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Abstract
Coarse-Grained Reconfigurable Architectures (CGRA) are designed to deliver high performance
while drastically reducing the latency of the computing system. There are several types of
CGRA according to the structure, application, type of resources, and memory infrastructure.
We focus our work on a subset of CGRA designs that we call Software Programmable Streaming
Coarse-Grained Reconfigurable Architectures (SPS-CGRA). An SPS-CGRA is a more or less
complex array of coarse-grained heterogeneous hardware resources with a coarser granularity
than the classical. An SPS-CGRA can perform spatial and temporal computations at low
latency. Its stream-based processing provides high performance maintaining a level of flexibility.
Although they are often highly domain-specifically optimized, they keep several levels of custom
post-fabrication programmability, given by a set of parameters, so that they can be reused.
However, their reuse is generally limited due to the complexity of identifying the best allocation
of the processing tasks into the hardware resources. Another limiting point is the complexity
of producing a reliable performance analysis for each new implementation since no mature tool
exists.

To solve these problems, we propose a complete mapping and scheduling framework that
targets SPS-CGRA. We introduce a generic hardware model allowing one to express these in-
trinsically custom levels of flexibility without neglecting data access and system configuration
control. We also propose a performance estimation analysis based on resource latency descrip-
tion, allowing to obtain the upper bound of the computing cost. To complete, we present four
different solutions for the mapping and scheduling problem: a List-based algorithm with back-
tracking, a Lookahead-based heuristic, a Bayesian-based heuristic and, a Q-Learning mapping
algorithm. We evaluate and compare our solutions against an exhaustive approach in a real-life
example and illustrate the benefits and efficiency of the proposed framework.
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Résumé
Les architectures reconfigurables à gros grains (CGRA) sont conçues pour offrir des perfor-
mances élevées tout en réduisant considérablement la latence du système informatique. Il existe
plusieurs types de CGRA en fonction de la structure, de l’application, du type de ressources
et de l’organisation de la mémoire. Nous concentrons notre travail sur un sous-ensemble de
conceptions CGRA que nous appelons les architectures gros grain, flot de données, reconfig-
urables et programmables (SPS-CGRA). Un SPS-CGRA est une grille plus ou moins complexe
de ressources matérielles hétérogènes à gros grains avec une granularité plus grande que les archi-
tectures CGRA classiques. Un SPS-CGRA peut effectuer de grandes quantités de calculs avec
une faible latence. Son principe de traitement orienté flot de données offre des performances
élevées tout en maintenant un niveau élevé de flexibilité. Bien qu’ils soient souvent hautement
optimisés pour un domaine spécifique, ils conservent plusieurs niveaux de programmation après
la phase de configuration Cette programmation s’effectue par le biais de paramètres, rendant
ainsi possible leur réutilisation. Cependant, cette réutilisation est généralement limitée en raison
de la complexité de l’identification de la meilleure allocation des tâches de traitement sur les
ressources matérielles. Un autre facteur limitant la réutilisation est la complexité à produire une
analyse de performance fiable pour chaque nouvelle implémentation car généralement il n’existe
aucun outil spécifique pour explorer et exploiter pleinement le potentiel des architectures ainsi
produites.

Pour résoudre ces problèmes, nous proposons un cadre complet de distribution et d’ordonnan-
cement qui cible les SPS-CGRA. Nous introduisons un modèle théorique et générique de l’archi-
tecture matérielle permettant d’exprimer ces niveaux de flexibilité intrinsèquement personnal-
isés, ainsi que l’accès aux données et le contrôle de la configuration du système, souvent négligés
dans les travaux existants. Nous proposons également une analyse d’estimation des perfor-
mances, basée sur la latence des ressources. Pour compléter, nous présentons quatre solutions
différentes pour résoudre le problème de distribution et d’ordonnancement : un algorithme avec
retour en arrière basé sur des listes, une heuristique basée sur les algorithme de type "looka-
head", une heuristique basée sur un algorithme Bayésien et un algorithme d’ordonnancement
basé sur le Q-learning. Pour finir, nous évaluons et comparons nos solutions sur des ensembles
d’architectures et d’applications dont les paramètres sont générés aléatoirement, ainsi que sur
deux applications réelles.
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Chapter 1

Introduction

Time-critical systems need to assure the accuracy of output while meeting hard timing con-
straints. This paradigm increases its importance with the advent of the industrial IoT, au-
tonomous vehicles, drone-based applications, and smart grids. Often, these new applications
must process a significant amount of data from a wide range of sensors. Furthermore, the data
must be processed with maximal reactivity, respecting the capabilities of the hardware resources
and ensuring a valid output. This creates a non-trivial problem for the latency optimization of
processing systems.

To answer these constraints, an extensive number of hardware architectures have been pro-
posed in the past, trying to find the best trade-off between efficiency and execution constraints.
We can cite examples going from General-Purpose Processors (GPPs), Digital Signal Proces-
sors (DSPs), and Graphics Processing Units (GPUs) up to Application-Specific Intructions-Set
Processors (ASIPs), Field Programmable Gate Array (FPGAs), Coarse-Grained Reconfigurable
Architectures (CGRAs), and Application-Specific Integrated Circuit (ASIC).

1.1 Reusability of Time-Critical Systems
The increasing complexity of time-critical systems and their applications make designers lean
towards the reuse of parts of hardware blocks and systems. Since time-to-market constraints are
often an industrial priority, and to design a new hardware block from scratch takes a considerable
amount of time, the best option is to exploit the already developed platforms’ programmable or
configurable blocks.

Reusability is the attribute of a system that allows to use it in different applications. It is the
use of pre-designed and pre-verified platforms or hardware blocks that reduces time-to-market
and ensures a previously known performance [16]. The level of reusability of a given platform
includes the following [17]:

• Hardware features: programmability and parametrization of the hardware blocks, the
complexity of the target applications, type of interfaces.

• Software tools: programming software and support, simulation environments.

• Standardization support (norms and protocols): documentation of parameters, require-
ments, and restrictions.

In Figure 1.1, we compare the efficiency with respect to the reusability exploitation of differ-
ent platforms used for implementing time-critical systems. Efficiency is the relation of perfor-
mance with regard to power consumption, as reported in the literature [18, 19]. There, we can
observe that GPPs, DSPs, and GPUs have a broad support structure and can be used for many
applications. However, their performance is lower than an FPGA and an ASIC. ASIPs are better
than GPUs and GPPs in terms of efficiency, given the frequent addition of custom instructions
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and functional units. However, they remain below FPGAs and ASICs, in terms of efficiency, due
to their completely specialized execution engines [19, 20]. FPGAs offer high performance with
low consumption and with a significant support environment. Nonetheless, this architecture’s
management usually requires low-level knowledge, and its performance is lower than the ASICs.
ASICs offer the best efficiency, but they require a very rare low-level knowledge and a costly
design process. Therefore their reusability is severely reduced. Finally, in the above-mentioned
context, Coarse-Grained Reconfigurable Architectures (CGRAs) provide the best ratio between
the increase of the overall performance while decreasing computing latency and minimizing the
energy budget [21]. Their reuse capability depends on a degree of programmability provided by
a set of parameters, often custom and positioned between general-purpose and fixed-function,
defining the possibility of their “on-line or off-line re-programming” [18].
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Figure 1.1 – Comparative study of hardware architectures from reusability point of view.

Effectively, CGRAs are optimized for a given application domain. There is a large diversity
of CGRAs types. Their processing elements are not so generic as the ones of GPPs or DSPs.
Usually, a CGRA consists of a set of ALU-like processing resources organized according to
some well-defined topology for a dedicated application [22]. Hence, their interconnections and
granularity have a reduced complexity than those of FPGAs. Also, their memory infrastructure
allows decreasing the overall memory transactions compared to a GPU.

Based on these re-programming capabilities, we can distinguish an inner CGRA family that
we call Software Programmable Streaming Coarse-Grained Reconfigurable Architecture (SPS-
CGRA). An SPS-CGRA is a systolic, highly pipelined array of heterogeneous hardware resources.
It is a spatially-configured overlay [23], based on an FPGA, can be realized as ASIC or be a part
of a System on Programmable Chip (SoPC). Its hardware resources are defined by an initial
“off-line” structural reconfiguration [24]. After this step, a degree of programmability is pro-
vided through reconfigurable or reprogrammable parameter sets, called configuration contexts
[25]. Each hardware resource may be equipped with multiple contexts that may be individually
switched through its internal registers’ modification. An SPS-CGRA is a data-driven platform
that may perform not only loops but entire applications at low latency. Its stream-based pro-
cessing provides high performance while maintaining a level of flexibility.
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The use of SPS-CGRAs is widespread across numerous fields. In the cryptocurrency domain,
the implementation of hashing algorithms requires a massive amount of computational power.
This may be solved using an FPGA-based SPS-CGRA, as depicted in Tetu et al. [8] where
an implementation of the Lyra2REv2 algorithm, a standard in cryptocurrency, is presented.
Mathematical algorithms can also take advantage of the systolic structure of an SPS-CGRA.
For example, we can cite the FPGA-based implementation of an Algebraic Multigrid Solver
presented by Haghi et al. [26]. Sound field rendering models the behavior of sound wave
propagation in spatial and time domain using numerical methods, and its implementation and
efficiency are crucial for several engineering application fields. Tan et al. [27, 28] proved that
SPS-CGRA solutions offer better performance than a GPP implementation. In the computer
vision domain, SPS-CGRAs are used to enhance the performance of image processing systems.
Examples of these architectures are the FPGA-based SPS-CGRAs presented by Ngan et al. [29]
and by Isavudeen et al. [10]; and also the ASIC-based SPS-CGRA introduced by Dokladalova et
al. [30]. Deep Learning is another field where the use of SPS-CGRA is growing. Since a Neural
Network (NN) is modeled as a Directed Acyclic Graph (DAG) and its dataflow is unidirectional,
an SPS-CGRA is a perfect candidate to be used as an implementation platform. We can cite, for
example, the ASIC-based Neuflow [31], and FlexFlow [32], the FPGA-based implementations of
a Deconvolutional NN presented by Chang et al. [13], a Life Long learning Convolutional NN
by Piyasena et al. [14] and a Randomly Wired NN develop by Kuramochi and Nakahara [33].
Some of these examples will be detailed in Section 1.4.

Unfortunately, despite the high performance that an SPS-CGRA can deliver while decreasing
latency of processing, its reuse is not generalized due to the lack of generic tools or frameworks.
This problem is inherited from the CGRA, based on manual or custom programming frameworks,
that can not be easily transferred (or adapted) to other CGRA-based systems [11, 12].

Consequently, the programming and compiling frameworks remain immature. Hence, the
mapping of any application onto an SPS-CGRA is often manual, requiring expert knowledge
of both inner hardware mechanisms and application specificity. This reuse task could become
overwhelming, leading to the rare reuse of these powerful SPS-CGRA platforms.

To face these issues, we propose a generic automated mapping and scheduling framework
that targets most of the existing SPS-CGRA (Fig. 1.2).

CONFIGURATION MODEL
LATENCY MODEL

FEATURES
SPS-CGRA

MODEL

HARDWARE APPLICATIONS

TASKS AND DATA DEPENDENCY MODEL

MAPPING AND SCHEDULING 

PERFORMANCE EVALUATION  IMPLEMENTATION MODEL
GENERATION OF 

CONFIGURATION CONTEXT

Figure 1.2 – Overall scheme of proposed modeling and mapping framework for SPS-CGRA.

Such a framework must be based on a model that allows describing the heterogeneity of
any SPS-CGRA hardware element programming models. Simultaneously, this model has to be
generic enough to match the maximum of SPS-CGRAs variants in granularity and application
fields. Also, considering the need to optimize the system’s reactivity, it has to provide an
accurate, near-to-real performance latency estimation. Additionally, such a framework should
offer mapping assistance to help the designer exploit this type of hardware architecture’s inherent
parallelism. Finally, the mapping assistance should aim to decrease the computing cost, a critical
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metric in these systems.
In this context, the main contributions of this thesis are:

• A unified modeling framework that includes application, hardware and selected implemen-
tation.

• We propose to use processing latency as a metric of computing cost to be optimized. The
latency can be described as a function of the hardware block programming parameters.

• A computation model to estimate the upper bound of the computing cost of the imple-
mentation selected by the mapping algorithm.

• We propose and evaluate four different mapping approaches.

1. A List-based algorithm equipped with backtracking.
2. A Topology-aware mapping heuristic.
3. A Bayes-based mapping heuristic.
4. A Q-learning-based mapping algorithm.

To complete, we evaluate the algorithms in terms of exploration time and computing cost
of the implementation.

Additionally, we introduce a complete benchmark framework with the previous items, in-
cluding a configuration control generator.

The remainder of the chapter is divided as follows. In Section 1.2, we review state of the
art on development tools and methodologies. Section 1.3 describes in detail the characteristics
of a CGRA. Section 1.4 introduces the concept of SPS-CGRA. Section 1.5 presents the thesis
contributions. Section 1.6 presents the outline of the thesis.

1.2 State of the Art: Development Tools and Methodologies
As introduced previously, reusability is the attribute of a system that allows one to use it in
different applications. This aspect directly impacts time-to-market and provides the opportunity
to use already developed and tested tools or frameworks. As stated in Section 1.1, reusability
includes three aspects: hardware, software, and documentation. However, most of the designers
of SPS-CGRA focus only on the hardware aspect, providing a set of programmable parameters
to allow the use in different applications. Thus, we can observe a lack of tools and methodologies
that could provide the software support. In this context, tools like Design Space Exploration
(DSE) are often used to bridge this reuse technique gap.

A DSE is the systematic evaluation process of the different implementations (mappings) of an
application onto a hardware system to determine optimal or best-suited hardware. This process
can be manual, automatic, or hybrid. In a manual DSE, the engineer is in full charge to find the
optimal implementation, while in an automatic DSE, the framework takes the implementation
decision. In a hybrid DSE, the framework takes the decisions with a fine tunning from the
engineer. This evaluation process may generate many possibilities due to the size of the design
space. As the number of possible implementations increases, a complete, exhaustive exploration
may be prohibitive. For this reason, several works propose different approaches for efficient
DSE.

Giannopoulou et al. [34] presented a DSE framework for many/multicores, part of the
Certification of Real-Time Applications designed for mixed-criticality (CERTAINTY) project,
aiming at avionics applications. It uses a mixed-critically task application model with multiple
critical levels and different task activation patterns and a platform model that allows to abstract
of the memory and the communications of the system. A mixed-critically scheduling policy is
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used, where only equal critical tasks can be executed in parallel. Finally, the implementation is
evaluated using a response time analysis based on the Worst-Case Execution Time (WCET).

Grandpierre and Sorel [35] presented a prototyping methodology and a software tool (Syn-
DEx) that aims to optimize implementations of real-time image and signal processing onto het-
erogeneous multiprocessors architectures. This methodology has been extended to integrated
circuits [36, 37], VHDL code generation [38], and it has been the subject to improvements in
terms of power consumption [39].

Jalier et al. [40] introduced a DSE framework for Multiprocessors System on Chip (MPSoCs).
Their framework targets telecom applications. The application and hardware model are based
on a SystemC description and specified using an XML standard. The modelization and the
mapping are manual. However, the performance estimation is done automatically. Metrics such
as application throughput, maximum latency, the utilization rate of resources, transient effects
are used.

Castrillon et al. [41] presented the MPSoC Application Programming Studio (MAPS), a
framework focusing on MPSoCs. The application model is described in C for Process Networks
(CPN) and modeled as Kahn Process Networks (CPN). The architecture model is described
with Extensible Markup Language (XML). The authors propose several heuristics for mapping
and scheduling. The performance evaluation is a composability analysis, where the goal is to
determine if a set of applications may be run in parallel.

Jovanovic et al. [42] presented a memory-aware mapping optimization tool for MPSoCs
(MAMOT). The application model is a thread-based task graph. A memory-aware evolution-
ary algorithm is used as a mapping algorithm and is evaluated using performance and energy
consumption as metrics.

Dauphin et al. [43] presented Ordonanceur DYNamique (Odyn), an approach for scheduling
and memory management that targets Non-Uniform Memory Architecture (NUMA) platforms.
The inputs are a Synchronous Data-Flow and a generic logical architecture. The scheduling
aims to prevent deadlocks, using a static analysis of Memory Exclusion Graphs.

Suriano et al. [44] presented a framework that integrates the framework Parallel and Real-
time Embedded Executives Scheduling Method (PREESM) [45] and the Xilinx SDSoC tool for
Zynq devices. It aims to automatize the design and implementation of heterogeneous multicore
multi-hardware accelerators. The framework uses PREESM to generate code, and then this
code is manually adapted to be used within the Xilinx SDSoC software.

Bruneel et al. [46] introduced a tool for mapping applications to an FPGA. This tool allows
a post-mapping reconfiguration by leaving a set of parameters that can be reconfigured on run-
time. The applications are expressed as Boolean functions, and the main module of this tool is
TMAP, a reconfigurability-aware technology mapper that produces a tunable LUT circuit.

Fricke et al. [47] presented an automatic tool-flow for an application-specific CGRA, called
Virtual Coarse-Grained Reconfigurable Array (VCGRA). The architecture consists of layers of
processing elements with virtual channels (switches) between them. The framework takes a data
flow graph as an application model and produces a binary file used as a configuration context.

Peyret et al. [48] introduced a generic method for mapping application onto CGRA architec-
tures. A Control Data Flow Graph is the application model, and the mapping is a combination
between a heuristic and an exact method.

Chin et al. [49] presented CGRA Modelling and Exploration (CGRA-ME), a DSE frame-
work for CGRAs. It includes modeling, mapping, and physical implementation. CGRA-ME
modeling does not provide the descriptors for heterogeneous resources or latency because it only
considers ALU-like processing resources. The framework offers two options for mapping: a sim-
ulated annealing approach and an integer linear programming. The mapping success of these
approaches is directly proportional to the flexibility of the hardware fabric. The more flexible
the platform, the higher is the mapping success rate. The resource’s layout uses a mesh-type
pattern, where the number of columns and rows requires to be specified and should be higher
than one. Irregular structures are not allowed. Canesche et al. [50] introduced TRAVERSAL, a
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graph-based greedy heuristic that provides a flexible, fast, and adaptive placement and routing
for CGRAs. It’s based on a novel traversal method called ZigZag. It exceeds the performance
of CGRA-ME in terms of execution run-time, due to its execution on GPU. Li et al. [51] pre-
sented ChordMap, it focus on automated mapping of streaming applications, represented as
Synchronous Dataflow graphs, onto a CGRA. Using modulo scheduling, it aims to exploit the
parallelism of an application by partitioning it and using the notion of divide and conquer to
map all the resulting partitions. Targeting High Processing Computing (HPC), Tan et al. [52]
introduced ARENA, a DSE that generates specialized CGRA accelerators. The authors pro-
posed to build CGRA clusters connected by a fast ring network, to increase the performance of
the generated system. Shent et al. [53] opted for a different approach. The authors focus on
the optimization of the FPGA routing. They proposed to divide the nets into three subsets: a
subset of possible dependant nets and two subsets of possible independents. They showed that
their approach speedup current approaches by 1.8x.

Even with the large number of works and frameworks dedicated to the reuse problem, to the
extent of our knowledge, none can be directly applied to the SPS-CGRA. The inner mechanisms
and the latency features can not be captured by the models used for many/ multicores or
MPSoCs frameworks. Furthermore, the mapping and scheduling algorithms are not aware of
the complexity of both the application and the hardware. Thus, the resulting mapping or
implementation will not be near-optimal. Similar works, such as CGRA-ME, use code generation
techniques to build hardware blocks according to the application. They may not be capable of
reusing an already deployed system’s parameters.

1.3 Coarse-Grained Reconfigurable Architectures
Initially, the introduction of the CGRA was motivated to solve development bottlenecks of
the FPGA-based systems. Despite its high performance, the FPGA granularity (bitwise logic)
imposed a significant challenge for the designers. Additionally, the synthesis-time could take
hours or days to finish.

The coarser granularity allows designing more specialized processing resources. This, in turn,
increases the performance. Additionally, the new granularity decreased the synthesis time, and
the possibility of multiple contexts was introduced. The new type of architecture was named
Coarse-Grained Reconfigurable Architecture.

There are many variations of CGRAs. Depending upon the type of interconnections or
processing resources, the structure and application of a CGRA may change. Despite these
variations, the usual basic processing element of a CGRA consists of interconnections, a register
file, and an ALU block [22, 1]. Figure 1.3 illustrates a generic processing resource. The variations
of the processing resources may cover the addition of several register files, different types of
processing modules. Also, the internal structure of a processing element can be completely
different from the one shown in Figure 1.3, with only one processing module or without a
register file.
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Figure 1.3 – Generic processing resource of a CGRA [1].

In terms of interconnection structure, the typical configuration is a mesh of processing re-
sources. In Figure 1.4 a generic structure is showed, where we can see the mesh of processing
resources with the addition of the data and instruction memory. Other types of interconnections
may be torus, linear array, or ring.
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Figure 1.4 – Generic structure of a CGRA [1].

The main role of a CGRA is to perform the computational-demanding inner loops of an
application. A CGRA may process the input data in stream-based processing at low latency.
Due to this, a CGRA acts as a hardware accelerator inside a system controlled by the main
processor. The coupling of the main processor and the CGRA may be tight or loose. In a
loose coupling, the CGRA is connected directly to the main memory and may execute code
concurrently with the main processor. On the other hand, a tight coupling means that the
CGRA shares resources with the main processor and can not execute code in parallel [22].

The last but not least advantage of a CGRA is the context switching time. Specifically the
possibility to switch contexts in a very short time. The implementation of an application onto
a CGRA may result in several configuration contexts. Each configuration context represents a
part of the application and contains the resources’ configuration and one or more addresses to
the next configuration context. The time needed to request and gather a configuration context
and deploy it to the resources to start the new processing process is the context switching time
[54]. This feature opens the door to a temporal execution, as the configuration time is short
enough to allow the use of multiple contexts.
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Examples

A large number of CGRAs have been developed during the last 30 years. Most of them show
similarities regarding the type of processing resources. According to the type of topology, we
can distinguish two categories: mesh-based and linear-based CGRAs.

Within the category of mesh-based topology, Marshall et al.[2] introduced CHESS. CHESS
is a 4-bit ALU-based system, one of the first CGRA that allowed the use of its processing
elements as a scratchpad. Figure 1.5 shows a CHESS processing element and Figure 1.6 the
interconnection. An evolution of this CGRA is the Elixent D-Fabrix Reconfigurable Algorithm
Processor (RAP) [55], where the functionality of the CHESS switch-boxes are improved.

Figure 1.5 – Logical structure of a CHESS
processing element [2].

Figure 1.6 – CHESS layout [2].

MorphoSys [3, 56] is a reconfigurable platform that includes a CGRA and a RISC processor
loosely coupled. As illustrated in Figure 1.7 the basic processing element tasks also include a
multiplier. Additionally, it allows multiple configuration contexts and dynamic reconfiguration.
The interconnection network consists of quadrants that allow three hierarchical levels of inter-
connectivity (Figure 1.8). The first level is the nearest neighbor, which is the interconnectivity
between a hardware resource and its direct neighbors. The second level is the intraquadrant
connectivity, which enables the interconnection between hardware resources that belongs to a
quadrant. The last level is the interquadrant connectivity that allows the interconnectivity
between quadrants. These levels of interconnectivity increase the parallelism of the system
and its performance. This platform has been improved to allow floating-point operation and
implemented in silicon [57].
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Figure 1.7 – Logical structure of a MorphoSys
reconfigurable cell [3].

Figure 1.8 – MorphoSys reconfig-
urable array [3].

The Architecture for Dynamically Reconfigurable Embedded Systems (ADRES) [4, 5] fea-
tures a mesh of heterogeneous processing elements (Figure 1.10) and is widely used for research.
These heterogeneous processing elements feature a functional unit that supports multiple oper-
ations and a distributed register file (Figure 1.9). The main advantage of this platform is its
flexibility and easy-to-use framework.

Figure 1.9 – Logical structure of a
ADRES processing element [4, 5].

Figure 1.10 – ADRES interconnection
[4, 5].

PipeRench [6, 7] is a CGRA with a linear interconnection. The basic structure of its pro-
cessing element is shown in Figure 1.11, as we can notice it is an ALU-based element with an
interconnection layer. The interconnection layer is the main feature of this CGRA, as its struc-
ture is based on independent layers interconnected by the interconnection layer (Figure 1.12).
This structure allows for implementing independent applications in each layer. This increases
the parallelism of this platform.
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Figure 1.11 – Logical structure of a
PipeRench processing element [6, 7].

Figure 1.12 – PipeRench interconnection [6, 7].

Most of the current work on CGRA development applies the same principles as the previous
CGRA examples. They use the same type of connectivity, and the processing elements perform
ALU-like operations. Nonetheless, there have been some improvements in the use of the register
file, different internal structures, the addition of scratchpads, processing elements heterogeneity.
A significant development is in the part of the granularity of the processing elements. We
can observe and corroborate the heterogeneity of resources that will impact the processing
latency and final computing cost. As previously stated, the CGRA was a solution for the FPGA
development process bottlenecks. However, its performance may still be improved. For this,
the designers chose to increase even more the granularity of the processing elements and use a
stream-based interconnection. These new systems can perform time-critical tasks and shown an
increase in the performance of several applications. In the following section, we will introduce
such architectures.

1.4 Software Programmable Streaming Coarse-Grained Recon-
figurable Architectures

An SPS-CGRA is a specific subset of CGRAs that consists of a systolic array of heterogeneous
processing resources. To better understand the features of this type of architecture, we can use
several classification methods. Liu et al. [18] propose a CGRAmultidimensional taxonomy based
on the models of programming, computation, execution, and micro-architecture. According to
the programming model, an SPS-CGRA belongs to the category of the parallel programming
model. Usually, an application for an SPS-CGRA consists of a sequence of expressions that
describe its behavior with partially implicit parallelism. The aim of the mapping tool is to
completely identify and abstract the parallelism to exploit it and provide an efficient implemen-
tation. The second classification is based on the computation model, where the SPS-CGRA falls
in the category of multiple configurations, multiple data (MCMD). However, an SPS-CGRA can
switch between configurations and allows a dynamic parameter-based reconfiguration on run-
time. The third classification is based on the execution model. An SPS-CGRA belongs to the
category of static-scheduling sequential execution where the mapping tool is in charge of the
initiation and mechanism of the reconfiguration.

In the work of Wijtvliet et al. [22] a CGRA classification is proposed using four main
elements, structure, control, integration, and tooling. According to this paper, structurally, an
SPS-CGRA is a multi granular direct connection network with a cache memory hierarchy. The
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granularity may be coarser than ALU-based operations. In terms of the control, SPSP-CGRA
scheduling is done at compile-time, where the mapping tool creates the spatial and temporal
scheduling. Still, both the resources and network’s reconfiguration can be done at run-time
using a pre-defined configuration. It also allows custom operations since the granularity of the
resources is higher than the usual CGRA operations. Regarding the integration, SPS-CGRAs
are usually used as co-processors (hardware accelerators) with loose coupling and no resource
sharing. The last element of the classification, tooling, claims that the compiler is usually based
on a mix of dataflow/custom language, as each SPS-CGRA has different types of operations.
The framework of an SPS-CGRA does not consider the place and route since the architecture is
usually already deployed, and only a design space exploration is done to find the best mapping
possible.

Hartenstein [58] proposes different classification. The author uses the type of architec-
ture, granularity, fabrics, mapping, and the intended target application to distinguish between
CGRAs. According to this classification, an SPS-CGRA would be a multi granular 1-D array.
Both the fabrics and the target application may vary. The mapping in these types of architec-
tures is described as scheduling. Tehre and Kshirsagar [59] propose a similar classification to [58].
However, the authors added the category of reconfiguration model, which for an SPS-CGRA is
dynamic.

Chattopadhyay [60] proposes a taxonomy based on three axes, the design choices, the class,
and the modeling and design space exploration tools. The design choices refer to three aspects,
the microarchitectural view, the programming model, and the platform type. In Figure 1.13, we
summarize the different microarchitectural view categories applied to our SPS-CGRA target.
An SPS-CGRA is usually used as a special-purpose co-processor. Its pipelining interconnection
architecture allows a data-driven flow. It typically consists of a linear array of coarse-grained
resources that may be configurable statically/dynamically.
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Figure 1.13 – Proposed microarchitectural classification of an SPS-CGRA.

According to Chattopadhyay [60], an SPS-CGRA belongs to Class III: custom processing
and reconfigurability. The broad range of possible structures and architectures make this family
of accelerators a good candidate for various real-time applications, although it increases the
complexity for a general framework that could cover all types. The last axis of Chattopadhyay
is the modeling and design space exploration tools. Usually, the tools that target SPS-CGRA
allow only the modification/optimization of the (software parameters) implementation, and they
are highly specialized for a given platform.

As stated previously, there are several types of SPS-CGRA. They share similarities in archi-
tecture and properties, but the tools and their frameworks are custom. This aspect overburdens
its use and also the possibility to apply tools from one SPS-CGRA to another. A seamless design
with accurate latency estimation and exploration capability is required to increase the use of
this type of architecture and exploit all its benefits.
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Examples

As quickly presented in the introduction, an extensive number of SPS-CGRAs have been de-
veloped for research and commercial purposes. They belong to different fields, and they are
application-specific. Due to the higher level of granularity of these architectures, reusability
within the application field may be narrow, but it is compensated by the high performance and
low latency that can provide.

Hashing is an algorithm that calculates a fixed-size bit string value from a file. Within
the cryptocurrency domain, hashing algorithms ensure the integrity of the transactions. The
implementation of hashing algorithms requires a huge amount of computational power. In this
regard, Tetu et al. [8] propose an SPS-CGRA-based implementation of the Lyra2REv2 hashing
algorithm (Figure 1.14). It features a pipelined stream-based architecture, and it is loosely
coupled to an ARM processor.

Figure 1.14 – Architecture of the SPS-CGRA implementation of the standalone Lyra2REv2
miner [8].

Sound field rendering uses numerical methods to model the behavior of sound wave propaga-
tion in the spatial and time domain. The finite difference time domain method has been widely
adopted and becomes an essential algorithm in room acoustics owing to its high accuracy, easy
implementation, and parallelization. Tan et al. [27, 28] present an SPS-CGRA implementa-
tion of this method. Its highly pipelined architecture and stream-based processing allow the
computation at continuous time steps and reduced access to external memory.

In the computer vision domain, SPS-CGRAs are used to enhance the performance of image
processing systems. Examples of these are the FPGA-based SPS-CGRAs presented by Ngan
et al. [29, 9] (Figure 1.15) and by Isavudeen et al. [10] (Figure 1.16). These architectures
allow handling multiple parallel pixel streams given their adaptable, highly pipelined datapaths.
Another example is the ASIC-based SPS-CGRA introduced by Dokladalova et al. [30]. This
platform features reconfigurable datapaths, and its processing resources are able to implement
different contexts.

Figure 1.15 – Architecture of the SPS-CGRA
proposed by Ngan et al. [9] Figure 1.16 – Architecture of the SPS-CGRA

proposed by Ali et al. [10]
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Additionally, within the computer vision domain, another example of SPS-CGRA is the
Programmable Pipeline Image Processor (P2IP) introduced by Possa et al. [11]. The P2IP is
a scalable systolic-based architecture that provides low latency processing and allows run-time
reconfigurable datapaths. Figure 1.17 illustrates the functional diagram of this architecture. No-
tice the main blocks (named PE1, PE2, . . . , PEn) of the system, which correspond to the typical
structure and data flow of an SPS-CGRA. The architecture consists of the main controller (P2IP
controller) responsible for delivering the configuration context to all the hardware resources. The
PEn blocks represent the processing resources of the hardware, and the connection of them is
through the Reconfigurable Interconnection (RI) blocks. Observe that the interconnection of
the blocks is in a pipeline form. This feature emphasizes the stream-based processing of an
SPS-CGRA. Another example is the Morphological Co-Processing Unit (MCPU) introduced by
Bartovsky et al. [12]. The MCPU assembles several efficient dilation/erosion units with geodesic
units and ALUs to support a large collection of morphological operations. It is integrated as
a coprocessor in an FPGA-based platform. Figure 1.18 layout the architecture of the MCPU.
As we can notice, the MCPU follows the principles of an SPS-CGRA, with its pipeline-based
array of processing resources (Large SE pipeline and Geodesic Pipeline). It has a loose coupling
since there is no resource shared with its host processor. A set of multiplexers, configuration
registers, image buffers, and a memory controller ensures its correct operation.

Figure 1.17 – Simplified functional diagram of the
P2IP [11].

Figure 1.18 – Architecture of the MCPU
[12].

Another field that benefits from the SPS-CGRA high performance is Deep Learning. The
basic computation model of Deep Learning is a NN, and this can be modeled as a Directed
Acyclic Graph (DAG). Given that the dataflow of such computation model is unidirectional,
the stream-based low latency processing of an SPS-CGRA may exceed the performance of other
platforms. Examples of them are the ASIC-based Neuflow [31] (Figure 1.19) and FlexFlow [32]
(Figure 1.20), both similar in processing resources and interconnection.
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Figure 1.19 – Architecture of the NeuFlow. Figure 1.20 – Architecture of the FlexFlow.

Other examples are the FPGA-based implementations of a Deconvolutional NN presented
by Chang et al. [13] (Figure 1.21), a Life Long learning Convolutional NN by Piyasena et al.[14]
(Figure 1.22) and a Randomly Wired NN develop by Kuramochi and Nakahara [33].

Figure 1.21 – Architecture of the Deconvolu-
tional NN [13].

Figure 1.22 – Architecture of the a Life Long learn-
ing Convolutional NN [14].

1.5 Thesis Contributions
We can see from the examples presented in Section 1.4 that there are many application fields
benefiting from SPS-CGRA-based systems. The examples presented above exceed the perfor-
mance of other types of platforms considerably by at least one order of magnitude. Nevertheless,
their reuse opportunity is severely limited. Not only the cited examples but most of the SPS-
CGRAs are not equipped with tools or software support that allows one to reuse them. Usually,
they depend on custom mapping tools, or worst, manual mapping.

Even if there is a mapping assistance tool, such a tool is not flexible enough or easy to
adapt. Generally, it requires a broad knowledge of the platform. Moreover, it can not be
used for another SPS-CGRA, mainly due to such tools are designed specifically for the target
hardware. This situation is understandable if we consider the large diversity of structures and
applications of the SPS-CGRA. However, in general, they share similar characteristics, and those
can be exploited as a foundation of a generic framework that can capture those similarities and
provide enough flexibility for all the SPS-CGRAs. This framework could open the doors for
the easy implementation of more applications onto already deployed SPS-CGRAs. This will
decrease or eliminate the re-design time and reduce the time-to-market.

In this thesis, we present a complete framework for easy reuse of SPS-CGRAs. It is an

23



end-to-end framework that begins with the specification files, which describes at a high level
the application and the main features of the hardware. We introduce a unified graph-based
model covering application, hardware and implementation. We present four mapping
and scheduling algorithms. We propose a performance evaluation based on the latency-
based estimation of the upper bound of the computing cost. Finally, we introduce a software
solution, showed in Figure 1.23, that accepts the two specification files (application and SPS-
CGRA) and produces, in parallel, the configuration context for a particular application and a
latency report that shows the computing cost.
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Figure 1.23 – Overview of the software solution for the easy reuse of SPS-CGRA.

1.6 Thesis Outline
A general overview of the thesis is showed in Figure 1.24.
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Figure 1.24 – General overview of the thesis

We divide the thesis into two parts: Modeling and Mapping algorithms. The outline of the
thesis is:

I Modeling

Chapter 2 introduces our application model. We start with the current state of the art of
application models. Considering that models that apply to our problem are not that many,
we include models for other platforms such as multicore processors and MPSoCs. We de-
scribe their main features and benefits. We argue that a graph-based model, and specifically
an extension of the DAG model, could fulfill our requirements. Furthermore, we propose a
specialization of the Parameterized and Interfaced Synchronous Dataflow (PiSDF) and the
AAM methodology. Next, we present the formalization of our model. We introduce the
information that the nodes include and the different tasks that we consider in our model.
Finally, we present two real-life applications that help us illustrate the modeling process
and the benefits and capabilities of our application model.

Chapter 3 introduces our hardware model. A state of the art of current hardware models is
presented. We divided it by type of platform, and we describe the features that the models
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highlight. We claim that current approaches neglect essential elements such as configura-
tion control and latency properties. We then present the main hardware characteristics of
the SPS-CGRA. Considering these characteristics, we introduce the formalization of our
hardware model. We describe all the types of hardware resources that the model is capable
of abstract. Additionally, we present our approach for modeling latency properties of the
processing resources. It is based on the input and computing latency of the processing
resource, and it is a function or the programmable parameter and the physical realization
of the resource. Next, we use several experimental examples to illustrate the modeling pro-
cess, including some transformations required to fit our hardware model. Finally, we use a
real-life SPS-CGRA to demonstrate the benefits and capabilities of our hardware model.

Chapter 4 introduces our implementation model. We present the formal definition of the
model. We describe how the implementation model is composed. We introduce a special
subset of resources called data dependency resources. These resources allow modeling data
dependence between time slots and between datapaths. Next, we present several experi-
mental examples that illustrate the capabilities of the implementation model and its main
features. We introduce our performance evaluation methodology. It is based on the
estimation of the upper bound of the computing cost. From the implementation graph,
we produce a subgraph that we call evaluation graph. This graph is used to estimate the
upper bound of the computing cost through an equation that we also propose in this work.
Within this equation, we introduce the variable ω, which abstracts the latency imbalance
among processing resources. We show with some experimental examples that this equation
can accurately estimate the upper bound of the computing cost.

II Mapping algorithms

Chapter 5 presents the current state of the art of mapping and scheduling algorithms. We
focus on list-based scheduling algorithms, linear programming, and reinforcement learning.
We argue that list-based and reinforcement learning algorithms show a high probability of
adapting and solving the SPS-CGRA mapping problem. Usually, list-based algorithms tar-
get limited processing elements, and their principle is based on a list of priorities, in which
resources and tasks are ordered according to a fixed metric. We can use these characteristics
to adapt a list-based algorithm to solve the SPS-CGRA mapping problem. Additionally,
list-based algorithms can include heuristics to improve their performance. Reinforcement
learning is a subset of Machine Learning, where an agent interacts within an environment.
From these interactions, the agent aims to improve its actions towards the maximization of
a reward. We argue that this approach is suitable for our problem. Given the trial-and-error
method of this approach, we may extend the exploration design space without reaching a
case explosion usually produced by an exhaustive approach.

