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Introduction



Introduction en Français. Dans cette thèse, nous étudions les
propriétés statistiques des systèmes dynamiques. Plus précisément,
nous étudions si le comportement statistique asymptotique des orbites
typiques via la convergence de la suite des mesures empiriques.

Nous étudions également la stabilité du comportement asympto-
tique sous l’effet de perturbations de la dynamique au sein d’une famille.
Ce mémoire comporte deux parties. Dans la première partie, nous re-
lions ces deux études. La deuxième partie est consacrée à la preuve de
l’existence d’un comportement statistique étrange, appelé l’oscillation
maximale, dans l’espace des applications rationnelles de la sphère de
Riemann.

Etant donné une mesure de référence sur l’espace des phases, en
général, une application non conservative peut avoir un comporte-
ment statistique très compliqué, pour laquelle les orbites de presque
chaque point définissent une suite divergente convergente de mesures
empiriques. Une application à oscillation maximale est une applica-
tion pour laquelle la suite de mesures empiriques de presque tout point
s’accumule sur toutes les mesures invariantes de la dynamique. Notre
résultat sur l’existence d’un tel comportement parmi les applications
rationnelles est le suivant :

Théorème. Dans le lieu de bifurcation maximale (qui est un fermé
de mesure de Lebesgue positive) dans l’espace des fractions rationnelles
de degré > 1, une application topologiquement générique est d’oscillation
maximale.

Comme toute application rationnelle de degré supérieur à un a au
moins deux mesures invariantes, il vient qu’une application rationnelle
oscillant maximalement, la suite des mesures empiriques de presque
tout point n’est pas convergente. La preuve de ce théorème utilise des
arguments issus de la dynamique holomorphe et aussi de théorèmes
généraux que nous avons proposés dans la première partie de la thèse.

Dans la première partie, nous avons développé un cadre abstrait
qui vise à comprendre ce qui se cache derrière l’existence d’applications
non statistiques dans une famille de dynamiques donnée. Une appli-
cation est dite non statistique par rapport à la mesure de référence,
s’il existe un ensemble de mesure positive de points qui ont leur suite
de mesures empiriques divergente. Dans cette partie de la thèse, nous
étendons et formalisons le concept d’instabilité statistique dans un sens
général, indépendant du comportement statistique de la dynamique, et
nous montrons comment l’abondance d’applications statistiquement in-
stables, dans une famille donnée de dynamiques, implique l’existence
d’applications non statistiques dans cette famille. Ce cadre abstrait est
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développé en trois versions différentes (mais de nature similaire), sur la
base desquelles la topologie est prise en compte pour la convergence de
la suite de mesures empiriques. Une autre application de cette formali-
sation, et aussi un autre exemple d’applications à oscillation maximale:

Théorème. Dans l’ensemble des difféomorphismes dissipatif
Anosov-Katok de l’anneau, une dynamique topologiquement générique
est d’oscillation maximale avec exactement deux mesures ergodiques.

Enfin, nous remarquons que bien que ce cadre abstrait ait été conçu
pour étudier des dynamiques dissipatives présentant un comportement
non-statistique statistique bizarre, il s’avère que ce cadre s’applique
dans le monde de la dynamique conservative. En utilisant notre tech-
nologie, nous avons pu reprouver et développer un théorème d’Avila
et Bochi concernant la continuité de l’opérateur qui associe à une dy-
namique conservative sa décomposition ergodique.

Introduction. In this thesis we deal with statistical properties of
dynamical systems from a special point of view. We try to find more
examples of those dynamical systems which display non-statistical be-
havior and also we give a general formalization of the concept of sta-
tistical (in)stability. Roughly speaking, displaying non-statistical be-
havior means that there is a set of positive measure in the phase space
such that the orbit of each point in this set does not have a conver-
gent distribution in the phase space. Here we have fixed a reference
measure on the phase space. To be more precise, assume X is a com-
pact Riemannian manifold and f : X → X is a continuous map and
let µ be a probability measure whose density w.r.t. a Lebesgue mea-
sure is a smooth positive function. By M1(X) we denote the space
of probability measures on X. For a point x ∈ X the nth empirical
measure

efn(x) :=
1

n

n−1∑

i=0

δf i(x),

describes the distribution of the orbit of x up to the nth iteration in
the phase space, which asymptotically may or may not converge. If it
converges, then by observing a finite number of iterations (but possi-
bly large) one can predict how the orbit of x behaves approximately
for larger iterations, from statistical point of view. However it may
not converge. In this case we say that x is non-statistical. The non-
statistical points exist in many well-known dynamics. For example, in
the symbolic dynamics (see Example 1.2) and any other dynamics that
has a shift map as a subdynamics. One of the first results in this area is
the Baire genericity of non-statistical points within the phase space for
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subshifts of finite type, Anosov diffeomorphisms and more generally any
map with periodic specification property (see [41],[42] and [20, thm
1.1.11]). In these examples the set of points with non-statistical behav-
ior is of zero measure with respect to the natural reference measure on
the phase space. One can ask how large can be the set of non-statistical
points. Can it be of positive Lebesgue measure? If yes, how large is the
subset of maps having this behavior? In most of well-known examples,
the non-statistical points have zero measure. For example if a dynam-
ical system f preserves the measure µ, by Birkhoff ergodic theorem,
we know that the sequence of empirical measures converge for almost
every points, and hence, the non-statistical points, if they exist, have
zero measure. There are also many examples of non-conservative maps
that have convergent statistical behavior on a full measure set of points;
for example in the context of logistic family fλ(x) = λx(1− x), Jakob-
son has proved that there is a set of parameters with positive measure
such that for any parameter in this set, the corresponding map has a
unique ergodic absolutly continuous probability invariant measure and
the empirical measures of Lebesgue almost every point converges to
this unique measure (see [24]).
However, there are a few examples of dynamical systems on smooth
manifolds having a positive Lebesgue measure set of non-statistical
points. Let us call any map with this kind of behavior a non-statistical
map (In the first part of the thesis we introduce different versions of
this definition).

One of the first examples of the non-statistical dynamical systems
is the so called Bowen eye [43]. It is a vector field on R2 with an eye
like open region such that Lebesgue almost every point in this region
is non-statistical (see Example 1). This region is bounded by two sad-
dle connections of two hyperbolic equilibrium points (see Figure 1.3).
These kinds of examples are very non-persistence since the saddle con-
nections are so. In [14], Colli and Vargas introduced a new kind of ex-
amples of non-statistical dynamics. Their example is a diffeomorphism
of a two dimensional surface with a non-trivial wandering domain such
that every point in this domain has non-statistical behavior. Such a
diffeomorphism was obtained by doing a careful perturbation of an ini-
tial diffeomorphism with a thick horseshoe, having tangency between
stable and unstable sets. In [28] Kiriki and Soma have shown that on
any closed surface M and any open Newhouse domain N in Diffr(M)
for 2 ≤ r < ∞, the maps which have a non-trivial wandering domain
with non-statistical behavior are dense in N (see also [39], [27] and
[25] for other related results). Let us mention the work of Crovisier
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et al. [15] which contains examples of non-statistical maps in the con-
text of partially hyperbolic diffeomorphisms. There is also an explicit
example of a non-statistical diffeomorphism of the annulus introduced
by Herman that can be found in [21].

There are also examples of non-statistical maps in the world of
more specific families of dynamical systems (e.g. polynomial maps)
where one looses the possibility of local perturbations as a possible
mechanism to control the statistical behavior of the orbits. One of the
recent examples of specific family of dynamics displaying non-statistical
behavior is the recent work of Berger and Biebler [9]. They prove
the existence of real polynomial automorohisms of C2 having some
wandering Fatou component on which the dynamics has non-statistical
behavior. Their work also contains a generalization of the result of
Kiriki-Soma [29] to the case of r = ∞ or ω and also the result in [26].
There is another example of the non-statistcal dynamics in the logistic
family fλ : [0, 1] → [0, 1] where fλ(x) = λx(1 − x) and λ ∈ [0, 4].
Hofbauer and Keller have shown in [22] that there are uncountably
many parameters λ ∈ [0, 4] such that fλ is non-statistical. Later, in
[23] they proved that there are uncountably many parameters λ ∈ [0, 4]
such that the map fλ has indeed maximal oscillation property:

Theorem (Hofbauer-Keller [23]). There exist uncountably many
λ ∈ [0, 4] for which fλ has maximal oscillation:

for Lebesgue a.e. x ∈ [0, 1], acc({enfλ(x)}n) = M1(fλ),

where M1(f) is the set of all invariant probability measures of f .

Let Λ be the closure of the set of parameters found by Hofbauer
and Keller, then we have proved the following improvement of their
result in section 4:

Theorem A. The set of parameters λ for which the map fλ has
maximal oscillation is a Baire generic subset of Λ.

Non-statistical rational maps. The existence of non-statistical
maps in one dimensional real dynamics may lead us to ask if there is
any non-statistical maps in one dimensional complex dynamics, or in
other words, is there any rational map on the Riemann sphere display-
ing non-statistical behavior on a set of points with positive Lebesgue
measure? We give an affirmative answer to this question and also we
prove the Baire genericity of non-statistical behavior (and even maxi-
mal oscillation) within a “large” subset of rational maps. To provide
more details let us give some definitions and notations.
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We denote the space of degree d rational maps by Ratd. In what fol-
lows we assume that d > 1. A rational map f is strictly post-critically
finite if all of its critical points eventually land on some repelling pe-
riodic point. The closure of the set of degree d strictly post-critically
finite rational maps is called maximal bifurcation locus (which has sev-
eral other characterizations, see the main theorem of [12]). Let us
note that by the work of Rees [38] and the work of Astorg, Gauthier,
Mihalache and Vigny [6], the maximal bifurcation locus has positive
measure as a subset ofRatd equipped with its volume measure as a com-
plex manifold. Here is our new result regarding the Baire genericity
of maximally oscillating rational maps within the maximal bifurcation
locus:

Theorem B. For a Baire generic map f in the maximal bifurca-
tion locus, the set of accumulation points of the sequence of empirical
measures is equal to the set of invariant measures of f for Lebesgue
almost every point.

We note that for a rational map f with degree larger than one,
the set of invariant measures M1(f) is a large set, and in particular
has more than one element and hence a generic map in the maximal
bifurcation locus is non-statistical.

Another part of the thesis is to show the existence of non-statistical
dynamics within the Anosov-Katok diffeomorphisms of the annulus:

Maximally oscillating Anosov-Katok maps of the annulus.

Let us call the closure of the set of those Cr diffeomorphims of the
annulus which are Cr-conjugated to a rotation, the space of Cr Anosov-
Katok maps, and denote it byAKr. Our next result shows the existence
and Baire genericity of maximally oscillating dynamics in this space:

Theorem C. A Baire generic map in the set of Anosov-Katok
maps AKr has exactly two ergodic invariant measures each of which is
supported by a different boundary component of the annulus and more
over the map is maximally oscillating.

Another part of the thesis is devoted to formalizing common as-
pects observed in the known examples of non-statistical dynamics and
develop an abstract setting aimed to study the existence and abundance
of this kind of behavior in a general family of dynamics:

Statistical instability and non-statistical dynamics. In this
part we introduce a sufficient condition for a family of maps, that
guarantees the existence of non-statistical dynamics within that fam-
ily. This condition is related to the notion of statistical instability of
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dynamical systems which roughly speaking is the possibility of mak-
ing essential changes in statistical properties of a map under arbitrary
small perturbations. Despite the structural stability which is more
strict and sensitive to the topological structure of every point in the
phase space, statistical stability sees the statistical behavior of almost
every point and does not care about the dynamical behavior of a set
of measure zero. The Axiom A maps are example of statistical stable
dynamics since they are indeed structurally stable which is a stronger
condition. Beyond structural stable dynamics, there are also other ex-
amples of the statistical stable maps. Alvez and Viana in [4] study a
class of dynamics which is formed by statistically stable maps: In their
work the dynamics which are studied have a unique physical measure
with a full basin and stability or instability of a dynamics is equal to
the continuity or discontinuity of the map sending the dynamics to
its unique physical measure. There are several other works in this di-
rection among which we can quote [2] where the statistical stability
is proved for multidimensional piecewise expanding maps, the result of
Baladi-Benedicks-Schnellmann [8] and also the results in [1], where the
statistical stability is proved for the Hénon maps of Benedicks-Carleson
type and the paper [46] where the statistical instability is proved for
certain maps in the quadratic family (see also [3]). In this section of the
thesis we generalize the notion of statistical (in)stability and define it
in general case for any dynamical system independent of its statistical
behavior. In particular, we do not assume that the system has a phys-
ical measure. And next we study the connection between this notion
and existence of non-statistical maps in a given family of dynamics.

To be more precise, consider the nth empirical function efn : X →
M1(X), sending each point x ∈ X to its nth empirical measure efn(x).
We study three types of (non-)convergence of the sequence {efn}n ;
almost sure convergence, L1 convergence and convergence in law. We
define non-statistical maps and statistical instability for each kind of
(non-)convergence and show how these two notions are related in each
topology.

Let us start with explaining the results regarding the convergence
in law. If we push-forward the reference measure µ on X to the space
of probability measures on X using an empirical function, we obtain a
probability measure on the space of probability measures on X which
is denoted as follows:

êfn := (efn)∗(µ) ∈ M1(M1(X)).

A map f is called non-statistical in law if the sequence {êfn}n is not con-
vergent. let us denote the set of accumulation points of this sequence
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by acc({êfn}n) which is a compact subset of M1(M1(X)). Now let Λ
be a closed subset of C0(X,X) which is endowed with a topology finer
than C0 topology. In general, the set valued map sending the dynam-
ics f ∈ Λ to the set acc({êfn}n) does not have any regularity for the
Hausdorff topology on the space of compact subsets of M1(M1(X)).
However a simple but important observation is that when you consider
the sequence along with its accumulation points, we prove that this
map enjoys from the semi-continuity property. Then as a consequence
we obtain the following lemma which is the main lemma in this section:

Main Lemma. A Baire generic map f ∈ Λ is a continuity point
for the map E where

E(f) = {ên(f)|n ∈ N}.

