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Nomenclature

AKMC Atomic kinetic Monte Carlo

bcc Body-centered cubic

CPG Chemical potential gradient

DFT Density functional theory

dpa Displacement per atom

DTE Displacement threshold energy

EBR Experimental breeder reactor

FAR Forced atomic relocation

fcc Face-centered cubic

FP Frenkel pair

I Interstitial

MD Molecular dynamics

NESS Non-equilibrium steady state

NN Nearest neighbour

NRT NorgettRobinsonTorrens

PD Point defect / point-defect

PKA Primary knock-on atom

PPM Path probability method

RCS Replacement collision sequence

RIP Radiation-induced precipitation

RIS Radiation-induced segregation

SCMF Self-consistent mean-field
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SI Spherical inclusion

SIA Self-interstitial atom

SRO Short-range order

TIP Thermodynamics of irreversible processes

V Vacancy
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Introduction

Excess point defects (PDs) are massively generated in materials under irradiation [1–3]
or during severe plastic deformation such as shearing [4, 5], torsion [6, 7] and ball milling [8–
10]. Irradiation produces Frenkel pairs of vacancy and self-interstitial. They diffuse, and they
interact between them, or with atoms, as well as with the microstructure of the material [11].
They are absorbed by structural lattice defects (e.g., grain boundaries, dislocation lines) acting
as PD sinks. The elimination of PDs at structural defects induces sustained fluxes of PDs from
the bulk area towards sinks. By exchanging with nearest neighbour atoms, PDs produce net
fluxes of atoms: this is the so-called flux coupling phenomenon. Unlike PDs, sustained flux
of solute atoms may go in both directions, towards or away from the PD sinks, depending on
the sign of the solute-vacancy kinetic correlations. Flux coupling is the main kinetic process
controlling the redistribution of solute atoms in alloys driven by an excess of PDs [12–20].

In materials under irradiation, the non-equilibrium solute redistribution in the vicinity of
PD sinks is called Radiation-Induced Segregation (RIS). Not only chemical species but also
PDs form a concentration profile at sinks. We choose to call it RIS of PDs. The latter is
systematically negative, with a concentration profile dropping to thermal equilibrium concen-
tration at sinks. Solute RIS results from the PD RIS. It occurs at every PD sink even at very
small radiation dose [21]. Therefore, RIS is often a precursor for heterogeneous precipitation of
secondary phases at PDs sinks [19]. RIS may lead to strong modifications of the mechanical,
corrosion and dimensional properties of materials [11].

There are experimental studies investigating the dependence of RIS on the microstructure
of the irradiated sample and the irradiation conditions, including the nature of the irradiation
particles [22, 23], the radiation dose and dose rate [24, 25], and temperature [16, 26]. However,
it is still very difficult to obtain an accurate estimation of the RIS amount of PDs and solute
atoms at different conditions. This should be complemented with theoretical studies. Up to
now, there is no modeling method of RIS accounting for the full set of reactions between PDs,
solute atoms, and structural defects.

As long as RIS is not coupled to a precipitation phenomenon, RIS profiles can be obtained
by solving the PD and solute diffusion equations near PD sinks. Main input parameters of
the diffusion equations are the phenomenological Onsager transport coefficients of the systems.
These coefficient resulting from the atomic transport are affected by irradiation and stress. Ir-
radiation introduces new atomic transport mechanisms—the forced atomic relocations (FARs),
which involve the collective motion of atoms within irradiation displacement cascades. Un-
like the thermally activated mechanisms leading the system toward equilibrium, these diffusion

5



mechanisms are mostly athermal. They do not obey the microscopic detailed balance. The com-
pete with thermal diffusion mechanisms by promoting disordered atomic configurations [27].
The microstructure of an irradiated material results from the interplay between thermal and
athermal PD reactions and jumps. Athermal microscopic events prevent the use of standard
methods of statistical thermodynamics and kinetics. The stress-strain field generated by struc-
tural defects modifies the PD and solute diffusion properties [28]. A heterogeneous stress–strain
field also modifies the diffusion driving forces, i.e., the gradients of chemical potentials [29].

The purposes of the present work are to (i) extent the self-consistent mean-field (SCMF)
theory to athermal diffusion mechanisms to calculate the transport coefficients from an ab
initio PD jump frequency database; (ii) develop a RIS model accounting for the full set of PD
reactions and solute-PD interactions in dilute alloys; (iii) investigate the effects of elasticity on
diffusion and RIS properties of PDs and solute atoms.

In Chapter 1, we review a few experimental and theoretical studies dedicated to the equi-
librium segregation properties of structural lattice defects, the modeling of primary radiation
damage, and the characterization and calculation of diffusion properties of materials under ir-
radiation. Equilibrium and RIS are atomic scale phenomena depending on atomic scale PD re-
actions, an averaged sink strength of the microstructure, and macroscopic diffusion coefficients.
Therefore, RIS is by essence a multi-scale phenomenon, that requires simulation techniques
from atomic to macroscopic scales, and phenomenological analytical modeling from mesoscopic
to macroscopic scales.

In Chapter 2, we present the modeling of athermal mechanisms specific to a displacement
cascade. Then, we explain our theoretical developments of the SMCF theory, to extend its
application to the athermal diffusion mechanisms. We apply our theoretic development to the
calculation of the phenomenological transport coefficients in model binary alloys.

In Chapter 3, we derive an analytical RIS model based on the one developed by Martínez
et al. [30] for a kinetic regime dominated by the PD anihilation reactions at sinks. In the
present model, we include the FAR diffusion mechanism and the recombination reactions be-
tween vacancy and self-interstitial, and we account for the variation of both driving forces and
Onsager transport coefficients with local concentration. Relying on our model, we systemati-
cally investigate the effect of the sink strength, the radiation flux, or the temperature on the
RIS properties of a few Ni- and Fe-based alloys.

Finally, in Chapter 4, we solve the PD and solute diffusion equations near an edge-
dislocation using the finite-difference method. The elastodiffusion effects are incorporated and
a particular emphasis is placed on the effects of the matrix elastic anisotropy, the PD anisotropy
and PD–solute interactions on the diffusion properties, the sink strength, the sink bias, and
the steady-state distribution of PDs and solute atoms in Fe-based alloys.
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This chapter aims at presenting a few previous studies dedicated to the equilibrium and
radiation-induced segregation at structural defects. The production of point defects under ir-
radiation, their diffusion, their coupling with atomic diffusion, have a strong impact on solute
segregation. In Section 1.1, we briefly introduce the methods of calculation of the equilib-
rium point defect concentration, and the thermodynamic driving forces of solute segregation.
In Section 1.2, we focus on the primary damage that is created under irradiation. We give a
brief presentation of the methods used to simulate the radiation primary damage including dis-
placement cascades. In Section 1.3, we introduce the phenomenological description of diffusion
under irradiation. In Section 1.4, we present atomic-scale methods that are developed for the
modeling of complex diffusion phenomena such as flux coupling induced by irradiation.

1.1 Equilibrium properties of lattice defects

In this section, we present the equilibrium properties of solute atoms, point defects (PDs),
and their interactions with extended lattice defects.

1.1.1 Formation enthalpy of a solute atom in the dilute limit

We consider a dilute substitutional solution of B atoms in a matrix of A atoms at fixed
temperature, T , and pressure, pext. We compute the formation enthalpy, Hf,B, of B in the A
matrix. As illustrated in Fig. 1.1, Hf,B corresponds to the difference of enthalpies between a
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Figure 1.1: The process required in the definition of the formation enthalpy of solute atoms in
a solid solute A(B): an A atom is removed from the solid solution, and placed at a site on the
surface of a reservoir (RA) of A atoms; and a B atom is removed from a reservoir (RB) of B
atoms, and placed at in the site previously occupied by the removed A atom. The process is
at fixed temperature T and pressure pext.

system composed of a solid solution of N A atoms, a reservoir (RB) of NR B atoms, and a
reservoir (RA) of NR A atoms; and a system composed of a solid solution containing 1 B atom
and (N − 1) A atoms, the reservoir RB with a B atom less, and the reservoir RA with an extra
A atom:

Hf,B = E0
f,B − pextV

rel
B − pextΩA + pextΩB, (1.1)

where E0
f,B is the solute formation energy, V rel

B is the relaxation volume of solute atom B, and
Ωα is the atomic volume of atom α ≡ A, B. The term −pextV

rel
B corresponds to the work done

during the relaxation of the solid solution when an A atom is replaced by a B atom. −pextΩA
is the work done to place an A atom in the reservoir RA, and +pextΩB is the one to remove a
B atom from the reservoir RB. For ΩA ≃ ΩB, the formation enthalpy of solute atoms writes

Hf,B = E0
f,B − pextV

rel
B . (1.2)

Note that Hf,B is the so-called the ordering (or mixing) enthalpy of the solid solution A(B).
If negative, the system has an ordering tendency: there is no possible equilibrium between
the solid solution A(B) and the reservoir of atoms B. If the ordering enthalpy is positive, the
system has a clustering tendency and we may study the two-phase equilibrium, the dilute A-
rich solid solution A(B) in equilibrium with the B-rich solid solution B(A). In the dilute limit,
the equilibrium concentration (or solubility limit) of solute B in matrix A, in equilibrium with
a Reservoir of atoms B, is given by [31]:

Ceq
B = exp

(
−Hf,B

kBT

)
, (1.3)

where Hf,B is the formation enthalpy of B in matrix A.

9



1.1.2 Formation enthalpy of a point defect

We are now interested in the equilibrium concentration of PD (d with d ≡ V for vacancies
and I for self-interstial atoms (SIAs)), Ceq

d , in alloys. As for the solubility limit solute B in
a metal A in equilibrium with a B-rich solid solution, the equilibrium PD concentration in a
metal A in equilibrium with its vapor, is an exponential of the formation enthalpy [31–33]

Ceq
d = exp

(
−Hf,d

kBT

)
, (1.4)

where the formation enthalpy Hf,d depends on the applied pressure. Note that here, the reservoir
of vacancy is the vapor phase.

1.1.2.1 Pure metal

Figure 1.2: The process required in the definition of the formation enthalpy of vacancies in
crystal A: removal of an atom from crystal A, and its placement at a site on the surface of
reservoir RA. The process is at fixed temperature T and pressure pext.

As for the solute B in metal A, we compute the PD formation enthalpy as a difference
of enthalpy. As illustrated in Fig. 1.2, a vacancy is formed by removing an atom of crystal A,
and placing such atom on the surface of reservoir RA. During this process, the variation of the
volume of crystal A corresponds to the relaxation volume of the vacancy (V rel

V ). The volume of
the reservoir RA is increased by one atomic volume of atom A, ΩA.

Regarding SIAs, their formation is an inverse process of the vacancy one. As shown in
Fig. 1.3, a SIA is formed by removing an atom from the surface of reservoir RA, and placing
such atom close to an occupied site of crystal A. The variation of the volume of crystal A
corresponds to the relaxation volume of the SIA (V rel

I ), and the volume of the reservoir RA is
decreased by ΩA.

We express the formation enthalpy of PD (d ≡ V, I) as the total change of the Gibbs free
energy (free enthalpy) during the formation process:

Hf,d = E0
f,d − pextV

rel
d − sd pextΩA, (1.5)
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Figure 1.3: The process required in the definition of the formation enthalpy of dumbbell-SIAs
in a crystal A: removal of an atom from the surface of reservoir RA, and its placement at an
unoccupied site of crystal A. The process is at fixed temperature T and pressure pext.

where E0
f,d is the vacancy formation energy and sd is the number of created lattice site during

the process, i.e., sd = +1 for vacancies and −1 for SIAs.

1.1.2.2 Dilute binary alloy

In alloys, the equilibrium PD concentration depends on the solute concentration due to
the presence of solute-PD interactions. In the dilute limit, where interactions between solute
atoms are ignored, Lomer has introduced a formulation of the alloying effect on the equilibrium
PD concentration [34–36]:

Ceq
V = Ceq,0

V

{
1 + z CB

[
exp

(
−E1NN

b
kBT

)
− 1

]}
, (1.6)

where Ceq,0
V is the vacancy equilibrium concentration in the pure metal, z is the coordination

number, and E1NN
b is the solute-vacancy binding energy at the 1-st nearest neighbour (1-NN)

distance. A more general expression of the equilibrium PD concentration in dilute alloys can
be derived from the low-temperature expansion (LTE) formalism [37–41]. In a very dilute
binary alloy, we consider five clusters only: monomer vacancies, monomer SIAs, monomer
solute atoms, the solute-vacancy pair, and the solute-SIA pair. All pair configurations within
the defined kinetic radius rk are accounted for. The equilibrium PD concentration includes the
concentrations of all corresponding monomers and pairs:

Ceq
d = Cmono

d + Cpair
d − Ccorr. (1.7)

By definition, the total mono-PD concentration Cmono
d = Ceq,0

d . Besides, it is given by Cmono
d =

C0
dZd, where C0

d is the concentration of each component of monomer d, and Zd is the partition
function of the monomer d (e.g., ZV = 1 for vacancies, and ZI = 6 for ⟨110⟩-dumbbells due to
their six possible orientations in a cubic lattice). Over most cases, PD equilibrium concentra-
tions are much smaller than the solute concentration, CB, even within a dilute approach. In

11



this case, the pair concentration can be expressed as:

Cpair
d = C0

dCBZBd, (1.8)

where ZBd is the partition function of the B-d pair. Ccorr is a correction term accounting for
the sites that monomers cannot occupy because they are occupied by pairs. This correction
term equals to Ceq,0

d CBZ
0
Bd, where Z0

Bd is the number of all possible pair configuration within
the kinetic radius, rk. Therefore, Eq. (1.7) becomes

Ceq
d = Ceq,0

d

(
1 + CB

ZBd − Z0
Bd

Zd

)
. (1.9)

In the case where the solute-vacancy interactions are restricted to 1-NN pair interactions,
ZBV − Z0

BV = z
[
exp
(
−E1NN

b
kBT

)
− 1
]
, we recover Lomer’s expression (Eq. (1.6)). As shown in

Ref. [42], a LTE of the equilibrium PD concentration may include bigger cluster than pairs.

1.1.3 Equilibrium segregation at extended lattice defects

The equilibrium segregation refers to compositional changes near the extended structural
defects of an alloy in thermodynamic equilibrium [43]. This segregation usually affects the com-
position of only a few atomic planes around the defect. The thermal segregation at dislocations
and interfaces like surfaces and grain boundaries, is a common phenomenon in metallurgy and
has been the subject of numerous experimental and theoretical studies. Note that structural
extended defects such as grain boundaries and dislocations are not equilibrium defects. Under
the hypothesis that these are static defects that do not evolve, there have been investigations
of “the equilibrium segregation” at these defects.

1.1.3.1 Experimental observations

Many techniques are developed to investigate the interfacial segregation, at different scales
according to their sensitivity to the interface—from the atomic scale to a upper scale over a few
atomic planes. First, we present the most used techniques dedicated to the characterization of
segregation at surfaces. The Auger electron spectroscopy (AES) [44,45] gives averaged informa-
tion on a few atomic planes under the surface. The ion scattering spectroscopy (ISS) gives more
information than AES, depending on the energy of the incident ions: low-energy ion scattering
(LEIS) allows to determine the composition at the surface plane only [46]; whereas, Rutherford
backscattering spectrometry (RBS) gives information deep below the surface [47, 48]. Regard-
ing grain boundaries (GBs), an additional difficulty occurs because they are located inside the
materials. Since intergranular segregation often leads to the embrittlement of materials, it
is, in general, possible to cleave the material along the plan of GB [45, 49]. In this case, the
techniques dedicated to free surfaces (e.g., AES in most cases) may also be used to investigate
GBs. It is also possible to detect and quantify the composition on the atomic plans near the
surface or GB by wavelength dispersive X-ray spectroscopy (WDS) [50–52]. This technique is
almost insensitive to the surface contamination and oxidation. This is a significant advantage
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with respect to AES because WDS makes it possible to quantify GB segregation on an ex-situ
fractured specimen [51]. The transmission electron microscopy (TEM) [53] and the atom probe
tomography (APT) [54–56] are more straightforward techniques of inter-granular segregation
analysis because one does not need to cleave the material along the GB. Both techniques achieve
atomic-scale resolution, and provide a fine description of segregation at defects other than GBs,
as for instance dislocation lines [57,58].

1.1.3.2 Modeling approaches

Most of the theoretical work is dedicated to the investigation of interfacial segregation,
based on energetic models [59–64]. From these studies, it is possible to draw the three main
thermodynamic driving forces of the interfacial segregation phenomenon in a stable solid solute
A(B):

• The first one involves the difference of interface enthalpies of pure metals A and B (cor-
responding to the surface tension multiplied by the surface area per atom): the species
with the lowest surface enthalpy tends to segregate.

• The second one results from the elastic strain due to the difference in size of the solute
and solvent atoms: the species with the biggest size tends to segregate.

• The third one is related to the ordering (or mixing enthalpy) of the alloy: in an alloy
with a clustering tendency, the minority species tends to segregate, whereas in an alloy
with an ordering tendency, it is the opposite.

Note that the third driving force is identified to mainly control the segregation profile. At
temperatures where the solid solution is less stable than a two-phase equilibrium, or an or-
dered phase, the interface may trigger the bulk ordering [65] and disordering [66], the phase
separation [67], and the formation of specific 23 ordered structures [68].

There are structural defects such as dislocations, that produce a long range elastic field.
The size effect contribution to the equilibrium segregation then results from the elastic interac-
tions between the structural defect and the various atomic species. We will show in Section 4.6,
how these elastic interactions produce a change of the solute concentration in the vicinity of an
edge dislocation.

1.2 Radiation damage and microstructure

Irradiation first leads to primary damage where atoms are relocated, and excess PDs
are created. In this section, we present models of primary radiation damage leading to the
production of PDs (Section 1.2.1). Then , we present the standard mean-field reaction-diffusion
model of the PD population under irradiation (Section 1.2.2).

13



1.2.1 Primary damage

Primary damage resulting from an ion or neutron irradiation is generally modeled as a cas-
cade of atomic displacements. PD production and forced relocation of atoms are by-products
of the displacement cascade. Here, we present models and experimental characterization tech-
niques of the primary radiation damage.

1.2.1.1 Modeling of a displacement cascade

During irradiation, atoms are regularly hit by incident particles. At the time of the col-
lision, the incident particle transfers kinetic energy to the primary knock-on atom (PKA).
If this energy is below the displacement threshold energy (DTE), the PKA will only vibrate
around its position unless a PD is located nearby, in which case the atom may exchange its
position with the PD [27, 69]. For a recoil energy well above DTE (e.g., typically 1 keV in
metals), the PKA will move away from its original site, thereby creating Frenkel pairs (FPs)
and transferring kinetic energy to neighbouring atoms. Then, the latter will move away from
their positions, so on so forth, resulting in recoil atomic collision processes and locally intense
material heating. Many experimental studies and numerical simulations [70–72] have shown
that the recoil collision time scale is of the order of 0.1 to 1 picoseconds. The following process
is a quench-like event where the locally heating area rapidly cools down at a time scale of 1
to 10 picoseconds. The above stage is commonly considered to be athermal in the sense that
the thermally-activated processes are not significant because the time scale is too short. This
athermal event is conceptually referred to as an atomic displacement cascade, which is first
proposed by Brinkman [73, 74]. However, there are some shreds of evidence showing that the
displacement cascade is, in fact, affected by thermodynamics [75]. This process is the so-called
primary damage of an irradiation.

1.2.1.2 Experimental characterization of the primary damage

Direct observation of the atomic displacement cascade is difficult due to their short time
scale and small size scale [72]. However, some of the characteristics of the displacement cas-
cades can be deduced from the examination of the fine microstructural features formed after
irradiation at low doses. The experimental investigations yielding the best estimation of PD
production consists of measuring a characteristic parameter such as the electrical resistivity
after cryogenic irradiation and subsequent annealing [76, 77]. There are less direct experimen-
tal measurements, such as X-ray scattering [78], positron annihilation spectroscopy [79], and
small-angle neutron scattering [80]. Transmission electron microscopy is broadly used to char-
acterize the defects formed at the end of the cascades, including the dislocation loops [81, 82],
and stacking fault tetrahedra [83].
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1.2.1.3 PD production models and dpa concept

Given the difficulty to directly observe displacement cascades by experimental techniques,
a few models are proposed to estimate the number of displacements. The latter is referred to
as the number of FPs produced by a cascade. Norgett, Robinson, and Torrens (NRT) propose
a model to predict the total number of created FPs (Nd) in function of the total deposited
energy (Td) in the cascade [84], which is given by

Nd(Td) =


0, Td < Ed,

1, Ed < Td <
2Ed

0.8
,

0.8Td

2Ed
, Td >

2Ed

0.8
,

(1.10)

where Ed is the DTE ranging from 20 to 100 eV for different materials [85]. Note that Td
equals to the total incident particle energy minus the energy lost in electronic stopping power.
The NRT model gives a good estimation of the number of FPs created upon the recoil col-
lision stage [86]. However, it overestimates the number of remaining FPs at the end of the
cascade because it ignores the in-cascade recombination. In order to account for the athermal
recombination, Nordlund et al. [87] introduce an efficiency factor ξarc into the NRT model:

Nd(Td) =


0, Td < Ed,

1, Ed < Td <
2Ed

0.8
,

ξarc
0.8Td

2Ed
, Td >

2Ed

0.8
,

(1.11)

where ξarc is referred to as the fraction of defects surviving from the in-cascade recombination.
It is a function of the deposited energy in the cascade, Td.

However, the NRT model is still widely used as a standard to compute atomic displacement
rates because of its simplicity. The number of displacements in a given volume of material
normalized by the number of atoms in the same volume, yields the displacements-per-atom
(dpa) unitless quantity:

dpa =
Number of displacements in the volume

Number of atoms in the volume
. (1.12)

The dpa unit is widely used to quantify primary radiation damage in materials. It corre-
sponds to the fraction of displaced atoms per atom. A significant advantage of this dpa unit is
that it provides a general basis for the comparison of data extracted from different irradiation
sources [72].

1.2.1.4 Numerical simulation of displacement cascades

Besides the analytical NRT model, atomic-scale simulation methods provide a more de-
tailed description of displacement cascade. The molecular dynamic (MD) method is an essential
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tool for investigating the cascade behaviors. This method relies on an inter-atomic function
describing the system energy and the forces applied on each atom as a function of the positions
and chemical nature of the surrounding atoms [72, 86]. Even if the time and size scales of
displacement cascades are small (typically a few nanometers and a few hundred picoseconds),
MD simulation can be computationally demanding [72]. Below we present the main character-
istics of a radiation cascade with a focus on the properties of PDs and atoms that will impact
long-distance atomic diffusion. Extensive reviews on the cascade modeling can be found in
Refs. [11, 72,86].

The typical evolution of a displacement cascade simulated by a MD method is as follows.
A highly energetic and disordered region is initially developed in the cascade during the stage
of recoil collision. Locally, the displacement cascade process produces a large excess number
of PDs, as well as atomic mixing, since most of the atoms are displaced [88]. The evolution of
the created Frenkel pair numbers with time is shown in Fig. 1.4. The number of PDs sharply
increases in the recoil collision stage, and reaches a peak value at around 0.1 to 1 picoseconds,
depending on the deposited energy in the cascade. After this first stage, the cascade becomes
a so-called heat spike, where the material is locally liquid-like, and the diffusion of atoms can
be rapid in this region [89]. The excess energy eventually dissipates, leading to a quench-like
process, where the crystalline structure is recovered. During this process, many vacancy-SIA
pairs nearby recombine in the cascade [73, 90, 91]. Note that this in-cascade recombination
regime is different from the long-range recombination reaction regime resulting from long-range
diffusion of PDs. They are athermal recombination reactions, which do not depend on the
diffusion properties of PDs. This leads to a reduction of the PD numbers down to a steady-
state value at the end of the quench-like process (after about 2 to 10 picoseconds). In the final
state of the cascade, the remaining PDs are well separated.

A few studies rationalize the final state of the cascade by introducing replacement collision
sequences (RCSs) [92, 93]. The first atom (i.e., PKA) is pushed off its site; then, it dissipates
energy by pushing a second atom, which in turn pushes a third atom, so on so forth. The
last displaced atom is left on an interstitial site because it is not energetic enough to displace
another atom. At the end, a chain of atoms are displaced by one atomic site. A vacancy
and a SIA are formed respectively at the beginning and the end of this chain. Such a RCS
mechanism is consistent with the observed properties of the final cascade state, in particular
the vacancy-rich central region that is surrounded by a region rich in interstitial-type defects.
Calder et al. [94] shows that RCSs occur particularly in low-energy cascades. However, they do
not appear to be the dominant mechanism explaining the defect separation in higher energy
cascades (above 1 keV in their studies). The cascade dynamics would result from a more
collective motion of numerous atoms [72]. For instance, Nordlund et al. [95] have reported
coherent displacement events involving multiple atoms. Besides, a recent work of Calder et
al. [96] identified a shockwave-induced mechanism leading to the formation of SIA-cluster at
the periphery of the cascade.
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Figure 1.4: Time evolution of Frenkel pairs created during simulated displacement cascades in
pure iron with different deposited energies in cascade. This figure is reproduced from Ref. [72]

1.2.1.5 Effects of solute atoms on defect production

Numerous MD studies are dedicated to the comparison of the displacement cascade be-
haviors between pure Fe and Fe-based alloys.

Malerba et al. [97] investigate the effect of Cr on displacement cascades. The MD simula-
tions are carried out at 300 K for PKA energies from 0.5 to 15 keV. Compared to the primary
damage in pure Fe, a slight increase of remaining defects is observed in Fe-10 at.%Cr. They
claim that the presence of Cr does not affect the recoil collision phase because the mass of Cr is
close to Fe, while it reduces the in-cascade recombination during the quench-like process. This
finding appears to be related to the formation of a mixed Fe-Cr dumbbell that is highly stable
at 300 K. They show that about 60% of the dumbbell interstitials contained a Cr atom, which
is much higher than the nominal Cr concentration of 10%. However, a high mixed dumbbell
fraction does not lead to a significant difference in the fraction of clustering PDs. Nevertheless,
the stability and mobility of PD clusters containing solute atoms is different from the mono-
chemical species clusters. Therefore, we expect the non-equilibrium distribution of dumbbells
will have an impact on the damage accumulation. Such conclusions seem to be consistent with
the experimental measurements [98]. Okada et al. [99] show that the addition of 0.1 at.% of
Cr to ultra-pure Fe leads to more frequent formation of small SIA loops than ultra-pure Fe.
Arakawa et al. [100] observe that interstitial loop mobility is significantly reduced, while its
stability is much increased by the presence of Cr in α-Fe.
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Becquart et al. [101] perform MD simulations of Fe(Cu) alloys, expecting an effect of va-
cancy clustering during the quench-like process on Cu precipitation. Simulations are performed
at 600 K for PKA energies of 5, 10, and 20 keV, with Cu concentrations of 0, 0.2, and 2.0 at.%.
They find that Cu has a great tendency to bind to mixed solute-defect clusters. This trend
may have an influence on the long-term evolution of the microstructure, such as the formation
of Cu clusters. However, no evidence for Cu clustering is observed during MD simulations.

Calder et al. [102] perform simulations of displacement cascades in Fe(C) alloys, with a
carbon concentration between 0 and 1 at. % in order to analyze the effect of carbon on defect
production. Simulations are carried out at 100 and 600 K for PKA energies of 5, 10, and 20
keV. In contrast to Fe(Cr), the presence of C does not show a significant effect on the volume
fraction of the remaining PDs and the PD clustering. However, an important association of C
atoms with vacancies and SIAs occurs. These mixed clusters are certainly due to the attractive
binding energy between PDs and C. Similar to Fe(Cu), the primary damage is not affected by
solute-PD binding even though this trapping may affect the long-term damage accumulation.

1.2.1.6 Forced atomic relocation in displacement cascades

After a quench-like process, many atoms of the displacement cascade are relocated from
their original lattice sites. This forced atomic relocation (FAR) is broadly considered in the
community of ion-beam mixing [86]. In pure materials, FAR has little effect on the microstruc-
ture because there is only one chemical species. However, most materials of interest are alloys
of two and more components, and inevitably, include a few impurity elements. FAR has a
great importance for understanding the dissolution of precipitates [103, 104] and the chemical
disordering [105] in alloys. For instance, Siegel [106] investigate the effect of neutron irradiation
on the order of Cu3Au alloys at low temperatures. He estimated that, for each stable Frenkel
pair created, many Cu and Au atoms exchange positions because of the massive changes in the
electrical resistivity that occur after irradiation.

FAR occurs in the recoil collision stage as well as in the heat-spike stage. Various models
are proposed to quantify the intensity of FAR in these two stages of displacement cascades. For
instance, Sigmund et al. [107] attempt to calculate the magnitude of FAR in the recoil collision
stage. They characterize the FAR intensity by an effective diffusion coefficient associated with
FAR only. They conclude that this coefficient is proportional to the fluence Ψ (in ion/m2), and
to the energy-deposition rate per ion FD, which is referred to the deposited energy per depth
and per ion going into collision:

D t =
ΨFDγ21r

2

3.648NEa

, (1.13)

where t is the irradiation time, r is the mean range of the recoil distance of target atoms of
average energy Ea, N is the atomic density in the matrix, and

γ21 =
√

4(m1m2)/(m1 +m2)2, (1.14)

with m1 and m2 being the atomic masses of projectile and target, respectively.

There are also models accounting for FAR during the heat spike stage. For instance, in
the model of Vineyard [89], FAR is assimilated to thermally-activated jumps in the region of
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Table 1.1: Relocation efficiency in different materials.

C Al Ti Fe Ni Cu Mo Ru Ag Hf Ta W Pt Au

ξ [Å5/eV] 14 112 36 27 39 450 28 44 450 90 54 72 115 730

heat spike. Relying on a temperature model of the heat spike, one can obtain the total number
of jumps

η =
A0λ

2

8πκCQ2
, (1.15)

where λ is the energy per unit length along the ion trajectory, κ is the thermal conductivity of
the matrix, C is the specific heat, and Q is the activation barrier of the jump. Many studies
focused on the calculation of Q, which is suggested to be related to the cohesive energy of the
target materials [108,109].

Direct MD simulation is an efficient investigative tool of FAR without conceptually dividing
the cascade into different stages. Norlund et al. [110] investigate FAR in many semiconductors
and metals. They point out that in materials like Si, with low atomic mass and relatively high
melting temperature, FAR mostly occurs in the recoil collision stage, while in most metals like
Al, FAR mainly takes place in the heat-spike stage. Surprisingly, the relocation strength of
Fe and Ni are close to the values predicted by analytical models in the recoil collision stage,
indicating that the contribution of heat spike is low in these metals [86].

In order to compare the FAR intensities in different irradiated systems, Kim et al. [111]
measure the tracer diffusion coefficients at a low temperature (6 K), so that the diffusion is
mainly due to FAR. They define a normalized quantity

ξ =
D t

ΨFD
, (1.16)

which is nearly independent of the irradiation particle and dose. Note that the product ΨFD
is the deposited energy per unit volume. It can be calculated from a software like SRIM [112]
and IRADINA [113,114]. Besides, it can be related to dpa unit. According to the NRT model,
the dpa and the product ΨFD are related by the following equation

dpa =
0.8Ω

2Ed
ΨFD, (1.17)

where Ω is the atomic volume. In the same spirit, one can define the number of FAR per
NRT-dpa as

ξNRT-dpa =
D t

dpa
=

2Ed

0.8Ω
ξ. (1.18)

Note that ξ is often used to compare the relocation efficiencies deduced from different samples
and irradiation energies [111]. Some of these results obtained from high energy ion irradia-
tion are summarized in Tab. 1.1. In the same study, Kim et al. observe that the relocation
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efficiency is dependent on the tracer element. Workman and coworkers [75] also evidence this
thermodynamic effect on FAR.

1.2.2 Point defect concentration and sink strength

Main consequence of the primary radiation damage is the production of an excess of
PDs [115, 116]. Then, PDs can be eliminated by mutual recombination, clustering, or annihi-
lation on preexisting or radiation-induced defects in the microstructure, such as surfaces, grain
boundaries, dislocations, or PD clusters. This non-equilibrium concentration of PDs directly
affects diffusion under irradiation. We present here, the phenomenological models describing
the evolution of the PD concentrations in irradiated systems.

1.2.2.1 Elastic bias and mean-field rate theory

The elimination rate of PDs at sinks depends on the nature of sink and PDs. Long-
range elastic interaction between PDs and sinks mainly determine this elimination rate. For
instance, dislocation have an absorption bias for SIA compared to vacancy. This preferential
absorption of SIA, first proposed by Greenwood et al. [117], leads to an unbalanced elimination
rate of SIA and vacancy, which may result in the precipitation of voids. This bias is due to
the fact that the elastic interaction between the dislocations and SIAs is larger than the one
between dislocations and vacancies due to the larger SIA relaxation volume. This elastic bias is
introduced by Brailisford et al. in a mean-field model of PD kinetics (also called rate theory),
in order to investigate the growth of PD clusters [118]. Within this model, rate equations are
established for vacancies and SIAs by considering that the concentrations of sinks and PDs are
homogeneous in space. The bulk concentrations of vacancies (Cb

V) and SIAs (Cb
I ) are given by

the following mean-field kinetic equations:
dCb

V
dt

= ϕ−KR Cb
VC

b
I −

∑
s

k2
s,VDV(C

b
V − Ceq

V ),

dCb
I

dt
= ϕ−KR Cb

VC
b
I −

∑
s

k2
s,IDI(C

b
I − Ceq

I ).

(1.19)

In these equations, Ceq
V and Ceq

I are respectively the vacancy and SIA concentration at
thermal equilibrium. DI and DV are respectively the SIA and vacancy diffusion coefficients.
Note that, in general, the SIA diffuses much faster than the vacancies towards PD sinks (i.e.
DI ≫ DV) [11]. KR = (4πrrec/Ω)(DI+DV) stands for the SIA-V recombination rate. rrec is the
SIA-V recombination radius usually assumed to be of the same order of magnitude as the lattice
parameter a0. Ω is the atomic volume. ϕ is the radiation dose rate i.e. the PD production
rate in dpa/s. The index s designates the nature of sink, such as the dislocations and cavities.∑

s k
2
s,VDV and

∑
s k

2
s,IDI correspond to the absorption rates of vacancies and SIAs, respectively.

These rates depend on the nature, dimension and concentration of sinks [119]. k2
s,V and k2

s,I are
the sink strength for respectively vacancies and SIAs. These parameters are directly related
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to the mean free paths of migrating PDs in the lattice [119]. Heald et al. [120] quantified the
absorption bias from the relative difference between the total sink strengths k2

V =
∑

s k
2
s,V and

k2
I =

∑
s k

2
s,I by

B =
k2

I − k2
V

k2
I

. (1.20)

By analogy, the bias of each sink writes

Bs =
k2
s,V − k2

s,I

k2
s,I

. (1.21)

By construction, the bias value varies from 0 to 1 and Bs = 0 for a neutral sink (no bias).

In the stationary state, Eq. (1.19) gives the relationship between the bulk concentrations
of vacancies (Cb

V) and SIAs (Cb
I )∑

s

k2
s,VDV(C

b
V − Ceq

V ) =
∑
s

k2
s,IDI(C

b
I − Ceq

I ), (1.22)

where Ceq
V and Ceq

I are equilibrium concentrations of vacancies and SIAs at sinks, respectively.

Thereafter, we focus on the calculation of Cb
V, and use Eq. (1.22) to deduce Cb

I . Note
that, in general, the SIA diffuses much faster than the vacancies towards PD sinks (i.e. DI ≫
DV) [11]. Moreover, in metals, we may ignore the equilibrium concentration of SIA because,
due to very large formation energies, its value is very small compared to Cb

I at any temperature
and dose rate. Therefore, the stationary-state solution of system (1.19) for Cb

V is given by:

Cb
V =

Ceq
V
2
− k2

VΩ

8πrrec(1−B)
+

√[
Ceq

V
2

+
k2

VΩ

8πrrec(1−B)

]2
+

Ω

4πrrec(1−B)

(
ϕ

DV

)
. (1.23)

At high temperature, Cb
V is close to Ceq

V . However, Ceq
V is negligible over most irradiation

temperatures of interest [11]. Furthermore, in the case where the elimination of PD at PD sinks
is dominant versus the SIA-V recombination i.e. KV ≫ R with KV = k2

VDV(C
b
V − Ceq

V ) and
R = KR Cb

VC
b
I , the vacancy concentration Cb

V is proportional to the ratio ϕ/DV and given by:

Cb
V =

1

k2
V

(
ϕ

DV

)
. (1.24)

Furthermore, when KV ≪ R, the vacancy concentration is proportional to
√

ϕ/DV:

Cb
V =

√
Ω

4πrrec

(
ϕ

DV

)
. (1.25)

One considers the effect of solute on the vacancy equilibrium concentration in dilute alloys
by means of a low temperature expansion formalism [40,121,122]. Eventually, Ceq

V of a binary
alloy is given by

Ceq
V = Ceq,0

V

[
1 +

(z − z0)CB

1 + (z − z0)C
eq,0
V

]
, (1.26)
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where CB is the nominal concentration of solute atoms B and Ceq,0
V is the equilibrium con-

centration in pure metal obtained from the vacancy formation enthalpy H f
V and entropy Sf

V
by:

Ceq,0
V = exp

(
−H f

V − T Sf
V

kB T

)
. (1.27)

z is the partition function associated with solute-vacancy pairs and z0 is the one without any
solute-vacancy interaction.

1.2.2.2 Analytical calculation of the sink strength

The mean-field rate model provides a way to predict the average PD concentrations in
space. As shown by Eq. (1.24), in the sink-dominated regime, the concentration of PDs largely
depends on the sink strength. We present below the analytical methods used to calculate the
sink strength.

Close to the sink, we explicitly introduce the flux of PDs towards sink. Then, we solve the
corresponding diffusion equation of PDs:

∂CV

∂t
= ϕ−KR CVCI −∇ · JV,

∂CI

∂t
= ϕ−KR CVCI −∇ · JI,

(1.28)

where JV and JI are respectively the fluxes of vacancies and SIAs.

Nichols [119] proposes analytical solutions for various sink geometries, with different bound-
ary conditions, at stationary state (i.e. ∂CV/∂t = 0, ∂CI/∂t = 0). Elastic interactions and the
SIA-vacancy recombination are not considered (i.e. B = 0 and KR = 0). In addition, the PD
diffusion coefficients DV and DI are assumed to be homogeneous in space. Here, we present the
general principles of this method. A sink is considered to be surrounded by a region free of sink,
which has the same symmetry as the sink geometry. The volume of the surrounding region
is directly related to the sink density ρ. In the approaches of Laplace and Poisson, boundary
conditions are set at the outer surface of the region, δSo, and at the surface of the sink ,δSi
(Fig. 1.5). Boundary conditions are imposed on PD concentration or PD flux.

In the Laplace approach, PD production is neglected (i.e. ϕ = 0). We obtain the vacancy
concentration profile by solving the Laplace equation

∇ · JV = 0, (1.29)

with the boundary conditions {
CV(δSi) = C i

V,

CV(δSo) = Co
V.

(1.30)

We deduce the vacancy flux, JV, as well as the current of vacancy IV entering the sink across
the surface δSi.:

IV =

∫∫
δSi

JV · n dS, (1.31)
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Figure 1.5: Sink geometries with (a) planar, (b) spherical, (c) cylindrical, and (d) toroidal sym-
metries.

with n the normal vector of the surface δSi. The total rate of vacancy loss at sinks is given by
k2

VDV(C
o
V − C i

V). The latter equals to total amount of vacancy entering those sinks per unit
time, which is ρIV. The sink strength k2

V is then deduced:

k2
V =

ρ

DV(Co
V − C i

V)
IV. (1.32)

Note that the calculation of the SIA sink strength is similar. k2
I is deduced from Eq. (1.32) by

replacing the index ‘V’ by ‘I’.

In the Poisson approach, we account for the radiation flux. In this case the vacancy
concentration profile is obtained by solving the Poisson equation

∇ · JV = ϕ, (1.33)

where the concentration at the sink surface, δSi, is fixed and the flux across the surface δSo is
set to 0: {

CV(δSi) = C i
V,

∇CV(δSo) = 0.
(1.34)
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Table 1.2: Analytical solution of sink strengths by various approaches, with different sink
geometries.

Approach Planar Cylindrical Spherical

Laplace 4

h2

2πρ

ln
(
R

rs

) 4πρ rs

1−
(rs
R

)

Poisson 8

h2

2πρ

ln
(
R

rs

)
− 1

2
+

1

2

(rs
R

)2 4πρ rs

(
1−

(rs
R

)3)
1− 3

2

(rs
R

)
+

1

2

(rs
R

)2

Wiedersich 12

h2

2πρ

(
1−

(rs
R

)2)
ln
(
R

rs

)
− 3

4
+
(rs
R

)2
− 1

4

(rs
R

)4 4πρ rs

(
1−

(rs
R

)3)
1− 9

5

(rs
R

)
+
(rs
R

)3
+

1

5

(rs
R

)6
In this table, for sinks with planar symmetric (e.g. interfaces), h is the spacing between two
parallel sink surfaces. For sinks with cylindrical symmetric (e.g. dislocation lines), ρ = (πR2)−1

whereas, for sinks with spherical symmetric (e.g. cavities), ρ = (4
3
πR3)−1

We obtain IV by solving Eq. (1.34) and then, the sink strength k2
V is given from Eq. (1.32).

Wiedersich [123] has introduced a third method to determine the sink strength. He starts
from Eq. (1.33), with the same boundary conditions. However, the total rate of vacancy loss in
the region surrounding the sink is determined from the average concentration of vacancy CV
in the region. The loss rate is then k2

VDV(CV − Ci). Thus, this approach requires a spatial
integration of the vacancy concentration over the region between surfaces δSo and δSi. The
sink strength k2

V is given by
k2

V =
ρ

DV(CV − C i
V)

IV. (1.35)

In Tab. 1.2, we provide the sink strength expressions of the most common sink geometries
obtained by the Laplace, Poisson and Wiedersich approaches. Among these three approaches,
the Wiedersich approach is considered to be the most realistic one [119, 124]. However, the
Wiedersich as well as the Poisson approach does not provide a solution for toroidal symmetry
such as dislocation loops (Fig. 1.5 (d)). For a loop of radius rl with a circular section of radius
r0, surrounded by a spherical region of radius R, we obtain an analytical solution with the
Laplace approach, by assuming that R≫ rl. After Seeger and Gösele [125], the corresponding
sink strength is given by

k2
I = k2

V =
4π2ρ rl

ln
(
8rl

r0

) . (1.36)
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It is worth noting that there exist analytical models of the sink strength, which account for
the elastic interactions between PDs and the sink. Rauh and Simon [126] propose a solution for
edge dislocations in an isotropic system by adding a drift term in the PD diffusion equations in
order to account for the modification of the diffusion driving force due to the elastic interactions.
Considering that the PD (d) is a spherical inclusion [127], i.e., the PD is perfectly spherical
and isotropic, the elastic interaction energy is given by [128,129]

Ed = p V rel
d , (1.37)

where V rel
d is the relaxation volume of d, and p is the effective pressure acting on an unit volume

which is given by:
p = −1

3
Tr (σ) , (1.38)

where σ is the tensor of the external stress applied to the system. For an isotropic material,
Eq. (1.37) can be written as

Ed(r, θ) = ±kBTLd
sin(θ)

r
, (1.39)

in polar coordinates (r, θ). In this equation, Ld is a characteristic range of interaction between
the dislocation and the PD (d):

Ld = ∥b∥
µ

3π

1 + ν

1− ν

∣∣V rel
d

∣∣, (1.40)

where µ is the shear modulus, ν is the Poisson’s ratio, and b is the Burgers vector. The sign
± in Eq. (1.39) comes from the sign of the relaxation volume of PDs, which is positive for a
SIA and negative for a vacancy. The analytical solution of Eq. (1.29) with the addition of the
interaction energy (Eq. (1.39)) leads to the sink strength [126]:

k2
d = 2πρ

∞∑
n=0

(2− δn,0)(−1)n
In

(
Ld

2rs

)
In
(
Ld

2R

)
In

(
Ld

2rs

)
Kn

(
Ld

2R

)
− In

(
Ld

2R

)
Kn

(
Ld

2rs

) , (1.41)

where In and Kn are the modified Bessel functions of the first and second kinds, and δ is the
Dirac function.

Dederichs and Schroeder [28], in addition to the elastic driving force, added the elasto-
diffusion contribution resulting from the effect of the elastic interactions on the migration
barriers. Based on this approach, Borodin et al. [130] propose an elastic model of the sink
strength of a spherical cavity, though the elastic field generated by the cavity is assumed to be
isotropic.

1.2.2.3 Numerical calculation of the sink strength

Compared to the analytical approaches, a numerical approach gives the possibility to
consider non-isotropic elastic interactions and complex geometries of sinks. There are two
categories of methods.
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Continuous methods consist in solving the diffusion equation in order to obtain the PD
concentration profiles and the total loss rate of PDs at sinks. Atomic-scale kinetic Monte Carlo
methods solve the master equation by computing the jump probabilities of PDs, and applying
a residential time algorithm.

