
HAL Id: tel-03552827
https://theses.hal.science/tel-03552827

Submitted on 2 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reduced CNN Model for Rotation-Invariant
Classification

Rosemberg Rodriguez Salas

To cite this version:
Rosemberg Rodriguez Salas. Reduced CNN Model for Rotation-Invariant Classification. Com-
puter Vision and Pattern Recognition [cs.CV]. Université Gustave Eiffel, 2021. English. �NNT :
2021UEFL2015�. �tel-03552827�

https://theses.hal.science/tel-03552827
https://hal.archives-ouvertes.fr

École doctorale no 532 :

Mathematiques et Sciences et Technologies
de l’information et de la communication (MSTIC)

THÈSE

pour obtenir le grade de docteur délivré par

UNIVERSITÉ GUSTAVE EIFFEL
présentée par

Rosemberg Rodríguez Salas

le 5 Juillet 2021

Reduced CNN Model for
Rotation-Invariant Classification

Jury
Mme Fan Yang, Univ de Bourgogne Examinatrice
Professeur

M. Alejandro Castillo Atoche, Univ Autónoma de Yucatán Rapporteur
Professeur

M. Nicolas Loménie, Univ Paris Descartes Rapporteur
Associate Professeur

Mme Eva Dokladalova, Univ Gustave Eiffel Directrice de thèse
Professeur

M. Petr Dokladal, MINES Paris Co-directeur de thèse
Chargé de recherche

LIGM, Univ Gustave Eiffel
CNRS, ESIEE Paris, F-77454 Marne-la-Vallée

ii

Acknowledgments

There are several people to thank who took part in this project and thesis
writing. Without them, I might not have finished this Ph.D., and to whom I am
greatly indebted.

Firstly, I would like to express my gratitude towards my director Eva Dokla-
dalova and co-director, Petr Dokladal, for their continuous support and unders-
tanding. Their patience, motivation, and knowledge guided me from almost no
knowledge of the field to finish this thesis. Moreover, while there existed discus-
sions and different points of view, they always guided me with their best interests
in mind and challenging me to achieve new levels. I will always be grateful for
teaching me about what science is about and the spirit of the investigation.

Also, I would like to thank the jury board members Fan Yang, Alejandro
Castillo Atoche, and Nicolas Loménie. Their valuable suggestions, time, and
interest in my work were essential to improve and detail this thesis manuscript.
Also, I thank them for their challenging questions, which intended to widen my
research perspective.

Next, I would like to thank every person that was not directly on the stage but
was there for me behind the scenes to motivate me, support me, and having the
patience to endure with me in the hardest epochs. I genuinely think this work
is thanks to you, and I would not be here if they had not accompanied me. Each
one of you knows how much time you were there for me. This achievement is all
yours.

Specifically, I would like to thank Paula Salas Castillo, my mother, who pu-
shed me to take this opportunity in a new country with a different language and
a challenging topic. She gave me enough peace of mind to focus on my research
while knowing she was alone in my country. I want to dedicate this work and this
achievement to you for your continuous support and faith in me even in times
when I lost faith in myself.

Finally, I would like to sincerely thank University Gustave Eiffel, which gave
me this opportunity. They always gave me the necessary research and personal
resources to develop this work and finish this thesis manuscript. I hope that they
continue to support Mexican students and help them to achieve their objectives.

iii

iv

Abstract

During the last years, the number of computer-vision-based industrial, auto-
motive, and surveillance applications has grown exponentially. This trend is fos-
tered by the success of Convolutional Neural Networks (CNNs) in this field. This
success is related to their performances and also a notable advances in their
efficient implementations. Nevertheless, their computing requirements remain
very high and sometimes limiting. This is mainly due to the number of trainable
parameters needed to provide generalization capabilities on complex data.

In this work, we specifically target the problem of rotation-invariant classifi-
cation. The main objective is to reduce the size of a models capable of rotation-
invariant classification without sacrificing accuracy and result quality. To do so,
we propose to focus on the direct integration of the invariance capability to the
frequent image transformation by rotation in the neural network architecture.
We propose an original CNN architecture the first layer of which consists of a
constrained collection of filters. These filters are rotated copies of each other,
ordered by the angle of rotation, and form together a roto-translation space. A
subsequent translating classifier is then used to perform the classification. The
position of the maximum likelihood indicates the rotation angle of the input. We
evaluate several filter families such as those from the scattering transform, stee-
rable filters, and Gabor filters. We present experimental results on how the pro-
posed methodological approach allows endowing backbone CNNs with rotation-
invariant properties. We also provide a proof of trainability of such architecture.

We evaluate the results on simple and complex datasets by using custom net-
work and one of the well-known, state-of-the-art, backbone network ResNet. We
demonstrate that the proposed rotation invariance framework allows achieving
state-of-the-art error rate results on simple datasets as MNIST (2.05% vs. 6.00%
previously, when trained on up-right examples) and outperformed previous ap-
proaches on complex datasets as CIFAR-10 (21.50% vs. 55.88% previously) while
reducing the number of trainable parameters from the current state-of-the-art
methods by more than 50%. Furthermore, these results are obtained without
data-augmentation techniques and with a novel angular prediction capabilities.

Thus, the presented results open the possibility to use these networks in
resource-constrained devices such as embedded platforms and smartphones.
Also, it opens the opportunity to use this concept in applications where the
rotation-invariance can play its role but where one often encounters relatively
limited datasets as aerial imagery, food recognition, and face recognition.

v

vi

Résumé

Au cours des dernières années, le nombre d’applications industrielles, auto-
mobiles et de surveillance basées sur la vision par ordinateur a augmenté de
façon exponentielle. Cette tendance est favorisée par le succès des réseaux de
neurones convolutifs (CNN) dans ce domaine. Ce succès est lié à leurs perfor-
mances et aussi à des avancées notables dans leurs implémentations efficaces.
Néanmoins, leurs besoins informatiques restent très élevés et parfois limitants.
Cela est principalement dû au nombre de paramètres entraînables nécessaires
pour fournir des capacités de généralisation sur des données complexes.

Dans ce travail, nous ciblons spécifiquement le problème de la classification
invariante par rotation. Nous proposons une architecture CNN originale dont la
première couche est constituée d’un ensemble contraint de filtres. Ces filtres
sont des copies orientées les uns des autres, sont ordonnés par l’angle de rota-
tion et forment ensemble un espace roto-translationel. Un classifieur effectuant
une translation est ensuite utilisé pour effectuer la classification. La position du
maximum de probabilité indique l’angle de rotation de l’entrée. Nous évaluons
plusieurs familles de filtres telles que celles utilisés dans la transformée scatte-
ring, des filtres orientables et des filtres Gabor. Nous présentons des résultats
expérimentaux sur la façon dont l’approche méthodologique proposée permet de
doter les architectures ”backbone” de propriétés invariantes par rotation. Nous
fournissons également une preuve de l’entraînablité d’une telle architecture.

L’objectif principal est de réduire la taille d’un modèle de classification inva-
riante par rotation sans sacrifier la précision et la qualité des résultats. Pour ce
faire, nous proposons de nous concentrer sur l’intégration directe de la capacité
d’invariance à la transformation de l’image par rotation dans l’architecture du
réseau neuronal.

Nous évaluons les résultats sur des ensembles de données simples et com-
plexes en utilisant un réseau personnalisé et l’un des réseaux dorsaux bien connus
et à la pointe de la technologie ResNet. Nous démontrons que le cadre d’inva-
riance de rotation proposé permet d’obtenir des résultats de taux d’erreur de
pointe sur des ensembles de données simples comme MNIST (2,05 % contre
6,00 % précédemment, quand formés sur des exemples en haut à droite) et
surpassé les approches précédentes sur des ensembles de données complexes
comme CIFAR-10 (21,50 % contre 55,88 % précédemment) tout en réduisant de
plus de 50 % le nombre de paramètres pouvant être entraînés à partir des mé-
thodes de pointe actuelles. De plus, ces résultats sont obtenus sans techniques
d’augmentation des données et avec de nouvelles capacités de prédiction angu-
laire.

Ainsi, les résultats présentés ouvrent la possibilité d’utiliser ces réseaux dans
des dispositifs aux ressources limitées tels que les plates-formes embarquées et
les smartphones. En outre, cela ouvre l’opportunité d’utiliser ce concept dans
des applications où l’invariance de rotation peut jouer son rôle mais où l’on ren-
contre souvent des ensembles de données relativement limités comme l’imagerie
aérienne, la reconnaissance alimentaire et la reconnaissance faciale.

vii

viii

Table of contents

List of acronyms . xi

1 Introduction 1
1.1 Computer Vision Technological Trends 1

1.1.1 Deployment and Computing Considerations of Deep Learning
Models . 3
Hardware Platforms and Deep Learning Applications 4
Size Optimization Techniques for Deep Learning 8
Deep Learning Applications . 9

1.2 Artificial Neural Networks . 13
1.2.1 Convolutional Neural Networks 16
1.2.2 Rotation invariance . 20

1.3 Thesis Contributions . 22
1.3.1 Thesis Structure . 24

2 Roto-translational Feature Space 27
2.1 Existing Approaches to Obtain Rotation Invariant Classification . . . 28

2.1.1 Continuous Angular Sampling . 30
2.1.2 Discrete Angular Sampling . 31

2.2 Roto-translational Feature Space . 38
2.2.1 1-D Feature Representation . 39

Scanning Order . 41
2.2.2 3-D Feature Representation . 43

3D Re-orientation . 44
2.2.3 Face Recognition Using an Oriented Feature Space 45
2.2.4 Experimental Setup and Results 47

2.3 Translating Predictor . 50
2.3.1 Training of the Translating Predictor 56

2.4 Conclusions . 57

3 Rotation Invariant Networks on Simple Datasets 59
3.1 MNIST Dataset and Variations . 60

3.1.1 Training Strategies . 61
3.2 Scattering Transform . 61

3.2.1 Scattering Wavelet . 63
3.2.2 Rotation Invariant Network Based on Scattering Wavelets . . 64

3.3 Steerable Filters . 66
3.3.1 Learning Steerable Filters . 67
3.3.2 Rotation Invariant Network Based on Steerable Filters 68

ix

TABLE OF CONTENTS

3.4 Results . 70
3.4.1 Rotation Angle Prediction . 70
3.4.2 Rotation Invariant Classification 71

Comparison with the State of the Art 73
3.5 Conclusion . 74

4 Rotation Invariant Networks on Complex Datasets 77
4.1 Gabor Filters . 78

4.1.1 Gabor Filter Parameter Description 80
4.2 Gabor Filters as Feature Extraction on Simple Datasets 82

4.2.1 Results . 85
4.3 Gabor Filters as Feature Extraction on Complex Datasets 86

4.3.1 Feature Extraction Stage Alternatives 88
4.3.2 ResNet Feature Stage . 89
4.3.3 Results . 91

4.4 Conclusions . 92

5 Mathematical Background and Formal Methodology 95
5.1 Oriented Feature Space . 95
5.2 Prediction Model . 96

5.2.1 The Vapnik-Chervonenkis Dimension of the Model 98
5.3 Conclusions . 100

6 Conclusions and Future Works 101
6.1 Contributions . 101
6.2 Future Works . 103

List of research communications 107

References 109

x

LIST OF ACRONYMS

List of acronyms

AGV Automated Guided Vehicles
ANN Artificial Neural Network
AI Artificial Intelligence
CIFAR Canadian Institute For Advanced Research
CNN Convolutional Neural Network
CPU Central Processing Unit
DL Deep learning
DSP Digital Signal Process
FPGA Field Programmable Gate Arrays
FPS Frames per Second
GB Gigabyte
GCN Gabor Convolutional Networks
GPU Graphics Processing Unit
IR Intermediate Representation
KM-CNN Kernel Mapping Convolutional Neural Networks
MNIST Modified National Institute of Standards and Technology
NCS Neural Computer Stick
NPU Neural Processing Unit
PCB Printed Circuit Board
PCI Peripheral Component Interconnect
PloU Pixels-Intersection-over-Union
RAM Random Access Memory
ReLu Rectified Linear Unit
RGB Red Green Blue
RIN Rotation Invariant Network
RRT Randomly Rotated Training
SBC Single Board Computer
SFCNN Steerable Filter Convolutional Neural Network
SIMD Single instruction multiple data
SoC System on Chip
SSD Single-shot detectors
TPU Tensor Processor Unit
UAV Unmanned Aerial Vehicles
URT Upright Training
USB Universal Serial Bus
VC Vapnik-Chervonekis
VFN Vector Field Networks
VGG Visual Geometry Group
VPU Visual Processing Unit
VRAM Video random access memory

xi

LIST OF ACRONYMS

xii

Chapter 1

Introduction

1.1 Computer Vision Technological Trends

In the last years, the number of computer vision-based applications has grown
exponentially. Today, there should exist more than 1 billion cameras around the
globe (Lin and Purnell [2019]) used for security surveillance in the major ci-
ties. Equally, the estimated number of hand-held camera equipment (i.e., smart-
phones and similar) goes up to 3.5 billion devices in the world (O’Dea [2020]). If
we consider also computer vision-aided robots, autonomous and remote sensing
systems, we expect that the number of devices with a camera to go up to more
than 40 billion cameras in the world in 2022 (Fig. 1.1).

Figure 1.1 – Number of total cameras predicted for 2022 (Capital [2017]).

It is, of course, impossible to process images of the applications, mentioned
briefly above, manually. Therefore, automated image analysis and understanding
must be used. As a prime example of this automation, we can cite one of the
most advanced surveillance networks in China that can process images from 170
million cameras around the city of Guiyang to find a person in less than 7 minutes
thanks to face recognition (Liu [2017]). There are also applications for automatic
detection of objects such as abandoned luggage in public spaces (Dahi et al.

1

CHAPTER 1. INTRODUCTION

Figure 1.2 – Image recognition tasks (image by Shanmugamani [2018]).

[2017]), and there are many other possible illustrations such as remote sensing
(Ren et al. [2018]), autonomous cars (Chen et al. [2016]), etc.

These automated methods are based on sequences of often complex computer
vision algorithms allowing the understanding of image content such as image
enhancement, motion detection, segmentation, pattern analysis, classification,
and others.

The most frequently encountered tasks in understanding the content of
images are classification, detection, and segmentation (Fig. 1.2). Image classifi-
cation consists of assigning a label from a determined number of existing classes
to an input image. Image detection is the process of finding the coordinates of
given objects in the input image. Finally, image segmentation is the operation
of grouping image pixels into regions according to predefined criteria. Usually,
combining one or more of these methods has to be used to design real-life appli-
cations.

For a decade, the computer vision tasks mentioned above have been solved
by artificial neural networks (ANNs) (Alzubaidi et al. [2021]). The ANNs derive
their basic principle from the computational model of the artificial neuron first
published in McCulloch and Pitts [1943]. One of the significant advantages of
these networks is the generalization capability which allows obtaining correct
results even with examples not included in the training stage.

Unfortunately, when applying these networks to the image processing do-
main, the number of neurons can increase rapidly. For example, the recent
and popular DALL-E model has more than 12 billion parameters (Ramesh et al.
[2021a]). DALL-E represents an extreme case, however, the size of the ANN mo-
del, in terms of the number of parameters to be learned, remains a major concern
in the field. We discuss this problem in more detail in section 1.2.

Despite the problem of model size, and thanks to the technological advance-
ment of computational resources, neural networks are recording widespread suc-
cess throughout the field. This is due in particular to the introduction of convo-
lutional neural networks (CNN) (LeCun et al. [1989]). In contrast to a classical
perceptron, the CNNs have the advantage of being able to extract features di-
rectly from the input data. This feature extraction reduces the dimensionality
of the problem and becomes more easily solved by the classifier. As a result,
the CNNs have become the standard for all image processing problems. In the
CNN family, especially the so-called deep learning models achieve unmatched

2

CHAPTER 1. INTRODUCTION

performance (Hinton [2009]). On the other hand, if these new models allow us to
extract higher level features (Deng and Yu [2014]), they also increase the size of
the networks and require high computing effort.

This chapter presents the existing considerations to implement deep learning
networks in different hardware such as embedded devices, hand-held devices,
and high-end servers. We present a catalog of applications and their target hard-
ware to highlight the accuracy and bottlenecks found in these applications. Then,
we outline the principles behind neural networks and visit a brief history of their
evolution through the latest years. The objective of these three different points
of view on deep learning utilization is to illustrate the context of this research
work. In section 1.3 we present a proposal of a mechanism on how to reduce
the size of deep learning models while preserving the accuracy. We exploit the
rotation invariance mechanism, and we discuss that it enables new possibilities
for embedded devices and small database applications.Finally, we present the
contributions of this work and the manuscript organization.

1.1.1 Deployment and Computing Considerations of Deep
Learning Models

Although the CNNs, and in particular deep learning have outperformed
conventional computer vision approaches, they do have some drawbacks. We
have already mentioned the size of the model. As we also stated, it is common
to see deep learning models reaching millions of parameters. While these large
networks can be implemented relatively easily in dedicated hardware such as
GPUs and GPU clusters, it is always a challenge to implement them in devices
with more constrained resources without losing the quality of the result.

At the same time, the demand for their on-board installations is proportional
to the use of consumer electronics: for example, smart cameras for surveillance,
drones, smartphones.

To address this challenge, hardware manufacturers, software developers and
researchers have launched a joint effort to enable neural networks to function in
such on-board devices and portable devices.

It should be noted that the embedding of deep learning models near the sen-
sors has certain advantages known today under the term edge computing (Shi
et al. [2016]). Its advantages are well known, we could mention some such as
security issues for facial recognition applications, bandwidth reduction costs for
sending multiple images to server or network latency issues for applications. at
critical time (Shi and Dustdar [2016]).

In the following paragraphs, we present different considerations for de-
ploying deep learning models on different families of hardware platforms. We
also recall the various techniques used by the scientific community to reduce
the cost of computing neural networks and allow their implementation on on-
board devices. To complete, we present an overview of the sample applications
for each platform family. The main objective is to highlight the hardware and
software efforts that allow deep learning networks to operate in devices with
limited resources and to better situate the contribution of this thesis thereafter.

3

CHAPTER 1. INTRODUCTION

Hardware Platforms and Deep Learning Applications

Embedded devices. In the category of embedded peripherals, we can essen-
tially classify single board computers (SBC) like the Raspberry (Pi Pi [2021]),
low power GPU-based embedded platforms like NVIDIA’s Jetson Nano (NVIDIA
[2021a]), USB accelerators like Google Coral products (Google [2020]) and Field
Programmable Gate Arrays (FPGAs) boards (Xilinx [2021]).

Some of these devices are not initially intended for DL applications. The ten-
dency is to equip these platforms with acceleration supports for DL models. The
main technological barrier is the number of resources available on each board.
Commonly, the board clock frequency is usually limited for the processor to limit
the energy consumption of the board.

For example, the latest version of Raspberry Pi, Raspberry 4, includes a Quad-
core Cortex-A72 (ARM v8) processor and can go up to 8 GB of RAM. Without
any dedicated hardware support, a Raspberry 4 can run the MobileNetv1 (Al-
lan [2019a]) neural network for object detection at four frames per second (fps)
on average. Note that the Raspberry GPU is not used in deep learning applica-
tions because it is not compatible with the libraries most used for deep learning.
Compared to the previously introduced Jetson Nano, the inference time is almost
five times higher (Süzen et al. [2020]), with Rasperry making inference in 173
seconds versus 32 seconds on the DeepFashion2(5k) dataset (Ge et al. [2019]).

Another example of the SBC is the Jetson Nano. This board contains a 128-
core MaxwellGPU and a 1.43GHz quad-core ARM A57 processor. Although still
limited in resources, this card can run MobileNetv1 at 16 fps at a resolution
of 300 x 300 pixels (Allan [2019a]). Several applications can benefit from this
frame rate despite the low resolution compared to high-end devices. To mention
some, portable devices for sign language identification (Zhou et al. [2020]) and
in-field apple detection to estimate production yield (Mazzia et al. [2020]). Other
solutions from NVIDIA are the Jetson TX2i for industrial applications and Xavier,
which offers more resources than its Nano counterpart (NVIDIA [2021b]).

Figure 1.3 – Typical workflow for development with the Intel Neural Computer Stick
(NCS) (Intel [2019]).

To enhance embedded boards capacity, Intel Neural Computer Stick (NCS)
has recently obtained attention from the deep learning community (Intel [2019]).
Inside, we can find the Movidius Myriad X processor, featuring 16 processing

4

CHAPTER 1. INTRODUCTION

cores SHAVE processors (Rivas-Gomez et al. [2018]) and a dedicated neural com-
puter engine (an on-chip hardware block specifically designed to run deep neural
networks at high speed and low power without compromising accuracy). It comes
as a USB accelerator and is compatible with Caffe, Tensorflow, mxnet, ONNX,
PyTorch, and PaddlePaddle frameworks. We can observe the typical workflow in
Figure 1.3. First, the user trains a model using Tensorflow or Caffe. Then, the
model is optimized using the OpenVINO toolkit (Intel [2021b]) provided by Intel
to generate an Intermediate Representation (IR) of the model. Finally, this model
is loaded in the NCS for inference. When used on a Raspberry Pi 4 (with USB 3.0
capability), the Intel NCS obtains 80.4 ms of inference time on the MobileNet v1
SSD 0.75 depth model (Allan [2019b]) (Intel [2021a]). These results are obtained
with an image input size of 300 x 300 pixels. Similar results with 96.4 ms of in-
ference time per image are reported (Reuther et al. [2019]) with MobileNet v2
on single-shot detectors (SSD) trained with the COCO dataset (Lin et al. [2014])
with images of size 640×480 pixels.

We can also mention the Coral board USB accelerator from Google. This USB
accelerator contains a Tensor Processor Unit (TPU), which can be used as a co-
processor to reduce the inference time of deep learning models in hardware-
limited devices. When used with a USB 3.0 capable board, the Coral achieves
18.2 ms of inference time on the MobileNet v1 SSD 0.75 depth model (Allan
[2019a]).

Finally, the FPGA-based embedded boards recently have gained atten-
tion. These devices are oriented towards high parallelization techniques. We can
find several image processing application where algorithms such as the Scale
Invariant Feature Transform (SIFT) is optimized to run optimally with a low-
memory footprint (30 FPS for 320 x 240 pixels input image)(Bonato et al. [2008]).
To reduce computing costs, some implementations calculate Gaussian kernels of-
fline for use in Gaussian filters and reduce the number of logic elements used in
operation (Li et al. [2018b]). In this sense, CNNs could be benefited from a paral-
lel calculation of the kernels, activations and take advantage of the current op-
timization techniques. Recently, we can find efforts of deploying CNN in FPGAs
with encouraging results (96.5% accuracy on the MNIST dataset) where CNNs
outperform conventional ultra-high-speed object detection algorithms. The main
limitation of this approach is that the existing CNN models have a large number
of parameters and are difficult to deploy in FPGAs with limited on-chip memory
resources (Li et al. [2019]).

To conclude, we can observe lower frames per second (fps) when using higher
resolutions or when multiple objects have to be classified or detected in the
image. To obtain reasonable fps, we usually have to sacrifice generalization. Also,
one limiting factor comes with the high number of trainable parameters of CNNs.
This phenomenon has been recently reduced by completing the embedded board
with a dedicated USB accelerator. However, this is not enough, and some effort
is needed to reduce the CNN size to fit in these devices.

Hand-held devices. We call hand-held devices to all modern consumer elec-
tronic systems as smartphones, smart cameras, or other. They can be considered
as embedded systems but since its utilisation is specific, we consider them as a
separated category. Usually, hand-held devices are not optimized for deep lear-

5

CHAPTER 1. INTRODUCTION

ning applications, and they present poor inference and speed performance, when
these devices do not have GPUs, as shown in the literature (Maeda et al. [2018]).

Compared to simple statistical methods previously deployed on smartphones
(Do and Gatica-Perez [2014]; McManus et al. [2013]), deep learning models re-
quired huge computational resources and thus running them on the small CPU
of these devices was nearly infeasible from both the performance and power ef-
ficiency perspective. The first attempts to accelerate deep learning models on
mobile GPUs and DSPs were made in 2015 by Qualcomm, ARM and other SoC
vendors, though at the beginning mainly by adapting deep learning models to
the existing hardware. Specialized Artificial Intelligence (AI) silicon started to
appear in mobile SoCs with the release of the Snapdragon 820/835 with the
Hexagon V6 68x DSP series optimized for AI inference, the Kirin 970 with a
dedicated NPU unit designed by Cambricon, the Exynos 8895 with a separate
Vision Processing Unit, MediaTek Helio P60 with AI Processing Unit, and the
Google Pixel 2 with a standalone Pixel Visual Core. (Ignatov et al. [2019])

For example, Qualcomm is relying on its AI Engine (consisting of the Hexagon
DSP, Adreno GPU and Kryo CPU cores) for the acceleration of AI inference (Deng
et al. [2020]). In all Qualcomm SoCs supporting Android NNAPI, the Adreno
GPU is used for floating-point deep learning models, while the Hexagon DSP is
responsible for quantized inference. It should be noted that though the Hexagon
68x/69x chips are still marketed as DSPs, their architecture was optimized for
deep learning workloads and they include dedicated AI silicon such as tensor
accelerator units, thus not being that different from NPUs and TPUs proposed
by other vendors. This processor can usually be found in Samsung, Asus, and
Xiaomi’s most recent devices. For reference, a Snapdragon 855 processor with a
GPU accelerator can run an inference with MobileNet v2 in 24 ms (41 fps) with
input resolution of 224 x 224 pixels (Ignatov et al. [2019]).

Most of the SoCs presented during the past 12 months show a performance
equivalent to or higher than that of entry-level CUDA-enabled desktop GPUs and
high-end CPUs. The 4th generation of mobile AI silicon yields even better results
(Ignatov et al. [2019]).

We can observe that the main consequence of the limited resources of these
devices is the reduced generalization capabilities and the relatively low accu-
racy of the implemented CNNs. In the end, it is necessary to have smaller and
efficient neural networks that avoid these consequences for hand-held device
applications.

High-end servers. The last category is high-end devices usually found in
large server rooms or clusters of GPUs. The main application of this hardware is
the training of the neural networks that can go long as days or weeks. While ha-
ving this huge amount of processing power benefits neural networks in general,
it comes with an elevated energy cost. In fact, one NVIDIA Titan Xp can consume
up to 250 Watts and usually we can find several of them in a single server.

Several high-end clusters are used for training when developing neural net-
work applications. The trend converges towards augmenting the datasets when
training the network. It is not rare to see neural network models trained on mil-
lions of examples and transformation of the examples. The main consequence of
this is that the model size increases to even millions of parameters. While this ap-

6

CHAPTER 1. INTRODUCTION

proach has proven good results with accuracy up to 99% on classification tasks,
the truth is that these models can hardly be deployed on commonly used devices.

Usually, high-end servers have an enormous energy budget. It is not rare
to find some clusters training networks for days or even weeks. The users do
not deal with time or energy constraints when designing CNNs. In the latest
years, green computing has gained attention from the community to solve the
energy conservation point of view. Nevertheless, one of the most commonly used
techniques is data augmentation that increases training time up to 600% (O’Gara
and McGuinness [2019]) as a byproduct of the network size. Hence, network size
reduction could also benefit these servers to reduce the necessary energy to train
a network.

To complete the high-end server usage, we can also mention the inference on
these high-end devices. Popular trademarks like Airbnb or Facebook use neural
networks to serve their users daily (Haldar et al. [2019]). The prediction capabi-
lities of the neural networks and the classification and detection capabilities of
CNNs serve millions of people daily on these and other brands. In this sense, our
work is not directly related to these types of hardware stations. Nevertheless, a
small size network would benefit these trademarks to deploy several instances
of the reduced model to serve more users with less memory utilization.

In conclusion, we can observe that high-end servers are used mostly for trai-
ning networks and as backend inference services. In this work, we are interested
in embedded and hand-held applications. However, it is important to note that
high-end servers can also benefit from reducing neural network model size. This
reduction can benefit them in reduced energy costs (training in less time) and
computational effort (less inference time workload).

To complete the hardware platforms analysis we can cite the work from Arabi
et al. [2020]. In their work the authors propose a comparative study between
edge devices and compare them to a desktop GPU. Edge devices are commonly
known as the embedded devices which are the closest to the sensors on products
and transfer to a server the pertinent information of the application. They com-
pare three edge computing platforms for inference at the edge: NVIDIA Jetson
TX2, NVIDIA Jetson Nano, and Raspberry Pi 3 with an Intel Neural Computer
Stick (NCS) (Movidius Platform).

Comparison of inference speed for six different hardware options is presen-
ted in Figure 1.4a. Arabi et al. [2020] also investigates inference efficiency. Infe-
rence efficiency is measured by dividing inference speed by power consumption,
namely fps/Watt. The Jetson TX2 at maximum performance consumed 15W of
power, the Jetson Nano 10 W of power, the R. Pi 3B+ and Intel NCS 6 W, and
desktop PC (with a GTX 1080 Ti GPU and Intel Core i7 CPU) is estimated to
consume almost 850 W. Figure 1.4b summarizes the inference efficiency of these
hardware platforms. While the desktop PC offers better fps it is straightforward
to notice that is not as energy efficient as embedded platforms.

In conclusion, we can observe efforts from hardware manufacturers to offer
alternatives and hardware compatible with deep learning applications. In the last
few years, we have observed deep learning applications moving from high-energy
consuming hardware to embedded devices. Despite these efforts, the accuracy
and performance (frames per second) are significantly lower than their high-end

7

CHAPTER 1. INTRODUCTION

(a) Inference speed (b) Inference efficiency

Figure 1.4 – Performance comparison of hardware for inference on CNNs (Arabi et al.
[2020]).

counterpart. In this sense, there also exist software efforts to reduce the size
of the neural networks. In the next paragraphs, we outline some of the existing
software techniques to achieve lightweight networks that manipulate the inner
weights, such as pruning and quantization.

Size Optimization Techniques for Deep Learning

The following section outlines the software efforts to obtain lightweight net-
works by modifying the internal values of the network after training. While these
techniques are usually applied when the neural network is deployed in hardware
constrained devices (i.e., limited parallelism, absence of GPU, missing floating-
point dedicated hardware), the trend converges in using them as part of the
neural network workflow on every platform.

Quantization and Pruning. In the search for lower computational cost, we
can find several neural compression methods have appeared in the literature.
Among them, the most commonly used techniques are quantization (Chen et al.
[2021]) and pruning (Liang et al. [2021]).

Often, deep learning networks contain redundant parameters that have no im-
pact on the network but still count in the computational cost (Denil et al. [2013]).
Removing these redundant parameters by pruning results in smaller networks.
This means that by removing unnecessary elements in the neural network struc-
ture, the number of parameters is reduced with no significant accuracy drop up
to some extent.

Another approach to optimize the size of the deep learning models resides in
quantization techniques (Young et al. [2020]). In these techniques, the number
of bits used to represent parameters is reduced, allowing a reduction in the net-
work size. It is often done to increase the parallelism from the single instruction,
multiple data (SIMD) processes or to avoid the usage of floating point compu-
ting. The number of bits reduction is usually done after training when preparing
the network to be deployed in the inference platform. While the last advances
on quantization techniques (Chen et al. [2021]) result in a good tradeoff bet-
ween network compression and accuracy, they still have limitations, such as the

8

CHAPTER 1. INTRODUCTION

introduction of significant losses when used in classification CNNs (Guo [2018]).

In this work, we mainly focus on the design and training of the neural net-
work before any optimization technique (quantization, pruning) is applied. In this
sense, we study the reduction of convolutional neural networks taking advantage
of the internal properties of the operations and the usage of these properties to
foster information from the network. A reduction of the neural network before
the optimization techniques would result in a smaller and faster network to be
deployed in the target hardware for inference.

Deep Learning Applications

To complete this section, we present a range of applications ordered by the
hardware platform. The main motivation is to highlight the impact of hardware
constraints on the execution of convolutional neural network models with respect
to their size.

Embedded devices applications. We classify the embedded devices appli-
cations as the ones using Single Board Computers (SBC) that might have an NVI-
DIA GPU (Jetson TX1, Jetson TX2, Xavier, Raspberry Pi) or not (Sabre board IMX
based platform(NXP [2021])). Also, there exist specialized hardware-oriented to
image processing such as the Visual Processing Units (VPU) (Movidius USB stick
and PCI boards). Usually, these kinds of devices are conceived to find a tra-
deoff between computational resources and energy consumption. These dedi-
cated hardware platforms allow the end-to-end applications to exist in the field.
While Raspberry Pi has a GPU, regarding the CNN applications, the instruction
set is not compatible with the most commonly used libraries, so it is limited to
CPU usage in most of the applications ; hence we consider it in this study as a
CPU solution.

Main applications of embedded devices include the ones that need local-
processing of the image, low weight and low power consumption. The embedded
devices applications cover numerous commercial and industrial domains such as
security cameras, agriculture, medical wearable devices, telemedicine, automa-
ted guided vehicles (AGV), driving assistants, and drone obstacle detection.