Chapter 6 introduces three list-based mapping and scheduling algorithms. We first pro-
pose a Single-Shot List-based mapping algorithm. This algorithm aims to produce a feasible
mapping. It is equipped with backtracking. However, it does not include an optimization
heuristic. Secondly, we introduce a Topology-Aware mapping algorithm. The principle is
based on a look-ahead-based heuristic. The locality of the mapping decision of the single-
shot mapping algorithm is increased by considering the mapping of the successors of the
given task. Additionally, it includes the notion of computing latency within the heuristics.
The third and last algorithm is the Bayes-based mapping algorithm. We use the Bayes
theorem to solve the SPS-CGRA mapping problem. We include two hyperparameters that
the user can tune to obtain better final implementations.

Chapter 7 presents our Q-learning mapping algorithm. We adapt the reinforcement learn-
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ing framework to our SPS-CGRA mapping problem. We propose to define the agent as a
mapping function. It will interact with the hardware graph, which is defined as the envi-
ronment. The agent will receive information about a defined subgraph that contains the
given task and its successors and predecessors from the environment. Also, information
about the upward and downward rank will be given. With this information, the decision
no longer remains local. We introduce a hierarchical reward policy. The agent will receive
a reward for each allocation of a task onto a processing resource. Additionally, the agent
will receive a reward for the allocation of the entire application onto the hardware. We
propose two types of training, one offline using randomly generated graphs and another
online using the target application. This approach will allow the framework to be used for
other applications rather than only for the given one.

Chapter 8 presents an evaluation of our mapping and scheduling algorithms. The evalua-
tion consists of several sets of experimental graphs, one pair of randomly generated graphs,
and a real-life example. The sets of experimental graphs will help us to characterize the
algorithms. The randomly generated graphs represent graphs with more complex struc-
tures than the normal SPS-CGRA and its applications. The final evaluation uses a real-life
example. It is the proof of concept of our complete framework and its mapping algorithms.

Chapter 9 summarizes our contributions and outlines the perspectives and future lines of
research generated by this work.
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Part I

Modeling

28





Chapter 2

Application Model

2.1 Introduction
An application model is an abstraction of an application, its role is to capture its main features.
It should be able to represent the tasks of the application and, it should provide an accurate
description of them and of their important parameters. As one of the inputs of a mapping
algorithm, an application model must share similar features with the hardware model. This is
crucial, as the level of abstraction of the application model should comply with the hardware
model. The description of the application’s tasks should allow a matching with the description
of the resources of the hardware. Since the mapping algorithm aims to find the best allocation
of a task onto a resource, this goal will not be achieved without its correct representation. As
a result of this, an adequate abstraction of the application is a priority. This importance has
attracted the attention of researchers, and several works aim to create new and more accurate
application models.

Important advances have been made in the development of application models. In parallel
and distributed computing, a well-known application model framework is the Directed Acyclic
Graph (DAG) model [61]. The DAG model allows to capture the parallelism of the applications
and exploit the advantages of a distributed system. Several extensions to this model have been
proposed, introducing new features like information about different configurations (scenarios)
[62], parameters [63], interfaces [64], or parameter dependency trees [65]. We propose an special-
ization of the Parameterized and Interfaced Synchronous Dataflow (PiSDF) [65] for SPS-CGRA.
It allows exploiting the parallelism of the SPS-CGRA’s applications and its heterogeneity, and
thanks to it, increase the possibility of achieving the optimal mapping. Furthermore, we exploit
the parameter descriptors in order to define the behaviour of the SPS-CGRA and estimate its
performance in terms of computing cost.

This chapter introduces the proposed application model. We describe the current state of
the art, discuss the different models and define the requirements of our problem. Finally, we
present our application model and its features.

We organize the remaining part of the chapter as follows. Section 2.2 reviews state of the
art. Section 2.3 presents the proposed application model. In Section 2.4, we introduce the
formalization of the model. In Section 2.5, we present two application examples for a better
understanding of our model. Finally, Section 2.6 summarizes this chapter.

2.2 State of the Art
A particularity of the application models is that their structure and characteristics should match
the ones of the target architecture. This aspect allows decreasing the complexity and the number
of steps of the mapping algorithm. In this section, we review and describe the main features of
several application models that target different platforms.
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2.2.1 Dependence Graph

One of the first application models is the Dependence Graph for Very-large-scale integration
(VLSI) array processors. Lo et al. [66] presented the Dependence Graph, which is a directed
graph where nodes represent computations of variables associated with the node and edges are
data dependence between nodes.

2.2.2 Task Model

A interesting application model is the task model. Liu and Layland [67] introduced the task
model, which characterizes task behavior with the execution time and the period of task acti-
vations. Following this first task model, other works integrate different descriptors to enhance
this model. Namely, in the field of multi-core processors, several works use as the main task
descriptor the Worst-Case Execution Time (WCET)[68, 69] of the task.

For the same target, multi-core systems, Marinho et al. [70] introduced a task model for
sporadic tasks. They consider a task set of n sporadic tasks. A relative deadline and its
minimum time span or period between two consecutive activations of the same task are used as
descriptors. Lakshmanan et al. [71] used the task model and represented each task with the
number of computations segments, the number of parallel threads, the WCET of the sequential
segments, the WCET of each thread, and the period of the task. Kim et al. [72] described
a task model with separate setup times. They divide the setup time into processing time and
transmission time. Also, their task model allows them to deal with different physical realizations
of hardware resources.

2.2.3 Parallel Synchronous Task Model

The parallel synchronous task model [73] uses a directed graph that consists of parallel jobs
integrated by many computation segments. Each segment may contain many synchronous par-
allel threads. The descriptors of each segment are the number of threads and the worst-case
execution requirement. The main target for this model is multi-core system applications.

2.2.4 Digraph Real-Time Task Model

Stigge et al. [74] presented the Digraph Real-Time (DRT) task model for processor-based
systems. It consists of n independent tasks, each one characterized by a directed graph. The
authors describe each node with its WCET and its relative deadline.

2.2.5 Non Cyclic Recurrent Real-Time Task Model

Baruah et al. [75] presented the non-cyclic Recurrent Real-Time (RRT) task model targeting
processor-based systems. It is, in fact, a DAG with a unique source and one or more sinks. The
authors describe each node with the execution requirement and the deadline of the task.

2.2.6 Generalized Multiframe Task Model

Peng et al. [76] presented a generalized multi-frame task model (GMF) with parameter adapta-
tion for processor-based systems. Usually, a generalized multi-frame task model (GMF) repre-
sents each task with a three tuple. The first element represents the execution times, the second
the relative deadlines, and the minimum inter-arrival time between consecutive frames is the
last one. The arrival time, the deadline, and the WCET characterize each frame. The authors
modified this model where the deadlines and the period can be defined as an interval of values.
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2.2.7 Recurring Real-Time Task Model

The recurring real-time model (RRT) is a generalization of the GMF model where a relaxation
of the types of tasks is included, allowing to model different job types. Chen introduced the
concept of varying task implementations for sporadic tasks, which allows modeling of different
worsts case execution times, increasing the accuracy of the model [77].

2.2.8 3-Phase Model

The 3-phase model is a generalization of the Predictable Execution model (PREM) [78]. The
PREM model consists of two phases, a memory phase and an execution phase. It targets single-
core systems but was extended to multi-cores [79]. The 3-phase model [80] divides each task into
three successive phases. During the Acquisition phase (A-phase), the task loads its instruction
and data into the local memory. Later, in the Execution phase (E-phase), the task executes non-
preemptively. Lastly, in the Restitution phase (R-phase), the main memory stores the processed
data. The model allows bus accesses only during the A- and R-phase. With this feature, the
time required to perform each phase can be accurately computed. In the work of Maia et al.
[80], Ai, Ei and Ri represent the maximum execution time of the A-, E- and R-phase of task ti,
respectively. The WCET in isolation of ti (without suffering any interference) is the sum of each
phase’s execution times. The authors describe each task with its period and the constrained
deadline.

2.2.9 Synchronous Dataflow Graph

The synchronous dataflow graph was originally created for Digital Signal Processors’ applications
on parallel hardware. It is a graph where the nodes represent actors and the edges FIFOs. It is
widely used, and several works exploit and enhance it. In the field of processor-based systems,
Sih et al. [81] use an Acyclic Precedence Expansion Graph (APEG), which is a modification
of the Synchronous Dataflow Graph, they describe each with a weight representing the amount
of data. Berler et al. [82] propose a synchronous dataflow model with timing specifications
for cyber-physical systems. The model includes timing specifications for I/O nodes with side
effects (in other words, nodes that interact with the physical world). Pelcat et al. [83] use
the synchronous dataflow model for applications that target MPSoCs. They use a specific
model called Parameterized and Interfaced Synchronous DataFlow (PiSDF). The PiSDF is an
extension of the Parameterized Synchronous Dataflow (PSDF) [63] and the Interface-Based SDF
(IBSDF) [64]. PiSDF model allows to describe a broad range of applications by parameterization,
hierarchy and configuration [84]. This is done through the addition of a set of parameters
associated to the configuration of each task. Additionally, a set of dependencies of the parameters
defines the hierarchy of the parameters and the influence of a given parameter to its child’s and
parent’s parameters. Inherit from the IBSDF and also taken from the Algorithm Architecture
Matching Methodology [35, 85], the PiSDF includes the concept of source and sink special nodes,
that interact with the outside world. These special nodes allow defining the inputs and output
of the system, increasing the feasibility to be instantiated in any design [64].

2.2.10 Algorithm Architecture Matching

The Algorithm Architecture Matching methodology (AAM) [35, 85] covers all the steps of rapid
prototyping in a seamless flow of graph transformations from algorithm and architecture specifi-
cation to distributed executives automatic generation [86]. A Data Dependence Graph represents
an algorithm (application). This graph is a hypergraph where the nodes are operations, and
edges represent data dependency. The methodology defines four types of nodes, memory (delay),
computation (action), conditioning (action), and sensors/actuators. In order to support FPGA,
Kaouane et al. [36] presented an extension of the DAG model of the AAM methodology called
the factorized data dependence graph model. It includes the fork, join, diffusion, and iterate
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nodes, so the temporal or spatial repetition of a pattern can be modeled. They target real-time
image processing applications and general signal processing applications.

2.2.11 Directed Acyclic Graph

The Directed Acyclic Graph (DAG) model allows describing complex applications with a high
degree of parallelism and the data dependence between tasks. It has been used for several
targets.

In the field of processor-based systems, several works consider the DAG model. Qin et al.[87]
uses a DAG model and describes the nodes with their execution communication cost. Wang et al.
[88] used a DAG to represent an application and complement it with a matrix of the estimated
time to execute a certain task in a particular processor. Melani et al. [89] presented a modified
DAG model. They focus on sporadic conditional parallel tasks. The WCET describes each node
of the DAG (which represents each task). Also, they make a difference between nodes. They
introduce a specification for regular nodes and conditional nodes. Qamhieh et al. [90] introduced
an algorithm to convert from parallel DAGs to sequential in order to reduce the complexity of
the mapping and scheduling algorithm. Topcuoglu et al. [91] used a DAG model, where each
node is described with the average execution cost. Yuan et al.[92] used a DAG model that
specifies the execution cost of the task and the cost of the communication. On the other hand,
as multi-core systems technology evolves, the possibility to use them for parallel applications
increases.

Concurrently, different application models can improve the exploitation of parallelism. Sai-
fullah et al. [73] introduced a decomposition method for DAG models to a sequential model that
decreases the complexity of the scheduling. Pathan et al. [93] used a DAG model and describe
each task with the minimum inter-arrival time of consecutive jobs, the relative deadline, and a
real-time constraint that limits the execution time of the task.

The field of Multi-Processor Systems-on-Chip (MPSoC) uses similar approaches. Zadrija et
al. [94], and Frid et al. [95, 96] used a weighted DAG. The authors describe each node with
the number of operations (computational intensity), and the weight of the edges represents the
amount of data transacted. Sinaei and Fatemi [97] used the Kahn process network model, a
network of concurrent processes interconnected via FIFO channels. Youness et al. [98] used the
DAG model, where the node’s labels are the computation cost and the weight of the edges is
the communication cost. Jalier et al. [40] modeled telecom applications (OFDM, demodulation,
MIMO decoding) as a SystemC1 function, describing the behavior of each task: communications
with external tasks or buffers, the complexity of the data processing and control flow. They
allow not only tasks but buffers to be in the application model.

Regarding CGRAs, the works in this area also use variations of the DAG model. Bingfeng
et al. [100] introduced a Data Dependence Graph with two types of edges: data edges and
precedence edges. Data edges indicate that data need to be routed between the connected
operation terminals. Precedence edges indicate that the operation needs to be ordered, but no
data is routed between the operations. Ma et al. [101] used a Control Data Flow Graph (CDFG)
with the information of the operation nodes and the data and control dependence among them.
Das et al.[102] used a graph-based model called Control Data Flow Graph (CDFG), where each
node represents a basic block. Each basic block represents, in turn, a Data Flow Graph, where
each node has a set of operations as a descriptor. Other works [103, 104, 105] use Data Flow
Graph to represent an application for a CGRA.

Within the field of reconfigurable architectures, Kota et al. [106] presented a DAG model
for applications that target reconfigurable system-on-chip (rSoC). Each node of the DAG may
represent multiple versions of implementations for that task. Each version has its corresponding
hardware requirements in terms of area, functional units, and time to execute the task. The

1SystemC is an ANSI standard C++ class library for system and hardware design for use by designers and
architects who need to address complex systems that are a hybrid between hardware and software [99]
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authors consider functionality implementation for each node. This particularity takes full ad-
vantage of the nature of the DAGs to model heterogeneous applications. Lai et al.[107] used the
DAG model where the nodes are operators, and the edges represent data flow. Cong and Xu
[108] used a boolean network, a DAG, where every node represents a logic gate.

Namazi et al. [109] used the DAG model to represent applications for Networks-on-Chip
(NoC). The authors describe each node with the priority assigned to the task and the number
of clock cycles of the task worst-case execution time. In the same matter, the authors defined
the weight of the edges with the maximum volume of data and the required communication
bandwidth between two nodes. Lu et al. [110] used a weighted directed graph. The weight
represents the packet amount and the edges, the packet transmission.

Regarding other platforms, such as High-Performance Computing systems, Ma et al. [111]
used a DAG model, where each node has a parameter representing the number of instructions
and each edge the volume of transferred data. Jiang et al. [112] used a DAG to represent
workflows for clouds. The model uses, as labels, the computation cost, the communication cost,
the earliest start time, and the estimated finish time.

2.2.12 Directed Graph

Gamatié et al. [113] used a directed graph of runnables. Runnables are functions that represent
the smallest unit of code schedulable by an operating system and are associated with non-
functional attributes. It is dedicated to multi-core systems. The nodes represent the runnable
and the release, which is an attribute specifying whether the release mode of a task ti is periodic,
sporadic, or aperiodic. Also, the authors provide the means to describe the data communication,
but it is not compulsory to define.

2.2.13 Boolean Dataflow Graph

In the field of code generation, Li et al. [114] presented a model of computation based on a
boolean dataflow graph, particularly for FPGAs. Their model targets irregular applications,
which are usually built around loop constructs. They classify the loops constructs into for-all
(parallel execution) and for-each (sequential execution).

2.2.14 Others

Rajeev et al. [115] presented a transformation from the formal model of a distributed system.
They represent a distributed system with a tuple. The first element is the set of schedulable
objects, which can be tasks or messages. The second element is the set of resources, which can be
elements or hardware. The third element describes the allocation of a task, either an Electronic
Control Unit (ECU) or a bus. The last element is the set of data dependency between tasks and
messages (edges). The descriptors of each task or message are the initial offset, the period and
the best and worst-case execution time, and lastly, the deadline.

2.2.15 Discussion

The extensive literature provides a large set of models with different characteristics. Each one
is optimized to match its hardware model pair. In terms of structure, the most used is the DAG
model. The DAG model provides the means to abstract parallelism of applications and the
data dependence of the tasks. It is ideal for parallel processing architectures [89, 90, 100, 111].
Furthermore, an important extension of the DAG model, introduced by the AAM methodology
[35, 85], which uses hypergraphs, allows the broadcast of the output data. This feature is
important for our problem. Normally, an SPS-CGRA application can have tasks connected to
one or more tasks, and the model needs to represent the explicit broadcast of output data.
Moreover, the DAG model allows abstract complex applications that target similar platforms
like CGRAs [101, 102, 103, 104, 105].
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Regarding the descriptions and the information associated with the tasks, most works em-
phasize the WCET [68, 69, 72, 71] in the multi-core field. Other approaches include a division
of the setup time and the transmission time [72], or a division between phases (acquisition,
execution, and restitution) [78, 80]. Given the characteristics of our target hardware, the ap-
plication model does not need information about execution time. Das et al. [102] take another
approach by providing the means to specify a set of operations for a given task. In the works
of Kota et al. [106], the descriptors also allow to describe heterogeneous implementations of a
task. However, these descriptors do not allow the description of explicit parameters. Pelcat et
al. [65] efficiently uses the concept of parameterization of the tasks introduced by Bhattacharya
and Bhattacharya [63] to include functions of the input parameters. Aditionally, the authors
include, from the works of Piat et al. [64] and the AAM methodology, the notion of source
(sensors) and sink (actuators) special nodes that allows to model the external input and output
data. To efficiently map applications onto an SPS-CGRA, the previously stated examples are
not enough. Our target architecture requires both information on the type of task and its pa-
rameters. Usually, the user knows beforehand the application’s computing requirements. The
task type and its parameters become a priority. This information will ultimately affect the
behavior of the hardware accelerator and impact the computing cost of the implementation.

In this work, we propose an specialization of the PiSDF model and the AAM methodol-
ogy that targets SPS-CGRA applications. This application model provides the precise level of
abstraction, by introducing new descriptors, required to exploit the features of an SPS-CGRA.

2.3 Proposed Application Model
The applications that target an SPS-CGRA usually consist of tasks with mixed granularity,
from bit-wise operations to complete transformations. Also, the application tasks exhibit het-
erogeneity in their parameters (kernel size, kernel shape, computing constants, length of input),
which needs to be considered during the mapping. Additionally, the application computing re-
quirements are commonly known in advance, and they are usually compatible with the target
SPS-CGRA.

Recall that SPS-CGRAs are configuration and dataflow driven platforms [18]. These archi-
tectures employ configuration control to define the behavior of their resources. As a result, the
latencies of the resources, and consequently the computing cost of the final implementation of
an application onto an SPS-CGRA, depend directly on the type of task and its parameters,
and the hardware physical realization of the resource that executes the task. This defines the
necessary information that the application model should have. Since we consider coarse gran-
ularity of computing, the descriptors of the application model do not require to represent any
latency information but the type of task and its parameters. The latency function that models
the material realization of the resource is a part of the hardware model (see Section 3.3.2).

Since there is an extensive number of application fields where an SPS-CGRA is used, we
propose a generic application model adapted to most of these application fields. We consequently
need to define an application:

Definition 2.3.1 (Application). An application consists of a set of ordered heterogeneous tasks
with data dependency between them. An application consists of a set of indivisible tasks with
mixed granularity.

Definition 2.3.2 (Data dependency). Data dependency is the relation between a task and
the preceding tasks. A task might need the completion of all its preceding tasks to start its
execution. The data dependency defines the order of execution of the tasks.

Definition 2.3.3 (Task). A task is an atomic transformation applied to the input data to obtain
output data. In our context, it can represent an image processing operator, an arithmetic
operation, a bitwise operation, among others. Each task is defined by a set of parameters
(numerical constant, a boolean value, a string of characters).
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A task may represent a transformation that requires one or multiple input data.

Definition 2.3.4 (Input(s) of a task). A task might have one or more inputs of data.

The result of the transformation is represented by the output data. A task might forward
or transfer its output data to one or more successor tasks. Hence, creating data dependency
between the task and its successors.

Definition 2.3.5 (Output(s) of task). The task output results from the transformation applied
to the data and can be transferred to the following task or broadcast to several tasks (successors).

Each application requires at least one source of data that usually comes from a sensor,
camera, or electronic device, producing data to be processed.

Definition 2.3.6 (Source of data). The source of data is the origin or producer of data to be
processed. We define a source of data of an application as a sensor. An application can have
one or more sensors, each one with different parameters.

A sink of data will consume the transformed data. This data sink might be an actuator, a
display, a monitor, between other possible devices.

Definition 2.3.7 (Sink of data). The sink of data receives or consumes the processed data. We
define a sink of data of an application as an actuator. An application can have one or more
actuators, each one with different parameters.

2.4 Formal Application Model
Let GAPP (T,D) be a directed hypergraph that models an application. A hypergraph allows
modeling a task that may broadcast its output data to several successor tasks. T is a set of
nodes that represent the tasks of the application. D is a set of oriented hyperedges that represent
data dependency between tasks.

t0 t1
t2

t3

t4 t5

Figure 2.1 – Example of an application model hypergraph.

We call a task ti ∈ T , so that ti = (typei, pi), where typei is the type of atomic transformation
applied to the data and pi is the set of the transformation parameters. We call also typei and pi
as a descriptors of ti. We can see in Figure 2.1 an example of an application model hypergraph.

Observation 2.4.1 (Sensor and actuator descriptors). A node ti that represents a sensor or
an actuator will have typei = interface and pi are the parameters of the input/output data.
A complete example is given in Section 2.5.

We represent an atomic task with a single node. Notice in Figure 2.2 that the input edge
represents the input of data to the task (node) and the output edge the output of processed
data from the task. In the case of the task of Figure 2.2 the input degree of the node is one (one
input data), and the output degree of the node is also one (one output data).

Definition 2.4.1 (Input degree of a task). We define the input degree of a task ti as the
number of different input of data (number of predecessors). The input degree of a task should
be a natural number greater than zero.

deg−(ti) > 0, deg−(ti) ∈ N (2.1)
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Definition 2.4.2 (Output degree of a task). We define the output degree of a task ti as the
number of successors connected to ti. Notice that the output data, sent to all the successors,
is the same (broadcast). The output degree of a task should be a natural number greater than
zero.

deg+(ti) > 0, deg+(ti) ∈ N (2.2)

t1

Figure 2.2 – Example of a single task.

Graphically, we represent a task with a node. This node will have the name of the task as a
label. In Figure 2.2 the name of the task is t1.

Observation 2.4.2 (Sensor and actuator representations). Additionally to the name of the task
as a label, a node ti that represents a sensor or an actuator will have a different coloration
than the other type of tasks.

We represent a sensor node (Figure 2.3) or an actuator node (Figure 2.4) with a different
color than the other nodes. Notice in Figure 2.1 that the sensor and the actuator nodes are in
gray and the other nodes are in white.

ti

Input degree
deg-(ti) 

Output degree
deg+(ti) 

0 1

Figure 2.3 – Example of a single sensor.

ti

Input degree
deg-(ti) 

Output degree
deg+(ti) 

1 0

Figure 2.4 – Example of a single actuator.

Also, we can see differences in the degrees of the nodes from Figure 2.4 and 2.3.

Definition 2.4.3 (Input degree of a sensor node). The input degree of a sensor node ti is always
zero.

deg−(ti) = 0 (2.3)

Definition 2.4.4 (Output degree of an actuator node). The output degree of an actuator node
ti is always zero.

deg+(ti) = 0 (2.4)
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The output degree of a task or a sensor node can be from one to n ∈ N. Figure 2.5 shows
the graphical representation of a task that broadcasts its output data.

t3
t1

t2

Figure 2.5 – Example of a task that broadcast is output data.

Equally, the input degree of a task or an actuator node can be from one to n ∈ N. In Figure
2.6, we can see an example of the graphical representation of a task with input degree two.

t3
t1

t2

Figure 2.6 – Example of a task with input degree two.

2.5 Examples of Real-Life Applications
In this section, we introduce two application examples. These examples, taken from image
processing, will help us describe the modeling process. The objective is to illustrate how the
proposed application graph applies to real-life problems.

Image processing uses digital computers to perform some operations on an image that allows
to extract meaningful information or enhance the image [116]. Image processing algorithms
are used in numerous time-critical applications such as autonomous navigation systems, un-
manned aerial vehicles, or industrial control. From the set of image processing algorithms, we
can mention an important subset grouped under the name of mathematical morphology [117].
Mathematical morphology groups algorithms capable of extract image components that are use-
ful in the representation and description of region shape, such as boundaries, skeletons, and the
convex hull [116]. Additionally, mathematical morphology includes algorithms used for pre- or
post-processing operations, such as filtering, thinning, and pruning. The importance of mor-
phological mathematics has attracted the attention of many hardware designers, who seek to
implement their operators efficiently. One of these hardware implementations is the Morpho-
logical Co-processor Unit (MCPU) [12]. The MCPU assembles several efficient dilation/erosion
units, geodesic units and ALUs to support an extensive collection of morphological operations
(See Section 1.4 and 3.5). In addition, an interesting feature is that the shape and size of struc-
turing elements are programmable. Also, MCPU belongs to one of the hardware realizations
dealing with latency minimization. Due to internal knowledge of this SPS-CGRA, throughout
the thesis, we use it as an example of a real-life SPS-CGRA. We select two applications that
target the MCPU to describe the proposed modeling process.

2.5.1 Alternated Sequential Filter

The first example is an Alternated Sequential Filter (ASF) [118]. The ASF is extensively used
for a nonlinear filtering of images, preserving the topology characteristics. It is known for its
computing cost. In our context, it represents a long linear pipeline of tasks with the possibility
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to overpass the length of the hardware resources (Figure 2.7). The Equation 2.5 provides its
formal definition.

ASF λ(f) = ϕλγλ . . . ϕ1γ1(f) (2.5)

where f denotes the input image, λ the SE size, γ, and ϕ are the operators of opening and
closing defined in [117]. In this example, we consider an ASF λ with λ = 4. Here we consider
that the MCPU can only implement erosion and dilation operations. Due to these hardware
constraints, we need to decompose both closing and opening, operations with even numbers
for size of structuring element.. The closing and opening can be decomposed into two basic
morphological operators, erosion (ε) and dilation (δ). By doing this decomposition, we can
transform the ASF 4 equation using erosion and dilation operators, and in the same way, reduce
it as shown in Equation 2.6.

ASF 4 = ϕ9γ9ϕ7γ7ϕ5γ5ϕ3γ3 = δ9ε17δ15ε13δ11ε9δ7ε5δ3 (2.6)

After the transformation and reduction, the application will consist of nine tasks. The input
parameters for both erosion and dilation are the size and shape of the structuring element2. We
can see the resulting application model in Figure 2.7. Notice the use of one sensor node and
one actuator node, both in gray. Also, the respecting parameters of each task are hidden for
visualization but contained in a joint specification file.

t0 t1 t2 t3 t4 t5

t6 t7 t8 t10t9

Figure 2.7 – Application model of the example ASF 4.

We list the entire set of parameters in Table 2.1. As we can see, for the sensor and actuator
nodes, the type is interface. The remaining nodes take their type according to the specification
of the application.

Table 2.1 – Descriptors of the tasks for the ASF 4 example

Task typei
pi

Size Shape Resolution
t0 interface N/A N/A height, width
t1 dilation δ 3 square N/A
t2 erosion ε 5 square N/A
t3 dilation δ 7 square N/A
t4 erosion ε 9 square N/A
t5 dilation δ 11 square N/A
t6 erosion ε 13 square N/A
t7 dilation δ 15 square N/A
t8 erosion ε 17 square N/A
t9 dilation δ 9 square N/A
t10 interface N/A N/A height, width

2The structuring element is a computing window with different possible shapes: square, line, circle, custom.
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In Table 2.1, N/A means Not Applicable, which are descriptors of a task that do not corre-
spond to its type. For example, t0 is a task that models a sensor, only the descriptor of resolution
applies to it. Contrarily, t2 is a task that models an erosion operation, in which resolution is
not one of its descriptors. The parameter Resolution (height and width) represents the number
of input data samples to process.

2.5.2 Road Line Orientation Detection

Our second example is a road line orientation detection [119, 15]. This second application
represents a highly parallel task organization. The principle is the computing of oriented linear
openings of the input (Figure 2.8).

(a) Original Image. (b) Composite image indicating the line orientation.

Figure 2.8 – Road line orientation detection [15].

Figure 2.9 shows the complete road line orientation detection. We only focus on the compu-
tation of the oriented openings. The rest of the application is processed in a CPU.

Figure 2.9 – Complete road line orientation detection.

Again, we decompose the opening in basic morphological operators (erosion and dilation).
We can see in Figure 2.10 the corresponding application graph. The actuators t3,6,9,12,15,18

3 are
the resulting processed images that will be transferred to the CPU. In Table 2.2 we describe the
parameter for each task.

3Here and in the remaining part of the thesis, we will use ti,j,k,l as an abbreviation of ti,tj ,tk,tl.
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t0 t1 t2 t3
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t7 t8 t9

t10 t11 t12

t13 t14 t15

t16 t17 t18

Figure 2.10 – Application model of the example of the road line orientation detection.

Table 2.2 – Descriptors of the tasks for the Road Line Orientation detection (we consider
default position of the center of structuring element).

Task typei
pi

Size Shape Angle Resolution
t0 interface N/A N/A N/A height, width
t1 erosion ε 31 line 0 N/A
t2 dilation δ 31 line 0 N/A
t3 interface N/A N/A N/A height, width
t4 erosion ε 31 line 30 N/A
t5 dilation δ 31 line 30 N/A
t6 interface N/A N/A N/A height, width
t7 erosion ε 31 line 60 N/A
t8 dilation δ 31 line 60 N/A
t9 interface N/A N/A N/A height, width
t10 erosion ε 31 line 90 N/A
t11 dilation δ 31 line 90 N/A
t12 interface N/A N/A N/A height, width
t13 erosion ε 31 line 120 N/A
t14 dilation δ 31 line 120 N/A
t15 interface N/A N/A N/A height, width
t16 erosion ε 31 line 150 N/A
t17 dilation δ 31 line 150 N/A
t18 interface N/A N/A N/A height, width

As described in Section 2.5.1, N/A refers to descriptors that do not apply to a particular
task. We can observe the additional parameters of angle needed to describe the tasks. We can
validate that our model can describe several types of parameters of the applications. And more
importantly, we can describe either sequential and parallel applications and the combination of
both.

2.6 Conclusions
In this chapter, we have introduced our application model. It is a specialization of the PiSDF
model and the AAM methodology applied to applications that target an SPS-CGRA. While
several application models are being used for different platforms, direct use of one of them is
not possible. In this regard, we propose to use a hypergraph and a different set of descriptors
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for the tasks. The hypergraph allows one to model a possible broadcast of the task’s output
to several successors’ tasks or tasks with several inputs of data. Additionally, it can be used to
model the basic application structures, sequential and parallel, and their combinations. Thus,
fully exploit the parallelism that an SPS-CGRA can offer. The descriptors of the task only
focus on the type of task and its parameters. This decreases the complexity of the application
model. And also matches the features of the hardware model and reduces the complexity of the
mapping algorithm.

We describe the modeling process with two application examples. We select two applications
from the set of applications that the MCPU can implement. Although the examples come from
image processing, our application model can be used for other application fields. The task’s
descriptors allow one to model any parameter, such as integers, strings, or boolean values. Fur-
thermore, the graph-based representation can capture most of the current application structures.
As a whole, our application model is generic, and the modeling process is low complexity.
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Chapter 3

Hardware Model

3.1 Introduction
Recall that an SPS-CGRA consists of an irregular systolic array of heterogeneous processing,
communication, and memory resources.

The processing resources are functional units able to perform a specific set of tasks, such
as morphological operators, ALU-like tasks, hashing algorithms, image filtering operators, or
others. Not all the processing resources have the same latency or use the same range of pa-
rameters. Even if the operation is the same, the physical implementation may vary. Thus the
latency characteristics or the required parameters may be significantly different, even for the
same function. This is due to the inner implementation of the given functional unit.

The communication resources are dedicated to transfer, copy and perform read/write mem-
ory operations. They realize datapaths. Like the processing resources, each communication
resource can have a different physical realization. Each physical implementation may have dif-
ferent latencies. We may have a multiplexer with a latency of one clock cycle or an crossbar
that requires two clock cycles or more to assign the input to the correct output.

The memory resources are memory blocks (RAMs, FIFOs, Flash or erasable memories). An
SPS-CGRA can have one or more memory resources from different types. This will impact the
communication resources that deal with the read/write operations.

In addition, an SPS-CGRA has a configuration control layer that assigns the configuration
context to all the resources. The number of configurable parameters defines the size of the
configuration context. The largest size of the configuration context will occur when the user
programs the entire SPS-CGRA. But, the user may not need complete programming of the SPS-
CGRA. In these cases, the configuration context will be reduced. The configuration context size
has a direct impact on the configuration control cost. Thus, the configuration control cost in an
SPS-CGRA is a function of the number of parameters to program.

To take full advantage of these architectures, we need an abstraction of the hardware that
can capture all these details. This abstraction comes in the form of a hardware model. To
help the labor of the mapping algorithm and also increase the probability of getting the optimal
implementation, the hardware model should be able to provide the correct information of the
architecture. Information about the resource features and latency functions is the priority.
Also, the hardware model should provide the means to abstract the greatest number of types of
SPS-CGRAs possible.

Several hardware models have been proposed targeting platforms from processor-based up
to hardware accelerators. Most of the works related to processor-based and multicore-based
architectures use the task model to define the latency requirements. To allocate the task to
the optimal processor/core, the mapping algorithm considers the WCET, a descriptor widely
used by the task model. Other works provide the means to deeply detail the latency of the
tasks [78, 72], either dividing the latency or consider different physical realizations. As we can
see, for these platforms, the details of latency are on the side of the application model, but
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as the SPS-CGRA is a data-driven architecture, the hardware side (model) is the one that
should define the latencies. On the other hand, some works include a specific hardware model
[110, 100]. Commonly they are custom to a particular architecture or do not provide the means
to accurately describe the latency of the resources. This lack of solutions creates a significant
gap for a hardware model of an SPS-CGRA.

In this chapter, we introduce a new hardware model for SPS-CGRA. It provides the means
to accurately define the latencies of hardware resources and generate a mapping. It is general
enough to model several types of SPS-CGRAs. We define the structure and elements of the
hardware model. We provide information about the descriptors and use an example to explain
the process of the modelization of an architecture.

We organize the remaining part of the chapter as follows. Section 3.2 reviews state of the art.
Section 3.3 presents the proposed hardware model. In Section 3.4, we introduce the formalization
of the model. In Section 3.5, we present two hardware examples for a better understanding of
our model. Finally, Section 3.6 summarizes this chapter.

3.2 State of the Art
A hardware model aims to abstract efficiently a system architecture [83]. Its purpose is to capture
the inner mechanism and latency characteristics of the architecture and be able to provide the
best amount of information to the mapping algorithm. The amount of information that the
model delivers is in direct relation to the complexity of the mapping algorithm. A complex
model might increase the exploration time and the complexity of the mapping algorithm without
benefits for the implementation. Therefore, we make a trade-off between the description of the
architecture and the complexity of the model to relax the complexity of the mapping algorithm.
Thus, the hardware models abstract only the crucial points, such as type of resources, working
parameters, and latency characteristics.

Since the hardware models focus on some features of the architecture, usually, they are
custom. From this perspective, we divide this section into types of hardware targets, and at the
end, we present a general discussion of the presented works.

3.2.1 Processor-Based Systems

In a processor-based system, a bus connects one or more processors. The interconnections may
be point-to-point or fully connected. The memory of the systems may be shared or distributed.
Few works detail a specific hardware model for this type of system. Most of the works use the
task model or its variations to describe the latency characteristics [80, 68, 69, 71].

Lo and Jean [66] introduced a Signal Flow Graph (SFG) for processor-based systems. It is
a graph-based model that consists of processing nodes, communication edges, and delays. The
nodes of the graph represent zero delay arithmetic or logic functions. The graph integrates
edges and weighted edges. The edges represent data channels. The weighted edges represent a
time delay operator. Sinaei and Fatemi [120] presented another hardware graph-based model for
processors. The nodes represent processing elements and memory elements. Each element has a
descriptor for its capacity, energy consumption, and cost. Wang et al. [121] represented a high
computing environment [122], consisting of a set of machines [123], as a directed acyclic graph.
They described each node with a value of the estimated expected execution time of subtask si
on machine mj .

Tafesee et al. [124] divided its hardware model into two aspects. An architecture model,
which is a set of processors and memories. Each element, either processor or memory, is associ-
ated with its architecture, type, power, clock rate, interrupt, and memory. Particularly for the
processors, the model includes the set of tasks that the processor can implement, the WCET,
and the power cost. The second element of the hardware model is a topology model, which
describes the physical layout of the components and defines the communication cost. Ma et
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al. [111] modeled a high-performance computing system with a set of homogeneous processing
elements with a parameter of state: active, idle, and shutdown.

Castrillon et al. [41] used a list to describe the processing elements and the communication
primitives. This approach also targets processor-based systems. They defined each processing
element with the operation cost, a descriptor of the multitasking support, including the context
switch time and the scheduling policies. The communication primitives include three descriptors.
The offset represents the overhead as a constant. The start is a variable that increases as a
function of the transferred bytes. And the stair, which is a function of the communication cost.

3.2.2 Algorithm-Architecture Matching

The Algorithm-Architecture Matching (Adequation) (AAM) methodology [35, 36, 37] and its
extension (SynDEx-Mix) [86] model an heterogeneous distributed architecture as an oriented
hypergraph. The architecture may be based on programmable (processor-based), reconfigurable
(FPGA), or ASIC components. The methodology defines four subsets of nodes, operator, com-
municators, memory, and bus/mux/demux. The memory nodes may be Random Access Mem-
ories (RAM) or Sequential Access Memories (SAM), which can be shared for data communica-
tions. The operator node is a sequencer node that represents the execution of a finite subset of
operations (a WCET is associated with each operation). A communicator node is a sequencer
node that executes communication operations to/from its connected memories (RAM, SAM).
The communication operation latency is a function of the size of data to transmit and the
available bandwidth.

