
HAL Id: tel-03550415
https://theses.hal.science/tel-03550415

Submitted on 1 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Transfer Learning methods for temporal data
Guillaume Richard

To cite this version:
Guillaume Richard. Transfer Learning methods for temporal data. Machine Learning [cs.LG]. Uni-
versité Paris-Saclay, 2021. English. �NNT : 2021UPASM037�. �tel-03550415�

https://theses.hal.science/tel-03550415
https://hal.archives-ouvertes.fr

Th
ès

e
de

 d
oc

to
ra

t
N

N
T

:
20

21
U

P
A

S
M

03
7

Méthodes d’apprentissage statistique de type

”Transfer Learning” pour des données

temporelles multivariées

Transfer Learning for Temporal Data

Thèse de doctorat de l’Université Paris-Saclay

École doctorale n◦ 574, Ecole Doctorale de Mathématiques Hadamard (EDMH)

Spécialité de doctorat: Mathématiques Appliquées

Unité de recherche: Centre Borelli

Référent: ENS Paris-Saclay

Thèse présentée et soutenue à Gif-sur-Yvette,

le 7 octobre 2021, par

Guillaume RICHARD

Composition du jury

Younès Bennani Président et Rapporteur

Professeur, Université Sorbonne Paris Nord (Laboratoire

d’Informatique de Paris Nord

Gianluca Bontempi Rapporteur

Professeur, Université Libre de Bruxelles (Département

d’Informatique)

Jairo Cugliari Examinateur

Maitre de Conféerences, Université Lumière 2 (Laboratoire ERIC)

Michèle Sebah Examinatrice

Directrice de Recherche, INRIA (Equipe TAO)

Direction de la thèse

Mathilde Mougeot Directrice

Professeur, ENS Paris-Saclay (Centre Borelli) et ENSIIE

Nicolas Vayatis Directeur

Professeur, ENS Paris-Saclay (Centre Borelli)

Georges Hébrail Tuteur en entreprise

Chercheur Senior, EDF R&D

Remerciements

Mes premiers remerciements vont à mes directeurs de thèse, Mathilde Mougeot et Nicolas Vayatis pour leur con-

fiance au long de ces trois années de thèse, et de m’avoir donné l’opportunité de travailler sur des sujets aussi

intéressants. Je remercie également Georges Hébrail qui a su m’accompagner dès mes premiers pas chez EDF

et dépasser son rôle d’encadrant industriel pour toujours me donner des bons conseils. Je remercie également

tous les membres du jury pour avoir accepté de participer à ma soutenance de thèse. En particulier, je remercie

Younès Bennani qui a accepté de présider le jury en plus d’avoir rapporté ma thèse, Gianluca Bontempi qui a lui

aussi rapporté ma thèse et enfin Jairo Cugliari et Michèle Sebag en tant qu’examinateurs.

Ensuite, je souhaite remercier toute l’équipe SOAD d’EDF pour tous les bons moments passés ensemble. J’aurai

certainement l’occasion de le dire de vive voix, mais c’était un réel plaisir de travailler avec vous. En plus de

Georges, j’aimerais remercier Ghislain qui m’a accompagné sur la fin de la thèse. Quoiqu’il en soit, j’espère qu’on

sera amené à retravailler ensemble et que je serai toujours invité au Diamant!

Je veux aussi remercier l’ensemble des membres du Centre Borelli, en particulier les thésards. L’entraide entre

les doctorants et nos discussions ont permis d’égayer les moments difficiles. En particulier, je remercie Antoine

avec qui c’était un plaisir de collaborer et je te souhaite le meilleur pour le reste de ta thèse.

Enfin, je veux remercier mes amis et ma famille, qui m’ont soutenu tout au long de la thèse et m’ont aidé à me

changer les idées. En particulier, je remercie ma mère, mon père et mon petit frère qui m’ont fait grandir, m’ont déjà

accompagné dans toutes les étapes importantes de ma vie et continueront à le faire. Finally, I want to thank you,

Quỳnh Anh, for your love and support. It really made it easier to overcome every difficult moment and to move to

the next chapter together.

i

Contents

Résumé (en français) 11

1 Introduction 19

1.1 Motivation . 19

1.2 Organization of the manuscript . 21

2 Background on Transfer Learning 25

2.1 What is Transfer Learning? . 26

2.2 Theory of Domain Adaptation . 28

2.2.1 Generalization bounds . 29

2.2.2 Divergence-based Domain Adaptation . 31

2.2.3 Alternative approaches . 36

2.2.4 Summary . 38

2.3 Existing approaches for Homogeneous Transfer Learning . 38

2.3.1 Instance-based domain adaptation . 39

2.3.2 Feature-based domain adaptation . 42

2.3.3 Alternative methods . 44

2.3.4 Summary . 45

2.4 Learning from Multiple Sources . 46

2.4.1 Multi-Task Learning and Domain Generalization . 47

2.4.2 Multi-source domain adaptation . 49

2.5 Conclusion . 51

3 Deep Time Series Representations for Non-Intrusive Load Monitoring 53

3.1 Background on Time Series Representations . 55

3.1.1 Framework . 55

3.1.2 Overview of Univariate Time Series Representations . 55

1

3.2 Transferability of Deep Time Series Representations . 58

3.2.1 Deep Time Series Representations . 58

3.2.2 On Transferability of Deep Time Series Representations . 61

3.3 Transfer Learning in Non Intrusive Load Monitoring . 61

3.3.1 General presentation . 61

3.3.2 Review of methods . 63

3.3.3 Datasets . 64

3.3.4 Problem formulation . 66

3.4 Time Series Normalization for Invariant Appliance Recognition . 68

3.4.1 Global and z-normalization . 68

3.4.2 Normalization for appliance consumption . 70

3.4.3 Model . 72

3.5 Experiments on NILM Datasets . 73

3.5.1 Preprocessing and Methods . 74

3.5.2 Same House . 77

3.5.3 Cross-House Results . 77

3.5.4 Cross-Dataset Results . 79

3.5.5 Discussion . 81

3.6 Conclusion . 82

4 Domain adaptation with multiple sources in regression 85

4.1 Domain Adversarial Learning with H-divergence . 87

4.1.1 Literature review . 87

4.1.2 Limits of Domain Adversarial Adaptation in Regression with H-divergence 88

4.2 Hypothesis-Discrepancy for Domain Adaptation in Regression . 89

4.2.1 Hypothesis-Discrepancy . 89

4.2.2 Domain Adaptation Guarantees with Hypothesis-Discrepancy 91

4.3 Minimizing the hypothesis-discrepancy . 92

4.4 Extension to multiple sources . 94

4.4.1 Theoretical Guarantees with multiple sources . 94

4.4.2 Algorithm . 97

4.5 Experiments . 98

4.5.1 Synthetic data . 99

4.5.2 Appliance Consumption Estimation . 102

2

4.5.3 Same-house results . 104

4.5.4 Cross-house results . 105

4.5.5 Experiments on other datasets . 108

4.6 Extension to semi-supervised adaptation . 111

4.7 Conclusion . 114

5 Covariance-based Transfer Learning with applications to Multivariate Time Series 115

5.1 Outline of the method . 116

5.2 Multivariate Time Series and Covariance . 118

5.3 Riemannian Geometry of Symmetric Positive Definite Matrices and Time Series 120

5.3.1 Basics . 120

5.3.2 Working with time series . 122

5.3.3 Statistical Learning with SPD Matrices . 123

5.4 Transferable subspace using Covariance information . 123

5.4.1 Framework . 123

5.4.2 Learning a subspace aligning domains . 124

5.4.3 Related works . 127

5.4.4 Algorithm . 128

5.4.5 Hyperparameter Selection . 130

5.5 Numerical Results . 132

5.5.1 Simulated data . 132

5.5.2 Human Activity Recognition . 135

5.6 Conclusion . 141

6 Conclusion and Perspectives 143

A Neural Networks 147

B Clustering consumer consumption with auto-encoders 151

B.1 Data presentation . 151

B.2 Method . 152

B.2.1 Convolutional AutoEncoder . 152

B.2.2 Compared methods . 153

B.2.3 Outliers . 154

B.3 Results . 155

3

C Implementations 159

C.1 Public implementations . 159

C.2 Other implementations . 160

C.2.1 List of statistical features extracted (Chapter 3) . 160

C.3 Additional Experiments of Chapter 3 . 162

C.4 Details about implementations of Chapter 4 . 163

4

List of Figures

1 Illustration du NILM: à partir de la consommation totale de la maison, l’objectif est de retrouver la

consommation de chaque appareil. 13

1.1 Non Intrusive Load Monitoring illustration: from the whole house consumption, the goal is to retrieve

the consumption of each appliance . 20

2.1 Taxonomy of Transfer Learning . 27

2.2 Illustration of the H-divergence with linear classifiers . 35

2.3 Illustration of the discrepancy with linear regressors H = {h : x → wTx ; ‖w‖2 ≤ 1} and `2-loss.

Source and target data are generated as 1D-Gaussian distributions centered on −1 and +1 with

different standard deviations in each graph ({1, 1}, {0.5, 5} and {4, 4}). 36

2.4 Domain Adversarial Neural Network (figure from [72]) . 44

2.5 Scenarios of Transfer Learning with or without multiple sources . 51

3.1 Euclidean Distance vs Dynamic Time Warping . 56

3.2 Different architectures for time series classification . 59

3.3 Convolutional Auto-Encoder . 60

3.4 Sub-problems of Non Intrusive Load Monitoring (NILM) . 63

3.5 Examples of monitored appliances for each house: a blue square means the appliances was moni-

tored. A white square means it was not monitored or was mixed with another appliance. 65

3.6 Examples of monitored consumption for one day in the Electric DataBase (x-axis is in hours and

y-axis is in W) . 66

3.7 Examples of monitored consumption for one day in the REFIT Database (x-axis is in hours and y-axis

is in W ; the house numbers correspond to the ones in the database as technical issues happened

for other houses) . 67

3.8 Examples of signatures from the Trace Base dataset (x-axis is in minutes, y-axis is in W). Signatures

have been zero-padded to a length of 2 hours. 69

5

3.9 Toy examples . 69

3.10 Dishwasher and Washing Machine Signature data: for each plot, the main line is the median con-

sumption over all signatures. Other areas represent different percentiles of the distribution. 70

3.11 Kettle and Microwave Signature data: for each plot, the main line is the median consumption over all

signatures. Other areas represent different percentiles of the distribution. 71

3.12 DenseNet: each block is made of successive convolutions and skip connections ended by a bottle-

neck convolution . 72

3.13 Proposed architectures . 73

3.14 Overview of the different experiments . 73

3.15 Confusion Matrix for Electric Data in the cross-house appliance recognition experiment 78

3.16 Confusion Matrix for REFIT Data in the cross-house appliance recognition experiment 78

3.17 Confusion Matrix for TraceBase Data in the cross-house appliance recognition experiment 79

3.18 REFIT→ Electric Data experiment . 80

3.19 Electric Data→ REFIT experiment . 80

3.20 TSNE Representation of the latent variables obtained by learning a DenseNet using different nor-

malizations: first column is the latent training variables and second column is the latent variables of

unseen houses (test) on REFIT data . 81

4.1 Water heater consumption estimation: input is the whole consumption (gray curve), variable to predict

is the whole Water Heater consumption (green area) . 87

4.2 H-Divergence vs Discrepancy for 1-Dimensional Data . 89

4.3 Adversarial Hypothesis Discrepancy Minimization (AHDM) using Neural Networks 93

4.4 Adversarial Multi-Source Hypothesis Discrepancy Minimization (AMSHDM) The adversarial scheme

is similar to single-source with weights α. At each iteration, the weights α are updated. 97

4.5 Data for the single-source Friedman experiment over the 5 features with σk = 0.2, σc = 0.2, µshift =

0.5, σshift = 0.5. From right to left: (x0, x1) ; (x2, x3); (x4;x0). Each color corresponds to a source,

the target is in black. 99

4.6 Training curves for Single Source DA: without adaptation, the target loss increases as the validation

loss keeps decreasing. DANN exposes the same behaviour as the target loss of AHDM decreases. . 100

4.7 X-axis: Extracted features (before the final predictor) using AHDM (left) and DANN (right) ; Y-axis:

labels to predict (y) . 101

4.8 Friedman Multiple Source experiment: α found by AMSHDM (blue) vs True α (orange) 101

4.9 Distribution of Total and Water Heater consumption for each house (scales are the same inside sub-

figures (a) and (b) respectively) . 103

6

4.10 Temporal Convolutional Network model used in our experiments . 104

4.11 Weights found by AMSHDM . 106

4.12 Data augmentation vs Adaptation: with data augmentation, a new training space is created using

sources 1 to 4 ; with adaptation, the training data is moved closer to the testing data. 107

4.13 Learning from Synthetic Data . 108

4.14 Visualization of digits datasets . 110

4.15 Adversarial Multi-Source Y-Discrepancy Minimization (AMSYDM) . 112

5.1 Illustration of the proposed method: raw time series are transformed to covariances and invariant

relationships between sensors with different lags are extracted . 117

5.2 Parameter W learned by the model for the synthetic covariance experiment (abs(W)T is represented

here and values are normalized to sum to 1 for each dimension for better readability) 134

5.3 Examples of time series from UCI Daily Activities Dataset: top row represents walking upstairs and

bottom row corresponds to walking downstairs. On each figure, blue is the x-dimension, orange the

y-dimension and green the z-dimension. 135

5.4 Accuracy (%) of LEK-SVM (orange) and LEK-TL-SVM (blue) over every domain 136

5.5 Parameter W learned by the model for the HAR with smartphones experiment (abs(W)T is repre-

sented here and values are normalized to sum to 1 for each dimension for better readability) 137

5.6 Positions of the 25 body joints monitored with sensors. Figure is taken from [163] 137

5.7 Parameter W learned by the model for the reduced NTU RGB-d dataset (abs(W)T is represented

here and values are normalized to sum to 1 for each dimension for better readability) 140

5.8 Kernel PCA representation of the Log-Euclidean Kernel on the original data (left) and after dimen-

sionality reduction (right). Each colour corresponds to a domain and classes are represented with

two markers. 140

B.1 CER Smart Metering data: (red) Mean of Residential consumption (green) Mean of SMEs consump-

tion (blue) Mean of Others consumption . 151

B.2 Proposed method: Convolutional Auto-Encoder (CAE) . 152

B.3 Left: number of clients per cluster ; Center: number of elements per clusters ; Right: number of

outliers in each cluster (an element is an outlier if its Local Outlier Factor is above the 95 % quantile) . 155

B.4 Centroids of each cluster found with the CAE+K-Medoids method . 156

B.5 SME vs Residentials using (a) PCA representation (b) NMF representation (c) TSNE representation

of the latent variables obtained by CAE . 157

7

C.1 Rank distribution of each method over UCR non-normalized datasets. Each bar corresponds to a

method. Red shows a high rank and blue a low rank. 163

8

List of Tables

2.1 Summary of reviewed methods . 46

3.1 Summary of REFIT households . 68

3.2 Normalization methods . 70

3.3 Appliances for which signatures are extracted in each dataset. 74

3.4 DenseNet architecture used in both experiments . 76

3.5 FeatNet architecture used in both experiments . 76

3.6 EnsNormNet architecture: dense blocks are applied in parallel before being merged 76

3.7 Same house: Macro F1 score (%) for different methods with standard deviation over 10 runs (different

initial weights) on REFIT dataset . 77

3.8 Same house: F1 score (%) for different methods with standard deviation over 10 runs on REFIT dataset 77

3.9 Same house: F1 score (%) for different methods with standard deviation over 10 runs on REFIT dataset 77

3.10 Cross-house: F1 score (%) for different methods with standard deviation over 10 runs on Electric

Data dataset . 79

3.11 Cross-house: F1 score (%) for different methods with standard deviation over 10 runs on REFIT dataset 79

3.12 Cross-house: F1 score (%) for different methods with standard deviation over 10 runs on TraceBase

dataset . 79

4.1 Single source domain adaptation: MSE for different amounts of shift. 100

4.2 ElectricData: statistics of each house with a water heater . 102

4.3 Average MAE (kWh) over 5 runs for each method and house for the same house experiment. In the

last column, we report the total water heater consumption. 105

4.4 Average MAE (kWh) over 5 runs for each method and house for the same house experiment, using

every house for training . 105

4.5 Average MAE (kWh) over 5 runs for each method and house for the cross-house experiment 106

4.6 Average MAE over 5 runs for each method and domain of the Amazon Multi-Domain Dataset 110

9

4.7 Accuracy for the visual adaptations on digits datasets . 111

4.8 Average MAE (kWh) over every house for the water heater consumption for different target sample size113

5.1 Average accuracy for synthetic covariance data . 133

5.2 Average accuracy for synthetic VAR coefficients . 134

5.3 Average accuracy for Human Activity recognition with smartphones dataset 136

5.4 Average accuracy and run-time for some methods on the NTU RBG-D dataset 138

5.5 Average accuracy and run-time for some methods on the reduced NTU RBG-D dataset 139

C.1 List of eaxtracted features . 161

C.2 Accuracies for each non-normalized UCR dataset . 163

10

Résumé (en français)

Contexte de la thèse

Cette thèse de doctorat propose de développer des méthodes d’apprentissage par transfert (transfer learning) pour

des séries temporelles. Ce travail a été réalisé dans le cadre du dispositif CIFRE (Convention Individuelle de

Formation par la Recherche) de l’Agence Nationale de la Recherche et de la Technologie (ANRT), a été sponsorisé

par Electricité De France (EDF), premier producteur et fournisseur d’électricité en Europe, et co-encadré par le

Centre Borelli de l’Ecole Normale Supérieure Paris-Saclay. EDF emploie plus de 160 000 salariés en 2020 et fournit

la majorité des clients résidentiels et industriels en France. En tant que producteur et fournisseur d’électricité, EDF

se doit de toujours améliorer ses capacités de production ainsi que sa connaissance de la consommation de ses

clients. Ansi, l’analyse de signaux temporels est au coeur de nombreuses problématiques rencontrées par les

ingénieurs d’EDF, par exemple pour la surveillance de machines en production ou la prédiction de consommation

des clients. Dans ce cadre, les algorithmes d’apprentissage automatique ont prouvé qu’ils pouvaint répondre à ces

problématiques mais nécessitent bien souvent de larges bases de données d’apprentissage, souvent coûteuses à

collecter. L’apprentissage par transfert englobe plusieurs méthodes visant à capitaliser sur un modèle ou une base

de données déjà existants et pourrait permettre de réduire le besoin de collecte de nouvelles données. Dans ce

contexte, ce travail propose d’étudier et de proposer de nouvelles méthodes d’apprentissage par transfert pour des

données temporelles, avec en visée des applications sur l’étude de la consommation d’un foyer et la surveillance

de machines par des capteurs en production.

Motivations scientifiques et industrielles

Autour de nous, de nombreuses activités impliquent une variation dans le temps : les prix du pétrole changent toutes

les milli-secondes, la consommation d’énergie varie toutes les secondes, la propagation d’un virus est aussi un

phénomène temporel ... L’analyse de ces phénomènes qui dépendent du temps est le champ d’étude de l’analyse

des séries chronologiques. Chez EDF, les phénomènes variant dans le temps apparaissent dans de nombreux

scénarios. En tant que producteur d’électricité, l’un des principaux défis d’EDF est d’assurer l’adéquation entre la

11

production et la consommation d’électricité, tant pour des raisons de sécurité que pour des raisons économiques.

Alors qu’EDF contrôle la production d’électricité et peut l’ajuster, la consommation dépend des clients, qui sont

externes à l’enterpise et donc non contrôlés.

Une meilleure connaissance des habitudes de consommation de ses clients aurait plusieurs autres avantages

pour EDF. Le marché français de l’électricité ayant été ouvert à la concurrence en 2010, EDF souhaite proposer

des contrats de plus en plus adaptés à ses clients. De plus, l’autoproduction d’électricité via une éolienne ou des

panneaux solaires attachés à un foyer prend de plus en plus d’importance. Il est donc essentiel de comprendre la

consommation au niveau des ménages pour mieux organiser le réseau électrique, car les données de consomma-

tion d’un ménage sont traditionnellement suivies à l’aide d’un seul compteur.

Les compteurs historiques ne peuvent pas être lus à distance et ne sont relevés qu’une fois par an par un

technicien. Depuis 2015, les compteurs communicants Linky sont déployés en France pour remplacer les anciens

compteurs. Ces compteurs collectent la consommation d’électricité toutes les 30 minutes et les données de con-

sommation sont envoyées à EDF avec l’accord du client. Cependant, même avec les compteurs Linky, l’accès

aux données de consommation des ménages reste limité, en raison des coûts de traitement et de stockage ansi

que de problèmes de confidentialité. De plus, les données à pas 30 minutes donnent un aperçu général de la

consommation d’un ménage mais ne fournissent pas de détails sur l’utilisation des différents appareils.

La désagrégation de la courbe de charge (consommation d’électricité) d’un ménage en fonction de l’utilisation

de chaque appareil est le sujet de la surveillance non intrusive de la charge (NILM), illustrée dans la figure 1.1. Le

NILM peut donner un aperçu complet de la consommation d’un client et pourrait permettre à EDF de proposer des

contrats parfaitement adaptés aux besoins d’un client. Mais Le NILM nécessite des données échantillonnées de 1

Hz à plusieurs kHz, un échantillonage bien supérieur à celui de 30 minutes de Linky.

Par conséquent, la collecte de données pour Le NILM est très coûteuse : non seulement la consommation de

l’ensemble du ménage doit être mesurée toutes les secondes, mais aussi la consommation de chaque appareil

présent dans le foyer. Cela signifie que pour collecter des données pour une seule maison, un technicien doit venir

à la maison pour installer les capteurs sur chaque appareil. Il serait irréaliste de le faire à grande échelle et aucun

ensemble de données publiques collectées pour le NILM ne contient plus d’une centaine de ménages. Nous devons

donc concevoir des méthodes de le NILM qui soient robustes à un changement de foyer.

Les séries temporelles apparaissent aussi dans les systèmes de production d’EDF car chaque système industriel

est surveillé par des capteurs. Dans les centrales électriques, plusieurs machines sont surveillées pour détecter des

comportements anormaux et planifier une maintenance. Pour les éoliennes ou les panneaux solaires, la prévision

de la production est le principal défi. Lors de l’apprentissage d’un modèle de prévision sur un système donné, le

transfert vers un autre système peut entra1̂ner une baisse de performance dûe potentiellement à un changement

d’environnement ou un changement de fonctionnement après une maintenance.

Dans cette thèse, nous abordons la question de l’apprentissage par transfert pour les séries temporelles.

12

L’objectif est de concevoir des méthodes capables d’extraire des caractéristiques de séries temporelles robustes

à un changement d’environnement. Bien que les méthodes développées dans cette thèse soient développées pour

répondre à des problématiques d’EDF, notre cadre est générique à d’autres types de problématiques.

L’apprentissage par transfert [138] est un sous-domaine de l’apprentissage automatique ayant reçu beaucoup

d’attention au cours de la dernière décennie. Une des principales hypothèses de l’apprentissage automatique

traditionnel est que les données utilisées pour apprendre un modèle suivent la même distribution que les données

auxquelles le modèle sera appliqué. L’apprentissage par transfert suppose que cette hypothèse n’est pas vérifiée

et propose de surmonter ce problème. L’apprentissage d’un nouveau modèle sur le nouvel environnement n’est

pas toujours possible, par exemple si la collecte de données est coûteuse. L’apprentissage par transfert vise à

capitaliser sur les données ou les modèles existants pour s’adapter plus rapidement à un nouvel environnement.

Une analogie avec l’apprentissage humain serait qu’un guitariste confirmé apprendra plus rapidement à jouer du

piano qu’un débutant complet.

Une série temporelle est un ensemble de mesures qui varient dans le temps. Elles sont particulièrement

difficiles à réaliser car elles sont souvent de grande dimension, soumises au bruit et la dépendance temporelle

brise l’hypothèse d’indépendance faite par de nombreux modèles d’apprentissage statistique. C’est pourquoi des

méthodes spécifiques aux séries temporelles ont été développées. En général, les séries temporelles brutes sont

transformées en de nouvelles représentations, soit par une transformation experte telle que la transformée de

Fourier [31] ou la transformée en ondelettes [119], soit par l’apprentissage de cette transformation.

Dans cette thèse, nous proposons de coupler apprentissage par transfert et analyse des séries temporelles.

Figure 1: Illustration du NILM: à partir de la consommation totale de la maison, l’objectif est de retrouver la consom-
mation de chaque appareil.

13

En effet, si ces deux sujets ont suscité beaucoup d’intérêt dans la communauté de l’apprentissage automatique,

le développement de méthodes d’apprentissage par transfert pour les séries temporelles n’a suscité qu’un nombre

limité de travaux [64]. L’objectif principal de cette thèse peut être formulé comme suit :

Pouvons-nous développer des méthodes d’extraction de features transférables à partir de séries temporelles ?

Les méthodes présentées dans cette thèse s’appuient sur l’analyse traditionnelle des séries chronologiques et

transfèrent l’apprentissage afin de réduire la nécessité de collecter de nouvelles données après un changement

d’environnement.

Contributions

Dans cette thèse, nous nous intéressons au problème de l’apprentissage par transfert appliqué aux séries chronologiques.

Nous étudions notamment le cadre dans lequel un ensemble de données ”source” est disponible, mais nous voulons

apprendre un modèle capable de généraliser à un ensemble de données ”cible” Par exemple, le jeu de données

source sera un ménage où la consommation de chaque appareil est mesurée et la cible est une nouvelle maison,

avec différents appareils et potentiellement une différente composition du foyer. Ce changement est représenté par

une modification de la distribution des données. Il est clair que si la composition des maisons est radicalement

différente, l’algorithme appris sur la maison source a peu de chances de fonctionner correctement sur la maison

cible.

Afin de pouvoir généraliser à une nouvelle maison, différentes approches sont possibles. La généralisation est

un problème de longue date dans l’apprentissage automatique, et plusieurs travaux ont proposé des garanties sur

la capacité de généralisation des méthodes d’apprentissage statistique lorsqu’il n’y a pas de changement dans la

distribution [131] [176]. Lorsqu’il y a un changement d’environnement, ces garanties ne sont plus valables. C’est

pourquoi de nouveaux travaux proposent des garanties d’apprentissage avec un changement de distribution. L’un

des thèmes abordés dans le cadre d’un changement d’environnement est l’apprentissage de l’invariance ou des

causalités [142]. En général, l’étude des causalités formule le problème de l’apprentissage des relations entre

différentes variables qui sont robustes au changement d’environnement.

L’apprentissage par transfert couvre un large éventail d’hypothèses et de méthodes, allant de la recherche d’une

invariance entre plusieurs environnements à l’adaptation à un nouvel environnement. Dans cette thèse, nous nous

intéressons au cadre d’adaptation de domaine, qui diffère légèrement de l’apprentissage d’invariance. L’adaptation

de domaine suppose que la nature des données est la même pour le domaine source et le domaine cible, ie

les variables d’entrée mesurées et la variable à prédire sont de même nature dans chaque domaine. De plus,

l’objectif de l’adaptation de domaine est d’extraire du domaine source les connaissances qui sont pertinentes pour

le domaine cible. Cela doit être fait avec seulement des données non étiquetées ou un petit nombre de données

14

étiquetées dans le jeu de données cible.

Différents travaux ont présenté des garanties pour l’adaptation de domaine [24] [121]. Dans le chapitre 2, nous

présentons les principales bornes de la littérature pour l’adaptation de domaine. Nous passons également en revue

plusieurs méthodes d’adaptation de domaine afin de donner un aperçu de la manière de réduire le décalage entre

les différents ensembles de données. Dans ce chapitre, nous présenterons également l’adaptation à partir de

plusieurs sources. En effet, lors de l’adaptation à partir de plusieurs domaines, il est possible d’extraire davantage

d’information. Une première possibilité est d’utiliser les différents domaines pour extraire une invariance entre

les domainesafin de généraliser à un nouveau domaine de même nature. On peut également essayer d’apprendre

quels sont les domaines sources les plus pertinents pour la cible. Par exemple, si plusieurs maisons sont surveillées

et utilisées comme domaines sources, lors de l’adaptation à une nouvelle maison cible, on s’attend à sélectionner

les maisons sources qui ont des caractéristiques similaires à la cible.

La plupart des méthodes traditionnelles d’adaptation de domaine reposent sur la réduction d’un décalage

entre les distributions source et cible. Lorsque l’on travaille avec des vecteurs x ∈ Rd de dimension d et un

échantillon indépendamment et identiquement distribué (iid) {x(1), ..., x(n)}, il est possible d’estimer la distribution

de l’échantillon avec des estimateurs courants tels que l’estimateur de densité de noyau. Lorsque l’on travaille

avec une série temporlle de dimensions d {x1, ..., xT } où xt ∈ Rd, l’estimation de sa distribution n’est pas simple.

On pourrait considérer x comme un vecteur de dimension dT mais très souvent, T est plus grand que la taille de

l’échantillon n. En effet, les séries temporelles brutes sont souvent de haute dimension, soumises au bruit et ont

une structure spécifique avec leur dépendance temporelle.

Pour ces raisons, il est courant de transformer les séries temporelles brutes en un nouvel espace de représentation.

Dans le Chapitre 3, nous passons en revue certaines méthodes d’extraction de caractéristiques courantes pour

les séries chronologiques. En particulier, nous nous intéressons aux réseaux de neurones qui ont suscité beau-

coup d’intérêt avec leur succès dans la communauté de la vision par ordinateur [103]. Il a été démontré que les

réseaux de neurones sont capables d’extraire des caractéristiques générales pour des données d’images ou de

texte lorsqu’elles sont apprises sur de grands ensembles de données. Nous verrons que pour les séries tem-

porelles, il est plus difficile d’évaluer ces capacités de généralisation car les séries temporelles sont présentent

dans de nombreux domaines très hétérogènes et aucun grand ensemble de données étiquetées n’est disponible à

ce jour.

Dans ce chapitre, nous étudions le problème de la reconnaissance des appareils, ie reconna1̂tre un appareil à

partir d’un de ses cycles de consommation (aussi appelé signature de l’appareil). Nous discutons de différentes

techniques de normalisation pour les séries temporelles et montrons que pour trouver des invariants entre les

ensembles de données, des méthodes spécifiques sont nécessaires. Nous introduisons une méthode d’ensemble

de normalisation qui donne une meilleure robustesse à changement de domaine. Nous illustrons nos résultats sur

des jeux de données de NILM collectés à la fois en interne chez EDF et des jeux de données publics.

15

Encouragés par la capacité des réseaux de neurones à apprendre des représentations informatives pour les

séries temporelles, nous proposons une méthode d’adaptation de domaine basée sur les réseaux de neurones

dans le Chapitre 4. Notre méthode s’inspire de l’adaptation de domain adverse (domain-adversarial adaptation)

[72] : l’objectif formulé vise à apprendre une représentation qui (i) soit discriminante pour la variable à prédire et (ii)

réduise l’écart entre les domaines. Alors que la plupart des travaux précédents se concentrent sur des problèmes de

classification, le NILM a pour but de trouver la consommation (une grandeur réelle) et est généralement un problème

de régression [100]. Nous proposons une nouvelle mesure de divergence entre les domaines, une nouvelle borne

théorique associée et un algorithme qui propose une vision unifiée de nombreuses méthodes d’adaptation de

domaine adverse antérieures. Cette garantie est étendue à l’adaptation multi-source, pour laquelle nous proposons

d’attribuer des poids aux sources en fonction de leur relation avec le domaine cible. Nous illustrons nos résultats

sur plusieurs jeux de données de NILM, mais aussi sur d’autres problèmes typiques d’adaptation au domaine : (i)

analyse de sentiment des commentaires textuels sur Amazon [29] et (ii) labellisation d’images de chiffres (MNIST,

MNIST-M, ...) [72].

Si les méthodes basées sur les réseaux de neurones donnent de très bons résultats expérimentaux, elles

souffrent de deux problèmes : elles nécessitent généralement beaucoup de données d’entra1̂nement et sont dif-

ficilement interprétables. En effet, il est difficile de visualiser les représentations apprises par le réseau et de les

relier à des concepts interprétables. Il est donc difficile de les intégrer dans des applications industrielles car très

souvent, les opérateurs veulent comprendre le comportement d’un modèle. C’est pourquoi, dans le chapitre 5,

nous proposons une méthode d’apprentissage par transfert pour les séries temporelles multivariées basée sur les

informations de covariance.

Plus précisément, étant donné que plusieurs systèmes sont surveillés par des capteurs d, nous proposons

de construire un sous-espace virtuel de capteurs de dimension d′ < d de telle sorte que les relations entre les

dimensions extraites soient les mêmes dans chaque système. Ainsi, nous proposons de séparer les caractéristiques

communes à tous les systèmes des caractéristiques spécifiques à chaque système. Notre cadre d’étude intègre

donc à la fois la généralisation de domaine et à l’adaptation à un domaine précis. Comme nous ne travaillons que

sur les matrices de covariance provenant de séries temporelles multivariées, le nouvel espace de représentation

se base sur la géométrie spécifique des matrices symétriques à définition positive. Malheureusement, durant ce

travail de thèse, aucun jeu de données industrielles à EDF ne contenait suffisamment de données étiquetées pour

expérimenter notre méthode. Par conséquent, nous expérimentons notre méthode sur des données synthétiques

et des jeux de données de reconnaissance d’activité humaine afin de montrer les performances et les limites de

notre approche.

Ces différentes contributions ont donné lieu à des publications dans des conférences nationales et interna-

tionales :

16

• Chapitre 3 G. Richard, G. Hébrail, M. Mougeot and N. Vayatis. ”DenseNets for Time Series Classification:

towards automation of time series pre-processing with CNNs.” MiLeTS19@SIGKDD 25th ACM SIGKDD Inter-

national Conference on Knowledge Discovery & Data Mining (KDD’2019).

• Chapitre 3 G. Richard, B. Grossin, G. Germaine, G. Hébrail and A. de Moliner. ”Autoencoder-based time

series clustering with energy applications.” Conférence sur l’Apprentissage Automatique 2018 (CAp 2018).

• Chapitre 4 G. Richard, A. de Mathelin, G. Hébrail, M. Mougeot and N. Vayatis. ”Unsupervised Multi-Source

Domain Adaptation for Regression.” Joint European Conference on Machine Learning and Knowledge Discov-

ery in Databases 2020 (ECML 2020)

• Chapitre 4 A. de Mathelin, G. Richard, M. Mougeot, and N. Vayatis. ”Adversarial Weighting for Domain Adap-

tation in Regression.” arXiv preprint arXiv:2006.08251. (Pre-print)

Enfin, les expériences menées sur les ensembles de données publiques pour cette thèse sont accessibles, sous

la forme d’une contribution au paquet adapt et d’un dépot git. Nous donnons dans l’Annexe C des détails sur les

différentes implémentations pour la reproduction des résultats obtenus sur des jeux de données publiques.

17

Chapter 1

Introduction

1.1 Motivation

As an electricity producer, one of the main challenges of EDF is to ensure the matching between electricity pro-

duction and electricity consumption, both for safety and economical reasons. While EDF controls the production

of electricity and can adjust it, the consumption depends on external clients. Hence, EDF aims to enhance its

knowledge of electricity consumption of its users.

A better understanding of the consumption patterns of its clients would have several other upsides for EDF. As

the French electricity market has been open to competitors in 2010, EDF wants to offer contracts tailored for its

clients. Moreover, self-production of electricity via a wind plant or solar panels attached to a household is larger

everyday. Hence, understanding consumption at a household level is crucial to a better organization of the electricity

network.

Consumption data of a household is traditionally monitored using a single sensor. The historical sensor meters

could not be read remotely and were only read once per year by an EDF employee. Since 2015, Linky smart sensors

are being deployed in France to replace the previous meters. These sensors collect the electricity consumption every

30 minutes and the consumption data is sent to EDF with the client’s consent. Still, even with Linky sensors, access

to household consumption data is still limited, due to transmission and processing costs or privacy issues.

Moreover, 30 minute data gives a general overview of a household consumption but does not provide details

about the usage of different devices. Disagreggating the load curve (electricity consumption) of a household to the

usage of each device is the topic of Non Intrusive Load Monitoring (NILM), illustrated in Figure 1.1. NILM may give

a complete overview of the consumption of a client and could allow EDF to propose contracts perfectly tailored to

clients’ needs. But NILM requires data that is sampled from 1Hz to several kHz, which is far from the 30 minute

sampling of Linky.

Hence, collecting training data for NILM is even more costly: not only do we need to monitor the whole household

19

consumption at a second interval, but we also need to monitor each device in the household. This means that for

collecting data for only one house, a technician needs to come to the home to install the sensors on every device

which comes at an important cost. It would be unrealistic to do it on a large scale and no public dataset collected

for NILM contained more than a hundred households. Hence, we need to design NILM methods that are robust to

a change of household.

Time series can also arise in production systems at EDF as every industrial system is monitored with sensors.

In power plants, several machines are monitored to detect abnormal behaviours and plan maintenance. In wind

plants or solar panels, production forecasting is the main challenge. When learning a prediction model on a given

system, transferring it to a different system can lead to a drop in performance given to a distribution shift. It could

also happen on the same system after a maintenance.

In this thesis, we tackle the issue of statistical learning on time series with a distribution shift, also called transfer

learning for time series. The objective is to design methods able to extract features robust to a change of environ-

ment. While the methods developed in this thesis are applied to EDF applications, our framework is generic to other

kind of temporal data.

Transfer Learning [138] is a sub-field of Machine Learning that received a lot of attention in the last decade.

In traditional Machine Learning, one of the main assumption is that the data used to train a model follows the

same distribution as the data to which the model will be applied. In Transfer Learning, this assumption does not

hold. Learning a new model on the new environment is not always possible, either for instance if data collection

is expensive. Transfer Learning aims to capitalize on existing data or models to adapt more quickly to a new

Figure 1.1: Non Intrusive Load Monitoring illustration: from the whole house consumption, the goal is to retrieve the
consumption of each appliance

20

environment. An analogy with human learning would be that a proved guitarist will learn more quickly how to play

the piano than a complete beginner.

Time Series analysis is a long-standing issue in the data mining community, with applications in many fields. A

time series is a collection of measurements that vary over time. They are particularly challenging as they often are

high-dimensional, subject to noise and the temporal dependence breaks the independence assumption made by

many statistical learning models. Hence, methods specific to time series were developed. In general, the raw time

series are transformed to new features, either by a hand-crafted transformation such as Fourier Transform [31] or

Wavelet Transform [119] or by learning this transformation.

In this thesis, we match Transfer Learning and Time Series analysis. Indeed, while both topics attracted a lot of

interest in the machine learning community, developing transfer learning methods for time series has prompted only

a limited amount of works [64]. The main goal of this thesis can be formulated as follows:

Can we develop dedicated methods to extract transferable features from time series?

1.2 Organization of the manuscript

Transfer Learning covers a wide range of frameworks and methods, from finding invariance to adapting to a new

environment. In this thesis, we are interested in the domain adaptation framework, which is slightly different from

learning invariance. Domain adaptation assumes that the nature of the data is the same for the source and the

target domain, ie the measured input variables and the variable to predict are of the same nature in every domain.

Moreover, in domain adaptation, the goal is to extract knowledge from the source domain that is relevant to the

target domain. This needs to be done with only unlabeled data or a few labeled data in the target dataset.

In Chapter 2, we present the main domain adaptation guarantees of the literature [24] [121]. We also review

several domain adaptation methods to give an overview of how to reduce the shift between different datasets. In

that Chapter, we will also introduce adaptation from multiple sources as specific methods can be developed for this

scenario. Firstly, one could use the several domains to learn invariance between domains, which is called domain

generalization. One could also try to learn which source domains are the most relevant to the target. For instance,

if several houses are monitored and used as a source domains, when adapting to a new target house, one would

expect to select the source houses that have similar characteristics to the target. This is called multi-source domain

adaptation.

Most traditional methods of domain adaptation relies on reducing a shift between the source and target distri-

butions. When working with d-dimensional vectors x ∈ Rd and an independently identically distributed (iid) sample

{x(1), ..., x(n)}, estimating the distribution of the sample is possible with common estimators such as Kernel Density

Estimator. When working with a d-dimensional time series {x1, ..., xT } where xt ∈ Rd, estimating its distribution is

21

not straightforward. One could vectorize x to a vector of dimension dT but very often, T is larger than the sample

size n. Indeed, raw time series are often high-dimensional, subject to noise and have a specific structure with their

temporal dependence.

For these reasons, it is common to transform raw time series to a new feature space. In Chapter 3, we will

review some common feature extraction methods for time series. In particular, we are interested in neural networks

which gained a lot of interest with their success in the computer vision community [103]. Neural networks have been

shown to be able to extract general features for image or text data when learnt on large datasets. We will see that

for time series, it is harder to evaluate those generalization capabilities as time series are heterogeneous as they

arise in many fields and no large labeled dataset is available.

We will study the problem of appliance recognition, ie recognize an appliance from its consumption patterns. We

discuss different normalization techniques for time series and show that in order to find invariants between datasets,

specific methods are required. We introduce a normalization ensembling method that allows for better robustness

when changing domain. We illustrate our results on non intrusive load monitoring datasets both collected at EDF

and publicly available.

Encouraged by the ability of neural networks to learn informative features for time series, we propose a domain

adaptation method based on neural networks in Chapter 4. It follows the line of adversarial domain adaptation

[72]: the formulated objective aims to learn features that are (i) discriminative for the variable to predict and (ii)

reducing the shift between domains. While most previous works focus on classification problems, Non-Intrusive

Load Monitoring aims to find the consumption (a real value) and is generally a regression problem [100]. We

propose a new measure of discrepancy between domains, a new theoretical bound and an algorithm that offers a

unifying view over many previous adversarial domain adaptation methods. We extend this guarantee to adaptation

with multiple sources, where we propose to attribute weights to the sources depending on their relationship with the

target domain. We illustrate our results on several NILM datasets, but also on other standard domain adaptation

datasets: Amazon Multi-Domain Sentiment dataset [29] (text) and digits dataset [72] (images).

While neural network based methods give very good experimental results, they suffer from two issues: they

generally require a lot of training data and are hardly interpretable. It makes it hard to integrate them in industrial

applications, as very often, operators want to understand the behaviour of a model. Hence, in Chapter 5, we propose

a transfer learning method for multivariate time series based on covariance information.

