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ABSTRACT

In the 1990s, Gabidulin, Paramonov and Tretjakov proposed a McEliece type encryp-
tion system based on the difficulty of decoding a linear metric rank code [1]. Since the
complexity of decoding in rank-metric is exponentially more expensive with fixed param-
eters than Hamming metric decoding, the use of this metric allows to design encryption
systems with more compact keys. The underlying code family used is the Gabidulin code
family.

One of the objectives of this thesis is to study and design new primitives encryption
using rank metric codes. To do this, we will study the structure of a new family of codes,
derived from the Gabidulin codes. In 2005, Faure and Loidreau proposed a new rank-
metric cryptosystem [2] inspired from the Hamming metric scheme of Augot-Finiasz in
2003. In 2018, it was broken by the attack of Gaborit, Otmani and Kalachi [3]. Recently,
there are some attempts of repairing the Faure-Loidreau scheme, for example the work
of Renner, Puchinger and Wachter–Zeh which is called LIGA [4]. In this thesis, we also
introduce a new cryptosystem so-called RAMESSES [5] which is another repairing of
Faure-Loidreau scheme.

Besides, we also study about the recent attack of Coggia and Couveur [6] in the
Loidreau’s cryptosystem (2017) [7] . Although they only propose an idea for a special
case of the dimension of secret subspace, this attack can be generalized. In this thesis,
we propose an analysis of Coggia-Couvreur attack on Loidreau’s rank-metric public-key
encryption scheme in the general case.

The last part is a study about the decoding of the sum of Gabidulin codes which is
inspired from the work of Loidreau in 2005 "Welch-Berlekamp Like Algorithm for Decoding
Gabidulin Codes" [8]. This work is also an attempt to repair the Loidreau’s cryptosystem
(2017) to avoid the Coggia-Couveur’s attack.
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RÉSUMÉ FRANCAIS

Cryptographie et système de cryptographie à clé
publique

Tout au long de l’histoire du développement humain, l’échange d’informations a été un
élément indispensable de la société humaine. Avec la nécessité d’échanger des lettres sur
de longues distances, l’authentification, la confidentialité et l’intégrité des informations
deviennent partie intégrante des règles incontournables de la sécurité dans la communi-
cation. Dans l’histoire du développement du système de communication, il existe deux
types de cryptosystèmes. Le premier apparaît dès le départ, le cryptosystème qui repose
sur l’utilisation d’un secret partagé entre les utilisateurs. Ce type de systèmes est ce qu’on
appelle la cryptographie à clé secrète. Dans ce système, l’algorithme de chiffrement et de
déchiffrement ont la même clé et il est appelé chiffrement à clé symétrique, par exemple
des algorithmes DES, AES. La seconde apparaît après les recherches de Diffie et Hellman
[9], appelée cryptographie à clé publique, dans laquelle chaque utilisateur dispose de deux
clés : clé secrète et clé publique :

— La clé secrète est privée et utilisée pour le décodage

— La clé publique est publique et utilisée pour le encodage

La méthode de chiffrement et de déchiffrement est la suivante : l’expéditeur veut
envoyer le message au destinataire, il utilise la clé publique du destinataire pour chiffrer
le message par l’algorithme de chiffrement. Le récepteur reçoit le texte chiffré, il utilise
sa clé secrète dans l’algorithme de déchiffrement pour le transférer en texte clair. Étant
donné que la clé publique et la clé secrète de chaque personne sont généralement différentes
(dans certains cas, la clé publique est générée à partir de la clé privée par une fonction
unidirectionnelle), ce type de système est appelé cryptosystème asymétrique. L’un des
avantages les plus importants du système de chiffrement à clé publique est qu’il réduit
le nombre de clés de stockage utilisées pour un groupe d’utilisateurs. De nos jours, le
cryptosystème à clé publique a de nombreuses applications dans les domaines bancaire,
des télécommunications, Internet, etc.
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Code correcteur d’erreurs et cryptographie basée sur
le code

Ce n’est qu’au cours de la Seconde Guerre mondiale, avec l’avènement des technologies
de l’information et des modèles de communication créés par Shannon [10], que la cryp-
tographie a vraiment fait un grand pas en avant et a attiré plus d’attention. Le codage de
l’information apparaît comme une partie de la théorie de l’information du grand domaine.
L’échange de code via un canal bruyant implique au cœur du code correcteur d’erreurs,
qui a été introduit par Shannon dans l’article [11]. Dans cet article, basé sur l’idée de
Harry Nyquist et Ralph Hartley, il a prouvé que nous pouvons échanger des informations
sans erreur via un canal bruyant sur la capacité du canal. Ce théorème est appelé par la
suite théorème de codage de canal bruité.

Bien que la publication de Shannon nous montre l’existence du code qui atteint la
limite de Shannon, elle n’a pas montré comment construire de tels types de code. En
1950, Hamming a introduit une métrique [12], qui est devenue une métrique très connue
de nos jours : la métrique de Hamming. Sur la base de cette métrique, jusqu’à nos jours, de
nombreux types de code ont été construits tels que le code Reed-Solomon, BCH, etc,....
Ces familles de code bien construites nous apportent leur application intéressante non
seulement en théorie mais aussi dans la vie quotidienne comme les disques compacts [13],
la connexion internet ADSL [14], etc. En 1978, McEliece propose un cryptosystème à clé
publique à code [15], qui est à la base de cryptographie basée sur le code.

Codes en métrique rang et problématique

La sécurité du cryptosystème à clé publique basé sur le code dans [15] que propose
McEliece, repose sur la difficulté de résoudre le problème de décodage borné pour un
code linéaire en métrique de Hamming, qui a été prouvé comme un problème NP-difficile
[16]. Cela signifie qu’en général, il n’existe pas d’algorithme efficace pour résoudre ce
problème en temps polynomial. Cependant, le décodage par ensemble d’informations,
introduit par Prange en 1962 [17], nous montre une attaque pour les petits paramètres.
Par conséquent, pour garder un tel système toujours sécurisé, nous avons besoin d’une
taille de clés suffisamment grande.

La même année, Delsarte [18] et sept ans plus tard, en 1985, Gabidulin [19], ont
introduit et développé une nouvelle métrique dite métrique rang en [20]. Par la suite,
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Gabidulin, Paramonov et Tretjakov ont développé un nouveau cryptosystème de type
McEliece basé sur cette métrique, qui est appelé par la suite GPT-cryptosystem [21]. Ce
cryptosystème utilise l’algorithme de encodage et de décodage des codes Gabidulin. Pour
comparer avec l’autre cryptosystème de type McEliece basé sur la métrique de Hamming,
celui-ci a besoin d’une taille de clé plus petite. Théoriquement, pour le même ensemble
de paramètres, cela pourrait nous donner un niveau de sécurité plus élevé.

Gabidulin codes

En 1962, Singleton a introduit une limite pour la distance minimale d’un code [22]. Le
type de codes dont la distance minimale atteint la limite de Singleton attirent beaucoup
d’intérêt et d’attention. Dans son propre article [19], Gabidulin a comparé les propriétés
de la métrique de Hamming et de la métrique de rang et a constaté que dans le cas de
la métrique rang, nous avons également la borne de Singleton pour la distance minimale,
la même que la métrique de Hamming. En conséquence, cela conduit à la recherche des
codes dont la distance minimale atteint la borne de Singleton (dans le cas de la métrique
de Hamming, ce sont les codes dits MDS et pour la métrique rang, il s’agit du code MRD).
Dans la section 1.2.1, Gabidulin a montré un moyen de créer une « équivalence » du code
Reed Solomon en métrique rang, appelée code de Gabidulin. Ces codes sont des MRD
avec un algorithme efficace pour le décodage jusqu’à sa capacité d’erreur (par exemple,
l’algorithme de Loidreau dans [8], que j’ai implémenté dans MAGMA, voir https://
github.com/BaDucPham/RAMESSES/blob/main/DecGab.mgm). Ces codes jouent un rôle
important dans le développement de la cryptographie basée sur le code métrique rang,
en particulier le cryptosystème de type GPT. Cependant, de nombreux systèmes de type
GPT étaient en panne. La principale faiblesse de ces systèmes repose sur le fait que
les codes de Gabidulin sont vulnérables à l’attaque invariante puisqu’ils contiennent un
immense espace vectoriel invariant par l’action de l’automorphisme de Frobenius.

Cryptographie post-quantique

Le cryptosystème à clé publique dont la sécurité repose sur l’un des trois problèmes
difficiles : la factorisation en nombres entiers, le logarithme discret dans les corps finis
ou le logarithme discret à courbe elliptique, peut être brisé sur un ordinateur quantique
suffisamment puissant. Il répond aux besoins de la cryptographie Post-quantique, qui a
beaucoup retenu l’attention (conférence PQCrypto depuis 2006 par exemple). Pour la
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cryptographie basée sur le code, l’un des candidats les plus connus pour la cryptographie
post-quantique est le cryptosystème McEliece.

Avec la probabilité croissante de l’existence d’un ordinateur quantique dans un futur
proche, il est devenu important de proposer des alternatives aux cryptosystèmes à clé
publique et aux protocoles d’échange de clés existants basés sur la théorie des nombres.
Le récent processus de normalisation de la cryptographie post-quantique du NIST motive
des propositions dans ce sens. Avec la cryptographie basée sur lattice, la cryptographie
basée sur le code est la plus représentée parmi les propositions de cryptosystèmes ou de
mécanismes d’encapsulation de clé (KEM). Les soumissions basées sur le code reposent
de manière générique sur la dureté des problèmes de décodage, soit dans la métrique de
Hamming, soit dans la métrique rang. Les problèmes de décodage métrique de Hamming
bénéficient d’une étude de longue date et de peu d’améliorations pratiques depuis plus
de cinquante ans, ce qui atteste de leur sécurité. A l’inverse, les problèmes de décodage
de métriques rang sont étudiés depuis moins de vingt ans [23], et leur complexité de
résolution n’est pas encore totalement stabilisée (voir les résultats récents de [24]). Néan-
moins, ils bénéficient de clés beaucoup plus courtes et semblent très attrayants pour une
mise en œuvre pratique, aboutissant à des soumissions pour le processus de normalisation
NIST [25, 26]. Afin de réduire encore les tailles de clés, les concepteurs utilisent souvent des
structures spécifiques comme quasi-cyclicité (équivalent du Module-LWE pour les treillis)
qui pourraient être suspectées d’introduire des faiblesses supplémentaires [27].

Organisation de ma thèse

Dans ma thèse, je m’intéresse au cryptosystème de type GPT. Il a été motivé par
l’étude de certaines recherches de mon directeur, professeur Pierre Loidreau, dans son
cryptosystème, le cryptosystème Faure-Loidreau dans [2] et le récent dans [7]. Mal-
heureusement, ces systèmes ont été récemment attaqués, les premiers ont été attaqués
par Gaborit, Otmani et Kalachi dans [3] et les seconds dans l’article de Coggia et Cou-
vreur [6]. Toutes ces recherches m’ont inspiré à étudier davantage la structure du code
Gabidulin et à trouver un moyen de réparer ou de modifier le système pour résister à
l’attaque.

Cette thèse est organisée comme suit :

— chapter 1 Le premier chapitre porte sur l’extension de l’attaque Coggia et Couvreur
sur le cryptosystème de Loidreau. Cette attaque est basée sur l’idée de la faib-
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lesse du code Gabidulin par le distingueur d’Overbeck, que nous pouvons distinguer
les codes Gabidulin des codes aléatoires. De plus, comme beaucoup d’autres cryp-
tosystèmes de type GPT, le cryptosystème de Loidreau montre toujours la faiblesse
de la structure algébrique. Bien qu’il puisse parfaitement éviter l’attaque directe
du distinguateur dans le code public, Coggia et Couvreur ont tout de même ex-
ploité un autre distinguateur pour le dual code du code public pour le paramètre
secret λ = 2. Récemment, il a été étendu par Ghatak dans [28] pour le cas de
λ = 3 mais il était incomplet. Ce chapitre concerne mon travail de généralisa-
tion de cette attaque pour le cas de tout λ et la considération sur la complex-
ité de cette attaque et le comblement du vide pour le cas λ = 3 pour montrer
l’efficacité de l’attaque dans ce cas. L’implémentation dans MAGMA peut être vue
dans https://github.com/BaDucPham/Coggia-and-Couvreur-attack

— chapter 2 Le deuxième chapitre porte sur un nouveau cryptosystème qui s’inspire du
cryptosystème Faure-Loidreau, dans lequel, nous considérons le texte clair comme
l’espace des lignes d’une erreur. Dans cette section, dans un premier temps, nous
présenterons un cryptosystème de type Augot-Finiasz et ensuite, étudierons sa sécu-
rité en considérant la complexité de certaines attaques connues sur celui-ci. Récem-
ment, ce cryptosystème a été brisé lors de l’attaque Bombar-Couveur dans [29]. Par
conséquent, à la fin, nous présenterons l’idée de Bombar et Couvreur pour casser ce
système.

— chapter 3 Le dernier chapitre est mon travail sur la structure des codes de Gabidulin.
De l’idée d’utiliser des q-polynômes reconstruits pour le décodage des codes de
Gabiduline [8], notre travail porte sur le décodage de la somme des codes de Gabidu-
line. Ce travail est également issu d’une tentative de modification du cryptosystème
Loidreau [7] pour résister à l’attaque Coggia et Couvereur [6]. Bien qu’il n’y ait
aucune preuve de la résistance de cette modification à cette attaque, elle a encore
quelques applications. Dans ce chapitre, je présenterai le décodeur en temps poly-
nomial pour la somme des codes de Gabiduline avec une probabilité de défaillance
exponentiellement faible et ensuite, j’introduire certaines de ses applications dont
une idée sur le remplacement du code de Gabiduline par la somme des codes de
Gabiduline dans le Loireau cryptosystem et ma propre supposition sur la résistance
de cette modification contre l’attaque Coggia et Couvereur.
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Le résultat du premier chapitre est un article en cours et présenté à CBCrypt 2021,
le deuxième est un article pré-imprimé et le troisième est publié dans la conférence ISIT
2021 (International Symposium on Information Theory).
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INTRODUCTION

Cryptography and public key cryptosystem

Throughout the history of human’s development, the exchange of information has
been an indispensable part of human society. With the need of exchanging letters back
and forth over long distances, the authentication, confidentiality and information integrity
become the integral parts of the inevitable rules of the security in communication. In the
history of the development of the communication system, there are two kinds of cryptosys-
tems. The first one appears from the beginning, the cryptosystem which relies on using
a shared secret between users. This kind of systems is so-called secret key cryptography.
In this system, the algorithm of encryption and decryption have same key and it is called
symmetric key cipher, for example DES, AES algorithms. The second one appears after
the research of Diffie and Hellman [9], called public key cryptography, in which each user
has a couple of keys: secret key and public key:

— The secret key is private and used for the decryption

— The public key is public and used for the encryption

The method of encryption and decryption is as follows: the sender wants to send
message to the receiver, he uses the receiver’s public key to encrypt the message by the
encryption algorithm. The receiver receives the cipher text, he uses his secret key in the
decryption algorithm to transfer into plaintext. Since the public key and secret key for each
person is generally different (in some case, the public key is generated from the private
key by an one-way function), this kind of system is called asymmetric cryptosystems. One
of the most important advantages of the public key cryptosystem is that it reduces the
number of used keys storage for a group of users. Nowadays, public key cryptosystem has
a lot of applications in banking, telecommunication, internet, etc.
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Error-correcting code and code based cryptography

It was not until World War II, with the advent of the information technology and the
communication models created by Shannon [10], that the cryptography really received a
big move and earned more attention. The information coding appears as a part of the
large domain information theory. The exchanging code through a noisy channel implies
to the core of error-correcting code, which was introduced by Shannon in the paper [11].
In this paper, based on the idea of Harry Nyquist and Ralph Hartley, he proved that we
can error-freely exchange information through noisy channel upon the channel capacity.
This theorem is after called the noisy channel coding theorem.