3.2.3 Multiprocessor System-on-Chip

A Multiprocessor System-on-Chip (MPSoC) uses multiple processors along with other hardware
subsystems to implement a system [125]. Frid and Sruk [96] introduced a graph-based model
for MPSoCs. It uses a weighted directed graph where they divide the nodes into processing
elements and memory nodes. The execution time of each task of the application is the primary
descriptor of a processing element. If the processing element can not execute the task, the
execution time is infinite. The memory nodes use the number of read, write, or read-write ports
as a descriptor. The weight of the edge is associate with the speed of the write/read operation.
The same authors present in [95] a simpler model. It only considers the processing elements and
computation speed of each one.

Pelcat et al. [83] presented the Linear System-Level Architecture Model, which consists
of an undirected graph that includes the set of processing elements, the set of communication
nodes, the set of unidirectional edges, a function that represents the computing cost, and the
lagrangian coefficient setting the computation to communication cost ratio. The computation
cost can be energy, area, price, amount of memory depending on the model created. This model
is used within the framework PREESM [45, 44].

Jalier et al. [40] described an MPSoC with a SystemC description. They defined only three
types of entities, processor, memory, and communication media.

Zahaf et al. [126] modeled a heterogeneous architecture as a set of execution engines. Each
execution engine is characterized by its execution capabilities, the engine’s tag, and its schedul-
ing policy. The engine’s tag allows identifying different physical implementations. Using the
scheduling policy property allows supporting different scheduling policies, which can be preemp-
tive or non-preemptive.

3.2.4 Network-on-Chip

A Network-on-Chip (NoC) is a structured and scalable interconnection architecture that consists
of multiple segments of wires and routers, structured as a grid [127]. Lu et al. [110] used a tuple
(N, λ ) to describe a NoC. N is the set of nodes representing the routers, and λi ∈ λ represents
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the number of available neighbors nodes at the X or Y coordinate of node i. Yang et al. [128]
used an array of tiles to model an NoC, where each tile represents an intellectual property IP,
a router, and a set of network interfaces. Mehran et al. [129] used a directed graph called
Architecture Characterization Graph (ACG), where each vertex is a tile and the edges the
routing path. Each node has a descriptor that represents the average energy consumption of
sending one bit of data. In previous work, Mehran et al. [130] introduced an order list called
Platform Priority List, according to the connection degree of each tile.

3.2.5 Coarse-Grained Reconfigurable Architectures

Mei et al. [100] presented Modulo Routing Resource Graph (MRRG), a variation of the Resource
Routing Graph (RRG). The RRG is a time-space graph in which all resources (space dimension)
are modeled with vertices. There is one such vertex per resource per cycle (time dimension) in
the schedule being generated. Directed edges model the connections over which data values can
flow from resource to resource [131]. The MRRG is a directed graph where the set of nodes
corresponds to the ports, wires, or artificially created nodes. Each node represents an execution
time t. The edge set corresponds to switches that connect the nodes. Furthermore, the initiation
interval (II) of the loop is one of the descriptors of an MRRG. Several works use this model
[131, 104] or a variation of it [103]. Yoon et al. [105] used a directed graph to model a CGRA,
where the edges represent a data dependence between processing elements.

3.2.6 Field Programmable Gate Array

Li et al. [114] presented a hardware model based on a set of composable templates for FPGA
accelerators. The templates match the possible elements of a boolean dataflow graph used as
an application model. Each template is a building block for the architecture and its datapaths.

3.2.7 Discussion

A summary of the previously introduced works is presented in Table 3.1.
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Table 3.1 – Hardware models state of the art summary

Platform Model Features

Processor-based

Task Model [80, 68, 69, 71]

Graph-based model
Homogeneous/ Heterogeneous resources
Parameters: WCET, deadlines, overall

latency characteristics

Signal Flow Graph [66] Graph-based model
Able to characterized communication delays

Sinaei and Fatemi [120]
Graph-based model

Processing and memory resources
Parameters: capacity, energy consumption, and cost

Wang et al. [121] Graph-based model
Able to characterized the execution time

Tafesee et al. [124]

Divided into an architecture model
(description and parameters of

the resources) and
topology model (interconnections)

Ma et al. [111]
Able to characterized the status
of the resource (active, idle,

and shutdown)

Castrillon et al. [41]
A descriptor of the multitasking support,

including the context switch
time and the scheduling policies

MPSoC

Frid and Sruk [96, 95]
Graph-based model

Processing and memory resources
Able to characterized the execution time

Linear System-Level
Architecture Model [83]

Graph-based model
Able to characterized the computing

cost as a function

Jalier et al. [40] Processor, memory, and communication
media resources

Zahaf et al. [126]
Parameters: execution capabilities,

the engine’s tag,
and its scheduling policy

NoC Lu et al. [110] Considers the number of available
neighbors nodes as parameter

Mehran et al. [129] The average energy consumption of
sending one bit of data is consider as parameter

CGRA Modulo Routing
Resource Graph [100]

Graph-based model
Set of nodes corresponds to the ports,
wires, or artificially created nodes

FPGA Li et al. [114] Set of composable templates
(building block) for FPGA accelerators

As one of the inputs of a mapping algorithm, the level of abstraction of a hardware model
is critical. An accurate hardware model without high complexity is not trivial to define.

A hardware model for SPS-CGRA requires three main features. In the first place, the
means to define heterogeneous resources. In the field of multiprocessors, usually, the processors
are homogeneous, and the models do not provide any means to define heterogeneous resources
[80, 68]. As the requirements of the applications started to increase, the systems begin to
incorporate heterogeneous resources [69, 71], like in the AAM methodology [85]. MPSoCs,
NoCs, and CGRAs models normally support heterogeneous resources. Usually, these models
are graph-based and make use of the set of properties of the nodes to describe heterogeneous
resources. Moreover, the graph’s edges are used to describe interconnections between resources.
[131, 45, 86].
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The second feature is a fine grain latency modelization. Most of the works model the latency
of allocating a task onto a resource using the WCET [68, 85]. This approach might lead to
a pessimist performance evaluation (See Section 4.4.1). Few works allow to model different
latencies for the same resource, like in [80], which is crucial in the context of programmable
architectures. Moreover, the possibility to model different physical implementations that are
able to execute the same task is not possible, with the exception of [126], however, without a
fine grain latency modelization.

The last important feature is the configuration control layer. Usually, the hardware models
allow to abstract only the hardware resources and their interconnections [131, 114, 100]. The
configuration control layer of the system is often neglected and not considered within the hard-
ware model. However, this layer directly impacts the computing cost of the implementation.
The time elapsed during the reconfiguration of the system should be included in the performance
evaluation for a cycle-accurate result.

Clearly, there exists a gap in the field of hardware models for SPS-CGRA. In the following
section, we describe the structure of an SPS-CGRA and the latency of its elements.

3.3 Software Programmable Streaming Coarse Grained Recon-
figurable Architectures

In Section 1.4, we introduced our target architecture, which we name in this work Software Pro-
grammable Streaming Coarse-Grained Reconfigurable Architectures (SPS-CGRA). Examples of
this architecture can be found in several application fields (see Section 1.4). Moreover, it can be
an overlay based on an FPGA, ASIC, or SoPC technology. These different application fields and
technologies used to build an SPS-CGRA allow a great diversity of types of hardware resources
and interconnections. However, preserving many similar characteristics, which allows one to
differentiate the SPS-CGRA from the rest of the hardware platforms. In this section, we will
describe the internal characteristics of an SPS-CGRA.

Definition 3.3.1 (SPS-CGRA). An SPS-CGRA is an irregular systolic array of heterogeneous
hardware resources with fixed interconnections. The hardware resources are heterogeneous in
both functionality and physical realization. It may contain different random access memory
blocks. An integrated interface allows it to receive/transmit data from outside sensors/actuators.
The degree of programmability is given through software reconfiguration. It may allow partial
reconfiguration.

As we can see in Figure 3.1, an SPS-CGRA is a complex architecture that includes resources
with heterogeneous characteristics. From memory blocks up to different types of processing
resources (PRn), and usually including an interconnection block. It can be used to process
data from one or several sensors and produce processed data for one or several actuators. Each
processing resource can be itself composed of some hardware accelerators or processor cores.
Additionally, a configuration control layer is able to program the processing resources and modify
the interconnections through a set of parameters. In the following section, we will describe the
details of each resource.
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Figure 3.1 – Global architecture of an SPS-CGRA.

3.3.1 Architecture Resources

As it was already introduced, an SPS-CGRA consists of a set of processing, communication,
memory and configuration control resources. The configuration control resources are
in charge of delivering the configuration context to the hardware resources. In the following
paragraphs, we bring the definitions of each hardware resource with the objective of clearly
delimit the terminology.

Definition 3.3.2 (Configuration control resource). A configuration control resource defines the
behavior of the hardware resources. It is in charge of distributing the configuration context.

Depending on the capabilities of the SPS-CGRA, a configuration control resource might
support partial reprogramming of the hardware resources, through the selection of a subset of
hardware resources and distributing only to them the new configuration context.

A processing resource can perform a transformation of its input data to produce output
data. This transformation can be from a simple arithmetic operation to a complex application-
specific operation. A processing resource can have several inputs and also several outputs.
The input type can be the same or different depending on the transformation. The processing
resource can broadcast its output to one or several other resources through an unique output.

Definition 3.3.3 (Processing Resource). A processing resource applies a given transformation
to its input data. It may be able to implement one or several transformations. Each transfor-
mation may require a different set of input parameters. Additionally, the processing resource is
characterized by latency, which is a function of the implemented transformation and its input
parameters. The processing resource may have one or more inputs. The transformation’s output
may be broadcast to one or several resources.

To manage the unused processing resource correctly, each hardware resource can systemati-
cally perform two special operations: copy and disable (see Section 3.4.4).

The communication resources can transfer, copy data from a memory resource to a pro-
cessing resource, copy data from a processing resource to a memory resource, copy data from a
memory resource to another memory resource, and route the data (as multiplexer).

The communication resources may represent multiplexers, buses, or crossbars. These re-
sources may have several inputs and several outputs.

Definition 3.3.4 (Multiplexer / Bus / Crossbar). A communication resource represents a mul-
tiplexer/bus/crossbar. It is a resource that performs a copy operation from one or more inputs
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to one or more outputs. In addition, they are described by the latency function related to the
data transfer.

A subset of the communication resources is dedicated to perform read/write operations.
These resources are able to transfer data from and to a memory resource. They only have one
input and may have one or more outputs. If the resource has several outputs, this represents
the broadcast of the same output data to several resources.

Definition 3.3.5 (Memory access). Memory access resources are a subset of the communication
resources that perform read/write operations from or to its associated memory resources. Each
memory access resource is associated with a finite address space of a memory block.

Another subset of communication resources is the interface resources. They represent the
external producer and consumer of data. The external producer is the resource that provides the
data for the system. It may be a camera, a personal computer, transducers, or a flash memory.

Definition 3.3.6 (External Producer of Samples). An external producer of data is the main
source of data for the system. There may be one or more external producers.

The external consumer of data is the sink of the output processed data. There may be one
or more external consumers. The external consumer may be a display, a personal computer, or
a monitor.

Definition 3.3.7 (External Consumer of Samples). An external consumer of data is the sink
of processed data of the system. There may be one or more external consumers.

Thememory resources are memory blocks (RAM, FIFO, Flash or erasable memory). There
may be one or more memory resources in the system. Each memory resource is unique. Each
memory block may have one or more read/write dedicated channels, which are exposed to the
memory access or interface resources.

Definition 3.3.8 (Memory resources). A RAM / FIFO / Flash or erasable memories are mem-
ory resources used to store a finite amount of data given by its address space.

3.3.2 Hardware Described Through Latency

We can divide the architecture characteristics latency into two main categories, configura-
tion cost and hardware resources latency. The former relates to the configuration control
resource (see Definition 3.3.2). The delivery of the configuration context to all the hardware
resources requires a specific amount of time, which is the time consumed during the program-
ming of the hardware resources. This time may be unique for each hardware resource, as it is a
function of the number of parameters and information to program.

Definition 3.3.9 (Configuration cost). The configuration cost is the time consumed during
the programming or configuration of all the hardware resources. This time is a function of the
parameters of each hardware resource, and therefore unique for each resource.

The hardware resources latency relates to the latency generate by each hardware resource
in the system. The heterogeneity of the hardware resources makes the latency of each hardware
resource unique and a function of its parameters. Consider the example in Figure 3.2, where the
same task (ti) has been allocated twice onto the same resource (rj) but with a different set of
parameters. In the first case, a set of parameters has been applied to the resource. The outcome
of this set of parameters will be a pair of input and computing latencies (defined formally in
the next paragraph). On the other hand, if we change the set of parameters, these latencies will
change.
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Figure 3.2 – Impact of the change of parameters on the latency of a resource

Recall that a processing resource applies a given transformation to the input data to obtain
output data (see Definition 3.3.3). This transformation generates a latency value which is a
function of the type of the transformation and its parameters. Since an SPS-CGRA is a stream-
based processing platform, this latency function is, in fact, the union of two latencies: input
latency and computing latency.

Definition 3.3.10 (Input latency). The input latency is the amount of time (measured in clock
cycles) from the arrival of the first sample until the arrival of the last sample required to start
the processing of the samples. At this moment, the processing resource is ready to output the
first processed sample.

Definition 3.3.11 (Computing latency). Computing latency is the amount of time (measured
in clock cycles) elapsed between the output of two consecutive processed samples after the
computing (processing) pipeline is full and the feed of new samples is constant.

The input latency and computing latency are functions of the type of transformation
and its parameters. They are defined by the physical hardware realization for a given task.

A communication resource that applies a copy operation (i.e., from memory to memory) also
generates a latency value. This value is a function of the physical realization, and it is constant.
Equally, the communication resource that applies a read/write operation (i.e., between memory
and processing resource) generates a latency value, which is a function of its physical realization.
Lastly, the external producer and consumer of samples generate a latency value representing
the latency of producing one input sample or consuming one output sample. In our model,
the memory resources do not generate any latency since, we propose to integrate it into the
communication resources.

3.4 Formal Model
In this work, a directed hypergraph GHW (S,K) models an SPS-CGRA architecture. The set
of nodes (S) represents the entire SPS-CGRA resources. The set of oriented hyperedges (K)
models the hardware resources interconnections. The S is a union of several subsets representing
different hardware resource classes. Their relations are depicted in Figure 3.3. Each of them is
defined in the following sections.
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RM RWR
RRD RMUX

RINTERFACERC

Figure 3.3 – Composition of the set S

3.4.1 Set S of SPS-CGRA Resources

We define the set of nodes S as the union of the node sCFG and the set R.

S = sCFG ∪R (3.1)
The unique node sCFG is the sequencer node that represents the configuration control of the

system (See Definition 3.3.2). The set R represents the set of hardware resources of the system.
This set is a union of the following subsets.

R = RP ∪RC ∪RM (3.2)
RP represents the processing resources, RC the communication resources and RM the mem-

ory resources. These three subsets will be respectively detailed in Sections 3.4.4, 3.4.5 and
3.4.6.

3.4.2 Sequencer Node sCFG

The sequencer node sCFG controls the system configurations (See Definition 3.3.2). It is in charge
of the modification of the resources configuration between different applications or between
partial configurations required to realize one application. We define sCFG as

sCFG = (Cfgfun, Cfgparam) (3.3)
where Cfgfun is a set of designer-defined functions that express the configuration cost of

each hardware resource according to its configuration mechanism. Cfgparam is the set of config-
uration parameters of the hardware resources. These parameters will be fixed by our mapping
algorithms.

Observation 3.4.1 (Unique sequencer node). In a hardware model, we assume that there will
be only one sequencer node, and its descriptor will cover all the possible configuration functions
and parameters of all the hardware resources. There is at least one tuple (Cfgfuni , Cfgparami )
for all ri ∈ R:

The sequencer node is connected to all the hardware resources through a F-hyperedge 1. We
can see in Figure 3.4 an example of the connection of one scfg to two hardware resources. Notice
the F-hyperedge, which has dotted lines.

r1 r2

sCFG F-hyperedge

Figure 3.4 – Graphical representation of the connection of a sCFG

1A Forward hyperedge or F-hyperedge is an hyperedge E = (T (E), H(E)) with | T (E) |= 1 [132].
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As the general complexity of an SPS-CGRA is beyond two hardware resources, we introduce
a different graphical representation of the F-hyperedge, which allows better readability. Figure
3.5 shows this graphical representation. We use a simple closed shape in a two-dimensional plane
to represent the interconnections. All the nodes inside the closed shape in blue are connected to
the node sCFG through the F-hyperedge. Notice the arrow direction of the node sCFG, which
represents that the connection goes from the sCFG to all the nodes inside the closed shape in
blue. This graphical representation can be used also to represent an B-hyperedge2, an example
will be given in Section 3.5.2.

r1 r2

sCFG

Figure 3.5 – Graphical representation of the connection of a sCFG through a solid plane

As we can see in Figure 3.4 and Figure 3.5, the node sCFG has an input degree of zero. This
means that there is no input connection for this node. On the other hand, the output degree is
equal to the rest of the hardware resources.

Observation 3.4.2 (Degree of sequencer node). The sequencer node degree is given by:

deg−(sCFG) = 0 ∧ deg+(sCFG) =| S | − 1 (3.4)

3.4.3 Hardware Resources R

The set R represents the hardware resources (see Section 3.4.1): subset RP (P stands for process)
dedicated to transform, subset RM (M stands for memory) to store and subset RC (C stands for
communication) to communicate data. We represent each hardware resource as a node r ∈ R,
where the input degree represents the input data connections, and the output degree represents
the output data connections. Figure 3.6 shows an example of a single resource.

r1

Figure 3.6 – Example of a single resource

In Figure 3.6, we can notice two input edges, one represented with a solid line and another
with a dotted line. The solid line edge represents an input data connection, and the dotted line
represents the connection with the configuration control node made through the F-hyperedge
presented earlier. In order to alleviate the hypergraph, as explained earlier, this hyperedge is
removed and replaced by a closed shape.

Definition 3.4.1 (Input degree of a resource). The input degree of a hardware resource only
considers the input data connections. The connection with the configuration control node is
implicit.

2A Backward hyperedge or B-hyperedge is an hyperedge E = (T (E), H(E)) with | H(E) |= 1 [132].
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Definition 3.4.2 (Output degree of a resource). The output degree of a resource represents the
output data connections of the resource. If the output degree is higher than one, it means that
the output data will be broadcasted to all the successors.

For example, the hardware resource r1 of Figure 3.6 has an output degree of one.
Now consider the resource r1 of Figure 3.7. This hardware resource has a connection to the

hardware resources r2 and r3. Consequently, the output degree of this resource is equal to two.
The output data of r1 will be broadcasted to the other resources r2 and r3. Figure 3.8 depicts the
same structure as Figure 3.7 but is drawn without the connection to the configuration control
node in order to lighten the graph.

r3
r1

r2

Figure 3.7 – Example of a single resource broadcasting its output

r3

r1

r2

Figure 3.8 – Example of single resource broadcasting its output without the connection to the
configuration control node

3.4.4 Processing Resources Subset RP

The subset RP represents resources that apply a given transformation of the input data. We
define node rPi ∈ RP as

rPi = (Ti,Πi,Li, Cfgi) (3.5)

where Ti is the set of transformations that rPi can perform, and Πi is the set of allowed
parameters of each transformation.

Recall that an SPS-CGRA allows two different levels of heterogeneity. On one level, each
processing element may be able to perform different types of tasks (addition, multiply, fast
Fourier transform, hash algorithm). On the second level, the heterogeneity resides on the dif-
ferent physical implementations that a set of processing resources that performs the same type
of task may have. This second level of heterogeneity directly impacts the computing cost of the
system. A naive implementation will be more computationally costly than an optimized imple-
mentation. A set of parameters for a processing resource can result in a reduced computational
cost compared to another set of parameters. Our model is able to deal with this feature using
the latency descriptor Li.

The descriptor Li describes the latency functions of a hardware resource. We define latency
of a hardware resource as the time interval elapsed between the arrival of data at the input and
the update of the output with a value corresponding to the transformation of that particular
data. In our context, this time includes input latency and computing latency. Stream-based
processing resources require a certain time to fill the input pipeline and start output data. We
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define the internal pipeline filling time as the input latency. Computing latency is the time
consumed to output data after the input pipeline is full. This, in fact, involves two functions,
one for the input latency and another for the computing latency. Our approach solves this with
the possibility that Li includes two different functions.

Li = (LINi ,LCLi ) (3.6)

The descriptor LINi represents the input latency and LCLi the computing latency of the
resource i. Both are function of Ti and Πi. Finally,

Li = (LINi (Ti,Πi),LCLi (Ti,Πi)) (3.7)

An example of the modeling process of the latency features of a real-life SPS-CGRA is given
in Section 3.5.5.

As a result of the differences between the type of processing resources and physical imple-
mentations, the configuration cost could not be the same for all the resources. The fourth and
last descriptor Cfgi ∈ Cfgfun (see Section 3.4.2), defining rPi , is used to store the configuration
cost function of rPi . Cfgi is a designer-defined function that assigns the configuration cost value
of rPi as:

Cfgi(Ti,Πi) (3.8)

Observation 3.4.3 (Complementary operations). We assume that each rPi is equipped with
the operations copy and disable allowing to manage correctly unused processing resources.

For some applications, after the configuration step of the whole SPS-CGRA, some resources
may remain unused. The mapping algorithm will automatically assign one of the complementary
operations to the unused resource. In the case of copy operation, the resource will be used as a
bypass (their inputs are directly connected to the outputs without any transformation). In the
case of disable, the resource will be completely disabled.

Consider the processing resource of Fig. 3.9. This resource has two inputs and one output.
To implement the copy operation, the user needs to specify which input should be copy to the
output. This information should be detail in the configuration parameters of the resource.

rP1

Figure 3.9 – An rP with two inputs and one output

3.4.5 Communication Resources Subset RC

The subset RC represents the resources dedicated to the data transfer, read/write operations to
memories and interfaces, copy, and data-path control. Recall that (Section 3.4.1), we distinguish
four types of communication resources: multiplexers RMUX , input/output interfaces Rinterface,
data reading and writing RRD, RWR.

RC = RMUX ∪RINTERFACE ∪RRD ∪RWR (3.9)

We describe each subset of RC in the following sections.
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RMUX

A node rMUX
i ∈ RMUX provides a set of inputs and outputs that performs a copy operation

from a selected input to the selected output. A rMUX
i can describe a multiplexer/bus/crossbar

and is model as a four-element tuple

rMUX
i = (Iporti , Oporti ,Li, Cfgi) (3.10)

The descriptors Iporti and Oporti , represent the set of input and output ports of rMUX
i . Li is

the latency of rMUX
i and Cfgi ∈ Cfgfun represents the configuration cost.

RWR and RRD

An rWR
i ∈ RWR and an rRDi ∈ RRD are resources able to perform a read/write operation from

or to a memory resource. We define rWR
i and rRDi with a three-element tuple

rWR, rRD = (Ai,Li, Cfgi) (3.11)

The descriptor Ai defines the address space to access. Li models the latency of the write/read
operation and Cfgi ∈ Cfgfun represents the possible configuration cost.

Each processing resource can be connected directly to one or more communication resources
from the subset RRD and RWR.

One particularly of the descriptor Ai, is that it allows one to define the exact address space
available for a hardware resource. As there may be some restrictions on the memory address
space, we can use this descriptor to associate each hardware resource with the correct address
space. This feature helps us to model systems where the re-injection (recomputation) of data
between datapaths is available. Re-injection of data occurs when the processed output of one
datapath is the input data of a second datapath. Consider a communication resource rWR

i as
the last element of a datapath, and it writes data to a memory module. On the other hand,
assume that a communication resource rRDj is the first element of a datapath, and it reads data
from the same memory module as rWR

i . If the descriptors Ai and Aj are the same, or either Ai
range covers the range of Aj or vice versa, the system allows re-injection of data.

Observation 3.4.4 (Ai). Ai allow us to define if re-injection of data is valid, if and only if an
rRD is able to access the address space of a rWR.

An example of the use of the subsets RRD and RWR is given in Section 3.5.2

RINTERFACE

The external sources and consumers of the data are nodes rsensori ∈ RINTERFACE and ractuatori ∈
RINTERFACE . We describe an rsensori with the tuple

rsensori = (Ti,Πi,Li) (3.12)

where Πi are the allowed parameters and Li is the latency of producing one data sample.

Observation 3.4.5 (RINTERFACE descriptor Ti). To complete, each rsensori and ractuatori has
an implicit descriptor operation Ti = interface

We consider that an rsensori has an internal rWR, which allows it to transfer data directly to
an rP or an rMUX , or write data to an rM . In Figure 3.10, we show this concept graphically.
In this work we use the labels sensor (rsensori ) and SNSR (rSNSRi ) interchangeably.
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rSNSRi
rWR

Figure 3.10 – Example of a rsensori

Likewise, we describe a ractuatori as

ractuatori = (Ti,Πi,Li) (3.13)

where Πi are the allowed parameters and Li is the latency of consuming one data sample.
We consider that an ractuatori has an internal rRD, which allows it to transfer data directly from
an rP or an rMUX , or read data from an rM . In Figure 3.11, we show this concept graphically.
In this work we use the labels actuator (ractuatori ) and ACTR (rACTRi ) interchangeably.

rACTRi
rRD

Figure 3.11 – Example of a ractuatori

When an ractuator or an rsensor is directly connected to a rM , the latency of the resource
should include the latency of reading or writing one data sample.

To describe the behaviour of the subset Rinterface, two simple examples are given in Section
3.5.1.

3.4.6 Memory Resources Subset RM

The subset RM represents the hardware memory resources (RAM modules, sequential memory
modules). We describe each rMi ∈ RM with a tuple

rMi = (Ai, CRDi , CWR
i ) (3.14)

where Ai represents the addressing space of rMi . CRDi is the number of read channels avail-
able, and CWR

i the number of write channels. A channel is a specific range of addressable memory
space which is accessible to some hardware resource. We assume the following conditions:

1. The sum of CRD of all rM ∈ RM of the hardware should be equal or more than the number
of all rRD plus the number of all ractuator.

n∑
i=1

CRDi ≥| RRD | + | {ractuator} | (3.15)

where n =| RM |.

2. The sum of CWR of all rM ∈ RM of the hardware should be equal or more than the
number of all rWR plus the number of all rsensor.

n∑
i=1

CWR
i ≥| RWR | + | {rsensor} | (3.16)
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where n =| RM |.

3. An rMi is always paired with at least one resource node from RRD ∪RWR ∪Rinterface.

Notice that the memory resources do not have the expression of the latency. This one is
always integrated into the associated rRD and rWR nodes.

We consider the following interconnection patterns for an rMi .

• A linear sub-graph with a sensor rsensork as a predecessor of a rMi resource, and a memory
read rRDj as a successor of this rMi resource (Figure 3.12).

rSNSR1
rWR rM2 rRD3

Figure 3.12 – Example of a node rM2 with rSNSR1 as predecessor and rRD3 as successor.

• A linear sub-graph with a rWR
k as a predecessor of a rMi resource, and an actuator ractuatorj

as a successor of this rMi resource (Figure 3.13).

rACTR3
rRDrWR1 rM2

Figure 3.13 – Example of a node rM2 with rWR
1 as predecessor and rACTR3 as successor.

• A linear sub-graph with a rWR
k as a predecessor of a rMi resource, and a rRDj as successor

of this rMi resource (Figure 3.14).

rWR1 rM2 rRD3

Figure 3.14 – Example of a node rM2 with rWR
1 as predecessor and rRD3 as successor.

Notice the need for an rRD and an rWR in each pattern. Either in an implicitly form, as in
the rsensor and the ractuator, or in an explicit way with the rRD and rWR itself.

Our model is a directed hypergraph, and one property that we comply with is acyclicity.
An issue with the acyclicity may appear when we have to model a system where the datapath
uses the same memory resource as a source and sink of the process. During the modelization,
to remove this cycle of the hardware, we split the memory resource according to the number
of channels or the number of datapaths. Consider the hardware model showed in Figure 3.15.
For didactic reasons, we only show the memory resource, and we represent a set of hardware
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resources with the cloud shape. Notice that the data go from and to the memory resource rMi .
This creates a forbidden cycle in the model.

rM
i

Set of
hardware
resources

Figure 3.15 – Representation of a cyclic hardware model

To solve this, we split the memory resource into two memory resource nodes but sharing
the same name. We can see in Figure 3.16 the resulting graph. Notice that now the memory
resource rMi is split into two, a rMSRC

i (source node of the datapath) at one end and rMSINK
i (sink

node of the datapath) at the other. This transformation eliminates the cyclicity. In order to
show that these two nodes model the same memory resource, we add the dotted lines to connect
them. The hardware resources that the dotted lines enclosures are considered one datapath. We
include these dotted lines only if both ends of the datapath are the same.

Set of
hardware
resources

ri
MSRC ri

MSINK

Figure 3.16 – Memory resource modelled by two connect memory nodes

Now, let’s see another example. In Figure 3.17 we show a different hardware model. In this
case, the hardware graph has two cycles.

rM
i

Set of
hardware
resources

Set of
hardware
resources

Figure 3.17 – Representation of a cyclic hardware model

Since we can not have a cycle in our hardware model, we again split the memory resource,
but this time we end up with two independent datapaths. As we can see in 3.18, the two
independent datapaths are enclosure with dotted lines.

ri
MSRC

Set of
hardware
resources

Set of
hardware
resources

ri
MSINK

Figure 3.18 – Memory resource modelled by two connect memory nodes with two independent
datapaths
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Several examples of the memory resource modeling process are given in Section 3.5.3.

3.4.7 Fork-Join Special Nodes

In some cases, the sensor (i.e., a camera) produces a burst of n samples of data, where n can
be from 2 to the total amount of expected input samples. Assume that the actuator consumes
a burst of m samples of data, where m can be from 2 to the total amount of expected output
processed samples. Given that the hardware platform is stream-based, the input burst will be
stored entirely and then processed one by one. Next, the processed samples will be again stored,
and after the completion of the processing of all input samples, the processed data will be sent to
the actuator. This condition creates three different regions. It is no longer a pure stream-based
system where as soon as one sample of data is ready, it moves forward to the next resource. In
this case, we need to wait until a specific number of samples are ready to move to the following
resource.

To model this different type of processing, we introduce two special nodes that allow to
represent this behavior.

A join node allows to model the case where we need to wait n number of samples to move
these samples to the following resource. We represent a join node graphically with the difference
of an edge crossing line with a 1 for the input edge and the n samples of the burst in the output
edge. We can see in Figure 3.19 the graphical representation of a join node.

rJ
1 n

Figure 3.19 – Special join node

A fork node allows to represents the case where we read a burst of n data samples, and these
samples are processed one by one. We represent a fork node graphically with the difference of
an edge crossing line with the n samples of the burst and a 1 in the output edge. We can see in
Figure 3.20 the graphical representation of a fork node.

rF
n 1

Figure 3.20 – Special fork node

An example of the use of the fork-join nodes is detailed in Section 3.5.4.

3.5 Examples
In this section, we provide several examples of the modeling process of hardware architectures.
The examples make use of virtual hardware architectures. Additionally, we provide the modeling
of real-world hardware. We focus on the Morphological Co-processor Unit (MCPU) [12]. This
co-processor will help us illustrate and validate the benefits of our hardware model.
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3.5.1 Communication Resources RINTERFACE

To describe the behavior of the subset RINTERFACE , consider the stream-based hardware in
Figure 3.21. The hardware takes data from a camera as input and displays the processed data
on an actuator (e.g., display).

CONFIGURATION CONTROL

HW
Accel2

PR1

PARAMETERS

HW
Accel1 HW

Accel3

HW
Accel2

PR2

PARAMETERS

HW
Accel1

INTERFACE INTERFACE
INTERCONNECTIONS

CAMERA DISPLAY

D1 D2 D3

Figure 3.21 – SPS-CGRA example 1

Figure 3.22 shows the corresponding hardware model of this basic example. The input data
goes directly to the processing resource rP1 . We represent the camera with rSNSR0 . The reading
of the camera memory is implicitly represented by rSNSR0 itself. The output data produced by
rP2 goes directly to the actuator rACTR3 . This last node implicitly writes in the actuator (display)
memory. Note the presence of sCFG connected by an F-hyperedge (closed blue shape) to all the
nodes to configure them.

rP1 rP2

sCFG

rSNSR0 rACTR3

D1 D2 D3
rSNSR0

rP1

rP2
rACTR3

sCFG

PR1

PR2
Interface/

display

Interface/
camera

Con�guration
control

Hardware 
resources

Hardware
model nodes

Figure 3.22 – Hardware model of SPS-CGRA example 1

In the second example, we study the modeling of a hardware architecture able to process
images using pipelined processing of the pixels. It is depicted in Figure 3.23. The camera
produces an image (pixel by pixel) which is read and stored in the memory module of the
system. After the first input data (first pixel) is available in the memory module, the processing
can begin by reading the data, processing it, and storing back the result in the same memory.
After the first processed pixel is available in the memory module, it can be displayed by the
actuator.
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CONFIGURATION CONTROL

HW
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PR1

PARAMETERS
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Accel1 HW

Accel3

HW
Accel2

PR2

PARAMETERS

HW
Accel1

INTERFACE
INTERFACE

INTERCONNECTIONS

Memory1

CAMERA ACTUATOR
D1 D2 D4

D3
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Figure 3.23 – SPS-CGRA example 2

Figure 3.24 shows the corresponding hardware model. The camera is represented using
rSNSR0 . This resource represents the input data (pixel) generation and the writing to the memory
module rM1 . The datapath D1, showed in red, is modeled by the edge ( rSNSR0 , rMSRC

1 ). The
datapath D2, showed in green, is modeled by the edges (rMSRC

1 , rRD2 ) and (rRD2 , rP3 ). The
datapath D3, showed in orange, is modeled by the edge (rP3 , rP4 ). The datapath D4, showed
in purple, is modeled by the edges (rP4 , rWR

5 ) and (rWR
5 , rMSINK

1 ). The last datapath D5 is
modeled by the edge (rMSINK

1 , rACTR6 ). Symmetrically, the actuator is represented using rACTR6 .
This resource represents the data reading (processed pixel) from the memory module and the
actuator’s consumption data. Notice the split of the memory module and the dotted lines that
enclosure the remaining hardware resources, as explained in Section 3.4.6.

sCFGCon�guration
control

Hardware
model nodes

rRD2 rP3

sCFG

rSNSR0 rACTR6r1 rP4 rWR5

D1 D2 D3 D4 D5 rSNSR0

rP3

rP4

rACTR6

PR1

PR2
Interface/

display

Interface/
camera

Hardware
resources

Memory1
MSRC r1MSINK

r1MSINKr1MSRC/

Figure 3.24 – Hardware model of the SPS-CGRA example 2

3.5.2 Communication Resources RWR and RRD

Consider the hardware depicted in Figure 3.25 and its associate hardware model in Figure 3.26.
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Figure 3.25 – SPS-CGRA example 3

Notice that the processing resource PR1, modeled by rP3 , reads and writes data to the
memory module. Recall that each processing resource can be connected directly to one or more
communication resources (See Section 3.4.5). Thanks to rRD2 and an rWR

7 , we can model this
behavior. In this example rP3 , rP4 and rP5 can write independently their data in rM1 , thanks to
rWR

7 , rWR
8 , rWR

6 respectively. This correspond to the D3, D4 and D5 datapaths available on
this architecture (Figure 3.25).

rRD2 rP3

sCFG

rSNSR0 rACTR9rP4 rWR6rP5

rWR7 rWR8D1

r1MSRC
MSINKr1

D2 D3 D4 D5 D6

sCFGCon�guration
control

Hardware
model nodes

rSNSR0

rP3
rP4

rACTR9

PR1

PR2

Interface/
display

Interface/
camera

Hardware
resources

Memory1 r1MSINKr1MSRC/

PR3 rP5

Figure 3.26 – Hardware model of the SPS-CGRA example 3

3.5.3 Memory Resources RM

In this section, we present four examples that detail the modeling process of the memory re-
sources. The first two examples illustrate the use of a memory resource as the source and sink
of a datapath [12, 11]. The third example illustrates the usage of two memory resources within
the same architecture. The fourth example shows a memory resource as a frame buffer within
a processing pipeline [133].

