,41) 91,50 (0,30) 85,45 (0,43) 86,80 (0,51) 90,08 (0.37)

Table 3 .

 3 12: Cross-house: F1 score (%) for different methods with standard deviation over 10 runs on TraceBase dataset

  1 introduced by Ben-David et al. (2010)[START_REF] Ben-David | A theory of learning from different domains[END_REF]. In this seminal paper authors already proposed to approximate d H∆H by d H and try to find a representation minimizing d H . Moreover, d H can be estimated using the loss L d defined above. Hence, looking back at Equation 2.16 recalled below, the target risk is controlled by minimizing those two losses.

	R T (h) ≤ R S (h) +	1 2	d H∆H (p S , p T ) + λ	(2.16)

From there, other adversarial methods have been proposed. ADDA, proposed by

[START_REF] Tzeng | Adversarial discriminative domain adaptation[END_REF] 

[START_REF] Tzeng | Adversarial discriminative domain adaptation[END_REF] 

is similar to DANN but uses asymmetric features (different feature extractors for source and target data). Another method of interest is Maximum Classifier Discrepancy introduced by Saito et al. (2018)

[START_REF] Saito | Maximum classifier discrepancy for unsupervised domain adaptation[END_REF]

. In this method, authors

  Then as the loss L is bounded by M, changing one As a consequence, with probability 1 -δ 2 over the sampling of S s : HDisc(P S , P T ; h) ≤ HDisc( PS , P T ; h) + 2R m (H s ) + M Using the same reasoning on P T , we obtain that with probability 1 -δ 2 over the sampling of S t : HDisc H,L (P S , P T ; h) ≤ HDisc H,L ( PS , PT ; h) + 2R m (H s ) + 2R n (H t ) + M

		log(2/δ) 2m		(4.6)
		log 2/δ 2m	+ M	log 2/δ 2n	(4.7)
	Hence using an union bound, we have the final result with probability 1 -δ:			
	HDisc H,L (P log 2/δ 2m	+ M	2n log 2/δ	(4.8)
		log 2/δ 2m	+ M	2n log 2/δ	(4.4)
	element of S s changes φ(h) by a maximum of M m . McDiarmid's inequality [127] states that with probability 1 -δ 2 ,
	HDisc(P S , P T ; h) ≤ HDisc( PS , P T ; h) + E P S [φ(h)] + M	log(2/δ) 2m		(4.5)

L (P S , P T ; h) ≤HDisc H,L ( PS , PT ; h) + 2R m (H s ) + 2R n (H t ) + M where PS and PT are the empirical estimates of P S and P T induced by S s and S s . R m (H s ) and R n (H t ) are the Rademacher complexities of H s and H t defined in Definition 3.

Proof. Let us consider the empirical distribution PS corresponding to a sample S s of size m and a hypothesis h ∈ H.

We first define φ(h) = HDisc(P S , P T ; h) -HDisc( PS , P T ; h). Moreover, from Theorem 2 and Proposition 2 from

[START_REF] Mansour | Domain adaptation: Learning bounds and algorithms[END_REF]

, we know that

E P S [φ(h)] = E P S [HDisc( ps , p t ; h) -HDisc( ps , p t ; h)] ≤ 2R m (H s )

where H s = {x → L(h(x), f S (x)); ∀h ∈ H}. S , P T ; h) ≤HDisc H,L ( PS , PT ; h) + 2R m (H s ) + 2R n (H t ) + M

  Similarly, we consider an unlabeled target sample S t = {(x

			(t) 1 , ..., x	(t) n )} where
	x	(i) T	i.i.d ∼ p t and define the sets

.214 0.255 0.350 0.490 0.670 0.881 1.044 1.197 1.392 1.446

  

	shif t	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
	MLP	0.221 0.214 0.260 0.360 0.510 0.695 0.909 1.132 1.322 1.484 1.632
	DANN 0.223 0.235 0.296 0.412 0.581 0.784 1.017 1.258 1.462 1.629 1.772
	AHDM 0.222 0										

Table 4 .

 4 1: Single source domain adaptation: MSE for different amounts of shift.

Table 4 .

 4 3: Average MAE (kWh) over 5 runs for each method and house for the same house experiment. In the last column, we report the total water heater consumption.