Although the publication of Shannon shows us the existence of the code that reach
the Shannon’s limit, it did not show how to construct such kinds of code. In 1950, Ham-
ming introduced a metric [12], which has become a very well known metric nowadays:
Hamming metric. Based on this metric, until nowadays, a lot of types of code have been
constructed such as Reed-Solomon code, BCH, etc,.... These well-constructed families of
code therefrom bring to us their interesting application not only in theory but also in daily
life such as compact disks [13], internet connection ADSL [14], etc. In 1978, McEliece pro-
poses a code-based public-key cryptosystem [15], which is the foundation of code-based
cryptography.

Codes in rank metric and problematic

The security of the code-based public-key cryptosystem in [15] which McEliece pro-
poses, relies on the hardness of solving the bounded decoding problem for a linear code in
Hamming metric, which was proven as NP- hard problem [16]. It means that, in general,
there does not exist an efficient algorithm to solve this problem in polynomial time. How-
ever, the information set decoding, which was introduced by Prange in 1962 [17], shows
us an attack for the small parameters. Hence, to keep such system still secure, we need a
sufficiently large size of keys.

In the same year, Delsarte [18] and seven years later, in 1985, Gabidulin [19], intro-
duced and developed a new metric so-called a rank metric in [20]. Afterwards, Gabidulin,
Paramonov and Tretjakov developed a new McEliece-like cryptosystem based on this met-
ric, which is after called GPT-cryptosystem [21]. This cryptosystem uses the encryption
and decryption algorithm of the Gabidulin codes. To compare with the other McEliece-like
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cryptosystem based on Hamming metric, this one needs a smaller key size. Theorically,
for the same set of parameters, it might give us a higher level of security.

Gabidulin codes

In 1962, Singleton introduced a bound for the minimum distance of a code [22]. The
kind of codes whose minimum rank distance reaches Singleton bound attract a lot of
interest and attention. In his own paper [19], Gabidulin compared the properties of Ham-
ming metric and rank metric and found that in the case of rank metric we also have
the Singleton bound for the minimum distance, the same as Hamming metric. As con-
sequence, it leads to the research about the codes whose the minimum rank distance
reaches Singleton bound (in case of Hamming metric, it is the so-called MDS codes and
for rank metric, it is MRD code). In Section 1.2.1, Gabidulin showed a way to created
an "equivalence" of Reed Solomon code in rank metric, called Gabidulin code. These
codes are MRD with an efficient algorithm for the decoding up to its error capacity (for
example, the Loidreau’s algorithm in [8], which I have implemented in MAGMA, see
https://github.com/BaDucPham/RAMESSES/blob/main/DecGab.mgm). These codes play
an important role in the development of rank metric code based cryptography, especially
the GPT-like cryptosystem. However, many of GPT-like systems were broken. The main
weakness of these systems relies on the fact that Gabidulin codes are vulnerable against
the invariant attack since they contain a huge vector space invariant by the action of the
Frobenius automorphism.

Post quantum cryptography

The public key cryptosystem whose security relies on one of three hard problems: the
integer factorization, the discrete logarithm in finite fields or the elliptic-curve discrete log-
arithm, can be broken on a sufficiently powerful quantum computer. It tends to the needs
of the Post-quantum cryptography, which has attracted a lot of attention (PQCrypto con-
ference since 2006 for example). For code based cryptography, one of the most well-known
candidates for the post-quantum cryptography is McEliece cryptosystem.

With the growing probability of the existence of a near-future quantum computer, it
has become important to propose alternatives to existing public-key encryption schemes
and key exchange protocols based on number theory. The recent NIST Post-Quantum
Cryptography Standardization process motivates proposals in this sense. Along with
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lattice-based cryptography, code-based cryptography is the most represented among pro-
posals for encryption schemes or key-encapsulation mechanisms (KEMs). Code-based sub-
missions generically rely on the hardness of decoding problems, either in the Hamming
metric or in the rank metric. Hamming metric decoding problems enjoy a long-standing
study and few practical improvements for more than fifty years, which ascertain their
security. On the opposite, rank metric decoding problems have been studied for less than
twenty years [23], and their solving complexity is not yet fully stabilized (see the recent re-
sults of [24]). Nevertheless, they benefit from much shorter keys and seem very attractive
for practical implementation, culminating in submissions for the NIST standardization
process [25, 26]. So as to further reduce the key sizes, designers often use specific struc-
tures as quasi-cyclicity (equivalent of Module-LWE for lattices) which could be suspected
to introduce additional weaknesses [27].

Organization of my thesis

In my thesis, I am interested in GPT-like cryptosystem. It was motivated from the
study about some researche of my supervisor, professor Pierre Loidreau, in his cryptosys-
tem, the Faure-Loidreau cryptosystem in [2] and the recent one in [7]. Unfortunately,
these systems have been recently attacked, the former were attacked by Gaborit, Otmani
and Kalachi in [3] and the latter in the paper of Coggia and Couveur [6]. All of these
researches inspired me to study more about the structure of Gabidulin code and find a
way to repair or modify the system to resist against the attack.

This thesis is organized as follows:

— chapter 1 The first chapter is about the extension of the Coggia and Couveur attack
on Loidreau’s cryptosystem. This attack is based on the idea about the weakness of
Gabidulin code by the Overbeck’s distinguisher, that we can distinguish Gabidulin
codes from random ones. Moreover, the same as many other GPT-like cryptosystem,
Loidreau’s cryptosystem still shows the weakness in algebraic structure. Although
it can perfectly avoid the direct distinguisher attack into the public code, Coggia
and Couveur still exploited another distinguisher for the dual code of the public
code for the secret parameter λ = 2. Recently, it was extended by Ghatak in [28]
for the case of λ = 3 but it was incomplete. This chapter is about my work of
the generalisation of this attack for the case of any λ and the consideration about
the complexity of this attack and filling the gap for the case λ = 3 to show the
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efficiency of the attack in this case. The implementation in MAGMA can be seen in
https://github.com/BaDucPham/Coggia-and-Couvreur-attack

— chapter 2 The second chapter is about a new cryptosystem which is inspired from
the Faure-Loidreau cryptosystem, in which, we consider the plaintext as the row
space of an error. In this section, firstly, we will introduce a Augot-Finiasz-type
cryptosytem and afterwards, study about its security by considering the complexity
of some known attacks on it. Recently, this cryptosystem was broken under the
Bombar-Couveur attack in [29]. Therefore, in the end, we will introduce the idea of
Bombar and Couveur to break this system.

— chapter 3 The last chapter is my work about the structure of Gabidulin codes. From
the idea of using reconstructing q-polynomials for the decoding of Gabidulin codes
[8], our work is about the decryption of the sum of Gabidulin codes. This work also
comes from an attempt to modify the Loidreau cryptosystem [7] to resist against the
Coggia and Couveur attack [6]. Although there is no proof about the resistance of
this modification from this attack but it still has some applications. In this chapter,
I will introduce the polynomial time decoder for the sum of Gabidulin codes with
an exponentially small failure probability and afterwards, I introduce some of its
applications including an idea about the replacement of Gabidulin code by the sum
of Gabidulin codes in the Loireau’s cryptosystem and my own supposition about
the resistance of this modification against the Coggia and Couveur attack.

The result of first chapter is a paper which is ongoing work and presented at CBCrypt
2021, the second one is a pre-print paper and the third one is published in the conference
ISIT 2021 (International Symposium on Information Theory).

5

https://github.com/BaDucPham/Coggia-and-Couvreur-attack




Chapter 1

AN ANALYSIS OF COGGIA-COUVREUR

ATTACK ON LOIDREAU’S RANK-METRIC

PUBLIC-KEY ENCRYPTION SCHEME IN

THE GENERAL CASE

Since the use of Fqm-linear rank metric permits to design a short public key encryption
scheme, one of the directions of code based cryptography consists in instantiating McEliece
encryption scheme [30] with codes in rank metric, [1, 31].

Because of the structure of Gabidulin codes, any cryptosystem instantiated with codes
containing Gabidulin codes not sufficiently scrambled was attacked [32]. In 2017, Loidreau
proposed a scheme based on Gabidulin codes masked with a small dimensional vector
space [7]. If the dimension of the vector space is two small, then there exists a very simple
polynomial-time distinguishing algorithm.

The question was to know if distinguishing is enough to break. Coggia and Couvreur
[6] showed that in the case where the dimension of the masking space is 2, a decryption
procedure can be recovered in polynomial-time. This attack exploited a distinguisher on
the dual of the public code. Their approach gives the possibility for cryptanalysis of
rank-metric schemes for any λ.

In this work we show that this can be extended to any dimension. The attack is not
necessary polynomial, but we include the previous results. Moreover we are able to prove
rigorously under some assumptions the efficiency of the attack.

Besides, recently, the extended Coggia-Couveur’s attack [28] claimed the attack for
the case where the dimension of the masking space is 3 and in this paper, the author uses
only one reduced polynomial to determine the secret subspace but their assumption is
not clear in practice. In our way, instead of one polynomial equation, we use a system of
polynomial equations. This approach gives us a proof for the equivalence between the set
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Chapter 1 – An analysis of Coggia-Couvreur Attack on Loidreau’s Rank-metric
public-key encryption scheme in the general case

of roots and the orbit of one root under the action of PGL(3,Fq). From this, we complete
the polynomial time key recovery attack in case where the dimension of the masking space
is 3.

In this chapter, the first section gives some preliminaries and notations. Section 2
outlines Loidreau’s scheme and describes the distinguisher between the dual of the public
code and random codes in 3.1 and afterwards, the key recovery attack in 3.2. In 3.3, we
analyze the complexity of the attack for the specific case λ = 3.

1 Preliminaries and notations

Let q be a power of a prime and let Fq denote the finite field of order q. We consider
the finite field extension of degree m: Fqm/Fq. We use Fm×nq to denote the set of all m×n
matrices over Fq and Fnqm for the set of all row vectors of length n over Fqm .

Let θ be a generator of the Galois group Gal(Fqm/Fq). For instance, it could be the
mapping x↦ x

q, but everything we write stays true for any generator of the Galois group.
Moreover, for simplicity, we denote by x[i] the value θi(x).

In this setting, we define the skew polynomial ring or Ore ring [33] denoted by
Fqm[X; θ] by defining the usual operations
— Addition is classical addition ;

— X ⋅ a = θ(a) ⋅X
With these operations, this ring is left and right Euclidean. We denote by P ⟨X⟩ =

∑`

i=0 piX
i any element P of Fqm[X; θ] of degree ` to distinguish it from the usual poly-

nomial ring.
There are several ways to define an evaluation map on this ring [34]. Here, we choose

the so-called operator evaluation, meaning that for any α in some finite field where the
action θ is meaningful (for instance any finite field with the same characteristic as Fq),
we have

∀P ∈ Fqm[X; θ], P ⟨α⟩ def
=

`

∑
i=0

piθ
i(α)

If θ corresponds to the Frobenius automorphism, then this evaluation corresponds to the
evaluation of so-called ring of linearized polynomials defined in [34]. We naturally extend
the notion of evaluation to a vector :

∀y = (y1, . . . , yn), P ⟨y⟩ = (P ⟨y1⟩, . . . , P ⟨yn⟩)
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Let M be a matrix over Fqm , we denote by rkq(M) and rkqm(M) its rank over Fq
and Fqm , which is the dimension of the vector space generated by the columns ofM over
Fq (Fqm respectively)

Let β = (β1, . . . , βm) ∈ Fmqm be a basis of Fqm over Fq. We define the extension map

Extβ ∶ Fnqm → Fm×nq

a = (a1, . . . , an) ↦ A = (α⊤1 , . . . ,α⊤n )

where, for all 1 ≤ j ≤ n, the vector αj ∈ Fmq consists of coordinates of aj ∈ Fqm in the
basis β, i.e. aj = ∑n

i=1 βiAi,j. In particular, for every A ∈ Fn×nq , we have Extβ(βA) = A.
The rank of a ∈ Fnqm , denoted rk(a), is defined as rkq(Extβ(a)). Notice that rk(a)

does not depend on the choice of the basis β
In this setting, Gabidulin codes are defined as evaluation codes of skew polynomials

over linearly independent elements.

Definition 1 ([35, 36]). Let g = (g1, . . . , gn) ∈ Fnqm, formed with Fq-linearly independent
elements. The Gabidulin code of dimension k and of support g denoted by Gk(g) is defined
by

Gk(g) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
f⟨g⟩,

f ∈ Fqm[X; θ]
deg(f) ≤ k − 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭

In the following, and since we are in finite fields we will simply call them Gabidulin
codes rather than Generalized Gabidulin codes.

2 The encryption scheme

2.1 Generalities

Let G a random generator matrix of a Gabidulin code Gk(g). Fix an integer λ ≤ m

and an Fq-vector subspace V of Fqm of dimension λ. Let P ∈ GL(n,Fqm) whose entries
are all in V . Then, let

Gpub = GP
−1

— KeyGen: Public key (Gpub, t) where t = ⌊n−k2λ ⌋
Secret key (g,P )
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— Encryption: Given a plaintext m ∈ Fkqm , choose e ∈ Fnqm of rank weight t. The
ciphertext is:

c =mGpub + e

— Decryption:
— Compute cP =mG + eP .
— Decode in Gk(g) and rk(eP ) ≤ tλ ≤ n−k

2

Let us denote by Cpub the code generated by Gpub and by C⊥pub, the dual code. Let
Hpub be a generator matrix of C⊥pub. It is immediate that

Hpub =HsecP
T

where Hsec is a parity-check matrix of Gk(g).

2.2 Goal of a reconstructing attack and solution set

Our main goal is to design a reconstructing attack from the knowledge of C⊥pub and
under some particular sets of parameters.

W.l.o.g, one can suppose that 1 ∈ V . Suppose that V = ⟨1, β1, . . . , βλ−1⟩Fq for some
{βi}λ−1

i=1 ∈ Fqm\Fq. Therefore, P T can be decomposed into

P
T
= P0 +

λ−1

∑
i=1

βiPi

where Pi are n × n matrices with entries in Fq not necessarily invertible.
Let C⊥sec the dual code of Gk(g). Thus, C⊥sec = Gn−k(a) for some a ∈ Fnqm with rk(a) = n.

We define
h0 = aP0,h1 = aP1, . . . ,hλ−1 = aPλ−1

Lemma 1. The code C⊥pub is spanned by h[i]
0 +

λ−1
∑
j=1

βjh
[i]
j for i = 0, . . . , n − k − 1

Proof. For any c ∈ C⊥pub, there exists P ∈ Fqm[X; θ] of degree smaller than n − k such
that

c = P ⟨a⟩P T
= P ⟨a⟩P0 +

λ−1

∑
i=1

βiP ⟨a⟩Pi = P ⟨h0⟩ +
λ−1

∑
i=1

βiP ⟨hi⟩
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Let us define the so-called solution set of the encryption scheme

Definition 2 (Solution set). The set S of all (h, β) ∈ (Fnqm)λ × Fλ−1
qm such that

C⊥pub = ⟨h[i]
0 +

λ−1

∑
j=1

βjh
[i]
j , i = 0, . . . , n − k − 1⟩ (1.1)

where ∀j = 0, . . . , λ, hj has rank n and ⟨1, β1, . . . , βλ−1⟩Fq has dimension λ is called
solution set of the encryption scheme.

It is obvious that finding an element of the solution set S implies the ability to design a
polynomial-time decryption algorithm. What we call a reconstructing attack corresponds
to finding an element in S. The solution set S has the following properties.