A Memory Resource as a Source and Sink of a Datapath

Consider the simple hardware example of Figure 3.27. It consists of one camera, a memory
block, a processing element (PR1), and a single actuator. In this architecture, the processing
element reads the input data from the memory block and stores its result in the same memory.
The actuator then reads this memory.
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Figure 3.27 – SPS-CGRA example 4

Figure 3.28 shows the hardware model of SPS-CGRA example 4. Notice the graphical
representation of rM1 . Recall that the hardware model does not allow cycles (See Section 3.4.6).
We split rM1 into rMSRC

1 and rMSINK
1 . Furthermore, notice the dotted lines in Figure 3.28. The

dotted lines show that the datapath highlighted is connected in both ends with the same rM1 .

rRD2 rP3

sCFG

rSNSR0 rACTR5rWR4

D1 D2 D3 D4
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rP3
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Interface/
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Interface/
camera
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Memory1r1MSINKr1MSRC r1MSINKr1MSRC/

Figure 3.28 – Hardware model of example 4

Consider now the SPS-CGRA example 5, depicted in Figure 3.29. Like the preceding ex-
ample, the input data from the camera goes directly to the memory module of the system.
The stored data is read and processed, in this example by two processing resources connected
consecutively. Finally, the data is stored again in the memory module.
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D1 D2 D4

D3
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Figure 3.29 – SPS-CGRA example 5

Figure 3.30 shows the GHW of hardware example 5. We again split rM1 . One rRD (rRD2 ) and
one rWR (rWR

5 ) represent the internal read and write of data to the memory module. rSNSR
represents the external write to the memory module, and rACTR the external read of the same
memory module. Notice the dotted lines enclosing the datapath, in this case, of two processing
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resources. This means that both ends of the datapath belong to the same memory module, rM1 .
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Figure 3.30 – Hardware model of example 5

Two Memory Resources in the Same Architecture

The SPS-CGRA example depicted in Figure 3.31 has two memory modules. In this architecture,
the input data goes directly to one memory module (Memory1) of the system, then the stored
data is read in parallel by two processing elements (PR1 and PR3). These two processing
elements are the first elements of two independent datapaths. One datapath stores its result in
the same memory module. The second datapath stores its result in a different memory module
(Memory2). Then a pair of actuators reads the processed data from each memory module.
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Figure 3.31 – SPS-CGRA example 6

In this case, we introduce two rM . rM1 models Memory1. We split rM1 to avoid creating a
cycle within the hardware model. Notice the dotted lines only highlight the datapath, in which
rM1 is the source and the sink. rM2 models the second memory module (Memory2). This memory
module only stores the processed data of rP4 (PR4), and we do not need to split it. Finally, one
rSNSR and two rACTR represent the external write and read of the memory modules. Figure
3.32 shows the hardware model of SPS-CGRA example 6.
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Figure 3.32 – Hardware model of example 6

A Memory Resource in the Middle of a Datapath

The SPS-CGRA example of Figure 3.33 makes use of an internal memory module, which serves
to synchronize the processed data of PR2 and PR4.
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Figure 3.33 – SPS-CGRA example 7

Figure 3.34 shows the hardware model. rM8 , which models Memory1, does not require to be
split. Notice the interconnections between rRD9,10 and rWR

6,7 and rM8 . We make use of simple edges
for graphical representation.
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Figure 3.34 – hardware model of example 7

Figure 3.35 shows a different graphical representation, where an hyperedge is used (See
Section 3.4.2). The graphical representation of Figure 3.34 and 3.35 are equivalents.
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Figure 3.35 – An equivalent hardware model of SPS-CGRA example 7

3.5.4 Fork-Join Special Nodes

In the architecture depicted in Figure 3.36, the camera connected toMemory1 produces a burst
of n pixels. These n pixels will be processed by the processing elements PR1 and PR2, pixel by
pixel. The processed pixels will be stored in the same Memory1, and they will be read in sets
of m pixels by the display.
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Figure 3.36 – SPS-CGRA example 8

We can see in Figure 3.37 the hardware model of the system described before. In the Figure,
we notice the three regions of the system. The orange section represents the production of
pixels made by the camera (rSNSR0 ), in this region, we will wait until the arrival of n samples
to move them to the memory resource (rM1 ). The brown section represents the processing and
communication elements. In this region, rrd2 will read pixel by pixel and transfer them to the
processing elements in a stream-like way. At the end of this section, all the processed pixels will
be stored again in the same memory resource. We need to wait for m samples to be stored to
move to the following region. After this procedure, the display (rACTR6 ) will start consuming
the bursts of m data samples.
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Figure 3.37 – Division of the regions of processing in example 8

To describe this behavior accurately, we use the join and fork nodes introduced in Section
3.4.7. The join node rJ7 models the burst of n pixels of the camera. Similarly, the join node
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rJ9 models the write of m samples to rMSINK
1 , which is the number of pixels that the camera

rACTR6 requires. On the other hand, the fork node rF8 models the read of pixel by pixel of the
communication resource rRD2 , and rF10 models the same behavior for rACTR6 . Figure 3.38 depicts
the hardware model that includes the fork/join nodes.
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sCFG

rSNSR0 rACTR6rP4 rWR5rJ7 rF8 rJ9 rF10
1 n mn m 11 1

r1MSINKr1MSRC

Figure 3.38 – Hardware model of example 8 with the fork and join special nodes

3.5.5 The Morphological Co-Processor Unit

The MCPU was developed by Bartovsky et al. [12]. It is integrated as a coprocessor in an
FPGA-based platform. The MCPU assembles several efficient units to support a large collection
of morphological operations. Figure 3.39 layout its architecture. As we can notice, the MCPU
follows the principles of an SPS-CGRA with its pipeline-based array of processing resources
(Large SE pipeline and Geodesic Pipeline), and it has a loose coupling(i.e., no resource sharing
with its host processor). Notice the direct connection of the processing pipelines to the memory,
and the configuration control is depicted as configuration registers connected to all the hardware
resources.
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Figure 3.39 – Architecture of the Morphological Co-processor Unit [12]

The MCPU features two pipelines, a Large SE pipeline (detailed in Figure 3.40) and a
Geodesic Pipeline. Both with similar characteristics. They consist of an array of processing
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resources, ALUs, and multiplexers. All resources can be configurated through the configuration
registers, and as a result, the type of operations and the datapaths can be reconfigured. The
granularity is mixed, from fine-grained (multiplexer) up to coarse-grained (dilation/erosion).
This is a particularity of the SPS-CGRAs, the broad range of granularity that it can contain.

In this example, we focus on the Large SE pipeline detailed in Figure 3.40. Notice that two
pipeline stages are shown and need to be modeled. Other stage quantities and the Geodesic
pipeline can be modeled; however, for didactic purposes, we only focus on two pipeline stages.
From Figure 3.39, the configuration registers may be modeled as a sequencer node scfg where
the configuration cost and their associated functions are described. The “Image input” and
“Image output” modules may be model as a communication memory resources: respectively
nodes rRD3,4 and rWR

18,19. The resulting modelization is given in Figure 3.41. The corresponding
external producers and consumers are model as RINTERFACE , either as sensors (rSNSR0,1 ) or
actuators (rACTR21,22 ).

Each Large SE Pipeline basic stage consists of: 1) two processing resources called Large SE
erosion/dilation, 2) one processing resource able to perform ALU-like operations, 3) two multi-
plexers, 4) two processing elements able to compute the infimum, maximum and accumulator
of the image pixels. The modeling of these elements is straightforward. We use rP for the
processing elements and rMUX for the multiplexers.
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Figure 3.40 – Large SE pipeline architecture
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Figure 3.41 – Hardware model of the MCPU

Latency Features

Each resource rj ∈ RP ∪ RC has a specification for the computing latency specific for the
hardware. For the resources rj ∈ RP we also define the input latency. Table 3.2 summarizes
these specifications, where KS means the size of the input structuring element, l is equal to the
size of structuring element (a line) in the orientated erosion/dilation, width is the width of the
input image, and β is the input angle of the orientated erosion/dilation. Finally, N/A means
not applicable.
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Table 3.2 – Latency features of the resources

Resource Ti
Li

LINi LCLi
rSNSR0,1 interface N/A 1
rACTR21,22 interface N/A 1
rRD3,4 read N/A 1
rRW18,19 write N/A 1
rMUX

8,9,15,16 multiplexer N/A 1

rP5,6,11,12

erosion/
dilation

((KS-1)/2)*width+
((KS-1)/2) 3

orientated
erosion/
dilation

l ∗ sin(β) ∗ width 3

rP10,13,17,20

acummulator,
maximum,
minimum

1 1

rP7,14

bit-wise operations,
addition,

substraction
1 1

3.6 Conclusions
In this chapter, we introduced a generic hardware model for SPS-CGRA. It allows modeling
the memories, processing resources, and all kinds of datapaths connecting them. Additionally,
this hardware model provides the means to describe the latency features of all the hardware
resources accurately. Also, for the processing resources, the model can describe two kinds of
latencies: input latency and computing latency. These two latencies are specifically considered
in a stream-based processing system. However, the concept of different sources of latency may
be extended to other types of processing.

The presented hardware model includes the means to model the configuration control re-
sources. This modeling focuses on the configuration cost through the description of its functions
and parameters. This feature will provide the means to accurately compute the upper bound of
the computing cost of implementing an application onto an SPS-CGRA (See Section 4.4).

We describe, through several virtual hardware, the modeling process of various structures
and systems. We divide the examples into the type of hardware resources and, we explain in
detail how we can model each one of these types. Furthermore, we presented a real-life example
and shown how the hardware model can abstract the important characteristics.

Finally, the hardware model can be used for most of the SPS-CGRAs, regardless of its
application field, due to its generic descriptors and the consideration of several types of hardware
resources.
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Chapter 4

Implementation Model

4.1 Introduction
Generally, the sole output product of a mapping and scheduling algorithm, in the literature, is
the configuration context or executable (a hardware implementation description) [134, 135, 136].
Few works, such as the Algorithm Architecture Matching (AAM) methodology [35, 85], include
an implementation model into their framework. An implementation model abstracts the result
of the mapping and scheduling of an application onto the hardware system (Figure 4.1). It is
the result of graph transformations between the application graph and the hardware graph. The
mapping and scheduling produce an implementation graph based on a given implementation
model from a couple of hardware and application graphs.

Application
model

Hardware
model

Implementation
model

Mapping
&

scheduling

Figure 4.1 – Y-chart of a mapping and scheduling framework

An implementation model has the information of the configuration context and, in a few
cases, information about the implementation’s performance. Thus another step may be needed
to generate the missing information about the implementation’s performance. Furthermore, the
features of an implementation model usually are only suitable to its target platform. Hence an
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implementation model may be applicable only for its target platform and not usable for others.
To solve these issues, we propose to use a graph-based implementation model. It is built

with at least one instance of the hardware model but with fixed parameters (descriptors). To
represent the scheduling of the tasks over time periods, we replicate these instances and only
change the values of the descriptors. These last mentioned are fixed during the matching process
of the mapping and scheduling algorithm. Thus we take advantage of the descriptors of the
nodes from the implementation graph to include the required information for the configuration
context. Additionally, we include and process latency information required for performance
analysis. With this model, we can produce the configuration context and, in parallel, produce
the results of the performance evaluation. Furthermore, the entire framework may apply to
other platforms.

We organize the remaining part of the chapter as follows. In Section 4.3, we introduce
the formalization of the model. Section 4.4 describes the performance evaluation methodology.
Finally, Section 4.5 makes a summary of the chapter.

4.2 Proposed Implementation Model
The implementation model provides information of both temporal and spatial allocation of the
application tasks onto the system hardware resources. Additionally, the model integrates latency
information needed for performance analysis. The implementation model allows describing the
result of the matching process during the mapping and scheduling algorithm. The implementa-
tion model is derived from the hardware model.
Definition 4.2.1 (Implementation graph). GMAP is a directed weighted hypergraph. Several
different instances GMAPi (called time slot) may construct the implementation graph when the
available resources are not sufficient.
Definition 4.2.2 (Time slot). A time slot is a subset of hardware resources configured for a
computed duration to perform a subset of the application’s tasks. Thus, a time slot allows
reusing temporally the resources configured through different parameters.

The hardware reconfiguration delimits the duration of a time slot. Each time slot starts
with hardware reconfiguration and ends before the following hardware reconfiguration. Recall
that the reconfiguration is represented by node sCFG. Within a time slot, an instance of the
hardware executes a subset of tasks or the whole application. A time slot fulfills two purposes,
a resource occupation representation and a representation of resource latencies. Firstly, a time
slot details the task allocation on both temporal and spatial dimensions. By parsing the imple-
mentation graph, we obtain information on the mapping and scheduling of the tasks. Secondly,
our implementation model includes latency information on both nodes and edges. Using this
latency information, we can execute a performance evaluation over the implementation graph.
In Section 4.4 we describe a performance evaluation method.

4.3 Formal Implementation Model
We define our implementation model as a directed weighted hypergraph GMAP (S′,K ′), where S′
represents the nodes, andK ′ represents the weighted hyperedges. It consists of a set of subgraphs
(GMAPi) that may be or not disjoint, and each subgraph is an instance of the hardware graph
GHW . In this setting, each subgraph represents a time slot.

The set of weighted hyperedges K ′ = K ′1,K
′
2, . . . ,K

′
m, where m =| K ′ |, represents the

interconnections of the programmed hardware resources.
Definition 4.3.1 (Weight of a hyperedge). We define the input latency of the head node 1 as
the weight of each hyperedge.

1Given a directed edge E(x, y), y is called the tail node, and x is called the head node. Furthermore, node y
is a direct successor of x, and x is the direct predecessor of y.

71



The set of nodes S′ represents the hardware resources with fixed parameters. These param-
eters are fixed during the mapping and scheduling. The set S′ has similar structure of the set S
(See Section 3.4.1), but with the addition of the subsets Rsn ∈ R′ (See Section 4.3.5) and Scfg
(See Section 4.3.1) . Thus, S′ consist of

S′ = Scfg ∪R′ (4.1)

where
R′ = Rp ∪Rc ∪Rm ∪Rsn (4.2)

We systematically use lowercase superscripts for the implementation model resources to
differentiate them from the hardware model resources. We describe each subset in the following
sections.

4.3.1 Configuration Control Nodes Scfg

The subset Scfg represents the configuration control nodes of each time slot i. Each sequencer
node sCFG (See Section 3.4.2), from the hardware model, is in charge of the generation of
this subset. Recall that sCFG integrates the configuration cost functions and their parameters.
During the mapping and scheduling process, this information will be processed to obtain the
configuration cost of each time slot i (Tci). Therefore, there will be the same number of
scfgi ∈ Scfg as the number of time slots that integrates GMAP . Finally, each scfgi is described
as a value of the time (in clock cycles) needed to configure all the resources, and this value is a
function of the parameters needed to configured.

4.3.2 Processing Resources Rp

The subset Rp represents the processing resources with fixed parameters. Similarly, as in Section
3.4.4, we describe each rpi ∈ Rp.

rpi = (τi, πi, li, cfgi) (4.3)

where τi ∈ Ti, represents the selected type of task. The descriptor πi ∈ Πi represents the
set of parameters that correspond to τi. The computing latency of the processing resource is li
and corresponds to the type of task and its parameters. The configuration cost of the resource
is cfgi and corresponds to the type of task and its parameters.

4.3.3 Communication Resources Rc

The subset Rc represents the communication resources with fixed parameters. This subset has
the same structure of RC (See Section 3.4.5), which is

Rc = Rmux ∪Rrd ∪Rwr ∪Rinterface (4.4)

The subsets of Rc have the same descriptors as their conterparts of RC . Accordingly, each
rmuxi ∈ Rmux is represented as

rmux = (iporti , oporti , li, cfgi) (4.5)

where iporti is the input port selected from Iporti , oporti is the output port selected from Oporti ,
li is the latency value and cfgi is the configuration cost of rmuxi .

For the subset Rrd and Rwr, we describe each rwri ∈ Rwr and rrdi ∈ Rrd as

rwri , rrdi = (ai, li, cfgi) (4.6)

where ai is the assigned address space, li is the cost of the read/write operation and cfgi is
the configuration cost.
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For the subset Rinterface, we describe each rinterface ∈ Rinterface as

rinterfacei = (πi, li) (4.7)

where πi ∈ Πi are the assigned parameters and li the latency value.

4.3.4 Memory Resources Rm

The subset Rm refers to the memory resources of the system. Similarly, as in Section 3.4.6, each
rm ∈ Rm is described as

rmi = (ai, crdi , cwri ) (4.8)

Where ai is the address space available, crdi is the number of read channels and cwri the
number of write channels.

4.3.5 Data Dependency Resources Rsn

Rsn is a subset of virtual nodes that allows representing the data dependency between time
slots and between datapaths. Data dependency between time slots occurs when the number
of tasks to allocate exceeds the number of processing resources available. Data dependency
between datapaths occurs when the number of tasks to allocate exceeds the number of processing
resources available in a single datapath. However, other independent datapaths are available.

The addition of these resources provides the correct information to generate the configura-
tion context and evaluate the performance of the implementation of the application onto the
hardware. These resources do not have any descriptor, and their latency is considered as zero
(bypass). If the represented data dependency is between time slots, we add two rsni ∈ Rsn. The
first one (rsni ) will be in time slot i. Its predecessor will be the rmsink of time slot i and its
successor will be rsni+1. The second, rsni+1, will be in time slot i + 1 and its successor will be the
rmsource of time slot i+ 1. The connection between these two data dependency resources will be
through an inter-slot hyperedge K ′j ∈ K ′.

Definition 4.3.2 (Inter-slot hyperedge). An inter-slot hyperedge K ′j ∈ K ′ is an hyperedge that
connects two data dependency resources rsni and rsni+1, which are in two consecutive time slots.

If the represented data dependency is between datapaths, we add one rsni . Its predecessor
will be the sink node of the datapath that will process the input data first. Its successor will
be the source node of the datapath that will process the input data secondly. The addition of
the data dependency resources is subject to the capabilities of the SPS-CGRA. Examples of the
addition of the data dependency resources and the use of the inter-slot hyperedge are given in
the next section.

4.3.6 Examples

In this section, we present simple experimental graphs for both application and hardware to
detail the main characteristics of the implementation graph. Additionally, we describe the
utility of the data dependency resources.

Implementation Graph

Consider the implementation graph shown in Figure 4.2. For didactic purposes, let’s assume
that this implementation graph results from mapping the application graph onto the hardware
graph, both shown in Figure 4.2. The hardware graph and the implementation graph are very
similar. The only difference is that each resource of the implementation graph is configured (rP3
is configured to execute t1, rP4 is configured to execute t2, etc.)
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Figure 4.2 – Example 1 of a generic implementation graph

Now, let study the more complex example depicted in Figure 4.3. In this example, the
tasks of the application graph exceed the number of processing resources of the hardware graph.
Hence, there is a need for 3 processing resources (to allocate t1, t2 and t3) but only two (rP3
and rP4 ) are available. Thus, we need to execute the whole application through two steps, using
reconfiguration of the hardware between these two steps. During the first step we may execute
t1 on rp2 and t2 on rp3. Then, we store the t2 data into the memory (rmsink1 ). Next, in a second
step we can reconfigure the hardware so that we read t2 data from memory (rmsrc6 ) and reuse rp8
to execute t3. In that case rp9 is configured as a bypass (will copy its input to its output) thanks
to the copy operation (See Section 3.4.4).

Formally, each hardware configuration is called a time slot (as introduced in Section 4.3). So,
depending on the number of time slots required to execute an application, the implementation
graph may be made of several instances of the hardware graph. Notice that in time slot 1, the
actuator node (ractr) is missing, and in time slot 2, the sensor node (rsnsr) is also missing. This
is due to two reasons. The first is because we can not consume the data in time slot 1, as the
entire processing of the application is not yet finished. The second reason is because we do not
need to produce data in time slot 2 since it stores the partially processed data in time slot 1 and
rereads it in time slot 2. To complete, notice the inter-slot hyperedge, in green, (presented in
Section 4.3.5) that connects rsn12 to rsn13 . As stated before, the processing of the whole application
is not finished in time slot 1. Therefore the processed data of this time slot will be reuse in time
slot 2. By adding both the inter-slot hyperedge and the data dependency resources, we model
this behavior. Examples of the use of the data dependency resources are given later.
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Figure 4.3 – Example 2 of a generic implementation graph
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Data Dependency Resources Rsn

Between Time Slots

The number of tasks of the application graph exceeds the number of processing resources of the
hardware graph. Thus, the whole application will be executed in two time slots. In Figure 4.4
we show the implementation graph. As previously stated, in time slot 1, we execute t1 on rp2
and t2 on rp3 and then, in time slot 2 we execute the remaining part of the application (t3 on
rp8). This behavior creates a data dependency between time slots. The t2 data is stored during
time slot 1, and it will be reuse in time slot 2. To represent this behavior, we add the resources
rsn12 for time slot 1 and rsn13 for time slot 2. Moreover, we connect both through an inter-slot
hyperedge to connect both time slots.

t1 t2 t4

t0

t3

rsnsr0 rrd2 rp3 rp4 rwr5 rrd7 rp8 ractr11rp9 rwr10

t0

t1 t2 t3 t4copy

scfg0 scfg1

rsn12 rsn13

Time slot 1 Time slot 2

r1msrc r1
msink r6msrc r6

msink

Figure 4.4 – Inclusion of the data dependency resources between time slots

Between Datapaths

The hardware graph of Figure 4.5 consists of two independent datapaths of processing resources.
Each datapath has two processing resources. Consider the application graph shown in the same
Figure 4.5. The total number of tasks exceeds the number of available processing resources of a
single hardware datapath. Let’s assume that the hardware can perform recomputation of data
between datapaths in the same time slot. To execute the whole application, we may execute t1
on rp5 and t2 on rp7. Then we store the t2 data into the memory (rmsink2 ). During the same time
slot we read t2 data from rmsink2 , to execute t3 on rp6. This behavior creates a data dependency
between datapaths. To model this behavior, we add rsn13 . The predecessor of this node will
be the sink hardware resource of the first datapath (rrw9 ). The successor of rsn13 will be the
source hardware resource of the second datapath (rrd4 ). This resource will also be useful for the
performance evaluation because it allows one to construct the critical path correctly.
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Time
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r2MSINK
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Figure 4.5 – Inclusion of the data dependency resources between data-paths

4.4 Performance Evaluation
In this section, we introduce a method to compute an upper bound estimation of the computing
cost of an implementation. The estimation is based on the critical path of the evaluation
graph. The evaluation graph is the resulting product of a series of transformations on the
implementation graph. We present the performance evaluation in the next subsections.

We divide the rest of the section as follows. In Section 4.4.1 we present a brief description of
the state of the art of timing analysis and argue the gaps in the current approaches. In Section
4.4.2 we introduce our performance evaluation methodology. Finally, in Section 4.4.3 we present
some examples on the build of the evaluation graph and an experimental example that shows
the use of our proposed equation.

4.4.1 State of the Art

A timing analysis refers to computing the execution time bounds or estimates [137]. It is a
crucial step in the design and prototyping of real-time systems. Two main approaches exist for
timing analysis, static methods and measurement-based methods.

Measurement-based methods combine static program analysis with a dynamic part, the
execution time measurements [138]. This means that a task or parts of a task are executed in a
given hardware or simulator. Then, the timing is measured for a given input. Static methods
analyze the task itself and its possible implementations using a hardware model and compute
the upper bounds of this analysis. This method is highly dependable on the model’s accuracy.
However, it is appropriate for fast prototyping and development.

Several static-based methods have been proposed to compute the execution time of an ap-
plication. Melani et al. [89] presented a method to calculate the response time of a task. The
response time or make-span is the longest possible time any instance of the task requires to
complete its execution [93]. The authors consider the sum of the WCET of all critical path
nodes and the interference time, which is the time that each node consumes, from its ready
state until its executed. This method is applied to a DAG model that considers conditional
parallel tasks and focuses in homogeneous multiprocessors platforms. Risat et al. [93] proposed
an improvement to the work of Melani et al. to decrease the pessimistic results of their method.
However, their approach also considers the same factors.
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Frid et al. [139] proposed to compute the computing cost of an application using the el-
ementary cost of each basic operation. The authors propose a method to identify a set of
possible elementary operations of a platform and compute their costs individually. Next, divide
the applications into those elementary operations and obtain the computing cost by adding the
previously calculated elementary operations cost.

Grandpierre and Sorel [35] presented a performance prediction based on their implementation
model. Based on the methodology AAM [85], the implementation model is a graph that describes
real-time behavior, and it may be used to verify real-time constraints. The method is based on
the critical path and takes into account the operation and the communication cost. Additionally,
the method provides a diagram of the memory allocation.

Zadrija and Sruk [94] presented a method to compute the cost of mapping a task ti onto a
processing resource rj , which is the base of their scheduling algorithm. This approach particu-
larly considers the different costs of a task depending on where it is implemented.

Hamann et al. [140] presented a method to compute the end-to-end latency where the implicit
communication cost is taken into account. This approach helps to optimize the communication
overheads and reducing event-chain latencies.

Lu et al. [110] introduced an equation to calculate the computing cost of an application imple-
mented on NoC. They propose to use the longest path weighted Manhattan distance (LPWMD).
This method uses the critical path of the application after it is implemented and considers the
communication cost as the weight of the edges.

Topcuoglu et al. [91] presented a method to obtain the computation cost of a task recursively.
They consider the computation cost of the task and the maximum value of the computation cost
plus the communication cost on the critical path set to a sink task (upward rank).

SPS-CGRA applications are time-critical. This aspect defines the requirements of the accu-
racy of the performance evaluation. Several conditions need to be considered. The heterogeneity
of the material realizations is an important characteristic of the SPS-CGRA, and this feature is
not commonly considered on static-based timing analysis. In [94, 139] they consider this hetero-
geneity however only using different WCET. Another important aspect is the communication
cost, which is considered in [91, 110, 35, 140]. Also, some path-based works tend to overes-
timate the execution time [89, 93]. And significantly, most of the current approaches neglect
the configuration cost and may not be directly applied to the timing analysis of SPS-CGRA
applications.

Our proposal is to compute the upper bound of the computing cost, which encompasses the
configuration cost and the execution time. It covers the time from the hardware configuration
up to the output of the last processed sample. It allows taking into account different material
realizations, and it also considers two different latencies per resource, input and computing
latency. Overall, it can give accurate cycle upper bounds of the computing cost.

4.4.2 Methodology

The performance evaluation methodology consists of two steps:

1. Evaluation graph building.

2. Estimation of the computing cost upper bound over the critical path of the evaluation
graph.

The input of the methodology is the implementation graph from the mapping and scheduling
algorithm. Through graph transformations of the implementation graph, we obtain the evalua-
tion graph. Next, we use our proposed equation to compute the upper bound of the computing
cost.
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Evaluation Graph

An implementation graph (defined in Section 4.3) may be connected across its time slots through
the data dependency resources introduced in Section 4.3.5. Otherwise, each time slot will be
disjoint for each other. Regardless of the implementation graph is connected, the configuration
control resources may not be considered a part of the critical path because they are source nodes
and are not connected to the previous time slot. To accurately compute the critical path of the
implementation graph, we perform some transformations over it and build the evaluation graph.

The transformations done over the implementation graph to build an evaluation graph are:

• Removal of the disabled nodes (See Section 3.4.4, Complementary operations).

• Removal of the Rm resources.

• If two consecutive time slots i and i + 1 are connected through an inter-slot hyperedge
(See Section 4.3.5), substitute the hyperedge with the configuration control resource of
time slot i + 1. The configuration control resource will have as a predecessor the rsni of
time slot i and as a successor the rsni+1 of time slot i+ 1.

• If two consecutive time slots i and i + 1 are disjoint. We insert the configuration control
resource (scfg) of time slot i + 1 in sequence between time slots i and i + 1. All the sink
resources of the hardware instance of time slot i will be the predecessors of the configuration
control resource of time slot i + 1. All the source resources of the hardware instance of
time slot i+1 will be the successors of the configuration control resource of time slot i+1.

Some examples of the building process of the evaluation graph are given in Section 4.4.3.
After building the evaluation graph, we compute the estimation of the upper bound of the
computing cost on the critical path.

Latency-based Performance Evaluation

Computing cost is the time elapsed from the first configuration of the hardware until the con-
sumption of the last output sample. We compute an estimation of the upper bound of the
computing cost (CC) as follows:

CC =
N∑
i=1

(T ini + Texi + Tci) (4.9)

where N is the number of time slots of the implementation graph.

We define overall input latency time interval T ini of time slot i as the number of clock
cycles from the arrival of the first data sample until the start of the computing of the first
result. We call Texi the execution duration of time slot i, and it represents the execution
time for processing the entire set of data samples after the input pipeline is full and can provide
a continuous stream of data. Tci is the configuration cost of time slot i.

We propose to bound the problem to the identification of the critical path of the implemen-
tation graph and compute the computing cost on it. T ini depends on both the computing and
input latency of each resource. These latencies propagate through the processing pipeline. Also,
T ini considers the type of resource the type of the task to execute on the given resource. To
obtain an accurate measurement of T ini we use the following equation:

T ini =
|CPi|−1∑
j=1

(LINj )(ωj) + LCLj (4.10)

Where CPi is the set of resources that belong to the critical path of time slot i. LINj is
the input latency of the resource, LCLj is the computing latency of the resource. Finally, ωj

78



is a variable allowing to express the propagation of the impact of the computing latency from
predecessor to successor resources. We call this variable latency propagation parameter.

Latency Propagation Parameter

Recall that an SPS-CGRA consists of a set of heterogeneous processing resources. Thus, we
expect that, within a path, several different values of latencies exist. Accordingly, the critical
path will be imbalanced in terms of latency, and we need to model this phenomenon. We
propose to use the variable ω that will carry the information about the worse computing latency
throughout the critical path.

Let ωj be given by:

ωj = max(ωj−1,LCLj−1) (4.11)

where ωj−1 is the ω of the predecessor and LCLj−1 is the computing latency of the predecessor.
At the beginning of the evaluation process, ω will be initialized as zero, and it will be updated at
each resource that belongs to the critical path. The final value of ω (ω value of the last resource
in the critical path) will be used as the worse computing latency of time slot i.

Consider Figure 4.6, where two linear sub-graphs of processing resources (t1/rp1, t2/r
p
2 and

t3/r
p
3) are given (notation ti/r

p
j represents that ti has been allocated onto rPj ). From the val-

ues of the computing and input latencies, we can see that both paths are imbalanced. The
corresponding timing diagrams are shown on the right. In the first linear sub-graph (top), the
first resource (t1/rp1) is the one with the largest computing latency, compared to (t2/rp2 and
t3/r

p
3), therefore it will give the cadence to the rest of the resources in the pipeline. In other

words, it will provide the timing for the processing of the remaining resources in the critical
path. The impact of its computing latency will result in a waiting time between the output of
two consecutive processed samples of t2/rp2 and t3/rp3. This largest computing latency and the
associated delays are considered thanks to ω1. In the second linear sub-graph (bottom), the
second resource (t2/rp2) is the one that has the largest computing latency, and it will only affect
the processing of the next resource. The variable ω2 will provide the means to propagate its
computing latency to the following resources.

rp2 rp3
t2 t3

rp2 rp3
t2 t3

rp1
t1

rp1
t1

Data�ow
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Figure 4.6 – Effects of the computing latency of a resource in the critical path

The execution duration Texiis computed as follows

Texi = (CLi)(TS) (4.12)

where CLi is the worse computing latency of the critical path (final value of ω) and TS is
the total amount of input samples of time slot i. Finally, recall that scfgi carries the value of
Tci (See Section 4.3.1).
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4.4.3 Examples

Example 1 : Evaluation Graph and Memory

Let’s use some examples with experimental implementation graphs to explain the building pro-
cess of the evaluation graph. In Figure 4.7 a generic implementation graph with only one time
slot. We notice that all the processing resource have their corresponding task.

t0
rsnsr0 rrd2 rp3 rp4 rwr5 ractr11t1 t2 t3

scfg0
Time slot 1

r1msrc r1msink

Time

Figure 4.7 – First implementation graph example.

In this first example, the transformation is the removal of rm1 . In Figure 4.8 we show the
evaluation graph of this first example. As we can notice, with this change, we can obtain the
critical path, which will also correspond to the unique simple path of the evaluation graph, and
compute the upper bound of the computing cost.

t0
rsnsr0 rrd2 rp3 rp4 rwr5 ractr11t1 t2 t3scfg0

Time slot 1

Time

Figure 4.8 – First evaluation graph example

Example 2 : Evaluation Graph and Two Time Slots

For the second example, consider the implementation graph of Figure 4.9. This implementation
graph has two time slots, and all the processing resources have a task (t1,t2 and t3) or a copy
(rp9/copy) operation assigned. Also, notice the inclusion of two data dependency resources (rsn12
and rsn13 ), which are connected through an inter-slot hyperedge. This means that the partially
processed data from time slot 1 needs to be reread for further processing in time slot 2.

t0
rsnsr0 rrd2 rp3 rp4 rwr5 rrd7 rp8 ractr11rp9 rwr10t1 t2 t3 t4copy

scfg0 scfg1

rsn12 rsn13

Time slot 1 Time slot 2

r1msinkr1msrc r6msrc r6msink

Time

Figure 4.9 – Second implementation graph example
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Figure 4.10 shows the evaluation graph of the second implementation graph example. In
this example, the transformation includes the connection of both configuration control resources
for the time slot 1 to rsnsr0 . In time slot 2, the configuration control resource scfg1 will be the
successor of the resource rsn12 and the predecessor of resource rsn13 . We include scfg1 in this way to
be able to get the correct critical path of the implementation. The last change is removing rmi in
both time slots. The upper bound of the computing cost includes the latency of processing the
entire input image. This is the main reason to perform this transformation to the implementation
graph to produce the evaluation graph.

t0
rsnsr0 rrd2 rp3 rp4 rwr5 rrd7 rp8 ractr11rp9 rwr10t1 t2 t3 t4copyscfg0 scfg1rsn12 rsn13

Time slot 1 Time slot 2

Time 

Figure 4.10 – Second evaluation graph example

Example 3 : Evaluation Graph and One Time Slot

We can see in Figure 4.11 a third implementation graph example. In this case, the implemen-
tation graph is built only with one time slot. Also, all the processing resources have a task
assigned.

t0
rsnsr0 rrd2

rp6 rp7

rwr10 ractr11

t2 t4

t8

scfg0

Time slot 1

rp3 rp4
t1 t3

rp5

rp8

t5

t6

rp9
t7

Time 

r1msrc r1msink

Figure 4.11 – Third implementation graph example

In Figure 4.12 the resulting evaluation graph is shown. We can see that the transformation
corresponds to the connection of the configuration control resource to the hardware resource
rsnsr0 and removal of rm1 .

t0
rsnsr0 rrd2

rp6 rp7

rwr10 ractr11

t2 t4

t8
scfg0

rp3 rp4
t1 t3

rp5

rp8

t5

t6

rp9
t7

Time slot 1

Time

Figure 4.12 – Third evaluation graph example

Example 4 : Evaluation Graph and Copy Resource

In Figure 4.13 we can see a similar implementation graph example as in the Third example. The
difference is that we include copy operations. But as the copy operations should be included
in the performance analysis, we need to keep them in the evaluation graph, which is shown in
Figure 4.14.
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rsnsr0 rrd2

rp6 rp7

rwr10 ractr11
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t5

copy
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Figure 4.13 – Fourth implementation graph example
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t2 t4
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rp3 rp4
t1 t3

rp5

rp8
t6

rp9
copy

copy

t5

Time slot 1

Time 

Figure 4.14 – Fourth evaluation graph example

Example 5 : Evaluation Graph and Disable Resource

This last example of an evaluation graph corresponds to an implementation graph that includes
disable resources depicted in Figure 4.15. Notice that the resources colored in blue are disable
resources.

t0
rsnsr0 rrd2

rp6 rp7

rwr10 ractr11

t1 t2

t5

scfg0
Time slot 1

rp3 rp4 rp5

rp8
t3

rp9
t4r1msrc r1msink

Time 

Figure 4.15 – Fifth implementation graph example

As the fifth implementation graph includes disabled nodes, we need to exclude them as
well as connect the configuration control resource to rsnsr0 and remove rm1 . In Figure 4.16 the
resulting evaluation graph is shown.

t0
rsnsr0 rrd2

rp6 rp7

rwr10 ractr11

t1 t2

t5
scfg0

rp8
t3

rp9
t4

Time slot 1

Time 

Figure 4.16 – Fifth evaluation graph example
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Example 6 : Performance Evaluation

To exemplify the performance evaluation, let’s use a simple, intuitive example. This example
consists of three different sets of parameters for the hardware resources. These different values
will produce different critical paths. The purpose of this example is to detail the performance
evaluation methodology and show the accuracy of the Equation 4.9 presented in Section 4.4.2.

Figure 4.17 shows the experimental application graph that we will use. And, Figure 4.18
depicts the experimental hardware graph. Finally, Figure 4.19 we showed the resulting imple-
mentation graph.

t0
t4t1

t2

t3
t6

t5 t7

Figure 4.17 – Application graph for the performance evaluation example.
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rACTR17

r1MSRC r1MSINK

Figure 4.18 – Hardware graph for the performance evaluation example.
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rsnsr0 ractr16
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rwr13
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rp7

rwr12

rwr14
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rp10

rp11
ractr15

ractr17

t0

t4t1

t2

t3

t6

t5
t7

copy

r1msrc r1msink

Time

Time slot 1

Disable
Disable

Figure 4.19 – Implementation graph for the performance evaluation example.

In order to get the evaluation graph we apply the transformations described in Section 4.4.2
(memory node removal, disable node removal, etc.). The resulting evaluation graph presented
in Figure 4.20.
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Figure 4.20 – Evaluation graph for performance evaluation example.

To compute the critical path of the graph from Figure 4.20, we have to compute the length
of 4 possible paths represented in Figure 4.21 (each path with different colors):

rrd2 rp4

scfg rsnsr0 ractr16

rp8

rwr13

rrd3 rp5

rp6

rwr12

rp9

rp11 ractr15

t0

t4t1
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t3

t6

t5
t7

copy

Figure 4.21 – Paths of the evaluation graph.

• Path 1 (blue) : (scfg, rsnsr0 , rrd2 , t1/r
p
4, t3/r

p
6, t4/r

p
8, copy/r

p
11, r

wr
12 , t6/r

actr
15 )

• Path 2 (red) : (scfg, rsnsr0 , rrd2 , t1/r
p
4, t3/r

p
6, t5/r

p
9, r

wr
13 , t7/r

actr
16 )

• Path 3 (green) : (scfg, rsnsr0 , rrd3 , t2/r
p
5, t3/r

p
6, t4/r

p
8, copy/r

p
11, r

wr
12 , t6/r

actr
15 )

• Path 4 (purple) : (scfg, rsnsr0 , rrd3 , t2/r
p
5, t3/r

p
6, t5/r

p
9, r

wr
13 , t7/r

actr
16 )

First Set of Parameters

In the whole example, we will use the parameters of Table 4.1 for the application graph. Also,
for the rest of the section, N/A means Not Applicable.

Table 4.1 – Parameters of the application graph of the performance evaluation example.

Task type p

t0 interface N/A
t1 task1 fix
t2 task2 fix
t3 task3 fix
t4 task2 fix
t5 task1 fix
t6 interface N/A
t7 interface N/A
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In this first part of the example, we will use the parameters of the hardware resources
presented in 4.2.

Table 4.2 – First set of parameters of the hardware graph.

Ti
Li CfgiInput

latency
Computing
latency

rP4,9,10 task1, task5 2 2 1
rP5,8,11 task2, task6 2 2 1
rP7 task5, task6 2 2 1
rP6 task3, task4 2 2 1

rSNSR0 N/A N/A 1 N/A
rACTR15,16,17 N/A N/A 1 N/A
rRD2,3 N/A N/A 1 1

rRW12,13,14 N/A N/A 1 1

Among the paths established above, we have to identify the critical according to the first set
of parameters. For that purpose, we compute the lengths using a timing diagram:

Figure 4.22 presents the path 1. We compute the computing cost over this path (if we
compute the computing cost of the three other paths, we will obtain a lower value; hence it will
not be the critical path).

scfg rsnsr0 ractr15rwr12rrd2 rp4 rp6 rp8t0 t1 t3 t4 t6
rp11
copy

Figure 4.22 – Critical path of first set of parameters.

