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Introduction (en français)

La fonction zêta de Riemann ζ(·) a été étudiée sous de nombreuses formes différentes pendant des
siècles. Ses valeurs spéciales ζ(n) aux entiers positifs n ∈ N∗, n ≥ 2 ont joué un rôle important
en théorie des nombres. Ici N∗ (respectivement N) désigne l’ensemble des entiers positifs (resp.
l’ensemble des entiers non négatifs). Les valeurs zêta aux entiers positifs pairs de ζ(·) ont d’abord
été calculées par Euler:

ζ(n)

(2iπ)n
= −1

2

Bn
n!

pour tout n ≥ 2, n ≡ 0 (mod 2),

où Bn désigne le nième nombre de Bernoulli. Euler a également travaillé sur des valeurs zêta
multiples de profondeur r de la forme

ζ(n1, . . . , nr) =
∑

0<k1<···<kr

1

kn1
1 . . . knr

n
, où n1, . . . , nr−1 ≥ 1, nr ≥ 2.

Il a découvert l’identité suivante ζ(1, 2) = ζ(3). À la suite de Thakur, la valeur zêta multiple ζ(1, 2)
est appelée zeta-like.

En 1935, Carlitz [Car35] a considéré le cas des corps de fonctions et a introduit les valeurs zêta
de Carlitz qui sont des analogues des valeurs zêta classiques ζ(n), n ∈ N∗. Soit Fq un corps fini
ayant q éléments, q étant une puissance d’un nombre premier p, et θ un indéterminée sur Fq. Soit
A = Fq[θ], et soit K = Fq(θ) équipé de la place rationnelle ∞. Soit K∞ = Fq(( 1θ )) la complétion
de K à ∞, et soit C∞ la complétion d’un clôture algébrique fixe de K∞ à ∞. Pour d ∈ N, A+,d

désigne l’ensemble des éléments unitaires dans A de degré d. Les valeurs zêta de Carlitz à n ∈ N
sont définies par

ζA(n) :=
∑
d≥0

∑
a∈A+,d

1

an
∈ K∞.

Les valeurs zêta aux entiers négatifs ont été étudiées par Goss. On peut montrer que ζA(n) ∈ A
si n ≤ 0 et même ζA(n) = 0 si n < 0 et n ≡ 0 (mod q − 1) (voir [Gos96, Chapitre 8]). Dans
le même article, Carlitz a également introduit la application exponentielle de Carlitz expC et la
période de Carlitz π̃ (voir Section 1.2) qui sont des analogues de la application exponentielle et de
2iπ respectivement. Il a introduit des analogues des nombres de Bernoulli, appelés les nombres de
Bernoulli Carlitz BCn ∈ K, et a prouvé (voir aussi [Gos96, Section 9.2])

ζA(n)

π̃n
=
BCn
Πn

pout tout n ≥ 1, n ≡ 0 (mod q − 1),

où Πn ∈ A est la n-ième factorielle de Carlitz (voir [Gos96, Chapitre 9]) qui est analogue à n!.
D’une part, en 2012, Pellarin [Pel12] a introduit des valeurs zêta de plusieurs variables dans les

algèbres de Tate. Soit s ≥ 1 un entier, et soit t1, . . . , ts des variables s sur K et on écrit ts pour la
famille de variables {t1, . . . , ts}. Soit Ts l’algèbre de Tate dans les variables ts avec des coefficients
dans C∞ (voir Section 3.2.1). Pour n ∈ N∗, la valeur zêta dans les variables ts est définie par

ζA(n, ts) :=
∑
d≥0

∑
a∈A+,d

a(t1) · · · a(ts)
an

∈ T×
s .

Pour s ≥ 2 et s ≡ 1 (mod q − 1), on définit

Bs := (−1)(s−1)/(q−1) ζA(1, ts)ω(t1) . . . ω(ts)

π̃
∈ Ts, (0.0.1)
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où ω est la fonction spéciale introduite par Anderson et Thakur dans [AT90] et donnée par

ω(t) = (−θ)
1

q−1

∏
j≥0

(
1− t

θqj

)−1

(0.0.2)

pour un choix fixé de la (q − 1)ième racine de (−θ) dans C∞. Il existe un lien profond entre
l’élément Bs et les valeurs zêta ζA(1, ts) (voir [AP14, APTR16]). En particulier, il s’avère que
Bs est un polynôme en les variables ts. On appelle Bs le polynôme à plusieurs variables de type
Bernoulli.

D’autre part, en 2004, Thakur a introduit en caractéristique p la valeur zêta multiple comme
analogue aux valeurs zêta multiples d’Euler. Pour tout uple d’entiers positifs s = (s1, . . . , sr) ∈ Nr,
Thakur [Tha04] a défini la valeur zêta multiple ζA(s) par

ζA(s) :=
∑ 1

as11 . . . asrr
∈ K∞

où la somme parcoure par l’ensemble des uples (a1, . . . , ar) ∈ Ar+ avec deg a1 > . . . > deg ar. On
dit qu’un MZV ζA(s1, . . . , sr) est zeta-like si ζA(s1, . . . , sr)/ζA(s1 + · · ·+ sr) appartient à K.

L’objectif principal de cette thèse est d’étudier les relations entre les valeurs zêta ci-dessus.
Dans le premier chapitre, nous rappelons quelques définitions et propriétés de base des modules

de Drinfeld, le module de Carlitz, ses objets associés (tels que la application exponentielle de Carlitz
expC et la période de Carlitz π̃) et les algèbres de Tate en plusieurs variables.

Pour étudier la relation entre la valeur zêta dans les algèbres de Tate, nous sommes conduits à
étudier un élément spécial Bs ∈ Ts. Ainsi, le Chapitre 2 est consacré à donner une introduction aux
polynômes à plusieurs variables Bs. Nous donnons une démonstration schématique du Théorème
2.0.2 qui dit que Bs est un polynôme dans Fq[θ][ts]. La preuve suit de près la technique et les idées
utilisées dans [GAND+19, Théorème 4.6] et [AP14, Corollaire 21].

Dans le Chapitre 3, nous étudions les valeurs zêta dans les algèbres de Tate introduites par
Pellarin. Le résultat principal est le Théorème 3.1.3 qui donne une réponse affirmative à la Con-
jecture 3.1.2 de Pellarin sur les identités pour ces valeurs zêta. Nous étudierons plus en détails les
coefficients du polynôme Bs et montrerons comment utiliser ces propriétés pour prouver le résultat
principal. Nous proposons également la Conjecture 3.5.1 sur une formule explicite des coefficients
du polynôme Bs.

Dans le Chapitre 4, nous examinons la Conjecture 3.5.1. Nous montrons que cette conjecture
est vraie pour quelques petits cas (i < 2q− 1 et i < 3q− 2) (voir la Proposition 4.2.4) et suggérons
un moyen de prouver la Conjecture 3.5.1 pour le cas i < q2 (voir Section 4.3).

Dans le Chapitre 5, nous travaillons avec A plus général. Nous étudions les valeurs zêta de
Goss associées à A général (voir Définition 5.1.29). Le résultat principal est le Théorème 5.3.17
qui est une généralisation du résultat de Speyer [Spe17]. Nous donnons une formule explicite du
résultat principal et un resultat de non nullité dans certains cas particuliers dans la Section 5.3.4.

Enfin, dans le Chapitre 6, nous prouvons la Conjecture 6.1.2 de Lara Rodriguez et Thakur qui
donne une liste complète de zeta-like de profondeur 2 de poids au plus q2 (voir Théorème 6.1.3).
Nous prouvons également un résultat similaire sur la détermination complète de tous les zeta-like
de poids au plus q2 (Théorème 6.1.5).



Introduction (in english)

The Riemann zeta function ζ(·) has been studied in many different forms for centuries. Its special
values ζ(n) at positive integer n ∈ N∗, n ≥ 2 have played an important role in number theory. Here
N∗ (respectively N) denotes the set of positive integers (resp. the set of non-negative integers).
The zeta values at even positive integers of ζ(·) were first computed by Euler:

ζ(n)

(2iπ)n
= −1

2

Bn
n!

for all n ≥ 2, n ≡ 0 (mod 2),

where Bn denotes the nth Bernoulli number. Euler also worked on multiple zeta values of depth
r of the form

ζ(n1, . . . , nr) =
∑

0<k1<···<kr

1

kn1
1 . . . knr

n
, where n1, . . . , nr−1 ≥ 1, nr ≥ 2.

He discovered the following identity ζ(1, 2) = ζ(3). Following Thakur, the multiple zeta value
ζ(1, 2) is called zeta-like.

In 1935, Carlitz [Car35] considered the function field setting and introduced the Carlitz zeta
values which are analogues of classical special zeta values ζ(n), n ∈ N∗. Let Fq be a finite field
having q elements, q being a power of a prime number p, and θ an indeterminate over Fq. Let
A = Fq[θ], and let K = Fq(θ) equipped with the rational place ∞. Let K∞ = Fq(( 1θ )) be the
completion of K at∞, and let C∞ be the completion of a fixed algebraic closure of K∞ at∞. For
d ∈ N, A+,d denotes the set of monic elements in A of degree d. The Carlitz zeta values at n ∈ N
is defined by

ζA(n) :=
∑
d≥0

∑
a∈A+,d

1

an
∈ K∞.

The zeta values at negative integers were studied by Goss. One can show that ζA(n) ∈ A if n ≤ 0
and even ζA(n) = 0 if n < 0 and n ≡ 0 (mod q − 1) (see [Gos96, Chapter 8]). In the same paper,
Carlitz also introduced the Carlitz exponential map expC and the Carlitz period π̃ (see Section
1.2) which are analogues of the exponential map and 2iπ respectively. He introduced analogues
of the Bernoulli numbers, called the Bernoulli Carlitz numbers BCn ∈ K, and proved (see also
[Gos96, Section 9.2])

ζA(n)

π̃n
=
BCn
Πn

for all n ≥ 1, n ≡ 0 (mod q − 1),

where Πn ∈ A is the nth Carlitz factorial (see [Gos96, Chapter 9]) which is analogue to n!.
On the one hand, in 2012, Pellarin [Pel12] introduced several variables zeta values in Tate

algebras. Let s ≥ 1 be an integer, and let t1, . . . , ts be s variables over K and we write ts for the
family of variables {t1, . . . , ts}. Let Ts be the Tate algebra in the variables ts with coefficients in
C∞ (see Section 3.2.1). For n ∈ N∗, the zeta value in the variables ts is defined by

ζA(n, ts) :=
∑
d≥0

∑
a∈A+,d

a(t1) · · · a(ts)
an

∈ T×
s .

For s ≥ 2 and s ≡ 1 (mod q − 1), we define

Bs := (−1)(s−1)/(q−1) ζA(1, ts)ω(t1) . . . ω(ts)

π̃
∈ Ts, (0.0.3)
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where ω is the special function introduced by Anderson and Thakur in [AT90] and given by

ω(t) = (−θ)
1

q−1

∏
j≥0

(
1− t

θqj

)−1

(0.0.4)

for a fixed choice of the (q − 1)th root of (−θ) in C∞. There is a deep connection between the
element Bs and the zeta values ζA(1, ts) (see [AP14, APTR16]). In particular, it turns out that Bs
is a polynomial in variables ts. We call Bs the several variables Bernoulli-type polynomial.

On the other hand, in 2004, Thakur introduced the characteristic p multiple zeta value as
analogues to the multiple zeta values of Euler. For any tuple of positive integers s = (s1, . . . , sr) ∈
Nr, Thakur [Tha04] defined the characteristic p multiple zeta value ζA(s) by

ζA(s) :=
∑ 1

as11 . . . asrr
∈ K∞

where the sum runs through the set of tuples (a1, . . . , ar) ∈ Ar+ with deg a1 > . . . > deg ar. We
say that a multiple zeta value ζA(s1, . . . , sr) is zeta-like if ζA(s1, . . . , sr)/ζA(s1 + · · ·+ sr) belongs
to K.

The main goal of this thesis is to study the relations among the above zeta values.
In the first chapter, we recall some definitions and basic properties of Drinfeld modules, the

Carlitz module, its related objects (such as the Carlitz exponential map expC and the Carlitz
period π̃) and Tate algebras in several variables.

To study the relation between zeta value in Tate algebras, we are led to study a special element
Bs ∈ Ts. Thus, Chapter 2 is devoted to give an introduction to the several variables polynomials
Bs. We give an outline proof of Theorem 2.0.2 which says that Bs is a polynomial in Fq[θ][ts].
The proof follows closely the technique and ideas used in [GAND+19, Theorem 4.6] and [AP14,
Corollary 21].

In Chapter 3, we study the zeta values in Tate algebras which is introduced by Pellarin. The
main result is Theorem 3.1.3 which give an affirmative answer to Conjecture 3.1.2 of Pellarin about
identities for these zeta values. We will study more details on the coefficients of the polynomial Bs
and show that how to use these properties to prove the main result. We also suggest Conjecture
3.5.1 about an explicit formula of the coefficients of the polynomial Bs.

In Chapter 4 we investigate Conjecture 3.5.1. We show that this conjecture is true for some
small cases (i < 2q−1 and i < 3q−2) (see Proposition 4.2.4) and suggest a way to prove Conjecture
3.5.1 for the case i < q2 (see Section 4.3).

In Chapter 5, we work with a more general A. We study the Goss zeta values associated to the
general A (see Definition 5.1.29). The main result is Theorem 5.3.17 which is a generalization of
Speyer’s result [Spe17]. We give an explicit formula of the main result and a non-vanishing result
in some special cases in Section 5.3.4.

Finally, in Chapter 6, we prove Conjecture 6.1.2 of Lara Rodriguez and Thakur which gives
a full list of depth 2 zeta-like of weight at most q2 (see Theorem 6.1.3). We also prove a similar
result about determining completely all zeta-like of weight at most q2 (Theorem 6.1.5).



Chapter 1

Preliminaries

Let Fq be a finite field having q elements, q being a power of a prime number p, and θ an
indeterminate over Fq. Let A = Fq[θ] and let K = Fq(θ) equipped with the rational place ∞. Let
K∞ = Fq(( 1θ )) be the completion of K at ∞, and let C∞ be the completion of a fixed algebraic
closure of K∞ at ∞. We denote by v∞ the discrete valuation on K corresponding to the place
∞ normalized such that v∞(θ) = −1. The unique valuation of C∞ which extends v∞ will still be
denoted by v∞.

In this thesis, we restrict our attention to the case A = Fq[θ] except Chapter 5. We will touch
only a few aspects of the general theory in Chapter 5.

We recall the definition of Drinfeld Fq[θ]-modules in Section 1.1. In Section 1.2, we study the
Carlitz module which is a special case of Drinfeld Fq[θ]-modules, and its related objects such as:
the Carlitz exponential expC , the Carlitz logarithm logC and the Carlitz period π̃. Section 1.3
contains a brief summary of Tate algebras, which will be used when we study the zeta values in
Tate algebras in the following chapters.

1.1 Drinfeld modules

Let L be a field containing Fq and let τ : C∞ → C∞ be the map defined by τ(x) = xq.

Definition 1.1.1. The twisted polynomial ring L{τ} is defined as the set of polynomials in the
variable τ and coefficients in L. The addition rule is the usual addition of polynomials. The
multiplication rule is given by

τx = xqτ for all x ∈ L.

Generally, the ring L{τ} is not commutative. For more details about this ring, we refer the
reader to [Gos96, Chapter 1].

We say that L is an A-field if and only if there is a homomorphism of Fq-algebras ι : A→ L.

Definition 1.1.2. A Drinfeld A-module over an A-field L of rank r ∈ N∗ is an Fq-algebra homo-
morphism ϕ : A→ L{τ} such that

ϕθ = ι(θ) + a1τ + . . .+ arτ
r

for some a1, . . . , ar ∈ L, ar ̸= 0.

Remark 1.1.3.

1. Since A is generated by θ, for a ∈ A, we have ϕa = ι(a) + a1τ + . . . + anτ
n for some

a1, . . . , an ∈ L and n = r degθ a.

2. Via ϕ, L becomes an A-module with the action of A as follows: For all a ∈ A, x ∈ L,
a ·x = ϕa(x). We denote this new A-module by ϕ(L) to distinct with the usual A-module L.

7
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1.2 The Carlitz module

Definition 1.2.1. The Carlitz module over C∞ is a homomorphism of Fq-algebras C : A→ C∞{τ}
given by

Cθ = θ + τ.

Proposition 1.2.2 (See [Gos96, Proposition 3.3.1]). There exists a unique series expC ∈ C∞{{τ}}
such that

• expC ≡ 1 (mod τ), and

• for all a ∈ A, we have expC a = Ca expC .

Proof. Since C is a homomorphism of Fq-algebras and A is generated by θ, the following conditions
are equivalent

∀a ∈ A, expC a = Ca expC ⇐⇒ expC θ = Cθ expθ .

Let us write expC =
∑
n≥0

enτ
n with en ∈ C∞, n ≥ 0 and substitute in the second condition. Then

we get

(
∑
n≥0

enτ
n)θ = (θ + τ)

∑
n≥0

enτ
n.

Recall that for x ∈ L, τx = xqτ . It follows that∑
n≥0

enθ
qnτn =

∑
n≥0

θenτ
n +

∑
n≥0

eqnτ
n+1.

By comparing the coefficients of τn, we get

en(θ
qn − θ) = eqn−1 for n = 1, 2, . . . . (1.2.1)

The condition expC ≡ 1 (mod τ) implies that e0 = 1. It follows that all the coefficients are
uniquely determined by (1.2.1). It implies the existence and uniqueness of expC .

In the above proof, if we set Dn := 1
en

, we have

expC =
∑
n≥0

τn

Dn
,

where

D0 = 1, Dn = (θq
n

− θ)Dq
n−1, for n = 1, 2, . . . . (1.2.2)

The series expC ∈ C∞{{τ}} induces a morphism of A-modules C∞ → C(C∞), also denoted by
expC .

Definition 1.2.3. The series expC is called the Carlitz exponential.

Similarly, we also have the notion of the Carlitz logarithm

logC =
∑
n≥0

τn

ln
,

where

l0 = 1, ln = (θ − θq
n

)ln−1, for n = 1, 2, . . . . (1.2.3)

This series satisfies logC ≡ 1 (mod τ) and a logC = logC Ca for all a ∈ A.
Now we recall a lemma which will be necessary in the sequel.
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Lemma 1.2.4. Let {an}∞n=0 be a sequence in C∞. Then
∞∑
n=0

an converges if and only if lim
n→+∞

v∞(an) =

+∞.

We list some properties of the Carlitz exponential and the Carlitz logarithm.

Proposition 1.2.5.

1. The series expC converges for all x ∈ C∞. Moreover, it is surjective.

2. The series logC converges for every x ∈ C∞ such that v∞(x) > − q
q−1 .

3. On the disk {x ∈ C∞ : v∞(x) > − q
q−1}, we have v∞(expC(x)) = v∞(logC(x)) = v∞(x).

Moreover, we also have expC(logC(x)) = logC(expC(x)) = x.

Proof. Let us take x ∈ C∞.
1. Recall that

expC(x) =
∑
n≥0

xq
n

Dn
,

where Dn is defined in (1.2.2). Since v∞(Dn) = v∞((θq
n − θ)(θqn − θq) · · · (θqn − θqn−1

)) = −nqn,
we have v∞(x

qn

Dn
) = qnv∞(x)+nqn −→ +∞ when n→ +∞. By Lemma 1.2.4, expC(x) converges.

Let y ∈ C∞. We use the fact that a nonconstant entire function (i.e., it is nonzero and it
converges for every x ∈ C∞) always has a zero (see [Gos96, Proposition 2.9 and 2.13]). Applying to
the nonconstant entire function expC(x)−y, we can always find an x ∈ C∞ such that expC(x)−y =
0.

2. Recall that

logC(x) =
∑
n≥0

xq
n

ln
,

where ln is defined in (1.2.3). Since v∞(ln) = v∞((θ − θqn)(θ − θqn−1

) · · · (θ − θq)) = − q
n+1−q
q−1 , we

have v∞(x
qn

ln
) = qn(v∞(x) + q

q−1 )−
q
q−1 −→ +∞ if and only if v∞(x) > − q

q−1 . By Lemma 1.2.4,
the proof is done.

3. We fix x ∈ C∞ such that v∞(x) > − q
q−1 .

Firstly, for n = 1, we have v∞(x
qn

Dn
)−v∞(x) = v∞(x)(q−1)+q > 0 if and only if v∞(x) > − q

q−1 .

For n ≥ 2, v∞(x
qn

Dn
) − v∞(x) = (qn − 1)(v∞(x) + n) + n ≥ (qn − 1)(− q

q−1 + 2) + n > 0. Thus

v∞(expC(x)) = v∞(x+ xq

D1
+ xq2

D2
+ . . .) = v∞(x).

Secondly, for n ≥ 1, we have

v∞(
xq

n

ln
)− v∞(x) = (v∞(x) +

q

q − 1
)(qn − 1) > 0.

Thus v∞(logC(x)) = v∞(x+ xq

l1
+ xq2

l2
+ . . .) = v∞(x).

Lastly, we claim that in C∞{{τ}}, expC logC = logC expC = 1. Indeed, we have Cθ expC logC =
expC θ logC = expC logC Cθ. Let us write expC logC =

∑
n≥0

anτ
n ∈ C∞{{τ}} and note that a0 = 1.

By expanding the expression Cθ expC logC = expC logC Cθ and comparing the coefficients of τn,
n ≥ 1, we deduce that an = 0 for n ≥ 1. By a similar argument, we can show that logC expC = 1.
Last assertion follows immediately from the claim.

In the end of this section, we recall the definition and basic properties of the Carlitz period
(see [Gos96, Tha04, Car35] for more details).

Definition 1.2.6. The Carlitz period, denoted by π̃, is defined by

π̃ = (−θ)
1

q−1 θ
∏
j≥1

(1− θ1−q
j

)−1 ∈ C×
∞. (1.2.4)
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Remark 1.2.7. We have v∞(π̃) = − q
q−1 .

We also have another formula of the Carlitz period (see [Gos96, Definition 3.2.7])

π̃ = (θ − θq)
1

q−1

∏
j≥1

(1− θq
j − θ

θqj+1 − θ
).

The following well-known result explains the term period of π̃.

Proposition 1.2.8 (See [Gos96, Corollary 3.2.9]). We have

ker expC = π̃A.

1.3 Tate algebras in several variables

Let s ≥ 1 be an integer and let t1, . . . , ts be variables. We denote the set {t1, . . . , ts} by ts or t.
Let L ⊂ C∞ be a complete field with respect to v∞. The Gauss valuation v on L[ts] :=

L[t1, . . . , ts] is defined by: for all f ∈ L[ts],

f =
∑

finite sum
is∈Ns

aist
i1
1 · · · tiss ,

we set v(f) = minis{v∞(ais)}. The Gauss valuation v is indeed a valuation on L[ts] and extends
the valuation v∞ on L. We also denote v by v∞.

Definition 1.3.1. The Tate algebra Ts(L) in the variables ts with coefficients in L is the comple-
tion of L[ts] with respect to the Gauss valuation. Explicitly, Ts(L) can be identified with the set
of formal series

{f ∈ L[ts], f =
∑
is∈Ns

aist
i1
1 · · · tiss such that lim

i1+...+is→∞
v∞(a∞) = +∞}.

Definition 1.3.2. When L = C∞, we will write Ts instead of Ts(C∞)

The automorphism τ : x 7→ xq,C∞ → C∞ extends to Ts by twisting the coefficients ais and
keeping the variables t1, . . . , ts. In other word, we have

τ(
∑
is∈Ns

aist
i1
1 · · · tiss ) =

∑
is∈Ns

aqist
i1
1 · · · tiss .

The map τ : Ts → Ts is a continuous homomorphism of Fq[ts]-algebras.

Definition 1.3.3. We also have the definition of twisted polynomial ring Ts{τ} over Tate algebras.
The multiplication is defined by

τf = τ(f)τ, ∀f ∈ Ts.

We recall a property of Tate algebras.

Proposition 1.3.4 (See [FvdP04, Chapter 3, Theorem 3.2.1]). With above notation, we have
Ts(L) is a unique factorization domain.



Chapter 2

Several variable polynomial Bs

Let A = Fq[θ]. For d ∈ N, we denote by A+, A+,d and A+,≤d respectively the set of monic
polynomials in A, the set of monic polynomials of degree d in A and the set of monic polynomials
in A of degree less than or equal d.

Through this chapter, we always assume that s is an integer such that s ≡ 1 (mod q − 1). We
set m := (s− 1)/(q − 1) ∈ N.

Let Ts be the Tate algebra in the variables ts with coefficients in C∞ (see Section 1.3). In 2012,
Pellarin [Pel12] introduced the following element in T×

s called the zeta value in the variables ts

ζA(1, ts) :=
∑
d≥0

∑
a∈A+,d

a(t1) · · · a(ts)
a

∈ T×
s .

For s = 1, we write t1 = t. Pellarin proved the following identity.

Theorem 2.0.1 (See [Pel12, Theorem 1]). We have

ζA(1, t)ω(t)

π̃
=

1

θ − t
where π̃ is the Carlitz period given by Equation (1.2.4) and ω function is given by Equation (0.0.4).

We recall the definition of Bs in (0.0.3). For s ≥ 2 and s ≡ 1 (mod q − 1), we define

Bs := (−1)m ζA(1, ts)ω(t1) . . . ω(ts)
π̃

∈ Ts.

We have the following property of the element Bs.

Theorem 2.0.2 (See [APTR16, Lemma 7.6] or [AP14, Corollary 21]). The element Bs is a poly-
nomial in Fq[ts, θ]. Moreover, it is a monic polynomial in the variable θ of degree m − 1 and a
symmetric polynomial in the variables ts.

In this chapter, firstly, we present a proof of Theorem 2.0.1 in Section 2.1. Then we outline
a proof of Theorem 2.0.2. This proof is divided into two steps. The first step (Section 2.2) is to
show that Bs is a polynomial in K∞[ts]. The idea of the proof follows that of Pellarin’s theorem
in Section 2.1. The second step is to show that Bs is indeed a polynomial in Fq[θ][ts].

2.1 Pellarin’s theorem

In this Section, we present a proof Theorem 2.0.1 which follows closely that of [GAND+19, Theorem
4.6]. First we collect some lemmas which will be necessary in the sequel.

Lemma 2.1.1. We have

tn

θn

∑
a∈A+,n

a( 1t )

a( 1θ )
=

∑
a∈A,a(0)=1
degθ a≤n

a(t)

a(θ)
.

11
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Proof. For a ∈ A+,n, we can write a = a0 + a1θ + . . . + an−1θ
n−1 + θn, with a0, . . . , an−1 ∈ Fq.

Applying to the left-hand side (LHS), we have

LHS =
∑

a0,...,an−1∈Fq

a0t
n + a1t

n−1 + . . .+ an−1t+ 1

a0θn + a1θn−1 + . . .+ an−1θ + 1
=

∑
a∈A,a(0)=1
degθ a≤n

a(t)

a(θ)
.

The proof is done.

Lemma 2.1.2. For every c ∈ Fq\{0}, we have∑
a∈A,a(0)=1
degθ a≤n

a(t)

a
=

∑
a∈A,a(0)=c
degθ a≤n

a(t)

a
= −

∑
a∈A,a(0) ̸=0
degθ a≤n

a(t)

a
.

Proof. The second equality is implied from the first equality and the fact that |c ∈ Fq\{0}| =
q − 1 = −1.

Lemma 2.1.3. We have

−
∑
a∈A

deg a≤n

a(t)

a
=

n∑
d=0

∑
a∈A+,d

a(t)

a
.

Proof. By a similar method in the proof of Lemma 2.1.2, for every c ∈ Fq\{0}, we have∑
a∈A,degθ a=d
a is monic

a(t)

a
=

∑
a∈A,degθ a=d

leading coefficient of a is c

a(t)

a
= −

∑
a∈A,degθ a=d

a(t)

a
.

By summing from d = 0 to d = n, the proof follows.

The following result is due to Carlitz [Gos96, Theorem 3.1.5].

Lemma 2.1.4 (See for example [GAD+19, Lemma 4.1]). Let d ≥ 1 be an integer. Then∑
a∈A+,d

1

a
=

1

ld
,

where ld =
d∏
k=1

(θ − θqk).

The following lemma was proved by Carlitz.

Lemma 2.1.5 (See [Car42, Page 688]). Let d ∈ N, d ≥ 1. Then

∑
a∈A+,d

a(t)

a
=

1

ld

d−1∏
k=0

(t− θq
k

), (2.1.1)

where ld is defined in (1.2.3).

Now, we are ready for a proof of Theorem 2.0.1.

Proof of Theorem 2.0.1.
We replace t by 1

t , θ by 1
θ and multiply both sides by tn

θn in Equation (2.1.1). We have

∀n ≥ 1,
tn

θn

∑
a∈A+,n

a( 1t )

a( 1θ )
=
tn

θn

n∏
k=1

(
1

θ
− 1

θqk
)−1

n−1∏
k=0

(
1

t
− 1

θqk
),
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i.e.,

∀n ≥ 1,
tn

θn

∑
a∈A+,n

a( 1t )

a( 1θ )
=

n∏
k=1

(1− θ1−q
k

)−1
n−1∏
k=0

(1− t

θqk
).