Namely, given several systems that are monitored with d sensors we propose to build a virtual sensor subspace

of dimension d′ < d such the relationship between the extracted dimensions are the same in every system. As

such, we propose to separate the knowledge that is transferable between every domain from the domain-specific

knowledge. Our framework is applicable both to domain generalization and domain adaptation. As we only work

on covariance information from multivariate time series, the new feature space lies on the manifold of Symmetric

Positive Definite matrices. Our method makes use of the specific geometry of this manifold. Unfortunately, at the

22

time of this thesis, no industrial dataset at EDF contained enough labeled data to experiment our method. Hence,

we experiment our method on synthetic data and Human Activity Recognition datasets to show the strengths and

limits of our approaches.

Those different contributions led to 3 publications in peer-reviewed national and international conferences and a

pre-print:

• Chapter 3 G. Richard, G. Hébrail, M. Mougeot and N. Vayatis. ”DenseNets for Time Series Classification:

towards automation of time series pre-processing with CNNs.” MiLeTS19@SIGKDD 25th ACM SIGKDD Inter-

national Conference on Knowledge Discovery & Data Mining (KDD’2019).

• Chapter 3 G. Richard, B. Grossin, G. Germaine, G. Hébrail and A. de Moliner. ”Autoencoder-based time series

clustering with energy applications.” Conférence sur l’Apprentissage Automatique 2018 (CAp 2018).

• Chapter 4 G. Richard, A. de Mathelin, G. Hébrail, M. Mougeot and N. Vayatis. ”Unsupervised Multi-Source Do-

main Adaptation for Regression.” Joint European Conference on Machine Learning and Knowledge Discovery

in Databases 2020 (ECML 2020)

• Chapter 4 A. de Mathelin, G. Richard, M. Mougeot, and N. Vayatis. ”Adversarial Weighting for Domain Adap-

tation in Regression.” arXiv preprint arXiv:2006.08251. (Pre-print)

The contribution of Chapter 5 will lead to a publication in the future. Finally, experiments conducted on public

datasets for this thesis are publicly available, in the form of a contribution to the adapt package and public git repos-

itories. We give in Appendix C details about the different implementations and how to reproduce the experiments

on public datasets.

23

Chapter 2

Background on Transfer Learning

Contents

2.1 What is Transfer Learning? . 26

2.2 Theory of Domain Adaptation . 28

2.2.1 Generalization bounds . 29

2.2.2 Divergence-based Domain Adaptation . 31

2.2.3 Alternative approaches . 36

2.2.4 Summary . 38

2.3 Existing approaches for Homogeneous Transfer Learning 38

2.3.1 Instance-based domain adaptation . 39

2.3.2 Feature-based domain adaptation . 42

2.3.3 Alternative methods . 44

2.3.4 Summary . 45

2.4 Learning from Multiple Sources . 46

2.4.1 Multi-Task Learning and Domain Generalization . 47

2.4.2 Multi-source domain adaptation . 49

2.5 Conclusion . 51

Classically, when learning a statistical model, one assumes that the data used for training have the same char-

acteristics and distribution as the one on which the model is used. This assumption is often unrealistic. Consider a

25

fault detection model trained on an industrial system: when using it on a new industrial system operating in a differ-

ent environment, the model under-performs. Transfer learning is a sub-field of Machine Learning where practitioners

try to use knowledge learnt on a source problem to transfer it to a target problem. It has gained a lot of interest as

often, data collection, annotation and storage for a new problem is expensive. Transfer learning has already proven

its efficiency in the computer vision community: the knowledge learnt by an algorithm learnt to recognize a large

number of objects can be used for more specific problems.

There are two natural questions arising with transfer learning, as was highlighted in [138]. The first question is on

the guarantees of transfer learning: when can one expect a source problem to be relevant for a target domain? This

is crucial as transferring knowledge from an unrelated source problem could lead to negative transfer, ie performing

worse than learning directly on the target problem. The second natural question is on what and how to transfer this

knowledge. The answer appears to be dependent on the nature of the problem.

In this chapter, we introduce the transfer learning framework and give an overview of the different transfer learn-

ing scenarios and recall their definition, as they are sometimes used interchangeably in the literature. As the main

focus of this work is on domain adaptation, we review the existing theory of Domain Adaptation. Then we present

an overview of domain adaptation methods categorized on what they use to adapt the learning model. Finally, we

also define the concept of learning from multiple sources.

2.1 What is Transfer Learning?

Ideally, when predicting the consumption of a device in a house based on its total consumption, one would collect

data from this house and apply the model on the same house. In a classical machine learning setting, practitioners

are generally provided with a training sample in order to perform a prediction task. Then, a model learned to perform

this task is assumed to have good generalization capacities on a test sample as it is assumed to come from the

same distribution.

Transfer learning breaks one of the traditional machine learning assumptions: the domain or task to be learnt

are different from the domain or task on which the model is applied. For instance, the input source data space might

be different from the target one, the task could change or there could be a shift in the distributions. In the general

transfer learning framework, one assumes the existence of a source domain and task and a target domain and task.

If there is enough labeled data in the target domain, then one can simply use traditional machine learning to learn

a model. But when there is not enough labeled target data, one wants to capitalize on the source data to extract

knowledge that is transferable to the target data.

Following [138] and [185], we introduce a domain D made of a feature space X and a marginal probability

distribution P , such that any independent sample X = {x1, ..., xn} drawn from that domain is independently and

identically distributed (xi
i.i.d∼ P) and we write D = {X , P (X)}. We also introduce a task T = {Y, P (Y |X)} where

26

Figure 2.1: Taxonomy of Transfer Learning

Y is the label set (can be R for regression) and P (Y |X) is the conditional probability of the label depending on

the input data. Typically, one uses a sample {(x1, y1), ..., (xn, yn)} where xi ∼ P (X) and yi ∼ P (Y |X = xi)

to learn a prediction function f̂ minimizing the loss between f̂(xi) and yi where this loss is dependent on the

problem. Then different works have shown that under certain conditions, f̂ could generalize well to an unseen

sample {(xn+1, yn+1), ..., (xn+m, yn+m)} drawn from the same domain.

In transfer learning, we introduce a source domain DS = {XS , PS(X)}, a source task TS = {YS , PS(Y |X)}, a

target domain DT = {XT , PT (X)} and a target task TT = {YT , PT (Y |X)}. Transfer Learning assumes a difference

in the domains (ie DS 6= DT) or/and in the tasks (ie TS 6= TT). Hence the generalization capacities of traditional

machine learning do not hold anymore.

Different taxonomies exist for transfer learning: for instance, in a survey [138], authors propose an assumption-

based taxonomy and a data-based taxonomy. Here we propose a taxonomy based on the assumptions made on the

shift between source and target dataset. The assumptions can be made on a difference between the probabilities

(homogeneous transfer learning) or the input and label spaces (heterogeneous transfer learning):

• PS(X) 6= PT (X) corresponds to domain adaptation. This is also referenced as sample bias in the literature.

Namely, the source and target marginal distributions of the input data are different, hence a model learnt on

the source data might not generalize well to data drawn from a different distributions. For instance, one could

imagine having seen the consumption of only people living alone and wanting to transfer the knowledge to

family houses.

• PS(YS |XS) 6= PT (YT |XT) corresponds to concept shift. Here, the conditional distributions are different. For

instance, if the source is consumption from winter data and the target the consumption from summer data and

27

one wants to predict the consumption of a heater, there is a shift in the conditional (and also in the marginals,

as it often happens in practice). We will also refer to this scenario as semi-supervised domain adaptation.

• XS 6= XT corresponds to heterogeneous transfer learning. This could be the case when transferring infor-

mation from a system monitored by a set of sensors to another system with a different set of sensors.

• YS 6= YT corresponds to a label set mismatch. For instance, after learning to predict the consumption of a

fridge from the house consumption, one could capitalize on this model to predict the consumption of an oven.

Several of those assumptions may happen at the same time. The more assumptions are broken, the harder

the transfer is. Hence, most methods focus on one or two assumptions. Another common assumption that is often

mentioned is a target shift, ie the case when PS(YS) 6= PT (YT).

In our work, unless otherwise stated, we focus on homogeneous transfer learning ie the input space is the

same XS = XT and the label space is the same YS = YT . Hence, we are interested on differences between

marginal and conditional distributions on the data. Namely, we are interested in problems where we have a large

labeled source dataset and a target dataset with limited or no labeled data but possibly large unlabeled data.

The next sections review the theoretical guarantees of domain adaptation and present an inventory of existing

methods. Finally, we review the adaptation with multiple source domains.

2.2 Theory of Domain Adaptation

The intuition behind Domain Adaptation is that it is possible to learn a model on a source domain and transfer it to

a target domain if the domains are related. Defining rigorously how both domains should be related for adaptation

to be possible is the inspiration of different works on domain adaptation theory. Namely, we seek to bound the error

made on target set with information based on the source dataset. As there is a shift in the marginal or the conditional

distributions, there is a need to be able to measure the shift between distributions.

Like for transfer learning, Domain Adaptation considers different scenarios, whose name appeared to be used

interchangeably in the literature. Hence, in this work we refer to the different scenarios as:

• Unsupervised Domain Adaptation: when one has access to labeled source data and unlabeled target data

• Semi-supervised Domain Adaptation: when one has access to labeled source data and labeled target data,

with possibly unlabeled target data

• Unsupervised Multi-Source Domain Adaptation: when one has access to labeled source data coming from

different source domains, and unlabeled target data

• Semi-Supervised Multi-Source Domain Adaptation: when one has access to labeled source data coming

from different source domains, labeled target data, with possibly unlabeled target data

28

Numerous distances have been introduced to compare probability distributions. They are key to many applica-

tions, such as statistical tests, estimation, generative modeling ... In Domain Adaptation, they are used as a tool

to compare two domains, and as a quantity to minimize in order to bring domains closer. While classical distances

such as Maximum Mean Discrepancy [79], Wasserstein Distance [156] or Total Variation Distance have been used

for bounds in Domain Adaptation, the first works on the topic involved distance created specifically for the problem.

We now shortly recall the main generalization bounds based on Vapnik Chervonenkis (VC)-Dimension and

Rademacher complexity. Then we present an overview of the bounds based on the divergence-like distance. and

finally present other results based on more classical statistical distances.

2.2.1 Generalization bounds

Having theoretical guarantees on the performance and generalization abilities of a model is of primordial importance

to machine learning. It has been well studied for traditional machine learning with different approaches. Two of the

most common are based on the VC dimension and the Rademacher complexity. We first recall those two main

results from statistical learning theory.

Generalization bound with VC-Dimension

In this section, we consider an input set X and a target set Y = {+1,−1} (binary classification) and an i.i.d. sample

S = {(x1, y1), ..., (xn, yn)} such that (xi, yi) ∼ P (X,Y). We consider a hypothesis class H : X → Y. For any

hypothesis function h ∈ H, its associated risk is defined as:

R(h) = E(x,y)∼P (X,Y)[L(h(x), y))] (2.1)

where L : Y×Y → R is a loss function (for instance L : (y, y′)→ 1(y = y′)). Similarly, its empirical risk is defined

as

R̂S(h) =
1

n

n∑
i=1

L(h(xi), yi) (2.2)

A natural question that comes to mind is to explore the error provided by the empirical risk estimation. For this

purpose, Vapnik and Chervonenkis introduced the Vapnik-Chervonenkis dimension of an hypothesis class [176]. It

is based on the ability of a hypothesis to shatter a set. To define the VC-dimension, one firstly needs to define the

growth function, also called the shatter coefficient.

Definition 1. The growth function ΠH of an hypothesis class H is defined as

ΠH(m) = max
{x1,...,xm}⊂X

|{(h(x1), ..., h(xm)), h ∈ H}| (2.3)

29

where for any set A, |A| is the cardinality of A.

The growth function measures the ability of a hypothesis class to classify m samples in a different way. From

this definition, it is possible to define the VC-Dimension. Namely, the VC-Dimension of a hypothesis class H is the

maximum number of samples that an hypothesis class H is able to shatter completely, ie with hypothesis in H, it is

possible to assign any labels to the sample {x1, ..., xm}.

Definition 2. The VC-Dimension of an hypothesis class H is defined as

V CH = max
m
{m|ΠH(m) = 2m} (2.4)

Using this definition, the following generalization bound on the empirical risk was proven [176]:

Theorem 1. Using the previous notations with d = V CH, for any hypothesis h ∈ H, for any δ ∈]0, 1[, with probability

at least 1− δ over the choice of sample S = {(x1, y1), ..., (xm, ym)} ∼ (P (X,Y))m,

R(h) ≤ R̂S(h) +

√
4

m

(
d ln

2em

d
+ ln

4

δ

)
(2.5)

This bound offers an upper-bound on the gap between the empirical estimate of the error and its true value for a

sample size m. VC-Dimension has been studied for many well-known classes of hypothesis and is still largely used

in statistical learning theory. Bounds for the regression case can also be derived using pseudo-dimension [131].

Generalization bound with Rademacher Complexity

Rademacher Complexity has been introduced as an alternative measure of the complexity of an hypothesis class.

While VC-Dimension measures the ability of an hypothesis class to shatter a dataset, Rademacher Complexity

intuitively measures its ability to fit to random noise.

Keeping the same notations as before, we introduce the Rademacher variables σ taking binary values in

{−1,+1} such that pσ(σ = 1) = 1
2 and pσ(σ = −1) = 1

2 . Then we introduce the Rademacher Complexity in

the next definition.

Definition 3. For a sample S = {x1, ..., xm}, the empirical Rademacher complexity of a hypothesis class H is

defined as

RS(H) = Eσ

[
sup
h∈H

2

m

m∑
i=1

σih(xi)

]
(2.6)

where (σ1, ..., σm) are m i.i.d Rademacher variables. Moreover, the Rademacher complexity of an hypothesis class

H is defined as

Rm(H) = E
S∼(P (X))m

[RS(H)] (2.7)

30

The Rademacher Complexity is defined as an expectation over every sample possible when VC-Dimension

includes a supremum over the samples. From there, it is possible to derive a bound based on the Rademacher

Complexity of the hypothesis class.

Theorem 2. Using the previous notations , for any hypothesis h ∈ H, for any δ ∈ [0, 1[, with probability at least 1− δ

over the choice of sample S = {x1, ..., xm} ∼ (P (X,Y))m,

R(h) ≤ R̂S(h) +Rm(H) +

√
ln(1/δ)

2m
(2.8)

Rademacher complexity has been studied for many methods, such as SVM, Neural Networks, ... The Rademacher

complexity is data dependent and leads to tight bounds. Moreover, it has been extended to regression in an easier

way than through pseudo VC-Dimensions. In the regression case, Y ⊂ R. The following generalization bound holds

in the regression case [131]:

Theorem 3. Using the previous notations, let L : Y × Y → R+ be bounded by M > 0, ie supy,y′∈Y L(y, y′) ≤ M .

Moreover, for any y′ ∈ Y, we assume y → L(y, y′) to be µ-Lipschitz. Then for any hypothesis h ∈ H, for any δ ∈]0, 1[,

with probability at least 1− δ over the choice of sample S = {(x1, y1), ..., (xm, ym)} ∼ (P (X,Y))m,

R(h) ≤ R̂S(h) + 2µRm(H) +M

√
ln 1/δ

2m
(2.9)

For instance, if we assume Y to be a bounded subset of R, then the `2 loss L(y, y′) = (y − y′)2 respects the

assumptions of the theorem.

Other generalization bounds have been proposed based on PAC-Bayesian Theory [126] or Stability [33] but are

out of the scope of this work. Now that we have introduced some of the classical generalization bounds in the typical

machine learning setting, we extend them in a presence of a shift in the distributions.

2.2.2 Divergence-based Domain Adaptation

The previous framework focuses on the generalization ability to a sample drawn from the same distribution. In this

part, we review bounds for a sample drawn from a different distribution presented in [25] and [121].

H-Divergence based Domain Adaptation [25]

In the seminal paper of Ben-David et al. (2006) [24], authors define a theoretical framework for domain adaptation

introduced a specific distance and obtained a bound that was later corrected in [30] and [25]. They consider

the framework of domain adaptation with two domains DS = {X , pS(XS)} and DT = {X , pT (XT)} and labeling

31

functions fS and fT such that fT : X → {0, 1} and fT : X → {0, 1}. They consider an hypothesis class H :

X → {0, 1} and the loss function L(y, y′) = |y − y′|. Then for any hypothesis h ∈ H, the source risk is defined as

RS(h) = E
x∼pS

[|h(x)− fS(x)|] and target risk as RT (h) = E
x∼pT

[|h(x)− fT (x)|].

The first bound they propose is based on the Total Variation distance defined as follows:

Definition 4. For two probability measures P and Q defined over a set of measurable subsets B, the total variation

distance dTV is defined as

dTV (P,Q) = 2 sup
B∈B
|P (B)−Q(B)| (2.10)

Then the following bound holds:.

Theorem 4. For any hypothesis h ∈ H,

RT (h) ≤ RS(h) + dTV (pS , pT) + λ (2.11)

where λ = min

[
E

x∼pS
[|fS(x)− fT (x)|] , E

x∼pT
[|fS(x)− fT (x)|]

]
This bound relates the target risk to the source risk, a distance between marginal distributions and a distance

between conditional distributions (in the form of labelling functions). This bound provides the first keys for domain

adaptation and gives ground to adaptation models that try to find representations bringing the domains closer. The

main issue is that the total variation distance is not possible to estimate it with finite samples, hence impossible to

use in practice as a criterion for adaptation. Moreover, it is a supremum over every possible subset, which means

that the bound is very loose.

Based on these remarks, Ben-David et al. (2010) [25] propose the dH distance, inspired from [101]:

Definition 5. For two probability measures P and Q defined over a set X and an hypothesis class H, and noting

I : h→ {x ∈ X : h(x) = 1}, the H-divergence is defined as

dH(P,Q) = 2 sup
h∈H
|P (I(h))−Q(I(h))| (2.12)

This divergence is always smaller than dTV , depends directly on the hypothesis class H and can be estimated

from finite samples. Indeed, if we note SS and ST two samples of size m from PS and PT , the empirical estimation

of dH is

d̂H(SS ,ST) = 2

1−min
h∈H

 1

m

∑
x:h(x)=0

I(x ∈ SS) +
1

m

∑
x:h(x)=1

I(x ∈ ST)

 (2.13)

So computing the dH between two domains boils down to finding a classifier able to discriminate between

domains. Moreover, the empirical estimation of dH converges towards its true value if H has finite VC-Dimension

32

[101] with probability 1− δ over the samples of SS and ST :

dH(pS , pT) ≤ d̂H(SS ,ST) + 4

√
2V CH log(2m) + log(2

δ)

m
(2.14)

To define a bound between source and error risks, the symmetric difference hypothesis spaceH∆H is introduced

as follows:

Definition 6. For an hypothesis space H, the symmetric difference hypothesis space H∆H is defined as

H∆H = {g : x, x′ ∈ X → h(x)⊕ h′(x);h, h′ ∈ H} (2.15)

where ⊕ is the XOR operator.

Finally, the following bound holds using this theory:

Theorem 5. Using the previous notations, for any hypothesis h ∈ H,

RT (h) ≤ RS(h) +
1

2
dH∆H(pS , pT) + λ (2.16)

where λ = minh∈H [RS(h) + RT (h)]

This bound is similar to Equation 2.11 as the target risk is bounded by the source risk, a divergence between

marginal probabilities and a term on ideal hypothesis for both domains. RS(h) can be estimated from finite samples

as shown with typical generalization bounds. dH∆H can also be estimated using Equation 2.13 and the fact that

the V CH∆H ≤ 2V CH. Finally, the last term cannot be estimated without labels or further assumptions, such as the

structure of the labelling functions. Thus it is assumed to be small for unsupervised domain adaptation. When the

labelling functions are too different, one does not have guarantees of good adaptation, which can lead to negative

transfer.

One can notice that the bound involves the symmetric difference hypothesis class H∆H and not the original

H, and in practice, the computation of dH∆H is intractable. Hence, the authors of [25] suggest to approximate it

by training a classifier from H to discriminate between domains, ie approximate dH which only is a lower bound of

dH∆H.

Different extensions have been made to this bound:

• Semi-supervised Domain Adaptation: Ben-David et al. (2010) [25] tackle the scenario where labeled target

data is available. They derive a bound mixing labeled source and target data, which overcomes the assumption

made on λ in Equation 2.16. A very interesting result is that they derive the number of target labeled samples

from which there are enough target samples to learn completely, ie the adaptation becomes useless

33

• Multi-Source Domain Adaptation: Ben-David et al. (2010) [25] and [196] tackle the issue of adapting from

different source domains. They derive a bound based on a convex combination of source distributions to

adapt to the target.

The seminal work of Ben-David et al. (2010) [25] gave the first formal description of domain adaptation for binary

classification. It can be extended to multi-class classification, for instance by decomposing the problem into binary

classification. But the extension to regression problems is not straightforward and is the topic of the next section.

Discrepancy based Domain Adaptation

The previous bounds only hold for classification so the applications are limited. Hence, authors of [121] devel-

oped a more general framework. In their framework, they consider general output space Y and loss functions

L : Y × Y → R+. In the following, for two hypotheses h, h′ ∈ H, we note RS(h, h′) E
x∼pS

[L(h(x), h′(x))] and

RT(h, h′) E
x∼pT

[L(h(x), h′(x))] . The source and target risks of an hypothesis h ∈ H are defined as RS(h) = RS(h, fS)

and RT(h) = RT(h, fT)

Authors introduce the discrepancy distance, which is similar to the dH divergence.

Definition 7. For two probability measures P and Q defined over a set X , an hypothesis class H : X → Y and a

loss L :: Y × Y → R+, the discrepancy between P and Q is defined as

discH,L(P,Q) = sup
h,h′∈H

∣∣∣∣ E
x∼pS

[L(h(x), h′(x))]− E
x∼pT

[L(h(x), h′(x))]

∣∣∣∣ (2.17)

It is closely related to dH∆H as for L1 : (y, y′) → |y − y′|, they are related by discH,L1 = 1
2dH∆H. So the

discrepancy can be seen as a generalization of the dH∆H to other classes of problems. For this general class of

problems, most bounds are provided using Rademacher complexity rather than VC-Dimension.

Theorem 6. Using the previous notations, let L : Y × Y → R+ such that L(y, y′) = |y − y′|q be bounded by M , ie

supy,y′∈Y L(y, y′) ≤ M . Then with probability 1 − δ over the sampling of SS and ST of size m from ps and pt, we

have

discH,L(ps, pt) ≤ ̂discH,L(SS ,ST) + 4q(RS(H) +RT (H)) + 3M

√
2

log 2
δ

m
(2.18)

This bound, presented for `q-losses also holds for any bounded loss by modifying the class of the Rademacher

complexity to a composition with the loss. Similarly to the bound 2.16, one can derive the following general bound

using the discrepancy

Theorem 7. Using the previous notations and the assumptions of Theorem 6, noting h∗S = arg minh∈HRS(h) and

34

h∗T = arg minh∈HRT (h), we have

RT (h) ≤ RS(h, h∗S) + discH,L(pS , pT) + λ (2.19)

where λ = RS(h∗T) +RT (h∗S , h
∗
T)

Once again, this bounds connects the target risk with the source risk, the discrepancy between marginal dis-

tributions and a term connecting the true labelling functions. It is not directly comparable to Equation 2.16 as it

involves ideal hypotheses h∗S and h∗T , but for instance, if one assumes that h∗S = h∗T , then the bound based on the

discrepancy becomes tighter.

The main contribution of this bound is the generalization to a larger class of loss, and hence problems. In the

original paper, authors proposed a domain adaptation method for binary classification and regression based on

kernels. Different follow-up works show bounds for specific class of predictors, mainly kernels [44] [46].

Extensions have been proposed to tackle other scenarios than unsupervised domain adaptation:

• Semi-supervised Domain Adaptation: authors from [44] [46] introduced the generalized discrepancy and the

Y-discrepancy to allow the use of labeled target data and derive bounds similar to Equation 2.19

• Multi-Source Domain Adaptation: during this PhD, we developed a bound and a method for adaptation from

multiple sources [152]

Figure 2.2: Illustration of the H-divergence with linear classifiers

Those two divergences are the main results of domain adaptation theory. They both base the divergence be-

tween domains depending on the hypothesis class. In Figure 2.2 we show the dH∆H for different domains for linear

classifier class H. One can note that using a more complex class of hypotheses, dH∆H would be smaller for the

35

Figure 2.3: Illustration of the discrepancy with linear regressors H = {h : x → wTx ; ‖w‖2 ≤ 1} and `2-loss.
Source and target data are generated as 1D-Gaussian distributions centered on −1 and +1 with different standard
deviations in each graph ({1, 1}, {0.5, 5} and {4, 4}).

second example. Hence there is a tradeoff between hypothesis class complexity to potentially have a smaller true

value dH∆H and the generalization ability of its estimation, as in classical machine learning.

In Figure 2.3, we illustrate the Discrepancy with bounded linear regressors on 1-dimensional data. One can

already observe the difficulty of domain adaptation in regression, as the label space is a subset of R and not

finite, leading to possibly very large discrepancies. More details about the difference between classification and

discrepancy are provided in Chapter 4.

2.2.3 Alternative approaches

The previous sections reviewed domain adaptation theory with tailored divergence. More traditional statistical dis-

tances have been proposed for domain adaptation, especially the Maximum Mean Discrepancy and the Wasserstein

Distance. We only present the framework for Maximum Mean Discrepancy and give an overview of other frameworks

as they are less related to our work.

Maximum Mean Discrepancy based Domain Adaptation

First we define the Maximum Mean Discrepancy.

Definition 8. Let Hk be a Reproducing Kernel Hilbert Space over a set X with associated kernel k. For two

distributions defined over X , The Maximum Mean Discrepancy is defined as

MMD(P,Q;Hk) = sup
f∈Hk

∣∣∣∣ E
x∼ps

[f(x)]− E
x∼pt

[f(x)]

∣∣∣∣ (2.20)

36

Maximum Mean Discrepancy is widely used as under the condition that the kernel is universal, every moment

of the distributions match. Moreover, an unbiased estimate from two samples SS = {x(1)
S , ..., x

(nS)
S } and ST =

{x(1)
T , ..., x

(nT)
T } can be derived as

M̂MD(SS ,ST ;Hk)2 =
1

n2
S

nS∑
i,j=1

k(x
(i)
S , x

(j)
S) +

1

n2
T

nT∑
i,j=1

k(x
(i)
T , x

(j)
T)− 2

nSnT

nS∑
i=1

nT∑
j=1

k(x
(i)
S , x

(j)
T) (2.21)

A common way to write this estimation is M̂MD(SS ,ST ;Hk)2 = Tr(KL) where K ∈ R(nS+nT)×(nS+nT) is the

kernel matrix induced by k on SS ∪ ST and L is defined by Lij = 1
n2
S

if xi, xj ∈ SS ; Lij = 1
n2
T

if xi, xj ∈ SS and

Lij = − 1
nSnT

otherwise.

With this metric, it is possible to derive a bound with a similar interpretation to the one based on divergence [94].

This bound holds for losses L : (y, y′)→ |y − y′|q for q > 0.

Theorem 8. Using previous notations, let H = {f ∈ Hk ; ‖f‖2 ≤ 1}. If L respects the triangle inequality and

‖l‖Hqk ≤ 1, with probability 1− δ over the samples SS and ST , we have for all h ∈ H

RT (h) ≤ RS(h) + M̂MD(SS ,ST) + λ+ 2

√
log 2

δ

2m
+

2

m

(
E
S∼ps

[
√
Tr(KS)] + E

T ∼ps
[
√
Tr(KT)]

)
(2.22)

where λ = minh∈H [RS(h) + RT (h)] .

Once again, the bound involves the source risk, the Maximum Mean Discrepancy between marginal distributions,

a term λ between labels and some complexity terms. The main interest of using the MMD instead of the divergences

lies in its easy estimation explaining why many methods are based on the MMD. MMD-based domain adaptation

also has been extended to other scenarios such as semi-supervised learning.

Other Frameworks

Bounds with Wasserstein distance inspired from Optimal Transport [179] have also been introduced [148] in the

same spirit as the ones from Maximum Mean Discrepancy as Wasserstein distance also is an Integral Probability

Metric. Indeed, for H = h : ‖h‖L ≤ 1 a set of Lipschitz-1 hypotheses, the Wasserstein distance can be computed as

W1(P,Q) = sup
h;‖h‖L≤1

|Ex∼P [h(x)]− Ex∼Q[h(x)]| (2.23)

A new line of work on PAC-Bayesian Domain Adaptation [73] [74] appeared. It is particularly promising as the

bounds involve terms on the expected shift between domains instead of a supremum as in the dH or the Discrepancy.

Namely, the bounds are tighter than the ones of Ben-David et al. (2010) [25], although only algorithms for linear

classifiers have been derived. Using Bayesian theory, it is also possible to encode some preliminary knowledge

about the relationships between domains in this new measure. Another popular measure of discrepancy between

37

domains has been the Rényi divergence, especially for domain adaptation with multiple sources [88] [123]. For more

details about those methods, we refer the interested reader to the book of Redko et al. (2019) [149].

2.2.4 Summary

Bounds for domain adaptation have been proposed under several frameworks and share some similarities. In order

to be able to generalize to a target domain, we need to learn an hypothesis that can

• Minimize the source risk

• Minimize a divergence between marginal probabilities

• If labels are unavalaible, assume that the ideal hypotheses on each domains are close. Otherwise, use them

to control the divergence between conditional probabilities.

Both divergence measures (dH∆H and its extension Disc) are nice tools for domain adaptation as they include

the problem at hand in the bound, and in the design of algorithms. But as they respectively involve a supremum

over H∆H or over two hypotheses, they require either an approximation (with dH for dH∆H) or a limitation in the

hypothesis space (to linear or kernelized regressors for instance) to be estimated.

Metrics such as the Maximum Mean Discrepancy do not suffer from the same issue. For this reason, many

methods are based on the MMD, even before the theoretical bounds were shown. But MMD is restricted to kernels,

which can be an issue for some applications. In the end, the choice of the metric for adaptation depends on the

nature of the problem.

In Chapter 4, we derive bounds based on a novel discrepancy measure between distributions. Similarly to

the original discrepancy, our bounds hold for both regression and classification problems. Moreover, we derive an

efficient way to integrate the discrepancy in the training of neural networks.

2.3 Existing approaches for Homogeneous Transfer Learning

The bounds seen in the previous section gave the intuition behind what quantities a method for domain adaptation

should try to control. Naturally, the question becomes how to use those bounds and what knowledge should one

transfer from the source to the target. Consider a fault detection problem with a source dataset made of several

wind plants monitored with some sensors that we want to transfer to a new target wind plant. In some cases, only

a few of the source wind plants operate in a similar environment to the target one. Then we would want to give a

higher weight to these specific source instances. Or it could be that the source and target datasets only share the

same distributions over some sensors. Then we would want to extract new features to align the domains. Finally,

38

without explicit assumptions on the nature of the transfer, one could use the source model parameters as an input

for the target model, either as initial parameters or as constraints. To summarize, we differentiate three categories:

• Instance-based domain adaptation: where an algorithm tries to select or re-weight the source data points

based on their relevance for adaptation

• Feature-based domain adaptation: where a feature transformation is performed on the source or target do-

mains to bring the domain closer

• Model-based domain adaptation: where the parameters of a model learnt on the source data are transferred

to the target model

For instance, the authors who proved the bound based on dH∆H based their algorithm for feature-based domain

adaptation whereas the authors of the seminal paper on discrepancy [121] based their algorithm on instance re-

weighting. Some methods are hybrid as they perform two of these adaptations at the same time.

2.3.1 Instance-based domain adaptation

Broadly speaking, instance-based domain methods aim to select or re-weight the source instances depending on

their relationship to the target. Namely, in terms of distributions, if we consider two domains DS = {X , PS(XS)}

and DT = {X , PT (XT)} with respective tasks TS = {Y, PS(YS |XS)} and TT = {Y, PT (YT |XT)}, the aim of those

methods is to find a weighting function w such that, for x ∈ X , PT (x) = w(x)PS(x) for unsupervised domain

adaptation or PT (y|x) = w(x)PS(y|x) for semi-supervised domain adaptation.

One can note that, under the assumption that PS(y|x) = PT (y|x), the target risk can be re-written as:

RT (h) = E(x,y)∼PT [L(h(x), y)] = E(x,y)∼PS

[
PT (x, y)

PS(x, y)
L(h(x), y)

]
= E(x,y)∼PS

[
PT (x)

PS(x)
L(h(x), y)

]
(2.24)

A straightforward solution is to directly estimate PS(x) and PT (x), and use w(x) = PT (x)
PS(x) as weights for the source

data, as was proposed in [192] [111]. This solution has two drawbacks: firstly, it requires that both distributions have

the same support, and small errors on low values of PS(x) gives high weights to undesire data points. Secondly,

the estimation of PT (x) may require a large number of points and is not related to the final prediction task. It is even

more the case for semi-supervised learning where estimating PT (YT |XT) is as complicated as learning a predictor

hT . Encoding this prediction task in the estimation of the weights may lead to more efficient methods.

39

Unsupervised domain adaptation

Discrepancy-based. Hence Mansour et al. (2009) [121] presented a re-weighting algorithm for linear regres-

sors with `2-loss. Namely, they consider a labeled source sample SS = {(x(1)
S , y

(1)
S), ..., (x

(ns)
S , y

(nS)
S)} and an unla-

beled target sample ST = {x(1)
S , ..., x

(nT)
T } with an empirical distributions p̂S = 1

nS

∑nS
i=1 1x(i)

S

and p̂T = 1
nT

∑nT
i=1 1x(i)

T

.

They define the re-weighted empirical source distribution as p̂S
′

=
∑nS
i=1 βi1x(i)

S

. Then the objective formulated to

compute the weights β with the discrepancy is:

min
β,‖β‖1≤1

Disc(p̂S
′
, p̂T ;H, `2) (2.25)

where H = {h : x → wTx | ‖w‖2 ≤ 1} and `2 : (y, y′) → (y − y′)2. With these choices of hypothesis space

and loss it is possible to show that the problem can be solved efficiently using semi-definite programming [121].

Later these results were extended to kernel functions with the generalized discrepancy [46], and using quadratic

programming to solve the problem: Generalized Discrepancy Minimization (GDM).

Kernel Mean Matching (KMM). Similarly, Maximum Mean Discrepancy can be used to compare domains. It

is proposed in [91] [78] where the formulated objective of KMM is

min
β,‖β‖1≤1

MMD(p̂S
′
, p̂T ;Hk) (2.26)

where k is a chosen universal kernel, typically the Gaussian kernel. With the empirical estimation of the Maxi-

mum Mean Discrepancy described in Equation 2.21, the objective can be formulated as

min
β,‖β‖1≤1

1

nS
βTKβ − 2

n2
S

κTβ (2.27)

where Kij = k(x
(i)
S , x

(j)
S) and κij = k(x

(i)
S , x

(j)
T) which can be solved as a quadratic program.

Kullback-Leibler Importance Estimation Procedure. The same kind of problem is formulated using Kullback-

Leibler divergence [168]. Namely, they assume that the weights can be computed as w(x) =
∑b
j=1 αlφl(x) where b

and {φ1, ..., φb} are hyperparameter of a chosen basis of functions. The adaptation problem then is

min
α

1

nS
KL(p̂S

′||pT) (2.28)

which can be formulated as

40

max
α

1

nS
log

(
b∑
l=1

αlφl(x
(i)
T)

)

subject to
nS∑
i=1

b∑
l=1

αlφl(x
(i)
S) = 1

(2.29)

This can be solved by gradient descent as the objective is convex.

Discriminative Learning. Bickel et al. (2007) [28] try to model the weights w(x) as the probabilities given by a

classifier trained to discriminate between domains. Namely, they learn a logistic regression classifier on source and

target data that outputs an estimate of the appartenance of a point to the target dataset. Then the weight given to a

source dataset is higher if it is considered likely to belong to the target data. An interesting point is the link that can

be made between this method and the dH distance.

Semi-supervised domain adaptation

Using previous methods. The previous methods can be extended to semi-supervised domain adaptation by

computing weights for each class, ie replace P (XS) and P (XT) by P (XS |YS) and P (XT |YT) in the objectives.

But this would require sufficient labeled data, hence, some methods are dedicated to semi-supervised domain

adaptation.

TrAdaBoost. In a traditional boosting algorithm, weak learners are learnt sequentially on a re-weighted training

samples [199]. At each step, higher weights are given to samples with high error. The TrAdaBoost algorithm [50],

uses a similar scheme to re-weight the source samples. Namely, at each step the source samples that are well

classified by the current learner are given higher weights. It is possible to show that the expected error made on

data drawn from the target domain is not higher than the one made by a learner using only labeled target data. Later

it was extend to TrAdaBoostR2 [140] for regression.

Summary

Those methods differ in the criteria on which the weights are computed. The MMD and discrepancy-based methods

lead to similar formulations and results. KLIEP suffers from the fact that the Kullback-Leibler divergence is not

defined when the support of PT is not included in the one of PS . TrAdaBoost is very powerful when labeled target

data is available but it is not the case of unsupervised domain adaptation.

In fact, the source and target probability distributions cannot be ”too far” from one another for those methods to

perform. For instance, if their support does not overlap, then the weights are very unlikely to have any meaningful

41

sense for adaptation. As such, the name sample selection bias used in [91] is adapted for this framework. We do

not expect these methods to work well when the domains are very different from each other.

2.3.2 Feature-based domain adaptation

Feature-based domain adaptation methods are the second large class of domain adaptation methods. They aim to

find a feature transformation of the input data that brings the domains closer. Namely, in terms of distributions, if

we consider two domains DS = {X , PS(XS)} and DT = {X , PT (XT)} with associated tasks TS = {Y, PS(YS |XS)}

and TT = {Y, PT (YT |XT)}, the aim of those methods is to find a feature extraction function φ such that, for x ∈ X ,

PT (φ(x)) = PS(φ(x)) (symmetrical feature adaptation) or two functions φ and φ′ such that PT (φ′(x)) = PS(φ(x))

(asymmetrical feature adaptation).

Feature engineering is key to the success of many machine learning applications and feature selection [80] is

often a necessary pre-processing step for many learning algorithms. Different types of methods exist for feature-

based domain adaptation.

Traditional Methods

Frustratingly Easy Domain Adaptation. One of the first methods [52] makes the assumption that some

features are only relevant for the source domain, some only for the target domain and some for both domains.

Then, one would want to ideally extract the common features to both domains. To do that, they augment the

feature space by duplicating the features and creating artificial source and target features: new variables are written

x′S = (xS , 0, xS), x′T = (0, xT , xT). Finally, a linear classifier is learnt based on those new variables. Hence, this

method requires labels in the source and target domains.

Moment-matching representation-based domain adaptation. Many methods aim to find a representation

that aligns some or all of the moments of the distributions. It is often done using Maximum Mean Discrepancy

(MMD), as it has been shown that when using a universal kernel, if the MMD between source domains and target

domains is zero, then the domains are perfectly aligned [79].

Transfer Component Analysis [139] proposes to extract features that minimize the MMD between both domains.

Namely, they use the empirical estimation of the MMD (Equation 2.21) MMD(XS , XT) = Tr(KL) to formulate a

kernel learning problem by introducing a parameter W ∈ R(nS+nT)×m and the associated kernel K̃ = KWWTK. In

order to learn the parameter W , they formulate the objective

42

min
W

Tr(WTW) + µTr(WTKLKW)

s.t. WTKHKW = I

(2.30)

where H = I − 1/(nS + nT)1nS+nT 1TnS+nT is a centering matrix. After solving the problem, one expects the

representations of source and target domains induced by the kernel k̃ to be aligned. This work was later extended

to semi-supervised domain adaptation [113] with Joint Distribution Adaptation. Later the Adaptation Regularization

transfer learning [114] framework proposed a unifying view on these methods.

CORrelation ALignment (CORAL) [170] proposes a similar objective by aligning second-order moment of the

distributions. Namely, it whitens the source distributions and ”re-colors” it with target covariance, which is similar to

aligning the distributions with MMD using a polynomial kernel of degree 2. Along with the extension to deep neural

networks [169], appears to give good results for many applications as a simple technique.

Subspace-based domain adaptation. Another very common assumption in domain adaptation is that while

the representations of the domains in the initial feature space are not aligned, there exists a subspace where source

and target data share the same distribution. From this assumption, different methods are proposed.

Geodesic Flow Kernel [76] is proposed as a method to align subspace representation of source and target data.

Namely, a PCA is performed onto the source and target data giving two subspaces. Then, using concepts from

Riemannian geometry, authors define a kernel to align both subspaces. This method is very dependent on the

choice of dimensionality reduction and can be extended to other methods than PCA.

Subspace Alignment [67] follows a similar idea and aims to align two domains. Authors aim to align the subspace

obtained from source data to the one obtained from target data. After representations are aligned a classifier is learnt

on the projected source data. It is later extended to semi-supervised domain adaptation [68] and refined in [6].

Domain Adaptation with Neural Networks

With the success of representation learning based on neural networks, domain adaptation methods is proposed

using neural networks. For instance, some methods based on autoencoders [75] [40] is proposed by simply learning

autoencoders on a combination of source and target data.

Domain-adversarial methods is introduced for domain adaptation in [72] and [4]. Authors propose domain ad-

versarial training for neural networks. Taking inspiration from GANs [77] they use a neural network to learn features

that are discriminative for the task at hand and for which domains cannot be separated by a classifier.

The way it is done is the following: the first section of the network is used as feature extractor. Then, the

network is separated into two branches: a predictor and a discriminator. The predictor learns to classify well the

43

Figure 2.4: Domain Adversarial Neural Network (figure from [72])

source examples whereas the discriminator learns to discriminate between domains. Then the gradient feeded to

the feature extractor is reversed, so that it maximizes the discrimination loss between domains.

This method can be linked with the bound based on dH seen in the previous section. Numerous methods have

been proposed for domain-adversarial training of neural networks, including one of the contributions of this thesis.

Hence, we give a more extensive discussion and comparison in Chapter 4.

Summary Those methods differ in the criteria chosen to extract common features for both domains. Maximum

Mean Discrepancy is a very popular tool as it allows a straightforward use of kernels and an empirical estimation.

Divergence-based methods were less popular as their empirical estimation is hard in general. The recent surge of

adversarial learning encouraged new methods using this criteria.

For those methods, the source and target datasets can be far from one another on their initial feature repre-

sentation. Using a projection on a smaller subspace, may it be linear or based on a more complex structure, one

expects to be able to find representations that can be discriminative (able to minimize the source risk) and where

domains are aligned (able to minimize the difference between domains).

2.3.3 Alternative methods

Here, we mention other popular methods that do not fall in one of the previous categories.