	Method	LR	RF	ResNet TCN	W.H. consumption
	electricdata12 3.45 3.58	2.47	2.25	16.45
	electricdata14 4.29 4.38	4.59	4.52	14.02
	electricdata11 3.29 3.24	2.51	2.38	8.55
	electricdata19 3.91 3.28	1.79	1.68	7.12
	electricdata21 2.58 2.71	2.06	1.76	6.10
	electricdata5	2.73 2.37	1.52	1.46	4.16
	electricdata9	2.58 1.84	1.48	1.24	3.90
	electricdata22 2.23 1.99	1.73	1.49	3.72
	Method	ResNet (1 house) (1 house) TCN	ResNet (every house) (every house) TCN
	electricdata12	2.47		2.25	2.58	2.61
	electricdata14	4.59		4.52	3.61	3.49
	electricdata11	2.51		2.38	2.42	2.34
	electricdata19	1.79		1.68	1.87	1.68
	electricdata21	2.06		1.76	1.87	1.72
	electricdata5	1.52		1.46	1.48	1.42
	electricdata9	1.48		1.24	1.37	1.19
	electricdata22	1.73		1.49	1.52	1.47

Table 4 .
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4: Average MAE (kWh) over 5 runs for each method and house for the same house experiment, using every house for training

Table 4 .

 4 5: Average MAE (kWh) over 5 runs for each method and house for the cross-house experiment

Table 4 .

 4 6: Average MAE over 5 runs for each method and domain of the Amazon Multi-Domain Dataset

Table 4 .

 4 7: Accuracy for the visual adaptations on digits datasets

		MNIST MNIST-M SVHN Synth USPS
	CNN	0.916	0.450	0.489	0.562 0.624
	DANN	0.918	0.530	0.546	0.710 0.659
	AHDM	0.912	0.512	0.510	0.769 0.667
	MDAN	0.923	0.460	0.488	0.671 0.574
	AMSHDM	0.923	0.518	0.501	0.793 0.657

Table 4 .

 4 8: Average MAE (kWh) over every house for the water heater consumption for different target sample size

	Target size	5	10	20	100
	TCN-S		3.15		
	TCN-S+T	2.87 2.45 2.12 2.00
	AMSHDM	3.08 2.97 2.75 2.57
	AMSYDM	2.78 2.21 1.98 1.84

Table 5 .

 5 

	Intra-domain

1: Average accuracy for synthetic covariance data One can see that when learning and testing on the same domain, the classification is done perfectly, with accuracy of 100%. It does not hold in the cross-domain scenario, both with Affine Invariant Metric and Log-Euclidean Metric. The dimensionality reduction does not give good results either without adaptation. LR-MTL improves on

Table 5 .2. Method AIM-MDM LR-MTL LEK-SVM LEK-DR-SVM LEK-DG-SVM LEK-TL-SVM Intra-domain Accuracy (%)

 5 

	53.28	42.12	57.87	59.72	92.28	92.19	100

Table 5 . 2

 52 

: Average accuracy for synthetic VAR coefficients

Table 5 . 3 :

 53 Average accuracy for Human Activity recognition with smartphones dataset

	Intra-domain

  Table C.1. Most features have understandable names and full details are available in the tsfresh documentation.

	abs energy	absolute sum of changes
	agg autocorrelation mean	agg autocorrelation median
	agg autocorrelation var	ar coefficient k 10 coeff 0
	ar coefficient k 10 coeff 1	ar coefficient k 10 coeff 2
	ar coefficient k 10 coeff 3	ar coefficient k 10 coeff 4
	autocorrelation lag 0	autocorrelation lag 1
	autocorrelation lag 2	autocorrelation lag 3
	autocorrelation lag 4	autocorrelation lag 5
	autocorrelation lag 6	autocorrelation lag 7
	autocorrelation lag 8	autocorrelation lag 9
	binned entropy max bins 10	c3 lag 1
	c3 lag 2	c3 lag 3
	cid ce normalize False	cid ce normalize True
	count above mean	

Table C . 2

 C2 

: Accuracies for each non-normalized UCR dataset

In[START_REF] Ganin | Domain-adversarial training of neural networks[END_REF], authors use the un-corrected theorem of[START_REF] Ben-David | Analysis of representations for domain adaptation[END_REF] with d H . Their motivation still holds as Ben-David et al. (2010)[START_REF] Ben-David | A theory of learning from different domains[END_REF] already proposed to approximate d H with d H∆H .

https://www.cs.jhu.edu/ ~mdredze/datasets/sentiment/

https://www.cs.jhu.edu/ ~mdredze/datasets/sentiment/

https://github.com/KeiraZhao/MDAN

It was later extended to NTU RGB-D 120 dataset

we only kept clients for which survey data was available

https://pytorch.org/
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for every task, as proposed in [START_REF] Baxter | A model of inductive bias learning[END_REF]. From there, other methods have proposed different ways of mixing the common bias, for instance via a regularization between the common layers [START_REF] Duong | Low resource dependency parsing: Cross-lingual parameter sharing in a neural network parser[END_REF].

