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Introduction (en frangais)

La fonction zéta de Riemann ((-) a été étudiée sous de nombreuses formes différentes pendant des
siécles. Ses valeurs spéciales ((n) aux entiers positifs n € N*, n > 2 ont joué un réle important
en théorie des nombres. Ici N* (respectivement N) désigne I'ensemble des entiers positifs (resp.
I’ensemble des entiers non négatifs). Les valeurs zéta aux entiers positifs pairs de ¢(-) ont d’abord
été calculées par Euler:
¢(n) 1 B,

= ———— pour tout n >2,n =0 (mod 2),
@imn ~ 2nl P = ( )
ou B, désigne le niéme nombre de Bernoulli. Euler a également travaillé sur des valeurs zéta
multiples de profondeur r de la forme

1
C(m,...,nr): E W, ounl,...,nr,lzl,nrzz
0<ky<--<hk, L 7707

1l a découvert Iidentité suivante ¢(1,2) = ¢(3). A la suite de Thakur, la valeur zéta multiple ¢(1,2)
est appelée zeta-like.

En 1935, Carlitz [Car35] a considéré le cas des corps de fonctions et a introduit les valeurs zéta
de Carlitz qui sont des analogues des valeurs zéta classiques ((n), n € N*. Soit F, un corps fini
ayant g éléments, g étant une puissance d'un nombre premier p, et # un indéterminée sur F,. Soit
A =T,0], et soit K = F,(0) équipé de la place rationnelle co. Soit Ko, = F¢((3)) la complétion
de K & oo, et soit C la complétion d'un cloture algébrique fixe de Ko, & co. Pour d € N, A4 4
désigne I'ensemble des éléments unitaires dans A de degré d. Les valeurs zéta de Carlitz a n € N
sont définies par

G =3 Y e K

d>0a€Ay 4

Les valeurs zéta aux entiers négatifs ont été étudiées par Goss. On peut montrer que 4(n) € A
sin <0 et méme (4(n) =0sin < 0etn =0 (modqg—1) (voir [Gos96, Chapitre 8]). Dans
le méme article, Carlitz a également introduit la application exponentielle de Carlitz exp. et la
période de Carlitz 7 (voir Section 1.2) qui sont des analogues de la application exponentielle et de
2im respectivement. Il a introduit des analogues des nombres de Bernoulli, appelés les nombres de
Bernoulli Carlitz BC,, € K, et a prouvé (voir aussi [Gos96, Section 9.2])

Ca(n) _ BC,

T 11,

pout tout n >1,n =0 (mod ¢ —1),

ou II,, € A est la n-iéme factorielle de Carlitz (voir [Gos96, Chapitre 9]) qui est analogue a nl.

D’une part, en 2012, Pellarin [Pell2] a introduit des valeurs zéta de plusieurs variables dans les
algébres de Tate. Soit s > 1 un entier, et soit ¢1,...,ts des variables s sur K et on écrit ¢, pour la
famille de variables {t¢1,...,ts}. Soit Ts Palgébre de Tate dans les variables ¢, avec des coefficients
dans C (voir Section 3.2.1). Pour n € N*, la valeur zéta dans les variables ¢, est définie par

, at1) ---afts)
Glnt) =3 Y —F——L €T
d>0a€A4 4
Pour s > 2 et s =1 (mod ¢ — 1), on définit

(1) -0/ Salbta)wty) - wlts) o (0.0.1)

™

B, :=
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ol w est la fonction spéciale introduite par Anderson et Thakur dans [AT90] et donnée par

wit) = (-0 [ (1 - 02) - (0.0.2)

j=0

pour un choix fixé de la (¢ — 1)iéme racine de (—6) dans C. Il existe un lien profond entre
lélément By et les valeurs zéta (4(1,t,) (voir [AP14, APTRI16]). En particulier, il s’avére que
B, est un polyndme en les variables t,. On appelle B, le polynéme a plusieurs variables de type
Bernoulli.

D’autre part, en 2004, Thakur a introduit en caractéristique p la valeur zéta multiple comme
analogue aux valeurs zéta multiples d’Euler. Pour tout uple d’entiers positifs s = (s1,...,s,) € N,
Thakur [Tha04] a défini la valeur zéta multiple (4 (s) par

1
Cals) ==Y —— € Kuo
aji*...ap

ot la somme parcoure par I’ensemble des uples (a1, ...,a,) € A’ avec dega; > ... > dega,. On
dit quun MZV Ca(s1,...,s,) est zeta-like si Ca(s1,...,8-)/Ca(s1 + -+ s,.) appartient a K.

L’objectif principal de cette thése est d’étudier les relations entre les valeurs zéta ci-dessus.

Dans le premier chapitre, nous rappelons quelques définitions et propriétés de base des modules
de Drinfeld, le module de Carlitz, ses objets associés (tels que la application exponentielle de Carlitz
expe et la période de Carlitz 7) et les algébres de Tate en plusieurs variables.

Pour étudier la relation entre la valeur zéta dans les algébres de Tate, nous sommes conduits a
étudier un élément spécial B, € T,. Ainsi, le Chapitre 2 est consacré & donner une introduction aux
polynémes a plusieurs variables B;. Nous donnons une démonstration schématique du Théoréme
2.0.2 qui dit que B, est un polynéme dans Fy[f][t,]. La preuve suit de prés la technique et les idées
utilisées dans [GAND 19, Théoréme 4.6 et [AP14, Corollaire 21].

Dans le Chapitre 3, nous étudions les valeurs zéta dans les algébres de Tate introduites par
Pellarin. Le résultat principal est le Théoréme 3.1.3 qui donne une réponse affirmative a la Con-
jecture 3.1.2 de Pellarin sur les identités pour ces valeurs zéta. Nous étudierons plus en détails les
coefficients du polynéme B, et montrerons comment utiliser ces propriétés pour prouver le résultat
principal. Nous proposons également la Conjecture 3.5.1 sur une formule explicite des coefficients
du polynome B;.

Dans le Chapitre 4, nous examinons la Conjecture 3.5.1. Nous montrons que cette conjecture
est vraie pour quelques petits cas (i < 2¢—1 et i < 3g — 2) (voir la Proposition 4.2.4) et suggérons
un moyen de prouver la Conjecture 3.5.1 pour le cas i < ¢ (voir Section 4.3).

Dans le Chapitre 5, nous travaillons avec A plus général. Nous étudions les valeurs zéta de
Goss associées & A général (voir Définition 5.1.29). Le résultat principal est le Théoréme 5.3.17
qui est une généralisation du résultat de Speyer [Spel7]. Nous donnons une formule explicite du
résultat principal et un resultat de non nullité dans certains cas particuliers dans la Section 5.3.4.

Enfin, dans le Chapitre 6, nous prouvons la Conjecture 6.1.2 de Lara Rodriguez et Thakur qui
donne une liste compléte de zeta-like de profondeur 2 de poids au plus ¢? (voir Théoréme 6.1.3).
Nous prouvons également un résultat similaire sur la détermination compléte de tous les zeta-like
de poids au plus ¢* (Théoréme 6.1.5).



Introduction (in english)

The Riemann zeta function ((-) has been studied in many different forms for centuries. Its special
values ((n) at positive integer n € N*, n > 2 have played an important role in number theory. Here
N* (respectively N) denotes the set of positive integers (resp. the set of non-negative integers).
The zeta values at even positive integers of {(-) were first computed by Euler:

¢n) _ 1B,

Qirr ~ 2wl foralln>2,n=0 (mod 2),
m :

where B,, denotes the nth Bernoulli number. Euler also worked on multiple zeta values of depth
r of the form

1
((ni,y...,n.) = Z FTRm where nq,...,n.—1 > 1,0, > 2.
0<ki <<k, L 77707

He discovered the following identity ¢(1,2) = ((3). Following Thakur, the multiple zeta value
¢(1,2) is called zeta-like.

In 1935, Carlitz [Car35] considered the function field setting and introduced the Carlitz zeta
values which are analogues of classical special zeta values {(n), n € N*. Let F, be a finite field
having ¢ elements, ¢ being a power of a prime number p, and ¢ an indeterminate over F,. Let
A = F,[0], and let K = Fy(6) equipped with the rational place co. Let Ko, = F4((3)) be the
completion of K at oo, and let C, be the completion of a fixed algebraic closure of K, at co. For
d e N, A, 4 denotes the set of monic elements in A of degree d. The Carlitz zeta values at n € N
is defined by

G =3 Y e K

d>0ac€Ay 4

The zeta values at negative integers were studied by Goss. One can show that (4(n) € Aif n <0
and even (4(n) =0if n < 0and n =0 (mod g — 1) (see [Gos96, Chapter 8]). In the same paper,
Carlitz also introduced the Carlitz exponential map exp~ and the Carlitz period 7 (see Section
1.2) which are analogues of the exponential map and 2im respectively. He introduced analogues
of the Bernoulli numbers, called the Bernoulli Carlitz numbers BC,, € K, and proved (see also
[Gos96, Section 9.2])

caln) _ B;_[Cn foralln >1,n=0 (modq—1),

T n

where II,, € A is the nth Carlitz factorial (see [Gos96, Chapter 9]) which is analogue to n!.

On the one hand, in 2012, Pellarin [Pell2] introduced several variables zeta values in Tate
algebras. Let s > 1 be an integer, and let t1,...,t5 be s variables over K and we write ¢, for the
family of variables {t1,...,ts}. Let Ty be the Tate algebra in the variables ¢, with coefficients in
Cwo (see Section 3.2.1). For n € N*, the zeta value in the variables ¢, is defined by

Calnt) =3 Y M e Tx.
d>0a€A, 4

For s > 2 and s =1 (mod g — 1), we define

B, :— (_1)(571)/(%1)CA(LES)W(H) - w(ts) €T, (0.0.3)
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where w is the special function introduced by Anderson and Thakur in [AT90] and given by

wit) = (-7 ] (1 _ 02) - (0.0.4)

j=0

for a fixed choice of the (¢ — 1)th root of (—6) in C,. There is a deep connection between the
element B, and the zeta values (4(1,t,) (see [AP14, APTRI16]). In particular, it turns out that B,
is a polynomial in variables ¢t,. We call B, the several variables Bernoulli-type polynomial.

On the other hand, in 2004, Thakur introduced the characteristic p multiple zeta value as
analogues to the multiple zeta values of Euler. For any tuple of positive integers s = (s1,...,5,) €
N", Thakur [Tha04] defined the characteristic p multiple zeta value (4(s) by

1
= —— € K«
Cals) Z ajit...ar"

where the sum runs through the set of tuples (ai,...,a,) € A, with dega; > ... > dega,. We
say that a multiple zeta value C4(s1,...,s,) is zeta-like if Ca(s1,...,8:)/Ca(s1+ -+ s,) belongs
to K.

The main goal of this thesis is to study the relations among the above zeta values.

In the first chapter, we recall some definitions and basic properties of Drinfeld modules, the
Carlitz module, its related objects (such as the Carlitz exponential map exp, and the Carlitz
period 7) and Tate algebras in several variables.

To study the relation between zeta value in Tate algebras, we are led to study a special element
Bs € T;. Thus, Chapter 2 is devoted to give an introduction to the several variables polynomials
Bs. We give an outline proof of Theorem 2.0.2 which says that B, is a polynomial in F,[6][¢,].
The proof follows closely the technique and ideas used in [GAND'19, Theorem 4.6] and [AP14,
Corollary 21].

In Chapter 3, we study the zeta values in Tate algebras which is introduced by Pellarin. The
main result is Theorem 3.1.3 which give an affirmative answer to Conjecture 3.1.2 of Pellarin about
identities for these zeta values. We will study more details on the coefficients of the polynomial B,
and show that how to use these properties to prove the main result. We also suggest Conjecture
3.5.1 about an explicit formula of the coefficients of the polynomial By.

In Chapter 4 we investigate Conjecture 3.5.1. We show that this conjecture is true for some
small cases (i < 2¢g—1 and i < 3¢—2) (see Proposition 4.2.4) and suggest a way to prove Conjecture
3.5.1 for the case i < ¢? (see Section 4.3).

In Chapter 5, we work with a more general A. We study the Goss zeta values associated to the
general A (see Definition 5.1.29). The main result is Theorem 5.3.17 which is a generalization of
Speyer’s result [Spel7]. We give an explicit formula of the main result and a non-vanishing result
in some special cases in Section 5.3.4.

Finally, in Chapter 6, we prove Conjecture 6.1.2 of Lara Rodriguez and Thakur which gives
a full list of depth 2 zeta-like of weight at most ¢* (see Theorem 6.1.3). We also prove a similar
result about determining completely all zeta-like of weight at most ¢?> (Theorem 6.1.5).



Chapter 1

Preliminaries

Let F; be a finite field having ¢ elements, ¢ being a power of a prime number p, and ¢ an
indeterminate over Fy. Let A = F,[0] and let K = F,(6) equipped with the rational place co. Let
Ko =Fy((3)) be the completion of K at oo, and let Cos be the completion of a fixed algebraic
closure of K., at co. We denote by v, the discrete valuation on K corresponding to the place
oo normalized such that vy, (#) = —1. The unique valuation of C., which extends vy, will still be
denoted by vy .

In this thesis, we restrict our attention to the case A = F,[0] except Chapter 5. We will touch
only a few aspects of the general theory in Chapter 5.

We recall the definition of Drinfeld F,[f]-modules in Section 1.1. In Section 1.2, we study the
Carlitz module which is a special case of Drinfeld F,[f]-modules, and its related objects such as:
the Carlitz exponential exp., the Carlitz logarithm log,~ and the Carlitz period 7. Section 1.3
contains a brief summary of Tate algebras, which will be used when we study the zeta values in
Tate algebras in the following chapters.

1.1 Drinfeld modules

Let L be a field containing Fy and let 7: Coc — Coo be the map defined by 7(z) = z9.

Definition 1.1.1. The twisted polynomial ring L{7} is defined as the set of polynomials in the
variable 7 and coefficients in L. The addition rule is the usual addition of polynomials. The
multiplication rule is given by

Tx =297 for all x € L.

Generally, the ring L{7} is not commutative. For more details about this ring, we refer the
reader to [Gos96, Chapter 1].

We say that L is an A-field if and only if there is a homomorphism of F,-algebras ¢: A — L.

Definition 1.1.2. A Drinfeld A-module over an A-field L of rank r € N* is an F;-algebra homo-
morphism ¢: A — L{7} such that

oo =t(0)+arm+...+a 7"
for some aq,...,a, € L, a, # 0.

Remark 1.1.3.

1. Since A is generated by 6, for a € A, we have ¢, = t(a) + a17 + ... + a, 7 for some
ai,...,0, € L and n = rdegya.

2. Via ¢, L becomes an A-module with the action of A as follows: For all a € A, z € L,
a-x = ¢q(x). We denote this new A-module by ¢(L) to distinct with the usual A-module L.

7
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1.2 The Carlitz module

Definition 1.2.1. The Carlitz module over Co, is a homomorphism of Fy-algebras C': A — Co{7}
given by

Co=0+r.

Proposition 1.2.2 (See [Gos96, Proposition 3.3.1]). There exists a unique series expy € Coo{{7}}
such that

e expr =1 (mod 1), and

o for all a € A, we have expya = C,expe.

Proof. Since C is a homomorphism of Fy-algebras and A is generated by 6, the following conditions
are equivalent

Va € A,expga = Cypexpo < expo 0 = Cpexpy.
Let us write exp~ = Y. e,7" with e, € Co,n > 0 and substitute in the second condition. Then

n>0
we get

(Z ent")0 = (0+7) Z ent".

n>0 n>0

Recall that for z € L, 7o = x97. It follows that

Z enf? " = Z Oenm" + Z ed 7T,
n>0 n>0 n>0
By comparing the coefficients of 7™, we get

en(0? —0)=¢l  forn=1,2,.... (1.2.1)

The condition expr = 1 (mod 7) implies that eg = 1. It follows that all the coefficients are
uniquely determined by (1.2.1). It implies the existence and uniqueness of expe. O

In the above proof, if we set D,, := _-, we have
TTL
expo =y —,
Po Z D,

n>0

where

Dy=1,D, = (07" —9)D?

n—1»

forn=1,2,.... (1.2.2)

The series expy € Coo{{7}} induces a morphism of A-modules Co, — C(C), also denoted by
€XPcr-

Definition 1.2.3. The series exp is called the Carlitz exponential.
Similarly, we also have the notion of the Carlitz logarithm
logo = Z %7
n>0
where
lo=1,0, = (0 —07)l,_1, forn=1,2,.... (1.2.3)

This series satisfies logs =1 (mod 7) and alogs = log C, for all a € A.

Now we recall a lemma which will be necessary in the sequel.
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e}
Lemma 1.2.4. Let {a,}52 be a sequence in C. Then Y a, converges if and only if HI_{I_I Voo (n) =
n—-+0oo

n=0
“+00.

We list some properties of the Carlitz exponential and the Carlitz logarithm.

Proposition 1.2.5.

1. The series expy converges for all x € Co. Moreover, it is surjective.
2. The series logo converges for every x € Coo such that veo(x) > —qﬁ—l.

3. On the disk {z € C @ vo(x) > — 15}, we have voo(expe(z)) = v (loge(w)) = voo(@).
Moreover, we also have exps(logo(z)) = loga(exppo(z)) = x.

Proof. Let us take z € Cy
1. Recall that

x4
expo(a) = Y

where D,, is defined in (1.2.2). Since voe(Dp) = voe (67 — 8)(89" — 7). (97" — 69" ")) = —ng™,
we have voo(%n) = ¢"Voo () + ng"™" — 400 when n — +00. By Lemma 1.2.4, exp () converges.

Let y € Co. We use the fact that a nonconstant entire function (i.e., it is nonzero and it
converges for every x € C) always has a zero (see [Gos96, Proposition 2.9 and 2.13]). Applying to
the nonconstant entire function exp(x)—y, we can always find an z € C, such that exp-(z)—y =
0.

2. Recall that
x4

IOgC(x) = 7

n>0 "

_1 n41

) (0 09) =~ e

where 1, is defined in (1.2.3). Since voo(l,) = voo (0 — 097 )(0 — "

have voo (% n) =q"(vo(z) + ;45) — ;&5 — +oc if and only if voo(z) > — 4. By Lemma 1.2.4,
the proof is done.

3. We fix 2 € C4 such that vy (z) > —%.

Firstly, for n = 1, we have vm(%)—vw ) = Vo (7)(¢—1)+¢ > 0 if and only if veo(z) > — 5.

Voo
For n > 2, voo(%) —Vs(2) = (¢" = D(vs(2) + 1) + n = (¢" = 1)(—= ;% +2) +n > 0. Thus

q qu
Voo (expe(2)) = Voo (x + B + 55 +...) = Voo ().
Secondly, for n > 1, we have

n

x4

7o) = vselw) = (vsa) + )" = 1) > 0.

Voo (

2

Thus v (logeo () = veo (z + % + % +...) = vo(x).

Lastly, we claim that in Coo {{7}}, exp¢ logs = log expe = 1. Indeed, we have Cp exp loge =
expe 0loge = expe loge Cy. Let us write expe loge = Y. a, 7 € Coo{{7}} and note that ag = 1.

n>0

By expanding the expression Cpexpq log~ = expe logC_Ce and comparing the coefficients of 7",
n > 1, we deduce that a,, = 0 for n > 1. By a similar argument, we can show that log- exp, = 1.
Last assertion follows immediately from the claim. O

In the end of this section, we recall the definition and basic properties of the Carlitz period
(see [Gos96, Tha04, Car35] for more details).

Definition 1.2.6. The Carlitz period, denoted by 7, is defined by

=N

= (—0)7 101‘[ —07) 1 eCx. (1.2.4)
7>1
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Remark 1.2.7. We have v () = — %7

We also have another formula of the Carlitz period (see [Gos96, Definition 3.2.7])

B 1 07 — 0
F= @607 [0~y
j>1

The following well-known result explains the term period of 7.

Proposition 1.2.8 (See [Gos96, Corollary 3.2.9]). We have

kerexp, = TA.

1.3 Tate algebras in several variables

Let s > 1 be an integer and let ¢y, ...,ts be variables. We denote the set {t1,...,ts} by t, or t.

Let L C C be a complete field with respect to vo. The Gauss valuation v on L[t,] :=
L[ty,...,ts] is defined by: for all f € L]t],

f: Z aistil...tis’

finite sum
i, €N®

we set v(f) = min; {veo(a; )}. The Gauss valuation v is indeed a valuation on L[t,] and extends
the valuation vs, on L. We also denote v by v

Definition 1.3.1. The Tate algebra T(L) in the variables ¢, with coefficients in L is the comple-
tion of L[t,] with respect to the Gauss valuation. Explicitly, T,(L) can be identified with the set
of formal series

cLjt] f= ; t .. t% such that li o (loo) = .
{fellt] f %al s such that . lim o (@) = 400}

Definition 1.3.2. When L = C,, we will write Ty instead of Ts(Cy)

The automorphism 7: z + 29,Co, — C extends to T, by twisting the coefficients a; and

keeping the variables t1,...,ts. In other word, we have
T(Y o agty - te) = Y al 6t
i, EN® i, ENs

The map 7: Ty — T is a continuous homomorphism of F,[t,]-algebras.

Definition 1.3.3. We also have the definition of twisted polynomial ring Ts{7} over Tate algebras.
The multiplication is defined by

7f=71(f)r, VfeTs.

We recall a property of Tate algebras.

Proposition 1.3.4 (See [FvdP04, Chapter 3, Theorem 3.2.1]). With above notation, we have
Ts(L) is a unique factorization domain.



Chapter 2

Several variable polynomial B

Let A = F,[f]. For d € N, we denote by A1, A} 4 and A4 <4 respectively the set of monic
polynomials in A, the set of monic polynomials of degree d in A and the set of monic polynomials
in A of degree less than or equal d.

Through this chapter, we always assume that s is an integer such that s =1 (mod ¢ — 1). We
set m:=(s—1)/(¢g—1) eN.

Let Ts be the Tate algebra in the variables t, with coefficients in C (see Section 1.3). In 2012,
Pellarin [Pel12] introduced the following element in T} called the zeta value in the variables ¢,

) =3 3 A al)

a
d>0a€Ay 4

For s = 1, we write t; = t. Pellarin proved the following identity.

Theorem 2.0.1 (See [Pell2, Theorem 1]). We have

G hw(t) _ 1

T 0—t

where T is the Carlitz period given by Equation (1.2.4) and w function is given by Equation (0.0.4).
We recall the definition of B, in (0.0.3). For s > 2 and s =1 (mod ¢ — 1), we define

B, := (_1)mCA(17§S)UJ(f1) .- 'w(ts) €T,

™

We have the following property of the element By.

Theorem 2.0.2 (See [APTR16, Lemma 7.6] or [AP14, Corollary 21|). The element By is a poly-
nomial in Fylt,,0]. Moreover, it is a monic polynomial in the variable 6 of degree m — 1 and a
symmetric polynomial in the variables t.

In this chapter, firstly, we present a proof of Theorem 2.0.1 in Section 2.1. Then we outline
a proof of Theorem 2.0.2. This proof is divided into two steps. The first step (Section 2.2) is to
show that B is a polynomial in K [t,]. The idea of the proof follows that of Pellarin’s theorem
in Section 2.1. The second step is to show that By is indeed a polynomial in F,[6][t,].

2.1 Pellarin’s theorem

In this Section, we present a proof Theorem 2.0.1 which follows closely that of [GAND™19, Theorem
4.6]. First we collect some lemmas which will be necessary in the sequel.