Proposition 1. Let (h, β) ∈ (Fnqm)λ × Fλ−1
qm . Let A = (aj,i)λ−1

j,i=0 ∈ GLλ(Fq). Let us define
the following group action on (Fnqm)λ × Fλ−1

qm by A ⋅ (h, β) = (h′, β ′) where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

hj =

aj,0h
′
0 +

λ−1
∑
i=1

aj,ih
′
i

a0,0 +
λ−1
∑
i=1

ai,0βi

, j = 0, . . . , λ − 1

β
′
j =

a0,j +
λ−1
∑
i=1

ai,jβi

a0,0 +
λ−1
∑
i=1

ai,0βi

, j = 1, . . . , λ − 1

1. Then if (h, β) ∈ S we have A ⋅ (h, β) ∈ S

2. Moreover let A = {B ∈ GLλ(Fq)∣∃c ∈ F∗q ,B = cA} . Then, for any B ∈ A, and
for any (h, β) ∈ (Fnqm)λ × Fλ−1

qm we have

A ⋅ (h, β) = B ⋅ (h, β)

Proof. Let (h, β) ∈ S. Since from the definition of S the elements 1, β1, . . . , βλ−1 are
Fq-linearly independent, and since A is non singular, (a0,0, . . . , a0,λ−1) ≠ 0 this implies

that a0,0 +
λ−1
∑
i=1

a0,jβi ≠ 0. Therefore, the elements β ′1, . . . , β
′
λ−1 are well defined and for all

0 ≤ ` ≤ n − k − 1,

11



Chapter 1 – An analysis of Coggia-Couvreur Attack on Loidreau’s Rank-metric
public-key encryption scheme in the general case

h
′[`]
0 +

λ−1

∑
j=1

β
′
jh

′[`]
j

=
1

a0,0 +
λ−1
∑
i=1

ai,0βi

((a0,0 +
λ−1

∑
i=1

ai,0βi)h′
[`]
0 +

λ−1

∑
j=1

(a0,j +
λ−1

∑
i=1

ai,jβi)h′
[`]
j )

=
1

a0,0 +
λ−1
∑
i=1

ai,0βi

⎛
⎜
⎝
(a0,0h

′
0 +

λ−1

∑
j=1

a0,jh
′
j)

[`]

+
λ−1

∑
i=1

βi (ai,0h′0 +
λ−1

∑
j=1

ai,jh
′
j)

[`]⎞
⎟
⎠

=(a0,0 +
λ−1

∑
i=1

ai,0βi)
[`]−1

(h[`]
0 +

λ−1

∑
i=1

βih
[`]
i )

Therefore

C⊥pub
def
= ⟨h[`]

0 +
λ−1

∑
i=1

βih
[`]
i , 0 ≤ ` ≤ n − k − 1⟩ = ⟨h′[`]0 +

λ−1

∑
i=1

β
′
ih
′[`]
i , 0 ≤ ` ≤ n − k − 1⟩

Thus, (h′, β ′) ∈ S.

For the second point of the proposition : Let B ∈ A. It means that there exists c ∈ F∗q
such that BA−1

= cI or equivalently B = cA.

Let (h′′, β ′′) def
= B ⋅ (h′, β ′) , where (h′, β ′) = A ⋅ (h, β) ∈ (Fnqm)λ×Fλ−1

qm . It means that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h
′
j =

bj,0h
′′
0 +

λ−1
∑
i=1

bj,ih
′′
i

b0,0 +
λ−1
∑
i=1

bi,0βi

, j = 0, . . . , λ − 1

β
′′
i =

b0,j +
λ−1
∑
i=1

bi,jβi

b0,0 +
λ−1
∑
i=1

bi,0βi

, j = 1, . . . , λ − 1

It is obvious that the actions of 2 matrix A,B give us same image, which is (h′′, β ′′) =
(h′, β ′).
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3 Attacks on the system

Now the section is organised as follows: In a first part we make a brief summary of
the attack. Since it is technical, this section highlights the different principles. In first
subsection, we introduce the distinguisher between the dual of the public code and the
random codes. Afterwards, we make some assumptions in the beginning and under these
assumptions, we exploit the attack based on the distinguisher introduced in 3.1. We also
consider the special case of λ = 3 and analyze its complexity in the section 3.3.

We will also need to introduce a special setting to simplify the technicalities of the
proofs. For any (h, β) ∈ S, we denote

y
[u,j]
(h,β) = h

[j]
0 +

λ−1

∑
i=1

β
[u]
i h

[j]
i

for any integers (u, j). For a given (h, β), to simplify, we denote it by y[u,j]. Moreover,
we can denote y[M]

= {y[u,j]
, (u, j) ∈ M ⊂ Z × Z}. The codes that we will consider will

be generated by the y[u,j], where (u, j) ∈ Z × Z. Let I ⊂ Z × Z. We denote by

CI
def
= ⟨y[u,j]

, (u, j) ∈ I⟩ ,

if I is non-empty and C∅
def
= {0}. From the expression of C⊥pub in Definition 2, we have

C⊥pub = C{0}×[0,...,n−k−1] (1.2)

Now we introduce a very fundamental theorem which will support all of our future
proofs

Theorem 1 (CodeSet theorem). We have

∀I, J ⊂ Z × Z,
⎧⎪⎪⎪⎨⎪⎪⎪⎩

CI∪J = CI + CJ
CI∩J ⊂ CI ∩ CJ

If moreover M ⊂ Z × Z, where y[u,j]
, (u, j) ∈M are Fmq linearly independent, then

— for all I ⊂M, dim(CI) = ∣I∣
— ∀I, J ⊂M, CI ∩ CJ = CI∩J
— ∀I, J ⊂M, CI⊔J = CI ⊕ CJ , where ⊔ means that the sets do not intersect.
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Proof. The code generating set for CI + CJ is the union of generating sets for CI and CJ ,
since y[I] and y[J] are generating sets respectively for CI and CJ then y[I∪J] is a generating
set for CI + CJ . Hence CI∪J = CI + CJ . Now the generating set y[I∩J] of CI∩J is included in
the generating set of CI and of CJ . Therefore CI∩J ⊂ CI ∩ CJ .

Let us consider now M such that y[M] is formed with linearly independent vectors.
It is immediate that for any I ⊂M , a basis of CI is y[I], therefore the dimension of CI is
exactly equal to ∣I∣. Let c ∈ CI ∩ CJ . We have

c = ∑
(u,j)∈I

cu,jy
[u,j]

= ∑
(u,j)∈I\J

cu,jy
[u,j]

+ ∑
(u,j)∈I∩J

cu,jy
[u,j]

and similarly

c = ∑
(u,j)∈J

c
′
u,jy

[u,j]
= ∑

(u,j)∈J\I
c
′
u,jy

[u,j]
+ ∑

(u,j)∈I∩J
c
′
u,jy

[u,j]

Since by hypotheses on M , the y[M] are linearly independent, this implies the equality of
the coefficients on this bases and thus that cu,j = 0, for (u, j) ∈ I \J . Therefore, c ∈ CI∩J .

The last item comes from the fact that is I and J do not intersect then I ∩ J = ∅,
thus CI ∩ CJ = {0}.

3.1 A distinguishing attack in the general case

We show that if n, k, λ satisfy k > (λ−1)n
λ

+ 1, then one can distinguish the public-code
from a random code in polynomial time. First we prove the following theorem.

Theorem 2. dimFqm (C⊥pub + C⊥pub
[1]
+ ⋅ ⋅ ⋅ + C⊥pub

[λ]) ≤ λ(n − k) + λ

Proof. Let S0
def
=

λ−1
∑
i=0

C⊥pub
[i]
. We want to show that dim (S0 + C⊥pub

[λ]) ≤ λ(n− k)+λ. For

any (h, β) ∈ S from the expression of C⊥pub under the form (1.2) and from the CodeSet
theorem we obtain

S0 = CS0 , where S0 =

λ−1

⨆
u=0

{u} × [u, n − k + u − 1]

and
C⊥pub

[λ]
= C{λ}×[λ,n−k+λ−1]
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Let

I =
λ−1

⨆
u=0

{u} × [λ − 1, n − k − 1] = [0, λ − 1] × [λ − 1, n − k − 1]

We have clearly I ⊂ S0, implying CI ⊂ S0.
By the hypotheses on S the (1, β1, . . . , βλ−1) are linearly independent over Fq. Thus,

det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 β1 . . . βλ−1

1 β
[1]
1 . . . β

[1]
λ−1

⋮ ⋮ ⋱ ⋮

1 β
[λ−1]
1 . . . β

[λ−1]
λ−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≠ 0,

it implies that for any j ∈ λ − 1, . . . , n − k − 1, C[0,λ−1]×{j} = ⟨h[j]
i , 0 ≤ i ≤ λ − 1⟩. Hence,

CI = ⟨h[j]
i ,

0 ≤ i ≤ λ − 1
λ − 1 ≤ j ≤ n − k − 1

⟩

In particular from the structure of y[u,j] for any J ⊂ ∗ × [λ − 1, n − k − 1], we have
CJ ⊂ CI ⊂ S0.

Thus, C{λ}×[λ,n−k−1] ⊂ S0 ∩ C⊥pub
[λ]

. From its construction, C⊥pub
[λ]

has dimension n− k.
The vectors y[λ,j]

, j ∈ [λ, n − k + λ − 1] are linearly independent and from the CodeSet
theorem, C{λ}×[λ,n−k−1] has dimension n− k− λ. Therefore, dim(S0 ∩ C⊥pub

[λ]) ≥ n− k− λ.
Conversely,

dim (S0 + C⊥pub
[λ]) = dim(S0) + dim(C⊥pub

[λ]) − dim(S0 ∩ C⊥pub
[λ])

≤ λ(n − k) + (n − k) − (n − k − λ) = λ(n − k) + λ

Now the distinguishing attack comes from this proposition

Proposition 2 ([6] Proposition 2 ). If Crand is a random code of length n and dimension
k, then for a non-negative integer a and a positive λ < k, we have

P (dimFqm (Crand + C[1]
rand + ⋅ ⋅ ⋅ + C[λ]

rand) ≤ min(n, (λ + 1)k) − a) = O(q−ma).
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Now whenever k >
(λ−1)n
λ

+ 1, the dimension of Crand + C[1]
rand + ⋅ ⋅ ⋅ + C[λ]

rand is very
probably equal to (λ + 1)(n − k) whereas the dimension of C⊥pub + C⊥pub

[1]
+ ⋅ ⋅ ⋅ + C⊥pub

[λ]

is probably equal to λ(n − k + 1) (since λ(n − k + 1) < n) , which is strictly less than
(λ + 1)(n − k).

3.2 Reconstructing attack

We suppose that the public code has rate larger than (λ − 1)/λ, so that the distin-
guisher introduced in Section 3.1 works on it.

Although the attack we describe should work heuristically, to have rigorous proofs of
work we need the following assumptions, which are not very contraining

(1) There exists an element (h, β) ∈ S such that ∀i1, . . . , iλ ∈ {1, . . . , n−k−1} distinct.

det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 β
[i1]
1 β

[i1]
2 . . . β

[i1]
λ−1

1 β
[i2]
1 β

[i2]
2 . . . β

[i2]
λ−1

⋮ ⋮ ⋮ ⋱ ⋮

1 β
[iλ]
1 β

[iλ]
2 . . . β

[iλ]
λ−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≠ 0,

(2) dimFqm C⊥pub + C⊥pub
[1]
+ C⊥pub

[2]
+ ⋅ ⋅ ⋅ + C⊥pub

[λ]
= λ(n − k) + λ

(3) There is no A ∈ PGL(λ,Fq)\Iλ and A = (aij)λi,j=1 that satisfies

βj =

a0,j +
λ−1
∑
i=1

ai,jβi

a0,0 +
λ−1
∑
i=1

ai,0βi

, ∀j = 1, . . . , λ − 1

The first step of the attack is dedicated to finding one dimensional vector-spaces Ai for
i = 1, . . . , n − k − 1, such that any element (h, β) ∈ S satisfies:

Ai = ⟨h0 +
λ−1

∑
j=1

β
[−i]
j hj⟩

From the Ai’s, one obtains a system of λ − 1 multivariate polynomials which are of
degree qλ+1 − q

i for i = 1, . . . , λ − 1 satisfied by all the vectors β such that (h, β) ∈ S.

16
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Under the above assumptions, we can also prove the stabilization of the set of solution S
under the action of PGL(λ,Fq) in the end of 3.2.2.

The complexities of the steps (by operations over Fqm):

— Step 1. It costs O(n3 log q) operations for computing C⊥pub
[i]

and O(nω+1) for taking
the intersection.

— Step 2. The principal complexity of this is finding the roots of the system of poly-
nomials. In case of λ = 3, it can be done in polynomial time where the complexity
is Õ(d̃2

n log q) for d̃ = (q4 − q)(q4 − q2).
Once such a root is found, the remaining of step 2 needs a finite number of linear
systems solving which costs O(nω).

3.2.1 First step: Recovering one-dimensional vector spaces

We now suppose that the three assumptions in section 2.2 are true we have the fol-
lowing theorem:

Theorem 3. Let d ∶= n − k − λ + 1. Under Assumptions (1), (2), (3), Algorithm (1)

Algorithm 1: Recovering 1-dimensional vector spaces
Input: C⊥pub, λ ≤

n

n − k + 1
Output: Ai for i = 0, . . . , n − k − 1

1 S0 ← C⊥pub
[0]
+ C⊥pub

[1]
+⋯+ C⊥pub

[λ−1]

2 A← (
d

⋂
i=0

S[i]
0 )

[−d]

3 Dλ−1 ← A[λ−2] ∩ C⊥pub
[λ−1−d]

and B0 ← A +D[1−λ]
λ−1

4 D0 ← B0 ∩ C⊥pub
[−1]

5 for ` ∈ 1, . . . , λ − 2 do

6 B` ← A +
`−1
∑
j=0

D[`−j]
j ;

7 D` ← B` ∩ C⊥pub
[−1]

8 H ←
λ−1
∑
j=0

C[2−j−λ]
j

9 for i ∈ 0, . . . , n − k − 1 do
10 Return Ai ← H ∩ C⊥pub

[−i]

17
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returns the 1-dimensional vector spaces

Ai = ⟨h0 +
λ−1

∑
j=1

β
[−i]
j hj⟩ , i = 0, . . . , n − k − 1

for any (h, β) ∈ S.

Proof. For the proof we will thus make intensive use of the CodeSet theorem. First from
assumption (2) and theorem 2, the set

M =

λ

⨆
u=0

{u} × [u, n − k + u − 1] = S0 ⊔ {λ} × [λ, n − k + λ − 1]

with cardinality λ(n− k)+ λ, is such that y[M] is formed of linearly independent vectors

and CM =

λ

∑
i=0

C⊥pub
[i]
. This point is very important since this is the crucial point of the

proof of the theorem.

Line 1. From theorem 2 we have

S0 = CS0 , where S0 =

λ−1

⨆
u=0

{u} × [u, n − k + u − 1]

We can write S0 under the form

S0 = (
λ−2

⨆
u=0

{u} × [u, λ − 2])

I1

⊔ [0, λ − 1] × [λ − 1, n − k − 1]
I2

⊔(
λ−1

⨆
u=0

{u} × [n − k, n − k + u − 1])

I3

Let I4 = I3 ⊔ {λ} × [n − k, n − k + λ − 1]. With these notations, we have

S0 = I1 ⊔ I2 ⊔ I3 ⊂ I1 ⊔ I2 ⊔ I4 =M . Since their cardinalities satisfy

∣I1∣ = λ(λ−1)
2 , ∣I2∣ = λ(n − k − λ + 1), ∣I3∣ = λ(λ−1)

2 and ∣I4∣ = λ,
from theorem 2 the dimension of S0 and CM is exactly λ(n − k) and λ(n − k) + λ

respectively, and additionally under the CodeSet theorem,

S0 = CI1 ⊕ CI2 ⊕ CI3

CM = CI1 ⊕ CI2 ⊕ CI4

18
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The set I2 corresponds to the set denoted by I in the proof of theorem 2. We have

CI2 = ⟨h[j]
i ,

0 ≤ i ≤ λ − 1
λ − 1 ≤ j ≤ n − k − 1

⟩

This property gives us the flexibility for the modification of the setM to obtain several
sets of indexes M ′ such that y[M ′] is formed of linearly independent vectors. It can be
done by the replacement of the set [0, λ − 1] by the set Aj of λ elements corresponding
to any j. We can see it precisely as the following lemma:

Lemma 2. For every set I ′2 =
n−k−1
⨆

j=λ−1
Aj × {j} where ∣Aj∣ = λ, then M

′
= I1 ⊔ I

′
2 ⊔ I4

satisfies
— CM = CM ′.

— y
[M ′] is formed of linearly independent vectors.

Proof. CI ′2 = ⟨h[j]
i ,

0 ≤ i ≤ λ − 1
λ − 1 ≤ j ≤ n − k − 1

⟩ = CI2 (Assumption (1)). Moreover, ∣I ′2∣ =

∣I2∣ = λ(n− k − λ+ 1). Hence CM ′ = CI1 ⊕ CI ′2 ⊕ CI4 = CM and y[M ′] is formed of linearly
independent vectors.

