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Abstract

Generative Adversarial Networks (GANs) have witnessed increasing attention due to their

abilities to model complex visual data distributions, which allow them to generate and trans-

late realistic images. While realistic video generation is the natural sequel, it is substantially

more challenging w.r.t. complexity and computation, associated to the simultaneous modeling

of appearance, as well as motion. Specifically, in inferring and modeling the distribution

of human videos, generative models face three main challenges : (a) generating uncertain

motion and retaining of human appearance, (b) modeling spatio-temporal consistency, as

well as (c) understanding of latent representation.

In this thesis, we propose three novel approaches towards generating high-visual quality

videos and interpreting latent space in video generative models. We firstly introduce a method,

which learns to conditionally generate videos based on single input images. Our proposed

model allows for controllable video generation by providing various motion categories.

Secondly, we present a model, which is able to produce videos from noise vectors by

disentangling the latent space into appearance and motion. We demonstrate that both factors

can be manipulated in both, conditional and unconditional manners. Thirdly, we introduce an

unconditional video generative model that allows for interpretation of the latent space. We

place emphasis on the interpretation and manipulation of motion. We show that our proposed

method is able to discover semantically meaningful motion representations, which in turn

allow for control in generated results. Finally, we describe a novel approach to combine

generative modeling with contrastive learning for unsupervised person re-identification.

Specifically, we leverage generated data as data augmentation and show that such data can

boost re-identification accuracy.
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Résumé

Les réseaux antagonistes génératifs (GAN) ont suscité une attention croissante en raison

de leurs capacités à modéliser des distributions de données visuelles complexes, ce qui leur

permet de générer et de traduire des images réalistes. Bien que la génération de vidéos

réalistes soit la suite naturelle, elle est nettement plus difficile en ce qui concerne leur

complexité et leur calcul, associés à la modélisation simultanée de l’apparence, ainsi que du

mouvement de la personne dans la vidéo. Plus précisément, en inférant et en modélisant la

distribution de vidéos, les modèles génératifs sont confrontés à trois défis principaux : (a)

générer un nouveau mouvement et conserver l’apparence de la personne, (b) modéliser la

cohérence spatio-temporelle, ainsi que (c) comprendre la représentation latente de la vidéo.

Dans cette thèse, nous proposons un certain nombre d’approches novatrices pour générer

des vidéos de haute qualité visuelle et interpréter l’espace latent de la représentation de la

vidéo dans ces modèles génératifs. Nous introduisons tout d’abord une méthode, qui apprend

à générer conditionnellement des vidéos basées sur une seule image en entrée. Notre mo-

dèle proposé permet une génération de vidéo contrôlable en fournissant diverses catégories

de mouvement. Deuxièmement, nous présentons un modèle, qui est capable de produire

des vidéos à partir de vecteurs de bruit en dissociant l’apparence et le mouvement dans

l’espace latent. Nous démontrons que les deux facteurs peuvent être manipulés de manière

conditionnelle et inconditionnelle. Troisièmement, nous introduisons un modèle génératif

inconditionnel de vidéos qui permet l’interprétation de l’espace latent. Nous mettons l’ac-

cent sur l’interprétation et la manipulation du mouvement. Nous montrons que la méthode

proposée est capable de découvrir des représentations du mouvement sémantiquement signifi-

catives, qui à leur tour permettent le contrôle des vidéos générées. Enfin, nous décrivons une
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nouvelle approche pour combiner la modélisation générative avec l’apprentissage contrastif

pour la réidentification de personnes en mode non supervisé. Nous exploitons les données

générées en tant qu’augmentation de données et montrons que ces données peuvent améliorer

la précision de la ré-identification.

Mots-clés : Réseaux Antagonistes Génératifs, Génération Vidéo, Apprentissage Profond
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Chapter 1

Introduction

Creativity constitutes the forming of something new and valuable, which is considered an

essential ability of human intelligence. Owing to such an ability, human beings are capable of

finding novel solutions to unexpected problems, as well as producing appealing works of art.

Building machines, which are able to mimic human intelligence w.r.t. thinking and creating

has always been long-term crusade of computer scientists [12, 149] (see Fig. 1.1). Recently,

deep generative models and in particular Generative Adversarial Networks (GANs) have

witnessed remarkable success in various visual content creation tasks such as image genera-

tion and translation. Given that such tasks are considered as an early stage of higher level

machine intelligence, discovering the potential of GANs has become a highly compelling

and exciting research topic in Artificial Intelligence (AI).

Figure 1.1 Examples of machine creativity. (Left) A humanoid draws a painting. (Right)
Robot arms construct a paper crane.
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Figure 1.2 Examples of data. (Left) VoxCeleb. (Middle) BAIR. (Right) UCF101.

1.1 Goals

Our main goal in this thesis is to develop GANs that create dynamic contents. In particular,

we are interested in realistic videos generation, as well as model interpretability. Fig. 1.2

illustrates images of datasets which we mainly work with, i.e. VoxCeleb [112], BAIR [37]

and UCF101 [141]. Below, we proceed to discuss our three main objectives.

1. Firstly, we focus on high-quality video generation. While the quality of generated

samples in GANs is impacted by a number of factors such as objective function, model

architecture and regularization, our major interest is model architecture, which is a

novel topic in video generation. In particular, we aim at enabling generators to produce

samples containing (a) temporal consistency, as well as (b) sharp and clear appearance.

As we will discuss in Section 1.3, designing effective architectures that support this

objective is challenging.

2. We proceed to control generated videos by disentangling the latent space. Specifically,

we learn disentangled representations of the generative factors appearance and motion,

which allow for individual and disjoint manipulation.

3. In addition, we aspire to discover semantics in the GAN-latent space, aiming to provide

interpretability of the generator. Here, we place emphasis on finding interpretable

motion representations that allow for control of subject-movement in generated videos.

Fig. 1.3 illustrates two generated samples from our model, which we present in Sec-

tion 6, i.e., talking heads and robot arms. In this objective we also develop evaluation
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Figure 1.3 Video manipulation. (a) Moving robot arm and (b) talking head.

metrics, which quantify the correlation between representations and semantics. Such

metrics are instrumental in comparing performance of each discovered representation.

1.2 Motivation

Recent development of social media platforms (e.g., TikTok and Snapchat) has brought

to the fore remarkable interest in video content creation. In particular, users aim at designing

short videos related to topics including fashion, sports, e-commerce and education. Due to

the great potential in many domains, developing GANs for automated video generation has

attracted increasing commercial and scientific attention associated to real-world applications

and data augmentation, respectively, which we proceed to discuss.

Real-world applications. A key application for video generation has to do with entertain-

ment. Creating short music videos, as well as Hollywood blockbusters entails considerable

investments in time and resources. Video generation can greatly facilitate such a process.

Trained by a large amount of movie data, machines can be beneficial in efficiently creating

dynamic scenes. Current methods [17, 164, 163] have already been able to transfer motion

from target video to input avatars. For example, enabling people to dance like Michael

Jackson only requires few lines of code. In near future, we envision that video generation will

allow audience to select their favorite actors, scenes and even storylines to produce custom

made movies.
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Further, video generation can greatly support video game development [77, 106]. By

learning from massive gaming data, models are able to easily render interactions between

agents and environments without additional requirement of game engines. Such portability

will significantly decrease the time of development cycle, as games can be transferred and

deployed directly across platforms and operating systems.

Data augmentation. Video generation is highly instrumental in data augmentation. Given

growing model complexity, large-scale datasets are necessitated. Towards improving the

model performance, enlarging existing datasets has become a direct and effective approach.

For example, the enlargement from UCF101 [141] (10k videos) to Kinetics-400 [74] (300k

videos) has substantially increased the accuracy of big visual models such as I3D [15] and

3D ResNet [51] in action recognition. However, collecting such large datasets is challenging.

It requires months and even years of teamwork to download and preprocess datasets. In

addition, the usage of downloaded videos leads to ethical problems related to privacy and

transparency of personal information. Therefore, developing more efficient approaches for

obtaining additional data is imperative. Several works [153, 152] explored the usage of

generated (synthetic) data in training and highlighted related advantages in accessibility,

controllability and privacy. GANs have inherently strong capacity in visual generation,

incorporating two major benefits. Firstly, GANs allow for generation of unlimited amount

of data. Therefore cumbersome data collection can be fully avoided. Secondly, GANs

enable manipulation of generated samples. Attributes such as pose, illumination and scale,

can be modified by walks in the latent space. Each manipulated sample is considered as

an augmentation (or another ’view’) of the original data. Such property is beneficial for

a set of visual recognition tasks (e.g., view-invariant action recognition, self-supervised

contrastive video learning), as invariance is learned from different ’views’. Predominantly,

such ’multi-view’ data is generally not available.

We proceed to discuss challenges related to open research questions.



1.3 Challenges 5

Figure 1.4 Use cases for social media. (Left) Inside functions of Snapchat for various
contents creation. (Right) A user is spreading common knowledge on Tiktok.

1.3 Challenges

We have identified a set of challenges related to video generation that we proceed to enlist.

This thesis is addressing some key challenges in both visual generation and interpretability.

With respect to visual generation, the main challenges that we have addressed have to do

with video representation and model design. For example, we have addressed following

questions. How to represent a video? What should be an appropriate design of generator

and discriminator? How to evaluate generated samples? With respect to interpretability,

difficulties lie in the highly entangled latent space and model opacification. Developing

methods to interpret the inner working of generative models remains a major research

problem. Below, we discuss some challenges in detail.

Generator design. Deviating from an image only containing spatial information, a video

incorporates a set of frames interconnected in the spatio-temporal domain. Towards modeling

such inter-connections, appropriate generator architectures, which are able to endow random

input noises with spatio-temporal consistency, are required. Generally, the objective of

the generator is to upsample low-level representations to high-level semantics. It can be

considered as an inverse problem of video understanding. Yet, generation remains a more

challenging problem due to its extra requirements such as stable training, high visual-quality

and interpretability. While two widely-used architectures in video understanding, namely 3D

ConvNets and 2D ConvNet+RNN, have been explored reversibly for generation (Figure 1.5
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Figure 1.5 Generator design. (Left) 3D ConvNets based architecture. (Right) 2D Con-
vNets+RNN based architecture.

illustrates these two architectures), neither of the architectures outperforms the other due

to respective limitations. 3D ConvNets suffer from large complexity with more training

parameters, which may render models difficult to be optimized, impacting the visual quality

negatively. On the other hand, incorporating an RNN in the generator, modeling long-term

sequence, may result in unstable training owing to gradient vanishing and gradient explosion.

Hence, designing good generator architecture is still challenging.

Discriminator design. Discriminators in GANs are beneficial in minimizing the distance

between real and generated distributions. The associated capacity will strongly affect the

quality of generated samples. Discriminators are accountable for ensuring that generated

videos encompass visual-quality, as well as temporal consistency. For the latter, the transition

between consecutive frames should be smooth. Having this in mind, design of discriminator-

architectures remains an open question. In Chapter 4, we present a two-stream discriminator,

which combines 3D ConvNets and 2D ConvNets to learn spatio-temporal distribution. In

Chapter 6, we introduce a novel temporal pyramid discriminator equipped with only 2D

ConvNets.

Entanglement of appearance and motion in videos. Appearance and motion are two

major factors in videos. Without using additional information such as human keypoints or

optical flow, learning to disentangle such factors is challenging. It requires building specific
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model components to represent both factors, respectively. Due to lack of explicit formulation,

designing model components to disentangle these two factors remains challenging. In

Chapter 5 and Chapter 6, we introduce two different disentangling approaches, as well as

their comparisons.

Interpretability. Deep neural networks have been widely used as black-boxes, and GANs

are no exception. Due to the large amount of parameters, it is difficult to identify the

types of knowledge GANs have learned. In addition, given that features such as textures,

concepts, semantics and objects are represented in a hierarchical manner in GANs [9],

discovering and locating information of interest becomes difficult. To interpret different

features, specific methods are usually required. For example, to interpret attributes (e.g.,

gender, age) in StyleGANs [72, 73], pretrained classifiers were used to provide scores for

generated samples [135]. At the same time for interpretation of pose, landmark detectors are

required. In this thesis, we aim at interpreting motion in video GANs. However lack of prior

knowledge is the most difficult part in this challenge. In Chapter 6, we discuss this in detail.

Evaluation. Lack of effective evaluation metrics is a major challenge in current GAN

research. Since ’realism’ mostly depends on human perception, subjective analysis has

become a standard metric, which is inefficient and time-consuming. Towards evaluating

GANs in an objective manner, two quantitative evaluation metrics, namely Inception Score

(IS) [132] and Fréchet Inception Distance (FID) [54], have been proposed. They both use

statistical methods, that rely on features extracted from pretrained models on large-scale

datasets, in order to measure the distance between real and generated distributions. Due to

large variability in space and time, evaluation in video generation remains challenging.

Data variation. In contrast to datasets available for image generation, which incorporate

well-aligned faces (e.g., CelebA [98]) and objects (e.g., ImageNet [30]), datasets available

for video generation entail richer variations in both, appearance and motion. In particular,

complex scenes may contain multiple objects with different textures, poses and shapes.

Further, each object has a moving trajectory and can encompass a set of variations related
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to illumination and occlusion within one video. In addition, videos incorporate different

movements in foreground and background. Learning a general model, which captures such

spatio-temporal variations is challenging.

1.4 Thesis Outline

In this thesis we firstly design three GANs streamlined to generate human videos, and

proceed with an innovative video GAN approach that allows for motion-interpretation. We

then change gears and leverage GAN-generated data on a real-world problem, namely unsu-

pervised person re-identification. These contributions are organized in following chapters.

Chapter 2 revisits literature with particular focus on (i) image and video generation, and

(ii) GAN-based person re-identification.

Chapter 3 presents ImaGINator [169], a conditional GAN, which learns to generate video

from a single input image. We introduce a spatio-temporal skip-connection architecture,

in order to transfer multi-scale feature maps directly from encoder to decoder. We also

incorporate motion class-labels (e.g., facial expressions, human actions) into the latent space

for controllable video generation. Related results show that our proposed model is able to

preserve well the appearance information, as well as generate videos corresponding to the

class-labels.

Chapter 4 introduces G3AN [166], a spatio-temporal generative model, which seeks to

capture the distribution of high dimensional video data and to model appearance and motion

in disentangled manner. As opposed to ImaGINator, G3AN takes noise vectors from prior

distribution, rather than images as inputs. It is able to generate videos in both, conditional

and unconditional manner. We propose a three-stream Generator to decompose appearance

and motion, where the main stream aims to model spatio-temporal consistency, whereas

the two auxiliary streams augment the main stream with multi-scale appearance and motion

features, respectively. Experimental results show that such design can be instrumental in

disentangling appearance and motion, as well as in manipulating generated results from both

spaces.
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Chapter 5 presents MintGAN [172], an unconditional video generative model, with a

twofold objective, namely to generate high quality videos, as well as to allow for interpretation

of the latent space. In this context, we place emphasis on motion interpretation. Towards

this, we design the architecture of MintGAN-generator in accordance to proposed Linear

Motion Decomposition (LMD) to decompose motion into semantic sub-spaces. LMD carries

the assumption that motion can be represented by a dictionary, where the vectors forming an

orthogonal basis in the latent space and each vector in the basis represent a semantic sub-space.

To quantify motion in these sub-spaces, we propose a new evaluation metric by leveraging

optical flow of generated samples. By doing this, we discover the semantic meanings inside

those spaces by computing motion differences between activation and deactivation of related

vectors. We also find that motion of generated videos can be controlled by manipulating

those sub-spaces.

Chapter 6 describes GCL [20], a method to combine generative modeling and contrastive

learning to boost the performance of unsupervised Person ReID. We design the generator

to synthesize novel-view images to simulate multi-camera settings in the real-world. We

leverage generated data as data augmentation for contrastive learning. Specifically, we

propose a mesh-based view generator, which produces results that serve as references

towards generating novel views of a person. In addition, we propose a view-invariant loss to

facilitate contrastive learning between original and generated views. Deviating from previous

GAN-based unsupervised Person ReID methods involving domain adaptation, we do not rely

on a labeled source dataset, which renders our method more flexible.

Chapter 7 discusses future work and concludes this thesis.

1.5 Contributions

We proceed to list all publication contributions, as well as software that we developed in

the course of this thesis. We will detail the contributions of four publications in Chapters 3-6.
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1.5.1 Publications

— Y. Wang, A. Dantcheva, J. Broutart, P. Robert, F. Bremond, P. Bilinski. Comparing

methods for assessment of facial dynamics in patients with major neurocognitive

disorders. In ECCV Workshop, 2018. [177]

— Y. Wang, A. Dantcheva, F. Bremond. From attribute-labels to faces: face generation

using a conditional generative adversarial network. In ECCV Workshop, 2018. [174]

— Y. Wang, P. Bilinski, F. Bremond, and A. Dantcheva. ImaGINator: Conditional

Spatio-Temporal GAN for Video Generation. In WACV, 2020. [169] (Chapter 3)

— Y. Wang, P. Bilinski, F. Bremond, and A. Dantcheva. G3AN: Disentangling Appear-

ance and Motion for Video Generation. In CVPR, 2020. [167] (Chapter 4)

— Y. Wang, A. Dantcheva. A video is worth more than 1000 lies. Comparing 3DCNN

approaches for detecting deepfakes. In FG, 2020. [173]

— D. Yang, R. Dai, Y. Wang, R. Mallick, L. Minciullo, G. Francesca, and F. Bremond.

Selective Spatio-Temporal Aggregation Based Pose Refinement System. In WACV,

2021. [191].

— Y. Wang, F. Bremond, and A. Dantcheva. MintGAN: Motion Interpretation in Video

Generation. arXiv, 2021 [172] (Chapter 5)

— H. Chen*, Y. Wang*, B. Lagadec, A. Dantcheva, and F. Bremond. Joint Genera-

tive and Contrastive Learning for Unsupervised Person Re-identification. In CVPR,

2021 [20] (Chapter 6)

— D. Yang*; Y. Wang*; A. Dantcheva; L. Garattoni; G. Francesca; and F. Bremond.

UNIK: A Unified Framework for Real-world Skeleton-based Action Recognition. In

BMVC 2021 [193].

— D. Yang*; Y. Wang*; A. Dantcheva; L. Garattoni; G. Francesca; and F. Bremond.

Self-Supervised Video Pose Representation Learning for Occlusion-Robust Action

Recognition. In FG 2021 [192]
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1.5.2 Software contributions

The code for four chapters of this thesis has been publicly released.

— ImaGINator: The code and pretrained models presented in [169] (Chapter 3) are

available in https://github.com/wyhsirius/ImaGINator

— G3AN: The code and pretrained models presented in [167] (Chapter 4) are available in

https://wyhsirius.github.io/G3AN/

— MintGAN: The code and pretrained models presented in [172] (Chapter 5) are available

in https://wyhsirius.github.io/InMoDeGAN/

— GCL: The code and pretrained models presented in [20] (Chapter 6) are available in

https://github.com/chenhao2345/GCL

https://github.com/wyhsirius/ImaGINator
https://wyhsirius.github.io/G3AN/
https://wyhsirius.github.io/InMoDeGAN/
https://github.com/chenhao2345/GCL




Chapter 2

Literature Review

We here revisit literature related to the topics covered in this thesis.

2.1 Generative Adversarial Networks (GANs)

Generative adversarial networks (GANs), as introduced by Goodfellow et al. [48], incor-

porate two networks, a Generator, which generates new data instances and a Discriminator,

which evaluates them for authenticity. The generator accepts noise as input and generates

new samples of data in line with the observed training data. GANs have succeeded in appli-

cations such as image [13, 72, 73, 216, 64] and video generation [148, 157, 167, 172, 169],

robotics [139, 58, 123] and medical image analysis [195, 182, 75, 180].

Figure 2.1 Generative Adversarial Network.
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The objective of GANs is to learn a data distribution pdata from real samples x ⇠ px

via adversarial learning. G takes a noise vector z from a prior distribution pz as input and

produces a sample G(z). D learns to infer pdata, where input data is drawn. D is trained to

maximize the probability of assigning the correct label to both, real and generated samples,

while G is simultaneously trained to minimize log(1�D(G(z)). Training is achieved via

solving a two-player minimax game with value function:

min
G

max
D

V (G,D), (2.1)

where

V (D,G) = Ex⇠pdata(x)[log(D(x))]+Ez⇠pz(z)[log(1�D(G(z))]. (2.2)

However, in practice, a so called vanilla GAN suffers from several problems such as

unstable training, mode collapse and low-quality results. Towards solving these issues,

techniques such as novel loss functions [5, 11, 80, 50, 104] (see Tab. 2.1), regularization [80,

107, 127], normalization layers [110, 50], training strategies [55] and architectures [13, 72,

73, 111, 122] have been proposed. In this thesis, we have integrated some of the techniques

in proposed video GANs towards achieving better visual quality and more stable training.

GAN Discriminator Loss Generator Loss

MM GAN [48] L GAN
D =�Ex⇠pd [log(D(x))]�Ex̂⇠pg [log(1�D(x̂))] L GAN

G = Ex̂⇠pg [log(1�D(x̂))]

NS GAN [48] L NSGAN
D =�Ex⇠pd [log(D(x))]�Ex̂⇠pg [log(1�D(x̂))] L NSGAN

G =�Ex̂⇠pg [log(D(x̂))]

WGAN [5] L WGAN
D =�Ex⇠pd [D(x)]�Ex̂⇠pg [D(x̂)] L WGAN

G =�Ex̂⇠pg [D(x̂)]

WGAN-GP [50] L WGANGP
D = L WGAN

D +lEx̂⇠pg [(
��OD(ax+(1�a x̂)2

��
2�1)2] L WGANGP

G =�Ex̂⇠pg [D(x̂)]

LSGAN [104] L LSGAN
D =�Ex⇠pd [(D(x)�1)2]+Ex̂⇠pg [D(x̂)2] L LSGAN

G =�Ex̂⇠pg [(D(x̂�1))2]

DRAGAN [80] L DRAGAN
D = L GAN

D +lEx̂⇠pg+N (0,c)[(kOD(x̂)k2�1)2] L DRAGAN
G = Ex̂⇠pg [log(1�D(x̂))]

BEGAN [11] L BEGAN
D =�Ex⇠pd [kx�AE(x)k1]� ktEx̂⇠pg [kx̂�AE(x̂)k1] L BEGAN

G = Ex̂⇠pg [kx̂�AE(x̂)k1]

Table 2.1 Generator and discriminator loss functions in different GANs.
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2.2 Evaluation metrics of GANs

Evaluation of GANs is challenging as it requires measuring both, visual-quality and diver-

sity of generated samples. Two main evaluation metrics, i.e., Inception Score (IS) [133] and

Fréchet Inception Distance (FID) [54] were proposed, in order to quantify the performance

of GANs.