Lemma 2.1.1. We have

o ald) alt)
72 )
degy a<ln

11
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Proof. For a € A, ,,, we can write a = a9+ a10 + ... + An_10""1 + 0", with ag,...,an_1 € Fy.
Applying to the left-hand side (LH.S), we have

" "l tapgt+1 t
is— Y, el tesmaliio v 0
ag,...,an—1€F, o Ta Tt an b a€A,a(0)=1 a( )
deggy a<n
The proof is done. O

Lemma 2.1.2. For every c € F,\{0}, we have

a(t) _ a(t) _ a(t)

D D D Dl
a€A,a(0)=1 a€A,a(0)=c a€A,a(0)#£0
degy a<n degy a<n degy a<n

Proof. The second equality is implied from the first equality and the fact that |c € F,\{0}| =
qg—1=-1 O

Lemma 2.1.3. We have

acA d=0a€A 4
dega<n

Proof. By a similar method in the proof of Lemma 2.1.2, for every c € F,\{0}, we have

> ow. y o me » o

a€A,degy a=d a€A,degy a=d a€A,degy a=d
a is monic leading coefficient of a is ¢
By summing from d = 0 to d = n, the proof follows. O

The following result is due to Carlitz [Gos96, Theorem 3.1.5].

Lemma 2.1.4 (See for example [GAD 19, Lemma 4.1]). Let d > 1 be an integer. Then

d k
where lg = J] (0 —67).
k=1

The following lemma was proved by Carlitz.
Lemma 2.1.5 (See [Car42, Page 688|). Let d € N,d > 1. Then
d—1

3 at) _ 1 [Tt -0, (2.1.1)

a l
a€A, 4 4 120

where lg is defined in (1.2.3).
Now, we are ready for a proof of Theorem 2.0.1.

Proof of Theorem 2.0.1.
We replace t by %, 0 by % and multiply both sides by f)—: in Equation (2.1.1). We have

tn aly L1 1 1
>1, — E :7||777 II,,
Vn > T gn al) on k:1(9 aqk) kzo(t 9qk)a

a€AL n

=

—~
|
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ie.,

n—1

H _ g H(l—e%).

k=0

n

t
VnZl,e—n Z

a€A+,n

H-\»—A

tbh—‘

On the other hand, by Lemma 2.1.1 and Lemma 2.1.2, we obtain

" a(%) _ a(t)
on Z a(é) Z a

a€AL n a€A,a(0)#0
degy a<n
|yt s e
a 0 a
acA
degg a<n degy a<n—1

Hence, we have

n n—1
a(t) ¢ a(t) | g 1 t
P R D D I N | O T
acA acA k=1 k=0
deggy a<n degya<n—1

Let n tend to +oo and note that 7 = (—9)11%19 [1(1—6)"1 wt) = (—G)ﬁ I -1
Jj=1 Jj=0
we get

—(1— E) lim > alt) _ 1fm(t)*.

n——+oo
acA

degy a<n

By Lemma 2.1.3, it implies
_t - -1
(1 ngrfoo Z Z mu(t) .
d=0a€Ay 4

The proof follows. ]

2.2 The first step of Proof of Theorem 2.0.2

The main statement of this section is Proposition 2.2.6. The idea of the proof is base on the proof
of Pellarin’s theorem in the previous section. We set

Sas = Sas(tr, ..., ts) = Y alty)---alty).
aEA+yd
Lemma 2.2.1 (See [AP14, Lemma 4]). We have
Sa,s 70 if and only if d(g — 1) < s.

Lemma 2.2.2 (See [AP14, Lemma 5|). Let s’ € Z*. Then Y Sqs = 0 if and only if s’ = 0
d>0
(mod ¢ —1).

We have the following result due to B. Angles - F. Pellarin.

Proposition 2.2.3 (See [AP14, Proposition 10]). Letl,d € N. Recall thatm = (s—1)/(¢—1) € N.
If l +m < d then

t1) - alts s
Z a(ty)---alts) =0 (mod H(tj —97)
a .

a€A+,d =1
In addition, if n is an integer such that n > 1+ m then we also have

Z Z MEO (mod H(t]‘—aql))

d=0a€Ay g4
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Proof. We set
a(ty)---a(ts)
Sttt = Y Ut)alts)
Let 7 be a non negative integer. Note that
¢ =1=(-1¢ "+ (g-1D¢ > +...+(g— g+ (g—1).
We have
St tee1,07) = Y a(t) - alts—1)a(9) !

a€Atq
= Z a(tl)".a(ts—l)[a(9q27l)]q71-'- [a(ﬁ)]qfl
a€AL g
= Susmtritaon (b, s tam1 0 0,007 07T,

By Lemma 2.2.1, the above sum is zero if and only if d(¢ — 1) > s —1+1i(q¢ — 1), i.e., d > m +1.
It follows that for i < d — m,

S(t1,...,t )\t _gai = 0.
Since S(t1,...,ts) is symmetric in t1,...,ts, we have the first conclusion: for I < d — m,
t1) - alt s
Z M =0 (mod H(tj _ gql))
a€Al q a Jj=1

For the second part, we see that

DD I LI S ST Tl |

d>0ac€Ay 4 d>0a€A 4 lgigs
1]

The last equality follows from Lemma 2.2.2 and the fact that s’ = ¢/ —1+s—1=0 (mod ¢ — 1).
Thus, we have

S M;o (mod J](t; —67))
j=1

d>0acA, 4

Combining with the first part, for n > [ + m, we have

< a(ty)---alts
S % ()a (ts)

d=0ac€A, q

_ a(ty) - a(ts) a(ty)---al(ty)

Sy bl sy el el
d>0ac€Ay g d>n>l+macAy g

=0 (mod H(tj—eql))

The proof is done. O

As a consequence, we have the following proposition.
Proposition 2.2.4. We have
t X s n—m-—
3 ekt T G-
aGAJF,n j=1 1=0

where By, s € Fgl0][t1,....ts] is a polynomial of degree m in t;, j = 1,...,s with coefficients in
A =T,[0] and the leading coefficient is 1.
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Proof. In Proposition 2.2.3, for n > m, letting [ run from 0 to n — m — 1, we have

S ) g mea [T T - 0%)
j=1 1=0

a€AL n

Therefore we can write

a(ty)---a(ts) 1 SRy
3 el T - ot s
aEAJF,n j=1 1=0
where B, s € Kxlt1,...,ts]. From this equality, we have some observations:

e Firstly, B, s is of degree m in t; for all j = 1,...,s since the degree of ¢; on the left-hand
n—m-—1
side is n and degree of t; in ] (¢; — 9qk) is n — m.
k=0

e Secondly, the coefficient of t7"---t7" in B, s is 1 since the coefficient of ¢7 - - -t} on the left-
hand side, by Lemma 2.1.4, is

1 1
> ot

a€A+,n "

o Lastly, the coefficients of B,, s € Koo [t1,...,ts] are in fact in A. Indeed, if we multiply both
sides of this equality with [,, and note that [,, is the least common multiple of all polynomial
of degree n (see [Gos96, Proposition 3.1.6]), the left-hand side is in Alty, ..., %]

The proof is done. O
Remark 2.2.5. We see that

B, . =0 Tttt ==/ (a=D)=(a" =sa" ™) /(a=1) (mod (t1,. .., t,)).
By Proposition 2.2.4, ¢7*---t™ B, S( e i %) is a polynomial in ¢; for j =1,..., s of degree
less than or equal m with coefficients in Ko y Remark 2.2.5, when n — +o00, this polynomial

converges to a polynomial B; € Ko [ty, ... 7ts] and B, = 0C~V/(a=1) = g™ (mod (ty,...,t,)).
Set

1 11
By =1t"---t" lim B, s(—, — =
1 n—1>r—iI-100 (tl Tt 9)
Proposition 2.2.6. With above notation, we have
Ca(Lt)o(t)--w(t) _ B,
7 (0 —t1--ts)
Proof. We recall that
n—m-—1 s
a(ty)---a(ts) 1 k
2~y I He-ems
a€Al k=0 i=1

Now, we apply the method using in the proof of Pellarin’s theorem (Theorem 2.0.1): changing the
variables and multiplying both sides with * gn . It follows

{n.n a(f)-als) e 1 1\t 1 11
gn Z 1) - gn H(é_g?> 1;[1 ]};[0 (E_W)B"’S(E""’E’é)

1
alg

a€AL ,

s n—m—1 ) 1 1
t

- — m m 1
:H(pgl q* 1JH1 U 177k X " ...tan,s(a,..., Ar

).
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On the other hand, we have

_ Z a(tl) s Cl(tn)
a€A,a(0)#0,degy a<n

where the first equality (and the second equality) is a similar form of Lemma 2.1.1 (and Lemma
2.1.2).

Also,

a(ty)---alty a(ty---alts)) bt a(ty)---alts
3 (t)---a(tn) > ( (ts)) 3 (t1)---alts)

a€A,a(0)#0,degy a<n @ ac€A,degy a<ln a a€A,degya<n—1 a
Finally, we have
oy db)elt) Bt g alh)oalt)
a€A,degya<ln a a€A,degya<n—1 a
n s n—m—1
— _gl-d"y-1 _ i m_ ym 1 11
=[Ja-e"7) H II @ aqk) XL tT B"’S(tl""’ts’e)'
k=1 i=1 k=0
Let n — o0, we get
bty a(t)--alt) 1, L
—(1- )ngr_{_loo Z a = gﬂw(h) -+ -w(ts) " Bs.
a€A,degya<ln
Note that, similar to Lemma 2.1.3, for s =1 (mod ¢ — 1), we have
a(t)---a(ts) _ < a(ty) - - alts)
> et 'S Pa—
ac€A,degy a<ln d=0a€cA 4
Hence
ty -ty 1. _ B
(1-- g )sa(l L) = giw(t) tew(ts) T B
ie.,
Gl t)w(t)w(t) _ B,
T (0 —t1-ts)
The proof is done. O

As a consequence, we have

B,

B,=—" .
O —t1--t,)

By Remark 2.2.5, we have By = 0™~ ! (mod (t1,...,ts)).

2.3 The second step of Proof of Theorem 2.0.2

In this section, firstly, we will collect some materials to prepare the proof of Theorem 2.3.6 (see
[AP15, Theorem 2.9]). The main statement is Theorem 2.3.6 which is related to Gauss-Thakur
sums (see [AP15] for more details). Then we outline the proof of showing that B is in Alty, ..., ]
by using specialization as in [AP15, Section 2.5 Proof of Theorem 1].
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We recall the notation in Section 1.2 and some properties. Let C' be the Carlitz module and let
expe : Coo = Co be the continuous surjective Fy-linear map (the Carlitz exponential) satisfying
expe a = Cylexpe) for all a € A.

We claim that

{z € Co,Cyo(z) =0} = {expc(bw), b e A degy(b) < degya}.

a

Indeed, {expo(22),b € A, degy(b) < degya} C {2 € Cu,Co(x) = 0} since C,lexpe (X)) =
expc(abf) = 0 by Proposition 1.2.8. For the inverse direction, let us take an x € C such

that C,(x) = 0. Since exp is surjective (see Proposition 1.2.5), there exists y € C4 such that
x = expe(y). We have 0 = Cy(z) = Culexpa(y)) = expe(ay). Again, by Proposition 1.2.8, we
deduce that y = gﬁ' for b € A, degb < dega.

Definition 2.3.1. For n > 0, we define

71'
Ap = ech(w)'

Since C, expo = expe a, we have
qi\l/ —U = )\0, vn Z ]-709(/\71) = )\n—1~

We recall the definition of w in (0.0.4)

Lemma 2.3.2. We have

w(t) = Ant™.

n>0

Proof. The idea of the proof is base on the fact that

{9(t) € T, 7(9(t)) = g(t)} = Fylt]. (2:3.1)

This fact is a result of the following fact: { € Coo,7(z) = 2} = F,.

Now, set

fE)=> Mt" €T,

n>0

We recall that for € Coo,v00(x) > q_qu, Voo (€XP(Z)) = Voo (). Hence voo(An) = Voo (garr) =
n+1— —L-. Therefore

f(t) eT*.

We see that
T(f(1) = Y (Co(An) — OAE™ = (t — 0) f(t).
Hence
), _ott)

f&) f)

Using (2.3.1), we obtain
A0 ¢ B0\ (o).
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It remains to show that
w(?)

m—1)>0.

Voo (

This is true by the following equality

wt) = 0 = Xo | T = 5) 7 = 1) + Xt + Dot 4

q
k>0

= \o ( positive valuation ) + A\t + Agt? + - - .
The proof is done. O

Now, we consider the following subfield of C,
Q=TFy((\ 1)

We observe that ) is complete, contains 7. Its valuation ring is F,[[\;']], its maximal ideal is
Ao 'F,[[Ag 1] and its residue field is F,. Let o: Q@ — Q be the continuous morphism of F,-algebras
such that

a(Ao) = Ad.

Lemma 2.3.3. We have

Q7 :={z € Q,o(x) =z} =F,.
Proof. Tt is clear that F, C Q7. Let = € Q7 \ {0}. We have

QUoo () = Voo (0 (2)) = Voo ()

Therefore = € F,[[A\g ]]*. If we write z = 3 (A\g ", ¢ € Fy, Co # 0. We get
i>0

DG =GN

i>0 i>0
Therefore z = (o € F,. O

Definition 2.3.4. For a € A, we set
Aa = expc(z) € 0.
a
Remark 2.3.5. With notation in Definition 2.3.1, we have A\, = Agn+1.

We have the following theorem due to B. Angles and F. Pellarin.
Theorem 2.3.6 (See [AP15, Theorem 2.9]). Let ¢ € F, and let P be an irreducible polynomial
such that P(¢) = 0. Then

w(¢) = P'(¢)(— > a(¢) " Cu(Mp)).

a€A,degy a<degy P
Proof. First, we show that the equality is true for ( = 0. Suppose that ¢ = 0. Since P is

irreducible and P(0) = P(¢) = 0, it implies P(f) = 6. The left-hand side equals w(0) = A9 = Ag.
The right-hand side equals

) = Xo.

| M

— Y a0 o3 = Y e ema(D) =~ 3 expe

a€A,dega<l1 ae]F;( ae]F:

The equality follows.
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Now, we can assume that ¢ # 0. Set
G=- > a(Q) " Cu(Ap) € Q.
a€A,degy a<degy P
We have
_ -1 am
G = S w0 ewe( ).
a€A,a#0,deg, a<deg, P

We observe that
d—1

3 a(()7la=0 (mod J(0-¢)),
k=1

a€A,a#0,degy a<degy P =

where d = degy P. We therefore get

d—1
> a(Q)ta=-P() ] - ¢).
a€A,a#0,deg, a<deg, P k=1
We have
G
UOO(W -1)>0,
and
G
v Gapg D20
We have

Furthermore , we have

a€A,degy a<degy P
Thus
o(G) = - > (€)™ (Coa(Ap)) - 0G.
a€A,degy a<degy P
Now, we have (since P # 6)
- > a(¢) " (Coa(Ap)) = ¢G.
a€A,degy a<degy P

Thus, we get
o(G@) = (0 - ¢)G.

We conclude that % € F,. But recall that vm(% —P'(¢()71) >0, thus G = P'({)"'w(¢). O
Now, we list some propositions without proof to complete the proof of Theorem 2.0.2. We will
need the following result due to B. Angles - F. Pellarin - L. Taelman.

Proposition 2.3.7 (See [AP14, Section 2.5]). Let s > ¢,s =1 (mod ¢ — 1). Let (1,...,(s € Fy
and let Py, ..., Ps be irreducible polynomials such that P;(¢;) = 0. We assume that P; # P; if i # j.
Then

CA(th e ,ts)w(tl) . 'OJ(tS)

x |t1:C17~~yt3:<s€ ]Fq[Ch-..,CS][e}.

Combining with the following proposition, we have the conclusion.
Proposition 2.3.8 (See [AP14, Lemma 20]). Let f(t1,...,ts) € Klt1,...,ts| such that for all
C1,-..,Cs € Fy patrwise not conjugate over Fy,
f(<17 .. 7<s) € Fq[e](gla s ags)'
Then f(t1,...,ts) € Fgl0][t1, ..., ts].



Chapter 3

Pellarin’s conjectures

This chapter is taken from the paper published in Transactions of American Mathematics Society
(see [LND21a]). It is available at https://doi.org/10.1090/tran/8357.

In Section 3.1, we present some of Pellarin’s conjectures (Conjecture 3.1.1, Conjecture 3.1.2)
and the statement of the main result (Theorem 3.1.3). In Section 3.2 we study the several variable
Bernoulli-type polynomial B;. We introduce a notion of weight for polynomials and explain how
to deduce Pellarin’s conjectures from a lower bound on the weight of By (see Theorem 3.2.10).
Section 3 is devoted to prove a key result, Theorem 3.3.1, which gives an explicit expression of
B, in terms of symmetric polynomials. Putting all together, we prove Theorem 3.1.3 in Section
3.4. Then we discuss some interesting questions in Section 3.5, which we will investigate a bit in
Chapter 4.

3.1 Introduction

3.1.1 Background

A classical topic in number theory is the study of the Riemann zeta function ¢(.) and its special
values ((n) for n € N and n > 2. Here N (resp. N*) denotes the set of non-negative integers (resp.
the set of positive integers). By a well-known analogy between the arithmetic of number fields
and global function fields, Carlitz suggested to transport the classical results to the function field
setting in positive characteristic. In [Car35| he considered the rational function field equipped
with the infinity place and introduced the Carlitz zeta values (4(n) which are considered as the
analogues of ¢(n). Let F, be a finite field having ¢ elements, ¢ being a power of a prime number
p, and 6 an indeterminate over F,. Let A = F,[0], and let K = F,(6) equipped with the rational
place co. Let Koo = Fy((3)) be the completion of K at oo, and let Co be the completion of a
fixed algebraic closure of K, at co. For d € N, A, ; denotes the set of monic elements in A of
degree d. For n € Z, the value at n of the Carlitz-Goss zeta function is given by

G =3 Y ek

d>0a€Ay 4

One can show that (4(n) € Aif n <0 and even (4(n) =0if n <0 and n =0 (mod ¢ — 1) (see
[Gos96, Chapter 8]).

We now move to the context of Tate algebras. Let s > 1 be an integer, and let ¢1,...,ts be s
variables over K and we write ¢, for the family of variables {t1,...,¢s}. Let T be the Tate algebra
in the variables ¢, with coefficients in Co, (see Section 3.2.1). In 2012 Pellarin [Pel12| introduced
the following element in T called the zeta value in the variables t,

)= Y ) al)

a
d>0a€A; 4

20
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For s = 1, he proved the remarkable identity (see [Pell2;, Theorem 1])

CA(I,t1)w(t1) - 1

™ 9—t1

where 7 is the Carlitz fundamental period (see [Gos96, Tha04]), and w(t1) is the special function
introduced by Anderson and Thakur in [AT90] and given by

wit)) = ()= [] (1 —~ Qt;.)_l

=0

for a fixed choice of the (¢ — 1)th root of (—6) in C.

Since their introduction various works have revealed the importance of these zeta values for
both their proper interest and their applications to values of the Goss L-functions, characteristic p
multiple zeta values, Anderson’s log-algebraicity identities, Taelman’s units, and Drinfeld modular
forms in Tate algebras (see for example [ANDTR19, AP15, APTR16, APTR18, ATR17, Dem15a,
Deml15b, Gez19, GP19, PP18a, PP18b, Thal7]). We should mention that generalizations of these
zeta values to various settings have been also conducted (see for example [ANDTR17a, ANDTR17b,
Grel9, Grel7, GP18]).

3.1.2 Conjectures of Pellarin and statement of the main result

From now on we will always suppose that s =1 (mod ¢ — 1) and set

¥={1,...,s}, (3.1.1)
and 1
5 —
m = 1 € N. (3.1.2)

In a recent work [Pel21] Pellarin revisited the theory of Drinfeld modular forms which were initially
developed by Goss in [Gos80b, Gos80c, Gos80a| and Gekeler in [Gek88]. In his investigation he
proposed several conjectures for the zeta value (4(1,t,) which would lead to new identities for
Eisenstein series. We refer the reader to [Pel21, Section 9] for more details.

Conjecture 3.1.1 ([Pel21], Conjecture 9.1). We have

CA(lats) € Fp [Tk(CA(17tl)) 01 < 1 < S, ke Z] .

As Pellarin mentioned in his paper (see the discussion just before [Pel21, Conjecture 9.1]), the
central point of this conjecture is that negative twists are allowed, and that the coefficients belong
to Fp. Further, Pellarin suggested an explicit formula for (4(1,t,) when g is large enough. More
precisely, letting k € Z and U be a subset of 3, we set

o) =1k <H CA(Lti)> : (3.1.3)

ieU
Conjecture 3.1.2 ([Pel21], Conjecture 9.4). Let ¥ and m be defined as in (3.1.1) and (3.1.2),
respectively. Suppose that q is large enough, depending on m. Then we have the following formula
CA(lats) = Zngl) .. Lg];d)
where the sum runs through the set of ordered set partitions U = (Uy | - -+ | Ug) of & (see Definition
3.2.1) satisfying

L% |Uadl

Ll R
q q

The aim of the present chapter is to give an affirmative answer to this conjecture with an
explicit bound for ¢.
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Theorem 3.1.3. Conjecture 3.1.2 holds for ¢ > m.

A proof of Theorem 3.1.3 will be given in Section 3.4. Let us outline the main ideas of the
proof.

1. First, using the link between zeta values in Tate algebras and Taelman’s class formula due to
Angles, Pellarin and Tavares Ribeiro in [AP14, APTRI16], we state an equivalent statement
of Conjecture 3.1.2 (see Conjecture 3.2.5). Instead of identities on zeta values, it gives
conjectural expressions on a certain several variable Bernoulli-type polynomial B, € F,|ts, ].

2. Next, using the polynomial Bs; we give an expression of the zeta value (4(1,t,) in terms of
products of twists of zeta values (4(1,¢;) for i € ¥ with coefficients in Co, (see Proposition
3.2.8). Using some specialization arguments we are able to compute explicitly some coeffi-
cients of this expression (see Lemma 3.2.9). Furthermore, we introduce a notion of weight
for polynomials in Definition 3.2.7 and show that if the weight of B, is bounded below by 1,
then the other coefficients vanish which implies Conjecture 3.1.2 (see Theorem 3.2.10).

3. Finally, we succeed in proving the previous bound for ¢ large enough (see Section 3.3). In
order to do so we express Bs as a linear combination of symmetric polynomials in ¢,. For
q large enough we then compute explicitly this expression of By (see Theorem 3.3.1), which
implies immediately the desired estimation of its weight (see Section 3.4). We mention that
the proof of Theorem 3.3.1 is of combinatorial nature and that combinatorial properties of
Bs have already had important applications in function field arithmetic (see [ANDTRI19,
GAND™ 19, PP18a] for more details).

3.2 The several variable Bernoulli-type polynomial

In this section we study the several variable Bernoulli-type polynomial Bs. In Section 3.2.2 we recall
its definition, basic properties, and connection with zeta values in Tate algebras. In Section 3.2.3
we use this polynomial to formulate a conjecture equivalent to Conjecture 3.1.2 (see Conjecture
3.2.5). Section 3.2.4 is devoted to express the zeta value (4(1,%,) in terms of products of twists of
zeta values in one variable (4(1,t;) for i € ¥ (see Proposition 3.2.8). The key result states that
under some mild condition on By, Conjecture 3.1.2 holds (see Theorem 3.2.10).

3.2.1 Preliminaries

In this chapter we will work with the set of all (finite) sequences of integers £. When we
consider a sequence £ = (¢1,...,44) of integers, the reader should keep in mind that d depends on
the sequence ¢, and that ¢; may be 0.

Definition 3.2.1. An ordered set partition of ¥ defined as in (3.1.1) is a set partition Uy U...UUy
of ¥ equipped with a total order on its blocks Uy < --- < Uy. Here we require that Uy # () but the
other blocks may be empty.

We will denote this ordered set partition of ¥ by
U=U|Uz|...|Ug).

Recall that {t1,ts,...,ts} denotes a family of s variables, and we will also denote this family
by t,. For any ring R we set R[t,] := R[t1,...,ts).

