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Résumé

Ce travail est consacré à l’étude des propriétés de contrôlabilité et de stabilisabilité
pour des systèmes de vagues et leurs interactions avec un objet flottant. Les équations
utilisées pour les vagues sont une version entièrement linéaire et entièrement disper-
sive de la formulation de Zakharov-Craig-Sulem. Pour l’interaction des vagues avec
un objet flottant on utilise les équations des eaux peu profondes (Saint-Venant).

La première partie de cette thèse a pour objectif d’étudier la stabilisabilité d’une
classe de système de commande avec générateur anti-adjoint. Ceci est motivé par le
problème de contrôle du système linéarisé de vagues. Avec les hypothèses sur le spec-
tre des opérateurs d’évolution impliqués dans le système de contrôle, nous obtenons
un taux de décroissance non uniforme explicite de l’énergie de ce système, à condition
que les données initiales soient lisses.

Nous considérons dans la deuxième partie suivantes le système de vagues avec
amplitude faible dans un rectangle, où le contrôle agit sur une frontière latérale, en im-
posant la vitesse de l’eau. Nous étudions d’abord le caractère bien posé de l’ensemble
du système, qui est abordé en formulant les équations comme un système de contrôle
linéaire abstrait. Après, nous obtenons le taux de décroissance de l’énergie en utilisant
les résultats généraux de la première partie. Ensuite, nous étudions le comportement
asymptotique de la solution en régime d’eau peu profonde. Il s’avère que le système
de vagues d’eau converge vers l’équation des vagues en 1D avec contrôle aux limites
de Neumann, lors de la prise de la limite de faible profondeur.

Dans la dernière partie, nous nous intéressons à un objet rigide flottant dans un
réservoir d’eau. L’objet se déplace uniquement dans la direction verticale et le con-
trôle est une force verticale imposée agissant sur l’objet. Nous dérivons les équations
non linéaires pour ce système et étudions l’espace atteignable et la stabilisabilité des
équations linéarisées dans divers cas.

Mots-clefs

Système dimensionnel infini; équation des vagues linéariser; stabilisation forte; équa-
tions d’eau peu profonde; interactions fluide-structure.
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Abstract

This work is devoted to studying the controllability and stabilizability properties of
the control model coming from water waves problem and floating body system in a
bounded domain. The equations used for the water waves system in this work is
a fully linear and fully dispersive version of the Zakharov-Craig-Sulem formulation.
The floating body system here is described by the nonlinear shallow water equations.

The first part of this thesis aims to study the stability of a class of skew-adjoint
control systems. This is motivated by the control problem of a linear water waves
system. With the assumptions on the spectrum of the evolution operators involved in
the control system, we obtain an explicit non-uniform decay rate of the energy of this
system, provided that the initial data is smooth.

We consider in the second part the small-amplitude water waves system in a rectan-
gular domain, where the control acts on one lateral boundary, by imposing the velocity
of the water. We first study the well-posedness of the whole system, which is addressed
by formulating the equations as an abstract linear control system. Afterwards, we ob-
tain the decay rate of the energy by using the general results in the first part. Next
we study the asymptotic behaviour of the solution in the shallow water regime. It
turns out that the water waves system with boundary control converges to the wave
equation in 1D with Neumann boundary control, when taking the shallowness limit.

In the last part, we are interested in a rigid object floating in a bounded water tank.
The object only moves in the vertical direction and the control is a vertical force im-
posed from the bottom of the object. We derive the nonlinear equations for this system
and study the reachability and stabilizability of the linearized equations in various
cases.

Keywords

Infinite dimensional system; linearized water waves equation; strong stabilization;
shallow water equations; fluid-structure interactions.
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Notation

We introduce here some notation which we frequently used throughout this thesis. For
other notation, we introduce them in each part where they first appear.

The notation
N, Z, R, C

stands for the sets of natural numbers (starting with 1), integers, real numbers and
complex numbers, respectively. We denote Z∗ = Z \ {0}.

We shall denote by X a complex Hilbert space with the inner product 〈·, ·〉 and
the corresponding norm ‖·‖. If X and Z are Hilbert spaces, then L(X, Z) denotes the
spaces of linear continuous operators from X to Z, with the usual (induced) norm. In
particular, we denote L(X) = L(X, X). For any T ∈ L(X)

‖T‖L(X) = sup{‖Tx‖ : x ∈ X and ‖x‖ 6 1}.

Sometimes we put a subscript near a norm or an innner product, such as in ‖z‖X, to
indicate which norm or inner product we are using. The domain, range and kernel
of an operator T will be denoted by D(T), Ran(T) and Ker(T), respectively. For any
α ∈ R, we denote

Cα = {s ∈ C|Re s > α} .

In particular, C0 represents the right half plane.
If n, k ∈ N and O ⊂ Rn is an open set, then we use the notation Hk(O) for the

Sobolev space formed by the distributions f ∈ D′(O) having the property that the
derivatives ∂α f ∈ L2(O) for every multi-index α ∈ Zn with αj > 0 and |α| 6 k.
For f ∈ Hk(O) we set

‖ f ‖2
k = ∑

|α|6k
‖∂α f ‖2

L2 .

In one dimension, letH0(O) := L2(O) and letHs(O), with s > 0, denote the fractional-
order Sobolev spaces obtained by interpolation via fractional powers of a positive op-
erator (see, for instance, Lions and Magenes [74]). In one dimension, for a Banach space
H, C(O, H) will denote the set of all continuous mappings fromO into H. For a closed
bounded interval O = [a, b], the space C([a, b]; H) endowed with the norm

‖ f ‖C([a,b];H) = sup{‖ f (t)‖ : t ∈ [a, b]}

is a Banach space. The spaces of k-times continuously differentiable mappings are
denoted by Ck(O; H) and Ck([a, b]; H), for k ∈ N. Functions in Ck(O; H) are also
called functions of class Ck.

1



Let Lp([a, b]; X) be the Hilbert space of equivalent classes of strongly measurable
mappings [a, b] → X that are p-integrable with 1 6 p < ∞ (resp. essentially bounded
when p = ∞), with norm

‖ f ‖Lp([a,b];X) =

{∫ b

a
| f (s)|pds

} 1
p

,

(
resp.‖ f (t)‖L∞([a,b];X) = ess. sup {| f (t)|, t ∈ [a, b]}

)
.

Moreover, for an open interval J and any Hilbert space X, the Sobolev space H1(J; X)
consists of those locally absolutely continuous function z : J → X for which dz

dt ∈
L2(J; X). The space Hk(J; X) is defined similarly, but now we require more, i.e. dz

dt ∈
Hk−1(J; X). The spaceH1

0(J; X) consists of those functions inH1(J; X) which vanish at
the endpoints of J (i.e. they have limits equal to zero there).

For two functions u and v defined on [0, ∞) and for any τ > 0, their τ-concatenation,
denoted by u ♦

τ
v, is the function

u ♦
τ

v =

{
u(t) for t ∈ [0, τ),
v(t− τ) for t > τ.

If the operator A : D(A) → X, where D(A) ⊂ X, then the resolvent set of A,
denoted by ρ(A), is the set of those points s ∈ C for which the operator sI − A :
D(A) → X is invertible and (sI − A)−1 ∈ L(X). The spectrum of A, denoted by σ(A),
is the complement of ρ(A) in C. For every s ∈ ρ(A), (sI − A)−1 is called the resolvent
of A. Throughout the thesis, we denote by R(s : A) the resolvent of A for s ∈ ρ(A) for
simplicity.

For a diagonalizable operator (or Riesz-spectral operator) A : D(A) → X, we de-
note by (λk)k∈Λ the eigenvalues of A and by (ϕk)k∈Λ the corresponding eigenvectors,
which form an orthonormal basis in X. For every α ∈ R, we introduce a scale of Hilbert
spaces Xα associated with the operator A, which is defined by (X0 = X)

Xα =

{
z ∈ X

∣∣∣∣∣ ∑
k∈Λ

(1 + |λk|2α) |zk|2 < ∞

}
,

endowed with the inner product

〈η, υ〉α = ∑
k∈Λ

(1 + |λk|2α)ηk υk ∀ η, υ ∈ Xα,

where ηk = 〈η, φk〉 and vk = 〈v, φk〉. For every α ∈ R, X−α is the dual space of Xα with
respect to the pivot space X. We use the notation ‖·‖α to represent the norm in Xα. We
will apply, in the following chapters, the above definition of a scale of Hilbert spaces
to different operators.

Finally, if a function f only depends on time t, we denote by ḟ (or sometimes by
d
dt f ) its derivative with respect to t. For a function with more than two variables, for
instance f (x, y), we denote the derivative of f with respect to x (or y) by ∂x f (or ∂y f )
for the sake of simplicity. For a matrix M, we denote by Mᵀ the transpose of M. We use
the notation X⊥ to represent the orthogonal complement of the space X. For a complex
number α ∈ C, we use α to represent the complex conjugate of α.
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Chapter 1

Introduction (Français)

Cette thèse se concentre sur trois sujets concernant les problèmes de stabilisation des
systèmes des vagues et des systèmes fluide-structure dans un domaine rectangulaire.
Dans la première partie, nous étudions la stabilité non uniforme d’une classe de semi-
groupe de contraction. Dans la deuxième partie, nous considérons la stabilisation et le
comportement asymptotique d’un système d’ondes de gravité (capillaire) avec ampli-
tude faible dans un domaine borné. Dans la troisième partie, nous nous intéressons à
un système décrivant un objet rigide flottant en eau peu profonde.

1.1 Stabilisation d’un système de contrôle linéaire

Nous considérons la stabilisation d’une classe spéciale de systèmes linéaires de di-
mension infinie, qui est décrite par une équation différentielle abstraite de la forme
suivante: {

ż(t) = Az(t) + Bu(t) ,
z(0) = z0.

(1.1)

Soient deux espaces de Hilbert U et X, où U est l’espace d’entré et X l’espace d’éta.
La fonction u ∈ L2

loc([0, ∞); U) dans (1.1) est appelée la fonction d’entrée et z ∈ X
est la trajectoire d’état correspondante. L’opérateur A : D(A) → X est le générateur
d’un semi-groupe fortement continu (ou C0-semigroupe), T = (Tt)t>0 et l’opérateur
B (éventuellement non-borné) est un opérateur de contrôle admissible pour T. Dans
le système ci-dessus, nous prenons la rétroaction colocalisée u(t) = −B∗z(t) (voir, par
exemple, Liu [76], Curtain et Weiss [38], Ammari et Tucsnak [8] et leurs références), de
sorte que les solutions contrôlées de (1.1) satisfont l’estimation de l’énergie suivante:

‖z(0)‖2 = ‖z(t)‖2 +
∫ t

0
‖B∗z(σ)‖2

U dσ (t > 0).

L’estimation ci-dessus implique en particulier que l’énergie ‖z(t)‖2 est non croissante.
Les principales questions envisagées dans ce sens consistent à donner quelques condi-
tions suffisantes sur (A, B) afin d’avoir l’un des types de stabilité suivants:

1. Stabilité exponentielle, c’est-à-dire, il existe M, α > 0 tel que

‖z(t)‖ 6 Me−αt‖z0‖ (z0 ∈ X, t > 0);

3
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2. Stabilité faible, c’est-à-dire, pour chaque x ∈ X et z0 ∈ X, on a

lim
t→∞
〈z(t), x〉 = 0;

3. Stabilité forte, c’est-à-dire, pour chaque z0 ∈ X, on a

lim
t→∞

z(t) = 0;

4. Stabilité "polynomiale", c’est-à-dire, il existe une fonction f : [0, ∞) → [0, ∞)
satisfaisant limt→∞ f (t) = 0, tel que

‖z(t)‖ 6 f (t)‖z0‖D(A) (z0 ∈ D(A), t > 0). (1.2)

Le stabilité exponentielle est bien sûr la meilleur, mais il existe de nombreux systèmes
de contrôle qui n’ont pas ce genre de propriété. Dans Le cas particulier où A est un
opérateur anti-adjoint, la stabilité exponentielle est connue pour être équivalente à la
contrôlabilité exacte en un temps fini τ > 0 de la paire (A, B) (voir par exemple, Ha-
raux [55], Liu [76], Lasiecka et Triggiani [71], [70]). Avec la même hypothèse, la stabilité
forte, est équivalente à l’observabilité en temps infini du couple (A, B∗), ou de manière
équivalente au fait que B∗φ 6= 0 pour tout vecteur propre φ de A (voir par exemple,
Tucsnak et Weiss [115]). Les propriétés de la stabilité faible sont étudiées par exem-
ple dans Benchimol [18] et Weiss [118]. A notre connaissance, il n’y a pas de condition
nécessaire et suffisante en termes de A et B pour la quatrième propriété (stabilité "poly-
nomiale"). Le principal résultat théorique de la première partie de cette thèse donne
des conditions suffisantes pour avoir la propriété de stabilité "polynomiale", sans avoir
forcément recours à la une contrôlabilité approximative de (A, B) en temps fini.

Soit A− BB∗ = A, alors le système (1.1) avec u(t) = −B∗z(t) devient{
ż(t) = Az(t),
z(0) = z0.

(1.3)

Cette classe de systèmes représente plusieurs types d’équations aux dérivées partielles
avec amortissement, en particulier les équations d’onde, voir Ammari et Tucsnak [8],
Anantharaman et Léautaud [9], et d’autres modèles hyperboliques PDE, par exemple
Liu et Zhang [78], Dell’Oro et Pata [41].

Notez que la norme à droite de (1.2) ne peut pas être la norme de X. Sinon, par les
propriétés classiques du semi-groupe, l’inégalité (1.2) implique que l’état du système
de contrôle est exponentiellement stable. Par conséquent, nous appelons également la
quatrième stabilité (1.2) stabilité uniforme pour des données lisses. Ensuite, nous citons
quelques résultats classiques de Borichev et Tomilov [26], Ammari et Tucsnak [8], qui
est l’idée principale de notre résultat principal dans cette partie.

Proposition 1 (Borichev et Tomilov [26]). Soit St un C0-semigroupe borné sur un espace de
Banach X de générateur A tel que iR∩ σ(A) = ∅. Alors pour α > 0 fixe, nous avons

‖StA−1‖ = O(t−
1
α ) t→ ∞ (1.4)

si et seulement si
‖R(is : A)‖ = O(|s|α) s→ ∞. (1.5)
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Dans le cas où X est un espace de Hilbert, nous notons que le résultat de décrois-
sance (1.4) est équivalent à la relation suivante:

‖Stz‖ 6
C

(1 + t)
1
α

‖z‖D(A) ∀ z ∈ D(A).

De plus, il a été montré dans [26] qu’avec la condition résolvante (1.5) la norme de
‖Stz‖ décroît toujours comme t−

1
α pour des données plus régulières, c’est-à-dire z ∈

D(Aα).
Soient deux espace de Hilbert X et Y, et un paramètre θ ∈ (0, 1), on définit l’espace

d’interpolation [X, Y]θ par

[X, Y]θ =
{

a : a ∈ X + Y, t−(θ+1/2)K(t, a; X, Y) ∈ L2[0, ∞)
}

,

avec
K(t, a; X, Y) = inf

a0+a1=a

(
‖a0‖2

X + t2‖a1‖2
Y
)1/2

,

pour a0 ∈ X et a1 ∈ Y. La définition ci-dessus de l’espace d’interpolation [X, Y]θ est
largement utilisée, par exemple, dans Lions et Magenes [75]. Cela coïncide avec la
définition de l’espace d’interpolation (X, Y)θ,2 introduite dans Triebel [111].

Considérons maintenant le problème non amorti associé au système (1.3),{
ẇ(t) = Aw(t),
w(0) = z0.

(1.6)

Soient Y et W deux espaces de Banach tels que

D(A) ⊂ Y ⊂ X ⊂W,

∀ z ∈ D(A), ‖z‖D(A) ∼ ‖z‖Y

et
[Y, W]θ = X

pour un nombre réel fixe θ ∈ (0, 1), où [·, ·]θ est l’espace d’interpolation introduit ci-
dessus. La proposition suivante dit que le taux de décroissance explicite de la solution
de (1.3) dépend d’une inégalité d’observabilité du problème non amorti (1.6).

Proposition 2 (Ammari et Tucsnak [8]). Soit pour tout z0 ∈ D(A) nous avons

∫ T

0

∥∥(B∗w)(t)
∥∥2

Udt > C‖z0‖2
W ,

alors il existe C > 0, telle que pour tout t > 0 et pour tout z0 ∈ D(A), on a

‖z(t)‖ 6 C

(1 + t)
θ

2(1−θ)

‖z0‖D(A),

où θ ∈ (0, 1) tel que l’espace d’interpolation [Y, W]θ = X.
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Après avoir introduit les deux théorèmes ci-dessus, nous pouvons presenter nos
résultats prinpaux. Motivés par le système des vagues, nous considérons une classe
de systèmes de contrôle avec rétroaction colocalisée, décrite par le modèle de con-
trôle (1.3), où A est anti-adjoint à résolvante compacte et B ∈ L(U, X). Dans ce cas,
l’opérateur A est un opérateur spectrale de Riesz, ainsi, pour un ensemble J ⊂ Z, on
note ses valeurs propres par (iµk)k∈J et les vecteurs propres normalisés correspondants
par (φk)k∈J , ce qui forme une base orthonormée dans X. Pour α ∈ R, on introduit une
échelle d’espaces de Hilbert Xα par

Xα =

{
z ∈ X

∣∣∣∣∣ ∑
k∈J

(1 + |µk|2α)|〈z, φk〉|2 < ∞

}
.

L’espace de Hilbert Xα a en effet déjà été introduit dans la partie de la notation.

Théorèm 1 (Su et Tucsnak 2019). Soit A : D(A)→ X est anti-adjoint à résolvante compacte
et B ∈ L(U, X). On note S = (St)t>0 le semi-groupe engendré par l’opérateurA = A− BB∗.
Supposons que la paire propre de A, notée (iµk, φk)k∈J , satisfasse (pour chaque k, l ∈ J et k 6= l)

µk 6= µl and µk = kα + O(kq) as k→ ∞;

‖B∗φk‖U >
C
kβ

,
(1.7)

avec q < α− 1. Si la condition (1.7) est satisfaite avec 0 < α < 1 et β > 0, on a alors

‖Stz0‖ 6
C

(1 + t)
α

2(β−α+1)
‖z0‖D(A) ∀ z0 ∈ D(A).

Si la condition (1.7) est satisfait avec α > 1 et β > 0, on a l’inégalité d’observabilité pour tout
z0 ∈ X1, ∫ T

0
‖(B∗w)(t)‖2

Udt > C‖z0‖2
X− α

β

,

où w est la solution du système (1.6). De plus, nous avons le résultat de décroissance corre-
spondant

‖Stz0‖ 6
C

(1 + t)
α

2β

‖z0‖D(A) ∀ z0 ∈ D(A).

Il est connu que le système de contrôle est stabilisable de manière exponentielle
lorsque α > 1 et β = 0, nous ne discutons donc pas ce cas ici. Par rapport à la condition
suffisante introduite dans Chill et al. [32], la condition (1.7) est plus claire et plus facile
à vérifier en utilisant la structure spectrale de A.

1.2 Contrôle d’un système de vagues

Notre intérêt dans cette partie réside dans le contrôle des vagues à la surface d’un
fluide incompressible, non visqueux et irrotationnel. Le terme de contrôle dans le sys-
tème peut être la vitesse du fluide ou une force externe, imposée par un générateur de
vagues à partir d’un domaine borné ou produite par une frontière mobile. Le type de
systèmes de vagues apparaît naturellement dans la pratique, par exemple un réservoir
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d’eau en mouvement et un système d’échange d’eau d’une piscine, qui a été étudié
à la fois en ingénierie et en mathématiques depuis longtemps. En mathématiques, la
question de la contrôlabilité et de la stabilisation pour le problème de contrôle sur les
vagues sont toujours des sujets actifs dans ce domaine.

Nous nous intéressons à un système de contrôle des vagues dans un domaine rect-
angulaire Ω. Le générateur à une frontière latérale induit de petites ondes sur la sur-
face libre supérieure à travers une oscillation avec amplitude faible à cette frontière. En
supposant que le domaine Ω est formé par une surface d’eau libre Γs sur le dessus, un
fond plat Γ f et deux parois verticales, notées Γ1 et Γ2. Plus précisément, le domaine Ω
(voir Figure 1.1) est

Ω = {(x, y) |0 < x < π, − 1 < y < 0} .

De plus, nous supposons que le générateur de vagues est rigide dans le sens où la

x

Γ2

Γf

Γ1

Γs

Ω

y

0 π

−1

g

ζ(t, x)

Figure 1.1: Un domaine rectangulaire Ω rempli d’eau

vitesse est un multiple d’une fonction d’entrée scalaire v(t), multipliée par une fonction
donnée h de la hauteur le long de la frontière active. Pour chaque t > 0 et (x, y) ∈ Ω,
le système linéarisé de vagues décrit ci-dessus est

∆x,y φ = 0 in Ω,
∂t φ(t, x, 0) + ζ(t, x) = 0,
∂y φ(t, x, 0) = ∂tζ(t, x),
∂x φ(t, 0, y) = − h(y)v(t),
∂y φ(t, x,−1) = 0 = ∂x φ(t, π, y),

(1.8)

où ζ(t, x) est l’altitude de la surface libre et φ(t, x, y) est le potentiel de vitesse du flu-
ide. Pour assurer la conservation du volume d’eau, on suppose généralement que∫ 0
−1 h(y)dy = 0. Les propriétés de contrôlabilité et de stabilisabilité des systèmes

dérivés de (1.8) sont d’abord étudiées dans Reid et Russell [96]. Pour le problème dans
un domaine irrégulier et le cas des vagues avec tension de surface, voir par exemple
Reid [94] et [95]. En outre, Mottelet a étudié dans [85] le système de contrôle avec
le générateur flexible et rigide, respectivement. Dans ces références, ils considèrent di-
rectement le système de contrôle linéaire abstrait associé à (1.8) et il n’y a peu de travail
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sur l’ensemble du système (1.8). De plus, il n’y a pas de formulation détaillée du sys-
tème de contrôle et pas d’analyse complète des opérateurs d’évolution impliqués dans
le modèle de contrôle.

1.2.1 Caractère bien posé et stabilisation du système linéarisé

Nous établissons dans Su et al. [110] et Su [108] la caractère bien posé de l’ensemble
du système des vagues (1.8) via la construction des opérateurs partiels de Dirichlet à
Neumann et de Neumann à Neumann. En étudiant le spectre de ces deux opérateurs et
en utilisant les résultats généraux du Théorèm 1, nous donnons le taux de décroissance
explicite de l’énergie du système (1.8). Ensuite, nous présentons dans ce qui suit les
principaux théorèmes.

Théorèm 2 (Su, Tucsnak et Weiss [110]). Le système d’ondes de gravité (1.8) peut être refor-
muler de manière en un système de contrôle linéaire abstrait (1.1) avec l’état z =

[
ζ

ζ̇

]
sur X et le

contrôle scalaire u (l’accélération produite par le générateur de vagues). Pour u ∈ L2
loc([0, ∞))

et h ∈ L2[−1, 0] avec
∫ 0
−1 h(y)dy = 0, les données initiales z0 ∈ H 1

2 [0, π] × L2[0, π] et
φ0 ∈ H1(Ω), le système (1.8) admet une unique solution (ζ, φ) satisfaisant

φ ∈ H1
loc([0, ∞);H1(Ω)), ζ ∈ C([0, ∞);H 1

2 [0, π]) ∩ C1([0, ∞); L2[0, π]).

Ce système de contrôle est stabilisable fortement avec la rétroaction colocalisée u = −B∗z, et le
semi-groupe en boucle fermée correspondant St généré par A− BB∗ satisfait

‖Stz0‖X 6
C

(1 + t)
1
6
‖z0‖D(A) ∀ z0 ∈ D(A), t > 0.

Les ondes à capillarité gravitationnelle ont été discutées dans [108] où nous avons
besoin de l’opérateur de Sturm-Liouville pour traiter le terme de tension de surface. Le
système de contrôle de gravité capillaire sous la forme de (1.1) est stabilisable forte-
ment et satisfait

‖Stz0‖X 6
C

(1 + t)
3
4
‖z0‖D(A) ∀ z0 ∈ D(A), t > 0.

Nous voyons que le taux de décroissance le système de gravité capillaire est plus
rapide que le cas de gravité, à cause de l’effet de tension de surface.

1.2.2 Analyse asymptotique des ondes de gravité

Nous considérons dans Su [107] le comportement asymptotique de la solution du sys-
tème de contrôle des vagues gravité (1.8) en régime d’eau peu profonde, où l’échelle
horizontale du domaine est beaucoup plus grande que la profondeur verticale. On
introduit le paramètre de profondeur des vagues µ par

µ =
h2

0
L2 .

et quelques quantités sans dimension sont les suivantes:

x =
x
L

, y =
y
h0

, t =
t

L/
√

gh0
, ζ =

ζ

a
, φ =

φ

aL
√

g/h0
,
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où a est l’ordre de variation de la surface, L est l’échelle horizontale du domaine,
h0 représente la profondeur d’eau typique, ζ et φ sont la version sans dimension de
l’élévation de la surface libre ζ et du potentiel de vitesse φ, respectivement. Par con-
séquent, nous obtenons la version sans dimension de (1.8). Pour énoncer le résultat,
nous introduisons l’équation d’onde suivante définie sur [0, π] avec un contrôle de
Neumann à l’extrémité gauche, pour tout t > 0 et x ∈ [0, π], c’est-à-dire

∂2
t ζ(t, x)− ∂2

x ζ(t, x) = 0,
∂xζ(t, 0) = u(t), ∂xζ(t, π) = 0,
ζ(0, x) = ζ0(x), ∂tζ(0, x) = ζ1(x).

(1.9)

Théorèm 3 (Su [107]). Pour u ∈ L2
loc[0, ∞) et pour toute donnée initiale ζ0 ∈ H1[0, π] et

ζ1 ∈ L2[0, π], soit ζµ la solution du système de vagues diemsionless, satisfaisant

ζµ ∈ C([0, ∞);H 1
2 [0, π]) ∩ C1([0, ∞); L2[0, π]).

soit ζ la solution faible du système (1.9) satisfaisant

ζ ∈ C([0, ∞);H1[0, π]) ∩ C1([0, ∞); L2[0, π]).

Alors, pour chaque τ > 0, on a

lim
µ→0

sup
t∈[0,τ]

‖ζµ − ζ‖
H 1

2 [0,π]
= 0,

lim
µ→0

sup
t∈[0,τ]

∥∥∂tζµ − ∂tζ
∥∥

L2[0,π]
= 0.

D’après le Théorème 3, la solution du système de vagues converge vers la solution
de l’équation des vagues unidimensionnel avec contrôle de Neumann, en prenant la
limite de faible profondeur µ→ 0.

1.3 Contrôle d’un système d’un objet flottant

Ici, nous considérons l’interaction des vagues avec un objet partiellement immergé
dans un fluide modélisé par les équations de l’eau peu profonde. Le contrôle est main-
tenant une force verticale agissant sur l’objet déplacé verticalement. Nous supposons
que l’objet flottant a des parois latérales verticales, avec un fond éventuellement non
plat mais symétrique. De plus, soit le domaine intérieur I = [−l, l] et le domaine ex-
térieur E = E− ∪ E+, avec E− = [−L,−l] et E+ = [l, L′]. Tout d’abord, nous dérivons
les équations régissant ce système de contrôle d’objet flottant dans un réservoir d’eau,
toujours noté Ωt,

Ωt =
{
(x, y) ∈ [−L, L′]× [−h0, ζ]

}
.

Sur la base des équations d’eau peu profonde non linéaires avec une structure flottante
dans une bande infinie introduites dans Lannes [67], nous avons besoin des conditions
aux limites pour le débit horizontal q et des conditions de transmission aux points de
contact du domaine intérieur I et le domaine extérieur E . Pour ce faire, dans [109]
nous suivons les lois de conservation de l’énergie totale et du volume de l’eau. Les
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équations gouvernantes complètes du système des objets flottants avec le terme de
contrôle dans le domaine borné, pour tout t > 0, sont données par:

∂tζ + ∂xq = 0 x ∈ I ∪ E , (1.10a)

∂tq + ∂x

(
q2

h

)
+ gh∂xζ = −h

ρ
∂xP x ∈ I ∪ E , (1.10b)

Pe(t, x) = 0 x ∈ E , (1.10c)
ζi(t, x) = δ(t) + heq(x)− h0 x ∈ I , (1.10d)
Pi(t,±l) = ρg (ζe(t,±l)− ζi(t,±l)) + (Be(t,±l)−Bi(t,±l)) , (1.10e)

mδ̈(t) =
∫ l

−l
Pi(t, x)dx−mg + u(t), (1.10f)

qe(t,−L) = 0 = qe(t, L′), qi(t,±l) = qe(t,±l), (1.10g)

avec les données initiales (connues):

ζ(0, x) = ζ0(x), q(0, x) = q0(x), δ(0) = δ0, δ̇(0) = δ1 ∀ x ∈ I ∪ E ,

où δ est la variation du centre de gravité de l’objet, m est la masse de l’objet, g est
l’accélération de la gravité. La fonction heq dans (1.10d) représentant la distance entre
le bas de l’objet et le bas du domaine avec valeur paire et non négative. La quantité B
dans (1.10e) est définie par

B =
ρq2

2h2 .

De plus, le système (1.10) peut être formulé comme un système d’évolution du premier
ordre défini uniquement dans le domaine extérieur E , en termes de ζ, q, la décharge
horizontale moyenne à deux points de contact 〈qi〉, le déplacement et la vitesse de
l’objet, avec les conditions de transmission et les conditions aux limites.

Ici, pour les propriétés de contrôle du système de l’objet flottant, nous considérons
les équations linéarisées autour de l’état d’équilibre. On définit le saut et la moyenne
d’une fonction f définie sur [−l, l] par J f K = f (l)− f (−l) et 〈 f 〉 = 1

2 ( f (l) + f (−l)),
respectivement. Pour chaque t > 0 et x ∈ E , le système d’objet flottant linéarisé est

∂tζ = −∂xq,
∂tq = −gh0 ∂xζ,
d
dt
〈qi〉 = −

g
2lα

Jζ K,

δ̈ = −2ρgl
M

δ +
2ρgl

M
〈ζ 〉+ 1

M
u,

(1.11)

avec
〈q〉 = 〈qi〉, JqK = −2lδ̇, (1.12)

et conditions aux limites
q(t,−L) = 0 = q(t, L′), (1.13)

où α et M sont deux constantes dépendant de la masse m et de la fonction heq. Soit
l’état et les données initiales de (1.11)

z =
[

ζ q 〈qi〉 δ δ̇
]ᵀ , z0 =

[
ζ0 q0 〈qi〉0 δ0 δ1

]ᵀ . (1.14)

Notre premier résultat est le caractère bien posé du système linéarisé (1.11)–(1.14).
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1.3. CONTRÔLE D’UN SYSTÈME D’UN OBJET FLOTTANT

Théorèm 4 (Su et Tucsnak [109]). Le système de l’objet flottant linéarisé (1.11)–(1.14) forme
un système de contrôle linéaire avec l’état z dans l’espace d’état

X =

{[
ζ q 〈qi〉 δ η

]ᵀ ∈ (L2(E)
)2 ×C3

∣∣∣∣ ∫E ζ(x)dx + 2l δ = 0
}

et l’espace d’entrée U = C. Pour u ∈ L2
loc([0, ∞); U)), les données initiales z0 ∈ X, le système

(1.11)–(1.14) admet une solution unique z ∈ C([0, ∞); X).

Pour chaque τ > 0, l’entrée de la carte d’état Φτ : L2([0, ∞); U) → X du système
(1.11)–(1.14) avec zéro donnée initiale (c’est-à-dire z0 = 0) définie par

Φτu = z(τ) ∀ u ∈ L2
loc([0, ∞); U)).

Le problème principal qui nous intéresse est l’espace atteignable de (1.11)–(1.14), c’est-
à-dire Ran Φτ avec τ > 0..

Remarquez que lorsque L′ = L et que l’état initial est un état d’équilibre, l’ensemble
du système de l’objet flottant conserve sa symétrie pour tout t > 0, dans le sens où ζ et
q satisfont

ζ(t,−x) = ζ(t, x) q(t,−x) = −q(t, x) ∀ x ∈ E .

Nous définissons l’espace de symétrie S par:

S =

{[
ζ q 〈qi〉 δ η

]ᵀ ∈ (L2(E)
)2 ×C3 and

ζ(−x) = ζ(x), q(−x) = −q(x)

}
.

Pour énoncer le résultat, nous introduisons l’espace de Hilbert W :

W =

{[
ζ q 〈qi〉 δ η

]ᵀ ∈ (H1(E)
)2 ×C3

∣∣ ∫
E ζ(x)dx + 2l δ = 0,

JqK = −2l η, 〈q〉 = 〈qi〉 and q(−L) = 0 = q(L′)

}
.

Théorèm 5 (Su et Tucsnak [109]). Supposons que l’objet flotte au milieu du domaine dans la
direction horizontale, c’est-à-dire L′ = L. Alors pour chaque τ > 2(L−l)√

gh0
, on a

(W ∩ S) = Ran Φτ ⊂ (X ∩ S), (1.15)

où l’inclusion est dense avec injection continue.

Dans le cas symétrique décrit ci-dessus, le débit horizontal moyen 〈qi〉 et le saut
de l’élévation JζeK sont tous deux nuls, de sorte que l’état z et le système de contrôle
linéaire (1.11)–(1.14) peuvent être simplifiés. On voit d’après l’égalité dans (1.15) que
l’espace atteignable du système de contrôle (1.11)–(1.14) consiste en n’importe quelles
ondes symétriques avec la régularité comme dans l’espace de Hilbert W. L’inclusion
dans (1.15) signifie que le système n’est pas approximativement contrôlable en X, mais
dans son sous-espace X∩ S. De plus, nous montrons au Chapitre 6 que si nous prenons
l’espace d’états comme W ∩ S, le système de contrôle est contrôlable exactement en
temps fini. Plus de détails sur ce cas symétrique sont fournis au Chapitre 6, où nous
analysons également le cas où l’objet flotte à une frontière latérale de Ω.
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Théorèm 6 (Su et Tucsnak [109]). Supposons que l’objet se trouve au milieu du domaine,
c’est-à-dire L′ = L. Alors tout profil d’onde symétrique dans l’espace de Hilbert W peut être
atteint par le système de contrôle (1.11)–(1.14). De plus, pour des données initiales régulières
ce système est stabilisable fortement, c’est-à-dire

‖z‖X 6
C

(1 + t)
1
2
‖z0‖W∩S ∀ z0 ∈W ∩ S.

La situation en général est compliquée puisque l’espace propre du générateur im-
pliqué dans le système de commande linéaire caractère bien posé, associé à (1.11)–
(1.14), n’est peut-être pas simple. Dans ce cas, le système de contrôle avec un contrôle
n’est pas observable. Nous étudions également le cas où l’objet est à l’une des ex-
trémités du domaine, c’est-à-dire L = l ou L′ = l, la dérivation de l’équation non
linéaire est différente, mais le système linéarisé est similaire avec (1.11) dans le cas
symétrique. Pour plus d’informations sur le cas général, nous donnons une discussion
détaillée dans le Chapitre 6.
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Chapter 2

Introduction (English)

This thesis focuses on three topics on stabilizability issues of some control models aris-
ing from water waves and fluid-structure systems in a rectangular fluid domain. In
the first part, we study the non-uniform stability of a class of contraction semigroups.
In the second part we consider the stabilizability and asymptotic behaviour of a small-
amplitude gravity (capillary) water waves system in a bounded fluid domain. In the
third part, we are interested in a system describing a rigid object floating in shallow
water.

2.1 Stabilizability of a linear control system

We consider the stabilization of a special class of infinite dimensional linear systems,
which have been extensively studied in the last decades. To specify our terminology
and notation, we study the stability properties of abstract differential equations of the
form {

ż(t) = Az(t) + Bu(t) ,
z(0) = z0.

(2.1)

Let U be the input space and let X be the state space of (2.1), which are both Hilbert
spaces. The function u ∈ L2

loc([0, ∞); U) in (2.1) is called the input function and z ∈ X
is the corresponding state trajectory. The operator A : D(A) → X is the generator
of a strongly continuous semigroup (or C0-semigroup) T = (Tt)t>0 and the operator
B (possibly unbounded) is an admissible control operator for T. We say that B is an
admissible control operator for T, i.e. the input map (also called the input to state map)
defined by

Φτu =
∫ τ

0
Tτ−σBu(σ)dσ ∀ u ∈ L2([0, ∞); U), τ > 0,

satisfies Φτ ∈ L(L2([0, ∞); U); X). If there is no ambiguity, the inner product and the
norm in X will be simply denoted by 〈·, ·〉 and ‖·‖. During the last decades some im-
portant literature has been devoted to the stabilization of (2.1) by means of colocated
feedback (see, for instance, Liu [76], Curtain and Weiss [38], Ammari and Tucsnak [8]
and references thereins); this means that the control function u is chosen in the feed-
back form u(t) = −B∗z(t) so that the controlled solutions of (2.1) satisfy the ”energy
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estimate”

‖z(0)‖2 = ‖z(t)‖2 +
∫ t

0
‖B∗z(σ)‖2

U dσ (t > 0).

The above estimate implies, in particular, that the map t 7→ ‖z(t)‖2 is non-increasing.
Most of the references quoted above studied sufficient conditions for various decay
types of ‖z(t)‖ when t → ∞. The main questions considered in this direction consist
in giving sufficient conditions on (A, B) in order to have one of the following stability
types:

1. Exponential stability, i.e., existence of M, α > 0 such that

‖z(t)‖ 6 Me−αt‖z0‖ (z0 ∈ X, t > 0);

2. Weak stability, i.e. lim
t→∞
〈z(t), x〉 = 0 for every x ∈ X and z0 ∈ X;

3. Strong stability, i.e. showing that lim
t→∞

z(t) = 0 for every z0 ∈ X;

4. "Polynomial" stability, which means finding a function f : [0, ∞)→ [0, ∞) related
to a polynomial with lim

t→∞
f (t) = 0, such that

‖z(t)‖ 6 f (t)‖z0‖D(A) (z0 ∈ D(A), t > 0). (2.2)

The most desirable type of stability, of course, is exponential stability. But there are
still many control systems does not satisfy this kind of property. For this, in the spe-
cial case A∗ + A = 0 (i.e. the operator A is skew-adjoint), the exponential stability
is known to be equivalent to the exact controllability in some finite time τ of the pair
(A, B). This is the setup studied in Haraux [55], Liu [76], Lasiecka and Triggiani [71],
[70] and others. Under the same assumption, the strong stability is equivalent to the
infinite time observability of the pair (A, B∗) or, equivalently to the fact that B∗φ 6= 0
for every eigenvector φ of A (for this, please refer to, for instance, Tucsnak and Weiss
[115]). The properties of the weak stability are studied, for instance, in Benchimol [18]
and Weiss [118], where Weiss provides a relationship between the weak stability (actu-
ally the weak Lp-stability) and the exponential stability in a special case. As far as we
know, there is no necessary and sufficient condition in terms of A and B for the fourth
property ("Polynomial" stability). The sufficient conditions we are aware of are some
weak observability type inequalities (in finite time) for the pair (A, B) (see Russell [101]
which gave the first results in this direction and Ammari and Tucsnak [8] for a more
general case). The weak finite-time observability inequalities mentioned above imply,
in particular, the approximate controllability of (A, B) in some finite time. The main
theoretical result in the first part of this thesis gives sufficient conditions, not necessar-
ily requiring the approximate controllability of (A, B) in finite time, in order to have
the "Polynomial" stability property.

Let A − BB∗ = A and it is easy to see that the system (2.1) with the feedback
u(t) = −B∗z(t) can be described by{

ż(t) = Az(t),
z(0) = z0.

(2.3)
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This class of dynamical systems represents several types of partial differential equa-
tions with damping, especially wave equations Ammari and Tucsnak [8], Ananthara-
man and Léautaud [9], and other hyperbolic PDE models, for instance Liu and Zhang
[78], Dell’Oro and Pata [41].

2.1.1 Conditions for exponential stability

A number of references studied the stability of the model (2.3) by using the relationship
between the resolvents of the operatorA and the imaginary axis. As we know, the first
result on exponential stability of (2.3) is given in the following theorem. For the sake
of simplicity, we use the notation R(λ, A) for the resolvent operator associated with a
operator A with λ ∈ ρ(A).

Theorem 1 (Gearhart-Prüss Theorem [91]). Assume that the operator A is a generator of a
bounded C0-semigroup St on X, then St is exponentially stable if and only if

iR∩ σ(A) = ∅;
sup
β∈R

‖R(iβ : A)‖X < ∞.

This result is usually called the Gearhart-Prüss theorem, although it was also ob-
tained independently by Huang [57], Monauni [81] and [82]. It is also a direct con-
sequence of the description of the resolvent set of St by means of the resolvent of the
operator A. There is another interesting approach to obtain exponential stability of
(2.3) from the corresponding undamped system{

ẇ = Aw(t),
w(0) = z0.

(2.4)

The main principle is based on HUM (Hilbert uniqueness method), and the sufficient
and necessary condition for exponential stability is given by an observability inequal-
ity. This result was firslty given in Haraux [55] with the special assumptions on the
operators A and B.

Theorem 2 (Haraux [55]). Let A be a skew-adjoint operator on X, let B be a linear continuous
operator from U to X, i.e. B ∈ L(U, X). Assume that w is the solution of the undamped system
(2.4), the semigroup St generated by A = A− BB∗ is exponentially stable if and only if there
exists T > 0 and C > 0, such that∫ T

0
‖(B∗w)(t)‖2

Udt > C‖z0‖2
X.

Although we have the above criteria to determine if the system (2.3) is exponen-
tially stable, in practice these conditions are not easy to be satisfied for a specific sys-
tem. For example, when damping in a string system is located only on a subdomain
or on part of the boundary, the energy of the system does not decay in a uniform
way. Based on this observation, it was realized that the exponential stability is not
achievable with a bounded B (i.e. B ∈ L(U, X)) in the case that the input space U is
finite-dimensional, and A has infinitely many eigenvalues on the imaginary axis. The
first result on this was illustrated in Russell [100] by a PDE model of an undamped
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string. Similar results for a beam can be found in Slemrod [104]. More generally, we
have the following theorem which is proved in Gibson [44], Triggiani [112] or Curtain
and Zwart [39, Theorem 4.1.5 and Theorem 5.2.6].

Theorem 3 (Curtain and Zwart [39]). Let A be the generator of a C0-semigroup Tt on X
and let σ(A) ∩ iR be an infinite set. If the control operator B ∈ L(Cm, X) for some integer
m ∈N, then the control system (2.1) is not exponentially stabilizable.

According to the above theorem, we conclude that the semigroup generated by a
compact perturbation of a generator is not exponentially stable. Now that these kind of
systems are not exponentially (uniformly) stable, we still want to determine whether
the corresponding solutions approach an equilibrium and how fast do the solutions
approach it.

2.1.2 Non-uniform stability

For the system whose energy cannot decay in a uniform rate, other kind of decay
rates have been introduced, for example, polynomial stability or more generally non-
uniform stability. Note that the norm on the right side of (2.2) cannot be the X-norm.
Otherwise, the inequality (2.2), by the classical semigroup properties, implies that the
state of the control system is exponentially stable. Therefore, we also call the fourth
stability (2.2) uniformly stability for smooth data (USSD). Early results giving sufficient
conditions under which A defined above (2.3) generates a weakly or strongly stable
semigroup using LaSalle’s principle can be found in Slemrod [103]. This result was
improved by Benchimol [18] by using the canonical decomposition of contraction semi-
groups.

Theorem 4 (Benchimol [18]). Let the operator A generate a contraction semigroup Tt and
B ∈ L(U, X). The operator A = A− BB∗ generates a weakly stable semigroup if

{z ∈ X |B∗T∗t z = 0, ‖Ttz‖ = ‖T∗t z‖ = ‖z‖ = 0 , ∀ t > 0} = {0} . (2.5)

Particularly, if A has compact resolvents, the condition (2.5) implies strong stability.
A similar result was also obtained by Batty and Vu [16], where they improved the
above sufficient condition (2.5) for strong stability. They obtained that if the spectrum
of A has at most countably many points of intersection with the imaginary axis, then
A− BB∗ generates a strongly stable semigroup if and only if (2.5) holds. Although in
this result there is a restriction condition B ∈ L(U, X), it does not exclude the boundary
control problem for PDEs (for this, please refer to Slemrod [104] and Oostveen [87]).
A more general result on strong stabilization has been obtained by Curtain and Weiss
[39], where A needs not be skew-adjoint, the control operator B needs not be bounded
(i.e. B ∈ L(U, X)), moreover with non-colocated feedback.

For the control model described by (2.3), similarly there are some strong stability
results, firstly established in a Banach space X, derived from the information on the
spectrum of A. The following theorem was proved in Batty [13], see also [14], and it is
actually implictly contained already in Arendt and Batty [10].

Theorem 5 (Batty [13]). Let St be a bounded C0-semigroup on a Banach space X with gener-
ator A. Suppose that iR is contained in the resolvent set ρ(A) of A (i.e. iR ∩ σ(A) = ∅).
Then

lim
t→0
‖Stz‖ = 0 ∀ z ∈ X. (2.6)
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Here we point out that the original result presented in [13] is a little different, where
the convergence result is that the norm of St, as a bounded operator from D(A) to X,
tends to zero as t goes to infinity. By density of D(A) in X, we directly have strong
stability (2.6). In general, without any additional assumptions, the decay rate of the
state trajectory can be arbitrary slow. However, in some special cases, e.g. damped
wave equations, the decay rate in (2.6) corresponds to the decay rate of the energy
of the control system described by the semigroup, and it is of interest to determine
if this decay rate can be achieved. Normally the PDEs models can be rewritten in
the abstract form (2.3), the decay rate of the sufficiently smooth trajectory can be also
associated with the size of the resolvent operator R(λ : A) (for λ ∈ ρ(A)) of A on the
imaginary axis. This approach was initially studied in Lebeau [72], and later pursued,
in particular, in Burq and Hitrik [28], Christianson [33]. These applications motivated
a systematic study for the decay rate of bounded C0-semigroups in Liu and Rao [77],
Batty and Duychaerts [15]. In the latter reference, they developed a new simplified
approach for estimating the decay rate in terms of the growth of R(is : A) with s ∈ R.

Theorem 6 (Batty and Duychaerts [15]). Let St be a bounded C0-semigroup on a Banach
space X with generator A, such that iR ∩ σ(A) = ∅. We define the functions M and Wlog,
for every η > 0, as

M(η) := max
t∈[−η,η]

‖R(it : A)‖, Mlog(η) := M(η)(log(1 + M(η)) + log(1 + η)).

Then there exists C, t0 > 0 such that, for every t > t0,

‖StA−1‖ 6 C
M−1

log(t/C)
.

If M defined above is polynomially growing with the power α > 0 (i.e. M(η) 6
C(1 + ηα) for η > 0), the corresponding decay rate becomes

‖StA−1‖ 6 C
(

log(t)
t

) 1
α

. (2.7)

Note that X in Theorem 6 is assumed to be a Banach space, it was conjectured in [15,
Remark 9] that the logarithmic factor in (2.7) can be removed in the case when X is
a Hilbert space. Based on the observation, Borichev and Tomilov achieved in [26] an
optimal decay rate of (2.7) in the case of polynomially growing M. Moreover, they
showed that the result in Theorem 6 is sharp on Banach spaces. The sufficient and
necessary condition for the explict decay rate is given in the following theorem.

Theorem 7 (Borichev and Tomilov [26]). Let St be a bounded C0-semigroup on a Banach
space X with generator A such that iR∩ σ(A) = ∅. Then for a fixed α > 0 we have

‖StA−1‖ = O(t−
1
α ) t→ ∞ (2.8)

if and only if
‖R(is : A)‖ = O(|s|α) s→ ∞. (2.9)
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It is worth noting that the decay result (2.8) is equivalent to

‖Stz‖ 6
C

(1 + t)
1
α

‖z‖D(A) ∀ z ∈ D(A),

when X is a Hilbert space. Moreover, it has been proved in [26] that with the resolvent
condition (2.9) the norm of ‖Stz‖ still decays like t−

1
α for more regular data, i.e. z ∈

D(Aα).
In the case of A = A− BB∗, Chill et al. presented in [32] a general sufficient con-

dition for the stability of the semigroup generated by A − BB∗ in terms of selected
observability-type conditions of the pair (A, B∗). To state the result, we quote some
terminology from [32]. We say that (A, B∗) satisfies the non-uniform Hautus test if there
exist functions M0, m0 : R→ [r0, ∞) with r0 > 0 such that

|x‖2 6 M0(s)‖(is− A)x‖2 + m0(s)‖B∗x‖, ∀ x ∈ D(A), s ∈ R.

When A is skew-adjoint, we say that (A, B∗) satisfies the wavepacket condition if there
exist bounded functions γ, δ : R→ (0, ∞) such that

‖B∗x‖U > γ(s)‖x‖X ∀ x ∈WPs,δ(s)(A), s ∈ R.

The wavepacket set WPs,δ(s)(A) denotes the spectral subspace of A associated with the
interval i(s− δ(s), s + δ(s)) ∈ iR. The function M : [0, ∞)→ (0, ∞) is called positively
increasing if there exist α, cα, s0 > 0, such that

M(λs)
M(s)

> cαλα ∀ λ > 1, s > s0.

We only present here the corresponding results for bounded B, i.e. B ∈ L(U, X). For
the general case, please refer to [32] for more details.

Theorem 8 (Chill et al. [32]). Assume that A generates a contraction semigroup Tt on
Hilbert space X and that B ∈ L(U, X). If (A, B∗) satisfies the non-uniform Hautus test for
continuous and even functions m0(·), M0(·), such that M(·) := M0(·) + m0(·) is strictly
increasing and has positive increase on [0, ∞), then the semigroup St generated by A = A−
BB∗ is non-uniformly stable and

‖Stz‖ 6
C

M−1(t)
‖z‖D(A) ∀ z ∈ D(A), t > t0, (2.10)

for some C, t0 > 0, where M−1 is the inverse function of M.
If A is skew-adjoint and (A, B∗) satisfies the wavepacket condition for continuous and

even γ(·), δ(·) such that γ(·)−1δ(·)−1 is strictly increasing and has positive increase, then St
is non-uniformly stable and (2.10) is satisfied for M(·) = γ(·)−2δ(·)−2.

When A is skew-adjoint and has compact resolvents, its wavepacket set consists of
finite linear combinations of eigenfunctions. For some PDE models, there may exist a
uniform gap between the eigenvalues of the evolution operator, and in this case the
result in Theorem 8 gives the optimal decay rate for the solution of (2.3). In the same
case, we notice that Ingham’s inequality is available, which implies that we can derive
an observability inequality with the initial data in a larger space. Based on a class
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of a second-order evolution equations, this was firstly studied in Russell [101] in the
case of bounded feedback controls, but it cannot be directly extended to unbounded
feedbacks. This general case was addressed in Ammari and Tucsnak [8] by using the
interpolation theory for the domain of a linear operator and additional assumptions
for the control operator B. We do not go into the details about this result here.

2.2 Control problem on free surface water waves

Our interest in this part lies in the control of water waves on the surface of an incom-
pressible, inviscid and irrotational fluid. The control term in the system can be the
velocity of the fluid or an external force, imposed by a wave maker from one bound-
ary of the fluid domain or produced by a movable boundary. This kind of water waves
systems often appear in practice, for example a moving water tank and water exchange
system of a pool, which has been studied in both engineering and mathematics for a
long time. In mathematics, the controllability and stabilization issue for control prob-
lem on water waves are always hot topics in this field. Closely related to the main
problem we investigate, we also introduce some similar interesting control system on
water waves in this section. Next we quickly recall some basic concepts on controlla-
bility.