Learning Task Relationships. Some methods make the assumption that all the tasks do not share the same relationships with each other, and that they are organized in clusters. Two main lines of work tackle this scenario: a first line of work first clusters the tasks based on a given criterion and then uses multi-task learning on these different clusters. Another line of work performs both clustering and multi-task learning at the same time. Many of these methods perform a clustering on the parameters of each task such as in [START_REF] Jacob | Clustered multi-task learning: A convex formulation[END_REF]. Other methods use hierarchical sparse coding to learn a hierarchical clustering structure for multi-task learning [START_REF] Zweig | Hierarchical regularization cascade for joint learning[END_REF] [START_REF] Han | Learning tree structure in multi-task learning[END_REF].

Causality. Another related topic is causality [142]. While the formalism of causality is slightly different from domain generalization, it shares some similarities. In general, searching for causality relationships between different variables comes back to finding invariant relationships when changing environments. This link has been studied in [START_REF] Rojas-Carulla | Invariant models for causal transfer learning[END_REF] where authors try to find the features that are invariant to a change of domain. The derived algorithm is not scalable and the hypothesis for it to work make it hard to use in practice but this is a promising line of work.

Summary

In this section, we presented multi-task learning and Domain Generalization, which are related to Domain Adaptation. We saw that it is possible to learn from multiple domains to generalize to a new domain without adaptation. Different models were proposed to learn what is the common knowledge shared in different tasks. Now, similarly to what single-source domain adaptation tries to tackle compared to out of sample generalization, multisource domain adaptation raises the issue of adaptation to a new domain when a sample from this new domain is available.

Multi-source domain adaptation

Framework Domain Adaptation with Multiple sources (MSDA) assumes that K source domains D 1 , ..., D K are available with a target domain D T with associated tasks T 1 , ..., T K , T T . Once again, we only present homogeneous transfer learning, ie X = X 1 = ... = X K = X T and Y = Y 1 = ... = Y K = Y T . For each source domain, a labeled sample S k = {(x

k ), ..., (x

k } is available. For unsupervised MSDA, the target domain does not have a labeled sample, whereas for semi-supervised MSDA, the target domain has a small labeled sample and possibly a large unlabeled sample.

Domain Selection

A first class of methods assume that not every domain is useful for the adaptation and aims to select the best domains. Indeed, transferring from unrelated domains can lead to negative transfer [START_REF] Rosenstein | To transfer or not to transfer[END_REF]. In [START_REF] Crammer | Learning from multiple sources[END_REF] authors propose a theory to select the K * best sources based on a convergence bound. Then they use the average Chapter 4 On one hand, Figure 4.2a shows that in the first scenario, using a linear classifier, the domains are perfectly separated, in the last scenario, they are completely mixed and in the second scenario, they are semi-separated. On the other hand, when computing the discrepancy using bounded regressors (ie H = {h : x → w T x; w 2 ≤ 1}), in the first case the domains are perfectly aligned. In the semi-separated case, domains are considered very far by the Discrepancy. This simple example shows the hardness of domain adaptation for regression, as the output space is continuous. Hence, to be able to perform domain adversarial adaptation, we introduce a general theory that encompasses both classification and regression.

Domain adaptation with multiple sources in regression

Contents

Hypothesis-Discrepancy for Domain Adaptation in Regression

Hypothesis-Discrepancy

The concept of discrepancy [START_REF] Mansour | Domain adaptation: Learning bounds and algorithms[END_REF], defined in Section 2.2, was introduced to estimate the shift between domains for more general problems. We recall its definition: Definition 9. For two probability measures P and Q defined over a set X , an hypothesis class H : X → Y and a 

Synthetic data

where ∼ N (0, σ y ).

