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SCHEDUL-ING PROBLEM

As mentioned in General Introduction, we develop both heuristic and exact approaches to solve the studied problem in this thesis. In this section, we firstly introduce the mathematical model of this problem; then we present the state of the art of heuristic and exact approaches, and review the relevant works that apply them in the field of HHC routing and scheduling problem.

This thesis addresses a Home Health Care (HHC) routing and scheduling problem with the consideration of HHC characteristics, carbon footprint and traffic conditions. The caregivers assignment and vehicles scheduling is one of the most important problems of HHC companies. As known to all, traffic issues have a great impact on the environment. And the growing concern about the influences of anthropogenic pollutions has forced researchers to study the environmental concerns. This thesis also considers environmental concerns and aims to minimize costs and carbon footprint for HHC systems. The main content of this thesis are the following three independent works. Firstly, we address a HHC routing and scheduling problem with the constraints of synchronized visits and carbon emissions (HHCRSPSC). In this work, the aim is to minimize the carbon emissions, which has a linear relationship with fuel consumption. This goal can reduce environmental pollution while optimizing operating costs for the HHC company. In order to solve the problem, we propose an Ant Colony Optimization (ACO)-based heuristic approach for this problem. The experimental results highlight the effectiveness and efficiency of the proposed approach. Then, we study the HHC green routing and scheduling problem (HHCGRSP) from two different perspectives including economic perspective and environmental perspective. In order to solve the studied problem, we propose an exact Branch-and-Price (BP) algorithm. Extensive computational experiments demonstrate the effectiveness of the proposed BP algorithm. Finally, we take the consideration of traffic congestion. In this work, a HHC time-dependent green routing and scheduling problem (HHCTDGRSP) is addressed. To mathematically model traffic congestion, the travel speed is set as time-dependent. We propose a Branch-Price-and-Cut (BPC) algorithm to solve the problem. In order to get a more reasonable lower bound, valid inequalities are used to strengthen the Set Partitioning Formulation (SPF). Extensive computational experiments validate the effectiveness of the proposed BPC algorithm.

Titre : Contributions to Operations Management to Minimize Costs and Carbon Footprint for Health Care Systems with Heuristic and Exact Methods Mots-cl és : Accueil Soins de sant é, Routage et programmation verte, Émissions de carbone, Optimisation des colonies de fourmis, Branch-and-price, Branch-price-and-cut R ésum é :

Cette th èse traite d'un probl ème de routage et d'ordonnancement des soins à domicile (HHC) en tenant compte des caract éristiques des HHC, de l'empreinte carbone et des conditions de circulation. L'affectation des soignants et la planification des v éhicules est l'un des probl èmes les plus importants des entreprises HHC. Comme chacun le sait, les probl èmes de circulation ont un grand impact sur l'environnement. Et la pr éoccupation croissante concernant les influences des pollutions anthropiques a contraint les chercheurs à étudier les pr éoccupations environnementales. Cette th èse prend également en compte les pr éoccupations environnementales et vise à minimiser les co ûts et l'empreinte carbone des syst èmes HHC. Le contenu principal de cette th èse correspond aux trois travaux ind épendants suivants. Dans un premier temps, nous abordons un probl ème de routage et d'ordonnancement HHC avec les contraintes de visites synchronis ées et d' émissions de carbone (HHCRSPSC). Dans ce travail, l'objectif est de minimiser les émissions de carbone, qui ont une relation lin éaire avec la consommation de carburant. Cet objectif permet de r éduire la pollution de l'environnement tout en optimisant les co ûts d'exploitation pour l'entreprise HHC. Afin de r ésoudre le probl ème, nous proposons une approche heuristique bas ée sur l'optimisation des colonies de fourmis (ACO) pour ce probl ème. Les r ésultats exp érimentaux mettent en évidence l'efficacit é et l'efficience de l'approche propos ée. Ensuite, nous étudions le probl ème de routage et d'ordonnancement écologique HHC (HHCGRSP) sous deux perspectives diff érentes, notamment la perspective économique et la perspective environnementale. Afin de r ésoudre le probl ème étudi é, nous proposons un algorithme exact de "Branch-and-Price" (BP). Des simulations approfondies d émontrent l'efficacit é de l'algorithme BP propos é. Enfin, nous prenons en consid ération les embouteillages. Dans ce travail, un probl ème dit "green routing and scheduling problem" d épendant du temps HHC (HHCTDGRSP) est abord é. Pour mod éliser math ématiquement les embouteillages, la vitesse de d éplacement est d éfinie en fonction du temps. Nous proposons un algorithme "Branch-Price-and-Cut" (BPC) pour r ésoudre le probl ème. Pour obtenir une borne inf érieure plus raisonnable, des in égalit és valides sont utilis ées pour renforcer la formulation de partitionnement en ensemble "Set Partitioning Formulation" (SPF). Des simulations approfondies valident l'efficacit é de l'algorithme BPC propos é.
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GENERAL INTRODUCTION

As shown in Figure 1, a lot of care services can be provided by the HHC companies.

As reported in recent demographic studies, health care services in many countries are shifting from hospitals to HHC providers. According to [START_REF] Genet | Home care in europe: a systematic literature review[END_REF], in Europe, 1% to 5% of the total public health budget is spent on HHC, which is expected to yield three main advantages: reduced number of hospitalizations, shorter hospital stays, and the ability to stay at home. Take France as an example, in 2019, the number of people using HHC services continued to increase, reaching 128227, an increase of 266% over 2005 [START_REF] Di Mascolo | Routing and scheduling in home health care: A literature survey and bibliometric analysis[END_REF]. In this context, as the global aging problem intensifies, the HHC industry will undoubtedly continue to develop rapidly.

In order to participate in market competition, reduce public expenditure, improve service quality and reduce costs are the main concerns. Various challenging optimization problems stem from this important topic of high public interest. Among these, the HHC routing and scheduling problem has aroused considerable interest in the past few years.

The HHC services can be characterized by logistical problems [START_REF] Ramírez-Emiliano | Mitochondrial content, oxidative, and nitrosative stress in human full-term placentas with gestational diabetes mellitus[END_REF]. According to a survey of the HHC companies [START_REF] Harris | Handbook of home health care administration[END_REF], the HHC company conducts various logistic activities including delivering the caregivers, drugs, medical devices and equipments from the HHC company (i.e. the depot) to the patients, and biological samples (such as blood and urine) from the patients' homes to the medical laboratory for testing every day [START_REF] Liu | Heuristic algorithms for a vehicle routing problem with simultaneous delivery and pickup and time windows in home health care[END_REF]Decerle et al., 2019a;[START_REF] Moussavi | A matheuristic approach to the integration of worker assignment and vehicle routing problems: Application to home healthcare scheduling[END_REF], and finally the HHC vehicles return to the HHC company, while respecting regulatory and operational constraints.

The daily scheduling activity has been demonstrated to be a very difficult problem but a crucial decision activity for company [START_REF] Hickman | Metaheuristics for solving a multimodal home-healthcare scheduling problem[END_REF]. But for the decision makers of HHC organizations, they usually carry out daily routing and scheduling plans based on the experience, but not mathematical modeling scheme or effective algorithms. However, the routing and scheduling problems in HHC are very complicated and have been proved to be NP-hard problems [START_REF] Di Mascolo | Routing and scheduling in home health care: A literature survey and bibliometric analysis[END_REF], which are very difficult problems in the subject of theoretical computer science. There is no doubt that the scheduling based on experience is not science and reasonable. A good schedule must help the HHC company to conduct reasonable logistical activities and minimize the operating costs simultaneously. Therefore, it is very important to make a good daily routing and scheduling plan for the HHC company. The daily routing and scheduling problem in HHC is similar to Vehicle Routing Problem (VRP), which is one of the most important, applicable and meanwhile most common transportation problems [START_REF] Asghari | Green vehicle routing problem: A state-of-the-art review[END_REF]. As known to all, transportation will cause resource consumption, poison to ecosystems and humans, noise and greenhouse gas (GHG) emissions [START_REF] Kirkinen | Greenhouse impact due to the use of combustible fuels: life cycle viewpoint and relative radiative forcing commitment[END_REF], among which GHG emissions are the most concerned by researchers and scholars because GHG emissions will directly create an impression on human health [START_REF] Bektas | The pollution-routing problem[END_REF]. As shown in Figure 2, the automobiles will produce a lot of exhaust emissions, which will lead to environmental pollution. The growing awareness of environmental concerns such as global warming and urban air pollution has led to increased efforts to protect the environment [START_REF] Zhu | Study on the vehicle routing problem considering congestion and emission factors[END_REF]. According to the work reports by the US Environmental Protection Agency (EPA), the transportation sector contributes 28% of national GHG emissions [START_REF] Erdo Gan | A green vehicle routing problem[END_REF], mainly from the burning of fossil fuels in automobiles, trucks, ships, trains and planes (EPA, 2020). The motivation of being more environmental conscious is not only about legal constraints, but it also reduces costs and attracts customers who prefer green operations (C ¸imen et al., 2017). Therefore, reducing GHG emissions has become a popular international issue when studying transportation problems.

The aforementioned contents show the necessity of developing operations research methodologies to solve daily routing and scheduling problems for HHC organizations. In this thesis, we focus on the daily routing and scheduling problems in HHC. Moreover, due to the hazardous effects of logistics activities, we consider green issue in our scheduling problems. Before the beginning of each work day, we need to plan the route for the staffs of HHC organizations to visit the patients under some complicated constraints (i.e, time window, synchronized visit, traffic congestion and so on). The objective of this problem is usually as minimizing the operating cost of the HHC organizations. But in this these, we also consider the carbon emissions as the objective, which is very environmentally friendly.

In the relevant researches, the similar routing and scheduling problems in HHC are usually solved by heuristic approaches, such as Simulated Annealing (SA) algorithm, Aalp Swarm Slgorithm (SSA), and Cuckoo Search (CS) algorithm [START_REF] Xiao | An improved cuckoo search for a patient transportation problem with consideration of reducing transport emissions[END_REF][START_REF] Fathollahi-Fard | A biobjective green home health care routing problem[END_REF], 2019). The advantage of the heuristic algorithm is that the principle is simple, and a high-quality solution can be obtained in a short calculation time.

But the heuristic algorithm cannot explain the rationality and accuracy of the solution.

Therefore, many scholars develop exact algorithms to solve routing and scheduling problems, such as Branch-and-Price (BP) algorithm, Branch-Price-and-Cut (BPC) algorithm [START_REF] Yuan | A branch-and-price algorithm for the home health care scheduling and routing problem with stochastic service times and skill requirements[END_REF][START_REF] Liu | Mathematical model and exact algorithm for the home care worker scheduling and routing problem with lunch break requirements[END_REF][START_REF] Yuan | Daily scheduling of caregivers with stochastic times[END_REF][START_REF] Liu | A branch-and-price algorithm for the homecaregiver scheduling and routing problem with stochastic travel and service times[END_REF]. The exact algorithm has its mathematical meaning, the solution obtained by exact algorithm can give the gap with the lower bound (LB) of the problem, but the computational efficiency is relatively low compared with the heuristic algorithm, and it is relatively weak in the face of largescale instances. In this thesis, both heuristic and exact algorithms have been proposed to solve the routing and scheduling problem in HHC.

Firstly, we address a HHC routing and scheduling problem with the constraints of synchronized visits and carbon emissions (HHCRSPSC). In this work, the aim is to design a reasonable logistics route with the objective of minimizing the carbon emissions, which has a linear relationship with fuel consumption. This goal can reduce environmental pollution while optimizing operating costs for the HHC company. We formulate the problem as a Mixed-Integer Programming (MIP) model, and use the Gurobi solver to solve the MIP model with a time limit of 1 hour. However, the method based on the MIP model is difficult to solve large-scale instances. Therefore, we propose an Ant Colony Optimization (ACO)-based heuristic approach improved by local search for this problem with large-scale instances. The minimal carbon emissions of each route is calculated by a Dynamic Programming (DM) algorithm. We designed three kinds of experiments to test the proposed approach, including the basic vehicle routing problems with time windows, the studied problem with one speed and the studied problem with two speeds.

Then, we study the HHC green routing and scheduling problem (HHCGRSP) from two different perspectives including economic perspective and environmental perspective. From economic perspective, we aim to optimize the vehicle routing plan to reduce the operating cost, but from environmental perspective, we aim to optimize the vehicle routing and speed decisions to reduce the carbon emissions. This research can provide two different decision plans under these two different perspectives, which is very interesting and meaningful for a HHC organization. We formulate the studied problem as two MIP models with different objectives, and try to use CPLEX solver to solve the MIP model. However, this problem is very challenging, with medium-sized instances already difficult for the MIP solver. In order to solve the studied problem with larger scale instances, we propose an exact Branch-and-Price (BP) algorithm to precisely solve this problem. The BP algorithm relies on efficiently solving the pricing sub-problem. As for the pricing problem with different objectives, we design two different tailored labeling algorithms to solve it. Extensive computational experiments are used to test the proposed model and algorithm.

Finally, we take the consideration of traffic congestion. In this work, a HHC timedependent green routing and scheduling problem (HHCTDGRSP) is addressed. The objective is to design the vehicle scheduling plan, with the goal of reducing carbon emissions, which has a positive linear relationship with fuel consumption of vehicles. In order to mathematically model traffic congestion, the travel speed is set as time-dependent, thus travel time and carbon emissions are also time-dependent. We develop a set partitioning formulation (SPF) for the problem, and propose a Branch-Price-and-Cut (BPC) algorithm to solve it, in which a tailored labeling algorithm is designed for solving the pricing problem. Furthermore, we introduce dominance rule to discard unpromising labels.

In order to get a more reasonable lower bound, valid inequalities are used to strengthen the SPF. Extensive computational experiments are used to validate the effectiveness of the proposed BPC algorithm.

PLAN OF THE THESIS

In this thesis, we study the routing and scheduling problem in HHC with heuristic and exact optimization methods. The rest chapters of this thesis are organized as follows:

• Chapter 1 conducts a detailed literature review for the studied HHC routing problems. To be precise, we carry out the review mainly from HHC routing and scheduling problems, vehicle routing problems, and the methods to solve vehicle routing problems. Then summarizes the main objectives of this thesis.

• Chapter 2 addresses a HHC routing and scheduling problem with the constraints of synchronized visits and carbon emissions (HHCRSPSC). In this work, the aim is to design a reasonable logistics route with the objective of minimizing the carbon emissions, which has a positive linear relationship with fuel consumption. Firstly, we formulate the problem as a Mixed-Integer Programming (MIP) model, and use Gurobi solver to solve the small scale instances. Then, we propose a mete-heuristic algorithm, namely Ant Colony Optimization (ACO)-based heuristic approach, to solve large scale instances of the studied problem. Finally, we conduct the numerical experiments to valid the proposed model and algorithm.

• Chapter 3 addresses a HHC green routing and scheduling problem (HHCGRSP) from two different perspectives including economic perspective and environmental perspective. In this work, we test the influences of different objectives in the routing and scheduling problem in HHC, namely operating cost and carbon emissions. Firstly, we formulate the problem as MIP models. Then, we propose an exact BP algorithm to precisely solve this problem. Finally, extensive computational experiments are conducted to demonstrate the effectiveness of the proposed BP algorithm.

• Chapter 4 studies a time-dependent green vehicle routing problem (HHCTDGRSP) with the consideration of traffic congestion in HHC. In this study, the objective is to design the vehicle scheduling plan, with the goal of reducing carbon emissions, which has a positive linear relationship with fuel consumption of vehicles. Firstly, we also formulate the problem as MIP models. Then, we propose an exact Branch-Price-and-Cut (BPC) algorithm to solve this problem. Finally, extensive computational experiments are conducted to validate the effectiveness of the proposed BPC algorithm.

• Chapter 5 concludes this thesis and discuss some potential future research directions at the related problems.

LITERATURE REVIEW 1.1/ INTRODUCTION

This chapter provides a literature review of the HHC routing and scheduling problem.

Firstly, We briefly introduce the description of HHC routing and scheduling problem, mainly HHC supply chain and a small example from practical application. Then, We analysis the different characteristics of HHC routing and scheduling problem, and discuss some main constraints of HHC routing and scheduling problem. Next, We conduct an overview of VRP and its variants. After that, We discuss the approaches to solving HHC routing and scheduling problem. Finally, We summarize the state of the art of the studied topic and present the main objectives of this thesis.

1.2/ DESCRIPTION OF HHC ROUTING AND SCHEDULING PROB-LEM

In the HHC routing and scheduling problem, a set of patients, spread over a given area (a town or a village), who need health care, for different time durations, and requiring different demands, at their homes, are serviced by a HHC organization (company). Such care is provided by the caregivers, with different skills and availabilities, managed by a HHC organization [START_REF] Di Mascolo | Routing and scheduling in home health care: A literature survey and bibliometric analysis[END_REF].

According to the description above, the operations process for the HHC company is to design daily route plan for different caregivers. Therefore, as for the HHC company, the operations management can be divided into 3 phases, which are presented as follows:

1) Data process: The HHC company must collect and process the raw data of patients. The data mainly includes the patient's personal information, such as name, age, sex, address, disease information, available service time, demand, and other necessary information. According to these information, the HHC company will de-sign the scheduling plan;

2) Design scheduling plan: Based on the above information, and limited resources, the HHC company will design a daily route plan for each caregiver, aiming at providing the timely service for the patients;

3) Implement scheduling plan: The caregivers will serve the patients based on the scheduling plan. They must serve patients one by one in order and time. A simple example of a HHC routing and scheduling problem, with a medical laboratory, a HHC organization (or company) providing health care to 14 patients is given in Figure 1.1.

Each patient is corresponding to a time window, and a number. Weights are assigned to each arc linking two patients, which classically correspond to the distance or the travel cost between two patients.

In general, caregivers start traveling from the HHC company by a car, visit and serve a set of patients at their homes, and return to a medical laboratory or HHC company to end their working period. The HHC routing and scheduling problem consists in deciding which care worker visits which patient, at what time, while respecting a set of various constraints and optimizing some criteria (such as cost or quality of service), over a given horizon. The results are thus a set of routes, indicating the planned visits, as illustrated in the right part of Figure 1.1, for a case with 3 caregivers visiting 14 patients.

The HHC routing and scheduling problem is thus similar to the classical VRP and its variants [START_REF] Dantzig | The truck dispatching problem[END_REF][START_REF] Di Mascolo | Planning in home health care structures: A literature review[END_REF], 2021). In the VRP and its variants, the aim is to determine a set of routes, minimizing the total distance or time traveled by a set of vehicles visiting a set of customers spread over different locations. Each customer has to be visited once by one of the vehicles, and the routes all begin and end at a single depot or different depots.

In the next section, we will investigate the characteristics of HHC routing and scheduling problem.

1.3/ CHARACTERISTICS OF HHC ROUTING AND SCHEDULING

PROBLEM

As mentioned in Di [START_REF] Di Mascolo | Routing and scheduling in home health care: A literature survey and bibliometric analysis[END_REF], there are three specific characteristics in HHC routing and scheduling problem, which are the following: Visits, Caregivers, and Patients.

These are three objects in HHC routing and scheduling problem. Other characteristics such as objectives and uncertainties are also very important in HHC routing and scheduling problem. In this section, an overview from these five aspects will be conducted.

Visits.

In HHC routing and scheduling problem, the caregivers will perform a given number of visits to patients'/customers' homes, where a visit is an health care service for a given patient, serviced by a caregiver or multiple caregivers with the corresponding qualifications or skills [START_REF] Ellenbecker | A theoretical model of job retention for home health care nurses[END_REF][START_REF] Kadushin | Home health care utilization: a review of the research for social work[END_REF]. In general, the health care service time is fixed, but it may be different when the service depends on the skills of caregivers in some cases. Many researches also involve mid-term or long-term scheduling in HHC, which involves caregivers visiting a patient multiple times in a considered period. There is no doubt that multiple visits for the same patient in a period will be more complicated then the single visit for a patient [START_REF] Nickel | Mid-term and short-term planning support for home health care services[END_REF]. As described in [START_REF] Kergosien | Home health care problem: An extended multiple traveling salesman problem[END_REF], the dependency of the number of visits can be (1) a disjunction, which means that the same patient can be visited at most once [START_REF] Liu | Heuristic algorithms for a vehicle routing problem with simultaneous delivery and pickup and time windows in home health care[END_REF]; (2) a synchronization, which means that the same patient needs two or more visits to start simultaneously (Decerle et al., 2019a;[START_REF] Luo | Ant colony optimization algorithm for a transportation problem in home health care with the consideration of carbon emissions[END_REF]; or (3) a precedence, which means that a patient needs several visits [START_REF] Di Mascolo | Synchronization between human resources in home health care context[END_REF].

Caregivers

In HHC routing and scheduling problem, caregivers are the key part of service implementation. As mentioned before, all caregivers usually start and end their travel at a HHC company, but some times, the caregivers can start from the HHC company and end their travel at a medical laboratory [START_REF] Shi | A hybrid genetic algorithm for a home health care routing problem with time window and fuzzy demand[END_REF]. The caregivers can use different transportations, and mainly use a car to visit patients. Generally, some classical constraints are associated with caregivers, such as (1) time windows, which means that the caregivers can only work in their available time [START_REF] Decerle | A memetic algorithm for a home health care routing and scheduling problem[END_REF]; (2) some skill requirements, which means that the different caregivers have different skill, and can only serve specific patients with the demand of this skill [START_REF] Yuan | A branch-and-price algorithm for the home health care scheduling and routing problem with stochastic service times and skill requirements[END_REF]; (3) legislative rules, which may be a maximum working time or a lunch break demand [START_REF] Liu | Mathematical model and exact algorithm for the home care worker scheduling and routing problem with lunch break requirements[END_REF]Xiao et al., 2018a;[START_REF] Liu | Hybrid metaheuristics for solving a home health care routing and scheduling problem with time windows, synchronized visits and lunch breaks[END_REF].

Patients.

In HHC routing and scheduling problem, patients are the object of service. In the classical VRP, the coordinates of different nodes (customers and depots) are known, therefore, the distance (or travel time) will also be known between different nodes. This is the same in HHC routing and scheduling problem. However, in HHC routing and scheduling problem, patients may have some service requirements, specifically: (1) time win-dows, which means that the patients can only be served during a certain time interval [START_REF] Shi | A hybrid genetic algorithm for a home health care routing problem with time window and fuzzy demand[END_REF]; (2) a preference, which means that the patients may hope that caregivers of specific attributes (gender or others) will provide services [START_REF] Ma | Home health care services to persons with dementia and language preference[END_REF][START_REF] Xiang | The daily routing and scheduling problem of home health care: based on costs and participants' preference satisfaction[END_REF]; and (3) a continuity of care, which means that, during a period, a given patient always sees the same caregiver or a set of preferred caregivers [START_REF] Gjevjon | Continuity of care in home health-care practice: two management paradoxes[END_REF][START_REF] Bayliss | Effect of continuity of care on hospital utilization for seniors with multiple medical conditions in an integrated health care system[END_REF].

Objectives. In HHC routing and scheduling problem, the goal is usually the operating cost of the HHC company, which is usually presented in a way that minimizes the total travel distance [START_REF] Shi | A hybrid genetic algorithm for a home health care routing problem with time window and fuzzy demand[END_REF][START_REF] Shi | Modeling and solving simultaneous delivery and pick-up problem with stochastic travel and service times in home health care[END_REF][START_REF] Shi | A robust optimization for a home health care routing and scheduling problem with consideration of uncertain travel and service times[END_REF]. Based on different constraints, various other cost objective functions are used in HHC routing and scheduling problem. For example, some researchers consider the costs related to caregivers and aim at minimizing the caregivers' waiting time or working time [START_REF] Decerle | A memetic algorithm for a home health care routing and scheduling problem[END_REF](Decerle et al., , 2019a)). Some scholars set preference objective functions and aim at maximizing the preferences of caregivers (such as workload balance) or the preferences of patients (continuity of care and other expressed preferences) [START_REF] Van Der Pol | Eliciting individual preferences for health care: a case study of perinatal care[END_REF][START_REF] Raue | Preferences for depression treatment among elderly home health care patients[END_REF][START_REF] Mair | Care preferences among middleaged and older adults with chronic disease in europe: Individual health care needs and national health care infrastructure[END_REF][START_REF] Ait Haddadene | Bicriteria vehicle routing problem with preferences and timing constraints in home health care services[END_REF][START_REF] Hosseinpour-Sarkarizi | Home health care routing and scheduling problem under uncertainty considering patient preferences and service desirability[END_REF]. Recently, some scholars consider green issue in HHC routing and scheduling problem, which is an environmentally friendly research, and these scholars consider carbon emissions in their objective functions [START_REF] Fathollahi-Fard | A biobjective green home health care routing problem[END_REF][START_REF] Xiao | An improved cuckoo search for a patient transportation problem with consideration of reducing transport emissions[END_REF][START_REF] Fathollahi-Fard | A green home health care supply chain: New modified simulated annealing algorithms[END_REF][START_REF] Luo | Ant colony optimization algorithm for a transportation problem in home health care with the consideration of carbon emissions[END_REF]Fathollahi-Fard et al., 2020a;[START_REF] Luo | A green routing and scheduling problem in home health care[END_REF].

Uncertainties. Nowadays, many scholars consider uncertainties when studying HHC routing and scheduling problem. For example, some scholars consider fuzzy or stochastic demand of patients in their researches [START_REF] Argiento | A bayesian framework for describing and predicting the stochastic demand of home care patients[END_REF][START_REF] Shi | A hybrid genetic algorithm for a home health care routing problem with time window and fuzzy demand[END_REF]. Some researchers consider stochastic travel time or service time in HHC routing and scheduling problem [START_REF] Yuan | A branch-and-price algorithm for the home health care scheduling and routing problem with stochastic service times and skill requirements[END_REF][START_REF] Shi | Modeling and solving simultaneous delivery and pick-up problem with stochastic travel and service times in home health care[END_REF][START_REF] Liu | A branch-and-price algorithm for the homecaregiver scheduling and routing problem with stochastic travel and service times[END_REF][START_REF] Shi | A robust optimization for a home health care routing and scheduling problem with consideration of uncertain travel and service times[END_REF]Fathollahi-Fard et al., 2020a;[START_REF] Hashemi Doulabi | Vehicle routing problems with synchronized visits and stochastic travel and service times: Applications in healthcare[END_REF][START_REF] Bazirha | Stochastic home health care routing and scheduling problem with multiple synchronized services[END_REF][START_REF] Nikzad | A matheuristic algorithm for stochastic home health care planning[END_REF][START_REF] Shahnejat-Bushehri | A robust home health care routing-scheduling problem with temporal dependencies under uncertainty[END_REF]. Research that takes into account the uncertainty is very meaningful and can be well integrated with actual production, but it is also more complicated than the deterministic problem [START_REF] Shi | Modeling and solving simultaneous delivery and pick-up problem with stochastic travel and service times in home health care[END_REF].

Table 1.1 summarizes main constraints considered in part of related works. These constraints come from the above characteristics of HHC routing and scheduling problem.

As mentioned before, the HHC routing and scheduling problem is similar to the classical VRP and its variants. However, there is no doubt that these characteristics make the HHC routing and scheduling problem more complicated than the traditional VRP because of the addition of many new constraints [START_REF] Di Mascolo | Routing and scheduling in home health care: A literature survey and bibliometric analysis[END_REF]. But in general, there are still many similarities between the HHC routing and scheduling problem and the classical VRP. In the next section, I present a basic model of classical VRP and conduct an overview of VRP and its variants. 

1.4/ CHARACTERISTICS OF VEHICLE ROUTING PROBLEM

Over the past decades, the Vehicle Routing Problem (VRP) and its variants have grown ever more popular in the academic literature. Yet, the characteristics of VRP vary widely.

In this section, I present the basic model and variants of VRP. This section also reviews the application scenarios of VRP in HHC.

1.4.1/ BASIC MODEL OF VEHICLE ROUTING PROBLEM

VRP was first studied by [START_REF] Dantzig | The truck dispatching problem[END_REF], and they modeled a problem with the aim at minimizing the total travel distance of a fleet of homogeneous trucks which need to serve the demand for oil of a number of gas stations from a central hub. After that, [START_REF] Clarke | Scheduling of vehicles from a central depot to a number of delivery points[END_REF] summarizes this problem as a linear optimization problem in logistics and transportation: namely how to serve a group of customers geographically dispersed around a central warehouse, using truck fleets with different capacities. This is the socalled VRP, one of the most widely studied topics in the field of operations research.

The most classical, basic and representative VRP is the Capacitated VRP (CVRP) [START_REF] Braekers | The vehicle routing problem: State of the art classification and review[END_REF]. This problem aims at designing a set of delivery routes in a network G = (V, A), in which each vehicle only travels one route, with the objective of minimizing the total travel cost. These vehicles k ∈ K have the same capacity Q, and each customer has a demand q, and is visited exactly once by one vehicle. Each vehicle starts and ends its route at the depot, and the capacity of the vehicles is not exceeded. The notations of CVRP are presented as follows:

• G = (V, A): V is the node set, A is the arc set, G is a network where each node 1...n represents a customer and where nodes 0 and n + 1 represent the depot (HHC company and Medical laboratory).

• Each arc (i, j) ∈ A represents a possible connection between two customers.