2.2.1 Concepts on controllability and observability

Still using the notation we introduced at the beginning of this section, for the infinite
dimensional system (2.1), we first introduce some basic definitions and properties. We
denote by Σ(A, B,−) the abstract linear control system (2.1), which is also called state
linear system in Curtain and Zwart [40]. For simplicity, we only consider bounded con-
trol operator, i.e. B ∈ L(U, X). However, it is important to notice that the concepts for
bounded B has a naturnal generalization to the general un-bounded case. Controllabil-
ity is the property of being able to steer between two arbrtiary points in the state space
X. For finite-dimensional, time-invariant, linear systems, there is a simpler definition
on controllability (see, for instance, Tucsnak and Weiss [115, Chapter 1]). In the infinite
dimensional case, the situation becomes more complicated.

Definition 1 (Controllability). For the state linear system Σ(A, B,−), for every τ > 0 we
define the following concepts:

1. Σ(A, B,−) is exactly controllable in time τ, if for every initial data z0 ∈ X and for
every element z1 ∈ X, there exists u ∈ L2([0, τ]; U) such that the solution of (2.1)
satisfies z(τ) = z2;

2. Σ(A, B,−) is null controllable in time τ, if for every initial data z0 ∈ X, there exists
u ∈ L2([0, τ]; U) such that the solution of (2.1) satisfies z(τ) = 0;

3. Σ(A, B,−) is approximately controllable in time τ, if for every ε > 0, for every initial
data z0 ∈ X and for every element z1 ∈ X, there exists u ∈ L2([0, τ]; U) such that the
solution of (2.1) satisfies ‖z(τ)− z1‖ < ε.

It is obvious to see that exact controllability implies null controllability, but in gen-
eral the inverse claim is not true. For linear time-invariant control system, exact con-
trollability is equivalent to null controllability. According to the classical semigroup
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theory, for bounded control operator B and for initial data z0 ∈ X, the system (2.1)
admits a unique solution z ∈ C([0, ∞); X), which is

z(t) = Ttz0 + Φtu ∀ t > 0, u ∈ L2
loc([0, ∞); U).

For every t > 0, Φt : L2
loc([0, ∞); U) → X is called the input to state map (or, briefly,

input map, sometimes also called the controllability map) defined by

Φtu =
∫ t

0
Tt−sBu(s)ds.

Based on the properties of the semigroup, the controllability concepts can be equiva-
lently defined in terms of the input map Φt.

Proposition 1. For every τ > 0, the system Σ(A, B,−) is

1. exactly controllable in time τ, if and only if Ran Φτ = X;

2. null controllable in time τ, if and only if Ran Tτ ⊂ Ran Φτ;

3. approximately controllable in time τ, if and only if Ran Φτ = X.

Although these exact controllability properties can be useful, large classes of PDEs
will not be exactly controllable but only approximately controllable. It is possible to
give some easily verifiable necessary and sufficient conditions for approximate con-
trollability. To give these tests, we consider the dual control system of Σ(A, B,−). Ac-
cording to the dual argument, we know that the controllabiltiy of the system Σ(A, B,−)
is equivalent to the observability of its dual system Σ(A∗,−, B∗). Therefore, we have
the equivalent definition for controllability.

Proposition 2 (Dual definition of controllability). For every τ > 0, we have the following
equivalent definition for controllability.

1. Σ(A, B,−) is exactly controllable in time τ, if and only if there exists Cτ > 0 such
that ∫ τ

0
‖B∗T∗t z‖2

Udt > Cτ‖z‖2 ∀ z ∈ X; (2.11)

2. Σ(A, B,−) is null controllable in time τ, if and only if there exists Cτ > 0 such that∫ τ

0
‖B∗T∗t z‖2

Udt > Cτ‖T∗t z‖2 ∀ z ∈ X; (2.12)

3. Σ(A, B,−) is approximately controllable in time τ, if and only if we have the property

B∗Ttz = 0 t ∈ [0, τ] =⇒ z = 0.

The inequalities (2.11) and (2.12) are called observability inequalities, in the sense
that the observation quantity ∫ τ

0
‖B∗T∗t z‖2

Udt

gives the corresponding estimate for ‖z‖ and ‖T∗t z‖ when the system under consider-
ation is exactly controllable and null controllable, respectively. Compared with Defini-
tion 1 and Proposition 1, the conditions proposed in Proposition 2 are more convenient
to determine the controllability property for a certain control system.
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2.2.2 Boundary control problem imposed by a wave maker

We consider an irrotational, incompressible, inviscid fluid with constant density in a
two-dimensional bounded domain Ω. We assume that the boundary Γ of Ω consists
of a top free surface Γs, a fixed boundary including a bottom Γ f with finite arclength
and two vertical walls of positive length, denoted by Γ1 and Γ2, respectively (i.e. no
"beaches"). Notice that we consider the small-amplitude water waves, the nonlinear

x

y

π0

Γs

Γf

Γ2Γ1

Ω

ζ(t, x)

Figure 2.1: A bounded domain Ω filled with water

terms are dropped during the linearization process. As we know that the dynamics of
irrotational and incompressible fluid can be described by the Laplace equation, thereby
the fluid motion can be expressed in terms of a velocity potential φ(t, x, y) defined on
R+×Ω. Suppose that we control a small-amplitude movement of one end of the water
tank, the one whose nominal equation is x = 0. We denote by ζ the elevation of the
free surface, then the governing equations, for every t > 0, read

∆φ(t, x, y) = 0 in Ω,
∂t φ + gζ(t, x) = 0 on Γs,
∂~nφ = ∂tζ(t, x) on Γs,
∂~nφ = v(t, y) on Γ1,
∂~nφ = 0 on Γ2 ∪ Γ f ,

(2.13)

where ~n is the unit outer-normal vector on the corresponding part of the boundary
Γ, g represents the gravity acceleration and v is the velocity on the left boundary Γ1
produced by the small oscillation in the horizontal direction. This small oscillation can
be imposed by a wave maker from that active boundary, which causes a small water
waves on the free surface Γs. There are flexible and rigid wave makers used to generate
the velocity, as the control signal, in the water waves system. There are two types of
wave makers: flexible and rigid (please refer to Mottelet [85]). The flexible wave maker
can produce the desired velocity, while the velocity produced by the rigid wave maker
depending on a fixed "shape" described by a function h, thereby the corresponding
velocity takes the form

v(t, y) = h(y)u(t).

Therefore, we have a scalar control u(t). When h(y) = y the boundary condition on Γ1
represents a plane wave maker being able to rotate around an axis located at the bottom
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of the fluid domain, with small angular velocity u(t). The details on the derivation of
the governing equations (2.13) will be provided in the main contents.

The control system (2.13), with rigid wave maker at one lateral boundary of Ω,
was firstly studied in Reid and Russell [96]. The fluid domain Ω was assumed to be
simple geometric in the sense that it is semi-infinite (bottomless) with straight sides.
In this case, the evolution operator in the control model possesses explicit eigenvalues
and eigenvectors. They showed that the problem of steering the system to zero is
equivalent to a moment problem involving the expansion coefficients. It turned out
that the system is null controllable in infinite time, while it fails in finite time. The
corresponding null control is constructed via the Laplace transform of a set of functions
which are bi-orthogonal to the exponentials, i.e.∫ ∞

0
eiwks pn(s)ds = δk

n,
∫ ∞

0
eiwksqn(s)ds = 0;

∫ ∞

0
eiwksqn(s)ds = δk

n,
∫ ∞

0
eiwks pn(s)ds = 0,

where δk
n = 1 if n = k, otherwise it is zero. The null control u takes the form

u(t) =
∞

∑
n=1

(cn pn(s) + dnqn(s)) .

Following the semi-infinite fluid domain, Reid extended in [94] their controllabil-
ity results to a bounded domain with irregular bottom contour, please refer to Figure
2.1. Moreover, the domain may be multi-connected, i.e. contain fixed objects. The
approach developed in [96] requires the knowledge of the spectrum of the evolution
operator, which cannot be applied directly to this general case. In this irregular case,
the eigenvalues and the eigenvectors cannot be computed explicitly, so that the main
difficulty lies in the eigenvalue estimate. To solve this, Reid employed a perturbation
technique in [94], which comes from an observation that the velocity potential should
decay exponentially with depth like the one in infinite bottom. The main idea is that
we can first estimate the influence of a bottom by looking in the infinite depth tank at a
flow through the proposed bottom, then computing the influence of placing a bottom
there. He proved that actually the eigenvalues of the evolution operator are a bounded
perturbation of the eigenvalues in infinite depth, and the difference behaves like 1/k.
This was addressed by extending the fluid domain to be symmetric with respect to
x = 0, x = π and y = 0. In this way, the open-loop null control for infinite time was
built in a similar way as in [96]. Moreover, they proposed sufficient conditions for the
convergence of the series describing the control.

Besides gravity water waves, Reid also studied in [95] the null controllability of
gravity-capillary water waves where both gravity and surface tension are significant.
The governing equations are of course a little different with the gravity case (2.13),
because of the surface tension effect. The only difference lies in the boundary condition
on the top derived from the free surface Bernoulli equation, which is

∂tφ + gζ = T ∂xxζ on Γs. (2.14)

The constant T in (2.14) represents a parameter related to the surface tension coeffi-
cient. Therefore, the governing equation for gravity-capillary waves system can be
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obtained from (2.13) by replacing the second boundary condition with (2.14). Simi-
larly, the control system was formulated as a first-order evolution equation, which is a
little different with the one in gravity case, reducing the null controllability problem to
a moment problem involving frequency exponentials. For the fluid domain Ω with flat
bottom, Reid proved in [95] that the gravity-capillary waves system is null controllable
in arbitrary finite time.

The control term in the water waves system discussed above are all produced by
the rigid wave maker. Assuming that the bottom of Ω is flat, Mottelet considered in
[85] the control problem on gravity waves with flexible and rigid wave maker, respec-
tively. In [85], Mottelet firstly named the evolution operators used to formulate the
control system, which are Dirichlet map and Neumann map. In the flexible case, the
input space is infinite-dimensional and he gave a positive result for the approximate
controllability and a counterexample to the exact controllability. In the rigid case, the
input space is R and the approximate controllability does not hold. He also studied
the stability of the system with rigid wave maker at one boundary, where the state
feedback was taken as the elevation of the free surface at the active boundary, saying
x = 0. In practice, this requires a sensor installed on the wave maker. The control
system is strongly stable, but not in a uniform way, by means of an ad hoc energy and
a particular choice of the shape function h.

2.2.3 Moving water tank system

Different with the control imposed by the wave maker, there are also a lot of work
considering the controllability and stabilization of a moving water tank system. The
water tank is pushed by an external force in order to move it from one location to
another, and the main problem during this process is the suppression of sloshing.

Based on the main framework used in [85], Mottelet studied in [86] a moving rect-
angular water tank which is controlled by means of a longitudinal acceleration in the
x direction (please refer to Figure 2.1 with a flat bottom). For this system, we denote
by U the potential such that the volumic acceleration~a is given by~a = ∇U . Since the
acceleration only occurs in the x direction, we have

U (t, x, y) = (x + c)u(t),

where u is the amplitude of the acceleration of the tank and c is an arbitrary constant.
We denote by P(t, x, y) the static pressure, then the Bernoulli equation reads

1
2
|∇φ|2 + ∂tφ + gy + U =

Patm − P
ρ

in Ω,

where ρ is the density of the fluid, g is the acceleration of gravity and Patm represents
the atmospheric pressure. The corresponding linearized free surface Bernoulli equa-
tion is

∂tφ + gζ + (x + c)u = 0 on Γs. (2.15)

Therefore, the governing equations of the moving water tank system are (2.13) by re-
placing the second equation with (2.15). These equations were formulated into a first-
order evolution system in [86] where the control operator is simpler than the one in
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[85]. By using the similar approach developed in [85], Mottelet showed that this con-
trol system is approximately controllable in infinite time and strongly stable in an ad
hoc energy.

For completeness we mention that there are also many work on moving water tank
system modeled by the nonlinear shallow water equation (also called the Saint-Venant
equation), rather than the linear equations (2.13). In this case, the horizontal accelera-
tion of the tank is assumed to be small compared to the gravity constant and that the
height of the fluid is assumed to be small compared to the length of the tank. The
governing equations (2.13) we introduced above are actually a fully linear and fully
dispersive model, while the nonlinear water waves equations are a fully nonlinear and
non-dispersive water waves model. We do not go into the details here on the approxi-
mation of water waves equation, which will be introduced in wave-structure part. This
kind of moving water tank system was studied in, for instance, Coron [35], Prieur and
De Halleux [90], Berger et al. [20]. In [35] this nonlinear control system was shown to
be locally controllable around any steady state, and it can be moved from one steady
state to any other steady state. The stabilization issue was considered in [90] and the
control laws was constructed by means of Lyapunov approach. The model used in [20]
is a linearized shallow water equations, and they studied the tracking control prob-
lem and proved that, through a funnel controller, the tracking error evolves within a
pre-specified performance funnel.

2.3 Wave-structure interactions

In the final part, we consider the fluid-structure system which focuses on the study
of the interaction of free surface water waves with, in particular, a floating body. The
fluid under consideration, delimited by a top free surface and bottom, is assumed to be
incompressible, irrotational and inviscid, see Figure 2.2. With these assumptions, the

x

y

ζ(t, x)

b(x)

h = h0 + ζ − b

−h0

0

−l lE− E+

Ω(t)

I

Figure 2.2: An object floating in shallow water

floating body problem was firstly studied in John [61, 62] in a simplified way, where the
nonlinear effects and the evolution of the wetted surface were ignored. The governing
equations were proposed in the exterior domain E = E− ∪ E+ (with E− = (−∞,−l),
E+ = (l,+∞)) and the interior domain I = (−l, l), where the exterior domain repre-
sents that the part of the fluid surface does not touch the object and the interior domain
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is the remaining part (the fluid under the floating object). Afterwards, for the needs of
the numerical studies some literature took into the nonlinear effects into consideration
(see, for instance, Grilli et al. [51] and Hague and Swan [54]), while there were still
various problems on the derivation of the transition equations. For this reason, Lannes
proposed in [67] a new formulation for the floating body system, which is based on a
new formulation of the standard water waves equations in terms of (ζ, q), where ζ is
the elevation of the free surface and q is the horizontal discharge.

What we are interested here is that the corresponding control problem of the float-
ing body system in the shallow water regime. Before starting this topic, we first give
a brief introduction to the governing equations of the floating body system. We be-
gin from the water waves equations in a two dimensional domain, which is the case
mainly concerned in this thesis. For the higher dimensional equations, please refer to
the details in Lannes [66], [68] and [67].

2.3.1 The water waves equations

As in Figure 2.2, let x ∈ R be the horizontal variable, and let y ∈ R be the vertical
variable. We denote by ζ(t, x) the elevation of the free surface of the water above the
equilibrium position y = 0, and by P(t, x, y) the pressure at the position (x, y) at time
t. Assume that the bottom of the fluid domain can be parametrized by y = −h0 + b(x),
where h0 is the depth of the water level at the equilibrium state. The fluid domain
denoted by Ωt at time t is

Ωt =
{
(x, y) ∈ R2 |−h0 + b(x) < y < ζ(t, x)

}
.

We denote by U(t, x, y) = (V(t, x, y), w(t, x, y)) the velocity of the fluid particle at the
position (x, y) at time t, where V(t, x, y) and w(t, x, y) is the horizontal and the vertical
component of the velocity, respectively. The dynamics of the incompressible, irrota-
tional and inviscid fluid with constant density ρ is described by the Euler equations

∂tU + U · ∇x,yU = −1
ρ
∇x,yP− g~ey in Ωt, (2.16)

where g is the gravity acceleration and ~ey is the unit upwards vertical vector. The
incompressible and irrotational assumption imply that the velocity U satisfies

∇x,y ·U = 0, ∇x,y ×U = 0 in Ωt. (2.17)

The kinematic boundary condition means that the fluid particles always stay on the
free surface, which reads

∂tζ−U · N = 0 on y = ζ(t, x),

with U(t, x, y) =U(t, x, ζ(t, x)), N =

[−∂xζ
1

]
.

(2.18)

The second boundary condition at the surface is the dynamic boundary condition for
the pressure, i.e.

P = Patm = constant on y = ζ(t, x), (2.19)
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where Patm is the atmospheric pressure. In the above condition we do not consider the
surface tension effect. The last boundary condition for the bottom is the impermeable
condition

Ub · Nb = 0 on y = −h0 + b(x), (2.20)

with

Ub(t, x) = U(t, x,−h0 + b(x)), Nb =

[−∂xb
1

]
.

The equations (2.16)–(2.20) are called the free surface Euler equations. For irrotational
flow there exists a potential function Φ(t, x, y), such that U(t, x, y) = ∇x,yΦ. Therefore,
the equations (2.16)–(2.20) can be further written in terms of the velocity potential Φ,
and the resulting equations are called the free surface Bernoulli equations. For more de-
tails, please refer to [66] or [68]. Observe from the equations (2.17) and (2.18) that the
velocity potential Φ is fully determined by ψ(t, x) := Φ(t, x, ζ(t, x)), which implies that
the free surface Bernoulli equations can be further reduced to two evolution equations
on ζ and ψ. We introduce the Dirichlet to Neumann operator A[ζ, b] defined by

A[ζ, b]ψ = N · ∇x,yΦ|y=ζ , (2.21)

where Φ solves {
∆x,yΦ = 0 in Ωt,
Φ|y=ζ = ψ, Nb · ∇x,yΦ|y=−h0+b = 0.

With the Dirichlet to Neumann operator A[ζ, b], the water waves equations are formu-
lated in terms of ζ and ψ as follows:

∂tζ − A[ζ, b]ψ = 0,

∂tψ + gψ +
1
2
|∂xψ|2 − 1

2
(A[ζ, b]ψ + ∂xζ ∂xψ)2

1 + |∂xζ|2 = 0.
(2.22)

The above (ζ, ψ) system (2.22) defined on the free surface is called the Zakharov-Craig-
Sulem formulation of the water waves equations. The local well-posedness of this for-
mulation was provided in Lannes [65]. This local well-posedness has been extensively
studied in two directions: low regularity in Alazard et al. [5] and uniform bounds of
3D shallow water in Alvarez-Samaniego and Lannes [6], Iguchi [58].

Note that the Zakharov-Crag-Sulem equations (2.22) do not depend on the vertical
variable y, so that the water waves problem reduces one dimension. Another way to
get rid of the vertical variable is to take integration of the free surface Euler equations,
with respect to the variable y. Hence we introduce the horizontal discharge q as

q(t, x) =
∫ ζ(t,x)

−h0+b(x)
V(t, x, y)dy, (2.23)

where V as defined earlier is the horizontal component of the velocity U. Combined
with the boundary conditions (2.18) and (2.20), we vertically integrate the Euler equa-
tion (2.16) which gives

∂tζ + ∂xq = 0,

∂tq + ∂x

(∫ ζ

−h0+b
V ⊗V

)
+

1
ρ
∇x,yP = 0.

(2.24)
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Observe that there are some quantities in expression (2.24) which are not explicitly
determined by ζ and q. For this reason, we introduce the decomposition technique
from [68] for the horizontal velocity V and the pressure term P. We decompose V as

V(t, x, y) = V(t, x) + V∗(t, x, y), (2.25)

V(t, x) =
1
h

∫ ζ

−h0+b
V(t, x, y)dy and V∗(t, x, y) = V(t, x, y)−V(t, x).

The quantity h = h0 + ζ − b is the water depth at time t. The pressure P is decomposed
into the hydrostatic and the non-hydrostatic components as follows:

P = Patm + ρg(ζ − y) + PNH, (2.26)

where PNH is the non-hydrostatic pressure. Integrating the vertical component of the
Euler equation (2.16), we obtain

PNH(t, x, y) = ρ
∫ ζ(t,x)

y

(
∂tw + U · ∇x,yw

)
.

Now combined with the two decomposition (2.25) and (2.26), the equations (2.24) be-
comes 

∂tζ + ∂xq = 0,

∂tq + ∂x

(
q2

h

)
+ gh∂xζ + ∂xR + haNH = 0,

(2.27)

where

R =
∫ ζ

−h0+b
V∗ ⊗V∗ and haNH =

∫ ζ

−h0+b
∂x

(∫ ζ(t,x)

y

(
∂tw + U · ∇x,yw

))
.

The quantity aNH in above expression is called the non-hydrostatic acceleration. The
equations (2.27) are called the discharge/elevation formulation of the water waves equa-
tions. Although the last two terms in the second equation of (2.27) seem still com-
plicated, the equations (2.27) form a close set of equations in ζ and q and this has
been fully explained in [67]. The discharge formulation (2.27) is convenient for deriv-
ing some asymptotic models for the water waves equation and for the floating body
system. According to the definition of the horizontal discharge q in (2.23) and the ver-
tically average horizontal velocity V in (2.25), the system (2.27) can be equivalently
written in terms of ζ and V. Based on the definition of V∗ in (2.25), it is obvious to see
that V∗ represents the fluctuation of the horizontal velocity V with respect to its vertical
average V, which implies that the quantity R measures, in particular, the contribution
to the rotational effects (see, for instance, Castro and Lannes [29], [30]). Observe that
the non-hydrostatic pressure PNH contains the linear dispersive terms, and it describes
the property of wave propagation.

Note that the water waves equations (2.27) look pretty complicated, we usually
study its properties through some asymptotic models. Assume that the horizontal
scale of the fluid domain is L and the vertical water depth is h0. We introduce the
shallowness parameter µ defined by

µ =
h2

0
L2 . (2.28)
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In the shallow water regime, the shallowness parameter µ is assumed to be far smaller
than 1, i.e. µ � 1. Based on the shallowness parameter µ introduced in (2.28), the
asymptotic models for the system (2.27) in the shallow water regime depend on the
inner structure of the "turbulence" term R and the non-hydrostatic acceleration aNH. In
the case of the fluid domain with flat bottom, i.e. b = 0 (see Figure 2.2), it turns out
that the velocity U = (V, w), R and aNH can be expanded in terms of µ as

V = V + O(µ), w = O(µ),

R = O(µ2), aNH = O(µ).

Since the solution of the water waves equation was proved, in Lannes [6] (3D) and in
Iguchi [58] (arbitrary space dimension), to be uniformly bounded with respect to the
parameter µ, the asymptotic models can be obtained by dropping high order terms on
µ. The nonlinear shallow water equations (NSW) are an approximation of the water waves
equations (2.27) of order O(µ) i.e. all the terms of order O(µ) are dropped, which reads

∂tζ + ∂xq = 0,

∂tq + ∂x

(
q2

h

)
+ gh∂xζ = 0.

(2.29)

With weak nonlinearity condition the second-order approximation of the water waves
equations (2.27) is the Boussinesq equations, which are

∂tζ + ∂xq = 0,

(1− h2
0

3
∂2

x)∂tq + ∂x

(
q2

h

)
+ gh∂xζ = 0.

(2.30)

All the details on the derivation of (2.29) and (2.30) and other more precise approximate
models can be found in [68]. Lannes also provided in [68] a detailed review on the
well-posedness and some applications of the asymptotic models (2.29) and (2.30).

2.3.2 The water waves equations with a floating body

Let us now consider a rigid object floating in the water waves system. In the presence
of the object, the bottom of Ωt in the horizontal direction is divided into the exterior
domain E and the interior domain I which has been introduced earlier (see Figure
2.2). We observe that the acceleration of the free surface in this case will be affected
by not only the dynamics of the fluid but also the motion of the object. Therefore, the
surface pressure denoted by P should emerge in the second equation of (2.27), and it is
described by Newton’s second law for the motion of the floating object. Let aFS := ∂2

t ζ
be the acceleration of the free surface in absence of the floating object, and we derive
from (2.27) that

aFS = ∂x

(
∂x

(
q2

h

)
+ gh∂xζ + ∂xR + haNH

)
,

where aNH has been introduced below (2.27). We denote by the notation fe the restric-
tion of the function f to the exterior domain E , and by fi the restriction of f to the
interior somain I . More precisely, we have the following governing equations for the
floating object system.
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Theorem 9 (Lannes [67]). Let ζ be the elavation of the free surface and let q be the horizontal
discharge. The water waves system in the presence of a floating object is described by

∂tζ + ∂xq = 0,

∂tq + ∂x

(
q2

h

)
+ gh∂xζ + ∂xR + haNH = −h

ρ
∂xP,

(2.31)

where the surface pressure P satisfies

Pe = Patm and

− ∂x

(
h
ρ

∂xPi

)
= −∂2

t ζi + aFS(h, q),

Pi|Γ(t) = Patm.
(2.32)

The transition conditions at the contact line Γ(t) are

ζe = ζi and qe = qi on Γ(t). (2.33)

In two dimensional case, the contact line Γ(t) is described by two moving con-
tact points. In particular, when the object only moves in the vertical direction, these
two points are fixed, which are x = ±l. There are two types motion of the partially
immersed object in the fluid: prescribed motion and freely floating. In each case the
surface pressure P is of course described in different way. In the prescribed motion,
the velocity U and the position of the floating object are known, and the motion of
the fluid is affected by the object. When the object is freely floating, the dynamics of
the fluid-body system is governed by Newton’s laws. These two situations are fully
analysed in [67]. Moreover, the transition condition (2.33) at the contact line can be
different, which depends on the shape of the object. The continuity condition for the
surface elevation and for the horizontal discharge given in (2.33) obviously exclude the
object with non-smooth contour in contact with the fluid, in particular, the object with
vertical boundary. In the case of the object with vertical wall, the transition conditions
at the contact line Γ(t) are

V ·~n = VC ·~n on Γ(t), (2.34)

Pi = Patm + ρg(ζe − ζi) + ρ
∫ ζe

ζi

(
∂tw + U · ∇x,yw

)
on Γ(t), (2.35)

where VC is horizontal velocity of the object and ~n is the unit normal vector on Γ(t)
pointing towards the exterior domain. It is obvious that the condition (2.35) coincides
with the transition condition for the object with smooth boundary contour, i.e. when
ζe = ζi and Pi = Patm on Γ(t).

There are also some interesting asymptotic models for the full water waves equa-
tions with a floating body system (2.31). In the shallow water approximation of order
O(µ), the vertical variation of the horizontal velocity and the non-hydrostatic acceler-
ation should be ignored. This means that the terms R and aNH will be dropped in the
system (2.31) and the expression for aFS. Therefore, the nonlinear shallow water equations
with a floating structure are

∂tζ + ∂xq = 0,

∂tq + ∂x

(
q2

h

)
+ gh∂xζ = −h

ρ
∂xP,

(2.36)
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where the surface pressure P is determined by the simplified version of the equations
(2.32) by dropping R and aNH in aFS. Similarly, for a more precise approximation, we
take into account the dispersive effects which are ignored in the nonlinear shallow
water model. To do this, with weak nonlinearity assumption on one hand we neglect
the variation of the free surface and of the bottom, but keep the leading order term in
the non-hydrostatic acceleration aNH. As a second-order approximation of the system
(2.31), the Boussinesq equations with a floating structure read

∂tζ + ∂xq = 0,

(1− h2
0

3
∂2

x)∂tq + ∂x

(
q2

h

)
+ gh∂xζ = −h

ρ
∂xP.

(2.37)

The corresponding surface pressure P in (2.37) satisfies (2.32) in the sense that R is
ignored and the main term of aNH is kept. Based on the nonlinear shallow water model,
for the vertically moved object, Lannes also gave in [67] a detailed description of the
surface pressure in the case of the prescribed motion and freely floating, respectively.
In particular, he showed that the vertical motion of the freely floating body system
finally reduce to a transmission problem and the transmission condition is given in
terms of the vertical displacement of the object and the average horizontal discharge at
two contact points. Recently, Beck and Lannes obtained in [17] the similar results for
freely floating object in a fluid described by the Boussinesq equations.

2.3.3 Control problem on the floating body system

The main motivation of the control problem on the floating body system comes from
Wave Energy Converters (WECs), which has been widely applied in ocean engineer-
ing. Ocean waves provide an enormous renewable and endless energy that can be con-
verted into electricity by WECs. For this reason, a great number of different devices
have been developed to harness wave energy by using wave-induced water motion.

According to the different working principle, the WECs are divided into several
types: oscillating water columns (OWCs), overtopping devices (ODs), wave absorbing
devices (WADs) and etc. The principle of the oscillating water columns is similar to a
wind turbine, being based on the wave induced air pressurization. This device is set
above the water level and it connects with a closed air chamber. The passage of the
waves changes the water level inside the air housing and the rising and falling water
level increases and decreases the air pressure at the same time. The change of the pres-
sure forces the wind turbine to start running, thereby kinetic energy is converted into
electricity. In order to improve the conversion efficiency, the oscillating water columns
device is usually used in deep water area, since the shore dampens the large coming
waves. The second type of WECs, the overtopping device, operates like a hydroelec-
tric dam. Its floating arms focus waves onto a slope from which the wave overtops
into a reservoir. The resulting difference in water elevation between the reservoir and
the mean sea level then drives low-head hydro turbines. This device is also usually
set in the offshore area. Another interesting WEC is the wave absorbing device, which
absorbes the incoming waves directly. The most popular wave absorbing device is the
so-called Point Absorber, which consists of a floater on the sea surface and a hydraulic
system vertically installed below the floater. The floater is used to absorb the waves
coming from all directions, and then this induces a motion of the piston, through the
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hydraulic system, drives the hydraulic motor. This motor in turn powers the generator
that can produce electricty. For other interesting WECs and their working principles,
please refer to Drew et al. [42], López et al. [79], Babarit [11] and thereins. Moreover,
there are already some literature devoted the both engineering and mathematical prob-
lem for WECs, for instance, Li et al. [73], Cretel et al. [37] and Rahmati et al. [92] for
WADs, in particular, point absorber device, Moretti et al. [84], Trivedi and Koley [113]
and Bocchi et al. [25] for a certain OWCs system.

In this thesis, we are interested in the control system modeled by the point absorber
device and the floater on the free surface is restricted to the vertical motion. From the
engineering point of view, there are two fundamental problems in the working process
of WECs: inefficient energy extraction and risk of device damage. For this reason,
through a vertical force below the floater we expect to synchronize the motion of the
floater and of the incoming waves, so that the energy is extracted in a relatively efficient
way. At the same time, the WECs is protected by using this external force, although
the adjustment in some sense weaken the large waves. In turn, the device described
above can be also used as a wave maker (or wave generator), to produce the artificial
waves for the needs of physical modelling experiments or entertainment facilities.

Mathematically speaking, we consider the control problem describing the interac-
tions of water waves with a rigid body partially immersed in a bounded shallow water
regime. Moreover, the body is allowed to move only in the vertical direction. The con-
trol signal is a vertical force, imposed from the bottom of the floating object, to adjust its
motion. We shall derive the full governing equations of this floating body system and
then study the controllability and stabilizability properties of this control model. Fur-
thermore, we are interested in giving the detailed description for the reachable space,
when the system begins from the equilibrium state.

2.4 Contributions of the thesis

We state here the main contributions of this thesis in order of the contents we intro-
duced above. The results in this sections are taken from several papers by the author
and her collaborators, including some conclusions which are not submitted and also
some have been published or under review.

2.4.1 Stabilizability of a water waves system

Based on the abstract framework introduced around the model (2.1), here we introduce
a non-uniform decay result with a more explicit sufficient condition on the spectrum
structure of A and the properties of the control operator B. Motivated by the water
waves system, we consider a class of control systems with colocated feedback, de-
scribed by the control model (2.3), where A is skew-adjoint with compact resolvents
and B ∈ L(U, X). In this case, the operator A = A − BB∗ is m-dissipative, so that
it is the generator of a contraction semigroup (for this, please refer to [115, Chapter
3]). Moreover, the operator A is a Riesz-spectral operator, thereby, for a set J ⊂ Z, we
denote its eigenvalues by (iµk)k∈J and the corresponding normalized eigenvectors by
(φk)k∈J , which forms an orthonormal basis in X. We introduce a scale of Hilbert spaces
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Xα, for α ∈ R, defined by

Xα =

{
z ∈ X

∣∣∣∣∣ ∑
k∈J

(1 + |µk|2α)|〈z, φk〉|2 < ∞

}
.

The scale of Hilbert space Xα actually has been already introduced in the notation part.
For every α ∈ R, X−α is the dual of Xα with respect to the pivot space X. Moreover, for
every α > 0, Xα represents the domain of the operator Aα, i.e. D(Aα), endowed with
the corresponding graph norm.

Theorem 10 (Su and Tucsnak 2019). Let A : D(A) → X be a skew-adjoint operator with
compact resolvents and B ∈ L(U, X). We denote by S = (St)t>0 the semigroup generated
by A = A− BB∗. Assume that the eigenpair of A, denoted by (iµk, φk)k∈J , satisfy (for every
k, l ∈ J and k 6= l)

µk 6= µl and µk = kα + O(kq) as k→ ∞;

‖B∗φk‖U >
C
kβ

,
(2.38)

where q < α− 1. If the condition (2.38) is satisfied with 0 < α < 1 and β > 0, we have

‖Stz0‖ 6
C

(1 + t)
α

2(β−α+1)
‖z0‖D(A) ∀ z0 ∈ D(A). (2.39)

If (2.38) is satisfied with α > 1 and β > 0, for all z0 ∈ X1, we have the observability inequality∫ T

0
‖(B∗w)(t)‖2

Udt > C‖z0‖2
X− α

β

,

where w is the solution of the undamped system (2.4). Moreover, we have the corresponding
decay result

‖Stz0‖ 6
C

(1 + t)
α

2β

‖z0‖D(A) ∀ z0 ∈ D(A). (2.40)

It is known that the control system is exponentially stabilizable when α > 1 and
β = 0, so we do not discuss this case here. Compared with the sufficient condition
introduced in Theorem 8, the condition (2.38) is more clear and easier verified by using
the spectrum structure of A. Since the decay rate in Theorem 10 might be the same with
the decay rate derived from Theorem 8 in some special PDEs, for example the linear
water waves system, we did not submit this result which actually has been finished in
2019. The proof of Theorem 10 will be presented in Chapter 3.

Now we go back to the water waves control problem, described by the equations
(2.13) with a rigid wave maker, in a two dimensional rectangular domain. All the
work introduced before dealt with the first-order evolution system formulated from
the original governing equations (2.13) directly, but the relationship between the first-
order control system and the equations (2.13) is not very clear. Moreover, there is no
strict definition and detailed analysis for the evolution operators used to formulate the
control model in the above references. For this reason, we established in Su et al. [110]
the well-posedness of the governing equations (2.13) by formulating them as an ab-
stract linear control system (for this concept, please refer to Weiss [119] or Tucsnak and
Weiss [115]) for scalar input u ∈ L2

loc([0, ∞); U). During this process, we introduced in
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[110] the partial Dirichlet to Neumann and the partial Neumann to Neumann operators, as-
sociated with certain boundaries of the rectangular domain, and studied their detailed
properties. What is important is that we proved that the governing equations (2.13)
can be equivalently recast as an abstract linear control system by using the Dirichlet to
Neumann and the Neumann to Neumann operators. Moreover, we studied the stabi-
lizability properties of the linear control system for gravity water waves.

Theorem 11 (Su, Tucsnak and Weiss [110]). The small-amplitude gravity water waves sys-
tem (2.13) in rectangular domain Ω, with rigid wave maker imposed at the left boundary Γ1,
can be equivalently recast to an abstract linear control system (2.1) with the state z =

[
ζ

ζ̇

]
on

X and scalar control u (the acceleration produced by the wave maker). For u ∈ L2
loc([0, ∞))

and h ∈ L2[−1, 0] with
∫ 0
−1 h(y)dy = 0, the initial data z0 ∈ H 1

2 [0, π] × L2[0, π] and
φ0 ∈ H1(Ω), the system (2.13) admits a unique solution (ζ, φ) satisfying

φ ∈ H1
loc([0, ∞);H1(Ω)), ζ ∈ C([0, ∞);H 1

2 [0, π]) ∩ C1([0, ∞); L2[0, π]).

The operator pair (A, B) in the model (2.1) are[
0 I
−A0 0

]
B =

[
0
B0

]
,

where A0 and B0 is the Dirichlet to Neumann operator and the Neumann to Neumann operator,
respectively. This control system is strongly stabilizable with the colocated feedback u = −B∗z,
and the corresponding closed-loop semigroup St generated by A− BB∗ satisfies

‖Stz0‖X 6
C

(1 + t)
1
6
‖z0‖D(A) ∀ z0 ∈ D(A), t > 0.

Similarly, the case of gravity-capillary water waves was discussed in [108] where
we need the Sturm-Liouville operator to deal with the surface tension term. The corre-
sponding governing equations for gravity-capillary waves can be also formulated into
a first-order control system in form of (2.1) which is again strongly stabilizable and
satisfies

‖Stz0‖X 6
C

(1 + t)
3
4
‖z0‖D(A) ∀ z0 ∈ D(A), t > 0.

As we expected, we observe that the decay rate of the trajectory of the control system
for gravity-capillary waves is faster than the case of the gravity waves, because of the
surface tension effect.

2.4.2 Asymptotic analysis of water waves equations in shallow water

Following the stabilization issue, we are interested in Su [107] the asymptotic be-
haviour of the solution of the gravity water waves control system (2.13) in the shallow
water regime, where the horizontal scale of the fluid domain is much larger than the
vertical depth. To state the result, we recall the shallowness parameter µ introduced in
(2.28). We define some dimensionless quantities as follows

x =
x
L

, y =
y
h0

, t =
t

L/
√

gh0
, ζ =

ζ

a
, φ =

φ

aL
√

g/h0
, (2.41)

33



CHAPTER 2. INTRODUCTION (ENGLISH)

where a is the order of the surface variation, L is the horizontal scale of the fluid do-
main, h0 represents the typical water depth, ζ and φ are the dimensionless version of
the elevation of the free surface ζ and the velocity potential φ, respectively. Based on
the dimensionless quantities in (2.41), we derive the dimensionless version of the wa-
ter waves equations (2.13), and denote the solution for the dimensionless system by
ζµ and φµ to avoid any confusion. Omitting the overlines above the dimensionless
quantities for the sake of simplicity, we take the dimensionless domain as

Ω = {(x, y)|x ∈ [0, π] and y ∈ [−1, 0]} .

The dimensionless linear water waves system with a rigid wave maker, for every t > 0
and x ∈ [0, π], reads 

(µ∂2
x + ∂2

y)φµ(t, x, y) = 0,

∂t ζµ(t, x) − 1
µ

∂y φµ(t, x, 0) = 0,

∂t φµ(t, x, 0) + ζµ(t, x) = 0,
∂x φµ(t, 0, y) = − h(y)v(t),
∂y φµ(t, x,−1) = 0 = ∂x φµ(t, π, y),

(2.42)

where v is the velocity produced by the wave maker. According to Theorem 11, the
system (2.42) is also equivalent to an abstract linear control system with the state[
ζµ ζ̇µ

]ᵀ, we thus propose the initial data as

ζµ(0, x) = ζ0(x), ∂tζµ(0, x) = ζ1(x). (2.43)

In this way, the input of the control model is the acceleration imposed by the wave
maker, i.e. u = v̇. To analyse the asymptotic behaviour of the system (2.42) in shal-
low water regime, we introduce the following wave equation defined on [0, π] with
Neumann boundary control at the left endpoint, i.e. for all t > 0, x ∈ [0, π],

∂2
t ζ(t, x)− ∂2

x ζ(t, x) = 0,
∂xζ(t, 0) = u(t), ∂xζ(t, π) = 0,
ζ(0, x) = ζ0(x), ∂tζ(0, x) = ζ1(x).

(2.44)

With the above notation, we have the following asymptotic result.

Theorem 12 (Su [107]). For u ∈ L2
loc[0, ∞) and for any initial data ζ0 ∈ H1[0, π] and

ζ1 ∈ L2[0, π], let ζµ be the solution of the free surface equations of (2.42) with the initial data
(2.43), satisfying

ζµ ∈ C([0, ∞);H 1
2 [0, π]) ∩ C1([0, ∞); L2[0, π]).

Let ζ be the solution of the system (2.44) satisfying

ζ ∈ C([0, ∞);H1[0, π]) ∩ C1([0, ∞); L2[0, π]).

Then, for every τ > 0, we have

lim
µ→0

sup
t∈[0,τ]

‖ζµ − ζ‖
H 1

2 [0,π]
= 0,

lim
µ→0

sup
t∈[0,τ]

∥∥∂tζµ − ∂tζ
∥∥

L2[0,π]
= 0.
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According to Theorem 12, we know that the solution of the water waves system
converges to the solution of the one-dimensional wave equation with Neumann bound-
ary control, when taking the shallowness limit µ → 0. This is a natural result. Intu-
itively, the rectangular fluid domain becomes thiner and thiner in the horizontal di-
rection and it reduces to a one-dimensional interval. From another point of view, the
dispersive effect is dropped out during the limit process, and this is exactly the prop-
erty of the one-dimensional wave equation. We find that the properties of the limit
system is much better than the water waves system. The wave equation with Neu-
mann boundary control is exactly controllable (see [19, Part III, Chapter 8] and [83]
for the sufficiently large time, and [69] for finite time interval), while the water waves
system (5.4) is even not approximately controllable (see [96] and [85]).

2.4.3 Control of floating body system

Instead of the boundary control problem of water waves, we consider the interaction
of water waves with a partially immersed object in a fluid modeled by the shallow
water equations. The object is assumed to move only in the vertical direction. The
control now is a vertical force acting on the vertically moved object. We assume that the
floating object has vertical lateral walls, with a possibly non-flat but symmetric bottom.
Moreover, let the interior domain I = [−l, l] and the exterior domain E = E− ∪ E+,
with E− = [−L,−l] and E+ = [l, L′]. Firstly we derive the governing equations of this
floating body control system in a bounded water tank, still denoted by Ωt,

Ωt =
{
(x, y) ∈ [−L, L′]× [−h0, ζ]

}
.

Based on the nonlinear shallow water equations with a floating structure in an infinite
strip introduced in (2.36), we need the boundary conditions for the horizontal dis-
charge q and the transmission conditions at the contact points of the interior domain I
and the exterior domain E . To address this, in Su and Tucsnak [109] we follow the con-
servation laws of the total energy and of the volume of the water. The full governing
equations of the floating body system with control term in bounded domain Ωt, for all
t > 0, read

∂tζ + ∂xq = 0 x ∈ I ∪ E , (2.45a)

∂tq + ∂x

(
q2

h

)
+ gh∂xζ = −h

ρ
∂xP x ∈ I ∪ E , (2.45b)

Pe(t, x) = 0 x ∈ E , (2.45c)
ζi(t, x) = δ(t) + heq(x)− h0 x ∈ I , (2.45d)
Pi(t,±l) = ρg (ζe(t,±l)− ζi(t,±l)) + (Be(t,±l)−Bi(t,±l)) , (2.45e)

mδ̈(t) =
∫ l

−l
Pi(t, x)dx−mg + u(t), (2.45f)

qe(t,−L) = 0 = qe(t, L′), qi(t,±l) = qe(t,±l), (2.45g)

with the given initial data

ζ(0, x) = ζ0(x), q(0, x) = q0(x), δ(0) = δ0, δ̇(0) = δ1 ∀ x ∈ I ∪ E ,

where δ is the variation of the center of gravity of the object, m is the mass of the
object, g is the gravity acceleration. The function heq in (2.45d) is even and non-negative
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representing the distance between the bottom of the object and the bottom of the fluid
domain. The quantity B in (2.45e) is defined by

B =
ρq2

2h2 .

Moreover, the equations (2.45) can be further formulated into a first-order evolution
system in the exterior domain E , in terms of the elevation ζ, the horizontal discharge
q, the average horizontal discharge at two contact points, the displacement and the ve-
locity of the object, with transmission conditions and boundary conditions. It is worth
noting that the surface pressure Pi is determined by a second-order elliptic equation
where the source term depends on the exterior functions ζe, qe and δ. Combined with
the boundary conditions (2.45d), Pi is totally determined by the exterior quantities. For
more details about this, please refer to the main contents of this thesis. Strictly speak-
ing, the well-posedness of the full system (2.45) is open. But the main idea for the proof
of the local well-posedness result probably can be done by using the approach devel-
oped in Iguchi and Lannes [59] where the problem is in an infinite strip and without
control.

Here for the control properties of the floating body system, we consider the lin-
earized equations around the equilibrium state. We define the jump and the average
of a function f defined on [−l, l] by J f K = f (l) − f (−l) and 〈 f 〉 = 1

2 ( f (l) + f (−l)),
respectively. The linearized floating body system, for every t > 0 and x ∈ E , reads

∂tζ = −∂xq,
∂tq = −gh0 ∂xζ,
d
dt
〈qi〉 = −

g
2lα

Jζ K,

δ̈ = −2ρgl
M

δ +
2ρgl

M
〈ζ 〉+ 1

M
u,

(2.46)

with transmission conditions

〈q〉 = 〈qi〉, JqK = −2lδ̇, (2.47)

and boundary conditions
q(t,−L) = 0 = q(t, L′), (2.48)

where α and M are two constants depending on the mass m and the function heq. Let
the state and the initial data of (2.46) be

z =
[

ζ q 〈qi〉 δ δ̇
]ᵀ , z0 =

[
ζ0 q0 〈qi〉0 δ0 δ1

]ᵀ . (2.49)

Our first result is the well-posedness of the linear system (2.46)–(2.49).

Theorem 13 (Su and Tucsnak [109]). The linearized floating body system (2.46)–(2.49)
forms a linear control system with the state z in the state space

X =

{[
ζ q 〈qi〉 δ η

]ᵀ ∈ (L2(E)
)2 ×C3

∣∣∣∣ ∫E ζ(x)dx + 2l δ = 0
}

and the input space U = C. For u ∈ L2
loc([0, ∞); U)), the initial data z0 ∈ X, the system

(2.46)–(2.49) admits a unique solution z ∈ C([0, ∞); X).
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Our main interest is to study the reachable space of the control system (2.46)–(2.49),
when the object is put in the middle of the fluid domain in the horizontal direction i.e.
L = L′. This space is formed of all the states that can be reached from equilibrium by
means of L2 controls u. For every τ > 0, the input to state map Φτ : L2([0, ∞); U)→ X
of the system (2.46)–(2.49) with zero initial data (i.e. z0 = 0) defined by

Φτu = z(τ) ∀ u ∈ L2
loc([0, ∞); U)).

The reachable space is described by Ran Φτ, for every τ > 0. Notice that when L′ = L
and the initial state is an equilibrium one, the whole floating body-fluid system pre-
serves its symmetry for all t > 0, in the sense that ζ and q satisfy

ζ(t,−x) = ζ(t, x) q(t,−x) = −q(t, x) ∀ x ∈ E .

We define the symmetry space S as follows:

S =

{[
ζ q 〈qi〉 δ η

]ᵀ ∈ (L2(E)
)2 ×C3 and

ζ(−x) = ζ(x), q(−x) = −q(x)

}
.

To state the result, we introduce the Hilbert space W:

W =

{[
ζ q 〈qi〉 δ η

]ᵀ ∈ (H1(E)
)2 ×C3

∣∣ ∫
E ζ(x)dx + 2l δ = 0,

JqK = −2l η, 〈q〉 = 〈qi〉 and q(−L) = 0 = q(L′)

}
.

Theorem 14 (Su and Tucsnak [109]). Assume that the object floats in the middle of the fluid
domain in the horizontal direction, i.e. L′ = L. Then for every τ > 2(L−l)√

gh0
, we have

(W ∩ S) = Ran Φτ ⊂ (X ∩ S), (2.50)

where the inclusion is dense and with continuous embedding.

In the symmetric case described above, the average horizontal discharge 〈qi〉 and
the jump of the elevation JζeK are both zero, so that the state z and the linear control
system (2.46)–(2.49) can be simplified. We see from the equality in (2.50) that the reach-
able space of the control system (2.46)–(2.49) consists of any symmetric waves with the
regularity as in the Hilbert space W. The inclusion in (2.50) means that the system is not
approximately controllable in X, but in its symmetric subspace X ∩ S. Moreover, we
show in Chapter 6 that if we take the state space as W ∩ S, the control system is exactly
controllable in finite time. More details on this symmetric case are provided in Chapter
6, where we also analyse the case when the object floats at one lateral boundary of Ω.

Theorem 15 (Su and Tucsnak [109]). Assume that the object is in the middle of the fluid
domain, i.e. L′ = L. Then any symmetric wave profile in the Hilbert space W can be reached
by the control system (2.46)–(2.49). Moreover, this system is strongly stabilizable with the
colocated feedback for regular initial data, and we have

‖z‖X 6
C

(1 + t)
1
2
‖z0‖W∩S ∀ z0 ∈W ∩ S. (2.51)
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According to Theorem 15, taking the the colocated feedback, the symmetric waves
withH1-regularity, generated by the motion of the object in the middle of the domain,
decay like t−1/2. As we already mentioned above, the solution z possess the symmetry
condition in S when z0 is symmetric. Therefore, the left side of (2.51) actually is the
norm of z in the Hilbert space X with the symmetric property. Moreover, we also show
in [109] that, without symmetric initial data, the linear floating object system (2.46)–
(2.49) is not controllable when the object is in the middle L′ = L. The situation in the
general case is complicated since the eigenspace of the evolution operator involved
in the well-posed linear control system, associated with (2.46)–(2.49), is possibly not
simple. In this case, the control system with one control is not observable.

When the object is at one of the end of the fluid domain, i.e. L = l or L′ = l, the
governing equation (2.45) is not available. Without loss of generality, we assume that
the object floats at the right lateral boundary, i.e. the case when L′ = l. As we can see
from (2.45), the notation ζe(t, l) and qe(t, l) do not make sense since the right exterior
domain E+ = (l, L′) vanishes. Moreover, there are also some problems in the coupled
PDE-ODE system formulated by the equations (2.45), where the two ODE equations
are not compatible. For this reason, we go back to the model derivation by using the
conservation of the energy and of the volume. The governing equations in this case
become simpler and the surface pressure Pi satisfies a first-order equation with one
boundary condition at x = −l. But the linearized version is the same with the system
(2.45) in symmetric case restricted in E−. Therefore, the results in Theorem 15 also
hold when the object floats at one lateral boundary of the fluid domain. For more
information about the general case, we give a detailed discussion in Chapter 6.

2.4.4 List of publications

[1 ] Su, P., Tucsnak, M., and Weiss, G., Stabilizability properties of a linearized water
waves system, Systems & Control Letters, 139:104672, 2020.

[2 ] Su, P., Asymptotic behaviour of a linearized water waves system in a rectangle,
arXiv preprint arXiv:2104.00286.

[3 ] Su, P., Strong stabilization of a linearized gravity-capillary water waves sys-
tem in a tank, 2021 IEEE 60th Annual Conference on Decision and Control (CDC),
accepted.

[4 ] Su, P. and Tucsnak, M., Shallow water waves generated by a floating object: a
control theoretical perspective, arXiv preprint arXiv:2108.05088, 2021

In addition, the short version of [1] entitled "Strong stabilization of small water waves
in a pool" was published at 24th International Symposium on Mathematical Theory of Net-
works and Systems (MTNS), Cambridge, UK, 2020.

2.5 Organization of the thesis

Following the order of the main topics stated in introduction, we divide the main con-
tents of this thesis into five chapters. In Chapter 3, we study the stability of a class of
infinite dimensional system. Under some appropriate assumptions on the spectrum of
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the evolution operators in the control model, we give an explicit polynomial decay rate
of the norm of the state trajectory for the smooth initial data, by taking a suitable state
feedback. We consider in Chapter 4 a boundary control problem on water waves in a
rectangular domain, where the control is imposed from one lateral boundary by a wave
maker. We establish the well-posedness and stabilizability properties of this system by
introducing a partial Dirichlet to Neumann and a Neumann to Neumann operators as-
sociated with certain edges. For the same control problem on gravity waves, Chapter
5 is devoted to studying the asymptotic behaviour of the solution of the control model
in the shallow water regime. We prove that the solution of the linear water waves in
rectangle converges to the solution of the 1-D wave equation with Neumann boundary
control. Finally, in Chapter 6 we study a floating body system in shallow water, where
the control is an external force acting on the object in the vertical direction. As we men-
tioned before, this is modeled by point absorber wave energy converter in engineering.
We first derive the governing equations, then reformulate them as an initial boundary
value problem of a first-order evolution system. Then we consider the well-posedness
for the linearized equations and give the detailed description for the corresponding
reachable space. Finally, we give in Chapter 7 some interesting remarks and comments
on the related problems for future work.
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Part I

Stabilization of a class of infinite
dimensional systems
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Chapter 3

Stability of a class of skew-adjoint
systems

In this chapter we consider a class of systems which have been extensively studied in
the last decades and which describe wave processes of various types going from linear
elasticity to electromagnetics or to linearized water waves. This latter application was
the original motivation of our work but we think that, for both the sake of clarity and
for possible use in a different situations, it is preferable to present the results in an
abstract context. We mention here that the results presented in this chapter are not
submitted. There was a similar work done by R. Chill, L. Paunonen, D. Seifert, R.
Stahn and Y. Tomilov [32], which appeared earlier on ArXiv 2019 and they discussed
the non-uniform stability of the linear control model in a more general way. In the case
we consider in this chapter, it turns out that the decay rate, at least for the water waves
system, is the same with the one they obtained in [32].