First, we present the continuous methods used to solve the diffusion equation. They include
finite difference methods [131,132], finite element methods [133–135], and more recently a phase-
field method [136,137]. The studies relying on a finite difference or finite element method are in
general, performed on a finite-size volume, including the sink. The boundary conditions applied
to the PD concentration or flux are similar to the ones of Laplace or Poisson approaches. As
for the numerical phase-field method, one may deal with complex PD sink microstructures by
passing the problem into the reciprocal space. This method enables to consider the migration
of PDs in a dislocation network that is close to realistic conditions. It naturally takes into
account the long-range interactions between the sinks and the migrating PDs [136]. However,
the interface between the sink and the solid is treated as a diffusing interface. This treatment
can be inappropriate in case the sink strength is sensitive to the concentration and elastic strain
close to the interface.

In kinetic Monte Carlo simulations [138–141], one generates PDs with a constant produc-
tion rate (e.g., ϕ in the case of irradiation) in a simulation box containing the sink. Periodic
boundary conditions are applied. The vacancy-SIA recombination is neglected. Therefore, at
each Monte Carlo step, the possible events are the creation of a vacancy, the jump of a vacancy
in the elastic field of the sink, and the elimination of a vacancy located within a given radius
of the sink. The sink is assumed to be immobile, and its shape does not change. The sink
strength is then deduced from the average PD concentration at the stationary state [139].

1.3 Phenomenology of diffusion under irradiation

In this section, we introduce the phenomenological diffusion phenomena in materials under
irradiation. We present in Section 1.3.1 a macroscopic description of diffusion in the framework
of the thermodynamics of irreversible process (TIP), where the definitions of phenomenological
coefficients and diffusion coefficients are introduced. We describe in Section 1.3.2 some ap-
proaches to evaluate these kinetic coefficients. We then introduce in Section 1.3.3 an essential
radiation-induced diffusion phenomenon, the so-called radiation-induced segregation (RIS).

1.3.1 Diffusion within the Thermodynamics of Irreversible Processes

Within the theoretical framework of the thermodynamics of irreversible processes, the
fundamental driving force of diffusion is the chemical potential gradient (CPG) divided by
temperature. However, it is difficult to measure the CPG in experiments. Since the chemical
potential is related to the concentrations of species, atomic fluxes are often written in func-
tion of concentration gradients, which are easily accessible by experimental measurements. In
this section, we present different formulations of the atomic fluxes, as well as the relationship
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between them.

1.3.1.1 Atomic fluxes in terms of chemical potential gradients

According to TIP [19], the system is divided into cells, which are large enough to be in
local equilibrium and small enough so that the compositions in a cell can be considered to be
homogeneous. The transfer of the species α between two cells is described by a flux Jα. The
evolution of PD concentration variation is obtained from Eq. (1.28), and the evolution of the
local atomic concentration is derived from the continuity equation

∂Cα

∂t
= −∇ · Jα. (1.42)

Within TIP, the flux of species α between neighbouring cells is assumed to be a linear combi-
nation of the thermodynamic driving forces (i.e. the chemical potential gradient). It is given
by

Jα = −
∑
β

Lαβ
∇µβ

kBT
. (1.43)

In this equation, kB is the Boltzmann constant and T is the temperature. µβ is the local
chemical potential of species β in a cell. ∇µβ can be considered to be the difference of µβ

between neighbouring cells divided by the size of the cell. Lαβ are the phenomenological L-
coefficients of the Onsager matrix. By construction, the vacancy diffusion mechanism leads to
the relation between fluxes of atoms and vacancies:

JV = −
∑
α

JV
α . (1.44)

From Eq. (1.43) and Eq. (1.44), we deduce an expression of the atomic flux JV
α as a linear

combination of independent driving forces:

JV
α = −

∑
β

LV
αβ

∇µβ −∇µV

kBT
. (1.45)

As for the SIA-mediated transport, by construction of the diffusion mechanism, we have

JI =
∑
α

J I
α, (1.46)

In this case, from Eq. (1.43) and Eq. (1.46), J I
α is given by [19]

J I
α = −

∑
β ̸=I

LI
αβ

∇µβ +∇µI

kBT
. (1.47)

Under irradiation, atomic diffusion is controlled by both vacancies and SIAs. By assuming
these two contributions are additive, we obtain that

Jα = JV
α + J I

α. (1.48)
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1.3.1.2 Atomic fluxes in terms of concentration gradients

Here we present how we relate the concentration gradient to the thermodynamic driving
forces in order to express the atomic fluxes in function of concentration gradients. The chemical
potential of species α corresponds to the partial derivative of the Gibbs free energy G of the alloy,
with respect to the number of atoms of species α, that is, Nα. The resulting chemical potential
is a function of temperature and atomic fractions of the alloy components, Cα = Nα/N , with N
being the total number of atoms. To obtain the relationship between the CPG and concentration
gradient, we rely on the Gibbs-Duhem relationship [142]∑

α

Cα∇µα = 0, (1.49)

and the conservation law ∑
α

Cα = 1, (1.50)

where the sum runs over the number of species including PDs, though in front of the intersti-
tial concentration we need to add a minus sign. To deduce relationships between CPGs, we
introduce either vacancies or SIAs into the alloy. Indeed, we ignore the interactions between
them and assume their interactions with atomic species are additive. These interactions should
be negligible because whenever vacancies and SIAs are close to each other, they annihilate
through mutual recombination reaction. From Eq. (1.49) and Eq. (1.50), we deduce CPG of
atomic species α in terms of the alloy and point defect driving forces

∇(µα − µV) =−
∑
k ̸=α

Ck

1− CV
∇(µk − µα)−

1

1− CV
∇µV, (1.51)

∇(µα + µI) =−
∑
k ̸=α

Ck

1 + CI
∇(µk − µα) +

1

1 + CI
∇µI. (1.52)

From the Gibbs free energy, we deduce the alloy and PD CPGs in function of concentration
gradients. To compute the alloy CPG ∇(µk − µα) of species k relative to species α, we ignore
the PD contributions. The latter is then equal to

∇(µk − µα)

kBT
=

1

kBT

∑
j ̸=α

[
∂(µk − µα)

∂Cj

]
∇Cj. (1.53)

In a binary alloy A(B), there is a single alloy CPG ∇(µB − µA). The CPG of a particle α
is given by

∇µB

kBT
= Φ

∇CB

CB
(1.54)

where Φ is the thermodynamic factor, which is equal to

Φ = CACB
1

kBT

∂(µA − µB)

∂CA
. (1.55)
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In systems under irradiation, the CPGs of vacancies and SIAs are non zero. Since va-
cancies and SIAs are dilute species, we can write the corresponding CPGs in function of their
equilibrium concentrations Ceq

V and Ceq
I :

µV = kBT ln

(
CV

Ceq
V

)
and µI = kBT ln

(
CI

Ceq
I

)
. (1.56)

Therefore, the CPG of vacancies is given by
∇µV

kBT
=

1

CV
∇CV −

ξVB

CB
∇CB, with ξVB =

∂ lnCeq
V

∂ lnCB
. (1.57)

The expression of the CPG of SIA is the same except that letter ‘V’ is replaced by letter ‘I’.

CPGs and concentration gradients are related by Eq. (1.54) and Eq. (1.57). Hence, we can
write the flux of species α in terms of concentration gradients:

Jα = −
∑
β

Dαβ∇Cβ, (1.58)

where Dαβ are the diffusion coefficients. They are functions of L-coefficients and partial deriva-
tives of chemical potentials with respect to the atomic and point defect concentrations [19].
We can identify the analytical expressions of Dαβ from Wolfer’s formulation (cf. Eq. (1.66)
presented later in Section 1.3.3.6).

In the limit of dilute alloy, we have CB ≪ CA and Φ = 1. In this case, the solute diffusion
coefficient (DB) and LBB are directly related by

DB = LBB/CB. (1.59)

Moreover, since vacancy is very dilute even in a system under irradiation, the vacancy diffusion
coefficient can be given by

DV = DVV = LVV/CV. (1.60)

1.3.2 Measurement of tracer diffusion coefficients under irradiation

We review a few diffusion experiments to show how to measure diffusion coefficients in
alloys submitted to irradiation. We also present the typical variation of diffusion coefficients
with temperature at different damage rates in order to highlight the essential role of the PD sink
strength. Given the difficulty of obtaining the full set L-coefficients from diffusion experiments,
we introduce the numerical and analytical approaches that are developed to calculate these
coefficients.

1.3.2.1 Tracer diffusion experiment

Irradiation produces freely-migrating PDs [11]. The increase of PD concentration acceler-
ates the PD-mediated atomic diffusion under irradiation [11]. This phenomenon is the so-called
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radiation-enhanced diffusion. Furthermore, atoms are also displaced through the FAR mecha-
nism. The latter is dominant over radiation-enhanced diffusion at low temperatures. Atomic
diffusion resulting from both migration mechanisms can be measured by following the move-
ment of tracer atoms [143], which diffuse from the plane surface into the bulk of the material.
The tracer diffusion coefficient is deduced from the resulting concentration profile of the tracer
atoms, obtained by sectioning the materials into thin slices [143].

Müller et al. investigate self-diffusion in pure Ni irradiated by self-ions of 300 KeV [144].
Diffusion coefficients of the tracer 63Ni are measured at different temperatures. The results
are presented in Fig. 1.6. We observe an enhancement of tracer diffusion under irradiation. In
addition, the self-diffusion coefficients deviate from the Arrhenius plot. At low temperatures,
the diffusion coefficients are much higher than the thermal diffusion coefficients. Moreover, at a
displacement rate of 1.2×10−2 dpa/s, we observe a temperature-independent diffusion coefficient
below 600 K. We identify the latter as a diffusion regime dominated by FAR. The enhanced
PD-mediated diffusion coefficient Dacc is written in terms of the PD diffusion coefficients DV
and DI as [11]:

Dacc = fVCVDV + fICIDI, (1.61)

where CV and CI are respectively the concentrations of freely-migrating vacancies and self-
interstitial atoms (SIAs). fV and fI are correlation factors accounting for the kinetic correlation
during tracer diffusion [11]. Dacc is temperature-dependent. In most cases, the total diffusion
coefficient Dirr is assumed to be the sum of the radiation-enhanced diffusion coefficient (Dacc)
and the FAR contribution to diffusion (DFAR):

Dirr = Dacc +DFAR. (1.62)

Between 600 and 900 K, the slope of Dirr differs from the slope of thermal diffusion. We observe
that the slopes of Dirr vary with the displacement rate. It is suggested in Ref. [144] that this
is due to the difference of microstructures resulting from different displacement rates. Indeed,
as expected from a mean-field rate model (cf. Eq. (1.22)), concentrations of the excess freely-
migrating PDs and their variation with temperature vary with the irradiation conditions and the
sink microstructures. By assuming the recombination to be the dominant PD kinetic compared
to the elimination at sinks, the PD concentration is independent of the sink microstructure. In
this case, PD concentrations can be calculated relying on the rate theory model even though
the sink information is missing. Therefore, Dacc can be deduced from Eq. (1.61). If the sink
effect is dominant versus the recombination reaction, the analysis of the diffusion behaviors
happens to be very difficult without any information on the sink microstructures.

Solute atom diffusion coefficients are measured in several systems under irradiation [145–
149]. However, these data are not as complete as the self-diffusion data in Ni [144]. In most
cases, only the temperature dependence is studied, whereas the effects of the displacement
rate are not investigated. Also, information on the microstructure, in particular the PD sink
density, is often missing. In this regard, we present below one of the full investigation of solute
atom diffusion in Ref. [149]. Macht et al. measured the tracer diffusion coefficients of Ni
in Cu under 300 KeV Cu+ ions irradiation [149]. The FAR contribution, DFAR, is measured
to be 1.8 × 10−20 m2s−1 from data obtained at temperature below 650 K. One obtains the
enhanced diffusion coefficient after subtracting DFAR, as shown in Fig. 1.7. We observe that
the behavior of the tracer Ni diffusion coefficient in Cu with temperature is similar to the one
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Figure 1.6: Self-diffusion coefficient in pure Ni under 300 KeV Ni+ irradiation with displacement
rates estimated to be 1.2×10−2 dpa/s (•) and 1.2×10−4 dpa/s (◦). The dashed line is the
Arrhenius plot of the thermal self-diffusion in Ni. This figure is reproduced from Ref. [144].

of Ni self-diffusion plotted in Fig. 1.6. A deviation from the Arrhenius law is observed. Again,
the concentration of PDs explains this deviation. By assuming the recombination to be the
dominant PD kinetic compared to the elimination at sinks, one obtains Dacc from Eq. (1.61) and
the results are plotted as dashed line in Fig. 1.7. The coherency with the measured coefficients
is not satisfying, indicating that the sink effect cannot be neglected under such irradiation
conditions. A more complete analysis of the diffusion behaviors is not possible due to the lack
of information on the sink microstructures.

In the dilute binary alloy Ni(Cu), we deduce the LCuCu coefficient from the Cu tracer
diffusion coefficient by applying Eq. (1.59). Even if we know the self-diffusion coefficient of
Ni, it is not enough to trace back the full L-coefficient matrix. We should rely on numerical
simulation or analytical calculations to obtain the other L-coefficients.

1.3.2.2 Calculation of the phenomenological coefficients

Based on the atomic jump frequencies (presented later in Section 1.4.1), we can calculate
the phenomenological L-coefficients by using different approaches.

The atomic kinetic Monte Carlo method is a powerful method to calculate these coeffi-
cients [150]. Relying on the Allnatt formulae [151, 152], we simulate and measure the equi-
librium displacement fluctuations of the system and deduce from them the phenomenological
L-coefficients. However, this method is limited to small domains of composition and tempera-
ture. Furthermore, it becomes unworkable when binding energies between PDs and neighboring
atoms are high [153, 154]. In this case, the simulated trajectory can be trapped in low-energy
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Figure 1.7: Ni tracer diffusion coefficient in Cu under 300 KeV Cu+ irradiation with displace-
ment rates estimated to be 2.0×10−2 dpa/s (◦). The solid line is an eye-guide. The dashed
line is obtained by assuming recombination to be the dominant PD kinetic. This figure is
reproduced from Ref. [149]

PD-solute configurations, leading to correlation effects: after a jump, an atom has a high proba-
bility of exchanging again with the same PD and canceling its first jump. It is worth mentioning
that in presence of an athermal diffusion mechanism, for instance the FAR mechanism in case
of irradiation, the Allnatt formulae are not valid [40].

In concentrated alloys, approximate expressions can be deduced from mean-field diffusion
models. The first diffusion model of concentrated alloys is proposed by Manning for the vacancy-
mediated diffusion mechanism, by modeling the alloy as a random lattice gas model [155]. This
model is then extended to the SIA-mediated diffusion mechanism [156]. However, the effect
of short-range order (SRO) on the L-coefficients is not accounted for. Some attempts are
made to include SRO effects using a Manning-type formulation, but such a formulation is not
consistent with the thermodynamics [157, 158]. The current diffusion models, including SRO
effects, are based on either the self-consistent mean-field theory (SCMF) [153, 159–162] or the
path probability method (PPM) [163–165]. The PPM models of vacancy-mediated diffusion
are proposed in ordered alloys [164] and body-centered solid solution [163, 165] . As for the
approach based on the SCMF theory, models of vacancy diffusion in fcc alloys, including the
solute drag phenomenon, and models of SIA in alloys are proposed [153,154,166].

In dilute alloys, it is possible to deduce exact analytical expression of the L-coefficients
because the count of vacancy paths is relatively limited (cf. Refs [19] and [20] for reviews).
We will present in Chapter 2 our method of calculation of the L-coefficients relying on the
self-consistent mean-field theory [159,160], and the KineCluE code [167].
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Figure 1.8: One of Anthonys experiments. After quenching of an AlZn alloy, vacancies condense
in small pyramidal cavities (left). Electronic probe measurements reveal enrichment of Zn
around the cavities. This figure is reproduced from Ref. [169]

1.3.3 Radiation-induced segregation

Permanent irradiation produces sustained fluxes of PDs towards PD sinks. Due to dif-
ferences of diffusion coefficients between species and flux couplings, a preferential transport of
one of the alloy components may occur. This leads to a local chemical redistribution in the
vicinity of sinks. The latter phenomenon is the so-called radiation-induced segregation (RIS).
RIS phenomena are very common in alloys under irradiation and have important technologi-
cal implications. For instance, RIS may be strong enough to transform austenite grains into
ferrite in stainless steel due to the segregation of Ni towards grain boundaries under neutron
irradiation [168].

While an equilibrium segregation modifies the composition of the alloy on a few atomic
planes, RIS generally extends over 5−20 nanometers. RIS is an out-of-equilibrium phenomenon
mainly controlled by the kinetic properties of point defects, whereas equilibrium segregation
results from the thermodynamic properties of the alloy. Though RIS is the result of both
thermodynamics and flux couplings, RIS modeling studies usually ignore the thermodynamic
segregation tendencies.

In order to better understand RIS, in this section, we present a few experimental observa-
tions. Then, we give a brief description of the RIS models.

1.3.3.1 Pioneering work and first observations of RIS

From systematic studies of non-equilibrium segregation in aluminum alloys resulting from
the creation and elimination of quenched vacancies, Anthony predicts the RIS phenomenon [12,
13,169]. He suggests that the segregation under irradiation should be much stronger than that
in quenched alloys because the excess vacancy concentration and their flow towards sinks can
be sustained for much longer time [12]. Anthony and coworkers observe non-equilibrium segre-
gation of various solute atoms at pyramidal cavities resulting from the clustering of vacancies
at the oxide metal interface. This segregation is explained by a coupling between the flux of
vacancy into the cavities and the flux of solute atoms (e.g. Zn as shown in Fig. 1.8). Within the
framework of the thermodynamics of irreversible processes, Anthony [12,13,169] also discussed
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Figure 1.9: Segregation mechanisms with respect to the coupling between point defect and
atom fluxes in a binary A(B) alloy. (a) An enrichment of B occurs if JV

B /CB < JV
A/CA, and

a depletion if not. (b) An enrichment of B due to the vacancy drag. (c) An enrichment of B
occurs if J I

B/CB > J I
A/CA and a depletion if not.

the mechanisms of the non-equilibrium segregation based on previous results in Refs. [170,171].
He analyzed the impact of flux coupling on solute segregation by distinguishing two separate
flux coupling regimes. The total flux of atoms is equal to the vacancy flux, but they are in
the opposite directions. If both the fluxes of A and B are in opposite direction to the vacancy
flux (Fig. 1.9 (a)), one can expect an enrichment of B when the JV

B /CB is smaller than JV
A/CA,

whereas in the opposite case, when JV
B /CB > JV

A/CA, a depletion of B is expected. If the fluxes
of A and B are in opposite directions (Fig. 1.9 (b)), the vacancy drags the solute atom B by
following circular jump sequences around B between two exchanges with B. In this case, the
vacancy and solute fluxes are in the same direction moving towards sinks. In such a situation,
an enrichment of B is expected.

Experimental evidences of RIS are obtained since the first observation in austenitic steels [14–
16, 26, 172, 173]. The measurement of the concentration profiles by Auger spectroscopy reveals
a systematic positive RIS of undersized solute atoms (e.g., Ni), which can be more easily found
in interstitial sites, but a negative RIS of oversized solute atoms (e.g., Cr). Following these
results, Okamoto and Wiedersich conclude that RIS in austenitic steels is controlled by the
migration of solute-SIA complexes [14]. They introduce this new RIS mechanism (Fig. 1.9 (c))
in addition to the vacancy-controlled mechanisms. However, Marwick explains later the same
experimental observations by introducing a modeling of the solute-vacancy flux coupling in
concentrated alloys, as illustrated in Fig. 1.9 (a). This flux coupling is named as an inverse
Kirkendall effect [173]. According to the thermal diffusion data, he states that Ni diffuses more
slowly compared with Cr. To this day, we do not know the relative contribution of vacancies
and SIAs to RIS in austenitic steels. This is because we lack information on the stability and
mobility of PD clusters and the effect of local environment on these parameters.

In dilute alloys, the number of differnt solute-PD configurations is small. Thus, solute-PD
binding energies are clearly defined and often play a key role in RIS. Hence, RIS in dilute alloys
is commonly explained by the diffusion of solute-PD complexes.
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Figure 1.10: Si depth profiles measured by Auger spectroscopy at various temperatures for a
Ni-1 at.% Si alloy. (a) The irradiation is up to 5.0 dpa at 385◦C, 3.6 dpa at 480◦C and 4.0 dpa
at 530◦C. (b) The irradiation is up to 8.5 dpa at 560◦C, 3.9 dpa at 600◦C and 4.4 dpa at 660◦C.
The Si/Ni Auger ratio corresponds to 25 at.% Si in the alloy. The figure is reproduced from
Ref. [26].

1.3.3.2 Effect of temperature

RIS results from the sustained PD flux towards sinks, which typically happens at tempera-
tures between 0.3 and 0.6 times of the melting temperature [11,16]. Rehn et al. investigate the
temperature dependence of solute Si segregation in a dilute binary Ni(Si) alloy under self-ion
irradiation at a peak damage rate around 2.5 × 10−3 dpa/s [26]. Little segregation of Si oc-
curs below 400◦C and above 660◦C. The depth profiles of Si concentration measured by Auger
spectroscopy between 385◦C and 660◦C are shown in Fig. 1.10. The maximum segregation of
Si occurs around 560◦C, where a thin layer of the Ni3Si γ′-phase is formed. The temperature
dependence of solute segregation presented in Fig. 1.10 can be readily understood qualitatively.
At low temperatures, vacancies are immobile, and PDs annihilate by mutual recombination.
As a result, fluxes of the solute-PD complex towards sinks are reduced. At high temperatures,
the thermal equilibrium concentration of vacancies is high: a back diffusion of solute atoms
and a lower vacancy supersaturation completely suppress the segregation. Temperature can
also modify the competition between vacancy and SIA mechanisms of RIS. This may lead to
a change of sign of RIS. One expects an effect of temperature on this competition occurs in
Fe-Cr alloy [174–176]: the SIA mechanism prevails at moderate temperatures, leading to a
Cr enrichment, whereas the vacancy mechanism leads to a Cr depletion at high temperatures.
Moreover, Marwick et al. show that Ti is enriched at the surface of Ni-Ti alloys. They explain
the change of sign of Ti RIS by involving the migration of Ti-vacancy complexes at T < 400◦C,
and an inverse Kirkendall effect at high temperatures [177]. A similar temperature dependence
is observed in Ni-Si alloys [178] and a few model alloys [179]. This tendency is as well obtained
from recent DFT-based flux coupling studies on a few fcc and bcc alloys [180,181].
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1.3.3.3 Effect of dose, dose rate and radiation particles

Rehn et al. observe an enrichment of Si in Ni-1 at.% Si at the surface at 525◦C and 600◦C
after an irradiation dose of 0.05 dpa and 0.06 dpa, respectively [24]. Such doses are very small
compared to those required for the effects of swelling [11] and ballistic disordering [27].

Allen et al. investigate the effect of dose rate on the segregation in 304L stainless steels
irradiated in the EBR-II reactor at around 375◦C [25]. They measured the Cr and Ni solute
concentration profiles across voids for samples irradiated in different row positions in the core.
The samples in different rows are irradiated to nearly the same dose (around 10 dpa) but with
different dose rates. The experimental observations evidence a greater amount of Cr depletion
and Ni enrichment occurs in samples irradiated at lower dose rate [25]. This trend is explained
by Was [11] as follows: at a given temperature, a lower dose rate leads to a smaller production
of PDs per unit time. Thus with fewer PDs produced in the material, the probability for a PD
to find a sink versus to recombine with another PD is increased. Therefore, the contribution of
PD elimination at sinks is more important at a lower dose rate.

It is worth mentioning that, when irradiation particles are light particles (electrons or light
ions), the segregation amount of solute at a given dose is often greater than that resulting from
neutron or heavy ion irradiation [11]. This is due to the differences in the primary damage
produced by these particles. In the case of neutrons or heavy ion irradiation, PDs are created
in very localized areas within a displacement cascade [86]. Therefore, most of the produced
PDs recombine or form clusters rather than diffusing at long distance, and contributing to the
solute redistribution at PD sinks. On the other hand, in the case of light particle irradiation,
PDs are created more homogeneously within a displacement cascade; thus a larger fraction of
them survive from the recombination and clustering reactions, and diffuse towards sinks [11].

1.3.3.4 Emulation of neutron irradiation with respect to RIS

RIS is dependent on both temperature and dose rate. Robrock et al. [16] investigate the
temperature dependence of Ni3Si coating resulting from Si RIS at the surface of Ni-6 at.% Si al-
loys irradiated by 3.5 MeV Ni+ at different dose rates. The characterization of the Ni3Si coating
is performed at a radiation dose of 3 dpa. For a dose rate of 4.5×10−4 dpa/s, at 420◦C, precipi-
tates of Ni3Si are found on dislocation loops but not on the surface; at 530◦C, a continuous film
of Ni3Si occurs on the surface; at 610◦C only small Ni3Si precipitates are found; and at 717◦C,
no Ni3Si phase is found. According to the authors, this behavior indicates that the position of
the peak of RIS is around 530◦C, the temperature at which the precipitation of Ni3Si is the most
important. Similar behavior is found at 2 × 10−2 dpa/s, though the position of the RIS peak
is shifted to 615◦C. Moreover, previous results on Ni-1 at.% Si [26] and Ni-12.7 at.% Si [178]
indicate that peak temperatures are about 530, 560 and 645◦C at dose rates of 4.5 × 10−4,
3× 10−3 and 2× 10−2 dpa/s, respectively [16]. In order to explain these observations, Okamoto
et al. [16] apply John-Lam RIS model [182] to calculate the maximum segregation amount for
different irradiation conditions. They conclude the discussion by providing a temperature-dose
rate diagram (Fig. 1.11). This diagram shows the temperature range for which a significant Si
segregation at surfaces is expected.
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Figure 1.11: Temperature-dose rate diagram of radiation-induced segregation.

Investigating the effect of large neutron radiation dose (a few dpa or more) is difficult
because it would require very long irradiation times (typically in years) [11]. For these reasons,
one may simulate the neutron irradiation by heavy ion irradiation. The latter yields high dam-
age rates compared to neutron irradiation. However, most of the phenomena occurring under
irradiation are sensitive to the radiation flux. According to simple mean-field rate theories,
the PD concentrations obtained at a low radiation flux and a given temperature are identi-
cal to the ones obtained at a higher flux provided the temperature is increased by a specific
amount, which suggests that a difference in radiation flux can be compensated by a temper-
ature shift [11, 22, 23, 183, 184]. This theory has been first applied to investigate the swelling
phenomena, but it relies on the assumption that solute atoms do not interfere with the kinetics
of PDs and the overall PD sink strength is fixed by the initial microstructure. According to
this theory, there are three kinetic domains: (i) at low temperature and high radiation flux, the
recombination domain in which the PD concentration is controlled by the PD recombination
reaction, (ii) at intermediate temperature and low radiation flux, the sink domain in which
the PD concentration is controlled by the elimination of PDs at sinks, and (iii) at high tem-
perature and low radiation flux, the thermal domain in which the PD concentration are close
to thermal equilibrium concentrations [183]. Estimations of the temperature shift required to
compensate for a large radiation flux depend on the kinetic domain of the experiment and
whether the system is at steady state or in a transient state. These temperature shifts require
the definition of an invariant quantity, either the bulk concentration of PDs at steady state [11]
or the amount of PDs absorbed by sinks [184]. Attempts have been made to apply Mansur’s
invariant PD-absorption relation to the study of solute RIS [11, 22, 23]. The estimation of the
temperature shift was good enough to yield similar RIS profiles of Cr and Ni in 304L stain-
less steels, respectively irradiated with neutrons and self ions [23]. Nevertheless, in the same
publication, the authors observe that the temperature shift predicted by Mansur’s invariant
relation is not accurate for alloys with a high dislocation density. Yet, a material with an ini-
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tial high dislocation density seems to be more appropriate to test Mansur’s invariant relation,
because the high PD sink strength of a microstructure full of dislocations is less sensitive to
the radiation flux and dose, and can be considered to be fixed as assumed in Mansur’s theory.
A recent analytical model of steady-state RIS in the sink domain precisely predicts that solute
RIS does not depend on the radiation flux, whereas PD concentration does [30]. However, as
explained by the authors, we should not ignore that an increase of the dislocation density may
induce a transition from the recombination domain to the sink domain, hence, shift the system
from a radiation-flux dependence to another. Therefore, there is a need for a PD-RIS model
accounting for both the transitions between the various PDs kinetic domains, and the effect of
the irradiation conditions and the microstructure on the RIS profile within each PDs kinetic
domain.

1.3.3.5 Evaluation of flux couplings

RIS results from a flux coupling between PDs and solute atoms. The investigation of flux
couplings is a primary step towards the modeling of RIS. From the Onsager formalism of the
atomic fluxes (subsection 1.3.1.1), the ratio between PD flux (Jd for d = V, I) and solute flux
(JB) is given by

JB

Jd
=

LBB∇µB + LBA∇µA + LBd∇µd

LdB∇µB + LdA∇µA + Ldd∇µd

. (1.63)

During irradiation, PD concentration is far from the equilibrium concentration. Therefore,
∇µI and ∇µV are essential driving force in irradiated alloys. In order to quantify flux couplings
triggered by a PD CPG, we set every CPG to zero except ∇µV or ∇µI [40]. As a result, for
solute-vacancy coupling, JB/JV is represented by the wind factor:

δV =
LBV

LVV
. (1.64)

and the solute-SIA coupling is given by

δI =
LBI

LII
. (1.65)

The wind factor, δd, informs on the average number of solute atoms following the vacancy
or SIA. Note that LVV, LII and LBI are systematically positive, while LBV may be negative.
The off-diagonal L-coefficient determines the sign of the flux coupling. If the wind factor δd
is positive, the vacancy or SIA drags B. Relying on the wind factor, we can tell whether the
diffusion of solute and PD as a complex contributes to the RIS.

Note that the wind factor depends on the concentration of solute atoms, even in the dilute
limit, because, in opposite to LBV, LVV is not proportional to CB. In cases we are only interested
in the sign of the flux coupling, we introduce the ratio LBV/LBB [181, 185–187]. In this ratio,
LBB is always positive and can be considered as a normalization constant. In addition, this ratio
is independent of the alloy compositions because, in dilute alloys, LBV and LBB are proportional
to the concentrations of vacancies and solute atoms. Relying on the ratio LBV/LBB, Garnier et
al. [185–187] investigate the strain effect on the flux coupling in dilute Ni(Si) alloy. Messina et
al. [181] compute the ratio LBV/LBB in dilute body-centered cubic Fe-based alloys with PDs in
order to predict the solute-drag tendency at various temperatures.
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1.3.3.6 Analytical solutions of radiation-induced segregation in steady state

RIS results from the flux of PDs towards sinks and the atomic back diffusion away from
sinks. Wiedersich et al. [188] establish a relationship between the concentration profiles of PD
and solute atoms during the RIS in steady state. Extensive reviews regarding to this topic can
be found in Refs. [11,19,20]: here we introduce the models that are directly related to our own
studies of RIS.

A RIS model must reproduce the atomic diffusion enhancement resulting from an increase
of PD concentration. If we ignore the thermodynamic and kinetic contributions of PD clusters,
the L-coefficients vary linearly with PD concentrations. To highlight the role of PD concentra-
tion, one introduces normalized L-coefficients, the so-called partial diffusion coefficients, which
are PD concentration free [173,188,189]. In the following, we rely on Wolfer’s formulation [189]
because the approximation made to calculate the partial diffusion coefficients and driving forces
are clearly stated. The fluxes of atoms and PDs in a binary alloy A(B) are given by

JA = −(dcAVCV + dcAICI)Φ∇CA + CA(dAV∇CV − dAI∇CI),

JB = −(dcBVCV + dcBICI)Φ∇CB + CB(dBV∇CV − dBI∇CI),

JV = −(CAdAV + CBdBV)∇CV + CVΦ(d
c
AV∇CA + dcBV∇CB),

JI = −(CAdAI + CBdBI)∇CI + CIΦ(d
c
AI∇CA + dcBI∇CB)

(1.66)

where the partial diffusion coefficients are given by

dAV = −LV
AA + LV

AB
CACV

, dBV =
LV

BB + LV
BA

CBCV
, dAI =

LI
AA + LI

AB
CACI

, dBI =
LI

BB + LI
BA

CBCI
,

dcAV =
LV

AA
CACV

− LV
AB

CBCV
+ dAV

1

Φ
ξVA, dcBV =

LV
BB

CBCV
− LV

BA
CACV

+ dBV
1

Φ
ξVB,

dcAI =
LI

AA
CACI

− LI
AB

CBCI
+ dAI

1

Φ
ξIA, dcBI =

LI
BB

CBCI
− LI

BA
CACI

+ dBI
1

Φ
ξIB. (1.67)

In steady state, the time derivative of atomic and PD concentrations are zero. Therefore,
the atomic flux controlling the atomic concentration (Eq. (1.42)) at the PD sink, is zero. Step
by step from the sink surface plane, we demonstrate every flux of a given atomic species α is
zero

Jα = 0. (1.68)
In case of a single population of PD sinks, setting to zero the time-derivatives of PD concen-
trations in Eq. (1.28) leads to the relationship

JV = JI. (1.69)

In a binary alloy, Eqs. (1.66), (1.68) and (1.69) yields the Wiedersich’s relationship [188] between
the concentration gradients of solute and vacancy near an ideal sink:

∇CB = −α∇CV, (1.70)

with the coupling factor
α =

dAIdAVCACB

dAIDBCA + dBIDACB
αs, (1.71)
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where
αs =

dBI

dAI
− dBV

dAV
. (1.72)

Note that the intrinsic diffusion coefficients DA and DB of components A and B can be written
in function of PD-related diffusion coefficients and PD concentrations:

Dβ = dcβVCV + dcβICI, with β = {A,B}. (1.73)

The sign of α is determined by the sign of αs. The latter is related to the off-diagonal
coefficients of the Onsager matrix. α > 0 leads to an enrichment of B at sinks.

Relying on the SCMF theory, Messina et al. [181] have calculated the ratio dBV/dAV in
dilute binary Fe-based alloys in order to predict the tendencies of RIS driven by a vacancy flux.
They predict that solute RIS in Fe is mainly controlled by the drag of solute by vacancy except
in Fe-Cr alloy. The vacancy inverse Kirkendall effect leads to Cr depletion at all temperatures.
In contrast, the solute drag mechanism leads to sinks enriched in Cu, Mn, Ni, P, and Si at low
temperatures. Let us mention that the FAR mechanism is not considered.

Relying on the Wiedersich RIS model (Eq. (1.70)), Martínez et al. [30] obtain the analytical
expression of the RIS profile of solute atoms at planar sinks. The vacancy concentration profile
is given by solving the Poisson equation (Eq. (1.33)) near interfaces with CV = Ceq

V at the
interfaces and JV = 0 at the midpoint between two successive planar sinks. The analytical
solute concentration profile is obtained by integrating Eq. (1.70) with a boundary condition on
the mass conservation of solute atoms. The segregation amount of solute atoms, SB, is directly
related to the microstructure and given by

SB = α0h(ln 2− 1), (1.74)

where h is the average spacing between successive planar sinks. In this approach, the recom-
bination between vacancies and SIAs are not considered. In Section 3.2, we present a method
to obtain analytical concentration profiles of PDs and solute atoms, which account for the
competition between PD recombination reactions and PD elimination reactions at sinks.

1.4 Atomic-scale modeling of diffusion under irradiation

There are semi-analytical or numerical methods calculating the L-coefficients from an on-
lattice modeling of PD jumps, including the effect of local solute concentration and strain. In
this section, we present the jump frequency models, including the effect of elastic strain. We in-
troduce as well an on-lattice modeling of FAR diffusion mechanisms occurring in a displacement
cascade.

1.4.1 Point defect diffusion models

Vacancy and SIA are two intrinsic lattice PDs. Here we introduce the most frequent
crystallographic structures of metallic alloys—face-centered cubic (fcc) and body-centered cubic
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(bcc) lattice structures. A vacancy is an occupied lattice site of the crystal. There is a large
variety of SIA configurations: the octahedral and tetragonal interstitial sites, the crowdion and
the split-interstitial (also called dumbbell) configurations. The most stable SIA configuration
in fcc and bcc alloys is commonly the dumbbell configuration with two atoms sharing the
same lattice site [11]. In general, the most stable dumbbell direction in bcc structures is the
⟨111⟩ direction, while in fcc structure is the ⟨100⟩ direction in [190]. However, in bcc Fe-based
alloys, the ⟨110⟩-dumbbell is more stable than the ⟨111⟩-dumbbell mainly due to the magnetic
effects [191].

Figure 1.12: Possible point defect migration mechanisms in bcc metal Fe. Black and red spheres
represent Fe atoms and the blue cubic represents the vacancy.

Thermally-activated diffusion is controlled by the jump of PDs. It proceeds by atom-PD
exchanges between the first nearest neighbour (1-NN) lattice sites (Fig. 1.12 and Fig. 1.13).
Therefore, for a given PD in bcc metals, there are 8 possible jumps of different directions,
whereas, in fcc metals, there are 12 jumps.

The SIA jump is more complex than the one of vacancy. The dumbbell transition mech-
anisms include on-site rotation, translation, and translation-rotation. The latter is, in general,
the most favorable mechanism: an atom at a dumbbell position translates to bind with another
1-NN atom and form a new dumbbell in a different ⟨110⟩ direction (cf. Fig. 1.12 and Fig. 1.13).

From the initial and final state of a PD jumps, PD goes through a saddle-point posi-
tion where the energy of the system along the PD jump pathway reaches its maximum. The
difference between this maximum and the energy of the initial configuration is the so-called mi-
gration energy. We use the transition state theory to model the thermally-activated frequency
of a PD jump [192]. We define the thermal jump frequency ωαV

n→ñ (resp. ωαI
n→ñ) mediated by

the exchange of vacancy (resp. SIA) with an atom of species α from configuration n to ñ:

ωαd
n→ñ = ν exp

(
−
Emig

n→ñ
kBT

)
, (d = V,I), (1.75)
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Figure 1.13: Possible point defect migration mechanisms in fcc metal. Black and red spheres
represent Fe atoms and the blue cubic represents the vacancy.

where ν is the attempt frequency, kB is the Boltzmann constant, T is the temperature and
Emig

n→ñ is the migration barrier from configuration n to ñ, which can be deduced from ab initio
calculation database [181,193].

It is noteworthy that the migration energy is dependent on the local alloy configuration.
Hence the presence of solute atoms near the PD can modify the PD jump frequency. We use
solute-PD interactions to model this effect. For instance, in dilute fcc alloys including a vacancy,
with energy interactions limited to 1-NN pairwise interactions, five different jump frequencies
are required to describe the vacancy migration in presence of a single solute atom [194] (see
Fig. 1.14). Here, we designate these five frequencies as ωi=0,1,2,3,4 after the Lidiard’s nomencla-
ture [194]. The solute-vacancy exchange frequency is noted ω2. The vacancy jump conserving
the 1-NN distance from the solute atoms is noted ω1. The jump dissociating the solute-vacancy
pair is noted ω3, while the one associating the solute-vacancy pair is noted ω4. All the other
vacancy jumps far from the solute atom are noted ω0. This 1-NN model is favorable for the
analytical calculation of diffusion properties because the number of kinetic paths of PD is rel-
atively limited. For instance, from this 1-NN frequency model and a first-shell approximation
(kinetic interactions beyond 1-NN are neglected), Lidiard [194, 195] derived a five-frequency
model to calculate the tracer atom diffusion coefficient. Using the same approximation, we
will present later in Section 2.3 the derivation of the analytical expressions of the L-coefficients,
including both PD jumps and FAR.

1.4.2 Effect of elastic interactions on point defect diffusion

Irradiation leads to the formation of PD clusters such as voids and dislocation loops acting
as PD sinks. The latter generates a strain field which affects the energetic and jump frequencies
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Figure 1.14: Network of the five vacancy jump frequencies with the presence of a solute atom.
The cubic represents the vacancy. The black spheres stand for the bulk atoms, while the red
one is for the solute atom.

of PDs. Therefore, this elastic strain field modifies CPGs and the L-coefficients. The variation
of the L-coefficients wit strain is the so-called elasto-diffusion.

Figure 1.15: Representation of a vacancy by the Kanzaki forces. u is the displacement field
of atoms (black circle) induced by the vacancy (blue square), while F is the field of Kanzaki
forces applied to a perfect lattice in order to produce the same displacement field u.

The elastic effects on PD jump frequencies are investigated within elasticity theory with
different descriptions of a PD: elastic dipole, the infinitesimal Eshelby inclusion, and the analogy
with an infinitesimal dislocation loop. These approaches are shown to be equivalent [141]. We
rely on the elastic dipole formulation to describe the PD properties.

A PD is described as a distribution of equilibrated point-forces [196–199], the so-called
Kanzaki forces [200–204]. The latter are defined as the forces F q to be applied to the neigh-
bouring atoms q of the PD in order to produce the same displacement field (cf. Fig. 1.15). The
PD produces an elastic displacement field u(r). The i-th component of u(r) is related to the
force distribution F q by:

ui(r) =
N∑
q=1

Gij(r − rq)F q
j , (1.76)

where N is the number of neighbouring atoms at positions rq of the PD and Gij is the elastic
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Green’s function. Far from the PD (i.e. ∥r∥ ≫ ∥rq∥), Eq. (1.76) can be rewritten in the form
of a Taylor series, with Einstein convention on the summation over repeated indices:

ui(r) = Gij(r)
N∑
q=1

F q
j −Gij,k(r)

N∑
q=1

F q
j r

q
k + o (∥rq∥) , (1.77)

where Gij,k = ∂Gij/∂rk. Note that
∑N

q=1 F
q
j = 0 because the forces are equilibrated. Therefore,

by neglecting the term beyond the first order, Eq. (1.77) can be rewritten as:

ui(r) = −Gij,k(r)P jk, (1.78)

where P jk is the elastic dipole, defined as:

P jk =
N∑
q=1

F q
j r

q
k. (1.79)

This dipole, P , is a tensor of second rank. It is symmetric because the torque
∑

q F
q × rq = 0

due to the equilibrium properties of the force distribution [141].

We derive the elastic interaction energy Eint between a PD and an external displacement
field uext from the Kanzaki forces F q:

Eint(uext) = −
N∑
q=1

F q · uext(rq). (1.80)

By assuming that uext varies little close to the PD, one can rewrite Eq. (1.80) by means of a
series expansion as:

Eint(uext) = −uext
i (0)

N∑
q=1

F q
i − uext

i,j (0)
N∑
q=1

F q
i r

q
j , (1.81)

where uext
i,j = ∂uext

i /∂rj and Einstein summation convention is implicit for indices i, j. The first
term in the right-hand side is null because the forces are equilibrated and thus the interaction
energy is a function of the elastic dipole:

Eint(uext) = −P ij u
ext
i,j . (1.82)

Since P is a symmetric tensor, we express Eint as a function of the symmetric strain field tensor
ϵext:

Eint(ϵext) = −P ij ϵ
ext
ij , (1.83)

where ϵext
ij = (uext

i,j + uext
j,i )/2.

We have access to the PD properties from indirect experimental techniques, such as the
measurement of the elastic constant [205], or the inelastic relaxation [206]. However, it is
difficult to obtain all the components of the elastic dipole tensor P . Therefore, of particular
importance are numerical methods such as the ab initio calculations of the elastic constants
and PD elastic dipoles [185,186].
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To conclude, the effect of the elastic interactions between PDs and the strain field is two-
fold. First, this interaction modifies the energy of the system. This modification depends on
the amplitude of the strain, which is in general non-homogeneous in space, thereby creating a
gradient of the system energy. The latter changes the thermodynamic driving force (i.e., the
CPG) of the PD diffusion. Second, the elastic interaction modifies the migration barriers of
PD jumps. The latter is the energy difference between the saddle-point and the stable states.
Between these two states, the elastic dipole properties of PD as well as the strain field can be
different. Therefore, the interaction energies at these two sates should also be different, leading
to a variation of the migration barrier. In brief, we should consider the above two aspects in
order to have a get a full picture of diffusion in a strain field.

1.4.3 On-lattice modeling of FAR effect on the long-term radiation
damage evolution

In a displacement cascade, positions of numerous atoms are changed, and Frenkel pairs
are created. Relying on the RCS model to describe the displacement cascade, Martin and
Bellon [27] account for the contribution of FAR events to the atomic mobility. They introduce
the FAR mechanisms as isotropic and non-thermally-activated jumps. The frequency of these
athermal jumps is assumed to be proportional to the frequency of the events leading to FAR
i.e., irradiation flux. Such jumps are treated as diffusion events, in addition to the thermally-
activated jumps (presented in Section 1.4.1).