To highlight the two contributions of our method, our goal is two-fold: we firstly aim to demonstrate the effectiveness of HDisc in the single-source DA scenario (K=1 and α = 1). Then we run different experiments to show when multi-source DA is expected to bring an improvement.

We generate source data as follows: we define three clusters of sources {S 1 , S 2 , S 3 }, {S 4 , S 5 , S 6 } and {S 7 , S 8 , S 9 }.

For each cluster, and for each feature (1...5), a mean of -1 or 1 is selected at random. Then each mean of each source of a given cluster is shifted by a random shift i.e. for a source k associated to a cluster c µ

Finally, each source sample is randomly chosen with a normal distribution p k = N (µ (f ) k , σ k ). In Figure 4.5, we display each feature of the generated data.

In order to separate the effects of our two contributions, we split the experiments in two parts: in the first experiment, demonstrate the effectiveness of our hypothesis-discrepancy minimization in the single source scenario (i.e. when α k = 1 K ) and why the classical d H fails in this regression scenario. In a second scenario, we show how our weighting scheme helps adaptation in multi-source, especially to select sources that are related to the target.

Single-Source DA For single-source, we merge all 9 source domains together to create one. The target sample is generated choosing uniformly one of the source domains for each element and adding a noise of the form N (µ shif t , Discussion Based on this toy experiment, we conclude that our AMSHDM and AHDM perform well for regression under the condition that the labelling functions are the same. The proposed weighting scheme is performing well when sources have really different relations to the output. The main limitation to HDisc is that since it is dependent on h, its estimation is hard, especially in regression where values are not constrained. The weighting scheme mainly helps when the target data is close to only few of the sources. In the next experiment, we show how our algorithm performs on a real world dataset. We apply our method on the problem of appliance consumption estimation: from the total consumption of a home during a day sampled every 10s, can one predict the total consumption of a specific appliance. We focus our analysis on water heater, which is responsible to around a third of total consumption in many French households.

Appliance Consumption Estimation

In the dataset, 8 houses with a water heater have been monitored (in total, more houses were monitored but we only keep the ones with clean data). We use data at a 10s sampling, which gives an input X ∈ R 8640 and an output y ∈ R + . Each house has different characteristics as presented in Table 4.2.

Moreover, the Transfer Learning problem is highlighted in Figure 4.9 where the distributions of daily total consumption and daily water heater consumption are represented. One can observe that the first two houses have a very high water heater consumption (around 15kW h) whereas other houses have a smaller one.

Model

After trying different architectures of neural networks for our adaptation model, we noticed that the DenseNet architecture used in Chapter 3 underperforms compared to an architecture similar to Temporal Convolutional Networks [START_REF] Bai | An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[END_REF] presented in Figure 4.10. Namely, our feature extractor is made of dilated causal convolutions defined in Section 3.2. Using dilated convolutions limits overfitting from the network and the causal convolutions allows for better performance. We use three causal convolution layers, with size 64, 128 and 256 and a dilation rate of 6 at each layer, and a dropout rate of 0.3 at each layer. BatchNormalization leads to poorer results, hence we do not include it in our architecture. We also include residual connections between each layers. Given the small size of the dataset, we expected overfitting from the network but found out that the residual connections mitigated this issue. Different normalizations have been tried for the input data as presented in the previous Chapter but did not find any improvement

Conclusion

In this chapter, we introduce a generic framework for adversarial domain adaptation with hypothesis-discrepancy. This framework encompasses some existing methods as we highlighted the links between hypothesis-discrepancy and existing works such as MCD or CORAL. After presenting the theoretical guarantees, we showed that unsupervised domain adaptation is useful for Non Intrusive Load Monitoring.

In general, our method give state-of-the art results on several regression domain adaptation problems and results slightly inferior to state-of-the art methods for classification, which seems to indicate that the approximation of Hdivergence proposed by Ben-David is better than our hypothesis-discrepancy in this case. For the specific problem of Non Intrusive Load Monitoring, we see that Transfer Learning is a hard task. Our method reduces the performance gap between same-domain learning and cross-domain transfer and provides good results on both ElectricData and Refit. We also proposed a framework for semi-supervised domain adaptation, that even though its guarantees are limited, led to good results in practice.

We identify two main possible ideas for future works. The first one is improving the interpretability of our method.