3.1 Problem setting and the main results

The class of infinite dimensional systems considered in this chapter is motivated by
mathematical models for controlled water waves, within the linearized theory. How-
ever, since we think that our main result should be applicable in other contexts, we
choose to describe them in an abstract manner and then make precise the application
to water waves systems in the following chapters. The statement of our main result
concerning this application requires a good amount of notation. Therefore, in this sec-
tion we just state the abstract result. To be more specific, the control systems considered
here are described by a group of unitary operators and a bounded control operator. An
important feature of the generator (which, by Stone’s theorem, is a skew-adjoint oper-
ator) is that in the case of water waves its eigenvalues do not satisfy the gap conditions
which are generally used to establish controllability and stabilizability properties in
this type of situation.

To give a precise statement of our main results we need some notation. Let X (the
state space) and U (the input space) be Hilbert spaces, let A : D(A) → X be a skew-
adjoint operator with compact resolvents and let B ∈ L(U, X) be the control operator
(in this case, B is called bounded). In general, the control operator is linear continuous
from U to a space larger than X, which is not our interest here. If there is no ambiguity
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the inner product and the norm in X will be simply denoted by 〈·, ·〉 and ‖ · ‖. The
systems considered here are described by the equation{

ż(t) = Az(t) + Bu(t) (t > 0),
z(0) = z0,

(3.1)

where u ∈ L2
loc([0, ∞); U) is the control function and z is the corresponding state trajec-

tory. As we mentioned in introduction, we take colocated feedback u = −B∗z, so that
the energy of the control system (3.1) is non-increasing. Therefore, the system (3.1) is
transformed into {

ż(t) = Az(t),
z(0) = z0,

(3.2)

where the new operator A = A − BB∗. Note that the evolution operator A is skew-
adjoint with compact resolvents and the control operator B ∈ L(U, X), it is not diffi-
cult to see that the operatorA in (3.2) is m-disspative, so that it generates a contraction
semigroup on X. We denote by T = (Tt)t>0 the bounded strongly continuous semi-
group (or C0-semigroup) generated by A. Moreover, according to the classical results
for instance in [115], the operator A is diagonalizable (also called Riesz-spectral op-
erator in [40]) with purely imaginary eigenvalues and its spectrum consists only of
eigenvalues. We denote by J either N or Z∗ and we assume that the eigenvalues of
A can be organized in a sequence (iµk)k∈J , such that µk ∈ R for every k ∈ J and with
a corresponding orthonormal basis in X denoted by (φk)k∈J . With the above notation,
we shall give a detailed description for the non-uniform stability of the semigroup T

in terms of the spectral properties of A and of the operator B, without requiring the
approximate controllability of (A, B) in any finite time. More precisely, our basic as-
sumptions on the pair (A, B) are

[H1 ] The operator A is skew-adjoint with compact resolvents. With the above nota-
tion, assume that µk 6= µl for k 6= l and that

µk = ckα + O(kq), (k→ ∞), (3.3)

where c and α are positive constants and q < α.

[H2 ] There exist positive constants β, c̃ > 0, such that the operator B ∈ L(U, X)
satisfies

‖B∗φk‖U >
c̃
|k|β (k ∈ J). (3.4)

In order to state the results clearly, we recall the definition of a scale of Hilbert
spaces associated with the operator A. For every k ∈ J and z ∈ X, we denote by zk the
inner product 〈z, φk〉 in X. With the above notation, for every s ∈ R, Xs is

Xs =

{
z ∈ X

∣∣∣∣∣ ∑
k∈J

(1 + |µk|2s)|zk|2 < ∞

}
(3.5)

endowed with the inner product

〈ξ, η〉s = ∑
k∈J

(1 + |µk|2s)ξkηk ∀ ξ, η ∈ Xs.
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In particular, X0 = X. It is worth noting that, for every s > 0, the Hilbert space Xs is
equivalent to D(As) endowed with the graph norm. Moreover, for negative subscript
X−s with s > 0, it is the dual of Xs with respect to the pivot space X.

Based on the above assumption [H1] and [H2], the corresponding stability results
are divided into three cases depending on the parameters α and β in (3.3) and (3.4).
The case α > 1, β = 0 has already been studied in the literature (see, for instance, [55])
and the existing results yield finite time exact controllability of (A, B), thus exponential
stability of the system is obtained from (3.1) by using colocated feedback. In the case
of α > 1 and β > 0, we have approximate controllability of the pair (A, B) and it
has been shown, for instance in [8], that the closed-loop system (3.2) is polynomially
stable where the decay rate is given in terms of the interpolation parameter of a scale
of Hilbert spaces. Consequently, here we are mainly interested in giving the explicit
decay rate, especially the case that 0 < α < 1 and β > 0, of the norm of the solution of
(3.2) in terms of the parameters α and β.

The main abstract results are as follows:

Theorem 3.1.1. Assume that A : D(A) → X and B ∈ L(U, X) satisfy the assumptions
[H1] and [H2] above for some 0 < α < 1 and β > 0. Then the system described by (3.2) is
polynomially stable. More precisely, there exists c1 > 0 such that

‖z(t)‖ 6 c1

(1 + t)
α

2(β−α+1)
‖z0‖X1 , (3.6)

for all t > 0 and z(0) ∈ X1.

Theorem 3.1.2. Let the operator A : D(A)→ X and B ∈ L(U, X) satisfy the [H1] and [H2]
with α > 1 and β > 0. Then there exists a constant c2 > 0 such that the state trajectory z(t)
satisfies

‖z(t)‖ 6 c2

(1 + t)
α

2β

‖z0‖X1 , (3.7)

for all t > 0 and z0 ∈ X1.

In the following subsections, we focus on the proof of Theorem 3.1.1 and Theorem
3.1.2. Moreover, we introduce some simple applications of this result, for systems de-
scribed by fractional versions of the Schrödinger and wave equations. For the main ap-
plication on water waves system, which represents the main motivation of this work,
we give a detailed discussion separately in the remaining chapters.

3.2 Preliminaries

In this section we recall some results which are by now classical (see, for instance, [26]
and references therein) which shows that the polynomial stability of a semigroup fol-
lows from the estimate of the norms of the resolvents on the imaginary axis. Moreover,
according to Hilbert uniqueness method, the stability result can be also obtained by
an observability inequality, for instance in [8]. The first approach is available for any
control system, but the second one requires that the spectrum of the evolution operator
satisfies some conditions. We next recall some related conclusions.

Here the control model is descirbed by the system (3.2) and the scale of Hilbert
space Xα introduced in (3.5). The following result is concluded from [77], [12], [26] and
[99].
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Proposition 3.2.1. Let X be a Hilbert space andA : D(A)→ X be the generator of a bounded
C0-semigroup T = (Tt)t>0 on X. Moreover, assume that for fixed s > 0:

i) iR ⊂ ρ(A);
ii)
∥∥R(iω : A)

∥∥ = O(|ω|s) (ω → ∞).
(3.8)

Then we have

‖Ttz0‖ 6
C

(1 + t)
1
s
‖z0‖D(A) ∀ z0 ∈ D(A), t > 0. (3.9)

Actually, under the assumption iR ⊂ ρ(A), the asymptotic condition of the resol-
vent operator in (3.8) is equivalent to the non-uniform result (3.9). For more regular
initial data in the sense of z0 is in the domain of As with s > 1, there are also corre-
sponding estimate for the norm of the solution z in [26], which is

‖Ttz0‖ 6
C

1 + t
‖z0‖D(As) ∀ z0 ∈ D(As). (3.10)

Moreover, it turns out that with the same assumption on ρ(A) the estimate (3.9) is
equivalent to (3.10). As we expected, the more regular the initial data, the faster the
decay of the norm of the solution. For more details about the non-uniform decay re-
sults of the operator semigroup, please refer to [12], [15], [26], [99] and also therein.

The result below appears in various forms in the literature, so we provide its precise
statement and a very short proof only for completeness purposes, with no claim of
originality.

Proposition 3.2.2. Under the assumptions on the pair (A, B) in [H1] and [H2], the operator
A defined in (3.2) generates a contraction semigroup on X. Moreover, we have iR ⊂ ρ(A).

Proof. Using the fact that A is skew-adjoint it follows by applying Stone’s theorem that
A generates a C0-group of unitary operators on X. Moreover, since BB∗ ∈ L(X), ac-
cording to a classical perturbation theorem (see, for instance, [115, Theorem 2.11.2]),
the operator A generates a C0-semigroup on X. It is not difficult to see that this
semigroup is contractive, since A is actually a m-dissipative operator. To show that
iR ⊂ ρ(A), we first remark that the embedding D(A) ⊂ X is compact, so that the
spectrum of A consists only of eigenvalues. If iν ∈ σ(A) for some ν ∈ R, there exists
φ ∈ D(A) \ {0} such that

(A− BB∗)φ = iνφ.

Taking the inner product of both sides in the above equation with φ and then taking
real parts, the resulting equation implies that B∗φ = 0 and φ is an eigenvector of A,
which contradicts the assumption (3.4). We thus conclude that iR ⊂ ρ(A).

Next we introduce the second approach to derive the explicit non-uniform stability
by using an observability inequality of the undamped system. Firstly, we introduce
the interpolation space [X, Y]θ for two Hilbert spaces X and Y with the parameter θ ∈
(0, 1), which is defined as

[X, Y]θ =
{

a : a ∈ X + Y, t−(θ+1/2)K(t, a; X, Y) ∈ L2[0, ∞)
}

,
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where
K(t, a; X, Y) = inf

a0+a1=a

(
‖a0‖2

X + t2‖a1‖2
Y
)1/2

,

for a0 ∈ X and a1 ∈ Y. The above definition for the interpolation space [X, Y]θ is widely
used, for instance, in Lions and Magenes [75]. This coincides with the definition of
(X, Y)θ,2 introduced in Triebel [111].

Let us consider the undamped problem associated with the system (3.1), which is{
ẇ(t) = Aw(t)
w(0) = z0

(3.11)

It is well-known that (3.11) is well-posed in X1 and X. Now we quote a result from [8]
whch is proposed through a second-order evolution equation. Here in order to keep
consistency with the context, we state it by using the first-order system (3.2). Together
with the state space X, let Y and W be two Banach spaces such that

D(A) ⊂ Y ⊂ X ⊂W,

∀ z ∈ D(A), ‖z‖D(A) ∼ ‖z‖Y

and
[Y, W]θ = X

for a fixed real number θ ∈ (0, 1), where [·, ·]θ is the interpolation space introduced
above. The following proposition says that the explicit decay rate of the solution of
(3.2) depends on an observability inequality of the undamped problem (3.11).

Proposition 3.2.3. If for all z0 ∈ D(A) we have∫ T

0

∥∥(B∗w)(t)
∥∥2

Udt > C‖z0‖2
W , (3.12)

then there exists a constant C > 0 such that for all t > 0 and for all z0 ∈ D(A) we have

‖z(t)‖ 6 C

(1 + t)
θ

2(1−θ)

‖z0‖D(A).

where θ ∈ (0, 1) is such that the interpolation space [Y, W]θ = X.

Remark 1. To obtain the observabilility inequality (3.12), we usually need Ingham the-
orem (see, for instance, [115]) that requires that the existence of a uniform gap between
the eigenvalues of the evolution operator. However, not every control system pos-
sesses this property, for instance, a fractional Schödinger equation introduced later. In
this case, the result in Proposition 3.2.1 is still available.

3.3 Proof of the main results

Based on some classical results introduced in Section 3.2, we present in what follows
the proofs of Theorem 3.1.1 and Theorem 3.1.2.

When α ∈ (0, 1) and β > 0, in order to prove Theorem 3.1.1 we follow the ideas
in [77] and first introduce the following lemma, which plays an important role in the
main proof of Theorem 3.1.1.

47



CHAPTER 3. STABILITY OF A CLASS OF SKEW-ADJOINT SYSTEMS

Lemma 3.3.1. Let (µk)k∈J be a sequence satisfying (3.3) for some α ∈ (0, 1) and q < α.
Then there exist constants M, γ > 0 such that for every ω ∈ R with |ω| > M, the interval[

ω− γω
α−1

α , ω + γω
α−1

α

]
contains at most one element of the sequence (µk)k∈J .

Proof. For the sake of simplicity we assume that J = N and that the elements of se-
quence (µk)k∈N are positive. In this case (3.3) becomes

µk = ckα + O(kq) (k→ ∞),

and we can assume, after possibly excluding a finite number of terms, that the se-
quence (µk)k∈N is strictly increasing. Let us assume, by absurd, that the conclusion of
the lemma is false. This would imply the existence of a sequence (ωn)n∈N of positive
real numbers with ωn → ∞ (as n→ ∞) and of a sequence of positive integers (kn)n∈N

with kn → ∞ such that

{µkn , µkn+1} ⊂
[

ωn −
1
n

ω
α−1

α
n , ωn +

1
n

ω
α−1

α
n

]
. (3.13)

This implies that

lim
n→∞

µkn+1 − µkn

ω
α−1

α
n

= 0. (3.14)

Combining (3.13) and (3.14) we obtain that

lim
n→∞

µkn+1 − µkn

µ
α−1

α

kn

= 0. (3.15)

On the other hand, it is not difficult to check that from (3.3) we have

lim inf
k→∞

µk+1 − µk

µ
α−1

α

k

> 0. (3.16)

Indeed, note that the parameter α ∈ (0, 1), we know that there is no uniform gap be-
tween (µk)k∈N. In this case, we shall show that this is true for the sequence

(
µ1/α

k

)
k∈N

.
Based on the formula for µk in (3.3), we obtain that∣∣∣µ1/α

k+1 − µ1/α
k

∣∣∣ > 1
α

∣∣µξ

∣∣ 1
α−1

(
αξα−1 − cqξq−1

)
>

1
α
(ξα − cξq)

1
α−1

(
αξα−1 − cqξq−1

)
, (3.17)

where ξ is between k + 1 and k. Notice that q < α < 1, it is not difficult to obtain from
(3.17) that there exists δ > 0 such that

inf
k∈N

∣∣∣µ1/α
k+1 − µ1/α

k

∣∣∣ > δ.

Moreover, we know that
∣∣∣µ1/α

k+1 − µ1/α
k

∣∣∣ = 1
α (µk+1 − µk) |η|

1
α−1, η is in the middle of

µk+1 and µk. Hence, we derive that

µ
1−α

α

k (µk+1 − µk) =
µ

1−α
α

k

∣∣∣µ1/α
k+1 − µ1/α

k

∣∣∣
1
α |η|

1−α
α

> δα,

where we used the strictly increasing of the sequence (µk)k∈N. Therefore, we conclude
that (3.16) holds, which contradicts (3.15). The proof is finished.
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We are now in a position to prove, following the methodology used, in particular,
in [77] and Ramdani, Takahashi and Tucsnak [93], our main abstract result.

Proof of Theorem 3.1.1. According to Proposition 3.2.1, we need to prove that ‖(R(iω :
A)‖ = O(|ω|2( β−α+1

α )) as ω → ∞. It clearly suffices to prove that

sup
|ω|>M

1

|ω|2( β−α+1
α )

∥∥R(iω : A)
∥∥ < ∞, (3.18)

where M is the constant in Lemma 3.3.1. To this aim we adopt a contradiction argu-
ment. Assuming that (3.18) is false we obtain the existence of the sequences (ωn)n∈N

of real numbers and (zn)n∈N of elements of D(A) such that |ωn| > M and

‖zn‖ = 1 (n ∈N), (3.19)

and
|ωn|2(

β−α+1
α )(iωn I −A)zn → 0 in X. (3.20)

Note that, since the map ω 7→ ‖R(iω : A)‖ is real analytic on R (thus bounded on
compact sets), we necessarily have |ωn| → ∞. Since for each n ∈N we have

Re
〈
|ωn|2(

β−α+1
α )(iωn I −A)zn, zn

〉
= |ωn|2(

β−α+1
α )‖B∗zn‖2

U ,

from (3.20) it follows that

|ωn|
β−α+1

α B∗zn → 0 in U,

|ωn|
β−α+1

α BB∗zn → 0 in X.
(3.21)

Observing that

|ωn|
β−α+1

α (iωn I −A)zn = |ωn|
β−α+1

α (iωn I − A)zn + |ωn|
β−α+1

α BB∗zn,

and combining with (3.20) and (3.21) we obtain that

|ωn|
β−α+1

α (iωn I − A)zn → 0 in X.

Since zn = ∑k∈J〈zn, φk〉φk and Aφm = iµmφm for each m ∈ J the last formula implies
that

lim
n→∞ ∑

k∈J
|ωn|2(

β−α+1
α ) |(ωn − µk)〈zn, φk〉|2 = 0. (3.22)

At this stage we introduce the set

F =
{

n ∈N | ∃ k(n) ∈ J such that |ωn − µk(n)| < γ|ωn|
α−1

α

}
, (3.23)

where γ is defined in Lemma 3.3.1.
We distinguish two cases.

First case. Suppose that the set F defined in (3.23) is finite. Then, we can assume,
without loss of generality, that F is empty, i.e., that∣∣ωn − µk

∣∣ > γ|ωn|
α−1

α (n ∈N, k ∈ J).
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Then (3.22) implies that lim
n→∞

zn = 0 which contradicts (3.19) and thus shows that (3.18)
holds in the case when the set F defined in (3.23) is finite.
Second case. Assume that the set F is infinite. Then, for the sake of simplicity, we can
suppose, without loss of generality, that F = N. In this case (3.22) and the fact that,
according to Lemma 3.3.1

|ωn − µk| > γ|ωn|
α−1

α (n ∈N, k 6= k(n)), (3.24)

imply that

lim
n→∞

(
|ωn|2(

β−α+1
α )

∣∣∣(ωn − µk(n))〈zn, φk(n)〉
∣∣∣2 + ∑

k 6=k(n)
|ωn|

2β
α |〈zn, φk〉|2

)
= 0.

Denoting ψn = 〈zn, φk(n)〉φk(n), the last formula and (3.24) imply that

lim
n→∞
|ωn|

2β
α ‖zn − ψn‖2 = 0. (3.25)

The above estimate and (3.19) clearly imply that

lim
n→∞

∣∣∣〈zn, φk(n)〉
∣∣∣ = lim

n→∞
‖ψn‖ = 1. (3.26)

Moreover, from (3.25) we have

lim
n→∞

∥∥ω
β
α
n B∗(zn − ψn)

∥∥
U = 0,

which, combined with (3.21), implies that

lim
n→∞

∥∥ω
β
α
n B∗ψn

∥∥
U = 0. (3.27)

On the other hand, from the inequality in the definition (3.23) of the set F it follows
that there exists c0 > 0 such that |ωn|

β
α > c0|k(n)|β for n large enough. This fact,

combined with (3.4) and (3.26) implies that

lim inf
n→∞

∥∥ω
β
α
n B∗ψn

∥∥
U > 0,

which contradicts (3.27). We have thus shown that (3.18) also holds in the case when
the set F defined in (3.23) is infinite.

Therefore, we obtain from Proposition 3.2.1 that (3.6) holds.

Now we consider the case when [H1] and [H2] are satisfied with α > 1 and β > 0. In
this case, there is a uniform gap between the eigenvalues (µk)k∈J . Based on Proposition
3.2.3, we present the proof of Theorem (3.1.2) in what follows.

Proof of Theorem 3.1.2. According to standard Riesz-spectral theory in [115] or [40] we
know that the solution of the undamped system (3.11) has the representation as fol-
lows:

w(t) = ∑
k∈J

ei µkt〈z0, φk〉φk, (3.28)
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where, for every k ∈ J, iµk is the eigenvalue of the operator A and the corresponding
eigenvector is φk. Notice that there exists τ > 0, such that

inf
k,l∈J,k 6=l

|µk − µl | > τ,

when the sequence (µk)k∈J satisfy (3.3) with α > 1. Using the formula (3.28), we have,
for every T > 0,

∫ T

0

∥∥(B∗w)(t)‖2
Udt =

∫ T

0

∣∣∣∣∣∑k∈J
eiµkt〈z0, φk〉B∗φk

∣∣∣∣∣
2

dt.

By using the assumption (3.4) and Ingham theorem (a generalization of Parsevals
equality, for instance, in [115, Chapter 8]), there exists c > 0, such that, for every T > π

τ ,∫ T

0

∥∥(B∗w)(t)
∥∥2

Udt > CT ∑
k∈J
|〈z0, φk〉|2

∥∥B∗φk
∥∥2

U > CT ∑
k∈J
|〈z0, φk〉|2 ·

c
|k|2β

.

Using the assumption (3.3) again, it is not difficult to see that

∑
k∈J
|〈z0, φk〉|2 ·

c
|k|2β

> C ∑
k∈J
|〈z0, φk〉|2

1

|µk|
2β
α

. (3.29)

Recalling the definition of a scale of Hilbert spaces Xs with s ∈ R in (3.5), we conclude
from (3.29) that ∫ T

0
‖(B∗w)(t)‖2

U dt > CT ‖z0‖2
X
− β

α

.

In view of the definition of the space Y introduced in Proposition 3.2.3, we see that
actually Y = X1. For W = X− β

α
, Y = X1 and after a simple calculation we obtain that[

X1, X− β
α

]
θ
= X with θ =

α

α + β
.

Consequently, with the help of Proposition 3.2.3, we arrive at (3.7) and finish the proof.

Remark 2. Actually we can also get the explict decay rate by estimating the upper-
bound of resolvent operator as in the proof of Theorem 3.1.1. The only difference lies in
Lemma 3.3.1 and finally we obtain (3.7) again. The approach presented in Proposition
3.2.3 only available in the case when [H1] is satisfied with α > 1.

3.4 Some applications

3.4.1 Some background on strictly positive operators on Hilbert spaces

In this section we discuss two simple examples, which can be seen as toy models,
illustrating the possible applications of Theorem 3.1.1. To formulate these problems,
involving fractional versions of the Schrödinger and wave equations, we first remind
in this subsection some basic facts on strictly positive operators on general Hilbert
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spaces and their fractional powers. The framework introduced in this subsection will
be further used in the remaining parts.

Let H be a Hilbert space, with inner product 〈·, ·〉 and norm ‖ · ‖, and let A0 :
D(A0) → H be a strictly positive operator (which means that A0 is self-adjoint and
there exists m > 0 such that 〈A0 f , f 〉 > m‖ f ‖2 for every f ∈ D(A0)). We assume that
A0 has compact resolvents, so that, by classical spectral theory, there exists an orthonor-
mal basis of H, denoted by (ϕk)k∈N, formed by eigenvectors of A0. The corresponding
sequence of eigenvalues is denoted by (λk)k∈N. We clearly have that λk > 0 for each
k ∈N.

Recalling the Hilbert spaces introduced in (3.5), in this context we denote by (Hs)s∈R

a scale of Hilbert spaces associated with the operator A0 and the corresponding eigen-
values (λk)k∈N. Note that A0 maps Hs onto Hs−1 for every s > 1. Moreover, for every
s > 0 we define the fractional powers of the operator A0 by setting As

0 : Hs → H and

As
0 f = ∑

k∈N

(1 + |λk|2s)〈 f , ϕk〉ϕk ∀ f ∈ Hs. (3.30)

It is easily checked that As
0 is a strictly positive operator on H with domain Hs.

Operators A0 as above (and their fractional powers) appear naturally in the study
of systems described by the Schrödinger or wave equations (possibly fractional). For
Schrödinger type equations the corresponding semigroup generator is iA0 (or iAs

0), in
the case of wave type equations the semigroup generator is a matrix operator in which
A0 appears in some of its blocks. More precisely (see, for instance [115, Section 3.7]),
we have:

Proposition 3.4.1. Let the Hilbert space H and the strictly positive operator A0 : D(A0) →
H be as above. Define X = H 1

2
× H, with the scalar product〈[

w1
v1

]
,
[

w2
v2

]〉
X
= 〈w1, w2〉 1

2
+ 〈v1, v2〉.

Define a dense subspace of X by D(A) = H1× H 1
2

and the linear operator A : D(A)→ X by

A =

[
0 I
−A0 0

]
, i.e., A

[
ϕ
ψ

]
=

[
ψ
−A0ϕ

]
.

Then A is skew-adjoint on X and 0 ∈ ρ(A).
Moreover, A has compact resolvents and it is diagonalizable, with the eigenvalues (iµk)k∈Z∗

corresponding to the orthonormal basis of eigenvectors

φk =
1√
2

[
1

iµk
ϕk

ϕk

]
∀ k ∈ Z∗,

where, for every k ∈N we define µk =
√

λk, ϕ−k = −ϕk and µ−k = −µk.

3.4.2 A system described by a fractional Schrödinger equation

In this section we consider the particular case of the framework introduced in Section
3.4.1 by choosing H = L2[0, π] and the operator A0 to be the Dirichlet Laplacian on
[0, π]. This means that A0 : D(A0)→ H is defined by

D(A0) = H2(0, π) ∩H1
0(0, π), (3.31)
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A0ϕ = −d2ϕ

dx2 ∀ ϕ ∈ D(A0), (3.32)

where, for every m ∈ N, Hm(0, π) stands, as usual, for the Sobolev space formed by
the functions in L2[0, π] which have m derivatives, in the distribution sense, in L2[0, π],
whereas Hm

0 (0, π) stands for the subspace of Hm(0, π) formed by those functions in
Hm(0, π) which vanish, together with their derivatives up to order m− 1, at x = 0 and
x = π. It is well-known that A0 is a strictly positive operator on H and that the family
(ϕk)k∈N defined by

ϕk(x) =

√
2
π

sin(kx) (x ∈ [0, π]),

form an orthonormal basis in X consisting of the eigenvectors of A0. Moreover, we
have

A0ϕk = k2ϕk ∀ k ∈N.

For s ∈ (0, 1
2 ) we consider the control system described by the equation{

ż = i As
0 z + B0u,

z(0) = z0,
(3.33)

where B0 ∈ L(H) is defined by

B0v = vχI ∀ v ∈ H, (3.34)

with χI the indicator function of some non-empty open interval I ⊂ (0, π). Choosing
the control function u in (3.33) in the feedback form u = −B∗0 z we obtain the closed-
loop problem {

ż = iAs
0z− zχI (t > 0),

z(0) = z0.
(3.35)

The main result of this subsection is

Proposition 3.4.2. With the above notation, for every s ∈ (0, 1
2 ) and z0 ∈ Hs the initial value

problem (3.35) admits a unique solution

z ∈ C([0, ∞); Hs) ∩ C1([0, ∞); H).

Moreover, there exists a constant cs > 0 such that

‖z(t)‖ 6 cs

(1 + t)
s

1−2s
‖z0‖s ∀ z0 ∈ Hs, t > 0. (3.36)

Proof. It suffices to apply Theorem 3.1.1 with X = U = H; A = i As
0 and B = B0,

where A0 and B0 are defined in (3.31), (3.32) and (3.34), respectively. Indeed, with
these choices A is clearly skew-adjoint and the eigenvalues of A are (iµk)k∈N with
µk = k2s for every k ∈ N. Moreover, the corresponding orthonormal basis formed

of the eigenvectors of A is (φk)k∈N, with φk(x) =
√

2
π sin (kx) for each k ∈ N. The

assumptions of Theorem 3.1.1 are thus satisfied with α = 2s and β = 0, so we obtain
the estimate (3.36).
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3.4.3 A system described by a fractional wave equation

In this subsection we continue to use the notation and the assumptions in Subsection
3.4.2 for the spaces H, U and the operators A0 and B0. This means, in particular, that
we take H = L2[0, π], that A0 is defined by (3.31), (3.32) and that B0 is given by (3.34).

For s > 0, we consider the control system described by the second-order differential
equation {

ẅ(t) + As
0w(t) = B0u(t) (t > 0),

w(0) = w0, ẇ(0) = w1.
(3.37)

For s = 1 the above system describes the vibrations of a string occupying the inter-
val [0, π] with control u acting on an interval I ⊂ [0, π], whereas for s = 2 it describes
the controlled vibrations of hinged Euler-Bernoulli beam (please refer to, for instance,
[7] and [114]). Using the feedback law u = −B∗0 ẇ, corresponding to colocated actuators
and sensors, the obtained closed-loop system can be written in the form{

ẅ(t) + As
0w(t) + ẇ(t)χI = 0 (t > 0),

w(0) = w0, ẇ(0) = w1.
(3.38)

The main result in this subsection is:

Proposition 3.4.3. With the above notation, for every s ∈ (0, 1), w0 ∈ Hs and w1 ∈ H s
2

the
initial value problem (3.38) admits a unique solution

w ∈ C([0, ∞); Hs) ∩ C1([0, ∞), H s
2
).

Moreover, there exists a constant cs > 0 such that for every t > 0, w0 ∈ Hs and w1 ∈ H s
2

we
have

‖w(t)‖2
s
2
+ ‖ẇ(t)‖2 6

c2
s

(1 + t)
s

1−s

(
‖w0‖2

s + ‖w1‖2
s
2

)
. (3.39)

Proof. Let X = H s
2
× H and A : D(A)→ X be defined by

D(A) = Hs × H s
2
, A =

[
0 I
−As

0 0

]
. (3.40)

According to Proposition 3.4.1 (with A0 replaced by As
0), the operator A is skew-adjoint

on X. Moreover, setting µk = ks, µ−k = −µk, ϕk(x) =
√

2
π sin(kx) and ϕ−k = −ϕk for

every k ∈ N, the eigenvalues of A are (iµk)k∈Z∗ corresponding to the orthonormal
basis of eigenvectors

φk =
1√
2

[
1

i µk
ϕk

ϕk

]
(k ∈ Z∗).

Setting next

B =

[
0
B0

]
, (3.41)

where B0 has been defined in (3.34) we see that B ∈ L(U, X) and the initial value
problem (3.38) can be written

ż(t) = (A− BB∗)z(t) for t > 0, z(0) =
[

w0
w1

]
,
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with z(t) =
[

w(t)
ẇ(t)

]
and A, B defined in (3.40), (3.41). Using the above properties of A

and B, we see that they satisfy the assumptions in Theorem 3.1.1 with α = s and β = 0.
Thus there exists a constant cs > 0 such that

‖z(t)‖X 6
cs

(1 + t)
s

2(1−s)

∥∥∥∥[w0
w1

]∥∥∥∥
D(A)

([
w0
w1

]
∈ D(A)

)
,

which clearly implies the conclusion (3.39).

Remark 3. Most of the literature devoted to the analysis and the control of systems
involving fractional differential operators is based on the so called integral definition of
the fractional Laplacian, which is(

− d2

dx2

)s

z(x) := cs lim
ε→0+

∫ x+ε

x−ε

z(x)− z(y)
|x− y|1+2s dy (s ∈ (0, 1), x ∈ [0, π]), (3.42)

with cs a normalization constant given by (for instance [97])

cs =
s22s Γ

( 1+2s
2

)
√

2Γ (1− s)
,

where Γ is the Gamma function.
As shown, for instance, in [102] the above formula (3.42) defines a strictly positive

operator on L2[0, π], which is different with the operator As
0 defined in (3.30) (with

A0 the Dirichlet Laplacian). As far as we know, the controllability and stabilizability
for the fractional Schrödinger equation and the wave equation involving the operator
defined in (3.42) are just studied, for instance, in [117], [22] and [23], in the case of s > 1

2
for the Schrödinger equation and s > 1 for the wave equation. Our results are valid
for every s ∈ (0, 1), in particular, due to the fact that the eigenvectors of As

0 coincide
with the eigenvectors of A0, which is not the case of the operator defined in (3.42). For
s < 1

2 , the eigenvectors of the fractional Laplace operator in integral definition (3.42)
are not necessarily smooth and we are not aware whether they satisfy assumptions of
type (3.4), allowing the application of Theorem 3.1.1.
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Part II

Water waves system in a rectangular
domain
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Chapter 4

Boundary control problem of a
water waves system

In this chapter, we study a boundary control system describing water waves in a rect-
angular fluid domain. We first derive the full governing equations of the water waves
equations with boundary control, based on the Zakharov-Craig-Sulem formulation (2.22).
Then we linearize the governing equations and study its well-posedness through an
abstract linear control system. Moreover, we consider the stabilizability of the linear
system by state feedback and give an explicit decay rate for the norm of the state trajec-
tory. We analyse the case of gravity waves and gravity-capillary waves, respectively.
Actually, the stabilization issue discussed in this chapter is an interesting application
of the results in Chapter 3. Part of contents in this chapter are based on Su et al. [110]
and Su [108].

4.1 The equations of the water waves control system

We are interested in a control system of the water waves in a rectangular domain, in the
presence of a wave maker. The control acts on one of lateral edges of the fluid domain,
by imposing the horizontal velocity of the water along that boundary. We assume that
the domain Ωt is delimited at its top by a free water surface Γs and that the bottom
Γ f is flat. The other two components of the boundary of the fluid domain, denoted by
Γ1 and Γ2, are supposed to be vertical. Let x ∈ [0, π] the horizontal variable and let y
be the vertical variable. When the free surface is at rest, we assume that the position
of free surface is at y = 0 and the typical water depth is 1, so that the bottom of the
domain is at y = −1. We denote by ζ(t, x) the elevation of the free surface at time t. As
shown in Figure 4.1, the domain Ωt is described by

Ωt = {(x, y) | 0 < x < π, − 1 < y < ζ(t, x)} .

We assume that the fluid fills Ωt that it is homogeneous, incompressible, inviscid and
that it undergoes irrotational flows. There is a wave maker that acts at, without loss of
generality, the left boundary of Ωt, by injecting (or extracting) fluid in the horizontal
direction, at a velocity determined by the control signal. We denote by V(t, y) the
velocity produced by this wave maker. With the above notation, we derive in what
follows the equations for the control problem of water waves in Ωt.
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x

Γ2

Γf

Γ1

Γs

Ω
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0 π

−1

g

ζ(t, x)

Figure 4.1: A rectangular domain Ωt filled with water

4.1.1 Derivation of the governing equations

Here we give a detailed derivation of the governing equations for the control problem
of the water waves system described above. We denote by U(t, x, y) ∈ R2 the velocity
of the fluid particle located at the position (x, y) at time t, and by V(t, x, y) and w(t, x, y)
the horizontal and the vertical component of U(t, x, y), respectively. The pressure at
(x, y) at time t is denoted by P(t, x, y). As we know that the motion of a non-viscous
fluid with constant density ρ is governed by the Euler equation

∂tU + U · ∇x,y U = −1
ρ
∇x,y P− gey in Ωt, (4.1)

where g is the acceleration of gravity and ey is the unit upwards vector in the vertical
direction. For incompressible fluid, we have

∇x,y ·U = 0 in Ωt. (4.2)

Moreover, the fluid is assumed to be irrotational, i.e.

∇x,y ×U = 0 in Ωt, (4.3)

which implies that there exists a potential function, denoted by φ, such that

U(t, x, y) = ∇x,y φ(t, x, y) in Ωt.

This, together with (4.1), gives that

∂t φ +
1
2

∣∣∇x,y φ
∣∣2 + P

ρ
+ gy = C(t),

Without loss of generality, we take φ = φ̃ + f (t) with f ′(t) = C(t)− Patm
ρ . The notation

Patm represents the pressure of atmosphere. Hence, we obtain the Bernoulli equation

∂t φ +
1
2

∣∣∇x,y φ
∣∣2 + gy = −1

ρ
(P− Patm) in Ωt. (4.4)
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Combining with (4.2) and (4.3), we have

∆x,y φ = 0 in Ωt. (4.5)

Next we need boundary conditions of the velocity potential φ(t, x, y). The first free
surface condition is called the kinematic boundary condition, which means that the
fluid particles does not cross the surface. We denoted by ~n the outer normal vector
on the free surface Γs. We know that the equation of the free surface is γ(t, x, y) =
y− ζ(t, x) = 0. The fluid particle M(t) = (x(t), y(t)) always stays on Γs, i.e. we have

d
dt

γ(t, M(t)) = ∂t γ + U · ∇x,y γ = 0,

where we used the relation d
dt M(t) = U. Note that ∂tγ = −∂tζ and the normal vector

~n = ∇x,yγ on Γs, we obtain the first free surface condition for φ

∂~n φ = ∂t ζ on Γs. (4.6)

The second free surface equation is the restriction of the Bernoulli equation (4.4) on Γs,
that is

∂t φ +
1
2

∣∣∇x,y φ
∣∣2 + gζ = 0 on Γs. (4.7)

Because of the existence of the wave maker on the left boundary Γ1, then we have

∂~n φ = V(t, y) on Γ1, (4.8)

where~n is the outer normal vector on Γ1. Note that the flat bottom Γ f is impermeable,
the normal derivative of φ are zero on γ f , i.e.

∂~n φ = 0 on Γ f . (4.9)

Similarly, we have the boundary condition on Γ2,

∂~n φ = 0 on Γ2. (4.10)

Therefore, we obtain the governing equations of the water waves system with wave
maker on the left boundary, which is given by (4.5)–(4.10). Let ψ(t, x) = φ(t, x, ζ(t, x))
be the trace of the velocity potential φ on Γs. Note that the water waves equations (4.5)–
(4.10) reduce to a Laplace equation with mixed boundary conditions defined in Ωt, if
ψ(t, x) is known on Γs. Hence, the whole water waves system actually fully depends
on the equations on ζ and ψ. Based on this observation, we introduce two important
evolution operators to rewrite the governing equations.

The first operator is called the Dirichlet to Neumann operator, denoted by A[ζ], which
is defined by

A[ζ] : ψ 7→ (∂~nΨ)
∣∣∣y=ζ(t,x) , (4.11)

where Ψ(t, x, y) satisfies
∆x,y Ψ = 0 in Ωt,

Ψ
∣∣
y=ζ(t,x) = ψ(t, x),

(∂~nΨ) |x=0 = 0 = (∂~nΨ) |x=π = (∂~nΨ)
∣∣y=−1 .
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The second operator is called the Neumann to Neumann operator, denoted by B[ζ], which
is defined by

B[ζ] : V(t, y) 7→ (∂~nΦ)
∣∣∣y=ζ(t,x) , (4.12)

and Φ(t, x, y) is determined by
∆x,y Φ = 0 in Ωt,

Φ
∣∣
y=ζ(t,x) = 0,

(∂~nΦ) |x=0 = V(t, y),
(∂~nΦ) |x=π = 0 = (∂~nΦ)

∣∣y=−1

It is interesting to see that the two Lapace equations used to define the Dirichlet to Neu-
mann operator A[ζ] and the Neumann to Neumann operator B[ζ] is a decomposition
of the water waves system (4.5)–(4.10) in the sense that

φ(t, x, y) = Ψ(t, x, y) + Φ(t, x, y) in Ωt.

For the properties of the operator A[ζ] and B[ζ], please refer to [66] for details. By
using the operators A[ζ] and B[ζ], we obtain the equations of ζ and ψ, for every t > 0
and x ∈ [0, π], as follows:

∂tζ − A[ζ]ψ = B[ζ]V ,

∂tψ + gζ +
1
2
|∂xψ|2 − 1

2
(A[ζ]ψ + B[ζ]V + ∂xζ ∂xψ)2

1 + |∂xζ|2
= 0.

(4.13)

We see that the above equation is fully nonlinear and fully dispersive, which is called
the Zakharov-Craig-Sulem formulation (or (ζ, ψ) formulation). As far as we know, there
is no results for the equations (4.13) up to now. In the case when the control term
V = 0 and the equations are defined in the whole real axis, i.e. x ∈ R, the local well-
posedness of this formulation is proved in Lannes [65] for arbitrary dimension. The
local well-posedness is further studied in Alazard et al. [5] for low regularity and in
Alvarez and Lannes [6], Iguchi [58] for uniform bounds in 3D shallow water. For the
control problem on (ζ, ψ) formulation, Alazard discussed in [2] the stabilization issue
in a rectangle where the external pressure as the control signal acts on a part of the free
surface, by absorbing the waves coming from the left. For more details on water waves
models we refer to Whitham’s book [123, Chapter 13] and to Lannes [66, Chapter 1].

4.1.2 Linearized equations

In the remaining part of this chapter, we consider the small-amplitude water waves in
a rectangular fluid domain with a wave maker imposed from the left boundary. We
linearize the water waves equations (4.5)–(4.10) around the rest state. The linearized
fluid domain, denoted by Ω, is

Ω = {(x, y) |0 < x < π, − 1 < y < 0} . (4.14)

Moreover, we assume that the wave maker is rigid in the sense that the velocity V(t, y)
is a multiple of a scalar input function v(t), times a given function h of the height along
the active boundary, i.e.

V(t, y) = h(y)v(t).
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For the sake of simplicity, we take the gravity acceleration g = 1 in the following
systems. The linearized version of the water waves system (4.5)–(4.10), for every t > 0,
(x, y) ∈ Ω, reads 

∆x,y φ = 0 in Ω,
∂t φ(t, x, 0) + ζ(t, x) = 0,
∂y φ(t, x, 0) = ∂tζ(t, x),
∂x φ(t, 0, y) = − h(y)v(t),
∂y φ(t, x,−1) = 0 = ∂x φ(t, π, y),

(4.15)

To describe the control system in terms of the elevation ζ, we denote the derivative of
the velocity by

ϕ(t, x, y) := ∂tφ(t, x, y).

We write the linearized equations (4.15) in terms of ϕ, which, for every t > 0 and
(x, y) ∈ Ω, are 

∆x,y ϕ = 0 in Ω,
ϕ(t, x, 0) + ζ(t, x) = 0,

∂y ϕ(t, x, 0) = ∂2
t ζ(t, x),

∂x ϕ(t, 0, y) = − h(y)u(t),
∂y ϕ(t, x,−1) = 0 = ∂x ϕ(t, π, y),

(4.16)

where the control u = v̇ is the acceleration imposed by the wave maker. The function
h is given and it represents the profile of the acceleration field imposed by the wave
maker. Usually we assume that

∫ 0
−1 h(y)dy = 0, to ensure the conservation of the

volume of water. As far as we know, the controllability and stabilizability properties
of systems derived from (4.15) have been first studied in Reid and Russell [96]. For the
problem in an irregular domain and the case of the water waves with surface tension,
please refer to Reid [94] and [95]. Further Mottelet studied in [85] the control system
with the flexible and the rigid wave maker, respectively.

Next we shall study the well-posedness of the linearized system (4.16). To do this,
we give in the following a detailed analysis of the linear Dirichlet to Neumann operator
and the linear Neumann to Neumann operator in the fluid domain Ω introduced in
(4.14).

4.2 Dirichlet to Neumann and Neumann to Neumann opera-
tors in a rectangular domain

In this section we consider two boundary value problems for the Laplacian in the rect-
angular domain Ω defined in (4.14) and we define the corresponding solution opera-
tors. Note that, Ω being a rectangle, we are able to construct these solution operators,
as well as the Dirichlet to Neumann and Neumann to Neumann operators in an ele-
mentary and explicit way, using the separation of variables and analysis of Fourier or
Dirichlet series. Another possible approach to these issues, pursued in [85], is the use
of the much more sophisticated theory of elliptic problems in polygonal domains as
described, for instance, in Grisvard [52].
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We introduce in what follows some notation used in this section. We set

H =

{
η ∈ L2[0, π]

∣∣∣∣ ∫ π

0
η(x)dx = 0

}
, (4.17)

which is a Hilbert space when endowed with the inner product inherited from L2[0, π].
It is known that the family (ϕk)k∈N defined by

ϕk(x) =

√
2
π

cos(kx) ∀ x ∈ [0, π], (4.18)

forms an orthonormal basis in H. For any η ∈ H, we denote ηk = 〈η, ϕk〉. The scale of
Hilbert spaces (Hα)α∈R are defined by H0 = H and

Hα =

{
η ∈ H

∣∣∣∣∣ ∑
k∈N

(1 + k2α)|ηk|2 < ∞

}
(α ∈ R), (4.19)

with the inner products (〈·, ·〉α)α∈R defined by 〈η, ψ〉α = ∑k∈N(1 + k2α)ηk ψk, for all
η, ψ ∈ Hα. It is not difficult to check that

H1 =

{
η ∈ H1(0, π)

∣∣∣∣ ∫ π

0
η(x)dx = 0

}
.

By interpolation theory (see, for instance, Lions and Magenes [74], Bensoussan et al.
[19, Part II] and Chandler-Wilde et al. [31]) actually we have

Hs =

{
η ∈ Hs(0, π)

∣∣∣∣ ∫ π

0
η(x)dx = 0

}
∀ s ∈ (0, 1).

We set
H1

top(Ω) = { f ∈ H1(Ω) | f (x, 0) = 0, x ∈ (0, π)}, (4.20)

where the values at the top boundary are defined in the sense of the Dirichlet trace, as
in [74], [115, Section 13.6].

4.2.1 Some background on the partial Dirichlet and Neumann maps

We first consider the partial Dirichlet and Neumann maps. We begin by introducing a
self-adjoint operator on L2(Ω) which plays an important role in our arguments in this
section.

Proposition 4.2.1. With Ω as in (4.14), we consider the operator A1 : D(A1) → L2(Ω)
defined by

D(A1) =

{
f ∈ H2(Ω)

∣∣∣∣∣ f (x, 0) = 0, ∂y f (x,−1) = 0 x ∈ (0, π)

∂x f (0, y) = 0, ∂x f (π, y) = 0 y ∈ (−1, 0)

}
,

A1 f = −∆ f ∀ f ∈ D(A1).

Then A1 is a strictly positive operator on L2(Ω).
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Proof. The operator A1 is obviously symmetric. Moreover, the family

Ψkl(x, y) =
2√
π

cos(kx) sin
[
(2l − 1)

π

2
y
]

∀ k, l ∈N, (x, y) ∈ Ω, (4.21)

is an orthonormal basis for L2(Ω) formed of eigenvectors of A1, corresponding to the
eigenvalues

λkl = k2 + (2l − 1)2 π2

4
∀ k, l ∈N.

Let g ∈ L2(Ω), so that g = ∑k,l∈N cklΨkl , with ckl ∈ l2(N2). This implies that f defined
by

f = ∑
k,l∈N

ckl

k2 + (2l − 1)2 π2

4

Ψkl ,

satisfies f ∈ D(A1) and A1 f = g. Thus the operator A1 is onto so that (see, for instance,
[115, Proposition 3.2.4]) A1 is self-adjoint. Finally, it follows from the first Green for-
mula that

〈A1 f , f 〉L2(Ω) = ‖∇ f ‖2
L2(Ω) ∀ f ∈ D(A1) .

This, together with a version of the Poincaré inequality (see [115, Theorem 13.6.9]),
implies that A1 is strictly positive.

Proposition 4.2.2. For every η ∈ L2[0, π] there exists a unique function Dη ∈ L2(Ω) such
that ∫

Ω
(Dη)(x, y)g(x, y)dxdy = −

∫ π

0
η(x)∂y(A−1

1 g)(x, 0)dx ∀g ∈ L2(Ω). (4.22)

Moreover, the operator η 7→ Dη (called the partial Dirichlet map) is bounded from L2[0, π]
into L2(Ω).

Proof. We first note from Proposition 4.2.1 that A−1
1 ∈ L(L2(Ω),H2(Ω)). Thus, by a

standard trace theorem the map g 7→ ∂y(A−1
1 g)(·, 0) is bounded from L2(Ω) to L2[0, π].

Consequently, the right-hand side of (4.22) defines an anti-linear functional of the argu-
ment g ∈ L2(Ω), and the result follows by applying the Riesz representation theorem.
(See also [115, Section 10.6].)

Remark 4. For every η ∈ H, we have Dη ∈ C∞(Ω) and ∆(Dη) = 0. Indeed, this
follows by an argument that is similar to the one used in the proof of [115, Proposition
10.6.2]: We take g = ∆ϕ with ϕ ∈ D(Ω) in (4.22) to see that ∆(Dη) = 0 in the sense
of distributions. It follows from [115, Remark 13.5.6] that Dη ∈ Hn

loc(Ω) for every
n ∈ N. Then we use the embedding Hn

loc(Ω) ⊂ Cm(Ω) for n > 1 + m (m ∈ N) (see
[115, Remark 13.4.5]), so that indeed Dη ∈ C∞(Ω), and hence ∆(Dη) = 0. Moreover,
if Dη ∈ C1(Ω), then Dη is the unique function in C2(Ω) ∩ C(Ω) that satisfies, in the
classical sense, the following boundary value problem:

∆(Dη)(x, y) = 0 (x, y) ∈ Ω,
(Dη)(x, 0) = η(x), ∂y(Dη)(x,−1) = 0 x ∈ (0, π),
∂x(Dη)(0, y) = 0, ∂x(Dη)(π, y) = 0 y ∈ (−1, 0).

(4.23)
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To see this, we take in (4.22) g = ∆ f , where f ∈ D(A1), and use integration by parts,
which yields that∫ π

0
η(x)∂y f (x, 0)dx =

∫ π

0

[
(Dη)∂y f

]
(x, 0)dx +

∫ π

0

[(
∂yDη

)
f
]
(x,−1)dx

+
∫ 0

−1

[
(∂xDη) f

]
(0, y)dy−

∫ 0

−1

[
(∂xDη) f

]
(π, y)dy .

If we choose f ∈ D(A1) such that f = 0 on the lateral boundaries and the bottom of
Ω, we obtain that (Dη)(x, 0) = η(x) for almost every x ∈ [0, π]. By choosing suitable
other test functions f ∈ D(A1) (we omit the details), we can obtain also the remaining
three equalities in (4.23).

Remark 5. The term “partial Dirichlet map” comes from the fact that D acts on the
upper boundary of Ω rather than the entire boundary ∂Ω.

Lemma 4.2.3. For every η ∈ H, Dη is given by

(Dη)(x, y) = ∑
k∈N

〈η, ϕk〉
cosh k

ϕk(x) cosh [k(y + 1)] ∀ x, y ∈ Ω, (4.24)

where the functions ϕk have been introduced in (4.18). Moreover, for every η ∈ H3 we have
Dη ∈ C2(Ω).

Proof. Using Remark 4 it is easily checked that, for every k ∈N, we have

(Dϕk)(x, y) =

√
2
π

cos (kx) cosh [k(y + 1)]
cosh (k)

∀ x, y ∈ Ω. (4.25)

On the other hand, we can see that the right-hand side of (4.24) converges in L2(Ω).
This fact, together with (4.25) clearly implies (4.24).

Moreover, for every α ∈ {0, 1, 2} we have∣∣∣∣ ∂α,2−α

∂xα∂y2−α

(
cos (kx) cosh (k(y + 1))

cosh (k)

)∣∣∣∣ 6 k2 ∀ k ∈N, x, y ∈ Ω.

Using the Cauchy-Schwarz inequality and the fact that ∑k∈N 1/k2 = π2/6,

∑
k∈N

∣∣∣∣ ∂α,2−α

∂xα∂y2−α

( 〈η, ϕk〉
cosh k

ϕk(x) cosh (k(y + 1))
)∣∣∣∣

6 ∑
k∈N

1
k
· k3 |〈η, ϕk〉| 6

π√
6
‖η‖H3 ∀ η ∈ H3, x, y ∈ Ω.

Combining the last estimate with (4.24), we obtain that indeed Dη ∈ C2(Ω) for every
η ∈ H3.

Corollary 4.2.4. Let γ0 : C(Ω)→ C[−1, 0] be the partial Dirichlet trace operator defined by

(γ0g)(y) = g(0, y) ∀ g ∈ C(Ω), y ∈ [−1, 0],

and let D be the map defined in Proposition 4.2.2. Then C̃0 defined by

C̃0η = γ0Dη ∀ η ∈ H3

can be uniquely extended to a bounded operator C0 ∈ L(H, L2[−1, 0]).