Through this section, to apply the CodeSet theorem, in the beginning of each step,
we will define its set of indexes M ′ such that y[M ′] are linearly independent vectors and
it contains the set of indexes of subspace that we want to compute the intersection.
To be convenient, we will use some images where the red dot • are indexes of some
transformation of I1, the blue square are indexes of some transformation of I4, the green
× are indexes of some transformation of I2 and the black diamond ⬩ are indexes of C⊥pub.
On the other hand, the integer points which are inside the blue figures are indexes of
linearly independent vectors. The left triangular covers all the points of the set of indexes
I1, the right triangular covers all the points of the set of indexes I4 and the rectangular
covers all the points of the set of indexes which is flexible modification of I2.

To be convenient, for I ⊂ Z×Z and a ∈ Z, we denote I+a = {(u+a, j+a), (u, j) ∈ I}.
In the figures, we can consider I+a as the translation of I by the vector (a, a). For example,
in the figure 1.1, the set of red points shows I1 in the first image and I1 + d + 1 in the
second ones.
Line 2. We show that A = CI1⊔I3+(λ−(n−k)−1).
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Lemma 3. Let Si
def
= C⊥pub

[i]
+ C⊥pub

[i+1]
+ ⋯ + C⊥pub

[i+λ−1]
. For any set ∗ of λ distinct

integers modulo m we have

∀0 ≤ d ≤ n − k − λ + 1,
d

⋂
i=0

Si = C(I1+d)⊔∗×[λ−1+d,n−k−1]⊔I3

Proof. We prove the theorem by induction. This lemma is true for d = 0. We suppose
that it is true until 0 ≤ d ≤ n−k−λ, then we need to prove that it must be true for d+1.

Indeed,

d+1

⋂
i=0

Si = S0 ∩ (
d

⋂
i=0

Si)
[1]

= CS0 ∩ C(I1+d+1)∪∗×[λ+d,n−k]∪(I3+1)

Figure 1.1 – Points of S0 (above) and (I1 + d + 1) ∪ ∗ × [λ + d, n − k] ∪ (I3 + 1)

Let M1 = I1 ⊔ I4 ⊔ [d + 1, λ + d] × [λ − 1, n − k − 1]
Concerning S0 ⊂ M1 and J def

= (I1 + d + 1) ∪ ∗ × [λ + d, n − k] ∪ (I3 + 1) ⊂ M1. We
can apply the CodeSet theorem

CS0 ∩ CJ = CS0∩J
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And by a slightly fastidious computation on the sets intersections, we see that

S0 ∩ J = (I1 + d + 1) ∪ ∗ × [λ + d, n − k − 1] ∪ I3

It is not very difficult to check that the sets do not intersect which gives the result.

In the rest of the proof we will suppose that d = n − k − λ + 1. If we instantiate the
lemma with d and elevate to the power [−d] we obtain the following corollary:

Corollary 1. A = CI1⊔I3−d

Proof. We have
d

⋂
i=0

Si = C(I1+d)⊔I3 , with I1 and I3 subsets of M . Thus, from CodeSet
theorem we have

A[d]
= CI1+d ⊕ CI3

Implying that A = CI1 ⊕ CI3−d.

Line 3. Since C⊥pub = C{0}×[0,n−k−1], we have

A[d−1]
∩ C⊥pub = C(I1+(d−1))⊔(I3−1) ∩ C{0}×[0,n−k−1]

with

I1 + (d − 1) = {(u, j) ∶ d − 1 ≤ u ≤ j ≤ n − k − 2}
I3 − 1 = {(u, j) ∶ 0 ≤ u ≤ λ − 2, n − k − 1 ≤ j ≤ n − k + u − 1}

Let

I
′
2 = (({0} ⊔ [n − k − λ, n − k − 2]) × [λ − 1, n − k − 2]) ⊔ [0, λ − 1] × {n − k − 1}

and M2 = I1 ⊔ I4 ⊔ I
′
2

We can prove that I1+ (d− 1), I3− 1 and {0}× [0, n− k− 1] are all in M2. Now since
λ ≤ (n − k)/2, we have d ≥ λ − 1, it implies that

((I1 + (d − 1) ⊔ (I3 − 1)) ∩ {0} × [0, n − k − 1] = {(0, n − k − 1)}
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Figure 1.2 – Points of (I1 + (d − 1)) ⊔ (I3 − 1) and {0} × [0, n − k − 1]

Since the intersecting sets are all subsets of the setM2, we can apply the CodeSet theorem,
and we obtain

A[d−1]
∩ C⊥pub = C{(0,n−k−1)}

which by elevating to the power [λ − d − 1] gives

Dλ−1 = A[λ−2]
∩ C⊥pub

[λ−d−1]
= C{(λ−d−1,2λ−3)}

Note that elevating to the power [m] the scalars corresponds to the identity operator, we
also have Dλ−1 = C{(m+λ−d−1,2λ−3)}. This will be of use in the proof of the algorithm. Now
since B0 = A +D[1−λ]

λ−1 , we deduce that

B0 = CI1⊔I3−d + C{(−d,λ−2)}

Line 4. Compute D0 = B0 ∩ C⊥pub
[−1]

We compute

D[1]
0 = B[1]

0 ∩ C⊥pub

= (C(I1+1)⊔I3−(d−1) + C{(−d+1,λ−1)}) ∩ C{0}×[0,(n−k)−1]

= (C(I1+1)\[1,λ−1]×{λ−1} ⊕ C∗×{λ−1} ⊕ CI3−(d−1)) ∩ C{0}×[0,(n−k)−1]

where * is instantiated for the set [0, λ−2]⊔{−d+1} which contains λ different integers.

Let I ′2 = ([0, λ− 1]× {λ− 1})⊔ ([2− d, λ− d]× [λ, n− k − 1]) and M3 = I1 ⊔ I4 ⊔ I
′
2

Now (I1 + 1) ⊔ I3 − (d − 1) ⊔ (−d + 1, λ − 1) ⊂M3. Moreover,

22



3. Attacks on the system

Figure 1.3 – Points of ((I1 + 1)\[1, λ − 1] × {λ − 1}) ⊔ ∗ × {λ − 1} ⊔ I3 − (d − 1) and
{0} × [0, (n − k) − 1]

((I1 + 1) ⊔ I3 − (d − 1)) ∩ {0} × [0, (n − k) − 1] = ∅

and ∗ × {λ − 1} ∩ {0} × [0, n − k − 1] = {(0, λ − 1)}
Hence, by the CodeSet theorem,

B[1]
0 ∩ C⊥pub = C{(0,λ−1)}

B0 ∩ C⊥pub
[−1]

= C{(m−1,λ−2)}

Line 5,6,7 For 1 ≤ i ≤ λ − 2, we compute

Bi = A +
i−1

∑
j=0

C[i−j]
j

Di = Bi ∩ C⊥pub
[−1]

= C{(m−1,λ+i−2)}

We prove by induction, suppose that Di = C{(m−1,λ+i−2)} for all 1 ≤ i ≤ ` ≤ λ − 2. we
prove this for i = ` + 1

B`+1 = A +
`

∑
j=0

C[`+1−j]
j

D`+1 = B`+1 ∩ C⊥pub
[−1]

= C{(m−1,λ+`−1)}

Indeed,
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B`+1 = A +
`

∑
j=0

(C{(m−1,λ+j−2)})
[`+1−j]

= A +
`

∑
j=0

C{(`−j,λ+`−1)}

= CI1⊔I3−d + C[0,`]×{λ+`−1}

= CI1⊔(I3−d\[`−d+1,λ−d−1]×{λ+`−1}) + C∗×{λ+`−1}

where * is instantiated for the set [` − d + 1, λ − d − 1] ⊔ [0, d] of λ distinct integers.

Figure 1.4 – Points of I1 ⊔ (I3 − d\[`− d+ 1, λ− d− 1]× {λ+ `− 1})⊔∗× {λ+ `− 1}
and {0} × [0, (n − k) − 1]

We compute D[1]
`+1 = B[1]

`+1 ∩ C⊥pub. Let

I
′
2 = ([0, λ − 1] × {λ − 1}) ⊔ ({0} ⊔ [2 − d, λ − d]) × [λ, n − k − 1]

and M4 = I1 ⊔ I4 ⊔ I
′
2. Then, I1 + 1, I3 − d + 1 and ∗ × {λ + ` + 1} ⊂M4.

Moreover,

I3 − d + 1 ∩ {0} × [0, n − k − 1] = ∅
I1 + 1 ∩ {0} × [0, n − k − 1] = ∅
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Hence, by CodeSet theorem,

B[1]
`+1 ∩ C⊥pub = C∗×[λ+`]∩{0}×[0,n−k−1]

= C{(0,λ+`)}

Therefore, D`+1 = B`+1 ∩ C⊥pub
[−1]

= C{(m−1,λ+`−1)}

Line 8. Compute H =

λ−1
∑
j=0

C[2−j−λ]
j .

We consider the sum of subspace:

λ−1

∑
j=0

C[2−j−λ]
j =

λ−2

∑
j=0

C{(m+1−λ−j,0)} + C{(m+1−(n−k),0)}

= C([m+3−2λ,m+1−λ]⊔{m+1−(n−k)})×{0} = C∗×{0} =∶ H

where * is instantiated for the set [m+2−2λ,m+1−λ]⊔ {m+1− (n−k)} of λ distinct
integers.

Line 9-10 Next, for any i ∈ {0, . . . n − k − 1}, one can compute

C⊥pub
[−i]

∩H = ⟨h0 +
λ−1

∑
i=1

β
[−i]
i hi⟩

— For λ − 1 ≤ i ≤ n − k − 1, ∗ × {i} ⊂M

{(0, i)} = ({0} × [0, n − k − 1]) ∩ (∗ × {i})

Hence, by the CodeSet theorem, C(0,i) = C⊥pub ∩H[i]

— For 0 ≤ i ≤ λ−2, C⊥pub
[λ−1]

= C{λ−1}×[λ−1,n−k+λ−2] andH[λ+i−1]
= C∗×{λ+i−1}. Moreover,

∗ × {λ + i − 1} ⊂ ∗ × [λ − 1, 2λ − 3] ⊂M and

{(λ − 1, λ + i − 1)} = ({λ − 1} × [λ − 1, n − k + λ − 2]) ∩ (∗ × {λ + i − 1}))

Hence, by the CodeSet theorem,

C⊥pub
[λ−1]

∩H[λ+i−1]
= C{(λ−1,λ+i−1)}

C⊥pub ∩H[i]
= C{(0,i)}
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Therefore, for any i ∈ {0, . . . n − k − 1}, one can compute

C⊥pub
[−i]

∩H = C{(−i,0)} = ⟨h0 +
λ−1

∑
i=1

β
[−i]
i hi⟩

Note that this specialization of one element of S should be true for any element in
S. Indeed, for 2 elements (h′, β ′) and (h, β), if there exists A ∈ GL(λ,Fq) such that

(h′, β ′) = A ⋅ (h, β), then ⟨h0+
λ−1
∑
j=1

β
[−i]
j hj⟩ = ⟨h0+

λ−1
∑
j=1

β
′[−i]
j h

′
j⟩ since h′0+

λ−1
∑
j=1

β
′[−`]
j h

′
j =

(a0,0 +
λ−1
∑
i=1

ai,0βi)
1−[−`]

(h0 +
λ−1
∑
i=1

β
[−`]
i hi)

3.2.2 Second step: Recovering the vector space

From step 1, we recovered the 1-dimensional vector-spaces

∀i = 0, . . . , n − k − 1, Ai = ⟨h0 +
λ−1

∑
j=1

β
[−i]
j hj⟩

The vector spaces Ai do not depend on (h, β) ∈ S. We introduce the following lemma.

Lemma 4. For any u0 ∈ A0, and for any set I = {i1, . . . , iλ} ⊂ {1, . . . , n − k − 1} of

λ distinct elements, there exists a unique λ-tuple uI
def
= (ui1 ,ui2 , . . . ,uiλ) ∈

λ

⨉
j=1

Aij such

that
∑
ij∈I

uij = u0

Proof. We observe that, from assumption (1) we have

Ai1 ⊕⋯⊕Aiλ = ⟨h0, . . . ,hλ−1⟩.

Since A0 ⊂ ⟨h0, . . . ,hλ−1⟩, this completes the proof.
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We denote ki` ∈ Fqm such that ∀i` ∈ I,ui` = ki` (h0 +
λ−1
∑
j=1

β
[−i`]
j hj). A vector u0 ∈ A0

can be written under the form

u0 = αh,β(h0 +
λ

∑
j=1

βjhj)

From the structure of the solution space S, there exists an (h, β) ∈ S such that αh,β = 1.
It means that we can fix u0 ∶= h0 +∑λ

j=1 βjhj as a known vector. For this element and
for any I = {i1, . . . , iλ} from Lemma 4 we have

∑
i`∈I

k
I
i` (h0 +

λ−1

∑
j=1

β
[−i`]
j hj) = (∑

i`∈I
k
I
i`)h0 +

λ−1

∑
j=1

(∑
i`∈I

k
I
i`β

[−i`]
j )hj

= h0 +
λ−1

∑
j=1

βjhj

Since the hj are linearly independent we obtain the following system

(kIi1 , k
I
i2 , . . . , k

I
iλ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 β
[−i1]
1 β

[−i1]
2 ⋯ β

[−i1]
λ−1

1 β
[−i2]
1 β

[−i2]
2 ⋯ β

[−i2]
λ−1

⋮ ⋮ ⋮ ⋱ ⋮

1 β
[−iλ]
1 β

[−iλ]
2 ⋯ β

[−iλ]
λ−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= (1, β1, β2, . . . , βλ−1)

in the unknowns kIi and βi. From assumption (1), knowing the βi’s, the solution is unique.
To solve the system, let us consider the associate matrix

Mat
I(X) ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 X
[i1]
1 X

[i1]
2 ⋯ X

[i1]
λ−1

1 X
[i2]
1 X

[i2]
2 ⋯ X

[i2]
λ−1

⋮ ⋮ ⋮ ⋱ ⋮

1 X
[iλ]
1 X

[iλ]
2 ⋯ X

[iλ]
λ−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where X = (X1, X2, . . . , Xλ−1) is formed with the unknowns. We define the multivariate
polynomial

f
I(X) def

= det(Mat
I(X))
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Since fI
∈ Fq[X] we have

Lemma 5. fI has degree ∑j∈I [j] and for all u ∈ Z, fI+u(X) = fI(X)[u].

By Cramer’s rule, for any j = 1, . . . , λ we have

k
I
ij =

f
−(I\{ij})∪{0}(β)
f−I(β) , (1.3)

where β = (β1, . . . , βλ). Let us define Js = ({1, . . . , λ + 1}) \ {s + 1}, for all s = 1, . . . , λ.
From (1.3), we have

∀s ∈ {1, . . . , λ}, kJs1 =
f
−(Js\{1})∪{0}(β)
f−Js(β)

By elevating the equation to the power [λ + 1], from Lemma 5 we have

∀s ∈ {1, . . . , λ}, (kJs1 )[λ+1]
=
f
(λ+1)−(Js\{1})∪{0}(β)
f (λ+1)−Js(β)

Now since we know only the vector space A1 and not the exact vectors h0+
λ−1
∑
j=1

β
[−1]
j hj,

we do not know k
Js
1 . However, we can compute the quantity kJλ1 /kJs1 for s ∈ {1, . . . , λ−1}

thank to Algorithm 2 and Lemma 4.

Algorithm 2: Determining quotient kJλ1 /kJs1

Input: {Ai}n−k−1
i=1 , {Js}λs=1 and the vector u0 ∈ A0

Output: αs = k
Jλ
1 /kJs1 for s ∈ {1, . . . , λ − 1}

1 For i = 1, . . . , n − k − 1, fix ui arbitrarily in Ai

2 For s = 1, . . . , λ, find aJsj such that of ∑
j∈Js

a
Js
j uj = u0

3 Return a
Jλ
1

a
Js
1

, for s = 1, . . . , λ − 1

Now let us define by αs = (kJλ1 /kJs1 )[λ+1], for s = 1, . . . , λ − 1. To simplify notations,
we also define

∀s ∈ {1, . . . , λ}
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ls = (λ + 1) − (Js \ {1} ∪ {0})
Ms = (λ + 1) − Js
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We obtain the set of equations

∀s ∈ {1, . . . , λ − 1}, f
Lλ(β)fMs(β) − αsfMλ(β)fLs(β) = 0

Let
Fs(X) def

= f
Lλ(X)fMs(X) − αsfMλ(X)fLs(X) ∈ Fqm[X].