Sa et al. [2017] presents an application for classifying weeds from valuable
plants to be used in farming. They use a drone that scans over different areas
containing weeds, crops, and a mixture of both. Then they segment the images
for each one of the three classes. The drone collects images at 1 Hz and transmits
them to a ground station. Compared to a Titan X GPU (one of the top GPUs
present on the cluster server mainframes), the NVIDIA Jetson TX2 is 3.6 times
slower, but it consumes 17.8 times less power lower. Their network is based on
a modified version of the VGG16 network with 14.7 M parameters. This network
size allows the model to run in the embedded device. Nevertheless, they achieve
80% accuracy (F1 score) and focus mostly on lowering the energy consumption
of the drone.

Ardiyanto et al. [2017] present a medical application as medical assistance
for doctors. In their work, the proposed system assesses the severity of the dia-
betic retinopathy from the retina images. The model size of their network is
7.8MB compared to 42 MB of the ResNet20. For each image, their network takes

9

CHAPTER 1. INTRODUCTION

3.8ms to infer a result on GTX 1080 for images of 320 x 240 pixels. On the NVI-
DIA Jetson TK1 platform, their network takes 41ms for inference, losing about
5% of accuracy due to the hardware limitations. They could not deploy and test
the ResNet model to the embedded platform because of the size limitations. In
this sense, this work demonstrates the challenges of deploying bigger models
to platforms with limited memory. Also, this work demonstrates the possibility
of creating custom networks that can efficiently use the resources and obtain
lightweight models capable of running in embedded systems.

Manderson et al. [2018] present a robot controller capable of route optimi-
zation for coral reef classification. The robot navigates near coral reefs avoi-
ding collisions, and estimates an efficient route through coral-free areas. The
decisions of the network are used to change the orientations of the underwater
robot. The network architecture is a modification of the ResNet18 with fewer
layers and different activation functions with 10 M parameters. These changes
are proposed to increment the computational efficiency of the network. On NVI-
DIA Jetson TX2, they process images at 10 fps with 41% accuracy. In this sense,
we can observe that the network selection is limited by the hardware constraints
as computational efficiency and memory size.

Bura et al. [2018] presents a system to help drivers in finding a parking loca-
tion and bill them automatically based on the exact usage of parking space. This
system uses a Raspberry Pi and an NVIDIA Jetson TX2. They use ground and top-
view cameras connected to both boards. The Raspberry Pi is used to recognize
the license plate, and the NVIDIA Jetson TX2 tracks the vehicle till it is parked in
the parking lot. To classify if the parking lot is empty or occupied, they chose to
use a custom network instead of the AlexNet network (61 M parameters.) They
introduce a lightweight neural network with one convolution layer and three
dense layers (approximately 150K parameters). Also, they use Tiny-YOLO (15 M
parameters) for the tracking and a lightweight. Their custom network takes 7.11
ms to classify each slot with 99.51% accuracy. This measure means that for a
parking lot with 50 slots, it takes up to 355.5 ms to classify the entire lot. With
these results and approach, we can observe that the trend converges towards
custom networks o low-size networks to be deployed on embedded devices. The
network selection is based mainly on the number of parameters, and when they
are higher than expected, then a custom network is designed.

Madaan et al. [2017] present a technique to detect wires oriented to unman-
ned aerial vehicles (UAV) based on a monocular camera. For this problem, the
hardware target system is an NVIDIA Jetson TX2. Their work presents a survey
with 30 different neural network architectures changing the number of channels
and dilation factors. These architectures size goes between 325K and 1.1 M pa-
rameters. The network with a higher number of parameters achieves the best
results (0.75 AP score). Nevertheless, the biggest network was also the slowest
one with two frames per second (fps). Consequently, as their motivation is the
faster approach, they decided to use a model with 84K parameters that obtai-
ned 4 fps on the Jetson TX2. In this sense, we can observe that network size
influences which network to use when searching for the best performance.

In conclusion, we can observe that the main limitation of the presented mo-
dels is the size of the network. When the network is transported from develop-

10

CHAPTER 1. INTRODUCTION

Figure 1.5 – Distribution of Deep Learning smartphones based applications over catego-
ries defined by Google Play. Numbers on top: Number of applications in the correspon-
ding categories. (Xu et al. [2019]).

ment to the embedded board, it needs to be reduced using optimization tech-
niques. In this sense, the most significant impact on the accuracy is the reduced
memory available to deploy the model. Also, in some applications, the size of the
network is correlated to the fps performance. Therefore, reducing the size of the
network before the usage of optimization techniques would benefit these appli-
cations. Also, if the network is small enough, it could be deployed without going
through size optimization techniques on the field.

Hand-held devices applications. As introduced previously, the latest hard-
ware inside portable phones consists of a System on Chip (SoC) processor unit
that includes both CPU and GPU in one silicon dice (Qualcomm [2020]). Hand-
held devices based deep learning techniques have already been applied with suc-
cess in many fields and with different information sources. In the latest years, the
number of applications has increased exponentially compared to the ones avai-
lable several years ago (Lane and Georgiev [2015]).

One of the main limitations to develop applications for more fields on this type
of hardware is the existing tradeoff between hardware resources and network
size. Also, the CNN-based applications share resources with other applications
as the device’s purpose is not limited to the CNN task. Simultaneously, the sen-
sors on the portable terminal represent an advantage to acquire several types
of signals and process them. The main drawback is that these applications have
to operate in unconstrained environments, noisy data sources, and often with
limited battery. In the scope of this manuscript, this becomes an area of oppor-
tunity that deep learning applications can benefit from. The main challenge is to
overcome the memory restrictions and battery consumption.

Two main approaches exist to deploy deep learning applications on the mo-
bile: (1) the server approach and (2) the standalone approach. The first one uses

11

CHAPTER 1. INTRODUCTION

the hand-held device as a sensor terminal where the data is sent to a cloud-
based server containing the deep learning model, which after processing the
data, sends back the results to the device. The second one uses the deep lear-
ning model directly on the mobile device. It can run without any connectivity and
may produce faster results but has to cope with the limited resources available
on the device. We mainly focus on the second one (2) as we study that efficient
usage of the filters and network optimization would result in smaller networks
able to run on smartphones.

In a survey done by Xu et al. [2019], we can find that image processing is the
most popular usage of deep learning on smartphones (Fig. 1.5). Specifically, the
applications-oriented towards beauty and face detection usually found in photo
editing and camera applications to improve images are the most widely used. In
addition, applications like Adobe Scan use text recognition models to scan do-
cuments from the phone. Usually, these proprietary applications do not disclose
the model accuracy or performance, but we can assume they use state-of-the-
art CNNs inside the network architecture. We can observe that in the hand-held
devices category, deep learning-based applications span over several categories:
medical, security, communications, and others.

To mention some, in the medical field Velasco et al. [2019] propose a smart-
phone based skin disease classification. For this, they use Mobilenet (5 M pa-
rameters) and transfer learning techniques. As a result, they achieve 94.4% of
accuracy and classify seven different skin diseases. They obtain these results on
a smartphone with an Android operative system to be used in the field and re-
mote areas. The selection of the Mobilenet network is based on the small size of
the network.

Chen et al. [2018] present a class of extremely efficient CNN models, Mobile-
FaceNets. These models use less than 1M parameters, and they are specifically
tailored for high-accuracy real-time face verification on mobile and embedded de-
vices. They achieve 92.59% of accuracy in the MegaFace dataset (Kemelmacher-
Shlizerman et al. [2016]) with an inference speed of 23 ms on a Qualcomm Snap-
dragon 820 CPU of a mobile phone. In their paper, we can observe several mobile
implementations oriented towards face verification, and most of them with less
than 2M of parameters. These results mean that there exists an effort to reduce
the size of the network while keeping a good accuracy. Also, we can find a tra-
deoff between the size of the network and the accuracy of the model.

Even the most popular companies, such as Facebook, find it challenging to
deploy deep learning models on smartphones (Wu et al. [2019]). In their ef-
forts, they have studied several applications and target hardware reaching some
conclusions. First, while some smartphones have a GPU, it is not much faster
than the CPU in the smartphone (Gao et al. [2015]). This is mainly because
mobile GPUs were not designed to process the same high-resolution graphics
rendering that computer oriented GPUs are. Next, they conclude that it is impor-
tant to maximize accuracy when it comes to smartphones while keeping model
sizes reasonable. Facebook focuses on model architecture optimization to iden-
tify highly accurate models while minimizing the trainable parameters (Wu et al.
[2019]). Finally, we can conclude that model size is one of the most important
factors in selecting a network model to find a good balance between accuracy,

12

CHAPTER 1. INTRODUCTION

performance and network size.

High-end applications on dedicated servers. Lastly, high-end applications
running in a cluster of GPUs or dedicated servers are the ones that can use more
resources. Usually, this type of hardware is used in the training stages of the
networks, but we can also find clusters serving hundreds or thousands of users
on the web and real-time applications.

The most used application of high-end GPUs is for training networks. Nor-
mally, the bigger networks can train for days, even for weeks (Redmon et al.
[2016], Ramesh et al. [2021b]). The resources are usually available for some se-
lected users and are mostly used in research and industrial environments. It has
been demonstrated that the size of the networks impacts the training time for
the network. This is evident when data augmentation is used as the server needs
to process several transformations of the training and images and usually train
on thousand of images.

We are primarily motivated in the two first platfom types: embedded devices
and hand-held devices. In this work, we pay attention to how providing the ge-
neralization features of the network impacts the size of the model. In addition,
we are interested in analyzing how the invariance to deformations (mainly rota-
tion invariance) property can be used to reduce the size of the model. The main
consequence of this a reduced size of the predictor hence network reduction
size. This reduction acquires importance mostly in limited-resource devices, as
explained previously.

In conclusion, we observe a joint effort between upgrading hardware capa-
bilities and optimizing computational software requirements. The main conse-
quence of these efforts is the multiple techniques on the software and hardware
side.

The current deep learning workflow includes first training the model in an
unconstrained environment (computer with a GPU or cluster server). Then, the
model is optimized by pruning the weights or reducing the data format to avoid
floating-point operations. Finally, the optimized model is deployed to the em-
bedded device. Several times the model has competitive accuracy when trained
and tested in the unconstrained environment. Nevertheless, when moved to a
constrained environment (embedded board with limited memory and processing
power), the accuracy is reduced significantly.

In this work, we focus on the reasoning that a thoughtful neural network
design can reduce the size of the network before any optimization strategy and
use all the capabilities offered by the hardware fabricants. In the next section,
we visit a brief history of neural networks to understand and find possible design
opportunities that we can use to reduce deep learning network size.

1.2 Artificial Neural Networks

In the last ten years, artificial neural networks have increased their popula-
rity. One reason for neural network’s success is the generalization capacities that
allow them to work with previously not seen examples. In traditional program-
ming, a programmer creates a model that computes the input to obtain some

13

CHAPTER 1. INTRODUCTION

results (Fig. 1.6a). Instead, neural networks are trained with a pair of inputs and
desired outputs (where the number of examples is proportional to the complexity
of the problem) and generate a set of model parameters (Fig. 1.6b).

����������������������� ����������������

����������� �������
�����

�����
������� �����

�����
�������
������

Figure 1.6 – Traditional programming versus machine learning (neural networks) com-
putation.

This process is known as training the network. After it, the neural network be-
comes a black box capable of generalizing for small input changes while keeping
higher accuracy rates on non-previously seen examples of the training set.

The neural network (a.k.a model) is trained iteratively on the training set ;
each iteration containing all examples is known as an epoch. Currently, networks
can be trained from hundreds to thousands of epochs determined by the com-
plexity of the data. This training of a neural network is possible because of two
main elements: artificial neurons and the back-propagation learning algorithm.

A neuron is the basic element of a neural network, is composed of an input, an
output, weight, and bias (Fig. 1.7). The weight (ωm) is a mathematical value that
controls the signal strength of the connection between the inputs. In other words,
the weight value controls the influence that the inputs (xm) will have on the
output (y). The bias value (b) allows the neuron to represent more complex data
as it shifts the transfer function along the input axis. Similar to the linear function
y = a +bx where the term a allows the line to shift over the axis, the bias value
of the neuron allows to shift the output value outside of the origin. Lastly, the
activation function (ϕ(·)) allows the neuron to have a non-linear transformation
of the inputs (when the activation is not linear i.e., sigmoid, ReLU function).

The weights and bias are trainable values that are updated in the back-pro-
pagation process at the training step. The way that the neurons are connected
determines the type of neural network layer. A fully connected layer (a.k.a dense
layer) connects each of the inputs to each one of the neurons present on the layer
and each neuron’s output is connected to the output of the layer.

Back-propagation refers to the propagation of the error from the output to the
input of the model and was first presented by Rumelhart et al. [1986]. This algo-
rithm is widely used for training neural networks and calculates the gradient of
the error function concerning the neuron. The backpropagation algorithm works
by computing the gradient of the loss function with respect to each weight by the
chain rule, computing the gradient one layer at a time, iterating backward from
the last layer to avoid redundant calculations of intermediate terms in the chain
rule (Goodfellow et al. [2016]).

The concept of neurons and neural networks is not recent. McCulloch and
Pitts [1943] suggested the first neuron model able to compute logical operations.
It was a neuron with two binary inputs and one binary output. If the threshold

14

CHAPTER 1. INTRODUCTION

Figure 1.7 – Mathematical model of an artificial neuron (McCulloch and Pitts [1943]]).

was met the neuron was activated. Then, Rosenblatt [1958] developed the per-
ceptron. Instead of two binary outputs, the perceptron has an arbitrary number
of weighted inputs. The value of the inputs (weights) can be different for each
input. The perceptron can linearly separate an input space. Training the per-
ceptron means adjusting the weights and biases such that the input space is
correctly divided hence the classes separated. The learning rule was simple en-
ough, if the output is correct then the weights are not changed, if the output is
wrong the input vector is added or substracted from the weights (Fig. 1.8).

Figure 1.8 – Perceptron and the adaptive threshold element that allowed adapting
weights (Rosenblatt [1958]).

To obtain non-linear responses from the network (to produce nonlinear de-
cision boundaries) the next step was to add a layer of neurons. This multilayer
perceptron allows the network to have non-linear boundaries. In this sense, ins-
tead of the input being connected directly to the output via one or several neu-
rons now is connected to an intermediate layer of neurons. As this layer does not
constitute the input or the output it is hidden from the outside, hence the hid-

15

CHAPTER 1. INTRODUCTION

den layer. Hornik et al. [1989] establishes that standard multilayer feedforward
networks with as few as one hidden layer using arbitrary squashing functions
are capable of approximating any Borel measurable function. In this sense, a
multilayer perceptron is a universal approximator among continuous functions.
Unfortunately, while this established the bases of neural networks it does not
clarifies the number of neurons in the hidden layer that are needed to obtain this
universal approximator. As the number of neurons increases, the training time
could become large.

1.2.1 Convolutional Neural Networks

For image data, the first approaches used a set of fully connected layers (one
or more hidden layers Fig. 1.9a). The main disadvantage of these approaches
was the number of parameters requiring a neuron associated with each input
image pixel. The number of parameters grew up quickly following the size of
the images. Furthermore, its main disadvantage was the difficulty in predicting
features that vary in position over the image. If the object appeared in different
positions of the image, a different set of weights was activated. In the following
paragraphs, we will study the historical development of the convolutional neural
networks until the present.

(a) Dense network (Byun [2020]) (b) Convolutional Layer (Yakura et al. [2018])

Figure 1.9 – Layer comparison. (a) Dense Network with two dense layers. (b) Convolu-
tional layer with one filter.

The first work on modern CNNs was proposed by LeCun et al. [1998] in which
they demonstrate that a CNN model that aggregates simpler features into pro-
gressively more complicated features can be succesfully used for handwritten
character recognition (Fig. 1.10). The proposed network LeNet was smaller com-
pared to multilayer perceptrons and presented several advantages over them.
Instead of having fixed neurons attention to pixels, a convolutional window slides
over the image (Fig. 1.9b). In this sense, it provides a translation invariance to
spatial translation over the image while dense networks not. Also, as the weights
on the sliding window are reused when scanning the image, the size of the net-
work becomes significantly smaller.

In addition to their accurate models, CNNs tend to be computationally ef-
ficient, both because they require fewer parameters than fully-connected ar-
chitectures and because convolutions are easy to parallelize across GPU cores.

16

CHAPTER 1. INTRODUCTION

Figure 1.10 – Architecture of LeNet-5: Convolutional Neural Network for digits recogni-
tion. (LeCun et al. [1998]).

Consequently, the applications include several fields including one-dimensional
sequences as audio, text, and time series analysis.

Usually, CNNs are shaped by one or more convolution layers. While a dense
layer connects every input and output to the neurons, a convolutional layer
consists of a small fixed-size window (the trend is 3 or 5 pixels) that scans the
input image and convolves the input with the convolution kernel. The sliding win-
dow acts as a filter in which each pixel corresponds to a learnable weight of the
network. Naturally, the convolution layer becomes spatial invariant as the same
window scans the image along the two image axis. The main consequence of this
is that the network can find the required features it needs despite the position of
the feature in the input image. CNNs systematize this idea of spatial invariance
and exploits it to learn useful representations with fewer parameters.

The next surge in popularity for CNNs was in 2012 when a CNN called Alex-
net outperformed state of the art results in the ImageNet challenge (Fig. 1.11).
Krizhevsky et al. [2012] work showed that the new hardware technologies (GPUs)
and the availability of large sets of data could enable the researchers to create
complex CNNs to solve computer visions taks that were previously hard to ta-
ckle. The main contributions of their work were: the use of rectified linear units
(ReLu) as neuron activation functions, the usage of the dropout technique to
avoid overfitting the model, the inclusion of maxpooling operation instead of the
commonly used average pooling and the use of GPUs (NVIDIA GTX 580) to re-
duce the training time.

Figure 1.11 – Alexnet architecture (image from the original paper) (Krizhevsky et al.
[2012]).

Another improvement are VGG networks from Oxford Simonyan and Zisser-

17

CHAPTER 1. INTRODUCTION

man [2015]. Instead of using large filters (Alexnet used 9 x 9 and 11 x 11 filters)
they used much smaller filters of size 3 x 3. The main advantage and contribution
of VGG networks was the notion of combining several 3 x 3 filters in sequence
to emulate the effect of larger receptive fields. These notions have been used in
more recent architectures. The number of parameters massively increased up to
144 Millions of trainable parameters. The training of this network was difficult,
and it is described in the paper how it had to be split into smaller networks with
layers added one by one.

Figure 1.12 – Inception module used in GoogLeNet. (a) First approach without dimension
reduction (b) 1 x 1 convolutions are used to reduce the number of operations.(Szegedy
et al. [2015]).

Bigger companies as Google started to be interested in efficient and large
architectures powered by their servers. Their first effort was to reduce the com-
putational requirements of deep neural networks. The main product of their work
was the inception module on the GoogLeNet network Szegedy et al. [2015].

The inception module is the combination of convolutional filters of different
sizes. The main contribution was the usage of 1 x 1 convolutional blocks to re-
duce the number of features before the parallel block (Fig. 1.12). This bottleneck
allowed to reduce the number of features, and operations, so the inference time
was lower. The descriptive potential of the layer was not lost although doing less
operations. The next step for them was to regularize the model. For this the in-
troduced a Batch Normalized Inception (Ioffe and Szegedy [2015]), in which the
Batch-normalization operation computes the standard deviation of the feature
maps and normalizes the values at the output. The training of the next layers
was easier as the layer does not need to learn any offset of the input data.

Deep learning models started to appear in the literature, albeit with several
constraints due to different challenges such as vanishing gradient. After several
layers, the gradient would become zero ; hence the network would not converge
as a result. To solve this He et al. [2016] propose Deep residual networks to
ease the training of deeper networks. The idea was simple, bypass the input to
the subsequent layers. Instead of bypassing a single layer like in previous works
(Sermanet and LeCun [2011]), they bypass after two convolutional layers. Also,
they used the same 1 x 1 bottleneck similar to the used in the inception networks
to reduce the number of features at each layer (Fig. 1.13).

After the advent of the residual networks, the effort for efficient and smaller
networks started to appear. Howard et al. [2017] presented a novel approach
for mobile and embedded devices. MobileNets were based on a streamlined ar-

18

CHAPTER 1. INTRODUCTION

Figure 1.13 – A deeper residual function for ImageNet. Left: a building block from
ResNet-34. Right: a bottleneck building block used in ResNet-50/101/152 (He et al.
[2016]).

chitecture that uses depthwise separable convolutions to build lightweight deep
neural networks. Their main novelty was the inclusion of two simple global hy-
perparameters that efficiently tradeoff between latency and accuracy. These hy-
perparameters allow the model builder to choose the suitable sized model for
their application based on the problem constraints. In this sense, the network
was lightweight (5M parameters with 1.0 depth hyperparameter) compared to
its competitors, such as ResNet50 (26 M parameters).

Recently, EfficientNet (Tan and Le [2019]) has become the center of attention.
The authors propose a scaling method that uniformly scales the dimensions of the
neural networks using a single compound coefficient. CNNs are usually designed
with certain dimensions: depth (number of layers), width (number of filters), and
resolution (input image size). EfficientNet presents a compound coefficient that
uniformly scales them (Fig. 1.14). This technique allows the authors to produce
a model that provides higher accuracy than the existing convolutional networks
(up to the date of this writing) and a considerable reduction in model size.

Figure 1.14 – Comparison of different scaling methods. Unlike conventional scaling me-
thods (b - d) that arbitrary scale a single dimension of the network, EfficientNet com-
pound scaling method (e) uniformly scales up all dimensions in a principled way (Tan
and Le [2019]).

19

CHAPTER 1. INTRODUCTION

Figure 1.15 summarizes some of the existing approaches performance on the
ImageNet (Russakovsky et al. [2015]) classification challenge. We can observe
the correlation between network size and accuracy with models up to 150 M
parameters. In conclusion, we can observe that the global tendency is to increase
the network model size as long as resources (memory size, computing size) are
available. Usually, this is done by scaling the network size (depth or width) and,
in some cases, the size of the input images. Nevertheless, while the historical
trend converges toward bigger and deeper networks, it disqualifies embedded
devices as target hardware.

Thus, in this work, we study the rotation invariance property of the networks
to reduce their size and computational requirements. We study this property,
avoiding data augmentation techniques that usually make the network predictor
bigger to become invariant to the rotations.

Figure 1.15 – Model size versus ImageNet accuracy (Image from: Tan and Le [2019]).

1.2.2 Rotation invariance

This section presents the rotation invariance concept, the motivation behind
studying it, and how we will use it to reduce the size of the neural networks.

Classically, the CNN deal with various image transformations by using data
augmentation (Dyk and Meng [2001]). This means training the network with a
dataset enriched by rotated, mirrored, sheared and scaled original images. In
this way, each class becomes a super-class containing all possible deformations
of itself. The main consequence is that the classifier itself is forced to become
invariant to all these deformations. One consequence is that the model’s size

20

CHAPTER 1. INTRODUCTION

increases, and the second one is a higher probability of overfitting. Finally, such
large models penalize the computational performances of the application. The
model’s size may even become an eliminating factor in mobile and embedded
applications.

On image classification tasks, neural networks have outperformed state-of-
the-art techniques achieving high values as 99% of accuracy. The main challenge
to obtain these results is the uncontrolled conditions of the image acquisition.
Often, these images are obtained in different light conditions, sizes, and rota-
tions. Therefore, one of the main objectives of this work is to endow the neural
networks with the robustness of classification with respect to the rotation of the
input image. Also, we can add applications in which the estimation of the object’s
rotation angle like pose estimation in robotics hands, automatic food cashiers,
and pose detection in printed circuit boards (PCB).

One possible axis to study is presented in several works (Freeman and Adel-
son [1991]; Weiler et al. [2018]; Worrall et al. [2017]) where it has been de-
monstrated that the filters contained in the first layers of the network capture
low-level features (e.g., edges in different orientations) and the complexity of
the filters increases with the depth of the network (e.g., a car wheel, dog-ear)
(Figure 1.16). These first-layer filters are usually rotated copies of themselves.
It means that a set of oriented features could be used as the first layer avoiding
redundant orientations. These works are further discussed in chapter 2.

Recently, several authors proposed obtaining rotation invariance by map-
ping the input pattern into some particular space (e.g., oriented feature space)
(Wiersma et al. [2020]). Nonetheless, all these approaches still require including
rotated samples in the training dataset to achieve a reasonable error rate. The
second problem – the angular prediction – remains unsolved unless an angle-
labeled dataset is available. However, most of the classification datasets do not
include the angle information.

Figure 1.16 – The first layer of AlexNet architecture (Krizhevsky et al. [2012]). Red boxes
show an example of rotated versions of almost the same filters.

In this work, we focus on the deformations concerning the in-plane rotation
of the objects in the image. There exist several properties of the images that
correspond the the relation between the input image and an output processed
image. It is important to recall three of them: equivariance, invariance and co-
variance. Equivariance makes reference to a transformation in which the output
results follow the same behavior when the inputs has changed (Figure 1.17(a)).
Invariances refers to an output remaining constant under a transformation of the
input Figure (Figure 1.17(b)). Last, the covariance refers to the output changing
as a direct function of an input change. We can recall the terms equivariance,

21

CHAPTER 1. INTRODUCTION

(a) Equivariance (b) Invariance

Figure 1.17 – Equivariance and Invariance examples (Kaggle [2014]).

invariance and covariance of a function f (·) with respect to a transformation g (·),
as defined in Marcos et al. [2017]:

— Equivariance: f (g (·)) = g (f (·)). A transformation in the input results in the
same change at the output.

— Invariance: f (g (·)) = f (·). Output remains constant under a transformation
of the input.

— Covariance: f (g (·)) = g ′(f (·)). The output changes as a direct function of a
change in the input.

where g ′ is another transformation, which is itself a function of g (·). With the
above definitions, equivariance and invariance are special cases of covariance.
Hence, the classification of a randomnly rotated object is invariant to rotation,
and prediction of the angle of the rotation is covariant with the rotation.

To conclude, the CNN represent the state of the art for classification tasks.
It is well known that one of the main CNN properties is the translation equiva-
riance of the feature representation learned in the first convolutional layers. On
the contrary, the rotation invariance of the classification has only recently drawn
attention and the literature rapidly grew abundant. Since several years, the trend
converges towards encoding the rotation equivariance directly in the CNN archi-
tectures. To do that, a large variety of approaches exists. These approaches will
be further discussed on Chapter 2.

1.3 Thesis Contributions

As mentioned previously, deep learning applications have become the stan-
dard for visual understanding tasks. In this sense, they can be found in several
devices, from high-end servers up to embedded devices. While there are high
efforts by hardware manufactures and software developers to reduce the size
and computational effort required to run neural networks, there is still a gap
between the performance on the different devices. In this sense, reducing these

22

CHAPTER 1. INTRODUCTION

models would benefit the possible implementations in devices with low-power
processors and limited memory. In this work, we approximate this effort by stu-
dying the invariance to deformations, specifically the rotation invariance in a
novel approach (Fig. 1.18).

While naturally convolutional layers are spatially invariant, they lack rotation
invariance properties. Currently, the trend converges towards endowing them
with such properties by presenting rotated samples of the images in the dataset
(Fig. 1.18a). The main consequence of feeding the network with these rotated
samples is the increase in the predictor size to become invariant to the transfor-
mations. For example, in the case of rotations, the predictor learns invariance up
to 360° or up to some dφ and be applied 360°/dφ times.

In this work, we present a novel approach to obtain rotation invart CNNs.
Instead of rotating the input image (data augmentation technique), we propose a
CNN feature stage with intrinsic rotation properties and a small predictor trans-
lating over the rotated copies of the input.

We propose to obtain intrinsic rotation using a set of ordered oriented filters
that express the angular relationships between the elements of the object in
the input image (Fig. 1.18b in pink). The design is based on the principle of
oriented feature space proposed by Chen et al. [2000]. Our novelty is re-orienting
the oriented features to the horizontal reference to obtain a roto-translational
feature space. The main consequence of this alignment is that the feature space
linearly translates following the rotation of the input image.

�
��������

�����
�

���
	�������
����	������

�
����������	��

�����	���	�����	

�
�	����	�����	

�����

�
��	������
��	��	�

�
��������	�

�
�����

�
�����

�
�	����	�����	

�����

�
��	������
��	��	�

�����

�
��������	�

�
�����������

�
������������������

����	

Figure 1.18 – Contribution of the thesis.

Then we add a predictor that iterates (translates) over the roto-translation
feature space and outputs a prediction for each translation. In this sense, the pre-
dictor keeps its reduced size as it does not need to become invariant to multiple

23

CHAPTER 1. INTRODUCTION

orientations. Furthermore, as a byproduct of the design, we obtain information
on the angle of the rotation.

As a consequence of the design, the network becomes rotation invariant. We
test rotation invariance by training the network with upright-oriented examples
and validating with randomly orientated examples. This network can also be trai-
ned with augmented examples (random rotations), improving the results obtai-
ned with classic data augmentation.

In this manuscript, we first provide the proof of concept of stated ideas. We
use a face recognition problem to illustrate the utilization of the ordered filter
set on a challenging problem recognized for the sensitivity for the image defor-
mations. Also, we illustrate results in an embedded board (NVIDIA Jetson TX1)
to evaluate the performance and experience of the proposed network in real-life
hardware constraints.

Once we prove this hypothesis, we use the intuition behind the roto-translatio-
nal feature space to construct a custom layer based on oriented features. Also,
we design a translating predictor based on 3D convolutions and dense layers.
With these layers, we propose several alternatives to obtain rotation-invariant
networks.

We apply this knowledge to simple and complex datasets reaching state-of-
the-art results and outperforming the classical approaches while keeping the size
of the network minimal. Also, we present the class and angular prediction results
of the translating predictor. Furthermore, we validate the network trainability
mathematically and present a general methodology for other networks.

1.3.1 Thesis Structure

In this section, we introduce the general content of the subsequent chap-
ters. To facilitate this, we outline the relations between different contributions in
Fig. 1.19.

�
��������������������������������

�
��������

��������������������
����
�������	�

����������	�
���������

������������������������������

���������	�������
���	
���������	����������

�
���������

����
������	�
���������	����������
�����������������

����������	�
���������

���������������������������������
������������������������������

 ���	����������	�� �������
���
�����������������������	����������
���

�
���������

����
������	�
�������������

����������	�
���������

���������������������������������
�������������������������������

�
���������

 ���	����������	�� �������
���
�����������������������	����������
���

Figure 1.19 – Manuscript structure organization

Chapter 2 introduces the concept of roto-translational feature space, which
is one of our main contributions. First, we construct the roto-translational feature

24

CHAPTER 1. INTRODUCTION

space using two consecutive operations: oriented features space and features
re-orientation. The first one decomposes the input image into several oriented
components ordered by increasing magnitude. Then, the second one re-orients
the features to the horizontal reference. With this, we get a roto-translational
feature space that translates over the depth axis following the rotation of the
input image. Then, we prove the possibility of training a CNN using such feature
space on a known challenging task on face recognition. Finally, we introduce the
concept of the translating feature space, which is applied to the roto-translational
feature space to obtain rotation invariant prediction. As a byproduct of the de-
sign, we also obtain the angle orientation of the input image.

Chapter 3 presents the first experiments using the proposed Rotation In-
variant Networks (RIN). First, we discuss the inner components of the feature
stage and propose two alternatives to generate the oriented feature space: scat-
tering transform and steerable filters. Next, we present the properties of each
alternative, propose an architecture based on each approach and discuss their
advantages and disadvantages. Finally, we outline the obtained results on the
MNIST when trained on upright oriented (URT) and randomly oriented training
(RRT) examples.

Chapter 4 introduces our experiments with complex datasets. This chap-
ter presents a new alternative for the oriented feature space: Gabor filters and
the possibility of using state-of-the-art backbone networks as feature extractors.
First, we discuss the properties and parameters that become trainable for the
network. Then, we test these filters on the MNIST dataset to compare with the
previous filter alternatives (scattering, steerable). Next, we introduce ResNet as
a feature extractor in the proposed network to solve the challenging classifica-
tion task on complex datasets. Finally, we present the results of our proposals on
the CIFAR-10 dataset with upright training and randomly rotated training.

Chapter 5 outlines the mathematical proof and formalisms. After several ex-
periments on different datasets, we converge to mathematical methodology that
describes the behavior of the rotation invariant networks. First, we outline the
properties of the feature stage. Also, we describe the properties and the proof of
the translating features over the translating feature space. Then, we present the
prediction model properties and definitions. Furthermore, we prove the traina-
bility of the translating predictor. Finally, we conclude this chapter by discussing
the Vapnik-Chervonenkis dimension of the model to confirm the minimal size of
the translating predictor.

Chapter 6 presents conclusions and perspectives on future works. We dis-
cuss several perspectives and possible improvements axis for the rotation inva-
riant networks. First, we outline and discuss the main contributions of our work.
There we recall the properties and design of the roto-translational feature space
and translating predictor. Then, we discuss the possible axis of improvement for
future works.