Let L be an extension of K, in C,, such that L is complete with respect to v,. Then the
polynomial ring L[t,] = L[t1,...,ts] is equipped with the Gauss valuation: For a polynomial
f € Lit,], if we write

_ § ) 41 i ) )
f - all,mﬂstl “.t;’ au,.“,zs € L’

i1,...,0sEN

then the Gauss valuation of f is defined by

Voo (f) 1= inf{veo(asy,...0.), #1,...,0s € N}
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We define the Tate algebra Ts(L) in the variables ¢, with coefficients in L as the completion of

L[t,] with respect to the Gauss valuation. Explicitly, Ts(L) is the set of formal series

S

_ i1 is
f = E iy, ..., istl oty @iy € Lv

11,0505 EN

such that

o lim wee(aiy,.,) = 400,
11+...+is—+o0

When L = Co, we will write Ty instead of T4(Cs). Let 7: Ty — T, be the continuous
homomorphism of F,[t,]-algebras such that for a formal series f € Ty, if we write

_ E ) 4 7 ) .
f - a117---,lstl s 'tss7 allw"azs € (COOa
i1,.00,05 EN

then

T(f) = Z aglwyistil...ti-*.

With this action of 7 on T, we have the non-commutative rings Ts{7} and Ts{{7}}. The latter

set consists of the formal series > fi7* with f; € T, for all i, and the elements of the former are
i>0

the polynomials in 7 with coefficients in T,. The commutation rule defining the product is given

by 7f = 7(f)7 for f € Ts.

3.2.2 The several variable polynomial B,

We briefly recall the deep connection between the zeta value (4(1,t,) and the several variable
Bernoulli-type polynomial B as explained in [AP14, APTRI16].

Recall that for s = 1, Pellarin proved the following identity (see [Pel12, Theorem 1]):

CA(I,tl)w(tl) 1

= . 2.1
G 60—t (3:2.1)

For s > 2 and s =1 (mod ¢ — 1), we define
B, i (—1ym albt)oty).wlts) g (3.2.2)

™

where m is given by (3.1.2). Then by [APTR16, Lemma 7.6] (see also [AP15, Corollary 21]), we
have

Proposition 3.2.2. The element B, is a polynomial in F[t,,0]. Moreover, it is a monic polyno-
mial in the variable 6 of degree m — 1 and a symmetric polynomial in the variables t,.

Inspired by Taelman’s theory in [Tael0, Tael2b], Anglés, Pellarin, and Tavares Ribeiro showed
that the polynomial B, is closely connected to the class module Hy of a certain Drinfeld Alt,]-
module ¢ of rank one as follows (see [APTR16, Section 7] for more details). Let ¢: Aft,] — Ts{7}
be the Drinfeld A[t,]-module over T, given by a homomorphism of F,[t,]-algebras such that

¢9:0+(t1—9)”-(t3—9)7.

There exists a unique formal series exp, € Ts{{7}} called the exponential series attached to ¢
such that
expy, =1 (mod 7),

and
baexpy = expga, a € Altg].

One can show that the exponential series induces a natural F,[t,]-linear map

expy: T, — T,.
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Following Taelman [TaelO, Tael2b|, we define the class module H, by

L OL(Kx)
expy(Ts(Koo)) + (AlL])
where ¢(A[t,]) is the Fy[t,]-module Aft,] equipped with the A[t,]-module structure induced by ¢.

By [APTR16, Proposition 7.2] the class module Hy is a finitely generated Fy[t,]-module of rank
m — 1. The importance of the polynomials By is explained in the following theorem.

Theorem 3.2.3 ([APTRI6], Theorem 7.7). We denote by Fitta; j(Hy) the Fitting ideal of the
torsion Alt,]-module Hy of finite type. Then

Fittap,)(Hg) = BSA[L]-

In particular,

By = Fqg?]t[z] (Z ~1d — o9 |H¢®Fq[LS]IFq[§S}[Z]) |z=e.

A few explicit examples of the polynomials By are given in [ANDTR19, APTR16] (see also
[PP18al]). We need to introduce some more notation.

Definition 3.2.4. For any sequence £ = ({1, ...,{q) € N, we set

EO::57(€1+~~+€d)€Z,

and define
0s(0) =041, ... L ZH IT .
k= llGU}H,l
where the sum runs through the set of ordered set partitions U = (Uy | -+ | Ug41) of ¥ such that

|Ugt1| = €k for 0 < k < d. Here by convention, empty products are one and empty sums are equal
to zero.

In particular, o4(¢) = 0 if ¢1 + --- + £4 > s, which is equivalent to the condition ¢y < 0. The
reader should keep in mind that ¢; may be 0. For example,

4(0,0,1) th

Here are some more explicit examples that will appear in the explicit formulas of By for small
values of s:

o2-1(9) = > tiy i

1<) <+ <ig<2g—1

o34-2(q) = Z thp

1< < <ig<3q—2 j=1
2g—1

qu_2(2q — 1) = Z H tiﬂ

1<ip < <igq—1<3q—2 j=1

2q
Z H tiy,

03q—2(29) =
1<y <o <igg <3q—2 j=1
03q72(q_ 1aq) = Z Z th] Ht
1<y <o <ig_1<3q—2 1<k <+ <ky<3q—2 j=1 =
k@;é'LJ
By [ANDTRI19, Lemma 3.4] we have
B, =1, (3.2.3)
ng_l = 9 — O'Qq_l(q), (324)

Bag—o = 6 — 0[034-2(q) + 034-2(2¢ — 1)] + [034-2(¢ — 1,9) + 734-2(29)]. (3.2.5)
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3.2.3 A conjecture equivalent to Conjecture 3.1.2

In this section we use the several variable polynomial By to formulate a conjecture equivalent
to Conjecture 3.1.2 (see Conjecture 3.2.5).

Let k € N*. Since Tw(t1) = (t1 — 0)w(t1), we get

1 (=0T ( — 07)
((t1 —Q)W(t1)> w(t) '

By Equation (3.2.1), we know that

CAt) = Gy o] = o

It follows that

1 1 1
T >%qk(t19‘1k_1)"'(t19‘7)

—k k[
T allh) = ( R o)

since (—1)qk =—1.
Similarly, for 1 <i < s, we obtain
1 1 1 1
ey R 0T (o) ()
T7(Ca(1,t)) = o) = ol (3.2.6)

where we set L .
bi(t;) = (t; — 1) -+ (t; — 07). (3.2.7)
Note that b3 (¢;) = 1.
For a subset U of ¥, we define

Bi(ty) =[] bi(ta)-

icU

By the previous discussion we deduce that Conjecture 3.1.2 is equivalent to the following con-
jecture.

Conjecture 3.2.5 ([Pel21], Conjecture 9.7). Suppose that q is large enough, depending on m.
Then the following formula holds

By = (=1)""' > Bi(tv,) -+ Bilty,) (3.2.8)
where the sum runs through the set of ordered set partitions U = (Uy | --- | Ug) of & (see Definition
3.2.1) satisfying

U U
Oy
q q

We now present the cases m = 1 and m = 2 to illustrate combinatorial computations which we
may encounter. We follow the presentation of Pellarin given in [Pel21, Section 9.1.1] and see that
by direct calculations Conjecture 3.2.5 holds in these cases.

1. For m = 1, Conjecture 3.2.5 holds since both sides of (3.2.8) are equal to 1 (see (3.2.3) for
the left-hand side).

2. For m = 2, by (3.2.4) the left-hand side of (3.2.8) equals
Bag—1 =0~ 024-1(q).

Since |X| = s = 2¢g—1, we see that the only ordered set partitions appearing on the right-hand
side of (3.2.8) are (U; | Usz) with |Uy| = ¢ — 1 and |Uz| = ¢. It follows that the right-hand

side of (3.2.8) is equal to
Y| (ti—el/‘J).

UxCx%, |U2|:q €Uz



CHAPTER 3. PELLARIN’S CONJECTURES 26

We claim that this expression is equal to 8 — 094—1(g), which confirms Conjecture 3.2.5 for
m = 2. In fact, it is easy to see that all the terms defined over F,[0'/9] but not over F,[6]
cancel. Further, the terms over F,[0] give exactly the polynomial 0 — 09,_1(q) as desired.

3. More generally, our strategy follows that given in the case m = 2. On the one hand, we show
that on the right-hand side of (3.2.13) all the terms not defined over F[f] cancel, which is
exactly explained in the rest of this Section. On the other hand, we compute the terms over
F,[0] and prove that they give exactly B, which will be done in Section 3.3.

Remark 3.2.6. Let U = (U; | --- | Ug) be an ordered set partition of 3 satisfying
@ 4+ |Uij| =1.
q

We set ¢; = |U;| for 1 < j < d. Then the sequence £ = (¢1,...,4;) € N% with £; > 1 is a solution
of the system

Ot by =
{1+ Tla=s (3.2.9)

L T 7 g
i A

We assume further that m < ¢ where m is defined as in (3.1.2). Then one can show easily
that if £ = (¢1,...,£4) € N? with ¢4 > 1 is a solution of the above system, then we can write
0y =q— 51,00 = 51q— S2,...,0q = 5q_1q for a sequence (s1,...,55_1) € (N*)971 with s; +... +
sq—1 =m — 1. In fact, the map

(617'-'7&1) = (817'-'731171)

gives rise to a bijection between the set U,, of solutions £ = (¢1,...,¢4) € N with £;5 > 1 of the
system (3.2.9) and that of sequences (si,...,84-1) € (N*)4"! with sy +... + 841 =m — 1. In
particular, for m > 2, the cardinal of the set U,, equals 2™ 2.

We will give, for m = 1,2,3,4 and m < g, the explicit list of the elements of U,,

em=11U={(g}

em=2U={(¢-1Lg9h

em=3 Us={(¢g—1,q— q) (¢—-2,29)};
em=4:U={(g—1,g—1,g—1,9),(¢—1,¢—2,2¢),(q— 2,2¢ — 1,q), (¢ — 3,3q)}.

3.2.4 Twists of zeta values in one variable

In this section we will first give an expression for the zeta value (4(1,%,) in terms of products
of twists of zeta values in one variable (4(1,t;) for i € ¥ with coefficients in C, (see Proposition
3.2.8). Next, using specialization properties we determine some coefficients of this expression (see
Lemma 3.2.9). Finally, under some mild condition on By, we deduce Conjecture 3.1.2 (and its
equivalent form, Conjecture 3.2.5) from the previous calculations (see Theorem 3.2.10).

We start introducing a notion of weight for polynomials.

Definition 3 2.7. 1) Let £ = ({4,...,4s) € N° be an s-tuple of integers. We consider the monomial
& :=TI:_, t¥ and define its weight by

zlz

S

1
wit) =

i=1
2) Let P(t,) € Cxlt,] be a non-zero polynomial. If we express

:Zaﬁé, C@ECOO,
14

where the sum runs through the set of s-tuples £ = (¢1,...,4s) € N°, then we define its weight by
w(P) := min{w(t£) : a; # 0}.
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Proposition 3.2.8. With the notation as above, we can express

Gat) = ()™t Y &

Le(N)®

o Ve HT (Ca(L,ts)), e € Cx, (3.2.10)

s.
e
I

where the sum runs through a finite set of s-tuples £ = ({1, ...,4s) € (N*)® such that if v¢ # 0, then

By <> q%
=1

Proof. The proof is divided into several steps.

Step 1. First, we will express the polynomial B, € F,[t,, 0] as a sum of products of b (¢;) defined
as in (3.2.7).
Recall that for k € N* and for 1 < i < s, we have set in (3.2.7)

BE(t) = (ti — 07 T) - (t; — 6%) € Cac[ti]

which is a polynomial in the variable ¢; of degree k — 1. It follows that for n € N, we can write

n+1
= arnbi(t), akn € Cuo. (3.2.11)

We note that the coefficients ay , do not depend on ¢ € X.
For the polynomial B, € Fyt,, 0], we write

B, = Zﬂﬂ%z Z,Blt{l . tle, with B € Fylf),
I i

where the sum runs through a finite set of s-tuples j = (j1,...,/s) € N°.
For any s-tuple of positive integers £ = ({1,...,¢s) € (N*)*, we set

ve:=>_ B [[ae.s. € Coo: (3.2.12)
i el

where the coefficients ay, ;, are defined as in (3.2.11), and the sum runs through the set of s-tuples
J = (j1,-..,js) € N® such that j; +1>¢; for 1 <i < s.

By (3.2.11), we get
By =Y Bit] ...t (3.2.13)
J
s Ji+1l

=TT st

i=14;=1

S b (1) B (1),
¢

Here

e the first and second sum run through a finite set of s-tuples j = (j1,...,Js) € N°.

e the third sum runs through a finite set of s-tuples £ = ({1,...,£4s) € (N*)5.

Step 2. Next, letting £ = (¢1,...,4s) € (N*)® be an s-tuple of positive integers, we claim that if

ve # 0, then
"1
w(B,) <)
=1 q
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In fact, if 7, # 0, then by (3.2.12), there exists an s-tuple j = (j1,...,Js) € N° such that
l; <ji+1forl<i<sand

ﬂlH ;g # 0.
i=1
It implies that ﬁi # 0. Thus we obtain

) ) 1 1
J s\ —
Sw(tll...tg)—§:wg§ .
i=1

Li
=1 q

W(BS)

Here the first inequality and the second equality follow from the fact that 8; # 0 and Definition
3.2.7, respectively. The last inequality comes from the fact that ¢; < j; + 1 for all 1 <i < s.

Step 3. We now switch to zeta values in Tate algebras. We have
(=1)™7B;
w(t1) ... w(ts)
(“D"F X b (0) b, (t)

Ca(l,ty) = by (3.2.2)

Le(N+)®
= by (3.2.13)
w(ty) .. (ts)
i T (Ca (L 1))
=(-)"F > % H by (3.2.6)
LE(N*)* Tai
m—1 1= ] %i : —l; : s
= (1) Yoom Sy [T () (since (<1)° = 1)
Le(N*)® =1
where the sum runs through a finite set of s-tuples of positive integers £ € (N*)*. The proof of
Proposition 3.2.8 is finished. O
We now calculate some coeflicients of the expression (3.2.10) using specialization arguments. Let
k= (ki,...,ks) € N° be an s-tuple of non-negative integers. We study the following specialization
of (tl, e ,ts)i

e El
t=07 " =0, i=1,...,s.
Let i € . For an s-tuple £ = (¢4,...,¢s) € (N*)*, we have

ot (CA(Lti))’ti:Gq_ki Z Z

d>0a€cAy g4

t; =09

=X X S

d>0a€Ay g4

—zzﬂ

d>0a€Ay g4

= (ql )

d>0acA Z; k;
acAy g a

— k.

i

Recall that (4(n) =0if n <0 and n =0 (mod ¢ — 1), €4(0) =1 and {4(n) # 0 if n > 0 (see
for example [Gos96, Chapter 8]). It follows that

0 if fi > kii,
7t (CA(Lti))’tizeq—ki =141 it £i = ki, (3.2.14)
# 0 otherwise.
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We now analyze the term CA(l»Is)|t_,9qfk1; . We write

L)) pr = (3 3 ALttt

d>0a€Ay 4

a(0? "y . a(h
oy >a (

d>0acA, 4

h e

d>0a€cA
+.d a

Since s =1 (mod ¢ — 1), we can write

1
17.Zq’“f‘ :qg’“

with v = 0 (mod ¢ — 1) and k € N*. Again, since (4(n) = 0if n < 0 and n =0 (mod g — 1),
¢a(0) =1 and Ca(n) #0if n > 0, we deduce

S
0 if 3 4> 1,
1=1
Ca(Lt)), o =81 i S L —1 (3.2.15)
|tL 0 Z qu )
=1

# 0  otherwise.

Lemma 3.2.9. We continue with the notation of Proposition 3.2.8. Then for any s-tuple k =
(k1,...,ks) € (N*)®, we have

0 if 3 >

’YE — Zil
CSV T g S|

i=1

Proof. We divide the proof into two steps.

Step 1. Recall that the coefficients vy, are defined as in Proposition 3.2.8. We consider the set B
of s-tuples £ = (¢1,...,¢;) € (N*)® such that v, # 0. We choose one s-tuple k = (k1,...,ks) € B

such that the sum Z

- is maximal. Thus v # 0.

NZ

We claim that Z —— > 1. We consider (3.2.10) and study
i=11
the specialization of (¢1, ts) given as above:

iy o
t; =07 " =0 i=1,..., s

Since Z > 1, Equation (3.2.15) implies
CA(LIS)‘Q:G‘?_’” =0. (3.2.16)
Thus the specialization value of the left-hand side of (3.2.10) equals 0.

We now analyze the right-hand side of (3.2.10). First, we consider the term corresponding to
the s-tuple k = (k1,...,ks) € (N*)°. By Equation (3.2.14), we get

(= <% h er (ens >) = (R BTy

t; =9qiki
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Next, for other s-tuple £ € B, that means vy, # 0, we claim that there exists 1 <1 < s such
that( >k Supposethatf < k; for1<z<sand€ < k; for some 1 < j < s. Thus we get

Z , which contradicts with the fact that Z 77 Is maximal.
i=11 i=1

Since Ei > k; for some 1 < i < s, by (3.2.14) we have

5 (Call b)), -k, =0.
(-1t (%

Putting all together, the specialization value of the right-hand side of (3.2.10) equals

1,00

Thus we obtain

HM

tizgqfk’i

wHT (Ca(l,t; )) =0.

ki L
()™ F Sy, (3.2.17)

-3 L
By (3.2.16) and (3.2.17) we conclude that (—1)™~!7 Z v = 0. Thus 7, = 0, which is a

contradiction.

To summarize we have proved that for any s-tuple £ = (¢1,...,45) € soif Z > 1, then
Ve = 0.

Step 2. We consider an s-tuple k = (kq,...,ks) € (N*)®

=1
i=1

We claim that 45 = (—1)™~!. As before, we consider (3.2.10) and study the specialization of
(t1,...,ts) given as above:

ks, 1 .
t; =07 " =0, i=1,..., s

qii = 1, Equation (3.2.15) implies that
CA(l’tS)|t,:6q_ki =1 (3218)

Thus the specialization value of the left-hand side of (3.2.10) equals 1.
We now analyze the right-hand side of (3.2.10). For any s-tuple £ € (N*)® such that ~, # 0, we

know that
> >4
— < 1= —_—.
o 4 i1 4

Thus the arguments given in Step 1 can be applied so that the specialization value of the right-hand
side of (3.2.10) equals

m—lf"li.i q%i m—1
()" =y = (=)™ e (3.2.19)

»

=1

By (3.2.18) and (3.2.19) we get (—1)™ 1% = 1. Thus 7, = (—1)™"! as required.

The proof of Lemma 3.2.9 is complete. O

As a consequence of Proposition 3.2.8 and Lemma 3.2.9, we prove the key result of this section.
Theorem 3.2.10. Suppose that w(Bs) > 1. Then

1) We have w(B,) = 1.

2) Congecture 3.1.2 holds, that means we have

ZL( 1)._ —)

where the sum runs through the set of ordered set partitions U = (Uy | -+ | Ug) of ¥ such that

U U
Q+...+|75|:1.
q q
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Proof. Proposition 3.2.8 states that we can write

Galt) = ()™t 3 & wHT (Ca(1,t:)), 7 € Co,

Le(N¥)®

where the sum runs through a finite set of s-tuples £ = (¢1,...,4s) € (N*)® such that if v, # 0,

then
1
By) <>
=1 q

Thus the hypothesis w(B;) > 1 implies that if , # 0, then Z

w(Bs) > 1. Combining this

property with Lemma 3.2.9, we conclude that w(By) = 1, and that
SN | LI OTRN)
Le(N*)s =1

where the sum runs through the set of s-tuples £ = (¢1,...,¢;) € (N*)® satisfying

i=1

We wish to re-index the above sum by ordered set partitions of . For an s-tuple £ =
(b1,...,45) € (N*)® we can associate an ordered set partition U = (Uy | ... | Uy) of ¥ as fol-
lows. We put d = max{¢; : i € X} and for 1 < j <d,

Uj={ieX:t=j}

In fact, we see that this association gives rise to a bijection between the set of s-tuple £ € (N*)*
and the set of ordered set partitions of 3. Furthermore, it is clear that

S

D n

zlq

Using this bijection we conclude that

(-1 p(=d)
ZL Ly
(k)

where L7 are defined as in (3.1.3), and the sum runs through the set of ordered set partitions
U= (U] |Uyg) of ¥ satisfying

U U,
Q_;’_ _&.M:L
q q

The proof is complete. O

3.3 Coefficients of the Bernoulli-type polynomial

In this (long) section we study the expression of B as a linear combination of symmetric poly-
nomials in t,. We will give explicit formulas for some coefficients of this expression (see Theorem
3.3.1). To do so we need to write down similar expressions of zeta values (see Propositions 3.3.10
and 3.3.12) and Anderson-Thakur’s special functions. We then deduce such an expression for B,
(see Sections 3.3.3 and 3.3.4). For the desired coefficients we are able to compute them by using
combinatorial tools (see Section 3.3.4).
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3.3.1 The key result

We recall that for any sequence £ = (£1,...,44) € N, we have defined the symmetric polynomial
0s(£) as in Definition 3.2.4.

In what follows, we define

d
A = {a = (ao,...,aq) € (N*): Z (3.3.1)

d
A:={a=(ap,...,aq) € Z

NS = {n=(ni,...,nq) € (N)*: nlg...gnd,anzé}, ¢ e N*,

d
W= {n=(m,....na) € (N): Y m; =1}, (€N

It is clear that 2A* C 2 and M} C N, for all £ € N*.

We now state the main result of this section whose proof will be given in Section 3.3.4.

Theorem 3.3.1. Recall that (see Proposition 3.2.2)
By = 0™+ B10™ 2+ ...+ Bp_1, BreTF,t].
Let £ € N* such that 1 < £ < q—2, and let Ny and AT be defined as in (3.3.1). Then we have

Z Z (n,a)os(a1(g—1)+n1 —noy...,aq-1(¢ — 1) + ng—1 — ng, aq(q — 1) + ng)
neNy acA+

where

d
. nq) € (N*) satisfying > nj = ¢,

Jj=1

e the first sum runs through the set of sequences n = (nq, ..
that means n € Ny,
e the second sum runs through the set of sequences a = (aq,...,aq) € (N*)*1 satisfying

d
> aj = m, that means a € AT,

o the coefficient B(n,a) € F), is given by

Remark 3.3.2. 1) We note that if the coefficient B(n,a) # 0, then a; > n; for 1 < j <d.

2) The reader may compare the above expression with formulas given in (3.2.3), (3.2.4) and
(3.2.5). We leave the reader to write down explicitly the polynomial By,_3 for g > 4.

Remark 3.3.3. We now present a heuristic explanation for the formulas given in Theorem 3.3.1.
We assume that m < ¢ (see the discussion after Conjecture 3.2.5 for m = 1,2). By Conjecture

3.2.5 we write
B, = (=1)""'>  Bi(ty,) - Bi(ty,)

where the sum runs through the set of ordered set partitions U = (U; | --- | Ug) of X satisfying
U U,
M + e J'_ |qj| = 1.

By Remark 3.2.6 we have an explicit description of the set of such partitions when m < ¢. Using
this description we can write down all the terms defined over Fy[f)] of the right-hand side. By this
way we obtain a nice formula for Bs as given in Theorem 3.3.1.
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3.3.2 Preparatory lemmas

We first collect several combinatorial lemmas which will be necessary in the sequel.

Lemma 3.3.4. Let n € N* with n < g, and let a € N*. Then we have

(a(q “1)fn- 1) _ <1>”1<“ - 1) (mod p).

n—1 n—1

Proof. This lemma is an application of Lucas’s theorem (see for example [Gra97]). We write down
completely the proof for the convenience of the reader.

We always work in F,,. Since 1 < n < ¢, by Lucas’s theorem we can assume that 1 < a < g.
By Lucas’s theorem and the fact 1 < n < ¢ again, we get

alg—1)+n—-1 _ (a—1)g+q—a+n—1
( )= )

n—1 n—1

g—a+n-—1
()
_ (g—a+n—-1)...(¢q—a+1)
(n—1)!