Averback et al. [3] estimate the length of a RCS by the average distance between the vacancy
and the SIA of a Frenkel pair. This distance can be measured by a few experimental techniques
such as the field ion microscopy methods. According to the histogram of RCS lengths measured
in a few experiments, the distribution drops approximately exponentially with the distance. If
we approximate forced relocation sequences of 1-NN jumps involving n atoms by a single atomic
jump of n-NN distance, one expect the an exponential decrease of the FAR frequency with the
FAR distance. Later, Enrique and Bellon [207] investigate the effects of both relocation fre-
quency and relocation distance on the microstructure of irradiated materials. FAR is modeled
as athermal exchanges of atomic positions. They introduce a characteristic distance of FAR.
They use a Cahn-Hilliard-type approach to simulate the effect of FAR on the spinodal decom-
position of a supersaturated solid solution. They report a patterning of the secondary phase
with a wavelength of the concentration fluctuations equal to the FAR characteristic distance.
Based on the same approach of the FAR mechanism, Roussel and Bellon [69] introduced the
athermal atomic exchanges into the standard five-frequency model [194, 195], to calculate the
solute diffusion coefficient in binary fcc model alloys. They point out that accurate calculation
of the diffusion coefficient under irradiation requires to simultaneously consider the FAR events
and thermally-activated atomic jumps. They show that the total diffusion coefficient resulting
from these two mechanisms is not the simple addition of two separate diffusion coefficients due
to the interplay between both atomic jump mechanisms.

It is worth noting that PDs are also relocated in displacement cascades. In the recoil
collision stage of the displacement cascade, PDs are randomly produced in space because the
process is so quick that the thermodynamic solute-PD interactions can be neglected. Then, the
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produced PDs may “disappear” in the heat spike because the material is locally a liquid-like
phase where there is no notion of PD. Later, they reappear somewhere in the cascade area,
as if they had effectively jumped to another crystalline site during the cascade. However, as
stated in subsection 1.2.1.5, the reappeared PDs after the heat spike tends to combine with
solute atoms in the cascade if they have a thermodynamic attraction, even if they are far away
from the solute atom before the heat spike. Although this PD relocation in the displacement
cascade is scarcely investigated, it should affect the long-term evolution of the damage.

1.5 Summary

Under equilibrium conditions, changes of the alloy composition occur at structural defects
due to the differences in interface energies and sizes of solute and solvent atoms, and to the
mixing tendencies of the alloy.

The primary radiation damage is characterized by athermal relocations of atoms and PDs
(FAR events) and the production of excess freely-migrating PDs. We review the latter phenom-
ena in Section 1.2. It is difficult to experimentally characterize the primary damage because
the duration of the corresponding displacement cascade process is very short (about 10 pi-
coseconds). We commonly rely on theoretical models and numerical simulations to predict
the behaviors of atoms and PDs resulting from displacement cascades. In addition to the
thermally-activated diffusion, FAR may lead to long-range atomic diffusion. The calculation of
the excess PD concentration in irradiated systems, usually relies on mean-field rate theories.
In such approach, a precise estimation of the sink strength parameter is essential. There exist
numerous analytical models to calculate this parameter for defect sinks with simple geometries.
On the other hand, numerical approaches give the possibility to consider elastic interactions
and complex sink geometries.

The long-term evolution of the radiation damage is controlled by diffusion processes. These
include the radiation-induced diffusion and RIS. In Section 1.3, we present a review of the ex-
perimental characterization of tracer diffusion under irradiation. The tracer diffusion coefficient
is commonly modelled as the addition of two separate coefficients: the radiation-enhanced dif-
fusion and the FAR-mediated diffusion. However, its validity is questionable because one has
shown an interplay between radiation-enhanced diffusion and FAR.

We give a review of the first experimental observations of RIS and the general trends of
RIS with respect to the irradiation conditions. We introduce the phenomenological models of
RIS, starting from a TIP formulation of the PD and atomic fluxes. We present in details the
passage between a flux expression in terms of L-coefficients together with CPGs and a flux
in functions of diffusion coefficients together with gradients of concentration. Whereas, up to
now, the PD recombination reaction and the athermal FAR mechanism are not included in the
RIS models, even in the most recent ones [30].

Given an atomic jump frequency model of a dilute alloy, it is possible to calculate the full
Onsager matrix of the L-coefficients. We present in Section 1.4 the on-lattice models of PD
jumps. A precise calculation of the L-coefficients of an irradiated system requires to account
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for the effects of local solute concentration, a strain field, and the FAR events on the atomic
jumps. FAR mechanisms and their effects are modeled as athermal atomic jumps leading
to disordering of alloys. An atomic-scale diffusion model including FAR is achieved though
a calculation method of the full Onsager transport matrix is still missing, and FAR of PDs
are not considered. One formalizes the elastic effects on the PD migration barriers and the
thermodynamic driving forces by means of the elastic dipoles associated with PDs and solute
atoms.
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2.1 Introduction of diffusion in non-equilibrium system

There exist microscopic models that effectively reproduce the atomic mixing by the irradia-
tion [208,209]. Microscopic events of a displacement cascade are described in Section 1.2. They
in include (1) the creation of single PDs and PD clusters, (2) the shuffling of atomic positions.
The latter process is often considered as a random displacement mechanism [210,211] but there
are some evidences showing that it is in fact partially driven by thermodynamics [75]. Besides,
recent investigations on concentrated alloys [98, 212, 213] and high entropy alloys [214] have
shown that during the quenching stage, the spatial distribution of PDs relative to the solute
atoms is partially related to the thermodynamic short range order (i.e. binding interaction).

The mixing of atomic positions in the displacement cascade was previously modeled as
a FAR mechanism which consists in forced exchanges of positions between an atom and its
nearest neighbour including atom and PD [104, 207, 208, 215]. However, spatial correlations
between solute atoms and PDs due to the thermodynamic interactions were neglected. More-
over, the thermal mechanism and FAR were considered separately. For instance, the tracer
diffusion coefficient of the solute atom was written as the sum of a thermal and a FAR diffusion
coefficients [11]. The interplay between these two mechanisms was neglected. An improved
version of the model was proposed in Ref. [69]. The five-frequency model [194, 195] of dilute
face-centered cubic (fcc) alloys was generalized to account for both transport mechanisms at the
atomic scale. The resulting solute diffusion coefficient includes a FAR-thermal coupling term
that affects solute diffusion. The five-frequency model deals with short range thermodynamic
and kinetic interactions between vacancy and solute. However, the characteristic distance of
a FAR mechanism is related to the size of the displacement cascade [207, 216]. Therefore,
only a diffusion model including long-range interactions can properly tackle FAR. Besides, a
five-frequency model does not provide the full Onsager matrix.

Thermodynamic and kinetic properties such as flux coupling coefficients and tracer dif-
fusion coefficients of an alloy are deduced from the Onsager matrix of the transport coeffi-
cients. Whenever the diffusion mechanism satisfies the microscopic detailed balance, Onsager
has demonstrated that this matrix is symmetric [217,218]. We may calculate it either from the
equilibrium atomic displacement fluctuations using the Allnatt formulae [151,152] or from the
flow of matter resulting from an applied external force. However, in driven alloys, there are
athermal mechanisms that do not satisfy the microscopic detailed balance. In these systems,
we cannot compute the transport coefficients by means of a Monte Carlo numerical approach
based on the Allnatt formulae. Yet, recent statistical theories have shown that it is possible to

50



derive an effective Onsager matrix from the fluctuation theorem [219,220], though the resulting
matrix is non symmetric. These theories go beyond the linear response theory. They provide
a methodology for the investigation of far from equilibrium kinetics. Such an approach has
been applied to the study of a molecular motor driven by forced chemical reactions [221, 222].
However, it is not directly applicable to properly model systems with FAR because there are no
notions of alloying effects and kinetic correlations in this model. In the context of research on
diffusion in alloys, one knows how to deal with the complexity of calculating a sequence of PD
jumps when the frequency of each jump depends on the local environment of the defect as long
as the diffusion mechanism satisfies the microscopic detailed balance [160,181,185,186,223–226].

Following the ideas of previous studies, we present in Section 2.2 the modeling of the
athermal FAR mechanisms. Then, we show in Section 2.3, the theoretical development on
the calculation of the transport coefficients using the generalized SCMF theory by taking into
account the FAR mechanisms. An implementation of the extended SCMF theory into the
KineCluE code yields automatic calculation of the transport coefficients. We present in Sec-
tion 2.4 a preliminary generalization of molecular motor model in Ref. [221] to calculate the
transport coefficients beyond the linear response approximation. Whereas, for now, our inves-
tigation is only limited to highly-simplified diffusion model. The application of the extended
SCMF theory to model alloys is presented in Section 2.5. Finally, in Section 2.6, a systematic
parametric study is performed to emphasize the effect of FAR distances and the solute-defect
interaction on the diffusion properties. This study allows us to identify the conditions in which
FAR significantly affects the material thermodynamic and kinetic properties.

2.2 Modeling of diffusion mechanisms under irradiation

2.2.1 Thermally activated jump frequencies

We use the transition state theory to model thermally activated diffusion [192]. The
thermal jump frequency ωαV

n→ñ, associated with the thermally activated exchange of atom α
and vacancy V which brings the system from configuration n to ñ, is given by Eq. (1.75). This
mechanism is mediated by PDs and the jump rate depends on the temperature as well as the
initial and saddle-point configurations. Note that it satisfies the principle of the microscopic
detailed balance:

Pn ω
αV
n→ñ = Pñ ω

αV
ñ→n, (2.1)

where Pn is the probability of configuration n.

2.2.2 Irradiation damage

We follow the ideas of previous studies to model the radiation damage by FAR. The latter
includes two mechanisms: (1) FAR between two randomly chosen atoms (FAR-a) which consists
in exchanging the positions of two atoms on lattice sites, and (2) FAR between a randomly
chosen atom and a PD (FAR-d) which consists in exchanging the positions between an atom
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and a vacancy (V) or a self-interstitial atom (SIA). We need to account for the removing and
creation of PDs within a cascade. Here we consider that the PDs “disappear” during the heat
spike, because the material is locally a liquid-like phase where there is no notion of PD. Later,
during the process of quenching, only a small fraction of the PDs “reappears” somewhere in the
cascade area, as if they had effectively jumped to another crystalline site during the cascade.
The effective result of this process is modeled by FAR-d.

For recoil energy well above DTE producing displacement cascade, the overall effect of the
mixing is modeled by FAR characterized by a relocation distance r. FAR occurs at a given
frequency proportional to the radiation flux. First for FAR-a, we assume that the probability
density function p(r) of the relocation distance follows an exponential decay [207,227,228]:

p (r) =
1

rm
exp

(
− r

rm

)
, (2.2)

where rm is the mean relocation distance which is related to the size of the displacement cascade.
Note that the latter depends on the material and the recoil energy of PKA. For example, the
sizes of cascades generated in metals by fast neutrons or by heavy ions typically range between
10 and 100 Å [210, 229]. At the atomic scale, the relocation distance r is discrete and is equal
to one of the i-th NN distances. We define the probability mass function P(i) so that the
distribution p(r) in the interval [ri, ri+1] is averaged to the i-NN point:

P(i) =
∫ ri+1

ri

p (r) dr, (2.3)

where ri corresponds to the i-NN distance. In practice, we consider only a finite set of near-
est neighbours, meaning that there is a cut-off relocation distance L-NN beyond which the
probability is set to 0. In this case, we define the normalized probability mass function PL(i)
as:

PL(i) =
P(i)∑L
s=0P(s)

. (2.4)

We introduce as well a simplified model associated with a single relocation distance rm because
it gives access to an analytical solution.

Here we ignore FAR-d of SIA and this assumption is justified in Section 2.2.3. Therefore,
we consider only FAR-d of vacancy. We propose two categories of FAR-d models: either the
same relocation model employed for FAR-a, or a model favoring the relocation sites close to
the solute atoms in case of attractive binding energies between vacancy and solute atoms. The
latter model makes sense because in the quench-like process at the end of the displacement
cascade, the remaining PDs form preferentially where their formation energy is the lowest, that
is in the vicinity of solute atoms.

In order to represent both categories of models, we introduce three models (listed in
Tab. 2.1). Models 1 and 2 for the first category, and Model 3 for the second category in-
cluding a thermodynamic effect on FAR-d. Model 1 includes a single relocation distance for
both solute and vacancy, while Model 2 includes an exponential law for the relocation distance
(Eq. (2.4)) for both species. Model 3 is similar to Model 2, the only difference is that when the
relocated vacancy is located at a distance lower than a threshold value Rc from the solute atom
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Table 2.1: Definition of relocation models for solute atoms and vacancies.

Models Solute relocation Vacancy relocation

1 A single relocation distance (iNN) for both solute and vacancy relocations

2 An exponential law (Eq. (2.4)) for both solute and vacancy relocations

• If RBV > Rc
1: Eq. (2.4)

3 Eq. (2.4) • If RBV ≤ Rc
1: exchange of vacancies

with a 1-NN atom of the solute
1 RBV is the solute-vacancy distance, and Rc is a threshold distance that we set.

B, the vacancy is systematically exchanged with an atom randomly chosen among the 1-NN
atoms of B (chemically biased FAR-d).

For recoil energy below DTE, the effective result of the sub-threshold collision is modeled
only by FAR-d. The model of FAR-d is the same in Model 1 while FAR-a is not performed.
The relocation distance is set to 1-NN distance r1.

2.2.3 Forced atomic relocation frequencies

The FAR-d frequency is denoted Γad, and the FAR-a frequency is denoted Γaa.

When the recoil energy is above DTE, the relocation frequency Γaa can be deduced from
the radiation dose rate ϕ based on the ion-beam mixing framework [1, 209]. In our model,
FAR-a reproduces the mixing of atoms in the displacement cascade, which is related to the
number of PDs produced by the PKA. After the quenching phase, there is only a small fraction
of surviving defects, which defines the unit of displacement per atom (dpa). Therefore, there
is a factor nFAR relating Γaa and the radiation dose rate in unit of dpa/s (see Eq. (2.5)).

Γaa = nFAR ϕ. (2.5)

From the literature, we set nFAR = 100 [144,209,230]. The latter number varies with the alloy
thermodynamics due to the thermal effect on the atomic mixing rate in the cascade [75]. The
frequencies of FAR-a and FAR-d depend on the number of cascades formed per unit of time as
stated in Section 2.2.2. Therefore, Γaa and Γad are both proportional to the dose rate. Hence,
they are proportionally related by:

Γad = γ Γaa, (2.6)

with γ the proportionality constant. Note that γ is set to 1 if not specified, i.e. Γad = Γaa = Γ.
Sensitivity studies concerning the value of γ are shown in Section 2.6.4.

When the recoil energy is below DTE, the sub-threshold irradiation does not induce FAR-a
because no displacement cascade is produced, thus Γaa = 0. In this case, the calculation of Γad

is not related to Γaa and is directly deduced from the recoil energy.
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Note that the maximum dose rate under realistic irradiation condition is around 1 dpa/s [11],
thereby leading to a relocation frequency of about 100 s−1. The latter is still very small com-
pared to the thermal jump frequency of SIA, even at low temperature. For instance, the SIA
thermal jump frequency in pure nickel at 300 K is around 1010 s−1 according to the atomic
diffusion data given in Ref. [193]. Therefore, we do not expect an important impact of FAR-d
on the SIA-mediated diffusion properties. Therefore, we consider only FAR-d with vacancies,
as stated in Section 2.2.3. Yet, we emphasize that the extension of our framework to account
for FAR-d of SIAs is straightforward.

2.2.4 Point defect concentration

The global concentration of PD varies under irradiation, mainly due to the production
of Frenkel pairs, the mutual recombination between SIA and V, the elimination of PD at PD
sinks such as grain boundaries and dislocations. The vacancy concentration at NESS Cness

V is
estimated from a rate theory model [121, 231]—Eq. (1.23). In case we neglect the elastic bias,
we have

Cness
V = Ceq

V −
k2Ω

8πrrec
+

√(
k2Ω

8πrrec

)2

+
ϕΩ

4πrrecDV
. (2.7)

We may then replace the flux ϕ by its expression in terms of Γ from Eq. (2.5) into Eq. (2.7),
leading to a direct relationship between the vacancy concentration at NESS and Γ.

2.3 Diffusion theory of systems under forced atomic re-
locations

2.3.1 Nomenclature and the Master Equation

For the total exchange frequencies, we use the notation:

Wn→ñ = WAV
n→ñ +WBV

n→ñ +WAB
n→ñ, (2.8)

where WAV
n→ñ = ωAV

n→ñ + ΓAV
n→ñ, WBV

n→ñ = ωBV
n→ñ + ΓBV

n→ñ and WAB
n→ñ = ΓAB

n→ñ. Note that, although
relocation frequencies do not depend on the configuration before and after the exchange, for
the sake of clarity, we choose to follow the notation of the thermal jump frequencies.

We start from a Master Equation expressing the fact that the probability distribution of
different configurations is controlled by the transition probabilities between two configurations:

d
dt
P = WP , (2.9)

where W is a matrix with components Wnñ = Wñ→n if n ̸= ñ and Wnn = −
∑

ñ ̸=n Wn→ñ.
P = (Pn) is a linear vector of probabilities of configurations (n).
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For now, the recombination reactions between SIA and V are introduced at the upper
scale, within the mean field rate theory model of the average PD concentrations (see Sec-
tion 2.2.4). These athermal events are not treated on the same foot as FAR because SIA and
V are considered to be well-separated at the end of the displacement cascade under dilute ap-
proximation [86]. In this case, the SIA-V recombination requires long-range diffusion, thereby
it is not incorporated in the microscopic Master Equation.

Below, we explain the method we use to determine the dynamical short range order (SRO)
parameters at NESS and the diffusion properties from the Master Equation.

2.3.2 Dynamical short range order

Starting from the thermal equilibrium state, the mix of thermal jumps and FAR leads to
NESS. The latter state is characterized by dynamical SRO parameters which depend on FAR
frequencies and thermal jump frequencies. We define them from the configurational proba-
bilities, deduced from a stationary condition applied to the Master Equation (Eq. (2.9)), also
called the global detailed balance condition:

∀n,
∑

ñ

Wñ→nPñ −Wn→ñPn = 0. (2.10)

The solution of Eq. (2.9) at NESS is noted P ness = (P ness
n ). The SRO parameter for configura-

tion n is defined as the ratio between the configurational probability P ness
n and the one of the

a reference configuration denoted P ness
0 .

2.3.3 Transport coefficients

The phenomenological transport coefficients (Lαβ) of the Onsager matrix are fundamental
parameters describing the diffusion properties of chemical species (α, β) at the macroscopic
scale. Flux of chemical species (Jα) is proportional to these coefficients:

Jα = −
∑
β

Lαβ
∇µβ

kBT
, (2.11)

with ∇µβ/kBT the established driving force imposing to the system a deviation from equilib-
rium. Starting from NESS, we apply a small gradient of chemical potential and compute the
resulting fluxes of atoms and vacancy. Here we extend the SCMF theory to jump mechanisms
not obeying the microscopic detailed balance. This theory was first proposed to study diffusion
process with atomic jumps following the principle of microscopic detailed balance [160]. By
following the nomenclature of Ref. [160], the configuration is defined by a vector n. The latter
consists in occupation numbers of all species on all sites i.e. {nA

1 ,nB
1 ,nV

1 ; nA
2 ,nB

2 ,nV
2 ; ...}, with

nα
i equal to one if the site i is occupied by species α and zero if not. The transition from

configuration n to ñ is realized by thermally activated jumps or FAR, with a total frequency
Wn→ñ. Within the standard SCMF theory in Ref. [160], Pn(t), the non-equilibrium distribution
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function of configuration n, is expressed as the product of the equilibrium probability P eq
n and

a non-equilibrium contribution. Here we choose the reference state to be NESS, and replace
P eq

n by the probability distribution function P ness
n :

Pn(t) = P ness
n × δPn(t). (2.12)

The Master Equation (see Eq. (2.9)) is written for a certain configuration n as

dPn(t)

dt
=
∑
ñ

[Wñ→nP
ness
ñ δPñ(t)−Wn→ñP

ness
n δPn(t)] . (2.13)

By applying the global detailed balance condition, i.e. Eq. (2.10), we obtain a reformulation of
the Master Equation:

dPn(t)

dt
=
∑
ñ

Wñ→nP
ness
ñ [δPñ(t)− δPn(t)] . (2.14)

Note that the standard SCMF theory relies on the microscopic detailed balance (Wñ→nP
ness
ñ =

Wn→ñP
ness
n ). In that case, it is equivalent to consider the transition probabilities entering

or exiting a given configuration. When the microscopic detailed balance is not satisfied the
transition frequencies to be retained are the entering configurations. The derivation from the
Master Equation (Eq. (2.14)) of the transport coefficients is similar to the standard SCMF
theory in Ref. [160,232].

Note that δPn(t) in Eq. (2.14) is a corrective term representing the modification of the
effective distribution function P ness

n due to the presence of an applied driving force. It is written
as

δPn(t) = exp

[
β

(
δΩ(t) +

∑
α,i

δµα
i (t)n

α
i − h(t)

)]
, (2.15)

where β = 1/kBT , δΩ is the normalization factor, δµα
i is the deviation from the stationary-state

chemical potential on site i of the chemical species α compared to the bulk atom, and h is the
time-dependent effective Hamiltonian restricted to the pair interaction written as

h(t) =
1

2

∑
α,γ,i ̸=j

ναγ
ij (t)nα

i n
γ
j , (2.16)

where ναβ
ij (t) is the time-dependent effective pair interactions. The latter can be determined by

solving the kinetic equations deduced from the Master Equation. Here, Eq. (2.15) is linearized
with respect to the terms βδµα

i and βh because we are close to NESS:

δPn(t) = 1 + βδΩ(t) + β
∑
α,i

δµα
i (t)n

α
i −

1

2
β
∑

α,γ,i ̸=j

ναγ
ij (t)nα

i n
γ
j .

Starting from the Master Equation Eq. (2.14), the time derivative of the ensemble average can
be given by

d
dt
⟨nα

i n
β
j · · · ⟩ = β

∑
n,ñ

nα
i n

β
j · · ·P ness

ñ Wñ→n

[∑
α,i

δµα
i (ñ

α
i − nα

i )−
1

2

∑
α,β,i ̸=j

ναβ
ij (t)

(
ñα
i ñ

β
j − nα

i n
β
j

)]
,

(2.17)
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where ñα
i is the occupation number of the configuration ñ. By denoting ⟨·⟩ the ensemble average

over the distribution function at NESS (i.e. P ness
n ), the derivative of the one-point average ⟨nα

i ⟩
can be given by

d
dt
⟨nα

i ⟩ = β
∑
s ̸=i

∑
γ

〈
ñα
s ñ

γ
iW

αγ
si

[
(δµαγ

s − δµαγ
i ) + 2ναγ

si +
1

2

∑
δ,k ̸=i ̸=s

(
ναδ
sk − ναδ

ik + νγδ
ik − νγδ

sk

)]〉
,

(2.18)

d
dt
⟨nα

i n
γ
j ⟩ = β

∑
s ̸=i

∑
δ

〈
ñα
s ñ

γ
j ñ

δ
iW

αδ
si

[(
δµαδ

s − δµαδ
i

)
+ 2ναδ

si +
1

2

∑
ϵ,k ̸=i ̸=s

(
ναϵ
sk − ναϵ

ik + νδϵ
ik − νδϵ

sk

)]〉

+ β
∑
s ̸=i

∑
δ

〈
ñα
i ñ

γ
s ñ

δ
jW

γδ
sj

[(
δµγδ

s − δµγδ
j

)
+ 2νγδ

sj +
1

2

∑
ϵ,k ̸=j ̸=s

(
νγϵ
sk − νγϵ

jk + νδϵ
jk − νδϵ

sk

)]〉

+ β

〈
ñα
j ñ

γ
iW

αγ
ji

[(
δµαγ

j − δµαγ
i

)
+ 2ναγ

ji +
1

2

∑
δ,k ̸=i ̸=j

(
ναδ
jk − ναδ

ik + νγδ
ik − νγδ

jk

)]〉
,

(2.19)

where δµαγ
i = δµα

i − δµγ
i . By applying the continuity equation to the kinetic equation of the

one-point average written as:
d
dt
⟨nα

i ⟩ = −
∑
s ̸=i

Jα
i→s, (2.20)

we can deduce the expression of the flux of chemical species. The fluxes of solute atom and
vacancy under first shell approximation are recognized to be:

JV
i→s = −β

〈
ñV
s ñ

A
i W

V A
si

[
∇⃗µV A · i⃗s+ 1

2

∑
k ̸=i ̸=s

nB
k

(
ν̂BV
ks − ν̂BV

ki

)]
+ ñV

s ñ
B
i W

V B
si

(
∇⃗µV B · i⃗s+ 2ν̂BV

is

)〉
,

(2.21)

JB
i→s = −β

〈
ñB
s ñ

A
i W

BA
si

[
∇⃗µBA · i⃗s+ 1

2

∑
k ̸=i ̸=s

nV
k

(
ν̂BV
sk − ν̂BV

ik

)]
+ ñB

s ñ
V
i W

BV
si

(
∇⃗µBV · i⃗s+ 2ν̂BV

si

)〉
,

(2.22)

where ν̂BV
ij = νBV

ij − νBA
ij − νAV

ij .

Note that under the first shell approximation, the effective interactions are restricted to the
pair B-V at 1-NN. The term ν̂BV

ij can be estimated from the stationary condition of the kinetic
equation of the two-point average

〈
nB
i n

V
j

〉
. As a result, ν̂BV

ij can be expressed as a function
of the chemical potential gradient. Therefore, the atomic fluxes of solute atom and vacancy
are also functions of ∇µV A and ∇µBA, allowing us to identify the transport coefficients. Their
expressions under first shell approximation are given in the following section (Eq. (2.25)–(2.28)).
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2.3.4 SCMF theory under first shell approximation

Here, we focus on the diffusion properties of a dilute binary model alloy A(B): a host
matrix of atoms A containing a single solute atom of species B and a single vacancy. The
crystallographic structure is chosen to be a fcc crystal. As explained in Section 2.2.2, we
consider the vacancy as the only type of PDs. Our purpose is to extend the SCMF theory to
the athermal FAR mechanisms. In order to derive analytical transport coefficients, we start
with a first shell approximation. This approximation consists in neglecting kinetic coupling and
thermodynamic interactions between B and V if the distance between both species is beyond
1-NN. FAR-a and FAR-d are restricted to exchanges between 1-NN sites only. In such dilute
alloy, there are five different atom-vacancy thermal exchange frequencies (ωi=0,1,2,3,4) which
we designate after the Lidiard’s nomenclature [194] (see Fig. 2.1), to which we add 4 FAR-a
frequencies (ΓAB

i=0,1,3,4) and 5 FAR-d frequencies (ΓAV
i=0,1,2,3,4 and ΓBV

2 ). The total B-V exchange
frequency is noted WBV

2 . The total A-V and A-B exchanges conserving the 1-NN distance
between B and V are respectively noted WAV

1 and WAB
1 . The total A-V and A-B exchanges

dissociating the B-V pair are respectively noted WAV
3 and WAB

3 . The total A-V and A-B
exchanges associating the B-V pair are respectively noted WAV

4 and WAB
4 , and all the other

A-V and A-B exchanges far from the solute atom B are respectively noted WAV
0 and WAB

0 .
Here we recall that:

WAV
i = ωi + ΓAV

i = ωi + Γad, for i = 0, 1, 3, 4;

WAB
i = ΓAB

i = Γaa, for i = 0, 1, 3, 4;

WBV
2 = ω2 + ΓBV

2 = ω2 + Γad. (2.23)

Figure 2.1: Illustration of all the possible transitions in dilute fcc alloys including 1-NN ex-
changes between atoms and between vacancy and atoms. Red hollow squares designate vacan-
cies V, red filled circles designate solute atoms B, grey filled or hollow circles designate solvent
atoms A.

Within the first shell approximation, two configurational probabilities are considered: P ness
1

for the configuration where B and V are located at 1-NN and P ness
0 for the dissociated config-

uration where B and V are beyond 1-NN. The analytical expression of the 1-NN-SRO is given
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by:

P ness
1

P ness
0

=
ω4 + Γad + Γaa

ω3 + Γad + Γaa

=
exp (Eb/kBT ) + (Γad + Γaa)/ω3

1 + (Γad + Γaa)/ω3

, (2.24)

where Eb is the B-V 1-NN binding energy which is deduced from the ratio of thermal frequencies,
with exp (Eb/kBT ) = ω4/ω3. Note that P ness

1 /P ness
0 is a SRO parameter revealing the binding

tendency of B and V at the 1-NN. As Γ increases, the SRO parameter decreases towards 1.
Note that the decrease in the above-threshold situation is larger than what is expected in the
sub-threshold situation, just because two relocation frequencies contribute to the decrease in
the above-threshold case.

The expressions of the phenomenological coefficients LBV, LVB, LVV and LBB in a dilute
binary fcc alloy are given by

LVB =− a20
4
Cp

BV

[
WBV

2 − ΛB
4 (Λ

V
3 + ΛV

4 )

Λ

]
, (2.25)

LBV =− a20
4
Cp

BV

[
WBV

2 − ΛV
4 (Λ

B
3 + ΛB

4 )

Λ

]
, (2.26)

LVV =
a20
4

{
Cm

V WAV
0 + Cp

BV

[
WBV

2 − ΛV
4 (Λ

V
3 + ΛV

4 )

Λ

]}
(2.27)

LBB =
a20
4

{
Cm

B WAB
0 + Cp

BV

[
WBV

2 − ΛB
4 (Λ

B
3 + ΛB

4 )

Λ

]}
(2.28)

where Λ = 7W3+2W1+2WBV
2 , Λα

3 = 3WAα
3 −2WAα

1 −WBV
2 and Λα

4 = 3WAα
4 P ness

0 /P ness
1 −

2WAα
1 −WBV

2 (for α = B, V), with Wi = WAV
i +WAB

i for i = 0, 1, 3, 4. Cp
BV is the concentration

of B-V pair at 1-NN distance and Cm
V (resp. Cm

B ) is the concentration of isolated V (resp. B).
These concentrations can be deduced from the total concentrations of B and V (resp. CB and
CV) by a low temperature expansion formalism [37–39]:

Cp
BV = C0

BC
0
VZ

ness

Cm
V = CV − Cp

BV
Cm

B = CB − Cp
BV,

(2.29)

with C0
B, C0

V to be obtained by solving the following system of equations:{
CB = C0

B + C0
BC

0
V (Zness − Z0)

CV = C0
V + C0

BC
0
V (Zness − Z0) ,

(2.30)

where Zness = 12P ness
1 /P ness

0 is the effective partition function at NESS and Z0 = 12.

Note that the term ΛV
m=3,4 (resp. ΛB

m=3,4) is related to the vacancy (resp. solute atom)
mobility since it contains all the vacancy (resp. solute atom) jump mechanisms including A-V
(resp. A-B) and B-V (resp. V-B) exchanges. At equilibrium, ΛV

3 = ΛV
4 and ΛB

3 = ΛB
4 due to

the microscopic detailed balance. Hence the two off-diagonal equilibrium coefficients LVB and
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LBV are equal, according to the Onsager reciprocal relations. In addition, LVV (resp. LBB) can
be separated into two parts: Cm

V WAV
0 (resp. Cm

B WAB
0 ) and the rest. The latter represents the

exchanges of the B-V pair at 1-NN distance while the former represents the hops of the isolated
V (resp. B).

In the case of sub-threshold irradiation for which there is no direct exchange between atoms
(i.e. Γaa = 0), the off-diagonal coefficients are equal and, from Eq. (2.25), (2.26) we get:

LBV = LVB = −a20C
p
BV

4

WBV
2

(
13WAV

3 − 2WAV
1

)
7WAV

3 + 2WAV
1 + 2WBV

2

. (2.31)

Although the microscopic detailed balance is broken for the individual exchange frequencies ω3

and Γad, it still holds for the sum of the latter frequencies, that is W3 = WAV
3 = ω3 + Γad (see

Eq. (2.24)).

By replacing the total frequencies by the corresponding thermally activated jump fre-
quencies, and replacing the dynamical SRO at NESS by the equilibrium SRO, the transport
coefficients turn out to be equivalent to the Onsager coefficients LBV of the five-frequency model
within the first shell approximation [233].

The variation of LBV with Γad depends on the full set values of the thermal-activated jump
frequencies. When Γad is dominant before all ωi: LBV ∼ −CBCVΓ

ad. Note that if 13ω3 > 2ω1

(LBV < 0), then LBV remains negative whatever the magnitude of the relocation frequencies.
Otherwise, a change of sign of LBV can be observed when Γad ≃ −(13ω3 − 2ω1)/11. Therefore,
when a solute atom is dragged by a vacancy, FAR-d may change the sign of the solute-vacancy
flux coupling and destroy the solute drag effect. In the opposite case, when LBV is negative,
FAR-d does not change the sign of the solute-vacancy flux coupling.

We consider now the case of above-threshold irradiation. Then FAR has two contributions:
FAR-a and FAR-d, with Γaa = Γ and Γad = γΓ. The off-diagonal terms LBV and LVB are not
equal and their difference ∆L = LVB − LBV is given by:

∆L =
3a20C

p
BV

4

(1− ω3/ω4)[ωa − (1− γ)Γ]ω4 Γ

(ωb + 11γΓ + 9Γ) [ω4 + (1 + γ)Γ]
, (2.32)

with

ωa = 2ω2 + 2ω1 − 3ω3,

ωb = 7ω3 + 2ω1 + 2ω2. (2.33)

Note that ∆L = 0 in the two extreme cases when thermal jumps (ω) are dominant (i.e.
Γ/ω → 0) or negligible (Γ/ω → ∞). The sign of ∆L is determined by the product (1 −
ω3/ω4)[ωa − (1 − γ)Γ]. If γ = 1, this product involves thermal jump frequencies only. The
first parenthesis is directly related to the equilibrium SRO parameter: (1 − ω3/ω4) is positive
if the vacancy and the solute atom attract each other and negative otherwise. The higher the
thermodynamic attraction, the smaller the ratio ω3/ω4, and the larger the difference ∆L.
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2.3.5 Extension of the KineCluE code

For a more precise calculation beyond the first shell approximation, we consider each
pair configuration where V and B are located at a distance lower than the kinetic radius
Rk. At distances larger than Rk, B and V are considered as isolated monomers. Therefore,
3 cluster contributions are included: monomer B, monomer V as well as B-V pair. Note
that the calculation under first shell approximation performed at Section 2.3.4 is a particular
situation where the kinetic radius is set equal to the 1-NN distance. The calculation of the
cluster transport coefficients is performed using the KineCluE code [167]. The latter accounts
for all the kinetic paths within a pair cluster defined by radius Rk. Note that the kinetic
radius can be set well beyond the 1-NN distance in KineCluE. This allows us to perform a
converged calculation of cluster transport coefficients including long-distance FAR as well as
long range kinetic correlations. In order to use NESS as reference state, a module is added to
the code which calculates the NESS probability distribution by solving Eq. (2.9). Besides, the
underlying principle of the microscopic detailed balance of the code is replaced by the global
detailed balance condition (Eq. (2.10)). Models 1, 2 and 3 presented in Section 2.2.2 have been
introduced into KineCluE. Note that the cluster radius Rc in Model 3 is set equal to Rk for
simplicity.

2.3.6 Comparison between KineCluE results and Monte Carlo sim-
ulations

As mentioned in the introduction (Section 2.1), as soon as one of the microscopic diffusion
mechanisms (WAV

n→ñ and WAB
n→ñ) does not obey the microscopic detailed balance, we cannot

use the Allnatt formulae [151,152] to extract the phenomenological transport coefficients from
atomistic kinetic Monte Carlo (AKMC) simulations. However, for a binary alloy with solute-
point defect interactions restricted to 1-NN pairwise interactions, we have shown in Section 2.3.4
that detailed balance is fulfilled in the case of sub-threshold irradiation. Therefore, in this
specific case, we may rely on the Allnatt formulae to obtain the Onsager matrix of the transport
coefficients. As for the thermodynamic properties, we may apply AKMC to study the dynamical
short range order characterizing a NESS from an average on the residential time, relying on
the ergodic principle.

We choose here a model alloy with highly attractive vacancy-solute interactions because it
emphasizes the effect of FAR on flux coupling. The migration barriers (in eV) are set to 0.95
for ω0 and ω3, 0.75 for ω1 and ω4, and 0.60 for ω2. The attempt frequency ν is chosen to be
1014 s−1. As for the model of FAR, we choose Model 1, with rm equal to the 1-NN distance r1.

The AKMC simulation box is a fcc crystal of 2048 sites. It contains one single solute atom
and one vacancy. We apply periodic boundary conditions and use a residence-time algorithm.
At each Monte Carlo step, we propose the whole set of the thermal jumps and FAR. We
select one exchange from the proposed mechanisms. After every exchange, we compute the
residence time increment. From the fluctuations of atomic positions, we compute the transport
coefficients. Note that the corresponding off-diagonal coefficients given by the AKMC method
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are by construction symmetric. As shown in Ref. [220, 221], they do not correspond to the
transport coefficients LBV and LVB whenever one of the diffusion mechanism does not obey the
detailed balance.

As for the KineCluE approach, the kinetic radius Rk of the cluster B-V is set to 4a0.

100 101 102 103 104 105 106
Γ [s 1]
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101

102

103

Pness1
Pness0

Sub-threshold

Above-threshold

ω0, 3 ω1, 4 ω2

Sub-threshold

Above-threshold

ω0, 3 ω1, 4 ω2

KineCluE
AKMC

Figure 2.2: First nearest neighbor (1-NN) short range order as a function of FAR frequency
Γ from KineCluE and AKMC simulations. Results are obtained for ω4 = 3.55 × 104s−1 and
ω3 = 1.07× 102s−1 at T = 400K. Model 1 is applied.

Fig. 2.2 shows the evolution of the dynamical 1-NN-SRO under sub- and above-threshold
FAR. We obtain an excellent agreement between KineCluE and AKMC simulations on the SRO
parameters. As expected, the dynamical SRO decreases with the relocation frequency with a
higher rate in the case of an above-threshold irradiation.

Fig. 2.3 shows the variation of the transport coefficients with the frequency of FAR-d in
the sub-threshold irradiation regime. Both KineCluE and AKMC methods give the same
transport coefficients because the microscopic detailed balance holds for the total transition
rates. However, when Γ is small compared with thermal jump frequencies, we observe a slight
discrepancy between the coefficients. Yet the size of the AKMC simulation box is comparable
with Rk. The discrepancy is due to the difference in the applied boundary conditions between
KineCluE and the AKMC method. In KineCluE, configurations of solute and vacancy located
at a distance larger than the kinetic radius are not included in the calculation, while the AKMC
method relies on periodic boundary conditions. In the latter, atoms or PDs exiting from the
simulation box enter back through another side and add a kinetic correlation contribution to
the transport coefficients.

In the case of an above-threshold irradiation, we observe in Fig. 2.4 a similar behaviour
of the diagonal transport coefficient LBB, whereas the single off-diagonal coefficient measured
in AKMC simulations does not correspond any more to the off-diagonal phenomenological
transport coefficients obtained by KineCluE.
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Figure 2.3: Solute atom diffusion coefficient and off-diagonal coefficients of transport matrix
as a function of the FAR-d frequency Γ from KineCluE (solid and dashed lines) and AKMC
(unfilled circles) simulations. Results are obtained for ω0,3 = 1.07× 102s−1, ω2 = 1.52× 105s−1

and ω1,4 = 3.55× 104s−1 at T = 400K. Model 1 is applied, with 1-NN FAR-d only.
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Figure 2.4: Solute atom diffusion coefficient and off-diagonal coefficients of transport matrix
as a function of the above-threshold relocation frequency Γ from KineCluE (solid and dashed
lines) and AKMC (unfilled circles) simulations. Results are obtained for ω0,3 = 1.07× 102s−1,
ω2 = 1.52 × 105s−1 and ω1,4 = 3.55 × 104s−1 at T = 400K. Model 1 is applied, with 1-NN
FAR-d and FAR-a.
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2.4 Diffusion in far-from-equilibrium systems: beyond
the linear response theory

The Onsager formulation of fluxes corresponds to a first-order Taylor expansion of the
atomic fluxes in an equilibrium state, where chemical potential gradients are zero. This formu-
lation yields a quantitative modeling of diffusion-controlled phenomena as long as the chemical
potential gradients are not too large. Irradiation is an external force leading to gradients of con-
centrations of PDs and athermal reactions such as FAR, both affecting the chemical potential
gradients. A higher-order expansion of fluxes could still be written as a linear combination of
chemical potential gradients, provided the corresponding L−coefficients depend on the chemical
potential gradients of a non-equilibrium reference state.

An external force inducing FAR exclusively, is a non-directional force. The incorporation
of this force into the SCMF theory, requires two modifications: an expansion of the fluxes about
a non-equilibrium state depending on FAR; and the account for the asymmetry of the PD-atom
exchanges, as they do not obey the microscopic detailed balance. The resulting L-coefficients
loose their symmetry and depend on the external force through the FAR frequencies. Hence,
we may say fluxes written in function of these L-coefficients are far-from-equilibrium fluxes.

In this section, we tackle the far from equilibrium effects of both FAR and a large gradient
of chemical potential on the kinetics of a simplified two-state model. Our developments rely
on a molecular motor model [222]. In this model, dynamic events do not vary with the local
environment. It mainly accounts for the asymmetry of jumps induced by a gradient of chemical
potential. We extend the model to local concentration dependent jumps, and apply it to
simplified atomic transport processes.

2.4.1 Two-state uni-dimensional model of vacancy-mediated atomic
jumps

We consider a fictive four-frequency model of vacancy-mediated atomic jumps in a dilute
binary alloy A(B) (cf. Fig. 2.5). Hops of vacancies and atoms are only possible along the axis
(Oz). Moreover, we restrict the atomic jumps to the ones conserving the 1-NN distance between
the vacancy and the solute atoms. Both thermally-activated vacancy jumps and FARs of solute
atoms are considered. As indicated in Fig. 2.5, their transition rates are denoted by −→ω1, ←−ω1,
−→ω2, and ←−ω2 for thermal jumps, and

−→
Γ1,
←−
Γ1,
−→
Γ2, and

←−
Γ2 for FARs. Therefore, only 1-NN solute-

vacancy pair configurations are involved: we denote by ‘1−’ the one with the vacancy being on
the left side of the solute atom, and by ‘1+’ the one with the vacancy being on the right side of
the solute atom. The distribution function is noted Pi(zV, zB, t) (i = 1−, 1+) where zV a0 and
zB a0 are respectively the positions of the vacancy and solute atom at time t. The dynamics of
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Figure 2.5: A schematic of the uni-dimensional atomic jumps along the axis (Oz). Only the
vacancy (blue cubic) and the solute atom (red sphere) are presented. The other lattice sites are
occupied by bulk atoms. Configuration 1− corresponds to the solute-vacancy pair configuration
with the vacancy located on the left side of the solute atom, and configuration 1+ corresponds
to the one with the vacancy located on the right side of the solute atom. The possible atomic
jumps starting from configurations 1− and 1+ are presented in (a). The transitions between
these two configurations are shown in (b).

the corresponding distribution function is governed by the following master equation,

∂P1−(zV, zB, t)

∂t
=− (−→ω1 +

−→ω2 +
←−
Γ1 +

←−
Γ2)P1−(zV, zB, t)

+←−ω1P1+(zV + 2, zB, t) +
−→
Γ1P1+(zV, zB − 2, t)

+←−ω2P1+(zV + 1, zB − 1, t) +
−→
Γ2P1+(zV + 1, zB − 1, t),

∂P1+(zV, zB, t)

∂t
=− (←−ω1 +

←−ω2 +
−→
Γ1 +

−→
Γ2)P1+(zV, zB, t)

+−→ω1P1−(zV − 2, zB, t) +
←−
Γ1P1−(zV, zB + 2, t)

+−→ω2P1−(zV − 1, zB + 1, t) +
←−
Γ2P1−(zV − 1, zB + 1, t). (2.34)

When no external force is applied, ←−ωi =
−→ωi = ωi and

←−
Γi =

−→
Γi = Γi. Whereas, in the presence

of external forces proportional to chemical potential gradients, ←−ωi ̸= −→ωi and
←−
Γi ̸=

−→
Γi . Under

applied chemical potential gradients of vacancies (V), solute (B) and bulk atoms (A) along the
(Oz)-direction, we write the transition rates as

−→ω1 = ω1 e
−2fV , ←−ω1 = ω1 e

+2fV , −→ω2 = ω2 e
−fV+fB , ←−ω2 = ω2 e

+fV−fB ,
−→
Γ1 = Γ1 e

−2fB ,
←−
Γ1 = Γ1 e

+2fB ,
−→
Γ2 = Γ2 e

−fB+fV ,
←−
Γ2 = Γ2 e

+fB−fV , (2.35)

where fα = a0 ez · (∇µα −∇µA)/(kBT ) with a0 the lattice parameter (i.e., 1-NN distance in
our case) and ez the unit vector along the axis (Oz).
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2.4.2 Description of the dynamics using generating functions

We investigate the long-time behaviors of the two-state diffusion model using generating
functions. Let us introduce

Fi(nV, nB, t) =
∑
zV

∑
zB

e−nVzV−nBzBPi(zV, zB, t), (2.36)

whose time evolution is deduced from the Master Equation

∂Fi

∂t
= MijFj, (2.37)

where M (nV, nB) is a 2-dimension matrix obtained from the master equation—Eq. (2.34), and
given by

M =

[
−(−→ω1 +

−→ω2 +
←−
Γ1 +

←−
Γ2)

←−ω1 e
+2nV +

−→
Γ1 e

−2nB + (←−ω2 +
−→
Γ2) e

+nV−nB

−→ω1 e
−2nV +

←−
Γ1 e

+2nB + (−→ω2 +
←−
Γ2) e

−nV+nB −(←−ω1 +
←−ω2 +

−→
Γ1 +

−→
Γ2).

