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Synthèse en français

Un traitement tout optique du signal pourrait réduire considérablement la
consommation d’énergie et augmenter le débit de données par rapport à son
analogue électronique. Cette approche nécessite l’intégration de multiples sys-
tèmes photoniques sur une puce. Les composants qui exploitent les interac-
tions paramétriques peuvent réaliser différentes fonctions comme la conversion
de longueur d’onde, l’amplification, l’échantillonnage et la commutation ainsi
que générer des états non classiques de la lumière pour l’information quantique.
Les micro-résonateurs non-linéaires sont intéressants car ils permettent la réduc-
tion de l’empreinte sur puce du composant et de la puissance nécessaire pour
activer les effets non-linéaires. Parmi eux, les cavités à cristaux photoniques
(PhC) paraissent être particulièrement prometteuses du fait de leur capacité à
confiner la lumière dans un volume proche celui permis par la limite de diffrac-
tion. Pourtant, elles souffrent de la difficulté de contrôler la dispersion de leurs
modes résonants, ce qui explique que les efficacités non-linéaires observées sont
restées bien inférieures aux maxima théoriques prévus pour ces structures. Par-
tant des travaux réalisés précédemment au sein de l’équipe de recherche, l’objectif
de ce travail de thèse consiste à exploiter pleinement le potentiel des cavités PhC
non-linéaires.
Les cavités étudiées dans ce travail ont été conçues pour être l’analogue optique
de l’oscillateur harmonique quantique. Lorsque les photons sont soumis à un
potentiel parabolique, les modes résonants sont équispacés en fréquence, ce qui
correspond à la règle de conservation de l’énergie requises pour les interactions
paramétriques. Un tel potentiel parabolique a été construit par l’introduction
d’un second réseau périodique inséré dans un guide d’onde à cristal photonique
réalisé dans une membrane suspendue. Ce design, appelé bichromatique, en-
gendre par effet Moiré une localisation des photons caractérisée par le potentiel
d’André-Aubry. Ce potentiel peut être approximé près du centre de la cavité
créée par une parabole. Cependant, la caractérisation linéaire des résonateurs à
l’aide d’une méthode interférométrique montre que le désordre structurel induit
une déviation par rapport aux fréquences visées supérieur à la largeur de raie des
modes, qui possèdent des facteurs de qualité élevés, aux alentours de 2×105. Une
étude statistique sur des dizaines de cavité montre que ce désordre est localisé,
ce qui affecte chaque mode de la cavité dans une mesure différente. Puisque il
est impossible de supprimer ce désordre intrinsèque aux fluctuations du procédé
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de production, une technique de compensation post-fabrication est nécessaire.
Pour résoudre ce problème, un procédé d’ajustement thermique qui exploite la
répartition inhomogène de la distribution spatiale des modes électromagnétiques
est introduit. L’idée est de tirer parti de la structure des modes de Hermite-Gauss
de l’oscillateur harmonique, dont l’énergie est concentrée dans des lobes aux ex-
trémités du mode. Lorsqu’une certaine énergie est injectée dans un mode via un
laser de pompe, un gradient de température se forme dans la cavité superposé au
premier ordre avec la distribution d’énergie électromagnétique. En conséquence,
les modes adjacents verront leur fréquence se décaler par effet thermo-optique,
mais d’une quantité propre à chaque mode. Ce procédé permet donc de changer la
fréquence de chaque mode individuellement, et de mettre de façon systématique
la cavité en configuration triplement résonnante. Cette technique d’ajustement
est employée pour observer du mélange à quatre ondes stimulé et spontané avec
des efficacités record. L’oscillation paramétrique dans une cavité PhC est dé-
montrée pour la première fois dans un échantillon avec des facteurs de qualité
plus élevés.
Une seconde plateforme est développée, basée sur l’intégration hybride d’une
cavité PhC sur un circuit en silicium, avec une empreinte sur puce réduite et une
excellente capacité d’intégration. Un mélange à quatre ondes efficace est encore
une fois observé en utilisant le même procédé d’ajustement que précédemment.
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Introduction

The first realization of light amplification by stimulated emission radiation in
1960[1] granted access to a radically new light source type. Its singular prop-
erties unveiled many possibilities among which the concentration of coherent
optical field at an unprecedented level. It took only one year after Maimann’s
first laser to focus the beam on a nonlinear crystal and observe second harmonic
generation[2]. Experimental access to optical nonlinearities was at the time
limited to electrically driven Kerr or Pockels effect. Soon after, Askaryan and
Hercher discovered the optical Kerr effect through self focusing[3, 4]. It was
followed by the observation of Raman scattering, supercontinuum generation...
Among these, parametric oscillation[5] is an important achievement as it allows
to tune the frequency of laser light.
In parallel, the advent of low loss optical fibers revolutionized the field of
telecommunication and data transmission. Guided optics enabled light matter
interaction over a very long length compensating for a lower interaction strength
than in bulk crystal. Parametric amplification was studied very early in fibers[6].
It opened a wide range of applications for all optical signal treatment. This
is of particular interest in the context of a growing need for higher bandwidth
and energy efficiency in the worldwide data traffic. Indeed, an electronically
signal processing requires a conversion of the optical signal of the fiber into an
electrical signal. The data rates are limited by the bandwidth of this conversion,
typically 100 GHz. All optical signal processing could push this limit back
because optical processors could operate at higher speeds and cover a larger
bandwidth. This perspective brought integrated optical circuits as a promising
alternative for standard electronic chips. A single device could perform a
massive parallel processing and the integration of nonlinear optics on chip has
been a subject of extensive research over the past decades. Among optical
nonlinearities, parametric interactions have a very short response (femtosecond).
The corresponding theoretical data rate is superior to terabit-per-second which
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would be a huge increase. Depending on the application, parametric interaction
could perform different tasks such as wavelength conversion, signal amplification
and regeneration, sampling, switching, memories.
Finally, parametric nonlinearities are also extremely useful for quantum infor-
mation, e.g. the transmission of quantum states[7]. Their coherence properties
can be exploited to generate and manipulate non-classical states of light, and
on-chip quantum photonics will likely include some of these nonlinear functions.

Context of the study

The work presented in this manuscript comes within the scope of the global
research effort of integrating photonics functionalities on a chip. More particu-
larly, it is the continuation of years of collaborative work on integrated nonlinear
nanophotonics between the Centre de Nanosciences et Nanotechnologies (C2N)
and Thales Research and Technology (TRT). This work has been motivated by
the goal to study wave mixing in a platform that combines both an interesting
material (Indium Gallium Phosphide) and geometry (Photonic Crystal Cavity).
It covers two different technologies (suspended and bonded membranes) that
were developed by the two institutions. All the main steps of this study were
performed during this thesis, from the theoretical modelling of the system to the
design (except for the suspended membrane design), fabrication in clean-room,
optical characterization and wave mixing experiments.

Outline of the manuscript

The manuscript is organized to describe the successive steps that lead to the
realization of efficient Four Wave Mixing (FWM) in different photonic crystal
platforms and the observation of parametric oscillation.

In the first chapter, a theoretical introduction summarizes the physical
mechanisms that are taken into account for the rest of the study. In particular,
it will emphasize the role of resonant FWM and will briefly review the state of
the art in this domain. The difficulties to achieve FWM in Photonic Crystals
will also be discussed.
The second chapter details the theoretical model that has been developed to
describe the nonlinear behavior of the cavity using Temporal Coupled Mode
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Theory. The regime of spontaneous and stimulated FWM are treated under the
assumption of a strongly dominant thermal nonlinearity. We will explicit the
link between the two regime that will be experimentally verified.
The third chapter explains the design, fabrication and linear characterization
of PhC cavities for resonant FWM. Two strategies are developed, the first one
with suspended membrane and the other with bonded membrane connected to a
silicon circuitry, although based on the same confinement principle. A statistic
study on the fabricated structures is performed and shows that an additional
tuning mechanism is required to unveil the full potential of the cavities for
FWM.
The fourth chapter introduces a thermal tuning technique specific to the used
design. This technique is then used to performed FWM in the two platforms
with record efficiency. The comparison experiment/theory corroborates the
model developed in Chapter 2. Finally, we will explain how we were able to reach
parametric oscillation and will compare these results to state-of the art platforms.
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Chapter 1

Integrated Nonlinear Optics in

cavity

The advent of fiber optics provides a formidable tool to study and implement
nonlinear optical functions as their low losses results into a very large interaction
length between the optical field and the fiber core. A desirable perspective would
be to drastically reduce this length with the aim of on-chip integration. As a
result, the choice of the best nonlinear platform depends on multiple parameters
such as nonlinearity, confinement, losses etc. As always, trade-offs need to be
made, depending on the application that is targeted. This chapter shortly re-
views the tools to understand this problematic and provides a state of the art of
integrated parametric oscillators.
In the first section, we will introduce the nonlinear effects that are taken into ac-
count in this work and provide a physical description. In the second part, we will
discuss the relevant material parameters relevant for efficient nonlinear optics.
In the third part, we will explain the interest of using a cavity to enhance these
effects and we will end with a brief review of the performances of state-of-the-art
integrated nonlinear cavities.
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1.1 Nonlinear optics in a cavity: fundamentals

1.1.1 Linear and Nonlinear Polarization

A strong electromagnetic excitation can lead to a modification of the optical
properties of the matter. When an electromagnetic field is shone upon a di-
electric material, the electronic clouds of the particles constituting the material
are modified by the Lorentz force. When the electric field oscillates, the elec-
tronic clouds oscillates as well and the medium can be described as an ensemble
of oscillating dipoles. This density of dipoles is called polarization. When the
electromagnetic field is weak, the response of the material is linear that is to
say the polarization depends linearly with the applied field. In particular, the
polarization will oscillate at the same frequency than the electromagnetic field.
In the case of nonlinear optics, the field is strong enough to induce an anharmonic
response of the dipoles. As a result, the polarization does not depend linearly
on the input field anymore. The nonlinear part of the response is treated as a
perturbation of the linear solution. The polarization is then expressed as a series
expansion[8]:

P(t) = PLIN(t)+PNL(t) = ε0χ
(1)E(t)+ ε0[χ(2)E(t)E(t)+χ(3)E(t)E(t)E(t)+ ...]

(1.1)
where ε0 is the vacuum permittivity and χ(j) is a j+1 order tensor corresponding
to the jth order susceptibility.
The first term of the expression corresponds to the linear polarization. The
refractive index n and linear losses α of the material are related to its real and
imaginary parts. The higher order terms correspond to the harmonics of the
polarization and become a source term of new harmonic components of the light.
The second order term, associated to χ(2), involves the product of three waves.
The χ(2) term is the dominant nonlinear contribution. However, a center of
symmetry in the crystalline arrangement of the medium nullifies all component
of the χ(2) tensor. Therefore, second order nonlinearities can only take place in
non centro-symmetric medium. Conversely, odd-order susceptibility tensors are
never null. Thus, third order nonlinear effects, that involve four waves, are the
dominant terms in centro-symmetric material. This manuscript will treat third
order nonlinear effects only. It is not due to material constraints because the
material used, namely Indium Gallium Phosphide (InGaP) has a nonzero χ(2)

[9]. The reason lies in the difficulty to engineer the dispersion of a cavity on
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a large frequency bandwidth, especially in Photonic Crystals. While it is not
treated here, this topic is still active and recent progress has been reported[10].

1.1.2 Third Order Nonlinear Effects in Semiconductors

This manuscript deals with the interaction of four waves through the third or-
der susceptibility χ(3) in a semiconductor. Here, the electronic energy states are
separated by a forbidden band. The width of this band is called the bandgap en-
ergy, Eg. If a photon has an energy larger than Eg, it can excite an electron from
the lower level band, the valence band, to the higher level band, the conduction
band. Changing the population of electron in these band lead to a change in the
optical proprieties of the semiconductor, and is characterised by a lifetime in the
excited state. However, if Eg is large enough, photons are no longer absorbed,
and nonlinear interactions go through virtual levels, with a quasi-instantaneous
response (few femtoseconds typically). Therefore, it is important to distinguish
between processes that involve real or virtual electronic transition: only in the
first case an exchange of energy with the medium will take place.
The equation 1.1 can be used in the temporal domain only in a dispersionless and
lossless medium, which corresponds to the case of a purely real and frequency
independent susceptibility tensor. In the general case of a complex susceptibility,
it is necessary to express the polarization in the frequency domain. This requires
a treatment of each frequency component separately. The electric field and the
polarization are assumed to be decomposed in frequency harmonics, writing:

E(t) =
∑
k

E(ωk) exp ıωkt (1.2)

P(t) =
∑
k

P(ωk) exp ıωkt (1.3)

The sum on the harmonics is carried out on positive and negative frequencies
so that the temporal field is real. As stated above, the third order processes
can be divided in two categories: the elastic and the inelastic processes. The
first one involves no energy transfer with the medium, and uses the real part of
the susceptibility tensor. The second one involves an energy transfer with the
medium, and involves the imaginary part of the tensor. These effects, that we
are going to detail further, are depicted in Fig.1.1.
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Figure 1.1: Illustration of the 3rd order nonlinearities in a semiconductor. If
the photon energy is inferior to half the bandgap, it will trigger elastic effects
(SPM, FWM, XPM ). If it is superior to half the bandgap, it will trigger inelastic
effects that involve absorption by the material. The generated carriers generates
additional absorption through FCA. The relaxation lead to phonon creation that
will heat the semiconductor and modify the refractive index (thermo-optic effect).

Elastic processes: the intensity-dependent refractive index

A strong electromagnetic field can cause a modification of the refractive index
of a material: this is often called the optical Kerr effect. The real part of the
refractive index n of the material is written:

n = n0 + n2I (1.4)

where n0 is the linear refractive index, I = 2n0ε0c|E|2 is the light intensity and
n2 is the nonlinear refractive index1:

n2 =
3Re(χ(3))

4n2
0(ω)ε0c

(1.5)

The nonlinear part of the refractive index depends on the square of the elec-
tric field, and causes several effects. First, the effects that modifies the spectral
properties of the light. They are called Self-Phase Modulation (SPM) and Cross
Phase Modulation (XPM). These effects are not subject to any resonance con-
dition and are therefore always active. They affect mainly the propagation of a

1In this expression, all fields are supposed to be linearly polarized so that only one compo-
nent of the tensor contributes to the refractive index
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light pulse by broadening its spectrum, and they can be responsible for contin-
uum generation.
On the other hand, the Kerr effect can also cause a transfer of energy between
different fields: this is called four wave mixing (FWM). It results in the ap-
parition of new frequency components. We call FWM the annihilation of two
pump photons to generate two photons with different energy, and the annihila-
tion of three pump photon to create a third harmonic is called Third Harmonic
Generation (THG). During this type of nonlinear process, the interacting fields
need to be maintained in phase. This defines a phase-matching condition on the
wavevectors k outside of which the nonlinear effect is not efficient.

In this work, we will focus on degenerate FWM : the two pump photons are
degenerate in frequency, which allows to use only one laser for the pump. Our
goal is to generate as efficiently as possible the signal and idler photons according
to the relation:

2ωp = ωs + ωi (1.6)

where p, s, i stand respectively for pump, signal and idler. The phase matching
condition then writes:

2kp = ks + ki (1.7)

If it is virtually possible to generate any signal/idler pair subject to the energy
conservation from the pump , only those who satisfy the phase matching con-
dition will be efficient. Practically, only a specific bandwidth in a waveguide
or specific set of resonances in a cavity, both determined by the dispersion of
the structure will be useful. This aspect will be detailed later when we will de-
scribe the optical cavity. Nonetheless, the parametric gain available in a material
depends heavily on the nonlinear refractive index.

Inelastic processes: the Nonlinear absorption

In the previous part, we reviewed the consequences of the real part of the refrac-
tive index. Conversely, the imaginary part of the susceptibility adds a nonlinear
term on the imaginary part of the refractive index, e.g. to the losses. This phe-
nomenon is called two photon absorption (TPA). Contrary to the Kerr effect, the
energy of the two photon excites a real level of energy of the material involving an
energy transfer between the electromagnetic field and the material. Physically,
in a semiconductor, it corresponds to an excitation of an electron in the valence
band to the conduction band by the absorption of two photon at the same time
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as pictured in Fig.1.1. The expression of the losses becomes:

α = α0 + α2I + αFCAI
2 (1.8)

where α is total loss coefficient, α0 are the linear losses, α2 is the TPA coefficient
and αFCA is the free carrier absorption coefficient, with

α2 =
−3ωIm(χ(3))

2c2n0(ω)2ε0
(1.9)

Two photon absorption is detrimental to the efficiency of third order nonlinear
processes. Unfortunately, it cannot be compensated by increasing the pump
power in order to increase the parametric gain because TPA will scale identically.
However, we will see later that an appropriate choice of material can miti-
gate the problem. Raman and Brillouin scattering are also inelastic processes
but they will be neglected in this work because they are not resonantly enhanced.

Nonlinear response due to free carriers

The electrons excited in the conduction band become free to absorb light through
Free Carrier Absorption (FCA). The losses produced by FCA are proportional
to the square of the intensity. Increasing the power of the pump will eventually
make FCA dominant and clamp the nonlinear gain. FCA triggers a modification
of the refractive index by the free electrons (Free Carrier Dispersion, FCD). The
strength of FCA and FCD is directly related to the carrier density. The timescale
of these effects depends on the carrier lifetime in the material, governed by the
recombination rate. Typically, the response range from few ps to ns. A fraction
of the energy is converted into heat through recombination or relaxation of the
electron/hole pairs generated by TPA. This thermalization leads to a change of
the refractive index through the thermo-optic effect, and in extreme situation,
can damage the medium. It is crucial to limit TPA and mitigate free carriers
in semiconductors when we aim at realizing efficient wave mixing. For different
application, such as all-optical switching, FCD is exalted on purpose[11].
Finally, surface states can play an strong role in absorption of the photons and
recombination of the carriers. They originate from finite size of the crystal, the
semiconductor growth (impurities) and fabrication imperfection that disrupt the
periodicity. The surface of a crystal possess lower energy bands than the bulk,
and these mid-gap states are more prone to absorption.
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Thermal nonlinearity

Thermal nonlinearity, also called the photothermal effect consists in a change of
the refractive index due to the heating of the structure. Heating is caused when
a fraction of the light is absorbed in the material through residual absorption.
It leads to an increase of temperature, that can go up to damage the material.
The effect on the refractive index is expressed as :

n = n0 +
dn

dT
∆T (1.10)

where dn
dT

is the thermo-optic coefficient of the material and ∆T is the change
of temperature induced by the optical absorption. Depending on the material,
the thermo-optic coefficient can be either positive or negative. The time scale of
the thermo-optic effect is much longer (few µs to s) than the carrier timescale.
As a result, the thermo-optic effect sets the time necessary to reach thermal
equilibrium. However, it is not always detrimental. In the case of resonant FWM,
the long response time of the thermal nonlinearity is used to initiate a soliton
state by starting to sweep the pump laser faster than the thermal response of the
cavity[12]. The thermo-optic effect is also used to tune the resonance frequencies
in a cavity, and heating the crystal is a common way of tuning the wavelength
output in FWM.

1.2 Material Properties for efficient FWM

In this section and with the help of the physical insight provided by the previous
part, we will try to list the main characteristics of a suitable material in order to
carry out FWM experiment. Several material found in the literature are listed
and compared.

Index contrast

As stated in the previous part, the linear refractive index derives directly from
the real part of the first order susceptibility. A large refractive index allows tight
confinement in integrated structure via the total internal reflection mechanism.
Thus, a high index contrast between the nonlinear material and the cladding
(whether it is air or another semiconductor) allow to reduce the size of the inte-
grated component thanks to limited radiation and bending losses. This feature
is crucial for dense integration on a chip as well as for energy efficiency. Because
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we work a telecom wavelength here, we seek for a material with a large refractive
index at 1550 nm. To compare, optical fibers, whose light confinement relies on
a small index difference, have a cross-section much larger than integrated waveg-
uides. Hence, the effective mode cross section is of the order of 100 µm2. This
value is typically between two and three order of magnitude lower in integrated
waveguides. It is therefore possible to obtain a much larger energy density in
integrated devices, which is extremely useful for nonlinear optics.

Linear Losses

As stated in the previous section, linear losses are accounted by the imaginary
part of the first order susceptibility. It is crucial that this term is as low as
possible. In material where TPA is inhibited, linear losses set the limits of
the nonlinear interactions. For example, in integrated cavities, it is the linear
losses that are limiting the Q factors. The linear propagation losses are usually
given with a coefficient α in m−1, or sometimes in log-scale, dB.m−1. This
coefficient allows to extract an effective length of propagation in the material,
which corresponds to a propagation in a shorter but lossless material. Therefore,
the effective length is the true length of interaction between the light and the
matter. Optical fibers can reach extremely low propagation losses, below 0.2
dB.km−1. This low losses allows to have very long interaction length, almost
identical to the physical length of the fiber. Integrated devices on the other
hand have for a long time struggled to reduce their propagation losses. In state
of the art silicon-based dielectric, losses can reach 0.13 dB.m−1 [13], which is
still way larger than in optical fibers. In III-V semiconductors, the lowest losses
reported are 0.17 dB/cm [14]. However, these losses do not originate from the
material itself but from the roughness induced scattering, dependant of material
patterning and processing[15].

Material Nonlinearity and TPA

The material nonlinearity n2 is of course a key parameter in the choice an ad-
equate platform. A useful quantity to compare different nonlinear platform is
the so-called nonlinear waveguide parameter γWG = n2ω

cAeff
[16]. The value of γWG

increase with the nonlinear index n2 and is inversely proportional to the effec-
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Figure 1.2: Impact of TPA on output power for a photonic crystal waveguides:
GaAs (red) output is limited by TPA whereas GaInP (blue) output is linear[18].

tive mode area Aeff 2. In particular, the nonlinear phase shift caused by SPM
is directly proportional to the nonlinear parameter γWG, hence γWG is deduced
by measuring the broadening of a propagating pulse. High values of γWG take
into account the combination of large n2 as well as the ability to confine light
tightly, given by a large index contrast. If TPA is ruled out by a large bandgap,
the nonlinear interaction of a propagating wave is ultimately set by the linear
losses. The maximal value of this effective length, Leff = 1−e−αL

α
is 1

α
. The ratio

γWG/α is therefore an important indicator that encompasses nonlinearity, losses
and index contrast.
TPA occurs whenever the energy of two photon is superior to Eg (2~ω > Eg).
At 1550 nm, Eg must be greater than 1.6 eV, while in silicon, this value is 1.12
eV. Thus, any FWM process will be dominated by TPA and FCA. Some achieve-
ments were still made with P-I-N junction to reduce the free carriers lifetime,
particularly in silicon. However, this approach only reduces the lifetime of the
carriers but do not cancel TPA that ends up to be detrimental. Fig.1.2, from
[18], shows the difference of transmission of two photonic crystal waveguides at
telecom wavelength: one made of GaAs (Eg = 1.4 eV) and the other in InGaP
(Eg = 1.9 eV). The losses caused by TPA severely lessen the optical output.
For these reasons, widegap materials are extremely appealing for nonlinear op-
tics, even if in semiconductors, the nonlinear index n2 decreases with a higher
bandgap[19].

2Aeff is in fact the third order nonlinear effective area that takes into account the overlap
between the modes of the interacting waves[17]
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Different Material for integrated nonlinear optics

Comparing the parameter γWG of an optical fiber with a silicon waveguide on
insulator (SOI) highlights the advantages of integrated optics for nonlinear
operation: γWG jumps from 0.001 W/m (up to 2 W/m in highly nonlinear
fibers) to >100 W/m[20]. There is a great variety of material used for nonlinear
optics in the literature.

Silicon seems attractive because of its high n2 = 5× 10−18m2W−1, combined
with a large n = 3.46 at telecom wavelength. However, the energy bandgap Eg
of silicon does not prevent two-photon absorption at telecom wavelength. Fre-
quency comb generation have been demonstrated in silicon in the mid-infrared,
where photon bears lower energy (TPA stops around 2.2 µm in silicon)[21].
To operate in the telecom band, a mechanism to remove the photo-generated
carriers is needed[22].
To address this point, a variety of glasses have been experimented such as
chalcogenide, Hydex or silicon nitride. They have a relatively low index,
which limits the confinement and, according to the empirical Miller’s rule, the
nonlinearity in these materials scales up with refractive index[23]. However,
very low loss can be achieved in glasses, and their low γWG is offseted by an
increased interaction length. Silicon-rich materials such as Si7N3 have been
specifically developed for nonlinear optics as a TPA-free platform. Here, the
limitation comes from the relatively high linear losses. All these platform
possess the advantage of being almost directly CMOS compatible, requiring
little development to the existing process to reach mass-production.
Semiconductors made of III-V alloys have drawn attention as nonlinear plat-
form primarily thanks to their large bandgap to avoid TPA[24]. Their n2 is
typically around 10−17 W.m−1, which is three orders of magnitude larger than sil-
ica. Their large n allows to obtain an Aeff hundreds times smaller than in a fiber.