2.2.1 Inception Score (IS)

IS uses an Inception V3 [144] model pre-trained on ImageNet as feature extractor, it can

be computed by

IS(G) = exp(Ex⇠pgDKL(p(y|x) || p(y))), (2.3)

where x⇠ pg indicates that x is an image sampled from pg, p(y|x) is the conditional class

distribution, and p(y) =
R

x p(y|x)pg(x) is the marginal class distribution.

To compute IS, firstly an empirical marginal class distribution from sampled x(i) is

required,

p̂(y) =
1
N

N

Â
i=1

p(y|x(i)), (2.4)

where N is the number of images generated from GAN. Then an approximation to the

expected KL-divergence is obtained using

IS(G)⇡ exp(Ex⇠pgDKL(p(y|x(i)) || p̂(y))). (2.5)

In practice, it is recommended to conduct 10 times computation with N = 5,000 and report

the mean and standard deviation of the final score. Higher IS indicates better image quality.

2.2.2 Fréchet Inception Distance (FID)

While IS correlates well with human judgement of image quality, it does not consider

the statistics of training dataset. Towards overcoming this drawback, FID was proposed

to compare statistics of generated samples with the real world training samples. Similar
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to IS, FID also uses an Inception V3 model [144] pre-trained on ImageNet to extract

features and consider polynomials of coding unit functions. In practice, it only considers

the first two polynomials, mean and covariance. It assumes that the coding units to follow

a multidimensional Gaussian and the difference of two Gaussian is measured by Fréchet

Distance [42]. The Fréchet Distance d(., .) between the Gaussian with mean and covariance

(m,C) obtained from model sample distribution p(.) and the Gaussian (mw,Cw) obtained

from real world distribution pw(.) is called the "Fréchet Inception Distance" (FID), which is

denoted by [36]:

d2((m,C),(mw,Cw)) = km�mwk2
2 +Tr(C+Cw�2(CCw)

1/2). (2.6)

In practice, it is recommended to generate more than 10,000 samples to compute FID, in

order to prevent underestimated results. The lower FID values indicate better performance of

GANs. Since FID considers the statistics of both, generated and real-world samples, it can

provide more reliable result than IS in comparing performance of different GANs.

In this thesis, as we focus on video generation, we need to compare the distance of spatio-

temporal distribution between generated and real video data. In Chapter 4- 6, we compute

FID and IS by replacing Inception V3 with a spatio-temporal model ResNeXt101 [51] pre-

trained on Kinetics [15], a large scale video understanding dataset. Previous work [130, 150]

explored using other spatio-temporal models, e.g., C3D [146] and I3D [15] as feature

extractors. We choose ResNeXt101 due to its state-of-the-art performance on Kinetics.

2.3 Image generation

In this section, we review previous research on the most prominent application of GANs,

namely image generation. Specifically, we will mainly discuss unconditional (Section 2.3.1)

and conditional image generation (Section 2.3.2). As introduced in Section 2.1, training of

unconditional image generation is achieved via solving a two-player minimax game with the
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objective

LGAN(D,G) = Ex⇠pdata(x)[log(D(x))]+Ez⇠pz(z)[log(1�D(G(z))]. (2.7)

In conditional GANs, G takes an additional input y as the control signal. The discriminator

distinguishes real from fake by leveraging the information in y. In this case, the objective is

LcGAN(D,G) = Ex⇠pdata(x)[log(D(x,y))]+Ez⇠pz(z)[log(1�D(G(z,y))]. (2.8)

2.3.1 Unconditional image generation

Unconditional image generation aims at learning to map from a prior distribution (e.g.,

Gaussian) to a real-world data distribution. In this setting, models are usually trained to

generate category-specific datasets (e.g., faces [98, 72], kitchens [197], cars [197], etc.).

Figure 2.2 Generator of DCGAN.

DCGAN [122] firstly incorporated a fully convolutional architecture for unconditional

image generation and unsupervised representation learning. We illustrate associated generator

in Fig. 2.2. DCGAN contains five convolutional layers in both generator and discriminator

respectively and can upsample an input vector to a 64⇥64 image. Although the results are

preliminary, the design of DCGAN has strongly inspired most following GANs.
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Figure 2.3 Generator architecture of Progressive GAN.

Recently, unconditional image generation has witnessed considerable progress. Progres-

sive GAN [71] proposed a progressive training strategy (see Fig. 2.3) for high-resolution

image generation. It started from generating low-resolution images (4⇥ 4) and reached

high resolution, stage by stage. In each stage, it fused the RGB output from previous stages

into current feature maps towards training a new model for higher resolution. Due to the

progressive training, it was the first method, which can produce images of 1024 resolution.

However, since its architecture still followed the design of DCGAN, there are still obvious

artifacts in the generated images and some details are missing. In order to improve learning

of the distribution pertained to training data, StyleGAN [72] (see Fig. 2.4a) introduced a

novel style generator, which incorporates the Adaptive Instance Normalization (AdaIN) [60]

in each convolutional layer. Deviating from previous methods, where the input vector can

only be seen by the first layer, in StyleGAN, input noise vectors are mapped by a 8-layer

MLP into intermediate latent codes, which are fed into each AdaIN layer as style information.

Such design provides a more explicit way to control the style of generated images. Since the

input vectors control the style information in all convolutional layers, it can generate high-

quality images containing more details. Towards removing further artifacts, StyleGAN2 [73]

introduced a demodulation layer to replace the original AdaIN. In addition, residual modules
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(a) StyleGAN generator (b) Images generated by StyleGAN2

Figure 2.4 Architecture and generated samples of StyleGAN(2). (a) StyleGAN generator
architecture. (b) Generated images from StyleGAN2.

were used in both generator and discriminator to reduce the training time and further improve

the image quality. We show generated samples from StyleGAN2 in Fig. 2.4b.

2.3.2 Conditional image generation

Conditional image generation aims at controlling generated images using various addi-

tional input information such as class labels, audio and images. Below, we proceed to discuss

models using category labels and images.

Conditioned on category labels. In class-conditioned image generation, one crucial chal-

lenge has to do with integration of category labels in generator and discriminator. This

profoundly influences the diversity and quality of generated images, as investigated in previ-

ous work [109, 113, 110] (see Fig. 2.5). CGAN [109] firstly introduced the concatenation of

category labels and inputs in both, generator and discriminator. ACGAN [113] developed

this idea by adding an auxiliary branch in discriminator towards classifying the real and

generated images. Both methods have achieved good results in low-resolution datasets with
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Figure 2.5 Discriminators for class-conditioned image generation. (a) cGANs (input
concat). (b) cGANs (hidden concat). (c) ACGANs. (d) SNGAN.

few categories (e.g., CIFAR10). However when trained with large-scale datasets such as Ima-

geNet [31], their performance significantly decreases. The reason is twofolds. Firstly, their

architectures are based on DCGAN, which is not able to support high-resolution image gener-

ation. Secondly, the integration of category labels fails in discriminating different categories,

in particular when the number of categories are large. Towards solving these two problems,

SNGAN [110, 111] employed to use residual blocks in both generator and discriminator,

achieving higher resolution images. To better learn the distributions of various categories

in ImageNet„ Spectral Normalization (SN) and class-label projection in discriminator were

employed. Associated experimental results showed that such two techniques significantly

improve the performance of the model with much lower FID on ImageNet comparing to all

the previous methods. BigGAN [13] followed this idea and designed a larger model (see

Fig. 2.6). Towards finding the best strategy to train a generator for high-quality generation,

BigGAN conducted a large number of experiments to explore combinations of different

advanced techniques such as spectral normalization [110], category label projection [111],

self-attention [201], conditional batch normalization [29] and TTUR [55]. When trained
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Figure 2.6 BigGAN architecture. (a) Generator. (b) Residual block in generator. (c)
Residual block in discriminator.

under optimal settings, BigGAN achieved remarkable results on conditional image generation

on ImageNet w.r.t. both FID and visual quality. We illustrate generated samples in Fig. 2.7.

Figure 2.7 Generated samples from BigGAN.

Conditioned on images. Images as condition can be considered as building a translation

from a source image to a target one, and it is referred to as image-to-image translation.

Pix2pix [64] was a first general framework in this context that combined perceptual and

adversarial losses. We show the framework in Fig. 2.8. Pix2pix can translate semantic maps,

depth maps, grey-scale images and even sketch images into new RGB images. However, the

requirement of paired data (source-target pairs) during training time constrains its application
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Figure 2.8 Framework of Pix2pix.

Figure 2.9 Framework of CycleGAN.

in some real-world cases (e.g., style transfer). To tackle this issue, CycleGAN [216] intro-

duced a cycle consistency loss (see Fig. 2.9) aiming to translate images between different

domains for unpaired data. Recently, towards reducing training time of cycle consistency loss,

CUT [117] proposed a patchwise contrastive loss (PatchNCE) for unpaired image-to-image

translation, which learns distribution of patches between input and output images. Another

line in image-to-image translation is to learn disentangled representations while translating

images. Several work [61, 96, 85, 47] proposed to use two different encoders to represent

structure and content respectively from source and target images. By involving noises into the

latent space, these methods can also translate images in a multi-modal manner. In Chapter 6,

we will introduce our data augmentation method for unsupervised person ReID. We follow

the idea of Pix2pix and MUNIT [61] to generate images of a person with different viewpoints

using 3D mesh images. Our idea is to construct positive-negative samples for contrastive

learning.
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2.4 Video generation

In this section, we review works on unconditional (Section 2.4.1) and conditional video

generation (Section 2.4.2).

Figure 2.10 VGAN Architecture.

2.4.1 Unconditional video generation

Unconditional video generation aims at generating videos without additional information.

Examples of methods include VGAN [157], TGAN [130] and MoCoGAN [148]. VGAN is

equipped with a two-stream generator to generate foreground and background, respectively

(see Fig. 2.10). In particular, foreground is generated using a spatio-temporal generator

(3D generator), whereas background is produced using a 2D generator. In addition, spatio-

temporal convolutions are used in the discriminator to learn the video distribution. Similarly,

TGAN firstly generated a set of latent vectors corresponding to each frame using temporal

convolutional layers (1D transposed convoltutions) and then transformed them into actual

images using normal 2D generator (see Fig. 2.11). Further, TGAN proposed a singular

value clipping method to improve the capacity of the discriminator. MoCoGAN aimed at

decomposing latent representation into motion and content, in order to control both factors in

the generated results. It used a GRU to model temporal information in the latent space. Each

input of GRU is a noise vector sampled from Gaussian distribution. Content information
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is represented by another noise vector and concatenated with each motion representation.

Videos are produced using a 2D generator from such concatenated latent representation (see

Fig. 2.13). MoCoGAN combined 3D and 2D discriminators to further improve the quality of

generated videos. In Chapter 4 and Chapter 5, we introduce our approaches, which follow

the line of research in learning disentangled and interpretable latent spaces in unconditional

video generation.

2.4.2 Conditional video generation

In contrast to unconditional video generation methods, conditional video generation

methods aim at controlling generated results using additional input information. Specifically,

we discuss two types of conditions, class-labels and videos.

Conditioned on category labels. Category labels in this context are related to motion in the

training datasets (e.g., facial expressions and human actions). Methods for class-conditioned

image generation can also be applied to video generation. Current methods [157, 148, 130]

show that using category labels in both generator and discriminator can control the generated

videos. However, since appearance and motion are entangled, one major challenge has to

do with independently controlling motion, without affecting appearance. In Chapter 3 and

Chapter 4, we introduce two different approaches to tackle this challenge.

Figure 2.11 TGAN Architecture.
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Figure 2.12 MoCoGAN Architecture.

Conditioned on videos. Due to challenges in modeling high dimensional video data,

additional information such as semantic maps [116, 164, 163], human keypoints [67, 189,

161, 17, 200, 163], 3D mesh [205] as well as optical flow [89, 114] have been exploited to

guide appearance and motion generation. Different from these methods, in this thesis, we

aim to learn the full distributions of training datasets and generate videos without relying on

additional information [178].

2.5 Interpretability of GANs

In an effort to open the black box representing GANs, very recent work has proposed

different methods to understand both latent representations and inner representations of gener-

ator. Bau et al. [8, 9] sought to associate neurons in the generator with encoding of pre-defined

visual concepts such as colors, textures and objects. Subsequent work [135, 46, 66, 158]

proceeded to explore the interpretability of the latent space, seeking for latent representations

corresponding to semantics in generated images. Supervised methods attempted to involve
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Figure 2.13 Linear and non-linear latent walks.

classifiers to discover the latent representation related to pre-defined concepts such as facial

attributes [135], object structures [135, 66] and geometric transformations [66]. To learn

these concepts in a supervised manner, a large amount of generated results are required, which

renders these methods inefficient. Towards mitigating cumbersome and costly annotation,

unsupervised learning methods were proposed, most notably PCA [62], SVD [136], Hessian

Matrix [120] and pre-defined learnable matrix [158] in latent space. Linear [135, 66] and

non-linear [66] walks in found interpretable latent representations enabled semantic concepts

in the generated images to be modified.

In Chapter 5, we introduce our proposed approach to design an interpretable video GAN.

Deviating from previous methods, our evolved architecture allows for high-quality video

generation. We prioritize to interpret and manipulate motion in generated videos. We do

so by instilling a-priori the generator with a motion representation module, which learns

interpretable motion-components during training, rather than interpreting a-posteriori a

pre-trained generator.



Chapter 3

Conditional Spatio-Temporal GAN for

Video Generation

In this chapter, we study the problem of generating human videos from single images. It

entails the challenging simultaneous generation of realistic and visually appealing appearance

and motion. In this context, we propose a novel conditional GAN architecture, namely

ImaGINator, which given a single image, a condition (e.g., motion-label of a facial expression

or action) and noise, decomposes appearance and motion in both latent and high level feature

spaces, generating realistic videos. This is achieved by (i) a novel spatio-temporal fusion

scheme, which generates dynamic motion, while retaining appearance throughout the full

video sequence by transmitting appearance (originating from the single image) through all

layers of the network. In addition, we propose (ii) a novel transposed (1+2)D convolution,

factorizing the transposed 3D convolutional filters into separate transposed temporal and

spatial components, which yields significant gains in video quality and speed. We extensively

evaluate our approach on the facial expression datasets MUG and UvA-NEMO, as well

as on the action datasets NATOPS and Weizmann. We show that our approach achieves

significantly better quantitative and qualitative results than the state-of-the-art.
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3.1 Introduction

Generating realistic human videos based on single images brings to the fore following

three challenges: (a) retaining of human identity appearance throughout the video, (b) gener-

ating (uncertain) motion, as well as (c) modeling of spatio-temporal consistency. Finding

suitable representation learning methods, which are able to address these challenges, is

critical to the final visual quality and plausibility of the rendered novel video sequences.

Existing methods predominantly treat generation of high dimensional video as a separate

two step modeling of low-dimensional temporal and spatial generation. Such methods (e.g.

MoCoGAN) [148], are grounded on the seq2seq [143] architecture. In particular associated

video generation in such methods includes two steps: (1) motion generation in a latent space,

proceeded by (2) motion and appearance-generation, where frames are generated individually,

combining the single-input-image-appearance information with each motion vector generated

in (1). These two steps aim at decomposing video generation into the generation of individual

frames, which imparts the benefit of straightforward optimization. Two step methods fail to

address the above named challenges (a) and (c), i.e. appearance is not sufficiently retained

and spatio-temporal consistency is not modeled, as temporal consistency is not modeled in

higher level spatial spaces.

In contrast to two step methods, VGAN [157] utilized a single step to generate future

frames by leveraging on 3D convolution to model spatio-temporal features in high and low

levels. We here note that utilizing 3D convolution directly challenges optimization. In

addition, the generated video was decomposed into foreground and background, in two

streams, which required an additional branch to model background information, increasing

the complexity of the model.

Motivated by the above, in this chapter we present a novel conditional GAN model,

referred to as ImaGINator, generating video sequences given a single image, a motion-

category label (i.e., facial expression or human action), as well as noise. ImaGINator

incorporates a Generator G, a video Discriminator DV , as well as an image Discriminator

DI , as depicted in Fig. 3.1. It is streamlined to exploit the joint benefits of single and two-step

methods by incorporating several new properties. First, we propose a novel spatio-temporal
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Label cm
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z ⇠ N(0, 1)

Generated video

Real video
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Figure 3.1 ImaGINator architecture. The proposed ImaGINator architecture incorporates
Generator G, image Discriminator DI , as well as video Discriminator DV . G accepts ca, cm
and noise as input, and seeks to generate realistic video sequences. While DI discriminates
whether the generated images contain an authentic appearance, DV additionally determines
whether the generated videos contain an authentic motion.

fusion mechanism, aiming at retaining the appearance by enforcing G to employ the spatial

information in both, low and high feature levels. By injecting motion-category label into the

Decoder, we enable G to place emphasis on generating solely motion. This is based on the

hypothesis that a video can be disentangled into appearance and motion in the latent space,

as well as in multi-level spatio-temporal feature spaces. While at each level appearance is

retained, only the motion is being altered. Second, we introduce a novel transposed (1+2)D

convolution, factorizing the transposed 3D convolutional filters into separate temporal and

spatial components. This brings several benefits: (i) an additional nonlinear rectification

allows the model to represent more complex functions, (ii) it facilitates optimization, as

transposed (1+2)D convolution blocks are easier to optimize than the full transposed 3D

convolutional filters, and (iii) it yields significant gains in both video quality and speed.

Towards comparing our algorithm with other video generation algorithms, we augment

two state-of-the-art video generation algorithms, namely VGAN and MoCoGAN, in order

to adhere to our problem setting. We proceed to provide a comparison, showing that our

method outperforms these methods qualitatively (based on a human study of 30 subjects) and

quantitatively on both, facial expression (MUG and UvA-NEMO), as well as human action
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datasets (Weizmann and NATOPS) by presenting results pertaining to five evaluation metrics.

In addition, we conduct an ablation study, which validates the effectiveness of components in

ImaGINator.

3.2 Background

Conditional Generation accepts as inputs both, latent variables, as well as known

auxiliary information, such as class labels. The majority of works have expanded either

Generative Adversarial Networks (GANs) [48] or Variational Auto-Encoders (VAEs) [79]

in this context, by augmenting GANs and VAEs with the capability of generating data

samples based on class labels. Conditional generation has been beneficial in domain transfer,

super-resolution imaging, video to video translation, as well as image and face editing

[65, 215, 109, 69, 87, 164, 26, 72, 175, 176, 198, 166]. Most recently, a number of new

techniques has been proposed to stabilize the training process of conditional GANs (cGANs)

and improve the visual quality of generated images [110, 13]. Our proposed ImaGINator is

a cGAN architecture, aiming at generating facial expressions / human actions from single

images, where a category label is provided in both G and D.

Unsupervised video prediction based on multiple frames involves the use of multiple

frames as input and the prediction of future frames by learning to extrapolate. Video

prediction has been predominantly focused on predicting high-level semantics in video, such

as action [129, 81, 41, 105, 155, 183, 34, 33], event [199, 59, 124], semantic segmentation

[101], as well as motion [121, 160, 159, 91]. In contrast to such works, our model is targeted

to generate a video sequence based on a single frame. Since future motion is very uncertain

under this setting, we leverage action label as a guidance.

Video generation based on a single image is challenging and hence current methods

have proposed to decompose it into sub-tasks. One line of scientific works has utilized in this

additional context-information, e.g., human key points [67, 189, 161], 3D face mesh [205]

and optical flow [89], as future motion guidance. This additional information is either pre-

computed throughout the generated video [67, 205] or predicted based on an initial input
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[189, 161]. The additional information guides a conditional image translation, which though

results in lack of modeling spatio-temporal correlations.

Deviating from the above, several previous work [148, 157, 188] attempted to hallucinate

future frames directly in the pixel space. The latter proposed a probabilistic model, predicting

dynamic filters on the input image to render next frame, leading to prediction of only one

future frame. MoCoGAN is based on a seq2seq [143] architecture, aiming at separating

spatio-temporal generation into two steps (disentangling each video frame into motion

and appearance in different latent spaces). However, such two-step generation omits the

modeling of temporal consistency in higher spatial levels, which generally fails to retain

original appearance. VGAN employs a single step method towards modeling multi-level

spatio-temporal consistency through 3D convolution by decomposing videos into foreground

and background. Although it models both, low and high level features, due to lack of frame

quality constrains, generated results are of inherently lower visual quality, i.e., are blurry.

In this chapter, we present a single step architecture, which decomposes motion and

appearance in multi-level feature spaces for image to video generation.

3.3 ImaGINator

Our goal is to generate a video sequence, given an appearance information (as a single

image frame) and a motion-category label (e.g. determining the facial expression and humna

action). We here assume that a video y can be decomposed into appearance ca (originating

from the input image) and motion cm (originating from the label), based on which we

proceed to generate videos. Hence, we formulate our task as learning a conditional mapping

G : {z,ca,cm}! y, where z⇠N (0, 1) denotes the noise vectors.

Towards achieving our goal, we present a framework that consists of the following 3 main

components: (i) Generator G, that accepts ca, cm and noise as inputs, and seeks to generate

realistic video sequences, (ii) image Discriminator DI that determines the frame-level based

appearance quality, and (iii) video Discriminator DV , which additionally discriminates,

whether the generated video sequences contain authentic motion. In the following we proceed
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Figure 3.2 Overview of the proposed ImaGINator. In the Generator G, the Encoder firstly
encodes an input image ca into a single vector p. Then, the Decoder produces a video
based on a motion cm and a random vector z. By using spatio-temporal fusion, low level
spatial feature maps from the Encoder are directly concatenated into the Decoder. While DI
discriminates whether the generated images contain an authentic appearance, DV additionally
determines whether the generated videos contain an authentic motion.

to describe the architecture of our video prediction network, providing details on G, DI and

DV , as illustrated in Fig. 3.2. In addition, we elaborate on the proposed spatio-temporal

fusion scheme, as well as the transposed (1+2)D convolution.