On the other hand, by Lemma 2.1.1 and Lemma 2.1.2, we obtain

tn

θn

∑
a∈A+,n

a( 1t )

a( 1θ )
= −

∑
a∈A,a(0) ̸=0
degθ a≤n

a(t)

a

= −

 ∑
a∈A

degθ a≤n

a(t)

a
− t

θ

∑
a∈A

degθ a≤n−1

a(t)

a

 .

Hence, we have

−

 ∑
a∈A

degθ a≤n

a(t)

a
− t

θ

∑
a∈A

degθ a≤n−1

a(t)

a

 =

n∏
k=1

(1− θ1−q
k

)−1
n−1∏
k=0

(1− t

θqk
).

Let n tend to +∞ and note that π̃ = (−θ)
1

q−1 θ
∏
j≥1

(1 − θ1−qj )−1, ω(t) = (−θ)
1

q−1
∏
j≥0

(1 − t

θq
j )

−1,

we get

−(1− t

θ
) lim
n→+∞

∑
a∈A

degθ a≤n

a(t)

a
=

1

θ
π̃ω(t)−1.

By Lemma 2.1.3, it implies

(1− t

θ
) lim
n→+∞

n∑
d=0

∑
a∈A+,d

a(t)

a
=

1

θ
π̃ω(t)−1.

The proof follows.

2.2 The first step of Proof of Theorem 2.0.2

The main statement of this section is Proposition 2.2.6. The idea of the proof is base on the proof
of Pellarin’s theorem in the previous section. We set

Sd,s := Sd,s(t1, . . . , ts) =
∑

a∈A+,d

a(t1) · · · a(ts).

Lemma 2.2.1 (See [AP14, Lemma 4]). We have

Sd,s ̸= 0 if and only if d(q − 1) ≤ s.

Lemma 2.2.2 (See [AP14, Lemma 5]). Let s′ ∈ Z+. Then
∑
d≥0

Sd,s′ = 0 if and only if s′ ≡ 0

(mod q − 1).

We have the following result due to B. Angles - F. Pellarin.

Proposition 2.2.3 (See [AP14, Proposition 10]). Let l, d ∈ N. Recall that m = (s−1)/(q−1) ∈ N.
If l +m < d then ∑

a∈A+,d

a(t1) · · · a(ts)
a

≡ 0 (mod

s∏
j=1

(tj − θq
l

)).

In addition, if n is an integer such that n > l +m then we also have
n∑
d=0

∑
a∈A+,d

a(t1) · · · a(ts)
a

≡ 0 (mod

s∏
j=1

(tj − θq
l

)).
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Proof. We set

S(t1, . . . , ts) :=
∑

a∈A+,d

a(t1) · · · a(ts)
a

.

Let i be a non negative integer. Note that

qi − 1 = (q − 1)qi−1 + (q − 1)qi−2 + . . .+ (q − 1)q + (q − 1).

We have

S(t1, . . . , ts−1, θ
qi) =

∑
a∈A+,d

a(t1) · · · a(ts−1)a(θ)
qi−1

=
∑

a∈A+,d

a(t1) · · · a(ts−1)[a(θ
qi−1

)]q−1 · · · [a(θ)]q−1

= Sd,s−1+i(q−1)(t1, · · · , ts−1, θ, . . . , θ, . . . , θ
qi−1

, . . . , θq
i−1

).

By Lemma 2.2.1, the above sum is zero if and only if d(q − 1) > s − 1 + i(q − 1), i.e., d > m+ i.
It follows that for i < d−m,

S(t1, . . . , ts)|ts=θqi = 0.

Since S(t1, . . . , ts) is symmetric in t1, . . . , ts, we have the first conclusion: for l < d−m,

∑
a∈A+,d

a(t1) · · · a(ts)
a

≡ 0 (mod

s∏
j=1

(tj − θq
l

)).

For the second part, we see that

∑
d≥0

∑
a∈A+,d

a(t1) · · · a(ts)
a

|
tj=θq

l =
∑
d≥0

∑
a∈A+,d

a(θ)q
j−1

s∏
1≤i≤s
i ̸=j

a(ti) = 0.

The last equality follows from Lemma 2.2.2 and the fact that s′ = qj − 1 + s− 1 ≡ 0 (mod q− 1).
Thus, we have

∑
d≥0

∑
a∈A+,d

a(t1) · · · a(ts)
a

≡ 0 (mod

s∏
j=1

(tj − θq
l

)).

Combining with the first part, for n > l +m, we have

n∑
d=0

∑
a∈A+,d

a(t1) · · · a(ts)
a

=
∑
d≥0

∑
a∈A+,d

a(t1) · · · a(ts)
a

−
∑

d>n>l+m

∑
a∈A+,d

a(t1) · · · a(ts)
a

≡ 0 (mod

s∏
j=1

(tj − θq
l

)).

The proof is done.

As a consequence, we have the following proposition.

Proposition 2.2.4. We have

∑
a∈A+,n

a(t1) · · · a(ts)
a

=
1

ln

s∏
j=1

n−m−1∏
l=0

(tj − θq
l

)Bn,s,

where Bn,s ∈ Fq[θ][t1, . . . , ts] is a polynomial of degree m in tj, j = 1, . . . , s with coefficients in
A = Fq[θ] and the leading coefficient is 1.
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Proof. In Proposition 2.2.3, for n > m, letting l run from 0 to n−m− 1, we have

∑
a∈A+,n

a(t1) · · · a(ts)
a

≡ 0 (mod

s∏
j=1

n−m−1∏
l=0

(tj − θq
l

)).

Therefore we can write

∑
a∈A+,n

a(t1) · · · a(ts)
a

=
1

ln

s∏
j=1

n−m−1∏
l=0

(tj − θq
l

)Bn,s,

where Bn,s ∈ K∞[t1, . . . , ts]. From this equality, we have some observations:

• Firstly, Bn,s is of degree m in tj for all j = 1, . . . , s since the degree of tj on the left-hand

side is n and degree of tj in
n−m−1∏
k=0

(tj − θq
k

) is n−m.

• Secondly, the coefficient of tm1 · · · tms in Bn,s is 1 since the coefficient of tn1 · · · tns on the left-
hand side, by Lemma 2.1.4, is ∑

a∈A+,n

1

a
=

1

ln
.

• Lastly, the coefficients of Bn,s ∈ K∞[t1, . . . , ts] are in fact in A. Indeed, if we multiply both
sides of this equality with ln and note that ln is the least common multiple of all polynomial
of degree n (see [Gos96, Proposition 3.1.6]), the left-hand side is in A[t1, . . . , ts].

The proof is done.

Remark 2.2.5. We see that

Bn,s ≡ θ−
qn+1−1

q−1 +s qn−m−1
q−1 = θ−(s−1)/(q−1)−(qn+1−sqn−m)/(q−1) (mod (t1, . . . , ts)).

By Proposition 2.2.4, tm1 · · · tms Bn,s( 1
t1
, . . . , 1

ts
, 1θ ) is a polynomial in tj for j = 1, . . . , s of degree

less than or equal m with coefficients in K∞. By Remark 2.2.5, when n → +∞, this polynomial
converges to a polynomial Bs ∈ K∞[t1, . . . , ts] and Bs ≡ θ(s−1)/(q−1) = θm (mod (t1, . . . , ts)).

Set

Bs = tm1 · · · tms lim
n→+∞

Bn,s(
1

t1
, . . . ,

1

ts
,
1

θ
).

Proposition 2.2.6. With above notation, we have

ζA(1, ts)ω(t1) · · ·ω(ts)
π̃

=
Bs

(θ − t1 · · · ts)
.

Proof. We recall that

∑
a∈A+,n

a(t1) · · · a(ts)
a

=
1

ln

n−m−1∏
k=0

s∏
i=1

(ti − θq
k

)Bn,s.

Now, we apply the method using in the proof of Pellarin’s theorem (Theorem 2.0.1): changing the
variables and multiplying both sides with tn1 ···t

n
s

θn . It follows

tn1 · · · tns
θn

∑
a∈A+,n

a( 1
t1
) · · · a( 1

ts
)

a( 1θ )
=
tn1 · · · tns
θn

(
n∏
k=1

(
1

θ
− 1

θqk
)−1

)
s∏
j=1

n−m−1∏
k=0

(
1

tj
− 1

θqk
)Bn,s(

1

t1
, . . . ,

1

ts
,
1

θ
)

=

n∏
k=1

(1− θ1−q
k

)−1
s∏
j=1

n−m−1∏
k=0

(1− tj

θqk
)× tm1 . . . tms Bn,s(

1

t1
, . . . ,

1

ts
,
1

θ
).
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On the other hand, we have

tn1 · · · tns
θn

∑
a∈A+,n

a( 1
t1
) · · · a( 1

ts
)

a( 1θ )
=

∑
a∈A,a(0)=1,degθ a≤n

a(t1) · · · a(ts)
a

= −
∑

a∈A,a(0)̸=0,degθ a≤n

a(t1) · · · a(tn)
a

,

where the first equality (and the second equality) is a similar form of Lemma 2.1.1 (and Lemma
2.1.2).

Also,∑
a∈A,a(0) ̸=0,degθ a≤n

a(t1) · · · a(tn)
a

=
∑

a∈A,degθ a≤n

a(t1 · · · a(ts))
a

− t1 · · · ts
θ

∑
a∈A,degθ a≤n−1

a(t1) · · · a(ts)
a

.

Finally, we have

−

 ∑
a∈A,degθ a≤n

a(t1) · · · a(ts)
a

− t1 · · · ts
θ

∑
a∈A,degθ a≤n−1

a(t1) · · · a(ts)
a


=

n∏
k=1

(1− θ1−q
k

)−1
s∏
i=1

n−m−1∏
k=0

(1− ti

θqk
)× tm1 . . . tms Bn,s(

1

t1
, . . . ,

1

ts
,
1

θ
).

Let n→∞, we get

−(1− t1 · · · ts
θ

) lim
n→+∞

∑
a∈A,degθ a≤n

a(t1) · · · a(ts)
a

=
1

θ
π̃ω(t1)

−1 · · ·ω(ts)−1Bs.

Note that, similar to Lemma 2.1.3, for s ≡ 1 (mod q − 1), we have

−
∑

a∈A,degθ a≤n

a(t1) · · · a(ts)
a

=

n∑
d=0

∑
a∈A+,d

a(t1) · · · a(ts)
a

.

Hence

(1− t1 · · · ts
θ

)ζA(1, ts) =
1

θ
π̃ω(t1)

−1 · · ·ω(ts)−1Bs.

i.e.,

ζA(1, ts)ω(t1) · · ·ω(ts)
π̃

=
Bs

(θ − t1 · · · ts)
.

The proof is done.

As a consequence, we have

Bs =
Bs

(θ − t1 · · · ts)
.

By Remark 2.2.5, we have Bs ≡ θm−1 (mod (t1, . . . , ts)).

2.3 The second step of Proof of Theorem 2.0.2

In this section, firstly, we will collect some materials to prepare the proof of Theorem 2.3.6 (see
[AP15, Theorem 2.9]). The main statement is Theorem 2.3.6 which is related to Gauss-Thakur
sums (see [AP15] for more details). Then we outline the proof of showing that Bs is in A[t1, . . . , ts]
by using specialization as in [AP15, Section 2.5 Proof of Theorem 1].
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We recall the notation in Section 1.2 and some properties. Let C be the Carlitz module and let
expC : C∞ → C∞ be the continuous surjective Fq-linear map (the Carlitz exponential) satisfying
expC a = Ca(expC) for all a ∈ A.

We claim that

{x ∈ C∞, Ca(x) = 0} = {expC(
bπ̃

a
), b ∈ A,degθ(b) < degθ a}.

Indeed, {expC( bπ̃a ), b ∈ A,degθ(b) < degθ a} ⊂ {x ∈ C∞, Ca(x) = 0} since Ca(expC(
bπ̃
a )) =

expC(a
bπ̃
a ) = 0 by Proposition 1.2.8. For the inverse direction, let us take an x ∈ C∞ such

that Ca(x) = 0. Since expC is surjective (see Proposition 1.2.5), there exists y ∈ C∞ such that
x = expC(y). We have 0 = Ca(x) = Ca(expC(y)) = expC(ay). Again, by Proposition 1.2.8, we
deduce that y = b

a π̃ for b ∈ A, deg b < deg a.

Definition 2.3.1. For n ≥ 0, we define

λn = expC(
π̃

θn+1
).

Since Ca expC = expC a, we have

q−1
√
−θ = λ0, ∀n ≥ 1, Cθ(λn) = λn−1.

We recall the definition of ω in (0.0.4)

ω(t) = (−θ)
1

q−1

∏
j≥0

(
1− t

θqj

)−1

.

Lemma 2.3.2. We have

ω(t) =
∑
n≥0

λnt
n.

Proof. The idea of the proof is base on the fact that

{g(t) ∈ T, τ(g(t)) = g(t)} = Fq[t]. (2.3.1)

This fact is a result of the following fact: {x ∈ C∞, τ(x) = x} = Fq.
Now, set

f(t) =
∑
n≥0

λnt
n ∈ T.

We recall that for x ∈ C∞, v∞(x) > −q
q−1 , v∞(expC(x)) = v∞(x). Hence v∞(λn) = v∞( π̃

θn+1 ) =

n+ 1− q
q−1 . Therefore

f(t) ∈ T×.

We see that

τ(f(t)) =
∑
n≥0

(Cθ(λn)− θλn)tn = (t− θ)f(t).

Hence

τ(
ω(t)

f(t)
) =

ω(t)

f(t)
.

Using (2.3.1), we obtain

ω(t)

f(t)
∈ Fq[t] \ {0}.
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It remains to show that

v∞(
ω(t)

f(t)
− 1) > 0.

This is true by the following equality

ω(t)− f(t) = λ0

∏
k≥0

(1− t

θqk
)−1 − 1

+ λ1t+ λ2t
2 + · · ·

= λ0 ( positive valuation ) + λ1t+ λ2t
2 + · · · .

The proof is done.

Now, we consider the following subfield of C∞

Ω = Fq((λ−1
0 )).

We observe that Ω is complete, contains π̃. Its valuation ring is Fq[[λ−1
0 ]], its maximal ideal is

λ−1
0 Fq[[λ−1

0 ]] and its residue field is Fq. Let σ : Ω→ Ω be the continuous morphism of Fq-algebras
such that

σ(λ0) = λq0.

Lemma 2.3.3. We have

Ωσ := {x ∈ Ω, σ(x) = x} = Fq.

Proof. It is clear that Fq ⊂ Ωσ. Let x ∈ Ωσ \ {0}. We have

qv∞(x) = v∞(σ(x)) = v∞(x).

Therefore x ∈ Fq[[λ−1
0 ]]×. If we write x =

∑
i≥0

ζiλ
−i
0 , ζi ∈ Fq, ζ0 ̸= 0. We get

∑
i≥0

ζiλ
−i
0 =

∑
i≥0

ζiλ
−qi
0 .

Therefore x = ζ0 ∈ Fq.

Definition 2.3.4. For a ∈ A+, we set

λa = expC(
π̃

a
) ∈ Ω.

Remark 2.3.5. With notation in Definition 2.3.1, we have λn = λθn+1 .

We have the following theorem due to B. Angles and F. Pellarin.

Theorem 2.3.6 (See [AP15, Theorem 2.9]). Let ζ ∈ Fq and let P be an irreducible polynomial
such that P (ζ) = 0. Then

ω(ζ) = P ′(ζ)(−
∑

a∈A,degθ a<degθ P

a(ζ)−1Ca(λP )).

Proof. First, we show that the equality is true for ζ = 0. Suppose that ζ = 0. Since P is
irreducible and P (0) = P (ζ) = 0, it implies P (θ) = θ. The left-hand side equals ω(0) = λ0 = λθ.
The right-hand side equals

−
∑

a∈A,deg a<1

a(0)−1Ca(expC(
π̃

θ
)) = −

∑
a∈F×

q

a−1 expC(
aπ̃

θ
) = −

∑
a∈F×

q

expC(
π̃

θ
) = λ0.

The equality follows.
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Now, we can assume that ζ ̸= 0. Set

G = −
∑

a∈A,degθ a<degθ P

a(ζ)−1Ca(λP ) ∈ Ω.

We have

G = −
∑

a∈A,a̸=0,degθ a<degθ P

a(ζ)−1 expC(
aπ̃

P
).

We observe that ∑
a∈A,a̸=0,degθ a<degθ P

a(ζ)−1a ≡ 0 (mod

d−1∏
k=1

(θ − ζq
k

)),

where d = degθ P . We therefore get∑
a∈A,a̸=0,degθ a<degθ P

a(ζ)−1a = −P ′(ζ)−1
d−1∏
k=1

(θ − ζq
k

).

We have

v∞(
G

λ0P ′(ζ)−1
− 1) > 0,

and

v∞(
G

ω(ζ)P ′(ζ)−1
− 1) > 0.

We have

σ(ω(ζ)) = τ(ω(t)) |t=ζ= (θ − ζ)ω(ζ).

Furthermore , we have

σ(G) = −
∑

a∈A,degθ a<degθ P

a(ζ)−1(Ca(λP ))
q.

Thus

σ(G) = −
∑

a∈A,degθ a<degθ P

a(ζ)−1(Cθa(λP ))− θG.

Now, we have (since P ̸= θ)

−
∑

a∈A,degθ a<degθ P

a(ζ)−1(Cθa(λP )) = ζG.

Thus, we get

σ(G) = (θ − ζ)G.

We conclude that G
ω(ζ) ∈ Fq. But recall that v∞( G

ω(ζ) − P
′(ζ)−1) > 0, thus G = P ′(ζ)−1ω(ζ).

Now, we list some propositions without proof to complete the proof of Theorem 2.0.2. We will
need the following result due to B. Angles - F. Pellarin - L. Taelman.

Proposition 2.3.7 (See [AP14, Section 2.5]). Let s ≥ q, s ≡ 1 (mod q − 1). Let ζ1, . . . , ζs ∈ Fq
and let P1, . . . , Ps be irreducible polynomials such that Pi(ζi) = 0. We assume that Pi ̸= Pj if i ̸= j.
Then

ζA(t1, . . . , ts)ω(t1) · · ·ω(ts)
π̃

|t1=ζ1,...,ts=ζs∈ Fq[ζ1, . . . , ζs][θ].

Combining with the following proposition, we have the conclusion.

Proposition 2.3.8 (See [AP14, Lemma 20]). Let f(t1, . . . , ts) ∈ K∞[t1, . . . , ts] such that for all
ζ1, . . . , ζs ∈ F q pairwise not conjugate over Fq,

f(ζ1, . . . , ζs) ∈ Fq[θ](ζ1, . . . , ζs).

Then f(t1, . . . , ts) ∈ Fq[θ][t1, . . . , ts].



Chapter 3

Pellarin’s conjectures

This chapter is taken from the paper published in Transactions of American Mathematics Society
(see [LND21a]). It is available at https://doi.org/10.1090/tran/8357.

In Section 3.1, we present some of Pellarin’s conjectures (Conjecture 3.1.1, Conjecture 3.1.2)
and the statement of the main result (Theorem 3.1.3). In Section 3.2 we study the several variable
Bernoulli-type polynomial Bs. We introduce a notion of weight for polynomials and explain how
to deduce Pellarin’s conjectures from a lower bound on the weight of Bs (see Theorem 3.2.10).
Section 3 is devoted to prove a key result, Theorem 3.3.1, which gives an explicit expression of
Bs in terms of symmetric polynomials. Putting all together, we prove Theorem 3.1.3 in Section
3.4. Then we discuss some interesting questions in Section 3.5, which we will investigate a bit in
Chapter 4.

3.1 Introduction

3.1.1 Background

A classical topic in number theory is the study of the Riemann zeta function ζ(.) and its special
values ζ(n) for n ∈ N and n ≥ 2. Here N (resp. N∗) denotes the set of non-negative integers (resp.
the set of positive integers). By a well-known analogy between the arithmetic of number fields
and global function fields, Carlitz suggested to transport the classical results to the function field
setting in positive characteristic. In [Car35] he considered the rational function field equipped
with the infinity place and introduced the Carlitz zeta values ζA(n) which are considered as the
analogues of ζ(n). Let Fq be a finite field having q elements, q being a power of a prime number
p, and θ an indeterminate over Fq. Let A = Fq[θ], and let K = Fq(θ) equipped with the rational
place ∞. Let K∞ = Fq(( 1θ )) be the completion of K at ∞, and let C∞ be the completion of a
fixed algebraic closure of K∞ at ∞. For d ∈ N, A+,d denotes the set of monic elements in A of
degree d. For n ∈ Z, the value at n of the Carlitz-Goss zeta function is given by

ζA(n) :=
∑
d≥0

∑
a∈A+,d

1

an
∈ K∞.

One can show that ζA(n) ∈ A if n ≤ 0 and even ζA(n) = 0 if n < 0 and n ≡ 0 (mod q − 1) (see
[Gos96, Chapter 8]).

We now move to the context of Tate algebras. Let s ≥ 1 be an integer, and let t1, . . . , ts be s
variables over K and we write ts for the family of variables {t1, . . . , ts}. Let Ts be the Tate algebra
in the variables ts with coefficients in C∞ (see Section 3.2.1). In 2012 Pellarin [Pel12] introduced
the following element in T×

s called the zeta value in the variables ts

ζA(1, ts) :=
∑
d≥0

∑
a∈A+,d

a(t1) · · · a(ts)
a

∈ T×
s .

20
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For s = 1, he proved the remarkable identity (see [Pel12, Theorem 1])

ζA(1, t1)ω(t1)

π̃
=

1

θ − t1

where π̃ is the Carlitz fundamental period (see [Gos96, Tha04]), and ω(t1) is the special function
introduced by Anderson and Thakur in [AT90] and given by

ω(t1) = (−θ)
1

q−1

∏
j≥0

(
1− t1

θqj

)−1

for a fixed choice of the (q − 1)th root of (−θ) in C∞.
Since their introduction various works have revealed the importance of these zeta values for

both their proper interest and their applications to values of the Goss L-functions, characteristic p
multiple zeta values, Anderson’s log-algebraicity identities, Taelman’s units, and Drinfeld modular
forms in Tate algebras (see for example [ANDTR19, AP15, APTR16, APTR18, ATR17, Dem15a,
Dem15b, Gez19, GP19, PP18a, PP18b, Tha17]). We should mention that generalizations of these
zeta values to various settings have been also conducted (see for example [ANDTR17a, ANDTR17b,
Gre19, Gre17, GP18]).

3.1.2 Conjectures of Pellarin and statement of the main result

From now on we will always suppose that s ≡ 1 (mod q − 1) and set

Σ := {1, . . . , s}, (3.1.1)

and
m :=

s− 1

q − 1
∈ N. (3.1.2)

In a recent work [Pel21] Pellarin revisited the theory of Drinfeld modular forms which were initially
developed by Goss in [Gos80b, Gos80c, Gos80a] and Gekeler in [Gek88]. In his investigation he
proposed several conjectures for the zeta value ζA(1, ts) which would lead to new identities for
Eisenstein series. We refer the reader to [Pel21, Section 9] for more details.

Conjecture 3.1.1 ([Pel21], Conjecture 9.1). We have

ζA(1, ts) ∈ Fp
[
τk(ζA(1, ti)) : 1 ≤ i ≤ s, k ∈ Z

]
.

As Pellarin mentioned in his paper (see the discussion just before [Pel21, Conjecture 9.1]), the
central point of this conjecture is that negative twists are allowed, and that the coefficients belong
to Fp. Further, Pellarin suggested an explicit formula for ζA(1, ts) when q is large enough. More
precisely, letting k ∈ Z and U be a subset of Σ, we set

L
(k)
U := τk

(∏
i∈U

ζA(1, ti)

)
. (3.1.3)

Conjecture 3.1.2 ([Pel21], Conjecture 9.4). Let Σ and m be defined as in (3.1.1) and (3.1.2),
respectively. Suppose that q is large enough, depending on m. Then we have the following formula

ζA(1, ts) =
∑

L
(−1)
U1
· · ·L(−d)

Ud

where the sum runs through the set of ordered set partitions U = (U1 | · · · | Ud) of Σ (see Definition
3.2.1) satisfying

|U1|
q

+ · · ·+ |Ud|
qd

= 1.

The aim of the present chapter is to give an affirmative answer to this conjecture with an
explicit bound for q.
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Theorem 3.1.3. Conjecture 3.1.2 holds for q > m.

A proof of Theorem 3.1.3 will be given in Section 3.4. Let us outline the main ideas of the
proof.

1. First, using the link between zeta values in Tate algebras and Taelman’s class formula due to
Anglès, Pellarin and Tavares Ribeiro in [AP14, APTR16], we state an equivalent statement
of Conjecture 3.1.2 (see Conjecture 3.2.5). Instead of identities on zeta values, it gives
conjectural expressions on a certain several variable Bernoulli-type polynomial Bs ∈ Fq[ts, θ].

2. Next, using the polynomial Bs we give an expression of the zeta value ζA(1, ts) in terms of
products of twists of zeta values ζA(1, ti) for i ∈ Σ with coefficients in C∞ (see Proposition
3.2.8). Using some specialization arguments we are able to compute explicitly some coeffi-
cients of this expression (see Lemma 3.2.9). Furthermore, we introduce a notion of weight
for polynomials in Definition 3.2.7 and show that if the weight of Bs is bounded below by 1,
then the other coefficients vanish which implies Conjecture 3.1.2 (see Theorem 3.2.10).

3. Finally, we succeed in proving the previous bound for q large enough (see Section 3.3). In
order to do so we express Bs as a linear combination of symmetric polynomials in ts. For
q large enough we then compute explicitly this expression of Bs (see Theorem 3.3.1), which
implies immediately the desired estimation of its weight (see Section 3.4). We mention that
the proof of Theorem 3.3.1 is of combinatorial nature and that combinatorial properties of
Bs have already had important applications in function field arithmetic (see [ANDTR19,
GAND+19, PP18a] for more details).

3.2 The several variable Bernoulli-type polynomial

In this section we study the several variable Bernoulli-type polynomial Bs. In Section 3.2.2 we recall
its definition, basic properties, and connection with zeta values in Tate algebras. In Section 3.2.3
we use this polynomial to formulate a conjecture equivalent to Conjecture 3.1.2 (see Conjecture
3.2.5). Section 3.2.4 is devoted to express the zeta value ζA(1, ts) in terms of products of twists of
zeta values in one variable ζA(1, ti) for i ∈ Σ (see Proposition 3.2.8). The key result states that
under some mild condition on Bs, Conjecture 3.1.2 holds (see Theorem 3.2.10).

3.2.1 Preliminaries

In this chapter we will work with the set of all (finite) sequences of integers ℓ. When we
consider a sequence ℓ = (ℓ1, . . . , ℓd) of integers, the reader should keep in mind that d depends on
the sequence ℓ, and that ℓi may be 0.

Definition 3.2.1. An ordered set partition of Σ defined as in (3.1.1) is a set partition U1⊔ . . .⊔Ud
of Σ equipped with a total order on its blocks U1 ≺ · · · ≺ Ud. Here we require that Ud ̸= ∅ but the
other blocks may be empty.

We will denote this ordered set partition of Σ by

U = (U1 | U2 | . . . | Ud).

Recall that {t1, t2, . . . , ts} denotes a family of s variables, and we will also denote this family
by ts. For any ring R we set R[ts] := R[t1, . . . , ts].

Let L be an extension of K∞ in C∞ such that L is complete with respect to v∞. Then the
polynomial ring L[ts] = L[t1, . . . , ts] is equipped with the Gauss valuation: For a polynomial
f ∈ L[ts], if we write

f =
∑

i1,...,is∈N
ai1,...,ist

i1
1 . . . t

is
s , ai1,...,is ∈ L,

then the Gauss valuation of f is defined by

v∞(f) := inf{v∞(ai1,...,is), i1, . . . , is ∈ N}.
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We define the Tate algebra Ts(L) in the variables ts with coefficients in L as the completion of
L[ts] with respect to the Gauss valuation. Explicitly, Ts(L) is the set of formal series

f =
∑

i1,...,is∈N
ai1,...,ist

i1
1 . . . t

is
s , ai1,...,is ∈ L,

such that
lim

i1+...+is→+∞
v∞(ai1,...,is) = +∞.

When L = C∞, we will write Ts instead of Ts(C∞). Let τ : Ts → Ts be the continuous
homomorphism of Fq[ts]-algebras such that for a formal series f ∈ Ts, if we write

f =
∑

i1,...,is∈N
ai1,...,ist

i1
1 . . . t

is
s , ai1,...,is ∈ C∞,

then
τ(f) =

∑
i1,...,is∈N

aqi1,...,ist
i1
1 . . . t

is
s .

With this action of τ on Ts, we have the non-commutative rings Ts{τ} and Ts{{τ}}. The latter
set consists of the formal series

∑
i≥0

fiτ
i with fi ∈ Ts for all i, and the elements of the former are

the polynomials in τ with coefficients in Ts. The commutation rule defining the product is given
by τf = τ(f)τ for f ∈ Ts.

3.2.2 The several variable polynomial Bs

We briefly recall the deep connection between the zeta value ζA(1, ts) and the several variable
Bernoulli-type polynomial Bs as explained in [AP14, APTR16].