1.2.1 Indium Gallium Phosphide

In this work, the nonlinear material is Indium Gallium Phosphide (InxGa1−xP).
The refractive index of InGaP is 3.13 at telecom wavelength which is comparable
to silicon and the nonlinear index is n2 = 0.6× 10−17m2.W−1. Like many III-V
semiconductors, it has a zinc blend type crystal symmetry (group 43n). InGaP
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Figure 1.3: Schematic of resonant spontaneous and stimulated FWM. When the
threshold of the cavity is reached, the system is called an optical parametric
oscillator (OPO)

was introduced in nonlinear optics for second harmonic generation[9]. TPA-free
SPM[25] and supercontinuum generation[26] have been reported in InGaP on
insulator waveguides. The corresponding γWG is about 475 W−1.m−1, six orders
of magnitude larger than in a silica fiber. However, the reported linear loss are
relatively high, 12 dB/cm compared to state of the art AlGaAs notably which
has seen considerable reduction of the losses recently.

1.3 FWM in microcavities

1.3.1 General properties of a cavity

Resonant FWM is pictured in Fig.1.3. Adding an optical cavity to the nonlinear
medium increases the interaction between the waves. If the cavity is appropri-
ately designed, the fields will be resonantly enhanced and the energy density
inside the medium grows. The important features of a cavity, besides the non-
linear material, are the quality factor Q, the mode volume V , the dispersion
control. We can define a linear figure of merit Q/V and a nonlinear figure of
merit Q2/V . Global footprint of the device must be added to this list, since an
advantage of a cavity compared to a waveguide is compactness.

The Quality factor

Ideally, a cavity with perfect confinement would retain the photons indefinitely.
In reality, this is not the case. The quality factor Q is a figure of merit describing
how close a resonator is to the ideal case. It is defined as the ratio of the stored
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energy in the system over the power dissipated in one optical cycle[27]:

Q =
2π × StoredEnergy

PowerLoss
= ωτ (1.11)

This equation, where ω is the resonant frequency defines a photon lifetime τ in
the cavity. Hence, if the definition with energy is generic to all type of resonator,
it corresponds in an optical cavity to the average time that a photon is trapped
before leaking out. In other words, the Q factor quantifies the temporal confine-
ment of the photons. This description corresponds to a Lorentzian lineshape in
the spectral domain.

The modal volume

The modal volume represents the spatial confinement of the cavity mode. Various
definitions of the modal volume can be introduced[28]. Here, we use the standard
cavity quantum electrodynamics modal volume definition:

Vm =

∫
V
ε(r)|E(r)|2d3r

max[ε(r)|E(r)|2]
(1.12)

where ε is the material permittivity, E(r) is the electric field dependant of the
position r. The volume is defined as the volume occupied by the electromagnetic
energy weighted all over space. This definition assumes no radiative leakage
otherwise it would lead to a divergence of the integral (and an infinite vol-
ume)[29]. A rigorous definition for leaky modes as been derived[30] to provide
an adequate definition for cavity with low Q such has plasmonic resonators. In
the case of ultra-high Q resonators dealt with here, the mode is well localized
and the expression of Vm is used.

Dispersion Control

In FWM, the conservation of energy dictates that the generated frequencies
are symmetric with respect to the pump frequency. Integrated resonators need
to have their resonant frequencies coinciding with the signal and idler. To do
so, the dispersion of a cavity, which is the variation of the free spectral range
(FSR) with the frequency, needs to be carefully engineered. This step needs to
take into account the material dispersion (relatively low in a small frequency
interval) as well as several effects that modifies the dispersion such as the
nonlinear phase shift (SPM, XPM) or the thermo-optic effect. Dispersion is
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Fig. 1

Citation

Figure 1.4: Dispersion control of an InGaP waveguide whose cross section is
shown b). The dispersion is calculated with a fixed height of 250 nm and a
varying width. A positive β2 means that the dispersion is anomalous. The grey
line represents the zero dispersion point. From[25]

said to be anomalous when the FSR increases with the frequency, and normal
when it decreases. For waveguiding structures, the dispersion is usually noted as
β2 = ∂2β

∂ω2 where β is the propagation constant[31]. The dispersion is engineered
simply by changing the width and height of the waveguide. Fig.1.4 shows the
dependence of the dispersion of a InGaP waveguide with the variation of the
width where all different regimes are achieved. However, in cavities with more
complex mode structure such as photonic crystal, with Bloch modes, dispersion
engineering involves more degree of freedom.

1.3.2 Nonlinear frequency conversion

Nonlinear frequency conversion consists in seeding a signal in addition to the
pump laser to stimulate the FWM for a specific frequency. It is achievable
in both waveguides and resonators. This operation regime is called stimulated
FWM (S-FWM) and its efficiency is defined as :

η = 10log(
Pi,out
Ps,in

) (1.13)

η is the ratio of the idler power collected over the signal power injected inside
the cavity, that is the ratio between the amount of light generated by FWM over
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the amount of light injected to stimulated it. S-FWM can also be performed in
waveguides and it illustrated how greatly the cavity enhance the FWM. In [32],
S-FWM is performed in AlGaAs waveguide and ring resonator. With the same
pump power of 7 mW, a 110 µm-long ring resonator with a Q around 40 000
increased η by 52.5 dB compared to a simple waveguide of length such that the
propagation time is equal to the cavity lifetime (3 mm-long waveguide with the
same cross section). It is noteworthy that the counterpart of using a resonant
structure is a reduction of the operating bandwidth which becomes limited to
the linewidth of the resonance.

1.3.3 The optical parametric oscillator

The performance comparison between resonators and waveguide is not always
straightforward, because resonators exhibit a discrete spectrum of narrow res-
onances instead of a broad bandwidth. In resonator with propagating waves ,
the resonant structure increases the effective optical path length[33]. A param-
eter γWG can be extrapolated and the field enhancement factor of the resonator
compared to a waveguide is quantified[32]. The advantage here is to keep the
device compact and reduce the operating power. But when it comes to cavity
with standing modes such a photonic crystal, the notion of circulating power is
no longer valid and the parameter γWG is not appropriate.
A more general indicator is the threshold for parametric oscillation, which cor-
responds to the situation where the parametric gain inside the cavity is equal to
its losses. The parametric process under consideration here is the spontaneous
FWM in which only a pump laser is used to generate signal and idler. The
parametric gain increases when the cavity is fed with optical energy through an
input port. The threshold for parametric oscillation is defined as the minimal
power circulating inside this feeding port that triggers parametric oscillation in-
side the cavity. The cavity has reached the state of optical parametric oscillator
(OPO). A low power threshold is an indicator of an efficient nonlinear platform.
In Chapter II, we will see that this key parameter can be written:

Pth =
ω2

8γQ2
(1.14)

where γ is the cavity nonlinear coefficient, ω is the pulsation of the pump and Q
is the geometric mean Q factor of the interacting modes. The parametric gain is
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directly proportional to the quantity γ expressed as:

γ =
c0n2ω

εrVχ
(1.15)

Here, Vχ is the volume of interaction of the waves. We clearly see that a high n2

leads to a high parametric gain, hence the importance of the choice of the mate-
rial. It appears also clearly that Pth ∝ Vχ

Q2 . To exhibit a good FWM efficiency, a
cavity needs to have the ratio Q2/V as high as possible.
Another important parameter is the slope efficiency, that is defined as the curve
obtained by plotting the output power of the OPO versus the input pump power.
When there is no nonlinear absorption, this curve is linear. The slope efficiency
ηSL yields:

Ps,out = ηSL(Pin − Pth) (1.16)

A high slope efficiency means that an important fraction of the pump power is
converted in a useful signal.

1.4 Brief state of the art in integrated OPO

1.4.1 Different class of integrated OPOs

Until now, all integrated OPO have been realized in whispering gallery mode or
ring resonators (WGM). These cavities confine light by total internal reflection
thanks to a higher refractive index than their surrounding. The first OPOs
in microcavity were demonstrated in fused silica microtoroid[44] and CaF2

WGM resonator[45] which both had Q ≈ 108. Silica toroid was also used to
demonstrate the first Kerr frequency comb in microresonator[46], in which
cascading FWM generate multiple frequency lines. This class of resonator
due to their coupling that require suspended waveguide or fiber is difficult to
integrate in a photonic chip.

Ring resonators have been widely studied in the literature[49]. They consist
in a waveguide looped on itself and a coupling port to access to the resonator.
This type of planar microresonator is more suited for photonic integrated
technologies[50]. Parametric oscillation have been demonstrated in numerous
material that are compared in Table 1.1. In ring resonators, the oscillation
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Figure 1.5: Examples of a) Silica microtroid[46] b) Crystalline WGM[47] and
c)Ring (Diamond) [39]. The coupling scheme and travelling-wave modal struc-
ture is pictured in d)[48] for a microtroid. FWM can lead above threshold to
d) parametric oscillation[44] where the generated sidebands are clearly visible.
In the case where cascaded FWM occurs, a Kerr frequency comb with multiple
lines is generated[46].
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Material n n2 Qavg Pth Ref
(m2.W−1) (mW )

Si 3.47 5×10−18 5.9×105 3.1 [21]
AlGaAs 3.3 2.6×10−17 105 3 [34]
AlGaAs 3.3 2.6×10−17 106 0.036 [35]
AlGaAs 3.3 2.6×10−17 2.6×106 0.023 [14]
GaP 3.3 3.5×10−18 2×105 3 [36]

AlN χ(2) 2.12 XX 4.16×105 12 [37]
AlN χ(3) 2.12 2.3×10−19 1.1×106 25 [38]
Diamond 2.4 8.2×10−20 106 20 [39]
Si3N4 2.0 2.5×10−19 35×106 0.33 [13]
SiO2 1.45 3×10−20 6.7×108 1.2 [40]
SiC 2.6 6.9×10−15 1.8×105 8.5 [41]

LiNbO3 2.24 1.8×10−19 2.2×106 4.2 [42]
Hydex 1.7 1.15×10−19 2.2×106 50 [43]

Table 1.1: Comparison between the different integrated (ring or wedge disk)
OPO on different nonlinear platforms at telecom wavelength,

threshold can be reduced mainly by increasing the Q factor. Hence the material
reported here were managed to lower waveguide loss. The example of SiN and
AlGaAs are particularly revealing of this trend. The first demonstration of a
OPO in a SiN ring resonator had a 50 mW threshold[51]. The linear losses of
0.5 dB.cm−1 enabled a Q factor ≈ 500 000. The ring had a radius of 58 µm,
and a cross-section of 711× 1700 nm. Since then, the scattering losses due to
the waveguide edges have been greatly reduced through an optimization of the
fabrication processes. In [13], losses are reduced to 0.8 dB.m−1 and Q factor
are increased to 35×106. Consequently, the threshold is 330 µW, despite the
fact that the modal volume has increased (Radius of 115 µm, cross section of
730×2500 nm). Let us note also that material absorption is reduced thanks to
a thermal annealing around 1200 °C[52] which is not compatible with CMOS
fabrication process.
An increase of the ring cross section contributes to limit the impact of roughness,
hence a decrease in scattering losses. Taking advantage of the higher n2 of
material with higher refractive index such as III-V materials also requires
dealing with higher losses, since scattering is proportional to the difference of
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refractive indexes. In [34], an AlGaAs OPO is demonstrated in a ring with a
12.5 µm radius and a cross section of 320×630 nm. Q factor of 105 and α = 1.4
dB.cm−1 are sufficient to allow a threshold of 3.1 mW. Reduction of the losses
(through roughness reduction and different epitaxy technique) in a ring with
the same radius and a similar cross section (400×700 nm) have increased the
Q up to 3.5×106 and the threshold down to 26 µW[14]. Compared to SiN, the
AlGaAs platform, thanks to a n2 100 times larger and a tighter confinement
manage to reach a threshold one order of magnitude lower, despite a Q factor
ten times lower.

1.4.2 Reduction of the modal volume

This class of OPO is particularly attractive when considering Kerr comb
generation. For a particular material, the OPO threshold depends on the
minimum achievable losses, that is the highest Q possible. But another
possibility to decrease the threshold would be to decrease the modal volume as
much as possible. From this point of view, ring resonator offers limited room for
improvement, because the modal volume scales inversely with the radius of the
ring[53]. The strength of the interaction ultimately set by bending losses[54],
as can be seen in Fig.1.6. For example, in silicon, a ring with a radius of 2
µm cannot exceed 106, for a modal volume 10 times higher than the diffraction
limit (λ

n
)3. More generally, due to the broadening of the amplitude of the

wavevector with the decrease of the modal volume, total internal reflection
conditions become harder and harder to satisfy in a wavelength-sized cavity. To
further increase the light matter interaction and decrease the device footprint,
a different type of confinement must be used.

1.5 Photonic crystal Cavities

1.5.1 Principle of Photonic Crystal cavities

The concept of Photonic Crystal (PhC) was introduced in 1987[55, 56]. It is based
on a periodic modulation of the refractive index that opens a photonic bandgap
(PBG) in the dispersion diagram of a photonic structure. This phenomenon
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Figure 1.6: A fundamental limit for ring resonator is set by the bending losses
that limit the minimal radius[54]

is analogous to electrons in a solid crystal, which see a periodic modulation of
the electric potential due to the crystal lattice. A consequence of the PBG is
that light cannot propagate within a certain range of frequencies and wavevector.
Since the first demonstrations of PhC at optical wavelength in semiconductors[57,
58], they have been used in various areas in optics such as electrically pumped
laser[59], all optical switching[11] or optomechanics[60]. A detailed study of
PhC properties can be found in various textbook[61, 62], and we will simply
here address qualitatively the effect a periodic modulation with a lattice a of
the dielectric constant ε. This condition is written ε(r) = ε(r +ma) where m is
an integer. According to the Bloch-Floquet theorem, this discrete translational
symmetry imposes an electromagnetic field solution of the form:

Ek(r) = E0e
ikruk(r) (1.17)

where k is the wavevector and uk is a periodic function with the same period a
than ε. The resulting field is a plane wave modulated by this periodic function,
called a Bloch state. Consequently, all Bloch states with a k-vector equal to k+

m2π
a
are indistinguishable, and have the same frequency ω(k) = ω(k +m2π

a
). The

dispersion diagram is periodic with the reciprocal lattice 2π
a
. Hence, the study of

the dispersion of PhC can be restricted in the first Brillouin zone, corresponding
to a k-vector between −π

a
< k < π

a
in 1D. The opening of the bandgap for a 1D

photonic crystal can be understood intuitively. A refractive index modulation
leads to the diffraction of a propagating wave inside the PhC. At the Brillouin
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a)

b)

c)

Figure 1.7: a)Schematic of a single hole line defect (W1) waveguide b) SEM
picture of his waveguide made in Si. c) Corresponding dispersion relation where
one can see the light line that delimits the light cone (green zone), the PBG
(yellow zone) and the mode defects (red lines) with slow light modes near the
band edge. From [28]

zone boundaries, there is a coupling between the wave propagation at (k = π/a)
and (k = -π/a). It results in a splitting in frequency of this degenerate state, that
opens a bandgap. The strongest is the modulation of ε (hence the variation of the
refractive index n), the larger is the PBG. Low energy modes are concentrated in
high index layer, they are in the dielectric band. On the opposite, higher energy
mode are concentrated in the low index layer: this is the air band.

If PhC were originally thought in 3D [63], the current state of the research
provides much more examples of 2D and 1D PhC. The reason is a simpler
fabrication by using conventional semiconductor technologies such as lithography
and pattern transfer via etching process. 2D PhCs consist in a slab patterned
with holes.The slab is often suspended in air. Light confinement is ensured
by a PBG in the plane of the slab, by total internal reflection in the vertical
direction. 1D PhCs called nanobeam, consist in a ridge waveguide drilled with
holes. Light confinement is ensured by a PBG in the propagation direction of
the waveguide, and by total internal reflection in the two transverse directions.
To stay confined, the Bloch state must now satisfy the Snell-Descartes relation.
The range of confined modes are delimited by the so-called light-line ω = ck||/n
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d)

a) b) c)

e)

Figure 1.8: a)1D nanobeam with a point defect[64] and d) 2D L3 modified cavity
d)[65] b)[66] c) [67] are mode gap 2D cavities. e) represents a nanobeam with
non point defect but with a distributed mirror all along the ridge waveguide[68]

where k|| is the in-plane component of k. Modes with a k-vector above the light
line can radiate freely and will leak outside the PhC structure.

If a defect is inserted in the PhC, it will scatter or localize the Bloch state.
If a line of holes is removed from a 2D-PhC slab, it will create a line defect pho-
tonic crystal waveguide[69].These waveguides offer particular interest with slow
light propagation, because the group velocity vg = dω

dk
tends to zero close to the

band edge, where the dispersion curve is flattened[70]. Slow light propagation
with vg = c/30 have been demonstrated[71], and can be used to enhance Kerr
nonlinearity[72].
A PhC cavity is created by inserting an artificial defect in the periodic modu-
lation of the dielectric constant[73]. Contrary to PhC waveguide which are line
defects, cavities are point defects. This defect can be as small as the diffraction
limited volume ( λ

2n
)3. This properties gives to the PhC cavities the smallest

mode volume when compared to other cavities with dielectric material. A cavity
can be created by removing a certain number of holes in a perfectly periodic
PhC either 2D[65] or 1D[74] (see Fig1.8a. and d.). In this case, a taper zone

CHAPTER 1. INTEGRATED NONLINEAR OPTICS IN CAVITY 28



must be added to adapt progressively the mode profile at the waveguide-mirror
interface[75, 76]. In 2D slab, it is also possible to create a cavity from a photonic
crystal waveguide by shifting some specific holes toward the PhC region[66, 67].
This affects the transmission of the PhC waveguide locally, in a so called pho-
tonic double heterostructure, as can be seen in Fig.1.8b) and c).
Record high Q factor up to 1.1×107 have been demonstrated 2D silicon PhC[77].
A strong confinement in a small volume is appealing for nonlinearities. In [78],
a lithium niobate 1D PhC cavity have been achieved with a Q = 1.4×106 in a
modal volume as low as 0.78 (λ

n
)3. As a result the resonance could be tuned via

the thermo-optic effect at telecom frequency with an efficiency of 88.4 MHz for a
single photon in the cavity. It is straightforward to conclude that this combina-
tion of high Q and small volume should be suited for nonlinear application such
a FWM.

1.5.2 Photonic crystal cavities for nonlinear optics

PhC cavities have been used to demonstrate various nonlinear device like Ra-
man lasing[79]. Nonlinear frequency conversion in PhC is mostly studied with
χ(2) processes such as second harmonic generation and sum frequency genera-
tion. A broad variety of material have been used such as III-V semiconductors
(GaP[80, 81], GaAs[82, 83], GaN[84]), Si[85], Lithium Niobate[86], SiC[87, 88]
and SiN[89]. It shows the interest that PhC cavities are arousing for nonlin-
ear optics, thanks to the combination of high Q and ultra small modal volume.
However, all these studies showed relatively low nonlinear efficiencies. Indeed,
the major limitation with PhC cavities comes from the difficulty to engineer the
dispersion of the cavity. Contrary to ring resonator where the dimensions of
the waveguide dictates the dispersion curve, PhC Bloch mode structure is much
more complex.
Still, triply resonant FWM were observed in coupled PhC cavities in 1D[90] and
2D[91, 92], whose performance are summed up in Table1.2. The approach of
[90] relies on the coupling of identical PhC cavities and exploits the splitting of
the resonances that appears (see Fig1.9a). It allowed to demonstrate - 55 dB
of conversion efficiency with 60 µW on chip power. However, the cavities were
not exactly similar, hence FWM could only be achieved with low Q factor (Q
≈ 9000): a large resonance linewidth is needed to compensate for imperfectly
aligned triplet.
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Figure 1.9: a)Coupled cavities of 1D Si-nanobeam and corresponding sponta-
neous FWM from [90] and b) InGaP CROW of ten resonators that enabled -24
dB nonlinear conversion from[92]

This approach was pushed further in[91] where a coupled resonator optical waveg-
uide (CROW) constituted of more than 200 resonators was used. Nonlinearity
here is enhanced through a slow light effect3 The very high quality factor (Q ≈
600 000) could compensate for the increased modal volume (V scales with the
number of resonators). Still, the nonlinear efficiency was hindered by the mis-
alignment of the resonances: - 35 dB for 100 µW on chip power. A CROW was
also used in [92] to increase the efficiency up to -24 dB with 36 µW (see Fig1.9b).
The improvement, despite a much lower Q, is due to the use of InGaP instead
of Si (inhibiting TPA) and a much lower number of cavities (10) that decreased
the modal volume.
It is interesting to note that the use of coupled PhC cavities, while resulting in
limited nonlinear efficiency, was carried out on devices with a very small foot-
print, down to ≈ 5 µm2 in Ref. [90].

3Strictly speaking, the CROW involves strongly delocalized coupled modes than can be
interpreted as slow modes
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Geometry Material Qavg On Chip power (µW) ηNL (dB) Ref.

1D PhC (3 coupled cavities) Si 4000 60 -55 [90]
2D PhC CROW Si 600 000 100 -35 [91]
2D PhC CROW InGaP 70 000 36 -24 [92]

Table 1.2: Comparison of continuous wave FWM nonlinear efficiency conversion
in PhC cavities. (CROW: Coupled Resonators Optical Waveguide)

1.5.3 The role of structural disorder

In fact, the control of the frequency of resonances in PhC is ultimately limited
by structural disorder. This disorder is an imperfection in the periodicity of
the PhC that occurs during the fabrication. Even in state of the art PhC cavi-
ties, this small geometrical fluctuations lead to a non negligible deviation on the
resonant frequency as well as on the Q factor by inducing scattering. For exam-
ple, in Si 2D-PhC, the sidewall roughness was evaluated by SEM to be around
nanometers[93]. Disorder is modelled as a variation on the position or the radius
of the holes[94, 95]. It was found that PhC are extremely sensitive to disorder,
as irregularities of 1 nm can induce more than 100 GHz of uncertainties in the
resonant frequency. In state-of-the art PhC, The average deviation from the tar-
geted frequency is at best around 40 GHz[96], and the deviation of the spacing
between two frequencies is 28 GHz[97]. Besides, the alignment of three reso-
nances is increasingly challenging with the Q factor, because a narrow linewidth
decreases the FWM bandwidth. This disorder-induced misalignment makes al-
most impossible to have a PhC cavity that satisfies the triply resonant condition
for high Q modes without an additional tuning mechanism. Such a study have
been carried out in InGaP 2D PhC, where the individual control of the reso-
nances of the CROW is demonstrated using an holographic projection on top of
the structure[98, 99]. This patterned laser locally heats the resonators to tune
their eigenfrequencies. However, no nonlinear experiment using this technique
have been reported.