3.3.1 Generator

Our Generator G consists of an image Encoder and a video Decoder (see Fig. 3.2). The

Encoder extracts appearance information in various layers, from shallow, fine layers to deep,

coarse layers. It encodes the input image ca into a latent vector p, and then by concatenating

p, cm as well as the noise vector z, the decoder generates a video sequence.

In our Generator G, we extend the idea of using 2 skip connections from the FCN-8 [99]

to 4 skip connections, but with the difference that the original skip connections are applied to

fuse predictions, whereas ours are applied to fuse appearance and motion spatio-temporal

features. Our skip connections allow the Decoder to access low-level features directly from

the Encoder, enabling the Decoder to reuse the appearance features at each time slice and to

focus on generating motion.
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Figure 3.3 Spatio-temporal fusion. Blue and orange cuboids represent the intermediate fea-
ture maps in the Decoder and Encoder respectively. Our proposed fusion scheme enforces the
Decoder reutilizing spatial information through skip connections. Based on such operations,
temporal consistency can be modeled in multi-levels.

Spatio-temporal fusion. Let G have n layers and let Fi 2 RH⇥W⇥C1⇥T be the feature

map from the ith layer with C1 number of channels in G, fi,t 2 RH⇥W⇥C1 , t 2 {1, ...,T}

be the tth feature map in Fi and Fn�i 2 RH⇥W⇥C2 represent the feature map from (n� i)th

layer, see Fig. 3.3. We design the outputs of each respective layer from our Decoder and

Encoder to have the same spatial dimensions H ⇥W . We propose a fusion mechanism,

concatenating each fi,t with Fn�i in a channel-wise dimension with a result of a new feature

map F
0
i 2 RH⇥W⇥(C1+C2)⇥T , named spatio-temporal fusion. Here we note that each initial

feature map Fi represents spatio-temporal features of several consecutive frames in the

generated video. By spatio-temporally fusing Fi and Fn�i directly in different feature levels,

the input information can be well preserved in the generated video.

Further, we fuse the label (constituting a one-hot vector) directly into the Decoder, in order

to provide each layer an access to the label. To do so, we firstly project the label onto one-hot

feature map. Then, we spatio-temporally fuse the category label information into different

layers in the Decoder. Our final feature map Fi is of size H⇥W ⇥ (C1 +C2 +Ccategory)⇥T .

We note that 3D convolution, utilized in one step methods often brings to the fore

generation of blurry videos, due to hard optimization. Nevertheless, benefiting from spatial

and temporal decomposition, frames can be generated individually in a two step method.

Hence, towards incorporating such decomposition in a one step method, we design a new

convolution layer, integrating transposed (1+2)D convolution.
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Figure 3.4 Transposed 3D convolution (on the left) v.s. proposed Transposed (1+2)D
convolution (on the right). The transposed 3D convolutional filter of size t⇥w⇥h has been
decomposed into M transposed 1D temporal convolution filters t⇥1⇥1 and a transposed 2D
spatial convolution 1⇥w⇥h. The operation M denotes the number of 1D filters, t indicates
the temporal size, and w and h indicate the spatial size.

Transposed (1+2)D Convolution. We propose to explicitly factorize transposed 3D con-

volutional filters into two separate and successive operations, M transposed 1D temporal

convolutional filters followed by a 2D separate spatial components, which we refer to as

transposed (1+2)D convolution, shown in Fig. 3.4. Such decomposition brings to the fore

several benefits. The first benefit relates to an additional nonlinear rectification between

these two operations, thus allowing the model to represent more complex functions. The

second potential benefit is that the decomposition facilitates optimization, as transposed

(1+2)D convolution blocks, with factorized temporal and spatial components, are easier to

optimize than the full transposed 3D convolutional filters. Moreover, we show that factorizing

the transposed 3D convolutional filters yields significant gains in both, video quality and

speed, see Section 5.3. We note that proposed transposed (1+2)D convolution is inspired by

decomposition of 3D convolutional filters [147].

3.3.2 Two-stream Discriminator

Towards improving image quality in video generation, we here design a two-stream

Discriminator architecture, containing DV , as well as DI . While DV has five 3D convolution

layers, DI contains only 2D convolutions with the same layer numbers of DV . DV accepts

the full generated video as input, using proposed spatio-temporal fusion to fuse the ‘one-

hot feature map’ of the category label and the output of the first layer, similarly like in

G. DV seeks to measure the KL divergence between the joint distributions p(xreal,cm) and
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p(x f ake,cm). We randomly sample N frames out of real and generated video respectively as

input.

3.3.3 Learning

We define our full objective function as

G⇤ = argmin
G

max
DI ,DV

L (G,DI,DV )

LF (G,DI,DV ) = LGAN(G,DI,DV )+lLrec(G),

(3.1)

which contains two types of terms: an adversarial loss LGAN for matching the distribution of

generated images to the data distribution in the target domain, and a reconstruction loss Lrec

for capturing the overall structure and coherence of a video. Due to the high dimensional

video space, we introduce the l parameter, which controls the relative importance of the

objectives and stabilizes the training and balancing between losses.

Adversarial Losses. We apply adversarial losses to our mapping function G and its image

Discriminator DI and video Discriminator DV . We express the objective as

LGAN(G,DI,DV ) = LI(G,DI)+LV (G,DV ), (3.2)

where G attempts to generate videos G(z,ca,cm), while DI and DV aim to distinguish between

translated samples and real samples. G seeks to minimize this objective against adversaries

DI and DV , which attempt to maximize it, i.e. minG maxDI ,DV LGAN(G,DI,DV ). The loss

LI and the loss LV are defined as follows

LI = Ex0⇠pdata
[log(DI(x

0
))]+Ez⇠pz(z),ca,cm [1�log(DI(G(z,ca,cm)

0
))],

LV = Ex⇠pdata,cm [log(DV (x,cm))]+Ez⇠pz(z),ca,cm [1�log(DV (G(z,ca,cm),cm))].
(3.3)

LI denotes the loss function related to DI , LV represents the loss function related to

DV , and (·)0 characterizes N frames sampled from real and generated videos. Both losses,
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encompassed in DI and DV , are based on the Cross-Entropy loss.

Reconstruction Loss. We define our video-level reconstruction loss as

Lrec = E[||xreal�G(z,ca,cm)||1], (3.4)

the reconstruction loss is aimed at capturing the overall structure and coherence of a video. It

uses L1 loss in order to generate sharp videos. By combining it with LGAN , it fosters G to

create more realistic videos and to reconstruct the original real ones at the same time.

3.3.4 Architecture details

Generator. We illustrate the architecture of generator in Fig. 3.5. It consists of two parts,

(a) an image Encoder, containing five 2D convolutional layers (Conv1 - Conv5) and (b) a

video Decoder with five transposed (1+2)D convolutions (Deconv 6-1 - Deconv10-2). Each

transposed (1+2)D convolution has two separate and successive operations, M transposed 1D

temporal convolutional filters followed by a transposed 2D spatial convolution. In all layers

of the Generator, we use the Batch Normalization [63], followed by the LeakyReLU after

each convolution and transposed convolution, except for the last layer, where we directly use

the Tanh activation function after the transposed convolution.

Towards generating a video, the Encoder firstly encodes an input image of size 64⇥64⇥3

into a latent vector of size 100, proceeds to combine it with a noise vector of size 512, as well

as with a one-hot category vector towards formulating a representation of video in a latent

space. Then, the Decoder generates a video based on this representation. Each transposed 1D

convolutional layer (except Deconv6-1) in the Decoder merges three different types of feature

maps as input through spatio-temporal fusion, (i) a motion map from its last 2D layer, (ii)

an appearance map from the corresponding layer in the Encoder through skip connections,

as well as (iii) a one-hot category map replicated from the one-hot category vector. All

feature maps share the same spatial size. In particular, we capture the feature maps from
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layers Conv1, Conv2, Conv3, Conv4, in order to fuse with the outputs from layers Deconv9-2,

Deconv8-2, Deconv7-2 and Deconv6-2, respectively. Details of the Generator are exhibited

in Table 3.1.

Layers Type KN KS S P
Conv1 Conv2D 64 4x4 2x2 1x1
Conv2 Conv2D 128 4x4 2x2 1x1
Conv3 Conv2D 256 4x4 2x2 1x1
Conv4 Conv2D 512 4x4 2x2 1x1
Conv5 Conv2D 100 4x4 1x1 No

Deconv6-1 TransConv1D 4096 2x1x1 1x1x1 No
Deconv6-2 TransConv2D 512 1x4x4 1x1x1 No
Deconv7-1 TransConv1D 3072 4x1x1 2x1x1 1x0x0
Deconv7-2 TransConv2D 256 1x4x4 1x2x2 0x1x1
Deconv8-1 TransConv1D 1536 4x1x1 2x1x1 1x0x0
Deconv8-2 TransConv2D 128 1x4x4 1x2x2 0x1x1
Deconv9-1 TransConv1D 768 4x1x1 2x1x1 1x0x0
Deconv9-2 TransConv2D 64 1x4x4 1x2x2 0x1x1

Deconv10-1 TransConv1D 36 4x1x1 2x1x1 1x0x0
Deconv10-2 TransConv2D 3 1x4x4 1x2x2 0x1x1

Table 3.1 Network architecture of the Generator. Our Generator incorporates an image
Encoder (Conv1 - Conv5), as well as a video Decoder (Deconv6-1 - Deconv10-2). KN =
Kernel Numbers, KS = Kernel Size, S = Stride, P = Padding size.

Discriminator. Our ImaGINator includes two Discriminators, an image Discriminator DI ,

as well as a video Discriminator DV . The input of DI entails N randomly sampled frames,

either from real or generated videos. In our experiments, we set N = 16. DI provides as

output a scalar value, indicating whether the frames are real or fake. DI is represented by a

network of five 2D convolutional layers. The kernel size in all layers is 4⇥4, see Fig. 3.6.

DV discriminates videos based on the related realistic appearance and motion. It is

represented by a network containing five 3D convolutional layers, see Fig. 3.7. While

4⇥4⇥4 kernels have been applied in the first four layers, one 2⇥4⇥4 kernel is featured in

the last layer (T ⇥H⇥W denotes time step, height and width of a kernel respectively). A

one-hot category vector is replicated into a one-hot category map of the same spatial size of
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Figure 3.5 Network architecture of the Generator. Our Generator G accepts an image of
size 64⇥ 64⇥ 3 as input and generates a 32-frame long video. G incorporates an image
Encoder (Conv1 - Conv5) and a video Decoder (Deconv6-1 - Deconv10-2). Skip connections
link Encoder and Decoder, with the goal of enforcing the Decoder to reuse appearance
features directly. A motion category vector is replicated into feature maps and concatenated
with each feature map in the Decoder (for different dataset, length of motion category vector
is different, here we use 6 to represent MUG dataset).
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the output feature map of Conv1. Then, Conv2 takes the concatenation of both feature maps

as input.

In all layers in both Discriminators, we use the Spectral Normalization (SN) [110],

followed by the LeakyReLU after each convolution, except for the the last layer, where we

use Sigmoid activation function after the normalization. Details pertained to the network

architecture of the Discriminators are presented in Table 3.2 (image Discriminator) and

Table 3.3 (video Discriminator), respectively.

Layers Type KN KS S P
Conv1 Conv2D 64 4x4 2x2 1x1
Conv2 Conv2D 128 4x4 2x2 1x1
Conv3 Conv2D 256 4x4 2x2 1x1
Conv4 Conv2D 512 4x4 2x2 1x1
Conv5 Conv2D 1 4x4 1x1 No

Table 3.2 Network architecture of the image Discriminator. KN = Kernel Numbers, KS
= Kernel Size, S = Stride, P = Padding size.

Layers Type KN KS S P
Conv1 Conv3D 64 4x4x4 2x2x2 1x1x1
Conv2 Conv3D 128 4x4x4 2x2x2 1x1x1
Conv3 Conv3D 256 4x4x4 2x2x2 1x1x1
Conv4 Conv3D 512 4x4x4 2x2x2 1x1x1
Conv5 Conv3D 1 2x4x4 1x1x1 No

Table 3.3 Network architecture of the video Discriminator. KN = Kernel Numbers, KS =
Kernel Size, S = Stride, P = Padding size.

3.3.5 Implementation details and training strategy

Our method is implemented using PyTorch. We train the entire network end-to-end with

the standard back-propagation algorithm on a single GTX 1080Ti GPU. We employ ADAM

optimizer [78] with b = 0.5. Moreover, we apply spectral normalization on both DI and

DV to stabilize training, as proposed by Miyoto et al. [110]. We observe that given the

same learning rate for DI , DV and G during training, DI and DV typically learn faster than

G. The reason for this might be that the spatio-temporal convolution is more efficient at
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Figure 3.6 Network architecture of the image Discriminator, containing five 2D convolu-
tional layers of kernel size 4⇥4.

differentiating than at generating, as pointed out by Goodfellow et al. [48] and Radford et

al. [122]. In order to circumvent this disparity, we set the learning rate to 2e�4 for G, and

5e�5 for both DI and DV . l is set 1e�3 to balance two types of losses.

To train the network, we firstly provide an input frame, as well as corresponding category

label to G to generate possible videos. Then DV and DI distinguish between real and fake

videos and frames based on the respective quality. Specifically, when training DV , we provide

two types of negative samples, generated videos with correct labels (xreal,ccorrect) and real

videos with wrong labels (xreal,cwrong). We observe that such training enforces DV to learn

from diverse samples and at the same time enables the generation of realistic samples. We

provide details in Algorithm 1.



3.3 ImaGINator 41

Figure 3.7 Network architecture of the video Discriminator, including five 3D convo-
lutional layers, a motion category vector is firstly replicated and then concatenated with
the feature map of the first layer (for different dataset, length of motion category vector is
different, here we use 6 to represent MUG dataset).

Algorithm 1 ImaGINator Training Algorithm

Input: minibatch x, x
0
, input image ca, correct cm, wrong ĉm

1: for each step do
2: z⇠N (0, I)
3: xrecon G(z,ca,cm)
4: sreal  DV (x,cm)+DI(x

0
)

5: srecon DV (xrecon,cm)+DI(x
0
recon)

6: sw DV (x, ĉm)+DI(x
0
)

7: LD log(sr)+0.5[log(1� sw)+ log(1� srecon)]
8: DV  DV �a∂LD/∂DV
9: DI  DI�a∂LD/∂DI

10: Lrecon ||x� xrecon||1
11: LG log(srecon)+lLrecon
12: G G�a∂LG/∂G
13: end for
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3.4 Experiments

This section presents the evaluation of ImaGINator. We first describe datasets and

evaluation metrics used in this work. We then present quantitative and qualitative comparison

with other methods w.r.t. video quality. Finally, we showcase an ablation study to demonstrate

the effectiveness of proposed architecture and loss function.

3.4.1 Datasets

MUG Facial Expression dataset [2] contains 931 videos of 52 subjects (data of 42 sub-

jects is employed for training and 10 for testing), performing 7 facial expressions, namely

“happy”, “sad”, “surprise”, “anger”, “disgust”, “fear” and “neutral”.

NATOPS Aircraft Handling Signals dataset [140] contains video sequences of 20 subjects

(data of 15 subjects is employed for training and 5 for testing), performing 24 gestures

including “all clear” and “move ahead”. Each subject repeats each gesture 20 times.

Weizmann Action dataset [49] contains 90 videos of 9 subjects (data of 6 subjects is em-

ployed for training and 3 for testing), performing 10 actions, e.g.,“wave” and “bend”. We

augment this dataset by doubling the number of videos using horizontal flipping transforma-

tion.

UvA-NEMO Smile dataset [35] contains 597 video sequences of smiling individuals. It

contains 400 subjects (data of 320 subjects is employed training and 80 for testing) with 1 or

2 videos per subject. In the context of UvA-NEMO we do not provide any category to our

model, since the dataset features only one facial expression.

In all our experiments, frames are scaled to 64⇥64 pixels. We use a time step 2 to sample

frames from facial expression datasets and a time step of 1 from human action datasets.

MUG and UvA-NEMO are pre-processed by detecting faces in OpenFace [4] and cropping

them in each frame.
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3.4.2 Evaluation Metrics

The Video Fréchet Inception Distance (FID) [164] is a video generation metric. It

measures both visual quality and temporal consistency of generated videos. We use 3D

ResNeXt-101 as a feature extractor and calculate Video FID as: kµ � eµk2 +Tr(S+ eS�

2
p

SeS)), where µ and S are mean and covariance matrix computed from real feature vectors,

and eµ , and eS are computed from generated data. Lower Video FID scores represent a superior

quality of generated videos.

The Structural Similarity Index Measure (SSIM) indicates the structure similarity be-

tween real and reconstruction images, Peak Signal-to-Noise Ratio (PSNR) quantifies the

image quality. High SSIM and PSNR scores indicate higher quality of generated images.

The Average Content Distance (ACD-C) [148] measures content consistency of a gen-

erated video. For facial expression videos, we first use OpenFace [4], which outperforms

human performance in face recognition, to extract a feature vector pertaining to the detected

face. Then, we compute the ACD-C as an average L2 pairwise distance for a per-frame

vector in a video. Smaller values indicate similar faces in consecutive frames of a generated

video. However, the original ACD-C only signifies the face-identity-consistency between

each pair of frames, lacking the information on general identity preservation. Therefore, we

also use the ACD-I measure [206], the extension corresponding to the average of all L2

pairwise distances between each generated frame and the respective input frame.

3.4.3 Video quality evaluation

We proceed to compare our proposed ImaGINator to state-of-the-art video generation

methods MoCoGAN and VGAN, both quantitatively and qualitatively. For the latter we

report results pertained to a subjective analysis comparing the three methods.

Quantitative Analysis. For all methods, we sample 10 initial frames from each video

sequence in each testing set. Both benchmark methods have been tuned with the best

parameters on all training sets. All methods are trained to generate video sequences of 32



44 Conditional Spatio-Temporal GAN for Video Generation

Figure 3.8 Example generated video frames pertained to algorithms (a) VGAN, (b) MoCo-
GAN, as well as the (c) proposed ImaGINator. For each method, we present generated video
frames for the four datasets: Weizmann (top-left), label “Wave”; NATOPS (top-right), label

“Hot Brakes”; MUG (bottom-left), label “Happiness”; UvA-NEMO (Down-right), no label.
All frames are sampled with a time step of 3.

frames with an image size 64⇥64 pixels. Example generated frames of different methods

are shown in Fig. 3.8.

We firstly report reconstruction capabilities of our approach using SSIM and PSNR

scores in Table 3.4. Our results show that the ImaGINator outperforms MoCoGAN and

VGAN, w.r.t. SSIM and PSNR metrics, indicating that our proposed spatio-temporal fusion

mechanism can well preserve the structure information of input image in the full generated

video.

Then, we report FID scores for the three methods in Table 3.4. Our proposed ImaGINator

achieves the lowest numbers on all four datasets, suggesting that videos generated by our

method have the best temporal consistency and visual quality. We also show generates

samples in Fig. 3.12 (Uva-NEMO), Fig. 3.13 (MUG), Fig. 3.14 (NATOPS) and Fig. 3.15

(Weizmann). This proves that modeling temporal consistency in higher spatial level can

generate more realistic videos.
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MUG NATOPS Weizmann UvA-NEMO
SSIM/PSNRFID SSIM/PSNRFID SSIM/PSNRFID SSIM/PSNRFID

VGAN [157] 0.28/14.54 74.72 0.72/20.09 167.71 0.29/15.78 127.31 0.21/13.43 30.01
MoCoGAN [148] 0.58/18.16 45.46 0.74/21.82 49.46 0.42/17.58 116.08 0.45/16.58 29.81

ImaGINator 0.75/22.63 29.02 0.88/27.39 26.86 0.73/19.67 99.80 0.66/20.04 16.16
Table 3.4 Evaluation of video quality. We compare VGAN, MoCoGAN and proposed
ImaGINator w.r.t. image quality (SSIM/PSNR) and video quality (FID).

Then, we evaluate the content consistency for facial expression generation using ACD-C

and ACD-I scores. Our results on the MUG dataset are presented in Table 3.5. The proposed

ImaGINator outperforms both MoCoGAN and VGAN, on both ACD-C and ACD-I scores.

The results confirm the ability of the proposed spatio-temporal fusion scheme to effectively

preserve the appearance information in the generated videos.

Methods ACD-C ACD-I
VGAN [157] 0.272 0.932

MoCoGAN [148] 0.158 0.904
ImaGINator 0.131 0.431
Reference 0.102 0.206

Table 3.5 Evaluation of content consistency of VGAN, MoCoGAN and proposed ImaGI-
Nator on the MUG dataset, represented by ACD-I and ACD-C scores.

Subjective Analysis. In addition, we conduct a subjective analysis, where we ask 30

human raters to pairwise compare videos generated by our approach with those generated by

the state-of-the-art. We report the mean user preference in Table 4.2. We observe that human

raters express a strong preference for the proposed framework over MoCoGAN (83.32%

v.s. 16.68%) and VGAN (85.43% v.s. 14.57%), which is consistent with the above listed

quantitative results. Further, we compare real videos from all the datasets with generated

video sequences from our method. The human raters ranked 20.82% of videos from our

ImaGINator as more realistic than real videos, which we find highly encouraging.
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Methods Rater preference (%)
ImaGINator / MoCoGAN [148] 83.32 / 16.68

ImaGINator / VGAN [157] 85.43 / 14.57
MoCoGAN [148] / VGAN [157] 70.85 / 29.15

ImaGINator / Real videos 20.82 / 79.18
Table 3.6 Subjective analysis. Mean user preference of human raters comparing videos
generated by the respective algorithms, as well as originated from all the datasets.

Figure 3.9 Controllable video generation in ImaGINator. Starting from the same image
(top left for both datasets), we generate videos associated to different labels (remaining
frames). In (a) MUG, from top to bottom the labels are set as “fear”, “anger” and “hap-
piness”. In (b) NATOPS, from top to bottom the labels are set as “all clear”, “fold winds”
and “brakes on”.

3.4.4 Controllable Video Generation.

We further conduct an experiment on the MUG and NATOPS datasets, where starting

from the same image, we generate various videos associated to different labels (facial

expressions / actions). Our results are presented in Fig. 3.9. These results confirm the ability

of our approach to generate new videos based on single images and category-labels.