Using the values of Table 4.2 and 4.1. Consider an input of 100 samples and a configuration
cost of 1 clock cycle. Also, suppose the duration of the copy operation for all processing resources
has a value of 1 clock cycle. Using Equation 4.9, we compute the computing cost as follows:

CC =(
Tc1︷︸︸︷
(1) +

Tex1︷ ︸︸ ︷
(2 ∗ 100) +

Tin1︷ ︸︸ ︷
rsnsr0︷︸︸︷
(1) +

rrd2︷︸︸︷
(1) +

rp4︷ ︸︸ ︷
(2 ∗ 1 + 2) +

rp6︷ ︸︸ ︷
(2 ∗ 2 + 2) +

rp8︷ ︸︸ ︷
(2 ∗ 2 + 2) +

rp11︷︸︸︷
(1) +

rwr12︷︸︸︷
(1) )

CC =(
Tc1︷︸︸︷
(1) +

Tex1︷ ︸︸ ︷
(200) +

Tin1︷︸︸︷
20 ) = 221 clock cycles (4.13)
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Second Set of Parameters

Now, let’s use a different set of latency features. We change the parameters for rP5 . Let’s assume
that for the implementation of task2, the input latency changes to 3 samples and the computing
latency to 3 clock cycles. These changes are shown in Table 4.3. The critical path is no longer
the same. Figure 4.24 shows the new critical path and Figure 4.25 the new timing diagram.

Table 4.3 – Second set of parameters of the hardware graph of performance evaluation example.

Ti
Li CfgiInput

latency
Computing
latency

rP4,9,10 task1, task5 2 2 1
rP5 task2, task6 3 3 1
rP8,11 task2, task6 2 2 1
rP7 task5, task6 2 2 1
rP6 task3, task4 2 2 1

rSNSR0 N/A N/A 1 N/A
rACTR15,16,17 N/A N/A 1 N/A
rRD2,3 N/A N/A 1 1

rRW12,13,14 N/A N/A 1 1

scfg rsnsr0 ractr15rwr12rrd3 rp5 rp6 rp8t0 t2 t3 t4 t6
rp11
copy

Figure 4.24 – Critical path for the second set of parameters

With the new values described in Table 4.3, we compute the same Equation 4.9 as follows:

CC =(
Tc1︷︸︸︷
(1) +

Tex1︷ ︸︸ ︷
(3 ∗ 100) +

Tin1︷ ︸︸ ︷
rsnsr0︷︸︸︷
(1) +

rrd3︷︸︸︷
(1) +

rp5︷ ︸︸ ︷
(3 ∗ 1 + 3) +

rp6︷ ︸︸ ︷
(2 ∗ 3 + 2) +

rp8︷ ︸︸ ︷
(2 ∗ 3 + 2) +

rp11︷ ︸︸ ︷
(1 + 1) +

rwr12︷︸︸︷
(1) )

CC =(
Tc1︷︸︸︷
(1) +

Tex1︷ ︸︸ ︷
(300) +

Tin1︷︸︸︷
(27)) = 328 clock cycles (4.14)
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Third Set of Parameters

Finally, for the third considered latency features, the changes are considerable. For rP5 , the
implementation of task2 considers 3 samples as input latency and 2 clock cycles as computing
latency. For rP6 , the implementation of task3 considers 4 samples as input latency and 3 clock
cycles as computing latency. For rP9 , the implementation of task1 assumes 1 sample as input
latency and 3 clock cycles as computing latency. These changes are summarized in Table 4.4.
We get a new critical path shown in Figure 4.26, and the latest timing diagram is shown in
Figure 4.27.

Table 4.4 – Third set of parameters of the hardware graph of performance evaluation example.

Ti
Li CfgiInput

latency
Computing
latency

rP4,9,10 task1, task5 2 2 1
rP5 task2, task6 3 2 1
rP9 task1, task5 3 3 1
rP8,11 task2, task6 2 2 1
rP7 task5, task6 2 2 1
rP6 task3, task4 4 3 1

rSNSR0 N/A N/A 1 N/A
rACTR15,16,17 N/A N/A 1 N/A
rRD2,3 N/A N/A 1 1

rRW12,13,14 N/A N/A 1 1

scfg rsnsr0 ractr16rwr13rrd3 rp5 rp6 rp9t0 t2 t3 t5 t7

Figure 4.26 – Critical path for the third set of parameters.

We compute the computing cost with the new values as follows

CC =(
Tc1︷︸︸︷
(1) +

Tex1︷ ︸︸ ︷
(3 ∗ 100) +

Tin1︷ ︸︸ ︷
rsnsr0︷︸︸︷
(1) +

rrd3︷︸︸︷
(1) +

rp5︷ ︸︸ ︷
(3 ∗ 1 + 2) +

rp6︷ ︸︸ ︷
(4 ∗ 2 + 3) +

rp9︷ ︸︸ ︷
(3 ∗ 3 + 3) +

rwr12︷︸︸︷
(1) )

CC =(
Tc1︷︸︸︷
(1) +

Tex1︷ ︸︸ ︷
(300) +

Tin1︷︸︸︷
(31)) = 332 clock cycles (4.15)

As we can see with these examples, the proposed equation for the computing cost produces
cycle-accurate results. It is helpful to determine the estimation of the upper bound of the
computing cost.
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4.5 Conclusions
In this chapter, we have introduced our graph-based implementation model. It can represent
both the spatial (mapping) and the temporal (scheduling) allocation of the application’s tasks
onto the hardware resources. The implementation model also carries information about the
resource’s latencies. This feature is inherited from the hardware model. Additionally, we intro-
duce a subset of virtual nodes that allows one to model data dependency between time slots and
between datapaths. This subset enables to describe recomputation of data within a time slot
and between time slots if the capabilities of the hardware architecture allow it.

We presented a performance evaluation methodology. Based on graph transformations of the
implementation graph, we build what we call an evaluation graph. From the evaluation graph,
we compute an estimation of the upper bound of the computing cost over the critical path. We
evaluate our proposed equation over an example and three different sets of parameters. We
demonstrate the accuracy and the benefits our the performance evaluation methodology.
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Part II

Mapping Algorithms
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Chapter 5

Introduction

The mapping algorithm seeks to allocate, by matching process, an application’s tasks to the
available hardware resources. The scheduling algorithm establishes the order of (sequence) exe-
cution of each task on each hardware resource [141]. Both processes can be performed separately,
although they impact each other efficiency. Both the mapping and scheduling algorithms play
a critical role in today’s systems. They are in charge of allocating the tasks efficiently and opti-
mizing metrics such as latency, resource utilization, energy consumption, and data throughput,
among others.

Generally, the mapping and scheduling problem is considered NP-complete [142]. This means
that the optimal solution can only be obtained by exploring all the possible solutions. The
execution time of algorithms for solving NP-complete problems increases exponentially with
respect to the size of the input data (the number of tasks and resources). An efficient heuristic
may be used to decrease the exploration time and obtain a reasonable solution.

Common approaches to solve this problem are list-scheduling, clustering scheduling, and task
duplication-based scheduling. List-scheduling is the most used approach. List-based scheduling
algorithms usually are single-shot algorithms that focus on systems with limited hardware re-
sources. This approach defines priorities to the tasks according to a metric (latency, types, data
dependence) and schedules them in a topological order in decreasing priority [143]. The task’s
priority can be computed statically, before the scheduling, or dynamically, interleaving with the
scheduling.

List-based scheduling algorithms are widely used for heterogeneous systems and represent an
efficient approach for SPS-CGRA-based systems. This approach provides the means to consider
the complex structure of an SPS-CGRA and the limited availability of hardware resources. It
also allows one to define the priorities according to both the topological order and the realization
efficiency.

Given today’s applications complexity and demands, new approaches for the scheduling
problem have been proposed. Machine learning, a subset of artificial intelligence, has grown
in popularity because of its simple recipes and algorithms that can learn patterns, behaviors,
models, and functions [144]. In particular, a type of machine learning called reinforcement
learning has been the focus of several current works. In reinforcement learning, an agent is given
the task to explore and interact with an environment. During this interaction, the agent will learn
how to act given some state. This approach relaxes the scheduling problem’s complexity and
increases the universe of possible solutions given the learn-by-trial method used in reinforcement
learning.

In this part of the thesis, we explore two approaches to solve the mapping and scheduling
problem for SPS-CGRA. In Chapter 6 we present three different types of list-based algorithms.
Chapter 7 presents a Q-Learning mapping algorithm. Finally, in Chapter 8, we evaluate and
compare our solutions and briefly discuss the results.

We organize the remaining part of this chapter as follows. Section 5.1 reviews state of the
art. Section 5.2 presents a brief discussion of state of the art. Finally, Section 5.3 summarizes
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this chapter.

5.1 State of the art
As mentioned in the previous paragraphs, mapping and scheduling problems are defined as an
NP-complete problem [142]. The best solution can only be obtained by brute force search. A
brute force algorithm will find the optimal implementation of an application on the hardware,
but it explores and evaluates all possible solutions in a considerable exploration time. To deal
with this problem, several heuristics and techniques have been proposed to reduce exploration
space and exploration time.

In this section, we review the state of the art of mapping algorithms. We start with list-based
algorithms, continue with linear programming algorithms, following reinforcement learning plan-
ning algorithms. Finally, in the last section, we group together several interesting approaches.
Although these approaches are far from our work, we can benefit from some of their character-
istics.

5.1.1 List-Based Scheduling Algorithms

One of the families of algorithms widely represented in the literature are list-based mapping and
scheduling algorithms. Their principle is based on a list of priorities, in which resources and
tasks are ordered according to a fixed metric. This metric is chosen according to the type of
material and its characteristics.

Qin et al. [87] introduced the Heuristic task based on the Critical Path and Task replication
scheduling algorithm (HCPTD) for distributed systems. It is a list-based algorithm with two
phases. First, it orders the tasks with the earliest start time. Next, the resources are ordered
using the earliest completion time and the shortest distance to the exit. The task is scheduled
according to the previous priority lists. If the task’s predecessors are more than two, the task
may need to wait until their completion, using the processor’s space time slot (idle time).

Topcuoglu et al. [91] presented the Heterogeneous Earliest Finish Time (HEFT) scheduling
algorithm for Multiprocessors. Based on the minimization of the computation cost of the task
and the upward rank of the task. The authors also present the critical path on the processor
(CPOP) algorithm based on the task’s computation cost and both the downward and upward
rank. The upward rank is the computing cost value, which is the sum of the task’s computing
cost plus the maximum value of the successor’s upward rank plus the communication cost to
that task. The downward rank is the maximum value of the set of sums of the following items:
the computing cost of the task plus the communication cost to the predecessor plus the upward
rank of the predecessor.

Bhatti et al. [145] presented Noodle (No Node is Left Behind), a list-based scheduling
algorithm for MPSoCs. The priority mechanism aims to maintain proportionate fairness among
all ready (to be executed) tasks belonging to all paths within a task graph.

Sih and Lee [81] presented a dynamic level scheduling algorithm. It is a compile-time heuris-
tic for heterogeneous and homogeneous processors. At each step, the algorithm considers the
interprocessor communication overhead and incorporates information about the processor inter-
connection topology.

Grandpierre and Sorel [35] presented a greedy 1 list-based heuristic algorithm targeting
heterogeneous multicomponent systems based on the critical path and schedule flexibility. It
takes into account the execution duration of operations but also each communication overhead
as a cost function. It is computed from the worst-case execution time.

Wang et al. [88] presented the Heterogeneous Scheduling with Improved Task Priority for
heterogeneous computing systems. It is a list-based scheduling algorithm that orders the tasks,

1An algorithm that always takes the best immediate, or local, solution while finding an answer [146].
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and their predecessors, concerning their computing cost. The available processors are ordered
using the Earliest Finish Time depending on the type of task that it will be allocated.

Youness et al. [98] presented a partitioning algorithm based on the A-start algorithm [147]
for mixed hardware/software systems. It is a list-based algorithm with computing cost as the
priority. The algorithm first schedules all the tasks to processors. Then, it identifies the critical
path and tries to convert it into hardware to reduce the scheduling length.

Kaida et al. [148] presented a mapping algorithm for embedded many-core SoCs. It aims
to maximize the gain of mapping task i onto core j, including energy consumption, execution
duration, and other factors. We authors introduce the concept of tile, a set of cores where a
single task might be mapped. A single many-core SoC may have several tiles distributions which
increase the possibilities of scheduling.

Frid and Sruk [95] presented a modification of the Critical Path method [149] targeting
MPSoCs. The algorithm identifies the critical path of the application and assigns it to the
fastest processor available. Next, two stages are performed for the remaining tasks. First,
they order the processors concerning their computation speed in ascending order. Then the
remaining tasks are scheduled to the slowest possible processor. Finally, if there are still tasks,
the algorithm inverts the processors’ order and schedule the remaining tasks.

Zadrija and Sruk [94] presented a list-based mapping algorithm for MPSoCs that uses the
longest processing time as the priority.

Kota et al. [106] presented two algorithms targeting Reconfigurable Logic Units (RLU). The
first algorithm uses a greedy heuristic based on the minimization of the task finish time. The
second approach is based on dynamic programming. The difference between the two algorithms
is that the greedy algorithm is based on local decisions (the best allocation for a particular task)
and the dynamic programming approach on a sequence of decisions. A novelty of both methods
is that it considers heterogeneous RLUs, both in terms of size of the chip area and multiple
physical hardware implementations.

Lu et al. [101] presented a mapping algorithm for CGRA. It is a list-based algorithm that
uses the topological order and the number of available resource neighbors as priorities. The
reasoning behind the latter’s use as a part of the priorities is that the successors of the current
task will have more possibilities to be mapped. The algorithm is equipped with backtracking to
avoid mapping deadlock, and it can split the application into time slots.

Sun and Zhang [134] presented an Energy-aware mapping algorithm for NoCs. It is a list-
based algorithm that uses a greedy heuristic based on Rent’s rule-based communication proba-
bility function. The priority list is constructed according to the smallest communication value.

Sun and Zhang [134] presented an Energy-aware mapping algorithm for NoCs. It is a list-
based algorithm that uses a greedy heuristic based on Rent’s 2 rule-based communication prob-
ability function [152]. The priority list is constructed according to the smallest communication
value, which yields the lowest energy consumption.

Jiang et al. [153] presented the Testing-Aware Mapping Algorithm (TAMA) that targets
NoCs. It is a list-based algorithm that orders the tasks in a first instance using the number of
edges (maximum first), then after the selection of the first task, the ordering continues using
a Breadth-first search algorithm [154]. The processors are ordered according to the maximum
number of available neighbors, the most significant number of tested links, and finally, using
the smallest Manhattan distance 3. The test of links refers to the iterative test of idle links to
define if their processors can allocate the tasks and be able to comply with the deadlines of the
tasks. The testing occurs meanwhile mapping other tasks and increase the performance of the
mapping.

Lu et al. [110] presented a Greedy mapping algorithm based on the Manhattan distance. It
2In VLSI designs, Rent’s rule relates the number of terminals in a boundary, to the number of blocks within

that boundary by a power-law relation: T = κGβ . Where T is the number of terminals, G is the number of blocks
(gates), κ is the average number of terminals for each block, and β is the Rent’s exponent [150, 151].

3The Manhattan distance between two points x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) in n-dimensional
space is the sum of the distances in each dimension: d(x, y) =

∑n

i=1 | xi − yi | [155].
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is a list-based algorithm that uses the breadth-first search4 to traverse the application graph. It
is suitable for both regular or irregular NoCs.

Mehran et al. [130] presented a Dynamic Spiral Mapping (DSM) heuristic that targets 2-
D mesh topologies and aims to minimize the Manhattan distance. The Spiral Mapping is a
list-based algorithm that uses data transfer, Manhattan distance, and connection degrees as
priorities [129]. The authors introduce two versions, Full Dynamic Spiral Mapping, which tries
to minimize the reconfiguration of the hardware resources without stopping the execution, and
Partial Dynamic Spiral Mapping, which stops the application’s execution tries to execute the
Spiral Mapping again to improve the performance.

5.1.2 Linear Programming

Another approach is represented by linear programming. We can cite the example of Chin and
Anderson [104] who presented an integer linear programming approach for CGRA mapping.
The designer gives a set of constraints such as one operation per functional unit, the functional
unit needs to be able to implement the operation, a route can only be used once, and disallowing
multiplexer inputs from having the same value. Then, the solver tries to find a solution that
improves the performance of the mapping.

Kim et al. [72] introduced a linear programming scheduling algorithm for heterogeneous
multi-core architectures. The algorithm takes into account the different physical hardware im-
plementations and latencies of the hardware resources.

Yoon et al. [105] introduced Graph Drawing Based Spatial Mapping (SPKM) Algorithm for
CGRA. It is an integer linear programming approach based on a split-push kernel algorithm
[156]. It tries to decrease the number of rows used, thus minimizing the resource occupation.

5.1.3 Reinforcement Learning

In recent years, Machine Learning techniques have been successfully applied to the scheduling
problem. We focus on those based on Q-learning. Let’s recall that reinforcement learning (RL)
is a subset of Machine Learning, where an agent interacts within an environment. From these
interactions, the agent aims to improve its actions towards the maximization of a reward. RL
algorithms are known for its generality and adaptability [157, 158, 159] and are used in several
fields [160, 161, 162, 163, 164, 165, 166]. Adapted to the scheduling problem, RL algorithms have
helped to decrease exploration time [167], decrease the complexity of the scheduling algorithm
[160], generalization of cases [168] and optimization of some metric [169].

Recently, RL algorithms have been adapted to the task scheduling problem. From a single
machine to hardware platforms, RL algorithms have shown improvements to the current state
of the art. However, the main focus has been Cloud-based [170, 171, 172] or High Performance
Computing (HPC) [173, 174]. Wu et al. [175] proposed an RL-based solution of the DAG tasks
scheduling problem for HPC. The authors used a policy gradient-based REINFORCE agent.
Each action’s reward is obtained by calculating the increment of the current schedule length
after a task is scheduled. Liu et al. [176] proposed a variant of the work of [175] using Monte
Carlo Tree Search. They showed improvements in the Schedule Length Ratio, however, with
an increase of the exploration time. Grinsztajn et al. [177] presented an Actor-Critic algorithm
for HPC scheduling. The reward policy is based on the final makespan of the implementation.
Lee et al. [178] presented Panda, a Reinforcement Learning-Based Priority Assignment for
Multi-Processor Real-Time Scheduling. The authors use the REINFORCE algorithm with a
custom reward policy. The reward policy includes a schedulability evaluation and response
time analysis. Their evaluation shows robust performance in terms of schedulability ratio and
adaptability for non-trivial large-scale settings. Luley and Qiu [179] presented a Deep Q-learning
scheduler for GPUs. They used a reward policy based on a combination of the device utilization

4Any search algorithm that explores all of the neighbor nodes at the present depth prior to moving on to the
nodes at the next depth level [146].
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and turnaround time of waiting tasks. Their evaluation showed an improvement in resource
utilization and throughput. Liu et al. [180] presented a Deep RL algorithm for CGRA mapping.
The authors proposed a Deep Q-learning method where an application is randomly mapped
to the architecture, and then the agent will relocate the tasks according to a greedy policy.
After each change, the agent will receive a reward that considers power consumption, area, and
performance.

5.1.4 Others

Finally, we recall here again other interesting approaches which allow us to illustrate both the
wealth of research in the field and at the same time the importance of the problem treated.

Honorat et al. [181] presented a scheduling algorithm for Cyber-Physical Systems (CPSs).
It aims to provide an efficient scheduler for partially periodic CPSs which is modelled as a
Synchronous Data Flow (SDF) graphs [83].

Yang et al. [182] presented a scheduling algorithm based on Bayesian optimization algo-
rithm (BOA) [183] for a heterogeneous computing environment. The algorithm consists of two
steps. At first, BOA assigns tasks to processors based on the computing cost. Next, a list-
scheduling algorithm establishes the sequence of tasks. This process is iteratively repeated until
the makespan is optimal.

Biswas et al. [184] introduced a bayesian optimization-based approach for task scheduling
of heterogeneous multiprocessor systems. This algorithm aims to learn the structure and the
parameters of both the task graph and the multiprocessor system.

Namazi et al. [109] presented a majority-based reliability-aware mapping algorithm for
NoCs. It is a task duplication-based algorithm that uses reliability as its criteria for task
duplication. Reliability is a quantitative parameter that shows the probability of a system being
operational after some time, considering it was operating initially. The mapping technique takes
into consideration the reliability as well as the execution time.

Yuan et al. [92] presented the fairness-aware single DAG scheduling algorithm (FASS) and
fairness-aware multiple DAGs scheduling algorithm (FAMS), both for multiprocessors. The
algorithms use task replication to improve the reliability, and the upward rank of the task [91]
as the priority. FAMS is a dynamic algorithm capable of scheduling multiple DAGs.

Jiang et al. [112] presented the Path Clustering Heuristic (PCH) and the Gap Search al-
gorithm for high-performance computing systems. The PCH clusters the tasks into groups
depending on the communication cost. Next, the tasks are scheduled using a list scheduling
algorithm. After the first schedule, the Gap Search algorithm identifies gaps in the schedule and
maps entire clusters to increase the performance.

Liu and Shen [185] presented the dependency-aware and resource-efficient scheduling algo-
rithm for cloud frameworks. The algorithm can verify the dependency of the tasks, identify
the independent tasks, and schedule them to run in parallel and improve the performance. The
algorithm also identifies different hardware resources (e.g., CPU, memory, GPU), which allows
assigning the tasks to the best suitable resource.

Mei et al. [100] introduced the modulo scheduling algorithm that targets CGRA. It is
based on simulated annealing. The algorithm iteratively reallocates an operation randomly
and computes the next execution time. Next, a simulated annealing strategy evaluates the
new execution time and decides if the new schedule is accepted or rejected. If rejected, a new
iteration occurs, where a minor change is done to see if the next iteration would be better.

Wang et al. [121] presented a genetic algorithm for mapping application tasks to high
computing environments. The algorithm uses a mapping list and topological sorting of the
application as chromosomes, and the fitness value is the execution time of the implementation.

Sinaei and Fatemi [97] presented a tree-based algorithm for mapping application onto MP-
SoCs. It uses two methods, an exhaustive and a genetic algorithm. The algorithm iterative
searches for the implementation with the lowest energy consumption.
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Zhao et al. [186] introduced a task scheduling algorithm with resource attribute selection for
Many task computing. Resource attribute selection uses a gene expression programming-based
approach [187] and work-stealing algorithm 5. It can define several characteristics of the task,
such as type, storage space needed, start time, execution time, and use them as a fitness function
to iterative search for the best candidate to allocate the task.

Selvameena and Prasath [189] introduced a modified score boarding algorithm that targets
MPSoC. It is used along with the particle swarm optimization technique. It aims to improve
the communication cost of the system.

Frid and Sruk [96] presented an evolutionary mapping algorithm for multicore systems with
two approaches. In the first approach, the mapping considers both memory and processing
resources as chromosomes. The second approach divides the mapping process into two phases.
One phase considers only the processing resources as chromosomes, and the second phase uses
only the memory resources.

Emeretlis et al. [190] presented a mapping algorithm based on benders decomposition [191]
for multicore systems. The Logic-Based Benders decomposition approach is an iterative process
that aims at reducing the solution time of complex optimization problems. The main idea is to
create a sequence of two sub-problems, where the second sub-problem uses the solution of the
first one. The process terminates if no better solution can be found for the first sub-problem
or the whole solution space has been examined [190, 191]. The authors propose to divide the
mapping and scheduling problem into two. The first problem is the mapping and relaxation of
the scheduling. The second problem is the scheduling.

Hamzeh et al. [103] introduced the Register-Aware Application Mapping (REGIMap) for
CGRA. The authors exploit the processing resources’ register files to decrease the initiation
interval II. They reduce the mapping problem to find the maximal weighted clique in the product
graph of the time-extender CGRA and the data dependence graph.

Ferreira et al. [192] presented a mapping and scheduling tool based on the modulo scheduling
with a heuristic for CGRA. The algorithm uses a mix of asap/alap (as soon as possible/as late
as possible) to determine each operation’s scheduling range. It is custom-designed for their
in-house hardware.

Lai and Yeh [107] presented a mapping algorithm that converts a data flow graph into
a reconfigurable architecture rDPA [193]. The algorithm is based on a set of templates of
processing resources called data path units, and the goal is to convert the nodes of the data flow
to a type of data path unit.

Pathan et al. [93] proposed a two-level preemptive global fixed-priority scheduling for mul-
ticore systems. The first level is a task-level scheduler. Next, a subtask-level scheduler is
implemented.

Qamhieh et al. [90] presented a stretching algorithm that aims to transform the application
into a set of independent sequential threads. This algorithm is used as a previous step for
scheduling algorithms like Global Earliest Deadline First from the fixed-job priority family and
Global Deadline Monotonic from the fixed task priority family. It can improve the performance
of the scheduling.

5.2 Discussion
As illustrated above, there is an extensive quantity of works related to mapping and scheduling
different platforms. Usually, a mapping and scheduling algorithm is designed to perform well for
a particular platform, and it is not always made to allow a migration to another. A significant
drawback of most algorithms is that the hardware is considered a regular structure [87, 91, 88].
However, approaches like [35, 81, 148] capable of dealing with irregular structures may not be
directed to our problem. This represents an issue for SPS-CGRA mapping, as usually, this type
of platform features an irregular heterogeneous structure. It is also important to mention the

5In work-stealing, underutilized processors attempt to “steal” threads from other processors [188].
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approach of the algorithm. Cluster-based [112] and task duplication algorithms [109, 92] may
work fine with multicore systems. Still, it is not directly applicable to our targeted hardware due
to the limited amount of resources and the granularity of the types of tasks they can implement.

List-based algorithms [35, 101] are suitable for our purposes, as they aim to limit resource
platforms and the designer who chooses the appropriate priority. Combined with a graph rep-
resentation of the hardware and application, we can use standard graph theory algorithms,
which provide high performance [181, 182, 184, 100]. Furthermore, a heuristic may increase the
performance of such a mapping algorithm [110, 153]. Characteristics like computing cost, use
of resources, and memorization may be considered for the heuristic. Moreover, well-established
techniques such as the Bayes theorem [182, 184] and its combination with a list-based scheduling
algorithm may be good candidates to solve the SPS-CGRA mapping problem.

The exploitation of RL algorithms for the scheduling problem is hasn’t spread yet. However,
it has shown attractive advantages in contrast to classical approaches. In particular, for hard-
ware accelerators and specifically CGRA, there are no so many RL-based works. However, RL
algorithms’ inclusion may solve some of the current issues, such as non-optimal mapping and
lack of support for complex structures.

5.3 Conclusions
In this chapter, we presented a brief state of the art of mapping and scheduling algorithms. We
divide the algorithms into list-based, linear programming, RL, and others. Given the charac-
teristics of the SPS-CGRA and its applications, we propose to use the list-based approach and
the reinforcement approach to solve its mapping problem. The list-based approach is primarily
used on platforms with a limited amount of resources. Moreover, the custom priority list helps
manage the data dependence of the application and the unidirectional processing data of the
hardware. Additionally, an RL approach will help us deal with the complex structure of the
SPS-CGRA and its applications. Using the trial-and-error methodology of this approach, we
may increase the locality of the list-based algorithms’ mapping decision and improve its results.

In the following chapters, we will introduce our proposed solutions for the SPS-CGRA map-
ping problem.
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Chapter 6

List-Based Mapping Algorithms

In the previous chapter, we saw that the mapping and scheduling problem is considered NP-
complete. This means that the optimal solution can only be obtained by exploring all the
possible solutions. Moreover, SPS-CGRA increases the exploration space because of its different
physical hardware implementation for a given task. Effectively, an efficient hardware resource
may compensate for the memorization and configuration cost. Thus a possible final mapping
would have a single task allocated per time slot. Hence, the design space and exploration
time increase exponentially according to the number of tasks and hardware resources due to
combinatorial explosion. This is why we propose an efficient heuristic that may be used to
decrease the exploration time and obtain a reasonable solution.

In this chapter we present a basis algorithm that we transform into two optimization heuris-
tics.

• Single-Shot mapping algorithm, based on the topological order of the input graphs
(application and hardware graph). This algorithm is able to build a mapping without
considering the performance of this mapping.

• Topology-Aware mapping heuristic, based on look-ahead techniques. It relies initially
on the single-shot algorithm but considers topological distances, the probability of mapping
success, and the computing latency in order to build an optimized solution.

• Bayes-Based mapping heuristic, based on the formalization of the previous algorithm
into a Bayes problem. It includes several parameters that the user can use to tune the
mapping process.

We organize the remaining part of the chapter as follows. Section 6.1 introduces the Single-
Shot mapping algorithm. Section 6.2 presents the Topology-Aware mapping algorithm. Section
6.3 presents the Bayes-Based mapping algorithm. Finally, Section 6.4 summarizes this chapter.

6.1 Single-Shot Mapping Algorithm
In this section, we introduce the Single-Shot mapping algorithm (SS-MAP). It is the starting
point of the optimization heuristic presented later. As previously stated, the SS-MAP is based
on both the application and the hardware’s topological order. It is capable of accepting one or
all topological sortings of the hardware graph. In the latter case, the algorithm will compute
the mapping for all the topological sortings and select the one with the lowest computation
cost. We select this approach because we target an irregular platform, and there may be several
topological sortings of its hardware resources. Given that we choose one topological sorting, but
we may not obtain a sub-optimal mapping because the firsts tasks may be allocated to resources
that are not the best allocation. Using all possible topological sortings, we ensure that we test
all possible allocations. In both cases, one or all topological sortings, the methodology described
in the following sections holds.
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6.1.1 Methodology

The SS-MAP mapping algorithm may be divided in two steps : initialization and allocation
process.

Initialization

In this first step, we can decide whether the mapping algorithm will use one or all of the hardware
graph’s topological sortings. Subsequently, the allocation process can be adapted to this choice
quite directly.

From a couple of application (GAPP ) and hardware (GHW ) graphs we build two subgraphs
G

′
APP = (T ′

, D
′) where T ′ = {ti ∈ GAPP | type(i) 6= interface} and G′

HW (S′
,K

′) with S′ =
RP . Thus, the algorithm starts to compute one random topological sorting of the application
subgraph G′

APP and one random or all topological sortings of a subgraph G′
HW (lines 1 to 2 of

Algorithm 1, that depicts the processing flow).
This is done using Kahn’s Algorithm [194]. This step produces two lists, LHW and LAPP .

Each of them contains ordered numbers (indexes) of the input subgraphs nodes. The first, LHW ,
represents the processing resources organization. If the mapping algorithm has to use all the
topological sortings, at each mapping iteration, one will be stored in LHW . The second, LAPP ,
represents the data dependence between tasks defined by the application model.

Figure 6.1 illustrates the initialization process on a pair of application graph (top left) and
hardware graph (bottom left). In this example, several topological sortings of the hardware
graph exist. One is selected randomly. On the contrary, only one topological sorting exist for
the application graph.

t0 t1 t2 t3

scfg

rSNSR0

Application graph

Hardware graph

t4

rP6rSNSR5

t1t2t3

rP6rP1rP3 rP2 rP7rP8

Inputs Topological
sorting

LAPP

LHWrACTR4rP3rP2rP1

rP7 rP8 rACTR9

Figure 6.1 – Flow diagram of initialization.

Allocation Process

The allocation process aims to map all the tasks of an application on the available and compatible
hardware resources. It explores both LAPP and LHW , using one element of each list at a time
and verifies if the current ti ∈ LAPP can be allocated on rPj ∈ LHW . If rPj does not match, we
dequeue another element of LHW .

Figure 6.2 illustrates the principle behind the allocation process. For this illustration, let’s
consider a homogeneous application graph, where all the application tasks belong to the same
type and have the same parameters (p). Consequently, we use a homogeneous hardware graph,
where all the processing resources can implement the same T with the same parameters (Π).
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We proceed to order both the application and hardware graphs topologically. Next, we start
the allocation process. We dequeue the first task (t1) and map it to the first resource in LHW
(rP6 ). Since it is possible to allocate t1 on rP6 , we move to the next task. We dequeue t2 and
map it to the next resource in LHW (rP7 ). Finally, we dequeue t3 and we allocate it to the next
item in LHW (rP8 ). The result is the implementation graph.
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of �rst task

rP6rP3
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t3 t2 t1 t3
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t2

rP7 rP1rP3 rP2 rP8

t3

Step 1 Step 2 Step 3

Figure 6.2 – Allocation process.

The main part of the allocation process algorithm (line 3 to end of Algorithm 1) is the func-
tion Assigning in line 15 (the other two functions Reallocation, in line 10, and Partition,
in line 13, are required to escape some allocation issues, they will be explained later). It aims to
find a matching between a current application task ti ∈ T

′ and a processing resource rPj ∈ S
′ .

The pseudo-code of the function is shown in Function Assigning (page 104). Given that we
want to allocate ti = (typei, pi) (see Section 2.4) on rPj = (Tj ,Πj ,Lj , Cfgj) (see Section 3.4.4),
the function in Line 3 verifies the following conditions:

• Resource can be assigned to execute the task, stated by:

typei ∈ Tj (6.1)

• Parameters of the task matches with the set of resource parameters:

pi ∈ Πj (6.2)

• Source of data is valid. If ti is the successor of tl and typel = interface (tl is a sensor),
there must exist a path where P = {rsensor, . . . , rPj },P ∈ GHW , where :

tl is assigned to rsensor ∧ {∀rk ∈ S|rk ∈ P} no task has been allocated (6.3)

• Predecessors are correctly reachable. Considering the set of ti predecessors tpre = Pred(ti)
already mapped to a subset of processing resources rpre ⊂ S

′ , there must exist a path
P(rpre, rPj ) verifying:

∀rk ∈ P(rpre, rPj ) no task has been allocated (6.4)
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Algorithm 1 SS-MAP mapping algorithm
Input: G′

APP , GAPP , G
′
HW , GHW

Output: LMAP

1: New list LAPP , with the random topological sorting of G
′
APP

2: New list LHW , with the random topological sorting of G
′
HW

3: New empty list LMAP

4: New counter of failed attempts cnt_attempts = 0
5: while LAPP 6= {∅} do
6: dequeue ti from LAPP
7: done = False
8: while not done do
9: if cnt_attempts == |G′

HW | then
10: LMAP , LAPP , LHW , done =

Reallocation(ti, LMAP , GAPP , GHW , LHW , LAPP )
11: else
12: if LHW == {∅} then
13: LHW , LMAP = Partition(LMAP , GAPP , GHW , LHW )
14: else
15: cnt_attempts, done, LMAP =

Assigning(ti, rPj , LMAP , GAPP , GHW , cnt_attempts)

• Can successors of the current task be allocated on the descendants 1 of the candidate
resource? If yes, the task is mapped to the given resource, if not, we check if there is an
alternative path to a sink node from the candidate resource: let’s consider tsuc = Succ(ti)
the set of successors of ti and rdes = Desc(rPj ) the set of descendants of rPj , then

∀tl ∈ tsuc ∃rk ∈ rdes | typel ∈ Tk ∧ pl ∈ Πk (6.5)

If equation 6.5 does not hold: let’s consider ract ⊂ RC where ract = ∀ractuatorl ( it means
the set of actuators of GHW ). Then we verify:

∃Pk = (rPj , . . . , rk) | rk ∈ ract (6.6)

• Is the input degree of the candidate resource compatible with the input degree of the task
or zero?

deg−(ti) = deg−(rPj ) ∨ deg−(rPj ) = 0 (6.7)

If Equation 6.7 does not hold and if the Input degree of the processing resource is higher:
let’s consider tpre = Pred(ti) the set of predecessors of ti and rmap ⊂ S

′ a subset of
processing resources where tpre → rmap. Additionally, rpre = Pred(rPj ) is the set of
predecessors of rPj , then we verify:

@rPk ∈ rpre | allocates a tl /∈ tpre (6.8)

• Is the output degree of the candidate resource equal or higher than the output degree of
the current task or zero?

deg+(ti) ≤ deg+(rPj ) ∨ deg+(rPj ) = 0 (6.9)
1Given a node v, the set of its descendants is composed of all the nodes that are reachable from v.
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If Equation 6.9 does not hold and if the output degree of the candidate resource is lower,
we check that the sum of output degrees of its successors plus the output degree of the
successors of the successors is higher or equal than the output degree of the current task.
To implement this, let’s consider rdes = N+(N+(rPj ))2.

deg+(ti) ≤
|rdes|−1∑
k=1

deg+(rPk ∈ rdes) (6.10)

If the above conditions are validated, we consider that the allocation of ti on rPj is valid and
proceed to the allocation (Lines 4 to 7).

1: function Assigning(ti, LHW , LMAP , GAPP , GHW , cnt_attempts )
2: dequeue rPj from LHW
3: if ti can be mapped on rPj then
4: map ti on r

P
j

5: done = True
6: cnt_attempts = 0
7: Store mapping in LMAP

8: else
9: done = False

10: cnt_attempts = cnt_attempts+ 1
11: return cnt_attempts, done, LMAP

The allocation process goes through all the tasks and tries to use all the resources available.
However, some issues may appear during the mapping, we present now two functions that will
prevent these issues.

Algorithm Inconveniences

During the mapping, we have to deal mainly with three issues: Sub-optimal correspondence
between LHW and LAPP , Availability of the Hardware resources and Matching fails. The first
two issues are solved using the function Partition. The pseudo-code of this function is presented
below.

1: function Partition (LMAP , GAPP , GHW , LHW )
2: New list Paths_HW, that consists of the independent datapaths in GHW
3: New empty list nodes_available
4: for each path ∈ Paths_HW do
5: if none rPj ∈ path allocates a task or copy operation then
6: Store all rPj ∈ path in nodes_available
7: if nodes_available == {∅} then
8: Creation of a new time slot
9: else
10: Store the topological ordering of nodes_available in LHW
11: return LHW , LMAP

a) Sub-optimal correspondence between LHW and LAPP . This issue comes from the multi-
plicity of the topological sorting results and appears as a false lack of resources. Consider the
application and hardware graphs of Figure 6.3 as inputs. The pipelined application consists of

2N+(rPj ) is the set of out-going neighbors (successors) of rPj .
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three heterogeneous tasks (t1, t2, t3). The hardware architecture consists of two possible inde-
pendent datapaths of three resources each (rP1 , rP2 , rP3 and rP6 , rP7 , rP8 ). Following the Table 6.1
assume that t1 can be allocated only on rP1 , t3 on rP7 , and t2 on rP2 , r

P
3 , r

P
6 , r

P
8 . During the

initialization stage, we produce randomly the topological sorting of the hardware graph showed
in Figure 6.3.
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Figure 6.3 – Initialization process.