66



4.2. DIRICHLET TO NEUMANN AND NEUMANN TO NEUMANN OPERATORS
IN A RECTANGULAR DOMAIN

Proof. According to Lemma 4.2.3, we have

(C̃0η)(y) = ∑
k∈N

√
2
π

〈η, ϕk〉
cosh k

cosh [k(y + 1)] ∀ η ∈ H3 , y ∈ [−1, 0] ,

which implies that there exists a constant K > 0 such that

‖C̃0η‖2
L2[−1,0] 6 K ∑

k∈N

|〈η, ϕk〉|2 = K‖η‖2
H ∀ η ∈ H3,

which shows that C̃0 can be extended as claimed.

Lemma 4.2.5. The partial Dirichlet map D defined in Proposition 4.2.2 is bounded from H 1
2

toH1(Ω), i.e. D ∈ L(H 1
2
,H1(Ω)). Moreover,

(Dη)(x, 0) = η(x) ∀ η ∈ H 1
2

, equality in L2[0, π] , (4.26)

∫
Ω
∇(Dη) · ∇Ψdxdy = 0 ∀ η ∈ H 1

2
, Ψ ∈ H1

top(Ω), (4.27)

whereH1
top(Ω) has been introduced in (4.20).

Proof. According to Lemma 4.2.3, Dη is given by (4.24). Since
{√ 2

π sin (kx)
}

k∈N
is an

orthonormal basis in L2[0, π], we have that for every η ∈ H 1
2
,

‖∂x(Dη)‖2
L2(Ω) =

∫ 0

−1

∫ π

0

∣∣∣∣∣∑k∈N

√
2
π

k〈η, ϕk〉
cosh k

cosh [k(y + 1]) sin (kx)

∣∣∣∣∣
2

dx dy

6 ∑
k∈N

|k〈η, ϕk〉|2
cosh2 k

∫ 0

−1
cosh2 [k(y + 1)]dy

= ∑
k∈N

k2 |〈η, ϕk〉|2
cosh2 k

+ ∑
k∈N

k |〈η, ϕk〉|2
2 cosh2 k

sinh(2k),

which clearly implies that there exists K1 > 0 such that

‖∂x(Dη)‖L2(Ω) 6 K1‖η‖ 1
2

∀ η ∈ H 1
2
.

A similar estimate for ‖∂y(Dη)‖L2 can be obtained in a completely similar manner.
Moreover, we know from Proposition 4.2.2 that ‖Dη‖L2 is also bounded by a similar
estimate. Therefore, we conclude that D ∈ L(H 1

2
,H1(Ω)). Formula (4.26) in the lemma

follows from the last part of Lemma 4.2.3 together with Remark 4 and the density of
H3 in H 1

2
.

To prove (4.27) first we assume that η ∈ H3 so that, according to Remark 4, Dη
is the unique classical solution of (4.23). Multiplying the first equation in (4.23) by
Ψ ∈ H1

top(Ω) and integrating by parts, it follows that (4.27) holds for η ∈ H3. Using
the density of H3 in H 1

2
and the fact that D ∈ L(H 1

2
,H1(Ω)), it follows that indeed

(4.27) holds for all η ∈ H 1
2
.
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The second important map constructed in this section is a partial Neumann map.
To this aim, recall the space H1

top(Ω) introduced in (4.20) and notice that, due the
version of the Poincaré inequality in [115, Theorem 13.6.9], the sesquilinear form on
H1

top(Ω) given by

a[ f , g] =
∫

Ω
∇ f · ∇g dx dy ∀ f , g ∈ H1

top(Ω) (4.28)

defines an inner product on H1
top(Ω) which is equivalent to the one inherited from

H1(Ω). These facts, combined with the continuity of the Dirichlet trace (as an operator
fromH1(Ω) to L2(∂Ω)), imply the following:

Proposition 4.2.6. For every v ∈ L2[−1, 0] there exists a unique function Nv ∈ H1
top(Ω)

such that ∫
Ω
∇(Nv) · ∇g dx dy =

∫ 0

−1
v(y)g(0, y)dy ∀ g ∈ H1

top(Ω).

Moreover, the operator N, called a partial Neumann map, is linear and bounded from L2[−1, 0]
toH1

top(Ω).

Proof. The results follow from the Lax-Milgram theorem by using the sesquilinear form
a[·, ·] introduced in (4.28) (see also [121, Proposition 7.1]).

Remark 6. The above proposition can be formulated also as follows: for every v ∈
L2[−1, 0] the boundary value problem

∆ f (x, y) = 0 ((x, y) ∈ Ω),
f (x, 0) = 0, ∂y f (x,−1) = 0 (x ∈ (0, π)),
∂x f (0, y) = −v, ∂x f (π, y) = 0 (y ∈ (−1, 0)),

(4.29)

admits a unique weak solution f = Nv ∈ H1
top(Ω). If f ∈ C2(Ω) and v ∈ C[−1, 0],

then f = Nv is the unique classical solution of (4.29).

We note that the sequence (ψk)k∈N defined by

ψk(y) =
√

2 cos
[
(2k− 1)

π

2
(y + 1)

]
∀ k ∈N, y ∈ [−1, 0], (4.30)

is an orthonormal basis in L2[−1, 0] (see [115, [Section 2.6]). We can use this basis to
construct the scale of Hilbert spaces (Uβ)β>0 defined by U0 = L2[−1, 0] and (for β > 0)

Uβ =

{
v ∈ U0

∣∣∣∣∣ ∑
k∈N

(2k− 1)2β

∣∣∣∣∫ 0

−1
v(y)ψk(y)dy

∣∣∣∣2 < ∞

}
,

with the inner products
(
〈·, ·〉β

)
β>0 given, for every v, χ ∈ Uβ, by

〈v, χ〉Uβ
= ∑

k∈N

(2k− 1)2β

(∫ 0

−1
v(y)ψk(y)dy

)(∫ 0

−1
χ(y)ψk(y)dy

)
.
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Lemma 4.2.7. Let N be the operator defined in Proposition 4.2.6. Then for every v ∈ L2[−1, 0]
and every (x, y) ∈ Ω we have

(Nv)(x, y) = ∑
k∈N

ak cosh
[
(2k− 1)

π

2
(x− π)

]
cos

[
(2k− 1)

π

2
(y + 1)

]
, (4.31)

with convergence inH1
top(Ω), where

ak =
2
√

2〈v, ψk〉
(2k− 1)π sinh

[
(2k− 1)π2

2

] ∀ k ∈N.

Moreover, for every v ∈ U2 we have Nv ∈ C2(Ω).

Proof. By using Remark 6 and separation of variables, we see that

(Nψk)(x, y) =
2ψk(y) cosh

[
(2k− 1)π

2 (x− π)
]

(2k− 1)π sinh
[
(2k− 1)π2

2

] ∀ k ∈N, (4.32)

for all (x, y) ∈ Ω. Since Nv = ∑k∈N〈v, ψk〉Nψk, this clearly implies (4.31), with conver-
gence inH1

top(Ω) due to Proposition 4.2.6. For every j ∈ {0, 1, 2},∣∣∣∣ ∂j,2−j

∂xj∂y2−j (Nψk) (x, y)
∣∣∣∣ 6
√

2
2

π(2k− 1) ∀ k ∈N, (x, y) ∈ Ω,

so that for every v ∈ U , the series Nv = ∑k∈N〈v, ψk〉Nψk converges in C2(Ω) if the
sequence k〈v, ψk〉 is in l1. For this (by an argument similar to the one in the proof of
Lemma 4.2.3) it is sufficient if the sequence k2〈v, ψk〉 is in l2, which is precisely the
condition v ∈ U2.

4.2.2 Partial Dirichlet to Neumann and Neumann to Neumann maps

In this section we give an explicit construction of the operators allowing us to recast
(4.16) as a well-posed linear control system. Recall the orthonormal basis (ϕk)k∈N in H
introduced in (4.17) and the corresponding spaces Hα in (4.19). First we note a direct
consequence of Proposition 4.2.2 and of Lemma 4.2.3.

Corollary 4.2.8. Let γ1 : C1(Ω)→ C[0, π] be the partial Neumann trace operator defined by

(γ1 f )(x) = ∂y f (x, 0) ∀ f ∈ C1(Ω), x ∈ [0, π].

Then Ã0 defined by
Ã0η = γ1Dη ∀ η ∈ H3,

where D is the Dirichlet map defined in Proposition 4.2.2, is a linear bounded map from H3 to
C[0, π]. Moreover, we have

Ã0ϕk = k tanh(k)ϕk ∀ k ∈N.

We are now in a position to define a partial Dirichlet to Neumann map.
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Proposition 4.2.9. The operator Ã0 introduced in Corollary 4.2.8 has a unique continuous

extension to an operator A0 : H1 → H. This extension is strictly positive and D(A
1
2
0 ) = H 1

2
.

For each k ∈N, we have A0ϕk = λk ϕk, where

λk = k tanh(k) ∀ k ∈N (4.33)

and
A0η = ∑

k∈N

λk〈η, ϕk〉ϕk ∀ η ∈ H1. (4.34)

Proof. It is clear from the previous proposition that A0 fits into the class of diagonaliz-
able operators discussed in [115] in Proposition 3.2.9 and the remarks after it, and in
Proposition 3.4.8 of the same book.

Proposition 4.2.10. Let A0 and D be the operators introduced in Propositions 4.2.9 and 4.2.2,
respectively. Let γ ∈ H 1

2
and Ψ ∈ H1(Ω) be such that

Ψ(x, 0) = γ(x), equality in L2[0, π].

Then for every η ∈ H 1
2

we have Dη ∈ H1(Ω) and

〈A
1
2
0 η, A

1
2
0 γ〉 = 〈∇(Dη),∇Ψ〉L2(Ω). (4.35)

Proof. First we assume that η ∈ H3, so that according to Lemma 4.2.3 we have Dη ∈
C2(Ω). Then (4.35) follows by a simple integration by parts and Proposition 4.2.9. The
fact that Dη ∈ H1(Ω) for every η ∈ H 1

2
has already been proved in Lemma 4.2.5.

Finally, to prove that (4.35) still holds for η ∈ H 1
2

it suffices to use the density of H3 in
H 1

2
, combined with Lemma 4.2.5.

Corollary 4.2.11. With γ1 as in Corollary 4.2.8, define the operator B̃1 by

B̃1v = γ1Nv ∀ v ∈ U2,

where N is the Neumann map introduced in Proposition 4.2.6. Then B̃1 is a bounded linear
operator from U2 to C[0, π]. Moreover, we have

(
B̃1ψk

)
(x) =

(−1)k
√

2

sinh
[
(2k− 1)π2

2

] cosh
[
(2k− 1)

π

2
(x− π)

]
, (4.36)

for all k ∈N, x ∈ [0, π], where the functions ψk have been defined in (4.30).

Proof. This follows from Lemma 4.2.7 and the formula (4.32) for Nψk.

We are now ready to define a Neumann to Neumann map.

Theorem 4.2.12. The operator B̃1 introduced in Corollary 4.2.11 can be extended in a unique
manner to a linear bounded operator B1 : L2[−1, 0] → L2[0, π]. Moreover, for every v ∈
L2[−1, 0] with

∫ 0
−1 v(y)dy = 0 we have that B1v ∈ H, where H is defined in (4.17). Finally,∫ π

0
(B1v)(x)Ψ(x, 0)dx =

∫
Ω
∇(Nv)(x, y) · ∇Ψ(x, y) dxdy

−
∫ 0

−1
v(y)Ψ(0, y)dy ∀ Ψ ∈ H1(Ω). (4.37)
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Proof. For any v ∈ L2[−1, 0] we set

bk =
(−1)k

√
2

sinh
[
(2k− 1)π2

2

] , vk = 〈v, ψk〉,

and notice that these sequences are in l2 and ‖(vk)‖l2 = ‖v‖L2[−1,0]. From (4.36) it
follows that if v ∈ U2 then for every x ∈ [0, π] we have

(B̃1v)(x) = ∑
k∈N

bkvk cosh
[
(2k− 1)

π

2
(x− π)

]
=

f (x) + g(x)
2

, (4.38)

where
f (x) = ∑

k∈N

bkvk exp
[
(2k− 1)

π

2
(x− π)

]
,

g(x) = ∑
k∈N

bkvk exp
[
(2k− 1)

π

2
(π − x)

]
. (4.39)

On one hand, from 0 6 exp
[
(2k− 1)π

2 (x− π)
]
6 1 for all x ∈ [0, π], by using Cauchy-

Schwarz we obtain that there exists C1 > 0 such that∫ π

0
| f (x)|2 dx 6 C1‖v‖2

L2[−1,0] ∀ v ∈ U2 . (4.40)

On the other hand, from (4.39) it follows that∫ ∞

0
|g(x)|2 dx =

1
π ∑

k,l∈N

ck cl vk vl

k + l − 1
,

where ck = bk exp
[
(2k− 1)π2

2

]
for all k ∈ N. Using that |ck| 6 |c1| <

√
10 for all

k ∈ N, together with Hilbert’s inequality, see for instance [56, Chapter IX] or the nice
survey [60], we obtain that∫ ∞

0
|g(x)|2 dx 6 10 ∑

k∈N

|vk|2 ∀ v ∈ U2. (4.41)

Putting together (4.38), (4.40) and (4.41), it follows that there exists C > 0 such that

‖B̃1v‖2
L2[0,π] 6 C‖v‖2

L2[−1,0] ∀ v ∈ U2.

The above estimate, combined with the density of U2 in L2[−1, 0], implies that indeed
B̃1 admits an unique extension B1 ∈ L

(
L2[−1, 0], L2[0, π]

)
.

Assume again that v ∈ U2. Then, according to Remark 6 and to Lemma 4.2.7 we
have that f = Nv is a classical solution of (4.29), so that for every v ∈ U2 we have

0 =
∫

Ω
∆(Nv)(x, y)Ψ(x, y)dxdy

=
∫ 0

−1
v(y)Ψ(0, y)dy +

∫ π

0
(B1v)(x)Ψ(x, 0)dx−

∫
Ω
∇(Nv) · ∇Ψdxdy.

Thus (4.37) holds for v ∈ U2 and by density for v ∈ L2[−1, 0]. Using the assumption∫ 0
−1 v(y)dy = 0 and taking Ψ = 1 in (4.37) we obtain that B1v indeed satisfies the

condition
∫ π

0 (B1v)(x)dx = 0, which implies that B1v ∈ H.
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Remark 7. An alternative proof of (4.41) can be given using the Carleson measure cri-
terion for admissibility, see for instance [115, Sect. 5.3]. To this aim, consider the Hilbert
space X̃ = l2, the strictly negative operator Ã = diag

(
− (2k−1)π

2

)
and the observation

functional C̃ =
[
c1 c2 c3 . . .

]
. Then according to the aforementioned criterion, C̃ is

an admissible observation operator for the operator semigroup generated by Ã, and
(4.41) follows.

The above theorem clearly implies the following result:

Corollary 4.2.13. Let h ∈ L2[−1, 0], with
∫ 0
−1 h(y)dy = 0 and let B0 be the operator defined

by
B0u = uB1h ∀ u ∈ C .

Then B0 ∈ L(C, H). Moreover, we have∫ π

0
(B0u)(x)Ψ(x, 0)dx = u

∫
Ω
∇(Nh) · ∇Ψdxdy− u

∫ 0

−1
h(y)Ψ(0, y)dy , (4.42)

for all u ∈ C and Ψ ∈ H1(Ω). In particular,

B∗0 η = −
∫ 0

−1
h(y)(C0η)(y)dy ∀ η ∈ H, (4.43)

where C0 = γ0D is the operator introduced in Corollary 4.2.4.

Proof. The fact that B0 ∈ L(C, H) and (4.42) follows from Theorem 4.2.12 (in particular
from (4.37)) with v = uh. Moreover, taking Ψ = Dη with η ∈ H 1

2
(see Lemma 4.2.5) in

(4.42), we see that for every u ∈ C,

〈B0u, η〉 = u〈B1h, η〉 = −u
∫ 0

−1
h(y)(C0η)(y)dy + u

∫
Ω
∇(Nh) · ∇(Dη)dxdy.

Using (4.27) it follows that the last term in the right-hand side of the above equation is
zero, so that we obtain (4.43).

4.3 Well-posedness of the linearized water waves system

In this section, we study the well-posedness of the linearized water waves system
(4.16). The analysis is based on formulating the system (4.16) as a well-posed lin-
ear control system. The construction of this system is completed through the partial
Dirichlet to Neumann operator A0 defined in Proposotion 4.2.9, and the partial Neu-
mann to Neumann operator B0 introduced in Corollary 4.2.13. Before stating the main
result for (4.16), we need some background and more notation. First we recall the con-
cept of a well-posed linear control system, following Weiss [119] (where these systems
have been called abstract linear control systems), see also Tucsnak and Weiss [115].

Definition 4.3.1. Let U and X be Hilbert spaces. A well-posed linear control system with
the state space X and the input space U is a couple (T, Φ) of families of operators such that

1. T = (Tt)t>0 is a strongly continuous operator semigroup (also called a C0-semigroup)
on X.
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2. Φ = (Φt)t>0 is a family of bounded linear operators from L2([0, ∞); U) to X (called
input maps) such that for every u, v ∈ L2([0, ∞); U),

Φτ+t(u ♦
τ

v) = TtΦτu + Φtv ∀ t, τ > 0, (4.44)

where we used the concatenation of functions, see Notation part.

For any τ > 0, let Pτu denote the truncation of u : [0, ∞)→U to [0, τ], setting
(Pτu)(t) = 0 for t > τ. It follows from (4.44) that ΦτPτ = Φτ (causality), and hence
Φτ has a natural extension to L2

loc([0, ∞); U).
Still using the notation from the above definition, if z0 ∈ X and u ∈ L2

loc([0, ∞); U),
then we call the function z(t) = Ttz0 + Φtu the state trajectory of the system corre-
sponding to the initial state z0 and the input u. Let A : D(A)→X denote the generator
of T. For every well-posed linear control system, there exists a (usually unbounded)
operator B defined on U and with values in an extrapolation space that contains X,
with the following property: For any z0 ∈ X and u ∈ L2

loc([0, ∞); U), the correspond-
ing state trajectory is the unique solution (in the extrapolation space) of the abstract
differential equation {

ż(t) = Az(t) + Bu(t) ,
z(0) = z0.

(4.45)

For details on this see [115, Chapter 4]. The above operator B is called the control
operator of the system. This operator is called bounded if B ∈ L(U, X) (this is the case of
interest in this part).

We would like to formulate the system of equations (4.16) as a well-posed linear
control system. This is not obvious, because the equations (4.16) do not even resemble
(4.45). We have to define what we mean by the state of our system at some time t > 0:
this should be

z(t) =

[
ζ(t, ·)
ζ̇(t, ·)

]
. (4.46)

Throughout this section we denote by X the Hilbert space H 1
2
× H, where H and

(Hα)α>0 have been defined in (4.17) and (4.19), respectively. Here we specify the linear
operator A : D(A)→ X with D(A) = H1 × H 1

2
and

A =

[
0 I
−A0 0

]
, i.e., A

[
ϕ
ψ

]
=

[
ψ
−A0ϕ

]
∀
[

ϕ
ψ

]
∈ D(A), (4.47)

where A0 = γ1D is the strictly positive operator on H, with domain H1, which has
been introduced in Proposition 4.2.9. We redefine the inner product on H 1

2
as

〈x, z〉 1
2
=

〈
A

1
2
0 x, A

1
2
0 z
〉

,

which is equivalent to the original inner product on H 1
2
. Then A is skew-adjoint on X

(see, for instance, [115, Proposition 3.7.6]), so that, according to Stone’s theorem (see,
for instance [115, Section 3.7]), A generates a group T = (Tt)t∈R of unitary operators
on X. Moreover, we recall that h ∈ L2[−1, 0], with

∫ 0
−1 h(y)dy = 0 and that we have

introduced the input space U = C. Let B ∈ L(U, X) be given by

B =

[
0
B0

]
, (4.48)
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where B0 ∈ L(U, H) is as in Corollary 4.2.13.

4.3.1 Well-posedness in weak sense

Based on the abstract framework and the notation introduced above, we first consider
the well-posedness of the water wave equations (4.16) in weak sense. In the following,
we define what we mean by a solution of (4.16) in this case.

Definition 4.3.2. Given u ∈ L2
loc[0, ∞) and h ∈ L2[−1, 0], with

∫ 0
−1 h(y)dy = 0, a couple

(ϕ, ζ) is called a solution of (4.16) if

ϕ ∈ L2
loc([0, ∞);H1(Ω)), ζ ∈ C([0, ∞); H 1

2
) ∩ C1([0, ∞); H),

ϕ(t, ·, 0) + ζ(t, ·) = 0, equality in L2
loc([0, ∞); L2[0, π]), (4.49)

and for every Ψ ∈ H1(Ω) and every t > 0 we have

∫ π

0
ζ̇(t, x)Ψ(x, 0)dx−

∫ π

0
ζ̇(0, x)Ψ(x, 0)dx =∫ t

0

∫
Ω
∇ϕ(σ, x, y) · ∇Ψ(x, y)dx dy dσ−

∫ t

0
u(σ)

∫ 0

−1
h(y)Ψ(0, y)dy dσ. (4.50)

Remark 8. We explain the connection between the water waves equations (4.16) and
their variational formulation (4.49)-(4.50). In one direction, assume that (ϕ, ζ) is a clas-
sical solution of (4.16), having the smoothness

ϕ ∈ C([0, ∞);H2(Ω)) , ζ ∈ C(([0, ∞); H 1
2
) ∩ C2([0, ∞); H) . (4.51)

(If u 6≡ 0, this implies that h ∈ H 1
2 (−1, 0) and u is continuous.) The equation (4.49) is

simply copied from (4.16). We multiply the first equation in (4.16) with Ψ and apply
the first Green formula (integration by parts), taking into account the last three lines of
(4.16). After this we do simple integration with respect to t, and we obtain (4.50).

In the opposite direction, let us assume that (ϕ, ζ) is a solution of (4.49)-(4.50) with
the additional regularity (4.51), and u is continuous. Then (4.50) can be differentiated
with respect to the time t, and after using the first Green formula we obtain

∫ π

0
ζ̈(t, x)Ψ(x, 0)dx =

∫
∂Ω

(
∂

∂ν
ϕ

)
Ψdσ−

∫
Ω

∆ϕ(t, x, y) ·Ψ(x, y)dx dy

− u(t)
∫ 0

−1
h(y)Ψ(0, y)dy ∀ t > 0,

where ∂
∂ν denotes the Neumann trace on the entire boundary ∂Ω. Considering only

functions Ψ with compact support in Ω, we see from the above that we must have
∆ϕ = 0. After this, we consider test functions Ψ whose trace is supported on one of
the four segments of ∂Ω, knowing that these traces are dense in the L2 space of the
relevant segment, see [115, Theorem 13.6.10]. From here we can get that ϕ and ζ satisfy
also the last three equations in (4.16). (It also follows that h ∈ H 1

2 (−1, 0).)

74



4.3. WELL-POSEDNESS OF THE LINEARIZED WATER WAVES SYSTEM

Remark 9. Recalling that the function ϕ(t, x, y) involved in the equation (4.16) is the
time derivative of the velocity potential φ(t, x, y), we derive from Definition 4.3.2 that

φ ∈ H1
loc([0, ∞);H1(Ω)), ζ ∈ C([0, ∞); H 1

2
) ∩ C1([0, ∞); H),

if (φ, ζ) is a solution of (4.15), the initial data φ(0, x, y) ∈ H1(Ω) and the velocity v ∈
H1

loc[0, ∞).

The following result establishes the existence of a well-posed linear control system
corresponding to (4.16).

Theorem 4.3.3. Let h ∈ L2[−1, 0] be such that
∫ 0
−1 h(y)dy = 0. Then for every u ∈

L2
loc[0, ∞), ζ0 ∈ H 1

2
and w0 ∈ H, there exists a unique solution of (4.16) with ζ(0) = ζ0 and

ζ̇(0) = w0. Moreover, there exists a well-posed linear control system (T, Φ) with state space
X = H 1

2
× H and input space U = C such that, setting z0 =

[
ζ0
w0

]
and using the state from

(4.46), we have
z(τ) = Tτz0 + Φτu ∀ τ > 0. (4.52)

Finally, the generator A of T is skew-adjoint, with domainD(A) = H1×H 1
2
, and there exists

B ∈ L(C, X) such that for any τ > 0,

Φτu =
∫ τ

0
Tτ−σBu(σ)dσ ∀ u ∈ L2

loc[0, ∞). (4.53)

Proof. With the above notation for X, A, U and B we consider, for each τ > 0, the map
Φτ defined by (4.53), which is clearly linear and bounded from L2([0, ∞); U) into X.
Let z0 =

[
ζ0
w0

]
∈ X, let u ∈ L2

loc([0, ∞); U) and define z(t) =
[

ζ
w

]
∈ C([0, ∞); X)) by

(4.52). Then, according to a classical result (see, for instance, [115, Remark 4.1.2]), for
every t > 0 and ψ ∈ D(A) we have

〈z(t)− z0, ψ〉X =
∫ t

0
[−〈z(σ), Aψ〉X + 〈Bu(σ), ψ〉X]dσ .

Setting ψ =
[

ψ1
ψ2

]
, with ψ1 ∈ H1 and ψ2 ∈ H 1

2
and using the specific structure (4.47),

(4.48) of A and B, the last formula implies that

〈A
1
2
0 (ζ(t)− ζ0), A

1
2
0 ψ1〉+ 〈w(t)− w0, ψ2〉 = −

〈∫ t

0
A

1
2
0 ζ(σ)dσ, A

1
2
0 ψ2

〉
+

〈∫ t

0
w(σ)dσ, A0ψ1

〉
+
∫ t

0
〈B0u(σ), ψ2〉dσ, (4.54)

for every t > 0, ψ1 ∈ H1, ψ2 ∈ H 1
2
. The above formula holds, in particular, for ψ2 = 0

and arbitrary ψ1 ∈ H1, which yields that

ζ(t)− ζ0 =
∫ t

0
w(σ)dσ ∀ t > 0,

so that w(t) = ζ̇(t), for all t > 0. Inserting the last two formulas in (4.54), we obtain
that

〈ζ̇(t)− w0, ψ2〉 = −
∫ t

0
〈A

1
2
0 ζ(σ), A

1
2
0 ψ2〉dσ +

∫ t

0
〈B0u(σ), ψ2〉dσ, (4.55)
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where t > 0, w0 = ζ̇(0) and ψ2 ∈ H 1
2
. (This formula (4.55) is the weak form of the

equation ζ̈ = −A0ζ + B0u.) Let Ψ ∈ H1(Ω) be such that
∫ π

0 Ψ(x, 0)dx = 0 and then
ψ2(x) = Ψ(x, 0) is a function in H 1

2
. By combining (4.55) and (4.42) it follows that

〈ζ̇(t)− w0, ψ2〉 = −
∫ t

0
〈A

1
2
0 ζ(σ), A

1
2
0 ψ2〉dσ

+
∫ t

0
u(σ)

∫
Ω
∇(Nh) · ∇Ψdxdydσ−

∫ t

0
u(σ)

∫ 0

−1
h(y)Ψ(0, y)dydσ. (4.56)

On the other hand, from Proposition 4.2.10 it follows that Dζ(σ) ∈ H1(Ω) and

〈A
1
2
0 ζ(σ), A

1
2
0 ψ2〉 = 〈∇(Dζ(σ)),∇Ψ〉 ∀ Ψ ∈ H1(Ω), ψ2(x) = Ψ(x, 0) .

The above formula, when combined with (4.56), and setting

ϕ(t, ·, ·) = − [Dζ(t)](·, ·) + u(t)(Nh)(·, ·) ∀ t > 0, (4.57)

implies that ϕ(t, ·, ·) ∈ H1(Ω) and (ϕ, ζ) satisfies (4.50) for every Ψ ∈ H1(Ω) with∫ π
0 Ψ(x, 0)dx = 0. On the other hand, (ϕ, ζ) obviously satisfies (4.50) if Ψ is a con-

stant function, thus (ϕ, ζ) satisfies (4.50) for every Ψ ∈ H1(Ω). Moreover, accord-
ing to Lemma 4.2.5, Proposition 4.2.6 and the above definition of ϕ, we have that
ϕ ∈ L2

loc([0, ∞),H1(Ω)) and (4.49) holds, so that (ϕ, ζ) is a solution of (4.16) in the
sense of Definition 4.3.2.

Conversely, assume that (ϕ, ζ) is a solution of (4.16) in the sense of Definition 4.3.2,
with ζ(0) = ζ0 ∈ H 1

2
and ζ̇(0) = w0 ∈ H. Using the fact that (4.50) holds, in particular,

for Ψ ∈ H1
top(Ω) it follows that for every t > 0 and every Ψ ∈ H1

top(Ω) we have

∫
Ω
∇ϕ(t, x, y) · ∇Ψ(x, y)dxdy− u(t)

∫ 0

−1
h(y)Ψ(0, y)dy = 0.

Using the notation
ϕ̄(t, ·, ·) = ϕ(t, ·, ·)− u(t)(Nh)(·, ·), (4.58)

where N is the Neumann map defined in Proposition 4.2.6, it follows that∫
Ω
∇ϕ̄(t, x, y) · ∇Ψ(x, y)dx dy = 0 ∀ Ψ ∈ H1

top(Ω).

The last formula holds, in particular, for Ψ ∈ D(A1), where D(A1) has been defined in
Proposition 4.2.1, so that an integration by parts yields that∫

Ω
ϕ̄(t, x, y)∆Ψ(x, y)dxdy =

∫ π

0
ϕ̄(t, x, 0)∂yΨ(x, 0)dx ∀ Ψ ∈ D(A1). (4.59)

According to Definition 4.3.2 and Proposition 4.2.6, we have (4.49) and (Nh)(x, 0) = 0
for x ∈ [0, π], so that from (4.59) it follows that∫

Ω
ϕ̄(t, x, y)∆Ψ(x, y)dxdy = −

∫ π

0
ζ(t, x)∂yΨ(x, 0)dx ∀ Ψ ∈ D(A1).
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Comparing the above formula with the definition (4.22) of the Dirichlet map, with
g = ∆Ψ = −A1Ψ, and recalling that A1 is onto, it follows that

ϕ̄(t, ·, ·) = − [Dζ(t)](·, ·) ∀ t > 0.

The last formula and (4.58) yield that again (4.57) holds. Now we take ψ2 ∈ H 1
2

and we

recall from Lemma 4.2.5 that Dψ2 ∈ H1(Ω) and that (Dψ2)(x, 0) = ψ2(x) for x ∈ [0, π].
We can thus choose Ψ = Dψ2 in (4.50) and using Proposition 4.2.10 and Corollary
4.2.13, it follows that ζ satisfies (4.55). This easily implies that z =

[
ζ

ζ̇

]
satisfies (4.52).

Remark 10. We mention that, according to the above theorem and what we have said
around (4.45), the state strajectories of our system are solutions of (4.45), in the sense
of [115, Section 4.1-4.2], and our control operator B is bounded. Moreover, we see from
the above Theorem 4.3.3 that the whole water waves system (4.16) is equivalent to the
well-posed linear control system (4.45) with the operator A and B introduced in (4.47)
and (4.48), respectively.

4.3.2 Well-posedness in classical sense

This section is a continuation and extension of the recent work [110], in the sense that
we consider the strong solution of the linearized water waves system in Section 4.1,
of course with more regular initial data and control function. In Section 4.3, we stud-
ied the weak well-posedness of the linear equation (4.16), which is decomposed into
two boundary value problems for the Laplace operator. In this framework, we cannot
expect to obtain the strong solution, since it causes a singular point in the rectangular
domain Ω defined in (4.14). To improve the regularity, we first need to consider if the
singularity can be removed and if the corresponding solution is smoother (possibly
not in the domain of the generator to some power) when we choose a smoother input
function and initial data. Now we give a precise description of the problem that we
shall investigate.

The linearized water waves system (4.15), as discussed in Section 4.2, can be di-
vided into two Laplace equations of Dψ and N(hv) with mixed boundary conditions
in (4.23) and (4.29), i.e.

φ(t, x, y) = (Dψ)(t, x, y) + v(t)(Nh)(x, y) ∀ t > 0, (x, y) ∈ Ω,

where D is the Dirichlet map introduced in Proposition 4.2.2 and N is the Neumann
map introduced in Proposition 4.2.6. The function ψ(t, x) is the free surface velocity
potential φ(t, x, ζ(t, x)). Obviously, the main problem of this decomposition is that
there exists a singular point at the left upper corner of the domain Ω, i.e. (x, y) = (0, 0).
Therefore, the solution of (4.15) cannot be a strong solution since the velocity is not
continuous at this corner, i.e. ∂xψ(t, 0) 6= −v(t) if v(t) is non-zero, no matter how
regular the control function and the initial data are. Here for the sake of simplicity, we
assume that the shape function h = 1, which does not matter since we do not use the
Neumann to Neumann map in this section.
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In order to obtain the strong solution of (4.15), we shall remove the singular point
by using a transform. Let χ be a smooth function on [0, π] satisfying

χ(x) =


1 x ∈

(
0,

1
4
)
,

0 x ∈
(
π − 1

4
, π
)
.

(4.60)

By using the function χ in (4.60), we introduce the new function φ̃(t, x, y) defined by

φ̃(t, x, y) := φ(t, x, y) + x χ(x)v(t). (4.61)

After doing the transform (4.61), we obtain a non-homogeneous Laplace equation with
mixed boundary conditions for φ̃, which, for all t > 0 and (x, y) ∈ Ω, read

∆x,y φ̃(t, x, y) = v(t)(xχ)′′ in Ω,
∂yφ̃(t, x, 0) − ∂tζ(t, x) = 0,
∂tφ̃(t, x, 0) + ζ(t, x) = xχ(x)u(t),
∂xφ̃(t, 0, y) = 0,
∂yφ̃(t, x,−1) = 0 = ∂xφ̃(t, π, y),

(4.62)

where u = v̇. Observe from (4.62) that the non-homogeneous Neumann boundary
value in (4.15) is shifted to the source term of the Laplace equation for φ̃. In this way,
we obtain a Poisson equation with one non-homogeneous Dirichlet condition on the
top and three homogeneous Neumann conditions on the other boundaries. Therefore,
we expect to obtain the solution of (4.15) with good regularity through the new Laplace
system (4.62) for φ̃. We notice that the equations (4.62) can be formulated into a new
second-order evolution equation in terms of a perturbation of the elevation ζ, thereby
we have a new decomposition of (4.62) where the singularity is eliminated.

For any τ > 0 and m ∈N, we set

Hm
L [0, τ] =

{
u ∈ Hm[0, τ]

∣∣∣∣u(0) =
du
dt

(0) = · · · = dm−1u
dtm−1 (0) = 0

}
.

As explained earlier, here we consider a second-order evolution equation of ζ, which
is equivalent to the equations (4.15) in the sense of Theorem 4.3.3. We thus propose the
corresponding initial data

ζ(0, x) = ζ0(x), ∂tζ(0, x) = ζ1(x). (4.63)

Therefore, we take the acceleration u = v̇ as the input signal.
To study the well-posedness of (4.62), we need more properties of the Dirichlet

map D and the Dirichlet to Neumann operator A0 introduced in Proposition 4.2.2 and
Proposition 4.2.9, respectively.

Lemma 4.3.4. The partial Dirichlet map D defined in Proposition 4.2.2 is bounded from H 3
2

toH2(Ω), i.e. D ∈ L(H 3
2
,H2(Ω)).
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Proof. According to Lemma 4.2.3, Dη is given by (4.24) for every η ∈ H. Note that
{cos(kx)}k∈N is an orthogonal set in H, we have that for every η ∈ H 3

2
,

∥∥∂2
x(Dη)

∥∥2
L2(Ω)

=
∫ 0

−1

∫ π

0

∣∣∣∣∣∑k∈N

k2〈η, ϕk〉
cosh(k)

cosh [k(y + 1]) cos (kx)

∣∣∣∣∣
2

dx dy

6 ∑
k∈N

∣∣k2〈η, ϕk〉
∣∣2

cosh2(k)

∫ 0

−1
cosh2 [k(y + 1)]dy

= ∑
k∈N

k4 |〈η, ϕk〉|2
cosh2(k)

+ ∑
k∈N

k3 |〈η, ϕk〉|2
2 cosh2(k)

sinh(2k),

which clearly implies that there exists K1 > 0 such that∥∥∂2
x(Dη)

∥∥
L2(Ω)

6 K1‖η‖H 3
2

∀ η ∈ H 3
2
.

A similar estimate for ‖∂2
y(Dη)‖L2 and ‖∂x∂y(Dη)‖L2 can be obtained in a completely

similar manner. Moreover, we know from Proposition 4.2.2 that ‖Dη‖L2 is also bounded
by a similar estimate. Furthermore, according to Lemma 4.2.5, we see that ‖∂x(Dη)‖L2

and ‖∂y(Dη)‖L2 can be controlled by ‖η‖H 3
2
. Therefore, we obtain that D is linear con-

tinuous from H 3
2

toH2(Ω).

Lemma 4.3.5. Let A0 be the Dirichlet to Neumann map introduced in Proposition 4.2.9. For
every α > 0, A0η ∈ Hα if and only if η ∈ Hα+1.

Proof. According to (4.34), we have

‖A0η‖2
Hα

= ∑
k∈N

k2α |k tanh(k)|2 |〈η, ϕk〉|2.

The right hand side of the above equality is equivalent to ‖η‖2
Hα+1

, which clearly im-
plies the result.

Recalling the definition of the operator A1 in Proposition 4.2.1, we have the follow-
ing lemma.

Lemma 4.3.6. With the operator A1 defined in Proposition 4.2.1, for every v ∈ C, the equation

A1Φ = −v(x χ(x))′′,

admits a unique solution Φ ∈ H2(Ω), which is given by

Φ = ∑
k, l∈N

v akl

k2 + (2l − 1)2 π2

4

Ψkl , (4.64)

where Ψkl has been introduced in (4.21) and

akl =
〈
(x χ(x))′′, Ψkl

〉
L2(Ω)

∀ k, l ∈N.
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Remark 11. Observe that the double series (4.64) is absolutely convergent and the se-
ries of derivatives with respect to y converges uniformly on [−1, 0], so that we define
∂yΦ by differentiating Φ term by term. Moreover, the series ∂yΦ, as a function of y, is
continuous on [−1, 0], hence ∂yΦ(t, x, 0) can be defined by taking y = 0 term by term.
Based on this observation, we introduce the following result.

For the sake of the simplicity, we use the notation ak and bk defined by

ak =
〈
(xχ)′′, ϕk

〉
, bk = 〈xχ, ϕk〉 ∀ k ∈N, (4.65)

which are the Fourier coefficient of the Fourier cosine series of (xχ)′′ and xχ, respec-
tively.

Remark 12. The cosine expansion of (xχ)′′ is infinitely differentiable since (xχ)′′ is
smooth with compact support on (0, π). Moreover, note that the Fourier cosine expan-
sion of xχ is only once differentiable, we thus conclude that xχ ∈ H1 and (xχ)′′ ∈ Hα

for all α > 0, i.e. ak and bk defined in (4.65) satisfy

∑
k∈N

k2|bk|2 < ∞, ∑
k∈N

k2α|ak|2 < ∞ ∀ α > 0.

Based on the structure of the system (4.62) and Remark 11, we introduce a new
operator S in the following proposition.

Proposition 4.3.7. For every α > 0, the operator S defined by

(Sv)(t, x) := ∂yΦ(t, x, 0)

is linear continuous from C to Hα, i.e. S ∈ L(C, Hα).

Proof. According to (4.64) and Remark 11, we have

S = ∑
k,l∈N

−2ak

(k2 + (2l − 1)2 π2

4 )
ϕk, (4.66)

where ak and ϕk have been defined in (4.65) and (4.18), respectively. The formula (4.66)
obviously implies that S ∈ H. For every α > 0, we have

‖Sv‖2
Hα

= ∑
k∈N

k2α |〈S, ϕk〉|2 6 ∑
k∈N

k2α |ak|2 < ∞,

which, together with Remark 12, implies that S ∈ Hα.

Recalling the Dirichlet to Neumann map A0 introduced in Proposition 4.2.9 and
the function S defined in Proposition 4.3.7, we immediately obtain from the structure
of the governing equations (4.62) that

∂yφ̃(t, x, 0) = A0ψ̃(t, x) + Sv(t), (4.67)

where t > 0, x ∈ (0, π) and ψ̃(t, x) = φ̃(t, x, 0). To derive the second-order evolution
equation, we define

ζ̃(t, x) = ζ(t, x)− xχ(x)u(t), (4.68)
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which belongs to the domain of the operator A0. With the initial data in (4.63), we
derive from the system (4.62) that the second-order evolution equation for ζ̃ is{

∂2
t ζ̃(t, x) + A0ζ̃(t, x) = Su− xχ(x)ü,

ζ̃(0, x) = ζ̃0(x), ∂t ζ̃(0, x) = ζ̃1(x),
(4.69)

where
ζ̃0(x) = ζ0(x)− xχ(x)u(0) ζ̃1(x) = ζ1(x)− xχ(x)u̇(0).

Remark 13. The equation (4.67) is obviously based on the relation:

φ̃(t, x, y) = (Dψ̃)(t, x, y) + Φ(t, x, y),

where D is the Dirichlet map introduced in Proposition 4.2.2 and the function Φ is
defined in Lemma 4.3.6. According to the definition of φ̃ in (4.61), we have a corre-
sponding decomposition for the original velocity potential φ.

Denoting

z̃(t) =

[
ζ̃(t, ·)
˙̃ζ(t, ·)

]
, z̃(0) =

[
ζ̃0(·)
ζ̃1(·)

]
,

we have a first-order evolution equation corresponding to the system (4.69) with the
state z̃ as follows: {

˙̃z(t) = Az̃(t) +Bu(t),
z̃(0) = z̃0,

(4.70)

where A has been introduced in (4.47) and

Bu =

[
0

Su− xχü

]
. (4.71)

The state of system (4.70) is still X = H 1
2
× H. It is not difficult to see from Remark 12

and Proposition 4.3.7 that B is an admissible control operator on X (for this concept,
please refer to [115, Chapter 4]). For every m ∈N, we denote (X0 = X)

Xm = D(Am) = H m+1
2
× H m

2
,

endowed with the corresponding graph norm, so that it forms a Hilbert space.

Remark 14. The Hilbert spaces Xm, for all m ∈N, satisfy

· · ·X3 ⊂ X2 ⊂ X1 ⊂ X.

Each inclusion is dense and with continuous embedding. The Hilbert spaces X−m, of
course, also make sense, which is defined by the completion of X with respect to the
norm ‖(sI − A)−mz‖ with z ∈ X (see, for instance, [115, Section 2.10]). As we already
mentioned in notation part, X−m is the dual of Xm with respect to the pivot space X,
for every m ∈N. Here we are interested in the Hilbert spaces Xm with positive integer
subscript.

Using the above notation, we have the regularity result of the second-order evolu-
tion equation (4.69).
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Theorem 4.3.8. For every τ > 0, let u ∈ H5
L[0, τ], ζ0 ∈ H2 and ζ1 ∈ H 3

2
. Then the system

(4.69) admits a unique solution ζ̃ satisfying

ζ̃ ∈ C([0, τ]; H2) ∩ C1([0, τ]; H 3
2
). (4.72)

Proof. Recalling that A is skew-adjoint, we denote by T = (Tt)t>0 the C0-semigroup
generated by the operator A. The mild solution of (4.70) is given by

z̃(t) = Tt z̃0 + Φ̃tu,

where Φ̃t is the input map defined by

Φ̃tu =
∫ t

0
Tt−σBu(σ)dσ

with Bu introduced in (4.71). Since u ∈ H5
L[0, τ], actually we have ζ̃0 = ζ0 and ζ̃1 = ζ1.

For the initial data z̃0 ∈ H2 × H 3
2
= X3, it is obvious that Tt z̃0 ∈ X3. Moreover,

Proposition 4.3.7 implies that B is an admissible control operator, that is Φ̃tu ∈ X.
Next we prove that Φ̃tu belongs to X3 if the input u ∈ H5

L[0, τ] for every τ > 0.
Note that Bu contains the second derivative of u with respect to time, we obtain,

according to [116, Proposition 2.3], that

Φ̃tH5
L[0, τ] ⊂ X3 + (βI − A)−1BC ∀ β ∈ ρ(A),

which is independent of the choice of β ∈ ρ(A). Notice that 1 ∈ ρ(A), we assume that
(I − A)

[
φ̃

ψ̃

]
= Bu, which gives that

φ̃ = ψ̃ = (I + A0)
−1 (Su− xχü) .

It remains to prove that φ̃ ∈ H2. Since A0 is diagonalizable, we have

∑
k∈N

|λk|4 |〈φ̃, ϕk〉|2 = ∑
k∈N

|λk|4

|1 + λk|2
|〈Su− xχü, ϕk〉|2 ,

where λk = k tanh(k). Recalling the formula of S given in Proposition 4.3.7, we further
have the estimate,

∑
k∈N

|λk|4 |〈φ̃, ϕk〉|2 6 C ∑
k∈N

|λk|2
[
|ak|2 + |bk|2

]
,

where ak and bk have been introduced in 4.65. Note that λk is equivalent to k, we
obtain from Remark 12 that the above series is convergent, i.e. φ̃ ∈ H2. Therefore,
we conclude that

[
φ̄

ψ̃

]
∈ H2 × H 3

2
= X3 and then z̃(t) ∈ C([0, τ]; X3), which further

implies (4.72).

Remark 15. The semigroup T in the above proof can be regarded as its restriction on
X3. For each m ∈ N, the original semigroup T on X generated by the operator A has
a restriction to Xm, that is the image of T through the unitary operator (sI − A)−m ∈
L(X, Xm), where s ∈ ρ(A). We refer to [115, Proposition 2.10.4 and Remark 2.10.5] for
the details.
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Theorem 4.3.9. For every τ > 0, u ∈ H5
L[0, τ], ζ0 ∈ H2 and ζ1 ∈ H 3

2
, the system (4.15)

admits a unique solution (ζ, φ) satisfying

ζ ∈ C([0, τ];H2[0, π]) ∩ C1([0, τ];H3/2[0, π]),

and
φ ∈ H1

loc([0, ∞);H2(Ω)).

Proof. Since the well-posedness of the weak solution of (4.15) has been established,
here we just need to improve the regularity of the pair (ζ, φ). We first note that, for
every α > 0, Hα ⊂ Hα[0, π]. According to Theorem 4.3.8 and the relation (4.68), we
immediately have

ζ ∈ C([0, τ];H2[0, π]) ∩ C1([0, τ];H3/2[0, π]),

since xχ is smooth on [0, π] and u ∈ H5
L[0, τ]. Moreover, Remark 13 implies that we

have the decompositon

φ(t, x, y) = (Dψ̃)(t, x, y) + Φ(t, x, y)− xχ(x)v(t), (4.73)

where D is the Dirichlet map defined in Proposition 4.2.2 and the function Φ is intro-
duced in Lemma 4.3.6. Putting the second equation of (4.62), (4.67) and (4.68) together,
we have

A0ψ̃ = ∂t ζ̃ + xχu̇− Sv.

Recalling the properties of the function xχ discussed in Remark 12, we obtain from
Theorem 4.3.8 and Proposition 4.3.7 that A0ψ̃ ∈ H1. Moreover, using Lemma 4.3.5, it
follows that ψ̃ ∈ H2 ⊂ H 3

2
. We thus obtain from Lemma 4.3.4 and Lemma 4.3.6 that

φ ∈ L2([0, τ];H2(Ω)).
Taking the derivative of φ in (4.73) with respect to time and using the third equation

of (4.62), we have

∂tφ(t, x, y) = −(Dζ̃)(t, x, y) + ∂tΦ(t, x, y)− xχ(x)u(t).

Using again Lemma 4.3.4 and Lemma 4.3.6, it follows that ∂tφ ∈ L2([0, τ];H2(Ω)).
Therefore, we conclude that φ ∈ H1([0, τ];H2(Ω)).

4.4 Stabilizability properties of the linear system

Based on the well-posedness results in Theorem 4.3.3 and Remark 10, we are interested
in the stabilization of the linear control system (4.45) with state feedback. We recall
some commonly used stabilizability concepts, for the particular situation of bounded
control and feedback operators.

Definition 4.4.1. Let Σ = (T, Φ) be a well-posed linear control system with state space X
and input space U. Let A be the generator of T and assume that there exists B ∈ L(U, X) such
that (4.53) holds. For some feedback operator F ∈ L(X, U) we denote by Tcl the (closed-loop)
operator semigroup on X generated by A + BF. Then the system (T, Φ) is:

1. Exponentially stabilizable with bounded feedback, if there exists F ∈ L(X, U) such
that the semigroup Tcl is exponentially stable;
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2. Strongly stabilizable with bounded feedback, if there exists F ∈ L(X, U) such that the
semigroup Tcl is strongly stable;

3. Uniformly stabilizable for smooth data (USSD), if there exists F ∈ L(X, U) and
f : [0, ∞)→ [0, ∞), with lim

t→∞
f (t) = 0, such that

‖Tcl
t z0‖X 6 f (t)‖z0‖D(A) ∀ z0 ∈ D(A), t > 0. (4.74)

If f in (4.74) can be chosen such that lim
t→∞

tm f (t) = 0 for some m ∈ N, then the USSD

property is called polynomial stabilizability.

In (4.74) and also later, ‖ · ‖D(A) denotes the graph norm on D(A).

Remark 16. Note that the property (4.74) does not imply that the semigroup Tcl is
strongly stable. Indeed, consider Tcl

t to be e−0.7t times the semigroup from [120, Ex-
ample 2.3] (based on Zabczyk [124]), with λn = 2n, then it satisfies (4.74) with f (t) =
Me−0.2t (for some M > 0) but Tcl is exponentially growing: ‖Tcl

t ‖ = e0.3t. However, if
Tcl is a bounded semigroup and (4.74) holds, then it is easy to see that Tcl is strongly
stable.

Here is our main result:

Theorem 4.4.2. Let Σ = (T, Φ) be the well-posed linear control system introduced in Theorem
4.3.3. Then

1. Σ is not exponentially stabilizable with bounded feedback;

2. Σ is strongly stabilizable with bounded feedback if and only if h is a strategic profile, in
the sense that ∫ 0

−1
h(y) cosh [k(y + 1)]dy 6= 0 ∀ k ∈N; (4.75)

In this case, one strongly stabilizing feedback operator is F = −B∗.

3. If

inf
k∈N

k
cosh k

∣∣∣∣∫ 0

−1
h(y) cosh [k(y + 1)]dy

∣∣∣∣ > 0, (4.76)

then the system Σ is USSD. More precisely, the feedback operator F = −B∗ leads to the
closed-loop semigroup Tcl (with generator A− BB∗) which is strongly stable and has the
following property: there exists M > 0 such that

‖Tcl
t z0‖X 6

M

(1 + t)
1
6
‖z0‖D(A) ∀ z0 ∈ D(A), t > 0. (4.77)

Remark 17. It is not difficult to check (by integration by parts) that condition (4.76) is
satisfied, for instance, if there exists ε ∈ (0, 1) such that

‖h′‖L∞[−1,0] <
(1− ε) tanh 1

1− 2
e

|h(0)|, (4.78)

where e = 2.71828... is the basis of the natural logarithm. Indeed, there are many
functions satisfying (4.78) and

∫ 0
−1 h(y)dy = 0, such as the linear function h1(y) =
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y + 1
2 , the trigonometric function h2(y) = cos

[ 1
2 π(y + 3

2 )
]

and some slightly modified
step functions. Compared with other strategic conditions, for instance the constraint
condition at rational points in [7], the condition (4.78) is easier to satisfy in practice.

Remark 18. The first two conclusions in Theorem 4.4.2 appear partially in [85], with
some steps of the proof not given. (For instance the operators A0 and B0 that we intro-
duce in Section 4.2.2 are used without a detailed construction and proof of their main
properties.) As far as we know, the property of the water waves system described in
the third point of Theorem 4.4.2 is new, and gives us more detailed information on the
stability of the closed-loop system.