25

CHAPTER 1. INTRODUCTION

26

Chapter 2

Roto-translational Feature Space

By construction, the convolution layers are translation invariant (Kayhan and
Gemert [2020]). However, the convolutions are not naturally invariant to other
transformations such as rotations. As mentioned previously, in this work, we fo-
cus on in-plane rotational deformations, which form the basis of the contribution
of this thesis.

As outlined in section 1.3, we propose a CNN feature stage with intrinsic
rotation properties and a predictor translating over the rotated copies of the
input. In this sense, the predictor becomes smaller than its invariant counterpart
because it does not need to become rotationally invariant.

To achieve this, we need to decompose the input image into several oriented
components to obtain the image edges’ angular information. The historically first
to propose an oriented space is Chen et al. [2000]. The authors propose genera-
ting a multiple orientation representation by adding an extra axis to the image.
This method allows the effective segmentation of lines at intersections as local
regions where lines occur at multiple orientations (Fig. 2.1).

Figure 2.1 – Outline of the concept of orientation space filtering.

Compared to Chen et al. [2000] work, our novelty is to compensate the mul-
tiple orientation representation to obtain components aligned to the horizontal
reference. These aligned components have a translation behavior over the addi-
tional feature axis that follows the rotation of the input. This concept is deeply

27

CHAPTER 2. ROTO-TRANSLATIONAL FEATURE SPACE

discussed and demonstrated in section 2.2. We follow this discussion by presen-
ting a classification problem using oriented feature space components based on
the scattering transform network.

In this experiment, we use a classical computer vision problem: face recog-
nition. We use this problem to confirm that it is possible to obtain classification
convergence on a convolutional neural network while using oriented components
as filters on the first layer. We base our research on previous approaches and ex-
tend the obtained results to an embedded platform to demonstrate the possibility
of deployment on constrained devices.

In section 2.3 we introduce the concept of translating predictor. The transla-
ting predictor scans each translation generated by the roto-translational feature
space and outputs a probability for each translation. In this sense, we obtain a
probabilistic distribution where the maximum value corresponds to the class and
the angle of the input image.

To complete, in the following paragraphs, we present an in-depth study of
the state-of-the-art techniques used on rotation invariant classification tasks. We
discuss their advantages, disadvantages, and contributions.

2.1 Existing Approaches to Obtain Rotation Inva-

riant Classification

In general, the literature uses randomly oriented samples containing data
set as MNIST-rot (Worrall [2017]) to evaluate the different CNN architectures.
However, in order to provide an unbiased evaluation we argue that the rotation-
invariant properties can be only illustrated by training a network with upright
oriented examples and then testing on a randomly oriented ones. Only this de-
monstrates that the network effectively learns to classify rotated samples it has
never seen during the training. At the end of this section, we present a sum-
mary table that condenses the existing methods and the used training approach.
In addition, the table (2.1) summarizes the properties of the selected state-of-
the-art methods in terms of the number of orientations, the model size, and the
capability of predicting the angle of the input rotation.

The literature contains numerous references on endowing the CNNs with ro-
tation invariance or equivariance. Two main strategies exist: i) data augmenta-
tion or ii) modification of the network architecture.

The historically first to explore the data augmentation method was the ge-
neral statistical community. Data augmentation schemes were used to make si-
mulation feasible and straightforward, while auxiliary variables were adopted to
improve the speed of iterative simulation Dyk and Meng [2001]. Then, the notion
was introduced to the convolutional network applications by Simard et al. [2003].
Their work describes how one of the most critical practices to train a CNN is get-
ting a training set as large as possible. To obtain this, he proposed expanding the
training set by adding a new form of distorted data (different transformations of
the examples with the same label). Several years later, the technique was used
on AlexNet (Krizhevsky et al. [2012]), and from there, it became one of the trends
to increase the accuracy of neural network models.

28

CHAPTER 2. ROTO-TRANSLATIONAL FEATURE SPACE

The basic principle is to enrich the training data with samples undergoing
transformations. This technique is well known and it results in learning gene-
ralized (but larger) models without requiring modification of the network archi-
tecture. The major disadvantage of this approach is the need to increase the
computing capacity for learning while increasing the risk of overfitting Weiler
et al. [2018].

(a) Original image

(c) Flip

Horizontal Vertical

(b) Clockwise rotation
90° 180° 270°

(e) Outward scale

10% 20%

(d) Square section crop

top-left bottom-right

Figure 2.2 – Data augmentation techniques.

Usually, the CNNs use data augmentation techniques to endow the network
with rotational invariance properties (Dyk and Meng [2001]). Data augmentation
consists of training the CNN with a dataset enriched by rotated, flipped, cropped
and scaled example images (Fig. 2.2). This augmentation can be seen as each
class becoming a super-class containing all the possible deformations itself done
by the data augmentation process. While most of the data augmentation tech-
niques have demonstrated to increase the accuracy of the models this comes
with some drawbacks.

To mention some drawbacks, the CNN training time is increased considera-
bly so it can learn and capture all of these deformations of the input data, and
comes with a higher probability of overfitting. This is normally noted as an in-
creased training time of the same magnitude of the number of transformations
added to the input data. Some studies conclude by having found that the trai-
ning time can increasing up to 600% when using data-augmentation against the
non-augmented model (O’Gara and McGuinness [2019]).

One of the main drawbacks in the rotation context is the loss of the rota-
tion equivariance data when trained. When the predictor becomes invariant, the
angular information is lost. It is the product of the predictor itself learning to
classify the orientations of the class as a single super-class. Instead, the rotation
information (as separate sub-classes) should be kept until the very last layer allo-
wing the network to foster the rotation equivariance and predict the angle with
the same number of resources.

Since several years, in the effort to avoid the previous drawbacks the trend

29

CHAPTER 2. ROTO-TRANSLATIONAL FEATURE SPACE

converges towards encoding the rotation equivariance directly in the CNN ar-
chitectures. To do that, a large variety of approaches exists. We can divide these
approaches following the domain of the features and how they are processed:
continuous rotation angle sampling (for 360 rotation equivariance) and discrete
angle sampling for rotating filters.

2.1.1 Continuous Angular Sampling

The papers referenced in this section allow moving from discrete orienta-
tions to continuous sampling. The principle has been introduced by the harmo-
nic networks (or H-Nets) in Worrall et al. [2017]. H-Nets exhibit equivariance to
patch-wise translation and continuous 360-rotation. It achieves this behavior by
replacing the regular CNN filters with circular harmonics, returning a maximal
response, and orientation for every receptive field patch.

H-nets hard-bake 360°-rotation equivariance into their feature representa-
tion, by constraining the convolutional filters of a CNN to be from the family of
circular harmonics. If f is the feature mapping of a standar convolutional layer,
then 360°-rotational equivariance can be hard-baked in by restricting the filters
to be from a circular harmonic family. They assume that the image patch is only
able to rotate locally about the origin of the filter. This means that the cross-
correlation response is a scalar function of input image patch rotation (Fig. 2.3).
The rotation order of feature maps and filters sum upon cross-correlation, so to
achieve a given output rotation order, they must obey the equivariance condition.

Figure 2.3 – Harmonic Networks (Worrall et al. [2017]). Real and imaginary parts of
the complex Gaussian Filter. Cross-correlation, of a feature map of rotation order n with
one of these filters of rotation order m, results in a feature map of rotation order m +n.
Note that then negative rotation order filters have flipped imaginary parts compared to
the positive orders.

One drawback of this approach is that combining complex features, with
phases, which rotate at different frequencies, leads to entanglement of the res-
ponses. In fact, at every feature map, the equivariance condition must be verified.
It is needed to avoid arriving at the same feature map along two different paths,
with different summed rotation orders. They resolve this problem by enforcing
the equivariance condition at every feature map. They solve this by creating
separate streams of constant rotation order responses running through the net-
work. These streams contain multiple layers of feature maps separated by rota-
tion order, zero cross-correlations and nonlinearities. Moving between streams,
they use cross-correlations of rotation order equal to the difference between

30

CHAPTER 2. ROTO-TRANSLATIONAL FEATURE SPACE

those two streams. At the end, when multiple response converge at a feature
map, they sum the responses of the same rotation order.

Figure 2.4 – Harmonic Networks (Worrall et al. [2017]). An example of a 2 hidden
layer H-Net with m = 0 output, input-output left-to-right. Each horizontal stream repre-
sents a series of feature maps of constant rotation order. The edges represent cross-
correlations and are numbered with the rotation order of the corresponding filter. The
sum of rotation orders along any path of consecutive edges through the network must
equal M = 0, to maintain disentanglement of rotation orders.

Some approaches exist in the literature that base their filters on the H-nets
theory. We can cite the Spherical CNN Cohen et al. [2018] and Icosahedral CNN
Cohen et al. [2019]. The first one uses a spherical cross-correlation, which is ex-
pressive and rotation-equivariant. Also this network allow training with upright
position samples only ; however, the computational cost remains very high.

Icosahedral CNN Cohen et al. [2019] proposes an improvement to the Sphe-
rical CNN. Mainly, the authors pay attention to the reduction of computational
cost. They proceed by sub-sampling the sphere in a single 2D convolution call
and make it scalable. A similar approach is represented by CubeNet Worrall and
Brostow [2018]. It uses a 3D CNN group convolution that permutes the output as
a function of the input while keeping time 2× slower than non-group CNNs. Ho-
wever, they need the rotational data augmentation because of the lack of angular
selectivity.

2.1.2 Discrete Angular Sampling

The main approach of this group is to generate an oriented filter bank by
using some filter rotation technique (e.g., steerable filters Freeman and Adelson
[1991]). Usually, the network generates during the learning process a set of mo-
ther wavelets and then rotates them to generate oriented responses. Most of the
works mentioned in this subsection are based on Freeman’s work so it is conve-
nient to show the basic methodology on how they generate the oriented filter
bank.

Freeman and Adelson [1991] present a methodology to rotate filters using a
set of two base filters. They describe the term "steerable filter" as a class of filters
in which a filter of arbitrary orientation is synthesized as a linear combination of
a set of "basis filters" (Fig. 2.5). They show two and three dimensional cases and

31

CHAPTER 2. ROTO-TRANSLATIONAL FEATURE SPACE

demonstrate the steerable properties and how many basis filters are needed to
steer a given filter. The steerable filters are generated as a linear sum of rotated
versions of itself.

Figure 2.5 – Steerable filters (Freeman and Adelson [1991]). Example of steerable
filters: (a) G0°

1 first derivative with respect to x (horizontal) of a Gaussian ; (b) G90°
1 , which

is G0°
1 rotated by 90°. From a linear combination of these two filters, one can create Gθ

1
which is an arbitrary rotation of the first derivative of a Gaussian. The same linear com-
binations used to synthesize Gθ

1 from the basis filters will also synthesize the response of
an image to Gθ

1 from the response of the image to the basis filters ; (d) image of a circular
disk ; (e) G0°

1 convolved with the disk (d).

The two-dimensional case can be easily demonstrated using Gaussian filters.
Consider the two-dimensional, Gaussian function G written in Cartesian coordi-
nates x and y:

G(x, y) = e−(x2+y2) (2.1)

where they set scaling and normalization constants to 1 for convenience.
The first x derivative of a Gaussian is

G0°
1 = ∂

∂x
e−(x2+y2) =−2xe−(x2+y2) (2.2)

where the notation 0° means a derivative in the horizontal direction (∂x).
The same function, rotated 90° (derivative in vertical ∂y), is:

G90°
1 = ∂

∂y
e−(x2+y2) =−2ye−(x2+y2) (2.3)

It is straightforward to show that G1 filter at an arbitrary orientation θ can be
synthesized by taking a linear combination of G0°

1 and G0°
1 :

Gθ
1 = cos(θ)G0°

1 + si n(θ)G0°
1 (2.4)

Since G0°
1 and G90°

1 span the set of Gθ
1 filters, they become basis filters for

Gθ
1. The cos(θ) and si n(θ) terms are the corresponding interpolation functions for

those basis filters. Because convolution is a linear operation an image can be
filtered at any arbitrary orientation using the linear combination of the images
filtered by the basis filters.

Following this methodology a discrete number of filters can be generated in
several orientations and conform the first layer of the neural network. Most of the
works in this section find a tradeoff between the number of orientations of these
filters and the number of parameters of the networks. This means that increasing

32

CHAPTER 2. ROTO-TRANSLATIONAL FEATURE SPACE

the number of orientations usually results in a higher number of parameters and
increased training time.

One of the first proposal has been published by Zhou et al. [2017]. The authors
propose the Oriented Response Networks in which they have Active Rotating Fil-
ters. These filters rotate during the convolution and produce maps with location
and orientation explicitly encoded. The main drawback is high number of pa-
rameters to learn. Next, we can cite Rotation Invariant Local Binary Networks
Zhang et al. [2018]. The authors introduce the Local Binary Orientation Module.
It can be inserted into a traditional CNN. This layer contains Local Binary Convo-
lutional and Active Rotating Filters.

A significant contribution is recent work of Weiler et al. [2018]. Their SFCNN
comprises a set of complex filters and rotates them by phase manipulation. Ho-
wever, these filters have learned weights (magnitude of the activation changes
but shape remains constant) and present results for a classification task on only
the rotated MNIST dataset. While the SFCNN work is very similar to one of the
approaches used in this thesis we use a single real mother wavelet rotated using
the steerable filters technique Freeman and Adelson [1991]. Also, we let the fil-
ters learn weights, shape and size parameters. This allows the filters to change
shape and size when trained. Also, we provide angular prediction capability to
our network relying on the relative position of the filters in the network. Further-
more, SFCNN uses a generalization of He’s weight initialization to improve their
results while our network is independent of weight initialization.

Recently, the idea of learning steerable filters inspired the introduction of
layers based on the Gabor filter bank Luan et al. [2018]. Also, they present in-
teresting results using ResNet as backbone (instead of convolutional predictor)
of their network for Natural Image Classification tasks. Whereas the obtained
accuracy is very competitive, the authors present the results only for four dif-
ferent orientations, and the number of parameters increases to almost 2 million
parameters.

Another example of discrete filter banks is TI-pooling (Laptev et al. [2016]).
The authors use rotated versions of the same image as the input letting the net-
work choose the right orientation thanks to the integration of parallel siamese
architectures and new TI-POOLING operator.

The scattering transform-based network architecture presented at the begi-
ning of the Chapter 3 is also present in the state of the art. Sifre and Mallat intro-
duced the scattering transform-based networks in Sifre and Mallat [2013]. They
use scattering transforms to generate rotation-equivariant feature extractors.
This introduces the concept of rotating the inner filters, and it allows obtaining
a tradeoff between the classification accuracy and the network size.

Another approach based on wavelet scattering networks has recently appea-
red (Saydjari and Finkbeiner [2021]). In this work, the authors use scattering
networks, which are CNNs with fixed filters and weights. They introduce a fast-
to-compute rotationally equivariant wavelet scattering network (EqWS). They
obtain competitive results on the MNIST dataset when trained on upright orien-
ted examples (92.12% accuracy) and trained on randomly oriented examples
(92.10%). Nevertheless, a considerable drawback of their approach is that the
wavelets are not trainable. In this sense, a small change in the data distribution

33

CHAPTER 2. ROTO-TRANSLATIONAL FEATURE SPACE

would significantly impact the network accuracy.

In conclusion, discrete angle sampling approaches represent the state of the
art approaches when dealing with rotation invariant networks. One of the main
disadvantages of the method is calculating the complex filters increasing the net-
work’s training time and size. The general approach is to have learnable weights,
but there are only few paper proposing to learn the shape and size parameters.
Also, according to our knowledge, there is a real lack of networks allowing to
predict the rotation angle.

Several papers even propose a theoretical generalization of the above-men-
tioned approaches. One can find a good transformation invariance/equivariance
theoretical aspects in Weiler et al. [2018] or Pan Zhong [2019]. Many comple-
mentary works rely on this theory to propose alternative solutions. We can cite
Cireşan et al. [2012] and Multi-Column Deep Neural Networks, they train a mo-
del for each one of the possible transformations followed by a global averaging
pooling. In Gens and Domingos [2014], the authors propose a generalization of
convnets that forms a component of feature transformation maps over arbitrary
symmetry groups. In the last, the Spatial Transformer Network (Jaderberg et al.
[2015]) applies spatial transformations to the feature maps. To complete, we can
also cite Pan Zhong [2019] discussing deeply the theoretical aspects of invarian-
ce/equivariance transformations.

To solve the problem of rotation equivariance, we can also introduce the trans-
formation invariance locally, Marcos et al. [2017] introduce a CNN architecture
encoding rotation equivariance, called Rotation Equivariant Vector Field Net-
works (RotEqNet). The network applies one filter at different orientations and
extracts a vector field feature map, encoding the maximum activation in terms
of magnitude and angle.

Zhou et al. [2017] propose the Oriented Response Networks in which they
have Active Rotating Filters. These filters rotate during the convolution and pro-
duce maps with location and orientation explicitly encoded. The main limitation
of these approaches is a high number of parameters to learn. We can also cite Ro-
tation Invariant Local Binary Networks (Zhang et al. [2018]). The authors present
the Local Binary Orientation Module that can be inserted into a traditional CNN.
This layer contains Local Binary Convolutional and Active Rotating Filters.

Yet another strategy is represented by deep symmetry networks. In Dieleman
et al. [2016], they introduce four operations (roll, stack, pool, slice) that can
be inserted into neural network models as layers, making their models partially
equivariant to rotations. They also integrate parameter sharing across different
orientations, obtaining smaller models.

Recently, Li et al. [2018a] presented the Deep Rotation Equivariant Network.
Their network is based on ResNet34 (He et al. [2015]) and specific upsampling
and projection layers encoding the rotation and reflection symmetry of dermo-
scopy images. However, they do not achieve a complete rotation equivariance.

In RotDCF (Gao et al. [2019]), the authors propose a decomposition of the
filters in group equivariant CNNs ; they show benefits in the reduction of the
parameters and computational complexity. They also illustrate how the decom-
position of the convolution filter across the 2D space leads to an implicit regulari-
zation of the filters, and improves the robustness of the learned representations.

34

CHAPTER 2. ROTO-TRANSLATIONAL FEATURE SPACE

However, they only present results on rotated validation up to 60°while training
on upright examples.

Other interesting approaches could be also cited. Follmann and Bottger
[2018] present Rotationally-Invariant Convolution Module with rotational convo-
lutions and rotational pooling layers. They achieve rotational invariance by rota-
ting the filters and then back-rotating the generated feature map by the negative
angle of the filter. We compare our results directly with them on the CIFAR-10
dataset when trained on upright and validated on rotated samples. The Polar
Transformer Network (Esteves et al. [2018]) transforms the input to polar coor-
dinates with the origin learned as the centroid of a single channel.

Yet another work exists that is similar to our approach (Zhou et al. [2019]).
In their work, the authors propose obtaining rotation invariance via matching
criterion and the kernel-mapping CNN (KM-CNN). Their proposal is to apply
rotation transformations to the convolution kernels using shifting pixels instead
of rotating them with a bilinear transformation. Using this method, they obtain
9.7% accuracy on the MNIST dataset when trained on upright examples and
validated on random (multiples of 10°) orientations. Unfortunately, the proposed
method to rotate the convolution kernels is limited to 45° increments. In this
sense, the angular prediction is limited to ±45°.

Finally, the most recent advances go towards the union of techniques as rein-
forcement learning with rotation equivariance (Basu et al. [2021]). In their work,
the authors show that the inclusion of equivariance improves neural network
performance for classification. Furthermore, they use deep Q-learning to search
(in a reduced solution space) for an equivariant representation of different trans-
formations. Learning this representation by reinforced learning avoids the pro-
blem of finding the adequate balance between the number of features and a
large number of symmetries on equivariant networks with a fixed number of pa-
rameters. They obtain competitive results on the MNIST dataset when trained
on random orientations (87.2% accuracy). Nevertheless, as they use reinforce-
ment learning, the network is trained several times with different parameters to
let the algorithm learn the representation. In this sense, the training becomes
exhaustive and complicated.

We can conclude that it is inducibly proven that the models transforming
the input image are considerably larger than the ones based on the rotation
invariance (or equivariance) built in the network. The current state of the art
CNN achieve the rotation invariance by average pooling from the output of the
network but lose the angular information of the input. Only a few of them can
extract and predict the angular transformation of the input. To complete, the
Table 2.1 contains a summary of the existing methods selected in function of the
number of parameters and network capabilities.

As a conclusion of our study of the state of the art we can observe that
rotational-invariance has been solved in several ways but finding several draw-
backs for each approach. We demonstrate in this work that an efficient usage of
the internal network filters and an adequate managment of the rotational equiva-
riant properties can result in an improved accuracy for rotated imaged and the
capability of predicting the input angle. Other means to improve the accuracy
when classifying rotated objects include the usage of custom loss techniques

35

CHAPTER 2. ROTO-TRANSLATIONAL FEATURE SPACE

such as Pixels-Intersection-over-Union (PIoU) (Chen et al. [2020a]). The idea is
that an oriented bounded box – a one that is aligned with the rotated object –
presents less overlap with the background in complex environments.

Also, we conclude that it is possible to obtain a class invariant inner map-
ping where the translation of the filters is equivariant with the rotation of the
examples. Also, the model can acquire the capability to learn the angle of the
input without any angular label on the dataset. As a consequence of reusing the
translation of the filters the network can remain small in learnable parameters
and be oriented to embedded devices platforms.

36

CHAPTER 2. ROTO-TRANSLATIONAL FEATURE SPACE

T
a
b

le
2

.1
–

S
ta

te
o
f

th
e

a
rt

in
th

e
d

o
m

a
in

o
f

ro
ta

ti
o
n

-i
n

va
ri

a
n

t
o
b

je
ct

cl
a
ss

ifi
ca

ti
o
n

:
su

m
m

a
ry

o
f

m
a
in

p
ro

p
e
rt

ie
s.

L
e
g

e
n

d
:
S

iz
e

:
M

o
d

e
l
si

ze
w

h
e
n

a
p

p
li

e
d

to
M

N
IS

T
d

a
ta

se
t;

U
p

ri
g

h
t

-
u

p
ri

g
h

t
o
ri

e
n

te
d

e
xa

m
p

le
s

o
n

ly
;

n
.c

.
-

n
o
n

co
m

m
u

n
ic

a
te

d
.

M
o
d

e
l

O
u

tp
u

t
T

ra
in

in
g

a
p

p
ro

a
ch

N
a
m

e
D

a
ta

se
t

S
iz

e
T
e
st

e
d

C
la

ss
ifi

ca
ti

o
n

A
n

g
le

U
p

ri
g

h
t

R
a
n

d
o
m

ly
ro

ta
ti

o
n

s
ro

ta
te

d

T
I-

P
o
o
li

n
g

L
a
p

te
v

e
t

a
l.

[2
0

1
6

]
M

N
IS

T-
ro

t
n

.c
.

2
4

ye
s

n
o

n
o

ye
s

H
a
rm

o
n

ic
n

e
tw

o
rk

s
W

o
rr

a
ll

e
t

a
l.

[2
0

1
7

]
M

N
IS

T-
ro

t
3

3
k

C
o
n

ti
n

u
o
u

s
ye

s
n

o
n

o
ye

s
S

p
h

e
ri

ca
l

C
N

N
C

o
h

e
n

e
t

a
l.

[2
0

1
8

]
M

N
IS

T
/M

N
IS

T-
ro

t
6

8
k

C
o
n

ti
n

u
o
u

s
ye

s
n

o
ye

s
ye

s
S

F
C

N
N

s
W

e
il

e
r

e
t

a
l.

[2
0

1
8

]
M

N
IS

T-
ro

t
n

.c
.

2
4

ye
s

n
o

ye
s

ye
s

G
C

N
s

L
u

a
n

e
t

a
l.

[2
0

1
8

]
M

N
IS

T-
ro

t
1

.8
6

M
4

ye
s

n
o

n
o

ye
s

C
IF

A
R

1
0

Ic
o
sa

h
e
d

ra
l

C
N

N
C

o
h

e
n

e
t

a
l.

[2
0

1
9

]
M

N
IS

T
/M

N
IS

T-
ro

t
n

.c
.

n
.c

.
ye

s
n

o
ye

s
ye

s
R

o
tE

q
N

e
t

M
a
rc

o
s

e
t

a
l.

[2
0

1
7

]
M

N
IS

T
/M

N
IS

T-
ro

t
1

0
0

k
1

7
ye

s
n

o
ye

s
ye

s
R

I-
L

B
C

N
N

s
Z

h
a
n

g
e
t

a
l.

[2
0

1
8

]
M

N
IS

T-
ro

t
3

9
0

k
8

ye
s

n
o

n
o

ye
s

O
R

N
-8

Z
h

o
u

e
t

a
l.

[2
0

1
7

]
M

N
IS

T
/M

N
IS

T-
ro

t
9

6
9

k
8

ye
s

n
o

ye
s

ye
s

C
IF

A
R

1
0

R
o
t.

-I
n

v.
C

o
n

v.
F

o
ll

m
a
n

n
a
n

d
B

o
tt

g
e
r

[2
0

1
8

]
M

N
IS

T
/M

N
IS

T-
ro

t
1

1
M

8
ye

s
n

o
ye

s
ye

s
C

IF
A

R
1

0
/C

IF
A

R
1

0
-r

o
t

E
q

W
S

S
a
yd

ja
ri

a
n

d
F

in
k
b

e
in

e
r

[2
0

2
1

]
M

N
IS

T-
ro

t
n

.c
.

6
ye

s
ye

s
ye

s
ye

s
K

M
-C

N
N

Z
h

o
u

e
t

a
l.

[2
0

1
9

]
M

N
IS

T
/M

N
IS

T-
ro

t
n

.c
.

7
ye

s
ye

s
ye

s
ye

s
R

IN
(s

ca
tt

e
ri

n
g

+
C

N
N

)
R

o
d

ri
g

u
e
z

S
a
la

s
e
t

a
l.

[2
0

1
9

]
M

N
IS

T
/M

N
IS

T-
ro

t
7

k
1

6
ye

s
ye

s
ye

s
ye

s
R

IN
(s

te
e
ra

b
le

+
C

N
N

)
R

o
d

ri
g

u
e
z

S
a
la

s
e
t

a
l.

[2
0

2
1

a
]

M
N

IS
T

/M
N

IS
T-

ro
t

4
2

k
1

6
ye

s
ye

s
ye

s
ye

s
C

IF
A

R
1

0
/C

IF
A

R
1

0
-r

o
t

37

CHAPTER 2. ROTO-TRANSLATIONAL FEATURE SPACE

2.2 Roto-translational Feature Space

One of the main contributions of this thesis work is the study and proposal
of a roto-translational feature space. A roto-translational feature space consists
of a collection of features that translate following the rotation of an object on
an image. In this sense, we can say that the features covariate linearly with the
input’s rotation. One of the main challenges is to obtain feature translation while
preserving the angular relationship between the features.

First, an input image (Fig. 2.6a) on upright position (no rotation of the ob-
ject in the image) is decomposed in a set of oriented features (Fig. 2.6b). These
features then are a set of oriented features ordered by increasing angular magni-
tude. As the set of features contain rotation and relative positition of the filters
information we need to produce a feature space that contains only the relative
position of the filters translating with the input rotation. For this we compensate
the rotation component of the features by rotating them with the negative angle
that produces them (Fig. 2.6c).

Then, following this intuition we can observe that if the input image is ro-
tated by some angle (Fig. 2.6d) and the rotation is compensated the feature
space translates by a magnitude that is linearly dependent of the input angle
and the number of oriented features present in the feature space (Fig. 2.6f). In
the example case of Fig. 2.6 we can observe that the same feature present in the
place i = 0 (with the input on upright position) moves one space over the feature
space to i = 1 when the input is rotated. Finally, this means that the feature space
translates over the depth axis following the input rotation.

Having this translation is one of the most important attributes needed to ob-
tain rotation invariance. The translation over the feature space means that when
translated over the axis a predictor could scan each translation and access to
the rotation information of the input despite being trained on upright examples
only. These two operations (roto-translation and translating predictor) can then
produce rotation invariant networks when trained on upright datasets.

The intuition behind the roto-translation feature space then can be described
mathematically as follows. In general, we propose a roto-translational feature
space that is created by the oriented decomposition of the input image in several
filters.

Let x be an example of the dataset x ∈ Rm×n with m and n being the width
and height of the input image, and let g be a filter acting as an oriented edge
detector with periodicity 2π. Let ρϕ be a transformation rotating the support by
the angle ϕ. Then ρϕg = gϕ, with g=g 0o

, be such a filter oriented along the angle
ϕ.

The product x∗ gϕ extracts the oriented components of x that are oriented
in ϕ. We have a set of orientations ϕi = 2πi /N for i = 0, . . . ,N, with N ∈ Z+, and
dϕ= 2π/N. The ordered set [x∗ gϕi] contains all oriented components of x.

Is straightforward to see that the input image x of size [m, n] is decomposed
in N oriented components of the same size generating a feature space with size
[m, n, N] (Fig. 2.6b). This can be observed in Figure 2.6b where each feature is
an oriented component in the angle ϕi .

Second, let ρϕ be a transformation rotating the support by the angle ϕ. Then

38

CHAPTER 2. ROTO-TRANSLATIONAL FEATURE SPACE

x

y
φ0 = 0°

φ3 = 67.5°

φ5 = 112.5°

i = 0

i = 3

i = 5

φ

x
y

Input
(No rotation)

No rotation + No translation No translation

φ6 = 135°
i = 6

φ1 = 22.5°i = 1

x

y

φ4 = 90°
i = 4

φ

x
y

φ

x
y

Input
(22.5° Rotation)

Rotation + Translation Translation

Rotation
Compensation

(a)

(d)

(b)

φ

x
y

Rotation
Compensation

(c)

(e) (f)

Figure 2.6 – Roto-translational feature space.

we compensate the rotation by rotating the support −ϕi degrees. This re-orien-
tation results in all the feature components to be aligned to the referential orien-
tation ϕ0 (Figure 2.6c).

To validate this, we experimented with different approaches and feature re-
presentations. We first started with a 1-D representation to make an easier un-
derstanding of the roto-translational properties of the feature space, then we
analyze the main drawbacks of this approach and implement a 3-D represen-
tation of this feature space. Finally, we study how the translating predictor is
applied to this feature representations and the expected results of this contribu-
tion.

2.2.1 1-D Feature Representation

The first tested approach was to transform the oriented feature representa-
tion into a 1D version of itself by flattening it. This operation means transfor-
ming the 3D dimensional space from m ×n ×N to a 1D dimensional space of size
V = m ×n ×N (Fig. 2.7). For example, for an oriented feature space of 14×14×16
we obtain a 1D array of V = 3,136. One of the main properties of this feature space
is the translation behavior when the input is rotated by a magnitude of dϕ. When
the input image is rotated by dϕ a translation occurs over the feature space V
in a magnitude equal to m ×n (Fig. 2.8). For the example case this would mean
a translation to the right (when input image is rotated clockwise) of magnitude
196.

39

CHAPTER 2. ROTO-TRANSLATIONAL FEATURE SPACE

Input

1-D Feature representation

Figure 2.7 – Flattened version of the feature space using scattering transform features.

-60° from vertical clockwise 0° from vertical clockwise 60° from vertical clockwise

Figure 2.8 – The output contains each one of the translations in one full vector.

40

CHAPTER 2. ROTO-TRANSLATIONAL FEATURE SPACE

The second property of the flattened feature space V is the capability of cap-
turing the internal properties of the input image. The angular distance between
the edges present in the image are mapped to a linear distance inside the feature
space. Let the letter X be the input image as an example. The letter X contains
two angles between the edges one of 69° and other of 112° ; these two angles are
mapped then into the feature space V as a distance of 6dϕ and 10dϕ respectively.
For N = 16 we obtain dϕ= 11.25 and by multiplying this by the linear distance (6dϕ
= 67.50°and 10dϕ = 112.5°) we recover the existing angle between the edges of
the input image (Figure 2.9).

112.50°

11.25° x 10 = 112.50°

Figure 2.9 – Angular distance between the edges is mapped as a linear distance of the
responses on the plot.

Scanning Order

One of the important points to obtain a roto-translational feature space is the
scanning order of the activation maps. Usually, to transform a 2-D image to a
1-D vector the processor concatenates each row or column of the image into a
single vector. As observed in Fig. 2.6c the features are aligned to the vertical
reference to compensate the rotation of the input. To scan this features we verify
that the scanning orientation is the same as the reference to which we aligned
the features.

(a) Correct (b) Incorrect

Figure 2.10 – Scanning order output when scanned correctly and incorrectly.

41

CHAPTER 2. ROTO-TRANSLATIONAL FEATURE SPACE

The main consequence of an incorrect scan order is the lack of roto-transla-
tional properties in the resulting flattened feature space (Figure 2.10). The best
way to avoid losing the roto-translational properties is to scan each one of the fil-
ters in the same angle ϕ that generates them (Figure 2.11). One straightforward
way to achieve this is by re-indexing the images using a custom dense layer. The
re-indexing process was done by generating the rotation indexes using a bilinear
transform of the image and connecting the input pixel to the mapped output pixel
following this bilinear transformation. This process is equivalent to re-orient the
image to the vertical reference. For the re-orientation algorithm, we tested two
alternatives nearest neighbor and bilinear. The second one delivered better out-
puts with less noise and the best quality.

