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Au cours des derni ères ann ées, le probl ème d'acheminement et de planification des soins à domicile (HHCRSP) est devenu un sujet de recherche émergent, qui consiste à r épartir les soignants pour fournir les au domicile du patient et la conception des parcours de visite pour les soignants. Cette th èse porte sur le HHCRSP avec deux contraintes complexes : les visites synchronis ées et les pauses d éjeuner. Des visites synchronis ées sont encourues puisque certains patients ont besoin d'un type de service qui doit être effectu é simultan ément par au moins deux soignants. Le probl ème devient difficile car les visites synchronis ées relient les parcours des soignants. Les pauses d éjeuner sont des contraintes particuli ères qui ne doivent être prises en compte que lorsque la condition de pause est atteinte. L'heure et le lieu de la pause doivent être soigneusement planifi és pour chaque soignant lorsque l'itin éraire de la visite est planifi é afin de minimiser l'influence inattendue de telles pauses sur les visites ult érieures. Le corps principal de la th èse est compos é de trois parties ind épendantes. (1) Un HHCRSP de base qui prend en compte les visites synchronis ées, les pauses d éjeuner et les fen êtres horaires est propos é. Le probl ème est formul é comme un mod èle de programmation mixte. Quatre m étaheuristiques hybrides, un algorithme "memetic algorithm" (MA) bas é sur "Genetic algorithms" (GA) et "local search" (LS), un algorithme "hybrid genetic general variable neighborhood search" (HGGVNS) bas ée sur l'GA et "general variable neighborhood search"(GVNS), un algorithme "hybrid genetic simulated annealing" (HGSA) bas é sur GA et "simulated annealing" (SA), et un algorithme "hybrid simulated annealing" (HSA) bas é sur SA et LS, sont d évelopp és pour r ésoudre le probl ème. Les r ésultats num érique obtenus avec les instances, adapt és à partir d'un ensemble d'instances de r éf érence, prouvent que la m éthode HGGVNS montre les meilleures performances parmi ces quatre algorithmes. Par ailleurs, des analyses de sensibilit é sont men ées pour évaluer l'impact des tailles de synchronisation, les largeurs de fen êtres temporelles, r èglements de pauses et strat égies de d épart sur les solutions finales. (2) Le HHCRSP de base est étendu en ce qui concerne les temps de trajet d épendant du temps, les temps de service flous et les fen êtres de temps multiples. Le probl ème est formul é comme un mod èle d'optimisation flou et r ésolu par un algorithme "adaptative large neighbourhood search" (ALNS) sp écialement conc ¸ue. Les r ésultats exp érimentaux sur les instances de test g én ér ées et les instances de r éf érence de la litt érature mettent en évidence l'efficacit é de l'ALNS. De plus, une étude de cas est donn é pour pr ésenter la mise en oeuvre du cadre th éorique propos é dans la vie r éelle.

(3) Le HHCRSP de base est en outre étendu à un probl ème HHCRSP à p ériodes multiples, dans lequel les contraintes avec des caract éristiques à p ériodes multiples telles que la continuit é des soins et l' équilibrage de la charge de travail sont prises en compte. La matheuristique qui int ègre l'ALNS avec la programmation math ématique est conc ¸ue pour le probl ème. La matheuristique peut être class ée en deux versions, matheuristique1 et matheuristique2, en fonction des diff érentes mani ères de combiner ALNS et programmation math ématique. Les r ésultats exp érimentaux sur des instances de r éf érence mettent en évidence les excellentes performances de la matheuristique propos ée et les r ésultats sont assez encourageants par rapport à l'approche ALNS pure et le solveur Gurobi. Enfin, l'analyse de sensibilit é est men ée pour r év éler comment les caract ères du mod èle affectent les solutions.

In recent years, home health care routing and scheduling problem (HHCRSP) has become an emerging research topic, which consists of dispatching caregivers to provide the service at the patient's domicile and designing the visit routes for caregivers. This thesis deals with the HHCRSP with two complex constraints: synchronized visits and lunch breaks. Synchronized visits are incurred since some patients require one kind of service that needs to be performed simultaneously by at least two caregivers. The problem becomes challenging because synchronized visits interconnect caregivers' routes. Lunch breaks are special constraints that should be considered only when the break condition is reached. The break time and location should be carefully scheduled for each caregiver when the visit route is planned to minimize the unexpected influence of such breaks on the subsequent visits. The main body of the thesis is composed of three independent parts. (1) A basic HHCRSP that considers synchronized visits, lunch breaks, and time windows is proposed. The problem is formulated as a mixedinteger programming (MIP) model. Four hybrid metaheuristics, memetic algorithm (MA) based on genetic algorithm (GA) and local search (LS), a hybrid genetic general variable neighborhood search (HGGVNS) based on GA and general variable neighborhood search (GVNS), a hybrid genetic simulated annealing (HGSA) based on GA and simulated annealing (SA), and a hybrid simulated annealing (HSA) based on SA and LS, are developed to solve the problem. Numerical results obtained with the instances, adapted from a set of benchmark instances prove that HGGVNS shows the best performance among these four algorithms. Furthermore, sensitivity analyses are conducted to evaluate the impact of synchronization scales, time window widths, break regulations, and departure strategies on the final solutions. (2) The basic HHCRSP is extended by concerning time-dependent travel times, fuzzy service times and multiple time windows. The problem is formulated as a fuzzy optimization model, and solved by a particular designed adaptive large neighborhood search (ALNS). The experimental results on generated test instances and benchmark instances from the literature highlight the efficiency of ALNS. Furthermore, a case study is given to present the implementation of the proposed theoretical framework in real-life. (3) The basic HHCRSP is further extended to a multi-period HHCRSP, in which the constraints with multi-period features such as continuity of care and workload balancing are considered. The matheuristic that integrates the ALNS with mathematical programming is devised for the problem. The matheuristic can be classified into two versions, matheuristic1 and matheuristic2, based on the different ways to combine ALNS and mathematical programming. The experimental results on benchmark instances highlight the excellent performance of the proposed matheuristic and the results are quite encouraging compared with the pure ALNS and Gurobi solver. At last, the sensitivity analyses are conducted to reveal how characteristics in the model affect the solutions.

GENERAL INTRODUCTION

Home health care (HHC) refers to a wide range of health care services given in the private domiciles of patients to help them get better, regain independence, become as self-sufficient as possible, and maintain their current condition or level of function. The range of HHC services a patient can receive at home is limitless. Depending on the individual patient's situation, and care can range from nursing care to specialized medical services, such as laboratory workups. HHC services may include : doctor care, nursing care, physical, occupational, and/or speech therapy, etc. Since HHC has been proved to be as effective as care provided in hospitals or skilled nursing facilities and generally with the advantage of being more convenient and less expensive. The HHC industry has become one of the largest sectors of the economy across the world in recent years [START_REF] Emiliano | Home health care logistics planning : a review and framework[END_REF]. For example, more than 30% ($18.4/$60 billion) of the Post-acute care (PAC) assurances paid by Medicare in the United States were for HHC in 2017 [START_REF] Medicare | Report to the congress : Medicare and the health care delivery system[END_REF]. Due to the ageing population, the increase in life expectancy, and the development of innovative technologies, it is obvious that the requirements for HHC services will rise dramatically.

HHC services are generally provided by the HHC companies (HHCCs), and the operation process of HHCCs mainly involves three stages : (1) The patients who require the services send their demands to the HHCC in advance. (2) HHCCs draw an HHC service planning to assign suitable caregivers to serve the patients. (3) The caregivers complete their works according to the generated planning. This thesis focuses on the task of the second stage, i.e., making the high-quality HHC planning for the HHCCs.

HHC planning problem is an optimization problem that minimizes the operational costs or maximizes the satisfaction of patients or caregivers while satisfying concerned constraints. In the literature, HHC planning problem is also called HHC routing and scheduling problem (HHCRSP) [START_REF] Ciss É | Or problems related to home health care : A review of relevant routing and scheduling problems[END_REF][START_REF] Fikar | Home health care routing and scheduling : A review[END_REF] because the planning concerned by decision-makers involves not only the caregivers assignment, a scheduling problem, but also optimizing the visiting routes of caregivers as the caregivers usually need to visit more than one patient once. In general, the HHCRSP was treated as a variant of vehicle routing problem (VRP) when the caregivers are defined as vehicles [START_REF] Ciss É | Or problems related to home health care : A review of relevant routing and scheduling problems[END_REF], and even as a VRP with time windows (VRPTW) because time windows are commonly concerned in the HHC context. HHCRSP is an NP-hard problem since VRP has been proved to be NP-hard [START_REF] Archetti | Complexity and reducibility of the skip delivery problem[END_REF]. Hence, it is quite time-consuming to obtain the optimal solution for the planning especially when the scale of the instance is large. Furthermore, a number of features, related to the HHCC, patients, or caregivers, should be considered in the HHCRSP formulations. The features make the HHCRSP more challenging to be solved since each of them is modelled as either a constraint or an optimal criterion in the objective function.

Unfortunately, although HHC service planning is hard to be tackled, it is still made manually by some experienced decision-makers in most countries [START_REF] Nickel | Mid-term and short-term planning support for home health care services[END_REF]. At result, the decision-makers always obtain the solution with poor quality (e.g., with high 1 operational costs) or even cannot find a feasible solution. Therefore, the efficient and effective methods for drawing the planning are desired by the HHCCs.

In practice, there are two constraints that make it difficult for HHCRSP to optimize the objectives of HHC services while not yet having been well studied in the literature : one is the organization of synchronized visits for certain patients and the other is the assignment of workloads to caregivers by considering their statutory lunch breaks.

Synchronized visits are necessary for certain patients when they need to be served by multiple caregivers simultaneously (e.g., one patient may need two caregivers to lift him/her from bed to wheelchair). In this case, the starting service time of each visit must be carefully scheduled to avoid the unexpected waits of caregivers with interconnected routes (Liu et al., 2019a). For example, if a caregiver arrives at the location of one patient who cannot be served until the arrival of another assigned caregiver who is still on the way, he/she would have to wait until his colleague arrives. Consequently, the former caregiver will be delayed for the subsequent visits to a large extent, and these delays might even amplify the disturbance of the network if some other synchronized visits were scheduled for this caregiver.

Statutory lunch break for the caregiver satisfying certain conditions is another less emphasized but troublesome constraint for the HHC management in some countries. For example, a lunch break is mandatory in France for a caregiver whose working period covers the lunch period [START_REF] Da Roit | Cash-for-care schemes and the changing role of elderly people's informal caregivers in france and italy[END_REF], while the caregiver can freely decide when and where to take the break so long as no service is pending and the break is taken within the pre-defined lunch period. Since the starting times of caregivers' lunch breaks are flexible, it should be considered that the lunch breaks should also be efficiently arranged for each caregiver when the plan is made so as to minimize the unexpected influence of such breaks on the subsequent visits.

Besides, a majority of HHCRSP is mainly solved over the daily planning horizon, i.e., the solution of the HHCRSP is only dedicated to the particular day, while the HHCRSP which focuses on the multi-period horizon is less studied. When the multi-period is considered, the constraints with the multi-period features should be concerned, such as continuity of care and workload balancing. Continuity of care means that patients are only served by the same caregiver, called reference caregiver, during the planning period. The workload balancing guarantees the workload equity among caregivers and thus keeps caregivers motivated and reduces turnover within the HHC company.

Inspired by the reality of the HHC managements aforementioned, it is necessary to develop the operations research methodologies to solve the HHCRSP with peculiar constraints. This thesis first researches a basic HHCRSP with time windows, synchronized visits and lunch breaks. Then, the time-dependent travel times and uncertain service times are considered in the basic HHCRSP. Finally, the basic HHCRSP is extended to a multi-period problem with the consideration of continuity of care and workload balancing.

Our study in this thesis is based on a rigorous methodology which is presented in Figure 1. According to the operations research methodology, this thesis solves each proposed HHCRSP with the following four steps : (1) Problem description which defines the studied issue. It describes the basic characteristics, the objective, and some assumptions of the problem. Problem description will let the readers understand what specific problems that the thesis is to address. (2) Mathematical modeling which constructs the optimization model for the proposed problem, and some classical models such as integer programming model, linear programming model, and mixed-integer programming model can be used to model the problem. (3) Optimization method which presents the solution approaches for the targeted problem. (4) Extensive experiments that are conducted on the benchmark instances and dedicated instances to evaluate the performance of the proposed algorithms. Besides, the results obtained by the proposed algorithms should be compared with benchmark solutions if the benchmark instances are used, or the results obtained by the commercial solver and existing approximate approaches if the dedicated instances are self-generated.

Problem description

Mathematical modelling

Optimization method

Extensive experiments FIGURE 1 -Research methodology.

Considering that this thesis focuses on the NP-hard optimization problem, the mathematical model can only be powerfully tackled by the commercial solver (e.g., Gurobi) or exact approaches (branch and bound, branch and price) on small size instances. Hence, efficient approximate algorithms are to be developed. The approximate algorithm usually includes the heuristic and the metaheuristic algorithm, and it can find the near-optimal solution in a short time. Generally, the main phases for designing the approximate algorithm are summarized as follows : a) Define the solution representation and solution evaluation (i.e., whether the infeasible solution is allowed to be evaluated). b) Define the optimization operators (e.g., neighborhood structures) for the algorithm. c) Tune the parameters existing in the algorithm since the parameters deeply affect the performance of the algorithm, and the purpose of the parameter tuning is to find the parameter configuration that makes the algorithm with good performance.

OUTLINE OF THE THESIS

In this thesis, HHCRSPs with synchronized visits and lunch breaks from several aspects are studied. Five chapters compose the remainder of the thesis.

Chapter 1 first presents a pertinent literature review related to the HHCRSP. This chapter helps the readers comprehend the current status of the research topic, and also points the gaps existing in the literature. Furthermore, the literature review also clarifies the contributions of the thesis, i.e., explaining what has been done or improved to fill the gaps of the researched problem.

Chapter 2 studies a daily HHCRSP with time windows, synchronized visits and lunch breaks. A MIP model is constructed at first, and then four hybrid metaheuristics, a memetic algorithm based on genetic algorithm (GA) and local search (LS), a hybrid genetic general variable neighborhood search (HGGVNS) based on GA and general variable neighborhood search (GVNS), a hybrid genetic simulated annealing (HGSA) based on GA and simulated annealing (SA), and a hybrid simulated annealing (HSA) based on SA and LS, are developed to solve the problem. Finally, the sensitivities of such parameters : the scale of synchronized visits, the width of time windows, break regulations are analysed.

Chapter 3 extends the problem in chapter 2 by further considering time-dependent travel times, fuzzy service times and multiple time windows. A fuzzy optimization model is pro-posed to describe the problem, and then an adaptive large neighborhood search (ALNS) with some particular design parts are developed to address the targeted problem. Several benchmarks are used to prove the efficiency and effectiveness of ALNS, and then experimental results are reported concerning the generated instances of our problem. Finally, a case study is proposed to describe the application of the proposed issue in the real world, and BP Neural Network is innovatively used to forecast the travel time based on historical data since this parameter is usually unknown before the travel.

Chapter 4 extends the problem in chapter 2 to a multi-period HHCRSP, and the constraints with multi-period features such as continuity of care and workload balancing are concerned. In order to address the proposed problem, this chapter investigates the matheuristic that integrates the ALNS with mathematical programming. According to different ways to combine ALNS and mathematical programming, two versions of the matheuristic, matheuristic1 and matheuristic2, are developed. Furthermore, extensive experiments are conducted to validate the performance of the matheuristic on benchmark instances. Finally, the sensitivities of model's characteristics have been analysed.

Finally, chapter 5 concludes the thesis and provides some perspectives.

LITERATURE REVIEW

T his chapter first gives a briefly overview of the recent works related to the HHCRSP, and then reviews the constraints existing in the literature considered in HHCRSP. Finally, this chapter summarizes the state of the art of the HHCRSP from several perspectives and gives the conclusion.

1.1/ OVERVIEW OF HHCRSP

The concept of the HHCRSP has been proposed for more than 20 years since [START_REF] Begur | An integrated spatial dss for scheduling and routing home-health-care nurses[END_REF] developed a spatial decision support system (SDSS) to address an HHCRSP. However, according to [START_REF] Grenouilleau | A set partitioning heuristic for the home health care routing and scheduling problem[END_REF], there is no standard version of HHCRSP in the literature because HHCRSP contains various constraints and objectives due to the diversity of HHC services provided by different HHCCs. Nevertheless, Ciss é et al. (2017) summarized that the primary HHCRSP can be regarded as the variant of VRPTW, and the features of primary HHCRSP can be described as below :

a Each caregiver corresponds to various skills and must be qualified for the assigned patients.

b Each caregiver departs from the depot and returns to the same depot after serving all the assigned patients.

c Each patient is associate with a time window and the service can only be started within this time window.

d Each patient is served once and only once.

e All the parameters are deterministic.

With regard to the features enumerated, it is observed that basic HHCRSP is tackled for the daily scheduling with considering certain constraints such as qualifications of caregivers [START_REF] Riazi | A column generationbased gossip algorithm for home healthcare routing and scheduling problems[END_REF], types of HHC services [START_REF] Akjiratikarl | Pso-based algorithm for home care worker scheduling in the uk[END_REF], and the time windows (Decerle et al., 2019b). There are several variants of the basic HHCRSP in the literature including :

-HHC routing or scheduling problem : This type of problem only considers routing or scheduling problem in the HHC domain. -Multi-period HHCRSP : The HHC planning is to be scheduled over multi-day periods.

-Multi-objective HHCRSP : Optimize multiple objectives at the same time for the HHCRSP.

-HHCRSP with uncertainty : At least one parameter in HHCRSP becomes uncertain.

In the remainder of this chapter, the constraints of HHCRSP existing in the literature are first introduced, and then the recent publications related to HHC routing or scheduling problem, multi-period HHCRSP, and HHCRSP with uncertainty are introduced. Finally, the objective function and solving methods for the HHCRSP are summarized.

1.2/ CONSTRAINTS CONSIDERED IN THE HHCRSP

The basic HHCRSP can be extended to the more complicated one when particular constraints are added. Ciss é et al. (2017) analysed that those constraints can be grouped into three parts which are related to the HHCC, caregivers, and patients.

Constraints that correspond to the HHCC refer to the temporal constraints and geographic constraints. Temporal constraints indicate the horizon on which the company plans the scheduling and routing decisions. The HHCRSP models usually concern the planning within a single day [START_REF] Rest | Daily scheduling of home health care services using time-dependent public transport[END_REF][START_REF] Liu | Mathematical model and exact algorithm for the home care worker scheduling and routing problem with lunch break requirements[END_REF], while fewer studies extended the planning period to multi-day, i.e., one week [START_REF] Moussavi | A matheuristic approach to the integration of worker assignment and vehicle routing problems : Application to home healthcare scheduling[END_REF] or even one month [START_REF] Wirnitzer | Patient-based nurse rostering in home care[END_REF]. Geographic constraints mean that the company may set several subsidiaries with the consideration of territory, skills of caregivers, and demands of patients. The subsidiary makes the HHC sources more convenient to be managed and can reduce the travel distances of caregivers. Hence, the HHCRSP model involves either one depot or multi-depot. In multi-depot cases, caregivers depart from one depot and must return to the same depot [START_REF] Eveborn | Laps care-an operational system for staff planning of home care[END_REF] or can return to different depots [START_REF] Kergosien | Home health care problem : An extended multiple traveling salesman problem[END_REF][START_REF] Decerle | A matheuristic-based approach for the multi-depot home health care assignment, routing and scheduling problem[END_REF]. Especially, [START_REF] Trautsamwieser | Securing home health care in times of natural disasters[END_REF] allowed caregivers' routes to start and end at home.

Similar to the HHCC, patients' constraints are represented by temporal and assignment constraints. Time window in temporal constraints is the most common constraint considered by the researchers. More specifically, time windows can be regarded as hard or soft constraints. The first term requires that the caregivers must start the service within the time windows [START_REF] Bard | The traveling therapist scheduling problem[END_REF][START_REF] Riazi | A column generationbased gossip algorithm for home healthcare routing and scheduling problems[END_REF], while the time windows in the latter can be violated with a penalty according to the value of the violation [START_REF] Mankowska | The home health care routing and scheduling problem with interdependent services[END_REF]Decerle et al., 2019b). In some special cases, patients may require synchronized services that should be provided by at least two caregivers simultaneously. The treatment of synchronization constraints will be fully described in Section 1.2.1. In terms of assignment constraints, certain studies considered the patient preferences which means that patients prefer to be served by particular caregivers and may reject some caregivers because of the inconvenience (e.g., gender or language incompatibility) [START_REF] Wirnitzer | Patient-based nurse rostering in home care[END_REF].

As for caregivers, they must respect qualification requirements and thus should be qualified to provide the services to patients. Additionally, each caregiver is associated with a single qualification [START_REF] Kergosien | Home health care problem : An extended multiple traveling salesman problem[END_REF] or several qualifications [START_REF] Grenouilleau | A set partitioning heuristic for the home health care routing and scheduling problem[END_REF]. Moreover, the qualification of caregivers can be represented hierarchically as well [START_REF] Nickel | Mid-term and short-term planning support for home health care services[END_REF], representing that caregivers need to possess at least the same or the higher qualification level as required by the service. Most studies assumed that each caregiver corresponds to a working time window based on the contract. Similar to time windows of patients, this constraint can be hard [START_REF] Liu | Mathematical model and exact algorithm for the home care worker scheduling and routing problem with lunch break requirements[END_REF] or soft [START_REF] Trautsamwieser | Securing home health care in times of natural disasters[END_REF] as well. Furthermore, according to the legal provisions of some countries, the daily workload of the caregiver cannot exceed a threshold, e.g., 7.5 h in the UK [START_REF] Akjiratikarl | Pso-based algorithm for home care worker scheduling in the uk[END_REF]. In some cases, overtime is allowed even if the threshold has been exceeded, and the overtime should be paid by the HHCC with higher expense than the contract working time [START_REF] Nickel | Mid-term and short-term planning support for home health care services[END_REF]. More specifically, the workload balancing is often concerned in the literature to ensure the trade-off of workloads among caregivers and thus make the caregivers be satisfied (Decerle et al., 2019b). Generally, caregivers drive the car to travel from one location to another, while [START_REF] Hiermann | Metaheuristics for solving a multimodal home-healthcare scheduling problem[END_REF]; [START_REF] Rest | Daily scheduling of home health care services using time-dependent public transport[END_REF] introduced the multimodal HHCRSP where caregivers can choose to use cars or public transportation to travel. Since public transport operates on timetables with varying intervals and travel times, the travel times in these studies are not deterministic but timedependent, indicating that the travel times between any two locations are not fixed but changed according to the timetables. Finally, considering that the working periods of caregivers often cover the lunch period, the statutory lunch break should be concerned for the caregivers as well, and this constraint is explained in Section 1.2.2.

1.2.1/ THE TREATMENT OF SYNCHRONIZATION CONSTRAINTS

Synchronization constraints cover practical applications in routing problem and are usually concerned in the vehicle routing problem with time windows and synchronized visits (VRPTWsyn), which is a variant of VRP but rarely studied. [START_REF] Rousseau | The synchronized vehicle dispatching problem[END_REF] are the first authors who dealt with VRPTWsyn for the transportation of disabled persons. The problem is solved by the constraint programming implementing the insertion process. [START_REF] Dohn | The vehicle routing problem with time windows and temporal dependencies[END_REF] also introduced a VRPTWsyn, in which they extended synchronization constraints to more general temporal dependencies encountered in real-life, where synchronization constraints are special cases of the temporal dependencies. The other cases of temporal dependencies include the minimum overlap between visits and limits on minimum or maximum gaps between visits. The authors developed two compact mathematical models for the problem. The Dantzig-Wolfe decompositions of these models are proposed and solved applying a column generation-based method. [START_REF] Afifi | Heuristic solutions for the vehicle routing problem with time windows and synchronized visits[END_REF] adopted a simulated annealing based algorithm (SA-ILS) to solve the VRPTWsyn, and the authors validated their algorithm on benchmark instances proposed by [START_REF] Bredstr Öm | Combined vehicle routing and scheduling with temporal precedence and synchronization constraints[END_REF]. The numerical results confirmed that their approach obtains better solutions than existing benchmarks with shorter run time. [START_REF] Drexl | Synchronization in vehicle routing -a survey of vrps with multiple synchronization constraints[END_REF] gave a comprehensive survey of multiple synchronization constraints in VRP, including task synchronization, operation synchronization, movement synchronization, load synchronization, and resource synchronization. The authors also analysed the core thrust related to the exact and heuristic solution of such problems, and presented a review about successful solution approaches for the problems.

To the best of our knowledge, [START_REF] Eveborn | Laps care-an operational system for staff planning of home care[END_REF] are the first authors who proposed the synchronization constraints for an HHC staff planning problem. In their work, the synchronization was described as "certain visits require multiple staff members", which is addressed by splitting those visits into two and then fixing the time when those visits have to be performed.

Bredstr öm et al. ( 2008) proposed more generalized temporal constraints which include the pairwise synchronization and the pairwise temporal precedence between customer visits. They introduced an optimization-based heuristic to solve a homecare staff scheduling problem with temporal constraints. A computational study is made by comparing a direct use of a commercial solver with the proposed heuristic. It is found that the latter approach can obtain high-quality solutions within specific time limits. [START_REF] Rasmussen | The home care crew scheduling problem : Preference-based visit clustering and temporal dependencies[END_REF] studied a home care crew scheduling problem in which five types of temporal dependencies proposed in their previous work [START_REF] Dohn | The vehicle routing problem with time windows and temporal dependencies[END_REF] are considered. They modeled the problem as a set partitioning problem with side constraints and proposed an exact branch-and-price algorithm to solve it. Recent publications related to synchronization constraints in the HHC context are summarized in Table 1.1. Commercial solver and heuristic [START_REF] Rasmussen | The home care crew scheduling problem : Preference-based visit clustering and temporal dependencies[END_REF] branch-and-price [START_REF] Haddadene | A grasp× ils for the vehicle routing problem with time windows, synchronization and precedence constraints[END_REF] GRAS-ILS [START_REF] Redjem | Operations management in the home care services : a heuristic for the caregivers' routing problem[END_REF] Caregivers routing heuristic Liu et al. (2019a) Adaptive large neighborhood search Decerle et al. (2019b) Memetic algorithm

1 Simultaneous synchronization [START_REF] Cheng | A home health care routing and scheduling problem[END_REF] originally defined the lunch breaks as "each nurse takes a lunch break within the nurse's lunchtime window". In the HHC industry, lunch breaks are actual constraints because many services have to be performed after the lunchtime. The lunch breaks are mainly scheduled at the patient's location [START_REF] Bard | The traveling therapist scheduling problem[END_REF][START_REF] Liu | Mathematical model and exact algorithm for the home care worker scheduling and routing problem with lunch break requirements[END_REF], while some researchers also assumed that the lunch break could only be taken on the way to patients [START_REF] Xiao | Mathematical model for the home health care scheduling and routing problem with flexible lunch break requirements[END_REF] or even at the depot [START_REF] Masmoudi | Heterogeneous vehicle routing problems with synchronization[END_REF]. [START_REF] Liu | Mathematical model and exact algorithm for the home care worker scheduling and routing problem with lunch break requirements[END_REF] introduced an HHCRSP with lunch break requirements, and the authors regarded the lunch break as an artificial customer that should be visited by each worker.

In addition to lunch breaks, temporary break constraints have been researched as well, indicating that caregivers have to take a temporary break when a specific cumulative working time is reached [START_REF] Trautsamwieser | Securing home health care in times of natural disasters[END_REF][START_REF] Trautsamwieser | A branch-price-and-cut approach for solving the medium-term home health care planning problem[END_REF]. In this case, the break does not occur in a specific time interval but at any time as long as the cumulative working time does not exceed the maximum consecutive working time. [START_REF] Trautsamwieser | A branch-price-and-cut approach for solving the medium-term home health care planning problem[END_REF] tackled a medium-term HHC planning problem with the temporary breaks. Similar to [START_REF] Liu | Mathematical model and exact algorithm for the home care worker scheduling and routing problem with lunch break requirements[END_REF], they set an artificial node without the location in the route for the break. A branch-price-and-cut approach is applied to solve the problem.

The lunch / temporary breaks are not easy constraints that can be incorporated into the mathematical model. There are two kinds of standard methods for designing the model. The first one is to create a break node for each caregiver [START_REF] Trautsamwieser | A branch-price-and-cut approach for solving the medium-term home health care planning problem[END_REF], and the solution is feasible only when the node can be visited within the break period, while the latter aims to add an idle time for a break between two patient visits [START_REF] Bard | Weekly scheduling models for traveling therapists[END_REF].