In order to prove Theorem 4.4.2, we need the following preliminary result on the
eigenvalues and the eigenvectors of the operator A introduced in (4.47). According
to Proposition 4.2.9, we know that the eigenvalues of A0 behaves like k with k ∈ N,
and the corresponding eigenvectors is ϕk introduced in (4.18). This, together with the
definition of A, we have the following conclusion.

Lemma 4.4.3. Let (λk)k∈N and (ϕk)k∈N be the sequences defined in (4.33) and (4.18), respec-
tively. We extend the sequences µk = (

√
λk)k∈N and (ϕk)k∈N to Z∗ by setting

µ−k = − µk, ϕ−k = − ϕk ∀ k ∈N.

Then the family {φk}k∈Z∗ defined by

φk =
1√
2

[
1

iµk
ϕk

ϕk

]
∀ k ∈ Z∗ (4.79)

is an orthonormal basis in X formed of eigenvectors of the operator A defined in (4.47). More-
over, for each k ∈ Z∗, Aφk = iµk φk. Finally, there exists ε > 0 such that for every ω ∈ R

with |ω| > 1, the interval
[
ω− ε

|ω| , ω + ε
|ω|

]
contains at most one element of the sequence

(µk)k∈Z∗ .

Proof. According to Proposition 4.2.9, the family (ϕk)k∈N defined in (4.18) is an or-
thonormal basis in H formed of eigenvectors of A0 and for k ∈N, A0ϕk = λk ϕk, where
(λk)k∈N have been defined in (4.33). Using the structure (4.47) of A and a classical re-
sult (see, for instance, [115, Section 3.7]), it follows that A is diagonalizable, with the
eigenvalues (iµk)k∈Z∗ corresponding to the orthonormal basis of eigenvectors (φk)k∈Z∗

defined in (4.79). Note that for k ∈ N, µk ≈
√

k, with exponentially vanishing ap-
proximation error. Therefore, we obtain the desired result by taking α = 1

2 in Lemma
3.3.1.

We are now in a position to prove Theorem 4.4.2 for the stabilizability result.

Proof of Theorem 4.4.2. 1. The first assertion follows directly from Curtain and Zwart
[40, Theorem 5.2.6], since A has infinitely many unstable eigenvalues. Alternatively,
we can apply the main result of Gibson [44] or Guo, Guo and Zhang [53, Theorem 3].

2. To prove the second assertion, notice that, since the adjoint of the operator B
defined in (4.48) is B∗ =

[
0 B∗0

]
, we see from (4.43) and (4.79) that

B∗φk =
−1√

2

∫ 0

−1
h(y)(C0ϕk)(y)dy ∀ k ∈ Z∗ ,
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where C0 = γ0D. Using (4.25), we get from the above that

B∗φk = − 1√
π

∫ 0

−1
h(y)

cosh [k(y + 1)]
cosh k

dy ∀ k ∈ Z∗ . (4.80)

Assume now that h is a strategic profile, i.e., (4.75) holds. Then clearly

B∗φk 6= 0 ∀ k ∈ Z∗.

According to [115, Proposition 6.9.1] the pair (A∗, B∗) is approximately observable in
infinite time (we have used that the eigenvalues of A are distinct). Now it follows from
the main result of Benchimol [18] that the semigroup generated by A− BB∗ is strongly
stable.

Conversely, let us assume that h is not a strategic profile, i.e., that h does not satisfy
assumption (4.75). Then from (4.80) there exists a k ∈ N such that B∗φk = 0. Since
A∗ = −A, it follows that for every F ∈ L(X, U),

(A∗ + F∗B∗)φk = − iµk φk .

Let Tcl denote the semigroup generated by A + BF, we have(
Tcl

t

)∗
φk = e−iµktφk ∀ t > 0,

which implies that
∣∣〈Tcl

t φk, φk〉
∣∣ = 1 for all t > 0, so that Tcl is not strongly stable.

We have thus shown that if (A, B) is strongly stabilizable, then h satisfies (4.75), which
ends the proof of the second assertion.

3. To prove the third assertion, first we notice that by combining (4.76) and (4.80) it
follows that there exists M0 > 0 such that

|B∗φk| >
M0

|k| ∀ k ∈ Z∗. (4.81)

According to Lemma 4.4.3 and Proposition 4.2.9, the eigenvalues of the operator A
behaves like k1/2. Hence, the assumptions [H1] and [H2] introduced in (3.3) and (3.4)
are satisfied with α = 1

2 and β = 1. Now we apply Theorem 3.1.1 and obtain the
stability result (4.77), for the initial data z0 ∈ D(A) = H1 × H 1

2
.

Remark 19. Another approach to obtain the decay rate (4.77) is a result presented in
Chill et al. [32]. To verify it, we introduce, for every s ∈ R and δ > 0, the vector space
WPs,δ(A), called wave package of frequency s and width δ associated with the operator A,
which is defined by

WPs,δ(A) =

{
{0} if |µk − s| > δ for all k ∈ Z∗ ,
span

{
φk
∣∣ k ∈ Z∗ and |µk − s| < δ

}
else.

According to Lemma 4.4.3 there exists ε > 0 such that, setting

δ(s) =
ε

|s|+ 1
∀ s ∈ R, (4.82)
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we either have that WPs,δ(s)(A) = {0} or

WPs,δ(s)(A) = span {φk(s)},

where k(s) is the unique element of Z∗ such that

s− δ(s) < µk(s) < s + δ(s).

Using the fact that µk =
√

k tanh(k) and µ−k = −µk for k ∈ N, together with (4.81), it
follows that there exists M1 > 0 such that

|B∗φ| > M1

(|s|+ 1)2 ‖φ‖X ∀ φ ∈WPs,δ(s)(A), s ∈ R.

We have thus obtained that the pair (A, B) satisfies the assumptions of Theorem 1.1 in
[32] with δ given by (4.82) and

γ(s) =
M1

(|s|+ 1)2 ∀ s ∈ R.

We can apply Theorem 1.1 in [32] to conclude that the semigroup Tcl generated by
A− BB∗ satisfies (4.77).

Remark 20. For the proof of the second assertion we could use (instead of Benchimol
[18]) the stronger result of Batty and Vu [16], where A generates a contraction semi-
group and B is still bounded. An even more general result is in the recently published
[39], where A generates a contraction semigroup and B may be very unbounded (not
even admissible).

4.5 The case of gravity-capillary waves

In this section, we consider a similar boundary control system of the gravity-capillary
water waves system in a water tank where the gravity and the surface tension are both
significant. As in the previous sections, we first present the full governing equations
for this control system, then we analyse the well-posedness and the stabilizability of
the linearized equations. The contents for the gravity-capillary waves discussed in this
section are mainly based on the work by Su [108].

Still using the notation introduced in Section 4.1, we derive the non-linear govern-
ing equations. The surface tension effect arises from the forces exerted by the air and
the water on the surface of the wave, which prevent the interface from becoming de-
formed. These forces cause the surface to behave like an elastic membrane, although
their effect is small when dealing with large masses of water. For more about the effect
of surface tension, please refer to [45], [66] or [123]. To derive the governing equations,
we begin from the Bernoulli equation introduced in (4.4). More precisely, the surface
tension describes a discontinuity in the pressure along the interface, and the pressure
on the free surface is given by the formula:

P(t, x, ζ(t, x)) = Patm − σκ, (4.83)
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where σ is the surface tension coefficient, κ is the mean curvature of the surface. Since
the free surface is described by the equation F(t, x, y) = y − ζ(t, x) = 0, the mean
curvature κ is given by

κ(ζ) = −(∂x, ∂y) ·
(−∂xζ, 1)√

1 + ∂2
xζ

= ∂x

(
∂xζ√

1 + ∂2
xζ

)
=

∂2
xζ

(1 + ∂2
xζ)3/2 .

Using the pressure on the free surface (4.83), we derive from (4.4) that the free surface
Bernoulli equation with the surface tension reads

∂t φ +
1
2

∣∣∇x,y φ
∣∣2 + gζ = Tκ on Γs, (4.84)

where the parameter T = σ
ρ . The other boundary conditions are the same with the

gravity case. Therefore, the governing equations of the control system on the gravity-
capillary water waves are (4.5)–(4.6), (4.8)–(4.10) and (4.84). Similarly, we denote by
ψ(t, x) = φ(t, x, ζ(t, x)) the trace of the velocity potential φ on the surface Γs. Recalling
the non-linear Drichlet to Neumann operator A[ζ] and the non-linear Neumann to
Neumann operator B[ζ] introduced in Section 4.1, we obtain the (ζ, ψ) formulation of
the governing equations, which, for every t > 0 and x ∈ [0, π], are

∂tζ − A[ζ]ψ = B[ζ]V ,

∂tψ + gζ +
1
2
|∂xψ|2 − 1

2
(A[ζ]ψ + B[ζ]V + ∂xζ ∂xψ)2

1 + |∂xζ|2
= Tκ,

(4.85)

where V(t, y) is the velocity produced by the wave maker. The boundary control sys-
tem (4.85) is also still completely open. Different with the boundary control described
above, as we have already mentioned in Section 4.1, the (ζ, ψ) formulation for the
gravity-capillary waves with a surface pressure control is setup studied by Alazard et
al., for instance, in [4] and [3].

Now we go back to the equations (4.5)–(4.6), (4.8)–(4.10) and (4.84). Similarly, we
assume that the wave maker is rigid in the sense that V(t, y) = h(y)v(t). Therefore, the
linearized gravity-capillary water waves system, for every t > 0 and (x, y) ∈ Ω (see
(4.14)), is 

∆x,y φ = 0 in Ω,

∂t φ(t, x, 0) + gζ(t, x) = T ∂2
xζ,

∂y φ(t, x, 0) = ∂tζ(t, x),
∂x φ(t, 0, y) = − h(y)v(t),
∂y φ(t, x,−1) = 0 = ∂x φ(t, π, y).

(4.86)

Similarly, we shall formulate the system (4.86) into an evolution equation in terms of
the elevation ζ. Taking the derivative of (4.86) with respect to t, we obtain the equation
for ϕ = ∂tφ as follows: 

∆x,y ϕ = 0 in Ω,

ϕ(t, x, 0) + gζ(t, x) = T ∂2
xζ,

∂y ϕ(t, x, 0) = ∂2
t ζ(t, x),

∂x ϕ(t, 0, y) = − h(y)u(t),
∂y ϕ(t, x,−1) = 0 = ∂x ϕ(t, π, y),

(4.87)
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where u = v̇ is the acceleration imposed by the rigid wave maker from the left bound-
ary Γ1.

4.5.1 Well-posedness and stabilizability issue

As in the gravity case, we estabilish in this section the well-posedness of the system
(4.87) with regular control u and initial data, which is given in terms of the elevation ζ.
It implies that the whole system (4.87) is equivalent to an infinite dimensional control
system. Moreover, we prove that the linear control system is strongly stabilizable and,
for regular initial data, we give the explict decay rate for the energy of the state.

Recalling the scale of Hilbert spaces Hα introduced in (4.19), for every α ∈ R and
α > 3

2 , we define

Hb
α =

{
η ∈ Hα

∣∣∣∣ dη

dx
(0) =

dη

dx
(π) = 0

}
. (4.88)

Now we give the definition of a solution of the system (4.87).

Definition 4.5.1. Given u ∈ H1
loc[0, ∞) and h ∈ L2[−1, 0], with

∫ 0
−1 h(y)dy = 0, a couple

(ϕ, ζ) is a solution of (4.87) if

ϕ ∈ C([0, ∞);H1(Ω)), ζ ∈ C([0, ∞); Hb
3) ∩ C1([0, ∞); H 3

2
),

ϕ(t, ·, 0) + gζ(t, ·) = T ∂2
xζ(t, ·) , in C([0, ∞); L2[0, π]),

and for every Ψ ∈ H1(Ω) and every t > 0 we have∫ π

0
ζ̇(t, x)Ψ(x, 0)dx−

∫ π

0
ζ̇(0, x)Ψ(x, 0)dx

=
∫ t

0

∫
Ω
∇ϕ(τ, x, y) · ∇Ψ(x, y)dx dy dτ −

∫ t

0
u(τ)

∫ 0

−1
h(y)Ψ(0, y)dy dτ.

Compared with the gravity case [110], here we need more regular control and initial
data to define the weak solution of (4.87) because of the existence of the surface tension.
The boundary condition in the definition (4.88) is for the conservation of the energy.
For this, we give a detailed explanation in the following lemma.

Lemma 4.5.2. If the elevation of the free surface ζ(t, x) satisfies the boundary condition

∂xζ(t, 0) = 0 = ∂xζ(t, π) ∀ t > 0,

then the total energy of the garvity-capillary waves system is conserved.

Proof. The total energy of the gravity-capillary waves system (4.86), denoted by Etot(t),
consists of the kinetic energy Ekin(t), the gravitional potential energy Egra(t) and the
elastic potential energy Eela(t). Assuming that there is no wave maker at the left
boundary Γ1 for simplicity, it is not difficult to see that the kinetic energy is

Ekin(t) =
1
2

∫
Ω
|∇φ|2 =

1
2

∫
∂Ω

φ · ∂nφ =
1
2

∫ π

0
φ · ∂nφdx =

1
2

∫ π

0
ψ · A0ψdx,

where ψ(t, x) = φ(t, x, ζ(t, x)) and A0 is the Dirichlet to Neumann operator introduced
in Proposition 4.2.9. We consider a water column with a height of ζ(t, x) and a width
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of dx, then the position of the center of gravity is at 1
2 ζ. Hence, the potential energy

of this column is 1
2 gζ2 dx (assuming that the density ρ = 1) and we get the gravitional

potential energy

Egra(t) =
1
2

∫ π

0
gζ2 dx.

Moreover, according to Hooke’s law, the elastic energy induced by the surface tension
Eela(t) is given by

Eela =
T
2

∫ π

0
|∂xζ|2 dx,

where T = σ
ρ . For more about the elastic energy, please refer to, for instance, [45].

Therefore, the total energy of the system Etot(t) is as follows:

Etot = Ekin + Egra + Eela =
1
2

∫ π

0

(
ψ · A0ψ + gζ2 + T|∂xζ|2

)
dx. (4.89)

Taking the derivative of Etot(t) with respect to t, we obtain that

d
dt

Etot(t) =
∫ π

0
(∂tψA0ψ + gζ ∂tζ + T ∂xζ ∂txζ)dx

=
∫ π

0
(T∂2

xζ − gζ)A0ψ +
∫ π

0
gζA0ψ + T

∫ π

0
∂x(A0ψ) · ∂xζ

=
∫ π

0
T∂2

xζA0ψ + T
∫ π

0
∂x(A0ψ) · ∂xζ = T

∫ π

0
∂x(A0ψ∂xζ)dx

= T (A0ψ∂xζ) (t, π)− T (A0ψ∂xζ) (t, 0),

where we used the self-adjointness of the operator A0 and the free surface equations in
(4.86). Therefore, it is obvious that the total energy Etot is conserved if ∂xζ(t, 0) = 0 =
∂xζ(t, π).

For the well-posedness of the system (4.87), we shall prove this by formulating
them as a well-posed linear control system through the evolution operators. Besides
the Dirichlet to Neumann operator A0 and the Neumann to Neumann operator B0
introduced in Section 4.2, we still need the Sturm- Liouville operator L defined by

L f = −T f ′′.

Proposition 4.5.3. Let A0 be the operator defined in Proposition 4.2.9 and L be the Sturm-
Liouville operator. Then Ã = A0 + A0L : Hb

3 → H is strictly positive and D(Ã
1
2 ) = H 3

2
. For

every k ∈N, we have Ãϕk = ωk ϕk, where

ωk = (Tk3 + k) tanh(k) ∀ k ∈N, (4.90)

and ϕk has been introduced in (4.18). Moreover, we have

Ãη = ∑
k∈N

ωk〈η, ϕk〉ϕk ∀ η ∈ Hb
3 .

Proof. It is not difficult to verify that the sequence (ϕk)k∈N introduced in (4.18) forms
an orthonormal basis in Hb

3 and in Hb
2 , respectively. Moreover, note that the operator

L is well-defined from Hb
2 to H (self-adjoint, strictly positive with compact resolvents),
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we obtain, according to Proposition 4.2.9, that D(Ã) = Hb
3 and Ã = A0 + A0L is di-

agonalizable (see, for instance, [115, Chapter 3]) with the eigenvalues ωk (4.90) and the
corresponding eigenvectors ϕk. Finally, D(Ã

1
2 ) = H 3

2
follows from [115, Proposition

3.4.8].

Proposition 4.5.4. Let Ã be the operator introduced in Propositions 4.5.3. Let ψ ∈ H 1
2

and
Ψ ∈ H1(Ω) be such that

Ψ(x, 0) = ψ(x), equality in L2[0, π].

Then for every η ∈ Hb
3 we have

〈Ãη, ψ〉 =
∫

Ω
∇
(

D
(
η − T∂2

xη(t, x)
))
· ∇Ψdxdy. (4.91)

Proof. For every η ∈ H3, we first note that η − T∂2
xη ∈ H1, which implies that D(η −

T∂2
xη) ∈ H1(Ω) (see Lemma 4.2.5). To prove (4.91), we assume that η ∈ H5, so that

η − T∂2
xη ∈ H3 and according to Lemma 4.2.3 we have D(η − T∂2

xη) ∈ C2(Ω), which
satisfies Laplace equation with one Dirichlet condition on the top D(η− T∂2

xη)(x, 0) =
η − T∂2

xη and three homogeneous Neumann conditions, in the classical sense. Then
(4.91) follows by a simple integration by parts and Proposition 4.5.3. Finally, we con-
clude, by a density argument, that (4.91) still holds for η ∈ Hb

3 .

Remark 21. For every η ∈ H1, Dη is not in H2(Ω). Actually, using the formula 4.24 it
is not difficult to see that D ∈ L(H 3

2
,H2(Ω)). On the other hand, for every η ∈ H 1

2
, we

do not have D∂2
xη ∈ H1(Ω). This is also the reason why we need more regular initial

data here, so that Definition 4.5.1 makes sense.

Based on Definition 4.5.1, we establish in what follows the well-posedness result
via the existence of a well-posed linear control system (for this concept, please refer
to Definition 4.3.1) associated with (4.87). We still use the notation X to represent the
state space of the control system, and denote

X = H 3
2
× H,

where H and (Hα)α>0 have been defined in (4.17) and (4.19), respectively. We also
introduce the linear operator A : D(A)→ X with D(A) = Hb

3 × H 3
2
= X1 and

A =

[
0 I
−Ã 0

]
, i.e., A

[
ϕ
ψ

]
=

[
ψ
−Ãϕ

]
, (4.92)

for every ∀
[

ϕ
ψ

]
∈ D(A), and the operator Ã in (4.92) is a strictly positive operator

on H, with domain Hb
3 , which has been introduced in Proposition 4.5.3. Therefore, A

is skew-adjoint on X (see, for instance, [115, Proposition 3.7.6]), so that, according to
Stone’s theorem (see, for instance [115, Section 3.7]), A generates a group T = (Tt)t∈R

of unitary operators on X. Moreover, we define B by

B =

[
0
B0

]
,

where B0 ∈ L(C, H) is as in Corollary 4.2.13. Clearly B ∈ L(C, X).
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Remark 22. In the abstract framework described above, we identify the inner product
〈x, z〉3/2 with 〈Ã 1

2 x, Ã
1
2 z〉 for every x, z ∈ H 3

2
, since the eigenvalues of Ã are equivalent

to k3 (see (4.90)). Moreover, the inner product of the state space X we used here is〈[
ζ1
η1

]
,
[

ζ2
η2

]〉
X
= 〈ζ1, ζ2〉 3

2
+ 〈η1, η2〉, (4.93)

which is not induced by the natural energy (4.89). Actually, (4.93) is a higher order
energy and it is convenient for calculation here.

Theorem 4.5.5. Let h be as in Definition 4.5.1. Given u ∈ H1
loc[0, ∞), ζ0 ∈ Hb

3 and w0 ∈ H 3
2
,

there exists a unique solution of (4.87) with ζ(0) = ζ0 and ζ̇(0) = w0. Moreover, there exists
a well-posed linear control system (T, Φ) with state space X = H 3

2
× H and input space C

such that, setting z =
[

ζ

ζ̇

]
and z0 =

[
ζ0
w0

]
, we have

z(τ) = Tτz0 + Φτu ∀ τ > 0. (4.94)

Finally, the generator A of T is skew-adjoint, with domainD(A) = Hb
3 ×H 3

2
, and there exists

B ∈ L(C, X) such that for any τ > 0,

Φτu =
∫ τ

0
Tτ−σBu(σ)dσ ∀ u ∈ L2

loc[0, ∞).

Proof. With the above notation for X, A and B we consider, for each τ > 0, the map
Φτ is clearly linear and bounded from L2[0, ∞) into X. Let z0 =

[
ζ0
w0

]
∈ X1, let u ∈

H1
loc[0, ∞) and define z(t) =

[
ζ
w

]
by (4.52). Then, according to a classical result (see,

for instance, [115, Section 4]), z(t) ∈ C([0, ∞); X1) ∩ C1([0, ∞); X) and it satisfies{
ż(t) = Az(t) + Bu(t),
z(0) = z0.

(4.95)

in the classical sense. For every t > 0 and ψ ∈ X, we then take an inner product of
(4.95) and ψ. The strategy of the remaining proof of Theorem 4.5.5 is similar with the
proof of Theorem 4.3.3, and we omit the details here for simplicity. The only difference
lies in Proposition 4.5.4.

Now we introduce the stabilization result for the control system on the gravity-
capillary waves.

Theorem 4.5.6. Let Σ = (T, Φ) be the well-posed linear control system introduced in Theorem
4.5.5. Then Σ is not exponentially stabilizable, but it is strongly stabilizable iff h is a strategic
profile, in the sense that∫ 0

−1
h(y) cosh [k(y + 1)]dy 6= 0 ∀ k ∈N.

In this case, one strongly stabilizing feedback operator is F = −B∗. Moreover, if

inf
k∈N

k
cosh k

∣∣∣∣∫ 0

−1
h(y) cosh [k(y + 1)]dy

∣∣∣∣ > 0, (4.96)
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the feedback operator F = −B∗ leads to the closed-loop semigroup Tcl (with generator A −
BB∗) which is strongly stable and there exists M > 0 such that

‖Tcl
t z0‖X 6

M

(1 + t)
3
4
‖z0‖D(A) z0 ∈ D(A). (4.97)

Proof. The first part of the proof is similar with the corresponding part in Theorem
4.3.3. Here we just show the proof of the decay rate (4.97). According to the structure
described in Lemma 4.4.3, we know from Proposition 4.5.3 that the eigenvalues of the
operator A introduced in (4.92) are k

3
2 for k ∈ Z∗. With the condition (4.96), we have

|B∗φk| >
M0

|k| ∀ k ∈ Z∗,

where (φk)k∈Z∗ is an orthonormal basis in X formed of the eigenvectors of A. Note that
there is a gap between the eigenvalues of the operator A, i.e. infk∈Z∗ |µk+1 − µk| > δ >
0. Now we see that the assumptions [H1] and [H2] in Section 3.1 are satisfied with α = 3

2
and β = 1. We can apply Theorem 3.1.2 in Chapter 3 to conclude that the solution of
the control system (4.94) with the bounded feedback u = −B∗z satisfies (4.97).

Remark 23. Compared with Theorem 4.4.2 and Theorem 4.5.6, as we expected, the
energy of the gravity-capillary waves decays faster than the gravity case, because of
the surface tension effect.
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Chapter 5

Asymptotic behaviour of the gravity
waves in a rectangular domain

In this chapter, we are interested in the asymptotic analysis of the boundary control
system on the gravity waves described in Chapter 4 in the shallow water regime, where
the water depth is much smaller than the horizontal scale. To study the asymptotic be-
haviour of the solution, we derive the corresponding dimensionless governing equa-
tions by using the shallowness parameter and some dimensionless quantities, which
are introduced below. Combined with the well-posedness result in Chapter 4, we jus-
tify the convergence of the solution of the water waves system in terms of the elevation
in appropriate sense when taking the shallowness limit. The contents in this chapter
are mainly based on the work in Su [107].

5.1 Introduction and dimensionless equations

We study the asymptotic behaviour of a system describing small-amplitude water
waves in a rectangular domain, in the presence of a wave maker, where the horizontal
scale L is much larger than the typical water depth h0. The construction of the water
waves model begins from the so-called Zakharov-Craig-Sulem formulation (ZCS), which
is a fully nonlinear and fully dispersive model in terms of the elevation of the free sur-
face and the free surface velocity potential (see, for instance, Lannes’ book [66]). Based
on some assumptions on the nonlinearity and the topography of the fluid domain,
described by the shallowness parameter

µ =
h2

0
L2 , (5.1)

there are many asymptotic models in the shallow water regime. The nonlinear shal-
low water equations is an approximation of ZCS where all the terms of order O(µ) are
dropped, so that it is a fully nonlinear and non-dispersive model. Moreover, the Boussi-
nesq equations is an approximation of ZCS of order O(µ2) with the weak nonlinearity
assumption. The full justification (convergence) of the shallow water approximation of
ZCS models mentioned above are provided in [66, Chapter 5 and Chapter 6] by consid-
ering the corresponding Cauchy problem in a strip domain that is unbounded in the
horizontal direction. For other interesting asymptotic models, please refer to Lannes
[66], [68] and also thereins.
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Here, instead of considering a fluid filling an infinite strip, we consider the similar
topic on the linearized water waves equation in a rectangular domain with a wave
maker applied from one lateral boundary. Our aim is to describe the dynamics of this
system when the shallowness parameter µ tends to zero. Now let us precisely state the
problem.

The domain Ω is bounded by a top free surface Γs and a flat bottom Γ f . The other
two components of the fluid domain, denoted by Γ1 and Γ2, are vertical walls, see
Figure 5.1. The fluid filling the rectangular domain

Ω = {(x, y) |(x, y) ∈ (0, πL)× (−h0, 0)}

is assumed to be homogeneous, incompressible, inviscid and irrotational. There is a
wave maker that acts at the left boundary of Ω, by imposing the acceleration of the
fluid in the horizontal direction, as a scalar input signal u.

Γs

Γf

Γ2Γ1

ζ(t, x)0 πL

−h0

x

y

Ω g

Figure 5.1: A rectangular domain Ω filled with water

We consider the water waves system in the shallow water configurations, in the
sense that µ� 1. The governing equations of the above water waves system has been
introduced in (4.15). In order to study the asymptotic behaviour of this system, we
define the following dimensionless quantities,

x =
x
L

, y =
y
h0

, t =
t

L/
√

gh0
, ζ =

ζ

a
, φ =

φ

aL
√

g/h0
, (5.2)

where a is the order of the surface variation, φ is the velocity potential of the fluid, ζ
is the elevation of the top free surface and g represents the gravity acceleration. The
quantities in (5.2) marked with a overline are their corresponding dimensionless ver-
sion. With the variables x and y, the dimensionless domain, denoted by Ω, is

Ω = {(x, y) |(x, y) ∈ (0, π)× (−1, 0)} . (5.3)

For the sake of simplicity, we omit the overlines in what follows and from now we
always use the dimensionless quantities. Moreover, to avoid any confusion we use
the notation ζµ and φµ, instead of ζ and φ, to represent the unknown functions in the
dimensionless equation. The dimensionless governing equations of the water waves
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system, for all t > 0 and for (x, y) ∈ Ω, are

∆µ φµ(t, x, y) = 0,

∂t ζµ(t, x) − 1
µ

∂y φµ(t, x, 0) = 0,

∂t φµ(t, x, 0) + ζµ(t, x) = 0,
∂x φµ(t, 0, y) = − h(y)v(t),
∂y φµ(t, x,−1) = 0 = ∂x φµ(t, π, y),

(5.4)

where v is the velocity produced by the wave maker. In the above equations ∆µ defined
by

∆µ = µ∂2
x + ∂2

y

is called the "twisted" Laplace operator (see [66]), and the function h represents the
profile of the velocity imposed by the wave maker. The system (5.4) is actually a fully
linear and fully dispersive approximation of ZCS constrained in a rectangle.

The controllability properties of the system derived by (5.4), as far as we know, are
firstly studied in Russell and Reid [96] and further in Mottelet [85]. Now we recall here
some recent works on the similar problem. Different with the control introduced in the
system (5.4), Alazard discussed in [2] the stabilization of the nonlinear water waves
system in a rectangle where the external pressure as the control signal acts on a part
of the free surface, by absorbing the waves coming from the left. For the problem in
a cubic domain, in an irregular domain and the case of the water waves with surface
tension, please refer to Reid [94] and [95], Craig et al. [36], Alazard et al. [4] and [1].
Recently, for u ∈ L2

loc[0, ∞), we established in our paper [110] the well-posedness of
the system (5.4), and further showed that it can be recast as a well-posed linear control
system (for this concept, please refer to [110], Weiss [119] or Tucsnak and Weiss [115]).

Observe that the free surface equations of (5.4) determine the whole system, which
means that if we know ψµ(t, x) = φµ(t, x, 0), thereby the velocity potential φµ can be
obtained by solving a boundary value problem for Laplacian. As explained in Chapter
4, with the help of the Dirichlet to Neumann and the Neumann to Neumann operators,
the system (5.4) reduces to a second-order evolution equation in terms of ζµ. We thus
propose the corresponding initial data

ζµ(0, x) = ζ0(x), ∂tζµ(0, x) = ζ1(x). (5.5)

Therefore, we take the acceleration u = v̇ as the input signal. We will provide in the
following sections more details about the formulation of the dimensionless governing
equations (5.4).

Intuitively, the vertical dependence of the velocity potential becomes negligible
when the fluid domain becomes thinner and thinner in the vertical direction. From an-
other point of view, the dispersion relation (that is the relation between ω and κ when
the solution takes the form ei(κx−ωt)) of the linearized water waves is ω2 = gκ tanh κh0,
where ω is the angular frequency, κ is the wave number and h0 is the typical depth
of the fluid domain. For more details about this, we refer to [66, Chapter 1] and to
Whitham [123, Chapter 13]). It is obvious that the dispersion relation is approximately
ω2 ∼ gh0κ2 as κh0 → 0 and the phase speed c0 =

√
gh0 becomes independent of κ.

The dispersive effects drop out in this limit, and in one dimension, this is exactly the
property of the wave equation.
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In Chapter 4 we assumed that the shape function h satisfies zero mean condition,
i.e. ∫ 0

−1
h(y)dy = 0,

to ensure the conservation of the volume of the water. This condition should be re-
moved in this part since the system under consideration is in the shallow water regime,
where the velocity of the fluid is independent of the vertical variable (see, for instance,
[66] and [123]). In this case, h should be a constant, which means that the velocity
or the acceleration is homogeneously imposed by the wave maker from the left edge.
Without loss of generality, we might as well take h = 1.

The main contribution brought in by this chapter is that we justify the passage to
the limit from the linear water waves system (5.4) to the one dimensional wave equa-
tion with boundary control (i.e. showing that, in an appropriate sense, ζµ → ζ) with
the same initial data ζ0 and ζ1, as the shallowness parameter µ goes to zero. Our ap-
proach is based on the famous Trotter-Kato approximation theorem (see, for instance,
[88, Chapter 3]) and a special change of variables, as well as a detailed analysis of
Fourier series. Moreover, a scattering semigroup discussed in [105] and [50] provides
the possibility for us to apply the Trotter-Kato theorem to control systems.

We derive, in Section 5.2, the dimensionless Dirichlet to Neumann and Neumann
to Neumann operators. Next we do some preparations in Section 5.3 and propose a
change of variables to rewrite the control system, which allows us to apply the Trotter-
Kato theorem. In Section 5.4 we prove two important convergence results on the re-
solvent of the evolution operators. Finally, in Section 5.5 we state the main results and
focus on the proof of the main results.

5.2 Dimensionless Dirichlet to Neumann and Neumann to Neu-
mann operators

In this section we derive the dimensionless form of the Dirichlet to Neumann and
Neumann to Neumann maps, using the dimensionless quantities introduced in (5.2).
We provided in Chapter 4 a detailed construction of these two important operators
allowing us to recast (5.4) as a well-posed linear control system. Following Section
4.2 in Chapter 4, we go back to the definition of these two operators, which is closely
related to two boundary value problems for the Laplace operator in the rectangular
domain Ω. Note that, Ω being a rectangle, we use separation of variables and detailed
analysis of Fourier series to construct the dimensionless version of all related operators.

Recalling the dimensionless quantities introduced in (5.2), it is not difficult to see
that we have

∂x =
1
L

∂x, ∂y =
1
h0

∂y, ∂t =
√

gh0

L
∂t.

Based on the above relations, we define the ”twisted” gradient and Laplace operators
as follows (µ is given by (5.1)):

∇µ = (
√

µ∂x, ∂y) , ∆µ = µ∂x2 + ∂y2.

Remark 24. The domain in this section is the one defined in (5.3) and we still denote it
by Ω for simplicity.
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5.2. DIMENSIONLESS DIRICHLET TO NEUMANN AND NEUMANN TO
NEUMANN OPERATORS

We present in this part the definition and some important remarks on the Dirichlet
and Neumann maps in dimensionless version. Moreover, we state several results on
the properties of these maps. The proofs of these results can be obtained by slight
variations of the proofs of the corresponding results in Chapter 4, so that we omit the
details here.

Here we still use the notation introduced in Section 4.2. In this chapter we set
H = L2[0, π] (without zero mean condition now). It is known that the family (ϕk)k>0
introduced in (4.18) forms an orthonormal basis in H. The inner product in H is de-
noted by 〈·, ·〉 and the associated norm by ‖·‖. The scale of Hilbert spaces (Hα)α∈R are
defined as in (4.19) with the inner products 〈η, ψ〉α = ∑k>0(1 + k2α)〈η, ϕk〉〈ψ, ϕk〉, for
all η, ψ ∈ Hα. Moreover, for every α ∈ R, H−α is the dual space of Hα with respect to
the pivot space H.

We note that, for fixed µ � 1, the properties of the evolution operators introduced
in Section 4.2 still hold. In this section, we denoted by Dµ the dimensionless version of
the partial Dirichlet map and by Nµ the dimensionless version of the partial Neumann
map introduced in Proposition 4.2.2 and Proposition 4.2.6, respectively. We give in
what follows the formula of Dµ and Nµ, as well as the properties of the dimensionless
Dirichlet to Neumann and the dimensionless Neumann to Neumann operators.

Lemma 5.2.1. For every η ∈ H, Dµη is given, for every x, y ∈ Ω, by

(Dµη)(x, y) = ∑
k>0

〈η, ϕk〉
cosh (

√
µk)

ϕk(x) cosh [
√

µk(y + 1)],

where the functions ϕk have been defined in (4.18).

Lemma 5.2.2. For every v ∈ L2[−1, 0] and every (x, y) ∈ Ω we have

(Nµv)(x, y) = ∑
k∈N

ak cosh
[
(2k− 1)

2
√

µ
π(x− π)

]
cos

[
(2k− 1)

π

2
(y + 1)

]
,

where

ak =
2
√

2µ〈v, ψk〉
(2k− 1)π sinh

[
2k−1
2
√

µ π2
] ∀ k ∈N.

Proposition 5.2.3. Let Aµ be the dimensionless Dirichlet to Neumann operator. Then Aµ :
H1 → H and we have Aµ ϕk = λµ,k ϕk with (λµ,0 = 0)

λµ,k =
√

µk tanh(
√

µk) ∀ k ∈N,

and
Aµη = ∑

k∈N

λµ,k〈η, ϕk〉ϕk ∀ η ∈ H1.

Remark 25. The dimensionless Dirichlet to Neumann map Aµ introduced in Propo-
sition 5.2.3 is positive, but not strictly positive, which is the difference with the one
discussed in Section 4.2.2. This is induced, as explained in the introduction, by remov-
ing zero mean condition from the state space, so that the system fits in the shallow
water configurations.
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Proposition 5.2.4. Let Bµ be the dimensionless Neumann to Neumann operator. Then the
operator Bµ belongs to L(C, H) and for every u ∈ C

(Bµu)(x) = u ∑
k∈N

bµ,k cosh
[
(2k− 1)

2
√

µ
π(x− π)

]
,

where

bµ,k =
−4
√

µ

(2k− 1)π sinh
[

2k−1
2
√

µ π2
] .

The proofs of Proposition 5.2.3 and Proposition 5.2.4 are completely similar with the
corresponding ones for the usual Dirichlet to Neumann and Neumann to Neumann
maps (with dimension) in Section 4.2. Therefore, we omit the details here. Next we
introduce a convergence property on the Neumann to Neumann map Bµ, which plays
an important role in our arguments.

Theorem 5.2.5. Let Bw = −δ0, where δ0 is the Dirac mass concentrated at x = 0 and let Bµ

be the Neumann to Neumann map defined in Proposition 5.2.4. Then we have

lim
µ→0

∥∥∥∥ 1
µ

Bµu− Bwu
∥∥∥∥

H−1

= 0 ∀ u ∈ C, (5.6)

where H−1 is the dual of H1 with respect to the pivot space H.

Proof. One readily sees that, equivalently, we need to show that for every u ∈ C and
for every φ ∈ H1 with ‖φ‖H1 6 1,

lim
µ→0

sup
‖φ‖H161

∣∣∣∣〈 1
µ

Bµu − Bwu, φ

〉∣∣∣∣ = 0. (5.7)

According to Proposition 5.2.4, we have

1
µ

Bµu = u ∑
k∈N

cµ,k cosh
[
(2k− 1)

2
√

µ
π(x− π)

]
, (5.8)

where

cµ,k =
−4

√
µ(2k− 1)π sinh

[
2k−1
2
√

µ π2
] .

We denote

fµ,k(x) = sinh
[

2k− 1
2
√

µ
πx
]

,

and obtain by using integration by parts that

∫ π

0
cosh

[
(2k− 1)

2
√

µ
π(x− π)

]
φ(x)dx =

2
√

µ

(2k− 1)π

{
φ(0) fµ,k(π)−

∫ π

0
sinh

[
2k− 1
2
√

µ
π(x− π)

]
φ′(x)dx

}
. (5.9)
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Furthermore, note that∫ π

0
sinh

[
2k− 1
2
√

µ
π(x− π)

]
φ′(x)dx =

e−
2k−1
2
√

µ π2
∫ π

0
fµ,k(x)φ′(x)dx − fµ,k(π)

∫ π

0
e−

2k−1
2
√

µ πx
φ′(x)dx,

we thus have the following estimate (using (5.9))∣∣∣∣〈 1
µ

Bµu− Bwu, φ

〉∣∣∣∣ 6 ∑
k∈N

32µ|u|
(2k− 1)4π6 e−

2k−1
2
√

µ π2
∫ π

0

∣∣ fµ,k(x)φ′(x)
∣∣dx

+ ∑
k∈N

8|u|
(2k− 1)2π2

∫ π

0

∣∣∣∣e− 2k−1
2
√

µ πx
φ′(x)

∣∣∣∣dx. (5.10)

In the above estimate, we used the fact ∑k∈N
1

(2k−1)2 = π2

8 and sinh x > x2 for large x.

Note that there exists a constant C > 0, such that e−
2k−1
2
√

µ π2
fµ,k(π) 6 C uniformly with

respect to µ and k, we immediately obtain that

∑
k∈N

µ

(2k− 1)4 e−
2k−1
2
√

µ π2
∫ π

0

∣∣ fµ,k(x)φ′(x)
∣∣dx 6 C ∑

k∈N

µ

(2k− 1)4 ‖φ
′‖ 6 Cµ.

Moreover, since
∥∥∥∥e−

2k−1
2
√

µ πx
∥∥∥∥2

6 C 2
√

µ

(2k−1)π we have

∑
k∈N

1
(2k− 1)2

∫ π

0

∣∣∣∣e− 2k−1
2
√

µ πx
φ′(x)

∣∣∣∣dx 6 C ∑
k∈N

µ
1
4

(2k− 1)
5
2
‖φ′‖ 6 Cµ

1
4 .

Therefore, we conclude that, for every fixed u ∈ C, the right-hand side of (5.10) can be
controlled by Cµ

1
4 , which clearly implies (5.7).

5.3 Operator form of the governing equations

In this section, we formulate the governing equations (5.4) as a well-posed LTI (linear
time-invariant) system in an appropriate Hilbert space. To this aim, we first define a
scale of Hilbert spaces associated with a certain operator and then derive the dimen-
sionless control system related to (5.4), finally formulate the control system into the
one that allows us to apply the Trotter-Kato approximation theorem in Section 5.5.

For a self-adjoint positive operator A : D(A) → H with compact resolvents, ac-
cording to the classical results (see, for instance, [115, Chapter 3]), the operator A is
diagonalizable, also called Riesz-spectral operator in some literature (for instance in
[40]), with an orthonormal basis (ϕk)k>0 of eigenvectors and the corresponding pos-
itive eigenvalues (λk)k>0. For any z ∈ H, we denote zk = 〈z, ϕk〉. Now we use the
framework introduced in Section 3.4.1 for the strictly positive operator A. It is obvious
to see that, for every α > 0, Hilbert space Hα is actually the domain of the operator Aα

with its graph norm ‖·‖gr. Furthermore, for every α ∈ R, H−α is the dual space of Hα

with respect to the pivot space H. We will apply, in the following part, the definition
of a scale of Hilbert spaces to different operators.
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Next we formulate the equations (5.4) into a second-order evolution equation in
terms of ζµ. Recalling the definition of the Dirichlet to Neumann map Aµ and the Neu-
mann to Neumann map Bµ in Section 5.2, we immediately obtain from the structure of
the governing equations (5.4) that

∂yφµ(t, x, 0) = Aµψµ(t, x) + Bµv(t),

where t > 0, x ∈ (0, π) and ψµ(t, x) = φµ(t, x, 0). Taking the derivative of the second
equation in (5.4) with respect to time and eliminating ψµ(t, x) by using the third equa-
tion of (5.4), we get the second-order control system associated with (5.4), i.e. for all
t > 0, x ∈ (0, π), ∂2

t ζµ(t, x) +
1
µ

Aµζµ(t, x) =
1
µ

Bµu(t),

ζµ(0, x) = ζ0(x), ∂tζµ(0, x) = ζ1(x),
(5.11)

where u = v̇ is the input signal, the operators Aµ and Bµ are defined in Proposition
5.2.3 and Proposition 5.2.4, respectively.

With the same initial data as in (5.11), we introduce the following wave equation
defined on (0, π) with Neumann boundary control, i.e. for all t > 0, x ∈ (0, π),

∂2
t ζ(t, x)− ∂2

x ζ(t, x) = 0,
∂x ζ(t, 0) = u(t), ∂x ζ(t, π) = 0,
ζ(0, x) = ζ0(x), ∂tζ(0, x) = ζ1(x).

(5.12)

Moreover, we introduce the operator Aw : D(Aw)→ H as follows:

Aw = − d2

dx2 D(Aw) =

{
f ∈ H2[0, π]

∣∣∣∣ d f
dx

(0) =
d f
dx

(π) = 0
}

. (5.13)

With the operators Bw defined in Theorem 5.2.5, we write the equations (5.12) in oper-
ator form as follows, i.e. for all t > 0, x ∈ (0, π),{

∂2
t ζ(t, x) + Awζ(t, x) = Bwu(t),

ζ(0, x) = ζ0(x), ∂tζ(0, x) = ζ1(x).
(5.14)

It is known that the operator Aw defined in (5.13) is diagonalizable with the eigenval-
ues k2 and the corresponding eigenvectors ϕk are given in (4.18). For the operator Aw,
we denote by Hα with α ∈ R the scale of Hilbert spaces which has been introduced in
Section 3.4.1. Notice that the Dirichlet to Neumann operator Aµ in Proposition 5.2.3 is
also diagonalizable, so that, for α ∈ R, we denote by Hµ,α the scale of Hilbert spaces
associated with the operator 1

µ Aµ. More precisely, for every α ∈ R, we have

Hµ,α =

 f ∈ H

∣∣∣∣∣∣ ∑
k>0

1 +

∣∣∣∣∣ k tanh (
√

µk)√
µ

∣∣∣∣∣
2α
 |〈 f , ϕk〉|2 < ∞

 ,

Hα =

{
f ∈ H

∣∣∣∣∣ ∑
k>0

(
1 + |k|4α

)
| 〈 f , ϕk〉|2 < ∞

}
. (5.15)
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Therefore, we have H0 = H = H = Hµ,0 and H−α (or Hµ,−α) is the dual space of Hα

(or Hµ,α) with respect to the pivot space H. It is not difficult to see that actually we
have H 1

2
= H1[0, π]. For more details on a scale of Hilbert space, please refer to [115,

Chapter 2].
We mention that the operator Bµ is bounded (see Proposition 5.2.4), i.e. Bµ ∈

L(C, H), and Bw induces an admissible control operator in the first-order system asso-
ciated to (5.14) with the state

[
ζ

∂tζ

]
(please refer to [115, Proposition 6.2.5]), although it

is unbounded (not contained in the state space), i.e. Bw ∈ L(C, H− 1
2
).

Remark 26. According to Proposition 5.2.3, the eigenvalues of 1
µ Aµ denoted by λµ,k

are 1√
µ k tanh(

√
µk), which is equivalent to k for fixed µ ∈ (0, 1). Therefore, for every

α > 0, Hilbert space Hµ,α is actually equivalent to Hα introduced in (4.19). Moreover,
according to interpolation theory (see, for instance, [74], [19, Part II] and [31]), for α ∈
(0, 1), the scale of Hilbert space Hα is exactly the classical Sobolev spaceHα[0, π].

Remark 27. The initial boundary value problem (5.12) is a well-posed boundary con-
trol system (for this concept, see for instance [115, Chapter 10]), which is equivalent to
(5.14) in weak sense, that is, for every u ∈ L2

loc[0, ∞), for every ζ0 ∈ H 1
2

and ζ1 ∈ H,
there exists a unique function

ζ ∈ C([0, ∞); H 1
2
) ∩ C1([0, ∞); H),

such that ζ(0, x) = ζ0 and it satisfies, for every t > 0 and every ψ ∈H 1
2
,

∫ π

0
∂tζ(t, x)ψ(x)dx−

∫ π

0
ζ1(x)ψ(x)dx

= −
∫ t

0

∫ π

0
∂xζ(σ, x)

dψ

dx
(x)dx dσ−

∫ t

0
u(σ)ψ(0)dσ.

In what follows, we are ready to study the asymptotic behaviour of the system
(5.11) when µ goes to zero. We shall consider the relationship between the solutions
of (5.11) and (5.14). Normally, the state of the control system is taken as

[
ζ

∂tζ

]
, but

the main problem lies in the difference of the energy space of (5.11) and (5.14), one is
Hµ, 1

2
× H and the other is H 1

2
×H. It means that we cannot apply the Trotter-Kato

theorem directly. According to the classical semigroup theory (see, for instance, [115]
and [40]), for ζ0 ∈ H 1

2
and ζ1 ∈ H, (5.11) and (5.14) admit unique solutions ζµ and ζ,

respectively, which satisfy

ζµ ∈ C([0, ∞); Hµ, 1
2
) ∩ C1([0, ∞); H),

and
ζ ∈ C([0, ∞); H 1

2
) ∩ C1([0, ∞); H).

We thus consider the following new variables:

αµ := ∂tζµ βµ :=
(

1
µ

Aµ

)1/2

ζµ, (5.16)
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and
α := ∂tζ β := A1/2

w ζ, (5.17)

where Aw and Aµ are introduced in (5.13) and Proposition 5.2.3, respectively. In this
way, we have αµ, βµ ∈ C([0, ∞); H) and α, β ∈ C([0, ∞); H). Setting

wµ(t) =
[

αµ(t, ·)
βµ(t, ·)

]
and w(t) =

[
α(t, ·)
β(t, ·)

]
,

we obtain from (5.11) and (5.14) that
dwµ

dt
(t) = Aµwµ(t) +Bµu(t),

wµ(0) = wµ,0,
(5.18)

and 
dw
dt

(t) = A0w(t) +B0u(t),

w(0) = w0,
(5.19)

where

Aµ =

 0 −
(

1
µ Aµ

)1/2(
1
µ Aµ

)1/2
0

 , A0 =

[
0 −A1/2

w
A1/2

w 0

]
, (5.20)

Bµ =

[
1
µ Bµ

0

]
, B0 =

[
Bw
0

]
, (5.21)

and

wµ,0 =

[
ζ1(

1
µ Aµ

)1/2
ζ0

]
, w0 =

[
ζ1

A1/2
w ζ0

]
. (5.22)

Let X = H × H, then the operator Aµ : D(Aµ) → X with D(Aµ) = Hµ, 1
2
× Hµ, 1

2

and A0 : D(A0) → X with D(A0) = H 1
2
×H 1

2
. Furthermore, it is not difficult to see

that Bµ ∈ L(C, X) and B0 ∈ L(C, H− 1
2
×H− 1

2
). With the help of the new variables

defined in (5.16) and (5.17), the control systems we are now focusing on are (5.18) and
(5.19), which possess the same state space X and provide the possibility to apply the
Trotter-Kato theorem.

Remark 28. Note that the operator Aµ is not onto, the constant part will be removed
after doing the transform (5.16) and (5.17). But this is not a problem for justifying the
limit since we only need the convergence of the resolvent at a nonzero resolvent point.
Moreover, the water waves system and the wave equation have the same initial data,
we could obtain the convergence of ζµ from the convergence of αµ and βµ. For more
details about this, please refer to the proof of the main result.

Based on the structure of the operators Aµ and A0, we introduce the following
lemma, which is probably known in the semigroup community. However, for the sake
of completeness (and with no claim of originality) we give here its precise statement
and a short proof. For simplicity, we denote by R(λ : A) = (λI − A)−1 the resolvent
of A with λ ∈ ρ(A) (resolvent set of A).
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Lemma 5.3.1. Let the operator A : D(A) → H be positive (i.e. A > 0) with compact
resolvents. Then the operator A : D(A )→ X defined by

D(A ) = D
(

A1/2
)
×D

(
A1/2

)
,

A

[
ϕ
ψ

]
=

[−A1/2ψ

A1/2 ϕ

]
, ∀

[
ϕ
ψ

]
∈ D(A ),

generates a unitary group on X.

Proof. The operator A is obviously skew-symmetric since Re〈A w, w〉X = 0 for all
w = [ w1

w2 ] ∈ D(A ). Note that, for every
[

f
g

]
∈ X, there exists ϕ and ψ defined by

ϕ = −R(−1 : A)( f + A1/2g), ψ = R(−1 : A)(−g + A1/2 f ),

satisfy ϕ, ψ ∈ D(A1/2) and

(I +A )

[
ϕ
ψ

]
=

[
f
g

]
. (5.23)

Indeed, note that since A is positive, then σ(A) ⊂ [0, ∞), which implies −1 ∈ ρ(A), so
that the operator I + A is invertible. Next we show that ϕ, ψ ∈ D(A1/2). The positive
operator A1/2 : H 1

2
→ H has a unique extension (still denoted by A1/2) such that

A1/2 ∈ L(H, H− 1
2
), where the Hilbert spaces Hs (s ∈ R) is the scale of Hilbert space

associated with the operator A. Moreover, A : H1 → H also has a unique extension
such that A ∈ L(H 1

2
, H− 1

2
), which implies that R(−1 : A) ∈ L(H− 1

2
, H 1

2
). Thus, for

every g ∈ H, R(−1 : A)A1/2g ∈ H 1
2
. Since A is positive with compact resolvents

we obtain that A is diagonalizable. According to the properties of diagonablizable
operator (see, for instance, [115, Section 3.6]), it is straight to verify that R(−1 : A)
commutes with A1/2, i.e. R(−1 : A)A1/2 f = A1/2R(−1 : A) f , for every f ∈ H.
Therefore, ϕ and ψ defined in the above formally satisfy (5.23). It follows that I +A is
onto.

Similarly, we get I−A is also onto. Then A is skew-adjoint on X (see, for instance,
[115, Proposition 3.7.3]), so that, according to Stone’s theorem, A generates a group of
unitary operators on X.