3.4.5 Ablation Study

We here focus on showcasing the general effectiveness of our architecture, as well as the

effectiveness related to each component of the proposed Generator.

Firstly, in the Generator G, we compare the performance of fully transposed 3D convo-

lution with the proposed transposed (1+2)D convolution, and in the Discriminator D, we

mainly focus on analyzing the usage of DI . In addition, we compare each architecture with
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the model of the same architecture, but using an auxiliary classifier in D, similar to ACGAN

loss [113], which we refer as DV (ac). Our results are presented in Table 3.7.

Generator Discriminator MUG NATOPS
3D DV (ac) 37.71 65.28

(1+2)D DV (ac) 32.57 52.43
3D DV (ac),DI 33.08 57.65

(1+2)D DV (ac),DI 29.91 48.41
3D DV 36.93 50.08

(1+2)D DV 29.80 40.57
3D DV ,DI 27.94 42.10

(1+2)D DV ,DI 24.36 26.86
Table 3.7 Effectiveness of the proposed architecture. We compare different architectures
in both G and D to showcase the effectiveness of the proposed ImaGINator.

Our results show that given the same Discriminator, models using transposed (1+2)D

convolution provide consistently lower video FID scores than models using transposed 3D

convolution. The results confirm that our proposed transposed (1+2)D layer systematically

improves video quality. Moreover, we show that adding DI is beneficial, as well as that con-

catenating label vectors directly into spatio-temporal feature maps exceeds the performances

of using auxiliary classifier in conditional video generation, see Table 3.7. This is especially

true if the number of categories is large. A similar observation has been reported by Miyato

and Koyama [111] in the context of conditional image generation.

Furthermore, we showcase that the spatio-temporal fusion contributes predominantly to

video quality, see Table 3.8, and hence re-injecting spatial features and modeling temporal

consistency in higher spatial level is an effective way to generate realistic videos. Finally, our

results confirm that adding noise in the latent space is beneficial, as depicted in Table 3.8.

Architecture MUG NATOPS
ImaGINator, w/o ST fusion 46.02 62.89
ImaGINator, w/o (1+2)D 27.94 42.10
ImaGINator, w/o noise 32.38 32.05

ImaGINator 24.36 26.86
Table 3.8 Contribution of main components in G. We evaluate the ablation of spatio-
temporal fusion, transposed (1+2)D convolution, as well as noise vector.
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(a) Adversarial loss (b) Reconstruction loss

Figure 3.10 Comparison of use of merely (a) Adversarial loss and (b) Reconstruction
loss. We illustrate generated frames for (a) and (b) on four datasets. We observe that frames
in (a) are sharper than (b), but (b) retains overall structures better than (a). Frames are
sampled with time step 4.

Towards evaluating the pertinence of reconstruction and adversarial losses in our loss

function, we conduct two experiments. While the first experiment integrates merely the

adversarial loss in ImaGINator, omitting the reconstruction loss; the second experiment

merely integrates reconstruction loss, omitting the adversarial loss.

As shown in Table 3.9, models only using adversarial loss achieve lower video FID than

those only using reconstruction loss. However, results in Table 3.10 and Table 3.11 indicate

that the use of reconstruction loss manifests in significantly higher SSIM and PSNR than

models only using adversarial loss. We conclude that adversarial loss is instrumental in

improving the perceptual quality of videos, as it enforces the Generator to create videos,

matching the distribution of the training data. At the same time, the reconstruction loss

encourages the Generator to produce frames, resembling the ground truth by reducing the

pixel-wise distance, see Fig. 3.10.

In contrast to both single loss experiments, the ImaGINator (using both losses), w.r.t. both

evaluation metrics achieves the best results. Hence, both types of losses are complementary

and pertinent for the performance of the ImaGINator.

Finally, we compare video quality and training speed of our approach when using (i)

transposed 3D convolutional filters only, and (ii) our transposed (1+2)D convolutional filters
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Adv. Loss Recon. Loss Two losses
MUG 35.62 45.43 29.02

NATOPS 33.97 61.32 26.86
Weizmann 150.48 217.58 99.80

UvA-NEMO 19.29 30.72 16.16
Table 3.9 Evaluation results for models using different losses on four datasets represented
by video FID. (Adv. Loss indicates adversarial loss, Recon. Loss indicates Reconstruction
Loss and Two losses represents our proposed ImaGINator loss function.)

Adv. Loss Recon. Loss Two Losses
MUG 0.54 0.74 0.75

NATOPS 0.87 0.88 0.88
Weizmann 0.50 0.54 0.73

UvA-NEMO 0.64 0.66 0.66
Table 3.10 Evaluation of frame quality between generated frames and ground truth on
four datasets using SSIM. (Adv. Loss indicates adversarial loss, Recon. Loss indicates
Reconstruction Loss and Two losses represents our proposed ImaGINator loss function.)

Adv. Loss Recon. Loss Two Losses
MUG 19.24 22.60 22.63

NATOPS 26.72 27.10 27.39
Weizmann 17.01 18.03 19.67

UvA-NEMO 19.87 20.02 20.04
Table 3.11 Evaluation of frame quality between generated frames and ground truth on
four datasets using PSNR. (Adv. Loss indicates adversarial loss, Recon. Loss indicates
Reconstruction Loss and Two losses represents our proposed ImaGINator loss function.)
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only, both having the same number of parameters for a fair comparison. The quantitative and

qualitative results on the Weizmann dataset are presented in Table 3.12 and Fig. 3.11.

Architecture FID Training time
Transposed 3D convolution 110.5 16.7s

Transposed (1+2)D convolution 99.8 11.9s
Table 3.12 FID score and training time per epoch of our approach with transposed 3D and
transposed (1+2)D convolutions.

(a) 3D

(b) (1+2)D

Figure 3.11 Sample generated frames of ImaGINator with (a) transposed 3D and (b)
transposed (1+2)D convolutions.

The results confirm that factorizing the transposed 3D convolutional filters into separate

temporal and spatial components brings benefits: (i) an additional nonlinear rectification

allows the model to represent more complex functions, (ii) optimization is facilitated, as

transposed (1+2)D convolution blocks are easier to optimize than the full transposed 3D

convolutional filters, and (iii) significant gains are yielded in both video quality and speed.

Therefore, in the following evaluations we use our approach with the transposed (1+2)D

convolution filters only.
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Figure 3.12 Generated examples from UvA-NEMO.
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Figure 3.13 Generated examples from MUG. Labels are happiness (01,02,03,04), anger
(05,06,07,08), fear (09,10,11,12), sadness (13,14,15) and disgust (16,17,18).
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Figure 3.14 Generated examples from NATOPS. Labels are Fold Wings (01,02,03,04,05),
All Clear (06,07,08,09), Nosegear Steering (10,11), Turn Right (12,13) and Move Ahead
(14,15).
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Figure 3.15 Generated examples from Weizmann. Labels are One hand wave
(01,02,05,06), Two hands wave (03,04,11,12), Bend (07,08,13,14) and Jack (09,10).
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Figure 3.16 Generated samples from BAIR robot push.





Chapter 4

Disentangling Appearance and Motion

for Video Generation

In the previous chapter, we have introduced a method to generate video from one single

image and motion-category label. Deviating from that, in this chapter we focus on the

highly intricate problem of video generation without additional input. Specifically, based on

noise vectors, we generate an appearance, e.g. human face and body, which we concurrently

animate, by a facial expression or human action. We introduce G3AN, a novel spatio-temporal

generative model, which seeks to capture the distribution of high dimensional video data

and to model appearance and motion in disentangled manner. The latter is achieved by

decomposing appearance and motion in a three-stream Generator, where the main stream

aims to model spatio-temporal consistency, whereas the two auxiliary streams augment the

main stream with multi-scale appearance and motion features, respectively. An extensive

quantitative and qualitative analysis shows that our model systematically and significantly

outperforms state-of-the-art methods on the facial expression datasets MUG and UvA-NEMO,

as well as the Weizmann and UCF101 datasets on human action. Additional analysis on

the learned latent representations confirms the successful decomposition of appearance and

motion.
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4.1 Introduction

Generative Adversarial Networks (GANs) [48] have witnessed increasing attention due

to their ability to model complex data distributions, which allows them to generate realistic

images [13, 70, 72, 82, 103, 110, 187, 204], as well as to translate images [3, 65, 126, 137].

While realistic video generation is the natural sequel, it is substantially more challenging

w.r.t. complexity and computation, associated to the simultaneous modeling of appearance,

as well as motion.

G3AN, our new generative model, is streamlined to learn a disentangled representation

of the video generative factors appearance and motion, allowing for manipulation of both. A

disentangled representation has been defined as one, where single latent units are sensitive

to changes in single generative factors, while being relatively invariant to changes in other

factors [10]. In this context, our G3AN is endowed with a three-stream Generator-architecture,

where the main stream encodes spatio-temporal video representation, augmented by two

auxiliary streams, representing the independent generative factors appearance and motion. A

self-attention mechanism targeted towards high level feature maps ensures satisfactory video

quality.

In summary, this work makes several contributions. First, we introduce a novel generative

model, G3AN, which seeks to learn disentangled representations of the generative factors

appearance and motion from human video data. The representations allow for individual

manipulation of both factors. Second, we propose a novel three-stream generator, which

takes into account the learning of individual appearance features (spatial stream), motion

features (temporal stream) and smoothing of generated videos (main stream) at the same

time. Third, we propose a novel factorized spatio-temporal self-attention (F-SA), which is

considered as the first self-attention module applied to video generation, in order to model

global spatio-temporal representations and improve the quality of generated videos. In

addition, we conduct extensive qualitative and quantitative evaluation, which demonstrates

that G3AN systematically and significantly outperforms state-of-the-art baselines on a set of

datasets.
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4.2 Background

Despite the impressive progress of image generation, the extension to video generation is

surprisingly challenging. While videos constitute sequences of temporally coherent images,

video generation encompasses a majority of challenges that have to do with generation of

plausible and realistic appearance, coherent and realistic motion, as well as spatio-temporal

consistency. A further challenge, namely the generation of uncertain local or global motion,

associated to future uncertainty, allows for multiple correct, equally probable next frames

[159]. Finding suitable representation learning methods, which are able to address these chal-

lenges is critical. Existing methods include approaches based on Variational Autoencoders

(VAEs) [79], auto-regressive models, as well as most prominently Generative Adversarial

Networks (GANs) [48].

While video generation tasks aim at generating realistic temporal dynamics, such tasks

vary with the level of conditioning. We have video generation based on additional priors

related to motion or appearance, as well as contrarily, video generation following merely the

training distribution. We note that the latter is more challenging from a modeling perspective,

due to lack of additional input concerning e.g., structure of the generated video. Therefore

the majority of approaches to date include a conditioning of some kind.

Video generation with additional input. Due to challenges in modeling of high dimen-

sional video data, additional information such as semantic maps [116, 164], human keypoints

[67, 189, 161, 17], 3D face mesh [205] and optical flow [89] can be instrumental as guidance

for appearance and motion generation. This additional information is either pre-computed

throughout the generated video [67, 205, 17] or predicted based on an initial input image

[189]. The additional information guides conditional image translation, which though results

in lack of modeling of spatio-temporal correlations.

Video generation from noise. Directly generating videos from noise requires the captur-

ing and modeling of a dataset distribution. Existing works tend to reduce related complexity

by decomposing either the output [157] or latent representation [130, 148]. VGAN [157]

was equipped with a two-stream spatio-temporal Generator, generating foreground and back-

ground separately. TGAN [130] decomposed the latent representation of each frame into a
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slow part and a fast part. Due to jointly modeling appearance and motion, generated results

from VGAN and TGAN might comprise spatially unrealistic artefacts, see Fig. 4.6. The

closest work to ours is MoCoGAN [148], which decomposed the latent representation of

each frame into motion and content, aiming at controlling both factors. However, there are

two crucial differences between MoCoGAN and G3AN. Firstly, instead of only sampling

two noise vectors for each video, MoCoGAN sampled a sequence of noise vectors as motion

and a fixed noise as content. However, involving random noise for each frame to represent

motion increases the learning difficulty, since the model has to map these noise vectors to a

consecutive human movement in the generated videos. As a result, MoCoGAN gradually

ignores the input noise and tends to produce a similar motion, as we illustrate in Fig. 4.9.

Secondly, MoCoGAN incorporated a simple image Generator aiming at generating each

frame sequentially, after which content and motion features were jointly generated. This

leads to incomplete disentanglement of motion and content. Deviating from that, we design

a novel Generator architecture, able to entirely decompose appearance and motion in both,

latent and feature spaces. We show that such design generates realistic videos of good quality

and ensures factor disentanglement.

Disentangled representation learning. Learning disentangled representations of data

has been beneficial in a large variety of tasks and domains [10]. Disentangling a number of

factors in still images has been widely explored in recent works [22, 103, 138, 84]. In the

context of video generation, an early approach for motion and appearance decomposition

was incorporated in MoCoGAN. However, experiments, which we present later (see Fig. 4.7),

suggest that the results are not satisfactory.

4.3 G3AN

G3AN aims at generating videos in a disentangled manner from two noise vectors, za 2 ZA

and zm 2 ZM, which represent appearance and motion, respectively. G3AN consists of a

three-stream Generator G, as well as a two-stream Discriminator D, as illustrated in Fig. 5.2.

While G aims at generating videos with the ability to modulate appearance and motion
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Figure 4.1 Overview of our G3AN architecture. G3AN consists of a three-stream Generator
and a two-stream Discriminator. The Generator contains five stacked G3 modules, a factorized
self-attention (F-SA) module, and takes as input two random noise vectors, za and zm, aiming
at representing appearance and motion, respectively.

disjointly, D accounts for distinguishing generated samples from real data, in both, videos

and frames, respectively.

4.3.1 Generator

Hierarchical Generator with G3-modules. We design G in a hierarchical structure of

G3 modules. Specifically, we have N levels of hierarchy, denoted as G3
n=0...N�1. The first

G3 module, G3
0 accepts as input the two noise vectors za and zm. The remaining modules

G3
n=1...N�1, inherit the three feature maps FSn�1 , FVn�1 and FTn�1 as their inputs from each

previous G3
n�1 module. We illustrate the detailed architecture in Fig. 4.3.

Each G3
n module consists of three parallel streams: a spatial stream GSn , a temporal stream

GTn , as well as a video stream GVn (see Fig. 4.2). They are designed to generate three different

types of features. The spatial stream GSn , denoted by a blue line in Fig. 5.2 and Fig. 4.2,

takes as input za for n = 0 and FSn�1 for n > 1, and generates 2D appearance features FSn by

upsampling input features with a transposed 2D convolutional layer. These features evolve in

spatial dimension and are shared at all time instances. The temporal stream GTn , denoted by

an orange line, accepts as input zm for n = 0 and FTn�1 for n > 1, and seeks to generate 1D

motion features FTn by upsampling input features with a transposed 1D convolutional layer.

These features evolve in temporal dimension and contain global information of each time

step. Then, the video stream GVn , denoted by a black line, takes as input the concatenation of

za and zm for n = 0 and FVn�1 for n > 1. It models spatio-temporal consistency and produces
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3D joint embeddings FV 0n
by upsampling input features with a factorized transposed spatio-

temporal convolution, see below. Then, FSn and FTn are catapulted to the spatio-temporal

fusion block, where they are fused with FV 0n
, resulting in FVn . Finally, FSn , FTn and FVn serve

as inputs of the next hierarchy-layer G3
n+1.

Figure 4.2 G3 module architecture.

Factorized transposed spatio-temporal convolution. It explicitly factorizes transposed

3D convolution into two separate and successive operations, M transposed 1D temporal

convolution followed by a 2D separate spatial convolution, which is referred to as transposed

(1+2)D convolution. Such decomposition brings an additional nonlinear activation between

these two operations and facilitates optimization. Crucially, factorizing transposed 3D

convolution yields significant gains in video quality, see Section 5.3.

Spatio-temporal fusion is the key-element to learn well disentangled features, taking

output feature maps FSn , FTn and FV 0n
from the convolutional layers in each G3

n module. The

fusion contains three steps (see Fig. 4.4). Firstly, spatial and temporal replications are applied

on FTn and FSn respectively, in order to obtain two new feature maps FR
Tn

and FR
Sn

. Both new

feature maps have the same spatio-temporal size as FV 0n
. Next, FR

Tn
and FV 0n

are combined

through a position-wise addition, creating a new spatio-temporal embedding FV 00n
. Finally,

FR
Sn

is channel-wise concatenated with FV 00n
, obtaining the final fused feature map FVn . The

feature maps FSn , FTn and FVn represent inputs for the following G3
n+1 module.
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Figure 4.3 Generator architecture.
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Figure 4.4 Spatio-temporal fusion.

Factorized spatio-temporal Self-Attention (F-SA). While Self-Attention (SA) has

been successfully applied in image generation within SAGAN [202], it has not been explored

in the context of spatio-temporal video generation. Here, we incorporate a spatio-temporal

SA module, enabling G to utilize cues from all spatio-temporal feature positions and model

relationships between widely separated regions. However, computing correlation between

each position with all others in a 3D spatio-temporal feature map is very computationally

expensive, particularly, if applied on higher feature maps in G. Therefore, we propose a novel

factorized spatio-temporal self-attention, namely F-SA, as shown in Fig. 4.5. F-SA consists

of a Temporal-wise SA (T-SA), followed by a Spatial-wise SA (S-SA). Such factorization

reduces the computational complexity, allowing for application of the F-SA on larger feature

maps. In our G3AN, we apply F-SA on the output of the G3
3 in the GV stream, which leads

to the best video quality. We report related evaluation results of applying F-SA at various

hierarchy-layers of the G3AN in Section 5.3.

Our F-SA contains a Temporal-wise Self-Attention (T-SA) followed by a Spatial-wise

Self-Attention (S-SA). Given spatio-temporal feature maps in the GV stream, FVn = x 2

RC⇥T⇥H⇥W , where T and H⇥W denote temporal and spatial size, respectively. We firstly

perform T-SA on C⇥T dimensions of x, where attention is only calculated along T for

each position in x (see Fig. 4.5b). Then, S-SA is performed on C⇥H⇥W dimensions and

attention maps are obtained for all spatial position at each time step (see Fig. 4.5c).
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(a) F-SA

(b) T-SA
(c) S-SA

Figure 4.5 Factorized spatio-temporal Self-Attention (F-SA) module.

While we apply T-SA, x is firstly transformed into two feature spaces ft and gt , in order

to compute temporal self-attention

at
s, ji =

exp(ts,i j)

ST
i=1 exp(ts,i j)

, where ts,i j = ft(xs,i)
T gt(xs, j) (4.1)

where at
ji indicates the correlation between jth and ith time instances for each position s in

x. Then we apply attention maps on ht(x), which is the transformed feature map of x in ht

feature space. Finally we multiply the output of the attention layer by a scalar parameter gt

and we add back the input feature map in order to obtain the final output of T-SA yt .

yt
s, j = gt

T

Â
i=0

at
s, jiht(xs,i)+ xs, j, ht(xs,i) =Wht xs,i (4.2)

Similar to T-SA, S-SA uses fs, gs and hs to project yt into three different feature spaces.

gs is a learnable scalar parameter multiplied with the output after attention layer. S-TA is

computed as following for each time step t.
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as
t, ji =

exp(st,i j)

SN
i=1 exp(st,i j)

, where st,i j = fs(xt,i)
T gs(xt, j) (4.3)

ys
t, j = gs

N

Â
i=0

as
t, jihs(xt,i)+ xt, j, hs(xt,i) =Whsxt,i (4.4)

In the above formulation, ft , gt , ht , fs, gs and hs are implemented as 1⇥1⇥1 convolutions.

For memory efficiency, we reduce channel numbers to C
0
=C/k, where k = 8 for ft , gt , fs

and gs in all our experiments.

4.3.2 Discriminator

Towards improving both video and frame quality, similar to MoCoGAN, we use a two-

stream Discriminator architecture, containing a video stream DV and an image stream DI .

During training, DV accepts a full video as input, whereas DI takes randomly sampled frames

from videos.

4.3.3 Training

Given our two-stream Discriminator architecture, G3AN simultaneously optimizes DV

and DI . Both losses use the GAN loss function proposed in DCGAN [122]. The objective

functions of G3AN can be expressed as

G⇤ = argmin
G

max
DI ,DV

L (G,DI,DV ),

L (G,DI,DV ) = LI(G,DI)+LV (G,DV ),

(4.5)

where LI denotes the loss function related to DI , LV represents the loss function related to

DV .
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LI = Ex0⇠pdata
[log(DI(x

0
))]+Eza⇠pza ,zm⇠pzm [log(1�DI(G(za,zm)

0
))],

LV = Ex⇠pdata [log(DV (x))]+Eza⇠pza ,zm⇠pzm [log(1�DV (G(za,zm)))],
(4.6)

G attempts to generate videos from za and zm, while DI and DV aim to distinguish between

generated samples and real samples. (·)0 characterizes that T frames are being sampled from

real and generated videos.

4.4 Experiments

This section presents the evaluation of G3AN. We firstly describe implementation details,

datasets and evaluation metrics used in this work. We secondly present quantitative and

qualitative comparison with other methods w.r.t. video quality. Specifically, we evaluate

and compare videos generated from G3AN, VGAN, TGAN and MoCoGAN, quantitatively

and qualitatively on all four datasets. Then, we test conditional and unconditional video

generation, where we aim to demonstrate the effectiveness of the proposed decomposition

method. Next, we manipulate the latent representation, providing insight into each dimension

of the two representations. We proceed to add appearance vectors and study the latent

representation. Finally, we conduct an ablation study, verifying the effectiveness of our

proposed architecture.

4.4.1 Implementation details

The entire network is implemented using PyTorch. We employ Adam optimizer [78]

with b1=0.5 and b2=0.999. Learning rate is set to be 2e�4 for both G and D. Dimensions of

latent representations constitute 128 for za and 10 for zm. We set N = 5 in order to generate

videos of 16 frames with spatial scale 64⇥64. We randomly sample T = 1 frame from each

video as input of DI .
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4.4.2 Datasets

MUG Facial Expression dataset [2] contains 1254 videos of 86 subjects, performing 6

facial expressions, namely happy, sad, surprise, anger, disgust and fear.