Task
Processing resource
able to execute the

task
t1 rP1
t2 rP2 , r

P
3 , r

P
6 , r

P
8

t3 rP7

Table 6.1 – Correspondence between tasks
and resources

Then we proceed with the allocation process, depicted in Figure 6.4. The first task to map is
t1. The algorithm goes through the elements of LHW until it reaches rP1 (the only one possible
thanks to Table 6.1) and allocates the task to this resource. Notice the datapath rP6 , rP7 , rP8 has
been dismissed, but no task has been allocated to any of its resources. The next task to allocate
is t2. The algorithm map it to rP2 , which is the first item of LHW . Finally, we try to allocate
t3. At this moment the last item of LHW is rP3 which is not a valid allocation for t3. This
is an issue, the algorithm fails. This is why at this moment, the mapping algorithm calls the
Function Partition (lines 4 to 10). The function verifies if there is any datapath without a task
mapped. If there is a datapath available, the function re-add its nodes to LHW and continues
with the mapping. If the function cannot find available data, it will split GAPP into sub-graphs
and allocate the remaining tasks to a different time slot. In Figure 6.4, we can see that after
the call of Partition, LHW has resources again, and the mapping process can restart. In the
end, t3 is allocated to rP7 , and we get the final implementation graph.
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Figure 6.4 – Allocation process.

b) Availability of the Hardware resources. The application mapping requires more resources
than the available in the hardware model. Consider the application and hardware graphs of
Figure 6.5. These inputs are similar to the previous example. However, now the application
graph has one more task (t4), which can only be executed in rP1 (Table 6.2).

t0 t1 t2 t3

rP1 rP2

scfg

rSNSR0 rACTR4

Application graph

Hardware graph

rP3

t4

rP6 rP7rSNSR5 rACTR9rP8

t1t2t3

rP6rP1rP3 rP2 rP7rP8

Inputs
Topological

sortingt5

t4
LAPP

LHW

Figure 6.5 – Initialization process.
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Table 6.2 – Correspondence between tasks
and resources
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The firsts steps (1 to 8) are the same as stated for the Sub-optimal correspondence between
LHW and LAPP issue. After the allocation of t3, we continue with t4. In LHW , the only element
left is rP8 , which is not compatible with the current task. At this moment, there are no more
resources to use. To solve the problem we call the function Partition. Again this function
verifies the datapaths available, and because all of them are occupied (Line 7), the function
splits GAPP (line 8) into sub-graphs and duplicate the hardware graph (Step 10). Next, the
mapping algorithm will try to schedule them into time slots. This process is depicted in Figure
6.6.
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Figure 6.6 – Allocation process.

c)Matching fails. We observe this issue by an unsuccessful search of a resource for a particular
task. We solve this issue using the function Reallocation. The function Reallocation is a
modification of the backtracking algorithm presented by Lu et al. [195]. The function removes
the mapping of the conflicting task’s predecessor, re-add the task and the resource to their
respective list and restart the mapping algorithm.
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1: function Reallocation(ti, LMAP , GAPP , GHW , LHW , LAPP )
/*ti is the conflicted node of GAPP being mapped*/

2: New list Predecessors, predecessors of ti
3: for each task tk ∈ Predecessor do
4: Locate the resource rPj that allocates tk
5: Remove the allocation (tk, rPj ) from LMAP

6: Reintegrate tk into LAPP
7: Reintegrate rPj into LHW

8: done = True
9: return LMAP , LAPP , LHW , done

The partial results of the mapping and the overall mapping are stored in a list called LMAP .
This list contains the parameters assigned to each resource during the mapping. LMAP follows
similar structure as GMAP , because it consists of lists (subgraphs in the case of GMAP ) and each
list represents a time slot. Each time slot elements are equal to the resources available (|S′ |).
The methodology’s final step is the creation of GMAP , which is obtained by parsing LMAP .
GMAP will collect all the information contained in LMAP .

6.1.2 Discussion

The SS-MAP algorithm searches for a feasible mapping of an application onto hardware. It
provides a reasonable mapping with very little exploration time. It is equipped with a meta-
heuristic, in which we use all the topological sortings of the subgraph G′

HW in a bigger loop with
the performance evaluation (Figure 6.7). Then the best mapping with the lowest computing cost
is selected.

Start of mapping

Initialization
Topological sorting

GAPP

Performance
evaluation

Allocation
process

Topological sorting
GHW

New 
topological sorting

GHW

End of mapping

Figure 6.7 – Flow diagram of the SS-MAP algorithm (all topological sortings of GHW ).

Even if we provide the algorithm with the tools to overcome some mapping inconveniences
described in Section 6.1.1, there is still a need for a better approach. This algorithm may
not work well with multisensor systems. It may encounter a deadlock during the allocation
process that may need to make use of the backtracking feature, representing an increment in the
exploration time. To overcome the SS-MAP algorithm’s problems, we propose to use a variants
heuristic that considers the latency of the resources and the resources’ topological distance. Also,
the decision of mapping a task to a resource is local. We require to increase the magnitude of
this decision. In the following section, we present a heuristic that considers the task’s successors
and the computing latency of the processing resources. This will improve the mapping results.

6.2 Topology-Aware Mapping Algorithm
After the SS-MAP algorithm presented previously, we now introduce the Topology-Aware map-
ping algorithm (TA-MAP), an enhancement to the last algorithm in the form of a heuristic
optimization.
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The proposed heuristic optimization is based on look-ahead techniques. The purpose of a
look-ahead approach is to foresee the effects of a particular decision. The main goal is to evaluate
the allocation of a specific task onto a particular resource. The heuristic evaluates not only the
allocation of the current task but also the allocation of its successors. The heuristic choices are
based on uses elements such as the topological distance, the computing latency, and the number
of possible matching resources.

6.2.1 Methodology

In this section, we explain the general principle of the algorithm. It is based on list scheduling
and integrates a heuristic optimization. This heuristic is used when we have to choose between
two or more resource candidates. As for the SS-MAP, the inputs of the algorithm are two hyper-
graphs representing the application (GAPP ) and the hardware model (GHW ). The flow process
is also divided in two stages: initialization and allocation process (Figure 6.8).

Start of mapping
Initialization

Topological sorting
GAPP

Distance matrix
GHW

Allocation
process End of mapping

Figure 6.8 – Flow diagram of the TA-MAP algorithm.

Initialization

Similar to the SS-MAP algorithm (see Section 6.1), we define two subgraphs. An application
subgraph G

′
APP = (T ′

, D
′) where T ′ = {ti ∈ GAPP | type(i) 6= interface} and a hardware

subgraph G′
HW (S′

,K
′) with S′ = RP . We start this stage creating a Distance matrix which

is going to be used for the heuristic equation. The Distance matrix represents the distances,
according to the number of nodes, between each couple of nodes of S′ . When there is no simple
path between a couple of nodes we represent this with an infinite value. We use the Floyd-
Marshall algorithm [196] to compute the Distance matrix. We illustrate this computation in
Section 6.2.2.

Next, we compute the topological sorting of G′
APP and store the result in a list (LAPP ).

Allocation Process

The goal of the allocation process is to allocate all tasks onto the available compatible resources.
The complete TA-MAP pseudo-code is presented in Algorithm 2. Recall that LMAP is a list
where the partial results of the mapping and the overall mapping are stored. MS is the prob-
ability of mapping success function and MAP is a function that allocates ti onto rPk and stores
this allocation in LMAP , both functions are explained in detail in the following section.

Algorithm 2 TA-MAP algorithm
Input: G′

APP , GAPP , G
′
HW , GHW

Output: LMAP

1: New array distance_matrix
2: New node list LAPP sorted topological
3: while LAPP 6= {∅} do
4: dequeue ti from LAPP
5: New list wHW ← candidates S

′(G′
HW , ti)

6: For all resources rPj in wHW : compute MS(rPj )
7: rPk ← max(MS(wHW ))
8: MAP (ti, rPk , LMAP )
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The first step of the allocation process is to dequeue the first task of LAPP (line 4). Following
this, we select the possible resources candidates (line 5). This selection is according to the
following rules (Equations 6.11 and 6.22 implemented in function candidates of line 5):

• At the first time, the set of resources candidates (wHW ) will be the source nodes of S′ .

wHW = {rPk ∈ S
′ | deg−(rPk ) = 0} (6.11)

• Following, the resources candidates will be the successors of the resource or resources that
allocate the predecessor or predecessors of the current task. Let’s consider tpre = Pred(ti)
the set of predecessors of the current task ti and rpre the set of processing resources where
tpre → rpre, then:

wHW = N+(rpre) (6.12)

Recall that N+(rpre) is the set of out-going neighbors (successors) of rpre. After the selection
of the set of resource candidates (wHW ) we prune the list. For each candidate rPj ∈ wHW , we
verify the compatibility with the current task ti. We use the same rules as the ones presented
in Section 6.1.1:

• Resource can be assigned to execute the task, stated by:

typei ∈ Tj (6.13)

• Parameters of the task matches with the set of resource parameters:

pi ∈ Πj (6.14)

• Source of data is valid. If ti is the successor of tl and typel = interface (tl is a sensor),
there must exist a path where P = {rsensor, . . . , rPj },P ∈ GHW , where :

tl is assigned to rsensor ∧ {∀rk ∈ S|rk ∈ P} no task has been allocated (6.15)

• Predecessors are correctly reachable. Considering the set of ti predecessors tpre = Pred(ti)
already mapped to a subset of processing resources rpre ⊂ S

′ , there must exist a path
P(rpre, rPj ) verifying:

∀rk ∈ P(rpre, rPj ) no task has been allocated (6.16)

• Successors of the current task can be allocated on the descendants of the candidate re-
source. If yes, the task is mapped to the given resource, if not, we check if there is an
alternative path to a sink node from the candidate resource: let’s consider tsuc = Succ(ti)
the set of successors of ti and rdes = Desc(rPj ) the set of descendants of rPj , then

∀tl ∈ tsuc ∃rk ∈ rdes | typel ∈ Tk ∧ pl ∈ Πk (6.17)

If Equation 6.17 does not hold: let’s consider ract ⊂ RC where ract = ∀ractuatorl (it means
the set of actuators of GHW ). Then we verify:

∃Pk = (rPj , . . . , rk) | rk ∈ ract (6.18)
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• Input degree of the candidate resource is compatible with the input degree of task or zero.

deg−(ti) = deg−(rPj ) ∨ deg−(rPj ) = 0 (6.19)

If Equation 6.19 does not hold and if the Input degree of the processing resource is higher:
let’s consider tpre = Pred(ti) the set of predecessors of ti and rmap ⊂ S

′ a subset of
processing resources where tpre → rmap. Additionally, rpre = Pred(rPj ) is the set of
predecessors of rPj , then we verify:

@rPk ∈ rpre | allocates a tl /∈ tpre (6.20)

• Is the output degree of the candidate resource equal or higher than the output degree of
the current task or zero?

deg+(ti) ≤ deg+(rPj ) ∨ deg+(rPj ) = 0 (6.21)

If Equation 6.21 does not hold and if the output degree of the candidate resource is lower,
we check that the sum of output degrees of its successors plus the output degree of the
successors of the successors is higher or equal than the output degree of the current task.
Let’s consider rdes = N+(N+(rPj ))3.

deg+(ti) ≤
|rdes|−1∑
k=1

deg+(rPk ∈ rdes) (6.22)

After the verification, we have left a set of feasible candidates or an empty set. For the first
case, we obtain the mapping success probability of each feasible candidate according to Equation
6.23. Next, we select the candidate with the greatest probability of mapping success and map
the task to it. In the second case, if we don’t have any feasible candidate, we need to check
which path of GHW is suitable for the current task. This means the path where we will have a
higher probability to map the current task. For this, we use the same Equation 6.23, but instead
of the successor tasks, we use the current task as input. After this computation, we select the
path with the higher probability value and obtain the possible candidates from it. Also, if the
task to allocate is a sink task, we compute the mapping success with the task as input.

An interesting characteristic of the algorithm is that it allows recomputation and creates the
time slots automatically. Effectively, if the resulting list wHW is an empty set, the algorithm
enters into a function where it checks if there is any datapath available in GHW . If there is
a datapath available, the function will compute wHW from the resources of that datapath. If
there is no datapath available, the algorithm creates a time slot and computes again wHW . For
these purposes we use the function Partition introduced in Section 6.1.1.

Heuristic Optimization

Given ti ∈ T
′ that represents the task to map. Let wAPP = (t1, t2, . . . , tx), be the set of

successors of ti.
Let wHW ∈ S′ represent a subset of n nodes (rP1 , rP2 , ..., rPn ) of interest (window of possible

candidates resources). For each node of interest, we compute the set of its descendants Fn. Let
Fn ∈ S

′ and | Fn |= m.
The selection of the best allocation for a particular task is determined by our probability

of mapping success function MS (line 6). This probability is based on the value of the com-
puting latency, the number of resources that may be used to allocate a particular task and the
topological distance to the very next processing resource that can allocate a successor task:

3N+(N+(rPj )) is the set of out-going neighbors (successors) of the successors of rPj .
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MSj =
|wAPP |∑
b=1

CLw · C· | Qb |

CLa · d ·
|wHW |∑
k=1

| Fk |

(6.23)

where 1 ≤ j ≤| wHW |, CLw is the worse computing latency of the set of possible allocations
in all the descendants of all candidates. Computing latency is the one that has a higher impact
on the computing cost. With the consideration of one sample, we can assess the performance of a
given resource when allocating a given task. C is the length of the critical path of the sub-graph
GF (SF ,KF ) ⊆ G

′
HW (S′

,K
′), where SF = F1 ∪ F2 ∪ · · · ∪ Fn and KF ⊆ {(rPi , rPl )|(rPi , rPl ) ∈

SF ∧ rPi 6= rPl }. Qb is given by:

Qb = {rPi ∈ Fj | type(tb) ∈ T (rPi )} (6.24)

CLa is the average computing latency of Qb and d is the shortest distance (from the distance
matrix, see Section 6.2.1) to the next node rPk : type(tb) ∈ T (rPk ).

After the computation of all mapping success probability onto each candidate resource, we
select the one that maximizes MS (line 7) and map the task ti on this best resource (line 8,
functionMAP). Finally, we loop again while there is a task to map in the list LAPP . A graphical
representation of the heuristic optimization is shown in Figure 6.9. A simple application and
hardware graphs are used. The subgraph GF is depicted in the bottom right with its critical
path C highlighted.

W
APP

wHW

∑
|wHW|

k=1
|Fk|

C

ti

rj

FJ

d

Application graph

Hardware graph

Figure 6.9 – Graphical representation of the heuristic optimization.

6.2.2 Illustrations of the TA-MAP Principle

Example 1

Consider the application graph depicted in Figure 6.10. It consists of one sensor, one actuator,
and three tasks. Table 6.3 shows the description of each node. For didactic purposes, we neglect
the parameters of each task in these illustrations.
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t0 t1 t2 t3 t4

Figure 6.10 – Example application graph 1.

Name of task typei
t0 interface
t1 task0
t2 task1
t3 task2
t4 interface

Table 6.3 – Application example 1 parameters

Consider the hardware graph depicted in Figure 6.11. Table 6.4 makes a summary of the
features of the processing elements. LINi and LCLi are in clock cycles.

rSNSR0 rP1

rP2

rACTR8
scfg

rP4

rP5

rP3 rP6

rP7

rACTR9

rACTR10

rACTR11

Figure 6.11 – Example hardware graph 1.

Ti
Li

LINi LCLi
r1 task0 2 2

rP2
task1 2 2
task2 2 2

rP3
task1 2 2
task2 2 2

rP4
task1 2 3
task2 2 3

rP5
task1 2 1
task2 2 1

rP6
task0 2 3
task2 2 3

rP7
task1 2 3
task2 2 3

Table 6.4 – Processing resources features for
example 1, for readability the Π of rP has been
removed.

The first step of the algorithm is the initialization. We compute the topological sorting of
G

′
APP . The result is stored in LAPP . The resulting topological sorting is

LAPP = (t1, t2, t3)

Notice that the topological sorting does not consider the tasks with type = interface, which
are not included in the set T ′ . Next, we use the Floyd-Marshall algorithm to build a matrix of
the shortest paths between all the processing resources in G′

HW . Table 6.5 shows the resulting
matrix.

Table 6.5 – Distance matrix for example 1

rP1 rP2 rP3 rP4 rP5 rP6 rP7
rP1 0 1 1 2 2 2 2
rP2 ∞ 0 ∞ 1 1 ∞ ∞
rP3 ∞ ∞ 0 ∞ ∞ 1 1
rP4 ∞ ∞ ∞ 0 ∞ ∞ ∞
rP5 ∞ ∞ ∞ ∞ 0 ∞ ∞
rP6 ∞ ∞ ∞ ∞ ∞ 0 ∞
rP7 ∞ ∞ ∞ ∞ ∞ ∞ 0

Next, we look for the first group of possible candidates, which are the nodes with zero input
degree, wHW = {rP1 } (Figure 6.12).
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rP1

rP2

rP4

rP5

rP3 rP6

rP7

t1 t2 t3

Topological 
sorting

Iteration 1

t1t3 t2

Task to 
map

Application Hardware

Source 
nodes

rP1

Resource 
candidate

Figure 6.12 – First group of possible candidates for example 1.

Now, we start the mapping algorithm. The first task to map is t1. As there is only one
candidate, we verify if the resource candidate is able to implement the task, and as it is, we map
the task onto this resource.

The second iteration starts with selecting the next task to map, which is t2. Next (line 5
of Algorithm 2), we obtain the resource candidates: wHW = {rP2 , rP3 }. After the selection of
the resource candidates (line 6), we also compute the descendants of all of them. The resulting
descendants are F2 = {rP4 , rP5 } and F3 = {rP6 , rP7 }. Figure 6.13 shows a graphical representation
of these lists.

rP1
rP2

rP4

rP5

rP3 rP6

rP7

t1 t2 t3

Topological 
sorting

Iteration 2

t2

Task to 
map

Application Hardware

rP3
Resource candidates

t3

rP2

t1

Descendants rP4 rP5 rP6 rP7

Figure 6.13 – Second group of possible candidates for example 1.

The next step is to compute the probability of mapping success for each resource candidate.

for rP2 : MS2 = (CLw = 3)× (C = 1)× (|Qb| = 2)
(CLa = 2)× (d = 1)× (

∑
|F | = 2 + 2) = 0.75

for rP3 : MS3 = CLw = 3)× (C = 1)× (|Qb| = 1)
(CLa = 3)× (d = 1)× (

∑
|F | = 2 + 2) = 0.25

The selected resource candidate is rP2 because it obtains the greatest probability of mapping
success. We map the task to this resource.

The following and last task to map is t3 (Figure 6.14). The resource candidates for the
mapping of this task are wHW = {rP4 , rP5 }.
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rP1

rP2

rP4

rP5

rP3 rP6

rP7

t1 t2 t3

Topological 
sorting

Iteration 3

Task to 
map

Application Hardware

rP5
Resource candidates

t3
rP4

t1

t2

Figure 6.14 – Third group of possible candidates for example 1.

Because there are no more tasks to map, we do not compute the descendants of these group
of candidates. We compute the probability of mapping success with these same candidates as
input. The result will help us identify the best candidate for this particular task in both latency
and topological distance terms. The computations are as follows.

for rP4 : MS4 = 3 · 1 · 1
3 · 1 · 2 = 0.5

for rP5 : MS5 = 3 · 1 · 1
1 · 1 · 2 = 1.5

With the computation of each resource candidates’ mapping success, we can see that the
best candidate is rP5 . We select this resource to allocate the task, and we end the mapping.

Example 2

Let’s consider a different example. Figure 6.15 shows an application graph that consists of two
parallel pipelines of tasks. Each pipeline consists of one sensor, one actuator, and three tasks.
Table 6.6 makes a summary of the characteristics of all the nodes of the application graph.

t0 t1 t2 t3 t4

t5 t6 t7 t8 t9

Figure 6.15 – Application graph of example 2.

Name of task typei
t0 interface
t1 task1
t2 task1
t3 task1
t4 interface
t5 interface
t6 task2
t7 task2
t8 task2
t9 interface

Table 6.6 – Application example 2 parame-
ters.

For this example 2, consider the hardware graph exposed in Figure 6.16. It consists of two
parallel independent pipelines of processing resources. Each pipeline has its pair of communica-
tion resources (a sensor and an actuator). Table 6.7 shows the characteristics of the processing
resources of the hardware graph for example 2.
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rSNSR0 rP1 rP2 rACTR4scfg rP3

rSNSR5 rP6 rP7 rACTR9rP8

Figure 6.16 – Hardware graph of example 2.

Ti
Li

LINi LCLi
rp1

task1 3 2
task2 3 4

rP2
task1 3 2
task2 3 4

rP3
task1 3 2
task2 3 4

rP6
task1 3 4
task2 3 2

rP7
task1 3 4
task2 3 2

rP8
task1 3 4
task2 3 2

Table 6.7 – Processing resources features for
example 2.

We start the mapping with the initialization stage. We compute the topological sorting of
GAPP , and the resulting list is

LAPP = (t1, t2, t3, t6, t7, t8)

And the distance matrix of the processing resources is the following.

Table 6.8 – Distance matrix for example 2

rP1 rP2 rP3 rP6 rP7 rP8
rP1 0 1 2 ∞ ∞ ∞
rP2 ∞ 0 1 ∞ ∞ ∞
rP3 ∞ ∞ 0 ∞ ∞ ∞
rP6 ∞ ∞ ∞ 0 1 2
rP7 ∞ ∞ ∞ ∞ 0 1
rP8 ∞ ∞ ∞ ∞ ∞ 0

Next, we start the allocation process of the algorithm. We select the first task to map, t1 and
the first group of resource candidates (Figure 6.17). Because we are starting the allocation process
we select the source nodes of GHW without considering the communication resources. The
resulting list is wHW = {rP1 , rP6 }. Next we obtain the descendants of each resource candidates.
The descendants are F1 = {rP2 , rP3 } and F6 = {rP7 , rP8 }.

Topological 
sorting

Iteration 1

t1t3 t2

Task to 
map

Application Hardware

Source 
nodes

rP1

Resource 
candidates

rP1 rP2 rP3

rP6 rP7 rP8

t1 t2 t3

t6 t7 t8

rP6t7 t6t8

Figure 6.17 – First iteration for example 2.
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The next step is compute the probability of mapping success for each candidate.

for rP1 : MS1 = 4 · 3 · 2
4 · 1 · 4 = 1.5

for rP6 : MS6 = 4 · 3 · 2
2 · 1 · 4 = 3

Iteration 2: the selected resource is rP6 . We allocate the task to this resource and continue
with the mapping. This iteration (Figure 6.18) only considers one resource candidate, rP7 we
verify that we can use it and map the task onto it.

Topological 
sorting

Iteration 2

t3 t2

Task to 
map

Application Hardware
Resource 
candidate

rP1 rP2 rP3

rP6 rP7 rP8

t1 t2 t3

t6 t7 t8

rP7t7 t6t8

t1

Figure 6.18 – Second iteration of example 2.

Iteration 3: the following iteration (Figure 6.19) also has one candidate, rP8 . We perform the
same operation as previously. We verify that we can use the resource and map the task to it.

Topological 
sorting

Iteration 3

t3

Task to 
map

Application Hardware
Resource 
candidate

rP1 rP2 rP3

rP6 rP7 rP8

t1 t2 t3

t6 t7 t8

rP8t7 t6t8

t1 t2

Figure 6.19 – Third iteration of example 2.

Iteration 4: the next task to map is t6 (Figure 6.20), and as it is a source node of its pipeline,
the selected candidates will be the available source nodes of the subgraph composed only by the
processing resources. In this case, the resource candidate will be wHW = rP1 . As there is only
one candidate, we verify the resources’ characteristics and map the task to it.
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sorting

Iteration 4

Task to 
map

Application Hardware
Resource 
candidate

rP1 rP2 rP3

rP6 rP7 rP8

t1 t2 t3

t6 t7 t8

rP1t7 t6t8

t1 t2 t3

Source 
nodes

Figure 6.20 – Fourth iteration of example 2.

Iteration 5: the following iteration (Figure 6.21) consider also one single candidate wHW =
rP2 . We also verify that we can use it and map the task to it.

Topological 
sorting

Iteration 5

Task to 
map

Application Hardware
Resource 
candidate

rP1 rP2 rP3

rP6 rP7 rP8

t1 t2 t3

t6 t7 t8

rP2t8

t1 t2 t3

t7

t6

Figure 6.21 – Fifth iteration of example 2.

Iteration 6: finally, for the last task to map (Figure 6.22), we use the only remaining resource.
We verify that we can use it and map the task to it.

Topological 
sorting

Iteration 6

Task to 
map

Application Hardware
Resource 
candidate

rP1 rP2 rP3

rP6 rP7 rP8

t1 t2 t3

t6 t7 t8

rP2t8

t1 t2 t3

t7t6

Figure 6.22 – Sixth iteration of example 2.

6.2.3 Discussion

In this section, we introduced our first heuristic, the topology-aware algorithm. It improves the
decision-making of the SS-MAP by adapting look-ahead techniques to the mapping problem.
The purpose of a look-ahead approach is to foresee the effects of a particular decision. It provides
the possibility to weight characteristics such as latency and topological distances in the mapping
and scheduling process.
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6.3 Bayes-Based Heuristic Mapping Algorithm
During the mapping of an application onto a hardware platform, there is a level of uncertainty
concerning the chosen resources optimality since we face to a NP-complete problem. This
uncertainty may be solved using an exhaustive brute-force algorithm. However, this will possible
lead to a considerable exploration time. We saw that, if we use a heuristic-based algorithm, the
exploration time decreases significantly, but there is a high probability that an optimal mapping
maybe not be achieved.

Any heuristic-based mapping algorithm aims to maximize the probability of choosing the
best set of resources for a given application. Although an application consists of several tasks,
we can not consider all of them once because we will end up with an approach similar to a brute
force algorithm with a huge exploration time. We need to concentrate on a smaller set of tasks,
find the best allocation, and then move dynamically to the next set of tasks until we allocate all
the application’s tasks.

An interesting approach is to use a conditional probability-based heuristic [182]. Conditional
probability allows computing how likely an event will occur given that one or more related events
had happened. Using this approach, we may analyze if a particular task’s successors may be
allocated to a specific resource’s descendants. This allows to chose that specific resource to
allocate the task. With this analysis, we may maximize the probability of obtaining an opti-
mal or sub-optimal mapping without increasing the exploration time. A successful conditional
probability method is the Bayes Theorem which is extensively used in learning methods, cloud
computing, communications, medicine. The Bayes Theorem was developed by Rev. Thomas
Bayes and published post-mortem by his friend Richard Price [197]. The Bayesian approach is
a modeling methodology that provides a principled approach to reason and act in the context of
uncertainty, and a dynamic environment [198]. This method will analyze dynamically during the
mapping the allocation of each task and its successors and increase the probability of obtaining
an optimal or sub-optimal mapping.

In this section, we introduce the Bayes-based heuristic mapping algorithm (BB-MAP). We
propose to use a Bayes approach to enhance our previously presented heuristic. This enhance-
ment will provide higher performance results.

6.3.1 Bayes Theorem

The canon equation of the Bayes theorem is:

P (H | E) =

Likelihood︷ ︸︸ ︷
P (E | H) •

Posterior Probability︷ ︸︸ ︷
P (H)

P (E)︸ ︷︷ ︸
Prior Probability

(6.25)

Where P(H|E) reads as, given the evidence E, what is the probability of the hypothesis
H to happen. Bayes’ theorem gives a method of revising probability estimates as additional
information becomes available. The additional information is the information that is being
conditioned on. The probability before additional information becomes available is referred to
as the prior probability, and the revised probability using the additional information is called
the posterior probability [199].

A way to describe the Bayes theorem graphically is through a bayesian belief network. A
Bayesian belief network is a directed acyclic graph whose nodes are the model variables and
whose links represent local causal dependencies. The network topology can be thought of as an
abstract knowledge base that holds independently of the numerical assignment of conditional
probabilities. A fully specified Bayesian network can be used as a probabilistic inference engine,
which computes the posterior probability distribution for a set of query variables given the
probability distribution for some evidence variables [200].
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6.3.2 Bayes Theorem Applied to the Mapping Problem

In this section, we explain how the Bayes theorem can be used to solve the SPS-CGRA mapping
problem. Similar to the topology-aware methodology presented in Section 6.2.1, the Bayes-based
methodology is divided in two parts : Initialization and Allocation process. The complete
pseudo-code is presented in Algorithm 3.

Algorithm 3 BB-MAP algorithm
Input: GAPP , GHW , φ, ψ
Output: LMAP

1: New array B,where each Bb = {rPj ∈ S
′ | tb → rPj } and | Bb |= φ

2: New array κ,where each κj = {N+ψ(r′
j)}

3: New node list LAPP sorted topological
4: while LAPP 6= {∅} do
5: dequeue ti from LAPP
6: New list wHW with the possible candidates

resources from S
′

7: Compute the bayesian probability
for all elements in wHW

8: Map ti to the resource that maximizes the
bayesian probability

9: Store the mapping in LMAP

Initialization

As in the previous two sections, we build two subgraphs from a couple of application and
hardware graphs (GAPP and GHW ). The application subgraph G

′
APP = (T ′

, D
′) where T ′ =

{ti ∈ GAPP | type(i) 6= interface} and the hardware subgraph G′
HW (S′

,K
′) with S′ = RP .

Given an application graph G′
APP and a hardware graph G′

HW as inputs, we compute Bb,
which is the set of processing resources rPj ∈ S

′ that can allocate task tb and provides the
best performance. To obtain Bb, the algorithm computes the task’s performance tb over all
the processing resources. Then an ordered list is produced, where the order corresponds to the
decreasing performance. The parameter φ, provided by the user, will select a number φ of the
resources of Bb, starting from the best in terms of latency performance.

| Bb |= φ (6.26)

Next, we compute κj , which is given by:

κj = {N+ψ(rPj )} (6.27)

where ψ ∈ Z is a second parameter provided by the user. It indicates the size of the
neighborhood of rPj to be explored by the algorithm. For example, a ψ = 1 represents a set that
includes all the successors of rPj . A ψ = 2 represents a set that includes all the successors of rPj
and the successors of these successors.

Finally, we compute the topological sorting of G′
APP and store the result in LAPP .

Allocation Process

The BB-MAP algorithm’s allocation process follows the same methodology as the allocation
process of the Topology-Aware algorithm described in Section 6.2.1. The only difference is the
part devoted to select the resource or the path. It is described in the following section.
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Bayes-based Heuristic

Given a task ti ∈ T
′ , where T ′ is the set of vertices of G′

APP , and a set of possible candidates
wHW = (rP1 , rP2 , ..., rPn ), where wHW ∈ S′ , we aim to find which is the rPj ∈ wHW that maximizes
the probability of allocating the successors of ti, denoted by wAPP , onto the set of descendants
Fj of rj .

We solve this problem using the Bayes theorem. Hence, this probability can be formulated
as: given ti allocated onto rPj , what is the probability of allocate wAPP onto Fj . This is done by
computing this probability for all the possible candidates and select the resource that maximizes
the probability.

Let’s formalize the principle. For each possible candidate, we compute the following equation
(coming from Equation 6.25):

P (wAPP → Fj | ti → rPj ) =

Likelihood︷ ︸︸ ︷
P (ti → rPj | wAPP → Fj) •

Posterior probability︷ ︸︸ ︷
P (wAPP → Fj)

P (ti → rPj )︸ ︷︷ ︸
Prior probability

(6.28)

Where the denominator P (ti → rPj ) is the probability of allocating success of ti onto rPj , and
this is equal to:

P (ti → rPj ) = 1
n

(6.29)

Where n is the number of candidates (|wHW |). We consider that all the candidates have the
same probability to be selected because we prioritize the probability of allocating wAPP onto
Fj .

The first element of the numerator P (ti → rPj | wAPP → Fj) is computed as follows:

P (ti → rPj | wAPP → Fj) = P (wAPP → Fj)

n
n∑
b=1

P (wAPP → Fb)
(6.30)

Where each element of the numerator and the denominator is calculated as Equation 6.31.
The second element of the numerator P (wAPP → Fj) is the probability of allocating wAPP onto
Fj and it is calculated as follows:

P (wAPP → Fj) = P (CLB) • P (d) • P (Q) (6.31)

Where P (CLB) is the probability of finding the best allocation (rPl ∈ Fj) for each successor
of ti, and it is calculated as follows:

P (CLB) =
x∑
b=1

| CL |
| Fj |

(6.32)

where

CL = {rPi ∈ Fj | rPi ∈ Bb} (6.33)

P (d) is the probability that we can allocate each successor of ti onto the successors of rPj ,
in other words, that the topological distance from the allocation of ti and its successors will be
the minimum. P (d) is calculated as follows:

P (d) =
x∑
b=1

| db |
| Fj |

(6.34)

where
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db = {rPi ∈ Fj | type(tb) ∈ T (rPi ) ∧ rPi ∈ κ} (6.35)

Finally, P (Q) is the probability of finding an allocation of all the successors of ti from the
descendants of rPj , and it is calculated as:

P (Q) =
x∑
b=1

| Qb |
| Fj |

(6.36)

where
Qb = {rPi ∈ Fj | type(tb) ∈ T (rPi )} (6.37)

Back to the allocation heuristic, we compute Equation 6.28 for each candidate and select
the one that maximizes the probability. In Figure 6.23 we can see the Bayesian network of the
SPS-CGRA mapping problem, recall that such a network can be seen as a probability inference
engine (see Section 6.3.1). We highlight each part of the Equation 6.28. The first level of the
network concerns the the prior probability, recall that we consider the same probability for all
the candidates ( 1

|wHW |). The following levels represent both the likelihood and the posterior
probability. The main features that we consider are the compatibility between a task and a
processing resource, the topological distance and the resulting latency cost. The principle is
that we look for a candidate that can be compatible, be the nearest processing resource and
provide the lowest latency possible.

Type/
parameters

Topological 
distance

Best 
performance

Candidate
 11/|wHW|

P(Q) P(d) P(CLB)
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 2
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 n

P(Q) P(d) P(CLB)

1/|wHW|

1/|wHW|

Type/
parameters

Type/
parameters

P(ti → rj)
P(wAPP → Fj)

P(ti → rj | w
APP → Fj  )

Figure 6.23 – Bayesian network.

6.3.3 Illustration of the BB-MAP Principle

Example 1

At first, we present the principle on an easy example. Consider the same example 1 given
in Section 6.2.2. The application graph is depicted again in Figure 6.24. Table 6.9 shows the
description of each node. For didactic purposes, we neglect the parameters of each task. Consider
the hardware graph depicted in Figure 6.25. Table 6.10 makes a summary of the characteristics
of the processing elements. LINi and LCLi are given in clock cycles.
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t0 t1 t2 t3 t4

Figure 6.24 – Example application graph 1.

Name of task typei
t0 interface
t1 task0
t2 task1
t3 task2
t4 interface

Table 6.9 – Application example 1 parameters

rSNSR0 rP1

rP2

rACTR8
scfg

rP4

rP5

rP3 rP6

rP7

rACTR9

rACTR10

rACTR11

Figure 6.25 – Example hardware graph.

Ti
Li Corresponding

taskLINi LCLi
rP1 task0 2 2 t1

rP2
task1 2 2 t2
task2 2 2 t3

rP3
task1 2 2 t2
task2 2 2 t3

rP4
task1 2 3 t2
task2 2 3 t3

rP5
task1 2 1 t2
task2 2 1 t3

rP6
task0 2 3 t1
task2 2 3 t3

rP7
task1 2 3 t2
task2 2 3 t3

Table 6.10 – Processing resources features for
example 1

Initialization

1) The initial step is to fix φ and ψ arbitrarily (see Equations 6.26 and 6.27). Let’s choose
φ = 1 and ψ = 1 in this example, but the user could change these parameters if not satisfied
with the obtained results.

2) The second step is to extract G′
APP from GAPP and compute the topological sorting

LAPP of the subgraph G′
APP . In this example this gives:

LAPP = (t1, t2, t3)

3) Next, we compute κ (definition on Equation 6.27) and Bb (6.26) for each type of task. To
compute each Bb we list first the number of task types in the application: in this example they
are task0, task1 and task2.

For each of them we search the list of processing resources able to execute them. Among
this list we select the best resource given (because we use φ = 1 only one resource is selected).

Btask0 = rP1

Btask1 = rP5

Btask2 = rP5

Now we need to compute the sets κ for each resource rPj , we consider ψ = 1, the results are
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κrP1
= rP2 , r

P
3

κrP2
= rP4 , r

P
5

κrP3
= rP6 , r

P
7

κrP4
= ∅

κrP5
= ∅

κrP6
= ∅

κrP7
= ∅

Allocation Process

After the completion of the initialization stage we can start the allocation process. We define
the first set of possible candidates, which is going to be rP1 because is the only source node of
the hardware graph. This resource will be used to allocate t1, so we verify the requirements of
t1 (type(t1) = task0) (Table 6.9) and we allocate t1 onto rP1 . Next, we take the successors of rP1
as the next set of possible candidates (rP2 , rP3 ), we verify that both of these processing resources
are able to implement the next task (t2). At this point to select the best processing resource
we evaluate Equation 6.28 which compute the bayesian probability of mapping success for a set
of resources defined by φ and ψ. We need to get the successor of t2 which is t3. We need the
type of t3 (which is task2), to identify the possible processing resources able to execute task2:
these are rP2 and rP3 . So we compute FrP2 and FrP3 as follow: FrP2 = (rP4 , rP5 ) and FrP3 = (rP6 , rP7 ).
First, we present the evaluation process of rP2 .

P (ti → rPj ) = P (t2 → rP2 ) = 1
2

P (wAPP → Fj) = P (wAPP2 → FrP2
) = (P (CLB) = 1

2) • (P (d) = 2
2) • (P (Q) = 2

2) = 1
2

P (ti → rPj | wAPP → Fj) = P (t2 → rP2 | wAPP2 → FrP2
) =

P (wAPP2 → FrP2
) = 1

2

(n = 2)(
∑
P (wAPP → Fb) = 1

2 + 0)
= 1

2

P (wAPP → Fj | ti → rPj ) = P (wAPP2 → FrP2
| t2 → rP2 ) =

(1
2)((1

2)(2
2)(2

2))
1
2

= 0.5 (6.38)

Second, the evaluation of rP3 is given as follows:

P (wAPP2 → FrP3
| t2 → rP3 ) =

(0)((0
2)(2

2)(2
2))

1
2

= 0 (6.39)

After, the evaluation we choose rP2 for the allocation of t1 since the probability of rP2 gave
a better change to success (50%) than on rP3 (0%). Next, we try to find the best allocation
resource for execution of t3 of type task2. The possible candidates are rP4 , r

p
5. We evaluate the

same Equation 6.28, however with the current task as input, because there is no remaining task
to map.