To define statistical instability of a map, we need to give some more
definitions. The space M1(M1(X)) endowed with weak-∗ topology is
a compact metric space. Let ν̂ be an element of M1(M1(X)). We
say f ∈ Λ statistically bifurcates toward ν̂ if it can be approximated
by elements of the form êfknk

where fk approaches to f and nk goes
to infinity. Let BΛ,f be the subset of those elements of M1(M1(X))
toward which f statistically bifurcates. We can think of the set BΛ,f

as the set of all asymptotic statistical behaviors that the family Λ can
displays locally around the map f . We say f ∈ Λ is statistically unstable
in law iff #BΛ,f > 1.

The following theorem is our main theorem regarding the connec-
tion between statistical instability and non-statistical maps in the level
of convergence in law:

Theorem D. Baire generically, BΛ,f is equal to acc({êfn}n).

We also investigate the statistical stability and non-statistical maps
from the L1 (non-)convergence point of view. We say a map f is L1 non-
statistical if the sequence of maps efn : X → M1(X) is not convergent
for L1 topology (see 2.1 for definition of dL1):

lim sup
m,n→∞

dL1(efn, e
f
m) > 0.

We say a map f ∈ Λ is L1 statistically unstable if the following quantity
is positive:

lim sup
h,g→f,m,n→∞

dL1(ehn, e
g
m).

This quantity measures how different are the statistical behavior of the
maps approaching to f for iterations close to infinity. If a map is L1
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non-statistical then according to the definitions it is L1 statistically un-
stable, but the existence of L1 statistically unstable maps in a family of
dynamics, does not necessarily imply the existence of L1 non-statistical
maps (see Example 2.4 ). However the following theorem states that
if a family Λ contains sufficient L1 statistically unstable maps, then
we can conclude the existence of L1 non-statistical maps within that
family.

Theorem E. The L1 non-statistical maps form a Baire generic
subset of the interior of L1 statistically unstable maps.

The version of almost sure (non-)convergence of the above defini-
tions and results is very similar to the L1 version and we avoid explain-
ing it in the introduction.

Our initial motivation for developing an abstract setting, was to
capture those properties of the family of rational maps that imply the
existence of non-statistical behavior within this family, and develop a
setting that allows us to prove the existence of non-statistical dynamics
in the other families having the same properties. But surprisingly, the
theorems and lemmas which are proved in this abstract setting, turned
out to have some applications in the world of conservative dynamics,
where we know there is no non-statistical dynamics.

Application to Conservative Dynamics. . Let X be a smooth
and compact manifold and Λ ⊂ Diffr

Leb(X). To each map f ∈ Λ we can
associate the ergodic decomposition µ̂f ∈ M1(M1(X)) of the Lebesgue
measure. Observe that

µ̂f = lim
n

êfn.

Using Theorem D we can conclude the following result regarding the
continuity of the ergodic decomposition with respect to the dynamics.
We should note that this theorem has been proved previously by Avila
and Bochi in [7] but our approach for proof is different.

Theorem (Avila-Bochi [7, thm B]). A generic f ∈ Diffr
Leb is a

continuity point of the map f 7→ µ̂f .

Questions: This memoir provides tools to study the statistical be-
haviour of generic dynamical systems in an abstract class. When the
class of dynamical systems is formed by dissipative Cr-diffeomorphisms
of a compact manifold, this study is traditionally related to the notion
of physical measures. We recall that an invariant probability measure
ν is physical if its basin Bν := {x ∈ M : en(x) → ν} has positive
Lebesgue measure.
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Question 0.1. For r ≥ 2, is it true for generic f in Diffr(M) that
the union of the basins of the physical measures of f has full Lebesgue
measure in M?

This question has been asked by Wilkinson and Shub in [40], but
was in the mind of several other people (see [35], [10] and [37]).

Let us now relax the conditions on physical measures and develop
some questions on the abundance of non-statistical dynamics.

It is known that the set of non statistical real quadratic maps has
measure zero [30]. The following is still open:

Question 0.2. Is the set of non-statistical rational maps of positive
Lebesgue measure?

We proved that non-statistical rational maps are generic in the
maximal bifurcation locus, however the maximal bifurcation locus is a
nowhere dense subset of the space of rational maps [31]. In a broader
context we can ask:

Question 0.3. Is there any non-trivial family of dynamics having a
positive measure subset of non-statistical maps?

Question 0.4. Is there any open subset of dynamics in which the non-
statistical maps are generic? In Newhouse domains?

These questions are related to the following:

Question 0.5 (Takens’ last problem,[44]). Can non-statistical dynam-
ics exist persistently within a non-trivial class of smooth dynamical sys-
tems?

Organization of the thesis. The first section of the first part is
devoted to some basic definitions and examples. In the next section we
introduce the L1 version of statistical (in)stability and non-statistical
dynamics where theorem E is stated as the main theorem of this section.
In section 3 we introduce the essential convergence version of what we
have done in section 2. Theorems E′ is the counterpart of theorem E.
Section 4 of this note is devoted to the version of convergence in law.
In the beginning of this section the set BΛ,f is introduced and some of
its basic properties is studied. The main lemma in this section is an
basic observation regarding the continuity and stability of statistical
behavior of a generic map. Theorem D then is a consequence of this
lemma together with the nice properties of the set BΛ,f . In the rest
of this section we (re)define the notion of maximally oscillating maps
and prove theorem F and proposition 4.19 in this direction. At the end
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of this section is theorem A which is a generalization of the result of
Hofbauer and Keller [23]. Theorem C in section 5 is a result regarding
the existence of non-statistical maps in the family of Anosov-Katok
maps of the annulus. In the last section of the first part we give a
comparison between different versions introduced in previous sections.
The second part of this note is devoted to prove theorem B. The proof
of this theorem is based on propositions 7.2 and 7.3 which are proved
respectively in sections 8 and 9.
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Part 1

Statistical instability and

non-statistical dynamics



1. preliminaries

Let X be a compact metric space endowed with a reference (Borel)
probability measure µ and Λ a subset of continuous self-mappings of X
endowed with a topology finer than C0 topology. For instance Λ can
be a subset of Cr self-mappings of a smooth manifold, endowed with
Cr topology and µ be a probability measure whose density w.r.t. a
Lebesgue measure is a smooth positive function. For a compact metric
space (X, d), Let us denote the space of probability measures on X by
M1(X). This space can be endowed with weak-∗ topology which is
metrizable, for instance with Wasserstein metric where the distance
dw between two probability measures ν1 and ν2 is defined as below:

dw(ν1, ν2) := inf
ζ∈π(ν1,ν2)

∫

X×X

d(x, y)dζ ,

where π(ν1, ν2) is the set of all probability measures on X ×X which
their projections on the first coordinate is equal to ν1 and on the second
coordinate is equal to ν2. The Wasserestein distance induces the weak-
∗ topology onM1(X) and hence the compactness of (X, d) implies that
(M1(x), dw) is a compact and complete metric space. We should note
that our results and arguments in the rest of this note hold for any
other metric inducing the weak-∗ topology on the space of probability
measures.

For a point x ∈ X and a map f : X → X, the empirical measure

efn(x) :=
1

n

n−1∑

i=0

δf i(x)

describes the distribution of the orbit of the point x up to the nth itera-
tion in the phase space, which asymptotically may or may not converge.
If it converges, then by observing a finite number of iterations (but pos-
sibly large) one can predicts how the orbit of x behaves approximately
for larger iterations, from a statistical point of view. However it may
not converge. In this case we fix the following terminology:

Definition 1.1. For a map f : X → X we say the orbit of a point
x displays non-statistical behavior, or briefly x is non-statistical if the
sequence {efn(x)}n is divergent.

Example 1.2. This example shows the existence of non-statistical
points for a well known dynamics; the shift map σ on X = {0, 1}Z.
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Consider a point ω ∈ X

ω = 0. 0...0
︸︷︷︸
n1

0101...0101
︸ ︷︷ ︸

n2

0...0
︸︷︷︸
n3

...

made by putting together consecutive blocks of zero’s and blocks of
zero’s and one’s and suppose the length of ith block is ni satisfying

lim
i→∞

ni

ni+1

= 0.

Then it can be checked easily that ω is a non-statistical point.

One can ask how large can be the set of points for which the empir-
ical measures does not converge. Can it be of positive measure? Here
is an example to answer this question:

Example 1.3 (The Bowen eye). One of the first examples of non-
statistical maps was given by Bowen. It is a vector field in the plane
with an eye-like region having two saddle fixed points in the corners
with two saddle connections as the boundary of this region (see Figure
1). The vector field has a source equilibrium point inside this region
and all of the points except this fixed point converge to the boundary.
Let us denote the two equilibrium points in the corner by A and B and
the unstable and stable eigenvalues of the linearization of the vector
field at A by α+ and −α− and at B by β+ and −β−. For suitable
choices of these numbers, the time one map of the vector field becomes
a non-statistical diffeomorphism of R2 with respect to the Lebesgue
measure restricted to the eye-like region.

Takens introduced in [43] the modulus associated with the upper
and lower saddle connection which are denoted respectively by λ and
σ. They are defined by

λ = α−/β+ and σ = β−/α+.

The following theorem has been proved first by Gaunersdorfer in [19]
and restated by Takens in [43]:

Theorem. If g is a continuous function on R2 with g(A) > g(B),
and x(t) an orbit converging to the cycle, then we have:

lim sup
T→∞

1

T

∫ T

0

g(x(t))dt =
σ

1 + σ
g(A) +

1

1 + σ
g(B)

lim inf
T→∞

1

T

∫ T

0

g(x(t))dt =
λ

1 + λ
g(B) +

1

1 + λ
g(A).

Let us denote the time-t map of the vector field by ϕt.
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Figure 1. Bowen eye

Corollary 1.4. The diffeomorphism ϕ1 is non-statistical with respect
to the restriction of the Lebesgue measure to the eye like region.

Proof. By suitable choices of the eigenvalues, we can make sure
that the limsup and the liminf in the theorem are not equal. In fact
this is the case if

α−β− 6= α+β+,

In this case, the time averages of the map g along the orbit of almost
every point in the eye like region oscillates between the limsup and the
liminf and so is not convergent. Assume for the sake of contradiction
that for a point x0 in the eye like region, which is not the source, the
sequence of empirical measures {eϕ1

n (x0)}n converges to a probability
measure ν. So we have

lim
n→∞

∫

R2

g(z)d(eϕ1

n (x0))(z) =

∫

R2

g(x)dν.

On the other hand, the orbit of the point x0 spends asymptotically
most of its time around two fixed points A and B. This is because for
any neighbourhood U of these two points , the time that the orbit of x0

spends in U in each visit is more than the time it spends in the previous
return and the time difference each two visit is uniformly bounded. As
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a consequences we conclude that the time averages of the map ϕ1 are
asymptotically the same as the time averages of the continuous system
ϕt and so:

lim
n→∞

∫

R2

g(z)d(eϕ1

n (x0))(z) = lim
n→∞

1

n
Σn

i=0g(ϕi(x0))

= lim
n→∞

1

n

∫ n

0

g(ϕt(x0))dt,

which is a contradiction since according to our assumption, the last
limit does not exist. So the sequence of empirical measures is not
convergent for the point x0. �

2. The L1 convergence version

We define the nth empirical function of a map f to be the map efn :
X → M1(X) sending a point x ∈ X to the nth empirical measure efn(x).
We are going to study the L1 (non-)convergence of the sequence of
empirical functions. For this purpose, we need to give some definitions:

Let us denote the space of Borel measurable maps from X to
M1(X) by L1(X,M1(X)). Note that since the empirical functions are
continuous maps with respect to x, they are elements of L1(X,M1(X)).
We define a metric on this space where the distance between two ele-
ments e, e′ ∈ L1(X,M1(X)) is defined as follows:

(2.1) dL1(e, e′) =

∫

X

dw(e(x), e
′(x))dµ.

Let us study the convergence of the sequence of empirical functions
with respect to this metric:

Definition 2.1. We say a map f is L1 non-statistical if the sequence
of maps efn : X → M1(X) is not convergent for the L1 topology:

lim sup
m,n→∞

dL1(efn, e
f
m) > 0.

In the following we introduce a condition, that if it is satisfied by
a Baire space of dynamics Λ , then we can conclude the existence of
L1 non-statistical maps within Λ. Let us first, quantify the extent to
which the statistical behavior of a map f ∈ Λ can be changed by small
perturbations. To this aim, we propose the following definition:

Definition 2.2. The amplitude of L1 statistical divergence w.r.t. Λ of
a map f ∈ Λ is a real valued non-negative mapping which is defined as
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follows
∆1(f) := lim sup

h,g→f,m,n→∞
h,g∈Λ

dL1(ehn, e
g
m).

Note that the definition of ∆1 depends also on the set Λ, and not
only on the map f . However for the sake of simplicity we hided this in
the notation.

Observe that if ∆1 is positive at f then the asymptotic behaviors
of dynamics close to f are very sensitive to perturbations and in this
sense the map f is statistically unstable. We introduce the following
definition:

Definition 2.3. A map f ∈ Λ is L1 statistically unstable with respect
to Λ if its amplitude of L1 statistical divergence w.r.t. Λ is positive:

∆1(f) > 0.

Example 2.4. Suppose Λ is the set of rigid rotations on S1. The
identity map IdS1 ∈ Λ is L1 statistically unstable, since the empirical
measures of all of its points are atomic whereas we can approach the
map IdS1 by irrational rotations, and the empirical measures of any
point are close to the Lebesgue measure for large enough iterations.

Now we want to investigate the relationship between L1 statistical
instability and existence of L1 non-statistical maps . It is clear that if a
map f is L1 non-statistical then ∆1(f) > 0 and so f is L1 statistically
unstable, but the existence of a L1 statistically unstable map does not
necessarily imply the existence of L1 non-statistical maps (see Example
2.4 ). However, if the interior of L1 statistically unstable maps is non-
empty, then the existence of “plenty” of L1 non-statistical maps is
guaranteed. We recall that Λ is a Baire space and its topology is finer
than C0-topology.

Theorem E. The L1 non-statistical maps form a Baire generic
subset of the interior of L1 statistically unstable maps.

Before proving this theorem, let us give a particular application of
this theorem:

Corollary 2.5. If a Baire generic map f ∈ Λ is L1−statistically un-
stable, then a generic map in Λ is L1 non-statistical.

Proof. �

The proofs of Theorem E and corollary 2.5 use the following lemma:

Lemma 2.6. The map ∆1 is upper semi-continuous.
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Proof. Let {fk}k be a sequence of maps converging to f . For each
k we can find two natural numbers nk and mk and two maps gk and
hk near fk such that

|∆1(fk)− dL1(egknk
, ehk

mk
)| <

1

k
.