The break constraints also arise in other practical applications such as city logistics and the furniture delivery industry. Variable neighborhood search [START_REF] Bard | The traveling therapist scheduling problem[END_REF] Branch-price-cut [START_REF] Trautsamwieser | A branch-price-and-cut approach for solving the medium-term home health care planning problem[END_REF] Branch-price-cut [START_REF] Rest | Daily scheduling of home health care services using time-dependent public transport[END_REF] Two-phases matheuristic [START_REF] Liu | Mathematical model and exact algorithm for the home care worker scheduling and routing problem with lunch break requirements[END_REF] Branch-and-price [START_REF] Xiao | Mathematical model for the home health care scheduling and routing problem with flexible lunch break requirements[END_REF] Commercial solver [START_REF] Masmoudi | Heterogeneous vehicle routing problems with synchronization[END_REF] Adaptive large neighborhood search 1 Lunch break 2 Temporary break 3 Patient's location 4 On the way to patient's location 1.3/ HHC ROUTING OR SCHEDULING PROBLEM Some studies only addressed the routing problem or scheduling problem in the HHC context. The literature on the HHC routing problem includes several VRP variants to model practical applications, e.g., the delivery of drugs or medical devices. In recent years, the routing problem in the HHC context has gained widespread attention because logistic costs are the main concern for the HHCCs. [START_REF] Liu | Heuristic algorithms for a vehicle routing problem with simultaneous delivery and pickup and time windows in home health care[END_REF] concerned the simultaneous delivery and pickup encountered in HHC logistics. The vehicles deliver the drugs from the pharmacy to patients, and also pickup unused drugs and medical devices from patients to the pharmacy. The authors regarded the problem as a special case of VRP with delivery and pickup and time windows. Four pickup and delivery demands are mentioned in this study : (1) pick up the material from patients' locations and deliver to a lab, e.g., biological samples ;

(2) pick up some materials from the patients' homes and bring them back to the company's depot, e.g., medical wastes ; (3) deliver the products from the depot to patients ; (4) deliver some materials from a hospital to patients' locations, e.g., special drugs. [START_REF] Liu | Hybridization of tabu search with feasible and infeasible local searches for periodic home health care logistics[END_REF] further extended the problem in [START_REF] Liu | Heuristic algorithms for a vehicle routing problem with simultaneous delivery and pickup and time windows in home health care[END_REF] to a period routing problem, in which each patient demands a certain number of services within the planning horizon and associates with a set of possible combinations of visit days. [START_REF] Detti | A multi-depot dial-a-ride problem with heterogeneous vehicles and compatibility constraints in healthcare[END_REF] tackled a multi-depot dial-a-ride problem for the non-emergency transportation of patients in a real-world healthcare structure. The problem is quite complicated as several practical constraints are concerned such as multi-depot, patients' preferences, quality of service requirements, heterogeneous vehicles, vehicle-patient compatibility, and the tariffs depending on the vehicles' waiting. [START_REF] Erdem | Analysis of electric vehicles in home health care routing problem[END_REF] first considered the use of electric vehicles in HHC routing problem. Besides the constraints existing in the HHC context such as multi-depot, time windows, synchronized visits, this study further concerned the restrictions related to electric vehicles, i.e., charging status and strategies.

The scheduling problem emphasizes the HHC staff planning, and the aim of this problem is usually to maximize the number of cares to be scheduled and generate a roster that satisfies the availabilities and the limited workloads of caregivers. [START_REF] Carello | A cardinality-constrained robust model for the assignment problem in home care services[END_REF] solved a HHC nurse-to-patient assignment problem, and the main issue encountered is the continuity of care requirement, which indicates that one patient needs to be served by the same caregiver during the planning horizon. The authors considered two types of continuity of care requirements which are : (1) Hard continuity of care, i.e., the caregiver of the patient cannot be changed. ( 2) Partial continuity of care, i.e., the caregiver of the patient can be reassigned but each reassignment is penalized by a cost. Additionally, the problem concerned the uncertainty in patients' demands. Finally, a cardinality-constrained robust assignment model is developed for the problem. [START_REF] Lin | The therapist assignment problem in home healthcare structures[END_REF] also introduced a therapist assignment problem (TAP) in the HHC context. Except for the continuity of care proposed in [START_REF] Carello | A cardinality-constrained robust model for the assignment problem in home care services[END_REF], the authors took into account the patient's priority (PP), which represents the medical needs and indicates the relative position of patients in the waiting queue as well. The authors built a MIP model for the TAP. On the basis of satisfying the patient's continuity of care and priority, the model aims to maximize the assignment rate of the demands with the consideration of workload capacity limitation and available time selection clash. The model is validated and solved by the Gurobi solver through randomly generated instances and a real one from an HHCC in Hong Kong. [START_REF] Mosquera | Flexible home care scheduling[END_REF] introduced a home care scheduling with flexible task durations (controllable processing times), workload balancing, and workload limitation of caregivers. Flexible task durations make it possible for decision-makers to schedule more requirements, thus greatly increasing the scheduling complexity. A new optimization-based decision support model is proposed to quantify the impact of three aspects : (1) flexibility in task duration that makes the services to be completed faster and more care to be scheduled ; (2) scheduling with a finer task granularity thus enable accurate prioritization of high and low priority care ; (3) increasing the number of different places visited by a caregiver thus enable a trade-off between caregiver's workload and the number of served clients.

1.4/ MULTI-PERIOD HHCRSP

In the past few years, some researchers extended the planning horizon of HHCRSP to multi-day period [START_REF] Moussavi | A matheuristic approach to the integration of worker assignment and vehicle routing problems : Application to home healthcare scheduling[END_REF][START_REF] Wirnitzer | Patient-based nurse rostering in home care[END_REF], called multi-period HH-CRSP, in which the required services of patients are spread over different days. Hence, some particular constraints need to be concerned, such as visits frequency [START_REF] Duque | Home care service planning. the case of landelijke thuiszorg[END_REF] and continuity of care [START_REF] Liu | The large-scale periodic home health care server assignment problem : A region-partition-based algorithm[END_REF].

In multi-period HHCRSP, the HHC services plan is designed on a multiple-day horizon (e.g., weekly or monthly). The caregivers in this type of HHCRSP are assigned based on a more complex regulation terms of both their qualifications and availabilities (because the caregivers are not free each day over the planning horizon). Each patient in multi-period HHCRSP can be visited once or several times on predefined visiting days. These visiting days are irregular or follow a fixed pattern (e.g., one patient may require the service on each Monday and Wednesday in a weekly HHCRSP). There is no doubt that these aforementioned factors make it more challenging to tackle the multi-period HHCRSP. [START_REF] Nickel | Mid-term and short-term planning support for home health care services[END_REF] considered a weekly HHC planning problem in which the designa-ted working time of caregivers during the planning period and the continuity of care are concerned. The penalty for exceeding the designated working time and the penalty for the violation of continuity of care are the primary components in the objective function.

The authors first generated a master schedule that consists of a set of tours including all the demands of patients. The master schedule is then modified to meet the short-term changes (e.g., urgent unavailability of patients or caregivers). [START_REF] Gomes | Modelling and (re-) planning periodic home social care services with loyalty and non-loyalty features[END_REF] addressed the loyalty and non-loyalty features in a periodic home social care service problem. In this study, the patient-caregiver loyalty, i.e., continuity of care, must be respected within a week, and the non-loyalty exists because the caregivers must rotate among patients between weeks. Besides, the authors considered the replanning caused by the leaving of patients and the arrival of new ones during the planning period. The plan aims to minimize the disturbance to the visiting hours of current patients, minimize caregivers' travelling times, and balance the workloads among caregivers for the multi-objective purpose.

Finally, readers who have an interest in multi-period HHCRSP can refer to [START_REF] Fikar | Home health care routing and scheduling : A review[END_REF].

1.5/ UNCERTAINTY IN HHC DOMAIN

Uncertain issues are inevitable to be encountered when the HHC services are performed. For example, the service duration in each patient is unknown in advance, because this parameter should be evaluated according to the patient's practical health condition and determined after the service. Besides, the travel times between two different places also show the imprecision due to some special situations such as extreme weather, rush hour and vehicle conditions. In HHCRSP, several parameters involve uncertainty including travel times, service durations, and caregivers' or patients' unavailabilities. Note that the plan of HHC services has to be designed before meeting these uncertainties, Hence, stochastic parameters should be considered to help make an appropriate decision.

Most HHCRSPs are addressed with the suppositions of deterministic parameters. Only

UNCERTAINTY IN HHC DOMAIN

a few researchers dealt with uncertain factors. Generally, it is prevailing to model uncertainty HHCRSP with fuzzy optimization model [START_REF] Fathollahi-Fard | A biobjective home healthcare routing and scheduling problem considering patients' satisfaction in a fuzzy environment[END_REF], chance constraint programming (CCP) [START_REF] Liu | A branch-and-price algorithm for the homecaregiver scheduling and routing problem with stochastic travel and service times[END_REF], stochastic programming with recourse (SPR) [START_REF] Yuan | A branch-and-price algorithm for the home health care scheduling and routing problem with stochastic service times and skill requirements[END_REF][START_REF] Shi | Modeling and solving simultaneous delivery and pick-up problem with stochastic travel and service times in home health care[END_REF], or robust optimization (RO) model [START_REF] Shi | A robust optimization for a home health care routing and scheduling problem with consideration of uncertain travel and service times[END_REF]. [START_REF] Fathollahi-Fard | A biobjective home healthcare routing and scheduling problem considering patients' satisfaction in a fuzzy environment[END_REF] solved the HHCRSP in a fuzzy environment. Besides the fuzzy travel and service times, the authors first considered the time windows of patients and patients' satisfactions as the fuzzy parameters. More specifically, the patients' satisfactions are evaluated by the privilege from patients to caregivers based on the provided home care services. The authors developed a fuzzy model based on the method proposed by Jim énez et al. ( 2007), then transformed the fuzzy model to a multi-objective deterministic model using an approach of [START_REF] Torabi | An interactive possibilistic programming approach for multiple objective supply chain master planning[END_REF]. [START_REF] Liu | A branch-and-price algorithm for the homecaregiver scheduling and routing problem with stochastic travel and service times[END_REF] addressed an HHCRSP which involves stochastic travel times of caregivers and service times for customers. The authors formulated the problem using the CCP model. Due to the stochastic travel and service times, the patients may not be served on time. Hence, the CCP indicates that the caregivers can be visited within their time windows with a probability that is not lower than the service level. The stochastic simulation [START_REF] Li | Vehicle routing problems with time windows and stochastic travel and service times : Models and algorithm[END_REF] is employed to calculate the actual service levels of patients. In the HHC process, the cancellation and addition of patient's demands are frequent, especially in the long-term HHC plan. However, the change of the demands may reflect the feasibility of the plan or incur the service disruptions. Considering the uncertainty of demands in the home care problem, [START_REF] Cappanera | Demand uncertainty in robust home care optimization[END_REF] proposed a non-standard cardinality-constrained robust approach to deal with the uncertainty. The experimental results on real-life instances highlight that high-quality robust solutions in terms of balancing among caregivers and the number of uncertain requests can be efficiently obtained on small and moderate size instances.

More specifically, some studies also considered the uncertain demands encountered in the HHC routing problem. [START_REF] Shi | A hybrid genetic algorithm for a home health care routing problem with time window and fuzzy demand[END_REF] modelled the process of delivering medication drugs and assumed that the quantity of drugs required by each patient is nondeterministic, i.e., fuzzy demand. The authors first described the fuzzy demand using the triangular membership function, and then credibility theory [START_REF] Liu | Theory and practice of uncertain programming[END_REF] is utilized to deal with the fuzzy number. The problem is formulated as a fuzzy chance constrained programming (FCCP). Due to the fuzzy demands, more drugs may be required than planned and hence the loaded drugs may exceed the capacity of the vehicle. In this case, the caregiver has to return to the company to unload the drugs, and then back to this patient. This type of case is called the failure route which will cause the additional travel distance and may delay the service for the patients in the subsequent route. Hence, the authors proposed a number of indicators to evaluate the model, which are : additional distance, total delayed time, average delayed time of patients, and the percentage of the delayed patients.

The features of recent studies on the HHC considering uncertainties are summarized in Table 1.3. Usually, two types of penalties are used to quantify the patient's inconvenience. The first one penalizes the deviations from desired time windows of patients [START_REF] Mankowska | The home health care routing and scheduling problem with interdependent services[END_REF]Decerle et al., 2019b) if the soft time windows are allowed, whereas the second one penalizes the deviations from the preferred caregivers [START_REF] Braekers | A bi-objective home care scheduling problem : Analyzing the trade-off between costs and client inconvenience[END_REF].

The criterion of maximum patients served is often concerned when the caregivers are insufficient to serve all the demands required by the patients. In this case, there is a penalty for the HHCC since the unscheduled patients should be subcontracted to another company with a subcontracting cost [START_REF] Kergosien | A routing problem for medical test sample collection in home health care services[END_REF][START_REF] Hiermann | Metaheuristics for solving a multimodal home-healthcare scheduling problem[END_REF].

Conversely, when caregivers are sufficient enough to cover the requirements, the number of assigned caregivers can be variable, i.e., not all caregivers should be dispatched to work each day. Hence, some studies sought to minimize the number of caregivers to reduce the staff costs [START_REF] Allaoua | A matheuristic approach for solving a home health care problem[END_REF][START_REF] Hewitt | Planning strategies for home health care delivery[END_REF]. Besides, since the caregivers usually drive the car to travel from one location to another, the criterion of the minimal number of caregivers can be represented by the minimal total vehicle costs [START_REF] Nickel | Mid-term and short-term planning support for home health care services[END_REF][START_REF] Liu | Mathematical model and exact algorithm for the home care worker scheduling and routing problem with lunch break requirements[END_REF].

HHCCs maximize the satisfaction of caregivers mainly by balancing the workload (e.g., working time or the number of visits performed) of caregivers as much as possible or minimizing the total overtime of caregivers. Generally, the satisfaction of caregivers can be transformed to the extra cost by penalizing the largest workload gap [START_REF] Yalc ¸ında G | Operator assignment and routing problems in home health care services[END_REF]Decerle et al., 2019b) or penalizing the total overtimes [START_REF] Trautsamwieser | Securing home health care in times of natural disasters[END_REF][START_REF] Bard | Weekly scheduling models for traveling therapists[END_REF].

In the literature, the scholars have adapted single-objective or multi-objective functions to evaluate the quality of solutions, and most studies dealt with several objectives at the same time. In the multi-objective case, it is common to utilize a weighted sum method in which several sub-objectives are merged into one main objective to evaluate the solution, though sub-objectives do not have the same unit [START_REF] Hiermann | Metaheuristics for solving a multimodal home-healthcare scheduling problem[END_REF][START_REF] Zhan | Vehicle routing and appointment scheduling with team assignment for home services[END_REF]. However, this method requires articulate preference information indicating the subjective preference of decision-makers before the optimization process. It should be noted that an accurate representation of the decision maker's preference is very difficult in most cases, leading to the loss of accuracy of the final optimal solution. Besides, this method only produces one solution and thus cannot provide different trade-off solutions for the decision-makers.

In addition to the weighted sum method, the lexicographic method has been mentioned for the multi-objective HHCRSP as well. This method assumes that the objectives can be ranked in the order of importance, and then a sequence of single-objective optimization problems are solved from the most important to the least important objective. To the best of our knowledge, [START_REF] Duque | Home care service planning. the case of landelijke thuiszorg[END_REF] are the only ones who treated multiple objective functions with a lexicographic method in the HHC context. They developed a decision support system (DSS) for the HHC service planning. The aim of this DSS is to minimize the total travel distances of caregivers and maximize the service level influenced by the patient-caregiver preference and time slot preferences for patients and caregivers. The problem is formulated as a set partitioning model. A flexible two-stage solution strategy is proposed to address the problem. The first stage obtains the best solution with maximum service level using CPLEX, and then the second stage applies a randomized local search algorithm to optimize the solution obtained by the first stage considering the objective of minimizing total travel distances. Specially, the decrease of the service level in the second stage should not exceed a predefined threshold. The experimental results on the real case of Landelijke Thuiszorgis, a "social profit" organization, proved the efficiency and effectiveness of the solution approach.

The last approach for the multi-objective HHCRSP refers to the pareto optimality. This method aims to generate all the pareto optimal solutions or a representative subset of the pareto optimal solutions, and then decision-makers select the suitable optimal solutions according to their preference. This method usually takes a longer time to solve the problem than the aforementioned methods because it produces a set of pareto optimal solutions. However, since the preference information is not required before the solution process, the optimal solution picked by decision-makers from the generated pareto set can represent the practical preference of decision-makers more accurately. [START_REF] Braekers | A bi-objective home care scheduling problem : Analyzing the trade-off between costs and client inconvenience[END_REF] first considered the pareto optimality for a bi-objective HHCRSP problem which tried to explore the trade-off between total costs and the patients' inconvenience. The total costs contain the total travel costs and total overtime costs of caregivers, while the criterion of inconvenience is represented by the patients' preferences to nurses and the violation of desired visit times. The authors addressed the bi-objective problem under a multi-directional local search (MDLS) framework with a large neighborhood search embedded. The comparison between solutions obtained by MDLS and exacted solutions on small size instances highlights the good performance of the proposed algorithm. Decerle et al. (2019b) introduced the multi-objective optimization for an HHCRSP with synchronized visits. The study aims to minimize the total working time of caregivers, maximize the satisfaction of patients that indicated by the service quality, and minimize the maximal working time difference among caregivers. More specifically, the service quality is determined by the penalties for the violation of patients' time windows and the difference in arrival times between a pair of synchronized visits. In order to solve the proposed problem, the authors developed a multi-objective algorithm, namely memetic algorithm for multi-objective optimization (MAMO), a hybridization of two famous multiobjective algorithms : NSGA-II [START_REF] Deb | A fast and elitist multiobjective genetic algorithm : Nsga-ii[END_REF] and MDLS [START_REF] Tricoire | Multi-directional local search[END_REF]. MAMO is proved efficient when it is compared with NSGA-II and MDLS based on the experimental results on benchmark instances from the literature.

Fathollahi-Fard et al. ( 2020) considered a bi-objective HHCRSP, in which the total operational costs and patients' satisfaction are treated simultaneously. For the first time, patients' satisfaction is treated as a fuzzy parameter and can be determined by the privilege from patients to the caregivers in a time period. The targeted problem is first formulated as a fuzzy triangular model, and then a defuzzy method is introduced to transform the fuzzy model into a multi-objective deterministic model. Finally, a multi-objective version social engineering optimizer with adaptive memory strategy (AMSEO) is developed for the problem. The performance of AMSEO is compared with some other multi-objective algorithms based on some objective metrics. Moreover, the sensitivities of parameters of the model are analyzed.

Recent publications related to multiple objectives in the HHC context are summarized in Table 1.4. [START_REF] Rodriguez | Staff dimensioning in homecare services with uncertain demands[END_REF], branch-and-price algorithm [START_REF] Liu | A branch-and-price algorithm for the homecaregiver scheduling and routing problem with stochastic travel and service times[END_REF], branchprice and-cut algorithm [START_REF] Trautsamwieser | A branch-price-and-cut approach for solving the medium-term home health care planning problem[END_REF], and cardinality-constrained approach [START_REF] Carello | A cardinality-constrained robust model for the assignment problem in home care services[END_REF][START_REF] Cappanera | Demand uncertainty in robust home care optimization[END_REF]. Usually, the exact algorithm has the advantage of obtaining optimal solutions, but the execution times are too long to accept.

Approximate algorithms are able to find approximately optimal solutions quickly and are classified into the heuristic and the metaheuristic. Heuristic is mainly based on the characteristics of the problem itself to construct the approximate algorithm, e.g., constructionbased algorithm, so it is often specific to deal with particular problems [START_REF] Cordeau | Vehicle routing[END_REF]. Metaheuristic is a general-purpose algorithm that has clear algorithm ideas and steps, such as population-based algorithms (e.g., Genetic algorithm) and local searchbased algorithms (e.g., Tabu search). Considering the different characteristics of algorithms, it is popular to integrate two or more algorithms to combine the advantages of each approach, such as the hybrid of two approximate approaches [START_REF] Erdem | Analysis of electric vehicles in home health care routing problem[END_REF][START_REF] Mosquera | Flexible home care scheduling[END_REF], and the integration of the exact and approximate methods, i.e., matheuristic [START_REF] Riazi | A column generationbased gossip algorithm for home healthcare routing and scheduling problems[END_REF][START_REF] Grenouilleau | A set partitioning heuristic for the home health care routing and scheduling problem[END_REF][START_REF] Nikzad | A matheuristic algorithm for stochastic home health care planning[END_REF].

In the remainder of this section, the exact methods, approximate methods, and matheuristic applied in HHCRSP are respectively detailed.

1.7.1/ EXACT METHODS [START_REF] Rasmussen | The home care crew scheduling problem : Preference-based visit clustering and temporal dependencies[END_REF] applied a dynamic column generation in a branch-and-price framework to solve a home care crew scheduling problem with preference-based visit clustering and temporal dependencies. The authors developed specialised branching scheme to deal with both precedence constraints and integrality. A master problem and a subproblem are derived from the original problem in a branch-and-price framework. The feasible schedules for the caregivers are generated by the subproblem, and then the master problem selects the minimum cost schedule for each caregiver among the feasible schedules. The algorithm is tested both on real-life instances from two Danish municipalities and benchmark instances obtained from Bredstr öm et al. (2008). The experimental re-sults highlight that the run times are decreased significantly using visit clustering which only gives a loss of quality for few instances. [START_REF] Trautsamwieser | A branch-price-and-cut approach for solving the medium-term home health care planning problem[END_REF] designed a Branch-Price-and-Cut (BPC) solution approach for a weekly HHCRSP. They used Dantzig-Wolfe decomposition [START_REF] Dantzig | Decomposition principle for linear programs[END_REF] ) to solve a routing problem in which each service has been preassigned to a caregiver at the tactical level. In the problem, sequencing of the care activities, i.e., precedence constraints, and the predefined order between the care activities, i.e., coordination constraints are taken into account. The first stage of the algorithm searches the optimal rounds with the shortest travel duration using an enumerative approach that assesses all the possible routes. Based on the rounds obtained at the first stage, the second stage shifts or swaps the visits in the round while respecting precedence constraints and coordination constraints. In order to test the algorithm, the authors used three real instances extracted from collaborative home care structures. The experimental results indicate that the proposed algorithm is very efficient in terms of execution times. [START_REF] Detti | A multi-depot dial-a-ride problem with heterogeneous vehicles and compatibility constraints in healthcare[END_REF] proposed two single-solution metaheuristics Tabu search (TS) and variable neighborhood search (VNS) for a multi-depot dial-a-ride problem with heterogeneous vehicles and compatibility constraints in the healthcare domain. Both metaheuristics start with an initial solution generated by a fast insertion heuristic and end when the maximum number of iterations is reached. At each iteration in TS, the neighborhoods of the current solution are generated, and the best solution in the neighborhoods evaluated by an evaluation function is chosen as the new current solution. Neighborhoods are defined by removing a service from a route and inserting it into another route. At each iteration in VNS, the algorithm randomly generates a new solution based on the neighborhood of the current solution, then improves the new solution with a local search procedure. The current solution is replaced by the generated solution and starts with the first neighborhood if the generated solution is better than the current solution. The current solution is not replaced and the next neighborhood is used for the following iteration if the generated solution is worse than the current solution. Finally, the experimental results on large real-world instances and a set of benchmark instances based on real data show the effectiveness of the proposed algorithms in comparison with solutions obtained by a commercial solver. Decerle et al. (2019a) developed a hybrid memetic-ant colony optimization algorithm (MACO) which integrates memetic algorithm (MA) and ant colony optimization algorithm (ACO) to address the HHCRSP with time windows, synchronization visits and workload balancing. In the optimization process, both algorithms share the same population. At each iteration of the algorithm, either the MA or the ACO will be selected to improve the solutions, depending on a fixed probability. It should be noted that no matter MA or ACO is selected, the pheromone matrix updated in ACO and local search in MA will be applied at each iteration. The good performance of proposed MACO is validated on benchmark instances in comparison with pure MA, pure ACO and Gurobi solver. [START_REF] Erdem | Analysis of electric vehicles in home health care routing problem[END_REF] proposed a hybrid algorithm combining genetic algorithm (GA) and variable neighbourhood descent (VND) for the routing problem in the HHC domain. The hybrid algorithm takes the advantage of two algorithms while GA diversifies the solution space, and VND intensifies the solution. A two-stage combination is applied for the hybridation. First, GA is employed to optimize the solution until the stopping criterion of GA is reached. After that, the best solution found by GA is taken as the initial solution for VND. Finally, the output of VND is taken as the best solution of the problem. Computational results on a new set of benchmark instances with up to 549 nurses, 455 patients and 817 jobs highlight that the proposed hybrid algorithm can find optimal solutions for small-size instances and produce better solutions for medium and large-size instances in comparison with an off-the-shelf solver. [START_REF] Liu | The large-scale periodic home health care server assignment problem : A region-partition-based algorithm[END_REF] introduced an efficient region-partition-based algorithm to solve largescale multi-period HHCRSP. The kernel of the algorithm is to divide the caregivers and patients into several small-size regions and repeatedly adjust the regions according to the solutions of the small-scale regions. The algorithm contains two steps. The first step dispatches caregivers and patients to many independent regions, and then the second step uses four tabu search (TSFea, TSInf, TSIP, HTSFeaIP) to solve the routing and scheduling problem in each region. These steps iteratively repeat until the stop criteria are reached. The numerical experiments are carried out on real instances extracted from an HHCC in Shanghai, China. Finally, the authors discussed the performances of different TS.

1.7.3/ MATHEURISTIC [START_REF] Riazi | A column generationbased gossip algorithm for home healthcare routing and scheduling problems[END_REF] solved the basic HHCRSP with a matheuristic that combines the gossip algorithm with a local solver based on column generation (Gossip-CG). The matheuristic starts with an initial solution and ends when the maximal number of iterations is reached. At each iteration, two caregiver's routes in the current solution are selected to form a local problem. Then, column generation solves the local problem and reports the local optimization back to the gossip algorithm. The results of extensive numerical experiments highlight that gossip-CG outperforms the pure CG on large-size instances. [START_REF] Moussavi | A matheuristic approach to the integration of worker assignment and vehicle routing problems : Application to home healthcare scheduling[END_REF] proposed a matheuristic approach based on the decomposition of the formulation for a multi-period HHCRSP. Their matheuristic consists of three steps.

The first step determines the number of caregivers, i.e., the variable, needed to cover all services. After that, this variable is determined and taken as the input for the next step. The second step determines the sequence of patients or the routes (packages of services) for the caregivers during each day. In the third step, daily packages of services are assigned to the caregivers. Each step is solved by the Gurobi solver. The experiences and statistical analysis on the instances generated by the Monte Carlo Simulation present that the proposed matheuristic solves 90% of the instances to optimality with significantly shorter computational times in comparison with solving the original model using Gurobi solver.

Nikzad et al. ( 2020) proposed a matheuristic algorithm for the stochastic HHCRSP. A twostage stochastic MIP model is developed to formulate the problem. The model is solved by a matheuristic algorithm, which contains four phases :

(1) Decrease the potential number of districts and determine the proper sequence of the visits for each caregiver under each scenario. ( 2) Obtain the initial solution for the different numbers of potential districts in the first phase. Besides, an algorithm based on the progressive hedging and Frank and Wolf (PH-FW) algorithms [START_REF] Boland | Combining progressive hedging with a frank-wolfe method to compute lagrangian dual bounds in stochastic mixed-integer programming[END_REF] is designed to reduce the run time of this phase. ( 3) Evaluate the feasibility of the initial solution and repair the infeasible solution. ( 4) Improve the obtained solution using an iterative procedure and the fix and optimize method. Several numerical experiments are conducted and the experimental results show the efficiency and accuracy of the proposed matheuristic.

Moreover, more and more researchers have integrated the artificial intelligence (AI) technique (e.g., machine learning) with optimization algorithms to solve the optimization problem. For example, Silva et al. ( 2019) developed a Multi-agent Architecture for Metaheuristics (AMAM), which allows the hybridization of metaheuristics through a multi-agent structure. Agents share information and collaborate with each other through the environment. Reinforcement learning is applied to enable the agent to change their actions according to experiences obtained in interacting with the environment and the other agents. AMAM is tested on VRPTW and the Unrelated Parallel Machine Scheduling Problem with Sequence-Dependent Setup Times (UPMSP-ST), two classic combinatorial optimization problems. Besides, [START_REF] Furian | A machine learning-based branch and price algorithm for a sampled vehicle routing problem[END_REF] proposed a machine learning-based branch and price algorithm for a sampled vehicle routing problem. Machine learning is utilized to predict the value of binary decision variables in the optimal solution and to predict branching scores for fractional variables based on full strong branching. In the future, the application of AI to solve HHCRSP may become an emerging trend.

1.8/ CONCLUSION

This chapter presents a general literature review for the HHCRSP to make the readers understand the state of the art of HHCRSP. First, the basic features of HHCRSP are introduced, and then the constraints existing in the HHCSRP model are summarized. It can be found that the basic HHCRSP is quite similar to the classical VRPTW, and most researchers added different constraints into basic HHCRSP according to the reality of the concerned HHCC. After that, this chapter presents the literature related to HHCRSP from several aspects such as multi-period, multi-objective, and uncertainty.

Although vast researches for HHCRSP can be observed in the literature, the HHCRSP with the consideration of two practical constraints has not been fully studied : one is the organization of synchronized visits for certain patients and the other is the assignment of workloads to caregivers by concerning their statutory lunch breaks. Consequently, it is imperative to develop useful models and design efficient methods to solve the HHCRSP with synchronized visits and lunch breaks (HHCRSPsynLB). Furthermore, consider that multi-period HHCRSP and HHCRSP with uncertainty are rarely mentioned. Hence, it is essential to extend the basic HHCRSPsynLB to a multi-period and uncertain version.

MULTI-CONSTRAINT HHCRSP UNDER DETERMINISTIC ENVIRONMENT

2.1/ PROBLEM DESCRIPTION

Inspired by the reality of the HHC managements, this chapter studies a special HHCRSP considering not only time windows but also synchronized visits and lunch breaks (HH-CRSPsynLB), and the objective is to minimize the total operating costs. Furthermore, according to the practices observed in an HHCC (Institute Mont éclair in France), it is not necessary for caregivers to start their routes from the same place because a caregiver can start the working path either from home if a private car is used, or from the HHC company (i.e., depot) if a rental car is provided by the company, though all caregivers must return to the depot after completing their visits. More importantly, it is also found that skill requirement constraints, which means that patients require the service served by the caregivers with suitable skills, should be concerned. To sum up, the problem considered in this chapter can be defined as a variant of multi-depot heterogeneous vehicle routing problem with time windows (MDHVRPTW) [START_REF] Dondo | A cluster-based optimization approach for the multidepot heterogeneous fleet vehicle routing problem with time windows[END_REF][START_REF] Bettinelli | A branch-and-cut-and-price algorithm for the multi-depot heterogeneous vehicle routing problem with time windows[END_REF].

Note that the studied problem becomes NP-hard because the classic VRP, a special case of the HHCRSPsynLB, has already been proven to be NP-hard. Hence, four hybrid metaheuristics are developed to address this problem. Though a MIP model is constructed at first so that the solutions obtained for small-size instances by solving the MIP with Gurobi, a commercial programming solver, can be used as the benchmark for evaluating the performance of the proposed metaheuristics. The contributions of this study can be summarized as follows : (1) a novel HHCRSP with consideration of real-life constraints, called the HHCRSPsynLB, is proposed ; (2) a three index mathematical model is constructed for the problem ; (3) four hybrid metaheuristics are developed to tackle the problem ; (4) sensitivities of such parameters : the scale of synchronized visits, the width of time windows, break regulations, and departure strategies are analyzed.