Conclusion

In this chapter, the objective was to introduce all the necessary notions to un-
derstand the context of this work. The issue we try to address in this work is:
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why are PhC cavities, despite having high Q/V performance, are not used for
the FWM experiment ? We have seen that the problem does not come from
the choice of material neither from structural losses, because very high Q factors
have been demonstrated in a wide range of material. The problem comes from
the dispersion engineering, which is much more complicated than in WGM and
ring resonators. As a result, only those type of microcavities have been used to
demonstrated integrated OPO. Resonant FWM in PhC have not proven to be
efficient yet, because of the difficulty to align three modes in a equally spaced
triplet. For all these reasons, the possibility of a PhC OPO was considered the-
oretically more than a decade ago[100, 101], but the demonstration is extremely
challenging.
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Chapter 2

Model for Parametric interaction in

multi-mode cavities

Light interaction in a cavity filled with a nonlinear medium and coupled with a ex-
ternal waveguide is modeled with the Temporal Coupled Mode Theory (TCMT).
Based on general principles such as energy conservation and time-reversal sym-
metry, this theory provides a powerful formalism regardless of the complexity of
the geometry of the system[102]. This approach relies on a perturbative treat-
ment of the cavity electromagnetic field and allows to obtain analytical solutions
to the Maxwell equations. Hence, the variety of phenomena described ranges
from optical switching to complex geometry of coupled cavities, lasing and non-
linear optics.
In this chapter, we use TCMT to describe the evolution of the electric field inside
what will be our PhC cavity, starting from the linear description of a simple cav-
ity coupled to a waveguide. We will add the contribution of the Kerr effect and
thermal nonlinearity to derive the Four Wave Mixing efficiency and parametric
threshold. Raman and Brillouin nonlinearities are not included in this model
because they are not resonantly enhanced in the PhC cavities considered.
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2.1 Properties of a cavity in the linear regime

2.1.1 Modal structure: spatial problem

Classical Maxwell equations describe the evolution of the electromagnetic field
in a dielectric cavity with a relative permittivity εr:

∇× E(r, t) = −µ0∂tH(r, t) (2.1)

∇×H(r, t) = ∂tD(r, t) (2.2)

The electric displacement is defined by the constitutive relation:

D(r, t) = ε0E(r, t) + P(r, t) (2.3)

The electromagnetic modes of a linear resonant structure are generally defined
using time-harmonic solutions of Maxwell equations:

E(r, t) = Ẽ(r, ω)eıωt (2.4)

The position dependant term Ẽ(r, ω) is solution of the wave equation obtained
from the Maxwell equations:

∇×∇× Ẽ(r, ω)− ω2

c2
ε0εr(r, ω)Ẽ(r, ω) = 0 (2.5)

The relative permittivity εr(r, ω) is space and frequency dependent. We consider
here a cavity which defines a finite domain. With such boundaries conditions,
Eq.(2.5) has discrete solutions. The resonant frequencies are the eigenvalues
of the wave equations, the resonant modes are the eigenmodes. The discrete
structure of the eigenvalues gives the discretized spectrum of the cavity. For an
isolated system, the wave equation is Hermitian with real eigenvalues. Its eigen-
vectors - the cavity modes - form an orthogonal basis for the total electric field
which can be conveniently written as a sum of the different resonant modes con-
tribution. Such an ideal lossless case is characterized perfectly defined resonant
frequency, with an infinitely narrow linewidth.

2.1.2 Temporal Coupled Mode Theory

Temporal coupled mode theory is used to describe the electromagnetic modes of
a structure with dissipation, nonlinearity and external coupling. In this work,
we apply it for a resonant cavity but it can also be used with waveguides. In the
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formalism of TCMT, the mode structure is describe by normal modes.
Let us start with the simplest case of a lossless single mode cavity, whose resonant
field writes:

E(r, t) = aeıω0te(r) (2.6)

Here, ω0 is the resonant pulsation of the field. a is the complex amplitude of
the mode. e(r) describes the spatial distribution inside the cavity. The link with
the time harmonic representation above is Ẽ(r, ω) ≈ ae(r) and the spatial vector
e(r) is solution normalized with the condition:

ε0
2

∫
V

εr|e(r)|2d3r = 1 (2.7)

As a result, the energy of the mode1 can be calculated by integration of the
electromagnetic energy density over the volume of the mode:

U =

∫
V

ε0εr
|E|2

2
dV = |a|2 (2.8)

For a lossless isolated cavity, the energy inside the cavity is constant and the
evolution of the field is:

∂tE = ıω0E (2.9)

E(r, t) =
√
Ueıω0te(r) (2.10)

This expression is exact for an isolated system, and the complex envelope a is
constant. For a multimode cavity, the total electric field is the superposition of
the different normal modes that form a set of orthogonal vectors:

E(r, t) =
n∑
−n

ane
ıωnten(r) (2.11)

with the normalization condition being:

ε0
2

∫
V

e∗m(r)εren(r)d3r = δm,n (2.12)

where δm,n is the Kronecker delta. This normalization keeps the energy of each
mode at Un = |an|2.

1Since the cavity size is larger than the diffraction limit, the mode is very well spatially
localized. The electric and magnetic energy density are equal: ε|E|2/4 = µ|B|2/4
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2.1.3 Introduction of losses

So far, the cavity that we have described is perfectly isolated, meaning no
exchange of energy outside its boundaries. In absence of losses, the time
evolution of the cavity field is unitary[103]. As a consequence, its eigenmodes
form an orthogonal basis. The introduction of losses raises the issue that the
operator becomes non unitary and the modes inside the cavity are decomposed
on a non-orthogonal basis[104]. A rigorous approach would require quasi-normal
modes[105] with complex eigenfrequencies. However, because we will treat losses
with a perturbative approach, the modes will still be approximated by a set of
normal modes that do not couple with each other. Losses will be included in
the complex amplitude that becomes time dependant, a→ a(t) with a temporal
dependence much slower than ω0. The quality factor measures the ratio of the
stored energy over the dissipated energy in one cycle. Consequently, the value of
Q factor is a direct figure of merit of this approximation compared to a isolated
system, where Q is infinite. In the case of Q > 104 which corresponds to the
experimental values here, the cavity is weakly coupled to the outside and we
can keep a normal mode structure for the cavity.

Fig.2.1 shows a representation of the cavity coupled to an external waveguide.
There is no particular assumption made over the geometry of the cavity itself.
We see that losses can have two origins: internal losses that includes dissipation
and radiation, and coupling to an external port.
Internal losses to the cavity (absorption, out-of-plane scattering..) are modeled
with a decay rate Γ related to the intrinsic Q factor: Γ = ω/Q0 with a decay
time τ0.
Coupling loss to an external port are modeled with a decay rate κ related to the
coupling Q factor: κ = ω/Qc with a decay time τc. The cavity-waveguide scheme
can allow multiple decaying ports. If the cavity is symmetric regarding all the
coupling ports - which will always be the case here -, they will be all considered
identical and independent. This simply means that the same coupling constant
will be multiplied by the number of coupling channels in the equation. Fig.2.1a)
and b) shows the example of a resonator coupled with one or two ports. Different
configuration are possible but only these two will be experimentally realized in
this work.
Finally, the external port can also feed the cavity with an incoming wave noted
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Figure 2.1: a) Representation of a resonator coupled to a single-ended waveguide
in the time-dependent coupled mode theory with the definition of the field in
the waveguide s and in the cavity a, internal Γabs and radiation loss Γrad and
waveguide coupling κ. b) Same resonator in a different coupling scheme with
two different decaying ports.
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s, normalized so that |s|2 represents the power of this wave. One can note that
a power normalization was not appropriate for the cavity modes as they can be
(and actually, in the case of PhC, are) standing waves. The energy conservation
and time reversal principles dictate that the coupling of s is equal to ı

√
κ[102].

The frequency of s can be out of resonance, with a detuning δ = ωs − ω0 lower
than the resonance linewidth.
In the single ended configuration shown in Fig.2.1a) , the cavity has only one
port connected to the outside. The equation of the evolution of the intra-cavity
field for the m− th mode is now:

∂t(E · em) = ıωm(E · em)− Γ0 + κ

2
(E · em) + ı

√
κeıωstsm (2.13)

The evolution of the envelope for each mode is obtained by developing equation
(2.13):

∂tam = −Γ0 + κ

2
am + ı

√
κeıδmtsm (2.14)

The losses and coupling that we have added are responsible for the time depen-
dence of a which is not constant. This equation does not include any phase term
in ω because we stated that the evolution of a was much slower in a perturbative
approach. In order to remove the exponential term in the equation, we can chose
to reference the fields in the frame of the external laser, E = a(t)e−ıδmte−ıωst.
Hence, we can rewrite this equation by setting a(t)→ a(t)e−ıδmt. It reads:

∂tam = (−ıδm −
Γ0 + κ

2
)am + ı

√
κsm (2.15)

As expected in the frame of the laser, it is the amplitude am that is phase-shifted
by −δm which is also very small compared to ωm.

2.2 Model of a cavity in the nonlinear regime

The equation Eq. (2.15) describe the evolution of the amplitude of modes that
is a set of independent equations. The nonlinear polarization adds a term that
couples these equations. We are now going to provide an explicit definition of
this term.
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2.2.1 Nonlinear polarization

In order to derive the nonlinear polarization perturbation in the model, we start
from the Maxwell equations Eqs(2.1) to obtain:

∇×∇× E = −µ0∂
2
tD (2.16)

. The linear part of the polarisation is separated from higher order terms in the
constitutive relation(2.3), rewritten

D = ε0εrE + PNL (2.17)

where εr = (1 + χ(1)) is a tensor that takes into account the linear polarization
under the assumption that the material is isotropic and has an instantaneous
response.

In absence of nonlinear polarization and losses, the amplitude of the electric
field a is constant as it represents a linear combination of normal modes. The
second order derivative of E is:

∂2
tE =

∑
n

−ω2
nae

ıωnten(r) (2.18)

Injected in Eq. (2.16) and given that the en are orthogonal , we retrieve the
linear wave equation with the notations of TCMT:

[∇×∇× en(r)− ω2
nµ0ε0εren(r)] = 0 (2.19)

We see here the practicality of TCMT that allows to treat separately the spatial
and temporal part of the field. The wave equation translates into a condition
on each vector en.

The nonlinear term in TCMT equations is derived as a first order perturbation
of normal modes. The amplitude of the field a(t) is now time dependant. The
second order derivative of E becomes:

∂2
tE =

∑
n

(∂2
t an + 2ıωn∂tan − ω2

nan)eıωnten(r) (2.20)

The injection in Eq.(2.16) leads to :

∇×∇×

[∑
n

an(t)eıωnten(r)

]
=

− µ0[ε0εr
∑
n

(∂2
t an + 2ıωn∂tan − ω2

nan)eıωnten(r) + ∂2
tPNL] (2.21)
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which can be recast into:∑
n

ane
ıωnt[∇×∇× en(r)− ω2

nµ0ε0εren(r)] =

− µ0ε0εr
∑
n

(∂2
t an + 2ıωn∂tan)eıωnten(r)− µ0∂

2
tPNL (2.22)

On the left hand side, we recognize the linear wave equation (2.19) which is equal
to zero. We also make the assumption that the amplitudes a(t) are slowly vary-
ing compared to the optical frequency ω. This is justified because the bandwidth
of the resonance, information carried in a(t), is narrow enough to separate its
evolution from the carrier frequency in TCMT formalism. Mathematically, this
condition writes |∂2

t a| << |ω∂ta| << |ω2a|, or slowly varying envelope approxi-
mation (SVEA).
In the equation Eq. (2.22), when the linear part vanishes, we only keep the
lowest order terms, meaning that we can neglect the contribution of the second
order derivative ∂2

t a.
Eq. (2.22) with only first order terms becomes:

∂2
tPNL = −ε0εr

∑
n

(2ıωn∂tan)eıωnten(r) (2.23)

We now integrate on the volume of the cavity mode. The integration over the
volume affects only the terms depending on the spatial coordinate r, i.e. the
vectors en(r). We also project on the m − th mode by multiplying e∗m(r). It
yields:∫

V

e∗m(r) · ∂2
tPNLdV = −

∑
n

[
(2ıωn∂tan)eıωnt

∫
V

e∗m(r)ε0εren(r)dV

]
(2.24)

On the right hand side, we recognize the normalization condition Eq.(2.12).
Hence, we derived the nonlinear contribution to the polarization of the m − th
mode:

∂tam = ı
e−ıωmt

4ωm

∫
V

e∗m(r) · ∂2
tPNLdV (2.25)

We can also inject this expression in the equation ((2.15))of the evolution of
the field envelope with the addition of the nonlinear term:

∂ta = (−ıδ0 −
Γ0 + κ

2
)a+ ı

√
κs+ ı

e−ıωmt

4ωm

∫
V

e∗m(r) · ∂2
tPNLdV (2.26)
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2.2.2 Nonlinear cross section and coupling coefficient

The next step is to express the term PNL as a function of the cavity parameters.
We are considering the nonlinear polarization induced by Kerr effect. Due to
symmetry considerations, most of the elements of the χ3 are vanishing. In Ref.[8],
all the nonzero elements of χ(3) tensor contributing to the nonlinear refractive
index are expressed. It gives the following expression, for an isotropic material
and a nonlinearity induced by nonresonant electronic response2:

PNL = n2εrε
2
0c0

2(E ·E∗)E + (E ·E)E∗

3
(2.27)

We now multiply it by E∗ to have the same form as in Eq.(2.25):

PNL ·E∗ = n2εrε
2
0c0

2|E|4 + |E ·E|2

3
(2.28)

.
In order to facilitate the interpretation of the calculus, we start by consid-

ering a single mode cavity, where the electric field writes like in Eq.(2.6). The
only nonlinearity possible is SPM, and we assume that the polarization has an
harmonic dependence in ω. We substitute the equation Eq.(2.28) in Eq.(2.25).

∂ta = ı
e−ıωt

4ω

∫
V

e∗(r) · ∂2
tPNLdV

= ı
e−ıωt

4ω

∫
V

e∗(r) · (−ω2PNL)dV

= −ıωe
−ıωt

4

∫
V

eıωt

a∗
E∗ ·PNLdV

= −ıω
4

∫
V

n2εrε
2
0c0

2|e(r)|4 + |e(r) · e(r)|2

3
dV |a|2a

We expressed the nonlinear term as a function of the complex amplitude a and
the energy of the mode |a|2. We can rewrite this equation into:

∂ta = ıγ|a|2a (2.29)

where we have introduced the parameter γ

γ = −c0n2ω

εrVχ
(2.30)

2Chapter 4 equation (4.2.10) and (4.2.13b) of Ref.[8]
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and defined the nonlinear interaction volume as :

1

Vχ
=
ε2rε

2
0

4

∫
V

2|e(r)|4 + |e(r) · e(r)|2

3
dV (2.31)

Written under this form, the impact of the χ(3) nonlinearity is easily inter-
preted as a frequency shift proportional to the mode energy |a|2. We have derived
the expression that corresponds to the SPM under the CMT formalism. The
strength of SPM is also proportional to the material nonlinearity n2 and inversely
proportional to the nonlinear volume Vχ. Let us also note that γ is a complex
number that takes into account the nonlinear absorption. In absence of TPA,
the term γ|a|2 can be simply interpreted as an effective detuning caused by SPM.

We are now going to derive the expression for the parametric process involving
several modes. We describe the case of a cavity with 4 modes, which corresponds
to the case of non-degenerate FWM. The intra-cavity field is the superposition
of 4 resonant field, as in Eq. ((2.11)) with n = 4. For each mode m, we now
have to evaluate the product PNL · e∗m. It yields:

PNL · em∗ = n2εrε
2
0c0

[Am|am|2 +
∑
m6=n

2Bm,n|an|2 + 2Cm,n,l,ka
∗
nalake

ı(ωl+ωk−ωn)t]
(2.32)

with

Am =
2|em|4 + |em · em|2

3

Bm,n =
2|en|2|em|2 + |en · em|2

3

Cn,m,l,k =
2(e∗n · el)(e∗m · ek) + (e∗n · e∗m)(el · ek)

3

We recognize in the frequency matching term of the FWM in the exponential.
We set this frequency mismatch as:

2∆FWM = ωl + ωk − ωm − ωn (2.33)

Following the same development as before, we now insert this expression in
Eq. (2.25) to obtain the nonlinear contribution:

∂tam = −ıγm|am|2am − ı
∑
m 6=n

2γm,n|a|2nam+

− 2γm,n,l,ka
∗
nalake

2ı∆FWM t

(2.34)
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This equation has three different terms corresponding to the SPM, XPM and
FWM with the the corresponding nonlinear parameters, γm, γm,n, γm,n,l,k defined
as follows;

γxx =
c0n2ω

εrVχ,xx
(2.35)

where the nonlinear volumes Vχ,xx are defined as

1

Vχ,n
=

ε2
0ε

2
r

4

∫
V

2|en|4 + |en · en|2

3
dV

1

Vχ,n,m
=

ε2
0ε

2
r

4

∫
V

2|en|2|em|2 + |en · em|2

3
dV

1

Vχ,n,m,l,k
=

ε2
0ε

2
r

4

∫
V

2(e∗n · el)(e∗m · ek) + (e∗n · e∗m)(el · ek)
3

dV

2.3 Resonant FWM in a cavity

2.3.1 Master Equation

We can now establish the master equation by adding to Eq.(2.15) the contri-
bution of the Kerr effect. When the cavity is pumped, the resonance frequency
is detuned from the cold cavity by thermal change of the refractive index. The
thermo-optic effect adds to the SPM and XPM in the detuning of the cavity.
In the frame of the laser field, all these contributions are included in a single
effective detuning that shifts the cold resonance ωm to its hot value, ωm,h. The
detuning of the cavity is discussed more in detail in the next section.
The master equation yields:

∂tam = (−ıδm,h −
Γm + κm

2
)am + ı

√
κmsm − 2γm,n,l,ka

∗
nalak (2.36)

where we have set δm,h = ωs − ωm,h. The phase-matching term in the FWM
term is canceled here because we must do the substitution am → ame

−ıδmt in
order to be in the frame of the laser.

The derivation of the master equation including Kerr nonlinearity is consis-
tent with Ref.[101, 106].
This expression is valid for the case of a 4 modes resonator. It implies no cas-
cading effects are considered. As shown in Fig.2.2a), the two pump modes
are labelled ap,1 and ap,2. The Stokes and anti-Stokes modes are labelled
a− and a+ respectively. In the undepleted pump approximation, we have
|ap,1|, |ap,2| >> |a+|, |a−|.
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𝜔

𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝜔𝑝1

𝛿𝑝2

𝑁𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 𝑠ℎ𝑖𝑓𝑡

𝜔𝑝2,ℎ

a)

b)

Figure 2.2: a)Non degenerate FWM in cavity. The "hot" resonances of the
pumped cavity are modeled by the blue Lorentzian. The red arrows are the
frequencies involved in FWM. They are detuned by δ, and perfectly resonant
when δ = 0. b) Degenerate FWM. Signal and idler are symmetric with respect
to the pump so the cavity resonances must be equispaced too. In dotted grey
line, the cold cavity resonances are shown. They have all shifted due to the
nonlinearity, each by a different quantity, which implies that the dispersion of
the "hot" cavity is different than the "cold" case.
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2.3.2 Detuning of the cavity by thermo-optic effect

In the model, the cavity resonances and FWM fields are detuned. Intuitively,
one would say that the efficiency of the FWM process should occur when the
pump, signal and idler are perfectly resonant. However, it is important to be
clear on which detuning we are referring to prevent any confusion.

• Firstly, the cavity mismatch ∆ωh represents the frequency misalignment
of the cavity resonances. The FSR of the cavity are equal when ∆ωh = 0.
The cavity mismatch stems from the sum of two contributions: 2∆ωh =

∆ωcold + ∆ωNL where ∆ωcold is the original misalignment of the cavity
(equivalent to the first order dispersion) and ∆ωNL is the contribution of
the nonlinearities, namely SPM, XPM and thermo-optic effect: ∆ωNL =

∆ωKerr + ∆Thermal. At steady state, the thermo-refractive effect induces a
much stronger detuning than SPM or XPM (around 2 orders of magnitude
higher in PhC cavities). We have already derived the contribution of the
Kerr nonlinearity. We now introduce formally the thermo-optic effect which
is expressed as:

∆ωNL ≈ ∆Thermal =
∑
i,j

= αi,jσj|aj|2 (2.37)

where αi,j =
∂ωh,i
∂|aj |2 are the thermo-optic coefficients that represent the ther-

mal influence of the jth mode on the i − th mode. The coefficients σj are
chosen for a red-detuning induced by the thermo-optic (equal to 1 or -1).
Let us note that in this model, each loaded mode influences the other modes
differently. The coefficients αi,j is close to unity when the spatial overlap
between the two considered modes is large. But in the general case, differ-
ent coefficient for each pair of modes are required. It is particularly true
in the case of PhC where the distribution of the modes is inhomogeneous
compared to ring resonator for example. In rings, all the thermo-optic can
be approximated equal at first order due to a much better overlap between
the modes.
We neglect the influence of the signal and idler waves on the thermo-optic
effect that we assume being only induced by the pump. Under the later
assumption, and in the case of degenerate FWM that we will consider later
on, the frequency mismatch can be expressed in a simpler form:

2∆ωh = ∆ωcold + (2αp,p − αp,+ − αp,−)|ap|2. (2.38)
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• Secondly, we have the detuning of the FWM fields with their respective
cavity resonances, denoted δ = ω − ωh. When the pump frequency is set,
δ+ and δ− are not independent because they are linked to the frequency
mismatch of the hot cavity 2∆ωh = ωh,p1 + ωh,p2 − ωh,+ − ωh,−. We can
inject this result in the expression of δ+:

δ+ = 2∆ωh + δp,1 + δp,2 − δ− (2.39)

2.3.3 Undepleted pump approximation

In FWM experiments, the pump beam is generally much stronger than the gen-
erated idler and signal. The undepleted pump approximation is valid in the case
of a strong continuous pump and low parametric gain. Under these assumptions,
the FWM term can be neglected for the pump field. It is possible to explicit it
and inject the expression in the equation of the signal and idler.
The master equations for the pump becomes :

∂tap = (−ıδp,h −
Γp + κp

2
)ap + ı

√
κpsp (2.40)

At steady state (∂tap = 0), the pump is constant and the solution of this equation
is:

ap(t) =

√
4κp

(Γp + κp)2 + 4δ2
p

Pp =
√
Up (2.41)

with Up = |ap|2 the energy stored in the cavity, and Pp the pump power.

The pump beams can be different (non degenerate FWM). We now insert
these expressions of ap,1 and ap,2, with the energy Up,1 and Up,2 in the master
equation (Eq.(2.36)) for the signal and idler:

∂ta+ = (−ıδ+,h −
Γ+ + κ+

2
)a+ + ı

√
κ+s+ − 2γFWM

√
Up,1Up,2a

∗
−

∂ta− = (−ıδ−,h −
Γ− + κ−

2
)a− + ı

√
κ−s− − 2γFWM

√
Up,1Up,2a

∗
+ (2.42)

This system can be recast with the matrix notation:

∂t

[
a−

a∗+

]
=

[
−ıδ− − Γ−+κ−

2
−ıχ

ıχ∗ ıδ+ − Γ++κ+
2

][
a−

a∗+

]
+

[
ı
√
κ−s−

−ı√κ+s
∗
+

]
(2.43)
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where we have introduced the parametric gain

χ = 2γFWM

√
Up,1Up,2 (2.44)

From the expression of Up, let us note that the parametric gain χ reaches a
maximum when the pump fields are at resonance that is when δp,1 = δp,2 = 0.

2.4 Degenerate FWM: spontaneous and stimu-

lated FWM

2.4.1 Degenerate FWM for PhC cavities

So far, we have considered the general case of FWM where the two pump beams
are different. We are now going to restrict the study to the degenerate FWM
where the two pump photons have the same frequency that is ωp,1 = ωp,2 =

ωp, as shown in Fig.2.2b),. It would be possible to carry on the derivation
in the non degenerate regime at the cost of bulkier notations. Moreover, the
model presented here is developed with the idea to apply it to PhC cavities. For
example, the assumption to neglect the Kerr phase shift over thermal effects is not
appropriate for ring resonators. PhC cavities support Bloch modes assimilated
to standing waves. Hence, the parity of two successive modes is different and
the integral of the overlap expressed in Vχ is close to 0. For this reason, non-
degenerate FWM is not likely to occur in PhC. We will now deal with degenerate
FWM even if the reasoning is exactly the same for the non-degenerate case.
However, due to the degeneracy of the pump field, the parametric gain loses its
factor 2 to become:

χ = γFWMUp (2.45)

2.4.2 Parametric oscillation

We start with the case of spontaneous FWM. The matrix defined in Eq.(2.43)
gives the condition for parametric oscillation. As in Ref.[31], the onset of hyper-
parametric oscillation is given when the determinant of this matrix is null. This
determinant is:

D =

(
−ıδ− −

Γ− + κ−
2

)(
ıδ+ −

Γ+ + κ+

2

)
− |χ|2 (2.46)
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The matrix is singular when D = 0. Projecting on the real and imaginary part,
we have the set of equations:

(Γ− + κ−)(Γ+ + κ+)

4
+ δ−δ+ − |χ|2 = 0 (2.47)

δ−(Γ+ + κ+)

2
− δ+(Γ− + κ−)

2
= 0 (2.48)

To solve this system, we must add the fact that δ+ and δ− are not independent.
In the case of degenerate FWM, the expression of Eq.(2.39) becomes δ+ = 2∆ωh+

2δp − δ−. It gives:

δ− =

(
1 +

Γ+ + κ+

Γ− + κ−

)−1

(2∆ωh + 2δp) (2.49)

δ+ =

(
1 +

Γ− + κ−
Γ− + κ+

)−1

(2∆ωh + 2δp) (2.50)

With this, it is possible to express the parametric gain χ as a function of the
cavity properties:

|χ|2 =
(Γ+ + κ+)(Γ− + κ−)

(Γ− + κ− + Γ+ + κ+)2
(2∆ωh + 2δp)

2 +
(Γ+ + κ+)(Γ− + κ−)

4
(2.51)

In order to simplify the notation, we assume that Γ+ = Γ− and κ+ = κ−, which
turns the equation into:

|χ|2 =
(Γ− + κ−)2

4
+ (∆ωh + δp)

2 (2.52)

The parametric gain χ was originally defined as a function of the energy stored in
the pump mode. We remind that in the case of degenerate FWM, χ = γFWMUp.
We are now able to express the pump power Pth that is necessary to reach the
threshold of the cavity:

|χ|2 = |γFWM
4κp

(Γp + κp)2 + 4δ2
p

Pth|2 =
(Γ− + κ−)2

4
+ (∆ωh + δp)

2 (2.53)

Developing and rearranging of the terms gives:

Pth =
( (Γ−+κ−)2

4
+ (∆ωh + δp)

2)1/2

4κp

(Γp + κp)
2 + 4δ2

p

|γFWM |
(2.54)

We just need to express the nonlinear parameter as a function of the cavity
characteristics. For that, we remind that the definition of this parameter for
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FWM is : γFWM = c0n2ωp
εrVFWM

. The expression of the cavity power threshold for
non triply resonant FWM is :

Pth =
εr|VFWM |
c0n2ωp

((Γp + κp)
2 + 4δ2

p)
( (Γ−+κ−)2

4
+ (∆ωh + δp)

2)1/2

4κp
(2.55)

Finally, it is interesting to consider the case where the cavity is actually triply
resonant, which gives the lowest possible threshold. This implies that the cavity
detuning ∆ωh = 0 and that all the fields are resonant δ = 0. The expression of
Pth takes the form :

Pth =
εr|VFWM |
8c0n2ωp

(Γ− + κ−)(Γp + κp)
2

κp
(2.56)

We can also relate the threshold to the quality factor as this is the value that
is commonly measured in microcavities Q = ω/(Γ + κ):

Pth =
εr|VFWM |

8c0n2

Qc,p

Q2
pQ−

ω− (2.57)

where Qc,p is coupling Q of the pump and Q−, Qp are the loaded Q factor of
the signal (supposed equal to the idler) and pump respectively. The dependence
in ω− is due to the fact that we have counted the modes "+" and "-" indiffer-
ently, which stands for close frequencies. In fact, the threshold depends on the
geometric average of the frequencies, that is the one of the pump.