]
(2.38)

By relying on the definition of the generating function Eq. (2.36), we write the following en-
semble average as a sum of generating functions

⟨ e−nVzV−nBzB⟩ =
∑
i

Fi(nV, nB, t), (2.39)

where ⟨·⟩ is the ensemble average over the distribution function Pi. When t→∞, one demon-
strates the following equivalent relation∑

i

Fi(nV, nB, t)
t→∞∼ eλ t, (2.40)

where λ is the largest eigenvalue of M , which contains all the steady-state diffusion properties
of the vacancy and solute atom [222].

From Eq. (2.40), we obtain that, for α ≡ V,B,

∂λ

∂nα

(nV, nB) =
1

t eλ t

∂ eλ t

∂ nα

= −1

t

∑
i zαFi(nV, nB, t)∑
i Fi(nV, nB, t)

. (2.41)

By definition of the generating function, the ensemble average of the position of species α at
time t is equal to

⟨zα(t)⟩ =
∑

i zαFi(0, 0, t)∑
i Fi(0, 0, t)

, (2.42)

and the average velocity of species α is given by

vα =
⟨zα(t)⟩ a0

t
= −a0

∂λ

∂nα

(0, 0). (2.43)

From Eq. (2.43), we deduce the average flux of species α

Jα =
vα
Ω

= −a0
Ω

∂λ

∂nα

(0, 0), (2.44)
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where Ω is the atomic volume.

The higher order derivatives of λ give access to higher moments of zα(t). For instance,
the second moments correspond to the second derivatives of λ. We first calculate the second
derivatives of eλ t

1

t eλ t

∂2 eλ t

∂nα ∂nβ

=
∂2λ

∂nα ∂nβ

+ t
∂λ

∂nα

∂λ

∂nβ

. (2.45)

Then, we relate the second-order partial derivatives of λ to the second moment of the generating
function

1

t eλ t

∂2 eλ t

∂nα ∂nβ

(0, 0) =
1

t

∑
i zαzβFi(0, 0, t)∑

i Fi(0, 0, t)
=
⟨zαzβ⟩

t
. (2.46)

From Eqs. (2.43), (2.45), and (2.46), we obtain the relation

∂2λ

∂nα ∂nβ

(0, 0) =
⟨zαzβ⟩ − ⟨zα⟩⟨zβ⟩

t
. (2.47)

Therefore, the second moments of λ yield the diffusion matrix associated with the position
fluctuations of the various species of the system

Dαβ =
a20
2

∂2λ

∂nα ∂nβ

(0, 0) (2.48)

2.4.3 Far-from-equilibrium kinetic properties of the two-state model

From the transition matrix of the two-state model as defined in Eq. (2.38)), we derive the
exact expressions of λ, and its first and second derivatives

λ(nV, nB) =
1

2
[−(ωtot + Γtot) + ω∆] , (2.49)

∂λ

∂nα

(nV, nB) = −
c1
ω∆

(2.50)

∂2λ

∂nα ∂nβ

(nV, nB) =
c2 ω

2
∆ − 2 c21
ω3
∆

, (2.51)

with

ω∆ =
√
(ωtot + Γtot)2 − 4 c0, (2.52)
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where ωtot =
←−ω1 +

−→ω1 +
←−ω2 +

−→ω2, Γtot =
←−
Γ1 +

−→
Γ1 +

←−
Γ2 +

−→
Γ2, and

c0 (nV, nB) = +←−ω1
←−
Γ1(1− e+2nV+2nB) +−→ω1

−→
Γ1(1− e−2nV−2nB)

+−→ω1(
←−ω2 +

−→
Γ2)(1− e−nV−nB) +←−ω1(

−→ω2 +
←−
Γ2)(1− e+nV+nB)

+
−→
Γ1(
−→ω2 +

←−
Γ2)(1− e−nV−nB) +

←−
Γ1(
←−ω2 +

−→
Γ2)(1− e+nV+nB), (2.53)

c1 (nV, nB) =− 2←−ω1

←−
Γ1 e

+2nV+2nB + 2−→ω1

−→
Γ1 e

−2nV−2nB

+−→ω1(
←−ω2 +

−→
Γ2) e

−nV−nB −←−ω1(
−→ω2 +

←−
Γ2) e

+nV+nB

+
−→
Γ1(
−→ω2 +

←−
Γ2) e

−nV−nB −
←−
Γ1(
←−ω2 +

−→
Γ2) e

+nV+nB , (2.54)

c2 (nV, nB) =− 4←−ω1

←−
Γ1 e

+2nV+2nB − 4−→ω1

−→
Γ1 e

−2nV−2nB

−−→ω1(
←−ω2 +

−→
Γ2) e

−nV−nB −←−ω1(
−→ω2 +

←−
Γ2) e

+nV+nB

−
−→
Γ1(
−→ω2 +

←−
Γ2) e

−nV−nB −
←−
Γ1(
←−ω2 +

−→
Γ2) e

+nV+nB . (2.55)

From Eq. (2.44) and Eq. (2.49), calculate the fluxes of vacancy V and solute B

JV = JB =
a0
Ω

c1(0, 0)

ωtot + Γtot
, (2.56)

and from Eq. (2.48), the corresponding diffusion coefficients

Dαβ =
c2(0, 0) (ωtot + Γtot)

2 − 2 [c1(0, 0)]
2

(ωtot + Γtot)3
. (2.57)

We formulate the kinetic response to the applied chemical potential gradients, by means of a
response matrix

Λαβ = kBT
∂Jα

∂∇µβA

, (2.58)

with µβA = µβ − µA. These coefficients around equilibrium, where fB and fV are set to zero,
the response matrix corresponds to the Onsager matrix

Lαβ = kBT
∂Jα

∂∇µβA

∣∣∣∣
fα=0, fβ=0

. (2.59)

From Eq. (2.35), the exact expressions of the Onsager coefficients write

LVV = LBB = LVB = LBV =
a20
Ω

4ω1Γ1 + (ω1 + Γ1)(ω2 + Γ2)

ω1 + ω2 + Γ1 + Γ2

. (2.60)

Note that LBV = LVB, as demonstrated by the Onsager theorem [217, 218]. From Eq. (2.57),
we may demonstrate that, if fB = 0 and fV = 0, the L−coefficients are directly related to the
fluctuation-related diffusion coefficients: Lαβ = Dαβ/Ω. These relationships are similar to the
Einstein-Allnatt relations [151]. Note that, the generalized SCMF theory including FAR [40]
leads to the same expressions of the transport coefficients as Eq. (2.60). The Onsager relation
is still valid in the presence of athermal mechanism (FAR) because in this particular atomic
jump process, the microscopic detailed balance is not broken by FAR.
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Away from equilibrium, Onsager and generalized Einstein-Allnatt relations are no longer
valid, i.e., ΛBV ̸= ΛVB and Λαβ ̸= Dαβ/Ω.

It is possible to apply this approach to a more complex diffusion model with more solute-
vacancy pair configurations beyond the 1-NN pair configuration. When the dimension of the
corresponding transition matrix M is larger than 4, it is, in general, impossible to give the
analytical expression of λ; thus, we need to perform a numerical calculation of λ and its partial
derivatives.

2.5 Diffusion properties in model alloys

Here we focus on the above-threshold irradiation case. We consider a model alloy with
relatively high migration barriers. Hence the alloy is potentially sensitive to FAR effects, just
because the thermal jump frequencies are small with respect to the relocation frequency deduced
from realistic dose rate. The energy interaction between B and V is restricted to a pairwise
1-NN interaction. The migration barriers (in eV) are set to 1.10 for ω0, ω1 and ω3, 0.90 for ω4,
and 0.80 for ω2. The attempt frequency ν is chosen to be equal to 5 × 1012 s−1. The three
relocation models indicated in the Section 2.2.2 are considered. We use KineCluE to calculate
the transport coefficients.

The parameter values that we set to estimate the vacancy concentration under irradiation
are shown in Tab. 2.2. Here the mean relocation range rm and the cut-off distance L for Models
2 and 3 are respectively set to 1-NN (

√
1/2 a0) and 5-NN (

√
5/2 a0) distances. The kinetic

radius is set to 2a0.

Table 2.2: List of the parameters needed to estimate the vacancy concentration and their set
values.

Parameter Value
Lattice parameter a0 0.35 nm
Vacancy formation enthalpy H f

V 1.65 eV
Vacancy formation entropy Sf

V 1.82 kB
Number of FARs per dpa nFAR 100
Sink strength k2 1015 m−2

2.5.1 Dynamical short range order

Fig. 2.6 shows the profile of dynamical SRO as a function of Γ for Models 1, 2 and 3.
The probability for B and V at 1-NN distance is reduced by FAR leading to an effective
B-V interaction smaller than the thermodynamic one. The decrease of 1-NN-SRO with the
relocation frequency in Model 1 starts when Γ is around 10−2 s−1. The decrease starts earlier in
Models 2 and 3: respectively around 10−4 s−1 and 10−3 s−1. However, the 1-NN-SRO of Model
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Figure 2.6: Steady-state short range order as a function of the relocation frequency in the
above-threshold radiation regime. Results are obtained by KineCluE for ω0,1,3 = 6.9×10−2s−1,
ω2 = 4.2 × 102s−1 and ω4 = 2.3 × 101s−1 at T = 400K. The mean relocation range rm is set
1-NN. The cut-off relocation distance and the kinetic radius of the cluster B-V are set to 3a0.

3 converges towards non-zero value at large Γ. In Model 1, there is no interaction between B
and V beyond the 1-NN distance, whatever the relocation frequency. However, in Models 2
and 3, we observe that the effective B-V interaction extends beyond the range of the thermal
one (i.e. beyond the 1-NN). The effective interaction remains up to 5-NN distance when Γ is
comparable to one of the thermal jump frequencies. This is due to the relatively long range of
FAR. In the extreme case when Γ is dominant before the thermal jump frequencies, the B-V
interactions are dropping in Models 1 and 2 whereas in Model 3 the 1-NN attraction is slightly
decreasing and the 2-, 3-, 4-, and 5-NN are slightly increasing. The binding tendency of a
vacancy around the solute atom is still high (P ness

1 /P ness
0 ≃ 102) due to the introduction of the

biased FAR-d with the 1-NN atoms of the solute atom in Model 3.

2.5.2 Tracer diffusion coefficient

In the dilute limit, the tracer diffusion coefficient of solute B is written as

D∗
B =

LBB

CB
. (2.61)

Phenomenological models of diffusion under irradiation systematically rely on the assumption
that the thermally activated diffusion and FAR take place in parallel [69, 144]. The tracer
diffusion coefficient is then written as a sum of two diffusion coefficients:

D∗
B,add = D∗

B,thC
ness
V /Ceq

V +D∗
B,far, (2.62)

where D∗
B,th is the thermal diffusion coefficient commonly deduced from diffusion experiments

or atomic based diffusion models and D∗
B,far is the diffusion coefficient of solute atom B resulting
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from FAR only. Note that both coefficients can be calculated by KineCluE. Unless one diffusion
mechanism is dominant over the other, we expect a non-additive contribution to the solute
tracer diffusion coefficient because of the kinetic correlations. In order to quantify the non-
additive contribution, we define the relative difference:

∆DB =
D∗

B,add −D∗
B

D∗
B

. (2.63)
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Figure 2.7: Solute atom diffusion coefficient as a function of the relocation frequency Γ in the
above-threshold radiation regime. Results are obtained by KineCluE for ω0,1,3 = 6.9×10−2s−1,
ω2 = 4.2× 102s−1 and ω4 = 2.3× 101s−1 at T = 400K. CB is set 0.1 at.%. The mean relocation
range rm is set 1-NN. The cut-off relocation distance and the kinetic radius of the cluster B-V
are set to 3a0. The insets (a) and (b) show the variations of correlation factor fB and the
relative difference ∆DB with the relocation frequency.

Fig 2.7 shows the variation of the solute diffusion coefficient with the relocation frequency.
We observe that the global tendencies of the diffusion coefficients obtained with the three
models are similar. However, the three curves do not have the same asymptote at large Γ. The
largest difference occurs when the correlation factor fB is increased by FAR. With Models 1
and 2, this factor tends to 1 when Γ is dominant over the thermal jump frequencies, meaning
that there are no kinetic correlations. However, in Model 3, the correlation factor tends to 0.46.
The remaining kinetic correlations are due to the thermodynamic bias of FAR-d. Besides, ∆DB
is high when Γ is in the range of the thermal jump frequencies because then, there is a strong
competition between the thermal mechanisms and FAR. In this example, ∆DB spans from
100 % to 300 % depending on the relocation model.
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2.5.3 Flux coupling

We characterize the flux coupling between solute B and vacancy V by computing the wind
factors [13,16,169]

δB→V =
LBV

LVV
(2.64)

and
δV→B =

LVB

LBB
. (2.65)

Both wind factors describe the B-V flux coupling related to two different situations. The wind
factor δB→V gives the number of solute atoms following a vacancy under the driving force ∇µV
and the wind factor δV→B indicates the number of vacancies dragged by a solute atom under
the driving force ∇µB. If the wind factors are positive, a drag of B by V (or vice versa) may
occur. As shown in Section 2.5.1, the interactions between the solute atom and the vacancy are
reduced or even destroyed by FAR. Since the drag effect is highly related to this interaction,
we study the effect of the relocation frequency Γ on the wind factors.
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Figure 2.8: Drag factors δB→V and δV→B as a function of the relocation frequency Γ in the
above-threshold radiation regime. Results are obtained by KineCluE for ω0,1,3 = 6.9×10−2s−1,
ω2 = 4.2× 102s−1 and ω4 = 2.3× 101s−1 at T = 400K. CB is set 0.1 at.%. The mean relocation
range rm is set 1-NN. The cut-off relocation distance and the kinetic radius of the cluster B-V
are set to 3a0. The dashed lines are eye-guides for δB→V = 0 or δV→B = 0.

Fig. 2.8 shows the variation of the wind factors with the relocation frequency. Whatever
the relocation models, δB→V and δV→B globally decrease with Γ. However, δV→B of Model 1
has a surprising non-monotonous behaviour: the drag effect is enhanced before being destroyed
by FAR. δB→V of Model 3 has also an atypical behaviour: it slightly increases and tends to
a non-zero value at large Γ, meaning that the solute drag and vacancy drag effects are not
totally destroyed. This is because the biased FAR-d maintains a flux coupling between B and
V. This persistent flux coupling at high radiation flux should be very sensitive to the details of
the relocation mechanism.
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2.6 Sensitivity study with respect to the model and alloy
parameters

FAR models depend on the values of the mean relocation range rm, the kinetic radius Rk
of the cluster B-V and the truncation distance. However, the latter parameter is not a physical
parameter. Since the relocation frequency exponentially decreases with the distance between
B and V (see Eq. (2.4)), the value of L in Eq. (2.4) does not affect the diffusion properties as
long as it is large enough. Therefore, we focus here on the sensitivity of the results to the other
two parameters: rm and Rk.

2.6.1 Kinetic radius
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Figure 2.9: Diffusion properties as functions of the relocation frequency Γ in the above-threshold
radiation regime. Results are obtained by KineCluE for ω0,1,3 = 6.9×10−2s−1, ω2 = 4.2×102s−1

and ω4 = 2.3× 101s−1 at T = 400K with three different kinetic radius Rk = 2a0, 2.3a0 and 3a0.
CB is set 0.05 at.%. Model 3 is used as the relocation model. The mean and cut-off relocation
distances are respectively set to (

√
2/2)a0 and 2a0.

In general, the results given by KineCluE code converge with the kinetic radius Rk [167].
However, because Rc = Rk in Model 3, the FAR-d models for a monomer vacancy and for a
vacancy within the B-V pair are different. In this case, the results obtained with Model 3 may
depend on the values of Rk. However, Fig. 2.9 shows that D∗

B, ∆DB and δB→V are not very
sensitive to the change of the kinetic radius. Although, the decrease rate of δV→B with Γ is
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slower with Rk = 3a0 than 2a0. This is because the vacancy performs biased FAR-d with the
1-NN atoms of the solute atom from longer distances.

2.6.2 Mean relocation range
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Figure 2.10: Diffusion properties as functions of the relocation frequency Γ in the above-
threshold radiation regime. Results are obtained by KineCluE for ω0,1,3 = 6.9 × 10−2s−1,
ω2 = 4.2 × 102s−1 and ω4 = 2.3 × 101s−1 at T = 400K with three different values of rm: 1-,
5-, and 10-NN. CB is set 0.1 at.%. The cut-off relocation distance and the kinetic radius of the
cluster B-V are set to 3a0.

Fig. 2.10 shows the effect of the mean relocation distance rm on the solute diffusion and flux
coupling. First we focus on Model 1. Since the solute mobility is enhanced when increasing the
relocation distance, the corresponding solute diffusion coefficient increases with rm. Besides,
according to the plot of ∆DB, the interaction between thermal jumps and FAR decreases with
rm. The thermally-activated jump distance and the thermal interaction between B and V are
both restricted to 1-NN. The larger the relocation distance, the smaller the B-V interaction.
Thus B and V are more likely to diffuse as monomers, a kinetic regime where the diffusion
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properties related to the thermal jumps and FAR become additive. As for the flux coupling,
the decreasing rate of δB→V with Γ increases with rm. Thus the solute drag effect is destroyed
more easily. Besides, the variation tendency of δV→B with Γ become qualitatively different when
rm > 1-NN. The vacancy drag effect is not enhanced when rm equals to 2- and 3-NN. This may
be due to the same reason mentioned before: B and V have many more paths to escape from
each other. As for the results obtained with Models 2 and 3, they have similar profiles as the
ones in Model 1.

2.6.3 Atomic mixing rate
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Figure 2.11: DB, and wind factors δB→V, δV→B as a function of relocation frequency Γ from
KineCluE simulations. Results are obtained for ω0,1,3 = 6.9 × 10−2s−1, ω2 = 4.2 × 102s−1 and
ω4 = 2.3× 101s−1 with different values of nFAR at T = 400K. CB is set 0.1 at.%.

Since the previous section has shown that the effects of FAR are roughly the same in terms
of the global tendency whatever the relocation model and the mean relocation distance, we
choose the simplest model, Model 1 with rm = r1. As stated in Section 2.2.3, the number of
relocations per Frenkel pair created (i.e. nFAR) should be alloy specific due to the thermal effect
on heat spike mixing. Fig. 2.11 shows the variation of the diffusion properties in function of
radiation dose rate with different values of nFAR. The effect of FAR on the flux coupling and
tracer diffusion occurs at a smaller dose rate when nFAR increases. Moreover, we observe that
∆DB decreases with nFAR. These results show the importance of nFAR in the prediction of a
critical dose rate when the effects of FAR on the flux coupling and tracer diffusion is paramount.
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2.6.4 FAR-d frequencies
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Figure 2.12: DB, and wind factors δB→V, δV→B as a function of relocation frequency Γ from
KineCluE simulations. Results are obtained for ω0,1,3 = 6.9 × 10−2s−1, ω2 = 4.2 × 102s−1 and
ω4 = 2.3× 101s−1 with different values of γ = Γad/Γaa at T = 400K. CB is set 0.1 at.%.

For the reason stated in Section 2.6.3, Model 1 with rm = r1 is chosen for the sake of
simplicity. Note that FAR-a and FAR-d are due to different phenomena in the displacement
cascade: FAR-a describes the recoil mixing due to PKA while FAR-d models the lattice site
change of PD during the quenching process. There is no guarantee that the frequencies of FAR-
a (Γaa) and FAR-d (Γad) are equal. Fig. 2.12 shows the plot of DB, δB→V and δV→B as a function
of relocation frequency Γaa = Γ with different ratios γ = Γad/Γaa. The global tendencies of the
above quantities are not affected by the variation of the ratio γ. Besides, the tracer diffusion
coefficient DB is not sensitive to the variation of the ratio γ. However, δB→V decreases with γ
while the variation of δV→B has the opposite tendency. For γ ̸= 1, FAR-a and FAR-d effects on
the solute atom and PD diffusion occurs at different dose rate. It respectively happens when
Γaa (i.e. Γ) and Γad (i.e. γΓ) are of the same order of magnitude compared with thermal jump
frequencies. In brief, the smaller the γ value, the larger the difference between the frequencies
for FAR-a and FAR-d, and the more important the strength of the flux coupling.

2.6.5 Thermal jump frequencies

The effects of FAR depend on the radiation dose rate and the intrinsic thermal jump
frequencies of the alloy. We use KineCluE to perform a sensitive study of the radiation kinetic

76



properties with respect to the thermal jump frequencies. Fig. 2.13 shows the variation of ∆DB
and the wind factors δB→V, δV→B with respect to Γ, for various values of ω4. The values of the
other thermal jump frequencies are fixed. Model 1, with rm = r1, is chosen for the following
discussion. The interactions between thermal jumps and FAR are emphasized in this case
because the hop distances are both 1-NN. The ratio ω4/ω3 directly affects the binding energy
Eb between solute atom and vacancy at 1-NN. We observe that ∆DB and wind factors increase
with the binding energy. Besides, the larger the binding energy, the larger the enhancement
of the wind factor δV→B by FAR. This can be explained by noting that the solute atom and
vacancy tend to be closer to each other with a larger binding energy. Therefore, the interaction
between FAR and thermally activated diffusion of solute atom is more important, leading to a
larger difference from what we would except with an additive model, i.e. Eq. (2.62). Moreover,
the binding tendency of the vacancy and the solute atom increases, causing an enhancement of
the wind factor δV. As well, ω1 and ω2 have a non-negligible effect on the profile of ∆DB and
wind factors in function of Γ. Here we set ω4 to its initial value 2.3 × 101s−1 and we perform
calculations with different values of ω1 and ω2. Fig. 2.14 shows that if ω2 is large compared to ω1

(more than 1 order of magnitude), ∆DB and δB→V increase with ω1 whereas the enhancement
of δV→B by FAR decreases with ω1. If the amplitudes of ω2 and ω1 are comparable (within 1
order of magnitude), the trends are opposite: ∆DB and δB→V decrease with ω1 whereas the
enhancement of δV→B by FAR increases with ω1. However, we observe that if the values of ω1

and ω2 are close (within 1 order of magnitude), the variations of ∆DB and wind factors with Γ
are not sensitive to ω1.
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Figure 2.13: ∆DB, and wind factors δB→V, δV→B as a function of relocation frequency Γ from
KineCluE simulations. Results are obtained for ω0,1,3 = 6.9 × 10−2s−1 and ω2 = 4.2 × 102s−1

with different values of ω4 at T = 400K. CB is set 0.1 at.%.
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Figure 2.14: ∆DB, and wind factors δB→V, δV→B as a function of relocation frequency Γ from
KineCluE simulations. Results are obtained for ω0,3 = 6.9 × 10−2s−1, ω2 = 4.2 × 102s−1 and
ω4 = 2.3× 101s−1 with different values of ω1 and ω2 at T = 400K. CB is set 0.1 at.%.

2.7 Summary and concluding remarks

Neutron or ion irradiation in metals generates displacement cascades. We present a sim-
plified model of this complex phenomenon by introducing FAR mechanisms, and an average
creation rate of PD uniform in time and space. To calculate the energetic and kinetic proper-
ties, we write a Master Equation for the evolution of the distribution function which includes
both the thermal jumps and FAR. We extend the SCMF theory to solve and compute the
SRO parameters and the phenomenological transport coefficients at the NESS reached under
irradiation. The main difficulty lies in the loss of the microscopic detailed balance when con-
sidering FAR mechanisms. Relying on Model 1 including FAR between 1-NN sites only and
a first shell approximation of the kinetic correlations, we derive analytical expressions of the
phenomenological transport coefficients. We demonstrate that FAR does not produce a simple
additive term to the transport coefficients. When the magnitude of the relocation frequency is
in the range of the thermal frequencies, FAR interacts with the thermal diffusion mechanism,
yielding non-symmetric off-diagonal transport coefficients and a solute tracer diffusion coeffi-
cient deviating from a direct sum of a thermal and FAR diffusion coefficients. This deviation
increases with the solute kinetic correlations. We use the automated code KineCluE to yield a
more systematic study of the effect of the range and magnitude of FAR on the kinetic proper-
ties, including a sensitivity study with respect to the alloy thermodynamics and the models of
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relocation and PD production.

Due to the lack of data on the detailed mechanisms of FAR and PD production, we
introduce Models 2 and 3 representing two extreme situations, expecting the real situation to
be in-between. In Model 2, we assume that FAR is a fully random process while in Model 3, we
introduce a thermodynamic bias of FAR-d with the 1-NN atoms of the solute atoms, in order to
reproduce the fact that the vacancy creation within a cascade is partially driven by the vacancy-
solute thermodynamic attraction. As a result, part of the vacancy-solute SRO remains which
in turns leads to a higher resistance of the vacancy-solute flux coupling to irradiation. Positive
solute-vacancy flux coupling is the result of strong kinetic correlations, which can be modified by
introducing FAR mechanisms. Our sensitivity study shows that the magnitude of the surviving
kinetic correlations strongly depends on the details of the biased FAR-d mechanism, while the
reduction of correlations and flux coupling due to the randomizing processes are less sensitive
to the details of the relocation events unless the distance of FAR is close to the thermodynamic
range. A persistent vacancy-solute flux coupling at low temperature and high radiation flux
may play an important role on the solute redistribution in irradiated materials. Therefore, the
mechanism of PD production with respect to the solute atom spatial distribution within the
displacement cascade should be analyzed more precisely.

Eventually, the effect of the interplay between thermal jumps and FAR on vacancy-solute
positive flux coupling is important when the solute-vacancy thermodynamic attraction is large,
the magnitude of the thermal jump frequencies compared with the relocation frequency and the
range of thermodynamic interactions is close to the relocation distances. As for the tracer diffu-
sion coefficients, their non-additivity property with respect to FAR and thermal jumps follows
the same trend as the flux coupling phenomena in systems featuring positive flux coupling but
may also arise in case of no positive flux coupling but strong correlated solute migration paths.
For instance, the additive expression of Eq. (2.62) reproduces correctly the diffusion coefficient
of Au in Al measured under irradiation [146]. This is because the vacancy-jump barrier in Al
is around 0.58 eV [234], hence the thermal jump frequencies are dominant over the relocation
frequencies under realistic experimental conditions. However, we expect a non-negligible effect
of FAR in Ni-based alloys because the vacancy-mediated migration barrier in pure Ni is high
(around 1.09 eV [234]).
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Analytical modeling of RIS:
application to Ni- and Fe-based alloys
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3.1 Introduction

As reviewed in Section 1.3.3, RIS is largely controlled by the kinetic coupling between fluxes
of PDs and atomic fluxes. In this chapter, we ignore the effect of the segregation thermodynamic
driving forces on RIS The sign of solute RIS, positive for solute enrichment and negative for
solute depletion, is directly related to the relative magnitude of solute-vacancy and solute-SIA
flux coupling [224]. In Chapter 2, we have shown that when the FAR frequency is close to
the thermal PD jump frequency, FAR may enhance or reduce the PD-solute flux coupling.
Calculation methods of flux coupling coefficients rely on the Onsager formulation of solute and
PDs fluxes within the framework of the thermodynamics of irreversible processes [217], where
these fluxes are expressed as linear combinations of chemical potential gradients. The constants
of proportionality are the phenomenological transport coefficients Lij.
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At steady state, one relates the solute local concentration gradients (∇CB) to the PD local
concentration gradient normalized by the PD local concentration (∇Cd/Cd) as

∇CB = α
∇Cd

Cd

. (3.1)

In this equation, α is the RIS factor, which is essentially a function of the phenomenological
coefficients Lij, the concentration derivatives of chemical potentials, and the solute and PD
local concentrations [19, 20]. When FAR is taken into account, the RIS factor also varies
with the FAR frequency. When the RIS factor is assumed to be uniform, the amplitude of
the solute concentration gradient is proportional to the normalized local PD concentration
gradients [30]. Therefore, the amplitude and shape of the stationary RIS profile depends not
only on the RIS factor, but also on the local concentration of PDs [19, 30]. The evolution of
the PD concentration fields depends on their mobility, on the radiation flux, on their mutual
interaction, and on their interaction with the microstructure and solutes. Among PD reactions,
let us mention the mutual recombination of vacancy and SIA, the clustering of PDs leading
to the formation of dislocation loops and voids, and the elimination of PDs at sinks. The
analysis of PD-microstructure interactions may be simplified by introducing an effective PD
sink strength governing the average PD elimination rate at all PD sinks.

Experimental studies investigating the dependence of RIS on the microstructure of the
irradiated sample and the irradiation conditions are reviewed in Section 1.3.3. However, it is
still very difficult to obtain an accurate estimation of the PD sink strength from the observa-
tion of the microstructure due to the limitations of resolution, even for nanoscale experimental
techniques. In order to obtain an accurate estimation of the sink strength, experimental mea-
surements need to be complemented with modeling [235]. Predicting the evolution of RIS in
materials of a nuclear power plant from a direct observation of neutron irradiated materials is
difficult, mainly because neutron irradiation activates the sample and the radiation exposure
times of several years needed to reach a few dpas are rarely available [11]. Radiation fluxes of
electrons and heavy ions can be high, which allows radiation doses to reach up to hundreds of
dpas in a much shorter time. However, most of the phenomena occurring under irradiation are
sensitive to the radiation flux. According to simple mean-field rate theories, the PD concentra-
tions obtained at a low radiation flux and given temperature are identical to the ones obtained
at a higher flux provided the temperature is increased by a specific amount, which suggests
that a difference in radiation flux can be compensated by a temperature shift [11, 183, 184].
This theory has been first applied to investigate the swelling phenomena, but it relies on the
assumption that solute atoms do not interfere with the kinetics of PDs and the overall PD
sink strength is fixed by the initial microstructure. According to this theory, there are three
kinetic domains: (i) at low temperature and high radiation flux, the recombination domain
in which the PD concentration is controlled by the PD recombination reaction, (ii) at inter-
mediate temperature and low radiation flux, the sink domain controlled by the elimination of
PDs at sinks, and (iii) at high temperature and low radiation flux, thermal domain in which
the PD concentration are close to thermal equilibrium concentrations [183]. Estimations of
the temperature shift required to compensate for a large radiation flux depend on the kinetic
domains and whether the system is at steady state or in a transient state. These temperature
shifts require the definition of an invariant quantity, either the bulk concentration of PDs at
steady state [11], or the amount of PDs absorbed by sinks [184]. Attempts have been made to
apply Mansur’s invariant PD-absorption relation to the study of solute RIS [11, 22, 23]. The
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estimation of the temperature shift was good enough to yield similar RIS profiles of Cr and Ni
in 304L stainless steels, respectively irradiated with neutrons and self ions [23]. Nevertheless,
in the same publication, the authors observe that the temperature shift predicted by Mansur’s
invariant relation is not accurate for alloys with a high dislocation density. Yet, a material with
an initial high dislocation density seems to be more appropriate to test Mansur’s invariant rela-
tion, because the high PD sink strength of a microstructure full of dislocations is less sensitive
to the radiation flux and dose, and can be considered to be fixed as assumed in Mansur’s theory.
A recent analytical model of steady-state RIS in the sink domain precisely predicts that solute
RIS does not depend on the radiation flux, whereas PD concentration does [30]. However, as
explained by the authors, we should not ignore that an increase of the dislocation density may
induce a transition from the recombination domain to the sink domain, hence, shift the system
from a radiation-flux dependence to another. Therefore, there is a need for a PD-RIS model
accounting for both the transitions between the various PDs kinetic domains, and the effect of
the irradiation conditions and the microstructure on the RIS profile within each PDs kinetic
domain.

We derive, in this chapter, an analytical RIS model, aimed at (i) taking into account the
complete PD reactions, solute-PD interactions, and FAR mechanisms; (ii) quantitatively study-
ing the effect of a variation of either the sink strength, the radiation flux, or the temperature
on the RIS properties; and (iii) helping addressing the flux-temperature effects in experiments
in each kinetic domain (recombination/sink/thermal).

In Section 3.2, we rely on a simple mean-field rate theory to deduce the variation of
the steady-state bulk concentration of PDs with respect to the radiation flux and the overall
effective sink strength. Then we introduce a discretization method of the PDs concentration
profile in order to obtain an analytical expression of the steady-state PDs concentration profile.
From the RIS profile of PDs, and the RIS factor relating the solute concentration gradient to
the PDs concentration gradient [188], we deduce an analytical expression of the solute steady-
state RIS profile. Then, we discuss the role of the PDs-microstructure interaction on the RIS
concentration profiles. In Section 3.3, we briefly present the Ni- and Fe-based alloys from a
perspective of their PD energy properties. In Section 3.4, we present a parametric study of the
stationary vacancy concentration, the solute diffusion coefficient, and the flux couplings in the
form of temperature-radiation flux–sink strength maps. Then, in Section 3.5, we extend this
parametric approach to the studies of RIS factors, and the vacancy and solute RIS profiles.
Finally, in Section 3.6, we present comparisons between the simulated and experimental RIS
profiles in dilute Ni-Ti and Fe-Ni alloys.

3.2 Modeling of RIS

In this section, we derive analytical solutions of the uni-dimension profiles of PD and
solute atom concentrations for planar PD sinks (representing e.g. grain boundaries, surfaces,
and planar interfaces) as presented in Fig. 1.5 (a).
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3.2.1 RIS of point defects

A sustained flux of PDs towards sinks leads to a steady-state depleted RIS profile of PDs
at sinks. We introduce an analytical calculation method of this profile. First, we compute
the bulk mean-field PD concentration from a mean-field rate theory. Then, we calculate the
steady-state profile from the flux of PDs. We relate both calculations through the boundary
conditions.

3.2.1.1 Steady-state RIS profile of PDs

We start from a modeling of PD diffusion towards sinks in terms of the divergences of PD
fluxes JV and JI.

∂CV

∂t
= ϕ−KRCVCI −∇ · JV, (3.2)

∂CI

∂t
= ϕ−KRCVCI −∇ · JI, (3.3)

where KR is a parameter characterizing the recombination rate, which is defined in Sec-
tion 1.2.2.1. To compute JV and JI, we assume ∇µV and ∇µI to be the dominant driving
force compared to ∇µA and ∇µB. Thus, we have

JV = −LVV∇µV = −DV∇CV, (3.4)
JI = −LII∇µI = −DI∇CI, (3.5)

where Dd = Ldd/Dd for d = V, I.

We consider the vacancy concentration profile along the direction (coordinate z) normal
to the surface of planar PD sinks. After Eqs. (3.2) and (3.3), the chemical rate equations for
SIAs and vacancies near the PD sinks under stationary-state conditions are given by

0 = ϕ−KRCVCI +DV
∂2CV

∂z2
, (3.6)

0 = ϕ−KRCVCI +DI
∂2CI

∂z2
, (3.7)

where CV(z) and CI(z) are respectively the concentrations of vacancies and SIAs at positions
along axis (Oz).

After Eq. (3.6) and (3.7), we have:

0 = DV
∂2CV

∂z2
−DI

∂2CI

∂z2

=
∂2

∂z2
(DVCV −DICI) .

(3.8)

Therefore, DVCV(z) −DICI(z) = K2z +K3, with K2 and K3 two integration constants to be
determined. By symmetry, the PD flux at the mid-point between two successive sinks (z = 0)
is zero, hence we have:

∂CV

∂z
(z = 0) = 0,

∂CI

∂z
(z = 0) = 0. (3.9)
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Figure 3.1: Schema of vacancy concentration profile divided into two parts.

According to Eq. (3.9), K2 = 0. Moreover, the PD concentrations at sink (z = h/2) are assumed
to be the equilibrium concentrations. Therefore, we have:

CV(z = h/2) = Ceq
V , CI(z = h/2) = Ceq

I . (3.10)

After Eq. (3.10), K3 = DVC
eq
V − DIC

eq
I . By assuming that DIC

eq
I ≪ DVC

eq
V , we have K3 ≃

DVC
eq
V . Accordingly, CV(z) and CI(z) are related by the following equation

DV [CV(z)− Ceq
V ] = DICI(z). (3.11)

Since CV and CI are not independent variables, in the following, we replace CI by its variation
with CV. By assuming that DI ≫ DV, Eq. (3.6) can be rewritten as:

∂2CV(z)

∂z2
= − ϕ

DV
+

4πrrec

Ω
CV(z) [CV(z)− Ceq

V ] . (3.12)

Note that, as far as we know, a general analytical solution of Eq. (3.12) does not exist [236–238]
Close to a planar sink and if we neglect the mutual recombination reactions between PDs (i.e.
rrec = 0), there is a simple analytical solution of the PD concentration profile [30]). As explained
in Ref. [30], the solution of Eq. (3.12) with rrec = 0, reads:

CV(z) = −a(z2 −
h2

4
) + Ceq

V , (3.13)

where a = ϕ/(2DV), h is the average spacing between planar sinks. and the position of the
origin of axis (0z) is chosen to be at the mid-point between two planar sinks (see Fig. 3.1).

Close to a PD sink, ignoring the recombination reactions should be a reasonable hypothesis,
because locally concentrations of PDs are very low. Hence their probability of recombination,
that is proportional to the square of the PD concentrations, should be very low as well. There-
fore, we split the PD concentration profiles in two regions: a bulk region far from sinks in which
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concentrations are uniform, and a sink region in which we account for the z-variation of the
PD concentration profile (cf. Fig. 3.1). The z coordinate of the bulk region ranges between 0
and l, whereas the z-coordinate of the sink region ranges from l to h/2, h being the distance
between the planar sinks. In the bulk region, CV(z) is uniform and equal to the steady-state
bulk concentration Cb

V (see Eq. (1.23)). From Eq. (3.13), we deduce the vacancy concentration
profile CV(z), with l ≤ z ≤ h/2. In order to ensure the continuity of the vacancy concentration
and its spatial derivative (i.e., the vacancy flux), we apply the boundary conditions

CV(l
−) = CV(l

+),
∂CV

∂z
(l−) =

∂CV

∂z
(l+) = 0. (3.14)

At PD sinks, the vacancy concentration corresponds to the equilibrium one:

CV(
h

2
) = Ceq

V . (3.15)

The solution is then given by

CV(z) =

{
Cb

V, 0 ≤ z < l;

−a (z − l)2 + Cb
V, l ≤ z ≤ h/2,

(3.16)

where the characteristic distance l is defined as

l =
h

2
−
√

Cexc
V
a

, (3.17)

where Cexc
V = Cb

V − Ceq
V corresponds to the vacancy excess concentration with respect to the

equilibrium one. Note that the characteristic distance l depends on the interplaner distance
h and Cexc

V . Both quantities are related to the microstructure. The interplanar distance h
determines the sink strength of the parallel planar sinks [119]:

k2 =
8

h2
. (3.18)

In case there is no other PDs sinks in the system, this sink strength fully determines the bulk
concentration of vacancy, Cb

V. Note that in case there are other sinks, in addition to the local
sink strength of the planar sinks, Cb

V depends on the overall sink strength of the other PDs sinks
of the microstructure. If l < 0, Eq. (3.16) is no longer appropriate, because the PDs planar
sinks are so close that it is not possible to introduce a bulk region with uniform concentrations.
In this case, we set l = 0, and the obtained PD concentration profile is given by Eq. (3.13).

3.2.1.2 Vacancy segregation amount

By analogy with the Gibbs formalism of interface excess quantities, we define the vacancy
concentration excess at sinks by the following integral:

SV =

∫ h/2

0

[CV(z)− CV(0)] dz. (3.19)
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We obtain from Eq. (3.16) and Eq. (3.19) that:

SV = −
(
Cb

V − Ceq
V
) 3

2

3
√
a

. (3.20)

As expected, SV is always negative. Note that the latter depends on the PD recombination
reactions. Therefore, as stated in Section 1.2.2.1, we cannot ignore the recombination reactions,
unless the recombination rate (R = KRC

b
VC

b
I ) is negligible with respect to the PD elimination

rate at sinks (K = k2DV(C
b
V − Ceq

V )).

In the sink domain, i.e., K ≫ R, we have

SV = −
√
2

3 (k2)3/2

(
ϕ

DV

)
. (3.21)

Therefore, SV is proportional to the ratio ϕ/DV, and it decreases with the sink strength k2.

In the recombination domain, i.e. R≫ K, we have

SV = −1

6

(
Ω

πrrec

)3/4(
ϕ

DV

)1/4

. (3.22)

Thus, SV is proportional to (ϕ/DV)
1
4 , and it is independent of k2.

3.2.2 RIS of solute atoms

As stated in Section 1.3.3, the concentration profiles of PDs and solute atoms are related
by the RIS factor α of the Wiedersich’s approach [188]. First, we investigate the variation of α
with the local concentrations. Then, we deduce the solute concentration profile from the RIS
factor and the PD concentration profile.

Note that in this study we neglect the equilibrium segregation of solutes resulting from
the interaction of solutes with the sink [239–241]. This thermodynamic property may strongly
modify the solute concentration over the first two or three atomic planes of the sink [239,
240]. Its amplitude and width (generally less than 1 nm) vary with the temperature, the
chemical nature of solute atoms and the nature of the sink. A quantitative investigation of this
phenomenon would require a detailed knowledge of the structure of the sink as well as the solute
segregation energies at different atomic sites near the sink. Nevertheless, the total amount of
solute RIS segregation as well as the average width of the RIS profiles spreading over a few
tens of nanometers [11] should not be much affected by the equilibrium segregation. Besides,
alloys with an ordering tendency may exhibit an oscillating segregation profile along specific
orientations [19]. Since we rely on a dilute alloy approximation, we cannot reproduce such RIS
behaviors, for instance, the formation of a W-shaped RIS profile in austenitic steels [242].
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3.2.2.1 RIS factors

After Eq. (1.71), the local RIS factor is a function of the phenomenological L-coefficients.
It depends on the coordinate z through the variation of the local concentration CB and CV
with z (see Eq. (1.71)). In order to analyze the variation of α with the local concentrations of
vacancies and solute atoms, we rewrite α by making explicit its variation with CV and CB. We
deduce from Eqs. (1.71), (1.73), and (3.11) that:

α(z) =
α1CB(z)

CV(z) + α2

, (3.23)

where

α1 =
αs (1− CB)dAIdAV

(1− CB)dAIdcBV + CBdBI + [(1− CB)dAIdcBI + CBdBIdcAI]DV/DI
, (3.24)

α2 =
[(1− CB)dAI + CBdBI]L

mono
BB − Ceq

V [(1− CB)dAId
c
BI + CBdBId

c
AI]DV/DI

(1− CB)dAIdcBV + CBdBI + [(1− CB)dAIdcBI + CBdBIdcAI]DV/DI
. (3.25)

Therefore, α decreases with CV(z). The RIS factors α1 and α2 are independent of the PDs
concentrations. Instead, they vary with CB(z), and so do the partial diffusion coefficients dij
and dcij. However, along an RIS profile, the relative variation of the solute concentration is a lot
smaller than that of the PD concentration. In Ref. [30], α is assumed to be uniform, depending
on the nominal composition of the concentrated Fe-Cr alloy only. This assumption leads to
a good agreement with direct Monte Carlo simulation of RIS. In dilute alloys, accounting for
a linear variation of α with local concentration, CB(z), as emphasized by Eq. (3.23), might
be a better approximation. In the following, we calculate the solute RIS profile using both
approximations of α. Then, we choose the most appropriate one by a comparison between
the solute RIS profiles obtained from these two approximations and the exact solution (see
Section 3.5.2.2).

3.2.2.2 RIS of solute atoms with α independent of local concentration CB

First, we consider the simplified case where the RIS factors α is supposed to be independent
of the local concentration of solute atoms. We determine α at the nominal composition CB.
After Eq. (3.16), we deduce the vacancy concentration gradient ∇CV, and from Eqs. (1.70) and
(3.23), we write the solute concentration gradient as follows.

∇CB(z) =

{
0, 0 ≤ z < l;

− 2α3 (z−l)

(z−l)2−b2
, l ≤ z ≤ h/2,

(3.26)

with b2 = (Cb
V +α2)/a and α3 = α1CB. We derive the concentration profile of the solute atoms

by integrating Eq. (1.70) and applying the following boundary conditions

CB(l
−) = CB(l

+), (3.27)∫ h/2

0

CB(z)dz =
h

2
CB, (3.28)
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in order to ensure the continuity of the solute profile CB(z) at z = l and the mass conservation
of the solute atoms, respectively. Hence, we obtain

CB(z) =

{
−2α3 ln(b) +K0, 0 ≤ z < l;

−α3 ln [b2 − (z − l)2] +K0, l ≤ z ≤ h/2,
(3.29)

where K0 is equal to

K0 =CB +
4α3l

h
[ln(b) + 1] +

4α3b

h
arctanh

[
(h/2)− l

b

]
− 2α3 + α3

[
(h/2)− l

h/2

]
ln

[
b2 −

(
h

2
− l

)2
]
. (3.30)

Similarly to Eq. (3.20), we define the total amount of solute atoms segregated at sink as
SB = (h/2)

(
CB − CB(0)

)
. It writes

SB =α3(h− 2l)− α3

(
h

2
− l

)
ln
{
b2 − [(h/2)− l]2

b2

}
− 2bα3 arctanh

[
(h/2)− l

b

]
. (3.31)

In case we ignore Ceq
V , we have (h/2)− l = Cb

V/a, and from Eq. (3.31), we obtain

SB =2α3

√
Cb

V
a
− α3

√
Cb

V
a

ln
(

α2

Cb
V + α2

)
− 2α3

√
Cb

V + α2

a
arctanh

[√
Cb

V
Cb

V + α2

]
. (3.32)

In case we may not ignore the FAR mechanism, the diffusion of isolated solute atoms,
Lmono

BB , and in turn α2 are non negligible. α2 increases with the FAR frequency, which in turn
decreases the RIS of solute atoms. In the extreme case, α2 ≫ Cb

V, and the amount of solute
RIS is zero (SB = 0).