Recall that for s = 1, Pellarin proved the following identity (see [Pel12, Theorem 1]):

ζA(1, t1)ω(t1)

π̃
=

1

θ − t1
. (3.2.1)

For s ≥ 2 and s ≡ 1 (mod q − 1), we define

Bs := (−1)m ζA(1, ts)ω(t1) . . . ω(ts)
π̃

∈ Ts (3.2.2)

where m is given by (3.1.2). Then by [APTR16, Lemma 7.6] (see also [AP15, Corollary 21]), we
have

Proposition 3.2.2. The element Bs is a polynomial in Fq[ts, θ]. Moreover, it is a monic polyno-
mial in the variable θ of degree m− 1 and a symmetric polynomial in the variables ts.

Inspired by Taelman’s theory in [Tae10, Tae12b], Anglès, Pellarin, and Tavares Ribeiro showed
that the polynomial Bs is closely connected to the class module Hϕ of a certain Drinfeld A[ts]-
module ϕ of rank one as follows (see [APTR16, Section 7] for more details). Let ϕ : A[ts]→ Ts{τ}
be the Drinfeld A[ts]-module over Ts given by a homomorphism of Fq[ts]-algebras such that

ϕθ = θ + (t1 − θ) · · · (ts − θ)τ.

There exists a unique formal series expϕ ∈ Ts{{τ}} called the exponential series attached to ϕ
such that

expϕ ≡ 1 (mod τ),

and
ϕa expϕ = expϕ a, a ∈ A[ts].

One can show that the exponential series induces a natural Fq[ts]-linear map

expϕ : Ts → Ts.
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Following Taelman [Tae10, Tae12b], we define the class module Hϕ by

Hϕ :=
ϕ(Ts(K∞))

expϕ(Ts(K∞)) + ϕ(A[ts])

where ϕ(A[ts]) is the Fq[ts]-module A[ts] equipped with the A[ts]-module structure induced by ϕ.
By [APTR16, Proposition 7.2] the class module Hϕ is a finitely generated Fq[ts]-module of rank
m− 1. The importance of the polynomials Bs is explained in the following theorem.

Theorem 3.2.3 ([APTR16], Theorem 7.7). We denote by FittA[ts]
(Hϕ) the Fitting ideal of the

torsion A[ts]-module Hϕ of finite type. Then

FittA[ts]
(Hϕ) = BsA[ts].

In particular,
Bs = det

Fq [ts][Z]

(
Z · Id− ϕθ |Hϕ⊗Fq [ts]Fq [ts][Z]

)
|Z=θ.

A few explicit examples of the polynomials Bs are given in [ANDTR19, APTR16] (see also
[PP18a]). We need to introduce some more notation.

Definition 3.2.4. For any sequence ℓ = (ℓ1, . . . , ℓd) ∈ Nd, we set

ℓ0 := s− (ℓ1 + · · ·+ ℓd) ∈ Z,

and define

σs(ℓ) := σs(ℓ1, . . . , ℓd) =
∑ d∏

k=1

∏
i∈Uk+1

tki ,

where the sum runs through the set of ordered set partitions U = (U1 | · · · | Ud+1) of Σ such that
|Uk+1| = ℓk for 0 ≤ k ≤ d. Here by convention, empty products are one and empty sums are equal
to zero.

In particular, σs(ℓ) = 0 if ℓ1 + · · · + ℓd > s, which is equivalent to the condition ℓ0 < 0. The
reader should keep in mind that ℓi may be 0. For example,

σs(0, 0, 1) =

s∑
i=1

t3i .

Here are some more explicit examples that will appear in the explicit formulas of Bs for small
values of s:

σ2q−1(q) =
∑

1≤i1<···<iq≤2q−1

ti1 · · · tiq ,

σ3q−2(q) =
∑

1≤i1<···<iq≤3q−2

q∏
j=1

tij ,

σ3q−2(2q − 1) =
∑

1≤i1<···<i2q−1≤3q−2

2q−1∏
j=1

tij ,

σ3q−2(2q) =
∑

1≤i1<···<i2q≤3q−2

2q∏
j=1

tij ,

σ3q−2(q − 1, q) =
∑

1≤i1<···<iq−1≤3q−2

∑
1≤k1<···<kq≤3q−2

kℓ ̸=ij

q−1∏
j=1

tij

q∏
ℓ=1

t2kℓ .

By [ANDTR19, Lemma 3.4] we have

Bq = 1, (3.2.3)
B2q−1 = θ − σ2q−1(q), (3.2.4)

B3q−2 = θ2 − θ[σ3q−2(q) + σ3q−2(2q − 1)] + [σ3q−2(q − 1, q) + σ3q−2(2q)]. (3.2.5)
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3.2.3 A conjecture equivalent to Conjecture 3.1.2

In this section we use the several variable polynomial Bs to formulate a conjecture equivalent
to Conjecture 3.1.2 (see Conjecture 3.2.5).

Let k ∈ N∗. Since τω(t1) = (t1 − θ)ω(t1), we get

τ−k
(

1

(t1 − θ)ω(t1)

)
=

(t1 − θ
1

qk−1 ) · · · (t1 − θ
1
q )

ω(t1)
.

By Equation (3.2.1), we know that

ζA(1, t1) =
π̃

(θ − t1)ω(t1)
= − π̃

(t1 − θ)ω(t1)
.

It follows that

τ−k(ζA(1, t1)) = τ−k
(
− π̃

(t1 − θ)ω(t1)

)
= − π̃

1

qk (t1 − θ
1

qk−1 ) · · · (t1 − θ
1
q )

ω(t1)

since (−1)qk = −1.
Similarly, for 1 ≤ i ≤ s, we obtain

τ−k(ζA(1, ti)) = −
π̃

1

qk (ti − θ
1

qk−1 ) · · · (ti − θ
1
q )

ω(ti)
= − π̃

1

qk b∗k(ti)

ω(ti)
(3.2.6)

where we set
b∗k(ti) := (ti − θ

1

qk−1 ) · · · (ti − θ
1
q ). (3.2.7)

Note that b∗1(ti) = 1.
For a subset U of Σ, we define

B∗
k(tU ) :=

∏
i∈U

b∗k(ti).

By the previous discussion we deduce that Conjecture 3.1.2 is equivalent to the following con-
jecture.

Conjecture 3.2.5 ([Pel21], Conjecture 9.7). Suppose that q is large enough, depending on m.
Then the following formula holds

Bs = (−1)m−1
∑

B∗
1(tU1

) · · ·B∗
d(tUd

) (3.2.8)

where the sum runs through the set of ordered set partitions U = (U1 | · · · | Ud) of Σ (see Definition
3.2.1) satisfying

|U1|
q

+ · · ·+ |Ud|
qd

= 1.

We now present the cases m = 1 and m = 2 to illustrate combinatorial computations which we
may encounter. We follow the presentation of Pellarin given in [Pel21, Section 9.1.1] and see that
by direct calculations Conjecture 3.2.5 holds in these cases.

1. For m = 1, Conjecture 3.2.5 holds since both sides of (3.2.8) are equal to 1 (see (3.2.3) for
the left-hand side).

2. For m = 2, by (3.2.4) the left-hand side of (3.2.8) equals

B2q−1 = θ − σ2q−1(q).

Since |Σ| = s = 2q−1, we see that the only ordered set partitions appearing on the right-hand
side of (3.2.8) are (U1 | U2) with |U1| = q − 1 and |U2| = q. It follows that the right-hand
side of (3.2.8) is equal to

−
∑

U2⊂Σ, |U2|=q

∏
i∈U2

(
ti − θ1/q

)
.
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We claim that this expression is equal to θ − σ2q−1(q), which confirms Conjecture 3.2.5 for
m = 2. In fact, it is easy to see that all the terms defined over Fq[θ1/q] but not over Fq[θ]
cancel. Further, the terms over Fq[θ] give exactly the polynomial θ − σ2q−1(q) as desired.

3. More generally, our strategy follows that given in the case m = 2. On the one hand, we show
that on the right-hand side of (3.2.13) all the terms not defined over Fq[θ] cancel, which is
exactly explained in the rest of this Section. On the other hand, we compute the terms over
Fq[θ] and prove that they give exactly Bs, which will be done in Section 3.3.

Remark 3.2.6. Let U = (U1 | · · · | Ud) be an ordered set partition of Σ satisfying

|U1|
q

+ · · ·+ |Ud|
qd

= 1.

We set ℓj = |Uj | for 1 ≤ j ≤ d. Then the sequence ℓ = (ℓ1, . . . , ℓd) ∈ Nd with ℓd ≥ 1 is a solution
of the system {

ℓ1 + . . .+ ℓd = s
ℓ1
q + · · ·+ ℓd

qd
= 1.

(3.2.9)

We assume further that m < q where m is defined as in (3.1.2). Then one can show easily
that if ℓ = (ℓ1, . . . , ℓd) ∈ Nd with ℓd ≥ 1 is a solution of the above system, then we can write
ℓ1 = q − s1, ℓ2 = s1q − s2, . . . , ℓd = sd−1q for a sequence (s1, . . . , sd−1) ∈ (N∗)d−1 with s1 + . . . +
sd−1 = m− 1. In fact, the map

(ℓ1, . . . , ℓd) 7→ (s1, . . . , sd−1)

gives rise to a bijection between the set Um of solutions ℓ = (ℓ1, . . . , ℓd) ∈ Nd with ℓd ≥ 1 of the
system (3.2.9) and that of sequences (s1, . . . , sd−1) ∈ (N∗)d−1 with s1 + . . . + sd−1 = m − 1. In
particular, for m ≥ 2, the cardinal of the set Um equals 2m−2.

We will give, for m = 1, 2, 3, 4 and m < q, the explicit list of the elements of Um.

• m = 1: U1 = {(q)};

• m = 2: U2 = {(q − 1, q)};

• m = 3: U3 = {(q − 1, q − 1, q), (q − 2, 2q)};

• m = 4: U4 = {(q − 1, q − 1, q − 1, q), (q − 1, q − 2, 2q), (q − 2, 2q − 1, q), (q − 3, 3q)}.

3.2.4 Twists of zeta values in one variable

In this section we will first give an expression for the zeta value ζA(1, ts) in terms of products
of twists of zeta values in one variable ζA(1, ti) for i ∈ Σ with coefficients in C∞ (see Proposition
3.2.8). Next, using specialization properties we determine some coefficients of this expression (see
Lemma 3.2.9). Finally, under some mild condition on Bs, we deduce Conjecture 3.1.2 (and its
equivalent form, Conjecture 3.2.5) from the previous calculations (see Theorem 3.2.10).

We start introducing a notion of weight for polynomials.

Definition 3.2.7. 1) Let ℓ = (ℓ1, . . . , ℓs) ∈ Ns be an s-tuple of integers. We consider the monomial
t
ℓ
s :=

∏s
i=1 t

ℓi
i and define its weight by

w(tℓs) :=

s∑
i=1

1

qℓi+1
.

2) Let P (ts) ∈ C∞[ts] be a non-zero polynomial. If we express

P (ts) =
∑
ℓ

aℓ t
ℓ
s, aℓ ∈ C∞,

where the sum runs through the set of s-tuples ℓ = (ℓ1, . . . , ℓs) ∈ Ns, then we define its weight by

w(P ) := min{w(tℓs) : aℓ ̸= 0}.
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Proposition 3.2.8. With the notation as above, we can express

ζA(1, ts) = (−1)m−1
∑

ℓ∈(N∗)s

π̃
1−

s∑
i=1

1

qℓi γℓ

s∏
i=1

τ−ℓi (ζA(1, ti)) , γℓ ∈ C∞, (3.2.10)

where the sum runs through a finite set of s-tuples ℓ = (ℓ1, . . . , ℓs) ∈ (N∗)s such that if γℓ ̸= 0, then

w(Bs) ≤
s∑
i=1

1

qℓi
.

Proof. The proof is divided into several steps.

Step 1. First, we will express the polynomial Bs ∈ Fq[ts, θ] as a sum of products of b∗k(ti) defined
as in (3.2.7).

Recall that for k ∈ N∗ and for 1 ≤ i ≤ s, we have set in (3.2.7)

b∗k(ti) = (ti − θ
1

qk−1 ) · · · (ti − θ
1
q ) ∈ C∞[ti]

which is a polynomial in the variable ti of degree k − 1. It follows that for n ∈ N, we can write

tni =

n+1∑
k=1

ak,nb
∗
k(ti), ak,n ∈ C∞. (3.2.11)

We note that the coefficients ak,n do not depend on i ∈ Σ.
For the polynomial Bs ∈ Fq[ts, θ], we write

Bs =
∑
j

βj t
j
s =

∑
j

βj t
j1
1 . . . tjss , with βj ∈ Fq[θ],

where the sum runs through a finite set of s-tuples j = (j1, . . . , js) ∈ Ns.
For any s-tuple of positive integers ℓ = (ℓ1, . . . , ℓs) ∈ (N∗)s, we set

γℓ :=
∑
j

βj

s∏
i=1

aℓi,ji ∈ C∞, (3.2.12)

where the coefficients aℓi,ji are defined as in (3.2.11), and the sum runs through the set of s-tuples
j = (j1, . . . , js) ∈ Ns such that ji + 1 ≥ ℓi for 1 ≤ i ≤ s.

By (3.2.11), we get

Bs =
∑
j

βj t
j1
1 . . . tjss (3.2.13)

=
∑
j

βj

s∏
i=1

ji+1∑
ℓi=1

aℓi,jib
∗
ℓi(ti)

=
∑
ℓ

γℓb
∗
ℓ1(t1) · · · b

∗
ℓs(ts).

Here

• the first and second sum run through a finite set of s-tuples j = (j1, . . . , js) ∈ Ns.

• the third sum runs through a finite set of s-tuples ℓ = (ℓ1, . . . , ℓs) ∈ (N∗)s.

Step 2. Next, letting ℓ = (ℓ1, . . . , ℓs) ∈ (N∗)s be an s-tuple of positive integers, we claim that if
γℓ ̸= 0, then

w(Bs) ≤
s∑
i=1

1

qℓi
.
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In fact, if γℓ ̸= 0, then by (3.2.12), there exists an s-tuple j = (j1, . . . , js) ∈ Ns such that
ℓi ≤ ji + 1 for 1 ≤ i ≤ s and

βj

s∏
i=1

aℓi,ji ̸= 0.

It implies that βj ̸= 0. Thus we obtain

w(Bs) ≤ w(tj11 . . . tjss ) =

s∑
i=1

1

qji+1
≤

s∑
i=1

1

qℓi
.

Here the first inequality and the second equality follow from the fact that βj ̸= 0 and Definition
3.2.7, respectively. The last inequality comes from the fact that ℓi ≤ ji + 1 for all 1 ≤ i ≤ s.

Step 3. We now switch to zeta values in Tate algebras. We have

ζA(1, ts) =
(−1)mπ̃Bs

ω(t1) . . . ω(ts)
by (3.2.2)

=

(−1)mπ̃
∑

ℓ∈(N∗)s
γℓb

∗
ℓ1
(t1) · · · b∗ℓs(ts)

ω(t1) . . . ω(ts)
by (3.2.13)

= (−1)mπ̃
∑

ℓ∈(N∗)s

γℓ

s∏
i=1

(−1)τ−ℓi(ζA(1, ti))

π̃
1

qℓi

by (3.2.6)

= (−1)m−1
∑

ℓ∈(N∗)s

π̃
1−

s∑
i=1

1

qℓi γℓ

s∏
i=1

τ−ℓi (ζA(1, ti)) (since (−1)s = −1)

where the sum runs through a finite set of s-tuples of positive integers ℓ ∈ (N∗)s. The proof of
Proposition 3.2.8 is finished.

We now calculate some coefficients of the expression (3.2.10) using specialization arguments. Let
k = (k1, . . . , ks) ∈ Ns be an s-tuple of non-negative integers. We study the following specialization
of (t1, . . . , ts):

ti = θq
−ki

= θ
1

qki , i = 1, . . . , s.

Let i ∈ Σ. For an s-tuple ℓ = (ℓ1, . . . , ℓs) ∈ (N∗)s, we have

τ−ℓi (ζA(1, ti))∣∣ti=θq−ki
=

∑
d≥0

∑
a∈A+,d

a(ti)

aq
−ℓi

∣∣ti=θq−ki

=
∑
d≥0

∑
a∈A+,d

a(θq
−ki

)

aq
−ℓi

=
∑
d≥0

∑
a∈A+,d

aq
−ki

aq
−ℓi

=
∑
d≥0

∑
a∈A+,d

1

a

(
1

qℓi
− 1

qki

) .

Recall that ζA(n) = 0 if n < 0 and n ≡ 0 (mod q − 1), ζA(0) = 1 and ζA(n) ̸= 0 if n > 0 (see
for example [Gos96, Chapter 8]). It follows that

τ−ℓi (ζA(1, ti))∣∣ti=θq−ki
=


0 if ℓi > ki,

1 if ℓi = ki,

̸= 0 otherwise.
(3.2.14)
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We now analyze the term ζA(1, ts)
∣∣ti=θq−ki

. We write

ζA(1, ts)
∣∣ti=θq−ki

=

∑
d≥0

∑
a∈A+,d

a(t1) . . . a(ts)

a

∣∣ti=θq−ki

=
∑
d≥0

∑
a∈A+,d

a(θq
−k1

) . . . a(θq
−ks

)

a

=
∑
d≥0

∑
a∈A+,d

1

a

(
1−

s∑
i=1

1

qki

) .

Since s ≡ 1 (mod q − 1), we can write

1−
s∑
i=1

1

qki
=

u

qk

with u ≡ 0 (mod q − 1) and k ∈ N∗. Again, since ζA(n) = 0 if n < 0 and n ≡ 0 (mod q − 1),
ζA(0) = 1 and ζA(n) ̸= 0 if n > 0, we deduce

ζA(1, ts)
∣∣ti=θq−ki

=


0 if

s∑
i=1

1
qki

> 1,

1 if
s∑
i=1

1
qki

= 1,

̸= 0 otherwise.

(3.2.15)

Lemma 3.2.9. We continue with the notation of Proposition 3.2.8. Then for any s-tuple k =
(k1, . . . , ks) ∈ (N∗)s, we have

γk =


0 if

s∑
i=1

1
qki

> 1,

(−1)m−1 if
s∑
i=1

1
qki

= 1.

Proof. We divide the proof into two steps.

Step 1. Recall that the coefficients γℓ are defined as in Proposition 3.2.8. We consider the set B
of s-tuples ℓ = (ℓ1, . . . , ℓs) ∈ (N∗)s such that γℓ ̸= 0. We choose one s-tuple k = (k1, . . . , ks) ∈ B

such that the sum
s∑
i=1

1
qki

is maximal. Thus γk ̸= 0.

We claim that
s∑
i=1

1
qki
≤ 1. In fact, suppose that

s∑
i=1

1
qki

> 1. We consider (3.2.10) and study

the specialization of (t1, . . . , ts) given as above:

ti = θq
−ki

= θ
1

qki , i = 1, . . . , s.

Since
s∑
i=1

1
qki

> 1, Equation (3.2.15) implies

ζA(1, ts)
∣∣ti=θq−ki

= 0. (3.2.16)

Thus the specialization value of the left-hand side of (3.2.10) equals 0.
We now analyze the right-hand side of (3.2.10). First, we consider the term corresponding to

the s-tuple k = (k1, . . . , ks) ∈ (N∗)s. By Equation (3.2.14), we get

(−1)m−1

(
π̃
1−

s∑
i=1

1

qki γk

s∏
i=1

τ−ki(ζA(1, ti))

)
∣∣ti=θq−ki

= (−1)m−1π̃
1−

s∑
i=1

1

qki γk.
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Next, for other s-tuple ℓ ∈ B, that means γℓ ̸= 0, we claim that there exists 1 ≤ i ≤ s such
that ℓi > ki. Suppose that ℓi ≤ ki for 1 ≤ i ≤ s and ℓj < kj for some 1 ≤ j ≤ s. Thus we get
s∑
i=1

1
qki

<
s∑
i=1

1
qℓi

, which contradicts with the fact that
s∑
i=1

1
qki

is maximal.

Since ℓi > ki for some 1 ≤ i ≤ s, by (3.2.14) we have

τ−ℓi (ζA(1, ti))∣∣ti=θq−ki
= 0.

Thus we obtain

(−1)m−1

(
π̃
1−

s∑
i=1

1

qℓi γℓ

s∏
i=1

τ−ℓi(ζA(1, ti))

)
∣∣ti=θq−ki

= 0.

Putting all together, the specialization value of the right-hand side of (3.2.10) equals

(−1)m−1π̃
1−

s∑
i=1

1

qki γk. (3.2.17)

By (3.2.16) and (3.2.17) we conclude that (−1)m−1π̃
1−

s∑
i=1

1

qki γk = 0. Thus γk = 0, which is a
contradiction.

To summarize we have proved that for any s-tuple ℓ = (ℓ1, . . . , ℓs) ∈ (N∗)s, if
s∑
i=1

1
qℓi

> 1, then

γℓ = 0.

Step 2. We consider an s-tuple k = (k1, . . . , ks) ∈ (N∗)s such that the sum
s∑
i=1

1
qki

= 1.

We claim that γk = (−1)m−1. As before, we consider (3.2.10) and study the specialization of
(t1, . . . , ts) given as above:

ti = θq
−ki

= θ
1

qki , i = 1, . . . , s.

Since
s∑
i=1

1
qki

= 1, Equation (3.2.15) implies that

ζA(1, ts)
∣∣ti=θq−ki

= 1. (3.2.18)

Thus the specialization value of the left-hand side of (3.2.10) equals 1.
We now analyze the right-hand side of (3.2.10). For any s-tuple ℓ ∈ (N∗)s such that γℓ ̸= 0, we

know that
s∑
i=1

1

qℓi
≤ 1 =

s∑
i=1

1

qki
.

Thus the arguments given in Step 1 can be applied so that the specialization value of the right-hand
side of (3.2.10) equals

(−1)m−1π̃
1−

s∑
i=1

1

qki γk = (−1)m−1γk. (3.2.19)

Here the equality comes from the fact that
s∑
i=1

1
qki

= 1.

By (3.2.18) and (3.2.19) we get (−1)m−1γk = 1. Thus γk = (−1)m−1 as required.

The proof of Lemma 3.2.9 is complete.

As a consequence of Proposition 3.2.8 and Lemma 3.2.9, we prove the key result of this section.

Theorem 3.2.10. Suppose that w(Bs) ≥ 1. Then
1) We have w(Bs) = 1.
2) Conjecture 3.1.2 holds, that means we have

ζA(1, ts) =
∑

L
(−1)
U1
· · ·L(−d)

Ud

where the sum runs through the set of ordered set partitions U = (U1 | · · · | Ud) of Σ such that

|U1|
q

+ · · ·+ |Ud|
qd

= 1.
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Proof. Proposition 3.2.8 states that we can write

ζA(1, ts) = (−1)m−1
∑

ℓ∈(N∗)s

π̃
1−

s∑
i=1

1

qℓi γℓ

s∏
i=1

τ−ℓi (ζA(1, ti)) , γℓ ∈ C∞,

where the sum runs through a finite set of s-tuples ℓ = (ℓ1, . . . , ℓs) ∈ (N∗)s such that if γℓ ̸= 0,
then

w(Bs) ≤
s∑
i=1

1

qℓi
.

Thus the hypothesis w(Bs) ≥ 1 implies that if γℓ ̸= 0, then
s∑
i=1

1
qℓi
≥ w(Bs) ≥ 1. Combining this

property with Lemma 3.2.9, we conclude that w(Bs) = 1, and that

ζA(1, ts) =
∑

ℓ∈(N∗)s

s∏
i=1

τ−ℓi (ζA(1, ti))

where the sum runs through the set of s-tuples ℓ = (ℓ1, . . . , ℓs) ∈ (N∗)s satisfying

s∑
i=1

1

qℓi
= 1.

We wish to re-index the above sum by ordered set partitions of Σ. For an s-tuple ℓ =
(ℓ1, . . . , ℓs) ∈ (N∗)s, we can associate an ordered set partition U = (U1 | . . . | Ud) of Σ as fol-
lows. We put d = max{ℓi : i ∈ Σ} and for 1 ≤ j ≤ d,

Uj = {i ∈ Σ : ℓi = j}.

In fact, we see that this association gives rise to a bijection between the set of s-tuple ℓ ∈ (N∗)s

and the set of ordered set partitions of Σ. Furthermore, it is clear that

d∑
j=1

|Uj |
qj

=

s∑
i=1

1

qℓi
.

Using this bijection we conclude that

ζA(1, ts) =
∑

L
(−1)
U1
· · ·L(−d)

Ud

where L
(k)
U are defined as in (3.1.3), and the sum runs through the set of ordered set partitions

U = (U1 | · · · | Ud) of Σ satisfying

|U1|
q

+ · · ·+ |Ud|
qd

= 1.

The proof is complete.

3.3 Coefficients of the Bernoulli-type polynomial

In this (long) section we study the expression of Bs as a linear combination of symmetric poly-
nomials in ts. We will give explicit formulas for some coefficients of this expression (see Theorem
3.3.1). To do so we need to write down similar expressions of zeta values (see Propositions 3.3.10
and 3.3.12) and Anderson-Thakur’s special functions. We then deduce such an expression for Bs
(see Sections 3.3.3 and 3.3.4). For the desired coefficients we are able to compute them by using
combinatorial tools (see Section 3.3.4).
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3.3.1 The key result

We recall that for any sequence ℓ = (ℓ1, . . . , ℓd) ∈ Nd, we have defined the symmetric polynomial
σs(ℓ) as in Definition 3.2.4.

In what follows, we define

A+ := {a = (a0, . . . , ad) ∈ (N∗)d+1 :

d∑
j=0

aj = m}, (3.3.1)

A := {a = (a0, . . . , ad) ∈ (N∗)d × N :

d∑
j=0

aj = m},

N+
ℓ := {n = (n1, . . . , nd) ∈ (N∗)d : n1 ≤ . . . ≤ nd,

d∑
j=1

nj = ℓ}, ℓ ∈ N∗,

Nℓ := {n = (n1, . . . , nd) ∈ (N∗)d :

d∑
j=1

nj = ℓ}, ℓ ∈ N∗.

It is clear that A+ ⊂ A and N+
ℓ ⊂ Nℓ for all ℓ ∈ N∗.

We now state the main result of this section whose proof will be given in Section 3.3.4.

Theorem 3.3.1. Recall that (see Proposition 3.2.2)

Bs = θm−1 +B1θ
m−2 + . . .+Bm−1, Bℓ ∈ Fq[ts].

Let ℓ ∈ N∗ such that 1 ≤ ℓ ≤ q − 2, and let Nℓ and A+ be defined as in (3.3.1). Then we have

Bℓ =
∑
n∈Nℓ

∑
a∈A+

B(n, a)σs(a1(q − 1) + n1 − n2, . . . , ad−1(q − 1) + nd−1 − nd, ad(q − 1) + nd)

where

• the first sum runs through the set of sequences n = (n1, . . . , nd) ∈ (N∗)d satisfying
d∑
j=1

nj = ℓ,

that means n ∈ Nℓ,

• the second sum runs through the set of sequences a = (a0, . . . , ad) ∈ (N∗)d+1 satisfying
d∑
j=0

aj = m, that means a ∈ A+,

• the coefficient B(n, a) ∈ Fp is given by

B(n, a) = (−1)ℓ
d∏
j=1

(
aj − 1

nj − 1

)
.

Remark 3.3.2. 1) We note that if the coefficient B(n, a) ̸= 0, then aj ≥ nj for 1 ≤ j ≤ d.
2) The reader may compare the above expression with formulas given in (3.2.3), (3.2.4) and

(3.2.5). We leave the reader to write down explicitly the polynomial B4q−3 for q > 4.

Remark 3.3.3. We now present a heuristic explanation for the formulas given in Theorem 3.3.1.
We assume that m < q (see the discussion after Conjecture 3.2.5 for m = 1, 2). By Conjecture
3.2.5 we write

Bs = (−1)m−1
∑

B∗
1(tU1

) · · ·B∗
d(tUd

)

where the sum runs through the set of ordered set partitions U = (U1 | · · · | Ud) of Σ satisfying

|U1|
q

+ · · ·+ |Ud|
qd

= 1.

By Remark 3.2.6 we have an explicit description of the set of such partitions when m < q. Using
this description we can write down all the terms defined over Fq[θ] of the right-hand side. By this
way we obtain a nice formula for Bs as given in Theorem 3.3.1.
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3.3.2 Preparatory lemmas

We first collect several combinatorial lemmas which will be necessary in the sequel.

Lemma 3.3.4. Let n ∈ N∗ with n < q, and let a ∈ N∗. Then we have(
a(q − 1) + n− 1

n− 1

)
= (−1)n−1

(
a− 1

n− 1

)
(mod p).

Proof. This lemma is an application of Lucas’s theorem (see for example [Gra97]). We write down
completely the proof for the convenience of the reader.

We always work in Fp. Since 1 ≤ n < q, by Lucas’s theorem we can assume that 1 ≤ a ≤ q.
By Lucas’s theorem and the fact 1 ≤ n < q again, we get(

a(q − 1) + n− 1

n− 1

)
=

(
(a− 1)q + q − a+ n− 1

n− 1

)
=

(
q − a+ n− 1

n− 1

)
=

(q − a+ n− 1) . . . (q − a+ 1)

(n− 1)!