2.4.3 Stimulated FWM

In this section, we will consider the case of stimulated FWM. We assume that
a signal laser is seeded in the mode ω−. The system of equation is completely
symmetrical so the reasoning holds exactly the same if we had chosen to seed

mode ω+. We must now take into account the vector

[
ı
√
κ−s−

0

]
in Eq.(2.43).

We solve this equation at steady state to express the nonlinear efficiency of the
stimulated FWM. This translates into:

(−ıδ− −
Γ−κ−

2
)a− − ıχa∗+ + ı

√
κ−s− = 0 (2.58)

(ıδ+ −
Γ+κ+

2
)a∗+ − ıχ∗a− = 0 (2.59)
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We are interested in the efficiency, so it is logical to express the ratios of the
intra-cavity field over the signal seed:

a−
s−

= −√κ−
(
δ+ + ı

Γ+ + κ+

2

)
1

D
(2.60)

a∗+
s∗−

=
χ∗
√
κ−

D
(2.61)

where D is the same determinant of the matrix of the system defined in the
previous section. In the frame of TCMT, the fields going out of the cavity are
given by : sout = sin + ı

√
κa. Dividing this relation by s− for the modes (+,−)

gives:

sout,−
s−

= 1− κ−
(
ıδ+ −

Γ+ + κ+

2

)
1

D
(2.62)

s∗out,+
s∗−

= −ı
χ∗
√
κ−κ+

D
(2.63)

To have the nonlinear efficiency, we must now take the modulus square of
these equation because the quantity |s|2 is normalized as a power quantity. Tak-
ing Γ+ = Γ− and κ+ = κ− with all fields resonant (δ = 0) gives a simpler
form:

ηFWM =
|so,+|2

|s−|2
=

|χ|2κ2
+

[|χ|2 − (Γ+ + κ+)2/4]2
(2.64)

It is also possible to stay in the general case with detuned fields and choose to
consider the low parametric gain regime A more general yet simple expression
for the conversion efficiency is given in the limit of low parametric gain (limχ→0).
This regime is well below the threshold of oscillation, meaning that the expression
will be less and less accurate with growing conversion efficiency. Ruling out at
the first order the terms in |χ| yields

ηFWM =
|χ|2κ−κ+

[(Γ− + κ−)2/4 + δ2
−] [(Γ+ + κ+)2/4 + δ2

+](2.65)

As we proceeded for the power threshold, we can now link ηFWM with the
pump power through the parametric gain χ = γFWMUp. Defining the Lorentzian
function as L(x) = 1/(1 + x2), Eq.(2.65) can be rewritten as

ηFWM =

[
c0n2ω

εr|Vχ|

]2 κ2
p

4(Γp + κp)4

κ−κ+

(Γ− + κ−)2(Γ+ + κ+)2
P 2
p

L
(

2δp
(Γp + κp)

)2

L
(

2δ−
(Γ− + κ−)

)
L
(

4δp + 4∆χ − 2δ−
(Γ+ + κ+)

)
(2.66)
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The nonlinear efficiency has been written as a product of several terms: a
coefficient that depends on the cavity geometry and material, a second term
that account for the quality factor of the cavity and the coupling efficiency and
the last part is the product of three Lorentzian that account for the resonant
enhancement of the FWM. Only this last part changes with the respective de-
tunings of the pump, probe and cavity. As expected, the conversion efficiency
reaches a maximum when all the detunings δ = 0 are zero, which corresponds
again to the triply resonant cavity (∆ωh = 0).

ηFWM,max =

[
c0n2ω

εr|Vχ|

]2 κ2
p

4(Γp + κp)4

κ+κ−
(Γ− + κ−)2(Γ+ + κ+)2

P 2
p (2.67)

2.4.4 Relation between stimulated and spontaneous emis-

sion

Spontaneous emission corresponds spontaneous FWM under oscillation thresh-
old. When the resonator is driven under threshold, only the pump mode is excited
from a semi-classical standpoint. However, the quantum fluctuations in the side
modes allow spontaneous generation. Hence a rigorous approach requires a full
quantum description.
Spontaneous emission being interpreted as a stimulated emission triggered by
vacuum fluctuations has been derived in the case of ring resonators and waveg-
uides[107]. This link is particularly interesting because spontaneous FWM can
be characterized via stimulated FWM, the latter being easier to observe exper-
imentally at low efficiencies. The average generated power associated with one
photon of each pair is defined as a function of the power circulating in the struc-
ture and the field enhancement factor. Unfortunately, the results of Ref.[107]
are not strictly adapted in the context of standing waves resonators such as PhC
because there is no clear definition of field enhancement factor, as the field is
strongly inhomogenous in the cavity and there is neither a clear definition of
circulating power. However, if we assume a generalization of this interpretation,
it yields in Ref.[107]:

PSPE,0 = ~ω
∫
ω

ηFWMdω (2.68)

where PSPE is the power associated with spontaneous emission of one side mode
that is coupled out in the waveguide. It corresponds to the integral over the
cavity resonance of the probability of stimulated parametric conversion ηFWM
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defined in Eq. 2.62.
This expression has been derived in the limit of a strongly over-coupled cavity,

meaning that the cavity internal losses are neglected. As a result, any generated
pair is coupled out. The purpose of this section is to modify the equation to
account for internal cavity losses. First, we note that the total power loss rate
Pt of a given mode of the cavity is, by definition Pt = (Γ + κ)|a|2 .The power
associated with the coupling is Pc = κ|a|2, the power dissipated is Pd = Γ|a|2.
.

Hence, the fraction of the total power coupled out to the waveguide is then:

Pc
Pt

=
κ|a|2

(Γ + κ)|a|2
=

κ

Γ + κ

Unfortunately, we cannot apply it directly to Eq.2.68 because we cannot
define an internal power in cavities with standing modes. Experimentally, we
have access to the external conversion efficiency, defined as:

ηFWM =
P+,out

P−,in
(2.69)

where we assume that the signal laser is set on the mode (-). When there is
no internal losses, all the photons are coupled to the waveguide and none is lost
for detection. It means that the internal and external conversion efficiencies
are equal. Hence, it corresponds to the limit case where, for a total loss rate
unchanged, (Γ+κ)→ κ0 where κ0 defines entirely the linewidth of the resonance.
At resonance, in the case of the PhC cavity coupled to a single waveguide , the
signal energy stored is

|a|2 =
4κ

(Γ + κ)2
Pin

while the idler power radiated from the cavity to the waveguide is still Pc = κ|a|2.
In the absence of internal loss, we have an optimal conversion efficiency:

η0 = κ0,+|a+|2
4κ0,−

κ2
0,−|a−|2

=
4κ0,+|a+|2

κ0,−|a−|2

In the case internal losses are not negligible, instead:

ηFWM =
4κ−κ+|a+|2

(Γ− + κ−)2|a−|2

Dividing the two equations and taking (Γ + κ) = κ0 leads to

ηFWM = η0
κ+κ−

(Γ+ + κ+)(Γ− + κ−)
(2.70)
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Thus, the internal conversion efficiency can be deduced from the measurement
of the external conversion efficiency. Now, the rate of generated signal and idler
photon which are coupled to the waveguide is related to the total rate of generated
pairs:

P+ =
κ+

Γ+ + κ+

PSPE,0

P− =
κ−

Γ− + κ−
PSPE,0

(2.71)

where PSPE,0 is defined in eq.(2.68).Reformulated with the external stimu-
lated emission, it yields:

P+ =
Γ− + κ−
κ−

~ω+

∫
ηFWMdω

P− =
Γ+ + κ+

κ+

~ω−
∫
ηFWMdω

(2.72)

We see that the power associated with spontaneous emission, in the case of lossy
cavity, is multiplied by an escape efficiency term, which is specific to the mode.
The escape efficiency accounts for the fact that the power transferred in the
sideband is partly coupled to the waveguide and the rest is dissipated. This
relation generalizes the results of Ref.[107]. Although the formalism to derive
this equation used was not adapted for our type of cavities, it provides a great
insight on the physical interpretation of each term. On the other hand, we will
see in the next section that this relation still stands, although re-derived through
another method.

2.4.5 Quantum model for Spontaneous Emission

In this section, we present the derivation of Eq.2.72 that is rigorously valid for
our type resonators. It relies on the quantization of the TCMT model that we
have developed in this chapter. We show that it matches the generalized result
of Ref.[107] that we just derived in the previous section.
In ref.[108], the spectral density of the output of the spontaneous photon flux is
calculated using Quantum Langevin equations. The master equation is canoni-
cally quantized by replacing the complex amplitude with annihilation and cre-
ation operators, â and â†. Vacuum fluctuations are added through vacuum op-
erators V̂Γ and V̂κ associated with the intrinsic and coupling losses. Then, the
time-domain equations for the quantum fluctuations are Fourier transformed in
order to deduce the power spectra of the side modes. With our notation and
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coupling scheme, the equation of the quantum fluctuations for the signal and
idler modes writes3

∂t

[
δâ−

δâ†+

]
=

[
−ıδ− − Γ−+κ−

2
−ıχ

ıχ∗ ıδ+ − Γ++κ+
2

][
δâ−

δâ†+

]
+

[
ı(
√
κ−V̂κ,− +

√
Γ−V̂Γ,−)

−ı(√κ+V̂
†
κ,+ +

√
Γ+V̂

†
Γ,+)

]
(2.73)

We apply now the Fourier transform to this system in order to have the equations
in the spectral domain. Finally, knowing that the output field ŝout is:

ŝout = ı
√
κâ− V̂κ (2.74)

we can calculate the spectral density of the output photon flux in each mode:

SSPE(ω) = 〈δŝout(ω)δŝ†out(ω)〉 (2.75)

= (Γ + κ)κ
|χ|2

|D|2
(2.76)

with
D = (Γ + κ)2/4− |χ|2 − δ2 (2.77)

We retrieve the modulus square of Eq.(2.62) which corresponds in the case where
the detunings and loss rates are equal: δ+ = δ−, Γ+ = Γ−, κ+ = κ− :

ηFWM =
|sout,+|2

|s−|2
= κ2 |χ|2

|D|2
=

κ

κ+ Γ
SSPE(ω) (2.78)

Using the Parseval theorem, we can derive the output power of the output photon
rate RSPE,+ by integrating the spectral density, (here for the mode (+)):

RSPE,+ =

∫
ω+

NSPE(ω)dω (2.79)

The photon rate, expressed in Hz, is linked to the output power by the relation:

PSPE,+ = ~ω+RSPE,+ (2.80)

It yields to the relation:

PSPE,+ = ~ω+
κ+ + Γ+

κ+

∫
ω+

ηFMWdω (2.81)

3The equivalence of notations with ref.[108] is: : |χ| → g0A
2
0, κ→ 2κt, Γ→ 2κi (Γ+κ)/2→

κ and −δ → σ − 1/2ζ2l
2 + 2ıg0|A0|2 − ω
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We have demonstrated here that both Ref[108] and [107] lead to the same
formula. As a result, it is possible to describe spontaneous emission rate as the
parametric conversion of the vacuum fluctuations in the modes (+,-). The power
of the spontaneous light emitted in the mode (+) is the integral of the stimulated
nonlinear efficiency carried over the resonance linewidth of this mode (+) when
the mode (-) is stimulated multiplied by an escape efficiency that accounts for
the internal losses of the cavity.

2.5 Three Photon Absorption

Until now, we have neglected the nonlinear absorption because we have supposed
that the cavity is made of a TPA-free material. The limitation of the power
injected inside the cavity would then be the nonlinear absorption due to Three
Photons Absorption (3PA) where three pump photons generate an electron-hole
pair in the semiconductor. We derive the 3PA generation rate using the same
method as in Ref.[109]. The 3PA is usually defined by the power dissipated in
the cavity during the propagation:

dI

dz
= −α3PAI

3 (2.82)

where I is the irradiance of the beam and α3PA is the 3PA coefficient expressed
in (m2/W 2). This coefficient is explicitly defined for propagating waves. In order
to apply it to standing waves, we have to generalize this definition by converting
it in energy units. The irradiance is related to the energy density U through
I = c0U/n in an uniform medium of index n =

√
εr. The key relation here is

that
dI

dz
=
dU
dt

(2.83)

Replacing with the expression of 3PA gives

dU
dt

= −α3PAU3 c
3
0

n3
(2.84)

This equation is valid locally in any isotropic non dispersive medium. Integrating
over the volume containing the cavity and using the definitions for the normal
cavity modes defined before:∫

V

dU
dt
dV = −

∫
V

α3PA

(
c0ε0εr|e|2

2n

)3

dV =

= −α3PA

(c0

n

)3

|a|6
∫
V

ε30ε
3
r

8
|u|6dV
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where we have defined a three photon absorption volume V −2
3PA =

∫
V

ε30ε
3
r

8
|u|6dV .

Thus we can now define a nonlinear absorption rate Γ3PA|a|4 (in Hz):

d|a|2

dt
= −α3PA

(c0

n

)3 |a|6

(V3PA)2 = −Γ3PA|a|6 (2.85)

which is rewritten as:
Γ3PA =

α3PA

(V3PA)2

(c0

n

)3

(2.86)

Conclusion

In this chapter, we have use Temporal Coupled Mode Theory to establish a
model of Kerr cavities. This model makes no assumption on the geometry of the
cavity itself, except for the coupling scheme which needs to be precised. As a
result, it can be applied to all types of resonators including PhC cavities which
differs from ring resonators by their modal structure that prohibits the notion of
circulating power. Thermal nonlinearity was added but TPA was neglected. We
then derived the equations of stimulated and spontaneous FWM in the case of
degenerate FWM. Special care was taken in keeping different the loss rates and
thermal coefficients of the modes because they can differ strongly between the
modes of a PhC cavity. Without a surprise, the model predicts a maximum of
efficiency for a triply resonant cavity.
The hypothesis to neglect SPM and XPM over thermal nonlinearities corresponds
to the experimental situation that we will have with high-Q PhC cavities. This
effect will indeed be used to align the cavity as we will demonstrate in the next
chapter, meaning that all the detunings δ = 0. A realistic exploitation of this
analytical model requires two experimental steps:

• achieving a triply resonant PhC cavity

• a proper characterization of its characteristic: loss rates, thermal coeffi-
cients, nonlinear gain ..

In the next chapter, we will present the type of cavity that will be used and the
characterization of their linear parameters. The nonlinear characterization and
nonlinear experiments validating the model developed here will be in Chapter 4.
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Chapter 3

Design and fabrication of PhC

multi-mode cavities

In this chapter, we will describe the principle of confinement, the design and fab-
rication of two types of PhC microcavities. Both possess the property of having
equispaced modes while having small modal volumes and ultra-high Q factors.
The optical properties of the resonators will be investigated numerically in order
to bring out the relevant parameters for efficient nonlinear wave mixing. We will
see that remarkably, two different resonator-type with two different confinement
strategies lead to the same modal structure, described by the same theoretical
model.
In the first part of the chapter, we will briefly detail what are the common
strategies for designing a PhC cavity. In the second and third parts, we will
describe the design, fabrication and characterization of our 2D PhC and 1D PhC
on insulator.
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3.1 Principle of confinement: light cone and ra-

diative modes

Theoretically, only a 3D bandgap allows a perfect confinement. 1D and 2D
PhC add total internal reflection (TIR) confinement in one or two dimensions of
space. This hybridisation comes with losses, because the light confined by PBG
can couple into radiative modes[110]. As we explained in Chapter I, the radiative
modes defines a light line above which conservative modes can exist. High index
materials allow a larger number of modes below the light line, thanks to higher
index contrast. Design of high Q PhC cavities comes down to reducing the out
of plane losses. It was shown that the reduction of these losses can be realized by
tapering the mirror region[76, 111], for example an increase in the hole radii or
hole to hole distance. It realizes an engineering of the Bloch mode supported by
the cavity by gradually adapting the mode profile to the evanescent mode in the
perfect mirror section. With this approach, the losses of the cavity are treated
as a wave impedance matching problem, with Fabry-Perot like reflections.
In the meantime, the idea of gentle confinement was introduced[65], illustrated
in Fig3.1. This approach relies on computing the (spatial) Fourier components of
the field inside the cavity. The losses are minimized by removing any component
inside the light cone, which are the components that can couple to out-of plane
radiative modes. As a result, a high Q is achieved by the shaping of the spatial
envelope of the mode, and the "gentle’ confinement consists in smoothing the
profile of the mode so that the lowest spatial frequencies are removed. Fig3.1
illustrates this principle. On the top left, an abrupt mode profile between two
perfect mirrors possess some components inside the light cone, shown on the
bottom left. On the top right, an apodized mode profile suppresses the radiative
components. The gentle confinement concept allowed to reach very high-Q PhC
microcavities, because it gives a very simple design rule: a Gaussian-shaped
mode envelope allows to achieve ultra-high Q factor. This method can be also
viewed as an impedance matching in a tapered Bragg mirror[112].

Nevertheless, we can conclude that, regardless of the physical explanation
that lies behind, a practical design method can be now derived for optimizing
the Q factor of a PhC cavity, which is a Gaussian shaped mode envelope. We can
also note that, while other spatial shapes could be used, the Gaussian function
is the one minimizing both the spatial components inside the light cone and the
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b)

Figure 3.1: Illustration of the Gaussian apodization confinement compared to an
abrupt mode profile. From [65].

mode volume.

3.1.1 Trapping light in a potential

It is of common knowledge that light confinement is difficult because a photon
has no charge nor mass. Still, effective potential can be realized to confine
photons. The double heterostructure cavity PhC[66, 67],is realized by manipu-
lating the geometry of a PhCW slab. A small perturbation in the PhCW lattice
is introduced, generally by slightly shifting several hole from their positions.
Within the perturbed region, the PhCW modes are above the cutoff, so they
propagate. However, in the unperturbed region, the PhCW modes are below
the cutoff, hence evanescent. The propagating modes are therefore trapped in
the perturbed regions, thanks to a shallow effective potential induced by a small
variation of the cutoff frequency of the PhCW.
In 2015, Alpegigiani et al. introduced the concept of Bichromatic design[113].
Inspired by condensed matter theory, the Bichromatic design superimposes two
periodic lattices with different constant in a PhCW slab. A drastic reduction
of the radiation losses was predicted, resulting from a non trivial localization
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mechanism. This is interpreted as the generation of an effective Aubry-André
potential for photons, which was already observed with matter waves[114]. The
first realization of this design[115], in silicon, demonstrated a cavity mode with
a Q factor of 106. Interestingly, the mode of this cavity has a nearly perfect
Gaussian envelope, with a volume that remains close to the diffraction limit.
Still, all these trapping ideas were introduced to optimize single mode cavities,
and did not provide any answer for a multimodal PhC cavity with equidistant
high Q modes. The next section will explain how to adapt this design to realize
a PhC cavity interesting for nonlinear optics.

3.2 The bichromatic cavity for FWM

3.2.1 An optical harmonic oscillator

Prior to my arrival, our research group exploited the concept of confining po-
tential in PhC. It was already known that the evolution of photons near the
band edge is described by a Schrodinger equation[116]. They had the intuition
that a Gaussian envelope of the first order mode combined with the approxi-
mately parabolic photonic band edge of a PhC could be connected to an effective
parabolic potential function.

And, if the photons are trapped in a parabolic potential, it results in a system
that is analogous to the quantum harmonic oscillator. The relevant property of
such an optical harmonic oscillator is that its eigenmodes are equally distributed
on the frequency axis, which is precisely what is needed for resonant FWM. In one
dimension, the spatial envelopes of the modes are described by Hermite-Gauss
(HG) functions:

Ψn(x) =
1√
2nn!

π−1/4exp(−x2/2)Hn(x) (3.1)

with

Hn(x) = n!

E(n
2

)∑
m=0

(−1)m

m!(n− 2m)!
(2x)(n−2m) (3.2)

where n is the order of the mode, and E is the integer part function. This
longitudinal mode profile is very different from microresonator relying on
travelling waves, or even from standard Fabry-Perot cavities (which still involves
traveling waves).
This approach can be implemented for surface photonics or bottle resonators[117,
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Figure 3.2: a) Schematic of the bichromatic cavity with the two different period a
and a′ b) calculated Hermite-Gauss modes corresponding to an effective parabolic
potential for photons c) False color map of the fundamental mode calculated by
FDTD along the main symmetry axis. The inset shows the reciprocal space, the
white circle being the light line. From [120] d) Calculated 2D H-field intensity
map for the 8 first modes, in logarithm scale.

118] where a parabolic modulation of the width of a fiber induces a parabolic
potential for surface axial waves. In PhC though, the parabolic modulation
occurs at a much lower spatial scale, and was introduced primarily to reduce
the radiative losses, as we already discussed in the previous section. The key
point here is that the potential must be deep enough to allow at least 3 different
modes. A theoretical study of a parabolic modulation of the thickness of a PhC
slab was also carried out[119].