The HHCRSPsynLB is formally defined as follows. Given a set of caregivers K= {1,..,m} and their addresses D= {1,..,m}, there are a list of visits P={m+1,..,m+n} that are to be treated at the patients' homes. The goal is to find a feasible schedule and visit route over the daily period for each caregiver. The solution must indicate two aspects : (1) which visits are assigned to which caregivers ; (2) the beginning time of each visit and the lunch break.

The HHCRSPsynLB can be described as a general MDHVRPTW and represented by a directed graph G = (V, A), where V is the set of nodes and A is the set of arcs. Note that each visit is associated with the location of the corresponding patient. A node in the graph represents the address of a caregiver or the location of a visit. Hence, V =D∪P∪{0, m+n+ 1}, where 0 is the origin of the routes if caregivers start their work from the depot, m+n+1 is the destination of all routes, and both 0 and m+n+1 represent the depot. The arc set A is represented by A= {(i, j) | i, j ∈ V, i j}, and each arc (i, j) ∈ A is associated with a travel time t i j .

Each visit i ∈ P corresponds to a known service duration s i and must be started within a hard time window

[a i , b i ].
Caregivers can arrive earlier than a i and have to wait until the time window is available, but the arrival later than b i is not allowed. Especially, synchronized visits may be required by some patients, and then two caregivers are needed to serve the patients simultaneously. The set of synchronized visits is denoted as P syn , for each pair of synchronized visits i, j ∈ P, there is (i, j) ∈ P syn , where visits i and j correspond to the same locations, time windows, service durations, and skill requirements.

Each caregiver k ∈ K corresponds to a contracted working time window [wl k , wu k ] and various health care skills, meaning that each caregiver departs from the origin of the route at wl k , and returns to the depot before wu k . Only caregivers with qualified skills required by a visit can be assigned to serve this visit. Binary parameter q k i equals 1 if caregiver k is qualified for visit i, 0 otherwise. Caregivers can use their private car or the rental car provided by the HHCC for the travel. Binary parameter z k equals 1 if caregiver k needs a rental car, 0 otherwise. If a caregiver decides to use the private car, he/she should start the work from his/her home ; otherwise, the depot should be the origin of the route by using the rental car. Binary parameter w k i equals 1 if caregiver k departs from his/her home's location i, 0 otherwise. All the caregivers must end their workday at the depot to summarize the daily work.

The lunch break is mandatory if caregivers are working within the lunch period [LB, LE]. Each caregiver takes the lunch break if his/her working time point exceeds the earliest lunchtime point LB. Typically, the lunch break is scheduled at one of the patient's locations, before or after the service, with a unified lunch duration LD. The lunch breaks can be regarded as fictive visits in the routes. The extreme situation is that every caregiver should take a break, therefore, the set of lunch breaks is denoted as LUN={l 1 , l 2 .., l m }. Finally, the set of nodes that involves lunch nodes is defined as N = V ∪ LUN. Several assumptions are defined to calculate the operational costs as follows :

(1) The cost is identical for a private and rental vehicle, and is labelled as C v .

(2) Each caregiver has the same basic salary, and he/she will get an additional income according to his/her working time (i.e., the total travel time plus the total service duration, while the waiting time and the lunch time are not included).

(3) The additional income of the caregiver is equal to his/her working time (the salary per unit time is 1).

(4) Note that the value of total service duration is fixed in the final plan, and the basic salary is the same for all the caregivers. Thus, the wages of caregivers can be represented by their total travel times in the objective function.

Finally, in order to formulate the MIP model for the HHCRSPsynLB, the following decision variables are defined : binary variable x k i j equals 1 if location j is visited directly after location i by caregiver k and 0 otherwise. v1 k i equals 1 if caregiver k takes the lunch break before visit i, 0 otherwise. v2 k i equals 1 if caregiver k takes the lunch break after visit i, 0 otherwise. ts k i indicates the time point when caregiver k starts to work or take lunch at node i. Besides, an artificial variable h i is also proposed to construct the sub-tour elimination constraints.

Since the HHCRSPsynLB can be treated as a variant of the MDHVRPTW. In this section, two problems are compared to illustrate the characteristics of our HHCRSPsynLB. MDHVRPTW is the VRPTW with multi-depot and heterogeneous vehicle constraints. An illustrative instance of MDHVRPTW is presented in Figure 2.1. This instance includes three depots and eleven clients. Vehicles depart from different depots and return to the same depots after the assigned tasks are finished. Besides, vehicles are heterogeneous because of different cargo-capacities. Based on Figure 2.1, an instance is given to illustrate the structure of HHCRSRsynLB in Figure 2.2. The instance consists of one depot, three caregivers, nine patients, and eleven visits. As shown in Figure 2.2, both caregivers 1 and 3 depart from the depot, while caregiver 2 departs from his/her home. Caregiver 1 takes a lunch break before performing visit 12, and caregiver 3 takes a lunch break after performing visit 8, while there is no lunch need for caregiver 2. Among these visits, (9, 13) and (11,14) are two pairs of synchronized visits and are performed by caregivers 1 and 3 simultaneously. To sum up, the similarities and differences between HHCRSPsynLB and MDHVRPTW can be summarized as follows :

(1) Caregivers/vehicles depart from different locations in both two problems. However, each vehicle must start and end at the same depot in MDHVRPTW, while caregivers in HHCRSPsynLB can depart from their homes and return to the depot.

(2) Caregivers/vehicles are heterogeneous in both two problems. However, the heterogeneity in MDHVRPTW and HHCRSPsynLB are represented by vehicles' cargocapacities and caregivers' skills, respectively.

(3) HHCRSPsynLB involves two special and complicated constraints : synchronized visits and lunch breaks. The rest of this chapter is organized as follows : Section 2.2 develops a mathematical model for the HHCRSPsynLB ; The details of the proposed algorithms are described in Section 2.3 ; Section 2.4 reports the numerical results, and this chapter ends up with conclusions in Section 2.5.

2.2/ MATHEMATICAL MODEL

Since HHCRSPsynLB is a variant of MDHVRPTW and is more complicated to be solved. This section first introduces the classical formulation for MDHVRPTW, and then the MIP model of HHCRSPsynLB is extended from the formulation of MDHVRPTW. More specifically, it is assumed that the presented MDHVRPTW and HHCRSPsynLB share the same objective function. The mathematical model of MDHVRPTW is formulated as follows.

Objective function :

f = Min( i∈V j∈V k∈K x k i j t i j + C v i∈V k∈K x k i(m+n+1) ) (2.1) Subject to : j∈P x k i j = j∈P x k ji ≤ w k i ∀k ∈ K, i ∈ D (2.2) j∈V x k i j = j∈V x k ji ∀i ∈ P, k ∈ K (2.3) j∈V k∈K x k i j = 1 ∀i ∈ P (2.4) a i j∈V x k i j ≤ ts k i ≤ b i j∈V x k i j ∀i ∈ P, k ∈ K (2.5) x k i j (ts k i + s i + t i j -ts k j ) ≤ 0 ∀i, j ∈ V, k ∈ K (2.6) h i -h j + x k i j (n + 1) ≤ n ∀i, j ∈ P, k ∈ K (2.7) x k i j ∈ {0, 1} ∀i, j ∈ V, k ∈ K (2.8)
The objective function (2.1) aims at minimizing the total operating costs, the first term indicates the wages of caregivers, and the second term represents the costs of vehicles. Constraints (2.2) state that each vehicle departs from a single depot and returns to the same depot after visiting all the assigned clients. Constraints (2.3) 

ts k i + s i + t i j + (x k i j -1)M ≤ ts k j ∀i, j ∈ V, k ∈ K (2.9)
In the remainder of this section, the following new constraints are added into the formulation of MDHVRPTW to describe the HHCRSPsynLB.

i∈V x k i j ≤ q k j ∀ j ∈ P, k ∈ K (2.10) ts k i = wl k ∀i ∈ D ∪ {0}, k ∈ K (2.11) ts k m+n+1 ≤ wu k ∀k ∈ K (2.12) i∈V v1 k i + i∈V v2 k i = i∈P x k i(m+n+1) ∀k ∈ K (2.13) v1 k i + v2 k i ≤ j∈V x k i j ∀i ∈ V, k ∈ K (2.14) ts k i + (s i + t i j )(x k i j + v1 k j -1) + (x k i j + v1 k j -2)M ≤ ts k l ∀i, j ∈ V, l ∈ LUN, k ∈ K (2.15) ts k l + v1 k j LD + (v1 k i -1)M ≤ ts k j ∀i, j ∈ V, l ∈ LUN, k ∈ K (2.16
)

ts k i + s i v2 k i + (v2 k i -1)M ≤ ts k l ∀i ∈ V, l ∈ LUN, k ∈ K (2.17) ts k l + (LD + t i j )(x k i j + v2 k i -1) + (x k i j + v2 k i -2)M ≤ ts k j ∀i, j ∈ V, l ∈ LUN, k ∈ K (2.18) LB ≤ ts k l ≤ LE ∀l ∈ LUN, k ∈ K (2.19) k∈K ts k i = k∈K ts k j ∀(i, j) ∈ P syn (2.20) v1 k i , v2 k i ∈ {0, 1} ∀i ∈ V, k ∈ K (2.21)
Constraints (2.10) guarantee that caregivers must be qualified for their visits. Constraints (2.11)-( 2.12) indicate the working time of caregivers. Constraints (2.13) define that each assigned caregiver takes a lunch break in the route. As mentioned before, lunch breaks are mandatory only when the caregivers' working time point exceeds the time point LB.

Note that the addition of a lunch break at the destination of the route would not change the feasibility and the objective value of the route. Hence, when a caregiver returns to the depot earlier than LB, the lunch break can be deemed to have been taken at the end of the route (the depot) even if the break is unnecessary. Constraints (2.14) indicate that caregivers take lunch at the locations of one of the patients they served, and the depot can be regarded as the location for a fictive visit based on the assumption in (2.13). Suppose that i, j are two consecutive real visits in the caregiver k's route, and the lunch is taken between these two visits. Constraints (2.15)-( 2.16) state the start time of the lunch break when caregiver k takes lunch at the location of visit j before the service. In constraints (2.15), the start time of lunch is calculated based on the start service time at visit i, the service duration of visit i, and the travel time of arc (i, j). In constraints (2.16) 

j∈P x k 0 j + i∈D j∈P x k i j ≤ 1 ∀k ∈ K (2.22) j∈P x k i j ≤ w k i ∀i ∈ D, k ∈ K (2.23) j∈P x k 0 j + i∈D j∈P x k i j = i∈P x k i(m+n+1) ∀k ∈ K (2.24) i∈P x k i(m+n+1) = z k j∈P x k 0 j + (1 -z k ) i∈D j∈P
x k i j ∀k ∈ K (2.25)

x k i j = 0 ∀i, j ∈ D ∪ {0, m + n + 1}, k ∈ K (2.26)
Constraints (2.22) ensure that caregivers depart either from their homes or the depot, which is represented by an inequality because not all caregivers need to be assigned. If one caregiver using the private car, he/she must depart from his/her home, restriction from the constraints (2.23). Constraints (2.24) guarantee that each caregiver must end their works at the depot. Constraints (2.25) 

2.3/ METHODOLOGY

As mentioned above, the targeted problem is NP-hard, and thus it is powerless to solve this problem with exact methods in a reasonable time on large-size instances. In this study, four hybrid metaheuristics are proposed : MA, HGGVNS, HGSA, HSA to solve the problem. Since the same structure of solutions is used in such hybrid metaheuristics, this section will first introduce the method of representing and evaluating a solution, then a simple insertion heuristic is introduced to obtain the initial solution. Finally, the detail of each hybrid metaheuristic is presented.

2.3.1/ SOLUTION REPRESENTATION

In this chapter, a solution is represented by several routes in which ordered visits are composed. A commonly used real number encoding method is employed to encode the routes. Besides, since lunch breaks are regarded as fictive visits, the location of the fictive visit equals one of the locations of patients, and the lunch duration and lunchtime window can be deemed the service duration and the time window of the fictive visit, respectively. The caregiver'k route can be defined as r k = {v 0 , v 1 , ..., v i , ..., v n k }, where v 0 , v i , v n k represent the origin, i th visit, and the destination of r k . Hence, the solution s = {r 1 , r 2 , ..., r k , ..., r |K| }, where |K| is the number of caregivers in the solution.

The solution representation is illustrated in Figure 2.3 based on the example solution presented in Figure 2.2. 15, 16 and 17 represent fictive visits, and each of them is put between two real visits. For example, it can be interpreted that the lunch in route 1 is taken at the location of visit 11 after the service or at the location of visit 12 before the service.

The objective values are identical in both cases, but the beginning time of the lunch break in the first case is earlier than the second one, and the second case may lead to the infeasible solution due to the lunchtime window. Hence, the break is always deemed to be taken after the service to calculate the start time of the lunch break. Additionally, the break is taken at the depot (end of the route) if it is unnecessary, and then the fictive visit in the route is scheduled before the depot (route 2 in Figure 2.3).

2.3.2/ SOLUTION EVALUATION

In the optimization process, only feasible solutions are allowed. The feasibility of solution s can be evaluated by : Where c 1 (s), c 2 (s), and c 3 (s) are binary variables and represent the satisfaction of skill requirements, time windows, and synchronization constraints, respectively, all of which equal 1 if the corresponding constraints are respected, 0 otherwise. c(s) is also a binary variable, c(s) = 1 if all constraints are satisfied, 0 otherwise. In the formulation of HHCRS-synLB, c 1 (s) is determined by constraints (2.10), c 2 (s) is deduced by constraints (2.5) and (2.19), and c 3 (s) is denoted by constraints (2.20).

c(s) = min{c 1 (s), c 2 (s), c 3 (s)} (2.30)

2.3.2.1/ POTENTIALLY FEASIBLE SOLUTION

Due to the synchronization constraints, the start service times of synchronized visits in s should be adjusted to the same when two caregivers' arrival times are different. This adjustment is called "synchronization adjustment". Motivated by the time complexity of the synchronization adjustment, an efficient method is proposed to evaluate the potential feasibility of s without considering synchronization constraints. The potential feasibility of s is evaluated by :

c (s) = min{c 1 (s), c 2 (s), c 4 (s)} (2.31)
Where c 4 (s) is the binary variable, c 4 (s) = 1 represents that the cross synchronization (to be described later) is respected, 0 otherwise. c (s) = 1 indicates that the solution s is deemed potentially feasible and will be evaluated in the next stage to see whether it is really feasible. In contrast, a solution should be dropped out directly without further evaluation if c (s) = 0. c 1 (s) indicates whether all caregivers are qualified for any visits composed in their route. Evidently, it is an easy and quick method to identify an infeasible solution without considering the other constraints. Besides, since a caregiver can only take the lunch break at most once, it is assumed that each caregiver is qualified for only one fictive visit, i.e., only one fictive visit is allowed in each route.

The check of time window constraints (c 2 (s)) is then performed if c 1 (s) = 1. An implicit rule can be revealed is that a solution is infeasible when time windows are violated even if the synchronization constraints are not considered. This rule is based on the principle of the synchronization adjustment that when the visit times of synchronized visits are different, and then the maximal one is adapted as the synchronized visit time. This rule is shown in Figure 2.4 and Figure 2.5.

As shown in Figure 2.4, a new obtained solution involves three routes, in which the pairs (1, 3) and (2,4) represent synchronized visits, and the time above the route is the calcula-ted start service time of each visit. If synchronization constraints are considered, the start service times of synchronized visits should be updated. Firstly, according to the principle of the synchronization adjustment, the visit time of visit 1 in route 1 should be delayed at 9 :30 (same as the visit 3), and then the start service times of subsequent visits served in route 1 will also be postponed. The same rule is applied in route 2 and route 3, and the adjustment result is finally presented in Figure 2.5. It is found that each adjustment may delay the start service times of some visits (e.g., the start service time of visit 8 is delayed from 9 :40 to 10 :10). So the solution is infeasible if time windows have already been violated before the synchronization adjustment because the adjustment only expands rather than reduces the violation. After the check of c 1 (s) and c 2 (s), the cross synchronization (c 4 (s)) is also a necessary criterion to decide whether the solution is potentially feasible [START_REF] Afifi | Heuristic solutions for the vehicle routing problem with time windows and synchronized visits[END_REF]Liu et al., 2019a). The cross synchronization indicates that the start service times of synchronized visits can be never synchronized, leading to the solution be infeasible despite the other constraints. Figure 2.6 depicts an example of cross synchronization. Supposing that the pairs (1, 3) and (2,4) represent synchronized visits, it is clear that only one pair of synchronized visits can be served at the same time. In this study, the cross synchronization can be extended to the infeasible synchronization, which indicates that synchronized visits are assigned into one route, and incurs the obviously infeasible solution. A method is developed to identify whether there is any cross synchronization or infeasible synchronization in a solution. This method is based on the transitive closures [START_REF] Aho | The transitive reduction of a directed graph[END_REF] and evaluated by the Floyd-Warshall algorithm [START_REF] Floyd | Algorithm 97 : shortest path[END_REF][START_REF] Warshall | A theorem on boolean matrices[END_REF]. The detail of this method is presented in Algorithm 1. Supposing that there are |NP| patients who require synchronized services in a solution, then an |NP| × |NP| empty matrix Φ is generated. Lines 1-5 count whether there is a link from patient i ∈ NP to patient j ∈ NP in each route. Due to the synchronization constraints, patients in different routes can be connected. Let us take the solution in Figure 2.6 as an example. Lines 1-5 indicate that Φ(1, 2) = Φ(4, 3) = 1, since visits 2, 4 represent the same patient, it can be deduced that Φ(1, 3) = 1. Hence, lines 6-14 use Floyd-Warshall algorithm to count whether there is a connection from patient i ∈ NP to patient j ∈ NP in different routes. After that, lines 15-20 find whether there is a visit cycle for any patient i ∈ NP, i.e., Φ(i, i) = 1, if yes, the algorithm is stopped, and the output c 4 (s) = 0, meaning that the cross synchronization or infeasible synchronization exists in the solution.

for j=1 to |NP| do 9: if Φ(i, n) = 1 and Φ(n, j) = 1 then 10: Φ(i,

2.3.2.2/ ORDER OF THE SYNCHRONIZATION ADJUSTMENT

As mentioned above, the synchronization adjustment is to synchronize the start service times of synchronized visits. However, if there are several pairs of synchronized visits in a solution, the order of the synchronization adjustment must be determined, namely which pair of synchronized visits is adjusted first, and which one should be next. For example, in Figure 2.4, synchronized visits (1, 3) should be synchronized firstly, and then the pair of (2,4). Otherwise, if (2,4) is adjusted firstly and then when (1, 3) is synchronized, the synchronization of (2, 4) will be destroyed. The method for deciding the order of the synchronization adjustment is presented in Algorithm 2. Given the |NP| × |NP| matrix Φ obtained by Algorithm 1 and the set of synchronized patients NP. Lines 1-6 calculate the sum of each patient i representing by the value of Φ. The order of the synchronization adjustment is determined by the value of sum(i) ; the larger the value, the higher the order. The patient with the largest sum value will be adjusted firstly, and then the patient with the second-largest sum value, until all the synchronized patients are adjusted.

In order to identify the feasible solution, the synchronization adjustment should be applied to the potentially feasible solution. Obviously, the start service times of visits will be changed after the synchronization adjustment, so the time window constraints should be evaluated again, and the solution is feasible only when time window constraints are satisfied. The flow diagram of the solution evaluation is displayed in Figure 2.7.

2.3.3/ INITIAL SOLUTION

A simple insertion heuristic is used to generate the initial feasible solution. First, a number of empty routes {r 1 , r 2 , ..., r k , ..., r |K| } (|K| is the number of caregivers) are generated. Each empty route r k = {v 0 , v i , v n k }, where v i and v n k represent the fictive visit and the destination of the route (i.e., the depot), respectively. Since r k is associated with caregiver k, v 0 in r k depends on the starting location of caregiver k. The objective value of an empty route is 0. Then all the empty routes form an empty solution s. All the real visits are stored in a set U.

Each time, a visit i in U is selected randomly and inserted into the solution at the feasible position that minimizes the increase of the objective value. If there is no feasible positions for i, insert i into the solution at an infeasible position which violates the time window constraints. This process is repeated until U is empty. The objective value of generated solution s is evaluated by an augmented objective function (2.32).

Algorithm 2 Procedure for deciding the order of the synchronization adjustment. sum(i)=0 

F(s) = f (s) + TW(s) × β (2.32)
Where f (s) is the objective value of s defined by objective function (2.1), TW(s) is the total violations of time windows, and β denotes the penalization parameter. If s is infeasible, local stochastic moves and local search (mentioned in subsection 2.3.4) are used to optimize this solution until it becomes feasible. For the population-based algorithm, the insertion heuristic is repeated until the size of the population is reached. Algorithm 3 presents the main steps for generating the initial feasible solution.

2.3.4/ MEMETIC ALGORITHM

The memetic algorithm (MA) is first proposed to solve our problem. Our MA is based on genetic algorithm (GA) and local search (LS). GA was first proposed by [START_REF] Holland | Adaptation in natural and artificial systems[END_REF], which simulates the natural evolution process to search for the optimal solution. In recent years, various variants of GA have been proved quite efficient towards the optimization problem in the HHC context [START_REF] Shi | A hybrid genetic algorithm for a home health care routing problem with time window and fuzzy demand[END_REF][START_REF] Erdem | Analysis of electric vehicles in home health care routing problem[END_REF]. Generally speaking, GA consists of three basic operators : selection, crossover, and mutation. In our MA, local search procedure is applied to intensify the solution. The pseudo-code of MA is presented in Algorithm 4. MA starts from an initial population SP generated by the insertion heuristic. Line 2 records the best solution S best in SP to preserve S best from being destroyed by the crossover and mutation. After that, the population is improved by MA (lines 3-12). Lines 4-8 generate the new population for the next generation after the crossover, mutation, and local search procedure. Line 10 executes the selection procedure, where the best solution Algorithm 3 The pseudo-code for generating the initial feasible solution.

Input: An empty solution s, set of all the real visits U ; 1: for k=1 to |U| do 2:

Randomly select a visit i in U ;

3:

if i can be inserted into s feasibility then 4:

Insert i at the position that minimizes the increase of the objective value ; 

2.3.4.1/ SELECTION

The principle of selection operator is to enhance the convergence of the algorithm by conserving high-quality solutions and abandoning lousy solutions in the evolution process, GA will turn into a stochastic search algorithm without selection and has no optimization ability. In this chapter, the elitism strategy is adopted, which indicates that the best solution (elitist individual) is preserved in each generation and copied directly to the next generation. Elitism strategy has the advantage of avoiding high-quality solutions lost during the evolution process. Then in order to keep the size of the population unchanged, the worst solution obtained in the next generation is replaced by this elitist individual.

2.3.4.2/ CROSSOVER

Crossover and mutation are core operators in GA by diversifying the solution space and helping escape from the local optimum. Crossover refers to the operation of replacing and recombining some structures of two-parent individuals to generate new individuals with a high probability P c . Generally, the search ability of GA can be significantly improved through the crossover. There are many useful crossover operators for the GA, and the Order-based crossover operator (OX2) [START_REF] Syswerda | Scheduling optimization using genetic algorithms[END_REF] is used in this chapter. OX2 chooses several random positions of one parent solution, and then the order of the selected positions is imposed on the other parent solution. An example is shown to explain this operator in Figure 2.8. Given two parent solutions without the origin and destination nodes of each route (because these nodes are not involved in the crossover process). Four visits 3, 13, 7, and 8 are selected randomly in parent 1, then the positions of these four visits are found in parent 2, and the order is 8, 7, 3, and 13. Offspring 1 is obtained when these visits in parent 1 are replaced by the same visits in parent 2 orderly, which are 8 → 3, 7 →13, 3→7,13→ 8. The same rule can be performed on parent 2 for the offspring Algorithm 4 The pseudo-code of memetic algorithm. Record the S best in the current SP ; 12: end while Output: S best 2, and the generated offspring are shown in Figure 2.9. For each crossover, 20% of visits are selected in a solution to take part in this process (e.g., 14 visits exist in parent 1, then three visits should be selected randomly). The pseudo-code of crossover is presented in Algorithm 5. Offspring 2 FIGURE 2.9 -Offspring obtained by the crossover process.

Algorithm 5

The pseudo-code of crossover.

Input:

The population SP, parent solutions S 1 and S 2 , offspring S 1 and S 2 , crossover probability P c ; 1: Select S 1 and S 2 from SP using the binary tournament ; 2: if random (0,1)< P c then 3:

(S 1 , S 2 ) = OX2(S 1 , S 2 ) ; 4: else 5:

S 1 = S 1 ; 6: S 2 = S 2 ; 7: end if Output: S 1 , S 2 2.3.4.3/ MUTATION
Mutation is used in GA to increase the diversity of the population and to prevent premature convergence. Different from the crossover, mutation takes place on a single individual with a relatively low probability P m . Three neighborhood structures are defined for our mutation, and one of three neighborhood structures will be applied when the mutation process is performed. Algorithm 6 presents the pseudo-code of mutation.

0-1 relocation : Select one visit randomly and then inserting it into a random position in the solution. This neighborhood can be generally performed on a single route (intra-route) or two distinct routes (inter-route).

1-1 exchange : Select two visits randomly and then exchanging their position in the solution. This neighborhood can be performed on a single route (intra-route) or two distinct routes (inter-route). Considering that synchronized visits share the same characteristics, and therefore these two visits should not be a pair of synchronized visits.

2-opt* : It is noted that 2-opt neighborhood is often used in many studies to improve the solution by exchanging two links with the other two on the same route. However, in our problem, it is hard to apply this neighborhood to find a feasible solution because the route orientation will be changed, leading to the violation of time window constraints. Consequently, a more efficient 2-opt* is adopted here by exchanging two links with the other two in two distinct routes.

Algorithm 6

The pseudo-code of mutation.

Input: A offspring S generated by the crossover operator, mutation probability P m ;

1: if random (0,1)< P m then 2:

Randomly select a neighborhood structure ;

3:

Pick a random solution S from the selected neighborhood structure of S ; 4: end if Output: S

2.3.4.4/ LOCAL SEARCH

Local search is based on the concept of a neighborhood and tries to improve the candidate solution in its neighborhood space. To a certain extent, a neighborhood of a can-didate solution s is a set of solutions that are close to s, i.e., the solutions in the neighborhood share a significant amount of structure with s. Local search uses local moves to explore the neighborhood of s until the stopping criterion (local optima found or timebound elapsed...) is reached, which may, or may not, be able to produce a better solution than s.

Note that local search and mutation are entirely different procedures, and the main differences between local search and mutation can be summarized as follows : (1) In one iteration, local search is performed many times until the stopping criterion is met, while the mutation is only executed once. (2) Local search aims to improve the solution, while the target of the mutation is to diversify the population without considering finding a better solution.

This chapter uses three neighborhood structures, 0-1 relocation, 1-1 exchange, and 2opt* (mentioned in subsection 2. 3.4.3), to perform the local search procedure. When the local search is applied, one of three neighborhood structures is selected randomly, and the candidate solution is moved to one of its neighbors based on this structure. Considering that the local search procedure is quite time-consuming, a random descent based strategy is employed, and the local search stops when the maximum number of iterations without improvement is reached or a fitter solution is found. Finally, Algorithm 7 gives an overview of the local search. Randomly select a neighborhood structure ;

3:

Obtain a new solution s from s based on this neighborhood ; 

2.3.5/ HYBRID GENETIC GENERAL VARIABLE NEIGHBORHOOD SEARCH

The main idea of hybrid genetic general variable neighborhood search (HGGVNS) is the same as MA, while general variable neighborhood search (GVNS) replaces the local search procedure to intensify the population. Variable Neighborhood Search (VNS), an improved local search algorithm, is firstly proposed by [START_REF] Mladenović | Variable neighborhood search[END_REF]. VNS uses different neighborhood structures to search alternately and achieves a good balance between concentration and evacuation. GVNS is an extended version of the VNS, it applies more than one neighborhood in a local search, called variable neighborhood descent (VND) procedure and a shaking procedure. In recent years, many studies have already applied GVNS to solve various kinds of the combinatorial optimization problem [START_REF] Mladenović | A general variable neighborhood search for the one-commodity pickup-and-delivery travelling salesman problem[END_REF][START_REF] Soylu | A general variable neighborhood search heuristic for multiple traveling salesmen problem[END_REF][START_REF] Karakostas | A general variable neighborhood search-based solution approach for the location-inventory-routing problem with distribution outsourcing[END_REF].

Algorithm 8

The pseudo-code of hybrid genetic general variable neighborhood search. 1: Generate initial population SP using the insertion heuristic ; 2: Record the best solution S best in SP ; 3: while Stopping criteria are not met do If S best has a distinct fitness value than those in SP, replace the worst solution in SP by S best ; 23:

Record the S best in the current SP ; 24: end while Output: S best

In VND, given an initial solution and several sequential neighborhood structures firstly, the solution is then searched in the first neighborhood. VND continues according to two rules : (1) when the solution fails to be improved in this neighborhood search, switch to the next neighborhood to continue the search ; (2) if the solution can be improved in this neighborhood search, return to the first neighborhood and start the search again. The shaking procedure is used to diversify the solution before the algorithm starts to improve the solution in a neighborhood.