Figure 2.11 – Implemented scan order.

Figure 2.12 – The output contains the vectors of all translantions.

The custom dense layer re-indexes each pixel to a selected output pixel on
the output vector, one of the advantages of this operations is that there is no
training weights needed for the layer and is considered a frozen weights layer on
the training stage. The main drawback of this implementation is that the number
of parameters grows rapidly for image size and number of discrete orientations
N.

As we can observe in Figure 2.12, the output vector contains the flattened
version of the oriented feature space and the N possible discrete translations
concatenated in one full orb. When we refer to a full translation orb we refer
to the one dimensional matrix that contains all translations. Observe how the
values translate to the right in a cyclic way. This vector (full orb) can be used
by a scanning window of a 1D convolutional predictor to output a higher proba-
bility in the orientation corresponding to the upright position. While having the
all the possible discrete translations in one vector can be useful and makes a
straightforward neural network implementation it comes with a high number of
parameters hence bigger memory requirements.

The number of non-trainable parameters of this layer can be calculated by
the number of inputs multiplied by the number of outputs. For an image of size
14x14 with N = 16 the input size is 3,136 and the output size is the flattened
version of this space multiplied for each one of the possible translations of the

42

CHAPTER 2. ROTO-TRANSLATIONAL FEATURE SPACE

feature space (3,136 x 16 = 50,176). To obtain the number of non-trainable para-
meters we multiply the input size by the output size (3,136×50,176 = 157,351,936).
There several consideration to take into account about this huge amount of para-
meters. First, these paramaters are static and are not updated on training stage.
Also, the main function of these layer is to re-orient the input features to obtain
the correct scan order. Furthermore, as each angle position is independent this
process could be paralellized. At the end, these considerations were enough fac-
tor to search for other solutions and test different representations such as the
3-D Feature representation explained in the next subsection.

2.2.2 3-D Feature Representation

The first 1D approach worked as proof of concept of the roto-translational
approach. One of the main drawbacks of the 1D approach is that the convolution
window becomes very large compared with the state of the art approaches (3,136
for a 14 x 14 image with N = 16 vs state of the art window of 3 to 5). The
straightforward solution to this problem is to use a collection of filters (14 x 14 x
16) in the 3D form, and apply a 3D convolution with the size of the input image
(14 x 14) and moving over the padded axis (31) with a stride = 1.

For an easier understanding of the features we use a planar representation
of the 3D spaces (Fig. 2.13). As commonly used in deep learning, a 3D collec-
tion of features can be represented in 2D form with each feature aranged in the
same plane. This representation allows to study each one of the feature indivi-
dually and plot the relationship between them in a visual way. Each feature on
fig. 2.13(b) represents a slice of the 3D feature space. In general, we use this
representation for features and filters that are contained in a 3D space.

(a) 3D Feature space
[height, width, depth]

width

height

depth

width

height

depth

(b) 3D Feature space (planar representation)
[height, width, depth]

Figure 2.13 – Different representations of a 3D feature space of a hand-written
number 4.

43

CHAPTER 2. ROTO-TRANSLATIONAL FEATURE SPACE

3D Re-orientation

Analog to the 1D approach the scan order is needed to obtain the expected
roto-translational behavior. An straightforward way to obtain this scan order is to
rotate the result image (after convolving with the oriented filter) by the negative
angle of the oriented filter. In Figure 2.14 we can observe how these images are
re-oriented from the oriented response to an horizontal aligned response. Figure
2.14 shows a Plus sign (a) and letter X (b) oriented response in first column,
then in second column we observe how the response is oriented to the horizontal
reference, notice how the higher energy activation is completely aligned to the
horizontal reference.

(a) Plus sign
First column: Scattering transform
Second column: Re-oriented output

(b) Letter X
First column: Scattering transform
Second column: Re-oriented output

Figure 2.14 – Feature re-orientation step for horizontal scanning order.

The output of the orientation to the horizontal reference generates and orien-
ted feature space that contains the same properties than the 1D counterpart.
The angular distance in the edges of the input image is then mapped to a linear
distance between the filter elements. The roto-translational property is present

44

CHAPTER 2. ROTO-TRANSLATIONAL FEATURE SPACE

in the sense that a rotation change in the input image translates proportionally
the aligned feature space. For example, in Figure 2.15 we can observe a two
places translation over the feature space for a rotation of 2dϕ.

In the next section, we test the discrimination capabilities of this collection
of oriented filters on a convolutional neural network. For this test, we select a
more complex task such as face recognition. Using a complex task allows us to
observe what accuracy we obtain with these oriented filters as the first layer
without invariance to rotation.

Figure 2.15 – Translation can be observed over the 3D space, angular information is
preserved as a linear distance over the filters.

2.2.3 Face Recognition Using an Oriented Feature Space

Face recognition refers to the task of labeling a face against a database
of faces. Usually, big companies train CNNs with several thousands of labeled
examples to solve the face recognition problem (Kumar et al. [2009], Huang et al.
[2007], Liu et al. [2015]). The network training goes up to several hours on spe-
cialized hardware to achieve state-of-the-art results (Coleman et al. [2017]).

Several works on the state-of-the-art exist about the face recognition pro-
blem (Taigman et al. [2014], Schroff et al. [2015], Deng et al. [2019]). Usually,
they work with upright-oriented faces or use data augmentation for robustness
against deformations. Also, most of them focus on the complete pipeline: face de-
tection, alignment, feature representation, and classification. In this experiment,
we focus on the last two tasks, feature representation, and classification.

The typical workflow includes two branches (Fig. 2.16). The first branch ex-
tracts the features from the input frames (video or images). The second branch
obtains features from a face database (gallery). In the end, a classifier compares
both features and outputs a predicted similarity index result.

To follow this workflow, we based our first studies on the previous internship
study of Steeve Sivanantham on facial classification with reduced datasets (Siva-
nantham et al. [2017]). The authors propose a CNN for face recognition in two
stages: An invariant scattering convolution network based on scattering trans-
form (Bruna and Mallat [2013a]) to obtain the features from the input image and
a siamese network to make the prediction (Bromley et al. [1994]).

45

CHAPTER 2. ROTO-TRANSLATIONAL FEATURE SPACE

�
�����������������������

����������� �������������
� ������
��	�������
�

� �� ��

� �� ��

� �� ��

�
����������������
�

��������	�
�
�
�����	

�������������
���

�
�����������
�

� �� ��

�
��������
��������
�

�
��
��

Figure 2.16 – Face recognition workflow.

The scattering transform is an orthogonal transform based on wavelets. A wa-
velet scattering network computes a translation-invariant image representation
stable to deformations and preserves high-frequency information. In this sense,
it decomposes the input image in several oriented components arranged by in-
creasing magnitude. We outline this transformation characteristics on Chapter 3.

A scattering convolution network is formed then by the union of the scatte-
ring transform output and a CNN. After the oriented decomposition of the input,
a series of convolutional layers and maxpooling operators are connected. A hid-
den dense layer connects the convolutional feature extraction stage and outputs
the results in the one-out-of-many format (Fig. 2.17). We show and discuss the
scattering convolution network results applied to a face recognition problem on
section 2.2.4.

Input
[152, 152, 3]

(a)
Scattering
transform

[10, 10, 384]

(b)
CNN stage input

[10, 10, 384]

(c)
CNN + MaxPool (x3)

[5, 5, 128]
[2, 2, 256]
[1, 1, 512]

(d)
Hidden

layer
[512,]

Output
[200,]

Figure 2.17 – Scattering convolutional network.

For the next step, we implement a siamese network using the previously trai-
ned scattering transform network. Obtaining a favorable result (accuracy conver-
gence) would mean that the network can train, despite using oriented filters as
the first later of the convolutional neural network.

A siamese neural network is a type of architecture that contains two iden-
tical subnetworks (branches) (Bromley et al. [1994]) (Fig. 2.18). Identical sub-
networks mean that the configuration, connections, and weights of the networks

46

CHAPTER 2. ROTO-TRANSLATIONAL FEATURE SPACE

are the same for both subnetworks. Each subnetwork will then have an input (a
face image) and output a feature vector. The siamese neural network then out-
puts the similarity between the feature vectors in the form of distance from each
class (Bromley et al. [1994]).

The siamese neural network architecture allows one-shot learning, meaning
that after trained one image is enough to allow the network to recognize this
image in the future. As the siamese neural network has two inputs (two copies of
the same network), the first input is a ground-truth database image of the face
we want to classify. The second input contains the images that will be tested
similar or not to the first one. These images do not need to be part of the training
dataset that trained the scattering network (Koch et al. [2015]).

Scattering convolution network (last layer removed)

Scattering convolution network (last layer removed)
(a)

Feature vectors
di�erence (b)

Figure 2.18 – Scattering siamese network architecture.

In the following subsection, we show the experimental setup and results of
these models applied to the face recognition problem. We start by outlining the
used dataset for training and validation. Then we show the results on the scat-
tering neural network and siamese network. Finally, we implement the siamese
model on an NVIDIA Jetson TX1 board and discuss its performance.

2.2.4 Experimental Setup and Results

To test the presented model architectures, we selected the Labeled Faces
in the Wild (LFW) dataset (Huang et al. [2007]). This dataset contains 58,000
photos with 200 IDs. The face from the input images is cropped to 152 x 152
pixels in a pre-processing step. Hence, the dataset contains faces with eyes and
mouth in almost the same position and orientation.

The first network to test is the scattering transform network (Fig. 2.17). For
this, we first process the dataset and extract the scattering features in a pre-
computed step. We store these features, and then we train the network using

47

CHAPTER 2. ROTO-TRANSLATIONAL FEATURE SPACE

these features. The network has in total 2.2 M parameters. We trained the net-
work for 300 hundred epochs on an NVIDIA Titan Xp, with each epoch taking
about 15 seconds to train (not including the scattering transform time). After
training, we reached a test set accuracy of 85 % with this model (Fig. 2.19).

(a) Accuracy (b) Loss

Figure 2.19 – Scattering network accuracy and loss for LFW dataset. Training values in
blue, validation values in orange.

The second model to test is the siamese neural network (Fig. 2.18). Once we
trained the scattering model, it is duplicated and trained in pairs of faces. To
achieve this, we make a second instance of the scattering neural network and
delete the last layer for both (containing the output classes). This process means
that the output of each branch network is a feature vector encoding the input
image.

The principle consists of presenting a set of two faces, each one to one of the
network branches. Each branch then will output a feature vector based on the
features of the input image. Then, we calculate the difference between these two
vectors. In the end, this value indicates the similarity between the two faces, and
if the result is low, then the two presented images are probably the same person.

By following this methodology, the user can add more faces to the newly ge-
nerated dataset and compare them with a live feed from a camera. There is no
need to re-train the network each time the user adds an image as the network
recognizes the similarity between the two input faces.

To generate the dataset first, we generated pairs of faces that belong to the
same person and labeled them as identical. Then, we generated pairs that belong
to different people. Finally, we trained the network for 100 epochs using these
pairs of labeled face images.

The siamese network contains 2.4M of trainable parameters. While the num-
ber of parameters is roughly similar to the scattering transform network since
several of them are shared between the two replicas, it requires twice the com-
putation (to process each of the images on each branch). This increase in compu-
tational effort becomes a significant drawback on embedded devices with limited
resources.

The scattering-siamese network achieved 80% of accuracy after hyper-para-
meter fine-tuning. Part of this fine-tuning step was to select the cropping size of
the face (how close the face appears in the image). Despite the hyperparameter

48

CHAPTER 2. ROTO-TRANSLATIONAL FEATURE SPACE

tuning, different crop sizes and different numbers of filters, the result capped at
80%(Fig. 2.20).

(a) Accuracy (b) Loss

Figure 2.20 – Scattering-siamese accuracy and loss for LFW dataset.

While the results of these experiments do not seem encouraging (80% accu-
racy), they answer the initial hypothesis about the possibility of using oriented
wavelets in classification problems. This proof of concept means that we can
obtain classification results based on our main contribution of the feature spa-
ce’s intrinsic rotations. These results open the possibility of using these orde-
red oriented features as a roto-translational feature space which with a well-
designed predictor can endow with rotation invariance properties the convolu-
tional neural networks.

Finally, to test the network functionality on devices with limited resources,
we deployed the network to an NVIDIA Jetson TX1 board. We used a test page
with three faces to test the siamese neural network and presented it via webcam
live stream to the network (Fig. 2.21a). Then, we added the same three-person
faces to the siamese database (which feeds the first network branch) (Fig. 2.21b).
We then feed the network’s second branch from camera images of a webcam
connected to the board. It is important to note that any of these person’s faces
were present on the training dataset.

With the Jetson TX1 board limited resources, the network runs at 4 fps on ave-
rage and can classify each one of the faces correctly (Fig. 2.21). During the tests,
there were several false positives and wrong classifications. On the results win-
dow (Fig. 2.21c), we can notice the values for the similarity between images to
be highly variant between frames, and in some tests, not classifying adequately
the face.

In the next section, we introduce the properties and behavior of the transla-
ting predictor. This predictor uses the recently studied roto-translational feature
space to obtain a value for each translation contained in the space. We discuss
how we apply it to the 1-D and 3-D feature space implementation and obtain the
probabilistic distribution containing class and angle information.

49

CHAPTER 2. ROTO-TRANSLATIONAL FEATURE SPACE

(a)
Webcam

live stream

(b)
Siamese database

(c)
Results window

Figure 2.21 – Siamese network for Face Classification on NVIDIA Jetson TX1.

2.3 Translating Predictor

As demonstrated in the previous section, the feature space is now a roto-
translational feature space. This means that the feature space translates pro-
portionally to the rotation of the input image. In both cases, 1D and 3D, the
feature space contain all the possible discrete translations corresponding to the
sampling of the input. The next step is to apply a predictor that scans the roto-
translational feature space and predicts at each translation. The result of these
predictions will contain a maximum value where the trained orientation is contai-
ned (usually upright position), a similar value in the neighbors of the correct
orientation due to the predictor tolerances, and a low value in the other orienta-
tions. Training the predictor to be angularly selective is of importance, so it can
discern correctly between the trained orientation and produce a near-zero value
in the other orientations.

To obtain this behavior we propose using a 1-D dense-layer predictor trans-
lating along the axis and performing a convolution of the input and the weights.
The input is cyclic with periodic boundary condition. This cyclic convolutional
predictor with the appropriate size and strides can scan the feature space cycli-
cally and output a result for each one of the possible translations of the space.
Unfortunately, at the time of this writing, a straightforward implementation of
a cyclic convolution that allows flexibility on different platforms and easy de-
ployment was not found. An alternative approach to circumvent this issue is to
pad the feature space by itself and apply a convolutional predictor over this pad-

50

CHAPTER 2. ROTO-TRANSLATIONAL FEATURE SPACE

ded feature space. As shown in Fig. 2.22, this padded feature space contains
the translating feature space, and to the predictor window, this feature space
translates on each one of the strides.

Test single

(a) Oriented predictor scan (b) Oriented classes
matrix

(c) Prediction output

Class

Angular orientation

[Class, Angle]

Figure 2.22 – Predictor applied to 1D feature space. (a) Sliding window observes a trans-
lation of the feature space. (b) The obtained prediction of each translation is stacked in
a 2D table. (c) A maxpooling operation over columns and rows results in the predicted
class and angle.

Applying this convolution window over the padded feature space is equivalent
to scan each translation individually. Each one of the predictions is then stacked
in a single oriented classes matrix. As the predictor’s output is in the one-out-of-
many format, it is equivalent to a vector of size K where K is the number of classes
in the training set. Consequently, the columns will contain the class information.
The number of rows is then determined by the number of translations contained
in the feature space that is the number of sampled orientations on the input
image. As one of the translations belongs to the trained orientation, only one of
the rows of the table contains a maximum value corresponding to this predicted
translation.

It is straightforward to obtain the class and angle using a maxpooling ope-
ration over the rows and columns to obtain the class and angle of the input. To
obtain the angle, the distance from the upright oriented row and the predicted
row is calculated and multiplied by dΦ.

For the 3D approach, we follow the same methodology as its 1D counterpart.
We have a 3D feature space in the shape of [height, width, N]. As the first layer
decomposes the input using oriented filters, the result of each oriented filter is
saved in the depth of the 3D feature space. The same concept of the 1D approach
is then applied, the feature space is padded by itself, and then a 3D convolutional
predictor is applied. This behavior is analog to a cyclic 3D convolutional predictor
behavior Fig. 2.23.

51

CHAPTER 2. ROTO-TRANSLATIONAL FEATURE SPACE

(a
) O

ri
en

te
d

fil
te

rs
 o

ut
pu

t

(b
) A

lig
nm

en
t t

o
th

e
ho

ri
zo

nt
al

 re
fe

re
nc

e

(c
) P

ad
de

d
fil

te
r s

pa
ce

C
la

ss

Angular orientation

(d
) 3

D
 C

on
vo

lu
tio

n

(e
) O

ut
pu

t t
ab

le

F
ig

u
re

2
.2

3
–

3
D

p
re

d
ic

to
r

sc
a
n

a
p

p
ro

a
ch

(i
n

2
D

re
p

re
se

n
ta

ti
o
n

fo
r

cl
a
ri

ty
).

(a
)

F
e
a
tu

re
sp

a
ce

o
u

tp
u

t
fr

o
m

th
e

o
ri

e
n

te
d

fi
lt

e
rs

;
(b

)
E

a
ch

fi
lt

e
r

is
a
li

g
n

e
d

to
th

e
h

o
ri

zo
n

ta
l

re
fe

re
n

ce
;

(c
)

P
a
d

d
e
d

fi
lt

e
r

sp
a
ce

;
(d

)
A

3
D

co
n

vo
lu

ti
o
n

is
a
p

p
li

e
d

to
th

e
p

a
d

d
e
d

fi
lt

e
r

sp
a
ce

to
e
m

u
la

te
th

e
b

e
h

a
vi

o
r

o
f

a
cy

cl
ic

co
n

vo
lu

ti
o
n

;
(e

)
A

n
a
lo

g
to

th
e

1
D

a
p

p
ro

a
ch

e
a
ch

re
su

lt
is

sa
ve

d
in

a
2

D
a
rr

a
y

th
a
t

co
n

ta
in

s
cl

a
ss

a
n

d
a
n

g
u

la
r

o
ri

e
n

ta
ti

o
n

.

52

CHAPTER 2. ROTO-TRANSLATIONAL FEATURE SPACE

Each one of the predictions is then stacked in an probability distribution (P)
(Fig. 2.23e). For a roto-translational feature space that contains four dimensions
[width, height, N, features], a 3D convolution is needed to scan each translation.
We code this as a 3D convolution of size [5, 5, N] followed by a fully connected
(dense) layer. Each result then becomes independent of the other. The translating
predictor becomes angular selective in the sense that it learns to output a high
probability for the translation that corresponds to the almost un-rotated version
of the input.

We can observe the angular selectivity property of the predictor in the output
table of the model before applying the globalmaxpooling operation. Recall that
this output table is a probability distribution containing the class information
over the columns and angular orientation in the rows. The output of this predictor
stage is a probability distribution in the form of [N,K] with N the number of
orientations, and K the number of classes (Fig. 2.24). The highest row value
corresponds to the angular information and the maximum column corresponding
to the class.

�
���������������������������������������
��	
��

� 	 � � � � �����

�	
��
�
��
��
��
�
�
�
�
	
�

�
�

��
���

��
��
���

���
���

���

���

���
���
���
���
���
���
���

�
�������

�
�
���

�
��
��

�
�

��
�

�
�
������� �

Figure 2.24 – Output table for an input with a rotated number 4 from the MNIST dataset.
[N = 16,K = 10]

Given the angular sampling dϕ then it suffices for the dense layer classifier
to be rotation invariant up to ±dϕ/2. A finer angular sampling dϕ will require a
smaller rotation invariance from the classifier, hence a smaller model. Notice that

53

CHAPTER 2. ROTO-TRANSLATIONAL FEATURE SPACE

a self-organizing behavior appears in a continuous mapping of the rotation angle
to the probability distribution P. This behavior is a consequence of the design of
the network and the training. First, the predictors are ordered at an increasing
angle. Second, during the training, an example pattern, rotated in an angle not
necessarily precisely equal to an entire multiple of dϕ, is presented to the net-
work on training. In this sense, it makes the classifier become rotation-invariant
to misalignments up to ±dϕ/2. When a pattern is presented to the network du-
ring the training, then one row of the architecture will predict a maximum class
probability. However, also its immediate neighbors will predict the same class
with a somewhat smaller probability of the same class (Fig. 2.24). Continuous
mapping of the rotation progressively appears during the training. This behavior
is similar to that of the Kohonen self-organizing maps Kohonen [1990] without
being explicitly fostered algorithmically.

�
���������������������������������������
��	
�

� 	 � � � � �����

	
�
�

�
��
�
�
�
�
	
�
�

�

��
���

��
���
���

���
���

���

���

���
���
���
���
���
���
���

�
�
���

�
��
��

�
�

��
�

�
�������

�
�
������� �

Figure 2.25 – Output table for an input with a rotated number 4 from the MNIST dataset.
Compared to Fig. 2.24 the input image has rotated dϕ degrees. [N = 16,K = 10]

Rotation invariance can easily be observed on the output table P when the
input image is rotated by some angle. Notice that there exists a linear correlation
between dϕ and the magnitude of the angle. This means that for an input rotation
of dϕ the maximum value location moves one row (Fig. 2.25).

It is important to recall that the training stage of the network is angle blind. At

54

CHAPTER 2. ROTO-TRANSLATIONAL FEATURE SPACE

the training stage, a globalmaxpooling operation is applied to table P. The output
of this operation contains a probability distribution in the one-out-of-many format
with the size equal to the number of classes K. Hence, the network is not directed
towards selecting a specific row for the upright position of the image.

�
���������������������������������������
��	
	�

 � � � � � ��	���

	�
	
	�
		
	�
��
�
�
�
�
�

�
	
�

���
���

���
���	���������������
��

���
���

���

���

���
���
���
������������	���
��
���
���

�
�
���

�
��
��

�
�

��
�

�
�������

�
�
������� �

Figure 2.26 – Output table for an input with a rotated number 1 from the MNIST dataset.
[N = 16,K = 10]

As explained previously, the network self-organizes to map each angle to one
specific row continuously. The starting row is not directed in training. It means
that the network randomly selects a row that corresponds to the upright position
as the starting point for the continuous mapping of the angles. In this sense, let
Rur be the index row of the probability distribution P when predicting an upright
oriented class. While selected randomly by the network, this value is constant
per class (i.e., for class 4, the upright row is always 13).

Also, let Rpr edi ct be the index row predicted by the network from an input
image with an unknown orientation. To calculate the predicted angle then we use
the upright row Rur , predicted row Rpr edi ct and dϕ. For example, for Rpr edi ct = 1
(Fig. 2.25), Rur = 13 and dϕ= 22.5° we calculate the predicted angle by θ= 360°−
|Rur −Rpr edi ct |dϕ. In this case, the predicted angle is 90°.

An interesting observation occurs when the evaluated class is symmetrical.
For example, in some written forms of the number 1, it is identical if observed

55

CHAPTER 2. ROTO-TRANSLATIONAL FEATURE SPACE

upright or upside down. After several experiments, we observed that the network
splits the maximum probability between the two possible observations of the
number 1 (Fig. 2.26). A maximum value appears at row 3 and a similar value at
row 11.

The linear distance between the maximal values is eight, which corresponds
exactly to half of the angular sampling of N = 16. Transforming this linear dis-
tance to degrees would result in 8dϕ= 180°. This result means that the network
correctly recognizes the two possible orientations of the number 1, successfully
predicting the class and the angle despite having two correct answers.

In this sense, if a perfectly isometric class (it is classified equally in more than
one orientation, e.g., number 1) is presented to the network that does not variate
with the angle, the network output will contain similar maximum values over
the column that corresponds to the class. So, there could exist a mix between
rotation invariant objects and variant ones in the training set, and the network
would learn to identify them correctly.

In the next section, we discuss the translating predictor training. Also, we
describe the intuition behind the backpropagation algorithm and how the pre-
dictor weights are reinforced for the upright orientation.

2.3.1 Training of the Translating Predictor

As introduced in the previous paragraphs, the translation predictor consists of
a 3-D convolutional layer (for the 3-D feature space) that scans each translation
of the oriented feature space (Fig. 2.23). Following this convolutional layer is a
hidden dense layer that acts as a predictor for the classifier and then outputs
layer with as many neurons as classes (K).

The predictor then scans each translation to output a predicted result for the
class. We can view this scanning predictor as a set of identical copies (they share
weights), each with attention to each translation of the feature space. In this
sense, they can be all instantiated and their execution parallelized as there is no
data dependency between them. We will see later (Chapter 5) that these parallel
predictor are small in size as they do not need to become invariant to the rota-
tion of the input. At the end, the network stores the results of each translation
prediction in a probability distribution table (P).

On the forward pass prediction, the maxpooling operation selects the maxi-
mum value of the table over an axis. The maximum row outputs the predicted
angle, and the maximum column the predicted class. For the training stage, we
do not provide the network with angular labels.

For the training stage we use the categorical cross entropy loss function. This
function is commonly used on classification problems. During this training stage,
the maxpooling operation is active by selecting the classifier that has predicted
the maximum likelihood of some class. The classifier that generated the maxi-
mum row is then selected, and the network uses this branch during the back-
propagation step. We can observe this on Fig. 2.27 where the colored arrows
reperesent the backpropagation branches from the output towards the input.

The prediction is reinforced over the branch that corresponds to the upright
oriented features by the backpropagation algorithm (Fig. 2.27 green arrow). This

56

CHAPTER 2. ROTO-TRANSLATIONAL FEATURE SPACE

(d) GlobalMaxPool

“Letter A”

--°

Class

Angle

(a) Oriented feature
space

(c)
Probability distribution (P)

(b) Shared weigths translating predictor Output

Class = argmax (P)
(columns)

Angle = argmax (P)
(rows)

Rotation
angle

Class

Angular annotations not needed during training

Figure 2.27 – Error backpropagation during training. Only one of the coloured backpro-
pagation path is active at a time. The path indicated by the other colour is used when
the same example is eventually presented to the input with a different orientation.

training setup does not reinforce the other positions, just the upright-oriented
features. During the training, the same example is eventually presented to the
network again (albeit at another rotation). Then, the classifier predicts the class
(at some other position, though), and the prediction of this class will be reinfor-
ced further during the backpropagation on the corresponding branch (Fig. 2.27
blue arrow).

The main consequence of this process is that the predictor becomes angu-
larly selective. It becomes reinforced as an upright-oriented classifier and is not
reinforced in any other orientations. Thus, the predictor can remain small and
does not need to grow large to encompass all rotated copies inside the model
compared to the larger predictors product of using augmented training.

With this methodology, it is possible to train the network in both ways: using
a dataset of upright-oriented examples or randomly oriented examples. For the
first, the classifier becomes angularly selective to the upright position pattern on
training. If validated on a randomly oriented example, it will find the upright pat-
tern in some translation position over the oriented feature space. In this sense,
the classifier becomes invariant to rotations while keeping its reduced size. The
network can also be trained on randomly rotated examples keeping the same
rotation invariant properties.

To complete these statements, we present the mathematical proof of traina-
bility of the network in Chapter 5. In this mathematical methodology, we outline
the characteristics of the translation predictor and its trainability characteris-
tics. Also, we outline the congruence between the proof Chapter (5) and the
experiments presented in this document.

2.4 Conclusions

In this chapter, we presented an approach that allows a Convolutional Neural
Network input to be transformed using a series of oriented filters. To obtain a
roto-translational feature space, it is important to respect the scanning order of
the images and the alignment of the resulting wavelets to obtain a translation on
the feature space. Also, we introduced the concept of the translating predictor
applied to the roto-translational feature space.

Obtaining a roto-translational feature space is important to this work because

57

CHAPTER 2. ROTO-TRANSLATIONAL FEATURE SPACE

it can preserve the angular properties of the input image as the distance between
the filters. This property opens the possibility to explore different approaches
that can be applied to this roto-translational feature space to predict the input’s
angle using the embedded angular properties.

For the feature space we presented two different approaches using 1D and
3D features. While the presented 1D approach presents several drawbacks as
having the full translation orb and convolution with a big filter window, it was the
first approach and aided in understanding the roto-translational properties of the
feature space. On the other hand, the 3D approach presented several advantages
when paired with a 3D convolution predictor. The main advantage of this 3D
approach is the low-memory footprint needed to capture the angular interaction
of the filter space and the straightforward implementation of the predictor over
the translations. The rotation invariant property is acquired while preserving the
number of trainable parameters and without data augmentation techniques.

As the feature space contains the information of the translated input, it was
demonstrated that it contains all the possible discrete translations up to the an-
gular sampling. A subsequent predictor can scan over these translations and
obtain a prediction for each one. As the feature space translates with the input
angle, the angle can be predicted by knowing the position of the best prediction
of the network.

This predictor can be implemented in two different ways depending on the
application requirements. It can be a set of identical copies (shared weights) of
the predictor applied to each translation in parallel. Alternatively, it can be a
single predictor that serially scans each translation. In this sense, the first ap-
proach would be faster as the operation is done in parallel. The second results in
smaller networks as the predictor is not replicated as many times as translations
exist over the feature space.

Also, we proved that it is possible to use the oriented feature space as the
first layer of a convolutional neural network on a complex task such as face
recognition. In this sense, the next step is to test the aligned feature space with
the translating predictor and verify its capabilities. In the following chapter, we
test this on simple datasets and propose to replace the scattering transform with
steerable filters to obtain the oriented feature space.

58

Chapter 3

Rotation Invariant Networks on
Simple Datasets

The most common method to develop new concepts and test ideas with Convo-
lutional Neural Networks (CNNs) is to start on simple datasets. We refer to
simple datasets as the type of dataset that does not contain several light va-
riations, different color conditions, or several different input transformations.
Thus, to validate the roto-translational feature space presented in Chapter 2, we
propose the test on simple datasets.

One of the most used simple datasets in the literature is the MNIST dataset
(LeCun and Cortes [2010]). We classify this dataset as simple because it presents
a single object in the image (a digit) without out-of-plane rotations and does
not contain textures. The validation on this dataset also allows describing the
roto-translational feature space properties and compare the network results in
accuracy terms. Furthermore, it allows experimenting with different alternatives
for the oriented feature space.

As explained previously (chapter 1), one of the main contributions of this
work is endowing with intrinsic rotations the feature stage of the network. First,
we generate an oriented feature space. Then, we re-orient these features to the
horizontal reference. Finally, a series of convolutions and maxpooling operations
are applied to the re-oriented feature space. In this sense, these convolutions
and maxpooling operations act as feature extractors of the network (Fig. 3.1).

In this chapter, we propose using the scattering transform and steerable fil-
ters to generate the oriented feature space. Then, we use them as the first layer
of the proposed network architectures. Later, in chapter 4 we introduce Ga-
bor filters as an alternative to generating the oriented features. Furthermore,
in chapter 4 we propose different alternatives for the feature extraction part of
the feature stage (Fig. 3.1).

In general, these operations allow us to construct a Rotation Invariant Net-
work (RIN). We refer to the different alternatives using the convention RIN
(oriented feature space + feature extraction) to differentiate the used feature
stage internal components during the rest of this manuscript. For example, for
a rotation-invariant network using steerable filters as the oriented feature space
and a custom convolution feature extraction, we use the notation RIN (steerable
+ CNN). For the sake of brevity, we do not include the commonly used opera-

59

CHAPTER 3. ROTATION INVARIANT NETWORKS ON SIMPLE DATASETS

�
�����

�
�������������

�����

�
��������
�
�����

�	���

�
�	������

�
�����	����

�
���������������

���	�

�
�������������������
�������	���	����
�������	����

�
���������������������

�
��
��
��
��
��
��
��
��
��
�
�

�
������������	�����������
������������������������

�
�����������������

�
�������������

Figure 3.1 – Feature stage internal components.

tions, such as the feature re-orientation, in this notation as they are present in
all the network architectures.

To complete this chapter, we present results for RIN (scattering + CNN) and
RIN (steerable + CNN) on the MNIST dataset. Also, we present how we obtain
the angle prediction as a byproduct of the architecture design.

3.1 MNIST Dataset and Variations

One of the several datasets used in state-of-the-art to validate rotation inva-
riant properties of the neural networks is the MNIST dataset. The MNIST data-
base of handwritten digits is divided into 60,000 training examples and 10,000
test examples (Figure 3.2). The digits have been size-normalized and centered in
a fixed-size image of 28 x 28 pixels LeCun and Cortes [2010]. Usually, rotation in-
variance is tested by rotating the examples in the training and test set ; we argue
this is equivalent to data augmentation and should be avoided. Nevertheless, we
propose training with randomly oriented examples that allows us to compare di-
rectly with the state-of-the-art techniques. Also, we train the network with the
original training set in the upright position and test the rotation invariance with
randomly rotated test examples. This training and testing methodology allows to
truly prove the rotation invariance properties by testing in orientations not seen
by the network in the training phase.