The polynomial Fs has degree q
λ+1 + qλ + 2

λ−1
∑
j=1

q
j + 1 − qλ−s

This gives us a multivariate polynomial system over F2m for which β is a solution.
However, from our hypotheses we can do better and even reduce the degrees of the poly-
nomials.

Since β1, . . . , βλ are linearly independent they cannot be roots of linear factors over
Fq of Fs. Therefore we can reduce for all s the polynomial Fs(X) by its Fq-linear factors.

Lemma 6. Let us define

f0(X) =∏
a∈Fq

(X1 + a)
λ−1

∏
i=2

⎛
⎜
⎝

∏
a0,...ai−1∈Fq

(Xi +
i−1

∑
j=1

ajXj + a0)
⎞
⎟
⎠

For any set I of cardinality λ, fI(X) is divisible by f0(X)

Proof. Let β be a root of Xi +
i−1
∑
j=1

ajXj + a0 then they are Fq co-linear. Hence, for all

set of cardinality λ, I, the corresponding columns of Mat
I(β) are co-linear. Therefore,

f
I(β) = det(Mat

I(β)) = 0

We have the following two corollaries

Corollary 2. We have fJλ−1(X) = f0(X)

Proof. Both polynomials are monic. Since Jλ−1 = {0, . . . , λ−1}, they also have the same

degree
λ−1
∑
i=0

q
i

Corollary 3. For all I = {i1, . . . , iλ}, we have (f0(X))[i1] ∣fI(X)

We have
— From the lemma: f0(X) divides fMs(X) and fLs(X) for all s ∈ {1, . . . , λ − 1}.
— From corollary 3 : f0(X)[1] divides fMλ(X) and fLλ(X), since the minimum index

of the sets is equal to 1.
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Therefore, for all s ∈ {1, . . . , λ− 1}, Fs(X) can be divided by f0(X)q+1. We now consider
the reduced polynomials

∀s ∈ {1, . . . , λ − 1}, Ps(X) def
=

Fs(X)
(f0(X))q+1 =

Fs(X)
fJλ−1(X)fJλ(X)

This gives us a new polynomial system for which β is also a solution, but the degree is
reduced.

Lemma 7. Let A = (ai,j)λ−1,λ−1
i=0,j=0 ∈ PGL(λ;Fq). Consider the tranformation on f

I(X)
defined on X = (X1, . . . , Xλ−1) by

∀j ∈ {1, . . . , λ − 1}, Xj ⟼

a0,j +
λ−1
∑
i=1

ai,jXi

a0,0 +
λ−1
∑
i=1

ai,0Xi

then the polynomial fI(X) is transformed into

f
I(X)⟼ A.fI(X) def

=
∆A

(a0,0 +
λ−1
∑
i=1

ai,0Xi)deg(fI)
f
I(X)

where ∆A is the determinant of A.

Proof. Let D = a0,0 +
λ−1
∑
i=1

ai,0Xi. Thus, for j = 1, . . . , λ, the jth row of Mat
I(X) denoted

by Rowj(Mat
I(X)) becomes

Rowj(Mat
I(X))⟼

Rowj (Mat
I(X) ⋅A)

D[ij]
.

Therefore, since deg(fI) = ∑j∈I [j], from lemma 5, we obtain

det(Mat
I(X))⟼ det A

Ddeg(fI) det(Mat
I(X))

f
I(X)⟼ ∆A

Ddeg(fI)f
I(X)
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Apply the lemma, we have

Fs(X)⟼ ∆2
A

D
qλ+1+qλ+2

λ−1
∑
j=1

qj+1−qλ−s
Fs(X)

f
Jλ−1(X)⟼ ∆A

D

λ−1
∑
j=0

qj
f
Jλ−1(X)

f
Jλ(X)⟼ ∆A

D

λ

∑
j=1

qj
f
Jλ(X)

Hence,
Ps(X)↦ 1

Dqλ+1−qλ−s
Ps(X)

We therefore have

Proposition 3. If there isn’t any common factor between the polynomials Ps(X), then
the set of root of the polynomial system

∀i = 1, . . . , λ − 1, Pi(X) = 0 (1.4)

equals the orbit of any root under the group action of PGL(λ,Fq)
Proof. If there isn’t any common factor between the polynomials Ps(X) then the number

of roots is at bounded by
λ−1
∏
j=1

(qλ+1 − qj) = ∣PGL(λ, q)∣ (Bezout bound [37]). Moreover,

any element in the orbit of a solution β under the group action of PGL(λ,Fq) is again
root of the system. From Assumption (3) the orbit of β under PGL(λ,Fq) has cardinality
= ∣PGL(λ,Fq)∣ which means that the stabilization of β with respect to this group action
is trivial. In that case any root of the system (1.4) corresponds to an element of S.

For instance, when q = 2 and λ = 3 the system of equation below taking (β1, β2) as
solution:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Pr1(X, Y ) = 0

Pr2(X, Y ) = 0

This is a system of 2 polynomial equation in 2 variables. In practice, by using MAGMA,
we can see that there isn’t any common factor between Pr1(X) and Pr2(X). Therefore,
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the number of roots has Bezout ’s upper bound by the product of the degrees of Pr1(X, Y )
and Pr2(X, Y ).

Therefore, the number of roots are at most (q4 − q)(q4 − q2) = ∣PGL(3, q)∣. Thus, all
the roots are in the orbit of a root under an action of PGL(3, q)

The remaining problem is finding a root of the system of equation above. It can be
done by the following steps:

1. Calculating Res(Pr1, P r2, Y ) the resultant of Pr1 and Pr2 in the variable Y . We
obtain a univariate polynomial of degree 168 in variable X. Finding one root x0 of
this polynomial.

2. Calculating gcd(Pr1(x0, Y ), P r2(x0, Y )) which is a polynomial of degree 4 in vari-
able Y. Taking one root y0 and verify it is a root of the system of equation.

In general, the problem of finding one root of a system of polynomial equation is a
hard question as well as finding all roots of a system of polynomial equation.

Polynomial System Solving over Finite Fields Let F is a finite field. Input:
f1(x1, ..., xn), ..., fm(x1, ..., xn) ∈ F[x1, ..., xn].

Goal: Find a vector α = (α1, ..., αn) ∈ Fn s.t: f1(α) = ⋅ ⋅ ⋅ = fm(α) = 0.

Theoretically it is a NP-hard problem (problem AN9 p.251 in Appendix: A list of
NP-complete problem [38]). For the special cases λ = 2 and λ = 3 finding a solution can
be done in polynomial-time (by using properties of resultants for λ = 3).

However, in the case of no common factor, the number of roots is bounded by Be-
zout bound. To check that Pri(X)λ−1

i=1 don’t have common factor, we can check whether
Res(Pri(X), P rj(X), X1) ≠ 0, ∀1 ≤ i < j ≤ λ − 1. (Prop. 1, Ch. 3, [39]). It costs O(d3)

where d =
λ−1
∏
j=1

(qλ+1 − qj) arithmetic operations over Fqm[X2, . . . , Xλ−1].

We can see the importance of the Assumption(3) in the Proposition 3. In the case where
this assumption does not satisfy, i.e there exists A ∈ PGL(λ,Fq)\Iλ and A = (aij)λi,j=1

such that

βj =

a0,j +
λ−1
∑
i=1

ai,jβi

a0,0 +
λ−1
∑
i=1

ai,0βi
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Thus, β is a root of a system of λ − 1 polynomial equations of degree 2:

(a0,0 +
λ−1

∑
i=1

ai,0Xi)Xj − (a0,j +
λ−1

∑
i=1

ai,jXi) = 0, j = 1, . . . , λ − 1

This polynomial is different from 0. Indeed, if it was, a0,0 = aj,j for j = 1, . . . , λ − 1
and ai, j = 0 for i ≠ j, which means A ∈ Iλ.

This system is multivariate quadratic (MQ)-system, the associated problem to decide
if this system is solvable or not, also known as MQ-problem, is proven to be NP-complete
[38]. Some algorithms used to solve this system is reviewed in the paper [40]. In case of
λ = 3, this can be solved easily by Resultant. Therefore, when the Assumption (3) does
not satisfy, we can exploit some information about β by solving a multivariate quadratic
system.

3.2.3 Final step:

Now from a solution β to (1.4), we aim at finding the corresponding vector h ∈ (Fnqm)λ

such that (h, β) ∈ S.
We point out the key steps in the Coggia-Couvreur attack for λ as follows. To be

convenient, we denote known elements by blue color and unknown elements by red color.
Given β ′1, . . . , β

′
λ−1, recover (h′0, . . . ,h′λ−1, β

′
1, . . . , β

′
λ−1) corresponding.

1. For I = {1, . . . , λ}, since β
′ is known, ki =

f
−(I\{i})∪{0}(β ′)
f−I(β ′) , i = 1, . . . , λ can

be computed. Moreover, from the Lemma 4, there exists a unique λ-tuple uI =

(u1, . . . ,uλ) ∈
λ

⨉
j=1

Aj such that ∑λ

i=1 ui = u0, so we can compute

h
′
0 +

λ−1
∑
j=1

β
′
j
[−i]
h
′
j =

ui
ki
, i = 1, . . . , λ.

(h′0, . . . ,h′λ−1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 . . . 1
β

[−1]
1 β

[−2]
1 . . . β

[−λ]
1

⋮ ⋮ ⋱ ⋮

β
[−1]
λ−1 β

[−2]
λ−1 . . . β

[−λ]
λ−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= (u1
k1
,
u2
k2
, . . . ,

uλ
kλ

)

It implies to a linear system of λ equation and λ unknowns which are vectors
h
′
0, . . . ,h

′
λ−1 and the determinant of the matrix of coefficients is non-zero.
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2. After recovering an alternate key of the form (h′0, . . . ,h′λ−1, β
′
1, . . . , β

′
λ−1), we can

compute the dual code C⊥pub and hence decrypt the ciphertext.

3.3 Complexity of the case λ = 3

This part shows the complexity of the attack by giving the number of operation in
Fqm . Let ω be the exponent of the complexity of linear algebra operations. The Frobenius
map costs O(log q) operations.

Step 1.
— Computation of dual code C⊥pub cots O(nω) operations.

— Computation of C⊥pub
[i]
,∀i = 1, . . . , n − k + 1 costs O(n2 log q) operations.

— Computation Sj =
j+λ−1
∑
i=j

C⊥pub
[i]

uses Gaussian elimination, so it costs O(nω). Thus,

computation ⋂n−k−λ+1
i=0 Sj costs O(nω+1).

Overall step 1 costs O(n3 log q + nω+1) operations.
Step 2.
— Computation (uI1 , . . . , uIλ) represents the resolution of a linear system λ unknowns

and n equations costs O(n) operations. This computation performed O(n) times,
so it costs O(n2) operations.

— Complexity of finding a root of a polynomial of degree d̃ by Cantor–Zassenhaus
algorithm ([41]) costs Õ(d̃2

m log q) operations in Fqm for d̃ = (q4 − q)(q4 − q2).
— Computation of resultant of bivariate polynomials Res(P1, P2, X) which P1, P2 of

degree d, e by Lickteig–Roy subresultant algorithm costs O(d2
e) ([42]).

— A finite number of linear systems solving costs O(nω)
Summary. For m = O(n), overall cost of O(n3 log q + n

ω+1) + Õ(d2
n log q) for d =

(q4 − q)(q4 − q2).
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Chapter 2

CRYPTOSYSTEMS BASED ON THE

POLYNOMIAL RECONSTRUCTION

RAMESSES

This chapter comes from a work in the pre-publication [5]. In this chapter we aim
at designing a new one-way encryption scheme featuring very compact keys, based on
rank metric decoding problems. The long-standing idea finds origins in [2] which was an
extended idea of a proposal in Hamming metric [43]. The original rank metric encryption
scheme was broken in [44], and a recent repair was proposed in [45]. However it implies
to choose a specific code and a syndrome coming from a structured vector of moderate
rank, which we want to avoid here.

In a first section we introduce necessary notation and definitions. Then we describe the
encryption scheme and we propose sets of parameters such that keys and ciphertext sizes
are not larger than few hundreds of bytes. In the next section, we prove the consistency
of the encryption scheme (this consistency also can be seen in the implementation in
MAGMA https://github.com/BaDucPham/RAMESSES/blob/main/RAMESSES.mgm) and
we analyze its security by showing to which problems the security can be reduced, and by
giving the complexity of algorithms solving these problems. Recently, this cryptosystem
was broken by Bombar-Couveur attack in [29], so we also introduce this attack in the end
of this chapter.

1 Preliminaries

1.1 Notation and definitions

Although the whole analysis can be done even if q is not a power of 2, throughout the
chapter, we set q = 2n for some integer n ≥ 1, and we let Fq denote the finite field with q
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elements. The field Fq can also be viewed as a vector space of dimension n over F2. The
Frobenius automorphism θ ∶ Fq → Fq, x ↦ x

2, is F2-linear. Its inverse is the (n − 1)-fold
composition θ

n−1
= θ ◦ ⋅ ⋅ ⋅ ◦ θ. For convenience, we sometimes write x[i]

≔ θ
i(x), for

i ∈ [0, n − 1] ≔ {0, . . . , n − 1}.
Let β = (β1, . . . , βn) ∈ Fnq be a basis of Fq over F2. We recall the extension map

Extβ ∶ Fnq → Fn×n2

a = (a1, . . . , an) ↦ A = (α⊤1 , . . . ,α⊤n )

where, for all 1 ≤ j ≤ n, the vector αj ∈ Fn2 consists of coordinates of aj ∈ Fq in the basis
β, i.e. aj = ∑n

i=1 βiAi,j. In particular, for every A ∈ Fn×n2 , we have Extβ(βA) = A.
We also define the row space of a ∈ Fnq with respect to β as

RowSpβ(a) ≔ {xExtβ(a),x ∈ Fn2} ⊆ Fn2 .

Similarly, the column space of a ∈ Fnq is ColSpβ(a) ≔ {∑n

i=1 xiai ∣ x ∈ Fn2} ⊆ Fq.
We let Gr(t,Fn2) denote the set of subspaces of Fn2 of dimension t, which contains

[ nt ]2 ≔
(2n−1)(2n−1−1)⋯(2n−t+1−1)

(2t−1)(2t−1−1)⋯(21−1) elements. Each subspace V ∈ Gr(t,Fn2) can be represented
by the unique reduced row echelon form (RREF) of any matrix V ∈ Fn×n2 whose row space
generates V . We know from [46, 47] that this representation can be computed efficiently
(in time Õ(nt(n−t))). Recall that a matrix is in reduced row echelon form if the following
holds:

– the index of the pivot (i.e. the first non-zero coefficient) of row i is strictly larger
than the index of the pivot of row i − 1;

– all pivots are ones;
– each pivot is the only non-zero entry in its column.

We finally define Pt,n ≔ {P ∈ Fn×n2 ∣ rk(P ) = t,P is in RREF}.

Definition 3 (g-degree). Let x ∈ Fnq and X = Extg(x). The g-degree of x, denoted
degg(x), is the unique integer ` ∈ [0, n− 1] such that x ∈ G`+1(g) \G`(g). Similarly, one
defines the g-degree of X as degg(X) = degg(x).

In other words, a vector x ∈ Fnq of g-degree ` can be written

x = λ`g
[`]
+

`−1

∑
j=0

λjg
[j]
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for some non-zero λ` ∈ Fq \ {0} and some `-tuple (λ`−1, . . . , λ0) ∈ F`q.

2 The encryption scheme

This implementation in MAGMA can be seen in https://github.com/BaDucPham/
RAMESSES/blob/main/RAMESSES.mgm

System parameters. Integers 1 ≤ w, k, `, t ≤ n are public parameters and specified
according to the desired security level (see Section 3). We set q = 2n, and we also make
public a basis g of Fq/F2. We let H denote a fixed parity-check matrix of Gk(g).