• A distance d i j and a cost c i j are assigned to each arc (i, j) ∈ A. In most chapters, this cost corresponds to a travel cost.

• A set K of vehicles (caregivers).

Based on the notations, the Mixed-Integer Programming (MIP) formulation of CVRP is presented as follows:

Minimize (i, j)∈A k∈K d i j x i jk (1.1) s.t. k∈V j∈V x i jk = 1, ∀i ∈ V \ {0, 1}. (1.2) j∈V x jik - j∈V x i jk = 0, ∀i ∈ V \ {0, 1}, k ∈ K (1.3) j∈V x 0 jk ≤ 1, ∀k ∈ K (1.4) i∈V x i(n+1)k ≤ 1, ∀k ∈ K (1.5) i∈V u ji - i∈V u i j = q j , ∀ j ∈ V \ {0, 1} (1.6) u i j ≤ Q k∈K x i jk , ∀ (i, j) ∈ A (1.7) x i jk ∈ {0, 1} ∀ (i, j) ∈ A, k ∈ K (1.8) u i j ≥ 0, ∀ (i, j) ∈ A (1.9)
This MIP model involves two variables x i jk and u i j .

• x i jk = 1 if the arc (i, j) is visited by the vehicle k and 0 otherwise. This is a binary.

• u i j is the total demand to be delivered up to node i and transported in arc (i, j).

Formula (1.1) is the objective of the problem, which means the total distance. Formula

(1.2) is a constraint to guarantee that each customer is visited at most once. Formula

(1.3) is used to ensures the flow balance of the vehicles, that is, the vehicle visits the customer and then will leave the customer. Formulas (1.4) and (1.5) are the constraints to ensure the vehicles start and end at depot. Formulas (1.6) and (1.7) are used to ensure that the vehicle will not exceed the capacity limit. Formula (1.8) is used to guarantee that the decision variable x i jk is binary. Formulas (1.9) ensures u i j the non-negative.

Because the actual traffic problem is far more complicated than the basic CVRP, many different variants have appeared on the basis of CVRP. This chapter will introduce some VRP variants in detail in the next section.

1.4.2/ BASIC VARIANTS OF VEHICLE ROUTING PROBLEM

The classic VRP only considers capacity constraint, but the VRP in real-life has many other characteristics, so a large number variants of the VRP have been studied recently [START_REF] Braekers | The vehicle routing problem: State of the art classification and review[END_REF]. In this section, some popular and known variants of the VRP will be reviewed in detail.

VRPTW.

The VRP with Time Windows (VRPTW) is one of the most known and interesting variants of VRP, which assumes that deliveries to a given customer must occur in a certain time interval, which varies from customer to customer [START_REF] Elshaer | A taxonomic review of metaheuristic algorithms for solving the vehicle routing problem and its variants[END_REF]. There are two types of time windows: soft and hard time windows. The VRP with soft time windows (VRPSTW) uses the penalty cost to punish the amount of time that violates the time window [START_REF] Russell | Vehicle routing with soft time windows and erlang travel times[END_REF][START_REF] Qureshi | An exact solution approach for vehicle routing and scheduling problems with soft time windows[END_REF]. The VRP with hard time windows (VRPHTW) does not allow violation of the time windows, if the time windows are violated, the route plan is not feasible [START_REF] Andreatta | A branch-andprice based heuristic for the stochastic vehicle routing problem with hard time windows[END_REF][START_REF] Miranda | The vehicle routing problem with hard time windows and stochastic travel and service time[END_REF].

VRPDP.

In real-life, customers may not only receive goods, but also have the need to take away their goods. Therefore, the VRP with Delivery and Pickup (VRPDP) appeared, in which goods need to be picked up from a certain location and dropped off at their destination. The pick-up and drop-off must be done by the same vehicle, which is why the pick-up location and drop-off location must be included in the same route [START_REF] Gajpal | An ant colony system (acs) for vehicle routing problem with simultaneous delivery and pickup[END_REF]Wang et al., 2012a).

MDVRP.

The Multi-Depot VRP (MDVRP) assumes that there are multiple different depots which can serve all the customers [START_REF] Ho | A hybrid genetic algorithm for the multi-depot vehicle routing problem[END_REF][START_REF] Geetha | Nested particle swarm optimisation for multi-depot vehicle routing problem[END_REF]. In this extension each customer is visited by a vehicle from one of several depots. In the standard MDVRP each vehicle route must start and end at the same depot [START_REF] Crevier | The multi-depot vehicle routing problem with inter-depot routes[END_REF]. This extension has many applications in warehousing distribution.

PVRP.

The Periodic VRP (PVRP) is planned for a period of time and serves customers in different days [START_REF] Prodhon | A hybrid evolutionary algorithm for the periodic location-routing problem[END_REF][START_REF] Vidal | A hybrid genetic algorithm for multidepot and periodic vehicle routing problems[END_REF]. For the PVRP, customers can be visited more than once, though often with limited frequency. For medium and long-term logistics planning issues, this extension has important guidance.

TDVRP.

Traffic congestion has become another common problem. Some cities, such as Paris, Peking, and Shanghai are even famous for their terrible traffic jams. Therefore, it is not reasonable to assume that the vehicle speed was constant in VRP with complicated traffic conditions. Based on this limitation, [START_REF] Malandraki | Time dependent vehicle routing problems: Formulations, properties and heuristic algorithms[END_REF] proposed the timedependent VRP (TDVRP) in which the travel time changes with the departure time. In this problem, the time horizon was divided into several intervals and the travel time on each arc was modeled as a stepwise function with a different travel time associated with each interval [START_REF] Gendreau | Time-dependent routing problems: A review[END_REF][START_REF] Wen | Minimum cost vrp with time-dependent speed data and congestion charge[END_REF]. Many scholars study this extension, which is enough to prove the actual significance of this extension.

GVRP.

The Green VRP (GVRP) is also an important extension of VRP [START_REF] Erdo Gan | A green vehicle routing problem[END_REF][START_REF] Montoya | A multi-space sampling heuristic for the green vehicle routing problem[END_REF]. The importance of green logistics is due to current production and distribution logistics strategies in long-term unsustainable facts. Therefore, in designing logistics policies, considering environmental, ecological and social impact, in addition to traditional economic costs. The environment-sensitive logistics policy itself needs to change the transportation plan and transfer it to a sustainable distribution network [START_REF] Lin | Survey of green vehicle routing problem: past and future trends[END_REF].

SVRP.

The Stochastic VRP (SVRP) is the variant in which one or several components of the problem are random that follows a probability distribution. SVRP can be divided into the VRP with stochastic demand (VRPSD) [START_REF] Bertsimas | A vehicle routing problem with stochastic demand[END_REF][START_REF] Goodson | Cyclic-order neighborhoods with application to the vehicle routing problem with stochastic demand[END_REF], the VRP with stochastic customers (VRPSC) [START_REF] Gendreau | Stochastic vehicle routing[END_REF], and the VRP with stochastic travel and service times (VRPSTS) [START_REF] Li | Vehicle routing problems with time windows and stochastic travel and service times: Models and algorithm[END_REF][START_REF] Campbell | The orienteering problem with stochastic travel and service times[END_REF]. This extension is very practical because it is full of uncertainty in life.

The above variants of VRP are combined with each other, and new problems can be formed. Many scholars have studied a very complex transportation system problem, so the VRP variant involved in their problems is more than one. However, it is still possible to learn from the research method of basic variating problems of VRP. In real-life, many real-world application scenarios involve some VRP variant issues. The same is true of HHC routing and scheduling problem [START_REF] Liu | Heuristic approaches for a special simultaneous pickup and delivery problem with time windows in home health care industry[END_REF]. In the next section, the application of VRP in HHC will be elaborated.

1.4.3/ VEHICLE ROUTING PROBLEM IN HHC

As mentioned before, there are many similarities between HHC routing and scheduling problem and VRP. Many HHC routing and scheduling problems adopt and use the model of VRP and its variants. This thesis selects some representative literatures in the past five years, and statistics on the VRP and its variants involved by these references. shows that studying VRP and its variants is very helpful and meaningful for studying HHC routing and scheduling problem.

In general, a HHC routing and scheduling problem involves multiple variants of VRP.

However, the HHC routing and scheduling problem not only has the characteristics of the variants of VRP, and there are some HHC issues unique characteristics such as synchronization, preference, skill constraint, continuity of care, etc. These unique features and constraints make HHC problems more complicated than VRP variants [START_REF] Di Mascolo | Routing and scheduling in home health care: A literature survey and bibliometric analysis[END_REF]. The VRP has been proved to be an NP-hard problem [START_REF] Solomon | Algorithms for the vehicle routing and scheduling problems with time window constraints[END_REF], so there is no doubt that the HHC routing and scheduling problem is also NP-hard. It is [START_REF] Vielma | Mixed integer linear programming formulation techniques[END_REF]. Throughout more than 50 years of existence, MIP theory and practice have been significantly developed, and now it has become an indispensable tool in business and engineering [START_REF] Guignard-Spielberg | Integer programming: State of the art and recent advances[END_REF][START_REF] Liebling | 50 Years of integer programming 1958-2008: From the early years to the state-of-the-art[END_REF].

Two reasons for the success of MIP are linear programming (LP)-based solvers and MIP's modeling flexibility. For example, Formulas 1.1-1.9 constitute a simple MIP model, which can be coded using mathematical language and solved by many solvers, such as CPLEX, GUROBI, etc. However, this solution method also has the following disadvantages:

• Solving speed is slow;

• Difficult to solve large-scale instances.

Therefore, when studying scheduling problems, many scholars first write MIP models and use solvers to solve small-scale cases. This result is an exact solution that can be used as a benchmark for comparison with the results of other solving methods [START_REF] Liu | Heuristic algorithms for a vehicle routing problem with simultaneous delivery and pickup and time windows in home health care[END_REF][START_REF] Decerle | A memetic algorithm for a home health care routing and scheduling problem[END_REF][START_REF] Luo | Ant colony optimization algorithm for a transportation problem in home health care with the consideration of carbon emissions[END_REF]. Many scholars even only use the MIP model to solve a problem when studying particularly complex HHC routing and scheduling problems. For example, Xiao et al. (2018a) methods). In this section, the heuristic approaches to HHC routing and scheduling problem will be overview.

Meta-heuristic Meta-heuristics are typically high-level strategies which guide an underlying,more problem specific heuristic, to increase their performance. The main goal is to avoid the disadvantages of iterative improvement and, in particular, multiple descent by allowing the local search to escape from local optima. This is achieved by either allowing worsening moves or generating new starting solutions for the local search in a more intelligent way than just providing random initial solutions. Many of the methods can be interpreted as introducing a bias such that high quality solutions are produced quickly.

This bias can be of various forms and can be cast as descent bias (based on the objective function), memory bias (based on previously made decisions) or experience bias (based on prior performance). Many of the meta-heuristic approaches rely on probabilistic decisions made during the search. But, the main difference to pure random search is that in meta-heuristic algorithms randomness is not used blindly but in an intelligent, biased form [START_REF] St Ützle | Local search algorithms for combinatorial problems-analysis, algorithms and new applications[END_REF][START_REF] Blum | Metaheuristics in combinatorial optimization: Overview and conceptual comparison[END_REF]. Based on this description, there are several characteristics, which are shown as follows:

• Meta-heuristics are strategies that guide the search process;

• The goal is to efficiently explore the search space in order to find local optimal solutions;

• Techniques which constitute meta-heuristic algorithms range from simple local search procedures to complex learning processes;

• Meta-heuristic algorithms are approximate and usually non-deterministic;

• Meta-heuristic algorithms may incorporate mechanisms to avoid getting trapped in confined areas of the search space;

• The basic concepts of meta-heuristics permit an abstract level description;

• Meta-heuristics are not problem-specific;

• Meta-heuristics may make use of domain-specific knowledge in the form of heuristics that are controlled by the upper level strategy;

• Todays more advanced meta-heuristics use search experience (embodied in some form of memory) to guide the search.

Meta-heuristics can be divided into two categories, one is a single-solution based algo- Mat-heuristic As its name suggests, a mat-heuristic is the hybridization of mathematical programming with meta-heuristics. The hallmark of mat-heuristics is the central role played by the mathematical programming model, around which the overall heuristic is built. As such, mat-heuristic is not a rigid paradigm but rather a concept framework for the design of mathematically sound heuristics [START_REF] Boschetti | Matheuristics: Optimization, simulation and control[END_REF][START_REF] Fischetti | Matheuristics. In Handbook of heuristics[END_REF]. Mat-heuristic method has both the efficiency of heuristic algorithm and the accuracy of exact algorithm, which makes more and more scholars start using this kind of methods to solve HHC routing and scheduling problem. For example, Moussavi et al.

(2019) studied an extension of the HHC planning problem by adding the extra dimension of time so that the staff are not only assigned to the patients, but they are also assigned to daily periods. In order to solve this problem, a mat-heuristic approach based on the decomposition of the formulation is proposed in this research to simplify the MIP model and reduce the computational time needed to solve the problem. The numerical experiences and statistical analysis show that our mat-heuristic approach solves 90% of the instances to optimality with a significant reduction in the computational times. [START_REF] Decerle | A matheuristicbased approach for the multi-depot home health care assignment, routing and scheduling problem[END_REF] studied the multi-depot HHC assignment, routing, and scheduling problem without prior assignment of caregivers to the HHC offices. In order to solve this problem, the authors proposed an original mat-heuristic-based approach with different assignment strategies to assign visits and caregivers to the HHC offices. The results highlight the efficiency of the mat-heuristic-based approach since it provides a low deviation ratio with a faster computational time. Similarly, detailed proposed solution methods in HHC applications are shown in Table 1.3.

Table 1.3 counts 33 representative references on HHC routing and scheduling in the past five years. It is clear that most scholars (81.81%) use heuristic algorithms to solve HHC routing and scheduling problems, which can prove the efficiency and effectiveness of the heuristic algorithm. We can also see that there are 6 chapters using exact algorithms, three of which are directly solved by the MIP model, and the other three proposed the Branch-and-Price algorithm to solve the problem. In the next section, this thesis will review the exact algorithm.

1.5.3/ EXACT APPROACHES

As counted in Table 1.3, six scholars used exact algorithms to solve the HHC routing and scheduling problem, in which in order to solve large-scale instances, three researchers developed exact Branch-and-Price (BP) algorithm. In this section, this thesis conducts a detailed overview of BP algorithm.

The BP algorithm is a framework based on Column Generation (CG) and Branch-andbound (B&B) algorithm, which is usually used in VRP related problems [START_REF] Desaulniers | Column generation[END_REF]. Many scholars also like to combine the BP algorithm with the cutting plane method, and the new algorithm is the Branch-Price-and-Cut (BPC) algorithm.

This section also uses CVRP as an example to introduce BP and BPC algorithm. As presented in Formulas 1.1-1.9, the CVRP is formulated as a MIP model, which is an integer programming model based on arc. Similarly, the BP or BPC algorithm is also integer programming, however, not based on arc, but route [START_REF] Neira | New compact integer programming formulations for the multi-trip vehicle routing problem with time windows[END_REF]. The BP or BPC algorithm usually uses the Dantzig Wolfe Decomposition (DWD) to break up the overall CVRP problem into a subproblem for each vehicle and a Master Problem (MP) [START_REF] Vanderbeck | On dantzig-wolfe decomposition in integer programming and ways to perform branching in a branch-and-price algorithm[END_REF]. To date, the most successful decomposition approaches for the CVRP cast the subproblem (or pricing problem) as a Shortest Path Problem with

Resource Constraints (SPPRC), which has been proved as NP-hard [START_REF] Dror | Note on the complexity of the shortest path models for column generation in vrptw[END_REF]. The master problem is an integer program whose solution cannot be obtained directly, so its Linear Programming (LP) relaxation is solved. The CG process alternates between solving this linear MP and the subproblem. The former finds new multipliers to send to the latter which uses this information to find new columns to send back. A lower bound on the optimal integer solution of the CVRP model is obtained at the end of this back and forth process. This is then used within a B&B framework to obtain the optimal CVRP solution. If the vehicles are identical, as we have assumed here, all subproblems will be equivalent and therefore it is necessary to only solve one. Generally, many scholars combine the cutting plane method to obtain better lower bound of this problem.

Then, we use mathematical formulas to describe the CG process of BP or BPC algorithm.

The used notations are same as Formulas 1.1-1.9. Let Ω as the set of feasible paths. A path is feasible if it satisfies capacity constraint of CVRP. Let y p be a binary variable deciding whether path p is included in the optimal solution or not, define c p as the cost of the path p, and let σ ip be a binary variable that denotes the customer i is visited by the path p or not. this thesis formulates the studied problem as a Set Partitioning Formulation (SPF) model, which is presented as follows:

Minimize p∈Ω c p y p (1.10)

s.t. p∈Ω σ ip y p = 1, ∀i ∈ V \ {0, n + 1} (1.11) y p ∈ {0, 1}, ∀p ∈ Ω (1.12)
where the objective function (1.10) minimizes the cost of the chosen paths, constraint

(1.11) guarantees that each customer i ∈ V \ {0, n + 1} is visited only once, and constraint

(1.12) ensures that the decision variables are binary.

This thesis defines the LP relaxation of the SPF model as the MP. This thesis uses CG to solve the MP with a small subset Ω ⊆ Ω of feasible paths. The MP with the subset Ω is denoted as the restricted MP (RMP), and the RMP can be formulated as follows:

Minimize p∈Ω c p y p (1.13)

s.t. p∈Ω σ ip y p ≥ 1, ∀i ∈ V \ {0, n + 1} (1.14) y p ≥ 0, ∀p ∈ Ω (1.15)
where the subproblem that adds feasible routes (also called columns) to the RMP is denoted as the pricing problem.

The pricing sub-problem constructs a feasible route with a minimum reduced cost, using the dual values obtained from the LP solution of the RMP. If the constructed route has negative reduced cost, its corresponding column is added to the RMP. Otherwise, the LP procedure will be terminated with an optimal solution to the continuous relaxation of the MP. The pricing problem searches for the routes with a negative reduced cost, and its objective function is defined as follows:

min p∈Ω cp = c p - i∈P π i σ ip (1.16)
where cp is the reduced cost of path p, and π i is the dual variable associated with the formulation (1.11).

Because of the effectiveness of BP and BPC algorithms for solving large-scale instances, more and more scholars started developing BP and BPC algorithms for routing related problems [START_REF] Barnhart | Branch-and-price: Column generation for solving huge integer programs[END_REF] From the literature review provided in the previous sections, we can find that few scholars consider carbon footprint. However, transportation will cause resource consumption, poison to ecosystems and humans, noise and GHG emissions , among which GHG emissions are the most concerned by researchers and scholars because GHG emissions will directly create an impression on human health. Therefore, it is very meaningful to consider carbon emissions in the HHC routing and scheduling problem. In the literatures, a majority of works don't consider speed this factor. However, in routing-related issues, speed is also an important factor. Moreover, nowadays, traffic congestion has become another common problem. Some cities, such as Paris, Peking, and Shanghai are even famous for their terrible traffic jams. Therefore, it is not reasonable to assume that the vehicle speed was constant in HHC routing and scheduling problem with complicated traffic conditions. The traffic congestion has a significant effects on the speed of vehicles, resulting in that the travel time at same road is different at different departure time. In this thesis, we consider traffic congestion in HHC routing and scheduling problem.

Considering the above discussed issues that are not well addressed in literature, we set the main objectives of this thesis as follows:

• We address a joint daily route and speed optimization problem in HHC with the constraints of synchronized visits and carbon emissions. In this work, the aim is to design a reasonable logistics route with the objective of minimizing the carbon emissions, which has a linear relationship with fuel consumption. This goal can reduce environmental pollution while optimizing operating costs for the HHC company. We formulate the problem as a MIP model. In order to solve large-scale instances, we propose an Ant Colony Optimization (ACO)-based heuristic approach.

• We study the routing and scheduling problem from two different perspectives including economic perspective and environmental perspective. [START_REF] Rodriguez | Staff dimensioning in homecare services with uncertain demands[END_REF]. Meanwhile, the HHC industry has also become one of the largest sectors of the economy in these developed countries [START_REF] Golden | The vehicle routing problem: latest advances and new challenges[END_REF]. Patients at home can get health care services from HHC company to help them recover from sickness or injuries. According to an investigation report on HHC companies [START_REF] Harris | Handbook of home health care administration[END_REF], the HHC company carries out many daily logistic activities, the most important of which is to deliver caregivers, drugs, medical devices and services from the company to the patient's home, and to take samples (such as blood and urine) from the patient's home and back to the medical laboratory for testing every day [START_REF] Liu | Heuristic algorithms for a vehicle routing problem with simultaneous delivery and pickup and time windows in home health care[END_REF][START_REF] Shi | A hybrid genetic algorithm for a home health care routing problem with time window and fuzzy demand[END_REF], and at last, the HHC vehicles return to the HHC company. This activity is the daily scheduling of vehicles and caregivers, which has proven to be a a very difficult problem but a crucial decision activity for a HHC company [START_REF] Hickman | Metaheuristics for solving a multimodal home-healthcare scheduling problem[END_REF]Yuan et al., 25 2018). In general, a HHC company serves patients in a town, a village or a city, and each patient has a service time window and service requirement. As for the demand of the patient, the care service may require multiple caregivers to work at the same time. Since the volume of the drugs is considered, this chapter also considers the capacity of the vehicle.

The specific structure of the HHC supply chain in the chapter is presented in Fig. 2.1. The graph consists of one HHC company, one medical laboratory and a number of patients.

Therefore, to a certain extent, the problem studied in this chapter is similar to a Vehicle Routing Problem with Time Window (VRPTW) considering synchronized visits constraints [START_REF] Solomon | Algorithms for the vehicle routing and scheduling problems with time window constraints[END_REF]Liu et al., 2019a). For the decision makers of HHC organizations, they usually carry out daily scheduling of caregivers based on experience, but not mathematical modeling scheme. Moreover, they use commercial solvers to solve the mathematical model, but the speed of the solution is difficult to meet actual industrial needs. This decision-making method is difficult to ensure the effectiveness of the scheduling plan and to reduce operating costs. This chapter intends to propose a heuristic algorithm to speed up the problem solving to meet the needs of industrial decision-makers. Therefore, this chapter aims to design reasonable scheduling plan for the HHC organizations.

Since transportation costs are one of the biggest operating costs in HHC company's daily activities, it is important to optimize the routes of HHC vehicles to reduce transportation costs. As is known to all, transportation will cause resource consumption, poison to ecosystems and humans, noise and GreenHouse Gas (GHG) emissions [START_REF] Kirkinen | Greenhouse impact due to the use of combustible fuels: life cycle viewpoint and relative radiative forcing commitment[END_REF], among which GHG emissions are the most concerned by researchers and scholars because GHG emissions will directly create an impression on human health (Bektas ȩt al., 2011). According to the work reports by the US Environmental Protection Agency (EPA), the transportation sector contributes 28% of national GHG emissions [START_REF] Erdo Gan | A green vehicle routing problem[END_REF]. Generally, GHG emissions are measured by the amount of carbon emissions. If the logistics are not arranged properly, it will cause traffic congestion and generate a large amount carbon emissions [START_REF] Savelsbergh | 50th anniversary invited article-city logistics: Challenges and opportunities[END_REF][START_REF] Hazen | Back in business: Operations research in support of big data analytics for operations and supply chain management[END_REF].

Therefore, it forces the managers of HHC companies to pay more attention to carbon emissions when designing the daily logistics activities. In this work, the aim is to design a reasonable logistics route with the objective of minimizing the carbon emissions, which has a linear relationship with fuel consumption [START_REF] Qian | Finding least fuel emission paths in a network with time-varying speeds[END_REF]. This goal can reduce environmental pollution while optimizing operating costs for the HHC company. On the other hand, the calculation method of carbon emissions is also largely dependent on the distance of the arc. In most HHC routing and scheduling problems, the total distance is set as the objective to minimize the total operating cost of the company. Therefore, to a certain degree, optimizing carbon emissions can also reduce the operating cost of the company, especially when only one speed is considered, which has the same function as the objective of distance. We name the problem as health care routing problem routing and scheduling problem with synchronization and carbon emissions (HHCRSPSC).

In our HHCRSPSC, each vehicle equipped with a caregiver starts its journey from the HHC company and ends up the journey at a medical laboratory, and finally returns to the HHC company. As mentioned in [START_REF] Bektas | The pollution-routing problem[END_REF], the speed of vehicle is one of the most important factor to influence the amount of pollution emitted (including carbon emissions). Therefore in this chapter, the travel speed is an important factor to decide the carbon emissions of a route. The constraints of synchronized visits and carbon emissions make the problem be a route and speed joint optimization problem. There is no doubt that our scheduling problem is more complicated than the classical VRPTW. Since VRPTW is NP-hard problem [START_REF] Solomon | Algorithms for the vehicle routing and scheduling problems with time window constraints[END_REF], our scheduling problem is of course NP-hard. To the best of our knowledge, we haven't found the similar work in HHC routing and scheduling fields.

In this chapter, the introduction of the HHC scheduling problem is performed firstly; then we propose a MIP model; finally we propose an Ant Colony Optimization (ACO)-based heuristic approach based on hybrid ACO (HACO) algorithm and Dynamic Programming (DM) method to solve the studied problem. To sum up, the main innovations of this chapter can be denoted as follows:

• this chapter considers speed variable and synchronized visits simultaneously;

• an efficient ACO-based heuristic approach is proposed to solve the studied problem;

• a simple and exact dynamic programming method is employed to evaluate carbon emissions of the route in this chapter.

The rest of this chapter is organized as follows. Section 2.2 introduces the scheduling problem and Section 2.3 builds the MIP model. Section 2.4 develops an ACO-based heuristic approach in order to solve the problem. The computational experiments are described in Section 2.5. Section 2.6 concludes the chapter.

2.2/ PROBLEM DESCRIPTION AND MODELING

In this chapter, a daily route and speed optimization problem of a HHC company is studied, and the aim of the research is to minimize the total carbon emissions. We name the problem as health care routing problem routing and scheduling problem with syn- resents the time interval in which node i must be visited, a service time τ i , and a demand q i to be delivered. a i and b i represent the earliest time and the latest time to serve the patients, respectively. Each caregiver is allowed to arrive earlier than time a i , but must wait until the time a i to serve the node i. The caregiver is prohibited to arrive later than time b i . In this chapter, we define q i = s i = a i = 0 and b i = T for i ∈ {0, n + 1}, in which T is the latest time for the vehicle to return to node n + 1.

In this chapter, the synchronized visit constraint is considered, that is, some patients need two or more caregivers to serve them at the same time. It should be noted that this chapter only considers one synchronized visit scenario, that is, two caregivers visit and serve a patient simultaneously. In order to tackle the patient i ∈ P synchronized visit constraint,, this chapter generates a fictive patient i who has the same locations, demand, service duration and time window with patient i. We define the set of fictive patients as P f . Thus the new graph

G = (N , A ) is updated as N = N ∪ P f , P = P ∪ P f , A = {(i, j) |i, j ∈ N , i j}.
Let (i, j) ∈ P sync to denote a couple set of the synchronized visit patients, in which i, j ∈ P , and i, j are associated to a same patient and must be serviced by two different caregivers at the same time.

We define d i j as the distance between node i and node j, and the speed of the vehicle k traveling from node i to node j is defined as v i j . In this chapter, we assume the speed in arc between node i and node j as an average speed. Thus the travel time time between node i and node j can be calculated by d i j /v i j .

Proposition 2.1 . Given a HHCRSPSC with speed v, Ω v presents the feasible routes with speed v. If two different speed v 1 and v 2 (v 1 < v 2 ) are respectively used to solve the problem, the feasible routes Ω v 1 constructed by speed v 1 is the subset of the feasible

routes Ω v 2 constructed by speed v 2 , namely Ω v 1 ⊆ Ω v 2 .
Proof. Suppose that the time to complete the HHC service for patient i in both two speed

scenarios (v 1 and v 2 ) is t 0 . As for patient j, because v 1 < v 2 , the formulation d i j /v 1 > d i j /v 2 holds. Thus, t 0 + d i j /v 1 > t 0 + d i j /v 2 .
Due to the constraint of time windows, the arrival time at patient j must be smaller than b j . If

t 0 + d i j /v 1 ≤ b j , then t 0 + d i j /v 2 < t 0 + d i j /v 1 ≤ b j , namely t 0 + d i j /v 2 < b j .
Thus if it is feasible to visit patient j after visiting patient i for speed v 1 , it will also be feasible for speed v 2 . If t 0 + d i j /v 1 > b j and t 0 + d i j /v 2 ≤ b j both hold, then as for speed v 1 , it will forbid visiting patient j after visiting patient i, however, as for speed

v 2 , it is feasible. So it can conclude that Ω v 1 is the subset of Ω v 2 , namely Ω v 1 ⊆ Ω v 2 .
As mentioned before, this chapter aims to optimize the vehicle routes and speed with the objective of minimizing the total carbon emissions under the constraints of time windows, capacity and synchronized visits. In addition, we propose the following assumptions:

• each vehicle has the same capacity and is only associated to a caregiver;

• each vehicle leaves from the depot, deliver the samples to the laboratory, and at last returns to the laboratory, and visits each patient at most once. We set the cost from the laboratory to depot as the fixed cost, which is not considered in the chapter;

• the speed of the vehicle between any two nodes is assumed to be a average speed, namely in each arc the speed will keep as a constant;

• for the patient with synchronized visit services requirement, a fictive patient who has the same locations, demand, service duration and time windows is generated. We assume that the patient at most needs two caregivers to service at the same time;

• for the patient with synchronized visit services requirement, if caregiver 1 arrives earlier than caregiver 2, caregiver 1 must wait for caregiver 2 and then serve the patient together.