=
(−a+ n− 1) . . . (−a+ 1)

(n− 1)!

= (−1)n−1 (a− n+ 1) . . . (a− 1)

(n− 1)!

= (−1)n−1

(
a− 1

n− 1

)
as required.

The next lemma follows from standard combinatorial arguments and the details of the proof
will be left to the reader.

Lemma 3.3.5. For any integer j ≥ 0 and any sequence (ℓ1, . . . , ℓd) ∈ Nd, we have

σs(j)σs(ℓ1, . . . , ℓd) =
∑

j=(j1,...,jd+1)∈Nd+1

(
ℓ1 + j1 − j2

j1

)
. . .

(
ℓd + jd − jd+1

jd

)
×

× σs(ℓ1 + j1 − j2, . . . , ℓd + jd − jd+1, jd+1)

where the sum runs through the set of sequences j = (j1, . . . , jd+1) ∈ Nd+1 such that j1+. . .+jd+1 =
j.

In what follows, we fix x to be an indeterminate over K. We recall that for any k ∈ N, the
binomial polynomial (

x

k

)
:=

x(x− 1) . . . (x− k + 1)

k!
∈ Q[x]

represents a polynomial in the variable x with rational coefficients. Note that its value at ℓ ∈ N is
equal to the binomial coefficient

(
ℓ
k

)
.

Lemma 3.3.6. For M,N ∈ N, we have the following equality in Q[x]:

M∑
k=0

(−1)k
(
x+N − k
M − k

)(
x

k

)
=

(
N

M

)
.

Proof. For M,N ∈ N, we define

PM,N (x) :=

M∑
k=0

(−1)k
(
x+N − k
M − k

)(
x

k

)
∈ Q[x].
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We claim that
PM,N (x) =

(
N

M

)
.

The proof is by induction on M ∈ N. For M = 0, the assertion is clear. Suppose that we have
proved the claim for M − 1 with M ∈ N∗, i.e., for all N ∈ N,

PM−1,N (x) =

(
N

M − 1

)
.

We now show that the claim is true for M . In other words, we have to show that for all N ∈ N,
the following equality holds

PM,N (x) =

(
N

M

)
.

For N ∈ N, we have the following equality in Q[x]:

PM,N+1(x) = PM,N (x) + PM−1,N (x),

which implies

PM,N+1(x)−
(
N + 1

M

)
=

(
PM,N (x)−

(
N

M

))
+

(
PM−1,N (x)−

(
N

M − 1

))
.

By the induction hypothesis, we know that the second term in the above sum vanishes. Thus

PM,N+1(x)−
(
N + 1

M

)
= PM,N (x)−

(
N

M

)
. (3.3.2)

Since (3.3.2) holds for all N ∈ N, we deduce

PM,N (x)−
(
N

M

)
= PM,N−1(x)−

(
N − 1

M

)
= . . . = PM,0(x).

To conclude, it suffices to prove that PM,0(x) = 0. In fact, we have

PM,0(x) =

M∑
k=0

(−1)k
(
x− k
M − k

)(
x

k

)
=

(
x

M

) M∑
k=0

(−1)k
(
M

k

)
= 0.

The proof is finished.

Lemma 3.3.7. For M,N ∈ N with M ≤ N , we have the following equality in Q[x]:
M∑
k=0

(−1)k
(
x−N + k − 1

k

)(
x

M − k

)
=

(
N

M

)
.

Proof. We consider the polynomial in Q[x] defined by

P (x) :=

M∑
k=0

(−1)k
(
x−N + k − 1

k

)(
x

M − k

)
.

We write

P (x) =

M∑
k=0

(−1)k
(
x−N + k − 1

k

)(
x

M − k

)

=

M∑
k=0

(−1)k (x−N) . . . (x−N + k − 1)

k!
× x . . . (x− (M − k) + 1)

(M − k)!

=

M∑
k=0

(N − x) . . . (N − x− k + 1)

k!
× x . . . (x− (M − k) + 1)

(M − k)!
.

Since M ≤ N , we have degP ≤M ≤ N . We know that for any integer ℓ with 0 ≤ ℓ ≤ N , we have
the equality

P (x = ℓ) =

M∑
k=0

(
N − ℓ
k

)(
ℓ

M − k

)
=

(
N

M

)
.

It follows that P (x) is the constant polynomial
(
N
M

)
. The proof is finished.
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3.3.3 An expression of the zeta value ζA(1, ts)

The main goal of this section is to express the zeta value ζA(1, ts) as a series in θ−1 whose
coefficients are symmetric polynomials in ts. We make use of the notion of basic sums introduced
in [ANDTR19, Section 5.2] to obtain such an expression (see Proposition 3.3.10).

Following [ANDTR19, Section 5.2], we recall some facts of basic sums. For a sequence k =
(k0, . . . , kd−1) ∈ Nd, we set

w(k) := dk0 + (d− 1)k1 + . . .+ kd−1,

|k| := k0 + . . .+ kd−1,

Ck := (−1)|k| |k|!
k0! . . . kd−1!

∈ Fp.

Letting a ∈ A+,d, we write a = a0 + a1θ + . . .+ ad−1θ
d−1 + θd. Thus we get

1

a
=

1

θd

∑
k=(k0,...,kd−1)∈Nd

Cka
k 1

θw(k)

where we put ak =
∏d−1
j=0 a

kj
j .

It follows that∑
a∈A+,d

a(t1) . . . a(ts)

a

=
1

θd

∑
k=(k0,...,kd−1)∈Nd

Ck
1

θw(k)

∑
a∈A+,d

aka(t1) . . . a(ts)

=
1

θd

∑
k=(k0,...,kd−1)∈Nd

Ck
1

θw(k)

∑
a∈A+,d

∑
ℓ=(ℓ0,...,ℓd)∈Nd+1,

|ℓ|=s

akaℓσs(ℓ1, . . . , ℓd)

=
1

θd

∑
k=(k0,...,kd−1)∈Nd

Ck
1

θw(k)

∑
ℓ=(ℓ0,...,ℓd)∈Nd+1,

|ℓ|=s

σs(ℓ1, . . . , ℓd)
∑

a∈A+,d

ak+ℓ.

Here we put aℓ =
∏d−1
j=0 a

ℓj
j and ak+ℓ =

∏d−1
j=0 a

kj+ℓj
j .

Letting k = (k0, . . . , kd−1) ∈ Nd and ℓ = (ℓ0, . . . , ℓd) ∈ Nd+1 two sequences of integers, we say
that ℓ is k-admissible if (k0 + ℓ0, . . . , kd−1 + ℓd−1) ∈ ((q − 1)N∗)d. We see that if ℓ is k-admissible,
then the sum

∑
a∈A+,d

ak+ℓ is equal to (−1)d. Otherwise, this sum is equal to 0.

Given a sequence k = (k0, . . . , kd−1) ∈ Nd as above, we define another sequence n = (n1, . . . , nd) ∈
(N∗)d by

n1 := k0 + 1,

n2 := k0 + k1 + 1,

...
nd := k0 + . . .+ kd−1 + 1.

This sequence satisfies

i) n1 ≤ . . . ≤ nd,

ii)
d∑
j=1

nj = w(k) + d.

We observe that the sequence k is completely determined by the associated sequence n. In fact,
we have k0 = n1 − 1 and kj = nj+1 − nj for 1 ≤ j ≤ d− 1.
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Let n = (n1, . . . , nd) ∈ (N∗)d satisfying n1 ≤ . . . ≤ nd as above, and let k = (k0, . . . , kd−1) ∈ Nd
be the associated sequence. We set

Ln,s := {ℓ = (ℓ0, . . . , ℓd) ∈ Nd+1 : ℓ is k-admissible and |ℓ| = s}. (3.3.3)

Then ∑
a∈A+,d

a(t1) . . . a(ts)

a
=

(−1)d

θd

∑
k∈Nd

Ck
1

θw(k)

∑
ℓ∈Ln,s

σs(ℓ1, . . . , ℓd).

Let ℓ = (ℓ0, . . . , ℓd) be a sequence in Ln,s defined as above. Then there exist a0, . . . , ad−1 ∈ N∗

such that

ℓ0 = a0(q − 1)− n1 + 1,

ℓ1 = a1(q − 1) + n1 − n2,
...

ℓd−1 = ad−1(q − 1) + nd−1 − nd.

Thus we get

ℓd = s−
d−1∑
j=0

ℓj = ad(q − 1) + nd

where we put ad := m−
d−1∑
j=0

aj and recall that m is defined as in (3.1.2). Since ℓ ∈ Nd+1, we deduce

the following lemma.

Lemma 3.3.8. The set Ln,s consists of the elements ℓ = (ℓ0, . . . , ℓd) ∈ Nd+1 of the form

ℓ0 = a0(q − 1)− n1 + 1,

ℓ1 = a1(q − 1) + n1 − n2,
...

ℓd−1 = ad−1(q − 1) + nd−1 − nd,
ℓd = ad(q − 1) + nd,

where a0, . . . , ad are integers such that

• a0 > 0, . . . , ad−1 > 0,

•
d∑
j=0

aj = m.

Remark 3.3.9. We note that ad may be negative.

To summarize we have proved the following proposition.

Proposition 3.3.10. We have
ζA(1, ts) =

∑
ℓ≥0

αℓ,sθ
−ℓ

with

αℓ,s =
∑
n∈N+

ℓ

C̃(n)
∑
ℓ∈Ln,s

σs(ℓ)

where

• the first sum runs through the set of sequences n = (n1, . . . , nd) ∈ N+
ℓ defined as in (3.3.1),

• the second sum runs through the set of sequences ℓ ∈ Ln,s defined as in (3.3.3),

• the coefficient C̃(n) ∈ Fp equals

(−1)d+nd−1 (nd − 1)!

(n1 − 1)!(n2 − n1)! . . . (nd − nd−1)!
.
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3.3.4 Proof of Theorem 3.3.1

This section is devoted to prove Theorem 3.3.1 which compute the first q− 2 coefficients of the
polynomial Bs. We start proving intermediate results and give a proof of Theorem 3.3.1 at the end
of this section.

We first need the following consequence of Lemma 3.3.8.

Lemma 3.3.11. Let ℓ be an integer with 1 ≤ ℓ ≤ q−2, and let n = (n1, . . . , nd) ∈ (N∗)d satisfying

n1 ≤ . . . ≤ nd and
d∑
j=1

nj = ℓ. Then the set Ln,s defined as in (3.3.3) consists of the sequences

ℓ = (ℓ0, . . . , ℓd) ∈ Nd+1 of the form

ℓ0 = a0(q − 1)− n1 + 1,

ℓ1 = a1(q − 1) + n1 − n2,
...

ℓd−1 = ad−1(q − 1) + nd−1 − nd,
ℓd = ad(q − 1) + nd,

where a0, . . . , ad are integers such that

• a0 > 0, . . . , ad−1 > 0 and ad ≥ 0,

•
d∑
j=0

aj = m.

Proof. We have to prove that ad ≥ 0. In fact, the fact that n = (n1, . . . , nd) ∈ (N∗)d satisfies

n1 ≤ . . . ≤ nd and
d∑
j=1

nj = ℓ implies nd < ℓ. Thus nd < q − 2 since ℓ ≤ q − 2. It follows

immediately that ad ≥ 0 since ℓd = ad(q − 1) + nd and ℓd ∈ N.

As an immediate consequence of Lemma 3.3.11 we obtain

Proposition 3.3.12. Let ℓ be an integer with 1 ≤ ℓ ≤ q − 2, and let N+
ℓ and A be defined as in

(3.3.1). Then we have

αℓ,s =
∑
n∈N+

ℓ

∑
a∈A

C̃(n)σs(a1(q − 1) + n1 − n2, . . . , ad(q − 1) + nd)

where

• the first sum runs through the set of sequences n = (n1, . . . , nd) ∈ N+
ℓ ,

• the second sum runs through the set of sequences a = (a0, . . . , ad) ∈ A,

• the coefficient C̃(n) ∈ Fp equals

C̃(n) = (−1)d+nd−1 (nd − 1)!

(n1 − 1)!(n2 − n1)! . . . (nd − nd−1)!
.

Remark 3.3.13. In the above formula, we could take the first sum over the bigger set of sequences
n = (n1, . . . , nd) ∈ Nℓ defined as in (3.3.1) since for any sequence n ∈ Nℓ \N+

ℓ , we have C̃(n) = 0.

We set B0 := 1 and write

Bs = θm−1(B0 +B1θ
−1 + . . .+Bm−1θ

−(m−1)), Bℓ ∈ Fq[ts].

Recall that (see (3.2.2))

Bs := (−1)m ζA(1, ts)ω(t1) . . . ω(ts)
π̃
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Dividing this equality by θm−1 yields an equality between formal series of the form
∑
j≥0

fiθ
−j with

fj ∈ Fq[ts]. Thus to compute the first coefficients B1, . . . , Bq−2 of Bs, it suffices to look at both
sides modulo θ−(q−1), i.e., by forgetting the terms θ−j for j ≥ q − 1.

On the left-hand side, we obtain

B0 +B1θ
−1 + . . .+Bq−2θ

−(q−2) (mod θ−(q−1))

where we put Bk = 0 for k ≥ m.
On the right-hand side, for the zeta value ζA(1, ts), Proposition 3.3.10 gives

α0,s + α1,sθ
−1 + . . .+ αq−2,sθ

−(q−2) (mod θ−(q−1)).

For other factors, we write ∏
j≥1

(
1− θ

θqj

)
≡ 1 (mod θ−(q−1)),

and
s∏
i=1

∏
j≥0

(
1− ti

θqj

)−1

≡
s∏
i=1

(
1− ti

θ

)−1

(mod θ−(q−1))

≡
(
1− σs(1)θ−1 + . . .+ (−1)q−2σs(q − 2)θ−(q−2)

)−1

(mod θ−(q−1)).

Putting all together, we get(
B0 +B1θ

−1 + . . .+Bq−2θ
−(q−2)

)(
1− σs(1)θ−1 + . . .+ (−1)q−2σs(q − 2)θ−(q−2)

)
= α0,s + α1,sθ

−1 + . . .+ αq−2,sθ
−(q−2) (mod θ−(q−1)).

In other words, for all 1 ≤ ℓ ≤ q − 2, we have

Bℓ − σs(1)Bℓ−1 + . . .+ (−1)ℓσs(ℓ)B0 = αℓ,s. (3.3.4)

Hence Bℓ is completely determined by B0, . . . , Bℓ−1.
We now prove one of the key results of this section.

Proposition 3.3.14. Let ℓ be an integer with 1 ≤ ℓ ≤ q − 2, and let Nℓ and A+ be defined as in
(3.3.1). Then

Bℓ =
∑
n∈Nℓ

∑
a∈A+

C(n, a)σs(a1(q − 1) + n1 − n2, . . . , ad(q − 1) + nd) (3.3.5)

where

• the first sum runs through the set of sequences n = (n1, . . . , nd) ∈ Nℓ,

• the second sum runs through the set of sequences a = (a0, . . . , ad) ∈ A+,

• the coefficient C(n, a) ∈ Fp is equal to

C(n, a) = (−1)d
d∏
j=1

(
aj(q − 1) + nj − 1

nj − 1

)
.

Proof. Let ℓ be an integer with 1 ≤ ℓ ≤ q − 2. It suffices to prove (3.3.4) where Bℓ is given by
(3.3.5) and αℓ,s is given in Proposition 3.3.12.

If we set

S := Bℓ − σs(1)Bℓ−1 + . . .+ (−1)ℓσs(ℓ)B0 =

ℓ∑
k=0

(−1)kσs(k)Bℓ−k,
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then we replace Bℓ−k by (3.3.5) for 1 ≤ k ≤ ℓ ≤ q − 2 to get

S =

ℓ∑
k=0

(−1)kσs(k)
∑

ℓ∈Nℓ−k

∑
a∈A+

C(ℓ, a) σs(a1(q − 1) + ℓ1 − ℓ2, . . . , ad(q − 1) + ℓd),

where the second sum (resp. the third sum) is over the set of sequences ℓ = (ℓ1, . . . , ℓd) ∈ Nℓ−k
(resp. a = (a0, . . . , ad) ∈ A+). By Lemma 3.3.5 we develop the above expression to get

S =

ℓ∑
k=0

(−1)k
∑

ℓ∈Nℓ−k

∑
a∈A+

C(ℓ, a) σs(a1(q − 1) + ℓ1 − ℓ2 + j1 − j2, . . . , ad(q − 1) + ℓd + jd − jd+1, jd+1)

×
∑

(j1,...,jd+1)∈Nd+1

j1+...+jd+1=k

(
a1(q − 1) + ℓ1 − ℓ2 + j1 − j2

j1

)
. . .

(
ad(q − 1) + ℓd + jd − jd+1

jd

)
.

For sequences ℓ = (ℓ1, . . . , ℓd) ∈ Nℓ−k and (j1, . . . , jd+1) ∈ Nd+1 with j1 + . . . + jd+1 = k as
appeared in the above sum, we put

n1 = ℓ1 + j1, . . . , nd = ℓd + jd, nd+1 = jd+1.

Then the sequence n = (n1, . . . , nd+1) belongs to (N∗)d × N and satisfies n1 + . . .+ nd+1 = ℓ.
Using this notation and the formula for C(ℓ, a) we can re-index the sums in S to get

S =
∑
n

∑
a∈A+

σs(a1(q − 1) + n1 − n2, . . . , ad(q − 1) + nd, nd+1)

× (−1)d+nd+1

∑
ℓ

d∏
j=1

(−1)nj−ℓj
(
aj(q − 1) + ℓj − 1

ℓj − 1

)(
aj(q − 1) + nj − nj+1

nj − ℓj

)
=
∑
n

∑
a∈A+

S(n, a)σs(a1(q − 1) + n1 − n2, . . . , ad(q − 1) + nd, nd+1)

where

• the first sum runs through the set of sequences n = (n1, . . . , nd+1) ∈ (N∗)d × N such that
n1 + . . .+ nd+1 = ℓ,

• the second sum runs through the set of sequences a = (a0, . . . , ad) ∈ A+,

• the third sum of the first equality runs through the set of sequences ℓ = (ℓ1, . . . , ℓd) ∈ (N∗)d

such that ℓj ≤ nj for all 1 ≤ j ≤ d,

• the coefficients S(n, a) are given by

S(n, a) = (−1)d+nd+1

∑
ℓ

d∏
j=1

(−1)nj−ℓj
(
aj(q − 1) + ℓj − 1

ℓj − 1

)(
aj(q − 1) + nj − nj+1

nj − ℓj

)
.

(3.3.6)
where the sum runs through the set of sequences ℓ = (ℓ1, . . . , ℓd) ∈ (N∗)d such that ℓj ≤ nj
for all 1 ≤ j ≤ d.

In Lemma 3.3.15 below we compute explicitly the coefficients S(n, a). Combining it with
Proposition 3.3.12, we deduce immediately Proposition 3.3.14.

Lemma 3.3.15. Let ℓ be an integer with 1 ≤ ℓ ≤ q − 2. Let n = (n1, . . . , nd+1) ∈ (N∗)d × N be a
sequence satisfying n1+ . . .+nd+1 = ℓ, and let a = (a0, . . . , ad) ∈ (N∗)d+1 be a sequence of positive
integers.

We recall that S(n, a) is defined as in (3.3.6). Then we have

1. If nd+1 > 0, then

S(n, a) = C̃(n1, . . . , nd+1) = (−1)d+nd+1
(nd+1 − 1)!

(n1 − 1)!(n2 − n1)! . . . (nd+1 − nd)!
.
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2. If nd+1 = 0, then

S(n, a) = C̃(n1, . . . , nd) = (−1)d+nd−1 (nd − 1)!

(n1 − 1)!(n2 − n1)! . . . (nd − nd−1)!
.

Here recall that the coefficients C̃(n) are defined as in Proposition 3.3.12.

Proof. In fact, we write

S(n, a) = (−1)d+nd+1

d∏
j=1

∑
1≤ℓj≤nj

(−1)nj−ℓj
(
aj(q − 1) + ℓj − 1

ℓj − 1

)(
aj(q − 1) + nj − nj+1

nj − ℓj

)
.

We consider separately each factor of the above product and distinguish three cases.

Case 1: the jth factor for 1 ≤ j ≤ d− 1.
We apply Lemma 3.3.6 to x = aj(q − 1) + nj − nj+1, M = nj − 1 and N = nj+1 − 1 to obtain∑

1≤ℓj≤nj

(−1)nj−ℓj
(
aj(q − 1) + ℓj − 1

ℓj − 1

)(
aj(q − 1) + nj − nj+1

nj − ℓj

)

=

nj−1∑
k=0

(−1)k
(
aj(q − 1) + nj − 1− k

nj − 1− k

)(
aj(q − 1) + nj − nj+1

k

)
where k = nj − ℓj

=

(
nj+1 − 1

nj − 1

)
.

Case 2: the dth factor with nd+1 > 0.
We apply Lemma 3.3.6 to x = ad(q− 1) + nd − nd+1, M = nd − 1 and N = nd+1 − 1 to obtain∑

1≤ℓd≤nd

(−1)nd−ℓd
(
ad(q − 1) + ℓd − 1

ℓd − 1

)(
ad(q − 1) + nd − nd+1

nd − ℓd

)

=

nd−1∑
k=0

(−1)k
(
ad(q − 1) + nd − 1− k

nd − 1− k

)(
ad(q − 1) + nd − nd+1

k

)
where k = nd − ℓd

=

(
nd+1 − 1

nd − 1

)
.

Case 3: the dth factor with nd+1 = 0.
Note that nd ≥ 1. We apply Lemma 3.3.7 to x = ad(q−1)+nd and M = N = nd−1 to obtain∑

1≤ℓd≤nd

(−1)nd−ℓd
(
ad(q − 1) + ℓd − 1

ℓd − 1

)(
ad(q − 1) + nd − nd+1

nd − ℓd

)
∑

1≤ℓd≤nd

(−1)nd−ℓd
(
ad(q − 1) + ℓd − 1

ℓd − 1

)(
ad(q − 1) + nd

nd − ℓd

)

=

nd−1∑
k=0

(−1)nd−1+k

(
ad(q − 1) + k

k

)(
ad(q − 1) + nd
nd − 1− k

)
where k = ℓd − 1

= (−1)nd−1.

Putting all together, we obtain Lemma 3.3.15. The proof is finished.

We are now ready to prove Theorem 3.3.1.

Proof of Theorem 3.3.1. By Proposition 3.3.14, letting Nℓ and A+ be defined as in (3.3.1), for
1 ≤ ℓ ≤ q − 2, we have

Bℓ =
∑
n

∑
a

C(n, a)σs(a1(q − 1) + n1 − n2, . . . , ad(q − 1) + nd)

where
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• the first sum runs through the set of sequences n = (n1, . . . , nd) ∈ (N∗)d satisfying
d∑
j=1

nj = ℓ

(e.g. n ∈ Nℓ),

• the second sum runs through the set of sequences a = (a0, . . . , ad) ∈ (N∗)d+1 satisfying
d∑
j=0

aj = m (e.g. a ∈ A+),

• the coefficient C(n, a) ∈ Fp is equal to

C(n, a) = (−1)d
d∏
j=1

(
aj(q − 1) + nj − 1

nj − 1

)
.

To prove Theorem 3.3.1, it suffices to prove that for n = (n1, . . . , nd) ∈ Nℓ and a = (a0, . . . , ad) ∈
A+ as above, the coefficients C(n, a) and B(n, a) given in Theorem 3.3.1 are the same. In fact, by
Lemma 3.3.4 we have

C(n, a) = (−1)d
d∏
j=1

(
aj(q − 1) + nj − 1

nj − 1

)

= (−1)d
d∏
j=1

(−1)nj−1

(
aj − 1

nj − 1

)

= (−1)n1+...+nd

d∏
j=1

(
aj − 1

nj − 1

)
.

Since
d∑
j=1

nj = ℓ, it follows that

C(n, a) = (−1)ℓ
d∏
j=1

(
aj − 1

nj − 1

)
= B(n, a)

as desired. The proof is finished.

3.4 Proof of the main result

In this section we present a proof of Theorem 3.1.3. We have to show that if m < q where m
is defined as in (3.1.2), then the following formula holds

ζA(1, ts) =
∑

L
(−1)
U1
· · ·L(−d)

Ud

where the sum runs through the set of ordered set partitions U = (U1 | · · · | Ud) of Σ satisfying

|U1|
q

+ · · ·+ |Ud|
qd

= 1.

We assume that m < q. Then the polynomial Bs is completely determined by Theorem 3.3.1.
We claim that w(Bs) ≥ 1. In fact, by Theorem 3.3.1 and Definition 3.2.7 it suffices to prove that

w(σs(a1(q − 1) + n1 − n2, . . . , ad(q − 1) + nd)) ≥ 1

where

• n = (n1, . . . , nd) ∈ (N∗)d,

• a = (a0, . . . , ad) ∈ (N∗)d+1 such that
d∑
j=0

aj = m,
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satisfying aj ≥ nj for 1 ≤ j ≤ d (see Remark 3.3.2).
We see that

w(σs(a1(q − 1) + n1 − n2, . . . , ad(q − 1) + nd))

=
a0q − n1

q
+
a1(q − 1) + n1 − n2

q2
+ . . .+

ad(q − 1) + nd
qd+1

.

Since aj ≥ nj for 1 ≤ j ≤ d and a0 ≥ 1, we get

w(σs(a1(q − 1) + n1 − n2, . . . , ad(q − 1) + nd)) ≥
q − n1
q

+
n1q − n2

q2
+ . . .+

ndq

qd+1
= 1

as required.
Now we know that w(Bs) ≥ 1. Thus Theorem 3.1.3 follows immediately from Theorem 3.2.10.

3.5 Remarks

In this chapter we have succeeded in proving Conjecture 3.1.2 and thus get a partial answer to
Conjecture 3.1.1. We expect that Conjecture 3.1.1 always holds. Thus it is tempting to ask whether
Theorem 3.3.1 holds in full generality so that we can remove the restriction 1 ≤ ℓ ≤ q − 2.

Conjecture 3.5.1. Recall that (see Proposition 3.2.2)

Bs = θm−1 +B1θ
m−2 + . . .+Bm−1, Bℓ ∈ Fq[ts].

Let ℓ ∈ N∗ such that 1 ≤ ℓ ≤ m− 1. Then we have

Bℓ =
∑
n

∑
a

B(n, a)σs(a1(q − 1) + n1 − n2, . . . , ad(q − 1) + nd)

where

• the first sum runs through the set of sequences n = (n1, . . . , nd) ∈ (N∗)d satisfying
d∑
j=1

nj = ℓ,

• the second sum runs through the set of sequences a = (a0, . . . , ad) ∈ (N∗)d+1 satisfying
d∑
j=0

aj = m,

• the coefficients B(n, a) ∈ Fp are given by

B(n, a) = (−1)ℓ
d∏
j=1

(
aj − 1

nj − 1

)
.

By similar arguments as before we prove the following result.

Proposition 3.5.2. Conjecture 3.5.1 implies Conjecture 3.1.1.

Proof. Suppose that Conjecture 3.5.1 holds. From the explicit formula for Bs, by similar arguments
as those given in Section 3.4, we see that w(Bs) ≥ 1. Combined with Theorem 3.2.10, it implies
immediately Conjecture 3.1.1.

Remark 3.5.3. 1) For m = 1, 2, 3, we have explicit formulas for Bs (see Section 3.2.2) and see
easily that Conjecture 3.5.1 holds for these small values. They provide the first evidence to support
our conjecture.



Chapter 4

Beyond Pellarin’s conjectures

Let s ∈ N, s ≥ 2, s ≡ 1 (mod q − 1) and m := (s − 1)/(q − 1) ∈ N. We write (see Proposition
3.2.2)

Bs = θm−1 +B1θ
m−2 + . . .+Bm−1, Bℓ ∈ Fq[t].

In previous chapter, we give an explicit formula of Bℓ with 1 ≤ ℓ < q − 1 in Theorem 3.3.1.
It means that Conjecture 3.5.1 holds for ℓ < q − 1. The goal of this chapter is to go beyond this
bound and to investigate this conjecture for ℓ < q(q − 1).

The steps that we investigate are as follows: First, we formulate an "approximate" equation
which we need to prove, i.e., if we substitute the formula of Bℓ from Conjecture 3.5.1, it should
true. Then, in the next step, by using this Equation, we prove Conjecture 3.5.1 in some cases, i.e.,
ℓ < 2q − 2, ℓ < 3q − 3. This step is done by purely combinatorial arguments. The last step is to
formulate a conjecture based on step two.

4.1 Step 1

The aim of this step is to construct an "approximate" equation: see Equation (4.1.3).
Recall that

Bs := (−1)m ζA(1, ts)ω(t1) . . . ω(ts)
π̃

.

We divide both sides by θm−1 and note that ζA(1, ts) =
∑
ℓ≥0

αℓ,sθ
−ℓ with αℓ,s is defined in Propo-

sition 3.3.10. We obtain

s∑
ℓ=0

Bℓθ
−ℓ =

(∑
ℓ≥0

αℓ,sθ
−ℓ

)
s∏
i=1

∏
j≥0

(1− ti
θq

j )
−1

∏
j≥1

(1− θ−(qj−1))−1
.