Key generation. Alice picks uniformly at random a vector kpriv ∈ Fnq of rank w. As
explained in Algorithm 3, the public key is the syndrome of kpriv with respect to the
parity-check matrix H of Gk(g), and the private key is kpriv.

Algorithm 3: KeyGen(1λ)
Input:
Output: a pair of public/private keys (kpub,kpriv)

1 Pick kpriv
$
←− {x ∈ Fnq , rk(x) = w}

2 Compute kpub ∈ Fn−kq such that kpub
⊤
=Hkpriv

⊤

3 Output (kpub,kpriv) ∈ Fn−kq × Fnq

Encryption. The set of plaintexts is Pt,n, as defined in Section 1.1. Encryption is pre-
sented in Algorithm 4. Notice that in steps 3-4, the computation of p′ should be understood
as a the generation of a uniform random vector such that RowSpg(p′) is the rowspan of
P .

Decryption. We present in Algorithm 5 a decryption algorithm which may fail with
negligible probability. The failure rate is devoted to be cryptographically small, and is
bounded in Section 4.2. We also make use of an F2-linear map Vkpriv ∶ F

n
q → Fnq such that

Vkpriv⟨kpriv⟩ = 0. This map can be efficiently computed from the knowledge of the private
key kpriv. Mathematical properties of this map are given in Section 4.1

In Algorithm 5, one needs to decode Gabidulin codes up to half their minimum dis-
tance, i.e. to decode errors of rank less than ⌊n−dim Gab

2 ⌋. Many such algorithms can be
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Algorithm 4: Encrypt(kpub,P )
Input: public key kpub ∈ Fn−kq , plaintext P ∈ Pt,n
Output: ciphertext u ∈ Fn−kq

1 Compute any y ∈ Fnq such that Hy⊤ = kpub
⊤

2 Pick T $
←− {M ∈ Fn×n2 , degg(M) = `}

3 Pick S $
←− {M ∈ Fn×n2 , rk(M) = n}

4 Compute p′ = gSP ∈ Fnq
5 Output u ∈ Fn−kq such that u⊤ =H(yT + p′)⊤

Algorithm 5: Decrypt(kpriv,u)
Input: private key kpriv ∈ Fnq , ciphertext u ∈ Fn−kq

Output: plaintext P̂ ∈ Pt,n, or failure
1 Compute a solution x ∈ Fnq to the linear system Hx

⊤
= u

⊤.
2 Compute z = Vkpriv⟨x⟩ ∈ Fnq .
3 Decode z as a corrupted Gk+`+w(g)-codeword. If success, one gets an error vector
a ∈ Fnq of rank ≤ t.

4 If rk(a) < t, output failure.
5 Otherwise, output P̂ = RREF(Extg(a)).

found in the literature since the seminal work of Gabidulin [19] such as [8, 48, 49, 50, 51,
52].

3 Parameters

Public key size. The public key consists in a vector kpub ∈ Fn−kq . Thus, its size is
(n − k)n bits, or (n−k)n

8 bytes.

Private key size. For the private key kpriv ∈ Fnq , Alice actually needs to store only the
map Vkpriv . From Section 4.1, this map is a monic polynomial over Fq of degree w. Hence
only w coefficients over Fq actually need to be stored, the size of the private key is thus
wn bits, or wn

8 bytes.

Ciphertext size. The ciphertext is a vector u ∈ Fn−kq , hence its size is (n − k)n bits,
i.e. (n−k)n

8 bytes.
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4. Analysis

4 Analysis

4.1 Mathematical background

For x ∈ Fnq , the polynomial P (X) ∈ Fq[X; θ] of minimum degree such that P ⟨g⟩ = x
is the g-interpolating polynomial of x and is denoted Lx(X). By definition deg(Lx) =
degg(x).

Finally, given e ∈ Fnq , the set of polynomials P ∈ Fq[X; θ] satisfying P (e) = 0 is a
left-ideal Ie of Fq[X; θ]. Since skew polynomial rings are principal ideal domains, we can
define the minimum vanishing polynomial Ve(X) ∈ Fq[X; θ] of e as the unique monic
skew polynomial which generates Ie. Notice that deg(Ve) = rk(e) ≥ n − degg(e).

Theorem 4 ([53]). Let e = (e1, . . . , en) ∈ Fnq , then if rk(e) = t, there exist a unique
Ve ∈ Fq[X; θ], monic of degree t such that Ve⟨e⟩ = 0.

The following lemma will be helpful for the analysis of the scheme consistency.

Lemma 8. Let P (X) ∈ Fq[X; θ] and a ∈ Fnq . Then we have RowSpg(P (a)) ⊆

RowSpg(a). Moreover, if RowSpg(P (a)) ≠ RowSpg(a), then there exists a non-zero
x = ∑n

i=1 λiai ∈ ColSp(a) such that P (x) = 0.

Proof. Let B ∈ Fn×n2 satisfy RowSpg(a) = {x ∈ Fn2 ,xB = 0}. In particular, one
can see that aB = 0. Hence, by F2-linearity P (a)B = P (aB) = 0. Thus, every
y ∈ RowSpg(P (a)) satisfies yB = 0, leading to RowSpg(P (a)) ⊆ RowSpg(a).

Assume now that RowSpg(P (a)) ≠ RowSpg(a). It implies that dim ColSp(P (a)) <
dim ColSp(a). Let (aij)1≤j≤k ⊂ Fq be an ordered basis of ColSp(a) ⊆ Fq over F2. Then
there must exist a non-zero (λj) ∈ Fk2 such that ∑k

j=1 λjP (aij) = 0, otherwise we would
have dim ColSp(P (a)) = k. If we set x = ∑j λjaij ∈ Fq \ {0}, then we get P (x) = 0 by
F2-linearity.

4.2 Consistency

In this section we characterize the output of algorithm Decrypt described in Section 2.
As input, Decrypt receives a vector kpriv ∈ Fnq of rank w and a vector u ∈ Fn−kq such that
u =H(yT + p′)⊤, where

– vector y ∈ Fnq satisfies Hy⊤ =Hkpriv
⊤,

– matrix T ∈ Fn×n2 has g-degree `,
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– vector p′ = gSP ∈ Fnq has rank t ≔ ⌊n−k−`−w2 ⌋.
First, notice that y = kpriv + c for some c ∈ Gk(g). In the first step of Algorithm 5,

a vector x ∈ Fnq solution to Hx⊤ = u⊤ is computed. One can see that the set S of such
solutions is

S = {yT + p′ + c′ ∣ c′ ∈ Gk(g)} ⊆ Fnq .

Therefore, in step 2 of Algorithm 5, we have

z = Vkpriv⟨x⟩ = Vkpriv⟨(c + kpriv)T + p′ + c′⟩
= Vkpriv⟨c

′
+ cT + kprivT + p

′⟩
= Vkpriv⟨c

′
+ cT ⟩ + Vkpriv⟨kpriv⟩

0

T + Vkpriv⟨p
′⟩ .

We notably used the F2-linearity of Vkpriv . Also recall that, for any a ∈ Fnq , La(X) denotes
the g-interpolating polynomial of a. Then we get:

z = (Vkpriv ⋅ (Lc′ + LcT ))⟨g⟩ + Vkpriv⟨p
′⟩ .

Moreover, LcT = Lc ⋅ LgT yields deg(LcT ) ≤ k − 1 + ` since degg(T ) = `. Therefore, the
polynomial Vkpriv ⋅(Lc′+LcT ) has degree at most deg(Vkpriv)+max{deg(Lc′), deg(LcT )} ≤
w + k − 1 + `.

We also know that rk(Vkpriv⟨p
′⟩) ≤ rk(p′) = rk(P ) = t = ⌊n−k−`−w2 ⌋. Hence, in third

step of Algorithm 5, any decoding algorithm for Gk+w+`(g) that decodes errors of rank
at most t will retrieve Vkpriv(p

′) from z. Finally, Algorithm 5 outputs a matrix P̂ ∈ Pt,n
such that RowSp(P̂ ) = RowSpg(Vkpriv⟨p

′⟩).
As a consequence, decryption fails whenever RowSpg(Vkpriv⟨p

′⟩) ≠ RowSp(P ), where
P is the original plaintext. First notice that RowSp(P ) = RowSpg(p′). Then, Lemma 8
shows that if decryption fails, then there exists a non-zero x ∈ ColSp(p′) such that
Vkpriv⟨x⟩ = 0. Let us now recall that the set of zeroes of Vkpriv is exactly ColSp(kpriv).
Hence we get the following result.

Lemma 9. Let P ∈ Pt,n. If, on input (kpriv,Encrypt(kpub,P )) where (kpub,kpriv) ←
KeyGen, algorithm Decrypt does not output P , then the matrix S chosen at step 4 satisfies
ColSp(kpriv) ∩ ColSp(SP ) ≠ {0}.

One can now estimate the probability of failure of Decrypt.
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Lemma 10. Let (kpub,kpriv) ← KeyGen be any pair of keys generated by KeyGen, on
public parameters n,w, t. Then, for every P ∈ Pt,n,

PS,T ,y
⎛
⎜
⎝
P̂ ≠ P

»»»»»»»»»»»

u← Encrypt(kpub,P )
P̂ ← Decrypt(kpriv,u)

⎞
⎟
⎠
≤ 2−(n−t−w)

.

Proof. Using Lemma 9, we have

PS,T ,y
⎛
⎜
⎝
P̂ ≠ P

»»»»»»»»»»»

u← Encrypt(kpub,P )
P̂ ← Decrypt(kpriv,u)

⎞
⎟
⎠

= PS(ColSp(kpriv) ∩ ColSp(SP ) ≠ {0}) .

It is easy to check that the probability that a t-dimensional random subspace of Fn2
intersects non-trivially a fixed subspace of dimension w is bounded by (2t−1)(2w−1)

2n−1 ≤ 2t+w−n.
This concludes the proof.

4.3 Existing attacks

In this section, we will consider known attacks on the system at the time of the
publication of this preprint paper. In the following, we denote by λ the desired security
parameter, i.e., any attack against the cryptosystem must cost at least 2λ operations over
F2.

Exhaustive search attacks. In order to avoid attacks by exhaustive search, one has
the following constraints on the parameters.

1. ∣Pt,n∣ = [ nt ]2 ≥ 2λ, satisfied when t(n − t) ≥ λ.
2. ∣{kpriv}∣ ≥ [ nw ]2 ≥ 2λ, satisfied when w(n − w) ≥ λ.
3. ∣M`∣ ≥ 2λ, satisfied when (` + 1)n ≥ λ.

where M` = {M ∈ Fn×n2 , degg(M) = `}.

Attack by decoding beyond the unique decoding radius of Gabidulin codes.
Let e′ ∈ Fnq be any solution of He′⊤ = kpub

⊤ of rank ≤ w. From the consistency analysis
one can see that e′ can be used as an alternate private key in the Decrypt algorithm. The
computation of such a vector e′ actually corresponds to the search version of Gab-SD
problem.
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This problem is easy for w ≤ ⌊n−k2 ⌋ (it corresponds to half-minimum-distance decoding)
and for w ≥ n−k (equivalent to interpolation for linearized polynomials). For our concern,
we have ⌊n−k2 ⌋ < w < n− k, and we believe that the search version of Gab-SD is hard in
this range of parameters.

An approach is proposed in [54] in order to tackle this problem. The solution consists
in enumerating vector spaces of dimension slightly higher than w, checking whether they
guessed correctly a large part of the solution space, and in such case, interpolating the
solution. Roughly speaking, the number of valid choices for the subspace is large, but
the complexity of finding one remains exponential in the code length. Precisely, in our
settings (m = n, and n − k even) the number of vector spaces to test before finding one
solution is on average

NClass−Gab-SD ≈ 0.3 ⋅ 2δ(n+k−2δ)
,

where δ ≔ w − ⌊n−k2 ⌋ > 0. This quantity is used as a bound for the complexity of solving
Gab-SD. By using a straightforward Grover algorithm, we obtain that the number of
iterations to be completed on a quantum computer is roughly

NQuant−Gab-SD ≈ 0.55 ⋅ 2
δ
2 (n+k−2δ)

.

Attack via a reduction to a MinRank instance. The recovery of a representative
p
′
= gSP ∈ Fnq of the plaintext P , given only a ciphertext u and kpriv, can be modeled as

follows. First, one computes (i) any solution x ∈ Fnq of Hx⊤ = u⊤, and (ii) any solution
y ∈ Fnq to Hy⊤ = kpub

⊤. Due to the form of the ciphertext, this leads us to

x − yT − c = p
′
, (2.1)

where c ∈ Gk(g) and T ∈ Fn×n2 are unknown to the attacker. Notice that T lies in a
F2-vector space of dimension (`+ 1)n, since gT ∈ G`+1(g). Two kinds of attacks can then
be mounted to solve (2.1).

First, Equation (2.1) can be written x = (c+yT )+p′, which means that the problem
can be rephrased as decoding an error p′ of rank t in the underlying code

D ≔ Gk(g) + ⟨{yT ∣ T ∈M`}⟩F2

Notice that D ⊆ Fnq is an F2-linear code of F2-dimension at most (k + ` + 1)n. One can
then write yT = Ly⟨gT ⟩, which yields D = Gk(g)+Ly⟨G`+1(g)⟩. One could try to decode

42



4. Analysis

in the smallest Fq-linear code containing D, and use the additional structure provided by
the Fq-linearity. This structure has been widely employed in the recent improvements,
see [24].

Second, one can see Equation (2.1) as an instance of MinRank, a problem formally
introduced by Courtois in [55] after the cryptanalysis of HFE [56].

Problem 1 (MinRank search problem). Let K be a field.

— Input: M0,M1, . . . ,MK ∈ KN×n and an integer t.

— Goal: Find (x1, . . . , xK) ∈ KK such that rkK(M0 −∑K

i=1 xiMi) ≤ t.

Let us denote by {T1, . . . ,Tn(`+1)} ⊆ Fn×n2 an F2-basis of M`. Similarly, Extg(c) can
be written in some basis {C1, . . . ,Cnk} ⊆ Fn×n2 of the F2-vector space of dimension nk

representing Gk+`(g). Applying Extg to Equation (2.1), we get:

X −
n(`+1)

∑
i=1

tiY Ti −
nk

∑
i=1

ciCi = P
′
,

where (X,Y ,P
′) = (Extg(x),Extg(y),Extg(p′)). Since rk(P ′) = t, one gets an instance

of the MinRank problem, with one « base matrix » X ∈ Fn×n2 and K ≔ n(k + ` + 1)
« summand matrices » {Y T1, . . . ,Y Tn(`+1),C1, . . . ,Cn(k+`)}.

There exist several approaches to solve the MinRank problem. In [57], Goubin and
Courtois gave an algorithm which finds a solution in expected time O(K32t⌈K/n⌉). In
1999, Kipnis and Shamir [56] proposed a multivariate formulation of MinRank which
can be solved by computing Groebner bases. Such computations can be run in time
O((m+d−1

d
)ω), where 2 ≤ ω < 3 is the linear algebra constant, m = t(n − t) +K and d is

the degree of regularity of the system [58]. Faugère, Levy-dit-Vehel and Perret [59] proved
that, in the Kapnis-Shamir formalism, any instance can be reduced to a simpler one if
∆ ≔ K − (n − t)2

> 0. In our case, setting w ≥ ` + 1 ensures that ∆ ≤ 0. Moreover, the
authors proved that the degree of regularity is lower than what is expected for random
systems, and it seems to be upper bounded by t + 2 heuristically. This heuristic was
confirmed by Verbel et al. [60] for superdetermined instances, and by Bardet et al. [24]
in the context of decoding low rank errors in random codes. Finally, the latter work also
presents instances for which the solving degree decreases to d = t. We choose to consider
this conservative setting; the running time for the computation of the associated Groebner
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basis is thus in

O ( (t(n − t) + n(k + ` + 1) + t − 1
t )

ω

) .

To sum up, the reduction to MinRank leads us to the following bounds on the
parameters:

w ≥ ` + 1, ω ⋅ log (n(k+`+t+1)−t2+t−1
t

) ≥ λ, n(k + ` + 1) ≥ λ .

4.4 Bombar - Couveur attack

Shortly after the publication of our preprint paper, Bombar and Couvreur proposed
an attack on it [29]. This is an attack on the ciphertext y by considering all vectors as
block matrices in Fn×n2 and the linearized polynomials as the F2-endomorphisms.