Note that we can choose the sequences {nk}k and {mk}k both converg-
ing to infinity and also the sequence of maps {gk}k and {hk}k both
converging to f . So we obtain

∆1(f) ≥ lim sup
k

∆1(fk),

and this implies the upper semi-continuity of ∆1. �

Proof of Corollary 2.5. If a generic map f ∈ Λ is statistically
unstable, then by definition ∆1(f) > 0. On the other hand since ∆1

is semi-continuous, a generic map in Λ is a continuity point for it.
Hence generic f ∈ Λ has a neighbourhood in which all of the maps
are statistically unstable. So there is an open and dense subset of
statistically unstable maps and hence by theorem E, a generic map in
Λ is non-statistical. �

Proof of Theorem E. Since ∆1 is upper semi-continuous, there
is a generic subset G ⊂ Λ on which the map ∆1 is continuous. For a
map f ∈ G which is also in the interior of L1 statistically unstable
maps, there exists a neighborhood Uf ⊂ Λ around f on which ∆1 is
uniformly positive:

(2.2) ∃d > 0 s.t. ∀g ∈ Uf , ∆1(g) > d.

Now we construct a sequence of open and dense subsets in Uf such
that any map in the intersections of these sets is L1 non-statistical.
This will imply that L1 non-statistical maps are Baire generic in Uf

and hence the L1 non-statistical maps are locally generic in the interior
of L1 statistically unstable maps.

To construct such open and dense sets, first note that the function
∆1 can be written as

∆1(f) = lim sup
g,h→f,N→∞

∆1
N(h, g),

where ∆1
N(h, g) = supi,j≥N dL1(ehi , e

g
j ).

Claim 2.7. The map ∆1
N is lower semi-continuous.

Proof. Note that

∆1
N(h, g) = sup

M≥N
{ sup
N≤i,j≤M

dL1(ehi , e
g
j )}.
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But supN≤i,j≤M dL1(ehi , e
g
j ) is continuous with respect to (h, g), and

supremum of a sequence of continuous functions is lower semi-continuous.
�

Next we show that for any N ∈ N, the set

E(N) := {h ∈ Uf |∆
1
N(h, h) >

d

3
},

is an open and dense subset of Uf and moreover every map in the
intersection

⋂

N E(N) is L1 non-statistical.
The openness of E(N) is guaranteed by lower semi-continuity of

∆1
N . Now we prove the denseness of E(N). For any arbitrary map

h ∈ Uf , take a neighborhood Vh such that for any map g ∈ Vh we have:

(2.3) dL1(ehN , e
g
N) <

d

3
.

This is possible because N is fixed and egN depends continuously on g.
By 2.2 we know that ∆1(h) > d, and so we can choose g1, g2 ∈ Vh such
that for some integers n,m > N it holds true that

(2.4) dL1(eg1n , eg2m) > d.

But note that

dL1(eg1n , eg2m) ≤ dL1(eg1n , eg1N ) + dL1(eg1N , eg2N ) + dL1(eg2N , eg2m).

Inequalities 2.3 and 2.4 imply that either

dL1(eg1n , eg1N ) >
d

3
or dL1(eg2m , eg2N ) >

d

3
.

So at least one of the maps g1 or g2 is inside E(N) , and then recalling
that h was chosen arbitrarily in Uf and Vh, we conclude that E(N) is
dense in Uf .

Now observe that for any map h ∈
⋂∞

N=1 E(N), the sequence of
empirical functions is not a Cauchy sequence and hence h is L1 non-
statistical. The set

⋂∞
N=1 E(N) is a Baire generic set in the open neigh-

bourhood Uf , so the L1 non-statistical maps are generic in the set Uf .
Considering the fact that f is an arbitrary map in the generic set G
we can then conclude that L1 non-statistical maps are indeed a generic
subset of the interior of L1 statistically unstable maps. �

Definition 2.8. We say a map f ∈ Λ is L1 statistically stable w.r.t. Λ
if ∆1(f) = 0.

Corollary 2.9. If Λ contains no L1 non-statistical map, then a Baire
generic map in Λ is L1 statistically stable.
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Proof. Let G ⊂ Λ be the set of the continuity points of ∆1 which is
a Baire generic set as a consequence of Lemma 2.6. We can decompose
G into two subsets: the set G0 of maps f ∈ G such that ∆1(f) = 0, and
the set G+ of maps f ∈ G such that ∆1(f) > 0. The set G+ is an open
set and also it is in the interior of L1statistical unstable maps. Theorem
E implies the existence of a generic subset of L1 non-statistical maps
in the interior of L1statistical unstable maps. But by our assumption,
there is no L1 non-statistical map in Λ. This implies that the interior
of L1statistical unstable maps is empty and hence the set G+ is empty
as well. So G0 is equal to G, which is generic in Λ. �

Let us introduce an application of Corollary 2.9 in the world of
conservative dynamics where there is no possibilities to have L1 non-
statistical maps:

Corollary 2.10. Suppose Λ is a set of µ-preserving dynamics, then a
generic map f ∈ Λ is L1 statistically stable.

Proof. By Birkoff ergodic theorem, for any map f ∈ Λ, the se-
quence {efn}n is L1 convergent, so we have no L1 non-statistical maps
in Λ , and hence by corollary 2.9, a generic map in Λ is L1 statistically
stable. �

3. The essential convergence version

In the previous section, we introduced the notion of L1 statistical in-
stability and investigated the relationship between this notion and exis-
tence of L1 non-statistical maps. In this section we consider the point-
wise (non-)convergence of the empirical functions efn : X → M1(X)
instead of L1 (non)convergence. We show that the same statements
hold true for pointwise convergence version of the results in the pre-
vious section, however, the arguments are a little bit more technical.

Definition 3.1 (Non-statistical dynamics). Amap f : X → X is called
non-statistical if the set of points that have non-statistical behavior is
of positive measure.

First let us quantify how different is the statistical behavior of two
arbitrary maps h, g ∈ Λ for iterations larger than a fixed number N ∈
N. To this aim we propose the following map ∆e

N that associates to a
couple of maps h, g ∈ Λ a non-negative real number:

∆e
N(h, g) :=

∫

X

sup
N≤n,m

dw(e
h
n(x), e

g
m(x)) dµ,
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which can be interpreted as the average of the maximum difference
between statistical behaviors that the orbit of a point can display under
iterations of h and g for iterations larger than N . Note that ∆e

N is not
a distance. In particular if f is a non-statistical map, then ∆e

N(f, f) is
uniformly positive for every N :

Lemma 3.2. A map f is non-statistical if and only if there is a real
number d > 0 such that for each N ∈ N we have ∆e

N(f, f) > d.

Proof. Let f be a non-statistical map, and let x ∈ X be a non-
statistical point. Since the sequence of empirical measures of this point
does not converge,

dx := inf
N>0

sup
N≤n,m

dw(e
f
n(x), e

f
m(x)) > 0

By definition, the set of non-statistical points has positive measure and
x 7→ dx is measurable, thus

∆e
N(f, f) =

∫

X

sup
N≤n,m

dw(e
f
n(x), e

f
m(x))dµ ≥

∫

X

dxdµ > 0.

To prove the other side let f be a map for which the sequence of
empirical measures of almost every point converges. So for almost
every x ∈ X we have

lim
N→∞

sup
N≤n,m

dw(e
f
n(x), e

f
m(x)) = 0.

Since the distance between empirical measures is bounded, we can then
use Lebesgue dominated convergence theorem, to conclude

lim
N→∞

∆e
N(f, f) = lim

N→∞

∫

X

sup
N≤n,m

dw(e
f
n(x), e

f
m(x))dµ

=

∫

X

lim
N→∞

sup
N≤n,m

dw(e
f
n(x), e

f
m(x))dµ = 0.

This finishes the proof. �

We recall that Λ is a Baire space of maps endowed with a topology
finer than the C0-topology. Now like the previous section, we quantify
the difference in the statistical behaviors of maps converging to f ∈ Λ.
For this purpose, we introduce the following definition:

Definition 3.3. The amplitude of essential statistical divergence of a
map f ∈ Λ is defined as bellow

∆e(f) := lim sup
h,g→f,m,n→∞

h,g∈Λ

∆e
N(h, g).
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Observe that if ∆e is positive at f then the asymptotic behaviors
of nearby maps are very sensitive to perturbations of f and so the map
f is unstable from the statistical view point.

Definition 3.4. A map f ∈ Λ is statistically unstable with respect to
Λ if ∆e(f) > 0.

Example 3.5. Let X be the circle S1, µ the normalized Lebesgue
measure and Λ be the set of rotations of the circle. The map f = IdS1
is statistically unstable, since the empirical measures of any point are
the Dirac mass at that point, but for any arbitrarily close irrational
rotation the sequence of empirical measures converges to the Lebesgue
measure.

Example 3.6. Let X be the Riemann sphere Ĉ and µ its normalized
Lebesgue measure. Consider the set of quadratic maps:

Λ = {fc : Ĉ → Ĉ|fc(x) = x2 + c for x ∈ C, fc(∞) = ∞}.

The map f 1

4

has a fixed point at x = 1
2
which attracts the points in

a non-empty open set U . For any ε > 0, the map f 1

4
+ε has a different

dynamics: almost every point goes to infinity. So for any ε > 0 and
every point x ∈ U the sequence of empirical measures converges to δ 1

2

and δ∞ under iterating the maps f 1

4

and f 1

4
+ε respectively.

Hence the supremum in the definition of ∆e
N is at least dw(δ 1

2

, δ∞)

for almost every point. So ∆e
N(f 1

4

, f 1

4
+ε) > µ(U)dw(δ 1

2

, δ∞), which is

independent of ε and N . According to the definition, this means that
f 1

4

is statistically unstable.

Proposition 3.7. The map ∆e : Λ → R is upper semi-continuous.

Proof. We recall that

∆e(f) := lim sup
h,g→f,N→∞

∆e
N(h, g).

Now let {fk}k be a sequence of maps converging to f . For each k we
can find a natural number Nk and two maps gk and hk near fk such
that

|∆e(fk)−∆e
Nk
(gk, hk)| <

1

k
.

Note that we can choose the sequence {Nk}k such that it converges to
infinity and also the sequence of maps {gk}k and {hk}k such that both
converge to f . So we obtain

∆e(f) ≥ lim sup
k

∆e(fk),
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and this implies the upper semi-continuity of ∆e. �

Now we want to investigate the relationship between statistical in-
stability and existence of non-statistical maps. The following theorem
is the counterpart of Theorem E:

Theorem E′. The non-statistical maps form a Baire generic subset
of the interior of statistically unstable maps.

Proof. Since by Proposition 3.7 the map ∆e is an upper semi-
continuous map, there is a Baire generic set G on which the map ∆e is
continuous. For a map f ∈ G, which is also in the interior of statistically
unstable maps, there exists a neighborhood Uf around f on which ∆e

is uniformly positive:

∃d > 0 s.t. ∀g ∈ Uf , ∆e(g) > d.

Now we construct a sequence of open and dense subsets in Uf such
that any map in the intersection of these sets is non-statistical. And
then we can conclude that non-statistical maps are Baire generic in Uf .

To construct such open and dense sets we need to show a semi-
continuity property of the map ∆e

N :

Lemma 3.8. The map ∆e
N is lower semi-continuous.

Proof. We recall that for h, g ∈ Λ

∆e
N(h, g) :=

∫

X

sup
N≤n,m

dw(e
h
n(x), e

g
m(x)) dµ,

Now note that

∆e
N(h, g) = sup

N≤M

∫

X

sup
N≤n,m≤M

dw(e
h
n(x), e

g
m(x)) dµ,

and we know that
∫

X
supN≤n,m≤M dw(e

h
n(x), e

g
m(x)) dµ is continuous

with respect to h and g and supremum of a sequence of continuous
functions is lower semi-continuous so we are done. �

Next we show that for any N ∈ N, the set

E(N) := {h ∈ Uf |∆
e
N(h, h) >

d

3
},

is an open and dense subset of Uf and moreover every map in the
intersection

⋂

N E(N) is non-statistical.
The openness of E(N) is guaranteed by lower semi-continuity of

∆e
N . Now we prove the denseness of E(N). For any arbitrary map
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h ∈ Uf ⊂ Λ, take a neighborhood Vh such that for any map g ∈ Vh and
any x ∈ X:

(3.1) dw(e
h
N(x), e

g
N(x)) <

d

3
.

This is possible because N is fixed, egN depends continuously on g and
X is compact. Now since ∆e(h) > d, we can choose g1, g2 ∈ Vh such
that for some integer M > N it holds true that

(3.2) ∆e
M(g1, g2) > d.

But since ∆e
N(g1, g2) is decreasing in N we obtain:

(3.3) ∆e
N(g1, g2) > d.

Now note that for each x ∈ X we have

sup
N≤n,m

dw(e
g1
n (x), eg2m(x)) ≤

sup
N≤n,m

dw(e
g1
n (x), eg1m(x))+ sup

N≤n,m
dw(e

g2
n (x), eg2m(x))+dw(e

g1
N (x), eg2N (x)),

and hence after integrating with respect to µ and using inequality
3.1 we obtain:

∆e
N(g1, g2) ≤ ∆e

N(g1, g1) + ∆e
N(g2, g2) +

d

3
.

Now using inequality 3.3 we conclude that at least one of the maps g1
and g2 is inside E(N) , and then recalling that h was chosen arbitrarily
in Uf and Vh arbitrary small, we conclude that E(N) is dense in Uf .

Observe that Lemma 3.2 implies that any map h in the set
⋂∞

N=1 E(N),
which is a Baire generic set inside Uf , is non-statistical. So the non-
statistical maps are generic in some open neighbourhood of f and f
is an arbitrary map in the interior of statistically unstable maps inter-
sected by the generic set G. This implies that non-statistical maps are
indeed a generic subset of the interior of statistically unstable maps as
well.

�

Definition 3.9. We say a map f ∈ Λ is statistically stable with respect
to Λ if ∆e(f) = 0.

Corollary 3.10. If Λ contains no non-statistical map, then a generic
map in Λ is statistically stable.

Note that being statistically stable is a stronger condition than
being L1 statistically stable. So the conclusion of the previous theorem,
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is a stronger version of the the conclusion in Corollary 3.10. We omit
the proof of this theorem as well as the applications in the conservative
setting since they are identical to what we had in the previous section.