Remark 29. The proof of Lemma 5.3.1 we present here, according to the definition in
[115], is a direct way to show that the block operator A is a skew-adjoint operator.
There are of course some simplified proofs, for instance, we do a unitary similarity
transformation Q ∈ L(H × H) defined by

Q =
1√
2

[
I I
iI −iI

]
.

It is not difficult to check that

Q−1 = Q∗ =
1√
2

[
I −iI
I iI

]
,

and

Q∗
[

0 −A1/2

A1/2 0

]
Q =

[−iA1/2 0
0 iA1/2

]
. (5.24)
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Note that the matrix operator on the right side of (5.24) is skew-adjoint, Lemma 5.3.1
follows directly from the above transformation. Alternatively, according to the first
part in the proof, we see that A is dissipative. Since A has compact resolvents, the
block operator A also has compact resolvents. Therefore, the result follows from the
Lumer-Phillips theorem.

Remark 30. The scale of Hilbert spaces Hs (s ∈ R) associated with the positive operator
A, where H−α is the dual of Hα (α > 0) with the pivot space H, have the dense and
continuous embeddings (see [115, Section 3.4])

H1 ⊂ H 1
2
⊂ H ⊂ H− 1

2
⊂ H−1.

The operators A1/2 and A have unique extensions such that Ã1/2 ∈ L(H, H− 1
2
) and

Ã ∈ L(H, H−1). Moreover, according to [115, Section 2.10], for every λ ∈ ρ(A), the
resolvent also have the corresponding extensions R(λ : Ã) ∈ L(H−1, H) and R(λ :
Ã1/2) ∈ L(H− 1

2
, H), which are unitary. In addition, as we already mentioned in the

proof of Lemma 5.3.1, the resolvent R(λ : A) commutes with A1/2, then we could use
directly the expression A1/2R(λ : A) instead of R(λ : A)A1/2. In this case, we do not
need to consider the extension of the operator.

5.4 Operator convergence

This section contains the main ingredients of the convergence results, based on appro-
priate decomposition of the Fourier series describing the operators Aµ, A0 introduced
in (5.20) and the control operators Bµ, B0 in (5.21), which play an important role in the
proof of the main result in Section 5.5.

We use the notation A ∈ G(M, ω) in what follows for an operator A, which is the
generator of a C0-semigroup T(t) satisfying ‖T(t)‖ 6 Meωt for every t > 0. With this
notation, Lemma 5.3.1 implies that Aµ, A0 ∈ G(1, 0) since 1

µ Aµ and Aw are positive.

Lemma 5.4.1. With the operators Aµ and A0 defined in (5.20), for every
[

f
g

]
∈ X we have

lim
µ→0

R(1 : Aµ)

[
f
g

]
= R(1 : A0)

[
f
g

]
in X. (5.25)

Proof. According to Lemma 5.3.1, the operators Aµ, A0 ∈ G(1, 0), which implies that

1 ∈ ρ(Aµ) ∩ ρ(A0). We denote, for every
[

f
g

]
∈ X,[

ϕµ

ψµ

]
= R(1 : Aµ)

[
f
g

]
,

[
ϕ0
ψ0

]
= R(1 : A0)

[
f
g

]
.

It follows that

ϕµ = −R
(
−1 :

1
µ

Aµ

)[(
1
µ

Aµ

)1/2

f + g

]
,

ψµ = R
(
−1 :

1
µ

Aµ

)[
− f +

(
1
µ

Aµ

)1/2

g

]
,
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and
ϕ0 = −R(−1 : Aw)(A1/2

w f + g), ψ0 = R(−1 : Aw)(− f + A1/2
w g).

As explained in the proof of Lemma 5.3.1 and Remark 30, we have
[

ϕµ

ψµ

]
∈ X and[

ϕ0
ψ0

]
∈ X, which means that the expression in (5.25) makes sense.

Next we prove the convergence of each component of (5.25) in H as µ goes to zero.
Since 1

µ Aµ and Aw are diagonablizable operators, according to [115, Proposition 2.6.2],
we obtain from (4.34) and (5.13) that

R
(
−1 :

1
µ

Aµ

)
g− R(−1 : Aw)g = ∑

k∈N

Fµ(k)〈g, ϕk〉ϕk,

with

Fµ(k) =
1

1 + k2 −
1

1 + k tanh(
√

µk)√
µ

. (5.26)

Denoting h(x) = tanh x
x (h(0) := 1), we have

Fµ(k) = −
∫ √µk

0

(
1

1 + k2h(x)

)′
dx.

Note that ∣∣∣∣∣
(

1
1 + k2h

)′∣∣∣∣∣ 6
−h′

k2h2 ,

and −h′
h2 6 1 on [0, ∞), which implies that |Fµ(k)| 6

√
µ

k . We thus arrive at∥∥∥∥R
(
−1 :

1
µ

Aµ

)
g− R(−1 : Aw)g

∥∥∥∥2

6 µ‖g‖2. (5.27)

Similarly, for every f ∈ H we have

R
(
−1 :

1
µ

Aµ

)(
1
µ

Aµ

)1/2

f − R(−1 : Aw)A1/2
w f = ∑

k∈N

Gµ(k)〈 f , ϕk〉ϕk,

with

Gµ(k) =
k

1 + k2 −

(
k tanh(

√
µk)√

µ

)1/2

1 + k tanh(
√

µk)√
µ

. (5.28)

We similarly have

Gµ(k) = −
∫ √µk

0

(
kh1/2(x)

1 + k2h(x)

)′
dx.

It is not difficult to see that ∣∣∣∣∣
(

kh1/2

1 + k2h

)′∣∣∣∣∣ 6 −h′

2k h3/2 .
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Moreover, note that −h′
h3/2 is bounded on [0, ∞), we thus obtain that

|Gµ(k)| 6 C
√

µ, (5.29)

which yields that∥∥∥∥∥R
(
−1 :

1
µ

Aµ

)(
1
µ

Aµ

)1/2

f − R(−1 : Aw)A1/2
w f

∥∥∥∥∥
2

6 Cµ ‖ f ‖2 .

This, together with (5.27), implies that lim
µ→0

ϕµ = ϕ0 in H and lim
µ→0

ψµ = ψ0 in H, which

ends the proof.

Lemma 5.4.2. Let Aµ and A0 be the same as in Lemma 5.4.1. For the operators Bµ and B0
defined in (5.21), for every u ∈ C we have

lim
µ→0

R(1 : Aµ)Bµu = R(1 : A0)B0u in X.

Proof. For every u ∈ C, it is obvious that R(1 : Aµ)Bµu ∈ X since Bµ ∈ L(C, X). Note
that B0 ∈ L(C, H− 1

2
×H− 1

2
), according to Remark 30, then we have R(1 : A0)B0u ∈

X. For every u ∈ C, let[
ϕ̃µ

ψ̃µ

]
= R(1 : Aµ)Bµu,

[
ϕ̃0
ψ̃0

]
= R(1 : A0)B0u.

We immediately have

ϕ̃µ = −R
(
−1 :

1
µ

Aµ

)
1
µ

Bµu,

ψ̃µ = −R
(
−1 :

1
µ

Aµ

)(
1
µ

Aµ

)1/2 1
µ

Bµu,

and
ϕ̃0 = −R(−1 : Aw)Bwu, ψ̃0 = −R(−1 : Aw)A1/2

w Bwu.

For the sake of clarity, we split the remaining proof into two steps.
Step 1: We prove that lim

µ→0
ϕ̃µ = ϕ̃0 in H. To this aim, we first note, using a triangle

inequality, that

∥∥ϕ̃µ − ϕ̃0
∥∥ 6 ∥∥∥∥[R

(
−1 :

1
µ

Aµ

)
− R(−1 : Aw)

]
1
µ

Bµu
∥∥∥∥

+

∥∥∥∥R(−1 : Aw)

(
1
µ

Bµu− Bwu
)∥∥∥∥ , (5.30)

where we used the fact that R(−1 : Aw)
1
µ Bµu ∈ H. We note that R(−1 : Aw) ∈

L(H− 1
2
, H 1

2
). Indeed, by the Riesz representation theorem, for every f ∈ H− 1

2
, there

exists a unique ϕ ∈H 1
2

such that

〈ϕ, ψ〉+ 〈A1/2
w ϕ, A1/2

w ψ〉 = 〈 f , ψ〉H− 1
2

,H 1
2

∀ ψ ∈H 1
2
, (5.31)
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which is (I + Aw)ϕ = f in H− 1
2
. Taking ψ = ϕ in (5.31), it follows that

‖ϕ‖2
H 1

2

6 ‖ f ‖H− 1
2
· ‖ϕ‖H 1

2
,

which implies that ‖ϕ‖H 1
2
6 ‖ f ‖H− 1

2
, i.e. ‖R(−1 : Aw)‖L(H− 1

2
,H 1

2
) 6 1. This, together

with (5.6), yields that the last term on the right-hand side of (5.30) converges to zero,
where we used the fact that H 1

2
= H1[0, π] and the continuous dense embedding

H 1
2
↪→ H.

Next we estimate the square of the first norm on the right side of (5.30). According
to [115, Proposition 2.6.2], we write it in form of Fourier series, which reads

∑
k∈N

∣∣Fµ(k)
∣∣2 · ∣∣∣∣〈 1

µ
Bµu, ϕk

〉∣∣∣∣2 , (5.32)

where Fµ(k) has been defined in (5.26). According to (5.8), it is not difficult to see that〈
1
µ

Bµu, ϕk

〉
=
−2
√

2u
µ
√

π
∑

l∈N

Hµ(k, l), (5.33)

with
Hµ(k, l) =

1(
2 l−1
2
√

µ π
)2

+ k2
.

Moreover, we readily see that

∑
l∈N

Hµ(k, l) 6 ∑
l∈N

4µ

(2l − 1)2π2 =
µ

2
. (5.34)

Recalling that |Fµ(k)| 6
√

µ

k , we thus conclude that (5.32) can be controlled by Cµ.
Therefore, we obtain that (5.30) converges to zero as µ→ 0.

Step 2: We prove that lim
µ→0

ψ̃µ = ψ̃0 in H. Since R(−1 : Aw)A1/2
w

1
µ Bµu ∈ H for fixed

µ, we consider the following triangle inequality:

∥∥ψ̃µ − ψ̃0
∥∥ 6 ∥∥∥∥R(−1 : Aw)A1/2

w

(
1
µ

Bµu− Bwu
)∥∥∥∥

+

∥∥∥∥∥
[

R
(
−1 :

1
µ

Aµ

)(
1
µ

Aµ

)1/2

− R(−1 : Aw)A1/2
w

]
1
µ

Bµu

∥∥∥∥∥ . (5.35)

We first, using Fourier series, prove that R(−1 : Aw)A1/2
w ∈ L(H− 1

2
, H). For every

f ∈ H− 1
2
, we have f = 〈 f , 1〉 1

π + ∑k∈N(1 + k2)−1/2〈 f , ϕk〉ϕk and then, according to
[115, Proposition 2.6.2],

R(−1 : Aw)A1/2
w f = ∑

k∈N

−k
(1 + k2)3/2 〈 f , ϕk〉ϕk.

It follows that ∥∥∥R(−1 : Aw)A1/2
w f

∥∥∥2
6 ‖ f ‖2

H− 1
2

.
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This, combined with (5.6), implies that the first norm on the right side of (5.35) con-
verges to zero.

Note that the square of the second norm on the right side of (5.35) is

8u2

µ2π ∑
k∈N

∣∣Gµ(k)
∣∣2 ∣∣∣∣∣∑l∈N

Hµ(k, l)

∣∣∣∣∣
2

,

where Gµ(k) and Hµ(k, l) are defined in (5.28) and (5.33), respectively. Different with
Step 1 we need here a more precise estimate for Gµ(k) and Hµ(k, l), such that the double
series goes to zero as µ→ 0. Besides (5.34), we have the following alternative estimate

∑
l∈N

Hµ(k, l) = ∑
l∈N

µ

l2 + (
√

µk)2 6 ∑
l6
√

µk

1
k2 + ∑

l>
√

µk

µ

l2 6 2
√

µ

k
, (5.36)

where we used the fact ∑k>a
1
k2 6 1

a . Recalling the definition of Gµ(k) and the function
h introduced in the proof of Lemma 5.4.1, we have

|Gµ(k)| =
∣∣∣∣∣ k(1− hµ,k)(1− k2hµ,k)

(1 + k2h2
µ,k)(1 + k2)

∣∣∣∣∣ ,

where hµ,k =
(
h(
√

µk)
)1/2. If

√
µk 6 δ < 1, we still use the estimate (5.29) |Gµ(k)| 6

C
√

µ. It is not difficult to see that in this case we further have |Gµ(k)| 6 C µ1/4

k1/2 . If√
µk > δ, there exists c > 0 such that tanh(

√
µk) > c, which yields that

1 > hµ,k >
C

µ1/4k1/2 .

It follows that we have

|Gµ(k)| 6
k
∣∣1− k2hµ,k

∣∣
k4h2

µ,k
6 C

µ1/4

k1/2 . (5.37)

If k2hµ,k > 1, (5.37) is a direct consequence. Otherwise, we still have

|Gµ(k)| 6
1

k3 h2
µ,k

6 C
µ1/2

k2 6 C
µ1/4

k1/2 ,

since µ < 1. We thus conclude that (5.37) holds for every µ ∈ (0, 1) and k ∈N. Putting
together (5.29), (5.34), (5.36) and (5.37) we thus arrive at

1
µ2 ∑

k∈N

∣∣Gµ(k)
∣∣2 ∣∣∣∣∣∑l∈N

Hµ(k, l)

∣∣∣∣∣
2

6 Cµ1/4.

Therefore, the proof of Lemma 5.4.2 is completed.
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5.5 Main results and the proof

Combined with what we discussed in Section 5.3 and the preliminary convergence re-
sults in Section 5.4, in this section we state the relationship between the control system
(5.18) and (5.19), which is equivalent to the water waves system (5.11) and the wave
equation (5.14), respectively.

For any ω ∈ R, we introduce the weighted Hilbert space L2
ω[0, ∞) := eω L2[0, ∞),

where (eωv)(t) = eωtv(t) for every t > 0, with the norm ‖v‖L2
ω
= ‖e−ωv‖L2 . Similarly,

the Hilbert spaceH1
ω[0, ∞) := eωH1[0, ∞) contains the elements (eων)(t) = eωtν(t) for

every ν ∈ H1[0, ∞), with the norm ‖ν‖H1
ω
= ‖e−ων‖H1 . For every τ > 0, we consider

the zero extension of the input space L2[0, τ] on (τ, ∞), which gives a subspace of
L2

ω[0, ∞).
Here is our main result:

Theorem 5.5.1. For u ∈ L2
loc[0, ∞) and for any initial data ζ0 ∈ H 1

2
and ζ1 ∈ H, let ζµ be

the solution of the gravity water waves system (5.4) with the initial data (5.5), satisfying

ζµ ∈ C([0, ∞);H 1
2 [0, π]) ∩ C1([0, ∞); L2[0, π]).

Let ζ be the weak solution of the wave equation (5.12) satisfying

ζ ∈ C([0, ∞);H1[0, π]) ∩ C1([0, ∞); L2[0, π]).

Then, for every τ > 0, we have

lim
µ→0

sup
t∈[0,τ]

‖ζµ − ζ‖
H 1

2 [0,π]
= 0,

lim
µ→0

sup
t∈[0,τ]

∥∥∂tζµ − ∂tζ
∥∥

L2[0,π]
= 0.

Proof. To present the proof clearly, we divide it into the following three steps.
Step 1: The convergence of a scattering semigroup. For every u ∈ U = L2

ω[0, ∞),
according to Lemma 5.3.1, we denote by Tµ = (Tµ,t)t>0 the C0-semigroup generated
by the operator Aµ, and by T = (Tt)t>0 the C0-semigroup generated by A0. Since
Aµ, A0 ∈ G(1, 0), then the growth bound ω(T) = 0 = ω(Tµ). The solutions of the
differential equations (5.18) and (5.19) are

wµ(t) = Tµ,t wµ,0 + Φµ,t u(t),

and
w(t) = Tt w0 + Φt u(t),

where the initial data wµ,0 and w0 are introduced in (5.22). Note that it is not difficult to
check that B0 is an admissible control operator, then the controllability map Φt defined
by

Φtu =
∫ t

0
Tt−σ B0u(σ)dσ,

is bounded from U to X = H × H. Similarly, we have Φµ,t ∈ L(U , X) since Bµ ∈
L(C, X). To justify the limit lim

µ→0
wµ = w in X, we first define bounded operators Tµ,t

and Tt by

Tµ,t =

[
Tµ,t Φµ,t

0 St

]
, Tt =

[
Tt Φt
0 St

]
,
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where (St)t>0 is the unilateral left shift semigroup on U , i.e. Stu(ξ) = u(ξ + t) for every
ξ > 0. Then (Tµ,t)t>0 and (T(t))t>0 form C0-semigroups on X × U , respectively, with
the same growth bound ω > ω(T) = 0 (Such semigroups were used in [115, Section
4.1], [105] and [50]). The generators of Tµ,t and Tt are

Aµ =

[
Aµ Bµδ0

0 d
dξ

]
, A0 =

[
A0 B0δ0

0 d
dξ

]
,

where δ0u(ξ) = u(0) for every u ∈ U , and

D(Aµ) =

{[
x0
u0

]
∈ X×H1

ω[0, ∞)
∣∣Aµx0 +Bµu0(0) ∈ X

}
.

Similarly, D(A0) can be defined by using A0 and B0 in the above set. Here for simplic-
ity we choose ω ∈ (0, 1) such that 1 ∈ ρ(Aµ) ∩ ρ(A0). Setting, for every [ x

u ] ∈ X×U ,[
xµ,0
u0

]
= R(1 : Aµ)

[
x
u

]
,

[
x0
u0

]
= R(1 : A0)

[
x
u

]
,

we have 
x0 −A0x0 −B0u0(0) = x,

u0 −
du0

dξ
= u.

(5.38)

The second equation in (5.38) admits a unique solution u0 given via its Laplace trans-
form

û0(s) =
û(s)− u0(0)

1− s
.

According to the Paley-Wiener theorem (see, for instance, [115, Theorem 12.4.2]), u0(0) =
û(1) is the only choice such that û0(s) ∈ H2(C0), whereH2(C0) is the Hardy space with
C0 = {s ∈ C|Re s > 0}. We obtain from (5.38) that

x0 = R(1 : A0)(x +B0u0(0)).

Similarly, we have
xµ,0 = R(1 : Aµ)(x +Bµu0(0)).

Recalling Lemma 5.4.1 and Lemma 5.4.2 we thus conclude that lim
µ→0

xµ,0 = x0 in X. It

yields that, for every [ x
u ] ∈ X×U ,

lim
µ→0

R(1 : Aµ)

[
x
u

]
= R(1 : A0)

[
x
u

]
in X×U .

By applying the Trotter-Kato theorem (see, for instance, [88, Chapter 3]), it follows that

lim
µ→0

Tµ,t

[
x
u

]
= Tt

[
x
u

]
in X×U ,

uniformly with respect to t on compact intervals. Thus we have

lim
µ→0

(Tµ,t x + Φµ,t u) = Tt x + Φt u in X×U .
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In particular (when u = 0), for every x ∈ X, we have

lim
µ→0

Tµ,tx = Ttx in X. (5.39)

Step 2: We prove that lim
µ→0

wµ = w in X. In order to justify this limit, it suffices to

prove lim
µ→0

Tµ,twµ,0 = Ttw0, where wµ,0 and w0 are introduced in (5.22). We first show

that for every ζ0 ∈H 1
2
, we have

lim
µ→0

(
1
µ

Aµ

)1/2

ζ0 = A1/2
w ζ0 in H.

Since 1
µ Aµ and Aw are diagonalizable we have(

1
µ

Aµ

)1/2

ζ0 − A1/2
w ζ0 = ∑

k∈N

k Iµ(k)〈ζ0, ϕk〉ϕk,

with

Iµ(k) =
(

tanh(
√

µk)
√

µk

)1/2

− 1.

Just like estimating Fµ(k) in Lemma 5.4.1, we use the similar argument here and obtain
that |Iµ(k)| 6 √µk. It implies that for every ζ̄ ∈H1,∥∥∥∥∥

(
1
µ

Aµ

)1/2

ζ̄ − A1/2
w ζ̄

∥∥∥∥∥
2

6 µ‖ζ̄‖2
H1

.

Note that embedding H1 ↪→ H 1
2

is dense and continuous, for every ε > 0, there exists
ζ̄ ∈H1, such that

∥∥ζ̄ − ζ0
∥∥

H 1
2

< ε
3 . Moreover, it is not difficult to check that

(
1
µ

Aµ

)1/2

∈ L
(

H 1
2
, H
)

, A1/2
w ∈ L

(
H 1

2
, H
)

,

and their operator norms are uniformly bounded. We thus have the following estimate∥∥∥∥∥
(

1
µ

Aµ

)1/2

ζ0 − A1/2
w ζ0

∥∥∥∥∥ 6
∥∥∥∥∥
(

1
µ

Aµ

)1/2 (
ζ0 − ζ̄

)∥∥∥∥∥
+

∥∥∥∥∥
(

1
µ

Aµ

)1/2

ζ̄ − A1/2
w ζ̄

∥∥∥∥∥+ ∥∥∥A1/2
w (ζ̄ − ζ0)

∥∥∥ .

Hence, for every ε > 0, there exists µ0 =
(

ε
3

)2, such that for every µ < µ0, we have∥∥∥∥∥
(

1
µ

Aµ

)1/2

ζ0 − A1/2
w ζ0

∥∥∥∥∥ 6 Cε.

Now we estimate the following difference by using a trangle inequality,∥∥Tµ,t wµ,0 −Tt w0
∥∥

X 6
∥∥Tµ,t wµ,0 −Tµ,t w0

∥∥
X +

∥∥Tµ,t w0 −Tt w0
∥∥

X .
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Note that Tµ,t is unitary and

∥∥Tµ,t wµ,0 −Tµ,t w0
∥∥

X 6 ‖Tµ,t‖L(X)

∥∥∥∥∥
(

1
µ

Aµ

)1/2

ζ0 − A1/2
w ζ0

∥∥∥∥∥ ,

we have lim
µ→0

Tµ,t (wµ,0 − w0) = 0 for every ζ0 ∈ H 1
2

and ζ1 ∈ H. This, together with

(5.39), implies that lim
µ→0

Tµ,t wµ,0 = Tt w0 in X. We thus achieve that lim
µ→0

wµ = w in X

(that is, for every t > 0, lim
µ→0

αµ = α and lim
µ→0

βµ = β hold in H).

Step 3: We prove that lim
µ→0

ζµ = ζ in C1([0, τ]; H) ∩ C([0, τ]; H 1
2
). Recalling the

definition of αµ, βµ in (5.16), and α, β in (5.17), we need to translate the convergence
results in Step 2 in form of the original variables ζµ and ζ. Note that ζµ and ζ have the
same initial data, according to Leibniz formula, we obtain from the first convergence,
lim
µ→0

αµ = α in H, that

lim
µ→0

sup
t∈[0,τ]

‖ζµ − ζ‖ 6 lim
µ→0

τ sup
t∈[0,τ]

‖αµ − α‖.

We thus arrive at lim
µ→0

ζµ = ζ in C1([0, τ]; H). Moreover, taking the second convergence

lim
µ→0

βµ = β into account we further have

lim
µ→0

[
I +

(
1
µ

Aµ

)1/2
]

ζµ = (I + A1/2
w )ζ in H. (5.40)

since ∥∥∥∥∥
[

I +
(

1
µ

Aµ

)1/2
]

ζµ −
(

I + A1/2
w

)
ζ

∥∥∥∥∥ 6 ‖ζµ − ζ‖+
∥∥βµ − β

∥∥ .

Notice that, for every x > 0, tanh x
x ∼ 1

1+x (that is, each function can be controlled by
the other one multiplied by a positive constant), we obtain that

R

(
−1 :

(
1
µ

Aµ

)1/2
)
∈ L(H, H 1

2
),

and its operator norm is uniformly bounded. It follows from (5.40) that

lim
µ→0

[
ζµ + R

(
−1 :

(
1
µ

Aµ

)1/2
)(

I + A1/2
w

)
ζ

]
= 0 in H 1

2
.

Furthermore, we have

‖ζµ − ζ‖H 1
2
6

∥∥∥∥∥ζµ + R

(
−1 :

(
1
µ

Aµ

)1/2
)(

I + A1/2
w

)
ζ

∥∥∥∥∥
H 1

2

+

∥∥∥∥∥R

(
−1 :

(
1
µ

Aµ

)1/2
)(

I + A1/2
w

)
ζ + ζ

∥∥∥∥∥
H 1

2

. (5.41)
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Observing that it remains to prove that the second norm on the right side of (5.41)
converges to zero, we estimate its square, i.e.

∑
k∈N

k |Jµ(k)|2|〈ζ, ϕk〉|2,

where

Jµ(k) =
1 + k

1 + k
(

tanh(
√

µk)√
µk

)1/2 − 1.

Still using the function hµ,k defined in the proof of Lemma 5.4.2, we have

∣∣Jµ(k)
∣∣ = k

(
1− hµ,k

)
1 + k hµ,k

,

since hµ,k ∈ (0, 1). If
√

µk 6 δ < 1, there exists c > 0 such that hµ,k > c. According to
the Taylor expansion of hµ,k, we obtain that 1− hµ,k 6 C

√
µk, so that

|Jµ(k)| 6 C
√

µk 6 Cµ1/4k1/2.

If
√

µk > δ, we have hµ,k > C
µ1/4k1/2 , which clearly implies that |Jµ(k)| 6 Cµ1/4k1/2.

Hence we have

∑
k∈N

k |Jµ(k)|2|〈ζ, ϕk〉|2 6
√

µ‖ζ‖2
H 1

2

6 C
√

µ,

where we used ζ ∈ C([0, ∞); H 1
2
) for every ζ0 ∈H 1

2
and ζ1 ∈H.

Therefore, we finish the proof of Theorem 5.5.1.

Remark 31. The scattering semigroup (Tt)t>0 used in Step 1 is actually a part of the
so-called Lax-Phillips semigroup of index ω introduced in Staffans and Weiss [105].

Remark 32. As we expected, according to the Theorem 5.5.1, the elevation of the water
waves system behaves like the displacement of a string in one dimension. Although
we have this relationship between the water waves system and the wave equation,
their controllability properties are very different. As we know, the wave equation with
Neumann boundary control is exactly controllable (see [19, Part III, Chapter 8] and [83]
for the sufficiently large time, and [69] for finite time interval), while the water waves
system (5.4) is even not approximately controllable (see [96] and [85]).

5.6 Regular convergence

Recalling that we established the strong well-posedness of the water waves system in
Section 4.3.2, in this part we shall consider the regular convergence of the solution of
the water waves system with regular initial data and control term. To address this, we
need some preparation on the derivation of the dimensionless version of the evolution
operator associated with the new decomposition of the water waves system proposed
in Section 4.3.2, as well as the related properties of these operators.
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We first note that, by using the dimensionless quantities defined in (5.2), the di-
mensionless version of the system (4.62), for every t > 0 and (x, y) ∈ Ω (see (5.3)),
reads 

∆µ φ̃µ(t, x, y) = µv(t)(xχ)′′,

∂tζµ(t, x) − 1
µ

∂yφ̃µ(t, x, 0) = 0,

∂tφ̃µ(t, x, 0) + ζµ(t, x) = xχ(x)u(t),
∂xφ̃µ(t, 0, y) = 0,
∂yφ̃µ(t, x,−1) = 0 = ∂xφ̃µ(t, π, y),

(5.42)

where the smooth function χ has been introduced in (4.60) and φ̃µ = φµ + xχ(x)v(t).
Here we still denote the dimensionless quantities by x, y, t and ζµ, φµ without overlines
for simplicity.

Proposition 5.6.1. Let Φµ be the dimensionless version of Φ introduced in Lemma 4.3.6, then
Φµ ∈ H2(Ω) and

Φµ = ∑
k>0, l∈N

µv ak,l

µk2 + (2l − 1)2 π2

4

Ψkl ,

where Ψkl and akl have been defined in (4.21) and Lemma 4.3.6, respectively. For every α > 0,
the operator Sµ defined by Sµv := ∂yΦµ(t, x, 0) belongs to L(C, Hα). Moreover, we have the
limit

lim
µ→0

1
µ

Sµ = (x χ)′′ in Hα. (5.43)

Proof. We first note that it is not difficult to derive the formula of Φµ from Lemma 4.3.6.
According to (4.64) and Remark 11, we have

Sµ = − µ

π
+ ∑

k,l∈N

2µ ak

(µk2 + (2l − 1)2 π2

4 )
ϕk, (5.44)

where ak and ϕk have been defined in (4.65) and (4.18), respectively. The formula (5.44)
obviously implies that Sµ ∈ H. For every α > 0, we have

∑
k∈N

k2α

∣∣∣∣〈 1
µ

Sµ, ϕk

〉∣∣∣∣2 6 ∑
k∈N

k2α |ak|2 < ∞,

which directly implies that Sµ ∈ Hα since the function (xχ)′′ is smooth enough with
compact support on (0, π). Moreover, using the expansion (xχ)′′ = − 1

π + ∑k∈N ak ϕk,
we obtain that ∥∥∥∥ 1

µ
Sµ − (x χ(x))′′

∥∥∥∥2

Hα

6 Cµ2‖(xχ)′′‖2
H2

6 Cµ2.

Therefore, the proof is completed.

Recalling the transform

ζ̃µ(t, x) = ζµ(t, x)− xχ(x)u(t),
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we derive the dimensionless version of the system (4.69), which is∂2
t ζ̃µ(t, x) +

1
µ

Aµ ζ̃µ(t, x) =
1
µ

Sµu− xχ(x)ü,

ζ̃µ(0, x) = ζ̃0(x), ∂t ζ̃µ(0, x) = ζ̃1(x),
(5.45)

where Aµ is the dimensionless Dirichlet to Neumann operator A0 in Proposition 4.2.9
and Sµ is the dimensionless version of S in Proposition 4.3.7. The initial data ζ̃0 and ζ̃1
in (5.45) are the same with the ones in (4.69). For the system (5.45), we have discussed
in Section 4.3.2 the strong well-posedness with smooth initial data and control u. More
precisely, please refer to Theorem 4.3.8 for the details. Let ζ satisfy the wave equation
(5.12). To study the regular convergence of the system (5.45), we denote

ζ̃ = ζ − xχ(x)u(t).

Therefore, we derive from (5.12) the following control system in terms of ζ̃{
∂2

t ζ̃(t, x) + Aw ζ̃(t, x) = (xχ(x))′′u(t)− xχ(x)ü,

ζ̃(0, x) = ζ̃0(x), ∂t ζ̃(0, x) = ζ̃1(x),
(5.46)

where the operator Aw has been introduced in (5.13).
Recalling the scale of Hilbert spaces Hα (associated with the operator Aw) intro-

duced in (5.15), we have the following regularity result for the system (5.46).

Theorem 5.6.2. For every τ > 0, let u ∈ H4
L[0, τ], ζ0 ∈ H 3

2
and ζ1 ∈ H1. Then the system

(5.46) admits a unique solution ζ̃ satisfying

ζ̃ ∈ C([0, τ]; H 3
2
) ∩ C1([0, τ]; H1). (5.47)

Proof. The proof is similar with the proof of Theorem 4.3.8. Let z̃(t) =
[

ζ̃

∂t ζ̃

]
and denote

A =

[
0 I
−Aw 0

]
, Bu =

[
0

(xχ)′′u− xχü

]
.

Let T = (Tt)t>0 be the C0-semigroup generated by the operator A (In this case, the
operator A is no longer skew-adjoint, since Aw is not strictly positive. But A is still a
generator of a C0-semigroup, for this please refer to, for instance, [40, Section 2.3]). For
every τ > 0, assuming that u ∈ H4

L[0, τ] and let (I − A)
[

φ
ψ

]
= Bu, we obtain that

φ = ψ and
φ = ψ = (I + Aw)

−1 ((xχ)′′u− xχü
)

.

We notice that
∑

k∈N

|λk|3 |〈φ, ϕk〉|2 6 C ∑
k∈N

|λk|
(
|ak|2 + |bk|2

)
,

where λk = k2 is the eigenvalue of the operator Aw corresponding to the eigenvector ϕk
defined in (4.18). According to Remark 12, we obtain that φ ∈ H 3

2
. For every m ∈ N,

we denote the Hilbert space

Xm = D(Am) = H m+1
2
×H m

2
.
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Hence, according to [116, Proposition 2.3], we have

ΦtH4
L[0, τ] ⊂ X2 + (sI −A)−1BC ⊂ X2,

where Φ is the input map for the pair (A,B). For ζ0 ∈H 3
2

and ζ1 ∈H1, we thus arrive
at

z̃(t) = Tt z̃0 + Φtu ∈ C([0, τ]; X2).

Therefore, we obtain the result (5.47).

Remark 33. The Hilbert spaces Xm defined above are similar to Xm discussed in Re-
mark 14 and the related results can be directly applied to Xm. According to Theorem
5.6.2 and using the relation (4.68), the system (5.46) is equivalent to the wave equation
with boundary control (5.12) in the classical sense.

Note that, for every α > 0, Hα ⊂ H2α[0, π]), then Theorem 5.6.3 is direct conse-
quence of Theorem 5.6.2.

Theorem 5.6.3. For every τ > 0, u ∈ H4
L[0, τ], ζ0 ∈ H 3

2
and ζ1 ∈ H1, the system (5.12)

admits a unique solution ζ satisfying

ζ ∈ C([0, τ];H3[0, π]) ∩ C1([0, τ];H2[0, π]).

Here we recall that the Hilbert spaces Hµ,α and Hα introduced under (5.14), which
is the scale of the Hilbert spaces associated with the operator 1

µ Aµ and Aw, respectively.
As in Section 5.3, we do the following change of variables,

α̃µ := ∂t ζ̃µ β̃µ :=
(

1
µ

Aµ

)1/2

ζ̃µ,

and
α̃ := ∂t ζ̃ β̃ := A1/2

w ζ̃.

For every τ > 0, let u ∈ H5
L[0, τ], ζ0 ∈ H 3

2
and ζ1 ∈ H1, we obtain from Theorem 4.3.8

and Theorem 5.6.2 that

α̃µ, β̃µ ∈ C([0, τ]; Hµ, 3
2
) α̃, β̃ ∈ C([0, τ]; H1).

Setting

w̃µ(t) =
[

α̃µ(t, ·)
β̃µ(t, ·)

]
and w̃(t) =

[
α̃(t, ·)
β̃(t, ·)

]
,

we obtain from (4.69) and (5.46) that
dw̃µ

dt
(t) = Aµw̃µ(t) + B̃µu(t),

w̃µ(0) = w̃µ,0,

and 
dw̃
dt

(t) = A0w̃(t) + B̃0u(t),

w̃(0) = w̃0,
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where Aµ and A0 have been introduced in (5.20), B̃µ and B̃0 are

B̃µu =

[
1
µ Sµu− xχü

0

]
, B̃0u =

[
(xχ)′′u− xχü

0

]
, (5.48)

and

w̃µ,0 =

[
ζ̃1(

1
µ Aµ

)1/2
ζ̃0

]
, w̃0 =

[
ζ̄1

A1/2
w ζ̃0

]
.

Notice that H1 ⊂ Hµ, 3
2

and Hµ, 3
2

is equivalent to H 3
2

for fixed µ, we shall apply the
Trotter-Kato theorem on the space X = H 3

2
× H 3

2
.

Remark 34. We have proved in Lemma 5.3.1 that the operators Aµ and A0 defined in
(5.20) is skew-adjoint on H×H and hence they generate unitary groups Tµ = (Tµ,t)t∈R

and T = (Tt)t∈R on H × H, respectively. As explained in Remark 15, we still denote
by Tµ the restriction of Tµ to X (considered as an operator in L(X )) is the image
of Tµ ∈ L(H × H) through the unitary operator (sI − Aµ)−3 ∈ L(H × H,X ) with
s ∈ ρ(Aµ). More precisely,

Tµ,t z = (sI −Aµ)
−3 Tµ,t (sI −Aµ)

3 z ∀ z ∈ X .

Therefore, these operators (Tµ,t)t∈R form a strongly continuous group on X , whose
generator is the restriction of Aµ toD(A 4

µ ). Similary, we still denote by T the restriction
of T to X . For more details about this, please refer to [115, Section 2.10].

To obtain the regular convergence of the system (5.45), we still need to show some
properties of the resolvent operator on a smooth space. For this reason, let us introduce
the following lemma.

Lemma 5.6.4. Let A : D(A) → H be positive with compact resolvents and its non-zero
eigenvalues satisfy λk > 1 for k ∈N. Then we have

R(s : A) ∈ L(D(A
m−1

2 )),

R(s : A)A1/2 ∈ L(D(A
m−1

2 )),

where s ∈ R− and m ∈N.

Proof. Since A is positive, we have (−∞, 0) ⊂ ρ(A). We prove the main result by
induction. The case m = 1, i.e. R(s : A) ∈ L(H), is obviously true. Still using the
notation D(Aα) = Hα for any α > 0, we suppose that the statement is true for m− 1,
i.e.

R(s : A) ∈ L(H m−2
2
).

Now we show that R(s : A)H m−1
2
⊂ H m−1

2
. Note that the operator A is diagonalizable,

the eigenvectors denoted by ϕk forms an orthonormal basis in H. For every f ∈ H m−1
2

,
we estimate the norm of R(s : A) f in H m−1

2
, i.e.

‖R(s : A) f ‖2
H m−1

2

= ∑
k∈N

|λk|m−1

|s− λk|2
|〈 f , ϕk〉|2 6 ∑

k∈N

|λk|m−3|〈 f , ϕk〉|2 6 ‖ f ‖2
H m−1

2

,
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where we used λk > 1 and s 6 0. Since the embedding H m−1
2

↪→ H m−2
2

is continuous
and R(s : A)H m−1

2
⊂ H m−1

2
, we obtain from [115, Proposition 2.9.3] that R(s : A) ∈

L(H m−1
2
).

Similarly, one readily sees that the second statement is true when m = 1. Suppose
that it holds for m− 1, i.e. R(s : A)A1/2 ∈ L(H m−2

2
). It is straightforward to verify that∥∥∥R(s : A)A1/2g

∥∥∥2

H m−1
2

= ∑
k∈N

|λk|m
|s− λk|2

|〈g, ϕk〉|2 6 ‖g‖2
H m−1

2

,

for every g ∈ H m−1
2

. By using the similar argument, the second statement holds for
every m ∈N.

Therefore, the proof is finished.

Based on the above preparation, we have the operator convergence results for the
operator Aµ and A0. The corresponding proof is similar as Section 5.4, hence we just
explain in what follows that the notation make sense.

Lemma 5.6.5. With the operators Aµ, A0 defined in (5.20), for every
[

f
g

]
∈ X we have

lim
µ→0

R(1 : Aµ)

[
f
g

]
= R(1 : A0)

[
f
g

]
in X . (5.49)

Proof. As explained in Remark 34, we have Aµ, A0 ∈ G(1, 0) and then 1 ∈ ρ(Aµ) ∩
ρ(A0). We denote, for every

[
f
g

]
∈ X ,[

ξµ

ηµ

]
= R(1 : Aµ)

[
f
g

]
,

[
ξ0
η0

]
= R(1 : A0)

[
f
g

]
.

It follows that

ξµ = −R
(
−1 :

1
µ

Aµ

)[(
1
µ

Aµ

)1/2

f + g

]
,

ηµ = R
(
−1 :

1
µ

Aµ

)[
− f +

(
1
µ

Aµ

)1/2

g

]
,

and
ξ0 = −R(−1 : Aw)(A1/2

w f + g), η0 = R(−1 : Aw)(− f + A1/2
w g).

We first obtain from Lemma 5.6.4 that ξµ, ηµ ∈ H 3
2
, for every f , g ∈ H 3

2
. Moreover, note

that the eigenvalues of the operator 1
µ Aµ are equivalent to k for fixed µ ∈ (0, 1), using

the Fourier series we can directly verify that

‖R(−1 : Aw) f ‖2
H 3

2

6 ‖ f ‖2
H 3

2

∀ f ∈ H 3
2
,

and ∥∥∥R(−1 : Aw)A1/2
w g

∥∥∥2

H 3
2

6 ‖g‖2
H 3

2

∀ g ∈ H 3
2
.

It follows that ξ0, η0 ∈ H 3
2
. By slightly modifying the corresponding proof of the

convergence result in H× H, we have lim
µ→0

ξµ = ξ0 in H 3
2

and lim
µ→0

ηµ = η0 in H 3
2
, that is

(5.49).
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Lemma 5.6.6. With the operators B̃µu, B̃0u defined in (5.48), we have

lim
µ→0

R(1 : Aµ)B̃µu = R(1 : A0)B̃0u in X .

Proof. We first denote[
ξ̃µ

η̃µ

]
= R(1 : Aµ)B̃µu,

[
ξ̃0
η̃0

]
= R(1 : A0)B̃0u,

where B̃µu and B̃0u are introduced in (5.48). We immediately have

ξ̃µ = −R
(
−1 :

1
µ

Aµ

)(
1
µ

Sµu− xχü
)

,

η̃µ = −R
(
−1 :

1
µ

Aµ

)(
1
µ

Aµ

)1/2 ( 1
µ

Sµu− xχü
)

,

and
ξ̃0 = −R(−1 : Aw)

(
(xχ)′′u− xχü

)
,

η̃0 = −R(−1 : Aw)A1/2
w
(
(xχ)′′u− xχü

)
.

Based on the properties of the Fourier cosine expansion of xχ and (xχ)′′, Remark 12,
together with Proposition 5.6.1 and Lemma 5.6.4, implies that

R
(
−1 :

1
µ

Aµ

)
1
µ

Sµ ∈ H 3
2
, R

(
−1 :

1
µ

Aµ

)(
1
µ

Aµ

)1/2 1
µ

Sµ ∈ H 3
2
,

and
R(−1 : Aw)(xχ)′′ ∈ H 3

2
, R(−1 : Aw)A1/2

w (xχ)′′ ∈ H 3
2
.

Furthermore, using Fourier series it is not difficult to see that for fixed µ ∈ (0, 1),∥∥∥∥R
(
−1 :

1
µ

Aµ

)
xχ

∥∥∥∥2

H 3
2

6 ‖xχ‖2
H1

,

∥∥∥∥∥R
(
−1 :

1
µ

Aµ

)(
1
µ

Aµ

)1/2

xχ

∥∥∥∥∥
2

H 3
2

6 ‖xχ‖2
H1

,

and
‖R(−1 : Aw)xχ‖2

H 3
2

6 ‖xχ‖2
H1

,∥∥∥R(−1 : Aw)A1/2
w xχ

∥∥∥2

H 3
2

6 ‖xχ‖2
H1

.

We thus obtain that
[

ξ̃µ

η̃µ

]
∈ X and

[
ξ̃0
η̃0

]
∈ X . The remaining proof is similar with

Lemma 5.4.2 by using triangle inequality and the estimate (5.26) and (5.37).

Now we are in a position to state the regular convergence of the system (5.42) in
terms of the elevation ζµ. The proof is similar with the proof of Theorem 5.5.1, so that
we omit the details here.
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Theorem 5.6.7. For any τ > 0, let u ∈ H5
L[0, τ], ζ0 ∈H 3

2
and ζ1 ∈H1. Then we have

lim
µ→0

sup
t∈[0,τ]

‖ζµ − ζ‖H2[0,π] = 0,

lim
µ→0

sup
t∈[0,τ]

∥∥∂tζµ − ∂tζ
∥∥
H 3

2 [0,π]
= 0.

Remark 35. In the proof of Theorem 5.6.7, we still regard L2
ω[0, ∞) as the input space,

which does not contradict u ∈ H5
L[0, τ]. The condition u ∈ H5

L[0, τ] is just used in the
part of the regularity of the solution of the evolution equations.

5.7 Remark on zero mean condition

As we already noticed, we made in Chapter 4 an assumption that the shape function
h ∈ L2[−1, 0] satisfies zero mean condition, i.e.∫ 0

−1
h(y)dx = 0,

which ensures the conservation of the volume of water. More precisely, it is not difficult
to see that the conservation of mass of the water waves system in the domain Ω (see
(4.14)) implies

∂tζ + ∂xV = 0, (5.50)

where V(t, x, y) is the horizontal component of the velocity of the fluid U(t, x, y) and
V(t, x, y) is vertically average horizontal velocity defined by

V(t, x) =
∫ 0

−1
V(t, x, y)dy.

The conservation of the volume means that

∂t

∫ π

0
ζdx = 0,

which, together with (5.50), implies that∫ π

0
∂xV(t, x, y)dx = V(t, 0)−V(t, π) = −v(t)

∫ 0

−1
h(y)dy.

Based on the above detailed analysis, we see that the volume of water is conserved if
and only if h satisfies zero mean condition. Moreover, zero mean condition excludes
the constant from the space L2[0, π] such that the Dirichlet to Neumann operator A0 is
strictly positive. In the first-order control system, this makes that the evolution opera-
tor A in (4.47) is skew-adjoint, so that it is the generator of a unitary group.

In this Chapter, as we already mentioned at the beginning, we should remove zero
mean condition for the asymptotic analysis issue, since the whole system is considered
in the shallow water regime. In this case shape h should be independent of the vertical
variable y, and obviously the conservation of the volume fails when taking shallowness
limit. The state space of the control system will not only contain zero mean functions
but also the other elements in L2[0, π], which are actually constant part. Although the
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operator A0 is no longer strictly positive, the matrix A still is a generator of a strongly
continuous semigroup. Therefore, the well-posedness result in Chapter 4 holds with-
out zero mean condition. It is natural to ask a question:

Do the stabilizability properties still hold?

In the remaining part of this section, we focus on the discussion of this question.

5.7.1 A decomposition of the control system

We employ here a decomposition technique introduced, for instance, in [40, Section
5.2] to rewrite the boundary control system on the water waves. What we need to
point out next is that kernel space of the Dirichlet-Neumann operator A0, denoted by
Ker A0, is a one-dimensional constant space. Recalling the definition of A0, for each
ψ ∈ L2[0, π],

〈A0ψ, ψ〉L2[0,π] = 〈∂~nDψ, Dψ〉∂Ω = ‖∇Dψ‖2 + 〈∆Dψ, ψ〉 = ‖∇Dψ‖2,

where D is the partial Dirichlet map introduced in Proposition 4.2.2. Thus, A0ψ = 0 if
and only if Dψ = ψ is constant. Therefore, we denote

Hk = ker A0 =
{

λ1
∣∣λ ∈ C

}
HR = (ker A0)

⊥ = Ran A0,

and we have an orthogonal decomposition of L2[0, π]:

L2[0, π] = HR ⊕ Hk.

Note that HR is exactly the space H defined in (4.17) and Hk consists of all complex
numbers, which is a one-dimensional space. Equivalently, HR and Hk represents the
zero mean part and the constant part of L2[0, π], respectively. Next, for every function
f ∈ L2[0, π] we define a projection of f onto the vector space span{ 1√

π
} as

(Π f )(x) =
[

Π
span

{
1√
π

} f
]
(x) =

〈 f , 1√
π
〉∥∥ 1√

π

∥∥2
1√
π

=
1
π

∫ π

0
f (x)dx.

The water waves system on the state space X = H 1
2
× H reads

d
dt

[
ζ
ζ̇

]
=

[
0 I
−A0 0

] [
ζ
ζ̇

]
+

[
0
B0

]
u(t),

where A0 and B0 is the Dirichlet to Neumann operator and the Neumann to Neumann
operator introduced in Proposition 4.2.9 and Corollary 4.2.13, respectively. Based on
the above notation we now decomposite the state space

X = H 1
2
× H =⇒ H 1

2 ,R × HR × H 1
2 ,k × Hk = XR × Xk,

where H 1
2 ,k and Hk are actually one-dimensional complex space, H 1

2 ,R and HR are the
same with zero mean spaces defined in (4.19). We thus have the corresponding decom-
position for the state of control system as follows:

z> =
[
ζ ζ̇

]>
=⇒

[
ζR ζ̇R ζk ζ̇k

]>
=
[
zR zk

]> ,
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Note that, according to Corollary 4.2.13, B0 preserves zero mean property, we define
the operators

Bk = ΠB0 : C→ Hk BR = (I −Π)B0 : C→ HR,

and extend the matrix A and B in the following way:

A =

[
0 I
−A0 0

]
=⇒


0 I 0 0
−A0 0 0 0

0 0 0 1
0 0 0 0

 ,

B =

[
0
B0

]
=⇒


0 0

BR 0
0 0
0 Bk

 .

For every input u ∈ U = C, we assume that u = uR + uk, where uR is the input for "R"
part and uk is the input for "K" part. Therefore, we have

d
dt


ζR
ζ̇R
ζk
ζ̇k

 =


0 I 0 0
−A0 0 0 0

0 0 0 1
0 0 0 0




ζR
ζ̇R
ζk
ζ̇k

+


0 0

BR 0
0 0
0 Bk

 [uR
uk

]
. (5.51)

Up to now, we successfully decompose the original system into an infinite-dimensional
system ("R" part) and a finite-dimensional system ("K" part), which are un-coupled
sub-control system. We know from Chapter 4 that "R" is strongly stabilizable with
colocated feedback FRzR = −B∗Rζ̇R. The remaining work is just to find a bounded
feedback operator Fk ∈ L(Xk, C) to stabilize "K" part. Assuming that Fk =

[
f1 f2

]
,

we need to stabilize the matrix

Ak = Ak + B̃kFk =

[
0 1
0 0

]
+

[
0

Bk

] [
f1 f2

]
=

[
0 1

Bk f1 Bk f2

]
.

In finite-dimensional case,Ak is stable if and only if its eigenvalues is strictly negative,
which implies that

Bk f2 < 0 Bk f1 < 0. (5.52)

The finite dimensional system "K" is stabilizable with the feedback Fkzk = f1ζk + f2ζ̇k,
where f1 and f2 satisfy the above constraints (5.52). Thus we conclude that (5.51) is
strongly stabilizable with the bounded feedback

u =

[
uR
uk

]
= Fz =

[ −B∗Rζ̇R
f1ζk + f2ζ̇k

]
, (5.53)

which implies that

F =

[
0 −B∗R 0 0
0 0 f1 f2

]
.

Based on the above analysis, we see that finally the stability of the whole system de-
pends on "R" part, thereby the stability properties we obtained in Chapter 4 still hold
without zero mean condition.

124



5.7. REMARK ON ZERO MEAN CONDITION

5.7.2 Stabilization using an observer

According to the state feedback Fz in (5.53), we only need to measure the time deriva-
tive of the elevation of the free surface ζ̇R (i.e. the normal velocity of the surface accord-
ing to the kinematic condition) to stabilize "R" system, while for "K" system we need
the knowledge of both ζk and ζ̇k. If ζk or ζ̇k is not available to the controller or it is
not easy to measure one of these quantities in practice, we consider stabilizing "K" by
using an observer, which requires the detectability of the control system. An observer
for "K" is another system that receives the input u and the output y of "K" as inputs,
and the output of the observer is an estimate zk,e of the state zk of "K", such that

lim
t→∞
‖zk,e − zk‖Xk

= 0.

The principle of an observer is that by combining a measured feedback signal with
knowledge of the control-system components (primarily the plant and feedback sys-
tem), the behaviour of the plant can be known with greater precision than using the
feedback signal alone. For more details about the feedback controllers and observers,
please refer to, for instance, Ellis [43] and Besançon [21]. To do this, we choose ζk as
the output of "K" system, then we have

d
dt

[
ζk
ζ̇k

]
=

[
0 1
0 0

] [
ζk
ζ̇k

]
+

[
0

Bk

]
uk = Akzk + B̃kuk,

y = ζk =
[
1 0

] [ζk
ζ̇k

]
= Ckzk.

(5.54)

To make this approach work, we first need to verify that (Ak, Ck) is detectable (or
saying that (A∗k, C∗k) is stabilizable), i.e. there exists Hk ∈ C2×1 such that Ak + HkCk is
stable. Let Hk take the form

Hk =

[
h1
h2

]
.