60

CHAPTER 3. ROTATION INVARIANT NETWORKS ON SIMPLE DATASETS

Figure 3.2 – MNIST dataset examples

3.1.1 Training Strategies

The dataset variations can then be divided in different approaches mostly ba-
sed on the training sets variations. As we believe that rotation invariance proper-
ties are best evaluated on randomly rotated samples the validation set contains
for all cases samples rotated by a random angle between [0,2π].

Upright Training (URT) For the sake of simplicity we define upright as
the original orientation of the dataset. This means that for upright trainig set
we use the original samples of the MNIST dataset. We keep the training set in
the original upright position and the validation set is rotated by a random angle
between [0,2π].

Rotated MNIST Dataset (RRT) (MNIST-rot) Rotated MNIST (MNIST-rot)
is usually used by the state of the art approaches. To allow a direct comparison
with the literature we present tests on this dataset. This dataset contains 12,000
training samples, and 58,000 testing samples randomly rotated between [0,2π].

In this chapter, we explore the possibility of endowing a Convolutional Neural
Network with Rotation Invariant properties by adding a first layer with roto-
translational properties. This first layer decomposes the input image in several
oriented components ordered by orientation. We present two possible transfor-
mations: scattering transform and steerable filters. In Chapter 4 we also present
the usage of Gabor filters as an alternative for the oriented decomposition of the
first layer.

3.2 Scattering Transform

The scattering transform is one of the multiple existing forms of signal repre-
sentation for classification, it builds an invariant and stable signal information
along multiple paths. Bruna and Mallat (Bruna and Mallat [2013a]) developed
a Convolutional Network using the scattering transformation that computes a
translation invariant image presentation, which is stable to deformations and
preserves high frequency information for classification. As mentioned in their
work the scattering network can provide the very first layer of a Deep Convolu-
tional Network.

Using the real part of the Morlet wavelet (Morlet et al. [1982]) described
in Bruna and Mallat [2013a] we transform the input image into a set of orien-
ted wavelets (Fig. 3.3). This transformation has a period of 180° and outputs

61

CHAPTER 3. ROTATION INVARIANT NETWORKS ON SIMPLE DATASETS

higher energy when the wavelet orientation is colinear with the edges of the
input (33.75° and 146.75° for the letter X).

0° 11.25° 22.50° 33.75° 45° 56.25° 67.50° 78.75°

90° 101.25° 112.50° 123.75° 135° 146.25° 157.5° 168.75°

Figure 3.3 – Oriented-wavelet feature space for an input letter X. Product of the scatte-
ring transform with parameters M = 2, J = 1, L= 16.

One of the main properties of this oriented-wavelet feature space is the ca-
pability of mapping the angular separation between edges to a linear distance
between the elements of the space. For example, the letter X contains a 68° de-
gree and a 112° degree between the strokes, this angles are mapped as a linear
distance of 6 and 10 respectively over the feature space. This characteristic al-
lows the further layers of a convolutional neural network to use this as a feature
on the classification task.

Another property of this transformation is that it presents roto-translational
characteristics over the oriented-wavelet feature space. It means that there is
a translation over the feature space that is covariant to the input rotation. This
translation is proportional to the angular sampling and the magnitude of the in-
put rotation. Using oriented features to generate it produces a feature space that
contains rotation and translation components. Therefore, to obtain a translation
feature space, we compensate the rotation component by negatively rotating
each space element by the angle that generates it (Fig. 3.4). We refer further to
this process as angular compensation (re-orientation) of the feature space.

φ6 = 135°
i = 6

φ1 = 22.5°
i = 1

x

y

φ4 = 90°
i = 4

φ

x
y

φ

x
y

Input
(22.5° Rotation) Rotation + Translation Translation

Rotation
Compensation

(a) (b) (c)

Figure 3.4 – Compensation of the rotation (re-orientation of the features). a) The input
image with 22.5° of rotation, b) The feature space contains rotation and translation com-
ponents, c) After compensating the rotation a translation feature space is obtained.

As a result of the oriented decomposition and the feature space’s angular
compensation, we obtain a translating feature space that contains all the pos-
sible discrete rotations of the input encoded as translations. As explained in

62

CHAPTER 3. ROTATION INVARIANT NETWORKS ON SIMPLE DATASETS

section 2.3, a cyclic convolutional predictor scans each translation and makes
a prediction. To emulate the behavior of a cyclic convolutional predictor, we pad
the feature space by itself, and then we apply a 3D convolution operation over
the padded feature space. This 3D convolution operation is then a translating
predictor that scans each one of the translations contained in the translating
feature stage. The predictor outputs a higher probability in the translation cor-
responding to the upright orientation (as trained with upright examples) and its
neighbours. It is important to consider that this is a shared weight predictor that
adjusts its prediction capabilities in the way that the upright prediction is enhan-
ced and the non-upright positions are learned to be ignored. This capability of
the predictor to have a high output value only at translation corresponding to the
upright position brings the possibility to obtain the angular rotation of the input
by knowing the place in which the maximum output is located.

3.2.1 Scattering Wavelet

A wavelet transform computes the convolutions with dilated and rotated wa-
velets. Wavelets are localized waveforms and are thus stable to deformations,
as opposed to Fourier sinusoidal waves. However, convolutions are translation
covariant, not invariant (Bruna and Mallat [2013a]). The scattering transform
builds nonlinear invariants from wavelet coefficients, with modulus and avera-
ging pooling functions (Fig. 3.5).

Input image (impulse)

0° 11° 22° 33°

45° 56° 67° 78°

90° 101° 112° 123°

135° 146° 157° 168°

Figure 3.5 – Scattering wavelet response to impulse response. Oriented responses for
each filter can be observed. (The angles below the figure are clockwise orientation with
respect to the vertical.)

Scattering transforms build invariant, stable and informative representations
through a non-linear, unitary transform, which delocalizes signal information into
scattering decomposition paths. They are computed with a cascade of wavelet
modulus operators, and correspond to a convolutional network where filter coef-
ficients are given by a wavelet operator (Bruna and Mallat [2013a]).

Due to their invariance and stability properties, scattering operators linea-
rize deformations (Bruna and Mallat [2011]). This linearization property can be

63

CHAPTER 3. ROTATION INVARIANT NETWORKS ON SIMPLE DATASETS

exploited to build linear generative classifiers in the scattering domain. When ap-
plied to stationary textures, scattering transforms provide new texture descrip-
tors, incorporating high order moments which can discriminate non-Gaussian
properties. As a result, state-of-the-art classification results are obtained on
hand-written digit recognition and texture classification.

3.2.2 Rotation Invariant Network Based on Scattering Wa-
velets

Previously introduced wavelet transforms decompose the input image with a
family of wavelets. The resulting representation outputs high-frequency compo-
nents of the signal. The main drawback is that the resulting representation be-
comes translation covariant. Shifting the image also shifts the wavelet response.
This behavior makes difficult the classification between translated images using
only wavelet operators.

Bruna and Mallat [2013b] present the invariant scattering convolution net-
works to address the covariance problem. A wavelet scattering network com-
putes a translation-invariant image representation, stable to deformations, and
preserves high-frequency information for classification. It is based on the Wave-
let scattering transform, which builds a signal representation with a redundant
dictionary of Morlet wavelets.

As introduced by Bruna and Mallat [2013b], a scattering representation
consists of order 0, 1, and 2 coefficients, composed of wavelets in different se-
quences. Multiple wavelets capture high-frequency structures of the image. In
their work, the authors outline that paths up to length 2 are enough to extract
almost all the frequency information of the data. This property is useful at the
classification of texture images where an invariant representation against defor-
mations such as translation and rotation is needed.

In comparison, in this work, we use the real part of the first order of the
scattering transform to obtain an oriented representation of the input image.
Then, we apply a series of convolutional layers and a translation predictor to
obtain class and angular information. Compared to previous works (chapter 2),
we use the equivariance to predict the angle of the input image.

As a result, we propose RIN (scattering + CNN), which can be observed in
Figure 3.6.

64

CHAPTER 3. ROTATION INVARIANT NETWORKS ON SIMPLE DATASETS

U
nk

no
w

n
ro

ta
tio

n

(a
) I

np
ut

 p
at

te
rn

(b
) O

rie
nt

ed
 w

av
el

et
 fe

at
ur

e
sp

ac
e

[1
4,

 1
4,

 1
6]

(c
) H

or
iz

on
ta

lly
-o

rie
nt

ed
 w

av
el

et
s

[1
4,

 1
4,

 1
6]

(d
) P

er
io

di
c

pa
dd

in
g

[1
4,

 1
4,

 3
1]

(i)
G

lo
ba

lM
ax

Po
ol

“L
et

te
r X

”

45
°

C
la

ss

A
ng

le

(e
) M

ax
Po

ol
in

g3
D

[7
, 7

, 3
1]

(f
) (

5x
) 3

D
 C

on
vo

lu
tio

n

 [

2,
 2

, 1
, 1

0]

(h
) O

ut
pu

t t
en

so
r

Pr
ob

ab
ili

ty
 d

is
tri

bu
tio

n
(P

)

31

14

14

31

7

7

[6
, 6

, 1
3]

[5
, 5

, 9
]

[4
, 4

, 6
][

3,
 3

, 3
][

2,
 2

, 1
]

[4
0,

]
[1

0,
]

[1
6,

 1
0]

(g
) D

en
se

 L
ay

er

[1
0,

]

Sh
ar

ed
 w

ei
gh

ts
 P

re
di

ct
or

 s
ta

ge
 re

ad
in

g
16

 tr
an

sl
at

io
ns

(j)
O

ut
pu

t

Cl
as

s
=

ar
gm

ax
 (P

)
(c

ol
um

ns
)

A
ng

le
 =

 a
rg

m
ax

 (P
)

(ro
w

s)

.
Ro

ta
tio

n
an

gl
e

Cl
as

s

F
ig

u
re

3
.6

–
R

IN
(s

ca
tt

e
ri

n
g

+
C

N
N

).
A

rc
h

it
e
ct

u
re

p
ro

p
o
sa

l
to

o
b

ta
in

ro
ta

ti
o
n

in
va

ri
a
n

ce
u

si
n

g
th

e
sc

a
tt

e
ri

n
g

tr
a
n

sf
o
rm

.

65

CHAPTER 3. ROTATION INVARIANT NETWORKS ON SIMPLE DATASETS

In the feature stage, the input image (Figure 3.6a) is first transformed using
the scattering operation and outputs an oriented wavelet feature space (Figure
3.6b). Then, we re-orient the feature space using a bilinear rotation. This rotation
compensates each feature by the angle that generated it allowing us to have all
the features aligned to the same horizontal reference (Figure 3.6c).

Then, we pad the feature space by itself (Figure 3.6d) and apply to the pad-
ded space a 3D convolutional predictor. Recall that, as explained in the previous
section, this mimics the behavior of a cyclic convolution predictor.

The prediction stage starts with a maxpooling operation (Figure 3.6e) that
allows refining the features obtained in the previous stage. The translating 3D
predictor is formed by a series of 5 3D convolutions (Figure 3.6f). Following
these series of 3D convolutions, a dense Layer (Figure 3.6g) transforms the ex-
tracted predictions into a one-out-of-many format with ten outputs (there are ten
classes). The shared predictor stage outputs a one-out-of-many vector predic-
tion for each translation contained in the wavelet feature stage. This prediction
contains a higher value in the translation that corresponds to the upright orienta-
tion of the input image. The output predictions are condensed in a 2D output ten-
sor (Figure 3.6h) containing as many rows as translations and as many columns
as classes. This output tensor is then a probability distribution over two axes
and contains one maximum value containing the predicted class (column index)
and predicted rotation (row index). A globalmaxpooling operation (Figure 3.6i)
applied to the row, and the column axis outputs the class and rotation prediction.

We discuss the results of this architecture applied to the MNIST dataset in
section 3.4.

3.3 Steerable Filters

The second approach to obtain a roto-translational feature space is based
on steerable filters (RIN (steerable + CNN)). Oriented filters have been deeply
studied by Freeman and Adelson (Freeman and Adelson [1991]). They define the
term steerable filter as a class of filters in which a filter of arbitrary orientation
is synthesized as a linear combination of a set of basis filters (Figure 3.7).

(a) (b) (c) (d) (e)

Figure 3.7 – Steerable filters. (a) s0° first derivative with respect to x (horizontal) of a
Gaussian (b) s90° which is s0° rotated by 90° ; (c) 45°, (d) 135°, (e) 225°, formed by the
linear combination of (a) and (b).

The two-dimensional case of steerable filter found in Freeman’s methodology
can be used as a first layer of the Rotation Invariant Network (RIN). Consider
the two-dimensional, Gaussian function S written in Cartesian coordinates x and

66

CHAPTER 3. ROTATION INVARIANT NETWORKS ON SIMPLE DATASETS

y:

S(x, y,σ) = 1

2πσ2
e

x2+y2

2σ2 (3.1)

Substituting l = 1
2σ2 in the Eq. 3.1 we can make a generalization of this filter.

Let the parameters α and β be the shape parameters on the exponent and l the
scaling parameter.

S(x, y, l ,α,β) = l

π
e−l (αx2+βy2) (3.2)

Following Freeman’s (Freeman and Adelson [1991]) methodology we calculate
the first-order directional derivative of Eq. 3.2 in the x direction. Let the deriva-
tive of S be denoted by s.

s(x, y, l ,α,β)0° = ∂

∂x

l

π
e−l (αx2+βy2) = −2αl 2x

π
e−l (αx2+βy2) (3.3)

Then the same function in y direction.

s(x, y, l ,α,β)90° = ∂

∂y

l

π
e−l (αx2+βy2) = −2βl 2 y

π
e−l (αx2+βy2) (3.4)

A filter with any arbitrary orientation ϕ can be calculated by the linear combina-
tion of s0° and s90° using:

sϕ = cos(ϕ)s0°+ si n(ϕ)s90° (3.5)

s0° and s90° are the basis filters and the terms (l ,α,β) are shape parameter of the
filter.

Following this methodology we create an ensemble of stterable filters ordered
with the increasing orientation angle ϕi . These parameters will be optimized by
training to fit the data.

3.3.1 Learning Steerable Filters

Input image
size

28 x 28 px
(a)

64 x 64 px
(b)

80 x 80 px
(c)

Learned filter ensemble

Figure 3.8 – Learned steerable filters for different size of images. The filter increases in
width and height following the input image.

RIN (steerable + CNN) uses a single basis filter as first layer to obtain an
oriented feature space. The number of basis filters can be increased but the tests
did not show any improvement on the accuracy when using more than one. This

67

CHAPTER 3. ROTATION INVARIANT NETWORKS ON SIMPLE DATASETS

is certainly due to the simplicity of the MNIST dataset consisting of exclusively of
pencil strokes with a constant width that a single optimized filter can be activated
with.

To test the trainability of the filters, we observed the change of the scaling
parameter l that affects the size of the filter. First, we trained the network with
three different input image sizes: 28 x 28, 64 x 64, and 80 x 80 pixels, then we
plot the steerable filter that corresponds to the best accuracy. As observed in
Figure 3.8, the steerable size changed following the size of the input image. This
change in the size means that the network can learn and adapt the basis filter
for the input images. Also, for the biggest case (80 x 80 px), we observed that the
filter support crops the basis filter. The filter support can be increased to avoid
being cropped when using larger images.

To complete, we can explain the training mechanism that optimizes the pa-
rameter l . First, we generate a kernel window using the steerable equations
presented previously. This kernel window then is dependent on the values l ,α,β.
α and β are then the shape (height and width) parameters of the filter. After se-
veral experiments, we observed that these two values converged in equal values.
This convergence is mainly due to the filter needing to be circular (α≈ β) to allow
the steering of the filter. Consequently, we only kept l as a parameter.

The kernel window produced above is then dependent on l , and we can select
the support size of the window as a parameter. The next step was to rotate the
filter using eq. 3.5. We generate as many kernel windows as dΦ, each rotated
by dΦ/360°, and then we encoded them as convolutional filters. We then created
a custom convolutional layer that convolves the input image with these filters
containing the rotated steerable filters.

The custom convolution layer then outputs the activation of the input image
convolved with the oriented filters generated with the steerable equations. To
train this custom layer, we used the Layer class from the Tensorflow platform.
The main advantage of this class is the automatic differentiation that automati-
cally updates the parameter l .

3.3.2 Rotation Invariant Network Based on Steerable Filters

Similar to RIN (scattering + CNN), RIN (steerable + CNN) contains a feature
stage and a predictor stage. The feature stage is responsible of building the roto-
translational feature space (Figure 3.9a-d). The predictor stage contains the 3D
convolutional predictor scanning over the feature space and generates a proba-
bility distribution output (Figure 3.9e-j).

Analog to RIN (scattering + CNN), the steerable filters in the oriented en-
semble are angularly compensated by the angle that generates each filter. Also,
the oriented filter feature space (Figure 3.9b) is padded by itself (Figure 3.9c) to
obtain a space that contains each one of the possible discrete translations of the
input pattern. A series of convolutional predictors are applied to the padded fea-
ture space (Figure 3.9d-e). These convolutional predictors contain convolutional
and maxpooling operations. Also, these predictors are applied to the height and
width dimensions and preserve the angular dimension of the feature space.

68

CHAPTER 3. ROTATION INVARIANT NETWORKS ON SIMPLE DATASETS

U
nk

no
w

n
ro

ta
tio

n

(a
) I

np
ut

 p
at

te
rn

(b
) O

rie
nt

ed
 fi

lte
rs

 fe
at

ur
e

sp
ac

e
[2

8,
 2

8,
 1

6]
(c

) P
ad

de
d

fe
at

ur
e

sp
ac

e
[2

8,
 2

8,
 1

6]
(d

) 2
D

 C
on

vo
lu

tio
n

[5
, 5

, 1
 +

 M
ax

Po
ol

in
g

[2
,2

]
[1

2,
 1

2,
 3

1]

(i)
 G

lo
ba

lM
ax

Po
ol

“N
um

be
r 1

”

45
°

C
la

ss

A
ng

le

(e
) 2

D
 C

on
vo

lu
tio

n
[5

, 5
, 1

]
M

ax
Po

ol
in

g
[2

, 2
]

[5
, 5

, 3
1]

(f
) 3

D
 C

on
vo

lu
tio

n
[3

, 3
, 1

6]

 [

3,
 3

, 1
6]

(h

) O
ut

pu
t t

en
so

r
Pr

ob
ab

ili
ty

 d
is

tri
bu

tio
n

(P
)

28

28

31

5

5

[3
0,

]
[1

0,
]

[1
6,

 1
0]

(g
) D

en
se

 L
ay

er

[1
0,

]

Sh
ar

ed
 w

ei
gh

ts
 P

re
di

ct
or

 s
ta

ge
 re

ad
in

g
16

 tr
an

sl
at

io
ns

(j)
 O

ut
pu

t

Cl
as

s
=

ar
gm

ax
 (P

)
(c

ol
um

ns
)

A
ng

le
 =

 a
rg

m
ax

 (P
)

(r
ow

s)

Ro
ta

tio
n

an
gl

e

Cl
as

s

28

28

16
31

28

28
12

12
31

[1
44

,]

F
ig

u
re

3
.9

–
R

IN
(s

te
e
ra

b
le

+
C

N
N

).
A

rc
h

it
e
ct

u
re

u
si

n
g

th
e

st
e
e
ra

b
le

fi
lt

e
rs

to
g

e
n

e
ra

te
th

e
o
ri

e
n

te
d

fe
a
tu

re
s.

O
ri

e
n

te
d

fi
lt

e
rs

a
n

d
re

-r
ie

n
ta

ti
o
n

a
re

co
n

ta
in

e
d

in
th

e
fi

rs
t

la
ye

r
o
f

th
e

n
e
tw

o
rk

.

69

CHAPTER 3. ROTATION INVARIANT NETWORKS ON SIMPLE DATASETS

A 3D convolution (Figure 3.9f) applied to this space is equivalent to applying
a cyclic convolutional predictor over the oriented filter feature space. Recall that
this 3D convolution predictor reads each one of the possible translations of the
feature space and outputs a higher probability for the translation that contains
the upright orientation using a dense layer predictor (Figure 3.9g) ; these results
are stored on a probability distribution of size (number of classes K, orientations
N) (Figure 3.9h). Next, a globalmaxpool (Figure 3.9i) is applied to the probability
distribution on the row and the columns to obtain the class and angle index.

3.4 Results

We evaluate the rotation invariant properties of the previously proposed net-
works on three variations of the MNIST dataset. The angular sampling is Φ= 16
for the main tests and a particular test with varying Φ. The training is done by
using the original class labels in the one-out-of-many format, angular labels are
not provided as part of the training phase.

For the upright training (URT) we train the network as usual state of the art
approaches, this means training the network with the original upright 60,000
examples. To validate the rotation invariant properties of the network we rotate
the validation set of 10,000 examples by an unknown random angle between [0,
2π].

Randomly rotated training (RRT) using MNIST-rot is meant to test the
non-supervised angular prediction. This means to train on randomly oriented
examples and make the prediction without angular labeling available in the trai-
ning stage. All the training and validation examples of the original MNIST are
rotated by an unknown random angle between [0, 2π].

Usually the rotated MNIST dataset (MNIST-rot) (Worrall [2017]) is used by
several state of the art approaches. We present results with this modification of
the MNIST dataset to allow a direct comparison with the current approaches.
This dataset contains 12,000 training and 58,000 testings examples randomly
rotated between [0, 2π].

3.4.1 Rotation Angle Prediction

As a second product of the methodology, the network can predict the angle
of the input image without angular labels on the training dataset. To achieve
this, we obtain the angular information from the probability distribution (P) (sec-
tion 2.3). To recall, the predictor stores the prediction of each translation of the
feature space in this table. The predictor outputs a high probability of the class
when the examples is in the upright position (when trained on upright examples)
and near-zero values elsewhere.

Due to slight variations of the training data (not all training examples are
in perfect upright orientation), the predictor becomes tolerant to some angu-
lar misorientation. We refer to tolerance as classifying the object correctly des-
pite some angular misorientations. As a consequence of the predictor tolerance,
higher probability values also appear on the adjacent orientations of the upright
position up to ±dΦ.

70

CHAPTER 3. ROTATION INVARIANT NETWORKS ON SIMPLE DATASETS

In Figure 3.10, we can observe how the probability distribution (P) behaves
with different orientations of the same example (number 7). The red cells re-
present the maximum values of the table and the white near-zero values. When
the input image is rotated, we observe the maximum values of the table trans-
lating from up to down. Each translation corresponds to an angle increment of
dΦ.

0° 45° 90° 135° 180° 225° 270° 315°

A
ng

le

Class

Figure 3.10 – Equivariant translation with respect to the input rotation. In red higher
values of the table.

The tolerance acquired by the predictor as a product of the misorientations
of the dataset allows the network to map the rotation of the input (when trai-
ned with randomly oriented samples) to a periodic space that assigns one row
to each possible discrete angle of the network. This property can be seen as
a self-organizing behavior mapping consecutive angular values as consecutive
rows in the table. The output space has the same behavior when trained with
upright oriented and randomly rotated datasets. This leads to generating a li-
near relationship from the consecutive angles without any reference existing on
the angular rotation input space.

On the datasets that do not contain an upright reference (e.g., for the plank-
ton dataset (Orenstein et al. [2015]), the upright position does not exist), the
network randomly selects a row corresponding to a virtual right orientation.
This random selection means that the network selects a random baseline for
each class as virtual upright orientation and then maps the consecutive angular
values from this base.

One possible application for this is the automatic reorientation of randomly
oriented samples (Figure 3.11). In this application, the network would select a
random row for each class’s virtual upright orientation. Then, the rotation angle
can be calculated by the modulo of this randomly chosen baseline upright orien-
tation. It is important to notice that while the network randomly selects the vir-
tual upright position row, this position is constant per class. This property allows
to re-orient the examples in this class to this virtual position.

3.4.2 Rotation Invariant Classification

Rotation-invariance is a property that describes the capability of the network
to obtain the correct class prediction despite the orientation of the example.
First, we test this property by training the network with upright examples (RRT)
and validating on randomly rotated samples (MNIST-rot). Then, we compare the
results of state of the art architectures with the MNIST-rot dataset. At the end,

71

CHAPTER 3. ROTATION INVARIANT NETWORKS ON SIMPLE DATASETS

Input image Result

(a) (b)

Figure 3.11 – Automatic reorientation of the MNIST randomly oriented examples usign
RIN (steerable + CNN).

we outline some global properties of the network and behavior over different
inputs.

Angular sampling tests. One of the particular parameters we test is the
number of tested rotations N. We change the value of N from 2 to 24 to show
the correlation between N and accuracy (Fig. 3.12). Having N > 4 (as most of
the state-of-the-art architectures) is helpful for the model’s accuracy. Also, we
can observe that the accuracy does not longer significantly increases for values
over N = 14 – both the upright and the randomly oriented training present this
behavior.

Fig. 3.12 shows that the number of rotations N do not has an impact when
trained on RRT. This phenomenon is mostly due to RRT being similar to data aug-
mentation and the predictor observing different orientations of each example. In
the same Fig. 3.12 we observe that the number of rotations heavily affects the
accuracy when trained on URT. This behavior can be explained as the predictor
observing upright-oriented examples and not having enough angular filters to
describe the angular information between edges. For example, when N = 2 there
exist 2 filters and 2 possible translations of the feature space with dΦ= 90°.

2 4 8

1
0

1
2

1
4

1
6

1
8

2
0

Number of discrete rotations N

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u
ra

c
y

Randomly rotated training (RRT)

Upright training (URT)

Figure 3.12 – Effect of N on accuracy for URT and RRT. With upright training the predic-
tion accuracy slightly decreases on lower N values.

Training parameter l test. The l parameter of the basis filters defines the
width of the edge detector filter. Lower values of l indicate a wider edge detector.

72

CHAPTER 3. ROTATION INVARIANT NETWORKS ON SIMPLE DATASETS

Fig. 3.13 shows the correlation between the size of the input image and the l
value. For larger input images, the value of l decreases, and the filters grow lar-
ger. The change in the filters can be observed in Fig. 3.8. This proves the ability
of the network to adapt the edge detector to the size of the input. This behavior
is consistent for different values of N demonstrating the training capability of
this parameter.

30 35 40 45 50 55 60 65

Input Image size

0.2

0.4

0.6

l
P

a
ra

m
a

te
r

v
a

lu
e

2

4

8

10

12

14

16

18

20

Figure 3.13 – Effect of N on learned value l. Learned parameter l value is inversely
proportional to the size of the input pattern. This behavior is consistent for N = 2 to 20.

Comparison with the State of the Art

Table 3.1 – Obtained error rate with URT

Method Error rate # parameters
ORN-8(ORPooling)Zhou et al. [2017] 16.67% 397k
ORN-8(ORAlign)Zhou et al. [2017] 16.24% 969k

(RP_RF_1) Follmann and Bottger [2018] 19.85% 130k
(RP_RF_1_32)* Follmann and Bottger [2018] 12.20% 1M

RotDCF (60 degrees) Gao et al. [2019] 17.64% 760k
Spherical CNN Cohen et al. [2018] 6.00% 68k

Icosahedral CNN Cohen et al. [2019] 30.01% n.c.
RI-LBCNNs Shin and Yun [2019] 25.77% 390k

RIN (scattering + CNN) Rodriguez Salas et al. [2019] 17.21% 7k
RIN (steerable + CNN) Rodriguez Salas et al. [2021a] 2.05% 42k

RIN (scattering + CNN) reaches state-of-the-art results while RIN (steerable
+ CNN) outperforms previous works compared to the communicated error rate.
For all the reported results, we used 16 sampled orientations. For the training
with upright position (URT) (Table 3.1), (scattering + CNN) has a higher error
rate while having the lowest number of trainable parameters of all approaches.

73

CHAPTER 3. ROTATION INVARIANT NETWORKS ON SIMPLE DATASETS

Also, for URT, RIN (steerable + CNN) contains a higher number of parameters
but outperforms the existing state-of-the-art approaches. It is important to men-
tion that most of the state-of-the-art approaches shown on the table use other
techniques to improve their accuracy. While Spherical CNN achieves a low error
rate, it comes with high complexity and processing power to obtain these results.
Furthermore, other state-of-the-art works achieve rotation invariance by losing
the equivariance property. Thus, they can not make an unsupervised angular
prediction.

Table 3.2 – Obtained error rate with MNIST-rot

Method Error rate # parameters
Harmonic Networks Worrall et al. [2017] 1.69% 33k

TI-Pooling Laptev et al. [2016] 1.26% n.c.
R. Eq. VFN Marcos et al. [2017] 1.09% 100k

ORN Zhou et al. [2017] 1.37% 397k
SFCNNs Weiler et al. [2018] 0.714% n.c.

RP_RF_1* Follmann and Bottger [2018] 3.51% 130k
RI-LBCNNs Shin and Yun [2019] 1.36% 390k

GCNs Luan et al. [2018] 1.10% 1.86M
RIN (scattering + CNN) Rodriguez Salas et al. [2019] 2.69% 7k
RIN (steerable + CNN) Rodriguez Salas et al. [2021a] 0.93% 42k

For the training with rotMNIST (Table 3.2), the results reach state of the art
error rate. In this type of training RIN (scattering + CNN) error rate improves
with respect to the URT training ; also, it remains as the lowest number of pa-
rameters approach. The RIN (steerable + CNN) reaches less than 1% error rate
while keeping a lower number of parameters. The closest approach Rotation
Equivariant VFN uses more than the double of parameters and GCNs almost 2
Million parameters to achieve similar results than the presented in this work.

All of the results obtained for RIN (steerable + CNN) use a single learnable
basis filter rotated N time. Also, it preserves the equivariant properties of the
filters allowing the network to predict the angular rotation of the input. In this
sense, this is the first approach to our knowledge that uses the roto-translational
properties of the space to make an angular prediction of the input image.

3.5 Conclusion

In this chapter, we presented two convolutional architectures based on the
scattering transform (RIN (scattering + CNN)) and one based on steerable fil-
ters (RIN (steerable + CNN)). The main objective of these architectures is to
tackle the rotation invariant and angular prediction that exists on several deep
learning applications. To achieve this objective, we use the roto-translational fea-
ture space that transforms into translation the rotation of the input image and a
shared weight translational predictor that scans every possible discrete transla-
tion (hence discrete rotation) of the input image.

74

CHAPTER 3. ROTATION INVARIANT NETWORKS ON SIMPLE DATASETS

We tested both networks on variations of the MNIST dataset achieving state-
of-the-art results for the randomly rotated training and outperforming state-of-
the-art accuracy and number of parameters.

First, we showed results using RIN (scattering + CNN). This approach rea-
ched state-of-the-art results. Its main drawback was the lack of trainability on
its filters. The main consequence is a high error rate when trained with upright
examples and tested on random rotated examples.

Also, we presented RIN (steerable + CNN) with trainable basis filters as the
first layer. This approach tries to compensate for the lack of trainability of the
previous one by using filters that adapt to the input data size characteristics.
In this chapter, we demonstrated the trainability of these filters and how their
size changes following the input image size. While this approach outperformed
state-of-the-art techniques, it comes with one major drawback.

Steerable filters have low flexibility as, by definition, they need to be circu-
lar. Consequently, the network can not train the filter to have better angular or
frequency selectivity limiting with this the adaptation to the input data. To solve
this, in the next chapter, we propose using Gabor filters that have increased
flexibility, allowing them to be angular and frequency selective.

75

CHAPTER 3. ROTATION INVARIANT NETWORKS ON SIMPLE DATASETS

76

Chapter 4

Rotation Invariant Networks on
Complex Datasets

In the previous chapter, we presented a rotation-invariant architecture (RIN)
that reaches state-of-the-art results on the MNIST dataset but with the advan-
tage of being trained only on upright oriented and validated on randomly rotated
samples. This architecture used steerable filters to obtain a roto-translational
feature space followed by a shared weight predictor.

RIN (steerable + CNN) architecture reached state-of-the-art accuracy on this
simple dataset because it comprises simple images containing an almost identi-
cal pencil stroke width to write the numbers. In this sense, using one basis filter
was enough to obtain these results. One of the main limitations of steerable fil-
ters is the circular shape of the filter. To rotate, the width and height of the filter
must be identical. Consequently, the angular selectivity of the filter is limited
(section 3.3.1).

To improve the descriptive potential of the filters in RIN (steerable + CNN),
we propose the usage of Gabor filters. Gabor filters are linear filters generally
used to discriminate textures with different frequencies. 2D Gabor filters discri-
minate a specific frequency in a specific orientation (Daugman [1985]) based on
the Gabor wavelet (Gabor [1946]). Hence, we can use them as filters to obtain
a roto-translational feature space with better angular and frequency selectivity
than the steerable filters.

This chapter introduces the Gabor layer based on trainable Gabor filters, indi-
cates the parameters we make trainable, and shows their usage on classification
tasks. We propose a CNN architecture using Gabor filters to generate a roto-
translational feature space RIN (Gabor + CNN).