The neighborhood structures in HGGVNS are the same as the mutation and local search of MA, and the algorithm first applies 0-1 relocation, then the 1-1 exchange and finally the 2-opt*. It is noted that the mutation procedure is deleted in HGGVNS because the shaking procedure in GVNS keeps the same function. In this chapter, the shaking and local search procedures define the same neighborhood structures. The shaking procedure is performed by picking a random solution from a random neighborhood structure of the candidate solution. The pseudo-code of HGGVNS is given in Algorithm 8. Select two parents P1 and P2 by binary tournament ;

8:

Generate two children C1, C2 applying the crossover and mutation operators on the parents ;

9: if random (0,1) <e -( f (C1)-f (P1))/T then 10:
C1 is accepted as the offspring 1 ; P1 is chosen as the offspring 1 ; 13:

end if 14: if random (0,1) <e -( f (C2)-f (P2))/T then 15:
C2 is accepted as the offspring 2 ; P2 is chosen as the offspring 2 ; In this section, a hybrid genetic simulated annealing (HGSA) is developed by combining GA and simulated annealing (SA). The earliest idea of SA was proposed by [START_REF] Metropolis | Equation of state calculations by fast computing machines[END_REF] and was inspired by the principle of solid annealing. SA starts from a high initial temperature T 0 , with a continuous decline in the temperature controlled by a Boltzmann's constant b ∈ (0,1) until the terminal temperature T t is reached. SA can escape from the local optimum by accepting a new solution with Metropolis criterion, i.e., the better solution will always be accepted, while the degraded solution is accepted with a probability e -∆/T , where ∆ is the difference between the objective value of the new solution and that of the current solution, T represents the current temperature.

Our HGSA starts from the initial population SP and an initial temperature T 0 . Then the new population is generated by the crossover and mutation of GA, and Metropolis criterion of SA. Two offspring produced by the crossover and mutation are accepted according to the Metropolis criterion, and the Metropolis criterion is conducted by comparing the objective values between two parents and offspring, respectively. Metropolis sampling stability criterion is adopted to determine the number of candidate solutions produced at each temperature. ML steps are set as the maximum number of iterations at temperature T, which indicates that there are ML new solutions to be handled by the Metropolis criterion at each temperature. The implementation of HGSA is illustrated in Algorithm 9, in which the algorithm stops when the current temperature is lower than the terminal temperature or the maximum number of iterations without improving the best solution is reached.

2.3.7/ HYBRID SIMULATED ANNEALING

Hybrid simulated annealing (HSA) is a hybrid metaheuristic that combines the SA and LS. SA in this algorithm guarantees the ability of stochastic search, while LS intensifies the solution. The outline of HSA is described in Algorithm 10 (all the parameters are the same as the SA and LS mentioned above). Firstly, an initial solution S is generated (line 1), and then this initial solution is improved by HSA until stopping criteria are reached (lines 3-18). Line 7 applies the local search procedure (see Algorithm 7) to improve the candidate solution. In order to fully explore the neighborhood of the candidate solution, the local search in this algorithm terminates only when the maximum number of iterations without improvement is reached. If local search does not improve the candidate solution, Localmoves is implemented to diversify the solution (lines 7-9). In Localmoves, three neighborhood structures (0-1 relocation, 1-1 exchange, and 2-opt*) are sequentially applied to deal with the candidate solution. The procedure of Localmoves is presented in Algorithm 11. After that, the generated solution is accepted according to the Metropolis criterion (lines 10-12). Lines 13-15 update the best solution if it is improved. The algorithm stops when the current temperature is lower than the terminal temperature or the maximum number of iterations without improving the best solution is reached.

Algorithm 10

The pseudo-code of hybrid simulated annealing.

Input: T 0 , T t , b, ML ;

1: Generate an initial solution S using the insertion heuristic ; 

2.4/ NUMERICAL EXPERIMENTS

In this section, experimental results are reported by conducting several sets of experiments to evaluate the performance of the proposed algorithms. Since no publications have dealt with the same problem in the literature, the benchmark instances of this problem are missing. Due to this, four group instances are generated to suit our problem as the test instances. A commercial solver, Gurobi (version 8.1.0), is used to obtain the benchmark solutions, and the efficiency of the algorithms is assessed by comparing the solutions obtained by metaheuristics with the benchmark solutions. Finally, this section further discusses the sensitivity of the scale of synchronized visits, the width of time windows, break regulations, and departure strategies in the instances.

2.4.1/ CONSTRUCTION OF THE EXPERIMENTAL INSTANCES

The instances generated in this chapter are derived from a set of VRPTW benchmark instances introduced by [START_REF] Solomon | Algorithms for the vehicle routing and scheduling problems with time window constraints[END_REF]. All Solomon's instances are divided into three categories with 25, 50, and 100 clients respectively. Each category is further grouped into three sets C, R and RC based on the distribution of the client's location. It is noted that the parameters used in Solomon's instances, such as the locations of clients and the depot, time windows, and service durations, can be used directly in this study. The other parameters dedicating to the targeted problem, such as lunch time window, lunch duration, mode of the service vehicle, and some basic parameters related to the caregivers need to be generated by ourselves. Furthermore, the synchronized visits are defined by overlapping some visits from the schedules of the involved patients.

To sum up, four groups of instances are generated. The first group consists of smallsize instances in which the number of patients is up to 12. In this group, three instances are generated, and each instance corresponds to three distinct amounts of synchronized visits. The other three groups contain Solomon's instances with 25, 50, and 100 clients respectively. Each group is adjusted to three sets C, R, RC, where each set contains three instances and each instance further contains three distinct amounts of synchronized visits and one type of time windows. The type of time windows denotes the width of visits' time window. Three types of time windows, narrow (n), medium (m) and wide (w), are defined. It is worth noting that the type of time windows is a relative concept rather than an absolute one. For example, the time windows defined for instances C102, C103, and C104 in set C are narrow, medium, and wide, respectively, because C102 corresponds to the narrowest time windows among these three instances.

According to the collaborative HHCC, lunch breaks should be taken at [11 :30, 13 :30] for 30 minutes. Therefore, the corresponding lunchtime window and duration are converted to [400,600], and 30 in the instances, respectively. Moreover, according to the survey, the proportion of synchronized patients is not fixed but usually less than 20%. Hence, in order to give a sensitivity analysis, different proportions of synchronized visits are set in an instance. For example, in each 50-size instance, it is assumed that there are three scenarios in which 6%, 10% and 20% of patients require the synchronized services. In real-life, the number of caregivers has no relation with the number of patients and depends on caregivers' availabilities. Therefore, the number of caregivers in our instances is defined just to ensure all requirements to be met. The characteristics of generated instances are shown in Table 2.1. For a better illustration, each instance is noted as XXX-p-k-syn-t in this chapter, where XXX denotes the label of Solomon's instances ; p,k, and syn denote the number of the patients, caregivers, and pairs of synchronized visits, respectively ; t represents the type of time windows. Since small-size instances do not contain the type of time windows, they are labelled as XXX-p-k-syn.

2.4.2/ PARAMETER TUNING

Algorithm parameters are essential because they influence the performance of the algorithms. In order to tune the parameters, a number of approaches have been developed, such as F-race [START_REF] Birattari | A racing algorithm for configuring metaheuristics[END_REF], sequential parameter optimization (SPO) [START_REF] Bartz-Beielstein | Sequential parameter optimization[END_REF], relevance estimation and value calibration method (REVCM) [START_REF] Nannen | Efficient relevance estimation and value calibration of evolutionary algorithm parameters[END_REF]. In this study, F-race method is adopted for parameter tuning. This method assesses a set of parameter configurations and discards the bad configurations (verified by the Friedman test) during the evaluation process.

Algorithm 12

The pseudo-code of F-race.

Input: Set of parameter configurations C, set of instances I, the number of races Ra, it = 1, num = 0, a matrix OM ; 1: while Stopping criteria are not met do 2:

Randomly choose an instance i from I ; Calculate the average rank R j for c j based on the rank obtained by lines 7-9.

12:

Execute the Friedman test ; 13: if null hypothesis is rejected then 14:

The c j with minimum R j is denoted to c best and taken as the control configuration ; The procedure of F-race is presented in Algorithm 12. F-race starts with the set of parameter configurations to be evaluated and the set of instances selected for conducting the experiments. Ra is a predefined race used to collect enough information for the Friedman test. it indicates the current iteration, and OM(it,j) records the results of experiments. Each iteration, F-race randomly selects an instance and conducts the experiments on this instance using all the candidate configurations (lines 2-6). Each configuration is executed 5 times and the average objective value is recorded as the result. Lines 7-9 rank each configuration based on the value of OM(it,j). If enough iterations are reached, the procedure of discarding the bad configurations is performed. Lines 11-12 execute the Friedman test. The details of lines 7-9 and lines 11-12 can be referred to subsection 2.4.4.1, where na and np in subsection 2.4.4.1 equal |C| (the cardinality of set C) and it, respectively. The null hypothesis in line 13 indicates that there is no difference between the results obtained by different configurations. If the significant difference has been detected among configurations, lines 14-15 further perform the post-hoc procedure to identify the significantly bad configurations compared with the control configuration. The detail of lines 14-15 can be referred to subsection 2.4.4.2. Line 16 sorts the configurations based on the calculated p-values in the post-hoc procedure from smallest to largest. Lines 17-21 judge which configuration should be discarded. Suppose that the p-value of jth configuration is defined as p j , if p j is less than α/(|C|j), the null hypothesis is rejected, meaning that this configuration is significantly bad and should be discarded. The F-race stops when only one parameter configuration has remained in |C| or num exceeds the maximum predefined number. [120,150] 120

Other parameters are the same as HGSA This chapter selects nine instances from three groups (25, 50, and 100 size) for the Frace, and three instances are randomly picked from each group. Ra is commonly defined as 5 [START_REF] Montero | A beginner's guide to tuning methods[END_REF]. The significance level α equals 0.05. Note that one of the termination criteria of F-race, maximum number of num, depends on the number of configurations in C, since num plus 1 when each configuration in C is tested. The maximum number of num should be defined carefully to guarantee the comparison in the F-race to be efficient and fair [START_REF] Veček | Parameter tuning with chess rating system (crs-tuning) for meta-heuristic algorithms[END_REF]. Consider the different number of candidate parameter configurations in four algorithms, the maximum number of num is defined to 1500, 800, 5000, and 1500 for MA, HGGVNS, HGSA, and HSA, respectively. More specifically, if there are several configurations remained in |C| after the F-race procedure, the configuration with the shortest computational time is chosen. Table 2.2 shows the candidate parameter configurations and final tuning results, where column 3 states the range of tested parameters, and column 4 indicates the most suitable value for each parameter.

It should be noted that the size of the instance refers to the number of the patients in the corresponding instance.

2.4.3/ EXPERIMENTAL RESULTS AND INTERPRETATIONS

In this chapter, each algorithm is executed 10 times for each instance. Since it is quite time-consuming for Gurobi to solve even some of the 25 size instances, while it is impossible for the HHC management to wait several hours for one planning solution. Hence, the maximum execution time is set to 7200s for Gurobi, i.e., Gurobi stops and reports the lower bound and upper bound value when the running time attains 7200s. Notations used in the tables for illustrating the experimental results are as follows :

(1) Instance : the label of the instance.

(2) OV : objective value obtained by Gurobi solver.

(3) Best : best objective value obtained within 10 runs.

(4) Avg : average objective value obtained within 10 runs.

(5) Worst : worst objective value obtained within 10 runs.

(6) Std : standard deviation value.

(7) T : average execution time within 10 runs.

(8) Gap : the gap between the OV and Best, it equals (Best-OV)/ OV *100%. If Gurobi only reports the lower bound and upper bound, the upper bound replaces the OV to calculate the gap.

(9) Bold font : the best solution found in such experiments.

The experimental results for both small-size and 25 size instances are detailed in Table 2.3, in which each instance is calculated by Gurobi and four hybrid metaheuristics. According to the results, it is observed that Gurobi can find the optimal solution for small-size instances, but shows the ineffectiveness in some 25 size instances because Gurobi cannot solve these instances within the limited time (only the lower bound and upper bound are obtained). Furthermore, the computational time of Gurobi dramatically increases with the number of synchronized visits and the width of the time windows. Besides, it is also found that all the hybrid metaheuristics are quite efficient for small-size instances as they obtain the same best solutions as Gurobi. For 25 size instances, MA, HGGVNS, and HSA are still powerful because the gaps are less than 5%, especially the HGGVNS, only 1%-2% average gap is maintained. However, HGSA becomes powerless in certain 25 size instances since the corresponding gaps are larger than 5%.

Table 2.4 and Table 2.5 respectively report the experimental results for 50 and 100 size instances. In these tables, only hybrid metaheuristics are applied to handle the problem because Gurobi clearly fails to obtain the optimal solution for these two size instances within the limited time. In order to further demonstrate the performance of the proposed hybrid metaheuristics, Table 2.6 summarizes the number of best solutions obtained by each metaheuristic in the large-size (25, 50, and 100 size) experiments. The results depict that HGGVNS obtains the best solution for the majority of instances (64.2%) during the experiments. By contrast, MA, HGSA, and HSA find the best solution for 24 (29.63%), 3 (3.7%), and 14 (17.28%) instances, respectively. Furthermore, Table 2.6 also details the proportion of best solutions obtained by four algorithms for different size instances. For example, HGGVNS deals with 22 (81.48%), 13 (48.15%), and 17 (62.96%) instances to optimality for 25, 50, and 100 size instances, respectively. Therefore, it can be concluded that HGGVNS is quite efficient for all the instances especially the 25 size instances.

It is worth noting that two parameters, the scale of synchronized visits and the width of time windows, reflect the computational times (CT) shown in Tables 2.3-2.5. Hence, this section carries out a comprehensive analysis of the variation of CT, considering one of the two parameters mentioned earlier separately.

As mentioned above, each instance consists of three distinct amounts of synchronized visits, and the scale of synchronized visits is defined here as small, medium, and large for each instance. For example, instances C105-25-1-n, C105-25-3-n, and C105-25-5-n belong to the small, medium, and large scale of synchronized visits, respectively. The variation of the CT, depending on the scale of synchronized visits for four hybrid metaheuristics, is presented in Figure 2.10, in which three sub-figures that consider the different size (25, 50, and 100) instances are involved. It is worth noting that since certain instances keep the same scale of synchronized visits, the average value of the CT is calculated. For example, the CT of small scale synchronized visits for 25 size instances is calculated by (43.53+42.76+39.37+36.47+38.57+39.99+33.47+36.27+30.45)/9=37.88 for MA. Figure 2.10 shows that there is a positive correlation between the CT and the scale of synchronized visits. More specifically, the correlation coefficient increases with the scale of synchronized visits in MA, HGGVNS, and HGSA. However, the relationship between the scale of synchronized visits and the CT is almost linear in HSA. Furthermore, HSA also keeps the weakest correlation, that is, while the scale of synchronized visits increase, the CT for HSA increases slightly.

By obeying the same rule of the last analysis, the variation of the CT depending on the width of time windows for four hybrid metaheuristics is shown in Figure 2.11. An obvious rule that can be observed in Figure 2.11 is that the increase in the CT calculated by HSA with the increase of the width of time windows. This rule is a normal state since usually the wider the time windows, the longer times are spent to converge the algorithm. However, for the other three algorithms, the variation of the CT also depends on the size of instances. It is found that there is a negative correlation between the CT and the width of time windows in 25 and 50 size instances, but a positive correlation function can be obtained to model the variation of CT depending on the width of time windows in 100 size instances. This situation might be due to the shortage of caregivers in 25 and 50 size instances, so it is time-consuming to find an initial feasible solution for these two sets of instances with narrow time windows. 

2.4.4/ COMPARISON BETWEEN THE SOLUTIONS OBTAINED BY FOUR ALGO-

RITHMS

Note that it is not enough to compare the algorithms using descriptive statistics alone. This section further explores the statistical differences between the algorithms using the Friedman test, a well-known non-parametric statistical method, and the post-hoc procedure. Friedman test is a multiple comparisons method that aims to detect significant differences between the treatment of multiple algorithms [START_REF] Derrac | A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms[END_REF].

In order to draw the inferences of algorithms, two hypotheses, the null hypothesis H 0 and the alternative hypothesis H 1 are first denoted as follows :

H 0 : there is no effect or no difference between the results obtained by different algorithms.

H 1 : there is an effect or difference between the results obtained by different algorithms. In this chapter, four Friedman-tests are performed for four indicators, "Best", "Avg", "Worst" and "Std", respectively. In each Friedman-test, four algorithms are compared based on the experimental results presented in Tables 2.4-2.5. Hence, the number of algorithms na = 4, and the number of problems (instances) np = 54. The first step for the Friedman-test is to calculate the average rank R j for each algorithm j. The process of the rank calculation can be summarized as follows :

(1) Collect the results obtained by each algorithm.

(2) For each problem i, the rank of algorithm j is defined as r j i , which is ranked from 1 (best result) to na (worst result).

(3) The average rank for each algorithm R j = 1 np np i=1 r j i . After the rank calculation, the Friedman statistic F f can be computed using :

F f = 12np na(na + 1) [ na j=1 R 2 j - na(na + 1) 2 4 ] (2.33)
Since Friedman statistic always gives a conservative effect, [START_REF] Iman | Approximations of the critical region of the fbietkan statistic[END_REF] developed a derivation from F f using :

F ID = (np -1)F f np(na -1) -F f (2.34)
F ID is distributed based on an F distribution with na-1 and (na-1)(np-1) degrees of freedom. After that, the p-value can be computed using normal approximations according to the value of F ID . Suppose that α is the level of significance, which is defined as α = 0.05 here, if p-value is less than α, the null hypothesis H 0 is rejected ; otherwise, H 1 is rejected. Note that Friedman test can only detect the differences over the whole comparisons of algorithms, while the comparison between two algorithms is impossible. In order to com-pare the difference between a control algorithm and the other algorithms, the post-hoc procedure is applied to detect a set of hypotheses. This set consists of na-1 hypotheses that indicate the differences between na-1 algorithms and the control algorithm.

The test statistic z for comparing two algorithms i and j can be calculated using different non-parametric procedures, and the Friedman test is selected in this chapter.

z = (R i -R j ) na(na + 1) 6np (2.35)
The p-value for each hypothesis can be computed using the z-value through a normal approximation [START_REF] Derrac | A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms[END_REF]. Since HGGVNS shows the best performance in the previous analyses, it is taken as the control algorithm. Table 2.8 exhibits the z-values and p-values obtained by the post-hoc procedure. The higher p-value obtained by an algorithm represents that this algorithm has a less significant difference with HGGVNS, i.e, it shows better performance.

The results in Table 2.8 suggest that MA finds better results than HGSA and HSA because it obtains the highest p-value among three algorithms for all the indicators. Furthermore, the results of p-values also support that HSA is much better than HGSA for "Best", "Avg", and "Worst" indicators, while worse than HGSA for "Std" indicator. Finally, as can be seen in Table 2.8, HGGVNS exhibits a significant improvement over HGSA and HSA in terms of all four indicators and over MA in terms of "Avg","Worst", and "Std" because the corresponding p-values are less than 0.05. However, it is worth noting that HGVNS only shows a slight improvement over MA in terms of "Best" indicator since the corresponding p-value is larger than 0.05 but less than 0.1. Since HGGVNS is proven to be the most efficient approach according to the statistical results shown in Section 2.4.4, it will be applied to compare the performance of different break regulations, i.e., lunch breaks and temporary breaks. The results of solving 50 size instances are presented in Table 2.9. As indicated in Table 2.9, the best solutions under the environment of temporary breaks are slightly better than the lunch breaks, since the algorithm obtains the best solution for 16 and 11 instances under the environment of temporary breaks and lunch breaks, respectively. In order to intuitively observe the effects of different break regulations, Figure 2.12 displays the comparisons of computational times between two breaks. Figure 2.12 shows that the algorithm solves the temporary breaks problem with longer computational times, which is partly because the temporary break conditions need to be continuously assessed in the optimization process. Consequently, HHCCs can make the choice of the break regulations with the concern of saving the operational costs first or saving the computing times first.

2.4.6/ SENSITIVITY ANALYSIS OF DEPARTURE MODES FOR CAREGIVERS

According to the reality of an investigated HHCC, this study assumes that the caregivers can depart either from the depot or their homes depending on the service vehicles they used, though all of them must finish their routes at the depot. This strategy, so called Depot and Home to Depot (DHD), copes with the real practice of certain HHCCs. However, it might not be the strategy with minimal operational cost because the cost of an HHC plan can be greatly impacted by the caregivers' geographical areas. Hence, it is better to discuss the impact of different departure modes on the final results. In this section, two scenarios with a single departure mode are constructed. One scenario contains the instances where all the caregivers start from the depot (Depot to Depot, DD mode), and the other scenario contains the instances where all the caregivers start from their homes (Homes to Depot, HD mode).

When Similar to Section 2.4.5, the performance of the original departure strategy, i.e., DHD mode, and the two pure departure strategies, i.e., DD mode and HD mode, are compared with the experimental results of solving 50 size instances using HGGVNS. As shown in Table 4.7, the best solutions with DHD mode dominate the others for the majority of the instances (13/27 ≈ 48.15%), while HD mode is dominated by the other two modes for nearly all the cases (23/27 ≈ 85.19%) in terms of the best solutions. DHD mode performs even better with regard to average results within 10 runs (17/27 ≈ 62.96%). Furthermore, as shown in Figure 2.13, less CPU time is consumed to obtain the final solution with the hybrid DHD mode than the other two pure modes (DD and HD) for the majority of the instances.

An interesting phenomenon observed is that the efficiency of a departure strategy depends on the distribution of locations in the service network. According to the experimental results, DHD mode performs the best for instances in set R while DD mode dominates the others for the majority of the instances in set C.

To sum up, it can be concluded that DHD mode will be the best choice for HHC managements to plan and schedule visits to caregivers in general, especially for the instances in set R. 

2.5/ CONCLUSIONS

A home health care routing and scheduling problem considering several practical constraints (mixed departure mode, time windows, synchronized visits, and lunch breaks etc.) is studied in this chapter with an objective to minimize the total operational costs.

A MIP is constructed for the targeted problem and four hybrid metaheuristics (MA, HGGVNS, HGSA, and HSA) are developed. Experimental results are based on a set of instances adjusted from instances in [START_REF] Solomon | Algorithms for the vehicle routing and scheduling problems with time window constraints[END_REF], and results obtained by Gurobi solver for small-size instances are applied as benchmark solutions. Friedman test and the post-hoc procedure are used to detect the significant differences between the algorithms.

The experimental results highlight the best performance of HGGVNS for solving the targeted problem compared with the other three algorithms. First, HGGVNS obtains the best solution for 64.2% of the tested instances and maintains a small average gap (less than 2%) from the optimal solutions found by Gurobi. Then, the results of Friedman test support the existence of significant differences among algorithms and prove that HGGVNS obtains the better results than the other algorithms with regard to four indicators ("Best", "Avg", "Worst", and "Std"). Finally, the results of the post-hoc procedure indicate that HGGVNS shows a significant improvement over HGSA and HSA on all four indicators and a slight improvement over MA in terms of the "Best" indicator. Apart from HGVNS, it is observed that MA is also an efficient algorithm for the studied problem and can be further researched in the future. However, HGSA and HSA show the mediocre performance, maybe they should be redesigned by integrating with other optimization technologies.

According to the sensitivity analysis, it is concluded that the effectiveness of the algorithm has a positive correlation with the scale of synchronized visits. As for the width of time windows, no consistent correlations can be observed with the effectiveness of the proposed algorithms. Experimental results with two different break regulations (lunch or temporary breaks) show that the costs for the temporary breaks strategy are slightly less than the lunch breaks regulation. According to the comparison among three departure strategies (DHD, DD and HD), it is observed that the objective values can be influenced by the distribution of the locations in a service network. The mixed mode, i.e., DHD mode, performs the best for the majority of the instances, especially for the instances with randomly located patients.

TIME-DEPENDENT HHCRSP UNDER FUZZY ENVIRONMENT

3.1/ PROBLEM DESCRIPTION

In HHCRSP, two parameters, travel times between any two locations and service times for patients, deeply influence the solution. Based on our observation, most researchers assumed these two parameters as pre-defined values, which are impractical in real-life.

When the caregiver drives to travel across urban areas, travel times usually remain timedependent because of rush hours in the morning and evening. Service times are uncertain and determined by the health condition of patients, they cannot be defined before caregivers start the services. In the literature, time-dependent travel times are rarely mentioned in the HHC field, about which only two papers [START_REF] Rest | Daily scheduling of home health care services using time-dependent public transport[END_REF] According to the literature, most studies considered time windows suppose that only one time window is proposed by each patient for the caregivers to take operations [START_REF] Riazi | A column generationbased gossip algorithm for home healthcare routing and scheduling problems[END_REF][START_REF] Martin | Iacs-hcsp : Improved ant colony optimization for large-scale home care scheduling problems[END_REF]. However, the situation that one patient covers multiple time windows is less discussed in the HHC domain. In reality, patients may prefer offering multiple shorter time windows to a single long time interval to receive services. Consequently, it is more reasonable to consider HHCRSPs with multi-time-window constraints than the single-time-window problems. However, although multiple time windows constraint is common in vehicle routing problem (VRP) [START_REF] Belhaiza | A hybrid variable neighborhood tabu search heuristic for the vehicle routing problem with multiple time windows[END_REF] and team orienteering problem [START_REF] Lin | A simulated annealing heuristic for the multiconstraint team orienteering problem with multiple time windows[END_REF], it has not been considered in HHCRSP.

Considering the factors mentioned above, this chapter proposes a new HHCRSP that features time-dependent travel times, fuzzy service times, and multiple time windows. Besides, some complicated constraints, such as synchronized services and lunch breaks, are also concerned. To the best of our knowledge, this problem has never been researched before in the literature.

In this chapter, a fuzzy optimization model is first proposed to formulate the HHCRSP, then an adaptive large neighborhood search (ALNS) with some particular design parts is developed to address the model. Many benchmarks are used to prove the efficiency and 59 effectiveness of ALNS, and experimental results are reported concerning the generated instances. The application of the proposed issue is described by a case study, in which this chapter innovatively uses BP Neural Network to forecast the travel time since this parameter remains unknown before the travel.

The HHCRSP concerned in this chapter is based on the HHCRSPsynLB in chapter 2, while the time-dependent travel time, fuzzy service time, and multiple time windows are specially considered. Hence, most of the definitions of this chapter's problem are the same with HHCRSPsynLB, except for some distinctive features as follows :

All the locations are distributed over two special geographies, urban areas or suburbs, and the geographies of two nodes affect the time-dependent travel time. Each visit i is associated with a set T W i = {[e g i , l

g i ], g = 1, 2, . . . , g i } of g i time windows, and a fuzzy service time s i . If caregivers arrive early than any e g i , they should wait until the corresponding patient is available. The caregiver's workload is assumed to equal total travel times plus service times and cannot exceed a threshold L.

The rest of this chapter is prepared as follows : Section 3.2 introduce the mathematical modelling ; Section 3.3 describes the solution procedure ; Section 3.5 reports the experimental results, and this chapter ends up with conclusions and perspectives in Section 3.5.

3.2/ MATHEMATICAL MODELLING

3.2.1/ TIME-DEPENDENT TRAVEL TIMES MODEL

Researchers mainly considered discrete or continuous time-dependent travel times. Discrete travel time is represented by a stepwise function [START_REF] Malandraki | Time dependent vehicle routing problems : Formulations, properties and heuristic algorithms[END_REF], and it does not always satisfy the natural assumption, First-In First Out (FIFO) property. FIFO indicates that the caregiver who departs an arc (i, j) earlier will arrive before or at the same time as another caregiver travels the same arc but leaves later. Hence, the stepwise function should be non-decreasing to meet FIFO.

Compared with discrete travel times, continuous travel times model the reality more accurate [START_REF] Rest | Daily scheduling of home health care services using time-dependent public transport[END_REF]. This study adopts the time-dependent travel time model proposed by [START_REF] Ichoua | Vehicle dispatching with timedependent travel times[END_REF], which considers the continuous travel time and holds the FIFO property as well. The model assumes that the vehicle speed is decided by a step function and changes when the vehicle crosses the boundary of time periods. Let T = {1, 2, . . . , c} be the set of periods, and V u i j represents the speed that vehicles travel from nodes i and j in period u. The travel time between node i and j can be calculated using Algorithm 13. t i indicates the departing time from node i, and t j denotes the arrival time at node j. t and d i j represent the current time and distance between i, j, respectively. t u is the boundary time between period u and u + 1. Noted that u = c is the last period, t c is set to a big number to guarantee t j ≥ t c will never be satisfied.

In Algorithm 13, V u i j is unknown because it can only be recorded after the travel. However, considering that the historical data of V u i j are accessible, it is reasonable to estimate the value of V u i j using a forecasting approach. The neural network can get the closest result to the expected output when the input is given through its own training and learning, while the mathematical equation of the mapping relationship between input and output Algorithm 13 Steps for calculating travel time.

1: t i , t j , t, t u , d i j , V u i j 2: t ← t i ; t j ← t + d i j /V u i j ; d ← d i j 3: while t j > t u do 4: d ← d -V u i j (t u -t) 5:
t ← t u 6:

t j ← t u + d/V u+1 i j 7:
u ← u + 1 8: end while Output: t jt i is not necessary. BP neural network represents a multilayer feed-forward neural network trained according to the error back-propagation algorithm. BP neural network has the ability of self-learning, self-adaptive, and strong non-linear mapping. It can accurately and effectively simulate the non-linear problem even when sufficient information about the relationship between inputs and outputs is absent. Moreover, BP neural network can erase the limitations of traditional regression methods and approximate an arbitrary nonlinear function with satisfactory precision [START_REF] Guo | A case study on a hybrid wind speed forecasting method using bp neural network[END_REF]. In recent years, BP neural network has been successfully employed in various forecasting realms, such as stock price prediction [START_REF] Wang | Forecasting stock indices with back propagation neural network[END_REF], carbon price prediction [START_REF] Sun | A carbon price prediction model based on secondary decomposition algorithm and optimized back propagation neural network[END_REF], and battery state of charge estimation [START_REF] Guo | Soc estimation of lithium battery based on improved bp neural network[END_REF].

Note that the historical data of V u i j looks to be non-linear since no well-known distribution can fit them well, and the relationship information between inputs and outputs are quite limit. The advantages of BP neural network mentioned above indicate that this technique is efficient and powerful for non-linear problems and thus is quite suitable for the prediction purpose of this chapter.

3.2.2/ FUZZY THEORY

The fuzzy theory was first proposed by [START_REF] Zadeh | Fuzzy sets[END_REF] to hand vague and uncertain information. A fuzzy set can be described by some membership functions, such as triangular, trapezoidal, and Gaussian function. Each event corresponds to a membership degree which is calculated by the membership function and belongs to [0, 1]. The closer the membership degree is to 1, the higher degree this event belongs to the fuzzy set. This chapter introduces the classic triangular membership function to represent the fuzzy logic.