On the contrary, if we ignore FAR, α2 ≪ Cb
V. Then, we may approximate SB as follows

SB = 2(1− ln 2)α3

√
Cb

V
a
. (3.33)

After Eqs.(3.20) and (3.33), we obtain a direct relationship between SB and SV

SB = 6(ln 2− 1)α3
SV

Cb
V
. (3.34)

We observe the amount solute RIS, SB, is directly related to α1 and SV/C
b
V. In the denomi-

nator, Cb
V is the signature of the backward diffusion opposing to the RIS solute concentration
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gradient. This backward diffusion is the reason why solute RIS (SB), unlike PD RIS (SV), is
not systematically governed by the ratio ϕ/DV.

In the sink domain (K ≫ R), we obtain from Eq. (1.24) and Eq. (3.33) that

SB = 2 (1− ln 2)α3

√
2

k2
. (3.35)

We recover the same expression published in Ref. [30]. The solute segregation amount is
independent of the ratio ϕ/DV, whereas it decreases with k2. Thus, at fixed k2, if we neglect
the variation of α3 with the dose rate ϕ, the solute segregation amount is independent of ϕ [30].
Besides, SB varies with temperature through the variation of α3 with temperature.

In the recombination domain (K ≪ R), we obtain from Eq. (1.25) and Eq. (3.33) that

SB = 2 (1− ln 2)α3

(
Ω

πrrec

)1/4(
ϕ

DV

)−1/4

. (3.36)

SB is governed by the ratio ϕ/DV as well as by the RIS factor α3. Moreover, it decreases with
the dose rate ϕ, whereas it is k2-independent.

3.2.2.3 RIS of solute atoms with α proportional to local concentration CB

Here we assume that α1 and α2 do not vary with CB(z). Thus α is proportional to CB(z)
so that:

∇CB

CB
= α1

∇CV

CV + α2

(3.37)

By integrating Eq. (3.37) and applying the boundary conditions as Eq. (3.27) and Eq. (3.28),
we obtain that:

CB(z) =

{
K1 b

−2α1 , 0 ≤ z < l;

K1 [b
2 − (z − l)2]

−α1 , l ≤ z ≤ h/2,
(3.38)

with
K1 =

h

2

CB

lb−2α1 +
∫ (h/2)−l

0
(b2 − z2)−α1 dz

. (3.39)

Note that there is no simple analytical expression of the integral I =
∫ (h/2)−l

0
(b2 − z2)

−α1 dz.
Nevertheless, we can calculate it from the hypergeometric function 2F1 [243] or by numerical
integration.

Therefore, the solute segregation amount is given by

SB =
h

2

(
CB −K1 b

−2α1
)
. (3.40)

In the extreme case where FAR is dominant, i.e., α2 ≫ Cb
V, we obtain for 0 < z < (h/2)−l:

z2 <

(
h

2
− l

)2

< Cb
V/a≪ b2. (3.41)
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In this case, I = [(h/2)− l]b−2α1 , K1 = CB b2α1 , and the amount of solute RIS is zero (SB = 0).

On the contrary, if we ignore FAR, we have α2 ≪ Cb
V. If we also neglect Ceq

V , b = (h/2)− l
and

I =

∫ b

0

(b2 − z2)−α1dz = b−2α1+1Iα1 , (3.42)

with
Iα1 =

∫ 1

0

(1− z2)−α1dz. (3.43)

Note that Iα1 is positive and only depends on the RIS factor α1. Moreover, it is larger than 1
if the solute RIS is positive (i.e., α1 > 0), and smaller than 1 in the opposite case. Then, after
Eqs. (3.39), (3.40), and (3.42), we may approximate SB as follows

SB =
h

2
CB

Iα1 − 1

Iα1 +
l

(h/2)−l

, (3.44)

=
h

2
CB

Iα1 − 1

Iα1 − 1 + h
2

√
a
Cb

V

. (3.45)

According to Eq. (3.44), SB is positive if α1 is positive and negative otherwise.

Besides, after Eqs.(3.20) and (3.45), we obtain a direct relationship between SB and SV

SB =
h

2
CB

Iα1 − 1

Iα1 − 1− h
2

Cb
V

SV

. (3.46)

Similarly to the situation where α is independent of CB, we observe that the amount of solute
RIS, SB, is directly related to α1 and SV/C

b
V.

In the sink domain (K ≫ R), we obtain from Eq. (1.24) and Eq. (3.45) that

SB =
h

2
CB

Iα1 − 1

Iα1 − 1 + h
2

√
k2

2

. (3.47)

The solute segregation amount is independent of the ratio ϕ/DV, whereas it decreases with k2.
Thus, at fixed k2, if we neglect the small variation of α1 with the dose rate ϕ, the solute RIS
amount is ϕ-independent. Besides, SB varies with temperature through the variation of α1 with
temperature. Note that the present expression of SB is not the same as the published one in
Ref. [30], because here we do not assume that the RIS factor is independent of solute and PD
concentrations.

In the recombination domain (K ≪ R), we obtain from Eq. (1.25) and Eq. (3.45) that

SB =
h

2
CB

Iα1 − 1

Iα1 − 1 + h
2

(
Ω

πrrec

)−1/4 (
ϕ
DV

)1/4 (3.48)

The solute RIS amount is governed by the ratio ϕ/DV as well as by the RIS factor α1. Besides,
it decreases with the dose rate ϕ.
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3.3 DFT energy database of Ni- and Fe-based alloys

We calculate of the phenomenological L-coefficients rely on DFT-computed atomic jump
frequencies. The computation of the RIS factors in Fe-based dilute alloys has shown that the
general flux coupling behavior is largely governed by the short-range interaction energy between
PDs and solute atoms [181]. Therefore, in order to understand the diffusion behaviors of the
solute atoms in Ni- and Fe-based alloys, it is interesting to review their energy database of
PD migration and PD-solute interaction. We present in this section selected results extracted
from ab initio studies of Ni-based [244] and Fe-based alloys [41, 181]. In these calculation,
the Vienna ab initio Simulation Package (VASP) [245–247] is applied. The VASP full-core
pseudopotentials developed within the projector augmented wave (PAW) method [248, 249]
are employed for all elements. The Perdew-Burke-Ernzerhof (PBE) parameterization [250] of
the generalized gradient approximation (GGA) is used to describe the exchange-correlation
function. Calculations are spin-polarized, and make use of the Vosko-Wilk-Nusair (VWN)
interpolation scheme of the correlation potential.

3.3.1 PDs in pure nickel and iron

Table 3.1: Thermodynamic and kinetic properties of PDs in pure Ni and Fe.

Material H f
V Sf

V νV Emig
V H f

I Sf
I νI Emig

I
Ni 1.65 eVa 1.82kB

a 4.48THza 1.09 eVa 4.07 eVa 12.7kB
a 4.48THza 0.14 eVa

Fe 2.18 eVb 4.1kB
b 6.00THzb 0.70 eVb 4.08 eVc 0.05kB

c 4.44THzc 0.34 eVc

a Ref. [193], b Ref. [181], c Ref. [41].
In this table, H f

d and Sf
d are formation enthalpy and entropy of defect d, respectively. νd and Emig

d

are attempt frequency and migration barrier of defect d, respectively. d ≡ V for vacancy and d ≡ I
for dumbbell-type SIA.

We summarize in Tab. 3.1 the DFT data related to the formation and migration of PDs in
pure Ni and Fe.

The formation energy differences between SIA and vacancy are up to 1.9 eV and 2.4 eV in
pure Ni and Fe, respectively. These significant differences justify that we neglect the equilibrium
concentration of SIAs in comparison to the one of vacancies in both dilute Ni- and Fe-based
alloys.

Moreover, the migration barrier of SIA is much lower than that of vacancy. The difference
is 0.95 eV and 0.36 eV in pure Ni and Fe, respectively. It is worth noting that the vacancy
migration barrier in Ni is higher than that in Fe with a difference of 0.39 eV, meaning that
vacancy diffusion in Ni is much slower than that in Fe. However, concerning the SIA diffusion,
the situation is opposite because the SIA migration barrier in Ni is 0.20 eV lower than that in
Fe.

For a complete investigation of PD diffusion properties in dilute Ni- and Fe-based alloys,
we need to look at properties of the solute-PD pairs. We present in the following sections a few
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selected DFR binding energies of solute-PD pairs in Fe and Ni.

3.3.2 Solute-PD interactions in dilute Fe-based alloys

Vacancy energy and migration with respect to the local solute environment in Fe-P, Fe-Mn,
Fe-Cr, Fe-Si, Fe-Ni and Fe-Cu alloys is investigated in Ref. [181] by DFT calculations. The
SIA properties in the same alloys are studied in Ref. [41]. Below, we choose to present the
solute-PD binding energies only.

3.3.2.1 Solute-vacancy pair

Table 3.2: Ab initio solute-vacancy binding energies (in eV) taken from Ref. [181]. Negative
energies stand for attractive interactions.

Distance Fe-P Fe-Si Fe-Cu Fe-Ni Fe-Mn Fe-Cr
1-NN -0.38 -0.30 -0.26 -0.10 -0.17 -0.06
2-NN -0.28 -0.12 -0.17 -0.21 -0.11 -0.01
3-NN 0.02 0.01 -0.03 -0.04 -0.03 0.00
4-NN -0.01 0.01 0.00 0.00 0.00 0.00
5-NN 0.01 -0.03 -0.10 -0.06 -0.07 -0.03
6-NN 0.03 0.01 -0.01 -0.03 -0.01 0.00

The binding energies between solute and vacancy of Tab. 3.2 are taken from Ref. [181]. In
this table, we order the solutes according to the magnitude of their interaction energy with the
vacancy—from the strongest binding (P) to the weakest (Cr). All solutes, except Cr, present
a strong binding character with vacancies. Besides, the attractive interaction is strong up to
the 2-NN distance, beyond which it drops to zero. Although in case of Cu, Mn, and Ni, there
exists a non-negligible attraction between solute and vacancy at the 5-NN distance. Therefore,
in Ref. [181], the kinetic paths of vacancy includes every vacancy jump sequences connecting
lattice sites up to the 10-NN of the solute atom, resulting in a network of in total 14 vacancy
jump frequencies.

3.3.2.2 Solute-SIA pair

We present in Tab. 3.3 and Fig. 3.2 all the solute-dumbbell binding energies taken from
Ref. [41]. In most cases, the binding energies fade already at the 2-NN shell. The striking
exception is the 5b configuration in Fe-P, with a binding energy equal to 0.21 eV. Standard
strain-relief discussion [20] suggest that undersized impurities (P, Si) should hold an attractive
interaction in M and 1b configurations (Fig. 3.2), and a repulsive one in 1a, whereas we expect
the opposite trends for oversized impurities (Cu, Ni, Mn, Cr). These trends are indeed true
for P, and to a certain extent for Cu, Ni, and Si, but does not apply to Cr and Mn, where the
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Figure 3.2: Solute-dumbbell equilibrium configurations of bcc Fe-based alloys as defined in
Ref. [41]. The red circles mark the solute position relative to the dumbbell defect: ‘X’ is the
solute nearest-neighbor shell with respect to the dumbbell position, and ‘α’ the symmetry class
within the same shell. The blue circles represent the atoms located outside the interaction
shells. ‘M’ marks the mixed-dumbbell configuration.

Table 3.3: Ab initio solute-dumbbell binding energies (in eV) of Fe-based alloys taken from
Ref. [181]. Negative energies stand for attractive interactions.

Configuration Fe-P Fe-Si Fe-Cu Fe-Ni Fe-Mn Fe-Cr
M +1.025 +0.555 +0.045 -0.002 -0.191 -0.380
1a -0.331 +0.107 -0.065 -0.173 +0.016 +0.188
1b +0.855 +0.305 +0.038 +0.274 +0.065 +0.065
2a -0.012 -0.006 -0.082 -0.064 -0.047 +0.099
2b –a +0.083 +0.081 +0.045 +0.027 +0.064
3a -0.05 -0.06 -0.06 -0.01 -0.03 +0.02
3b +0.04 +0.01 -0.03 -0.02 -0.00 +0.06
3c -0.12 +0.01 -0.03 -0.07 -0.04 +0.10
4a -0.01 -0.03 -0.04 -0.01 -0.02 +0.01
4b +0.04 +0.02 -0.05 +0.08 +0.03 +0.07
4c -0.02 -0.00 -0.03 +0.02 +0.01 +0.05
5a -0.031 -0.004 -0.023 -0.000 +0.011 +0.052
5b +0.212 +0.013 -0.033 +0.038 -0.024 +0.017

a Configuration 2b in Fe-P is unstable because it relaxes into a mixed dumbbell.

corresponding M and 1b configurations are stable. In fact many studies suggest that solute-
defect interaction energies cannot be explained based on size-related arguments only and are
mainly determined by electronic interactions [251, 252]. According to the binding energies in
M configuration, mixed Fe-Si, Fe-Ni, and Fe-Cu dumbbells are less stable than pure Fe-Fe
dumbbells, whereas P, Mn, and Cr are likely to form a mixed dumbbell interstitial in iron
alloys.
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In addition to the translation-rotation mechanism of dumbbell migration, Messina et al.
[41] also calculated the migration barriers of translation and on-site rotation mechanisms. They
are much higher than those of the translation-rotation mechanism. Therefore, we consider only
the latter mechanism for SIA diffusion.

3.3.2.3 Prospects on kinetics of Fe-based alloys from their PD properties

In the six binary iron alloys, the 1- and 2-NN solute-vacancy binding energies are negative,
i.e., the solute atoms are attracted by the vacancy. Moreover, Cr has a very weak interaction
with vacancies compared with the other solute atoms. Concerning the SIAs, their most stable
configuration is the dumbbell one. Regarding the dumbbell, we can classify the Fe-based dilute
alloys into two groups: the alloys containing stable (P, Mn, Cr) and non-stable (Si, Ni, Cu)
mixed dumbbells.

Note that the kinetic behaviors of the solute atoms forming non-stable mixed dumbbells
(Si, Ni, Cu) are predominantly controlled by the vacancy mechanism [41]. In addition, the
values of the 1-NN an 2-NN solute-vacancy binding energies in Fe-Si, Fe-Ni, and Fe-Cu alloys
are close. Therefore, the kinetic properties of the solute atoms are expected to be similar in
these alloys. Regarding the alloys with stable mixed dumbbells (Fe-P, Fe-Mn, Fe-Cr), solute-
PD binding energies show significant differences, suggesting that the kinetic properties can be
very different in Fe-P, Fe-Mn, and Fe-Cr alloys.

3.3.3 Solute-PD interaction in dilute Ni-based alloys

Ab initio study on both vacancy and SIA thermodynamic and kinetic properties in dilute
Ni-Ti and Ni-Cr alloys has recently been published in Ref. [244].

3.3.3.1 Solute-vacancy pair

Table 3.4: Ab initio solute-vacancy binding energies (in eV) of Ni-based alloys taken from
Ref. [244]. Negative energies stand for attractive interactions.

Alloy 1-NN 2-NN 3-NN 4-NN 5-NN 6-NN
Ni-Cr +0.04 −0.02 +0.03 −0.02 +0.004 +0.004
Ni-Ti −0.05 +0.06 +0.03 −0.07 +0.01 +0.001

The solute-vacancy binding energies versus nearest neighbour position obtained in Ref.
[244] are summarized in Tab. 3.4. Ti displays an attractive binding in the 1-NN. Hence, we
may expect a drag of Ti by vacancy. On the contrary, Cr displays a repulsive 1-NN interaction
with vacancies, indicating that a positive Cr-vacancy coupling is less likely in this case. The
interaction range of the vacancy-solute pairs is small. To this work, we consider this interaction
to be equal to zero beyond the 4-NN distance. Such set of interactions leads to a network of 9
different vacancy jump frequencies [244].
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3.3.3.2 Solute-SIA pair

Figure 3.3: Solute-dumbbell equilibrium configurations of fcc Ni-based alloys considered in
Ref. [244]. The red circles mark the solute position relative to the dumbbell defect: ‘X’ is
the solute nearest-neighbor shell with respect to the dumbbell position, and ‘α’ the symmetry
class within the same shell. The blue circles represent the atoms located outside the interaction
shells. ‘M’ marks the mixed-dumbbell configuration.

Table 3.5: Ab initio solute-dumbbell binding energies (in eV) of Fe-based alloys obtained in
Ref. [244]. Negative energies stand for attractive interactions.

Alloy M 1a, 1b
Ni-Cr −0.38 −0.10, −0.002
Ni-Ti +0.33 +0.07, −0.024

As presented in Tab. 3.5, Ti shows repulsive interactions with dumbbell in M and 1b
configurations, and attractive interaction in 1b configuration. Notably, the mixed dumbbell
Ni-Ti is strongly repulsive and the energy landscape of Ti around the dumbbell Ni-Ni is flat.
Therefore, SIA-mediated diffusion of this species is very unlikely. Regarding Cr, the mixed
dumbbell is stable as it is in bcc Fe, which indicates that the SIA-mediated migration plays an
important role in Cr diffusion in Ni. Interactions of solute-SIA at distances beyond 1-NN are
negligible, leading to a network of 12 different jump frequencies Ref. [244].

3.3.3.3 Remarks on the DFT energy database of Ni-based alloys

Compared with the solute-vacancy interactions in Fe-based alloys, both Cr and Ti solute
atoms have relatively small interactions with vacancies in Ni-based alloys. Therefore, solute
drag by vacancy is unlikely to happen in these alloys. Besides, the solute-SIA interactions
in the two alloys are very different: Ti shows a strong repulsive interaction with dumbbells,
whereas Cr displays a strong attractive interaction with them. Therefore, we expect the kinetic
properties to be very different in Ni-Ti and Ni-Cr alloys.
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3.4 Diffusion properties in Ni- and Fe-based alloys

As shown in Section 3.2, the RIS of PDs and solute atoms depends on the diffusion proper-
ties of the alloys, including the PD and solute diffusion coefficients, together with the solute-PD
flux coupling and bulk concentrations of vacancies. In this section, we compute the bulk va-
cancy concentration and the alloy diffusion properties of Ni- and Fe-based alloys, at different
irradiation conditions.

3.4.1 Bulk vacancy concentration
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Figure 3.4: Bulk vacancy concentration Cb
V in function of dose rate (in dpa/s) and inverse of

temperature (in K−1) in different Ni- and Fe-based alloys. The nominal solute concentration
CB is set to 1 at.% and the sink strength k2 is set to 5× 1014 m−2.

First, we investigate the variation of the bulk vacancy concentration Cb
V with temperature

T and dose rate ϕ. This concentration deduced from Eq. (1.23) is plotted in form of ϕ–T maps
in Fig. 3.4 for the dilute binary Ni- and Fe-based alloys at different T and ϕ.
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ϕ–T maps of Fig. 3.4 can be divided into three domains according to the dominant PD
reaction: the thermal domain when the bulk vacancy concentration is lower than twice the
equilibrium vacancy concentration, i.e., the effect of irradiation is negligible; the sink domain
for K > R; the recombination domain for R > K.

As expected from Eqs. (1.24) and (1.25), Cb
V decreases with T , whereas it increases with

ϕ. In both the recombination and sink domains, the level lines correspond to a fixed value of
ϕ/DV. In the thermal domain, the level lines are horizontal lines with slope equal to 0 because
Cb

V is close to the equilibrium vacancy concentration Ceq
V , and independent of ϕ.

We find that the main trends of Cb
V with T and ϕ are similar for the six investigated Fe-

based alloys, with only slight variations of the extent of the kinetic domains. This is also true
for the two Ni-based alloys. Therefore, the solute effect on the bulk concentration of vacancies is
negligible. Regarding the effect of the host matrix between Fe and Ni, the variation tendencies
with T and ϕ are similar, even though the sizes of the kinetic domains are different. The
recombination domain in Ni-based alloys is larger than the one in Fe-based alloys, while the
sink domain in Ni-based alloys is smaller than that in Fe-based alloys. These differences are
due to the large difference of the vacancy migration energies in Fe (≃ 0.7 eV) and Ni (≃ 1.1 eV).

3.4.2 Solute diffusion coefficient

Here, we compute the intrinsic diffusion coefficient of solute B, DB, which is equal to the
solute tracer diffusion coefficient in a dilute alloy. The ϕ–T maps of DB are presented in Fig. 3.5.
We set the nominal solute concentration, CB, to 1 at. %. Over most irradiation conditions of
interest, CB ≫ Cb

V. In this case, the solute diffusion coefficient varies linearly with the bulk
vacancy concentration (cf. Eq. (1.73)), provided the effect of FAR is negligible. As expected, we
recover the three kinetic domains of Cb

V, except in the low-temperature and high-flux domain
of Ni-based alloys where FAR may affect the solute diffusion properties.

DB increases with temperature in the recombination and thermal domains, though the
increasing rate is different in the two domains. In the sink domain, DB is nearly T -independent.
As for the effect of the radiation flux, DB increases with ϕ except in the thermal domain.
Similarly to Cb

V, there is a weak effect of solute on the main trends.

At low temperature (1000/T > 2.25) and high dose rate (ϕ > 10−5 dpa/s), DB in Ni-based
alloys is nearly temperature-independent because the FAR mechanism is dominant over the
thermal diffusion. However, this is not observed in Fe-based alloys under the same irradiation
conditions because the PD migration barriers are relatively low and the thermally-activated
diffusion mechanism is still significant compared with the FAR mechanism.

3.4.3 Flux coupling between atoms and point defects

We investigate the solute-PD flux couplings by computing the flux coupling factors δV
and δI, given respectively by Eq. (1.64) and Eq. (1.65), in Ni- and Fe-based alloys at different
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Figure 3.5: Solute diffusion coefficient DB in function of dose rate (in dpa/s) and temperature
(in 1000/K) of different Ni- and Fe-based alloys. The nominal solute composition CB is set to
1 at.% and the sink strength k2 is set to 5× 1014 m−2.

irradiation conditions.

3.4.3.1 Solute-vacancy flux coupling

The ϕ–T maps of normalized δV in Ni- and Fe-based alloys are plotted in Fig. 3.6. δV
indicates the direction of solute flux with respect to the vacancy one. At all investigated
temperatures, δV is negative in Ni-Ti and Fe-Cr alloys, while it is positive in Fe-P, Fe-Mn,
Fe-Si, Fe-Ni, and Fe-Cu alloys. As for Ni-Cr alloy, δV is positive when the temperature is below
about 525 K, and negative if not. Therefore, solute drag occurs in most of the investigated
alloys except in Ni-Ti and Fe-Cr systems.

The strength of solute drag in Fe-P, Fe-Mn, Fe-Si, Fe-Ni, Fe-Cu, and Ni-Cr alloys decreases
with temperature. In addition, the solute drag cancels out at T = 525K in Ni-Cr. Besides, a
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Figure 3.6: Solute-vacancy flux coupling factor δV normalized by its maximum absolute value
δmax

V in function of dose rate (in dpa/s) and temperature (in 1000/K) of different Ni- and Fe-
based alloys. The nominal solute composition CB is set to 1 at.% and the sink strength k2 is
set to 5× 1014 m−2.

change of dose rate does not affect the solute drag behaviors in Fe-based alloys. Whereas, in
Ni-based alloys, δV is reduced at large dose rate (> 10−4 dpa/s) and low temperature (< 450K).
In particular, in Ni-Cr alloy, the increase of dose rate changes the sign of δV and destroys the
solute drag, which is due to the increasing relative contribution of FAR with respect to thermal
solute diffusion.

3.4.3.2 Solute-SIA flux coupling

We present in Fig. 3.7 the ϕ–T maps of normalized δI in Ni- and Fe-based alloys.

The factor δI is systematically positive due to the fact that SIAs and atoms diffuse in
the same direction. δI is relatively small in Ni-Ti, Fe-Si, Fe-Ni, and Fe-Cu alloys because the
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Figure 3.7: Solute-SIA flux coupling factor δI normalized by its maximum absolute value δmax
I

in function of dose rate (in dpa/s) and temperature (in 1000/K) of different Ni- and Fe-based
alloys. The nominal solute composition CB is set to 1 at.% and the sink strength k2 is set to
5× 1014 m−2.

stability of the solute-SIA complex is low. In Fe-P and Fe-Mn alloys, δI is close to 1 for almost
all irradiation conditions, because mixed dumbbells Fe-P and Fe-Mn are very stable.

δI in Fe-Mn and Fe-Cr alloys decreases with temperature, while δI in Ni-Ti, Ni-Cr, Fe-Si,
Fe-Ni, and Fe-Cu alloys increases with temperature. There is no effect of dose rate in Ni- and
Fe-based alloys because the relative contribution of FAR with respect to SIA thermal diffusion
is much smaller than that of vacancy.
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3.5 RIS in Ni- and Fe-based alloys

Relying on the RIS models developed in Section 3.2, we calculate the RIS profiles of PDs
and solute atoms in the various Ni- and Fe-based alloys.

3.5.1 RIS of vacancies

First, we assess the accuracy of our analytical RIS model by proceeding to a comparison
between a numerical application of the analytical model and a full numerical integration of
the diffusion equation (Eq. (3.12)). Then, we investigate the shape of vacancy concentration
profile and the amount of vacancy segregation at different temperatures, dose rates, and sink
strengths.

3.5.1.1 Analytical RIS profiles of vacancies versus the reference solution

The concentration profiles of vacancies at different temperatures and sink strengths are
respectively given in Fig. 3.8. In order to assess the accuracy of the analytical approximations,
we plot as well the reference profile obtained from the exact solution of Eq. (3.12) computed
by a finite-difference method. We observe that the concentration profiles obtained from the
present analytical approach are in good agreement with the reference profiles.

In order to investigate the effect of PD recombination on the RIS profiles, we compare the
profiles given by two different methods: (i) the analytical approximation proposed in this work
(Eq. (3.16) for CV(z)), and (ii) the one proposed in Ref. [30] where the recombination rate is
set to zero.

When recombination reactions are neglected, the vacancy concentration along the RIS
profile is overestimated, especially at low temperatures (e.g., 600 K) and small sink strength
(e.g., 5×1013 m−2), because the ratio K/R. Therefore, the recombination effect is non-negligible.

3.5.1.2 Vacancy segregation profile

In order to investigate the shape of the vacancy RIS profile at different irradiation condi-
tions, we define an effective width leV of the vacancy concentration profile as follows

leV =

√√√√∫ h/2

0
[(h/2)− z]2 [CV(z)− CV(0)] dz∫ h/2

0
[CV(z)− CV(0)]dz

. (3.49)

This parameter represents the average distance between the vacancy and the PD sink. It is also
related to the width of the vacancy depleted zone near sinks [253]. In Fig. 3.9, we plot the maps
of leV as a function of the inverse of temperature (1000/T in K−1) and dose rate in dpa/s for
the various Ni- and Fe-based alloys. In the sink domain, the width of the vacancy profile does
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Figure 3.8: Concentration profiles of vacancies under irradiation. The solid lines are the refer-
ence solutions of Eq. (3.12). The dashed and dash-dotted lines are the analytical approximations
of Eq. (3.12), obtained from Eq. (3.16) (this work) and Eq. (3.13) (cf. Ref. [30]), respectively.
The shaded area indicates the interface. The results (a) and (b) are respectively given for
T =600 K and 750 K, with ϕ = 10−4 dpa/s and k2 = 5×1013 m−2 (i.e. h = 400 nm). The results
(c) and (d) are respectively given for k2 = 5× 1014 m−2 and 5× 1015 m−2, with ϕ = 10−6 dpa/s
and T =500 K.

not vary with the irradiation conditions. According to the analytical solution of Eq. (3.49), leV
increases with h. Therefore, the smaller the sink density, the larger the distance between sinks,
and the wider the vacancy depleted zone. In the recombination domain, leV decreases with dose
rate, while it increases with temperature.

3.5.1.3 The amount of vacancy segregation SV

Here we apply Eq. (3.20) to the calculation of the vacancy segregation amount in specific
Ni- and Fe-based alloys. We investigate the effects of temperature, dose rate and sink strength
on vacancy segregation. Note that, after Eq. (3.21) and Eq. (3.22), log |SV| is given by:

log |SV| =

{
logϕ− logDV − 3

2
log k2 +K2, K ≫ R;

1
4
logϕ− 1

4
logDV +K3, K ≪ R,

(3.50)
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Figure 3.9: The effective width of RIS profiles of vacancies in function of dose rate (in dpa/s)
and temperature (in K−1) of various dilute binary Ni- and Fe-based alloys. The nominal solute
composition CB is set to 1 at.% and the sink strength k2 is set to 5×1014 m−2. The corresponding
distance between planar sinks h is 126 nm.

with K2 = log
(√

2/3
)

and K3 = log
[
(Ω/πrrec)

3/4 /6
]
.

Fig. 3.10 shows the maps of log |SV| in function of the inverse of temperature (1000/T in
K−1) and dose rate in dpa/s. The maps are divided into two domains corresponding to the
two limit cases of Eq. (3.50): the first one is dominated by the PD recombination reactions
(K < R), and the second one is dominated by the PD elimination at sinks (K > R). log |SV|
increases linearly with logϕ and 1/T . However, the slopes are different in the two domains.

Fig. 3.11 shows temperature-sink strength maps of the segregation amount of vacancies
(log |SV|). These maps are also divided into two domains, corresponding to the PD recombi-
nation (K < R) and PD elimination at sinks (K > R), respectively. log |SV| decreases linearly
with log k2 in the sink domain, whereas it is nearly k2-independent in the recombination domain.
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Figure 3.10: Vacancy segregation amount SV in function of dose rate (in dpa/s) and temperature
(in K−1) of different Ni- and Fe-based alloys. The nominal solute composition CB is set to
1.0 at.% and the sink strength k2 is set to 1014 m−2.

The variations of SV with ϕ and k2 are similar in the various Ni- and Fe-based alloys,
whereas the variations with 1000/T are slightly different because the vacancy diffusion coeffi-
cient DV is alloy-specific. Moreover, the absolute value of the vacancy segregation amount is
more important in Ni-based alloys than in Fe-based alloys at the same irradiation conditions
and microstructures. Note that in Section 4.5.4, we show that the solute effects on the PD RIS
give rise to the biased PD absorption at sinks.

3.5.2 RIS of solute atoms

We calculate the L-coefficients for the various Ni- and Fe-based alloys and deduce the RIS
factors α1 and α2 from these coefficients. From the solute concentration variation of α1 and
α2, we choose the appropriate analytical RIS models to calculate the solute RIS profiles of the
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Figure 3.11: Vacancy segregation amount SV in function of the sink strength (in m−2) and
temperature (in K−1) of Ni- and Fe-based alloys. The nominal solute composition CB is set to
1.0 at.% and the dose rate ϕ is set to 2× 10−4 dpa/s.

various alloys.

3.5.2.1 Calculation of α1 and α2 in Ni- and Fe-based alloys

First, we consider the RIS factor α1, which is directly related to the flux couplings after
Eq. (3.24). We show in Fig. 3.12 the maps of the RIS factor α1 in function of temperature and
dose rate.

The sign of α1 indicates the overall segregation tendency of the solute atoms, resulting
from both V and SIA fluxes. Whatever the irradiation conditions, α1 is positive in Ni-Cr, Fe-P,
Fe-Mn, Fe-Si, Fe-Ni, and Fe-Cu alloys, indicating an enrichment of the solute atoms in these
systems. Whereas, α1 is negative in Ni-Ti alloy, leading to a solute depletion. As for the Fe-Cr
alloy, the sign of the RIS factor changes around 530 K. At lower temperatures, an enrichment
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Figure 3.12: RIS factor α1 normalized by its maximum in absolute value Max(|α1|) in function
of dose rate (in dpa/s) and temperature (in K−1) in different Ni- and Fe-based alloys. The solid
line in Fe-Cr system is an eye guide indicating α1 = 0. The nominal solute composition CB is
set to 1 at.% and the sink strength k2 is set to 5× 1014 m−2.

of Cr is predicted, while at higher temperatures, a depletion of Cr is expected.

The variation of α1 with temperature in Fe-Si, Fe-Ni and Fe-Cu is similar. The value of α1

decreases with temperature because of the drop of vacancy-solute interaction [181]. Therefore,
the enrichment tendency is reduced when temperature is increased. In Fe-P, Fe-Mn, and Fe-
Cr alloys, the variation of α1 with temperature is quite different. α1 in Fe-P increases with
temperature, increasing the enrichment in P at sinks. As for the Fe-Mn alloy, |α1| increases up
to around 650 K. The binding of the Fe-Mn dumbbell is lower than that of the Fe-P dumbbell.
As a consequence, |α1| decreases after 650 K due to a reduction of the Fe-Mn dumbbell stability.
Regarding the Fe-Cr alloy, we observe a change of sign of α1 around 530 K. In Ni-Ti alloy, α1

remains negative and decreases with temperature, meaning that the depletion tendency of Ti
increases with temperature. As for Ni-Cr alloy, α1 is positive and decreases with temperature,
which is similar to Fe-Si, Fe-Ni, and Fe-Cu alloys.
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Figure 3.13: The relative FAR contribution γ = |α2|/Cb
V in function of dose rate (in dpa/s) and

temperature (in K−1) in different Ni- and Fe-based alloys. The nominal solute composition CB
is set to 1 at.% and the sink strength k2 is set to 5× 1014 m−2.

The factor α1 in Fe-based alloys is ϕ-independent at the considered irradiation conditions.
However, this is not the case in Ni-based alloys. When the temperature is lower than about
600 K, α1 decreases with dose rate. In the extreme case when T = 300K and ϕ = 10−2 dpa/s,
α1 in Ni-based alloys is close to 0 because the flux coupling is destroyed by FAR. Above 600 K
or at low dose rate (less than about 10−5 dpa/s), there is no FAR effects on the RIS factor α1.
Note that even though FAR may reduce α1 in Ni-based alloys, it does not qualitatively change
the segregation tendency (i.e. the sign of α1 remains unchanged).

In addition to α1, the RIS amount depends also on the RIS factor α2, which is directly
related to the FAR mechanism (i.e. Lmono

BB ). As stated in Section 3.2.2.2, the ratio γ = α2/C
b
V

indicates how important the FAR effect on the RIS amount of solute atoms. If γ ≫ 1, SB is
equal to 0. We plot in Fig. 3.13 the ϕ–T maps of |γ| = |α2|/Cb

V. Dashed lines represent level
lines of γ. We observe that over most flux-temperature conditions, γ is smaller than 0.1. γ is
close to or larger than 1 only when ϕ is large and T is low. The results show that γ decreases
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Figure 3.14: The relative FAR contribution γ = |α2|/Cb
V in function of sink strength (in m−2)

and temperature (in K−1) in different Ni- and Fe-based alloys. The nominal solute composition
CB is set to 1 at.% and ϕ is set to 2× 10−4 dpa/s.

with temperature, and at high temperatures, it becomes negative. The domain where γ < 0
coincides with the thermal regime domain of Fig. 3.4, meaning CV ≃ Ceq

V . Moreover, γ increases
with the dose rate.

We observe that over most irradiation conditions, γ is smaller than 0.1 in Fe-based alloys.
However, in Ni-based alloys, the value of γ is larger than that in Fe-based alloys. At large dose
rates and low temperatures, γ is close to or larger than 1 in Ni-based alloys. Therefore, the
FAR effect on the RIS of solute atoms in Ni-based alloys should be more important than that
in Fe-based alloys.

In order to highlight the effect of the sink strength on γ, we plot in Fig. 3.14 the k2-T maps
of |γ|. γ increases with k2. Hence, the FAR effect on RIS should be significant at large values
of k2.
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Note that the variation of γ with T , ϕ and k2 is very alloy-specific. For instance, in Fe-
based alloys, at the same values of T , ϕ and k2, γ is relatively high in Fe-Ni and Fe-Cr alloys
whereas it is small in Fe-P and Fe-Mn alloys. The values of γ in Fe-Si and Fe-Cu are between
them. Therefore, the solute segregation in Fe-P and Fe-Mn alloys is more resistant to the FAR
effect than that in the other four Fe-based alloys.

3.5.2.2 Comparison between analytical results and reference solutions
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Figure 3.15: The solute RIS profiles deduced from the analytical calculations in several dilute
Ni- and Fe-based alloys using Eq. (3.29) (dashed lines) and Eq. (3.38) (dash-dotted lines). The
profiles obtained by the exact solution of Eq. (1.70) are plotted as reference. The nominal solute
composition CB is set to 1 at.% and the sink strength k2 is set to 1015 m−2.

As stated in Section 3.2.2.1, different assumptions are made with respect to the solute
concentration dependence of α. In Approximation 1, the factor α is assumed to be independent
of CB. In Approximation 2, α1 and α2 are assumed to be independent of CB so that α is
proportional to CB. In order to investigate which assumption is more appropriate to calculate
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the solute RIS, we compare the RIS profiles given by the analytical model (Eq. (3.29) and
Eq. (3.38)) and the exact solution of Eq. (1.70) by numerical integration. The variation of
α with CB is systematically accounted for in the exact solution. The solute RIS profiles at
different temperatures are plotted in Fig. 3.15.

In Approximation 2, we have a good agreement between the analytical profiles and the
reference results in the various Ni- and Fe-based alloys at every temperature. In Ni-Cr, Fe-
P, and Fe-Mn alloys, we observe slightly different profile shapes between the analytical and
reference results at 550 and 700 K. However, we systematically obtain a very good agreement
on the solute bulk concentration and the solute segregation amount.

In Approximation 1, in Fe-Si, Fe-Ni, Fe-Cu, and Fe-Cr alloys, the analytical profiles are
in relatively good agreement with the reference profiles. However, in Ni-Ti, Ni-Cr, Fe-P, and
Fe-Mn alloys, the shape of the analytical profiles are quite different from the reference solutions.
Especially in the Ni-Ti alloy, the analytical profile is negative near the PD sink. The tendency
of the depletion of Ti solute atom is so important that CB tends to zero near the sink, and
so does α. Therefore, the magnitude of α at sink should be much smaller than that in the
bulk area. However, in Approximation 1, α is supposed to be constant. Thus, the depletion
tendency near sink is overestimated, leading to a negative profile.

To conclude, compared with the analytical profiles obtained in Approximation 1, the ones
obtained in Approximation 2 are in better agreement with the reference solutions. In the
following, we investigate the solute RIS profile by relying on approximation 2: α is proportional
to CB, and α1 and α2 are independent of CB.

3.5.2.3 Solute segregation profile

As for the vacancy concentration profile, we introduce an effective width, leB, of the concen-
tration profile of solute atoms in order to characterize the shape of the solute RIS profile. Its
definition is similar to that of the vacancies (Eq. (3.49)), though letter V is replaced by letter
B. Fig. 3.16 shows the ϕ–T maps of leB.

leB is large and almost uniform in the thermal domain. In the recombination domain, leB
decreases with dose rate and increases with temperature. These trends are very similar to the
ones of leV. As a result, we expect the RIS profiles of vacancies and solute atoms to have almost
the same width in the thermal and recombination-dominated domains. Instead, in the sink
domain, the larger the solute RIS amount, SB, the smaller the width of the RIS profile, leB.
Moreover, in this domain, leB is smaller than leV, especially in Ni-Cr, Fe-P, and Fe-Mn alloys,
where the tendency of positive RIS is significant.

Note that the width of the solute RIS profile in the Ni-Ti alloy is the largest among the
various alloys. This is because the negative RIS of the solute Ti is so important that the solute
concentration at sinks is very close to zero. In this case, the decrease of Ti concentration near
sinks is intrinsically limited since the solute concentration cannot be negative. To compensate
this limitation, the RIS profile gets wider.
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Figure 3.16: The effective width of RIS profiles of solute atoms in function of dose rate (in dpa/s)
and temperature (in K−1) of various dilute binary Ni- and Fe-based alloys. The nominal solute
composition CB is set to 1.0 at.%. The distance between planar sinks h is set to 126 nm, leading
to a sink strength k2 = 5× 1014 m−2.

3.5.2.4 Solute segregation amount in Ni- and Fe-based alloys

We calculate the solute segregation amount SB at different temperatures T , dose rates ϕ,
and sink strengths k2 in the various Ni- and Fe-based alloys. SB of Ni-Cr, Fe-P, and Fe-Mn
alloys are deduced from Eq. (3.31). SB of Ni-Ti, Fe-Cr, Fe-Si, Fe-Ni, and Fe-Cu alloys are
obtained from Eq. (3.40).

First, we investigate the effect of temperature T and dose rate ϕ on the segregation amount
of solute atoms, with a fixed sink strength k2 set to 1014 m−2. The corresponding ϕ–T maps
are presented in Fig. 3.17. As expected, we observe that SB is great in the sink domain, and
relatively small in the recombination and thermal domains.

The variations of SB with T and ϕ in the various alloys are similar. As expected, SB is

113



10−12 10−10 10−8 10−6 10−4 10−2
1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75
Ni-Ti SmaxB = 0.438 nm1000/T [K−1]

[dpa/s]

K=
R

C eq
V =C excV

Recomb nat on 
doma n

S nk doma n

Thermal doma n
10−12 10−10 10−8 10−6 10−4 10−2

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75
N -Cr SmaxB = 0.632 nm1000/T [K−1]

[dpa/s]

K=
R

C eq
V =C excV

Recombination 
doma n

S nk doma n

Thermal doma n

10−12 10−10 10−8 10−6 10−4 10−2
1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75
Fe-P SmaxB = 0.632 nm1000/T [K−1]

[dpa/s]

K=
R

C eq
V =C excV

Recombination
domain

Sink doma n

Thermal doma n
10−12 10−10 10−8 10−6 10−4 10−2

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75
Fe-Mn SmaxB = 0.632 nm1000/T [K−1]

[dpa/s]

K=
R

C eq
V =C excV

Recombination
domain

Sink doma n

Thermal doma n
10−12 10−10 10−8 10−6 10−4 10−2

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75
Fe-Cr SmaxB = 0.173 nm1000/T [K−1]

[dpa/s]

K=
R

C eq
V =C excV

Recombination
domain

Sink doma n

Thermal doma n

SB
SmaxB

10−12 10−10 10−8 10−6 10−4 10−2
1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75
Fe-Si SmaxB = 0.497 nm1000/T [K−1]

[dpa/s]

K=
R

C eq
V =C excV

Recomb nat on
doma n

S nk doma n

Thermal doma n
10−12 10−10 10−8 10−6 10−4 10−2

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75
Fe-Ni SmaxB = 0.464 nm1000/T [K−1]

[dpa/s]

K=
R

C eq
V =C excV

Recomb nat on
doma n

S nk doma n

Thermal doma n
10−12 10−10 10−8 10−6 10−4 10−2

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75
Fe-Cu SmaxB = 0.493 nm1000/T [K−1]

[dpa/s]

K=
R

C eq
V =C excV

Recombination
domain

Sink domain

Thermal domain

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

Figure 3.17: Solute atom segregation amount SB normalized by its maximum over all considered
irradiation conditions Smax

B in function of dose rate (in dpa/s) and temperature (in K) of
different Ni- and Fe-based alloys. The nominal solute composition CB is set to 1 at.% and the
sink strength k2 is set to 5× 1014 m−2.

ϕ-independent in the sink domain (cf. Eq. (3.47)), and decreases with the dose rate in the
recombination domain (cf. Eq. (3.48)).

The variations of SB with T and ϕ strongly depend on the chemical nature of the solute
atoms because α1 and α2 are alloy-specific (see Fig. 3.12 and Fig. 3.13). In addition, the maxi-
mum of SB occurs at different irradiation conditions. In Ni-Cr, Fe-Si, Fe-Ni, and Fe-Cu alloys,
the highest solute enrichment tendency is at low temperatures (about 400 K) and dose rates
(about 10−12 dpa/s), whereas the highest enrichment tendency in Fe-P is at high temperatures
(> 1000K) and dose rates (around 10−3 dpa/s). As for the solute atom Mn, the peak of RIS
occurs at intermediate temperatures (about 650 K) and dose rates (from 10−10 to 10−6 dpa/s).
Concerning the segregation of Cr in Fe, the peak of positive RIS occurs at low temperatures
(about 300 K) and dose rates (about 10−11 dpa/s), whereas the peak of the negative RIS occurs
at high temperatures (> 800K) and dose rates (> 10−6 dpa/s). Similarly, in the Ni-Ti alloy,
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Figure 3.18: Solute atom segregation amount SB in function of sink strength (in m−2) and
temperature (in K) of different Ni- and Fe-based alloys. The nominal solute composition CB is
set to 1 at.% and the dose rate ϕ = 2× 10−4 dpa/s.

the peak of the negative RIS occurs at high temperatures and dose rates.

In Fig. 3.18, we represent the T -k2 maps of SB at fixed irradiation flux ϕ = 2× 10−4 dpa/s.
With different models to calculate SB, the evolution of SB with k2 is similar in different alloys.
In the recombination domain (K < R), SB is shown to be k2-independent (cf. Eq. (3.48)). In
the domain of PD elimination (K > R), SB decreases with k2, as shown by Eq. (3.47).