Optimal Transport. Optimal Transport is a long-standing problem in mathematics finding applications in many

fields. It has been proposed by Courty et al. (2017) [47] as a tool to learn how to transport data from a source

domain to a target domain. Namely, given two samples XS and XT , the Optimal Transport Domain Adaptation

(OTDA) problem is formulated as finding the transport map T from XS to XT . Then, a classifier learnt on T (XS)

should perform well on XT . An extension to semi-supervised learning has been proposed using a regularization

44

term.

Hypothesis Transfer. Hypothesis transfer learning is only applicable for semi-supervised domain adaptation.

It assumes the existence of an hypothesis hS learnt on source data which one wants to transfer to a small labeled

target sample, meaning that the source data is not available for adaptation. Tommasi et al. (2010) [172] propose the

LS-SVM Adaptation for the semi-supervised adaptation. First an SVM is learnt on source data and then the model

for the target data is constrained to be close to the source model by constraining its parameters with an `2-norm.

This idea is close to the models from multi-task learning [37].

Several models propose to refine a model learnt on source data. An early example of such method is the

Adaptive SVM: Yang et al. (2007) [187] propose to add a regularization term based on target data to an SVM learnt

on source data. Later, the DA-SVM [35] first learns an SVM on the source data and then iteratively adapts the

margins based on the target data, in a semi-supervised fashion.

More recently, fine-tuning a neural network trained on a large related dataset on a smaller target domain has

been very successful for image or text data. Namely, the idea is to freeze or constrain the first N layers of the

network learnt on the source data and only fine-tune the other layers using target data. As such, this method

is hybrid between hypothesis transfer and feature transfer as the feature transformation is included in the neural

network. In [191], authors empirically study the transferability of image representations learnt on the ImageNet

dataset. There are few theoretical studies about why this fine-tuning works and how it should be done but these

techniques have been key to the recent surge of deep learning approaches. We give a more detailed overview of

such methods with insights for time series in Chapter 3.

2.3.4 Summary

Following the theoretical works presented in Section 2.2, many transfer learning methods aim to minimize the distri-

bution differences between domains, either by transferring instances, representations or hypotheses. We summa-

rized those characteristics in Table 2.1. This overview presented general methods, but application-specific methods

have already been developed and expert knowledge can largely enhance the performance of adaptation.

A question that has rarely been studied is the question of negative transfer ie when a domain adaptation algorithm

A returns an hypothesis that gives a larger target risk than the hypothesis learnt on the target labeled sample. One

of the reasons is that a large number of theoretical and empirical works tackle the unsupervised case where negative

transfer cannot be evaluated. Some algorithms have been proposed in the semi-supervised case [184] to limit the

possibility of negative transfer.

45

Method Criteria Class Needs labeled target data?
GDM (2015, [44]) Disc Instance No
KMM (2007, [91]) MMD Instance No

KLIEP (2008, [168]) KL Instance No
Discriminative Learning (2007, [28]) Sim to dH Instance No

TrAdaBoost (2007, [50]) Target error Instance Yes
FEDA (2009, [52]) None Feature Yes
TCA (2011, [139]) MMD Feature No
JDA (2013, [113]) MMD Feature Yes

ARTL (2014, [114]) MMD Feature No
CORAL (2016, [170]) Correlation Feature No

GFK (2017, [76]) Subspace alignment Feature No
SADA (2013, [67]) Subspace alignment Feature No
JSADA (2015, [68]) Subspace alignment Feature Yes
MSDA (2011, [75]) None Feature No
DANN (2016, [72]) dH Feature No
OTDA (2017, [47]) Wasserstein OT No

A-SVM (2007, [187]) Margin Hypothesis Yes

Table 2.1: Summary of reviewed methods

2.4 Learning from Multiple Sources

In this subsection, we present an overview of methods for learning from multiple sources. Different sub-categories

exist in the literature, each one of them corresponding to a different scenario:

• Multi-Task Learning: this is the case when several tasks are learnt at the same time with labeled samples, with

the objective to minimize the average risk over all tasks.

• Domain Generalization: this corresponds to the ability of a model learnt on several domains to generalize well

to a target domain that is not available at training time for adaptation.

• Multi-Source Domain Adaptation: this corresponds to the domain adaptation with several source domains with

labeled data and a target domain with limited or no labeled data, with the objective to minimize the risk over

the target domain.

This setting is different from the single-source domain adaptation as each source domain can be used to learn

how to transfer. For instance, if we give ourself K source domains, then one hopes to find invariants between

domains or can use a leave-one-domain-out procedure to perform cross-validation for instance.

For domain adaptation, a simple method would be to merge all the source domains to create a large single

source domain. This would work under the assumption that the source domains are the same. But in many real

world scenarios, some source domains share more similarities with the target domains. For instance, one would

expect that the representations learnt from consumption data in cold areas of France would be more useful than the

ones from warm areas of France to adapt to a target domain made of a neighbourhood from a cold area. Hence, the

question of how to select or combine source domains for domain adaptation has been studied in the recent years.

46

We first present multi-task learning and domain generalization together as they are related. Then we present

multi-source domain adaptation methods.

2.4.1 Multi-Task Learning and Domain Generalization

Framework

Multi-Task Learning. Introduced in [37], multi-task learning (MTL) aims to leverage on information from differ-

ent but related tasks. The framework assumes the existence of K domains D1, ...,DK with K tasks T1, ..., TK . In

this work, we only present homogeneous multi-task learning, ie X1 = ... = XK and Y1 = ... = YK . Unlike domain

adaptation, no target domain is defined and each source domain is considered as a target domain. We introduce a

common representation bias φ : X → Z and a class of predictors H : Z → Y. Then, noting Hφ = {h ◦ φ ; h ∈ H},

the objective of multi-task learning is to minimize the average risk over every source domain

RMTL(Hφ) =
1

K

K∑
k=1

min
h∈H

E
(x,y)∼Pk

[L(h ◦ φ(x), y)] (2.31)

Domain Generalization. Domain Generalization (DG) is related to multi-task learning as it also aims to learn

common knowledge from different domains. Formally, this framework assumes the existence of K domains and

tasks D1, ...,DK = with K tasks T1, ..., TK defined over the same sets X and Y. We call P the set of distributions

over X ×Y. Then domain generalization assumes that every joint distribution Pk(Xk, Yk) is drawn from a distribution

µ ∈ P. Similarly to MTL, we introduce a common representation bias φ : X → Z and a class of predictors

H : Z → Y. Then, noting Hφ = {h ◦ φ ; h ∈ H}, the goal of domain generalization is to minimize the risk over any

possibly unseen domain drawn from µ

Rµ(Hφ) = EP∼µ
[
min
h∈H

E
(x,y)∼P

[L(h ◦ φ(x), y)]

]
(2.32)

One can see that the risk of multi-task learning is a biased estimator of the risk of domain generalization. In our

definitions, we included the common representation bias φ for more clarity but in more general definition, it is absent

from the hypothesis class and only implicit. Hence, solving the multi-task learning or domain generalization problem

comes back to learning the common bias between every source domains.

Domain generalization bounds

A first question is: why do multi-task learning and domain generalization work? In [22], Baxter proved a formal

generalization bound between RMTL and Rµ using covering numbers and get a bound of the form Rµ ≤ RMTL + ε

where ε depends on the number of domains K, the number of labeled samples n and the complexity of the class

47

Hφ. From the main theorem of this work, one can deduce that if the number of domains K and the number of

labeled samples n per domain are sufficient, then any learner that learns the representation bias φ can bound the

generalization error. This also means that it is possible to have an estimate of the ability of such a bias to generalize

to an unseen domain using the K available domains. Moreover, they also show that the number of training examples

per domain required to get a tight generalization bounds decrease as the number of domains grows, which confirms

the intuition that leveraging from different domains helps to learn a good hypothesis. Finally, they show how it applies

to feature maps learnt with neural networks.

This work confirms many of the intuitions proposed in the seminal work of Caruana [37]. Namely, those intuitions

can be summarized as the fact that the different tasks share the same important features. Then multi-task learning

helps each domain to learn those features with auxiliary data coming from the other domains. This ability to transfer

features via sparse coding has also been proven in [125] [115].

Methods for MTL and DG

Block-Regularization. The main line of work of multi-task learning is to enforce a regularization between the

different hypotheses learnt on each domain. In general, it takes the form of block regularization, as in [63] [10].

Authors propose a sparsity constraint between tasks with linear classifiers in the form of an `1/`2-norm. Namely,

given K samples Sk = {(x(1)
k , y

(1)
k), ..., (x

(n)
k , y

(n)
k)} with x ∈ Rd and y ∈ R, they propose the following objective

min
W∈RK×d

K∑
k=1

n∑
i=1

L(y
(i)
k , wTk x

(i)
k) + λ‖W‖22,1 (2.33)

where ‖W‖22,1 =
∑d
i=1‖wi‖2 enforces a sparsity in the columns, ie only a few features are selected for every

domain. This regularization has been very popular for multi-task learning and has been extended with block-sparse

dictionary learning [134] and other sparsity constraint such as hierarchical constraints [12] or mixed sparsity con-

straints [97].

Low-Rank assumption. Opposed to the sparsity constraint, some methods propose to use a low-rank as-

sumption, ie the domains share parameters lying on a same subspace. Those methods can broadly be summarized

with the framework of [8] for each task as wk = uk + Avk where uk ∈ Rd is a domain-specific parameter and

A ∈ Rd′×d with d′ << d is a shared subspace between every domain. This low-rank assumption has later been

made using a trace-norm regularization [145].

Parameter sharing. Using neural networks, multi-task learning takes the form of parameter sharing. Namely,

the common bias learner φ is made of the first layers of a neural network, while final predictors h1, ..., hk are different

48

for every task, as proposed in [22]. From there, other methods have proposed different ways of mixing the common

bias, for instance via a regularization between the common layers [60].

Learning Task Relationships. Some methods make the assumption that all the tasks do not share the same

relationships with each other, and that they are organized in clusters. Two main lines of work tackle this scenario:

a first line of work first clusters the tasks based on a given criterion and then uses multi-task learning on these

different clusters. Another line of work performs both clustering and multi-task learning at the same time. Many of

these methods perform a clustering on the parameters of each task such as in [96]. Other methods use hierarchical

sparse coding to learn a hierarchical clustering structure for multi-task learning [200] [82].

Causality. Another related topic is causality [142]. While the formalism of causality is slightly different from

domain generalization, it shares some similarities. In general, searching for causality relationships between different

variables comes back to finding invariant relationships when changing environments. This link has been studied in

[154] where authors try to find the features that are invariant to a change of domain. The derived algorithm is not

scalable and the hypothesis for it to work make it hard to use in practice but this is a promising line of work.

Summary In this section, we presented multi-task learning and Domain Generalization, which are related to Do-

main Adaptation. We saw that it is possible to learn from multiple domains to generalize to a new domain without

adaptation. Different models were proposed to learn what is the common knowledge shared in different tasks. Now,

similarly to what single-source domain adaptation tries to tackle compared to out of sample generalization, multi-

source domain adaptation raises the issue of adaptation to a new domain when a sample from this new domain is

available.

2.4.2 Multi-source domain adaptation

Framework Domain Adaptation with Multiple sources (MSDA) assumes that K source domains D1, ...,DK are

available with a target domain DT with associated tasks T1, ..., TK , TT . Once again, we only present homogeneous

transfer learning, ie X = X1 = ... = XK = XT and Y = Y1 = ... = YK = YT . For each source domain, a labeled

sample Sk = {(x(1)
k , y

(1)
k), ..., (x

(n)
k , y

(n)
k } is available. For unsupervised MSDA, the target domain does not have a

labeled sample, whereas for semi-supervised MSDA, the target domain has a small labeled sample and possibly a

large unlabeled sample.

Domain Selection A first class of methods assume that not every domain is useful for the adaptation and aims

to select the best domains. Indeed, transferring from unrelated domains can lead to negative transfer [155]. In [48]

authors propose a theory to select the K∗ best sources based on a convergence bound. Then they use the average

49

of the classifiers learnt on each selected source as the final classifier. Recently, authors of [20] proposed a source

selection method based on distance between domains. We will see that those methods can be seen as a special

case of the combining methods with binary weights.

Combining domains Another class of methods assumes that the domain distributions can be combined with a

linear combination. In [25], authors introduce the α-weighted source domain as Dα = {X , pα} such that pα =∑K
k=1 αkpk with

∑K
k=1 αk = 1 and αk ≥ 0. Then it is possible to prove a bound on the target risk of a minimizer

ĥα ∈ H of the α-weighted source risk R̂α(h) =
∑K
k=1 αkR̂k(h) similar to the bound 2.16:

Theorem 9. Using the previous notations, if h∗T = minh∈HRT(h), then with probability 1 − δ over the sampling K

samples of size m {S1, ...,SK}, we have

RT(ĥα) ≤ RT(h∗T) + dH∆H(Dα,DT) + 2γα + 4

√√√√(K∑
k=1

α2
k

)(
V CH log (2m)− log δ

2m

)
(2.34)

where γα = minh∈H

[
RT(h) +

∑K
k=1 αkRk(h)

]
.

From this theorem, we can conclude that learning weights that minimize the divergence between domains

dH∆H(Dα,DT) helps for domain adaptation. After the weights are learnt, one only needs to learn one hypothe-

sis on the re-weighted domain. Such an approach was used in [39], where the weights α were learnt using a

manifold regularization. One work of this thesis [152] develops a similar framework.

Combining models Finally, a last class of methods combines models with weights. For instance, in [122] authors

show that if the target distribution can be written as a mixture of every source distribution (ie PT =
∑K
k=1 αkPk),

then the hypothesis h̃α : x→
∑K
k=1

αkPk(x)∑K
l=1 αlPl(x)

hk(x) is such that RT(h̃α) ≤ maxkRT(hk). While this bound is quite

loose, it means that with this re-weighting, one cannot learn a worse hypothesis than by selecting one of the hk,

which does not hold for the linear combination
∑K
k=1 αkhk.

In [88], authors extended this work with the Rényi divergence and derived an algorithm to find these weights when

they are unknown. A weighting scheme of predictors learnt on each domain was also proposed by using weights

that represent the likelihood of each source sample to come from the target distribution, as in [171]. Another work

[196] used the bound 2.16 for multiple source adaptation by iteratively adapting a neural network to the domains

that is the furthest using adversarial learning. While counter-intuitive, this method works when there is no source

domain that is far from the target domain ; otherwise, it is subject to negative transfer.

Summary The most common way to combine sources to adapt to a target is to linearly combine them. This

combination can be done using the distributions or predictors learnt on each hypothesis. As was shown in the

bound of Theorem 9, to avoid negative transfer a low weight must be given to domains far from the source. This is

50

Figure 2.5: Scenarios of Transfer Learning with or without multiple sources

what source selection aims to do by giving a 0 weight to sources that would bring negative transfer. Finally, one can

also directly use the methods from multi-task learning and domain generalization without further adaptation, which

would work when every domain shares the same relationship with the task.

2.5 Conclusion

Figure 2.5 presents a synthetic view of the methods reviewed in this Chapter. Transfer learning is a very large field

and some methods are missing from the review, but we focused the most relevant subfields for the work of this

thesis. We observe that there are many ways to adapt, both from a theoretical point of view, but also depending on

what kind of data is available.

In the computer vision and natural language processing (NLP) communities, the most popular transfer learning

methods are based on fine-tuning a publicly available pre-trained neural network to the small target dataset [191,

188]. While empirical results are extremely good, new research on the theoretical understanding of this method

would greatly contribute to the field.

Clearly, a large pre-trained neural network is not available for every applications and more traditional methods

are still popular. For instance, [129] propose a tree-based transfer learning model for fall detection by transferring

from actors to elderly people or Ma et al. (2015) [117] use TrAdaBoost [50] to estimate dust aerosol based on

satellite images by transferring from one satellite to another.

In the next Chapter, we review time series representations. Indeed, transfer learning is largely dependent on the

51

representation or the data. As one wants to match source and target distributions, it is necessary to define good

source and target features, which is not straightforward for time series.

52

Chapter 3

Deep Time Series Representations for

Non-Intrusive Load Monitoring

Contents

3.1 Background on Time Series Representations . 55

3.1.1 Framework . 55

3.1.2 Overview of Univariate Time Series Representations . 55

3.2 Transferability of Deep Time Series Representations . 58

3.2.1 Deep Time Series Representations . 58

3.2.2 On Transferability of Deep Time Series Representations . 61

3.3 Transfer Learning in Non Intrusive Load Monitoring . 61

3.3.1 General presentation . 61

3.3.2 Review of methods . 63

3.3.3 Datasets . 64

3.3.4 Problem formulation . 66

3.4 Time Series Normalization for Invariant Appliance Recognition 68

3.4.1 Global and z-normalization . 68

3.4.2 Normalization for appliance consumption . 70

3.4.3 Model . 72

3.5 Experiments on NILM Datasets . 73

3.5.1 Preprocessing and Methods . 74

3.5.2 Same House . 77

3.5.3 Cross-House Results . 77

53

3.5.4 Cross-Dataset Results . 79

3.5.5 Discussion . 81

3.6 Conclusion . 82

Studying household consumption device by device is a long-standing issue in machine learning applications for

energy. It could potentially enhance the predictability of electricity consumption, which would lead to a reduction

in electricity waste to help mitigate climate change and increase the efficiency of the energy industry. Moreover,

household electricity consumption is a key factor for many applications of EDF as predicting the consumption is

necessary to adapt the production. With the deployment of smart meters for electricity consumption in France, one

could hope to extend the analysis made of a client’s consumption, for instance for customized contract to give them

incentive to smooth their consumption.

As detailed below, collecting data on each device in each household is costly. It means that many datasets have

been collected over separate experiments and therefore they are not homogeneous. The absence of large and

clean datasets makes hard to learn very general features, as there is a huge variety of households, devices and

consumer behaviours. Transferability from a household to another is not guaranteed and we present in this thesis

solutions to improve transferability between households.

Time series analysis is firstly reviewed, with a special interest on deep time series representations and their

transferability. The issue of Non Intrusive Load Monitoring is then presented along with details explaining why

Transfer Learning is required. Finally we present different datasets, both collected at EDF during this thesis and

public datasets.

This work first focuses on the sub-problem of appliance recognition: from the consumption data of one appli-

ance, is it possible to recognize the nature of the appliance? We observe that for this problem, there is already a

performance drop if the algorithm is learnt on some appliance models then applied to recognize new unseen models

of the same appliances.

To mitigate this issue, we propose a novel deep-learning based method with a simple time series normalization

solution that allows to learn more invariant features for appliance recognition. Extensive experiments are conducted

on different datasets and show the benefits of our approach.

This chapter is partly based on two works published in two conferences:

• G. Richard, G. Hébrail, M. Mougeot and N. Vayatis. ”DenseNets for Time Series Classification: towards

automation of time series pre-processing with CNNs.” MiLeTS19SIGKDD 25th ACM SIGKDD International

54

Conference on Knowledge Discovery & Data Mining (KDD’2019)

• G. Richard, B. Grossin, G. Germaine, G. Hébrail and A. de Moliner. ”Autoencoder-based time series clustering

with energy applications.” Conférence sur l’Apprentissage Automatique 2018 (CAp 2018).

3.1 Background on Time Series Representations

A time series is an ordered sequence of values of a variable observed at given time intervals. Time Series Analysis

is a long standing field as time series arise in many real world data: weather, finance, audio processing, energy,

... Many methods have been proposed for various tasks on time series data, such as classification, forecasting,

clustering, ... The time dependency makes the analysis of this data a real challenge. Moreover time series generally

are high dimensional and subject to noise.

This time-dependence and high dimensionality requires to find new representations to use instead of raw time

series. After presenting the general definitions and notations, we review some classical time series representations

methods for machine learning applications such as classification and regression.

3.1.1 Framework

A time series is generally defined by a sequence of ordered points taken at successive timestamps. Namely it is a

sequence {Xt1 , ..., Xtn} where t1, ..., tn are the sampling times and X is a vector. When the sampling times are

regular, ie t2 − t1 = t3 − t2 = ... = tn − tn−1, one can define a multi-variate time series as an ordered sequence of

vectors X = [X1, ..., XT] ∈ Rd×T where d is the dimensionality of the time series and T its length. For instance, in

industrial system monitoring, d is the number of sensors. When d = 1, we speak of univariate time series.

We consider the problem of time series binary classification but these feature engineering methods can be ex-

tended to regression or clustering. This means, that in general, we have a dataset X = {(X(1), y(1)), ..., (X(n), y(n))}

where X(i) ∈ Rd×T is a time series and y(i) ∈ {0, 1}. Moreover, we assume the different X(i) to be i.i.d.

The time-dependence of time series means that simply treating each point as a separate feature and apply

multivariate data analysis would be sub-efficient. Hence, different feature transformations have been proposed to

include the time-dependence.

3.1.2 Overview of Univariate Time Series Representations

In this section, we only consider uni-variate time series as we focus on applications on (uni-variate) electricity

consumption in Chapter 3 and Chapter 4. Some of the methods presented below can be extended to multivariate

time series. In the following we denote a time series dataset X = {(X(1), y(1)), ..., (X(n), y(n))} where X(i) ∈ RT .

55

Figure 3.1: Euclidean Distance vs Dynamic Time Warping

Time Series Distance

Even if distances are not feature representations, they are a popular tool for time series classification, and stress

why defining specific tools for time series is important [58]. A first possible distance to compare two time series is

the traditional Euclidean distance:

d(X(i), X(j))2 =

T∑
t=1

(X
(i)
t −X

(j)
t)2 (3.1)

The issue with this distance is that it is not robust to time shift in the data: for instance, in Figure 3.1, a small

temporal is present between the plotted time series. The Euclidean Distance is high as it is calculated time stamp by

time stamp. Hence, Dynamic Time Warping [26] was proposed to allow some temporal shifts in the data. Namely,

to compute the distance between two time series X(i) and X(j), a path W = {w1, ..., wK} is defined such that

w1 = (1, 1), wK = (T, T) and for wk = (t, s) and wk+1 = (t′, s′), we have t ≤ t′ ≤ t + 1 and s ≤ s′ ≤ s + 1. If we

defineW the set of paths that respect these conditions, the Dynamic Time Warping distance is defined as:

dDTW (X(i), X(j)) = min
W∈W

K∑
k=1

(X
(i)
twk
−X(j)

swk
)2 (3.2)

This is solved by dynamic programming and allows for shifts as showed in Figure 3.1. Dynamic Time Warping is

still considered a very strong baseline for uni-variate time series classification and pattern retrieval [58]. The main

issue of Dynamic Time Warping is its computation time although numerous methods propose tricks to accelerate its

computation [132].

Statistical features

A very common way to extract features from time series is to use its statistical features. Feature mapping has been

extensively studied for time series analysis. Nanopoulos et al [133] propose a method where different statistical

features from time series are extracted for classification. These features are similar to these used in exploratory

56

data analysis such as mean, variance, skewness, kurtosis, minimum, maximum, percentiles, ... at different orders

(features extracted from St+D − St where D is a user-defined value).

Classically, the strong assumption made for such transformations is that the time series respect stationarity,

which means the distribution of successive data points does not change over time. Wide Sense Stationarity is more

widely used where only the first and second order moment of the distribution must stay constant.

These conditions are rarely respected in real-world applications but this kind of feature transformation is still a

strong baseline. A way to circumvent this issue is proposed in [23] where authors propose a bag-of-features model

by extracting features from subsequences with a sliding window. While the whole time series is not stationary, one

could expect smaller subsequences to be.

This class of methods is very useful as an exploratory tool. Indeed, it is generally easy to use and can be used as

a first baseline. Moreover for many classifiers, the method is interpretable as feature importance can be analyzed.

Finally it is possible to create features for specific problems with expert knowledge, enhancing the performance of

the method.

Dictionaries

Fixed Dictionary For many signal analysis application, designing a basis on which to decompose the signal

allows to find relevant patterns. For simplicity we only present some basis function often used as a pre-processing

step for machine learning applications. For our applications, we summarize these methods as follows:

• Choose a basis of functions D ∈ RT×T

• Project X on D ie X = X̄D with X̄ ∈ RT

• Use coefficients X̄ as features.

In general, links can be made with functional analysis [147] where time series are treated as a function. Fourier

basis [31] for frequency analysis and Wavelet basis [119] for scale and frequency analysis are very popular methods

for time series analysis. For electricity consumption, spline basis has been used successfully [186]. Coefficients

obtained from such decomposition are applied successfully for time series classification in [161] [160] where the

spectrogram is used to create a symbolic representation of the time series.

Dictionary Learning For the method presented before, the functional basis is pre-defined, based on an insight

on the underlying nature of the signal. It is also possible to learn it using dictionary learning [3]. In general, finding

a basis to decompose a signal is an underdetermined problem so one has to guide the learning to find appropriate

solutions.

57

We consider a dataset X ∈ Rn×T of n time series of length T . In general, the basis D ∈ Rf×T to learn can

be overcomplete (f >> T) or undercomplete (f << T). When the base is overcomplete, a sparsity constraint is

imposed on the coefficients, for instance

D̃ = min
D
‖X −AD‖2 + λ

n∑
i=1

‖Ai‖1 (3.3)

Efficient solutions have been proposed to solve this problem [118]. Undercomplete dictionary is also often called

matrix factorization [109]. In general, overcomplete dictionaries are useful for signals that can be decomposed by a

small number of a large collection of patterns and undercomplete dictionaries for signals that are a combination of

a small number of common signals [59].

Auto-regressive models

Other typical features for time series data are derivated from autoregressive models: one of the most popular is the

AutoRegressive Moving Average (ARMA) model. It states that the time series follows the following model :

St = C + εt +

p∑
i=1

φiXt−i +

p∑
i=1

θiεt−i (3.4)

where p and q are hyperparameters, ε. are white noises and φ. and θ. are the parameters of the models that

have to be fit on the time series. These two set of parameters are then used as features, such as in [13].

3.2 Transferability of Deep Time Series Representations

3.2.1 Deep Time Series Representations

Deep Learning has been very popular in recent times for unstructured data such as images or text, finding appli-

cations in object recognition [103], text translation [177] or text generation [162]. Hence, some architectures are

designed specifically for time series, reviewed in [65]. The two main architectures are convolutional neural networks

(CNN) and recurrent neural networks (RNN). Deep neural networks simultaneously learn representations and a

classifier.

Broadly speaking, RNNs are networks learning from sequences, where each neuron feeds the next one with a

memory parameter so that prediction at time t depends of the whole sequence. RNNs are extremely popular for

NLP applications where state-of-the art methods are based on recurrent neural networks. For time series, they are

rarely applied for several reasons. Firstly, typical time series are very long, and methods such as Gated Reccurent

Unit (GRU) [42] or Long Short Term Memory (LSTM) [87] struggle to handle long sequences. Secondly, time series

58

(a) Convolutional Neural Network
(b) Recurrent Neural Network

(c) Temporal Convolutional Network

Figure 3.2: Different architectures for time series classification

are often subject to noise where text data has in general a better structure. Some RNN are proposed for time series

[71] but appear to be underperforming in general [65].

CNNs are similar to typical neural networks but use convolutional layers, meaning that these layers keep some

temporal information from the input. This kind of layers can help to identify discriminative patterns in time series, as

for the popular shapelet method [190]. Links have also been established between convolutional neural networks and

wavelet analysis [120]. CNNs are very popular in computer vision, with popular architectures such as AlexNet [103]

or VGG16 [165]. They are generally made of convolutional layers and fully connected layers defined as follows: a

fully connected layer (also called dense layers) takes an input z ∈ Rn and transforms it into an output y ∈ Rl through

an activation function σ :

y = σ(Wz + b) (3.5)

where W ∈ Rl×n and b ∈ Rl are respectively the weight matrix and the bias of the layer to be learned. Similarly

a convolutional layer is defined by a transformation :

yi = σ(

r∑
j=1

Wjz1+(i−1)s+j + bj) (3.6)

59

where W ∈ Rr and b ∈ Rr are respectively the kernel matrix and the bias of the layer to be learned with kernel

size r and stride s. For a classification task, convolutional layers are stacked before using fully connected layers

for prediction. The parameters of the network are then trained in an end-to-end fashion by minimizing a loss L

on training samples and using feed-forward backpropagation. More details about neural networks can be found in

Appendix A.

The temporal structure of a time series is taken into account in a CNN as the convolutions keep temporal

information as shown on Figure 3.2. From classical CNNs, many works tried to derive specific architecture for

time series. Fully Convolutional Networks [183], Multi-scale Convolutional Neural Network [49], LeNet [106] are all

proposed based on traditional neural networks architectures. Current state-of-the-art methods1 on the popular UCR

dataset [51] for time series classification are ResNet [183] and DenseNets [151] (see Section 3.4) which are both

methods including skip connections.

In order to better take into account the temporal nature of the data, temporal convolutional network (TCN) [14]

have been proposed as an extension of WaveNet [137]. They extend the notion of CNN by including causal dilated

convolution. Using causal convolutions means that, at layer k, the neuron at position t only receives information

from neurons at position j < t at layer k − 1:

yi =

r∑
j=1

Wjxi−jd (3.7)

where r is the kernel size and d the dilation rate. In Figure 3.2, one can observe that TCN is hybrid between CNN

and RNNs.

Finally, CNN can also be used for feature extraction in an unsupervised way with autoencoders illustrated in

Figure 3.3. Autoencoders are a class of unsupervised methods used to learn a new data coding. Deep autoencoders

has led to numerous works in recent years and gave promising results for time series analysis [105]. In Appendix B,

we show an application of autoencoders for consumption clustering.

Figure 3.3: Convolutional Auto-Encoder

1Better results can be obtained using ensembling such as [112] [66]

60

3.2.2 On Transferability of Deep Time Series Representations

A reason for the popularity of deep learning in image and text is that the transferability or generalization ability

of representations learnt on large datasets, such as ImageNet [56] for computer vision or Word2Vec embeddings

learnt on Twitter feeds [144] or a mixture of large corpus [57]. With a small number of labeled images, one can use

an architecture such as AlexNet to fine-tune the network as mentioned in Section 2.3.3. This idea is the key to many

sucessful applications of deep learning techniques today, as learning such architectures require a large amount of

data.

A natural question is: can one find such large architecture and representations for time series? The question has

been studied in recent works. Fawaz et al. (2018) [64] use the UCR archive to empirically study the transferability of

pre-trained neural networks. They observe that in general, transferring from one dataset to another lead to negative

transfer but if the source dataset is well chosen, it can improve the classification accuracy.

One must note that the UCR archive is made of datasets of time series of various length and coming from very

different fields: some are shapes transformed to time series, others come from medical applications (EEG/ECG),

others are electricity consumption, ... Moreover, the size of the datasets is generally small, between 20 and 8926

time series with only 11 out of 128 datasets made of more than 1000 time series. As a comparison, the ImageNet

dataset is made of more than 14 million images. UCR archive is currently the largest database for time series

classification and a very useful tool to experiment a new method, but is not suited to assess the transferability of

pre-trained neural networks. One could even argue that with datasets made of 16 time series, most neural network

architectures would be prone to overfitting.

In summary, the results on transferability of pre-trained neural networks obtained in computer vision are hard to

assess for time series, mainly for the lack of a ImageNet-like time series database. Intuitively, we still expect that

given a large dataset of time series coming from a specific application (consumption data in France for instance),

one could hope to learn a deep CNN on this dataset and use this pre-trained CNN on a similar dataset (consumption

data in Belgium for instance). For instance, Song et al. (2019) [166] tried to collect such a dataset for gait movement

data. With limited data, there is a need for more advanced transfer learning methods than fine-tuning from a pre-

trained neural network.

3.3 Transfer Learning in Non Intrusive Load Monitoring

3.3.1 General presentation

Non Intrusive Load Monitoring (NILM) is the field of analysis of the consumption of electric appliances in a house-

hold. It is introduced by Hart (1989) [85] as the process to analyze changes in the voltage of different appliances

with the goal of knowing which appliances are turned on or off.

61

Generally speaking, the goal of NILM is to the disaggregation of the load curve of a household. Formally, if

we call X ∈ RT the total consumption of a home over a period T , the goal of NILM is to predict the consumption

at each timestamp of each appliance in the household Y = [X1, ..., XA] where A is the number of appliances

(generally unknown). One can note that the whole consumption is equal to the sum of the sub-consumptions of

each appliance, hence NILM is similar to a source separation problem.

As such this is a very hard problem for several reasons. Firstly, to solve it perfectly, one must know every

appliance in a home. It is almost impossible as some appliances such as phone charges are not plugged all the

time. In general, one only considers some high-consuming appliances such as washing machine, dishwasher,

electric heater, water heater, ... Secondly, the problem of source separation is known to be already hard when the

number of measured signals is the same as the number of sources. Here, we only have one output signal.

As presented in Figure 3.4, many interesting sub-problems exist for Non Intrusive Load Monitoring. The most

basic problem is to know if an electric appliance can be recognized from its own consumption. This is known as

appliance signature recognition, where a signature is a single cycle of consumption of an appliance. A more com-

plicated problem is to detect if an appliance is turned on or off at a given timestamp. This is often formulated at

a sequence classification by considering a window around the timestamp. More complicated is to predict the con-

sumption of an appliance for a given time window. For instance one could consider the problem of predicting the

daily consumption of a fridge from the whole house consumption over a day. These sub-problems are simpler to

solve than the original disaggregation and are sufficient for many applications. Moreover, the complete disaggre-

gation of the consumption of a household raises the issue of privacy. Solving simpler problems might mitigate this

privacy issue.

Data collected for NILM can take two forms that lead to very different methods. The first class of data collected

is made of only power measurements at a sampling of a second or more. This can be done using a smart meter to

monitor house consumption and specific plugs for each device. The other class of data are high frequency (higher

than 1000Hz) measurements of power and/or voltage. This allows to work on both active and reactive power and to

detect appliance activations using their complex impedance.

In this work, we focus only on the first class of data, as it is the data collected in the experiments led by EDF.

Moreover, most houses are not equipped with high frequency sensors, so the applicability of such methods is limited.

Such methods seem more suited for commercial and industrial buildings, where the energy saved can be worth the

investment.

Appliances are often categorized in four categories:

• On/Off appliances: these appliances are manually turned on or off and have two states, such as lamps,

computers, TVs, ...

• Finite State appliances: these appliances have multiple operating states, such as washing machine, dish-

62

washer, ...

• Permanent and cyclical appliances: these appliances have a permanent or cyclical unique operating state,

such as fridge, smoke detectors, ...

• Continuously Variable Appliances: these appliances do not have fixed operating states and are very hard to

process, such as electrical heater.

Many methods treat each appliance separately [141] and some appliances are harder to analyze. For instance,

EDF experts agree that continuously variable appliances such as electrical heaters are very hard to disaggregate

whereas regular appliances such as the fridge should be easier to analyze.

NILM opens several sources of potential shifts between different houses. The first source of shift is the differ-

ences between appliances both in their cycles and in their power load. For instance, appliance consumption is

higher in the US than in France. Moreover, some devices are very different: for instance, in the US, water is already

hot when arriving in the washing machine, whereas in France, a first cycle is required to heat the water. Secondly,

there are differences in behaviour. The usage of a washing machine is very different for single people from large

families. This means that when learning a disaggregation algorithm on one house, it may be under-performing on

another house.

Figure 3.4: Sub-problems of Non Intrusive Load Monitoring (NILM)

3.3.2 Review of methods

The seminal work of Hart (1989) [85] proposed combinatorial optimization to solve the original problem but requires

power and voltage data. Later, Batra et al. (2013) [21] proposed to use combinatorial optimization for single power

63

measurements later by comparing the signal to a fixed database of appliance signatures and using methods similar

to dictionary learning. This approach can work when the number of appliances is small but is not robust to con-

tinuously variable appliances and does not scale well with the number of appliances. Hence, when electric heater

is present, it is very hard to detect other motifs. Dictionary Learning is also proposed for load disaggregation but

suffers even more from these issues [102].

Parson et al. (2012) [141] opened a new line of work based on Factorial Hidden Markov Models. The basic idea

behind this line of work is to model the state of an appliance using a HMM. For instance, ON/OFF appliances are

modeled by two states and finite state appliances by their number of states, where each state is described by a

gaussian distribution. This class of models is later extended using more complex models [198]. These methods

are currently a strong baseline for disaggregation, although they require expert knowledge on the a priori power

distributions of the appliances. Such knowledge is possible when every device is known but there is a huge variability

in devices depending on brands, countries, ... They are also weak to continuously variable appliances, but perform

extremely well for cyclical appliances such as the fridge for instance.

Deep Learning is the third main branch of NILM methods. Originally proposed by Kelly and Knottenbelt (2015)

[100], several models are proposed. The setup uses data from the publicly available REDD experiment (power

measurement sampled at 1 minute): they select 5 appliances and consider the problem of predicting the load curve

of each appliance based on the total consumption during a week. The first model learns a seq2seq architecture

traditionnally used for denoising based on an RNN and a convolutional autoencoder. It is similar to an encoder

where the input is the total load curve and the output the load curve of one appliance. The second model simply

predicts the start and the end of an activation with its average value. These models outperform the previously

mentioned models on the REDD dataset and are currently considered as state-of-the-art. These promising results

opened several works, both academic [193] and industrial at EDF for instance, including the ones of this thesis. The

main disadvantage of this class of method is the requirement of a large labeled dataset.

Finally, an emerging class of method is based on Graph Signal Processing [159]. In Graph Signal Processing,

each appliance is considered as a node of a graph and its consumption is a time series. In [195], authors propose

an unsupervised disaggregation method based on graph signal processing, which works well if the appliances have

mean power very different from each other. This line of work is not the best performing but is promising.

3.3.3 Datasets

Electric Data (EDF)

The main dataset of interest for our work is collected by EDF firstly in 2016 and in 2018 and 2019 (during this thesis).

In total, 27 households are monitored during several months, both at the whole consumption level and the appliance

level. It is done using only the house electricity meter: a sensor monitors the whole consumption every second and

64

Figure 3.5: Examples of monitored appliances for each house: a blue square means the appliances was monitored.
A white square means it was not monitored or was mixed with another appliance.

7 sensors are plugged to the circuit breaker corresponding to some large appliances:

• Dishwasher

• Fridge

• Tumble dryer

• Washing Machine

• Oven

• Water heater

• Electrical Heater.

Each house has different appliances and some may be absent from some houses. The details about the com-

position of each house is available in Figure 3.5. Unfortunately, the collected data does not allow to analyse smaller

appliances. Indeed, they are too often mixed with larger appliances as two appliances can be connected to the same

circuit breaker. For this reason, in our experiments, we are limited to few devices. On Figure 3.6, the consumption

over one day of different appliances is represented. One can observe that heating appliances are responsible for a

large part of the consumption and they are very noisy.

Public datasets

Public datasets are also used in our experiments. A large number of datasets exist but we decide to keep the one

that are closer to our experiments in terms of measurements: REFIT and TraceBase. REFIT is a dataset made

of cleaned consumption data in Watts for 20 households at aggregate and appliance level, sampled at a various

65

Figure 3.6: Examples of monitored consumption for one day in the Electric DataBase (x-axis is in hours and y-axis
is in W)

interval (around 10s). The composition of each household is summarized in Table 3.1. We illustrate these databases

with Figure 3.7 with one day of consumption for each appliance and Figure 3.8 with some examples of appliance

signatures.

TraceBase is a collection of single-appliance measurements. It cannot be used for disaggregation purposes but

for appliance recognition. It is a collection of measurements over one appliance during one day. In total, 11 types

appliances are monitored, with several models for each appliances (from 1 to 12 models).

3.3.4 Problem formulation

As illustrated in Figure 3.7, the total disaggregation is hard since some large appliances are not monitored. In

this thesis, we take interest in two sub-problems. The first sub-problem is the one of appliance recognition: is it

possible to recognize the signature of a model of an appliance that has never been seen before?

Indeed, if such recognition is already impossible, load monitoring is even harder. For this purpose, we formulate

the problem of time series classification and study two kinds of transferability: cross-house transferability and cross-

dataset transferability. Indeed, REFIT and Trace Base datasets are respectively collected in the UK and in Germany.

While European appliances are in general similar, we expect their signatures to be different from the ones in France.

The second problem is the one of appliance daily consumption estimation. It is a harder problem as it

works on the aggregated load curve. Moreover, it is a regression problem, wich requires different techniques from

classification. This problem is treated in Chapter 4.

66

Figure 3.7: Examples of monitored consumption for one day in the REFIT Database (x-axis is in hours and y-axis is
in W ; the house numbers correspond to the ones in the database as technical issues happened for other houses)

67

House 1 House 2 House 3 House 4 House 5 House 6 House 7
Fridge Fridge Toaster Fridge Fridge Freezer Fridge

Freezer Washing Machine Fridge Freezer Tumble Dryer Washing Machine Freezer
Freezer Dishwasher Freezer Fridge Washing Machine Dishwasher Freezer

Washer Dryer TV Tumble Dryer Washing Machine Dishwasher Computer Tumble Dryer
Washing Machine Microwave Dishwasher Washing Machine Computer TV Washing Machine

Dishwasher Toaster Washing Machine Computer Television Microwave Dishwasher
Computer Hi-Fi TV TV Microwave Kettle TV

TV Kettle Microwave Microwave Kettle Toaster Toaster
Electric Heater Overhead Fan Kettle Kettle Toaster Computer Kettle

House 8 House 9 House 10 House 11 House 12 House 13 House 15
Fridge Fridge Blender Fridge Fridge TV Fridge

Freezer Washer Dryer Toaster Fridge Unknown Freezer Tumble Dryer
Washer Dryer Washing Machine Freezer Washing Machine Unknown Washing Machine Washing Machine

Washing Machine Dishwasher Fridge Dishwasher Computer Dishwasher Dishwasher
Toaster TV Washing Machine Computer Microwave Unknown Computer

Computer Microwave Dishwasher Microwave Kettle Network Site TV
TV Kettle TV Kettle Toaster Microwave Microwave

Microwave Hi-Fi Microwave Router TV Microwave Hi-Fi
Kettle Electric Heater K Mix Hi-Fi Unknown Kettle Toaster

House 16 House 17 House 18 House 19 House 20 House 21
Fridge Freezer Fridge Fridge Freezer Fridge Fridge
Fridge Fridge Freezer Washing Machine Freezer Tumble Dryer

Electric Heater Tumble Dryer Fridge TV Tumble Dryer Washing Machine
Electric Heater Washing Machine Washer Dryer Microwave Washing Machine Dishwasher

Washing Machine Computer Washing Machine Kettle Dishwasher Food Mixer
Dishwasher TV Dishwasher Toaster Computer TV
Computer Microwave Computer Bread-maker TV Kettle

TV Kettle TV Games Console Microwave Vivarium
Dehumidifier TV Microwave Hi-Fi Kettle Pond Pump

Table 3.1: Summary of REFIT households

3.4 Time Series Normalization for Invariant Appliance Recognition

3.4.1 Global and z-normalization

It is well known that pre-processing is crucial for time series analysis. Operations such as z-normalization, de-

trending or de-seasonalizing are traditional pre-processing tools for time series analysis. Finding the appropriate

pre-processing is not an easy task and generally depends on inner data characteristics. Each technique may discard

some information and should be used with caution. For signature recognition, detrending and de-seasonalizing are

not necessary. For Time Series Classification, z-normalization is classically used, including as a pre-processing for

deep learning methods. But as was noted in [65], ”this traditional pre-processing step should be further studied [...]

since normalization is known to have a huge effect on DNNs’ learning capabilities”.