_(-a+n-—-1)...(-a+1)
(n—1)!

a—n+1)...(a—1)

(n—1)!

e (50)

as required. O

— (_1)n—1(

The next lemma follows from standard combinatorial arguments and the details of the proof
will be left to the reader.

Lemma 3.3.5. For any integer j > 0 and any sequence ({1,...,4q) € N¢, we have

os(j)os(ly, ... la) = Z <€1+=7.1_32)...<£d+.7<;d—1d+1)x

. . X n
l:(J17~~~,Jd+1)ENd+1

X os(l1 + j1 — Jo, - la + Ja — Jd+1,Jd+1)

where the sum runs through the set of sequences j = (j1, ..., ja+1) € N such that j1+. . .4 jap1 =
j-
In what follows, we fix x to be an indeterminate over K. We recall that for any k& € N, the

binomial polynomial
x zr—1)...(x —k+1
( > = ( ) ( ) S Q[x]

k k!

represents a polynomial in the variable  with rational coefficients. Note that its value at £ € N is
equal to the binomial coefficient (f;)

Lemma 3.3.6. For M, N € N, we have the following equality in Q|x]:

S0 (100 - ()

Proof. For M, N € N, we define

- $ (1)) cam

k=0
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Punto) = (1)

The proof is by induction on M € N. For M = 0, the assertion is clear. Suppose that we have
proved the claim for M — 1 with M € N*, i.e., for all N € N,

Panior= ()

We now show that the claim is true for M. In other words, we have to show that for all N € N,

the following equality holds
N
PMyN((ﬁ) = <M> .

For N € N, we have the following equality in Q[z]:

We claim that

Prr vt () = Pun () + Pau—a,nv(2),

which implies

ruret(537) = (- () (e ()

By the induction hypothesis, we know that the second term in the above sum vanishes. Thus

N+1 N
PM7N+1(’JZ) — < M ) = P]VI’N(LL‘) - <M) (332)
Since (3.3.2) holds for all N € N, we deduce
N N-1
PM,N(-T)_ (M) :PM,N,:[(ZE)— < M ) :...:P]\/j)o(l').
To conclude, it suffices to prove that Pyso(z) = 0. In fact, we have
M M
B Y A AV E AN k(MY
Punale) =0 () (1) = () e () =o
k=0 k=0
The proof is finished. O

Lemma 3.3.7. For M, N € N with M < N, we have the following equality in Q[zx]:
i(l)k(:ﬂNJrkl)( x > B <N)
k M-k) M)
k=0
Proof. We consider the polynomial in Q[z] defined by

Pl@) m Jz\/[:(_l)k<m—N]:-k—l> (Mxk)

k=0

A

M
)
k=0
:i(fl)k(x_N)-fx—N—i—k—l) r...(x—(M—-k)+1)
k;()
)

We write

k! x (M —&)!

(N—z)...(N—2z—k+1) z...(z2—(M-k)+1)
] x (M —F)!

0
Since M < N, we have deg P < M < N. We know that for any integer ¢ with 0 < ¢ < N, we have

the equality o
Plx=0)=>Y <Nk€) <M6_k> - (]\]\;)

k=0
It follows that P(x) is the constant polynomial (AA/;) The proof is finished. O
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3.3.3 An expression of the zeta value (4(1,t,)

The main goal of this section is to express the zeta value (a(1,t,) as a series in §~! whose
coeflicients are symmetric polynomials in ¢,. We make use of the notion of basic sums introduced
in [ANDTR19, Section 5.2] to obtain such an expression (see Proposition 3.3.10).

Following [ANDTR19, Section 5.2], we recall some facts of basic sums. For a sequence k =
(ko, ..., ka_1) € N4 we set

U}(E) = dko + (d — 1)](31 + ...+ kg1,
|E‘ =ko+...+kg_1,
|E|!

PO - L
Cr = (1) kol .. kg_q!

€F,.

Letting a € Ay 4, we write a =ap + @10+ ... + ag—10%"1 + 6%. Thus we get

k _
where we put a* = [, a;”.

It follows that

a(ty)...a(ts
3 (t1) ... a(ts)

a€Ay g a
1 1 .
9l Z CEM Z a*a(ty)...a(ts)
k=(ko,...,ka—1)€EN? a€A4 a
1 1
=@ 2 Cmm 2 S dkdtou(t, k)
k=(ko,...,kq—1)€N4 a€AYL 4 p=(Lo,... £q)ENIHL
|¢|=s
L 1
=5 2 Cemm 2 osllht) Yo dM
k=(ko,..., kg_1)eNd ﬁz(eo,.--,éd)ENdJrl, a€As 4
le|=s
d—1 £;

0 _ k+e _ ppd—1 kil
Here we put a* = [[;Z a; and a*™* =[[;Z5a;” 7.

Letting k = (ko,...,kq—1) € N® and £ = ({o, ...,4q) € N+ two sequences of integers, we say
that £ is k-admissible if (ko + £, ..., ka—1 +€a—1) € ((g— 1)N*)4. We see that if £ is k-admissible,

then the sum > a®* is equal to (—1)%. Otherwise, this sum is equal to 0.
a€A+1d

Given a sequence k = (ko,...,kq—1) € N¢ as above, we define another sequence n = (n1,...,nq) €
(N*)? by

ny Z:ko-l-].,
n9 2:]{30+k1+1,

ng ‘= k0—|—...—|—kd_1+1.
This sequence satisfies

1) n1 <...<ng
d

i) > n; =w(k) + d.
j=1

We observe that the sequence k is completely determined by the associated sequence n. In fact,
we have kg =n1 —land kj =njp1 —njfor 1 <j<d—-1.
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Let n = (ny,...,nq) € (N*)4 satisfying n; < ... < ng as above, and let k = (ko, . .

be the associated sequence. We set

Lo ={l=(ly,...,4q) € N1 [is k-admissible and |£] = s}.

Then
a(ty)...a(ts) (=1)¢ 1
3 . = > Cr o > oully, .. la).
G,EA_*_,d EENd EGELS
Let £ = (4y,...,¢5) be a sequence in £, ; defined as above. Then there exist ao,.
such that
ly=ap(g—1)—ny +1,
61 = al(q— ].) +TL1 — Na,
lg—1 = aq-1(q — 1)+ ng—1 — nq.
Thus we get
d—1
Ed:s—ZEj =aq(qg—1)+ng
§=0

d—1

36

. ;kd—l) e N

(3.3.3)

..,aq—1 € N*

where we put ag := m— Y a; and recall that m is defined as in (3.1.2). Since £ € N1, we deduce

=0
the following lemma.

Lemma 3.3.8. The set £, s consists of the elements £ = ({y,..., L) € N**L of the form

EOZGQ(Q71)7TM+1,
6y =a1(q— 1)+ ny —na,

lg—1 = aq—1(q — 1) + ng—1 — na,
Ed = ad(q — 1) + Ng,

where ag, . ..,aq are integers such that

[ a0>0,...,ad_1>0,

d
e > a;=m.
§=0
Remark 3.3.9. We note that aq may be negative.

To summarize we have proved the following proposition.

Proposition 3.3.10. We have

Callt) = a6

>0

= Y Cw) Y oud)

Qe‘ﬁzr Leln, s

with

where

e the first sum runs through the set of sequences n = (nq,...,ngq) € ‘.TIZ' defined as in (3.3.1),

o the second sum runs through the set of sequences £ € £,, s defined as in (3.3.3),

e the coefficient C(n) € F,, equals

_1\d+ng—1 (nd - 1)'
(=1 (n1 — D(nz —ni)!... (ng —ng_1)!"
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3.3.4 Proof of Theorem 3.3.1

This section is devoted to prove Theorem 3.3.1 which compute the first ¢ — 2 coefficients of the
polynomial B,. We start proving intermediate results and give a proof of Theorem 3.3.1 at the end
of this section.

We first need the following consequence of Lemma 3.3.8.
Lemma 3.3.11. Let £ be an integer with 1 < < q—2, and let n. = (ny,...,nq) € (N*)? satisfying
d
ni < ...<ng and Y nj = L. Then the set £,  defined as in (3.3.3) consists of the sequences
j=1

L= (Lo, ..., ty) € N¥L of the form

ly=ap(g—1)—ny +1,
Elzal(q—1)+n1—n2,

ly—1 = aqg-1(q — 1) + ng—1 — na,
lag=aq(q—1)+nyg,

where ag, . ..,aq are integers such that

e ap>0,...,a9-1>0and aqg >0,
d

e > a;=m.
Jj=0

Proof. We have to prove that ag > 0. In fact, the fact that n = (n1,...,nq) € (N*)¢ satisfies
d

ni < ... < ngand ) n; = ¢ implies ng < ¢. Thus ng < ¢ — 2 since £ < g — 2. It follows
=1

immediately that aq > 0 since 3 = aq(q¢ — 1) + ng and £4 € N. O

As an immediate consequence of Lemma 3.3.11 we obtain

Proposition 3.3.12. Let ¢ be an integer with 1 < £ < g — 2, and let D“QL and A be defined as in
(3.3.1). Then we have

as= Y > Cln)os(ar(g—1)+n —na,...,a4(q— 1)+ na)

neny a€A
where
o the first sum runs through the set of sequences n = (nq,...,nq) € ‘ﬁz',
e the second sum runs through the set of sequences a = (ag, - ..,aq) € 2,
o the coefficient C(n) € F, equals
~ -1 (nq —1)!
Clw) = (~=1)*™ (n1 — Dl(ng — ). (ng — ng_1 )"

Remark 3.3.13. In the above formula, we could take the first sum over the bigger set of sequences
n=(ni,...,nq) € N defined as in (3.3.1) since for any sequence n € N, \ N, we have C(n) = 0.

We set By := 1 and write
By =60 (Bo+ B0 +...+ B 107V, By et

Recall that (see (3.2.2))
B, == (—1)™ CA(l,IS)w(El) cow(ts)

™
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Dividing this equality by ™~ yields an equality between formal series of the form Y f;0~7 with
Jj=0

fj € Fylt,]. Thus to compute the first coefficients By, ..., B,—2 of B, it suffices to look at both

sides modulo #~(9=1) i.e., by forgetting the terms 07 for j > ¢ — 1.

On the left-hand side, we obtain
Bo+ B0~ + ...+ B, 90772  (mod 947 V)

where we put B, = 0 for k£ > m.
On the right-hand side, for the zeta value (4(1,¢,), Proposition 3.3.10 gives

ap,s + a1759_1 4.+ aq_2759_(q_2) (mod 9_((1_1)).

For other factors, we write

0
| I (1 9‘1j) =1 (mod 67971,

jz1
and
S —1 s —1
t; t
_ = _ (¢—1)
HH( 9) =] (1 9) (mod ¢~ (@-D)
i=135>0 =

= Qo,s + a1,59_1 + ...+ aq72,59_(q_2) (mOd 9-((1_1)).
In other words, for all 1 < /¢ < ¢ — 2, we have

By —0s(1)Be_q1 + ...+ (=1)%0,(0) By = ay . (3.3.4)

)

Hence By is completely determined by By, ..., By_1.

We now prove one of the key results of this section.

Proposition 3.3.14. Let £ be an integer with 1 < £ < q—2, and let N,y and AT be defined as in
(3.3.1). Then

B, = Z Z C(n,a)os(ai(g—1)+n1 —na,...,aq(g — 1) + ngq) (3.3.5)
neNy acA+
where
o the first sum runs through the set of sequences n = (ny,...,nq) € Ny,
e the second sum runs through the set of sequences a = (ag,...,aq) € AT,

o the coefficient C(n,a) € F, is equal to

C(n,a) = (—1)¢ ﬁ <aj(q —1)+n; — 1>'

n; — 1
Proof. Let £ be an integer with 1 < ¢ < g — 2. It suffices to prove (3.3.4) where By is given by
(3.3.5) and ay s is given in Proposition 3.3.12.

If we set

14
S:=By—0s(1)B1+ ...+ (-1)'0.(O) By = > _(~1)¥o,(k)Br s,
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then we replace By by (3.3.5) for 1 <k <{¢ < q—2 to get

4
S=>(=Drfouk) Y. > Clla)oslarlq—1)+ b — Ly, ..., aa(qg— 1) + L),

k=0 LEMNy_ QGQH’
where the second sum (resp. the third sum) is over the set of sequences £ = (¢1,...,44) € My_i
(resp. a = (ag,...,aq) € AT). By Lemma 3.3.5 we develop the above expression to get

¢
SZZ(—I)k Z Z C(t,a) os(ar(qg—1) + €1 — Lo+ j1 — jo2, .-y aa(qg — 1) + La + ja — Ja+1, Ja+1)

k=0 LeEN)_ 1 acAT
o Z (al(q— 1)+6 =Ly + 53 —jz) (ad(q— 1)+£d+jd_jd+1)
(J1s-rJag1) ENGTE 1 Jd

Jit..A+jar1=k

For sequences £ = (¢1,...,4q) € My_p and (ju,...,Jar1) € N with j; + ... 4+ jar1 = k as
appeared in the above sum, we put

ni =40 +51, ..., ng=4q+3jd, Nd+1 = Jd+1-

Then the sequence n = (n1,...,n441) belongs to (N*)? x N and satisfies nq + ... + ng 1 = £.

Using this notation and the formula for C(¢,a) we can re-index the sums in S to get

S = Z Z Us(al(q_ 1) +n _n27"'7ad(q_ 1) +ndand+1)

n geAt
d
Dydtnas ST (—1)m6 aj(q—1)+0; =1\ (a;(g —1) +nj —nj1
fj —1 n; — éj
£ j=1
Z naa) (al(qf]-)‘i»nl7”2;"'aad(q71)+nd7nd+1)
n
where
e the first sum runs through the set of sequences n = (ny,...,n441) € (N*)¢ x N such that
ny+...+ng4+1 =/,
e the second sum runs through the set of sequences a = (ao,...,aq) € AT,

e the third sum of the first equality runs through the set of sequences £ = ({1, ...,4q) € (N*)4
such that ¢; <n; for all 1 < j <d,

e the coeflicients S(n,a) are given by
d
)dnas =t (aila = 1)+ 6 =1\ (a;(qg—1) +nj —njp
S(n.a) = ST ( e i .
£ j=1
(3.3.6)

where the sum runs through the set of sequences £ = (¢1,...,£;) € (N*)¢ such that ¢; < n;
forall 1 <j<d.

In Lemma 3.3.15 below we compute explicitly the coefficients S(n,a). Combining it with

Proposition 3.3.12, we deduce immediately Proposition 3.3.14. O
Lemma 3.3.15. Let £ be an integer with 1 < £ < q—2. Let n = (n1,...,nq41) € (N*)¥ x N be a
sequence satisfying ny +...+nqr1 = £, and let a = (ag, .. .,aq) € (N*)*! be a sequence of positive
integers.

We recall that S(n,a) is defined as in (3.3.6). Then we have

1. If ng41 > 0, then

_ _ Nd41 (nd 1= 1)'
S @) = Clm,. map) = (D (n1 — l(n2 — ;21)! oo (nay1 —na)!
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2. If ngy1 =0, then

_ ~n ny) = (—1)¢tna—1 (nd_1>!
e (n1 — Dl(nz — ). - (ng — ng_1 )"

Here recall that the coefficients 5(@) are defined as in Proposition 3.3.12.
Proof. In fact, we write
d aj(g—1)+4; —1\ (aj(¢—1)+n; —n
_ d+ngiq TL]‘—EJ‘ J - J J - g~ T+l
Stna) = (e [T S (o (VTS (Wl T,
J=11<f;<n;

We consider separately each factor of the above product and distinguish three cases.
Case 1: the jth factor for 1 <j <d—1.
We apply Lemma 3.3.6 to z = a;(¢ — 1) +n; —njt1, M =n; —1 and N = nj41 — 1 to obtain

S (b <aj(q Zj-l)—+1€j - 1> (%‘(q —1)+mn; — ”j+1>

1<¢;<n; nj —{;
n;j—1
J (g —1 1= (ag—1 M
_ Z (—1)k (aj (¢—1) "‘lnj . k) <a] (¢—1) ‘Z”] n]+1> where & = n; — ¢;
k=0 AN

_ Nj41 — 1
’I’Lj -1 '
Case 2: the dth factor with ng; > 0.
We apply Lemma 3.3.6 to x = ag(¢ — 1) + ng — ng+1, M =ng—1 and N = ngy; — 1 to obtain

Z (—1)ra—te (ad(q _€i>—+1€d - 1) (ad(q — 1) +ng— nd+1)

1<lq<ng na = ta
ng—1
1 1k 1 -
_ Z (—1)h (ad(q )+ ng ) <ad(q )+ ng nd+1> where k = ny — £,
=0 ng — 1—-k k

_ Nd+1 — 1
ng—1 )
Case 3: the dth factor with ng; = 0.
Note that ng > 1. We apply Lemma 3.3.7 to x = ag(¢—1) + ng and M = N = ng—1 to obtain

S (—ynete <ad(q —gi)j-lfd - 1) (ad(q —1)+ng— nd+1>

1<ta<na na = 4a

Z (—1)ra—ta (ad(q 1)+ 4, - 1) (ad(q -1+ nd>
1<ba<ny ta—1 na = La

’ﬂd*l

-1 -1

- Z C (ad(q )+ k) (ad(q )+ nd) where k = 3 — 1

=0 k ng — 1—-k
= (-1,

Putting all together, we obtain Lemma 3.3.15. The proof is finished. O

We are now ready to prove Theorem 3.3.1.

Proof of Theorem 3.5.1. By Proposition 3.3.14, letting 91, and A" be defined as in (3.3.1), for
1 </?¢<q—2, we have

By = ZZC(Qag)US(a1<q_ 1) + ny —’ng,...,ad(q— 1) +nd)

where
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d
e the first sum runs through the set of sequences n = (ny,...,nq) € (N*)? satisfying > n; = ¢
j=1
(e.g. n € My),
e the second sum runs through the set of sequences a = (ao,...,aq) € (N*)*! satisfying

d
Y aj=m (e.g. a€AT),
j=0

e the coefficient C(n,a) € F, is equal to
d a;j(g—1)+n; —1
C — (=1 d J - J .
(na)=( >1_I< s

To prove Theorem 3.3.1, it suffices to prove that for n = (n1,...,n4) € My and a = (ag, ..., aq) €
AT as above, the coefficients C'(n, a) and B(n,a) given in Theorem 3.3.1 are the same. In fact, by
Lemma 3.3.4 we have

C(n,a) = (1) H (“J'(q — 1) +n; - 1>

- n; —1
j=1 /

d

e 11(—1)"1-1(7‘;; )
= (—1)mtetna ﬁ CZ : 1)

Jj=1

d
Since ) n; = ¢, it follows that
j=1

C(n,a) = (-1)* ﬁ <Zj - 1) = B(n,a)

as desired. The proof is finished. O

3.4 Proof of the main result

In this section we present a proof of Theorem 3.1.3. We have to show that if m < g where m
is defined as in (3.1.2), then the following formula holds

Callit) => LG oh?
where the sum runs through the set of ordered set partitions U = (U; | --- | Ug) of X satisfying

U U,
Q+..._~_|7(‘j|:1.
q q

We assume that m < g. Then the polynomial B, is completely determined by Theorem 3.3.1.
We claim that w(B;) > 1. In fact, by Theorem 3.3.1 and Definition 3.2.7 it suffices to prove that
w(os(a1(g—1)+n1 —ne,...,a4(¢g—1)+ng)) > 1

where

e n=(ng,...,ng) € (N*)9,

d
e a=(ag,...,aq) € (N*)¥1 such that > a; =m,
j=0
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satisfying a; > n; for 1 < j < d (see Remark 3.3.2).
We see that

w(os(ai(g—1) +n1—n2,...,a4(q¢ — 1) +ngq))

agq —n a —1)4+ni—n a —1)+n
_ag—m 1(q )2 1o a(q d+)1 a
q q q

Since a; > n; for 1 < j < d and ap > 1, we get

q—n1  Ni1q—"Na2 naq
w(os(ar(g—1)+n; —no,...,aq(q—1) +nyg)) > p + 7 +"'+da:1

as required.
Now we know that w(Bs) > 1. Thus Theorem 3.1.3 follows immediately from Theorem 3.2.10.

3.5 Remarks

In this chapter we have succeeded in proving Conjecture 3.1.2 and thus get a partial answer to
Conjecture 3.1.1. We expect that Conjecture 3.1.1 always holds. Thus it is tempting to ask whether
Theorem 3.3.1 holds in full generality so that we can remove the restriction 1 < £ < g — 2.

Conjecture 3.5.1. Recall that (see Proposition 3.2.2)
By =0""1 4+ B10" 2+ ...+ By_1, Brel,t,]
Let ¢ € N* such that 1 < ¢ <m — 1. Then we have

By =" "B(n,a)osailqg—1)+n1 —na,...,aalg — 1) + na)

where
d
e the first sum runs through the set of sequences n = (ny,...,nq) € (N*)? satisfying > n; = £,
j=1
e the second sum runs through the set of sequences a = (ao,...,aq) € (N*)9T1 satisfying
d
> aj=m,
j=0

o the coefficients B(n,a) € F,, are given by

B(n,a) = (_1)6‘11 (:Z _ 1)

By similar arguments as before we prove the following result.

Proposition 3.5.2. Conjecture 3.5.1 implies Conjecture 3.1.1.

Proof. Suppose that Conjecture 3.5.1 holds. From the explicit formula for B, by similar arguments
as those given in Section 3.4, we see that w(Bs) > 1. Combined with Theorem 3.2.10, it implies
immediately Conjecture 3.1.1. O

Remark 3.5.3. 1) For m = 1,2, 3, we have explicit formulas for B, (see Section 3.2.2) and see
easily that Conjecture 3.5.1 holds for these small values. They provide the first evidence to support
our conjecture.



Chapter 4

Beyond Pellarin’s conjectures

Let se N, s>2 s=1 (modg—1) and m := (s —1)/(¢ — 1) € N. We write (see Proposition
3.2.2)

By =0""'+B0m™ 2+ ...+ B,,_1,Br € F[t].

In previous chapter, we give an explicit formula of By with 1 < ¢ < ¢ — 1 in Theorem 3.3.1.
It means that Conjecture 3.5.1 holds for £ < ¢ — 1. The goal of this chapter is to go beyond this
bound and to investigate this conjecture for £ < g(q — 1).

The steps that we investigate are as follows: First, we formulate an "approximate" equation
which we need to prove, i.e., if we substitute the formula of B, from Conjecture 3.5.1, it should
true. Then, in the next step, by using this Equation, we prove Conjecture 3.5.1 in some cases, i.e.,
{ < 2q—2,¢ < 3q— 3. This step is done by purely combinatorial arguments. The last step is to
formulate a conjecture based on step two.

4.1 Step 1

The aim of this step is to construct an "approximate" equation: see Equation (4.1.3).
Recall that

]BS = (_l)m CA(LES)W(;l) .. .W(ts) .

We divide both sides by ™! and note that (a(1,t,) = > 0%804 with s is defined in Propo-
>0
sition 3.3.10. We obtain

s S o0~ | 1T L0 - )
ZB gt — >0 i=15>0 0
e | (e AT

Jj=1

Note that [] (1 — 0’57) = 3 (=)0, ()67, where o,(¢) is defined in Definition 3.2.4. Thus
i=1 =0

(Z 3494) II i(—l)%s(z)e—@’ = (Y a0~ | [Ja -0V (4.1.1)

£=0 §>04=0 £>0 j>1

To compute the coefficient By for 1 < £ < g(q — 1), it suffices to look at both sides of Equation
(4.1.1) modulo #~9@=1) ie. by forgetting the term #~7 for j > q(q — 1). We get

(i B£9E> <i(_l)eas(€)ﬂl> (z‘g:(_l)lo.s(é)afq> = 206,3074 (1 _af(qfl)) (mod efq(qfl)).
=0

£=0 =0 £>0
(4.1.2)

43
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Remark 4.1.1. 1. To remind the reader, in Section 3.3.1, to prove Theorem 3.3.1, we consider
Equation (4.1.1) module #~(@~1), When we consider modulo =941 we have extra factors

(Z (—1)fo, (E)O_eq) and (1 — 6~(@=1) respectively on the left-hand side and on the right-

hand side. These extra factors make the computation much more involved.