3.2.2 Design of the bichromatic cavity

The study of a new bichromatic design to realize an harmonic oscillator was
reported in Ref.[120]. The starting point is a missing line PhCWG slab, as shown
in Fig 3.2a). second lattice is introduced by changing the period of the first rows
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of the PhCWG. The resulting potential along the x-axis can be approximated
by V (x) = V0cos(2πa) + V0cos(2πa

′). In this example, the period a = 485nm

and a′ = 0.98a. The radius of the holes is r = 0.27a and the slab thickness
is 180 nm. The cavity is fed by a PhCWG in a single ended configuration.
Light that travels into the waveguide evanescently coupled to the bichromatic
cavity, and then reflected back at the end of the waveguide. The end of the
waveguide is terminated by a PhC reflector, with a reflectivity ≈ 100% [69]. The
space between the waveguide and the cavity is either 5 or 6 rows wide. The
commensurability parameter, β = a/a′ is fixed. The potential width directly
depends on β because the sum of cosine can be rewritten into:

V ∝ cos(2πβx) ≈ (1− πβx2) (3.3)

The parameter β controls the convexity of the potential, hence the spatial
extent of the confinement. Values closer to unity increase the volume of the
mode, and decreases the FSR of the cavity.The value chosen here, β = 0.98

leads to a FSR around 400 GHz. The parabolic approximation tends to be less
accurate with higher order mode. This anharmonicity leads to a decreasing of
the mode spacing with higher order modes, calculated to be less than 10 GHz
( a corrective second order term is added to the dispersion: ∆2ν = −2.69GHz)
for two consecutive FSR. Practically, this deviation is much lower than the
randomness introduced during the fabrication. Figure3.2b) shows the intensity
mode profile along the x-axis calculated by Finite Difference Time Domain
(FDTD). Their envelope are fitted with the polynomials of Eq.3.1, in solid line
with a very good agreement. This strongly suggests that the bichromatic design
implements an effective harmonic photonic potential for photons, with a very
close analogy to the quantum harmonic oscillator for electrons.
Figure3.2c) and d), taken from Ref.[120] show the 2D simulated map of the Hz

intensity field for the fundamental mode and higher order modes respectively.
An inset shows the representation in the reciprocal space, that indicates no
components in the light cone. Since the first order HG mode is a pure Gaussian,
the bichromatic design intrinsically lead to a minimization of the out-of-plane
losses. It results in very high Q factors (simulated Q ≈ 107). Interestingly, higher
order HG modes do also have high Qs. The electromagnetic energy distribution
is mostly concentrated in the outer lobes. The volume of the fundamental mode
is close to the diffraction limit since V0 = 1.03× 10−19m3 = 0.9(λ

n
)3 at 1550 nm.
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Figure 3.3: Fabrication step for the suspended membrane
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3.2.3 Fabrication of the bichromatic cavity

In our configuration, the bichromatic cavity is fabricated in a suspended mem-
brane made of InGaP. In this section, we will review the fabrication flow for
achieving high quality factors in these structures. The process has been opti-
mized in Thales for a decade, and more recently in C2N, and it was used to fab-
ricate PhC waveguide[18, 121] and cavities[92]. The suspended membranes are
made of Indium Gallium Phosphide lattice-matched to GaAs grown by MOCVD
(Metalorganic Vapour Phase Epitaxy). The fabrication steps are schematized in
Fig3.3.
The starting point is a InGaP/GaAs wafer stack. The intermediate InGaP layer
is 200 nm thick, then there is a sacrificial GaAs layer of 1.4 microns and the final
GaInP, depending on the epitaxy, is either 190 or 320 nm. The former was ini-
tially grown specifically for suspended membrane while the latter was intended
for bonded structure.
The first step consists in coating a silica or silicon nitride mask on top of the
InGaP of 300 nm by PECVD ( Plasma-Enhanced Chemical Vapor Deposition).
Then a positive resist, polymethyl-methacrylate (PMMA) is spin-coated. The
PhC motive is patterned on the resist with electron beam lithography (e-beam)
by a Nanobeam NB4 beamwritter .A special care is taken for the positioning of
the writing field, so that the cavity is included in the same subfield to avoid any
drift of the e-beam. Positive resist is used in the case of 2D photonic membrane
because it limits the lithography time by writing the holes instead of the contours
for a negative resist. On the other hand, it limits the resolution of the lithogra-
phy to 1 nm, which is the lowest possible for PMMA before being sensitive to
proximity effect.
The resist is then developed using diluted Methyl isobutyl-ketone (MIBK) for
one minute. The resin mask is then transferred to the SiN layer thanks to dry
etching with Capacitively Coupled Plasma Reactive Ions Etching (CCP-RIE).
The PhC pattern is transferred to the III-V stack by Inductive Coupled Plasma
(ICP). The plasma is composed of oxygen and hydrogen bromide (HBr/He/O2

:8/90/0.9 sccm). This step is crucial because the smoothness of the etching will
determine the quality of the PhC.
The remaining hard mask is removed with CCP-RIE. The sample is then very
briefly put into a 1% diluted fluorhydric acid to remove any redepositon of the
SiN mask during the ICP step.
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5 µm10 µm
200 nm

Figure 3.4: SEM picture of suspended Bichromatic membranes showing a) the
cavity and its coupling waveguide, b) the coupling taper, c) a transverse cut of
the membrane

Another critical step is the underetching, realized by means of a diluted citric
acid solution. The time of etching needs to be sufficient enough to free the mem-
brane completely, but not too much otherwise it collapses. It takes around one
hour to underetch the bichromatic cavities in our case. Finally, the drying of the
sample is realized with the critical point drying (CPD) technique that smoothly
transforms the liquid into gaseous state. On the latest generation of sample, 5
nm of ALD deposition was put to protect the sample from any environmental
degradation. The impact of this encapsulation was never critical, as we did not
see any change in the Q factor of the cavities with or without it. Still, it did
not seem to prevent photo-oxidation, which made us question the porosity of the
ALD material.
Fig3.4 shows pictures taken with a scanning electron microscope (SEM). A
bichromatic cavity with its access waveguide can be seen in Fig.3.4a). The cou-
pling tip, that adapts the mode of the fiber to the mode of the PhC waveguide
is shown in Fig.3.4b). Fig.3.4c) shows a zoom of the suspended membrane to
verify that the roughness of the etching is good.

3.2.4 Linear characterization

Optical Measurements are performed on a temperature stabilized position stage.
The laser light is injected thanks to a lensed fiber in the coupling tip of the
cavity. The light reflected back from the sample is out-coupled through the
same fiber but is separated away from the incoming laser thanks to an optical
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circulator placed right after the fiber. The power level is adjusted thanks to a
variable attenuator. The sample is placed on a copper plate that is stabilized by
a Peltier/thermistor pair ensuring better than 0.1K temperature control. The
position stage and the lensed fibers are placed inside a box filled with nitrogen
to limit oxidation or surface degradation.
The cavities are linearly characterized with an Optical Coherent Tomography
(OCT) set-up with a swept source. The principle of measurement is detailed in
Annex A. The main advantage of this technique is that it allows to access to
the full complex spectrum of the cavity in a single scan of the laser ( around
30 seconds). The optical source is a continuously swept narrow-linewidth laser
(Santec TSL510). The sample is placed in one arm of a Michelson interferometer,
the second being a 7 meters single mode fiber (SMF). The reflected signal from
the cavity is then mixed with the second arm and acquired with a balanced
photo-detector (Thorlabs PDB450c). The instantaneous wavelength of the laser
source is measured by an external reference interferometer which also triggers
the acquisition of photocurrent by the ADC card.
An example of the spectrum of the cavity is shown in Fig3.5a). Here, the three
first resonances are analyzed. They correspond to a Q factor of respectively 160
000, 94 000 and 130 000. Up to 7 modes were observed in the cavities. Fig3.5b)
shows 3 pictures of the cavity when 3 different modes are excited. On the three
picture, the left spot shows the positions of the lensed fibers, at the input of
the sample. When changing the frequency of the laser, the different modes are
successively exited. The top picture shows the fundamental mode. The light
is concentrated in one bright spot that corresponds to the center of the cavity.
The middle and bottom pictures shows the mode 3 and 7. We clearly see that
the spot becomes distributed to the extremities of the cavities, as predicted by
the HG distribution.

We are interested in the measurement of the dispersion of the cavity with
narrow resonances. Hence, the question of the absolute error in the measured
frequency is fundamental. Before characterizing the sample, a reference Hy-
drogen Cyanide gas cell is measured in order to correct the dispersion inside the
fibers. This cell features absorption lines known with 0.2 pm precision (20 MHz).
After calibration, the standard deviation from the NIST (National Institute of
Standards and Technology) reference measurements is about 20 MHz. The com-
plex reflectivity spectrum is extracted after Fourier analysis. Both the amplitude
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Figure 3.5: a) Spectrum of a bichromatic cavity with Q factor around 105 b)
Picture using an infrared camera to visualize the scattering of the mode when
they are excited. The non-homogeneous structure of HG modes is clearly visible
.

and phase of the spectrum are fitted with a zero/pole model which leads to the
loaded Q, the intrinsic Q0 and the coupling Qc. The OCT measurement is per-
formed with sufficiently low power ( < 1µW) to avoid any thermal effect inside
the cavity. With this technique we could measure the standard deviation of the
dispersion ∆νcold over about 300 resonances in 96 resonators.
The statistics is shown in Fig.3.6a). Here, ∆νcold represents the evolution of the
FSR between three consecutive resonances, which is the useful value for FWM.
We see that it is included mainly between a +/ − 100 GHz around a flat dis-
persion, for a nominal FSR of 450 GHz. Most of the counts are on the negative
dispersion side, which was predicted by the slight anharmonicity of the parabolic
potential. However, the distribution of ∆νcold does not follow a straightforward
law. The cause for this statistics is the disorder that comes for fabrication im-
perfection. The role of structural disorder, already discussed in Chapter I, is
evidenced here. The absolute average |∆νcold| is 50 GHz, while the linewidth of
the resonances ranges from 1 GHz to 300 MHz.
To go further, the correlation matrix on the FSR for the first five modes of the
96 cavities is calculated. The FSR between the modes (νi+1 − νi) of the jth cav-
ity is noted Fi,j. Each cavity has a nominal FSR noted F j set by design. The
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correlation matrix is written:

Cj,k =

∑4
i=1 (Fi,j − F j)(Fi,k − F k)√∑4

i=1 (Fi,j − F j)2

√∑4
i=1 (Fi,k − F k)2

Figure 3.6b) shows that a deviation from the mean FSR for two consecutive
modes does not impact the fluctuations of the others FSRs for a given cavity.
Therefore, it is possible to conclude that the fluctuations on the dispersion of
the cavity are set by the fluctuations of each eigenfrequency. Importantly, fluc-
tuations of the eigenfrequencies of a single cavity are uncorrelated. This result
could be well explained by the non homogeneous distribution of the HG modes.
A local defect would therefore affect each mode differently. This is fundamentally
different to ring resonators for example, where a defect would impact almost all
the modes simultaneously. As a result, the absolute frequency deviation is the
same for each mode, and the FSR are on the overall kept constant.
On a side note, we suspect that thinner membranes are less sensitive to disorder
fabrication, because the average effective index is lower. As a result, a pertur-
bation in the modulation has a lower relative impact. This was observed in the
samples fabricated with a 320 nm thick of InGaP that resulted in a lower Q
factor on average compared to the 190 nm thick membrane. The quality of the
epitaxy was also suspected to explain this difference, as some defect could be
observed with the microscope.
From the nature of the HG modes and the sensitivity of PhC to fabrication vari-
ation, we showed in this section that current state of the art PhC cavities require
a post fabrication tuning mechanism to reach consistently exact constant FSR,
even if the design theoretically fulfills this condition.

3.3 1D PhC on SOI: the nanobeam cavity

3.3.1 Principle of the SOI structure

Air-bridged structures are interesting to realize a strong index contrast with
bulk InGaP. This matter of fact explains why the highest Q factors reported
up-to-date are suspended 2D silicon membrane. However, this approach has
two main drawbacks. First, a suspended membrane is harder to protect it from
environment pollution. Secondly, it is difficult to integrate on the same chip
alongside components with different material and fabrication process flow, such
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Figure 3.6: a) Histogram of the eigenfrequencies misalignment ∆νcold

b)Correlation matrix of the fluctuation of the first four FSRs (five modes) for 96
cavities.

as laser source or photodetectors. A possible workaround is the integration of
specific photonic function on a silicon on insulator (SOI) platform. The SOI plat-
form benefits from massive manufacturing capabilities developed for electronic
application over the past few decades and could accelerate considerably the in-
dustrialisation of complex photonics components. Because silicon suffers from
limitations such as indirect bandgap and TPA, some complex photonic function
need to be realized by components made of different materials. The basic idea
is to have a layer of silicon waveguides that serves as a circuitry between these
photonic components: this is the basic principle of hybrid integration.
Fig. 3.7 shows a schematic of our hybrid InGaP PhC cavity on SOI for nonlin-
ear optics applications. The SOI level consists in a 220 nm thin Si waveguide
patterned on top of a SiO2 cladding layer. The thickness of the SiO2 layer, also
called the buried oxide layer (BOX) is 2 µm. Both materials are transparent at
telecom wavelength, and the confinement of the light is ensured by TIR due to
the large index contrast between silicon and its oxide. The Si waveguide width
ranges from 250 to 550 nm, which is low enough to ensure single mode TE prop-
agation.
The waveguide is terminated on both side by a shallow grating coupler. The
design and fabrication of these couplers is not optimized, and the transmission
coefficient is rarely more than -6 dB by grating. An optimization in this direc-
tion would decrease the power level used in experiments, but the general proof of
principle would remain the same. The key point here is that the final goal is to
have the light source and the detector integrated alongside the nonlinear cavity.
Hence, an optimization of the grating coupler is secondary.
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Figure 3.7: Schematic of the hybrid InGaP nanobeam of SOI structure.
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Figure 3.8: a) Schematic of the nanobeam cavity with a tapered mirror and a
perfect mirror b) Evolution of the distance between the holes.

Finally, the cavity is a 1D PhC also called nanobeam. It is bonded on top of the
SOI using benzocyclobutene (BCB), an adhesive polymer. The fabrication steps
will be detailed in the next sections.

3.3.2 Design of the nanobeam cavity

The nanobeam cavity consists in a ridge waveguide drilled with circular holes
where the hole to hole distance, a, is varied in order to build high reflectivity
mirrors, (see Figure3.8). In this case, the electromagnetic field decay in the
mirrors is not simply exponential as in a perfectly periodic structure but
depends directly on the evolution of the lattice constant a in the longitudinal
direction. Thus, the EM field in the cavity writes E ∝ e−A(x)x, , where A(x) is
the spatially dependent field decay at the position x. The complete methodology
is developed in Ref.[122] and we will only recap the major steps. First, we
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calculate the dependence of A with a in a semi-infinite PhC wire with a constant
a. In this PhC wire, A(x) is constant along the x-axis for a given frequency
and a given a. The value of A for each frequency is calculated by extracting
the attenuation of a broadband excitation is the axis of the wire. Fig.3.9 shows
the evolution of this field decay A for different a for a 650 nm wide, 290 nm
thick PhC wire made in InGaP (n=3.13) encapsulated in SiO2 where the holes
radius r = 110 nm. We see that increasing the lattice constant a changes the
cut-off frequency of the dielectric band-edge, that is to say the frequency that
opens the bandgap but still has A = 0. In the case of the blue curve (a = 340),
this cut-off frequency is equal to 192.692 THz (1550 nm). An increase in the
period a leads to an increase in the field decay A up to its maximum value
located a half the width of the bandgap. Once the relation between a and A is
established, we can introduce a variation of the period a(x) so that A(x) = Bx

in order to shape the first order resonant mode E-field envelope into a Gaussian.
This envelope is characterized by its full width at half maximum (FWHM)
which can be adjusted at will by changing a(x). The calculated dependence
of a with x is plotted on Fig.3.8) for a cut-off frequency at 192.692 THz. We
can see that a increases from 340 nm in the center of the cavity (A=0) to 382
nm at its extremities (maximum of A which corresponds to the middle of the
photonic bandgap at 1550 nm). 10 holes are added on the sides of the cav-
ity with a = 382 nm to avoid leakage of the EM field in the longitudinal direction.

Such a design allows us to obtain in simulation (3D FDTD) a Gaussian shaped
mode at 193.103 THz (1552.5 nm) with a Q factor beyond 107. This high Q value
is expected: this mode exhibits a reduced amplitude of the E-field distribution at
spatial frequencies inside the light cone which thereby diminishes radiative losses
as previously stated, while keeping the modal volume close to the diffraction
limit. Higher order modes are allowed. Their spatial distribution in energy as
well as their resonant frequency are given in Fig.3.10a) and b) together with
those of the fundamental mode. The modes are equally spaced in frequency,
separated by a FSR of 1.4 THz. The Q factor of these modes are all above 107.
The spatial envelope of the modes contains a number of lobes equals to their
order and, as can be seen on Fig.3.10a), it can be accurately fitted by a Hermite-
Gauss function. Built under the only condition of achieving a spatially-Gaussian
fundamental mode and not a parabolic evolution of the lattice constant a, this
cavity possess a modal structure very similar to the one presented in the previous
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section, with the bichromatic design.
Where the bichromatic design depends on the commensurability parameter a’/a,
this design of nanobeam tailors the photonic potential with the FWHM of the
fundamental mode. particularly, the FSR can be adjusted to a large extent as
shown in Fig.3.11a).

A striking feature of this PhC multi-mode cavity design is its flexibility. Par-
ticularly, the FSR can be adjusted to a large extent as shown in Fig.3.11a), the
FSR being related to the FWHM of the fundamental Gaussian mode, which is
our key design parameter. We note a parabolic dependence of the FSR with
(FWHM)−1, while in a Fabry-Perot or a ring resonator, the FSR is linearly
dependent with the inverse of the length of the cavity. The frequency of the fun-
damental mode also slightly changes from 192.5 THz (1557.4 nm) to 193.8 THz
(1546.7 nm) when the FSR decreases from 2.4 THz (19 nm) to 130 GHz (1 nm)
for identical geometric parameters (dimension of the ridge, hole diameter, initial
and final hole period). Moreover, as FWHM increases, the full cavity length
strongly increases due to our design rules previously described. The calculated
volume of the fundamental mode, Vm,0, (see Fig. 3.11b)) grows linearly with the
FWHM, ranging from 0.76 to 4.45

(
λ
n

)3 when the FWHM increases from 2 µm
to 12 µm. Fig.3.11c) shows the calculated volume of the higher order modes
for FWHM = 4 µm and FWHM = 12 µm. As expected, it increases with the
mode order, the largest change being observed going from the fundamental to
2nd order mode. Vm,p doubles its value only up to the seventh order mode.

3.3.3 Fabrication process

The fabrication steps of the hybrid nanobeam on SOI are depicted in Fig.3.12.
Following the hybrid integration principle, our nanobeam cavities made in InGaP
slabs are bonded onto a SOI waveguide circuitry[123]. The starting point are the
SOI wafer and the same InGaP/GaAs stack than for the bichromatic cavity with
320 nm thickness.
A thin layer of 20 nm of SiO2 is deposited by ALD on the InGaP. Then 330 nm of
SiO2 are sputtered. This step is necessary because sputtered SiO2 is hydrophilic,
contrary to PECVD SiO2 for example, and BCB bonding works only on with
hydrophilic surfaces. During the whole process, we have to make sure that BCB
has not been in contact with water or any wet surface. The ALD layer is here to
protect the InGaP that could be damaged during the sputtering.
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Figure 3.11: a) Evolution of the FSR with the FWHM of the fundamental mode
and the corresponding length of the cavity. b) Mode volume of the first modes
of a 4 mm and a 12 mm FWHM cavity. Volume units are normalized with the
diffraction volume. c)Evolution of the volume of the fundamental mode with
respect to the FWHM. Red dotted line is a linear fit
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Figure 3.12: Fabrication steps for the InGaP nanobeam on SOI via wafer bonding
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Figure 3.13: SEM pictures of the nanobeam after fabrication.

The bonding layer is an adhesive polymer solution of divinylsiloxane-
benzocyclobutene (BCB), with its solvent, mesitylene with the ratio ( 2 ml/
1.5 ml). BCB is spin coated with a spinning speed of 5000 rpm, initial accelera-
tion of 2000 rpm/s for 30 second. These parameters are set to have a final BCB
thickness of 300 nm. The SOI with BCB is then soflty baked at 80 ◦C for 15
minutes to evaporate the solvent.
The next step puts the InGaP stack on the SOI with BCB in the chamber of
the bonder (Süss MicroTech). This machine realizes the bonding by applying a
press at 320 ◦C in vacuum to polymerize the BCB.
The next step is substrate removal. It is realized by wet etching. The GaAs sub-
strate is removed using a H2O2:NH3 solution diluted at 19:1. When the GaAs is
removed, usually after 2 hours, we can observed a pink-colored surface indicating
the presence of InGaP. This stop layer is removed in pure HCl for 20 seconds, and
the final GaAs layer is plunged back into the H2O2:NH3 solution for 40 seconds.
It is during this step that the success of the bonding is observed, because the
substrate removal gradually reveals any mechanical strains on the InGaP layer
that can very often suffer form big cracks or in the worst case, lift off.
The next step is the patterning of the nanobeam cavity. This is done by negative
lithography with a Leica EBPG5000+ beamwritter. Hydrogen Silses Quioxane
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(HSQ) is spin coated on top of the GaInP membrane (with filter XR1541-006)
with a spinning speed of 600 rpm and an initial acceleration of 3000 rpm/s for
60 seconds. A 5 nm ALD SiO2 was deposited prior to the resin to ensure ad-
hesion. Contrary to positive resist used for 2D PhC, in the case of HSQ resist,
exposed surfaces are solidified while the non exposed surfaces are removed with
the developer AZ400K:H2O (1:4) for 1 min 30. Single pass lithography with hole
contouring is used with a writing resolution of 0.5 nm.
Finally, after revelation of the HSQ mask, holes are drilled with Inductive Cou-
pling Plasma (ICP) etching using the same HBr/He/O2 gas mix than the 2D
PhC. The exposed HSQ plays is similar to silica. As a result, it can be either
kept on top of the InGaP, either removed with diluted AF at 1% As can be seen
on the SEM picture of Fig.3.13 , very smooth sidewalls are obtained from the
optimized etching process.
A final encapsulation step an be added, just like with the bichromatic cavities,
consisting in 20 nm of ALD Al2O3.

3.3.4 Linear Characterisation

The linear transmission of the fabricated bonded nanobeams is again char-
acterized using the OCT setup employing a spectrally narrow swept laser
source which is coupled to SOI waveguides through the grating couplers. The
difference here is that the OCT is used in transmission and not in reflection.
The interferometer is then a Mach–Zehnder interferometer. The transmission
spectra displays a comb of high Q resonances, as can be seen on Fig.3.14a). 54
resonances can be counted on Fig.3.14a), this number being limited, here, by
the transmission bandwidth of the gratings couplers. This spectrum corresponds
to the transmission of a cavity with a FWHM = 12 µm. The high reflectivity
bandwidth of the mirrors of the cavity, which is determined by the width of
the photonic bandgap of the PhC (∼40 THz), allows the existence of this
high number of resonances which is far greater than 2D bichromatic cavities
( typically 4 or 5 modes) thanks to a larger PBG. The mode order of each
resonance is plotted on Fig.3.14b) as a function of its frequency. The linearity
of the obtained curve is, at first glance, a proof that the FSR is constant as the
mode order increases. Only one resonance was not detected in this measurement.
Looking closely at the FSR as a function of the frequency (Fig.3.14c)), we can
see that it oscillates in a 100 GHz range and stabilizes toward a constant value
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Figure 3.14: a) Normalized Raw Transmission Spectrum of the full device (in-
cluding grating couplers); b) extracted eigenfrequencies; c) FSR vs frequency and
d) histogram of the frequency mismatch D2n of three consecutive resonances.

around 130 GHz. We infer that this oscillation is due to a Moiré effect that
happens during the discretization of the e-beam writing grid. A histogram
of the second order dispersion for three consecutive resonances is plotted on
Fig.3.14d)). The region highlighted in yellow shows the triplets with a frequency
mismatch below 10 GHz. The distribution appears to be normal and centered
around 0. Again, the intrinsic and coupling losses of all resonant modes are
deduced from the coupled mode theory model related to the measurement OCT
technique (Annex 1). Fig.3.15a), b) and c) shows the dependence of the quality
factors Q0 (linked to intrinsic loss), Qc (coupling loss) and QL (total loss) factors
on the width of the feeding SOI waveguide. The statistics of Q0 is independent
of the coupling strength, as expected, and reveals that the most frequent value
is around 200 000 with a maximum at 445 000, which is a record in InGaP
bonded structure. It is limited by the roughness of the etched sidewalls and
the absorption of the InGaP and the silica intermediate layers. We suspect the
latter to be the main limitation.
As previously demonstrated the coupling between the silicon waveguide and the
nanobeam can be tuned by changing the thickness of the adhesive silica layer or
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Figure 3.15: Statistical analysis of the values of Q factors of a nanobeam with 12
microns FWHM fed with a waveguide width of a) 400 nm (under-coupled regime);
b) 550 nm (critically-coupled regime) and c) 500 nm (over-coupled regime)

the width of the feeding waveguide[124]. Qc is strongly dependent of the width
of the SOI waveguide as can be seen on Fig.3.15. Three representative cases are
shown: the under-coupled (Q0 < Qc) regime with 400 nm wide waveguides (a),
the over-coupled one (Q0 > Qc) with 500 nm waveguides (c) and the critically
coupled (Q0 = Qc) one with 550 nm waveguides (b). The averaged Qc are 440
000, 100 000 and 197 000 , for 400, 500, 550 nm wide waveguides, respectively
and the average Q0 are 171 000 (a), 224 000 (b) and 243 000 (c) . The average
loaded Q, QL, can then be tuned from 58 000 (c) to 128 000 (a) just by changing
Qc through a change of waveguide width, and reaches QL = 99 000 at critical
coupling (b) . In the transmission window of the gratings, we did not observe
a dispersive coupling (contrary to the PhC waveguide coupling the bichromatic
cavity), but some resonances can be unexpectedly under or over-coupled, which
is attributed to localized default arising from fabrication.
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Conclusion

In this chapter, we discussed the design and fabrication of photonic crystal cavi-
ties for nonlinear optics application. We studied and realized two different plat-
forms namely suspended and bonded membranes. Both rely on the same idea
to create a parabolic potential for the photons leading to equispaced modes. An
OCT setup has been used to probe the spectra of the fabricated cavity. It con-
firmed the existence of several high Q modes. The suspended membranes has
exhibit higher Q because of the absorption of the silica layer used in bonded
cavities. On the other hand, we showed the versatility of the nanobeam by ad-
justing the coupling between the feeding waveguide and the cavity in simple way.
The nanobeam also possess a much larger number of modes, thanks to a higher
PBG, which can be interesting for some applications. With this study, we gave
the proof that PhC cavities based on a parabolic modulation of the refractive
index are suitable candidate for efficient FWM.
However, we also evidenced the extreme sensitivity of PhC to any sort of irregu-
larities induced during the fabrication steps, which is combined to the fact that
very high Qs narrow greatly the tolerance in the misalignment of the modes. As
a consequence, this fabricated cavities are not directly usable for FWM, and a
tuning mechanism must be introduced.
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Chapter 4

Four Wave mixing in PhC cavities

This chapter reports the different FWM experiments performed in the cavities
described in Chapter 3. These cavities are by design adapted for FWM with a
near constant FSR and very high Q factor. However, the optical characterization
after fabrication showed a somewhat significant deviation from a flat linear
dispersion. Moreover, the higher the Q factor, the more stringent the condition
on the FSR. Indeed, this condition is directly set by the linewidth of the
resonance. For Q = 105 which corresponds to ∆ν ≈ 1.9 GHz, resonant pump
and signal waves allow a tolerance on the idler resonance detuning below 1 GHz
in order to achieve a triply resonant configuration. Hence, there is a need for a
post-processsing tuning mechanism to adjust the dispersion of the cavity.
The first part of this chapter describes a method to locally control the tem-
perature of the cavity so that it is possible tune the relative position of the
resonances.
Secondly, we show how this technique enables the observation of efficient
stimulated and spontaneous FWM in bichromatic cavities up to the parametric
oscillation regime. A comparison with the theoretical model developed in
Chapter 2 corroborates its validity to describe our system.
Thirdly, we continue our investigation with the demonstration of efficient
stimulated FWM in our hybrid nanobeam structure.
The final discussion puts these results in the context of cavity integrated
nonlinear optics.
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Figure 4.1: Thermal bistability of the pump mode. The frequency of the pump
is thermally locked to the pump laser and red-detuned up to the point where
the bistable jump happens. The oscillations are due to a Fabry-Perot with the
collimator.