Firstly, we define two common normalization techniques for time series: standardization and min-max normal-

ization. Each of them is broken down into per instance and global normalization. Here, X ∈ Rn×T is the full dataset

where n is the number of samples and T the time series length, Y ∈ Rn×C is the label vector. Xi = {X1
i , ..., X

T
i }

denotes the ith element of X.

Global min-max normalization (GN) normalizes the values of X according to its minimum and maximum con-

verting it into the range [0, 1]. Typical issues would be out-of-sample minimum and maximum and outliers, which

happens often in many time series applications. Global standardization (GS) standardizes the values of X according

68

Figure 3.8: Examples of signatures from the Trace Base dataset (x-axis is in minutes, y-axis is in W). Signatures
have been zero-padded to a length of 2 hours.

(a) Shape is discriminative (b) Scale is discriminative

Figure 3.9: Toy examples

to its mean and standard deviation. This very common normalization is usually done per variable in order to give

the same scale for each variable but for time series it would mean to normalize the data per time stamp, destroying

temporal structure. Hence global transformations are a rescaling of data. Instance normalization differs since each

time series of the dataset is normalized using its own statistics. We define Instance min-max Normalization (IN) and

Instance Standardization (IS) in the Table 3.2.

69

Min-Max Standardization

Global GN(Xj
i) =

Xji−min(X)

max(X)−min(X) GS(Xj
i) =

Xji−mean(X)

std(X)

Instance IN(Xj
i) =

Xji−min(Xi)

max(Xi)−min(Xi)
IS(Xj

i) =
Xji−mean(Xi)

std(Xi)

Table 3.2: Normalization methods

(a) Dishwasher signatures: green and orange correspond
to two different models of dishwashers

(b) Washing Machine signatures: green and orange cor-
respond to two different models of washing machines

Figure 3.10: Dishwasher and Washing Machine Signature data: for each plot, the main line is the median consump-
tion over all signatures. Other areas represent different percentiles of the distribution.

Global Transformations are simple re-scaling but they are useful for good training of neural networks. Most

existing approaches use the instance standardization (also called z-normalization) to pre-process time series. For

instance UCR archive included only z-normalized datasets until the 2018 update. The incentive behind this choice

is that similarity between two time series can be meaningless without proper pre-processing in presence of an offset

or a scale variation [146].

We argue that this choice might not be optimal for every domain, especially when the scale or the offset are

discriminative. It can be seen on a toy example: in Figure 3.9a, without normalization, a euclidean or DTW-based

classifier would not discriminate the classes properly: dotted time series is classified in the same class. With classes

from Figure 3.9b, instance standardization has the opposite effect. One can notice that there is no obvious choice

of normalization and for more complex data, balancing shape and scale information is challenging.

3.4.2 Normalization for appliance consumption

Using the previously mentioned notations, we analyze how it applies for appliance signature recognition. It was

already mentioned in the seminal paper of Hart (1989) [85] that normalizing power measurements per appliance

was useful to compare between different models of the same devices using voltage data. Since it is not available in

our dataset, we simply use power measurements.

70

(a) Kettle signatures: green and orange correspond to two
different models of kettles

(b) Microwave signatures: green and orange correspond
to two different models of microwaves

Figure 3.11: Kettle and Microwave Signature data: for each plot, the main line is the median consumption over all
signatures. Other areas represent different percentiles of the distribution.

Kelly and Knottenbelt (2015) [100] subtract each sequence by its own mean but divide each sequence by the

standard deviation of the whole training set as a pre-processing step for neural networks. They already notice that

it loses the information of the nominal power of an appliance which is crucial to other methods and assumed that

”there are likely to be ways to have the best of both world”.

Indeed, for some appliances, the nominal power is discriminative whereas for other appliances, only the shape

matters. Figures 3.10 and Figure 3.11 illustrate this on two examples. For each pair (washing machine / dishwasher

and kettle / microwave), we firstly plot the distribution of the signatures of two models of each appliance and then a

comparison between appliances. For dishwashers and washing machines there is a higher variability but in general,

dishwashers signatures are made of two cycles, whereas washing machine are made of only one cycle. The cycle

length depends on the usage and the model of the appliance, while the nominal power is dependent on the model

and varies between 2000W and 2500W for both appliances. For kettles and microwaves, they both have the same

shape of signature, with a single short step. But the nominal power is different, as for kettles it is in general between

1500W and 2200W , whereas for microwaves, it is around 1000W .

The danger of instance normalization is visible on the example of kettles and microwaves, as both signatures are

very similar as illustrated in Figure 3.11. But on the example of dishwashers and washing machines, normalizing

would allow for better transferability between appliances, as the main difference between two models of dishwashers

or washing machines is their nominal power. In order to combine both information and get the best of both worlds,

we propose an ensembling model using deep learning.

71

Figure 3.12: DenseNet: each block is made of successive convolutions and skip connections ended by a bottleneck
convolution

3.4.3 Model

Base Model: DenseNet

Our model is based on convolutional neural networks presented in Section 3.2. Convolutional layers and intermedi-

ate pooling are successively applied in order to extract features at different scales before a global pooling operation

and a fully connected layer that predicts a label. Inspired from the computer vision literature [90], we propose

DenseNets for Time Series, illustrated in Figure 3.12.

DenseNets use skip connections from different levels in the network through concatenation. Namely, the kth

layer receives the outputs of some preceding layers as an input ; denoting zk the output of the kth layer and

[zk−m, ..., zk−1] the concatenation of the m previous layers, the output of the kth layer is

zk = fk([zk−m, ..., zk−1])

DenseNets allow to produce more complex information from layer outputs than ResNets. On the other hand, they

tend to have larger layer inputs, due to the successive concatenations, depending on the number m of preceding

layers being concatenated. In our architecture, we use bottleneck layers: after a dense block, a bottleneck layer

brings back the number of inputs to the initial number of feature maps, as described on Figure 3.12. Hence for

a fixed number of feature maps K and maximum mmax size of dense block, the number of inputs never exceeds

K ×mmax.

Another novelty of our architecture is to explicitly feed features from different scales to the final predictor. Namely

we concatenate the outputs of each dense block to create the input of the last fully connected layer. As the number

of dense blocks is relatively small, the input size stays tractable.

DenseNets are comparable to ResNets, which are state of the art in time series classification, as they introduce

skip connections. DenseNets showed better performance in the experiments but are also longer to train than

ResNets.

72

Mixing scale and shape

In theory, it is rarely strictly necessary to standardize the inputs of a neural network and most pre-processing tricks

are hard to analyze properly. In practice, standardization allows non-fittable networks to be fittable [107], as the

gradients of most activation functions tend to be more informative for values close to 0. Hence, we always use at

least a global normalization. Recently batch normalization proposed by Ioffe and Szegedy [95] has had a great

impact on neural network training and works as a speedup technique for neural networks.

(a) FeatNet (b) EnsNormNet

Figure 3.13: Proposed architectures

The first solution is to create a new architecture with two entries as summarized in Figure 3.13a. One entry

corresponds to the instance-normalized time series, which is passed into a convolutional architecture. At the fully-

connected level, the output of the convolutional blocks is concatenated with the other entry, containing the scale

information from the time series (mean and standard deviation for standardization ; minimum and maximum for

min-max normalization).

The second solution is to create an architecture with different entries corresponding to the input time series,

normalized and scaled differently for each entry. Each entry is passed into convolutional blocks with no weight

sharing. The outputs are then concatenated into a fully connected layer that gives the final prediction. Creating

separate channels with different information is similar to the Multi-Channel Neural Network introduced in [197].

3.5 Experiments on NILM Datasets

(a) Same House (b) Cross House (c) Cross Dataset

Figure 3.14: Overview of the different experiments

We present the results of the previous method in three scenario, illustrated in Figure 3.14:

73

• Same houses: the same devices are seen during training and testing

• Cross-houses: different devices are used for training and testing

• Cross-dataset: devices come from different datasets (different countries).

The first case is our baseline scenario. In the second case, we expect a shift in the distributions as the devices

in the training houses are not the same as the ones in the test houses. Finally, in the cross-dataset scenatio, our

objective is to study the transferability between countries and different experimental process.

3.5.1 Preprocessing and Methods

Preprocessing

Electric Data REFIT TraceBase
Computer Computer

Dishwasher Dishwasher Dishwasher
Kettle Kettle Kettle

Microwave Microwave Microwave
Oven

Toaster
Tumble Dryer Tumble Dryer

TV TV
Washing Machine Washing Machine Washing Machine

Water Heater

Table 3.3: Appliances for which signatures are extracted in each dataset.

For the REFIT and Electric Data datasets, we only have the measurements over the whole experiments (several

months) for each appliance and need to extract each signature. In order to extract the signatures, we use a detector

function to extract activations. It is based on several parameters:

• A minimum power to reach

• A minimum time window

• A minimum off period to split cycles correctly.

It is better to set these parameters specifically for each appliance. It must be noted that this function is not

perfect, hence some untypical signatures can be extracted from raw data (extremely high consumption, very short

spike, ...). For the REFIT dataset, we get satisfying results after simply removing outliers based on Local Outlier

Factor. For Electric Data, it must be noted that the final database has been created using manual intervention.

Firstly, some signatures are wrongly annotated in the experiment and had to be changed manually. Secondly,

some signatures are curated with outlier detection, but we still noticed some remaining untypical signatures. Other

methods for signature extraction are being developed at EDF but were not available during our work.

74

In the end, we extracted signatures for different appliances in each dataset as summarized in Table 3.3. Water

heater is particularly present in France, while in the UK and in Germany gas heating is more popular. Moreover,

our architecture requires time series to be of the same length. For this reason, we use right zero-padding to make

signatures 2 hours long, which gives 720 points with a 10s sampling. We also tried architectures that do not require

same-length time series such as recurrent networks or Fully Convolutional Networks, but results are worse.

For the TraceBase dataset, signatures are already extracted. We do not know the house of origin of each device,

so we artificially created 7 house splits by gathering some devices together. The database is quite small with ∼ 1000

signatures in total and with only 20 signatures for some appliance models. One can note, that even for REFIT and

Electric Data, in the case of appliance recognition, the cross-house framework could be extended considering any

combination of devices coming from different houses (for instance, train on some devices from houses 1 and 2 and

test on some devices from houses 3 and 4), as long as we keep only one model per appliance.

Compared Methods

In the experiments, we compared different methods:

1. RF: Feature extraction + RandomForest

2. GS DenseNet with Global Standardization

3. GN DenseNet with Global Min-Max Normalization

4. IS DenseNet with Instance Standardization

5. IN DenseNet with Instance Min-Max Normalization

6. IN-Feat FeatNet with Instance Min-Max Normalization

7. Ens EnsNormNet with Min-Max Normalization

8. IN-DA Domain Adversarial DenseNet with Instance Min-Max Normalization

9. GN-DA Domain Adversarial DenseNet with Global Min-Max Normalization

10. Ens-DA Domain Adversarial EnsNormNet with Min-Max Normalization

The first method is a non deep learning method. In RF, 113 statistical features from the whole time series and

windows are extracted and feeded in a random forest. The feature extraction is made on signatures of different

lengths (we do not need different padding). The methods 3 to 8 are described in the previous section. The last three

methods are only used for the cross-house and cross-dataset experiments as they are adaptation techniques. They

75

correspond to the adversarial scheme described in Section 2.3.2: at the dense layers in our architecture, an addi-

tional branch is added to learn a discriminator between domains. Other methods were tried, such as Discriminative

Dictionary Learning [102], but gave very poor results.

The DenseNet architecture is kept the same for every neural network based method. It is made of 3 dense blocks,

each of them composed of 3 convolutional layers with 64 filters of size 7, 5 and 3. We tried other architectures but

we found that with more than 3 convolutional layers, the network could not fit anymore. We ran each experiment 10

times with different seeds for weight initialization and we report only mean F1-scores with standard deviations.

Layers Input shape Output shape Filter shape

Input Time series of length l

Conv (1) l× 1 l× 64 1× 7

Conv (2) l× 64 l× 64 64× 5

Conv (3) l× 128 l× 64 128× 3

Conv (4) l× 192 l× 64 192× 3

Pooling (1) l× 64 l/2× 64 2

Conv (5) l/2× 64 l/2× 64 64× 7

Conv (6) l/2× 64 l/2× 64 64× 5

Conv (7) l/2× 128 l/2× 64 128× 3

Conv (8) l/2× 192 l/2× 64 192× 3

Pooling (2) l/2× 64 l/4× 64 2

Conv (9) l/4× 64 l/4× 64 64× 7

Conv (10) l/4× 64 l/4× 64 64× 5

Conv (11) l/2× 128 l/4× 64 128× 3

Conv (12) l/4× 192 l/4× 64 192× 3

Pooling (3) l/4× 64 l/8× 64 2

Merge Pooling (1)+(2)+(3)

Dense 56l nclass 56l

Table 3.4: DenseNet architecture used in both
experiments

Layers Input shape Output shape Filter shape

Input (1) Instance-standardized time series

Conv (1) l× 1 l× 64 1× 7

Conv (2) l× 64 l× 64 64× 5

Conv (3) l× 128 l× 64 128× 3

Conv (4) l× 192 l× 64 192× 3

Pooling (1) l× 64 l/2× 64 2

Conv (5) l/2× 64 l/2× 64 64× 7

Conv (6) l/2× 64 l/2× 64 64× 5

Conv (7) l/2× 128 l/2× 64 128× 3

Conv (8) l/2× 192 l/2× 64 192× 3

Pooling (2) l/2× 64 l/4× 64 2

Conv (9) l/4× 64 l/4× 64 64× 7

Conv (10) l/4× 64 l/4× 64 64× 5

Conv (11) l/2× 128 l/4× 64 128× 3

Conv (12) l/4× 192 l/4× 64 192× 3

Pooling (3) l/4× 64 l/8× 64 2

Input (2) µi, σi

Merge Pooling (1)+(2)+(3) + Input (2)

Dense 56l + 2 nclass 56l + 2

Table 3.5: FeatNet architecture used in both
experiments

Layers Input shape Output shape Filter shape Layers Input shape Output shape Filter shape
Input (1) Global-Standardized TS Input (2) Instance-Standardized TS
Conv (1) l× 1 l× 64 1× 7 Conv (13) l× 1 l× 64 1× 7
Conv (2) l× 64 l× 64 64× 5 Conv (14) l× 64 l× 64 64× 5
Conv (3) l× 128 l× 64 128× 3 Conv (15) l× 128 l× 64 128× 3
Conv (4) l× 192 l× 64 192× 3 Conv (16) l× 192 l× 64 192× 3

Pooling (1) l× 64 l/2× 64 2 Pooling (4) l× 64 l/2× 64 2
Conv (5) l/2× 64 l/2× 64 64× 7 Conv (17) l/2× 64 l/2× 64 64× 7
Conv (6) l/2× 64 l/2× 64 64× 5 Conv (18) l/2× 64 l/2× 64 64× 5
Conv (7) l/2× 128 l/2× 64 128× 3 Conv (19) l/2× 128 l/2× 64 128× 3
Conv (8) l/2× 192 l/2× 64 192× 3 Conv (20) l/2× 192 l/2× 64 192× 3

Pooling (2) l/2× 64 l/4× 64 2 Pooling (5) l/2× 64 l/4× 64 2
Conv (9) l/4× 64 l/4× 64 64× 7 Conv (21) l/4× 64 l/4× 64 64× 7
Conv (10) l/4× 64 l/4× 64 64× 5 Conv (22) l/4× 64 l/4× 64 64× 5
Conv (11) l/2× 128 l/4× 64 128× 3 Conv (23) l/2× 128 l/4× 64 128× 3
Conv (12) l/4× 192 l/4× 64 192× 3 Conv (24) l/4× 192 l/4× 64 192× 3
Pooling (3) l/4× 64 l/8× 64 2 Pooling (6) l/4× 64 l/8× 64 2

Merge Pooling (1)+(2)+(3)+(4)+(5)+(6)
Dense Class prediction

Table 3.6: EnsNormNet architecture: dense blocks are applied in parallel before being merged

76

3.5.2 Same House

When training and testing on signatures coming from the same house, there is very little shift in the signatures.

Overall, the problem is quite easy and every algorithm performs well. We report the macro-F1 score on Electric

Data database in Table 3.7. We ran the experiments 10 times with different initial weights. In this database, we

only consider large appliances, hence it is quite easy to recognize them for every method. In general, the few

mislabeled signatures are outliers. We did not notice significant differences between min-max normalization and

standardization.

Electric Data
Method RF GS GN IS IN IS-Feat Ens

F1 Score 97,12 (0,04) 97,04 (0,11) 96,99 (0,09) 96,12 (0,16) 96,18 (0,07) 96,23 (0,18) 97,05 (0,16)

Table 3.7: Same house: Macro F1 score (%) for different methods with standard deviation over 10 runs (different
initial weights) on REFIT dataset

For REFIT and Trace Base, similar results are obtained (see Table 3.8). The only exception is for neural network

using instance normalization for some devices such as kettle and microwaves. These results indicate that appliance

recognition is easy when training and testing on the same appliance models and the same users.

REFIT Dataset
Method RF GS GN IS IN IS-Feat Ens

F1 Score 98,42 (0,01) 98,47 (0,11) 98,52 (0,12) 96,33 (0,21) 96,28 (0,17) 98,32 (0,24) 98,57 (0,14)

Table 3.8: Same house: F1 score (%) for different methods with standard deviation over 10 runs on REFIT dataset

TraceBase Dataset
Method RF GS GN IS IN IS-Feat Ens

F1 Score 98,42 (0,01) 98,47 (0,11) 98,52 (0,12) 96,33 (0,21) 96,28 (0,17) 98,32 (0,24) 98,57 (0,14)

Table 3.9: Same house: F1 score (%) for different methods with standard deviation over 10 runs on REFIT dataset

3.5.3 Cross-House Results

In this case, we sequentially consider one house as the test house and merge every other as a training house. We

report in Figure 3.16 the whole confusion matrix for REFIT data for GN, IN and Ens. Results for ElectricData and

TraceBase are represented in Figure 3.15 and Figure 3.17 respectively. Here, we clearly observe the gain of our

ensemble technique. The observations made in Section 3.4.2 are confirmed with our experiments, as the Instance

normalization methods tend to under-perform for appliances such as kettles, microwaves, TVs, and computers. On

the other hand, when keeping scale information, some signatures from washing machines tend to be misclassified,

especially for one house where the dishwasher has a high nominal power.

On Electric Data, similar observations can be made. Even with global normalization, the kettles and microwaves

are still hard to discriminate. Indeed, kettles in this dataset tend to have a lower nominal power and are often mixed

77

with microwaves.

On TraceBase data, the results are similar with every method, although once again, our EnsNormNet gives the

best results of all methods. TraceBase is only made of very clean signatures and has a lower variety of appliance

models in general. Hence, there is a high homogeneity between appliances and a low shift between houses.

(a) Instance Normalization (b) Global Normalization (c) EnsNormNet

Figure 3.15: Confusion Matrix for Electric Data in the cross-house appliance recognition experiment

(a) Instance Normalization (b) Global Normalization (c) EnsNormNet

Figure 3.16: Confusion Matrix for REFIT Data in the cross-house appliance recognition experiment

In Table 3.11, Table 3.10 and Table 3.12, we present the macro-F1 score for every method on ElectricData, REFIT

and TraceBase respectively. We expected the FeatNet method to perform as well, but it gives very similar results

to Global Normalization, which could mean that the network gives too much importance to the scale information.

Similarly, the random forest model underperforms compared to neural nets-based methods. Other methods such

as dictionary learning or Nearest Neighbours with Dynamic Time Warping are both underperforming compared to

the Random Forest model.

Another thing to notice is that the Domain Adversarial Training does not bring any improvement to the clas-

sification performance. In fact, on Electric Data it even brings down the classification performance. Since it is

unsupervised adaptation, it tended to match representations without any knowledge about the label, which com-

78

(a) Instance Normalization (b) Global Normalization (c) EnsNormNet

Figure 3.17: Confusion Matrix for TraceBase Data in the cross-house appliance recognition experiment

pletely mixed together kettle and microwaves and even large appliances. We could improve on these results by

selecting only houses similar to the target houses but the similarity measure required supervision (knowledge about

the target appliances). This motivates the idea of source selection which we develop in the next chapter.

Electric Data
RF GS GN IS IN

68,83 (0,06) 75,13 (0,37) 75,10 (0,47) 74,38 (0,21) 74,74 (0,29)
IN-Feat Ens IN-DA GN-DA Ens-DA

75,88 (0,43) 78,45 (0.33) 66,24 (1,00) 69,87 (1,12) 68,32 (1,52)

Table 3.10: Cross-house: F1 score (%) for different methods with standard deviation over 10 runs on Electric Data
dataset

REFIT Dataset
RF GS GN IS IN

73,12 (0,08) 78,37 (0,63) 77,37 (0,58) 75,69 (0,89) 75,48 (0,76)
IN-Feat Ens IN-DA GN-DA Ens-DA

76,11 (0,97) 83,39 (0,54) 75,28 (0,87) 76,12 (0,68) 81,14 (1,02)

Table 3.11: Cross-house: F1 score (%) for different methods with standard deviation over 10 runs on REFIT dataset

TraceBase Dataset
RF GS GN IS IN

87,28 (0,21) 88,12 (0,31) 88,32 (0,34) 85,67 (0,29) 85,30 (0,28)
IN-Feat Ens IN-DA GN-DA Ens-DA

87,99 (0,41) 91,50 (0,30) 85,45 (0,43) 86,80 (0,51) 90,08 (0.37)

Table 3.12: Cross-house: F1 score (%) for different methods with standard deviation over 10 runs on TraceBase
dataset

3.5.4 Cross-Dataset Results

Finally, we study if appliance recognition is transferable between datasets coming from different countries. Here, we

only consider European countries where appliances are similar. For each experiment, we only keep the appliances

79

available in every dataset. We merge signatures coming from every houses for the source dataset and applied

on the target dataset. We report the confusion matrix for the REFIT → ElectricData and ElectricData → REFIT

scenarios in Figure 3.18 and Figure 3.19. We note that models learnt on TraceBase give very poor results on

Electric Data and REFIT, maybe due to the lack of data for appliances common to these datasets in the TraceBase

dataset (∼ 1000 signatures).

(a) Instance Normalization (b) Global Normalization (c) EnsNormNet

Figure 3.18: REFIT→ Electric Data experiment

(a) Instance Normalization (b) Global Normalization (c) EnsNormNet

Figure 3.19: Electric Data→ REFIT experiment

The results are poor compared to the cross-house scenario (note that the F1 scores are not directly comparable

as the classes are different). Our ensembling method still gives the best results but in total the recognition accuracy

is around 54%. The main issue is with small appliances like kettle and microwave: in the UK, kettles tend to have

a higher nominal power but it is not the case in Electric Data. This is in line with a recent study [61] that showed

that transferring between countries is not easy. Once again, the unsupervised domain adaptation methods does not

give any improvement.

80

3.5.5 Discussion

A first conclusion is that, as expected, both scale and shape information matter for appliance recognition. Hence,

our ensembling method takes the best of both worlds and allows better generalization. While not directly a Transfer

Learning method, it still allows to reduce the shift between different models of the same appliances. We visualize it

on Figure 3.20, where we show a visualization of the features learnt by the neural network. In the first subfigure, the

network was learnt using Instance Normalization, in the second using Global Normalization and in the third, we use

our Ensembling Network. We represent the features of appliances coming from a house not seen during training.

(a) Instance Normalization (b) Global Normalization

(c) EnsNormNet

Figure 3.20: TSNE Representation of the latent variables obtained by learning a DenseNet using different normal-
izations: first column is the latent training variables and second column is the latent variables of unseen houses
(test) on REFIT data

It is possible to conclude that with instance normalization, the network can separate training data but struggles

with unseen data, especially for the microwave/kettle separation. The shifts are smaller using Global Normalization

and we see that EnsNormNet manages to bet the best of both worlds. Here, the adaptation is very specific to

our problem at hand. In a way, using two channels with different information is also related to data augmentation.

Indeed, by feeding different information on the time series to the network, we perform implicit data augmentation,

which is known to be good for better generalization. Finally, we also noticed that the domain adversarial methods

did not give any improvement on the classification performance.

As we want to reduce shifts between houses, we also introduce other normalization methods, for instance

by standardizing using the mean and the standard deviation of each appliance in each house. In that way, the

distribution of power measurements of each appliance would have the same first two moments. The results are very

81

similar to the instance normalization approach as it completely ignored the nominal power of the appliance. We tried

using instance weighting as described in Section 2.3.1 but it gave poor results.

It must be noted that such experiments are hard to conduct as it is not clear what a signature is. Here, we use a

function depending on different parameters which is imperfect. We know that by setting stricter parameters, we can

get a cleaner database where appliance recognition is easier but our database is incomplete, as some signatures

be missing. The zero-padding is also questionable.

It would also be possible to use a hierarchical structure on the classes, such as learning a first predictor to

separate large appliances (washing machine, dishwasher, ...) from small ones (TV, computer, kettles, ...) and

two predictors for each categories. When we tried such method, the results are not better than in a general model.

Finally, additional experiments are conducted on the UCR suite where we show that Ens always outperform methods

based on only one normalization. These results are reported in Appendix ...

3.6 Conclusion

In this chapter, we presented different representations for time series with an emphasis on deep learning methods.

We saw that deep learning methods, in particular convolutional neural networks, are very efficient tools for time

series classification. This feature extraction is key for transfer learning as the transfer is very dependent on the

feature space. As detailed in Chapter 2 many successful methods extract transferable features from the data.

Hence one could perform a feature extraction on time series and then apply one of the Transfer Learning methods

seen previously. But it would be sub-optimal as we expect that driving the feature extraction with the goal of Transfer

Learning leads to more transferable features.

In this part, we proposed a method for appliance recognition. We observe that there is a gap in the performance

between same-house appliance recognition and cross-house appliance recognition. In order to reduce this gap, we

proposed a method that takes information from both shape and scale of time series and experimentally show that it

allows to reduce the shift between appliances models for better transferability between houses. When trying domain

adaptation techniques, no improvement was observed.

Nevertheless, our method is very field specific. Even for the more general problem of appliance consumption

estimation, it is not always applicable. Domain adaptation methods presented in Chapter 2 do not integrate field

specific information, whereas our ensemble methods does. As described in Figure 3.4, appliance recognition is

the first sub-problem of Non Intrusive Load Monitoring. Our method is useful when collecting new data: indeed,

during the collection of Electric Data datasets, a lot of manual re-labelling was necessary for mis-annotated data or

residents switching appliances between plugs. We can automate this process with this method for future data ac-

quisition. Moreover for the real problem of NILM, in general the aim is not to discriminate between small appliances.

It would still be interesting to apply the method using a clean database for training, as new methods are currently

82

tested to extract signatures from Electric Data.

While our method displays good experimental results, there are still some open questions for time series clas-

sification using deep neural networks. We saw that because of the lack of a large benchmark database for time

series, finding a very general architecture for time series is a hard issue. We argue that the main effort to solve

this problem is the collection and preparation of such a large dataset. Moreover, deep neural networks are not very

interpretable. For industrial applications this often is an issue, as practitioners are reluctant to use them. Research

on more interpretable neural networks is in progress [194] and this will be a key factor for better industrialization of

such methods.

83

Chapter 4

Domain adaptation with multiple sources

in regression

Contents

4.1 Domain Adversarial Learning with H-divergence . 87

4.1.1 Literature review . 87

4.1.2 Limits of Domain Adversarial Adaptation in Regression with H-divergence 88

4.2 Hypothesis-Discrepancy for Domain Adaptation in Regression 89

4.2.1 Hypothesis-Discrepancy . 89

4.2.2 Domain Adaptation Guarantees with Hypothesis-Discrepancy 91

4.3 Minimizing the hypothesis-discrepancy . 92

4.4 Extension to multiple sources . 94

4.4.1 Theoretical Guarantees with multiple sources . 94

4.4.2 Algorithm . 97

4.5 Experiments . 98

4.5.1 Synthetic data . 99

4.5.2 Appliance Consumption Estimation . 102

4.5.3 Same-house results . 104

4.5.4 Cross-house results . 105

4.5.5 Experiments on other datasets . 108

4.6 Extension to semi-supervised adaptation . 111

4.7 Conclusion . 114

85

The sub-problem of appliance classification presented previously shows that while a shift existed between

houses, it ishard to reduce it using typical domain adaptation methods. Based on this observation we develop

a framework for the problem of appliance consumption estimation, ie predicting the consumption of one appliance

over a time window given the whole house consumption illustrated in Figure 4.1. We formulate this problem as

a multiple source domain adaptation problem for regression, where different houses are considered as multiple

sources to a different target house.

Chapter 2 highlights that domain adaptation for regression requires a specific framework. The main line of our

work follows the idea of discrepancy minimization [121], solved using kernel based methods. The last Chapter

shows that neural networks are powerful tools to learn features for consumption data. Hence, we develop a new

framework for adversarial domain adaptation based on neural networks for regression.

This chapter introduces an extension to the original discrepancy first introduced by Mansour et al. (2009) [121]:

hypothesis-discrepancy. Based on this new measure of dissimilarity between domains, we prove a general bound

for domain adaptation encompassing both regression and classification tighter than the one with discrepancy. We

extend our method to domain adaptation with multiple sources, and derive an algorithm that can select the most

informative sources and adapt to the target at the same time. Our hypothesis-discrepancy based algorithm appears

to unify different frameworks of domain adversarial training of neural networks. Finally, we study the applicability of

our method on Electric Data for NILM and other kinds of data.

This chapter is partly based on the work published in an international conference and a pre-print:

• G. Richard, A. de Mathelin, G. Hébrail, M. Mougeot and N. Vayatis. ”Unsupervised Multi-Source Domain

Adaptation for Regression.” Joint European Conference on Machine Learning and Knowledge Discovery in

Databases 2020 (ECML 2020)

• A. de Mathelin, G. Richard, M. Mougeot, and N. Vayatis. ”Adversarial Weighting for Domain Adaptation in

Regression.” arXiv preprint arXiv:2006.08251. (Pre-print)

86

Figure 4.1: Water heater consumption estimation: input is the whole consumption (gray curve), variable to predict is
the whole Water Heater consumption (green area)

4.1 Domain Adversarial Learning with H-divergence

4.1.1 Literature review

We consider two domains DS = {X , PS(XS)} and DT = {X , PT (XT)} and two tasks TS = {Y, PS(YS |XS)} and

TT = {Y, PT (YT |XT)} as previously defined in Chapter 2. We note fS and fT the source and target labelling

functions, H a hypothesis class and L : Y × Y → R+ a loss function. We respectively note RS(h) and RT(h) the

source and target risks of an hypothesis h ∈ H.

As mentioned in Section 2.3.2, adversarial domain adaptation has been introduced by Ganin et al. (2016) [72].

The main idea is to learn transferable discriminative features using a neural networks optimizing two objectives.

Considering a classification task with X ⊂ Rd and Y ∈ {0, 1}, authors introduce a neural network feature extractor

φ : X → Rm, a neural network predictor h : Rm → Y and a neural network discriminator D : Rm → {S, T}.

The predictor aims to learn to classify the input data while the discriminator aims to discriminate between domains.

Namely, considering a labeled source sample SS = {(x(1)
S , y

(1)
S), ..., (x

(ns)
S , y

(nS)
S)} of size nS and an unlabeled target

sample ST = {x(1)
T , ..., x

(nT)
T } of size nT , two losses are introduced:

• Ly =
∑nS
i=1 L

(
h(φ(x

(i)
S)), y

(i)
S)
)

• Ld =
∑nS
i=1 L

(
D(φ(x

(i)
S)), 0

)
+
∑nT
i=1 L

(
D(φ(x

(i)
T)
)
, 1)

where L is a classification loss, such as cross entropy. Finally, the objective is to minimize

87

min
h,φ

max
D
Ly + λLd (4.1)

This is done using the traditional feed-forward backpropagation and a gradient reversal layer between the feature

extractor and the discriminator.

This idea is directly motivated by the H∆H-divergence1 introduced by Ben-David et al. (2010) [25]. In this

seminal paper authors already proposed to approximate dH∆H by dH and try to find a representation minimizing

dH. Moreover, dH can be estimated using the loss Ld defined above. Hence, looking back at Equation 2.16 recalled

below, the target risk is controlled by minimizing those two losses.

RT (h) ≤ RS(h) +
1

2
dH∆H(pS , pT) + λ (2.16)

From there, other adversarial methods have been proposed. ADDA, proposed by Tzeng et al. (2017) [175]

is similar to DANN but uses asymmetric features (different feature extractors for source and target data). Another

method of interest is Maximum Classifier Discrepancy introduced by Saito et al. (2018) [158]. In this method, authors

propose to (a) learn two classifiers h and h′ to minimize the source risk (b) maximize the discrepancy between those

classifiers in the target domain (c) minimize the discrepancy induced by those classifiers in the feature extractors.

This is more closely related to dH∆H(PS , PT) = suph,h′ |Ex∼PS [I(h(x) 6= h′(x)]− Ex∼PT [I(h(x) 6= h′(x)]| as pointed

out in [158]. Here, assuming h and h′ close on the source dataset (done by step (a) of their algorithm), Ex∼PS [I(h(x) 6=

h′(x)] ' 0. Hence, maximizing the discrepancy on the target dataset induced by Ex∼PT [I(h(x) 6= h′(x)] gives an

estimation of H∆H. It can be intepreted as reducing H∆H to the set of ”good” predictors for the source data.

4.1.2 Limits of Domain Adversarial Adaptation in Regression with H-divergence

Both previous methods base their analysis on the specific problem of binary classification. Moreover, they both

minimize a lower bound on dH∆H as dH ≤ dH∆H. Chapter 2 also presented that the discrepancy is able to generalize

dH∆H to more general classes of loss and predictors.

Zhao et al. (2018) [196] directly used the DANN presented above for regression by simply changing the prediction

loss Ly to the `2 loss, and obtain good experimental results. We argue that this is in general ill-advised as the dH∆dH

is in general uninformative for the actual discrepancy between domains induced by regressors.

We highlight our argument with a simple example. We simply generate three source and target datasets using

1D-Gaussians, ie XS ∼ N (µS , σS) and XT ∼ N (µT , σT). We chose in the first example µS = 1, µT = 1 and small

values of σS = σT << 1, in the second example, µS = 1, µT = 1 and σS << σT , finally µS = µT = 0 and σS = 1

and σT = 4in the last example.

1In [72], authors use the un-corrected theorem of [24] with dH. Their motivation still holds as Ben-David et al. (2010) [25] already proposed
to approximate dH with dH∆H.

88

(a) dH with one-dimensional data

(b) Discrepancy with one-dimensional data

Figure 4.2: H-Divergence vs Discrepancy for 1-Dimensional Data

On one hand, Figure 4.2a shows that in the first scenario, using a linear classifier, the domains are perfectly

separated, in the last scenario, they are completely mixed and in the second scenario, they are semi-separated. On

the other hand, when computing the discrepancy using bounded regressors (ie H = {h : x → wTx; ‖w‖2 ≤ 1}),

in the first case the domains are perfectly aligned. In the semi-separated case, domains are considered very far

by the Discrepancy. This simple example shows the hardness of domain adaptation for regression, as the output

space is continuous. Hence, to be able to perform domain adversarial adaptation, we introduce a general theory

that encompasses both classification and regression.

4.2 Hypothesis-Discrepancy for Domain Adaptation in Regression

4.2.1 Hypothesis-Discrepancy

The concept of discrepancy [121], defined in Section 2.2, was introduced to estimate the shift between domains for

more general problems. We recall its definition:

Definition 9. For two probability measures P and Q defined over a set X , an hypothesis class H : X → Y and a

89

loss L :: Y × Y → R+, the discrepancy between P and Q is defined as

discH,L(P,Q) = sup
h,h′∈H

∣∣∣∣ E
x∼P

[L(h(x), h′(x))]− E
x∼Q

[L(h(x), h′(x))]

∣∣∣∣ (4.2)

One of the main difficulties when estimating the discrepancy is due to the computation of the supremum over

two hypotheses h and h′. For this reason, we introduce the concept of hypothesis-discrepancy as follows

Definition 10. For two distributions P , Q over a set X and for a hypothesis class H over X , for any h ∈ H, the

hypothesis-discrepancy (or HDisc) associated with h is defined as:

HDiscH,L(P,Q;h) = sup
h′∈H

∣∣∣∣ E
x∼P

[L(h(x), h′(x))]− E
x∼Q

[L(h(x), h′(x))]

∣∣∣∣ (4.3)

For any given h ∈ H hypothesis-discrepancy measures a similarity between two distributions. It is directly

dependent on the hypothesis class H and the loss L. In the definition, h′ can be seen as a predictor that would

be very close to h on the source domain but far on the target domain (or vice-versa). Theorem 10 states that

hypothesis-discrepancy can be estimated with finite samples.

Theorem 10. We assume that the loss L is symmetric, follows the triangle inequality and there exists M > 0 such

that L verifies L(h(x), y) ≤ M for all h ∈ H and (x, y) ∈ X × Y. Then for two distributions PS and PT defined over

X , for any hypothesis h ∈ H, with probability 1− δ over the samples of SS of size m according to PS and ST of size

n according to PT the following bound holds:

HDiscH,L(PS , PT ;h) ≤HDiscH,L(P̂S , P̂T ;h) + 2Rm(Hs) + 2Rn(Ht) +M

√
log 2/δ

2m
+M

√
log 2/δ

2n
(4.4)

where P̂S and P̂T are the empirical estimates of PS and PT induced by Ss and Ss. Rm(Hs) and Rn(Ht) are the

Rademacher complexities of Hs and Ht defined in Definition 3.

Proof. Let us consider the empirical distribution P̂S corresponding to a sample Ss of size m and a hypothesis h ∈ H.

We first define φ(h) = HDisc(PS , PT ;h) − HDisc(P̂S , PT ;h). Then as the loss L is bounded by M, changing one

element of Ss changes φ(h) by a maximum of Mm . McDiarmid’s inequality [127] states that with probability 1− δ
2 ,

HDisc(PS , PT ;h) ≤ HDisc(P̂S , PT ;h) + E
P̂S

[φ(h)] +M

√
log(2/δ)

2m
(4.5)

Moreover, from Theorem 2 and Proposition 2 from [121], we know that

E
P̂S

[φ(h)] = E
P̂S

[HDisc(p̂s, pt;h)−HDisc(p̂s, pt;h)] ≤ 2Rm(Hs)

90

where Hs = {x→ L(h(x), fS(x));∀h ∈ H}. As a consequence, with probability 1− δ
2 over the sampling of Ss:

HDisc(PS , PT ;h) ≤ HDisc(P̂S , PT ;h) + 2Rm(Hs) +M

√
log(2/δ)

2m
(4.6)

Using the same reasoning on PT , we obtain that with probability 1− δ
2 over the sampling of St :

HDiscH,L(PS , PT ;h) ≤ HDiscH,L(P̂S , P̂T ;h) + 2Rm(Hs) + 2Rn(Ht) +M

√
log 2/δ

2m
+M

√
log 2/δ

2n
(4.7)

Hence using an union bound, we have the final result with probability 1− δ:

HDiscH,L(PS , PT ;h) ≤HDiscH,L(P̂S , P̂T ;h) + 2Rm(Hs) + 2Rn(Ht) +M

√
log 2/δ

2m
+M

√
log 2/δ

2n
(4.8)

Hypothesis-Discrepancy is directly linked to the original discrepancy by DiscH,L(PS , PT) = suph∈HHDiscH,L(PS , PT ;h).

Kuroki et al. (2019) [104] also have noted that the presence of a supremum over two hypotheses is suboptimal and

introduced the source-discrepancy which is a specific case of our hypothesis-discrepancy with h = h∗s.

4.2.2 Domain Adaptation Guarantees with Hypothesis-Discrepancy

Using HDisc, we are able to show the following theorem for unsupervised single source domain adaptation:

Theorem 11. If L is symmetric and follows the triangle inequality, then the following bound holds:

RT(h, fT) ≤ RS(h, fS) + ηH(fS , fT) + HDiscH,L(pt, ps;h) (4.9)

where

ηH(fS , fT) = min
h0∈H

RT(h0, fT) + RS(h0, fS)

91

Proof. For any h ∈ H,

RT(h, fT) ≤ RS(h, fS) + |RT(h, fT)−RS(h, fS)|

≤ RS(h, fS) + |RT(h, h0)−RT(h, fT)|+ |RS(h, h0)−RS(h, fS)|+ |RT(h, h0)−RS(h, h0)|

≤ RS(h, fS) + HDiscH,L(ps, pt;h) + Ex∼pt [|L(h(x), h0(x))− L(h(x), fT (x))|]

+ Ex∼ps [|L(h(x), h0(x))− L(h(x), fT (x))|]]

≤ RS(h, fS) + HDiscH,L(ps, pt;h) + Ex∼pt [|L(h0(x), fT (x))|] + Ex∼ps [|L(h0(x), fS(x))|]

≤ RS(h, fS) + RS(h0, fS) + RT(h0, fT) + HDiscH,L(ps, pt;h)

where the first inequality comes from the triangle inequality, the second holds for any h0 ∈ H. The third comes from

the definition of HDisc(ps, pt) and the fourth follows from triangle inequality on L. Finally, the result follows taking

the minimum over all h0.

The term RS(h, fS) characterizes the source risk and can be controlled. The second term measures the joint

error of an ideal hypothesis on both domains. As it involves fT it cannot be controlled without further assumptions

in unsupervised domain adaptation but one can still notice it is smaller than the one of Equation 2.19. We assume

it to be small ie fS ' fT .

The last term is dependent on h and involves only one supremum over h′ ∈ H. Hence while our hypothesis-

discrepancy is less general than the discrepancy it allows tighter bounds for Domain Adaptation. Using Theorem 10,

one can see that HDisc can be estimated with finite samples, as can RS(h, fs) using generalization bounds seen in

Section 2.2.1.