When matching distributions learnt by a neural network, negative transfer can easily happen. Our weighting scheme give good results in practice but the convergence of the weights to "good" weights is also not guaranteed as they are learnt through stochastic gradient descent. Moreover, neural networks require large amount of data to be trained, which is not available for many applications. This is often circumvented for image or text applications by using pre-trained neural networks which will hopefully be available for time series in the future.

The second idea comes from the comparison with data augmentation. The first experiments showed that using the SMACH multi-agent system with only 20 houses already led to a model that generalized better than one learnt on only real data. In the future, one could imagine collect more data and create the ImageNet of NILM using SMACH that would be useful for deep learning based methods. SPD Block-Toeplitz matrices also lie on a manifold with a specific metric, as proved in [START_REF] Barbaresco | Interactions between symmetric cone and information geometries: Bruhat-tits and siegel spaces models for high resolution autoregressive doppler imagery[END_REF]. This metric is very hard to compute and has led to limited applications so far, but it would be interesting to study its use in future work.

Statistical Learning with SPD Matrices

We give ourself a classification problem with a dataset {(C 1 , y 1 ), ..., (C n , y n )} where C i ∈ S The first line of geometry-aware algorithms directly used the distances defined above in a k-nearest neighbour algorithm [START_REF] Tuzel | Region covariance: A fast descriptor for detection and classification[END_REF]. The minimum distance to mean classifier follows a similar idea: first, class barycenters are learnt on training matrices and at test time, a test sample is assigned to the class whose barycenter is the closest [START_REF] Barachant | Multiclass brain-computer interface classification by riemannian geometry[END_REF].

The line of interest for our method considers kernel based methods. For instance, [START_REF] Barachant | Classification of covariance matrices using a riemannian-based kernel for bci applications[END_REF] [START_REF] Barachant | Classification of covariance matrices using a riemannian-based kernel for bci applications[END_REF] propose a linear kernel for AIM using the tangent space and Jayasumana et al. ( 2015) [START_REF] Jayasumana | Kernel methods on riemannian manifolds with gaussian rbf kernels[END_REF] study kernel-based algorithms for different metrics. They show that the log-euclidean metric can be used to define a gaussian kernel between two matrices

where γ is a parameter of the kernel. The Log-Euclidean Gaussian Kernel is positive definite for any γ > 0.

Unfortunately, it is not the case when using the Affine Invariant Metric. For the Stein divergence, a positive definite gaussian kernel can also be defined for specific values of γ [START_REF] Sra | A new metric on the manifold of kernel matrices with application to matrix geometric means[END_REF]:

2 , +∞[. Using one of those kernels, authors proposed different methods for classification, kernel SVM being the most popular. Kernels have also been used for sparse coding to decompose SPD Matrices, with applications to computer vision [START_REF] Harandi | Sparse coding and dictionary learning for symmetric positive definite matrices: A kernel approach[END_REF].

The aforementioned methods have been very popular in Brain Computer Interface applications, but have led to few applications on industrial systems. We argue that the invariance of those metrics are relevant for industrial monitoring.

Transferable subspace using Covariance information

Framework

In our framework, we consider

The input data are multivariate time series X ⊂ R d×T . We also assume that we have K labeled samples S k = Discriminative Learning We use the idea of Kernel Alignment [START_REF] Cortes | Algorithms for learning kernels based on centered alignment[END_REF] and formulate the following objective

where Y = [y

1 , ..., y

2 , ..., y

K , ..., y

K , 0 m ] is the full label matrix with m concatenated 0 for the unlabeled target sample. Note that in the case of multi-class classification, one can simply replace Y T Y by a matrix

Minimizing this objective forces elements of K[W ] to be close to 1 when the labels of two samples are the same and 0 when the labels are different. This objective corresponds to the classical supervised setting of kernel alignment. Here, we considered domains of the same size, but if some domains are too heavily represented, it might be necessary to normalize their contribution to the objective.

Aligning source and target domains

We saw in Section 2.2.3 that Maximum Mean Discrepancy can be used to measure the difference between distributions embedded in a RKHS. We use the classical empirical estimate to measure the MMD between two samples from domains k and T :

where for

otherwise. We want to find features that minimize the discrepancy between source and target domains. Hence, we formulate the following objective with pairwise-MMD:

Note that in the case when K = 1, this objective is similar to most MMD-based methods. In our case, we simply extend it to multiple sources using pairwise-MMD. As we give equal weight to every source domain, we assume them to have equal contribution to the adaptation. between domains. We denote S r,c = {x

Conditional Source Alignment

rank of matrix W .