First, we test RIN (Gabor + CNN) on the MNIST dataset to compare them
directly with our previous approaches RIN (scattering + CNN) and RIN (stee-
rable + CNN). Then, we apply them to the CIFAR dataset that contains complex
features. Finally, we propose an alternative to the CNN inside the feature extrac-
tion. Recall that after the roto-translational space, we plug several convolutions
to act as feature extractors. To differentiate between alternatives, we refer to
the previously presented convolutional feature extractor as RIN (Gabor + CNN)
and the alternatives as RIN (Gabor + alternative).

77

CHAPTER 4. ROTATION INVARIANT NETWORKS ON COMPLEX DATASETS

4.1 Gabor Filters

Gabor filters have been used extensively in the literature in numerous appli-
cations (e.g., character recognition (Singh et al. [2012]), facial features extrac-
tion (Zadeh et al. [2019]), fingerprint recognition (Lee and Wang [1999]), object
detection (Jain et al. [1997])). The most important properties are related to in-
variance to illumination, rotation, scale, and translation. Commonly, researchers
and developers used these filters in banks arranged by spectral and temporal
modulation frequencies (Schädler et al. [2012]). These filter banks are usually
designed not to overlap frequencies, scales, or orientations.

In this work, we focus on four parameters of the Gabor filters: frequency
(F), rotation (θ), frequency selectivity ajdustment (σx) and angular selectivity
adjustment (σy). In this section, we highlight how we use these parameters to
generate an oriented feature space. Then, we describe the parameters of these
filters and the oriented feature space obtaining.

A 2D Gabor filter can be defined as an oriented sine (imaginary part of the fil-
ter) or cosine (real part) modulated by a 2D Gaussian function. The shape of the
Gabor function is defined by the frequency, the orientation of the sinusoid and
the scale of the Gaussian function. It offers a higher degree of liberty compared
to steerable filters, especially in the sense that the angular and frequency selec-
tivity can be learned independently. With this methodology we can then generate
a set of rotating wavelets that can act as filters.

Following Gabor’s filters methodology (Gabor [1946]), consider the rotation
matrix in 2D space applied to a kernel pixel (x, y):

[
cosϕ −si nϕ
si nϕ cosϕ

][
x
y

]
=

[
xcos(ϕ)− y si n(ϕ)
ycos(ϕ)+xsi n(ϕ)

]
(4.1)

Then, the new location for the pixel is (xϕ, yϕ):{
xϕ = xcos(ϕ)− y si n(ϕ)

yϕ = xsi n(ϕ)+ ycos(ϕ)
(4.2)

To adjust the frequency and angular selectivity, we divide this location by the
magnitude σx and σy , respectively. Then, r1 becomes the frequency selectivity
adjustment value and r2 angular selectivity adjustment value:

r1 =
xϕ
σx

; r2 =
yϕ
σy

(4.3)

These two parameters can then be applied to the Gabor function (G) and
obtain the real (Gr e) and imaginary (Gi) components as:

Gr e (ϕ,σx ,σy ,F, x, y) = e
r 12+r 22

2 cos(2πFxϕ) (4.4)

Gi (ϕ,σx ,σy ,F, x, y) = e
r 12+r 22

2 si n(2πFxϕ) (4.5)

To generate the kernel windows then we use the (Eq. 4.4) and (Eq. 4.5).
Where (x, y) correspond to the pixel position on the kernel window. Parameters
(ϕ,σx ,σy ,F) are then variables that affect the filter shape (Fig. 4.1).

78

CHAPTER 4. ROTATION INVARIANT NETWORKS ON COMPLEX DATASETS

Real Imaginary

F = 0.01 0.1 0.2 0.4 0.01 0.1 0.2 0.4

Figure 4.1 – Gabor filters examples. Real and Imaginary parts of the Gabor filter en-
semble for different frequencies using Eq. 4.4 and Eq. 4.5 with σx = 2,σy = 2,ϕ= 0

Recall that the main objective is to use these equations to generate a roto-
translational feature space (chapter 2). First, we create an oriented filter en-
semble. Then, we re-orient the features to the horizontal reference. After this,
we have a roto-translational feature space to be used by the translating predic-
tor.

Creating a roto-translational feature space based on Gabor filters is then
straightforward. First, we generate a set of basis filters (real and imaginary)
using Eq. 4.4 and Eq. 4.5. Examples of these filters can be observed in Fig. 4.1,
and the parameters are discussed in the next section. The generated filters have
a vertical orientation (ϕ= 0). Then, we make the parameters σx ,σy ,F trainable pa-
rameters to be updated during the training stage of the network. Making these
parameters trainable follows the same methodology explained in section 3.3.1
but with Gabor equations instead of steerable ones.

It is important to note that the values σx ,σy ,F are independent for real and the
imaginary filters. While, by definition, Gabor filters imaginary and real parts are
linearly dependent, we use them separated. It means that the real filter can have
a different frequency, angular selectivity, or frequency selectivity than the ima-
ginary. The motivation behind this choice comes from the intuition that a higher
number of filters usually results in higher accuracy. Consequently, having these
filters (real and imaginary) separated gives them the freedom to better adapt to
the features. Furthermore, we did several experiments using the same σx ,σy ,F
values for both basis filters (real and imaginary). These experiments showed an
increased accuracy when the values were independent than using the same for
both.

After generating the basis filters, we create a list of orientations ϕi where
i = 0, . . . ,N. This operation generates two oriented filter ensembles (Gϕi

r e , Gϕi
i) with

as many filters as orientations N.

Finally, these oriented filter ensembles become the kernels of the convolution
operation. When convolved with the input, they generate an oriented decompo-
sition of the input image. Then, they are re-oriented to the horizontal reference
to obtain the roto-translational feature space. These two operations, convolution
with the Gabor trainable filters and re-orientation of the oriented components,
become the Gabor layer. This layer accepts as hyperparameters the size of the
kernel support, the number of orientations N, number of basis filters (although
in this work, we use a single pair of basis filters), and activation.

We present experiments and results of the Gabor layer as a roto-translational
feature space generator (in the first layer of RIN (Gabor + CNN)) in the sections
4.2 and 4.3. To better understand the Gabor filter shape parameters (ϕ,σx ,σy ,F)

79

CHAPTER 4. ROTATION INVARIANT NETWORKS ON COMPLEX DATASETS

and how each one affects the filter shape, we outline them in the following sub-
section.

4.1.1 Gabor Filter Parameter Description

As outlined previously, parameters ϕ,σx ,σy ,F change the Gabor filter shape.
We use the first one (ϕ) to generate the N orientations of the oriented filter
ensemble. The last three parameters shape the filter and become trainable para-
meters of the Gabor layer.

This chapter highlights how these parameters affect the filter and the expec-
ted behavior in training and inference for each one. Also, we present figures to
understand the changing shapes of the filters visually.

Frequency: The frequency parameter allows the filter to adapt to different
existing frequencies in the input image (Fig. 4.2). For example, on datasets
containing low-frequency information such as pencil strokes or lines, the Gabor
filter would converge towards a low-frequency shape (F ≈ 0.1). On the contrary,
if the images contain high-frequency components (i.e., textures), the frequency
converges towards high-frequency values (F → .5). In this sense, once trained,
the filter can discriminate features based on the frequency by filtering them, or
keeping them for the subsequent layers.

�
���

��������

�
���

�������

�
���

�������

�
���

�������

�
���

�������

Figure 4.2 – Gabor filters for different frequency (F) values (θ= 0,σx = 2,σy = 2). First row
real part of the filter ; second row imaginary part of the filter.

Frequency selectivity σx: This parameter changes the horizontal aperture
of the filters. Hence, it allows to accept or deny more frequencies based on the
wide of the filter. Notice in Fig. 4.3 how a higher value allows more period of the
filter to be included into the kernel, narrowing thus the filter pass band.

Angular selectivity σy : This parameter changes the vertical aperture of the
filter (Fig. 4.4). Thus, it becomes thinner while keeping frequency information. It
learns to discriminate features based on the width of the features. For example,
images such as pencil strokes train it to select the width of the pencil stroke.

80

CHAPTER 4. ROTATION INVARIANT NETWORKS ON COMPLEX DATASETS

�
���

σx �����

�
���

σx������

�
���

σx������

�
���

σx������

�
���
σx����

Figure 4.3 – Gabor filters for different (σx) values (ϕ = 0,F = 0.2,σy = 2). First row real
part of the filter ; second row imaginary part of the filter.

�
���

σy ������

�
���

σy ������

�
���

σy ������

�
���

σy ������

�
���

σy ����

Figure 4.4 – Gabor filters for different (σy) values (ϕ = 0,F = 0.2,σx = 2). First row real
part of the filter ; second row imaginary part of the filter.

81

CHAPTER 4. ROTATION INVARIANT NETWORKS ON COMPLEX DATASETS

Rotation ϕ: Finally, the parameter ϕ allows the filter to be rotated to a fixed
orientation (Fig. 4.5). The network does not train this parameter. Instead, it is
used as a rotation parameter to obtain the oriented feature space. As explained
previously, an index list of i = 0, . . . ,N generates an angle set ϕi with a constant ro-
tation increment. Then, ϕi selects the number of orientations and angular orien-
tations of the filter. Recall that N is a hyperparameter of the Gabor layer.

�
���

� �����

�
���

� ������

�
���

� ������

�
���

��������

�
���

� �������

Figure 4.5 – Gabor filters for different (ϕ) values (F = 0.2,σx = 2,σy = 2). First row real
part of the filter ; second row imaginary part of the filter.

To conclude, we can observe that these filters are more flexible than our pre-
vious approaches (scattering, steerable). Gabor filters can adapt their frequency,
frequency selectivity, and angular selectivity to the training dataset. To directly
compare these proposed trainable Gabor filters with our previous approaches,
we test the Gabor layer as a roto-translational feature space generator in the
RIN (Gabor + CNN) architecture using the MNIST dataset.

4.2 Gabor Filters as Feature Extraction on Simple

Datasets

As explained previously, Gabor filters have several advantages compared to
our previous filters used to generate the oriented decomposition of the input.
These filters can learn the image frequency of the input image. Also, they can
learn to become angular and frequency selective to discriminate the oriented
features. In the previous section, we introduced the Gabor layer as the concate-
nation of two operations: the convolution operation (between the input and the
oriented filters) and the re-orientation of the feature space.

Again, we start with the MNIST dataset as the most straightforward problem
to validate the Gabor layer as a roto-translational feature space generator. We in-
sist on using the MNIST to validate the layer because it also allows us to directly

82

CHAPTER 4. ROTATION INVARIANT NETWORKS ON COMPLEX DATASETS

compare with our previous proposals RIN (scattering + CNN) and RIN (steerable
+ CNN)

In this sense, RIN (Gabor + CNN) is similar to the previously introduced stee-
rable network. We use the Gabor layer as a substitute for the oriented filters
space presented on the rotation invariant network based on steerable filters (sec-
tion 3.3.2). It means that the Gabor layer becomes an oriented representation
mapping layer that outputs the roto-translational feature space (Fig. 4.6a).

Recall that the Gabor layer contains an oriented feature ensemble composed
of real and imaginary filters. It means that for a kernel size of (width, height) and
16 orientations (N = 16), the filter shape is [m, n, 16, 2] when using one (complex)
basis filter. MNIST input image dimension is [28, 28, 1].

To obtain the roto-translational feature space, we first convolve the real part
of the oriented filter ensemble with the input (input: [28, 28, 1], filters: [m, n,
16, 1]) and let the N = 16 orientations act as filters of the convolution. Then,
we calculate the convolution of the input image with the imaginary part of the
oriented filter ensemble. Consequently, we have two ensembles of shape [m, n,
16, 1] due to the operations. Then, we concatenate (on the last axis) the two
ensembles (real and imaginary) to obtain a shape of [16, 28, 28, 2]. Finally, the
second operation of the layer re-orient the features to the horizontal reference
and outputs a roto-translational feature space.

The following layer then pads the feature space by itself (Fig. 4.6b). As ex-
plained in the previous steerable approach, this padding, in conjunction with a
3D convolutional predictor, emulates the behavior of a cyclic convolution.

We then add a convolutional feature extraction stage (Fig. 4.6c). These convo-
lutions are 2D convolutions, and we apply them to the second and third axis of
the feature space. It means that the network preserves the first axis information,
thus keeping the translation information of the feature space (Fig. 4.6d). The
real and imaginary components of the feature space (last axis [16, 28, 28, 2]) are
then input filters to the convolution operation.

83

CHAPTER 4. ROTATION INVARIANT NETWORKS ON COMPLEX DATASETS

F
ig

u
re

4
.6

–
R

IN
(G

a
b

o
r

+
C

N
N

).
P

ro
p

o
se

d
a
rc

h
it

e
ct

u
re

u
si

n
g

G
a
b

o
r

la
ye

r
to

o
b

ta
in

ro
to

-t
ra

n
sl

a
ti

n
g

fe
a
tu

re
s

a
n

d
a

C
N

N
fe

a
tu

re
e
xt

ra
ct

o
r.

84

CHAPTER 4. ROTATION INVARIANT NETWORKS ON COMPLEX DATASETS

The predictor stage of the network is identical to RIN (steerable + CNN)
approach. Recall that (chapter 3) we apply a 3D convolutional translating pre-
dictor (multiple instances of the same predictor with shared weights) to the
roto-translational feature space to output a prediction for each translation of
the feature space (Fig. 4.6e). The network stores each prediction in a probability
distribution (Fig. 4.6f). Finally, a globalmaxpool operation applied to the columns
and rows outputs the predicted class and angle information (Fig. 4.6g).

In the next section, we use this architecture on the MNIST dataset and com-
pare the results with the previous implementations.

4.2.1 Results

To test rotational-invariance properties, we trained the network with upright
samples (all the samples in the same orientation) and validated with randomly
rotated samples of the MNIST dataset. We trained the network for 200 epochs
using the Adam optimizer on a Titan Xp GPU with 16 GB VRAM; unless noted,
the number of orientations is N = 16.

RIN (steerable + CNN) and RIN (Gabor + CNN) achieved state-of-the-art
results when trained on upright examples and validated on rotated examples
4.1. If we compare the error rate of both, they outperform the previous state-
of-the-art results. The nearest result is the work of Cohen et al. [2018] which is
a particular case of a network that works on 3D spherical images with a high
computational cost.

Table 4.1 – Obtained error rate on the MNIST dataset (train: upright / validation: rotated)

Method Error rate # parameters

ORN-8(ORPooling) Zhou et al. [2017] 16.67% 397k
ORN-8(ORAlign) Zhou et al. [2017] 16.24% 969k

RotInv Conv. (RP_RF_1) Follmann and Bottger [2018] 19.85% 130k
RotInv Conv. (RP_RF_1_32)* Follmann and Bottger [2018] 12.20% 1M

RotDCF (60 degrees) Gao et al. [2019] 17.64% 760k
Spherical CNN Cohen et al. [2018] 6.00% 68k

Icosahedral CNN Cohen et al. [2019] 30.01% n.c.
RI-LBCNNs Shin and Yun [2019] 25.77% 390k

RIN (scattering + CNN) Rodriguez Salas et al. [2019] 17.21% 7k
RIN (steerable + CNN) Rodriguez Salas et al. [2021a] 2.05% 42k

RIN (Gabor + CNN) Rodriguez Salas et al. [2021b] 1.71% 9k

Concerning our contributions, we can discuss different points. Our first ap-
proach (RIN (scattering + CNN)), presents a low number of trainable parameters
while having the worst error rate of the three. It is mostly due to the static na-
ture of the scattering filters. The RIN (Gabor + CNN) approach presented in this
chapter is better than the RIN (steerable + CNN) approach in terms of error rate
but barely by 0.3% while requiring by far fewer parameters (42k vs 9k).

As observed in Table 4.1, RIN (Gabor + CNN) has a lower number of para-
meters while achieving higher accuracy ; this is mainly due to the adaptability

85

CHAPTER 4. ROTATION INVARIANT NETWORKS ON COMPLEX DATASETS

of the filters (frequency, angularly selective, and frequency selective) compared
to RIN (scattering + CNN) and RIN (steerable + CNN). Recall that steerable
filters need to preserve the circular shape to keep their steerability properties
compared to the Gabor filters that have better angular and frequency selecti-
vity (section 4.1.1). Our results demonstrate the capability of the Gabor layer to
generate a roto-translational feature space and use a translation predictor over
this feature space to obtain rotation invariance and angular prediction proper-
ties to neural networks. Furthermore, the number of parameters has been kept
lower than 10K. Compared to the RIN (steerable + CNN) approach, RIN (Gabor
+ CNN) trainable parameters reduction is almost five times.

4.3 Gabor Filters as Feature Extraction on Com-

plex Datasets

The previous section validated the Gabor layer to generate a roto-
translational feature space followed by a convolutional feature extractor and the
translation predictor (3D convolution + dense layer). The Gabor layer approach
outperformed the state-of-the-art results while reducing the number of trainable
parameters significantly.

The next step is to test RIN (Gabor + steerable) in datasets that contain com-
plex features. One commonly used dataset for this is the CIFAR-10 from the Ca-
nadian Institute For Advanced Research. The small-sized image examples from
this dataset allow us to test the network capabilities on image sizes similar to the
ones of the MNIST. Furthermore, literature has used this dataset in the context
of upright training and randomly rotated validation.

CIFAR-10 (Figure 4.7) contains 60,000 examples separated into ten classes
with the size of 32 x 32 pixels. While the MNIST dataset contains gray examples
(one input channel), CIFAR-10 contains color images with three channels (RGB).
The classes included in this dataset are mutually exclusive (e.g., there is no over-
lap between automobiles and trucks).

Usually, state-of-the-art approaches use this dataset in its original orienta-
tion. To test rotation invariance, we propose the usage of randomly oriented
examples in the validation. It means training the network with the examples in
their original orientation (upright position) and validating with randomly orien-
ted examples. This training approach is analogous to the one used in the previous
chapter with the MNIST dataset.

As observed in Figure 4.7, the images contain objects on different perspec-
tives, rotations, and sizes. One of the main challenges is the in-plane and out-of-
plane rotations. For example, the airplane class contains airplane images from
different perspectives like flying with a ground perspective or landing on the
track with a frontal or aerial perspective. Also, the small size of the images (32 x
32 pixels) makes the detection challenging when the objects are on a rich back-
ground or not in focus.

For the experiments with the CIFAR-10 dataset, we train the network with
the original orientation of the examples and validate on rotated ones. Usually,
when rotating images, we can find boundary artifacts. One of these artifacts

86

CHAPTER 4. ROTATION INVARIANT NETWORKS ON COMPLEX DATASETS

Figure 4.7 – CIFAR-10 classes

(a) Train airplane 0° (b) Train dog 0° (c) Test bird 225° (d) Test car 30°

Figure 4.8 – Up-right training (a,b) and randomly rotated (c, d) examples. All examples
are processed to avoid black corners and borders. Test examples are rotated randomly
between 0° and 360° clockwise.

comes in the form of black corners to fill the missing information product of the
rotation. In some cases, the network could use the orientation of these edges
as a feature to aid the angular prediction. Follmann and Bottger [2018] propose
a pre-processing step on the dataset images to avoid the accuracy influence of
these artifacts on rotated examples.

Following a previous approach (Follmann and Bottger [2018]), we first apply
a circular mask to each example. The diameter of the circular mask is equal to
the image width. Also, we smooth the boundary of the circular mask by applying
a Gaussian blur mask with a kernel size of 5 pixels. It is important to mention
that we apply this pre-processing step to the complete dataset (training upright
examples and rotated validation examples) (Figure 4.8).

After applying the circular mask and the Gaussian blur to every example of
the dataset, we randomly rotate the validation set examples. This pre-processing

87

CHAPTER 4. ROTATION INVARIANT NETWORKS ON COMPLEX DATASETS

step allows us to train the network with the original orientation of the examples
(processed) and validate the rotation-invariant properties of the network with
randomly rotated samples.

Compared to the MNIST dataset, the CIFAR-10 dataset contains color images.
While MNIST contains a single grayscale channel, CIFAR-10 has three channels
(red, green, and blue). Consequently, the input shape of the MNIST dataset is
[28, 28, 1], and for CIFAR-10, the shape is [32, 32, 3]. As there exist different
channel values (1 versus 3), it becomes challenging to use the same architecture
used on the MNIST dataset.

One possible approach is to merge the three channels into one grayscale to
preserve the network architecture. While this can be a helpful idea, it is com-
monly known in the deep learning field that color information is advantageous.
Usually, more information is beneficial to the learning process.

Another possible approach is to apply the Gabor layer (section 4.1) to each
of the color channels separately and then merge them. The merge step can be a
linear sum between the colors, a weighted average, or a transformation. None-
theless, we believe that merging the channels could be equivalent to an RGB to
grayscale transformation hence losing information in this step. After some expe-
riments, we validated that using the color increased the classification accuracy
on the CIFAR-10 dataset.

Thus, we opted to preserve the information of the color channels through the
network. To solve this, we applied the Gabor layer to each color and then conca-
tenated them as a feature space. We apply the Gabor layer to the red channel of
the CIFAR-10 example (input: [32, 32, 3]), and it generates a roto-translational
feature space with real and imaginary responses (output: [32, 32, N, 2]) with as
many orientations as N (section 4.2). We do the same to the green and blue chan-
nels. Consequently, we have three roto-translational feature outputs [32, 32, N,
2] with the color information. Finally, we concatenate these outputs to generate
ensembled feature space with shape [32, 32, N, 6].

The feature space now contains for each orientation (third dimension) a set
of real and imaginary RGB features (fourth dimension). This concatenation pre-
serves the roto-translational feature space properties that the network needs.

After the roto-translational feature space, the following stages of the net-
work are identical to the previously presented one. Recall that we pad the roto-
translational feature space by itself. Then we apply 2D convolutions as feature
extractors without affecting the translation axis. Finally, we apply the translating
predictor to each translation (sharing weights) and outputs a probability distri-
bution (P). Finally, a globalmaxpool operation outputs the predicted class and
angle information (section 4.3).

4.3.1 Feature Extraction Stage Alternatives

Until this point, we have used a convolutional (CNN) feature extractor to the
roto-translational space. When using MNIST applying the convolutional feature
extractor was trivial. However, CIFAR-10 has three channels (RGB). In this sense,
the way of connecting the CNN feature extractor to the roto-translational feature
space changes.

88

CHAPTER 4. ROTATION INVARIANT NETWORKS ON COMPLEX DATASETS

To preserve the roto-translational properties of the feature space, we need to
apply the predictor to each position of the translation and output a prediction
of this position. Then move the predictor to the next translation up to all the
positions are scanned. As we have a color input and the output of the Gabor
layer is [28, 28, i , 6], we apply the convolution to the height and width (first and
second dimension) and allow the six channels (last axis) to be treated as input
features of the convolution. This method is analog to applying a convolution to
an RGB image [x, y, 3], having three channels for the colors. Then we apply the
convolution to the orientations N, and the output of each position is preserved in
the table P.

It is important to notice that while the convolution has attention over one
translation by position, the convolution shares weights and is the same convolu-
tion applied to each translation. It means that the network parameters are lower
while preserving the predicting capability. The shared weight predictor learns to
be angularly selective and output a higher probability when scanning the orien-
tation that corresponds to the training orientation (usually the upright position)
(chapter 2).

Finally, the result of each position is saved in a table with shape [K, N] where
N are the number of orientations and K the number of classes. Then a maxpooling
operation over the rows and columns outputs the class and angle.

4.3.2 ResNet Feature Stage

Up to this point, we have used a set of 2D convolutions applied to the roto-
translational feature space as feature extractors. While this has been useful for
simple features datasets like MNIST, they could not be enough for complex data-
sets such as CIFAR-10.

In this sense, we explore the possibility of replacing the feature extrac-
tion convolutions (Fig. 4.9c) with state-of-the-art feature extractors. Instead
of applying a series of convolutions and maxpooling operations to the roto-
translational feature space, we propose using a feature extraction stage from
ResNet (He et al. [2016]) network.

Figure 4.9 – The architecture feature extraction can be replaced from convolutions to a
state-of-the-art feature extractor alternative.

89

CHAPTER 4. ROTATION INVARIANT NETWORKS ON COMPLEX DATASETS

Using the feature stages from ResNet would benefit the rotation-invariant
network that we propose in several ways. In this sense, we could search for
different state-of-the-art feature stages that could benefit our network. Further-
more, we could benefit from the usage of transfer learning and the use of pre-
trained networks. Transfer learning refers to the technique of using a previously
trained network on a similar task by changing the last layers of the neural net-
work. Hence, we can use a previously trained feature extractor part of the net-
work on classification tasks. This technique would allow us to reduce training
time while preserving accuracy.

Nevertheless, the feature stage substitution comes with some challenges to
adapt the shapes and connections between the Gabor layer and the possible
feature extraction backbone. Usually, the state-of-the-art networks have an input
of shape [width, height, channels] where the channels are usually three when
used on RGB images. It means that the expected input of these networks is not
compatible with the extra dimension that contains the translations.

One way to solve these incompatible shapes is to apply the feature extraction
backbone to one orientation instead of to the complete translation of size N.
This method would preserve the translation information as it does not affect
the translation axis. After this, we concatenate the outputs and apply a small
3D convolution layer as translating predictor. Finally, we apply the translating
predictor in the same way as the previous approaches. Recall that we connect
several instances of the predictor (sharing weights) to each translation of the
roto-translation feature space.

One challenge of using a feature extraction backbone is the roto-translational
feature space properties preservation. After several experiments, we observed
that when we apply the feature extraction backbone to the roto-translational fea-
ture space with an attention window of N, the translation property was lost. This
phenomenon is mostly due to the layers acting as a transformation between the
input and output. There does not exist any directive for the network to preserve
the initial ordering of the filters.

To solve this challenge, we apply the feature extraction backbone to each
filter of the roto-translational feature space individually. In this sense, the filter
position is preserved until the output of the backbone. Consequently, the roto-
translational properties of the feature space are preserved, and the backbone is
used as a feature extractor to refine the features.

It is important to notice that while the convolution has attention over one
translation by position, the convolution shares weights and is the same convolu-
tion applied to each translation. It means that the network parameters are lower
while preserving the predicting capability. The shared weight predictor learns to
be angularly selective and output a higher probability when scanning the orien-
tation that corresponds to the training orientation (usually the upright position)
(2).

Another workaround to preserve the roto-translational properties was to use
the channel dimensions of the feature extraction backbone as input for the orien-
ted filters. While this idea was intuitive, after several tests, we find that the net-
work lost the oriented order of the filters, hence losing the roto-translation pro-
perty. Furthermore, when using this approach, we could not use transfer learning

90

CHAPTER 4. ROTATION INVARIANT NETWORKS ON COMPLEX DATASETS

as the backbone network contains weights for three input channels and not as
many as N.

As our main interest in this work is network size reduction, another challen-
ging point was the number of parameters. As we used a feature extraction back-
bone, the number of trainable parameters increases when evaluating N orien-
tations. For example, using a ResNet20 with 438k parameters multiplicated on
N = 16 orientations would mean to scan 16 filters yielding about 7M of trainable
parameters. To solve this, we implemented sharing weights for the backbone.
Instead of N instances, we implement a single instance of the backbone network
that scans each feature orientation. Consequently, the computing effort increases
N times. As we focus on reducing the network size, we leave the reduction of
computing effort to future works.

In the next section, we present the results of different implementations follo-
wing the method outlined previously. Then, we present results on the CIFAR-10
dataset with steerable filters and the Gabor layer to compare. Also, we present
results with the original convolution feature extraction and with different sizes
of the ResNet network.

4.3.3 Results

To validate the introduced architectures, we follow the same methodology
used on the MNIST dataset. We trained the network with upright-oriented
samples and validated random orientations with the previously presented cir-
cular crop. We trained the network for 200 epochs using the Adam optimizer on
a Titan Xp GPU with 16 GB VRAM, and unless noted, the angular sampling is
N = 16.

In this section, we test several architecture combinations. We test RIN (stee-
rable + CNN), and RIN (Gabor + CNN) as alternatives to generate the roto-
translational feature space. Then, as alternatives to the feature extraction stage,
we test a convolutional one (RIN (steerable + CNN)) and several depths of the
ResNet feature extraction stage RIN (Gabor + ResNet).

The convolution feature extraction stage has three 2D convolution layers,
with the number of filters increasing with the depth. A BatchNormalization layer
follows up each one of the convolutional stages. Then we apply the translation
predictor to the output of the feature stage, and the 2D table is generated with
class and angle information. To make a fair comparison (using approximately the
same number of parameters), we tested a different number of filters on each
2D convolution layer to approach the number of parameters of the following ap-
proach.

Then, we replace the feature extraction stage with the ResNet feature extrac-
tion part. As several depths of ResNet exist in the literature, we think it is also
interesting to evaluate the impact of the network’s depth on the accuracy. We
use the ResNet backbone as found in the literature. The only change is the input
filters going from 3 to 6 to allow the feature stage backbone to be compatible
with the shape of the real and imaginary information of the Gabor filters.

Table (4.2) condenses the results of these experiments compared to the cur-
rent state-of-the-art approaches. At first sight, we can observe that RIN (Gabor

91

CHAPTER 4. ROTATION INVARIANT NETWORKS ON COMPLEX DATASETS

Table 4.2 – Obtained error rate on the CIFAR-10 dataset (training: upright/validation:
rotated)

Method Error rate # parameters

RotInv Conv. (RP_RF_1) Follmann and Bottger [2018] 55.88% 130k
ORN Zhou et al. [2017] 59.31% 382k

RP_1234 Cohen and Welling [2016] 62.55% 130k

RIN (steerable + CNN) Rodriguez Salas et al. [2021b] 36.41% 73k
RIN (Gabor + CNN) Rodriguez Salas et al. [2021b] 37.60% 93k
RIN (Gabor + CNN) Rodriguez Salas et al. [2021b] 28.69% 238k
RIN (Gabor + CNN) Rodriguez Salas et al. [2021b] 33.25% 586k

RIN (Gabor + ResNet8) Rodriguez Salas et al. [2021b] 27.68% 243k
RIN (Gabor + ResNet14) Rodriguez Salas et al. [2021b] 27.34% 341k
RIN (Gabor + ResNet20) Rodriguez Salas et al. [2021b] 21.10% 438k
RIN (Gabor + ResNet26) Rodriguez Salas et al. [2021b] 21.50% 537k

+ ResNet26) performs better in error rate terms than the other approaches. The
smallest convolutional network (RIN (steerable + CNN)) with 93k parameters is
also the smallest of all the approaches while achieving competitive accuracy. In-
creasing the number of filters in the convolutions achieved a lower error rate up
to 238k. After this value, the error rate difference was not significant. Nonethe-
less, all the convolution backbone approaches outperformed the state-of-the-art
works in error rate.

For the ResNet feature stage, we test 4 different approaches with depth varia-
tions. The smallest one (RIN (Gabor + ResNet8)) achieved state-of-the-art values
outperforming even the convolutional approaches. While increasing the depth
reduced the error rate almost by 7%, the number of parameters also increased
quickly. Increasing the number of layers beyond 26 did not result in better error
rates.

The presented networks in this section obtained rotation invariant properties
while trained with samples in one orientation (upright oriented). These results
prove the network’s capability to generalize and correctly predict the class des-
pite the orientation of the sample on the validation. Also, the network preserved
the equivariance of the roto-translation feature space and predicted the angle
of the input. We obtained these results without using data augmentation on the
dataset. The state-of-the-art approaches presented in Table (4.2) achieve up to
some degree rotation invariance, and they do not predict the input’s angle.

4.4 Conclusions

In this chapter, we presented RIN (Gabor + CNN) as an alternative to the
steerable filters and scattering transform based networks. Also, we introduced
and presented the possibility of replacing the convolutional feature stage of the
network with the ResNet feature stage (RIN (Gabor + ResNet))

Gabor filters represented an enhancement to the previous approaches. They
present higher flexibility and descriptive potential than the steerable filters and
scattering transform. We can observe this flexibility on the angular and frequency

92

CHAPTER 4. ROTATION INVARIANT NETWORKS ON COMPLEX DATASETS

selectivity of the filters on the trained data. Furthermore, these filter shapes are
trainable and learn the frequency, angular selectivity, and frequency selectivity
from the training data. The steerable filters approach has a unique trainable
parameter that changed its size. The enhanced features of the Gabor filters open
the possibility to work with datasets containing images with complex features. In
this chapter, we presented one set of Gabor basis filters (with real and imaginary
responses), but it is possible to add as many filters as necessary for the problem.

The usage and validation of Gabor filters also demonstrated that it is viable to
use different types of oriented filters to obtain a roto-translational feature space.
Up to this point, we have validated on different architectures and datasets that
decomposing the input image in several oriented components and aligning them
to a reference generates a feature space that linearly translates with the input
rotation. We have observed the same behavior on the scattering transform (for
1D and 3D cases), on the steerable filters (RIN (steerable + CNN)), and finally
on the Gabor filters (RIN (Gabor + CNN))described in this chapter. Furthermore,
using a translating predictor over this roto-translational feature space to obtain
angle prediction has been validated experimentally.

The second main contribution comes in the possibility of using state-of-the-art
networks (such as ResNet) as the backbone network of the model. This possibi-
lity means that the network can accept different existing network architectures
feature stages and allows the developer to select a backbone to suit the task.