2.3/ MATHEMATICAL FORMULATION

In this section, we will introduce the mathematical model. Firstly, we introduce the theory of carbon emissions; then, a MIP model is developed for this problem.

2.3.1/ CARBON EMISSIONS

The research addressed in this chapter aims to minimize the carbon emissions by optimizing vehicle speeds and routes. Carbon emissions is used to provide an estimate of the GHGs generated by vehicles. In general, the carbon emissions are measured by calculating the fuel consumption, and then multiplying by the carbon emissions conversion factor, namely the carbon emissions have a linear relationship with fuel consumption [START_REF] Qian | Finding least fuel emission paths in a network with time-varying speeds[END_REF]. The carbon emissions function adopted in this chapter is developed by the United Kingdom Transport Research Laboratory [START_REF] Hickman | Metaheuristics for solving a multimodal home-healthcare scheduling problem[END_REF], and has been applied in many researches such as [START_REF] Jabali | Analysis of travel times and co2 emissions in time-dependent vehicle routing[END_REF], [START_REF] Demir | The bi-objective pollution-routing problem[END_REF][START_REF] Teoh | Data driven safe vehicle routing analytics: a differential evolution algorithm to reduce co2 emissions and hazardous risks[END_REF] and so on. The carbon emissions function ε (v) is presented as follows:

ε (v) = L + av + bv 2 + cv 3 + dv -1 + ev -2 + f v -3 (2.1)
where v is the speed of the vehicle in km/h, and the coefficients L, a, b, c, d, e and f will be different under the vehicles with different types and sizes.
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The coefficients are adopted the settings in [START_REF] Hickman | Metaheuristics for solving a multimodal home-healthcare scheduling problem[END_REF], and the values of L, a, b, c, d, e and f are 765, -7.04, 0, 0.006320, 8334, 0, 0, respectively. Based on the parameters settings, the function graph of the carbon emissions can be presented in Fig. The vehicle will emit ε v i j g/km carbon dioxide (CO 2 ) when the vehicle is driven at the speed v. Therefore, the carbon emissions of a vehicle travels from node i to node j can be expressed as:

2.2.

E i j v i j = ε v i j d i j (2.2)
where the units of E i j v i j and d i j are g and km, respectively.

As is shown in Eq. (2.1), it is very clear that the CO 2 emissions rate ε (v) will vary with different speed. Therefore, an optimal speed can be found in order to reduce the CO 2 emissions. However, it is very difficult to control the speed particularly during the peak hours in real life. Thus in this chapter, the speed is assumed to be an average speed in every arc. Let E i j (v r ) be the carbon emissions between patient i and j with speed v r . A proposition can be obtained as follows.

Proposition 2.2 . As for an arc between patient i and j, if

ε (v 1 ) ≤ ε (v 2 ), then E i j (v 1 ) ≤ E i j (v 2 ).
Proof. It is obvious that the distance is the same as for the same arc between patient i and j. Therefore,

E i j (v 1 ) -E i j (v 2 ) = d i j * ε (v 1 ) -d i j * ε (v 2 ) = d i j * (ε (v 1 ) -ε (v 2 )) ≤ 0, namely E i j (v 1 ) ≤ E i j (v 2 ).

2.3.2/ MIXED-INTEGER PROGRAMMING MODEL

In this section, we will describe the MIP model of the problem. Firstly, the model notations of the parameters for the problem are summarized as follows:

V: set of all vehicles. N: set of all nodes, including the patients, the depot and the laboratory. N : set of all nodes, including the patients, the fictive patients, the depot and the laboratory.

A : set of arcs, A = {(i, j) |i, j ∈ N , i j}. P: set of all patients. P : set of all patients, including the fictive patients . Q: capacity of each caregiver. P sync : set of synchronized visits. d i j : the distance from node i to node j. q i : the demand of patient i. τ i : the service duration for node i.

[a i , b i ]: the availability time window of patient i. ε (v): the carbon emissions function. M: a large positive value.

Before describing the mathematical model, the decision variable used in this chapter is denoted as follows:

x i jk =        1, if k travels at arc i j, in which i j; 0, otherwise.
The integer variable used in this chapter is denoted as follows:

v i j : the speed between node i and j.

The continuous variable used in this chapter is denoted as follows:

y i : the start working time of node i.

The continuous variable is denoted as follows:

u i j : the demand to be delivered up to node i and transported in arc (i, j).

The mathematical model can be denoted as follows:
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Minimize (i, j)∈A k∈V ε v i j d i j x i jk (2.3) s.t.
k∈V j∈N

x i jk = 1, ∀i ∈ P .

(2.4)

j∈N x jik - j∈N x i jk = 0, ∀i ∈ P , k ∈ V (2.5) j∈N x 0 jk ≤ 1, ∀k ∈ V (2.6) i∈N x i(n+1)k ≤ 1, ∀k ∈ V (2.7) i∈N u ji - i∈N u i j = q j , ∀ j ∈ P (2.8) u i j ≤ Q k∈V x i jk , ∀ (i, j) ∈ A (2.9) y i -y j + τ i + d i j /v i j ≤ M 1 -x i jk , ∀i ∈ N , j ∈ P , k ∈ V, i j (2.10) a i ≤ y i ≤ b i , ∀i ∈ N (2.11) y i = y j , ∀ (i, j) ∈ P sync
(2.12)

x i jk ∈ {0, 1}, ∀ (i, j) ∈ A , k ∈ V (2.13) v i j ∈ {v 1 , v 2 , ...}, ∀ (i, j) ∈ A (2.14) u i j ≥ 0, ∀ (i, j) ∈ A (2.15) y i ≥ 0, ∀i ∈ P (2.16)
Formula (2.3) is the objective of the problem, which means the total carbon emissions.

Formula (2.4) is a constraint to guarantee that each patient is visited at most once. Formula (2.5) is used to ensures the flow balance of the vehicles, that is, the vehicle visits the patient and then will leave the patient. Formulas (2.6) and (2.7) are the constraints to ensure the vehicles start at depot and end at the medical laboratory. Formula (2.8) is used to calculate the demand up to node i and formula (2.9) is used to ensure that the vehicle will not exceed the capacity limit. Formula (2.10) is a reasonable constraint to guarantee the vehicle k can't arrive at j earlier than time y i + τ i + d i j /v i j , because the caregiver in vehicle k needs to serve node i and travel from node i to node j. It should be noted that M is a large positive value. Formula (2.11) is the time windows constraint of node i. Formula

(2.12) is the constraint to guarantee the synchronized visit services. Formula (2.13) is used to guarantee that the decision variable x i jk is binary. Formula (2.14) is the constraint to limit the speed variable. Formulas (2.15) and (2.16) ensure the non-negative.

In this chapter, v i j is a variable, and x i jk is also a variable, so it is obvious that the objective function is non-linear. In order to linearize the mathematical model, we generate a new decision variable z i jkr which is denoted as follows:

z i jkr =        1, if k travels at arc i j with speed level r ∈ R ; 0, otherwise.
where R is the discrete speed levels R = {1, 2, ..., r, ...}. Therefore, we will introduce a new parameter v r to denote the speed, and the relationship between decision variables z i jkr and x i jk is presented as follows:

r∈R z i jkr = x i jk , ∀i ∈ N , j ∈ P , k ∈ V, i j (2.17)
Thus, the MIP model is presented as follows:

Minimize (i, j)∈A k∈V r∈R ε (v r ) d i j z i jkr (2.18) s.t. y i -y j + τ i + d i j z i jkr /v r ≤ M 1 -z i jkr , ∀i ∈ N , j ∈ P , k ∈ V, r ∈ R, i j (2.19) r∈R z i jkr = x i jk , ∀i ∈ N , j ∈ P , k ∈ V, i j (2.20) z i jkr ∈ {0, 1}.
(2.21) and constraints (2.4)-(2.9), (2.11)-(2.13), (2.15), (2.16) and (3.2).

The VRPTW has been proven that it is a non-deterministic polynomial hard (NP-hard)

problem. The studied problem is more difficult than VRPTW. Therefore, the studied problem is also a NP-hard problem.

In this chapter, we will use a commercial solver Gurobi to solve the MIP model. And the mathematical model will be solved by an ACO-based heuristic approach, in which involves a speed optimization problem (SOP). In the next subsection, the mathematical model of SOP will be introduced.

2.3.3/ SPEED OPTIMIZATION MODEL

In this chapter, we design a ACO-based heuristic approach to solve the studied problem.

As for the ACO-based heuristic approach, routes generated by ACO algorithm will be calculated by a dynamic programming method, and the process to minimize the carbon emissions is a SOP. In this section, we will introduce the mathematical model of the SOP.

Define a set of routes S = {1, 2, ..., |S |}, each route s ∈ S has m nodes including the depot, the lab and all the patients. And each node h ∈ {1, 2, ..., m} in route s is corresponding to the original number i ∈ N . The superscript s denotes the number of route. The SOP can be formulated as follows:

Minimize S s=1 m-1 h=1 ε v s h,h+1 d s h,h+1
(2.22)

s.t. y s h+1 -y s h -d s h,h+1 /v s h,h+1 ≥ 0, ∀s ∈ S , h = 1, 2, ..., m -1 (2.23) a i ≤ y i ≤ b i , ∀i ∈ N (2.24
)

y i = y j , ∀ (i, j) ∈ P sync (2.25) v s h,h+1 ∈ {v 1 , v 2 , ...}, (2.26) ∀s ∈ S , h = 1, 2, ..., m -1 (2.27)
The objective function (2.22) is the total carbon emission cost in the fixed routes. Constraints (2.23) and (2.24) ensure the time windows. Constraint (2.25) guarantees the synchronized services. Constraint (2.27) is the speed integer variable.

2.4/ PROPOSED SOLVING APPROACH

As mentioned before, the studied problem is a NP-hard problem, which is very difficult to solve by using an exact method for the large scale problems. Therefore, we design an Ant

Colony Optimization (ACO)-based heuristic approach to solve the studied problem. The flowchart of the proposed solving approach is shown in Fig. 2.3. The proposed method is based on the following two-phase approach:

• Route construction phase: a set of routes is built in the first phase. In this phase, we use the hybrid ACO (HACO) algorithm to search routes.

• Speed optimization phase: a set of routes have been generated in the first phase.

In this phase, we design a dynamic programming method to minimize the carbon emissions in the routes.

Compared with the standard ACO algorithm, we employ local search to improve the optimization ability and convergence speed of the algorithm, and the experiment results highlight the effectiveness of this approach. Then we describe the proposed ACO-based heuristic approach in detail now. 

2.4.1/ HYBRID ANT COLONY OPTIMIZATION ALGORITHM

In this section, we design a meta-heuristic algorithm to construct the routes of visiting patients. In this chapter, we propose a improved Ant Colony Optimization (ACO) algorithm, namely using the local search to improve the searching ability of ACO algorithm, and we name the improved algorithm as hybrid ACO (HACO) algorithm, the pseudo code of which is presented in Algorithm 2.1. The following content will explain the HACO algorithm in detail. The ACO algorithm, one of the most famous swarm intelligence algorithms, inspired from the foraging food behaviour of ant species, is first proposed by [START_REF] Dorigo | Ant colony optimization theory: A survey[END_REF] for solving the traveling salesman problem (TSP). The ACO algorithm has been widely used due to the effectiveness and efficiency in solving the combinatorial optimization problems [START_REF] Dorigo | Ant colony optimization theory: A survey[END_REF][START_REF] Yi | Ant colony optimization for disaster relief operations[END_REF]Liu et al., 2017a In order to solve the studied problem, we firstly introduce the construction of solution in ACO algorithm. A solution is constructed by an ant, and consists of a set of routes.

For example, as is shown in Fig. 2.4, there are 17 patients in the studied problem, and these 17 patients will be serviced by 3 vehicles. In other words, there are 3 routes in the solution, and each route is realized by a vehicle. It should be noted that the solution is constructed by an ant, not three ants, that is, after the ant constructs a route, it will return to the origin depot and re-plan another route until a complete solution is constructed. In the ACO algorithm, after an ant visits a node, it will select the next node based on a probabilistic rule, the probability formula is presented as follows:

P k i j =            (τij) α (ηij) β l∈C k i (τ il ) α (η il ) β , i f j ∈ C k i 0, otherwise (2.28) 
where τ i j denotes the trail of the pheromone between node i and node j. C k i represents the set of viable candidates that the ant k can visit after visiting node i. α and β are two important parameters that can determine the relative influence between the visibility and the pheromone. It should be noted that different ants obtain information about their surrounding environment and communicate with other ants by updating the concentration of pheromone. η i j is the visibility parameter which is denoted as follows:

η i j = 1/d i j .
(2.29)

Next, the detailed process of constructing the solution will be introduced. In the pseudo code of Algorithm 2.1, it is easy to get that the procedure of constructing a feasible solution for each ant is Line 4 to Line 12. Firstly, the ant will start from the depot, and we denote C as a set of patients who have not been visited for this ant (at first, C is the set of all the patients). Then, the ant chooses a patient i to visit randomly, and update the set C. If the set C is not an empty set, the ant will calculate the set of effective candidates effective candidate for an ant namely C = ∅, the ant will return to the medical laboratory and prepare to search the patients again. If there is no available candidate for an ant namely C = ∅, the ant will stop searching, and a feasible solution will be constructed.

C (C ⊆ C)

2.4.1.2/ EVALUATION OF SOLUTION

In this chapter, the constraint of synchronized visits increases the difficulties of the problem. The solutions constructed by the ants may become the infeasible solutions due to the demand of synchronized visits. For example, if patient i has a demand of synchronized service, and caregiver 1 arrives at 8:30 and caregiver 2 arrives at 9:00, the caregiver 1 will have to wait for the caregiver 2 due to the demand of service. As for the patients served by the caregiver 1, the arrival time of the caregiver 1 at the patients after patient i may be later than the upper bound of the time windows. Therefore, it is of great importance to evaluate the solutions.

For solution s, due to the constraint of synchronized service, the arrival time and the start working time have to be recalculated. Firstly, a sequence vector g is used to record the service order of all the patients with the requirement of synchronized services. A simple example is presented in Fig. 2.5 to illustrate the process. The Stage 1 shows a solution with three caregivers, in which patient i, j and k are the patients with the requirements of synchronized services. Based on Stage 1 of the Fig. 4, it is clear that the service order of these three patients is i → j → k. Then, as is shown in Stage 2, if there is a patient m between patient i and j, and the caregiver 1 visits patient j at 11:00, it is very clear that caregiver 2 and caregiver 3 will also be influenced by patient m. Finally, as is presented in Stage 3, we check and adjust the visit times based on the sequence vector.

As for the patient i, the patient m is after the patient i, so there is no effect for patient i.

As for the patient j, because caregiver 1 arrives at 11:00, clearly, caregiver 2 has to wait for caregiver 1 and then serving the patient j together. Under the influence of patient j, caregiver 2 visits patient k at 11:30. So the caregiver 3 has to wait for caregiver 2 and then serving the patient k together. More importantly, the objective of routes involves speed, so the optimal carbon emissions will be difficult to be calculated. 

if f (S new ) -f (S current ) < 0 then S current ← S new ; if f (S current ) -f (S Lbest ) < 0 then 8 S Lbest ← S current ; 9 return S Lbest ; else if rand ≤ e [ f (S current )-f (S new )]/100 then S current ← S new ; it L ← it L + 1; return S Lbest ; 2.4.1.3/ LOCAL SEARCH
In this chapter, we use the local search (LS) algorithm to improve the quality of the proposed HACO algorithm. LS algorithm is a widely used meta-heuristic method for solving combinatorial optimization problem [START_REF] Aarts | Local search in combinatorial optimization[END_REF]. The objective of this hybridization is to develop the combination structure of ACO and LS for designing an effective algorithm [START_REF] Mavrovouniotis | Ant colony optimization with immigrants schemes for the dynamic travelling salesman problem with traffic factors[END_REF][START_REF] Zukhri | A hybrid optimization algorithm based on genetic algorithm and ant colony optimization[END_REF].

LS algorithm uses the local moves in the space of candidate solutions in order to find a better solution. In order to improve the solutions constructed by the ants, LS algorithm presented in Algorithm 2.2 is used in the proposed hybrid algorithm.

In the LS algorithm, three classical improvement operators namely 2-opt move, 2-opt * move and relocate move are used in the proposed HACO algorithm, and are selected to generate new solution randomly. These three operator are widely used in many VRPrelated works. The operators can be described as follows:

• 2-opt operator: randomly select two patients in one route, and reverse the path between these two patients (including these two patients).

• 2-opt * operator: randomly select two paths from two different routes, then exchange the two paths between these two routes.

• relocate operator: randomly select one patient from one route, then insert the patient to the other route.

The LS algorithm will be stopped when a better solution is found compared with the input solution or the LS algorithm reaches the maximum number of iterations Max L. It should be noticed that there are two positions using the LS algorithm in the proposed HACO algorithm. In the first place, the LS algorithm is used for strengthening the search abilities of the ants; and in the second place, the LS algorithm is used for avoiding local convergence two early and strengthening the global searching abilities of the HACO algorithm.

2.4.1.4/ PHEROMONE UPDATE AND STOPPING CRITERIA

The pheromone trails in the HACO algorithm are updated as follows:

τ i j ← (1 -ρ)τ i j , ∀ (i, j) (2.30)
where ρ ∈ [0, 1] is an adjustable parameter of pheromone. After evaporation, the pheromones are updated as follows:

τ i j ← τ i j + n k=1 ∆τ i j (2.31)
where

∆τ i j =          Q L Ant k , i f (i, j) ∈ tour constructed by Ant k 0, otherwise
, L Ant k is the fitness value of the objective function of the solution constructed by Ant k , n is the numbers of all the ants, and Q is a constant.

After finishing the pheromone operator, the HACO algorithm will determine whether to terminate the iteration. If the algorithm reaches the maximum number of iterations MaxIt or the algorithm doesn't obtain a better solution for MaxConst iterations, the HACO algorithm will be stopped.

2.4.2/ DYNAMIC PROGRAMMING

In this section, a Dynamic Programming (DP) method is used to solve the carbon emission optimization problem in multiple routes with the constraints of time windows and synchronized visits. [START_REF] Wang | Sailing speed optimization for container ships in a liner shipping network[END_REF] have used a DP method to optimize the cost in terms of fuel emissions in a time-varying network. However, rather than in only a single fixed route, the problem with synchronized visits is more complicated. In order to visualize the model, we take an example of a solution to instance HHC C103 with 10 patients, which is shown in Fig. 2.6. It should be noted that the patient 11 is fictitious, and is actually patient 3 who has the demand of synchronized visits. However, due to the constraint of synchronized visits, we can't optimize the speed in a single fixed route, but in multiple routes which have the patients with the demand of synchronized visits. It is clear that we can't optimize a route individually because of the synchronized patient 3. The caregiver 1 and caregiver 2 must serve the patient 3 at the same time, which increase the difficulty of speed optimization.

The speed optimization problem is solved in two steps, and each step involves a recurrence. First, the optimal carbon emissions for p i-1 to p i , where p i-1 , p i ∈ P sub , with different start times, finishing times, and start working time are computed. Second, the optimal carbon emissions for the fixed route through all the patients are calculated.

2.4.2.1/ DYNAMIC PROGRAMMING RECURRENCE FOR THE ADJACENT PATIENTS

Define C p i , t start , t f inish , y i as the optimal carbon emissions of traveling from patient p i-1 at time t start , arriving at patient p i at t f inish , and start working at y i . The start working time can be calculated as follows:

y i =              a i , i f t f inish ≤ a i t f inish , i f a i < t f inish ≤ b i ∞, otherwise (2.32)
where a i and b i are the lower bound and upper bound of the time windows at node i, respectively. It should be noticed that for the patients (i, j) ∈ P sync who needs synchronized services, the start working time is max{y i , y j }. For each pair of adjacent patients p i-1 , p i ∈ P sub , the carbon emissions with all possible starting, finishing, and start working times should be calculated.

Define f (i, t i , y i ) as the minimum carbon emissions from start node to patient i with the associated arrival time t i and start working time y i . Define g arc i j , t i , t j as the carbon emissions along arc arc i j when the caregiver travels from node i at t i and arrives node j at t j . Therefore, it is easy to calculate the speed along arc i j as follows:

v i j = d i j / t j -t i (2.33)
where d i j is the distance of arc i j . Based on the time windows constraint, it is clear that the smallest speed v lb i j along arc i j can be calculated as follows:

v lb i j = d i j / b j -y i -τ i (2.34)
where τ i is the service time at node i. Then, the carbon emissions along arc i j can be calculated as follows:

g arc i j , t i , t j =        ε v i j d i j , i f v i j ≥ v lb i j ∞, otherwise (2.35)
The DP recurrence for updating the value of f j, t j , y j is described as follows:

f j, t j , y j = min

t j ∈{t i +d i j /v i j } f (i, t i , y i ) + g arc i j , t i , t j (2.36)
The value of f j, t j , y j is calculated based on the greedy rules from the start node to node j with the arrival time being t j and start working time y j . It is obvious that the value of f j, t j , y j may not be the minimum carbon emissions from the start node to node j with the arrival time being t j and start working time y j . The value of f j, t j , y j can only be considered as the upper bound of the minimum carbon emissions during this trip. Of course, if the start node and j are two adjacent points, f j, t j , y j is the optimal carbon emissions. The iterations will be stopped when the value of f j, t j , y j cannot be reduced anymore.

Therefore, if the start node is p i-1 and the start time is t start , the value of optimal carbon emissions C p i , t start , t f inish , y i can be calculated as follows:

C p i , t start , t f inish , y i = f i, t f inish , y i (2.37) 2.4.2.2/ DYNAMIC PROGRAMMING RECURRENCE FOR THE FIXED ROUTE
Define F p i , t f inish , y i as the optimal carbon emissions from the depot to patient p i with the arrival time at p i being t f inish and start working time y i . The following DP recurrence will be utilized to calculate the optimal carbon emissions for the complete route.

F p i , t f inish , y i = min 

a i ≤y i-1 +τ i-1 ≤b i {F (p i-1 , t i-1 , y i-1 ) + C p i , y i-1 + τ i-1 , t f inish , y i } (2.38) Algorithm 2.3: Dynamic programming Input: S Input Output: Optimal carbon emissions F, speed V N ← length(S Input ), set t 1 arrive ← 0, t 1 start ← 0, F 1 ← 0; Set it L ← 1, S Lbest ← S Input , S current ← S Lbest ; for k ← 2,...,N do Calculate all the {t k arrive }, {t k start }, {v k-1,k } and {F k } based on {t k-1 start },
F k min ← min {F k } , ∀t k start ∈ {t k start } ; Update {t k arrive }, {t k start }, {v k-1,k } and {F k };
return F and V;

In the process of recurrence, if there are some decisions with the same start working time y i at patient p i , we can compare these decisions and find the optimal carbon emissions at patient p i associated the same start working time y i . Because the same start working time will not have an influence on the latter patients, the patient p i can be considered as a new 'depot' for the latter patients. The DP method is presented in Algorithm 2.3, {t k arrive }, {t k start }, {v k-1,k } and {F k } are the sets of arrival time, start working time, speed and carbon emissions at node k, respectively. If the synchronized visits constraint doesn't be considered in the process of DP method, the value of F p i , t f inish , y i can only be considered as the lower bound of optimal carbon emissions of the complete route. We can further illustrate the algorithm with the example in Figure 2.6. There are total 2 routes in this solution. Firstly, we have to calculate the carbon emissions of each route separately. As for route 1, there are total 6 nodes and 5 arcs. So there are a total of 5 stages for calculation.

We can start from the depot to calculate the different carbon emissions at different arrival times to a node according to different speeds. According to the time window constraint, if the arrival time is less than the minimum time of time window, the arrival time will be equal to the minimum time of time window. Therefore, if there are multiple arrival times less than the minimum time of the time window at a certain node, then the arrival times of these different speed combinations will all be equal to the minimum time of the time window, so an optimal carbon emission can be found with these speed combinations. After calculating these 2 routes separately, we need to compare the arrival time of the node with synchronized visit demand of two routes. If the arrival time of one route is smaller than the other one, then the arrival time of this route must be equal to the bigger one, and the latter nodes will be calculated again.

2.5/ COMPUTATIONAL EXPERIMENTS

In this chapter, the MIP model is solved by Gurobi solver, which is a pretty good commercial optimization solver, and has been used by many researchers for solving the linear programming (LP), quadratic programming (QP), quadratically constrained programming (QCP) and MIP [START_REF] Lin | Solving the team orienteering problem with time windows and mandatory visits by multi-start simulated annealing[END_REF][START_REF] Chauhan | Maximum coverage capacitated facility location problem with range constrained drones[END_REF]. All the experiments are conducted on Intel Core i7-3770, 8 Duo 3.4 GHZ in order to solve the proposed problem.

To the best of our knowledge, there are no existing benchmark instances for our HHC scheduling problem. Therefore, in order to obtain effective instances, we generate the test instances based on the classical VRPTW benchmark instances designed by [START_REF] Solomon | Algorithms for the vehicle routing and scheduling problems with time window constraints[END_REF]. Moreover, we use the classical VRPTW benchmark instances to test the effectiveness and efficiency of the proposed HACO algorithm, and the results are shown in the 

2.5.1/ EXPERIMENT SETUP

In this chapter, three kinds of experiments are conducted to evaluate the effectiveness of the HACO algorithm and the ability of ACO-based heuristic algorithm to solve HHCR-SPRC problem. Next, this chapter will describe these three experiments, respectively.

The goal of the first experiment is to compare the performance of the algorithm proposed in this article with the optimal solutions of the classical VRPTW instances. The purpose of the second experiment is to test the instances with only one speed in order to compare the efficiency of the algorithm without using dynamic programming, with various heuristics and MIP models. This will make it easier to highlight the differences in computational efficiency and effectiveness between algorithms. While the first two experiments are a proof of the effectiveness of the proposed algorithm, the third experiment uses the heuristic proposed in this chapter to solve the studied problem, which is more convincing.

2.5.1.1/ EXPERIMENT 1

The first kind of experiment aims to demonstrate the effectiveness of the HACO algorithm to solve the classical VRPTW benchmark instances, and compared with the Best Known Results (BKS) in the references.

2.5.1.2/ EXPERIMENT 2

The second kind of experiment aims to evaluate the ability of the proposed HACO algorithm to solve the simplified HHCRSPRC problem with only one speed. In order to prove the reliability and validity of the experimental results, this chapter sets up several comparison algorithms, which are as follows:

• MIP model in Section 2.3.2, where the speed level r is set as 1. The MIP model is solved by Gurobi with a time limit of 1 hour;

• ACO algorithm. The difference between ACO algorithm and the proposed HACO algorithm is that ACO algorithm does not use LS;

• Memetic Algorithm (MA), which has been successfully used in many related researches [START_REF] Nalepa | Adaptive memetic algorithm for minimizing distance in the vehicle routing problem with time windows[END_REF][START_REF] Decerle | A memetic algorithm for a home health care routing and scheduling problem[END_REF]. [START_REF] Moscato | On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms[END_REF] firstly combined the Genetic Algorithm (GA) with LS procedure, and the combination algorithm is named as MA. The main benefit of the MA is to combine the global search of evolutionary algorithm with the LS to improve individual solutions. The MA has the following operators, namely: initial population , selection, crossover, mutation and LS procedure. The more detailed description can be referenced in [START_REF] Moscato | On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms[END_REF][START_REF] Decerle | A memetic algorithm for a home health care routing and scheduling problem[END_REF].

2.5.1.3/ EXPERIMENT 3

The third kind of experiment aims to evaluate the ability of the proposed ACO-based heuristic algorithm to solve the studied HHCRSPRC problem with two speeds. In order to prove the reliability and validity of the experimental results, this chapter sets up several comparison algorithms, which are as follows:

• MIP model in Section 2.3.2, where the speed level r is set as 2. The MIP model is solved by Gurobi with a time limit of 1 hour;

• Mat-heuristic algorithm. This method consists of MIP model with only one speed (40 km/h) and DP method, that is, mat-heuristic algorithm is a two stage algorithm.

Based on Proposition 2.1, it can conclude that the speed 40 km/h can construct more feasible routes than speed 30 km/h. Based on Proposition 2.2, the unit carbon emissions of speed 40 km/h is larger than speed 30 km/h. Therefore, we choose to solve the MIP model with speed 40 km/h, and then use the DP method to optimize the speed of the routes solved by the MIP model with speed 40 km/h. In the Solomon VRPTW benchmark instances, the speed is standardized to 1. It is very necessary to adjust the proportion of the data in the Solomon VRPTW benchmark instances to suit the proposed problem. According to the survey, the normal speed limit is 50 km/h in the city of France. However, the drivers often need to slow down and accelerate during driving when driving to the intersection, so it is difficult to keep an average speed at 50 km/h. In this chapter, the HHC scheduling activities happens at a city or a town. Therefore, an average speed 10m/s (namely 36 km/h) is very suitable in the test instances of the proposed problems. In the basis of the Solomon VRPTW benchmark instances, the rules of generating the test instances of the proposed problems are as follows: we set the coordinate of the medical laboratory as (30,40); the speed is set as 10 m/s; the distance is 100 times the original, the time window and service time are 10 times the original; other parameters will not be changed. Similarly, we take C101 as an example, and the following Table 2.2 shows the data information of HHC C101. The unit of the coordinate is meters (m), and the unit of the time windows and service time is seconds (s).