Discussion

Our framework is general and can be simplified in some cases. If only one source domain is available, then J c (W ) = 0 and only marginal adaptation between the source and the target is performed. We come back to the traditional domain adaptation framework seen in the previous chapter, with adaptation guarantee of the Maximum Mean Discrepancy seen in Theorem 8. As in our framework, the adaptation works only when the difference between labelling functions is small. If it is not the case, some labeled data is necessary in the target domain to use them in the conditional adaptation.

If the target domain is not specified and not available at training time, then J a (W ) = 0. In this case, we fall back to the framework of domain generalization. We saw in Section 2.4.1 that one can obtain guarantee on the risk of generalizing to a new unseen domains, when the number of domains becomes large [22] [125].

Our model has a few hyperparameters:

• λ: the parameter balancing both criterias

• γ: the gaussian kernel parameter

• d : the size of the learnt subspace

The last one is not directly a parameter but as we do not learn weights or select sources inside our model, a priori source selection is necessary to avoid negative transfer. We propose solutions to select those hyperparameters.

Related works

In [START_REF] Cortes | Algorithms for learning kernels based on centered alignment[END_REF], authors propose Kernel Alignment for learning a combination of kernels. Our method is different as the parameter W acts directly on the signals. Our method is in line with other linear dimensionality reduction methods on a manifold.

In [START_REF] Harandi | Dimensionality reduction on spd manifolds: The emergence of geometry-aware methods[END_REF], authors propose to learn a subspace for SPD Matrices. They formulate an objective of the form

where W is the parameter to learn and a ij are discriminative coefficients of the form a ij = 1 if X i is among the K-neighbours (in the original space) of X j of the same class, a ij = -1 if X i is among the K-neighbours of X j of a different class and 0 otherwise. Their method does not make use of kernel but already gives good results. Mainly, we use the same optimization procedure as their method.

In [START_REF] Huang | Geometry-aware similarity learning on spd manifolds for visual recognition[END_REF], authors also propose a kernel alignment algorithm for SPD Matrices. The main difference with our algorithm is on the constraint on W . Instead of the full rank constraint, they impose W to be SPD. Unfortunately, we could not reproduce the results of their algorithm as it is unclear how they perform optimization on the space of SPD Matrices endowed with the Log-Euclidean Metric. data has 75 channels (dimensions) instead of 1. Better results could probably be obtained with better architecture search but we simply wanted to compare with our method. Finally, we also tried to use our scheme proposed in Chapter 4 AMSHDM: we used the TCN as the feature extractor and a simple dense layer as the final classification layer.

For our method LEK-TL-DR, the dimensionality selection gave values between 6 and 9 in the experiments (for different domains). For better readibility of the results, we set d = 8 for every domain. The domain selection often removed two of the subjects that are far from every other. We give the average accuracy over every subjects in Table 5. 4. Moreover, we also report results obtained from other papers (we did not run their experiments again and directly report results from their paper). Note that their framework for the cross-subject evaluation is different from ours: they split the dataset in two sets of 20 training subjects and 20 test subjects. We also report the runtime for our methods. 90.00 ? Table 5.4: Average accuracy and run-time for some methods on the NTU RBG-D dataset A few observations can be made from these results. Firstly, similarly to other experiments, our method outperforms every other covariance-based method in the transfer learning scenario. Once again, the improvement obtained with conditional adaptation is important but the marginal adaptation to the target domain brings only a small improvement. Moreover, our method outperforms CovP3DJ [START_REF] El-Ghaish | Covp3dj: Skeleton-parts-based-covariance descriptor for human action recognition[END_REF], which created specific features on which to compute the covariances. Method with hand-crafted features give lower overall accuracy, apart from FTP Dynamic Skeletons [START_REF] Hu | Jointly learning heterogeneous features for rgb-d activity recognition[END_REF]. On the other hand, every deep learning method gives better results, from a basic LSTM (P-LSTM [START_REF] Shahroudy | Ntu rgb+ d: A large scale dataset for 3d human activity analysis[END_REF]) to the TCN we used. Note that the current state-of-the art on the dataset is MS-AAGCN [START_REF] Shi | Skeleton-based action recognition with multi-stream adaptive graph convolutional networks[END_REF] which is an attention based LSTM where the architecture is specific to skeleton data. For every deep learning method, every source domain is simply concatenated to create a training set and no transfer learning is used.