UvA-NEMO Smile dataset [35] comprises 1240 video sequences of 400 smiling individuals,

with 1 or 2 videos per subject. We crop faces in each frame based on detected landmarks

using [14] 1.

Weizmann Action dataset [49] consists of videos of 9 subjects, performing 10 actions such

as wave and bend. We augment it by horizontally flipping the existing videos.

UCF101 dataset [141] contains 13,320 videos of 101 human action classes. Similarly to

TGAN [130], we scale each frame to 85⇥64 and crop the central 64⇥64 regions.

In all our experiments, we sample video frames with a random time step ranging between 1

and 4 for data augmentation.

4.4.3 Evaluation metrics

We use the extension of two most commonly used metrics in image generation, the

Inception Score (IS) [134] and Fréchet Inception Distance (FID) [54], in video level by using

a pre-trained 3D CNN [51] as feature extractor, similar to [164].

The video FID grasps both visual quality and temporal consistency of generated videos.

It is calculated as kµ� eµk2 +Tr(S+eS�2
p

SeS), where µ and S represent the mean and

covariance matrix, computed from real feature vectors, respectively, and eµ , and eS are

computed from generated data. Lower FID scores indicate a superior quality of generated

videos.

The video IS captures the quality and diversity of generated videos. It is calculated as

exp(Ex⇠pgDKL(p(y|x)kp(y))), where p(y|x) and p(y) denote conditional class distribution

and marginal class distribution, respectively. A higher IS indicates better model performance.

1. https://github.com/1adrianb/face-alignment

https://github.com/1adrianb/face-alignment
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Figure 4.6 Comparison with the state-of-the-art on MUG (top-left), Weizmann (top-right),
UvA-NEMO (bottom-left) and UCF101 (bottom-right).

We report FID on MUG, UVA-Nemo and Weizmann datasets, and both FID and IS on

UCF101. Since IS can only be reported, when GAN and feature extractor are trained on the

same dataset, we do not report it on other datasets.

4.4.4 Quantitative Evaluation

We compare G3AN with three state-of-the-art methods, namely VGAN, TGAN, as well

as MoCoGAN. We report two evaluation metrics on the above four datasets. Comparison

results among different methods are presented in Table 4.1. Our method consistently achieves

the lowest FID on all datasets, suggesting that videos generated by G3AN entail both, best

temporal consistency and visual quality. At the same time, the obtained highest IS on UCF101

indicates that our method is able to provide the most diverse samples among all compared

methods. Such evaluation results show that proposed decomposition method allows for

controlling the generated samples, and additionally facilitates the spatio-temporal learning of

generating better quality videos. Generated samples are illustrated in Fig. 4.6.

In addition, we conduct a subjective analysis, where we asked 27 human raters to pairwise

compare videos of pertaining to the same expression/action, displayed side by side. Raters

selected one video per video-pair. We randomized the order of displayed pairs. We had an

equal amount of pairs for each studied case (e.g. G3AN / Real videos). The posed question

was ”Which video clip is more realistic?“. We report the mean user preference in Table 4.2.
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MUG UvA Weizmann UCF101
FID # FID # FID # FID # IS "

VGAN 160.76 235.01 158.04 115.06 2.94
TGAN 97.07 216.41 99.85 110.58 2.74

MoCoGAN 87.11 197.32 92.18 104.14 3.06
G3AN 67.12 119.22 86.01 91.21 3.62

Table 4.1 Comparison with the state-of-the-art on four datasets w.r.t. FID and IS.

We observe that human raters express a strong preference for the proposed framework

G3AN over MoCoGAN (84.26% v.s. 15.74%), TGAN (87.31% v.s. 12.69%) and VGAN

(90.24% v.s. 9.76%), which is consistent with the above listed quantitative results. Further,

we compare real videos from all datasets with the generated video sequences from our

method. The human raters ranked 25.71% of videos from our G3AN as more realistic than

real videos, which we find highly encouraging.

Methods Rater preference (%)
G3AN / MoCoGAN 84.26 / 15.74

G3AN / TGAN 87.31 / 12.69
G3AN / VGAN 90.24 / 9.76

G3AN / Real videos 25.71 / 74.29
Table 4.2 Mean user preference of human raters comparing videos generated by the respec-
tive algorithms, originated from all datasets.

4.4.5 Qualitative Evaluation

We conduct an unconditional generation experiment utilizing the Uva-NEMO dataset,

where we fix za and proceed to randomly vary motion, zm. Associated generated samples

from G3AN and MoCoGAN are shown in Fig. 4.7. While we observe the varying motion in

the video sequences generated by G3AN, the appearance remains coherent. Hence, our model

is able to successfully preserve facial appearance, while altering the motion. Therefore, this

suggests that our three-stream design allows for manipulation of appearance and motion

separately. On the contrary, video sequences generated by MoCoGAN experience constant

motion, despite of altering zm.
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(a) G3AN

(b) MoCoGAN

Figure 4.7 Unconditional video generation of G3AN and MoCoGAN on Uva-Nemo. For
each model, we fix za, while testing two zm instances (top and bottom lines). See SM for
more samples.

(a) MUG: Happiness

(b) Weizmann: One hand waving

Figure 4.8 Conditional video generation on MUG and Weizmann. For both datasets, each
line is generated with random zm. We observe that same category (smile and one hand
waving) is performed in a different manner, which indicates that our method is able to
produce intra-class generation. See SM for more samples.
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Conditional video generation. Further, we leverage on labels of the MUG and Weiz-

mann datasets, in order to analyze conditional video generation. Towards this, we here

concatenate a one-hot category vector and motion noise zm, feeding it into GT . We note

that the inputs of GS and GV remain the same as in the setting of unconditional generation.

Related results show that when varying motion-categories, while having a fixed appearance,

G3AN correctly generates an identical facial appearance, with appropriate category-based

motion (facial expressions and body actions), see Fig. 4.8. Further, we note that appearance

is very well preserved in different videos and is not affected by category-alterations. In

addition, in the same conditional setting, we note that when varying the noise zm, G3AN is

able to generate the same category-motion in different ways. This indicates that zm enables

an intra-class diversity.

In videos generated by MoCoGAN, we observe a correctly generated motion according

to given categories, however we note that the category also affects the appearance. In other

words, MoCoGAN lacks a complete disentanglement of appearance and motion in the latent

representation, see Fig. 4.9. This might be due to a simple motion and content decomposition

in the latent space, which after a set of convolutions can be totally ignored in deeper layers.

It is notable that G3AN effectively prevents such cases, ensured by our decomposition that

occurs in both, latent and feature spaces.

Latent representation manipulation. While there is currently no general method for

quantifying the degree of learnt disentanglement [56], we proceed to illustrate the ability of

our model to learn latent representations by manipulating each dimension in the appearance

representation. We show that by changing values of different dimensions in the appearance

representation, we are able to cause a modification of specific appearance factors, see

Fig. 4.10. Interestingly such factors can be related to semantics, e.g., facial view point in

Fig. 4.10a, mustache in Fig. 4.10b, and color of pants in Fig. 4.10c. We note that motion is

not affected by altering the appearance representation. Similarly, when altering values of

different dimensions in the motion representation, we observe that factors such as starting

position, motion intensity and moving trajectory are being affected, see Fig. 4.11. Such
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(a) G3AN

(b) MoCoGAN

Figure 4.9 Comparison between G3AN and MoCoGAN. Given fixed za and zm, as well
as two condition-labels smile and surprise, G3AN and MoCoGAN generate correct facial
expressions. However, while G3AN preserves the appearance between rows, MoCoGAN
alters the subject’s appearance.

observations show that our method learns to interpolate between different data points in

motion- and appearance-latent spaces, respectively.

Addition of appearance representations. We here add appearance vectors, aiming to

analyze the resulting latent representations. Towards this, we generate two videos Va and

Vb by randomly sampling two sets of noises, (za0 , zm0) and (za1 , zm1). Next, we add za0 and

za1 , obtaining a new appearance za2 . When combining (za2 , zm0) and (za2 , zm1), we observe in

the two new resulting videos a summary appearance pertaining to za0 and za1 , with identical

motion as zm0 and zm1 , see Fig. 4.12.

4.4.6 Ablation Study

We here seek to study the effectiveness of proposed G3AN architecture, as well as the

effectiveness related to each component in the proposed Generator. Towards this, we firstly

generate videos by removing GS and GT , respectively, in order to verify their ability of

controlling motion and appearance. We observe that when removing GT , the model is able
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(a) Manipulation of third dimension on UvA-NEMO

(b) Manipulation of third dimension on MUG

(c) Manipulation of second dimension on Weizmann

Figure 4.10 Latent appearance representation manipulation. For each dataset, each row
shares the same motion representation, whereas from top to bottom values in one dimension
of appearance representation are increased. See SM for more samples.

generate different subjects, however for each person the facial movement is constant, see

Fig. 4.13 (top). Similarly, when GS is removed, changing motion will affect subject’s identity,

whereas the appearance vector loses its efficacy, see Fig. 4.13 (middle). When removing both,

GT and GS, appearance and motion are entangled and they affect each other, see Fig. 4.13

(bottom). This demonstrates the effective disentanglement brought to the fore by the streams

GS and GT .

We proceed to demonstrate the contribution of GS, GT and F-SA in the Generator

w.r.t. video quality. In this context, we remove each component individually and report

results on the four datasets in Table 4.3. The results show that after removing all three

components, video quality is the poorest, which proves that all of them contribute to the final
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(a) Manipulation of sixth dimension of MUG

(b) Manipulation of second dimension on Weizmann

Figure 4.11 Latent motion representation manipulation. For each dataset, each row shares
the same appearance representation, whereas from top to bottom values in one dimension of
the motion representation are increased. See SM for more results.

(a) za0 , zm0 (top) and za2 , zm0 (bottom)

(b) za1 , zm1 (top) and za2 , zm1 (bottom)

Figure 4.12 Addition of appearance representations. We add the appearance vectors of
two samples (top rows of (a) and (b)), and obtain the sum-appearance in each bottom row.
We inject motion pertained to each top appearance of (a) and (b) and are able to show same
motion within lines of (a) and (b).



76 Disentangling Appearance and Motion for Video Generation

(a) za, zm0 (b) za, zm1

Figure 4.13 Ablation study. Generated videos obtained by removing GT (top row), removing
GS (middle), and both (bottom row).

results. Individually, GS plays the most pertinent role, as removing it, decreases FID most

profoundly for all datasets. This indicates that generating appearance features separately can

be instrumental for good quality videos. Moreover, our results confirm the necessity of F-SA

in our approach.

Architecture MUG UvA Weizmann UCF101
FID # FID # FID # FID # IS "

w/o GS,GT ,F-SA 117.10 164.04 252.97 127.09 2.78
w/o GS,GT 113.44 159.54 176.73 120.17 3.16

w/o GS 109.87 129.84 141.06 117.19 3.05
w/o F-SA 85.11 128.14 97.54 98.37 3.44
w/o GT 82.07 121.87 94.64 96.47 3.16
G3AN 67.12 119.22 86.01 91.21 3.62

Table 4.3 Contribution of main components in G.

Transposed Convolutions. Then, we compare the proposed factorized transposed spatio-

temporal (1+2)D convolution, standard transposed 3D convolution, and transposed (2+1)D

convolution, when used in GV w.r.t. video quality. We carefully set the number of kernels,

allowing for the three networks to have nearly same training parameters. We report the results

of the quantitative evaluation in Table 4.4. Both convolution types, (1+2)D and (2+1)D

outperform standard 3D kernels w.r.t. generated video quality. (1+2)D is slightly better than
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(2+1)D, and the reason might be that the (1+2)D kernel uses more 1⇥1 kernels to refine

temporal information, which we believe to be important in video generation tasks.

MUG UvA Weizmann UCF101
FID # FID # FID # FID # IS "

3D 93.51 149.98 154.21 117.61 2.88
(2+1)D 73.08 141.35 95.01 98.70 3.36
(1+2)D 69.42 140.42 87.04 96.79 3.07

Table 4.4 Comparison of various convolution types in G.

Where to insert self-attention? Finally, we proceed to explore at which level of the

Generator, F-SA is the most effective. We summarize performance rates in Table 4.5.

Inserting F-SA after the G3
3 module provides the best results, which indicates that middle level

feature maps contribute predominantly to video quality. As shown in GAN Dissection [9],

mid-level features represent semantic information, e.g., object parts while high-level features

represent local pixel patterns, e.g., edges, light and colors and low-level features do not

contain clear semantic information, which could be the reason, why F-SA achieves the best

result in G3
3 module.

MUG UvA Weizmann UCF101
FID # FID # FID # FID # IS "

G3
0 83.01 188.60 96.38 100.37 3.09

G3
1 72.54 178.64 99.66 126.12 2.74

G3
2 69.02 160.12 97.53 112.36 3.03

G3
3 67.12 119.22 86.01 91.21 3.62

Table 4.5 Comparison of inserting F-SA at different hierarchical levels of G3AN.
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Figure 4.14 Unconditionally generated samples from G3AN on UvA-NEMO. We com-
bine each za with three different zm, obtaining three different videos for the same appearance.
Each row represents a video sequence.
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Figure 4.15 Conditionally generated samples from G3AN on MUG dataset. Each row
represents the result generated by combining a one-hot category label with the same za and
randomly sampled zm as input.



80 Disentangling Appearance and Motion for Video Generation

Figure 4.16 Conditionally generated samples from G3AN on MUG dataset. Each row
represents the result generated by combining a one-hot category label with the same za and
randomly sampled zm as input.
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Figure 4.17 Conditionally generated samples from G3AN on Weizmann dataset. Each
row represents the result generated by combining a one-hot category label with the same za
and randomly sampled zm as input.

Figure 4.18 Conditionally generated samples from G3AN on Weizmann dataset. Each
row represents the result generated by combining a one-hot category label with the same za
and randomly sampled zm as input.
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Figure 4.19 Results of manipulating first dimension in appearance representation on
MUG dataset. a and b are results from two randomly sampled za. From top to bottom in
each sub-figure, values of first dimension are increased.
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Figure 4.20 Results of manipulating second dimension in appearance representation on
MUG dataset. a and b are results from two randomly sampled za. From top to bottom in
each sub-figure, values of first dimension are increased.
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Figure 4.21 Results of manipulating first dimension in appearance representation on
Weizmann dataset. a and b are from two randomly sampled za. From top to bottom in each
sub-figure, values of first dimension are increased.
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Figure 4.22 Results of manipulating second dimension in appearance representation on
Weizmann dataset. a and b are from two randomly sampled za. From top to bottom in each
sub-figure, values of first dimension are increased.



86 Disentangling Appearance and Motion for Video Generation

Figure 4.23 Results of manipulating first dimension in appearance representation on
UvA-NEMO dataset. a and b are from two randomly sampled za. From top to bottom in
each sub-figure, values of first dimension are increased.
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Figure 4.24 Results of manipulating motion representation on UvA-NEMO dataset. a
and b are results of manipulating first and sixth dimensions. From top to bottom in each
sub-figure, values are increased.
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Figure 4.25 Results of manipulating motion representation on Weizmann dataset. a
and b are results of manipulating first and second dimensions. From top to bottom in each
sub-figure, values are increased.



Chapter 5

Motion Interpretation in Video

Generation

In the previous chapters, we have described two methods to generate videos in conditional

and unconditional manners. Both methods are designed to generate videos of good visual

quality and spatio-temporal consistency. The first method takes an input image and motion

label to generate videos, whereas the second method generates videos only from input noises.

In this chapter, we introduce an unconditional video generative model, MintGAN, targeted to

allow for interpretation of the latent space. Towards this, we design a model that generates

high quality videos, placing emphasis on the interpretation and manipulation of motion.

Specifically, we decompose motion into semantic sub-spaces, which allow for control of

generated samples. We design the generator of MintGAN in accordance to proposed Linear

Motion Decomposition, which carries the assumption that motion can be represented by a

dictionary, whose atoms form an orthogonal basis in the latent space. Each vector in the basis

represents a semantic sub-space. In addition, a Temporal Pyramid Discriminator analyzes

videos at different temporal resolutions. Extensive quantitative and qualitative analysis shows

that our model systematically and significantly outperforms state-of-the-art methods on the

VoxCeleb2-mini, BAIR-robot and UCF101 datasets w.r.t. video quality, as well as confirms

that decomposed sub-spaces are interpretable and moreover, generated motion is controllable.



90 Motion Interpretation in Video Generation

Figure 5.1 Controllable video generation. MintGAN learns to decompose motion into
semantic motion-components. This allows for manipulations in the latent code to invoke
motion in generated videos that is human interpretable. Top (a) robot arm moves backwards,
bottom (a) robot arm moves to the right. Similarly, in (b) we are animating the face to ‘talk’
(top) and ‘move head’ (bottom).

5.1 Introduction

Videos signify more complex data than images, due to the additional temporal dimension.

While some research works showed early results in video generation [157, 130, 148, 168],

related interpretability is yet to be revealed. Such interpretability and hence steerability is

of particular interest, as it would render video GANs highly instrumental in a number of

down-stream applications such as video editing [164] and data augmentation [154, 151].

Motivated by the above, we here consider the following question: Can we control and

manipulate the complex visual world created by video GANs?

In order to answer this new and intricate question, we propose a new video GAN

that decomposes and enables interpretation of motion, which we refer to as MintGAN. In

particular, we aim to interpret the latent space of MintGAN by finding sub-spaces, which

are endowed with semantic meanings. Once such sub-spaces have been identified, walking

along certain trajectories within them allows for targeted modification of generated videos.

Specifically, we here place emphasis on interpreting and modifying motion. We note that the

posed research question deviates from current efforts on interpreting appearance [66, 135,

158] in the latent space.

This new problem necessitates an original architecture, streamlined to allow for analysis

of the latent motion representation. Hence, we propose a new interpretable architecture,
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which we design based on the assumption that motion can be decomposed into independent

semantic motion-components. Therefore, we define the motion space by a linear combination

of semantic motion-components, which can reflect ‘talking’ and ‘robot arm moving left and

right’. We implement named decomposition via a motion bank in our generator. Once trained,

MintGAN allows for the incorporation (elimination) of corresponding motion-components in

the generated videos by activating (deactivating) associated latent directions, see Figure 5.1.

Meaningful interpretation is only justified in an architecture that is able to generate high-

quality videos. To ensure that, we design a two-stream discriminator, which incorporates an

image discriminator, as well as a novel Temporal Pyramid Discriminator (TPD) that contains

a number of video discriminators. The latter leverages on a set of temporal resolutions that are

related to temporal speed. We show that while our proposed discriminator incorporates 2D

ConvNets, it is consistently superior to 3D-discriminators. We evaluate proposed MintGAN

on three large datasets, namely VoxCeleb2-mini [112], BAIR-robot [37] and UCF101 [141].

In extensive qualitative and quantitative evaluation, we show that MintGAN systematically

and significantly outperforms state-of-the-art baselines w.r.t. video quality. In addition, we

propose an evaluation framework for motion interpretability and proceed to demonstrate that

MintGAN is interpretable, as well as steerable. Finally, we provide experiments, showcasing

generation of higher-resolution, as well as longer videos.

5.2 Background

Image Generation. Recently, both conditional [13, 165, 118, 216, 65, 117] and uncon-

ditional [70, 72, 73, 97, 92, 207] image generation methods have witnessed considerable

progress. Related to our work, notably StyleGAN [72] and StyleGAN2 [73] have advanced

the state-of-the-art in unconditional image generation. Related architecture incorporates

modulation based convolutional layers, which re-introduce a latent code at different layers

of the network. Alterations of the latent code correspond to particular manipulations in

generated images. For example basic operations such as adding a vector, linear interpolation,
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and crossover in the latent space cause expression transfer, morphing, and style transfer in

generated images.

Video Generation. While realistic video generation is the natural sequel of image genera-

tion, it entails a number of challenges related to complexity and computation, associated to

the simultaneous modeling of appearance, as well as motion. Current video generation can

be categorized based on related input data into unconditional and conditional methods.

Unconditional video generation seeks to map noise to video, directly and in the absence

of other constraints. Examples of unconditional methods include VGAN [157], TGAN [130],

MoCoGAN [148] and G3AN [168]. VGAN was equipped a two-stream generator to generate

foreground and background separately. TGAN firstly generated a set of latent vectors corre-

sponding to each frame and then aimed at transforming them into actual images. MoCoGAN

and G3AN decomposed the latent representation into motion and appearance, aiming at con-

trolling both factors. We note that named methods have learned to capture spatio-temporal

distribution based on shallow architectures. Such works predominantly focused on improving

the quality of generated videos, rather than exploring interpretability of the latent space.

While MoCoGAN and G3AN disentangled appearance and motion, no further investigation

on underlying semantics was provided. As opposed to that, our main goal in this paper is

to gain insight into the latent space, seeking to dissect complex motion into semantic latent

sub-spaces.

In contrast to unconditional video generation, conditional video generation aims at

achieving videos of high visual quality, following image-to-image generation [27, 65, 61]. In

this context and due to challenges in modeling of high dimensional video data, additional

information such as lables [170], semantic maps [116, 164, 163], human key-points [67, 189,

161, 17, 200, 163], 3D face mesh [205] and optical flow [89, 114] have been exploited to

guide motion generation. We note that given the provided motion-prior, in such methods,

generative models do not learn to capture the full motion distribution.

We note that video generation is based on a noise vector as input, whereas video prediction

aims at predicting future frames based on a set of existing frames. Towards latter, additional
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Figure 5.2 MintGAN-architecture. MintGAN comprises of a Generator and a two-stream
Discriminator. We design the architecture of the Generator based on proposed Linear Motion
Decomposition. Specifically, a motion bank is incorporated in the Generator to learn and
store a motion dictionary D, which contains motion-directions [d0,d1, ..,dN�1]. We use an
appearance net GA to map appearance noise za into a latent code w0, which serves as the
initial latent code of a generated video. A motion net GM maps a sequence of motion noises
{zmt}T�1

t=1 into a sequence {At}T�1
t=1 , which represent motion magnitudes. Each latent code wt

is computed based on Linear Motion Decomposition using w0, D and At . Generated video
V is obtained by a synthesis net GS that maps the sequence of latent codes {wt}T�1

t=0 into
an image sequence {xt}T�1

t=0 . Our discriminator comprises an image discriminator DI and
a Temporal Pyramid Discriminator (TPD) that contains several video discriminators DVi ,
leveraging different temporal speeds ui to improve generated video quality. While DI accepts
as input a randomly sampled image per video, each DVi is accountable for one temporal
resolution.

priors are instrumental, such as optical flow or [83], human pose [156, 203], provided by

additional modules that cater such scenario. We here focus on unconditional video generation

and associated interpretability, hence video prediction is out of scope for this paper.