While we obtained state-of-the-art results on the MNIST dataset, we moved
to a more complex dataset as CIFAR-10. We managed to outperform the state-of-
the-art accuracy with RIN (Gabor + CNN) and different backbones RIN (Gabor
+ ResNet) on this challenging dataset. Also, while RIN (Gabor + CNN) surpas-
sed the state-of-the-art error rate, the lowest error rate reached was about 29%.
Increasing the size and number of convolution filters was not productive for the
task and quickly overfitted the network. On the other hand, RIN (Gabor + Re-
sNet) reduced the error rate by more than 10% up to 21% of the error rate.

Another interesting result of these experiments is the validation obtained
when using the roto-translational feature space and the translating predictor
operation. This chapter demonstrated that adding these two functions (roto-
translational feature space mapping and translating predictor) to an existing
network endows it with rotation-invariant properties.

It is important to notice that the obtained experimental results open the pos-
sibility to generalize these results and propose a methodology to obtain rotation
invariant networks when following some guidelines. In the next chapter, we study
this generalization concept and provide a mathematical proof of the trainability
of the networks.

93

CHAPTER 4. ROTATION INVARIANT NETWORKS ON COMPLEX DATASETS

94

Chapter 5

Mathematical Background and
Formal Methodology

In the previous chapters, we introduced the roto-translational feature space
concept. Also, we outlined the two operations involved in its creation: oriented
feature space and translating predictor. Then, we proposed several alternatives
to generate the roto-translational space, such as scattering network, steerable
filters, and Gabor filters. Also, we demonstrated results on datasets with simple
features (MNIST) and with complex features (CIFAR-10). After obtaining experi-
mental results with these alternatives and their combinations (scattering, stee-
rable, Gabor and CNN, ResNet), we converged on a general methodology to ob-
tain rotation-invariant properties on CNNs.

In this chapter, we formalize the definitions and properties of this methodo-
logy. First, we outline the oriented feature space operations and re-orientations.
Then, we present proof of the translating features over the roto-translational
feature space. In the second part, we present mathematical proof of the traina-
bility of the translating predictor. Finally, we discuss the Vapnik-Chervonenkis
Dimension as mathematical proof of the reduced size of the network.

5.1 Oriented Feature Space

This section introduces the theoretical background of the proposed method
and proves that the network is trainable. First, we start by introducing the orien-
ted feature space representation.

Let x be an example (an image) x ∈ Rm×n, and let g be a filter acting as an
oriented edge detector with the periodicity 2π. Let ρϕ be a transformation ro-
tating the support by the angle ϕ. Then ρϕg = gϕ, with g=g 0o

, be such a filter
oriented along the angle ϕ.

The product x∗ gϕ extracts the oriented components of x that are oriented
in ϕ. We have a set of orientations ϕi = 2πi /N for i = 0, . . . ,N, with N ∈ Z+, and
dϕ = 2π/N. Where N is the number of orientation components. The ordered set
[x∗ gϕi] contains all oriented components of x.

Definition 5.1.1 (feature representation). Let Φ be a mapping Φ : Rm×n →
Rm×n×N, and Φ(x) a feature representation of x containing oriented components
of x, and re-oriented to align with the referential orientation ϕ0.

95

CHAPTER 5. MATHEMATICAL BACKGROUND AND FORMAL METHODOLOGY

Φ(x) = [ρ−ϕi (x∗ gϕi)] (5.1)

Consider now a special type of permutation τ where the elements move right-
wards and the last one replaces the first one. This permutation is cyclic with the
period equal to the length of the vector it is applied to. We refer to τ by transla-
tion, and τi denotes τ applied i -times. In this context, the translation is applied
along the third dimension. That is, applied to x, Φ and [gϕi], in this context, the
following holds:

1. A translation τ applied to some x is the identity operator τx = x because x
lacks the third dimension.

2. τ[gϕi] = [ρdϕgϕi] because of ρdϕgϕi = gϕi+1

3. τk [gϕi] = [ρϑgϕi] for some ϑ= kdϕ, ∀k ∈ Z

We have the following property:

Property 1. There is a covariance of the rotation of x with the translation of Φ(x)
along its third axis

τkΦ(x) =Φ(ρϑx) with ϑ= kdϕ, ∀k ∈Z (5.2)

Proof 1. We have

Φ(ρϑx) = [ρ−ϕi (ρϑx∗ gϕi)]

= [ρ−ϕiρϑ(x∗ρ−ϑgϕi)]

= [ρϑ−ϕi (x∗ gϕi−ϑ)]

= τk [ρ−ϕi (x∗ gϕi)] = τkΦ(x)

Considering all k = 0, . . . ,N the left-hand side of eq. 5.2 gives access to features
coresponding to all rotations ρϑx. Among all these rotations, there is one that
corresponds to an almost unrotated version of x.

5.2 Prediction Model

Once we obtained a roto-translational feature space as explained in the pre-
vious section, the next step is to prove the trainability of the translating predictor.
In this section, we first outline the properties and definitions involved in the net-
work training and then mathematically prove the trainability of the prediction
model.

For some given, joint probablity p(y, x) let us search for a model assigning to
x a class y. However, not x but only ρϑx is observable. A classical way of learning
a model to approximate p is training the model using a data augmentation y =
f DA(ρϑx). Using a feedforward network we learn a mapping

y = f DA(ρϑx;θ) (5.3)

96

CHAPTER 5. MATHEMATICAL BACKGROUND AND FORMAL METHODOLOGY

where θ are the model parameters and the superscript DA indicates a data aug-
mented model. We typically proceed by maximizing the probability of the predic-
tion by minimizing a cost function J(θ) =− log p(y | ρϑx).

Instead of that classical way, consider a model f in the form of concatenation
of two mappings f (·) = f ∗(Φ(·)), where Φ is a representation mapping and f ∗ a
class-probability model. Using the mapping Φ from eq. 5.1 and considering all its
permutations τiΦ for i = 1, . . . ,N we obtain a collection of models

[fi (·)] = [f ∗(τiΦ(·))] (5.4)

with f ∗(·) = f ∗(·,θ f ∗) and Φ(·) = Φ(·,θΦ). The parameters θΦ and θ f ∗ are inde-
pendent of the rotation of x. We analyze this collection of models below.

In the following the term p(A) denotes the probability of some stochastic event
A to occur. More particularly, when p(A)=1, it indicates the certainty even though
A is stochastic.

Definition 5.2.1 (Indiscernibility). Let f be a classification model, x1 and
x2, with x1 6=x2, two examples and f (x1) and f (x2) the predictions by f on
these examples. When f predicts the same class for any x1 and x2, that is
p(f (x1)= f (x2)) = 1 then we say x1 and x2 are indiscernible by f , written x1 ' f

x2.

Property 2 (Equivalence of representation). Let f be some classification mo-
del in the form of f (·) = f ∗(Φ(·)), and ρψx1 and ρϕx2 be two differently oriented
examples. If the two different, and differently oriented, examples are indiscer-
nible by the model, that is p(f (ρψx1)= f (ρϕx2)) = 1 then we write

p(f ∗(τiΦ(ρψx1)) = f ∗(τ jΦ(ρϕx2))) = 1

after rotation of the support by ρ−ψ we obtain

p(f ∗(τiΦ(x1)) = f ∗(τ jΦ(ρϕ−ψx2))) = 1

substitution ϑ=ϕ−ψ

p(f ∗(τiΦ(x1)) = f ∗(τ jΦ(ρϑx2))) = 1

using the Definition 5.2.1 to drop the probability

τiΦ(x1) ' f ∗ τ jΦ(ρϑx2)

by translating both sides by τ− j we finally obtain the indiscernibility of repre-
sentation of some rotated example x2 and a translated representation of some
upright x1.

∃k, τkΦ(x1) ' f ∗ Φ(ρϑx2), with k = i− j

There is a way of finding a convenient k for some given (and unknown) ϑ by
using the maximum likelihood.

97

CHAPTER 5. MATHEMATICAL BACKGROUND AND FORMAL METHODOLOGY

Lemma 1. For any ϑ ∈R, and 0 < dϕ sufficiently small

∃k such that τ−kΦ(ρϑx) 'Φ(x) (5.5)

and k depends on x.

Proof 2. From Prop. 1 for ϑ=dϕ and k=1 we have the equality τ−kΦ(x) =Φ(ρϑx).
However, because ϑ ∈ R but k ∈ Z+ and when kdϕ 6= ϑ, ∀k, the exact equality
is not possible and only τkΦ(ρϑx) ' Φ(x) since a misalignment occurs between
Φ−1(τ−kΦ(ρϑx)) and Φ(x) but at most up to ±dϕ

2 .

Because of the Lemma 1, one of the models in eq. 5.4 will maximize the class
probability predicted from each representation mapping τiΦ

max
i

p fi (y = y | ρx) (5.6)

We want to minimize the negative log-likelihood cost of the model providing
the correct class prediction

J(θ) =− log p(y = f ∗(τkΦ(ρϑx) | x,ϑ))

where k = argmax
i

p(y = f ∗(τiΦ(ρϑx) | x,ϑ))
(5.7)

in a usual way by minimizing the per-example loss

L (x, y,θ) =− log p(y | x,ϑ;θ)

When the k-th model maximizes the probability in eq. 5.7 we adapt the weights
of the k-th model by taking θ←θ−εg where g = ∇θL (ρϑx, y ;θ). The weights of
layers are updated by using the error back propagation algorithm as usual fk (.;θ)
= f ∗(τiΦ(.;θΦ);θ f ∗). Notice that ϑ in ρϑx is not needed to be known since the
weights θΦ and θ f ∗ are independent of ϑ. Updating the weights of the mapping
τkΦx is done using τk [ρ−ϕi (x∗ gϕi)] which consists of three functions: translation
τk , a set of fixed-angle rotations ρ−ϕi and convolution of x by a set of filters gϕi ,
where only the parameters of the edge detector g are trainable. This training is
a classical closed-loop training iterated until convergence.

5.2.1 The Vapnik-Chervonenkis Dimension of the Model

Recall the Vapnik-Chervonenkis (VC) dimension of a classifier (Vapnik and
Chervonenkis [1971]), defined as the maximal number of different points x that
the model can label arbitrarily. Intuitively, a more complex problem requires a
model with a higher VC dimension, and the model size will be bigger.

Consider now a model f assigning a class y to x for some joint probability
p(y, x).

When only ρϑx are observable, the classification ŷ = f (ρϑx) can be done by
using the data augmentation to train y = f (ρϑx), with all ϑ, see eq. 5.3. This model
data will have a high VC dimension.

Consider now a f fitted to p(y, x), i.e. with no data augmentation. When only ρx
is observable, the classification ŷ = f (ρϑx) and the prediction of the angle ϑ could

98

CHAPTER 5. MATHEMATICAL BACKGROUND AND FORMAL METHODOLOGY

also be done by using the maximum likelihood polling, eq. 5.6. This approach
however would be computationally costly since the prediction needs to be done
over all the rotations.

If the model f can be split into two parts, as in eq. 5.4, the predictions f (ρϑi x),
for all possible ϑi , become very cheap. We compute a unique feature representa-
tion Φ(x). The predictions are then computed by the second part of the model f ∗

on the mere translations τiΦ(x).
The VC dimension of f , eq. 5.4, is much smaller than that of f DA, eq. 5.3, since

f learns the representation of p(y,ρϑx) with only |ϑ| < dϕ
2 instead of ϑ ∈ (0,2π) when

data augmentation is used. Consequently, the model size also is smaller.
Moreover, for the model f , eq. 5.4, we have |θ f | = |θ f ∗ |+|θΦ|, where | . | denotes

the number of parameters. The mapping Φ(·) is computed only once, and the
predictions [f ∗

i (·)] are cheap since using only a subset of parameters |θ f ∗ |.
In this sense, a model trained with data augmentation (multiple rotations of

the same example) presents an increase in size to overcome the complex pro-
blem. Also, it means that the translating predictor naturally has smaller size as
it does not need to become rotation invariant but angular selective to one orien-
tation. We can demonstrate this concept experimentally by comparing a CNN
baseline model trained on randomly oriented samples with our approach.

The selected baseline model consists of a series of convolution layers followed
by maxpooling operations. We can observe in Fig. 5.1 the baseline architecture
used in this experiment. Also, we increase the number of filters on the convo-
lutional layers, thus increasing the size of the network up to 3.6 M parameters.
Finally, we compare the baseline model with the previously presented RIN (Ga-
bor + CNN) with the same training strategy (RRT).

�������������������� �������������������� ��������

Figure 5.1 – Baseline CNN based on LeNet-5.

As we can observe in Fig. 5.2 the accuracy of the baseline tends to increase
when increasing the size of the model (number of convolutional filters). Howe-
ver, the accuracy of the baseline does not significantly increase from 2.5 M of
parameters and beyond. On the other hand, RIN (Gabor + CNN) reaches 98% of
accuracy with less than 100k parameters. This reduced size is due mainly to the
small predictor size present in the model. The predictor does not become inva-
riant to several rotations ; hence the VC dimension of the model is lower than the
baseline model.

99

CHAPTER 5. MATHEMATICAL BACKGROUND AND FORMAL METHODOLOGY

Figure 5.2 – RIN (Gabor + CNN) compared with baseline CNN when trained on randomly
oriented samples (RRT).

5.3 Conclusions

In this chapter, we presented a general methodology to obtain rotation-in-
variant convolutional neural networks. For a more straightforward explanation,
we divided this approach into two main parts. First, the oriented feature space
generates a roto-translational feature space containing the angular and edge
orientation of the image. Second, the prediction model was applied to the roto-
translational feature space to obtain a probabilistic distribution with the class
and angle inference.

Theoretically, the feature space representation can be built around any filter
with the faculty of being oriented in a particular direction. We demonstrated this
theory by proposing several alternatives to generate the oriented filters (scatte-
ring, steerable, and Gabor). Then, the oriented features are re-aligned to obtain
a roto-translational feature space. While this operation is computationally inten-
sive, it is compulsory, as proven in this chapter.

In the second part, we outlined the mathematical proof about obtaining rota-
tion invariant networks while keeping a small predictor size. Also, we highlighted
the mathematical notion behind the predictor and proved its trainability when
trained as translating predictor.

Finally, we recalled the Vapnik-Chervonenkis dimension of the model, which
outlines the properties and proof of a smaller predictor obtained by the metho-
dology.

In this sense, one of the main products of this manuscript work is the ge-
neration of this methodology. Following the definitions and lemmas outlined in
this chapter, we can endow rotation invariant properties on neural networks. It
means that several other possibilities can be explored as an alternative for the
oriented features or the translating predictor. Some of these alternatives are dis-
cussed in the next chapter.

100

Chapter 6

Conclusions and Future Works

Deep learning has become the standard solution for visual understanding
tasks. In this sense, we can find neural networks running in several hardware
targets. With many of these targets having limited resources (low CPU frequency
to preserve energy, low memory, lack of GPU), it becomes important to develop
smaller and less computational intensive networks.

We study how to endow a classification model with robustness against input
image deformations. Specifically, we selected the rotation invariance as we stu-
died that endowing the feature stage with intrinsic rotations would result in a
smaller classifier (chapter 5). To conclude this manuscript, we review our contri-
butions to this topic and discuss future work perspectives.

6.1 Contributions

The first step was to obtain a feature stage with intrinsic rotations. To ob-
tain this, we based our work on the previous concept of oriented feature space
(Chen et al. [2000]). One of our contributions is re-orienting these features to a
horizontal reference (chapter 2). The re-orientation of the oriented feature space
outputs a roto-translational feature space. The roto-translational space presents
a covariance between the angle of rotation of the input image and the translation
of the oriented filters.

One of the most important properties of this roto-translational feature space
is capturing the inner angular relationship between the edges of the image and
mapping them as a linear distance between the filters. Consequently, the roto-
translational feature space stores all the possible rotations (up to N rotations) of
the input as translation positions. We can also see this as a domain transforma-
tion between the angular and linear domains between the input image and the
filter space.

The oriented feature space is a sparse representation of the image. This
comes from the fact that a 2D image is projected into a 3D space. We validate
the possibility of using sparse, oriented features of the roto-translational feature
space as filters of a convolutional network (in the first layer) on a classification
problem with a more challenging classification task, such as face recognition.
For this problem, we evaluated if the network converged adequately using an
oriented feature space re-orientated to obtain a roto-translational feature space.

101

CHAPTER 6. CONCLUSIONS AND FUTURE WORKS

The translating predictor was not included in this experiment as the main objec-
tive was to prove the possibility of convergence with a roto-translational feature
space. The network could perform a classification task by effectively recognizing
faces, and it served as proof of the concept of the viability of using these filters
on classification problems.

After this, we presented the translating predictor. The translating predictor is
implemented as a collection of small identical predictors (sharing weights) that
read each translation of the feature space. Because the predictors are typically
small (no data augmentation by rotation), their execution can be efficiently and
easily done in parallel on a GPU. The prediction of each predictor is stored in a
table that becomes a probability distribution. In this distribution, the maximum
likelihood corresponds to the almost upright orientation of the input image as
seen by the predictor at that particular position (stored in one of the transla-
tions). As explained previously (chapter 2), during training, the prediction of the
predictor in the branch that corresponds to the upright oriented features is rein-
forced. This training setup does not reinforce the other positions but the upright-
oriented features. During the training, the same example is eventually presented
to the network again (albeit with another rotation). Consequently, the predic-
tor then becomes angularly selective in the sense that it learns to output lower
(near zero) probability when the features do not correspond to the upright orien-
ted example. Consequently, by squeezing out the invariance to the rotation from
the predictor, it will become smaller in size compared to other predictors that
need to become rotation invariant, as demonstrated by the Vapnik-Chervonenkis
conclusion (chapter 5).

We validate this proposal with a dataset that contains simple features (MNIST
handwritten numbers). On this dataset and its rotated variations, we reached
state-of-the-art performance using the scattering transform as oriented features.
Furthermore, we outperformed the previous state-of-the-art approaches with the
steerable filters as oriented features (chapter 3).

After this, we presented results on datasets with complex features such as
CIFAR-10. We proposed using Gabor filters to generate the oriented feature
space to overcome the limitations of the steerable filters (chapter 4). With Gabor
filters, we outperformed previous state-of-the-art approaches while keeping the
network size smaller than our competitors.

Furthermore, we explored the possibility of using alternative neural network
backbones. This possibility means changing the convolutional backbone used
with simple feature datasets to a state-of-the-art network. In this sense, the back-
bone can be any convolutional network oriented towards classification tasks. To
prove this, we replaced the convolutional backbone with a ResNet network with
different depths. As a result, we obtained an increase of almost 10% in accuracy
compared to the convolutional and 34% improvement compared to the current
state-of-the-art techniques. Recall that RIN (Gabor + CNN) obtained a 1.71%
error rate on the MNIST dataset with 9k parameters. The smallest network ap-
proach in the state-of-the-art was the Spherical CNN from Cohen et al. [2018]
with 68k parameters and a 6% error rate. On the CIFAR-10 dataset, RIN (Gabor
+ ResNet20) with 438k parameters obtained a 27.34% error rate compared to
the 55.88% error rate obtained by Follmann and Bottger [2018] with 130k.

102

CHAPTER 6. CONCLUSIONS AND FUTURE WORKS

To complete this work, we presented a mathematical proof of the trainability
of the network when using oriented filters and a translating predictor. We also
completed this proof by discussing the previous experiments and highlighting
the behavior and properties of these operations (chapter 5).

6.2 Future Works

For future works, we present several lines of research that could benefit this
work. For an easier understanding, we divide these into methodological and tech-
nical sections.

For this work, we focus on in-plane rotations of the input image. The obtained
results on the simple features datasets demonstrated that the network gets high
accuracy when the pattern rotates in the plane. When there exist out-of-plane ro-
tations (i.e., CIFAR-10 dataset), the network does not obtain high accuracy (80%
accuracy with ResNet backbone). These results open the possibility of studying
the addition of an extra dimension to the feature space. One possible study axis
is 3D inference with a single image (Kanazawa et al. [2018]). A joint effort bet-
ween the roto-translational feature space and angular prediction of our network
with the mesh transformation could benefit the 3D mapping of the texture.

Also, a possible axis of study comes in the form of invariance to scales. The
scale invariance problem is usually solved by iterative processing the input image
at different scales. There exist some studies (Ghosh and Gupta [2019]) where
steerable filters are used to obtain scale-invariant CNNs. In this sense, an ad-
ditional axis where the scale information is stored could be possible by finding
a representation space representing the scale and the angle. It means that the
network would store the scale information in a similar way that stores the angle
in this work.

Another possible improvement comes from the re-orientation of the feature
space. As explained previously (chapter 2), we rotate the oriented features obtai-
ned by oriented decomposition (scattering, steerable, and Gabor) to the horizon-
tal reference. When working with small images (28 x 28 pixels), the computatio-
nal effort of this process is negligible. However, when the input images increase
in size, the rotation with bilinear interpolation of each filter becomes computa-
tionally costly. Even though it can be executed in parallel, it can present a high
latency. Unfortunately, several experiments demonstrated that the re-orientation
of the filters is crucial to obtain the roto-translational feature space. It means
that it is a process that we can not avoid in the methodology and experimental
setup of the network. Finding a workaround to rotate the features efficiently or
generate a roto-translational feature space without re-orientation would signifi-
cantly decrease the inference time and considerably reduce the training time.
This workaround could consist of obtaining the angle of a feature and projec-
ting it at the corresponding slice of the feature space using circular harmonics
(Worrall et al. [2017]) or kernel-mapping techniques (Zhou et al. [2019]). Worrall
et al. [2017] obtains a feature representation which is a complex number (feature
and orientation) based on circular harmonics. In this sense, we could replace the
oriented representation with a complex number representation of the features.

103

CHAPTER 6. CONCLUSIONS AND FUTURE WORKS

The roto-translational properties of properties would be preserved, and we could
predict the position and angle.

One of the technical improvements comes from making an efficient angular
decomposition of the input image. At the moment of this writing, we generate
the oriented filter ensemble from a set of trainable variables. Recall that we
create a kernel window using these trainable variables and generate a basis fil-
ter used in the first layer of the network. To generate this kernel window, we
use a cycle (for loop) to set the value of each pixel iteratively. Then, we rotate
the basis filter N times. This rotation implies a second cycle that rotates the ba-
sis filter (using the angle parameter) as many times as N. The network executes
these two loops during the training and inference. Improving the generation of
the collection of filters would result in lower forward pass time and reducing the
training time epoch significantly. There exist several possible approaches to do
this. One is using parallelization techniques where different processor threads
manipulate each oriented filter separately. It is possible because there is no data
dependency between the orientated filters. Other possibilities are using vecto-
rization techniques, code optimization, or graph theory to simplify the tensor
graph. Finally, automatic differentiation to compute the gradient could be ano-
ther interesting axis of study instead of using the automatic differentiation from
TensorFlow.

An interesting future work axis comes in the form of a custom loss. For
example, when classifying rotated objects, it might be profitable to use a cus-
tom loss such as the Pixels-Intersection-over-Union (PIoU) (Chen et al. [2020b]).
The idea is that an oriented bounded box – one aligned with a rotated object
– presents less overlap with the background in complex environments. In this
sense, the angular prediction would benefit from orienting the bounding box to
overlapping correctly with the detected object. Furthermore, this intuition would
benefit the detection of rotating objects usually done with horizontal bounding
boxes.

Yet another technical improvement is the cyclic convolution. Up to our know-
ledge at the moment of this writing, there is no cyclic convolution operator in
the used framework. Our workaround consists in periodic padding of the roto-
translational feature space by itself to emulate this behavior. So, there exist the
possibility to develop and find an efficient way to implement a cyclic 3D convo-
lution. Having this cyclic 3D convolution would benefit the network because no
padding would be necessary to obtain all the possible translations prediction.
Consequently, we could reduce the memory occupation and the computational
effort of the network.

The translating predictor also presents another opportunity to improve. In
this work, we used 3D convolutions scanning each orientation of the roto-trans-
lational feature space and outputting a prediction for each translation. We can
avoid using 3D convolutions if we can find an equivalent representation of the
roto-translational feature space while preserving the translation properties. At
this moment, the roto-translational feature space shape is [N, width, height, fil-
ters], where filters correspond to the real and imaginary parts of the Gabor filter.
One possibility is to merge filters and angular axis to a shape of [width, height,
filters * N]. With this transformation, the convolution part of the predictor could

104

CHAPTER 6. CONCLUSIONS AND FUTURE WORKS

be implemented as a 2D convolution applied to each translation. Unfortunately,
the preliminary tests demonstrated that transforming the 4-dimensional space to
a 3D space results in lower accuracy.

Nevertheless, we found a significant training time reduction when using 2D
convolutions compared to the 3D convolution approach used in this work. These
results mean that there exists a possibility of finding a representation of the
roto-translational feature space in conjunction with 2D convolutions without ac-
curacy loss. This solution might consist of using atrous convolutions or dilated
convolutions, and further experiments are needed to find a solution.

Finally, the translating predictor implementation opens different possible rou-
tes for future works. In this work, we presented and used the translation predic-
tor as multiple instances of identical predictors with attention to each transla-
tion. As these instances share weights, the network keeps its size lower compa-
red with other approaches. The network could benefit from this approach using
parallelization techniques to assign a processing thread to each translation. Ano-
ther possibility exists in generating a single instance of this predictor and scan-
ning each translation sequentially. In this sense, the network could be smaller as
there not exist multiple instances of the predictor but would be slower due to the
sequential operations.

105

CHAPTER 6. CONCLUSIONS AND FUTURE WORKS

106

List of research communications

Journals

[1] Rodriguez Salas, R. ; Dokladal, P. ; Dokladalova, E.
Rotation Invariant Networks for Image Classification for HPC and Embedded
Systems.
Electronics 2021, 10, 139. https://doi.org/10.3390/electronics10020139

[2] Rodriguez Salas, R. ; Dokladal, P. ; Dokladalova, E.
A Minimal Model for Classification of Rotated Objects with Prediction of the
Angle of Rotation,
Journal of Visual Communication and Image Representation 2021, Vol. 75,
https://doi.org/10.1016/j.jvcir.2021.103054

International Conferences

[3] R. Rodriguez, E. Dokladalova and P. Dokladal,
Rotation Invariant CNN Using Scattering Transform for Image Classification,
2019 IEEE International Conference on Image Processing (ICIP),
Taipei, Taiwan, 2019, pp. 654-658, doi: 10.1109/ICIP.2019.8804467.

[4] R. Rodriguez, E. Dokladalova and P. Dokladal,
A Minimal Model for Rotation Invariant Convolutional Neural Networks with Pre-
diction of the Angle,
VISAPP 2021 16th Conference on Computer Vision Theory and Applications

Local communications

[5] R. Rodriguez, E. Dokladalova and P. Dokladal,
Rotation Equivariant CNNs for Image Classification
43ème journée ISS France, February 6, 2020, Paris, France

[6] R. Rodriguez, E. Dokladalova and P. Dokladal,
Rotation invariant NN for learning naturally un-oriented data
42ème journée ISS France, February 7, 2019, Paris, France

[7] R. Rodriguez, E. Dokladalova and P. Dokladal,
Rotation invariant NN for learning naturally un-oriented data

107

LIST OF RESEARCH COMMUNICATIONS

Collège Doctoral Franco-Allemand Workshop, 2018, Fontainebleau, France

[8] R. Rodriguez, Deep Learning: Trends and Challenges
Universidad Autonoma de Yucatan (UADY), 2018, Merida, Mexico

[9] R. Rodriguez, Artificial Intelligence Applications
Instituto Tecnologico de Merida, 2018, Merida, Mexico

108

References

A. Allan. Benchmarking machine learning on the new raspberry pi 4, mo-
del b, 2019a. URL https://www.hackster.io/news/benchmarking-machine-
learning-on-the-new-raspberry-pi-4-model-b-88db9304ce4. 4, 5

A. Allan. Benchmarking the intel neural compute stick on the new raspberry
pi 4, model b, 2019b. URL https://www.hackster.io/news/benchmarking-
the-intel-neural-compute-stick-on-the-new-raspberry-pi-4-model-b-
e419393f2f97. 5

L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-Shamma, J. San-
tamaría, M. A. Fadhel, M. Al-Amidie, and L. Farhan. Review of deep learning:
Concepts, cnn architectures, challenges, applications, future directions. Jour-
nal of big Data, 8(1):1–74, 2021. 2

S. Arabi, A. Haghighat, and A. Sharma. A deep-learning-based computer vision
solution for construction vehicle detection. Computer-Aided Civil and Infra-
structure Engineering, 35(7):753–767, 2020. 7, 8

I. Ardiyanto, H. A. Nugroho, and R. L. B. Buana. Deep learning-based diabetic re-
tinopathy assessment on embedded system. In 2017 39th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),
pages 1760–1763. IEEE, 2017. 9

S. Basu, A. Magesh, H. Yadav, and L. R. Varshney. Group equivariant neural ar-
chitecture search via group decomposition and reinforcement learning. arXiv
preprint arXiv:2104.04848, 2021. 35

V. Bonato, E. Marques, and G. A. Constantinides. A parallel hardware architec-
ture for scale and rotation invariant feature detection. IEEE transactions on
circuits and systems for video technology, 18(12):1703–1712, 2008. 5

J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah. Signature verification
using a" siamese" time delay neural network. Advances in neural information
processing systems, pages 737–737, 1994. 45, 46, 47

J. Bruna and S. Mallat. Classification with scattering operators. In CVPR 2011,
pages 1561–1566. IEEE, 2011. 63

J. Bruna and S. Mallat. Invariant Scattering Convolution Networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 35(8):1872–1886,
2013a. ISSN 01628828. doi: 10.1109/TPAMI.2012.230. 45, 61, 63

109

https://www.hackster.io/news/benchmarking-machine-learning-on-the-new-raspberry-pi-4-model-b-88db9304ce4
https://www.hackster.io/news/benchmarking-machine-learning-on-the-new-raspberry-pi-4-model-b-88db9304ce4
https://www.hackster.io/news/benchmarking-the-intel-neural-compute-stick-on-the-new-raspberry-pi-4-model-b-e419393f2f97
https://www.hackster.io/news/benchmarking-the-intel-neural-compute-stick-on-the-new-raspberry-pi-4-model-b-e419393f2f97
https://www.hackster.io/news/benchmarking-the-intel-neural-compute-stick-on-the-new-raspberry-pi-4-model-b-e419393f2f97

REFERENCES

J. Bruna and S. Mallat. Invariant scattering convolution networks. IEEE transac-
tions on pattern analysis and machine intelligence, 35(8):1872–1886, 2013b.
64

H. Bura, N. Lin, N. Kumar, S. Malekar, S. Nagaraj, and K. Liu. An edge based
smart parking solution using camera networks and deep learning. In 2018
IEEE International Conference on Cognitive Computing (ICCC), pages 17–24.
IEEE, 2018. 10

A. Byun. Stanford cs class – cs231n: Convolutional neural networks for visual re-
cognition, 2020. URL https://cs231n.github.io/convolutional-networks.
16

L. Capital. Number of total cameras predicted for 2022, 2017. URL www.ldv.co/
insights/2017. 1

J. Chen, Y. Sato, and S. Tamura. Orientation space filtering for multiple orien-
tation line segmentation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22(5):417–429, 2000. 23, 27, 101

S. Chen, Y. Liu, X. Gao, and Z. Han. Mobilefacenets: Efficient cnns for accu-
rate real-time face verification on mobile devices. In Chinese Conference on
Biometric Recognition, pages 428–438. Springer, 2018. 12

W. Chen, H. Qiu, J. Zhuang, C. Zhang, Y. Hu, Q. Lu, T. Wang, M. Huang, X. Xu,
et al. Quantization of deep neural networks for accurate edgecomputing. arXiv
preprint arXiv:2104.12046, 2021. 8

X. Chen, K. Kundu, Z. Zhang, H. Ma, S. Fidler, and R. Urtasun. Monocular 3d ob-
ject detection for autonomous driving. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 2147–2156, 2016. 2

Z. Chen, K. Chen, W. Lin, J. See, H. Yu, Y. Ke, and C. Yang. Piou loss: Towards
accurate oriented object detection in complex environments. In A. Vedaldi,
H. Bischof, T. Brox, and J.-M. Frahm, editors, Computer Vision – ECCV 2020,
pages 195–211, Cham, 2020a. Springer International Publishing. ISBN 978-3-
030-58558-7. 36

Z. Chen, K. Chen, W. Lin, J. See, H. Yu, Y. Ke, and C. Yang. Piou loss: Towards ac-
curate oriented object detection in complex environments. In European Confe-
rence on Computer Vision, pages 195–211. Springer, 2020b. 104

D. Cireşan, U. Meier, and J. Schmidhuber. Multi-column deep neural networks for
image classification. In Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, pages 3642–3649, 2012. ISBN 9781467312264.
doi: 10.1109/CVPR.2012.6248110. 34

T. Cohen and M. Welling. Group equivariant convolutional networks. In M. F.
Balcan and K. Q. Weinberger, editors, Proceedings of The 33rd International
Conference on Machine Learning, volume 48 of Proceedings of Machine Lear-
ning Research, pages 2990–2999, New York, New York, USA, 20–22 Jun 2016.
PMLR. URL http://proceedings.mlr.press/v48/cohenc16.html. 92