4. The version of convergence in law

For a dynamical system f : X → X the map efn : X → M1(X)
associates to each point x ∈ X, its nth empirical measure. Different
points usually have different empirical measures. We can investigate
how the empirical measures efn(x) are distributed in M1(X) with re-
spect to the reference measure µ on X and what is the asymptotic
behavior of these distributions. To this aim, we can push forward the
measure µ to the set of probability measures on X using the map efn:

ên(f) := (efn)∗(µ).

The measure ên(f) is a probability measure on the space of proba-
bility measures on X. We denote the space of probability measures
on the space of probability measures by M1(M1(X)). We denote the

Wasserstein metric on this space by d̂. Note that the compactness of
X implies the compactness of M1(X) and hence the compactness of
M1(M1(X)). So the sequence {ên(f)}n∈N lives in a compact space
and have one or possibly more than one accumulation points.

Example 4.1. For any µ preserving map f : X → X, the sequence
{ên(f)}n∈N converges to a measure µ̂ which is the ergodic decomposi-
tion of the measure µ.

Example 4.2. If ν is a physical measure for the map f : X → X whose
basin covers µ-almost every point, the sequence {ên(f)}n∈N converges
to the Dirac mass concentrated on the point µ ∈ M1(X), which we
denote by δµ.

In the next section we will see examples of the maps for which the
sequence {ên(f)}n∈N does not converge.
The following lemma provides some information about the sequence
{ên(f)}n∈N:

Lemma 4.3. For any f ∈ Λ and any n ∈ N it holds true that

d̂w(ê
f
n, ê

f
n+1) <

diam(X)

n+ 1
,

where diam(X) is the diameter of the space X.

Proof. We recall that

êfn = (efn)∗(µ).
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First let us show for any x ∈ X the following inequality holds true
independent of the choice of f ∈ Λ:

dw(e
f
n(x), e

f
n+1(x)) <

diam(X)

n+ 1
.

So according to the definition we should show that

inf
γ∈π(efn(x),e

f
n+1

(x))

∫

X×X

d(x, y)dγ(x, y) <
diam(X)

n+ 1
.

Consider the following element of π(efn(x), e
f
n+1(x)):

γ =
1

n+ 1
Σ0≤i≤n−1δ(f i(x),f i(x)) +

1

n(n+ 1)
Σ0≤i≤n−1δ(f i(x),fn(x)).

Note that

(π1)∗(γ) = efn(x) =
1

n
Σ0≤i≤n−1δf i(x),

(π2)∗(γ) = efn+1(x) =
1

n+ 1
Σ0≤i≤nδf i(x),

where π1 and π2 are the projection on the first and second coordinates.
So we have γ ∈ π(efn(x), e

f
n+1(x)) and hence

dw(e
f
n(x), e

f
n+1(x)) ≤

∫

X×X

d(x, y)dγ(x, y)

= Σ0≤i≤n−1
1

n(n+ 1)
d(f i(x), fn(x))

≤
diam(X)

n+ 1
.

Now consider the following measure on M1(M1(X))×M1(M1(X)):

γ̂ =

∫

X

δ(efn(x),efn+1
(x)dµ.

Obviously γ̂ ∈ π(êfn, ê
f
n+1), and so

d̂w(ê
f
n, ê

f
n+1) ≤

∫

M1(M1(X))×M1(M1(X))

d(x, y)dγ̂(x, y)

=

∫

X

dw(e
f
n(x), e

f
n+1(x))dµ ≤

diam(X)

n+ 1
.

�

Now let Λ be a Baire space of self-mappings of X endowed with
a topology finer than C0-topology. For each f ∈ Λ the accumu-
lation points of the sequence {ên(f)}n∈N form a compact subset of
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M1(M1(X)) which we denote it by acc({ên(f)}n∈N). This set can
vary dramatically by small perturbations of f in Λ:

Example 4.4. Let Λ be the set of rigid rotations on S1 and Lebesgue
as the reference measure. For the identity map id on S1, the sequence
{ên(id)}n∈N is a constant sequence. Indeed for every n ∈ N we have:

ên(f) =

∫

S1

δδxdLeb.(4.1)

So acc({ên(f)}n∈N) is equal to {
∫

S1
δδxdLeb}. But for any irrational ro-

tationRθ (arbitrary close to the identity map), the sequence {ên(Rθ)}n∈N
converges to δLeb which is a different accumulation point.

In the previous example, for an irrational rotation Rθ close to the
identity map , the empirical measures of almost every point start to
go toward the Lebesgue measure, and hence the sequence {ên(Rθ)}n∈N
goes toward δLeb. To study the same phenomenon for the other dy-
namical systems, we propose the following definition. We recall that Λ
is a Baire space of self-mappings of X endowed with a topology finer
than C0-topology and µ is a reference measure on X.

Definition 4.5. For a map f ∈ Λ and a probability measure ν̂ ∈
M1(M1(X)), we say f statistically bifurcates toward ν̂ through pertur-
bations in Λ, if there is a sequence of maps {fk}k in Λ converging to
f and a sequence of natural numbers {nk}k converging to infinity such
that the sequence {ênk

(fk)}k converges to ν̂ ∈ M1(M1(X)).

For the sake of simplicity, when the space Λ in which we are allowed
to perturb our dynamics is fixed, we say f statistically bifurcates to-
ward ν̂.

For any map f ∈ Λ, by BΛ,f we denote the set of those measures
ν̂ ∈ M1(M1(X)) that f statistically bifurcates toward ν̂ through per-
turbations in Λ.

Remark 4.6. By definition, it holds true that

acc({êfn}n) ⊂ BΛ,f .

Here are some nice properties of the set BΛ,f :

Lemma 4.7. The set BΛ,f is a compact subset of M1(M1(X)).

Proof. By the definition it is clear that the set BΛ,f is closed. The
compactness is a consequence of compactness of M1(M1(X)). �

Lemma 4.8. The set BΛ,f is a connected subset of M1(M1(X)).
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Proof. For the sake of contrary assume that BΛ,f is not connected,
and can be decomposed to two non-empty disjoint closed sets A and
B. Therefore there is some real number d > 0 such that d̃w(A,B) > d.
Take two elements ν̂ ∈ A and η̂ ∈ B and let N in lemma 4.3 is chosen
so that

∀n > N, d̂w(ê
f
n, ê

f
n+1) <

d

3
.

We can find a neighborhood U of f so that

∀g ∈ U, d̂w(ê
f
n, ê

g
n) <

d

3
.

This is possible since the map sending f to êfN is continuous. Now take
two maps h, g ∈ U such that for some integers n1, n2 > N it holds true
that

d̂w(ê
g
n1
, ν̂) <

d

3
and d̂w(ê

h
n2
, η̂) <

d

3
.

Consider the following sequence of elements of M1(M1(X)):

ν̂, êgn1
, êgn1−1, ..., ê

g
N , ê

h
N , ..., ê

h
n2−1, ê

h
n2
, η̂.

The distance between two consecutive elements of this sequence is less
than d

3
, and hence there is an element of this sequence which lies out

of d
3
neighborhood of A

⋃
B = BΛ,f . By taking N larger, we obtain

another element of M1(M1(X)) out of d
3
neighborhood of BΛ,f . So

there is a sequence like êfknk
out of d

3
neighborhood of BΛ,f and because

of the compactness of M1(M1(X)) this sequence has a convergent
subsequence converging to an element out of BΛ,f . By definition any
accumulation point of this sequence is an element of BΛ,f which is a
contradiction. �

Lemma 4.9. For any ν̂ ∈ BΛ,f , any measure ν in the support of ν̂ is
invariant under iteration of f .

Proof. By definition there is a sequence of maps {fk}k in Λ con-
verging to f and a sequence of natural numbers {nk}k converging to
infinity such that

lim
k→∞

d̂w(ênk
(fk), ν̂) = 0.

If ν is in the support of ν̂ then for any neighbourhood U of ν and for
k large enough, we have

ênk
(fk)(U) > 0.

Recalling that

ênk
(fk)(U) =

∫

X

δ
e
fk
nk

(x)
(U)dµ,
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we conclude that the integrand of the integral above is non-zero for a
subset of X with positive measure and hence in particular for each k
there is a point xk ∈ X such that efknk

(xk) ∈ U . Since U is an arbitrary
neighbourhood of ν we can choose xk such that

lim
k→∞

efknk
(xk) = ν.

On the other hand note that for a large k the map fk is close to the
map f so the measure efknk

(xk) is close to f∗(e
fk
nk
(xk). So we have

lim
k→∞

dw(e
fk
nk
(xk), f∗(e

fk
nk
(xk))) = 0,

which together with the continuity of f∗ imply that f∗(ν) = ν and so
we are done. �

The set BΛ,f depends on the choice of the set of dynamics Λ in
which we are allowed to perturb the map f . If Λ is replaced by a
larger set of maps, then we may have more elements in M1(M1(X))
toward which f statistically bifurcates. This is what we can see in the
following example:

Example 4.10. If Λ is the set of rigid rotations of S1 = R/Z, the
elements of M1(M1(X)) toward which the identity map statistically
bifurcates, are exactly the following ones:

ν̂s :=

∫

X

δLeb[x,x+s]dLeb,

where s ∈ R is arbitrary and Leb[x, x + s] denotes the normalized
Lebesgue measure on the interval [x, x+ s]. When s is larger than one,
we choose an interval of length one in the universal cover of S1 starting
from a point in the fiber above x and we push forward the normalized
Lebesgue measure on this interval to the circle by the projection map.
When s = 0, we set Leb[x, x] to be the Dirac mass on x. To prove
that the identity map statistically bifurcates toward ν̂s, the sequence
{fk = R 1

k
}k of rotations converging to the identity and the sequence of

times {nk = ⌊sk⌋}k work:

lim
k→∞

efknk
(x) = Leb[x, x+ s].

It is not hard to check that these are the only measures that the identity
map statistically bifurcates toward through perturbations in Λ. But if
Λ is the set of all smooth diffeomorphisms of S1 the set BΛ,f contains all
these measures togher with other measures, in particular the measure
δδx (the Dirac mass on the Dirac mass on x), for any point x ∈ S1. To
see this, note that we can approach the identity map by Morse-Smale
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maps having two fixed points and the point x as their only attracting
fixed point.

Let us remind some definitions that we need in the rest of this
section.
Let X and Y be two topological spaces with Y compact. Denote the
set of all compact subsets of Y by C(Y ).

Definition 4.11. Amap ϕ : X → C(Y ) is called lower semi-continuous
if for any x ∈ X and any V open subset of Y with ϕ(x)∩V 6= ∅, there
is a neighbourhood U of x such that for any y ∈ U the intersection
ϕ(y) ∩ V is non-empty. The map ϕ is called upper semi-continuous if
for any x ∈ X and any V open subset of Y with ϕ(x) ⊂ V , there is a
neighbourhood U of x such that for any y ∈ U the set ϕ(y) is contained
in V . And finally ϕ is called continuous at x if it is both upper and
lower semi-continuous at x.

Remark 4.12. To say x is a continuity point of a set valued map
ϕ : X → C(Y ) with the above definition, is indeed equal to say x is
a continuity point of ϕ with considering C(Y ) as a topological space
endowed with Hausdorff topology.

We also recall the following theorem of Fort [18] which generalizes
the well known theorem about real valued semi-continuous maps to the
set valued semi-continuous maps:

Theorem (Fort). For any Baire topological space X and compact
topological space Y , the set of continuity points of a semi-continuous
map from X to C(Y ) is a Baire generic subset of X.

Now fixing a set of dynamics Λ we reprove the following fact on
semi-continuity property of the map sending the dynamics to its set of
invariant probability measures.

Lemma 4.13. The map sending f ∈ Λ to its set of invariant probability
measures is upper semi-continuous.

Proof. We need to prove that if we have a sequence of dynamics
{fn}n converging to f and a sequence of invariant measures {µn}n for
these maps converging to a measure µ then µ is an f invariant measure.
But this is an special case of Proposition 5.9 in [48] where this fact is
proved in the context of stationary measures for locally constant skew
products. �

We recall that by Lemma 4.7, the set BΛ,f is compact. We can ask
about dependence of the set BΛ,f on the map f . The following lemma
shows that this dependency is semi-continuous:
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Lemma 4.14. The map sending f ∈ Λ to the set BΛ,f is upper semi-
continuous.

Proof. Let {fn}n∈N be a sequence converging to f ∈ Λ. We need
to prove that if for each n ∈ N, the map fn statistically bifurcates to-
ward a measure ν̂n ∈ M1(M1(X)) through perturbations in Λ and the
sequence {ν̂n}n is convergent to a measure ν̂, then the map f statisti-
cally bifurcates toward ν̂ through perturbations in Λ. Then the proof
is finished by observing that for n large enough, small perturbations
of the map fn are small perturbations of the map f , and ν̂n is close to
ν̂. �

To each map f ∈ Λ one can associate the set of accumulation points
of the sequence {ên(f)}n∈N which is a compact subset of M1(M1(X)).
By looking more carefully at the Example 4.4, we see that this map
is neither upper semi-continuous nor lower semi-continuous. However
if we add the points of this sequence to its accumulation points and
consider the map sending f ∈ Λ to the closure {ên(f)|n ∈ N} , we
obtain a semi-continuous map:

Lemma 4.15. The map E : Λ → C(M1(M1(X))) defined as

E(f) := {ên(f)|n ∈ N},

is lower semi-continuous.

Proof. Let V be an open subset ofM1(M1(X)) intersecting E(f).
So there is n ∈ N such that ên(f) ∈ V . But note that the map
f 7→ ên(f) is continuous and so there is a neighborhood U of f so that
for any g ∈ U , we have ên(g) ∈ V and so E(g) intersects the set V .
This shows that E is lower semi-continuous. �

The following lemma is an interesting consequence of Lemma 4.15
that shows how the set E(f) depends on the dynamics f .

Main Lemma. A Baire generic map f ∈ Λ is a continuity point
for the map E .

This lemma gives a view to the statistical behaviors of generic maps
in any Baire space of dynamics: for a generic map, the statistical behav-
ior that can be observed for times close to infinity can not be changed
dramatically by small perturbations.

Proof. Using Lemma 4.15, this is a direct consequence of Fort’s
theorem. �
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The following theorem reveals how two notion of statistical insta-
bility in law and being non-statistical in law are connected. There is
another proof of this theorem which is communicated by Pierre Berger
that can be found in [45] (Theorem 1.14).