4.3 Minimizing the hypothesis-discrepancy

Thanks to hypothesis-discrepancy, we proved that the target risk can be controlled by the sum of the source risk and

the hypothesis-discrepancy under the assumption that η is small. The source risk can be estimated and minimized

using a traditional learning algorithm. However the hypothesis-discrepancy requires a supremum and is dependent

on the predictor h.

We propose to formulate an objective corresponding to our bound with a min-max problem. Hence we formulate

the following objective for Adversarial Hypothesis Discrepancy Minimization (AHDM):

min
h∈H

max
h′∈H

RS(h, fS) + |RS(h, h′)−RT(h, h′)| (4.10)

Equation 4.1 and DANN share a similar objective. Hence, we now propose a general adversarial domain adap-

tation algorithm to learn transferable representations. We introduce a feature extractor φθ : X → Z parametrized by

92

Figure 4.3: Adversarial Hypothesis Discrepancy Minimization (AHDM) using Neural Networks

parameters θ and a class of predictor HZ : Z → Y. Given unlabeled target sample ST = {(x(1)
T , ..., x

(nT)
T } ∈ RnT×d

and a labeled source sample SS = {(x(1)
S , ..., x

(nS)
S } ∈ RnS×d with labels {y(1)

S , ..., y
(nS)
S } ∈ RnS , we minimize the

combination of the source risk and the hypothesis-discrepancy between the marginal weighted source distribution

and target distribution. We formulate the following objective for Adversarial Discrepancy Minimization (ADM):

min
φθ,h∈HZ

max
h′∈HZ

RS(h ◦ φθ, yS) + |RT(h ◦ φθ, h′ ◦ φθ)−RS(h ◦ φθ, h′ ◦ φθ)| (4.11)

In order to minimize this objective, we use a neural network as described in Figure 4.3. In practice we consider

h and h′ to be neural networks with constrained weights. The parameters of each part of the network are minimized

successively by:

1. Lh = RS updates h to minimize the source loss

2. Lh′ = −HDisc updates h′ to maximize discrepancy

3. Lθ = HDisc + RS updates φθ to minimize discrepancy and source loss

We use the traditional feed-forward back-propagation to minimize those losses. To the best of our knowledge,

this is the first adversarial method proposed working in the regression case.

Classifiers When working on classification, a link can be made between our ADM and the Maximum Classifier

Discrepancy (MCD). In MCD, the loss minimized by h and h′ both are RS −RT(h, h′). Under the assumption that

h and h′ are very similar on DS , RS(h, h′) ' 0. Hence, under this assumption, |RT(h, h′)−RS(h, h′)| ' RT(h, h′),

which is exactly the ”discrepancy” used by the MCD method. Hence, MCD can be seen as a specific case of our

93

method where (i) the hypothesis space H is restricted to ”good” classifiers on the source data (ii) the problem is a

classification problem.

Linear Regressors Another interesting case is the case of `2-loss with constrained linear regressors, ie HZ =

{h : x → wTx; ‖w‖2 ≤ 1}. In this case, we can develop a closed-form estimation of HDisc. Indeed, let us write

h(x) = wTx and h′(x) = w′Tx. If, for two samples XS = [x
(1)
S , ..., x

(nS)
S] ∈ RnS×d and XT = [x

(1)
T , ..., x

(nT)
T] ∈ RnT×d

we denote ZS = φθ(XS) and ZT = φθ(XT) the output of the feature extractor for source and target data, then

HDiscHZ ,`2(ZS,ZT;h) = sup
||w′||2≤1

∣∣∣∣ 1n (w − w′)TZS
TZS(w − w′)− 1

m
(w − w′)TZT

TZT(w − w′)
∣∣∣∣

≤ sup
||u||2≤2

∣∣∣∣uT (1

n
ZS

TZS −
1

m
ZT

TZS

)
u

∣∣∣∣
= 2

∥∥∥∥ 1

n
ZS

TZS −
1

m
ZT

TZT

∥∥∥∥
2

(4.12)

where ‖.‖2 denotes the spectral norm. The spectral norm can be computed using SVD or power method, and

the gradients can be computed as well using the eigendecomposition and feeded to the feature extractor φθ. Adlam

et al. (2019) [2] used a similar idea to train GANs where they show that minimizing the discrepancy comes down to

bringing closer the covariance of the extracted features. This is similar to the CORAL [170] and its extension Deep

CORAL [169] where a similar regularization on the covariance matrix is used. As such, our framework provides a

theoretical ground to this method and shows that it should work particularly well with regression.

4.4 Extension to multiple sources

When multiple sources are available, a straightforward idea is to merge all the source domains into one and trans-

form the problem to a single-source domain adaptation where Theorem 11 holds. This solution is clearly not optimal

as different source domains may have different relationships to the target one.

The framework of Unsupervised Multiple Source Domain Adaptation is defined as follows: we consider K inde-

pendent source domains Dk = {X , Pk} with associated labelling function fk and a target domain DT = {X , PT } with

associated labelling function fT . Once again, the goal is to minimize the target risk RT(h) = Ex∼PT [L(h(x), fT (x))].

We introduce a new bound relating the target risk with a weighted combination of the source risks Rk(h).

4.4.1 Theoretical Guarantees with multiple sources

We propose to attribute weights to each source and introduce the α-weighted source domain Dα = {pα, fα} such

that for α ∈ ∆ = {α ∈ RK ;αk ≥ 0,
∑K
k=1 αk = 1}, fα : x → (

∑K
k=1 αkpk(x)fk(x))/(

∑K
j=1 αjpj(x)) and pα =∑K

k=1 αkpk.

94

In this framework, the objective is that sources that are unrelated to the target are given low weights whereas

sources closely related to the target have a weight close to 1. The α-weighted sample is defined as Sα =
K⋃
k=1

Sk

with probabilities p̂α(x
(i)
k) = αk/m. Similarly, we consider an unlabeled target sample St = {(x(t)

1 , ..., x
(t)
n)} where

x
(i)
T

i.i.d∼ pt and define the sets Hk = {g : x→ L(h(x), fk(x));h ∈ H}.

Theorem 12. Assuming that the loss L is symmetric and follows the triangle inequality, then for any hypothesis

h ∈ H, with probability 1− δ the following bound holds:

RT(h, fT) ≤
K∑
k=1

αkR̂k(h, fk) + HDiscH,L(pt, pα) + ηH,α

+ 2

K∑
k=1

αkRm(Hk) + ‖α‖2M
√

log(1/δ)

2m

(4.13)

where

• ηH,α = min
h0∈H

[Rα(h0, fα) + RT(h0, fT)]

• Rm(Hk) is the Rademacher complexity of Hk = {h : x→ L(h(x), fk(x));h ∈ H}

Proof. Using Theorem 11, with pα, we get:

RT(h, fT) ≤ Rα(h, fα) + ηH(fT , fα) + HDiscH,L(pα, pt;h) (4.14)

Let us consider K empirical distributions p̂k corresponding to a sample Sk = {x(k)
1 , ..., x

(k)
m } of size m and

a hypothesis h ∈ H. Then the α-weighted sample Sα is of size Km and empirical distribution p̂α defined as

p̂α(x
(i)
k) = αk

m . We define φ = Rα(h, fα) − R̂α(h, fα). Noting that changing an element x(i)
k modifies φ by a

maximum of αkm , we can deduce from the McDiarmid’s inequality that:

P(φ− E(φ) ≤ t) ≤ exp
−2mt2∑K
k=1

α2
k (4.15)

Hence with probability 1− δ,

Rα(h, fα) ≤ R̂α(h, fα) + Ep̂α [φ] + ‖α‖2M
√

log 1/δ

2m
(4.16)

We are able to compute Ep̂α using the classical tool of ghost sample in Rademacher complexity analysis. In the

following the random variable σ takes its values uniformly over {−1, 1}. We denote {x(i)
k ; 1 ≤ k ≤ K, 1 ≤ i ≤ m} the

sample associated to p̂α ∼ pα and {z(k)
i ; 1 ≤ k ≤ K, 1 ≤ i ≤ m} q̂α ∼ pα.

95

Ep̂α∼pα [φ] = Ê
pα

[
Rα(h, fα)− R̂α(h, fα)

]
≤ E
p̂α∼pα

[
sup
h∈H

Rα(h, fα)− R̂α(h, fα)

]
≤ E
p̂α∼pα

[
sup
h∈H

Eq̂α∼pα [Ex∼q̂α [L(h(x), fα(x))]]− Ex∼p̂α [L(h(x), fα(x))

]
≤ E
p̂α,q̂α∼pα

[
sup
h∈H

Ex∼q̂α [L(h(x), fα(x))]− Ex∼p̂α [L(h(x), fα(x))

]
≤ E
p̂α,q̂α∼pα

[
sup
h∈H

K∑
k=1

αk(Ex∼q̂k [L(h(x), fk(x))− Ex∼p̂k [L(h(x), fk(x)))

]

≤ E
p̂α,q̂α∼pα

[
sup
h∈H

K∑
k=1

αk
m

m∑
i=1

(L(h(x
(i)
k), fk(x

(i)
k))− L(h(z

(k)
i), fk(z

(k)
i)))

]

≤ E
p̂α,q̂α∼pα
σi∼σ

[
sup
h∈H

K∑
k=1

αk
m

m∑
i=1

σi(L(h(x
(i)
k), fk(x

(i)
k))− L(h(z

(k)
i), fk(z

(k)
i)))

]

≤ E
p̂α∼pα
σi∼σ

[
sup
h∈H

K∑
k=1

αk
m

m∑
i=1

σiL(h(x
(i)
k), fk(x

(i)
k))

]

+ E
q̂α∼pα
σi∼σ

[
sup
h∈H
−

K∑
k=1

αk
m

m∑
i=1

σiL(h(z
(k)
i), fk(z

(k)
i))

]

≤ 2 E
p̂α∼pα
σi∼σ

[
sup
h∈H

K∑
k=1

αk
m

m∑
i=1

σiL(h(x
(i)
k), fk(x

(i)
k))

]

≤ 2

K∑
k=1

αkRm(Hk)

(4.17)

Finally, noting that with empirical distributions R̂α(h, fα) =
∑K
k=1 αk ε̂k(h, fk), we obtain the final result with

probability 1− δ over the sample of S1, ..., SK :

RT(h, fT) ≤
K∑
k=1

αkR̂k(h, fk) + HDiscH,L(pt, pα) + ηH,α

+ 2

K∑
k=1

αkRm(Hk) + ‖α‖2M
√

log(1/δ)

2m

(4.18)

Theorem 12 presents a theoretical analysis in the multi-source domain adaptation framework. The first term

corresponds to the α-weighted source risks and can be controlled by learning h close to fk. The second term

connects the target distribution with the α-weighted source distribution. The third term is related to how different the

labelling functions on the target and the source are and is expected to be small in unsupervised domain adaptation.

The last two terms are related to the convergence rate of this bound and Cortes et al. (2017) [45] proved that

96

Figure 4.4: Adversarial Multi-Source Hypothesis Discrepancy Minimization (AMSHDM) The adversarial scheme is
similar to single-source with weights α. At each iteration, the weights α are updated.

Rm(Hk) = O(1/
√
m) for neural networks.

In order to adapt from the K sources to the target, we need to minimize the hypothesis-discrepancy between the

α-weighted domain and the target domain. We propose in the next section an algorithm to find ideal representations

of the sources and weights to select the best sources for adaptation.

4.4.2 Algorithm

We now present a practical solution for the case of multiple sources. We introduce a feature extractor parametrized

by θ φθ : X → Z and a class of predictorHZ : Z → Y. Given unlabeled target sample ST = {x(1)
T , ..., x

(nT)
T } ∈ RnT×d

andK labeled sources Sk = {x(1)
k , ..., x

(m)
k } ∈ Rm×d with labels Yk = {y(1)

k , ..., y
(m)
k } ∈ Rm, our aim is to minimize the

combination of the source risk and the hypothesis-discrepancy between the marginal weighted source distribution

and target distribution as in Theorem 12.

Using the definition of HDisc, we formulate the following objective for our Adversarial Multi-Source Hypothesis-

Discrepancy Minimization (AMSHDM), illustrated in Figure 4.4:

min
φθ,h∈H
‖α‖1=1

max
h′∈H

[
K∑
k=1

αkRk(h ◦ φθ, yk) + λ‖α‖2

+|RT(h ◦ φθ, h′ ◦ φθ)−
K∑
k=1

αkRk(h ◦ φθ, h′ ◦ φθ)|

] (4.19)

97

Algorithm 1 Pseudo-algorithm for AMSHDM

Initialize αk = 1
K , h, h′ and θ randomly, choose learning rates ηh, ηθ and ηα

for e = 1...epochs do
Forward propagation
Rk = 1

m

∑m
i=1 L(h(e)(φθ(e)(x

(i)
k), y

(k)
i))

HDisc =

∣∣∣∣RT(h(e) ◦ φθ(e) , h′(e) ◦ φθ(e))−
K∑
k=1

αkRk(h(e) ◦ φθ(e) , h′(e) ◦ φθ(e))
∣∣∣∣

Backward propagation
h(e+1) ← h(e) − ηh

(∑K
k=1 α

(e)
k ∆hRk(h(e))

)
. (∗)

h′(e+1) ← h′(e) + ηh

(∑K
k=1 α

(e)
k ∆h′HDisc(h′(e))

)
θ(e+1) ← θ(e) − ηθ

(∑K
k=1 α

(e)
k ∆θRk(θ(e)) + ∆θHDisc(θ(e))

)
α

(e+1)
k ← α

(e)
k − ηα

(
∆αkHDisc(α

(e)
k) + 2λα

(e)
k

)
Clip weights of φ(e+1)

θ , h(e+1) and h′(e+1)

α(e+1) = α(e+1)/‖α(e+1)‖1
end for
(∗) For a parameter p and a loss L, we note ∆pL(p0) the gradient of L with respect to p computed at p0

where λ is a hyperparameter. The first term of the objective leads h to be a good predictor on the source task.

For any given h and h′ the discrepancy term constrains both representations φθ and weights α to align domains.

The term ηH is ignored in our objective and assumed to be small.

Similarly to the single-source scenario, we sequentially optimize different parameters of our networks according

to different objectives. At a given iteration, four losses are minimized sequentially:

1. Lh = αkRk updates h to minimize the source loss

2. Lh′ = −HDisc updates h′ to maximize discrepancy

3. Lθ = HDisc +
∑K
k=1 αkRk updates φθ to minimize discrepancy and source loss

4. Lα = HDisc + λ||α||2 updates α to minimize the discrepancy

The loss Lα only contains the discrepancy term. Indeed, our goal is to select the domains closer to the source in

terms of discrepancy. Including the source loss in Lα may give too large weights to sources that are ”easy” to predict.

It is possible to keep the term with a µ parameter to control its influence but in our experiments, it did not bring any

improvement. It is also be possible to completely update α at each epoch but it appears to be sub-performing. Our

method allows the weights to smoothly adapt to the representations learnt by φθ. The weighting scheme is generic

and can also be used with the specific cases of Discrepancy mentioned above (linear regressors for instance).

4.5 Experiments

We conducted extensive experiments for our method, both on synthetic and real data. Experiments on publicly avail-

able data are available on our git repository (https://github.com/GRichard513/ADisc-MSDA). For applications on

NILM, we give details to make the experiments reproducible. More details about architectures can also be found in

98

https://github.com/GRichard513/ADisc-MSDA

Appendix C.4.

4.5.1 Synthetic data

Figure 4.5: Data for the single-source Friedman experiment over the 5 features with σk = 0.2, σc = 0.2, µshift = 0.5,
σshift = 0.5. From right to left: (x0, x1) ; (x2, x3); (x4;x0). Each color corresponds to a source, the target is in black.

We first run experiments for AHDM and AMSHDM on synthetic data to study the behaviour of our algorithm. To

generate synthetic data, we use a modified version of the Friedman regression problem [70] consisting of inputs x

of dimension 5 and a prediction function defined as

y(x) = 10sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + ε

where ε ∼ N (0, σy).

To highlight the two contributions of our method, our goal is two-fold: we firstly aim to demonstrate the effective-

ness of HDisc in the single-source DA scenario (K=1 and α = 1). Then we run different experiments to show when

multi-source DA is expected to bring an improvement.

We generate source data as follows: we define three clusters of sources {S1,S2,S3}, {S4,S5,S6} and {S7,S8,S9}.

For each cluster, and for each feature (1...5), a mean of −1 or 1 is selected at random. Then each mean of each

source of a given cluster is shifted by a random shift i.e. for a source k associated to a cluster c µ(f)
k ∼ N (µc, σc).

Finally, each source sample is randomly chosen with a normal distribution pk = N (µ
(f)
k , σk). In Figure 4.5, we

display each feature of the generated data.

In order to separate the effects of our two contributions, we split the experiments in two parts: in the first

experiment, demonstrate the effectiveness of our hypothesis-discrepancy minimization in the single source scenario

(i.e. when αk = 1
K) and why the classical dH fails in this regression scenario. In a second scenario, we show how

our weighting scheme helps adaptation in multi-source, especially to select sources that are related to the target.

Single-Source DA For single-source, we merge all 9 source domains together to create one. The target sample is

generated choosing uniformly one of the source domains for each element and adding a noise of the form N (µshift,

99

(a) Validation loss on source data (b) Target loss

Figure 4.6: Training curves for Single Source DA: without adaptation, the target loss increases as the validation loss
keeps decreasing. DANN exposes the same behaviour as the target loss of AHDM decreases.

σshift). This experiment helps to understand the purpose of unsupervised domain adaptation. Indeed, as the

underlying condition for unsupervised DA to work is that the labelling function is similar in every domain (ηH small

in our experiments), unsupervised DA is closely related to the issue of generalization. As a consequence, if the

algorithm learnt on the source data is able to generalize, domain adaptation brings no improvement. As such, one

can see unsupervised DA as a data-driven regularization to improve the target risk.

For this experiment, we use a shallow network with 2 layers with 5 neurons and LeakyRelu activation for the fea-

ture extractor and 1 layer for the final predictor. We keep this architecture for three methods: Multi-Layer Perceptron

(MLP) without adaptation, Domain-Adversarial Neural Network (DANN) minimizing the dH between domains and

our Adversarial Hypothesis-Discrepancy Adaptation (AHDM) our method in the case of single source (no weights

α). To get the results for DANN, we tune then hyperparameter µ balancing the regression and domain losses:

without this tuning, DANN always fails to converge because its adversarial scheme is related to classification.

We conduct the experiments with various amount of shift. In Figure 4.6, we report the validation loss (computed

validation set different from the training set) and target loss for each method for σx = 0.2, µshift = 0.5 and σshift =

0.5, which is the case of target data related but not too close to the source domain.

While MLP and DANN overfit on the source data, our method is able to decrease the target loss. Hence, our

adversarial scheme helps the algorithm to better learn for the target data. We report in Table 4.1 the average MSE

scores over ten runs for the three methods and various shifts. One can notice that the further µshift is, the more

useful the adaptation is.

We also report in Figure 4.7 a visualization of the extracted features from AHDM and DANN which shows that

DANN tries to align domains only to be able not to separate them while AHDM is constrained by the final regression

task.

µshift 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
MLP 0.221 0.214 0.260 0.360 0.510 0.695 0.909 1.132 1.322 1.484 1.632

DANN 0.223 0.235 0.296 0.412 0.581 0.784 1.017 1.258 1.462 1.629 1.772
AHDM 0.222 0.214 0.255 0.350 0.490 0.670 0.881 1.044 1.197 1.392 1.446

Table 4.1: Single source domain adaptation: MSE for different amounts of shift.

100

Figure 4.7: X-axis: Extracted features (before the final predictor) using AHDM (left) and DANN (right) ; Y-axis: labels
to predict (y)

Multi-Source DA We also evaluate our multi-source algorithm on the previous target domain. As expected, multi-

source domain adaptation does not bring any improvement in the previous scenario as the target is sharing the

same relations with every source. But MSDA is particularly interesting in the case where some of the sources are

not useful for adaptation. We demonstrate it in an experiment where we control the weights α given to each source

in the creation of the target domain.

In a first experiment, we attribute equal weights α1,2,3 = 1/3 to every source in one cluster and α4:9 = 0 for every

other cluster. In a second experiment, we attribute equal weights to two clusters α1:6 = 1/6 and α7:9 = 0 In both

experiments, and on different runs, the algorithm is able to retrieve weights close to the real ones as illustrated in

Figure 4.8. It is translated by a decrease of the target loss. When putting weights to only one source in a cluster, our

algorithm struggles to identify a specific source but still gives large weight to sources in the same cluster. In some

experiments where sources were very different from each other (no cluster), we notice a tendency for α to give 1 for

one source and 0 for all the others. It can be meaningful as the target may be close to only one source in that case

or be balanced using the λ parameter of the `2 regularization.

(a) One cluster with uniform weights (b) Two clusters with uniform weights

Figure 4.8: Friedman Multiple Source experiment: α found by AMSHDM (blue) vs True α (orange)

101

Discussion Based on this toy experiment, we conclude that our AMSHDM and AHDM perform well for regression

under the condition that the labelling functions are the same. The proposed weighting scheme is performing well

when sources have really different relations to the output. The main limitation to HDisc is that since it is dependent

on h, its estimation is hard, especially in regression where values are not constrained. The weighting scheme mainly

helps when the target data is close to only few of the sources. In the next experiment, we show how our algorithm

performs on a real world dataset.

4.5.2 Appliance Consumption Estimation

Data Presentation

House 12 14 11 19 21 5 9 22
Number of days 138 233 496 245 119 238 512 85

Avg Daily Power (kWh) 16.45 14.02 8.55 7.12 6.10 4.16 3.90 3.72

Table 4.2: ElectricData: statistics of each house with a water heater

We apply our method on the problem of appliance consumption estimation: from the total consumption of a

home during a day sampled every 10s, can one predict the total consumption of a specific appliance. We focus our

analysis on water heater, which is responsible to around a third of total consumption in many French households.

In the dataset, 8 houses with a water heater have been monitored (in total, more houses were monitored but we

only keep the ones with clean data). We use data at a 10s sampling, which gives an input X ∈ R8640 and an output

y ∈ R+. Each house has different characteristics as presented in Table 4.2.

Moreover, the Transfer Learning problem is highlighted in Figure 4.9 where the distributions of daily total con-

sumption and daily water heater consumption are represented. One can observe that the first two houses have a

very high water heater consumption (around 15kWh) whereas other houses have a smaller one.

Model

After trying different architectures of neural networks for our adaptation model, we noticed that the DenseNet archi-

tecture used in Chapter 3 underperforms compared to an architecture similar to Temporal Convolutional Networks

[14] presented in Figure 4.10. Namely, our feature extractor is made of dilated causal convolutions defined in Sec-

tion 3.2. Using dilated convolutions limits overfitting from the network and the causal convolutions allows for better

performance. We use three causal convolution layers, with size 64, 128 and 256 and a dilation rate of 6 at each layer,

and a dropout rate of 0.3 at each layer. BatchNormalization leads to poorer results, hence we do not include it in our

architecture. We also include residual connections between each layers. Given the small size of the dataset, we

expected overfitting from the network but found out that the residual connections mitigated this issue. Different nor-

malizations have been tried for the input data as presented in the previous Chapter but did not find any improvement

102

(a) Total consumption distribution

(b) Water Heater consumption distribution

Figure 4.9: Distribution of Total and Water Heater consumption for each house (scales are the same inside sub-
figures (a) and (b) respectively)

103

Figure 4.10: Temporal Convolutional Network model used in our experiments

with our ensembling, whereas it increased training time (details are given in Appendix C.4).

4.5.3 Same-house results

Firstly, our goal is to see the results in the same-house scenario, as a baseline result without adaptation. For each

house, we firstly try to use K-fold cross-validation using only data coming from one house. We experiment three

different methods:

• LR: linear regression from the total consumption to the water heater consumption.

• RF: extracting 113 statistical features (see Appendix C.2.1 feeded to a Random Forest (as in the appliance

recognition experiment).

• ResNet: a convolutional neural network with residual connections, similar to the DenseNet presented in Chap-

ter 3.

• TCN: the Temporal Convolutional Network presented above.

We keep the same architectures for every house. For the ResNet, we use 3 layers with kernel sizes 64, 128 and

256 and a dropout rate of 0.3. The main difference between the ResNet and the TCN is the causal convolution.

In Table 4.3, we give the average MAE over 5 runs for each house. We see that TCN gives the best results

on almost all houses. We also notice that TCN tends to overfit. Indeed, for each house, only around 200 days are

available for training, where each day is a time series of length 8640.

In an additional experiment, we use data from every house for training but only data from one house (that is seen

during training) for test. We observe in Table 4.4 that both deep learning methods benefit from this additional data.

104

Method LR RF ResNet TCN W.H. consumption
electricdata12 3.45 3.58 2.47 2.25 16.45
electricdata14 4.29 4.38 4.59 4.52 14.02
electricdata11 3.29 3.24 2.51 2.38 8.55
electricdata19 3.91 3.28 1.79 1.68 7.12
electricdata21 2.58 2.71 2.06 1.76 6.10
electricdata5 2.73 2.37 1.52 1.46 4.16
electricdata9 2.58 1.84 1.48 1.24 3.90
electricdata22 2.23 1.99 1.73 1.49 3.72

Table 4.3: Average MAE (kWh) over 5 runs for each method and house for the same house experiment. In the last
column, we report the total water heater consumption.

Method ResNet TCN ResNet TCN
(1 house) (1 house) (every house) (every house)

electricdata12 2.47 2.25 2.58 2.61
electricdata14 4.59 4.52 3.61 3.49
electricdata11 2.51 2.38 2.42 2.34
electricdata19 1.79 1.68 1.87 1.68
electricdata21 2.06 1.76 1.87 1.72
electricdata5 1.52 1.46 1.48 1.42
electricdata9 1.48 1.24 1.37 1.19

electricdata22 1.73 1.49 1.52 1.47

Table 4.4: Average MAE (kWh) over 5 runs for each method and house for the same house experiment, using every
house for training

Overall, in our experiments, we show that TCN gives the best results. We also notice that adding data from

other houses improves the results. But this scenario is only possible when the test house is monitored, whereas in

general, we do not monitor the water heater consumption. In the next section, we experiment our adaptation method

for this new scenario.

4.5.4 Cross-house results

In this experiment, we assume that at training time, labeled samples from 7 houses and an unlabeled sample from

the test house are available. At test time, a additional unlabeled sample from the test house is available.

Using our analysis of the previous section, we choose the TCN architecture presented in Section 4.5.2 as a

feature extractor for every adaptation method. We compare different methods:

1. TCN: the TCN trained on the labeled samples from the training houses

2. DANN: DANN [72] with a regressor head for the predictor

3. CORAL: Deep CORAL [169]

4. AHDM: our method for the single-source scenario

5. MDAN: Multi-Source Adversarial Domain adaptation [196], which extends DANN to multi-source

6. AMSHDM: our method with the multi-source scenario

105

For every adversarial method, the feature extractor is a TCN, and the predictor and discriminator is a network

made of 2 fully connected layers. For the single source method (1-4), we merge data coming from every training

houses to create a single source.

Method TCN DANN CORAL AHDM MDAN AMSHDM
(1 source) (1 source) (1 source) (1 source) (7 sources) (7 sources)

electricdata12 4.78 4.87 4.51 4.38 5.28 4.11
electricdata14 5.62 5.98 4.89 4.82 6.39 4.76
electricdata11 3.12 3.28 2.68 2.71 2.88 2.31
electricdata19 1.89 1.97 1.79 1.73 1.92 1.67
electricdata21 3.46 3.32 2.95 2.93 3.62 2.77
electricdata5 1.90 2.05 1.79 1.81 1.86 1.80
electricdata9 2.29 1.96 1.60 1.87 2.30 1.42
electricdata22 2.12 1.99 1.79 1.87 2.04 1.74

Table 4.5: Average MAE (kWh) over 5 runs for each method and house for the cross-house experiment

The average MAE for every method and house is given in Table 4.5. One can see the improvement obtained with

hypothesis-discrepancy based adaptation, whereas H-divergence based adaptation gives poor results. Moreover,

our weighting scheme gives a slight improvement: we notice that the weights tend to group houses with similar

consumption levels. It can be seen in Figure 4.11, where we plot the weights obtained by AMSHDM.

Figure 4.11: Weights found by AMSHDM

106

Finally, CORAL gives very good results. We expected it to be the case as CORAL regularization is similar to our

hypothesis-discrepancy minimization as described in Section 4.3. As such, CORAL is a very good baseline as it is

faster to train. Indeed, it only implies a regularization term instead of an adversarial scheme.

Comparison with data augmentation

The results highlights the efficiency of our method as it allows to get better results than not using adaptation. It must

still be noted that similar results can be obtained using data augmentation. Indeed, a Multi-Agent Simulation (MAS)

system has been developed at EDF to generate synthetic load curve of individual households: SMACH [7]. This tool

is based on 10 minutes activity reports (27000 reports in total) which are representative of the french population’s

behaviour. Then for each activity, it helps to establish a sequence of actions for each profile in the MAS, defined

by its duration, rhythm and preferential period of use. Based on the activities defined by those reports, the MAS

outputs ON/OFF activations for each appliance in the household. Finally, for each activation, a signature is added

at the timestamp.

Based on ElectricData, EDF researchers were able to generate synthetic data for a Transfer Learning problem.

For each test house, they generated synthetic data using signatures from the other 7 houses (see Figure 4.13).

More details about those experiments are available in [55]. The results obtained from training a TCN from synthetic

data were slightly better than the ones obtained with AMSHDM.

Figure 4.12: Data augmentation vs Adaptation: with data augmentation, a new training space is created using
sources 1 to 4 ; with adaptation, the training data is moved closer to the testing data.

As such, data augmentation allows for better generalization. Our method allows to adapt to a specific space,

as illustrated in Figure 4.12. The data augmentation still requires a lot of expert knowledge. Indeed, the MAS took

years to develop and is not easy to use. We tried to use data augmentation based on GANs but got very poor

results. This study opens the perspective of data augmentation driven by transfer learning. In the future, if large

datasets are available, data augmentation seems to be a better option than Transfer Learning but data collection is

difficult for NILM.

107

Figure 4.13: Learning from Synthetic Data

Other devices

We also try to transfer for other devices. It led to less interesting results overall as they were either too easy (fridge)

or too hard (small appliances). For some appliances, we did not have enough data available to run our experiments.

For instance, for the washing machine, we had on average only 18 days where it was turned on for the 16 houses

where it was monitored. For the fridge, simply using a linear regressor from total daily consumption led to the best

results. EDF experts agree that electric heater is very hard to study as it has a very high consumption and is very

noisy. Because of those issues, testing for cross-dataset was impossible as electric water heater is barely present

in other countries.

4.5.5 Experiments on other datasets

We also led some experiments on other datasets as our method is generic to any neural network architecture and

can be applied to image or text for instance. We present experiments on two public domain adaptation datasets: (i)

Multi-Domain Sentiment Dataset2 (ii) Digit dataset made of different databases of images of digits.

Amazon Sentiment Dataset

We use the extended version of the Multi-Domain Sentiment Dataset3 with 25 categories (books, dvd, ...). The

dataset is made of textual reviews from Amazon and associated ratings. We treat it as a regression problem where

the goal is to predict the rating based on the review. As in previous papers [196] [72], we transform it using tf-idf

transform and filtering only the 5, 000 words with highest coefficients. Similarly to the original dataset, we keep 2, 000

samples for each category (or less when there was not 2, 000 available). We alternate on each category as a target

and use every other categories as the multiple sources.

We compare our method to several other baselines:
2https://www.cs.jhu.edu/~mdredze/datasets/sentiment/
3https://www.cs.jhu.edu/~mdredze/datasets/sentiment/

108

https://www.cs.jhu.edu/~mdredze/datasets/sentiment/
https://www.cs.jhu.edu/~mdredze/datasets/sentiment/

• MLP corresponds to merging all sources and applying to the target dataset without adaptation.

• DANN corresponds to merging all sources into one and applying the DANN from [72].

• AHDM corresponds to merging all sources into one and applying our adversarial scheme using discrepancy

specific to the task.

• MDAN is a multi-source domain adaptation based on the dH distance proposed in [196]. It gives large weights

to sources far from the target (we used the soft version).

• AMSHDM is our method described in Algorithm 1.

For DANN and MDAN, predictors have been specified to regression by changing the last head by a regression

layer and loss with mean squared error. The implementation of MDAN is inspired from the original implementation

from the authors. 4. For fair comparison, the basic MLP architecture is kept the same for every method (see

Appendix C.4).

Hyperparameter selection in unsupervised domain adaptation is a hard task as no labeled target data is avail-

able. For DANN and MDAN, we tried different sets of values and only report the ones giving the best results on

test data which is very advantageous and normally not possible for unsupervised DA (λ = 0.01 for DANN, γ = 10,

µ = 0.1 for MDAN which are the hyperparameters they used in the classification setting). For our algorithm, the only

hyperparameter is λ for `2-regularization of α for which we tried different settings and we report results for α = 0.01

and α = 1 here.

We run the experiment 5 times and report the average MAE for each method in Table 4.6. For most domains,

either single-source or multi-source AHDM obtains the best result with multi-source bringing an improvement for

many domains. One can notice the instability of DANN and MDAN for a few number of domains where the error

becomes very large. Overall, the AMSHDM gets state of the art result and shows its power over dH for adversarial

regression domain adaptation. The weights obtained by our method were meaningful for some domains (giving

large weight for software to transfer to video games for instance) but not for all.

Digits

Finally, we experiment our method on a digit classification task using 5 different domains: MNIST, MNIST-M, Synth,

SVHN and USPS. SVHN and USPS are known to be the hardest datasets to classify as they are much more

diverse. In each experiment, we use one domain as the target and the 4 others as the sources. We resize all

domains to images made of 28 × 28 pixels. For fair comparison we use the same architecture for every network,

using a simple convolutional neural network (see Appendix C.4 for the detailed architecture).

4https://github.com/KeiraZhao/MDAN

109

https://github.com/KeiraZhao/MDAN

Dataset apparel auto baby beauty books camera cellphones computer dvd
No-adapt 0.897 0.902 0.841 0.880 1.024 0.923 0.871 0.842 0.912

AHDM 0.837 0.887 0.840 0.860 0.945 0.893 0.859 0.849 0.882
DANN 0.929 1.017 0.893 0.878 1.141 0.944 1.051 1.135 1.05
MDAN 0.980 0.797 0.908 0.973 1.234 0.921 0.954 1.749 1.322,

AMSHDM 0.847 0.930 0.814 0.746 0.928 0.853 0.865 0.849 0.786
Dataset electronics food grocery health jewelry kitchen magazines music musical

No-adapt 0.833 0.882 0.774 0.869 0.759 0.851 0.960 0.976 0.778
AHDM 0.844 0.866 0.796 0.851 0.815 0.849 0.909 0.955 0.895
DANN 1.064 1.036 0.793 0.955 0.783 0.856 0.985 1.293 0.727
MDAN 1.041 0.820 0.789 0.987 0.755 0.850 1.295 1.330 1.117

AMSHDM 0.823 0.851 0.838 0.832 0.767 0.853 0.828 0.865 0.829
Dataset office outdoor software sports tools toys video Average Avg rank

No-adapt 0.969 0.831 0.924 0.844 0.823 0.873 0.866 0.892 3.00
AHDM 0.956 0.851 0.880 0.839 0.813 0.864 0.878 0.868 2.68
DANN 0.854 0.803 1.090 0.850 0.888 0.861 1.00 0.955 3.84
MDAN 1.041 0.789 0.964 0.910 1.656 0.843 1.467 1.06 3.88

AMSHDM 0.923 0.827 0.846 0.823 0.844 0.838 0.751 0.838 1.60

Table 4.6: Average MAE over 5 runs for each method and domain of the Amazon Multi-Domain Dataset

Figure 4.14: Visualization of digits datasets

For this experiment, we use a reduced version of the datasets with 10, 000 samples in each domain. Since we

are in a classification setting, the loss used to train AHDM cannot be the Mean Squared Error. For the bound to

hold, we need a loss that is symmetric and follows the triangle inequality. However, we found that the cross-entropy

loss is performing better than the `1-loss, hence we use it to compute the discrepancy. Our adversarial structure

becomes very close to the Maximum Classifier Discrepancy introduced in [158] and our weighting scheme extends

this structure to a multi-source setting.

We report the accuracy for each dataset and each method in Table 4.7. One can observe that for a classification

task, our HDisc still provides good results even though there is no clear improvement compared to methods tailored

for classification. For MNIST, even without adaptation, the CNN can learn general features from other datasets.

MDAN fails as it gives large weights to datasets that are not similar (such as USPS for SVHN) while our AMSHDM

does not suffer from this drawback.

110

Dataset MNIST MNIST-M SVHN Synth USPS
CNN 0.916 0.450 0.489 0.562 0.624

DANN 0.918 0.530 0.546 0.710 0.659
AHDM 0.912 0.512 0.510 0.769 0.667
MDAN 0.923 0.460 0.488 0.671 0.574

AMSHDM 0.923 0.518 0.501 0.793 0.657

Table 4.7: Accuracy for the visual adaptations on digits datasets

4.6 Extension to semi-supervised adaptation

Method

In our work, we assume that the labelling functions are similar in every domain. But it is known not to be the case

in many scenarios. When it is not the case, two solutions are available: (i) assume further knowledge about the

structure of the labelling functions (ii) collect some labels on the target domain to perform semi-supervised domain

adaptation.

We propose a simple solution in the second case to perform semi-supervised domain adaptation using hypothesis-

discrepancy. In this framework, the only difference is the presence of a small labeled target sample ST = {(x(1)
T , y

(1)
T),

..., (x
(nT)
T , y

(nT)
T)}. Our solution is motivated by the Y-discrepancy introduced in [128] which is an extension of the

original discrepancy to the semi-supervised scenario defined by

Definition 11. For two distributions pS and pT with associated labelling functions fS and fT , the Y-discrepancy is

defined as

discY(pS , pT) = sup
h∈H
|RS(h, fS)−RT(h, fT)| (4.20)

In semi-supervised domain adaptation, Y-discrepancy can be estimated with finite samples, even though its

estimation is limited by the small size of the labeled target sample. It is easy to see that

RT(h, fT) ≤ RS(h, fS) + discY(pS , pT) (4.21)

As such, this bound is not very informative as it is a simple implication of the triangular inequality. We still tried

to derive an adversarial scheme using Y-discrepancy. We see in Equation 4.21 that in order to minimize RT(h, fT)

we can formulate a min-max objective as before, by introducing a feature extractor φθ and a class of predictor HZ :

min
φθ,h∈HZ

max
h′∈HZ

RS(h ◦ φθ, yS) + RT(h ◦ φθ, yT) + |RT(h′ ◦ φθ, yS)−RS(h′ ◦ φθ, yT)| (4.22)

In this formulation, h tries to give low error rate on both source and target data. We add the term RT(h ◦ φθ, yT)

even though it is not present in the bound as it can only help h to be a better predictor for target data. On the other

111

hand, h′ tries to maximize the Y-discrepancy between source and target domains. Finally, the feature extractor

minimizes a combination of source and target risks and the Y-discrepancy.

Using this scheme allows the feature extractor to create features that are discriminative and where predictors

cannot compute very different predictions between source and target data. This regularization prevents overfitting

on source or target data, as shown in our experiments.

We use our weighting scheme as presented in the unsupervised scenario, by creating an α-weighted source

distribution pα =
∑L
k=1 αkpk to the estimation of DiscY :

DiscY(pα, pT) = sup
h′∈H

∣∣∣∣∣
K∑
k=1

αkRk(h′, fk)−RT(h′, fT)

∣∣∣∣∣ (4.23)

Figure 4.15: Adversarial Multi-Source Y-Discrepancy Minimization (AMSYDM)

We represent in Figure 4.15 the global architecture of our semi-supervised adaptation AMSYDM (Adversarial

Multi-Source Y-Discrepancy Minimization). Then the different parameters of our models are updated alternatively:

1. Lh =
∑K
k=1 αkRk + RT

2. Lh′ = −DiscY

3. Lθ = DiscY +
∑L
k=1 Rk + RT

4. Lα = DiscY + λ‖α‖2

We only consider the case where a small labeled target dataset was available without any unlabeled data,

however, it is also be possible to extend the model for the case of unlabeled data.

112

Experiments

We run experiments on the Electric Data database for the water heater consumption estimation. We use the same

experiment process as in Section 4.5.4, with the difference that we consider small labeled dataset for the target

domain. Namely, we tried with target datasets of size 5, 10, 20 and 100.

In Table 4.8, we give the average MAE on every house obtained by different methods: TCN-S is directly learnt

on every source without adaptation ; TCN-S+T is directly learnt from a combination from the source and target data

without adaptation ; AMSHDM is performing unsupervised DA ; AMSYDM is the scheme described above. We keep

the same basic architecture of the unsupervised DA.

Target size 5 10 20 100
TCN-S 3.15

TCN-S+T 2.87 2.45 2.12 2.00
AMSHDM 3.08 2.97 2.75 2.57
AMSYDM 2.78 2.21 1.98 1.84

Table 4.8: Average MAE (kWh) over every house for the water heater consumption for different target sample size

As expected, the larger the target labeled sample size, the better is the performance on the target test sample.

Moreover, we see that AMSYDM gives a small improvement on the no-adaptation framework. It also gives a notable

improvement compared to unsupervised domain adaptation. It can be explained easily for this use case as the

labelling functions of every domain are different. Yet, we assume it to be small in our domain adaptation guarantee

(Theorem 11).

Limits

Several limitations prohibit the use of Y-discrepancy in practice. The main one is the availability of a labeled target

sample. For Non Intrusive Load Monitoring, it is costly to monitor a single appliance because the main cost comes

from the installation of a sensor. Hence, in general, for the target domain, either no labeled data is available or a large

number of labeled samples are available and there is no need for adaptation. The applicability of semi-supervised

domain adaptation for non intrusive load monitoring is very restrained.

Moreover, Y-discrepancy does not have better estimation guarantees than the target risk. Hence, there is no

theoretical guarantee as to why our adaptation algorithm would give a better predictor for the target domain than a

predictor trained using empirical risk minimization.

In [54] we propose a framework for re-weighting the source distribution using the Y-discrepancy and neural

networks. We formulate an objective that gives large weights to source samples that are close to the target samples

in the sense of the Y-discrepancy. This is still an ongoing work and opens perspectives for semi-supervised domain

adaptation for regression.

113

4.7 Conclusion

In this chapter, we introduce a generic framework for adversarial domain adaptation with hypothesis-discrepancy.

This framework encompasses some existing methods as we highlighted the links between hypothesis-discrepancy

and existing works such as MCD or CORAL. After presenting the theoretical guarantees, we showed that unsuper-

vised domain adaptation is useful for Non Intrusive Load Monitoring.