Note that
s∏
i=1

(1− ti
θq

j ) =
s∑
ℓ=0

(−1)ℓσs(ℓ)θ−ℓq
j

, where σs(ℓ) is defined in Definition 3.2.4. Thus

(
s∑
ℓ=0

Bℓθ
−ℓ

)∏
j≥0

s∑
ℓ=0

(−1)ℓσs(ℓ)θ−ℓq
j

=

∑
ℓ≥0

αℓ,sθ
−ℓ

∏
j≥1

(1− θ−(qj−1)). (4.1.1)

To compute the coefficient Bℓ for 1 ≤ ℓ < q(q − 1), it suffices to look at both sides of Equation
(4.1.1) modulo θ−q(q−1), i.e., by forgetting the term θ−j for j ≥ q(q − 1). We get(

s∑
ℓ=0

Bℓθ
−ℓ

)(
s∑
ℓ=0

(−1)ℓσs(ℓ)θ−ℓ
)(

s∑
ℓ=0

(−1)ℓσs(ℓ)θ−ℓq
)
≡

∑
ℓ≥0

αℓ,sθ
−ℓ

 (1− θ−(q−1)) (mod θ−q(q−1)).

(4.1.2)

43
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Remark 4.1.1. 1. To remind the reader, in Section 3.3.1, to prove Theorem 3.3.1, we consider
Equation (4.1.1) module θ−(q−1). When we consider modulo θ−q(q−1), we have extra factors(

s∑
ℓ=0

(−1)ℓσs(ℓ)θ−ℓq
)

and (1 − θ−(q−1)) respectively on the left-hand side and on the right-

hand side. These extra factors make the computation much more involved.

2. In Equation (4.1.2) and later, we still keep some terms θ−ℓ for ℓ ≥ q(q − 1) when consider
modulo θ−q(q−1). It does not effect the equation but creates a clear formula.

Similar to Section 3.3.4, we define the following sum with index (assume that Bk = 0 for k < 0)

Si :=
∑
ℓ≥0

(−1)ℓσs(ℓ)Bi−ℓ = Bi − σs(1)Bi−1 + . . .+ (−1)iσs(i)B0.

We note that in Section 3.3.4, we do not have the index "i" in S. Equation (4.1.2) becomes∑
i≥0

Siθ
−i

( s∑
ℓ=0

(−1)ℓσs(ℓ)θ−ℓq
)
≡

∑
ℓ≥0

αℓ,sθ
−ℓ

 (1− θ−(q−1)) (mod θ−q(q−1)),

i.e.,

∑
i≥0

∑
k≥0

(−1)kσs(k)Si−kq

 θ−i =
∑
i≥0

(αi,s − αi−q+1,s)θ
−i (mod θ−q(q−1)).

Here, we assume that αi,s = 0 for i < 0. By comparing the coefficients of θ−i for 1 ≤ i ≤ q(q − 1),
we get ∑

k≥0

(−1)kσs(k)Si−kq = αi,s − αi−q+1,s. (4.1.3)

Now, for 1 ≤ ℓ ≤ m− 1, we set

B∗
ℓ =

∑
n

∑
a

B(n, a)σs(a1(q − 1) + n1 − n2, . . . , ad(q − 1) + nd)

where

• the first sum runs through the set of sequences n = (n1, . . . , nd) ∈ (N∗)d satisfying
d∑
j=1

nj = ℓ,

• the second sum runs through the set of sequences a = (a0, . . . , ad) ∈ (N∗)d+1 satisfying
d∑
j=0

aj = m,

• the coefficients B(n, a) ∈ Fp are given by

B(n, a) = (−1)ℓ
d∏
j=1

(
aj − 1

nj − 1

)
.

Conjecture 3.5.1 is equivalent to show that Bi = B∗
i for 1 ≤ i ≤ m− 1. We also set

S∗
i :=

∑
ℓ≥0

(−1)ℓσs(ℓ)B∗
i−ℓ = B∗

i − σs(1)B∗
i−1 + . . .+ (−1)iσs(i)B∗

0 .

By the definition of Si and S∗
i and by induction, the following statements are equivalent

Bi = B∗
i for all 1 ≤ i ≤ m− 1⇐⇒ Si = S∗

i for all 1 ≤ i ≤ m− 1

⇐⇒
∑
k≥0

(−1)kσs(k)Si−kq =
∑
k≥0

(−1)kσs(k)S∗
i−kq.

We need to show that ∑
k≥0

(−1)kσs(k)S∗
i−kq = αi,s − αi−q+1,s.

In the following Sections, we will write explicitly formulas of both sides and show that they are
equal for some cases.
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4.2 Step 2

We begin with some notation and then we compute both sides of Equation (4.1.3).

4.2.1 Notation

Since this chapter contains a lot of long equations and repeating forms, we assume some "short"
notation as follows.

Recall the notation in (3.3.1).

A+ := {a = (a0, . . . , ad) ∈ (N∗)d+1 :

d∑
j=0

aj = m},

A := {a = (a0, . . . , ad) ∈ (N∗)d × N :

d∑
j=0

aj = m},

N+
ℓ := {n = (n1, . . . , nd) ∈ (N∗)d : n1 ≤ . . . ≤ nd,

d∑
j=1

nj = ℓ}, ℓ ∈ N∗,

Nℓ := {n = (n1, . . . , nd) ∈ (N∗)d :

d∑
j=1

nj = ℓ}, ℓ ∈ N∗.

Let X = (X0, . . . , Xd) ∈ A. It is equivalent to (X1, . . . , Xd) ∈ (N∗)d−1×N and X1+ . . .+Xd < m.
For short, we only write Xd ≥ 0 instead (We do not write the condition X1 + . . . +Xd < m and
X1, . . . , Xd−1 ≥ 1). For example ∑

Xd≥0

f :=
∑

(X1,...,Xd)∈(N∗)d−1×N
X1+...+Xd<m

f.

For (b1, . . . , bd) ∈ (N)d, we define

σ(X, b) = σ(X, b)(1,0)...(d,0) := σs(X1(q − 1) + b1 − b2, . . . , Xd(q − 1) + bd).

For ak ≥ 0, we define an operator that acts on σ(X, b) as follows

f(k,ak)(σ(X, b)) = σ(k,ak)

:= σs(X1(q − 1) + b1 − b2, . . . , Xk−1(q − 1) + bk−1 − bk − ak, Xk(q − 1) + bk − bk+1 + ak, . . . , Xd(q − 1) + bd)

and

σ(X, b)(1,a1)...(d,ad) := f(d,ad)(σ(X, b)(1,a1)...(d−1,ad−1)).

For k = d+ 1, we note that

σ(X, b)(d,ad)ad+1
:= σ(X, b)(d,ad)(d+1,ad+1)

= σs(X1(q − 1) + b1 − b2, . . . , Xd(q − 1) + bd + ad − ad+1, ad+1).

4.2.2 The left-hand side of Equation (4.1.3)

In this section, we compute the left-hand side of Equation (4.1.3).

Proposition 4.2.1. We have∑
k≥0

(−1)kσs(k)Si−kq (4.2.1)

=
∑
K≥0

∑
Xd≥0

∑
b1+...+bd=i−Kq

a1+...+ad+ad+1=K
1≤bj≤q
aj≥0

(−1)d+bd−1+ad+ad+1

d−1∏
j=1

(
bj+1 − 1

bj − 1

)(
bj+1 − bj + aj+1

aj

)
×
(
bd + ad − ad+1

ad

)
×

× σ(X, b)(1,a1)...(d,ad)ad+1
.
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Proof. The proof uses similar arguments as in that of Proposition 3.3.14. We omit the details.

We write ∑
k≥0

(−1)kσs(k)Si−kq =
∑
k≥0

Ak,

where

Ak =
∑
Xd≥0

∑
b1+...+bd=i−Kq

a1+...+ad+ad+1=K
1≤bj≤q
aj≥0

(−1)d+bd−1+ad+ad+1

d−1∏
j=1

(
bj+1 − 1

bj − 1

)(
bj+1 − bj + aj+1

aj

)
×
(
bd + ad − ad+1

ad

)
×

× σ(X, b)(1,a1)...(d,ad)ad+1
.

4.2.3 The right-hand side of Equation (4.1.3)

The author formulated a formula of αi and αi−q+1 which is "similar" to that of
∑

(−1)kσs(k)Si−kq
in Equation (4.2.1). The following proposition is a simple reformulation of Proposition 3.3.12.

Proposition 4.2.2. For i < q2, we have

αi =
∑
k≥0

∑
Xd≥0

∑
b1+...+bd=i−kq+q−bd+1

a1+...+ad+ad+1=k+bd+1−q
1≤bj≤q,aj≥0

(−1)d+ad+1

d−1∏
j=1

(
bj+1 − 1

bj − 1

)(
aj+1

aj

)
×

×
(
ad+1 + q − 1− bd+1

ad

)(
bd+1 − 1

bd − 1

)
× σ(X, b)(1,a1)...(d,ad)ad+1

and

αi−q+1 =
∑
k≥0

∑
Xd≥0

∑
b1+...+bd=i−kq+q+1−bd+1

a1+...+ad+ad+1=k−1+bd+1−q
1≤bj≤q,aj≥0

(−1)d+ad+1

d−1∏
j=1

(
bj+1 − 1

bj − 1

)(
aj+1

aj

)
×

×
(
ad+1 + q − 1− bd+1

ad

)(
bd+1 − 1

bd − 1

)
× σ(X, b)(1,a1)...(d,ad)ad+1

.

Remark: In both formulas of αi and αi−q+1, the sums (b1 + . . .+ bd) + (a1 + . . .+ ad+1) are
equal and the values are k(q + 1), which do not depend on bd+1. We write

αi =
∑
k≥0

Bk

and

αi−q+1 =
∑
k≥0

Ck.

4.2.4 Step 2 for some cases

We need to show that

Conjecture 4.2.3. For i < q2, we have∑
k≥0

(−1)kσs(k)Si−kq = αi − αi−q+1,
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where∑
k≥0

(−1)kσs(k)Si−kq

=
∑
K≥0

∑
Xd≥0

∑
b1+...+bd=i−Kq

a1+...+ad+ad+1=K
1≤bj≤q
aj≥0

(−1)d+bd−1+ad+ad+1

d−1∏
j=1

(
bj+1 − 1

bj − 1

)(
bj+1 − bj + aj+1

aj

)
×
(
bd + ad − ad+1

ad

)

× σ(X, b)(1,a1)...(d,ad)ad+1

and

αi =
∑

b1+...+bd=i
bj≥1

∑
X1+...+Xd<m
X1,...,Xd−1≥1

no condition on Xd

(−1)d+bd−1
d−1∏
j=1

(
bj+1 − 1

bj − 1

)
σ(X, b)(1,0)...(d,0).

Conjecture 4.2.3 is equivalent to show that∑
k≥0

Ak =
∑
k≥0

Bk −
∑
k≥0

Ck.

For small values of k, we have the following proposition.

Proposition 4.2.4. For k = 1, 2, we have

Ak = Bk − Ck.

Proof. The idea of the proof is as follows:
We find all value of (a1, . . . , ad, ad+1) corresponding to Ak, Bk, Ck.

1. For Ak, the number of solutions (a1, . . . , ad+1) of a1 + . . . + ad+1 = k ≤ 2 is small. After
expanding Ak, we get the terms σ(X, b), σ(X, b)(k,1), σ(X, b)(k1,1)(k2,1), 1 ≤ k, k1, k2 ≤ d+ 1.
Then, we apply the following lemma whose proof is by direct calculations.

Lemma 4.2.5. For any i ∈ N, for any function g(bk), we have∑
b1+...+bd=i

1≤bj≤q

(bk − bk+1)C̃(b)g(bk)σ(X, b)(k,1) =
∑

b1+...+bd=i+1
1≤bj≤

(bk−1 − bk)C̃(b)g(bk − 1)σ(X, b)

where

C̃(b) = (−1)d+bd−1
d−1∏
j=1

(
bj+1 − 1

bj − 1

)
.

By applying this lemma, with suitable coefficients, we can transform σ(X, b)(k,1), σ(X, b)(k1,1)(k2,1)
to σ(X, b), then we can gather the coefficients of these σ’s.

2. For Bk, Ck, the number of solutions (a1, . . . , ad+1) of a1 + . . . + ad+1 = k + bd+1 − q ≥ 0 is
also small since bd+1 ≤ q (hence, the possible values of bd+1 are q, q − 1, q − 2, q − 3). Also,
since there are term like

(
aj+1

aj

)
, we have an additional condition that 0 ≤ a1 ≤ . . . ≤ ad.

3. After expanding Ak and gathering by Lemma 4.2.5, the results obtained coincide with Bk −
Ck.

Corollary 4.2.6. Conjecture 4.2.3 is true with i < 2q − 2, i < 3q − 3.

Proof. For i < 3q − 3, we have b1 + . . . + bd = i − kq ≥ 0, hence k ≤ 2. By Proposition 4.2.4, it
implies that ∑

k≥0

(−1)kσs(k)Si−kq = A1 +A2 = B1 +B2 − C1 − C2 = αi − αi−q+1.
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4.3 Step 3 and comment

By Proposition 4.2.4, we suggest the following conjecture.

Conjecture 4.3.1. For all k < q, we have

Ak = Bk − Ck,

i.e.,

∑
Xd≥0

∑
b1+...+bd=i−kq
a1+...+ad+1=k

1≤bj≤q
aj≥0

(−1)d+bd−1+ad+ad+1

d−1∏
j=1

(
bj+1 − 1

bj − 1

)(
bj+1 − bj + aj+1

aj

)
×
(
bd + ad − ad+1

ad

)
×

× σ(X, b)(1,a1)...(d,ad)ad+1

=
∑
Xd≥0

∑
b1+...+bd=i−kq+q−bd+1

a1+...+ad+1=k+bd+1−q
1≤bj≤q
aj≥0

(−1)d+ad+1

d−1∏
j=1

(
bj+1 − 1

bj − 1

)(
aj+1

aj

)
×
(
ad+1 + q − 1− bd+1

ad

)(
bd+1 − 1

bd − 1

)
×

× σ(X, b)(1,a1)...(d,ad)ad+1

−
∑
Xd≥0

∑
b1+...+bd=i−kq+q+1−bd+1

a1+...+ad+1=k−1+bd+1−q
1≤bj≤q
aj≥0

(−1)d+ad+1

d−1∏
j=1

(
bj+1 − 1

bj − 1

)(
aj+1

aj

)
×
(
ad+1 + q − 1− bd+1

ad

)(
bd+1 − 1

bd − 1

)
×

× σ(X, b)(1,a1)...(d,ad)ad+1
.

Comment: To prove Conjecture 4.2.3 for the case i < 4q − 4, we need to prove Conjecture
4.3.1 for k = 3. There are some possibilities:

1. Do as the method in Proposition 4.2.4. The difficult part is after expanding Ak and applying
Lemma 4.2.5. To apply Lemma 4.2.5, we need a suitable coefficients.

(a) From σ(k,1) to σ, applying Lemma 4.2.5 in the k-position, to get a suitable coefficient,
we have an extra term (this term can not apply Lemma 4.2.5).

(b) From σ(k1,1)(k2,1) to σ(k1,1)(k2,0), applying Lemma 4.2.5 in the k2-position, to get a
suitable coefficient, we have an extra term. In this extra term and main term, we
can also apply Lemma 4.2.5 (in k1 position). But it will generate some "extra term".
Roughly speaking, finally, the coefficient of σ(k1,1)(k2,1) can divide into three terms, one
term with coefficient help us to apply Lemma 4.2.5 two times, one term with coefficient
help us to apply Lemma 4.2.5 one time, and the remaining term that can not apply
Lemma 4.2.5.

(c) From σ(k1,1)(k2,1)(k3,1) to σ, we do the same.
Question: Using this method to prove Conjecture 4.3.1, Lemma 4.2.5 is not enough.
Could we get a generation of Lemma 4.2.5?
Answer: The author has some generation of Lemma 4.2.5, that are Lemma 4.3.2 and
4.3.3.

2. Maybe induction works in this situation. We can change variable as follows:

bd + q → bd

ad − 1→ ad

Xd − 1→ Xd

Xd−1 + 1→ Xd−1.
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Note that

σs(X1(q − 1) + b1 − b2 + a1 − a2, . . . , Xd−1(q − 1) + bd−1 − bd + ad−1 − ad, Xd(q − 1) + bd + ad − ad+1, ad+1)

= σs(X1(q − 1) + b1 − b2 + a1 − a2, . . . ,
, (Xd−1 + 1)(q − 1) + bd−1 − (bd + q) + ad−1 − (ad − 1),

, (Xd − 1)(q − 1) + bd + q + ad − 1− ad+1, ad+1).

The following lemmas are some generalizations of Lemma 4.2.5 which may helpful to prove
Conjecture 4.3.1. The proofs are by direct calculations and we omit the details.

Lemma 4.3.2. We have∑
b1+...+bd=i

1≤b1≤...≤bd≤q

(bk − bk+1) . . . (bk − bk+1 + a− 1)f(bk)C̃(b)σ(X, b)(k,a)

=
∑

b1+...+bd=i+a
1≤b1≤...≤bd≤q

(bk−1 − bk) . . . (bk−1 − bk + a− 1)f(bk − a)C̃(b)σ(X, b)(k,0)

i.e., ∑
b1+...+bd=i

1≤b1≤...≤bd≤q

(
bk − bk+1 + a− 1

a

)
C̃(b)f(bk)σ(X, b)(k,a) =

∑
b1+...+bd=i+a
1≤b1≤...≤bd≤q

(
bk−1 − bk + a− 1

a

)
C̃(b)f(bk − a)σ(X, b)(k,0)

i.e., ∑
b1+...+bd=i

1≤b1≤...≤bd≤q

(
bk+1 − bk

a

)
C̃(b)f(bk)σ(X, b)(k,a) =

∑
b1+...+bd=i+a
1≤b1≤...≤bd≤q

(
bk − bk−1

a

)
C̃(b)f(bk − a)σ(X, b)(k,0).

Lemma 4.3.3.

∑
K≥0

∑
Xd≥0

∑
b1+...+bd=i−Kq

a1+...+ad+ad+1=K
1≤bj≤q
aj≥0

(−1)d+bd−1+ad+ad+1

d−1∏
j=1

(
bj+1 − 1

bj − 1

)(
bj+1 − bj + aj+1

aj

)
×
(
bd + ad − 1

ad

)

× σ(X, b)(1,a1)...(d,ad)ad+1

=
∑
K≥0

∑
Xd≥0

∑
b1+...+bd=i−Kq+a1+...+ad

a1+...+ad+ad+1=K
1≤bj≤q
aj≥0

(−1)d+bd−1+ad+ad+1

d−1∏
j=1

(
bj+1 − 1

bj − 1

)
×

×
(
b1 − 1

a1

)(
b2 − b1 + a1

a2

)(
b3 − b2 + a2

a3

)
. . .

(
bd − bd−1 + ad−1

ad

)
× σ(X, b)(1,0)...(d,0)ad+1

.



Chapter 5

Generalization of Speyer’s results

In 2017, Speyer (see [Spe17]) proved some conjectures due to D. Thakur for A = Fq[θ] (see also
Section 5.2). The aim of this chapter is to generalize Speyer’s results in the context of rank one
Drinfeld modules.

We begin with some preliminaries in Section 5.1. In Section 5.2 we briefly recall some of Speyer’s
results (see [Spe17]) in the case A = Fq[θ]. Section 5.3 is devoted to some generalization of Speyer’s
results. The main result is Theorem 5.3.17. We also give some examples of this theorem in some
special cases (see Section 5.3.4).

5.1 Preliminaries

In this section, we recall basic definitions and properties of rank one Drinfeld modules. We refer
the reader to [Gos96, Chapter 4, Chapter 7] for more details. From Subsection 5.1.2 to 5.1.5,
we follows closely [Gos96, Chapter 4, Chapter 7]. Subsection 5.1.6 is devoted to construct the
most important definition: the "Goss" map. We define the zeta values of Goss associated to A in
Subsection 5.1.7. We also add some combinatorial materials in Subsection 5.1.8.

5.1.1 Notation

• K/Fq: a global function field (Fq is algebraically closed in K).

• ∞: a place of K.

• A: the ring of element of K which are regular outside ∞.

• K∞: the ∞-adic completion of K. Let F∞ be the residue field of K∞ and d∞ = [F∞ : Fq].

• K∞: a fixed algebraically closure of K.

• v∞: the discrete valuation on K corresponding to the place ∞ normalized that v∞(K×
∞) =

Z×.

• π ∈ K∞: a uniformizer.

Example: K = Fq(θ), ∞: the unique pole of θ, A = Fq[θ], v∞(θ) = −1, K∞ = Fq(( 1θ )).

• C∞: the completion of a fixed algebraic closure K∞ of K∞. The unique valuation of C∞
which extends v∞ will still be denoted by v∞.

• IA: the group of non-zero fractional ideals of A.

• A: the set of non-zero ideals of A.

• M: the set of maximal ideals of A.

50
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• deg : IA → Z: the natural homomorphism of groups that for every prime ideal P ∈ A, we
have

deg(P ) = dimFq (A/P ).

We recall the fact that for a ∈ A\{0},deg a = dimFq
A/aA and further for x ∈ K×, deg(xA) =

−v∞(x)d∞.

• In this chapter, we always fix a sign function sgn: K×
∞ → F×

∞ given by sgn(
∑
i≥i0

aiπ
i) = ai0

for i0 ∈ Z, ai0 ̸= 0, ai ∈ F∞.

• Set

Pic(A) :=
IA

{xA, x ∈ K×}
.

• Set

Pic+(A) :=
IA

{xA, x ∈ K×, sgn(x) = 1}
. (5.1.1)

We set

h :=
∣∣Pic+(A)∣∣ . (5.1.2)

5.1.2 Drinfeld modules, Exponential map

This Subsection follows closely [Gos96, Section 4.5, Section 4.6].
We consider Drinfeld modules over C∞.

Definition 5.1.1. A Drinfeld A-module over C∞ is an Fq-algebra homomorphism ϕ : A→ C∞{τ}
such that

ϕa = a+ a1τ + . . .+ adτ
d,

for some d ≥ 1, a1, . . . , ad ∈ C∞, ad ̸= 0.

Proposition 5.1.2 (See [Gos96, Lemma 4.5.1] ). Let ϕ be a Drinfeld A-module. Then there exists
r ∈ N∗ such that

degτ ϕa = r deg a for all a ∈ A.

Definition 5.1.3. The number r in Proposition 5.1.2 is called the rank of ϕ.

Proposition 5.1.4 (See [Gos96, Section 4.6]). Let ϕ be a Drinfeld A-module over C∞. There
exists a unique element expϕ ∈ C∞{{τ}} such that

• expϕ ≡ 1 (mod τ),

• expϕ a = ϕa expϕ for all a ∈ A.

Definition 5.1.5. The series expϕ is called the exponential of Drinfeld module ϕ.

We can write expϕ =
∑
i≥0

eiτ
i. The element expϕ induces a homomorphism C∞ → C∞ such

that for all x ∈ C∞, we have

exp(x) =
∑
i≥0

eix
qi .

Definition 5.1.6. We denote by Λϕ ⊂ C∞ the kernel of expϕ : C∞ → C∞.

The important property of Λϕ is the following proposition.
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Proposition 5.1.7 (See [Gos96, Theorem 4.6.9]). We have Λϕ is an A-lattice i.e., Λϕ is discrete
in C∞ and Λϕ is a finitely generated A-module of rank r, where r is the rank of ϕ.

By [Gos96, Theorem 2.14], we have the following formula of the exponential expϕ of Drinfeld
module ϕ.

Proposition 5.1.8. For x ∈ C∞, we have

expϕ(x) = x
∏

λ∈Λϕ\{0}

(1− x

λ
).

5.1.3 Action of ideals on Drinfeld modules

This Subsection follows closely [Gos96, Section 4.9].
Let ϕ : A→ K∞{τ} be a Drinfeld A-module of rank r.

Definition 5.1.9. Let I be a nonzero ideal of A. We denote by Iϕ the left ideal generated by
{ϕb}b∈I . Since C∞{τ} is a principal ideal domain, the ideal Iϕ is generated by one element. We
denote by ϕI ∈ C∞{τ} the monic polynomial in τ generating Iϕ, i.e.,∑

b∈I

C∞{τ}ϕb = C∞{τ}ϕI .

We denote by ψ(I) the constant coefficient of ϕI .

By "monic" property of ϕI , it is stable under the right multiplication with ϕa for all a ∈ A.
Thus there exists a unique element in C∞{τ}, denoted by I ∗ ϕa, such that

ϕIϕa = (I ∗ ϕa)ϕI .

We have constructed the following map

I ∗ ϕ : A −→ C∞{τ}
a 7−→ I ∗ ϕa.

We list some properties of this map.

Proposition 5.1.10 (see [Gos96, Section 4.9]). We have

1. I ∗ ϕ is a Drinfeld module of rank r.

2. We have ΛI∗ϕ = ψ(I)I−1Λϕ, where ΛI∗ϕ, Λϕ are respectively the kernel of the exponential
map of I ∗ ϕ and ϕ.

3. The kernel of the exponential of I ∗ ϕ have the following property

expI∗ϕ ψ(I) = ϕI expϕ.

By [Gos96, Theorem 2.14], we have the following formula of the exponential of I ∗ ϕ.

Corollary 5.1.11. We have

expI∗ϕ(X) = X
∏

λ∈I−1Λϕ\{0}

(1− X

ψ(I)λ
). (5.1.3)

5.1.4 Standard sgn-normalized Drinfeld modules of rank one

This subsection follows closely [Gos96, Chapter 7].

Definition 5.1.12. A sign function on K×
∞ is a homomorphism sgn : K×

∞ → F×
∞ which is the

identity on F×
∞. We make a convention that sgn(0) = 0.
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Recall that we always fix a sign function as follows (see Section 5.1.1)

sgn : K× −→ F×
∞

x =
∑
i≥i0

aiπ
i 7−→ sgn(x) := ai0 .

Definition 5.1.13. A sgn-normalized Drinfeld module of rank one is a homomorphism of Fq-
algebras ρ : A→ C∞{τ} such that

∃i ∈ Z,∀a ∈ A\{0}, ρa = a+ . . .+ · · ·+ sgn(a)q
i

τdeg(a).

Recall that ker expρ is an A-lattice of rank one (see Proposition 5.1.7).

Definition 5.1.14. We say that a sign-normalized rank one Drinfeld module ρ is standard if
ker expρ is a free A-module of rank one.

Proposition 5.1.15. There always exists a standard Drinfeld module of rank one.

Proof. Let ϕ be a Drinfeld module of rank one and Λϕ be the kernel of its exponential map. Then
by Proposition 5.1.7, Λϕ is an A-lattice of rank one. We recall the fact that A is a Dedekind ring.
Thus Λϕ ∼= I with I is an ideal of A. Hence, Λϕ = Ih for some h ∈ C∞. We have

ker(I ∗ ϕ) = ψ(I)I−1Λϕ = Aψ(I)h.

It means that the Drinfeld module I ∗ ϕ is standard.

Remark 5.1.16. If d∞ = 1 then the standard module is unique. In general, this is not true.

5.1.5 A little bit of class field theory

This subsection follows closely [Gos96, Chapter 7]. In this subsection, we recall a little bit of class
field theory.

Let ϕ be a standard sgn-normalized Drinfeld A-module of rank one and expϕ be the exponential
of ϕ. We can write

expϕ =
∑
n≥0

enτ
n, with en ∈ C∞.

Definition 5.1.17. We set

H+
A := K(en, n ≥ 0),

and

T := H+
A ([I], I ∈ IA). (5.1.4)

We have another way to define H+
A . For any a ∈ A\Fq, we can write ϕa =

deg a∑
i=0

(a, i)τ i, where

(a, i) is the coefficients depend on a and i.

Definition 5.1.18 (See [Gos96, Defintion 7.4.1]). We define

H+
A = K((a, i), 0 ≤ i ≤ deg a).

We have the following property of H+
A .

Proposition 5.1.19 (See [Gos96, Proposition 7.4.4]). The extension H+
A/K is a finite abelian

extension which is ramified outside ∞.

Definition 5.1.20. Set G := Gal(H+
A/K) and let σ : IA → G be the Artin map.
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Recall that if P ∈M, then the Frobenious map σP ∈ G is the map such that

∀b ∈ B, σP (b) ≡ bq
deg(P )

(mod PB),

where B is the integral closure of A in H+
A . The Artin map induces an isomorphism of groups

Pic+(A) ∼= G.

Let I ∈ A be a nonzero ideal of A. We define σI(expϕ) :=
∑
n≥0

σI(ei)τ
i.

Proposition 5.1.21 (See [Gos96, Theorem 7.4.8]). Let I ∈ A and I ∗ϕ be the Drinfeld constructed
in Section 5.1.3. Then we have

expI∗ϕ = σI(expϕ).

5.1.6 Goss’ map

We recall that h is defined by (5.1.2) and π ∈ K∞ is a uniformizer. We first collect a lemma which
will be necessary in the sequel.

Lemma 5.1.22 (See [Gos96, Lemma 8.2.2]). For x ∈ 1 + πF∞[[π]], there exists a unique y ∈ K∞
such that v∞(y − 1) > 0 and yh = x.