2. In Equation (4.1.2) and later, we still keep some terms 0~ for £ > g(q — 1) when consider
modulo =9~ Tt does not effect the equation but creates a clear formula.

Similar to Section 3.3.4, we define the following sum with index (assume that By, = 0 for k& < 0)

Si =Y (-1)fo.()Bi—y = B; — 05(1)Bi_1 + ... + (—1)04(i) By.
>0

We note that in Section 3.3.4, we do not have the index "i" in S. Equation (4.1.2) becomes

> S0 <i(1)%s(£)944>

i>0 =0

> a7 | (1=607"1) (mod g4,
>0

ie.,

S (1fou(k)Siokg | 07 = (s — qigr1,)0™"  (mod §707 1),

i>0 \ k>0 i>0

Here, we assume that a; ¢ = 0 for i < 0. By comparing the coefficients of =% for 1 <1i < g(q — 1),
we get

Z(—l)kas(k;)Si_kq =04 s — Oj_qg+1,s- (413)
k>0

Now, for 1 < /¢ <m — 1, we set

B; = ZZB(E,Q)US(CM(Q— 1) +n1 —na,...,a4(q — 1) + ng)

where
d
e the first sum runs through the set of sequences n. = (ny,...,nq) € (N*)? satisfying Y n; =,
j=1
e the second sum runs through the set of sequences a = (ao,...,aq) € (N*)¥*! satisfying
d
> aj=m,
j=0

o the coefficients B(n,a) € F,, are given by

B(n,a) = (—1)£f[1 <Z; i 1)

Conjecture 3.5.1 is equivalent to show that B; = B; for 1 <¢ <m — 1. We also set
S;=>Y (-0 (0)B;_, = Bf — o (1)B;_; + ...+ (—1)'04(i) B;.
£>0
By the definition of S; and S; and by induction, the following statements are equivalent
B;=Bfforalll1<i<m-—-1<=5;=5forall1<i<m-1
=Y (=DFos(k)Sing = Y (—=1)fou(k)S;_ 4,
k>0 k>0

We need to show that

Z(—l)’“as(/f)SZlkq = Qs — Qi—gt1,s-

k>0

In the following Sections, we will write explicitly formulas of both sides and show that they are
equal for some cases.
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4.2 Step 2

We begin with some notation and then we compute both sides of Equation (4.1.3).

4.2.1 Notation

Since this chapter contains a lot of long equations and repeating forms, we assume some "short"
notation as follows.

Recall the notation in (3.3.1).

d
AT = {Q = (ao, .. .,ad) S (N*)d+1 : Zaj = m},
§j=0

d
2 :={a = (ag,...,aq) € (N*)* x N: Zaj:m},
=0

d
NS i={n=(ni,...,nq) € (N): ny <...<ny, anzé}, e N*,
j=1

d
Ny = {n=(n1,...,nq) € (N an =/{}, (eN".
j=1

Let X = (Xo,...,Xg) € A It is equivalent to (X1,..., Xq) € (N*)¥ ! xNand X; +...+ X4 < m.
For short, we only write X3 > 0 instead (We do not write the condition X; 4+ ...+ X3 < m and
X1,...,X4-1 > 1). For example

o fe= > f

Xa20 (X150 Xa)e(N*)471 XN
Xi+...+Xg<m

For (by,...,bg) € (N)¢, we define
o(X,b) = 0(X,b)(1,0)...a,0) = 0s(X1(q — 1) + b1 — ba,..., Xa(qg — 1) + ba).
For a > 0, we define an operator that acts on o(X,b) as follows

f(k,ak)(o-(&? b)) = O(k,ax)
=0(X1(g—1)+b1—bo, ..., Xp—1(q—1) + b1 — by —a, Xi(¢— 1) + b — b1 +an, ..., Xa(g — 1) + bg)

and

(X, 0)(1,a1)..(dag) = Fd,aa) (@(X,0)(1,a1)...(d=1,a0_1))-
For k = d + 1, we note that

(X, 0)(d,an)ans, = 0(X50)(dan)(d+1,a011)
=0s(Xi(g—1)+ b1 —ba,..., Xa(g — 1) + ba + aqg — ag+1, ag+1).
4.2.2 The left-hand side of Equation (4.1.3)

In this section, we compute the left-hand side of Equation (4.1.3).
Proposition 4.2.1. We have

S 1)Fou ()i kg (12.1)
k>0
d—1
_ Z Z Z (—1)dHba—L+astann H (bj+1 - 1) (bj+1 —bj + aj+1> " <bd +aq — ad+1> 5
K>0 X420  bi+..4ba=i—Kq j=1 bj —1 aj ad
a1+...+agtag+1=K
1<b;<q
a;j 20

X (X, 0)(1,a1)...(dsag)agss -
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Proof. The proof uses similar arguments as in that of Proposition 3.3.14. We omit the details. O

We write
k
> (Df0u(k)Sikg =Y Ar,
k>0 k>0
where
< 1\ /b b b
Ay = Z Z (—1)F+ba=T+aataat H j+1 — 41 =05 T i) (bd+ad = adrr)
i . bj -1 aj Qaq
Xqa>0 bi+...+bg=i—Kq j=1
a1+...+ag+ag1=K
1<b;<q
ajzo

(X, 0)(1,a1)..(dan)aass -

4.2.3 The right-hand side of Equation (4.1.3)

The author formulated a formula of a;; and ;441 which is "similar" to that of > (—1) 0 (k)S; kg
in Equation (4.2.1). The following proposition is a simple reformulation of Proposition 3.3.12.

Proposition 4.2.2. Fori < ¢%, we have

=% 3 ) )it 1:[ < JbH— 1 ><aj+1> y

k>0  Xq>0  bi+..+bg=i—kq+q—bas1 j=1 4
a1+...+ag+aqg41=k+bay1—q
1<b;<q,a; >0

g1+ =1 =bay1) (bat1 —1
X ( + i )( bzf 1) (X, 0)(1.ar)...(d.aa)aus

aq
and
; = d+ad+1 - ]-’rl -1 aj+1
Yimat1 = bj —1 a; %
E>0  X4>0 bi+...+bg=i—kq+q+1—bai1 j=1 J

a1+...+agtagr1=k—1+bqt1—q
1<b;<q,a; >0

agy1+q—1—=Dbay1\ (b1 —1
X ( ag > ( bd _1 X U(K» b)(l,al)...(d,ad)adJrl'

Remark: In both formulas of «; and «;_g41, the sums (by + ...+ bg) + (a1 + ... + aq41) are
equal and the values are k(g + 1), which do not depend on bg11. We write

az:ZBk

k>0

and

Qg1 = Z Ck.

k>0

4.2.4 Step 2 for some cases

We need to show that

Conjecture 4.2.3. Fori < ¢%, we have

Z(_l)kas(k)sifkq =0y — Q_g41,

k>0
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where
> (=1)Foy(k)Si-kq
k>0
d—1
-y ¥ ) (1)t treatann T (bj+1 - 1) (bj+1 —b; + aj+1> « (bd +aq— ad+1>
K>0 X420  bit..+bi=i—Kgq j=1 bj —1 aj @d
ar+...4ag+aqg1=K
1<b;<q
a;j 20
X U(&7 b)(l,al)...(d,ad)ad+1

and

o = Z Z d+bd 1 H < _;)4—1_1 ) (K,b)(l,O)m(d,O)'

byi+...+bg=1t Xi+...+Xg<m
b;>1 X1, X121
no condition on Xg4

Conjecture 4.2.3 is equivalent to show that
S a=YB Yo
k>0 k>0 k>0
For small values of k, we have the following proposition.

Proposition 4.2.4. For k = 1,2, we have

A = By — Ch.
Proof. The idea of the proof is as follows:
We find all value of (a1,...,aq,aq4+1) corresponding to A, By, C.
1. For Ay, the number of solutions (ay,...,aq+1) of a1 + ...+ agy1 = k < 2 is small. After

expanding Ak’ we get the terms U(Ka b)u U(l7 b)(k,l)7 U(l? b)(kl,l)(kQ,l)a 1< ka kla k2 < d+1.
Then, we apply the following lemma whose proof is by direct calculations.

Lemma 4.2.5. For any i € N, for any function g(by), we have

> (b = by )C@g(bR) (X D ey = D (b1 = b)C(R)g(bx — 1)o(X, b)
bi4...+bg=i bi+...+bg=i+1
1<b;<q 1<b;<
where

Cb) = (-1 H ( ).

By applying this lemma, with suitable coefficients, we can transform o (X, b)x,1), (X, b) (ky 1) (k2,1)
to o(X,b), then we can gather the coefficients of these o’s.

2. For By, Ck, the number of solutions (ay,...,a4+1) of a1 + ...+ age1 =k +bge1 —q > 01s
also small since bg11 < ¢ (hence, the possible values of byt are ¢,¢ — 1,9 — 2,q — 3). Also,
since there are term like (“;“) we have an additional condition that 0 < a; < ... < ay.

J

3. After expanding Ay and gathering by Lemma 4.2.5, the results obtained coincide with By —
Ck.

O

Corollary 4.2.6. Conjecture 4.2.3 is true with i < 2q — 2, 1 < 3q — 3.

Proof. For i < 3¢ — 3, we have by + ...+ by =i — kq > 0, hence k£ < 2. By Proposition 4.2.4, it
implies that

Z(—l)kUs(k)Si—kq =A1+Ay=B1+ By~ C1 — Co = a; — aj_qq1.
k>0
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4.3 Step 3 and comment

By Proposition 4.2.4, we suggest the following conjecture.

Conjecture 4.3.1. For all k < q, we have
Ay = By — C,

i.e.,

d—1
Z Z (71)d+bd—1+ad+ad+1 H (bgl')ﬂ —11> (bj+1 —b; + aj+1> % <bd +aq — (ld+1> %
j=1 N 9

X450  bid...tby—i—kq aj ad
ai+...4aq41=k
1<b;<q
(Lj 20

X 0(X,0)(1,a1)...(d,aa)ags1

d-1
_ Z Z (—1)d+aas H (bj-H - 1) (aj+1) " (ad+1 +q—1- bd+1> (bd+1 - 1) o
bj -1 Qj Qaq bd -1

Xq>0  bi+...+bg=i—kq+q—bgi1 j=1
a1+...4aqgy1=k+bg11—q
1<b;<q
ajZO

X 0(X,0)(1,a1)...(dsag)agss

d—1
= Z G || (bj+1 - 1) (aj+1> . (ad+1 +q—1- bd+1> (bd+1 - 1) y
bj —1 aj; Gq ba —1

Xg>0  by+..+ba=i—kq+q+l—baiy =1
a1+...+agr1=k—1+bgr1—q
1<b;<q
a;j 20

X 0(X,0)(1,a1)...(dsag)agss -
Comment: To prove Conjecture 4.2.3 for the case i < 4q¢ — 4, we need to prove Conjecture
4.3.1 for k = 3. There are some possibilities:

1. Do as the method in Proposition 4.2.4. The difficult part is after expanding Ay and applying
Lemma 4.2.5. To apply Lemma 4.2.5, we need a suitable coefficients.

(a) From o1 to o, applying Lemma 4.2.5 in the k-position, to get a suitable coefficient,
we have an extra term (this term can not apply Lemma 4.2.5).

(b) From ok, 1)(ks,1) O O(k1,1)(ks,0)> aPPlying Lemma 4.2.5 in the ky-position, to get a
suitable coefficient, we have an extra term. In this extra term and main term, we
can also apply Lemma 4.2.5 (in k; position). But it will generate some "extra term".
Roughly speaking, finally, the coefficient of oy, 1)(k,,1) can divide into three terms, one
term with coefficient help us to apply Lemma 4.2.5 two times, one term with coefficient
help us to apply Lemma 4.2.5 one time, and the remaining term that can not apply
Lemma 4.2.5.

(c) From o, 1)(ks,1)(ks,1) t0 0, we do the same.

Question: Using this method to prove Conjecture 4.3.1, Lemma 4.2.5 is not enough.
Could we get a generation of Lemma 4.2.57

Answer: The author has some generation of Lemma 4.2.5, that are Lemma 4.3.2 and
4.3.3.

2. Maybe induction works in this situation. We can change variable as follows:

ba+q— by
ag—1—ay
Xg—1— Xy

Xic1+1—=Xg1.
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Note that

os(X1(g—=1) +b1 —ba+ay —az,...,Xq-1(q—1) + bag—1 — ba +aqg—1 — aq, Xa(q — 1) +bg + aq — @q11,aa41)
=0s(X1(¢g—1)4+ b1 —b2+ a1 —as,...,

(Xa—1+1)(g—1) +bg-1 — (ba +¢q) +ag—1 — (aqg — 1),

S (Xa—1D(@g—1)4+ba+qg+aq—1—ags1,04+1)-

The following lemmas are some generalizations of Lemma 4.2.5 which may helpful to prove
Conjecture 4.3.1. The proofs are by direct calculations and we omit the details.

Lemma 4.3.2. We have

Z (bk — bk+1) . (bk — bk+1 +a— 1)f(bk)é(b)a(la b)(k,a)
bit...+by=i
1<b1<...<ba<gq
= Z (bp—1 —bg) ... (bg—1 — b +a—1)f(bg —a)é'( )o (X, b) (k,0)

bi+...+ba=i+a
1<b1<...<ba<q

i.e.,

> (Tt Newseeen = X ("7 o0k - ao o

a a
by+...+bg=i bi+...4+bg=i+a
1<b:1 <...<ba<q 1<b1 <...<ba<gq

i.e.,

> (M ewsee e = X (7)) 00rn - 9o b,

a
bi+...4+bg=1 bi+...+bg=i+a
1<b:1<...<ba<q 1<b:1<...<ba<gq

Lemma 4.3.3.

d-1
bjt1 — 1\ (bjy1 —b; +a; bg+aqg—1
d+bg—1+ag+a j+1 j+1 — 05 + aj41 d 1 aq
Y X x e ) )<( )

K>0 X450  bid..+bg—i—Kq j=1 aj ad
a1+...+agtaqgr1=K
1<b;<q
ajZO

(X, 0)(1,a1)...(d.ag)agss

_ Z Z (71)d+bd*1+ad+ad+l dl:[l <bj+1 — 1) "
! b, — 1

Xa>0 bi+...+bg=i—Kq+ai+...4+aq Jj=1

=
V
=}

ai+...+ag+ag1=K
1<b;<q
a; >0

X<b1_1)<b2_b1+a1)<b3_b2+a2) (bd_bd 1+ aq- 1)
ai as Qaq

(X, 0)(1,0)..(d,0)au s -



Chapter 5

(Generalization of Speyer’s results

In 2017, Speyer (see [Spel7]) proved some conjectures due to D. Thakur for A = F,[f] (see also
Section 5.2). The aim of this chapter is to generalize Speyer’s results in the context of rank one
Drinfeld modules.

We begin with some preliminaries in Section 5.1. In Section 5.2 we briefly recall some of Speyer’s
results (see [Spel7]) in the case A = F,[6]. Section 5.3 is devoted to some generalization of Speyer’s
results. The main result is Theorem 5.3.17. We also give some examples of this theorem in some
special cases (see Section 5.3.4).

5.1 Preliminaries

In this section, we recall basic definitions and properties of rank one Drinfeld modules. We refer
the reader to [Gos96, Chapter 4, Chapter 7| for more details. From Subsection 5.1.2 to 5.1.5,
we follows closely [Gos96, Chapter 4, Chapter 7]. Subsection 5.1.6 is devoted to construct the
most important definition: the "Goss" map. We define the zeta values of Goss associated to A in
Subsection 5.1.7. We also add some combinatorial materials in Subsection 5.1.8.

5.1.1 Notation
e K/F,: a global function field (Fy is algebraically closed in K).
e oo: a place of K.

e A: the ring of element of K which are regular outside co.

o K. the oo-adic completion of K. Let Fy, be the residue field of K and doo = [Foo : Fy).

Ko a fixed algebraically closure of K.

Uoo: the discrete valuation on K corresponding to the place oo normalized that v (KX) =
Y/

e 7 € K, : a uniformizer.
Example: K =F,(6), co: the unique pole of 8, A =F,[0], v (0) = —1, Koo = Fy((3)).

o C,.: the completion of a fixed algebraic closure K., of K.,. The unique valuation of C,
which extends v, will still be denoted by vu.

e [,: the group of non-zero fractional ideals of A.
e A: the set of non-zero ideals of A.

o M: the set of maximal ideals of A.

50
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e deg : I4 — Z: the natural homomorphism of groups that for every prime ideal P € A, we
have

deg(P) = dimg, (A/P).

We recall the fact that for a € A\{0},dega = dimp, A/aA and further for x € K*, deg(zA) =

—Voo (@) d o -

e In this chapter, we always fix a sign function sgn: KX — FX given by sgn( > a;7") = a,

i>io
for ig € Z, 5, 7é 0, a; € Fu.
o Set
: Ia
Pield) = o e oy
o Set
Pict (A) := La (5.1.1)
" {zA,x e K¥ sgn(z) =1} o
We set
h = |Pict(4)]. (5.1.2)

5.1.2 Drinfeld modules, Exponential map

This Subsection follows closely [Gos96, Section 4.5, Section 4.6].

We consider Drinfeld modules over C.

Definition 5.1.1. A Drinfeld A-module over Cy, is an Fy-algebra homomorphism ¢ : A — Coo {7}
such that

¢a:a+a17+...+ad7d,
for some d > 1, ay,...,aq € C, ag # 0.

Proposition 5.1.2 (See [Gos96, Lemma 4.5.1] ). Let ¢ be a Drinfeld A-module. Then there exists
r € N* such that

deg, ¢, = rdega for all a € A.

Definition 5.1.3. The number r in Proposition 5.1.2 is called the rank of ¢.

Proposition 5.1.4 (See [Gos96, Section 4.6]). Let ¢ be a Drinfeld A-module over Co. There
exists a unique element exp € Coo{{7}} such that

e exp, =1 (mod 7),
® expya = Qg expy for all a € A.

Definition 5.1.5. The series exp,, is called the exponential of Drinfeld module ¢.

We can write exp, = S~ e;mt. The element exp, induces a homomorphism Co, — Cs such
i>0
that for all z € C,,, we have

exp(z) = Z eiz? .

i>0
Definition 5.1.6. We denote by Ay C Co the kernel of expy : Coo = Coo.

The important property of Ay is the following proposition.
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Proposition 5.1.7 (See [Gos96, Theorem 4.6.9]). We have Ay is an A-lattice i.e., Ay is discrete
in Coo and Ay is a finitely generated A-module of rank v, where r is the rank of ¢.

By [Gos96, Theorem 2.14], we have the following formula of the exponential exp, of Drinfeld
module ¢.

Proposition 5.1.8. For x € C,,, we have
X
expy(r) =z H (1- X)
AEAL\{0}
5.1.3 Action of ideals on Drinfeld modules

This Subsection follows closely [Gos96, Section 4.9].
Let ¢ : A — Ko {7} be a Drinfeld A-module of rank 7.

Definition 5.1.9. Let I be a nonzero ideal of A. We denote by Iy the left ideal generated by
{®s}ver. Since Coo{7} is a principal ideal domain, the ideal I is generated by one element. We
denote by ¢; € Coo{7} the monic polynomial in 7 generating I, i.e.,

Z Coo{'r}d)b = Coo {T}¢I~

bel

We denote by ¢(I) the constant coefficient of ¢;.

By "monic" property of ¢y, it is stable under the right multiplication with ¢, for all a € A.
Thus there exists a unique element in Coo {7}, denoted by I * ¢,, such that

¢I¢a = (I * ¢a)¢[~
We have constructed the following map

I«¢: A— Coo{7}
ar— I x¢,.

We list some properties of this map.

Proposition 5.1.10 (see [Gos96, Section 4.9]). We have

1. I % ¢ is a Drinfeld module of rank r.

2. We have A1y = Y(I)I7 Ay, where Aj.g, Ay are respectively the kernel of the exponential
map of I x ¢ and ¢.

8. The kernel of the exponential of I x ¢ have the following property
€XPrs¢ ’(/}(I) = ¢rexp¢.

By [Gos96, Theorem 2.14], we have the following formula of the exponential of I x ¢.

Corollary 5.1.11. We have

X
expr,4(X) = XAEIJ;[ (1- m). (5.1.3)
»\{0}
5.1.4 Standard sgn-normalized Drinfeld modules of rank one

This subsection follows closely [Gos96, Chapter 7).

Definition 5.1.12. A sign function on K2 is a homomorphism sgn : KX — FX which is the
identity on FX . We make a convention that sgn(0) = 0.
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Recall that we always fix a sign function as follows (see Section 5.1.1)
sgn : K> — FX

T = Z a;m — sgn(z) == aj,.
>0

Definition 5.1.13. A sgn-normalized Drinfeld module of rank one is a homomorphism of Fg-
algebras p : A = Cy{7} such that

i€ Z,Vae A\{0},po=a+...+- -+ sgn(a)qdeCg(“).

Recall that kerexp, is an A-lattice of rank one (see Proposition 5.1.7).

Definition 5.1.14. We say that a sign-normalized rank one Drinfeld module p is standard if
kerexp, is a free A-module of rank one.

Proposition 5.1.15. There always exists a standard Drinfeld module of rank one.

Proof. Let ¢ be a Drinfeld module of rank one and Ay be the kernel of its exponential map. Then
by Proposition 5.1.7, Ay is an A-lattice of rank one. We recall the fact that A is a Dedekind ring.
Thus Ay = I with I is an ideal of A. Hence, Ay = Ih for some h € C,. We have

ker(I x ¢) = (1)~ "Ay = Ap(I)h.
It means that the Drinfeld module I * ¢ is standard. O

Remark 5.1.16. If do, = 1 then the standard module is unique. In general, this is not true.

5.1.5 A little bit of class field theory

This subsection follows closely [Gos96, Chapter 7]. In this subsection, we recall a little bit of class
field theory.

Let ¢ be a standard sgn-normalized Drinfeld A-module of rank one and exp be the exponential
of ¢. We can write

exp,, = Z enT", with e, € Cq.
n>0

Definition 5.1.17. We set

HY = K(e,,n >0),

and
T:=H}([I],1€ La). (5.1.4)
dega )
We have another way to define H. For any a € A\F,, we can write ¢, = . (a,i)7’, where
i=0

(a,1) is the coefficients depend on a and i.

Definition 5.1.18 (See [Gos96, Defintion 7.4.1]). We define

H} = K((a,i),0 < i < dega).

We have the following property of HX.

Proposition 5.1.19 (See [Gos96, Proposition 7.4.4]). The extension H} /K is a finite abelian
extension which is ramified outside co.

Definition 5.1.20. Set G := Gal(H}/K) and let o: I4 — G be the Artin map.
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Recall that if P € M, then the Frobenious map op € G is the map such that

deg(P)

Vb e B,op(b) = b? (mod PB),

where B is the integral closure of A in H :{. The Artin map induces an isomorphism of groups
Pict(A) = G.

Let I € A be a nonzero ideal of A. We define o7 (expy) := Y oy(e;)7".
n>0

Proposition 5.1.21 (See [Gos96, Theorem 7.4.8]). Let I € A and I*¢ be the Drinfeld constructed
in Section 5.1.3. Then we have

€XPr«p = UI(eXp¢)-

5.1.6 Goss’ map

We recall that h is defined by (5.1.2) and m € K is a uniformizer. We first collect a lemma which
will be necessary in the sequel.