GAN Interpretation. In an effort to open the black box representing GANs, Bau et

al. [9, 8] sought to associate neurons in the generator with the encoding of pre-defined visual

concepts such as colors, textures and objects. Subsequent works [135, 46, 66, 158] proceeded

to explore the interpretability of the latent space, seeking for latent representations corre-

sponding to different semantics in generated images. Linear [135, 66] and non-linear [66]

walks in the latent space enabled for semantic concepts in the generated images to be modi-

fied. Deviating from previous work, in this chapter we focus on interpreting MintGAN, in

order to discover semantics related to motion.
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5.2.1 Linear Motion Decomposition (LMD)

We formulate unconditional video generation as learning a function GS that maps a

sequence of latent codes S = {wt}T�1
t=0 ,wt ⇠ W ⇢ RN 8t to a sequence of images V =

{xt}T�1
t=0 ,xt ⇠X ⇢ RH⇥W⇥3, such that GS(wt) = xt ,8t 2 [0,T � 1], where T denotes the

length of the video. S is obtained by mapping a sequence of noises Z = {zt}T�1
t=0 ,zt ⇠Z ⇢RN

into the W space. However, such mapping jointly learns appearance and motion, rendering

W challenging to be interpreted. W.r.t. interpretable W , and in hindsight to our core objective,

we propose to decompose motion into linear independent components.

Given a video of high visual quality and spatio-temporal consistency, we assume that

motion between consecutive frames follows a transformation Tt!(t+1), so that GS(wt+1) =

Tt!t+1(GS(wt)). Based on the idea of equivariance [86, 28, 57], an alteration in the latent

space causes a corresponding alteration in the output, consequently a transition tt!t+1

affecting the latent space results in GS(tt!t+1(wt)) = Tt!t+1(GS(wt)).

Recent works [66, 135] showed that for a given image-transformation T such as shifting

and zooming, there exists a vector d in the latent space, which represents the direction of T .

By linearly navigating in this direction with a magnitude a , a corresponding transformation

T (G(w)) = G(w+a ⇤d) is witnessed in generated images.

Therefore, we assume that any transition tt!t+1 associated to Tt!t+1 can be represented

as a composition of motion-directions in a motion dictionary D = [d0,d1, ..,dN�1],di 2 RN .

We constrain these motion directions to form an orthogonal basis, so that

< di,d j >=

8
<

:
0 i 6= j

1 i = j.
(5.1)

If these directions are interpretable, manipulating the magnitude of any of them should inflict

a specific semantic change in the output, without affecting other directions. Therefore, in

transformation Tt!t+1, the magnitude At = [at,0,at,1, ...,at,N�1],at,i 2 R varies. Each at,i

denotes the magnitude pertained to the ith direction at time step t. Based on this, we define
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the Linear Motion Decomposition (LMD) as following

tt!t+1(wt) = wt +
N�1

Â
i=0

at,i di, (5.2)

where the transformation between consecutive frames is indicated as

GS(wt+1) = Tt!t+1(GS(wt))

= GS(tt!t+1(wt))

= GS

 
wt +

N�1

Â
i=0

at,i di

!
.

(5.3)

The general term of wt is hence

wt = w0 +
N�1

Â
i=0

t�1

Â
j=0

a j,i di, t 2 [1,T �1]. (5.4)

So far, we have succeeded transferring learning wt from an unknown motion space into

learning three variables from three sub-spaces which contain clear meanings, namely initial

appearance code w0, magnitude sequence {At}T�1
t=1 , as well as associated motion-directions

[d0,d1...dN�1]. We proceed to elaborate on how we implement described linear motion

decomposition in our architecture.

5.2.2 Generator

The initial latent code w0 serves as a representation of appearance in the first and all

following frames of an output video. At the same time, the vector At represents a set of

magnitudes associated to motion directions in a transition and hence is accountable for

motion. Taking that into account, we decompose Z into two separated spaces ZA and ZM

representing appearance and motion, respectively. Hence w0 is generated by mapping an

appearance noise za ⇠ZA using an appearance net GA. At is mapped from the motion noise

zmt ⇠ZM by a motion net GM. In order to ensure temporal consistency in the latent space,
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we integrate a GRU [25] with its initial code set to be za prior to the mapping. We note that

GA and GM are two independent 8-layer MLPs.

Based on proposed LMD, the motion dictionary D is entitled to an orthogonal basis. We

propose to find a matrix, with eigenvectors representing di. More specifically, we pre-define

a matrix M 2 RN⇥N and devise it trainable, updating it along with the parameters in the

generator. D is represented as the transpose of right singular vectors of M, M = USV T

and D =V T . Each di is an eigenvector of matrix MT M and is learned based on adversarial

learning. Once trained, M captures the motion distribution of the training dataset and

decomposes it into N independent directions. We show that directions are interpretable and

moreover can be manipulated, which results in related modifications of generated results,

see Section 5.3.4. M is initialized randomly and updated with other parameters in G via

back-propagation. We refer to M and D jointly as motion bank.

We adapt the architecture proposed by Karras et al. [73] in GS. We note that GS serves

as a rendering network, which incorporates a sequence of convolutional blocks aiming to

up-sample a learned constant into high resolution images. In each block, convolutional layers

are modulated by the respective input wt , in order to learn different appearances. Each wt is

computed according to Equation (5.8) and serves as input of GS to generate related frame

xt = GS(wt).

5.2.3 Discriminator

Temporal speed in videos has been a pertinent cue in action recognition [40, 190]. We

note that videos sampled at temporal speeds {ui|i 2 R,0 i < n}, which represent temporal

resolutions, provide a set of motion features. For this reason, we propose a Temporal Pyramid

Discriminator (TPD) that leverages videos of different temporal resolutions in order to ensure

high video quality in generation.

Principally, our discriminator is inspired from the two-stream architectures of MoCo-

GAN [148] and G3AN [168]. We have a stream comprising an image discriminator DI , as

well as a stream incorporating the proposed TPD. While the input of DI is a randomly sampled
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frame, TPD accepts as input a full video sequence. TPD includes a set of video discriminators

{DVi |i 2 R,0 i < n}, where each DVi is accountable for one temporal resolution.

Deviating from previous work [148, 168], we here propose to leverage 2D ConvNets

in DV rather than 3D ConvNets. We apply time to channel (TtoC) to concatenate sampled

frames in channel dimension, in order to construct a video sampled at speed ui into an image

V
0
i 2 RH⇥W⇥K , where K

3 denotes the number of sampled frames. We surprisingly find that

such design can substantially improve the visual quality, while ensuring temporal consistency

of generated videos. We report experimental results in Section 5.3.3.

5.2.4 Learning

We use non-saturating loss [48] with R1 regularization [108, 73] as our objective function,

in accordance to the setting of StyleGAN2 [73]. The loss of TPD, Ân�1
i=0 LDVi

, combines the

losses of each video discriminator DVi in the pyramid. The network is optimized based on

the full objective

min
G

 
l

n�1

Â
i=0

max
DVi

LDVi
+max

DI
LDI

!
, (5.5)

where n is a hyperparameter denoting the number of video discriminators to be used during

training. We empirically identify appropriate n values in our two datasets, see Section 5.3.3.

l aims to balance the loss between DI and TPD.

5.2.5 Implementation details.

We implement MintGAN using PyTorch [119]. All experiments are conducted on 8 V100

GPUs (32GB) with total batch size 32 (4 videos per GPU). We use Adam optimizer [78] with

a learning rate 0.002 and set b1 = 0.0, b2 = 0.99. Dimensions of za and zm are set to be 512

and 256, respectively. We pre-define N = 512 learnable directions in the motion dictionary,

the dimension of each direction is set to be 512. l is set to be 0.5 for all experiments.



98 Motion Interpretation in Video Generation

5.3 Experiments and Analysis

We present extensive experiments, which include the following. In video quality eval-

uation, we quantitatively evaluate the ability of MintGAN to generate realistic videos and

compare related results with four state-of-the-art methods for unconditional video generation.

We then analyze the effectiveness of the proposed TPD. In addition, we provide an ablation

study, which indicates the appropriate number of temporal resolutions for different datasets.

In interpretability evaluation, we aim to discover interpretable directions in the motion

dictionary. Towards this, we propose a new evaluation framework that quantifies motion in

generated videos using optical flow. We show that directions in the motion dictionary, based

on our proposed framework, are indeed semantically meaningful. Further, we demonstrate

that generated videos can be easily modified by manipulating such directions. Notably, our

model allows for controllable video generation based on pre-defined trajectories for different

directions.

Finally, we conduct analysis of linear interpolation, high-resolution video generation

and go beyond training data to explore longer video generation.

5.3.1 Datasets

VoxCeleb2-mini dataset. We construct a subset of VoxCeleb2, where we randomly

select 2 diverse videos per each of the 6,000 subjects. We note that videos include large

appearance diversity.

BAIR robot pushing dataset. The dataset incorporates stationary videos of a robot arm

moving and pushing a set of objects. We use the training set of this dataset which contains

40,000 short videos.

UCF101 dataset. The dataset contains 13,320 videos from Youtube of 101 human action

classes.

We note that UCF101 is only used to evaluate high-resolution video generation.
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5.3.2 Evaluation metric

For VoxCeleb2-mini and BAIR-robot, We use video FID [54] to quantitatively evaluate vi-

sual quality and temporal consistency in generated videos.We appropriate ResNeXt-101 [51]

pre-trained on Kinetics-400 [16] as feature extractor and use outputs from last fully connected

layer to compute the FID. We randomly sample 10,000 videos to compute the values for each

experiment. To evaluate results on UCF101, we follow the evaluation protocol introduced in

TGANv2 [131].

5.3.3 Video quality evaluation

We firstly compare MintGAN with four state-of-the-art methods, namely VGAN, TGAN,

MoCoGAN, as well as G3AN. We generate videos pertained to named methods with spatial

resolution of 64⇥ 64 and temporal length of 32 for VGAN and 16 for the other methods.

Related FIDs are reported in Tab. 5.1. MintGAN systematically outperforms other methods

w.r.t. video quality by obtaining the lowest FID on both datasets. This is a pertinent

prerequisite for latent space interpretation, as only highly realistic videos would allow for a

meaningful interpretation.

Method VoxCeleb2-mini BAIR-robot
VGAN [157] 38.13 147.23
TGAN [130] 23.05 120.22

MoCoGAN [148] 12.69 13.68
G3AN [168] 3.32 1.58
MintGAN 2.37 1.31

Table 5.1 Comparison of MintGAN with four state-of-the-art models. MintGAN system-
atically and significantly outperforms other methods on both datasets w.r.t. FID. The lower
FID, the better video quality.

Effectiveness of TPD. We replace the original 3D discriminators in VGAN, TGAN,

MoCoGAN, as well as G3AN with TPD, maintaining all training configurations as in the

previous experiment. We report FIDs related to original and proposed discriminators in

all algorithms and both datasets in Tab. 5.2. We observe that TPD improves the results of
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all methods significantly and consistently. This confirms that videos sampled with a set of

temporal resolutions contain different features, which are beneficial in the discriminator.

On a different but related note, we observe during training that models without image

discriminator (VGAN and TGAN) tend to reach mode collapse rapidly on BAIR-robot (high

FID in Tab. 5.2). This is rather surprising, as BAIR-robot constitutes the simpler of the two

datasets, comprising videos of a robot arm moving, with a fixed background. The occurrence

of very similar scenes might be the reason for the challenging distinguishing of real and fake

spatial information in the absence of an image discriminator.

Method VoxCeleb2-mini BAIR-robot
3D TPD 3D TPD

VGAN [157] 38.13 16.33 147.23 93.71
TGAN [130] 23.05 21.24 120.22 120.04

MoCoGAN [148] 12.69 7.07 13.68 3.16
G3AN [168] 3.32 2.98 1.58 1.50

Table 5.2 Evaluation of TPD. When replacing the initial 3D discriminator with TPD, the
latter significantly and consistently improves the FID of all 4 state-of-art models for the
VoxCeleb2-mini and BAIR-robot datasets.

In addition, we conduct an ablation study, seeking to determine the optimal number of

temporal resolutions in TPD for both datasets. Associated results are reported in Tab. 5.3,

which suggest that while for VoxCeleb2-mini, which contains complex motion, we achieve

the lowest FID on four temporal resolutions (16, 8, 4, 2 frames), for BAIR-robot, which is

simpler w.r.t. occurring motion, three resolutions (16, 8, 4 frames) suffice.

TPD type VoxCeleb2-mini BAIR-robot
DV0 , DV1 , DV2 , DV3 2.37 1.56

DV0 , DV1 , DV2 , 2.65 1.31
DV0 , DV1 2.76 1.33

DV0 2.84 1.58
Table 5.3 Ablation study on video discriminators in TPD. Number of video discriminators
associated to temporal resolutions. FID is reported for comparison. Lower FID indicates a
superior quality of generated videos.
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Figure 5.3 Analysis of a . Mean and variance bar charts, indicating top 10 motion-directions
with the highest values in At̄ .

Figure 5.4 Time v.s. a . Each figure represents a video sample. We illustrate one sample
from BAIR-robot (left) and one from VoxCeleb2-mini (right), respectively. Top 5 dimensions
in a are plotted in different color.

5.3.4 Interpretability evaluation

Above, we have provided experimental proof that MintGAN is able to generate high

quality videos. In this section, we focus on discussing, how to leverage those videos to find

interpretable directions in the motion dictionary. Towards this, firstly we analyze a , seeking

to find directions with the highest impact.

Then, we present our proposed evaluation framework to quantify motion, in order to find

semantic meaning of such directions. Next, we show generated results based on manipulation

of such directions. Finally, we demonstrate that our model allows for controllable generation

by navigating in found interpretable directions in pre-defined trajectories.

Do all directions contribute equally? As per Equation (5.8), each a j,i indicates the mag-

nitude of di at time step j. We sample 10,000 latent codes as evaluation set and compute mean

and variance over time, for the full set, in order to obtain At̄ = [at̄,0,at̄,1, ...,at̄,N�1],at̄,i 2 R.

Figure 5.3 shows mean and variance values of the 10 most pertinent dimensions in At̄ for

both datasets. We note that for both datasets, at̄,511 has the largest variance, which indicates

that d511 leads to the strongest motion variation in generated videos. At the same time,
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Figure 5.5 Directions analysis on BAIR-robot. A generated video sample, related optical
flow images (top), activation of only d1 (middle), and activation of only d511 (bottom). Optical
flow images indicate that d1 is accountable for moving the robot arm backward, whereas d511
for moving it left and right.

at̄,1 (BAIR-robot) and at̄,0 (VoxCeleb2-mini) encompass highest mean values, respectively.

Therefore, we have that d1 (BAIR-robot) and d0 (VoxCeleb2-mini) show high and continuous

magnitudes, respectively.

Moreover, we are interested in the course of each a j,i over time, which we portray in

Figure 5.4. Specifically, we randomly select one sample per dataset and highlight a set of

a0:15,i in different colors. We have that, while a0:15,511 (in red) has the largest amplitude in

both datasets, a0:15,1 (BAIR-robot) and a0:15,0 (VoxCeleb2-mini) (in blue) maintain high but

steady values over time, respectively. This supports our findings, as displayed in Figure 5.3.

One explanation could be d511 corresponds to the largest singular value, so it should identify

a dimension, which entails the largest variance, and hence its length impact mostly the space

and is responsible to the strongest motion.

Based on the above, we conclude that directions in the motion dictionary do not contribute

equally in composing motion. There exists directions which represent the major motions

while others are complementary in the generated results.

Are motion components interpretable? We here aim to semantically quantify motion

directions by a novel framework using optical flow. Firstly, we represent the optical flow

according to the Middlebury evaluation [7]. Specifically, we partition the flow into four

histogram bins, namely R0, R1, R2 and R3, to cover the 360° range of orientation and
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(a) (b) (c) (d)

Figure 5.6 Optical flow quantization. (a) Middlebury colorwheel, (b) l (xt, j) and H on the
colorwheel, (c) one frame from BAIR-robot and (d) related optical flow.

Figure 5.7 Direction analysis in VoxCeleb2-mini. A generated video sample and associated
optical flow images (top), by only activating d0 (middle), and by only activating d511 (bottom).
While d0 controls the mouth region, d511 controls the head region.

amplitude, see Figure 5.6. While different motion directions are represented by the hue

values, motion magnitude is indicated by the brightness. Hence each Ri represents a motion

range. Next, for any given optical flow video, we quantify motion in Ri as following.

fi =
1
Ni

T�1

Â
t=0

N�1

Â
j=0

l (xt, j)

H Ri(xt, j), i 2 {0,1,2,3}, (5.6)

with total motion in the video being computed as

F =
1
N

3

Â
i=0

T�1

Â
t=0

N�1

Â
j=0

l (xt, j)

H Ri(xt, j), (5.7)
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Figure 5.8 Global and local motion extraction. (a) Generated image, (b) related optical
flow, (c) semantic map, (d) mouth-flow image, and (e) face-flow image based on training
with VoxCeleb2-mini.

where xt, j denotes the value of the jth pixel at time step t in an optical flow video, which

contains N color pixels in total. Ni denotes the total number of color pixels in Ri. l (xt, j)

measures the distance from xt, j to the center of the colorwheel, whose radius is H (see

Figure 5.6). A large fi indicates a frequent and strong motion appearing in Ri.

For BAIR-robot, we proceed to evaluate the set of directions d1, d2, d116 and d511, as

they exhibit the highest impact according to Figure 5.3. Our idea is to quantify the motion

difference Dfi = f dk
i �fi in each Ri, when dk is deactivated (set ak = 0 ) in original videos.

We sample 1000 videos and deactivate each of the chosen directions, respectively, building

an evaluation dataset containing 6000 samples (1000 original + 5000 deactivated). We report

averaged fi over the full evaluation set for each region in Tab. 5.4. When d1 is deactivated,

motion in R0 and R3 are strongly reduced. Similarly for d511, f1 and f2 obtain the largest

decline. We note that for some directions motion changes are minor. As (R0,R3) and (R1,R2)

are opposite regions, d1 and d511 represent symmetric motions. To illustrate this, we generate

samples by only activating d1 and only activating d511, respectively, while maintaining other

directions deactivated. Figure 5.5 shows one sample and related optical flow, from which we

deduce that the results match our quantitative evaluation, which suggested that d1 represents

‘robot arm moving back and forth’, and d511 represents ‘robot arm moving left and right’.

As we have already found interpretable directions, we show, by providing pre-defined

trajectories to d1 and d511, that we are able to control generated videos. We show two types

of a-trajectories over time for d1 and d511 in Fig. 5.9a and Fig. 5.9b, respectively. While in

Fig. 5.9a a linear trajectory is provided for d1 and a sinusoidal trajectory for d511, in Fig. 5.9b,

d1 and d511 are activated oppositely. We illustrate generated videos by activating d1, d511, as
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Df0 Df1 Df2 Df3
d1 -0.008 0.017 0.002 -0.033
d2 -0.001 0.002 0.002 -0.005

d116 0.000 -0.001 0.001 0.000
d511 0.007 -0.087 -0.059 0.019

Table 5.4 Dfi on BAIR-robot. Motion difference in four regions (R0, R1, R2, R3) caused by
deactivating motion-directions.

(a) Trajectory type 1. (b) Trajectory type 2.

Figure 5.9 Two pre-defined trajectories. (a) We provide a linear trajectory for d1 and a
sinusoidal trajectory for d511. (b) We provide a sinusoidal trajectory for d1 and a linear
trajectory for d511.

well as both directions, respectively, whereas all other directions maintain deactivated (set

a to 0). Related results indicate that the robot arm can indeed be controlled directly with

different trajectories. Generated results are illustrated on website 1.

VoxCeleb2-mini comprises a more complex dataset than BAIR-robot with videos con-

taining concurrent global motion (e.g., head moving), as well as local motion (e.g., talking).

For VoxCeleb2-mini we therefore analyze global and local motion by focusing on head

and mouth regions, computing facial semantic maps, and further head-flow and mouth-flow

videos for each sample (see Figure 5.8). We use the method of Yu et al. [196] to extract

facial semantic maps.

For VoxCeleb2-mini we proceed to select the top 4 directions d0, d112, d114, and d511 from

Figure 5.3 and sample 1000 videos for evaluation. Deviating from above, we here quantify

video motion changes in head DFhead and mouth regions DFmouth, respectively. Tab. 5.5

1. https://wyhsirius.github.io/InMoDeGAN/

https://wyhsirius.github.io/InMoDeGAN/
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shows that while deactivation of d511 triggers the largest motion decline in the head region,

the deactivation of d0 leads to the largest decline of mouth-motion. Considering that head

movement contributes to mouth movement, we compute DFmouth�DFhead , excluding global

from local motion. However, d0 still remains highest contribution to mouth motion. Similar

to BAIR-robot, we illustrate samples by activating only d0, and only d511, respectively, in

Figure 5.7. While d0 reflects mouth motion, d511 represents head motion. This is conform to

our quantitative evaluation.

DFhead DFmouth DFmouth-DFhead
d0 -0.012 -0.052 -0.040

d112 -0.001 -0.005 -0.005
d114 -0.000 -0.005 -0.005
d511 -0.036 -0.027 0.008

Table 5.5 DFhead and DFmouth on VoxCeleb2-mini. Motion difference in head and mouth
regions induced by deactivation of motion-directions.

We also analyze the interpretability of other directions, despite the fact that related

contribution is minor. In doing so, we find basic semantic motions such as zooming and

rotation. Walks in such directions correspond to facial geometric transformations. We firstly

conduct linear walks along each direction di

at = amin + t ⇤ (amax�amin)

T
, t 2 [0,T �1],

wt,i = w0 +at di, i 2 [0,511],

xt,i = GS(wt,i),

(5.8)

where we set amin and amax to be -5 and +5, respectively and we interpolate using T = 16

points. Then we construct videos Vi = {xt}15
t=0 for direction di. Towards analyzing the videos,

we divide the color wheel into 8 regions (see Fig. 5.10) and use proposed method to compute

motion differences in each region

fi =
1
Ni

T�1

Â
t=0

N�1

Â
j=0

l (xt, j)

H Ri(xt, j),

i 2 {0,1,2,3,4,5,6,7}.