Proof. Suppose that h = h1p
n where h1 ∤ p, n ≥ 0. We have

Xh1 − x ≡ Xh1 − 1 (mod π).

On the other hand, its formal derivative is non zero, i.e., (Xh1 − 1)′ = h1X
h1−1 ̸= 0. Hence, 1 is a

simple root of the polynomial Xh1 − 1. By Hensel’s Lemma, there exist a unique lift y ∈ F∞[[π]]
of 1 such that (Xh1 − x)(y) = 0 i.e., there exists a unique y ∈ 1 + πF∞[[π]] such that yh1 = x.

Let us take z ∈ K∞ such that zp
n

= y. We note that zh = x and v∞(zp
n −1) = v∞(y−1) > 0.

On the other hand, v∞(zp
n − 1) = pnv∞(z − 1). It follows that v∞(z − 1) > 0. This imply the

existence.
Now, for the uniqueness, if there exists z′ such that zp

n

= z′
pn

= y, then 0 = zp
n − z′pn =

(z − z′)pn . Hence, z = z′. The proof is done.

Definition 5.1.23. By Lemma 5.1.22, we define x1/h := y.

Let π′ ∈ K∞ such that

(π′)d∞ = π.

We are read to define the "Goss map"

[.] : IA → K∞.

For I ∈ IA, there exists a unique x ∈ K× such that sgn(x) = 1 and Ih = xA. Note that
x

πv∞(x) ∈ 1 + πF∞[[π]]. Thus,
(

x
πv∞(x)

) 1
h is well-defined by Lemma 5.1.22.

Definition 5.1.24. We define

[I] := (π′)− deg I(
x

πv∞(x)
)

1
h .

Remark 5.1.25. We have v∞([I]) = −deg Iv∞(π′) = −deg I
d∞

tends to −∞ when deg I tends to
∞.

We list some basic properties of the Goss map.

Proposition 5.1.26 (See [Gos96, Section 8.2]). For all I, J ∈ IA, we have

1. [I][J ] = [IJ ].
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2. For a ∈ K× and I = aA then

[I] :=
a

sgn(a)
.

3. [.] is injective.

Proof. 1. For I, J ∈ IA, there exist unique x, y ∈ K× such that sgn(x) = sgn(y) = 1 and
Ih = x, Jh = y. We can see that xy ∈ K× satisfies sgn(xy) = 1 and (IJ)h = xy. We have

[I][J ] = (π′)− deg I−deg J(
xy

πv∞(x)+v∞(y)
)

1
h = [IJ ].

2. Assume I = aA. There exists a unique x ∈ K× such that sgn(x) = 1 and Ih = xA. Thus
ahA = xA. We claim that

x = (
a

sgn(a)
)h.

Indeed, we have sgn(a) ∈ F×
∞. Hence, sgn(a)

qd∞−1

q−1 = NmF∞/Fq
(sgn(a)) ∈ F×

q , where Nm is the

norm over Fq. On the other hand, h :=
∣∣Pic+(A)∣∣ = |Pic(A)| qd∞−1

q−1 . It follows that sgn(a)h =

sgn(a)
qd∞−1

q−1 |Pic(A)| = (NmF∞/Fq
(sgn(a)))|Pic(A)| ∈ F×

q . Thus xA = ahA = ah sgn(a)−hA =

( a
sgn(a) )

hA. It implies x = ( a
sgn(a) )

hλ with λ ∈ F×
q . Note that sgn(x) = sgn( a

sgn(a) ) = 1. It
follows that λ = 1, i.e., x = ( a

sgn(a) )
h.

Since xA = ahA, we have v∞(x) = hv∞(a). It implies

x

πv∞(x)
= (

a/ sgn(a)

πv∞(a)
)h.

It is clear that v∞(a/ sgn(a)
πv∞(a) − 1) > 0. Hence, by Lemma 5.1.22, we have

(
x

πv∞(x)
)

1
h =

a/ sgn(a)

πv∞(a)
.

Recall that deg I = deg aA = −d∞v∞(a). Hence, we have

[I] = (π′)− deg I(
x

πv∞(x)
)

1
h = (π′)d∞v∞(a) a/ sgn(a)

πv∞(a)
=

a

sgn(a)
.

3. Suppose that I, J ∈ IA such that [I] = [J ]. Suppose that Ih = xA, Jh = yA for x, y ∈ K×,
sgn(x) = sgn(y) = 1. We get [xA] = [yA]. By part 2, we have

x

sgn(x)
= [xA] = [yA] =

y

sgn(y)
.

It implies that x = y. Hence Ih = Jh. Since every nonzero fractional ideal has a unique decompo-
sition into primes ideals, it follows that I = J .

5.1.7 Zeta function

We recall the following important fact.

Proposition 5.1.27. Let n ∈ N. Then

|{I ∈ A : deg I = n}| < +∞.

Proposition 5.1.28. The sum
∑
I∈A

1
[I]n converges in C∞.

Proof. The proof follows immediately from Proposition 5.1.27 and Remark 5.1.25.
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Definition 5.1.29. The value at n of the Goss zeta function associated to A is defined by

ζA(n) :=
∑
I∈A

1

[I]n
∈ C∞.

For n ≥ 1, we also have

ζA(n) =
∏
P∈M

(1− 1

[P ]n
)−1. (5.1.5)

Remark 5.1.30. By Equality (5.1.5), we have ζA(n) ̸= 0.

5.1.8 Elementary symmetric polynomials and polynomial Pn, gp

In this subsection, we will discuss some results in combinatorics about elementary symmetric poly-
nomials. We will represent some homogeneous symmetric polynomials as expressions of elementary
symmetric polynomials (see Proposition 5.1.32 and Corollary 5.1.33). In the end, we consider the
values of these symmetric polynomials at the zeta values of Goss.

Notation

We first define these homogeneous symmetric polynomials in finite variables. Then we will define
its values at the zeta values of Goss in "infinite variables". These definition is well-defined by
Proposition 5.1.27 and Remark 5.1.25.

Let S be a finite set of variables and s := |S|.

Definition 5.1.31. The elementary symmetric polynomials in the variables {X}X∈S of degree n,
denoted by En, is defined by

En = En(X)X∈S :=


1 if n = 0,∑
S′⊂S,|S′|=n

∏
X∈S′

X if 1 ≤ n ≤ s,

0 if n > s.

Let l ∈ N∗. Let f(X)X∈S (or f , for short) be a homogeneous symmetric polynomial of degree l
in the variables {X}X∈S . Recall that the ring of symmetric polynomial is generated by elementary
symmetric polynomials Ek, k ≥ 0. Hence, a homogeneous symmetric polynomial f of degree l can
always be written as

f =
∑
|λ|=l

cλEλ,

where |λ| := λ1 + . . .+ λr with λ = (λ1, . . . , λr) ∈ Nr and

Eλ := Eλ1
· · ·Eλr

.

We consider the following symmetric polynomials

gp = gp(X)X∈S :=
1

p

(
(
∑
X∈S

X)p −
∑
X∈S

Xp

)
∈ Z[X]

and

Pn = Pn(X)X∈S :=
∑
X∈S

Xn.

We will represent these polynomials in terms of elementary symmetric polynomials En, n ≥ 0.
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Polynomial Pn

The function Pn is a homogeneous symmetric polynomial of degree n. Hence, it can always be
written as

Pn =
∑

dλEλ(X)X∈S

where the sum runs through λ = (λ1, . . . , λr) ∈ (N)r, r ∈ N, 1 ≤ λ1 ≤ λ2 ≤ . . . ≤ λr and
λ1 + · · ·+ λr = n.

The method of computing the coefficients dλ follows [Spe17, page 1240]. The coefficients dλ
are described in the following proposition.

Proposition 5.1.32. We have

Pn(X)X∈S = (−1)n−1n
∑

i1,...,is≥0
i1+2i2+...+sis=n

(−1)i1+...+is−1

i1 + . . .+ is

(
i1 + . . .+ is
i1, i2, . . . , is

)
Ei11 · · ·Eiss . (5.1.6)

Proof. Let U be an indeterminate. We have∑
X∈S

∑
j≥1

(−1)j−1XjU j

j
=
∑
X∈S

log(1 +XU).

Hence ∑
j≥1

(−1)j−1PjU
j

j
= log(

∏
X∈S

(1 +XU)).

Note that
∏
X∈S(1 +XU) = 1 +

s∑
i=1

EiU
i. Expanding the log on the right-hand side as a Taylor

series, we get∑
j≥1

(−1)j−1PjU
j

j
=
∑
j≥1

(−1)j−1

j
(

s∑
i=1

EiU
i)j

=
∑
j≥1

(−1)j−1

j

∑
i1,...,is≥0
i1+...+is=j

(
j

i1, . . . , is

)
Ei11 E

i2
2 . . . Eiss U

i1+2i2+···+sis .

We consider the coefficients of Un in both sides. It follow that

(−1)n−1Pn

n
=

∑
i1,...,is≥0

i1+2i2+...+sis=n

(−1)i1+...+is−1

i1 + . . .+ is

(
i1 + . . .+ is
i1, . . . , is

)
Ei11 · · ·Eiss .

Hence, we have

Pn = (−1)n−1n
∑

i1,...,is≥0
i1+2i2+...+sis=n

(−1)i1+...+is−1

i1 + . . .+ is

(
i1 + . . .+ is
i1, i2, . . . , is

)
Ei11 · · ·Eiss .

Polynomial gp

As a consequence of Proposition 5.1.32, we have the following corollary.

Corollary 5.1.33. We have

gp(X)X∈S = (−1)p
∑

i1,...,is≥0
i1+2i2+...+sis=p

i1<p

(−1)i1+...+is−1

i1 + . . .+ is

(
i1 + . . .+ is
i1, i2, . . . , is

)
Ei11 · · ·Eiss .

In particular, we have g2 = E2.
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Proof. We see that gp = 1
p (E

p
1 − Pp). The coefficient of Ep1 in Pp in (5.1.6) corresponds to i1 = p,

i2 = . . . = is = 0. The proof is done.

Now, we will describe the values of a homogeneous symmetric polynomials f at the value of
Goss map.

We denote by A≤n the set nonzero ideals of A of degree less than or equal n. The sequence
{f( 1

[I]q
d∞−1

)}I∈A≤n
⊂ C∞ converges in C∞ by Proposition 5.1.27 and Remark 5.1.25. Hence, we

define

f(
1

[I]qd∞−1
)I∈A := lim

n→∞
f(

1

[I]qd∞−1
)I∈A≤n

∈ C∞.

By applying the same arguments, we can define

El(
1

[I]qd∞−1
)I∈A := lim

n→+∞
El(

1

[I]qd∞−1
)I∈A≤n

,

and

gp(
1

[I]k
)I∈A := lim

n→∞
gp(

1

[I]k
)I∈A≤n

.

Thus, as a consequence of Corollary 5.1.33, when passing to limit, we obtain the following
proposition.

Proposition 5.1.34. We have

gp(
1

[I]k
)I∈A = (−1)p

∑
i1,...,is>0

i1+2i2+...+sis=p
i1<p

(−1)i1+...+is−1

i1 + . . .+ is

(
i1 + . . .+ is
i1, i2, . . . , is

)
Ei11 (

1

[I]k
)I∈A · · ·Eiss (

1

[I]k
)I∈A.

Remark: s in this Proposition is not the same as the one that s := |S|.

5.2 Speyer’s results

In this section, we recall some of Speyer’s results. His main results is Theorem 5.2.3.
Let A = Fq[θ], K = Fq(θ), K∞ = Fq(( 1θ )). Denote by A+ (A≤n) the set of monic polynomials

in A (the set of polynomials in A of degree less than or equal n) and P+ the set of monic irreducible
polynomials in A. Set

Gp(X) =
(1−Xp)− (1−X)p

p(1−X)p
∈ Fp(X).

Let S be a set of s variables. We set

gp(X)X∈S :=
1

p

(
(
∑
X∈S

X)p −
∑
X∈S

Xp

)
.

Denote by A+,≤n the set of monic polynomials in A of degree less than or equal n. We define

gp(
1

ak
)a∈A+

:= lim
n→+∞

gp(X)X∈A+,≤n
.

The above sum is well-defined, since only finitely many terms contribute to the coefficient of any
particular power of 1

θ .
Speyer formulates the following formula.

Proposition 5.2.1. For all k ∈ Z+, we have∑
P∈P1

Gp(
1

P k
) =

gp(
1
ak
)a∈A+

ζ(kp)
.
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Then, he uses the arithmetic properties of the Carlitz exponential expC to get some interesting
results. By using the following identity

expC(π̃X)

π̃X
=

∏
a∈A\{0}

(1 +
X

a
),

he shows that

Ek(
1

a
)a∈A =

{
π̃k

Dj
, k = qj − 1,

0, otherwise,

where Ek is the elementary symmetric polynomial of degree k and

Ek(
1

a
)a∈A = lim

n→∞
Ek(X)X∈A≤n

.

Since the ring of symmetric polynomial is generated by the Ek, we deduce the following proposition.

Proposition 5.2.2. If f is a homogeneous symmetric polynomial of degree k then f( 1a )a∈A ∈ π̃
kK.

Note that gp(X) is a homogeneous symmetric polynomials of degree p, it implies that gp( 1
ak
)a∈A+ ∈

π̃kpK. On the other hand, for k ∈ Z+ and k ≡ 0 (mod q − 1), ζ(kp) ∈ π̃kpK is a well-known
result. By Proposition 5.2.1, we get the main theorem as follows.

Theorem 5.2.3. For any k ∈ Z+ and k ≡ 0 (mod q − 1), we have∑
P∈P+

Gp(
1

P k
) ∈ K.

5.3 Generalization of Speyer’s results

For the rest of this section, we always suppose that ϕ is a standard sgn-normalized Drinfeld A-
module of rank one. There exists π̃ ∈ C∞ such that

ker expϕ = π̃A. (5.3.1)

Let us fix π̃ for a fix standard sgn-normalized Drinfeld A-module ϕ of rank one.
In this section, we generalize Speyer’s reults. The main result is Theorem 5.3.17. The idea of

the proof is based on an equality in C∞ (see Proposition 5.3.7) which is a consequence of Speyer’s
lemma. We will show that both the numerator and denominator on the right hand side of this
equation are in π̃kpT (where T is defined in (5.1.4)) by using a key lemma (see Lemma 5.3.10). It
implies the rationality of of left hand side.

5.3.1 Speyer’s lemma

Let p be an odd prime number. Recall

Gp(X) :=
1−Xp − (1−X)p

p(1−X)p
∈ Z[[X]].

Set

f(x) :=

∣∣∣∣∣{(m1, . . . ,mp) ∈ Zp :
p∑
i=1

mi = n, min
i=1,...,p

mi = 0}

∣∣∣∣∣ .
Also set

g(x) :=

∣∣∣∣∣{(m1, . . . ,mp) ∈ Zp :
p∑
i=1

mi = n, min
i=1,...,p

mi ≥ 0}

∣∣∣∣∣ ,
h(x) :=

∣∣∣∣∣{(m1, . . . ,mp) ∈ Zp :
p∑
i=1

mi = n, min
i=1,...,p

mi ≥ 1}

∣∣∣∣∣ .
We see that f(n) = g(n)− h(n) and for 0 ≤ n ≤ q, h(n) = 0.
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Lemma 5.3.1. For n ≥ 0, we have

g(n) =

(
n+ p− 1

p− 1

)
.

Proof. There is a bijection between the set {(m1, . . . ,mp) ∈ Zp :
p∑
i=1

mi = n,mini=1,...,pmi ≥ 0}

and the set of binary sequences of length n+ p− 1 which have exactly p− 1 number 0.

(m1, . . . ,mp)←→ 11 . . . 1︸ ︷︷ ︸
m1 times

0 11 . . . 1︸ ︷︷ ︸
m2 times

0 · · · 0 11 . . . 1︸ ︷︷ ︸
mp times︸ ︷︷ ︸

n+p−1

.

The number of such binary sequences is
(
n+p−1
p−1

)
. The proof follows.

Lemma 5.3.2. We have

h(n) =

{
0 if 0 ≤ n ≤ q − 1,

g(n− p) if p ≤ n.

Proof. The first part is obvious. For the second part, we see that (m1, . . . ,mp) ∈ S3
n if any only if

(m1 − 1, . . . ,mp − 1) ∈ S2
n−p. Hence, h(n) = g(n− p).

Lemma 5.3.3. For n = 0, f(n) = 1. For n ≥ 1, we have

f(n) =

(
n+ p− 1

p− 1

)
−
(
n− 1

p− 1

)
.

Proof. For 1 ≤ n ≤ q − 1, h(n) = 0, hence f(n) = g(n) − h(n) = g(n). By Lemma 5.3.1, we are
done. For n ≥ q, by Lemma 5.3.2, f(n) = g(n)− h(n) = g(n)− g(n− p). By Lemma 5.3.1, we are
done.

Lemma 5.3.4. For n ≥ 1, we have f(n) ≡ 0 (mod p).

Remark: f(0) = 1 ̸≡ 0 (mod p).

Proof. We recall a "small version" Lucas’ theorem. Let 0 ≤ y ≤ q − 1 and x ∈ Z. We have(
x+ p

y

)
≡
(
x

y

)
(mod p).

The proof is a direct consequence of Lucas’ theorem.

By Lemma 5.3.4,
∑
n≥1

f(n)
p Xn ∈ Z[[X]].

Lemma 5.3.5 (Speyer’s Lemma, see [Spe17, page 1237]). For n ≥ 1, we have

Gp(X) =
∑
n≥1

f(n)

p
Xn in Z[[X]].

Proof. We have following formal series

1

1−X
=
∑
i≥0

Xi,

1

(1−X)p
= (
∑
i≥0

Xi)p =
∑
mi≥0

Xm1 . . . Xmp =
∑
n≥0

g(n)Xn,

Xp

(1−X)p
=
∑
n≥0

g(n)Xn+p =
∑
n≥p

g(n− p)Xn =
∑
n≥p

h(n)Xn =
∑
n≥0

h(n)Xn.
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It follows that
1

(1−X)p
− Xp

(1−X)p
=
∑
n≥0

(g(n)− h(n))Xn =
∑
n≥0

f(n)Xn.

Hence
1

(1−X)p
− Xp

(1−X)p
− 1 =

∑
n≥1

f(n)Xn.

The left-hand side is exactly pGp(X). The proof is done.

For I ∈ A\{A}, we set

F (I) := |{(I1, . . . , Ip) ∈ Ap, gcd(I1, . . . , Ip) = A, I1 · · · Ip = I}| . (5.3.2)

Remark: Since A is Dedekind domain, every ideals have an unique factorization into prime ideals.
Hence we can define gcd as usual.

We see that if I = P k11 · · ·P krr is the decomposition of I in product of maximal ideals then

F (I) = f(k1) · · · f(kr). (5.3.3)

As a consequence of Speyer’s Lemma, we have the following corollary.

Corollary 5.3.6. We have ∑
I∈A\{A}

F (I)/p

[I]k
=
∑
P∈M

Gp(
1

[P ]k
) in K∞.

Proof. We consider Equation (5.3.3). If r ≥ 2, by Lemma 5.3.4, p2|f(k1)f(k2). Hence F (I)/p = 0
in Fp. It implies∑
I∈A\{A}

F (I)/p

[I]k
=
∑
P∈M

∑
n≥0

F (Pn)/p

[Pn]k
=
∑
P∈M

∑
n≥0

f(n)/p

[Pn]k
=
∑
P∈M

∑
n≥0

f(n)/p

[P k]n
=
∑
P∈M

Gp(
1

[P ]k
).

The last equality is from Speyer’s lemma (Lemma 5.3.5).

We have the following equality in C∞.

Proposition 5.3.7. Let k ≥ 1 be an integer, we have∑
P∈M

Gp(
1

[P ]k
) =

gp(
1

[I]k
)I∈A

ζA(kp)
in K∞. (5.3.4)

Proof. Set ∆ := {(I, . . . , I) ∈ Apn} and C is the cyclic group of degree p. C acts on Apn by rotating
coordinates. We have

gp(
1

[I]k
)I∈An

=
∑

(I1,...,Ip)∈(An\∆)/C

1

[I1]k · · · [Ip]k

=
∑
D∈An

1

[D]kp
×

∑
(I1,...,Ip)∈(An\{(A,...,A)})/C

gcd(I1,...,Ip)=A

1

[I1]k · · · [Ip]k
.

Let n→∞, we have

gp(
1

[I]k
)I∈A = ζA(kp)×

∑
(I1,...,Ip)∈(A\{(A,...,A)})/C

gcd(I1,...,Ip)=A

1

[I1]k · · · [Ip]k

= ζA(kp)×
∑

I∈A\{A}

F (I)/p

[I]k
( where F (I) is defined in (5.3.3))

= ζ(kp)
∑
P∈M

Gp(
1

[P ]k
) ( by Corollary 5.3.6)

Note that ζ(kp) ̸= 0 by the form (5.1.5). Thus the proof follows.
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5.3.2 Key lemma

In this section, we will firstly prove a key lemma (Lemma 5.3.10). Then we use this lemma to show
that both numerator and denominator of Equation (5.3.4) are in π̃kpT (see Proposition 5.3.16)
where T is defined in (5.1.4).

We use the notation in Definition 5.1.9. The following proposition will be necessary in the
sequel.

Proposition 5.3.8. Let I ∈ A. We use the notation of ψ(I) in Definition 5.1.9. Then, the
element ψ(I)

[I] is in O×
T , where OT is the integral closure of A in T. It depends only on the class of

I in Pic+(A).

Proof. This proposition is a combination of results in [Gos96, Lemma 4.9.2, Theorem 7.4.8 and
7.6.2, Proposition 8.2.10].

Definition 5.3.9. We use the notation in Definition 5.1.20. Let g ∈ G and I ∈ A such that
g = σI . By Proposition 5.3.8, the following element is well-defined

α(g) :=
ψ(I)

[I]
∈ O×

T .

Lemma 5.3.10 (Key Lemma). For I ∈ A, we denote the class of I in Pic(A) by I. Let g ∈ G
and I ∈ A such that σI = g. Let X be an indeterminate. We have

∏
ξ∈ F×∞

F×q

g(expϕ)(ξα(g)X)

ξα(g)X
=

∏
J∈A∩I

(
1−

(
X

π̃[J ]

)qd∞−1
)
.

where π̃ is defined in (5.3.1).

Proof. Set

Fg(X) :=
g(expϕ(α(g)X))

α(g)X
.

Note that g = σI . By Proposition 5.1.21 and Equation 5.1.3, we have

Fg(X) =
∏

a∈I−1\{0}

(
1− α(g)X

π̃ψ(I)a

)
.

Note that α(g) = ψ(I)
[I] . Hence we have

Fg(X) =
∏

a∈I−1\{0}

(
1− X

π̃[I]a

)
.

Note that σ : IA → G is an isomorphism. We see that if I = J in Pic+(A) (i.e., σI = σJ) then
J = aI for some a ∈ K×, sgn(a) = 1. On the other hand, suppose a, b ∈ I−1\{0}, then Ia = Ib ⇔
a
b ∈ F×

q . Hence

Fg(X) =
∏

J⊂A,J=Ia

∏
δ∈F×

q

(1− X

π̃[I]δa
).

It follows that ∏
ξ∈ F×∞

F×q

Fg(ξX) =
∏

J∈A,J=Ia

∏
δ∈F×

∞

(1− δ X

π̃[J ]a
)

=
∏

J∈A∩I

(
1−

(
X

π̃[J ]

)qd∞−1
)
.
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Proposition 5.3.11. With above notation, we have

∏
I∈A

(
1−

(
X

π̃[I]

)qd∞−1
)
∈ T[[X]].

Proof. We have

∏
I∈A

(
1−

(
X

π̃[I]

)qd∞−1
)

=
∏

I∈Pic(A)

∏
J∈I∩A

(
1−

(
X

π̃[J ]

)qd∞−1
)
.

By Lemma 5.3.10, the proof follows.

Corollary 5.3.12. For all l ∈ N, we have

El(
1

[I]qd∞−1
)I∈A ∈ π̃l(q

d∞−1)T.

Proof. We have

∏
I∈A

(
1−

(
X

π̃[I]

)qd∞−1
)

=
∑
l≥0

(−1)l 1

π̃l(qd∞−1)
El

(
1

[I]qd∞−1

)
I∈A

X l(qd∞−1). (5.3.5)

By Proposition 5.3.11, the left-hand side of Equation (5.3.5) is in T[[X]]. Hence, we have

(−1)l 1

π̃l(qd∞−1)
El(

1

[I]qd∞−1
)I∈A ∈ T.

The proof is done.

We collect some well-known results which will be used to prove a more general results of
Corollary 5.3.12.

Lemma 5.3.13 (Newton identity, see [Zei84]). For n ∈ N∗, we have

nEn =

n∑
i=1

(−1)i−1En−iPi.

We also have

Pn = (−1)n−1nEn +

n−1∑
i=1

(−1)n−1+iEn−iPi.

Proposition 5.3.14 (See [Gos96, Theorem 8.19.4]). For n ∈ Z, n ≥ 1, n ≡ 0 (mod qd∞ − 1), we
have

ζA(n) ∈ π̃nT.

We have the following result:

Proposition 5.3.15. For 1 ≤ l < p, 1 ≤ i, we have

El(
1

[I]i(qd∞−1)
)I∈A ∈ π̃li(q

d∞−1)T.

Proof. Note that E1 = P1. Corollary 5.3.12 gives an initial value of l and i. By using Newton
identity and induction on l and i, the proof follows.

Proposition 5.3.16. Let k ≥ 1, k ≡ 0 (mod qd∞−1) If f is a homogeneous symmetric polynomial
of degree l then f( 1

[I]k
)I∈A is in π̃klT.
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Proof. Recall that for λ = (λ1, . . . , λs) ∈ Ns,

|λ| := λ1 + . . .+ λs

and

Eλ := Eλ1
· · ·Eλs

.

A homogeneous symmetric polynomial f of degree l can always be written as

f =
∑
|λ|=l

cλEλ.

Pass to limit and note that f( 1

[I]q
d∞−1

)I∈A is always defined, by Corollary 5.3.15, we have Eλ( 1
[I]k

)I∈A

is in π̃|λ|kT. Thus

f(
1

[I]k
)I∈A ∈ π̃lkT.

The proof is done.

5.3.3 Main result

Theorem 5.3.17. Let k be integer such that k ≥ 1, k ≡ 0 (mod qd∞ − 1). We have∑
P∈M

Gp(
1

[P ]k
) ∈ T.

Proof. Recall that from Proposition 5.3.7, we have

∑
P∈M

Gp(
1

[P ]k
) =

gp(
1

[I]k
)I∈A

ζA(kp)
.

For k ≡ 0 (mod qd∞ − 1), we know that by Proposition 5.3.14,

ζA(kp) ∈ π̃kpT.

Also, gp is a homogeneous symmetric polynomial of degree p, by Proposition 5.3.16, we have

gp(
1

[I]k
)I∈A ∈ π̃kpT.

Hence ∑
P∈M

Gp(
1

[P ]k
) ∈ T.

The proof is done.

5.3.4 Examples

In this section, we will find an explicit formula of Theorem 5.3.17 in the case d∞ = 1, k = q − 1
(see Equation 5.3.6). Moreover, in the end, we will give a non-zero sum in the case that d∞ = 1,
q = 3 and h = 2.
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An explicit formula in the case d∞ = 1, k = q − 1

For g ∈ G and I ∈ A such that σI = g, Lemma 5.3.10 implies

g(expϕ)(α(g)X)

α(g)X
=

∏
J∈A∩I

(
1−

(
X

π̃[J ]

)q−1
)
.

Hence ∏
g∈G

g(expϕ)(α(g)X)

α(g)X
=
∏
I∈A

(
1−

(
X

π̃[I]

)qd∞−1)
.

Expanding the right-hand side, we have∏
g∈G

g(expϕ)(α(g)X)

α(g)X
=
∑
l≥0

(−1)l 1

π̃l(q−1)
El

(
1

[I]q−1

)
I∈A

X l(q−1).

Recall that expϕ =
∑
i≥0

eiτ
i. We have

∏
g∈G

∑
i≥0

g(ei)α(g)
qi−1Xqi−1 =

∑
l≥0

(−1)l 1

π̃l(q−1)
El

(
1

[I]q−1

)
I∈A

X l(q−1).

Comparing the coefficients of Xn in both sides, we have the following proposition.

Proposition 5.3.18. We have

El(
1

[I]q−1
)I∈A = (−1)lπ̃l(q−1)

∑
i1,...,ih≥0

(qi1−1)+...+(qih−1)=l(q−1)

h∏
j=1

gj(eij )α(gj)
qij−1.

In particular, we have

E1(
1

[I]q−1
)I∈A = −π̃q−1

∑
g∈G

g(e1)α(g)
q−1.

If h = 2, l ≥ 3 and i1 + 2i2 + . . .+ lil = p, we have

El(
1

[I]q−1
)I∈A = 0.

Recall that

gp(
1

[I]q−1
)I∈A

=
∑

i1,...,is>0
i1+...+sis=p

i1<p

(−1)p+i1+...+is−1

i1 + . . .+ is

(
i1 + . . .+ is
i1, i2, . . . , is

)
Ei11 (

1

[I]q−1
)I∈A · · ·Eiss (

1

[I]q−1
)I∈A.