Further, we take Fe-Cr alloy as an example to investigate the effect of sink strength on the
maximum of the solute segregation amount and on the size of the kinetic domains. Fig. 3.19
shows the Cr solute segregation maps with different sink strength k2. Note that the sink domain
is enlarged with k2. Therefore, the higher the sink strength, the bigger the RIS domain. How-
ever, the total amount of segregated solutes summed up over the sink population is constant.
As a result, the maximum of the Cr segregation amount (Smax

Cr ) decreases with k2, meaning
that the Cr enrichment/depletion of a single sink is higher when the sink strength is smaller.
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Figure 3.19: Cr segregation amount SCr in function of dose rate (in dpa/s) and temperature
(in K) obtained with different sink strengths: 1013 m−2, 1014 m−2 and 1015 m−2. The results are
factorized by the maximum segregation amount Smax

Cr . The nominal solute composition CB is
set to 1 at.%.

Though not represented , we obtain the same trends for the other Ni- and Fe-based alloys.

3.5.2.5 FAR effects on the solute segregation

As stated in Section. 3.2.2.1, the FAR effect on the solute RIS should be significant at large
k2 because then, γ is close to or larger than 1. We take Ni-Ti and Fe-Ni alloys as examples to
investigate the FAR effect on the RIS profile of solute atoms. In order to identify the FAR effect,
we calculate and compare the solute concentration profiles and segregation amounts at different
values of the FAR efficiency nFAR (i.e., the number of FARs per dpa). Note that nFAR = 0
indicates that FAR is ignored. The solute RIS profiles are plotted in Fig. 3.20 (a) and (b) with
two different sink strengths and nFAR equal to 0, 40, 100, and 400. When k2 = 1015 m−2, the
segregation profiles are almost insensitive to FAR, because γ is less than 0.01, and the FAR
effect is negligible. However, when k2 = 5 × 1016 m−2, the RIS profiles strongly depend on
the FAR efficiency nFAR. In Ni-Ti alloy, the concentration of solute atoms at sink increases
with nFAR. Moreover, the amount of depleted Ti atoms decreases with nFAR (Fig. 3.20 (c)).
For k2 = 5 × 1016 m−2 and nFAR = 500, STi is only about a half of the one without FAR
(i.e. nFAR = 0). In Fe-Ni, solute atoms are enriched near sinks. The solute concentration
at sink and the amount of enriched Ni atoms decrease with nFAR (Fig. 3.20 (f)). Though not
represented, we observe similar tendencies in Ni-Cr and the other Fe-based alloys. To conclude,
RIS calculations ignoring the FAR mechanisms overestimates the RIS tendencies in the Ni- and
Fe-based alloys.
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Figure 3.20: Solute concentration profile near an interface (indicated by the shaded) and the
corresponding solute segregation amount. Figures (a) and (b) represent concentration profiles
in Ni-Ti alloys with k2 = 1015 m−2 and k2 = 5 × 1016 m−2, respectively. Figure (c) is the
corresponding Ti segregation amount calculated with different FAR efficiencies. Figures (d) and
(e) represent concentration profiles in Fe-Ni alloys with k2 = 1015 m−2 and k2 = 5× 1016 m−2,
respectively. Figure (f) is the corresponding Ti segregation amount calculated with different
FAR efficiencies. S0

B is the segregation amount obtained with nFAR = 0. The nominal solute
composition CB is set to 1 at.%. The temperature T and the dose rate ϕ are respectively set
to 600 K and 10−5 dpa/s.

3.5.3 Dose rate compensation by a temperature shift

One objective of this work is to provide quantitative temperature-shift criteria for ion-
irradiation experiments aimed at emulating RIS generated by neutron irradiation. We ascribe
the difference of structural evolution between neutron and ion irradiations to a difference of
radiation flux. A change of temperature may compensate the effect of a change of the radiation
flux on the vacancy profile or on the solute RIS. With this work, we can suggest temperature
shifts that should be applied depending on the (evolving) microstructure and the RIS quantity
that one wants to reproduce (SV or SB). Even though SB and SV are inter-dependent quantities
(cf. Eq. (3.46)), the behavior of solute RIS is very different from that of PDs, mainly because
solute RIS results from a balance between the solute flux triggered by a PD driving force and the
backward solute flux triggered by a solute concentration gradient, whereas such backward flux
does not occur for PDs. Another difficulty is that the behavior of both PDs and solutes depends
not only on the radiation flux and temperature, but also on the evolving microstructure sink
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Table 3.6: Definition of cases in which quantitative criteria of temperature shift ∆T can be
proposed.

Cases Assumptions Criteria for SV Criteria for SB

(i) k2 independent
of ϕ and T

Invariant ϕ/DV • K ≪ R1: invariant Iα1−1

Iα1−1+h
2 (

Ω
πrrec )

−1/4
(

ϕ
DV

)1/4

• K ≫ R1: no temperature shift (∆T = 0)
• K ≃ R: use of ϕ–T maps (e.g., Tab. 3.7)

(ii) K ≪ R1 Invariant ϕ/DV Invariant Iα1−1

Iα1−1+h
2 (

Ω
πrrec )

−1/4
(

ϕ
DV

)1/4

(iii) K ≫ R1 Invariant
1

(k2)3/2

(
ϕ
DV

) • If ∆T is sufficiently small such that the variation
of α1 is negligible (e.g., within about ±50K from
Fig. 3.12): invariant k2

• Else: invariant h
2

Iα1−1

Iα1−1+h
2

√
k2

2

(iv) k2(ϕ, T ) is given We use our models to calculate SV and SB with k2 varying with ϕ
and T . We search for at which temperature (T2), the ion irradiation
at ϕ = ϕ2 reproduces the same SV or SB obtained from the neutron
irradiation at T = T1 and ϕ = ϕ1 (e.g., Fig. 3.21).

strength. The latter is a complex function of temperature, radiation dose rate, and radiation
dose (i.e., dose rate× time), as shown in Fig. 3.21. Besides, the evolution of SV and SB as a
function of sink strength, radiation flux and temperature differs from one kinetic domain to
another, and the extent of each kinetic domain in terms of temperature and radiation flux
depends itself on the sink strength which evolves over time. Nevertheless, there are a few
limiting cases (defined in Tab. 3.6) which provide some insights in this rather complex interplay
and from which some quantitative temperature-shift criteria can be proposed.

In case (i), the sink strength is assumed to be constant during irradiation. This is a
good approximation for alloys with initially high dislocation density, for instance, cold-worked
materials. At fixed sink strength, the amount of vacancy RIS, SV, increases linearly with the
ratio ϕ/DV in the sink domain, and with (ϕ/DV)

1/4 in the recombination domain. On the
other hand, SB is independent of ϕ in the sink domain, whereas, in the recombination domain,
it decreases with ϕ/DV. Thus, if the vacancy RIS is to be conserved from a neutron to a
higher flux ion irradiation, we prescribe a shift of temperature such as to keep the ratio ϕ/DV
constant. Concerning the RIS of PDs, we recover the Mansur’s invariant relation, which has
been established in the recombination domain for swelling phenomena [184]. However, for the
solute RIS in the sink domain, there is no need for a change of temperature to keep the amount
of solute RIS constant. In the recombination domain, a temperature shift conserving the ratio
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ϕ/DV does not necessary ensure a correct emulation of a neutron radiation-induced solute RIS.
Therefore, one temperature shift only enables to reproduce one RIS quantity. Indeed, the
solute-PDs flux couplings leading to RIS are strongly non-linear and alloy specific functions
of temperature. Nevertheless, we may use our temperature-flux maps to obtain an estimation
of the temperature shift leading to the same amount of solute RIS. According to the maps of
Fig. 3.10 and Fig. 3.17, for k2 = 5 × 1014 m−2, an emulation of neutron irradiation with a flux
of 10−7 dpa/s at T = 360K (i.e., 1000/T = 2.75) by means of an ion irradiation of 10−5 dpa/s
would require a shift of temperature ∆T ≃ +90K for the PDs, and alloy dependent ∆T for
solute RIS as listed in Table 3.7. Note that no temperature shift is proposed for Fe-Cr alloy
because SCr at ϕ = 10−5 dpa/s, at any temperature, is systematically smaller than that at
ϕ = 10−7 dpa/s and T = 360K.

Table 3.7: Temperature shift required to simulate the solute RIS from the neutron irradiation
with a flux of 10−7 dpa/s at 400 K by means of an ion irradiation of 10−5 dpa/s. The sink
strength is assumed to be constant during irradiation (case (i)).

Fe-P Fe-Mn Fe-Cr Fe-Si Fe-Ni Fe-Cu
∆T [K] +95 +40 — +90 +105 +100

In case (ii), both neutron and ion irradiations take place in the recombination domain,
our results suggest that SV and SB are nearly independent of k2 (cf. Figs. 3.11 and 3.18).
The temperature-shift criterion for SV is the same as the one in case (i). To estimate the
temperature shift for SB, we use the ϕ–T maps of SB in the same way as presented in case (i).

In case (iii), both neutron and ion irradiations take place in the sink domain. We assume
that the temperature shift is sufficiently small such that the variation of α1 can be neglected.
Thus, SB only depends on the microstructure (cf. Eq. (3.35)). We assume that the time
for the establishment of PD and solute RIS is much shorter than the characteristic time of
the evolving microstructure. In this case, the temperature-shift criterion for SB is the one
ensuring an invariant sink strength. Therefore, given the variations of k2 with temperature
and dose rate, the variations of SB should have the same trends. This is consistent with the
experimental observation in Ref. [23]. In this experiment, the authors attempted to emulate
the microstructure of a cold-worked 316-stainless steel produced by a neutron irradiation at
320 ◦C by a self-ion irradiation at higher temperatures. In such cold-worked material, the
sink density was relatively high; thereby the irradiation must take place in the sink domain.
Authors in this study observed that self-ion irradiation at 380 ◦C produces dislocation loop size
and density which matched well with those obtained with neutron irradiation. In the same
study, they showed that the RIS behaviors from these two irradiation conditions coincided as
well. Therefore, this experiment shows that a relatively small temperature shift (+60 ◦C in this
experiment) ensuring an invariant microstructure (i.e., sink strength) is able to reproduce as
well the RIS behaviors for materials irradiated in the sink domain.

In case (iv), we assume that the evolution of the sink strength is not affected by the RIS
of solutes. In this case, there are simulation methods and/or experimental studies yielding
the evolution of the PDs microstructure with respect to the irradiation conditions and the
radiation dose [104, 254]. Authors in Ref. [104] simulated the microstructural evolution of a
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Fe-Cr alloy irradiated by neutrons (3.4 × 10−7 dpa/s) and ions (5.2 × 10−5 dpa/s) at similar
temperatures using cluster dynamics and atomic kinetic Monte Carlo simulations. Relying on
their results, we can predict the evolution of the RIS behaviors. Note that their results indicate
that the PD clusters are the major sinks. Due to the lack of information on cluster densities,
we estimate the average distance between sinks directly from the sink strength by Eq. (3.18).
In Fig. 3.21, we plot k2 (from Ref. [104]), SV and SB (from our calculation) as a function of the
radiation dose. The evolution of k2 indicates that, up to 0.01 dpa for neutron irradiation and
0.1 dpa for ion irradiation, the system is at the frontier between the recombination and sink
domains. After these doses, the system is in the sink domain and the sink strengths of both
neutron and ion irradiation conditions are close to each other. The calculated SB in the two
irradiation conditions are as well very similar after 0.1 dpa. This is because, in the sink domain,
SB depends only on α1 and k2 (as presented in case (iii)); since the temperatures are close in
the two irradiation conditions, the calculated SB is nearly the same whenever the sink strengths
are very close to each other. Below 0.01 dpa, both SV and SB in the two irradiation conditions
are different. Given the variation trends of the sink strength with the irradiation conditions,
we propose a temperature-shift that would reproduce either the same SV or the same SB as in
neutron irradiation from an ion irradiation experiment. As a qualitative approach, we assume
that the sink strength k2 is proportional to SV. This approach should be reasonable because PD
clusters are major sinks and their growth should be proportional to the PD segregation amount.
Thus, by assuming that the ion irradiation is in the recombination domain, we set k2 as a linear
function of (ϕ/DV)

0.25. Hence, from the simulated k2(ϕ) resulting from an ion irradiation [104],
we can deduce the sink strength evolution at different temperatures. Relying on our model, we
calculate the evolution of SV and SB from the ion irradiation at different temperatures. From
these results, we find out at which temperature the evolution of SV or SB matches well with that
obtained by neutron irradiation. By this approach, we obtain the temperature shifts of an ion
irradiation (5.2× 10−5 dpa/s) required to emulate the RIS behaviors from neutron irradiation
(3.4 × 10−7 dpa/s) (cf. Fig. 3.21-(d)). For a dose below 0.01 dpa, the temperature shift (∆T )
required for an invariant SV is about +90◦C and the one for an invariant SB is about +110◦C.
After 0.01 dpa, ∆T for SV increases up to +200◦C, whereas ∆T for SB notably decreases.

Apart from the simulation methods, direct observations of the microstructure may inform
on the sink strength evolution. However, a precise estimation of the latter is difficult because
small PD nano-clusters forming under irradiation are not detectable by current microscopy
techniques. Nevertheless, investigating the variation of the solute RIS profiles with radiation
flux and radiation dose should give an insight on the sink strength, provided the time scale
of RIS is smaller than that of the microstructure evolution, so that we may assume steady-
state solute RIS. For instance, we have shown that the RIS amount of solute atoms is directly
related to the bulk concentration of vacancies. Therefore, measuring the solute RIS provides
a way to estimate the bulk concentration of vacancies—thereby the global sink strength of the
microstructure—provided the diffusion properties of PDs are known.
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Figure 3.21: The evolution of (a) the sink strength k2, (b) the amount of vacancy RIS SV,
and (c) the amount of solute RIS SB in the Fe-Cr alloy irradiated by neutrons and ions. The
evolution of the temperature shift for ion irradiation that is required to emulate the neutron
RIS is plotted in (d). The plots of k2 are reproduced from the results in Ref. [104]. The dotted
guiding lines obtained from K/R = 1 are plotted in (a) to help identifying the kinetic domain.

3.6 Comparison between experimental measurement and
analytical results

3.6.1 Ni-0.4Ti alloy

Table 3.8: Estimated average sink strength of the major defects in irradiated Ni-0.4 at.% Ti.

Defect Dislocation loops Dislocation lines Cavities Total
Average sink strength [m−2] 7.23× 1013 4.86× 1013 2.29× 1013 1.44× 1014

Ma et al. [255] measured the RIS profiles of Ti in Ni-0.4 at.% Ti near a dislocation loop by
atom probe tomography (APT). This alloy was irradiated at 450◦C with a dose rate of around
6.5×10−5 dpa/s (estimated by SRIM). According to a full characterization of the microstructure
by transmission electron microscopy (TEM), the three defects—cavities, dislocation lines, and
loops—are the major defect sinks in this alloy. From the measured size distribution and density
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Figure 3.22: Uni-dimensional approximation of dislocation loop geometry.
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Figure 3.23: RIS profiles of Ti in Ni-0.4 at.% Ti. Solid lines are analytical results given by
Eq. (3.40). Solid dots are experimental data measured by Atom Probe Tomography.

of defects, we estimate the sink strengths of the three defects by relying on the analytical
models presented in Section 1.2.2.2. The obtained values are given in Tab. 3.8. As presented
in this table, the dislocation loops have the most significant contribution to the total sink
strength, followed by dislocation lines and cavities. However, they are all of the same order of
magnitude. Thus their contributions should be all considered into the calculation of the RIS
profile. Note that our estimation of the total sink strength may be an underestimated value
because contributions of the small PD clusters are ignored due to the resolution limit of the
microscope.
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The investigation of RIS near a dislocation loop requires the solution of the diffusion
equation in 3 dimensions (see Section 1.2.2.2). As the distance between loops is much larger
than the loop size, we transform pairs of dislocation loops into parallel planar sinks (Fig. 3.22).
This way, we approximate the 3-dimension RIS problem by our uni-dimensional RIS analytical
model of Section 3.2. The average spacing h between two loops is deduced from the average
loop density ρL:

h =

(
6

π ρL

) 1
3

. (3.51)

In Fig. 3.23, we compare the resulting RIS profiles from Eq. (3.40) with the experimental one.

Table 3.9: Simulated and measured bulk solute concentration in irradiated Ni-0.4 at.% Ti.

Case Experiment k2 = k2
exp k2 = 10 k2

exp k2 = 50 k2
exp

Bulk solute concentration [at.%] 0.49 0.61 0.51 0.44

Calculations are done with three different values of the sink strength: k2
exp, 10k2

exp, and 50k2
exp,

where k2
exp is the total sink strength estimated from the microstructural data (in Tab. 3.8). The

predicted width and bulk solute concentration of the segregation domain are in satisfying agree-
ment with the experimental profile. The simulated and measured bulk solute concentrations are
presented in Tab. 3.9. The increase of the bulk solute concentration resulting from the solute
depletion at sinks is very sensitive to the sink strength. The analytical profile with k2 = 10k2

exp
is the closest one to the experimental one. Note that there is significant difference between the
predicted and measured Ti concentration at the dislocation loop (distance = 0). The latter
is certainly due to the resolution limits of the experimental technique, and to the neglect of
the equilibrium segregation tendency in the present RIS model. To conclude, our simulations
predict the right sign of Ti RIS and the simulated bulk solute concentrations are within 20 % of
relative error. Moreover, we show how measuring the non-equilibrium bulk solute concentration
is an efficient way to estimate the effective sink strength of a microstructure.

3.6.2 Fe-3.3Ni alloy

Belkacemi et al. measured [256] the RIS profiles of Ni in Fe-3.3 at.% Ni near a dislocation
loop by atom probe tomography (APT). This alloy is irradiated at 400◦C at two different
irradiation fluxes: 8.7 × 1010 and 8.6 × 1011 ions · cm−2 · s−1. A full characterization of the
microstructure by TEM indicates that the dislocation loops are the major PD sinks. The
obtained average size and density of the loops in the two different samples respectively irradiated
at 4.9× 10−4 and 7.5× 10−6 dpa/s (estimated by SRIM) are given in Tab. 3.10.

Table 3.10: Average loop radius and density in Fe-3.3 at.% Ni samples respectively irradiated
at low (7.5× 10−6 dpa/s) and high flux (4.9× 10−4 dpa/s).

Conditions Low flux High flux
Average loop radius [nm] 19 1.4

Average loop density [loops/m3] 5.1× 1020 2.6× 1022
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Figure 3.24: RIS profiles of Ni in Fe-3.3 at.% Ni at (a) low flux and (b) high flux. Solid lines
are analytical results given by Eq. (3.40). Solid dots are experimental data measured by Atom
Probe Tomography.

We use the same uni-dimensional approach of the dislocation loop geometry ( Fig. 3.22)
to calculate the solute RIS profile. From the average microstructure (listed in Tab. 3.10), we
deduce an average spacing h between two loops (Eq. (3.51)). From this average spacing, we
calculate the steady-state RIS profile in Fe-Ni. In Fig. 3.24, we compare the obtained profiles
with the experimental ones at low and high flux. The simulated profiles are narrower than the
experimental ones. Moreover, the predicted solute concentration at the loop is higher than the
experimental one. However, at low flux, the integrated segregation amount (Ssim

Ni ) is in good
agreement with the measured one (Sexp

Ni ): Ssim
Ni = 140 nm · at.% and Sexp

Ni = 159 nm · at.%. At
high flux, Ssim

Ni (= 25 nm · at.%) is about one third of Sexp
Ni (= 81 nm · at.%). Note that, at low

flux, the radius of the investigated loop, where the RIS profile is measured, is almost equal
to the average one; while, at high flux, the radius of the investigated loop is about 10 times
larger than the average one. We expect the RIS amount to increase with the loop size, because
a larger loop should be associated with a larger depleted zone, thereby a larger dislocation
spacing h. Besides, RIS increases with h (Eq. (3.40)). Therefore, the measured RIS amount of
the investigated loop at high flux could be much higher than the average one.

In order to account for the dispersion of the solute RIS amounts, we apply the Voronoi
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Figure 3.25: Schematic of a two-dimensional Voronoi decomposition.

decomposition method [257] to divide the space into different volumes (see Fig. 3.25). We
assume that the dislocation loops are randomly distributed in space. We associate to each
dislocation loop an isotropic Voronoi volume. In this case, the probability distribution of the
Voronoi volume follows a Poisson-Voronoi distribution [257,258]:

p(v) =
vγ−1

βγΓ(γ)
exp

(
− v

β

)
, (3.52)

with
v =

Vv

Vv
, (3.53)

where Vv is the average Voronoi volume, Γ is the gamma function, and β and γ are two
parameters. Lazar et al. [257] have presented distributions of many topological features of
Poisson-Voronoi structures based on a data set of a combined total of 250 000 000 cells. From
this data set, they have determined the β and γ parameters: β = 0.1790 and γ = 1/β = 5.586.
The same values have been obtained from object kinetic Monte Carlo simulations [259]. We
deduce the average Voronoi volume from the average loop density, ρL: Vv = 1/ρL. The mean
value and the standard deviation of this distribution are respectively v = 1 and σ =

√
β = 0.42.

We rely on the Voronoi volume (i.e., the volume of a Voronoi tessellation), Vv, to estimate the
local spacing between two neighbouring loops (h):

h =

(
6Vv

π

) 1
3

. (3.54)

We expect that the volumes of about 95 % of the dislocation loops are in the interval
[V (1 − 2σ), V (1 + 2 σ)]. From the limits of this interval, we compute the interval of Ni
RIS amount that could be extracted from the dislocation loop population. We estimate that
the solute RIS amount ranges from 10 to 52 nm · at.%. Although the experimental value
(81 nm · at.%) is not in this interval, our model predict that a large dislocation loop associated
with an exceptionally large Voronoi volume should lead to a RIS amount above the interval
limit (52 nm · at.%). To get a Ni RIS amount Ssim

Ni = 81 nm · at.%, the corresponding Voronoi
volume should be about 6 times larger than the average one (h = 76 nm), i.e., about +12σ
from the mean value.
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3.7 Summary and concluding remarks

In this chapter, the cluster version of the self-consistent mean field theory is applied to
calculate the transport coefficients of dilute Ni- and Fe-based alloys under irradiation. In
addition to the recently published results [41, 181], we include the contribution of FAR to
transport coefficients. From the transport coefficients, we compute the flux coupling coefficients,
the solute and vacancy diffusion coefficients, and the RIS factors with respect to temperature,
radiation flux, and PD sink strength. We highlight the specificity of each alloy as well as the
effect of FAR on these parameters.

We provide an improved PD-RIS model yielding the concentration profile of vacancies in the
vicinity of sinks. The profile is divided into two regions: a constant vacancy concentration region
far from the sinks where PD production, recombination, and elimination at sinks occur, and a
second region near the PD sinks where recombination is neglected because PD concentrations
are lower. This approximation leads to first-order differential equations that can be solved
analytically. We rely on a mean-field rate theory to calculate the uniform bulk concentration
of vacancies in the first regime, which is set as the boundary condition of the steady-state PD
profile in the second regime.

From the RIS factor relating the solute concentration gradient to the vacancy concentra-
tion gradient, we deduce an analytical expression of the steady-state solute RIS profile. This
analytical RIS model includes the complete PD reactions, solute-PD interactions, and FAR
mechanisms.

The analytical formalism developed in this paper, allows a systematic and quantitative
study of the diffusion properties and RIS profiles of vacancies and solute atoms in the investi-
gated iron alloys. The most relevant results are summarized as follows.

• The consideration of the complete PD reactions enables a consistent investigation of RIS
behaviors in all PD kinetic domains (recombination/sink/thermal). We show that the RIS
kinetic domains are directly related to the PD kinetic domains, i.e. to the variation of PD
concentration in the bulk. RIS profiles of PDs do not vary much with the chemical nature
of the solute atom, whereas solute RIS profiles are very alloy-specific. In general, the RIS
of PDs and solutes is favored in the sink domain because the rate of PD elimination at
sinks is significant. In the recombination domain, even if the PD RIS amount is relatively
small, the solute RIS amount can be high in certain alloys, for instance, in Fe-Mn because
its RIS factor α1 is relatively large.

• The comparison between our results and a previous study [30] highlights the importance of
accounting for recombination reactions in the RIS model. Models that would neglect these
reactions would overestimate the vacancy concentration along the RIS profile, especially
at low temperatures and sink strengths (i.e. in the recombination domain).

• Parametric T–ϕ–k2 studies show that the effect of FAR on the solute RIS is significant.
At high sink strength, FAR leads to a sharp decrease of solute RIS. Moreover, our results
show that, among the investigated alloys, the effect of FAR is the most important in
Ni-Ti, Ni-Cr, Fe-Ni and Fe-Cr systems.
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• T–ϕ–k2 maps of the RIS amount of PDs and solute atoms can be used as a tool to
provide quantitative temperature shift criteria to compensate for high irradiation flux.
We emphasize that these criteria are alloy specific and kinetic domain specific. Moreover,
in the case where we may ignore the variation of sink strength with temperature and dose
rate, for instance in alloys with high sink density, we can deduce explicit criteria from the
analytical expressions of SV and SB. Otherwise, in most cases, analytical criteria require
an explicit relationship between the sink strength, temperature, and dose rate.

• A good agreement between the analytical and experimental results on the solute concen-
tration profile and the RIS amount is achieved in Ni-0.4%Ti and Fe-3.3%Ni alloys.
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Chapter 4

Effect of strains on the point-defect
concentration and solute RIS in pure
Fe and Fe-based alloys
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4.1 Introduction

As shown in Section 3, a quantitative modeling of RIS requires the modelling of the PD
kinetics including its interaction with the microstructure, and the kinetic couplings between
fluxes of PDs and atomic fluxes. Perturbations of the crystal structure generated by a surface
or a large-angle grain-boundary are usually short-ranged. They do not go further than a few
atomic planes. Whereas lattice defects such as voids and dislocations may generate long-range
stress-strain fields in the material [260]. A strain field modifies the formation and migration
energies of PDs [260], and the solute-PD interactions. These modifications lead to sink bias,
i.e., preferential absorption of SIAs or vacancies. Note that the dislocation bias for SIAs is
the primary mechanism for swelling [117, 261]. Dislocations produce extra lattice sites by a
climbing mechanism, leading to the macroscopic swelling of the irradiated material [29, 260].
Another by-product of the preferential absorption of SIA by dislocations is the formation of
voids so that the overall elimination rate of PDs obey a matter balance [117]. These phenomena
should should interplay with RIS. In order to investigate RIS at extended defects generating
large strain fields, it is necessary to correctly describe the stress-strain field, and their effect on
PD and solute diffusion.

In this chapter, we briefly present the concepts of linear elasticity, then we present the
elastodiffusion properties of vacancy and self-interstitial in Fe and Fe-based alloys. In the last
part, we investigate the elastic interactions between PDs and an edge dislocation, and study
their effect on the dislocation sink strength and solute RIS in Fe.

4.2 Diffusion and elasticity

Within the framework of linear elasticity, we model the effect of a strain-stress field on
the PD diffusion through an elastic dipole formulation. We start this section with a short
presentation of the theories of linear elasticity and elastodiffusion.
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4.2.1 Linear elasticity

The stress field, σ(r), and the strain field, ϵ(r), are second-rank tensors depending on
position r in the material [262]. In general, they are inhomogeneous tensors [262]. Both of
them are symmetric [262], i.e., σij = σji and ϵij = ϵji for i ̸= j. Therefore, there are six
independent elements in these two tensors.

The crystal shape changes under applied stress. Provided the stress is below the elastic
limit, the strain in response to this stress is recoverable. At equilibrium, the amount of strain
is proportional to the applied stress, as given by the so-called Hooke’s law. The general form
of this law is written as

ϵij = Sijkl σkl, (4.1)

or alternatively as
σij = Cijkl ϵkl, (4.2)

where the summation over repeated indices is implicit (Einstein convention). Sijkl and Cijkl

are respectively the constants of compliance and stiffness. S and C are forth-rank tensors with
81 components. They are related by:

S = C−1. (4.3)

Since σ and ϵ are symmetric, only 36 of the 81 components of Sijkl and Cijkl are independent.
The symmetry properties of Sijkl and Cijkl associated with the first two and the last two suffixes
make it possible to use the Voigt notation [262, 263]. The first two and last two suffixes are
abbreviated into a single one running from 1 to 6, according to the scheme:

Tensor notation 11 22 33 23, 32 13, 31 12, 21
Voigt notation 1 2 3 4 5 6

The symmetry of the crystal reduces further the number of independent coefficients of Sij and
Cij. In a cubic crystal such as the fcc and bcc structures, we have

S11 = S22 = S33, S12 = S13 = S23, S44 = S55 = S66,

C11 = C22 = C33, C12 = C13 = C23, C44 = C55 = C66,

and all the other components are zero. Therefore, only three of these coefficients remain
independent, e.g., C11, C12, and C44 for the compliance matrix, and S11, S12, and S44 for the
stiffness matrix. Moreover, in a perfectly isotropic cubic crystal, these three coefficients are
related by [262,264,265]:

S44 = 2 (S11 − S12), (4.4)
C44 = (C11 − C12)/2. (4.5)

Zener [266] proposes to measure the anisotropy by the ratio:

AZ =
2C44

C11 − C12

, (4.6)
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which is the so-called Zener ratio or Zener anisotropy index. Note that many cubic metals such
as Fe (but W and Al) are markedly anisotropic in terms of their elastic behaviour [262,264].

The elastic constants Cij can be measured by experiments [267–270] or computed by
ab initio methods [271–273]. Though the experiments measure the adiabatic elastic constants,
which are the second-order partial derivatives of the free energy with respect to the strain at
constant entropy [264, 274], ab initio calculations give the isothermal elastic constants, which
are second-order partial derivatives of the free energy as well but at constant temperature [264,
265, 274]. For most mechanical properties, the difference between the two classes of elastic
constants are negligible, within few percents or less for most of the cases [264].

4.2.2 Thermodynamics of diffusion including elasticity

In this section, we express the PD and alloy thermodynamic driving forces under an applied
strain ϵ. The isothermal driving forces of diffusion under an applied stress-strain field are the
gradients of PD and alloy chemical potentials (see Eq. (4.7)). These chemical potential locally
depend on the stess-strain field.

µd = kBT ln

(
Cd

Ceq
d

)
, (4.7)

where Cd is the atomic fraction of d in the system, and Ceq
d is the equilibrium concentration

of d. The latter varies with external strains and local atomic fraction of solute atoms. From a
LTE expansion formalism (Eq. (1.26)), for CB ≫ Cd, the PD equilibrium concentration writes

Ceq
d = Ceq,0

d exp

(
− Eel

d

kBT

)[
1 +

CB(Z
el
Bd − Z0

Bd)

Zd

]
, (4.8)

where Ceq,0
d is the PD equilibrium concentration in unstrained pure A, Zd is the monomer par-

tition function, Zel
Bd is the solute-PD pair partition functions including the elastic interactions,

and Z0
Bd is the number of solute-PD pair configurations. Eel

d is the elastic contribution to the
formation energy of PD under applied strain ϵext. We write Eel

d as a sum of two energy terms
(as in previous studies presented in Section 1.1.2):

Eel
d = −

[
P d

ijϵ
ext
ij + sdK Tr

(
ϵext)Ω] , (4.9)

where P d is the elastic dipole tensor of PD (d), ϵext is the external strain field, K is the bulk
modulus, and sd is the number of created lattice site,

sd =

{
+1, for d = V,

−1, for d = I.
(4.10)

The first term in the right-hand side of Eq. (4.9), −P d
ijϵ

ext
ij , describes the energy change due

to the relaxation of the system in presence of PD [141]. In presence of PD sources and sinks,
PDs are non-conservative species. Their creation or removal makes vary the number of lattice
sites. For instance, an atom displaced from its original bulk lattice site to the surface or the
core of a dislocation, creates both a vacancy at the original lattice site and an extra lattice
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site at the structural defect. The second term, sdK Tr(ϵext)Ω, corresponds to the work of
creating or removing a lattice site under an applied stress [29, 275]. Note that, in previous
studies [126, 140, 185, 276], this work energy term was neglected, as if PDs were considered as
conservative species, i.e. no lattice site was created or removed in the system. In our work, we
are interested in PDs that diffuse and are eliminated at sinks. Therefore, we have to take into
account the non-conservative character of PDs.

Note that, we may use the Hooke’s laws to express the external stress in function of the
external strain, and switch from a formation energy to a formation enthalpy.

We assume that, locally the strain/stress field is uniform. Hence, we may write Eel
α as a

function of the local stress-strain field, and replace the external strain ϵext by a local strain, ϵ.
Therefore, a gradient of the elastic strain yields a gradient of Eel

d , that modifies the PD driving
force. From Eq. (4.7) and Eq. (4.8), we write the CPG of PDs as:

∇µd

kBT
=

∇Cd

Cd

− (ZBd − Z0
Bd)∇CB

Zd − CB(ZBd − Z0
Bd)
− CB∇ZBd

Zd − CB(ZBd − Z0
Bd)

+
∇Eel

d

kBT
. (4.11)

For an alloy A(B), we may write the alloy chemical potential, µBA = µB − µA, in function
of the concentration of monomer B (isolated solute atoms surrounded by A atoms), Cmono

B ,

µBA = kBT lnCmono
B +Hs,B, (4.12)

where Hs,B is the solution enthalpy of atom B in A:

Hs,B = H(NA + 1B)−H((N + 1)A), (4.13)

where H(NA + 1B) is the enthalpy of a system including N atoms A and one atom B. Note
that, Cmono

B may depend on the solute and vacancy atomic fractions. Hs,B depends on stress
only. It is written as

Hs,B = H0
s,B + Eel

B , (4.14)
where Eel

B is the elastic contribution to the solution enthalpy of solute B

Eel
B = −Pα

ijϵ
ext
ij , (4.15)

Note that Cmono
B depends on the atomic fractions of PDs and solute atoms; and EB

f depends
on strain. We write the CPG of solute atoms as:

∇µBA

kBT
=

1

Cmono
B

∂Cmono
B

∂CB
∇CB +

1

Cmono
B

∂Cmono
B

∂CV
∇CV +

∇Eel
B

kBT
. (4.16)

For CB ≫ Cd, Cmono
B = CB, and Eq. (4.16) can be rewritten as

∇µBA

kBT
=

∇CB

CB
+

∇Eel
B

kBT
. (4.17)

To conclude, a stress-strain field generates the extra term ∇Eel
α in the CPGs of PDs and so-

lute atoms. For PDs, this driving force includes an extra term related to the removing/creation
of an atomic volume upon the formation of a PD. This term must be accounted for in the
calculation of PD fluxes in strained system.
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4.2.3 Elastodiffusion

Elastic interactions between PDs and extended defects modify the migration barriers of
PDs. For a PD, initially located at r, jumping in a direction h, we write the migration barrier
as

Ẽmig(r,h) = Emig(r,h) + Esad
el (r,h)− Esta

el (r). (4.18)
Emig(r) corresponds to the PD migration barrier in the system free of strain. Esad

el (r,h) and
Esta

el (r) are the elastic interaction energies at the saddle-point and stable configurations, re-
spectively. They are deduced from the PD elastic dipoles at stable and saddle points, and their
difference are given by

Esad
el (r)− Esta

el (r,h) = −
[
P sad

ij (r,h)− P sta
ij (r)

]
ϵij(r), (4.19)

where P sta
ij and P sad

ij are the elastic dipoles at the stable and saddle-point configurations, re-
spectively.

The variation of the migration barriers with strain determines the change of the PD jump
frequencies, thereby the variation of the diffusion coefficients and the phenomenological L-
coefficients. The L-coefficient are symmetric second-rank tensor. For the sake of simplicity, we
omit the suffixes attached to species. We write the L-coefficients as Lij, where i and j suffixes
indicate the directions of respectively diffusion and CPG. The partial derivative of Lij with
respect to the strain tensor ϵkl forms a symmetric fourth-rank tensor L′ [277], which is given
by

L′
ijkl =

(
∂Lij

∂ϵkl

)
ϵ=0

. (4.20)

This tensor is the so-called elastodiffusion tensor. In a cubic crystal, only three components of
this tensor are independent [277]. By appling Voigt notation, we have

L′
11 = L′

22 = L′
33, L′

12 = L′
13 = L′

23, L′
44 = L′

55 = L′
66, (4.21)

and the other components are zero. Analytical expressions of the elastodiffusion tensor of
direct interstitial-diffusion mechanisms in fcc, bcc and hexagonal closed-packed lattices can be
obtained [277]. Note that, we proceed to the study on the variation of Lij with the volumetric,
tetragonal, and shear strains. A strain tensor ϵ, having six independent components e1 through
e6, can be written as

ϵ = evI +

e1 − ev 0 0
0 e2 − ev 0
0 0 e3 − ev

+

 0 1
2
e6

1
2
e5

1
2
e6 0 1

2
e4

1
2
e5

1
2
e4 0

 , (4.22)

where ev = 1
3
(e1 + e2 + e3) and I is the identity tensor. The volumetric strain ϵv = evI; the

tetragonal strain ϵt and the shear strain ϵs are the final two tensors in Eq. (4.22).

In the present study, we calculate the transport coefficient tensors for different strains by
means of the KineCluE code [167], that performs automatic calculations of Lij for

ϵv =
e

3

1 0 0
0 1 0
0 0 1

 , ϵt =
e

3

2 0 0
0 −1 0
0 0 −1

 , ϵs =
e

2

0 0 0
0 0 1
0 1 0

 ,

at different values of e.
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4.3 Elastodiffusion in Fe

In this section, we focus on the elastic properties of PD diffusion in pure bcc iron. We
present the physical parameters that determine the thermodynamic and diffusion properties
of PDs in a strain field. The latter include the elastic constants, the elastic dipoles, and the
elastodiffusion tensors.

4.3.1 Elastic properties of iron

There exist many studies on the elastic constants, Cij, of iron, including experiments [268–
270] and ab initio calculations [278, 279]. The authors in Ref. [269] report measurements of
Cij using the technique of resonant ultra-sound spectroscopy. These measurements cover the
range of 3–500 K. We define C ′ ≡ (C11 − C12)/2. In a perfectly isotropic metal, C ′ = C44. In
iron, the difference between C ′ and C44 is great, leading to a Zener ratio AZ = C44/C

′ > 2.4
at T > 300K. Whereas, AZ of aluminum is about 1.2 at 300 K [140]. Fe is thus strongly
anisotropic.

Table 4.1: Set values for elastic constants.

C11 (GPa) C ′ (GPa) C44 (GPa) AZ

225 45 115 2.5

The set values of elastic constants of iron for the following simulations are presented in
Tab. 4.1. Note that the strain field generated by PD sinks such as the dislocation lines depends
on the elastic properties of the materials. Therefore, we expect an effect of the iron elastic
anisotropy on the generated strain field.

4.3.2 Elastic properties of point defects

We list in Tab. 4.2 the elastic dipoles of Fe at the stable and saddle-point configurations.
In the same table, we report as well the elastic dipoles of Al [140].

The elastic dipoles of SIAs in Fe are strongly anisotropic at the stable and saddle-point
configurations. While, the vacancy elastic dipoles are perfectly isotropic at the stable configu-
ration, whereas, they are anisotropic at the saddle-point configuration.

When compared with the PD elastic dipoles of Al, the anisotropy of dumbbell in Fe is much
greater at the stable and saddle-point configurations. As for the vacancy at the saddle-point
configuration, the anisotropy is as large in Fe and Al. However, the reason for this anisotropy
may not be the same. In Fe, the off-diagonal components of the elastic dipole are large with
respect to the diagonal ones. In Al, the off-diagonal terms of the saddle-point elastic dipole are
relatively small, but one of the diagonal terms is very different from the other two.
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Table 4.2: Elastic dipoles of pure iron and aluminium.

Elastic dipoles Fe Al [140]

P sta
I (eV)

23.752 4.728 0
4.728 23.752 0
0 0 27.906

 19.498 0 0
0 18.518 0
0 0 18.518



P sad
I (eV) a

23.838 2.845 −0.696
2.845 22.529 2.845
−0.696 2.845 23.838

 19.498 1.133 0
1.133 19.498 0
0 0 19.034



P sta
V (eV)

−2.840 0 0
0 −2.840 0
0 0 −2.840

 −3.238 0 0
0 −3.238 0
0 0 −3.238



P sad
V (eV) b

−2.217 −1.641 −1.641−1.641 −2.217 −1.641
−1.641 −1.641 −2.217

 −2.866 −0.080 0
−0.080 −2.866 0

0 0 1.000



a The saddle-point configuration of the [110]-dumbbell in Fe is along a [110]-to-[101] migration path, while the
saddle-point configuration of the [100]-dumbbell in Al is along a [100]-to-[010] migration path.
b The saddle-point configuration of the vacancy in Fe is along the [111] direction, while the saddle-point config-
uration of the vacancy in Al is along the [110] direction.

From the elastic dipoles, we calculate the relaxation volume V rel
d of PD (d) [141]. For a

cubic crystal, the relaxation volume reads

V rel
d =

Tr(P sta
d )

3K
, (4.23)

where the bulk modulus K is equal to (C11 + 2C12)/3. Note that the relaxation volume
corresponds to the volume change resulting from the deformation of the lattice after an exchange
of a substitutional atom with a PD. This quantity does not inform on the change of the lattice
shape because it does not depend on the off-diagonal terms of the elastic dipole tensor. After
Eq. (4.23), the relaxation volumes of SIAs and vacancies in pure Fe are respectively +2.25Ω
and −0.20Ω, with Ω the atomic volume.

To conclude, in addition to the strong elastic anisotropy, the iron shows a strong anisotropy
of PD elastic dipoles. Vacancies are strongly anisotropic at the saddle-point configuration, and
dumbbells are strongly anisotropic at both the stable and saddle-point configurations. The
PD anisotropy at the saddle point has a significant impact on PD diffusion in Al [140]. This
effect should be even more important in Fe due to a greater PD anisotropy at the saddle point.
Moreover, unlike Al, the anisotropy of the stable SIA configuration is also significant in Fe.
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4.3.3 DFT-based elastodiffusion in Fe

In order to separate the anisotropy effect at the stable and saddle-point configurations, we
introduce different models, from the full elastic dipoles to simplified versions of these tensors
(see Tab. 4.3).

Table 4.3: Elastic dipoles of the various models. Concerning vacancy, Models 2 and 3 are
identical because the elastic dipoles are isotropic at the stable configuration.

Dumbbell elastic dipole (eV) Vacancy elastic dipole (eV)

Model 0 P sta
I = 0 P sad

I = 0 P sta
V = 0 P sad

V = 0

Model 1 P sta
I =

23.752 4.728 0
4.728 23.752 0
0 0 27.906

 P sta
V =

−2.840 0 0
0 −2.840 0
0 0 −2.840


P sad

I =

23.838 2.845 −0.696
2.845 22.529 2.845
−0.696 2.845 23.838

 P sad
V =

−2.217 −1.641 −1.641−1.641 −2.217 −1.641
−1.641 −1.641 −2.217



Model 2 P sta
I =

23.752 4.728 0
4.728 23.752 0
0 0 27.906

 P sta
V =

−2.840 0 0
0 −2.840 0
0 0 −2.840


P sad

I = 23.402 I P sad
V = −2.217 I

Model 3 P sad
I = 25.137 I P sad

V = −2.840 I
P sad

I = 23.402 I P sad
V = −2.217 I

In Model 0, we ignore the elastic interactions. The non-zero terms of the elastodiffusion
tensor are only due to the possible change of the PD jump distance resulting from the lattice
deformation. Thus, Model 0 highlights this geometric effect.

Model 1 includes the full elastic dipole tensors as given in Tab. 4.2. Models 2 and 3
correspond to approximations of Model 1. They are defined such as to investigate the impact
of PD anisotropy on the elastodiffusion behaviors. In Model 2, we introduce an isotropic elastic
dipole tensor at the saddle-point configuration, without changing the relaxation volume (i.e.,
the trace of the dipole is conserved):

P sad
2 =

1

3
Tr
(
P sad

real
)
I.

This approximation allows us to highlight the effect of the saddle-point anisotropy on the
elastodiffusion by comparing the results with the ones obtained in Model 1. In Model 3,
an additional approximation is made: the elastic dipole tensors in stable configurations are
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assumed to be isotropic as well. Therefore, we have:

P sta
3 =

1

3
Tr
(
P sta

real
)
I, P sad

3 =
1

3
Tr
(
P sad

real
)
I.

By comparing Models 2 and 3, we highlight the effect of an anisotropy at the stable configuration
on elastodiffusion.
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Figure 4.1: Vacancy diffusion coefficients as a function of the external strains obtained from
different models. These coefficients are factorized by D0

V,11, which is the vacancy diffusion
coefficient DV,11 in the system without strains. The results are obtained at 400 K, in which
D0

V,11 = 1.70× 10−15 m−2/s.

We show in Fig. 4.2 and Fig. 4.1, the variations of the PD diffusion coefficients (Dd,ij for
d = I,V) with the strains defined in Section 4.2.3, deduced from the various elastic-dipole
models at T = 400K.

In Model 0, the variations of Dd,ij with the strains are small. Dd,11 slightly increases
with the volumetric (ϵv) and tetragonal (ϵt) strains, and Dd,12 slightly increases with the shear
strain (ϵs). This is because a positive deformation (e.g., along the (Ox)-direction) increases the
distance of every PD jump along the same direction, and thus, enhances PD diffusion along this
direction. However, Dd,22 decreases with ϵt because the deformation along the (Oy)-direction
is negative.