Lemma 5.1.22 (See [Gos96, Lemma 8.2.2|). For x € 1 + nF.[[n]], there exists a unique y € K
such that voo(y — 1) > 0 and y* = x.

Proof. Suppose that h = hip™ where h; tp, n > 0. We have
XM _gz=XM_1 (mod ).

On the other hand, its formal derivative is non zero, i.e., (X"t — 1)’ = hy X" ~1 £ (. Hence, 1 is a
simple root of the polynomial X"t — 1. By Hensel’s Lemma, there exist a unique lift y € Fo[[7]]
of 1 such that (X" — z)(y) = 0 i.e., there exists a unique y € 1 + 7F[[r]] such that y" = z.

Let us take z € K, such that zP" = y. We note that 2" = 2 and v (27" —1) = veo(y— 1) > 0.
On the other hand, vy, (2P — 1) = p"veo(z — 1). Tt follows that veo(z — 1) > 0. This imply the
existence.

Now, for the uniqueness, if there exists z’ such that zP" = - y, then 0 = 2P" — 2?" =
(z — 2')P". Hence, z = z'. The proof is done. O

Definition 5.1.23. By Lemma 5.1.22, we define z'/" := y.
Let 7’ € K4 such that
(n')de = .
We are read to define the "Goss map"
H Ty — K.
For I € I4, there exists a unique x € K* such that sgn(z) = 1 and I" = xA. Note that
—25y € L+ 7Foo[[n]]. Thus, (=Za;)" is well-defined by Lemma 5.1.22.
Definition 5.1.24. We define

_r
Voo (z)

(1) = ()~ ()
Remark 5.1.25. We have v ([I]) = — deg Tveo (') = — 2L tends to —oco when deg I tends to

doo
00.

We list some basic properties of the Goss map.

Proposition 5.1.26 (See [Gos96, Section 8.2|). For all I,J € I4, we have

1. [NJ) = [1J].
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2. Fora € K* and I = aA then

3. [.] is injective.

Proof. 1. For I,J € 14, there exist unique z,y € K* such that sgn(z) = sgn(y) = 1 and
I" =z, J" = y. We can see that 2y € K* satisfies sgn(zy) = 1 and (IJ)" = 2. We have

[1)[J] = (')~ o8 I=en T ()t = (1)

Voo (T)+ve0 (Y)

2. Assume I = aA. There exists a unique * € K* such that sgn(z) = 1 and I" = xA. Thus
a"A = xA. We claim that

d

Indeed, we have sgn(a) € FX. Hence, sgn(a) . Nmg_ /p, (sgn(a)) € F
-1

q
norm over F,. On the other hand, h := |Pic* (A)| = |Pic(4)| . Tt follows that sgn(a)" =
doo _1 1.
2% ~1 pica)
—1

where Nm is the
hiind

q—1

sgn(a) = (Nm]poo/]pq(sgn(a)))'PiC(A)| € FY. Thus zA = a"A = a"sgn(a)™"A =
(Sgrf(a))hA. It implies z = (Sgr?(a))h)\ with A € FX. Note that sgn(x) = sg(smmy) = 1 It

follows that A =1, i.e., x = (ng(a))h-

Since A = a A, we have v () = hvoo(a). It implies

x (a/sgn(a))h.

(@) pve(a)

It is clear that fuoo(ai sgnla) _ 1) > 0. Hence, by Lemma 5.1.22, we have

voo (@)

T 1 a/sgn(a)
(71'”00($)) - 71'”9@(‘1) ’

Recall that deg I = degaA = —dvoo(a). Hence, we have

Il = (7 —deg! T 1 — (") dooVoo (a) (l/ sgn(a) — a )
1] = () (o Z ) = i 2B

3. Suppose that I,.J € I4 such that [I] = [J]. Suppose that I" = zA, J* = yA for x,y € K*,
sgn(z) =sgn(y) = 1. We get [zA] = [yA]. By part 2, we have

T A _ Y
s A= A= gy

It implies that x = 3. Hence I" = J". Since every nonzero fractional ideal has a unique decompo-
sition into primes ideals, it follows that I = J. O

5.1.7 Zeta function

We recall the following important fact.
Proposition 5.1.27. Let n € N. Then
{I € A:degl =n}| < +co.

Proposition 5.1.28. The sum Y ﬁ converges in Co.
IeA

Proof. The proof follows immediately from Proposition 5.1.27 and Remark 5.1.25. O
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Definition 5.1.29. The value at n of the Goss zeta function associated to A is defined by

fen 11"
For n > 1, we also have
1
Catn)= JJ (1 - W) g (5.1.5)
PeM

Remark 5.1.30. By Equality (5.1.5), we have (a(n) # 0.

5.1.8 [Elementary symmetric polynomials and polynomial ?,, g,

In this subsection, we will discuss some results in combinatorics about elementary symmetric poly-
nomials. We will represent some homogeneous symmetric polynomials as expressions of elementary
symmetric polynomials (see Proposition 5.1.32 and Corollary 5.1.33). In the end, we consider the
values of these symmetric polynomials at the zeta values of Goss.

Notation

We first define these homogeneous symmetric polynomials in finite variables. Then we will define
its values at the zeta values of Goss in "infinite variables". These definition is well-defined by
Proposition 5.1.27 and Remark 5.1.25.

Let S be a finite set of variables and s :=|S|.

Definition 5.1.31. The elementary symmetric polynomials in the variables { X} xeg of degree n,
denoted by F,, is defined by

1 ifn=0,
X if1<n<s,
E,=FE,(X)xes = S’cS,§|:S’|:n XI;IS/
0 if n > s.

Let [ € N*. Let f(X)xes (or f, for short) be a homogeneous symmetric polynomial of degree !
in the variables { X } xcgs. Recall that the ring of symmetric polynomial is generated by elementary
symmetric polynomials Ey, k > 0. Hence, a homogeneous symmetric polynomial f of degree [ can
always be written as

f=2_ &b,
[A|=l
where |[A] ;== A1+ ...+ A with A= (\q,..., ) € N" and
Ey:=E\ - E\,.
We consider the following symmetric polynomials
1
9 = 9p(X)xes = - ((Z X)r =2, X”) € Z(X]
P\ xes Xes

and

Pn=Pn(X)xes = »_ X"
XeS

We will represent these polynomials in terms of elementary symmetric polynomials E,, n > 0.
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Polynomial P,

The function P, is a homogeneous symmetric polynomial of degree n. Hence, it can always be
written as

Pn = ZdAEA(X)XGS
where the sum runs through A = (A,..., ) € (N)", r e N, 1 < A < XAy < ... < A and
Mt 4N =n

The method of computing the coefficients dy follows [Spel7, page 1240]. The coefficients dx
are described in the following proposition.

Proposition 5.1.32. We have

- (L) i .
Pu(X)xes=(-1)""m > —————— (] Eb .. Ef.  (5.16)
i >0 11+ ...+ g 11,89, ..., 0

11+2i0+...+sis=n

Proof. Let U be an indeterminate. We have

Ty EVTX S x).

Xesj>1 XeS

Hence

> COTRU log( [T (1 + x0)).

i>1 J xes

Note that []ycq(1+XU) =1+ Y E;U". Expanding the log on the right-hand side as a Taylor
i=1
series, we get

S

3 (—1)]_‘ U7 3 (—1?]_ (Y EBUY)

> J >

=1
)it ; o o _
By < / ,>E}1E;2...EgsU““w“'HZs_
i s \heots
14 Fis=]

We consider the coefficients of U™ in both sides. It follow that

()" ' ) (=1t Al (ilf +19>E11 B,

n 1 oot 21,0 .,1
S0 1+ ..+ 1y---5ls
i1+2i0+...+8is=n

Hence, we have
—1)te e Gy :
Tn = (=1 n—1 (— S El] . Es
(=D)"n Z i1+ ... +is \i,i s )t s

11,92, ...
i1yeeayis >0 Lo
i14+2i2+...+sis=n

Polynomial g,

As a consequence of Proposition 5.1.32, we have the following corollary.

Corollary 5.1.33. We have

3 (=)t mt fiy d :
gp(X)XES = (_l)p |\ . . EZI E;S
i >0 11+ ... F+is \i1,%2,...,1%
i14-2i24...+sis=p
11 <p

In particular, we have go = Fs.
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Proof. We see that g, = %(Ef — P,). The coefficient of EY in P, in (5.1.6) corresponds to i1 = p,
19 = ... =15 = 0. The proof is done. O

Now, we will describe the values of a homogeneous symmetric polynomials f at the value of
Goss map.

We denote by A<, the set nonzero ideals of A of degree less than or equal n. The sequence
{f(qu%.o,l)}[eﬂgn C C converges in C, by Proposition 5.1.27 and Remark 5.1.25. Hence, we

define

f([]—]qdloo1)I€A = n11—>120 f(quimfl)fef{gn € Cuo.

By applying the same arguments, we can define

and
. 1
9p(w)left = nhjrolo gp(W)IGAgn'

Thus, as a consequence of Corollary 5.1.33, when passing to limit, we obtain the following
proposition.

Proposition 5.1.34. We have

1

(G £ P S 0 WP | 1
—Yiea = (—1)? S Bl (——)rea - B (=) rea-
gp([I]k)Iefl ( ) . ,Zi:>0 i1+ ... g i1, 9, ... 0 1 ([I]k)leﬂ s ([I]k)leﬂ
i142is4 . fsis=p
11 <p
Remark: s in this Proposition is not the same as the one that s := |S].

5.2 Speyer’s results

In this section, we recall some of Speyer’s results. His main results is Theorem 5.2.3.

Let A =TF,[0], K =F,(0), Koo =Fy((3)). Denote by AT (A<,) the set of monic polynomials
in A (the set of polynomials in A of degree less than or equal n) and P+ the set of monic irreducible
polynomials in A. Set

(1= X7)—(1-X)

GyX) = g € FlX).

Let S be a set of s variables. We set
1
9p(X)xes ==~ ((Z Xp-> X”) .
P\ xes Xes

Denote by Ay <, the set of monic polynomials in A of degree less than or equal n. We define

1 .
gp(g)aeAJr = nEI'POO gp(X)X€A+v§" :

The above sum is well-defined, since only finitely many terms contribute to the coefficient of any
particular power of %.

Speyer formulates the following formula.

Proposition 5.2.1. For all k € Z™T, we have
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Then, he uses the arithmetic properties of the Carlitz exponential exp, to get some interesting
results. By using the following identity

expe (7X) H X
eI~ I a+2,
X ac A\{0} a
he shows that
~k .
%].7 k = qj - 17
0, otherwise,

Ek(é)aeA = {

where Ej;, is the elementary symmetric polynomial of degree k and

1 .
Ek(a)aeA = nlggo Ep(X)xeac,

Since the ring of symmetric polynomial is generated by the Fj, we deduce the following proposition.
Proposition 5.2.2. If f is a homogeneous symmetric polynomial of degree k then f(é)ae,q c7tK.
Note that g, (X) is a homogeneous symmetric polynomials of degree p, it implies that gp(a%)aEA 4 €

7K. On the other hand, for ¥ € Z* and k = 0 (mod ¢ — 1), ((kp) € #*?K is a well-known
result. By Proposition 5.2.1, we get the main theorem as follows.

Theorem 5.2.3. For any k € Z' and k =0 (mod ¢ — 1), we have
1
> Gp(ﬁ) € K.

PePt+

5.3 Generalization of Speyer’s results

For the rest of this section, we always suppose that ¢ is a standard sgn-normalized Drinfeld A-
module of rank one. There exists © € C,, such that

kerexp, = TA. (5.3.1)

Let us fix 7 for a fix standard sgn-normalized Drinfeld A-module ¢ of rank one.

In this section, we generalize Speyer’s reults. The main result is Theorem 5.3.17. The idea of
the proof is based on an equality in C, (see Proposition 5.3.7) which is a consequence of Speyer’s
lemma. We will show that both the numerator and denominator on the right hand side of this
equation are in #*PT (where T is defined in (5.1.4)) by using a key lemma (see Lemma 5.3.10). It
implies the rationality of of left hand side.

5.3.1 Speyer’s lemma

Let p be an odd prime number. Recall

- XP—(1-X)P

Set
P
f(x) = {(m1,...,my) € ZF : Zml =n, min m; =0}
=1 77
Also set
p
g(x) = [{(m1,...,mp) € 27 ;m =n, min_m; >0},
P
h(z) :== {(m1,...,mp) € ZP : Z;ml = n,i:r{{i{l’pmi > 1}.

We see that f(n) = g(n) — h(n) and for 0 <n < g, h(n) =0.
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so=("207)

P
Proof. There is a bijection between the set {(mq,...,m,) € ZP : Y m; = n,min;—; _,m; > 0}

Lemma 5.3.1. Forn > 0, we have

i=1
and the set of binary sequences of length n + p — 1 which have exactly p — 1 number 0.

(mi,...,mp)«— 11...1011...10---0 11...1
—— = S~——
my times mso times mp times
n+p—1
The number of such binary sequences is ("+f Il) The proof follows. O
P

Lemma 5.3.2. We have

0 f0<n<gqg-1,
h(n) = )
gn—p) ifp<n
Proof. The first part is obvious. For the second part, we see that (my,...,m,) € S3 if any only if
(m1—1,...,my—1) € S2_ . Hence, h(n) = g(n — p). O

Lemma 5.3.3. Forn=0, f(n)=1. Forn > 1, we have

(77267

Proof. For 1 <n < q—1, h(n) =0, hence f(n) = g(n) — h(n) = g(n). By Lemma 5.3.1, we are
done. For n > ¢, by Lemma 5.3.2, f(n) = g(n) — h(n) = g(n) — g(n — p). By Lemma 5.3.1, we are
done. O

Lemma 5.3.4. Forn > 1, we have f(n) =0 (mod p).
Remark: f(0) =1# 0 (mod p).

Proof. We recall a "small version" Lucas’ theorem. Let 0 <y < ¢ — 1 and z € Z. We have

(7))

The proof is a direct consequence of Lucas’ theorem. O

By Lemma 5.3.4, 3 {2 X" e 7[[x]).

n>1
Lemma 5.3.5 (Speyer’s Lemma, see [Spel7, page 1237]). Forn > 1, we have
f
=y = Z[[X]].
n>1

Proof. We have following formal series
1 i
1-X ZX ’
>0
SO UED PR NS SR

>0 m; >0 n>0

Zg Xn+p — Zg(n —p)X” = Z h(?’L)X" = Z h(n)Xn

n>0 n>p n>p n>0
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It follows that

1 XP
Xy~ Gxp =~ 20 —hm)X" =5 fm)Xx".

n>0 n>0
Hence
P
- 71X)p G i(X)P 1= ;:lf(n)X".
The left-hand side is exactly pG,(X). The proof is done. O
For I € A\{A}, we set
FI):=|{1,...,Ip) € AP, ged(1n,...,I,) = AL --- I, =1}]. (5.3.2)

Remark: Since A is Dedekind domain, every ideals have an unique factorization into prime ideals.
Hence we can define gecd as usual.

We see that if I = P - .- P¥ is the decomposition of I in product of maximal ideals then

B(I) = f(k1) - f(Kr). (5.3.3)

As a consequence of Speyer’s Lemma, we have the following corollary.

Corollary 5.3.6. We have

(n/
> EPE = Y Golg) in

I€A\{A} PeM

Proof. We consider Equation (5.3.3). If r > 2, by Lemma 5.3.4, p?|f (k1) f(k2). Hence F(I)/p =0
inF, It implies

> SDID I LR DD DL D B DR LD BN )

TeA\{A} [ ] PEM n>0 PeEM n>0 PEM n>0 PeM [

The last equality is from Speyer’s lemma (Lemma 5.3.5). O

We have the following equality in Co
Proposition 5.3.7. Let k > 1 be an integer, we have

gp([[]k )IEA —
Gp( K. 5.3.4
P Calir) ™ (5.34)

Proof. Set A :={(I,...,I) € A2} and C is the cyclic group of degree p. C acts on AP by rotating
coordinates. We have

1 B 1
LF - [L]F

1 1
= Z i Z Tk (T 1k
(D (I Ip) E(AN{ (A, A)}) /C LIS
ged(Iy,....Ip)=A

Let n — oo, we have
1 1
gp(W)IeA = Calkp) x > TAEEETAL

(I, Ip) E(AN{(A,...,A)}) /C
ged(Iy,...,Ip)=A

= Ca(kp) x Z F(if)k/p ( where F(I) is defined in (5.3.3))
IeA\{A} [ ]
C(kp) D Gyl ( by Corollary 5.3.6)
pPem

Note that ((kp) # 0 by the form (5.1.5). Thus the proof follows. O
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5.3.2 Key lemma

In this section, we will firstly prove a key lemma (Lemma 5.3.10). Then we use this lemma to show
that both numerator and denominator of Equation (5.3.4) are in #*PT (see Proposition 5.3.16)
where T is defined in (5.1.4).

We use the notation in Definition 5.1.9. The following proposition will be necessary in the
sequel.

Proposition 5.3.8. Let I € A. We use the notation of ¥(I) in Definition 5.1.9. Then, the

element % is in Op , where Ot is the integral closure of A in T. It depends only on the class of

I in PicT(A).

Proof. This proposition is a combination of results in [Gos96, Lemma 4.9.2, Theorem 7.4.8 and
7.6.2, Proposition 8.2.10]. O

Definition 5.3.9. We use the notation in Definition 5.1.20. Let ¢ € G and I € A such that
g = oy. By Proposition 5.3.8, the following element is well-defined

a(g) == 1/)[%) € 0.

Lemma 5.3.10 (Key Lemma). For I € A, we denote the class of I in Pic(A) by I. Let g € G
and I € A such that oy = g. Let X be an indeterminate. We have

glexpy)(§a(g)X) (X gt -1
H Sa(g)X - H (1 (ﬂﬂ) )

FX 7
§€F% JeANI

where 7 is defined in (5.3.1).

Proof. Set

g(expy(a(g)X)) .

Bl =" x

Note that g = ;. By Proposition 5.1.21 and Equation 5.1.3, we have

oo _I1 (- 25)

ael-1\{0}

Note that a(g) = % Hence we have

F,x)= ] <1—7~r§]a>.

acI—1\{0}

Note that o : T4 — G is an isomorphism. We see that if T = J in Pict(A) (i.e., o; = o) then
J = al for some a € K*, sgn(a) = 1. On the other hand, suppose a,b € I-1\{0}, then Ia = Ib <
7 € F;. Hence

X
Reo= I1 T0- 00

JCA,J=Ia SeFy

It follows that

II rexy= I 11 (1_57}[)5]@)
56% JEA,J=Ia scFX

m(-() )

JeAN
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Proposition 5.3.11. With above notation, we have

ng (1 - <vr)[i?>m> € TIX]).

ne-Gr) )= m(-Ga) )

T€EPic(A) JEINA

Proof. We have

By Lemma 5.3.10, the proof follows. O
Corollary 5.3.12. For alll € N, we have

1

d067
[[]a%=—1 1 V.

Ey( Jiea €T

Proof. We have

11 (1 . <fr)[§}>qm_l> B Z<_1)Zfrl<qdl°°—l>El ([I]qd'l“—l)zeﬂ X 559

IeA 1>0

By Proposition 5.3.11, the left-hand side of Equation (5.3.5) is in T[[X]]. Hence, we have

1 1
l
(_1) ﬁl(qdoc —1) El( []—]qcloo 1 )

rena €T.

The proof is done. O

We collect some well-known results which will be used to prove a more general results of
Corollary 5.3.12.

Lemma 5.3.13 (Newton identity, see [Zei84]). For n € N*, we have

n

’I’LEn = Z(—l)i_lEn_i:Pi.

i=1

We also have
n—1
Pp=(-1)""nE, + Y (-1)"E, ;.
i=1

Proposition 5.3.14 (See [Gos96, Theorem 8.19.4]). Forn € Z,n > 1,n =0 (mod g% — 1), we
have

Ca(n) € 7"T.

We have the following result:
Proposition 5.3.15. For1 <[ <p, 1 <14, we have

1

m)leﬂ eEm

li(g?> ~1)p
e '

Ei(
Proof. Note that £y = P,. Corollary 5.3.12 gives an initial value of [ and 7. By using Newton
identity and induction on [ and i, the proof follows. O

Proposition 5.3.16. Letk > 1,k =0 (mod g%~ —1) If f is a homogeneous symmetric polynomial
of degree | then f(ﬁ)leA is in 7T,
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Proof. Recall that for A = (A\1,...,\s) € N°,

Al := X1+ ...+ A
and

By := By, - E..

A homogeneous symmetric polynomial f of degree | can always be written as
f=Y aEa
[A=!
1

Pass to limit and note that f(Wﬁ)Ieﬂ is always defined, by Corollary 5.3.15, we have EA(@)IeA
is in 72*T. Thus
Vica € wlkT,

1
Mo

The proof is done. O

5.3.3 Main result
Theorem 5.3.17. Let k be integer such that k > 1,k =0 (mod g% — 1). We have
S Gy(mo) e
L
PeM

Proof. Recall that from Proposition 5.3.7, we have

- gp(ﬁ)le/l

1
2 Glip) = =, )

pPeM

For k =0 (mod g%~ — 1), we know that by Proposition 5.3.14,
Ca(kp) € 7*PT.

Also, g, is a homogeneous symmetric polynomial of degree p, by Proposition 5.3.16, we have

1 -
gp(W)jeA (S Wka.

Hence

3 Gp(ﬁ) €T,

pPeM

The proof is done.

5.3.4 Examples

In this section, we will find an explicit formula of Theorem 5.3.17 in the case dow = 1, k =q— 1
(see Equation 5.3.6). Moreover, in the end, we will give a non-zero sum in the case that do, = 1,
qg=3and h =2.
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An explicit formula in the case d,, =1, k=¢q¢—1

For g € G and I € A such that o7 = g, Lemma 5.3.10 implies

glexpy)(alg)X) Cx
agx 1l <1 () )

JeANT
Hence o
alexpy) (a(g)X) X\
% ‘E(l (1) )

Expanding the right-hand side, we have

glexp,)(a(g)X) 1 . .
H W B Z(_1)l7~rl(qfl)El ([I]ql)IeA Xt

geG

Recall that exp, = > e;7'. We have

i>0
1Y steoat@r X7t =S (-1 i (pyy ) X0
gleqi)alyg - - ﬁl(q—l) l [I]q_l .
geG i>0 >0 IeA

Comparing the coefficients of X™ in both sides, we have the following proposition.

Proposition 5.3.18. We have

h
1 T i
T Viea = (,1)l7rl(q 1) Z ng(eij)a(gj)q i-1
i1,00008p 20 Jj=1
(@ —1)+...4+(¢"h —1)=I(q—1)

E(

In particular, we have
1 ~g—1 -1
El([[]?)le/l = -7 ;9(61)0(9){1 .

Ifh=2,1>3 and iy + 2is + ...+ li; = p, we have

1
El([l]q_l)leﬂ =0.

Recall that

1
gp(m?)leﬂ

(—1)pHitedis=l G g\ 1 ' !

) i o .
_ Z>o i1+ i\, is 1([1]«171)[6““ 5([I]q*1)leﬂ
21y--0ts
i1+ +sis=p

11<p

On the other hand,

Calpla = 1)) = Py )res

(=1)pFivhetis=ly fi4 o\ L i L
= Z E11( )"'ESS( )

11++ZS il,iQ,...,is [I]q71

s >0
i1+2i2+...+8is=p

The only non-zero term in the above sum corresponds to the indices (i1, ...,is) € (N*)® such that
i1 + ... +1is = p (otherwise, (@j;:j“):o). Since i1 + 24y + ... + siy = p, it implies that i; = p,

i =...=1s = 0. Hence
1

CA(p(q - 1)) = Ef( [I]qfl

)1ea-
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Thus we have

1

1 9(gE=riea
%«GP([PVH) ~ Calpla—1) (5.3.6)
L 1

7 Z (—1)pHirt.tis—l <i1+...+is) E?(W)IEA“'E?(W)MA

; ; 1.1 ; p—i1 1
0 11+ ..t 21,22,y 0g E7 (W)IEA
i14...+Sts=p
i1<p

A non-zero result in the case d, =1, ¢=3 and h =2
There exits a global function field K such that h = 2, ¢ = 3 and d, = 1. An example is described

in [GP18, Example 9.2]. For details, we take K = F,(6,y) where y* = 6% — 6% — 1.
Recall that for ¢ = 3, we have

C1-XP-(1-X)? X
GO="3axr T aoxE

Proposition 5.3.19. If h =2, do, =1 and g = 3, we have

Ex(gm)ien  gi(er)algr)2ga(en)a(gs)?