On the other hand,

ζA(p(q − 1)) = Pp(
1

[I]q−1
)I∈A

=
∑

i1,...,is>0
i1+2i2+...+sis=p

(−1)p+i1+...+is−1p

i1 + . . .+ is

(
i1 + . . .+ is
i1, i2, . . . , is

)
Ei11 (

1

[I]q−1
) · · ·Eiss (

1

[I]q−1
).

The only non-zero term in the above sum corresponds to the indices (i1, . . . , is) ∈ (N∗)s such that
i1 + . . . + is = p (otherwise,

(
i1+...+is
i1,...,is

)
=0). Since i1 + 2i2 + . . . + sis = p, it implies that i1 = p,

i2 = . . . = is = 0. Hence
ζA(p(q − 1)) = Ep1 (

1

[I]q−1
)I∈A.



CHAPTER 5. GENERALIZATION OF SPEYER’S RESULTS 66

Thus we have

∑
P∈M

Gp(
1

[P ]q−1
) =

gp(
1

[I]q−1 )I∈A

ζA(p(q − 1))
(5.3.6)

=
∑

i1,...,is>0
i1+...+sis=p

i1<p

(−1)p+i1+...+is−1

i1 + . . .+ is

(
i1 + . . .+ is
i1, i2, . . . , is

)
Ei22 ( 1

[I]q−1 )I∈A · · ·Eiss ( 1
[I]q−1 )I∈A

Ep−i11 ( 1
[I]q−1 )I∈A

.

A non-zero result in the case d∞ = 1, q = 3 and h = 2

There exits a global function field K such that h = 2, q = 3 and d∞ = 1. An example is described
in [GP18, Example 9.2]. For details, we take K = Fq(θ, y) where y2 = θ3 − θ2 − 1.

Recall that for q = 3, we have

G3(X) =
1−X3 − (1−X)3

3(1−X)3
=

X

(1−X)2
.

Proposition 5.3.19. If h = 2, d∞ = 1 and q = 3, we have

∑
P∈M

G3(
1

[P ]2
) =

E2(
1

[I]2 )I∈A

E2
1(

1
[I]2 )I∈A

=
g1(e1)α(g1)

2g2(e1)α(g2)
2

(g1(e1)α(g1)2 + g2(e1)α(g2)2)2
̸= 0.

Proof. For h = 2, we have G = {g1, g2} and

E2(
1

[I]q−1
)I∈A = π̃2(q−1)g1(e1)α(g1)

q−1g2(e1)α(g2)
q−1

and
E1(

1

[I]q−1
)I∈A = −π̃q−1(g1(e1)α(g1)

q−1 + g2(e1)α(g2)
q−1).

In addition, if q = 3, we have

E2(
1

[I]2
)I∈A = π̃4g1(e1)α(g1)

2g2(e1)α(g2)
2

and
E1(

1

[I]2
)I∈A = −π̃2(g1(e1)α(g1)

2 + g2(e1)α(g2)
2).

Thus we have

∑
P∈M

Gp(
1

[P ]q−1
) = −

∑
i1,i2>0
i1+2i2=p
i1<p

(−1)i1+i2−1

i1 + i2

(
i1 + i2
i1, i2

)
Ei22 ( 1

[I]q−1 )I∈A

Ep−i11 ( 1
[I]q−1 )I∈A

.

Replacing q = 3 we obtain∑
P∈M

G3(
1

[P ]2
) =

g1(e1)α(g1)
2g2(e1)α(g2)

2

(g1(e1)α(g1)2 + g2(e1)α(g2)2)2
.

Note that the denominator in the above equation is
(
ζA( 1

2 )

π̃2

)2
, which is non-zero and rational. The

first coefficient e1 of expϕ is non-zero (see [Tha93, Page 565]). Hence the above sum is non-zero.

Remark 5.3.20. For the case A = Fq[θ] and q = 3, by [Spe17, Theorem 1.7], this sum is 0.



Chapter 6

Multizeta values

This chapter is taken from preprint paper (see [LND21b]). It is available at https://hal.archives-
ouvertes.fr/hal-03093398v2/

This chapter is organized as follows. In Section 6.1, we present a conjecture of Lara Rodriguez
and Thakur (Conjecture 6.1.2) and statement of main results (Subsection 6.1.4). In §6.2 we briefly
review the CPY criterion deciding whether a MZV is zeta-like or Eulerian. We introduce the notion
of dual t-motives and recall the work of Anderson and Thakur [AT09] connecting dual t-motives
and MZV’s. After recalling the Anderson-Brownawell-Papanikolas criterion in [ABP04] we state
the key CPY criterion deciding whether a MZV is zeta-like (resp. Eulerian). The rest of the
chapter is devoted to the proofs of the main results (see §6.3 for Theorem 6.1.3, §6.4 for Theorem
6.1.4, and §6.5 for Theorem 6.1.5, respectively). At the end we give some remarks in §6.6.

6.1 Introduction

6.1.1 Classical multiple zeta values

Multiple zeta values of Euler (MZV’s for short) are real numbers of the form

ζ(n1, . . . , nr) =
∑

0<k1<···<kr

1

kn1
1 . . . knr

r
, where ni ≥ 1, nr ≥ 2.

Here r is called the depth and w = n1+· · ·+nr is called the weight of the presentation ζ(n1, . . . , nr).
For r = 1 we recover the special values ζ(n) for n ≥ 2 of the Riemann zeta function. These values
have been studied in different contexts with deep connections to mathematical physics, knot theory,
mixed Tate motives, and modular forms (see the survey of Zagier [Zag94] and the book of Burgos
Gil and Fresan [IGF] for more details and more complete references).

Relations among MZV’s have been studied extensively for the last three decades. Of particular
interest, we are interested in two special relations that were discovered by Euler.

• The first one states that

ζ(n)

(2iπ)n
= −1

2

Bn
n!

for all n ≥ 2, n ≡ 0 (mod 2),

where Bn denotes the nth Bernoulli number. We say that ζ(n) for n ≥ 2 and n even is
Eulerian.

• The second one is the following identity

ζ(1, 2) = ζ(3).

We say that ζ(1, 2) is zeta-like.

67
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More generally, we say that a MZV ζ(n1, . . . , nr) is Eulerian (resp. zeta-like) if ζ(n1, . . . , nr)/(2iπ)n1+···+nr

(resp. ζ(n1, . . . , nr)/ζ(n1 + · · ·+ nr)) is rational.
Until now, we have extremely limited knowledge about zeta-like MZV’s. We refer the reader to

[LRT14, Remark after Conjecture 4.3] and [Tha17, §7.5] for a discussion about the known Eulerian
and zeta-like MZV’s. We also mention that a sufficient condition for Eulerian MZV’s in terms of
motivic MZV’s was given by Brown (see [Bro12, Theorem 3.3]), but this condition is not completely
effective (see [CPY19, §1] for a detailed discussion).

6.1.2 Characteristic p multiple zeta values (MZV)

By a well-known analogy between the arithmetic of number fields and that of global function
fields conceived in the 1930s by Carlitz, we now switch to the function field setting.

Let A = Fq[θ] be the polynomial ring in the variable θ over a finite field Fq of q elements of
characteristic p > 0. Let K = Fq(θ) be the fraction field of A equipped with the rational point ∞.
Let K∞ be the completion of K at ∞ and C∞ be the completion of a fixed algebraic closure K of
K at ∞. We denote by v∞ the discrete valuation on K corresponding to the place ∞ normalized
such that v∞(θ) = −1, and by |·|∞ = q−v∞ the associated absolute value on K. The unique
valuation of C∞ which extends v∞ will still be denoted by v∞.

In [Car35] Carlitz introduced the Carlitz zeta values ζA(n) for n ∈ N given by

ζA(n) :=
∑
a∈A+

1

an
∈ K∞

which are analogues of classical special zeta values in the function field setting. Here A+ denotes
the set of monic polynomials in A. For any tuple of positive integers s = (s1, . . . , sr) ∈ Nr, Thakur
[Tha04] defined the characteristic p multiple zeta value (MZV for short) ζA(s) or ζA(s1, . . . , sr) by

ζA(s) :=
∑ 1

as11 . . . asrr
∈ K∞

where the sum runs through the set of tuples (a1, . . . , ar) ∈ Ar+ with deg a1 > . . . > deg ar. We
call r the depth of ζA(s) and w(s) = s1 + · · · + sr the weight of ζA(s). We note that Carlitz zeta
values are exactly depth one MZV’s. Thakur [Tha09a] showed that all the MZV’s do not vanish.

Since their introduction many works have revealed the importance of these values for both their
independent interest and for their applications to a wide variety of arithmetic applications, see for
example [AT90, AT09, APTR18, ANDTR20, CPY19, Pap15, Pel12, Tae12b, Tae12a, Tha09b,
Tod18, Yu91]. We refer the reader to the excellent surveys of Thakur [Tha17, Tha20] for more
details and more complete references.

As in the classical setting one can argue that the main goal of this theory is to determine all
algebraic relations over K among MZV’s. It is worth noting that analogues of the aforementioned
identities of Euler were proved:

• In 1935 Carlitz [Car35] introduced analogues of the Bernoulli numbers BCn and proved (see
also [Gos96, §9.2])

ζA(n)

π̃n
=
BCn
Γn

for all n ≥ 1, n ≡ 0 (mod q − 1).

Here π̃ is the Carlitz period which is the analogue of 2iπ (see [Gos96, Tha04]), and Γn ∈ A
is the nth Carlitz factorial (see §6.2.3 for more details).

• In [Tha09b] Thakur proved

(θq − θ)ζA(1, q − 1) = ζA(q).

More precisely, we say that a MZV ζA(s1, . . . , sr) is Eulerian (resp. zeta-like) if ζA(s1, . . . , sr)/π̃s1+···+sr

(resp. ζA(s1, . . . , sr)/ζA(s1 + · · ·+ sr)) belongs to K.
In [LRT14, Tha17] Lara Rodriguez and Thakur proved some families of zeta-like MZV’s and

made several conjectures on zeta-like MZV’s based on the numerical evidence, which will be dis-
cussed below.
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6.1.3 A conjecture of Lara Rodriguez and Thakur

In [LRT14] Lara Rodriguez and Thakur showed (see [LRT14, Remark p. 796]):

Theorem 6.1.1 (Lara Rodriguez-Thakur [LRT14]). Let 1 ≤ i ≤ q and i ≤ j ≤ ⌊ q
2−i
q−1 ⌋. Then

ζA(i, j(q − 1)) is zeta-like.

They conjectured that the converse also holds. A weak form of this conjecture was stated in
[LRT14, Conjecture 4.4]. Later, Thakur [Tha17] gave a slightly stronger form which is given below
(see [Tha17, the discussion after Conjecture 7.3, p. 1010]).

Conjecture 6.1.2 (Lara Rodriguez-Thakur [LRT14, Tha17]). All zeta-like tuples of weight at
most q2 and depth 2 are exactly (i, j(q − 1)) such that 1 ≤ i ≤ q and i ≤ j ≤ ⌊ q

2−i
q−1 ⌋.

The proof of Theorem 6.1.1 is of algebraic nature and based on explicit formulas of power sums
(see [LRT14, §5]). We mention that Lara Rodriguez and Thakur have extended their result for
a more general setting (see [LRT20, Tha92]). On the other hand, the statement that there are
no other zeta-like MZV’s is of a different nature, which may need some elaborated transcendental
tools.

6.1.4 Statement of main results

We are ready to state the main results of our chapter. First we present an affirmative answer
to Conjecture 6.1.2.

Theorem 6.1.3. All zeta-like tuples of weight at most q2 and depth 2 are exactly (i, j(q−1)) such
that 1 ≤ i ≤ q and i ≤ j ≤ ⌊ q

2−i
q−1 ⌋.

Next we extend our method and prove a similar result for zeta-like MZV’s of weight at most
q2 and depth 3.

Theorem 6.1.4. All zeta-like tuples of weight at most q2 and depth 3 are exactly (1, q−1, q(q−1)).
In particular, there are no Eulerian MZV’s of weight at most q2 and depth 3.

Finally, we obtain a complete list of all zeta-like MZV’s of weight at most q2.

Theorem 6.1.5. All zeta-like tuples of weight at most q2 are exactly

• the tuples of depth 2: (i, j(q − 1)) such that 1 ≤ i ≤ q and i ≤ j ≤ ⌊ q
2−i
q−1 ⌋,

• one tuple of depth 3: (1, q − 1, q(q − 1)).

Let us briefly outline the main ideas of the proofs of Theorems 6.1.3, 6.1.4 and 6.1.5.

1. First, by using a motivic interpretation of MZV’s due to Anderson and Thakur in [AT09]
and the Anderson-Brownawell-Papanikolas criterion for linear independence in positive char-
acteristic in [ABP04], Chang, Papanikolas and Yu [CPY19] succeeded in devising a criterion
called the CPY criterion deciding whether a MZV is zeta-like (resp. Eulerian). As a con-
sequence we are led to find non-trivial solutions of a system of difference equations having
Anderson-Thakur polynomials as parameters.

2. Second, we apply the previous CPY criterion to determine all zeta-like MZV’s of weight at
most q2 and depth 2. In order to do so we manage to completely solve the corresponding
system of difference equations. We use explicit formulas for Anderson-Thakur polynomials of
weight at most q2 and carefully investigate both Eulerian and non-Eulerian cases. It settles
Theorem 6.1.3.
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3. Third, we apply the CPY criterion to determine the full list of all zeta-like MZV’s ζA(s1, s2, s3)
of weight at most q2 and depth 3. We observe that the CPY criterion implies that ζA(s2, s3)
is Eulerian. Thus by Theorem 6.1.3 above we obtain a very short list of (s2, s3). We then
repeat the first two steps to determine s1 and prove Theorem 6.1.4.

4. Finally, we deduce from the CPY criterion and Theorem 6.1.4 that there are no zeta-like
MZV’s of weight at most q2 and depth at least 4. Theorem 6.1.5 is shown, and we are all
done.

6.2 A criterion for zeta-like and Eulerian MZV’s

We continue with the notation given in the Introduction. Further, letting t be another independent
variable, we denote by T the Tate algebra in the variable t with coefficients in C∞ equipped with
the Gauss norm ∥.∥∞, and by L the fraction field of T.

6.2.1 Dual t-motives

We recall the notion of dual t-motives due to to Anderson (see [BP20, §4] and [HJ20, §5] for
more details). We refer the reader to [And86] for the related notion of t-motives.

For i ∈ N we consider the i-fold twisting of C∞((t)) defined by

C∞((t))→ C∞((t))

f =
∑
j

ajt
j 7→ f (i) :=

∑
j

aq
i

j t
j .

We extend i-fold twisting to matrices with entries in C∞((t)) by twisting entry-wise.

Definition 6.2.1. An effective dual t-motive is a K[t, σ]-module M′ which is free and finitely
generated over K[t] such that for ℓ≫ 0 we have

(t− θ)ℓ(M′/σM′) = {0}.

We mention that effective dual t-motives are called Frobenius modules in [CPY19, §2.2]. Note
that Hartl and Juschka [HJ20, §4] introduced a more general notion of dual t-motives. In particular,
effective dual t-motives are always dual t-motives.

Throughout this chapter we will always work with effective dual t-motives. Therefore, we will
sometimes drop the word "effective" where there is no confusion.

Let M and M′ be two effective dual t-motives. Then a morphism of effective dual t-motives
M→M′ is just a homomorphism of left K[t, σ]-modules. We denote by F the category of effective
dual t-motives equipped with the trivial object 1.

We say that an object M of F is given by a matrix Φ ∈ Matr(K[t]) if M is a K[t]-module free of
rank r and the action of σ is represented by the matrix Φ on a givenK[t]-basis for M. We recall that
L denotes the fraction field of the Tate algebra T. We say that an object M of F is uniformizable
or rigid analytically trivial if there exists a matrix Ψ ∈ GLr(L) satisfying Ψ(−1) = ΦΨ. The matrix
Ψ is called a rigid analytic trivialization of M. By [Pap08, Proposition 3.3.9] there exists a rigid
analytic trivialization Ψ0 of M with Ψ0 ∈ GLr(T). Further, if Ψ is a rigid analytic trivialization
of M, then Ψ = Ψ0M with M ∈ Matr(Fq(t)).

6.2.2 Ext1-modules

Let M′ be an effective dual t-motive of rank r over K[t]. We denote by Φ′ ∈ Matr(K[t]) the
matrix defining the σ-action on M′ with respect to some K[t]-basis of M′. Let M be the dual
t-motive given by the matrix

Φ =

(
Φ′ 0
v 1

)
, with v = (v1, . . . , vr) ∈ Mat1×r(K[t]).
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We note that M fits into an exact sequence of the form

0→M′ →M→ 1→ 0,

and so is an extension of the trivial dual t-motive 1 by M′, i.e., M represents a class in Ext1F(1,M′).
Note that Ext1F(1,M′) has a natural Fq[t]-module structure defined as follows. Let M1 and M2

be two objects of Ext1F(1,M′) defined by the matrices

Φ1 =

(
Φ′ 0
v1 1

)
∈ Matr+1(K[t]), v1 ∈ Mat1×r(K[t]),

and

Φ2 =

(
Φ′ 0
v2 1

)
∈ Matr+1(K[t]), v2 ∈ Mat1×r(K[t]).

Then for any a1, a2 ∈ Fq[t], a1 ∗M1 + a2 ∗M2 is defined to be the class in Ext1F(1,M′) represented
by (

Φ′ 0
a1v1 + a2v2 1

)
∈ Matr+1(K[t]).

6.2.3 Dual t-motives connected to MZV’s

Following Anderson and Thakur [AT09] we introduce dual t-motives connected to MZV’s. We
briefly review Anderson-Thakur polynomials introduced in [AT90]. For k ≥ 0, we set [k] := θq

k −θ
and Dk :=

∏k
ℓ=1[ℓ]

qk−ℓ

. For n ∈ N we write n− 1 =
∑
j≥0

njq
j with 0 ≤ nj ≤ q − 1 and define

Γn :=
∏
j≥0

D
nj

j .

We set γ0(t) := 1 and γj(t) :=
∏j
ℓ=1(θ

qj − tqℓ) for j ≥ 1. Then Anderson-Thakur polynomials
αn(t) ∈ A[t] are given by the generating series

∑
n≥1

αn(t)

Γn
xn := x

1−
∑
j≥0

γj(t)

Dj
xq

j

−1

.

Finally, we define Hn(t) by switching θ and t

Hn(t) = αn(t)
∣∣
t=θ, θ=t

. (6.2.1)

By [AT90, Eq. (3.7.3)] we get ∥Hn∥∞ < |θ|
nq
q−1
∞ .

We consider the dual t-motives Ms and M′
s attached to s given by the matrices

Φs =



(t− θ)s1+···+sr 0 0 . . . 0

H
(−1)
s1 (t− θ)s1+···+sr (t− θ)s2+···+sr 0 . . . 0

0 H
(−1)
s2 (t− θ)s2+···+sr . . .

...
...

. . . (t− θ)sr 0

0 . . . 0 H
(−1)
sr (t− θ)sr 1


∈ Matr+1(K[t]),

and Φ′
s ∈ Matr(K[t]) is the upper left r × r sub-matrix of Φs. Then Ms represents a class in

Ext1F(1,M′
s).

Throughout this chapter, we work with the Carlitz period π̃ which is a fundamental period of
the Carlitz module (see [Gos96, Tha04]). We fix a choice of (q − 1)st root of (−θ) and set

Ω(t) := (−θ)−q/(q−1)
∏
i≥1

(
1− t

θqi

)
∈ T×
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so that
Ω(−1) = (t− θ)Ω and

1

Ω(θ)
= π̃.

Given s as above, Chang introduced the following series (see [Cha14, Lemma 5.3.1] and also
[CPY19, Eq. (2.3.2)])

L(s) = L(s1, . . . , sr) :=
∑

i1>···>ir≥0

(ΩsrHsr )
(ir) . . . (Ωs1Hs1)

(i1). (6.2.2)

Letting Γ(s) = Γs1 . . .Γsr , by [Cha14, Eq. (5.5.3)] we have

L(s)(θ) = Γ(s)ζA(s)/π̃
w(s). (6.2.3)

In particular, L(s)(θ) is non-zero since ζA(s) is known to be non-zero by Thakur [Tha09a].
If we denote E the ring of series

∑
n≥0

ant
n ∈ K[[t]] such that limn→+∞

n
√
|an|∞ = 0 and

[K∞(a0, a1, . . .) : K∞] < ∞, then any f ∈ E is an entire function. It is proved that L(s) ∈ E

(see [Cha14, Lemma 5.3.1]).
Then the matrix given by

Ψs =



Ωs1+···+sr 0 0 . . . 0
L(s1)Ω

s2+···+sr Ωs2+···+sr 0 . . . 0
... L(s2)Ω

s3+···+sr . . .
...

...
. . . . . .

...
L(s1, . . . , sr−1)Ω

sr L(s2, . . . , sr−1)Ω
sr . . . Ωsr 0

L(s1, . . . , sr) L(s2, . . . , sr) . . . L(sr) 1


∈ GLr+1(T)

satisfies
Ψ

(−1)
s = ΦsΨs.

Thus Ψs is a rigid analytic trivialization associated to the dual t-motive Ms.
We also denote by Ψ′

s the upper r × r sub-matrix of Ψs. It is clear that Ψ′
s is a rigid analytic

trivialization associated to the dual t-motive M′
s.

To end this section, for r ≥ 2 we let Ns ∈ F be the dual t-motive defined by the matrix

(t− θ)s1+···+sr 0 0 . . . 0

H
(−1)
s1 (t− θ)s1+···+sr (t− θ)s2+···+sr 0 . . . 0

0 H
(−1)
s2 (t− θ)s2+···+sr . . .

...
...

. . . (t− θ)sr 0

H
(−1)
w(s) (t− θ)

s1+···+sr 0 . . . 0 1


∈ Matr+1(K[t]).

Then Ns represents also a class in Ext1F(1,M′
s).

6.2.4 A criterion for zeta-like and Eulerian MZV’s in positive charac-
teristic

We recall the Anderson-Brownawell-Papanikolas criterion which is crucial in the sequel (see
[ABP04, Theorem 3.1.1]).

Theorem 6.2.2 (Anderson-Brownawell-Papanikolas). Let Φ ∈ Matℓ(K[t]) be a matrix such that
detΦ = c(t−θ)s for some c ∈ K and s ∈ Z≥0. Let ψ ∈ Matℓ×1(E) be a vector satisfying ψ(−1) = Φψ
and ρ ∈ Mat1×ℓ(K) such that ρψ(θ) = 0. Then there exists a vector P ∈ Mat1×ℓ(K[t]) such that

Pψ = 0 and P (θ) = ρ.

We now state the following result for zeta-like (resp. Eulerian) MZV’s proved in [CPY19].
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Theorem 6.2.3 ([CPY19], Theorems 4.4.2 and 4.2.2). Let s = (s1, . . . , sr) ∈ Nr. Then ζA(s) is
zeta-like (resp. Eulerian) if and only if there exist c, d ∈ Fq[t] (resp. c ∈ Fq[t]) with c ̸= 0 such
that c ∗Ms + d ∗Ns (resp. c ∗Ms) represents a trivial class in Ext1F(1,M′

s).

We stress that since ζA(s) is non-zero, this result is an immediate consequence of [CPY19,
Theorem 2.5.2] whose key tool is the Anderson-Brownawell-Papanikolas (ABP) criterion as stated
in Theorem 6.2.2. Roughly speaking, using rigid analytic trivializations Ψs defined as above, one
applies the ABP criterion to lift a K-linear relation among MZV’s to a K[t]-linear relation among
corresponding series defined in (6.2.2), which gives enough information to conclude.

We also recall the following corollary of Theorem 6.2.3 which was also conjectured by Lara
Rodriguez and Thakur (see [LRT14, Conjecture 4.1, Part 2]).

Corollary 6.2.4 ([CPY19], Corollary 4.4.1). Let s = (s1, . . . , sr) ∈ Nr. Suppose that ζA(s) is
zeta-like. Then each of

ζA(s2, . . . , sr), . . . , ζ1(sr)

is Eulerian.
In particular, each si is divisible by q − 1 for all 2 ≤ i ≤ r.

By [CPY19, Remark 3.1] it implies the following criterion which will be used in the sequel.

Theorem 6.2.5 ([CPY19]). Let s = (s1, . . . , sr) ∈ Nr as above. Then ζA(s) is zeta-like (resp.
Eulerian) if and only if there exist c, d ∈ Fq[t] (resp. c ∈ Fq[t] and d = 0) with c ̸= 0 and
polynomials δ1, . . . , δr ∈ K[t] such that

δ1 = δ
(−1)
1 (t− θ)w + δ

(−1)
2 H(−1)

s1 (t− θ)w + dH(−1)
w (t− θ)w, (6.2.4)

δ2 = δ
(−1)
2 (t− θ)s2+···+sr + δ

(−1)
3 H(−1)

s2 (t− θ)s2+···+sr ,

. . .

δr−1 = δ
(−1)
r−1 (t− θ)sr−1+sr + δ(−1)

r H(−1)
sr−1

(t− θ)sr−1+sr ,

δr = δ(−1)
r (t− θ)sr + cH(−1)

sr (t− θ)sr .

Remark 6.2.6. 1) By [KL16, Theorem 2] we know that δ1, . . . , δr belong to K[θ] = Fq[t, θ] and

degθ δi ≤
q(si + · · ·+ sr)

q − 1
. (6.2.5)

2) Note that if (δ1, . . . , δr, c, d) ∈ Fq[θ, t]r×Fq[t]2 is a solution of the above system (6.2.4), then
(fδ1, . . . , fδr, fc, fd) ∈ Fq[θ, t]r × Fq[t]2 is also a solution of (6.2.4) for all f ∈ Fq[t].

6.3 Proof of Theorem 6.1.3

This section aims to present a proof of Theorem 6.1.3.

6.3.1 Setup

Let s = (s1, s2) ∈ N2 with s1 + s2 ≤ q2 such that ζA(s) is zeta-like. By Corollary 6.2.4 we
can write s2 = ℓ2(q − 1) for some ℓ2 ∈ N. It suffices to show that we cannot have ℓ2 < s1 and
s1 + ℓ2(q − 1) ≤ q2.

Suppose that we do have ℓ2 < s1 and s1 + ℓ2(q − 1) ≤ q2. In particular,

ℓ2 < q (6.3.1)

since ℓ2q < s1 + ℓ2(q − 1) ≤ q2. We will deduce a contradiction.
We start proving some preliminary results in §6.3.2 and then obtain a contradiction by distin-

guishing two cases for the zeta-like MZV ζA(s): the non-Eulerian case in §6.3.3 and the Eulerian
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case in §6.3.4. To do so we use two key ingredients: the bound given in (6.2.5) and the explicit
formulas for Anderson-Thakur polynomials of weight at most q2. Roughly speaking, we consider
δ1 as a polynomial in θ with coefficients in Fq[t]. The explicit formulas for Anderson-Thakur poly-
nomials of weight at most q2 forces that δ1 is divisible by a product of certain factors. Then we
manage to prove that the latter product has degree strictly bigger than the bound given in (6.2.5)
so that δ1 = δ2 = 0, which is a trivial solution, and we are done.

From now on, we will use capital characters or Greek characters (e.g. F,G, δ) for polynomials
in Fq[t, θ] and usual characters (e.g. f, g) for polynomials in Fq[t].

6.3.2 Preliminaries

We first recall Lucas’ theorem and refer the reader to [Gra97] for more details.

Lemma 6.3.1. For m,n ∈ N, we express m and n in base q

m = mkq
k + · · ·+m1q +m0,

n = nkq
k + · · ·+ n1q + n0,

with 0 ≤ mj , nj ≤ q − 1. Then we have the following equality in Fp(
m

n

)
=

k∏
j=0

(
mj

nj

)
.

We now prove some preliminary results which will be used later.

Lemma 6.3.2. Let F ∈ Fq[t, θ] be a polynomial. Suppose that F (t − θ) ∈ Fq[t, θq]. Then F =
(t− θ)q−1G for some G ∈ Fq[t, θq].

Proof. We first suppose that degθ F < q. We write F = a0+a1θ+· · ·+aq−1θ
q−1 with a0, . . . , aq−1 ∈

Fq[t]. Then

F (t− θ) = a0t+

q−1∑
j=1

(ajt− aj−1)θ
j + aq−1θ

q.

Since F (t− θ) ∈ Fq[t, θq], it follows that for all 1 ≤ j ≤ q − 1 we have ajt− aj−1 = 0, that means
aj = aq−1t

q−1−j . Therefore,

F = aq−1(t
q−1 + tq−1θ + · · ·+ θq−1) = aq−1(t− θ)q−1.

Here the last equality follows from the fact that for all 0 ≤ j ≤ q− 1, we have (−1)q−1−j(q−1
j

)
= 1

in Fp. We put G = aq−1 ∈ Fq[t] and we are done in this case.
We now move to the general case. We can always write F = F0 + θqF1 + · · · + θkqFk for

some k ∈ N and some polynomials F0, . . . , Fk ∈ Fq[t, θ] with degθ Fj < q for all 0 ≤ j ≤ k. The
hypothesis F (t − θ) ∈ Fq[t, θq] implies that Fj(t − θ) ∈ Fq[t, θq] for all 0 ≤ j ≤ k. Thus by the
previous discussion we deduce that there exist G0, . . . , Gk ∈ Fq[t] such that Fj = Gj(t− θ)q−1 for
all 0 ≤ j ≤ k. Therefore,

F = F0 + θqF1 + · · ·+ θkqFk

= G0(t− θ)q−1 + θqG1(t− θ)q−1 + · · ·+ θkqGk(t− θ)q−1

= (G0 + θqG1 + · · ·+ θkqGk)(t− θ)q−1.