2.5.2/ TEST INSTANCES

The generated test instances have two important parameters, which are speed and the patient in need of synchronized service. As for the speed settings of the test instances, we set two kinds of speed namely 30km/h and 40km/h to test the influence of different speed to the carbon emissions.

As for the patient in need of synchronized service, in order to code conveniently, we use the following formulation to decide the number of synchronized-service patients: NS ync = NP 10 , where a = min{n ∈ Z|a ≤ n} which means the smallest integer larger than a, NS ync is the number of synchronized-service patients, and NP is the number of the patients.

And we set the third patient in every ten patients as the synchronized-service patient.

It should be noted that the complexity of the problem will increase exponentially with the size of the instance. In this chapter, Table 2.3 lists the number of arcs in different scale instances. The number of selectable arcs for 100-node instance is 91.82 times that for 10node instance, but not 10 times. There is no doubt that the complexity does not increase linearly as the scale of the instance grows. 

2.5.4/ EXPERIMENTS FOR THE VRPTW

In order to demonstrate the effectiveness and efficiency of the proposed HACO algorithm, we use the HACO algorithm to solve the classical Solomon VRPTW benchmark 

2.5.5/ EXPERIMENTS FOR THE SIMPLIFIED PROBLEM

In this section, in order to test the effectiveness of the proposed HACO algorithm, we set only one speed (only 40 km/h one speed) in this part. Therefore, the DP algorithm will not be used in this part.

In order to demonstrate the effectiveness of the proposed HACO algorithm on the studied problem with only one speed level, we set several comparison methods, respectively the classical ACO algorithm [START_REF] Luo | Ant colony optimization algorithm for a transportation problem in home health care with the consideration of carbon emissions[END_REF], MA [START_REF] Nalepa | Adaptive memetic algorithm for minimizing distance in the vehicle routing problem with time windows[END_REF][START_REF] Decerle | A memetic algorithm for a home health care routing and scheduling problem[END_REF] which has been successfully applied to many routing related researches, and an exact method.

In this chapter, the Gurobi solver is used to solve the MIP model with a As for the instances with 25 patients, it is obvious that the Gurobi cannot give an exact solution for most instances, and the Gap3 is smaller than 0, which also highlights the effectiveness and efficiency of the proposed HACO algorithm for small scale problems.

Similar to the results with 10 patients, the ACO and MA cannot give a pretty good result compared with the proposed HACO algorithm.

As for the large scale problems, it is clear that the Gurobi cannot solve all the problems within the time limit of 1 hour, meanwhile the proposed HACO algorithm can solve the large size problems using pretty good computing efficiency compared with the ACO and MA, which proves the superiority of the proposed HACO algorithm for the large scale problems.

The experiments in the section fully explain the superiority of the proposed HACO algorithm. Therefore, in next section, we will use the ACO-based heuristic approach (combine the proposed HACO algorithm and DP method) to solve the studied problem.

2.5.6/ EXPERIMENTS FOR THE STUDIED PROBLEM

In this section, the proposed ACO-based heuristic approach is used to solve the studied problem. As shown in Section 2.5.2, there are two speed levels in the studied problem. In order to prove the effectiveness of the proposed ACO-based heuristic approach for this problem, two comparison methods including MIP model solved by Gurobi solver with a time limit of 1 hour and a mat-heuristic algorithm to solve the studied problem.

The experimental results for the studied problem are presented in Table 2.9. In this chapter, if the Gurobi solver doesn't give an exact solution in 1 hour, we will give the best lower bound and upper bound calculated by the Gurobi solver. In the Table 2.9, there are three kinds of approaches for the studied problems. The first results are calculated by the Gurobi solver for the MIP model with a time limit of 1 hour. In Table 2.9, the most important results are the proposed ACO-based heuristic approach shown in Section 2.4. The proposed ACO-based heuristic approach consists of the pro-posed HACO algorithm and DP method, namely using HACO algorithm to generate the routes and using DP method to calculate the carbon emissions. As shown in Table 2.9, the proposed ACO-based heuristic approach can solve all instances within reasonable calculating time, which proves the efficiency of proposed ACO-based heuristic approach.

The Gap2 between MIP model and the best result solved by the proposed ACO-based heuristic approach is smaller than 0, meanwhile the calculating time is much faster than the MIP model, which illustrates the effectiveness and superiority of the proposed ACObased heuristic approach. The comparison with the mat-heuristic algorithm is obvious that the proposed ACO-based heuristic approach can solve more problems in less time than the mat-heuristic algorithm, which further demonstrates the superiority of the proposed ACO-based heuristic approach.

In Table 2.9, we present the average results solved by the proposed ACO-based heuristic approach. As for the small scale instances, it is clear that the results are all same, which denotes the stability of the proposed approach. As for the middle and large scale instances, the difference between the best and average is not obvious, which can prove that the proposed ACO-based heuristic approach is suitable to solve the middle and large scale instances of the studied problem.

Next, we will conduct a sensitivity analysis of this research to evaluate the impact of different model parameters on the studied problem.

2.5.7/ SENSITIVITY ANALYSIS

In this section, we use the proposed ACO-based heuristic approach to evaluate the impact of maximum waiting time and synchronized-visit number on the studied problem.

The test instance is HHC C103 with 25 patients.

2.5.7.1/ IMPACT OF MAXIMUM WAITING TIME

In this chapter, we consider an important factor, i.e., the waiting time at patient. It means the vehicle can wait at a patient location before serving the patient [START_REF] Cai | Total carbon emissions minimization in connected and automated vehicle routing problem with speed variables[END_REF].

In our model, the maximum waiting time for the vehicle at the patient point is w. In this section, we conduct the sensitivity analysis to study the influence on the final result of different maximum waiting time. We define the length of time window at depot as T (for HHC C103, T = 12360). The w is set as 0.1T , 0.2T , 0.3T , 0.4T , 0.5T , 0.6T , 0.7T and 0.8T , respectively. The results presented in Table 2.10 can conclude that the increase of the maximum waiting time can significantly reduce carbon emissions. However, when the waiting time reaches a certain threshold, the carbon emissions will remain unchanged.

The reason why the carbon emissions are relatively large when the maximum waiting time is small is that the solution space will be small. So the quality of the solution is not as good as when the maximum waiting time is relative larger. In reality, it is necessary to consider the time cost. As for this instance, the maximum waiting time can be set as 0.4T . In this chapter, we consider the synchronized constraint. There is no doubt that the number of synchronized patients will have great influence on the final result. In this section, we conduct the sensitivity analysis to study the influence on the final result of different number of synchronized patients. We set the number of synchronized patients as 1(3rd), 2(3rd and 13th), 3(3rd, 13th, and 23rd), 4(3rd, 8th, 13th, and 23rd), 5(3rd, 8th, 13th, 18th and 23rd), respectively. The results presented in Table 2.11 can conclude that the increase of the number of synchronized patients will significantly increase carbon emissions. The reason why the carbon emissions are relatively large when the number of synchronized patients is large is that the solution space will be small, and high quality of the solution will also be less than when the number of synchronized patients is small. (3) The number of synchronized patients also has an effect on carbon emissions, and the smaller is the number of synchronized patients, the lower are the carbon emissions. Therefore, considering the reasonable arrangement of the vehicle waiting time and the number of synchronized patients are important to reduce the carbon emissions in the logistics activities.

2.6/ CONCLUSION

In this chapter, a HHC routing and scheduling problem with the constraints of synchronized visits and carbon emissions (HHCRSPSC) is studied. The advantage of this study is that it can help decision makers make a vehicle scheduling plan that can reduce environmental pollution while optimizing operating costs for the HHC company. We formulated the problem as a MIP model. The MIP model is solved for a set of small-scale instances using the Gurobi solver. In order to solve large size problem, an ACO-based heuristic approach is proposed for this problem with small and large-scale instances. The ACO algorithm improved by local search is used to generate the route, in which the speed optimization problem that minimizes the carbon emissions is solved by a DM algorithm.

Three main experiments are conducted in this chapter. Firstly, the experimental results

for the problem with one speed highlight the effectiveness and efficiency of the proposed HACO algorithm, and also prove that the local search operation can effectively improve the solving ability of the proposed HACO algorithm. Then, the experimental results for the studied problem further validate the effectiveness of the MIP model, the DM method and the proposed ACO-based heuristic. Finally, we conduct the sensitivity analysis, the experimental results prove that the reasonable arrangement of the vehicle waiting time and the number of synchronized patients are important to reduce the carbon emissions in the logistics activities.

To sum up, a heuristic method is proposed to speed up the problem solving to meet the needs of industrial decision-makers. This research will help HHC companies to make appropriate decisions when planning their daily scheduling in a short time. However, the solution obtained by the heuristic algorithm cannot prove the gap with the lower bound of the problem. Therefore, exact approaches are studied in this thesis and presented in Chapter 3 and 4.

3

BP FOR HHC GREEN ROUTING PROBLEM 3.1/ INTRODUCTION
With the increasingly aging of population, congestion of hospitals, and rapid development of medical technologies, Home Health Care (HHC) has become a particularly growing industry in many developed countries such as France, the United States (US), and so on [START_REF] Rodriguez | Staff dimensioning in homecare services with uncertain demands[END_REF]Liu et al., 2019a). HHC company provides the health care service for the patients at their homes in order to help them recover from illness or injury.

According to a survey of the HHC companies [START_REF] Harris | Handbook of home health care administration[END_REF], the HHC company conducts various logistic activities including delivering the caregivers, drugs, medical devices from the HHC company (i.e. the depot) to the patients, and biological samples (such as blood and urine) from the patients' homes to the medical laboratory for testing every day [START_REF] Liu | Heuristic algorithms for a vehicle routing problem with simultaneous delivery and pickup and time windows in home health care[END_REF]Decerle et al., 2019a;[START_REF] Moussavi | A matheuristic approach to the integration of worker assignment and vehicle routing problems: Application to home healthcare scheduling[END_REF], and finally the HHC vehicles return to the HHC company. The daily scheduling of the caregivers has been demonstrated to be a very difficult problem but a crucial decision activity for a HHC company [START_REF] Hickman | Metaheuristics for solving a multimodal home-healthcare scheduling problem[END_REF]. A large number of patients who need care service are usually distributed in a town, a village or a city. Each patient has a different service time horizon (also called time window in the chapter) and a different service requirement. In addition, we assume that some drugs have their own volume, thus the vehicle capacity is also taken into consideration in this chapter. The specific structure of the HHC supply chain is presented in Figure 1.1 of Chapter 1. The graph consists of one HHC company, one medical laboratory and a number of patients. Therefore, to a certain extent, the problem studied in this chapter is similar to a VRP with Time Window (VRPTW) considering carbon emissions [START_REF] Solomon | Algorithms for the vehicle routing and scheduling problems with time window constraints[END_REF].

As for a HHC company, transportation cost is one of the largest operating costs in company daily activities, thus it is crucial to optimize the routes of the HHC vehicles in order to reduce the transportation cost meanwhile improving the service quality to patients.
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However, transportation has serious impacts on the environment, such as resource consumption, toxic effects on ecosystems and humans, noise, and the effect induced by greenhouse gas (GHG) emissions [START_REF] Kirkinen | Greenhouse impact due to the use of combustible fuels: life cycle viewpoint and relative radiative forcing commitment[END_REF]. Among these, GHG, especially carbon dioxide (CO 2 ) emissions, are the most concerning because CO 2 emissions have direct influences on people's health [START_REF] Bektas | The pollution-routing problem[END_REF]. According to the work reports by the US Environmental Protection Agency (EPA), the transportation sector contributes 28% of national GHG emissions [START_REF] Erdo Gan | A green vehicle routing problem[END_REF]. If logistics is not scheduled well, it will cause congestion and a large amount of CO 2 emissions [START_REF] Hazen | Back in business: Operations research in support of big data analytics for operations and supply chain management[END_REF].

Therefore, more and more scholars began studying green routing problems, even in HHC routing and scheduling problems.

In the recent literature, many different objectives have been considered in the HHC routing and scheduling problems. Mostly, travel cost or travel time are the most common objective optimized (Decerle et al., 2019b). However, it cannot be ignored that some scholars have begun to consider the issue of green routing problems in HHC. We review the routing and scheduling problems in HHC, and then analyze the research objectives and solutions of these problems in Table 3.1. In this chapter, the aim is to design a reasonable logistics route plan under some constraints, and the objective is to minimize operating cost. Moreover, we also test the objective of minimizing the total carbon emissions, which has a positive linear relationship with fuel consumption [START_REF] Qian | Finding least fuel emission paths in a network with time-varying speeds[END_REF]. Generally, this goal can reduce environmental pollution while optimizing operating costs for the HHC company. In order to verify the rationality of this goal, this chapter compares the routing plan of some instances under different goals and compares their operating costs.

The carbon emissions along a route are calculated by a formulation based on the traveling speed. In this chapter, we set several speed data for selecting by the vehicles' drivers.

Therefore, this chapter not only studies the route of visiting patients, but also determines the speed of the vehicles. The consideration of carbon emissions makes the problem be a route and speed joint optimization problem. There is no doubt that our scheduling problem is more complicated than the classical VRPTW. Since VRPTW is NP-hard problem [START_REF] Solomon | Algorithms for the vehicle routing and scheduling problems with time window constraints[END_REF], our scheduling problem is of course NP-hard. In order to solve the problem, an exact Branch-and-Price (BP) algorithm is proposed in this chapter. Experimental results highlight the efficiency of the proposed approach thanks to a comparison of the results with the Mixed-Integer Programming (MIP) formulations solved by CPLEX.

The main contributions of this chapter can be denoted as follows: ( 1 The distance between i and j is denoted as d i j . The carbon emission between i and j is calculated by a formulation denoted in Section 3.2.2 based on the distance and speed between i and j. The speed between i and j is an integer variable in the chapter. The speed of the vehicle k between i and j is v i j . Based on the speed v i j , it is very easy to calculate the travel time between i and j. The travel time between i and j is d i j /v i j .

The problem is developed to determine a set of routes in order to minimize the objective (operating cost or carbon emissions) under the constraints of time windows, capacity, and the following assumptions: (1) each vehicle leaves from the depot, deliver the samples to the laboratory, and at last returns to the depot, and visits each patient at most once; (2) we set the cost from the laboratory to depot as the fixed cost, which is not considered in the chapter;

(3) the speed of the vehicle is assumed to be an average speed in each arc.

3.2.2/ CARBON EMISSION FUNCTION

The research addressed in this chapter aims to minimize the carbon emissions by optimizing vehicle speeds and routes. Carbon emissions is used to provide an estimate of the GHGs generated by vehicles. In general, the carbon emissions are measured by calculating the fuel consumption, and then multiplying by the carbon emissions conversion factor, namely the carbon emissions have a linear relationship with fuel consumption [START_REF] Qian | Finding least fuel emission paths in a network with time-varying speeds[END_REF]. The carbon emission per unit distance traveled (kilogram per kilometer, kg/km) at speed v is f (v), which is developed by the United Kingdom Transport

Research Laboratory [START_REF] Hickman | Metaheuristics for solving a multimodal home-healthcare scheduling problem[END_REF]. The emissions function has been used by many researchers, such as [START_REF] Jabali | Analysis of travel times and co2 emissions in time-dependent vehicle routing[END_REF], [START_REF] Teoh | Data driven safe vehicle routing analytics: a differential evolution algorithm to reduce co2 emissions and hazardous risks[END_REF] and so on, which can demonstrate the effectiveness of the emission function. The emissions function f (v) is provided as follows:

f (v) = e + e 1 v + e 2 v 2 + e 3 v 3 + e 4 v -1 + e 5 v -2 + e 6 v -3 /1000 (3.1)
where v is the speed of the vehicle in km/h, and the coefficients e, e 1 , e 2 , e 3 , e 4 , e 5 and e 6 will be different under the vehicles with different types and sizes. The coefficients in this chapter are adopted the settings in [START_REF] Hickman | Metaheuristics for solving a multimodal home-healthcare scheduling problem[END_REF], and the values of e, e 1 , e 2 , e 3 , e 4 , e 5 and e 6 are 765, -7.04, 0, 0.006320, 8334, 0, 0, respectively. The ve-hicle will emit f (v) kg/km carbon dioxide (CO 2 ) when the vehicle is driven at the speed v. It is easy to know that the emissions formula is a function of speed v. Based on a survey of the speed limit of French cities, we set three speed selections in this chapter, respectively 30 km/h, 45 km/h and 60 km/h.

3.2.3/ MATHEMATICAL MODEL

As mentioned before, this work focuses on the delivery version of the routing and scheduling problem with homogeneous vehicles in HHC. The aim is to optimize the daily routes decisions in order to minimize operating cost or carbon emissions. Based on the problem description, this chapter develops a Mixed-Integer Programming (MIP) formulation in this section. In order to model the problem clearly, we introduce two important binary variables. One is the most widely used three-index binary variable which is presented as follows:

x i jk =        1, if caregiver k travels at arc (i, j), in which i j; 0, otherwise.
The other is a variable associated to speed. Based on the above notations, the speed used on arc (i, j) is undoubtedly represented by x i jk v i j . However, v i j is a variable, and x i jk is also a variable, so it is obvious that the function is non-linear. In order to linearize the mathematical model, we generate a new binary decision variable z i jkr which is denoted as follows:

z i jkr =        1, if caregiver k travels at arc (i, j) with speed level r ∈ R ; 0, otherwise.
where R is the discrete speed levels R = {1, 2, ..., r, ...}. In this chapter, we use three speeds, namely 30 km/h, 45 km/h, and 60 km/h, which corresponding to the speed level 1, 2 and 3. So R = {1, 2, 3}.

Consequently, the variable v i j is represented by the binary decision variable z i jkr and a new speed parameter v r , namely z i jkr v r . And the relationship between decision variables z i jkr and x i jk is presented as follows:

r∈R z i jkr = x i jk , ∀i ∈ N, j ∈ P, k ∈ K, i j (3.2)
As mentioned in the previous chapter, this chapter studies two different objectives and conducts two independent experiments. One objective is the operating cost, and it is in the form of transportation costs. The equation of this objective is presented as follows:

Z 1 = Minimize (i, j)∈A k∈V r∈R d i j z i jkr (3.3)
where the objective is the total travel distance, which is the most common objective optimized in HHC routing and scheduling problems. The other objective studied in this chapter is carbon emissions, which have a linear relationship with fuel consumption. To a certain extent, The carbon emissions can also reflect operating cost. The formulation of this objective is denoted as follows:

Z 2 = Minimize (i, j)∈A k∈V r∈R f (v r ) d i j z i jkr (3.4)
It is clear that the difference between two objectives is the carbon emission function.

Before introducing the MIP formulation, this chapter summarizes the notations used in the MIP model, which are shown in Table 3.2. the objective value, the total travel distance (operating cost). Z 2 the objective value, the total carbon emissions.

x i jk a binary variable, caregiver k travels at arc (i, j), in which i j. z i jkr a binary variable, caregiver k travels at arc (i, j) using the speed level r, in which i j. τ i a decision variable, the start working time at vertex i. u i j a continuous variable, the total demand up to arc (i, j).

K the set of all vehicles. N the set of all nodes{0, 1, ..., n, n + 1}, including the depot {0} and the laboratory {n + 1}. A the set of arcs, A = {(i, j) |i, j ∈ N, i j}. P the set of all patients {1, ..., n}. Q the service capacity of each caregiver. d i j

the distance from node i to node j. q i the demand of patient i. s i the service duration for node i.

[a i , b i ]
the availability time window of patient i. v r the speed with level r. f (v) the carbon emissions function. e, e 1 , ..., e 6 the coefficients of carbon emissions function.

Then, we will introduce the constraints of the mathematical models, and the formulations are presented as follows:

s.t. k∈V j∈N x i jk = 1, ∀i ∈ P (3.5) j∈N x jik - j∈N x i jk = 0, ∀i ∈ P, k ∈ K (3.6) j∈N x 0 jk ≤ 1, ∀k ∈ K (3.7) i∈N x i(n+1)k ≤ 1, ∀k ∈ K (3.8) i∈N u ji - i∈N u i j = q j , ∀ j ∈ P (3.9) u i j ≤ Q k∈V x i jk , ∀ (i, j) ∈ A (3.10) τ i -τ j + s i + d i j /v r ≤ M 1 -z i jkr , ∀i ∈ N, j ∈ P, k ∈ K, r ∈ R, i j (3.11) a i ≤ y i ≤ b i , ∀i ∈ N (3.12) x i jk ∈ {0, 1}, ∀ (i, j) ∈ A, k ∈ K (3.13) z i jkr ∈ {0, 1}, ∀ (i, j) ∈ A, k ∈ K, r ∈ R (3.14) r∈R z i jkr = x i jk , ∀ (i, j) ∈ A, k ∈ K (3.15) u i j ≥ 0, ∀ (i, j) ∈ A (3.16) τ i ≥ 0, ∀i ∈ P (3.17)
The objective (3.3) and constraints (3.5-3.17 ) constitute the first MIP model, and we name it as MIP1, namely:

MIP1 : Z 1 = Minimize (i, j)∈A k∈V r∈R d i j z i jkr s.t. (3.5) -(3.17)
The other objective (3.4) and constraints (3.5-3.17 ) constitute the second MIP model, and we name it as MIP2, namely:

MIP2 : Z 2 = Minimize (i, j)∈A k∈V r∈R f (v r ) d i j z i jkr s.t. (3.5) -(3.17)
It should be noted that the objective of MIP1 is distance, but not about speed. Therefore, we only need to set the fastest speed, then we can meet all the constraints and get the best operating cost (or total distance).

In these two MIP models, constraint (3.5) guarantees that each patient is visited only once. Constraint (3.6) ensures the flow balance of the vehicles, i.e., the caregiver visits the patient and then will leave the patient. Constraints (3.7) and (3.8) ensure that the vehicles start at the depot and end at the medical laboratory. Constraint (3.9) is the flow equation for the demand of patients, and constraint (3.10) is the capacity constraints.

Constraint (3.11) denotes that the caregiver k cannot arrive at j before τ i + s i + d i j /v r , the reason is that the caregiver k needs the service duration s i and travel time from i to j.

Constraint (3.12) ensures the time window of the patient i. Constraints (3.13) and (3.14) ensure that the decision variables x i jk and z i jkr are binary. Constraint (3.15) is relationship between two decision variables x i jk and z i jkr . Constraints (3.16) and (3.17) ensure the non-negative.

3.3/ COLUMN GENERATION

The MIP formulation of the studied problem can be directly solved by commercial optimization solvers. However, the computational efficiency of these algorithms degrades significantly as the problem scale or the instance size increases. To overcome this difficulty, we develop a column generation algorithm to solve the relation of routing and scheduling problem in this section. Firstly, we give a set-partitioning-based formulation of the problem; then, we develop the column generation to solve the linear programming (LP) relaxation problem; Finally, we present the labeling algorithm and several effective heuristics to solve the pricing sub-problem.

3.3.1/ SET-PARTITIONING FORMULATION FOR THE STUDIED PROBLEM

We define Ω as the set of feasible paths. A path is feasible if it satisfies capacity and time window constraints. Let y p be a binary variable deciding whether path p is included in the optimal solution or not, define c p as the cost (operating cost or carbon emissions) of the path p, and let σ ip be a binary variable that denotes the patient i is visited by the path p or not. We formulate the studied problem as a set partitioning model, which is presented as follows: We define the LP relaxation of the set-partitioning model as the Master Problem (MP).

Z 3 =
We use column generation [START_REF] Desaulniers | Column generation[END_REF] to solve the MP with a small subset Ω ⊆ Ω of feasible paths. The MP with the subset Ω is denoted as the Restricted Master Problem (RMP), and the RMP can be formulated as follows: where the sub-problem that adds feasible routes (also called columns) to the RMP is denoted as the pricing problem.

Z 4 = min

3.3.2/ THE PRICING SUB-PROBLEM

The pricing sub-problem constructs a feasible route with a minimum reduced cost, using the dual values obtained from the LP solution of the RMP. If the constructed route has negative reduced cost, its corresponding column is added to the RMP. Otherwise, the LP procedure will be terminated with an optimal solution to the continuous relaxation of the MP. The pricing problem searches for the routes with a negative reduced cost, and its objective function is defined as follows:

min p∈Ω cp = c p - i∈P π i σ ip (3.24)
where cp is the reduced cost of path p, and π i is the dual variable associated with the formulation (3.19).

3.3.2.1/ THE PRICING PROBLEM WITH THE OBJECTIVE OF OPERATING COST

As mentioned in Section 3.2.3, the objective is operating cost, and we use the total distance to present the operating cost, which is not about speed. Therefore, we only need to set the fastest speed, then we can meet all the constraints and get the best operating cost (total distance). In other words, we only need to set one speed level (the fastest speed), which is enough to meet all the constraints and have no influences on the total distance.

In order to solve this problem, we design a labeling algorithm, which will be introduced in the next section.

3.3.2.2/ THE PRICING PROBLEM WITH THE OBJECTIVE OF CARBON EMISSIONS

For the pricing problem with the objective of carbon emissions, it involves a speed optimization problem (SOP). Then, we will introduce the SOP in detail. For a feasible path p = (i 0 , i 1 , ..., i h ), the problem that calculates the optimal carbon emissions c p is defined as a SOP. Let N p := {i m |m = 0, 1, ..., h} be the vertex sets of path p, let Arc p := {(i m , i m+1 )|l = 0, 1, ..., h -1} be the arc sets of the path p, and let z i jr be a three-index binary variable that denotes the arc (i, j) ∈ Arc p is traveled with a speed level r ∈ R. As mentioned above, we use three speeds, namely 30, 45, and 60 km/h, which corresponding to the speed level 1, 2 and 3, namely R = {1, 2, 3}. τ i is a decision variable that presents the start working time at vertex i ∈ N p . The SOP is formulated as a MIP formulation, we name the MIP formulation as MIP3, which is presented as follows:

MIP3 : Z 5 = min (i, j)∈Arc p r∈R f (v r ) d i j z i jr (3.25) s.t. τ i -τ j + d i j /v r + s i ≤ M 1 -z i jr , ∀i, j ∈ N p , (i, j) ∈ Arc p , r ∈ R (3.26) a i ≤ τ i ≤ b i , ∀i ∈ N p (3.27) z i jr ∈ {0, 1}, ∀ (i, j) ∈ Arc p , r ∈ R (3.28)
where the objective function Z 5 (3.25) minimizes the carbon emissions of the path p, constraints (3.26) and (3.27) guarantee no violation for the time windows, and constraint (3.28) ensures that the decision variables are binary. Since the SOP is optimized for the feasible solutions, capacity constraint need not be considered.

It is easy to know that the time complexity of the SOP is O (r n ) where r is the number of speed parameters and n is the number of patient. If the SOP can be found a best speed parameter in every patient, the time complexity can be O (rn). As this problem is a time-dependent problem, it is very hard to find a best speed for each edge. Therefore, the SOP is difficult to be solved only by using a dynamic programming algorithm. In this chapter, we solve the SOP by solving the MIP3 by using a commercial solver.

3.3.3/ THE LABELING ALGORITHM

The labeling algorithm has been successfully applied into many VRP-related researches [START_REF] Righini | Symmetry helps: Bounded bi-directional dynamic programming for the elementary shortest path problem with resource constraints[END_REF][START_REF] Luo | Branch-and-price-and-cut for the multiple traveling repairman problem with distance constraints[END_REF][START_REF] Gendreau | Time-dependent routing problems: A review[END_REF][START_REF] Dabia | An exact approach for a variant of the pollution-routing problem[END_REF]. In general, the labeling algorithm is performed where the labels are extended from the start depot (i.e., node 0) to its successors. Recently, many scholars have been using bidirectional search to speed up the labeling algorithm, namely labels are extended both forward from the start depot (i.e., node 0) to its successors, and backward from the end depot (i.e., node n + 1) to its predecessors [START_REF] Dabia | Branch and price for the time-dependent vehicle routing problem with time windows[END_REF]. It should noted that the efficiency of labeling algorithm largely depends on the dominance rules.

In this chapter, in order to solve these two different pricing problems, we design two different labeling algorithms. For the pricing problem with the objective of operating cost, we design a bidirectional labeling algorithm to solve it. For the pricing problem with the objective of carbon emissions, we propose a forward labeling algorithm to solve it. The detailed introductions are below.