138



−2 −1 0 1 2
Volumetric strain [%]

0.5

1.0

1.5

2.0

2.5

3.0 (a)  DI, 11

D0
I, 11

Model 0: no elastodiffusion
Model 1: full elastic dipoles

Model 2: isotropic saddle-point elastic dipoles
Model 3: isotropic stable and saddle-point elastic dipoles

−2 −1 0 1 2
Shear strain [%]

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6 (b)  DI, 12

D0
I, 11

)2 )1 0 1 2
Tetragona  strain [%]

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2 (c)  DI, 11

D0
I, 11

)2 )1 0 1 2
Tet%agona  st%ain [%]

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2 (d)  DI, 22

D0
I, 11

Figure 4.2: SIA diffusion coefficients as a function of the external strains obtained from different
models. These coefficients are factorized by D0

I,11, which is the SIA diffusion coefficient DI,11
in the system without strains. The results are obtained at 400 K, in which D0

I,11 = 1.99 ×
10−11 m−2/s.

In Model 1, concerning diffusion mediated by vacancies, DV,11 increases with ϵv, while
DV,12 decreases with ϵs. To explain this difference, we investigate the separate contributions
of the elastic dipoles at stable and saddle points. DV,11 is related to the diagonal components
of the dipoles. The modification of the vacancy migration barrier upon a positive volumetric
strain, ϵv, is given by −(P sad

ii − P sta
ii )ϵv,ii, which is negative. Therefore, the migration barrier

decreases with ϵv; meaning that the diffusion is enhanced. Thus, dDV,11/dϵv is positive. On
the other hand, DV,12 is related to the off-diagonal components of the elastic dipoles. Note that
for i ̸= j, P sad

ij − P sta
ij < 0. Therefore, the vacancy diffusion decreases with shear strain. The

variations of DV,11 and DV,22 with ϵt are negligible. This is because the diagonal terms of the
elastic dipoles are equal; thereby the energy variation

∑
P iiϵs,ii = P ii Tr(ϵs) = 0. Dumbbell

diffusion is much more sensitive to strain: DI,11 decreases with ϵv, while DI,12 increases with ϵs.
This is because one of the diagonal components of the stable-point elastic dipole tensor is very
different from the other two.

By comparing the results obtained in Models 1 and 2 shown in Figs. 4.1 and 4.2, we deduce
that the variation of Dd,12 with the shear strain is due to the anisotropy of the saddle-point
elastic dipoles.
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In Model 3, the anisotropy of elastic dipole tensors in both the stable and saddle-point
configurations is removed. For vacancies, it corresponds to the same situation as Model 2
because the full elastic dipole tensor is isotropic at the stable point. Whereas, the comparison
between Models 2 and 3 highlights the essential role of the saddle-point elastic anisotropy on
the variation of SIA diffusion coefficient with tetragonal strain.

To conclude, both the elastic anisotropy in the stable and saddle-point configuration of
PDs have non-negligible effects on the PD elastodiffusion.

4.3.4 Interactions of point defects with an elastic strain in Fe

Relying on Eq. (4.9), we calculate the energy resulting from the elastic interactions between
PD (d) and the external strain field, Eel

d , in Fe. The latter depends on the elastic dipole in
the stable configuration, P d. Note that the <110>-dumbbell in a bcc-Fe has six equivalent
configurations; each one associated with a different <110>-direction. From the elastic dipole of
a given <110>-direction, one can deduce the other tensors by applying operations of symmetry
of the crystal to the given one. Considering that all equivalent configurations have the same
energy in a stress-free state, and denoting by P µ

I the elastic-dipole tensor of the configuration
µ, the average dipole of SIA is given by [141]:

P ave
I,ij =

∑
µ exp

(
P µ

I,kl ϵ
ext
kl /kBT

)
P µ

I,ij∑
µ exp

(
P µ

I,kl ϵ
ext
kl /kBT

) . (4.24)

The vacancy has only one configuration. Thus, the corresponding elastic dipole is PV = P sta
V .

Interestingly, the average dipole resulting from isotropic dipoles does not depend on strain.

In order to investigate the anisotropy effect on the elastic PD-strain field interaction energy,
we calculate the interaction energy resulting from anisotropic (Model 1) and isotropic elastic
dipoles (Model 2) defined in Tab. 4.3. The expressions of the elastic interaction energies are
given in Tab. 4.4.

Table 4.4: Elastic dipoles and the corresponding interaction energies deduced from Models 1
and 3.

Model 1: full anisotropic dipoles Model 3: isotropic dipoles

P I P ave
I,ij =

∑6
µ=1 exp

(
P µ,sta

I,kl ϵext
kl /kBT

)
P µ,sta

I,ij∑6
µ=1 exp

(
P µ,sta

I,kl ϵext
kl /kBT

) 1

3
Tr
(
P sta

I
)
I

Eel
I −P ave

I,ijϵ
ext
ij +K Tr(ϵext)Ω −1

3
Tr
(
P sta

I
)
Tr (ϵext) +K Tr(ϵext)Ω

PV P sta
V P sta

V

Eel
V −1

3
Tr
(
P sta

V
)
Tr (ϵext)−K Tr(ϵext)Ω −1

3
Tr
(
P sta

V
)
Tr (ϵext)−K Tr(ϵext)Ω
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In Model 3, we neglect the shear components of the SIA elastic dipole. The resulting
average elastic dipole does not depend on strain. The interaction energy is a function of
the trace of the latter, and it does not depend on the shear components of the strain tensor.
Although we cannot evaluate the difference of Eel

I between Models 1 and 3 without knowing the
values of the strain, we observe that if the three diagonal components of the dipole tensor have
very different values, or the off-diagonal components have relatively large values, the energy
difference between Models 1 and 3 should be significant. Concerning the vacancy, there is
no difference between Models 1 and 3, because at the stable configuration, the corresponding
elastic dipole has no shear component.

4.4 Elastodiffusion in Fe-based alloys

4.4.1 Elastic dipoles of solute atoms and point defects

In the dilute Fe-based alloys, in addition to the elastic dipole of the vacancy and SIA
monomers, we include the elastic dipoles of a solute-PD pair. We consider the Fe-Cr, Fe-Ni,
and Fe-Mn alloys.

From the ab initio calculations of Messina et al. [280], we have the elastic dipole tensors
of the solute-PD pair configurations up to a solute-PD distance equal to a cutting radius (that
is far below the kinetic radius). For the solute-SIA pair, this radius is set to the 5-th nearest
neighbour (5-NN) distance, and for the solute-vacancy pair, it is set to 10-NN one. The elastic
dipoles of PD (d) at the k-NN-distance stable configuration are denoted by P k

Bd. At very large
distance, PD and solute do not interact with each other, and the elastic dipole of the solute-PD
pair is the sum of the mono-solute (Pmono

B ) and the mono-PD (Pmono
d ) dipoles. Since the elastic

interaction of a PD and a solute atom decreases in 1/R3 (with R the solute-PD distance) [141],
for the sake of simplicity, we assume that the elastic dipoles of the PD-solute pairs seating on
k-NN sites (k > 10 for vacancy and k > 5 for SIAs) are given by

P k
Bd = Pmono

B + Pmono
d + (P c

Bd − Pmono
B − Pmono

d )

(
Rc

Rk

)3

, (4.25)

where Ri is the i-NN distance. We set c = 10 for vacancies and c = 5 for SIAs.

Concerning the saddle-point energies associated with PD jumps between configurations
beyond the cutting radius, the corresponding saddle point energy is obtained from a kinetically-
resolved activation (KRA) barrier approximation [281]. We deduce the saddle-point energy from
the stable-point energies of the initial and final configurations. Note that for an atomic jump
from the k-NN to the l-NN stable configuration in a strain field, ϵ(r), the modification of the
migration barrier, ∆Ek→l

Bd , is given by −
[
(P k→l

Bd )ij − (P k
Bd)ij

]
ϵij(r).

The elastic dipoles tensors of the solute atoms in different alloys are listed in Tab. 4.5. The
elastic dipole tensors of the solute-PD pairs in Fe-based alloys are listed in Appendix A.

From the elastic dipole database, we calculate the ensemble average of elastic dipoles

141



of the PD-solute pairs, and deduce the relaxation volumes of the dumbbell in Fe-B (B ≡
Cr, Ni, and Mn) alloys. Note that the relaxation volume of the single mixed configuration of
the dumbbell is smaller than the sum of the dipoles of a mono-dumbbell and a mono-solute
atom, which are far from each other. Therefore, under volumetric compression (ϵv < 0), the
dumbbell is more likely to be close to the solute, whereas under volumetric tension (ϵv > 0), it
is probably far from the solute.

It is worth noting that, in Fe-Cr and Fe-Ni alloys, for a dumbbell jump connecting the
configurations k and l, the trace of the SIA elastic dipoles at saddle point (Tr

(
P k→l

BI
)
) are

almost systematically larger than that of the initial stable point (Tr
(
P k

BI
)
). For instance, the

Fe-Cr dumbbell jump shows a difference of about +1.5 eV. The migration barrier of the Fe-Cr
dumbbell decreases with volumetric strain. In contrast, the migration barrier of the mono-
dumbbell increases with volumetric strain. In Fe-Mn alloy, the trace of the SIA elastic dipole
at saddle point is relatively close to the one at stable point. Hence, the variation of LII with
strain must be less visible than those in the other two Fe-based alloys.

Table 4.5: Elastic dipoles of solute atoms in Fe-based alloys (eV).

Fe-Cr Fe-Ni Fe-Mn
3.25 I 3.73 I 3.26 I

4.4.2 Elastodiffusion properties in Fe-based alloys
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Figure 4.3: SIA-mediated transport coefficients as a function of the external strains. These
coefficients are given in 10−18 m2/s. The results are obtained at 400 K. The SIA concentration
is set to 10−6 and the solute nominal concentration is set to 10−3.
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Figure 4.4: Vacancy-mediated transport coefficients as a function of the external strains. These
coefficients are given in 10−22 m2/s. The results are obtained at 400 K. The vacancy concentra-
tion is set to 10−6 and the solute nominal concentration is set to 0.1 at.%.
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Figure 4.5: Solute-PD pair fractions as a function of the external strains. The results are ob-
tained at 400 K. The vacancy concentration is set to 10−6 and the solute nominal concentration
is set to 0.1 at.%.

We apply the KineCluE code to the calculation of the transport coefficients Lαβ,ij under
the three elementary strains ϵv, ϵt, and ϵs (defined in Section 4.2.3) for Fe-Cr, Fe-Ni, and Fe-Mn
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alloys. Note that α and β indicate the chemical species B, V, or I; i and j are for the spatial
coordinates. The results related to SIAs are shown in Fig. 4.3 and the ones of vacancies are
shown in Fig. 4.4. For a more complete understanding of these results, we plot in Fig. 4.5 the
variation of the solute-pair concentration with strains, at 0.1 at.% nominal concentration of
solute.

First we consider the SIA-mediated transport coefficients.

• In Fe-Cr, the variation of LII,11 with ϵv is relatively close to the one in Fe: it decreases
with strain. However, for ϵv < 0, there is a slight difference of between Fe-Cr and Fe. As
expected from the elastic dipoles, the dumbbell is more likely to be close to the solute
atom, i.e., the Cr-SIA pair fraction is higher (cf. Fig. 4.5). Hence, the dumbbell diffusion
in Fe-Cr deviates from the mono-dumbbell in Fe. The variation of LII,12 with shear strain,
and the variation of LII,11 and LII,22 with tetragonal strain are similar to those in Fe. Note
that LBI,ij and LI

BB,ij are directly related to the solute-SIA pair concentration. The latter
decreases with ϵv, while it is not sensitive to ϵs and ϵt.

• In Fe-Ni, the variation of LII,11 with the volumetric strain is different for ϵv < 0 and
ϵv > 0. Under compression (ϵv < 0), the solute-pair fraction is relatively high. Since
the migration barrier of SIA is lower close to Ni, LII,11 increases with ϵv. Under tension
(ϵv > 0), LII,11 decreases with ϵv as the mono-dumbbell. The variations of LII,ij with shear
and tetragonal strains are similar to those in Fe. Since the mixed-dumbbell configuration
in Fe-Ni alloy is not stable, LBI,ij and LI

BB,ij are relatively small, and their variations with
strains are not significant.

• In Fe-Mn, as expected from their elastic dipoles, the change of LII,ij with strain is relatively
small. The variations of LBI,ij and LI

BB,ij with volumetric and tetragonal strains are small
as well. However, LBI,12 and LI

BB,12 notably change with the shear strain.

Here we consider the vacancy-mediated transport coefficients.

• In Fe-Cr, the variations of LVV,ij with strains are almost the same as those in Fe. Since
the Cr-vacancy binding is very weak (cf. Tab. 3.2), LBV,ij and LV

BB,ij are relatively small,
and their variations with strains are insignificant.

• In Fe-Ni, the absolute values of LVV,ij are smaller than those in Fe because the Ni-vacancy
binding is large; thereby the vacancy diffusion is slowed down. However, the variation
of LVV,ij with strains are similar to those in Fe. LBV,11 and LV

BB,11 decrease with the
volumetric strain, and LBV,12 and LV

BB,12 decrease with the shear strain, while LBV,ij and
LV

BB,ij are not sensitive to the tetragonal strain.

• In Fe-Mn, the variation of Lαβ,ij with external strains are similar to those in Fe-Ni alloy,
though the values of Lαβ,ij are different in these two alloys because the solute-vacancy
binding energies are different.
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4.5 Sink strength and bias factors of an edge-dislocation

In this section, we numerically solve the diffusion equations of PDs (Eq. (1.29)) and solute
atoms in the strain field generated by an edge-dislocation. Fluxes of PDs and solute atoms are
given by Eq. (1.66). From the solution of the PD concentration, we deduce the sink strengths
and bias factors from Eq. (1.32) for a Laplace-type boundary condition. Note that analytical
solutions of these equations are available in the most simplified model, which we use to validate
our numerical approach.

4.5.1 Simulation setup: coordinate system and boundary conditions

Since an edge dislocation has translational symmetry along the dislocation line (cf. Fig. 1.5-
(c)), for simplicity, we ignore the diffusion of PDs and solute atoms along the dislocation line.
The 3D diffusion system is projected on the 2D plane perpendicular to the dislocation line.
Therefore, we use a polar coordinate system centered on the dislocation (cf. Fig. 4.6). The
simulated domain is an annular region with inner radius rc, corresponding to the capture
radius of the dislocation, and the outer radius R. rc is set to 12∥b∥, ensuring that all strains
generated by the dislocation (presented in Section 4.5.2) are within ±1%, in order to be within
the usual range of linear elasticity theory [141]. R is related to the dislocation density ρ by
ρ = 1/πR2. The diffusion equations are solved within this domain. In the following, the index
‘1’ stands for the er direction, ‘2’ for the eθ direction, and ‘3’ for the ez direction.

Figure 4.6: Dislocation geometry. (er, eθ, ez) is the orthonormal basis of the cylindrical coor-
dinate. (er, eθ, ez) is the orthonormal basis of the Cartesian coordinate.

We assume that PDs diffuse fast enough near the dislocation such that PD concentrations
at r = rc are the equilibrium ones. Therefore, the vacancy concentration at the inner radius
writes

Cd(rc, θ) = Ceq
d (rc, θ). (4.26)

In alloys, Ceq
d not only depends on strains, but also on the local solute concentration (see

Eq. (4.8)). Hence, it must be computed adaptively in the simulation. Under equilibrium con-
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ditions, we apply the equilibrium vacancy concentration at the outer boundary:

Cd(R, θ) = Ceq
d (R, θ). (4.27)

Under irradiation, a bulk supersaturation of PDs is produced. We set the PD concentration at
the outer radius to

Cd(R, θ) = Cb
d , (4.28)

where Cb
d is the bulk concentration of PDs, which can be several orders of magnitude larger than

the equilibrium one, depending on the irradiation conditions. In our simulation, we estimate
the supersaturated bulk concentration after a mean-field rate theory (Eq. (1.23)).

In Fe-based alloys, we do not expect solute atoms to be absorbed or created by the dislo-
cation. Therefore, the normal flux of solute atoms at the inner boundary is set to zero:

er · JB(rc, θ) = 0. (4.29)

We set the bulk solute concentration to Cb
B which is changed adaptively in the simulation such

that the nominal solute atom concentration CB equals to a predefined value. If not specified,
the latter is set to 0.1 at.% such that the local solute concentration in the entire simulated
domain does not exceed the dilute limit of ∼1 at.%:

CB(R, θ) = Cb
B. (4.30)

Note that our simulation is in the reference of the dislocation, which is always assumed
to be in the center of the simulation domain. The dislocation motion is ignored because we
assume that the establishment speed of the solute segregation profile is much faster than the
dislocation climb velocity.

4.5.2 Sink properties: stress and strain field of an edge dislocation

We express the stress-strain field generated by an edge dislocation as a function of the elas-
tic constants and position relative to the dislocation line. We show how the elastic anisotropy
affect the external strain field.
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Figure 4.7: The strain field for (a) ϵ11, (b) ϵ22, and (c) ϵ12.
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The analytical expression of the anisotropic stress field generated by an edge-dislocation
in a cubic crystal is given by [282]:

σ11 = −∥b∥
I

2π

y[(3 +H)x2 + y2]

(x2 + y2)2 +Hx2y2
, (4.31)

σ22 = ∥b∥
I

2π

y(x2 − y2)

(x2 + y2)2 +Hx2y2
, (4.32)

σ12 = ∥b∥
I

2π

x(x2 − y2)

(x2 + y2)2 +Hx2y2
, (4.33)

σ33 = ν(σ11 + σ22), (4.34)
σ13 = σ23 = 0, (4.35)

where

I = (C11 + C12)

[
C44(C11 − C12)

C11(2C44 + C11 + C12)

]1/2
, (4.36)

and
H =

(C11 + C12)(C11 − C12 − 2C44)

C11C44

. (4.37)

Note that, when C44 = (C11 − C12)/2 is satisfied, we recover the isotropic expression of the
stress field [129]. From the stress field expression and the general Hooke’s law (Eq. (4.1)),
we deduce the strain field, ϵ. We plot in Fig. 4.7, the strain field generated near an edge
dislocation. The lattice is in compression (ϵ11 < 0) in the radial direction (er) in the area
where the coordinate θ ∈ [0◦, 180◦]. Therefore, this area is called the compressive region of the
dislocation. Conversely, the area where θ ∈ [180◦, 360◦] corresponds to the tensile region. In
the area where the radial compression is great (θ = 45◦, 135◦), the tension in the eθ direction
is great. Conversely, in the area of great radial dilatation (θ = 225◦, 315◦), the compression in
the eθ direction is great. Regarding the shear strain, ϵ12, it is great at θ = 0◦ and 180◦.

4.5.3 Pure Fe

We start this section with an assessment of the numerical approach, by relying on isotropic
models of strain and PD elastic dipoles, for which there are analytical solutions of the sink
strength and bias factor. Then, we proceed to a numerical simulation of more realistic models.
We investigate the effect of the elastic anisotropy of strain and PDs on the sink strength and
the bias factor of an edge dislocation in Fe.

4.5.3.1 Assessment of the numerical approach

Analytical solutions of the sink strength and the bias factor are available when the following
approximations are made: (i) the material (Fe) is perfectly isotropic (C44 = (C11 − C12)/2);
(ii) PDs are perfectly spherical and isotropic (spherical inclusion (SI) approximation); (iii)
PDs relaxation energy (elastic dipole contribution) is considered only; (iv) elastodiffusion is
neglected. In such situation (Model A0), the solution is given by Eq. (1.41). In order to assess
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our numerical approach, we solve the diffusion equation using the same approximations and
boundary conditions. The results are plotted in Fig. 4.8. The numerical solution of Model A0
is in excellent agreement with the analytical solution (Eq. (1.41)). This comparison reinforces
our numerical approach.
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Figure 4.8: Sink strength for (a) SIAs (k2
I ) and (b) vacancies (k2

V), and (c) sink bias (Bs) of an
edge-dislocation as a function of densities (ρ) at T = 400K. The numerical results are obtained
with different approximations on elasticity properties of Fe and PDs.

4.5.3.2 Effect of the elastic anisotropy of matrix and the PDs

We solve the same diffusion equation by including one by one the elastic anisotropy contri-
butions (see Tab. 4.6). The corresponding results are also plotted in Fig. 4.8. In Model A, we
consider the full PD diffusion driving force, as given in Eq. (4.9). In Model B, Fe matrix is not
assumed to be isotropic. Finally, in Model C, we add the PD anisotropy (full elastic dipoles).
Among these models, we expect Model C to be the most realistic one. Note that the effect of
the elastodiffusion is ignored in these models. It will be later accounted for in Section 4.5.3.3.

Then, we compare Models A0 and A. k2
I obtained from Model A is smaller than that from

Model A0; whereas k2
V obtained from Model A is slightly larger than that from Model A0.

Therefore, we obtain a significant decrease of the bias factor when the full elastic PD driving
force is accounted for.

We highlight the effects of the elastic anisotropy of Fe on the sink strengths and the bias
factor by comparing the results obtained from Models A and B. In the latter model, the elastic
anisotropy of the matrix leads to a significant increase of the SIA sink efficiency, resulting in
an increase of the dislocation bias factor.
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Table 4.6: Calculation models definition.

Model A0 Model A Model B Model C

Elastic property of PDs Spherical Spherical Spherical
Complete

description by
elastic dipoles

Isotropic Isotropic Isotropic Anisotropic

Elastic property of Fe Isotropic Isotropic Anisotropic Anisotropic

Elastic interaction Eq. (1.39) Eq. (4.9) Eq. (4.9) Eq. (4.9)

Analytical solution Eq. (1.41) / / /

Furthermore, in order to highlight the role of PD anisotropy, we compare the results from
Models B and C. A full description of PD anisotropy leads to a decrease of k2

V and k2
I , leading

to a decrease of the bias factor.

4.5.3.3 Effect of the elastodiffusion

We add to the diffusion solution the variation of PD migration energies with strain, i.e., the
elastodiffusion. In order to highlight the PD anisotropy effect on the diffusion properties, sink
strength, and the bias factor, we perform simulation of PD diffusion by means of the full elastic
dipole tensors or the simplified ones (listed in Tab. 4.3). The results are plotted in Fig. 4.9.
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Figure 4.9: Sink strength for (a) SIAs (k2
I ) and (b) vacancies (k2

V), and (c) sink bias factor (Bs)
of an edge-dislocation as a function of the dislocation density (ρ) at T = 400K. The results are
obtained from Models 1, 2, and 3 of PD elastic dipoles listed in Tab. 4.3.
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Figure 4.11: Stream lines of SIA flux obtained from (a) Model 1, (b) Model 2, and (c) Model
3, and of vacancy fluxes in (d) Model 1, (e) Model 2, and (f) Model 3 at T = 400K. The
dislocation density is set to 3.7× 1014 m−2 (R = 10 rc). The width of the lines are proportional
to the norm of the flux. The color bar represents the norm of the flux factorized by the
maximum flux among the results obtained from the three models, with Jmax

I = 0.16 nm−2s−1

and Jmax
V = 0.12 nm−2s−1.

First, we consider Models 1 and 2. By assuming that PDs are isotropic at the saddle point,
k2

V is significantly increased, whereas, the change of k2
I is small, leading to a decrease of the

bias factor. Such an effect of saddle-point anisotropy of PDs has already been highlighted in
previous studies [132, 140, 283–285]. As expected from the elastodiffusion properties presented
in Section 4.3.3, the effect of a shear strain on sink efficiencies and bias factor in the isotropic
Model 2 is very small, whereas it is great in the fully anisotropic Model 1. This resulting in
the difference of the sink efficiencies and the bias factor in these two situations.

By comparing Models 2 and 3, we observe that k2
I is notably decreased if SIA elastic dipoles

are assumed to be isotropic at the stable point. Note that, k2
V of these two models is almost the
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Figure 4.12: Atomic fraction maps of SIAs in (a) Model 1, (b) Model 2, and (c) Model 3, and
of vacancies in (d) Model 1, (e) Model 2, and (f) Model 3 at T = 400K. The dislocation density
is set to 3.7× 1014 m−2 (R = 10 rc).

same because vacancies are isotropic at the stable point. As a result, the bias factor obtained
from Model 3 is smaller than that from Model 2. The impact of the stable-point anisotropy of
SIAs on the sink efficiency is two-fold. It affects the elastodiffusion behaviors, and the elastic
interaction energy between SIAs and the edge dislocation. The variation tendencies of the
diffusion coefficient with tetragonal strains obtained from these models are very different (see
Section 4.3.3). Moreover, the large effect of a tetragonal strain was already present in the elastic
interaction of SIAs with strain (see Fig. 4.10). The domain of Model 2 where the interaction
energy is negative, is larger than that of Model 3. This is because when there is no off-diagonal
coefficients of the elastic dipole, these is a coupling with the shear strain, leading to a reduction
of the elastic interaction.

In order to achieve a full understanding of the PD-anisotropy effects, we investigate the
fluxes of PDs and their concentration profile near an edge dislocation.

We plot in Fig. 4.11 the stream lines of the fluxes of SIAs and vacancies. Most of SIAs and
vacancies flow to the tensile region of the dislocation. The comparison between Models 1 and 2
shows that the saddle-point anisotropy affects the PD trajectories. In Model 2, more vacancies
enter the dislocation along the Burgers vector direction (±ex). Regarding SIAs, differences
between both models are smaller because the relative contribution of the deviatoric component
of the stable-point elastic dipole tensors (i.e., the ratio between the off-diagonal components
and the diagonal ones) is smaller than that of vacancies. The comparison between Models 2 and
3 shows that the SIA trajectories are slightly affected by the stable-point anisotropy because
the relative contribution of the deviatoric component of the stable-point elastic dipole tensor
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is much smaller than that of the saddle-point tensor. The maps of PD atomic fractions are
plotted in Fig. 4.12. From these maps, we obtain the shapes and the sizes of the PD-depleted
zones near the edge dislocation. SIAs and vacancies are mostly depleted in the compressive
region. The shapes of the SIA-depleted zone are similar in the three models. However, the size
of this zone increases with the SIA anisotropy. Regrading vacancy, the vacancy anisotropy at
the saddle point affects the shape of the vacancy-depleted zone.

4.5.3.4 Effect of temperature

Table 4.7: Sink strength and bias factor of dislocations in Fe. The results are obtained at 400,
500, 600, and 700 K. The dislocation density is set to ρ = 3.7× 1014 m−2.

T [K] 400 500 600 700
k2

I /ρ 3.54 3.27 3.12 3.02
k2

V/ρ 2.92 2.85 2.82 2.79
Bs = 1− k2

V/k
2
I 0.18 0.13 0.10 0.07

In Tab. 4.7, we present sink strengths and bias factors obtained at different temperatures.
Both quantities decrease with temperature. An increase of temperature decreases the impact
of both chemical and elastic interactions, because all of them are divided by kBT .

4.5.4 Fe-based alloys

4.5.4.1 Effect of solute atoms

Table 4.8: Sink strength and bias factor in Fe and Fe-based alloys. The results are obtained
with and without strains at 400 K. The dislocation density is set to ρ = 3.7× 1014 m−2.

Fe Fe-Cr Fe-Ni Fe-Mn
k2

I /ρ 2.76 2.74 2.75 3.95
Without strain k2

V/ρ 2.76 2.77 2.97 3.27
Bs 0 −0.01 −0.08 0.17
k2

I /ρ 3.54 3.60 3.80 4.54
With strain k2

V/ρ 2.92 2.94 3.49 3.60
Bs 0.18 0.18 0.08 0.21

In Fe-based binary alloys, the transport coefficients depend on the local concentration
of the solute atoms. Therefore, we solve the solute diffusion equation together with the PD
diffusion equations. In this section, we present the calculated PD concentration field in Fe-
based alloys only. By comparing with the behavior of PDs in Fe, we investigate the effects of
solute atoms on the PD flux, sink strength, and bias factor.

The resulting sink strengths and bias factors of Fe-Cr, Fe-Ni, and Fe-Mn alloys are listed
in Tab. 4.8. We compare the results with those obtained in Fe. When no strain is applied, the
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presence of Cr atoms does not affect the sink strengths and bias factor. Whereas, in Fe-Ni, the
sink strength for vacancies is increased by ∼20%, leading to a slightly negative bias factor. In
Fe-Mn, the sink strengths for both SIAs and vacancies are significantly increased, resulting in
a positive sink bias.

When strain is applied, Cr atoms slightly increases the sink strengths for SIAs and va-
cancies. Whereas, the bias factor is almost equal to the Fe one. In Fe-Ni, the sink strength
for vacancies is ∼20% higher than that of Fe, and the sink strength for SIAs is ∼10% higher
than that of Fe. Thus, the bias factor is about one third of the one of Fe. Comparing Fe and
Fe-Mn alloy, the presence of Mn atoms notably increases the sink strengths for SIAs (∼40%)
and vacancies (∼20%). Hence, the bias factor is more than twice of the one of Fe. For a more
complete understanding of this solute effect in strained systems, we consider the trajectories
and distribution of the PDs.

First we plot in Fig. 4.13 the stream lines of PDs near an edge dislocation. We observe that
the trajectories of PDs in Fe and the investigated Fe-based alloys are very similar. However,
in Fe-Mn, more SIAs enter the dislocation through the ±ex direction than that in Fe and the
other Fe-based alloys. This is because, in Fe-Mn, the variation tendencies of the transport
coefficients with shear strains are very different from those in other systems (as presented in
Section 4.4.2).

We plot in Fig. 4.14 the atomic fraction maps of PDs in Fe and the investigated Fe-based
alloys. The size and shape of the vacancy-depleted zones in Fe and Fe-based alloys are similar.
Regarding SIAs, we see that the size of SIA-depleted zones in Fe-Cr and Fe-Ni alloys are almost
the same as that in Fe. Whereas, the SIA-depleted zone in Fe-Mn alloy is notably smaller than
that in Fe because the SIA-Mn binding interaction is great.
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Figure 4.13: Stream lines of the PDs in Fe and the various Fe-based alloys at T = 400K. The
dislocation density is set to 3.7× 1014 m−2 (R = 10 rc). The width of the lines are proportional
to the norm of the flux. The color bar represents the norm of the flux normalized by the
maximum flux in the four systems, with Jmax

I = 0.21 nm−2 · s−1 and Jmax
V = 0.14 nm−2 · s−1.
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Figure 4.14: Atomic fraction maps of PDs in Fe and the various Fe-based alloys at T = 400K.
The dislocation density is set to 3.7×1014 m−2 (R = 10 rc). The color bar represents the atomic
fraction normalized by the bulk PD concentration.

4.5.4.2 Effect of temperature
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Figure 4.15: Sink strength for (a) SIAs (k2
I ) and (b) vacancies (k2

V), and (c) sink bias (Bs) of an
edge-dislocation in Fe and Fe-based alloys as a function of temperature (T ). The dislocation
density set to 3.7× 1014 m−2 (R = 10 rc). The nominal solute concentration CB = 0.1 at.%.

We plot in Fig. 4.15 the sink strengths and bias factors of dislocations in Fe and Fe-based
alloys obtained at various temperatures. The variation tendencies of the PD sink strengths in
Fe-based alloys are similar to those in Fe: the sink strengths for vacancies and SIAs decrease
with temperature. Whereas, the variation of the bias factors with temperature is very different.
In Fe-Cr, the bias factor decreases with temperature, and it is very close to the one in Fe at
every temperature. In Fe-Ni, the bias factor increases with temperature, and it is nearly the
same as the one in Fe at 700 K. Finally, in Fe-Mn alloy, the bias factor is notably higher than
the one in Fe at every temperature.
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4.5.4.3 Effect of solute concentration
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Figure 4.16: Sink strength for (a) SIAs (k2
I ) and (b) vacancies (k2

V), and (c) sink bias (Bs) of
an edge-dislocation in Fe-based alloys as a function of nominal solute concentration (CB). The
results are obtained at 600 K. The dislocation density set to 3.7× 1014 m−2 (R = 10 rc).

We plot in Fig. 4.16 the sink strengths and bias factors of dislocations in the various
Fe-based alloys obtained at different nominal solute concentrations. In Fe-Cr, the PD sink
strengths slightly decrease with the nominal solute concentration, CB. Whereas, in Fe-Ni and
Fe-Mn alloys, the PD sink strengths increases with CB. As for the bias factor, it decreases
with CB in the three investigated alloys. It is worth noting that, in Fe-Ni alloy, the bias factor
becomes negative when CB > 0.2 at.%. Therefore, solute atoms may change the sign of a bias
factor.

4.6 Radiation-induced segregation at an edge disloca-
tion in Fe-based alloys

In this section, we investigate the equilibrium segregation and the RIS of solute atoms near
an edge dislocation.

4.6.1 Equilibrium distribution of solute atoms

In this section, we compute the equilibrium solute segregation resulting from the solute-
dislocation elastic interactions. In principle, an equilibrium segregation is also governed by a
modification of the energy landscape close to the sink, that is neglected here. In the dilute
limit, we do not account for the interactions between solute atoms. Thus, there is no effect
of the alloy ordering tendency on the equilibrium segregation profile. Therefore, the present
equilibrium segregation model only accounts for the atom size effects and their interaction
with the dislocation strain field. The obtained solute distribution are plotted in Fig. 4.17.
As expected from the solute formation volumes, the solute atoms have a positive size effect.
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Figure 4.17: Initial distribution of solute atoms in the various Fe-based alloys at different
temperatures. The irradiation flux ϕ is set to 10−5 dpa/s. The dislocation density is set to
3.7× 1014 m−2 (R = 10 rc). The nominal solute concentration CB = 0.1 at.%.

Hence, the three of them are enriched in the tensile region and depleted in the compressive
region. The highest segregated atomic fraction of solute atoms is about twice of the bulk
concentration, and the lowest one is about half of the bulk concentration. As expected, the
solute segregation tendencies decrease with temperature.

4.6.2 Steady-state distribution of solute atoms under irradiation

Here we consider the radiation-induced steady-state distribution of the solute atoms near
the dislocation. We plot in Fig. 4.18 the maps of solute B atomic fraction (B ≡ Cr, Ni, Mn) near
the dislocation. The results are obtained for different diffusion models: (a) no strain is applied;
(b) the elastodiffusion is ignored and only the PD–strain field interactions are considered; and
(c) elastodiffusion and PD–strain field interactions are considered.
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Figure 4.18: Atomic fraction maps of solute atoms B ≡ Cr, Ni, Mn obtained in the various
alloys and from different models. The results are obtained at T = 400K and ϕ = 10−5 dpa/s.
The dislocation density is set to 3.7× 1014 m−2 (R = 10 rc). The nominal solute concentration
CB = 0.1 at.%.

When no strain is applied, the three solute atoms are enriched at the dislocation under the
investigated irradiation conditions. This is consistent with the analytical results of Section 3.5.2,
for which the strain effect were neglected.

The presence of the PD-strain field interaction changes the steady-state distribution of the
solute atoms. The solute concentration in the tensile region of the dislocation is higher than
that in the compressive region.

The elastic strain globally increase solute RIS in Fe-Cr and Fe-Mn alloys. In Fe-Ni, the
solute RIS is significantly increased by the contribution of elastodiffusion, which may be much
larger than the elastic contribution to the PD thermodynamic driving force. For a better
understanding of the elastodiffusion effects on the RIS, we compare the solute trajectories
obtained from these three models (cf. Fig. 4.19). The PD-strain field interactions dramatically
change the solute trajectories. Moreover, when the elastodiffusion is considered, more solute

157



7rc

(a) No s rain

Fe-Cr

7rc

(b) Elas ic in erac ion

7rc

(c) Elas ic in erac ion 
+ elas odiffusion

JB
Jmax
B

7rc

Fe-Ni

7rc 7rc

7rc

Fe-Mn

7rc 7rc

⃗ex

⃗ey

⟶⟶

⟶⃗2

⟶⃗4

⟶⃗6

⟶⃗8

1⃗⟶

Figure 4.19: Stream lines of solute atoms B ≡ Cr, Ni, Mn obtained from different models: (a)
no elastodiffusion and (b) complete elastodiffusion. The results are obtained at T = 400K
and ϕ = 10−5 dpa/s. The dislocation density is set to 3.7 × 1014 m−2 (R = 10 rc). The
nominal solute concentration CB = 0.1 at.%. The line width is proportional to the norm of
the flux. The color bar represents the norm of the flux factorized by the maximum flux, with
Jmax

Cr = 1.1× 10−3 nm−2s−1, Jmax
Ni = 3.8× 10−3 nm−2s−1, and Jmax

Mn = 9.9× 10−2 nm−2s−1.

atoms enter the dislocation through the directions associated with θ = 45◦ and 135◦, whereas
less solute atoms enter the dislocation through the directions associated with θ = 225◦ and
315◦.

The solute RIS amount can be deduced from the steady-state solute distribution. By
analogy with the Gibbs formalism of interface excess quantities (Eq. (3.19)), we define the
solute concentration excess at dislocations by the following integral:

SB =

∫ R

rc

∫ 2π

0

[
CB(r, θ)− Cb

B
]
r dθ dr. (4.38)

In Tab. 4.9, we present the solute RIS amounts normalized by the area of the investigated
domain, SB/π(R

2 − r2c), of the various Fe-based alloys. The presence of the PD-strain field
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Table 4.9: Solute radiation-induced segregation amounts of the Fe-Cr, Fe-Ni, and Fe-Mn alloys.
These quantities are normalized by the area of the investigated domain, and given in at.%. The
results are obtained at 400 K. The dislocation density ρ = 3.7 × 1014 m−2 (R = 10 rc). The
nominal solute concentration CB = 0.1 at.%.

(a) No strain (b) Elastic interaction (c) Elastic interaction
+ elastodiffusion

Fe-Cr 0.011 0.013 0.014
Fe-Ni 0.003 0.002 0.010
Fe-Mn 0.011 0.013 0.014

interaction slightly increases the solute RIS amounts in Fe-Cr and Fe-Mn alloys. The elastod-
iffusion significantly increases the Ni RIS amount. Whereas, it slightly decreases the Mn RIS
amount, and almost does not affect the Cr RIS amount. The change of RIS amount is much
less important at higher temperature. For instance, at 600 K, the normalized solute segregation
quantity (SB/π(R

2− r2c)) is 0.073 at.% without strains, while it is 0.089 at.% when the elastod-
iffusion and elastic interactions are accounted for. This difference should be even smaller at
higher temperatures.

Table 4.10: Solute radiation-induced segregation amounts of the Fe-Cr, Fe-Ni, and Fe-Mn
alloys. These quantities are normalized by the area of the investigated domain, and given in
at.%. The results are obtained at 400, 500, and 600 K. The dislocation density ρ = 3.7×1014 m−2

(R = 10 rc). The nominal solute concentration CB = 0.1 at.%.

T [K] 400 500 600
Fe-Cr 0.014 0.011 0.009
Fe-Ni 0.010 0.006 0.005
Fe-Mn 0.014 0.014 0.014

We plot in Fig. 4.20 the steady-state solute distribution near an edge dislocation in the
various Fe-based alloys at different temperatures. The corresponding solute RIS amounts are
presented in Tab. 4.10. The bulk solute concentration get closer to the nominal concentra-
tion with temperature. In Fe-Cr, the depletion of Cr atoms at the compressive side increases
with temperatures. Whereas, the enrichment of Cr atoms at the tensile side decreases with
temperature.

In Fig. 4.21, we present the steady-state solute distribution at different nominal solute
concentrations. In Fe-Cr, the depletion of Cr atoms at the compressive side is more important
at higher CCr. Whereas, the enrichment of Cr atoms at the tensile side decreases with CCr.
In Fe-Ni, the size of the solute-enrichment domain increases with CNi. In Fe-Mn, the solute
distribution is not sensitive to the change of CMn. The solute RIS amounts as a function of the
nominal solute concentration are plotted in Fig. 4.22. SCr decreases with CCr, whereas SNi and
SMn increase almost linearly with CB.

159



rc

10rc

(a) 400 K

Fe-Cr rc

10rc

(b) 500 K

rc

10rc

(c) 600 K

log10(CB
Cb

B) 

rc

10rc

Fe-Ni rc

10rc

rc

10rc

rc

10rc

Fe-Mn rc

10rc

rc

10rc

⃗ex
⃗ey

⟶⟶

-0⃗8

-0⃗6

-0⃗4

-0⃗⟶

0⃗0

0⃗⟶

0⃗4

0⃗6

0⃗8

Figure 4.20: Atomic fraction maps of solute atoms B ≡ Cr, Ni, Mn obtained in the various al-
loys and at different temperatures. The results are obtained at ϕ = 10−5 dpa/s. The dislocation
density is set to 3.7× 1014 m−2 (R = 10 rc). The nominal solute concentration CB = 0.1 at.%.

4.7 Summary

Based on the elastic dipoles of PDs, solute atoms, and PD-solute pairs, we calculate (i) the
thermodynamic driving forces of diffusion and (ii) the transport coefficients under an applied
stress-strain field, using the SCMF-based code—KineCluE, in Fe and Fe-B (B ≡ Cr, Mn,
Ni) alloys. From these calculations, we highlight the effects of the matrix elastic anisotropy,
and the stable and saddle-point PD anisotropy on the PD-strain field elastic interactions, the
elastodiffusion, the sink strength, the bias factor, and the solute RIS of an edge dislocation at
steady state.

PD behaviors and solute RIS are very different in Fe and the three investigated alloys.

• In Fe, we have introduced a full formulation of the PD diffusion driving forces, including
the energy change due to the PD relaxation and the work of creating or removing a
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Figure 4.21: Atomic fraction maps of solute atoms B ≡ Cr, Ni, Mn obtained in the various
alloys and at different nominal solute concentrations. The results are obtained at T = 600K
and ϕ = 10−5 dpa/s. The dislocation density is set to 3.7× 1014 m−2 (R = 10 rc).
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Figure 4.22: Solute radiation-induced segregation amounts of the various Fe-based alloys at
600 K as a function of CB. The dislocation density ρ = 3.7× 1014 m−2 (R = 10 rc).
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lattice site. In most previous studies, the latter contribution is ignored. This contribution
reduces the sink bias factor, up to 400% at 400 K for an edge dislocation.

• In Fe-Cr, PD concentration profiles and trajectories near the edge dislocation are similar
to those in Fe. Regarding RIS, a change of sign occurs in the compressive region, as
highlighted in a recent study [286]. Moreover, the RIS amount is slightly increased in
the presence of strain due to an increase of the diffusion driving force and elastodiffusion
effects.

• In Fe-Ni, the fluxes of SIAs towards the edge dislocation are smaller than those in Fe.
Moreover, the dislocation bias is negative when we ignore the strain contribution. When
strain is included, the dislocation bias is positive as long as CNi is below a threshold value
(0.2 at.% at 600 K). Regarding RIS, a dislocation-induced strain significantly increases the
amount of solute segregation (up to 300% at 400 K), mainly due to the elastodiffusion.
The increase of RIS drops almost to zero at temperatures above 600 K. Note that, an
analysis including strain effects of the experimental RIS in ion-irradiated Fe-Ni alloys at
T = 673K should not fundamentally change the results that we have presented in the
previous chapter by relying on a strain-free model of RIS.

• In Fe-Mn, the fluxes of vacancies and SIAs are larger than those in Fe. When the strain
effects are neglected, the Mn atoms lead to a positive dislocation bias. The bias factor is
even greater when strain is applied. It is more than 200% of the one of Fe. Therefore,
the addition of Mn atoms in microstructures with high dislocation density may promote
swelling under irradiation. Regarding the RIS amount under applied strain, it is slightly
larger than the one without strain. RIS increases mainly due to the strain effect on the
diffusion driving forces, whereas, it is nearly not sensitive to the effects of elastodiffusion.

According to the ab initio database of the solute-PD interactions, Cu and Si show strong
binding tendency with vacancies, while no interaction with SIAs. These properties are similar
to those of Ni. Therefore, we expect the solute effects on the concentration profiles of PDs and
solute atoms near an edge dislocation in Fe-Cu and Fe-Si alloys, to be close to those in Fe-Ni. P
atoms, which interact positively with both SIAs and vacancies, should behave like Mn atoms.
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Conclusions and prospects

This work is dedicated to a comprehensive modeling of the Radiation-Induced Segregation
(RIS) phenomenon, including the effects of irradiation and stress on the diffusion properties.
The purpose of this work is first to propose an analytical model to calculate the diffusion
properties including both thermal and athermal mechanisms under irradiation. The second
purpose is to develop a RIS model accounting for the full set of point-defect (PD) reactions and
solute-PD interactions in a dilute binary alloy. Finally, we investigate the elastic and solute
effects on diffusion and RIS properties of PDs and solute atoms in a few dilute Ni- and Fe-based
alloys.

Summary

We start from the atomic-scale modeling of PD and atomic diffusion under irradiation.
The on-lattice frequencies of PD and atomic jumps are modeled as thermally-activated jump
frequencies. Athermal atomic motions triggered by a displacement cascade are modeled as
forced atomic relocations (FARs). Both mechanisms are included in the self-consistent mean-
field (SCMF) theory. An implementation of the extended SCMF theory into the KineCluE
code yields FAR-dependent transport coefficients in agreement with Monte Carlo simulations.
A systematic parametric study is performed to emphasize the effect of FAR distances and the
solute-defect interaction on the diffusion properties of dilute binary model alloys. Then, from
our analytical modeling of the far from equilibrium properties of a fictive two-frequency model
by means of the fluctuation theory [222], we show the extension of the SCMF diffusion theory
to athermal diffusion mechanisms, is actually the first step toward a kinetic modeling of far
from equilibrium alloys.