Theorem D. Baire generically, BΛ,f is equal to acc({êfn}n).

Proof. Take a generic map f from the main lemma above. By
remark 4.6, acc({êfn}n) ⊂ BΛ,f . So if BΛ,f has only one element, since
acc({êfn}n) is non-empty, the equality holds. Now suppose that BΛ,f

has more than one element. For the sake of contradiction suppose
there is a measure ν̂ ∈ BΛ,f which is not in acc({êfn}n). Then there is
a number n ∈ N such that ν̂ = êfn and êfn is an isolated point of the
sequence {êfn}n. Recalling that for generic f we have BΛ,f ⊂ E(f), we
can conclude that BΛ,f can be written as a union of two disjoint and
non-empty closed set:

BΛ,f = {êfn}
⋃

{êfn}
c.

This is in contrary to the connectedness of the set BΛ,f . �

If we have any information about the set BΛ,f then by using theorem
D we may translate it to some information about acc({efn(x)}n∈N) for
generic f ∈ Λ. In particular we obtain the following corollary:

Corollary 4.16. The set Λ contains a Baire generic subset of maps
that are statistically unstable in law iff it contains a Baire generic subset
of maps which are non-statistical in law.

Now we are going to study a special statistical bifurcation scenario
for which this lemma can be used to deduce information about the
behavior of generic maps. Suppose the initial map f ∈ Λ has an
invariant measure ν such that by a small perturbation of the map,
the empirical measures of arbitrary large subset of points is close to
ν for an iteration close to infinity. For instance you can think of the
identity map on S1 which can be perturbed to an irrational rotation
for which the empirical measures of almost every point converges to
the Lebesgue measure or it can be perturbed to a Morse-Smale map
having one attracting fixed point and so the empirical measures of
almost every point converges to the Dirac mass on that attracting fixed
point. These measures could be interpreted as a potential physical
measure with full basin for our initial dynamics; a measure that for
some small perturbation of the initial map and for some large iteration,
the empirical measures for a large set of points is close to that measure.
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We denote these measures by MΛ,f which are defined more precisely
as bellow:

MΛ,f := {ν ∈ M1(X)|δν ∈ BΛ,f}.

Theorem F. Let Λ be a Baire space of self-mappings of X endowed
with a topology finer than C0-topology. For a Baire generic map f ∈ Λ
the empirical measures of µ almost every point x ∈ X, accumulates to
each measure in MΛ,f or in other words:

for µ− a.e. x ∈ X, MΛ,f ⊂ acc({efn(x)}n∈N).(4.2)

Proof. To prove the theorem it suffices to show that if f ∈ Λ is
a continuity point of the map E it satisfies condition (4.2). This is
because by Corollary the continuity points of the map E form a Baire
generic subset of Λ.

Take any measure ν insideMΛ,f . Lemma D implies that δν ∈ E(f).
Now there are two possibilities, either there is a number n ∈ N such
that ên(f) = δν or not. If not, there is a sequence {ni}i∈N converging
to infinity such that

lim
i→∞

êni
(f) = δν .

So for a small neighbourhood U ⊂ M1(X) of ν, we have:

lim
i→∞

êni
(f)(U) = δν(U) = 1,

and by equation (4.1), in the definition of ên(f), we obtain:

lim
i→∞

(

∫

X

δefni
(x)dµ)(U) = 1.

So for µ-almost every point x ∈ X we have:

lim
i→∞

δefni
(x)(U) = 1.

Since U is an arbitrary neighbourhood, we can conclude that for µ-
almost every point x ∈ X , the measure δν is contained in the accumu-
lation points of the sequence {δefni

(x)}i. But this is equal to say that ν

is in the accumulation points of the sequence {efni
(x)}i. So the measure

ν is an accumulation point of the sequence {efn(x)}n∈N, which is what
we sought.

It remains to check the case that there is a number n ∈ N such that
ên(f) = δν . In this case, again by using (4.1) in the definition of ên(f)
we obtain: ∫

X

δefn(x)dµ = δν ,
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so µ-almost every x ∈ X has the property that the measure efn(x) is
equal to ν. Recalling that ν is an f -invariant measure, every point
x with this property should be a periodic point and ν should be the
invariant probability measure supported on the orbit of x. So obvi-
ously the measure ν lies in the accumulation points of the sequence
{efn(x)}n∈N . This finishes the proof. �

If one can find any information about the set MΛ,f for a generic
map f in Λ then by Theorem F, we can translate this information to
information about the statistical behavior of µ-almost every point for
a generic subset of maps.

The following lemma shows how the set MΛ,f depends on the map
f :

Lemma 4.17. The map sending f ∈ Λ to the set MΛ,f is upper semi-
continuous.

Proof. Let {fn}n∈N be a sequence converging to f ∈ Λ. We need
to prove that if for each n ∈ N, the map fn statistically bifurcates
toward a measure νn ∈ MΛ,fn through perturbations in Λ and the
sequence {νn}n is convergent to a measure ν, then the map f statis-
tically bifurcates toward ν through perturbations in Λ. Considering
the fact that for n large enough, small perturbations of the map fn
are small perturbations of the map f , the rest of the proof is straight
forward. �

Now let us see what is the consequence of this lemma and Theorem
F when we know the maps in a dense subset bifurcates toward each
Dirac mass at an invariant measure. Before that we introduce the
following definition which was used for the first time by Hofbauer and
Keller in [23]:

Definition 4.18. A map f ∈ Λ is said to have maximal oscillation if
the empirical measures of almost every point accumulates to all of the
invariant measures in M1(f).

Proposition 4.19 (Maximal oscillation). If there is D ⊂ Λ dense such
that any map f ∈ D bifurcates toward the Dirac mass at each invariant
measure through perturbations in Λ, or in other word MΛ,f = M1(f),
then a generic f ∈ Λ has maximal oscillation.

Proof. By Proposition 4.17 the map sending f to MΛ,f is semi-
continuous. By lemma 4.13, The map sending f to M1(f) is also upper
semi-continuous. So by applying Fort’s theorem we can find a Baire
generic subset B ⊂ Λ such that any f in this set is a continuity point
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for each of these maps. Now we can approach each map f in B by maps
g in D, for which we know M1(g) and MΛ,g co-inside. So M1(f) and
MΛ,f co-inside as well. By Theorem F we know there is a Baire generic
subset of Λ that for any map f in this set the empirical measures of
µ almost every point x ∈ X accumulates to each of measures in MΛ,f

. The intersection of this Baire generic set with B is still a Baire
generic set and for a map f in this intersection the empirical measures
of µ almost every point x ∈ X accumulates to each of measures in
M1(f). �

Hofbauer and Keller proved in [23] that there is an uncountable set
of parameters λ for which the logistic map fλ(x) = λx(1−x) restricted
to the interval [0, 1] has maximal oscillation. Let us denote the closure
of this set of parameters by Λ. It can be shown that this is indeed the
closure of the set of parameters for which the critical point of the map
is in the preimages of some repelling periodic points, and by Jacobson
theorem [24] we know this set is of positive Lebesgue measure. As a
corollary of Proposition 4.19 we can give the following improvement of
the Hofbauer and Keller result:

Theorem A. The set of parameters λ for which the map fλ has
maximal oscillation is a Baire generic subset of Λ.

Proof. Take the set D in the proposition 4.19 to be the set of
Hofbauer and Keller parameters. �

Will see in the next chapter that the scenario which is described
in Theorem 4.19 actually happens in the context of complex dynamics
where Λ is a subset of the space of rational maps on the Riemann sphere
with a fixed degree, which is called “maximal bifurcation locus”. In
the next section we present an example for application of Theorem F
to a special class of maps.

5. Non-statistical Anosov-Katok maps

In [5] Anosov and Katok introduced a method for obtaining Lebesgue
conservative ergodic maps with unexpected metric properties on man-
ifolds which admit a S1 free action. They considered a class of conser-
vative maps on such a manifold that can be approximated by periodic
maps (like rational rotations of the torus) and prove that the set of
ergodic transformations is a Baire generic subset of this space ( which
is an intersection of countably many open and dense subsets). Herman
and Fathi in [16] pushed forward their method to construct minimal
and uniquely ergodic maps. They also proved that these maps form
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a second category subset of the space of maps that can be approxi-
mated by periodic ones. Being a Gδ subset had been previously known
for properties like ergodicity, minimality and transitivity. The main as-
pect of the mentioned works in proving the genericity of these properies
was to use this new method of Anosov and Katok to conclude the den-
sitiy of such properties. Herman could also apply the Anosov-Katok
method to construct exotic invariant sets for holomorphic maps of the
Riemann sphere. Here we use the Anosov-Katok method to construct
and prove the genericity of diffeomorphisms of the annulus with unex-
pected statistical properties.

Let us denote the annulus [0, 1]× R/Z by A and for r ∈ [0,∞] the
space of all Cr orientation preserving diffeomorphisms of A by Diffr

+(A)
endowed with the Cr−topology. We denote the closure of the set of
all Cr diffeomorphisms of the annulus which are Cr−conjugate to a
rotation by AKr and call it the space of Cr Anosov-Katok maps. We
also use AKr

vol to denote the closure of the set of Cr volume preserving
diffeomorphisms conjugate to a rotation with a conjugacy fixing ev-
ery point of the boundary. The spaces AKr and AKr

vol endowed with
the induced Cr−topology are Baire spaces. We remind that for any
measure ν ∈ M1(X), the Dirac mass on ν, which is an element of

M1(M1(X)), is denoted by δ̂ν .
Before stating our main result in this section let us recall a related
result of Fayad and Katok that we will use later in our proof:

Theorem 5.1 (Fayad-Katok [17, thm 3.3]). A Baire generic map
in the space AK∞

vol has only three ergodic measures, two one dimen-
sional Lebesgue measures on the boundary components and the volume
measure of the annulus.

Now we are going to prove the Baire genericity of non-statitical
behavior and indeed maximal oscillation in the set of Anosov-Katok
maps AKr.

Theorem C. A Baire generic map in the set of Anosov-Katok
maps AKr has exactly two ergodic invariant measures each of which is
supported by a different boundary component of the annulus and more
over the map is maximally oscillating.

Remark 5.2. Note that an Anosov-Katok map has at least two invari-
ant measures which are supported on different boundary components
of the annulus.

Proof. We need the following lemma to prove the theorem:
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Figure 2. The map ĝ

Lemma 5.3. Let C be one of the connected components of the boundary
of A, and f be an arbitrary map in AK. Then there is a measure ν
supported on the set C such that f statistically bifurcates towards δ̂ν.

�

Proof. Since f can be approximated by maps which are conjugate
to rotation, there is a rational number p

q
and a Cr diffeomorphism h

such that the map h−1R p

q
h is close to f . Let

B := [r1, r2]× R/Z,

for some distinct real numbers r1, r2 ∈ (0, 1) . Take a real number
θ > 0 and define

B1 := [r1, r2]× [0, θ)

and
B2 := [r1, r2]× [θ, 1).

Sublemma 5.4. For any σ < 1 close to 1 and ε > 0 small, there is a
map ĝ ∈ Diffr

+(A) with the following properties:

• ĝ is identity on a neighborhood of the set C,
• Leb(ĝ(B1)) > σ,
• ĝ(B2) is included in the ε-neighborhood Nε(C) of C.

Proof. Using bump functions, we construct a map ĝ as depicted
in Figure 2. The technical details are left to the reader. �

Now let ĝ be a map found in the sublemma. This map can be lifted
using the covering map π : A → A, π(r, θ) = (r, qθ). Let g be the lift of
ĝ which is identity around the set C. The diffeomorphism g has similar
properties:
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• g is identity on a neighbourhood of the set C,
• Leb(g(π−1(B1))) > σ,
• g(π−1(B2)) ⊂ Nε(C).

Now note that g commutes with R p

q
so:

h ◦ g ◦R p

q
◦ g−1 ◦ h−1 = h ◦R p

q
◦ h−1

Choose α′ irrational and small enough so that h ◦ g ◦ Rα′ ◦ g−1 ◦ h−1

is arbitrary close to h ◦ R p

q
◦ h−1 . Indeed h ◦ g is Cr and the map

sending α to h ◦ g ◦ Rα ◦ g−1 ◦ h−1 is hence continuous. Since α′ is
irrational, the orbit closure of any point in A under iterating the map
h ◦ g ◦Rα′ ◦ g−1 ◦h−1 =: f ′ is h ◦ g-image of the orbit closure of a point
under iterating the map Rα′ , which is a circle in A. So for any point
x ∈ h◦g(π−1(B2)), the orbit closure of x is the h◦g image of a vertical
circle C ′ intersecting π−1(B2) ⊂ B and so contained in π−1(B). The
map h ◦ g ◦ Rα′ ◦ g−1 ◦ h−1|h◦g(C′) is conjugate to Rα′ |C′ . Now note
that if Rn

α′ ◦ g−1 ◦ h−1(x) ∈ π−1(Bi) then (f ′)n(x) ∈ h ◦ g(π−1(Bi))
for i ∈ {1, 2}. The orbit of each point in C, in average, spends θ
portion of times in π−1(B1) and 1− θ portion of times in π−1(B2). So
the orbit of the point x spends θ portion of times in h ◦ g(π−1(B1))
and 1− θ portion of times in h ◦ g(π−1(B2)). By choosing θ and ε
sufficiently small, we can guarantee that the asymptotic averages of
any point in h ◦ g(π−1(B1)) is arbitrary close to a measure νf ′ which is
the pushforward of the Lebesgue measure on the boundary component
C by the map h ◦ g. If σ is chosen sufficiently close to one, then map g
is so that Leb(h◦g(π−1(B1))) is sufficiently close to one and so since for
a large number n the nth empirical measures of points in h◦g(π−1(B1))

is close to νh◦g and so the measure êf
′

n is close to δ̂νf ′ . Now taking ν

as any accumulation point of measures like νf ′ where f ′ approches f ,
according to the definition we can see that f statistically bifurcates
toward δ̂ν and so we are done. �

Proof of Theorem C. Lemma 5.3 implies that for any map f ∈
AKr there are two measures ν1,f and ν2,f which are supported on dif-
ferent connected components of the boundary of A such that f sta-
tistically bifurcates toward both δ̂ν1,f and δ̂ν2,f . Now using Theorem
F we conclude that for a generic map f ∈ AKr and for almost every
point x in the phase space X, the set of accumulation points of the
sequence {efn(x)}n contains at least two measures ν1,f and ν2,f . We are
going to show that generically these two measures are the only ergodic
invariant measures of the map f and the empirical measures of almost
every point accumulates to any convex combination of these two ergodic
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measures (which is indeed the whole space of invariant measures) and
hence f is maximally oscillating. Note that since the map which sends
each dynamics to its set of invariant measures is semi-continuous, and
the continuity points of a semi-continuous map is a generic set, we can
choose f to be a continuity point of this mapping. Now approximate
f by a map like h ◦ g ◦ Rα′ ◦ g−1 ◦ h−1 coming from lemma 5.3. Using
theorem 5.1, we know that the map Rα′ can be approximated in C∞-
topology (and hence in Cr-topology) by a map e ∈ AK∞

vol which has
only three ergodic measures, two one dimensional Lebesgue measures
on the boundaries and the volume measure of the annulus. The map
h◦g◦e◦g−1◦h−1 is close to the initial map f and has only three ergodic
invariant measures which are the push forward of three ergodic mea-
sures of e by the map h ◦ g. Note that if in sublemma 5.4 the numbers
r1 and r2 are chosen close to 0 and 1 then set B2 has measure close to
one. In this case observe that the pushforward of the volume measure
by the map h ◦ g is a measure which is close to the pushforward of the
one dimensional Lebesgue measure of one of the boundary components
(which is denoted by C in the lemma). Hence the set of invariant mea-
sures for the map h ◦ g ◦ Rα′ ◦ g−1 ◦ h−1 is a triangle that have two of
its vertices very close to each other. We know that the map sending
the dynamics to its set of invariant measures is upper semi-continuous
(see 4.13) and hence it is continuous for maps in a Baire generic set.
Hence we can assume that f is a continuity point of this mapping and
the set of invariant measures of f is in an arbitrary neighbourhood of
triangle which is arbitrary close to a segment. So the set of invariant
measures of f is a segment. But this means that f has exactly two
ergodic invariant measures. Note that these measures are supported
on different boundary components of the annulus. So on each bound-
ary component of the annulus there is only one ergodic measure and
hence any invariant measures on one of the boundary components is
equal to the corresponding ergodic measure on that component. So
two measures ν1,f and ν2,f toward which f statistically bifurcates are
exactly two ergodic measures of f . Moreover since these two measures
are in the accumulation points of the sequence of empirical measures
for almost every points, and the set of invariant measures is the line
segment between these two measures, the sequence of empirical mea-
sures of almost every points have to accumulate to every point in this
line segment and this finishes the proof. �
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6. Comparison between different versions

In this section we compare different versions of defining statistical
instability and non-statistical dynamics and show how they are related.
The first propositions describes the relation between different versions
of defining non-statistical maps.

Proposition 6.1. Suppose f : X → X is a continuous map of a
compact metric space.
i) If f is non-statistical in law, then it is L1 non-statistical.
ii) If f is L1 non-statistical, then it is non-statistical.

Proof. i) Let f be non-statistical in law. So by definition the
sequence {ên(f) = (efn)∗µ}n is not convergent. We recall that

(efn)∗(µ) =

∫

X

δ̂efn(x)dµ(x).

where δ̂efn(x) ∈ M1(M1(X)) is the Dirac mass supported on the point

efn(x) ∈ M1(X).
Suppose to the contrary that f is not L1 non-statistical. So the se-
quence of maps {efn : X → M1(X)} is convergent in the L1 topology.
Let us call the limit point of this sequence by ef∞. Now we show that
(efn)∗µ converges to (ef∞)∗µ which is a contradiction. For simplicity we
denote (efn)∗µ by νn and (ef∞)∗µ by ν∞. We recall that

d̂w(νn, ν∞) = min
ξ∈π(νn,ν∞)

∫

M1(X)×M1(X)

dw(e, e
′)dξ(e, e′).

where π(νn, ν∞) is the set of all probability measures on M1(X) ×
M1(X) which projects to νn and ν∞ under the projections to the first
and second coordinate respectively. Consider the following element of
π(νn, ν∞):

ξ :=

∫

X

dw(δefn(x), δef∞(x))dµ

We have

d̂w(νn, ν∞) ≤

∫

M1(X)×M1(X)

dw(e, e
′)dξn(e, e

′).

On the other hand,
∫

M1(X)×M1(X)

dw(e, e
′)dξn(e, e

′) =

∫

X

dw(e
f
n(x), e

f
∞(x))dµ = dL′(efn, e

f
∞).

So we obtain d̂w(νn, ν∞) ≤ dL1(efn, e
f
∞), which implies that νn is con-

verging to ν∞ and is a contradiction.
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ii) Let f be L1 non-Statistical. We show that f is non-statistical
and so the maps efn : X → M1(X) do not converge almost surely. By
contrary, suppose the maps efn : X → M1(X) converge almost surely
to a map ef∞ : X → M1(X). Hence the map dw(e

f
n(.), e

f
∞(.)) : X → R

converges to zero almost surely and by dominated convergence theorem
we obtain that

dL1(efn, e
f
∞) =

∫

X

dw(e
f
n(x), e

f
∞(x))dµ(x) → 0 (n → ∞).

Which is a contradiction. �

The next proposition, shows that the same hierarchy holds for dif-
ferent versions of defining statistically unstable maps.

Proposition 6.2. Suppose Λ is a set of continuous self mappings of a
compact metric space X. It holds true that:
i) If f ∈ Λ is statistically unstable in law, then it is L1 statistically
unstable.
ii) If f ∈ Λ is L1 statistically unstable, then it is statistically unstable.

Proof. i) If f is statistically in law, then by definition there is at
least two different elements ν̂1 and ν̂2 in M1(M1(X)) toward which
f statistically bifurcates. This means that there are two sequences of
maps {f 1

k}k and {f 2
k}k converging to f , and two sequences of positive

integers {n1
k}k and {n2

k}k converging to infinity such that

lim
k→∞

ên1
k
(f 1

k ) = ν̂1, lim
k→∞

ên2
k
(f 2

k ) = ν̂2

Now on the contrary suppose f is L1 statistically stable. So the se-

quence {e
f1
k

n1
k

: X → X}k and {e
f2
k

n2
k

: X → X}k both converge to a

map ef∞ : X → X in the L1 topology. Using the same arguments
in the proof of part (i) in the previous proposition we conclude that

both sequences {(e
f1
k

n1
k

)∗µ}k and {(e
f2
k

n2
k

)∗µ}k converge to (ef∞)∗µ. Hence

we have ν̂1 = ν̂2 = (ef∞)∗µ and since ν̂1 and ν̂2 were distinct elements
M1(M1(X)), this is a contradiction.
ii) Suppose f is not statistically stable, so there is a map ef∞ : X →
M1(X) such that for any sequence {fk}k converging to f and any se-
quence of natural numbers {nk}k converging to infinity the sequence
of maps {efknk

: X → M1(X)}k converge almost surely to the map ef∞.
Using dominated convergence theorem, we conclude the convergence of
this sequence in the L1 topology to the map ef∞ and hence f can not
be L1 statistically unstable. �
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Let us mention that Proposition 6.2 implies a theorem of Avila and
Bochi [7, Theorem B]:

Theorem (Avila-Bochi 09). Assume X is a smooth compact con-
nected manifold and m a smooth volume measure on X. For any con-
servative map f of X, denote the ergodic decomposition of m by κf .
Fix an integer r ≥ 0. The points of continuity of the map

f ∈ Diffr
m(X) 7→ κf ∈ M1(M1(X)),

form a residual set.

Here we can give a short proof of this theorem using Corollary 2.10
and Proposition 6.2:

Proof. We prove that every map f in the set of L1 statistically
stable maps, which by Corollary 2.10 is residual in Diffr

m(X) , is a
continuity point of ergodic decomposition. Let f be L1 statistically
stable. By Proposition 6.2, f is statistically stable in law. So for
any sequence {fk}k converging to f and {nk}k converging to infinity
the sequence {ênk

(fk)}k converges to the ergodic decomposition κf =
lim
n→∞

ên(f), and hence we can conclude that κfk converges to κf . So f

is a continuity point of the map sending f to κf . �

Remark 6.3. In fact if f ∈ Diffr
m is L1 statistically stable, then for

any positive number ε > 0, there is a neighbourhood U of f such that
not only for any map g ∈ U , the limit eg∞ of the sequence of empirical
functions is ε-close to ef∞, but also for large enough integer n, the
empirical functions egn are ε-close to ef∞ as well. This is because

0 = ∆1(f) ≥ lim sup
n→∞

lim sup
g→f

dL1(ef∞, egn).





Part 2

Non-statistical Rational maps



Denote by Ratd the space of rational maps of degree d on the Rie-
mann sphere Ĉ. A rational map is called postcritically finite if all of
its critical points have finite orbit. A map in Ratd is called strictly
postcritically finite if each of its critical points is eventually mapped to
a repelling periodic orbit (this is equivalent to say that this postcriti-
cally finite map has no periodic critical point). The closure of strictly
postcritically finite maps is a subset of bifurcation locus and is called
maximal bifurcation locus. In this part of the thesis we show that in the
family of degree d rational maps of the Riemann sphere the maximal
bifurcation locus contains a (relatively) Baire generic subset of maps
displaying maximal non-statistical behavior:

Theorem B (Main theorem). For a Baire generic map f in the
maximal bifurcation locus, the set of accumulation points of the se-
quence of empirical measures is equal to the set of invariant measures
of f for Lebesgue almost every point.

Although the set of strictly postcritically finite rational functions
is a countable union of 3-dimensional sub-varieties of Ratd, its closure
– the maximal bifurcation locus – has recently been shown to have
positive measure w.r.t. the volume measure of the space of rational
maps as a complex manifold (see [6]).

The proofs are based on the abstract setting we developed in sec-
tion 4 and also a transversality argument allowing us to control the
behavior of the orbit of critical points for maps close to postcritically
finite rational maps.

Let us say a few words about the organization of this part of the
thesis. In Section 7 we prove the main theorem of this part using two
propositions 7.2 and 7.3. In Proposition 7.2 we show that any map in
the maximal bifurcation locus statistically bifurcates toward the Dirac
mass on an arbitrary periodic measure. This proposition is proved in
Section 8. In the last section, Proposition 7.3 is proved in which we
show the periodic measures are dense in the set of invariant measures
for strictly postcritically finite maps.

7. Proof of Main Theorem

First let us introduce the following definitions and notations that
we use while dealing with the dynamics of rational maps.We say a point
x ∈ X is preperiodic if it is mapped to a periodic point p after some
iterations. In this case we may say the point x is preperiodic to the
periodic point p. We say a measure µ ∈ M1(f) is an invariant periodic
measure if it is supported on the orbit of a periodic point.
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The space of degree d rational maps Ratd is a 2d + 1 dimensional
complex manifold. To see this, note that we can parametrize it around
any element P

Q
∈ Ratd using the coefficients of the polynomials P and

Q. These two polynomials have terms up to degree d so there is 2d+2
coefficients. But note that multiplying both P and Q by a constant
does not change the rational map, so the dimension is 2d+ 1.

Remark 7.1. Any degree d rational map has 2d − 2 critical points
counting with multiplicity.

Here are some notations:

• Per(f) for the set of the periodic points of a map f .
• C(f) for the set of critical points of a rational map f .
• P(f) for the postcritical set of a rational map which is defined
as follows:

P(f) :=
⋃

n≥1

fn(C).

• κd for the set of those maps in Ratd for which every critical
point eventually land on a repelling periodic point (these maps
are called strictly postcritically finite maps).

• κ∗
d for the set of those maps in κd for which all the critical

points are simple and the postcritical set does not contain any
critical point.

To prove the main theorem we show that the maps in κd enjoy from
two nice properties stated in the following propositions. The proofs of
these propositions is postponed to the next sections.
The first proposition is related to the statistical behavior of pertur-
bations of the maps in κd within the maximal bifurcation locus κd.

Proposition 7.2. Assume f is a map in κd. Then for any periodic
point p ∈ Per(f), f statistically bifurcates toward δef∞(p) through per-

turbations in κd.

Note that a rational map of degree greater than one, has always
(infinitely) many different periodic orbits, and in fact, the set of peri-
odic points is dense in the Julia set. So the set of periodic measures
contains infinitely many elements, each one corresponds to a periodic
cycle. The next proposition states that for a map in κd, the set of
periodic measures is in some sense maximal.

Proposition 7.3. For any strictly postcritically finite rational map f ,
the set of invariant probability measures which are supported on the
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orbit of a periodic point, is dense in the set of all invariant measures
M1(f).

Remark 7.4. In the proof of Proposition 7.3 we will see that every
periodic point for a strictly postcritically finite map is repelling.

From these two propositions we conclude that for a map in κd the
set of measures to which f statistically bifurcates is maximal.

Corollary 7.5. Any map in κd statistically bifurcates toward the Dirac
mass on any of its invariant measures through perturbations in κd or
in other word:

∀f ∈ κd, {ν ∈ M1(X)|δν ∈ BΛ,f} = M1(f).

Remark 7.6. We use the word maximal because a map f cannot
statistically bifurcates toward the Dirac mass on a measure that is not
f -invariant.

Let us show how this corollary together with Proposition 4.19 im-
plies the main theorem.

End of proof of Main Theorem. By Corollary 7.5, every map
in κd bifurcates toward the Dirac mass on each of its invariant mea-
sures. So by Proposition 4.19, for a generic f in κd, the set of accumu-
lation points of the sequence of empirical measures of Leb-almost every
point, is equal to the whole set of invariant measures. This finishes the
proof. �

8. Statistical bifurcation toward periodic measures

The aim of this section is to prove Proposition 7.2. First let us
recall the following two theorems from [12] and [13].

We recall that a Lattès map f is a postcritically finite map which
is semi-conjugated to an affine map A : z 7→ az+ b on a complex torus
T , via a finite to one holomorphic semi conjugacy Θ :

Θ ◦ A = f ◦Θ .

A lattès map f is flexible if we can choose Θ with degree 2 and A with
a > 1 integer.

We denote by Ld the set of flexible Lattès maps of degree d. We
refer the reader to the paper of Milnor [34] for further discussion on
Lattés maps.
We observe that:

Ld ⊂ κ∗
d ⊂ κd .

On the other hand:
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Theorem (Buff-Epstein). The following inclusion holds true:

κd r Ld ⊂ κ∗
d r Ld .