3.3.3.1/ A TAILORED BIDIRECTIONAL LABELING ALGORITHM FOR THE PRICING PROB-LEM WITH THE OBJECTIVE OF OPERATING COST

As mentioned before, the cost of path is distance. Thus, we can set only one speed level (the fastest speed, namely 60 km/h in this chapter) to meet all constraints, which will not influent the distance. In this section, we design a bidirectional labeling algorithm to solve the pricing problem. In the bidirectional labeling algorithm, we set a fixed time t m = T/2 as the critical resource, and the forward and backward labels are not allowed to extend beyond t m . Then we will introduce the bidirectional labeling algorithm in detail.

Firstly, we define the notations of forward label L f . A forward label consists of L f = i, q, t, c, c, V, V . The related attributes are presented as follows:

i: The last node visited by L f ; q: Sum of demand when leaving node i in label L f ;

t: Departure time using the fastest speed at node i in label L f ; c: The distance along label L f ; c: Reduced cost of label L f ;

V: Set of nodes visited by vehicle in order along label L f ;

V: Set of nodes that are unreachable from node i in label L f .

V = V ∪ { j ∈ N ∨ t > b j + s j ∨ q + q j > Q} (3.29)
The forward labeling algorithm stores all of the feasible routes extended over the start depot (i = 0) to its successors. The search is restricted to elementary paths by discarding extensions to any vertex j ∈ V. When the label

L f = i, q, t, c, c, V, V is extended forward to a vertex j ∈ N \ V, a new label L f = j, q , t , c , c , V ,
V is computed by using the following rules:

q = q + q j ; t =        t + d i j /v + s j , t + d i j /v ≥ a j a j + s j , t + d i j /v < a j ; V = V ∪ { j}; V = V ∪ {k ∈ N ∨ t > b k + s k ∨ q + q k > Q}; c = c + d i j ; c = c + d i j -π j .
The initial forward label is L f = (0, 0, 0, 0, 0, {0}, N \ {0}). In the process of forward extension, all labels should not be dominated labels. The forward dominance rule is denoted as follows.

Dominance 1

(Forward Dominance rule) A Label L 2 f = i 2 , q 2 , t 2 , c 2 , c2 , V 2 , V2 is domi- nated by the other label L 1 f = i 1 , q 1 , t 1 , c 1 , c1 , V 1 , V1 if i 1 = i 2 , (3.30) q 1 ≤ q 2 , (3.31) V1 ⊆ V2 , (3.32) t 1 ≤ t 2 , (3.33) c1 ≤ c2 , (3.34) 
and at least one of the above inequalities is strictly satisfied.

The pseudo-code of the forward labeling is described in Algorithm 3.1. Before describing the algorithm, we need to define two sets L e f and L p f . Let L e f be the set of forward labels waiting for extension, and define L p f as the set of forward labels waiting for merging. The termination condition of the forward labeling algorithm is to determine whether L e f is an empty set. In order to speed up the algorithm, we set the departure time as a strict judgment resources. If the departure time is larger than T/2, we will not extend this label (Lines 6-7). In the labeling algorithm, we ensure that the newly extended labels and all labels in the L e f and L p f are not dominated. If any label is dominated, then the label will be discarded (Lines 15-18). The output of the labeling algorithm is set L p f . Algorithm 3.1: The forward labeling algorithm Initialize the forward label L f = (0, 0, 0, 0, 0, {0}, N \ {0}) ;

Set L e f ← {L f }, L p f ← ∅; while L e f ! = ∅ do
Choose a label L f ∈ L e f with the minimum reduced cost; The difference of backward labeling and forward labeling is that the backward labeling starts at the end depot, namely n + 1 to its predecessors. Similarly, we define L b = i, q, t, c, c, V, V as the backward label. The related attributes are presented as follows: V: Set of nodes that are unreachable from node i in label L f .

L e f ← L e f \ {L f }, L p f ← L p f ∪ {L f } ; if Departure time t ≥ T/
V = V ∪ { j ∈ N ∨ t > a j + s j ∨ q + q j > Q} (3.35)
The initial backward label is L b = (n + 1, 0, T, 0, 0, {n + 1}, N \ {n + 1}). When the label

L b = i, q, t, c, c, V, V is extended forward to a vertex j ∈ N \ V, a new label L b = j, q , t , c , c , V ,
V is computed by using the following rules:

q = q + q j ; t =        t -d i j /v -s j , t -d i j /v -s j ≤ b j b j + s j , t -d i j /v -s j /v > b j ; V = V ∪ { j}; V = V ∪ {k ∈ N ∨ t < a k + s k ∨ q + q k > Q}; c = c + d i j ; c = c + d i j -π j .
Similarly, in the process of backward extension, all labels should not be dominated labels.

The backward dominance rule is denoted as follows.

Dominance 2 (Backward Dominance rule

) A Label L 2 b = i 2 , q 2 , t 2 , c 2 , c2 , V 2 , V2 is domi- nated by the other label L 1 f = i 1 , q 1 , t 1 , c 1 , c1 , V 1 , V1 if i 1 = i 2 , (3.36) q 1 ≤ q 2 , (3.37) V1 ⊆ V2 , (3.38) 
t 1 ≥ t 2 , (3.39) c1 ≤ c2 , (3.40) 
and at least one of the above inequalities is strictly satisfied.

The extension process of the backward labeling algorithm is similar to Algorithm 3.1, there are two sets L e b and L p b , respectively are the set of backward labels waiting for extension, and the set of backward labels waiting for merging. The line 6 in Algorithm 3.1 will be modified as t ≤ T/2. After get the set of L p b , then we can merge the forward labels and backward labels.

We define the fixed label as L, and let L p be the set of fixed paths with negative reduced cost. The process of the merging is presented in Algorithm 3.2. There are some constraints about merging as follows:

Algorithm 3.2: The merging process

Input L p f and L p b ; for L f ∈ L p f do for L b ∈ L p b do if i L f = i L b && V L f ∩ V L b = {i L f } then 5
Merge L f and L b , and new label is L;

6 if the merging path of label L is feasible, namely q L f + q L b -q i L f ≤ Q && t L f ≤ t L b then 7 if The reduced cost cL < 0 then 8 Insert L into L p ; Output L p .
• The last visited node of L f and the first visited node of L b is same, and the same node between L f and L b can only be this node.

• The new path L will not violate the capacity and time window constraints.

• The reduced cost of new path L will be smaller than 0, in which cL = c

L f + c L b + π i L f .

3.3.3.2/ A TAILORED BIDIRECTIONAL LABELING ALGORITHM FOR THE PRICING PROB-LEM WITH THE OBJECTIVE OF CARBON EMISSIONS

In this section, a tailored forward labeling algorithm is proposed for the pricing problem with the objective of carbon emissions. Because the pricing problem involves a SOP, which is closely related to the departure time. If we get a backward label and the departure time of the first node has changed, the whole path will be calculated again. Therefore, in this section, we only use forward labeling algorithm to solve the pricing problem.

We first define some notations related to a label. Given a label

L f = i, q, t b , t f , c, c, V, V ,
where the tuple represents the state of the path associated with the label L f . The related attributes are presented as follows:

i: The last node visited by L f ; q: Sum of demand of patients when leaving node i in label L f ; t b : Departure time of best carbon emissions at node i in label L f ; t f : Departure time using the fastest speed at node i in label L f ; c: Best carbon emissions along label L f ; c: Reduced cost of label L f ;

V: Set of nodes visited by vehicle in order along label L f ;

V: Set of nodes that are unreachable from node i in label L f .

V = V ∪ { j ∈ N ∨ t f > b j + s j ∨ q + q j > Q} (3.41)
Before presenting the extension of the labels, we review the relationship between speed and carbon emissions. As mentioned in Section 3.2.2, three speeds can be selected by the caregiver, namely 30km/h, 45km/h and 60km/h. According to the parameters setting in Section 3.2.2, we can calculate that f (30) = 8.0432, f (45) = 26.546, and f (60) = 62.974. Therefore, this chapter concludes that f (30) < f (45) < f (60). In this chapter, we use three notations to denote this three speeds, and shown as follows:

v min = 30km/h, v mid = 45km/h and v max = 60km/h. Thus, it concludes that f (v min ) < f (v mid ) < f (v max ) in this chapter.
The forward labeling algorithm stores all of the feasible routes extended over the start depot to its successors. The search is restricted to elementary paths by discarding extensions to any vertex j ∈ V. When the label

L f = i, q, t b , t f , c, c, V, V is extended forward to a vertex j ∈ P \ V, a new label L f = j, q , t b , t f , c , c , V ,
V is computed by using the following rules:

q = q + q j ; t f =        t f + d i j /v max + s j , t f + d i j /v max ≥ a j a j + s j , t f + d i j /v max < a j ; V = V ∪ { j}; V = V ∪ {k ∈ N ∨ t f > b k + s k ∨ q + q k > Q}.
Before updating the other notations tuple t b , c , c , this chapter first proposes a proposition, which is presented as follows.

Proposition 3.1 . For a label L f = i, q, t b , t f , c, c, V, V , we define t b = a i + s i as the earliest departure time. The earliest departure time corresponds to the minimal carbon emissions of the path up to vertex i. The vertex i in label L f with the earliest departure time t b and minimal carbon emissions is thus as optimal vertex.

Proof. The departure time t ≥ a i + s i , and t b = a i + s i , so the departure time t b is the earliest departure time. t b is the departure time of best carbon emissions at vertex i in label L f , which means it is impossible to reduce carbon emissions in this path up to vertex i. Therefore, no matter what vertex the label extends after vertex i, the carbon emissions of the path up to vertex i will not decrease nor increase, and the earliest departure time will also not be changed. Thus, in label L f , the vertex i seems a new 'depot' for the vertex expanded after i. So the vertex i is thus as optimal vertex.

Based on the Proposition 3.1, the updating of tuple t b , c , c is shown as follows.

Proposition 3.2 . For a label L f = i, q, t b , t f , c, c, V, V extends to a vertex j ∈ N \ V.

If t b + d i j /v min ≤ b j , then t b =        t b + d i j /v min + s j , t b + d i j /v min ≥ a j a j + s j , t b + d i j /v min < a j , c = c + d i j f (v min ), c = c + d i j f (v min ) -π j . If t b + d i j /v min > b j
, then the tuple t b , c , c should be re-optimized for the route from the last optimal vertex to vertex j using MIP3 (3.25-3.28).

Proof. c is the best carbon emissions of the label L f , and the related best departure is t b .

And as mentioned before, f (v min ) < f (v mid ) < f (v max ). So the minimal carbon emissions of arc (i, j) is d i j f (v min ). Thus if t b +d i j /v min ≤ b j holds, it is easy to get that the minimal carbon emissions of the path up to vertex j is c = c + d i j f (v min ), and other notations t b and c will be updated as presented in Proposition 3.2. As for the other situation, if t b + d i j /v min > b j , then it will not be allowed to use the speed v min on the arc (i, j). Therefore, we cannot decide to adjust the speed of the path up to vertex i or arc (i, j) in order to achieve the lowest overall carbon emissions up to vertex j.

If t b + d i j /v min > b j , the speed of the path up to vertex j should be re-optimized. In this chapter, the problem is solved by a MIP formulation (3.25-3.28) using CPLEX. We can get the best carbon emissions c and the corresponding t b . The reduced cost is updated by the formulation c = c -i∈P π i σ ip , where p is the current path up to vertex j.

After generating the new labels, the dominance rules are used to reduce the unpromising labels that cannot lead to the optimal solution in order to save the storage space and calculation time of the computer. The dominance rule is shown as follows:

Dominance 3 (Dominance rule) The Label L 2 f = i 2 , q 2 , t 2 b , t 2 f , c 2 , c2 , V 2 , V2 is dominated by the other label L 1 f = i 1 , q 1 , t 1 b , t 1 f , c 1 , c1 , V 1 , V1 if i 1 = i 2 , (3.42) q 1 ≤ q 2 , (3.43) V1 ⊆ V2 , (3.44) t 1 b ≤ t 2 b ∨ t 1 f ≤ t 2 f , (3.45) c1 ≤ c2 , (3.46) 
and at least one of the above inequalities is strictly satisfied.

The pseudo code of the forward labeling algorithm is similar to Algorithm 3.1. The difference is that Lines 6-7 in Algorithm 3.1 are deleted. Finally, we will extend all the labels in L p f with negative reduced cost to the end depot, and add the paths to the column generation process. To optimally solve the routing and scheduling problem, we develop a branch-and-price (BP) algorithm, which is the leading exact algorithm for the routing and scheduling problems [START_REF] Friske | A branch-and-price algorithm for a compressor scheduling problem[END_REF][START_REF] Gharaei | A branch and price approach to the two-agent integrated production and distribution scheduling[END_REF][START_REF] Reihaneh | A branch-and-price algorithm for a vehicle routing with demand allocation problem[END_REF][START_REF] Cruz | A branch-and-price method for the vehicle allocation problem[END_REF].

3.4/ BRANCH-AND-PRICE ALGORITHM

The BP algorithm is composed by embedding the column generation procedure into the branch-and-bound framework. That is because that the objective value of the RMP may not be integers, but it can provide the lower bound (LB) of the studied problem at the node of the search tree. The flowchart of the BP algorithm is shown as follows.

As shown in Figure 3.1, it is clear that there are some initial columns for the RMP. In this chapter, we use the route Depot-Customer-Depot as the initial columns. Therefore, the number of the initial columns is the number of customers of the instance. At next, we will introduce the branching and search strategies of the BP algorithm.

3.4.2/ BRANCHING AND SEARCH STRATEGIES

After the column generation, we first use the integer branching strategy to save computation time. The best integer solution at the root node is obtained by solving the RMP as a 0-1 integer programming problem. The objective value of the integer solution will be the initial upper bound of the studied problem. If the upper bound is equal to the lower bound.

The problem is solved and accordingly the proposed BP algorithm terminates.

In the proposed BP algorithm, the branch-and-bound tree is explored according to a bestfirst strategy. As analysised in [START_REF] Feillet | A tutorial on column generation and branch-and-price for vehicle routing problems[END_REF], branching on a fractional y p variable poses some difficulties and is impractical, and branching on y p = 0 would need a more complicated modification of the pricing problem in order to check column p. In contrast, including or forbidding arcs in the solution of the pricing problem will be easily achieved. According to [START_REF] Reihaneh | A branch-and-price algorithm for a vehicle routing with demand allocation problem[END_REF], branching on arcs is given higher priority, this empirically results in the best improvement in the lower bound. Therefore, a branching strategy on arcs is adopted in this chapter [START_REF] Luo | Branch-and-price-and-cut for the multiple traveling repairman problem with distance constraints[END_REF].

Let H i j be the set of all columns that contain arc (i, j) ∈ A, i, j ∈ P. The sum of the flows on arc (i, j) is equal to p∈H i j y p . If there exists at least an arc (i, j) with fractional p∈H i j y p , then we branch on the value p∈H i j y p which is the closest to the midpoint 0.5. Two new child nodes are generated accordingly by forcing arc (i, j) in one node and forbidding arc (i, j) in the other node. In the former case, all columns containing arcs (i, j ) and (i , j) with i i and j j are deleted when solving the pricing problem. In the latter case, columns using arc (i, j) have to be removed when solving the pricing problem.

3.5/ COMPUTATIONAL EXPERIMENTS

We conduct extensive computational experiments of the proposed BP algorithm, and compare its performance with that of a MIP formulation (provided in the Section 3.2.3) solved by a state-of-the-art optimization solver CPLEX. All of the algorithms in this chapter are coded in C++ programming language. The RMPs and MIPs are both solved by CPLEX 12.10.0. Computational experiments are conducted on a PC with an Inter(R)

Core(TM) i7-7700 CPU @3.60 GHz and a 16 GB RAM, under a Linux operating system.

Computation times are reported in seconds on this machine.

3.5.1/ PROBLEM INSTANCES AND EXPERIMENTAL SETUP

In this chapter, we generate the test instances based on the classical Solomon VRPTW benchmark instances [START_REF] Solomon | Algorithms for the vehicle routing and scheduling problems with time window constraints[END_REF]. The Solomon VRPTW instances are very famous and widely used by a large number of scholars such as [START_REF] Dabia | An exact approach for a variant of the pollution-routing problem[END_REF], [START_REF] Shi | A robust optimization for a home health care routing and scheduling problem with consideration of uncertain travel and service times[END_REF], [START_REF] Yu | A branch-and-price algorithm for the heterogeneous fleet green vehicle routing problem with time windows[END_REF], etc. According to the geographical distribution characteristics of the instances, the Solomon VRPTW instances can be divided into three categories namely C-type instances (clustered customers), R-type instances (uniformly distributed customers) and RC-type instances (a mix of R and C types). In this chapter, we set up three scale instances, with 10, 25, and 50 customers respectively, and we name them small-scale, medium-scale and large-scale instances.

In order to guarantee the correctness of the new instances, we modified the Solomon's benchmark instances with reference to the works of [START_REF] Dabia | An exact approach for a variant of the pollution-routing problem[END_REF] and [START_REF] Yu | A branch-and-price algorithm for the heterogeneous fleet green vehicle routing problem with time windows[END_REF]. In the basis of the Solomon VRPTW benchmark instances, the rules of generating the test instances of the proposed problems are as follows:

i. we set the coordinate of the medical laboratory as (30,40);

ii. the planning horizon was set as 12 hour (h), and all patients' time windows were scaled accordingly using the coefficient 12/b 0 , therefore, the time window

[a i , b i ] of patient i in the Solomon instances was modified as [a i * (12/b 0 ) , b i * (12/b 0 )];
iii. in the tests, the distance d i j was not changed, but we set the unit of distance as kilometers (km); iv. the service time was set to 0.75 h for all patients;

v. the other parameters were not changed.

As for the speed settings of the test instances, we set three kinds of speed namely 30km/h, 45km/h and 60km/h to test the influence of different speed to the carbon emissions.

In this chapter, we use the proposed BP algorithm and MIP formulation to do two different experiments. Experiment 1 is conducted from the economic perspective, and with the objective of operating cost (distance). Experiment 2 is conducted from the environmental protection perspective, and with the objective of carbon emissions. We also compare some results with these different objectives.

3.5.2/ RESULTS OF EXPERIMENT 1 AND EXPERIMENT 2

As mentioned in Section 3.5.1, this chapter conducts two different experiments from the economic perspective and environmental protection perspective, respectively. This section will present the experimental results of these two experiments.

Table 3.3, 3.4 and 3.5 report our computational results of Experiment 1 for solving the base MIP formulation (in Section 3.2.3 using CPLEX vs. solving the set partitioning for-mulation using the proposed BP algorithm. Table 3.6, 3.7 and 3.8 report our computational results of Experiment 2 for solving the base MIP formulation (in Section 3.2.3 using CPLEX vs. solving the set partitioning formulation using the proposed BP algorithm. In these 6 tables, Columns 1 and 2 report the information of instances, and respectively are the name and the size of instance. For CPLEX, Columns 3-5, respectively, report the best upper bound (BUB1) obtained by the CPLEX solver, be optimal or just an upper bound, the Cpu time (CpuT1), and the optimality gap (Gap1) when the calculation is terminated (the instance is optimal or not solved within a time limit of 7200 Cpu seconds). An entry "-" in the table means that the algorithm is not able to obtain an associated bound within the time limit of 7200 seconds. As for the proposed BP algorithm, when the time limit 7200 seconds is reached, the algorithm will not be terminated until it finishes processing the current branch-and-bound node. In these 6 tables, in column "BUB2", there are many "-", which means that the best upper bound not be found in branch-andbound explored stage, and we set the UB at the root node by solving the RMP as a 0-1 integer programming problem using CPLEX as the BUB.

In these tables, we calculate all the average gaps and CPU times. It is clear that the proposed BP algorithm has a better performance compared with the MIP model on these two experiments. However, it is difficult for readers to read these 6 tables. Therefore, in the next section, we summarize all these experiments in Table 3.9 and analyze all the experimental results. In order to facilitate the analysis of the calculation results, Table 3.9 summarizes all calcu- Similarly, three scale instances are used to test the proposed BP algorithm in Experiment 2. As shown in Table 3.9, for the small-scale instances with 10 patients, the MIP solver solves 52 instances out of 56 instances (92.86%), and the average Gap1 is 1.09%, so the results of MIP solver are very accurate and comparable. From Table 3.9, the proposed BP algorithm solves all the small-scale instances with 10 patients, and the average Gap4 between the BUB2 and BUB1 is 0, which illustrates the efficiency and effectiveness of the proposed BP algorithm. As for the medium-scale instances with 25 patients, the overall BP algorithm itself produced global optimal solutions in Cpu times that are significantly shorter than the MIP solver, and the MIP solver can only solve 10 out of 56 instances (17.86%) while the proposed BP can solve all medium-scale instances, which further demonstrates the efficiency and effectiveness of the proposed BP algorithm. As for the large-scale instances, the MIP solver seems very weak and can only solve 5 out of 56 instances (8.93%), even the MIP solver cannot give a UB for many large-scale instances (32 out of 56 instances, which is shown in Table 3.9). While the proposed BP algorithm can solve 35 out of 56 instances (62.5%), which demonstrates the solving ability of the proposed BP algorithm for large-scale cases. And the average gap of root node (Gap2)

and overall gap (Gap3) are 3.35% and 1.48%, respectively. For the large-scale instances, the gaps are relatively small and acceptable, which further illustrates the effectiveness of the proposed BP algorithm.

Besides, via the comparison between Experiment 1 and Experiment 2, we can see that the proposed BP algorithm can both solve many instances, but there are large differences in the Cpu time. The solution time in Experiment 1 is much faster than that in Experiment 2. There are two main reasons. First but also most important is that the problem in Experiment 2 is complicated than the problem in Experiment 1. The BP algorithm in Experiment 2 involves a SOP solved by MIP solver. Thus the BP algorithm will call CPLEX to solve MIP3 model for many times, which will take a lot of solution time. Second is that the BP algorithm in Experiment 1 uses bidirectional search to speed up the labeling algorithm, but in Experiment 1 only uses the forward labeling algorithm.

For a HHC company or organization, reducing operating cost is the most important, though environmental issues deserve everyone's attention. The research in this chapter gives the scheduling plan from two perspectives, which can give decision makers more choices when making the scheduling plan.

3.6/ CONCLUSION

In this chapter, we study a routing and scheduling problem in HHC from an economic and environmental perspective. From economic perspective, we aim to optimize the vehicle routing plan to reduce the operating cost, but from environmental perspective, we aim to optimize the vehicle routing and speed decisions to reduce the carbon emissions. This research can provide both a vehicle scheduling plan with the minimal operating cost and an environment-friendly scheduling plan. We formulate the problem as two MIP models with different objectives, and try to use CPLEX solver to solve the MIP model. However, this problem is very challenging, with medium-sized instances already difficult for the MIP solver. In order to solve the studied problem with larger scale instances, we propose an effective BP algorithm to precisely solve this problem, where the master problem and the pricing sub-problem are solved by a column generation algorithm and a labeling algorithm, respectively. The BP algorithm relies on efficiently solving the pricing sub-problem.

As for the pricing problem with operating cost objective, we design a tailored bidirectional labeling algorithm to solve it. As for the pricing problem with environmental objective, we design a tailored forward labeling algorithm to solve it. Extensive computational results

show that the proposed BP algorithm outperforms a state-of-the-art MIP optimization solver, which highlights the effectiveness and efficiency of the proposed BP algorithm.

However, in real life, traffic conditions are not always the same all the day. Generally speaking, there are morning peaks and evening peaks in a day. Therefore, it is meaningful to discuss the factors of traffic congestion. In the next Chapter 4, traffic congestion is considered.

BPC FOR HHC TIME-DEPENDENT GREEN ROUTING PROBLEM

4.1/ INTRODUCTION

The vehicle routing problem (VRP) is a practical and concerned issue in a wide range of application systems, including logistics, transportation, distribution, home health care, and supply chains (Liu et al., 2019a). The classical VRP introduced before more than sixty years, and its rich variants have been intensively studied [START_REF] Toth | The vehicle routing problem[END_REF]. The aim of classical VRP is to determine a vehicle routing scheduling plan to serve a set of customers in different geographic locations using a fleet of identical vehicles under several side constraints. Many types of solution approaches have been developed for VRP [START_REF] Olgun | A hyper heuristic for the green vehicle routing problem with simultaneous pickup and delivery[END_REF].

Recently, the growing awareness of environmental concerns such as global warming and urban air pollution has led to increased efforts to protect the environment [START_REF] Zhu | Study on the vehicle routing problem considering congestion and emission factors[END_REF]. Therefore, reducing greenhouse gas (GHG) emissions has become a major international issue. The transportation sector generates the largest share of GHG emissions, mainly from the burning of fossil fuels in cars, trucks, ships, trains and planes (EPA, 2020). Many companies consider environmental-friendly operations throughout their supply chains. The motivation of being more environmental conscious is not only about legal constraints, but it also reduces costs and attracts customers who prefer green operations (C ¸imen et al., 2017). Therefore, some researchers have studied the green VRP (GVRP).

Nowadays, traffic congestion has become another common problem. Some cities, such as Paris, Peking, and Shanghai are even famous for their terrible traffic jams. Therefore, it is not reasonable to assume that the vehicle speed was constant in VRP with complicated traffic conditions. Based on this limitation, [START_REF] Malandraki | Time dependent vehicle routing problems: Formulations, properties and heuristic algorithms[END_REF] An exact Branch-Price-and-Cut (BPC) algorithm is developed to solve the HHCTDGRSP.

To the best of our knowledge, few studies use an exact algorithm to solve this variant problem of VRP. The studied HHCTDGRSP is NP-hard because it is an extension of VRP with time windows (VRPTW), which has been proved as a NP-hard problem [START_REF] Solomon | Algorithms for the vehicle routing and scheduling problems with time window constraints[END_REF]. The main contributions of this chapter can be summarized as: 

4.2.1/ PROBLEM DESCRIPTION AND NOTATIONS

The studied HHCTDGRSP addresses a key aspect regarding the impact of traffic congestion in terms of the feasibility, fuel consumption and carbon emissions of a route.

Let G = (N, A) be a directed graph with a set of vertices N = {0, 1, ..., n, n + 1}, in which N c = {1, ..., n} represent customers, and 0 and n + 1 represent the origin depot and the destination depot, respectively. The distance between vertex i and vertex j is denoted by d i j . Each vertex i ∈ N has a demand q i , a service time s i , and an associated hard time window [a i , b i ], where a i and b i represent the earliest and latest time, respectively. Each vehicle has to wait until the earliest time a i if it arrives at node i before time a i , meanwhile the vehicle is prohibited to arrive after the latest time b i . For vertices i ∈ {0, n + 1}, it is assumed that q i = s i = a i = 0 and b i = T . Thus there is a fixed planning horizon [0, T ] in which vehicles are allowed to move along the route. A set of unlimited fleet of homogeneous vehicles with a limited capacity Q are employed to service the customers.

The impact of traffic congestion is captured by considering that the time required to travel from vertex i to vertex j, when departing from vertex i at time t, is given by a travel time function that is continuous, piecewise linear, and satisfies the FIFO property (i.e., a later departure always leads to a later arrival and thus overtaking will not happen). The traffic congestion at peak hours influences vehicle speed directly, thus affecting the travel time and fuel consumption of the vehicles. A vehicle is allowed to delay its departure in order to reduce the carbon emissions of its route. Under this setting, the cost minimizing the HHCTDGRSP consists in finding a set of feasible routes minimizing the total carbon emissions, which has linear relationship with fuel consumption of vehicles.

4.2.2/ MODELING TIME-DEPENDENT TRAVEL TIME

The time dependence of the studied HHCTDGRSP is based on the interaction between vehicle speed profiles determined by the traffic condition and travel time function [START_REF] Zhu | Study on the vehicle routing problem considering congestion and emission factors[END_REF]. According to the survey and literature, there are two peak traffic jam periods in a day, respectively are from 7 am to 9 am and from 5 pm to 7 pm. Fig. 4.1 (a)

draws an average vehicle speed profile of departure time from 7 am to 7 pm, which consists of a constant speed within each time period. Fig. 4.1 (b) draws the corresponding travel time function for an arc which the distance is assumed as 50 km. By using those stepwise speed functions, the FIFO property holds for each arc in the graph G (i.e., a later departure always leads to a later arrival and thus overtaking will not happen).

Following the idea proposed in [START_REF] Ichoua | Vehicle dispatching with timedependent travel times[END_REF], we name the speed changing points at 9:00, 11:00, 13:00, and 17:00 in Fig. 4.1 (a) as speed breakpoints, and the corresponding points in Fig. 4.1 (b) are travel time breakpoints. The travel time function is piecewise linear and can be mathematically described by speed and travel time breakpoints. In this chapter, let τ i j t k i represent the travel time from vertex i to vertex j when vehicle k departs from vertex i at time t k i and so τ i j (t) is a travel time function about the departure time t. For each arc (i, j) ∈ A, there are several time periods of the corresponding travel time function τ i j t k i . In this chapter, we define T i j as the set of time periods. For example, if Fig. 4.1 (b) is the travel time function of an arc (i, j), then there will be 9 time periods in the travel time function. We denote m as the index of the time periods, that is T m i j ∈ T i j for m = 0, 1, ..., |T i j | -1, which T m i j is defined by two continuous time breakpoints w m , w m+1 , namely T m i j = [w m , w m+1 ]. Due to the travel time function τ i j t k i is linear in each time period T m i j ∈ T i j , it is easy to get the linear function expression by calculating the slope θ m and intercept η m . Therefore, the formula of linear function expression is shown as follows:

τ i j t k i = θ m × t k i + η m . (4.1)
Furthermore, due to the FIFO property of the travel time function τ i j (t), a later departure time from vertex i represents a later arrival at vertex j, that is t + τ i j (t) < t + τ i j (t ) when the departure time t and t satisfy 0 ≤ t < t ≤ T . Therefore, a path will be infeasible for any departure time t ≥ t 0 at the origin depot when the path is infeasible for a certain departure time t 0 at the origin depot.