Suppose a triangular fuzzy number c = (c 1 , c 2 , c 3 ), where c 1 and c 3 are the left and right boundary, and their membership degrees are 0. c 2 has the highest membership degree 1. The membership function for c is determined by :

A c (x) =                            0, x ≤ c 1 , x ≥ c 3 f c (x) = x -c 1 c 2 -c 1 , c 1 ≤ x ≤ c 2 g c (x) = c 3 -x c 3 -c 2 , c 2 ≤ x ≤ c 3 1, x = c 2 (3.1)
To address the fuzzy uncertainty, researchers have developed useful theories to describe the fuzzy event. This study applies the methodology proposed by Jim énez et al. ( 2007) to rank the fuzzy data. The membership degree of c is calculated based on (3.1), and then its expected interval (EI) is defined as :

EI(c) = [E c 1 , E c 2 ] = [ 1 0 f -1 c (x) dx, 1 0 g -1 c (x) dx] = [ 1 0 ((c 2 -c 1 )x + c 1 ) dx, 1 0 ((c 2 -c 3 )x + c 3 ) dx] = [ c 1 + c 2 2 , c 2 + c 3 2 ] (3.2)
Where f -1 c (x) and g -1 c (x) represent the inverse function of f c (x) and g c (x), respectively. Expect value (EV) of c is evaluated with :

EV(c) = E c 1 + E c 2 2 = c 1 + 2c 2 + c 3 4 (3.3)
Jim énez et al. ( 2007) also presented a transformation method for the inequality including fuzzy numbers. Suppose that ãx ≥ b, where x ∈ R n is a decision vector, ã = (a 1 , a 2 , a 2 ) and b = (b 1 , b 2 , b 2 ) are two triangular fuzzy numbers. Formula (3.4) can be used to replace the original constraints.

(α (a 1 + a 2 ) 2 + (1 -α) (a 2 + a 3 ) 2 )x ≥ α (b 2 + b 3 ) 2 + (1 -α) (b 1 + b 2 ) 2 (3.4)
Where α ∈ [0, 1] is a feasibility degree defined by the decision-maker, and a higher α means higher feasibility for the constraint.

3.2.3/ MATHEMATICAL MODEL

As the notations used for the mathematical model are same with notations in HHCRSP-synLB, this section thus defines distinctively employed notations as follows :

Parameters : d i j : distance associated with arc (i, j). The MIP model is given as follows :

f = Min( i∈N j∈N k∈K x k i j t i j + i∈V s i + C v i∈V k∈K x k i(m+n+1) ) (3.5) Subject to : j∈V x k 0 j + i∈DC j∈V x k i j ≤ 1 ∀k ∈ K (3.6) j∈V x k i j ≤ w k i ∀i ∈ DC, k ∈ K (3.7) i∈V x k i(m+n+1) = z k j∈V x k 0 j + (1 -z k ) i∈DC j∈V x k i j ∀k ∈ K (3.8) j∈V x k 0 j + i∈DC j∈V x k i j = i∈V x k i(m+n+1) ∀k ∈ K (3.9) i∈N x k i j = i∈N x k ji ∀ j ∈ V, k ∈ K (3.10) ts k i + s i + t i j + (x k i j -1)M ≤ ts k j ∀i, j ∈ V, k ∈ K (3.11) g∈T W i tw g i = 1 ∀i ∈ V (3.12) (tw g i -1)M + e g i j∈N x k i j ≤ ts k i ≤ l g i j∈N x k i j + (1 -tw g i )M ∀i ∈ V, k ∈ K, g ∈ T W i (3.13) a k + t i j ≤ ts k j ∀i ∈ DC ∪ {0}, j ∈ V, k ∈ K (3.14) ts k i + s i + t i(m+n+1) ≤ b k ∀i ∈ V, k ∈ K (3.15) i∈N y k i = i∈N x k i(m+n+1) ∀k ∈ K (3.16) y k i ≤ j∈N x k i j ∀i ∈ N, k ∈ K (3.17)
ts k i + y k i s i + (y k i -1)M ≤ tL k ∀i, j ∈ N, k ∈ K (3.18) tL k + LD + t i j + (y k i + x k i j -2)M ≤ ts k j ∀i, j ∈ N, k ∈ K (3.19) LB ≤ tL k ≤ LE ∀k ∈ K (3.20) j∈N k∈K x k i j = 1 ∀i ∈ V (3.21) i∈N x k i j ≤ q k j ∀ j ∈ V, k ∈ K (3.22) k∈K ts k w i = k∈K ts k w j ∀i, j ∈ (1, . . . , o), (w 1 , . . . , w o ) ∈ S yn (3.23) i∈N j∈N x k i j t i j + i∈V j∈N x k i j s i ≤ L ∀k ∈ K (3.24) h i -h j + x k i j (n + 1) ≤ n ∀i, j ∈ V, k ∈ K (3.25) x k i j = 0 ∀i, j ∈ DC ∪ {0, m + n + 1}, k ∈ K (3.26) x k i j , y k i , tw g i binary (3.27)
The objective function (3.5) minimizes the total costs, where the first two terms represent the additional incomes of caregivers, and the last term indicates the costs of vehicles. Constraints (3.6)-(3.7) guarantee that caregivers depart from either their homes or the depot, and constraints (3.8) determine the origin of the route. Constraints (3.9) ensure the depot be the destination of all routes. Constraints (3.10) the flow balance of the route.

If a caregiver serves one visit, he/she must also leave this visit. Constraints (3.11) 

3.2.4/ FUZZY OPTIMIZATION MODEL

As described above, the studied problem is a fuzzy optimization problem with fuzzy terms in both the objective function and constraints. For the objective function, formula (3.3) can be used to transform the fuzzy term into a crisp one. Hence, the objective function (3.5) can be substituted by :

f = Min( i∈N j∈N k∈K x k i j t i j + i∈V (s 1,i + 2s 2,i + s 3,i ) 4 + C v i∈V k∈K x k i(m+n+1) ) (3.28)
Then the fuzzy inequalities (3.13), (3.15), (3.20), and (3.24) including the fuzzy term and crisp number at two hand sides are handled.

Knowing that caregivers must wait when they arrive early than the visit's time window. Hence, if x k i j = tw g j =1, the start service times ts k j = max{e g j , ts k i + s i + t i j }, are also fuzzy terms and determined by the service time. More specifically, ts k i for the first visit i in caregiver k's route is crisp because it is not determined by the fuzzy service time, which is shown in constraints (3.14).

Then constraints (3.13) and (3.20) can be relaxed as follows :

ts k i ≤ l g i j∈N x k i j + (1 -tw g i )M ∀i ∈ V, k ∈ K, g ∈ T W i (3.29) tL k ≤ LE ∀k ∈ K (3.30)
Note that constraints (3.23) assure that the start service times should be identical. However, the arrival times for several collaborative caregivers at the same location are usually different in real-life, which means that the caregiver who arrives early should wait for the others. Suppose that a pair of synchronized visits (i, j) will be completed by caregivers k1 and k2. If x k1 li =x k2 m j = 1, then ts k1 i = ts k2 j = max{e g i , ts k1 l + s l + t li , ts k2 m + s m + t m j } (as e g i = e g j ). Suppose that the visit route for caregiver k is defined as {v 0 , v 1 , . . . , v i , . . . , v n k +1 }, where v i is ith visit in the route. v 0 and v n k +1 represent the origin and destination of the route, respectively. The recursive formulas (3.11), (3.18), and (3.19) that calculate the start service time can be rewritten as :

a k + l i=1 s v i + l i=0 t v i v i+1 ≤ ts k v i+1 ∀k ∈ K, l ∈ [1, n k ], y k v l 1 (3.31) a k + l i=1 s v i + l i=1 t v i-1 v i ≤ tL k ∀k ∈ K, l ∈ [1, n k ], y k v l = 1 (3.32) a k + l i=1 s v i + l i=0 t v i v i+1 + LD ≤ ts k v i+1 ∀k ∈ K, l ∈ [1, n k ], y k v l = 1 (3.33)
Note that [a k , b k ] represents caregiver k's working time window. It is assumed that the depot corresponds to a time window [e

g v n k +1 , l g v n k +1 ], which equals [a k , b k
] since caregivers must return to the depot at the end of the route. Hence, combined with ( 31)-( 33), constraints (3.13) and (3.15) can be presented as follows :

a k + l i=1 s v i + l i=0 t v i v i+1 ≤ l g v i+1 ∀k ∈ K, l ∈ [1, n k ], y k v l 1 (3.34) a k + l i=1 s v i + l i=0 t v i v i+1 + LD ≤ l g v i+1 ∀k ∈ K, l ∈ [1, n k ], y k v l = 1 (3.35)
Additionally, constraints (3.20) are rewritten as :

a k + l i=1 s v i + l i=1 t v i-1 v i ≤ LE ∀k ∈ K, l ∈ [1, n k ], y k v l = 1 (3.36)
Finally, using transformation (3.4) and formulas ( 34)-( 36), the fuzzy constraints (3.13), (3.15), (3.20) are handled as follows :

a k + l i=1 ( α(s 2,v i + s 3,v i ) + (1 -α))(s 1,v i + s 2,v i ) 2 ) + l i=0 t v i v i+1 ≤ l g v i+1 ∀k ∈ K, l ∈ [1, n k ], y k v l 1 (3.37) a k + l i=1 ( α(s 2,v i + s 3,v i ) + (1 -α))(s 1,v i + s 2,v i ) 2 ) + l i=0 t v i v i+1 + LD ≤ l g v i+1 ∀k ∈ K, l ∈ [1, n k ], y k v l = 1 (3.38) a k + l i=1 ( α(s 2,v i + s 3,v i ) + (1 -α))(s 1,v i + s 2,v i ) 2 ) + l i=1 t v i-1 v i ≤ LE ∀k ∈ K, l ∈ [1, n k ], y k v l = 1 (3.39)
Similarly, constraints (3.24) are transformed to (3.40) using formula (3.4) :

i∈N j∈N x k i j t i j + i∈V j∈N x k i j ( β(s 2,i + s 3,i ) + (1 -β))(s 1,i + s 2,i ) 2 ) ≤ L ∀k ∈ K (3.40)
Although the right-hand side terms in (3.37)- (3.40) are crisp numbers, they are regarded as particular cases of triangular fuzzy numbers denoted by three identical values for the comparison purpose. Specially, two feasibility levels α and β are defined for the time window and working duration constraints, respectively.

3.3/ METHODOLOGY

Since exacted methods are not only quite time-consuming but also limited to solve NPhard problem. In this chapter, an approximate approach, ALNS, is adopted for the targeted HHCRSP. The motivations for choosing the ALNS are as follows : (1) ALNS is an efficient neighbourhood search-based metaheuristic proposed by [START_REF] Ropke | An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows[END_REF] 2020). ( 2) ALNS has the ability to search in a broader neighborhood space in comparison with local search-based approaches, which greatly increases the possibility of obtaining high-quality solutions. Besides, large neighborhoods can efficiently avoid falling into the local optimum especially for the problem with tight constraints [START_REF] Aksen | An adaptive large neighborhood search algorithm for a selective and periodic inventory routing problem[END_REF]. ( 3) It is usually imperative to solve the real-life scale problem within a short computational time. However, the synchronization constraint makes the HHCRSP more time-consuming to be addressed, and ALNS has great potential as the effective method for the NP-hard problem (Liu et al., 2019a).

The solution procedure adopted in this chapter is presented in Figure 3.1. The first part corresponds to the prior steps containing three components. Solution representation determines how to represent solutions in the algorithm, and solution evaluation shows the way to evaluate whether the solution is feasible. These two components are detailed in Sections 3.3.1 and 3.3.2, respectively. Besides, it is noted that the removal and insertion heuristics should be defined before conducting the ALNS (see sections 3.3.3.2 and 3.3.3.3). After the prior steps, ALNS is applied to optimize the solution. The detail of each component in ALNS procedure can be referred to section 3. 

3.3.1/ SOLUTION REPRESENTATION

In this chapter, the real number code programming is used to encode the solution. Figure 3.2 presents an illustrative example, in which nodes 1-11 are real visits. Visits 1 and 11 are synchronized visits. Nodes 12-14 indicate the dummy visits, representing the lunch nodes. The location of a dummy visit is the same as its predecessor visit' place, and the corresponding time window and service time indicate the lunch period and duration, respectively.

3.3.2/ SOLUTION EVALUATION

This chapter evaluates the solution using the same method proposed in chapter 2. Specially, according to the objective function (3.5), it is note that the selection of different time windows for each visit will not change the objective value but affect the feasibility of the solution. Intuitively, there is a great possibility that the solution is feasible when caregivers serve each visit as early as possible. Hence, when a visit corresponds to multiple time windows, the nearest time window with the arrival time is always chosen as the selected time window of this visit. If the arrival time does not fall into any one of the visit's time windows, the caregiver must wait until the opening time of the next time window. When the arrival time is larger than the due time of the latest time window, the solution is infeasible. 

3.3.3/ ADAPTIVE LARGE NEIGHBORHOOD SEARCH (ALNS)

ALNS was first introduced by [START_REF] Ropke | An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows[END_REF] based on the large neighborhood search (LNS). LNS tries to improve the current solution by using large neighborhood moves, including both destroying and repair operators. The destroying operator tries to remove some nodes from the solution, while the repair operator inserts these removed nodes back to the solution. The new solution is the input to the next iteration and replaces the best solution if it has a better objective value. ALNS improves the LNS from two main aspects : (1) ALNS develops several removal and insertion methods for destroying and repairing the solution and selects one of the removal and insertion methods based on the statistics gathered during the search process. By contrast, LNS only consists of one removal and insertion method. ( 2) ALNS uses a simulated annealing procedure to judge whether the new solution should be accepted as the input of the next iteration, while LNS only accepts the new solution that improves the best solution. The procedure of ALNS is given in Algorithm 14. The rest of this section describes the particular parts of our ALNS dedicated to the discussed problem.

Algorithm 14

The pseudo-code of ALNS.

1: Initial solution s 0 , current solution s current , best solution s best 2: s best ← s 0 ; s current ← s 0 3: Repeat 4: Select a removal heuristic h -and a insertion heuristic h + using a dynamical roulette wheel 5: 

s new ← h + (h -(s current )) 6: if f (s new )< f (

3.3.3.1/ PENALTY OBJECTIVE FUNCTION

In our ALNS, a solution s consists of a partially feasible solution s part and an unscheduled set U. The objective value of s is determined using :

F(s) = f (s part ) + |U| * ζ (3.41)
Where f (s part ) is the objective value of s part evaluated by the objective function (3.5), and |U| indicates the number of visits in U. ζ represents a large constant (10000) to penalize the infeasibility.

3.3.3.2/ REMOVAL HEURISTIC

The removal heuristic starts from a partially feasible solution s part and an unscheduled set U. It removes q -|U| visits from s part to U. After the removal, the number of visits in generated unscheduled set U 1 equals q. This study develops 12 removal heuristics, in which the first seven heuristics are based on [START_REF] Ropke | An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows[END_REF] and Liu et al. (2019a), while the last five heuristics are specially designed for the discussed problem.

1. Random removal : Randomly removes q -|U| visits from the current solution.

2.

Worst removal : Worst removal tries to remove the visit that causes the high objective value. Algorithm 15 shows the main steps of this heuristic.

Algorithm 15

The pseudo-code of worst removal.

1: s part , U, q ∈ N, p1 ≥ 1 2: while |U| < q do 3:

Let set Π contains all visits in s part not in U 4:

Sort Π in descending order of the objective value reduction calculated by removing the visit from s part 5:

Let the random number λ ∈ [0, 1] and select the visit r = Π[|Π| * λ p1 ] 6: Remove r from s part to U 7: end while Output: s part and U

3.

Related removal : This heuristic tries to remove visits with high relatedness. The concept of relatedness was proposed in [START_REF] Shaw | A new local search algorithm providing high quality solutions to vehicle routing problems[END_REF], and the relatedness can be understood as close geographical location, similar time windows and visited times, or even served by the same caregiver. The general principle of this method is to remove somewhat visits with high relatedness because it is more likely to create a new and better solution when the related visits are reinserted. This chapter defines the relatedness between visits i, j as follows :

R(i, j) = ψ 1 d i j + ψ 2 * |ts i -ts j | (3.42)
Where d i j represents the distance between two nodes, and ts i and ts j are the start times of visit i and j. ψ 1 and ψ 2 are the weights. The pseudo-code of related removal is presented in Algorithm 16.

Algorithm 16

The pseudo-code of related removal.

1: s part , U, q ∈ N, p2 ≥ 1 2: if U is empty then 3:
Randomly select a visit i from s part and put it in U 4: end if 5: while |U| < q do 6:

Let set Π contains all visits in s part not in U 7:

Randomly pick a visit i from U and calculate R(i, j) between i and any visit j in Π 8:

Sort Π in ascending order of R(i, j) 

Related start time removal

: This heuristic is similar to related removal, while it assumes ψ 2 = 0 in (3.42).

6.

Route removal : This heuristic randomly chooses a non-empty route and removes all the visits within this route. It stops until |U| is larger than or equal to q.

Algorithm 17

The pseudo-code of route removal.

1: s part , U, q ∈ N 2: while |U| < q do 3:

Randomly select a non-empty route i in s part

4:

Remove all the visits in route i from s part to U 5: end while Output: s part and U 7. Synchronization removal : Remove all synchronized visits in s part .

8. Partial worst removal : This heuristic randomly selects a non-empty route, and then removes the worst visit (cause the highest objective value) in this route. This procedure repeats q -|U| times.

Algorithm 18

The pseudo-code of partial worst removal.

1: s part , U, q ∈ N 2: while |U| < q do 3:

Randomly select a non-empty route i in s part

4:

Remove the worst visit r in route i to U 5: end while Output: s part and U 9. Time window removal : Note that each visit corresponds to a type of time window, which is determined by the number of time windows with which this visit is associated. This heuristic randomly removes q -|U| visits with the same type of time windows.

Algorithm 19

The pseudo-code of time window removal.

1: s part , U, q ∈ N 2: Randomly select a type of time windows ty 3: while |U| < q do 4:

Randomly select a visit r that associates with type ty 5:

Remove r from s part to U 6: end while Output: s part and U 10. Worst time window removal : This heuristic randomly selects a type of time window and removes the worst visit in those visits such that their time windows belong to this type. This procedure repeats q -|U| times.

Algorithm 20

The pseudo-code of worst time window removal.

1: s part , U, q ∈ N 2: while |U| < q do 3:

Randomly select a type of time windows ty 4:

Select the worst visit r that associates with type ty 5:

Remove r from s part to U 6: end while Output: s part and U 11. Zone removal : Randomly removes q -|U| visits in the same geographic area (the urban area or suburbs).

Algorithm 21

The pseudo-code of zone removal.

1: s part , U, q ∈ N 2: Randomly select a type of zone ty 3: while |U| < q do 4:

Randomly select a visit r that associates with type ty 5:

Remove r from s part to U 6: end while Output: s part and U 12. Worst zone removal : This heuristic randomly selects a type of geography, and then removes the worst visit in those visits such that their geographies belong to this type. This procedure repeats q -|U| times.

Algorithm 22

The pseudo-code of worst zone removal.

1: s part , U, q ∈ N 2: while |U| < q do 3:

Randomly select a type of zone ty 4:

Select the worst visit r that associates with type ty 5:

Remove r from s part to U 6: end while Output: s part and U Note that removing and inserting dummy visits may help diversify the solution space and improve the solution, despite the process will not change the objective value. However, the experimental results deny this assumption as the best solution found does not show the advantage when dummy visits are removed and reinserted. Hence, only real visits are removed in the removal process.

Usually, removal heuristics will not cause the infeasibility. However, a special case should be noted when the predecessor of the dummy visit is removed. Figure 3.3(a) presents an example route, in which the lunch is taken at visit 8's location. The numbers above the route represent the start time at each visit. In Figure 3.3(b), the lunch is taken at visit 2's location since visit 8 is removed. However, the start lunch time is not changed because the arrival time is less than the earliest lunch time, and the caregiver needs to wait. The start time of visit 9 is postponed because the travel time from visits 2 to 9 is larger than visits 8 to 9. It may violate the time window of visit 9 and incur the infeasibility. Hence, once the removal of the predecessor of a dummy visit will incur the infeasibility, another visit is selected to remove. 

3.3.3.3/ INSERTION HEURISTIC

This section details four insertion heuristics, each of them inserts the visits in U into s part .

1. Greedy insertion : Each visit in U is tried to be inserted into all feasible positions in s part , then the insertion value (minimum increase of objective value for inserting this visit) and the best position (the position related to the insertion value) are recorded. After all visits have been assessed, the visit which corresponds to the minimum insertion value is inserted at its best position. If there are no feasible positions for a visit to be inserted, the insertion value for this visit equals +∞.

Algorithm 23

The pseudo-code of greedy insertion.

1: s part , U 2: while U is not empty and visits in U can be inserted into s part feasibility do 3:

for each visit r in U do 4:

Record the insertion value and the best position of visit r 5:

end for 6:

Insert visit r that corresponds to the minimum insertion value at its best position. 7: end while Output: s part and U

2.

Regret insertion : This heuristic adds the regret principle to greedy insertion. The regret value of each visit is the difference in the increase of objective value between its best and second-best insertion position. After all visits have been assessed, the visit which corresponds to the highest regret value is inserted at its best position. If there are no feasible positions for a visit to be inserted, the regret value for this visit equals 0.

Algorithm 24 The pseudo-code of regret insertion.

1: s part , U 2: while U is not empty and visits in U can be inserted into s part feasibility do 3:

for each visit r in U do 4:

Record the regret value and the best position of visit r 5:

end for 6:

Insert visit r that corresponds to the highest regret value at its best position. 7: end while Output: s part and U 3. Random greedy insertion : This heuristic randomly selects a visit in set U, then inserts this visit into s part at its best position. A visit will be put into a new set U if no feasible positions are available in s part .

Algorithm 25

The pseudo-code of random greedy insertion.

1: s part , U, empty set U . 2: while U is not empty do 3:

Randomly select a visit r in U end if 9: end while Output: s part and U 4. Random insertion : This heuristic is similar to random greedy insertion, but it inserts the visit into a random position.

3.3.3.4/ INITIAL SOLUTION

The regret insertion is used to generate the initial solution. First, several (equals to the number of caregivers) empty routes are prepared. Each empty route includes the origin and destination nodes, and a dummy visit. Then, all real visits are inserted into these empty routes until the stop criteria are met.

3.3.3.5/ ADAPTIVE WEIGHT UPDATING

Since there are several methods for removal and insertion, one removal and one insertion method are selected at each iteration using a roulette-wheel mechanism. The probability of selecting a method is adaptive using statistics from earlier iterations ; that is, the better one method performs recently, the higher the selected probability of this method. It is noted that the selection of removal and insertion methods is independent and follows the same procedure. Hence, the adaptive weight adjustment described here only focuses on the same set (removal or insertion) of methods.

The entire search is divided into many segments, and each segment is associated with 100 consecutive iterations. Suppose that each method i in segment j corresponds to a weight w i j , and the selected probability of method i in segment j is determined by w i j / i∈Ω w i j , where Ω refers to the set of removal/insertion methods. All weights equal 1 at the beginning of the algorithm. w i j is regulated by the weight and the performance of method i in the last segment, this performance means the average score of a method in a segment, w i j is formulated using :

w i j =        1, j = 1, w i( j-1) (1 -µ) + µπ i( j-1) /θ i( j-1) , j 1 (3.43)
Where π i j is the score of method i obtained in segment j, and θ i j refers to the number of iterations that method i has been applied in segment j. µ ∈ [0, 1] is a reaction factor that controls how quickly the weight adjustment procedure reacts to the effectiveness of the change of methods. The higher the value of µ, the quicker the changes in effectiveness of the methods. π i j is set to 0 at the beginning of each segment, and it is calculated based on the new solution produced by the last operation that involves method i : (1) if the new solution is better than the best solution, π i j is increased by σ1 ; (2) if the new solution is better than the current solution but worse than the best solution, and this solution has not been accepted before, π i j is increased by σ2 ; (3) if the new solution is worse than the current solution but still should be accepted, and this solution has not been accepted before, π i j is increased by σ3.

3.3.3.6/ ACCEPTANCE AND STOPPING CRITERIA

The simulation annealing (SA) is used as the acceptance criteria. The detailed principle of SA can be referred to [START_REF] Kirkpatrick | Optimization by simulated annealing[END_REF]. The new solution s new is accepted with a probability e -∆/T , where ∆ is the difference in the objective value between s new and the incumbent solution. The initial temperature T 0 is set to that the acceptance probability is 0.5 when ∆ equals 5% multiplied by the objective value of the first s new and decreases at each iteration using T = T × δ, where δ ∈ (0, 1). To prevent T 0 from becoming too large, the penalty part in (3.41) is not counted if unscheduled visits exist in the initial solution. ALNS terminates when the maximum iterations or the maximum iterations without improving the solution is reached.

3.4/ COMPUTATIONAL RESULTS

This section conducts extensive numerical experiments to evaluate the efficiency of ALNS and report the experimental results. Considering that no benchmark instances can be obtained in the literature, this chapter generates instances that adapt the proposed problem. Since exact methods or commercial solvers (e.g., Gurobi) are powerless to solve the proposed problem, this section first reduces the targeted problem to a deterministic HHCRSP without time-dependent and fuzzy constraints, and then Gurobi solver (version 8.1.0) is used to address the reduced problem on small-size instances to find the benchmark in comparison with ALNS. This section also tests ALNS's performance on benchmark instances of VRP with time windows and synchronized visits (VRPTWsyn), a related problem with our HHCRSP. After that, ALNS is implemented to solve the original problem for large-size instances. Finally, the proposed theoretical framework is applied to a case study.

3.4.1/ TEST INSTANCES

This study generates 14 test instances which involve 8 small-size instances with up to 25 patients and 6 large-size instances including 50-100 patients. Each instance is labelled as HHC-l-np-ns-nc, where l represents the instance's tag. np, ns, and nc indicate the number of patients, the number of patients who require synchronized services, and the largest number of cooperated caregivers needed for the synchronized services, respectively. In small-size instances, nc=2. The maximal nc in large-size instances is up to 5.

Parameters in instance, such as d i, j ,

, q k i , z k are generated randomly, and [a k , b k ], [LB, LE], LD, L, and C v are defined as the fixed value. Each visit is associated with at least 1 but at most 3 time windows. The fuzzy service times are generated based on the method mentioned by [START_REF] Lai | A new approach to some possibilistic linear programming problems[END_REF]. First, a crisp number is generated for each visit as the s 2,i . Then, s 1,i and s 3,i are determined by :

s 1,i = (1 -d 1 )s 2,i , s 3,i = (1 + d 2 )s 2,i d 1 , d 2 ∼ Uni f orm(0.2, 0.8) (3.44)
Specially, the service times of synchronized visits must be defined identically despite the fuzzy logic. Similarly, in the evening [t2, t3], there is a rush hour within urban roads and roads from urban areas to suburbs.

3.4.2/ PARAMETER TUNING

According to [START_REF] Ropke | An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows[END_REF], parameter q that determines the number of removed visits shows the significant impact on the solution obtained by ALNS. Hence, similar to [START_REF] Masson | An adaptive large neighborhood search for the pickup and delivery problem with transfers[END_REF] and Liu et al. (2019a), this chapter adopts the values suggested by [START_REF] Ropke | An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows[END_REF] for the most parameters in ALNS and particularly tunes parameter q using the design of experiments (DoE). In our ALNS, the value of q depends on the size of the instance (i.e., the number of patients in such instance) and a percentage interval pin, and q=pin×size of the instance. 

3.4.3/ EXPERIMENTAL RESULTS FOR DETERMINISTIC MODEL

To assess the performance of ALNS, this section first carries out the experiments for the problem without fuzzy and time-dependent constraints using Gurobi and ALNS on smallsize instances. Travel speed in these experiments equals 1. Each instance is solved ten times by ALNS. The time limit for Gurobi is set to 7200s, and the lower bound and upper bound are presented if Gurobi cannot solve the problem within 7200s. Table 3.3 reports the compared results, where "BKS" indicates the optimal solution obtained by Gurobi, and "Time" is the corresponding computing time. "Best" and "Worst" indicate the best and worst solution found by ALNS among ten times, respectively. "Std" represents the standard deviation. "Gap" describes the percentage deviation between "Best" and "BKS", and it equals (Best-BKS)/ BKS *100%. -8-25-3-2 [1327.73-1466.47] 7200 1449.25 1450.32 1449.82 0.01 0.73 -As observed in Table 3.3, ALNS is more effective and efficient than Gurobi as it finds the same or better solutions with less execution time. The effectiveness of ALNS is shown especially for 20 and 25-size instances since the execution times of ALNS on these instances are less than 1s, while the times consumed by Gurobi vary from 202.14s to 7200s. For 10, 20-size instances, ALNS obtains the same best solutions as Gurobi with "Std" being 0. Specially, the execution time for HHC-6-20-2-2 increases dramatically since time windows of patients in this instance remain quite wide, which makes the time window a relax constraint and thus makes the model time-consuming to be converged. For 25-size instances, Gurobi becomes powerless and cannot find the optimal solution within 7200s while ALNS solves these instances speedily with high-quality solutions.

3.4.4/ TEST ON BENCHMARK INSTANCES

This section tests ALNS on benchmark instances proposed by Bredstr öm et al. (2008) for VRPTWsyn, in which three objectives are presented to minimize total travel times, negative preferences, and balancing the works among vehicles. This study only conducts experiments for minimizing the total travel times because this objective is similar to our objective expression (3.5). It is noted that only the first seven removal heuristics are used for ALNS since the other removal heuristics only dedicate to the proposed HHCRSP. Liu et al. (2019a). The results in Table 3.4 are encouraging in proving the good performance of our ALNS. Note that ALNS finds existing BKS for 21 out of 30 instances and further improves the BKS for 6 instances (8S, 8M, 9S, 9M, 10S, and 10L). Although ALNS cannot reach the existing BKS for the rest of instances, the gaps between "Best" and BKS are relatively small (less than 1%). The solutions found by ALNS are very stable as low "Std" is presented for each instance. Finally, the results are also reasonable in terms of "CPU" since ALNS takes at most 209.35s for computing the instances.