In general, our method give state-of-the art results on several regression domain adaptation problems and results

slightly inferior to state-of-the art methods for classification, which seems to indicate that the approximation of H-

divergence proposed by Ben-David is better than our hypothesis-discrepancy in this case. For the specific problem

of Non Intrusive Load Monitoring, we see that Transfer Learning is a hard task. Our method reduces the performance

gap between same-domain learning and cross-domain transfer and provides good results on both ElectricData and

Refit. We also proposed a framework for semi-supervised domain adaptation, that even though its guarantees are

limited, led to good results in practice.

We identify two main possible ideas for future works. The first one is improving the interpretability of our method.

When matching distributions learnt by a neural network, negative transfer can easily happen. Our weighting scheme

give good results in practice but the convergence of the weights to ”good” weights is also not guaranteed as they are

learnt through stochastic gradient descent. Moreover, neural networks require large amount of data to be trained,

which is not available for many applications. This is often circumvented for image or text applications by using

pre-trained neural networks which will hopefully be available for time series in the future.

The second idea comes from the comparison with data augmentation. The first experiments showed that using

the SMACH multi-agent system with only 20 houses already led to a model that generalized better than one learnt

on only real data. In the future, one could imagine collect more data and create the ImageNet of NILM using SMACH

that would be useful for deep learning based methods.

114

Chapter 5

Covariance-based Transfer Learning with

applications to Multivariate Time Series

Contents

5.1 Outline of the method . 116

5.2 Multivariate Time Series and Covariance . 118

5.3 Riemannian Geometry of Symmetric Positive Definite Matrices and Time Series . . . 120

5.3.1 Basics . 120

5.3.2 Working with time series . 122

5.3.3 Statistical Learning with SPD Matrices . 123

5.4 Transferable subspace using Covariance information . 123

5.4.1 Framework . 123

5.4.2 Learning a subspace aligning domains . 124

5.4.3 Related works . 127

5.4.4 Algorithm . 128

5.4.5 Hyperparameter Selection . 130

5.5 Numerical Results . 132

5.5.1 Simulated data . 132

5.5.2 Human Activity Recognition . 135

5.6 Conclusion . 141

115

The main applications of previous chapters focus on electricity consumption, one of the main part of EDF oper-

ations. However, the main mission of EDF is electricity production, with a large variety of production means such

as nuclear or thermal power plants, power dams, wind farms, solar panels ... Those systems also bring a large

number of machine learning challenges: for instance, wind farms and solar panels require production prediction as

their production is not controlled. System monitoring is also required to plan maintenance in power plants.

For some systems, a large history of data is already available. For instance, most power plants have been

implemented more than 20 years ago. Similarly, wind farms have been implemented during the last 15 years. When

a new wind farm is implemented for production, it is natural to capitalize on existing wind farms to calibrate a model

for failure prediction or consumption forecast. As technology evolves, there might be a shift between existing wind

farms and new wind farms. Moreover, the environment is different for every farm which raises the issue of transfer

learning.

This monitoring is often performed with sensors installed on some critical devices of the power plants, which

leads to multivariate time series analysis. As opposed to uni-variate time series analysis, where temporal depen-

dence is the most informative feature, multivariate time series analysis raises the issue of cross-sensor dependence.

The work of this final chapter deals with a transfer method for multivariate time series analysis. As the methods

developed in the previous chapters can also be extended by using architectures specific to multivariate time series,

we introduce a more interpretable method dedicated to multivariate time series. Intuitively, we assume that the main

information contained in our sensors can be explained by autocovariance between sensors and we base our method

on auto-covariance matrices of the multivariate time series. We assume that some relationships between sensors

are invariant between domains and develop a method to infer those unknown invariant relationships.

Our work is based on covariance matrix analysis as covariance matrices lie on the manifold of Symmetric Positive

Definite (SPD) matrices. After presenting this manifold, we propose a method to extract a subspace common to

source and target domains based on covariance information: this subspace is defined as a linear combination of

the original sensors and we experiment our method on Human Activity Recognition datasets.

5.1 Outline of the method

To analyze multivariate time series, a naive solution is to perform uni-variate time series computations on each

dimension independently, and then merge the obtained results. It is sub-optimal as it completely ignores the potential

116

Figure 5.1: Illustration of the proposed method: raw time series are transformed to covariances and invariant
relationships between sensors with different lags are extracted

dependence between dimensions, which is often very informative. Hence, we propose a method taking into account

the relationships between dimensions.

Our idea is illustrated in Figure 5.1. We consider one or several source domains, for instance several existing

wind plants, monitored by a set of sensors for which a labeled source sample is available and a target domain. Our

method follows the idea of subspace-based domain adaptation [67]: we propose to extract a subspace on the set of

sensors invariant between source and target domains. Our method is made of three steps:

1. Transform the raw time series into covariance or auto-covariance matrices, which are good features to repre-

sent relationships between sensors.

2. Learn a common subspace based on an objective composed of three parts aiming to:

• Discriminate between labels (classes) ;

• Align source and target domains in an unsupervised way (marginal distributions) ;

• Align conditional source and target distributions.

3. Use the extracted subspace to learn a classifier on the source domain that can be generalized to the target

domain.

As such, the goal of our method is to extract relationships between sensors that are invariant in every domain.

We formulate the relationships between sensors using covariance matrices, which have a specific structure as they

117

are Symmetric Positive Definite (SPD). SPD Matrices lie on a Riemannian manifold [27] associated with metrics

with interesting properties, finding applications in computer vision [83] or Brain Computer Interface [153]. We also

use this geometry in our method and briefly present it in Section 5.3, focusing mainly on the advantage of these

metrics when dealing with time series. The second step is to learn a common subspace of sensors using covariance

matrices. For this purpose, we formulate a dimensionality reduction problem based on Maximum Mean Discrepancy

(MMD) to align domains.

5.2 Multivariate Time Series and Covariance

The first step our method transforms the multivariate time series obtained with the sensors into covariance matrices.

Here, we recall the definition of covariance and auto-covariance matrices for time series and their link with the

popular Vector Auto-Regressive (VAR) model.

Covariance To deal with multivariate time series, auto-regressive models have been extended to vector auto-

regressive models (VAR) where the coefficients represent the relationships between each dimension with lags.

This is related to the notion of covariance and autocovariance. In the following, we consider a time series X(t) of

dimension t, sampled between 1 and T :

X =


X1,1 ... X1,T

... Xi,t ...

Xd,1 ... Xd,T



indexed by t ∈ {1, ..., T} with d the number of sensors. In the following, we also sometimes note as the value of

X at time t by X(t). Then the covariance matrix C is defined as

C =
1

T (T − 1)


E[X1(t)X1(t)] ... E[X1(t)Xd(t)]

...

E[Xd(t)X1(t)] ... E[Xd(t)Xd(t)]

 (5.1)

where E[Xi(t)Xj(t)] = 1
T−1

∑T
i=1(Xi,t− X̄i)(Xj,t− X̄j) (X̄i = 1

T

∑T
t=1Xi,t). C is the standard covariance matrix

that does not take into account temporal dependencies. To better take into account the temporal dependence, we

introduce the autocovariance matrix ACw of x at a fixed horizon w > 0 as

118

ACw =



E[X(t)TX(t)] E[X(t− 1)TX(t)] ... E[X(t− w)TX(t)]

E[X(t)TX(t+ 1)] E[X(t+ 1)TX(t+ 1)] ...

...

E[X(t+ w)TX(t)] E[X(t+ w)TX(t+ w)]


(5.2)

where E[X(t + i)TX(t + j)] is the covariance matrix between sensors with lags (assuming the time series are

centered). Under the assumption that the time series is stationary ACw is symmetric definite positive. In general, we

assume wide-sense stationarity which means that the mean and autocovariance of the time series stays constant.

In most industrial systems, the stationarity assumption does not hold over the entire time series. However, a

common way to circumvent it is to consider small time windows around an event of interest. On this small time

window, stationarity is often ensured [116].

Partial Autocorrelation Covariance matrix and partial autocorrelation matrix are directly linked. Partial autocor-

relation at order r of a time series X is defined as follows:

ρ(r) =
E[X(t)TX(t− r)|X(t− 1), ..., X(t− r + 1)]

E[X(t)TX(t)|X(t− 1), ..., X(t− r + 1)]E[X(t− r)TX(t− r)|X(t− 1), ..., X(t− r + 1)]
(5.3)

Those coefficients estimate the relationship between values of X at time t − r and time t after removing the

effects of every intermediate value. They are also directly linked to the VAR coefficients. It can be shown that,

denoting ρ =



ρ(0) ρ(1) ... ρ(w)

ρ(1) ρ(0)

...

ρ(w) ρ(0)


and P = AC−1

w the precision matrix, we have

ρi,j = − pij√
piipjj

(5.4)

As highlighted in [81], partial auto-correlation matrix shows the conditional independence structure between the

variables. It can then be used to detect causality between sensors with the Granger causality test. Moreover,

Barndorff-Nielsen and Schou (1973) [19] proved that there is a one-to-one correspondence between partial corre-

lations at horizon w and the coefficients of a Vector AutoRegressive model of horizon w. In [81], authors use the

Partial Auto-Correlation Matrix as a feature to perform time series clustering.

Estimation When trying to estimate matrix ACw (of horizon w) for a d-dimensional time series, the number of

covariance coefficients to estimate is dw. When the time series length T is small, the estimation of ACw is impos-

sible. In the following, we use Ledoit-Wolfe regularization [108], which is better conditioned for high-dimensional

119

covariance estimation. But there still is a limit on the number of coefficients that we can estimate.

VAR Model The main method working on relationships between sensors and lags is the Vector AutoRegressive

(VAR) model. A time series X is assumed to follow the VAR model of degree p if

Xt =

p∑
r=1

ArXt−r + et (5.5)

where et is an error term such that (i) E[e(t)] = 0 (ii) E(eTt et) = Σ (iii) E[e(t)e(t − s)] = 0 for all s > 0. The first

two conditions give the structure of the same-time dependence. The last condition assumes no correlation between

different error terms.

The coefficients Ar ∈ Rd×d can be directly estimated using Yule-Walker equations [181]. The VAR coefficients

are the roots of a polynom whose coefficients are the autocovariance. Hence, the autocovariance matrix ACw

contains every information required for VAR model estimation.

Overall, autocovariance information is useful for modelling linear relationships between sensors at different

timestamps. It has shown its efficiency in forecasting, but also in anomaly detection or time series classification.

Hence, we propose to use covariance information as features for multivariate time series analysis.

5.3 Riemannian Geometry of Symmetric Positive Definite Matrices and

Time Series

As our method is based on covariance matrices, we can use the specific geometry developed for SPD matrices. We

present the metrics of interest for our work and why their properties are relevant for time series. We do not present

details on the Riemannian manifold of SPD matrices but interested reader can refer to the extensive work of Bhatia

(2009) [27].

5.3.1 Basics

We note the set of Symmetric Positive Definite (SPD) Matrices S(d)
+ such that

S(d)
+ = {M ∈ Rd×d ; MT = M , xTMx > 0, ∀x ∈ Rd, x 6= 0} (5.6)

Bhatia (2009) [27] proved that when endowed with an appropriate Riemannian metric, S(d)
+ is a smooth Rieman-

nian manifold with non positive curvature [130]. This means that every neighbourhood of a matrix M ∈ S(d)
+ can be

bijectively mapped to Euclidean space. While we do not develop the theory of Riemannian geometry, we can use

120

some tools for machine learning applications. In the following, we detail the specific distances of these manifolds as

they are more informative for some applications.

A SPD Matrix M admits the following decomposition M = QTΛQ where QTQ = 1 and Λ =


λ1 0 ... 0

0 λ2 ... 0

0 0 ... λd


with λ1 ≥ ... ≥ λd > 0. We respectively define the matrix exponential and logarithm over S(d)

+ as

expm(M) = QT


exp(λ1) 0 ... 0

0 exp(λ2) ... 0

0 0 ... exp(λd)

Q

logm(M) = QT


log(λ1) 0 ... 0

0 log(λ2) ... 0

0 0 ... log(λd)

Q

(5.7)

The two main metrics proposed for S(d)
+ are the affine invariant metric (AIM) [143] and log-euclidean metric (LEM)

[11], both having different properties. The Affine Invariant Metric between two matrices M1,M2 ∈ S(d)
+ is defined as

δAIM (M1,M2) = ‖logm(M
−1/2
1 M2M

−1/2
1)‖F (5.8)

where ‖.‖F is the Frobenius norm. AIM has two interesting invariance properties:

• δAIM (M−1
1 ,M−1

2) = δAIM (M1,M2)→ Invariance to inversion

• For any invertible matrix W ∈ Rd×d, δAIM (WTM1W,W
TM2W) = δAIM (M1,M2)→ Affine invariance

Those properties make it an attractive tool to process SPD Matrices with machine learning. The main drawback

is that δAIM is computationally expensive.

The Log-Euclidean Metric between two matrices M1,M2 ∈ S(d)
+ is defined as

δLEM (M1,M2) = ‖logm(M1)− logm(M2)‖F (5.9)

LEM also has invariance to inversion, but does not have full affine invariance. It is still invariant to rotation. If we

define the set of rotation matrix O(d) = {W ∈ Rd×d,WTW = Id} where Id is the identity matrix of size d, then the

two following properties hold.

• δLEM (M−1
1 ,M−1

2) = δLEM (M1,M2)→ Invariance to inversion

• δLEM (sWTM1W, sW
TM2W) = δLEM (M1,M2) for any rotation matrix W ∈ O(d) and s ∈ R+,→ Invariance to

rotation and scaling

121

LEM is only invariant to rotation and scaling but is easier to compute and manipulate.

Finally, we mention a last divergence that does not define a manifold but still has good properties for SPD

Matrices: Stein-Divergence [167]. The Stein Divergence between two matrices M1,M2 ∈ S(d)
+ is defined as

δS(M1,M2) = log det

(
M1 +M2

2

)
− 1

2
log det(M1M2) (5.10)

Stein-divergence shares the same invariance properties as AIM but is less expensive to compute.

The three metrics defined above share similar invariance properties. Moreover, using these metrics, it is possible

to define means, geodesics and even Gaussian distributions [157] over S(d)
+ .

5.3.2 Working with time series

Let us consider a multivariate time series X ∈ Rd×T , its autocovariance matrix with horizon w ACw and its covari-

ance matrix C = 1
T−1XX

T . The geometry detailed above gives good properties to the analysis of time series: (i)

equivalence between working on sensors and underlying source signals when they are linearly mixed (ii)

The invariance to rotation means that it is equivalent to work on the covariance matrix C or WTCW (and equiv-

alently for autocovariance matrix). This implies that it is equivalent to work on the original time series X or WTX

as WTCW = (WTX)TWX. This property is relevant to applications where sensors capture phenomenons coming

from different sources, as in Source Separation. If we assume that the observed sensors X capture information

from d sources S via X = WS, then for two time series X1, X2, δLEM (X1, X2) = δLEM (S1, S2).

The invariance to inversion means that working with C or C−1 is equivalent. We saw that the precision matrix

C−1 is equivalent to the partial correlation between sensors, up to a normalizing factor: if we note ρij the partial

autocorrelation between sensors i and j, we have

ρij =
(C−1)ij√
C−1
ii C

−1
jj

(5.11)

This property can be extended to auto-covariance matrix by noting thatACw is the covariance matrix of



X1:T−w

X2:T−w+1

...

Xw:T


where Xj:T−w+j = {xj , ..., xT − w + j}.

This means that when using those metrics, we use features that are very informative on the true relationship

between sensors. As there is an equivalence between partial auto-correlation and VAR coefficients, our method

allows to work implicitly on VAR coefficients, which are used in many applications.

Finally, one could note that when using auto-covariance matrix, ACw is not only SPD but also Block-Toeplitz.

122

SPD Block-Toeplitz matrices also lie on a manifold with a specific metric, as proved in [18]. This metric is very hard

to compute and has led to limited applications so far, but it would be interesting to study its use in future work.

5.3.3 Statistical Learning with SPD Matrices

We give ourself a classification problem with a dataset {(C1, y1), ..., (Cn, yn)} where Ci ∈ S(d)
+ and yi ∈ {0, 1}.

Different solutions have been proposed to integrate the specific geometry of S(d)
+ in classical machine learning

approaches.

The first line of geometry-aware algorithms directly used the distances defined above in a k-nearest neighbour

algorithm [174]. The minimum distance to mean classifier follows a similar idea: first, class barycenters are learnt

on training matrices and at test time, a test sample is assigned to the class whose barycenter is the closest [16].

The line of interest for our method considers kernel based methods. For instance, Barachant et al. (2013) [17]

propose a linear kernel for AIM using the tangent space and Jayasumana et al. (2015) [98] study kernel-based

algorithms for different metrics. They show that the log-euclidean metric can be used to define a gaussian kernel

between two matrices M1,M2 ∈ S(d)
+ :

kLE(M1,M2) = e−γδLE(M1,M2) (5.12)

where γ is a parameter of the kernel. The Log-Euclidean Gaussian Kernel is positive definite for any γ > 0.

Unfortunately, it is not the case when using the Affine Invariant Metric. For the Stein divergence, a positive definite

gaussian kernel can also be defined for specific values of γ [167]:

kS(M1,M2) = e−γδS(M1,M2) (5.13)

with γ ∈ { 1
2 ,

2
2 , ...,

d−1
2 } ∪ [d−1

2 ,+∞[. Using one of those kernels, authors proposed different methods for clas-

sification, kernel SVM being the most popular. Kernels have also been used for sparse coding to decompose SPD

Matrices, with applications to computer vision [84].

The aforementioned methods have been very popular in Brain Computer Interface applications, but have led

to few applications on industrial systems. We argue that the invariance of those metrics are relevant for industrial

monitoring.

5.4 Transferable subspace using Covariance information

5.4.1 Framework

In our framework, we consider K domains Dk = {X , Pk(Xk)} with K associated tasks Tk = {Y, Pk(Yk|Xk)}.

The input data are multivariate time series X ⊂ Rd×T . We also assume that we have K labeled samples Sk =

123

{(X(1)
k , y

(1)
k), ..., (X

(n)
k , y

(n)
k)} where X

(i)
k ∈ Rd×T and y

(i)
k ∈ {−1,+1}. We also assume that we have a target

domain DT = {XT , PT (X)} and a target task TT = {YT , PT (Y |X)} with an unlabeled sample ST = {X(1)
T , ..., X

(m)
T }.

For instance, the K sources could be K existing wind turbines and the target a wind turbine that just got

launched. We aim to present a very general framework even though some special cases are studied. If K = 1, it

corresponds to the single-source scenario. Our solution encompasses domain generalization and still works if the

target sample is unavailable at training time.

5.4.2 Learning a subspace aligning domains

In general, when monitoring a system, many variables are monitored but only a few of them are useful. This led

to variable selection or dimension reduction. Here, we propose a method to reduce the dimension of the original

time series using only covariance information. The method is done in two successive steps: (i) learn a common

subspace between one or several source domains and target domain (ii) use the extracted subspace to learn a

classifier on the source domain that can be generalized to the target domain.

Our model is formulated as follows: we want to learn a mapping parametrized by a matrix W ∈ Rd′×d where

d′ < d that maps every time series X ∈ Rd×T to WTX. The criteria for this dimensionality reduction is that the new

features need to be discriminative and transferable between domains. We use only covariance information on the

new data space. For every domain Dk and sample Sk, we write C(i)
k = X

(i)
k (X

(i)
k)T . One can note that if W ∈ Rd′×d

is full rank, then WTC
(i)
k W is SPD, ie WTC

(i)
k W ∈ S(d′)

+ . Hence, we constrain W to full rank matrices.

In the following, we learn the kernel parametrized by W as:

kLE [W](C1, C2) = e−γδLE(WTC1W,W
TC2W) (5.14)

We further define

K[W] =



K11[W] K12[W] ... K1R[W] K1T [W]

K21[W] K22[W] ... K2R[W] K2T [W]

...

KR1[W] KR2[W] ... KRR[W] KRT [W]

KT1[W] KT2[W] ... KTR[W] KTT [W]


∈ RKn+m×Kn+m

the kernel matrix over all samples where Krs[W] is the kernel matrix between samples from domains r and s.

Our objective is made of three parts: (i) the common subspace must be able to discriminate between labels

on the source domains (ii) it must align marginal distributions between source and target domains (iii) it must align

conditional distributions between source and target domains. In presence of several source domains, the adaptation

is done between the different source domains as well.

124

Discriminative Learning We use the idea of Kernel Alignment [43] and formulate the following objective

Jy(W) = −Tr(K[W]Y TY) (5.15)

where Y = [y
(1)
1 , ..., y

(n)
1 , y

(1)
2 , ..., y

(n)
2 , ..., y

(1)
K , ..., y

(n)
K , 0m] is the full label matrix with m concatenated 0 for the

unlabeled target sample. Note that in the case of multi-class classification, one can simply replace Y TY by a matrix

H defined by Hij =


+1ifyi = yj

−1ifyi 6= yj

Minimizing this objective forces elements of K[W] to be close to 1 when the

labels of two samples are the same and 0 when the labels are different. This objective corresponds to the classical

supervised setting of kernel alignment. Here, we considered domains of the same size, but if some domains are too

heavily represented, it might be necessary to normalize their contribution to the objective.

Aligning source and target domains We saw in Section 2.2.3 that Maximum Mean Discrepancy can be used

to measure the difference between distributions embedded in a RKHS. We use the classical empirical estimate to

measure the MMD between two samples from domains k and T :

MMD(Sk,ST) = Tr(KkT [W]M) (5.16)

where for 1 ≤ i, j ≤ n + m Mij = 1
n2 if 1 ≤ i, j ≤ n, Mij = 1

m2 when n + 1 ≤ i, j ≤ n + m and Mij = − 1
nm

otherwise. We want to find features that minimize the discrepancy between source and target domains. Hence, we

formulate the following objective with pairwise-MMD:

Ja(W) =

K∑
r=1

Tr(KkT [W]M) (5.17)

Note that in the case when K = 1, this objective is similar to most MMD-based methods. In our case, we simply

extend it to multiple sources using pairwise-MMD. As we give equal weight to every source domain, we assume

them to have equal contribution to the adaptation.

Conditional Source Alignment Finally, we can align conditional distributions on source domains as labeled sam-

ples are available. For two source domains Dk and Ds with 1 ≤ r, s ≤ R, we can measure the Maximum Mean

Discrepancy between conditional distributions P (X|Y). As above, for each class c ∈ {−1,+1}, we define a regular-

ization matrix M (rs)
c between domains. We denote Sr,c = {x(i)

k ∈ Sk; y
(i)
k = c} and Ss,c = {x(i)

s ∈ Ss; y(i)
s = c}.

125

M (rs)
c =



(mc)
(rs)
ij = 1

nr,cnr,c
if xi, xj ∈ Sr,c

(mc)
(rs)
ij = 1

ns,cns,c
if xi, xj ∈ Ss,c

(mc)
(rs)
ij = − 1

nr,cns,c
if xi ∈ Sr,c, xj ∈ Ss,c

or xi ∈ Ss,c, xj ∈ Sr,c

(mc)
(rs)
ij = 0 otherwise

(5.18)

Finally, we note M (rs) =
∑
c∈{−1,+1}M

(rs)
c . We introduce the objective on conditional distributions as

Jc(W) =

R∑
r,s=1

Tr[Krs[W]M (rs)] (5.19)

We can simplify the notations by introducing a single matrix L for every MMD-regularizer. We note

L =



L(11) L(12) ... L(1R) L(1T)

...

L(R1) L(R2) ... L(RR) L(RT)

L(T1) L(T2) ... L(RT) L(TT)


∈ RRn+m×Rn+m

For r, s ∈ {1, ..., R, T}, for r 6= s, if we note M (rs) =

 A(rs) B(rs)

(B(rs))T D(rs)

 then we define L(rs) = B(rs) and

L(rr) =
∑r
s=1A

(rs).

Using the matrix L defined above, we can simplify the definitions of our objectives as

Ja(W) + Jc(W) = Tr(K[W]L) (5.20)

where K is the kernel matrix over every domain.

Objective Finally, we formulate our objective as

min
W∈Rd×d′

J(W) = Tr(K[W](λL− Y TY))

such that WTW = Id′

(5.21)

where λ is a hyperparameter to balance discrimination and adaptation. The constraint WTW = Id′ enforces full

126

rank of matrix W .

Discussion Our framework is general and can be simplified in some cases. If only one source domain is available,

then Jc(W) = 0 and only marginal adaptation between the source and the target is performed. We come back to the

traditional domain adaptation framework seen in the previous chapter, with adaptation guarantee of the Maximum

Mean Discrepancy seen in Theorem 8. As in our framework, the adaptation works only when the difference between

labelling functions is small. If it is not the case, some labeled data is necessary in the target domain to use them in

the conditional adaptation.

If the target domain is not specified and not available at training time, then Ja(W) = 0. In this case, we fall back

to the framework of domain generalization. We saw in Section 2.4.1 that one can obtain guarantee on the risk of

generalizing to a new unseen domains, when the number of domains becomes large [22] [125].

Our model has a few hyperparameters:

• λ: the parameter balancing both criterias

• γ: the gaussian kernel parameter

• d′: the size of the learnt subspace

• K source domains

The last one is not directly a parameter but as we do not learn weights or select sources inside our model, a priori

source selection is necessary to avoid negative transfer. We propose solutions to select those hyperparameters.

5.4.3 Related works

In [43], authors propose Kernel Alignment for learning a combination of kernels. Our method is different as the

parameter W acts directly on the signals. Our method is in line with other linear dimensionality reduction methods

on a manifold.

In [83], authors propose to learn a subspace for SPD Matrices. They formulate an objective of the form L(W) =∑n
i,j=1 aijδ

2(WTCiW,W
TCjW) where W is the parameter to learn and aij are discriminative coefficients of the

form aij = 1 if Xi is among the K-neighbours (in the original space) of Xj of the same class, aij = −1 if Xi is

among the K-neighbours of Xj of a different class and 0 otherwise. Their method does not make use of kernel but

already gives good results. Mainly, we use the same optimization procedure as their method.

In [93], authors also propose a kernel alignment algorithm for SPD Matrices. The main difference with our

algorithm is on the constraint on W . Instead of the full rank constraint, they impose W to be SPD. Unfortunately,

we could not reproduce the results of their algorithm as it is unclear how they perform optimization on the space of

SPD Matrices endowed with the Log-Euclidean Metric.

127

In [15], authors propose a dimensionality reduction for domain adaptation using MMD. For two domains and sam-

ples XS ∈ Rd×nS , XT ∈ Rd×nT , they propose to minimize MMD(WTXS ,W
TXT). Their method is unsupervised

and only minimizes difference between marginal distribution and the discriminative is done in a second stage.

Our method enhances on those two works by combining discriminative learning and adaptation. It was proved

to be state of the art for domain adaptation with for instance Adaptation Regularization [114]. Other dimensionality

reduction based on MMD such as TCAdo not learn a new subspace on original data but learn a kernel in the form

of k(x1, x2) =< wTφ(x1), wTφ(x2) > on the source data but learn a kernel, which is less interpretable.

5.4.4 Algorithm

Grassmannian optimization

To solve the objective of Problem 5.21, we have a convex cost with a full rank constraint. In fact, the problem can

be formulated as an optimization over a manifold. Indeed, the set {W ∈ Rd×d′} is also called the Stiefel Manifold.

Moreover, we notice that for any W ∈ Rd×d′ and rotation matrix R ∈ O(d′), J(W) = J(WR) as the Log-Euclidean

Kernel is invariant to rotation. Hence, the minimization can be done over the Grassmannian Manifold G(d′, d), which

is defined as the space of d′-dimensional linear subspace of Rd. Classical optimization techniques such as Newton

Descent or Conjugate Gradient Descent have been extended to optimization over a manifold [1].

To solve our problem, we use conjugate gradient descent. It is done in four steps:

1. Compute the euclidean gradient of the objective function DWJ(W)

2. Compute the Grassmannian gradient ∇WJ(W) using ∇WJ(W) = (Id −WWT)DWJ(W)

3. Find the search direction H using the previous search direction and ∇WJ(W)

4. Perform a line search along the geodesics of W in the direction of H to find the step size

The last three steps were defined in [1] and are available in the Pymanopt package [173], which is available

in Python. The only remaining step is the computation of the gradient of J(W), which involves gradients of matrix

logarithms.

In [83], authors propose to approximate logm(WTXW) by WT logm(X)W using Taylor expansion, which circum-

vents the computations of gradients of the Log-Euclidean Metric. In fact, it is possible to compute them completely.

Indeed:

128

DWJ(W) = DW

[
Tr(K[W](L− Y Y T)

]
= DW

Rn+m∑
i,j=1

Kij[W](lij − yiyj)


=

Rn+m∑
i,j=1

(lij − yiyj)DW [Kij[W]]

(5.22)

Hence, we need to compute DW [Kij[W]]. We detail the computation of this gradient by noting Ci and Cj the

covariance matrix corresponding to samples i and j. Moreover, this computation is based on the work of [93].

DW [Kij[W]] = DW

[
‖logm(WTCiW)− logm(WTCjW)‖

]
= DW

[
Tr(logm2(WTCiW) + Tr(logm2(WTCjW)− 2Tr(logm(WTCiW)logm(WTCjW))

] (5.23)

Using [32], one can compute each of those three terms

DW (Tr(logm2(WTCiW)) = 4CiWDlogm(WTCiW)
[
logm(WTCiW)

]
DW (Tr(logm2(WTCjW)) = 4CjWDlogm(WTCjW)

[
logm(WTCjW)

]
DW (Tr(logm(WTCiW)logm(WTCjW))) = 2CiWDlogm(WTCiW)

[
logm(WTCjW)

]
+ 2CjWDlogm(WTCjW)

[
logm(WTCiW)

]
(5.24)

Combining those three equations, we have

DW [kij[W]] = −4(CiWDlogm(WTCiW)

[
logm(WTCiC)− logm(WTCjW)

]
+ CjWDlogm(WTCjW)

[
logm(WTCjC)− logm(WTCiW)

]
)γKij(W)

(5.25)

Finally, the quantity DlogmX[Y] for X,Y ∈ S(d′), corresponding to the directional derivative of logm at X along

Y can be computed using Theorem 4.11 from [5] which states that

logm

X Y

0 X

 =

logm(X) Dlogm(X)[Y]

0 logm(X)

 (5.26)

Using the previous formula, it is possible to compute the derivative in Equation 5.25 which can be fed to the

derivative of the cost (Equation 5.22).

Each gradient step of our algorithm has a cost of O((Rn + m)2)dd′2, which gives a total cost of O(niter(Rn +

129

m)2dd′2. Even though with RCG, the number of iterations is small, it can be prohibitive for some applications. It

is also possible to use the Stein divergence introduced in Section 5.3 instead of the Log-Euclidean Metric as it is

also invariant to rotation. The main drawback is that the associated kernel stays positive definite only for some

values of γ. As the choice of hyperparameter is important to the performance of our algorithm, we prefer to use the

Log-Euclidean Metric.

Sparsity Constraint

As we wanted our model to be as interpretable as possible, we wanted to impose a sparsity constraint on W , in the

form of

min
W∈Rd×d′

Jsparse(W) = Tr(K[W](λL− Y TY)) + µ‖W‖1

such that WTW = Id′

(5.27)

With such constraint, only a few original sensors would contribute to each created dimension in W , meaning that

we could extract meaningful relationships between sensors. However, manifold optimization with sparsity constraint

is a hard task as the `1-norm is not differentiable everywhere.

In [110], authors proposed to use subgradients (sign(W) in the case of ‖W‖1) and prove a convergence rate

in O(k−1/4) for optimization over the Stiefel manifold. We tried to use subgradients in our algorithm to solve Prob-

lem 5.27 but the obtained solution was never sparse, even for high values of µ.

In [41], authors propose to extend proximal methods to manifold optimization. In general, proximal operators

decompose the problem into two steps, one optimizing the differentiable part of the cost, and one projecting the

obtained solution using a proximal operator. However, for this method to be useful, we need to be able to solve the

proximal problem easily (in euclidean optimization, the proximal operator for the `1-norm has a closed form solution).

For our problem, we did not find any ”easy” solution to the proximal problems, but we think it is an interesting direction

of work in the future.

5.4.5 Hyperparameter Selection

Dimensionality selection

We propose a method to chose the dimensionality d′ based on the subspace disagreement measure introduced

in [76]. Our method is based on the principal angles between subspaces. We first give ourselves a maximum

130

dimensionality d′max. Then given K source domains, we propose to solve K subproblems as

Wk = arg min
W∈Rd′max

Tr(Kk,−Y Tk Yk) (5.28)

where Kk and Yk corresponds to the submatrix of K and Y with indices of domain r. Each Wk spans a different

basis. We use the notion of principal angles between subspaces to study the agreement between every basis of

dimension ≤ d′max by each Wk. For two domains k and l, we introduce Vl ∈ Rd×(d−d′max) and Vk ∈ Rd×(d−d′max) the

orthogonal complements of Wk and Wl, ie V Tk Wk = 0 and V Tl Wl = 0. Then one can show that in the Singular Value

Decomposition of V Tl Wk

V Tl Wk = UΣV T (5.29)

the diagonal elements of Σ corresponds to sin(θkl1), ..., sin(θkld′max) where 0 ≤ θkl1 ≤ ... ≤ θkld′max ≤
π
2 are called the

principal angles between Wl and Wl: in particular, for d′ ∈ {1, ..., d′max}, if θd
′

kl = π
2 , then the domains are orthogonal.

We want to avoid the domains to be orthogonal but still want to keep a reasonable dimensionality to build a classifier.

Our criteria is formulated as

min
d′∈{1,...,d′max}

{d′| 1

K(K − 1)

∑
r 6=s

sin(θkld′) ≥ η} (5.30)

where η is a hyperparameter chosen by the user, set to 0.9 in our experiments.

Domain selection

As discussed above, our method assumes equal relationship between every source domain and the target domain.

Hence, we propose a simple method to remove outlier source domains and mitigate negative transfer. Given K

source domains, we propose to learn a matrix W solving

W ∗ = arg min
W∈Rd′×d

Tr(KS [W],−Y TS YS) (5.31)

where KS and YS corresponds to the submatrix of K and Y with indices of every source domain. W ∗ is a matrix

that learns how to classify every domain. Then we compute the error made by W ∗ on each domain εk(W ∗). We

remove every domain such that εk(W ∗) ≤ ηd where ηd is a parameter set by the user. In our experiments, we set it

to the mean of the errors over every domain minus two standard deviations.

Leave-one-domain-out CV

Cross-validation is a popular method for hyperparameter selection in traditional Machine Learning. However, in

unsupervised domain adaptation, we do not have labels in the target domain, hence, traditional cross-validation

131

cannot be used. We propose leave-one-domain-out cross-validation to select γ and λ. First, we define a grid for

possible values of γ and λ. Then, for every set of hyperparameters, we iteratively learn our model on K−1 domains

with the remaining domain used as a target domain. The chosen hyperparameters are the ones giving the overall

lowest error rate. Note that we could use this scheme to select the dimensionality as well but it requires to learn our

model for every possible set of hyperparameters. Our dimensionality selection scheme is less costly and leads to

good results in practice.

5.5 Numerical Results

We present the results of our method on both synthetic and real world data. We first simulated synthetic data

using a Vector AutoRegressive model, which is often used to analyze industrial multivariate time series. Then we

experimented on Human Activity Recognition datasets: UCI Daily Activites [9] and NTU RGB-D 120 Dataset [163].

The next step is to apply our method on industrial dataset at EDF when they are collected and pre-processed.

5.5.1 Simulated data

We use two procedures to simulate synthetic data: in a first example, we directly simulate covariance matrices

corresponding perfectly to our framework. In a second example, we simulate source and target domains using a

VAR model, which should be harder for our method but closer to real world data.

Covariance data

We first simulate synthetic data corresponding to the assumptions of our models. We generate a binary classification

({+1,−1}) problem over 10 domains by generating two SPD covariance matrices with dimension d = 20, noted

C
(+1)
k ∈ S(20) and C

(−1)
k ∈ S(20) on each domain k. Then, we generate n = 100 samples (x

(i)
k , y

(i)
k) such that

x
(i)
k ∈ R20,1000, y(i)

k ∈ { − 1,+1} and x(i)
k [t]

i.i.d∼ N (0, Ck(y
(i)
k)) + εt where εt ∼ N (0, Id). The goal is to classify each

time series x(i)
k to its label y(i)

k .

The covariance matrices C(+1)
k and C(−1)

k are different in each domain but we assume that every domain share

the same relationships on the first d′ = 4 dimensions: [C
(+1)
1]1:4 = ... = [C

(+1)
10]1:4] and [C

(−1)
1]1:4 = ... = [C

(−1)
10]1:4].

In our evaluation, we consider R = 9 domains as the source domains and the last one as the target domain. We

estimate the covariance from each x(i)
k and use them as features in five different methods:

1. AIM-MDM: Minimum Distance to Mean classifier with the Affine Invariant Metric without Dimensionality Re-

duction

2. LR-MTL: multi-task learning with a linear classifier with group-sparsity constraint presented in [10]

132

3. LEK-SVM: Support Vector Machine classifier with the Log-Euclidean Kernel without Dimensionality Reduction

4. LEK-DR-SVM: Support Vector Machine classifier with the Log-Euclidean Kernel with Dimensionality Reduc-

tion using only discriminative learning (Jy) and no transfer

5. LEK-DG-SVM: Support Vector Machine classifier with the Log-Euclidean Kernel with Dimensionality Reduc-

tion using only discriminative learning (Jy) and conditional adaptation (no information from the target domain

is used)

6. LEK-TL-SVM: Support Vector Machine classifier with the Log-Euclidean Kernel with Dimensionality Reduction

using our model in Equation 5.21

The last three methods are based on our model: LEK-DR-SVM does not perform adaptation and is similar to

[93], LEK-DG-SVM corresponds to domain generalization and LEK-TL-SVM corresponds to domain adaptation.

In LR-MTL, the specific geometry of the covariance matrix is ignored, as it takes vectors as an input. We set the

dimensionality d′ = 4, keep every domain and use leave-one-domain-out cross validation to select γ and λ for the

last four methods. We report the average accuracy over every domain in Table 5.1. We also report the result of

intra-domain learning using LEK-SVM learned on the target domain and tested on the same domain.

Method AIM-MDM LR-MTL LEK-SVM LEK-DR-SVM LEK-DG-SVM LEK-TL-SVM Intra-domain
Accuracy (%) 56.12 72.87 55.41 53.28 98.79 97.52 100

Table 5.1: Average accuracy for synthetic covariance data

One can see that when learning and testing on the same domain, the classification is done perfectly, with

accuracy of 100%. It does not hold in the cross-domain scenario, both with Affine Invariant Metric and Log-Euclidean

Metric. The dimensionality reduction does not give good results either without adaptation. LR-MTL improves on

those methods, but fails to find relevant dimensions for some domains. LEK-DG-SVM and LEK-TL-SVM both give

very good results, almost as good as the intra-domain scenario. In Figure 5.2, we also plot the obtained matrix W

for one experiment. One can see that only the common variables between every domain are selected. Previous

results demonstrate the ability ouf our method. We still underline that the generated problem is very simple and has

been designed perfectly for our method. Hence, we also propose to simulate synthetic data using a VAR model.

Vector AutoRegressive model

We also simulated a similar dataset using the Vector AutoRegressive model. We consider R = 10 domains, time

series with d = 20 sensors and a binary classification problem with y ∈ {−1,+1}. For each domain and each

class, we generate random VAR coefficients with horizon 5 (VAR(5) model): A(r,−1)
1 , ..., A

(r,−1)
5 , A

(r,+1)
1 , ..., A

(r,+1)
5 ∈

R20×20. To enforce stationarity of the VAR model, we constrain the coefficient matrices to have singular values lower

than 1. Then, we constrain the model parameters to be the same for the first 4 dimensions in every domain for each

133

Figure 5.2: Parameter W learned by the model for the synthetic covariance experiment (abs(W)T is represented
here and values are normalized to sum to 1 for each dimension for better readability)

class, ie [A
(1,−1)
l]1:4 = ... = [A

(10,−1)
l]1:4 and [A

(1,+1)
l]1:4 = ... = [A

(10,+1)
l]1:4 for l = 1, ..., 5 and where [A

(r,y)
l]1:4 is the

square sub-matrix of A(r,y)
l for indices lower than 4.

Finally, we generate n = 100 samples (x
(i)
k , y

(i)
k) such that y(i)

k ∈ {−1,+1}, x(i)
k has a length 1000 and

x
(i)
k [t] =

5∑
l=1

A
(r,y

(i)
k)

l x
(i)
k [t− l] (5.32)

In our evaluation, we consider R = 9 domains as the source domains and the last one as the target domain. We

estimate the autocovariance matrix with horizon 5 from each x
(i)
k . Note that the horizon was chosen by hand, but

could be chosen from the traditional Partial Autocorrelation Function method. We tested the five methods described

above and report the average accuracy over every domain in Table 5.2.

Method AIM-MDM LR-MTL LEK-SVM LEK-DR-SVM LEK-DG-SVM LEK-TL-SVM Intra-domain
Accuracy (%) 53.28 42.12 57.87 59.72 92.28 92.19 100

Table 5.2: Average accuracy for synthetic VAR coefficients

We make similar observations to the previous experiment, which can be explained by the fact that both metrics

are invariant to inversion. Once again, the methods that extract transferable features are the ones using conditional

adaptation and there is no gain from the marginal adaptation using target data. One can note that LR-MTL performs

worse than a random classifier as it does not take the specific geometry of covariance matrices. On the other hand,

when we directly feed AR coefficients to LR-MTL, it performs as well as in the previous experiment.

As a conclusion, our method allows to find relevant dimensions for domain generalization and transfer learning

for synthetic data, both for covariance and VAR models. While the assumptions made by our model and experiments

rarely are perfectly met in practice, we experiment on real world datasets in the next section.

134

Figure 5.3: Examples of time series from UCI Daily Activities Dataset: top row represents walking upstairs and
bottom row corresponds to walking downstairs. On each figure, blue is the x-dimension, orange the y-dimension
and green the z-dimension.

5.5.2 Human Activity Recognition

We evaluate our method on two Human Activity Recognition (HAR) datasets: UCI Human Activity Recognition

dataset [9] and NTU RGB-D [163] dataset. It could be useful in EDF production facilities for worker safety monitoring

especially when workers have to work alone, such as in a power plant. Moreover, it illustrates how our algorithm

can perform on a domain adaptation task for multivariate time series.