Then the matrix Ak + HkCk is

Ak + HkCk =

[
h1 0
h2 0

]
. (5.55)

We assume that λ1 and λ2 are two eigenvalues of Ak + HkCk, it is clear to see from
(5.55) that λ1 + λ2 = h1 and λ1λ2 = −h2. This implies that the matrix Ak + HkCk
is stable if we choose h1 < 0 and h2 < 0. This, together with the stabilizable of the
pair (Ak, B̃k) discussed in Section 5.7.1, implies the existence of a stabilizing controller,
denoted by Σc, for the control system Σ = (Ak, B̃k, Ck,−). The principle of the observer
is decribed by

żk,e = (Ak + HkCk)zk,e + B̃kuk − Hky,

where u and y are the input of the above observer and the corresponding output is
the state estimate zk,e. Moreover, we have żk = Akzk + B̃kuk. Now subtracting the
equations for zk,e and zk and taking into account that y = Ckzk, we obtain the equation
for the difference δ = zk,e − zk, which is

δ̇ = (Ak + HkCk)δ. (5.56)
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Therefore, the error system (5.56) is stable i.e. δ → 0 (since the matrix Ak + HkCk is
stable), regardless of the input uk and regardless of the initial state. In this case, we
only need the knowledge of ζ̇R and ζk as the state feedback to stabilize the original
system.

To understand this process clearly, we use the block diagram to explain the princi-
ple of the observer described above. The original closed-loop system (Ak, B̃k), with
state feedback uk = Fkzk has been shown in Figure 5.2. As we can see from this
block diagram that the output is the state zk, which requires the knowledge of ζk and
ζ̇k. To improve this control system in practice, we consider constructing a controller

żk = Akzk + B̃kuk

Fk

uk y = zk

Figure 5.2: The original closed-loop system

by using an observer to estimate only one of the state component ζk or ζ̇k. For this
reason, we choose Ck =

[
1 0

]
and as in (5.54) the corresponding output y becomes

y = Ckzk = ζk. The input of the observer are uk and y, and its output is the estimate of
the state zk,e. The details of the control system with the controller described above has
been shown in Figure 5.3, where the big dotted frame is the structure of the controller
Σc. It is not difficult to see that this system is stable. Indeed, according to Figure 5.3,
we have

żk = Akzk + B̃kuk = Akzk + B̃k(Fkzk,e) = (Ak + B̃kFk)zk + B̃kFkδ.

Now choosing the state variables of the closed-loop dynamics to be zk and δ, we obtain

żk,e = (Ak +HkCk)zk,e + B̃kuk −Hky

żk = Akzk + B̃kuk

Fk

uk y = Ckzk

zk,e

Σ

Observer

Σc Controller

Figure 5.3: The closed-loop system with controller Σc

d
dt

[
zk
δ

]
=

[
Ak + B̃kFk B̃kFk

0 Ak + HkCk

] [
zk
δ

]
, (5.57)
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where we used the equation for δ in (5.56). Obviously, we see that the system (5.57)
is stable since (Ak, B̃k) is stabilizable and (Ak, Ck) is detectable. Moreover, the above
process for decomposing of the closed-loop eigenvalues into the sets σ(Ak + B̃kFk) and
σ(Ak + HkCk) is called the separation principle.

Remark 36. We expect that the state feedback only depends on ζ̇k so that we only need
to measure the velocity of the free surface ζ̇ without knowing the information about ζ.
In this case, the observer is called the Luenberger Observer (see, for instance, [43]). This
is impossible since (Ak, C̃k) is not detectable with C̃k =

[
0 1

]
.
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Part III

A rigid body floating in shallow
water
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Chapter 6

Control of a floating body system in
shallow water

In this chapter, we consider a control system describing the interaction of water waves
with a partially immersed rigid body in a bounded container. The fluid is modeled
by the shallow water equations. The motion of the object obeys Newton’s laws. The
control signal is a vertical force acting on the floating body. We give a detailed deriva-
tion for the full governing equations of the floating body system in shallow water, in
particular, with a control term. Then we consider the linearized system for the corre-
sponding control issue, for instance, the reachability and stabilizability, by analysing
the spectral properties of the related evolution operators. The situation, of course, is
different when the object floats in different position of the water tank. Part of contents
in this chapter are based on recent work by Su and Tucsnak [109].

6.1 Introduction and problem setting

We study a rigid object floating in a water tank, which is delimited by a top free surface
and a flat bottom with two vertical walls. Assuming that the rigid body is restricted
to move only in the vertical direction and that it floats in a rectangular fluid domain
which fits in the shallow water regime (for this concept, please refer to Lannes [66, 68]
or Whitham [123]). We also assume that the floating object has vertical lateral walls,
with a possibly non-flat but symmetric bottom. Moreover, the body is actuated by a
vertical external force from its bottom and this force is regarded as the control signal.

The system we consider is also of interest for modelling and controlling a class of
Wave Energy Converters (WECs) where all devices are used to capture the variations of
the free surface waves and convert this kinetic energy into electricity. The most popular
WECs is the so-called Point Absorber, which consists of a floater on the sea surface and
hydraulic cylinders vertically installed below the floater (for more details, please refer
to Li et al. [73] and Cretel et al. [37]). Mathematically speaking, this device acting
from the bottom of the floating body produces a vertical force, as a control signal,
to synchronize the motion of the body and of incoming waves and so maximize the
energy production or generate desired waves.

There are a number of works which are devoted to the subject of fluid-structure
interaction systems. For instance, the case of the body completely immersed in the
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fluid is studied in Glass et al. [48], Lacave and Takahashi [64] and the corresponding
control problem is considered in Roy and Takahashi [98], Glass et al. [47]. The case
when the body is floating i.e. only partially immersed in the fluid, is setup studied
in John [61, 62] under simplified assumptions. Recently, Lannes gave in [67] a new
formulation of the governing equations and proposed a formulation of the problem
as a coupling between a standard wave model (in which the surface elevation is free
and the pressure is constrained) and a congested model containing an object (where
the pressure is free and the surface elevation is constrained); this method can be im-
plemented with various asytmptotic models: non-viscous 1D shallow water model in
Iguchi and Lannes [59], viscous 1D shallow water model in Maity et al. [80], 2D radial
symmetric shallow water equations in Bocchi [24], Boussinesq equations in Bresch et
al. [27] and also in Beck and Lannes [17]. We also refer to Godlewski et al. [49] where
the constraint for the equations with the object is released, using a typical ”low Mach”
technique. For other interesting formulations and asymptotic models (depending on
the shallowness parameter) for the water waves system we refer to Lannes [66, 68]
and references therein. As far as we know, all the references on floating bodies men-
tioned above are only concerned with the object freely floating in the fluid and there
are almost no work on the control issue.

Here we are interested in the following problem: given a rigid body floating in a
fluid at rest in a bounded container, determine the control force acting on the body
in order to obtain a prescribed wave profile. The main contribution in this chapter
consists in showing that, within the linearized shallow water regime and in a spatially
symmetric geometry, we can find controls steering the system from rest to any sym-
metric wave profile having an appropriate space regularity. In order to achieve this
goal we pass through the following preliminary steps:

• Deriving the full nonlinear control model and reformulate it as a first-order evo-
lution system;

• Establishing the well-posedness of the linearized control system.

6.1.1 Notation

To state things clearly, we introduce here, constantly referring to Figure 6.1, some no-
tation which is used throughout this paper. We take the coordinate system as in Figure
6.1, where the ordinate axis passes through the center of the floating object. The set
I := [−l, l], called the interior region in the remaining part of this chapter, is the projec-
tion of the object on the bottom of the fluid domain Ω(t). The exterior region is denoted
by E := E− ∪ E+ with E− = (−L,−l) and E+ = (l, L′).

Let h0 denote the water depth when the object is at equilibrium state. In the same
situation of equilibrium, let (0, yG,eq) denote the coordinate of the center of gravity of
the object and let heq(x) denote the distance between the point of abscissa x of the
bottom of the object and the bottom of the fluid domain. We assume that the bottom
of the object is symmetric with respect to x = 0, which implies that heq(x) is a positive
single-valued even function. We denote by m the mass of the object, by ρ the constant
density of the fluid. We also denote by ζ(t, x) the elevation of the water surface with
respect to the rest state, by h(t, x) = h0 + ζ(t, x) the total height of the water column.
Moreover, we introduce the horizontal discharge, denoted by q(t, x), that is the vertical
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x

y

0−L L′−l l

−h0

0

yG,eq

yG(t)

δ(t)

ζ(t, x)

h(t, x)

heq(x)

I
E+E−

u(t)

Ω(t)

b

Figure 6.1: Floating body in a tank filled with water

integral of the horizontal velocity of the fluid (in the shallow water regime, it is h times
the velocity of the fluid). We use the notation P to represent the pressure on the water
surface. When the object moves in the vertical direction, let (0, yG(t)) be the position of
the center of gravity at time t, and δ(t) = yG(t)− yG,eq be the variation of the position
of the center of mass. Furthermore, the vertical control force acting on the object at
time t is denoted by u(t).

We define the jump and the average of a function f defined on [−l, l] by J f K =
f (l)− f (−l) and 〈 f 〉 = 1

2 ( f (l) + f (−l)), respectively. Moreover, fi = f |I stands for
the restriction of f to the interior domain I and fe = f |E denotes the restriction of f to
the exterior domain E .

6.1.2 Observation and strategy

The departure point of our derivation of the control system describing the interaction
of the floating body with the fluid is a nonlinear model introduced in Lannes [67],
where the fluid fills an infinite strip in the horizontal direction. Taking the control term
into account, the governing equations of the floating body system in the fluid domain
Ω(t) can be obtained from the conservation laws of the total energy and of the volume
of the water. In this case, the interior surface pressure Pi is not only determined by the
fluid dynamics, but also by the external vertical force below the floater. We show that
Pi satisfies a second-order elliptic equation, and its source term and boundary term
are given in terms of δ, 〈qi〉 and the exterior functions ζe, qe. Based on the nonlinear
shallow water equations and Newton’s equation, we derive the equations for δ and 〈qi〉
and find that their source terms again consist of the exterior functions, respectively. In
this way, the whole system can be converted to an initial boundary value problem
defined only in the exterior domain E . Furthermore, it can be reformulated as a first-
order evolution equation, which is good for deriving the linearized version for the
control topic in the following sections.

Our main interest is to study the reachable space of the linearized control system.
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This space is formed of all the states that can be reached from equilibrium by means of
L2 controls u. Assuming that the state of the control system is z with the state space X,
for every τ > 0, the bounded linear map Φτ : L2([0, ∞); U) → X is called an input-to-
state map (briefly, input map) with zero initial data (i.e. z0 = 0) defined by

Φτu = z(τ) ∀ u ∈ L2
loc([0, ∞); U)). (6.1)

To describe the reachable space Ran Φτ, for every τ > 0, we could consider proving
an observability inequality and then apply the closed graph theorem. For the stabilia-
bility properties, we use the general stability results presented in Chapter 3. All these
analysis are based on a detailed description of the spectral structure of the evolution
operators involved in the control system.

6.2 Nonlinear modelling of floating object - shallow water in-
teraction

In this section, we derive the nonlinear governing equations describing the motion of
the floating object in the fluid domain Ω(t), in the presence of a control applied from
the bottom of the object. We follow the approach developed in [17, 67] with modifica-
tions to include the external force u(t) and the presence of the vertical boundaries of
the water tank. Here we assume that the fluid fills the domain Ω(t), that it is homo-
geneous, incompressible, inviscid and irrotational. We also assume that we are here
in a configuration where wave motion is correctly described by the nonlinear shallow
water equations. We first know from [67] that the nonlinear shallow water equations with
a floating structure are given, for every t > 0 and x ∈ R, by

∂tζ + ∂xq = 0,

∂tq + ∂x

(
q2

h

)
+ gh∂xζ = −h

ρ
∂xP,

(6.2)

where ζ, q and h have been introduced in Section 6.1.1, g is the gravity acceleration.
The surface pressure P(t, x) in (6.2) restricted to the exterior domain E is zero, i.e.

Pe = 0,

while the interior pressure Pi(t, x) is unknown and it is determined by the motion of
the fluid below the object and also the control signal u. We denote by ζw(t, x) the
parameterization of the part of the bottom of the object in contact with the fluid (the
subscript ”w” represents the ”wetted” part of the object). Therefore, we have the water
surface in the interior domain I that matches the bottom of the object, i.e.

ζw(t, x) = ζi(t, x) ∀ x ∈ I . (6.3)

It is not difficult to see that we have the relation

ζw(t, x) = δ(t) + heq(x)− h0 ∀ x ∈ I . (6.4)

Moreover, we obtain from (6.4) that ∂tζw = δ̇, which is the kinematic condition on the
water surface (i.e. the vertical velocity of the water surface below the object is con-
sistent with the velocity of the object in the vertical direction). We consider in what
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follows restricting the model (6.2) to the interval [−L, L′],−L and L′ being the horizon-
tal coordinates of the water tank Ω(t), in particular with the control term. To this end,
we observe that the following conditions need to be satisfied:

• The conservation of the volume of the water.

We first notice that the two vertical boundary of Ω(t) are impermeable, which
implies that

q(t,−L) = 0 = q(t, L′). (6.5)

Based on this condition, the conservation of the volume of the water means that

∂t

∫
E∪I

ζ(t, x)dx = 0,

which implies by a simple calculation that

qi(t,±l) = qe(t,±l). (6.6)

• The conservation of the total energy of the fluid-structure system.

We denote by Ef and Es the mechanical energy of the fluid and the mechanical
energy of the solid, respectively. Because of the existence of the vertical force u,
the total energy of the floating object system Etot(t) = Ef(t) + Es(t) should satisfy

d
dt

Etot(t) = u(t)δ̇(t). (6.7)

To ensure the conservation of the energy, we can obtain from the equation (6.7)
the boundary conditions for the interior pressure Pi. We give a detailed analysis
about this in the following subsection.

6.2.1 Governing equations of the floating body system with control

Based on the second conservation law on the energy of the fluid-structure system, we
derive the boundary conditions of the surface pressure Pi at the two contact points
x = ±l. To do this, we first note that the mechanical energy of the object Es is

Es(t) = mgδ(t) +
1
2

mδ̇2(t).

Recalling the definition of the horizontal discharge q(t, x), it is not difficult to see that
the mechanical energy of the fluid Ef is

Ef(t) =
ρ

2

∫
E∪I

(
gζ2(t, x) +

q2

h
(t, x)

)
dx.

Note that we have Newton’s law for the motion of the object with the control u im-
posed from its bottom,

mδ̈(t) =
∫ l

−l
Pi(t, x)dx−mg + u(t), (6.8)
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which means that the motion of the object is determined by its weight, the hydro-
dynamic force and the external force. Moreover, as the object at equilibrium satisfies
Archimedes’ principle, we have

m = ρ
∫ l

−l

(
h0 − heq(x)

)
dx. (6.9)

Therefore, combining with Newton’s law (6.8) we obtain

mδ̈(t) =
∫ l

−l
Pi(t, x) + ρg

(
heq(x)− h0

)
dx + u(t).

For the sake of convenience, we introduce the hydrodynamic interior pressure

Πi := Pi + ρgζw. (6.10)

Finally, taking the relation (4.68) into account we arrive at

mδ̈(t) + 2lρgδ(t) =
∫ l

−l
Πi(t, x)dx + u(t). (6.11)

Based on the above analysis, we give in the following proposition the boundary con-
dition of the interior pressure. To present it clearly, we define the energy flux F as

F(ζ, q) = q (ρgζ + Pi +B) with B =
ρq2

2h2 . (6.12)

Remark 37. Actually, the energy density E of the system (6.2) is defined as

E(ζ, q) =
ρ

2

(
gζ2(t, x) +

q2

h
(t, x)

)
.

According to the structure of the system (6.2), we have

∂tE+ ∂xF = P∂xq. (6.13)

Proposition 6.2.1. Assume that the quantities ζ, q, h, δ and P introduced above are smooth
on I and E . Then the total energy of the fluid-structure system Etot satisfies

d
dt

Etot(t) = JFe − FiK+ u(t)δ̇(t).

Therefore, if the hydrodynamic pressure Πi satisfies the boundary condition

Πi(t,±l) = ρgζe(t,±l) +Be(t,±l)−Bi(t,±l), (6.14)

the total energy is conserved in the sense of (6.7).

Proof. We first note that the variation of the mechanical energy of the solid Es satisfies

d
dt

Es(t) = δ̇(t)
∫ l

−l
Pi(t, x)dx + u(t)δ̇(t),
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where we used the fact (6.8). For the mechanical energy of the fluid Ef, using the
relation (6.13) we have

d
dt

Ef(t) =
∫
E∪I

(−∂xF+ P∂xq) dx = JFe − FiK− δ̇(t)
∫ l

−l
Pi(t, x)dx.

In the above calculation, we used the boundary conditions (6.5), which implies that
F(t,−L) = 0 = F(t, L′). It follows that

d
dt

Etot(t) =
d
dt

(Ef(t) + Es(t)) = JFe − FiK+ u(t)δ̇(t).

Moreover, combined with the continuity of the horizontal discharge (6.6), the bound-
ary equations (6.14) are equivalent to JFeK = JFiK. Therefore, if Πi satisfies (6.14), the
mechanical energy of the fluid-structure system is conserved.

Remark 38. According to the definition of the hydrodynamic pressure Πi in (6.10), we
obtain from (6.14) the corresponding boundary conditions for the pressure Pi,

Pi(t,±l) = ρg (ζe(t,±l)− ζi(t,±l)) + (Be(t,±l)−Bi(t,±l)) .

It is worthwhile noting that actually Bi(t,±l) is fully determined by δ and 〈qi 〉.
Indeed, we denote by hw(t, x) the height of the water column in the interior domain I .
By the definition of h and (4.68) we know that

hw(t, x) = h0 + ζw(t, x) = heq(x) + δ(t) ∀ x ∈ I . (6.15)

Together with (6.3) and the kinematic condition ∂tζw = δ̇, we obtain that the system
(6.2) restricted to the interior domain, for all t > 0 and x ∈ I , reads

∂xqi = −δ̇,

∂tqi + ∂x

(
q2

i
hw

)
+ ghw ∂xζw = −hw

ρ
∂xPi.

(6.16)

The first equation in (6.16) implies that

qi(t, x) = −x δ̇(t) + 〈qi〉 ∀ x ∈ I . (6.17)

Recalling the definition of B in (6.12) we have

Bi(t,±l) =
ρ

2

(
qi(t,±l)
hw(t,±l)

)2

=
ρ

2

( ∓l δ̇(t) + 〈qi〉
heq(±l) + δ(t)

)2

.

Up to now, we obtain the governing equations describing the dynamics of the float-
ing object in the rectangular domain Ω(t) with the control term u. For the sake of
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convenience, we put all the equations together as follows, for all t > 0,

∂tζ + ∂xq = 0 x ∈ I ∪ E , (6.18a)

∂tq + ∂x

(
q2

h

)
+ gh∂xζ = −h

ρ
∂xP x ∈ I ∪ E , (6.18b)

Pe(t, x) = 0 x ∈ E , (6.18c)
ζi(t, x) = δ(t) + heq(x)− h0 x ∈ I , (6.18d)
Pi(t,±l) = ρg (ζe(t,±l)− ζi(t,±l)) +Be(t,±l)−Bi(t,±l), (6.18e)

mδ̈(t) =
∫ l

−l
Pi(t, x)dx−mg + u(t), (6.18f)

qe(t,−L) = 0 = qe(t, L′), qi(t,±l) = qe(t,±l), (6.18g)

with the given initial data

ζ(0, x) = ζ0(x), q(0, x) = q0(x), δ(0) = δ0, δ̇(0) = δ1 ∀ x ∈ I ∪ E .

Remark 39. There is another interesting formulation for the governing equations (6.18).
As in [80], we can define the Langrangian L and the action functional S as

L(ζ, q, δ) = (Kf + Ks)− (Uf + Us),

S(ζ, q, δ) =
∫ τ

0
(L(ζ, q, δ) + uδ) dt ∀ τ > 0,

where Kf and Uf are the kinetic energy and the potential energy of the fluid, respec-
tively. Similarly, Ks and Us denote the corresponding energies for the solid. The equa-
tions (6.18) can be alternatively obtained by using the Hamiltonian principle (see, for
instance, [89]) with the equations (6.18a) and (6.18d) as constraints. The approach pre-
sented here is more convenient to generalize the model to a fluid decscribed by the
Boussinesq equations (which are not necessarily Hamiltonian) or even by the Serre-Green-
Naghdi equations, which are more precise approximation of the water waves system
(please refer to [66, 67, 68] and also thereins).

6.2.2 Reformulation of the governing equations

In this part, we reformulate the governing equations (6.18) as a first-order evolution
system, which will be convenient for the control issue in Section 6.3. Observe that we
already have (6.17) for the interior horizontal discharge qi. In what follows we shall
derive the equations for δ and 〈qi〉. To this end, we first show that the hydrodynamic
pressure Πi satisfies a boundary value problem of a second-order elliptic equation.

Proposition 6.2.2. The hydrodynamic interior pressure Πi defined in (6.10) is the unique
solution of the boundary problem− ∂x

(
hw

ρ
∂xΠi

)
= −δ̈ + ∂2

x

(
q2

i
hw

)
,

Πi(t,±l) = ρgζe(t,±l) +Be(t,±l)−Bi(t,±l),
(6.19)

where t > 0 and x ∈ I .
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Proof. The boundary condition of Πi has been given in (6.14). Taking the derivative of
the second equation in (6.16) with respect to x and using the definition (6.10) and the
first equation of (6.16), we obtain (6.19) directly.

Recall that we assumed that the bottom of the object is possibly non-flat but sym-
metric with respect to x = 0, which implies that x 7→ heq(x) is an even function. To
derive the equations for δ and 〈qi〉, Proposition 6.2.2 and the interior equations (6.16)
will play an important role in the following analysis.

Proposition 6.2.3. Assume that Pi, qi and δ are smooth solutions of the interior equations in
(6.18), then 〈qi〉 satisfies

α(δ)
d
dt
〈qi〉+ α′(δ)δ̇〈qi〉 = −

1
2ρl

Jρgζe +BeK, (6.20)

where B is defined in (6.12) and

α(δ) =
1
2l

∫ l

−l

1
hw

dx, α′(δ) = − 1
2l

∫ l

−l

1
h2

w
dx, (6.21)

with hw in (6.15).

Proof. The proof presented here is a simplification of the proof provided in [17], in the
presence of additional dispersive terms, where the system is described by the Boussi-
nesq equations rather than the nonlinear shallow water equations. Firstly, note that
(6.15) and (6.17) imply that

1
2l

∫ l

−l

qi

hw
dx =

1
2l

∫ l

−l

〈qi〉
hw

dx = α〈qi〉,

where we used the property heq(x) = heq(−x), for every x ∈ (−l, l). Recalling the
definition of the hydrodynamic pressure Πi in (6.10), we take an integration of the
second equation in (6.16) with respect to x, which gives

2l α
d
dt
〈qi〉+

s
q2

i
h2

w

{
+
∫ l

−l

q2
i

h3
w

∂xhw dx = −1
ρ

JΠiK . (6.22)

By using (6.17) we find that∫ l

−l

q2
i

h3
w

∂xhw dx = −2 δ̇〈qi〉
∫ l

−l

x∂xhw

h3
w

dx.

According to the boundary condition of Πi in Proposition 6.2.2, we have

JΠiK = Jρgζe +Be −Bi K .

Moreover, we obtain from (6.17) that
q

q2
i
y
= q2

i (t, l)− q2
i (t,−l) = −4l δ̇〈qi〉,

which yields that
s

q2
i

h2
w

{
= −4l

〈
1

h2
w

〉
δ̇〈qi〉, JBiK =

ρ

2

s
q2

i
h2

w

{
= −2lρ

〈
1

h2
w

〉
δ̇〈qi〉.
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Therefore, the equation (6.22) becomes

α
d
dt
〈qi〉 −

〈
1

h2
w

〉
δ̇〈qi〉 − δ̇〈qi〉

1
l

∫ l

−l

x∂xhw

h3
w

dx = − 1
2ρ l

Jρgζe +Be K ,

which implies (6.20) by using integration by parts for α′ introduce in (6.21).

Based on Newton’s laws (6.11) and the second-order elliptic system (6.19), next we
derive the equations for δ. It is worthwhile noting that there is an external force u on
the right side of (6.23), which does not appear in the equations obtained in [17, 67].

Proposition 6.2.4. For smooth solutions of the system (6.18), the displacement of the center of
gravity of the object δ satisfies

M(δ) δ̈− 2ρ lβ(δ) δ̇2 + 2ρgl δ = 2l 〈ρgζe +Be〉+ ρ lα′(δ)〈qi〉2 + u, (6.23)

where α′(δ) has been introduced in (6.21) and

M(δ) = m +
∫ l

−l

ρ x2

hw
dx, β(δ) =

1
4l

∫ l

−l

x2

h2
w

dx. (6.24)

Proof. To derive (6.23), we first obtain from Newton’s laws presented in (6.11), by doing
integration by parts, that

m δ̈ + 2lρgδ = 2l 〈Πi〉 −
∫ l

−l
x ∂xΠi(t, x)dx + u. (6.25)

Taking an integration of the first equation of (6.19) with respect to x, we have

−hw

ρ
∂xΠi = −x δ̈ + ∂x

(
q2

i
hw

)
+ C0(t),

where C0(t) is an arbitrary function of t. Observe that the integration of an odd func-
tion on (−l, l) vanishes, which implies that

−
∫ l

−l
x ∂xΠi dx = −

∫ l

−l

ρ x2

hw
δ̈dx + ρ

∫ l

−l

x
hw

∂x

(
q2

i
hw

)
dx. (6.26)

Moreover, using integration by parts the second term on the right side of (6.26) gives

ρ
∫ l

−l

x
hw

∂x

(
q2

i
hw

)
dx = 2ρ l

〈
1

h2
w

〉
〈q2

i 〉 −
∫ l

−l

ρq2
i

hw
∂x

(
x

hw

)
dx.

Using (6.17) we immediately have

〈q2
i 〉 = l2 δ̇2 + 〈qi〉2,

−
∫ l

−l

ρq2
i

hw
∂x

(
x

hw

)
dx = −

∫ l

−l

(
ρ x2

hw
∂x

(
x

hw

)
δ̇2 +

ρ〈qi〉2
hw

∂x

(
x

hw

))
dx,

which yields that

−
∫ l

−l
x ∂xΠi dx = −δ̈

∫ l

−l

ρ x2

hw
dx + δ̇2

(
2ρ l

〈
x2

h2
w

〉
−
∫ l

−l

ρ x2

hw
∂x

(
x

hw

)
dx
)

+ 〈qi〉2
(

2ρ l
〈

1
h2

w

〉
−
∫ l

−l

ρ

hw
∂x

(
x

hw

)
dx
)

. (6.27)
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Furthermore, according to the definition of Πi in (6.10) and B in (6.12), together with
the boundary condition in (6.19), we have

〈Πi〉 = 〈ρgζe +Be −Bi〉, 〈Bi〉 =
〈

1
h2

w

〉(
ρ l2

2
δ̇2 +

ρ

2
〈qi〉2

)
. (6.28)

Based on the structure of the right side of (6.27), it is interesting to see, by using inte-
gration by parts, that

−
∫ l

−l

ρ

hw
∂x

(
x

hw

)
dx = −

∫ l

−l

ρ

h2
w

dx− 1
2

∫ l

−l
ρ x∂x

(
1

h2
w

)
dx

= −1
2

∫ l

−l

ρ

h2
w

dx− ρ l
〈

1
h2

w

〉
, (6.29)

and

−
∫ l

−l

ρ x2

hw
∂x

(
x

hw

)
dx = −

∫ l

−l

ρ x2

h2
w

dx− 1
2

∫ l

−l
ρ x3∂x

(
1

h2
w

)
dx

=
1
2

∫ l

−l

ρ x2

h2
w

dx− ρ l3
〈

1
h2

w

〉
. (6.30)

Now we go back to (6.25), putting together (6.27), (6.28), (6.29) and (6.30), and we
obtain (6.23) immediately.

According to the equations (6.20) and (6.23), we see that, for given initial data, the
average horizontal discharge 〈qi〉 and the displacement δ are totally determined by the
functions in the exterior domain E . Therefore, the governing equations (6.18) can be
reduced to a non-linear shallow water system restricted to the exterior domain. Here
again, in the absence of the external force u(t), the corresponding result can be deduced
from [17] by neglecting the dispersive terms.

Theorem 6.2.5. For smooth solutions, the system (6.18) can be equivalently rewritten into the
following transmission system defined in the exterior domain E , i.e. for every t > 0, x ∈ E ,

∂tζ + ∂xq = 0,

∂tq + ∂x

(
q2

h

)
+ gh∂xζ = 0,

(6.31)

with transmission conditions

〈q〉 = 〈qi〉, JqK = −2lδ̇, (6.32)

and boundary conditions
q(t,−L) = 0 = q(t, L′).

Moreover, the discharge 〈qi〉 and the displacement δ are determined, for every t > 0 and x ∈ E ,
by α(δ)

d
dt
〈qi〉+ α′(δ)δ̇〈qi〉 = −

1
2ρl

Jρgζe +BeK ,

M(δ) δ̈− 2ρ lβ(δ) δ̇2 + 2ρgl δ− ρ lα′(δ)〈qi〉2 = 2 l 〈ρgζe +Be〉+ u,
(6.33)

where B is introduced in (6.12), α(δ) and α′(δ), M(δ) and β(δ) are defined in (6.21) and
(6.24), respectively.
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Proof. Recalling the continuity condition (6.6) and the equation (6.17), we first obtain
the transmission conditions (6.32). For given initial data of ζ, q, 〈qi〉, δ and δ̇, the cou-
pled system (6.31) and (6.33), with transmission and boundary conditions for q, form a
closed initial boundary value problem.

According to Theorem 6.2.5, we can further rewrite the system (6.31)-(6.33) into a
first-order evolution system in terms of ζ, q, 〈qi〉, δ and δ̇. This is straightforward and
we have the following corollary.

Corollary 6.2.6. For smooth solutions, the system (6.18) is equivalent to the following first-
order evolution system, i.e. for every t > 0 and x ∈ E ,

∂tζ = −∂xq,

∂tq = −∂x

(
q2

h

)
− gh∂xζ,

d
dt

〈qi〉
δ
δ̇

 = Q−1(α, M)

 −α′δ̇〈qi〉 − 1
2ρl Jρgζ +BK

δ̇
2ρ lβ δ̇2 − 2ρgl δ + ρ lα′ 〈qi〉2 + 2l 〈ρgζ +B〉+ u

 ,

(6.34)

with transmission conditions

〈q〉 = 〈qi〉, JqK = −2lδ̇,

and boundary conditions
q(t,−L) = 0 = q(t, L′),

where the matrix Q(α, M) in (6.34) is defined as

Q(α, M) =

α(δ) 0 0
0 1 0
0 0 M(δ)

 ,

the quantity B is introduced in (5.26), α(δ) and α′(δ), M(δ) and β(δ) are defined in (5.17)
and (6.24), respectively.

Remark 40. The well-posedness theory for (6.31)-(6.33) is a delicate question, due to
the nonlinear couplings: the boundary conditions (6.32) of the hyperbolic problem
(6.31) require the knowledge of 〈qi〉 and δ. Conversely, the equations (6.33) require
the knowledge of the trace of ζ and q at the contact points x = ±l. An interesting
question, which lies outside the scope of the present work, is to adapt to our case the
local existence theory developed in [59] in the case of an unbounded fluid domain and
without control.

6.3 Well-posedness and spectral analysis for the linear system

In this section, we shall work on the linearized version of the first-order evolution sys-
tem associated with (6.31)-(6.33). Before studying the control problem in Section 6.4,
we first present the linearized model and establish its well-posedness. In the second
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part of this section, we focus on the spectral analysis of the semigroup generator asso-
ciated with this linearized equation.

Linearizing the system (6.31)-(6.33) in Theorem 6.2.5 around the equilibrium state[
ζ q 〈qi〉 δ δ̇

]ᵀ
=
[

0 0 0 0 0
]ᵀ, we obtain, for all t > 0 and x ∈ E ,

∂tζ = −∂xq,
∂tq = −gh0 ∂xζ,
d
dt
〈qi〉 = −

g
2lα

Jζ K,

δ̈ = −2ρgl
M

δ +
2ρgl

M
〈ζ 〉+ 1

M
u,

(6.35)

with transmission conditions

〈q〉 = 〈qi〉, JqK = −2lδ̇,

and boundary conditions
q(t,−L) = 0 = q(t, L′),

and the given initial data

ζ(0, x) = ζ0(x), q(0, x) = q0(x), 〈qi〉(0) = 〈qi〉0, δ(0) = δ0, δ̇(0) = δ1.

The constants α and M in (6.35) are

α = α(0) M = M(0), (6.36)

where α(δ) and M(δ) have been defined in (6.21) and (6.24), respectively.

Remark 41. A more intuitive and more general way to linearize the floating body sys-
tem (6.31)-(6.33) is to write them in dimensionless form by using the nonlinearity pa-
rameter ε defined by

ε =
a
h0

,

where a is the typical amplitude of the waves. Then the associated linear system can
be obtained by ignoring all the terms including ε in the dimensionless version of (6.31)-
(6.33). This commonly used approach has been introduced in [66] and [68].

6.3.1 Well-posedness of the linearized system

Observe that our system has been recast in the exterior domain E , so we need to rewrite
the energy of the whole system in terms of the exterior functions. Recalling that the
mechanical energy for the fluid and for the object are presented in Section 6.2, we
decompose the total energy of the linearized system (6.35) into the interior part Eint
and the exterior part Eext as follows:

Eext(t) =
ρ

2

∫
E

(
q2

h0
(t, x) + gζ2(t, x)

)
dx,

Eint(t) =
ρ

2

∫
I

(
q2

heq
(t, x) + gζ2(t, x)

)
dx +

1
2

mδ̇2 + mgδ.
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The underline in the notation E represents the corresponding energy for linear system.
Using the relation (4.68), (6.15) and (6.17), together with Archimedes’ principle (6.9),
we obtain that

Eint(t) =
1
2

δ̇2
(

m +
∫
I

ρ x2

heq
dx
)
+ 〈qi〉2

∫
I

ρ

2heq
dx +

ρg
2

∫
I

(
heq(x)− h0

)2 dx + ρglδ2.

Therefore, we conclude that the total energy for (6.35), denoted by Etot, is

Etot(t) =
ρ

2

∫
E

(
q2

h0
(t, x) + gζ2(t, x)

)
dx +

1
2

Mδ̇2 + 〈qi〉2ρ l α

+ ρgl δ2 +
ρg
2

∫
I

(
heq(x)− h0

)2 dx, (6.37)

where α and M are introduced in (6.36).
Based on the formula of the total energy Etot in (6.37), we introduce the Hilbert

space X defined by

X =

{[
ζ q 〈qi〉 δ η

]ᵀ ∈ (L2(E)
)2 ×C3

∣∣∣∣ ∫E ζ(x)dx + 2l δ = 0
}

, (6.38)

endowed with the inner product

〈
ζ
q
〈qi〉

δ
η

 ,


ζ̃
q̃
〈q̃i〉

δ̃
η̃


〉

X

=
ρg
2
〈ζ, ζ̃〉L2(E)+

ρ

2h0
〈q, q̃〉L2(E)+ ρ lα〈qi〉〈q̃i〉+ ρglδ δ̃+

M
2

η η̃.

(6.39)

Remark 42. We can see from (6.37) that the total energy only depends on the functions
δ, 〈qi〉, ζ and q with the space variable x ∈ E . The condition∫

E
ζ(x)dx + 2l δ = 0

in the definition of the space X is motivated by the conservation of the volume.

Equations (6.35) determine a well-posed linear control system (also called abstract
linear control system in Weiss [119] or Tucsnak and Weiss [115]), with state space X
defined in (6.38) and control space U = C, by choosing the appropriate spaces and
operators. More precisely, let A : D(A)→ X and B ∈ L(U, X) be defined by

A =


0 − d

dx 0 0 0
−gh0

d
dx 0 0 0 0

− g
2lαJ·K 0 0 0 0
0 0 0 0 1

2
M ρgl〈·〉 0 0 − 2

M ρgl 0

 , B =


0
0
0
0
1
M

 , (6.40)
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with

D(A) =

{[
ζ q 〈qi〉 δ η

]ᵀ ∈ (H1(E)
)2 ×C3

∣∣ ∫
E ζ(x)dx + 2l δ = 0,

JqK = −2l η, 〈q〉 = 〈qi〉 and q(−L) = 0 = q(L′)

}
. (6.41)

In other words, with the above choice of spaces and operators, the initial boundary
value problem of the system (6.35) can be rewritten as{

ż = Az + Bu,
z(0) = z0,

(6.42)

where z and z0 are

z =
[

ζ q 〈qi〉 δ δ̇
]ᵀ , z0 =

[
ζ0 q0 〈qi〉0 δ0 δ1

]ᵀ .

The well-posedness of the linearized fluid-structure system (6.42) is a direct conse-
quence of the fact that B ∈ L(U, X) and of following result:

Proposition 6.3.1. The operator A : D(A) → X defined in (6.40)–(6.41) is skew-adjoint.
Therefore, it generates a group of unitary operators on the Hilbert space X. Moreover, A has
compact resolvents.

Proof. We first show that A is skew-symmetric. For the sake of simplicity the compu-
tations leading to the property are performed looking to X as a Hilbert space over R.
For every z =

[
ζ q 〈qi〉 δ η

]ᵀ ∈ D(A), using the inner product defined in (6.39)
we have

〈Az, z〉X = −ρg
2

(〈
dq
dx

, ζ

〉
L2(E)

+

〈
dζ

dx
, q
〉

L2(E)
+ JζeK〈qi〉 − 2l〈ζe〉η

)
.

By using an integration by parts, we get

−
〈

dq
dx

, ζ

〉
L2(E)

= J(ζq)e K+
〈

q,
dζ

dx

〉
L2(E)

.

Note that the boundary conditions in D(A) implies that

q(l) = 〈qi〉 − lη, q(−l) = 〈qi〉+ lη,

which, by a simple calculation, gives that

〈Az, z〉X = 0.

According to [115, Section 3.7], we thus obtain that the operator A is skew-symmetric.
Secondly, we prove that A is onto. For every f =

[
f1 f2 f3 f4 f5

]ᵀ ∈ X, let us
solve the equation

A


ζ
q
〈qi〉

δ
η

 =


− dq

dx

−gh0
dζ
dx

− g
2lαJζeK

η
2
M ρgl〈ζe〉 − 2

M ρglδ

 =


f1
f2
f3
f4
f5

 with


ζ
q
〈qi〉

δ
η

 ∈ D(A), (6.43)
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which immediately implies that η = f4. Solving the equation from the first component
of (6.43), i.e. − dq

dx = f1 with the boundary conditions q(−L) = 0 and q(L′) = 0, we
obtain

q(x) =


−
∫ x

−L
f1(ξ)dξ ∀ x ∈ (−L,−l),∫ L′

x
f1(ξ)dξ ∀ x ∈ (l, L′ ).

(6.44)

Similarly, from the second equation we get

ζ(x) =


− 1

gh0

∫ x

−L
f2(ξ)dξ + c1 := F(x) + c1 ∀ x ∈ (−L,−l),

1
gh0

∫ L′

x
f2(ξ)dξ + c2 := G(x) + c2 ∀ x ∈ (l, L′ ),

(6.45)

where the constants c1 and c2 are to be determined. The above formula, together with
the last component of (6.43), gives the expression for δ:

δ =
1
2
(F(−l) + G(l) + c1 + c2)−

M
2ρgl

f5.

Moreover, we derive from the third equation of (6.43) that

− g
2lα

(G(l)− F(−l) + c2 − c1) = f3. (6.46)

Note that the functions ζ and δ must satisfy the condition for the conservation of the
volume ∫

E
ζ(x)dx + 2lδ = 0,

which implies that

Lc1 + L′c2 =
M
ρg

f5 −
∫ −l

−L
F(x)dx−

∫ L′

l
G(x)dx− G(l) l − F(−l) l. (6.47)

Combining (6.46) and (6.47), we can determine the constants c1 and c2 in (6.45). Ac-
cording to the continuity of the discharge (6.6) and (6.44), we have 〈qi〉 = 〈q〉 =
1
2 (q(l) + q(−l)). Finally, we still need to verify that JqK = −2lη. Since f ∈ X, we have∫
E f1(x)dx + 2 l f4 = 0, which, together with (6.44), implies that JqK = −2l f4 = −2lη.

Thus we have found z =
[
ζ q 〈qi〉 δ η

]ᵀ ∈ D(A), so that (6.43) holds.
According to a classical result [115, Proposition 3.7.2], we conclude that A is skew-

adjoint and 0 ∈ ρ(A). By Stone’s theorem (see, for instance, [115, Theorem 3.8.6]), A
generates a unitary group on X. Moreover, it is not difficult to see that D(A) is com-
pactly embedded in the state space X, which implies that the operator A has compact
resolvents.

Based on Proposition 6.3.1, we denote by T = (Tt)t∈R the strongly continuous group
(also called C0-group) generated by the operator A. Note that B ∈ L(C, X), which is of
course an admissible control operator (for this concept, see, for instance, [115, Chapter
4]). Therefore, (A, B) forms a well-posed linear control system (see Definition 4.3.1).
According to the classical semigroup theory, we have the following conclusion.
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Theorem 6.3.2. For u ∈ L2
loc[0, ∞), the initial data z0 =

[
ζ0 q0 〈qi〉0 δ0 δ1

]ᵀ ∈ X, the
linear system (6.42) admits a unique mild solution z. This solution is given by

z(t) = Ttz0 +
∫ t

0
Tt−σBu(σ)dσ,

and it satisfies
z ∈ C([0, ∞); X).

6.3.2 Spectral analysis

In this part, we focus on the study of the spectral structure of the operator A intro-
duced in (6.40)–(6.41). Note that the operator A is skew-adjoint, the eigenvalues of A
are purely imaginary, i.e. σ(A) ⊂ iR. We give in the following proposition the charac-
teristic equation for the eigenvalues and the formula for the corresponding eigenvec-
tors.

Proposition 6.3.3. For the operator A introduced in (6.40)–(6.41), iω with ω ∈ R is the
eigenvalues of A if and only if ω satisfies

−
√

g
h0

[
2ρl2ω + (Mω2 − 2ρgl)

1
lαω

] (
fω(L)gω(L′) + fω(L′)gω(L)

)
+ 2(Mω2 − 2ρgl) fω(L) fω(L′) +

4ρgl
h0α

gω(L)gω(L′) = 0, (6.48)

where α and M are given in (6.36), fω and gω are defined as

fω(x) = sin

(
ω√
gh0

(x− l)

)
, gω(x) = cos

(
ω√
gh0

(x− l)

)
. (6.49)

Moreover, φ =
[

ϕ ψ c a b
]ᵀ is an eigenvector corresponding to the eigenvalue iω if and

only if

ϕ(x) =


iK1√
gh0

cos

(
ω√
gh0

(L + x)

)
∀ x ∈ (−L,−l),

− iK2√
gh0

cos

(
ω√
gh0

(L′ − x)

)
∀ x ∈ (l, L′),

(6.50)

ψ(x) =


K1 sin

(
ω√
gh0

(L + x)

)
∀ x ∈ (−L,−l),

K2 sin

(
ω√
gh0

(L′ − x)

)
∀ x ∈ (l, L′),

(6.51)

and
c =

1
2
(ψ(l) + ψ(−l)),

a =
i

2ωl
(ψ(l)− ψ(−l)), b = − 1

2 l
(ψ(l)− ψ(−l)),

(6.52)

where K1, K2 are not simultaneously vanishing real numbers (not necessarily independent).
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Proof. Let φ =
[

ϕ ψ c a b
]ᵀ ∈ D(A) be the eigenvector of the operator A corre-

sponding to the eigenvalue iω with ω ∈ R. To obtain the formula of φ, we solve the
equation

A


ϕ
ψ
c
a
b

 =


− dψ

dx

−gh0
dϕ
dx

− g
2lαJϕK

b
2
M ρgl〈ϕ〉 − 2

M ρgla

 = iω


ϕ
ψ
c
a
b

 , (6.53)

where α and M are introduced in (6.36). Recalling the definition of D(A) in (6.41), we
have

ψ(−L) = 0 = ψ(L′),
∫
E

ϕ(x)dx + 2 la = 0, (6.54)

and
JψK = −2 l b, 〈ψ〉 = c. (6.55)

Combining the first two equations in (6.53), we obtain a second-order differential equa-
tion for ψ

d2ψ

dx2 = − ω2

gh0
ψ ∀ x ∈ E ,

which, together with the boundary condition in (6.54), implies that ψ takes the form
(6.51). In (6.51), K1 and K2 are not simultaneously zero. Notice that −dψ

dx = iω ϕ, we
further obtain (6.50). Using the relation between ϕ and a in (6.54), we derive that

a =
i

2ωl
(ψ(l)− ψ(−l)),

which further, by using the fourth equation of (6.53), implies that

b = − 1
2 l

(ψ(l)− ψ(−l)).

Taking the conditions (6.55) into account, we have

c =
1
2
(ψ(l) + ψ(−l)).

This, together with the third and the last components of (6.53), imply that the imagi-
nary part of the eigenvalue ω satisfies

i g
lαω

(ϕ(l)− ϕ(−l)) = ψ(l) + ψ(−l),

ρgl
M

(ϕ(l) + ϕ(−l)) =
(

iρg
Mω
− iω

2 l

)
(ψ(l)− ψ(−l)),

(6.56)

where α and M are given in (6.36). Using the formula (6.50) and (6.51), the system
(6.56) yields that[√

g
h0

1
lαω

gω(L)− fω(L)
]

K1 +

[√
g
h0

1
lαω

gω(L′)− fω(L′)
]

K2 = 0, (6.57)
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[√
g
h0

2ρ l2 ω gω(L)− (Mω2 − 2ρgl) fω(L)
]

K1

+

[
(Mω2 − 2ρgl) fω(L′)−

√
g
h0

2ρ l2 ω gω(L′)
]

K2 = 0, (6.58)

where fω and gω are introduced in (6.49). According to the knowledge of linear al-
gebra, the equations (6.57) and (6.58) admit non-trivial solutions

[
K1 K2

]ᵀ, if the de-
terminant of their coefficient matrix is zero. Therefore, we obtain the characteristic
equation (6.48).

Since A is skew-adjoint with compact resolvents (see Proposition 6.3.1), according
to a classical result (see, for instance, [115, Chapter 3]), we know that A is diagonal-
izable, also called Riesz-spectral operator, for instance, in [40]. We denote by (φk)k∈Z∗

an orthonormal basis in X consisting of eigenvectors of A and by (iωk)k∈Z∗ the cor-
responding purely imaginary eigenvalues. Observe that the coefficient matrix of the
system (6.57)–(6.58) can be zero, which implies that the roots of (6.48), i.e. the eigen-
values (iωk)k∈Z∗ , are not necessarily simple. We specify this situation in what follows.

Remark 43. Assume that κ := M− 2ρ l3α > 0 and that the parameters L, L′, l and h0
satisfy √

2ρ l
κh0

L′ − L
π

∈ Z, (6.59)

and

tan

(√
2ρ l
κh0

(L− l)

)
=

1
lα

√
κ

2ρ lh0
. (6.60)

(Recall that the constants M and α have been introduced in (6.36)). Then there exist
two double eigenvalues of A, denoted by iω+ and iω−, with

ω± = ±
√

2ρgl
κ

.

We are not able to confirm or to inform the existence of L, L′ > 0, l < min{L, L′}
and of a function heq to simultaneously satisfying the assumptions at the beginning
of this remark. However, it is clear that these conditions are, generically with respect
to the parameters listed above, not satisfied, so that the eigenvalues are generically
simple. Note that if there is at least one double eigenvalue then the system cannot
be controlled (even approximately) by a scalar input. The result below provides a
sufficient condition in a special case ensuring that all the eigenvalues of A are simple.

Proposition 6.3.4. Assume that the bottom of the floating object is flat. Let h0 > 2
√

2
3 l and

the function heq satisfies

h0 > heq >
1
2

(
h0 +

√
h2

0 −
8
3

l2

)
or 0 < heq 6

1
2

(
h0 −

√
h2

0 −
8
3

l2

)
. (6.61)

The all the eigenvalues of A are simple.
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Proof. Recalling the definition of heq, the flat bottom of the object implies that heq is a
positive constant function. Using (6.36), (6.21) and (6.24), it is not difficult to see that if
heq satisfies the condition (6.61) then M− 2ρ l3α 6 0. This excludes the situation of the
double eigenvalues discussed in Remark 43.

In order to study the reachability and stabilizability properties of the linearized
floating-body system in Section 6.4, it is necessary to make the inner structure of the
eigenvalues (the distance between the eigenvalues) clear for the explicit decay rate of
the solution of the control system (6.42).

Proposition 6.3.5. Assume that the eigenvalues (iωk)k∈Z∗ of the operator A are simple. Then
(ωk)k∈Z∗ form a strictly increasing sequence, i.e. lim

|k|→∞
|ωk| = ∞. Moreover, we assume that

L′−l
L−l is a real algebraic number of degree n with n ∈N (i.e. it is a root of a non-zero polynomial
of degree n in one variable with rational coefficients), then there exists C0 > 0 such that

inf
k∈Z∗
|ωk+1 −ωk| > C0 if

L′ − l
L− l

∈ Q and
L′ − l
L− l

6= r + 1
r

∀ r ∈ Z∗, (6.62)

inf
k∈Z∗
|k(ωk+1 −ωk)| > C0 otherwise. (6.63)

Proof. Since A is skew-adjoint with compact resolvents, according to [115, Proposition
3.2.12], the imaginary part of the eigenvalues (ωk)k∈Z∗ can be ordered to form a strictly
increasing sequence such that lim

|k|→∞
|ωk| = ∞. Therefore, it suffices to show that (6.62)

and (6.63) holds for |k| large enough. Noting that the functions fωk and gωk defined in
(6.49) are bounded for large values of |k|, we rewrite the equation (6.48) as

√
g
h0

(
M
lα

+ 2ρ l2
) (

fωk(L)gωk(L′) + fωk(L′)gωk(L)
)

ωk + rωk

= 2M fωk(L) fωk(L′)ω2
k , (6.64)

where rωk represents the remaining bounded terms. As |k| approaches to infinity, we
observe that the right hand side of (6.64) grows faster than the left side, thus we must
have

lim
|k|→∞

fωk(L) fωk(L′) = 0.

Based on this observation, the eigenvalues of A can be split into two subsequences
(iωmk)k∈Z∗ and (iωnk)k∈Z∗ , which is induced by fωk(L) → 0 and fωk(L′) → 0 as |k| →
∞, respectively. Therefore, there are two subsequences of Z∗: (mk)k∈Z∗ and (nk)k∈Z∗

such that, for |k| large enough, we have

ωmk = µmkπ + O(εmk) with lim
|k|→∞

εmk = 0,

ωnk = νnkπ + O(ε̃nk) with lim
|k|→∞

ε̃nk = 0,

where µ =

√
gh0

L−l and ν =

√
gh0

L′−l . For large |k|, substituting the first subsequence
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(ωmk)k∈Z∗ into the equation (6.64), we have

−
√

g
h0

(
M
lα

+ 2ρl2
) [

εmk cos
(

L′ − l
L− l

mkπ

)
+ sin

(
L′ − l
L− l

mkπ

)
+ O(ε2

mk
)

]
ωmk

+ 2M
[

εmk sin
(

L′ − l
L− l

mkπ

)
+ O(ε2

mk
)

]
ω2

mk
+ lower order terms = 0,

which implies that ωmk = O(ε−1
mk
) and thus we derive that εmk = O

(
mk
−1) for large |k|.