We put G = G0 + θqG1 + · · ·+ θkqGk ∈ Fq[t, θq], and we are also done.

As an immediate consequence we obtain the following result.

Lemma 6.3.3. Let k ∈ N and F ∈ Fq[t, θ] be a polynomial. Suppose that F (t−θ)k ∈ Fq[t, θq]. We
denote by ℓ the unique integer such that 0 ≤ ℓ ≤ q− 1 and k+ ℓ ≡ 0 (mod q). Then F = (t− θ)ℓG
for some G ∈ Fq[t, θq].
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Proof. The hypothesis F (t − θ)k ∈ Fq[t, θq] implies that F (t − θ)q−ℓ ∈ Fq[t, θq]. Thus F (t −
θ)q−ℓ−1(t − θ) ∈ Fq[t, θq]. By Lemma 6.3.2 there exists G ∈ Fq[t, θq] such that F (t − θ)q−ℓ−1 =
(t− θ)q−1G, i.e., F = (t− θ)ℓG as required.

We now give explicit formulas for Anderson-Thakur polynomials Hn with n ≤ q2. By direct
calculations we deduce from (6.2.1)

• for 1 ≤ n ≤ q, we have Hn(t) = 1,

• for q + 1 ≤ n ≤ q2, we put k = ⌊n−1
q ⌋ and get

Hn(t) =

k∑
j=0

(
(n− 1)− jq + j

j

)
(tq − t)k−j(tq − θq)j . (6.3.2)

For example, if q + 1 ≤ n ≤ 2q, then

Hn(t) = (tq − t) + n(tq − θq).

Furthermore, we prove the following results (see also [CK18, Proposition 4.10]).

Lemma 6.3.4. Let n ∈ N such that n = ℓ(q − 1) with 1 ≤ ℓ ≤ q − 1. Then

Hn = Hℓ(q−1) = (−1)ℓ (t− θ
q)ℓ − (tq − θq)ℓ

tq − t
.

Proof. Since 1 ≤ ℓ ≤ q − 1, we get n = ℓ(q − 1) ≤ q2, and

⌊n− 1

q
⌋ = ⌊ℓ(q − 1)− 1

q
⌋ = ⌊ℓ− ℓ+ 1

q
⌋ = ℓ− 1.

We use (6.3.2) to obtain

Hn(t) =

ℓ−1∑
j=0

(
(n− 1)− jq + j

j

)
(tq − t)k−j(tq − θq)j

=

ℓ−1∑
j=0

(
(ℓ(q − 1)− 1)− jq + j

j

)
(tq − t)ℓ−j−1(tq − θq)j

=

ℓ−1∑
j=0

(
(ℓ− 1− j)q + q − ℓ− 1 + j

j

)
(tq − t)ℓ−j−1(tq − θq)j

=

ℓ−1∑
j=0

(
q − ℓ− 1 + j

j

)
(tq − t)ℓ−j−1(tq − θq)j

=

ℓ−1∑
j=0

(−1)j
(
ℓ

j

)
(tq − t)ℓ−j−1(tq − θq)j

= (−1)ℓ (t− θ
q)ℓ − (tq − θq)ℓ

tq − t
.

Here the fourth equality holds by Lucas’ theorem (see Lemma 6.3.1), and the last equality follows
from the binomial expansion of (t− θq)ℓ = ((tq − θq)− (tq − t))ℓ. The proof is finished.

Lemma 6.3.5. We put n = q(q − 1). Then

Hn = Hq(q−1) = (tq − t)q−2.



CHAPTER 6. MULTIZETA VALUES 76

Proof. We have

⌊n− 1

q
⌋ = ⌊q(q − 1)− 1

q
⌋ = q − 2.

We use (6.3.2) to obtain

Hn(t) =

q−2∑
j=0

(
(n− 1)− jq + j

j

)
(tq − t)q−2−j(tq − θq)j

=

q−2∑
j=0

(
(q(q − 1)− 1)− jq + j

j

)
(tq − t)q−2−j(tq − θq)j

=

q−2∑
j=0

(
(q − 1− j)q + j − 1

j

)
(tq − t)q−2−j(tq − θq)j

= (tq − t)q−2.

Here the last equality follows from the fact that for all 1 ≤ j ≤ q − 2, by Lucas’ theorem (see
Lemma 6.3.1), (

(q − 1− j)q + j − 1

j

)
=

(
j − 1

j

)
= 0.

The proof is finished.

6.3.3 The non-Eulerian case: (q − 1) ∤ w

The proof in this case is divided into three steps. By Theorem 6.2.5 and Remark 6.2.6 there
exist c, d ∈ Fq[t] with c ̸= 0 such that there exist δ1, δ2 ∈ K[t] verifying

δ1 = δ
(−1)
1 (t− θ)w + δ

(−1)
2 H(−1)

s1 (t− θ)w + dH(−1)
w (t− θ)w,

δ2 = δ
(−1)
2 (t− θ)s2 + cH(−1)

s2 (t− θ)s2 .

Step 1. We first compute the Anderson-Thakur polynomials.

• Since 1 < s1 < w ≤ q2, by (6.3.2) we get explicit formulas for Hs1 , Hw ∈ Fq[t, θ]. Further,

degθHs1 ≤ q⌊
s1 − 1

q
⌋, (6.3.3)

degθHw ≤ q⌊
w − 1

q
⌋.

• We know that 1 ≤ ℓ2 < q by (6.3.1). By Lemma 6.3.4 we have

Hs2 = Hℓ2(q−1) = (−1)ℓ2 (t− θ
q)ℓ2 − (tq − θq)ℓ2
tq − t

.

Step 2. We solve the second equation

δ2 = δ
(−1)
2 (t− θ)s2 + cH(−1)

s2 (t− θ)s2

for suitable c ∈ Fq[t]. By the above explicit formula for Hs2 it is clear that we can take

c = tq − t,
δ2 = (−1)ℓ2(t− θ)ℓ2q = (θ − t)ℓ2q.

Step 3. We put n1 = ⌊ qwq−1⌋. We now solve the equation

δ1 = δ
(−1)
1 (t− θ)w + fδ

(−1)
2 H(−1)

s1 (t− θ)w + dH(−1)
w (t− θ)w (6.3.4)

where
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• δ1 ∈ Fq[θ, t], δ1 ̸= 0 and degθ δ1 ≤ n1 by (6.2.5),

• f, d ∈ Fq[t] with f ̸= 0.

Note that by Remark 6.2.6 we need an extra polynomial f ∈ Fq[t].
Since the right-hand side of (6.3.4) is divisible by (t − θ)w, it implies that δ1 is also divisible

by (t− θ)w. Since degθ δ1 ≤ n1, we write

δ1 = F (t− θ)w, F ∈ Fq[t, θ], degθ(F ) ≤ n1 − w.

Replacing this expression in (6.3.4) and twisting one time yields

F (1) = F (t− θ)w + f(θ − t)ℓ2qHs1 + dHw. (6.3.5)

It follows that δ1 = F (t− θ)w ∈ Fq[t, θq].
We claim that

degθ F (t− θ)w ≤ degθ(f(θ − t)ℓ2qHs1 + dHw).

Otherwise degθ F (t−θ)w > degθ(f(θ−t)ℓ2qHs1+dHw). It follows that degθ F (1) = degθ(F (t−θ)w).
We deduce degθ F = w/(q−1), which implies that q−1 divides w. We obtain then a contradiction.

We write
s1 = ℓ1q + k1 + 1

with 0 ≤ k1 ≤ q − 1. Then

w = s1 + ℓ2(q − 1) = (ℓ1 + ℓ2)q + k1 + 1− ℓ2.

By (6.3.3) degθHs1 ≤ ℓ1q and degθHw ≤ (ℓ1 + ℓ2)q. It follows that

degθ F (t− θ)w ≤ degθ(f(θ − t)ℓ2qHs1 + dHw) ≤ (ℓ1 + ℓ2)q.

In particular, w ≤ (ℓ1 + ℓ2)q. Thus
k1 + 1 ≤ ℓ2 (6.3.6)

Therefore, ℓ1 ≥ 1 since s1 = ℓ1q + k1 + 1 > ℓ2.
On the other hand, degθ F (t− θ)w ≥ w = (ℓ1 + ℓ2)q + k1 + 1− ℓ2 > (ℓ1 + ℓ2)q + 1− q. Then

the polynomial δ1 = F (t− θ)w ∈ Fq[t, θq] satisfies

(ℓ1 + ℓ2)q + 1− q < degθ F (t− θ)w ≤ (ℓ1 + ℓ2)q.

By Lemma 6.3.3 we conclude that

δ1 = F (t− θ)w = g(t− θ)(ℓ1+ℓ2)q

for some g ∈ Fq[t].
Replacing this equality in (6.3.5) and using explicit formulas for Hs1 and Hw given in (6.3.2)

yields

g(t− θq)ℓ2−(k1+1)

= g(t− θ)(ℓ1+ℓ2)q + f(θq − tq)ℓ2
ℓ1∑
j=0

(
(ℓ1q + k1)− jq + j

j

)
(tq − t)ℓ1−j(tq − θq)j

+ d

ℓ1+ℓ2−1∑
j=0

(
((ℓ1 + ℓ2)q + k1 − ℓ2)− jq + j

j

)
(tq − t)ℓ1+ℓ2−1−j(tq − θq)j

We set
X := (t− θ)q = tq − θq

and rewrite the above equality as

g(X − (tq − t))ℓ2−(k1+1)

= gXℓ1+ℓ2 + (−1)ℓ2fXℓ2

ℓ1∑
j=0

(
ℓ1q + k1 − jq + j

j

)
(tq − t)ℓ1−jXj

+ d

ℓ1+ℓ2−1∑
j=0

(
(ℓ1 + ℓ2)q + k1 − ℓ2 − jq + j

j

)
(tq − t)ℓ1+ℓ2−1−jXj .
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Comparing the coefficients of Xℓ2 yields

0 = (−1)ℓ2f(tq − t)ℓ1 + d

(
(ℓ1 + ℓ2)q + k1 − ℓ2 − ℓ2q + ℓ2

ℓ2

)
(tq − t)ℓ1−1

= (−1)ℓ2f(tq − t)ℓ1 + d

(
ℓ1q + k1

ℓ2

)
(tq − t)ℓ1−1

= (−1)ℓ2f(tq − t)ℓ1 .

Here the last equality holds by Lucas’ theorem (see Lemma 6.3.1) since ℓ2 < q by (6.3.1) and the
fact that k1 + 1 ≤ ℓ2 by (6.3.6). Thus f = 0.

Next comparing the coefficients of Xℓ1+ℓ2 yields

0 = g + (−1)ℓ2
(
ℓ1q + k1 − ℓ1q + ℓ1

ℓ1

)
f.

Since f = 0, it follows that g = 0, which is a contradiction.

6.3.4 The Eulerian case: (q − 1) | w

Since (q − 1) | w and s2 = ℓ2(q − 1) for some ℓ2 ∈ N, it follows that s1 = ℓ1(q − 1) for some
ℓ1 ∈ N. Since s1 + s2 ≤ q2, we get ℓ1 + ℓ2 ≤ q + 1.

As before, the proof in this case is also divided into three steps. By Theorem 6.2.5 and Remark
6.2.6 there exist c ∈ Fq[t] with c ̸= 0 such that there exist δ1, δ2 ∈ K[t] verifying

δ1 = δ
(−1)
1 (t− θ)w + δ

(−1)
2 H(−1)

s1 (t− θ)w,

δ2 = δ
(−1)
2 (t− θ)s2 + cH(−1)

s2 (t− θ)s2 .

Step 1. We compute the Anderson-Thakur polynomials. By Lemma 6.3.4 and the fact that ℓ2 < q
by (6.3.1) we have

Hs2 = Hℓ2(q−1) = (−1)ℓ2 (t− θ
q)ℓ2 − (tq − θq)ℓ2q

tq − t
.

Step 2. We solve the equation

δ2 = δ
(−1)
2 (t− θ)s2 + cH(−1)

s2 (t− θ)s2

for suitable c ∈ Fq[t]. As before, by the above explicit formula for Hs2 it is clear that we can take

c = tq − t,
δ2 = (−1)ℓ2(t− θ)ℓ2q = (θ − t)ℓ2q.

Step 3. We put n1 = ⌊ qwq−1⌋ = (ℓ1 + ℓ2)q. We have to solve the equation

δ1 = δ
(−1)
1 (t− θ)w + δ

(−1)
2 fH(−1)

s1 (t− θ)w (6.3.7)

where

• δ1 ∈ Fq[θ, t], δ1 ̸= 0 and degθ δ1 ≤ n1 by (6.2.5),

• f ∈ Fq[t] with f ̸= 0.

We see that δ1 is divisible by (t− θ)w. Since degθ δ1 ≤ n1, we can write

δ1 = F (t− θ)w, F ∈ Fq[t, θ], degθ(F ) ≤ n1 − w.

Replacing this expression in (6.3.7) and twisting one time yields

F (1) = F (t− θ)w + f(θ − t)ℓ2qHs1(t
q − t). (6.3.8)

It follows that δ1 = F (t− θ)w ∈ Fq[t, θq].
We distinguish four subcases.
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Subcase 1: ℓ1 + ℓ2 < q

Since ℓ1 < ℓ1 + ℓ2 < q, then by Lemma 6.3.4,

Hs1 = Hℓ1(q−1) = (−1)ℓ1 (t− θ
q)ℓ1 − (tq − θq)ℓ1
tq − t

.

We know w = (q − 1)(ℓ1 + ℓ2) ≤ degθ δ1 ≤ n1 = q(ℓ1 + ℓ2) and δ1 = F (t − θ)w ∈ Fq[t, θq].
By Lemma 6.3.3 we deduce that δ1 = g(t − θ)q(ℓ1+ℓ2) with g ∈ Fq[t]. Thus F = g(t − θ)ℓ1+ℓ2 .
Replacing it in (6.3.8) we get

g(t− θq)ℓ1+ℓ2 = g(t− θ)q(ℓ1+ℓ2) + f(θ − t)ℓ2q(−1)ℓ1((t− θq)ℓ1 − (t− θ)ℓ1q).

If f ̸= 0, then we obtain a contradiction since the right-hand side is divisible by θ − t but not the
left-hand side.

Subcase 2: ℓ1 + ℓ2 = q with 1 ≤ ℓ2 < q

We have supposed that ℓ2 < s1 = ℓ1(q − 1) (see §6.3.1). Thus 1 ≤ ℓ2 ≤ q − 2.
Since ℓ1q − ℓ2 < q, then by Lemma 6.3.4,

Hs1 = Hℓ1(q−1) = (−1)ℓ1 (t− θ
q)ℓ1 − (tq − θq)ℓ1
tq − t

.

Since w = (q− 1)(ℓ1+ ℓ2) = (q− 1)q and δ1 = F (t− θ)w ∈ Fq[t, θq], it follows that F ∈ Fq[t, θq]
and degθ F ≤ q. By (6.3.8),

F (1) = F (t− θ)q(q−1) + f(θ − t)ℓ2q(−1)ℓ1((t− θq)ℓ1 − (t− θ)ℓ1q).

The right-hand side is divisible by (θ − t)ℓ2q. Thus F is divisible by (tq − θ)ℓ2 . Since F ∈ Fq[t, θq]
and degθ F ≤ q, we get F = g(tq − θ)q with g ∈ Fq[t]. Hence

g(tq − θq)q = g(tq − θ)q(t− θ)q(q−1) + f(θ − t)ℓ2q(−1)ℓ1((t− θq)ℓ1 − (t− θ)ℓ1q).

Thus

g(tq − tq
2

)(t− θ)q(q−1) = f(θ − t)ℓ2q(−1)ℓ1((t− θq)ℓ1 − (t− θ)ℓ1q).

Since 1 ≤ ℓ2 ≤ q − 2, we get g = f = 0, which is a contradiction.

Subcase 3: ℓ1 + ℓ2 = q + 1 with 1 < ℓ2 < q

Since ℓ1 = (q + 1)− ℓ2 < q, then by Lemma 6.3.4,

Hs1 = Hℓ1(q−1) = (−1)ℓ1 (t− θ
q)ℓ1 − (tq − θq)ℓ1
tq − t

.

Since ℓ1 + ℓ2 = q + 1, it follows that w = (q − 1)(ℓ1 + ℓ2) = q2 − 1. We know that δ1 =

F (t− θ)w ∈ Fq[t, θq]. By Lemma 6.3.3 we get δ1 = G(t− θ)q2 with G ∈ Fq[t, θq] and degθ G ≤ q.
Thus F = G(t− θ).

By (6.3.8),

G(1)(t− θq) = G(t− θ)q
2

+ f(θ − t)ℓ2q(−1)ℓ1((t− θq)ℓ1 − (t− θ)ℓ1q).

The right-hand side is divisible by (t − θ)ℓ2q. It implies that G is divisible by (tq − θ)ℓ2 . Since
G ∈ Fq[t, θq] and degθ G ≤ q, then G = g(tq − θ)q with g ∈ Fq[t]. Hence

g(tq − θq)q(t− θq) = g(tq − θ)q(t− θ)q
2

+ f(θ − t)ℓ2q(−1)ℓ1((t− θq)ℓ1 − (t− θ)ℓ1q).

We get

g(tq − θq)q(t− tq
2

) = f(θ − t)ℓ2q(−1)ℓ1((t− θq)ℓ1 − (t− θ)ℓ1q).

Since 1 < ℓ2 < q, comparing the power of (t− θ) yields g = f = 0, which is a contradiction.
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Subcase 4: ℓ1 = q and ℓ2 = 1

The arguments are similar to those of Case 3 except the explicit formula for Hs1 . By Lemma
6.3.5 we have

Hs1 = Hq(q−1) = (tq − t)q−2.

Since w = (q − 1)(ℓ1 + ℓ2) = q2 − 1 and δ1 = F (t− θ)w ∈ Fq[t, θq], it follows that δ1 = G(t− θ)q2

with G ∈ Fq[t, θq] and degθ G ≤ q. Thus F = G(t− θ). By (6.3.8),

G(1)(t− θq) = G(t− θ)q
2

+ f(θ − t)q(tq − t)q−1.

The right-hand side is divisible by (t − θ)q. It follows that G is divisible by (tq − θ). Since
G ∈ Fq[t, θq] and degθ G ≤ q, G = g(tq − θ)q with g ∈ Fq[t]. Hence

g(tq − θq)q(t− θq) = g(tq − θ)q(t− θ)q
2

+ f(θ − t)q(tq − t)q−1.

We get

g(tq − θq)q(t− tq
2

) = f(θ − t)q(tq − t)q−1.

Comparing the power of (t− θ) yields g = f = 0, which is a contradiction.
To summarize, in all cases we obtain a contradiction. Then the proof of Theorem 6.1.3 is

finished.

6.4 Proof of Theorem 6.1.4

In this section we prove Theorem 6.1.4.
Let s = (s1, s2, s3) ∈ N3 with s1 + s2 + s3 ≤ q2 such that ζA(s) is zeta-like. Corollary

6.2.4 implies that ζA(s2, s3) is Eulerian. By Theorem 6.1.3 either (s2, s3) = (q − 1, (q − 1)2) or
(s2, s3) = (q − 1, q(q − 1)).

If (s2, s3) = (q − 1, q(q − 1)), then s1 ≤ q2 − s2 − s3 = 1. Thus s1 = 1. It turns out that
ζA(1, q − 1, q(q − 1) is zeta-like (see [LRT14, Theorem 3.2]), and we are done.

To conclude, we have to show that for all 1 ≤ s1 ≤ q, ζA(s1, s2, s3) where s2 = q − 1 and
s3 = (q − 1)2 is not zeta-like. Suppose that it is not the case, i.e., ζA(s1, s2, s3) is zeta-like where
1 ≤ s1 ≤ q, s2 = q − 1 and s3 = (q − 1)2. Thus

w = s1 + s2 + s3 = s1 + q(q − 1).

Lemma 6.4.1. With the above notation, we have Hs1 = 1 and

Hw(t) =

q−s1∑
j=0

(
s1 − 1 + j

j

)
(tq − t)q−1−j(tq − θq)j . (6.4.1)

Proof. Since 1 ≤ s1 ≤ q, Hs1 = 1, and it is clear that ⌊w−1
q ⌋ = ⌊

s1+q(q−1)−1
q ⌋ = q − 1. Thus by

(6.3.2) we get

Hw(t) =

q−1∑
j=0

(
(w − 1)− jq + j

j

)
(tq − t)q−1−j(tq − θq)j

=

q−1∑
j=0

(
(s1 + q(q − 1)− 1)− jq + j

j

)
(tq − t)q−1−j(tq − θq)j .

By Lucas’ theorem (see Lemma 6.3.1), for all 0 ≤ j ≤ q − 1,(
(s1 + q(q − 1)− 1)− jq + j

j

)
=

(
s1 − 1 + j

j

)
.
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Since 1 ≤ s1 ≤ q, this term is equal to 0 if q − s1 + 1 ≤ j ≤ q − 1. Thus

Hw(t) =

q−1∑
j=0

(
(s1 + q(q − 1)− 1)− jq + j

j

)
(tq − t)q−1−j(tq − θq)j

=

q−s1∑
j=0

(
s1 − 1 + j

j

)
(tq − t)q−1−j(tq − θq)j .

The proof is finished.

By Theorem 6.2.5 and Remark 6.2.6 there exist c, d ∈ Fq[t] with c ̸= 0 such that there exist
δ1, δ2, δ3 ∈ K[t] verifying

δ1 = δ
(−1)
1 (t− θ)w + δ

(−1)
2 H(−1)

s1 (t− θ)w + dH(−1)
w (t− θ)w,

δ2 = δ
(−1)
2 (t− θ)s2+s3 + δ

(−1)
3 H(−1)

s2 (t− θ)s2+s3 ,

δ3 = δ
(−1)
3 (t− θ)s3 + cH(−1)

s3 (t− θ)s3 .

As before, if q − 1 | w, then we can suppose that d = 0 (see Theorem 6.2.5) and divide the proof
into three steps.

Step 1. We first compute the Anderson-Thakur polynomials. By Lemma 6.3.4,

Hs2 = Hq−1 = 1,

Hs3 = H(q−1)2 =
(t− θq)q−1 − (tq − θq)q−1

tq − t
.

Step 2. We solve the equations

δ2 = δ
(−1)
2 (t− θ)s2+s3 + δ

(−1)
3 H(−1)

s2 (t− θ)s2+s3 ,

δ3 = δ
(−1)
3 (t− θ)s3 + cH(−1)

s3 (t− θ)s3 .

for suitable c ∈ Fq[t]. By the above explicit formula for Hs2 and Hs3 it is clear that we can take

c = (tq − t)q+1,

δ3 = (tq − t)q(t− θ)(q−1)q,

δ2 = −(tq − θ)q(t− θ)(q−1)q.

Step 3. We put n1 = ⌊ qwq−1⌋ = ⌊
qs1
q−1⌋ + q2 and recall that 1 ≤ s1 ≤ q. We have to solve the

equation
δ1 = δ

(−1)
1 (t− θ)w + fδ

(−1)
2 H(−1)

s1 (t− θ)w + dH(−1)
w (t− θ)w. (6.4.2)

where

• δ1 ∈ Fq[θ, t], δ1 ̸= 0 and degθ δ1 ≤ n1 by (6.2.5),

• f, d ∈ Fq[t] with f ̸= 0.

We see that δ1 is divisible by (t− θ)w. Since degθ δ1 ≤ n1, we write

δ1 = F (t− θ)w

for some F ∈ Fq[t, θ] with degθ(F ) ≤ n1 − w = ⌊ s1q−1⌋+ q.

Replacing this expression in (6.4.2) and twisting one time yields

F (1) = F (t− θ)w − f(tq − θ)q(t− θ)(q−1)qHs1 + dHw. (6.4.3)
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It follows that δ1 = F (t − θ)w ∈ Fq[t, θq]. By Lemma 6.3.3 we get F = G(t − θ)q−s1 with
G ∈ Fq[t, θq]. In particular,

degθ G ≤ degθ F − (q − s1) ≤ ⌊
s1
q − 1

⌋+ q − (q − s1) = s1 + ⌊
s1
q − 1

⌋.

We distinguish three subcases.
Subcase 1: 1 ≤ s1 < q − 1.

In this case, since degθ G ≤ s1 + ⌊ s1q−1⌋ < q and G ∈ Fq[t, θq], it follows that G = g ∈ Fq[t].
Further, Hw is given as in (6.4.1). Putting all together into (6.4.3) we obtain

g(t− θq)q−s1 = g(t− θ)q
2

− f(tq − θ)q(t− θ)(q−1)q

+ d

q−s1∑
j=0

(
s1 − 1 + j

j

)
(tq − t)q−1−j(tq − θq)j .

We set
X := (t− θ)q = tq − θq

and rewrite the above equality as

g(X − (tq − t))q−s1

= gXq − f(tq
2

− tq +X)Xq−1 + d

q−s1∑
j=0

(
s1 − 1 + j

j

)
(tq − t)q−1−jXj .

We compare the coefficients of Xq yields g = f .

• If 1 < s1 ≤ q− 1, then comparing the coefficients of Xq−1 yields f = 0, which is a contradic-
tion.

• Otherwise s1 = 1, then by replacing g = f in the above equation we obtain

f(X − (tq − t))q−1 = −f(tq
2

− tq)Xq−1 + d

q−1∑
j=0

(tq − t)q−1−jXj .

We compare the constant coefficients and get d = f . Then using d = f and looking at the
coefficients of Xq−1 yields f = −f(tq2 − tq) + d = −f(tq2 − tq) + f . Thus f = 0, and we also
get a contradiction.

Subcase 2: s1 = q − 1.
In this case, F = G(t− θ) with degθ G ≤ s1 + ⌊ s1q−1⌋ = q and G ∈ Fq[t, θq]. Further, we know

that q − 1 | w, then we can suppose that d = 0 in Eq. (6.4.3) (see Theorem 6.2.5). Putting all
together into (6.4.3) yields

G(1)(t− θq) = G(t− θ)q
2

− f(tq − θ)q(t− θ)(q−1)q.

The right-hand side is divisible by (t− θ)(q−1)q. It implies that G is divisible by (tq − θ)q−1. Since
G ∈ Fq[t, θq] and degθ G ≤ q, then G = g(tq − θ)q with g ∈ Fq[t]. Hence

g(tq − θq)q(t− θq) = g(tq − θ)q(t− θ)q
2

− f(tq − θ)q(t− θ)(q−1)q.

We get

g(tq − θq)q(t− tq
2

) = −f(tq − θ)q(t− θ)(q−1)q.

Comparing the power of (t− θ) yields f = g = 0, which is a contradiction.
Subcase 3: s1 = q.

In this case, we know that F = G ∈ Fq[t, θq] with degθ F ≤ s1 + ⌊ s1q−1⌋ = q + 1. Thus we can
write F = a+ θqb with a, b ∈ Fq[t]. Further, by (6.4.1) we get

Hw = Hq2 = (tq − t)q−1.
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Putting all together into (6.4.3) yields

a+ θq
2

b = (a+ θqb)(t− θ)q
2

− f(tq − θ)q(t− θ)(q−1)q + d(tq − t)q−1.

Comparing the coefficients of θq
2+q yields b = 0. Then we use b = 0 and compare the coefficients

of θ(q−1)q to get 0 = −f(tq2 − tq). Thus f = 0, which is a contradiction.

To summarize, in all cases we obtain a contradiction. Then the proof of Theorem 6.1.4 is
finished.

6.5 Proof of Theorem 6.1.5

In this short section we present a proof of Theorem 6.1.5.
It suffices to prove that there is no zeta-like MZV’s of weight at most q2 and depth at least 4.

Suppose that it is not the case. Then there exists s = (s1, . . . , sr) ∈ Nr with s1 + · · ·+ sr ≤ q2 and
r ≥ 4 such that ζA(s) is zeta-like. Corollary 6.2.4 implies that ζA(sr−2, sr−1, sr) is Eulerian. By
Theorem 6.1.4 this is impossible. Thus the proof of Theorem 6.1.5 is complete.

6.6 Final remarks

We end this chapter with some remarks.

Remark 6.6.1. We refer the reader to [CPY19, KL16, LRT14] for numerous numerical data
concerning zeta-like and Eulerian MZV’s in positive characteristic.

Remark 6.6.2. In this chapter we have succeeded in determining completely all zeta-like MZV’s
of weight at most q2. Thus it is tempting to ask whether we could go further.

• Eulerian MZV’s are at least conjecturally understood (see for example [CPY19, §6.2]).

• However, one should be aware that there are plenty of zeta-like MZV’s of weight greater
than q2 (see for example [Che17, CK18, KL16]). At the moment, it seems very difficult to
formulate a conjecture in a reasonable way to include all these examples. We hope to work
on this question in a future work.
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