4.1 Thermal tuning for PhC cavity alignment

4.1.1 Thermal locking of a cavity resonance

The large density of energy inside the cavity causes a thermalization of the mate-
rial via residual absorption. This induces a change in the refractive index known
as the thermo-optic effect. As a result, the cavity resonance frequencies become
dependent on the built-up optical field. The more optical power is injected, the
more the cavity heats and the stronger is the thermo-refractive index. This is
visible in the transmission spectrum of the cavity where a triangular shape ap-
pears during the scan of the cold resonance. As the laser frequency approaches
the resonant frequency, the cavity heat up, which red shifts the resonance. It can
be viewed as the laser "pushing" the resonance toward lower frequencies. The
resonant frequency is said to be locked to the laser. The laser eventually catches
up with resonance when the thermal absorption is maximal. Beyond this point,
cavity can not be heated more. This means that if the laser keeps scanning, it
will lose the resonance locking and will stop to couple light inside the cavity.
Hence, the cavity goes back to thermal equilibrium and the resonance frequency
goes back to its original value. This thermal bistability is illustrated in Fig.4.1.
Here, a 1 GHz-wide resonance frequency in a bichromatic resonator is locked and
shifted on more than 650 GHz. We clearly see the bistable jump happening at
the pump frequency 193.15 THz. Thermal bistability has been extensively stud-
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ied in micro-resonators[125, 126] where it cannot be ignored due to their small
size.

4.1.2 Thermal tuning for inhomogenous modes

Tuning the resonant frequency in PhC cavity has been performed with various
physical mechanisms such as gas condensation[127], chemical etching[128],carrier
injection[129] or electrical heaters[130]. These techniques all aimed at adjusting
the frequency of a single mode cavity. They all possess different advantages in
terms of implementation, scalability or timescale. For example, the thermal effect
is slower than carrier recombination which can be privileged for fast application
such as all optical switching. But metallic heaters are driven electrically, which
require less complexity than all optical control.
The main issue in our case is that we want to control each resonance of a single
cavity individually. Individual control of the resonances of an array of coupled
PhC cavity have been realized by projecting a laser beam[131] with specific spa-
tial pattern. The illuminated section of the array is heated, which increases the
refractive index of material and therefore decreases the resonant frequency of
the supermode of the CROW. This tuning mechanism is limited by the spatial
resolution of the optical setup of the projected beam. The important idea here
is that it is possible to induce a local temperature of a PhC cavity at a shorter
scale than the spatial distribution of the mode. This results into a relative inho-
mogenous frequency tuning of the resonances.
Conveniently, the cavity that we designed in analogy with the harmonic oscillator
possess an inhomogenous mode distribution, with the energy being mainly inside
two lateral lobes. When a pump is resonantly injected inside a mode, a temper-
ature gradient that follows the spatial distribution of the mode is created. This
temperature gradient overlaps differently with the other modes. As a result, the
average temperature of each mode will be increased differently as well, leading
to a inhomogenous spectral shift of the resonances of a single cavity. The goal
is to inject the right amount of optical power so that the cavity becomes triply
resonant. By sweeping the frequency of the pump, one can adjust this power by
choosing the right detuning of the pump from its hot resonance.
Before showing experimental evidence of this mechanism, two remarks can be
made. First, a parallel can be drawn with the continuous sweep of the laser
source for soliton comb generation. The difference here is that the speed is not
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Figure 4.2: a) Evolution of the eigenfrequencies of a bichromatic cavity when
a mode is locked and redshifted. The pump mode is black. The slopes of the
curves are all different b) Evolution of the corresponding FSR, showing a crossing
between the red and blue curves. The FSR in green, corresponding to higher
order modes, is almost constant

critical as it can be anything below the thermal stabilization time of the cav-
ity (microseconds typically), whereas it must be superior for solitons, in order
to reach the thermally unstable side of the tuning range. Secondly, the swept
source could be replaced by a fixed wavelength laser and thermal control of the
sample, as reported in Ref. [132].

4.1.3 Thermal pulling measurement

As we just explained, the principle of this experiment is to measure the linear
dispersion of the cavity when one resonance is thermally locked and pulled by a
pump laser. To do so, the sample is placed in the same experimental condition
as for the linear characterization (a box filled with N2 with a thermally Peltier-
regulated copper plate holder). We add to this setup a continuously swept laser.
This laser source is combined with the optical signal of our OCT setup by means
of a 90/10 coupler. The measurement consists in a series of OCT scan at differ-
ent pump frequencies. It starts with a OCT scan with pump out of resonance.
The pump is gradually red-detuned, with an OCT scan for each detuning. The
procedure goes on until the thermal bistable jump occurs, when the detuning
of the pump laser is larger than the thermo-optic induced frequency shift. This
event corresponds to an effective detuning from the hot resonance exactly equal
to zero.
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The evolution of the resonance frequencies of a triplet can be see in Fig.4.2a).
Following the notation of Chapter II, the pump is injected in the mode of cold
frequency ω0,cold. The high and low energy mode are denoted ω+,cold and ω−,cold.
For each value of pump detuning offset ∆0, the hot frequencies ω0, ω+ and ω−
are red-shifted differently. This can be seen on the slope of the different lines.
These slopes corresponds to the thermo-optic coefficients α0, α+ and α−. The
evolution of the corresponding FSR ω+ − ω0 and ω0 − ω− is shown in Fig.4.2b).
The spectral misalignment of the cold cavity is 38 GHz, become null for a pump
detuning of ∆0 = −101GHz to reach the value of -37 GHz for a pump detuning
of ∆0 = −180GHz.
It is then possible to extract the dependence of the dispersion , which is the mis-
alignment of the hot cavity modes 2∆ωh = 2ω0−ω−−ω+ with the pump detuning.
On the measurement shown in Fig4.2, this relation is 2∆ωh = 2∆ωcold + 0.48∆0

where ∆ωcold is the misalignment of the "cold" cavity and ∆0 = ωp−ω0,cold is the
pump offset. With this measurement, we are able to show that a cavity with the
initial negative detuning can be tuned into a triple resonant configuration. If the
pump offset is increased, it is possible to even inverse the sign of the dispersion
for this specific triplet.
On the same figure, the green dots corresponds to the evolution of the next
higher order mode, and its FSR ωX −ω+. We see that this value remains almost
constant, showing that the thermal coefficients of the mode + and X are equal.
As a result, the cavity is triply resonant with the triplet (0, +, X), correspond-
ing to the crossing of the blue and green lines in Fig.4.2b) for a different pump
detuning ( -40 GHz) . This shows that the tuning mechanism allows to align
only three resonances at a time, in contrast with ring resonators where multiple
triplet have the same FSR.

4.2 Modeling the nonlinear cavity

4.2.1 Extraction of the on-chip power and the coupling

losses

For linear characterization, the power level used is not critical as long as it does
not trigger optical or thermal nonlinearities. On the opposite, it is crucial for
nonlinear experiments to have a correct value of the power in order to estimate
the efficiency of the FWM. The procedure for extracting the on-chip power is
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Circulator

Figure 4.3: a) Schematic of the coupling configuration with a 3 port optical
circulator, that allows to estimate the power inside the waveguide in a single
ended configuration.

detailed here.
For the bichromatic cavities, the resonator is designed in a single ended configu-
ration, meaning that the optical power is reflected back in the access waveguide.
In our setup, the resonator is accessed through a microscope objective (Zeiss,
N.A.=0.9, x 63) focusing on an inverse taper[69]. This inverse taper adapts the
Gaussian beam to the Bloch mode of the PhC waveguide connecting the res-
onator, Fig.3.4c). The waveguide is terminated to ensure total reflection with
minimized out of plane scattering. A circulator is used to separate the input of
the output. An optical circulator is a three ports non reciprocal device that redi-
rects light depending on its propagation direction. As a result, an unidirectional
connection is ensured between two adjacent ports, as depicted in Fig4.3. Port 1
is the input and carries the pump and probe beams, previously combined with
a coupler. The input is directed to port 2, with is connected to a fiber collima-
tor. This fiber collimator is itself put on the focal distance of the microscope
objective to ensure optimal coupling with the sample. When the light is reflected
at the end of the sample, it is coupled back in the port 2 of the circulator and
is redirected to the port 3, which is the output. An alternative but equivalent
set-up also used here is based on tapered fiber instead of a microscope objective
In order to estimate the on-chip power, that is the power at the end of the
coupling waveguide, where the cavity is, two assumptions are made. First, the
circulator is assumed to have identical coupling losses from port to port which
makes the global system symmetric. The other assumption is that the waveguide
is too short (L = 250µm) to induce significant losses (typically 1dB/mm[133])
. These approximations allow to take the same coupling coefficient κin for the
input to the waveguide and for the output to the waveguide, and no other loss
term than the coupling when the laser is off resonance. Hence, the different
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power are linked by the relation:

Pwg = κinPin (4.1)

Pout = κinPwg (4.2)

The power inside the waveguide is then the geometric average of the power
measured on port 1 and port 3:

Pwg =
√
PinPout (4.3)

In order to estimate the power level, the insertion losses are measured once the
setup is aligned on the cavity. The insersion losses are measured at low power
off resonance through the relation:

2κin = 10log(
Pout
Pin

) (4.4)

Typically, the value of κin is around −6.5±0.5dB. The error margin corresponds
to changes between samples or frequency dependence due to residual interference
(Fabry-Perot effect, TE-TM modes).

4.2.2 Energy in the cavity and nonlinear absorption

The tuning mechanism is based on the thermal pulling of the pump resonance.
From a physical standpoint, the spectral shift of the cavity is proportional to the
fraction of the energy that is absorbed by the material and dissipated through
heat. However, the dissipation rate is only a fraction of the total intrinsic losses
because a fraction of the energy is also lost by diffusion. (Γ = Γabs + Γdiff ). The
dissipated power associated with linear losses writes:

Pdiss = Γabs|a|2 (4.5)

We now need to measure the coefficient Γabs. To do so, we measure the
spectral shift of the resonance just before the bistable jump as a function of the
power coupled in the cavity. At the bistable jump, we know that the laser is
exactly resonant. From the CMT model of Chapter 2 (Eq.2.41 with δ = 0), we
know that the fraction of pump energy coupled in the mode is:

W = |a|2 =
4κ

(Γ + κ)2
P (4.6)

This allows us to plot the maximum spectral shift as a function of the energy
inside the cavity, represented in Fig.4.4a). Knowing the thermal capacitance of
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Figure 4.4: a) Measured spectral red-detuning as a function of the energy inside
the cavity. b) Estimation of the corresponding absorption rate. We see a nonlin-
ear dependence indicating nonlinear absorption that takes over when more than
30 fJ are injected in the cavity.
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the resonator it is possible to infer the dissipated power, hence the absorption
rate. By definition,

∆T = RthPdiss (4.7)

Hence, the dissipated power can be extrapolated through:

Pdiss =
∆T

Rth

=
1

Rth

(
∂ν

∂T
)−1 ∂ν

∂P
P (4.8)

For suspended InGaP PhC membranes (same thickness of 190 nm) , Rth =

21W−1Km (calculated in Ref.[121]) and the coefficient ∂ν
∂T

= −10.8GHz/K

(measured in Ref.[120]). This gives the relation:

Γabs =
Pdiss
|a|2

=
1

Rth

(
∂ν

∂T
)−1 ∂ν

∂P

(Γ + κ)2

4κ
(4.9)

The maximal spectral shift at different power level is plotted in Fig.4.4a). If
the losses were linear, we would expect a straight line. We see a deviation indi-
cating the presence of nonlinear absorption. The corresponding Γabs are shown
in Figure 4.4b). It suggests that nonlinear absorption (three photon absorption
3PA) is taking over at some point. From the fit it is possible to infer the energy at
which linear and nonlinear absorption are comparable, namely 30 fJ. This value
agrees well with the model (Eq.2.86). Indeed, the 3PA coefficient for InGaP is
6 × 10−26[133] and the 3PA volume is calculated to be V −2

3PA = 2 × 10−37m6.
Hence the linear and nonlinear absorption are comparable when Γ3PAW

2 = Γabs

which gives the value W = 22fJ .

4.2.3 Effective temperature of the mode

As in Ref. [98], we introduce an effective mode temperature ∆Teff that represents
the temperature averaged over the mode profile in a cavity that is locally heated
by an inhomogenous ∆T (r).

∆Teff =

∫
∆T (r)ε(r)|E(r)|2d3r∫

ε(r)|E(r)|2d3r

which relates to the spectral shift of the resonance through the thermo-optic
coefficient of the material with the relation:

∆ω = ∆Teff
dω

dT
(4.10)

∆Teff is specific of each mode, depending on the spatial overlap of the optical
and temperature fields. This leads to a differential thermo-refractive effect which
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is exploited to tune the mutual mode spacing. This effect can be estimated
solving the heat equation considering 40×20µm2 InGaP membrane bordered by
a thermal sink and N2 atmosphere. An uniform averaged thermal conductivity
κ is assumed.

κ(x, y, z)∇T +Q = 0 (4.11)

The source termQ is defined by the dissipation in mode 0 (pump). We neglect
the inhomogeneity due to the holes because the diffusion length is one order of
magnitude larger than the photonic crystal lattice constant. The elevation of
temperature in the longitudinal axis of the cavity is represented in Fig.4.5 when
the first order mode is pumped, alongside the spatial repartition of the energy
density of the 3 first modes. Assuming the dissipation rate Γabs is the same for
all modes, the differential thermo-refractive effect, i.e. the relative thermal shift
between mode i and the pump mode 0 is deduced as the ratio ∆Teff,i/∆Teff,0,
hence:

α0,−

α0,0

= 0.9

α0,+

α0,0

= 0.75

These coefficients are defined in Chapter 2 as the cross-thermal coefficient. They
corresponds to the slope of the mode shifting for modes (+,-) in Fig.4.2a). Ex-
periments show slightly smaller values (0.9 and 0.62 respectively), which could
be explained by the simplifications made in the model, in particular neglecting
nonlinear absorption. Moreover, the difference between the two experimental
values suggests that there is a nonlinear contribution to the absorption which
depends on the operating conditions. The thermal model presented here is too
simplistic to explain this phenomenon but it shows that it is possible to tune the
modes.

4.2.4 Modeling FWM in the cavity

We have estimated the linear characteristics and the thermal coefficients. We
can now use these parameters to simulate the stimulated FWM of a cavity .
The master equation (2.36) is solved in the undepleted pump approximation
e.g. Eq.(2.40), Eqs.(2.62) and (2.63) and the parameters used are listed in Table
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Figure 4.5: a) In black, normalized temperature profile along the longitudinal
axis of the cavity when the first order mode (blue curve) is pumped. The spatial
overlap with the mode 0 (red) and 2 (green) is different, leading to different
effective mode temperature.

B.1 of Annex B. They correspond to the cavities that will be experimentally
investigated.
The first one is labeled Cavity #27. It has an average Qavg = 64000 and initial
cavity dispersion ∆ωcold/2π = 25GHz. The calculated map of the nonlinear effi-
ciency as a function of the pump and probe detuning is represented in Fig.4.6a).
When the pump detuning increases, we see two local maxima gradually merging
into an absolute maximum corresponding to a perfectly aligned cavity. With
these cavity parameters, and ∆0/2π = −113GHz, ηmax = −24.8dB. Larger
values of the pump detuning lead to the separation of this maxima again,
meaning that FWM is no longer triply resonant. The cavity dispersion has been
tuned too far from the frequency matching point. Consequently, the nonlinear
efficiency drops rapidly. The second one is labeled Cavity #18. It starts
with a larger initial detuning ∆ωcold/2π = 34GHz, and with larger Q factors,
Qavg = 120000. The calculated nonlinear efficiency is shown in Fig.4.7a). We see
that it requires a lot more pump detuning to align the cavity, which occurs at
∆0/2π = −432GHz. However, the larger Q factors allow to reach a much larger
ηmax = −5.8dB. The calculated spontaneous power is shown in Fig.4.7b). It
represents the optical power radiated by the cavity. We see that the maximum
reaches 150 pW for mode (+) and 50 pW for mode (-). This is due to different
escape efficiencies, as defined in Eq.2.81. The maxima are reached for the same
pump detuning as for the stimulated case, when the cavity is triply resonant.
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These specific cavities do not possess Q factor high enough to reach parametric
oscillation, but the model predicts that the thermal tuning enables to reach the
maximal efficiency possible in each case. This will provide a basis to compare
the experiment in order to validate the model.
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Figure 4.6: Cavity 27 a) Calculated map of the nonlinear efficiency of stimulated
FWM as a function of the probe detuning and the pump detuning. The calculated
rise of effective temperature of the pump mode is shown on the top axis.
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Figure 4.7: Cavity 18 a) Calculated map of the nonlinear efficiency of stimulated
FWM as a function of the probe detuning and the pump detuning. b) Calculated
spontaneous FWM power as a function of the pump detuning
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Figure 4.8: a) Experimental setup for stimulated FWM performed with two
narrow linewidth (< 0.1MHz), mode-hop free tunable semiconductor lasers.
They are combined before being injected in the sample. The output is sent in an
Optical Spectrum Analyzer. All fiber components are polarization maintaining.

4.3 FWM in Bichromatic cavity

4.3.1 Experimental Setup

Once we have established that it is possible to bring the cavity into a triply
resonant configuration, we now investigate experimentally the impact on the ef-
ficiency of FWM. We start with a setup for stimulated FWM, as it is easier to
observe with low efficiency.
The experimental setup is pictured in Fig.4.8. Stimulated experiment are per-
formed using two continuous wave tunable lasers, Santec TSL510 and Keysight
81606A. Here, the setup stays the same compared to the thermal pulling measure-
ment, except that the OCT is replaced by a simple tunable laser. The sources are
combined using a 90/10 coupler. The 10% output is used to monitor the power
level as we described in the section above. The sample support is made of Copper
and is thermally stabilized, same as for the linear measurements. The output
of the circulator is connected to an optical spectrum analyzer (OSA, Yokogawa
AQ6370). This OSA has a pW sensitivity with a noise floor of -80 dBm. In this
particular setup, all the fiber components are polarization maintaining, which
was not the case for the OCT. During all the measurements for the bichromatic
cavities, the power level from the laser output is always below 10 mW CW, there-
fore FWM and other nonlinear effects are negligible both in the fibers and in the
PhC waveguide. This power level is reachable directly with the output of the
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laser. The absence of amplifier simplifies the experiment as no optical bandpass
filters are used to ensure that the pump and probe have a narrow linewidth.

4.3.2 Extraction of the nonlinear efficiency

In the stimulated regime, the measure is separated in three steps. First, a low-
power (few µW ) scan is made to locate the cold cavity resonances. A symmetric
dip in the reflection spectra is observed, consistently with the absence of thermal
nonlinearity. This step gives the "cold" cavity dispersion.
Then, the pump power is switched into its nominal value of few mW. Its frequency
is gradually red-detuned. The cavity frequency, locked to the laser frequency, is
thermally pulled until the bistability jump occurs as can be seen in Fig.4.1.
The recorded output power has a triangular shape, and this allows to locate
the resonant frequency when the mode is pumped. This step gives the value of
the "hot" pump frequency, and gives the maximum detuning for a given pump
power.
Finally, the second tunable laser is turned on with a power at least 20 dB below
the pump level. Starting form the "cold" resonance, the pump frequency is red-
detuned step-by-step, and for each pump frequency, the signal is swept across the
two sidebands. An optical spectrum is acquired for each combination of pump
and probe settings. The measurement gives 3 power levels. The pump power
is checked to see whether it is still resonant, as it is possible that mechanical
vibrations kill the coupling. If the coupling is lost at some point , the whole
procedure needs to be restarted, e.g. the thermal pulling from the "cold" values.
We recall that the efficiency of the stimulated FWM is defined as:

η = 10log10(
Pi,out
Ps,in

) (4.12)

The power level are directly measured from the OSA spectra, assuming that cou-
pling losses are equal for signal and idler. The minimal resolution of the OSA
is 4 GHz, which is much larger than the laser linewidth or the cavity resonance
linewidth. As a result, it is a good approximation to take the maximum peak
power level, because it corresponds to an optical power that has already been
integrated on a larger bandwidth than the signal itself. In these measurements,
the OSA is used as a power-meter on frequency span equal to its resolution.
Reducing the resolution of the OSA (down to 100 GHz for some measurements)
gave the same value of η as expected, but allowed a much faster measurement.
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resonance

Figure 4.9: a) 3D map showing efficient stimulated FWM consisting in the con-
catenation of OSA trace for different probe detuning . The resonant nature of
the FWM is highlighted. The power axis is expressed in dBm, and the frequency
axis zeros are set by the detuning regarfding the pump ω0 and the idler detuning
to its hot frequency δ.

The signal power level is taken when the probe is off resonance, under the as-
sumption that is light is totally reflected at the end of the access waveguide.
Observation of stimulated FWM is shown in Fig.4.9. On this example, the cavity
has an average Q = 1.2× 105 and the pump power level is 80 µW. In this figure,
the pump detuning is fixed and we see that the pump power level is constant,
showing a stable coupling. The parameter varying here is the probe frequency
that is swept across the higher order mode, ω+. The off resonance power level
is indicated by the black arrow, at -34.7 dBm. The red arrow on the probe side
shows a dip in the power level, showing that the signal is at resonance. Simulta-
neously, the idler level is rising up to -40.5 dBm. This corresponds to a nonlinear
efficiency η = −5.8dB.