In addition to the phenomenological transport coefficients, the magnitude of RIS is directly
related to the kinetics of PDs. We derive an analytical model of PD and solute steady-state
RIS profiles accounting for the PD production rate, the SIA-vacancy mutual recombination
reactions, and the overall sink strength of the microstructure controlling the elimination of PDs
at structural defects. The RIS model accounts for the FAR effects, through the modification of
both the thermodynamic driving forces and the transport coefficients. We use the KineCluE
code to compute the latter from the solute-PD binding energies, and PD jump frequencies.
We present a DFT-based investigation of diffusion and RIS properties in a few dilute Ni- and
Fe-based binary alloys, in the form of quantitative temperature/radiation flux/sink strength
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maps. In each of the particular kinetic regimes for which one of the reactions of the PDs is
dominated over the others, we propose an analytical expression of the stationary PD and solute
concentration profiles in the vicinity of a planar extended defect. To account for the effect of
a stress/strain field generated by an edge dislocation on the PD elimination rate and RIS, we
properly define the PD diffusion driving force under applied strain, use the KineCluE code
to calculate the strain-dependent transport coefficients from a DFT database of the PD and
solute elastic dipoles, and solve the elastodiffusion equations by finite difference. We perform
a parametric study by switching off the various anisotropic elastic properties of the matrix
and PDs, in order to highlight the contribution of the elastic anisotropy on the elastodiffusion
properties, the dislocation bias, and RIS.

Concluding remarks

We summarize below the most relevant results obtained in this work.

• Using the extended SCMF theory, we demonstrate that FAR does not produce a simple
additive term to the transport coefficients. When the magnitude of the relocation fre-
quency is in the range of the thermal frequencies, FAR interacts with the thermal diffusion
mechanism, yielding non-symmetric off-diagonal transport coefficients and a solute tracer
diffusion coefficient deviating from a direct sum of the contributions of thermal jumps
and FAR. This deviation increases with the solute kinetic correlations.

• From our analytical RIS models, we show that RIS profiles vary with the chemical nature
of the solute atom, especially for solute RIS profiles which are very alloy-specific. In
general, the RIS of PDs and solutes is favored in the sink domain because PD elimination
at sink is the dominant PD reactions. The comparison between our results and a previous
study [30] highlights the sensitivity of RIS to recombination reactions at low temperature
and sink strength. The effect of FAR on solute RIS is significant at high sink strength:
FAR leads to a sharp decrease of solute RIS, especially in Ni-Cr, Ni-Ti, Fe-Ni and Fe-Cr
alloys. Moreover, the Ni-based alloys are more sensitive to FAR effects than the Fe-based
ones because of higher PD migration barriers in Ni. The calculated solute RIS profiles
in Ni-0.4Ti and Fe-3.3Ni (in at.%) alloys are in good agreement with the experimental
ones, both for the sign and the amount of RIS.

• A direct application of our RIS model is to provide quantitative temperature-shift criteria
for the comparison between neutron and ion irradiation. We emphasize that these criteria
are alloy and kinetic-domain specific. In the case where we may ignore the variation of
sink strength with temperature and dose rate, for instance in alloys with a high sink
density, we rely on the temperature–radiation flux–sink strength maps to deduce the
temperature shifts. Otherwise, in most cases, an estimation of the temperature shift
requires an explicit relationship between the sink strength, temperature, and dose rate.

• The significant anisotropy of the elastic constants in Fe affects the strain field generated
by structural defects. Stable and saddle-point PD anisotropy affects the elastodiffusion
behaviors and the diffusion driving force. These two kinds of anisotropy tend to increase
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the sink strength and change the bias factor of an edge dislocation. Moreover, the dislo-
cation strain field dramatically changes the diffusion trajectories of PDs and solute atoms
and their steady-state distribution. The interplay between solute and strain effects on
diffusion leads to strong modifications of the sink strength and bias. In Fe-Cr, the sign
of RIS is changed in the compressive region. In Fe-Ni, the sign of the dislocation bias is
governed by a competition between solute and strain effects. The former yields a negative
dislocation bias, while the latter yields a positive one. In Fe-Mn, the dislocation bias is
significantly promoted by an addition of Mn (up to 200%).

Prospects

This work provides various prospects.

• The defect production and local recombination within the displacement cascade which do
not involve long range diffusion must be treated at the same level as diffusive fluxes. These
reactions have three contributions, they partially control (i) the solute-point defect cluster
distribution, (ii) the flux coupling, and (iii) the total concentration of point defects. Due
to technical issues, the KineCluE code does not tackle non-conservative reactions such
as the production and elimination of PDs. Hence, we have chosen to introduce different
models of FARs of vacancies in order to treat contributions (i) and (ii) at the same level
as diffusive fluxes. Whereas, we introduce a mean field rate theory model to account
for contribution (iii) at the upper scale. We justify this approach by relying on a dilute
approximation. At the end of the displacement cascade, PDs are well-separated. The
local recombination occurred in the displacement cascade is folded into our FAR models.
Then, the long-range recombination, which requires long-range diffusion, is treated with
the mean-field rate model. For a more exact modeling of the local recombination, we
should introduce this mechanism into the KineCluE code. For instance, we could consider
the configuration of a SIA-vacancy pair below the recombination radius as a dissociated
configuration.

• The analytical two-frequency model of a far from equilibrium system could be applied to
more complex diffusion models. From our KineCluE module dedicated to the modeling of
diffusion mechanisms that do not obey the microscopic detailed balance, we could extend
the code to the computation of higher-rank transport tensors representing the variation
(higher order derivative) of the transport coefficients with respect to the thermodynamic
driving forces. This way, we could build an efficient code for the investigation of far-from-
equilibrium kinetics in alloys.

• Our RIS model has been applied to dilute Fe-based and Ni-based binary alloys. We can
easily apply it to study RIS in any other alloys, provided that one is able to compute
the Onsager transport matrix. Using the same KineCluE code, we could investigate the
impact of multiple solute or PD clusters on RIS.

• Radiation-induced solute enrichment at sinks can exceed the alloy solubility limit and trig-
ger the precipitation of a secondary phase. We could apply different boundary conditions
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on the solute RIS profile to simulate such a radiation-induced precipitation phenomenon,
as for example a backward solute diffusion at sink set to zero, and a matter balance ac-
counting for the precipitate growth. Though a stochastic method such as Atomic Kinetic
Monte Carlo should be used to study the nucleation stage of a precipitation phenomenon.
This method naturally accounts for the concentration fluctuations initiating a precipita-
tion phenomenon.

• The equilibrium segregation of solutes resulting from the interactions of solutes with the
sink other than the elastic interactions, is neglected in our RIS model. We justify this
approximation by assuming that the average width of the RIS profiles is much larger than
that of the equilibrium segregation; thereby the total amount of solute RIS segregation
should not be much affected by the equilibrium segregation. Nevertheless, the solute
concentration at the grain boundary plane or at the dislocation core may be the essential
quantity that determines the mechanical or corrosion-resistance properties of a material.
For a more advanced RIS model, we could perform an ab initio investigation of the solute
segregation energies and then, introduce an equilibrium solute concentration at sink as a
boundary condition of our continuous approach.

• In Chapter 4, we focus on the role of elasticity on solute and PD RIS around an edge
dislocation in a few Fe-based alloys. The phase-field method could be used to effectively
solve the present RIS-diffusion equation, in order to model systems with larger length
scales up to millimeters, and simulate more complex geometries, such as RIS of a sink
population including grain boundaries, interfaces, and dislocation loops. The strong
alloying effects on sink strength and bias that we have highlighted should be taken into
account in irradiation models involving sink strengths.

• A biased absorption of PDs implies a climbing mechanism of the dislocation that is
not explicitly taken into account in our approach. Though solute RIS may affect the
dislocation climb mechanism and vice versa. According to a recent study [286], the
climbing mechanism may affect the solute RIS profiles of a dipole of dislocations. On the
other hand, the dislocation core structure may be changed by solute RIS, thereby affecting
its climbing mechanisms and its efficiency regarding PD absorption. An accelerated
Molecular Dynamics method such as kinetic Activation-Relaxation Technique [287] could
be a useful method to model the interplay between the structural evolution of the sink
and RIS. Though empirical potentials able to reproduce the detailed kinetic properties
of a dilute alloy do not exist yet.
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Appendix A

Elastic dipole tensors of solute-point
defect pairs

In this appendix, we present the elastic dipole tensors of the solute-PD pair configurations
at stable and saddle points in dilute Fe-based alloys. These tensors depend on the direction
of the solute-PD pairs and PD jumps. We give the nomenclature of the solute-dumbbell pair
in Fig. A.1, the dumbbell jumps in Fig. A.2, the stable solute-vacancy pair configurations in
Fig. A.3, and the vacancy jumps in Fig. A.4. These directions correspond to the ones of the
elastic dipole tensors shown in the following tables. The dipoles associated with the other
configuration and jump directions are deduced by applying symmetry operations to the given
ones.

Figure A.1: Solute-SIA pair configurations corresponding to the results of stable-point elastic
dipole tensors listed in Tabs. A.1, A.5, and A.9

The elastic dipoles of solute-SIA pairs in the various Fe-based alloys are listed respectively
in Tab. A.1, Tab. A.5, Tab. A.9 for the stable-point configurations, and respectively in Tab. A.2,
Tab. A.6, Tab. A.10 for the saddle-point configurations. The elastic dipoles of solute-vacancy
pairs in the various Fe-based alloys are listed respectively in Tab. A.3, Tab. A.7, Tab. A.11
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Figure A.2: Solute-SIA pair jumps corresponding to the results of saddle-point elastic dipole
tensors listed in Tab. A.2, A.6, and A.10

Figure A.3: Solute-vacancy pair configurations corresponding to the results of stable-point
elastic dipole tensors listed in Tab. A.3, A.7, and A.11

for the stable-point configurations, and respectively in Tab. A.4, Tab. A.8, Tab. A.12 for the
saddle-point configurations.
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Figure A.4: Solute-vacancy pair jumps corresponding to the results of saddle-point elastic dipole
tensors listed in Tab. A.4, A.8, and A.12

Table A.1: Stable-point elastic dipole tensors of solute-SIA pair configuration i in Fe-Cr (eV).
Only the six independent coefficients of the dipole tensors are presented.

i P 11 P 22 P 33 P 23 P 13 P 12 Tr(P )/3

M 23.99 23.99 25.55 0.00 0.00 4.81 24.51
1a 23.76 23.76 28.59 0.09 -0.09 4.99 25.37
1b 22.91 22.91 27.06 -0.62 -0.62 4.23 24.29
2a 23.99 23.99 28.50 0.00 0.00 4.85 25.49
2b 23.64 23.63 27.78 -0.01 -0.01 4.76 25.02
3a 24.40 24.40 28.49 0.00 0.00 4.73 25.76
3b 24.22 24.06 28.28 0.19 0.02 4.69 25.52
3c 24.54 24.54 27.98 0.00 0.00 5.42 25.69
4a 24.39 24.39 28.57 0.04 -0.04 4.70 25.78
4b 24.55 24.55 28.33 0.04 0.04 4.82 25.81
4c 24.24 24.30 28.42 -0.08 0.05 4.70 25.65
5a 24.38 24.38 28.75 0.16 -0.16 4.53 25.84
5b 23.96 23.96 28.03 -0.15 -0.15 4.17 25.32
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Table A.2: Saddle-point elastic dipole tensors of SIA jumps connecting the configurations i and
j in Fe-Cr (eV). Only the six independent coefficients of the dipole tensors are presented. For
the mixed dumbbell jump, i = j = M.

i j P 11 P 22 P 33 P 23 P 13 P 12 Tr(P )/3

M M 24.65 25.73 24.65 3.76 1.01 3.76 25.01
M 1b 25.15 24.46 25.00 3.19 -0.02 2.90 24.87
1a 2a 25.51 24.75 25.94 3.10 -0.82 2.82 25.40
1a 2b 25.44 24.59 25.77 2.90 -0.61 2.93 25.26
1a 3b 25.47 24.73 25.74 2.81 -0.48 2.97 25.31
1a 3c 25.59 24.85 26.11 3.48 -0.85 3.00 25.51
1b 2b 25.37 24.08 25.20 3.44 -0.24 2.65 24.88
1b 3b 24.97 24.12 25.18 3.19 -0.78 2.64 24.76
1b 5b 24.55 23.72 25.03 2.50 -1.11 2.46 24.43
2a 4c 26.03 24.79 26.20 2.72 -0.67 3.21 25.67
2b 4b 25.48 24.65 26.03 2.80 -0.80 3.02 25.38
2b 4c 25.69 24.50 26.06 2.74 -0.84 3.09 25.42

Table A.3: Stable-point elastic dipole tensors of the i-NN solute-vacancy pair configuration in
Fe-Cr (eV). Only the six independent coefficients of the dipole tensors are presented.

i P 11 P 22 P 33 P 23 P 13 P 12 Tr(P )/3

1 -0.46 -0.46 -0.46 -0.37 -0.37 -0.37 -0.46
2 0.10 -0.27 -0.27 0.00 0.00 0.00 -0.15
3 -0.11 -0.34 -0.34 -0.03 0.00 0.00 -0.26
4 -0.10 -0.23 -0.23 -0.12 -0.06 -0.06 -0.19
5 -0.23 -0.23 -0.23 -0.18 -0.18 -0.18 -0.23
6 -0.01 0.06 0.06 0.00 0.00 0.00 0.04
7 -0.03 -0.05 -0.05 -0.12 0.00 0.00 -0.04
8 0.01 -0.02 0.04 0.00 0.00 -0.04 0.01
9 -0.13 -0.13 -0.13 -0.09 -0.04 -0.04 -0.13
10 -0.26 -0.26 -0.26 -0.11 -0.11 -0.11 -0.26
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Table A.4: Saddle-point elastic dipole tensors of vacancy jumps connecting the i- and j-NN
configurations in Fe-Cr (eV). Only the six independent coefficients of the dipole tensors are
presented. For the solute-vacancy exchange, i = j = 1.

i j P 11 P 22 P 33 P 23 P 13 P 12 Tr(P )/3

1 1 -1.31 -1.31 -1.31 -1.51 -1.51 -1.51 -1.31
1 2 -0.04 -0.23 -0.23 -1.84 1.35 1.35 -0.17
1 3 -0.14 -0.42 -0.42 -1.79 1.23 1.23 -0.33
1 5 -0.35 -0.35 -0.35 -1.99 -1.99 -1.99 -0.35
2 4 0.44 -0.01 -0.01 -1.71 -1.56 -1.56 0.14
3 4 0.27 0.41 0.26 1.55 1.61 -1.52 0.32
3 7 0.60 0.34 0.34 -1.75 -1.59 -1.59 0.43
4 5 0.72 0.67 0.67 -1.85 1.51 1.51 0.69
4 6 0.38 0.32 0.32 -1.60 1.63 1.63 0.34
4 8 0.49 0.33 0.35 1.51 1.59 -1.70 0.39
4 9 0.55 0.41 0.41 -1.73 -1.71 -1.71 0.46
5 7 0.18 0.18 0.24 1.49 1.49 -1.75 0.20
5 10 0.01 0.01 0.01 -1.82 -1.82 -1.82 0.01

Table A.5: Stable-point elastic dipole tensors of solute-SIA pair configuration i in Fe-Ni (eV).
Only the six independent coefficients of the dipole tensors are presented.

i P 11 P 22 P 33 P 23 P 13 P 12 Tr(P )/3

M 25.41 25.41 28.85 0.00 0.00 4.97 26.56
1a 24.71 24.71 29.30 -0.13 0.13 5.24 26.24
1b 25.10 25.10 29.72 0.04 0.04 4.80 26.64
2a 25.58 25.58 29.69 0.00 0.00 4.95 26.95
2b 25.12 24.78 29.10 0.00 0.00 4.63 26.34
3a 26.08 26.08 30.16 0.00 0.00 4.77 27.44
3b 26.11 25.67 29.92 0.11 -0.05 4.59 27.24
3c 25.67 25.67 29.94 -0.01 -0.01 5.03 27.09
4a 26.32 26.32 30.25 -0.01 0.01 4.82 27.63
4b 25.80 25.80 29.41 -0.01 -0.01 4.69 27.01
4c 25.59 25.88 30.07 -0.08 0.00 4.64 27.18
5a 26.13 26.13 30.46 0.11 -0.11 4.57 27.57
5b 26.19 26.19 30.04 -0.01 -0.01 4.80 27.48
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Table A.6: Saddle-point elastic dipole tensors of SIA jumps connecting the configurations i and
j in Fe-Ni (eV). Only the six independent coefficients of the dipole tensors are presented. For
the mixed dumbbell jump, i = j = M.

i j P 11 P 22 P 33 P 23 P 13 P 12 Tr(P )/3

M M 28.68 27.32 28.71 3.69 0.98 3.72 28.24
M 1b 27.44 27.05 28.21 2.48 -0.65 3.78 24.87
1a 2a 27.58 27.41 28.26 3.32 -0.78 2.68 27.75
1a 2b 27.38 26.52 27.41 3.07 -0.95 3.02 27.10
1a 3b 28.22 27.55 28.78 2.56 -0.46 2.58 28.18
1a 3c 27.77 26.27 27.85 3.01 -0.77 2.94 27.30
1b 2b 27.71 27.01 28.25 2.45 -0.95 2.98 27.66
1b 3b 26.83 25.94 29.10 3.08 -0.53 2.35 27.29
1b 5b 26.54 25.70 28.06 3.14 -0.83 2.46 26.77
2a 4c 29.80 28.66 29.73 2.86 -0.55 3.28 29.40
2b 4b 28.07 27.12 28.49 2.74 -0.88 2.98 27.89
2b 4c 28.87 27.33 29.04 2.93 -0.87 2.88 28.41

Table A.7: Stable-point elastic dipole tensors of the i-NN solute-vacancy pair configuration in
Fe-Ni (eV). Only the six independent coefficients of the dipole tensors are presented.

i P 11 P 22 P 33 P 23 P 13 P 12 Tr(P )/3

1 -0.89 -0.89 -0.89 -0.26 -0.26 -0.26 -0.89
2 0.44 0.06 0.06 0.00 0.00 0.00 0.19
3 0.26 0.11 0.11 -0.15 0.00 0.00 0.16
4 0.41 0.31 0.31 -0.01 -0.09 -0.09 0.35
5 0.10 0.10 0.10 -0.24 -0.24 -0.24 0.10
6 0.24 0.39 0.39 0.00 0.00 0.00 0.34
7 0.35 0.41 0.41 -0.13 -0.03 -0.03 0.39
8 0.32 0.30 0.38 0.00 0.00 -0.04 0.33
9 0.28 0.32 0.32 -0.04 -0.03 -0.03 0.31
10 0.47 0.47 0.47 -0.04 -0.04 -0.04 0.47
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Table A.8: Saddle-point elastic dipole tensors of vacancy jumps connecting the i- and j-NN
configurations in Fe-Ni (eV). Only the six independent coefficients of the dipole tensors are
presented. For the solute-vacancy exchange, i = j = 1.

i j P 11 P 22 P 33 P 23 P 13 P 12 Tr(P )/3

1 1 -1.17 -1.17 -1.17 -1.64 -1.64 -1.64 -1.17
1 2 0.30 0.17 0.17 -1.80 1.41 1.41 0.21
1 3 0.05 -0.25 -0.25 -2.15 1.41 1.41 -0.15
1 5 -0.50 -0.50 -0.50 -1.88 -1.88 -1.88 -0.50
2 4 1.50 0.55 0.55 -1.73 -1.50 -1.50 0.86
3 4 0.90 1.00 0.86 1.71 1.60 -1.54 0.92
3 7 0.96 0.84 0.84 -1.89 -1.62 -1.62 0.88
4 5 0.96 0.93 0.93 -1.85 1.54 1.54 0.94
4 6 0.62 0.74 0.74 -1.53 1.59 1.59 0.70
4 8 0.99 0.89 0.90 1.57 1.54 -1.75 0.93
4 9 0.97 0.90 0.90 -1.64 -1.74 -1.74 0.92
5 7 0.72 0.72 0.81 1.48 1.48 -1.77 0.75
5 10 0.45 0.45 0.45 -1.85 -1.85 -1.85 0.45

Table A.9: Stable-point elastic dipole tensors of solute-SIA pair configuration i in Fe-Mn (eV).
Only the six independent coefficients of the dipole tensors are presented.

i P 11 P 22 P 33 P 23 P 13 P 12 Tr(P )/3

M 23.87 23.87 27.20 0.00 0.00 4.65 24.98
1a 24.96 24.96 30.22 -0.24 0.24 5.50 26.72
1b 23.75 23.75 27.71 -0.50 -0.50 4.43 25.07
2a 25.42 25.42 29.49 0.00 0.00 4.90 26.78
2b 24.59 24.58 29.01 0.00 0.00 4.86 26.06
3a 25.66 25.66 29.80 0.00 0.00 4.77 27.04
3b 25.64 25.11 29.39 0.15 0.03 4.64 26.71
3c 25.44 25.44 29.88 -0.01 -0.01 5.19 26.92
4a 25.81 25.81 30.08 0.01 -0.01 4.70 27.23
4b 25.76 25.76 28.86 0.01 0.01 4.75 26.79
4c 25.30 25.69 29.90 -0.08 0.12 4.77 26.96
5a 25.78 25.78 30.28 0.13 -0.13 4.57 27.28
5b 25.18 25.18 29.02 -0.16 -0.16 4.27 26.46
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Table A.10: Saddle-point elastic dipole tensors of SIA jumps connecting the configurations i
and j in Fe-Mn (eV). Only the six independent coefficients of the dipole tensors are presented.
For the mixed dumbbell jump, i = j = M.

i j P 11 P 22 P 33 P 23 P 13 P 12 Tr(P )/3

M M 25.38 24.49 25.38 3.05 -0.45 3.05 25.02
M 1b 25.43 24.08 25.41 3.09 -0.83 2.53 24.97
1a 2a 25.22 24.89 25.92 3.10 -0.67 2.98 25.34
1a 2b 25.87 25.02 26.39 3.49 -0.95 2.92 25.76
1a 3b 26.59 26.45 27.24 3.07 -0.86 2.78 26.76
1a 3c 26.19 25.00 26.92 3.24 -0.80 3.06 26.04
1b 2b 25.34 24.00 24.80 3.16 -0.40 2.39 24.71
1b 3b 24.18 23.47 25.59 3.50 -0.79 2.04 24.41
1b 5b 25.99 25.37 27.19 2.88 -1.32 1.85 26.18
2a 4c 23.48 22.17 23.77 2.84 -0.63 2.71 23.14
2b 4b 26.40 26.16 27.48 2.85 -0.95 3.02 26.68
2b 4c 26.94 25.52 27.43 3.01 -1.11 3.04 26.63

Table A.11: Stable-point elastic dipole tensors of the i-NN solute-vacancy pair configuration in
Fe-Mn (eV). Only the six independent coefficients of the dipole tensors are presented.

i P 11 P 22 P 33 P 23 P 13 P 12 Tr(P )/3

1 -1.16 -1.16 -1.16 -0.57 -0.57 -0.57 -1.16
2 0.44 -0.38 -0.38 0.00 0.00 0.00 -0.11
3 0.03 -0.13 -0.13 -0.04 0.00 0.00 -0.07
4 -0.09 -0.34 -0.34 -0.04 -0.09 -0.09 -0.25
5 -0.12 -0.12 -0.12 -0.24 -0.24 -0.24 -0.12
6 -0.03 0.05 0.05 0.00 0.00 0.00 0.03
7 0.28 0.26 0.26 -0.17 -0.04 -0.04 0.27
8 0.09 0.02 0.10 0.00 0.00 -0.04 0.07
9 0.00 0.01 0.01 -0.10 -0.02 -0.02 0.01
10 -0.01 -0.01 -0.01 -0.11 -0.11 -0.11 -0.01
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Table A.12: Saddle-point elastic dipole tensors of vacancy jumps connecting the i- and j-NN
configurations in Fe-Mn (eV). Only the six independent coefficients of the dipole tensors are
presented. For the solute-vacancy exchange, i = j = 1.

i j P 11 P 22 P 33 P 23 P 13 P 12 Tr(P )/3

1 1 -1.54 -1.54 -1.54 -1.78 -1.78 -1.78 -1.54
1 2 0.01 -0.66 -0.66 -1.92 1.17 1.17 -0.44
1 3 -0.30 -0.61 -0.61 -2.16 0.97 0.97 -0.50
1 5 -0.42 -0.42 -0.42 -2.23 -2.23 -2.23 -0.42
2 4 1.10 -0.20 -0.20 -1.74 -1.51 -1.51 0.23
3 4 0.43 0.59 0.40 1.59 1.64 -1.45 0.47
3 7 0.68 0.54 0.54 -1.82 -1.61 -1.61 0.58
4 5 0.46 0.35 0.35 -1.81 1.50 1.50 0.39
4 6 0.36 0.42 0.42 -1.53 1.59 1.59 0.40
4 8 0.79 0.52 0.53 1.59 1.55 -1.76 0.62
4 9 0.75 0.51 0.51 -1.70 -1.74 -1.74 0.59
5 7 0.66 0.66 0.75 1.50 1.50 -1.76 0.69
5 10 0.47 0.47 0.47 -1.90 -1.90 -1.90 0.47
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Appendix B

Résumé substantiel

Les défauts ponctuels (DPs) sont massivement générés dans les matériaux sous irradia-
tion [1–3] ou lors de déformations plastiques sévères telles que la déformation sous cisaille-
ment [4, 5], la déformation en torsion [6, 7] et le procédé de broyage [8–10]. L’irradiation
produit des paires de Frenkel de lacune et d’auto-interstitiel. Les lacunes et auto-interstitiels
sont tous deux des défauts ponctuels du réseau cristallins. La lacune correspond à un site
inoccupé du cristal, alors que lauto-interstitiel correspond à un atome en trop qui nest pas
localisé sur un site du réseau cristallin. Les DPs diffusent en séchangeant avec les atomes.
Ils interagissent entre eux, ou avec les atomes de soluté, ainsi qu’avec la microstructure du
matériau [11]. Les défauts ponctuels sont absorbés par les défauts structuraux étendus, comme
par exemple, les joints de grains et les lignes de dislocation, qui agissent comme des puits de
DPs. L’élimination des DPs au niveau des défauts étendus induit des flux permanents de DPs
du volume vers les puits. En s’échangeant avec les atomes voisins, les DPs produisent des flux
nets d’atomes : c’est ce que l’on appelle le phénomène de couplage de flux. Contrairement aux
DPs, les flux d’atomes de soluté peuvent se produire dans les deux sens, vers le puits ou dans le
sens opposé, selon le signe des corrélations cinétiques soluté-lacune. Le couplage de flux est le
principal processus cinétique contrôlant la redistribution des atomes du soluté dans les alliages
soumis à un excès de DP [12–20].

Dans les matériaux sous irradiation, la redistribution des atomes de soluté au voisinage des
puits de DP est un processus hors déquilibre appelé ségrégation induite par irradiation (SII).
Non seulement les espèces chimiques mais aussi les DPs forment un profil de concentration au
niveau des puits. Nous avons choisi de les désigner respectivement par SII des DPs et SII des
solutés. La SII des DPs est systématiquement négative : leur profil de concentration décroit,
de leur concentration de volume à leur concentration d’équilibre au niveau des puits. La SII
des solutés résulte de la SII des DPs. Celle-ci se produit à chaque puits de DPs, ceci même
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à une très faible dose d’irradiation [21]. Par conséquent, la SII est souvent un phénomène
précurseur de la précipitation hétérogène de phases secondaires aux puits de DPs [19]. La SII
peut entraîner de fortes modifications des propriétés mécaniques, de la résistance à la corrosion
et des propriétés dimensionnelles des matériaux [11].

Il existe des études expérimentales qui étudient la variation de la SII avec la nature de
la microstructure formée sous irradiation et aux conditions d’irradiation. Ces études montrent
que la SII est sensible à la nature des particules d’irradiation [22, 23], à la dose dirradiation et
au taux d’endommagement [24,25], et à la température [16,26]. Cependant, il est toujours très
difficile d’obtenir une estimation précise de la quantité de ségrégation des DPs et des atomes de
solutés dans les différentes conditions. Il convient donc de compléter ces données par des études
théoriques. Jusqu’à présent, il n’existe pas de méthode de modélisation de la SII prenant en
compte l’ensemble des réactions entre les DPs, les atomes de solutés et les défauts étendus.

Tant que la SII n’est pas couplée à un phénomène de précipitation, les profils de la SII
peuvent être obtenus en résolvant les équations de diffusion du DP et du soluté à proximité des
puits de DP. Les principaux paramètres d’entrée des équations de diffusion sont les coefficients
de transport (i.e., les coefficients phénoménologiques ou les coefficients d’Onsager) des systèmes.
Ces coefficients résultant du transport atomique sont affectés par l’irradiation et le champ de
contrainte induit par les défauts structuraux.

L’irradiation introduit de nouveaux mécanismes de transport atomique—les déplacements
atomiques forcées (DAFs), qui impliquent le mouvement collectif des atomes dans des cascades
de déplacement sous irradiation. Contrairement aux mécanismes activés thermiquement qui
conduisent le système vers l’équilibre, les DAFs sont principalement athermiques. Ils n’obéissent
pas au bilan détaillé microscopique. Ils entrent en compétition avec les mécanismes de diffusion
thermique en favorisant des configurations atomiques désordonnées [27]. La microstructure d’un
matériau irradié résulte de la compétition entre les réactions des DPs avec la microstructure,
les DPs et les atomes de soluté et la migration thermique et athermique des atomes. Les
mécanismes athermiques empêchent l’utilisation des méthodes de diffusion standards. Le champ
de contrainte-déformation généré par les défauts étendus modifie les propriétés de diffusion du
DP et du soluté [28]. Un champ de contrainte-déformation hétérogène modifie également les
forces motrices de la diffusion, c’est-à-dire les gradients de potentiel chimique [29].

Les objectifs de ce travail sont (i) détendre la théorie de champ-moyen auto-cohérent
(SCMF, pour Self-Consistent Mean-Field en anglais) aux mécanismes de diffusion athermiques
pour calculer les coefficients de transport à partir d’un base de données ab initio des fréquences
de saut des DPs ; (ii) de développer un modèle SII prenant en compte l’ensemble des réactions
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des DPs et des interactions soluté-DPs dans les alliages dilués ; (iii) détudier les effets dune
déformation dans le domaine élastique sur la diffusion et les propriétés SII des DPs et des
atomes du soluté. Chacun de ces objectifs fait lobjet dun chapitre de thèse.

• Extension de la théorie de diffusion de champ moyen aux sauts athermiques : Nous com-
mençons par la modélisation à l’échelle atomique des propriétés de diffusion des DPs et
des atomes sous irradiation. Les probabilités de saut des DPs et des atomes sont mod-
élisées comme des fréquences de saut thermiquement activées. Les sauts athermiques
des atomes induits par une cascade de déplacements sont modélisés sous la forme dune
séquence dévénements DAFs avec une fréquence posée proportionnelle au taux dendom-
magement. Nous étendons la théorie de diffusion SCMF aux événements DAFs. Une
implémentation de ces développements théoriques dans le code KineCluE nous permet
dobtenir des coefficients de transport qui dépendent des fréquences DAFs, en accord avec
les simulations de Monte Carlo. Une étude paramétrique systématique est réalisée pour
mettre en évidence l’effet de la portées des sauts DAFs et de l’interaction soluté-DP sur
les propriétés de diffusion des alliages binaires dilués. Dans une dernière partie de ce
chapitre, nous replaçons nos développements théoriques dans le contexte plus général de
la modélisation en physique statistique des phénomènes loin de léquilibre [222]. A partir
dun modèle de fréquences de saut simplifié qui se limite à deux configurations atomiques
dune chaine linéaire, la paire soluté-lacune associée et la paire soluté-lacune dissociée,
nous dérivons des équations analytiques de lévolution temporelle des probabilités doccu-
pation des sites de la chaine. Nous montrons dans quel cas nous retrouvons les équations
SCMF avec DAFs.

• Modèle SII dans les alliages dilués : Lamplitude dune ségrégation induite SII datomes
de soluté dépend des coefficients de transport mais aussi de la sursaturation de DPs.
Nous dérivons un modèle analytique des profils de DPs en régime permanent, qui prend
en compte le taux de production de DPs, les réactions de recombinaison mutuelle entre
lacunes et auto-interstitiels, et la force de puits globale de la microstructure contrôlant
le taux d’élimination des DPs sur les défauts étendus. Nous en déduisons le profil de
ségrégation des atomes de soluté. Le modèle de SII tient compte des effets de DAFs,
à travers la modification des forces motrices thermodynamiques et des coefficients de
transport avec les fréquences DAFs. Nous utilisons le code KineCluE pour calculer les
coefficients de transport à partir des énergies de liaison soluté-DP et des fréquences de
saut des DPs en fonction de leur voisinage en atomes de soluté calculées ab initio. Nous
obtenons ainsi une modélisation quantitative des propriétés de diffusion et de la SII dans
les alliages binaires dilués à base de Ni et de Fe, sous la forme de cartes en tempéra-
ture/flux d’irradiation/force du puits. Dans chacun des régimes cinétiques particuliers
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pour lesquels lune des réactions des DPs peut être considérée comme la réaction domi-
nante qui contrôle la cinétique des DPs, nous proposons une expression analytique des
profils stationnaires de concentration des DPs et des solutés au voisinage d’un défaut
étendu planaire.

• Effect dun champ de contrainte sur la SII : Pour prendre en compte l’effet d’un champ de
contrainte/déformation généré par une dislocation coin sur le taux d’élimination de DP
et la SII, nous corrigeons la définition de la force motrice de diffusion des DPs récemment
proposée dans la littérature. Nous calculons le tenseur délastodiffusion à laide du code
KineCluE et d’une base de données ab initio des dipôles élastiques des DPs et du soluté.
Nous résolvons les équations d’élastodiffusion par différence finie. Nous réalisons une
étude paramétrique en désactivant une par une les contributions anisotropes produites
par les interactions élastiques entre le défaut structural, les atomes de soluté et les DPs,
afin de mettre en évidence les contributions de l’anisotropie élastique sur les propriétés
d’élastodiffusion, la SII, et le taux délimination des DPs sur la dislocation.

Nous résumons ci-dessous les résultats les plus importants obtenus dans le cadre de ce travail.

• En utilisant la théorie SCMF étendue, nous démontrons que les sauts DAFs ne se réduisent
pas à un terme additif sur les propriétés de transport de lalliage. Lorsque l’amplitude de
la fréquence de DAF est du même ordre de grandeur ou plus grande que les fréquences
thermiques, le mécanisme de saut DAF interagit avec le mécanisme de diffusion ther-
mique, produisant ainsi une matrice de coefficients de transport non symétrique et un
coefficient de diffusion de soluté qui s’écarte d’une somme directe dun coefficient de dif-
fusion thermique et dun coefficient de diffusion effectif DAF. Ce caractère non additif
augmente avec les corrélations cinétiques du soluté.

• À partir du modèle analytique de SII, nous montrons que les profils de SII varient grande-
ment avec la nature chimique de l’atome de soluté introduit dans la matrice de fer. En
général, la SII des DPs et des solutés est favorisée dans le domaine cinétique contrôlé
par la réaction délimination des DPs aux puits. La comparaison entre nos résultats et
une étude précédente [30] met en évidence la sensibilité de la SII aux réactions de recom-
binaison entre défauts ponctuels à basse température et aux réactions délimination des
DPs aux puits. L’effet des sauts DAF sur la SII du soluté est dautant plus important
que la force de puits est élevée : les sauts DAF conduisent à une forte diminution de la
SII du soluté, en particulier dans les alliages de Ni-Cr, Ni-Ti, Fe-Ni et Fe-Cr. En outre,
les alliages à base de nickel sont plus sensibles aux effets du DAF que ceux à base de fer
en raison de la barrière de migration des lacunes qui sont plus élevées dans le nickel. Les
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profils de SII calculés pour les alliages Ni-0,4Ti et Fe-3,3Ni (en at.%) sont en bon accord
avec ceux des alliages expérimentaux, tant pour le signe que pour la quantité de SII.

• Une application directe de notre modèle de SII consiste à fournir des critères quantitatifs
de décalage en température pour la comparaison entre une irradiation neutronique et
une irradiation aux ions. Nous soulignons que ces critères sont spécifiques à l’alliage et
au domaine cinétique. Dans le cas où nous pouvons négliger la variation de la force de
puits en fonction de la température et du flux d’irradiation, par exemple dans les alliages
fortement écrouis, nous nous appuyons sur les cartes de température, flux d’irradiation
et force de puits, pour déduire les décalages en température. Cependant, dans la plupart
des cas, une estimation du décalage en température nécessite une modélisation poussée
de la relation entre la force de puits, la température et le flux d’irradiation.

• L’anisotropie significative des constantes élastiques dans Fe affecte le champ de contrainte
généré par les défauts structuraux. L’anisotropie du dipôle élastique des DPs en config-
uration stable et en configuration de col affecte les comportements d’élastodiffusion et
la force motrice de diffusion. Ces deux types d’anisotropie ont tendance à augmenter
lefficacité dun puits à absorber les DPs (augmentation de la force de puits) et à modifier
le facteur de biais, c.-à-d. la différence defficacité dabsorption entre lacune et auto-
interstitiel, d’une dislocation coin. De plus, le champ de contrainte de la dislocation
modifie considérablement les trajectoires de diffusion des DPs et des atomes du soluté
ainsi que leur distribution en régime permanent. L’interaction entre les effets du soluté
et de la contrainte sur la diffusion entraîne une modification de la force de puits et du
biais. Dans lalliage Fe-Cr, le signe de la SII des atomes de chrome nest pas le même dans
les zones en compression et en tension autour de la dislocation coin. Dans lalliage Fe-Ni,
le signe du biais de dislocation dépend de la compétition entre les effets des atomes de
soluté ségrégés au voisinage de la dislocation et du champ de déformation induit par la
dislocation. Le premier aboutit à un biais de dislocation négatif, tandis que le second in-
duit un biais positif. Dans lalliage Fe-Mn, le biais de la dislocation augmente de manière
significative en présence datomes Mn au voisinage de la dislocation.
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Titre: Modélisation multi-échelle de la ségrégation induite par irradiation dans des alliages dilués
base nickel et base fer

Mots clés: Thermodynamique - Diffusion - Physique statistique - Défaut ponctuel - Effets de l’irradiation - Force de puits -
Élastodiffusion - Ségrégation induite par irradiation - Alliages dilués

Résumé: Nous présentons une modélisation quantitative de
la redistribution des défauts ponctuels (DPs) et de la ségrégation
induite par irradiation (SII) sur les défauts étendus, dans des al-
liages modèles dilués Ni(B ≡ Ti, Cr) et Fe(B ≡ P, Mn, Cr, Si, Ni,
Cu). Le changement de composition chimique au voisinage des dé-
fauts étendus joue un rôle décisif sur l’évolution de la microstruc-
ture et les propriétés mécaniques d’un matériau. L’irradiation
génère des défauts ponctuels, qui diffusent en s’échangeant avec
les atomes voisins, s’annihilent en se recombinant entre eux ou
en interagissant avec des défauts étendus (qui agissent comme
des puits de DPs). Les flux de DPs vers les puits induisent des
flux atomiques dans le même sens ou le sens opposé des flux de
DPs, produisant ainsi la SII aux puits. Nous étendons la théorie
de champ moyen auto-cohérent aux déplacements atomiques for-
cés (DAF), mécanismes de diffusion athermiques générés par une
cascade de déplacements sous irradiation. L’implémentation de
nos développements théoriques dans le code KineCluE, nous per-
met de calculer les flux de DPs et d’atomes, et leurs couplages.
A partir du calcul des flux en fonction de la température, de
la composition, et du champ de déformation ; et d’un traite-
ment de type cinétique chimique des réactions de production et
d’annihilation des DPs, nous obtenons les profils stationnaires de
SII. Dans chacun des régimes cinétiques particuliers pour lequel,
l’une des réactions des DPs domine par rapport aux autres, nous
obtenons les expressions analytiques des profils stationnaires des
DPs et solutés sur les puits planaires. Pour rendre compte de
l’effet du champ de déformation généré par une dislocation coin

sur la SII et sur les taux d’élimination des DPs sur la dislocation,
nous résolvons numériquement les équations d’élastodiffusion. A
partir d’une base de données ab initio des énergies de liaison, des
dipôles élastiques, et des fréquences d’échange atome-DP dans,
nous réalisons une étude systématique des effets de la microstruc-
ture et des conditions d’irradiation sur les propriétés de diffusion,
les taux d’élimination des DPs aux puits, et la SII. Nous mon-
trons que : (i) les boucles de dislocations sont enrichies en Ni dans
Fe(Ni) et appauvries en Ti dans Ni(Ti), et les quantités ségrégées
sont en bon accord avec les valeurs expérimentales mesurées dans
les alliages modèles Fe(Ni) et Ni(Ti) irradiés aux ions ; (ii) à
fort flux, basse température, et grande force de puits de la mi-
crostructure, les évènements DAF réduisent sensiblement la SII,
tout particulièrement dans les alliages base Ni ; (iii) les décalages
en température calculés pour simuler les effets d’une irradiation
aux neutrons par une irradiation aux ions, peuvent être très dif-
férents selon le phénomène induit par irradiation que l’on étudie,
le régime cinétique dans lequel le système évolue, et la nature
chimique de l’alliage étudié ; (iv) l’interaction entre les DPs et
les atomes de soluté modifie le facteur de biais d’absorption en-
tre lacunes et interstitiels d’une dislocation coin. Ainsi l’ajout
de Ni produit un biais négatif alors que l’ajout de Mn augmente
le facteur de biais (jusqu’à 200% de la valeur dans Fe pur sous
contrainte), suivant la température et la composition ; (v) la con-
trainte augmente significativement la quantité de la ségrégation
de soluté dans Fe(Ni) (par exemple, 400% de la valeur sans élas-
ticité à 400K), et change le signe de la SII dans Fe(Cr).

Title: Multiscale modeling of the radiation-induced segregation in Ni-based and Fe-based dilute alloys

Keywords: Thermodynamics - Diffusion - Statistical mechanics - Point defect - Irradiation effects - Sink strength - Elastod-
iffusion - Radiation-induced segregation - Dilute alloys

Abstract: We present a quantitative modeling of the point-
defect (PD) redistribution and solute radiation-induced segrega-
tion (RIS) at extended defects in dilute Ni(B ≡ Ti, Cr) and Fe(B
≡ P, Mn, Cr, Si, Ni, Cu) alloys. The change in chemical com-
position, in the vicinity of extended defects, plays a decisive role
on the evolution of the microstructure and mechanical properties
of materials. Irradiation produces PDs, that diffuse by exchang-
ing with neighboring atoms, annihilate by mutual recombination
or by interacting with extended defects (that act as PD sinks).
The fluxes of PDs towards sinks lead to atomic fluxes in the same
or opposite direction of the PD flux; thereby producing RIS at
sinks. We extend the self-consistent mean-field theory to forced
atomic relocations (FARs), athermal diffusion mechanisms gener-
ated by displacement cascades under irradiation. The implemen-
tation of the extended theory in the KineCluE code allows us to
compute PD and atomic fluxes, and their couplings. From the
calculation of fluxes as a function of temperature, composition,
and strain field; and a mean-field treatment of the production
and annihilation reactions of PDs, we obtain the steady-state
RIS profiles. In each of the particular kinetic regimes for which
one of the PD reactions dominates over the others, we derive
analytical expressions of steady-state profiles of PDs and solute
atoms at planar sinks. To account for the effect of strain gener-

ated by an edge dislocation on the RIS and PD elimination rates,
we numerically solve the elastodiffusion equations. Based on an
ab initio database of binding energies, elastic dipoles, and atom-
PD exchange frequencies, we perform a systematic study of the
effects of the microstructure and irradiation conditions on diffu-
sion properties, PD elimination rates at sinks, and RIS. We show
that: (i) the dislocation loops are enriched in Ni in Fe(Ni) and
depleted in Ti in Ni(Ti), and the calculated amounts of RIS are in
good agreement with the experimental values measured in model
Fe(Ni) and Ni(Ti) alloys irradiated by ions; (ii) at high flux, low
temperature, and high sink strength, forced atomic relocations
significantly reduce RIS, especially in Ni-based alloys; (iii) the
temperature shifts calculated to simulate the effects of neutron
irradiation by ion irradiation can be very different depending on
the radiation-induced phenomenon, the kinetic regime in which
the system evolves, and the chemical nature of the investigated
alloy; (iv) the interactions between PDs and solute atoms change
the absorption bias between vacancies and interstitials of an edge
dislocation, as for instance, the addition of Ni leads to a nega-
tive bias while the addition of Mn increases the bias factor (up to
200% of the strained pure Fe value), depending on temperature
and composition; (v) the dislocation strain field significantly in-
creases Ni RIS (e.g., about 400% of the strain-free value at 400K)
in Fe(Ni), and changes the sign of RIS in Fe(Cr).
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