This theorem is a part of the main theorem of [12], whereas the
following one is the main theorem of [13].

Theorem (Buff-Gauthier). A flexible Lattès map can be approx-
imated by strictly postcritically finite rational maps which are not a
flexible Lattès map:

Ld ⊂ κd r Ld .

These two theorems imply:

Corollary 8.1. Any strictly postcritically finite rational map f ∈ κd

can be approximated by maps in κ∗
d which are not flexible Lattès map:

κd ⊂ κ∗
d r Ld .

Proof. By Proposition , if f is not a flexible Lattès map we are
done. If f is a flexible Lattès map, then first by Proposition , it can
be approximated by a strictly postcritically finite map which is not a
flexible Lattès map. Now using Proposition again, we are done. �

Corollary 8.1 enables us to transfer the following property of maps
in κ∗

d r Ld to those in κd, in order to deduce Proposition 7.2.

Lemma 8.2 (Main lemma). Let f be a map in κ∗
d r Ld. Then for

any periodic point q ∈ Per(f), f statistically bifurcates toward δef∞(q)

through perturbations in κd.

We will prove this lemma below, before this let us prove Proposition
7.2.

Proof of Proposition 7.2. For any map f in κd, any periodic
point p is repelling, and its hyperbolic continuation is well defined
and so the periodic measure supported on its cycle has a well defined
continuation for f ′ close to f .

Hence, to show that f statistically bifurcates toward δef∞(p) through

perturbations in κd, it is enough to show that there is some map f ′

in κd arbitrary close to f that statistically bifurcates toward the Dirac
mass on the continuation ef

′

∞(p) of this measure. But by Corollary 8.1,
arbitrary close to f we can find elements of κ∗

d r Ld, and by Main
lemma, these maps statistically bifurcate toward the Dirac mass on
any of their periodic measures, in particular, to the Dirac mass on the
continuation ef

′

∞(p). This finishes the proof of Proposition 7.2. �
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Figure 3. The dynamics of the initial map f ∈ κ∗
d r Ld.

Proof of Lemma 8.2. Denote by c1(f),...,c2d−2(f) the 2d−2 dis-
tinct critical points of f . There are repelling periodic points p1(f),...,p2d−2(f)
and positive integers n1,...,n2d−2 such that as it is shown in Figure 1

fni(ci(f)) = pi(f), 1 ≤ i ≤ 2d− 2

The critical points are simple and periodic points are repelling so
by the implicit function theorem, for any 1 ≤ i ≤ 2d− 2 there are

• analytic germ ci : (Ratd, f) → Ĉ following the critical point of
f as g ranges in a neighbourhood of f in Ratd and

• analytic germ pi : (Ratd, f) → Ĉ following the periodic point
of f as g range in a neighbourhood of f in Ratd.

Let F : (Ratd, f) → C2d−2 and G : (Ratd, f) → C2d−2 be defined by:

F (g) =





F1(g)
...

F2d−2(g)



 with Fj(g) := fnj(cj(g)) and P (g) =





p1(g)
...

p2d−2(g)



 .

Denote by DfF and DfP the differentials of F and P at f . The
following transversality result has been proved many times, see for
example [47]. We recall a version which is presented in [12]:

Proposition 8.3 (Epstein). The linear map

DfF −DfP : TfRatd → Tp1(f)Ĉ× . . .× Tp2d−2(f)Ĉ
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has rank 2d− 2. The kernel of DfF −DfP is the tangent space to the
subset of Ratd which is formed by those maps that are conjugate to f
by a Möbius transformation.

This nice property enables us to have control on the orbits of the
critical points while perturbing the dynamics.

Proposition 8.4. For any map in f ∈ κ∗
d which is not a flexible Lattès

map, there is a holomorphic, one-dimensional family {fΛ}Λ∈D such that
f0 = f , and except c1(f0), the other critical points are persistently
preperiodic through this family.

Proof. For any 1 6 i 6 2d− 2 let the map ϕi : Ui → C be a local
coordinate around pi(f), such that ϕi(pi(f)) = 0. Then by the previous
proposition the derivative of the map

Φ :=





ϕ1 ◦ F1 − ϕ1 ◦ p1
...

ϕ2d−2 ◦ F2d−2 − ϕ2d−2 ◦ p2d−2



 .

at f has full rank, so if we denote the ε-neighbourhood of zero in the
complex plane by Cε, then by Rank theorem there is a one dimensional
holomorphic family {fλ}λ∈Dε

for ε > 0 sufficiently small, such that
Φ(fλ) = (λ, 0, 0, . . . , 0). So for any λ ∈ Dε and for any j 6= 1 we have
f
nj

λ (cj(fλ)) = pj(fλ). And obviously this equality does not hold true
for critical point c1(fλ). By reparametrizing the family, we obtain a
family {fλ}λ∈D enjoying the desired properties. �

Let us consider a family {fλ}λ∈D coming from Proposition 8.4, and
denote the bifurcation locus of this family by B recalling that:

Definition 8.5. The bifurcation locus of a family consists of those
parameters that the dynamics is not structurally stable within that
family.

Remark 8.6. The bifurcation locus B is non-empty and in particular
contains 0.

Proof. The family we are considering is so that c1(fλ) is sent to
p1(fλ) by n1 iteration for λ = 0 , but this does not happen for λ 6= 0.
So f0 is not structurally stable in this family. �

Remark 8.7. Since for every λ sufficiently close to zero the orbit of
each critical point other than c1(f0) is finite, c1(fλ) is disjoint from
the orbit of the other critical points. So by reparameterizing the maps
associated to the parameters close to zero, we can assume that every
map in the family satisfies this property. This is a technical assumption
that we will use later.
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Figure 4. For the map fλ∗ which is a suitable perturba-
tion of f0 = f , the orbit of the critical point c1 is repelled
by the cycle of the periodic point p1 and eventually land
on q (see lemma 8.8).

Lemma 8.8. For every periodic point q(f0) of the map f0, there is a
parameter λ∗ in the bifurcation locus B arbitrary close to zero, such
that c1(fλ∗) is preperiodic to q(fλ∗).

Proof. The proof uses the well known normal family argument.
Let U be a small neighbourhood around 0 ∈ D. Recalling that the pa-
rameter zero is in the bifurcation locus, by Theorem 4.2 of McMullen’s
paper [32], there is j for which the family {λ ∈ U 7→ fn

λ (cj(fλ))}n∈N is
not normal. But by Proposition 8.4, this family is eventually periodic
for j 6= 1 and hence it is normal. So for j = 1, it is not normal. Using
this we are going to find λ∗ in U such that c1(fλ∗) is preperiodic to
q(fλ∗). If this holds for λ∗ = 0 we are done. If not:

Claim 8.9. If c1(f0) is not preperiodic to q(f0), then any pre-image of
q(f0) depends holomorphiclly on the parameter in a neighbourhood of
zero.

Proof. Take q′(f0) to be a pre-image of q(f0). If q′(f0) does not
meet any critical point before landing on q(f0), obviously it depends
analytically on the parameter. Otherwise there exists j 6= 1 such that
q′(f0) is sent to cj(f0) and cj(f0) is sent to q(f0). Proposition 8.4 implies
that for every parameter λ ∈ D, cj(fλ) is preperiodic to q(fλ), and so
q′(fλ) is indeed a preimage of cj(fλ). Since the latter depends analyticly
on the parameter, its preimage depends analyticly as well. �

Now take q1(f0), q2(f0) and q3(f0) to be three distinct preimages of
q(f0). There exists an analytic family of Möbius maps Γλ sending back
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the continuation of these three preimages to themselves:

Γλ(qm(fλ))) = qm(fλ) m ∈ {1, 2, 3}.

Since composing with Möbius maps does not affect normality, the fam-
ily {λ ∈ U 7→ Γ−1

λ (fn
λ (c1(fλ)))}n∈N is not a normal family as well, so by

Montel’s theorem, it cannot avoid all of the three points q1(f0), q2(f0)
and q3(f0). Hence, there is a parameter λ∗, a natural number l ∈ N

and m ∈ {1, 2, 3} such that the following equality holds:

(8.1) Γ−1
λ∗ (f

l
λ∗(c1(fλ∗))) = qm(f0).

So f l
λ∗(c1(λ

∗)) = qm(fλ∗) which means the critical point c1(fλ∗) is prepe-
riodic to q(fλ∗).

To prove that the parameter λ∗ is in the bifurcation locus, note that
the equation (8.1) cannot holds true in a neighbourhood of λ∗, since
otherwise it holds true for any parameter in U but we have assumed
that c1(f0) is not preperiodic to q(f0). �

Now let the parameter λ∗ is chosen so that c1(fλ∗) is preperiodic
to the periodic point q(fλ∗) which is the continuation of the periodic
point q in the statement of the main lemma.

Lemma 8.10. Arbitrary close to the parameter λ∗, there is a parameter
λ̂ such that fλ̂ has a parabolic periodic point q̂(fλ̂) and the invariant
probability measure supported on the orbit of q̂(fλ̂) is arbitrary close to
the invariant probability measure supported on the orbit of q(fλ∗).

Proof. For simplicity, after reparametrizing the family, we may
assume that λ∗ is equal to zero. Without loss of generality, we may
also assume that the period of q(fλ) is equal to one and so it is a fixed
point. Otherwise we can repeat the following arguments for a family
formed by an iteration of fλ. Conjugating the family by Möbius maps,
we can assume that q remains a fixed point for all maps in this family.
Up to a holomorphic change of local coordinates we can also assume
that fλ is linear in a neighbourhood of q and has the following form:

fλ(q + z) = γλz + q,(8.2)

where γλ is the multiplier of the repelling fixed point q for the map
fλ. Next note that since for the map f0 the pre-images of any point
accumulates to any point in the Julia set, and the Julia set is the
whole Riemann sphere, arbitrary close to q, there are pre-images of
the critical point c1(f). We choose one of this pre-images c̃, which is
in the linearization domain of q. We can also assume the change of
coordinates around q is so that the point c̃ stays a preimage of c1(fλ)
for λ close to zero.
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Figure 5. For the map fλ̂ which is a suitable perturba-
tion of fλ∗ , the orbit of the critical point c1, after staying
a long time close to q, returns to a small neighbourhood
of itself and a parabolic periodic point appears which
shadows the orbit of the critical point (see lemma 8.10).

Since c1(f0) is preperiodic to q, there is a natural number N ∈ N

such that fN
0 (c̃) = q, and also since c̃ meets only one critical point

c1(f0) (which is simple) before landing on q, the Taylor expansion of
fN
λ (z) around z = c̃ and λ = 0 has the following form:

fN
λ (c̃+ z) = q + Aλ +Bλz

2 + z3ελ(z),(8.3)

where Aλ, Bλ and ελ(z) depend holomorphically on λ and z. Aλ is zero
at λ = 0 but it is not identically zero in a neighbourhood of λ = 0.
This is true because c1(fλ) is not persistently prepriodic to q, and so

Aλ = λjÂ(λ), for some holomorphic map Â with Â(0) 6= 0 and for
some natural number j ∈ N. On the other hand since c̃ meets only
one critical point, which is simple, before landing on q, there is no first
order term in equation 8.3 and also B0 6= 0.

By equation 8.2

fN+n
λ (c̃+ z) = q + γn

λAλ + γn
λBλz

2 + γn
λz

3ελ(z).(8.4)

Now for each n ≫ 1, we are going to find a parameter λn close to zero
such that the map fλn

has a parabolic periodic point close to c̃ with
period n + N and multiplier equal to one. We find this parameter so
that the parabolic periodic point spends most of its time close to the
fixed point q. For this purpose we need to solve the following system
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of equations:

fN+n
λ (c̃+ z) = c̃+ z,(8.5)

(fn+N
λ )′(c̃+ z) = 2γn

λBλz + 3γn
λz

2ελ(z) + γn
λz

3(ελ)
′(z) = 1.(8.6)

From the second equation we obtain

z =
1

2γn
λBλ

−
3z2ελ(z)− z3ε′λ(z)

2Bλ

:= Gn,λ(z).(8.7)

Using this equation we can find z implicitly in terms of λ . Fix a
sufficiently small neighbourhood U of λ = 0 and a small neighbourhood
W of z = 0 such that for large n and for any λ ∈ U the map Gn,λ is
uniformly contracting on W . So for each n and λ the map Gn,λ has
a unique fixed point zn(λ). To estimate the norm of this fixed point,
using the equation 8.7 we obtain

zn(λ)(1 +
3zn(λ)ελ(zn(λ))− z2n(λ)ε

′
λ(zn(λ))

2Bλ

) =
1

2γn
λBλ

,

so the norm of zn(λ) is of O( 1
|γn

λ
|
). Now to find λn we insert zn(λ) into

equation 8.5:

zn(λ) + c̃− q

γn
λ

− Bλz
2
n(λ)− z3n(λ)ελ(zn(λ)) = Aλ = Âλλ

j.

So

λj =
1

Âλ

(
c̃− q

γn
λ

+
zn(λ)

γn
λ

− Bλz
2
n(λ)− z3n(λ)ελ(zn(λ))

)

:= Hn(λ).

(8.8)

since the sequence of maps λj−Hn(λ) converges uniformly on U to the
map λj, by Hurwitz theorem we conclude that for n large enough, the
equation λj−Hn(λ) = 0, has j solutions counted with multiplicity. Let
λn be one of these solutions. The pair (λn, z(λn)) solves both equations
8.5 and 8.6 so zn(λn) is a parabolic periodic point of fλn

with period
n +N . It remains to show that this periodic point spends most of its
time close to the fixed point q.

Considering the fact that the norm of zn(λ) is of O( 1
|γn

λ
|
) the equa-

tion 8.8 implies that the norm of λj
n and hence the norm of Aλn

are
of O( 1

|γn
λ
|
) and so the distance between fN

λn
(c̃ + zn(λn)) and the fixed

point q is of this order as well. This shows that the orbit of zn(λn)
stays n − O(1) iterations close to q. Note that since N is fixed, by
increasing n the proportion of times that this parabolic periodic point
spends close to q tends to 1 and so we are done. �
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The following lemma describes the statistical behavior of Lebesgue
a.e. point for the dynamics fλ̂, where the parameter λ̂ is given by
Lemma 8.10.

Lemma 8.11. Under the iteration of the map fλ̂ the empirical mea-
sures of Lebesgue almost every point converges to the invariant prob-
ability measure supported on the orbit of the parabolic periodic point
q̂(fλ̂) .