4.3.3 Comparison with the theoretical model : scaling with

the Q factor

The nonlinear efficiency shown in Fig.4.9 is already close to the oscillation
threshold thanks to a relatively high Q-factor. Because the idler peak is built
fast, a study of the cavity dynamics is difficult as each detuning step induces
large changes.
Stimulated FWM is in this section, carried in the two different cavities that
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Figure 4.10: a) Superposition of two spectra extracted from 4.9. In blue, the
probe is off resonant. In red, it is tuned into resonance, triggering FWM with
an idler peak observed at -40 dBm. b) Evolution of the signal and idler power
level as a function of the probe detuning δ when the cavity is aligned in a triply
resonant configuration.

were simulated in Section 4.2.4. The cavity #27 has the lowest Q which
corresponds to the highest FWM bandwidth. The original detuning of the
cavity is ∆χ = 25.2GHz and the Q factor of the targeted modes (0, - , + ) are
respectively 67 000, 71 000 and 48 000. The on-chip pump power is set at 700
µW and the signal level is 20 dB lower. The measurement of the FSR of the
modes from the OSA spectra are shown in the inset of Fig.4.11. We infer that
the cavity is triply resonant when the pump mode is detuned by 110 GHz. The
FSR are then equal to 345 GHz.

The extracted nonlinear efficiencies are shown in Fig.4.11a) as a function
of the pump and probe detuning. The scaling is in % in order to illustrate
the resonant enhancement. The colored curves of Fig.4.11a) are plotted in
Fig.4.11b) in log scale. We are able to observe stimulated FWM when the
pump is pulled on a span of about 40 GHz. At low efficiency, corresponding
to the purple and green curves, ηχ has two peaks, which corresponds to the
product of the Lorentzian function predicted in the model. It means that the
cavity is not perfectly aligned and the resonances linewidths are large enough
to permit FWM. These two peaks gradually merge up to one single maximum
(red curve) corresponding to the maximum efficiency of ηχ = −25dB, when the
cavity is triply resonant. They are separated back when the pump is further

CHAPTER 4. FOUR WAVE MIXING IN PHC CAVITIES 100



Figure 4.11: a) Nonlinear Efficiency as a function of the pump detuning ∆0 and
the probe detuning δ. The scale is linear to emphasize the impact of resonant
enhancement. Inset: evolution of the corresponding FSR for the triplet of res-
onance. The slope of the dashed grey lines gives the thermo-optic coefficients
of respectively 0.8972 and 0.6228 for the modes (-) and (+) . b) Comparison
with the model, in black line, for the colored lines of the 3D plot. c) Maximum
efficiency observed for each detuning of the pump, when the probe is either on
the higher or lower order mode. The prediction of the model is showed with the
black line.
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Figure 4.12: a) Measurement of the stimulated FWM efficiency for resonator with
Qavg = 1.2×105 as a function of the probe detuning δ and b) the pump detuning
∆0. The prediction of the model is represented in solid line. The background,
higher than the noise floor indicates the presence of spontaneous FWM

detuned, up to skill the FWM process when ∆0 = −130GHz. The black lines
on Fig.4.11b) are the prediction of the model where we have extracted the cavity
parameters from the thermal pulling measurement represented in Fig.4.6. The
only parameter adjusted in the model is the pump power which has been set to
800 µW in the model. The thermo-optic coefficient of the pump was set as a
fitting parameter and the difference with the experimental value is about 3% .
Fig.4.11c) shows the maximum value obtained for each pump detuning ∆0 when
the probe is tuned alternatively on the ‘-” and on the “+” eigenfrequency. From
the model, we expected a symmetrical curve, that is effectively obtained here,
in agreement with the theory prediction, represented in solid black line.

The procedure is repeated with the cavity #18. It has a larger average Q
factor (Q = 1.2 × 105) and initial mismatch ∆ωcold = 33.9GHz . Again, quan-
titative agreement with theory is obtained as shown in Fig.4.12a) and b). The
theoretical lines are extracted from the model presented in Fig.4.7a). As ex-
pected, we see a drastic improvement of the efficiency that rises up to 26 % (–
5.8 dB) with an on chip pump power of 80 µW. Fig.4.12b) also shows that the
theory predicts well the efficiency level when the probe is switched on the mode
(+) and (-). We note a higher background when the cavity is triply resonant as
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presented in Fig.4.12a) which is induces a little discrepancy, due to the presence
of spontaneous FWM.
From these experiments, we can conclude that we are able to exploit the thermal
tuning technique to systematically reach the theoretical maximum value of ηχ
allowed by the cavity, being only limited by its modal volume and Q factors.
These experiments are also validating the approximation that we made to de-
scribe the cavity, in particular to neglect SPM and XPM over the thermo-optic
effect.

4.3.4 Observation of spontaneous FWM

The properties of non-classical light generated through the spontaneous FWM
process can be characterized indirectly from the measurement of the stimulated
FWM[134]. In particular, the power level of the spontaneous emission has been
calculated for ring resonators and shown to be related to the classical formula
for the stimulated FWM. In the chapter 2, we adapted this relation for any type
of cavity. We recall that one of the major modification was the introduction of a
factor κ/(Γ +κ) representing the fraction of internally generated pairs which are
not lost due to internal losses. It implies that the emission rate from each mode
is in general different.
Spontaneous FWM experiment are carried out by turning the probe laser off. A
spectrum is recorded for each detuning of the pump ∆0. For this measurement,
the cavity #18 that was used to obtain ηχ = −5.8dB is studied. Linear mea-
surements show that the mode “0” (pump) needs to be pulled by 430 GHz until
∆ωh = 0 with an on-chip power level of 700 µW .
Fig.4.13a) ,b) shows the raw OSA traces when ∆0 is varied. As the pump offset
is adjusted close to -430 GHz, the spontaneous emission is easily measured from
the “+” and “-” modes. Let us note that no optical band-pass filter is used here
due to the absence of amplification stage. In addition, the spontaneous emission
rate is large enough to be measured with the same OSA that was used for stim-
ulated FWM. The pump level is here below 1 mW, which compatible with the
dynamic range of the OSA. As a result, spontaneous and stimulated FWM can
be compared with the same sources and detectors, which prevents the need for
any relative calibration.
The power level of the spontaneous emission is extracted from the raw measure-
ments and plotted as a function of the pump offset∆0 in Fig. 4.13. The agreement
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with the theory of Fig.4.7b), shown in black lines, is very good. The maximum
spontaneous FWM power measured at the OSA from the mode "+" is about
30 pW (150 pW on chip when considering the insertion losses), corresponding
to an on-chip rate of about 1 GHz. It is to be noted that spontaneous FWM
is responsible for the high background in Fig. 4.13a). The predicted stimulated
efficiency can be deduced from these spontaneous measurement. We approxi-
mated this relation in Chapter 2 Eq.2.72 where the spontaneous power is linked
to the maximum efficiency ηmax. Adjusting the pump power to 760µW gives
a theoretical result of ηmax = −6dB, which is very close to what we obtained
experimentally. The corresponding generation rate for the outcoupled photons
is 0.35 GHz for the mode (-) and 1.1 GHz for the mode (+). Remarkably, the
pump power is only 60 dB higher than the generated pair power owing to the
very high efficiency of the parametric process. This is of particular interest when
on-chip filtering is needed.
Finally, let us note that we could observe spontaneous FWM in the cavity #27

with lower Q factors. However, the detected spontaneous power level was at the
limit of sensitivity for the OSA so a comparison with the model was not possible.
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Figure 4.13: a) Raw spectrum (resolution is 100 GHz) of the spontaneous emis-
sion (+, -) the pump (0); the noise floor is represented by the shaded area (-83.5
dBm) (b) Raw spectra as a function of the pump offset represented by a false-
color map. The dashed line corresponds to the plot in (a). The origin of the
bottom axis is the cold resonance of the pump c) Spontaneous FWM on the
Stokes and anti-Stokes side as a function of the pump offset. The solid lines are
the theoretical predictions accounting 7dB insertion loss.
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4.3.5 Observation of parametric oscillation in PhC

In the previous samples, parametric oscillation is not observed, meaning that
the maximum realizable parametric gain is not sufficient to compensate for
cavity loss. This value is entirely determined by the cavity optical properties
(Q, mode volume, nonlinear cross-section, material nonlinearity) and the pump
power level required to align the three modes. Its value is therefore unique for
each triplet of modes. Eventually, parametric oscillation is demonstrated for a
resonator with Qavg ≈ 2.5× 105 . The sample is pumped with an on-chip power
level below 200 µW, which is enough to align a triplet of adjacent resonances.
The initial value of the pump frequency is 195.794 THz, and red-detuned to align
the cavity. As the pump offset ∆0/2π < −170 GHz, the red ω− and blue ω+

signals emerge from noise (-73 dBm = 50 pW), as can shown in Fig.4.14. When
approaching -175 GHz, they abruptly increase by four orders of magnitude, a
clear indication of an oscillation threshold.

OPOs are generally characterized with the threshold power. This can be
difficult in our case, as we cannot define a power injected in the cavity but an
energy injected inside the cavity, with a constant pump power in the waveguide.
It is nonetheless possible to define an equivalent power to the energy stored in
the cavity. As we discussed, the pump offset is, to a good approximation directly
proportional to the energy stored in the pump mode as the spectral shift is
induced by linear absorption. The cavity resonance is then locked to the laser
pump frequency, meaning that the relative detuning between the two is lower
than the resonance linewidth. Because we pull resonances that are typically
thinner than 1 GHz on a span ranging from tens to hundred GHz, we can make
the approximation that the "hot" frequency of the cavity is equal the frequency
of the pump laser:

ωh − ωcold ≈ ωp − ωcold (4.13)

The maximum energy inside the cavity corresponds to the case where the laser
is resonant e.g. ωp = ωh with a strict equality here. Experimentally, this is the
frequency of the pump at which we observe the thermal bistability. Hence, we
can approximate the energy of the cavity for any detuning of the pump by:

|a(ωh)|2 = max(|a|2)
(ωh − ωcold)

(ωbist − ωcold)
(4.14)

The maximum max(|a|2) = 4κ
(Γ+κ)2

P . We can now define an equivalent power
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circulating in the cavity as:

Pc,0 = |a|2 (Γ + κ)2

4κ
(4.15)

With this, the result can be plotted in a more familiar representation by
estimating an equivalent pump power circulating in the cavity Pc,0 in Fig.4.15.
Above threshold Pc,0 > Pth = 175µW , the on-chip generated power increases
linearly with Pc,0 − Pth. The threshold expected from our model is 170 µW.
The slope efficiency of each mode is respectively dP−/dP0 = 0.2 and dP+/dP0 =

0.34 More than 50% of the excess pump power is converted.
As the detuning is further increased, the parametric oscillation shuts off at ∆0/2π

= -183GHz, although the pump mode is still on resonance. The cavity is now
misaligned. Cascaded FWM is unlikely to be resonant on all 4 cavity modes. No
other mode appears to be involved in a parametric process, as we assumed in the
theoretical model.
The energy inside the cavity is measured following the method described in Sec-
tion 4.2.2, and estimated at W = 48fJ . 3PA is stronger than linear absorption
at this level of energy, the limit case being measured at W = 30fJ . Because we
could observe parametric oscillation at the expected power level, we infer that
3PA, in this case, displaced the point where frequency matching occurs, without
degrading the Q factors of the cavity.
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Figure 4.14: a) Parametric oscillation: raw optical spectrum ( resolution 4 GHz,
centered at the pump frequency) as the pump offset is changed. The threshold
is overcome as the intra-cavity pump energy increases. Markers represent the
raw power on the red and blue side, solid black line is the spectrum at maximum
OPO emission;

140 150 160 170 180 190

Figure 4.15: a) On-chip power in the blue ω+ and red ω−(markers) as
a function of the pump offset and equivalent pump power in the cavity
Pc,0withathresholdof175µW. The solid lines indicate the slope efficiency of re-
spectively 0.34 and 0.2 for the modes (+) and (-)
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Figure 4.16: a) Experimental setup for nonlinear conversion measurements. TLS
= Tunable Laser Source, EDFA = Erbium Doped Fiber Amplifier, OSA = Op-
tical Spectrum Analyzer.

4.4 FWM in hybrid PhC on SOI

4.4.1 Experimental Setup

We now perform FWM experiment in our cavities on SOI. These cavities
are accessed through a silicon waveguide, which is coupled to the outside
via grating couplers. Hence, assuming same losses in the input and output
gratings, the insertion losses are measured by dividing the total transmission
by 2. Of course, the measurement is performed out of resonance. Due to an
un-optimized grating design, the insertion losses typically reach a quite signifi-
cant value of -17 dB to - 25 dB, meaning that each grating causes -8.5 to -12.5 dB.

The nonlinear measurements are performed using a cavity with a FWHM
of 5 µm (total length of 60 µm). The interacting modes have a loaded Q
factor of 97 000, 35 000 and 76 000 respectfully for the idler, pump and signal
modes. It corresponds to an average Q, Qavg = 55 000. The misalgnement
of this triplet is 33.1 GHz. The pump has a lower Q factor because it is
over-coupled to the waveguide, whereas the idler and pump are closer to the
critical coupling. As shown in Fig. 4.16, the same two continuous (CW)
tunable laser sources are used to provide the pump and signal, combined with
a 90/10 coupler. The major difference compared to the suspended membranes
is the need for amplification by an Erbium doped fiber amplifier (EDFA),
followed by a bandpass filter. The insertion losses of this specific waveguide are
estimated off resonance to be about -12.5 dB per grating coupler. At the out-
put of the waveguide, we use again the same OSA to record the output spectrum.
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4.4.2 Observation of stimulated FWM

We use the same thermal tuning as detailed for the suspended membranes. The
main issue here is that the extent to what the pump mode can be pulled is
limited by the bandwidth of the filter, hence the initial misalignment that can
be compensated for. This technical limitation prevents a full thermal study as
we did for the suspended membranes as well as it limits the range of cavities
that are suitable for the experiment. The bigger thermal dissipation due to the
bonding to silica tends to make the cross-thermo optic coefficients uniform which
is another obstacle for the thermal tuning technique.
As seen in Fig4.17, when the signal is off-resonance, no idler peak is observed,
disqualifying nonlinear generation in the Si waveguide. When the signal is tuned
closer to resonance, we observe a dip in its transmitted power as expected. Si-
multaneously, an idler sideband is generated and reaches a maximum 13 dB
above the noise floor when the signal is at resonance (see Fig. 4.17a)). From this
observation, we can conclude that resonant wavelength conversion occurs in the
nanobeam.
As we did for the suspended membrane, the nonlinear efficiency is estimated by
taking the ratio of the maximum idler power over the transmitted signal power
off resonance. However, because the cavity is symmetric with respect to the Si
waveguide, the emission of the generated idler is supposed to be the same in
the two direction of the waveguide. Thus, we must add 3 dB to the maximum
idler power, which brings the total maximum on-chip efficiency up to – 12 dB
for an estimated 3.16 mW pump power coupled in the SOI waveguide, as can be
seen in Fig. 4.17b). By taking into account the nonlinear volume of the cavity,
VFWM= 40

(
λ
n

)3, the maximum theoretical efficiency for the injected pump is
calculated to be ηth = -3 dB. The discrepancy is about one order of magnitude in
comparison to the measured value. This difference can be in part attributed to
the nonlinear absorption (3PA) that could start to degrade the Q factors at such
power level. This is not a certainty because we could not characterize the behav-
ior of the cavity when it is thermally tuned. Hence we do not know yet if some
specific effect occurs that would lower the nonlinear efficiency. This question is
to be answered in future works on the nanobeam platform.
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Figure 4.17: a) Map of the power intensity recorded for a fixed pump and a
signal frequency ωs/2π sweeping from 192.910 THz to 192.892 THz b) Extracted
signal and idler power as a function of the position of the signal frequency ωs/2π
relatively to its resonance ω+,h.

4.5 Discussion of the results

4.5.1 Wavelength conversion in integrated platform

Before talking about parametric oscillation, we can place the result of both the
nanobeam and bichromatic in the context of nonlinear frequency conversion in
integrated devices and photonic crystals. For this, we add two new lines in the
Table 1.2 of Chapter 1 comparing continuous FWM in PhC cavities. As can
be seen in this updated Table 4.1, the results that we have obtained using the
thermal tuning technique constitutes a record in term of absolute conversion ef-
ficiency compared to the previous record without tuning[92].
The study on the nanobeam cavity suffered from the poor coupling that we could
obtain on the candidate cavities. We see that there is a lot of room for improve-
ment here. Depending the application targeted, it still is a promising platform as
it has two main advantages over the suspended membranes: the bonded struc-
ture can be more easily protected by dielectric encapsulation, and it can also
withstand more optical power[135].
We can also see the advantage of a PhC structure when comparing to ring res-
onators in Table 4.2. The hybrid nanobeam cavity is comparable in terms of
conversion efficiency with state of the art ring-based system, i.e. rings made in a
thin AlGaAs layer bonded on SiO2/Si [32]. Despite a weaker nonlinear material
(n2(AlGaAs) = 2.6 × 10−18m2.W−1), the same efficiency is achieved with less

CHAPTER 4. FOUR WAVE MIXING IN PHC CAVITIES 111



than twice the optical power on a much smaller footprint. It is a clear demon-
stration that PhC cavities can allow a larger conversion efficiency than in ring
resonators for the same Q and input power due to their ability to confine light
in a smaller volume.

Very importantly, the hybrid system also allows excellent insertion and
collection of light in and out of the cavity as well as improved heat sinking com-
pared to air bridged PhCs [135]. For these reasons, it is possible to insert higher
power levels in the cavities that could induce a higher conversion efficiency.
Indeed, in the other systems, the input power giving the maximum efficiency
is limited by TPA in Si-based structures and/or by heat sinking in air-bridged
ones. A more in-depth study of the impact of 3PA should be undertaken to
see if this is the limiting factor for InGaP nanobeam. The performance of our
device is reported on Table 4.2 together with that of ring resonators. The hybrid
nanobeam cavity is comparable in terms of conversion efficiency with state
of the art ring-based system, i.e. rings made in a thin AlGaAs layer bonded
on SiO2/Si [32], but the result is obtained for a weaker pump power within a
footprint which is 30 times smaller. It is a clear demonstration that PhC cavities
can allow a larger conversion efficiency than in ring resonators for the same Q
and input power due to their ability to confine light in a smaller volume.
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Geometry Material Qavg On Chip power (µW) ηNL (dB) Ref.

1D PhC (3 coupled cavities) Si 4000 60 -55 [90]
2D PhC CROW Si 600 000 100 -35 [91]
2D PhC CROW InGaP 70 000 36 -24 [92]

Nanobeam InGaP 55 000 3160 -12 This work
Bichromatic InGaP 120 000 80 -5.8 This work

Table 4.1: Comparison of continuous wave FWM nonlinear efficiency conversion
in PhC cavities. (CROW: Coupled Resonators Optical Waveguide)

Geometry Material Qavg On Chip power (µW) ηNL(dB) Footprint (µm2) Ref.

Ring Hydrex 106 6160 -26 5730 [136]
Ring Si - graphene 9000 8000 -37 314 [137]

Ring-CROW Si x 100 000 -21 4140 [138]
Ring AlGaAsOI 44 000 7000 -12 929 [32]

PhC on SOI InGaP 55 000 3160 -12 39 This work

Table 4.2: Comparison of continuous wave FWM nonlinear efficiency conversion
in integrated devices. (CROW: Coupled Resonators Optical Waveguide)

4.5.2 Parametric oscillation in integrated platform

In a similar way, the performance of the PhC OPO is already comparable to that
of recently demonstrated semiconductor microring and racetrack OPOs which ex-
hibits power thresholds between 30 µW and 25 mW, as shown in Fig.4.18. The
very low power threshold of the PhC OPO results from the strong confinement of
the interacting modes, the large nonlinearity of semiconductors and a moderately
large Q factor. The mode volumes of about 0.2µm3, are 150 times smaller than in
ring resonators with comparable FSR 1. So far, lower power thresholds were ob-
served very recently[35] in AlGaAs based microring (36 µW), thanks to a larger
nonlinearity of the material, much higher Qs and a larger FSR. Lower values
(down to 5 µW) are only reported in non-integrated and non-semiconductor res-
onators that require highly optimized fabrication process[139] and second order
nonlinearity. Considering that current state-of-the art PhC cavities[77] exhibit
Q > 107, OPOs with power thresholds below the µW level can be realistically
considered.

1Vm = 30µm3 for FSR = 500 GHz[34] Considering the interaction volume Vχ = 5.7µm3,
this is still an order of magnitude smaller than Vχ,ring = 1.54× 2πAeffL = 50µm3.
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Figure 4.18: a) OPO pump threshold as a function of the averaged Q factor Qavg

measured in this work compared with state the art in microring and racetrack
resonators made of different materials

As we discussed in Chapter 1, the power threshold is not the only figure of merit
that needs to be considered in an OPO. The slope efficiency and the overall
energy efficiency transfer from the pump to the side modes are crucial when it
comes to practical application. In our case, the estimated total generated power,
when considering out-coupling loss (7dB) is about 5 µW leading to a conversion
efficiency which is about 2.5% of the coupled pump power. This value can be
compared to the one of 17 % very recently reported in AlN ring resonators[37],
which are operated at much larger power (10 mW) and exploit the χ(2) nonlin-
earity. However, the PhC OPO measured slope efficiency (signal+idler) is above
50%. It is limited by the escape efficiency, indicating that a much better overall
efficiency is possible by optimizing the coupling to the feeding waveguide without
changing the low threshold.
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4.5.3 Consideration on the footprint

Comparing the size and the scaling of a device can be difficult. Indeed, Footprint,
Mode Volume and Interaction volume are related but different concepts. The
footprint of the bichromatic resonator is here 20 × 6µm2, including coupling
waveguide. The minimal size of the PhC is set by the radiation losses limit,
namely the capacity of the PhC to block radiation leak such that the Q factor is
as large as the material and the fabrication allows. With this size, the radiation
limit for the first 3 modes is above Q > 106. We note that multiple resonators
could be packed to a minimal distance which is about half the footprint (hence
3µm on the side and 10 µm on the axis) without suffering from cross talk. This
should be compared with the footprint of a microring with corresponding FSR,
namely 430 GHz, which (scaling up the AlGaAs on Oxide ring in ref. [35]) leads
to diameter = 24µm× 1 THz/430 GHz = 55µm.
However, as far as light-matter and nonlinear interaction are concerned, the
mode volume and the nonlinear interaction volume Vχ should be considered.
In this case, the nonlinear volume of our cavity is 5.7 µm3, whereas Vχ,ring =

1.54 × 2πAeffL = 50µm3 for a ring with same FSR (500 GHz). The nonlinear
volume is deduced from the formula relating the oscillation power threshold to
Q factor and nonlinearity of the material. The interaction volume is one order
of magnitude smaller here. This explains why, despite a smaller nonlinearity,
n2(InGaP )/n2(AlGaAs) = 0.7/2.6 = 0.27, and smaller Q, (250k vs 1 M). A
fair comparison would entail the same Q factor, same material and same FSR.
For instance, a PhC cavity with FSR = 1 THz, the same as reported in Ref
[35], would be 10×5µm2 large approximately and the interaction volume will be
reduced accordingly, and so the power threshold.
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Conclusion

In this chapter, we have tackled the issue raised of structural disorder induced
by PhC the PhC fabrication flow with the introduction of a thermal tuning tech-
nique. This tuning takes advantage of the Hermite-Gauss-like modal structure
of our cavities to adjust the dispersion of the cavity. It is realized by thermally
pulling the pump with a thermo-refractive phenomenon up to the point where
the cavity is aligned. Due to the sign of the thermo-optic coefficient in InGaP,
the tuning method can only compensate for negative dispersion. Local heating
of the cavity could be used to replace the need for a tunable laser.
We then characterized the properties of our cavities to determine the thermo-
optic coefficients and the injected energy. These parameters, together with the
linear properties of the cavity determined in Chapter 3, allowed the modelling of
the thermal and nonlinear efficiency according to the model derived in Chapter
2.
FWM experiments were then conducted in both bichromatic and nanobeam cav-
ities with record high efficiencies. The measurements agree extremely well with
the simulation, and parametric oscillation was reached in the bichromatic cav-
ity with a threshold of 170µW, a value on par with state-of-art integrated ring
resonators. In the nanobeam platform, a nonlinear efficiency of -12 dB was
demonstrated. In this specific platform, there is a lot of room for improvement,
in particular regarding the coupling efficiency of the gratings. Indeed, silicon
gratings with coupling efficiency below -1 dB were recently demonstrated[140].
This could remove the need for amplification and considerably facilitate any fur-
ther study. However, this issue does not rule out the nanobeam as a viable
option because all these devices are meant to be integrated on chip together
with a source delivering few mW. Hence the out-coupling power of the signal
and idler is more interesting to improve, although we have seen that the PhC
OPO performs already very well regarding this aspect.
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Conclusion