3.4.5/ EXPERIMENTAL RESULTS FOR FUZZY OPTIMIZATION MODEL

This section reports the experimental results on large-size instances for the original problem. The time-dependent travel times are determined by step functions in Figure 3.4 with v 1 = 1, v 2 = 1.5. The values of α and β are assumed within the interval [0.5, 1] with 0.1 a step. To further validate the performance of ALNS, ALNS is compared with a simulated annealing based algorithm (SA-ILS) proposed by [START_REF] Afifi | Heuristic solutions for the vehicle routing problem with time windows and synchronized visits[END_REF]. SA-ILS is chosen mainly because [START_REF] Afifi | Heuristic solutions for the vehicle routing problem with time windows and synchronized visits[END_REF] used this heuristic to address the VRPTWSyn, which is quite similar to our problem. To conduct a fair comparison, SA-ILS runs on each instance until its computational time equals the corresponding running time of ALNS.

The results in Table 3.5 are reported based on the assumption that α = β. Table 3.5 indicates a explicit rule that higher feasibility degrees incur the worse solutions, which is reasonable because high α and β make constraints harder to be satisfied, restricting the possibility to find a better solution. Sometimes, no feasible solution can be found when feasibility degrees become too high (e.g., HHC-9-50-5-3). It is also observed that the computing time decreases with the feasibility degree increases, which is mainly because the problem with higher feasibility degrees has smaller solution space thereby causing a faster convergence rate.

To highlight the advantage of the fuzzy model in solving such an HHCRSP, Table 3.5 further reports the experimental results under the deterministic model, in which service times are considered to be crisp and equal s 2,i of the fuzzy model. Stochastic simulation [START_REF] Li | Vehicle routing problems with time windows and stochastic travel and service times : Models and algorithm[END_REF] is used to calculate the credibility level C-α and C-β, representing the credibility of time windows and working duration constraints in the deterministic model, respectively. The number of simulation iterations is 10000.

The results under the deterministic model show that the values of C-α and C-β remain a huge difference and are unstable. For example, C-α equals 0.24, a low level, but Cβ is 0.87, a high level, in HHC-9-50-5-3 obtained by ALNS. The deterministic model's credibility depends on the smaller value between C-α and C-β, the low credibility makes the deterministic model unreliable and uncontrollable. However, the constraint violation risk is manageable in the fuzzy model by setting different feasibility degrees, which makes decision-makers hand the uncertainty more flexible and reliable. For instance, if decisionmakers anticipate reducing the time windows violation risk, they can set a high α to obtain desired solutions.

Moreover, Table 3.5 also compares the results obtained by ALNS and SA-ILS, where the gap equals (Best ALNS -Best S A-ILS )/Best ALNS * 100%. Gap1 and Gap2 refer to the gap of fuzzy and deterministic model, respectively. According to the results, it is found that ALNS obtains the better solution for the majority of instances (28 instances) in the fuzzy model, and ALNS is better than SA-ILS in the deterministic model for all the instances. Hence, it is concluded that ALNS exhibits an improvement over SA-ILS on the researched problem. Figure 3.5 gives the sensitivity analysis of α and β on instance HHC-9-50-5-3 by changing β while fixing α=0.8 and changing α while fixing β=0.8. The values of ordinate refer to the best solution found by ALNS. Readers can conclude that the single feasibility degree reflects the results with a negative relationship, which can be explained from two aspects : Firstly, seeing from lines α=0.8 and β=0.8, the solution becomes worse when another feasibility degree (α or β) increase. Secondly, the results of α=0.8 and β=0.8 are larger/less than those of α = β when the abscissa value becomes smaller/larger than 0.8, which also proves that the single feasibility degree has a negative impact on the solution. Besides, since there are no feasible solutions for α=0.8 and α = β when the abscissa value equals 1, it is safe to deduce that the infeasibility is caused by the high value of β (β=1). 

3.4.6/ CASE STUDY

This section presents a case study to describe the application of the theoretical framework proposed in real-life. The case involves 30 patients and 5 caregivers. Four patients (NO. 1, 2, 3, 4) require synchronized services, where the synchronized services of patients 1 and 3 should be completed by 3 caregivers simultaneously. Table 3.6 presents the basic information of this case. Caregivers can take lunch within [11 :30, 13 :30] for 30 minutes.

The unit of the travel/service time is minute. Three periods [0, t1], [t1, t2], and [t2, t3] in Figure 3.4 are set to [8 :00, 9 :30], [9 :30, 16 :30], and [16 :30, 18 :00], respectively. The maximal working duration L for each caregiver is defined as 9h. The objective value is calculated by the total travel times (minute) plus the costs of vehicles (100 for each vehicle).

The values of v 1 and v 2 are forecasted by BP neural network based on the daily speed data v 1 and v 2 in the previous 30 days. BP neural network is carried on Matlab 2015b using the NNET toolbox. BP neural network consists of three layers : input layer, hidden layer, and output layer.

The number of nodes in these three layers is empirically set as 3, 10, 1, respectively. An example of predicting v 1 using BP neural network is presented in Figure 3.6. The regression R ∈ [0, 1] validates the predicted result, and a higher R means a more effective prediction. To eliminate the accidental errors, each prediction for v 1 and v 2 is executed ten times, respectively. The average value is recorded as the final forecasting value. Table 3.7 reports the experimental results for the studied case obtained by ALNS. The results emphasize the negative relevance between feasibility degrees and computational results, and the deterministic model is unreliable for the real case because of low C-α (0.38). Furthermore, the sensitivity of L is explored with varying from 7 to 10h for the fuzzy model, and the result of "Best" is presented in Figure 3.7.

Two conclusions can be drawn from Figure 3.7 : First, a higher feasibility degree incurs the larger objective value when L is fixed, which has been explained before. Then, when the feasibility degree is fixed, it can be observed that the scenario with higher L obtains a smaller objective value. More importantly, it is observed that the objective value does not always decreases as L increases. When L is larger than 9h, the objective value remains unchanged. Hence, in reality, there is no need for decision-makers to set L to be larger than 9h for pursuing a better solution. This chapter introduces a multi-period HHCRSP, and aims to establish visit-to-caregiver schedules and visit routes over a given period for the HHCC. Generally, the decisionmaker collects patients' demands at the end of the last planning period and then makes the planning with the consideration of many real-life constraints. The planning results will guide the caregivers' activities over the next planning days.

In addition to the restrictions considered in the basic HHCRSP in chapter 2, such as time windows, caregivers' skills, synchronized visits and lunch breaks. This chapter further considers the constraints with the multi-period feature, which are caregivers' workload balancing and continuity of care. Since it is hard to obtain an absolute workload balance, this chapter deals with workload balancing as a soft constraint, and the penalty cost whose value depends on the value of the unbalanced workload is suggested. Typically, all patients want to be treated with the continuity of care because they are willing to receive services from familiar caregivers instead of a new caregiver during the care period. From the perspective of companies, continuity of care can avoid the potential loss of information among caregivers. However, sometimes there are not a sufficient number of available caregivers to complete the continuity of care, and the workload balancing should be respected as well. It is challenging to achieve the strict continuity of care. Hence, this constraint is also relaxed as a soft one, meaning that the reference caregiver of patients can be reassigned, and the penalty cost whose value depends on the times of reassignment is suggested.

This chapter first develops a MIP model for the target problem, then investigates the matheuristic that integrates the adaptive large neighborhood search (ALNS) with mathematical programming techniques to solve the problem. Furthermore, several experiments are conducted to analyze the sensitivity of the MIP model in terms of the objective function, continuity of care, and departure rules of caregivers.

The targeted problem is defined as follows : The caregiver can choose to use their private car or rental car provided by the HHCC. Caregivers depart either from their domiciles (if a private care is used, or the caregivers rent the same service car the day before because it is possible to keep the rental car at their home for the coming day's work) or the depot (i.e., HHCC) if caregivers need to pick up their rental cars to make a visit to the assigned patients and return to the depot to summarize their work after completing their daily workloads. Caregivers who cannot finish their workloads before the latest start time of their lunch breaks must take a break for lunch. Lunch breaks can be scheduled at any location so long as the lunch time is within the lunch period, which means that a caregiver can take a lunch break either at the patient's location where he/she will perform the service right after the break or at the location of the patient who has just been served.

Caregivers have specialized functions though they can collaborate with the colleagues in performing certain service activities (hereinafter referred to as "synchronized visits"). In this study, two and only two caregivers are needed to complete a pair of synchronized visits.

The contract working time window and daily workload for each caregiver are predefined and cannot be exceeded. Caregivers' total workload can be evaluated based on their working time over the planning period, and an unbalanced workload is represented by the difference between the highest and lowest accumulated workloads assigned among caregivers.

The basic salary of each caregiver is the same. If caregivers make visits to patients, they will obtain additional incomes according to the working hours spent on their visiting routes. To save costs, the HHCC will not hire redundant caregivers unless the patients' demands cannot be met, which means that all caregivers work every day for the next planning period.

Each patient is served at most once per day but may be visited several times during the planning period. Each visit is specified with a time window representing the availability of the patient. Two subsets of patients are considered to illustrate the continuity of care constraint : (1) Follow-up patients who have already been served during the last period. Each patient in this set is associated with an initial reference caregiver at the beginning of the upcoming period. ( 2) Newly admitted patients who are about to start their treatment during the upcoming period.

All patients are eager to receive the continuity of care, and a penalty will be incurred if different caregivers are assigned to a patient during the planning period. Patients who require synchronized services can be served by at most two different caregivers without penalty. Emergencies are not considered in this study.

The objective that an HHCC often pursued is minimizing the operational costs and maximizing the satisfaction of both patients and caregivers. In this study, these three objectives are integrated into one main objective considering their monetary value. The operational costs are defined by aggregating the wages of caregivers, which are represented by the additional income of caregivers, and the total transportation costs for the vehicles used.

Since the costs for different vehicles are identical, and caregivers work every day during the planning period, the transportation costs can be omitted in the objective function because they are fixed. The satisfaction of patients is measured by the penalty cost to reassign caregivers. The satisfaction of caregivers is measured by the penalty cost of the unbalanced workloads.

The remainder of this chapter is organized as follows : Section 4.2 describes the mathematical model. In Section 4.3, the adapted algorithm is presented in great detail. Numerical experiments are discussed in Section 4.4, and this study ends with the conclusions and perspectives in Section 4.5.

4.2/ MATHEMATICAL MODEL

Suppose that the HHCC will assign m caregivers to serve p patients for the next t days.

The multi-period HHCRSP can be defined on a directed graph G = (N, A), where N represents the set of nodes, and each node corresponds to a location. A indicates the set of arcs, and each arc corresponds to the connection between two locations. The notations used for the mathematical model are listed and described as follows :

Sets P : set of patients waiting to be served during the planning period. P = {1,..,p}.

P f : set of follow-up patients. P f ⊆ P.

P n : set of newly admitted patients. P n ⊆ P.

D : set of working days, i.e. the planning period. D = {1,..,t}.

K : set of caregivers. K= {1,..,m}.

V : set of visits, where a visit corresponds to the location of one patient. V= {1,..,n}. It is worth noting that since the synchronized visits are associated with the same patient, the number of visits, n, must be no less than the number of patients, p.

DC : set of the domiciles of caregivers. DC = {n + 1,.., n + m}.

N : set of all possible locations passed by the caregivers during the planning period. N = V ∪ DC ∪ {0, m + n + 1}, where "m + n + 1" stands for the destination of all routes, and "0" represents the origin of the routes for the caregivers departing from the depot.

A : set of all possible connections among locations. A= {(i, j) | i, j ∈ N, i i}, where arc (i, j) ∈ A indicates the connection between nodes i and j.

Syn : set of synchronized visits. Syn= {(i, j,d)| i, j ∈ V, i i, d ∈ D}. i and j are a pair of synchronized visits on day d. In this study, it is assumed that if patient i ∈ P requires synchronized visits, the corresponding visits are denoted by i and i + p, which means j= i + p. L : ceiling of daily working duration for any caregiver on service.

Parameters

[LB, LE] : the earliest/ latest start time of the lunch break.

LD : time used by caregivers to take lunch. v d i : = 1 if visit i needs to be performed on day d, and 0 otherwise. q k i : = 1 if caregiver k is qualified for visit i, and 0 otherwise. z kd : = 1 if caregiver k uses a rental car on day d, 0 otherwise. w k i := 1 if caregiver k starts their working trajectory from his/her domicile i, 0 otherwise. r k i : = 1 if caregiver k is initially assigned to patient i ∈ P f at the beginning of the planning period.

C r : penalty cost to quantize the patients' dissatisfaction.

C w : penalty cost to quantize the caregivers' dissatisfaction.

M : an arbitrarily large positive number.

Decision variables

x kd i j : binary variable representing whether location j is travelled directly after location i for caregiver k on day d or not. If yes, it equals 1 ; otherwise, it equals 0. y kd i : binary variable representing whether a lunch break is taken at the location of visit i for caregiver k on day d or not. If yes, it equals 1 ; otherwise, it equals 0. mm k i : binary variable representing whether patient i ∈ P is assigned to caregiver k during the planning period or not. If yes, it equals 1 ; otherwise, it equals 0.

MN k

i : binary variable representing whether visit i ∈ V is assigned to caregiver k during the planning period or not. If yes, it equals 1 ; otherwise, it equals 0. ts kd i : the time point at which caregiver k starts to perform visit i on day d. tL kd : the time point at which caregiver k starts to take a lunch break on day d.

wt kd : working duration of caregiver k ∈ K on day d ∈ D, which is defined as the sum of total travel time and service duration of his/her visiting route.

NR i : integer variable representing the number of reassignments for patient i during the planning period due to the violation of the continuity of care.

W : unbalanced workload variable.

The MIP model is given as follows.

Objective function :

f = Min(ψ 1 k∈K d∈D wt kd + ψ 2 C r i∈P NR i + ψ 3 C w W) (4.1)
Subject to : The objective function (4.1) minimizes the total costs over the planning period. The first term refers to the additional incomes of caregivers (operational cost). The last two terms stand for the penalty costs of the dissatisfaction of patients and caregivers, respectively. ψ 1 , ψ 2 and ψ 3 are the weights, their values are identical, and the sum is 1. Constraints (4.2) and ( 4.3) guarantee that caregivers depart either from their homes or the depot. Constraints (4.4) ensure that each caregiver must return to the depot after completing their works. Constraints (4.5) and ( 4 
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4.3/ METHODOLOGY

Knowing that the exact methods cannot solve large scale NP-hard problems within a reasonable time, this chapter proposes the matheuristics that incorporate the ALNS with the MIP solver for the target problem. According to the different ways to combine ALNS and the MIP solver, two versions of the matheuristic, matheuristic1 and matheuristic2, are developed. In matheuristic1, the MIP solver is applied after ALNS is terminated to improve the solution. The MIP solver in matheuristic2 is integrated into ALNS to intensify the search procedure.

The pseudo-code of the matheuristic1 and matheuristic2 are presented in Algorithm 26 and Algorithm 27, respectively. In these two algorithms, s best is the best solution so far, s current refers to the current solution, and q is the number of nodes that should be removed or inserted, determining the scale of the large neighborhood search. Algorithm 26 starts from a given initial solution s 0 (line 1), and then line 2 initializes the best solution, current solution, and the parameter in the algorithm. Then, ALNS improves the current solution until the stopping criteria are reached (lines [3][4][5][6][7][8][9][10][11][12][13][14]. Line 4 adopts a dynamical roulette wheel mechanism to select a removal and insertion method at each iteration. Lines 5-6 obtain the new solution s new by destroying and repairing the current solution. Lines 7-9 determine whether s new should be accepted, and s best will be updated if it is improved (lines 10-12). Line 13 updates the roulette wheel at the end of the iteration of ALNS. Lines 15-21 execute the improvement procedure of the MIP solver. Lines 16-17 simplify the model and use the MIP solver to improve the s best based on the simplified model. Lines 18-20 update the s best if it is improved by the MIP solver. Finally, the algorithm returns the best solution s best .

Algorithm 26

The pseudo-code of matheuristic1.

1: Initial solution s 0 2: s best = s 0 ; s current = s 0 ; q ∈ N 3: while Stopping criteria are not reached do 4:

Select a removal method and an insertion method using a dynamical roulette wheel 5:

Remove q nodes from s current In Algorithm 27, the solution is improved by matheuristic2 until the stopping criteria are reached (lines [3][4][5][6][7][8][9][10][11][12][13][14][15][16][START_REF] Afifi | Heuristic solutions for the vehicle routing problem with time windows and synchronized visits[END_REF][18][19]. Unlike matheuristic1, the MIP solver in this algorithm is employed if ALNS produces a new solution s new better than s best (lines 7-9). Then s new and s best will be updated if the MIP solver can improve the solution (lines 10-13).

In the remainder of this section, the approaches of representing and evaluating the solution are first introduced, and then the details of the matheuristic are described.

4.3.1/ SOLUTION REPRESENTATION AND EVALUATION

4.3.1.1/ SOLUTION REPRESENTATION

A real number code programming method is adopted to represent the solution in the algorithm. Figure 4.2 shows an illustrative solution, including two caregivers, nine patients, ten visits, and four days for the planning horizon, the total patients' demands are 26. In this figure, both 0 and 13 relate to the depot, 0 is the start and 13 represents the destination of all routes. Numbers 11 and 12 indicate the two caregivers' addresses. Numbers 1-10 denote the number of visits, where 1 to 9 correspond to patients and numbers 1 and 10 are the synchronized visits for patient 1. Numbers 14 and 15 are lunch nodes for the two caregivers, respectively.

Note that each visit in the solution is identified not only in terms of its number but also the period to which it belongs. In the insertion process, one visit can only be inserted into the corresponding route that suits its period. For example, if visit 6 on day 1 is removed, it must be reinserted into the routes within day 1 ; otherwise, the solution is infeasible.

Algorithm 27

The pseudo-code of matheuristic2.

1: Initial solution s 0 2: s best = s 0 ; s current = s 0 ; q ∈ N 3: while Stopping criteria are not reached do 4:

Select a removal method and an insertion method using a dynamical roulette wheel 5:

Remove q nodes from s current In order to deal with lunch breaks, the lunch node is treated as a dummy visit in each route. According to the assumption in constraints (2.5), each route involves one corresponding dummy visit. The location of the dummy visit corresponds to the patient's location where caregivers take the lunch break, and the time window and service duration of this visit are associated with the lunch period and lunch duration, respectively. Since this chapter also considers synchronized visits, and cross synchronization should be checked in the process of solution evaluation. The method of checking the cross synchronization used in this chapter is the same as that in chapter 2.

4.3.2/ ADAPTIVE LARGE NEIGHBORHOOD SEARCH

ALNS used in the matheuristic1 and matheuristic2 holds the same framework as ALNS proposed in the last chapter. The difference is that this chapter applies some new removal heuristics related to the feature of the proposed problem.

This chapter adopts 12 removal heuristics, in which 8 of them are derived from chapter 2, and these heuristics are : Related removal, Related distance removal, Related start time removal, Synchronization removal, Worst removal, Random removal, Route removal, Partial worst removal. More specifically, the procedure of related removal is a little different from that in chapter 2, and is further presented in Algorithm 28. Note that the relatedness in the multi-period problem is meaningful only when two visits exist within the same period, line 2 is thus used in Algorithm 28 to assure there is a seed for each period to find related visits.

Algorithm 28

The pseudo-code of related removal.

1: Current solution s ; set of unassigned visits U ;p1 ≥ 1 ;q 2: Randomly select a visit from each period's solution separately, the selected visits are stored in the set D 3: while |D| < q -|U| do 4:

Randomly select a visit i from D 5:

Find a set Ω that contains all visits in the same period with visit i not in D 6: Calculate the relatedness R(i, j) between visit i and any visit j in the same period and also in Ω 7:

Sort Ω in ascending order of R(i, j) The other four removal heuristics are described as follows :

Related visit removal : This method is removes the visits corresponding to the same patient during the whole planning period. For example, in Figure 4.2, visit 4 is demanded in day 1, 3, and 4. Then related visits removal can remove three visits, i.e., visit 4 on days 1, 2, 3 from the current solution.

Related skills removal : This method tries to remove the visits that require the same skills. For example, if visits 2, 3, and 4 are suitable to be served by one caregiver. It is called that these three visits require the same skills and can be removed simultaneously.

Daily visits removal : This method randomly selects a planning day and then removes all the visits in this day. This procedure repeats until the number of removed visits is larger than q -|U|.

Cluster removal : This method tries to remove the clustered visits in the solution. First, a non-empty route is randomly selected. Then the visits in this route are divided into two clusters based on some criteria, and one of the clusters is randomly selected and FIGURE 4.3 -Given six visits, select visits with the shortest distance (1,3), connect these two visits if they are not in the same tree, then update the distance (1-3) as +∞. This process repeats until all visits are distributed into two trees.

4.3.3/ INITIAL SOLUTION

The repair procedure in ALNS can help generate the initial solution. At the beginning of the insertion, the current solution is empty, and all the real visits need to be inserted. The regret insertion heuristic is used to generate our initial solution. Firstly, the solution consists of a number of empty routes (equal to the number of caregivers m multiplied by the period time t). Each empty route includes the origin and destination nodes and a corresponding fictive visit that represents the lunch node. Then the real visits are inserted into the current solution using the regret insertion heuristic. If all real visits can be feasibly inserted into the solution, the initial solution is a complete solution ; otherwise, the initial solution consists of a partial solution and a set of unplanned visits.

4.3.4/ METHOD TO SIMPLIFY THE MIP MODEL

In order to solve the MIP model with the solver efficiently, the model must be simplified reasonably. Since the computational time is mainly determined by the variable x kd i j in the model (mentioned in Section 4.2), it is possible to fix some variables in the solution because ALNS has helped us obtain a feasible solution. For example, suppose that the visit route for caregiver 2 on day 1 in the solution is 3-4-2-5-6-1-7, two variables x 21 42 and x 21 56 can be randomly fixed to 1 (it also can be called that two arcs 4-2 and 5-6 are fixed), then the solver only needs to compute other free variables of x. There is no doubt that this procedure can accelerate the calculating process of the solver. In this chapter, η percent arcs are randomly fixed in the solution to simplify the MIP model, then MIP solver computes the simplified model for a time limit T max . If MIP solver cannot find a feasible solution after running T max , the input of MIP solver will be used as the output of this procedure.

A binary parameter ny kd i j is added in the model to conduct the fix procedure, where ny kd i j is subject to the formulation as follows :

ny kd i j ≤ x kd i j ∀i, j ∈ V, k ∈ K, d ∈ D (4.37)
The value of ny depends on the selection of variables, for example, if x 21 42 and x 21 56 are selected to be fixed, then ny 21 42 and ny 21 56 equal to 1, and the remaining values of ny are 0. The method described above can be extended to an Iterated MIP solver (IMS) algorithm to solve the problem proposed in this study. The outline of this algorithm is presented in Algorithm 29. Line 1 gives an initial solution, and this solution must be complete since IMS can only deal with a feasible solution. Line 2 initializes the best solution and current solution. Lines 4-5 simplify the MIP model and compute the model with MIP solver, and lines 6-11 implement the acceptance criteria mentioned. The algorithm terminates when the predefined time limit is reached (lines 3-12) and finally returns the best solution (line 13). It is noted that the method in Section 4.3.3 cannot assure the feasibility of the initial solution. Hence, this chapter employs random removal and regret -2 insertion iteratively to deal with the initial solution until the solution is completely feasible.

Algorithm 29

The pseudo-code of Iterated MIP solver. 

4.4/ NUMERICAL EXPERIMENTS

In order to evaluate the performance of the proposed algorithm, we first conduct extensive numerical experiments on the benchmark instances. Note that the multi-period planning problems considered in some studies, such as [START_REF] Trautsamwieser | A branch-price-and-cut approach for solving the medium-term home health care planning problem[END_REF]; [START_REF] Cappanera | Joint assignment, scheduling, and routing models to home care optimization : A pattern-based approach[END_REF], are quite similar to the targeted problem in this chapter, and their instances are available. This paper adopts the instances proposed by [START_REF] Trautsamwieser | A branch-price-and-cut approach for solving the medium-term home health care planning problem[END_REF] as benchmarks to perform the numerical experiments. Considering that our problem involves more special constraints than [START_REF] Trautsamwieser | A branch-price-and-cut approach for solving the medium-term home health care planning problem[END_REF], those benchmarks are adapted by adding such special constraints to derive the test instances dedicated to the problem considered in this paper on the basis of the benchmark instances. Since parameters are critical to the performance of an algorithm, the design of experiments (DoE) is applied in this study to determine the values of parameters. The explanations of the parameters are presented in Table 4.1. The experimental results of the matheuristics for the benchmark instances are first compared with the results of the pure ALNS and IMS. Then, the comparison between the results obtained by Gurobi, a commercial programming solver, and the two proposed matheuristics for the dedicated instances are detailed. Finally, sensitivity analyses with different model characteristics are reported. In the benchmark instances, the planning period is set as 7 days, and the caregivers are available on each day during the planning period. Each caregiver holds a qualification level, and each visit requires a qualification level as well. The authors thus designed two different scenarios for each instance. The first scenario restricts that the patient can only be served by caregivers with the same qualification levels. In the second scenario, downgrading of qualification levels is acceptable, i.e., caregivers can serve the patients requiring the same or one level lower qualification levels. For example, a caregiver qualified as level 3 can serve the patients requiring level 3 or 2, but cannot be assigned to the patients requiring level 1. The locations of patients, caregivers and the depot are distributed within a 50 × 50 area. The service and travelling times are measured in minutes, and Euclidean distances are used to calculate the times for travelling from one location to another.

In order to evaluate the performance of the proposed algorithms, this section tests the algorithms on the benchmark instances. Each benchmark instance is run 10 times using four algorithms : ALNS, IMS, matheuristic1, and matheuristic2. The stopping criteria of matheuristic2 are determined by the parameters in Table 4.1, while the other three algorithms terminate when their execution time equals that of matheuristic2 for the same instance. In matheuristic1, the execution time for the second stage (MIP solver stage) equals T matheuristic2-ALNS , i.e., the execution time of matheuristic2 minus that of ALNS in matheuristic1. The experimental results are presented in Considering that both matheuristic1 and matheuristic2 show better performance than the other two algorithms with benchmark instances according to the experimental results shown in Section 4.4.1, only matheuristic1 and matheuristic2 are tested with dedicated instances. Furthermore, Gurobi solver is applied to solve the original MIP model, and the solution obtained in up to 7200 seconds for each instance is used as the benchmark that used for evaluating the performance of these two matheuristics.

The test results are presented in Table 4.3, where "V" refers to the number of total demands in such instances, BKS represents the benchmark solutions obtained by Gurobi, and T Gu (s) indicates the CPU time of Gurobi. As can be observed in Table 4.3, the execution time of Gurobi increases dramatically as the size of the instance increases, and Gurobi can only find the optimal solutions within the predefined time limit for instances with fewer than 30 patients. Both matheuristics can solve the model much faster than Gurobi with a small gap. Furthermore, it can still be asserted that matheuristic2 performs better than matheuristic1 for the dedicated instances for the following reasons : First, out of a total of 29 instances, matheuristic 2 can derive the best solution over approximately 27.6% more instances than matheuristic1 (22/29 vs 14/29). Besides, matheuristic2 performs better than matheuristic1 in approximately 51.7% of the instances (15/29), although matheuristic1 outperforms matheuristic2 for 6.9% of the instances (2/29) and can obtain the same best solution as matheuristic2 for the remaining 12 instances (approximately 41.4%). Furthermore, matheuristic2 outperforms matheuristic1 in terms of the average of "Best" and "Ave". Finally, it can be observed that the gaps between the BKS obtained by Gurobi and the solutions of matheuristic2 are no more than 0.2%, indicating that highquality solutions can always be obtained by this proposed algorithm and the results are quite encouraging. In this chapter, the objective function consists of three parts : the operational costs, the penalty costs due to the dissatisfaction of caregivers, and the penalty costs related to the dissatisfaction of patients. We suppose that the manager of the HHCC considers these three costs indiscriminately ; thus, the weights of these three parts are set the same. However, in real life, HHCCs may have their own emphasis. For example, most HHCCs aim to minimize the operational costs to maximize their profits, while other HHCCs prefer to improve patient satisfaction to increase their competitiveness in the HHC market. Consequently, the numerical experiments with extreme assumptions are conducted in this study to analyze the sensitivity of the weight distribution of the bjective function. When ψ 1 =1, only operational costs are considered in the objective function. ψ 2 =1 and ψ =1 indicate that the penalty costs related to the dissatisfaction of caregivers and the penalty costs related to the dissatisfaction of patients are considered, respectively. Obviously, the results under column ψ 1 = ψ 2 = ψ 3 are those presented in section 4.4.2. The experimental results are presented in Table 4.4, in which we give three indicators to represent three sub-objectives, "OC" represents the operational costs for the HHCC, "W" denotes the unbalanced workload value, and "R" refers to the number of reassignments of caregivers incurring the penalty. Considering that people like to be treated fairly and hate plan changes, it is reasonable to assume that the higher the values of "W" and "R" are, the more dissatisfied the caregivers and patients are. Table 4.4 shows that when we only take one sub-objective as the objective function, the value of the indicator is lower than that of the indicator in the original model, especially for "W" and "R". When ψ 2 =1, W" equals 0 for approximately 20.7% (6/29) of the instances, and "R" equals 0 for approximately 27.6% (8/29) of the instances, indicating that extreme policies can help improve the satisfaction of either caregivers or patients ; however, none of the instances can minimize the three sub-objectives simultaneously.