For a path p = (v 0 , v 1 , ..., v k ) which v 0 = 0 is the original depot and v i for 0 ≤ i ≤ k is the the vertex at position i in the path p, the earliest time when the departure time at vertex v 0 is t and the service at v i is completed is represented by the ready time function δ p v i (t). The ready time function is nondecreasing in the domain t, and can be calculated for each vertex in the path p as follows:

δ p v i (t) =        t if i = 0, max{a v i + s v i , δ p v i-1 (t) + τ v i-1 v i δ p v i-1 (t) + s v i } otherwise. (4.2)
The ready time function is also piecewise linear, and similarly we can also use the ready [START_REF] Figliozzi | The impacts of congestion on time-definitive urban freight distribution networks co2 emission levels: Results from a case study in portland, oregon[END_REF]. The general format of the vehicle fuel consumption function is presented as:

FC (v) = k a + bv + cv 2 + dv 3 + ev 4 + f v 5 + gv 6 /v (4.3)
where v is the speed in km/h, FC (v) is the fuel consumption in l/100 km, and k, a, b, c, d, e, f, g are different coefficients for estimating the fuel consumption.

In this chapter, we adopt the coefficients in [START_REF] Qian | Finding least fuel emission paths in a network with time-varying speeds[END_REF], and the computation formula of fuel consumption for each 100 km traveled is presented as follows:

FC (v) = 0.037× 12690 + 16.56v + 86.87v 2 -3.55v 3 + 0.06146v 4 -0.0004773v 5 + 0.000001385v 6 /v In this chapter, we address a time-dependent routing problem, so the departure time will significantly affect the speed of the vehicle. As for an arc (i, j) ∈ A, we define f i j t k i as the carbon emissions function when vehicle k departs from vertex i at time t. In this chapter, we denote v m as the speed of time period T m i j ∈ T i j in the travel time function. So there are same speeds in consecutive time periods, such as in Fig. 4

.1 (b), v 0 = v 1 = 40 km/h.
Based on the travel time function expression τ i j t k i = θ m × t k i + η m , if the slope θ m of the time period to which the departure time t k i belongs is 0, namely θ m = 0, then there will be only one speed v m used in the journey between vertex i and vertex j. Therefore

f i j t k i = CE (v m ) × d i j /100. (4.6)
And if the slope θ m of the time period to which the departure time t k i belongs is not 0, namely θ m 0, then there will be two speeds v m , v m+1 used in the journey between vertex i and vertex j. Therefore

f i j t k i = CE (v m ) × v m × w m+1 -t k i /100 + CE (v m+1 ) × v m+1 × t k i + τ i j t k i -w m+1 /100. (4.7)
Proposition 4.1 . The carbon emissions function f i j t k i is piecewise linear.

Proof. Based on the calculation formulas of carbon emissions function, it can be discussed in two cases. 1. If the slope θ m of travel time function is 0, then f i j t k i = CE (v m ) × d i j /100. d i j is a constant, and CE (v m ) is also a constant, thus the carbon emission f i j t k i is also a constant. Therefore, in this case, the carbon emissions function f i j t k i is linear; 2. If the slope θ m of travel time function is not 0, then

f i j t k i = CE (v m ) × v m × w m+1 -t k i /100 + CE (v m+1 ) × v m+1 × t k i + τ i j t k i -w m+1 /100 = CE (v m ) × v m × w m+1 /100 -CE (v m ) × v m × t k i /100 + CE (v m+1 ) × v m+1 × t k i /100 + CE (v m+1 ) × v m+1 × θ m × t k i + η m /100 -CE (v m+1 ) × v m+1 × w m+1 /100 = [CE (v m+1 ) × v m+1 -CE (v m ) × v m + CE (v m+1 ) × v m+1 × θ m ] × t k i /100 + CE (v m ) × v m × w m+1 + CE (v m+1 ) × v m+1 × η m -CE (v m+1 ) × v m+1 × w m+1 /100. It is easy to get that the value of [CE (v m+1 ) × v m+1 -CE (v m ) × v m + CE (v m+1 ) × v m+1 × θ m ] is a constant, and the value of CE (v m ) × v m × w m+1 + CE (v m+1 ) × v m+1 × η m -CE (v m+1 ) × v m+1 × w m+1
is also a constant. Therefore, in this case, f i j t k i is also a linear function. In summary, it can conclude that the carbon emissions function f i j t k i is piecewise linear.

For a path p = (v 0 , v 1 , ..., v k ) which v 0 = 0 is the original depot and v i for 0 ≤ i ≤ k is the the vertex at position i in the path p, the earliest time when the departure time at vertex v 0 is t, we define F p v i (t) as the total carbon emissions function up to vertex v i in path p when the service at v i is completed with the ready time δ p v i (t). As mentioned before, the ready time function δ p v i (t) is also piecewise linear. Thus in path p, we can use the composite function to denote

f v i-1 ,v i t p v i-1 for i = 1, 2, ..., k, namely f v i-1 ,v i t p v i-1 = f v i-1 ,v i δ p v i-1 (t)
. Therefore, the total carbon emissions function is denoted as:

F p v i (t) =        0 if i = 0, F p v i-1 (t) + f v i-1 ,v i δ p v i-1 (t) otherwise. (4.8)
where the addition operation between functions only counts the domain intersection. If the intersection is an empty set, then the function has no domain.

4.2.4/ MATHEMATICAL FORMULATION

This paper develops a MIP model for the studied HHCTDGRSP in this section. Firstly, an important binary variable x km i j of the MIP model is presented as follows:

x km i j =       
1, if vehicle k traverses the arc (i, j) ∈ A with a departure time in time period m ; 0, otherwise. (4.9)

Then, the departure time variable of vehicle k from vertex i to vertex j in the time period m is given by t km i j . Based on the definitions of t k i and t km i j , we can get the relationship between between these two variables as follows:

t km i j =        t k i , if x km i j = 1 ; 0, otherwise.
(4.10)

In other words, if we know that vehicle k traverses from vertex i to vertex j, we can derive the following mathematical formula:

t k i = j∈N\{0} |Tij|-1 m=0 t km i j , ∀i ∈ N \ {n + 1}, k ∈ K. (4.11)
Based on this formula, the travel time function τ i j t k i from vertex i to vertex j can be denoted as:

τ i j t k i = |Tij|-1 m=0 θ m t km i j + η m x km i j .
(4.12) Furthermore, we introduces another decision variable to judge whether vertex i is visited by vehicle k, and the decision variable is defined as follows:

y k i =        1, if only vehicle k visits vertex i ∈ N ; 0, otherwise. (4.13)
Next, the MIP formulation is presented as follows:

Z 1 = min |Tij|-1 m=0 k∈K (i, j)∈A f i j t km i j (4.14) s.t. j∈N 0 |T0j|-1 m=0 x km 0 j = y k 0 , ∀k ∈ K (4.15) i∈N 0 |Ti(n+1)|-1 m=0 x km i(n+1) = y k n+1 , ∀k ∈ K (4.16) k∈K y k i ≤ 1, ∀i ∈ N c (4.17) i∈N\{n+1} |Tij|-1 m=0 x km i j = y k j , ∀ j ∈ N c , k ∈ K (4.18) j∈N\{n+1} |T ji| -1 m=0 x km ji - j∈N\{0} |Tij|-1 m=0 x km i j = 0, ∀i ∈ N c , k ∈ K (4.19) i∈N\{0} u ji - i∈N\{n+1} u i j = q j , ∀ j ∈ N c (4.20) u i j ≤ Q k∈K |Tij|-1 m=0 x km i j , ∀i ∈ N \ {n + 1}, j ∈ N \ {0}, i j (4.21) t k i = j∈N\{0} |Tij|-1 m=0 t km i j , ∀i ∈ N \ {n + 1}, k ∈ K (4.22) t k i + τ i j t k i + s j -M 1 -x km i j ≤ t k j , ∀i ∈ N \ {n + 1}, j ∈ N \ {0}, i j, m ∈ {0, 1, ..., T i j -1}, k ∈ K (4.23) w m x km i j ≤ t km i j ≤ w m+1 x km i j , ∀i ∈ N \ {n + 1}, j ∈ N \ {0}, i j, m ∈ {0, 1, ..., T i j -1}, k ∈ K (4.24) (a i + s i ) y k i ≤ t k i ≤ (b i + s i ) y k i , ∀i ∈ N, k ∈ K (4.25) x km i j ∈ {0, 1}, ∀i ∈ N \ {n + 1}, j ∈ N \ {0}, i j, m ∈ {0, 1, ..., T i j -1}, k ∈ K (4.26) y k i ∈ {0, 1}, ∀i ∈ N, k ∈ K (4.27) u i j ≥ 0, ∀ (i, j) ∈ A (4.28)
Formula (4.14) is the objective of the HHCTDGRSP, which is to minimize the total carbon emissions. Formulas (4.15) and (4.16) are the constraint to ensure that all vehicles will firstly depart from the beginning depot and finally return to the end depot. Formulas (4.17) and (4.18) are the constraint to ensure that each customer is visited at most once.

Formula (4.19) is the constraint to ensure that the vehicle will leave this vertex after visiting a vertex. Formulas (4.20) and (4.21) are used to constrain the vehicle load, where u i j is a continuous variable of the total demand up to arc (i, j). Formula (4.22) is used to calculate the departure time for vehicle k from vertex i. Formula (4.23) is a constraint to ensure that the vehicle k can't depart from vertex j before t k i +τ i j t k i + s j , because vehicle k needs time to serve the vertex i and travel to vertex j. It should be noted that parameter M is a large positive value. Formula (4.24) is used to ensure that the departure time of vehicle k from vertex i is located in a correct time interval. Formula (4.25) is the time window constraint for each vertex i ∈ N. Formulas (4.26) and (4.27) ensure that the decision variables x km i j and y k i are binary. Formula (4.28) ensures the variable u i j the non-negative.

4.3/ BRANCH-PRICE-AND-CUT ALGORITHM

In order to solve the studied HHCTDGRSP, we develop a Branch-Price-and-Cut (BPC) algorithm in this section. Firstly, we give a Set Partitioning Formulation (SPF) of the problem, and generate the linear programming (LP) relaxation of the SPF problem; next, we present the pricing problem and develop a tailored labeling algorithm to solve the pricing problem; then, we use valid inequality to tighten the LP relaxation, aiming to reduce the number of nodes enumerated in the branch-and-bound tree; finally, we give the branching and node selection strategy to get the best bound and integer solution. The BPC algorithm relies on generating variables dynamically through column generation [START_REF] Desaulniers | Column generation[END_REF]. Next, we present the general framework of the proposed BPC algorithm in Algorithm 4.1.

4.3.1/ SET-PARTITIONING FORMULATION

We define Ω as the set of feasible paths. A path is feasible if it satisfies capacity and time window constraints. Let y p be a binary variable deciding whether path p is included in the optimal solution or not, and let σ ip be a binary variable that denotes the customer i is visited by the path p or not. We formulate the studied problem as a SPF, which is presented as follows: where the sub-problem that adds feasible routes (also called columns) to the RMP is denoted as the pricing problem.

Z 2 =

4.3.2/ THE PRICING PROBLEM

The pricing problem constructs a feasible route with a minimum reduced cost, using the dual values obtained from the LP solution of the RMP. If the constructed route has negative reduced cost, its corresponding column is added to the RMP. Otherwise, the LP procedure will be terminated with an optimal solution to the continuous relaxation of the MP. To sum up, at each iteration of the CG algorithm, the pricing problem aims to find routes (columns) r ∈ Ω with negative reduced cost cr , if any exists. The pricing problem searches for the routes with a negative reduced cost, and its objective function is defined as follows:

min p∈Ω cp = c p - i∈P π i σ ip (4.35)
where cp is the reduced cost of path p, and π i is the dual variable associated with the formulation (4.30).

The pricing problem is a variant of elementary shortest path problem with resource constraints (ESPPRC). Labeling algorithms are one of the most effective methods for solving variants of the ESPPRC, especially under the constraint of time windows [START_REF] Dabia | Branch and price for the time-dependent vehicle routing problem with time windows[END_REF]Sun et al., 2018a;[START_REF] Lera-Romero | Linear edge costs and labeling algorithms: The case of the time-dependent vehicle routing problem with time windows[END_REF]. Similarly, a tailored labeling algorithm is developed to solve the pricing problem in this chapter.

4.3.2.1/ THE LABELING ALGORITHM

In order to solve the pricing problem, a forward labeling algorithm is developed. We use the algorithm to explore all feasible paths. The labeling algorithm generates implicitly an enumeration tree where each node is named as a label L and denotes a partial path starting from the original depot o. Aiming at overcoming the huge exponential growth, domination rules are used to reduce the number of labels enumerated. Then we present the forward labeling algorithm for the HHCTDGRSP.

In the forward labeling algorithm, we start generating labels from the start depot o to its successors. For each forward label L, the notations are presented in Table 4.1. 

(L) = (o, ..., v). v (L)
The last vertex visited on the partial path p (L).

S (L)

The set of unreachable customers after visiting v (L), and S (L) ⊇ p (L). L -1 (L)

The parent label from which L originates by extending it with v (L). q (L)

The total demand after servicing vertex v (L) in path p (L). δ L (t)

The piecewise linear function that represents the ready time at v (L) if the vehicle departed at the origin depot at t and reached v (L) through partial path p (L). F L (t)

The piecewise linear function that represents the total carbon emissions at v (L) if the vehicle departed at the origin depot at t and reached v (L) through partial path p (L), namely c L (t). π (L)

The cumulative value of dual variable associated with the formulation (4.30) in path p (L).

The labeling algorithm begins with the label v (L) = 0 that denotes the initial path p (L) = (0), the algorithm iteratively processes each label L until no unprocessed labels remain.

A label L can only be extended to label L along an arc (v (L ) , j) when the extension is feasible with the constraints of time windows and capacity, namely q (L) = q L + q j (4.42)

δ L (t) + τ v(L ), j ≤ b j ∀ j ∈ N \ S . (4.36) q L + q j ≤ Q ∀ j ∈ N \ S . ( 4 
δ L (t) = max{a j + s j , δ L (t) + τ v(L ), j + s j } (4.43)

F L (t) = F L (t) + f v(L ), j (δ L (t)) (4.44) π (L) = π L + π j (4.45)
For a partial path p (L), if the path p (L) is feasible, then it will always be feasible with a departure time 0 from the origin depot o. In other words, if the path p (L) is feasible, dom (δ L ) is always a time interval [0, t 0 ] for t 0 ≥ 0.

After an extension to vertex j, if the last vertex in the new path p (L) is n + 1, that is therefore, it can conclude that dom (δ L ) = dom (F L ).

4.3.2.2/ LABEL DOMINANCE

In general, the labeling algorithm is similar to enumeration method and dynamic programming, and all possible extensions are handled and stored for each label. With the iteration of the labeling algorithm, the number of labels will exponentially increase. In order to overcome the exponential growth, dominance rules are used to reduce the number of labels enumerated. [START_REF] Dabia | Branch and price for the time-dependent vehicle routing problem with time windows[END_REF] define that three requisites must be met if Label L 2 is dominated by label L 1 . These requirements are (1) v (L 1 ) = v (L 2 );

(2) all of the feasible extensions E (L 2 ) of the label L 2 to vertex n + 1 must be equal to or the subset of label E (L 1 ), namely E (L 2 ) ⊆ E (L 1 );

(3) cL 1 ⊕L ≤ cL 2 ⊕L , ∀L ∈ E (L 2 ). Therefore, in the developed forward labeling algorithm, dominance rule is proposed as follows.

Proposition 4.3 . (Dominance rule) Label L 2 is globally dominated by label L 1 if

1. v (L 1 ) = v (L 2 ),
2. S (L 1 ) ⊆ S (L 2 ),

3. dom F L 2 ⊆ dom F L 1 , 4. δ L 1 (t) ≤ δ L 2 (t) , ∀ t ∈ dom δ L 2 ,
5. F L 1 arg{δ L 1 = δ L 2 (t)} -π (L 1 ) ≤ F L 2 (t) -π (L 2 ) , ∀ t ∈ dom F L 2 , 6. q (L 1 ) ≤ q (L 2 ).

Proof. Assume that there are two labels L 1 and L 2 satisfy the above 6 conditions in Proposition 4.3. Then we need to prove that (1) each feasible extension L of L 2 to vertex n + 1, namely L 2 ⊕ L, is also a feasible extension of label L 1 , where L 2 ⊕ L is the new label generating from extending L 2 with L; and (2) for each feasible extension L of L 2 , it holds that cL 1 ⊕L ≤ cL 2 ⊕L .

As for the point (1), we know that L is a feasible extension of L 2 . In order to demonstrate that L is a feasible extension of L 1 , we need to prove that (a) the capacity of L 1 ⊕ L will not be violated; (b) the time windows of L 1 ⊕ L will not be violated; and (c) L 1 ⊕ L is an elementary path. Based on condition 6, we have that q (L 1 ⊕ L) = q (L 1 ) + q (L) ≤ q (L 2 ) + q (L) = q (L 2 ⊕ L) ≤ Q, namely q (L 1 ⊕ L) ≤ Q, so the capacity of L 1 ⊕ L will not be violated. In the basis of Proposition 4.2 and condition 3, we have that dom δ L 2 ⊆ dom δ L 1 . Condition 1 and 4 say that the ready time at vertex v (L 1 ) in path p (L 1 ) departed from the start depot at any time t ∈ dom δ L 2 is smaller than the ready time at vertex v (L 2 ) in path p (L 2 ). Due to the FIFO property and that the time windows of L 2 ⊕ L are not violated , L 1 ⊕ L will also not be violating any time windows departed from the start depot at any time t ∈ dom δ L 2 . Based on condition 2, we know that the vertices set can be extended of L 1 is larger or equal to L 2 , namely N \ S (L 1 ) ⊇ N \ S (L 2 ). The path L 2 ⊕ L is elementary, so the vertices set s L of L is equal or the subset of N \ S (L 2 ), namely s L ⊆ N \ S (L 2 ) ⊆ N \ S (L 1 ) .

So the path L 1 ⊕ L is also elementary. To sum up, we have that if L is a feasible extension of L 2 , then L is also a feasible extension of label L 1 .

As for the point (2), consider a feasible extension L of L 2 , and we can calculate the optimal departure time t * associated with the minimal carbon emissions, namely t * = arg min t∈dom F L 2 ⊕L {F L 2 ⊕L (t)}. The reduce cost of path p (L 2 ⊕ L) is

c (L 2 ⊕ L) = F L 2 ⊕L t * -π (L 2 ⊕ L) = F L 2 ⊕L t * -π (L 2 ) -π (L) .
Then we consider that L 1 has the same extension L. Condition 5 points that

F L 1 arg{δ L 1 = δ L 2 (t * )} -π (L 1 ) ≤ F L 2 (t * ) -π (L 2 )
. We define arg{δ L 1 = δ L 2 (t * )} = t * * , then we have that δ L 1 (t * * ) = δ L 2 (t * ) and F L 1 (t * * ) -π (L 1 ) -F L 2 (t * ) + π (L 2 ) ≤ 0. For the same vertex at same departure time and the same extension, we can get that the cost will be same, namely we can get that F L 1 ⊕L (t * * )-F L 2 ⊕L (t * ) = F L 1 (t * * )-F L 2 (t * ). Using the departure time t * * , we can get an upper bound of the carbon emissions of path L 1 ⊕ L, namely F L 1 ⊕L (t * * ).

The reduced cost of path L 1 ⊕ L has that c (L 1 ⊕ L) = min t∈dom F L 1 ⊕L {F L 1 ⊕L (t)}-π (L 1 ⊕ L) ≤ F L 1 ⊕L t * * -π (L 1 ⊕ L) = F L 1 ⊕L t * * -π (L 1 )-π (L) .

Then, we have that c (L 1 ⊕ L)-c (L 2 ⊕ L) ≤ F L 1 ⊕L t * * -π (L 1 )-F L 2 ⊕L t * +π (L 2 ) = F L 1 t * * -π (L 1 )-F L 2 t * +π (L 2 ) ≤ 0.

Thus we can get cL 1 ⊕L ≤ cL 2 ⊕L .

In summary, it can conclude that label L 2 is globally dominated by label L 1 .

If label L 2 is dominated by label L 1 , then label L 2 will be discarded. The effect of dominance rules will be strengthened greatly when the set of unreachable vertices S (L) ⊇ p (L) contains as many vertices as possible, which results in a faster computation of the labeling algorithm [START_REF] Feillet | An exact algorithm for the elementary shortest path problem with resource constraints: Application to some vehicle routing problems[END_REF].

4.3.3/ VALID INEQUALITIES

For the VRP related problems, valid inequalities have been used to obtain a more reasonable lower bound of LP within VRP exact algorithm [START_REF] Costa | Exact branch-price-and-cut algorithms for vehicle routing[END_REF], such as k-path inequalities [START_REF] Kohl | 2-path cuts for the vehicle routing problem with time windows[END_REF], capacity inequalities [START_REF] Feillet | An exact algorithm for the elementary shortest path problem with resource constraints: Application to some vehicle routing problems[END_REF], and subset row inequalities (SRCs) [START_REF] Jepsen | Subset-row inequalities applied to the vehicle-routing problem with time windows[END_REF]. In this chapter, we adopt the SRCs as cutting planes to tighten the LP relaxation, aiming to reduce the number of nodes enumerated in the branch-and-bound tree. The SRCs has been successfully employed in time-dependent routing related problems [START_REF] Sun | The time-dependent pickup and delivery problem with time windows[END_REF][START_REF] Lera-Romero | Linear edge costs and labeling algorithms: The case of the time-dependent vehicle routing problem with time windows[END_REF].

The SRCs used the Chvatal-Gomory rounding procedure derived from constraint (4.33)

to design the following valid inequalities for the VRP related problems.

Formally, given a route p ∈ Ω , C ∈ N c and 1 ≤ γ < |C|, the SRCs induced by (C, γ) is denoted as follows,

p∈Ω           1 γ i∈C σ ip           ≤ |C| γ .
(4.48)

Because the separation problem for the SRCs is NP-hard, most of the approaches are to keep the size of C and γ within a manageable range for a complete enumeration [START_REF] Sun | The time-dependent pickup and delivery problem with time windows[END_REF][START_REF] Lera-Romero | Linear edge costs and labeling algorithms: The case of the time-dependent vehicle routing problem with time windows[END_REF]. In this chapter, we only consider SRCs defined for |C| = 3 and γ = 2. These cuts are non-robust, in the sense that their inclusion in the RMP changes the structure of the pricing problem [START_REF] Lera-Romero | Linear edge costs and labeling algorithms: The case of the time-dependent vehicle routing problem with time windows[END_REF]. Therefore, in this chapter, we also performed the algorithm without using the cutting plane, namely Branch-and-Price (BP) algorithm to solve the studied problem. The BP algorithm has been widely used in VRP related problems [START_REF] Reihaneh | A branch-and-price algorithm for a vehicle routing with demand allocation problem[END_REF][START_REF] Cruz | A branch-and-price method for the vehicle allocation problem[END_REF].

Through the comparison with the BP algorithm, the effect of the cutting plane method can be verified.

4.3.4/ BRANCHING AND NODE SELECTION STRATEGY

The solution obtained by column production is a LP relaxation result of RMP, so it may not be an integer solution (namely it is not the solution of MP). Therefore in order to generate integer solution, many researchers started embedding column generation within a branch-and-bound method [START_REF] Desaulniers | Column generation[END_REF][START_REF] Luo | Branch-and-price-and-cut for the multiple traveling repairman problem with distance constraints[END_REF][START_REF] Liu | A branch-and-cut algorithm for the twoechelon capacitated vehicle routing problem with grouping constraints[END_REF][START_REF] Li | Branch-and-price-and-cut for the synchronized vehicle routing problem with split delivery, proportional service time and multiple time windows[END_REF]. When a solution to the LP relaxation of the RMP associated with a node is not integral, the method needs to denote how to re-divide the feasible region associated with that node in a branch-and-bound tree, which will generate two "child nodes" of current node. In this chapter, if the LP relaxation of the RMP is not integer solution, we will firstly set RMP as an integer programming model to obtain an upper bound (UB) as the initial integer solution at the root node.

As known to all, the difficulty of solving combinatorial optimization problems will increase exponentially with the scale of the problem, especially for exact algorithms, which can be reflected in many references [START_REF] Dabia | Branch and price for the time-dependent vehicle routing problem with time windows[END_REF][START_REF] Yu | A branch-and-price algorithm for the heterogeneous fleet green vehicle routing problem with time windows[END_REF][START_REF] Li | Branch-and-price-and-cut for the synchronized vehicle routing problem with split delivery, proportional service time and multiple time windows[END_REF]. In this chapter, we also try to use the proposed BP algorithm and BPC algorithm to solve the large scale instances with 100 customers, and the solution results of the instances with 100-customer presented in The SRC helped the BPC algorithm obtain a more reasonable LB at root stage and get an integer solution, thereby saving calculation time while the BP algorithm spent much time in branching stage.

4.4.4/ MANAGERIAL IMPLICATIONS

This study can provide decision support for developing some low-carbon VRP for decision-makers. For example, Table 4.7 presents the solution of instance R109 with 25 customers, and Fig. 4.4 is the routing scheme of this solution. It is clear that there are total 3 paths planed by the proposed algorithm, and the departure time, the carbon emission, and the duration of each path are also presented in Table 4.7. The above experimental results can provide us some managerial implications and insights for the decision-makers of logistics organization. The decision-making model can improve work efficiency for decision-makers, and arrange vehicle planning more reasonably in the case of traffic congestion, so as to reduce carbon emissions while reducing operating costs. ,21,23,22,12,3,24,25,4,26] 145.09 2.22 6.59 2 [0,7,19,11,10,9,20,1,26] 115.46 2.96 5.57 3 [0,2,15,14,16,5,6,18,8,17,13,26] 

4.5/ CONCLUSION

In this chapter, we study a HHC time-dependent green routing and scheduling problem (HHCTDGRSP) with the consideration of traffic congestion, and the objective of this research is to optimize the vehicle routing plan, with the goal of reducing carbon emissions. From a managerial and economic standpoint, we show that this research can reduce the GHGs emissions while reducing fuel consumption, which can provide reasonable routing plans with the considerations of traffic congestion and saving operating cost. From an algorithmic perspective, we present a BPC algorithm and a BP algorithm to solve the HHCTDGRSP that is capable of handling time-dependent travel times, and time-dependent carbon emissions. We propose a tailored labeling algorithm to solve the pricing problem, in which we use an effective and reasonable dominance rules to discard unpromising labels, and we also use valid inequalities to obtain a more reasonable lower bound (LB). Overall, the proposed algorithm shows to be very effective on a large set of instances from a wide different scale, solving instances with up to 100 customers to optimality, and the results show that the algorithm is very hopeful to use the real problem in actual life. The research results not only deepen and expand Vehicle Routing Problem (VRP) theory research, but also provide a scientific and reasonable method for logistics companies to make the vehicle scheduling plan.

CONCLUSIONS AND PERSPECTIVES

5.1/ CONCLUSIONS

Home Health Care (HHC) companies are widespread in European countries and aim to serve patients at home to help them recover from illness and injury. Since transportation costs constitute one of the largest forms of expenditure in the HHC industry, it is of great importance to research the optimization of the HHC logistics. This thesis addresses HHC routing and scheduling problem with the consideration of HHC characteristics, carbon footprint and traffic conditions. Through reviewing the existing literature, we found that few literatures pay attention to the environmental impact on HHC routing and scheduling issues. However, traffic issues have a great impact on the environment. And almost no HHC literature considers the impact caused by traffic congestion. Based on these limitations, we consider and study three models of HHC routing and scheduling problems.

In Chapter 2, we addressed a HHC routing and scheduling problem with the constraints of synchronized visits and carbon emissions (HHCRSPSC). The advantage of this study is that it can help decision makers make a vehicle scheduling plan that can reduce environmental pollution while optimizing operating costs for the HHC company. We formulated the problem as a MIP model. The MIP model is solved for a set of small-scale instances using the Gurobi solver. In order to solve large size problem, an ACO-based heuristic approach is proposed for this problem with small and large-scale instances. The ACO algorithm improved by local search is used to generate the route, in which the speed optimization problem that minimizes the carbon emissions is solved by a DM algorithm. Three main experiments are conducted in this chapter to validate the effectiveness and performance of the proposed model and algorithm. This research will help HHC companies to make appropriate decisions when planning their daily scheduling in a short time.