Similarly, we also obtain that ε̃nk = O
(
nk
−1). Notice that there is a gap between every

two elements both from the sequence (ωmk)k∈Z∗ or (ωnk)k∈Z∗ . Now we consider the
distance between (ωmk)k∈Z∗ and (ωnk)k∈Z∗ . Since the eigenvalues are strictly increas-
ing, we estimate the difference

∣∣ωp+1 −ωp
∣∣ = ∣∣∣∣pνπ

(
µ

ν
− p + 1

p

)
+ O

(
1
p

)∣∣∣∣ , (6.65)

where ωp ∈ (ωmk)k∈Z∗ and ωp+1 ∈ (ωnk)k∈Z∗ correspond to different type of the eigen-
values. If µ

ν = L′−l
L−l is a rational number but different with k+1

k for any k ∈ Z∗, we see
that there is a uniform gap between the eigenvalues of A. If µ

ν = k0+1
k0

for some k0 ∈ Z∗,
we obtain from (6.65) that the distance between the eigenvalues is of order 1

k . If µ
ν is not

a rational number, then it is an irrational algebraic number of degree n > 2. According
to Liouville’s approximation theorem (see, for instance, Stolarsky’s book [106, Chapter
3]), there exists a constant C > 0 such that∣∣∣∣µν − q

p

∣∣∣∣ > C
pn ,

for all rational numbers q
p . Hence, we derive from (6.65) that |ωp+1 −ωp| > c

p . Putting
all the cases together, we finish the proof.

Remark 44. We remark that the set of real algebraic numbers of degree n with n ∈ N

contains all rational numbers and some irrational numbers. All rational numbers form
the real algebraic numbers of degree 1, and the other part of the real algebraic numbers
are irrational algebraic numbers with n > 2. In particular, the irrational algebraic
numbers of degree 2 are called quadratic irrational numbers.

Remark 45. In the proof of Proposition 6.3.3, we have obtained the specific expression
for the eigenvectors φk =

[
ϕk ψk ck ak bk

]ᵀ, which is, for every k ∈ Z∗, given
by (6.50)–(6.52). Now we normalize φk in the Hilbert space X introduced in (6.38).
By using (6.50)–(6.52) and after elementary but tedious calculations, we check that for
every k ∈ Z∗ we have

‖φk‖2
X =

(
ρ lα
4

+
M
8 l2 +

ρ g
4ω2

k l

) (
K2

2 fωk(L′)2 + K2
1 fωk(L)2)

+

(
ρ lα
2
− M

4 l2 −
ρ g

2ω2
k l

)
K1K2 fωk(L) fωk(L′) +

ρ

2h0

(
K2

1(L− l) + K2
2(L′ − l)

)
,
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where α, M and fωk are defined in (6.36) and (6.49), respectively. Therefore, we obtain
the normalized engenvectors φ̂k := (γkφk)k∈Z∗ with ‖φ̂k‖X = 1, where γk is defined by

γ−2
k =

(
ρ lα
4

+
M
8 l2 +

ρ g
4ω2

k l

) (
K2

2 fωk(L′)2 + K2
1 fωk(L)2)

+

(
ρ lα
2
− M

4 l2 −
ρ g

2ω2
k l

)
K1K2 fωk(L) fωk(L′)

+
ρ

2h0

(
K2

1(L− l) + K2
2(L′ − l)

)
(k ∈ Z∗).

6.4 Reachability and stabilizability of the linearized system

6.4.1 Some background on controllability and reachable spaces

We begin by recalling some definitions on the controllability of general infinite dimen-
sional systems. We consider the abstract differential equation of the form{

ż(t) = Az(t) + Bu(t) ,
z(0) = z0,

(6.66)

where A is an infinitesimal generator of a strongly continuous semigroup T = (Tt)t>0
on a Hilbert space X, and B is an admissible control operator of the system (6.66) from
the input space U to the state space X. This operator is called bounded if B ∈ L(U, X),
which is the case of interest in this paper. At a given time t, the control u(t) belongs to
the input space U.

Using the semigroup T and the control operator B we can define the input maps
(Φτ)τ>0 (already appearing in (6.1)) by

Φτu =
∫ τ

0
Tτ−sBu(s)ds ∀ τ > 0, u ∈ L2

loc([0, ∞); U)). (6.67)

An important role in control theory is played by the range of the operators (Φτ)τ>0
defined in (6.67) and denoted, for every τ > 0, by Ran Φτ. For each τ > 0, Ran Φτ is
called the reachable space of the system (6.66) in time τ. These spaces appear, in particular,
in the definition of exact and approximate controllability which are recalled below (see,
for instance, [115, Chapter 11] or [40, Chapter 4]).

Definition 6.4.1. Let τ > 0.

1. The system (6.66) is exactly controllable in time τ if every element of X can be reached
from the origin at time τ, i.e. if

Ran Φτ = X;

2. The system (6.66) is approximately controllable in time τ if

Ran Φτ = X;

It is well known, see, for instance, [115, Chapter 6,8], that approximate controllabil-
ity can be characterized by duality as follows:

152



6.4. REACHABILITY AND STABILIZABILITY OF THE LINEARIZED SYSTEM

Proposition 6.4.2. Let τ > 0.

1. The system (6.66) is approximately controllable in time τ if and only if

B∗T∗t z = 0 ∀ t ∈ [0, τ] =⇒ z = 0.

2. Assume that A is skew-adjoint and with compact resolvents, so that there exists an or-
thonormal basis (φk)k∈Z∗ in X consisting of eigenvectors of A and let (iωk)k∈Z∗ , with
ωk ∈ R be the corresponding eigenvalues. Moreover, assume that the eigenvalues of A
are simple and that there exists m, γ > 0 such that

|ωk −ωl | > γ (k, l ∈ Z∗, k 6= l, |k| > m, |l| > m).

Then the following conditions are equivalent:

• The system (6.66) is approximately controllable in any time τ > 2π
γ ;

• B∗φk 6= 0 for every k ∈ Z∗.

6.4.2 Symmetric case

In this section we come back to the system (6.42), in the particular case of a symmetric
geometry and of initial data satisfying appropriate symmetry conditions. We show
that in this case the state trajectories of (6.42) coincide with those of a ”reduced” system
whose state space is a closed subspace of X defined in (6.38) and we study the reachable
spaces of this reduced system.

Let the floating object be in the middle of the fluid domain Ω in the horizontal
direction, i.e. L = L′, see Figure 6.1. We assume that, at the initial state, the floating
body system is at equilibrium state, i.e. for every x ∈ E ,

z0 =
[

ζ0 q0 〈qi〉0 δ0 δ1
]ᵀ

=
[

0 0 0 0 0
]ᵀ .

In this case, when the object moves in the vertical direction, the fluid on two sides
of the object goes in opposite directions. To describe this more clearly, we define the
Hilbert space Xsym by

Xsym =

{[
ζ q 0 δ η

]ᵀ ∈ (L2(E)
)2 ×C3

∣∣ ∫
E ζ(x)dx + 2l δ = 0

ζ(−x) = ζ(x), q(−x) = −q(x)

}
, (6.68)

with the inner product

〈
ζ
q
0
δ
η

 ,


ζ̃
q̃
0
δ̃
η̃


〉

Xsym

=
ρg
2
〈ζ, ζ̃〉L2(E) +

ρ

2h0
〈q, q̃〉L2(E) + ρgl δ δ̃ +

M
2

η η̃,

where M has been introduced in (6.36).
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Proposition 6.4.3. The Hilbert space Xsym introduced in (6.68) is T-invariant i.e.

Tt z ∈ Xsym ∀ t > 0, z ∈ Xsym,

where T = (Tt)t∈R is the unitary group generated by the operator A defined in (6.40).

Proof. Note that it is suffices to show that the system (6.35) preserves the symmetry
condition in the Hilbert space Xsym. Assume that the elevation ζ and the horizontal
discharge q satisfy (6.35) and have the following properties

ζ(t,−x) = ζ(t, x), q(t,−x) = −q(t, x) ∀ t > 0, x ∈ E . (6.69)

We define ζ̂ and q̂ as

ζ̂(t, x) = ζ(t,−x), q̂(t, x) = −q(t,−x) ∀ t > 0, x ∈ E ,

which implies that

〈qi〉 = −〈q̂i〉, JζeK = −Jζ̂eK, 〈ζe〉 = 〈ζ̂e〉.

It is not difficult to obtain the corresponding equation for ζ̂ and q̂, which implies that ζ̂
and q̂ also satisfy the system (6.35).

Note that the symmetric property (6.69) implies

Jζe K = 0 = 〈qe〉 = 〈qi〉 and 〈ζe〉 = ζe(t, l),

which simplify the linear control system (6.42). Since Xsym is a closed subspace of X
introduced in (6.38), we have the following decomposition

X = Xsym ⊕ X⊥sym. (6.70)

Remark 46. The word ”symmetric” in this section means that not only that the object
is in the center of the domain in the horizontal direction (L′ = L), but also that the
functions ζ and q satisfy the symmetry condition (6.69).

We thus obtain a new linear system on the spatial domain E . In this symmetric
case, the system (6.42) with zero initial data reduces to the following equations defined
on E , i.e. for all t > 0, x ∈ E , {

ẇ = Asymw + Bu,
w(0) = w0,

(6.71)

where w and w0 are

w =
[

ζ q 0 δ δ̇
]ᵀ , w0 =

[
0 0 0 0 0

]ᵀ .

The operator Asym : D(Asym)→ Xsym is densely defined as

Asym =


0 − d

dx 0 0 0
−gh0

d
dx 0 0 0 0

0 0 0 0 0
0 0 0 0 1

2
M ρgl〈·〉 0 0 − 2

M ρgl 0

 , (6.72)
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with the domain

D(Asym) =


[

ζ q 0 δ η
]ᵀ ∈ (H1(E)

)2 ×C3
∣∣∣[ζ q 0 δ η

]ᵀ ∈ Xsym,

JqK = −2l η, q(−L) = 0 = q(L)

 ,

(6.73)
where M is introduced in (6.36). The control operator B has been defined in (6.40) and
we clearly have B ∈ L(C, Xsym).

Note that Asym is the part of A in the closed subspace Xsym of X, so it inherits
from A the properties of being skew-adjoint and has compact resolvents. Therefore,
it is diagonalizable and generates a group of unitary operators, denoted by Tsym =
(Tsym,t)t∈R, on the Hilbert space Xsym defined in (6.68). Moreover, according to [115,
Section 2.4], it is interesting to see from Proposition 6.4.3 that Tsym is the restriction of
T to Xsym. Therefore, for u ∈ L2

loc[0, ∞), the linear system (6.71) is well-posed and the
solution w ∈ C([0, ∞); Xsym).

Remark 47. Since B ∈ L(C, Xsym), it is clear that the input maps of (A, B) and of
(Asym, B), the latter being defined by

Φsym,τu =
∫ τ

0
Tsym,τ−s Bu(s)ds ∀ u ∈ L2

loc([0, ∞); U)),

have the same range, i.e., that

Ran Φτ = Ran Φsym,τ ∀ τ > 0.

This means, in particular, that the orthogonal complement space X⊥sym in (6.70) is out of
control, justifying the fact that we concentrate on the reachability of the pair (Asym, B).

The spectrum of the operator Asym can be obtained, by using the properties (6.69),
from the spectrum of A discussed in Proposition 6.3.3. More precisely, we have:

Proposition 6.4.4. Assume that the object is in the middle of the fluid domain which has
the symmetry geometry in the sense (6.69). The eigenvalues of the operator Asym, denoted by
iωsym,k, and the corresponding eigenvectors φsym,k =

[
ϕsym,k ψsym,k 0 asym,k bsym,k

]ᵀ ∈
D(Asym), for all x ∈ E and k ∈ Z∗, are

ϕsym,k(x) =


iK√
gh0

cos

(
ωsym,k√

gh0
(L + x)

)
∀ x ∈ (−L,−l),

iK√
gh0

cos

(
ωsym,k√

gh0
(L− x)

)
∀ x ∈ (l, L),

(6.74)

ψsym,k(x) =


K sin

(
ωsym,k√

gh0
(L + x)

)
∀ x ∈ (−L,−l),

− K sin

(
ωsym,k√

gh0
(L− x)

)
∀ x ∈ (l, L),

(6.75)

and
asym,k =

i
ωsym,k l

ψsym,k(l), bsym,k = −
1
l

ψsym,k(l), (6.76)
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where K is an arbitrary constant and the imaginary part of the eigenvalues ωsym,k with k ∈ Z∗

satisfies

(Mω2
sym,k − 2ρgl) fωsym,k(L) =

√
g
h0

2ρ l2ωsym,k gωsym,k(L), (6.77)

with fωsym,k and gωsym,k introduced in (6.49). Moreover, the eigenvalues (iωsym,k)k∈Z∗ are
simple and (ωsym,k)k∈Z∗ form a strictly increasing sequence, with

lim
k∈Z∗,|k|→∞

|ωsym,k+1 −ωsym,k| =
√

gh0

L− l
π.

Proof. Let φsym =
[

ϕsym ψsym 0 asym bsym
]ᵀ ∈ D(Asym) be an eigenvector of

Asym corresponding to the eigenvalue iωsym (ωsym ∈ R), we solve the equation

Asymφsym = iωsym φsym.

According to Proposition 6.3.3, using the symmetry condition (6.69) we obtain that
φsym take the form (6.74)–(6.76), in particular, the third component of φsym vanishes. In
this case, the constants K1 and K2 in Proposition 6.3.3 have the relation K1 = −K2 = K.
The equation for ωsym thus becomes

2ρ gl
M

ϕsym(l) = i
(

2ρ g
Mωsym

− ωsym

l

)
ψsym(l),

which gives the characteristic equation (6.77). Clearly, the solutions of (6.77), denoted
by (ωsym,k)k∈Z∗ , form a strictly increasing sequence. According to the proof of Propo-
sition 6.3.5, there is one type of the eigenvalues in the symmetric case and for large
|k|

ωsym,k√
gh0

(L− l) = kπ + O
(

1
k

)
. (6.78)

Moreover, (6.78) implies that there exists M > 0 such that

∣∣ωsym,k+1 −ωsym,k
∣∣ > √

gh0

L− l
π ∀ k ∈ Z∗ and |k| > M, (6.79)

which ends the proof.

Remark 48. Without using Proposition 6.3.5, the asymptotic behaviour of the eigenval-
ues in (6.78) can be obtained in an alternative way. By using the characteristic equation
(6.77), without loss of generality, we assume that cos

(ωsym,k√
gh0

(L− l)
)

is non-zero. It fol-

lows that

tan

(
ωsym,k√

gh0
(L− l)

)
=

√
g
h0

2ρ l2 ωsym,k

Mωsym,k
2 − 2ρgl

= O
(

1
ωsym,k

)
,

for large k ∈ Z∗. Based on the above expression, we assume that

ωsym,k√
gh0

(L− l) = kπ + θk,

with θk → 0 as k → ∞. By using the fixed point method introduced in, for instance,
the book [46, Chapter 7] or [34, Lemma A.3], we derive that θk = O(k−1).
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By using (6.74)–(6.76), we do some trivial calculations and obtain for every k ∈ Z∗

that

‖φsym,k‖2
Xsym

=

(
M
2 l2 +

ρ g
ω2

sym,k l

)
K2 f 2

ωsym,k
(L) +

ρ

h0
K2(L− l),

where fsym,k and M are introduced in (6.49) and (6.36) respectively. Now, for every
k ∈ Z∗, we define γsym,k by

(γsym,k)
−2 =

(
M
2 l2 +

ρ g
ω2

sym,k l

)
K2 f 2

ωsym,k
(L) +

ρ

h0
K2(L− l). (6.80)

We therefore obtain the normalized eigenvectors (φ̂sym,k)k∈Z∗ :=
(
γsym,k φsym,k

)
k∈Z∗

that form an orthonormal basis in Xsym.

Remark 49. As we already realized, the symmetry property (6.69) excludes the case of
the double eigenvalues discussed in Section 6.3.2. Based on the decomposition (6.70),
we notice that (φ̂sym,k)k∈Z∗ is a proper subset of (φ̂k)k∈Z∗ introduced in Remark 45.
Moreover, we have

ωsym,k = ωj(k) ∀ k ∈ Z∗,

where ωj(k) is the eigenvalue of A and the subscript j(k) ∈ Z∗ can be easily found.

6.4.3 Reachability and stabilizability

In this section, we begin the main topic on the reachability and stabilizability of the
control system (6.71) in the symmetric case. The adjoint B∗ ∈ L(Xsym, C) of the control
operator B defined in (6.40) is

B∗ =
[

0 0 0 0 1
2

]
. (6.81)

We have the following results on the description of the reachable space Ran Φτ with
τ > 0.

Theorem 6.4.5. Assume that the object floats in the middle of the fluid domain in the horizontal
direction, i.e. L′ = L. Then for every τ > 2(L−l)√

gh0
, we have

D(Asym) = Ran Φτ ⊂ Xsym, (6.82)

where each inclusion is dense and with continuous embedding.

Proof. According to a classical result (see, for instance, [115, Chapter 4]), we know that
for every τ > 0 and every z ∈ Xsym,

(Φ∗sym,τz)(t) =

{
B∗T∗sym,τ−t z for t ∈ [0, τ],

0 for t > τ,

where B∗ is introduced in (6.81) and Tsym is the C0-group generated by Asym. This
implies that for every τ > 0 we have∥∥∥(Φ∗sym,τz

)∥∥∥2

L2([0,τ];U)
=
∫ τ

0

∥∥∥B∗T∗sym,τ−t z
∥∥∥2

U
dt.
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Notice that 0 ∈ ρ(Asym) and the imaginary part of the eigenvalues (ωsym,k)k∈Z∗ is
strictly increasing, there exists c > 0 such that |ωsym,k| > c, which implies that γsym,k
defined in (6.80) is lower bounded by a positive constant. Combining (6.81) and Propo-
sition 6.4.4, we have

∣∣B∗(φ̂sym,k)
∣∣ = ∣∣∣∣γsym,k

2l
ψsym,k(l)

∣∣∣∣ ∼
∣∣∣∣∣sin

(
ωsym,k√

gh0
(L− l)

)∣∣∣∣∣ , (6.83)

for k ∈ Z∗. The notation "∼" means that each function can be controlled by the other
one multiplied by a positive constant. Putting (6.78) and (6.83) together, we obtain that

∣∣B∗(φ̂sym,k)
∣∣ ∼ 1

k
∀ k ∈ Z∗. (6.84)

Since the operator Asym is diagonalizable and skew-adjoint on Xsym, we have

Tsym,t z = ∑
k∈Z∗

ei ωsym,k t 〈z, φ̂sym,k
〉

φ̂sym,k ∀ z ∈ Xsym,

where (φ̂sym,k)k∈Z∗ , an orthonormal basis of Xsym, is introduced around (6.80). Hence,
for every τ > 0 we have

∫ τ

0

∥∥∥B∗T∗sym,τ−t z
∥∥∥2

U
dt =

∫ τ

0

∣∣∣∣ ∑
k∈Z∗

e−i ωsym,kt〈z, φ̂sym,k〉B∗φ̂sym,k

∣∣∣∣2dt.

Recalling (6.79) and using the Ingham theorem (a generalization of Parseval’s equality,
see, for instance, in [115, Chapter 8] or [63]), there exists c1 > 0 depending only on h0,
L, l and τ, such that∫ τ

0

∥∥∥B∗T∗sym,τ−t z
∥∥∥2

U
dt 6 c1 ∑

k∈Z∗

∣∣〈z, φ̂sym,k〉
∣∣2∣∣B∗φ̂sym,k

∣∣2.

This, together with (6.84), implies that, for every τ > 0,∥∥∥Φ∗sym,τz
∥∥∥2

L2([0,τ];U)
6 c1 ‖z‖2

D(Asym)′ ∀ z ∈ Xsym,

where D(Asym)′ is the dual of D(Asym) with respect to the pivot space Xsym. Now
we introduce the identity function on D(Asym), denoted by idD(Asym), then we have
idD(Asym) ∈ L(D(Asym), Xsym). Since, for every τ > 0, Φsym,τ ∈ L(L2([0, τ]; U); Xsym),
we apply next a classical consequence of the closed graph theorem (see, for instance,
[115, Proposition 12.1.2]), which follows that

Ran Φsym,τ ⊂ D(Asym) ∀ τ > 0. (6.85)

Moreover, using the second part of Ingham theorem (see again [115, Chapter 8])), there
exists τ0 := 2(L−l)√

gh0
and c2 > 0 such that, for every τ > τ0,

∫ τ

0

∥∥∥B∗T∗sym,τ−t z
∥∥∥2

U
dt > c2 ∑

k∈Z∗

∣∣〈z, φ̂sym,k〉
∣∣2∣∣B∗φ̂sym,k

∣∣2. (6.86)
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Similarly, we obtain from (6.84) the inclusion:

Ran Φsym,τ ⊃ D(Asym) ∀ τ > τ0. (6.87)

Combined with (6.85), (6.87) and Remark 47, we conclude that Ran Φτ = D(Asym) for
every τ > τ0. Recalling that Asym is densely defined, we immediately conclude that
(6.82) holds.

Remark 50. We see from the equality in (6.82) that all symmetric state with the regu-
larity as in D(Asym) form the reachable space of the control system (6.35). The second
inclusion in (6.82) means that the system is not approximately controllable in X, but in
its symmetric subspace Xsym.

We give below, as a consequence of our main theorem, the following result on the
controllability and stabilizability properties of the system (6.71)–(6.73).

Corollary 6.4.6. Let L′ = L and the initial data ζ0 and q0 satisfy the symmetry condi-
tion (6.69). Then the linear system defined by (6.71)–(6.73) on Xsym (briefly designed by
(Asym, B)), has the following properties

1. (Asym, B) is not exactly controllable in time τ for any finite τ > 0;

2. (Asym, B) is approximately controllable on Xsym in time τ for any τ > 2(L−l)√
gh0

;

3. (Asym, B) is strongly stabilizable with the feedback operator F = −B∗. More precisely,
there exists C > 0 such that the closed-loop semigroup Tcl

sym generated by Asym − BB∗

satisfies

‖Tcl
sym,tw0‖Xsym 6

C

(1 + t)
1
2
‖w0‖D(Asym) ∀ w0 ∈ D(Asym), t > 0. (6.88)

Proof. (1) Note that the operator Asym is skew-adjoint and B ∈ L(C, Xsym), then the
first assertion follows directly from Curtain and Zwart [40, Theorem 4.1.5] or [40, The-
orem 5.2.6] in the same book, since Asym has infinitely many unstable eigenvalues.
Equivalently, we know that the system (Asym, B) is not exponentially stabilizable (see,
for instance, Haraux [55] and Liu [76]). Alternatively, we can apply the main result of
Gibson [44] or Guo, Guo and Zhang [53, Theorem 3].

(2) The second assertion is a direct consequence of Theorem 6.4.5. By duality it
suffices to show that there exists τ0 > 0, such that for every τ > τ0,

B∗T∗sym,t z = 0 on [0, τ] =⇒ z = 0. (6.89)

Let B∗T∗sym,t z = 0 on [0, τ] with τ > 2(L−l)√
gh0

, we obtain from (6.86) that
〈
z, φ̂sym,k

〉
= 0

for every k ∈ Z∗, which implies that z = 0. This, together with Proposition 6.4.2, gives
the result.

(3) The approximate controllability of the system (Asym, B) is equivalent to the fact
that the semigroup Tcl

sym generated by Asym − BB∗ is strongly stable (for this, please
refer to Benchimol [18], Batty and Vu [16]). To obtain the explicit decay rate, we notice
that (6.78) and (6.84) imply that the assumptions [H1], [H2] in Chapter 3 are satisfied
with α = 1 and β = 1. Therefore, we apply Theorem 3.1.2 and conclude that the
semigroup Tcl

sym generated by Asym − BB∗ satisfies (6.88).
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Based on the above analysis, now we expect to have the exact controllability of
the control system (6.71)–(6.73) with L2 controls with different spaces. There are two
ways to achieve this in general: one is to expand the input signal space (bringing in
distributions) and the other one is to shrink the state space. According to the reachable
space presented in Theorem 6.4.5, it is convenient to apply the second strategy here.
Thus we take the domain of the operator Asym, i.e. D(Asym), as the new state space. In
this way, we have the following conclusion.

Corollary 6.4.7. With the same assumptions as in Corollary 6.4.6, the linear system (6.71)–
(6.73) with the state space D(Asym) is exactly controllable in finite time τ, for every τ >
2(L−l)√

gh0
.

Proof. Recalling that Tsym is the C0-semigroup generated by the operator Asym, we de-
note by Tsym

∣∣
D(Asym)

its restriction to D(Asym). According to [115, Proposition 2.10.4],

the operators
(
Tsym,t|D(Asym)

)
t>0 are linear continuous on D(Asym) and they form a

C0-semigroup on D(Asym). More precisely, the fact that Tsym,t, as an operator in
L(D(Asym)), is the image of Tsym,t ∈ L(X) through the unitary resolvent operator
(sI − Asym)−1 ∈ L(X,D(Asym)), which can be written as follows:

Tsym,t|D(Asym)z = (sI − Asym)−1Tsym,t(sI − Asym)z ∀ z ∈ D(Asym).

Moreover, the generator of the C0-semigroup Tsym|D(Asym) is the restriction of Asym to
D(A2

sym), which is defined by

D(A2
sym) =

{
z ∈ D(Asym)|Asymz ∈ D(Asym)

}
.

In this case, it is not difficult to see that the control operator B (introduced in (6.40)) is
unbounded, i.e. for every u ∈ C, Bu is not in the state space D(Asym) but in a larger
space X. Using the result in (6.82), the control system (Asym, B) with the state space
D(Asym) is exactly controllable in time τ, for every τ > 2(L−l)√

gh0
.

6.5 The case when the object floats at one lateral boundary

As we have already noticed that the model (6.18) we derived and discussed in the pre-
vious sections is only suitable for the case that the object does not touch one of the
lateral boundaries of the water tank (i.e. L 6= l and L′ 6= l, see Figure 6.1), since at least
the notation in the system (6.18) does not make sense in these two special situations.
Intuitively, the exterior domain becomes one interval and one of the transmission con-
ditions becomes an impermeable boundary condition. In this section, we derive the
new governing equations for the control system when the object floats at one lateral
boundary of Ω. Without loss of generality, let us say it floats at the right boundary i.e.
L′ = l, see Figure 6.2. Moreover, we assume that the internal wall of that boundary is
smooth enough, so that there is no friction when the object moves in the vertical direc-
tion. In this case, the external vertical force u can be also imposed from the top of the
object by using a string, since it is located at the boundary of the tank. In addition to
the WECs, this of course represents a class of model used in various applications.
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yG,eq

yG(t)

Figure 6.2: The object floats at the right boundary of the tank

6.5.1 Derivation of the governing equations

Still using the notation introduced in Section 6.2, once again, we begin from the non-
linear shallow water equations in a strip presented in (6.2). We restrict this model to
our bounded interval [−L, l ] by finding the boundary conditions of the horizontal dis-
charge q and of the surface pressure Pi. As shown in Figure 6.2, the exterior domain E
and the interior I are

E = (−L,−l), I = (−l, l).

Similarly, we consider the following two conservation conditions:

• The conservation of the volume of the water.

In this case, we have two impermeable boundaries at x = −L and x = l, which
are

qe(t,−L) = 0 = qi(t, l). (6.90)

Using (6.90) and the first equation in (6.2), we have

0 = ∂t

∫
E∪I

ζ(t, x)dx = −
∫ l

−L
(∂xq)(t, x)dx = −qe(t,−l) + qi(t,−l),

which clearly implies that

qi(t,−l) = qe(t,−l). (6.91)

• The conservation of the total energy of the fluid-structure system.

The main principle is the same with the one we proposed in Section 6.2. For the
sake of simplicity, we recall it here again.

d
dt

Etot(t) = u(t)δ̇(t). (6.92)
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Based on the condition (6.92) for the conservation of the total energy, we present
in the following proposition the boundary condition of the surface pressure Pi at the
contact point x = −l.

Proposition 6.5.1. Assume that the quantities ζ, q, h, δ and P are smooth on I and E . Then
the total energy of the fluid-structure system Etot satisfies

d
dt

Etot(t) = Fi(t,−l)− Fe(t,−l) + u(t)δ̇(t).

Therefore, if the surface pressure Pi satisfies the boundary condition

Pi(t,−l) = ρg(ζe(t,−l)− ζi(t,−l)) +Be(t,−l)−Bi(t,−l), (6.93)

the total energy is conserved in the sense of (6.92). In the above expression, F and B have been
introduced in (6.12).

The proof of Proposition 6.5.1 is similar with the proof of Proposition 6.2.1, so we
omit the details here.

Now we consider the interior shallow water equations (6.16). We derive from the
first equation of (6.16) that

qi(t, x) = −x δ̇ +
1
2

qi(t,−l) ∀ x ∈ I .

This, together with the boundary condition (6.90) and (6.91), implies that

qi(t, x) = (−x + l)δ̇ ∀ x ∈ I . (6.94)

Therefore, we further obtain that

qe(t,−l) = qi(t,−l) = 2 lδ̇.

Similarly, we obtain the governing equations for the floating object system when the
object floats at the right boundary (i.e. L′ = l), which, for every t > 0 and x ∈ [−L, l],
are

∂tζ + ∂xq = 0 x ∈ I ∪ E , (6.95a)

∂tq + ∂x

(
q2

h

)
+ gh∂xζ = −h

ρ
∂xP x ∈ I ∪ E , (6.95b)

Pe(t, x) = 0 x ∈ E , (6.95c)
ζi(t, x) = δ(t) + heq(x)− h0 x ∈ I , (6.95d)
Pi(t,−l) = ρg (ζe(t,−l)− ζi(t,−l)) +Be(t,−l)−Bi(t,−l), (6.95e)

mδ̈(t) =
∫ l

−l
Pi(t, x)dx−mg + u(t), (6.95f)

qe(t,−L) = 0 = qi(t, l), qe(t,−l) = 2 lδ̇ = qi(t,−l), (6.95g)

with the given initial data

ζ(0, x) = ζ0(x), q(0, x) = q0(x), δ(0) = δ0, δ̇(0) = δ1 ∀ x ∈ I ∪ E .
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Note that in the above equations (6.95), the transmission condition of q at x = −l is
clearly given (only depends on δ) and there is only one boundary condition for the
surface pressure Pi, which is the difference with the system (6.18).

Next we prove that the surface pressure Pi is fully determined by a first-order evo-
lution equation and thereby give its explicit formula which only depends on δ and
ζe(t,−l). This is also a difference with the case L, L′ 6= l, where Pi is determined by a
second-order elliptic equation (see Proposition 6.2.2).

Proposition 6.5.2. With the same assumptions as in Proposition 6.5.1, the interior surface
pressure Pi satisfies∂xPi = −

ρ

hw

(
(l − x)δ̈ + δ̇2 ∂x

(
(l − x)2

hw

)
+ ghw∂xhw

)
,

Pi(t,−l) = ρg(ζe(t,−l)− ζi(t,−l)) +Be(t,−l)−Bi(t,−l),

where hw and B is introduced in (6.15) and (6.12), respectively. Therefore, we obtain

Pi(t, x) = ρ δ̈
∫ x

−l

s− l
hw

ds + ρ δ̇2
(∫ x

−l

l − s
h2

w
ds− (l − x)2

2h2
w

+
2 l2

(h0 + ζe(t,−l))2

)
− ρgδ− ρgheq(x) + ρgζe(t,−l) + ρgh0. (6.96)

Proof. We first obtain from the second equation (6.95b) in the interior domain I that

∂xPi = −
ρ

hw

(
∂tqi + ∂x

(
q2

i
hw

)
+ ghw∂xζi

)
. (6.97)

Using the formula of qi in (6.94) and the relation (6.95d), we have

∂xqi = −δ̇, ∂xζi = ∂xheq = ∂xhw, q2
i (t,−l) = 4 l2δ̇2,

∂tqi = (l − x)δ̈, Be(t,−l) =
2ρ l2δ̇2

(h0 + ζe(t,−l))2 , Bi(t,−l) =
2ρ l2δ̇2

h2
w(t,−l)

,

which, together with (6.97), gives that

∂xPi = −
ρ

hw

(
(l − x)δ̈ + δ̇2 ∂x

(
(l − x)2

hw

)
+ ghw∂xhw

)
,

with the boundary condition

Pi(t,−l) = ρgζe(t,−l)− ρgheq(−l)− ρgδ + ρgh0

+ 2ρl2δ̇2
(

1
(h0 + ζe(t,−l))2 −

1
h2

w(t,−l)

)
.

According to Newton-Leibniz theorem, we have the expression for Pi, for every t > 0
and x ∈ I ,

Pi(t, x) = ρδ̈
∫ x

−l

s− l
hw

ds− ρδ̇2
∫ x

−l

1
hw

∂s

(
(l − s)2

hw

)
ds− ρg

∫ x

−l
∂shwds

+ ρgζe(t,−l)− ρgheq(−l)− ρgδ + ρgh0 + 2ρl2δ̇2
(

1
(h0 + ζe(t,−l))2 −

1
h2

w(t,−l)

)
.

(6.98)
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We use an integration by parts and find that

−
∫ x

−l

1
hw

∂x

(
(l − s)2

hw

)
ds =

∫ x

−l

l − s
h2

w
ds− (l − x)2

2h2
w

+
2 l2

h2
w(t,−l)

,

which, together with (6.15) and (6.98), implies (6.96) directly.

As in Theorem 6.2.5, we consider in what follows reformulating the governing
equations (6.95) into an initial boundary problem of a first-order evolution system in
terms of ζ, q and δ.

Theorem 6.5.3. For smooth solutions, the system (6.95) can be equivalently rewritten into the
following coupled PDE-ODE system defined in the exterior domain E , i.e. for every t > 0,
x ∈ E , 

∂tζ + ∂xq = 0,

∂tq + ∂x

(
q2

h

)
+ gh∂xζ = 0,

(6.99)

with boundary conditions

q(t,−L) = 0, q(t,−l) = 2 lδ̇. (6.100)

Moreover, the displacement δ are determined, for every t > 0 and x ∈ E , by

M(δ)δ̈−
(

1
2

γ(δ) +
4 l3

(h0 + ζe(t,−l))2

)
ρδ̇2 + 2ρglδ = 2ρglζe(t,−l) + U(t) (6.101)

where B is introduced in (6.12), γ(δ) andM(δ) are defined as

γ(δ) =
∫ l

−l

(l − x)2

h2
w(t, x)

dx, M(δ) = m + ρκ(δ), κ(δ) =
∫ l

−l

(l − x)2

hw(t, x)
dx. (6.102)

The initial data, as in (6.95), are given by ζ0, q0, δ0 and δ1.

Proof. Based on the above analysis, we only need to prove the second-order nonlinear
ODE for δ, i.e. (6.101). Recalling Newton’s equation (6.95f), we calculate the integration
of Pi on I . According to Proposition 6.5.2, we have

∫ l

−l
Pi(t, x)dx = ρ δ̈

∫ l

−l

∫ x

−l

s− l
hw(t, s)

dsdx + ρ δ̇2
∫ l

−l

∫ x

−l

l − s
h2

w(t, s)
dsdx

− ρ δ̇2
∫ l

−l

(l − x)2

2h2
w

dx− ρg
∫ l

−l
heq(x)dx + 2ρglζe(t,−l)

− 2ρglδ + 2ρglh0 + ρ δ̇2 4 l3

(h0 + ζe(t,−l))2 . (6.103)

To simplify the notation, we introduce κ(δ), γ(δ) and M(δ) as in (6.102). Taking an
integration by parts, we obtain from (6.103) that

∫ l

−l
Pi(t, x)dx = −ρκ(δ)δ̈ +

1
2

ργ(δ)δ̇2 − 2ρglδ− ρg
∫ l

−l
heq(x)dx

+ 2ρglζe(t,−l) + 2ρglh0 + ρδ̇2 4 l3

(h0 + ζe(t,−l))2 ,
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which, combined with Newton’s equation (6.95f), implies that

M(δ)δ̈ = ρδ̇2
(

1
2

γ(δ) +
4 l3

(h0 + ζe(t,−l))2

)
− 2ρglδ + 2ρglζe(t,−l)

− ρg
∫ l

−l
heq(x)dx + 2ρglh0 −mg + u(t).

Based on the above expression, we denote U(t) as the new control term, which is

U(t) = −ρg
∫ l

−l
heq(x)dx + 2ρglh0 −mg + u(t).

Therefore, we obtain (6.101) immediately.

Remark 51. We see that all the interior functions ζi, qi, Pi are fully determined by
the variation of the position of the object δ, ζe(t,−l) and the control U(t) in the case
that the object floats one lateral boundary. Compared with Theorem 6.2.5, we have
simpler boundary condition in Theorem 6.5.3 for the horizontal discharge q and, in
partuicular, only one ODE of δ coupled with the boundary of the nonlinear shallow
water equations.

6.5.2 Linearized equations

In this section, we linearize the coupled system (6.99)–(6.101) around the equilibrium
state

[
ζ q δ δ̇

]ᵀ
=
[

0 0 0 0
]ᵀ and we obtain, for every t > 0 and x ∈ E =

(−L,−l) (see Figure 6.2),
∂tζ = −∂xq,
∂tq = −gh0 ∂xζ,

δ̈ = −2ρgl
M δ +

2ρgl
M ζ(t,−l) +

1
MU,

(6.104)

with boundary conditions

q(t,−L) = 0, q(t,−l) = 2 lδ̇, (6.105)

and the given initial data

ζ(0, x) = ζ0(x), q(0, x) = q0(x), δ(0) = δ0, δ̇(0) = δ1.

The constantsM in (6.104) is
M =M(0), (6.106)

whereM(δ) has been defined in (6.102).
We still denote by Etot the total energy of the linearized system (6.104), which in-

cludes the interior energy Eint and the exterior energy Eext. After doing some trivial
calculations as in Section 6.3.1, we have

Eint(t) =
1
2
M δ̇2 + ρglδ2 +

ρg
2

∫ l

−l
(heq(x)− h0)

2dx,
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Eext(t) =
ρ

2

∫ −l

−L

(
gζ2 +

q2

h0

)
dx.

Therefore, the total energy Etot(t) is

Etot(t) =
ρ

2

∫ −l

−L

(
gζ2 +

q2

h0

)
dx +

1
2
M δ̇2 + ρglδ2 +

ρg
2

∫ l

−l
(heq(x)− h0)

2dx.

Remark 52. Note that the linearized model (6.104) with the objects at the right bound-
ary takes the same form with the symmetric version of the linearized equation (6.35),
i.e. the case we discussed in Subsection 6.4.2. But this does not mean that we could de-
rive the nonlinear governing equations (6.99)–(6.101) directly from Theorem 6.2.5. On
one hand, as we already mentioned, not only does the notation ζe(t, l) and Be(t, l) not
make sense, but the surface pressure Pi also satisfies different equations (see Proposi-
tion 6.2.2 and Proposition 6.5.2). On the other hand, the nonlinear ODE system for 〈qi〉
and δ in (6.33) are not compatible. More precisely, taking L′ = l in (6.32) and (6.5), it is
not difficult to obtain that

qi(t,−l) = 2 lδ̇, 〈qi〉 =
1
2

qi(t,−l) = lδ̇.

Substituting this into the first equation in (6.33), we have

α(δ) lδ̈ + α′(δ) lδ̇2 = − 1
2ρl

Jρgζe +BeK ,

which is clearly different with the second equation in (6.33).

Since the linearized equation is the same with the one in symmetric case, we con-
clude the following proposition for the reachability of the system (6.104). The strategy
of the proof is similar with Theorem 6.4.5, so we omit the details here. Now we denote
the linear system in this case by the pair (Ar, Br), which can be written directly from
(6.104).

Proposition 6.5.4. When the object is located at the right boundary of the domain Ω, i.e.
L′ = l, the reachable space Ran Φτ, for every τ > 2(L−l)√

gh0
satisfies

D(Ar) = Ran Φτ ⊂ Xr,

where Xr and D(Ar) are defined as

Xr =

{[
ζ q δ η

]ᵀ ∈ (L2(E))2 ×C2
∣∣∣∣ ∫ −l

−L
ζ(x)dx + 2lδ = 0

}
,

D(Ar) =


[

ζ q δ η
]ᵀ ∈ (H1(E)

)2 ×C2
∣∣∣ [ζ q δ η

]ᵀ ∈ Xr,

q(−L) = 0 and q(−l) = 2lη

 .

Therefore, all the free surface waves with the regularity as in Xr form the reachable space of the
control system (6.104).

Remark 53. Similarly, the system (Ar, Br) on Xr is not exactly controllable but approx-
imately controllable in finite time. Moreover, if we take D(Ar) as the state space, the
system is exactly controllable in finite time.
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Remark 54. Note that the linear equations (6.104)–(6.105) is a coupled control system,
there is another approach introduced in Weiss and Zhao [122] is available for the exact
controllability. The author has tried this approach and decompose the control system
(6.104)–(6.105) as a finite-dimensional control system Σ f and an infinite-dimensional
system Σd. The system Σd with the state z =

[
ζ q

]ᵀ, for every t > 0 and x ∈ (−L,−l),
is

Σd :


∂tζ = −∂xq,
∂tq = −gh0∂xζ,
q(t,−L) = 0, q(t,−l) = v,
y = −2ρglζ(t,−l),

(6.107)

where v and y is the input function and the output function, respectively. The finite
system Σ f with x =

[
δ δ̇

]ᵀ, for every t > 0, is

Σ f :

δ̈ = −2ρgl
M δ− 1

My +
1
MU,

v = 2l δ̇,
(6.108)

where U− y and v is the input and the output, respectively. It is obvious to see that the
system Σd (6.107) is coupled with the system Σ f (6.108) in the sense that the output of
(6.107) is a part of the input of (6.108) and the output of (6.108) is the input of (6.107).
More clearly, we have the following block diagram. It is not difficult to verify that the

Σf

Σd

U v

y

−
+ U − y

Figure 6.3: The coupled system Σc consisting of Σ f and Σd

system Σd is a well-posed boundary control system. It can be formulated to a standard
linear control model with the state z =

[
ζ q

]ᵀ, for every t > 0 and x ∈ (−L,−l) as
ż = Az + Bv,
z(0) = z0,
y = Cz,

where

A =

[
0 − d

dx
−gh0

d
dx

]
, B =

[− ρg
2 δ−l
0

]
, C =

[
−2ρglγ−l 0

]
.

The bold δ−l in above expression represents Dirac mass concentrated at x = −l, and
γ−l is the trace operator at x = −l. Moreover, Σd is a Strictly Proper with an Integrator
system (SPI) with input space U = C, state space X = L2(−L,−l)× L2(−L,−l) (with
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suitable compatibility condition associated with the conservation of the volume) and
output space Y = C. For the definition of SPI system, please refer to [122] for more
details. The finite-dimensional system Σ f with the state x =

[
δ δ̇

]ᵀ can be written as{
ẋ = ax + b(U − y),
v = cx,

where a ∈ C2×2, b ∈ C2×1 and c ∈ C1×2. It turns out that the system (A, B) is exactly
controllable in any time τ with τ > 2(L−l)√

gh0
. For the finite-dimensional system Σ f , (a, b)

is controllable and cb is invertible. According to [122, Theorem 1.2], we still need
to verify that there exists β ∈ ρ(A) such that the operators A∗ and (α×(β))∗ with
α×(β) = a + b(cb)−1c(βI − a) have no common eigenvalues. Since 0 is one of the
eigenvalues of the operators (α×(β))∗, we have to exclude 0 from the spectrum of A.
As we mentioned above, we have to take the condition for the conservation of the
volume, i.e. ∫ −l

−L
ζ(x)dx + 2lδ = 0

into account and put this into the state space in a suitable way. This seems not direct
and obvious, but the author believe that this can be achieved by a clever modification
of the decomposition. Finally the result should be the same with Corollary 6.4.7. For
the details on how to use this decomposition argument, following their general work,
Zhao and Weiss provide in [125] an application of this approach to the SCOLE model.

6.6 Conclusions, comments and open questions

In this chapter, we investigated a coupled PDE-ODE system describing the motion
of a floating body in a free boundary ideal fluid, within the linearized shallow water
regime. The floating body is constrained to move vertically and it is actuated by a con-
trol force applied from the bottom of the object. Our main result asserts that, provided
that, in a symmetric geometrical configuration, the system can be steered from rest to
any smooth enough symmetric wave profile.

The main question left open in our work is the description of the reachable space
of the considered system without symmetry conditions. Using the properties of the
eigenvalues of the generator (see Subsection 6.3.2) this could be accomplished pro-
vided that one has lower bounds on |B∗φ̂k|, where B∗ ∈ L(X, C) is defined in (6.81),
and (φ̂k)k∈Z∗ is the orthonormal basis introduced in Remark 45. Obtaining such lower
bounds does not seem an easy task. Indeed, combining (6.50)–(6.52) and (6.81) we
obtain that for every k ∈ Z∗,

|B∗φ̂k| =
1
4 l
∣∣γk
(
K2 fωk(L′)− K1 fωk(L)

)∣∣ , (6.109)

where φ̂k and γk are introduced in Remark 45, fωk is defined in (6.49); with constant
K1 and K2 which we are unable to express in a simple manner in terms of ωk. We also
recall from Remark 43 that we are, in the general case, unable to confirm or to inform
the existence of double eigenvalues.
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Another open question of interest are the study of the system obtained by adding
a viscosity term in the shallow water equations, in the spirit of Maity et al. [80]. This
could lead, in particular, to a description of the reachable space for nonlinear systems
in which the fluid is modeled by the nonlinear shallow water equations. Finally, let us
mention that an interesting question could be to consider the corresponding boundary
control problems, in the spirit of [110], [107] and [108].
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Chapter 7

Perspectives

7.1 Control system in a bounded domain

Control of non-linear system. For the boundary control problem of the water waves
system in a rectangular domain, the model we used is actually the fully linear and
fully dispersive approximation of the Zakharov-Crag-Sulem (ZCS) equations (2.22), in
particular, with the control term. The intuitive question is that

"how about the control system of the nonlinear water waves equations?"

In this case, the control not only appears in the source term of the kinematic condi-
tion on the free surface, but also induces another nonlinear term in the free surface
Bernoulli equation (see (4.13)). As far as we know, this boundary control problem is
completely open. Instead of imposing a wave maker from the lateral boundary of the
fluid domain, it might be easier to take the pressure as the control term acting on the
small part of the free surface with appropriate property. In this case the control sig-
nal as an external force only appears in the source term of the free surface Bernoulli
equation. There are some related work on the nonlinear water waves system with the
pressure as control, for instance, Alazard et al. [4], [5] and [2]. To weaken the difficul-
ties, it might be better to begin from some asymptotic models of the full water waves
system, for instance the nonlinear shallow water equations and the Boussinesq equa-
tions. For the well-posedness issue, we might first consider constructing an iterative
sequences with good regularity, (i.e. a linearization of the nonlinear term), then justify
the limit in a low regularity. During this process, the properties of the corresponding
linearized system plays an important role. The main idea here is the application of the
fixed point argument. This technique is used, for instance, in the work [80] by Maity et
al.

Water waves system in a general convex domain. Another interesting direction is
to consider the control system in a general convex water tank, which is a more practical
problem. To tackle the irregular fluid domain, one way is to estimate the spectrum of
the evolution operator like the idea proposed in Reid [94]. Another possible technique
is to employ a conformal mapping to straighten the boundary and make it regular. The
control problem of the water waves system in a general convex domain, even the linear
case, is almost open up to now. Anyway, to set up the new problem on water waves
we cannot avoid studying the Dirichlet to Neumann and the Neumann to Neumann
operator in various cases.
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7.2 Shallow water convergence

Dispersive effect and the controllability. In the seond part of the thesis, we justified
the passage of the limit from the linear water waves system to the wave equation in
1 D, by taking the shallowness limit. During this process, we see that the dispersive
effect becomes weaker and weaker, and finally it vanishes in the wave equation. As
we have already mentioned, the water waves system for the boundary control problem
in Chapter 4 is the fully linear and fully dispersive model, thereby we also call it the
linearized ZCS equations. After taking the dispersive limit, the control properties of
the wave equation becomes much better than the linear ZCS system. It is important to
clarify that how the dispersive term affects the control properties. Based on this obser-
vation, it is also interesting to study the control problem of the asymptotic models for
the water waves. For example, we consider the control problem of a fluid described by
the linear Boussinesq equations, whose dispersive term is weaker than the linear ZCS
system. Without the control term, we know that the linearized Boussinesq equation is
a second-order approximation of the linearized ZCS, with respect to the shallowness
parameter µ introduced in (5.1). Therefore, for the corresponding control system, we
probably have the similar relation as follows:

Linear ZCS
O(µ2)−→ Linear Boussinesq

O(1)−→ wave equation.

According to the above analysis, the controllability properties of the linear Boussinesq
equations is probably better than the linear ZCS system, but worse than the wave equa-
tion. This phenomenon can be valuable for engineering applications.

Higher regularity and regular convergence. As we discussed in Section 4.3.2 and
Section 5.6, the higher regularity requires the more regular input function and the ini-
tial data. What’s more, the geometry of the fluid domain determines the properties
of the solution directly. For irregular domain, there are some singularities where the
solution is not smooth. This is the main problem to improve the regularity and may
lead to new difficulties.

7.3 Control of floating object

Boundary control of the floating object system. As we already mentioned, there is
almost no result on the control issue of the floating body system. Except for adjusting
the motion of the floater in the vertical direction, it is also interesting to consider the
boundary control problem in the shallow water regime. Still using the (ζ, q) formula-
tion for instance, we take the value of the horizontal discharge at the left boundary, i.e.
q(t,−L), as the control term. In this case, we need to notice that the volume of the wa-
ter is no longer conserved. To fix this, it might need to change the boundary condition
on the right. In addition, we can also study the system describing the interaction of a
floating object and a fluid modeled by the Boussinesq equations, which is a second-order
shallow water approximation of the water waves system with weak nonlinearity. Of
course, there will be new challenge and difficulties induced by the nonlinearity and
dispersion term.

Optimal control for the efficiency of energy extraction. Since we focus on the sta-
bility of the control system, the feedback control we used is colocated feedback, which

172



7.3. CONTROL OF FLOATING OBJECT

is a very natural state feedback and make the energy non-increasing. As a wave energy
converter, according to practical applications, this control might not be a good choice.
Therefore, it is necessary to construct appropriate control to maximize the energy ex-
traction. For the sake of economy, we have to protect the wave energy converter from
the impact of large coming waves. Hence, the problem finally is an optimal control
design with the above constraints.

Modelling and numerical simulation. Besides the control model described by the
point absorber device, there are various wave energy converters applied in engineer-
ing, for instance, oscillating water columns (OWCs), overtopping devices (ODs), etc.
These devices are the suitable for different environment and the corresponding control
system is a pretty new project. Moreover, according to the specific situation, the system
possesses different boundary conditions (see, for instance, [68]):

• Generating boundary condition. The elevation of the free surface is known at the
entrance of the fluid domain and it is described by a prescribe function f (t), i.e.

ζ(t,−L) = f (t).

In practice, this function can be measured by putting a buoy at the left boundary.
In this case, the boundary x = −L has no physical sense. This boundary con-
dition appears, for instance, in a work by Bocchi et al. [25], where the system is
modeled by OWCs wave energy converter.

• Impermeable boundary condition. There is a fixed wall at the boundary x = −L,
the fluid cannot go through this wall, which is

U(t, x, y) ·~n = 0,

where U(t, x, y) is the velocity of the fluid particle and ~n is the normal vector
along that boundary. This boundary condition has been frequently used in the
main part.

• Transparent boundary condition. This boundary condition is important for nu-
merical simulations in the cases where there is no physical boundary, for instance,
at x = −L. To discrete the domain and compile the algorithm, we impose a
boundary condition there that does not induce any artificial reflection. Based
on the hyperbolic governing equations (for instance the nonlinear shallow water
equations), the boundary condition at x = −L can be derived from the Riemann
invariant. In particular, if x = −L is the left boundary, the boundary condition
there is obtained by taking

Rr(ζ, q) = 0,

where Rr represents the right-going Riemann invariant.

Independent of these specific topics, some numerical simulation can be carried out
to verify the corresponding result and the related properties. Based on the structure
of the governing equations, some important schemes are required during this process.
Moreover, there are some complicated situation where the boundary is a superposition
of the above several boundary conditions. In these cases, modelling is the first task to
start the mathematical analysis.
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