1
P%J:%G:a([P]z) = E%(ﬁ)leﬁ = (g1(en)a(91)2 + g2(e1)a(ga)?)? #0.

Proof. For h = 2, we have G = {g1,9>} and

Es( [I]i* )IeA = 7?2(‘1_1)91(61)0‘(91)‘1_192(@1)04(92)’1—1
and )
El(W)IEA =71 (gi(e1)a(g) T + ga(er)a(ga) ).

In addition, if ¢ = 3, we have
1 .
E2(W)I€A = 7g1(e1)a(g1)?g2(e1)a(gz)?

and
Ev()iea = —72(g1(e1)aln)? + galen)alg2)?).

7]

Thus we have

S Gy -y G (i) EE e
PeM TPt i1,i2>0 i+ iz i, 02 Efﬂl(m%)leﬂ
i1+ 2i9=p
i1 <p

Replacing ¢ = 3 we obtain

1. giler)algi)?ga(er)al(ge)?
I;V[G3([P]2)  (gilen)alg1)? + g2(en)alg2)?)?

l 2
Note that the denominator in the above equation is (CAﬁ(f)) , which is non-zero and rational. The

first coefficient e; of exp, is non-zero (see [Tha93, Page 565]). Hence the above sum is non-zero. [

Remark 5.3.20. For the case A =TF,[0] and ¢ = 3, by [Spel7, Theorem 1.7], this sum is 0.



Chapter 6

Multizeta values

This chapter is taken from preprint paper (see [LND21b]). It is available at https://hal.archives-
ouvertes.fr/hal-03093398v2/

This chapter is organized as follows. In Section 6.1, we present a conjecture of Lara Rodriguez
and Thakur (Conjecture 6.1.2) and statement of main results (Subsection 6.1.4). In §6.2 we briefly
review the CPY criterion deciding whether a MZV is zeta-like or Eulerian. We introduce the notion
of dual t-motives and recall the work of Anderson and Thakur [AT09] connecting dual t-motives
and MZV’s. After recalling the Anderson-Brownawell-Papanikolas criterion in [ABP04] we state
the key CPY criterion deciding whether a MZV is zeta-like (resp. Eulerian). The rest of the
chapter is devoted to the proofs of the main results (see §6.3 for Theorem 6.1.3, §6.4 for Theorem
6.1.4, and §6.5 for Theorem 6.1.5, respectively). At the end we give some remarks in §6.6.

6.1 Introduction

6.1.1 Classical multiple zeta values

Multiple zeta values of Euler (MZV’s for short) are real numbers of the form

1
C(ny,...,ng) = Z TR where n; > 1,n, > 2.
0<ki <<k, L 00T

Here r is called the depth and w = ni+- - -+n, is called the weight of the presentation ((nq,...,n,).
For r = 1 we recover the special values ((n) for n > 2 of the Riemann zeta function. These values
have been studied in different contexts with deep connections to mathematical physics, knot theory,
mixed Tate motives, and modular forms (see the survey of Zagier [Zag94] and the book of Burgos
Gil and Fresan [IGF]| for more details and more complete references).

Relations among MZV’s have been studied extensively for the last three decades. Of particular
interest, we are interested in two special relations that were discovered by Euler.

e The first one states that

1B,
C(n) =——— foralln>2 n=0 (mod2),
(2im)™ 2 n!

where B,, denotes the nth Bernoulli number. We say that {(n) for n > 2 and n even is
Eulerian.

e The second one is the following identity

¢(1,2) = ¢(3).

We say that ((1,2) is zeta-like.

67
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More generally, we say that a MZV ((nq, ..., n,) is Eulerian (resp. zeta-like) if {(ny,...,n,.)/(2im)t+nr
(resp. ¢(n1,...,n,)/{(n1 + -+ n,)) is rational.
Until now, we have extremely limited knowledge about zeta-like MZV’s. We refer the reader to
[LRT14, Remark after Conjecture 4.3] and [Thal7, §7.5] for a discussion about the known Eulerian
and zeta-like MZV’s. We also mention that a sufficient condition for Eulerian MZV’s in terms of
motivic MZV’s was given by Brown (see [Brol2, Theorem 3.3]), but this condition is not completely
effective (see [CPY19, §1] for a detailed discussion).

6.1.2 Characteristic p multiple zeta values (MZV)

By a well-known analogy between the arithmetic of number fields and that of global function
fields conceived in the 1930s by Carlitz, we now switch to the function field setting.

Let A = F,[f] be the polynomial ring in the variable § over a finite field F, of ¢ elements of
characteristic p > 0. Let K = F,(6) be the fraction field of A equipped with the rational point co.
Let Ko, be the completion of K at co and C. be the completion of a fixed algebraic closure K of
K at oo. We denote by v, the discrete valuation on K corresponding to the place co normalized
such that vy (0) = —1, and by || = ¢~ V> the associated absolute value on K. The unique
valuation of C,, which extends v, will still be denoted by v.

In [Car35| Carlitz introduced the Carlitz zeta values (4(n) for n € N given by

1
CA(n) = Z E € K
a€Ay
which are analogues of classical special zeta values in the function field setting. Here A, denotes
the set of monic polynomials in A. For any tuple of positive integers s = (s1,...,s,) € N, Thakur

[Tha04] defined the characteristic p multiple zeta value (MZV for short) 4 (s) or Ca(s1,...,8,) by
1
Gl g

where the sum runs through the set of tuples (a1,...,a,) € A with dega; > ... > dega,. We
call r the depth of (4(s) and w(s) = s1 + --- + s, the weight of (4(s). We note that Carlitz zeta
values are exactly depth one MZV’s. Thakur [Tha09a] showed that all the MZV’s do not vanish.

Since their introduction many works have revealed the importance of these values for both their
independent interest and for their applications to a wide variety of arithmetic applications, see for
example [AT90, AT09, APTR18, ANDTR20, CPY19, Papl5, Pell2, Tael2b, Tael2a, Tha09b,
Tod18, Yu9l]. We refer the reader to the excellent surveys of Thakur [Thal7, Tha20] for more
details and more complete references.

As in the classical setting one can argue that the main goal of this theory is to determine all
algebraic relations over K among MZV’s. It is worth noting that analogues of the aforementioned
identities of Euler were proved:

e In 1935 Carlitz [Car35] introduced analogues of the Bernoulli numbers BC), and proved (see
also [Gos96, §9.2])

B
Ci(m _ B foralln >1, n=0 (mod ¢q—1).
T T,
Here 7 is the Carlitz period which is the analogue of 2im (see [Gos96, Tha04]), and I',, € A
is the nth Carlitz factorial (see §6.2.3 for more details).

e In [Tha09b] Thakur proved

(09 =0)Ca(l,qg — 1) = Ca(q)-

More precisely, we say that a MZV Ca(s1, ..., s,) is Bulerian (resp. zeta-like) if Ca(s1, ..., s, )/ms1 T Fsr
(resp. Ca(s1,...,8r)/Ca(s1+ -+ s,)) belongs to K.

In [LRT14, Thal7] Lara Rodriguez and Thakur proved some families of zeta-like MZV’s and
made several conjectures on zeta-like MZV’s based on the numerical evidence, which will be dis-
cussed below.
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6.1.3 A conjecture of Lara Rodriguez and Thakur

In [LRT14] Lara Rodriguez and Thakur showed (see [LRT14, Remark p. 796]):

Theorem 6.1.1 (Lara Rodriguez-Thakur [LRT14]). Let 1 < i < g andi < j < L%J. Then
Cali,j(qg — 1)) is zeta-like.

They conjectured that the converse also holds. A weak form of this conjecture was stated in
[LRT14, Conjecture 4.4]. Later, Thakur [Thal7]| gave a slightly stronger form which is given below
(see [Thal7, the discussion after Conjecture 7.3, p. 1010]).

Conjecture 6.1.2 (Lara Rodriguez-Thakur [LRT14, Thal7|). All zeta-like tuples of weight at
most ¢ and depth 2 are exactly (i,§(q — 1)) such that 1 <i < q andi < j < L%J.

The proof of Theorem 6.1.1 is of algebraic nature and based on explicit formulas of power sums
(see [LRT14, §5]). We mention that Lara Rodriguez and Thakur have extended their result for
a more general setting (see [LRT20, Tha92]). On the other hand, the statement that there are
no other zeta-like MZV'’s is of a different nature, which may need some elaborated transcendental
tools.

6.1.4 Statement of main results

We are ready to state the main results of our chapter. First we present an affirmative answer
to Conjecture 6.1.2.

Theorem 6.1.3. All zeta-like tuples of weight at most ¢*> and depth 2 are exactly (i,j(q—1)) such
>
that 1 <i<qandi<j<|[iT=].

Next we extend our method and prove a similar result for zeta-like MZV’s of weight at most
¢? and depth 3.

Theorem 6.1.4. All zeta-like tuples of weight at most ¢*> and depth 3 are exactly (1,q—1,q(q—1)).
In particular, there are no Eulerian MZV’s of weight at most ¢*> and depth 3.

Finally, we obtain a complete list of all zeta-like MZV’s of weight at most ¢2.

Theorem 6.1.5. All zeta-like tuples of weight at most g% are exactly
o the tuples of depth 2: (i,5(q¢ — 1)) such that 1 <i<qandi<j< L%J,
e one tuple of depth 3: (1,q —1,q(qg — 1)).
Let us briefly outline the main ideas of the proofs of Theorems 6.1.3, 6.1.4 and 6.1.5.

1. First, by using a motivic interpretation of MZV’s due to Anderson and Thakur in [AT09]
and the Anderson-Brownawell-Papanikolas criterion for linear independence in positive char-
acteristic in [ABP04], Chang, Papanikolas and Yu [CPY19] succeeded in devising a criterion
called the CPY criterion deciding whether a MZV is zeta-like (resp. Eulerian). As a con-
sequence we are led to find non-trivial solutions of a system of difference equations having
Anderson-Thakur polynomials as parameters.

2. Second, we apply the previous CPY criterion to determine all zeta-like MZV’s of weight at
most ¢2 and depth 2. In order to do so we manage to completely solve the corresponding
system of difference equations. We use explicit formulas for Anderson-Thakur polynomials of
weight at most ¢? and carefully investigate both Eulerian and non-Eulerian cases. It settles
Theorem 6.1.3.
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3. Third, we apply the CPY criterion to determine the full list of all zeta-like MZV’s (4 (s1, s2, S3)
of weight at most ¢> and depth 3. We observe that the CPY criterion implies that (4(s2, s3)
is Eulerian. Thus by Theorem 6.1.3 above we obtain a very short list of (s, s3). We then
repeat the first two steps to determine s; and prove Theorem 6.1.4.

4. Finally, we deduce from the CPY criterion and Theorem 6.1.4 that there are no zeta-like
MZV’s of weight at most ¢? and depth at least 4. Theorem 6.1.5 is shown, and we are all
done.

6.2 A criterion for zeta-like and Eulerian MZV’s

We continue with the notation given in the Introduction. Further, letting ¢ be another independent
variable, we denote by T the Tate algebra in the variable ¢t with coefficients in C,, equipped with
the Gauss norm |||, and by L the fraction field of T.

6.2.1 Dual t-motives

We recall the notion of dual t-motives due to to Anderson (see [BP20, §4] and [HJ20, §5] for
more details). We refer the reader to [And86] for the related notion of t-motives.

For i € N we consider the i-fold twisting of C.((t)) defined by
Coo(()) = Coo((2))

f= Zajtj = fO = Za?itj.
J J

We extend i-fold twisting to matrices with entries in Coo((¢)) by twisting entry-wise.

Definition 6.2.1. An effective dual t-motive is a K[t,0]-module M’ which is free and finitely
generated over K[t] such that for ¢ > 0 we have

(t —0)* (M JoM) = {0}.

We mention that effective dual t-motives are called Frobenius modules in [CPY19, §2.2]. Note
that Hartl and Juschka [[1J20, §4] introduced a more general notion of dual t-motives. In particular,
effective dual t-motives are always dual ¢-motives.

Throughout this chapter we will always work with effective dual ¢-motives. Therefore, we will
sometimes drop the word "effective" where there is no confusion.

Let M and M’ be two effective dual _t-motives. Then a morphism of effective dual ¢-motives
M — M is just a homomorphism of left K[t, oc]-modules. We denote by F the category of effective
dual t-motives equipped with the trivial object 1.

We say that an object M of J is given by a matrix ® € Mat,.(K[t]) if M is a K [t]-module free of
rank r and the action of o is represented by the matrix ® on a given K [t]-basis for M. We recall that
L denotes the fraction field of the Tate algebra T. We say that an object M of F is uniformizable
or rigid analytically trivial if there exists a matrix ¥ € GL, (L) satisfying ¥~ = ®¥. The matrix
U is called a rigid analytic trivialization of M. By [Pap08, Proposition 3.3.9] there exists a rigid
analytic trivialization ¥y of M with ¥y € GL,(T). Further, if ¥ is a rigid analytic trivialization
of M, then ¥ = UM with M € Mat, (F,(t)).

6.2.2 Ext'-modules

Let M’ be an effective dual ¢-motive of rank r over K[t]. We denote by @ € Mat,(K[t]) the
matrix defining the o-action on M’ with respect to some K|[t]-basis of M'. Let M be the dual
t-motive given by the matrix

o 0 . -
o= v 1) with v = (v1,...,v,) € Maty . (K[t]).
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We note that M fits into an exact sequence of the form
0-M =M—=1-=0,

and so is an extension of the trivial dual t-motive 1 by M/, i.e., M represents a class in Ext& (1, M).

Note that Ext#(1, M) has a natural F,[t]-module structure defined as follows. Let M; and My
be two objects of Ext4(1, M) defined by the matrices

’ . _
B, — (fl ‘1)) € Mat,+(E[t]), vi € Maty ., (K[t)),

and

By — (32 (1]) € Mat,+1 (K[t]), va € Maty o (K[f]).

Then for any a1, as € Fy[t], a1 %My + ag * My is defined to be the class in Extér(l, M) represented
by

' 0) ¢ Mat, 1 (K1)
a1vy +asvey 1 T+ ’

6.2.3 Dual t-motives connected to MZV’s

Following Anderson and Thakur [AT09] we introduce dual ¢-motives connected to MZV’s. We
briefly review Anderson-Thakur polynomials introduced in [AT90]. For k > 0, we set [k] := 64" — 0
and Dy, := [[F_,[0]¢"". Forn € N we write n —1 = 3" n;¢/ with 0 < n; < ¢— 1 and define

320
r, = H D;Lj )
720
We set vo(t) :=1 and ~;(t) := zzl(tﬁ)qj - tq[') for j > 1. Then Anderson-Thakur polynomials

an(t) € Alt] are given by the generating series

Oént n jt qj
Z#m = 1—2%0%

n>1 j>0 Y

-1

Finally, we define H,,(t) by switching 6 and ¢

Hy(t) = an(t)],_p oy (6.2.1)

ng_
By [AT90, Eq. (3.7.3)] we get ||Hn oo < 10157 .
We consider the dual t-motives My and M} attached to s given by the matrices

(t — g)srttsr 0 0 0
HG V(@ —g)ttor (t—g)atotse 0
o, = 0 Hg;l)(t _ 9)s2+~..+sr . c Ma.tr+]_(F[t])7
: (t—0)> 0
0 0 HIV@t-60) 1

and ®, € Mat,(K[t]) is the upper left r x 7 sub-matrix of ®;. Then M, represents a class in
Ext3(1,M?).

Throughout this chapter, we work with the Carlitz period 7 which is a fundamental period of
the Carlitz module (see [Gos96, Tha04]). We fix a choice of (¢ — 1)st root of (—8) and set

Q(t) = (-0) /@] <1 - 0’;) e T

i>1
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so that 1
(=1) — (4 _ =7
Q (t—0)Q and 20 .

Given s as above, Chang introduced the following series (see [Chal4, Lemma 5.3.1] and also
[CPY19, Eq. (2.3.2)])

£(s) = L(s1,..,8) =y (QH,) (@ H, )0 (6.2.2)

i1>>0, >0
Letting I'(s) =T, ...Ts,, by [Chal4, Eq. (5.5.3)] we have
£(s)(0) = T'(s)¢als) /7). (6.2.3)

In particular, £(s)(#) is non-zero since (4(s) is known to be non-zero by Thakur [Tha09a].
If we denote € the ring of series Y. a,t™ € K][[t]] such that lim, ;o {/|an]ec = 0 and
n>0
[Koo(ag,a1,...) : Koo < 0o, then any f € & is an entire function. It is proved that £(s) € €
(see [Chald, Lemma 5.3.1]).

Then the matrix given by

Qsrtter 0 0 0
£(s7) Q82+t oot 0 ... 0
. s34+ 45, .
v, — : £(s2)0 | e GLa(m
E(sl,...,sr_l)QST 2(82,...7ST_1)QS7‘ Qs 0
L(81,. -+, 8r) £(S2, -+ 5r) v L(sp) 1

satisfies
o — 9,0,
Thus ¥, is a rigid analytic trivialization associated to the dual t-motive M,.

We also denote by ¥/ the upper r x r sub-matrix of U,. It is clear that ¥/, is a rigid analytic
trivialization associated to the dual ¢-motive ML.

To end this section, for r > 2 we let Ny € F be the dual t-motive defined by the matrix

(t_a)ler...JrST O O 0
HGD = g)mtterp—gy=toter 0 0
0 Hé;l)(t _ 0)52+"'+5T i S Matr+1(F[t])
(t—0) 0
e

Then N, represents also a class in Exti (1, M%).

6.2.4 A criterion for zeta-like and Eulerian MZV’s in positive charac-
teristic

We recall the Anderson-Brownawell-Papanikolas criterion which is crucial in the sequel (see
[ABP04, Theorem 3.1.1]).

Theorem 6.2.2 (Anderson-Brownawell-Papanikolas). Let ® € Mat,(K[t]) be a matriz such that
det ® = c(t—0)* for somec € K and s € Z2°. Let1 € Matyx1(&) be a vector satisfying ¢~ = &y

and p € Maty ¢ (K) such that pyp(0) = 0. Then there exists a vector P € Matyx¢(K[t]) such that
Py=0 and P(0)=p.

We now state the following result for zeta-like (resp. Eulerian) MZV’s proved in [CPY19].
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Theorem 6.2.3 (|[CPY19|, Theorems 4.4.2 and 4.2.2). Let s = (s1,...,5,) € N". Then (a(s) is
zeta-like (resp. Eulerian) if and only if there exist c,d € Fy[t] (resp. ¢ € Fy[t]) with ¢ # 0 such
that ¢ My + d* Ny (resp. ¢ x M) represents a trivial class in Exts (1, MY).

We stress that since (4(s) is non-zero, this result is an immediate consequence of [CPY19,
Theorem 2.5.2] whose key tool is the Anderson-Brownawell-Papanikolas (ABP) criterion as stated
in Theorem 6.2.2. Roughly speaking, using rigid analytic trivializations ¥, defined as above, one
applies the ABP criterion to lift a K-linear relation among MZV’s to a K[t]-linear relation among
corresponding series defined in (6.2.2), which gives enough information to conclude.

We also recall the following corollary of Theorem 6.2.3 which was also conjectured by Lara
Rodriguez and Thakur (see [LRT14, Conjecture 4.1, Part 2]).

Corollary 6.2.4 ([CPY19], Corollary 4.4.1). Let s = (s1,...,8,) € N". Suppose that {4(s) is
zeta-like. Then each of

Calsay.eoy8p), .oy Cilsy)

1s Eulerian.
In particular, each s; is divisible by q — 1 for all 2 <1 < r.
By [CPY19, Remark 3.1] it implies the following criterion which will be used in the sequel.

Theorem 6.2.5 ([CPY19]). Let s = (s1,...,5-) € N" as above. Then (a(s) is zeta-like (resp.
Eulerian) if and only if there ewist c,d € Fy[t] (resp. ¢ € Fy[t] and d = 0) with ¢ # 0 and
polynomials 61, ...,0, € K|[t] such that

51 =00t —0)" + 55 VHED (¢ - 0) + dHSV (- 0)", (6.2.4)
0oy = 5571)@ _ 9)(‘32+~~~+sr + 6§*1)H§2—1)(t _ (9)32+~~+ST7

Sro1 = 6Pt — 0) 1o 4 SV H T (¢ — g)sr-1ter,
Jr = 5&*1)(15 _ 0)57- + CHg:l)(t o 9)5,.'
Remark 6.2.6. 1) By [KL16, Theorem 2| we know that d1,...,d, belong to K[0] =F,[t, 6] and

q
degy d; < 2.
€8p 0i = q—1 (6.2.5)

2) Note that if (61,...,6,,¢,d) € F,[0,t]" x F,[t]? is a solution of the above system (6.2.4), then
(fo1,..., for, fe, fd) € Fyl0,¢]" x F,[t]? is also a solution of (6.2.4) for all f € F,[t].

6.3 Proof of Theorem 6.1.3

This section aims to present a proof of Theorem 6.1.3.

6.3.1 Setup

Let s = (s1,82) € N? with s; + s2 < ¢? such that (4(s) is zeta-like. By Corollary 6.2.4 we
can write so = f2(q — 1) for some ¢; € N. It suffices to show that we cannot have ¢35 < s; and
S1 +€2(q — 1) S qz.

Suppose that we do have £y < s1 and s1 + l3(¢ — 1) < ¢?. In particular,

ly < q (631)

since foq < 51+ f2(q — 1) < ¢*>. We will deduce a contradiction.

We start proving some preliminary results in §6.3.2 and then obtain a contradiction by distin-
guishing two cases for the zeta-like MZV (4(s): the non-Eulerian case in §6.3.3 and the Eulerian
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case in §6.3.4. To do so we use two key ingredients: the bound given in (6.2.5) and the explicit
formulas for Anderson-Thakur polynomials of weight at most ¢?. Roughly speaking, we consider
01 as a polynomial in 6 with coefficients in F,[t]. The explicit formulas for Anderson-Thakur poly-
nomials of weight at most ¢ forces that §; is divisible by a product of certain factors. Then we
manage to prove that the latter product has degree strictly bigger than the bound given in (6.2.5)
so that 0; = d = 0, which is a trivial solution, and we are done.

From now on, we will use capital characters or Greek characters (e.g. F,G,d) for polynomials
in Fy[t, 0] and usual characters (e.g. f,g) for polynomials in Fy[t].

6.3.2 Preliminaries

We first recall Lucas’ theorem and refer the reader to [Gra97] for more details.

Lemma 6.3.1. For m,n € N, we express m and n in base q

m:mkq’“+-~-+m1q+mo7

n:nqu+~-~+n1q+no,

with 0 <mj,n; < qg—1. Then we have the following equality in F,

(M) =11(2)

j=0
We now prove some preliminary results which will be used later.

Lemma 6.3.2. Let F' € Fy[t,0] be a polynomial. Suppose that F(t —6) € F,[t,09. Then F =
(t—0)771G for some G € F[t, 0.

Proof. We first suppose that deg, F' < . We write F' = ag+a10+ - +a,—107"! with ag,...,aq-1 €
F,[t]. Then
qg—1
F(t — 9) = a()t + Z((L]’t — aj,1)9J + aq,leq.
j=1
Since F(t — 0) € Fy[t, 0], it follows that for all 1 < j < ¢ — 1 we have a;t — a;_; = 0, that means
aj = ag—1t917J. Therefore,

F=ag (7 17 04+ 0971 ) = a1 (t—6)7".