In Chapter 3, we studied a HHC green routing and scheduling problem (HHCGRSP) in HHC from an economic and environmental perspective. From economic perspective, we aim to optimize the vehicle routing plan to reduce the operating cost, but from environmental perspective, we aim to optimize the vehicle routing and speed decisions to reduce CHAPTER 5. CONCLUSIONS AND PERSPECTIVES the carbon emissions. This research can provide both a vehicle scheduling plan with the minimal operating cost and an environment-friendly scheduling plan. We formulate the problem as two MIP models with different objectives, and try to use CPLEX solver to solve the MIP model. However, this problem is very challenging, with medium-sized instances already difficult for the MIP solver. In order to solve the studied problem with larger scale instances, we propose an effective BP algorithm to precisely solve this problem, where the master problem and the pricing sub-problem are solved by a column generation algorithm and a labeling algorithm, respectively. The BP algorithm relies on efficiently solving the pricing sub-problem. As for the pricing problem with operating cost objective, we design a tailored bidirectional labeling algorithm to solve it. As for the pricing problem with environmental objective, we design a tailored forward labeling algorithm to solve it. Extensive computational results show that the proposed BP algorithm outperforms a state-of-the-art MIP optimization solver, which highlights the effectiveness and efficiency of the proposed BP algorithm.

In Chapter 4, we addressed a HHC time-dependent green routing and scheduling problem (HHCTDGRSP) with the consideration of traffic congestion, and the objective of this research is to optimize the vehicle routing plan, with the goal of reducing carbon emissions. From a managerial and economic standpoint, we show that this research can reduce the GHGs emissions while reducing fuel consumption, which can provide reasonable routing plans with the considerations of traffic congestion and saving operating cost. From an algorithmic perspective, we present a BPC algorithm and a BP algorithm to solve the HHCTDGRSP that is capable of handling time-dependent travel times, and time-dependent carbon emissions. We propose a tailored labeling algorithm to solve the pricing problem, in which we use an effective and reasonable dominance rules to discard unpromising labels, and we also use valid inequalities to obtain a more reasonable lower bound (LB). Overall, the proposed algorithm shows to be very effective on a large set of instances from a wide different scale, solving instances with up to 100 customers to optimality, and the results show that the algorithm is very hopeful to use the real problem in actual life.

5.2/ PERSPECTIVES

In the future, the two following aspects of this thesis can be extended for further research.

• The HHC routing and scheduling problem with consideration of uncertain scenarios. In practice, uncertain treatment delays may be caused due to many factors.

For example, some patients would like to longer service time. The caregivers may encounter traffic jams or other accidents, causing uncertainty in travel time. The
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 1 Figure 1: Common services provided by HHC companies.
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 2 Figure 2: The automobile exhaust.
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 1 Figure 1.1: The graphical illustration of the HHC routing and scheduling problem.
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 21 Figure 2.1: The graphical illustration of the HHC supply chain.

  chronization and carbon emissions (HHCRSPSC). A directed graph G = (N, A) is used to represent a transportation network of the studied problem, in which, N = {0, 1, ..., n, n + 1} denotes a set of nodes, and A = {(i, j) |i, j ∈ N, i j} represents a set of arcs. The HHC office (depot) and the medical laboratory are represented by node 0 and node n + 1, respectively. The patients who need care service from the HHC company are denoted by a CHAPTER 2. ACO-BASED HEURISTIC FOR HHC SCHEDULING PROBLEM set P = {1, 2, ..., n}. Each node i ∈ N has an associated hard time window [a i , b i ] that rep-
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 22 Figure 2.2: The function graph of the carbon emissions.
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 2 Figure 2.3: The flowchart of the proposed ACO-based heuristic approach.
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 2 Figure 2.4: Representation of a solution.
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 2 Figure 2.5: Example of illustrating the synchronized visits.
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 26 Figure 2.6: Example of a solution to instance HHC C103 with 10 patients.

  There are no similar problem in the existing researches, so we generate the test instances based on the classical Solomon VRPTW benchmark instances. The Solomon VRPTW instances are very famous and widely used by a large number of scholars such as[START_REF] Ombuki | Multi-objective genetic algorithms for vehicle routing problem with time windows[END_REF],[START_REF] Ursani | Localized genetic algorithm for vehicle routing problem with time windows[END_REF][START_REF] Nalepa | Adaptive memetic algorithm for minimizing distance in the vehicle routing problem with time windows[END_REF], etc. Based on the size of the instances, the Solomon VRPTW instances can be divided into three kinds namely small size problems with 25 customers, the medium size problems with 50 customers, and the large size problems with 100 customers. According to the geographical distribution characteristics of the instances, the Solomon VRPTW instances can also be divided into three categories namely C-type instances (clustered customers), R-type instances (uniformly distributed customers) and RC-type instances (a mix of R and C types). In the Solomon VRPTW benchmark instances, the information includes the location of the customers and depot, demand, time windows(ready time, due time), and the service time. For example, the partial data of C101 with 25 customers is shown in Table2.1.

  the first maximum iterations of local search 50 Max L2: the second maximum iterations of local search 30 MaxConst: the maximum iterations without improvement 200 ACO n: the number of the ants 20 MaxIt: the maximum iterations 1000 α: the number of pheromones contained in a direction 1 β: the weighting of unit quality value in a direction 2 ρ: the evaporation rate of pheromone 0MaxConst: the maximum iterations without improvement 200The main parameters of the employed algorithms in this chapter are listed in Table2.4. In each line we can find the detailed description of the parameters and their values. The parameters of ACO algorithm are referenced the works of[START_REF] Mavrovouniotis | Ant colony optimization with immigrants schemes for the dynamic travelling salesman problem with traffic factors[END_REF] andLiu et al. (2017a). In this chapter, we mainly test two parameters including the maximum iterations MaxIt and the parameter of conducting the local search P l because these two parameters have a relatively large impact on calculation time and calculation efficiency of ACO algorithm compared with other parameters. The test experiment is conducted on an instance with 25 patients and one speed for 10 times, and the result is presented in Table2.5. It is obvious that we choose two iterations MaxIt 1000 and 2000, and two values of P l 0.9 and 0.8. Through comprehensive consideration of solution time and solution quality, this chapter adopts MaxIt = 1000 and P l = 0.9. The parameters of MA algorithm have been chosen according to the work of[START_REF] Decerle | A memetic algorithm for a home health care routing and scheduling problem[END_REF].

  ) this chapter addresses a routing and scheduling problem in HHC from economic perspective and environmental protection perspective, and the studied problem has a different objective under different perspectives; (2) an exact BP approach is proposed to solve the problem, in which two tailored labeling algorithms are used to solve the pricing sub-problem; (3) the experimental results show the effectiveness of the proposed algorithm and can be used as a benchmark for future research of related problem.The rest of this chapter is organized as follows. Section 3.2 introduces the problem and mathematic model. Section 3.3 illustrates the column generation algorithm for its relaxation problem. Section 3.4 develops a approach in order to solve the problem. The computational experiments are described in Section 3.5. Section 3.6 concludes the chapter.3.2/ PROBLEM DESCRIPTION AND MATHEMATICAL MODEL3.2.1/ PROBLEM DESCRIPTION AND NOTATIONSThroughout this chapter, we work on the delivery version of the routing and scheduling problem with homogeneous vehicles in HHC from economic perspective and environmental protection perspective. The aim is to optimize the daily routes plan in order to minimize operating cost or carbon emissions. The problem can be defined as follows. Let G = (N, A) be a directed graph with a set of nodes N = {0, 1, ..., n, n + 1} and a set of arcs A = {(i, j) |i, j ∈ N, i j}. Node 0 and node n + 1 represent the depot and the medical laboratory, respectively. Nodes P = {1, 2, ..., n} represent the patients who need care service from the HHC company.Each patient i ∈ P has a drug and service demand q i , and each vehicle has the same load and service capacity Q. Each patient i ∈ P is associated with a service duration s i . Each patient i ∈ P has a service time window [a i , b i ], where a i represents the earliest time and b i represents the latest time for visiting the patients. Each caregiver is allowed to arrive before the earliest time a i , but the caregiver must wait until the time is available for the patient and the caregiver can start working. The caregiver is prohibited to arrive after the latest time b i . The start working time at patient i is denoted by τ i . The depot and the laboratory have the same time window, meaning the caregivers must leave from the depot and return to the laboratory between the earliest time and latest time. There is a fixed planning horizon [0, T ] for the HHC company.

  of new label L f with the last node j based on the rules; 15 if L f is not dominated by any label in L e f

i:

  The first node visited by L b ; q: Sum of demand when departing from node i in label L b ; t: Departure time using the fastest speed at node i in label L b ; c: The distance along label L b ; c: Reduced cost of label L b ; V: Set of nodes visited by vehicle in order along label L b ;

  Figure 3.1: The flowchart of BP algorithm.

  For the proposed BP algorithm, columns 6-9 focus on the performance of the proposed BP algorithm at root node stage and report the following: (i) the lower bound (LB) solved by the column generation; (ii) upper bound (UB) corresponding to the best integer solution at the root node by solving the RMP as a 0-1 integer programming problem using CPLEX; (iii) the optimality gap (Gap2 = (U B -LB) /LB * 100%) at the root node based on the UB and LB; and (iv) the Cpu time (CpuT2) used at the root node stage. Columns 10-14 report the overall performance of the proposed BP algorithm, which is presented as the following: (i) the best upper bound (BUB2) of the proposed BP algorithm; (ii) the optimality gap (Gap3 = (BU B2 -LB) /LB * 100%) compared with the LB at termination or within a time limit of 7200 Cpu seconds; (iii) the optimality gap (Gap4 = (BU B2 -BU B1) /BU B1 * 100%) compared with the BUB1 at termination or within a time limit of 7200 Cpu seconds; (iv) the number of explored branch-and-bound tree nodes (Nodes) ; and (v) the total Cpu time (CpuT3).

  lation results. Columns 1 and 2 report the information of instances, and respectively are the type and the size of instance. Columns 3-6 summarize the performance of CPLEX for the MIP formulation and report as follows: (i) the number of solved instance and total instance (N/T); (ii) the ratio (Ratio1) between solved instances and total instances; (iii) the average gap (Gap1); and (iv) the average Cpu calculation time. Columns 7-14 sum-marize the performance of the proposed BP algorithm and report in the following: (i) the number of solved instance and total instance (N/T); (ii) the ratio (Ratio2) between solved instances and total instances; (iii) the average gap (Gap2) between UB and LB; (iv) the average Cpu time (CpuT2) used at the root node stage; (v) the average gap (Gap3) between BUB2 and LB; (vi) the average gap (Gap4) between BUB2 and BUB1; (vii) the average number of explored branch-and-bound tree nodes (Nodes); and (viii) the average total Cpu time (CpuT3).

  proposed the timedependent VRP (TDVRP) in which the travel time changes with the departure time. In this problem, the time horizon was divided into several intervals and the travel time on 89 each arc was modeled as a stepwise function with a different travel time associated with each interval.Based on the literature review in Chapter 1, it is clear that few scholars consider traffic congestion in HHC routing and scheduling problem. In this chapter, we focus on the HHC time-dependent green routing and scheduling problem (HHCTDGRSP) with the time-varying vehicle speed and time windows, which is related to the GVRP and TDVRP.The cost of fuel consumption is one of the most significant part of the operation costs in logistics transportation. In the sense of the HHCTDGRSP, we strive to minimize carbon emissions, which has linear relationship with fuel consumption, as the objective to optimize the vehicle routing with the time-varying vehicle speed. The HHCTDGRSP both saves fuel consumption costs and reduces GHG emissions of vehicles.

  (1) we study a HHCTDGRSP with the consideration of traffic congestion, which fits the real traffic situation; (2) we develop an exact BPC algorithm for solving the HHCTDGRSP;(3) the experimental results show the effectiveness of the proposed BPC algorithm and can be used as a benchmark for future research of related problem.The rest of this chapter is organized as follows. Section 4.2 introduces the problem and mathematic model. Section 4.3 develops an exact BPC approach in order to solve the problem. The computational experiments are described in Section 4.4. Section 4.5 concludes the chapter.4.2/ PROBLEM DESCRIPTION AND MATHEMATICAL FORMULATIONThis section describes the studied problem and presents the time-dependent travel time model and time-dependent carbon emissions model for the HHCTDGRSP.
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 41 Figure 4.1: Piecewise linear travel time function derived from stepwise speed function for an arc of length 50 km.

  the speed in km/h and FC (v) is the fuel consumption in l/100 km. The GHG conversion factors have been developed by the Department for Environment Food and Rural Affairs in 2010. The conversion factor of carbon emissions from fuel consumption is applied in this chapter, and the conversion factor for fuel is 3.1787 kg carbon per liter fuel consumed. Therefore, the formula converting fuel consumption to carbon emissions isCE (v) = 3.1787 × FC (v) .(4.5)Based on the coefficients, Fig.4.2 draws the graph of carbon emissions function.

Figure 4

 4 Figure 4.2: The graph of carbon emissions function.

  36) ensures that an extension to vertex j is only feasible if vertex j can be reached within the time window of vertex j. Condition (4.37) ensures that an extension to vertex j is only feasible if the vehicle has enough capacity to handle the demand at vertex j. If the extension along the arc (v (L ) , j) is feasible with the above conditions, then a new label L is created. The information of new label L is updated by using the following formulas:p (L) = p L ∪ { j} (4.38) v (L) = j (4.39) S (L) = p (L) ∪ {k ∈ N ∨ min{δ L (t) + τ v(L ),k } > b k ∨ q L + q k > Q} (

v

  (L) = n + 1, then the minimal cost c L and the reduced cost cL of the complete path associated with the label L are calculated as follows: dom (F L ) is the domain of the total carbon emissions function F L (t). Define dom (δ L ) and img (δ L ) be the domain and image of the ready time function δ L (t), and let dom (F L ) and img (F L ) be the domain and image of the total carbon emissions function F L (t), respectively. Based on the definitions of dom (δ L ) and dom (F L ), we can get the following Proposition 4.2. Proposition 4.2 . The domain of ready time function δ L (t) is equal to the domain of total carbon emissions function F L (t), namely dom (δ L ) = dom (F L ). Proof. The domain of ready time function δ L (t) is the departure time from the start depot o in path p (L), and the domain of total carbon emissions function F L (t) is also the departure time from the start depot o in path p (L). These two domains define the same time interval.
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 43 Figure 4.3: The cost graph of solving R109 with 25 customers using the BP and BPC algorithm.

Figure 4

 4 Figure 4.4: The vehicle routing scheme of R109 with 25 customers.

Table 1 .

 1 1: Summary of main constraints considered in part of related works.

Table 1 .

 1 2: Summary of the applications of VRP in HHC.

	Reference	Involved VRP variants
	Braekers et al. (2016a)	VRPTW
	Decerle et al. (2018)	VRPTW
	Decerle et al. (2019a)	VRPTW
	Decerle et al. (2021)	VRPTW, MDVRP

  laboratory and prepare to start from the depot to search the patients again, i.e. repeat Line 4 to Line 12. If C ∅, then the ant will visit patient j ∈ C based on the probabilistic rule 2.28, and update the sets C and C . At last, if C = ∅, the ant will stop searching, and a feasible solution has been constructed. In the ACO algorithm, the process of constructing a feasible solution for each ant is shown in Line 4 to Line 12 of Algorithm 2.1. Firstly, each ant has a list C (also named available candidates) which the patients haven't been visited; then, based on the constraints of the problem such as time windows, capacity, etc., each ant can calculate the effective candidates C (C ⊆ C). It is clear that initial candidates are all the patients. If there is no

under the constraints of the studied problem such as time windows, capacity, etc. If there is no effective candidate for this ant, namely C = ∅, the ant will return to the medical

  Set it L ← 1, S Lbest ← S Input , S current ← S Lbest ; while it L ≤ Max L do Apply a local search operator to generate a new solution, S current → S new ;

	Algorithm 2.2: Local search algorithm
	Input: S Input
	Output: S Lbest
	Initialize Max L;

In this chapter, we propose a dynamic programming algorithm based on the Proposition 2.2, which will be detailed in next section, to solve this problem.

  speed bound, time windows and synchronized visits constraint;

	if {t k start } ⊆ {t k

start }, and all the values of {t k start } are same then

Table 2 .

 2 6 and Table 2.7.

Table 2 .

 2 1: The partial data of C101 with 25 customers.

	No.	X. Y. Demand Ready Due Service
	Depot 40 50	0	0	1236	0
	1	45 68	10	912	967	90
	2	45 70	30	825	870	90
	. . .					
	24	25 50	10	65	144	90
	25	25 52	40	169	224	90

Table 2 .

 2 2: The partial data of HHC C101 with 25 patients.

	No.	X.	Y. Demand Ready Due Service
	Depot 4000 5000	0	0	12360	0
	1	4500 6800	10	9120 9670	900
	2	4500 7000	30	8250 8700	900
	. . .				
	24 2500 5000	10	650 1440	900
	25 2500 5200	40	1690 2240	900
	Lab 3000 4000	0	0	12360	0

Table 2 .

 2 3: The number of arcs in different scale instances.

	Number of nodes Number of arcs
	10	110
	25	650
	100	10100

Table 2 .

 2 4: The parameters of the employed algorithms.

Table 2 .

 2 5: The experimental results for testing the parameters of ACO algorithm. Small size problems with 25 customers and large size problems with 100 customers are used as the test instances. For each instance, we run the program for 10 times, and the computing results are presented in the following Tables 2.6 and 2.7. It is obvious that the results highlight the effectiveness and efficiency of the proposed HACO algorithm.

	Instance		Parameters		ACO			HACO	
	Name	NP NSync	MaxIt	P l	Best(kg)	Avg.	CpuT(s)	Best(kg)	Avg.	CpuT(s)
	HHC C103	25	3	1000	0.9	33.01	34.33	17.58	30.52	31.71	27.93
				2000	0.9	32.86	34.17	26.74	30.52	31.36	42.35
				1000	0.8				30.52	31.28	45.27
				2000	0.8				30.52	30.87	57.16
	instances.										

Table 2 .

 2 time limit of 1 hour. If the Gurobi solver doesn't give an exact solution in 1 hour, we will give the best lower bound and upper bound calculated by the Gurobi solver. We run ACO, MA and the proposed HACO algorithm for 10 times, and the experimental results are presented in the Table2.8. In Table2.8, NP represents the number of the patients, NSync means the number of patients who need the synchronized service. Gap1 and Gap2 are the comparing results between the proposed HACO algorithm and other algorithms (ACO and MA), and the computation formulations are Gap1 = ACO.Best-HACO.Best The formulations of the Gap are presented in the notes of Table4.5. It should be noticed that if the Gurobi solver doesn't give an exact 6: The experimental results for the Solomon VRPTW instances with 25 customers.

	HACO.Best	× 100% and

solution in 1 hour, we use the best upper bound as the result obtained by the Gurobi solver.

As for the instances with 10 patients shown in Table

2

.8, the Gap3 is 0, which illustrates the proposed HACO algorithm can calculate the same results compared with MIP. And the HACO algorithm can solve the problem within a short computing time than MIP, which demonstrates the efficiency of the proposed HACO algorithm for small scale problems.

Compared with the ACO and MA, though the ACO algorithm has a better calculation speed and MA can solve the problem with pretty good effectiveness, but the proposed

Table 2 .

 2 7: The experimental results for the Solomon VRPTW instances with 100 customers.

	Instance				HACO			BKS
	Name NC Avg.NV	Best	Gap(%) Avg.Cost	Worst	CpuT(s) NV	Cost
	C101 100	10.20	828.94	0.00	841.62	900.55	146.53	828.94
	C102 100	10.20	828.94	0.00	879.20	929.62	186.84	828.94
	C103 100	10.50	831.87	0.46	880.34	917.64	203.25	828.06
	C104 100	10.40	829.25	0.54	922.60	1,017.35 234.32	824.78
	C105 100	10.60	828.94	0.00	892.69	965.40	150.75	828.94
	C106 100	10.40	828.94	0.00	859.22	921.14	155.19	828.94
	C107 100	10.10	828.94	0.00	850.94	926.46	153.30	828.94
	C108 100	10.40	828.94	0.00	872.72	933.74	182.46	828.94
	C109 100	10.80	828.94	0.00	918.81	1,006.11 200.53	828.94
	R101 100	20.40 1,655.06	0.74	1,687.28 1,729.20 297.78	1,642.87
	R102 100	19.00 1,492.85	1.37	1,557.24 1,619.33 269.90	1,472.62
	R103 100	15.50 1,247.60	2.80	1,294.95 1,337.21 206.63	1,213.62
	R104 100	11.40 1,042.33	3.48	1,076.26 1,119.66 277.96	1,007.31
	R105 100	16.30 1,391.97	2.29	1,452.94 1,499.75 337.09	1,360.78
	R106 100	13.70 1,268.87	2.20	1,308.47 1,349.78 314.33	1,241.52
	R107 100	13.00 1,130.24	2.32	1,171.29 1,225.85 271.98	1,104.66
	R108 100	11.30	980.09	2.00	1,033.67 1,079.29 334.25	960.88
	R109 100	13.60 1,185.16	2.89	1,252.54 1,301.11 266.45	1,151.84
	R110 100	12.60 1,116.78	3.37	1,164.34 1,207.57 254.99	1,080.36
	R111 100	12.80 1,110.77	5.44	1,138.88 1,167.82 319.41	1,053.50
	R112 100	11.10	984.56	3.24	1,023.55 1,054.26 334.83	953.63
	RC101 100	16.70 1,683.84	3.71	1,737.40 1,786.81 285.07	1,623.58
	RC102 100	15.40 1,496.44	2.02	1,543.72 1,601.13 252.61	1,466.84
	RC103 100	12.10 1,289.38	2.20	1,347.63 1,410.79 291.56	1,261.67
	RC104 100	11.30 1,172.22	3.24	1,225.89 1,283.72 336.28	1,135.48
	RC105 100	16.50 1,543.73	1.65	1,569.72 1,595.63 311.60	1,518.60
	RC106 100	13.90 1,432.57	0.55	1,481.89 1,521.40 210.11	1,424.73
	RC107 100	12.80 1,251.41	3.18	1,318.95 1,367.17 202.58	1,212.83
	RC108 100	11.80 1,173.47	5.01	1,236.34 1,277.94 233.38	1,117.53
	AVG			0.98			249.03	
	HACO algorithm can get a better result, which also demonstrates the effectiveness of the
	proposed HACO algorithm.						

Table 2 .

 2 8: The experimental results for the simplified problem with only one speed.

	Instance		MIP			ACO			MA				HACO
	Name	NP NSync	Cost(kg)	CpuT(s) Best(kg) Gap1(%) Avg. CpuT(s) Best(kg) Gap2(%) Avg. CpuT(s) Best(kg) Gap3(%) Avg. CpuT(s)
	HHC C103	10		[9.53,12.5]	3,600.00	12.56	0.46	12.77	3.07	12.50	0.00	12.57	4.66	12.50	0.00	12.51	4.72
	HHC C104	10		[8.11,12.13] 3,600.00	12.33	1.66	12.47	2.89	12.13	0.00	12.20	4.20	12.13	0.00	12.13	4.05
	HHC C105	10		12.50	0.63	12.50	0.00	12.50	3.30	12.50	0.00	12.50	3.19	12.50	0.00	12.50	4.11
	HHC C203	10		22.30	236.05	22.85	2.47	23.47	2.89	22.30	0.00	22.54	4.33	22.30	0.00	22.30	3.91
	HHC C204	10		21.10	680.41	21.29	0.89	21.97	3.47	21.10	0.00	21.12	3.79	21.10	0.00	21.10	4.17
	HHC C205	10		24.18	5.99	24.18	0.00	24.27	3.15	24.18	0.00	24.18	3.56	24.18	0.00	24.18	5.40
	HHC R103	10		28.60	48.23	30.38	6.21	32.04	3.67	28.60	0.00	29.11	4.63	28.60	0.00	28.60	4.94
	HHC R104	10		26.52	258.99	27.59	4.04	28.34	3.20	26.52	0.00	26.60	4.69	26.52	0.00	26.53	5.69
	HHC R105	10		32.93	0.50	32.93	0.00	33.06	4.02	32.93	0.00	33.12	4.62	32.93	0.00	32.93	6.26
	HHC R203	10 3.97	153.13 238.29	144.51	4.30	160.06 503.53	138.54	-	140.85 333.78
	HHC C102 100	10	-	3,600.00 159.25	16.17	165.96 214.78	144.61	5.49	158.18 538.73	137.08	-	141.27 352.96
	HHC C103 100	10	-	3,600.00 161.24	18.93	175.95 156.79	143.78	6.05	149.14 664.87	135.58	-	151.25 335.21
	HHC R101 100	10	-	3,600.00 236.63	15.13	242.15 318.72	212.54	3.41	219.83 588.06	205.53	-	208.70 309.55
	HHC R102 100	10	-	3,600.00 205.34	12.57	214.32 295.35	187.37	2.72	193.80 474.41	182.41	-	188.28 363.91
	HHC R103 100	10	-	3,600.00 187.62	18.79	192.25 205.96	159.94	1.27	166.53 562.81	157.94	-	166.78 429.33
	HHC RC101 100	10	-	3,600.00 239.94	9.31	246.24 227.10	226.26	3.07	237.44 601.27	219.51	-	227.50 370.52
	HHC RC102 100	10	-	3,600.00 224.23	11.62	228.18 237.37	206.35	2.72	217.19 544.40	200.88	-	211.28 305.04
	HHC RC103 100	10	-	3,600.00 221.94	22.25	227.86 220.30	183.01	0.80	191.88 553.84	181.55	-	191.92 297.99
	Avg.				3,600.00		14.31		234.96		3.32		559.10				344.25

  more small instances (19 instances, 42.22%) than the MIP model solved by Gurobi solver, and the calculating time of mat-heuristic algorithm is smaller than the MIP model solved by Gurobi solver, which can demonstrate efficiency of the mat-heuristic algorithm. And as for the gap between the mat-heuristic algorithm and MIP model solved by Gurobi solver, there are only three instances larger than 0, which can further prove the effectiveness of the mat-heuristic algorithm. So the mat-heuristic algorithm is sufficient as a comparison method in this chapter.Table2.9: The experimental results for the studied problem with two speeds.