Figure 4.4 presents the variation of three indicators depending on the dedicated instances. Figure 4.4a elucidates that the algorithm always finds the smallest value of "OC" for all the instances when ψ 1 =1. Besides, the values of "OC" for ψ 2 =1 and ψ 3 =1 are almost identical and dramatically larger than the other two weight distributions. In Figure 4.4b, one can notice that the value of "W" shows a considerable difference among distinctive distributions. The values of "W" are quite large (some of them are larger than 2000) when ψ 1 =1 and ψ 3 =1, while become pretty small (most of them are less than 30) when ψ 1 = ψ 2 = ψ 3 and ψ 2 =1. As can be seen from Figure 4.4c, ψ 3 =1 always obtains the smallest "R", followed by the values obtained on ψ 1 = ψ 2 = ψ 3 . The other two weight distributions ψ 1 =1 and ψ 2 =1 often get the largest value of "R" for all instances. Besides, it is found that the value of "R" increases with the increase of instances size when ψ 1 =1, ψ 2 =1, and ψ 1 = ψ 2 = ψ 3 . However, "R" does not show a clear trend with the size of the instances when ψ 3 =1. It is found from Table 4.5 that different weight distributions largely affect the dissatisfaction levels of caregivers and patients. When ψ 1 = ψ 2 = ψ 3 , the values of L W are very small (2.67% for the average), and the values of L R are also not very high, as the maximum value equals 80% (less than 1). As for ψ 2 =1 and ψ 3 =1, there is an inverse relationship between L W and L R . When ψ 2 =1, the dissatisfaction levels of caregivers are quite low (most L W are less than 1%), but patients' dissatisfaction levels become the highest (an average of L R =100.45% while the maximum L R equals 158.33% on instance HHC-10-50-8). However, when ψ 3 =1, the dissatisfaction levels of patients become relatively low, with an L R =6.27%, while high dissatisfaction levels of caregivers (L W = 95.33% for average) are obtained. More specifically, when ψ 1 =1, both the average values of L W and L R are large, 106.07%, and 97.55%, respectively, which is reasonable because the objective function only focuses on the operational cost in this weight distribution.

Generally, an L W or L R that is too high is not suitable for the HHC process considering the satisfaction of patients and caregivers. Hence, the objective function is not recommended when concerned with only one sub-objective. Patients in the target problem hold the same desires for continuity of care, i.e., all of them should be served with continuity as much as possible. However, patients' status may be diverse in actual life. For example, some patients need a long-term (e.g., several months) health care services to recover from an illness ; therefore, these patients are more important to the HHCC, and their continuity of care must be guaranteed during the planning period. However, some patients with good health conditions only require services for one or two planning horizons, and the continuity of care becomes unnecessary for these patients. In this section, we define three categories of patients in terms of the priority on continuity of care : (1) patients with high priority on continuity of care whose reference caregivers cannot be reassigned during the planning period ; (2) patients with medium priority on continuity of care whose reference caregivers can be reassigned with the penalty ;

(3) patients with low priority on continuity of care whose reference caregivers can be reassigned without the penalty. Finally, there are five sets of patients in the new model : P h f : set of follow-up patients with high priority on continuity of care. P h f ⊆ P. P h n : set of newly admitted patients with high priority on continuity of care. P h n ⊆ P. P m f : set of follow-up patients with medium priority on continuity of care. P m f ⊆ P. P m n : set of newly admitted patients with medium priority on continuity of care. P m n ⊆ P. P l : set of patients with low priority on continuity of care. P l ⊆ P.

In order to illustrate the priority on continuity of care in the model, constraints (4.38) Constraints (4.38) and (4.39) assure the high priority on continuity of care for normal patients (i.e., patients without synchronized requirements) and patients who require synchronized visits. Constraints (4.40) guarantee that the reference caregiver is preassigned at the beginning of the planning period for patients who belongs to P h f . Constraints (4.41)-(4.44) compute the number of caregiver's reassignment for patients with medium priority on continuity of care. The compared results between the original model (without priority) and the model that considers the priority on continuity of care (with priority) are presented in Table 4.6. The indicators in the table are the same as the previous part.

When the model considers the priority on continuity of care, the results in Table 4.6 show that, generally, "OC" decreases, while "W" and "R" increase, above those of the original model in terms of average values. Figure 4.5 further exhibits the variation of three indicators in Table 4.6. Figure 4.5a highlights that results without priority are slightly better than those with priority in terms of the operational cost (OC). In Figure 4.5b, it is found that the values of "W" between two models depend on the dedicated instances. As observed from Figure 4.5c, the values of "R" with priority are dramatically smaller than the results without priority for all the instances, which is reasonable because only patients with medium priority may cause the penalty in the model with priority. In summary, when the model considers the priority on continuity of care, although the penalty costs for patients' dissatisfaction will be reduced, the increase in the operational costs should also be noted. More specifically, the penalty costs for caregivers' dissatisfaction does not show a regular change between the two models.

4.4.3.3/ DEPARTURE RULES OF CAREGIVERS

In the original model, caregivers are allowed to keep a rental car at home if they require consecutive rental demands. Obviously, this process is more convenient for caregivers than returning the rental car to the depot each day, but it may not be the optimal manage-ment for the HHCC in terms of the objective value. Considering the practical operations of the HHCC, we manage the caregivers' departure rules using another scenario (scena-rio1), which emphasizes that caregivers must return rental cars after finishing their daily work.

The MIP model is modified to adapt the new constraints. For scenario1, the constraints 4.7, compared with the original scenario, the algorithm finds a better solution only for approximately 37.9% (11/29) of instances under scenario1, and the average of "Gap1" is larger than 0 (0.64%). Therefore, it can be deduced that scenario1 is slightly worse than the original scenario.

The variation of four indicators between two scenarios is presented in Figure 4.6. In Figure 4.6a and 4.6b, it is worth noting that the "Best" and "OC" hold the same trend for dedicated instances, and the differences of "Best" and "OC" between two scenarios are not huge. Moreover, it is also observed from Figure 4.6c and 4.6d that the values of "W" and "R" do not show apparent regularity between two scenarios, the compared results also affected by the instances. To sum up, it is concluded that if the departure rules of the caregivers are changed, "Best" will be reflected mainly because of the change in the operational costs ("OC"), and the changed values of "W" and "R" will not affect the trend of the objective value. The experimental results highlight that the management of the HHCC can allow caregivers to keep rental cars at home when caregivers require rental cars on consecutive days.

4.5/ CONCLUSIONS

This chapter deals with a novel multi-period home health care planning problem, in which three sub-objectives, operational cost, the penalty cost of patients' and caregivers' satisfaction, are aggregated into the objective function. The problem concerns some practical and challenging constraints : synchronized visits, lunch breaks, and continuity of care. A MIP model is proposed to formulate the problem. Two matheuristics, matheuristic1 and matheuristic2, that incorporate ALNS and Gurobi solver differently are developed to solve the model. The experimental results on classic multi-period benchmark instances highlight the efficiency of matheuristics compared with pure ALNS and Gurobi solver, and matheuristic2 shows better performance than matheuristic1.

The sensitivity analyses of the model are further analyzed in terms of the objective function, continuity of care and departure rules of caregivers. The results indicate that different weight distributions for the objective function affect the sub-objectives. An objective function that only involves one sub-objective is not suggested because it causes a high level of dissatisfaction for caregivers or patients. It is also found that when the priority of continuity of care is considered in the model, the penalty for patients' dissatisfaction will decrease while the operational costs will increase. Two scenarios are developed to manage the departure rules of caregivers, and it is more likely to obtain a better solution under the original scenario, i.e., the rental cars are allowed to be kept at caregivers' home when the consecutive rental demands are required. Different scenarios mainly regularly affect the sub-objective of the operational costs, while the other two sub-objectives : the penalty costs of patients and caregivers' dissatisfaction, do not display discernible regularity with different scenarios. 

CONCLUSIONS AND PERSPECTIVES

5.1/ CONCLUSIONS

Although abundant studies in the literature have researched the HHCRSP from many aspects, few of them considered simultaneously the synchronization among visits and lunch breaks because of the complexity. In this thesis, three models of the HHCRSP with synchronized visits and lunch breaks are proposed. The first one is a basic model which considers time windows, synchronized visits and lunch breaks for a daily deterministic HHCRSP. The second model formulates the HHCRSP with synchronized visits and lunch breaks under a time-dependent and fuzzy environment. Besides, multiple time window constraints are concerned instead of the single one. Based on the first model, the third model formulates the multi-period HHCRSP with continuity of care and workload balancing.

Chapter 2 studies a daily HHCRSP with time windows, synchronized visits and lunch breaks. A MIP model is constructed at first, and four hybrid metaheuristics, memetic algorithm based on genetic algorithm (GA) and local search (LS), a hybrid genetic general variable neighborhood search (HGGVNS) based on GA and general variable neighborhood search (GVNS), a hybrid genetic simulated annealing (HGSA) based on GA and simulated annealing (SA), and a hybrid simulated annealing (HSA) based on SA and LS, are developed to solve the problem. Finally, the sensitivities of such parameters : the scale of synchronized visits, the width of time windows, break regulations are analysed.

Chapter 3 extends the problem in chapter 2 by considering time-dependent travel times, fuzzy service times and multiple time windows. A fuzzy optimization model is proposed to describe the problem, then an adaptive large neighborhood search (ALNS) with some particular design parts is developed to address the targeted problem. Several benchmarks are used to prove the efficiency and effectiveness of ALNS, and then experimental results are reported concerning the generated instances of our problem. Finally, a case study is proposed to describe the application of the proposed issue in the real world, in which BP Neural Network is innovatively used to forecast the travel time based on historical data since this parameter is usually unknown before the travel.

Chapter 4 extends the problem in chapter 2 to a multi-period HHCRSP, and the constraints with multi-period features such as continuity of care and workload balancing are concerned. In order to address the proposed problem, this chapter investigates the matheuristic that integrates the ALNS with mathematical programming. According to different ways to combine ALNS and mathematical programming, two versions of the matheuristic, matheuristic1 and matheuristic2, are developed. Furthermore, extensive experiments 113 CHAPITRE 5. CONCLUSIONS AND PERSPECTIVES are conducted to validate the performance of the matheuristic on benchmark instances. Finally, the effects of the model's characteristics have been analysed.

5.2/ PERSPECTIVES

This thesis still has a number of limitations. First, since the real data of the proposed problems are not available, the test instances in the experiment part are generated based on related benchmark instances. Although the proposed algorithms have been validated to be efficient on the test instances, they still need to be evaluated on the real instances. In addition, as this thesis mainly employs approximate algorithms to solve the problem, the optimal solutions are not available for large instances. The commercial software, Gurobi, can only find optimal solutions and lower bounds for small-size instances. Furthermore, the majority of the proposed models belong to the deterministic model, in which all the parameters such as patient's demand, travel time, service time, and time windows, can be known in advance. However, these parameters may be uncertain in practical situations. In chapter 3, the fuzzy data are generated according to the method proposed by [START_REF] Lai | A new approach to some possibilistic linear programming problems[END_REF] under the triangular membership function. However, it will be more reasonable if some advanced techniques are used to help generate the fuzzy data.

Several directions on this thesis could be further explored in the future. First, from the perspective of the algorithm's performance, it is encouraged to improve the devised algorithms by combining some techniques such as column generation and machine learning.

On the other hand, it is possible to enrich the models. For example, the model in chapter 4 can be extended to a multi-objective model, which can be solved by a multi-objective optimization algorithm to achieve the pareto optimality, i.e., generate a representative subset of the pareto optimal solutions. Besides, models in chapter 2 and 4 can be further formulated as a robust optimization model or stochastic programming model when the uncertain factors, such as uncertain patients' demands, uncertain travel and service times, are considered.
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  Liu et al. (2019a) addressed a VRPTWsyn under the background of HHC. In order to simplify the mathematical model, they used fictive patients to represent the synchronized services. A patient who requires synchronized services corresponds to one or more fictive patients (depending on the number of requirements). The authors proposed a MIP model to formulate the problem. An efficient ALNS is introduced to solve the problem within an acceptable execution time.Decerle et al. (2019b) innovatively regarded the synchronization as an objective in the HHCRSP, in which the extra waiting times of caregivers caused by synchronization constraints are accepted with a penalty. A function is proposed to describe the relationship between the penalty value and the extra waiting times. The service quality influenced by the penalty value is treated as one of the objectives of the problem.Besides the applications in HHC and VRP context, synchronization constraints have also been widely researched in other fields.[START_REF] Akbari | Multi-vehicle synchronized arc routing problem to restore post-disaster network connectivity[END_REF] introduced a multi-vehicle synchronized arc routing problem to restore post-disaster network connectivity. The authors built a MIP model for the problem, and then a matheuristic that integrates a MIP-relaxation and a local search algorithm is proposed to solve the problem.[START_REF] Hu | Synchronizing vehicles for multi-vehicle and one-cargo transportation[END_REF] considered a big-size cargo transportation problem with synchronizing vehicles. The problem concerned the synchronization constraints among the unit-load flat vehicles and pursued the minimized makespan. The problem is formulated by a MILP and solved by two approximate algorithms greedy insert algorithm (GIA) and the genetic algorithm (GA).
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 21 FIGURE 2.1 -An illustrative instance of MDHVRPTW.
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 22 FIGURE 2.2 -An illustrative instance of HHCRSPsynLB.
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 24 FIGURE 2.4 -Illustration of a solution before the synchronization adjustment.
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 2 FIGURE 2.5 -Illustration of a solution after the synchronization adjustment.
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  Set of synchronized patients NP ; |NP| × |NP| matrix Φ obtained by Algorithm 1 ; 1: for i=1 to |NP| do 2:
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 32 FIGURE 2.7 -Flow diagram for the solution evaluation.
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 22 FIGURE 2.8 -Selected visits in the parent solutions.

4 :

 4 for i=1 to |SP|/2 do 5: Select two parents by binary tournament from the population ; 6: Deal with the parents by crossover and mutation operators and two offspring are obtained ; 7: Each offspring S is selected as the initial solution of GVNS ; 8: Initialize the neighborhood structures N k (k =1,..., k max ) ; S by using local search to S with the kth neighborhood ; 13: if f (S ) < f (S ) then 14: the population SP of the current generation ; 22:
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 2 MULTI-CONSTRAINT HHCRSP UNDER DETERMINISTIC ENVIRONMENT 2.3.6/ HYBRID GENETIC SIMULATED ANNEALING Algorithm 9 The pseudo-code of hybrid genetic simulated annealing. Input: T 0 , T t , b, ML ; 1: Generate initial population SP using the insertion heuristic ; 2: T = T 0 ; 3: Find the best solution S best in SP ; 4: while Stopping criteria are not met do 5: for t=1 to ML do 6: for i=1 to |SP|/2 do 7:

  solution S best of the current generation ; 21: if f (S best ) < f (S best ) then 22: S best =S best ;

3 :

 3 for each parameter configuration c j ∈ C do 4: Run c j on instance i for several times and record the average objective value to OM(it,j)

17 :

 17 c j ∈ C except c best with the ascend order of corresponding pvalues. for c j with the smallest p-value to c j with the largest p-value do 18:if null hypothesis is rejected with the post-hoc procedure then
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 2 FIGURE 2.11 -Computational time under different width of time windows for 25 (left), (middle), 100 (right) size instances.
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 2 FIGURE 2.12 -Comparison of the algorithm's execution time between different break regulations.
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 2 FIGURE 2.13 -Comparison of the algorithm's execution time for instances with different departure modes.

  [START_REF] Grenouilleau | A set partitioning heuristic for the home health care routing and scheduling problem[END_REF] are concerned. Besides, this constraint has not been dealt with using data analytics. Similarly, addressing uncertain factors using fuzzy logic is still scarce in HH-CRSP. Properly speaking, only[START_REF] Fathollahi-Fard | A biobjective home healthcare routing and scheduling problem considering patients' satisfaction in a fuzzy environment[END_REF] dealt with a bi-objective HH-CRSP with fuzzy logic, and[START_REF] Shi | A hybrid genetic algorithm for a home health care routing problem with time window and fuzzy demand[END_REF] addressed an HHC routing problem with fuzzy demand.

  and has been successfully applied in solving the variant of VRP, a quite similar NP-hard problem with the HHCRSP, such as in Dayarian et al. (2016); Gu et al. (2019); Sacramento et al. (2019); Sarasola et al. (
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 3 FIGURE 3.1 -The framework of solution procedure.

FIGURE 3 . 2 -

 32 FIGURE 3.2 -An illustrative example of the solution.
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 4 number λ ∈ [0, 1] and select the visit r = Π[|Π| * λ p2 ] 10: Remove r from s part to U 11: end while Output: s part and U Related distance removal : This heuristic is similar to related removal, while it assumes ψ 1 = 0 in (3.42).
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 33 FIGURE 3.3 -An infeasible solution caused by removing the predecessor of the dummy visit.

Figure 3 .

 3 Figure 3.4 presents four speed functions when caregivers travel from urban areas/suburbs to urban areas/suburbs. Each function involves three time periods [0, t1] , [t1, t2], [t2, t3] on the timeline. The normal travel speed is v 2 , and turns to v 1 at the rush hour. In the morning [0, t1], there is a rush hour within the urban roads and roads from suburbs to urban areas (because most people live in suburbs and work in urban areas). Similarly, in the evening [t2, t3], there is a rush hour within urban roads and roads from urban areas to suburbs.

  Five parameter settings for pin are given, namely [0.05, 0.1], [0.1, 0.2], [0.2, 0.3], [0.2, 0.5], [0.3, 0.5], and then test the different pin on TABLE 3.2 -Impact of the percentage of parameter settings.
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 35 FIGURE 3.5 -Variation of the best solution obtained by ALNS for HHC-9-50-5-3 depending on feasibility degrees.

   

Figure 4 .

 4 1 presents the flow diagram of the departure rule for the caregiver.

FIGURE 4 .

 4 FIGURE 4.1 -Flow diagram of the departure rule.

  ∪ r 12: end while 13: Remove visits in D from s 14: U = U ∪ D Output: s and U
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 44 FIGURE 4.4 -The variation of three indicators among four weight distributions depending on the instances.

4. 4 . 3 . 2 /

 432 PRIORITY ON CONTINUITY OF CARE

FIGURE 4 . 5 -

 45 FIGURE 4.5 -The variation of three indicators between two models.
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 4 FIGURE 4.6 -The variation of the four indicators between two scenarios depending on the instances.
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  [START_REF] Haddadene | A grasp× ils for the vehicle routing problem with time windows, synchronization and precedence constraints[END_REF] also considered synchronization and precedence constraints applied in HHC services. The authors first proposed a mixed-integer linear programming (MILP) model, and then the algorithm called greedy randomized adaptive search and iterated local search (GRAS-ILS) which includes two local search strategies and three metaheuristics, is developed to address the model.

[START_REF] Redjem | Operations management in the home care services : a heuristic for the caregivers' routing problem[END_REF] 

presented an HHCRSP in which patients' visits are completed simultaneously and possibly in a predefined order. Considering the complexity caused by the number of care activities per caregiver ratio and the temporal dependencies rate, they designed a caregivers routing heuristic (CRH) approach for the problem.

TABLE 1

 1 

	.1 -Recent publications related to synchronization constraints in HHC
	context.	
	Reference	Simu 1 TP 2 Solving method
	Eveborn et al. (2006)	Repeated matching
	Bredstr öm et al. (2008)	

  [START_REF] Rincon-Garcia | A metaheuristic for the time-dependent vehicle routing problem considering driving hours regulations-an application in city logistics[END_REF] introduced a VRP with temporary breaks applied in city logistics, in which the driving hours regulations in the United Kingdom are considered. The regulations indicate that the working time of each driver nodes to adequately account for the break. Finally, the problem is solved using a tailored fast multi-start randomized local search heuristic.Recent publications related to break constraints in the HHC context are summarized in Table1.2.

	TABLE 1.2 -Recent publications related to break constraints in HHC context
		Break regulation	Break location
	Reference	LB 1 TB 2	PL 3 WPL 4 Depot Solving method
	Cheng et al. (1998)		Two-phases heuristic
	Trautsamwieser et al. (2011)		

should be interrupted for a flexible break depending on the different accumulated working times. The authors proposed a large neighborhood search algorithm for tackling the problem.

[START_REF] Coelho | Solving the vehicle routing problem with lunch break arising in the furniture delivery industry[END_REF] 

addressed a vehicle routing problem with lunch break (VR-PLB) encountered in the furniture delivery industry. In order to formulate the lunch break constraints with the MILP formulation, the authors regarded each location of the customer as two different

  [START_REF] Trautsamwieser | A branch-price-and-cut approach for solving the medium-term home health care planning problem[END_REF] introduced a medium-term HHC planning problem. They focused on a lot of interesting properties related to the caregivers, such as maximum working time per week, minimum daily rest time between two consecutive working days, minimum weekly rest time, and temporary breaks for caregivers. A MIP formulation is developed to describe the problem while the objective function aims to minimize the total working duration of the caregivers in a week.[START_REF] Wirnitzer | Patient-based nurse rostering in home care[END_REF] addressed a monthly home care rostering problem by considering the hard constraints such as legal working time restrictions, availability of full and parttime nurses, and different demands required by patients on qualification and frequency.

The objective is to dispatch as few different caregivers as possible to each patient, and five different measures of the continuity of care are further proposed as the five different objective functions which are to minimize : the number of different caregivers per tourcluster, the number of different caregivers per patient, the relative number of different caregivers per patient, the number of caregiver-switches per patient, and the number of relative caregiver-switches per patient. Consequently, five MIP formulations are correspondingly proposed.

TABLE 1

 1 

	.3 -Recent studies on the HHC considering uncertainties.
	Reference	Factors	Model	Solving method
	Shi et al. (2017)	Fuzzy demand	FCCP model	Hybrid genetic algorithm
	Cappanera et al. (2018)	Uncertain demand	RO model	Cardinality-based approach
	Yuan et al. (2015)	Stochastic service time	SPR	Branch-and-price
	Shi et al. (2018)	Stochastic travel and service times SPR	Simulated annealing
	Liu et al. (2019b)	Stochastic travel and service times CCP	Branch-and-price
				Tabu search
	Shi et al. (2019)	Stochastic travel and service times RO model	Variable neighborhood search
				Simulated annealing
	Fathollahi-Fard et al. (2020)	Fuzzy travel and service time Fuzzy time windows Fuzzy patient's satisfaction	Fuzzy model	Multi-objective social engineering optimizer
	Nikzad et al. (2020)	Stochastic travel and service times	Two-stage stochastic MIP	Matheuristic
	1.6/ OBJECTIVE FUNCTION		
	In the HHCRSP literature, almost all the papers considered the objective functions as fol-
	lows : minimum routing cost, minimum patient's inconvenience, minimum patients unsche-
	duled, minimum caregivers assigned and maximum satisfaction of caregivers. Among
	these objectives, approximately 90% of studies used routing cost minimization as the ob-
	jective function in HHCRSP (Ciss é et al., 2017), and this criterion is often associated with

TABLE 1 .

 1 4 -Recent studies related to the HHC considering multiple objectives.

	Reference	Approach	Number of Objectives Solving method
	Trautsamwieser et al. (2011) Weighted sum	7	Variable neighborhood search
	Nickel et al. (2012)	Weighted sum	4	Two-stage solution strategy
	Hiermann et al. (2015)	Weighted sum	13	Two-stage heuristic
	Haddadene et al. (2016)	Weighted sum	2	Greedy randomized adaptive search and iterated local search
	Liu et al. (2017)	Weighted sum	2	Branch-and-price
	Grenouilleau et al. (2019)	Weighted sum	3	Set partitioning heuristic
	Nikzad et al. (2020)	Weighted sum	3	Matheuristic
	Duque et al. (2015)	Lexicographical order 2	Two-stage solution strategy
	Braekers et al. (2016)	Pareto optimality	2	MDLS
	Decerle et al. (2019b)	Pareto optimality	3	MAMO
	Fathollahi-Fard et al. (2020)	Pareto optimality	2	AMSEO
	1.7/ SOLVING METHODS		
	Due to the NP-hard status, the mathematical solver is powerless for the HHCRSP when
	large-size instances are tested. Hence, scholars have developed exact and approximate
	algorithms for solving the problem. Exact algorithms mainly consist of branch-and-cut
	algorithm			

  assure that the flow conservation is satisfied, i.e., if a vehicle serves one client, it must also leave this client. Constraints(2.4) ensure that each client belongs to exactly one route. Constraints (2.5) ensure that the start time of each visit is within the corresponding time window. Constraints(2.6) verify that vehicles have enough time to travel between two consecu-

tive visits. Constraints

(2.7

) are used to eliminate sub-tours, the sub-tour is a tour that only includes some visits. More details about the sub-tours elimination can refer to

[START_REF] Desrochers | Improvements and extensions to the millertucker-zemlin subtour elimination constraints[END_REF]

. Constraints (2.8) state possible values for decision variables. Note that the capacity constraints are not presented because they have no relationship with the HHCRSPsynLB. The mathematical model (2.1)-(2.8) is nonlinear due to the existence of constraints

(2.6)

. Using a big positive constant M (i.e., 2000), constraints (2.6) can be linearized as follows :

  are to identify whether a caregiver departs from his/her home or the depot. Constraints (2.26) avoid the route establishment from the caregivers' homes to the depot. Finally, the mathematical model of HHCRSPsynLB is formulated as follows :

	Objective

function : Eq. (2.1) (2.27) S.t. Eqs. (2.3) -(2.5) (2.28) Eqs. (2.7) -(2.26) (2.29) Furthermore, compared with classic formulation for the VRPTW (Cordeau et al., 2007), the MIP model of HHCRSPsynLB removes the vehicle's capacity constraints and adds some new constraints, which are caregivers' qualifications (constraints (2.10)), caregivers' working time window (constraints (2.11)-(2.12)), lunch breaks (constraints (2.13)-(2.19)), synchronized visits (constraints (2.20)), and multi-depot (constraints (2.22)-(2.26)).

  S best in last generation replaces the worst solution of current population if it is distinct in the current population. Line 11 records the new best solution S best in the current population.

	5:	else
	6:	Insert i at an infeasible position which violates the time window constraints ;
	7:	end if
	8: end for
	9: if s is not feasible then
	10:	while s is not feasible do
	11:	Use local moves and local search to deal with s ;
	12:	end while
	13: end if
	Output: s

  Generate initial population SP using the insertion heuristic ; 2: Record the best solution S best in SP ; 3: while Stopping criteria are not met do If S best has a distinct fitness value than those in SP, replace the worst solution in SP with S best ;

	4:	for i=1 to |SP|/2 do
	5:	Select two parents by binary tournament from the population ;
	6:	Deal with the parents by crossover and mutation operators and two offspring
		are obtained ;
	7:	Each offspring is improved by Localsearch ;
	8:	end for
	9:	Obtain the population SP of the current generation ;
	10:	

1:

11:

  The pseudo-code of Localmoves.

	42CHAPITRE 2. MULTI-CONSTRAINT HHCRSP UNDER DETERMINISTIC ENVIRONMENT
	Algorithm 11 Input: Candidate solution S ;
	1: Pick a random solution S from 0-1 relocation neighborhood structure of S ;
	2: Pick a random solution S from 1-1 exchange neighborhood structure of S ;
	3: Pick a random solution S from 2-opt* neighborhood structure of S ;
	Output: S	
	4:	S = S best ;
	5:	for t=1 to ML do
	6:	S =Localsearch (S ) ;
	7:	if local search does not improve S then
	8:	S =Localmoves (S ) ;
	9:	end if
	10:	if random (0,1) <e -( f (S )-f (S ))/T then
	11:	S =S ;
	12:	end if
	13:	if f (S ) < f (S best ) then
	14:	S best =S ;
	15:	end if
	16:	end for
	17:	T = T *b ;
	18: end while
	Output: S best

2: T = T 0 ; S best = S ; 3: while Stopping criteria are not met do

TABLE 2 .

 2 1 -Characteristics of the experimental instances.

	Instances Patients	Synchronized patients	Caregivers	Lunchtime window	Lunchtime duration
	Small-size	8-12	1-5	3		
	25 size 50 size	25 50	1,3,5 3,5,10	4 6	[400 600]	30
	100 size	100	5,8,10	16		

TABLE 2 .

 2 2 -Parameter configurations and tuning results.

	Algorithm Parameters	Range	Value
		SP : Size of the population	[30, 50]	30
		Pc : Probability of crossover	[0.95, 0.98]	0.95
	MA	Pm : Probability of mutation G1 : Max iterations	[0.1, 0.2] [2000, 3000]	0.1 2000
		G2 : Max iterations without improving	[2, 3] × size of the	2 × size of the ins-
		the best solution	instance	tance
		Len1 : Epoch length in each local	[60, 80]	60
		search procedure		
	HGGVNS	rhood search Len2 : Epoch length in each neighbo-	[30, 50]	30
		Other parameters are the same as		
		MA		
		T 0 : The initial temperature	[Min, Max] cost in	Minimum cost in
			initial population	initial population
	HGSA	T t : The terminal temperature b : Boltzmann's constant	[0.01, 0.1] [0.98, 0.99]	0.1 0.99
		ML : Max iterations for generating	[30, 50]	50
		new solution at a temperature		
		G3 : Max iterations without improving	[10, 16] × size of	10 × size of the
		the best solution	the instance	instance
		Pc : Probability of crossover	[0.95, 0.98]	0.98
		Pm : Probability of mutation	[0.1, 0.2]	0.2
		Other parameters are the same as		
		MA		
		T 0 : The initial temperature	[1, 1.5] × cost of	Cost of the initial
	HSA		the initial solution	solution
		G4 : Max iterations without improving	[10, 16] × size of	10 × size of the
		the best solution	the instance	instance
		Len1 : Epoch length in each local		
		search procedure		

TABLE 2 .

 2 3 -Computational results on small size and 25 size instances.

	HSA	Best Avg T(s) Gap	282.21 284.14 6.37 0.00%	284.66 284.66 6.95 0.00%	425.89 425.89 6.02 0.00%	339.01 340.73 8.43 0.00%	
	HGSA	Best Avg T(s) Gap	282.21 282.21 15.25 0.00%	284.66 284.66 15.73 0.00%	425.89 426.2 16.68 0.00%	339.01 342.26 17.52 0.00%	
	HGGVNS	Best Avg T(s) Gap	282.21 282.21 17.74 0.00%	284.66 284.66 18.46 0.00%	425.89 427.05 19.97 0.00%	339.01 339.01 19.51 0.00%	
	MA	Best Avg T(s) Gap	282.21 282.21 12.26 0.00%	284.66 284.66 14.27 0.00%	425.89 425.89 15.88 0.00%	339.01 339.01 17.36 0.00%	425.08 425.08 20.44 0.00%
		T(s)	0.24	0.26	1.97	0.34	0.67
	Gurobi						
		OV	282.21	284.66	425.89	339.01	425.08
	Instances		rc207-8-3-1	rc207-8-3-2	rc207-8-3-4	r209-10-3-1	r209-10-3-3

TABLE 2 .