Method

The run-time is clearly an issue for our methods with such dimensions as there are 60, 000 covariance matrices of dimension 75 × 75. Indeed, computing the kernel and computing each gradient step is very long. It is even worse when using the Affine Invariant Metric for which the pairwise distances are longer to compute. The proposed TCN and AMSHDM are shorter to train, as we used Pytorch with a GPU-backend on a clusters of two GPUs. One could still note that (i) when using a CPU-backend, the networks took more than two days to be trained (ii) the computation of the kernel matrix and the gradient step could be parallelized, which would speed up the computations. Moreover, at test time on a new subject, if we directly use the learned W (domain generalization LEK-DG-SVM) our method is very quick as the kernel matrix can be computed quickly (given that the matrix-logarithm of every training sample is cached in memory and the new dimensionality is small).

Overall, when using the whole dataset, there is enough diversity in the data for neural network-based methods to perform well. Moreover, our method does not scale very well and the run-time becomes an issue. On the other hand, our method already gives better results than other covariance-based methods including the ones that creates features specific to Human Activity Recognition. To better illustrate our method, we use a smaller dataset in an additional experiment.

Small dataset In a second experiment, we use a subset of the NTU RGB-D dataset. We select only the first 10 subjects and 2 actions (classes): drink water and clapping. The new dataset has a total number of 631 frames.

We use the same scheme as before, by iteratively selection 9 subjects as source domains and the remaining one as target. The dimensionality selection gave values between 5 and 7 and we kept d = 5 for every experiment.

We give the average accuracy over every subjects in Table 5.5. Once again, our method gives better results than other covariance-based methods. Deep Learning still performs better but the gap is not as big as on the whole dataset. The main interest of our method lies in its interpretability:

Method Accuracy (%) Run-time

indeed, we are able to identify which features contribute the most to each new dimension. We saw that the accelerations at joints positioned on the fingers, arms and head were given the most weight, as represented on Figure 5.7.

It makes sense as for clapping and drinking water, joints on the lower part of the body do not have huge influence

Appendix A

Neural Networks

Basics In this Appendix, we give a background to neural networks and their training. Formally, neural networks are a function Φ : X → Y from an input space X to a prediction space Y. Typically, X ⊂ R d and Y = {-1, +1} for binary classification. P hi is a composition of several functions, called layers, such that if

The most classical form for a layer l is the dense layer defined by:

where z l ∈ R d l is the output of layer l, w l ∈ R d l ×d l-1 is the weight matrix of layer l, b l ∈ R is the bias of layer l and σ l is an activation function. An neural network architecture made of such layers is also called fully connected as every neuron is connected to another. The prediction of an input vector x is given by

The number of layers L, number of neurons at each layer d l and activation functions σ l are hyperparemeters of the model and chosen by the user. Typically, activation functions are non-linear. Common activation functions include

The choice of architecture is dependent on the application and there is no general rule as to which functions to choose.

Back-propagation

The parameters w l and b l are learnt by the model using feed-forward backpropagation. The most popular way to train a neural network is using Gradient Descent. We consider a sample of size n {(x 1 , y 1 ), ..., (x n , y n )}.

Then given a differentiable loss function L, the objective function minimized by the neural network is

Typically, for classification the cross-entropy loss is used whereas for regression, the mean squared error is used. If we write θ = {b 1 , w 1 , ..., b L , w L } the parameters of our neural network and write J(Φ) = L(y i , Φ(x i )) = L(y i , x i ; θ) = J(θ), then one gradient step at iteration t done by a traditional gradient descent would correspond to

where η t is the learning rate at epoch t.

In general, as the training set is large, Stochastic Gradient Descent is used. The gradient step defined above can simply be replaced by a gradient step over a small batch instead of the whole training set.

Extensions have been proposed by adding momentum using Nesterov's accelerate gradient. Additionally, the learning rate η t can be fixed, chosen to decay or adapted during traing. In our experiments unless otherwise indicated, we always used Adam optimizer.