P (wAPP3 → FrP4
| t3 → rP4 ) =

(0)((0
1)(1

1)(2
2))

1
2

= 0 (6.40)
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P (wAPP3 → FrP5
| t3 → rP5 ) =

(1
2)((1

1)(1
1)(1

1))
1
2

= 1 (6.41)

Since the probability of rP5 (100 %) is higher than on rP4 (0%). We allocate the last task to rP5
and finalize the mapping.

6.4 Conclusions
In this chapter, we have introduced three list-based approaches for the SPS-CGRA mapping
problem. A simple list-based algorithm (SS-MAP) can be used for less complex applications
and hardware, mainly full pipelined hardware. Due to its simplicity, the exploration time is not
considerable. The SS-MAP allows to explore all the topological sortings of the hardware graph
and, among the set of results, to select the best using the performance evaluation equation
(Equation 4.9). Using all topological sortings increases the quality of the final mapping for
complex applications, but, the exploration time will increase significantly.

This is why we proposed the second solution in which we added a heuristic based on look-
ahead techniques (TA-MAP). This heuristic principle is to foresee the outcome of allocating one
task to a given resource in terms of allocating the successors of such task onto the descendant
of the given resource. This approach targets platforms that have several datapaths and inter-
connection between them. It can select the best datapath to use for the allocation of a task and
its successors.

The third proposed solution, a Bayes-based mapping algorithm, may be recommended for
complex structures. It considers two hyperparameters that can be used for fine-tuning the
mapping process by the user. These hyperparameters define the preferred maximum topological
distance to explore and the number of elements of the set of best allocations to explore, in terms
of latency, for a given task.

These solutions can deal with more or less complex applications and hardware. However,
their decision policy remains local. Both of the heuristics approaches can increase this range of
decisions to include the successors of the task. Nonetheless, they still may not be optimal. In
this regard, we propose to use a reinforcement learning approach that can solve this problem.
This approach will be presented in the next chapter.
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Chapter 7

Q-learning Mapping Algorithm

In the previous chapter, we presented three list-based mapping algorithms. Each of these algo-
rithms combines different techniques to increase the probability of obtaining an optimal map-
ping. The SS-MAP (see Section 6.1) is a single shot mapping algorithm that targets less complex
hardware platforms. Both TA-MAP (see Section 6.2) and BB-MAP (see Section 6.3) algorithms
feature a heuristic that is capable of selecting the best resource for a given task. However, these
approaches use a greedy policy, where the decision is taken locally (the allocation of a given
task). The heuristics of TA-MAP and BB-MAP consider the mapping of a task’s successors,
improving the locality of the decision. However, it is still not enough for complex hardware
platforms with multisensor capabilities.

We propose to transpose the SPS-CGRA mapping problem into a reinforcement learning
problem. In this chapter, we introduce a Q-learning mapping algorithm. This mapping algorithm
features an agent capable of identifying a suitable processing resource for a given task. Its
learning process is based on information about the type/parameters of the processing resource
and task, interconnectivity of the resource, and data dependence, among other data.

We organize the remaining part of the chapter as follows. Section 7.1 introduces reinforce-
ment learning and illustrates the basic reinforcement learning problem. Section 7.2 describes
the Q-learning algorithm and its application to the scheduling problem. Section 7.3 presents our
Q-learning mapping algorithm and its methodology. Section 7.4 presents an illustrative example
of the use of different reward policies and their impact on the total reward. Finally, Section 7.5
summarizes this chapter.

7.1 Reinforcement Learning
Reinforcement learning (RL) is a branch of Machine Learning (ML) that aims to learn what
to do by maximizing a numerical reward signal [157]. It involves the construction of an agent
that interacts within a dynamic environment and learns from it. The agent will deal with
different states and take actions according to some policy. Each action that the agent takes
will be rewarded either positively or negatively according to some performance measure which
will grade the "goodness" of the current action [201]. The goal of the agent is to improve its
performance and maximize the cumulative reward.

RL contrasts with Unsupervised Learning (UL). The second does not depend on any guidance
or teacher. The training data is not tagged with the correct output, and the learning process
relies on an unsupervised model that will learn freely. Similar to RL, Supervised Learning (SL)
requires guidance for its learning method. However, the approach of SL is instructional and it
learns by minimizing some loss. On the contrary, the approach of RL is evaluative, where the
guidance or teacher provides feedback to the agent according to some performance measure [201].
These differences allow RL to support custom performance evaluation functions which help to
accelerate the learning process. The evaluative approach of RL helps to discover solutions to
problems where there is a lack of information and structure. The agent will compensate for
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these problems by randomly exploring the universe of possible solutions and obtaining a reward
related to its actions.

RL algorithms may be divided according to the used model: model-based [202] and model-
free. Model-based algorithms use the transition probability distribution1 and reward function
for learning a model of the environment. They may be able to predict the outcomes (rewards)
of actions. Model-free algorithms do not use the transition probability distribution, and reward
function related to the Markov decision process (MDP) [203]. A model-free algorithm will not
try to understand the environment. It will learn through an iterative process of trial and error.
Model-free algorithms may be further divided into policy-based and value-based. Policy-based
algorithms try to improve a policy function directly without using a value function. The policy
function selects the best action which should be considered in a particular state to increase the
reward without calculating the value function. Some examples of this type of algorithms are
Deep Deterministic Policy Gradient [204], Trust Region Policy Optimization [205] and Proximal
Policy Optimization [206]. In value-based algorithms, an agent makes its decisions based on the
value function, which is the representation of the expected maximum reward, collected using
some policy (greedy or random). Examples of value-based algorithms are Q-learning [207, 208],
State-Action-Reward-State-Action (SARSA) [209, 157], Deep Q-Network (DQN) [210], Double
DQN [211, 212], Dueling DQN [213].

Description of an RL Problem

An RL problem consists of a finite set of states S2 and a finite set of actions A. During the
learning (training) phase, the agent interacts with the environment and observes one state. In
this state, the agent is fed with some information, from the environment, about the state and
the available actions. Then, the agent is required to choose some action according to some policy
function [157]. This policy may explore or exploit the environment. Following the former, the
agent will randomly choose any action. According to the latter, the agent will choose the best-
observed action (so far) related to that particular state. After the decision, the agent will be
transferred to the following state and receives a reward according to the action taken (Figure
7.1).

State

Agent

ActionReward

Environment

Figure 7.1 – Basic principle of RL.

The transition between states follows the Markov Decision Process (MDP)consisting in five
components [214]:

• A finite set of states S.

• A finite set of actions A.

• A transition function T : (S×A)→ S′ that maps a state to its successor according to the
action taken.

1In a Markov decision process, given the states i and j, the transition probability is the probability of transition
from the state i in time n to the state j in time n+ 1.

2We systematically differentiate the variables related to the reinforcement learning approach from the models
and mapping and scheduling algorithms variables, with bold letters.
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• A reward function R : (S,A)→ R.

• A discount factor 0 ≤ γ ≤ 1 to assess value over future actions compared to the current
ones.

By following the Markov property, we can assume that the next state and the received reward
depend upon only the previous state and the action taken. The result of the learning phase is a
surjective policy function, which maps states to actions. The agent will use this policy to decide
which action to take when observing a state[214].

7.2 Q-learning
Q-learning is a value-based RL algorithm developed by Watkins [207, 208] that uses the Bellman
optimal equation and an ε-greedy policy 3 to select the action for a given state. Its efficiency
has made it the foundation of many other reinforcement learning algorithms [215, 216]. The
adaptability of the reward function can be used to suit different problems [171, 217, 218, 216,
219]. The basic Q-learning algorithm takes as inputs a q-table (Q), the set of actions (A), the
set of states (S), and a possible terminal state that belongs to the set of states. The q-table
consists of the action and the state space, and it is arbitrarily initialized. The process will iterate
a number of episodes defined by the user. During each episode, we initialize the list of states
S (Algorithm 4, line 2). Next, for each state s ∈ S, we choose an action (a ∈ A(s)) using a
policy defined by the user (Algorithm 4, line 4). We observe the reward and update the q-table
(Algorithm 4, line 5 to 6) using some learning rate (α) and some discount factor (γ) policies,
update the state (S′), and iterate again until we reach the terminal state. The terminal state
defines the end of the episode.

Algorithm 4 Q-learning algorithm
Input: Initialize Q(s,a),∀s ∈ S,a ∈ A(s), arbitrarily and Q(terminal-state, ·) = 0
1: Repeat (for each episode) :
2: Initialize S
3: Repeat (for each step of episode) :
4: Choose A from S using policy derived from Q(e.g., ε-greedy)
5: Take action A, observe R,S′

6: Q(S,A)← Q(S,A) + α[R + γmaxaQ(S′
,a)−Q(S,A)]

7: S← S′ ;
8: until S is terminal

Q-learning Applied to Mapping and Scheduling Problems

Applied to mapping and scheduling problems, Q-learning has been proved to solve some of the
issues that classical and other machine learning algorithms may not be able to solve, such as
stochastic arrival of tasks [220], online single-machine scheduling [221] or resource allocation for
vehicular systems [222]. In a Q-learning algorithm, the agent may learn to identify the best
allocations for each particular task considering the entire application without the expense of
high exploration time and memorization needs. And compared to other learning approaches, Q-
learning does not need a huge data set to learn. The learn-by-trial of Q-learning allows searching
for the optimal implementation exploring possible solutions that with classical algorithms we
may not be able to explore.

3ε-greedy policy is a simple method to balance exploration and exploitation by choosing between exploration
and exploitation randomly (see Section 7.3.4).
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7.3 Q-learning Mapping and Scheduling Algorithm
In this section, we introduce our Q-learning mapping and scheduling algorithm. The inputs
are a couple of application (GAPP ) and hardware (GHW ) graphs. The goal for the agent is to
learn the best allocation for each task of the application. The agent will receive information
about two subgraphs (Figure 7.2). The first one will comprise the task and its successors and
predecessors. The second subgraph will be a resource and its successors and predecessors. For
both subgraphs, the uprank and the downrank will be also given. With this information, the
agent will learn to select the optimal allocation.

Hardware graphApplication graph

Downward
rank

Upward
rank

Upward
rank

Downward
rank

Figure 7.2 – Subgraphs and information given to the agent from the environment.

7.3.1 Agent

The agent A is a mapping function that maps the application to the hardware.

A : GAPP → GHW (7.1)

The agent will traverse the application allocating each task (State) to a suitable resource
(Action). It will obtain rewards according to the policy described in Section 7.3.3. The terminal
State will be the last task to allocate. The decisions that take the agent are local. However,
the information that is fed to it is semi-global. The environment provides information about the
successors and predecessors of a given task and resource (Figure 7.2). Additionally, information
about the location (downward and upward rank) of the resource and task within their own graph
is also given.

7.3.2 Environment

We propose to use the hardware graph (GHW ) as an environment. It will provide the possible set
of actions and the reward feedback. We consider that the agent will traverse the environment,
and it will be allocating (mapping) the tasks to the available resources. The environment after
each allocation of a task will provide the reward to the agent, and this reward will be used to
update the q-table.

State Space

We propose to define the state space (S) with all the possible combinations of the processing
resources of the hardware graph. Hence, the state space will consist of the combinations of the
following characteristics:

• Type of task (Tj)
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• Parameters of the task (Πj)

• Input degree of the resource (deg−(rPj ))

• Output degree of the resource (deg+(rPj ))

• Type of tasks that the successors of the resource (rsuc = Succ(rPj )) may implement
(T (rsuc))

• Type of tasks that the predecessors of the resource (rpre = Pred(rP j) may implement
(T (rpre))

• Upward rank of rPj

• Downward rank of rPj

These state characteristics can be interpreted as explained in the following lines: Given a
hardware graph GHW , we gather the information about all the possible tasks that each resource
can implement, without special operations: disable and copy. As we deal with heterogeneous
hardware on both types of tasks and physical hardware implementation, we need to ensure that
the parameters are considered. On this matter, the final list of type of tasks will discard only
the type of tasks that have the same parameters, also considering ranges and values. Also, we
gather information about the degree, both the input and output.

The upward rank is the largest topological distance from a given resource to a sink resource
(a resource with an output degree equal to zero). The downward rank is the largest topological
distance from a given resource to a source resource (a resource with an input degree equal to
zero). However, we consider the number of resources that compose GHW (|GHW |) as the upward
and downward rank. Though this number will exceed any actual rank, it is used because some
pipelined applications exceed the number of resources, and we need an item to identify this
situation.

Given an application GAPP , the number of states for a single episode will be given by |GAPP |.
Some states of the complete state space may never be visited during the learning process or the
inference. However, the logic behind it is to create a state space that is the complete universe
of possible hardware combinations. Using this idea, we can discard any application with a task
that does not correspond to any state. If any task can not be related to a state, the application
can not be implemented on the hardware. Furthermore, the complete state space allows one to
implement different applications to the same hardware.

Action Space

The action space (A) is the set of available resources. The set A changes dynamically depending
on the previous mappings. Considering the subgraph G

′
HW (S′

,K
′) with S

′ = RP , the action
space consists of all the rPj ∈ S

′ . After each allocation, the used resources will be removed from
A.

7.3.3 Rewards Policy

The rewards policy (RT) for each State-Action pair is given by:

RT(Si,Aj) = RG + RL(Si,Aj) (7.2)

Where RG represents the global reward and RL(Si,Aj) the local reward.

130



Local Reward Policy

The local reward policy RL(Si,Aj), evaluates the allocation of a task (ti), of the application
subgraph G′

APP = (T ′
, D

′) where T ′ = {ti ∈ GAPP | type(i) 6= interface}, onto some resource
(rPj ∈ S

′). This evaluation is based on an adaptation for the Q-learning approach of the rules
given in Section 6.1.1. It is given by the following equation:

RL(Si,Aj) = Mvalid + DDvalid + Srcvalid + Snkvalid + Dvalid + Lopt + Prevalid + Sucvalid
(7.3)

where Mvalid represents the reward assigned by the environment and represents the goodness
of the allocation considering the type of task and its parameters. Mvalid is given by:

Mvalid =
{

Mvalue, if type(ti) ∈ T (rPj ) ∧ p(ti) ∈ Π(rPj )
−Mvalue, otherwise

(7.4)

Where Mvalue is a user defined value.
DDvalid (data dependence validation) is the reward provided by the environment given that

the predecessors of ti are correctly reachable. DDvalid is given by Equation 7.5. Considering
the set of ti predecessors tpre = Pred(ti) already mapped to a subset of processing resources
rpre ⊂ S

′ , and the path P(rpre, rPj ) exist.

DDvalid =
{

DDvalue, if ∀rk ∈ P(rpre, rPj ) no task has been allocated
−DDvalue, otherwise

(7.5)

Where DDvalue is a user defined value.
Srcvalid is the reward provided by the environment given that the source of data is valid. If

ti is the successor of tl and typel = interface (tl is a sensor), we validate Srcvalid by:

Srcvalid =
{

Srcvalue, if tl is assigned to rsensor ∧ {∀rk ∈ S|rk ∈ P} no task has been allocated
−Srcvalue, otherwise

(7.6)
where P = {rsensor, . . . , rPj },P ∈ GHW and Srcvalue is a user defined value.
Snkvalid is the reward provided by the environment given that the sink of data is valid. If

ti is the predecessor of tl and typel = interface (tl is a sensor), we validate Snkvalid by:

Snkvalid =
{

Snkvalue, if tl is assigned to rsensor ∧ {∀rk ∈ S|rk ∈ P} no task has been allocated
−Snkvalue, otherwise

(7.7)
where path P = {rPj , . . . , rsensor},P ∈ GHW and Snkvalue is a user defined value.
Dvalid is the reward provided by the environment due to the out degree and in degree of

both the task and resource. Dvalid is given by:

Dvalid =
{

Dvalue, if Ivalid = True ∧Ovalid = True

−Dvalue, otherwise
(7.8)

Where Ivalid represents the evaluation of the in degree characteristics and is given by:

Ivalid =


True, if deg−(ti) = deg−(rPj ) ∨ deg−(rPj ) = 0
True, if @rPk ∈ rpre | allocates a tl /∈ tpre
False, otherwise

(7.9)

Consider tpre = Pred(ti) the set of predecessors of ti and rmap ⊂ S
′ a subset of processing

resources where tpre → rmap. Additionally, rpre = Pred(rPj ) is the set of predecessors of rPj .
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Ovalid represents the evaluation of the out degree characteristics and is given by:

Ovalid =



True, if deg+(ti) ≤ deg+(rPj ) ∨ deg+(rPj ) = 0

True, if deg+(ti) ≤
|rdes|−1∑
k=1

deg+(rk)

False, otherwise

(7.10)

Where rdes = N+(N+(rPj ))4 and rk ∈ rdes.
Lopt represents the reward assigned by the environment that means the optimally of the

allocation of the task ti onto rPj in terms of latency. This value depends on a table of rewards
where the lowest latency will receive the entire value Lvalue, which is an input value defined by
the user. This value will decrease depending on the increase of the latency of the allocation. If
the resource can not implement the type of task, the reward will be −Lvalue.

Lopt =


(Lvalue)(

max(LCLi )− LCLj
max(LCLi )−min(LCLi )

), if typei ∈ Tj ∧ pi ∈ Πj

−Lvalue, otherwise
(7.11)

where LCLi is the list of computing latencies of all the resources that can implement ti.
Prevalid is the reward assigned by the environment that represents if the predecessors (rpre =

Pred(rPj )) of rPj can allocate the predecessors (tpre = Pred(ti)) of ti. If they able to allocate
them the reward is Prevalue and if not −Prevalue.

Prevalid =
{

Prevalue, if tpre → rpre

−Prevalue, otherwise
(7.12)

Prevalue is an input value defined by the user.
Sucvalid is a reward provided by the environment that represents if the successors(rsuc =

Succ(rPj )) of rPj are able to allocate the successors(tsuc = Succ(ti)) of ti. If they are able to
allocate them, the reward is Sucvalue and if not −Sucvalue.

Sucvalid =
{

Sucvalue, if tsuc → rsuc

−Sucvalue, otherwise
(7.13)

Sucvalue is an input value defined by the user.

Global Reward Policy

The global reward policy RG evaluates the entire mapping, if all the tasks are allocated in
some resource and if the data dependency is respected. We have two cases if we evaluate the
performance or not. This depends on the type of training that we are executing. During the
offline training, we don’t consider the performance. Otherwise, during the online training, we
evaluate the performance. If the computing cost of the episode (CCepisode) is better than the
previous episode (CCepisode−1), we provide a reward. The reward of the performance evaluation
needs to be minimal. Otherwise, its value will exceed the other rewards as it may increase
severely during the entire training. In this sense, we divide the value by the number of episodes,
and we take advantage of the exploitation of the q-table made by the epsilon policy. In other
words, the greatest reward will be given during the last episodes of the online training, where
we are converting to the optimal mapping.

For the offline training the value of RG is given by:

RG =
{

Rvalue, if ∀ti ∈ G
′
APP ,∃rPj ∈ G

′
HW : ti → rPj

−Rvalue, otherwise
(7.14)

4N+(rPj ) is the set of out-going neighbors (successors) of rPj .
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where ti → rPj is subject to the same mapping constrains given in Section 6.1.1.
For the online training the equation changes to

RG =



Rvalue + CCvalue
episodes

, if ∀ti ∈ G
′
APP , ∃rPj ∈ G

′
HW : ti → rPj

CCepisode−1 > CCepisode

Rvalue, if ∀ti ∈ G
′
APP , ∃rPj ∈ G

′
HW : ti → rPj

CCepisode−1 ≥ CCepisode
−Rvalue, otherwise

(7.15)

Where ti → rPj is subject to the same mapping constrains given in Section 6.1.1. Rvalue
and CCvalue are input values defined by the user, rpre is the subset of processing resources that
allocate the predecessors of the task ti, episode is the current episode number and episodes is
total number of episodes of the training.

7.3.4 Training

The Q-learning algorithm is based on the dynamic update of a table (q-table) made by the action
space and the states space. The q-table is a look-up table that stores the q values obtained after
each episode that composes the learning process.

The learning process is based on two different types of training: offline training and online
training. The set of applications of a given hardware platform may not be large enough to be used
in a training process. This is particularly true for SPS-CGRAs, as the universe of applications
for each one is limited. We solve this issue using randomly generated graphs. The offline training
is used to create a seed q-table (bootstrap table) that may be used directly for inference if all
the application states are already evaluated and the resulting mapping is a correct mapping.
We initialize the training with the offline training, which will provide the above mentioned seed
q-table, afterwards we proceed with the online training. During the online training, we use the
target application that we want to map onto the hardware platform. The online training is used
to increase the inference performance and the obtention of the optimal mapping. The idea of
both types of training is to generalize the q-table to map other applications than the current
one.

We use two policies that control the balance of exploitation-exploration and future-present re-
wards for both types of training. The ε-policy allows one to balance the exploitation-exploration.
We propose to at the beginning explore as much as possible. As the number of episodes increases,
we start exploiting the q-table to converge faster, as the agent will know most of the environment
and it will be able to select intelligently a suitable processing resource for a given task. The
gamma policy allows one to balance future and present rewards. We propose prioritizing future
rewards at the start of the training, and as the number of episodes increases, change the policy
to present rewards. This will help us provide better rewards to more mature solutions at the
end of the training. Both policies will help the agent to learn more efficiently.

Q-Table

The q-table is made by the states space and the action space. Where the y-axis is the state
space and the x-axis is the action space. It is initialized all zeros, and after each episode, it is
updated.

Epsilon Policy

The epsilon-greedy policy or ε-greedy policy allows one to manage the exploitation and explo-
ration of the environment. We propose using an epsilon-greedy policy where we explore the
environment randomly at the beginning of the training. After a given number of episodes, we
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allow the agent to exploit its knowledge. Therefore, ε will be initialized with a value near or
equal to 1. After a given number of episodes (start_decay_epsilon), its value will decrease
until zero. The epsilon policy is provided by:

ε =


εinit, if episodes ≥ start_decay_epsilon

εinit −
εinit

episodes− start_decay_epsilon, otherwise (7.16)

where start_decay_epsilon is an input value defined by the user, and εinit is the initial value
of ε, also given by the user.

Learning Rate

The learning rate (α) controls how fast the learning process modifies our q-values given new
evidence [223]. One expects to start with a high learning rate, which allows fast changes, and
lowers the learning rate as time progresses. However, this policy will easily discard old values
and replace them with new knowledge, which may mean that the agent will not learn what is
needed to find the optimal mapping. We use a fixed learning rate value to allow the agent to
learn only with epsilon and gamma variation.

Gamma Policy

The discount factor or gamma (γ) allows balancing future and present rewards. With the
learning rate, both control the agent learning and define future rewards’ value over present
rewards. Recall that we use a fixed learning rate (see Section 7.3.4). Therefore we use only γ
to control the balance. We propose using a dynamic gamma policy, where the future rewards
are prioritized (gamma value equal or near to 1) at the beginning of the training. After a given
number of episodes (start_decay_gamma), gamma starts to decrease until the present rewards
are the priority (gamma value equal or near to 0). We propose a gamma policy given by:

γ =


γinit, if episodes ≥ start_decay_gamma

γinit −
γinit

episodes− start_decay_gamma, otherwise (7.17)

where start_decay_gamma is an input value defined by the user, and γinit is the initial
value of γ, also given by the user.

Off-line Training

We use the off-line training to create a seed q-table. The training uses as inputs the subgraph
G

′
HW (S′

,K
′) with S′ = RP and N , a user-input variable that defines the number of randomly

generated application graphs that we will produce. The first step is the creation of the q-table
(Algorithm 5, line 1), which consists of the combination of the state space and the action space.

Next, we create the set APP_SET , that consist ofN randomly generated application graphs
(Algorithm 5, line 2). We enter the main cycle, where we will iterate according to the number
of training episodes. Inside of the main cycle, we start with choosing an application graph
from APP_SET (Algorithm 5, line 4). Then we create the list of states of the current episode
(Algorithm 5, line 5). This list of states will correspond to the tasks of the chosen application.
Also, we create a new list LHW that consists of all the processing resources of the hardware
subgraph (G′

HW ) (Algorithm 5, line 6).
Next, we enter a sub-cycle where we iterate over the list of states created previously. The

first step in this sub-cycle is choosing a processing resource from LHW . This decision will be
based on the ε-policy introduced in Section 7.3.4. Then we allocate the current task (state) to
the selected resource, observe the reward of this allocation and update the q-table accordingly
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(Algorithm 5, lines 9 to 12). Finally, we update the state and remove the selected resource from
LHW (Algorithm 5, lines 12 to 13) and iterate again until there are no more states.

Algorithm 5 Offline training algorithm
Input: G′

HW , N(Number of GAPP for training)
Output: Q
1: New Q with the universe of states given by G

′
HW

2: New array APP_SET, which consists of N randomly created GAPP
3: for each episode do
4: Choose a GAPP from APP_SET
5: New list of states given by GAPP , each state represents a ti ∈ GAPP
6: New list LHW of all rP ∈ S′

7: repeat(for each state i of the episode) :
8: Choose a rPj from LHW using ε-policy
9: Map ti to r

P
j

10: Observe the Reward R and the next state ti+1
11: Update Q(ti, rPj )← Q(ti, rPj ) + α[R + γmaxaQ(ti+1,a)−Q(ti, rPj )]
12: ti ← ti+1
13: Remove rPj from LHW
14: until ti is terminal

On-line Training

The online training uses the hardware graph, the application graph, and the Q-table obtained
from the offline training. After the offline training, we attempt to allocate the application onto
the hardware without performing the online training (Inference, Section 7.3.5). If the allocation
is successful, we end the entire process. If the allocation is not successful, we perform the
online training. Usually, the inference process fails after the offline training due to the following
reasons:

• A state that belongs to the application graph has not been visited yet.

• The inference process produced a not valid complete mapping.

The first step of the Inference algorithm is to create the list of states that belongs to the
application graph. If any of these states had not been visited yet, the q-values will be
all zeros. In this case, the inference process will be finished, and we will proceed to the online
training. If all the states had been visited, we attempt to allocate the tasks to the resources
exploiting the Q-Table. Since in the inference, we only exploit the q-values, we may not produce
a mapping that respects the data dependence or shows errors on the source of data. As a result,
the complete mapping will be not valid and we proceed to the online training.

The online training helps to evaluate the states from the target application graph that were
not covered during the offline training and improve the inference process results. The steps
are the same as the offline training. The difference is that the application graph used is the
target application graph, and the use of randomly generated application graphs is removed.
Additionally, as introduced in Equation 7.15, during the online training we also evaluate the
performance of the final mapping. Algorithm 6 shows the pseudo-code of the online training.
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Algorithm 6 Online training algorithm
Input: G′

HW , G
′
APP , Q

Output: Q
1: New list of states given by G

′
APP , each state represents a ti ∈ G

′
APP

2: for each episode do
3: New list LHW of all rP ∈ S′

4: repeat(for each state i of the episode) :
5: Choose a rPj from LHW using ε-policy
6: Map ti to r

P
j

7: Observe the Reward R and the next state ti+1
8: Update Q(ti, rPj )← Q(ti, rPj ) + α[R + γmaxaQ(ti+1,a)−Q(ti, rPj )]
9: ti ← ti+1
10: Remove rPj from LHW
11: until ti is terminal

7.3.5 Inference

The inference provides the final allocation of GAPP onto GHW . In this step, we exploit the
q-table, which is the result of the training. The process starts with the creation of the list
of states and the list of processing resources (Algorithm 7, line 1 and 2). Next, we select the
processing resource for each state of the application that has the higher q-value. If we can not
use the first M (M is a user-input value, and 1 ≤ M ≤ |S′ |) processing resources with the
higher q-values, we create a new time slot. We consider that this operation will not increase the
latency significantly, and we will still produce a sub-optimal mapping. After the selection of the
processing resource, we allocate the task to it (Line 5) and store the partial mapping (Line 6.
The process ends when we allocate all the tasks to the resources. Then we validate the mapping
in terms of data dependence. If the mapping is valid, according to the rules given in Section
6.1.1, we finish the entire process. If not, we perform another iteration of the online training.

Algorithm 7 Inference algorithm
Input: G′

APP , G
′
HW ,Q

Output: LMAP

1: New list of states given by G
′
APP , each state represents a ti ∈ G

′
APP

2: New list LHW of all rP ∈ S′

3: for each state i of the list of states do
4: Choose the rPj from LHW with the maximum q-value for ti
5: map ti → rPj
6: Store the mapping in LMAP

7.4 Illustration of the Q-learning Principle

7.4.1 General Parameters and Policies

In this section, we present two easy examples to show the principle of the Q-learning mapping
algorithm. We will show that we can achieve different results by using different reward policies
and even fail to converge to a good mapping. Let’s consider the set of rewards values of Table
7.1. In this table, we present three different reward policies. Policy 1 prioritize the final mapping
(RG), Policy 2 made emphasize the parameters verification (Mvalid), Policy 3 prioritize the data
dependence (DDvalue).
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Table 7.1 – Rewards policies

Rewards
Rvalue CCvalue Mvalue DDvalue Srcvalue Snkvalue Lvalue Dvalue Prevalue + Sucvalue

Policy 1 0.8 0.2 0.5 0.5 0.1 0.1 0.1 0.1 0.1
Policy 2 0.5 0.5 0.9 0.1 0.1 0.1 0.1 0.1 0.1
Policy 3 0.5 0.5 0.1 0.9 0.1 0.1 0.1 0.1 0.1

The general parameters for these examples are shown in Table 8.2.

Table 7.2 – Q-learning mapping general parameters

Episodes Epsilon Gamma Learning
rate

Offline
training

Online
training

Initial
value

Decrement
start episode

Decrement
end episode

Initial
value

Decrement
start episode

Decrement
end episode Value

10000 10000 1.0 1500 7000 0.9 1 10000 0.1

7.4.2 Example 1

Let’s consider the hardware and application graphs showed in Figure 7.4.2 and 7.4.2 accordingly.
These simple graphs represent homogeneous resources and tasks.
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Figure 7.3 – Hardware graph of example 1.
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Figure 7.4 – Application graph of example 1.

In Figure 7.5 we depict the average reward composition for both offline and online training.
We separate the rewards for local and global rewards policies. In blue, we can see the results
for Policy 1, in red for Policy 2, and in green for Policy 3. In this example, we can notice that
the best results from the offline training are obtained with Policy 2. This may be because we
use randomly generated graphs, and the agent uses the parameters as a foundation because the
structures of the graphs are changing, but the parameters remain the same. The worse results
are obtained using Policy 1, which uses the entire mapping of the application onto the hardware
as a metric. Again, as we are using randomly generated graphs, it is difficult for the agent to
learn the entire structure and features of a complete application and hardware graph. Moreover,
the total reward, which considers RG shows no improvement during the episodes, and it may
need more episodes to achieve a good value. In the online training (bottom two figures), we can
see a similar behavior for all the sets. Moreover, as we already perform the offline training, this
helps as a bootstrap, and the agent will learn faster during the online training.
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Figure 7.5 – Average rewards composition for example 1.

7.4.3 Example 2

Now, lets consider the hardware application graphs of Figure 7.4.3 and 7.4.3. Again we are
using homogeneous resources and tasks, but the number of them are different from the previous
example.
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Figure 7.6 – Hardware graph of example 2.
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Figure 7.7 – Application graph of example 2.

In Figure 7.8 we depict the average reward composition of this example. In this example,
the input graphs are bigger than the ones of the previous example. The lines coloring are the
same as in Section 7.4.2. Policy 2 (blue) shows better performance in the offline training. This
may result from the number of processing resources of the hardware, which is lower than the
previous example. The reward DDvalid refers to the data dependence validation. This means
that we verify that all the predecessors can reach the task being mapped. If the number of
processing resources is low, the probability that this verification results in a valid value is higher
than if the number is high. Regarding the online training, the behavior of Policy 3 shows that
for the local reward, that set can achieve better results than the others but fails to achieve a
valid mapping (total reward). This is maybe due to the number of tasks of the application and
its pipelined structure. It is difficult for the algorithm to consider this aspect, as most of the
structures (see Section 7.3) of the application are the same. For this, the algorithm may rely on
the other sets of parameters to achieve a good mapping.
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Figure 7.8 – Average rewards composition for example 2.

Another aspect to considering is the randomness of the ε-greedy policy. This may result in
difficulty to converge to a valid mapping. As the agent chooses its actions, it may not choose at
the beginning the best actions. Thus the agent will not be able to learn.

7.5 Conclusions
This chapter has introduced a formalization of the SPS-CGRA mapping problem to a reinforce-
ment learning problem. We describe the environment in terms of the hardware graph. We
propose considering the agent as a mapping function that aims to allocate the application onto
the hardware. We feed the agent with information about the structures that we can produce
from the hardware graph. We consider a structure as the association of a resource with its pre-
decessors and successors and the position in which it concerns the hardware graph (downward
and upward rank). Furthermore, we consider the descriptors of all the resources that belong to
such structure as part of the information that we feed to the agent. With this information, the
agent can decide where the best allocation for a given task is.

We describe a reward policy composed of a global and a local reward. This policy aids to
converge quickly, given that it not only considers local decisions. Additionally, we propose
to solve the lack of examples for training using a random graph generator and a two-step
training process. This approach allows one to generalize the Q-Table, and it may be subject to
exploitation from others applications, not only the targeted one.

Finally, this approach is expected to be the best option for complex applications, where the
nodes’ degree is considerable.
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Chapter 8

Experimental Evaluation

In the last two chapters, we presented two different approaches to solve the SPS-CGRA mapping
problem. Hence, in Chapter 6 we presented three list-based mapping algorithms, and in Chapter
7 we presented a Q-learning mapping algorithm. In this chapter, we present an experimental
evaluation of these mapping algorithms. The mapping algorithms are evaluated in terms of
exploration time and computing cost of the final mapping (i.e., the execution time of the resulting
implementation). We divide the evaluation into three experiments:

• Experimental graphs.

• Randomly generated graph.

• Case study.

The experimental graphs are a set of defined graphs with generic parameters that characterize
the mapping algorithms. Used as a benchmark, they represent the typical structures of an
SPS-CGRA and its applications, pipeline, and parallel configurations. The set includes both
homogeneous and heterogeneous organizations of resources.

In order to enlarge our evaluations, we present a pseudo-random graph generator that can
create virtual SPS-CGRA-alike hardware. Additionally, it can generate a set of applications for
the built virtual hardware. The generator includes the means to define the degree of intercon-
nectivity of the hardware organization and the number and types of resources. Also, it provides
several parameters that target the set of applications, which help to define the number of tasks
and structure of the application (pipeline or parallel). We use a set of randomly generated
SPS-CGRA-alike hardware platforms to evaluate the mapping algorithms. These artificially
generated hardware platforms’ structure and resource organization may be more complex than
a normal SPS-CGRA and represent the worst-case scenario for the list-based and the Q-learning
mapping algorithms. We present the results on one couple of hardware and application graphs.

Finally, we evaluate our mapping algorithms using a real-life hardware platform. In this
experiment, we use the Morphological Co-processor Unit (MCPU) [12]. It has the main features
that we can find in other SPS-CGRA hardware and serve as a mean to provide a proof of concept
to the mapping algorithms.

For the experiments of Section 8.2 and 8.4, we evaluate our algorithms against an exhaustive
mapping algorithm (named exhaustive algorithm in the rest of the chapter) that we also devel-
oped. We chose to use an exhaustive algorithm because no other framework or mapping and
scheduling algorithm can be used as a direct comparison to the extent of our knowledge. The
exhaustive mapping algorithm is a brute-force algorithm that aims to construct all the possible
mappings of an application onto hardware. It systemically tries to find the optimal allocation
to a task. The exhaustive mapping algorithm also considers the possible different physical re-
alizations of each hardware resource. Hence, a possible mapping may be the allocation of one
task per time slot, where the efficiency of the chosen resource compensates the configuration and
memorization cost. This exhaustive algorithm is used as a golden reference for our proposed
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mapping and scheduling algorithms. In Section 8.3 we present an experimental evaluation only
considering our proposed algorithms. This is because the use of the exhaustive algorithm is
prohibitive due to combinatorial explosion.

8.1 Experimental Setup
The evaluation presented in this chapter is done using a software tool developed from scratch
using Python 3.6 (more than 10,000 lines of code without comments). We use the library
Networkx [224] to handle graph-based processes. For visualization we use Graphviz [225] and
Matplotlib [226]. For the experiments in this section we use a personal computer with an
8-core Intel R© CoreTM i7-7700HQ CPU @ 2.80GHz and 7,7 GB of RAM and 1 TB of disk,
running Ubuntu 16.04 LTS. The complete code is available in https://github.com/ebarbudo/
MappingSPSCGRA.

8.2 Experimental Graphs
In this section, we present the first evaluation of the mapping algorithms. We use different sets
of typical experimental graphs. These graphs will help us to characterize the behavior of the
algorithms. They represent the typical structure of an SPS-CGRA and its applications. We
make use of four sets of experimental application graphs:

• Pipeline of homogeneous tasks

• Parallel structure of homogeneous tasks

• Pipeline of heterogeneous tasks

• Parallel and hybrid (parallel-pipeline) structures of heterogeneous tasks

These are the basic and representatives types of application structures and organizations.
We consider a set of application graphs covering the same characteristics, pipeline and par-
allel structures, and homogeneous and heterogeneous resources. For each set of experimental
application graphs, corresponding experimental hardware graphs are defined.

The evaluation analyses the following features:

• Exploration time.

• Computing cost of the resulting application.

• Training time (Q-learning algorithm).

In the following sections, we will refer to the version of the SS-MAP that uses all topological
sortings of the hardware graph as SS-MAP T. Also, the version that only uses one random
topological sorting as SS-MAP U.

8.2.1 Pipeline of Homogeneous Tasks

The first set of application graph examples represent a group of pipelined homogeneous appli-
cations. The difference between each other is the number of tasks. Figure 8.1 shows this set.
All tasks belong to the same type of task, which is in this case a generic task0. The parameter
for this task is fixed. We identify the tasks with type task0 with the color purple and in brown
the ones with type interface.
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APP5 (6 homogeneous tasks).
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(f) Application graph example
APP6 (7 homogeneous tasks).
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(g) Application graph example
APP7 (8 homogeneous tasks).