 2 4 -Computational results on 50 size instances.

		Std T(s)
	HSA	Worst
		Avg
		Best
	HGSA	Worst Std T(s)
		Avg
		Best
	HGGVNS	Worst Std T(s)
		Avg
		Best
	MA	Worst Std T(s)
		Avg
		Best
	Instances	

TABLE 2 .

 2 5 -Computational results on 100 size instances.

	HSA	Worst Std T(s)
		Avg
		Best
	HGSA	Worst Std T(s)
		Avg
		Best
	HGGVNS	Worst Std T(s)
		Avg
		Best
	MA	Worst Std T(s)
		Avg
		Best
	Instances	

TABLE 2 .

 2 6 -Proportion of best solutions obtained by four algorithms.

		Instance MA		HGGVNS		HGSA		HSA
		25 size	8/27=29.63%	22/27=81.48% 2/27=7.41% 7/27=25.93%
		50 size	8/27=29.63%	13/27=48.15% 1/27=3.7%	5/27=18.52%
		100 size 8/27=29.63%	17/27=62.96% 0/27=0%	2/27=7.41%
		Total	24/81=29.63% 52/81=64.2%	3/81=3.7%	14/81=17.28%
		120			500				
		90	MA HGGVNS HGSA HSA		400		MA HGGVNS HGSA HSA		MA HGGVNS HGSA HSA
	Computational time(s)	60		Computational time(s)	200 300		Computational time(s)	800 1300	
		30							
					100				
		0			0			300	
		small	medium	large	small	medium	large	small	medium	large
			Scale of synchronized visits		Scale of synchronized visits			Scale of synchronized visits

FIGURE 2.10 -Computational time under different scale of synchronized visits for (left), 50 (middle), 100 (right) size instances.

Table 2

 2 

	Algorithms Best	Avg	Worst	Std
	MA	1.91	1.89	1.91	2.2
	HGGVNS 1.48	1.37	1.31	1.44
	HGSA	3.91	3.87	3.81	2.98
	HSA	2.7	2.87	2.96	3.37
	F ID	111.61 144.74 141.87 39.98
	p-value	< 10 -8 < 10 -8 < 10 -8 < 10 -8
	2.4.4.2/ POST-HOC PROCEDURE			

.7 presents the results of Friedman test for four indicators. The results highlight that HGGVNS is the best performing algorithm for the studied problem because it obtains the smallest average ranks for four indicators, while HGSA is the worst. p-values in Table

2

.7 is computed through the corresponding F ID . Note that p-values are quite small (much less than 0.05) for all indicators, which strongly reject the null hypothesis H 0 and indicate that there are significant differences among the proposed algorithms. TABLE 2.7 -The values of average ranks, statistics and p-values achieved by Friedman test for four indicators.

TABLE 2 .

 2 

	Algorithms		Best		Avg		Worst		Std
		z	p-value	z	p-value	z	p-value	z	p-value
	MA	1.72 0.085	2.08 0.038	2.4 0.016	3.04 0.0024
	HGSA	9.72 < 10 -16	10	< 10 -16	10 < 10 -16	6.16 7.27×10 -10
	HSA	4.88 1.06×10 -6 6	1.97×10 -9 6.6 4.11×10 -11 7.72 1.15×10 -14
	2.4.5/ SENSITIVITY ANALYSIS OF BREAK REGULATIONS	
	This section helps HHC managements handle the decision-making on break regulations.
	In practice, most HHCCs in Europe allow caregivers to take the breaks in a lunch period
	(lunch breaks considered in our problem). However, another break regulation called tem-
	porary breaks is also possible for caregivers. Different from lunch breaks, the temporary
	breaks do not occurred in a specific time interval but at any time as long as the cumu-
	lative working time does not exceed the maximum consecutive working time. In order to

8 -Post-hoc procedure z-values and p-values. elucidate the new constraints, the MIP model proposed for HHCRSPsynLB should be modified, i.e., constraints (2.36)-(2.37) replace the constraints

(2.13)

, where B in constraints (2.36)-(2.37) represents the maximum consecutive working time. B is set as 500 in this chapter, since each caregiver starts the work at time point 0, so the caregivers may take the break within the new time window [0, 500].

TABLE 2 .

 2 10 -Comparison of the experimental results obtained with different departure modes.

	DD mode is applied, the original model presented in Section 2.2 should be updated
	by replacing constraints (2.22) and (2.24) with constraints (2.38) and (2.39), and removing
	constraints (2.23), (2.25) and (2.26) since no caregivers can depart from homes.	
	x k 0 j ≤ 1 ∀k ∈ K	(2.38)
	j∈P	

  s best ) then

	7:	s best ← s new
	8: end if
	9: if Accept(s new ) then
	10:	s current ← s new
	11: end if
	12: Update roulette wheel
	13: Until stopping criteria are reached
	Output: s best

TABLE 3 .

 3  for the deterministic model.

		Gurobi				ALNS	
	Instance	BKS	Time(s)	Best	Worst	Ave	Std CPU(s) Gap(%)
	HHC-1-10-1-2	639.42	0.18	639.42 639.42 639.42 0	0.03	0.00
	HHC-2-10-1-2	641.88	0.15	641.88 641.88 641.88 0	0.04	0.00
	HHC-3-15-2-2	872.71	0.95	872.71 872.71 872.71 0	0.11	0.00
	HHC-4-15-2-2	884.11	1.25	884.11 884.11 884.11 0	0.14	0.00
	HHC-5-20-2-2	1201.4	202.14 1201.4 1201.4 1201.4 0	0.25	0.00
	HHC-6-20-2-2	1196.73	1849.16 1196.73 1196.73 1196.73 0	0.28	0.00
	HHC-7-25-3-2 [1419.41-1441.29] 7200 1432.03 1432.03 1432.03 0	0.65	-
	HHC						

TABLE 3 .

 3 4 -Computational results on benchmark instances for the total travel time.

	ALNS

Table 3 .

 3 4 displays the compared results. The columns "N" and "N1" indicate the number of total visits and synchronized visits in the instances. "BKS" records the benchmarks provided by Bredstr öm et al. (2008); Afifi et al. (2016);

TABLE 3 .

 3 5 -Experimental results on large-size instances.

	ALNS

TABLE 3 .

 3 6 -Basic information of the real-case.

	No.	Time windows	Service time (min)	Geography	Qualified caregivers	Rent demand
	Depot (0)	-	-	0	-	-
	1	(9 :30-11 :30)	(8, 23, 38)	0	32,34,35	-
	2	(8 :00-12 :00)	(4, 15, 25)	1	32,34,35	-
	3	(8 :00-10 :00) , (13 :00-14 :30), (15 :20-18 :00) (9, 20, 34)	1	31,33,34	-
	4	(9 :30-12 :00), (15 :30-18 :00)	(6, 18, 30)	1	32,33,35	-
	5	(12 :30-17 :00)	(5, 20, 29)	1	31,34,35	-
	6	(9 :30-11 :00) , (12 :30-14 :30), (16 :00-17 :00) (8, 16, 23)	1	32,33,35	-
	7	(13 :00-18 :00)	(5, 20, 32)	1	33,34,35	-
	8	(10 :00-12 :00), (14 :00-17 :30)	(12, 24, 30)	1	32,33	-
	9	(8 :30-12 :00), (16 :00-18 :00)	(16, 21, 31)	0	31,32,34	-
	10	(8 :30-10 :30) , (12 :00-14 :00), (17 :00-18 :00) (10, 15, 22)	1	31,33,35	-
	11	(8 :30-13 :30)	(9, 21, 27)	0	32,34,35	-
	12	(9 :30-12 :00)	(6, 19, 33)	1	31,33,34	-
	13	(13 :30-15 :00)	(14, 23, 28)	1	31,33	-
	14	(8 :00-9 :30) , (12 :30-14 :30), (16 :30-18 :00) (18, 24, 33)	1	32,33,35	-
	15	(10 :00-13 :00) , (15 :30-17 :00)	(12, 22, 33)	0	31,33	-
	16	(13 :30-17 :00)	(7, 25, 44)	1	31,32,33	-
	17	(11 :00-12 :00) , (14 :30-16 :00)	(12, 20, 32)	0	32,34,35	-
	18	(14 :30-17 :30)	(13, 19, 23)	1	32,33	-
	19	(9 :00-10 :00) , (12 :30-15 :30), (17 :00-18 :00) (8, 11, 19)	0	31,33,35	-
	20	(9 :40-12 :00) , (16 :30-18 :00)	(6, 14, 23)	1	32,33,34	-
	21	(8 :30-10 :00) , (13 :00-16 :00)	(4, 10, 17)	0	31,35	-
	22	(10 :00-12 :00) , (14 :30-16 :00)	(11, 17, 26)	1	32,33	-
	23	(13 :00-17 :00)	(16, 21, 38)	0	31,33,35	-
	24	(8 :00-10 :30) ,(12 :00-14 :00), (16 :00-17 :00) (12, 22, 32)	1	32,34	-
	25	(9 :00-10 :30) , (12 :30-14 :00),(15 :00-17 :00) (9, 20, 32)	0	31,33,35	-
	26	(8 :00-12 :30)	(11, 25, 35)	1	32,33,34	-
	27	(9 :30-13 :00)	(13, 23, 34)	1	31,33,35	-
	28	(8 :00-9 :30) , (15 :30-17 :00)	(4, 13, 16)	1	31,32,33	-
	29	(9 :00-12 :30) , (14 :30-17 :00)	(14, 20, 26)	1	31,34,35	-
	30	(8 :00-10 :00) , (12 :30-14 :00), (15 :30-17 :30) (6, 14, 25)	1	31,32,34	-
	Caregiver					
	31	(8 :00-19 :00)	-	1 a	-	1 b
	32	(8 :00-19 :00)	-	0	-	1
	33	(8 :00-19 :00)	-	0	-	0
	34	(8 :00-19 :00)	-	1	-	0
	35	(8 :00-19 :00)	-	1	-	1
	a represents the urban area, 0 otherwise.				
	b represents that caregivers rent a vehicle, 0 otherwise.				

TABLE 3 .

 3 7 -Experimental results for the studied case. chapter considers a new HHCRSP with practical constraints under fuzzy and timedependent environments. The problem is modeled as a fuzzy optimization model and solved by a specially designed ALNS. Test instances are generated since our problem is unique in the literature. The performance of ALNS is validated by benchmarks obtained

						Fuzzy model	Deterministic model
	Instance α = β Best		Worst	Ave	Std CPU(s)	Best C -α C -β
		0.5 2068.29 2131.82 2101.79 28.23 13.11
		0.6 2070.89 2133.32 2104.8 23.34 12.75
	Case study	0.7 2115.2 2175.6 2156.79 17.86 10.43 0.8 2130.04 2187.27 2168.39 9.8 13.28	2074.33 0.38 0.74
		0.9 2152.98 2206.3	2191 14.66 9.93
			1	2160.14 2222.06 2189.91 17.36 7.16
			2200				
								α=β=0.5
								α=β=0.6
			2160					α=β=0.7
		Objective value	2120					α=β=0.8 α=β=0.9 α=β=1
			2080				
			2040				
				7	7.5	8	8.5	9	9.5	10
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	FIGURE 3.7 -Variation of best solutions depending on the maximal working duration.
	3.5/ CONCLUSION			

This

  t i j : travel time on arc (i, j) ∈ A. s d i : service duration at location i ∈ N on day d ∈ D, s d i =0 for i ∈ DC ∪ {0, m + n + 1}. [a d i , b d i ] : earliest/ latest start time of visit i ∈ V on day d ∈ D. Caregivers can wait until a d i is reached if they arrive early, but cannot arrive later than b d i . [wl kd , wu kd ] : contracted start/end time of caregiver k ∈ K on day d ∈ D.

  [START_REF] Afifi | Heuristic solutions for the vehicle routing problem with time windows and synchronized visits[END_REF] 

	ts kd i =	ts kd j	∀(i, j, d) ∈ S yn	(4.18)
	k∈K	k∈K			
	wt kd =	x kd i j t i j +		x kd i j s d i	∀k ∈ K, d ∈ D	(4.19)
	i∈N j∈N		i∈V j∈N	

  .6) identify whether caregivers depart from their home or the depot. Constraints (4.7) ensure the balance of the visit route, and if a caregiver visits one patient, he/she must also leave this patient. Constraints (4.8) ensure the feasibility of each visit based on the time windows. Constraints (4.9) assure that each caregiver has adequate time to travel between two consecutive locations. Constraints (4.10) imply the working time window of caregivers. Constraints (4.11)-(4.14) make sure the correct start time of the lunch break if the break is taken on location i. Constraints (4.15) indicate that the lunch break must be taken within the lunchtime window. Constraints (4.16) guarantee that each patient is served on the day he/she requires the service. Constraints (4.17) guarantee that caregivers are qualified for the served patients. Constraints (4.18) assure that synchronized visits must be served simultaneously. Constraints(4.19) describe the working time of caregiver k on day d. Constraints (4.20) limit the maximal daily working time of caregivers. Constraints (4.21) describe the workload unbalancing variable W. Constraints (4.22) and (4.23) indicate the variable MN. Constraints (4.24)-(4.26) describe the variable mm. Constraints (4.27) and (4.28) compute the number of caregiver's reassignment for patients who do not require synchronized services. Constraints (4.29) and (4.30) compute the number of caregiver's reassignment for patients who require synchronized services. Constraints (4.31) are used to eliminate sub-tours, where h d

	i
	is an artificial variable. Constraints (4.32) avoid the route establishment from caregivers'
	homes to the depot. Constraints (4.33) and (4.34) state the possible values for decision
	variables. Constraints (4.35) and (4.36) indicate the values of C r and C w .

  Initial feasible solution s 0 2: s best = s 0 ; s current = s 0 3: while Predefined time is not reached do

	4:	Simplify the MIP model
	5:	s= MIP solver (s current )
	6:	if Accept(s, s current ) then
	7:	s current = s
	8:	end if
	9:	if f (s) < f (s best ) then
	10:	s best = s
	11:	end if
	12: end while
	Output: s best

1:

TABLE 4 .

 4 1 -Parameters calibration of the algorithms.

	Parameter	Symbol	Value
	Penalization parameter of the infeasibility	ζ	10000
	Weights of relatedness in related removal	α,β	1, 0.5
	Number of nodes removed	q	[0.1|V| a ], 0.2|V|]
	Randomness parameters in related and worst removal p1, p2	3,4
	Boltzmann Constant	δ	0.99975
	Parameters in adaptive weight adjustment	σ1,σ2,σ3,r 9, 33, 13, 0.1
	Maximum iterations	I max	25000
	Maximum iterations without improving the solution for matheuristic1	I 1 n	150× number of patients in instances
	Maximum iterations without improving the solution for matheuristic2	I 2 n	200× number of patients in instances
	Time limit for MIP solver	T max	1s
	Percent arcs in the solution to be fixed	η	[50,60]

a |V| is the number of demands in the instances 4.4.1/ TEST ON BENCHMARK INSTANCES 29 instances tested by Trautsamwieser et al. (2014) are used as benchmarks in this study. Each instance is denoted as Daten-xc-xp-xl, where xc and xp stand for the number of caregivers and patients, respectively. xl indicates the label of the instance.

Table 4

 4 Consequently, the results obtained by matheuristic2 are quite encouraging, and the performance of matheuristic2 is accepted. As for the other three algorithms, matheuristic1 outperforms pure ALNS and IMS in terms of the average values of Best, Ave and Gap. More specifically, IMS almost always obtains the same or the worst Best than the other algorithms, and it also causes the largest value of Gap (7.02%) in instance Daten-9-45-7a. Hence, it can be deduced that IMS shows the worst performance among the four algorithms.4.4.2/ EXPERIMENTAL RESULTS ON DEDICATED INSTANCESConsidering that the benchmark instances created by[START_REF] Trautsamwieser | A branch-price-and-cut approach for solving the medium-term home health care planning problem[END_REF] cannot meet all the special features considered in our model, these benchmarks are adapted to construct instances dedicated to our study by adding special constraints related to synchronized visits, continuity of care, lunch breaks, and flexible departure rules. Hence, parameters related to these constraints, such as synchronized visits, [LB, LE], z kd , and r k i (see in Section 4.2), are randomly generated and added into the benchmark instances to form our test instances. On the other hand, some parameters used by[START_REF] Trautsamwieser | A branch-price-and-cut approach for solving the medium-term home health care planning problem[END_REF] but not considered in this paper, such as the maximum working time per week, maximum consecutive working time without a break, and the weekly rest time, are removed. Each dedicated instance in this paper is labelled as HHC-xc-xp-xl to distinguish it from the benchmark instances. More specifically,, this chapter only adopts the second scenario (downgrading of qualification levels) in experiments with dedicated instances since this scenario is more practical in real-life.

	.2, where the notations

  4.4.3/ SENSITIVITY ANALYSIS OF THE CHARACTERS IN THE MODELThis section aims to analyze the effect of the characteristics in the model from three aspects : (1) objective functions ; (2) continuity of care ; (3) departure rules of the caregivers. The aim of this sensitivity analysis is to reveal how these aspects affect the solutions. Since matheuristic2 outperforms the others for both benchmarks and dedicated instances, it is applied in this part, and the experimental results with new models are compared with those of the original model solved by the same algorithm, matheuristic2, in Section 4.4.2.

	4.4.3.1/ WEIGHT DISTRIBUTION FOR THE OBJECTIVE FUNCTION

TABLE 4 .

 4 

	4 -Experimental results with different weight distributions for dedicated ins-
	tances.											
	Instances	ψ1=ψ2=ψ3			ψ1=1			ψ2=1			ψ3=1
		OC	W	R	OC	W	R	OC	W	R	OC	W	R
	HHC-2-10-1	2711	1	2	2630	268	6	2920	0	5	2907		0
	HHC-3-15-2	4194	2	4	4102	413	8	4491	0	10	4590		2
	HHC-4-20-3	5486	1	7	5326	1060 12	6160	0	16	6199		3
	HHC-6-30-4	8514	47	10	7551	1138 25	8591	34	19	8381		4
	HHC-6-30-4a 7237	6	14	7051	1141 22	8004	0	24	8123		0
	HHC-6-30-4b 8008	3	10	7455	1839 19	8436	0	17	8608		1
	HHC-6-30-4c 7898	307 13	7600	1408 20	7930	298 14	8666		0
	HHC-6-30-4d 9081	2	15	8323	1164 23	9244	1	22	9548		5
	HHC-6-30-4e 7647	4	13	7022	1201 26	7820	1	16	7830		6
	HHC-6-30-4f 10238 5	13	9626	2150 27	11204 1	22	11243 1
	HHC-6-30-4g 8520	3	10	8149	1260 22	10057 1	24	9659		3
	HHC-6-30-4h 8074	9	13	7713	996	29	8943	4	30	9084		2
	HHC-6-30-4i 8925	154 16	8415	1467 27	8925	154 16	10090 2
	HHC-6-30-4j 7150	6	13	6783	1142 22	7638	0	19	7732		3
	HHC-7-35-5	7963	6	14	7683	934	25	9354	2	40	9310		5
	HHC-8-40-6	8938	20	24	8445	1435 33	10669 3	41	10607 0
	HHC-9-45-7	11395 18	22	10753 1049 47	13127 8	50	13169 0
	HHC-9-45-7a 11575 14	28	10800 1241 67	13611 4	69	14006 1
	HHC-9-45-7b 11163 12	23	10239 1667 44	12749 3	40	12904 2
	HHC-9-45-7c 12830 18	33	12285 1056 61	14773 4	58	14325 5
	HHC-9-45-7d 12034 236 19	11380 1529 57	11765 200 49	14164 3
	HHC-9-45-7e 13388 13	36	12688 1839 56	15458 7	64	15961 1
	HHC-9-45-7f 11697 14	29	10982 1628 61	13946 13	73	14456 2
	HHC-9-45-7g 11494 9	19	10196 1889 49	12675 3	48	12632 0
	HHC-9-45-7h 11513 15	31	10752 1377 52	13595 13	65	14011 0
	HHC-9-45-7i 10258 12	36	9349	1443 50	12853 6	67	12333 0
	HHC-9-45-7j 10557 23	26	10056 1056 58	12031 1	65	12280 1
	HHC-10-50-8 14786 29	35	14091 1500 67	17327 11	79	17642 8
	HHC-12-60-9 16880 52	45	14110 1881 94	18041 30	95	17884 0

  This chapter further proposes two indicators, L W and L R , to elucidate the dissatisfaction levels of caregivers and patients, whereL W = (W * |K|)/OC * 100% and L R = R/|P| * 100%.|K| and |P| are the number of caregivers and patients in the instance, respectively. The values of L W and L R for each instance are shown in Table4.5. TABLE4.5 -The calculated results of L W and L R for each instance.

	Instances	ψ1=ψ2=ψ3	ψ1=1		ψ2=1	ψ3=1
		L W (%) L R (%)	L W (%) L R (%)	L W (%) L R (%)	L W (%) L R (%)
	HHC-2-10-1	0.07	20	20.38	60	0	50	9.7	0
	HHC-3-15-2	0.14	26.67	30.2	53.33	0	66.67	61.37	13.33
	HHC-4-20-3	0.07	35	79.61	60	0	80	84.92	15
	HHC-6-30-4	3.31	33.33	90.43	83.33	2.37	63.33	120.06 13.33
	HHC-6-30-4a 0.5	46.67	97.09	73.33	0	80	104.67 0
	HHC-6-30-4b 0.22	33.33	148.01 63.33	0	56.67	116.26 3.33
	HHC-6-30-4c 23.32 43.33	111.16 66.67	22.55 46.67	84.33	0
	HHC-6-30-4d 0.13	50	83.91	76.67	0.06	73.33	88.67	16.67
	HHC-6-30-4e 0.31	43.33	102.62 86.67	0.08	53.33	38.31	20
	HHC-6-30-4f 0.29	43.33	134.01 90	0.05	73.33	54.27	3.33
	HHC-6-30-4g 0.21	33.33	92.77	73.33	0.06	80	53.42	10
	HHC-6-30-4h 0.67	43.33	77.48	96.67	0.27	100	91.55	6.67
	HHC-6-30-4i 10.35 53.33	104.6	90	10.35 53.33	89.79	6.67
	HHC-6-30-4j 0.5	43.33	101.02 73.33	0	63.33	96.15	10
	HHC-7-35-5	0.53	40	85.1	71.43	0.15	114.29	73.98	14.29
	HHC-8-40-6	1.79	60	135.94 82.5	0.22	102.5	100.84 0
	HHC-9-45-7	1.42	48.89	87.8	104.44	0.55	111.11	126.36 0
	HHC-9-45-7a 1.09	62.22	103.42 148.89	0.26	153.33	98.44	2.22
	HHC-9-45-7b 0.97	51.11	146.53 97.78	0.21	88.89	115.85 4.44
	HHC-9-45-7c 1.26	73.33	77.36	135.56	0.24	128.89	110.45 11.11
	HHC-9-45-7d 17.65 42.22	120.92 126.67	15.3	108.89	88.45	6.67
	HHC-9-45-7e 0.87	80	130.45 124.44	0.41	142.22	95.29	2.22
	HHC-9-45-7f 1.08	64.44	133.42 135.56	0.84	162.22	120.34 4.44
	HHC-9-45-7g 0.7	42.22	166.74 108.89	0.21	106.67	117.42 0
	HHC-9-45-7h 1.17	68.89	115.26 115.56	0.86	144.44	119.28 0
	HHC-9-45-7i 1.05	80	138.91 111.11	0.42	148.89	162.3	0
	HHC-9-45-7j 1.96	57.78	94.51	128.89	0.07	144.44	125.47 2.22
	HHC-10-50-8 1.96	70	106.45 134	0.63	158	81.62	16
	HHC-12-60-9 3.7	75	159.97 156.67	2	158.33	134.94 0
	Average	2.67	50.5	106.07 97.55	2.01	100.45	95.33	6.27

TABLE 4 .

 4 -(4.44) are added, and then constraints (4.27)-(4.30) in the original model are removed. 6 -Experimental results of without and with priority model for dedicated instances.

	MN k i = 1 ∀i ∈ (P h f ∪ P h n ) -S yn	(4.38)
	k∈K		
	mm k i = 2 ∀i ∈ (P h f ∪ P h n ) ∩ S yn	(4.39)
	k∈K		
	MN k i = r k i	∀i ∈ P h f , k ∈ K	(4.40)
	NR i =	(MN k i -MN k i r k i ) ∀i ∈ P m f -S yn	(4.41)
	k∈K	
	NR i =	MN k i -1 ∀i ∈ P m n -S yn	(4.42)
		k∈K	
	NR i =	(mm k i -mm k i r k i ) -1 ∀i ∈ P m f ∩ S yn	(4.43)
	k∈K		
	NR i =	mm k i -2 ∀i ∈ P m n ∩ S yn	(4.44)
		k∈K	

TABLE 4 .

 4 7 -Comparison of the results of different scenarios for dedicated instances.

	Instances		Original model			Scenario1	Gap1
		Best	OC	W	R	Best	OC	W	R
	HHC-2-10-1 924.55 2711	1	2	892.55 2615	1	-3.46%
	HHC-3-15-2 1435.7 4194	2	4	1436.7 4197	2	-0.07%
	HHC-4-20-3 1897.62 5486	1	7	1906.01 5530	2	0.44%
	HHC-6-30-4 3015.26 8514	47 10	3077.46 8694	41	2.06%
	HHC-6-30-4a 2513.24 7237	6	14	2494.39 7239	6	-0.75%
	HHC-6-30-4b 2751.51 8008	3	10	2759.17 8031	3	0.28%
	HHC-6-30-4c 3250.79 7898	307 13	3190.6 7809	285	-1.85%
	HHC-6-30-4d 3133.18 9081	2	15	3099.32 8984	1	-1.08%
	HHC-6-30-4e 2647.51 7647	4	13	2582.33 7398	6	-2.46%
	HHC-6-30-4f 3523.49 10238 5	13	3573.86 10465 4	1.43%
	HHC-6-30-4g 2928.21 8520	3	10	3028.98 8710	5	3.44%
	HHC-6-30-4h 2802.91 8138	9	10	2806.47 8072	7	-0.13%
	HHC-6-30-4i 3408.61 8925	154 16	3406.57 8922	162	-0.06%
	HHC-6-30-4j 2489.14 7150	6	13	2516.56 7208	3	1.1%
	HHC-7-35-5 2769.18 7963	6	14	2812.16 7972	4	1.55%
	HHC-8-40-6 3180.49 8938	20 24	3142.94 8977	7	1.18%
	HHC-9-45-7 3980.96 11395 18 22	4014.84 11430 27	0.85%
	HHC-9-45-7a 4075.63 11575 14 28	4177.71 11488 22	2.5%
	HHC-9-45-7b 3902.43 11163 12 23	3998.62 11382 17	2.46%
	HHC-9-45-7c 4558.36 12830 18 33	4478.92 12731 22	1.74%
	HHC-9-45-7d 4522.14 12034 236 19	4429.12 11467 185	-2.06%
	HHC-9-45-7e 4777.73 13388 13 36	4943.49 13699 16	3.47%
	HHC-9-45-7f 4138.49 11697 14 29	4176.38 11552 21	0.92%
	HHC-9-45-7g 3992.48 11494 9	19	3918.67 11216 7	1.85%
	HHC-9-45-7h 4093.99 11513 15 31	4165.19 11500 12	1.74%
	HHC-9-45-7i 3741.13 10258 12 36	3773.12 10605 15	0.86%
	HHC-9-45-7j 3735.1 10557 23 26	3691.15 10519 8	-1.18%
	HHC-10-50-8 5263.48 14786 29 35	5382.34 15037 8	2.26%
	HHC-12-60-9 6038	16880 52 45	6124.57 17176 27	1.43%
	Average	3430.73 9662.69 35.9 19.66 3448.28 9678.24 31.93 22.38 0.64%

Table 4 .

 4 7 presents the compared results of different scenarios. The last column, "Gap1", relates to the percentage deviation of the "Best" between the original model and scena-rio1, calculated by (Best scenario1 -Best original )/Best original *100%. The other indicators are the same as in the last two sections. As reported in Table

representative instances. Each parameter setting is tested ten times on each instance, and the average objective value (Ave) and computational time (CPU) are reported. From Table 3.2, one can intuitively find that the computational time increases as pin increases, which is reasonable because a higher pin requires more visits to be removed and inserted. Moreover, Table 3.2 also indicates the good performance of ALNS when pin equals [0.2-0.3]. Note that when pin is larger than [0.2-0.3], higher pin does not improve the performance of ALNS. Hence, consider the trade-off between solution quality and run time, pin is selected as [0.2-0.3] in the following experiments. Finally, the parameter calibration of ALNS is summarized in Table 3.1. 100×size of instances by Gurobi on small-size instances and existing benchmarks of VRPTWsyn. The experiments on test instances find that the fuzzy model is more reliable and flexible than the deterministic model when the service times are fuzzy. Finally, a case study is presented to demonstrate the application of the proposed model in real-life.

D : 1 represents that downgrading of qualification levels is allowed, and 0 otherwise.

BKS : the benchmark solution obtained in [START_REF] Trautsamwieser | A branch-price-and-cut approach for solving the medium-term home health care planning problem[END_REF].

Best : the best objective value found in 10 runs.

Ave : the average objective value calculated in 10 runs.

T(s) : the average computational time of algorithms in 10 runs.

Gap : the gap between the Best and the BKS. It is calculated by (Best-BKS)/BKS × 100%

Boldface : the best known objective value obtained in the experiments.

As shown in Table 4.2, ALNS, IMS, matheuristic1 and matheuristic2 can obtain the solutions the same as or better than the BKS for 9, 5, 10, and 22 out of total 45 benchmark instances, respectively. Among the four algorithms, only matheuristic2 can find better solutions than BKS for 3 instances. Moreover, matheuristic2 provides solutions with the smallest average values of Best and Gap. It is worth mentioning that although matheuris-tic2 is unable to find the existing BKS for 25 instances, the gaps remain quite small (the