By the definition of Gabidulin code, we also can denote Gk(g) = {MPG} where MP

is representation matrix of a linearized polynomial P ∈ Fq[X; θ] of degree < k and
G = Extβ(g).

Remark that for a matrix of g-degree `, there exists a q-polynomial LT (X) ∈ Fq[X; θ]
of degree ` such that gT = LT (g). LetMT be the representation of a linearized polynomial
LT (X) then GT =MTG, or equivalently, GT = G

−1
MTG

The ciphertext equation:

Y = C +KT +E

where Y ,C,K,E ∈ Fn×n2 are the representations of y, c,k, e in F2

Since rk(e) = t, there exists R = G
−1
MRG ∈ Fn×n2 of g-degree t such that ER = 0.

(see Proposition 2, [29]). Thus, Y R =MCMRG +KG−1
MTMRG.

The right side is an element in Gk+`+t(g) +KG−1G`+t+1 which is well computed by
Gk(g)⊕K.

We need to solve the following system of equations:

Y G
−1
MRG =N . (2.2)

where N ∈ Gk+`+t(g) +KG−1G`+t+1(g) and deg(R) ≤ t. This is an linear system of
equation of k+2`+3t+2 unknowns (k+2`+ t+1 ofN and t+1 ofMR) and n equations.

In the case of k+ 2`+ 3t+ 2 ≤ n, then solving this system of equations will very likely
gives us pairs of the form (MR,N) where ER = 0. The cryptanalysis is as follows:
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1. Solve System 2.2

2. Take the nonzero solution of the system and obtain MR. Compute R = G
−1
MRG

3. Compute the left kernel of R. This kernel contains the rowspace V of E.

4. Recover the RREF of any matrix V whose rowspace generates V and it is the
plaintext.

In the nutshell, we summarize the parameters corresponding to the security against
the existing attack in section 2.4.3. However, all of these parameters are vulnerable for
Bombar- Couvreur attack as the following table

n k w ` t Security (bits) Bombar and Couvreur attack
64 32 19 3 5 141 O(217)
80 40 23 3 7 202 O(218)
96 48 27 3 9 265 O(219)
164 116 27 3 9 256 O(221)

Table 2.1 – 3 first rows are sets of parameters for RAMESSES as a KEM and the last
one as a PKE, with different levels of security.

45





Chapter 3

A NEW FAMILY OF CODES : SUM OF

GABIDULIN CODES AND THEIR

DECODING

There are very few families of decodable codes in rank metric. Namely, the family of
trivial codes [61], the family of Gabidulin codes [36], and the family of LRPC codes [62].
Apart from that, there are codes derived from Gabidulin codes that are used in [63]. These
codes are masked versions of Gabidulin codes, enabling to design public-key encryption
schemes.

The work in this chapter comes from a published paper in the conference ISIT 2021
[64]. In this chapter, we investigate the problem of decoding the sum of Gabidulin codes.
Interestingly enough, this is a problem which appears when one analyses cryptosystems
based on the problem of reconstructing linearized polynomials, [2, 5].

We show that the formulation of this problem can give some insight in decoding prob-
lems and give rise to further understanding on how to design public-key cryptosystems.

In the first section, we introduce notations and especially the notion of skew polynomial
rings which are an elegant and simple manner to deal algebraically with rank metric and
Gabidulin codes. Under this setting, Gabidulin codes are just the evaluation codes of
bounded degree skew polynomials using the operator evaluation.

Then, we state the problem of decoding the sum of Gabidulin codes and show that
there is a simple probabilistic polynomial-time decoder up to some bound. Under some
assumptions, we show that the failure probability of this algorithm is exponentially small.

Finally, we present some potential applications. We show that by considering a random
k-dimensional code as the sum of k 1-dimensional Gabidulin codes, we recover the result
of [65] for the decoding of random codes. We also show that investigating properties of
the sum of Gabidulin codes could be of interest in designing and analysing rank metric
based public-key cryptography based on algebraic decoding.
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1 Decoding of the sum of Gabidulin codes

We recall here the definition of Gabidulin code which is the definition 1 in chapter 1.
In this setting, Gabidulin codes are defined as evaluation codes of skew polynomials over
linearly independent elements (see p.20-21).

Definition 4. Let g = (g1, . . . , gn) ∈ Fnqm, formed with Fq-linearly independent elements.
The Gabidulin code of dimension k and of support g denoted by Gk(g) is defined by

Gk(g) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
f⟨g⟩,

f ∈ Fqm[X; θ]
deg(f) ≤ k − 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭

Definition 5 (Sum of Gabidulin codes). Let {Gkj⟨gj⟩ ⊂ Fnqm}`j=1 be a set of kj-dimensional
Gabidulin codes with support vectors gj. We define by

C =
`

∑
j=1

Gkj(gj) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

`

∑
j=1

fj⟨gj⟩,
fj ∈ Fqm[X; θ]
deg(fj) ≤ kj − 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭

the code formed with the sum of Gabidulin codes.

Our goal is to study in which case we can decode it and up to which bound in the
rank metric.

1.1 Problem

The decoding problem we address is the following: Let

y = c + e

where c ∈ C and e has rank t. This implies that
— There exists skew polynomials fj ∈ Fqm[X; θ] with degree ≤ kj − 1, such that

c =
`

∑
j=1

fj⟨gj⟩

— There exists a unique skew polynomial Ae ∈ Fqm[X; θ], monic and of degree t such
that Ae⟨e⟩ = 0

48



1. Decoding of the sum of Gabidulin codes

From the Fq-linearity of the evaluation of skew polynomials, we can rewrite the de-
coding problem under the following form

Ae⟨y⟩ =
`

∑
j=1

(Ae ⋅ fj)⟨gj⟩ (3.1)

The unknowns of the system are the coefficients of the skew polynomials. Hence, we obtain
a non homogenous bivariate system with t +∑`

j=1 kj + 1 unknowns and n equations.
A way to decode would then be to homogeneize the system and solve it by using

Gröbner bases, but this is not the direction we investigate. As in [66, 67], we prefer to
linearize the system and understand when the solution space is 1-dimensional to relate it
directly to the decoding of C.

1.2 Linearizing the problem

We now consider the following system:

A⟨y⟩ =
`

∑
j=1

Nj⟨gi⟩ (3.2)

where A has degree t and for j ∈ {1, . . . , `}, deg(Nj) ≤ t+kj−1. The number of equations
is equal to n and the number of variables can be counted as such:
— t + 1 variables to characterize the skew polynomial A;

— `t +∑`

j=1 kj to characterize the polynomials Nj.
Hence, the number of variables is (`+ 1)t+∑`

j=1 kj + 1. In case (`+ 1)t+∑`

j=1 kj < n,
this implies that the matrix of the system is degenerate, and the solution space often is
of small dimension, typically 1.

We can relate the solutions of system (3.1) and (3.2) by the following immediate
theorem.

Theorem 5. Let (f1, . . . , f`, V ) be a solution of (3.1) then (V ⋅ f1, . . . , V ⋅ f`, V ) is a
solution to (3.2)

This theorem is a straightforward generalisation of the systems written for the Welch-
Berlekamp decoding algorithm [66, 67]. More precisely, we can prove the following theorem
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Theorem 6. Let y ∈ Fnqm. Let

Ly,t(C) = {(ci, ei) ∣ y = ci + ei, ci ∈ C, rkq(ei) ≤ t}

If the solution space of (3.2) is 1-dimensional, then there is at most one element in Ly,t(C).
Moreover any non zero solution (A,N1, . . . , N`) of the system provides the same solution
(A,A\N1, . . . , A\N`) to (3.1), where A\N denotes the left Euclidean division of N by A
in Fqm[X; θ].

This gives a natural decoding algorithm consisting in enumerating the solution space
of system (3.2). Let d be the dimension of this solution space this gives a list decoding
algorithm recovering Ly,t with complexity

O (P (n,m)qm(d−1)) ,

where P is a polynomial of degree at most 3. The exponent is d − 1 and not d since we
only need to enumerate the 1-dimensional vector spaces and not all the elements in the
solution space. Namely, we need to enumerate the solution space of the linear system,
and then complete the left Euclidean division in Fqm[X; θ] corresponding to the linear
algebra operations.

Corollary 4. A necessary condition for the dimension of system (3.1) to be ≤ 1 is

(` + 1)t +
`

∑
j=1

kj < n

Proof. Suppose that ∣Ly,t(C)∣ ≥ 2. Let (c1, e1) and (c2, e2) be two distinct ele-
ments of Ly,t(C). Then they respectively correspond to solutions (Ae1 , f1, . . . , f`) and
(Ae2 , h1, . . . , h`) of (3.1). Therefore (Ae1 , Ae1 ⋅f1, . . . , Ae1 ⋅f`) and (Ae2 , Ae2 ⋅h1, . . . , Ae2 ⋅h`)
are solutions of (3.2) . From the hypothesis that the solution vector space is 1-dimensional,
and the fact that Ae1 and Ae2 are monic, this implies that Ae1 = Ae2 , and that any solution
has the form

α ⋅ (Ae1 , Ae1 ⋅ f1, . . . , Ae1 ⋅ f`), α ∈ Fqm
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1.3 Discussion on the failure probability

In this section, we investigate the failure probability, that is we consider that we are
in the conditions of Corollary 4, where (`+1)t+∑`

j=1 kj < n and where the solution space
of (3.2) has dimension d ≥ 2. This corresponds to the case where the decoding cannot be
completed in polynomial-time.

As in [68], we define the operator λt which maps a matrix M = (mij) ∈ Fs×nqm to a
block matrix:

λt ∶ Fs×nqm → Fs(t+1)×n
qm

M ↦

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

M

⋮

M
[t]

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

,

where M [u] ∶= (θu(mij)). Let (A,N1, . . . , N`) ∈ Fqm[X; θ] be a solution to the linear
system (3.2). We now identify any polynomial in Fqm[X; θ] with the vector formed by its
coefficients. Then solving (3.2) is equivalent to solving the following linear system

M ⋅

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−A

N1

⋮

N`

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= 0

where M = (λt(y)⊤, λt+k1−1(g1)⊤,⋯, λt+k`−1(g`)⊤).

The matrix M is a n × ((` + 1)t +
`

∑
j=1

kj + 1) - matrix in Fqm . Its kernel ker(M) is

the solution space of (3.2). From our hypotheses, the dimension of ker(M) is at least 1.
A sufficient condition to be able to decode in polynomial-time is that the kernel of M is
exactly 1.

We need to compute the probability of non-unique decoding P(∣Ly,t(C)∣ > 1) =

P(dim ker(M) > 1). By the rank-nullity theorem, dim ker(M) + rkqm(M) = (` + 1)t +
`

∑
j=1

kj + 1. If the dimension of the solution space is greater than 1, then rkqm(M) <

(`+ 1)t+
`

∑
j=1

kj. Let M be the set of all n× ((`+ 1)t+
`

∑
j=1

kj + 1) - matrix in Fqm of the

form
(λt(g0)⊤, λt+k1−1(g1)⊤,⋯, λt+k`−1(g`)⊤) .
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Let us also define A as the set of all n × (` + 1) - matrices in Fqm of the form

(g⊤0 , g⊤1 , . . . , g⊤` )

such that g0, g1, . . . , g` ∈ Fnqm and ∀j ∈ {1, . . . , `}, rk(gj) = n. Given a set of integers
(k0 = 1, k1, . . . , k`), we define the following bijection

ϕ ∶ A → M

(g⊤0 , . . . , g⊤` ) ↦ (λt+k0−1(g0)⊤, . . . , λt+k`−1(g`)⊤)

Theorem 7. For A $
←− A, and M = ϕ(A). Let r ∶= rkqm(M). Then

PA [r < (` + 1)t +
`

∑
j=1

kj] ≤
( n

r+1)4`

q2m ≤
1
qm

Proof. For A is chosen uniformly from A and M = ϕ(A), of rank r < (` + 1)t +
`

∑
j=1

kj,

let
S ∶= {h ∈ Fnqm∣h has n − (r + 1) coordinates 0}

Since r < (`+ 1)t+
`

∑
j=1

kj, there exists h ∈ S such that hM = 0. Thus, for j ∈ {0, . . . , `},

λt+kj−1(gj)h⊤ = 0 (3.3)

This in particular implies that h ∈
`

⋂
j=1

G⊥t+kj−1(gj). Therefore rkq(h) ≥ t+ kmax where

kmax ∶= max{kj}. Let
Ah = {A ∈ A ∣ hϕ(A) = 0}

We determine the probability that for a fixed h ∈ S with rkq(h) ≥ t + kmax, there

exists A ∈ Ah. This probability will be ∣Ah∣
∣A∣ . Then,

PA [r < (` + 1)t +
`

∑
j=1

kj] ≤
1

qm − 1 ∑
h∈S,rkq(h)≥t+kmax

∣Ah∣
∣A∣ (3.4)

52



1. Decoding of the sum of Gabidulin codes

The term 1/(qm − 1) coming from the fact that for any vector h ∈ S, and for any
α ∈ Fqm \ {0}, we have Ah = Aαh. For a given h ∈ S we now look at the cardinality of
Ah. Now let A ∈ Ah, this implies that λt+kj−1(gj)h⊤ = 0, for j ∈ {0, . . . , `}. In particular
this implies

∀i ∈ {0, . . . , t + kj − 1}, g
[i]
j h

⊤
= 0.

Therefore, by applying the inverse of θ a sufficient number of times, we obtain ∀i ∈
{0, . . . , t+kj−1}, gj(h[−i])⊤ = 0. Now let hj ∶= h

[−(t+kj−1)]. Then ∀i ∈ {0, . . . , t+kj−1},
gj(h[i]

j )⊤ = 0. It implies that λt+kj−1(hj)g⊤j = 0.
We need the following lemma:

Lemma 11 (Lemma 3.51 [69]). Given g ∈ Fnqm then rkqm(λk(g)) = min{k + 1, rkq(g)}.

Since rkq(h) ≥ t+kmax, Lemma 11 implies that for j ∈ {0, . . . , `}, rkqm(λt+kj−1(hj)) =
t + kj. Moreover,

dim ker(λt+kj−1(hj)) + rkqm(λt+kj−1(hj)) = n

Hence, dim ker(λt+kj−1(hj)) = n− (t+ kj). It implies that the number of possible vectors
gj is at most (qm)n−(t+kj). Therefore,

∣Ah∣ ≤
`

∏
j=0

(qm)n−(t+kj) = (qm)
(`+1)(n−t)−

`

∑
j=1

kj−1

To complete the proof, we also need the following lemma

Lemma 12 (Lemma 3.13 [68]). Given n ≤ m, the number of matrixes A ∈ Fm×nq such

that rkq(A) = n is larger than
q
mn

4 . As a consequence, it is also the lower bound for the
number of vectors u ∈ Fnqm such that rkq(u) = n.

Since ∀j ∈ {1, . . . , `}, rkq(gj) = n, from Lemma 12, the number of possible vectors

gj is
q
mn

4 . Moreover g0 can be chosen completely arbitrarily, thus adding a factor of qmn.

Hence, the number of possible matrices A ∈ A is greater than (q
mn

4 )
`

q
mn. Thus,

∣A∣ ≥ (qm)n(`+1)

4`
and ∣Ah∣

∣A∣ ≤
4`

(qm)
`

∑
j=1

kj+(`+1)t+1
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Finally we have
∣S∣

qm − 1 =
( n

r+1)(q
m − 1)r+1

qm − 1 ≈ ( n
r + 1)q

mr

From the inequality (3.4), we obtain that

PA [r < (` + 1)t +
`

∑
j=1

kj] ≤
( n

r+1)4`qmr

q
m⋅(

`

∑
j=1

kj+(`+1)t+1)

Now since 1 ≤
`

∑
j=1

kj + (` + 1)t − r , we have

PA [r < (` + 1)t +
`

∑
j=1

kj] ≤
( n

r+1)4`

q2m ≤
1
qm

Now we can sum up and establish our main result

Theorem 8 (Main theorem). Let g1, . . . , g` be a randomly chosen set of vectors of rank
n in (Fqm)n. Let

C =
`

∑
j=1

Gkj(gj)

then C can be decoded up to t with a failure probability upper-bounded by q
−m with a

polynomial-time complexity, under the condition that (` + 1)t +∑`

j=1 kj < n.