110

https://cs231n.github.io/convolutional-networks
www.ldv.co/insights/2017
www.ldv.co/insights/2017
http://proceedings.mlr.press/v48/cohenc16.html

REFERENCES

T. Cohen, M. Weiler, B. Kicanaoglu, and M. Welling. Gauge equivariant convo-
lutional networks and the icosahedral CNN. In K. Chaudhuri and R. Sala-
khutdinov, editors, Proceedings of the 36th International Conference on Ma-
chine Learning, volume 97 of Proceedings of Machine Learning Research,
pages 1321–1330, Long Beach, California, USA, 09–15 Jun 2019. PMLR. URL
http://proceedings.mlr.press/v97/cohen19d.html. 31, 37, 73, 85

T. S. Cohen, M. Geiger, J. Koehler, and M. Welling. Spherical CNNs. In ICLR,
pages 1 – 15, 2018. 31, 37, 73, 85, 102

C. Coleman, D. Narayanan, D. Kang, T. Zhao, J. Zhang, L. Nardi, P. Bailis, K. Olu-
kotun, C. Ré, and M. Zaharia. Dawnbench: An end-to-end deep learning bench-
mark and competition. Training, 100(101):102, 2017. 45

I. Dahi, M. Chikr El Mezouar, N. Taleb, and M. Elbahari. An edge-based me-
thod for effective abandoned luggage detection in complex surveillance vi-
deos. Computer Vision and Image Understanding, 158:141–151, 2017. doi:
10.1016/j.cviu.2017.01.008. 1

J. G. Daugman. Uncertainty relation for resolution in space, spatial frequency,
and orientation optimized by two-dimensional visual cortical filters. JOSA A, 2
(7):1160–1169, 1985. 77

J. Deng, J. Guo, N. Xue, and S. Zafeiriou. Arcface: Additive angular margin loss
for deep face recognition. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 4690–4699, 2019. 45

J. Deng, U. Roh, J. Bao, Y. Suh, J. Choi, Y. Chen, V. Lin, J. Cheng, Z. Song, M. Cai,
et al. 5g and ai integrated high performance mobile soc process-design co-
development and production with 7nm euv finfet technology. In 2020 IEEE
Symposium on VLSI Technology, pages 1–2. IEEE, 2020. 6

L. Deng and D. Yu. Deep learning: Methods and applications. Foundations and
Trends® in Signal Processing, 7(3–4):197–387, 2014. ISSN 1932-8346. doi:
10.1561/2000000039. URL http://dx.doi.org/10.1561/2000000039. 3

M. Denil, B. Shakibi, L. Dinh, M. Ranzato, and N. de Freitas. Predicting parame-
ters in deep learning. In Proceedings of the 26th International Conference on
Neural Information Processing Systems - Volume 2, NIPS’13, page 2148–2156,
Red Hook, NY, USA, 2013. Curran Associates Inc. 8

S. Dieleman, J. D. Fauw, and K. Kavukcuoglu. Exploiting cyclic symmetry in
convolutional neural networks. CoRR, abs/1602.02660, 2016. URL http:
//arxiv.org/abs/1602.02660. 34

T. M. T. Do and D. Gatica-Perez. Where and what: Using smartphones to predict
next locations and applications in daily life. Pervasive and Mobile Computing,
12:79–91, 2014. 6

D. A. Dyk and X. L. Meng. The art of data augmentation. Journal of Computational
and Graphical Statistics, 10(1):1–50, mar 2001. ISSN 15372715. doi: 10.1198/
10618600152418584. 20, 28, 29

111

http://proceedings.mlr.press/v97/cohen19d.html
http://dx.doi.org/10.1561/2000000039
http://arxiv.org/abs/1602.02660
http://arxiv.org/abs/1602.02660

REFERENCES

C. Esteves, C. Allen-Blanchette, X. Zhou, and K. Daniilidis. Polar transformer
networks. In International Conference on Learning Representations, pages 1
– 15, 2018. URL https://openreview.net/forum?id=HktRlUlAZ. 35

P. Follmann and T. Bottger. A rotationally-invariant convolution module by fea-
ture map back-rotation. In Proceedings - 2018 IEEE Winter Conference on
Applications of Computer Vision, WACV 2018, volume 2018-Janua, pages 784–
792. IEEE, mar 2018. ISBN 9781538648865. doi: 10.1109/WACV.2018.00091.
35, 37, 73, 74, 85, 87, 92, 102

W. T. Freeman and E. H. Adelson. The Design and Use of Steerable Filters.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(9):891–
906, 1991. ISSN 01628828. doi: 10.1109/34.93808. 21, 31, 32, 33, 66, 67

D. Gabor. Theory of communication. part 1: The analysis of information. Journal
of the Institution of Electrical Engineers-Part III: Radio and Communication
Engineering, 93(26):429–441, 1946. 77, 78

C. Gao, A. Gutierrez, M. Rajan, R. G. Dreslinski, T. Mudge, and C.-J. Wu. A study
of mobile device utilization. In 2015 ieee international symposium on perfor-
mance analysis of systems and software (ispass), pages 225–234. IEEE, 2015.
12

L. Gao, H. Li, Z. Lu, and G. Lin. Rotation-equivariant convolutional neural net-
work ensembles in image processing. In Adjunct Proceedings of the 2019
ACM International Joint Conference on Pervasive and Ubiquitous Computing
and Proceedings of the 2019 ACM International Symposium on Wearable
Computers, UbiComp/ISWC ’19 Adjunct, pages 551–557, New York, NY, USA,
2019. ACM. ISBN 978-1-4503-6869-8. doi: 10.1145/3341162.3349330. URL
http://doi.acm.org/10.1145/3341162.3349330. 34, 73, 85

Y. Ge, R. Zhang, X. Wang, X. Tang, and P. Luo. Deepfashion2: A versatile bench-
mark for detection, pose estimation, segmentation and re-identification of clo-
thing images. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 5337–5345, 2019. 4

R. Gens and P. M. Domingos. Deep symmetry networks. In Z. Ghahramani,
M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems 27, pages 2537–2545. Curran Asso-
ciates, Inc., 2014. URL http://papers.nips.cc/paper/5424-deep-symmetry-
networks.pdf. 34

R. Ghosh and A. K. Gupta. Scale steerable filters for locally scale-invariant convo-
lutional neural networks. arXiv preprint arXiv:1906.03861, 2019. 103

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org. 14

Google. Solutions for on-device intelligence, 2020. URL https://coral.ai. 4

112

https://openreview.net/forum?id=HktRlUlAZ
http://doi.acm.org/10.1145/3341162.3349330
http://papers.nips.cc/paper/5424-deep-symmetry-networks.pdf
http://papers.nips.cc/paper/5424-deep-symmetry-networks.pdf
http://www.deeplearningbook.org
https://coral.ai

REFERENCES

Y. Guo. A survey on methods and theories of quantized neural networks. arXiv
preprint arXiv:1808.04752, 2018. 9

M. Haldar, M. Abdool, P. Ramanathan, T. Xu, S. Yang, H. Duan, Q. Zhang,
N. Barrow-Williams, B. C. Turnbull, B. M. Collins, et al. Applying deep lear-
ning to airbnb search. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 1927–1935, 2019.
7

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 770–778, 2015. 34

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recogni-
tion. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 18, 19, 89

G. E. Hinton. Deep belief networks. Scholarpedia, 4(5):5947, 2009. 3

K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are
universal approximators. Neural Networks, 2(5):359–366, 1989. doi: 10.1016/
0893-6080(89)90020-8. 16

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-
dreetto, and H. Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017. 18

G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller. Labeled faces in the
wild: A database for studying face recognition in unconstrained environments.
Technical Report 07-49, University of Massachusetts, Amherst, October 2007.
45, 47

A. Ignatov, R. Timofte, A. Kulik, S. Yang, K. Wang, F. Baum, M. Wu, L. Xu, and
L. Van Gool. Ai benchmark: All about deep learning on smartphones in 2019.
In 2019 IEEE/CVF International Conference on Computer Vision Workshop
(ICCVW), pages 3617–3635. IEEE, 2019. 6

Intel. Intel® movidius™ neural compute sdk documentation, 2019. URL https:
//movidius.github.io/ncsdk/. 4

C. Intel. Openvino™ toolkit benchmark, 2021a.
URL https://docs.openvinotoolkit.org/latest/
openvino_docs_performance_benchmarks_openvino.html. 5

C. Intel. Openvino™ toolkit overview, 2021b. URL https://
docs.openvinotoolkit.org/latest/index.html. 5

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International conference on machine
learning, pages 448–456. PMLR, 2015. 18

113

https://movidius.github.io/ncsdk/
https://movidius.github.io/ncsdk/
https://docs.openvinotoolkit.org/latest/openvino_docs_performance_benchmarks_openvino.html
https://docs.openvinotoolkit.org/latest/openvino_docs_performance_benchmarks_openvino.html
https://docs.openvinotoolkit.org/latest/index.html
https://docs.openvinotoolkit.org/latest/index.html

REFERENCES

M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu. Spatial trans-
former networks. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama,
and R. Garnett, editors, Advances in Neural Information Processing Sys-
tems 28, pages 2017–2025. Curran Associates, Inc., 2015. URL http://
papers.nips.cc/paper/5854-spatial-transformer-networks.pdf. 34

A. K. Jain, N. K. Ratha, and S. Lakshmanan. Object detection using gabor filters.
Pattern recognition, 30(2):295–309, 1997. 78

Kaggle. Dogs vs cats, 2014. URL https://www.kaggle.com/c/dogs-vs-cats. 22

A. Kanazawa, S. Tulsiani, A. A. Efros, and J. Malik. Learning category-specific
mesh reconstruction from image collections. In ECCV, 2018. 103

O. S. Kayhan and J. C. v. Gemert. On translation invariance in cnns: Convolutional
layers can exploit absolute spatial location. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 14274–14285,
2020. 27

I. Kemelmacher-Shlizerman, S. M. Seitz, D. Miller, and E. Brossard. The mega-
face benchmark: 1 million faces for recognition at scale. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 4873–
4882, 2016. 12

G. Koch, R. Zemel, and R. Salakhutdinov. Siamese neural networks for one-shot
image recognition. In ICML deep learning workshop, volume 2. Lille, 2015. 47

T. Kohonen. The self-organizing map. Proceedings of the IEEE, 78(9):1464–1480,
1990. 54

A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet Classification with Deep
Convolutional Neural Networks. In F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger, editors, Advances in Neural Information Processing Systems
25, pages 1907 – 1105. Curran Associates, Inc., 2012. 17, 21, 28

N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar. Attribute and Simile
Classifiers for Face Verification. In IEEE International Conference on Compu-
ter Vision (ICCV), Oct 2009. 45

N. D. Lane and P. Georgiev. Can deep learning revolutionize mobile sensing? In
Proceedings of the 16th International Workshop on Mobile Computing Systems
and Applications, pages 117–122, 2015. 11

D. Laptev, N. Savinov, J. M. Buhmann, and M. Pollefeys. Ti-pooling:
transformation-invariant pooling for feature learning in convolutional neural
networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 289–297, 2016. 33, 37, 74

Y. LeCun and C. Cortes. MNIST handwritten digit database.
http://yann.lecun.com/exdb/mnist/, 2010. 59, 60

114

http://papers.nips.cc/paper/5854-spatial-transformer-networks.pdf
http://papers.nips.cc/paper/5854-spatial-transformer-networks.pdf
https://www.kaggle.com/c/dogs-vs-cats

REFERENCES

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and
L. D. Jackel. Backpropagation applied to handwritten zip code recognition.
Neural computation, 1(4):541–551, 1989. 2

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.
16, 17

C.-J. Lee and S.-D. Wang. Fingerprint feature extraction using gabor filters. Elec-
tronics Letters, 35(4):288–290, 1999. 78

J. Li, Z. Yang, H. Liu, and D. Cai. Deep Rotation Equivariant Network.
Neurocomputing, 290:26–33, 2018a. ISSN 18728286. doi: 10.1016/
j.neucom.2018.02.029. 34

J. Li, X. Long, S. Hu, Y. Hu, Q. Gu, and D. Xu. A novel hardware-oriented ultra-
high-speed object detection algorithm based on convolutional neural network.
Journal of Real-Time Image Processing, pages 1–12, 2019. 5

S.-A. Li, W.-Y. Wang, W.-Z. Pan, C.-C. J. Hsu, and C.-K. Lu. Fpga-based hardware
design for scale-invariant feature transform. IEEE Access, 6:43850–43864,
2018b. 5

T. Liang, J. Glossner, L. Wang, and S. Shi. Pruning and quantization for deep
neural network acceleration: A survey. arXiv preprint arXiv:2101.09671, 2021.
8

L. Lin and N. Purnell. A world with a billion cameras watching you is just
around the corner, 2019. URL https://www.wsj.com/articles/a-billion-
surveillance-cameras-forecast-to-be-watching-within-two-years-
11575565402. 1

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L.
Zitnick. Microsoft coco: Common objects in context. In European conference
on computer vision, pages 740–755. Springer, 2014. 5

J. Liu. In your face: China’s all-seeing state, Dec 2017. URL https://
www.bbc.com/news/av/world-asia-china-42248056. 1

Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face attributes in the wild. In
Proceedings of International Conference on Computer Vision (ICCV), Decem-
ber 2015. 45

S. Luan, c. chen, B. Zhang, j. han, and J. Liu. Gabor convolutional networks. IEEE
Trans. Image processing., 2018. 33, 37, 74

R. Madaan, D. Maturana, and S. Scherer. Wire detection using synthetic data
and dilated convolutional networks for unmanned aerial vehicles. In 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 3487–3494. IEEE, 2017. 10

115

https://www.wsj.com/articles/a-billion-surveillance-cameras-forecast-to-be-watching-within-two-years-11575565402
https://www.wsj.com/articles/a-billion-surveillance-cameras-forecast-to-be-watching-within-two-years-11575565402
https://www.wsj.com/articles/a-billion-surveillance-cameras-forecast-to-be-watching-within-two-years-11575565402
https://www.bbc.com/news/av/world-asia-china-42248056
https://www.bbc.com/news/av/world-asia-china-42248056

REFERENCES

H. Maeda, Y. Sekimoto, T. Seto, T. Kashiyama, and H. Omata. Road da-
mage detection and classification using deep neural networks with smart-
phone images. Computer-Aided Civil and Infrastructure Engineering, 33
(12):1127–1141, 2018. doi: https://doi.org/10.1111/mice.12387. URL https:
//onlinelibrary.wiley.com/doi/abs/10.1111/mice.12387. 6

T. Manderson, J. C. G. Higuera, R. Cheng, and G. Dudek. Vision-based autono-
mous underwater swimming in dense coral for combined collision avoidance
and target selection. In 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 1885–1891. IEEE, 2018. 10

D. Marcos, M. Volpi, N. Komodakis, and D. Tuia. Rotation Equivariant Vec-
tor Field Networks. In Proceedings of the IEEE International Conference
on Computer Vision, volume 2017-Octob, pages 5058–5067, 2017. ISBN
9781538610329. doi: 10.1109/ICCV.2017.540. 22, 34, 37, 74

V. Mazzia, A. Khaliq, F. Salvetti, and M. Chiaberge. Real-time apple detection
system using embedded systems with hardware accelerators: an edge ai appli-
cation. IEEE Access, 8:9102–9114, 2020. 4

W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous
activity. The Bulletin of Mathematical Biophysics, 5(4):115–133, 1943. doi:
10.1007/bf02478259. 2, 14, 15

D. D. McManus, J. Lee, O. Maitas, N. Esa, R. Pidikiti, A. Carlucci, J. Harrington,
E. Mick, and K. H. Chon. A novel application for the detection of an irregular
pulse using an iphone 4s in patients with atrial fibrillation. Heart Rhythm, 10
(3):315–319, 2013. 6

J. Morlet, G. Arens, E. Fourgeau, and D. Glard. Wave propagation and sampling
theory—part i: Complex signal and scattering in multilayered media. Geophy-
sics, 47(2):203–221, 1982. 61

NVIDIA. Jetson nano developer kit, 2021a. URL https://developer.nvidia.com/
embedded/jetson-nano-developer-kit. 4

C. NVIDIA. Jetson benchmarks, 2021b. URL https://developer.nvidia.com/
embedded/jetson-benchmarks. 4

S. NXP. Rd-imx6q-sabre: Sabre board for smart devices based on the i.mx
6quad applications processors, 2021. URL https://www.nxp.com/design/
development-boards/i-mx-evaluation-and-development-boards/sabre-
board-for-smart-devices-based-on-the-i-mx-6quad-applications-
processors:RD-IMX6Q-SABRE. 9

S. O’Dea. Number of smartphone users worldwide from 2016 to 2021,
2020. URL https://www.statista.com/statistics/330695/number-of-
smartphone-users-worldwide/. 1

S. O’Gara and K. McGuinness. Comparing data augmentation strategies for deep
image classification. In IMVIP. Technological University Dublin, 2019. 7, 29

116

https://onlinelibrary.wiley.com/doi/abs/10.1111/mice.12387
https://onlinelibrary.wiley.com/doi/abs/10.1111/mice.12387
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-benchmarks
https://developer.nvidia.com/embedded/jetson-benchmarks
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/sabre-board-for-smart-devices-based-on-the-i-mx-6quad-applications-processors:RD-IMX6Q-SABRE
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/sabre-board-for-smart-devices-based-on-the-i-mx-6quad-applications-processors:RD-IMX6Q-SABRE
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/sabre-board-for-smart-devices-based-on-the-i-mx-6quad-applications-processors:RD-IMX6Q-SABRE
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/sabre-board-for-smart-devices-based-on-the-i-mx-6quad-applications-processors:RD-IMX6Q-SABRE
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/

REFERENCES

E. C. Orenstein, O. Beijbom, E. E. Peacock, and H. M. Sosik. Whoi-plankton-
a large scale fine grained visual recognition benchmark dataset for plankton
classification. arXiv preprint arXiv:1510.00745, 2015. 71

Z. W. Pan Zhong. Characterization and design of generalized convolutional neural
network. In Anual Conference in Information Sciences and Systems (CISS),
pages 1–6. IEEE, 2019. 34

R. Pi. Raspberry pi computers and microcontrollers, 2021. URL https://
www.raspberrypi.org/products/. 4

Qualcomm. Qualcomm® snapdragon™ 888 5g mobile platform, 2020.
URL https://www.qualcomm.com/media/documents/files/qualcomm-
snapdragon-888-mobile-platform-product-brief.pdf. 11

A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, and I. Suts-
kever. Zero-shot text-to-image generation. arXiv preprint arXiv:2102.12092,
2021a. 2

A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, and I. Suts-
kever. Zero-shot text-to-image generation, 2021b. 13

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified,
real-time object detection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 779–788, 2016. 13

Y. Ren, C. Zhu, and S. Xiao. Small object detection in optical remote sensing
images via modified faster r-cnn. Applied Sciences, 8(5):813, 2018. 2

A. Reuther, P. Michaleas, M. Jones, V. Gadepally, S. Samsi, and J. Kepner. Sur-
vey and benchmarking of machine learning accelerators. In 2019 IEEE high
performance extreme computing conference (HPEC), pages 1–9. IEEE, 2019.
5

S. Rivas-Gomez, A. J. Pena, D. Moloney, E. Laure, and S. Markidis. Exploring the
vision processing unit as co-processor for inference. In 2018 IEEE Interna-
tional Parallel and Distributed Processing Symposium Workshops (IPDPSW),
pages 589–598, 2018. doi: 10.1109/IPDPSW.2018.00098. 5

R. Rodriguez Salas, E. Dokladalova, and P. Dokládal. Rotation invariant cnn
using scattering transform for image classification. In 2019 IEEE International
Conference on Image Processing (ICIP), pages 654–658. IEEE, 2019. 37, 73,
74, 85

R. Rodriguez Salas, P. Dokládal, and E. Dokladalova. A minimal model for clas-
sification of rotated objects with prediction of the angle of rotation. Journal of
Visual Communication and Image Representation, 75:103054, 2021a. 37, 73,
74, 85

R. Rodriguez Salas, P. Dokladal, and E. Dokladalova. Rotation invariant networks
for image classification for hpc and embedded systems. Electronics, 10(2),

117

https://www.raspberrypi.org/products/
https://www.raspberrypi.org/products/
https://www.qualcomm.com/media/documents/files/qualcomm-snapdragon-888-mobile-platform-product-brief.pdf
https://www.qualcomm.com/media/documents/files/qualcomm-snapdragon-888-mobile-platform-product-brief.pdf

REFERENCES

2021b. ISSN 2079-9292. doi: 10.3390/electronics10020139. URL https://
www.mdpi.com/2079-9292/10/2/139. 85, 92

F. Rosenblatt. The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review, 65(6):386–408, 1958. doi:
10.1037/h0042519. 15

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by
back-propagating errors. nature, 323(6088):533–536, 1986. 14

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-
thy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale
Visual Recognition Challenge. International Journal of Computer Vision (IJCV),
115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y. 20

I. Sa, Z. Chen, M. Popović, R. Khanna, F. Liebisch, J. Nieto, and R. Siegwart.
weednet: Dense semantic weed classification using multispectral images and
mav for smart farming. IEEE Robotics and Automation Letters, 3(1):588–595,
2017. 9

A. K. Saydjari and D. P. Finkbeiner. Equivariant wavelets: Fast rotation
and translation invariant wavelet scattering transforms. arXiv preprint
arXiv:2104.11244, 2021. 33, 37

M. R. Schädler, B. T. Meyer, and B. Kollmeier. Spectro-temporal modulation
subspace-spanning filter bank features for robust automatic speech recogni-
tion. The Journal of the Acoustical Society of America, 131(5):4134–4151,
2012. 78

F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding for
face recognition and clustering. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 815–823, 2015. 45

P. Sermanet and Y. LeCun. Traffic sign recognition with multi-scale convolutional
networks. In The 2011 International Joint Conference on Neural Networks,
pages 2809–2813. IEEE, 2011. 18

R. Shanmugamani. Deep Learning for Computer Vision. Packt Publishing,
O’Reilly Media, Inc, 1 2018. ISBN 9781788295628. 2

W. Shi and S. Dustdar. The promise of edge computing. Computer, 49(5):78–81,
2016. 3

W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. Edge computing: Vision and challenges.
IEEE internet of things journal, 3(5):637–646, 2016. 3

C. Shin and J. Yun. Deep rotating kernel convolution neural network. In 2019
Third IEEE International Conference on Robotic Computing (IRC), pages 441–
442. IEEE, 2019. 73, 74, 85

118

https://www.mdpi.com/2079-9292/10/2/139
https://www.mdpi.com/2079-9292/10/2/139

REFERENCES

L. Sifre and S. Mallat. Rotation, scaling and deformation invariant scattering for
texture discrimination. In Proceedings of the IEEE Computer Society Confe-
rence on Computer Vision and Pattern Recognition, pages 1233–1240, 2013.
doi: 10.1109/CVPR.2013.163. 33

P. Y. Simard, D. Steinkraus, J. C. Platt, et al. Best practices for convolutional neu-
ral networks applied to visual document analysis. In Icdar, volume 3. Citeseer,
2003. 28

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. In International Conference on Learning Representations,
2015. 17

S. Singh, A. Aggarwal, and R. Dhir. Use of gabor filters for recognition of hand-
written gurmukhi character. International Journal of Advanced Research in
Computer Science and Software Engineering, 2(5), 2012. 78

S. Sivanantham, E. Dokladalova, P. Dokladal, and V. Biri. Reconnaissance faciale
pour les bases de donnees reduites. Internship report (Unpublished), 2017. 45

A. A. Süzen, B. Duman, and B. Şen. Benchmark analysis of jetson tx2, jetson nano
and raspberry pi using deep-cnn. In 2020 International Congress on Human-
Computer Interaction, Optimization and Robotic Applications (HORA), pages
1–5. IEEE, 2020. 4

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich. Going deeper with convolutions. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 1–9,
2015. 18

Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface: Closing the gap to
human-level performance in face verification. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 1701–1708,
2014. 45

M. Tan and Q. Le. EfficientNet: Rethinking model scaling for convolutional neural
networks. In K. Chaudhuri and R. Salakhutdinov, editors, Proceedings of the
36th International Conference on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pages 6105–6114. PMLR, 09–15 Jun 2019. URL
http://proceedings.mlr.press/v97/tan19a.html. 19, 20

V. Vapnik and A. Y. Chervonenkis. On the uniform convergence of relative fre-
quencies of events to their probabilities. Theory of Probability & Its Applica-
tions, 16(2):264–280, 1971. 98

J. Velasco, C. Pascion, J. W. Alberio, J. Apuang, J. S. Cruz, M. A. Gomez, B. Mo-
lina Jr, L. Tuala, A. Thio-ac, and R. Jorda Jr. A smartphone-based skin disease
classification using mobilenet cnn. arXiv preprint arXiv:1911.07929, 2019. 12

119

http://proceedings.mlr.press/v97/tan19a.html

REFERENCES

M. Weiler, F. A. Hamprecht, and M. Storath. Learning Steerable Filters for Rota-
tion Equivariant CNNs. In Proceedings of the IEEE Computer Society Confe-
rence on Computer Vision and Pattern Recognition, pages 849–858, 2018.
ISBN 9781538664209. doi: 10.1109/CVPR.2018.00095. 21, 29, 33, 34, 37,
74

R. Wiersma, E. Eisemann, and K. Hildebrandt. Cnns on surfaces using rotation-
equivariant features. ACM Transactions on Graphics (TOG), 39(4):92–1, 2020.
21

D. Worrall. Mnist-rot experiments, 2017. URL https://github.com/
deworrall92/harmonicConvolutions/tree/master/MNIST-rot. 28, 70

D. Worrall and G. Brostow. CubeNet: Equivariance to 3D Rotation and Transla-
tion. In Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 11209
LNCS, pages 585–602, 2018. ISBN 9783030012274. doi: 10.1007/978-3-030-
01228-1_35. 31

D. E. Worrall, S. J. Garbin, D. Turmukhambetov, and G. J. Brostow. Harmonic
Networks: Deep translation and rotation equivariance. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 7168–7177, 2017. ISBN
9781538604571. doi: 10.1109/CVPR.2017.758. 21, 30, 31, 37, 74, 103

C.-J. Wu, D. Brooks, K. Chen, D. Chen, S. Choudhury, M. Dukhan, K. Hazelwood,
E. Isaac, Y. Jia, B. Jia, et al. Machine learning at facebook: Understanding
inference at the edge. In 2019 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA), pages 331–344. IEEE, 2019. 12

Xilinx. Fpgas & 3d ics, 2021. URL https://www.xilinx.com/products/silicon-
devices/fpga.html. 4

M. Xu, J. Liu, Y. Liu, F. X. Lin, Y. Liu, and X. Liu. A first look at deep learning apps
on smartphones. In The World Wide Web Conference, pages 2125–2136, 2019.
11, 12

H. Yakura, S. Shinozaki, R. Nishimura, Y. Oyama, and J. Sakuma. Malware ana-
lysis of imaged binary samples by convolutional neural network with attention
mechanism. In Proceedings of the Eighth ACM Conference on Data and Appli-
cation Security and Privacy, pages 127–134, 2018. 16

S. I. Young, W. Zhe, D. Taubman, and B. Girod. Transform quantization for cnn
compression. arXiv preprint arXiv:2009.01174, 2020. 8

M. M. T. Zadeh, M. Imani, and B. Majidi. Fast facial emotion recognition using
convolutional neural networks and gabor filters. In 2019 5th Conference on
Knowledge Based Engineering and Innovation (KBEI), pages 577–581. IEEE,
2019. 78

X. Zhang, L. Liu, Y. Xie, J. Chen, L. Wu, and M. Pietikäinen. Rotation In-
variant Local Binary Convolution Neural Networks. In Proceedings - 2017

120

https://github.com/deworrall92/harmonicConvolutions/tree/master/MNIST-rot
https://github.com/deworrall92/harmonicConvolutions/tree/master/MNIST-rot
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html

REFERENCES

IEEE International Conference on Computer Vision Workshops, ICCVW 2017,
volume 2018-Janua, pages 1210–1219, 2018. ISBN 9781538610343. doi:
10.1109/ICCVW.2017.146. URL http://www.outex.oulu.fi/. 33, 34, 37

Y. Zhou, Q. Ye, Q. Qiu, and J. Jiao. Oriented response networks. In Proceedings
- 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2017, volume 2017-January, pages 4961–4970, 2017. ISBN 9781538604571.
doi: 10.1109/CVPR.2017.527. 33, 34, 37, 73, 74, 85, 92

Y. Zhou, J. Shi, X. Yang, C. Wang, S. Wei, and X. Zhang. Rotational objects recog-
nition and angle estimation via kernel-mapping cnn. IEEE Access, 7:116505–
116518, 2019. 35, 37, 103

Z. Zhou, Y. Neo, K.-S. Lui, V. W. Tam, E. Y. Lam, and N. Wong. A portable hong
kong sign language translation platform with deep learning and jetson nano.
In The 22nd International ACM SIGACCESS Conference on Computers and
Accessibility, pages 1–4, 2020. 4

121

http://www.outex.oulu.fi/

Abstract

During the last years, the number of CNN-based applications for computer
vision has grown exponentially. This success is related to their performances and
efficient implementations. Nevertheless, their computing requirements remain
high and limiting.

In this work, we focus on rotation-invariant classification. The main objective
is to reduce the size of the model without sacrificing the accuracy. We propose
an original CNN architecture where the first layer consists of an ordered set of
filters. We evaluate several filter families such as scattering transform, steerable,
and Gabor filters. We also provide proof of the trainability of this architecture.

Finally, the proposed rotation invariance framework allows achieving state-
of-the-art error rates on simple datasets and outperforming previous approaches
on more complex datasets while reducing the network size by more than 50%.
These results are obtained without data-augmentation techniques and with an
angular prediction capability.

Keywords: Image classification, CNN, rotation invariance, prediction of angle
of rotation, scattering transform, steerable filters, Gabor filters.

Résumé

Au cours des dernières années, le nombre d’applications des CNNs pour la
vision par ordinateur a augmenté exponentiellement. Cela est lié à leurs perfor-
mances et à leurs implémentations efficaces. Néanmoins, leurs coûts de calcul
restent élevés.

Dans ce travail, nous nous concentrons sur la classification invariante par
rotation. L’objectif principal est de réduire ainsi la taille du modèle sans sacri-
fier sa précision. Nous proposons une architecture CNN originale où la première
couche consiste en un ensemble ordonné de filtres. Nous évaluons plusieurs fa-
milles de filtres : la scattering transform, les steerable filtres et les filtres de
Gabor. Nous fournissons également les preuves qu’une telle architecture peut
être entraînée.

Nous démontrons les résultats très compétitifs les datasets simples et com-
plexes avec taille du réseau réduite de plus de 50 %. Ces résultats sont obtenus
sans techniques d’augmentation des données et avec une capacité de prédiction
de l’angle de rotation.

Keywords: Classification d’image, CNN, classification invariante par rota-
tion, prédiction de l’angle de rotation, scattering transform, steerable filtres,
filtres de Gabor.

	Table of contents
	List of acronyms

	Introduction
	Computer Vision Technological Trends
	Deployment and Computing Considerations of Deep Learning Models
	Hardware Platforms and Deep Learning Applications
	Size Optimization Techniques for Deep Learning
	Deep Learning Applications

	Artificial Neural Networks
	Convolutional Neural Networks
	Rotation invariance

	Thesis Contributions
	Thesis Structure

	Roto-translational Feature Space
	Existing Approaches to Obtain Rotation Invariant Classification
	Continuous Angular Sampling
	Discrete Angular Sampling

	Roto-translational Feature Space
	1-D Feature Representation
	Scanning Order

	3-D Feature Representation
	3D Re-orientation

	Face Recognition Using an Oriented Feature Space
	Experimental Setup and Results

	Translating Predictor
	Training of the Translating Predictor

	Conclusions

	Rotation Invariant Networks on Simple Datasets
	MNIST Dataset and Variations
	Training Strategies

	Scattering Transform
	Scattering Wavelet
	Rotation Invariant Network Based on Scattering Wavelets

	Steerable Filters
	Learning Steerable Filters
	Rotation Invariant Network Based on Steerable Filters

	Results
	Rotation Angle Prediction
	Rotation Invariant Classification
	Comparison with the State of the Art

	Conclusion

	Rotation Invariant Networks on Complex Datasets
	Gabor Filters
	Gabor Filter Parameter Description

	Gabor Filters as Feature Extraction on Simple Datasets
	Results

	Gabor Filters as Feature Extraction on Complex Datasets
	Feature Extraction Stage Alternatives
	ResNet Feature Stage
	Results

	Conclusions

	Mathematical Background and Formal Methodology
	Oriented Feature Space
	Prediction Model
	The Vapnik-Chervonenkis Dimension of the Model

	Conclusions

	Conclusions and Future Works
	Contributions
	Future Works

	List of research communications
	References