UCI Daily Activities dataset

This public dataset is made of motion sensor data of 6 daily and sports activities performed by 30 subjects for

2.56 seconds. Each subject is monitored with a smartphone worn on the waist. Using the accelerometer and the

gyroscope of the smartphone, each activity corresponds to a 9-dimensional time series: 3-dimensional acceleration,

3-dimensional triangular velocity and 3-dimensional estimated body acceleration. Every sensor is sampled at 50Hz,

giving a time series of length 128. In total, 10299 samples are available over the 30 subjects. In Figure 5.3, we

illustrate the monitored time series for the walking upstairs and walking downstairs classes.

Here, we only represented each time series with its covariance matrix C ∈ S(9) as results were not better when

using autocovariance matrix. Moreover, the time series length is 128 which makes the estimation of autocovariance

matrix unstable. We used ledoit-wolfe regularization to estimate the covariance matrices.

Our dimensionality selection method gave a subspace size of d′ = 3. We report the average accuracy of the

5 methods in Table 5.3. Our method LEK-TL-SVM outperforms every other method that does not use adaptation

although results obtained from the LEK-SVM are already good.

135

Method AIM-MDM LR-MTL LEK-SVM LEK-DR-SVM LEK-DG-SVM LEK-TL-SVM Intra-domain
Accuracy (%) 77.21 78.12 88.55 87.28 93.56 93.72 100

Table 5.3: Average accuracy for Human Activity recognition with smartphones dataset

Figure 5.4: Accuracy (%) of LEK-SVM (orange) and LEK-TL-SVM (blue) over every domain

Our method helps to increase the performance on several domains on which the LEK-SVM underperformed.

To visualize it, we represent on Figure 5.4 the accuracy of the LEK-SVM (without adaptation) and LEK-TL-SVM

(with adaptation) on every domain. One can see that the lowest accuracy obtained without adaptation is close to

50%, whereas with our adaptation scheme, the lowest accuracy is around 70%. Overall, we noticed that our method

allows to extract features that are more robust to a domain change.

The matrix W learnt by our model indicates that the most relevant features are the z-acceleration and the y-

estimated body acceleration when the last dimension is a mixture of y-rotation and z-estimated body acceleration.

We represent the obtained matrix in Figure 5.5.

Finally, it should be noted that better results can be obtained with deep learning methods, even without adapta-

tion. When we use a CNN by learning on 29 subjects and applying on the last one, we obtain overall accuracy of

96.14%, even without adaptation. However, our method is more interpretable as the weights can be visualized and

is shorter to train (less than 10 minutes as the optimization converged in 5 iterations).

NTU RGB-D Dataset

NTU RGB-D1 [163] is a dataset collected at NTU where 40 subjects were filmed while performing 60 actions. The

60 actions are various actions of everyday life, such as drinking water or running.

While the dataset can be considered as a video dataset, we use the 3D skeleton data: for each video, the 3D-

coordinates of 25 body joints (see Figure 5.6) are collected at each frame. Hence, we consider as an input time

series of dimension 75. The duration of the sequence is different for every video: it is not an issue with our method

1It was later extended to NTU RGB-D 120 dataset

136

Figure 5.5: Parameter W learned by the model for the HAR with smartphones experiment (abs(W)T is represented
here and values are normalized to sum to 1 for each dimension for better readability)

Figure 5.6: Positions of the 25 body joints monitored with sensors. Figure is taken from [163]

as we only use covariance information, which can be compared between two time series of different sizes. Once

again, the length of the time series is very short (∼ 100), hence we only use covariance information. We did not use

autocovariance, as they did not improve the results and led to even bigger SPD Matrices whose estimation is more

unstable.

In total, 60, 000 samples are available. For this dataset, state-of-the art results were obtained using recurrent

neural networks but covariance-based methods were also successful [38] [182] [62]. Those methods did not take

into account the specific geometry of SPD Matrices but focused on creating hand-engineered features for skeleton-

based activity recognition.

Whole dataset In our experiment, we iteratively take 39 subjects as source domains and the last one as the

test domain. Once again, we tried the 5 methods described in the previous experiments. We also tried to use a

Temporal Convolutional Network (TCN) with three causal convolution layers, with size 128, 128 and 256 and a dilation

rate of 2 at each layer, with a dense layer in the end. The only difference with univariate time series is that the input

137

data has 75 channels (dimensions) instead of 1. Better results could probably be obtained with better architecture

search but we simply wanted to compare with our method. Finally, we also tried to use our scheme proposed in

Chapter 4 AMSHDM: we used the TCN as the feature extractor and a simple dense layer as the final classification

layer.

For our method LEK-TL-DR, the dimensionality selection gave values between 6 and 9 in the experiments (for

different domains). For better readibility of the results, we set d′ = 8 for every domain. The domain selection often

removed two of the subjects that are far from every other. We give the average accuracy over every subjects in

Table 5.4. Moreover, we also report results obtained from other papers (we did not run their experiments again and

directly report results from their paper). Note that their framework for the cross-subject evaluation is different from

ours: they split the dataset in two sets of 20 training subjects and 20 test subjects. We also report the runtime for

our methods.

Method Accuracy (%) Run-time
Covariance-based

AIM-MDM 30.58 22h (CPU)
LR-MTL 41.32 11m (CPU)

LEK-SVM 36.78 6h (CPU)
LEK-DR-SVM 37.23 14h (CPU)
LEK-DG-SVM 57.78 17h (CPU)
LEK-TL-SVM 58.51 16h (CPU)
CovP3DJ [62] 51.40 ?

Hand-crafted features
HOG2 [136] 32.24 ?

Super Normal Vectors [189] 31.82 ?
Lie Group [178] 50.08 ?

FTP Dynamic Skeletons [89] 60.23 ?
Deep-learning based

P-LSTM [163] 62.93 ?
TCN 74.78 54m (GPU)

AMSHDM 78.4 1h32m (GPU)
MS-AAGCN [164] 90.00 ?

Table 5.4: Average accuracy and run-time for some methods on the NTU RBG-D dataset

A few observations can be made from these results. Firstly, similarly to other experiments, our method out-

performs every other covariance-based method in the transfer learning scenario. Once again, the improvement

obtained with conditional adaptation is important but the marginal adaptation to the target domain brings only a

small improvement. Moreover, our method outperforms CovP3DJ [62], which created specific features on which to

compute the covariances. Method with hand-crafted features give lower overall accuracy, apart from FTP Dynamic

Skeletons [89]. On the other hand, every deep learning method gives better results, from a basic LSTM (P-LSTM

[163]) to the TCN we used. Note that the current state-of-the art on the dataset is MS-AAGCN [164] which is an

attention based LSTM where the architecture is specific to skeleton data. For every deep learning method, every

source domain is simply concatenated to create a training set and no transfer learning is used.

138

The run-time is clearly an issue for our methods with such dimensions as there are 60, 000 covariance matrices

of dimension 75× 75. Indeed, computing the kernel and computing each gradient step is very long. It is even worse

when using the Affine Invariant Metric for which the pairwise distances are longer to compute. The proposed TCN

and AMSHDM are shorter to train, as we used Pytorch with a GPU-backend on a clusters of two GPUs. One could

still note that (i) when using a CPU-backend, the networks took more than two days to be trained (ii) the computation

of the kernel matrix and the gradient step could be parallelized, which would speed up the computations. Moreover,

at test time on a new subject, if we directly use the learned W (domain generalization LEK-DG-SVM) our method is

very quick as the kernel matrix can be computed quickly (given that the matrix-logarithm of every training sample is

cached in memory and the new dimensionality is small).

Overall, when using the whole dataset, there is enough diversity in the data for neural network-based methods

to perform well. Moreover, our method does not scale very well and the run-time becomes an issue. On the other

hand, our method already gives better results than other covariance-based methods including the ones that creates

features specific to Human Activity Recognition. To better illustrate our method, we use a smaller dataset in an

additional experiment.

Small dataset In a second experiment, we use a subset of the NTU RGB-D dataset. We select only the first

10 subjects and 2 actions (classes): drink water and clapping. The new dataset has a total number of 631 frames.

We use the same scheme as before, by iteratively selection 9 subjects as source domains and the remaining

one as target. The dimensionality selection gave values between 5 and 7 and we kept d′ = 5 for every experiment.

We give the average accuracy over every subjects in Table 5.5.

Method Accuracy (%) Run-time
Covariance-based

AIM-MDM 74.21 8m (CPU)
LR-MTL 70.18 1m (CPU)

LEK-SVM 82.37 2m (CPU)
LEK-DR-SVM 84.57 6m (CPU)
LEK-DG-SVM 88.77 6m (CPU)
LEK-TL-SVM 89.92 6m (CPU)

Deep-learning based
TCN 91.21 1m (GPU)

AMSHDM 87.31 1m (GPU)

Table 5.5: Average accuracy and run-time for some methods on the reduced NTU RBG-D dataset

Once again, our method gives better results than other covariance-based methods. Deep Learning still performs

better but the gap is not as big as on the whole dataset. The main interest of our method lies in its interpretability:

indeed, we are able to identify which features contribute the most to each new dimension. We saw that the acceler-

ations at joints positioned on the fingers, arms and head were given the most weight, as represented on Figure 5.7.

It makes sense as for clapping and drinking water, joints on the lower part of the body do not have huge influence

139

and only add noise.

It can also be seen on Figure 5.8 where we represented the Kernel PCA of the log-euclidean kernel on covari-

ances computed on the original sensors and on covariances computed on the reduced space. One can see that

with our method, classes are well separated and domains are mixed together. On the other hand on the original

data, the noise added by the uninformative features makes it harder to separate classes.

Figure 5.7: Parameter W learned by the model for the reduced NTU RGB-d dataset (abs(W)T is represented here
and values are normalized to sum to 1 for each dimension for better readability)

Figure 5.8: Kernel PCA representation of the Log-Euclidean Kernel on the original data (left) and after dimensionality
reduction (right). Each colour corresponds to a domain and classes are represented with two markers.

Conclusion

With these experiments on real-world datasets, we can draw several conclusions on the advantages and the limits

of our method. Mainly, we showed that our method outperforms other covariance based methods in a transfer

learning scenario, as it is the first method to combine discriminative learning and adaptation based on covariance

information. For Human Activity Recognition, it can be sufficient to get good performance and interpretable features.

On the other hand, better performance can be obtained with deep learning methods, especially when the training

set is large. In this case, neural networks are able to learn features robust to a change of subject. When the training

set is smaller, our method gets similar performance to deep learning methods with more interpretability.

140

5.6 Conclusion

This Chapter proposed a method for transfer learning based on covariance data. This is the first method that

proposes to learn a linear dimensionality reduction on time series data with two objectives: discriminative learning

and transfer learning. We showed in our experiments the applicability of our methods to both synthetic multivariate

time series and human activity recognition. While deep learning methods provide better performance when the

learning set is large, our method extracts interpretable features and the performance gap becomes smaller when

the dataset size is small.

Our work opens many perspectives for covariance-based methods for time series. Firstly, we saw that the run-

time of our method suffers when the training set becomes too large. While it could be mitigated with a parallelized

implementation of our algorithm, methods that are not based on kernels could also be used. For instance, a new

line of work tried to design deep neural networks for SPD Matrices. This means that the methods developed in

Chapter 4 could be extended to SPD Matrices.

Secondly, we led experiments on synthetic data created with a Vector AutoRegressive model representative of

an industrial system. We would like to try our method on real industrial data, but at the time of this work, most

datasets available at EDF were outlier detection problems and did not contain labels. Our method could be used for

outlier detection by modifying the discriminative learning objective to an unsupervised dimensionality reduction as

in [83], but mixing the two objectives of matching distributions across domains and separating outliers would need

a detailed analysis.

As discussed before, we also would like to add a sparsity constraint to our algorithm to obtain more interpretable

dimensions. This is directly linked with manifold optimization and we think a solution based on proximal methods

similar to [41] could be obtained for our problem.

Finally, we used the specific geometry of covariance and auto-covariance matrices as Symmetric Positive Defi-

nite matrices. When working on time series, we know that the temporal dependence is important, which is captured

by auto-covariance matrices. Auto-covariance matrices are block-Toeplitz when working with stationary time series,

and block-Toeplitz matrices also have a specific geometry [99]. Some classical algorithms such as K-means [36]

were derived using this specific geometry and it would be interesting to see if it is possible to include it in a transfer

learning method.

141

Chapter 6

Conclusion and Perspectives

In this thesis, we proposed novel methods to extract transferable features from time series. We proposed different

approaches for learning transferable features using neural networks: one using an ensemble of normalizations and

the second one following adversarial learning. In our adversarial learning method, we showed that our new measure

of discrepancy unifies previous works. Our framework can be applied in both classification and regression problems,

and is generic to other kinds of data. In a last chapter, we developed a framework to extract more interpretable

features for time series. Building on previous works on learning from covariance matrices, we proposed a method

to learn invariant relationships between sensors in a multivariate time series. When a large dataset is available,

deep learning methods outperforms our method, however, when the dataset size is smaller, our method leads to

similar performance with better interpretability. Our methods can answer several problems of real-world applications.

Firstly, for many applications such as Non Intrusive Load Monitoring, data collection is expensive. Our methods can

use existing resources to learn from fewer new data. Secondly, training an algorithm requires computing power and

energy. More and more methods pose the objective of learning on a budget, ie learning with a limited computing or

environmental cost. By pre-learning an invariant subspace of features, the method proposed in Chapter 5 reduces

the cost of learning on a new dataset.

Perspectives

Further experiments. For every method proposed in this thesis, we conducted extensive experiments on synthetic

and real-world datasets. For applications to NILM, one could still note that the size of the training and test sets is al-

ways limited. It would be interesting to carry out similar experiments on larger datasets when they become available.

Moreover, we ony tried to deal with daily consumption estimation, which would be sufficient for most applications for

individual households. Industrial warehouses or production sites are also interested in energy disaggregation and it

would be interesting to try our method for those larger buildings. While we conducted experiments on synthetic data

143

and Human Activity Recognition, the next step is to test the method of Chapter 5 on industrial problems.

Larger Training Sets. Having larger training set would also probably allow the learning of a general architecture

that could be fine-tuned to a new small target dataset, in a similar way to AlexNet [103] for images. We argue

that the main effort of such work would not reside on finding the best architecture but rather on the collection of the

dataset: the collection of ImageNet took several years for a dedicated team to collect images, pre-process them, and

label them. Collecting such dataset for individual household electricity consumption would be expensive and raises

privacy issues. Assuming the existence of such a large training set, one could learn a large model. Knowledge

distillation [86] can then be used to create smaller models that can be deployed on each sensor.

Data Augmentation. We saw that results obtained with transfer learning are equivalent to the ones obtained with

data augmentation. Indeed using a Multi-Agent System to simulate the electricity consumption of a house, we are

able to generate a larger training space and increase the generalization ability of an algorithm learnt on this new

data. This is related to the topic of learning from simulations. We think that in the context of transfer learning or

domain adaptation, it would be possible to drive the simulation using the target domain. It would allow to increase

the knowledge on the data space around the target domain. This could be done using field-specific information or

using statistical learning, as was proposed with GANs [92].

Interpretability. Interpretability is very important for the deployment and acceptance of statistical models by op-

erators of a system. Neural Networks are very popular and state-of-the-art in many applications but are still hard

to understand. A better understanding of features learnt from time series and linking them with real-world quantites

would allow them to be better accepted by users or authorities. For our covariance-based method, imposing a spar-

sity constraint would allow to directly extract measured quantities. This requires more work on optimization over a

manifold, where proximal methods such as [41] seem to be a good starting point.

Federated Learning. As the public becomes more knowledgeable about the usage of its data, privacy preserving

methods are an interesting solution. In all of our experiments, we assumed that the whole dataset was available on

our machines to fit our algorithm. Each household in France has or will have a smart sensor (Linky) able to directly

send information to the electricity provider. Instead of uploading the whole electricity consumption to a central server

held by EDF, one could imagine training an algorithm across multiple smart sensors, without storing or exchanging

the raw electricity consumption. This problem is tackled by federated learning. Federated Learning already attracted

attention from the transfer learning community, as different nodes most likely have different distributions [124].

Having a centered model that can be updated in a decentralized manner and adapt to each node would be ideal.

144

Learning causal relationships. In Chapter 5, we proposed a method to learn relationships between sensors

in a multivariate time series that were invariant to a change of system or subject. While we formulated these

relationships using covariance, or equivalently partial autocorrelation as our metric is invariant to inversion. While

we did not formulate it in terms of causal learning, connections can be made. In causal learning, the goal is to learn

the causal graph between variables that is robust to a change of environment. By exchanging environment with

domains, one can see that causality and domain generalization are closely related. It was noted in a recent work

[154] where authors propose a method to combine causality and transfer learning.

Heterogeneous Transfer. Methods presented in this thesis assume homegeneity in the input and prediction space

across domains. In the future, it could be interesting to extend our work to heterogeneous data space. For instance,

industrial systems are often monitored with a different set of sensors. With our method, one should remove the

different dimensions from the dataset. Finding a way to match distributions from multivariate time series with different

dimensionalities would allow to make us of even more information. For instance, [153] tried to propose such a

method for EEG data. Even more ambitious would be to merge information from data of different natures: for

instance, some industrial systems are monitored with sensors but operators also write reports. Merging time series

data and textual annotations has been proposed for time series forecasting [135] and could be extended to a transfer

learning framework.

145

Appendix A

Neural Networks

Basics In this Appendix, we give a background to neural networks and their training. Formally, neural networks

are a function Φ : X → Y from an input space X to a prediction space Y. Typically, X ⊂ Rd and Y = {−1,+1} for

binary classification. Phi is a composition of several functions, called layers, such that if Phi is a neural network of

depth L, Φ(x) = fL ◦ ... ◦ f1(x).

The most classical form for a layer l is the dense layer defined by:

zl = fl(zl−1) = σ(wTl zl−1 + bl) (A.1)

where zl ∈ Rdl is the output of layer l, wl ∈ Rdl×dl−1 is the weight matrix of layer l, bl ∈ R is the bias of layer l

and σl is an activation function. An neural network architecture made of such layers is also called fully connected

as every neuron is connected to another. The prediction of an input vector x is given by

y = Φ(x) = φL(φL−1(...(φ1(x)))) (A.2)

The number of layers L, number of neurons at each layer dl and activation functions σl are hyperparemeters

of the model and chosen by the user. Typically, activation functions are non-linear. Common activation functions

include

σ(z) = max(z, 0) (ReLu)

σ(z) = x ∗ 1x≥0 + α(ex − 1) ∗ 1x≤0 (ELu)

σ(z) =
1

1 + e−z
(Sigmoid)

σ(z) =
ex − e−x

ex − e−x
(tanh)

(A.3)

147

The choice of architecture is dependent on the application and there is no general rule as to which functions to

choose.

Back-propagation The parameters wl and bl are learnt by the model using feed-forward backpropagation. The

most popular way to train a neural network is using Gradient Descent. We consider a sample of size n {(x1, y1), ..., (xn, yn)}.

Then given a differentiable loss function L, the objective function minimized by the neural network is

J(Φ) =

n∑
i=1

L(yi,Φ(xi)) (A.4)

Typically, for classification the cross-entropy loss is used whereas for regression, the mean squared error is

used. If we write θ = {b1, w1, ..., bL, wL} the parameters of our neural network and write J(Φ) = L(yi,Φ(xi)) =

L(yi, xi; θ) = J(θ), then one gradient step at iteration t done by a traditional gradient descent would correspond to

θ(t+1) = θ(t) − ηt
n∑
i=1

∇θL(yi, xi; θ
(t)) (A.5)

where ηt is the learning rate at epoch t.

In general, as the training set is large, Stochastic Gradient Descent is used. The gradient step defined above

can simply be replaced by a gradient step over a small batch instead of the whole training set.

Extensions have been proposed by adding momentum using Nesterov’s accelerate gradient. Additionally, the

learning rate ηt can be fixed, chosen to decay or adapted during traing. In our experiments unless otherwise

indicated, we always used Adam optimizer.

Batch-Normalization Batch-normalization [95] is a technique to improve the training of neural networks. Namely,

it first normalize the output of a layer over a mini-batch: for a batch of size B at layer l, for k ∈ {1, ..., B}, the

normalization step is done with ẑ(k)
l =

z
(k)
l −µB
σB

where µB and σB are the empirical mean and standard deviations of

outputs zl. As such, ẑ(k)
l has zero mean and unit variance. However, in order not to allow the network to learn by

itself the “useful” mean and variance for the given layer the output of a batch-normalization layer is given by

BN(z
(k)
l) = γlẑ

(k)
l + βl (A.6)

where γl and βl are learnt using backpropagation. Batch-normalization is said to reduce the internal covariate

shift, thus accelerating training of neural networks but understanding its effects is still an active topic.

For models in Chapter 4, we used batch-normalization. In Chapter 3, we did not use batch-normalization in our

normalization ensembling model.

148

Dropout Dropout is a technique used to avoir overfitting with a neural network. Indeed, overfitting is a problem

as often neural networks are over parameterized. It corresponds to dropping a random subset of units (neurons)

during training, such that a smaller sub-network is learnt at each pass. We used dropout in every of our model as it

helped to reduce the gap between training and validation error.

Convolutional layers Dense layers are the most basic layers used in a neural network. When working on struc-

tured data such as images or time series, convolutional layers allow to take into account temporal or spatial depen-

dence. Formally, a convolutional layer is defined by a transformation :

z = σ(

r∑
j=1

W jx1+(i−1)s+j + bj) (A.7)

where W ∈ Rr and b ∈ Rr are respectively the kernel matrix and the bias of the layer to be learned with kernel size

r and stride s. With such layers, temporal structure is kept as adjacent points contribute to the same output in the

next layer.

149

Appendix B

Clustering consumer consumption with

auto-encoders

In this Appendix, we illustrate a deep learning method to cluster consumers based on their consumption behaviour.

This work has been presented in a national conference [150]. It shows the improvement of using deep learning over

classical representations for time series clustering.

Our goals is to perform whole time series clustering. This was developed for applications in consumer segmen-

tation. Indeed, if EDF can identify different customer behaviours, it is possible to offer tailored contracts. For this

purpose, we propose a method to cluster EDF clients based on their daily consumption over a year. We propose

to use deep convolutional autoencoders in order to extract representations on which the clustering is applied. Our

experiments, conducted on real world public data, show that our method gives good results in term of robustness to

outliers.

B.1 Data presentation

Figure B.1: CER Smart Metering data: (red) Mean of Residential consumption (green) Mean of SMEs consumption
(blue) Mean of Others consumption

151

Clustering consumer based on their consumption has several interests for EDF: a better knowledge of its clients

allows to propose tailored solutions. Moreover, some consumption forecasting methods are based on an ensemble

of predictors learnt on clusters of clients.

Here, we illustrate the obtained results on a public dataset of electricity consumption in Ireland: CER Smart

Metering project [69]. This experiment collected consumption data from 3,174 1 Irish households and SMEs between

2009 and 2010. We only consider daily consumption for the first 384 days of the experiment. A survey on

households was conducted and for some consumers, we know if they are residential households or SMEs. When

left un-answered, the monitored house can be either of those classes or a secondary residence. The general

pattern for SMEs is a lower consumption during week-ends and Christmas vacations, which is opposite to residential

households.

B.2 Method

Figure B.2: Proposed method: Convolutional Auto-Encoder (CAE)

B.2.1 Convolutional AutoEncoder

Our goal is to cluster the clients, hence we use an unsupervised architecture with a convolutional autoencoder

(CAE). The CAE is made of an encoder, which follows the general convolutional architecture, a bottleneck and a

decoder with deconvolution layers, as described in Figure B.2. Our input time series are of length 384 and we

1we only kept clients for which survey data was available

152

choose a bottleneck of d = 20 << 384. The CAE is trained end-to-end by minimizing the loss

min

N∑
i=1

L(xi, x̂i) (B.1)

where X̂i is the output of the CAE and L is the `2-loss. Our CAE is then used as a non-linear dimensionality

reduction. We perform the clustering a posteriori using K-medoids algorithm.

We work with limited data so the architecture is kept small, with 2 convolutional layers, one dense layer and two

deconvolutional layers. The used architecture for the CAE is the following for both experiments:

• Conv1D: 64 filters of length 3, stride 2, activation elu

• BatchNormalization

• Conv1D: 128 filters of length 5, stride 2, activation elu

• BatchNormalization

• Flatten

• FullyConnected: 100 units, activation elu

• FullyConnected: 20 units, activation linear

• FullyConnected: 128× 96 units, activation elu

• BatchNormalization

• DeConv1D: 128 filters of length 5, activation elu

• BatchNormalization

• DeConv1D: 64 filters of length 3, activation elu

• Conv1D: 1 filters of length 3, activation tanh

We include BatchNormalization layers for faster learning. Each implementation has been made using Python

with Keras and Tensorflow for the convolutional autoencoder. In order to train a convolutional network, it is known

that one must normalize the data. For time series, we cannot normalize each feature, instead the z-normalization is

very commonly used, ie normalizing each time series by subtracting the mean and dividing by its standard deviation.

We will see that it is not always the most efficient way to proceed in Section 3.4.

B.2.2 Compared methods

We compare our approach to other feature extraction methods. We compare several feature extraction approaches

as a pre-processing for the K-medoids algorithm or different time series clustering algorithm:

153

• K-medoids: K-medoids performed on raw data (divided by the mean)

• PCA+K-medoids: only the 20 first components of PCA are used

• Haar+IK-means: the coefficients of a Discrete Wavelet Transform with Haar wavelet are used in an interactive

K-Means as defined in [180]

• Dictionary Learning + K-Medoids: K-medoids performed on the coefficients learnt from a dictionary learnt

with non-negative matrix factorization

• CAE+K-medoids: K-medoids performed on latent vector from the convolutional autoencoder

B.2.3 Outliers

One of the main issues of traditional clustering techniques is the robustness to outliers. But defining an outlier in a

dataset is a challenging task. Different approaches have been proposed: Mahalanobis distance, Outlier Detection

using Indegree Number, ... Here, we use the Local Outlier Factor metrics[34].

To define this metric we have to define a distance on our initial space. Here we choose the euclidean distance.

A k-NN graph is computed on the dataset. Defining the local reachibility density of an example xi as :

lrd(xi) =


∑

xj∈N (xi)

max(dk(xj), d(xi, xj))

k


−1

(B.2)

where dk(xj) = maxxk∈N (xi) d(xj , xk) and N (xi) is the neighbourhood of xi

The Local Outlier Factor is defined as:

LOF (xi) =

∑
xj∈N (xi)

lrd(xj)

klrd(xi)
(B.3)

The main idea behind this metric is that it allows to define outliers locally. Therefore points that would be

defined as outliers with other methods such as Mahalanobis because they belong to a small or sparse cluster will

be considered as normal with this metric. A threshold is manually defined such that every point with a LOF higher

than the threshold is considered as an outlier. We use this definition to determine the number of outliers per cluster

which quantifies the outlyingness of a cluster.

On the CER dataset, using this LOF on raw data shows that outliers often are secondary houses with extremely

high consumption. Ideally, we would want a clustering method that groups those outliers together. We will see that

most feature transformations fail to do so but features extracted from a CAE give surprisingly good results.

154

Figure B.3: Left: number of clients per cluster ; Center: number of elements per clusters ; Right: number of outliers
in each cluster (an element is an outlier if its Local Outlier Factor is above the 95 % quantile)

B.3 Results

Using the elbow method we find that a good number of clusters would be 10 or 16. On Figure B.3 are plotted the

size of each cluster and the number of outliers per cluster. An outlier is defined by its Local Outlier Factor and here

we set the number of outliers at 5% of the dataset.

One can see that most methods do not cope well with outliers: either the outliers are spread between clusters

or they are all gathered in the major class. But the proposed method allows to isolate a class with high dispersion

which gathers the outliers. Then the rest of the data can be clustered into finer clusters.

Clusters have an interpretation and the centroids are shown in B.4. Two clusters of SMEs come out and residen-

tial clients are clustered depending on other features: the peak in consumption during the 2010 winter or Christmas

for example, which is higher for clients with electrical heater.

The outlier cluster is characterized by many clients with abnormal consumption patterns (often very small or

155

Figure B.4: Centroids of each cluster found with the CAE+K-Medoids method

with few very high values). Tests were done with other numbers of clusters and the isolation of one outlier class

remains. After 20 clusters the class is split into two. Experiments have also been conducted with K-Means and

Self-Organizing Maps (SOM). Similar results were obtained with the CAE whereas performance with other feature

extraction dropped. This tends to show that convolutional autoencoder is a feature extractor for time series with very

nice properties.

We expected the results to be similar with Non-Negative Matrix Factorization but while it separates very well

the residential households from SMEs (see Figure B.5), using the coefficients for clustering gives clusters polluted

by outliers. The interpretability is better than the CAE, where it is hard to know what neurons correspond to what.

We could only identify one variable corresponding to the week-end consumption drop for SMEs while NMF extracts

156

interpretable components (week-end drop, higher consumption in January given the extreme cold in Ireland, ...).

Figure B.5: SME vs Residentials using (a) PCA representation (b) NMF representation (c) TSNE representation of
the latent variables obtained by CAE

157

Appendix C

Implementations

During this thesis, we developed a number of methods and algorithms. Some of those methods are publicly avail-

able, integrated into the Python adapt package or in the public git repositories attached to the papers. Every

implementation made in this thesis was done in Python. Moreover, apart from the experiments on electricdata

of Chapter 4 experiments were conducted on a machine with two Quadro P6000 GPUs with 24Gb RAM. For the

experiments on electricdata of Chapter 4, we used the High-performance computing server of EDF, with several

GPUs.

C.1 Public implementations

Adapt package During this thesis, we contributed to the adapt [53] package. This package collects traditional

methods for domain adaptation, such as KMM, DANN, TrAdaBoost, ... The whole documentation can be found at

https://antoinedemathelin.github.io/adapt/_build/html/index.html. We also provided some dataset load-

ing utilities, for common domain adaptation datasets. Those datasets are:

• Amazon Multi-Domain Sentiment Dataset: 1 this dataset, firstly used in [29], is made of textual Amazon

reviews from 25 categories of objects, where the variable to predict is the rating of the review. We propose raw

data, data transformed with TF-IDF and with Word2Vec (Google300 and Glove25).

• Digits Dataset: this dataset merges several datasets of digit recognition: MNIST, MNIST-M, SVHN, Synth

and USPS.

• Office-Caltech-Amazon dataset:2 this dataset is an object recognition dataset, where images of objects are

captured in different environments and with different means. Raw images and extracted features are available.

1https://www.cs.jhu.edu/~mdredze/datasets/sentiment/
2https://people.eecs.berkeley.edu/~jhoffman/domainadapt/

159

https://antoinedemathelin.github.io/adapt/_build/html/index.html
https://www.cs.jhu.edu/~mdredze/datasets/sentiment/
https://people.eecs.berkeley.edu/~jhoffman/domainadapt/

• Human Activity Recognition dataset: [9] 30 subjects were monitored using a smartphone while performing

6 daily activities. Raw time series and extracted features are available.

Those datasets are the most commonly used datasets in the domain adaptation community. It should still be

noted that for the Amazon Multi-Domain Sentiment Dataset, most papers use the same pre-processing step with

TF-IDF. We noted in our experiments that better results can be obtained using a pre-trained Word2Vec, without

any adaptation. Similarly, for image datasets, state-of-the art results were obtained by using adversarial adaptation

methods based on neural networks. Those neural networks were initialized using a pre-trained network like VGG16.

This is already a form of transfer learning and it makes it hard to evaluate the contribution of the pre-training and the

subsequent adaptation.

Hypothesis-Discrepancy The method developed in Chapter 4 is publicly available in the following github reposi-

tory: https://github.com/GRichard513/ADisc-MSDA. We also give the code for the experiments on synthetic data

and public datasets for reproducibility. The implementation of our method is based on PyTorch3. We give the imple-

mentation for those public datasets but the extension to other datasets is straightforward: the user simply needs to

change the parameters of the class Disc MSDANet : in particular, the feature extractor parameter allows the user

to define its own feature extractor network, which will be application-specific. The feature extractor needs to be

implemented using pytorch.

Covariance-based Transfer Learning For this implementation, we based our implementation on the PyManopt

[173] package. We simply defined our own functions to compute the Log-Euclidean Kernel matrix and the gradient

steps efficiently by caching the matrix logarithm of the input covariance matrices in memory. We will make the

implementations public after publication of the method.

C.2 Other implementations

C.2.1 List of statistical features extracted (Chapter 3)

We used the library tsfresh (https://tsfresh.readthedocs.io/en/latest/index.html) to extract features using

their EfficientParameters class. The full extracted features are available in Table C.1. Most features have under-

standable names and full details are available in the tsfresh documentation.

3https://pytorch.org/

160

https://github.com/GRichard513/ADisc-MSDA
https://tsfresh.readthedocs.io/en/latest/index.html
https://pytorch.org/

abs energy absolute sum of changes
agg autocorrelation mean agg autocorrelation median

agg autocorrelation var ar coefficient k 10 coeff 0
ar coefficient k 10 coeff 1 ar coefficient k 10 coeff 2
ar coefficient k 10 coeff 3 ar coefficient k 10 coeff 4

autocorrelation lag 0 autocorrelation lag 1
autocorrelation lag 2 autocorrelation lag 3
autocorrelation lag 4 autocorrelation lag 5
autocorrelation lag 6 autocorrelation lag 7
autocorrelation lag 8 autocorrelation lag 9

binned entropy max bins 10 c3 lag 1
c3 lag 2 c3 lag 3

cid ce normalize False cid ce normalize True
count above mean count below mean

energy ratio by chunks num segments 10 segment focus 0 energy ratio by chunks num segments 10 segment focus 1
energy ratio by chunks num segments 10 segment focus 2 energy ratio by chunks num segments 10 segment focus 3
energy ratio by chunks num segments 10 segment focus 4 energy ratio by chunks num segments 10 segment focus 5
energy ratio by chunks num segments 10 segment focus 6 energy ratio by chunks num segments 10 segment focus 7
energy ratio by chunks num segments 10 segment focus 8 energy ratio by chunks num segments 10 segment focus 9

first location of maximum first location of minimum
has duplicate index mass quantile q 0.1

index mass quantile q 0.2 index mass quantile q 0.3
index mass quantile q 0.4 index mass quantile q 0.6
index mass quantile q 0.7 index mass quantile q 0.8
index mass quantile q 0.9 kurtosis
last location of maximum last location of minimum

length ” linear trend attr ””intercept””” ”
linear trend attr ””pvalue””” ” linear trend attr ””rvalue””” ”
linear trend attr ””slope””” ” linear trend attr ””stderr”””
longest strike above mean longest strike below mean

maximum mean
mean ab change mean change

mean second derivative central median
minimum number crossing m m -1

number crossing m m 0 number crossing m m 1
number peaks n 1 number peaks n 10
number peaks n 3 number peaks n 5

number peaks n 50 partial autocorrelation lag 0
partial autocorrelation lag 1 partial autocorrelation lag 2
partial autocorrelation lag 3 partial autocorrelation lag 4
partial autocorrelation lag 5 partial autocorrelation lag 6
partial autocorrelation lag 7 partial autocorrelation lag 8
partial autocorrelation lag 9 quantile q 0.1

quantile q 0.2 quantile q 0.3
quantile q 0.4 quantile q 0.6
quantile q 0.7 quantile q 0.8
quantile q 0.9 range count max 1 min -1

ratio value number to time series length skewness
spkt welch density coeff 2 spkt welch density coeff 5
spkt welch density coeff 8 standard deviation

sum of reoccurring data points sum of reoccurring values
sum values time reversal asymmetry statistic lag 1

time reversal asymmetry statistic lag 2 time reversal asymmetry statistic lag 3
variance variance larger than standard deviation

Table C.1: List of eaxtracted features

161

C.3 Additional Experiments of Chapter 3

In order to compare with existing methods, we report the results available online [?] using Nearest Neighbour clas-

sifiers associated with Euclidean Distance (ED-NN), Dynamic Time Warping (DTW-NN) and Dynamic Time Warping

with a learned window (WDTW-NN). The full results are available in Table C.2 and we plot the rank distribution of

each algorithm on Figure C.1.

The first observation is that different data preparations affect the performance of a convolutional neural network.

Moreover there is no universal choice of normalization to get the best classification accuracy. For most datasets,

the Ens-Norm Network achieves better accuracy than the simple DenseNets, which indicates that this architecture

is able to derive the best from both standardizations. Standardization seems to be more efficient than min-max

normalization in general.

Overall we achieve slightly better results than the existing nearest neighbour classifiers. We do believe that better

accuracies can be achieved, notably with ensemble-based methods, whose voting scheme could even include

neural networks. We conducted experiments with ResNets and FCN architectures that generally did not lead to

better accuracies but showed similar observations for the impact of pre-processing.

162

Dataset ED-NN WDTW-NN DTW-NN GS GN IS IN BC-GS BC-IS IS-Feat IS-GS-NEN
AllGestureWiimoteX 51,57% 71,71% 71,57% 77,89% 68,34% 73,34% 66,89% 76,83% 67,14% 68,34% 77,83%
AllGestureWiimoteY 56,86% 73,00% 72,86% 72,60% 72,91% 73,34% 72,26% 75,80% 68,86% 72,91% 72,91%
AllGestureWiimoteZ 45,43% 65,14% 64,29% 70,06% 67,49% 69,40% 66,20% 75,80% 50,86% 67,49% 76,31%
BME 83,33% 98,00% 90,00% 92,13% 92,13% 95,33% 96,27% 94,27% 99,07% 94,53% 96,27%
Chinatown 95,36% 95,36% 95,65% 97,97% 97,97% 97,97% 97,97% 97,68% 97,97% 97,97% 98,26%
Crop 71,17% 71,17% 66,52% 78,30% 74,52% 76,01% 74,90% 78,72% 75,19% 74,52% 79,26%
DodgerLoopDay 55,00% 58,75% 50,00% 55,00% 40,75% 61,25% 42,75% 49,25% 40,75% 55,75% 62,75%
DodgerLoopGame 88,41% 92,75% 87,68% 86,96% 88,41% 84,35% 85,65% 88,41% 83,33% 88,41% 88,26%
DodgerLoopWeekend 98,55% 97,83% 94,93% 88,12% 95,36% 92,75% 92,75% 89,71% 93,77% 95,36% 92,75%
EOGHorizontalSignal 41,71% 47,51% 50,28% 61,27% 58,62% 58,62% 59,12% 59,12% 52,98% 61,49% 61,82%
EOGVerticalSignal 44,20% 47,51% 44,75% 48,67% 46,35% 46,24% 44,20% 46,35% 42,38% 49,12% 48,84%
Fungi 82,26% 82,26% 83,87% 53,87% 68,06% 64,84% 72,37% 28,82% 49,78% 68,06% 64,52%
GestureMidAirD1 57,69% 63,85% 56,92% 59,54% 55,85% 62,15% 58,15% 58,15% 59,23% 59,23% 63,08%
GestureMidAirD2 49,23% 60,00% 60,77% 46,46% 57,23% 59,23% 54,46% 42,31% 42,92% 59,23% 59,85%
GestureMidAirD3 34,62% 37,69% 32,31% 19,85% 30,31% 33,54% 30,77% 21,38% 26,46% 34,46% 34,31%
GesturePebbleZ1 73,26% 82,56% 79,07% 59,88% 63,37% 84,19% 62,21% 62,33% 76,74% 84,77% 84,42%
GesturePebbleZ2 67,09% 77,85% 67,09% 59,62% 55,06% 73,80% 61,01% 67,97% 73,42% 71,27% 74,43%
GunPointAgeSpan 89,87% 96,52% 91,77% 98,67% 99,37% 99,56% 99,62% 98,61% 98,10% 99,37% 99,62%
GunPointMaleVersusFemale 97,47% 97,47% 99,68% 99,81% 99,37% 99,05% 99,37% 99,68% 96,96% 99,37% 99,81%
GunPointOldVersusYoung 95,24% 96,51% 83,81% 100,00% 96,70% 97,08% 96,38% 100,00% 95,11% 96,70% 99,87%
HouseTwenty 66,39% 94,12% 92,44% 94,12% 92,44% 42,02% 42,02% 89,92% 42,02% 42,02% 94,79%
InsectEPGRegularTrain 67,87% 82,73% 87,15% 100,00% 99,68% 97,75% 98,96% 100,00% 96,79% 99,68% 100,00%
InsectEPGSmallTrain 66,27% 69,48% 73,49% 35,74% 35,74% 95,98% 47,39% 35,74% 90,68% 96,71% 96,47%
MelbournePedestrian 84,82% 84,82% 79,06% 96,44% 90,25% 90,53% 90,43% 97,02% 90,36% 95,31% 97,11%
PLAID 53,63% 83,61% 83,80% 83,99% 83,09% 84,21% 84,25% 83,09% 69,42% 83,09% 84,25%
PickupGestureWiimoteZ 56,00% 66,00% 66,00% 76,00% 66,80% 70,40% 60,80% 72,40% 47,60% 70,00% 75,60%
PigAirwayPressure 5,77% 9,62% 10,58% 18,17% 6,15% 10,48% 6,63% 15,10% 10,87% 13,56% 17,40%
PigArtPressure 12,50% 19,71% 24,52% 51,06% 16,73% 47,50% 19,52% 49,90% 44,33% 16,73% 52,02%
PigCVP 8,17% 15,87% 15,38% 47,21% 18,65% 50,58% 19,33% 46,44% 52,69% 51,15% 52,31%
PowerCons 93,33% 92,22% 87,78% 95,44% 89,89% 90,56% 89,22% 94,78% 89,00% 89,89% 96,89%
Rock 84,00% 84,00% 60,00% 71,60% 62,00% 59,60% 62,00% 73,20% 62,40% 62,00% 62,00%
SemgHandGenderCh2 76,17% 84,50% 80,17% 79,67% 65,83% 83,40% 35,00% 82,93% 81,77% 82,77% 84,00%
SemgHandMovementCh2 36,89% 63,78% 58,44% 54,53% 40,62% 44,71% 39,24% 49,60% 46,31% 40,62% 39,24%
SemgHandSubjectCh2 40,44% 80,00% 72,67% 71,69% 70,98% 74,71% 73,24% 70,27% 69,29% 72,22% 73,24%
ShakeGestureWiimoteZ 60,00% 84,00% 86,00% 88,40% 88,40% 84,40% 86,40% 87,20% 72,40% 88,40% 89,20%
SmoothSubspace 90,67% 94,67% 82,67% 98,00% 97,33% 96,53% 97,33% 98,67% 96,00% 97,33% 97,33%
UMD 76,39% 97,22% 99,31% 99,31% 98,61% 98,61% 98,61% 99,31% 99,31% 98,61% 99,31%

Table C.2: Accuracies for each non-normalized UCR dataset

Figure C.1: Rank distribution of each method over UCR non-normalized datasets. Each bar corresponds to a
method. Red shows a high rank and blue a low rank.