Proof. Let Ũ be an immediate basin of attraction of the parabolic
periodic point q̂(fλ̂). By Theorem 10.15 in [33], the domain Ũ contains
a critical point of the map fλ̂. The only critical point which can live in

Ũ is c1(λ̂), because the other ones are preperiodic to repelling periodic
points and so are in the Julia set. Assume for the sake of contradic-
tion that there exists a Fatou component Ṽ of fλ̂ which has an orbit

disjoint from Ũ . By Sullivan’s classification of Fatou components for
rational maps, the domain Ṽ should be a preimage of a periodic Fatou
component W̃ . The component W̃ cannot be neither a component of
the immediate attracting basin of an attracting periodic point nor a
component of an immediate attracting basin of a parabolic periodic
point, because otherwise it should contain a critical point other than
c1(λ̂) in its forward orbit which is not possible. Since the boundary of
a Siegel disk or a Herman ring is accumulated by the orbit of a critical
point, the component W̃ cannot be neither of these cases as well. But
these are the only possible cases, which is a contradiction.

Consequently, the set
⋃

n>0 f
−n

λ̂
(Ũ) is the whole Fatou set. Next

note that every critical point of fλ̂ is non-recurrent. In [36] it is proved
that a rational map with no recurrent critical point has a Julia set
with Hausdorff dimension less than two or a Julia set equal to Ĉ. As
the Fatou set of fλ̂ is non empty, the Julia set of fλ̂ has Hausdorff
dimension less than two and in particular has zero Lebesgue measure.
This means that almost every point x ∈ Ĉ eventually fall into Ũ , and
will be attracted by the orbit of q̂(fλ̂). �

Remark 8.12. The map fλ̂ is in the set κd.

Proof. Since the parabolic periodic point for fλ̂ is not persistent,

the parameter λ̂ is in the bifurcation locus B. So again using a normal
family argument as in Lemma 8.8, it can be shown that fλ̂ is approx-
imated by maps fλ, for which the critical point c1(fλ) is preperiodic
to a repelling periodic point. This means that fλ ∈ κd and hence
fλ̂ ∈ κd. �
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To finish the proof of the main lemma, note that by Lemma 8.11
and Lemma 8.10, the limit of the empirical measures of almost every
point for the map fλ̂ is close to ef∞(q). And moreover, by the previous
remark, fλ̂ is in κd. So the map f statistically bifurcates toward δef∞(q)

with perturbations in κd. �

9. Periodic measures are dense in M1(f)

The aim of this section is to prove Proposition 7.3. Through out
this section we assume that f is a strictly postcritically finite rational
map of degree d ≥ 2. Since f has no periodic critical point, it has
at least one critical point c ∈ C(f) which is not in the post critical
set P(f). So the set f−1({c}) has d elements, and since d ≥ 2, the
set A := P(f) ∪ C(f) ∪ f−1({c}) has at least three elements. The

Riemann surface ĈrA is hence a hyperbolic Riemann surface and has
the Poincaré disk D as a universal cover. Let us fix a covering map
π : D → Ĉ rA.

For any point x ∈ ĈrA and any of its d preimages y, the map f is
a local diffeomorphism from a neighborhood of y onto a neighborhood
of x. Thus its inverse branch is well defined and can be locally lifted
to the universal covering. We claim that this map can be extended to
a map F : D → D satisfying the following property:

f ◦ π ◦ F = π.(9.1)

To see this, choose x̃ ∈ π−1({x}) and ỹ ∈ π−1({y}), and define
F (x̃) = ỹ. To define F on an arbitrary point z̃ ∈ D, consider a curve
γ : [0, 1] → D with γ(0) = x̃ and γ(1) = z̃. Then by projecting this

curve to ĈrA and using the continuation of the inverse branch sending
x to y, we obtain a curve in Ĉ rA starting at y and ending at a point
in f−1({π(z̃)}). This new curve has a lift to the universal cover, which
starts at ỹ. We define F (z̃) as the endpoint of the latter curve. The
map F is well defined since for any other curve γ′ joining x̃ to z̃, the
loop (γ′)−1 ◦ γ is contractible in D, so its projection π((γ′)−1 ◦ γ), is

a contractible loop in Ĉ r A as well. The inverse image of this loop
under the continuation of the branch of f−1 sending x to y is then
contractible in Ĉ rA, and so lifts to a closed loop in D, starting from
ỹ. This Shows that we obtain the same points for F (z̃) using both γ
and γ′, and hence F is well defined. By definition, it is obvious that
equation (9.1) holds for F .

We denote the hyperbolic metric on the Poincaré disk D by d̃h.
Recall that any Deck transformation of the covering π : D → Ĉ r A
is a biholomorphism, and so it leaves invariant the Poincaré metric d̃h.
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Thus we can push forward the metric d̃h and obtain a metric dh on
Ĉ rA.

Lemma 9.1. For the metric d̃h, the derivative DF (z) is contracting
at every z ∈ D.

Proof. Schwarz lemma implies that if F is not an isomorphism
of the Poincaré disk, then DF (z) is d̃h-contracting for every z ∈ D.
We are going to show that f is not surjective and hence can not be
an isomorphism. Choose a point x ∈ A which is a preimage of the
critical point c. Let y be a preimage of x. We recall that c is not in the
postcritical set, so y cannot be in A. Now take any point ỹ ∈ π−1(y).
Since we have

f ◦ π ◦ F (D) = π(D) = Ĉ rA,

ỹ cannot be in the range of F . �

The following corollaries are immediate consequences of the previ-
ous lemma:

Corollary 9.2. At every point x ∈ ĈrA, any inverse branch of f has
a contracting derivative for the metric dh.

Corollary 9.3. Any periodic point of f is repelling.

Proof of Proposition 7.3. We shall prove that every probabil-
ity measure of f can be approximated by invariant probability measures
supported on the orbit of a periodic point. First let us show this for
the case where the probability measure is ergodic.

Lemma 9.4. Any ergodic invariant probability measure µ ∈ M1(f),
can be approximated by invariant probability measures supported on the
orbit of a periodic point.

Proof. Since µ is ergodic, we can find a point x in the support
of µ which is regular for µ meaning that the sequence of the empirical
measures {efn(x)}n∈N converges to µ. If the orbit of x intersects the set
A, the point x is eventually periodic and in fact is a periodic point in
A. In this case, the measure µ is itself a measure supported on the
orbit of the periodic point x. So let us assume that the orbit of x is
disjoint from A. For small r > 0, let Br(x) be the ball of radius r about
x with respect to the metric dh. Since the metric dh is complete, the
closure of Br(x) is included in Ĉ r A. Note that there are only finite
inverse branches of f , and we can use Corollary 9.2 to conclude that
there is a number 0 < α < 1 such that any inverse branch of f over
Br(x) is at least α-contracting.
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On the other hand, since x is in the support of µ, and also a regular
point for this measure, its orbit returns infinitely many times to its
hyperbolic r

4
-neighbourhood. Let m ∈ N be such that αm < 1

2
. Choose

n ∈ N such that the orbit of x up to n iterations contains at least m+1
points inside B r

4
(x), including fn(x). Let U0 := Br/2(f

n(x)), and for

each 1 ≤ i ≤ n, denote the connected component of f−i(U0) containing
fn−i(x) by Ui. Since any inverse branch of f is non-expanding, any Ui

is contained in a ball of radius r
2
around fn−i(x). And so when fn−i(x)

is r
4
close to x, Ui is contained in Br(x). This implies that f−1 sending

Ui to Ui+1 is α-contracting and so the branch g of f−n from U0 to Un

is αm-contracting. Recalling that αm < 1
2
, this implies that Un is in

r
4
-neighbourhood of x. But U0 covers the r

4
-neighbourhood of x, so g

sends U0 into itself, and is αm-contracting. Thus there is a a fixed point
p of g in the closure of U0. This fixed point is an n-periodic point of f
satisfying:

∀i ∈ {0, ..., n}, dh(f
i(x), f i(p)) <

r

2
.(9.2)

But there is a constant C > 0 (depending only on A) such that for

any two points x and y in Ĉ rA we have:

d(x, y) < Cdh(x, y),

where d(x, y) is the standard spherical metric between x and y in Ĉ.
We refer the reader to [11]. So the orbit of x and the periodic point p
are close to each other in the spherical metric:

∀i ∈ {0, ..., n}, d(f i(x), f i(p)) < C
r

2
,

and hence

dw(e
f
n(x), e

f
n(p)) < C

r

2
.

By choosing r small enough and n large enough, we can guarantee that
efn(x) is close to µ. This shows that µ can be approximated by the
invariant measures supported on the orbit of periodic points. �

The final step in the proof of Proposition 7.3 is to show that every
invariant measure of f can be approximated by the invariant measures
supported on the orbit of only one periodic point. For this we show that
any finite convex combination of ergodic invariant measures of f can
be approximated by such measures, and since, the finite convex combi-
nations of ergodic invariant measures are dense in the set of invariant
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measures of f (according to ergodic decomposition theorem, any in-
variant measure cam be written as an integral of erg), Proposition 7.3
follows.

Let µ1, ..., µk be k ergodic invariant measures, and µ =
∑k

i=1 ciµi

a convex combination of these measures for some 0 ≤ ci ≤ 1 with
∑k

i=1 ci = 1. By lemma 9.4 for each 1 ≤ i ≤ k, there exists a pe-
riodic point pi such that dw(µi, e

f
∞(pi)) is arbitrary small and hence

dw(µ,
∑k

i=1 cie
f
∞(pi)) is small. So for our purpose, it is enough to show

that the measure
∑k

i=1 cie
f
∞(pi) can be approximated by invariant prob-

ability measures which are supported on the orbit of only one periodic
point. To show this, For technical reasons it is better to bring into play
another repelling periodic point p0, which is not in the post critical set
P(f).

Since the Julia set of f is the whole Riemann sphere, the set of
all preimages of each periodic point pi is dense in Ĉ, and in particular
has a point in the linearization domain of the other k periodic points.
So we can find ε > 0 such that the preimages of ε-neighbourhood of
pi has a connected component in the linearization domain of pi+1 (for
i=k, consider p0 instead of pi+1). Let us denote the ε-neighbourhood
of pi by Ui. Now note that preimages of Ui has indeed a connected
component in Ui+1 because any subset of the linearization domain, has
preimages converging to the periodic point pi. Take li ∈ N such that
f−li(Ui) has a connected component in Ui+1 (in U0, for i = k).

Now we find a periodic point, in a backward orbit of U0 which
returns to itself. For each set of natural numbers {n1, ..., nk} ⊂ N such
that ni is divisible by the period of pi, consider the following backward
orbit of U0: the set U0 is sent by f−l0 into U1. Then for each 1 ≤ i ≤ k
spends ni backward iterations in the linearization domain of pi, and
then by f−li goes from Ui to Ui+1 (to U0 for i = k). So finally, we will
obtain a preimage Ũ0 of U0 in itself. Since U0 does not intersect the
post critical set, there is no critical point in the preimages of this set,
and the inverse branch sending U0 to Ũ0 is a homeomorphism, and in
particular, by Brouwer fixed point theorem, it has a fixed point p. This
fixed point is a periodic point for the map f with the period equal to
N := l0 +

∑k
i=1 li + ni. This periodic point spends ni iteration close to

the orbit of pi, so since the sum
∑k

i=0 li is bounded, by choosing very
large integers ni such that for each i, the number ni

N
is close ci, we can

guarantee that efN(p) is arbitrarily close to
∑k

i=1 cie
f
∞(pi). This finishes

the proof of Proposition 7.3.
�
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non linéaire, 27(2):595–637, 2010. (Cited on page 11.)
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maux. In Système dynamique I - Varsovie, number 49 in Astérisque, pages
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Résumé

Dans cette thèse, nous étudions les propriétés statistiques des systèmes dy-

namiques. Plus précisément, nous étudions si le comportement statistique asymp-

totique des orbites typiques via la convergence de la suite des mesures empiriques.

Nous étudions également la stabilité du comportement asymptotique sous l’effet de

perturbations de la dynamique au sein d’une famille.

Ce mémoire comporte deux parties. Dans la première partie, nous relions

ces deux études. La seconde partie est consacrée à la preuve de l’existence de

dynamiques non statistiques dans l’espace des applications rationnelles de la sphère

de Riemann. Une application est dite non statistique par rapport à la mesure de

référence, s’il existe un ensemble de mesure positive de points qui ont leur suite de

mesures empiriques divergente.

Dans la première partie, nous avons développé un cadre abstrait qui vise à

comprendre ce qui se cache derrière l’existence d’applications non statistiques dans

une famille de dynamiques donnée. Dans cette partie de la thèse, nous étendons et

formalisons le concept d’instabilité statistique dans un sens général, indépendant du

comportement statistique de la dynamique, et nous montrons comment l’abondance

d’applications statistiquement instables, dans une famille donnée de dynamiques,

implique l’existence d’applications non statistiques dans cette famille. Nous pro-

posons une autre application de cette formalisation, ainsi qu’un autre exemple de

cartes non statistiques: les difféomorphismes Anosov-Katok non statistiques de

l’anneau.

Mots-clés: Dynamiques non statistiques, instabilité statistique, applications

rationnelles, difféomorphismes Anosov-Katok.

Abstract

In this thesis, we study the statistical properties of dynamical systems. More

precisely, we study the asymptotic statistical behavior of typical orbits via the

convergence of the sequence of empirical measures. We also study the stability of

asymptotic behavior under the effect of small perturbations of the dynamics within

a family of maps.

This note has two parts. In the first part, we link the two subjects mentioned

above. The second part is devoted to the proof of the existence of non-statistical

dynamics in the space of rational maps of the Riemann sphere. A map is said to

be non-statistical with respect to the reference measure, if there is a set of positive

measures of points which have a divergent sequence of empirical measures.

In the first part, we have developed an abstract setting which aims to under-

stand what lies behind the existence of non-statistical maps in a given family of

dynamics. In this part, we extend and formalize the concept of statistical instability

in a general sense, independent of the statistical behavior of the dynamics, and we

show how the abundance of statistically unstable maps, in a given family of dynam-

ics, implies the existence of non-statistical maps in this family. We provide another

application of this formalization, and also another example of non-statistical maps:

non-statistical Anosov-Katok diffeomorphisms of the annulus.

Keywords: Non-statistical dynamics, statistical instability, rational maps,

Anosov-Katok diffeomorphisms.