Figure 8.1 – First set of application examples

We will use this first set of application graphs over four sets of hardware graphs. The first
set of hardware graphs represents a linear pipeline of homogeneous resources. Consider that all
the resources can implement the task0. Figure 8.2 shows this first set, notice that the number of
resources increases by one for all the graphs. Notice the color purple of the processing resources
(rP ) that matches the color of the tasks (ti) of the application graphs. This represents that the
processing resources are able to allocate those tasks. We evaluate the mappings in terms of the
computing cost and the exploration time.
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(a) Hardware graph example HW1 (3 homogeneous tasks).
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(b) Hardware graph example HW2 (4 homogeneous tasks).
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(c) Hardware graph example HW3 (5 homogeneous tasks).
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(d) Hardware graph example HW4 (6 homogeneous tasks).

Figure 8.2 – First set of hardware examples

We consider three reward policies for the Q-learning approach (see Section 7.3.3), each one
emphasizing an important aspect, the final mapping (RG), the data dependence verification
(DDvalid) and the parameters verification (Mvalid). The values of the each policy are showed
in Table 8.1. For clarity, we will refer to the Q-learning algorithm subject to Policy 1 as Q-L
POL 1, the one subject to Policy 2 as Q-L POL 2, and the one subject to Policy 3 as Q-L POL
3.

Table 8.1 – Reward policies

Rewards
Rvalue CCvalue Mvalue DDvalue Srcvalue Snkvalue Lvalue Dvalue Prevalue + Sucvalue

Policy 1 0.8 0.2 0.5 0.5 0.1 0.1 0.1 0.1 0.1
Policy 2 0.5 0.5 0.9 0.1 0.1 0.1 0.1 0.1 0.1
Policy 3 0.5 0.5 0.1 0.9 0.1 0.1 0.1 0.1 0.1

The general parameters for all the Q-learning mapping approaches are shown in Table 8.2.
Both the reward policies and the general parameters showed above are used for all the sets of
experimental graphs.

Table 8.2 – Q-learning mapping general parameters

Episodes Epsilon Gamma Learning
rate

Offline
training

Online
training

Initial
value

Decrement
start episode

Decrement
end episode

Initial
value

Decrement
start episode

Decrement
end episode Value

10000 10000 1.0 1500 7000 0.9 1 10000 0.1
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Firstly we study the exploration time. Figure 8.3 gives the resulting exploration times of
the mapping and scheduling algorithms. We only consider the inference and the performance
evaluation time for the Q-learning approaches. We can observe that there are no substantial
differences between the other heuristics mappings nor the Q-learning mapping algorithm. The
behavior of the algorithms is not that influenced by the number of nodes, both tasks and
resources. This means that there is no combinatorial explosion, as we can see with the behavior
of the exhaustive algorithm.
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Figure 8.3 – Comparative study of the exploration time of the first set of applications and the
first set of hardware graphs.

With the Q-learning mapping algorithm, the offline and online training time depends on
the number of tasks and resources. This phenomenon is more evident in offline training. We
use randomly generated applications for the offline training, and these applications may be
larger than the original target application. Figure 8.4 shows the timings for both offline and
online training for this first set of experimental application graphs. The offline training time is
considerably more significant than the online training.
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Figure 8.4 – Training time of the Q-learning approaches.

Finally, the resulting computing costs (the execution time of the implementation) and the
error percentage with regard to the optimal are shown in Table 8.3. We consider as optimal
the results of the exhaustive algorithm, and in the rest of this chapter, we calculate the error or
difference with regard to this value as follows

ERROR = |optimal value− obtained value| × 100
optimal value

% (8.1)

Thus, a value of 0% will mean that the resulting computing cost is equal or close to the
optimal value. We can notice that the results of all the mapping algorithms are optimal since
they are identical to the ones obtained by the exhaustive algorithm. This first set of simple
experimental graphs shows the impact of increasing the number of tasks and resources for the
mapping algorithms. We can see that the difference between exploration time is not considerable,
and in most cases, it may be neglected. The mapping algorithms met the expectations of
achieving the exact computing cost as the exhaustive approach.
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8.2.2 Parallel Structure of Homogeneous Tasks

The second set of experimental application graphs are based on a parallel organization, where
several independent task branches build an application. The tasks’ type is again generic task0,
and the parameters are fixed. We consider that all the tasks are of the same type. Figure 8.5
gives the set of experimental application graphs. Again we use the same coloring as the previous
example.
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(a) Application graph example
APP8 (4 homogeneous tasks).
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(b) Application graph example
APP9 (6 homogeneous tasks).
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(c) Application graph example
APP10 (6 homogeneous tasks).

Figure 8.5 – Second set of application examples

The second set of hardware graphs are structured with parallel connectivity. Assume that
all the processing resources can execute task0. Figure 8.6 shows the hardware graphs that we
consider for this experiment.
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(a) Hardware graph example HW5 (homogeneous, 6 processing
resources).
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(b) Hardware graph example HW6 (homogeneous, 9 processing
resources).

Figure 8.6 – Second set of hardware examples

Figure 8.7 shows the comparison between the mapping algorithms base on the exploration
time. Notice that, except for the SS-MAP that uses all the topological sortings of the hardware
graph, the other algorithms remain with similar exploration times. This shows that the impact
of a parallel structure can be neglected, and the algorithms’ behavior remains constant without
regard to the structure of the application and hardware graphs.
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Figure 8.7 – Comparative of the exploration time of the second set of applications and the second
set of hardware graphs.

Regarding the training times of the Q-learning approach, we can see in Figure 8.8 that the
changes in the reward policies do not affect the training time. Also, notice that the online
training is almost the same for all the reward policies.
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Training �me Q-L POL 1 Offline Training �me Q-L POL 1 Online Training �me Q-L POL 2 Offline
Training �me Q-L POL 2 Online Training �me Q-L POL 3 Offline Training �me Q-L POL 3 Online

Figure 8.8 – Training time of the Q-learning approaches.

Table 8.4 shows the resulting computing cost for the mapping algorithms. Notice that the
heuristics and the Q-learning approaches shown better performance than the SS-MAP algo-
rithms, as they can obtain the exact optimal value. Recall that the optimal value is the one
obtaining from the exhaustive algorithm. As in the previous set of experimental graphs, the
algorithms can obtain near or optimal results (compared to the exhaustive algorithm).
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8.2.3 Pipeline of Heterogeneous Tasks

The third set of application graphs (Figure 8.9) represents an heterogeneous pipeline of tasks.
We increase the number of tasks for each example and we consider three type of tasks, task0 ,
task1 and task2. Each type of task is colored in a different way, task0 is colored in dark violet,
task1 in light violet and task2 in green. We consider that the parameters of the task are fixed.
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(a) Application graph exam-
ple APP11 (3 heterogeneous
tasks).
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(b) Application graph exam-
ple APP12 (4 heterogeneous
tasks).
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(c) Application graph exam-
ple APP13 (5 heterogeneous
tasks).
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(d) Application graph exam-
ple APP14 (6 heterogeneous
tasks).
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(e) Application graph exam-
ple APP15 (7 heterogeneous
tasks).
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(f) Application graph exam-
ple APP16 (8 heterogeneous
tasks).

Figure 8.9 – Third set of application examples

The third set of hardware examples (Figure 8.10d) represent a group of heterogeneous re-
sources. Each resource is able to implement one single task, complying to the second application
set of examples they can implement task0, task1 and task2. We identify each type of resource
by its color, blue for task0, brown for task1 and orange for task2.
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(a) Hardware graph example HW7 (3 heterogeneous resources).
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(b) Hardware graph example HW8 (4 heterogeneous resources).
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(c) Hardware graph example HW9 (5 heterogeneous resources).
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(d) Hardware graph example HW10 (6 heterogeneous re-
sources).

Figure 8.10 – Third set of hardware examples

Figure 8.11 shows the exploration time for this set of experimental graphs. The exploration
time remains uniform for the mapping algorithms, with only a few exceptions, mainly the Q-
learning algorithm.
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Figure 8.11 – Comparative of the exploration time of the third set of applications and the third
set of hardware graphs.

As seen in Figure 8.12, the training time showed some differences, mainly for the offline
training. The online training remains with a uniform behavior.
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Figure 8.12 – Training time of the Q-learning approaches.

Because of the simplicity of these experimental graphs, we can see in Table 8.5 that all the
mapping algorithms could meet a sub-optimal computing cost.
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8.2.4 Parallel and Hybrid Structures of Heterogeneous Tasks

The last set of experimental graphs (Figure 8.13) represent both parallel and hybrid organiza-
tions. We use four application graphs that represents parallel organizations and the remaining
two applications are used for hybrid hardware organizations. All the application graphs are
heterogeneous as in the previous example.

t0
t1

t2
t3

t4
t5

t6
t7

t8
t9

t10
t11

(a) Application graph exam-
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ple APP22 (3 heterogeneous
tasks).

Figure 8.13 – Fourth set of application examples

We use three hardware graphs (Figure 8.14). One is used for the parallel application graphs,
and the other two are used for the hybrid application graphs (one for each application). We
make use of these hardware graphs to highlight the features of our mapping algorithms.
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(b) Hardware graph example HW12 (8 heterogeneous re-
sources).
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(c) Hardware graph example HW13 (11 heterogeneous re-
sources).

Figure 8.14 – Fourth set of hardware examples

Contrarily to the previous sets of experimental graphs, the exploration times of the mapping
algorithms are different. We can see in Figure 8.15 that the exhaustive algorithm and the SS-
MAP T, which uses all topological sortings of the hardware graph, shown the worst performance
in terms of exploration time. Followed by the Q-learning approaches. Still, the TA-MAP and
BB-MAP have shown better performance than the other approaches.
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Figure 8.15 – Comparative of the exploration time of the fourth set of applications and the
fourth set of hardware graphs.

The behavior of the training time remains the same, with slight differences. In Figure 8.16,
we can notice that the offline training takes almost the same time for all the applications and
the different reward policies.
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Figure 8.16 – Training time of the Q-learning approaches.

Table 8.6 shows the resulting computing cost from the mapping algorithms. We want to
highlight that for hybrid organizations, the Q-learning approach can obtain results close to
the exhaustive algorithm, while the SS-MAP (both SS-MAP U and SS-MAP T) and TA-MAP
results are 50% and sometimes 100% worse. This shows the great adaptability of the Q-learning
approach for complex structures.
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8.3 Pseudo-Random Graph Generator
Random graphs are extensively used to experiment complex systems. For example, the phone
network, the internet, the gene network or the cell, which is a network of chemicals linked by
chemical reactions, may be described using random graphs [227]. Random graphs are built
through an evolutionary process based on models such as Erdős-Rényi [228], Watts-Strogatz
[229], and Barabási-Albert [230], which are the main models.

The Erdős-Rényi model defines a random graph as N labeled nodes connected by n edges,
which are chosen randomly given a probability P . The decision is made individually for each
edge that connects two given nodes. The Watts-Strogatz model starts with N nodes placed
regularly in a ring and each of these nodes are connected to its K/2, where K is an even
number, neighbors on both side. Next, in a clockwise loop, for every node v ∈ N , the edge that
connects to its clockwise i− th next node is rewired with a probability P .

Both previous models establish a priory the number of nodes and do not modify it during
the evolutionary process. Additionally, the attachment of an edge is given by a probability P ,
which is independent of the edges that are already attached. On the contrary, most real-world
networks tend to grow through time by adding new nodes. Furthermore, the addition of an
edge that connects two nodes, shows a direct relation with the already existent edges. The
Barabási-Albert model or Scale-free model allows the growth of the random graph and also a
preferential attachment. It starts with a small number of nodes M , where 1 ≤ M < N . Next,
the method sequentially adds a new node with M new edges. For a node to be added, it will
be connected to an existing node v with probability proportional to its degree. The new node
repeatedly adds non-duplicate edges in this way until it has M edges. Then this is iterated until
the graph has N nodes [231].

Since the universe of SPS-CGRAs is considerably broad, in our work, we have developed
from scratch a random graph generator to evaluate our mapping algorithms. This random graph
generator, coded in Python 3.6, allows to create complex structures that include a wide range of
input and output degrees and manage the heterogeneity of the artificially created hardware. We
base our generator on the Barabási-Albert model. This will enable us to manage the input and
output degree of the hardware, define the number of nodes and their parameters and functions.
It should be mentioned that the described models target undirected graphs. Consequently, we
include a mechanism to produce only directed graphs without loops.

8.3.1 Methodology

The pseudo-random graph generator allows one to produce synthetic graphs to verify the per-
formance of the mapping algorithms. The input of the generator is a specification file (text
file), and the output products are a hardware graph and a set of application graphs (text files).
It is specifically designed to build SPS-CGRA a-like systems, although it can be used to build
pseudo-random DAGs.

The process starts with the specification file written by the user, where the following fields
have to be filled:

• Number of

– Internal nodes
– Input and output degree of the nodes
– Sensors
– Actuators
– Memory resources

• Name, type and parameters of the tasks that each processing resource may perform.

• Parameters of the memory and the communication resources.
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• Configuration cost functions.

Next, we build the hardware graph and from it we create the application set.

Hardware Graph

The generator uses the above parameters to build the hardware graph, starting with the basic
structure of the graph. For this purpose, the generator will create n number of nodes according
to the specification file. Next, it will create the interconnections (edges). For each created node,
the generator defines the input and output connections. For the input connection, the generator
will randomly decide if the node will be connected to a source node (sensor) or to internal node.
For both decisions the generator will randomly decide to which sensor node or internal node
will be connected. For the output connection, the generator will also randomly select if the
node will be connected to a sink node (actuator) or to a internal node. The specific sink node
or internal node will be selected randomly by the generator. Before the addition of every edge
(interconnection) the generator checks if a cycle will be created. If we do not create a cycle, the
edge is added, otherwise the edge is dismissed.

After the creation of the basic structure, the generator performs a pruning of the nodes
without any interconnection, both input and output interconnections. This means that the
nodes with input and output degree equal to zero are removed. At the end of this step we
will ended up with a pseudo-random dag, that can be used for other purposes other than
mapping. Figure 8.17 shows an example of a complex pseudo-random generated dag (some
simpler random generated graphs will be presented in details in Section 8.3.2). Even with the
pruning the expected number of nodes are similar to the real number of nodes as we can see in
Figure 8.18. The relative error between the expected and the real number of nodes is minimal.
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Figure 8.17 – Example of a random gener-
ated graph
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ber of nodes in the graph

As for the degree distribution, both input and output degree, we can see in Figure 8.19 (input
degree) and Figure 8.20 (output degree) that second and third degree takes the predominance.
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The next step is to deal with memory resources integration. The generator will randomly
decide the addition of memory resources. If the generator chooses to integrate memory resources,
the number of this resources will be according to the limit of memory resources defined by the
specification file. To add the memory resource, we need to also add communication resources,
specifically RRW and RRD. This is done automatically by the generator. If the generator
choose not to add any memory block, the sensors and actuators will be directly connected to
the processing resources.

The following step is the assignment of the parameters and labels of each resource. The
generator will randomly select the parameters of each node, according to its type. Another
feature is the inclusion of communication resources of type RMUX . This inclusion is enabled
through the specification file. The generator will assign this type of resource to any node with
input degree above 1 and output equal or above 1. This assignment is randomly decided.

Application Graph

After the finalization of the build of the hardware graph we continue with the construction of
the application graph set. The application graph is the result of the modification (addition and
removal of nodes) of the hardware graph. Also, the generator allows one to define some aspects
of the application graph through the specification file which have to contain:

• Number of applications.

• Type of application.

• Nodes to remove.

• Number of parallel and serial instances.

The generator uses the number of applications to create accordingly the set of applications.
The type of application is used to define the type of input that the application will require. Two
types of application are considered, signal and image. The type of application image considers
an image as an input, and parameters such as width of the image and height of the image as
main parameters for the processing. The type of application signal considers a signal as an
input, and the main parameter is input samples.

The structure of the application depends on the number of nodes to remove and the number
of parallel and serial instances. The number of nodes to remove defines how many nodes of
the hardware graph will be removed to create the application graph. As stated before, the
application graph is build after the hardware graph by removing randomly nodes from it (Figure
8.21). After the removal we get the main structure of the application graph.
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Hardware graph Removal of nodes Application graph

Figure 8.21 – Process flow of the generation of an application graph.

The number of parallel and serial instances represents how many instances will be added
to the main structure. The parallel instances are disjoint graphs that make up the application
graph. The serial instances are instances connected in series that make up the application graph.
Both type of instances are shown in Figure 8.22.

Original Parallel Series

Figure 8.22 – Example of the different structures.

8.3.2 Evaluation with Randomly Generated Graphs

This section presents an evaluation of our mapping algorithms using one couple of application
and hardware graphs. These graphs are randomly generated using our pseudo-random generator.
Both graphs exhibit a hybrid structure and are more complex, in the organization, than a regular
SPS-CGRA. The purpose of this evaluation is to measure the performance of each mapping
algorithm against a possible worst-case scenario for them. A detailed example of a randomly
generated pair of graphs is given in Figure 8.23 (hardware graph) and Figure 8.24 (application
graph).
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Figure 8.25 shows the comparison of exploration time between the mapping algorithms. For
this evaluation, we only use 10000 random topological sortings of the hardware graph as input
of the SS-MAP T algorithm. As in the previous evaluations, the difference between mapping
algorithms is almost negligible, except for the SS-MAP that uses all topological sortings of the
hardware graph. In that case, we can see that the exploration time is more than 1000 seconds.
Also, the Q-learning that uses reward policies 2 and 3 takes more time than using reward policy
1.
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Figure 8.25 – Comparative of the exploration time of the first set of applications and the first
set of hardware graphs.

Figure 8.26 shows the training time. Notice the lower training time for reward policy 2.
Recall, that this policy emphasizes the parameters verification (Mvalid).
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Figure 8.26 – Training time of the Q-learning approaches.

Table 8.7 shows the resulting computing cost of all the mapping algorithms. TA-MAP and
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BB-MAP can achieve lower computing costs than both SS-MAP versions. As the complexity of
the hardware and application graph increases, the impact of a heuristic is more evident, and in
this case, the effect is shown through the computing cost. On the other hand, the Q-learning
mapping algorithm can obtain the same results as TA-MAP and BB-MAP. This indicates that
the agent can learn and the approach can match the performance of the list-based methods. The
lower training time of reward policy 2 is because the agent is focused on neither the complete
mapping nor the data dependence of all the tasks. This decreases the number of negative rewards
during training, and it can converge faster.

Table 8.7 – Comparative between mapping approaches according to the computing cost (ran-
domly generated graphs)

Number
of tasks Algorithm Computing

cost (clock cycles)
Exploration

time (seconds)

Randomly
generated
example 1

21

SS-MAP U 9216262 0.291
SS-MAP T 9216214 1277.667
TA-MAP 3072211 0.096
BB-MAP 3072211 0.237
Q-L POL 1 3072211 0.172
Q-L POL 2 3072211 0.578
Q-L POL 3 3072211 0.693

Lastly, in the case of randomly generated graphs, we could not perform the exhaustive
algorithm comparison since the exploration time became too long (months).

8.4 Real SPS-CGRA Example
In this section we present the last evaluation of the mapping and scheduling algorithms. We use
a real-life SPS-CGRA, the Morphological Co-Processor Unit (MCPU) [12] introduced in Section
1.4. The MCPU assembles several efficient dilation/erosion units with geodesic units and ALUs
to support a large collection of morphological operations. It is integrated as a coprocessor in an
FPGA-based platform. The MCPU follows the principles of an SPS-CGRA, with its pipeline-
based array of processing resources (Large SE pipeline and Geodesic Pipeline).

8.4.1 Hardware Model

Recall that in Section 3.5.5 we presented the modeling methodology of the MCPU as an example.
Here, we again depict in Figure 8.27 the hardware model of the MCPU. This is the hardware
graph that we will use in the evaluation.
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Figure 8.27 – Hardware model of the MCPU
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8.4.2 Application Graphs

In Section 2.5, we presented two applications and their modeling methodology. In this Section,
we use these two applications and show the obtained results of the mapping and scheduling
algorithms. We use the same metrics as the previous evaluations, computing cost and exploration
time.

Alternated Sequential Filter

The first example is an Alternated Sequential Filter (ASF) [118], presented in Section 2.5. The
ASF is extensively used to smooth objects in images, preserving the topology characteristics. It
is known for its computing cost. In our context, it represents a long linear pipeline of tasks with
the possibility to overpass the length of the hardware resources (Figure 8.28).

t0 t1 t2 t3 t4 t5

t6 t7 t8 t10t9

Figure 8.28 – Application model of the example ASF 4.

In this example we consider an ASF with λ = 4 : ASF 4. Table 8.8 presents the evaluation
of the implementation of the ASF 4 onto the MCPU. In this first example, the pipeline of tasks
exceeds the number of processing resources of a single time slot, so the necessary time slots had
been added automatically. As we can see in Table 8.8, the exploration time of the proposed
mapping and scheduling algorithms are significantly lower than the one of the exhaustive al-
gorithm. In Table 8.8, N/A means not applicable. In terms of computing cost, the list-based
algorithms can achieve the resulting value of the exhaustive. The Q-learning mapping algorithm
only achieves a near to optimal value with the second reward policy (see Table 8.1), which prior-
itize the verification of the parameters. A possible reason that the Q-learning algorithms do not
achieve good results is that the application is a pipeline. Thus it is formed by several subgraphs
with the same characteristic. This is the worst-case scenario for the Q-learning because the
agent cannot differentiate the tasks and find the best allocation for them.

Table 8.8 – Algorithms evaluation for the ASF application

Number
of tasks Algorithm Computing

cost (clock cycles)
Exploration

time (seconds)
Error
(%)

Alternated
Sequential

Filter (Pipeline
of tasks)

9

Exhaustive algorithm 2790499 47 hours N/A
SS-MAP U 2790499 0.0707 0%
SS-MAP T 2790499 122.059 0%
TA-MAP 2790499 0.0832 0%
BB-MAP 2790499 0.08319 0%
Q-L POL 1 5555313 0.269 100%
Q-L POL 2 2790500 2.99 0%
Q-L POL 3 5555307 0.109 100%

Road Line Detection

The second example in this evaluation is the road line detection application introduced in Section
2.5.2. This second application represents a highly parallel task organization. The principle is
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the computing of oriented linear openings of the input. As presented in 2.5.2, we only focus on
the part of the application that can be allocated onto the MCPU. Again, we present, in Figure
8.29 the application model that we will use in this evaluation.

t0 t1 t2 t3
t4 t5 t6

t7 t8 t9

t10 t11 t12

t13 t14 t15

t16 t17 t18

Figure 8.29 – Application model of the example of the road line orientation detection.

The large number of tasks and structure of the road line detection application represents
a challenge for the mapping algorithms. The exploration time for the complete application is
too huge using the exhaustive algorithm. But, the parallel structure of each linear subgraph
allows us to map each subgraph separately and search for the best combination of subgraphs in a
single time slot to achieve the lowest computing cost. Making these considerations, we manually
divide the application into a set of fourth linear subgraphs. For each set, we evaluate the
resulting mappings. Table 8.9 summarizes the results (N/A means not applicable). Notice that,
in this example, the Q-learning approaches work better than the other algorithms, especially
for the complete application (six subgraphs). The Q-learning algorithm can obtain results near
to the optimal. On the other hand, the results from the list-based algorithms are also good,
approaching by less than two digits percentage to the results of the exhaustive algorithm. In
terms of exploration time, the Q-learning approach can obtain good results. In some cases, it is
able to decrease the exploration time of other approaches by half.
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Table 8.9 – Algorithms evaluation for the Road line detection application

Number
of tasks Algorithm Computing

cost (clock cycles)
Exploration

time (seconds)
Error
(%)

Three subgraphs
t0, t1, t2, t3
t4, t5, t6
t7, t8, t9

6

Exhaustive 1853468 141.447 N/A
SS-MAP U 1859869 0.082 0.345%
SS-MAP T 1859869 71.9235 0.345%
TA-MAP 1859868 0.117 0%
BB-MAP 1859869 0.0869 0.345%
Q-L POL 1 1853469 0.48866 0.345%
Q-L POL 2 1853469 0.4560 0.345%
Q-L POL 3 1859869 0.4377 0.345%

Four subgraphs
t10, t11, t12

8

Exhaustive 1859868 7058.679 N/A
SS-MAP U 2794281 0.079 50%
SS-MAP T 1972669 98.09 6%
TA-MAP 1872668 0.096 0.68%
BB-MAP 1872669 0.0727 0.68%
Q-L POL 1 1859869 0.468 0%
Q-L POL 2 1859869 0.058 0%
Q-L POL 3 1872669 0.053 0.68%

Five subgraphs
t13, t14, t15

10

Exhaustive 2791721 192396.421 N/A
SS-MAP U 2798121 0.126 0.22%
SS-MAP T 2798121 154.133 0.22%
TA-MAP 2800681 0.152 0.32%
BB-MAP 2800683 0.0809 0.32%
Q-L POL 1 2798123 0.072 0.22%
Q-L POL 2 2798123 0.068 0.22%
Q-L POL 3 2794283 0.071 0.09%

Six subgraphs
t16, t17, t18

12

Exhaustive 2791721 +30 days N/A%
SS-MAP U 3732534 0.142 33.7%
SS-MAP T 2804523 162.216 0.45%
TA-MAP 2810921 0.144 0.68%
BB-MAP 2810923 0.086 0.68%
Q-L POL 1 3737660 0.087 33.88%
Q-L POL 2 2798123 0.069 0.22%
Q-L POL 3 2798123 0.08 0.22%

Figure 8.30 shows graphically the exploration time for both applications, where we can see
that the average exploration time for all algorithms, except SS-MAP T, is less than one second.
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Figure 8.30 – Comparative of the exploration time of the first set of applications and the first
set of hardware graphs.

Figure 8.31 shows the training time of the Q-learning approaches. Given that the complexity
of the structure of the MCPU, the resulting randomly generated applications are usually bigger
than the target application graphs. Clearly, the offline training time is longer than the online
training.
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Figure 8.31 – Training time of the Q-learning approaches.

8.5 Conclusions
In this experimental evaluation, we demonstrate the benefits of using our mapping and schedul-
ing algorithms. We present three types of experiments that took several months to be performed.
In the first one, we use several sets of experimental graphs to exhibit the performance and ex-
ploration time of the mapping algorithms. Next, we present an evaluation using a randomly
generated couple of hardware and application graphs. This evaluation demonstrates that our
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algorithms can be used for complex hardware interconnectivity and highly data-dependent ap-
plications. Finally, we use a real-life SPS-CGRA to show that our methodology can be used for
real-life cases.
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Chapter 9

Conclusions and Perspectives

In this manuscript, we presented a complete framework for easy reuse of SPS-CGRA. Effectively,
we propose to name SPS-CGRA a spatially-configured overlay [23], which may be based on
an FPGA, ASICs or System on Programmable Chip (SoC). More precisely, such SPS-CGRA
is a systolic, highly pipelined array of heterogeneous hardware resources that provides high
computing performance while decreasing computing latency. This hardware platform may be
reconfigured through software parameters programming without low-level reconfiguration. We
consider them as a highly pipelined hardware platform specialized in stream-based processing.
We presented a taxonomy of SPS-CGRA based on the works of Liu et al. [18], Wijtvliet et
al. [22], Hartenstein [58] and Chattopadhyay [60]. Our effort was to situate the SPS-CGRA
and its features in a known context, the one of CGRAs, since most of the SPS-CGRAs are
within the CGRA domain. Moreover, this taxonomy helps to exhibit the main features of an
SPS-CGRA that can also be found in an FPGA, ASIC, or SoC contexts. We presented several
representative examples of SPS-CGRA from various domains (deep learning, machine vision,
and others). We demonstrate that the main features of an SPS-CGRA are shared between all
the examples. Moreover, a generic framework of SPS-CGRA is an important contribution given
that no generic mature tool is available to reuse them easily.

The works realized during this manuscript have been presented into two main parts: modeling
and mapping algorithms. In addition, a list of papers and communications published during this
thesis is given on page 174.

9.1 Modeling
In Part I, we presented a new unified graph-based modeling framework for SPS-CGRA. This
modeling framework is based on hypergraphs and covers application, hardware, and imple-
mentation models. The use of hypergraphs allows the broadcast of data (application model)
and multiple types of interconnections (hardware and implementation model). The use of F-
hyperedges models the broadcast or interconnection of one origin to several successors, and the
use of an E-hyperedge that models the data dependence of one task with several predecessors
or the interconnection between a hardware resource and several predecessors.

In Chapter 2, we presented the application model, a specilization of the PiSDF model and
the AAM methodology. We presented the current state of the art of application models. Within
this study, we considered models that apply to other platforms such as multicore processors
and MPSoCs. We argue that a graph-based model, and specifically an extension of the PiSDF
model, could fulfill our requirements. We provide the means to model heterogeneous tasks
with different types of parameters (numerical constant, a boolean value, a string of characters).
Additionally, we include two subsets of tasks called sensor and actuators. These subsets allow
modeling the source and sink of data. This information is matched to their counterparts in the
hardware model. It ensures that the data to be processed is originated from the expected source
and consumed from the expected sink. We presented two real-life examples from the image
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processing domain. These two examples are well-known computing cost demanding and targets
SPS-CGRA based platforms. We illustrated the modeling process and demonstrated that our
proposed model is able to abstract both examples accurately.

In Chapter 3, we presented the hardware model for SPS-CGRA. It focuses on the modeling
of the latency properties of the hardware resources, all possible datapaths, and the memories.
We also proposed an original modelization of the configuration control resources, usually a set
of registers. The result is a new type of sequencer node that we named sCFG. This sequencer
node includes information on the configuration control function of all the hardware resources.
This important contribution allows to consider the configuration cost during the performance
evaluation of the whole application. We also showed that this is a feature that most of the current
work in this field do not include. Since the SPS-CGRA process the data in a stream-like fashion,
we model the latency of the processing resources through a composition of two functions that
we developed. Hence, we proposed to use an input latency function and a computing latency
function to compute the latency of each processing resource. Both latency functions depend
on the physical realizations of the hardware resource and the parameters of the allocated task.
Through several examples, we demonstrated how this contribution allows to compute accurate
estimations of the computing cost in terms of execution duration. Additionally, we include
the means to model the memories, the processing resources, and possible datapaths connecting
them. We illustrate the global modeling process through several experimental examples and one
real-life SPS-CGRA from the image processing domain.

After the definition of the new models of application and hardware architecture, in Chapter 4
we introduced the implementation model, together with a performance evaluation methodology
to compute an estimate of the upper bound of the computing cost of the implementation of an
application onto an SPS-CGRA. In line with the application and hardware graph, the imple-
mentation model consists of a weighted directed hypergraph, where the weight of the hyperedges
is the input latency of the head node. The implementation graph consists of instances of the
hardware graph configured to execute a subset of tasks. We named time slot each instance of
the hardware graph. We also introduced the notion of data dependency resources. This subset
of virtual hardware resources allows to model data dependency between datapaths, within the
same time slot, and data dependencies between time slots. This contribution helps to identify
a possible recomputation or reuse of data between time slots. Each hardware resource of the
implementation graph is described with the parameters and latency values defined during the
mapping and scheduling process. The implementation graph carries information on spatial and
temporal allocation of tasks, and also about latency values. This contribution allows not only
to execute a performance evaluation efficiently over the implementation graph using well-known
graph-based algorithms but also allows to optimize the resource usage by reuse/reprogramming
it into the same application. We presented a performance evaluation methodology that aims
to estimate the upper bound of the computing cost. This methodology consists of building the
evaluation graph, which results from graph transformations of the implementation graph, and
the compute of the critical path over this evaluation graph. The critical path is computed using
an original equation presented in this work. We demonstrated how this contribution allows to
compute the estimated upper bound of the computing cost at cycle accuracy. We presented
several experimental examples to illustrate the building process of the evaluation graph and one
example that shows the entire performance evaluation methodology.

9.2 Mapping Algorithms
After the definition of three new models in the first part of the manuscript, we need to exploit
them to build an optimized implementation of an application onto an architecture. This NP-
complete allocation and scheduling problem is covered in the second part of the manuscript.

Hence, in part II, we presented four mapping algorithms. We divide Part II into three
parts: list-based mapping algorithms, Q-learning mapping algorithm, and evaluation of mapping
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algorithms.
In Chapter 6, we presented three mapping algorithms of increasing complexity but also of

increasing efficiency. The list-based algorithms are differentiated upon the heuristic that they
use to select the processing resource that will execute a certain task. Firstly, we introduce SS-
MAP (SS-MAP stands for Single-Shot Mapping algorithm). This simple and relatively efficient
mapping algorithm takes as priority the topological order of both the hardware resources and
tasks. SS-MAP is defined into two versions, one with a single topological sorting of the hardware
graph and the second version exploring all possible topological sortings. The reasoning behind
this is that there may be several topological sortings of the hardware graph, and using only
one will impact the optimality of the final mapping. Using all topological sortings and selecting
the best mapping decreases the probability of failure to achieve a sub-optimal mapping. Since
SS-MAP does not include any heuristic and the outcome of this algorithm is based only on the
topological sorting it is a slow algorithm. This is why we developed and experimented with two
new different heuristics to improve its performance.

Our first heuristic, named TA-MAP (TA-MAP stands for Topology-Aware Mapping algo-
rithm), uses look-ahead techniques to select a resource, from a set of candidates, that will execute
a certain task. The heuristic is based on information about latency (computing latency) and
topological distances of the candidates. Then, this heuristic focuses on the possible allocation
of the successors of the task onto the descendants of the resource. This contribution allows to
select the best resource to execute a task, and furthermore, define if the successors of the task
will be able to be allocated onto the descendants of the selected resource. This feature allows
to eliminate the backtracking process used in the SS-MAP.

In order to get better results, we developed and implemented a second heuristic that we
named BB-MAP (BB-MAP stands for Bayes-Based Mapping algorithm). The BB-MAP is
a mapping algorithm based on the Bayes Theorem. We formulated the SPS-CGRA mapping
problem as: given that a task is allocated to a resource, what is the probability that the successors
of the task will be allocated onto the descendants of the resource. This formulation is based on
the previous heuristic, however, formalized into a Bayes problem. Although the results obtained
with BB-MAP are better (in some cases, a 90% decrease in exploration time without impact to
the computing cost) than SS-MAP and TA-MAP, we wanted to go further.

This is why in Chapter 7, we studied a Q-learning mapping algorithm. We formalize the
SPS-CGRA mapping problem as a reinforcement learning problem. This contribution allows
the use of the agent, environment, reward policy, and training policy, which are part of the
formalization, for other types of reinforcement learning algorithms. We define the mapping
function as the agent and the hardware graph as the environment. The agent will traverse the
hardware graph allocating tasks, and for each allocation, he will get a reward depending upon
the optimality of the allocation. We introduce a hierarchical reward policy. This contribution
helps the agent’s learning process, as it includes particular rewards for matching parameters,
degree matching, computing latency, and others. Also, we proposed a mix-nature training,
where an offline and an online training are performed. This contribution reduces the need for
a big data set. We used a random graph generator to create experimental graphs that will be
used for the offline training. During the online training, we use the application that we wanted
to map.

Finally, the last chapter is devoted to the experimental results. Effectively, all the models
presented in this manuscript have been implemented in a software tool developed from scratch
using the Python language. For that purpose, we also developed a new format of description-
configuration file. Then we implemented each allocation and scheduling algorithm variant (SS-
MAP, TA-MAP, BB-MAP, Q-Learning) progressively to compare them. The comparison is
made on two axes: the quality of the resulting mapping and scheduling, but also in terms of
the execution duration of each optimization algorithm. In order to validate our results on the
largest possible set of application and hardware couples, we developed a parametric random
graph generator. We also experimented with our tools on a real-life example taken from the
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image processing area, which is computing power demanding. Finally, all the comparative results
show the effectiveness of our approach: the BB-MAP/TA-MAP are well adapted for large graphs
that are usually computed in less than 200 milliseconds. BB-MAP should be preferred for highly
data-dependent applications (application graphs with an input/output degree higher than 3). At
the same time, TA-MAP seems to be more adapted to highly pipelined applications. Q-Learning
behaves better but requires many more resources (q-table memory usage) for its execution on
large applications.

9.3 Perspectives
We define the hardware graph as GHW (S,K), where the set of nodes (S) models the hardware
resources and the set of oriented hyperedges (K) models the hardware resources interconnections.
In this formalization, the hyperedges do not include any information of interconnection nor
standard. The hardware model may be enhanced by including the type of interconnection
(direct, bus) and standard of such interconnection (AXI, Avalon, Wishbone, etc.). We detail
that the latency of the processing resource consists of two functions, input latency function, and
computing latency function. This concept is well suited to stream-based processing. However, it
may not be suitable for others. A possible enhancement would be the concept of several latencies
functions, where different physical hardware realizations and different kinds of processing may
coexist.

In this work, we proposed a new format of configuration files. These configuration files are
the inputs of the complete framework. They describe both the application and the hardware.
A possible enhancement of our tool would be to use a well-known standard for the description
of both the application and hardware. IP-XACT is a format that defines and describes reusable
electronic circuit designs [232]. While IP-XACT can not be directly applied to describe an SPS-
CGRA, an extension may describe the latency features. Several works propose extensions to
IP-XACT to exploit it, as in [233].

We proved that, the list-based mapping algorithms presented in this work are efficient and
able to achieve a sub-optimal final mapping. Despite these features, our proposed q-learning
mapping algorithm may have better potential. It is able to learn different structures and achieve
better results on more complex structures than the list-based algorithms. However, as number
of nodes of both application and hardware graph increases, the Q-table increases as well. A
bottleneck arises when the Q-table starts to grown and saturates the RAM memory of the
system where the mapping is running. A possible enhancement is to use a deep q-learning
approach. With the use of a neural network, the required RAM usage decreases, thus allowing
to use the mapping algorithm for bigger graphs (both application and hardware). Additionally,
the formalization of the SPS-CGRA mapping problem into a reinforcement learning problem
may be suitable for other hardware platforms such as MPSoCs or multicore processors.

The presented evaluation validate our proof of concept of a complete framework able to
support an emerging class of architecture: the SPS-CGRA.
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