The emergence for integrated photonics has largely been driven by the growing
demand for energy efficiency and compactness. Incidentally, this has greatly
favoured the renewal of consideration for nonlinear optical processes as essential
functions in on-chip signal processing and integrated quantum optics involve
such effects. Nonlinear interactions are triggered when a certain level of energy
density inside the device is reached. This threshold has become easier to attain
thanks to the progresses in material growth and micro-fabrication techniques
and the achievement of diffraction limited confinement. Whether in waveguides
or cavities, on-chip parametric processes have been widely studied and their
efficiency improved. When it comes to compare the different platforms, two
distinct aspects are to be taken care of. First, the performances of the material,
and second, the performances of the confining structure. In this work, we
limited the study to resonant χ(3) effects, and specifically Four Wave Mixing
with the aim to reach parametric oscillation. The trade-off here consists in
benefiting the enhancement of light-matter interaction provided by the cavity
with more flexibility in the design than it would have been with stronger but
more complicated to implement χ(2) effects (due to the much larger frequency
difference between pump and signal/idler) .
Silicon has very interesting optical properties, including a large refraction index
and nonlinear coefficient. However, they come with large nonlinear losses (TPA,
FCA) at telecom wavelength that compel sophisticated workaround when it
comes to parametric light generation (in a similar fashion as when it comes
to lasing). A variety of wide bandgap materials have been considered and
III-V materials are amongst the most promising one. Indeed, they combine
large linear and nonlinear index which allow strong confinement and strong
parametric interaction. InGaP was the material used in this work, but the same
approach could be adapted to other semiconductors.
The vast majority of parametric interaction in cavities is carried out in ring
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and race track resonators due to the easy dispersion control and high quality
factor they provide. Photonic crystals are an alternative solution for strong
light confinement in volumes close the the diffraction limit. Their confinement
mechanism based on multiple constructive reflections in a patterned lattice
allows extremely high Q/V ratio, but the same mechanism is very sensitive to
defect in the periodicity of the lattice. As a result, it has be very challenging
to engineer the dispersion of the cavity. The reported results prior to this work
yielded poor efficiencies. Yet the objectives of this thesis were to investigate the
possibility to overcome these limitations and exploit the promising properties of
PhC cavities.
The first step of this work was to correctly model the system using nonlinear
temporal coupled mode theory. The main difference with other resonators here,
is that the coupling and the thermo-optic coefficient of all the modes can be
very different. We also made the choice to neglect any other contribution than
the thermo-optic effect in the shifting of the dispersion of the cavity. Finally,
a correspondence between spontaneous and stimulated emission was proposed,
later on experimentally confirmed. With the range of parameters already
accessible in sate-of the-art PhC fabrication technology, parametric oscillation
was found to be already reachable on paper.
The second step was to actually design and fabricate a PhC cavity that
supports equally spaced mode and a high Q/V ratio. We proposed a solution
based on a parabolic potential for the electromagnetic field, in analogy wit
the quantum harmonic oscillator. The eigenfrequencies are equally distributed
while the Q factors remain radiation limited. This was realized in suspended
membranes concurrently to the beginning of this work, with the adaptation
of the Bichromatic design to multi-modal cavity, which I could replicate. A
different approach toward greater integrability was proposed with the realization
of hybrid structure: the nanobeam on SOI. Although arising from a different
reason, a parabolic potential also allows to have the right dispersion in these
cavities. Fabrication and characterization of the samples evidenced the control
over the coupling on these structures by varying the width and distance of
the silicon waveguide. We also showed that despite the design, fluctuations on
the targeted resonant frequencies were one order of magnitude larger than the
four wave mixing bandwidth authorized by the linewidth of the resonances. As
things stand, the fabricated devices could not be directly used for nonlinear
experiment.
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The last step before the aforementioned nonlinear experiment consisted in
tuning the dispersion of the cavity so that at least three modes became
equally spaced. The mechanism of dispersion tuning studied relies on the
non-homogeneous distribution of energy of the modes. It allows a differential
thermo-optic effect of the side modes when the pump mode is thermally locked
and detuned. As a result, we showed systematic alignment of three (and only
three) resonances provided that the original dispersion is anomalous (FSR
increasing with the frequency). Using this thermal technique, we were able to
validate the theoretical model describing the system in stimulated experiment
that already constituted a record high nonlinear conversion value (up to - 6 dB
in bichromatic and - 12 dB in nanobeam). When the Q factor was increased,
parametric oscillation was eventually reached with a sub-mW threshold (170
µW) already comparable with state-of-the art ring resonators., with a slope
efficiency above 50%.

The results presented in this thesis are the outcome of many research
years of works on PhC technology in the group. Several points of further
investigation could be addressed, among which we can mention:

• demonstrating OPO on a hybrid structure. The weak coupling efficiency
in the SOI waveguide compels the use of an EDFA, which complicates the
thermal tuning tuning (gain bandwidth of the EDFA, necessity to filter the
pump) but is not impossible. The better heat sinking of bonded structure
can also increase the power level for alignment. Hybrid bichromatic cavities
can also be considered.

• reduction of the losses in the hybrid structure. As we already mentioned,
the sputtered silicon dioxide layer is the current limit for Q factors in hybrid
structures. We investigated different solutions and baked HSQ provided
much better results. PhC cavities are still to be fabricated but we expect
a drastic improvement Q factors, that could be comparable to suspended
membranes.

• quantum light generation. In this work, we could only observe spontaneous
generation. A more detailed study on squeezing, heralded or entangled
photons would be interesting. The brightness of the source and large pump
rejection already observed, together with a possible engineered collection
rate, are as many factors that make PhC a good quantum source.
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• alternative tuning scheme. We have used the pump-induced heat to change
the dispersion of the cavity. A scheme with a fixed pump laser and local
electrical heaters could be imagined.

• can the system of coupled cavities tuned by a holographic pattern as in
[99] reach a triply resonant configuration? Here, the dispersive nature
of evanescent coupling in PhC cavities might be an issue for achieving a
perfectly aligned triplet[141].

Be that as it may, the thermal tuning technique opens exciting new pos-
sibilities to fully exploit the capacities of PhC nonlinear microcavities, and a
PhC based parametric source of light provides an interesting tool for future and
fruitful studies.
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Appendix A

Linear characterization with OCT

In this annex, we describe the Optical Coherent Tomography (OCT) setup that
is used for the linear characterization of the samples. This set-up has been
continuously improved at Thales[142] and was used to characterize PhC waveg-
uides[143] or cavities[120]. We start by detailing the optical setup, then how
to extract and analyze the complex spectrum. Finally, we will explain how to
correct the measurement of frequencies with a gas cell reference.

A.1 Principle of measurement

An OCT measurement is an interferometric measurement. Indeed, the quantity
that we aim to extract is the complex spectrum of the device and not only
the intensity. If we have access to the complex field, we can perform a Fourier
analysis that, supported by the adequate CMT model, allows us to retrieve both
the coupling and the intrinsic losses of the cavity.

A.2 OCT setup

The experimental setup is shown in Fig.A.1. It relies on a continuous wave
laser source (TSL Santec 510C) which is swept without mode hops to probe the
sample. The input is first separated in 2 channels by a 90/10 coupler: one to
the sample and one to a reference interferometer. The connections are made
to match the level of signal required at the detection end. In most cases, only
10% of the input power (corresponding to approximately 100 nW coupled to
the sample) is necessary. The Michelson reference interferometer has a fixed
unbalanced arm (δ = 5 m). Its purpose is the measurement of the instantaneous
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Figure A.1: a) OCT setup for the measurement of the complex reflection spec-
trum of the cavity b) OCT setup for the measurement of the complex transmis-
sion spectrum of the cavity. TLD: Tunable Laser Diode VOA: Variable Optical
Attenuator PC: Polarization Controller DUT: Device Under Test PD: Photode-
tector ADC: Analog To Digital Converter. The mirrors of the reference interfer-
ometer are Faraday Mirrors. The respective length of fiber are L1 = 8 m and L2

= 5 m

wavelength of the source generating as a clock signal for the acquisition of the
sample spectrum.
The interferometer that measures the sample characteristics is configured as
a Mach-Zender for transmission measurements and a Michelson for reflection
measurements. A variable optical attenuator is used at the output of the 90/10
coupler to adjust the power level. A second 90/10 coupler is used to split the
OCT probe to the sample and the reference arm. Both signals are recombined
thought a 50/50 beam splitter and connected to a balanced photodetector
for homodyne detection. The resulting signal is acquired by an ADC card
(AlazarTech 460).
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A.3 Fourier analysis of the signal

The light from the TSL constitutes the input for the system. Assuming a linear
frequency sweep ν(t) = ν0 + γt, the laser output can be written:

E(t) = E0e
ı2π[ν0+γ/2t]t] (A.1)

We consider only the signal in the main interferometer. This signal is split in the
two arms (labeled 1 and 2) of respective delay τ1 and τ2. In the second arm, the
signal is also multiplied by the transfer function of the cavity H(ν) = d(ν)eıφ(ν)

where φ(ν) is the complex phase and d(ν) is the complex amplitude that can
be, depending on the measurement:

d(ν) =

{
t(ν) if transmission measurement (side-coupled cavity only)
r(ν) if reflection measurement (side-coupled and single-ended cavity)

After recombination of the two arms, and assuming a perfect 50/50 beam
splitter, the detected signal is :

S(t) = |E(t− τ1)√
2

+H(ν)
E(t− τ2)√

2
|2

=
E2

0

2
(1 + |H(ν))|2 + 2Re[H(ν)eı2πγτt+ψ])

(A.2)

where τ = τ1 − τ2 is the delay between the two arms and ψ = 2ıπ(ν0τ +

γ/2(τ 2
1 − τ 2

2 )) is a phase constant.
The offset term 1+ |H(ν))|2 does not convey any information about the complex
spectrum, and is removed during the homodyne detection. Using the relation t =

(ν−ν0)/γ, one can express the fringes equation as a function of the instantaneous
frequency:

S(ν) = E2
0d(ν)cos(2πτν + φ(ν) + ψ′) (A.3)

with ψ′ = ψ − 2πν0τ the new phase constant. The fringes are modulated both
in amplitude and phase by the complex transfer function of the cavity. The
recorded interferogram is then inverse Fourier transform. A Hilbert transform is
then performed to remove the negative temporal components, which corresponds
to the mathematical operation:

R(t) = S(t) + sign(t)S(t) (A.4)
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A temporal filter is then applied, to remove the artifacts and the noise gen-
erated by the detector. Finally, the result is put back in the spectral domain
via another Fourier transform, which gives the complex transfer function of the
cavity. Let us note that the Hilbert and filter could be applied in the spectral
domain as well, but we chose the mathematically equivalent procedure explained
above, because it is easier to identify the artifacts in the temporal domain.

A.4 Interpretation of the measurement

Once we have extracted the complex transfer function, we have now to link it
to the characteristics of the cavity. To do so, we use the linear TCMT model
introduced in the Chapter 2. The transfer function expression depends on the
coupling scheme, side-ended or side-coupled.

A.4.1 Single-Ended cavity

In the single-ended scheme, there is no transmitted wave, the coupling in and
out is realized through the same waveguide portion. Hence, d(ν) = r(ν) is the
complex reflectivity of the cavity. It corresponds to exactly the same model as
in Eq.(2.15) recalled here:

∂ta = (−ıδ − Γ0 + κ

2
)a+ ı

√
κs (A.5)

The reflected wave is:
sr = s+ ı

√
κa (A.6)

The transfer function in reflection H(ν) = sr/s is expressed at steady state. The
complex amplitude is equal to :

a =
ı
√
γ

ıδ + Γ0+κ
2

s (A.7)

which yields:

H(ν) =
sr
s

= 1 +
ı
√
κa

s

=
2ıπν − z
2ıπν − p

(A.8)

where z = 2πıν0 + Γ0−κ
2

and p = 2πıν0 + ıΓ0+κ
2

are the zero and the pole of H(ν).
As we expected, the dip in the amplitude spectrum is maximal at resonance in
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the critical coupling regime (κ = Γ0) when the reflectivity reaches 0.
By definition, the group delay is linked to the phase of the complex transfer
function by the relation:

τg = − 1

2π

dφ(ν)

dν
= −Im

[
1

2πH(ν)

dH(ν)

dν

]
(A.9)

With a zero/pole expression like (Eq.(A.8)), the group delay yields

τg = Im(p− z)
(2πν)2 − Im(p)Im(z)

|2πν − p|2|2πν − z|2
(A.10)

This result can be applied with any transfer function written with a zero/pole
model.
In the single-ended case that we consider here, this expression at resonance (ν =

ν0) is:

τg =
4κ

κ2 − Γ2
0

(A.11)

It is interesting to note that depending on the coupling regime of the resonator,
the sign of the group delay is different: positive when κ > Γ0 and negative when
κ < Γ0. At critical coupling, when κ = Γ0, the group delay diverges.

A result of the measurement can be seen in Fig.A.2. In the top panel, we see
the reflectogram of a bichromatic cavity (commensurability parameter a’/a =
0.98). Around 190 THz (1580 nm), we see the dispersion of the PhC waveguide
near the band edge. Starting around 193 THz and up to 195 THz, we see the
resonance lines of the cavity. The dynamic of the measurement is 50 dB. The
first 4 resonances are shown in the bottom panel. The amplitude spectrum
allows to extract the total losses (loaded Q). Due to the dispersive nature of the
coupling with a PhC waveguide, the coupling regimes changes with the frequency,
from undercoupled (red) to overcoupled (orange) with a crossing to the critically
coupled resonance (green). The coupling regime is well predicted by the CMT
model and we observe the predicted change in the sign of the group delay.

A.4.2 Side-Coupled cavity

In the side-ended scheme, the cavity can emit light in both side of the waveguide.
Thus, both a transmission or reflection measurement are possible. If we assume
a symmetric system, the coupling/emission rate in each direction is κ/2 and the
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Figure A.2: a) Schematic of the bichromatic coupling configuration (reflection)
b) Spectrogram of the reflected signal of a bichromatic cavity and c) the com-
plex spectrum with the group delay and amplitude showing the transition from
undercoupled to overcoupled regime. The grey shaded area is a defect in the
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total coupling rate is still κ. The TCMT equation are modified accordingly:

∂ta = (−ıδ − Γ0 + κ

2
)a+ ı

√
κ

2
s (A.12)

The reflected and transmitted waves, respectively labeled sr and st are:

st = s+ ı

√
κ

2
a (A.13)

sr = ı

√
κ

2
a (A.14)

The transfer function can be either in transmission (noted Ht(ν)) or in reflection
(noted Hr(ν)).

Ht(ν) =
st
s

= 1 +
ı
√

κ
2
a

s
=

2ıπν − z
2ıπν − p

Hr(ν) =
sr
s

=
ı
√

κ
2
a

s
=

ıκ/2

2ıπν − p

(A.15)

with z = 2πν0 + ıΓ0

2
and p = 2πν0 + ı(Γ0+κ)

2
. The minimum amplitude is once

again reached at critical coupling but the dip does not go to 0 but to 25% of the
transmitted signal.

The group delay at resonance is :

τg(t) =
−2κ

Γ0(Γ0 + κ)

τg(r) =
2

Γ0 + κ

(A.16)

In the side-coupled configuration, the group delay is always of the same sign
regardless of the coupling regime for both the transmission and reflection
measurement.

An example of measurement in transmission of a hybrid nanobeam is shown
in Fig.A.3. We do not see the dispersion of the waveguide here, and the coupling
is not dispersive. We can see the transmission window of the grating that starts
around 186 THz. The complex phase and amplitude spectrum are displayed in
A.3b) and we see that the group delay is always negative. An example of fit with
the zero/pole model is shown in A.3c), where the resonance frequency is identified
at 190.5715 THz. The loss rates are κ/2π = 7.5GHz and Γ0/2π = 5.8GHz

(Q0 = 207000 and Qc = 163000 ). This cavity is slightly overcoupled, near the
critical regime.

APPENDIX A. LINEAR CHARACTERIZATION WITH OCT 130



189.5 190 190.5 191 191.5 192 192.5 193 193.5
−1

−0.5

0

0.5

1

G
ro

up
 d

el
ay

 (
ns

)

189.5 190 190.5 191 191.5 192 192.5 193 193.5
0

0.2

0.4

0.6

0.8

1

Frequency ν (THz)

T
ra

ns
m

itt
an

ce
|t|

2

In
ten

sity (d
B
)

−10 −5 0 5 10
−0.3

−0.2

−0.1

0

0.1

τ g
(n

s)

−10 −5 0 5 10
0

0.5

1

T
ra

ns
m

itt
an

ce
|t|

2

ν−ν
0

(GHz)

a) b)

c)

Figure A.3: a) Spectrogram of the transmitted signal of a 12 µm-FWHM
nanobeam on a 550 nm-wide waveguide and b) the complex spectrum with the
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(black dots) for a resonance measured at ν0 =190.5715 THz, Q0 = 207 000 and
Q = 90 000

APPENDIX A. LINEAR CHARACTERIZATION WITH OCT 131



A.5 Precision of the frequency measurement

The relative and absolute precision of the measurement depends on several fac-
tors. First, the reference interferometer defines the spectral resolution because
it is used as a trigger signal for sampling the main interferometer pattern. In
our case, the spectral resolution is related to the count of fringes in the reference
interferometer:

δν =
c

2nδ
= 20MHz (A.17)

where δ is the length of additional fiber in the unbalanced arm (δ = 5 m).
Fluctuations of the polarization may also occur. This is why the interference
contrast is optimized by means of polarization controller before the measure-
ment. As a temperature drift could also cause a change in the measurement, the
sample is thermally controlled by a Peltier module. The sweeping speed of the
laser is typically of 7 nm/s and a full range scan over 150 nm lasts 22 seconds.
This measurement time is short enough to avoid the effects of a potential thermal
drift.
The sampling resolution is the lower limit to the relative precision (laser fre-
quency accuracy), which is the one important when measuring the dispersion of
the cavity. However, the dispersion in the fibered reference arm induces a dis-
tortion in the frequency scale. Besides, the frequency axis is given by the laser
setpoint which is accurate within 5 pm ( 600 MHz at telecom frequency). We
can increase the absolute precision of the measurement with an very well known
frequency reference. This is realized using a reference cyanide gas cell whose
absorption lines are known with a 0.2 pm absolute accuracy (25 MHz at telecom
frequency) as in Ref.[99]. The measured spectrum is shown in Fig.A.4a). This
measure is repeated ten times, and the average error on the detected lines is
shown in Fig.A.4b). We see a linear dependence that is likely to originate from
the dispersion of the photonic components of the OCT. Thus, a linear interpo-
lation can be used to redefine the frequency axis afterwards. We then verify the
accuracy of our correction with a new measurement. It leads to a absolute error
comprised between -50/+50 MHz, as can be seen in Fig.A.4c).
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Appendix B

Parameters used in the numerical

simulations
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parameter units cavity #27 cavity #18

ω−,cold/2π THz 196.9989 193.1785
ω0,cold/2π THz 197.3544 193.619
ω+,cold/2π THz 197.6594 193.9916
Γ−/2π GHz 2.77 1.57
Γ0/2π GHz 2.95 2.13
Γ+/2π GHz 4.12 3.59
κ−/2π GHz 0.43 0.39
κ0/2π GHz 1.86 0.97
κ+/2π GHz 0.67 2.52
∆ωcold/2π GHz 25.2 33.9
α0,−/α0,0 0.8972 0.991
α0,+/α0,0 0.6228 0.85
α0,0 fJ−1GHz -0.28 -0.32

symbol units value reference

∂Tω/2π GHz K−1 -10.8 [120]
Γabs/2π MHz 20 [144]
Vχ µm3 5.7
Vm µm3 ≈ 0.2 .
εr ≈ 10

n2 10−18m2W−1 6 [11]
κin dB -7

Table B.1: Numerical values for the parameters used in the model for Fig.4.6
and Fig.4.7. The linear and thermal properties have been directly measured, the
others taken in the literature.
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Titre: Mélange à quatre ondes dans des cavités à cristaux photoniques en semiconducteur III-V

Mots clés: Cristaux Photoniques, Semiconducteurs à grand gap, Optique non linéaire, Mélange à quatre ondes, Oscil-
lateur Paramétrique

Résumé: Un traitement tout optique du signal pour-
rait réduire considérablement la consommation d’énergie et
augmenter le débit de données par rapport à son analogue
électronique. Cette approche nécessite l’intégration de multi-
ples systèmes photoniques sur une puce. Les composants qui
exploitent les interactions paramétriques peuvent réaliser dif-
férentes fonctions comme la conversion de longueur d’onde,
l’amplification, l’échantillonnage et la commutation. Les
micro-résonateurs non-linéaires sont intéressants car ils per-
mettent la réduction de l’empreinte sur puce du composant et
de la puissance nécessaire pour activer les effets non-linéaires.
Parmi eux, les cavités à cristaux photoniques (PhC) parais-
sent être particulièrement prometteuses du fait de leur capac-
ité à confiner la lumière dans un volume proche celui permis
par la limite de diffraction. Pourtant, la difficulté de con-
trôler la dispersion de leurs modes résonants explique que les
efficacités non-linéaires observées sont restées bien inférieures
aux maxima théoriques prévus pour ces structures. Partant
des travaux réalisés précédemment au sein de l’équipe de
recherche, l’objectif de ce travail de thèse consiste à exploiter
pleinement le potentiel des cavités PhC non-linéaires. Les

cavités étudiées dans ce travail ont été conçues pour générer
un potentiel parabolique pour les photons afin d’obtenir des
modes résonants équispacés en fréquence, pour convenir à la
règle de conservation de l’énergie requise pour les interac-
tions paramétriques. Cependant, la caractérisation linéaire
des résonateurs montre que le désordre structurel induit une
déviation par rapport aux fréquences visées qui nécessite une
technique de compensation. Pour résoudre ce problème, un
procédé d’ajustement thermique qui exploite la répartition
inhomogène de la distribution spatiale des modes électromag-
nétiques est introduit. Il permet de mettre de façon systé-
matique la cavité en configuration triplement résonnante. Ce
procédé d’ajustement est employé pour observer du mélange
à quatre ondes stimulé et spontané avec des efficacités record.
L’oscillation paramétrique dans une cavité PhC est démontrée
pour la première fois dans un échantillon avec des facteurs de
qualité plus élevés. Une seconde plateforme est développée,
basée sur l’intégration hybride d’une cavité PhC sur un cir-
cuit en silicium, avec une empreinte sur puce réduite et une
excellente capacité d’intégration. Un mélange à quatre on-
des efficace est encore une fois observé en utilisant le même
procédé d’ajustement que précédemment.

Title: Four Wave Mixing in III-V semiconductor Photonic Crystal Cavities

Keywords: Photonic Crystals, Wide Gap Semiconductors, Nonlinear Optics, Four Wave Mixing, Parametric Oscillator

Abstract: All optical signal processing could drasti-
cally reduce the power consumption and increase the data
rates allowed by its electronic counterpart. This approach re-
quires the integration of multiple photonics systems on a chip.
Components exploiting parametric interactions can perform
various tasks such as wavelength conversion, amplification,
sampling and switching. Nonlinear micro-resonators are at-
tractive in order to reduce the footprint of the component and
the power required to activate the nonlinear effects. Photonic
crystals (PhC) cavities seem to provide a very interesting plat-
form due to their ability to strongly confine light in a close to
diffraction-limited volume. However, due to the difficulty to
engineer the dispersion of the photonic crystal cavity modes,
the nonlinear efficiencies have remained well below the theo-
retical maximum allowed by these structures. Based on the
previous work realized by the research group, the aim of this
thesis is to harness the potential of nonlinear PhC cavities.
The cavities studied in this work are by design the optical

analogous of the quantum harmonic oscillator. When the pho-
tons are submitted to a parabolic electromagnetic potential,
the modes of the cavity are equally spaced in frequency, which
matches the energy conservation requirement for parametric
interactions. However, the linear characterization of these
resonators shows that the structural disorder induces a devi-
ation on the targeted frequency that requires a compensation
technique. To tackle this issue, a thermal tuning process that
exploits the inhomogeneous spatial distribution of the elec-
tromagnetic modes is introduced. It allows to systematically
put the cavity in a triply resonant configuration. This tuning
technique is used to observe stimulated and spontaneous four
wave mixing with record efficiency. Parametric oscillation in
a PhC cavity is demonstrated for the first time in a sample
with higher quality factors. A second platform is also devel-
oped, based on the hybrid integration of a PhC cavity on a
silicon circuitry, with a very low footprint and high integra-
tion capability. Efficient four wave mixing is again observed
using the same tuning technique.
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