C.4 Details about implementations of Chapter 4

Pre-processing for NILM applications

As raw consumption data has values from 0W to 20000W, it needs to be normalized before being fed to a neural

network. The best normalization was a a log-transform on the input data, and then a global normalization. The

log-transform makes the training less sensitive to outliers and the global normalization is a simple rescaling that

allows neural networks to train. During test time, we use the statistics from training data to normalize test input data.

163

Xlog = logXtrain + ε

X ′train =
Xlog −mean(Xlog)

std(Xlog)

(C.1)

where ε is a small precision value. Similarly, the output y was normalized as it allowed for better training behaviour

from the network.

ytrain =
ytrain −mean(ytrain)

std(ytrain)

ytest =
ytest −mean(ytrain)

std(ytrain)

(C.2)

To estimate the errors made, we denormalize the prediction and the true value of consumptions.

Architectures for other applications

Amazon The architecture is kept the same for each method:

• Feature extractor:

– Linear(5000, 500,LeakyRELU),

– Dropout(0.1)

– Linear(500, 20,LeakyRELU),

– Dropout(0.1)

• Predictor/Discriminator:

– Linear(20, 1)

Digits The architecture is kept the same for each method:

• Feature extractor:

– Conv2d(1, 64, 3, padding = 1) with LeakyReLU

– MaxPool2d(2)

– Conv2d(64, 128, 3, padding = 1) with LeakyReLU

– MaxPool2d(2)

– Conv2d(128, 256, 3, padding = 1) with LeakyReLU

164

– MaxPool2d(2)

– Flatten()

• Predictor / Discriminator:

– Linear(2304, 100) with LeakyReLU

– Dropout(0.2)

– Linear(100, 10) (predictor) / Linear(100, 2) (discriminator)

– Softmax(dim = −1)

165

Bibliography

[1] P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization algorithms on matrix manifolds. Princeton University

Press, 2009.

[2] B. Adlam, C. Cortes, M. Mohri, and N. Zhang. Learning gans and ensembles using discrepancy. In Advances

in Neural Information Processing Systems, pages 5788–5799, 2019.

[3] M. Aharon, M. Elad, and A. Bruckstein. K-svd: An algorithm for designing overcomplete dictionaries for sparse

representation. IEEE Transactions on signal processing, 54(11):4311–4322, 2006.

[4] H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, and M. Marchand. Domain-adversarial neural networks.

arXiv preprint arXiv:1412.4446, 2014.

[5] A. H. Al-Mohy and N. J. Higham. Computing the fréchet derivative of the matrix exponential, with an application

to condition number estimation. SIAM Journal on Matrix Analysis and Applications, 30(4):1639–1657, 2009.

[6] R. Aljundi, R. Emonet, D. Muselet, and M. Sebban. Landmarks-based kernelized subspace alignment for

unsupervised domain adaptation. In 2015 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 56–63. IEEE Computer Society, jun 2015.

[7] E. Amouroux, T. Huraux, F. Sempé, N. Sabouret, and Y. Haradji. Simulating human activities to investigate

household energy consumption. 2013.

[8] R. K. Ando and T. Zhang. A framework for learning predictive structures from multiple tasks and unlabeled

data. Journal of Machine Learning Research, 6(Nov):1817–1853, 2005.

[9] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz. A public domain dataset for human activity

recognition using smartphones. In Esann, volume 3, page 3, 2013.

[10] A. Argyriou, T. Evgeniou, and M. Pontil. Multi-task feature learning. Advances in neural information processing

systems, 19:41–48, 2006.

167

[11] V. Arsigny, P. Fillard, X. Pennec, and N. Ayache. Log-euclidean metrics for fast and simple calculus on diffusion

tensors. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic

Resonance in Medicine, 56(2):411–421, 2006.

[12] F. Bach, R. Jenatton, J. Mairal, G. Obozinski, et al. Structured sparsity through convex optimization. Statistical

Science, 27(4):450–468, 2012.

[13] A. Bagnall and G. Janacek. A run length transformation for discriminating between auto regressive time

series. Journal of classification, 31(2):154–178, 2014.

[14] S. Bai, J. Z. Kolter, and V. Koltun. An empirical evaluation of generic convolutional and recurrent networks for

sequence modeling. arXiv preprint arXiv:1803.01271, 2018.

[15] M. Baktashmotlagh, M. Harandi, and M. Salzmann. Distribution-matching embedding for visual domain adap-

tation. The Journal of Machine Learning Research, 17(1):3760–3789, 2016.

[16] A. Barachant, S. Bonnet, M. Congedo, and C. Jutten. Multiclass brain–computer interface classification by

riemannian geometry. IEEE Transactions on Biomedical Engineering, 59(4):920–928, 2011.

[17] A. Barachant, S. Bonnet, M. Congedo, and C. Jutten. Classification of covariance matrices using a

riemannian-based kernel for bci applications. Neurocomputing, 112:172–178, 2013.

[18] F. Barbaresco. Interactions between symmetric cone and information geometries: Bruhat-tits and siegel

spaces models for high resolution autoregressive doppler imagery. In LIX Fall Colloquium on Emerging Trends

in Visual Computing, pages 124–163. Springer, 2008.

[19] O. Barndorff-Nielsen and G. Schou. On the parametrization of autoregressive models by partial autocorrela-

tions. Journal of multivariate Analysis, 3(4):408–419, 1973.

[20] K. Bascol, R. Emonet, and E. Fromont. Improving domain adaptation by source selection. In 2019 IEEE

International Conference on Image Processing (ICIP), pages 3043–3047. IEEE, 2019.

[21] N. Batra, H. Dutta, and A. Singh. Indic: Improved non-intrusive load monitoring using load division and

calibration. In 2013 12th International Conference on Machine Learning and Applications, volume 1, pages

79–84. IEEE, 2013.

[22] J. Baxter. A model of inductive bias learning. Journal of artificial intelligence research, 12:149–198, 2000.

[23] M. G. Baydogan, G. Runger, and E. Tuv. A bag-of-features framework to classify time series. IEEE transac-

tions on pattern analysis and machine intelligence, 35(11):2796–2802, 2013.

168

[24] S. Ben-David, J. Blitzer, K. Crammer, and F. Pereira. Analysis of representations for domain adaptation.

Advances in neural information processing systems, 19:137–144, 2006.

[25] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W. Vaughan. A theory of learning from

different domains. Machine learning, 79(1-2):151–175, 2010.

[26] D. J. Berndt and J. Clifford. Using dynamic time warping to find patterns in time series. In KDD workshop,

volume 10, pages 359–370. Seattle, WA, USA:, 1994.

[27] R. Bhatia. Positive definite matrices, volume 24. Princeton university press, 2009.

[28] S. Bickel, M. Brückner, and T. Scheffer. Discriminative learning for differing training and test distributions. In

Proceedings of the 24th international conference on Machine learning, pages 81–88, 2007.

[29] J. Blitzer, M. Dredze, and F. Pereira. Biographies, bollywood, boom-boxes and blenders: Domain adaptation

for sentiment classification. In Proceedings of the 45th annual meeting of the association of computational

linguistics, pages 440–447, 2007.

[30] J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. Wortman. Learning bounds for domain adaptation. In

Advances in neural information processing systems, pages 129–136, 2008.

[31] P. Bloomfield. Fourier analysis of time series: an introduction. John Wiley & Sons, 2004.

[32] N. Boumal and P.-A. Absil. A discrete regression method on manifolds and its application to data on so (n).

IFAC Proceedings Volumes, 44(1):2284–2289, 2011.

[33] O. Bousquet and A. Elisseeff. Stability and generalization. Journal of machine learning research, pages

499–526, March 2002.

[34] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. Lof: identifying density-based local outliers. In Pro-

ceedings of the 2000 ACM SIGMOD international conference on Management of data, pages 93–104, 2000.

[35] L. Bruzzone and M. Marconcini. Domain adaptation problems: A dasvm classification technique and a circular

validation strategy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32:770–787, 2010.

[36] Y. Cabanes, F. Barbaresco, M. Arnaudon, and J. Bigot. Toeplitz hermitian positive definite matrix machine

learning based on fisher metric. In International Conference on Geometric Science of Information, pages

261–270. Springer, 2019.

[37] R. Caruana. Multitask learning. Machine learning, 28(1):41–75, 1997.

169

[38] J. Cavazza, P. Morerio, and V. Murino. When kernel methods meet feature learning: Log-covariance network

for action recognition from skeletal data. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition Workshops, pages 33–40, 2017.

[39] R. Chattopadhyay, Q. Sun, W. Fan, I. Davidson, S. Panchanathan, and J. Ye. Multisource domain adaptation

and its application to early detection of fatigue. ACM Transactions on Knowledge Discovery from Data (TKDD),

6(4):1–26, 2012.

[40] M. Chen, Z. Xu, K. Weinberger, and F. Sha. Marginalized denoising autoencoders for domain adaptation.

Proceedings of the 29th International Conference on Machine Learning, ICML 2012, 1, 06 2012.

[41] S. Chen, S. Ma, A. Man-Cho So, and T. Zhang. Proximal gradient method for nonsmooth optimization over

the stiefel manifold. SIAM Journal on Optimization, 30(1):210–239, 2020.

[42] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio. Learn-

ing phrase representations using rnn encoder-decoder for statistical machine translation. arXiv preprint

arXiv:1406.1078, 2014.

[43] C. Cortes, M. Mohri, and A. Rostamizadeh. Algorithms for learning kernels based on centered alignment.

The Journal of Machine Learning Research, 13(1):795–828, 2012.

[44] C. Cortes, M. Mohri, and A. Muñoz Medina. Adaptation algorithm and theory based on generalized discrep-

ancy. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, pages 169–178, 2015.

[45] C. Cortes, X. Gonzalvo, V. Kuznetsov, M. Mohri, and S. Yang. Adanet: Adaptive structural learning of artificial

neural networks. In International conference on machine learning, pages 874–883. PMLR, 2017.

[46] C. Cortes, M. Mohri, and A. M. Medina. Adaptation based on generalized discrepancy. The Journal of Machine

Learning Research, 20(1):1–30, 2019.

[47] N. Courty, R. Flamary, D. Tuia, and A. Rakotomamonjy. Optimal transport for domain adaptation. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 39(9):1853–1865, 2017.

[48] K. Crammer, M. Kearns, and J. Wortman. Learning from multiple sources. Journal of Machine Learning

Research, 9(Aug):1757–1774, 2008.

[49] Z. Cui, W. Chen, and Y. Chen. Multi-scale convolutional neural networks for time series classification. arXiv

preprint arXiv:1603.06995, 2016.

[50] W. Dai, Q. Yang, G.-R. Xue, and Y. Yu. Boosting for transfer learning. In Proceedings of the 24th international

conference on Machine learning, pages 193–200, 2007.

170

[51] H. A. Dau, A. Bagnall, K. Kamgar, C.-C. M. Yeh, Y. Zhu, S. Gharghabi, C. A. Ratanamahatana, and E. Keogh.

The ucr time series archive. IEEE/CAA Journal of Automatica Sinica, 6(6):1293–1305, 2019.

[52] H. Daumé III. Frustratingly easy domain adaptation. arXiv preprint arXiv:0907.1815, 2009.

[53] A. de Mathelin. Adapt awesome domain adaptation package toolbox, 2020. URL https://

antoinedemathelin.github.io/adapt/_build/html/index.html.

[54] A. de Mathelin, G. Richard, M. Mougeot, and N. Vayatis. Adversarial weighting for domain adaptation in

regression. arXiv preprint arXiv:2006.08251, 2020.

[55] A. Delfosse, G. Hébrail, and A. Zerroug. Deep learning applied to nilm: is data augmentation worth for energy

disaggregation?

[56] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image

database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255. Ieee, 2009.

[57] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional transformers for

language understanding. arXiv preprint arXiv:1810.04805, 2018.

[58] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh. Querying and mining of time series data:

experimental comparison of representations and distance measures. Proceedings of the VLDB Endowment,

1(2):1542–1552, 2008.

[59] B. Dumitrescu and P. Irofti. Dictionary learning algorithms and applications. Springer, 2018.

[60] L. Duong, T. Cohn, S. Bird, and P. Cook. Low resource dependency parsing: Cross-lingual parameter sharing

in a neural network parser. In Proceedings of the 53rd Annual Meeting of the Association for Computational

Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short

Papers), pages 845–850, 2015.

[61] M. D’Incecco, S. Squartini, and M. Zhong. Transfer learning for non-intrusive load monitoring. IEEE Transac-

tions on Smart Grid, 11(2):1419–1429, 2019.

[62] H. A. El-Ghaish, A. A. Shoukry, and M. E. Hussein. Covp3dj: Skeleton-parts-based-covariance descriptor for

human action recognition. In VISIGRAPP (5: VISAPP), pages 343–350, 2018.

[63] T. Evgeniou and M. Pontil. Regularized multi–task learning. In Proceedings of the tenth ACM SIGKDD

international conference on Knowledge discovery and data mining, pages 109–117, 2004.

[64] H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller. Transfer learning for time series classifi-

cation. In 2018 IEEE International Conference on Big Data (Big Data), pages 1367–1376. IEEE, 2018.

171

https://antoinedemathelin.github.io/adapt/_build/html/index.html
https://antoinedemathelin.github.io/adapt/_build/html/index.html

[65] H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller. Deep learning for time series classification:

a review. Data Mining and Knowledge Discovery, 33(4):917–963, 2019.

[66] H. I. Fawaz, B. Lucas, G. Forestier, C. Pelletier, D. F. Schmidt, J. Weber, G. I. Webb, L. Idoumghar, P.-A. Muller,

and F. Petitjean. Inceptiontime: Finding alexnet for time series classification. Data Mining and Knowledge

Discovery, 34(6):1936–1962, 2020.

[67] B. Fernando, A. Habrard, M. Sebban, and T. Tuytelaars. Unsupervised visual domain adaptation using sub-

space alignment. In 2013 IEEE International Conference on Computer Vision, pages 2960–2967, 2013.

[68] B. Fernando, T. Tommasi, and T. Tuytelaars. Joint cross-domain classification and subspace learning for

unsupervised adaptation. Pattern Recogn. Lett., 65(C):60–66, Nov. 2015. ISSN 0167-8655.

[69] C. for Energy Regulation (CER). Cer smart metering project - electricity customer behaviour trial [dataset],

2009-2010.

[70] J. H. Friedman. Multivariate adaptive regression splines. The annals of statistics, pages 1–67, 1991.

[71] C. Gallicchio and A. Micheli. Deep echo state network (deepesn): A brief survey. arXiv preprint

arXiv:1712.04323, 2017.

[72] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand, and V. Lempitsky.

Domain-adversarial training of neural networks. J. Mach. Learn. Res., 17:59:1–59:35, 2016.

[73] P. Germain, A. Habrard, F. Laviolette, and E. Morvant. A new pac-bayesian perspective on domain adaptation.

In International conference on machine learning, pages 859–868, 2016.

[74] P. Germain, A. Habrard, F. Laviolette, and E. Morvant. Pac-bayes and domain adaptation. Neurocomputing,

379:379–397, 2020.

[75] X. Glorot, A. Bordes, and Y. Bengio. Domain adaptation for large-scale sentiment classification: A deep

learning approach. In Proceedings of the 28th International Conference on International Conference on

Machine Learning, ICML’11, page 513–520, Madison, WI, USA, 2011. Omnipress. ISBN 9781450306195.

[76] B. Gong, K. Grauman, and F. Sha. Geodesic Flow Kernel and Landmarks: Kernel Methods for Unsupervised

Domain Adaptation, pages 59–79. Springer International Publishing, Cham, 2017.

[77] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. C. Courville, and Y. Bengio.

Generative adversarial nets. In NIPS, 2014.

[78] A. Gretton. Covariate shift by kernel mean matching. In NIPS 2009 Workshop on Transfer Learning for

Structured Data (TLSD-09), 2009.

172

[79] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola. A kernel two-sample test. The Journal

of Machine Learning Research, 13(1):723–773, 2012.

[80] I. Guyon and A. Elisseeff. An introduction of variable and feature selection. J. Machine Learning Research

Special Issue on Variable and Feature Selection, 3:1157 – 1182, 01 2003.

[81] D. Hallac, S. Vare, S. Boyd, and J. Leskovec. Toeplitz inverse covariance-based clustering of multivariate time

series data. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, pages 215–223, 2017.

[82] L. Han and Y. Zhang. Learning tree structure in multi-task learning. In Proceedings of the 21th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, pages 397–406, 2015.

[83] M. Harandi, M. Salzmann, and R. Hartley. Dimensionality reduction on spd manifolds: The emergence of

geometry-aware methods. IEEE transactions on pattern analysis and machine intelligence, 40(1):48–62,

2017.

[84] M. T. Harandi, C. Sanderson, R. Hartley, and B. C. Lovell. Sparse coding and dictionary learning for symmetric

positive definite matrices: A kernel approach. In European Conference on Computer Vision, pages 216–229.

Springer, 2012.

[85] G. W. Hart. Residential energy monitoring and computerized surveillance via utility power flows. IEEE Tech-

nology and Society Magazine, 8(2):12–16, 1989.

[86] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network. arXiv preprint

arXiv:1503.02531, 2015.

[87] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780, 1997.

[88] J. Hoffman, M. Mohri, and N. Zhang. Algorithms and theory for multiple-source adaptation. In Advances in

Neural Information Processing Systems, pages 8246–8256, 2018.

[89] J.-F. Hu, W.-S. Zheng, J. Lai, and J. Zhang. Jointly learning heterogeneous features for rgb-d activity recogni-

tion. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 5344–5352,

2015.

[90] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely connected convolutional networks. In

Proceedings of the IEEE conference on computer vision and pattern recognition, pages 4700–4708, 2017.

[91] J. Huang, A. Gretton, K. Borgwardt, B. Schölkopf, and A. J. Smola. Correcting sample selection bias by

unlabeled data. In Advances in neural information processing systems, pages 601–608, 2007.

173

[92] S.-W. Huang, C.-T. Lin, S.-P. Chen, Y.-Y. Wu, P.-H. Hsu, and S.-H. Lai. Auggan: Cross domain adaptation with

gan-based data augmentation. In Proceedings of the European Conference on Computer Vision (ECCV),

pages 718–731, 2018.

[93] Z. Huang, R. Wang, X. Li, W. Liu, S. Shan, L. Van Gool, and X. Chen. Geometry-aware similarity learning

on spd manifolds for visual recognition. IEEE Transactions on Circuits and Systems for Video Technology, 28

(10):2513–2523, 2017.

[94] R. Ievgen and B. Younés. Random subspaces nmf for unsupervised transfer learning. In 2014 International

Joint Conference on Neural Networks (IJCNN), pages 3901–3908. IEEE, 2014.

[95] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covari-

ate shift. In International Conference on Machine Learning, pages 448–456, 2015.

[96] L. Jacob, J.-p. Vert, and F. R. Bach. Clustered multi-task learning: A convex formulation. In Advances in

neural information processing systems, pages 745–752, 2009.

[97] A. Jalali, S. Sanghavi, C. Ruan, and P. K. Ravikumar. A dirty model for multi-task learning. In Advances in

neural information processing systems, pages 964–972, 2010.

[98] S. Jayasumana, R. Hartley, M. Salzmann, H. Li, and M. Harandi. Kernel methods on riemannian manifolds

with gaussian rbf kernels. IEEE transactions on pattern analysis and machine intelligence, 37(12):2464–2477,

2015.

[99] B. Jeuris and R. Vandebril. The kahler mean of block-toeplitz matrices with toeplitz structured blocks. SIAM

Journal on Matrix Analysis and Applications, 37(3):1151–1175, 2016.

[100] J. Kelly and W. Knottenbelt. Neural nilm: Deep neural networks applied to energy disaggregation. In Proceed-

ings of the 2nd ACM International Conference on Embedded Systems for Energy-Efficient Built Environments,

pages 55–64, 2015.

[101] D. Kifer, S. Ben-David, and J. Gehrke. Detecting change in data streams. In VLDB, volume 4, pages 180–191.

Toronto, Canada, 2004.

[102] J. Kolter, S. Batra, and A. Ng. Energy disaggregation via discriminative sparse coding. Advances in neural

information processing systems, 23:1153–1161, 2010.

[103] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks.

Communications of the ACM, 60(6):84–90, 2017.

174

[104] S. Kuroki, N. Charoenphakdee, H. Bao, J. Honda, I. Sato, and M. Sugiyama. Unsupervised domain adapta-

tion based on source-guided discrepancy. In Proceedings of the AAAI Conference on Artificial Intelligence,

volume 33, pages 4122–4129, 2019.

[105] M. Längkvist, L. Karlsson, and A. Loutfi. A review of unsupervised feature learning and deep learning for

time-series modeling. Pattern Recognition Letters, 42:11–24, 2014.

[106] A. Le Guennec, S. Malinowski, and R. Tavenard. Data augmentation for time series classification using

convolutional neural networks. 2016.

[107] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller. Efficient backprop. In Neural networks: Tricks of the trade,

pages 9–48. Springer, 2012.

[108] O. Ledoit and M. Wolf. A well-conditioned estimator for large-dimensional covariance matrices. Journal of

multivariate analysis, 88(2):365–411, 2004.

[109] D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. Advances in neural information

processing systems, 13:556–562, 2000.

[110] X. Li, S. Chen, Z. Deng, Q. Qu, Z. Zhu, and A. M. C. So. Nonsmooth optimization over stiefel manifold:

Riemannian subgradient methods. arXiv preprint arXiv:1911.05047, 2019.

[111] Y. Lin, Y. Lee, and G. Wahba. Support vector machines for classification in nonstandard situations. Machine

learning, 46(1-3):191–202, 2002.

[112] J. Lines, S. Taylor, and A. Bagnall. Hive-cote: The hierarchical vote collective of transformation-based ensem-

bles for time series classification. In 2016 IEEE 16th international conference on data mining (ICDM), pages

1041–1046. IEEE, 2016.

[113] M. Long, J. Wang, G. Ding, J. Sun, and P. S. Yu. Transfer feature learning with joint distribution adaptation. In

Proceedings of the IEEE International Conference on Computer Vision (ICCV), December 2013.

[114] M. Long, J. Wang, G. Ding, S. Pan, and P. Yu. Adaptation regularization: A general framework for transfer

learning. Knowledge and Data Engineering, IEEE Transactions on, 26:1076–1089, 05 2014.

[115] K. Lounici, M. Pontil, A. B. Tsybakov, and S. Van De Geer. Taking advantage of sparsity in multi-task learning.

arXiv preprint arXiv:0903.1468, 2009.

[116] M. Lovrić, M. Milanović, and M. Stamenković. Algoritmic methods for segmentation of time series: An

overview. Journal of Contemporary Economic and Business Issues, 1(1):31–53, 2014.

175

[117] Y. Ma, W. Gong, and F. Mao. Transfer learning used to analyze the dynamic evolution of the dust aerosol.

Journal of Quantitative Spectroscopy and Radiative Transfer, 153:119–130, 2015.

[118] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online dictionary learning for sparse coding. In Proceedings of

the 26th annual international conference on machine learning, pages 689–696, 2009.

[119] S. Mallat. A wavelet tour of signal processing. Elsevier, 1999.

[120] S. Mallat. Understanding deep convolutional networks. Philosophical Transactions of the Royal Society A:

Mathematical, Physical and Engineering Sciences, 374(2065):20150203, 2016.

[121] Y. Mansour, M. Mohri, and A. Rostamizadeh. Domain adaptation: Learning bounds and algorithms. In 22nd

Conference on Learning Theory, COLT 2009, 2009.

[122] Y. Mansour, M. Mohri, and A. Rostamizadeh. Domain adaptation with multiple sources. In Advances in neural

information processing systems, pages 1041–1048, 2009.

[123] Y. Mansour, M. Mohri, and A. Rostamizadeh. Multiple source adaptation and the rényi divergence. arXiv

preprint arXiv:1205.2628, 2012.

[124] Y. Mansour, M. Mohri, J. Ro, and A. T. Suresh. Three approaches for personalization with applications to

federated learning. arXiv preprint arXiv:2002.10619, 2020.

[125] A. Maurer, M. Pontil, and B. Romera-Paredes. Sparse coding for multitask and transfer learning. In Interna-

tional conference on machine learning, pages 343–351, 2013.

[126] D. A. McAllester. Some pac-bayesian theorems. Machine Learning, 37(3):355–363, 1999.

[127] C. McDiarmid. Concentration. In Probabilistic methods for algorithmic discrete mathematics, pages 195–248.

Springer, 1998.

[128] A. M. Medina. Learning Theory and Algorithms for Auctioning and Adaptation Problems. PhD thesis, New

York University, 2015.

[129] L. Minvielle. Classification d’événements à partir de capteurs sols-Application au suivi de personnes fragiles.

PhD thesis, Université Paris-Saclay, 2020.

[130] M. Moakher. A differential geometric approach to the geometric mean of symmetric positive-definite matrices.

SIAM Journal on Matrix Analysis and Applications, 26(3):735–747, 2005.

[131] M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of machine learning. MIT press, 2018.

176

[132] A. Mueen and E. Keogh. Extracting optimal performance from dynamic time warping. In Proceedings of the

22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 2129–2130,

2016.

[133] A. Nanopoulos, R. Alcock, and Y. Manolopoulos. Feature-based classification of time-series data. In Informa-

tion processing and technology, pages 49–61. 2001.

[134] G. Obozinski, B. Taskar, and M. I. Jordan. Joint covariate selection and joint subspace selection for multiple

classification problems. Statistics and Computing, 20:231–252, 2010.

[135] D. Obst, B. Ghattas, S. Claudel, J. Cugliari, Y. Goude, and G. Oppenheim. Textual data for time series

forecasting. arXiv preprint arXiv:1910.12618, 2019.

[136] E. Ohn-Bar and M. Trivedi. Joint angles similarities and hog2 for action recognition. In Proceedings of the

IEEE conference on computer vision and pattern recognition workshops, pages 465–470, 2013.

[137] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and

K. Kavukcuoglu. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499, 2016.

[138] S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions on knowledge and data engineering,

22(10):1345–1359, 2009.

[139] S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang. Domain adaptation via transfer component analysis. IEEE

Transactions on Neural Networks, 22(2):199–210, 2011.

[140] D. Pardoe and P. Stone. Boosting for regression transfer. In ICML, 2010.

[141] O. Parson, S. Ghosh, M. Weal, and A. Rogers. Non-intrusive load monitoring using prior models of general

appliance types. 2012.

[142] J. Pearl. Causality. Cambridge university press, 2009.

[143] X. Pennec. Intrinsic statistics on riemannian manifolds: Basic tools for geometric measurements. Journal of

Mathematical Imaging and Vision, 25(1):127, 2006.

[144] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word representation. In Proceedings

of the 2014 conference on empirical methods in natural language processing (EMNLP), pages 1532–1543,

2014.

[145] T. K. Pong, P. Tseng, S. Ji, and J. Ye. Trace norm regularization: Reformulations, algorithms, and multi-task

learning. SIAM Journal on Optimization, 20(6):3465–3489, 2010.

177

[146] T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. Westover, Q. Zhu, J. Zakaria, and E. Keogh. Search-

ing and mining trillions of time series subsequences under dynamic time warping. In Proceedings of the 18th

ACM SIGKDD international conference on Knowledge discovery and data mining, pages 262–270, 2012.

[147] J. O. Ramsay. Functional data analysis. Encyclopedia of Statistical Sciences, 4, 2004.

[148] I. Redko, A. Habrard, and M. Sebban. Theoretical analysis of domain adaptation with optimal transport. In

Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pages 737–753.

Springer, 2017.

[149] I. Redko, E. Morvant, A. Habrard, M. Sebban, and Y. Bennani. Advances in domain adaptation theory.

Elsevier, 2019.

[150] G. Richard, B. Grossin, G. Germaine, G. Hébrail, and A. de Moliner. Autoencoder-based time series clustering

with energy applications, 2018.

[151] G. Richard, G. Hébrail, M. Mougeot, and N. Vayatis. Densenets for time series classification: towards automa-

tion of time series pre-processing with cnns. MiLeTS@SIGKDD 25th ACM SIGKDD International Conference

on Knowledge Discovery & Data Mining, 2019.

[152] G. Richard, A. d. Mathelin, G. Hébrail, M. Mougeot, and N. Vayatis. Unsupervised multi-source domain

adaptation for regression. In Machine Learning and Knowledge Discovery in Databases, pages 395–411.

Springer International Publishing, 2021.

[153] P. Rodrigues, M. Congedo, and C. Jutten. Dimensionality transcending: a method for merging bci datasets

with different dimensionalities. IEEE Transactions on Biomedical Engineering, pages 1–1, 2020.

[154] M. Rojas-Carulla, B. Schölkopf, R. Turner, and J. Peters. Invariant models for causal transfer learning. The

Journal of Machine Learning Research, 19(1):1309–1342, 2018.

[155] M. T. Rosenstein, Z. Marx, L. P. Kaelbling, and T. G. Dietterich. To transfer or not to transfer. In In NIPS’05

Workshop, Inductive Transfer: 10 Years Later. Citeseer, 2005.

[156] Y. Rubner, C. Tomasi, and L. J. Guibas. A metric for distributions with applications to image databases. In

Sixth International Conference on Computer Vision (IEEE Cat. No. 98CH36271), pages 59–66. IEEE, 1998.

[157] S. Said, H. Hajri, L. Bombrun, and B. C. Vemuri. Gaussian distributions on riemannian symmetric spaces:

statistical learning with structured covariance matrices. IEEE Transactions on Information Theory, 64(2):

752–772, 2017.

178

[158] K. Saito, K. Watanabe, Y. Ushiku, and T. Harada. Maximum classifier discrepancy for unsupervised domain

adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages

3723–3732, 2018.

[159] A. Sandryhaila and J. M. Moura. Big data analysis with signal processing on graphs: Representation and

processing of massive data sets with irregular structure. IEEE Signal Processing Magazine, 31(5):80–90,

2014.

[160] P. Schäfer. The boss is concerned with time series classification in the presence of noise. Data Mining and

Knowledge Discovery, 29(6):1505–1530, 2015.

[161] P. Schäfer and M. Högqvist. Sfa: a symbolic fourier approximation and index for similarity search in high

dimensional datasets. In Proceedings of the 15th international conference on extending database technology,

pages 516–527, 2012.

[162] I. Serban, A. Sordoni, Y. Bengio, A. Courville, and J. Pineau. Building end-to-end dialogue systems using gen-

erative hierarchical neural network models. In Proceedings of the AAAI Conference on Artificial Intelligence,

volume 30, 2016.

[163] A. Shahroudy, J. Liu, T.-T. Ng, and G. Wang. Ntu rgb+ d: A large scale dataset for 3d human activity analysis.

In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1010–1019, 2016.

[164] L. Shi, Y. Zhang, J. Cheng, and H. Lu. Skeleton-based action recognition with multi-stream adaptive graph

convolutional networks. IEEE Transactions on Image Processing, 29:9532–9545, 2020.

[165] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014.

[166] C. Song, Y. Huang, Y. Huang, N. Jia, and L. Wang. Gaitnet: An end-to-end network for gait based human

identification. Pattern Recognition, 96:106988, 2019.

[167] S. Sra. A new metric on the manifold of kernel matrices with application to matrix geometric means. In

Advances in neural information processing systems, pages 144–152, 2012.

[168] M. Sugiyama, T. Suzuki, S. Nakajima, H. Kashima, P. von Bünau, and M. Kawanabe. Direct importance

estimation for covariate shift adaptation. Annals of the Institute of Statistical Mathematics, 60(4):699–746,

2008.

[169] B. Sun and K. Saenko. Deep coral: Correlation alignment for deep domain adaptation. In European confer-

ence on computer vision, pages 443–450. Springer, 2016.

179

[170] B. Sun, J. Feng, and K. Saenko. Return of frustratingly easy domain adaptation. In AAAI, 2016.

[171] S.-L. Sun and H.-L. Shi. Bayesian multi-source domain adaptation. In 2013 International Conference on

Machine Learning and Cybernetics, volume 1, pages 24–28. IEEE, 2013.

[172] T. Tommasi, F. Orabona, and B. Caputo. Safety in numbers: Learning categories from few examples with

multi model knowledge transfer. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, pages 3081–3088. IEEE, 2010.

[173] J. Townsend, N. Koep, and S. Weichwald. Pymanopt: A python toolbox for optimization on manifolds using

automatic differentiation. The Journal of Machine Learning Research, 17(1):4755–4759, 2016.

[174] O. Tuzel, F. Porikli, and P. Meer. Region covariance: A fast descriptor for detection and classification. In

European conference on computer vision, pages 589–600. Springer, 2006.

[175] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell. Adversarial discriminative domain adaptation. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages 7167–7176, 2017.

[176] V. Vapnik. The nature of statistical learning theory. Springer science & business media, 2013.

[177] A. Vaswani, S. Bengio, E. Brevdo, F. Chollet, A. N. Gomez, S. Gouws, L. Jones, Ł. Kaiser, N. Kalchbrenner,

N. Parmar, et al. Tensor2tensor for neural machine translation. arXiv preprint arXiv:1803.07416, 2018.

[178] R. Vemulapalli, F. Arrate, and R. Chellappa. Human action recognition by representing 3d skeletons as points

in a lie group. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages

588–595, 2014.

[179] C. Villani. Optimal transport: old and new, volume 338. Springer Science & Business Media, 2008.

[180] M. Vlachos, J. Lin, E. Keogh, and D. Gunopulos. A wavelet-based anytime algorithm for k-means clustering of

time series. In In proc. workshop on clustering high dimensionality data and its applications. Citeseer, 2003.

[181] G. T. Walker. On periodicity in series of related terms. Proceedings of the Royal Society of London. Series A,

Containing Papers of a Mathematical and Physical Character, 131(818):518–532, 1931.

[182] L. Wang, J. Zhang, L. Zhou, C. Tang, and W. Li. Beyond covariance: Feature representation with nonlinear

kernel matrices. In Proceedings of the IEEE International Conference on Computer Vision, pages 4570–4578,

2015.

[183] Z. Wang, W. Yan, and T. Oates. Time series classification from scratch with deep neural networks: A strong

baseline. In 2017 International joint conference on neural networks (IJCNN), pages 1578–1585. IEEE, 2017.

180

[184] Z. Wang, Z. Dai, B. Póczos, and J. Carbonell. Characterizing and avoiding negative transfer. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, pages 11293–11302, 2019.

[185] K. Weiss, T. M. Khoshgoftaar, and D. Wang. A survey of transfer learning. Journal of Big data, 3(1):9, 2016.

[186] S. N. Wood, Y. Goude, and S. Shaw. Generalized additive models for large data sets. Journal of the Royal

Statistical Society: Series C: Applied Statistics, pages 139–155, 2015.

[187] J. Yang, R. Yan, and A. G. Hauptmann. Cross-domain video concept detection using adaptive svms. In

Proceedings of the 15th ACM international conference on Multimedia, pages 188–197, 2007.

[188] Q. Yang, Y. Zhang, W. Dai, and S. J. Pan. Transfer learning. Cambridge University Press, 2020.

[189] X. Yang and Y. Tian. Super normal vector for activity recognition using depth sequences. In Proceedings of

the IEEE conference on computer vision and pattern recognition, pages 804–811, 2014.

[190] L. Ye and E. Keogh. Time series shapelets: a new primitive for data mining. In Proceedings of the 15th ACM

SIGKDD international conference on Knowledge discovery and data mining, pages 947–956, 2009.

[191] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are features in deep neural networks? In

Advances in neural information processing systems, pages 3320–3328, 2014.

[192] B. Zadrozny. Learning and evaluating classifiers under sample selection bias. In Proceedings of the twenty-

first international conference on Machine learning, page 114, 2004.

[193] C. Zhang, M. Zhong, Z. Wang, N. Goddard, and C. Sutton. Sequence-to-point learning with neural networks

for nonintrusive load monitoring. arXiv preprint arXiv:1612.09106, 2016.

[194] Q. Zhang, Y. N. Wu, and S.-C. Zhu. Interpretable convolutional neural networks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 8827–8836, 2018.

[195] B. Zhao, L. Stankovic, and V. Stankovic. On a training-less solution for non-intrusive appliance load monitoring

using graph signal processing. IEEE Access, 4:1784–1799, 2016.

[196] H. Zhao, S. Zhang, G. Wu, J. M. Moura, J. P. Costeira, and G. J. Gordon. Adversarial multiple source domain

adaptation. In Advances in neural information processing systems, pages 8559–8570, 2018.

[197] Y. Zheng, Q. Liu, E. Chen, Y. Ge, and J. L. Zhao. Time series classification using multi-channels deep

convolutional neural networks. In International Conference on Web-Age Information Management, pages

298–310. Springer, 2014.

[198] M. Zhong, N. Goddard, and C. Sutton. Latent bayesian melding for integrating individual and population

models. In Advances in neural information processing systems, pages 3618–3626, 2015.

181

[199] Z.-H. Zhou. Ensemble methods: foundations and algorithms. CRC press, 2012.

[200] A. Zweig and D. Weinshall. Hierarchical regularization cascade for joint learning. In International Conference

on Machine Learning, pages 37–45, 2013.

182

Titre: Méthodes d’apprentissage statistique de type ”Transfer Learning” pour des données temporelles multivariées

Mots clés: apprentissage par transfert, séries temporelles, adaptation de domaine, apprentissage profond

Résumé: Dans ce travail, nous proposons de nouvelles

méthodes d’apprentissage par transfert pour l’analyse des

séries temporelles. Motivés par des applications dans le do-

maine de la désagrégation de la consommation électrique

des ménages (NILM) et de la surveillance industrielle,

nous étudions les approches traditionnelles et montrons

la nécessité de méthodes d’apprentissage par transfert

spécifiques aux séries temporelles.

Dans une première partie, nous étudions le

prétraitement des séries temporelles pour les réseaux de

neurones dans l’optique de la consommation des ménages.

Nous proposons une méthode qui permet une meilleure

robustesse lors de l’apprentissage sur une maison et

l’application sur une nouvelle.

Dans une deuxième partie, nous développons un cadre

général pour l’adaptation de domaine adverse pour la

régression. Nous fournissons des limites d’apprentissage

et un algorithme pour l’adaptation de domaine à une ou

plusieurs sources. Nous menons des expériences appro-

fondies sur des ensembles de données privés et publics,

montrant de meilleures performances que les méthodes

d’adaptation de domaine précédentes.

Enfin, nous étudions les méthodes d’apprentissage par

transfert pour les séries temporelles multivariées en utilisant

l’information de covariance. Nous représentons les séries

temporelles multivariées par leur matrice d’autocovariance

et développons un cadre d’adaptation de domaine utilisant

la géométrie spécifique de ces matrices.

Title: Transfer Learning for Temporal Data

Keywords: transfer learning, time series, domain adaptation, deep learning

Abstract: In this work, we propose novel transfer learn-

ing methods for time series analysis. Motivated by ap-

plications in household electricity consumption disaggrega-

tion (NILM) and industrial monitoring, we investigate tradi-

tional tools and show the need for specific transfer learning

methods for time series.

In a first part, we investigate time series pre-processing

for neural networks with a view on household consump-

tion. We propose a method that allows for better robust-

ness when learning on one house and applying on a new

one.

In a second part, we develop a general framework for

adversarial domain adaptation for regression. We provide

learning bounds and an algorithm for both single and multi-

source domain adaptation. We conduct extensive experi-

ments on both private and public datasets, showing better

performance than previous domain adaptation methods.

Finally, we investigate transfer learning methods for

multivariate time series using covariance information. We

represent multivariate time series by their autocovariance

matrix and develop a domain adaptation framework using

the specific geometry of those matrices.

Maison du doctorat de Université Paris-Saclay

2e étage, aile ouest, École normale supérieure Paris-Saclay

4 avenue des Sciencs

91190 Gif-sur-Yvette, France

	Résumé (en français)
	Introduction
	Motivation
	Organization of the manuscript

	Background on Transfer Learning
	What is Transfer Learning?
	Theory of Domain Adaptation
	Generalization bounds
	Divergence-based Domain Adaptation
	Alternative approaches
	Summary

	Existing approaches for Homogeneous Transfer Learning
	Instance-based domain adaptation
	Feature-based domain adaptation
	Alternative methods
	Summary

	Learning from Multiple Sources
	Multi-Task Learning and Domain Generalization
	Multi-source domain adaptation

	Conclusion

	Deep Time Series Representations for Non-Intrusive Load Monitoring
	Background on Time Series Representations
	Framework
	Overview of Univariate Time Series Representations

	Transferability of Deep Time Series Representations
	Deep Time Series Representations
	On Transferability of Deep Time Series Representations

	Transfer Learning in Non Intrusive Load Monitoring
	General presentation
	Review of methods
	Datasets
	Problem formulation

	Time Series Normalization for Invariant Appliance Recognition
	Global and z-normalization
	Normalization for appliance consumption
	Model

	Experiments on NILM Datasets
	Preprocessing and Methods
	Same House
	Cross-House Results
	Cross-Dataset Results
	Discussion

	Conclusion

	Domain adaptation with multiple sources in regression
	Domain Adversarial Learning with H-divergence
	Literature review
	Limits of Domain Adversarial Adaptation in Regression with H-divergence

	Hypothesis-Discrepancy for Domain Adaptation in Regression
	Hypothesis-Discrepancy
	Domain Adaptation Guarantees with Hypothesis-Discrepancy

	Minimizing the hypothesis-discrepancy
	Extension to multiple sources
	Theoretical Guarantees with multiple sources
	Algorithm

	Experiments
	Synthetic data
	Appliance Consumption Estimation
	Same-house results
	Cross-house results
	Experiments on other datasets

	Extension to semi-supervised adaptation
	Conclusion

	Covariance-based Transfer Learning with applications to Multivariate Time Series
	Outline of the method
	Multivariate Time Series and Covariance
	Riemannian Geometry of Symmetric Positive Definite Matrices and Time Series
	Basics
	Working with time series
	Statistical Learning with SPD Matrices

	Transferable subspace using Covariance information
	Framework
	Learning a subspace aligning domains
	Related works
	Algorithm
	Hyperparameter Selection

	Numerical Results
	Simulated data
	Human Activity Recognition

	Conclusion

	Conclusion and Perspectives
	Neural Networks
	Clustering consumer consumption with auto-encoders
	Data presentation
	Method
	Convolutional AutoEncoder
	Compared methods
	Outliers

	Results

	Implementations
	Public implementations
	Other implementations
	List of statistical features extracted (Chapter 3)

	Additional Experiments of Chapter 3
	Details about implementations of Chapter 4