(5.9)
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Finally, we use k-means to group 512 directions into 16 different clusters based on their

motion differences in each region. We observe that directions within one cluster contain

similar semantic meanings. Generated results are illustrated on website 2.

Figure 5.10 Eight-region color wheel

We conclude that directions in our motion dictionary are interpretable, whereas activation

and manipulation of them enable control of motion in generated videos.

5.3.5 User study

We asked 30 human raters to evaluate generated video quality, as well as the interpretabil-

ity. Towards evaluating quality, we show paired videos and ask the raters, to rate ‘which clip

is more realistic’. Each video-pair contains one generated video from our method, whereas

the second video is either real or generated from other methods. As shown in Tab. 5.6, users

rate that our method is more realistic than MoCoGAN and G3AN across both datasets. It is

encouraging that in the comparison of our method with real videos, users rated in 25% that

our method was more realistic for the 64⇥64 setting.

Methods User Preference (%)
VoxCeleb2-mini BAIR-robot

ours / MoCoGAN 93.00 / 7.00 80.00 / 20.00
ours / G3AN 85.33 / 14.67 61.33 / 38.67

ours / real (64⇥64) 25.00 / 75.00 48.67 / 51.33
ours / real (128⇥128) 16.00 / 84.00 -

Table 5.6 User study: Mean opinion score for the question ‘Which video clip is more
realistic?’

2. https://wyhsirius.github.io/InMoDeGAN/

https://wyhsirius.github.io/InMoDeGAN/
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Towards evaluating the interpretability of found motion-directions, we asked the question

’which direction is the robot arm moving?’ for BAIR-robot dataset. Human raters were able

to choose ’back and forth’ and ’left and right’. For VoxCeleb-mini, the question posed was

’what moves the most?’ and options were ’mouth’ and ’head’. We compare the accordance

of obtained results of user study and quantitative evaluation results. We report the accuracy

of ’users/actions’ in Tab. 5.7 and Tab. 5.8. Related results indicate that found directions

correspond to the human evaluation.

Direction (BAIR-robot) Acc. (%)
d1 (back and forth) 100.00
d511 (left and right) 85.33

Table 5.7 User study: Mean opinion score for the question ‘which direction is the robot arm
moving?’.

Direction (VoxCeleb-mini) Acc. (%)
d0 (mouth) 92.22
d511 (head) 80.00

Table 5.8 User study: Mean opinion score for the question ‘what moves the most?’.

5.3.6 Further analysis

We conduct more analysis of our model, including linear interpolation, high-resolution

video generation and longer video generation. Generated results are illustrated on website 3.

High-resolution video generation. We evaluate our generated high-resolution (128⇥

128) videos pertained to both, VoxCeleb2-mini and UCF101 [141]. We use the evaluation

protocol introduced in the main paper for VoxCeleb2-mini. Results are reported in Tab. 5.9.

Naturally, higher resolution corresponds to better (lower) FID.

Towards a fair comparison with state-of-the-art results on UCF101, we use the evaluation

protocol introduced in TGANv2 [131]. It uses a C3D [146] that has been pre-trained on

UCF101 as feature extractor. We report video results w.r.t. Inception Score (IS) and Fréchet

3. https://wyhsirius.github.io/InMoDeGAN/

https://wyhsirius.github.io/InMoDeGAN/
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Inception Distance (FID) in Tab. 5.10. Our method outperforms other methods using both

evaluation metrics w.r.t. high-resolution video generation.

Method FID (#)
VGAN [157] (64⇥64) 38.13
TGAN [130] (64⇥64) 23.05

MoCoGAN [148] (64⇥64) 12.69
G3AN [167] (64⇥64) 3.32
MintGAN (64⇥64) 2.37

MintGAN (128⇥128) 0.25
Table 5.9 Comparison of MintGAN with four state-of-the-art models. MintGAN system-
atically outperforms the other models on VoxCeleb2-mini w.r.t. FID.

Method IS (") FID (#)
VGAN [157] 8.31± .09 -
TGAN [130] 11.85± .07 -

MoCoGAN [148] 12.42± .03 -
ProgressiveVGAN [1] 13.59± .07 -

TGANv2 [131] 26.60± .47 3431±19
MintGAN 28.25± .05 3390±83

Table 5.10 Comparison of MintGAN with five state-of-the-art models. MintGAN system-
atically outperforms the other models on UCF101 w.r.t. IS and FID. Numbers are adopted
from [131], except MintGAN.





Chapter 6

Joint Generative and Contrastive

Learning for Unsupervised Person ReID

This chapter presents our last contribution, while aims at learning from synthesis data to

improve the performance of unsupervised person re-identification. Recent self-supervised

contrastive learning provides an effective approach for unsupervised person re-identification

(ReID) by learning invariance from different views (transformed versions) of an input. In

this chapter, we incorporate a Generative Adversarial Network (GAN) and a contrastive

learning module into one joint training framework. While the GAN provides online data

augmentation for contrastive learning, the contrastive module learns view-invariant features

for generation. In this context, we present a mesh-based view generator. Specifically, mesh

projections serve as references towards generating novel views of a person. In addition, we

present a view-invariant loss to facilitate contrastive learning between original and generated

views. Deviating from previous GAN-based unsupervised ReID methods involving domain

adaptation, we do not rely on a labeled source dataset, which makes our method more

flexible. Extensive experimental results show that our method significantly outperforms

state-of-the-art methods under both, fully unsupervised and unsupervised domain adaptive

settings on several large scale ReID datsets.
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6.1 Introduction

A person re-identification (ReID) system is targeted at identifying subjects across different

camera views. In particular, given an image containing a person of interest (as query) and

a large set of images (gallery set), a ReID system ranks gallery-images based on visual

similarity with the query. Towards this, ReID systems are streamlined to bring to the fore

discriminative representations, which allow for robust comparison of query and gallery

images. In this context, supervised ReID methods [18, 142] learn representations guided

by human-annotated labels, which is time-consuming and cumbersome. Towards omitting

such human annotation, researchers increasingly place emphasis on unsupervised person

ReID algorithms [167, 88, 94], which learn directly from unlabeled images and thus allow

for scalability in real world deployments.

Recently, self-supervised contrastive methods [52, 21] have provided an effective retrieval-

based approach for unsupervised representation learning. Given an image, such methods

maximize agreement between two augmented views of one instance (see Fig. 6.1). Views

refer to transformed versions of the same input. As shown in very recent works [21, 23], data

augmentation enables a network to explore view-invariant features by providing augmented

views of a person, which are instrumental in building robust representations. Such and

similar methods considered traditional data augmentation techniques, e.g., ‘random flipping’,

‘cropping’, and ‘color jittering’. Generative Adversarial Networks (GANs) [48] constitute a

novel approach for data augmentation. As opposed to traditional data augmentation, GANs

are able to modify id-unrelated features substantially, while preserving id-related features,

which is highly beneficial in contrastive ReID.

Previous GAN-based methods [6, 32, 217, 90, 181, 211] considered unsupervised ReID

as an unsupervised domain adaptation (UDA) problem. Under the UDA setting, researchers

used both, a labeled source dataset, as well as an unlabeled target dataset to gradually adjust

a model from a source domain into a target domain. GANs can be used in cross-domain style

transfer, where labeled source domain images are generated in the style of a target domain.

However, the UDA setting necessitates a large-scale labeled source dataset. Scale and quality

of the source dataset strongly affect the performance of UDA methods. Recent research has
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Figure 6.1 Traditional v.s. our proposed method. (Left) Traditional self-supervised con-
trastive learning maximizes agreement between representations ( f1 and f2) of augmented
views from Data Augmentation (DA). (Right) Joint generative and contrastive learning
maximizes agreement between original and generated views.

considered fully unsupervised ReID [167, 88], where under the fully unsupervised setting, a

model directly learns from unlabeled images without any identity labels. Self-supervised

contrastive methods [52, 21] belong to this category. In this work, we use a GAN as a novel

view generator for contrastive learning, which does not require a labeled source dataset.

Here, we aim at enhancing view diversity for contrastive learning via generation under

the fully unsupervised setting. Towards this, we introduce a mesh-based novel view generator.

We explore the possibility of disentangling a person image into identity features (color

distribution and body shape) and structure features (pose and view-point) under the fully

unsupervised ReID setting. We estimate 3D meshes from unlabeled training images, then

rotate these 3D meshes to simulate new structures. Compared to skeleton-guided pose

transfer [45, 90], which neglects body shape, mesh recovery [68] jointly estimates pose and

body shape. Estimated meshes preserve body shape during the training, which facilitates

the generation and provides more visual clues for fine-grained ReID. Novel views can be

generated by combining identity features with new structures.

Once we obtain the novel views, we design a pseudo label based contrastive learning

module. With the help of our proposed view-invariant loss, we maximize representation
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similarity between original and generated views of a same person, whereas representation

similarity of other persons is minimized.

Our proposed method incorporates generative and contrastive modules into one frame-

work, which are trained jointly. Both modules share the same identity feature encoder. The

generative module disentangles identity and structure features, then generates diversified

novel views. The novel views are then used in the contrastive module to improve the capacity

of the shared identity feature encoder, which in turn improves the generation quality. Both

modules work in a mutual promotion way, which significantly enhances the performance of

the shared identity feature encoder in unsupervised ReID. Moreover, our method is compati-

ble with both UDA and fully unsupervised settings. With a labeled source dataset, we obtain

better performance by alleviating the pseudo label noise.

In summary, this chapter makes several contributions. First, we propose a joint gener-

ative and contrastive learning framework for unsupervised person ReID. Generative and

contrastive modules mutually promote each other’s performance. Second, in the generative

module, we introduce a 3D mesh based novel view generator, which is more effective in

body shape preservation than skeleton-guided generators. Third, in the contrastive module,

a view-invariant loss is proposed to reduce intra-class variation between original and gen-

erated images, which is beneficial in building view-invariant representations under a fully

unsupervised ReID setting. In addition, we overcome the limitation of previous GAN-based

unsupervised ReID methods that strongly rely on a labeled source dataset. Our method signif-

icantly surpasses the performance of state-of-the-art methods under both, fully unsupervised,

as well as UDA settings.

6.2 Background

Unsupervised representation learning. Recent contrastive instance discrimination meth-

ods [186, 52, 21] have witnessed a significant progress in unsupervised representation

learning. The basic idea of instance discrimination has to do with the assumption that each

image is a single class. Contrastive predictive coding (CPC) [115] included an InfoNCE loss
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to measure the ability of a model to classify positive representation amongst a set of unrelated

negative samples, which has been commonly used in following works on contrastive learning.

Recent contrastive methods treated unsupervised representation learning as a retrieval task.

Representations can be learnt by matching augmented views of a same instance from a

memory bank [186, 52] or a large mini-batch [21]. MoCoV2 [23] constitutes the improved

version of the MoCo [52] method, incorporating larger data augmentation. We note that data

augmentation is pertinent in allowing a model to learn robust representations in contrastive

learning. However, only traditional data augmentation was used in aforementioned methods.

Data augmentation. MoCoV2 [23] used ‘random crop’, ‘random color jittering’, ‘random

horizontal flip’, ‘random grayscale’ and ‘gaussian blur’. However, ‘random color jittering’

and ‘grayscale’ were not suitable for fine-grained person ReID, because such methods for data

augmentation tend to change the color distribution of original images. In addition, ‘Random

Erasing’ [210] has been a commonly used technique in person ReID, which randomly erases

a small patch from an original image. Cross-domain Mixup [102] interpolated source and

target domain images, which alleviated the domain gap in UDA ReID. Recently, Generative

Adversarial Networks (GANs) [48] have shown great success in image [73, 72, 13] and video

synthesis [148, 168, 17, 172, 171]. GAN-based methods can serve as a method for evolved

data augmentation by conditionally modifying id-unrelated features (style and structure) for

supervised ReID. CamStyle [214] used the CycleGAN-architecture [216] in order to transfer

images from one camera into the style of another camera. FD-GAN [45] was targeted to

generate images in a pre-defined pose, so that images could be compared in the same pose.

IS-GAN [38] was streamlined to disentangle id-related and id-unrelated features by switching

both local and global level identity features. DG-Net [209] recolored grayscale images with

a color distribution of other images, targeting to disentangle identity features. Deviating

from such supervised GAN-based methods, our method generates novel views by rotating

3D meshes in an unsupervised manner.

Unsupervised person ReID. Recent unsupervised person ReID methods were predomi-

nantly based on UDA. Among UDA-based methods, several works [162, 93] used semantic
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attributes to facilitate domain adaptation. Other works [185, 43, 19, 194, 44] assigned pseudo

labels to unlabeled images and proceeded to learn representations with pseudo labels. Trans-

ferring source dataset images into the style of a target dataset represents another line of

research. SPGAN [32] and PTGAN [181] used CycleGAN [216] as domain style transfer-

backbone. HHL [211] aims at transferring cross-dataset camera styles. ECN [212, 213]

exploited invariance from camera style transferred images for UDA ReID. CR-GAN [24]

employed parsing-based masks to remove noisy backgrounds. PDA [90] included skeleton

estimation to generate person images with different poses and cross-domain styles. DG-

Net++ [217] jointly disentangled id-related/id-unrelated features and transferred domain

styles. While the latter is related to our our method, we aim at training jointly a GAN-based

online data augmentation, as well as a contrastive discrimination, which renders the labeled

source dataset unnecessary, rather than transferring style.

Fully unsupervised methods do not require any identity labels. BUC [94] represented each

image as a single class and gradually merged classes. In addition, TSSL [184] considered

each tracklet as a single class to facilitate cluster merging. SoftSim [95] utilized similarity-

based soft labels to alleviate label noise. MMCL [167] assigned multiple binary labels and

trained a model in a multi-label classification way. JVTC and JVTC+ [88] added temporal

information to refine visual similarity based pseudo labels. We note that all aforementioned

fully unsupervised methods learn from pseudo labels. We show in this work that disentangling

view-invariant identity features is possible in fully unsupervised ReID, which can be an

add-on to boost the performance of previous pseudo label based methods.

6.3 Approach

We refer to our proposed method as joint Generative and Contrastive Learning as GCL.

The general architecture of GCL comprises of two modules, namely a View Generator, as well

as a View Contrast Module, see Fig. 6.2. Firstly, the View Generator uses cycle-consistency

on both, image and feature reconstructions in order to disentangle identity and structure

features. It combines identity features and mesh-guided structure features to generate one
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Figure 6.2 A schematic overview of GCL. (a) General architecture of GCL: Generative and
contrastive modules are coupled by the shared identity encoder Eid . (b) Generative module:
The decoder G combines the identity features encoded by Eid and structure features Estr to
generate a novel view x0new with a cycle consistency. (c) Contrastive module: View-invariance
is enhanced by maximizing the agreement between original Eid(x), synthesized Eid(x0new)
and memory fpos representations.

person in new view-points. Then, original and generated views are exploited as positive pairs

in the View Contrast Module, which enables our network to learn view-invariant identity

features. We proceed to elaborate on both modules in the following.

6.3.1 View Generator (Generative Module)

As shown in Fig. 6.2, the proposed View Generator incorporates 4 networks: an identity

encoder Eid , a structure encoder Estr, a decoder G and an image discriminator D. Given

an unlabeled person ReID dataset X = {x1,x2, ...,xN}, we generate corresponding 3D

meshes with a popular 3D mesh generator Human Mesh Recovery (HMR) [68], which

simultaneously estimates body shape and pose from a single RGB image. Here, we denote

the 2D projection of a 3D mesh as original structure sori. Then, as depicted in Fig. 6.3, we

rotate each 3D mesh by 45°,90°,135°,180°,225°,270° and 315°, respectively and proceed to

randomly pick one 2D projection of these rotated meshes as a new structure snew. We use

the 3D mesh rotation to mimic view-point variance from different cameras. Next, unlabeled
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Figure 6.3 Generated multi-view images. Example images as generated by the View
Generator via 3D mesh rotation based on left input image.

images are encoded to identity features by the identity encoder Eid : x ! fid , whereas

both original and new structures are encoded to structure features by the structure encoder

Estr : sori! fstr(ori),snew! fstr(new). Combining both, identity and structure features, the

decoder generates synthesized images G : ( fid, fstr(ori))! x0ori,( fid, fstr(new))! x0new, where

a prime is used to represent generated images.

Given the lack of real images corresponding to the new structures, we consider a cycle

consistency [216] to reconstruct the original image by swapping the structure features in the

View Generator. We encode and decode once again to get synthesized images in original

structures G(Eid(x0new),sori)! x00ori. We calculate an image reconstruction loss as follows.

Limg = E[kx� x0orik1]+E[kx� x00orik1] (6.1)

In addition, we compute a feature reconstruction loss

L f eat = E[k fid�Eid(x0new)k1]+E[k fid�Eid(x00ori)k1]. (6.2)
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The discriminator D attempts to distinguish between real and generated images with the

adversarial loss

Ladv =E[logD(x)+ log(1�D(x0ori))]+

E[logD(x)+ log(1�D(x0new))]+

E[logD(x)+ log(1�D(x00ori))].

(6.3)

Consequently, the overall GAN loss combines the above named losses with weighting

coefficients limg and l f eat

Lgan = limgLimg +l f eatL f eat +Ladv. (6.4)

6.3.2 View Contrast (Contrastive Module)

The previous reconstruction and adversarial losses work in an unconditional manner.

They only explore identity features within the original view-point, which renders appearance

representations view-variant. In rotating an original mesh to a different view-point, e.g.,

from front to side view-point, the generation is prone to fail due to lack of information

pertained to the side view. This issue can be alleviated by enhancing the view-invariance of

representations.

Given an anchor image x, the first step is to find positive images that belong to the same

identity and negative images that belong to different identities. Here, we store all instance

representations in a memory bank [186], which stabilizes pseudo labels and enlarges the

number of negatives during the training with mini-batches. The memory bank M is updated

with a momentum coefficient a .

M [i]t = a ·M [i]t�1 +(1�a) · f t (6.5)

where M [i]t and M [i]t�1 respectively refer to the identity feature vector in the t and t�1

epochs.
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We use a clustering algorithm DBSCAN [39] on all memory bank feature vectors to

generate pseudo identity labels Y = {y1,y2, ...,yJ}, which are renewed at the beginning of

every epoch.

Given the obtained pseudo labels, we have Npos positive and Nneg negative instances

for each training instance. Npos and Nneg vary for different instances. For simplicity in a

mini-batch training, we fix common positive and negative numbers for every training instance.

Given an image x, we randomly sample K instances that have different pseudo identities and

one instance representation fpos that has the same pseudo identity with x from the memory

bank. Note that fpos is from a random positive image that usually has a pose and camera

style different from x and x0new. x and x0new are encoded by Eid into identity feature vectors f

and f 0new. Next, f , f 0new and fpos are used in turn to form three positive pairs. The f 0new and

K different identity instances in the memory bank are used as K negative pairs. Towards

learning robust view-invariant representations, we extend the InfoNCE loss [115] into a

view-invariant loss between original and generated views. We use sim(u,v) = u
kuk2

· v
kvk2

to

denote the cosine similarity. We define the view-invariant loss as a softmax log loss of K +1

pairs as following.

Lvi = E[log(1+ ÂK
i=1 exp(sim( f 0new,ki)/t)
exp(sim( f , fpos)/t)

)] (6.6)

L 0
vi = E[log(1+ ÂK

i=1 exp(sim( f 0new,ki)/t)
exp(sim( f 0new, f )/t)

)] (6.7)

L 00
vi = E[log(1+ ÂK

i=1 exp(sim( f 0new,ki)/t)
exp(sim( f 0new, fpos)/t)

)], (6.8)

where t indicates a temperature coefficient that controls the scale of calculated similarities.

Lvi maximizes the invariance between original and memory positive views. L 0
vi maximizes

the invariance between synthesized and original views. L 00
vi maximizes the invariance

between synthesized and memory positive views. Meanwhile, the synthesized view is pushed

away from K negative views in the latent space. Replacing sim( f 0new,ki) in Equation (6.6),

Equation 6.7 and Equation (6.8) with sim( f ,ki) is another possibility, which pushes away

the original view from negative instances. After testing, sim( f 0new,ki) works better, because
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pushing away the synthesized view from negative instances aid the generation of more

accurate synthesized views that look different from the K negative instances.

6.3.3 Joint Training

Our proposed GCL framework is trained in a joint training way. Both GAN and con-

trastive instance discrimination can be trained in a self-supervised manner. While the GAN

learns a data distribution via adversarial learning on each instance, contrastive instance

discrimination learns representations by retrieving each instance from candidates. In our

designed joint training, the two modules work as two collaborators with the same objec-

tive: enhancing the quality of representations built by the shared identity encoder Eid . We

formulate our GCL as an approach to augment contrast for unsupervised ReID. Firstly,

the generative module generates online data augmentation, which enhances the positive

view diversity for contrastive module. Secondly, the contrastive module, in turn, learns

view-invariant representations by matching original and generated views, which refine the

generation quality. The joint training boosts both modules simultaneously. Our joint training

conducts forward propagation initially on the generative module and subsequently on the

contrastive module. Back-propagation is then conducted with an overall loss that combines

Equation (6.4), Equation (6.6), Equation (6.7) and Equation (6.8),

Lall = Lgan +Lvi +L 0
vi +L 00

vi (6.9)

To accelerate the training process and alleviate the noise from imperfect generation quality at

beginning epochs, we need to warm up the four modules used in the View Generator Eid , Estr,

G and D. We firstly use a state-of-the-art unsupervised ReID method to warm up Eid , which

is then considered as a baseline in our ablation studies. Generally speaking, any unsupervised

ReID method can be used to warm up Eid . Before conducting the View Contrast, we freeze

Eid and warm up Estr, G, and D only with GAN loss in Equation (6.4) for 40 epochs. In

the following, we bring in the memory bank and the pseudo labels to jointly train the whole
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framework with Lall for another 20 epochs. During the joint training, pseudo labels are

updated at the beginning of every epoch.