	Instance			MIP		Mat-heuristic algorithm		ACO-based heuristic approach
	Name	NP	NSync	Cost(kg)	CpuT(s)	Cost(kg)	Gap1(%)	CpuT(s)	Best(kg)	Gap2(%)	Gap3(%)	Avg.	CpuT(s)
	HHC C103	10	1		[8.12,11.43]	3,600.00	-	-	3,600.00	11.43	0.00	-	11.43	7.07
	HHC C104	10	1		[7.41,11.09]	3,600.00	-	-	3,600.00	11.09	0.00	-	11.09	21.10
	HHC C105	10	1		11.43	0.71	11.43	0.00	1.23	11.43	0.00	0.00	11.43	6.70
	HHC C203	10	1		[16.30,20.39] 3,600.00	20.39	0.00	238.05	20.39	0.00	0.00	20.39	6.62
	HHC C204	10	1		[15.73,19.29] 3,600.00	19.29	0.00	683.41	19.29	0.00	0.00	19.29	7.52
	HHC C205	10	1		22.11	22.37	22.11	0.00	7.99	22.11	0.00	0.00	22.11	7.28
	HHC R103	10	1		26.59	159.77	26.82	0.86	49.23	26.59	0.00	-0.86	26.59	19.68
	HHC R104	10	1		24.25	206.68	24.25	0.00	260.49	24.25	0.00	0.00	24.25	8.73
	HHC R105	10	1		30.11	0.34	30.11	0.00	1.23	30.11	0.00	0.00	30.11	9.28
	HHC R203	10	1		23.34	191.42	23.34	0.00	125.2	23.34	0.00	0.00	23.34	7.56
	HHC R204	10	1		21.94	246.91	21.94	0.00	47.52	21.94	0.00	0.00	21.94	7.19
	HHC R205	10	1		23.48	11.15	23.48	0.00	1.89	23.48	0.00	0.00	23.48	6.04
	HHC RC103	10	1		22.47	2,945.68	22.74	1.20	1,294.29	22.47	0.00	-1.19	22.47	21.96
	HHC RC104	10	1		[18.10,22.42] 3,600.00	-	-	3,600.00	22.30	<0.00	-	22.30	19.69
	HHC RC105	10	1		24.47	678.81	24.47	0.00	426.2	24.47	0.00	0.00	24.47	8.12
	HHC RC203	10	1		[17.74,21.04] 3,600.00	21.04	0.00	1,647.38	21.04	0.00	0.00	21.04	6.32
	HHC RC204	10	1		[17.66,20.52] 3,600.00	20.52	0.00	2,250.32	20.52	0.00	0.00	20.52	6.45
	HHC RC205	10	1		[21.91,22.30] 3,600.00	22.30	0.00	594.53	22.30	0.00	0.00	22.30	12.29
	Avg.					1,847.99			1,023.83		<0.00	<0.00		10.53
	HHC C103	25	3		[23.69,29.14] 3,600.00	-	-	3,600.00	27.90	<0.00	-	28.27	45.59
	HHC C104	25	3		[23.60,30.51] 3,600.00	-	-	3,600.00	27.90	<0.00	-	28.19	31.07
	HHC C105	25	3		29.73	1,762.08	29.73	0.00	25.43	29.73	0.00	0.00	30.24	30.92
	HHC C203	25	3		[29.44,36.24] 3,600.00	-	-	3,600.00	32.92	<0.00	-	33.76	30.14
	HHC C204	25	3		[29.55,36.73] 3,600.00	-	-	3,600.00	31.00	<0.00	-	31.38	27.19
	HHC C205	25	3		[31.37,35.81] 3,600.00	34.45	<0.00	1,819.75	34.45	<0.00	0.00	34.96	27.68
	HHC R103	25	3		[43.13,58.24] 3,600.00	-	-	3,600.00	57.76	<0.00	-	58.23	42.47
	HHC R104	25	3		[39.80,55.85] 3,600.00	-	-	3,600.00	54.80	<0.00	-	55.92	49.27
	HHC R105	25	3		64.13	424.90	64.80	1.04	39.58	64.13	0.00	-1.03	65.72	46.26
	HHC R203	25	3		[38.82,50.75] 3,600.00	-	-	3,600.00	49.26	<0.00	-	50.35	29.34
	HHC R204	25	3		[36.81,44.28] 3,600.00	-	-	3,600.00	43.97	<0.00	-	45.17	27.25
	HHC R205 HHC RC103	25 25	3 3		[44.15,48.53] 3,600.00 [34.93,49.79] 3,600.00	47.63 -	<0.00 -	217.48 3,600.00	47.63 49.75	<0.00 <0.00	0.00 The second 48.33 -49.75	26.49 37.00
	HHC RC104 results are calculated by the mat-heuristic algorithm consists of MIP model with only one 25 3 [34.94,50.48] 3,600.00 --3,600.00 48.37 <0.00 -51.26 HHC RC105 25 3 [40.08,53.82] 3,600.00 --3,600.00 53.48 <0.00 -56.31	58.42 46.56
	HHC RC203 speed (40 km/h), which the results are shown in Table 2.8, and DP method. The third 25 3 [29.41,48.09] 3,600.00 --3,600.00 45.28 <0.00 -46.49 HHC RC204 25 3 [29.03,45.45] 3,600.00 --3,600.00 44.18 <0.00 -45.27	33.37 32.66
	HHC RC205 are the results of the proposed ACO-based heuristic approach. The Gap1 is the com-25 3 [37.57,49.36] 3,600.00 --3,600.00 49.06 <0.00 -51.61 Avg. 3,321.50 2,916.79 <0.00 <0.00	26.67 36.02
	paring result between the Mat-heuristic algorithm and MIP model, and the computation HHC C101 100 -3,600.00 --3,600.00 127.04 --133.27	408.09
	formulation is Gap1 = Mat.Cost-MIP.Cost HHC C102 100 -3,600.00 × 100%. Gap2 and Gap3 are the comparing re---3,600.00 125.56 --130.19 HHC C103 100 -3,600.00 --3,600.00 123.96 --127.83 MIP.Cost HHC R101 100 -3,600.00 --3,600.00 190.89 --194.59 sults between the proposed ACO-based heuristic approach and other approaches (MIP HHC R102 100 -3,600.00 --3,600.00 170.53 --176.21	485.88 418.91 424.00 430.15
	HHC R103 model and Mat-heuristic algorithm), and the corresponding computation formulations are 100 -3,600.00 --3,600.00 150.80 --155.38 HHC RC101 100 -3,600.00 --3,600.00 204.10 --209.17	391.54 452.81
	Gap2 = ACO.Cost-MIP.Cost MIP.Cost HHC RC102 100 HHC RC103 100	× 100% and Gap3 = ACO.Cost-Mat.Cost Mat.Cost -3,600.00 --3,600.00 × 100%, respectively. 187.37 ---3,600.00 --3,600.00 174.94 --	191.24 177.51	456.69 452.59
	Avg.					3,600.00			3,600.00					435.63

It is obvious that the Gurobi solver can only solve 12 instances (26.67%) for the MIP model, and give a best lower bound and upper bound for other instances in 1 hour, which proves that the studied problem is very complicated and Gurobi solver is very difficult to solve all the instances in 1 hour. As for the mat-heuristic algorithm, the algorithm can solve

Table 2 .

 2 10: Carbon emissions with different maximum waiting times.

	w	Carbon emissions
	0.1T	32.49
	0.2T	31.62
	0.3T	29.49
	0.4T	27.90
	0.5T	27.90
	0.6T	27.90
	0.7T	27.90
	0.8T	27.90

Table 2 .

 2 11: Carbon emissions with different number of synchronized-visit patients. for the decision-makers of HHC organization. (1) To realize goal of the green (low carbon) logistics, it is important to consider the different speed, which has a significant impact on carbon emissions. (2) Increasing waiting time of the patients has influence on carbon emissions.

	Instance	Carbon emissions
	Name	NSync	
	HHC C103	1	23.79
	HHC C103	2	25.16
	HHC C103	3	27.90
	HHC C103	4	32.64
	HHC C103	5	38.27
	2.5.8/ MANAGERIAL IMPLICATIONS	

This study can provide decision support for developing some low-carbon VRP for decision-makers. The above experimental results can provide us some managerial im-plications and insights

Table 3

 3 

	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Reference Allaoua et al. (2013) Bertels et al. (2006) Braekers et al. (2016a) Fathollahi-Fard et al. (2018) Operating cost + Carbon emissions Objective Operating cost Operating cost Operating cost Fathollahi-Fard et al. (2019) Operating cost + Carbon emissions Grenouilleau et al. (2019) Operating cost Liu et al. (2013) Operating cost Liu et al. (2017b) Operating cost Luo et al. (2019) Carbon emissions Shi et al. (2017) Operating cost Shi et al. (2018) Operating cost Xiao et al. (2018b) Carbon emissions Yuan et al. (2015) Operating cost Yuan et al. (2018) Operating cost This chapter Operating cost + Carbon emissions	Exact approach Heuristic approach √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

.1: Solving approaches utilized in the related works on routing and scheduling in HHC.

Table 3 .

 3 2: List of notations used in the MIP model.

	Notation	Explanation
	Z 1	

Table 3 .

 3 8: Computational results on 50-patients instances of Experiment 2.

	Instance			MIP					BP algorithm				
							Root node						
	Name	NP	BUB1	Gap1(%)	CpuT1(s)	LB	UB	Gap2(%) CpuT2(s)	BUB2	Gap3(%) Gap4(%)	Nodes	CpuT3(s)
	C101	50	416.00	0.00	9.90	416.00	416.00	0.00	6.87	416.00	0.00	0.00	1	6.98
	C102	50	-	-	7200.00	385.07	417.62	8.45	89.13	395.40	2.68	-	482	1492.16
	C103	50	-	-	7200.00	380.27	407.27	7.10	242.62	-	-	-	-	7200.00
	C104	50	1539.88	79.38	7200.00	372.27	405.14	8.83	192.16	-	-	-	-	7200.00
	C105	50	376.21	0.00	404.20	376.21	376.21	0.00	25.26	376.21	0.00	0.00	1	25.75
	C106	50	417.24	0.00	67.81	417.24	417.24	0.00	27.49	417.24	0.00	0.00	1	28.09
	C107	50	433.95	19.24	7200.00	360.57	369.14	2.37	133.56	363.29	0.75	-16.28	452	1235.78
	C108	50	792.69	58.59	7200.00	357.06	374.51	4.89	145.13	363.29	1.75	-54.17	537	1732.15
	C109	50	-	-	7200.00	377.96	391.16	3.49	168.19	385.35	1.96	-	936	3761.51
	C201	50	823.08	31.44	7200.00	749.34	783.57	4.57	249.26	766.24	2.25	-6.91	831	3985.46
	C202	50	1155.90	65.15	7200.00	744.12	768.16	3.23	215.92	758.35	1.91	-34.39		6715.63
	C203	50	-	-	7200.00	727.37	760.91	4.61	298.73	-	-	-	-	7200.00
	C204	50	2359.89	87.03	7200.00	723.35	764.26	5.66	279.15	753.81	4.21	-68.06		6937.58
	C205	50	757.11	44.77	7200.00	660.32	675.55	2.31	257.39	-	-	-	-	7200.00
	C206	50	892.87	61.03	7200.00	646.93	671.63	3.82	286.45	653.22	0.97	-26.84		5837.63
	C207	50	-	-	7200.00	653.20	669.36	2.47	317.63	-	-	-	-	7200.00
	C208	50	-	-	7200.00	554.51	570.27	2.84	281.35	562.79	1.49	-	732	3468.62
	R101	50	1028.78	0.00	8.17	1028.78	1028.78	0.00	7.19	1028.78	0.00	0.00	1	7.32
	R102	50	1007.39	37.25	7200.00	921.26	947.35	2.83	237.24	938.40	1.86	-6.85		5437.68
	R103	50	-	-	7200.00	941.95	972.58	3.25	271.74	946.52	0.49	-	581	3104.62
	R104	50	1863.48	72.95	7200.00	718.82	749.45	4.26	216.52	739.93	2.94	-60.29		4873.44
	R105	50	959.85	14.65	7200.00	876.31	913.51	4.24	247.62	896.01	2.25	-6.65	937	4351.23
	R106	50	-	-	7200.00	872.07	907.25	4.03	261.36	888.38	1.87	-	792	3913.53
	R107	50	-	-	7200.00	926.54	945.12	2.01	317.23	-	-	-	-	7200.00
	R108	50	1944.52	74.70	7200.00	879.72	907.52	3.16	305.61	892.94	1.50	-54.08		4724.81
	R109	50	1254.15	53.05	7200.00	912.53	954.65	4.62	197.62	926.83	1.57	-26.10	892	3892.52
	R110	50	-	-	7200.00	925.77	967.44	4.50	263.43	938.55	1.38	-		6843.83
	R111	50	-	-	7200.00	876.46	894.72	2.08	274.13	-	-	-	-	7200.00
	R112	50	-	-	7200.00	892.91	915.84	2.57	267.46	905.33	1.39	-		6715.65
	R201	50	916.80	0.00	1742.75	916.80	916.80	0.00	76.82	916.80	0.00	0.00	1	76.84
	R202	50	-	-	7200.00	853.65	871.33	2.07	236.19	862.75	1.07	-	734	3842.68
	R203	50	-	-	7200.00	894.01	913.67	2.20	271.67	-	-	-	-	7200.00
	R204	50	-	-	7200.00	871.59	884.63	1.50	253.74	-	-	-	-	7200.00
	R205	50	950.95	35.30	7200.00	801.83	837.56	4.46	287.47	816.57	1.84	-14.13	873	4358.61
	R206	50	-	-	7200.00	817.27	836.21	2.32	311.57	-	-	-	-	7200.00
	R207	50	-	-	7200.00	813.63	846.83	4.08	291.36	826.93	1.64	-		6107.47
	R208	50	2238.00	81.00	7200.00	829.72	858.13	3.42	278.31	832.85	0.38	-62.79		7162.72
	R209	50	1487.62	65.08	7200.00	843.35	878.28	4.14	273.92	-	-	-	-	7200.00
	R210	50	-	-	7200.00	766.18	791.23	3.27	291.25	772.82	0.87	-	704	3107.51
	R211	50	-	-	7200.00	847.15	868.35	2.50	303.16	-	-	-	-	7200.00
	RC101	50	1079.45	35.77	7200.00	736.50	757.82	2.90	291.29	743.47	0.95	-31.13		5627.16
	RC102	50	-	-	7200.00	692.64	728.63	5.20	305.63	724.68	4.62	-	896	4976.21
	RC103	50	-	-	7200.00	729.03	766.49	5.14	338.36	-	-	-	-	7200.00
	RC104	50	-	-	7200.00	681.09	703.44	3.28	276.18	694.45	1.96	-		7051.93
	RC105	50	-	-	7200.00	703.05	726.47	3.33	307.61	-	-	-	-	7200.00
	RC106	50	-	-	7200.00	766.94	796.53	3.86	273.15	773.25	0.82	-		6614.73
	RC107	50	-	-	7200.00	735.92	761.47	3.47	278.62	753.46	2.38	-		6155.49
	RC108	50	-	-	7200.00	742.57	774.95	4.36	296.72	-	-	-	-	7200.00
	RC201	50	1001.95	27.46	7200.00	744.07	768.18	3.24	315.32	749.69	0.76	-25.18	917	4837.52
	RC202	50	-	-	7200.00	732.55	751.26	2.55	305.27	-	-	-	-	7200.00
	RC203	50	-	-	7200.00	819.17	841.63	2.74	362.71	-	-	-	-	7200.00
	RC204	50	-	-	7200.00	756.00	768.13	1.60	301.21	760.38	0.58	-		5212.95
	RC205	50	-	-	7200.00	780.88	809.46	3.66	294.24	796.28	1.97	-	704	3716.13
	RC206	50	-	-	7200.00	763.83	785.49	2.84	328.32	-	-	-	-	7200.00
	RC207	50	3508.91	90.82	7200.00	784.92	816.55	4.03	294.08	797.02	1.54	-77.29		7162.65
	RC208	50	-	-	7200.00	764.95	791.54	3.48	308.82	-	-	-	-	7200.00
	AVERAGE			43.11	6597.01			3.35	247.08		1.48	-27.20	912.30	5212.55
	3.5.3/ COMPREHENSIVE ANALYSIS OF THESE TWO EXPERIMENTS		

Table 3 .

 3 9: Summary of the comparative results. Experiment 1 with the instance scale of 10 patients, it is clear that the MIP solver can solve all the instances optimally, and the gap between the proposed BP algorithm and MIP model is 0, which illustrates that the proposed BP algorithm can also solve all the instances with 10 patients optimally. Besides, the average Cpu time of MIP solver is 7.99 seconds, but the Cpu time of the BP algorithm is only 0.03 seconds, which fully demonstrates the efficiency of the BP algorithm. The experimental results of the smallscale instances are very illustrative, because the small-scale instances can accurately test the accuracy and effectiveness of the proposed algorithm. With the increases of the scale of increases, the solving ability of the MIP solver becomes weaker. The MIP solver can only solve 16 out of 56 instances (28.57%) with the scale of 25. However, the proposed MIP model can solve all the instances with this scale, and the gap between the proposed BP algorithm and MIP model is -1.61%, which highlights the solving ability and efficiency of the BP algorithm. This conclusion is more obvious in 50-scale instances.We can see that the MIP solver can only solve 5 out of 56 instances (8.93%), and the average Cpu time is 6614.85 seconds, which denotes that the MIP solver has difficulty in handling large-scale instances. But the proposed BP algorithm solves 41 out of 56 instances (73.12%), the gap between the proposed BP algorithm and MIP model is -21.08%, and the Cpu time of BP algorithm is 2661.59 seconds, which obtains a great advantage in comparison with MIP solver. To sum up, the proposed BP algorithm is effective and efficient for solve the studied problem from economic perspective, and has the ability to solve the instances with relatively large scale up to 50.

	Instance			MIP						BP algorithm		
				Solved				Solved					
	Name	NP	N/T	Ratio1(%) Gap1(%) CpuT1(s)	N/T	Ratio2(%) Gap2(%) CpuT2(s)	Gap3(%)	Gap4%	Nodes	CpuT3(s)
	Experiment 1												
	C1		9/9	100.00	0.00	1.27	9/9	100.00	0.00	0.02	0.00	0.00	1.00	0.02
	C2		8/8	100.00	0.00	4.95	8/8	100.00	5.23	0.05	5.23	0.00	3.88	0.12
	R1		12/12	100.00	0.00	2.02	12/12	100.00	0.08	0.01	0.08	0.00	1.67	0.02
	R2		11/11	100.00	0.00	1.64	11/11	100.00	0.12	0.01	0.12	0.00	1.55	0.02
	RC1		8/8	100.00	0.00	8.08	8/8	100.00	0.19	0.02	0.19	0.00	1.50	0.03
	RC2		8/8	100.00	0.00	36.21	8/8	100.00	0.17	0.01	0.17	0.00	1.50	0.03
	Total		56/56	100.00	0.00	7.99	56/56	100.00	0.84	0.02	0.84	0.00	1.80	0.03
	C1		6/9	66.67	5.12	2545.28	9/9	100.00	0.03	2.77	0.03	-2.14	1.22	4.16
	C2		2/8	25.00	17.53	5500.49	8/8	100.00	5.97	0.92	4.79	-1.74	228.75	143.13
	R1		2/12	16.67	13.33	6006.92	12/12	100.00	0.23	0.44	0.19	-2.01	2.50	0.72
	R2		2/11	18.18	13.79	5916.03	11/11	100.00	1.27	0.54	1.24	-1.18	15.82	11.87
	RC1		1/8	12.50	5.69	6329.94	8/8	100.00	1.16	0.46	0.90	-0.15	10.75	8.13
	RC2		3/8	37.50	17.43	4992.56	8/8	100.00	1.31	0.49	1.22	-2.34	24.75	16.96
	Total		16/56	28.57	12.19	5261.62	56/56	100.00	1.51	0.91	1.27	-1.61	41.59	27.18
	C1		3/9	33.33	21.22	4801.42	7/9	77.78	2.49	4.61	1.26	-13.87	77.57	1730.77
	C2		0/8	0.00	43.52	7200.00	6/8	75.00	5.17	4.28	5.07	-14.06	843.50	3086.27
	R1		1/12	8.33	41.40	6600.21	8/12	66.67	2.74	4.48	1.75	-27.56	73.50	2561.95
	R2		1/11	9.09	47.49	6837.84	7/11	63.64	4.73	3.63	3.25	-14.73	605.00	3651.01
	RC1		0/8	0.00	62.23	7200.00	6/8	75.00	4.89	3.33	4.42	-49.56	1697.20	3653.67
	RC2		0/8	0.00	32.22	7200.00	7/8	87.50	3.34	3.38	1.87	-14.17	155.57	1080.99
	Total		5/56	8.93	39.06	6614.85	41/56	73.21	3.83	3.98	2.82	-21.08	500.05	2661.59
	Experiment 2												
	C1		9/9	100.00	0.00	7.36	9/9	100.00	0.20	2.79	0.09	0.00	1.22	5.03
	C2		8/8	100.00	0.00	38.18	8/8	100.00	0.33	1.63	0.15	0.00	1.13	2.57
	R1		12/12	100.00	0.00	41.26	12/12	100.00	0.16	4.00	0.05	0.00	1.17	4.71
	R2		11/11	100.00	0.00	38.75	11/11	100.00	0.07	5.21	0.07	0.00	1.00	5.42
	RC1		8/8	100.00	0.00	29.46	8/8	100.00	0.00	5.98	0.00	0.00	1.00	5.98
	RC2		4/8	50.00	7.62	3615.46	8/8	100.00	0.00	15.92	0.00	0.00	1.00	15.92
	Total		52/56	92.86	1.09	543.79	56/56	100.00	0.13	5.69	0.06	0.00	1.09	6.38
	C1		4/9	44.44	11.49	4751.65	9/9	100.00	1.05	21.20	0.23	-7.23	29.33	144.72
	C2		1/8	12.50	28.46	6413.51	8/8	100.00	2.11	33.14	1.01	-7.53	71.00	265.59
	R1		2/12	16.67	25.50	6087.54	12/12	100.00	1.76	34.20	0.57	-10.91	36.50	162.42
	R2		1/11	9.09	23.64	6546.08	11/11	100.00	2.11	39.90	0.79	-8.04	89.36	332.40
	RC1		1/8	12.50	20.60	6559.52	8/8	100.00	1.27	39.94	0.40	-12.52	69.75	285.03
	RC2		1/8	12.50	35.04	6303.01	8/8	100.00	3.26	29.12	1.62	-16.58	127.00	408.10
	Total		10/56	17.86	23.97	6107.69	56/56	100.00	1.91	33.17	0.75	-10.31	68.34	260.31
	C1		3/9	33.33	26.20	4853.55	7/9	77.78	3.90	114.49	1.02	-14.09	344.29	2520.27
	C2		0/8	0.00	57.88	7200.00	5/8	62.50	3.69	273.23	2.17	-34.05	1177.40	6068.11
	R1		1/12	8.33	42.10	6600.68	10/12	83.33	3.13	238.93	1.52	-25.66	973.70	4855.38
	R2		1/11	9.09	45.35	6703.89	6/11	54.55	2.72	261.41	0.96	-25.64	843.00	5514.17
	RC1		0/8	0.00	35.77	7200.00	3/8	37.50	3.94	295.95	2.15	-31.13	1239.40	6503.19
	RC2		0/8	0.00	59.14	7200.00	4/8	50.00	3.02	313.75	1.21	-51.23	1116.50	6216.16
	Total		5/56	8.93	43.11	6597.01	35/56	62.50	3.35	247.08	1.48	-27.20	912.30	5212.55
	As for												

  time breakpoints, travel time breakpoints, and the the boundary values of the time window at vertex v i to represent the ready time function.

	4.2.3/ MODELING TIME-DEPENDENT CARBON EMISSIONS MODEL

The research addressed in this chapter aims to minimize the fuel emissions by optimizing vehicle speeds and routes. Carbon emissions, which measures different GHGs in terms of the functionally equivalent concentration of carbon emissions, is used to provide an estimate of the pollution generated by vehicles. To measure carbon emissions, the speedemission coefficients should be applied first to estimate the fuel consumption. "Road Vehicle Emission Factors 2009" has reported a database of vehicle speed-emission factors for fuel consumption

  We define the LP relaxation of the SPF as the Master Problem (MP). We use Column Generation (CG) to solve the MP with a small subset Ω ⊆ Ω of feasible paths. The MP with the subset Ω is denoted as the Restricted Master Problem (RMP), and the RMP can

	be formulated as follows:		
	Z 3 = min	c p y p	(4.32)
	p∈Ω		
	s.t.	σ ip y p ≥ 1, ∀i ∈ N c	(4.33)
	p∈Ω		
	y p ≥ 0, ∀p ∈ Ω	(4.34)
	min	c p y p	(4.29)
	p∈Ω		
	s.t.		

p∈Ω σ ip y p = 1, ∀i ∈ N c (4.30) y p ∈ {0, 1}, ∀p ∈ Ω (4.31)

Table 4 .

 4 

1: Notations of a forward label.

Notation Interpretation p (L)

The partial path of label L, and p

  Table 4.5. The BP algorithm can solve 5 out of 56 instances and the BPC algorithm can solve 4 out of 56 instances. It is obvious that the exact algorithms proposed in this chapter including the BP algorithm and BPC algorithm have difficulty in solving large scale instances, but still solve some large-scale instances, therefore the proposed BP algorithm and BPC algorithm can hopefully be applied into real life. Table 4.6: The result of R109 25 solved by BP and BPC algorithm.

	Instance				BP algorithm								BPC algorithm			Gap(%)
		Root LB	Root time Best LB Best UB	Time	Final Gap(%) Nodes	Root LB Root time	Best LB	Best UB	Time	Final Gap(%) Cuts Nodes
	R109 25	405.52	0.33	411.78	411.78	93.08	0	7	411.78	0.52		411.78	411.78	0.52	0	11	1	0
					450				(a) BP algotirhm						
					440				Root stage		Branching stage			
				Cost	420 430				Lower bound	Upper bound				
					410												
					400								Lower bound			
						2	4	6	8	10	12	14	16	18		20	
					450				(b) BPC algotirhm						
					440			Lower bound		Root stage				
				Cost	420 430				After 11th column generation, cuts are used in the pricing problem.				
					410												
					400												
						2	4	6	8	10	12	14	16	18		20	

Table 4 .

 4 7: Solution of R109 with 25 customers.

	Path	Carbon emissions Departure time Duration
	1 [0	

Yuan et al. (2015) √ √ √ √ Yuan et al. (2018) √ √
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A branching strategy on arc flow variable is adopted in this chapter. Let x i j = p∈Ω,(i, j)∈p ȳp be the sum of the flow variable on arc (i, j), in which ȳp is the optimal solution of the LP relaxation of the RMP. Firstly we will consider the fractional flow variables x i j which is the closest to the midpoint 0.5, which only needs to sort the values of |x i j -0.5|. For each flow variable x i j , we branch on x i j = 0 and x i j = 1, namely two new child nodes are generated accordingly by forcing arc (i, j) into the solution and forbidding arc (i, j) into the solution.

In the case x i j = 0, we need to delete all the path p ∈ Ω that path p traverses the arc (i, j) when using column generation to solve the pricing problem with that constraint. In the other case x i j = 1, all columns containing arcs (i, j ) and (i , j) with i i and j j are deleted in the RMP when using column generation to solve the pricing problem with that constraint. It should be noted that these changes are only imposed for the current branch-and-bound subtree, and they should be reverted when backtracking. The bestfirst strategy is used to explore the next node, namely the unexamined tree node with the smallest lower bound will be processed first [START_REF] Li | Branch-and-price-and-cut for the synchronized vehicle routing problem with split delivery, proportional service time and multiple time windows[END_REF].

4.4/ NUMERICAL EXPERIMENTS

In this section, we conduct several experiments to assess the performance of the proposed BPC algorithm, and compare its performance with a BP algorithm. The BPC and BP algorithm are introduced in the Section 4.3, and the difference between these two algorithm is if including the subset-row cuts. There are two reasons for using these two methods for comparison. One is to compare the solution results to discuss the validity of the results, and the other is to analyze the effectiveness of cutting. It should be noted that we didn't present the results of MIP for the reason that it can't solve the instances with only 10 customers, however the smallest scale is 25 customers in this chapter.

4.4.1/ INSTANCES

There are no similar problem in the existing researches, so we generate the test instances based on the classical Solomon VRPTW benchmark instances [START_REF] Solomon | Algorithms for the vehicle routing and scheduling problems with time window constraints[END_REF]. The In order to guarantee the correctness of the new instances, we modified the Solomon's benchmark instances with reference to the works of [START_REF] Dabia | An exact approach for a variant of the pollution-routing problem[END_REF] and [START_REF] Yu | A branch-and-price algorithm for the heterogeneous fleet green vehicle routing problem with time windows[END_REF]. In the basis of the Solomon VRPTW benchmark instances, the rules of generating the test instances of the proposed problems are as follows:

• we set the coordinate of the end depot as the same with the start depot;

• the planning horizon was set as 12 hour (h), and all vertices' time windows and service time were scaled accordingly using the coefficient 12/b 0 , therefore, the time window of vertex i was modified as [a i × (12/b 0 ) , b i × (12/b 0 )], and the service time of vertex i was modified as s i × 12/b 0 ;

• in the tests, the distance d i j was not changed, but we set the unit of distance as kilometers (km);

• the other parameters were not changed.

Regarding the traffic congestion, we reference many similar works and using a speed profile to process it (Sun et al., 2018a;[START_REF] Zhu | Study on the vehicle routing problem considering congestion and emission factors[END_REF]. There, traffic congestion is modeled by a so-called speed model which consists of different speed profile, which is used to determine the travel time and carbon emissions between two nodes on a specific departure time. According to a survey of cities traffic, this chapter adopts a speed profile as denoted in Table 4.2, and there are total five time periods with different speeds and two peak periods. In this chapter, we use the overall BP algorithm (without subset-row cuts) and the BPC algorithm (including the subset-row cuts) to solve the problems. The time limit on each run is 2 hours. When the time limit is reached, we will continue processing the current branch-and-bound node and then stop the algorithm. Therefore, the real computation time of the algorithm may slightly exceed the time limit.

4.4.3/ RESULTS AND ANALYSIS

In this chapter, we use the proposed Branch-Price-and-Cut (BPC) algorithm and branchand-price algorithm to solve the studied problem, and total 168 instances with different scales are used to test the performance of the algorithms. The BPC algorithm optimally solved 93 out of 168 instances, and the BP algorithm optimally solved 95 out of 168 instances. Tables 4.3, 4.4 and 4.5 report our computational results for solving the set partitioning formulation using the proposed BP and BP algorithm. In these tables, column 1 reports the information of the instance. For example, "C101 10" means that the name of the instance is "C101", and the size of instance is 10-customer. For the results of BP In these tables, an entry "-" in the table means that the algorithm is not able to solve the problem within the time limit of 2 hours. There are several reasons for that, (i) the algorithm runs out of memory and leads to the results of no solution; and (ii) the algorithm can't solve the problem within the time limit of 2 hours; (iii) the algorithm can't find feasible solutions. As for the solution results of the instances with 50-customer shown in Table 4.4, the BP algorithm can solve 28 out of 56 instances (50%) and the BPC algorithm can solve 27 out of 56 instances (48.21%). In other words, the proposed BP algorithm and BPC algorithm can solve near half of the medium size instances, which can highlight the solving ability for medium size instances of the proposed exact algorithms. However, we can see that the average gap between the proposed BP algorithm and BPC algorithm is -0.02%. The reason is that the BP algorithm didn't solve the C105 50 within the time limit of 2 hour, and the UB is greater that the best UB solved by the BPC algorithm. For the instance RC107 -50, we can see that the BPC algorithm can't even give a root LB, while the BP can solve the instance. The reason is that the valid inequalities will consume a lot of computational memory in the root stage, which can easily lead to no solution within the time limit or lead to out of memory. Nevertheless, it can conclude the similar conclusions with the 25customer instances, namely (i) the proposed BP algorithm and BPC algorithm can solve half of instances optimally, and (ii) the valid inequalities will help the BPC algorithm to obtain a high-quality LB in root stage and explore fewer nodes in the branching stage. Document generated with L AT E X and: the L AT E X style for PhD Thesis created by S. Galland -http://www.multiagent.fr/ThesisStyle the tex-upmethodology package suite -http://www.arakhne.org/tex-upmethodology/