2 Applications

In this section we give examples where the previous theorem has some applications.
We do not claim to have obtained extraordinary new results, but we emphasize that this
new point of view in decoding could have interesting cryptographic applications.

2.1 Decoding of Interleaved code

As in [70], we consider the following model of channel: The error positions are all taken
in the same q-ary vector space E , of dimension t, i.e, every error vector e = (e1, . . . , en)
of length n such that for all i ∈ {1, . . . , n}, ei ∈ E . Let be A the unique monic linearized
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2. Applications

polynomial of degree t such that for all e ∈ E , A⟨e⟩ = 0. Suppose that through this
channel, one receives u messages y(1)

, . . . ,y
(u), such that

∀i ∈ {1, . . . , u}, y(i)
= ci + ei,

where ci ∈ C. Thus, for all i ∈ {1, . . . , u}, y(i)
=

`

∑
j=1

f
(i)
j ⟨gj⟩ + ei and

A⟨y(i)⟩ =
`

∑
j=1

(A ⋅ f (i)
j )⟨gj⟩ (3.5)

As in the normal case of interleaving, this implies that

A⟨y(i)⟩ =
`

∑
j=1

N
(i)
j ⟨gj⟩ (3.6)

where, for i ∈ {1, . . . , u}, N (i)
j ∈ Fq[X; θ] has degree ≤ t+kj−1. The system (3.6) is linear

in t(u` + 1) + u(
`

∑
j=1

kj) + 1 unknowns (the coefficients of polynomials) and nu equations.

Therefore we can hope to decode up to errors of rank

t ≤ ⌊u(n −
`

∑
j=1

kj) /(u` + 1)⌋

We denote G = [(λt+k1(g1))⊤,⋯, (λt+k`(g`))
⊤] , Yi = (λt(y(i)))⊤ and

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

G 0 ⋯ 0 Y1

0 G ⋯ 0 Y2

⋮ ⋱ ⋱ ⋮

0 ⋯ ⋯ G Yu

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Then,
(N (1)

1 ,⋯, N
(1)
` ,⋯, N

(u)
1 ,⋯, N

(u)
` ,−A)M⊤

= 0

M is a nu × t(u` + 1) + u(
`

∑
j=1

kj) + 1 matrix with entries are in Fqm
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Since dim ker(M) + rkqm(M) = t(u` + 1) + u(
`

∑
j=1

kj) + 1, the case of non-unique

decoding happens if and only if rkqm(M) < t(u` + 1) + u(
`

∑
j=1

kj). It means that, for all

i ∈ 1, . . . , u, rkqm (G∣Yi) < (` + 1) +∑`

j=1 kj + t.
For i = 1, . . . , u, similarly to the Theorem 7 the probability that rkqm(G∣Yi) < (`+1)+

∑`

j=1 kj + t is at most 1
qm

. Therefore, the probability that non-unique decoding happens

is at most 1
qmu

.

2.2 On McEliece type rank-metric based cryptosystem

In GPT-type cryptosystem, we could expect to replace the family of Gabidulin codes
with the family of sums of Gabidulin codes. However, by studying the effect of Overbeck’s
distinguisher, we show that it cannot be replaced directly. More recently in [63], a new
technique was introduced to scramble Gabidulin codes. If the parameters are not carefully
chosen, there exists a simple distinguisher leading to an efficient key recovery attack [6].
We investigate the effect of this attack if the family of Gabidulin codes is replaced by a
sum of Gabidulin codes. We show that the attack cannot be easily adapted.

2.2.1 Overbeck ’s distinguisher

Let C =
`

∑
j=1

Gkj(gj). The idea of Overbeck’s distinguisher is to use the automorphism θ

to distinguish C from a random code of same dimension. Let k =
`

∑
j=1

kj and Crand a random

code of dimension k. For the random code Crand, we expect that dimFqm Crand + C[1]
rand =

min(n, 2k) with high probability, since the usual hypothesis in that case is to suppose
that Crand and C[1]

rand behave like two k-dimensional vector spaces randomly and uniformly
chosen. By studying the dimension of C + C[1], we can show that it is at most k + `. For
` < k < n/2, this implies a distinguisher between this code and the random ones. This
indicates that substituting Gabidulin codes by sum of Gabidulin codes as such is probably
not a good idea.
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2.2.2 Loidreau-like encryption scheme

The security of the scheme is supported by two hypotheses
— The public code is indistinguishable from a random code
— Bounded distance decoding in rank metric is a computationally difficult problem

The second point is beyond the scope of this thesis. We are interested in the first point.
So let us recall the procedure for generating a public-key/private key pair.

— The private key is C =
`

∑
j=1

Gkj(gj)

— The public-key is a randomly chosen generator matrix of CP −1 where P ∈ GL(V)
where V is a random λ-dimensional Fq- linear subspace of Fqm .

We observe the attack by distinguisher.

1. Distinguishing CP −1 from random codes: If we raise a public-key G[i]
pub to the i-th

power of θ we have
G

[i]
pub = S

[i]
G

[i](P −1)[i]

The matrix P has entries in V but the matrix P −1 has no reason to belong to some
strict subspace of Fqm . Thus we avoid the invariant subspace attack ([71],[72]).

2. Distinguishing C⊥P⊤ ∶= C⊥pub from random codes. A generator matrix of C⊥pub is
Hpub = HP

⊤, where H is a parity-check matrix of C. The invariant subspace
attack requires computing dimFqm(C⊥pub+⋅ ⋅ ⋅+C⊥pub

[i]) but we may not have enough
information for C⊥.

Lemma 13. The dual code of Cpub is

C⊥pub =
`

⋂
j=1

Gn−kj(hj)P
⊤

for some hj ∈ Fnqm such that rk(hj) = n.

Proof. This lemma is straightforward from the fact thatHpub =HP
⊤ and G⊥k (g) =

G⊥n−k(h) for some h ∈ Fnqm ([36])

The attack of Alain Couveur and Coggia ([6]) needs the construction of C⊥ to com-
pute dimFqm(C⊥pub+⋅ ⋅ ⋅+C⊥pub

[i]), so it requires a representation for the basis of C⊥pub.
However, from the lemma, it is only a n− k-dimensional subspace of Gn−kj(hj)P

⊤.
Thus, this approach cannot directly lead to the recovery of the private key.
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2.3 Probabilistic polynomial-time decoding of random codes

A direct consequence of Theorem 6, is just a reformulation of a result in [65] showing
that it is possible to have a probabilistic polynomial-time decoder for random codes up
to a certain dimension. Namely, a k-dimensional random code is the direct sum of k
1-dimensional random codes.

Namely, suppose that C is a random code with generator matrix

G =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

g1

⋮

gk

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

where dim(Span⟨gj⟩) = k. Then,

C =
k

∑
j=1

G1(gj)

Therefore, we have the immediate following corollary of theorem 6

Corollary 5. Let C be a [n, k]r linear code over Fqm, then there is a probabilistic polyno-
mial time decoder for C up to errors of rank

t ≤ ⌊n − k
k + 1⌋

The sum of k 1-dimensional codes is a random code of dimension k. With this approach,
we recover the decoding of a random rank-metric code [65].
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CONCLUSIONS AND PERSPECTIVES

We end this thesis by summarizing the main contributions and some perspectives.

Chapter 1

In Chapter 1, we generalize the Coggia and Couveur attack in case that the secret
subspace is of any dimension λ. This generalization comes from the idea of the Coggia
and Couveur attack [6] on Loidreau cryptosystem [7] and fills the gap from the work of
Ghatak [28]. In the section 1.4.1, we prove the general version of the distinguisher for any
λ

dimFqm (C⊥pub + C⊥pub
[1]
+ ⋅ ⋅ ⋅ + C⊥pub

[λ]) ≤ λ(n − k) + λ

P(dimFqm (Crand + C[1]
rand + ⋅ ⋅ ⋅ + C[λ]

rand) ≤ min(n, (λ + 1)k) − a) = O(q−ma)

where Crand is a random code of length n and dimension k, a nonnegative integer a and a
positive λ < k. This is a distinguisher for the Loidreau’s scheme for any λ and the public
code has rate Rpub ≥ 1 − 1/λ.

Afterwards, in the section 1.4.2, we exploit the distinguisher for a key-recovery attack.
For the case of λ = 3, we also see the incomplete work in [28] in case λ = 3 and we give a
proof for the claim that the extension of the Coggia and Couvreur attack can be done in
polynomial time.

The parameters of (k, n), which Rpub ≥ 1−1/λ should be avoided in Loidreau’s scheme.
In the future, it will be worthwhile to attempt a modification of the attack to work for
lower rate codes Rpub < 1− 1/λ as well. Additionally, the algebraic attack in [73] gives us
the new set of parameters in [7]:

m = n k λ t PK size CT size Decoding K. Rec

128 20 3 18 34.5kB 1.8kB 2180 2311

128 44 3 14 58kB 1.3kB 2275 2308
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In the future, we can continue study the case that Rpub < 1 − 1/λ. In this case,
dimFqm(S) probably equals to n where S = (C⊥pub + C⊥pub

[1]
+ ⋅ ⋅ ⋅ + C⊥pub

[λ]). Although, we
do not have the structure of S, a natural idea is considering the subspace of S which

generated by vectors h[j]
0 +

λ−1
∑
i=1

β
[u]
i h

[j]
i . This subspace can be exploited some information,

similarly the Chapter 1.
On the other hand, another direction of research is modifying the code to avoid this

kind of attack. It is unsure but one of the ideas is using the sum of Gabidulin codes instead
of Gabidulin code in Chapter 3.

Chapter 2

In Chapter 2, based on the idea of the Finiasz-Augot’s cryptosystem [74] and Faure-
Loidreau cryptosystem [2], we propose a new cryptosystem RAMESSES. In this cryp-
tosystem, the plaintext is a t-dimensional subspace of Fn2 . After giving the proof for the
consistency and the estimation of the failure probability, in the section 2.5.3, we considered
some known attacks on this cryptosystem such as exhaustive search attack, the reduction
to a quadratic system over F2 and the reduction to a MinRank instance. Recently, it was
broken by the Bombar and Couvreur attack [29], which is also introduced in section 2.5.4.
Until now, we haven’t had a proper way of modifying this system to resist against this
attack.

In the future, we will try to repair the RAMESSES cryptosystem to avoid Bombar-
Couveur attack. For example, using the multi-key

Algorithm 6: KeyGen(1λ)
Input:
Output: a pair of public/private keys (kpub,kpriv)

1 Pick V ⊂ Fq F2-vector space of dimension w >
n − k

2
2 Pick kpriv ∶= (kpriv

(1)
,kpriv

(2)) $
←− {x ∈ Vn × Vn, rk(x1) = rk(x2) = w}

3 Compute kpub = (kpub
(1)
,kpub

(2)) ∈ Fn−kq × Fn−kq such that kpub
(i)⊤

=Hkpriv
(i)⊤

4 Output (kpub,kpriv)

Follow the Bombar-Couveur attack, we have a linear system of equation which has
k + 3` + 4t + 2 unknowns and n equations. We can choose the parameter such that
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Algorithm 7: Encrypt(kpub,P )
Input: public key kpub ∈ Fn−kq × Fn−kq , plaintext P ∈ Pt,n
Output: ciphertext u ∈ Fn−kq

1 Compute any yi ∈ Fnq such that Hy⊤i = kpub
(i)⊤

2 Pick T1,T2
$
←− {M ∈ Fn×n2 , degg(M) = `}

3 Pick S $
←− {M ∈ Fn×n2 , rk(M) = n}

4 Compute p′ = gSP ∈ Fnq
5 Output u ∈ Fn−kq such that u⊤ =H(y1T1 + y2T2 + p

′)⊤

Algorithm 8: Decrypt(kpriv,u)
Input: private key kpriv ∈ Fnq , ciphertext u ∈ Fn−kq

Output: plaintext P̂ ∈ Pt,n, or failure
1 Compute a solution x ∈ Fnq to the linear system Hx

⊤
= u

⊤.
2 Compute z = Vkpriv(x) ∈ Fnq .
3 Decode z as a corrupted Gabk+`+w(g)-codeword. If success, one gets an error

vector a ∈ Fnq of rank ≤ t.
4 If rk(a) < t, output failure.
5 Otherwise, output P̂ = RREF(Extg(a)).

k+ 3`+ 4t+ 2 > n and this system can avoid the Bombar-Couveur attack. Unfortunately,
this system can be attacked by the GOT attack [3].

Chapter 3

In this chapter, based on the idea of linearizing the decoding problem to decode
Gabidulin codes in [8], we consider the problem of decoding the sum of Gabidulin codes.

For a sum of Gabidulin codes C =

`

∑
j=1

Gkj(gj) where gj
$
←− Fnqm , it can be decoded

with exponentially small failure probability in polynomial-time under the condition that

(` + 1)t +
`

∑
j=1

kj < n. In the section 3.3.2, we also consider a replacement of the sum of

Gabidulin code in the Loidreau’s cryptosystem [7] and we hope that this modified system
can resist the Coggia and Couvreur attack. It means that we need to consider the distin-
guisher of the dual of the public code from the random one. In the future, we can find
more applications for this decoding.
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Titre : Étude et conception de nouvelles primitives de chiffrement fondées sur les codes cor-
recteurs d’erreurs en métrique rang

Mot clés : Métrique rang, Codes de Gabidulin, Cryptosystème de McEliece

Résumé : En 2005, Faure et Loidreau ont
proposé un nouveau métrique rang cryptosys-
tème inspiré du schéma métrique de Ham-
ming d’Augot-Finiasz en 2003. En 2018, il
a été attaqué par Gaborit, Otmani et Kala-
chi. Récemment, il y a eu quelques tentatives
de réparation du schéma Faure-Loidreau, par
exemple les travaux de Renner, Puchinger et
Wachter-Zeh qui s’appelle LIGA. Dans cette
thèse, on introduit également un nouveau
cryptosystème appelé RAMESSES qui est
une autre réparation du schéma de Faure-
Loidreau.

Par ailleurs, on étude également l’attaque
récente de Coggia et Couveur sur le cryp-
tosystème de Loidreau (2017). Bien qu’ils

ne proposent qu’une idée pour un cas par-
ticulier de la dimension du sous-espace se-
cret, cette attaque peut être généralisée. Dans
cette thèse, on propose une analyse de l’at-
taque Coggia-Couvreur sur le schéma de chif-
frement à clé publique en métrique rang de
Loidreau dans le cas général.

La dernière partie est une étude sur le
décodage de la somme des codes de Gabi-
dulin qui s’inspire du "Welch-Berlekamp Like
Algorithm for Decoding Gabidulin Codes" de
Loidreau en 2005. Ce travail est également
une tentative de réparation du cryptosystème
de Loidreau (2017) pour éviter l’attaque de
Coggia-Couveur.

Title: Study and design of new encryption primitives based on rank metric error correcting
codes

Keywords: Rank metric, Gabidulin codes, McEliece cryptosystem

Abstract: In 2005, Faure and Loidreau pro-
posed a new rank-metric cryptosystem in-
spired from the Hamming metric scheme of
Augot-Finiasz in 2003. In 2018, it was bro-
ken by the attack of Gaborit, Otmani and
Kalachi. Recently, there are some attempts
of repairing the Faure-Loidreau scheme, for
example the work of Renner, Puchinger and
Wachter–Zeh which is called LIGA. In this the-
sis, we also introduce a new cryptosystem so-
called RAMESSES which is another repairing
of Faure-Loidreau scheme.

Besides, we also study about the recent at-
tack of Coggia and Couveur in the Loidreau’s

cryptosystem (2017). Although they only pro-
pose an idea for a special case of the di-
mension of secret subspace, this attack can
be generalized. In this thesis, we propose
an analysis of Coggia-Couvreur attack on
Loidreau’s rank-metric public-key encryption
scheme in the general case.

The last part is a study about the decod-
ing of the sum of Gabidulin codes which is
inspired from the work of Loidreau in 2005
"Welch-Berlekamp Like Algorithm for Decod-
ing Gabidulin Codes". This work is also an
attempt to repair the Loidreau’s cryptosystem
(2017) to avoid the Coggia-Couveur’s attack.
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