Batch-Normalization Batch-normalization [START_REF] Ioffe | Batch normalization: Accelerating deep network training by reducing internal covariate shift[END_REF] is a technique to improve the training of neural networks. Namely, it first normalize the output of a layer over a mini-batch: for a batch of size B at layer l, for k ∈ {1, ..., B}, the normalization step is done with z

where µ B and σ B are the empirical mean and standard deviations of outputs z l . As such, z (k) l has zero mean and unit variance. However, in order not to allow the network to learn by itself the "useful" mean and variance for the given layer the output of a batch-normalization layer is given by

where γ l and β l are learnt using backpropagation. Batch-normalization is said to reduce the internal covariate shift, thus accelerating training of neural networks but understanding its effects is still an active topic.

For models in Chapter 4, we used batch-normalization. In Chapter 3, we did not use batch-normalization in our normalization ensembling model.

Dropout

Dropout is a technique used to avoir overfitting with a neural network. Indeed, overfitting is a problem as often neural networks are over parameterized. It corresponds to dropping a random subset of units (neurons)

during training, such that a smaller sub-network is learnt at each pass. We used dropout in every of our model as it helped to reduce the gap between training and validation error.

Convolutional layers Dense layers are the most basic layers used in a neural network. When working on structured data such as images or time series, convolutional layers allow to take into account temporal or spatial dependence. Formally, a convolutional layer is defined by a transformation :

where W ∈ R r and b ∈ R r are respectively the kernel matrix and the bias of the layer to be learned with kernel size r and stride s. With such layers, temporal structure is kept as adjacent points contribute to the same output in the next layer.

Appendix B

Clustering consumer consumption with auto-encoders

In this Appendix, we illustrate a deep learning method to cluster consumers based on their consumption behaviour.

This work has been presented in a national conference [START_REF] Richard | Autoencoder-based time series clustering with energy applications[END_REF]. It shows the improvement of using deep learning over classical representations for time series clustering.

Our goals is to perform whole time series clustering. This was developed for applications in consumer segmentation. Indeed, if EDF can identify different customer behaviours, it is possible to offer tailored contracts. For this purpose, we propose a method to cluster EDF clients based on their daily consumption over a year. We propose to use deep convolutional autoencoders in order to extract representations on which the clustering is applied. Our experiments, conducted on real world public data, show that our method gives good results in term of robustness to outliers. where Xi is the output of the CAE and L is the 2 -loss. Our CAE is then used as a non-linear dimensionality reduction. We perform the clustering a posteriori using K-medoids algorithm.

B.1 Data presentation

We work with limited data so the architecture is kept small, with 2 convolutional layers, one dense layer and two deconvolutional layers. The used architecture for the CAE is the following for both experiments: We include BatchNormalization layers for faster learning. Each implementation has been made using Python with Keras and Tensorflow for the convolutional autoencoder. In order to train a convolutional network, it is known that one must normalize the data. For time series, we cannot normalize each feature, instead the z-normalization is very commonly used, ie normalizing each time series by subtracting the mean and dividing by its standard deviation.

We will see that it is not always the most efficient way to proceed in Section 3.4.

B.2.2 Compared methods

We compare our approach to other feature extraction methods. We compare several feature extraction approaches as a pre-processing for the K-medoids algorithm or different time series clustering algorithm: 

C.1 Public implementations

Adapt package During this thesis, we contributed to the adapt [START_REF] De Mathelin | Adapt awesome domain adaptation package toolbox[END_REF] package. This package collects traditional methods for domain adaptation, such as KMM, DANN, TrAdaBoost, ... The whole documentation can be found at https://antoinedemathelin.github.io/adapt/_build/html/index.html. We also provided some dataset loading utilities, for common domain adaptation datasets. Those datasets are:

• Amazon Multi-Domain Sentiment Dataset: 1 this dataset, firstly used in [START_REF] Blitzer | Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification[END_REF], is made of textual Amazon reviews from 25 categories of objects, where the variable to predict is the rating of the review. We propose raw data, data transformed with TF-IDF and with Word2Vec (Google300 and Glove25).

• Digits Dataset: this dataset merges several datasets of digit recognition: MNIST, MNIST-M, SVHN, Synth and USPS.

• Office-Caltech-Amazon dataset: 2 this dataset is an object recognition dataset, where images of objects are captured in different environments and with different means. Raw images and extracted features are available. To estimate the errors made, we denormalize the prediction and the true value of consumptions.

Architectures for other applications

Amazon The architecture is kept the same for each method:

• Feature extractor:

-Linear (5000, 500, LeakyRELU