6.4 Experiments

6.4.1 Datasets and Evaluation Protocols

Three mainstream person ReID datasets are considered in our experiments, including

Market-1501 [208], DukeMTMC-reID [125] and MSMT17 [181]. Market-1501 is composed

of 12,936 images of 751 identities for training and 19,732 images of 750 identities for

test captured from 6 cameras. DukeMTMC-reID contains 16,522 images of 702 persons

for training, 2,228 query images and 17,661 gallery images of 702 persons for test from

8 cameras. MSMT17 is a larger dataset, which contains 32,621 training images of 1,041

identities and 93,820 testing images of 3,060 identities collected from 15 cameras.

Following state-of-the-art unsupervised ReID methods [167, 88], we evaluate our pro-

posed method GCL under fully unsupervised setting on the three datasets and under four

UDA benchmark protocols, including Market!Duke, Duke!Market, Market!MSMT and

Duke!MSMT. We report both quantitative and qualitative results for unsupervised person

ReID and view generation.

6.4.2 Implementation Details

We firstly present network design details of Eid , Estr, G and D. In the following descrip-

tions, we write the size of feature maps in channel⇥height⇥width. Our model design is

mainly inspired by [209, 217]. (1) Eid is a ImageNet [128] pre-trained ResNet50 [53] with

slight modifications. The original fully connected layer is replaced by a fully connected

embedding layer, which outputs identity representations f in 512⇥1⇥1 for the View Contrast.

In parallel, we add a part average pooling that outputs identity features fid in 2048⇥4⇥1

for the View Generator. (2) Estr is composed of four convolutional and four residual layers,

which output structure features fstr in 128⇥64⇥32. (3) G contains four residual and four
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Method Reference Market1501 DukeMTMC-reID
Source mAP Rank1 Rank5 Rank10 Source mAP Rank1 Rank5 Rank10

BUC [94] AAAI’19 None 29.6 61.9 73.5 78.2 None 22.1 40.4 52.5 58.2
SoftSim [95] CVPR’20 None 37.8 71.7 83.8 87.4 None 28.6 52.5 63.5 68.9
TSSL [184] AAAI’20 None 43.3 71.2 - - None 38.5 62.2 - -
MMCL [167] CVPR’20 None 45.5 80.3 89.4 92.3 None 40.2 65.2 75.9 80.0
JVTC [88] ECCV’20 None 41.8 72.9 84.2 88.7 None 42.2 67.6 78.0 81.6
JVTC+ [88] ECCV’20 None 47.5 79.5 89.2 91.9 None 50.7 74.6 82.9 85.3
MMCL* This paper None 45.1 79.5 89.0 91.9 None 40.9 64.8 75.2 79.8
JVTC* This paper None 47.2 75.4 86.7 90.5 None 43.9 66.8 77.6 81.0
JVTC+* This paper None 50.9 79.1 89.8 92.9 None 52.8 74.9 83.3 85.8
ours(MMCL*) This paper None 54.9 83.7 91.6 94.0 None 49.3 69.7 79.7 82.8
ours(JVTC*) This paper None 63.4 83.7 91.6 94.3 None 53.3 72.4 82.0 84.9
ours(JVTC+*) This paper None 66.8 87.3 93.5 95.5 None 62.8 82.9 87.1 88.5
ECN [212] CVPR’19 Duke 43.0 75.1 87.6 91.6 Market 40.4 63.3 75.8 80.4
PDA [90] ICCV’19 Duke 47.6 75.2 86.3 90.2 Market 45.1 63.2 77.0 82.5
CR-GAN [24] ICCV’19 Duke 54.0 77.7 89.7 92.7 Market 48.6 68.9 80.2 84.7
SSG [43] ICCV’19 Duke 58.3 80.0 90.0 92.4 Market 53.4 73.0 80.6 83.2
MMCL [167] CVPR’20 Duke 60.4 84.4 92.8 95.0 Market 51.4 72.4 82.9 85.0
ACT [194] AAAI’20 Duke 60.6 80.5 - - Market 54.5 72.4 - -
DG-Net++ [217] ECCV’20 Duke 61.7 82.1 90.2 92.7 Market 63.8 78.9 87.8 90.4
JVTC [88] ECCV’20 Duke 61.1 83.8 93.0 95.2 Market 56.2 75.0 85.1 88.2
ECN+ [213] PAMI’20 Duke 63.8 84.1 92.8 95.4 Market 54.4 74.0 83.7 87.4
JVTC+ [88] ECCV’20 Duke 67.2 86.8 95.2 97.1 Market 66.5 80.4 89.9 92.2
MMT [44] ICLR’20 Duke 71.2 87.7 94.9 96.9 Market 65.1 78.0 88.8 92.5
CAIL [102] ECCV’20 Duke 71.5 88.1 94.4 96.2 Market 65.2 79.5 88.3 91.4
ACT* This paper Duke 59.1 78.8 88.9 91.7 Market 51.5 70.9 80.0 83.4
JVTC* This paper Duke 65.0 85.7 93.6 95.6 Market 56.5 73.9 84.5 87.7
JVTC+* This paper Duke 67.6 87.0 95.2 97.0 Market 66.7 81.0 89.9 91.5
ours(ACT*) This paper Duke 66.7 83.9 91.4 93.4 Market 55.4 71.9 81.6 84.6
ours(JVTC*) This paper Duke 73.4 89.1 95.0 96.6 Market 60.4 77.2 86.2 88.4
ours(JVTC+*) This paper Duke 75.4 90.5 96.2 97.1 Market 67.6 81.9 88.9 90.6

Table 6.1 Comparison of unsupervised ReID methods (%) with a ResNet50 backbone
on Market and Duke datasets. We test our proposed method on several baselines, whose
names are in brackets. * refers to our implementation based on authors’ code.
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Method Reference MSMT17
Source mAP R1 R5 R10

MMCL [167] CVPR’20 None 11.2 35.4 44.8 49.8
JVTC [88] ECCV’20 None 15.1 39.0 50.9 56.8
JVTC+ [88] ECCV’20 None 17.3 43.1 53.8 59.4
JVTC* This paper None 13.4 36.0 48.8 54.9
JVTC+* This paper None 16.3 40.4 55.6 61.8
ours(JVTC*) This paper None 18.0 41.6 53.2 58.4
ours(JVTC+*) This paper None 21.3 45.7 58.6 64.5
ECN [212] CVPR’19 Market 8.5 25.3 36.3 42.1
SSG [43] ICCV’19 Market 13.2 31.6 49.6 -
MMCL [167] CVPR’20 Market 15.1 40.8 51.8 56.7
ECN+ [213] PAMI’20 Market 15.2 40.4 53.1 58.7
JVTC [88] ECCV’20 Market 19.0 42.1 53.4 58.9
DG-Net++ [217] ECCV’20 Market 22.1 48.4 60.9 66.1
CAIL [102] ECCV’20 Market 20.4 43.7 56.1 61.9
MMT [44] ICLR’20 Market 22.9 49.2 63.1 68.8
JVTC+ [88] ECCV’20 Market 25.1 48.6 65.3 68.2
JVTC* This paper Market 17.1 39.6 53.3 59.3
JVTC+* This paper Market 20.5 44.0 59.5 71.1
ours(JVTC*) This paper Market 21.5 45.0 57.1 66.5
ours(JVTC+*) This paper Market 27.0 51.1 63.9 69.9
ECN [212] CVPR’19 Duke 10.2 30.2 41.5 46.8
SSG [43] ICCV’19 Duke 13.3 32.2 51.2 -
MMCL [167] CVPR’20 Duke 16.2 43.6 54.3 58.9
ECN+ [213] PAMI’20 Duke 16.0 42.5 55.9 61.5
JVTC [88] ECCV’20 Duke 20.3 45.4 58.4 64.3
DG-Net++ [217] ECCV’20 Duke 22.1 48.8 60.9 65.9
MMT [44] ICLR’20 Duke 23.3 50.1 63.9 69.8
CAIL [102] ECCV’20 Duke 24.3 51.7 64.0 68.9
JVTC+ [88] ECCV’20 Duke 27.5 52.9 70.5 75.9
JVTC* This paper Duke 19.9 45.4 59.1 64.9
JVTC+* This paper Duke 23.6 49.4 65.2 71.1
ours(JVTC*) This paper Duke 24.9 50.8 63.4 68.9
ours(JVTC+*) This paper Duke 29.7 54.4 68.2 74.2

Table 6.2 Comparison of unsupervised ReID methods (%) with a ResNet50 backbone
on MSMT17. * refers to our implementation based on authors’ code.
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convolutional layers. Every residual layer contains two adaptive instance normalization

layers [60] that transform fid into scale and bias parameters. (4) D is a multi-scale PatchGAN

[65] discriminator at 64⇥32, 128⇥64 and 256⇥128.

Then, we present the training and testing configuration details. Our framework is imple-

mented in Pytorch and trained with one Nvidia Titan RTX GPU. (1) For the Eid warm-up,

we consider JVTC [88], because it is a state-of-the-art ReID method that is compatible with

both fully unsupervised and UDA settings. We also test other baselines, e.g., MMCL [167]

and ACT [194] to demonstrate the generalizability of our method. (2) For training, inputs are

resized to 256⇥128. We empirically set a large weight limg = l f eat = 5 for reconstruction

in Equation (6.4). With a batch size of 16, we use SGD to train Eid and Adam optimizer to

train Estr, G and D. Learning rate is set to 1⇥10�4 during the warm-up. In the joint-training,

learning rate in Adam is set to 1⇥10�4 and 3.5⇥10�4 in SGD and are multiplied by 0.1

after 10 epochs. (3) In the View Contrast module, we set the momentum coefficient a = 0.2

in Equation (6.5) and the temperature t = 0.04 in Equation (6.6). The number of negatives

K is 8192. DBSCAN density radius is set to 2⇥10�3. (4) For testing, only Eid is conserved

and outputs representations f of dimension 512.

Important parameters are set by a grid search on the fully unsupervised Market-1501

benchmark. The temperature t is searched from {0.03,0.04,0.05,0.06,0.07} and finally

is set to 0.04. A smaller t increases the scale of similarity scores in the Equation (6.6),

Equation (6.7) and Equation (6.8), which makes view-invariant losses more sensitive to inter-

instance difference. However, when t is set to 0.03, these losses become too sensitive and

make the training unstable. The number of negatives K is searched from {2048,4096,8192}.

A larger K pushes away more negatives in the view-invariant losses. Since the Market-1501

dataset has only 12936 training images, we set K = 8192.

6.4.3 Unsupervised ReID Evaluation

Comparison with state-of-the-art methods. Table 6.1 shows the quantitative results on

the Market-1501 and DukeMTMC-reID datasets. Table 6.2 shows the quantitative results on

the MSMT17 dataset. Our method is mainly designed for fully unsupervised ReID. Under
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this setting, we test the performance of GCL with three different baselines, including MMCL,

JVTC and JVTC+. Our implementation of the three baselines provides results that are slightly

different from those mentioned in the corresponding papers. Thus, we firstly report results of

our implementations and then add our GCL on these baselines. Our method improves the

performance of the baselines by large margins. These improvements show that GANs are not

limited to cross-domain style transfer for unsupervised ReID.

Under the UDA setting, we also evaluate the performance of GCL with three different

baselines, including ACT, JVTC and JVTC+. The labeled source dataset is only used

to warm up our identity encoder Eid , but not used in our joint generative and contrastive

training. Compared to fully unsupervised methods, the UDA warmed Eid is stronger and

extracts improved identity features. Thus, the performance of UDA methods is generally

higher than fully unsupervised methods. With a strong baseline JVTC+, our GCL achieves

state-of-the-art performance.

Ablation Study. To better understand the contribution of generative and contrastive mod-

ules, we conduct ablation experiments on the two fully unsupervised benchmarks: Market-

1501 and DukeMTMC-reID. Quantitative results with a JVTC baseline are reported in

Table 6.3. By gradually adding loss functions on the baseline, our ablation experiments

correspond to three scenarios. (1) Only Generation: with only Lgan, our generation module

disentangles identity and structure features. Since there is no inter-view constraint, Eid

tends to extract view-specific identity features, which decreases the ReID performance. (2)

Only Contrast: we use L woGAN
vi = E[log(1+ ÂK

i=1 exp(sim( f ,ki)/t)
exp(sim( f , fpos)/t) )] to train our contrastive

module without generation. We also add a set of traditional data augmentation, including

random flipping, cropping, jittering, erasing, to train our contrastive module like a traditional

memory bank based contrastive method. (3) Joint Generation and Contrast: Lvi, L 0
vi and

L 00
vi enhance the view-invariance of identity representations between original, synthesized

and memory-stored positive views, while negative views are pushed away.

We also conduct a qualitative ablation study, where synthesized novel views without

and with view-invariant losses are illustrated in Fig. 6.4. Results confirm that Eid extracts
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Loss Market-1501 DukeMTMC-reID
mAP Rank1 mAP Rank1

Baseline 47.2 75.4 43.9 66.8
+Lgan 41.6 69.0 25.8 45.9

+L woGAN
vi 47.8 75.2 44.1 67.8

+L woGAN
vi +T DA 53.7 78.7 48.5 70.0

+Lgan +Lvi 54.1 79.4 47.4 68.4
+Lgan +Lvi +L 0

vi 59.2 82.2 50.5 71.0
+Lgan +Lvi +L 0

vi +L 00
vi 63.4 83.7 53.3 72.4

Table 6.3 Ablation study on loss functions used in two modules. (1). Lgan corresponds to
generation w/o contrast. (2). L woGAN

vi corresponds to contrast w/o generation. TDA denotes
traditional data augmentation. (3). Lgan +Lvi (L 0

vi and L 00
vi ) correspond to joint generative

and contrastive learning.

Figure 6.4 Qualitative ablation study on the view-invariant losses. For simplicity, Lvi
denotes three view-invariant losses Lvi+L 0

vi+L 00
vi , which helps Eid to extract view-invariant

features (red shirt).

view-specific identity features (black bag), in the case that view-invariant losses are not used.

Given view-invariant losses, Eid is able to extract view-invariant identity features (red shirt).

6.4.4 Generation Quality Evaluation

Comparison with state-of-the-art methods. We compare generated images between our

proposed GCL under the JVTC [88] warmed fully unsupervised setting and state-of-the-art

GAN-based ReID methods in Fig. 6.5. FD-GAN [45], IS-GAN [38] and DG-Net [209] are

supervised Re-ID methods. Since the source code of these three methods is available, we
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Figure 6.5 Comparison of the generated images on Market-1501 dataset. ? refers to
methods without sharing source code, whose examples are cropped from their papers. Exam-
ples of FD-GAN, IS-GAN, DG-Net and GCL are generated from six real images shown in
the figure.

Method FID(realism) SSIM(diversity)
Real 7.22 0.350

FD-GAN [45] 216.88 0.271
IS-GAN [38] 281.63 0.165
DG-Net [209] 18.24 0.360

Ours(U) 59.86 0.367
Ours(UDA) 53.07 0.369

Table 6.4 Comparison of FID and SSIM on Market-1501 dataset. U denotes the fully
unsupervised setting. UDA denotes Duke!Market setting.

compare generated images of same identities. We observe that there exists blur in images

generated by FD-GAN and IS-GAN. DG-Net generates sharper images, but different body

shapes and some incoherent objects (bags and clothes) are observed. PDA [90] and DG-Net++

[217] are UDA methods, whose source code is not yet released. We can only compare several

generated images with unknown identities as illustrated in their papers. PDA generates

blurred cross-domain images, whose quality is similar to FD-GAN and IS-GAN. DG-Net++

extends DG-Net into cross-domain generation, which has same problems of body shape and

incoherent objects. Our GCL preserves better body shape information and does not generate

incoherent objects. Moreover, our GCL is a fully unsupervised method.

We use Fréchet Inception Distance (FID) [55] to measure visual quality, as well as

Structural SIMilarity (SSIM) [179] to capture structure diversity of generated images. In

Table 6.4, we compare our method with FD-GAN [45], IS-GAN [38] and DG-Net [209],

whose source code is available. FID measures the distribution distance between generated

and real images, where a lower FID represents the case, where generated images are similar
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Figure 6.6 Generated novel views on the three datasets.

Figure 6.7 Linear interpolation on identity features. Identity features are swapped between
left and right persons.

to real ones. SSIM measures the intra-class structural similarity, where a larger SSIM

represents a larger diversity. We note that DG-Net is outperforms our method w.r.t. FID, as

the distribution is better maintained with ground truth identities in the supervised method

DG-Net. However, our method is superior to DG-Net w.r.t. SSIM, as DG-Net swaps intra-

dataset structures, whereas our rotated meshes build structures that do not exist in the original

dataset.

More discussion. To validate, whether identity and structure features can be really disen-

tangled under a fully unsupervised ReID setting, two experiments are conducted by changing

firstly only structure features and then only identity features. Results in Fig. 6.6 show that
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changing structure features only change structures and do not affect appearances. We also

fix structure features and linearly interpolate two random identity feature vectors. Results

in Fig. 6.7 show that identity features only change appearances and do not affect struc-

tures in generated images. More examples are shown in Fig. 6.8 (Market-1501), Fig. 6.9

(DukeMTMC) and Fig.6.10 (MSMT17).
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Figure 6.8 Examples of generated novel views on Market-1501 training and test sets.
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Figure 6.9 Examples of generated novel views on DukeMTMC-reID training and test
sets.
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Figure 6.10 Examples of generated novel views on MSMT17 training and test sets.





Chapter 7

Discussion and future work

In conclusion, we have advanced the frontier of video generative modeling, as well as the

interpretability of latent representations in the context of video generation. Our approaches

enable new visual generation and manipulation in machine creativity. We are able to create

unseen identities, as well as to control motion, which to the best of our knowledge, has

been the first endeavor in this direction. In addition, we have demonstrated that combining

generative modeling with contrastive learning can boost the performance of unsupervised

person re-identification.

Below, we conclude this thesis by providing a summary of contributions and by outlining

future research directions, that build on our current video generation algorithms.

7.1 Summary of contributions

— In Chapter 3, we have introduced our ImaGINator, endowed with the ability to effec-

tively generate videos based on a single image and a motion condition. Specifically,

we focused on the setting, where the human appearance is determined by a single

input image, and motion is determined by a class-label. Our experiments showed that

proposed framework generates high-quality videos, preserving the input appearance.

We further showed that motion can be controlled by providing different class-labels.
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— In Chapter 4, we have presented G3AN, a novel video GAN seeking to learn disen-

tangled representations of generative factors (appearance and motion) from human

video data. We demonstrated that the proposed three-stream generator can effectively

decompose the latent space, which allows for individual manipulation of both factors.

Our experiments showed that spatio-temporal self-attention in the generator is able

to model global spatio-temporal representations and improve the quality of generated

videos. Finally, we showed that in both conditional and unconditional video generation

settings, G3AN systematically and significantly outperformed previous methods.

— In Chapter 5, we have introduced our MintGAN, which was designed to learn an

interpretable motion latent space in video generation. We demonstrated that with

the proposed new interpretable architecture, designed based on Linear Motion De-

composition (LMD) assumption, MintGAN was able to learn human-understandable

motion directions, enabling direct manipulation of generated videos. Our experi-

ments showcased that proposed 2D ConvNets based Temporal Pyramid Discriminator

(TPD), streamlined to analyze videos at different temporal resolutions, outperformed

the previous 3D ConvNets based discriminator in video quality. Finally, we further

demonstrated that MintGAN was able to generate longer videos, as well as videos of

higher resolution.

— In Chapter 6, we have presented a joint generative and contrastive learning frame-

work for unsupervised person ReID. We demonstrated that generative and contrastive

modules mutually promote each other’s performance. In the generative module, we

introduced a 3D mesh based novel view generator, which was more effective in body

shape preservation than skeleton-guided generators. In the contrastive module, a

view-invariant loss was proposed to reduce intra-class variation between original and

generated images, which was beneficial in building view-invariant representations

under a fully unsupervised ReID setting. Further, we overcame the limitation of pre-

vious GAN-based unsupervised ReID methods that strongly rely on a labeled source

dataset. Our experiments showed that proposed method significantly surpassed the
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performance of state-of-the-art methods under both, fully unsupervised, as well as

unsupervised domain adaptation settings.

7.2 Future work

My future research will progress along the following paths.

High-resolution video generation. We have introduced three video generation methods

in Chapters 4-6, respectively. However, associated results are limited in resolution and far

from perfect w.r.t. video quality. The main reason for these limitations is that it is challenging

to train GANs to produce high-resolution videos, due to large model-complexity, training

instability and optimization issues. These challenges call for better network architectures, as

well as for more robust loss functions and stable training procedures. We note that recent

works in high-resolution image generation have achieved success in both conditional [13] and

unconditional [72, 73] settings. One further solution has to do with building video generation

models on top of such pretrained image generators (StyleGAN2), in order to take advantage

of their powerful generation capacity. In this solution, models will focus on modeling

temporal consistency, rather than building visual features from scratch. The next step in

video generation constitutes developing simpler, lower complexity and memory-efficient

architectures.

Self-supervised image animation. Image animation aims at transferring motion from a

driving video to a target image. It is challenging, since motion representations are difficult

to be directly extracted from RGB videos. Most current work uses existing extractors to

obtain additional motion information such as human keypoints [17, 200, 163], semantic

maps [17, 200, 163] and 3D meshes [145, 76]. However, these additional information is not

always accessible in real-world videos due to pose variation, illumination and occlusion.

To address this issue, we intend to build a model based on Linear Motion Decomposition

presented in Chapter 6. As we have an explicit formulation of appearance and motion, models

can dispense with the constraints of additional information and learn the disentanglement
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of two factors directly from RGB videos. We have preliminary results based on this idea

that are promising. In future, we will explore cross-domain image animation based on this

approach. For example, we envision to transfer human motion in videos such as making

coffee, changing tires or cooking, to animate robot arms.

Learning from synthetic video data. We have demonstrated in Chapter 6 that GAN-

generated images can be used for data augmentation for novel ’views’ in unsupervised person

ReID. In future work, we aim to extend this idea to video-related tasks such as activity

recognition and detection. Our idea is to firstly interpret the latent space to discover the

representations related to a general ’view’ concept (e.g., lighting, shifting, viewpoint). Then

we will augment the training data by manipulating these factors. A similar idea has been

explored by Varol et al. [151] to generate data based on Skinned Multi-Person Linear Model

(SMPL) [100], validating it in a supervised learning setting. Our objective is more general,

as we intend to learn discriminative spatio-temporal features from synthetic data in a totally

self-supervised learning manner, without leveraging other information.
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