Here the last equality follows from the fact that for all 0 < j < ¢ — 1, we have (—1)271J (q;l) =1
in F,. We put G = a4—1 € Fy[t] and we are done in this case.

We now move to the general case. We can always write F' = Fy + 09F| + --- 4+ 0%4F}, for
some k € N and some polynomials Fy, ..., Fy € F,[t,0] with degy F; < ¢ for all 0 < j < k. The
hypothesis F(t — 6) € F,[t,07] implies that F;(t — ) € Fgy[t,04] for all 0 < j < k. Thus by the
previous discussion we deduce that there exist Gy, ..., Gy € F[t] such that F; = G;(t — 6)?~! for
all 0 < j < k. Therefore,

F=F+0F +-- +0"F,
=Go(t— )T+ 091G (t — )T -+ OFG(t — 0)7 !
= (Go + 071Gy + -+ + 0Gy) (t — 0)17 .

We put G = Gy + 089Gy + - - + 0% G, € F,[t, 07], and we are also done. O

As an immediate consequence we obtain the following result.

Lemma 6.3.3. Let k € N and F € F,[t, 0] be a polynomial. Suppose that F(t—0)F € F[t,09]. We
denote by { the unique integer such that 0 < ¢ < q—1 and k+£=0 (mod q). Then F = (t —0)'G
for some G € Fyt, 0.
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Proof. The hypothesis F(t — 6)* € F,[t,09] implies that F(t — 0)7~¢ € F,[t,09]. Thus F(t —
0)7=*=1(t — 0) € F,[t,07. By Lemma 6.3.2 there exists G € F,[t,09] such that F(t — )71 =
(t—0)771G, ie., F = (t — 0)‘G as required. O

We now give explicit formulas for Anderson-Thakur polynomials H,, with n < ¢?. By direct
calculations we deduce from (6.2.1)

e for 1 <n < q, we have H,(t) =1,

. forq—|—1§n§q2,weputk:L”T*1J and get

k . .
Hot)=Y" <(” - Uj 4 “) (7 — k=3 (17 — g2)7, (6.3.2)
=0

For example, if g + 1 < n < 2¢, then

H,(t) = (t?—t)+ n(t?—09).
Furthermore, we prove the following results (see also [CK18, Proposition 4.10]).
Lemma 6.3.4. Let n € N such that n =€(q — 1) with 1 <€ < q—1. Then

(=09 — (1 —09)°

Hrn = Hug—1) = (=1) ta—¢

Proof. Since 1 </ <q—1,we get n="{(q—1) < ¢? and

n-1 _ flg-1)-1 = £(+1 o,
Lq =1 . ]=1¢ TJ (1.
We use (6.3.2) to obtain
-1 .
(n—1)—jg+j k—j :

Ha(t) = . (19— 1) (#9 — g7y
(")
-1 ) )
_ (g =1) = 1) =Ja+7\ a _ pye—i—1(a _ gayi
_;_:0< ; )(t t) (t? —69)
-1 . .
_ (E=1=5)g+q—=L=1+7\ g i1 _ gavi
_§< ; )(t t) (t7—07)
-1
_ A=C=147\ g _ ye—i—1(sa _ gayi
;( ; >(t )T (81 — 09)
-1
— 1\ ¢ q _ \=i—1(4q _ ga\J
=3 ([)er =0t om

— 99Vt — (19 — g9\t

Here the fourth equality holds by Lucas’ theorem (see Lemma 6.3.1), and the last equality follows
from the binomial expansion of (t — §9)* = ((t9 — §9) — (t9 — t))*. The proof is finished. O

Lemma 6.3.5. We putn =q(q—1). Then

H, = Hyg_1) = (17— 1)97%
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Proof. We have

I . I=1 . ]
We use (6.3.2) to obtain
q—2 .
1) = , .
H,(t) = ((n ) ) 74 +]> (t7 — £)97279 (41 — 97
Jj=0 J
$= ((ala—1)—1)—jg+
=3 ( anq T4 ]> (7 — £)97273 (19 — gayi
Jj=0 J
q—2
1 -1 , ,
_ <(q i )(tq )2 (g — gy
i=0 J
= (="
Here the last equality follows from the fact that for all 1 < j < ¢ — 2, by Lucas’ theorem (see
Lemma 6.3.1),
(m—l—jm+j—1):<j—{>:0
J J
The proof is finished. O

6.3.3 The non-Eulerian case: (¢ —1)tw

The proof in this case is divided into three steps. By Theorem 6.2.5 and Remark 6.2.6 there
exist ¢,d € Fy[t] with ¢ # 0 such that there exist 61, 02 € K[t] verifying

5 =6Vt —0)" + 6 VHEV(E - 0)” + dHS V(8 - 6),
8y = 05 (t — 0)% + cH D (¢ — 0)*2.

Step 1. We first compute the Anderson-Thakur polynomials.

e Since 1 < 51 < w < ¢?, by (6.3.2) we get explicit formulas for Hy,, H,, € F,[t,6]. Further,

-1
deg9 HSl < QL81

I, (6.3.3)

w—1
degy Hy < q|l——1.
q
e We know that 1 < /¢y < ¢ by (6.3.1). By Lemma 6.3.4 we have

oy (8= 0)%2 — (#9 — )%e
ta —t '

H52 = Hég(q—l) = (71)

Step 2. We solve the second equation
8y = 05 (¢ — 0)* + cHS D (8 — 6)*
for suitable ¢ € F4[t]. By the above explicit formula for Hy, it is clear that we can take
c=1t1—1,

So = (—1)2(t — 0)27 = (6 — t)"1.

Step 3. We put ny = L%J. We now solve the equation

51 =60t —0) + f6SVHD (£ — 0)Y + dHSD (- 0)® (6.3.4)

where
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e 6, € Fy[0,t], 61 # 0 and degy 61 < ny by (6.2.5),
o f,deF,Jt] with f #0.

Note that by Remark 6.2.6 we need an extra polynomial f € F,[t].
Since the right-hand side of (6.3.4) is divisible by (¢ — 0)", it implies that d; is also divisible
by (t — 6)™. Since degy 01 < ny, we write
0 =F(@t—-6)", F el 0], degy(F) <mni —w.
Replacing this expression in (6.3.4) and twisting one time yields
FO = F(t—0)" + f(6 —t)29H,, + dH,,. (6.3.5)
It follows that d, = F(t — )" € F,[t, 07].

We claim that
degy F(t — 0)" < degy(f(0 — t)29H,, + dH,).

Otherwise degy F(t—0)" > degy(f(0—t)29H,, +dH,). It follows that deg, F") = degy(F(t—0)").
We deduce degy F' = w/(q—1), which implies that ¢ —1 divides w. We obtain then a contradiction.

We write
s1=0iqg+ ki +1

with 0 < k; < ¢—1. Then
w=s51+0b(q-—1)=U1+b)g+k +1—4s.
y (6.3.3) degy Hs, < f1q and degy Hy, < (€1 + £3)q. Tt follows that
degg F(t — 0)" < degy(f(0 —t)29H,, + dH,) < ({1 + £2)q.
In particular, w < (¢ + ¢3)g. Thus
k1< 0 (6.3.6)

Therefore, ¢1 > 1 since s1 = £1q+ ki +1 > £5.

On the other hand, degy F(t —0)” > w = ({1 + Lo)g+ k1 +1— 4y > ({1 +L2)g+ 1 —¢q. Then
the polynomial 6; = F'(t — 0)" € F,[t, 7] satisfies

(lr+42)qg+1—q<degg F(t —0)" < ({1 + {2)q.
By Lemma 6.3.3 we conclude that
51 =F(t—0)" = g(t — )1+t

for some g € Ft].

Replacing this equality in (6.3.5) and using explicit formulas for H,, and H,, given in (6.3.2)
yields

g(t _ QQ)fz—(kl-i-l)

01 . .
_ g(t o 9)(€1+€2)q + f(gq o tq)éz Z ((ﬁlq + kl) —J9 +]>( t)él ]( Qq)

7=0 /
Oy 4L3—1
i Z ( ((br + 2)q + ky — £2) JQ+J)( — )T (g — g9
j

We set
X:=@t—-0)1=1t1—-01

and rewrite the above equality as

g(X _ (tq _ t))£2—(k1+1)

¢ . .

_ gXZ1+E2 + (_1)Z2fX€2 Zl <£1(] + kl ._ J4 +J> (tq . t)&*ij
- J
J=0

l1+L2—1
L Z ( (6 + £o) q+k; — b —](J+]>( gyl i
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Comparing the coefficients of X*2 yields
(b1 +Lla)g + k1 — lo — lag + L2, £—1
(t* 1)
Lo
= (—1)f2f(t7 —t)" + d(glqgL kl) (t7 — )t
2
= (=)= [T - )"

Here the last equality holds by Lucas’ theorem (see Lemma 6.3.1) since ¢ < ¢ by (6.3.1) and the
fact that k1 + 1 < 5 by (6.3.6). Thus f = 0.

Next comparing the coefficients of X‘1+ yields

big+ ki —lig+ 0
= —1)% .
0=g+(-1) < 0 )f

Since f = 0, it follows that g = 0, which is a contradiction.

0= (—1)%2f1t1—t)" + d(

6.3.4 The Eulerian case: (¢—1) | w

Since (¢ — 1) | w and sg = ¢3(q¢ — 1) for some ¢ € N, it follows that s; = ¢1(¢ — 1) for some
/1 € N. Since s1 + 59 < g%, we get £1 + £l < g+ 1.

As before, the proof in this case is also divided into three steps. By Theorem 6.2.5 and Remark
6.2.6 there exist ¢ € F,[t] with ¢ # 0 such that there exist d1,d2 € K[t] verifying

6= 6t — o)+ 85 VHC D - 0y,
8y = 05 (t— 0)% + cHS D (¢ — 0)*=.

Step 1. We compute the Anderson-Thakur polynomials. By Lemma 6.3.4 and the fact that ¢ < ¢
by (6.3.1) we have

t— gq)fz — (7 — gq)fzq

(
Hey = Hyyqy = (-1 =

Step 2. We solve the equation
8y =63V (t —0) + cHV(t - 6)>
for suitable ¢ € Fy[t]. As before, by the above explicit formula for H,, it is clear that we can take
c=1t%—1,

52 = (—1)2(t — 0)27 = (9 — ).
Step 3. We put ny = [ 7] = ({1 + £2)g. We have to solve the equation

51 =6t —0) + 65V FHCD (1 - ) (6.3.7)
where
e 6, € Fy[0,t], 61 # 0 and degy 61 < ny by (6.2.5),
o feF,[t] with f #0.
We see that 7 is divisible by (¢ — 6)*. Since deg, §; < ny, we can write
0 =F(@t—-6)", Felyt, 0], degy(F) <ni—w.
Replacing this expression in (6.3.7) and twisting one time yields
FO = F(t—0)" + f(0 —t)=29H,, (t7 —t). (6.3.8)
It follows that 0, = F(t — )" € F,[t, 07].

We distinguish four subcases.
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Subcase 1: /1 + {y < g

Since ¢1 < {1 + {3 < g, then by Lemma 6.3.4,

0 (E= 09" — (11— 61"
ta —t '

Hg, = Hy (g-1) = (=1)

We know w = (¢ — 1)(¢1 + £2) < deggdr < n1 = q(ly + l2) and 6, = F(t — 0)" € F,[t, 09].
By Lemma 6.3.3 we deduce that §; = g(t — 0)?1+%) with g € F,[t]. Thus F = g(t — §)“17¢=,
Replacing it in (6.3.8) we get

gt = 07)11+5 = g(t = )1 1 £(0 = )1 (¢ = 09" — (£ = 0)"1).

If f = 0, then we obtain a contradiction since the right-hand side is divisible by # — ¢ but not the
left-hand side.

Subcase 2: /1 + {3 =q with 1 < /5 < ¢

We have supposed that ¢ < s1 = £1(q — 1) (see §6.3.1). Thus 1 <l < g — 2.
Since ¢1q — ¢ < q, then by Lemma 6.3.4,
(1 — 09" — (19— )"

t9—t '

Since w = (¢ —1)(¢1 +¥¢2) = (¢g—1)g and 6; = F(t—0)" € Fy[t, 0, it follows that F' € F,[t, §9]
and deg, F' < q. By (6.3.8),

FO = F(t—0)1@=D 4 £(6 — t)=29(—1)"((t — 09)" — (t — 6)29).

The right-hand side is divisible by (6 —¢)%29. Thus F is divisible by (t? — 0)*2. Since F € F,[t, 0]
and degy F' < ¢, we get F' = g(t? — 0)? with g € F,[t]. Hence

g(t? — 1)1 = g(t7 — 0)7(t — g)q(q—l) + £(0 —)29(=1) ((t — 09)" — (t — 0)19).

HSl = HEI(Q*U = (_1)21

Thus
g(t1 — tqZ)(t —0)210D) = £(0 — )29 (—1)1 ((t — 09)1 — (¢t — 6)19).

Since 1 < ¥y < q— 2, we get ¢ = f =0, which is a contradiction.
Subcase 3: /1 + /0o =g+ 1 with 1 </ <gq

Since ¢1 = (¢+ 1) — £2 < ¢, then by Lemma 6.3.4,

o (t =078 — (19— g0)
ta—t '

Hs1 = Hél(q—l) = (_1)

Since £1 + {5 = q + 1, it follows that w = (¢ — 1)({1 + £€2) = ¢> — 1. We know that §; =
F(t—0)* € F,[t,07. By Lemma 6.3.3 we get 61 = G(t — 0)7 with G € F,[t,07 and deg, G < q.
Thus F = G(t — 6).

By (6.3.8),
GO (t—09) =Gt —6)T + (60— t)29(—1)" ((t — 69 — (t — 6)19),

The right-hand side is divisible by (¢t — )%29. It implies that G is divisible by (7 — #)2. Since
G € F,[t, 0] and degy G < g, then G = g(t? — 0)? with g € F,[t]. Hence

11 = 0770 = 07) = (1" — 0)7(0 — )" + 10 — )1 (=1)" (¢ — 0" — (1= 0)"7).
We get,
(07 = 07)7(t — 1) = (0 — )51 (=1)" (0 — 0 — (= 0)"2).
Since 1 < ¢35 < g, comparing the power of (t — 0) yields g = f = 0, which is a contradiction.
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Subcase 4: /1 =q and /5 =1

The arguments are similar to those of Case 3 except the explicit formula for H,. By Lemma
6.3.5 we have
I?[Sl = Hyg-1) = (tq - t)qu.

2

Since w = (g — 1)({1 + l3) = ¢* — 1 and 6; = F(t — 0)* € F,[t,07], it follows that 6; = G(t — 0)4
with G € F[t, 07 and degy G < ¢. Thus F' = G(t — §). By (6.3.8),

GO (t—09) =Gt —6)T + (0 — )9t — )7 .

The right-hand side is divisible by (¢ — #)9. It follows that G is divisible by (¢ — #). Since
G € F,[t,07] and degy, G < q, G = ¢g(t? — 0)? with g € F,[t]. Hence

g(t7 = 07)1(t = 0%) = g(t7 = 0)"(t — )T + f(0 — )!(t* — )7L,
We get
g(t? =07t —17) = f(B — 1)1(t — 1)1,

Comparing the power of (¢ — 0) yields g = f = 0, which is a contradiction.

To summarize, in all cases we obtain a contradiction. Then the proof of Theorem 6.1.3 is
finished.

6.4 Proof of Theorem 6.1.4

In this section we prove Theorem 6.1.4.
Let s = (s1,52,83) € N3 with s7 + s + s3 < ¢? such that (a(s) is zeta-like. Corollary

6.2.4 implies that C4(s2,s3) is Eulerian. By Theorem 6.1.3 either (s2,s3) = (¢ — 1,(¢ — 1)?) or
(s2,83) = (¢ — 1, q(q — 1)).

If (s2,83) = (¢ —1,q(q — 1)), then 57 < ¢> — sy — s3 = 1. Thus s; = 1. It turns out that
Ca(l,q—1,q(q — 1) is zeta-like (see [LRT14, Theorem 3.2]), and we are done.

To conclude, we have to show that for all 1 < s; < ¢, Ca(s1,82,83) where s = ¢ — 1 and
s3 = (¢ — 1)? is not zeta-like. Suppose that it is not the case, i.e., 4(s1, 52, 53) is zeta-like where
1<s <q, 8 =q—1and s3=(q—1)2. Thus

w =81+ 82+ 83 =51 +q(qg—1).

Lemma 6.4.1. With the above notation, we have Hy, =1 and

Hoy(t) = qil (Sl _]_1 ”) (17 — £)7-13 (49 — 9oy, (6.4.1)
=0

Proof. Since 1 < s1 < q, Hy;, = 1, and it is clear that L“’T’lj = L%J = ¢ — 1. Thus by
(6.3.2) we get

H,(t) Z ((w B 1)]._ 74 +J> (t9 — £)97177 (41 — 99)7

<

=0
-1

Q

((81+q(q—1)—1)—jq+j
J

)(tq — )T — 99)7

(=)

j:
By Lucas’ theorem (see Lemma 6.3.1), for all 0 < j < ¢ —1,

(s1+4q(g—1) =1) —ja+7) _ (s1—1+7J)
(=)
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Since 1 < s1 < ¢, this term is equal to 0 if g — sy + 1 < j < g — 1. Thus

1
i <31+qq—1)—1)—1q+1>(t e 1d (g — gay
j

0
—5

-Q%

1(31—1+j

q _ $\a—1—j(1a _ pa\J
; )(t t) (t1 — 97)7.

I
=

J
The proof is finished. O

By Theorem 6.2.5 and Remark 6.2.6 there exist ¢,d € F,[t] with ¢ # 0 such that there exist
01, 92,03 € K[t] verifying
51 =00t —0)" + 85 VHED (¢ — 0) + dHSV (1 - 0)",
0y =85 D (t— o)t 1o VGV (1 — )t
83 = 05 (t — 0)% + cH V(8 — 0).

As before, if ¢ — 1 | w, then we can suppose that d = 0 (see Theorem 6.2.5) and divide the proof
into three steps.

Step 1. We first compute the Anderson-Thakur polynomials. By Lemma 6.3.4,

HSQ = Hg—1 = 1;
(t — gq)q—l —(t7 - gq)q—l
t4—1

Hyy = Hg-1y2 =

Step 2. We solve the equations
52 — 5&‘1)@ o 9)52+83 + 6§_1)H£;1) (t _ 9)52+S3,
83 =05 V(t —0)% + cHV(t - 6).
for suitable ¢ € F,[t]. By the above explicit formula for Hy, and H,, it is clear that we can take
c=(t1—t)Tt,
6y = (19— )9t — 9)(11*1)117
0y = —(t7 — 0)9(t — 9)\a~ V),
Step 3. We put n; = L(f_—wlj = | 2L ] + ¢% and recall that 1 < s; < gq. We have to solve the

. a-1
equation

51 =0t —0)" + f65VHD (£ — 0)Y + dHSV (- 0)". (6.4.2)
where
e 01 € Fy[0,t], 61 # 0 and degy 61 < ny by (6.2.5),
o f.d e TF,[t] with f # 0.
We see that 07 is divisible by (¢ — 6)". Since deg, §1 < ny, we write
h=Ft—-0)"

for some F' € Fyt, 0] with degy(F) <ny —w = [ 2] +¢.

Replacing this expression in (6.4.2) and twisting one time yields

FO = F(t— )" — f(t9— 0)1(t — 0)VIH, +dH,,. (6.4.3)
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It follows that 61 = F(t — 6)" € F,[t,09. By Lemma 6.3.3 we get F' = G(t — 0)7°' with
G € F,[t,04]. In particular,

S S1
degeGSdege)F—(q—Sl)SqullJ‘f'q—(q—éd)—Sl-f—L lj

We distinguish three subcases.
Subcase 1: 1 < s <qg-—1.

In this case, since degy G < s1 + | 27] < ¢ and G € F([t,07], it follows that G = g € F,[t].
Further, H,, is given as in (6.4.1). Putting all together into (6.4.3) we obtain

gt =091 = g(t = 0)7 — (17— 0)7(t — 0)(0 Ve

+dZ( 1+3>( —fyamli (e gay,

We set
X=0t—-0)1=t1-01

and rewrite the above equality as

g(X = (17 =17

q—s1
—1 o
= gX9— [t — 17+ X)XT 1+d§:< “)( b ¢l
J
7=0

We compare the coefficients of X9 yields g = f.

e If 1 < s; < g—1, then comparing the coefficients of X971 yields f = 0, which is a contradic-
tion.

e Otherwise s; = 1, then by replacing g = f in the above equation we obtain
q—1
FOX = (47— 4)77 = —f(t7 — ) X7 4 d ) (87— )7 I X
7=0
We compare the constant coefficients and get d = f. Then using d = f and looking at the

coefficients of X971 yields f = —f(tq2 —t)+d= —f(tq2 —t%)+ f. Thus f =0, and we also
get a contradiction.

Subcase 2: 51 =q— 1.

In this case, F' = G(t — 0) with degy G < s1 + [ ;27| = ¢ and G € F,[t, 07]. Further, we know
that ¢ — 1 | w, then we can suppose that d = 0 in Eq. (6.4.3) (see Theorem 6.2.5). Putting all
together into (6.4.3) yields

GO(t—09) =G(t—0)T — f(t9—0)9(t — ) Da,

The right-hand side is divisible by (t —#)(@~14. Tt implies that G is divisible by (t? — )91, Since
G € F,[t, 0] and degy G < g, then G = g(t? — 0)? with g € F,[t]. Hence

g7 = 09)9(t — ) = g(t7 — 0)7(t — )7 — (17— 0)(t — 0)4= 1.
We get
g(t7 — 09)1(t —17) = — f(17 — 0)1(t — ) (171,

Comparing the power of (¢ — 0) yields f = g = 0, which is a contradiction.
Subcase 3: s; = gq.

In this case, we know that F' = G € Fyt,07] with degy F' < s1 + [ %7] = ¢+ 1. Thus we can
write F' = a + 0% with a,b € F,[t]. Further, by (6.4.1) we get

Hy=Hgp = (t7—t)1"
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Putting all together into (6.4.3) yields

a+07b=(a+0%)(t—0)T — f(t7—0)1(t — )T D9 4 (47 — )71,
Comparing the Coeﬂicients2of g7’ +a yields b = 0. Then we use b = 0 and compare the coefficients
of l4=14 to get 0 = — f(t9 — t9). Thus f = 0, which is a contradiction.

To summarize, in all cases we obtain a contradiction. Then the proof of Theorem 6.1.4 is
finished.

6.5 Proof of Theorem 6.1.5

In this short section we present a proof of Theorem 6.1.5.

It suffices to prove that there is no zeta-like MZV’s of weight at most ¢? and depth at least 4.
Suppose that it is not the case. Then there exists s = (s1,...,5,) € N" with s1 +---+ s, < g% and
r > 4 such that (4(s) is zeta-like. Corollary 6.2.4 implies that (a(s,—2,S,—1,5,) is Eulerian. By
Theorem 6.1.4 this is impossible. Thus the proof of Theorem 6.1.5 is complete.

6.6 Final remarks

We end this chapter with some remarks.

Remark 6.6.1. We refer the reader to [CPY19, KL.16, LRT14] for numerous numerical data
concerning zeta-like and Eulerian MZV’s in positive characteristic.

Remark 6.6.2. In this chapter we have succeeded in determining completely all zeta-like MZV’s
of weight at most ¢2. Thus it is tempting to ask whether we could go further.

e Eulerian MZV’s are at least conjecturally understood (see for example [CPY19, §6.2]).

e However, one should be aware that there are plenty of zeta-like MZV’s of weight greater
than ¢? (see for example [Chel7, CK18, KL16]). At the moment, it seems very difficult to
formulate a conjecture in a reasonable way to include all these examples. We hope to work
on this question in a future work.
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